xref: /netbsd-src/external/bsd/ntp/dist/ntpd/ntp_control.c (revision 3117ece4fc4a4ca4489ba793710b60b0d26bab6c)
1 /*	$NetBSD: ntp_control.c,v 1.25 2024/10/01 20:59:51 christos Exp $	*/
2 
3 /*
4  * ntp_control.c - respond to mode 6 control messages and send async
5  *		   traps.  Provides service to ntpq and others.
6  */
7 
8 #ifdef HAVE_CONFIG_H
9 # include <config.h>
10 #endif
11 
12 #include <stdio.h>
13 #include <ctype.h>
14 #include <signal.h>
15 #include <sys/stat.h>
16 #ifdef HAVE_NETINET_IN_H
17 # include <netinet/in.h>
18 #endif
19 #include <arpa/inet.h>
20 
21 #include "ntpd.h"
22 #include "ntp_io.h"
23 #include "ntp_refclock.h"
24 #include "ntp_control.h"
25 #include "ntp_unixtime.h"
26 #include "ntp_stdlib.h"
27 #include "ntp_config.h"
28 #include "ntp_crypto.h"
29 #include "ntp_assert.h"
30 #include "ntp_leapsec.h"
31 #include "timexsup.h"
32 
33 #include <rc_cmdlength.h>
34 #ifdef KERNEL_PLL
35 # include "ntp_syscall.h"
36 #endif
37 
38 /*
39  * Structure to hold request procedure information
40  */
41 
42 struct ctl_proc {
43 	short control_code;		/* defined request code */
44 #define NO_REQUEST	(-1)
45 	u_short flags;			/* flags word */
46 	/* Only one flag.  Authentication required or not. */
47 #define NOAUTH	0
48 #define AUTH	1
49 	void (*handler) (struct recvbuf *, int); /* handle request */
50 };
51 
52 
53 /*
54  * Request processing routines
55  */
56 static	void	ctl_error	(u_char);
57 #ifdef REFCLOCK
58 static	u_short ctlclkstatus	(struct refclockstat *);
59 #endif
60 static	void	ctl_flushpkt	(u_char);
61 static	void	ctl_putdata	(const char *, unsigned int, int);
62 static	void	ctl_putstr	(const char *, const char *, size_t);
63 static	void	ctl_putdblf	(const char *, int, int, double);
64 #define	ctl_putdbl(tag, d)	ctl_putdblf(tag, 1, 3, d)
65 #define	ctl_putdbl6(tag, d)	ctl_putdblf(tag, 1, 6, d)
66 #define	ctl_putsfp(tag, sfp)	ctl_putdblf(tag, 0, -1, \
67 					    FPTOD(sfp))
68 static	void	ctl_putuint	(const char *, u_long);
69 static	void	ctl_puthex	(const char *, u_long);
70 static	void	ctl_putint	(const char *, long);
71 static	void	ctl_putts	(const char *, l_fp *);
72 static	void	ctl_putadr	(const char *, u_int32,
73 				 sockaddr_u *);
74 static	void	ctl_putrefid	(const char *, u_int32);
75 static	void	ctl_putarray	(const char *, double *, int);
76 static	void	ctl_putsys	(int);
77 static	void	ctl_putpeer	(int, struct peer *);
78 static	void	ctl_putfs	(const char *, tstamp_t);
79 static	void	ctl_printf	(const char *, ...) NTP_PRINTF(1, 2);
80 #ifdef REFCLOCK
81 static	void	ctl_putclock	(int, struct refclockstat *, int);
82 #endif	/* REFCLOCK */
83 static	const struct ctl_var *ctl_getitem(const struct ctl_var *,
84 					  char **);
85 static	u_short	count_var	(const struct ctl_var *);
86 static	void	control_unspec	(struct recvbuf *, int);
87 static	void	read_status	(struct recvbuf *, int);
88 static	void	read_sysvars	(void);
89 static	void	read_peervars	(void);
90 static	void	read_variables	(struct recvbuf *, int);
91 static	void	write_variables (struct recvbuf *, int);
92 static	void	read_clockstatus(struct recvbuf *, int);
93 static	void	write_clockstatus(struct recvbuf *, int);
94 static	void	set_trap	(struct recvbuf *, int);
95 static	void	save_config	(struct recvbuf *, int);
96 static	void	configure	(struct recvbuf *, int);
97 static	void	send_mru_entry	(mon_entry *, int);
98 static	void	send_random_tag_value(int);
99 static	void	read_mru_list	(struct recvbuf *, int);
100 static	void	send_ifstats_entry(endpt *, u_int);
101 static	void	read_ifstats	(struct recvbuf *);
102 static	void	sockaddrs_from_struct_restrict_4(sockaddr_u *,	sockaddr_u *,
103 					  struct restrict_4 *);
104 static	void	sockaddrs_from_struct_restrict_6(sockaddr_u *,	sockaddr_u *,
105 					  struct restrict_6 *);
106 static	void	send_restrict_entry(struct restrict_info *, sockaddr_u *,
107 					  sockaddr_u *, u_int);
108 static	void	send_restrict4_entry(struct restrict_4 *, u_int);
109 static	void	send_restrict6_entry(struct restrict_6 *, u_int);
110 static	void	send_restrict4_list(struct restrict_4 *, u_int *);
111 static	void	send_restrict6_list(struct restrict_6 *, u_int *);
112 static	void	read_addr_restrictions(struct recvbuf *);
113 static	void	read_ordlist	(struct recvbuf *, int);
114 static	u_int32	derive_nonce	(sockaddr_u *, u_int32, u_int32);
115 static	void	generate_nonce	(struct recvbuf *, char *, size_t);
116 static	int	validate_nonce	(const char *, struct recvbuf *);
117 static	void	req_nonce	(struct recvbuf *, int);
118 static	void	unset_trap	(struct recvbuf *, int);
119 static	struct ctl_trap *ctlfindtrap(sockaddr_u *,
120 				     endpt *);
121 
122 int/*BOOL*/ is_safe_filename(const char * name);
123 
124 static const struct ctl_proc control_codes[] = {
125 	{ CTL_OP_UNSPEC,		NOAUTH,	control_unspec },
126 	{ CTL_OP_READSTAT,		NOAUTH,	read_status },
127 	{ CTL_OP_READVAR,		NOAUTH,	read_variables },
128 	{ CTL_OP_WRITEVAR,		AUTH,	write_variables },
129 	{ CTL_OP_READCLOCK,		NOAUTH,	read_clockstatus },
130 	{ CTL_OP_WRITECLOCK,		AUTH,	write_clockstatus },
131 	{ CTL_OP_SETTRAP,		AUTH,	set_trap },
132 	{ CTL_OP_CONFIGURE,		AUTH,	configure },
133 	{ CTL_OP_SAVECONFIG,		AUTH,	save_config },
134 	{ CTL_OP_READ_MRU,		NOAUTH,	read_mru_list },
135 	{ CTL_OP_READ_ORDLIST_A,	AUTH,	read_ordlist },
136 	{ CTL_OP_REQ_NONCE,		NOAUTH,	req_nonce },
137 	{ CTL_OP_UNSETTRAP,		AUTH,	unset_trap },
138 	{ NO_REQUEST,			0,	NULL }
139 };
140 
141 /*
142  * System variables we understand
143  */
144 #define	CS_LEAP			1
145 #define	CS_STRATUM		2
146 #define	CS_PRECISION		3
147 #define	CS_ROOTDELAY		4
148 #define	CS_ROOTDISPERSION	5
149 #define	CS_REFID		6
150 #define	CS_REFTIME		7
151 #define	CS_POLL			8
152 #define	CS_PEERID		9
153 #define	CS_OFFSET		10
154 #define	CS_DRIFT		11
155 #define	CS_JITTER		12
156 #define	CS_ERROR		13
157 #define	CS_CLOCK		14
158 #define	CS_PROCESSOR		15
159 #define	CS_SYSTEM		16
160 #define	CS_VERSION		17
161 #define	CS_STABIL		18
162 #define	CS_VARLIST		19
163 #define	CS_TAI			20
164 #define	CS_LEAPTAB		21
165 #define	CS_LEAPEND		22
166 #define	CS_RATE			23
167 #define	CS_MRU_ENABLED		24
168 #define	CS_MRU_DEPTH		25
169 #define	CS_MRU_DEEPEST		26
170 #define	CS_MRU_MINDEPTH		27
171 #define	CS_MRU_MAXAGE		28
172 #define	CS_MRU_MAXDEPTH		29
173 #define	CS_MRU_MEM		30
174 #define	CS_MRU_MAXMEM		31
175 #define	CS_SS_UPTIME		32
176 #define	CS_SS_RESET		33
177 #define	CS_SS_RECEIVED		34
178 #define	CS_SS_THISVER		35
179 #define	CS_SS_OLDVER		36
180 #define	CS_SS_BADFORMAT		37
181 #define	CS_SS_BADAUTH		38
182 #define	CS_SS_DECLINED		39
183 #define	CS_SS_RESTRICTED	40
184 #define	CS_SS_LIMITED		41
185 #define	CS_SS_KODSENT		42
186 #define	CS_SS_PROCESSED		43
187 #define	CS_SS_LAMPORT		44
188 #define	CS_SS_TSROUNDING	45
189 #define	CS_PEERADR		46
190 #define	CS_PEERMODE		47
191 #define	CS_BCASTDELAY		48
192 #define	CS_AUTHDELAY		49
193 #define	CS_AUTHKEYS		50
194 #define	CS_AUTHFREEK		51
195 #define	CS_AUTHKLOOKUPS		52
196 #define	CS_AUTHKNOTFOUND	53
197 #define	CS_AUTHKUNCACHED	54
198 #define	CS_AUTHKEXPIRED		55
199 #define	CS_AUTHENCRYPTS		56
200 #define	CS_AUTHDECRYPTS		57
201 #define	CS_AUTHRESET		58
202 #define	CS_K_OFFSET		59
203 #define	CS_K_FREQ		60
204 #define	CS_K_MAXERR		61
205 #define	CS_K_ESTERR		62
206 #define	CS_K_STFLAGS		63
207 #define	CS_K_TIMECONST		64
208 #define	CS_K_PRECISION		65
209 #define	CS_K_FREQTOL		66
210 #define	CS_K_PPS_FREQ		67
211 #define	CS_K_PPS_STABIL		68
212 #define	CS_K_PPS_JITTER		69
213 #define	CS_K_PPS_CALIBDUR	70
214 #define	CS_K_PPS_CALIBS		71
215 #define	CS_K_PPS_CALIBERRS	72
216 #define	CS_K_PPS_JITEXC		73
217 #define	CS_K_PPS_STBEXC		74
218 #define	CS_KERN_FIRST		CS_K_OFFSET
219 #define	CS_KERN_LAST		CS_K_PPS_STBEXC
220 #define	CS_IOSTATS_RESET	75
221 #define	CS_TOTAL_RBUF		76
222 #define	CS_FREE_RBUF		77
223 #define	CS_USED_RBUF		78
224 #define	CS_RBUF_LOWATER		79
225 #define	CS_IO_DROPPED		80
226 #define	CS_IO_IGNORED		81
227 #define	CS_IO_RECEIVED		82
228 #define	CS_IO_SENT		83
229 #define	CS_IO_SENDFAILED	84
230 #define	CS_IO_WAKEUPS		85
231 #define	CS_IO_GOODWAKEUPS	86
232 #define	CS_TIMERSTATS_RESET	87
233 #define	CS_TIMER_OVERRUNS	88
234 #define	CS_TIMER_XMTS		89
235 #define	CS_FUZZ			90
236 #define	CS_WANDER_THRESH	91
237 #define	CS_LEAPSMEARINTV	92
238 #define	CS_LEAPSMEAROFFS	93
239 #define	CS_MAX_NOAUTOKEY	CS_LEAPSMEAROFFS
240 #ifdef AUTOKEY
241 #define	CS_FLAGS		(1 + CS_MAX_NOAUTOKEY)
242 #define	CS_HOST			(2 + CS_MAX_NOAUTOKEY)
243 #define	CS_PUBLIC		(3 + CS_MAX_NOAUTOKEY)
244 #define	CS_CERTIF		(4 + CS_MAX_NOAUTOKEY)
245 #define	CS_SIGNATURE		(5 + CS_MAX_NOAUTOKEY)
246 #define	CS_REVTIME		(6 + CS_MAX_NOAUTOKEY)
247 #define	CS_IDENT		(7 + CS_MAX_NOAUTOKEY)
248 #define	CS_DIGEST		(8 + CS_MAX_NOAUTOKEY)
249 #define	CS_MAXCODE		CS_DIGEST
250 #else	/* !AUTOKEY follows */
251 #define	CS_MAXCODE		CS_MAX_NOAUTOKEY
252 #endif	/* !AUTOKEY */
253 
254 /*
255  * Peer variables we understand
256  */
257 #define	CP_CONFIG		1
258 #define	CP_AUTHENABLE		2
259 #define	CP_AUTHENTIC		3
260 #define	CP_SRCADR		4
261 #define	CP_SRCPORT		5
262 #define	CP_DSTADR		6
263 #define	CP_DSTPORT		7
264 #define	CP_LEAP			8
265 #define	CP_HMODE		9
266 #define	CP_STRATUM		10
267 #define	CP_PPOLL		11
268 #define	CP_HPOLL		12
269 #define	CP_PRECISION		13
270 #define	CP_ROOTDELAY		14
271 #define	CP_ROOTDISPERSION	15
272 #define	CP_REFID		16
273 #define	CP_REFTIME		17
274 #define	CP_ORG			18
275 #define	CP_REC			19
276 #define	CP_XMT			20
277 #define	CP_REACH		21
278 #define	CP_UNREACH		22
279 #define	CP_TIMER		23
280 #define	CP_DELAY		24
281 #define	CP_OFFSET		25
282 #define	CP_JITTER		26
283 #define	CP_DISPERSION		27
284 #define	CP_KEYID		28
285 #define	CP_FILTDELAY		29
286 #define	CP_FILTOFFSET		30
287 #define	CP_PMODE		31
288 #define	CP_RECEIVED		32
289 #define	CP_SENT			33
290 #define	CP_FILTERROR		34
291 #define	CP_FLASH		35
292 #define	CP_TTL			36
293 #define	CP_VARLIST		37
294 #define	CP_IN			38
295 #define	CP_OUT			39
296 #define	CP_RATE			40
297 #define	CP_BIAS			41
298 #define	CP_SRCHOST		42
299 #define	CP_TIMEREC		43
300 #define	CP_TIMEREACH		44
301 #define	CP_BADAUTH		45
302 #define	CP_BOGUSORG		46
303 #define	CP_OLDPKT		47
304 #define	CP_SELDISP		48
305 #define	CP_SELBROKEN		49
306 #define	CP_CANDIDATE		50
307 #define	CP_MAX_NOAUTOKEY	CP_CANDIDATE
308 #ifdef AUTOKEY
309 #define	CP_FLAGS		(1 + CP_MAX_NOAUTOKEY)
310 #define	CP_HOST			(2 + CP_MAX_NOAUTOKEY)
311 #define	CP_VALID		(3 + CP_MAX_NOAUTOKEY)
312 #define	CP_INITSEQ		(4 + CP_MAX_NOAUTOKEY)
313 #define	CP_INITKEY		(5 + CP_MAX_NOAUTOKEY)
314 #define	CP_INITTSP		(6 + CP_MAX_NOAUTOKEY)
315 #define	CP_SIGNATURE		(7 + CP_MAX_NOAUTOKEY)
316 #define	CP_IDENT		(8 + CP_MAX_NOAUTOKEY)
317 #define	CP_MAXCODE		CP_IDENT
318 #else	/* !AUTOKEY follows */
319 #define	CP_MAXCODE		CP_MAX_NOAUTOKEY
320 #endif	/* !AUTOKEY */
321 
322 /*
323  * Clock variables we understand
324  */
325 #define	CC_TYPE		1
326 #define	CC_TIMECODE	2
327 #define	CC_POLL		3
328 #define	CC_NOREPLY	4
329 #define	CC_BADFORMAT	5
330 #define	CC_BADDATA	6
331 #define	CC_FUDGETIME1	7
332 #define	CC_FUDGETIME2	8
333 #define	CC_FUDGEVAL1	9
334 #define	CC_FUDGEVAL2	10
335 #define	CC_FLAGS	11
336 #define	CC_DEVICE	12
337 #define	CC_VARLIST	13
338 #define	CC_FUDGEMINJIT	14
339 #define	CC_MAXCODE	CC_FUDGEMINJIT
340 
341 /*
342  * System variable values. The array can be indexed by the variable
343  * index to find the textual name.
344  */
345 static const struct ctl_var sys_var[] = {
346 	{ 0,		PADDING, "" },		/* 0 */
347 	{ CS_LEAP,	RW, "leap" },		/* 1 */
348 	{ CS_STRATUM,	RO, "stratum" },	/* 2 */
349 	{ CS_PRECISION, RO, "precision" },	/* 3 */
350 	{ CS_ROOTDELAY, RO, "rootdelay" },	/* 4 */
351 	{ CS_ROOTDISPERSION, RO, "rootdisp" },	/* 5 */
352 	{ CS_REFID,	RO, "refid" },		/* 6 */
353 	{ CS_REFTIME,	RO, "reftime" },	/* 7 */
354 	{ CS_POLL,	RO, "tc" },		/* 8 */
355 	{ CS_PEERID,	RO, "peer" },		/* 9 */
356 	{ CS_OFFSET,	RO, "offset" },		/* 10 */
357 	{ CS_DRIFT,	RO, "frequency" },	/* 11 */
358 	{ CS_JITTER,	RO, "sys_jitter" },	/* 12 */
359 	{ CS_ERROR,	RO, "clk_jitter" },	/* 13 */
360 	{ CS_CLOCK,	RO, "clock" },		/* 14 */
361 	{ CS_PROCESSOR, RO, "processor" },	/* 15 */
362 	{ CS_SYSTEM,	RO, "system" },		/* 16 */
363 	{ CS_VERSION,	RO, "version" },	/* 17 */
364 	{ CS_STABIL,	RO, "clk_wander" },	/* 18 */
365 	{ CS_VARLIST,	RO, "sys_var_list" },	/* 19 */
366 	{ CS_TAI,	RO, "tai" },		/* 20 */
367 	{ CS_LEAPTAB,	RO, "leapsec" },	/* 21 */
368 	{ CS_LEAPEND,	RO, "expire" },		/* 22 */
369 	{ CS_RATE,	RO, "mintc" },		/* 23 */
370 	{ CS_MRU_ENABLED,	RO, "mru_enabled" },	/* 24 */
371 	{ CS_MRU_DEPTH,		RO, "mru_depth" },	/* 25 */
372 	{ CS_MRU_DEEPEST,	RO, "mru_deepest" },	/* 26 */
373 	{ CS_MRU_MINDEPTH,	RO, "mru_mindepth" },	/* 27 */
374 	{ CS_MRU_MAXAGE,	RO, "mru_maxage" },	/* 28 */
375 	{ CS_MRU_MAXDEPTH,	RO, "mru_maxdepth" },	/* 29 */
376 	{ CS_MRU_MEM,		RO, "mru_mem" },	/* 30 */
377 	{ CS_MRU_MAXMEM,	RO, "mru_maxmem" },	/* 31 */
378 	{ CS_SS_UPTIME,		RO, "ss_uptime" },	/* 32 */
379 	{ CS_SS_RESET,		RO, "ss_reset" },	/* 33 */
380 	{ CS_SS_RECEIVED,	RO, "ss_received" },	/* 34 */
381 	{ CS_SS_THISVER,	RO, "ss_thisver" },	/* 35 */
382 	{ CS_SS_OLDVER,		RO, "ss_oldver" },	/* 36 */
383 	{ CS_SS_BADFORMAT,	RO, "ss_badformat" },	/* 37 */
384 	{ CS_SS_BADAUTH,	RO, "ss_badauth" },	/* 38 */
385 	{ CS_SS_DECLINED,	RO, "ss_declined" },	/* 39 */
386 	{ CS_SS_RESTRICTED,	RO, "ss_restricted" },	/* 40 */
387 	{ CS_SS_LIMITED,	RO, "ss_limited" },	/* 41 */
388 	{ CS_SS_KODSENT,	RO, "ss_kodsent" },	/* 42 */
389 	{ CS_SS_PROCESSED,	RO, "ss_processed" },	/* 43 */
390 	{ CS_SS_LAMPORT,	RO, "ss_lamport" },	/* 44 */
391 	{ CS_SS_TSROUNDING,	RO, "ss_tsrounding" },	/* 45 */
392 	{ CS_PEERADR,		RO, "peeradr" },	/* 46 */
393 	{ CS_PEERMODE,		RO, "peermode" },	/* 47 */
394 	{ CS_BCASTDELAY,	RO, "bcastdelay" },	/* 48 */
395 	{ CS_AUTHDELAY,		RO, "authdelay" },	/* 49 */
396 	{ CS_AUTHKEYS,		RO, "authkeys" },	/* 50 */
397 	{ CS_AUTHFREEK,		RO, "authfreek" },	/* 51 */
398 	{ CS_AUTHKLOOKUPS,	RO, "authklookups" },	/* 52 */
399 	{ CS_AUTHKNOTFOUND,	RO, "authknotfound" },	/* 53 */
400 	{ CS_AUTHKUNCACHED,	RO, "authkuncached" },	/* 54 */
401 	{ CS_AUTHKEXPIRED,	RO, "authkexpired" },	/* 55 */
402 	{ CS_AUTHENCRYPTS,	RO, "authencrypts" },	/* 56 */
403 	{ CS_AUTHDECRYPTS,	RO, "authdecrypts" },	/* 57 */
404 	{ CS_AUTHRESET,		RO, "authreset" },	/* 58 */
405 	{ CS_K_OFFSET,		RO, "koffset" },	/* 59 */
406 	{ CS_K_FREQ,		RO, "kfreq" },		/* 60 */
407 	{ CS_K_MAXERR,		RO, "kmaxerr" },	/* 61 */
408 	{ CS_K_ESTERR,		RO, "kesterr" },	/* 62 */
409 	{ CS_K_STFLAGS,		RO, "kstflags" },	/* 63 */
410 	{ CS_K_TIMECONST,	RO, "ktimeconst" },	/* 64 */
411 	{ CS_K_PRECISION,	RO, "kprecis" },	/* 65 */
412 	{ CS_K_FREQTOL,		RO, "kfreqtol" },	/* 66 */
413 	{ CS_K_PPS_FREQ,	RO, "kppsfreq" },	/* 67 */
414 	{ CS_K_PPS_STABIL,	RO, "kppsstab" },	/* 68 */
415 	{ CS_K_PPS_JITTER,	RO, "kppsjitter" },	/* 69 */
416 	{ CS_K_PPS_CALIBDUR,	RO, "kppscalibdur" },	/* 70 */
417 	{ CS_K_PPS_CALIBS,	RO, "kppscalibs" },	/* 71 */
418 	{ CS_K_PPS_CALIBERRS,	RO, "kppscaliberrs" },	/* 72 */
419 	{ CS_K_PPS_JITEXC,	RO, "kppsjitexc" },	/* 73 */
420 	{ CS_K_PPS_STBEXC,	RO, "kppsstbexc" },	/* 74 */
421 	{ CS_IOSTATS_RESET,	RO, "iostats_reset" },	/* 75 */
422 	{ CS_TOTAL_RBUF,	RO, "total_rbuf" },	/* 76 */
423 	{ CS_FREE_RBUF,		RO, "free_rbuf" },	/* 77 */
424 	{ CS_USED_RBUF,		RO, "used_rbuf" },	/* 78 */
425 	{ CS_RBUF_LOWATER,	RO, "rbuf_lowater" },	/* 79 */
426 	{ CS_IO_DROPPED,	RO, "io_dropped" },	/* 80 */
427 	{ CS_IO_IGNORED,	RO, "io_ignored" },	/* 81 */
428 	{ CS_IO_RECEIVED,	RO, "io_received" },	/* 82 */
429 	{ CS_IO_SENT,		RO, "io_sent" },	/* 83 */
430 	{ CS_IO_SENDFAILED,	RO, "io_sendfailed" },	/* 84 */
431 	{ CS_IO_WAKEUPS,	RO, "io_wakeups" },	/* 85 */
432 	{ CS_IO_GOODWAKEUPS,	RO, "io_goodwakeups" },	/* 86 */
433 	{ CS_TIMERSTATS_RESET,	RO, "timerstats_reset" },/* 87 */
434 	{ CS_TIMER_OVERRUNS,	RO, "timer_overruns" },	/* 88 */
435 	{ CS_TIMER_XMTS,	RO, "timer_xmts" },	/* 89 */
436 	{ CS_FUZZ,		RO, "fuzz" },		/* 90 */
437 	{ CS_WANDER_THRESH,	RO, "clk_wander_threshold" }, /* 91 */
438 
439 	{ CS_LEAPSMEARINTV,	RO, "leapsmearinterval" },    /* 92 */
440 	{ CS_LEAPSMEAROFFS,	RO, "leapsmearoffset" },      /* 93 */
441 
442 #ifdef AUTOKEY
443 	{ CS_FLAGS,	RO, "flags" },		/* 1 + CS_MAX_NOAUTOKEY */
444 	{ CS_HOST,	RO, "host" },		/* 2 + CS_MAX_NOAUTOKEY */
445 	{ CS_PUBLIC,	RO, "update" },		/* 3 + CS_MAX_NOAUTOKEY */
446 	{ CS_CERTIF,	RO, "cert" },		/* 4 + CS_MAX_NOAUTOKEY */
447 	{ CS_SIGNATURE,	RO, "signature" },	/* 5 + CS_MAX_NOAUTOKEY */
448 	{ CS_REVTIME,	RO, "until" },		/* 6 + CS_MAX_NOAUTOKEY */
449 	{ CS_IDENT,	RO, "ident" },		/* 7 + CS_MAX_NOAUTOKEY */
450 	{ CS_DIGEST,	RO, "digest" },		/* 8 + CS_MAX_NOAUTOKEY */
451 #endif	/* AUTOKEY */
452 	{ 0,		EOV, "" }		/* 94/102 */
453 };
454 
455 static struct ctl_var *ext_sys_var = NULL;
456 
457 /*
458  * System variables we print by default (in fuzzball order,
459  * more-or-less)
460  */
461 static const u_char def_sys_var[] = {
462 	CS_VERSION,
463 	CS_PROCESSOR,
464 	CS_SYSTEM,
465 	CS_LEAP,
466 	CS_STRATUM,
467 	CS_PRECISION,
468 	CS_ROOTDELAY,
469 	CS_ROOTDISPERSION,
470 	CS_REFID,
471 	CS_REFTIME,
472 	CS_CLOCK,
473 	CS_PEERID,
474 	CS_POLL,
475 	CS_RATE,
476 	CS_OFFSET,
477 	CS_DRIFT,
478 	CS_JITTER,
479 	CS_ERROR,
480 	CS_STABIL,
481 	CS_TAI,
482 	CS_LEAPTAB,
483 	CS_LEAPEND,
484 	CS_LEAPSMEARINTV,
485 	CS_LEAPSMEAROFFS,
486 #ifdef AUTOKEY
487 	CS_HOST,
488 	CS_IDENT,
489 	CS_FLAGS,
490 	CS_DIGEST,
491 	CS_SIGNATURE,
492 	CS_PUBLIC,
493 	CS_CERTIF,
494 #endif	/* AUTOKEY */
495 	0
496 };
497 
498 
499 /*
500  * Peer variable list
501  */
502 static const struct ctl_var peer_var[] = {
503 	{ 0,		PADDING, "" },		/* 0 */
504 	{ CP_CONFIG,	RO, "config" },		/* 1 */
505 	{ CP_AUTHENABLE, RO,	"authenable" },	/* 2 */
506 	{ CP_AUTHENTIC, RO, "authentic" },	/* 3 */
507 	{ CP_SRCADR,	RO, "srcadr" },		/* 4 */
508 	{ CP_SRCPORT,	RO, "srcport" },	/* 5 */
509 	{ CP_DSTADR,	RO, "dstadr" },		/* 6 */
510 	{ CP_DSTPORT,	RO, "dstport" },	/* 7 */
511 	{ CP_LEAP,	RO, "leap" },		/* 8 */
512 	{ CP_HMODE,	RO, "hmode" },		/* 9 */
513 	{ CP_STRATUM,	RO, "stratum" },	/* 10 */
514 	{ CP_PPOLL,	RO, "ppoll" },		/* 11 */
515 	{ CP_HPOLL,	RO, "hpoll" },		/* 12 */
516 	{ CP_PRECISION,	RO, "precision" },	/* 13 */
517 	{ CP_ROOTDELAY,	RO, "rootdelay" },	/* 14 */
518 	{ CP_ROOTDISPERSION, RO, "rootdisp" },	/* 15 */
519 	{ CP_REFID,	RO, "refid" },		/* 16 */
520 	{ CP_REFTIME,	RO, "reftime" },	/* 17 */
521 	{ CP_ORG,	RO, "org" },		/* 18 */
522 	{ CP_REC,	RO, "rec" },		/* 19 */
523 	{ CP_XMT,	RO, "xleave" },		/* 20 */
524 	{ CP_REACH,	RO, "reach" },		/* 21 */
525 	{ CP_UNREACH,	RO, "unreach" },	/* 22 */
526 	{ CP_TIMER,	RO, "timer" },		/* 23 */
527 	{ CP_DELAY,	RO, "delay" },		/* 24 */
528 	{ CP_OFFSET,	RO, "offset" },		/* 25 */
529 	{ CP_JITTER,	RO, "jitter" },		/* 26 */
530 	{ CP_DISPERSION, RO, "dispersion" },	/* 27 */
531 	{ CP_KEYID,	RO, "keyid" },		/* 28 */
532 	{ CP_FILTDELAY,	RO, "filtdelay" },	/* 29 */
533 	{ CP_FILTOFFSET, RO, "filtoffset" },	/* 30 */
534 	{ CP_PMODE,	RO, "pmode" },		/* 31 */
535 	{ CP_RECEIVED,	RO, "received"},	/* 32 */
536 	{ CP_SENT,	RO, "sent" },		/* 33 */
537 	{ CP_FILTERROR,	RO, "filtdisp" },	/* 34 */
538 	{ CP_FLASH,	RO, "flash" },		/* 35 */
539 	{ CP_TTL,	RO, "ttl" },		/* 36 */
540 	{ CP_VARLIST,	RO, "peer_var_list" },	/* 37 */
541 	{ CP_IN,	RO, "in" },		/* 38 */
542 	{ CP_OUT,	RO, "out" },		/* 39 */
543 	{ CP_RATE,	RO, "headway" },	/* 40 */
544 	{ CP_BIAS,	RO, "bias" },		/* 41 */
545 	{ CP_SRCHOST,	RO, "srchost" },	/* 42 */
546 	{ CP_TIMEREC,	RO, "timerec" },	/* 43 */
547 	{ CP_TIMEREACH,	RO, "timereach" },	/* 44 */
548 	{ CP_BADAUTH,	RO, "badauth" },	/* 45 */
549 	{ CP_BOGUSORG,	RO, "bogusorg" },	/* 46 */
550 	{ CP_OLDPKT,	RO, "oldpkt" },		/* 47 */
551 	{ CP_SELDISP,	RO, "seldisp" },	/* 48 */
552 	{ CP_SELBROKEN,	RO, "selbroken" },	/* 49 */
553 	{ CP_CANDIDATE, RO, "candidate" },	/* 50 */
554 #ifdef AUTOKEY
555 	{ CP_FLAGS,	RO, "flags" },		/* 1 + CP_MAX_NOAUTOKEY */
556 	{ CP_HOST,	RO, "host" },		/* 2 + CP_MAX_NOAUTOKEY */
557 	{ CP_VALID,	RO, "valid" },		/* 3 + CP_MAX_NOAUTOKEY */
558 	{ CP_INITSEQ,	RO, "initsequence" },	/* 4 + CP_MAX_NOAUTOKEY */
559 	{ CP_INITKEY,	RO, "initkey" },	/* 5 + CP_MAX_NOAUTOKEY */
560 	{ CP_INITTSP,	RO, "timestamp" },	/* 6 + CP_MAX_NOAUTOKEY */
561 	{ CP_SIGNATURE,	RO, "signature" },	/* 7 + CP_MAX_NOAUTOKEY */
562 	{ CP_IDENT,	RO, "ident" },		/* 8 + CP_MAX_NOAUTOKEY */
563 #endif	/* AUTOKEY */
564 	{ 0,		EOV, "" }		/* 50/58 */
565 };
566 
567 
568 /*
569  * Peer variables we print by default
570  */
571 static const u_char def_peer_var[] = {
572 	CP_SRCADR,
573 	CP_SRCPORT,
574 	CP_SRCHOST,
575 	CP_DSTADR,
576 	CP_DSTPORT,
577 	CP_OUT,
578 	CP_IN,
579 	CP_LEAP,
580 	CP_STRATUM,
581 	CP_PRECISION,
582 	CP_ROOTDELAY,
583 	CP_ROOTDISPERSION,
584 	CP_REFID,
585 	CP_REFTIME,
586 	CP_REC,
587 	CP_REACH,
588 	CP_UNREACH,
589 	CP_HMODE,
590 	CP_PMODE,
591 	CP_HPOLL,
592 	CP_PPOLL,
593 	CP_RATE,
594 	CP_FLASH,
595 	CP_KEYID,
596 	CP_TTL,
597 	CP_OFFSET,
598 	CP_DELAY,
599 	CP_DISPERSION,
600 	CP_JITTER,
601 	CP_XMT,
602 	CP_BIAS,
603 	CP_FILTDELAY,
604 	CP_FILTOFFSET,
605 	CP_FILTERROR,
606 #ifdef AUTOKEY
607 	CP_HOST,
608 	CP_FLAGS,
609 	CP_SIGNATURE,
610 	CP_VALID,
611 	CP_INITSEQ,
612 	CP_IDENT,
613 #endif	/* AUTOKEY */
614 	0
615 };
616 
617 
618 #ifdef REFCLOCK
619 /*
620  * Clock variable list
621  */
622 static const struct ctl_var clock_var[] = {
623 	{ 0,		PADDING, "" },		/* 0 */
624 	{ CC_TYPE,	RO, "type" },		/* 1 */
625 	{ CC_TIMECODE,	RO, "timecode" },	/* 2 */
626 	{ CC_POLL,	RO, "poll" },		/* 3 */
627 	{ CC_NOREPLY,	RO, "noreply" },	/* 4 */
628 	{ CC_BADFORMAT, RO, "badformat" },	/* 5 */
629 	{ CC_BADDATA,	RO, "baddata" },	/* 6 */
630 	{ CC_FUDGETIME1, RO, "fudgetime1" },	/* 7 */
631 	{ CC_FUDGETIME2, RO, "fudgetime2" },	/* 8 */
632 	{ CC_FUDGEVAL1, RO, "stratum" },	/* 9 */
633 	{ CC_FUDGEVAL2, RO, "refid" },		/* 10 */
634 	{ CC_FLAGS,	RO, "flags" },		/* 11 */
635 	{ CC_DEVICE,	RO, "device" },		/* 12 */
636 	{ CC_VARLIST,	RO, "clock_var_list" },	/* 13 */
637 	{ CC_FUDGEMINJIT, RO, "minjitter" },	/* 14 */
638 	{ 0,		EOV, ""  }		/* 15 */
639 };
640 
641 
642 /*
643  * Clock variables printed by default
644  */
645 static const u_char def_clock_var[] = {
646 	CC_DEVICE,
647 	CC_TYPE,	/* won't be output if device = known */
648 	CC_TIMECODE,
649 	CC_POLL,
650 	CC_NOREPLY,
651 	CC_BADFORMAT,
652 	CC_BADDATA,
653 	CC_FUDGEMINJIT,
654 	CC_FUDGETIME1,
655 	CC_FUDGETIME2,
656 	CC_FUDGEVAL1,
657 	CC_FUDGEVAL2,
658 	CC_FLAGS,
659 	0
660 };
661 #endif
662 
663 /*
664  * MRU string constants shared by send_mru_entry() and read_mru_list().
665  */
666 static const char addr_fmt[] =		"addr.%d";
667 static const char last_fmt[] =		"last.%d";
668 
669 /*
670  * System and processor definitions.
671  */
672 #ifndef HAVE_UNAME
673 # ifndef STR_SYSTEM
674 #  define		STR_SYSTEM	"UNIX"
675 # endif
676 # ifndef STR_PROCESSOR
677 #  define		STR_PROCESSOR	"unknown"
678 # endif
679 
680 static const char str_system[] = STR_SYSTEM;
681 static const char str_processor[] = STR_PROCESSOR;
682 #else
683 # include <sys/utsname.h>
684 static struct utsname utsnamebuf;
685 #endif /* HAVE_UNAME */
686 
687 /*
688  * Trap structures. We only allow a few of these, and send a copy of
689  * each async message to each live one. Traps time out after an hour, it
690  * is up to the trap receipient to keep resetting it to avoid being
691  * timed out.
692  */
693 /* ntp_request.c */
694 struct ctl_trap ctl_traps[CTL_MAXTRAPS];
695 int num_ctl_traps;
696 
697 /*
698  * Type bits, for ctlsettrap() call.
699  */
700 #define TRAP_TYPE_CONFIG	0	/* used by configuration code */
701 #define TRAP_TYPE_PRIO		1	/* priority trap */
702 #define TRAP_TYPE_NONPRIO	2	/* nonpriority trap */
703 
704 
705 /*
706  * List relating reference clock types to control message time sources.
707  * Index by the reference clock type. This list will only be used iff
708  * the reference clock driver doesn't set peer->sstclktype to something
709  * different than CTL_SST_TS_UNSPEC.
710  */
711 #ifdef REFCLOCK
712 static const u_char clocktypes[] = {
713 	CTL_SST_TS_NTP,		/* REFCLK_NONE (0) */
714 	CTL_SST_TS_LOCAL,	/* REFCLK_LOCALCLOCK (1) */
715 	CTL_SST_TS_UHF,		/* deprecated REFCLK_GPS_TRAK (2) */
716 	CTL_SST_TS_HF,		/* REFCLK_WWV_PST (3) */
717 	CTL_SST_TS_LF,		/* REFCLK_WWVB_SPECTRACOM (4) */
718 	CTL_SST_TS_UHF,		/* REFCLK_TRUETIME (5) */
719 	CTL_SST_TS_UHF,		/* REFCLK_IRIG_AUDIO (6) */
720 	CTL_SST_TS_HF,		/* REFCLK_CHU (7) */
721 	CTL_SST_TS_LF,		/* REFCLOCK_PARSE (default) (8) */
722 	CTL_SST_TS_LF,		/* REFCLK_GPS_MX4200 (9) */
723 	CTL_SST_TS_UHF,		/* REFCLK_GPS_AS2201 (10) */
724 	CTL_SST_TS_UHF,		/* REFCLK_GPS_ARBITER (11) */
725 	CTL_SST_TS_UHF,		/* REFCLK_IRIG_TPRO (12) */
726 	CTL_SST_TS_ATOM,	/* REFCLK_ATOM_LEITCH (13) */
727 	CTL_SST_TS_LF,		/* deprecated REFCLK_MSF_EES (14) */
728 	CTL_SST_TS_NTP,		/* not used (15) */
729 	CTL_SST_TS_UHF,		/* REFCLK_IRIG_BANCOMM (16) */
730 	CTL_SST_TS_UHF,		/* REFCLK_GPS_DATU (17) */
731 	CTL_SST_TS_TELEPHONE,	/* REFCLK_NIST_ACTS (18) */
732 	CTL_SST_TS_HF,		/* REFCLK_WWV_HEATH (19) */
733 	CTL_SST_TS_UHF,		/* REFCLK_GPS_NMEA (20) */
734 	CTL_SST_TS_UHF,		/* REFCLK_GPS_VME (21) */
735 	CTL_SST_TS_ATOM,	/* REFCLK_ATOM_PPS (22) */
736 	CTL_SST_TS_NTP,		/* not used (23) */
737 	CTL_SST_TS_NTP,		/* not used (24) */
738 	CTL_SST_TS_NTP,		/* not used (25) */
739 	CTL_SST_TS_UHF,		/* REFCLK_GPS_HP (26) */
740 	CTL_SST_TS_LF,		/* REFCLK_ARCRON_MSF (27) */
741 	CTL_SST_TS_UHF,		/* REFCLK_SHM (28) */
742 	CTL_SST_TS_UHF,		/* REFCLK_PALISADE (29) */
743 	CTL_SST_TS_UHF,		/* REFCLK_ONCORE (30) */
744 	CTL_SST_TS_UHF,		/* REFCLK_JUPITER (31) */
745 	CTL_SST_TS_LF,		/* REFCLK_CHRONOLOG (32) */
746 	CTL_SST_TS_LF,		/* REFCLK_DUMBCLOCK (33) */
747 	CTL_SST_TS_LF,		/* REFCLK_ULINK (34) */
748 	CTL_SST_TS_LF,		/* REFCLK_PCF (35) */
749 	CTL_SST_TS_HF,		/* REFCLK_WWV (36) */
750 	CTL_SST_TS_LF,		/* REFCLK_FG (37) */
751 	CTL_SST_TS_UHF,		/* REFCLK_HOPF_SERIAL (38) */
752 	CTL_SST_TS_UHF,		/* REFCLK_HOPF_PCI (39) */
753 	CTL_SST_TS_LF,		/* REFCLK_JJY (40) */
754 	CTL_SST_TS_UHF,		/* REFCLK_TT560 (41) */
755 	CTL_SST_TS_UHF,		/* REFCLK_ZYFER (42) */
756 	CTL_SST_TS_UHF,		/* REFCLK_RIPENCC (43) */
757 	CTL_SST_TS_UHF,		/* REFCLK_NEOCLOCK4X (44) */
758 	CTL_SST_TS_UHF,		/* REFCLK_TSYNCPCI (45) */
759 	CTL_SST_TS_UHF		/* REFCLK_GPSDJSON (46) */
760 };
761 #endif  /* REFCLOCK */
762 
763 
764 /*
765  * Keyid used for authenticating write requests.
766  */
767 keyid_t ctl_auth_keyid;
768 
769 /*
770  * We keep track of the last error reported by the system internally
771  */
772 static	u_char ctl_sys_last_event;
773 static	u_char ctl_sys_num_events;
774 
775 
776 /*
777  * Statistic counters to keep track of requests and responses.
778  */
779 u_long ctltimereset;		/* time stats reset */
780 u_long numctlreq;		/* number of requests we've received */
781 u_long numctlbadpkts;		/* number of bad control packets */
782 u_long numctlresponses;		/* number of resp packets sent with data */
783 u_long numctlfrags;		/* number of fragments sent */
784 u_long numctlerrors;		/* number of error responses sent */
785 u_long numctltooshort;		/* number of too short input packets */
786 u_long numctlinputresp;		/* number of responses on input */
787 u_long numctlinputfrag;		/* number of fragments on input */
788 u_long numctlinputerr;		/* number of input pkts with err bit set */
789 u_long numctlbadoffset;		/* number of input pkts with nonzero offset */
790 u_long numctlbadversion;	/* number of input pkts with unknown version */
791 u_long numctldatatooshort;	/* data too short for count */
792 u_long numctlbadop;		/* bad op code found in packet */
793 u_long numasyncmsgs;		/* number of async messages we've sent */
794 
795 /*
796  * Response packet used by these routines. Also some state information
797  * so that we can handle packet formatting within a common set of
798  * subroutines.  Note we try to enter data in place whenever possible,
799  * but the need to set the more bit correctly means we occasionally
800  * use the extra buffer and copy.
801  */
802 static struct ntp_control rpkt;
803 static u_char	res_version;
804 static u_char	res_opcode;
805 static associd_t res_associd;
806 static u_short	res_frags;	/* datagrams in this response */
807 static int	res_offset;	/* offset of payload in response */
808 static u_char * datapt;
809 static u_char * dataend;
810 static int	datalinelen;
811 static int	datasent;	/* flag to avoid initial ", " */
812 static int	datanotbinflag;
813 static sockaddr_u *rmt_addr;
814 static endpt *lcl_inter;
815 
816 static u_char	res_authenticate;
817 static u_char	res_authokay;
818 static keyid_t	res_keyid;
819 
820 #define MAXDATALINELEN	(72)
821 
822 static u_char	res_async;	/* sending async trap response? */
823 
824 /*
825  * Pointers for saving state when decoding request packets
826  */
827 static	char *reqpt;
828 static	char *reqend;
829 
830 /*
831  * init_control - initialize request data
832  */
833 void
834 init_control(void)
835 {
836 	size_t i;
837 
838 #ifdef HAVE_UNAME
839 	uname(&utsnamebuf);
840 #endif /* HAVE_UNAME */
841 
842 	ctl_clr_stats();
843 
844 	ctl_auth_keyid = 0;
845 	ctl_sys_last_event = EVNT_UNSPEC;
846 	ctl_sys_num_events = 0;
847 
848 	num_ctl_traps = 0;
849 	for (i = 0; i < COUNTOF(ctl_traps); i++)
850 		ctl_traps[i].tr_flags = 0;
851 }
852 
853 
854 /*
855  * ctl_error - send an error response for the current request
856  */
857 static void
858 ctl_error(
859 	u_char errcode
860 	)
861 {
862 	size_t		maclen;
863 
864 	numctlerrors++;
865 	DPRINTF(3, ("sending control error %u\n", errcode));
866 
867 	/*
868 	 * Fill in the fields. We assume rpkt.sequence and rpkt.associd
869 	 * have already been filled in.
870 	 */
871 	rpkt.r_m_e_op = (u_char)CTL_RESPONSE | CTL_ERROR |
872 			(res_opcode & CTL_OP_MASK);
873 	rpkt.status = htons((u_short)(errcode << 8) & 0xff00);
874 	rpkt.count = 0;
875 
876 	/*
877 	 * send packet and bump counters
878 	 */
879 	if (res_authenticate && sys_authenticate) {
880 		maclen = authencrypt(res_keyid, (u_int32 *)&rpkt,
881 				     CTL_HEADER_LEN);
882 		sendpkt(rmt_addr, lcl_inter, -2, (void *)&rpkt,
883 			CTL_HEADER_LEN + maclen);
884 	} else
885 		sendpkt(rmt_addr, lcl_inter, -3, (void *)&rpkt,
886 			CTL_HEADER_LEN);
887 }
888 
889 int/*BOOL*/
890 is_safe_filename(const char * name)
891 {
892 	/* We need a strict validation of filenames we should write: The
893 	 * daemon might run with special permissions and is remote
894 	 * controllable, so we better take care what we allow as file
895 	 * name!
896 	 *
897 	 * The first character must be digit or a letter from the ASCII
898 	 * base plane or a '_' ([_A-Za-z0-9]), the following characters
899 	 * must be from [-._+A-Za-z0-9].
900 	 *
901 	 * We do not trust the character classification much here: Since
902 	 * the NTP protocol makes no provisions for UTF-8 or local code
903 	 * pages, we strictly require the 7bit ASCII code page.
904 	 *
905 	 * The following table is a packed bit field of 128 two-bit
906 	 * groups. The LSB in each group tells us if a character is
907 	 * acceptable at the first position, the MSB if the character is
908 	 * accepted at any other position.
909 	 *
910 	 * This does not ensure that the file name is syntactically
911 	 * correct (multiple dots will not work with VMS...) but it will
912 	 * exclude potential globbing bombs and directory traversal. It
913 	 * also rules out drive selection. (For systems that have this
914 	 * notion, like Windows or VMS.)
915 	 */
916 	static const uint32_t chclass[8] = {
917 		0x00000000, 0x00000000,
918 		0x28800000, 0x000FFFFF,
919 		0xFFFFFFFC, 0xC03FFFFF,
920 		0xFFFFFFFC, 0x003FFFFF
921 	};
922 
923 	u_int widx, bidx, mask;
924 	if ( ! (name && *name))
925 		return FALSE;
926 
927 	mask = 1u;
928 	while (0 != (widx = (u_char)*name++)) {
929 		bidx = (widx & 15) << 1;
930 		widx = widx >> 4;
931 		if (widx >= sizeof(chclass)/sizeof(chclass[0]))
932 			return FALSE;
933 		if (0 == ((chclass[widx] >> bidx) & mask))
934 			return FALSE;
935 		mask = 2u;
936 	}
937 	return TRUE;
938 }
939 
940 
941 /*
942  * save_config - Implements ntpq -c "saveconfig <filename>"
943  *		 Writes current configuration including any runtime
944  *		 changes by ntpq's :config or config-from-file
945  *
946  * Note: There should be no buffer overflow or truncation in the
947  * processing of file names -- both cause security problems. This is bit
948  * painful to code but essential here.
949  */
950 void
951 save_config(
952 	struct recvbuf *rbufp,
953 	int restrict_mask
954 	)
955 {
956 	/* block directory traversal by searching for characters that
957 	 * indicate directory components in a file path.
958 	 *
959 	 * Conceptually we should be searching for DIRSEP in filename,
960 	 * however Windows actually recognizes both forward and
961 	 * backslashes as equivalent directory separators at the API
962 	 * level.  On POSIX systems we could allow '\\' but such
963 	 * filenames are tricky to manipulate from a shell, so just
964 	 * reject both types of slashes on all platforms.
965 	 */
966 	/* TALOS-CAN-0062: block directory traversal for VMS, too */
967 	static const char * illegal_in_filename =
968 #if defined(VMS)
969 	    ":[]"	/* do not allow drive and path components here */
970 #elif defined(SYS_WINNT)
971 	    ":\\/"	/* path and drive separators */
972 #else
973 	    "\\/"	/* separator and critical char for POSIX */
974 #endif
975 	    ;
976 	char reply[128];
977 #ifdef SAVECONFIG
978 	static const char savedconfig_eq[] = "savedconfig=";
979 
980 	/* Build a safe open mode from the available mode flags. We want
981 	 * to create a new file and write it in text mode (when
982 	 * applicable -- only Windows does this...)
983 	 */
984 	static const int openmode = O_CREAT | O_TRUNC | O_WRONLY
985 #  if defined(O_EXCL)		/* posix, vms */
986 	    | O_EXCL
987 #  elif defined(_O_EXCL)	/* windows is alway very special... */
988 	    | _O_EXCL
989 #  endif
990 #  if defined(_O_TEXT)		/* windows, again */
991 	    | _O_TEXT
992 #endif
993 	    ;
994 
995 	char filespec[128];
996 	char filename[128];
997 	char fullpath[512];
998 	char savedconfig[sizeof(savedconfig_eq) + sizeof(filename)];
999 	time_t now;
1000 	int fd;
1001 	FILE *fptr;
1002 	int prc;
1003 	size_t reqlen;
1004 #endif
1005 
1006 	if (RES_NOMODIFY & restrict_mask) {
1007 		ctl_printf("%s", "saveconfig prohibited by restrict ... nomodify");
1008 		ctl_flushpkt(0);
1009 		NLOG(NLOG_SYSINFO)
1010 			msyslog(LOG_NOTICE,
1011 				"saveconfig from %s rejected due to nomodify restriction",
1012 				stoa(&rbufp->recv_srcadr));
1013 		sys_restricted++;
1014 		return;
1015 	}
1016 
1017 #ifdef SAVECONFIG
1018 	if (NULL == saveconfigdir) {
1019 		ctl_printf("%s", "saveconfig prohibited, no saveconfigdir configured");
1020 		ctl_flushpkt(0);
1021 		NLOG(NLOG_SYSINFO)
1022 			msyslog(LOG_NOTICE,
1023 				"saveconfig from %s rejected, no saveconfigdir",
1024 				stoa(&rbufp->recv_srcadr));
1025 		return;
1026 	}
1027 
1028 	/* The length checking stuff gets serious. Do not assume a NUL
1029 	 * byte can be found, but if so, use it to calculate the needed
1030 	 * buffer size. If the available buffer is too short, bail out;
1031 	 * likewise if there is no file spec. (The latter will not
1032 	 * happen when using NTPQ, but there are other ways to craft a
1033 	 * network packet!)
1034 	 */
1035 	reqlen = (size_t)(reqend - reqpt);
1036 	if (0 != reqlen) {
1037 		char * nulpos = (char*)memchr(reqpt, 0, reqlen);
1038 		if (NULL != nulpos)
1039 			reqlen = (size_t)(nulpos - reqpt);
1040 	}
1041 	if (0 == reqlen)
1042 		return;
1043 	if (reqlen >= sizeof(filespec)) {
1044 		ctl_printf("saveconfig exceeded maximum raw name length (%u)",
1045 			   (u_int)sizeof(filespec));
1046 		ctl_flushpkt(0);
1047 		msyslog(LOG_NOTICE,
1048 			"saveconfig exceeded maximum raw name length from %s",
1049 			stoa(&rbufp->recv_srcadr));
1050 		return;
1051 	}
1052 
1053 	/* copy data directly as we exactly know the size */
1054 	memcpy(filespec, reqpt, reqlen);
1055 	filespec[reqlen] = '\0';
1056 
1057 	/*
1058 	 * allow timestamping of the saved config filename with
1059 	 * strftime() format such as:
1060 	 *   ntpq -c "saveconfig ntp-%Y%m%d-%H%M%S.conf"
1061 	 * XXX: Nice feature, but not too safe.
1062 	 * YYY: The check for permitted characters in file names should
1063 	 *      weed out the worst. Let's hope 'strftime()' does not
1064 	 *      develop pathological problems.
1065 	 */
1066 	time(&now);
1067 	if (0 == strftime(filename, sizeof(filename), filespec,
1068 			  localtime(&now)))
1069 	{
1070 		/*
1071 		 * If we arrive here, 'strftime()' balked; most likely
1072 		 * the buffer was too short. (Or it encounterd an empty
1073 		 * format, or just a format that expands to an empty
1074 		 * string.) We try to use the original name, though this
1075 		 * is very likely to fail later if there are format
1076 		 * specs in the string. Note that truncation cannot
1077 		 * happen here as long as both buffers have the same
1078 		 * size!
1079 		 */
1080 		strlcpy(filename, filespec, sizeof(filename));
1081 	}
1082 
1083 	/*
1084 	 * Check the file name for sanity. This might/will rule out file
1085 	 * names that would be legal but problematic, and it blocks
1086 	 * directory traversal.
1087 	 */
1088 	if (!is_safe_filename(filename)) {
1089 		ctl_printf("saveconfig rejects unsafe file name '%s'",
1090 			   filename);
1091 		ctl_flushpkt(0);
1092 		msyslog(LOG_NOTICE,
1093 			"saveconfig rejects unsafe file name from %s",
1094 			stoa(&rbufp->recv_srcadr));
1095 		return;
1096 	}
1097 
1098 	/*
1099 	 * XXX: This next test may not be needed with is_safe_filename()
1100 	 */
1101 
1102 	/* block directory/drive traversal */
1103 	/* TALOS-CAN-0062: block directory traversal for VMS, too */
1104 	if (NULL != strpbrk(filename, illegal_in_filename)) {
1105 		snprintf(reply, sizeof(reply),
1106 			 "saveconfig does not allow directory in filename");
1107 		ctl_putdata(reply, strlen(reply), 0);
1108 		ctl_flushpkt(0);
1109 		msyslog(LOG_NOTICE,
1110 			"saveconfig rejects unsafe file name from %s",
1111 			stoa(&rbufp->recv_srcadr));
1112 		return;
1113 	}
1114 
1115 	/* concatenation of directory and path can cause another
1116 	 * truncation...
1117 	 */
1118 	prc = snprintf(fullpath, sizeof(fullpath), "%s%s",
1119 		       saveconfigdir, filename);
1120 	if (prc < 0 || (size_t)prc >= sizeof(fullpath)) {
1121 		ctl_printf("saveconfig exceeded maximum path length (%u)",
1122 			   (u_int)sizeof(fullpath));
1123 		ctl_flushpkt(0);
1124 		msyslog(LOG_NOTICE,
1125 			"saveconfig exceeded maximum path length from %s",
1126 			stoa(&rbufp->recv_srcadr));
1127 		return;
1128 	}
1129 
1130 	fd = open(fullpath, openmode, S_IRUSR | S_IWUSR);
1131 	if (-1 == fd)
1132 		fptr = NULL;
1133 	else
1134 		fptr = fdopen(fd, "w");
1135 
1136 	if (NULL == fptr || -1 == dump_all_config_trees(fptr, 1)) {
1137 		ctl_printf("Unable to save configuration to file '%s': %s",
1138 			   filename, strerror(errno));
1139 		msyslog(LOG_ERR,
1140 			"saveconfig %s from %s failed", filename,
1141 			stoa(&rbufp->recv_srcadr));
1142 	} else {
1143 		ctl_printf("Configuration saved to '%s'", filename);
1144 		msyslog(LOG_NOTICE,
1145 			"Configuration saved to '%s' (requested by %s)",
1146 			fullpath, stoa(&rbufp->recv_srcadr));
1147 		/*
1148 		 * save the output filename in system variable
1149 		 * savedconfig, retrieved with:
1150 		 *   ntpq -c "rv 0 savedconfig"
1151 		 * Note: the way 'savedconfig' is defined makes overflow
1152 		 * checks unnecessary here.
1153 		 */
1154 		snprintf(savedconfig, sizeof(savedconfig), "%s%s",
1155 			 savedconfig_eq, filename);
1156 		set_sys_var(savedconfig, strlen(savedconfig) + 1, RO);
1157 	}
1158 
1159 	if (NULL != fptr)
1160 		fclose(fptr);
1161 #else	/* !SAVECONFIG follows */
1162 	ctl_printf("%s",
1163 		   "saveconfig unavailable, configured with --disable-saveconfig");
1164 #endif
1165 	ctl_flushpkt(0);
1166 }
1167 
1168 
1169 /*
1170  * process_control - process an incoming control message
1171  */
1172 void
1173 process_control(
1174 	struct recvbuf *rbufp,
1175 	int restrict_mask
1176 	)
1177 {
1178 	struct ntp_control *pkt;
1179 	int req_count;
1180 	int req_data;
1181 	const struct ctl_proc *cc;
1182 	keyid_t *pkid;
1183 	int properlen;
1184 	size_t maclen;
1185 
1186 	DPRINTF(3, ("in process_control()\n"));
1187 
1188 	/*
1189 	 * Save the addresses for error responses
1190 	 */
1191 	numctlreq++;
1192 	rmt_addr = &rbufp->recv_srcadr;
1193 	lcl_inter = rbufp->dstadr;
1194 	pkt = (struct ntp_control *)&rbufp->recv_pkt;
1195 
1196 	/*
1197 	 * If the length is less than required for the header,
1198 	 * ignore it.
1199 	 */
1200 	if (rbufp->recv_length < (int)CTL_HEADER_LEN) {
1201 		DPRINTF(1, ("Short control packet\n"));
1202 		numctltooshort++;
1203 		return;
1204 	}
1205 
1206 	/*
1207 	 * If this packet is a response or a fragment, ignore it.
1208 	 */
1209 	if (   (CTL_RESPONSE | CTL_MORE | CTL_ERROR) & pkt->r_m_e_op
1210 	    || pkt->offset != 0) {
1211 		DPRINTF(1, ("invalid format in control packet\n"));
1212 		if (CTL_RESPONSE & pkt->r_m_e_op)
1213 			numctlinputresp++;
1214 		if (CTL_MORE & pkt->r_m_e_op)
1215 			numctlinputfrag++;
1216 		if (CTL_ERROR & pkt->r_m_e_op)
1217 			numctlinputerr++;
1218 		if (pkt->offset != 0)
1219 			numctlbadoffset++;
1220 		return;
1221 	}
1222 
1223 	res_version = PKT_VERSION(pkt->li_vn_mode);
1224 	if (res_version > NTP_VERSION || res_version < NTP_OLDVERSION) {
1225 		DPRINTF(1, ("unknown version %d in control packet\n",
1226 			    res_version));
1227 		numctlbadversion++;
1228 		return;
1229 	}
1230 
1231 	/*
1232 	 * Pull enough data from the packet to make intelligent
1233 	 * responses
1234 	 */
1235 	rpkt.li_vn_mode = PKT_LI_VN_MODE(sys_leap, res_version,
1236 					 MODE_CONTROL);
1237 	res_opcode = pkt->r_m_e_op;
1238 	rpkt.sequence = pkt->sequence;
1239 	rpkt.associd = pkt->associd;
1240 	rpkt.status = 0;
1241 	res_frags = 1;
1242 	res_offset = 0;
1243 	res_associd = htons(pkt->associd);
1244 	res_async = FALSE;
1245 	res_authenticate = FALSE;
1246 	res_keyid = 0;
1247 	res_authokay = FALSE;
1248 	req_count = (int)ntohs(pkt->count);
1249 	datanotbinflag = FALSE;
1250 	datalinelen = 0;
1251 	datasent = 0;
1252 	datapt = rpkt.u.data;
1253 	dataend = &rpkt.u.data[CTL_MAX_DATA_LEN];
1254 
1255 	if ((rbufp->recv_length & 0x3) != 0)
1256 		DPRINTF(3, ("Control packet length %d unrounded\n",
1257 			    rbufp->recv_length));
1258 
1259 	/*
1260 	 * We're set up now. Make sure we've got at least enough
1261 	 * incoming data space to match the count.
1262 	 */
1263 	req_data = rbufp->recv_length - CTL_HEADER_LEN;
1264 	if (req_data < req_count || rbufp->recv_length & 0x3) {
1265 		ctl_error(CERR_BADFMT);
1266 		numctldatatooshort++;
1267 		return;
1268 	}
1269 
1270 	properlen = req_count + CTL_HEADER_LEN;
1271 	/* round up proper len to a 8 octet boundary */
1272 
1273 	properlen = (properlen + 7) & ~7;
1274 	maclen = rbufp->recv_length - properlen;
1275 	if ((rbufp->recv_length & 3) == 0 &&
1276 	    maclen >= MIN_MAC_LEN && maclen <= MAX_MAC_LEN &&
1277 	    sys_authenticate) {
1278 		res_authenticate = TRUE;
1279 		pkid = (void *)((char *)pkt + properlen);
1280 		res_keyid = ntohl(*pkid);
1281 		DPRINTF(3, ("recv_len %d, properlen %d, wants auth with keyid %08x, MAC length=%zu\n",
1282 			    rbufp->recv_length, properlen, res_keyid,
1283 			    maclen));
1284 
1285 		if (!authistrustedip(res_keyid, &rbufp->recv_srcadr))
1286 			DPRINTF(3, ("invalid keyid %08x\n", res_keyid));
1287 		else if (authdecrypt(res_keyid, (u_int32 *)pkt,
1288 				     rbufp->recv_length - maclen,
1289 				     maclen)) {
1290 			res_authokay = TRUE;
1291 			DPRINTF(3, ("authenticated okay\n"));
1292 		} else {
1293 			res_keyid = 0;
1294 			DPRINTF(3, ("authentication failed\n"));
1295 		}
1296 	}
1297 
1298 	/*
1299 	 * Set up translate pointers
1300 	 */
1301 	reqpt = (char *)pkt->u.data;
1302 	reqend = reqpt + req_count;
1303 
1304 	/*
1305 	 * Look for the opcode processor
1306 	 */
1307 	for (cc = control_codes; cc->control_code != NO_REQUEST; cc++) {
1308 		if (cc->control_code == res_opcode) {
1309 			DPRINTF(3, ("opcode %d, found command handler\n",
1310 				    res_opcode));
1311 			if (cc->flags == AUTH
1312 			    && (!res_authokay
1313 				|| res_keyid != ctl_auth_keyid)) {
1314 				ctl_error(CERR_PERMISSION);
1315 				return;
1316 			}
1317 			(cc->handler)(rbufp, restrict_mask);
1318 			return;
1319 		}
1320 	}
1321 
1322 	/*
1323 	 * Can't find this one, return an error.
1324 	 */
1325 	numctlbadop++;
1326 	ctl_error(CERR_BADOP);
1327 	return;
1328 }
1329 
1330 
1331 /*
1332  * ctlpeerstatus - return a status word for this peer
1333  */
1334 u_short
1335 ctlpeerstatus(
1336 	register struct peer *p
1337 	)
1338 {
1339 	u_short status;
1340 
1341 	status = p->status;
1342 	if (FLAG_CONFIG & p->flags)
1343 		status |= CTL_PST_CONFIG;
1344 	if (p->keyid)
1345 		status |= CTL_PST_AUTHENABLE;
1346 	if (FLAG_AUTHENTIC & p->flags)
1347 		status |= CTL_PST_AUTHENTIC;
1348 	if (p->reach)
1349 		status |= CTL_PST_REACH;
1350 	if (MDF_TXONLY_MASK & p->cast_flags)
1351 		status |= CTL_PST_BCAST;
1352 
1353 	return CTL_PEER_STATUS(status, p->num_events, p->last_event);
1354 }
1355 
1356 
1357 /*
1358  * ctlclkstatus - return a status word for this clock
1359  */
1360 #ifdef REFCLOCK
1361 static u_short
1362 ctlclkstatus(
1363 	struct refclockstat *pcs
1364 	)
1365 {
1366 	return CTL_PEER_STATUS(0, pcs->lastevent, pcs->currentstatus);
1367 }
1368 #endif
1369 
1370 
1371 /*
1372  * ctlsysstatus - return the system status word
1373  */
1374 u_short
1375 ctlsysstatus(void)
1376 {
1377 	register u_char this_clock;
1378 
1379 	this_clock = CTL_SST_TS_UNSPEC;
1380 #ifdef REFCLOCK
1381 	if (sys_peer != NULL) {
1382 		if (CTL_SST_TS_UNSPEC != sys_peer->sstclktype)
1383 			this_clock = sys_peer->sstclktype;
1384 		else if (sys_peer->refclktype < COUNTOF(clocktypes))
1385 			this_clock = clocktypes[sys_peer->refclktype];
1386 	}
1387 #else /* REFCLOCK */
1388 	if (sys_peer != 0)
1389 		this_clock = CTL_SST_TS_NTP;
1390 #endif /* REFCLOCK */
1391 	return CTL_SYS_STATUS(sys_leap, this_clock, ctl_sys_num_events,
1392 			      ctl_sys_last_event);
1393 }
1394 
1395 
1396 /*
1397  * ctl_flushpkt - write out the current packet and prepare
1398  *		  another if necessary.
1399  */
1400 static void
1401 ctl_flushpkt(
1402 	u_char more
1403 	)
1404 {
1405 	size_t i;
1406 	size_t dlen;
1407 	size_t sendlen;
1408 	size_t maclen;
1409 	size_t totlen;
1410 	keyid_t keyid;
1411 
1412 	dlen = datapt - rpkt.u.data;
1413 	if (!more && datanotbinflag && dlen + 2 < CTL_MAX_DATA_LEN) {
1414 		/*
1415 		 * Big hack, output a trailing \r\n
1416 		 */
1417 		*datapt++ = '\r';
1418 		*datapt++ = '\n';
1419 		dlen += 2;
1420 	}
1421 	sendlen = dlen + CTL_HEADER_LEN;
1422 
1423 	/*
1424 	 * Pad to a multiple of 32 bits
1425 	 */
1426 	while (sendlen & 0x3) {
1427 		*datapt++ = '\0';
1428 		sendlen++;
1429 	}
1430 
1431 	/*
1432 	 * Fill in the packet with the current info
1433 	 */
1434 	rpkt.r_m_e_op = CTL_RESPONSE | more |
1435 			(res_opcode & CTL_OP_MASK);
1436 	rpkt.count = htons((u_short)dlen);
1437 	rpkt.offset = htons((u_short)res_offset);
1438 	if (res_async) {
1439 		for (i = 0; i < COUNTOF(ctl_traps); i++) {
1440 			if (TRAP_INUSE & ctl_traps[i].tr_flags) {
1441 				rpkt.li_vn_mode =
1442 				    PKT_LI_VN_MODE(
1443 					sys_leap,
1444 					ctl_traps[i].tr_version,
1445 					MODE_CONTROL);
1446 				rpkt.sequence =
1447 				    htons(ctl_traps[i].tr_sequence);
1448 				sendpkt(&ctl_traps[i].tr_addr,
1449 					ctl_traps[i].tr_localaddr, -4,
1450 					(struct pkt *)&rpkt, sendlen);
1451 				if (!more)
1452 					ctl_traps[i].tr_sequence++;
1453 				numasyncmsgs++;
1454 			}
1455 		}
1456 	} else {
1457 		if (res_authenticate && sys_authenticate) {
1458 			totlen = sendlen;
1459 			/*
1460 			 * If we are going to authenticate, then there
1461 			 * is an additional requirement that the MAC
1462 			 * begin on a 64 bit boundary.
1463 			 */
1464 			while (totlen & 7) {
1465 				*datapt++ = '\0';
1466 				totlen++;
1467 			}
1468 			keyid = htonl(res_keyid);
1469 			memcpy(datapt, &keyid, sizeof(keyid));
1470 			maclen = authencrypt(res_keyid,
1471 					     (u_int32 *)&rpkt, totlen);
1472 			sendpkt(rmt_addr, lcl_inter, -5,
1473 				(struct pkt *)&rpkt, totlen + maclen);
1474 		} else {
1475 			sendpkt(rmt_addr, lcl_inter, -6,
1476 				(struct pkt *)&rpkt, sendlen);
1477 		}
1478 		if (more)
1479 			numctlfrags++;
1480 		else
1481 			numctlresponses++;
1482 	}
1483 
1484 	/*
1485 	 * Set us up for another go around.
1486 	 */
1487 	res_frags++;
1488 	res_offset += dlen;
1489 	datapt = rpkt.u.data;
1490 }
1491 
1492 
1493 /* --------------------------------------------------------------------
1494  * block transfer API -- stream string/data fragments into xmit buffer
1495  * without additional copying
1496  */
1497 
1498 /* buffer descriptor: address & size of fragment
1499  * 'buf' may only be NULL when 'len' is zero!
1500  */
1501 typedef struct {
1502 	const void  *buf;
1503 	size_t       len;
1504 } CtlMemBufT;
1505 
1506 /* put ctl data in a gather-style operation */
1507 static void
1508 ctl_putdata_ex(
1509 	const CtlMemBufT * argv,
1510 	size_t             argc,
1511 	int/*BOOL*/        bin		/* set to 1 when data is binary */
1512 	)
1513 {
1514 	const char * src_ptr;
1515 	size_t       src_len, cur_len, add_len, argi;
1516 
1517 	/* text / binary preprocessing, possibly create new linefeed */
1518 	if (bin) {
1519 		add_len = 0;
1520 	} else {
1521 		datanotbinflag = TRUE;
1522 		add_len = 3;
1523 
1524 		if (datasent) {
1525 			*datapt++ = ',';
1526 			datalinelen++;
1527 
1528 			/* sum up total length */
1529 			for (argi = 0, src_len = 0; argi < argc; ++argi)
1530 				src_len += argv[argi].len;
1531 			/* possibly start a new line, assume no size_t overflow */
1532 			if ((src_len + datalinelen + 1) >= MAXDATALINELEN) {
1533 				*datapt++ = '\r';
1534 				*datapt++ = '\n';
1535 				datalinelen = 0;
1536 			} else {
1537 				*datapt++ = ' ';
1538 				datalinelen++;
1539 			}
1540 		}
1541 	}
1542 
1543 	/* now stream out all buffers */
1544 	for (argi = 0; argi < argc; ++argi) {
1545 		src_ptr = argv[argi].buf;
1546 		src_len = argv[argi].len;
1547 
1548 		if ( ! (src_ptr && src_len))
1549 			continue;
1550 
1551 		cur_len = (size_t)(dataend - datapt);
1552 		while ((src_len + add_len) > cur_len) {
1553 			/* Not enough room in this one, flush it out. */
1554 			if (src_len < cur_len)
1555 				cur_len = src_len;
1556 
1557 			memcpy(datapt, src_ptr, cur_len);
1558 			datapt      += cur_len;
1559 			datalinelen += cur_len;
1560 
1561 			src_ptr     += cur_len;
1562 			src_len     -= cur_len;
1563 
1564 			ctl_flushpkt(CTL_MORE);
1565 			cur_len = (size_t)(dataend - datapt);
1566 		}
1567 
1568 		memcpy(datapt, src_ptr, src_len);
1569 		datapt      += src_len;
1570 		datalinelen += src_len;
1571 
1572 		datasent = TRUE;
1573 	}
1574 }
1575 
1576 /*
1577  * ctl_putdata - write data into the packet, fragmenting and starting
1578  * another if this one is full.
1579  */
1580 static void
1581 ctl_putdata(
1582 	const char *dp,
1583 	unsigned int dlen,
1584 	int bin			/* set to 1 when data is binary */
1585 	)
1586 {
1587 	CtlMemBufT args[1];
1588 
1589 	args[0].buf = dp;
1590 	args[0].len = dlen;
1591 	ctl_putdata_ex(args, 1, bin);
1592 }
1593 
1594 /*
1595  * ctl_putstr - write a tagged string into the response packet
1596  *		in the form:
1597  *
1598  *		tag="data"
1599  *
1600  *		len is the data length excluding the NUL terminator,
1601  *		as in ctl_putstr("var", "value", strlen("value"));
1602  */
1603 static void
1604 ctl_putstr(
1605 	const char *	tag,
1606 	const char *	data,
1607 	size_t		len
1608 	)
1609 {
1610 	CtlMemBufT args[4];
1611 
1612 	args[0].buf = tag;
1613 	args[0].len = strlen(tag);
1614 	if (data && len) {
1615 	    args[1].buf = "=\"";
1616 	    args[1].len = 2;
1617 	    args[2].buf = data;
1618 	    args[2].len = len;
1619 	    args[3].buf = "\"";
1620 	    args[3].len = 1;
1621 	    ctl_putdata_ex(args, 4, FALSE);
1622 	} else {
1623 	    args[1].buf = "=\"\"";
1624 	    args[1].len = 3;
1625 	    ctl_putdata_ex(args, 2, FALSE);
1626 	}
1627 }
1628 
1629 
1630 /*
1631  * ctl_putunqstr - write a tagged string into the response packet
1632  *		   in the form:
1633  *
1634  *		   tag=data
1635  *
1636  *	len is the data length excluding the NUL terminator.
1637  *	data must not contain a comma or whitespace.
1638  */
1639 static void
1640 ctl_putunqstr(
1641 	const char *	tag,
1642 	const char *	data,
1643 	size_t		len
1644 	)
1645 {
1646 	CtlMemBufT args[3];
1647 
1648 	args[0].buf = tag;
1649 	args[0].len = strlen(tag);
1650 	args[1].buf = "=";
1651 	args[1].len = 1;
1652 	if (data && len) {
1653 		args[2].buf = data;
1654 		args[2].len = len;
1655 		ctl_putdata_ex(args, 3, FALSE);
1656 	} else {
1657 		ctl_putdata_ex(args, 2, FALSE);
1658 	}
1659 }
1660 
1661 
1662 /*
1663  * ctl_putdblf - write a tagged, signed double into the response packet
1664  */
1665 static void
1666 ctl_putdblf(
1667 	const char *	tag,
1668 	int		use_f,
1669 	int		precision,
1670 	double		d
1671 	)
1672 {
1673 	char buffer[40];
1674 	int  rc;
1675 
1676 	rc = snprintf(buffer, sizeof(buffer),
1677 		      (use_f ? "%.*f" : "%.*g"),
1678 		      precision, d);
1679 	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1680 	ctl_putunqstr(tag, buffer, rc);
1681 }
1682 
1683 /*
1684  * ctl_putuint - write a tagged unsigned integer into the response
1685  */
1686 static void
1687 ctl_putuint(
1688 	const char *tag,
1689 	u_long uval
1690 	)
1691 {
1692 	char buffer[24]; /* needs to fit for 64 bits! */
1693 	int  rc;
1694 
1695 	rc = snprintf(buffer, sizeof(buffer), "%lu", uval);
1696 	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1697 	ctl_putunqstr(tag, buffer, rc);
1698 }
1699 
1700 /*
1701  * ctl_putcal - write a decoded calendar data into the response.
1702  * only used with AUTOKEY currently, so compiled conditional
1703  */
1704 #ifdef AUTOKEY
1705 static void
1706 ctl_putcal(
1707 	const char *tag,
1708 	const struct calendar *pcal
1709 	)
1710 {
1711 	char buffer[16];
1712 	int  rc;
1713 
1714 	rc = snprintf(buffer, sizeof(buffer),
1715 		      "%04d%02d%02d%02d%02d",
1716 		      pcal->year, pcal->month, pcal->monthday,
1717 		      pcal->hour, pcal->minute
1718 		);
1719 	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1720 	ctl_putunqstr(tag, buffer, rc);
1721 }
1722 #endif
1723 
1724 /*
1725  * ctl_putfs - write a decoded filestamp into the response
1726  */
1727 static void
1728 ctl_putfs(
1729 	const char *tag,
1730 	tstamp_t uval
1731 	)
1732 {
1733 	char buffer[16];
1734 	int  rc;
1735 
1736 	time_t fstamp = (time_t)uval - JAN_1970;
1737 	struct tm *tm = gmtime(&fstamp);
1738 
1739 	if (NULL == tm)
1740 		return;
1741 
1742 	rc = snprintf(buffer, sizeof(buffer),
1743 		      "%04d%02d%02d%02d%02d",
1744 		      tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday,
1745 		      tm->tm_hour, tm->tm_min);
1746 	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1747 	ctl_putunqstr(tag, buffer, rc);
1748 }
1749 
1750 
1751 /*
1752  * ctl_puthex - write a tagged unsigned integer, in hex, into the
1753  * response
1754  */
1755 static void
1756 ctl_puthex(
1757 	const char *tag,
1758 	u_long uval
1759 	)
1760 {
1761 	char buffer[24];	/* must fit 64bit int! */
1762 	int  rc;
1763 
1764 	rc = snprintf(buffer, sizeof(buffer), "0x%lx", uval);
1765 	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1766 	ctl_putunqstr(tag, buffer, rc);
1767 }
1768 
1769 
1770 /*
1771  * ctl_putint - write a tagged signed integer into the response
1772  */
1773 static void
1774 ctl_putint(
1775 	const char *tag,
1776 	long ival
1777 	)
1778 {
1779 	char buffer[24];	/*must fit 64bit int */
1780 	int  rc;
1781 
1782 	rc = snprintf(buffer, sizeof(buffer), "%ld", ival);
1783 	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1784 	ctl_putunqstr(tag, buffer, rc);
1785 }
1786 
1787 
1788 /*
1789  * ctl_putts - write a tagged timestamp, in hex, into the response
1790  */
1791 static void
1792 ctl_putts(
1793 	const char *tag,
1794 	l_fp *ts
1795 	)
1796 {
1797 	char buffer[24];
1798 	int  rc;
1799 
1800 	rc = snprintf(buffer, sizeof(buffer),
1801 		      "0x%08lx.%08lx",
1802 		      (u_long)ts->l_ui, (u_long)ts->l_uf);
1803 	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1804 	ctl_putunqstr(tag, buffer, rc);
1805 }
1806 
1807 
1808 /*
1809  * ctl_putadr - write an IP address into the response
1810  */
1811 static void
1812 ctl_putadr(
1813 	const char *tag,
1814 	u_int32 addr32,
1815 	sockaddr_u *addr
1816 	)
1817 {
1818 	const char *cq;
1819 
1820 	if (NULL == addr)
1821 		cq = numtoa(addr32);
1822 	else
1823 		cq = stoa(addr);
1824 	ctl_putunqstr(tag, cq, strlen(cq));
1825 }
1826 
1827 
1828 /*
1829  * ctl_putrefid - send a u_int32 refid as printable text
1830  */
1831 static void
1832 ctl_putrefid(
1833 	const char *	tag,
1834 	u_int32		refid
1835 	)
1836 {
1837 	size_t nc;
1838 
1839 	union {
1840 		uint32_t w;
1841 		uint8_t  b[sizeof(uint32_t)];
1842 	} bytes;
1843 
1844 	bytes.w = refid;
1845 	for (nc = 0; nc < sizeof(bytes.b) && bytes.b[nc]; ++nc)
1846 		if (  !isprint(bytes.b[nc])
1847 		    || isspace(bytes.b[nc])
1848 		    || bytes.b[nc] == ','  )
1849 			bytes.b[nc] = '.';
1850 	ctl_putunqstr(tag, (const char*)bytes.b, nc);
1851 }
1852 
1853 
1854 /*
1855  * ctl_putarray - write a tagged eight element double array into the response
1856  */
1857 static void
1858 ctl_putarray(
1859 	const char *tag,
1860 	double *arr,
1861 	int start
1862 	)
1863 {
1864 	char *cp, *ep;
1865 	char buffer[200];
1866 	int  i, rc;
1867 
1868 	cp = buffer;
1869 	ep = buffer + sizeof(buffer);
1870 	i  = start;
1871 	do {
1872 		if (i == 0)
1873 			i = NTP_SHIFT;
1874 		i--;
1875 		rc = snprintf(cp, (size_t)(ep - cp), " %.2f", arr[i] * 1e3);
1876 		INSIST(rc >= 0 && (size_t)rc < (size_t)(ep - cp));
1877 		cp += rc;
1878 	} while (i != start);
1879 	ctl_putunqstr(tag, buffer, (size_t)(cp - buffer));
1880 }
1881 
1882 /*
1883  * ctl_printf - put a formatted string into the data buffer
1884  */
1885 static void
1886 ctl_printf(
1887 	const char * fmt,
1888 	...
1889 	)
1890 {
1891 	static const char * ellipsis = "[...]";
1892 	va_list va;
1893 	char    fmtbuf[128];
1894 	int     rc;
1895 
1896 	va_start(va, fmt);
1897 	rc = vsnprintf(fmtbuf, sizeof(fmtbuf), fmt, va);
1898 	va_end(va);
1899 	if (rc < 0 || (size_t)rc >= sizeof(fmtbuf))
1900 		strcpy(fmtbuf + sizeof(fmtbuf) - strlen(ellipsis) - 1,
1901 		       ellipsis);
1902 	ctl_putdata(fmtbuf, strlen(fmtbuf), 0);
1903 }
1904 
1905 
1906 /*
1907  * ctl_putsys - output a system variable
1908  */
1909 static void
1910 ctl_putsys(
1911 	int varid
1912 	)
1913 {
1914 	l_fp tmp;
1915 #ifndef HAVE_UNAME
1916 	char str[256];
1917 #else
1918 	char str[sizeof utsnamebuf.sysname + sizeof utsnamebuf.release];
1919 #endif
1920 	u_int u;
1921 	double kb;
1922 	double dtemp;
1923 	const char *ss;
1924 #ifdef AUTOKEY
1925 	struct cert_info *cp;
1926 #endif	/* AUTOKEY */
1927 #ifdef KERNEL_PLL
1928 	static struct timex ntx;
1929 	static u_long ntp_adjtime_time;
1930 
1931 	/*
1932 	 * CS_K_* variables depend on up-to-date output of ntp_adjtime()
1933 	 */
1934 	if (CS_KERN_FIRST <= varid && varid <= CS_KERN_LAST &&
1935 	    current_time != ntp_adjtime_time) {
1936 		ZERO(ntx);
1937 		if (ntp_adjtime(&ntx) < 0)
1938 			msyslog(LOG_ERR, "ntp_adjtime() for mode 6 query failed: %m");
1939 		else
1940 			ntp_adjtime_time = current_time;
1941 	}
1942 #endif	/* KERNEL_PLL */
1943 
1944 	switch (varid) {
1945 
1946 	case CS_LEAP:
1947 		ctl_putuint(sys_var[CS_LEAP].text, sys_leap);
1948 		break;
1949 
1950 	case CS_STRATUM:
1951 		ctl_putuint(sys_var[CS_STRATUM].text, sys_stratum);
1952 		break;
1953 
1954 	case CS_PRECISION:
1955 		ctl_putint(sys_var[CS_PRECISION].text, sys_precision);
1956 		break;
1957 
1958 	case CS_ROOTDELAY:
1959 		ctl_putdbl(sys_var[CS_ROOTDELAY].text, sys_rootdelay *
1960 			   1e3);
1961 		break;
1962 
1963 	case CS_ROOTDISPERSION:
1964 		ctl_putdbl(sys_var[CS_ROOTDISPERSION].text,
1965 			   sys_rootdisp * 1e3);
1966 		break;
1967 
1968 	case CS_REFID:
1969 		if (REFID_ISTEXT(sys_stratum))
1970 			ctl_putrefid(sys_var[varid].text, sys_refid);
1971 		else
1972 			ctl_putadr(sys_var[varid].text, sys_refid, NULL);
1973 		break;
1974 
1975 	case CS_REFTIME:
1976 		ctl_putts(sys_var[CS_REFTIME].text, &sys_reftime);
1977 		break;
1978 
1979 	case CS_POLL:
1980 		ctl_putuint(sys_var[CS_POLL].text, sys_poll);
1981 		break;
1982 
1983 	case CS_PEERID:
1984 		if (sys_peer == NULL)
1985 			ctl_putuint(sys_var[CS_PEERID].text, 0);
1986 		else
1987 			ctl_putuint(sys_var[CS_PEERID].text,
1988 				    sys_peer->associd);
1989 		break;
1990 
1991 	case CS_PEERADR:
1992 		if (sys_peer != NULL && sys_peer->dstadr != NULL)
1993 			ss = sptoa(&sys_peer->srcadr);
1994 		else
1995 			ss = "0.0.0.0:0";
1996 		ctl_putunqstr(sys_var[CS_PEERADR].text, ss, strlen(ss));
1997 		break;
1998 
1999 	case CS_PEERMODE:
2000 		u = (sys_peer != NULL)
2001 			? sys_peer->hmode
2002 			: MODE_UNSPEC;
2003 		ctl_putuint(sys_var[CS_PEERMODE].text, u);
2004 		break;
2005 
2006 	case CS_OFFSET:
2007 		ctl_putdbl6(sys_var[CS_OFFSET].text, last_offset * 1e3);
2008 		break;
2009 
2010 	case CS_DRIFT:
2011 		ctl_putdbl(sys_var[CS_DRIFT].text, drift_comp * 1e6);
2012 		break;
2013 
2014 	case CS_JITTER:
2015 		ctl_putdbl6(sys_var[CS_JITTER].text, sys_jitter * 1e3);
2016 		break;
2017 
2018 	case CS_ERROR:
2019 		ctl_putdbl(sys_var[CS_ERROR].text, clock_jitter * 1e3);
2020 		break;
2021 
2022 	case CS_CLOCK:
2023 		get_systime(&tmp);
2024 		ctl_putts(sys_var[CS_CLOCK].text, &tmp);
2025 		break;
2026 
2027 	case CS_PROCESSOR:
2028 #ifndef HAVE_UNAME
2029 		ctl_putstr(sys_var[CS_PROCESSOR].text, str_processor,
2030 			   sizeof(str_processor) - 1);
2031 #else
2032 		ctl_putstr(sys_var[CS_PROCESSOR].text,
2033 			   utsnamebuf.machine, strlen(utsnamebuf.machine));
2034 #endif /* HAVE_UNAME */
2035 		break;
2036 
2037 	case CS_SYSTEM:
2038 #ifndef HAVE_UNAME
2039 		ctl_putstr(sys_var[CS_SYSTEM].text, str_system,
2040 			   sizeof(str_system) - 1);
2041 #else
2042 		snprintf(str, sizeof(str), "%s/%s", utsnamebuf.sysname,
2043 			 utsnamebuf.release);
2044 		ctl_putstr(sys_var[CS_SYSTEM].text, str, strlen(str));
2045 #endif /* HAVE_UNAME */
2046 		break;
2047 
2048 	case CS_VERSION:
2049 		ctl_putstr(sys_var[CS_VERSION].text, Version,
2050 			   strlen(Version));
2051 		break;
2052 
2053 	case CS_STABIL:
2054 		ctl_putdbl(sys_var[CS_STABIL].text, clock_stability *
2055 			   1e6);
2056 		break;
2057 
2058 	case CS_VARLIST:
2059 	{
2060 		char buf[CTL_MAX_DATA_LEN];
2061 		//buffPointer, firstElementPointer, buffEndPointer
2062 		char *buffp, *buffend;
2063 		int firstVarName;
2064 		const char *ss1;
2065 		int len;
2066 		const struct ctl_var *k;
2067 
2068 		buffp = buf;
2069 		buffend = buf + sizeof(buf);
2070 		if (strlen(sys_var[CS_VARLIST].text) > (sizeof(buf) - 4))
2071 			break;	/* really long var name */
2072 
2073 		snprintf(buffp, sizeof(buf), "%s=\"",sys_var[CS_VARLIST].text);
2074 		buffp += strlen(buffp);
2075 		firstVarName = TRUE;
2076 		for (k = sys_var; !(k->flags & EOV); k++) {
2077 			if (k->flags & PADDING)
2078 				continue;
2079 			len = strlen(k->text);
2080 			if (len + 1 >= buffend - buffp)
2081 				break;
2082 			if (!firstVarName)
2083 				*buffp++ = ',';
2084 			else
2085 				firstVarName = FALSE;
2086 			memcpy(buffp, k->text, len);
2087 			buffp += len;
2088 		}
2089 
2090 		for (k = ext_sys_var; k && !(k->flags & EOV); k++) {
2091 			if (k->flags & PADDING)
2092 				continue;
2093 			if (NULL == k->text)
2094 				continue;
2095 			ss1 = strchr(k->text, '=');
2096 			if (NULL == ss1)
2097 				len = strlen(k->text);
2098 			else
2099 				len = ss1 - k->text;
2100 			if (len + 1 >= buffend - buffp)
2101 				break;
2102 			if (firstVarName) {
2103 				*buffp++ = ',';
2104 				firstVarName = FALSE;
2105 			}
2106 			memcpy(buffp, k->text,(unsigned)len);
2107 			buffp += len;
2108 		}
2109 		if (2 >= buffend - buffp)
2110 			break;
2111 
2112 		*buffp++ = '"';
2113 		*buffp = '\0';
2114 
2115 		ctl_putdata(buf, (unsigned)( buffp - buf ), 0);
2116 		break;
2117 	}
2118 
2119 	case CS_TAI:
2120 		if (sys_tai > 0)
2121 			ctl_putuint(sys_var[CS_TAI].text, sys_tai);
2122 		break;
2123 
2124 	case CS_LEAPTAB:
2125 	{
2126 		leap_signature_t lsig;
2127 		leapsec_getsig(&lsig);
2128 		if (lsig.ttime > 0)
2129 			ctl_putfs(sys_var[CS_LEAPTAB].text, lsig.ttime);
2130 		break;
2131 	}
2132 
2133 	case CS_LEAPEND:
2134 	{
2135 		leap_signature_t lsig;
2136 		leapsec_getsig(&lsig);
2137 		if (lsig.etime > 0)
2138 			ctl_putfs(sys_var[CS_LEAPEND].text, lsig.etime);
2139 		break;
2140 	}
2141 
2142 #ifdef LEAP_SMEAR
2143 	case CS_LEAPSMEARINTV:
2144 		if (leap_smear_intv > 0)
2145 			ctl_putuint(sys_var[CS_LEAPSMEARINTV].text, leap_smear_intv);
2146 		break;
2147 
2148 	case CS_LEAPSMEAROFFS:
2149 		if (leap_smear_intv > 0)
2150 			ctl_putdbl(sys_var[CS_LEAPSMEAROFFS].text,
2151 				   leap_smear.doffset * 1e3);
2152 		break;
2153 #endif	/* LEAP_SMEAR */
2154 
2155 	case CS_RATE:
2156 		ctl_putuint(sys_var[CS_RATE].text, ntp_minpoll);
2157 		break;
2158 
2159 	case CS_MRU_ENABLED:
2160 		ctl_puthex(sys_var[varid].text, mon_enabled);
2161 		break;
2162 
2163 	case CS_MRU_DEPTH:
2164 		ctl_putuint(sys_var[varid].text, mru_entries);
2165 		break;
2166 
2167 	case CS_MRU_MEM:
2168 		kb = mru_entries * (sizeof(mon_entry) / 1024.);
2169 		u = (u_int)kb;
2170 		if (kb - u >= 0.5)
2171 			u++;
2172 		ctl_putuint(sys_var[varid].text, u);
2173 		break;
2174 
2175 	case CS_MRU_DEEPEST:
2176 		ctl_putuint(sys_var[varid].text, mru_peakentries);
2177 		break;
2178 
2179 	case CS_MRU_MINDEPTH:
2180 		ctl_putuint(sys_var[varid].text, mru_mindepth);
2181 		break;
2182 
2183 	case CS_MRU_MAXAGE:
2184 		ctl_putint(sys_var[varid].text, mru_maxage);
2185 		break;
2186 
2187 	case CS_MRU_MAXDEPTH:
2188 		ctl_putuint(sys_var[varid].text, mru_maxdepth);
2189 		break;
2190 
2191 	case CS_MRU_MAXMEM:
2192 		kb = mru_maxdepth * (sizeof(mon_entry) / 1024.);
2193 		u = (u_int)kb;
2194 		if (kb - u >= 0.5)
2195 			u++;
2196 		ctl_putuint(sys_var[varid].text, u);
2197 		break;
2198 
2199 	case CS_SS_UPTIME:
2200 		ctl_putuint(sys_var[varid].text, current_time);
2201 		break;
2202 
2203 	case CS_SS_RESET:
2204 		ctl_putuint(sys_var[varid].text,
2205 			    current_time - sys_stattime);
2206 		break;
2207 
2208 	case CS_SS_RECEIVED:
2209 		ctl_putuint(sys_var[varid].text, sys_received);
2210 		break;
2211 
2212 	case CS_SS_THISVER:
2213 		ctl_putuint(sys_var[varid].text, sys_newversion);
2214 		break;
2215 
2216 	case CS_SS_OLDVER:
2217 		ctl_putuint(sys_var[varid].text, sys_oldversion);
2218 		break;
2219 
2220 	case CS_SS_BADFORMAT:
2221 		ctl_putuint(sys_var[varid].text, sys_badlength);
2222 		break;
2223 
2224 	case CS_SS_BADAUTH:
2225 		ctl_putuint(sys_var[varid].text, sys_badauth);
2226 		break;
2227 
2228 	case CS_SS_DECLINED:
2229 		ctl_putuint(sys_var[varid].text, sys_declined);
2230 		break;
2231 
2232 	case CS_SS_RESTRICTED:
2233 		ctl_putuint(sys_var[varid].text, sys_restricted);
2234 		break;
2235 
2236 	case CS_SS_LIMITED:
2237 		ctl_putuint(sys_var[varid].text, sys_limitrejected);
2238 		break;
2239 
2240 	case CS_SS_LAMPORT:
2241 		ctl_putuint(sys_var[varid].text, sys_lamport);
2242 		break;
2243 
2244 	case CS_SS_TSROUNDING:
2245 		ctl_putuint(sys_var[varid].text, sys_tsrounding);
2246 		break;
2247 
2248 	case CS_SS_KODSENT:
2249 		ctl_putuint(sys_var[varid].text, sys_kodsent);
2250 		break;
2251 
2252 	case CS_SS_PROCESSED:
2253 		ctl_putuint(sys_var[varid].text, sys_processed);
2254 		break;
2255 
2256 	case CS_BCASTDELAY:
2257 		ctl_putdbl(sys_var[varid].text, sys_bdelay * 1e3);
2258 		break;
2259 
2260 	case CS_AUTHDELAY:
2261 		LFPTOD(&sys_authdelay, dtemp);
2262 		ctl_putdbl(sys_var[varid].text, dtemp * 1e3);
2263 		break;
2264 
2265 	case CS_AUTHKEYS:
2266 		ctl_putuint(sys_var[varid].text, authnumkeys);
2267 		break;
2268 
2269 	case CS_AUTHFREEK:
2270 		ctl_putuint(sys_var[varid].text, authnumfreekeys);
2271 		break;
2272 
2273 	case CS_AUTHKLOOKUPS:
2274 		ctl_putuint(sys_var[varid].text, authkeylookups);
2275 		break;
2276 
2277 	case CS_AUTHKNOTFOUND:
2278 		ctl_putuint(sys_var[varid].text, authkeynotfound);
2279 		break;
2280 
2281 	case CS_AUTHKUNCACHED:
2282 		ctl_putuint(sys_var[varid].text, authkeyuncached);
2283 		break;
2284 
2285 	case CS_AUTHKEXPIRED:
2286 		ctl_putuint(sys_var[varid].text, authkeyexpired);
2287 		break;
2288 
2289 	case CS_AUTHENCRYPTS:
2290 		ctl_putuint(sys_var[varid].text, authencryptions);
2291 		break;
2292 
2293 	case CS_AUTHDECRYPTS:
2294 		ctl_putuint(sys_var[varid].text, authdecryptions);
2295 		break;
2296 
2297 	case CS_AUTHRESET:
2298 		ctl_putuint(sys_var[varid].text,
2299 			    current_time - auth_timereset);
2300 		break;
2301 
2302 		/*
2303 		 * CTL_IF_KERNLOOP() puts a zero if the kernel loop is
2304 		 * unavailable, otherwise calls putfunc with args.
2305 		 */
2306 #ifndef KERNEL_PLL
2307 # define	CTL_IF_KERNLOOP(putfunc, args)	\
2308 		ctl_putint(sys_var[varid].text, 0)
2309 #else
2310 # define	CTL_IF_KERNLOOP(putfunc, args)	\
2311 		putfunc args
2312 #endif
2313 
2314 		/*
2315 		 * CTL_IF_KERNPPS() puts a zero if either the kernel
2316 		 * loop is unavailable, or kernel hard PPS is not
2317 		 * active, otherwise calls putfunc with args.
2318 		 */
2319 #ifndef KERNEL_PLL
2320 # define	CTL_IF_KERNPPS(putfunc, args)	\
2321 		ctl_putint(sys_var[varid].text, 0)
2322 #else
2323 # define	CTL_IF_KERNPPS(putfunc, args)			\
2324 		if (0 == ntx.shift)				\
2325 			ctl_putint(sys_var[varid].text, 0);	\
2326 		else						\
2327 			putfunc args	/* no trailing ; */
2328 #endif
2329 
2330 	case CS_K_OFFSET:
2331 		CTL_IF_KERNLOOP(
2332 			ctl_putdblf,
2333 			(sys_var[varid].text, 0, -1,
2334 			 1000 * dbl_from_var_long(ntx.offset, ntx.status))
2335 		);
2336 		break;
2337 
2338 	case CS_K_FREQ:
2339 		CTL_IF_KERNLOOP(
2340 			ctl_putsfp,
2341 			(sys_var[varid].text, ntx.freq)
2342 		);
2343 		break;
2344 
2345 	case CS_K_MAXERR:
2346 		CTL_IF_KERNLOOP(
2347 			ctl_putdblf,
2348 			(sys_var[varid].text, 0, 6,
2349 			 1000 * dbl_from_usec_long(ntx.maxerror))
2350 		);
2351 		break;
2352 
2353 	case CS_K_ESTERR:
2354 		CTL_IF_KERNLOOP(
2355 			ctl_putdblf,
2356 			(sys_var[varid].text, 0, 6,
2357 			 1000 * dbl_from_usec_long(ntx.esterror))
2358 		);
2359 		break;
2360 
2361 	case CS_K_STFLAGS:
2362 #ifndef KERNEL_PLL
2363 		ss = "";
2364 #else
2365 		ss = k_st_flags(ntx.status);
2366 #endif
2367 		ctl_putstr(sys_var[varid].text, ss, strlen(ss));
2368 		break;
2369 
2370 	case CS_K_TIMECONST:
2371 		CTL_IF_KERNLOOP(
2372 			ctl_putint,
2373 			(sys_var[varid].text, ntx.constant)
2374 		);
2375 		break;
2376 
2377 	case CS_K_PRECISION:
2378 		CTL_IF_KERNLOOP(
2379 			ctl_putdblf,
2380 			(sys_var[varid].text, 0, 6,
2381 			 1000 * dbl_from_var_long(ntx.precision, ntx.status))
2382 		);
2383 		break;
2384 
2385 	case CS_K_FREQTOL:
2386 		CTL_IF_KERNLOOP(
2387 			ctl_putsfp,
2388 			(sys_var[varid].text, ntx.tolerance)
2389 		);
2390 		break;
2391 
2392 	case CS_K_PPS_FREQ:
2393 		CTL_IF_KERNPPS(
2394 			ctl_putsfp,
2395 			(sys_var[varid].text, ntx.ppsfreq)
2396 		);
2397 		break;
2398 
2399 	case CS_K_PPS_STABIL:
2400 		CTL_IF_KERNPPS(
2401 			ctl_putsfp,
2402 			(sys_var[varid].text, ntx.stabil)
2403 		);
2404 		break;
2405 
2406 	case CS_K_PPS_JITTER:
2407 		CTL_IF_KERNPPS(
2408 			ctl_putdbl,
2409 			(sys_var[varid].text,
2410 			 1000 * dbl_from_var_long(ntx.jitter, ntx.status))
2411 		);
2412 		break;
2413 
2414 	case CS_K_PPS_CALIBDUR:
2415 		CTL_IF_KERNPPS(
2416 			ctl_putint,
2417 			(sys_var[varid].text, 1 << ntx.shift)
2418 		);
2419 		break;
2420 
2421 	case CS_K_PPS_CALIBS:
2422 		CTL_IF_KERNPPS(
2423 			ctl_putint,
2424 			(sys_var[varid].text, ntx.calcnt)
2425 		);
2426 		break;
2427 
2428 	case CS_K_PPS_CALIBERRS:
2429 		CTL_IF_KERNPPS(
2430 			ctl_putint,
2431 			(sys_var[varid].text, ntx.errcnt)
2432 		);
2433 		break;
2434 
2435 	case CS_K_PPS_JITEXC:
2436 		CTL_IF_KERNPPS(
2437 			ctl_putint,
2438 			(sys_var[varid].text, ntx.jitcnt)
2439 		);
2440 		break;
2441 
2442 	case CS_K_PPS_STBEXC:
2443 		CTL_IF_KERNPPS(
2444 			ctl_putint,
2445 			(sys_var[varid].text, ntx.stbcnt)
2446 		);
2447 		break;
2448 
2449 	case CS_IOSTATS_RESET:
2450 		ctl_putuint(sys_var[varid].text,
2451 			    current_time - io_timereset);
2452 		break;
2453 
2454 	case CS_TOTAL_RBUF:
2455 		ctl_putuint(sys_var[varid].text, total_recvbuffs());
2456 		break;
2457 
2458 	case CS_FREE_RBUF:
2459 		ctl_putuint(sys_var[varid].text, free_recvbuffs());
2460 		break;
2461 
2462 	case CS_USED_RBUF:
2463 		ctl_putuint(sys_var[varid].text, full_recvbuffs());
2464 		break;
2465 
2466 	case CS_RBUF_LOWATER:
2467 		ctl_putuint(sys_var[varid].text, lowater_additions());
2468 		break;
2469 
2470 	case CS_IO_DROPPED:
2471 		ctl_putuint(sys_var[varid].text, packets_dropped);
2472 		break;
2473 
2474 	case CS_IO_IGNORED:
2475 		ctl_putuint(sys_var[varid].text, packets_ignored);
2476 		break;
2477 
2478 	case CS_IO_RECEIVED:
2479 		ctl_putuint(sys_var[varid].text, packets_received);
2480 		break;
2481 
2482 	case CS_IO_SENT:
2483 		ctl_putuint(sys_var[varid].text, packets_sent);
2484 		break;
2485 
2486 	case CS_IO_SENDFAILED:
2487 		ctl_putuint(sys_var[varid].text, packets_notsent);
2488 		break;
2489 
2490 	case CS_IO_WAKEUPS:
2491 		ctl_putuint(sys_var[varid].text, handler_calls);
2492 		break;
2493 
2494 	case CS_IO_GOODWAKEUPS:
2495 		ctl_putuint(sys_var[varid].text, handler_pkts);
2496 		break;
2497 
2498 	case CS_TIMERSTATS_RESET:
2499 		ctl_putuint(sys_var[varid].text,
2500 			    current_time - timer_timereset);
2501 		break;
2502 
2503 	case CS_TIMER_OVERRUNS:
2504 		ctl_putuint(sys_var[varid].text, alarm_overflow);
2505 		break;
2506 
2507 	case CS_TIMER_XMTS:
2508 		ctl_putuint(sys_var[varid].text, timer_xmtcalls);
2509 		break;
2510 
2511 	case CS_FUZZ:
2512 		ctl_putdbl(sys_var[varid].text, sys_fuzz * 1e3);
2513 		break;
2514 	case CS_WANDER_THRESH:
2515 		ctl_putdbl(sys_var[varid].text, wander_threshold * 1e6);
2516 		break;
2517 #ifdef AUTOKEY
2518 	case CS_FLAGS:
2519 		if (crypto_flags)
2520 			ctl_puthex(sys_var[CS_FLAGS].text,
2521 			    crypto_flags);
2522 		break;
2523 
2524 	case CS_DIGEST:
2525 		if (crypto_flags) {
2526 			strlcpy(str, OBJ_nid2ln(crypto_nid),
2527 			    COUNTOF(str));
2528 			ctl_putstr(sys_var[CS_DIGEST].text, str,
2529 			    strlen(str));
2530 		}
2531 		break;
2532 
2533 	case CS_SIGNATURE:
2534 		if (crypto_flags) {
2535 			const EVP_MD *dp;
2536 
2537 			dp = EVP_get_digestbynid(crypto_flags >> 16);
2538 			strlcpy(str, OBJ_nid2ln(EVP_MD_pkey_type(dp)),
2539 			    COUNTOF(str));
2540 			ctl_putstr(sys_var[CS_SIGNATURE].text, str,
2541 			    strlen(str));
2542 		}
2543 		break;
2544 
2545 	case CS_HOST:
2546 		if (hostval.ptr != NULL)
2547 			ctl_putstr(sys_var[CS_HOST].text, hostval.ptr,
2548 			    strlen(hostval.ptr));
2549 		break;
2550 
2551 	case CS_IDENT:
2552 		if (sys_ident != NULL)
2553 			ctl_putstr(sys_var[CS_IDENT].text, sys_ident,
2554 			    strlen(sys_ident));
2555 		break;
2556 
2557 	case CS_CERTIF:
2558 		for (cp = cinfo; cp != NULL; cp = cp->link) {
2559 			snprintf(str, sizeof(str), "%s %s 0x%x",
2560 			    cp->subject, cp->issuer, cp->flags);
2561 			ctl_putstr(sys_var[CS_CERTIF].text, str,
2562 			    strlen(str));
2563 			ctl_putcal(sys_var[CS_REVTIME].text, &(cp->last));
2564 		}
2565 		break;
2566 
2567 	case CS_PUBLIC:
2568 		if (hostval.tstamp != 0)
2569 			ctl_putfs(sys_var[CS_PUBLIC].text,
2570 			    ntohl(hostval.tstamp));
2571 		break;
2572 #endif	/* AUTOKEY */
2573 
2574 	default:
2575 		break;
2576 	}
2577 }
2578 
2579 
2580 /*
2581  * ctl_putpeer - output a peer variable
2582  */
2583 static void
2584 ctl_putpeer(
2585 	int id,
2586 	struct peer *p
2587 	)
2588 {
2589 	char buf[CTL_MAX_DATA_LEN];
2590 	char *s;
2591 	char *t;
2592 	char *be;
2593 	int i;
2594 	const struct ctl_var *k;
2595 #ifdef AUTOKEY
2596 	struct autokey *ap;
2597 	const EVP_MD *dp;
2598 	const char *str;
2599 #endif	/* AUTOKEY */
2600 
2601 	switch (id) {
2602 
2603 	case CP_CONFIG:
2604 		ctl_putuint(peer_var[id].text,
2605 			    !(FLAG_PREEMPT & p->flags));
2606 		break;
2607 
2608 	case CP_AUTHENABLE:
2609 		ctl_putuint(peer_var[id].text, !(p->keyid));
2610 		break;
2611 
2612 	case CP_AUTHENTIC:
2613 		ctl_putuint(peer_var[id].text,
2614 			    !!(FLAG_AUTHENTIC & p->flags));
2615 		break;
2616 
2617 	case CP_SRCADR:
2618 		ctl_putadr(peer_var[id].text, 0, &p->srcadr);
2619 		break;
2620 
2621 	case CP_SRCPORT:
2622 		ctl_putuint(peer_var[id].text, SRCPORT(&p->srcadr));
2623 		break;
2624 
2625 	case CP_SRCHOST:
2626 		if (p->hostname != NULL)
2627 			ctl_putstr(peer_var[id].text, p->hostname,
2628 				   strlen(p->hostname));
2629 		break;
2630 
2631 	case CP_DSTADR:
2632 		ctl_putadr(peer_var[id].text, 0,
2633 			   (p->dstadr != NULL)
2634 				? &p->dstadr->sin
2635 				: NULL);
2636 		break;
2637 
2638 	case CP_DSTPORT:
2639 		ctl_putuint(peer_var[id].text,
2640 			    (p->dstadr != NULL)
2641 				? SRCPORT(&p->dstadr->sin)
2642 				: 0);
2643 		break;
2644 
2645 	case CP_IN:
2646 		if (p->r21 > 0.)
2647 			ctl_putdbl(peer_var[id].text, p->r21 / 1e3);
2648 		break;
2649 
2650 	case CP_OUT:
2651 		if (p->r34 > 0.)
2652 			ctl_putdbl(peer_var[id].text, p->r34 / 1e3);
2653 		break;
2654 
2655 	case CP_RATE:
2656 		ctl_putuint(peer_var[id].text, p->throttle);
2657 		break;
2658 
2659 	case CP_LEAP:
2660 		ctl_putuint(peer_var[id].text, p->leap);
2661 		break;
2662 
2663 	case CP_HMODE:
2664 		ctl_putuint(peer_var[id].text, p->hmode);
2665 		break;
2666 
2667 	case CP_STRATUM:
2668 		ctl_putuint(peer_var[id].text, p->stratum);
2669 		break;
2670 
2671 	case CP_PPOLL:
2672 		ctl_putuint(peer_var[id].text, p->ppoll);
2673 		break;
2674 
2675 	case CP_HPOLL:
2676 		ctl_putuint(peer_var[id].text, p->hpoll);
2677 		break;
2678 
2679 	case CP_PRECISION:
2680 		ctl_putint(peer_var[id].text, p->precision);
2681 		break;
2682 
2683 	case CP_ROOTDELAY:
2684 		ctl_putdbl(peer_var[id].text, p->rootdelay * 1e3);
2685 		break;
2686 
2687 	case CP_ROOTDISPERSION:
2688 		ctl_putdbl(peer_var[id].text, p->rootdisp * 1e3);
2689 		break;
2690 
2691 	case CP_REFID:
2692 #ifdef REFCLOCK
2693 		if (p->flags & FLAG_REFCLOCK) {
2694 			ctl_putrefid(peer_var[id].text, p->refid);
2695 			break;
2696 		}
2697 #endif
2698 		if (REFID_ISTEXT(p->stratum))
2699 			ctl_putrefid(peer_var[id].text, p->refid);
2700 		else
2701 			ctl_putadr(peer_var[id].text, p->refid, NULL);
2702 		break;
2703 
2704 	case CP_REFTIME:
2705 		ctl_putts(peer_var[id].text, &p->reftime);
2706 		break;
2707 
2708 	case CP_ORG:
2709 		ctl_putts(peer_var[id].text, &p->aorg);
2710 		break;
2711 
2712 	case CP_REC:
2713 		ctl_putts(peer_var[id].text, &p->dst);
2714 		break;
2715 
2716 	case CP_XMT:
2717 		if (p->xleave)
2718 			ctl_putdbl(peer_var[id].text, p->xleave * 1e3);
2719 		break;
2720 
2721 	case CP_BIAS:
2722 		if (p->bias != 0.)
2723 			ctl_putdbl(peer_var[id].text, p->bias * 1e3);
2724 		break;
2725 
2726 	case CP_REACH:
2727 		ctl_puthex(peer_var[id].text, p->reach);
2728 		break;
2729 
2730 	case CP_FLASH:
2731 		ctl_puthex(peer_var[id].text, p->flash);
2732 		break;
2733 
2734 	case CP_TTL:
2735 #ifdef REFCLOCK
2736 		if (p->flags & FLAG_REFCLOCK) {
2737 			ctl_putuint(peer_var[id].text, p->ttl);
2738 			break;
2739 		}
2740 #endif
2741 		if (p->ttl > 0 && p->ttl < COUNTOF(sys_ttl))
2742 			ctl_putint(peer_var[id].text,
2743 				   sys_ttl[p->ttl]);
2744 		break;
2745 
2746 	case CP_UNREACH:
2747 		ctl_putuint(peer_var[id].text, p->unreach);
2748 		break;
2749 
2750 	case CP_TIMER:
2751 		ctl_putuint(peer_var[id].text,
2752 			    p->nextdate - current_time);
2753 		break;
2754 
2755 	case CP_DELAY:
2756 		ctl_putdbl(peer_var[id].text, p->delay * 1e3);
2757 		break;
2758 
2759 	case CP_OFFSET:
2760 		ctl_putdbl(peer_var[id].text, p->offset * 1e3);
2761 		break;
2762 
2763 	case CP_JITTER:
2764 		ctl_putdbl(peer_var[id].text, p->jitter * 1e3);
2765 		break;
2766 
2767 	case CP_DISPERSION:
2768 		ctl_putdbl(peer_var[id].text, p->disp * 1e3);
2769 		break;
2770 
2771 	case CP_KEYID:
2772 		if (p->keyid > NTP_MAXKEY)
2773 			ctl_puthex(peer_var[id].text, p->keyid);
2774 		else
2775 			ctl_putuint(peer_var[id].text, p->keyid);
2776 		break;
2777 
2778 	case CP_FILTDELAY:
2779 		ctl_putarray(peer_var[id].text, p->filter_delay,
2780 			     p->filter_nextpt);
2781 		break;
2782 
2783 	case CP_FILTOFFSET:
2784 		ctl_putarray(peer_var[id].text, p->filter_offset,
2785 			     p->filter_nextpt);
2786 		break;
2787 
2788 	case CP_FILTERROR:
2789 		ctl_putarray(peer_var[id].text, p->filter_disp,
2790 			     p->filter_nextpt);
2791 		break;
2792 
2793 	case CP_PMODE:
2794 		ctl_putuint(peer_var[id].text, p->pmode);
2795 		break;
2796 
2797 	case CP_RECEIVED:
2798 		ctl_putuint(peer_var[id].text, p->received);
2799 		break;
2800 
2801 	case CP_SENT:
2802 		ctl_putuint(peer_var[id].text, p->sent);
2803 		break;
2804 
2805 	case CP_VARLIST:
2806 		s = buf;
2807 		be = buf + sizeof(buf);
2808 		if (strlen(peer_var[id].text) + 4 > sizeof(buf))
2809 			break;	/* really long var name */
2810 
2811 		snprintf(s, sizeof(buf), "%s=\"", peer_var[id].text);
2812 		s += strlen(s);
2813 		t = s;
2814 		for (k = peer_var; !(EOV & k->flags); k++) {
2815 			if (PADDING & k->flags)
2816 				continue;
2817 			i = strlen(k->text);
2818 			if (s + i + 1 >= be)
2819 				break;
2820 			if (s != t)
2821 				*s++ = ',';
2822 			memcpy(s, k->text, i);
2823 			s += i;
2824 		}
2825 		if (s + 2 < be) {
2826 			*s++ = '"';
2827 			*s = '\0';
2828 			ctl_putdata(buf, (u_int)(s - buf), 0);
2829 		}
2830 		break;
2831 
2832 	case CP_TIMEREC:
2833 		ctl_putuint(peer_var[id].text,
2834 			    current_time - p->timereceived);
2835 		break;
2836 
2837 	case CP_TIMEREACH:
2838 		ctl_putuint(peer_var[id].text,
2839 			    current_time - p->timereachable);
2840 		break;
2841 
2842 	case CP_BADAUTH:
2843 		ctl_putuint(peer_var[id].text, p->badauth);
2844 		break;
2845 
2846 	case CP_BOGUSORG:
2847 		ctl_putuint(peer_var[id].text, p->bogusorg);
2848 		break;
2849 
2850 	case CP_OLDPKT:
2851 		ctl_putuint(peer_var[id].text, p->oldpkt);
2852 		break;
2853 
2854 	case CP_SELDISP:
2855 		ctl_putuint(peer_var[id].text, p->seldisptoolarge);
2856 		break;
2857 
2858 	case CP_SELBROKEN:
2859 		ctl_putuint(peer_var[id].text, p->selbroken);
2860 		break;
2861 
2862 	case CP_CANDIDATE:
2863 		ctl_putuint(peer_var[id].text, p->status);
2864 		break;
2865 #ifdef AUTOKEY
2866 	case CP_FLAGS:
2867 		if (p->crypto)
2868 			ctl_puthex(peer_var[id].text, p->crypto);
2869 		break;
2870 
2871 	case CP_SIGNATURE:
2872 		if (p->crypto) {
2873 			dp = EVP_get_digestbynid(p->crypto >> 16);
2874 			str = OBJ_nid2ln(EVP_MD_pkey_type(dp));
2875 			ctl_putstr(peer_var[id].text, str, strlen(str));
2876 		}
2877 		break;
2878 
2879 	case CP_HOST:
2880 		if (p->subject != NULL)
2881 			ctl_putstr(peer_var[id].text, p->subject,
2882 			    strlen(p->subject));
2883 		break;
2884 
2885 	case CP_VALID:		/* not used */
2886 		break;
2887 
2888 	case CP_INITSEQ:
2889 		if (NULL == (ap = p->recval.ptr))
2890 			break;
2891 
2892 		ctl_putint(peer_var[CP_INITSEQ].text, ap->seq);
2893 		ctl_puthex(peer_var[CP_INITKEY].text, ap->key);
2894 		ctl_putfs(peer_var[CP_INITTSP].text,
2895 			  ntohl(p->recval.tstamp));
2896 		break;
2897 
2898 	case CP_IDENT:
2899 		if (p->ident != NULL)
2900 			ctl_putstr(peer_var[id].text, p->ident,
2901 			    strlen(p->ident));
2902 		break;
2903 
2904 
2905 #endif	/* AUTOKEY */
2906 	}
2907 }
2908 
2909 
2910 #ifdef REFCLOCK
2911 /*
2912  * ctl_putclock - output clock variables
2913  */
2914 static void
2915 ctl_putclock(
2916 	int id,
2917 	struct refclockstat *pcs,
2918 	int mustput
2919 	)
2920 {
2921 	char buf[CTL_MAX_DATA_LEN];
2922 	char *s, *t, *be;
2923 	const char *ss;
2924 	int i;
2925 	const struct ctl_var *k;
2926 
2927 	switch (id) {
2928 
2929 	case CC_TYPE:
2930 		if (mustput || pcs->clockdesc == NULL
2931 		    || *(pcs->clockdesc) == '\0') {
2932 			ctl_putuint(clock_var[id].text, pcs->type);
2933 		}
2934 		break;
2935 	case CC_TIMECODE:
2936 		ctl_putstr(clock_var[id].text,
2937 			   pcs->p_lastcode,
2938 			   (unsigned)pcs->lencode);
2939 		break;
2940 
2941 	case CC_POLL:
2942 		ctl_putuint(clock_var[id].text, pcs->polls);
2943 		break;
2944 
2945 	case CC_NOREPLY:
2946 		ctl_putuint(clock_var[id].text,
2947 			    pcs->noresponse);
2948 		break;
2949 
2950 	case CC_BADFORMAT:
2951 		ctl_putuint(clock_var[id].text,
2952 			    pcs->badformat);
2953 		break;
2954 
2955 	case CC_BADDATA:
2956 		ctl_putuint(clock_var[id].text,
2957 			    pcs->baddata);
2958 		break;
2959 
2960 	case CC_FUDGETIME1:
2961 		if (mustput || (pcs->haveflags & CLK_HAVETIME1))
2962 			ctl_putdbl(clock_var[id].text,
2963 				   pcs->fudgetime1 * 1e3);
2964 		break;
2965 
2966 	case CC_FUDGETIME2:
2967 		if (mustput || (pcs->haveflags & CLK_HAVETIME2))
2968 			ctl_putdbl(clock_var[id].text,
2969 				   pcs->fudgetime2 * 1e3);
2970 		break;
2971 
2972 	case CC_FUDGEVAL1:
2973 		if (mustput || (pcs->haveflags & CLK_HAVEVAL1))
2974 			ctl_putint(clock_var[id].text,
2975 				   pcs->fudgeval1);
2976 		break;
2977 
2978 	case CC_FUDGEVAL2:
2979 		/* RefID of clocks are always text even if stratum is fudged */
2980 		if (mustput || (pcs->haveflags & CLK_HAVEVAL2))
2981 			ctl_putrefid(clock_var[id].text, pcs->fudgeval2);
2982 		break;
2983 
2984 	case CC_FLAGS:
2985 		ctl_putuint(clock_var[id].text, pcs->flags);
2986 		break;
2987 
2988 	case CC_DEVICE:
2989 		if (pcs->clockdesc == NULL ||
2990 		    *(pcs->clockdesc) == '\0') {
2991 			if (mustput)
2992 				ctl_putstr(clock_var[id].text,
2993 					   "", 0);
2994 		} else {
2995 			ctl_putstr(clock_var[id].text,
2996 				   pcs->clockdesc,
2997 				   strlen(pcs->clockdesc));
2998 		}
2999 		break;
3000 
3001 	case CC_VARLIST:
3002 		s = buf;
3003 		be = buf + sizeof(buf);
3004 		if (strlen(clock_var[CC_VARLIST].text) + 4 >
3005 		    sizeof(buf))
3006 			break;	/* really long var name */
3007 
3008 		snprintf(s, sizeof(buf), "%s=\"",
3009 			 clock_var[CC_VARLIST].text);
3010 		s += strlen(s);
3011 		t = s;
3012 
3013 		for (k = clock_var; !(EOV & k->flags); k++) {
3014 			if (PADDING & k->flags)
3015 				continue;
3016 
3017 			i = strlen(k->text);
3018 			if (s + i + 1 >= be)
3019 				break;
3020 
3021 			if (s != t)
3022 				*s++ = ',';
3023 			memcpy(s, k->text, i);
3024 			s += i;
3025 		}
3026 
3027 		for (k = pcs->kv_list; k && !(EOV & k->flags); k++) {
3028 			if (PADDING & k->flags)
3029 				continue;
3030 
3031 			ss = k->text;
3032 			if (NULL == ss)
3033 				continue;
3034 
3035 			while (*ss && *ss != '=')
3036 				ss++;
3037 			i = ss - k->text;
3038 			if (s + i + 1 >= be)
3039 				break;
3040 
3041 			if (s != t)
3042 				*s++ = ',';
3043 			memcpy(s, k->text, (unsigned)i);
3044 			s += i;
3045 			*s = '\0';
3046 		}
3047 		if (s + 2 >= be)
3048 			break;
3049 
3050 		*s++ = '"';
3051 		*s = '\0';
3052 		ctl_putdata(buf, (unsigned)(s - buf), 0);
3053 		break;
3054 
3055 	case CC_FUDGEMINJIT:
3056 		if (mustput || (pcs->haveflags & CLK_HAVEMINJIT))
3057 			ctl_putdbl(clock_var[id].text,
3058 				   pcs->fudgeminjitter * 1e3);
3059 		break;
3060 
3061 	default:
3062 		break;
3063 
3064 	}
3065 }
3066 #endif
3067 
3068 
3069 
3070 /*
3071  * ctl_getitem - get the next data item from the incoming packet
3072  */
3073 static const struct ctl_var *
3074 ctl_getitem(
3075 	const struct ctl_var *var_list,
3076 	char **data
3077 	)
3078 {
3079 	/* [Bug 3008] First check the packet data sanity, then search
3080 	 * the key. This improves the consistency of result values: If
3081 	 * the result is NULL once, it will never be EOV again for this
3082 	 * packet; If it's EOV, it will never be NULL again until the
3083 	 * variable is found and processed in a given 'var_list'. (That
3084 	 * is, a result is returned that is neither NULL nor EOV).
3085 	 */
3086 	static const struct ctl_var eol = { 0, EOV, NULL };
3087 	static char buf[128];
3088 	static u_long quiet_until;
3089 	const struct ctl_var *v;
3090 	char *cp;
3091 	char *tp;
3092 
3093 	/*
3094 	 * Part One: Validate the packet state
3095 	 */
3096 
3097 	/* Delete leading commas and white space */
3098 	while (reqpt < reqend && (*reqpt == ',' ||
3099 				  isspace((unsigned char)*reqpt)))
3100 		reqpt++;
3101 	if (reqpt >= reqend)
3102 		return NULL;
3103 
3104 	/* Scan the string in the packet until we hit comma or
3105 	 * EoB. Register position of first '=' on the fly. */
3106 	for (tp = NULL, cp = reqpt; cp != reqend; ++cp) {
3107 		if (*cp == '=' && tp == NULL)
3108 			tp = cp;
3109 		if (*cp == ',')
3110 			break;
3111 	}
3112 
3113 	/* Process payload, if any. */
3114 	*data = NULL;
3115 	if (NULL != tp) {
3116 		/* eventually strip white space from argument. */
3117 		const char *plhead = tp + 1; /* skip the '=' */
3118 		const char *pltail = cp;
3119 		size_t      plsize;
3120 
3121 		while (plhead != pltail && isspace((u_char)plhead[0]))
3122 			++plhead;
3123 		while (plhead != pltail && isspace((u_char)pltail[-1]))
3124 			--pltail;
3125 
3126 		/* check payload size, terminate packet on overflow */
3127 		plsize = (size_t)(pltail - plhead);
3128 		if (plsize >= sizeof(buf))
3129 			goto badpacket;
3130 
3131 		/* copy data, NUL terminate, and set result data ptr */
3132 		memcpy(buf, plhead, plsize);
3133 		buf[plsize] = '\0';
3134 		*data = buf;
3135 	} else {
3136 		/* no payload, current end --> current name termination */
3137 		tp = cp;
3138 	}
3139 
3140 	/* Part Two
3141 	 *
3142 	 * Now we're sure that the packet data itself is sane. Scan the
3143 	 * list now. Make sure a NULL list is properly treated by
3144 	 * returning a synthetic End-Of-Values record. We must not
3145 	 * return NULL pointers after this point, or the behaviour would
3146 	 * become inconsistent if called several times with different
3147 	 * variable lists after an EoV was returned.  (Such a behavior
3148 	 * actually caused Bug 3008.)
3149 	 */
3150 
3151 	if (NULL == var_list)
3152 		return &eol;
3153 
3154 	for (v = var_list; !(EOV & v->flags); ++v)
3155 		if (!(PADDING & v->flags)) {
3156 			/* Check if the var name matches the buffer. The
3157 			 * name is bracketed by [reqpt..tp] and not NUL
3158 			 * terminated, and it contains no '=' char. The
3159 			 * lookup value IS NUL-terminated but might
3160 			 * include a '='... We have to look out for
3161 			 * that!
3162 			 */
3163 			const char *sp1 = reqpt;
3164 			const char *sp2 = v->text;
3165 
3166 			/* [Bug 3412] do not compare past NUL byte in name */
3167 			while (   (sp1 != tp)
3168 			       && ('\0' != *sp2) && (*sp1 == *sp2)) {
3169 				++sp1;
3170 				++sp2;
3171 			}
3172 			if (sp1 == tp && (*sp2 == '\0' || *sp2 == '='))
3173 				break;
3174 		}
3175 
3176 	/* See if we have found a valid entry or not. If found, advance
3177 	 * the request pointer for the next round; if not, clear the
3178 	 * data pointer so we have no dangling garbage here.
3179 	 */
3180 	if (EOV & v->flags)
3181 		*data = NULL;
3182 	else
3183 		reqpt = cp + (cp != reqend);
3184 	return v;
3185 
3186   badpacket:
3187 	/*TODO? somehow indicate this packet was bad, apart from syslog? */
3188 	numctlbadpkts++;
3189 	NLOG(NLOG_SYSEVENT)
3190 	    if (quiet_until <= current_time) {
3191 		    quiet_until = current_time + 300;
3192 		    msyslog(LOG_WARNING,
3193 			    "Possible 'ntpdx' exploit from %s (possibly spoofed)",
3194 			    sptoa(rmt_addr));
3195 	    }
3196 	reqpt = reqend; /* never again for this packet! */
3197 	return NULL;
3198 }
3199 
3200 
3201 /*
3202  * control_unspec - response to an unspecified op-code
3203  */
3204 /*ARGSUSED*/
3205 static void
3206 control_unspec(
3207 	struct recvbuf *rbufp,
3208 	int restrict_mask
3209 	)
3210 {
3211 	struct peer *peer;
3212 
3213 	/*
3214 	 * What is an appropriate response to an unspecified op-code?
3215 	 * I return no errors and no data, unless a specified assocation
3216 	 * doesn't exist.
3217 	 */
3218 	if (res_associd) {
3219 		peer = findpeerbyassoc(res_associd);
3220 		if (NULL == peer) {
3221 			ctl_error(CERR_BADASSOC);
3222 			return;
3223 		}
3224 		rpkt.status = htons(ctlpeerstatus(peer));
3225 	} else
3226 		rpkt.status = htons(ctlsysstatus());
3227 	ctl_flushpkt(0);
3228 }
3229 
3230 
3231 /*
3232  * read_status - return either a list of associd's, or a particular
3233  * peer's status.
3234  */
3235 /*ARGSUSED*/
3236 static void
3237 read_status(
3238 	struct recvbuf *rbufp,
3239 	int restrict_mask
3240 	)
3241 {
3242 	struct peer *peer;
3243 	const u_char *cp;
3244 	size_t n;
3245 	/* a_st holds association ID, status pairs alternating */
3246 	u_short a_st[CTL_MAX_DATA_LEN / sizeof(u_short)];
3247 
3248 #ifdef DEBUG
3249 	if (debug > 2)
3250 		printf("read_status: ID %d\n", res_associd);
3251 #endif
3252 	/*
3253 	 * Two choices here. If the specified association ID is
3254 	 * zero we return all known assocation ID's.  Otherwise
3255 	 * we return a bunch of stuff about the particular peer.
3256 	 */
3257 	if (res_associd) {
3258 		peer = findpeerbyassoc(res_associd);
3259 		if (NULL == peer) {
3260 			ctl_error(CERR_BADASSOC);
3261 			return;
3262 		}
3263 		rpkt.status = htons(ctlpeerstatus(peer));
3264 		if (res_authokay)
3265 			peer->num_events = 0;
3266 		/*
3267 		 * For now, output everything we know about the
3268 		 * peer. May be more selective later.
3269 		 */
3270 		for (cp = def_peer_var; *cp != 0; cp++)
3271 			ctl_putpeer((int)*cp, peer);
3272 		ctl_flushpkt(0);
3273 		return;
3274 	}
3275 	n = 0;
3276 	rpkt.status = htons(ctlsysstatus());
3277 	for (peer = peer_list; peer != NULL; peer = peer->p_link) {
3278 		a_st[n++] = htons(peer->associd);
3279 		a_st[n++] = htons(ctlpeerstatus(peer));
3280 		/* two entries each loop iteration, so n + 1 */
3281 		if (n + 1 >= COUNTOF(a_st)) {
3282 			ctl_putdata((void *)a_st, n * sizeof(a_st[0]),
3283 				    1);
3284 			n = 0;
3285 		}
3286 	}
3287 	if (n)
3288 		ctl_putdata((void *)a_st, n * sizeof(a_st[0]), 1);
3289 	ctl_flushpkt(0);
3290 }
3291 
3292 
3293 /*
3294  * read_peervars - half of read_variables() implementation
3295  */
3296 static void
3297 read_peervars(void)
3298 {
3299 	const struct ctl_var *v;
3300 	struct peer *peer;
3301 	const u_char *cp;
3302 	size_t i;
3303 	char *	valuep;
3304 	u_char	wants[CP_MAXCODE + 1];
3305 	u_int	gotvar;
3306 
3307 	/*
3308 	 * Wants info for a particular peer. See if we know
3309 	 * the guy.
3310 	 */
3311 	peer = findpeerbyassoc(res_associd);
3312 	if (NULL == peer) {
3313 		ctl_error(CERR_BADASSOC);
3314 		return;
3315 	}
3316 	rpkt.status = htons(ctlpeerstatus(peer));
3317 	if (res_authokay)
3318 		peer->num_events = 0;
3319 	ZERO(wants);
3320 	gotvar = 0;
3321 	while (NULL != (v = ctl_getitem(peer_var, &valuep))) {
3322 		if (v->flags & EOV) {
3323 			ctl_error(CERR_UNKNOWNVAR);
3324 			return;
3325 		}
3326 		INSIST(v->code < COUNTOF(wants));
3327 		wants[v->code] = 1;
3328 		gotvar = 1;
3329 	}
3330 	if (gotvar) {
3331 		for (i = 1; i < COUNTOF(wants); i++)
3332 			if (wants[i])
3333 				ctl_putpeer(i, peer);
3334 	} else
3335 		for (cp = def_peer_var; *cp != 0; cp++)
3336 			ctl_putpeer((int)*cp, peer);
3337 	ctl_flushpkt(0);
3338 }
3339 
3340 
3341 /*
3342  * read_sysvars - half of read_variables() implementation
3343  */
3344 static void
3345 read_sysvars(void)
3346 {
3347 	const struct ctl_var *v;
3348 	struct ctl_var *kv;
3349 	u_int	n;
3350 	u_int	gotvar;
3351 	const u_char *cs;
3352 	char *	valuep;
3353 	const char * pch;
3354 	u_char *wants;
3355 	size_t	wants_count;
3356 
3357 	/*
3358 	 * Wants system variables. Figure out which he wants
3359 	 * and give them to him.
3360 	 */
3361 	rpkt.status = htons(ctlsysstatus());
3362 	if (res_authokay)
3363 		ctl_sys_num_events = 0;
3364 	wants_count = CS_MAXCODE + 1 + count_var(ext_sys_var);
3365 	wants = emalloc_zero(wants_count);
3366 	gotvar = 0;
3367 	while (NULL != (v = ctl_getitem(sys_var, &valuep))) {
3368 		if (!(EOV & v->flags)) {
3369 			INSIST(v->code < wants_count);
3370 			wants[v->code] = 1;
3371 			gotvar = 1;
3372 		} else {
3373 			v = ctl_getitem(ext_sys_var, &valuep);
3374 			if (NULL == v) {
3375 				ctl_error(CERR_BADVALUE);
3376 				free(wants);
3377 				return;
3378 			}
3379 			if (EOV & v->flags) {
3380 				ctl_error(CERR_UNKNOWNVAR);
3381 				free(wants);
3382 				return;
3383 			}
3384 			n = v->code + CS_MAXCODE + 1;
3385 			INSIST(n < wants_count);
3386 			wants[n] = 1;
3387 			gotvar = 1;
3388 		}
3389 	}
3390 	if (gotvar) {
3391 		for (n = 1; n <= CS_MAXCODE; n++)
3392 			if (wants[n])
3393 				ctl_putsys(n);
3394 		for (n = 0; n + CS_MAXCODE + 1 < wants_count; n++)
3395 			if (wants[n + CS_MAXCODE + 1]) {
3396 				pch = ext_sys_var[n].text;
3397 				ctl_putdata(pch, strlen(pch), 0);
3398 			}
3399 	} else {
3400 		for (cs = def_sys_var; *cs != 0; cs++)
3401 			ctl_putsys((int)*cs);
3402 		for (kv = ext_sys_var; kv && !(EOV & kv->flags); kv++)
3403 			if (DEF & kv->flags)
3404 				ctl_putdata(kv->text, strlen(kv->text),
3405 					    0);
3406 	}
3407 	free(wants);
3408 	ctl_flushpkt(0);
3409 }
3410 
3411 
3412 /*
3413  * read_variables - return the variables the caller asks for
3414  */
3415 /*ARGSUSED*/
3416 static void
3417 read_variables(
3418 	struct recvbuf *rbufp,
3419 	int restrict_mask
3420 	)
3421 {
3422 	if (res_associd)
3423 		read_peervars();
3424 	else
3425 		read_sysvars();
3426 }
3427 
3428 
3429 /*
3430  * write_variables - write into variables. We only allow leap bit
3431  * writing this way.
3432  */
3433 /*ARGSUSED*/
3434 static void
3435 write_variables(
3436 	struct recvbuf *rbufp,
3437 	int restrict_mask
3438 	)
3439 {
3440 	const struct ctl_var *v;
3441 	int ext_var;
3442 	char *valuep;
3443 	long val;
3444 	size_t octets;
3445 	char *vareqv;
3446 	const char *t;
3447 	char *tt;
3448 
3449 	val = 0;
3450 	/*
3451 	 * If he's trying to write into a peer tell him no way
3452 	 */
3453 	if (res_associd != 0) {
3454 		ctl_error(CERR_PERMISSION);
3455 		return;
3456 	}
3457 
3458 	/*
3459 	 * Set status
3460 	 */
3461 	rpkt.status = htons(ctlsysstatus());
3462 
3463 	/*
3464 	 * Look through the variables. Dump out at the first sign of
3465 	 * trouble.
3466 	 */
3467 	while ((v = ctl_getitem(sys_var, &valuep)) != NULL) {
3468 		ext_var = 0;
3469 		if (v->flags & EOV) {
3470 			v = ctl_getitem(ext_sys_var, &valuep);
3471 			if (v != NULL) {
3472 				if (v->flags & EOV) {
3473 					ctl_error(CERR_UNKNOWNVAR);
3474 					return;
3475 				}
3476 				ext_var = 1;
3477 			} else {
3478 				break;
3479 			}
3480 		}
3481 		if (!(v->flags & CAN_WRITE)) {
3482 			ctl_error(CERR_PERMISSION);
3483 			return;
3484 		}
3485 		/* [bug 3565] writing makes sense only if we *have* a
3486 		 * value in the packet!
3487 		 */
3488 		if (valuep == NULL) {
3489 			ctl_error(CERR_BADFMT);
3490 			return;
3491 		}
3492 		if (!ext_var) {
3493 			if ( !(*valuep && atoint(valuep, &val))) {
3494 				ctl_error(CERR_BADFMT);
3495 				return;
3496 			}
3497 			if ((val & ~LEAP_NOTINSYNC) != 0) {
3498 				ctl_error(CERR_BADVALUE);
3499 				return;
3500 			}
3501 		}
3502 
3503 		if (ext_var) {
3504 			octets = strlen(v->text) + strlen(valuep) + 2;
3505 			vareqv = emalloc(octets);
3506 			tt = vareqv;
3507 			t = v->text;
3508 			while (*t && *t != '=')
3509 				*tt++ = *t++;
3510 			*tt++ = '=';
3511 			memcpy(tt, valuep, 1 + strlen(valuep));
3512 			set_sys_var(vareqv, 1 + strlen(vareqv), v->flags);
3513 			free(vareqv);
3514 		} else {
3515 			ctl_error(CERR_UNSPEC); /* really */
3516 			return;
3517 		}
3518 	}
3519 
3520 	/*
3521 	 * If we got anything, do it. xxx nothing to do ***
3522 	 */
3523 	/*
3524 	  if (leapind != ~0 || leapwarn != ~0) {
3525 	  if (!leap_setleap((int)leapind, (int)leapwarn)) {
3526 	  ctl_error(CERR_PERMISSION);
3527 	  return;
3528 	  }
3529 	  }
3530 	*/
3531 	ctl_flushpkt(0);
3532 }
3533 
3534 
3535 /*
3536  * configure() processes ntpq :config/config-from-file, allowing
3537  *		generic runtime reconfiguration.
3538  */
3539 static void configure(
3540 	struct recvbuf *rbufp,
3541 	int restrict_mask
3542 	)
3543 {
3544 	size_t data_count;
3545 	int retval;
3546 
3547 	/* I haven't yet implemented changes to an existing association.
3548 	 * Hence check if the association id is 0
3549 	 */
3550 	if (res_associd != 0) {
3551 		ctl_error(CERR_BADVALUE);
3552 		return;
3553 	}
3554 
3555 	if (RES_NOMODIFY & restrict_mask) {
3556 		snprintf(remote_config.err_msg,
3557 			 sizeof(remote_config.err_msg),
3558 			 "runtime configuration prohibited by restrict ... nomodify");
3559 		ctl_putdata(remote_config.err_msg,
3560 			    strlen(remote_config.err_msg), 0);
3561 		ctl_flushpkt(0);
3562 		NLOG(NLOG_SYSINFO)
3563 			msyslog(LOG_NOTICE,
3564 				"runtime config from %s rejected due to nomodify restriction",
3565 				stoa(&rbufp->recv_srcadr));
3566 		sys_restricted++;
3567 		return;
3568 	}
3569 
3570 	/* Initialize the remote config buffer */
3571 	data_count = remoteconfig_cmdlength(reqpt, reqend);
3572 
3573 	if (data_count > sizeof(remote_config.buffer) - 2) {
3574 		snprintf(remote_config.err_msg,
3575 			 sizeof(remote_config.err_msg),
3576 			 "runtime configuration failed: request too long");
3577 		ctl_putdata(remote_config.err_msg,
3578 			    strlen(remote_config.err_msg), 0);
3579 		ctl_flushpkt(0);
3580 		msyslog(LOG_NOTICE,
3581 			"runtime config from %s rejected: request too long",
3582 			stoa(&rbufp->recv_srcadr));
3583 		return;
3584 	}
3585 	/* Bug 2853 -- check if all characters were acceptable */
3586 	if (data_count != (size_t)(reqend - reqpt)) {
3587 		snprintf(remote_config.err_msg,
3588 			 sizeof(remote_config.err_msg),
3589 			 "runtime configuration failed: request contains an unprintable character");
3590 		ctl_putdata(remote_config.err_msg,
3591 			    strlen(remote_config.err_msg), 0);
3592 		ctl_flushpkt(0);
3593 		msyslog(LOG_NOTICE,
3594 			"runtime config from %s rejected: request contains an unprintable character: %0x",
3595 			stoa(&rbufp->recv_srcadr),
3596 			reqpt[data_count]);
3597 		return;
3598 	}
3599 
3600 	memcpy(remote_config.buffer, reqpt, data_count);
3601 	/* The buffer has no trailing linefeed or NUL right now. For
3602 	 * logging, we do not want a newline, so we do that first after
3603 	 * adding the necessary NUL byte.
3604 	 */
3605 	remote_config.buffer[data_count] = '\0';
3606 	DPRINTF(1, ("Got Remote Configuration Command: %s\n",
3607 		remote_config.buffer));
3608 	msyslog(LOG_NOTICE, "%s config: %s",
3609 		stoa(&rbufp->recv_srcadr),
3610 		remote_config.buffer);
3611 
3612 	/* Now we have to make sure there is a NL/NUL sequence at the
3613 	 * end of the buffer before we parse it.
3614 	 */
3615 	remote_config.buffer[data_count++] = '\n';
3616 	remote_config.buffer[data_count] = '\0';
3617 	remote_config.pos = 0;
3618 	remote_config.err_pos = 0;
3619 	remote_config.no_errors = 0;
3620 	config_remotely(&rbufp->recv_srcadr);
3621 
3622 	/*
3623 	 * Check if errors were reported. If not, output 'Config
3624 	 * Succeeded'.  Else output the error count.  It would be nice
3625 	 * to output any parser error messages.
3626 	 */
3627 	if (0 == remote_config.no_errors) {
3628 		retval = snprintf(remote_config.err_msg,
3629 				  sizeof(remote_config.err_msg),
3630 				  "Config Succeeded");
3631 		if (retval > 0)
3632 			remote_config.err_pos += retval;
3633 	}
3634 
3635 	ctl_putdata(remote_config.err_msg, remote_config.err_pos, 0);
3636 	ctl_flushpkt(0);
3637 
3638 	DPRINTF(1, ("Reply: %s\n", remote_config.err_msg));
3639 
3640 	if (remote_config.no_errors > 0)
3641 		msyslog(LOG_NOTICE, "%d error in %s config",
3642 			remote_config.no_errors,
3643 			stoa(&rbufp->recv_srcadr));
3644 }
3645 
3646 
3647 /*
3648  * derive_nonce - generate 32-bit nonce value derived from the client
3649  *		  address and a request-specific timestamp.
3650  *
3651  * This uses MD5 for a non-authentication purpose -- the nonce is used
3652  * analogous to the TCP 3-way handshake to confirm the UDP client can
3653  * receive traffic from which it claims to originate, that is, to
3654  * prevent spoofed requests leading to reflected amplification.
3655  */
3656 static u_int32 derive_nonce(
3657 	sockaddr_u *	addr,
3658 	u_int32		ts_i,
3659 	u_int32		ts_f
3660 	)
3661 {
3662 	static u_int32	salt[4];
3663 	static u_long	last_salt_update;
3664 	MD5_CTX		ctx;
3665 	union d_tag {
3666 		u_char	digest[MD5_DIGEST_LENGTH];
3667 		u_int32 extract;
3668 	}		d;
3669 
3670 	while (!salt[0] || current_time - last_salt_update >= 3600) {
3671 		salt[0] = ntp_random();
3672 		salt[1] = ntp_random();
3673 		salt[2] = ntp_random();
3674 		salt[3] = ntp_random();
3675 		last_salt_update = current_time;
3676 	}
3677 
3678 	MD5Init(&ctx);
3679 	MD5Update(&ctx, __UNCONST(salt), sizeof(salt));
3680 	MD5Update(&ctx, __UNCONST(&ts_i), sizeof(ts_i));
3681 	MD5Update(&ctx, __UNCONST(&ts_f), sizeof(ts_f));
3682 	if (IS_IPV4(addr)) {
3683 		MD5Update(&ctx, __UNCONST(&SOCK_ADDR4(addr)), sizeof(SOCK_ADDR4(addr)));
3684 	} else {
3685 		MD5Update(&ctx, __UNCONST(&SOCK_ADDR6(addr)), sizeof(SOCK_ADDR6(addr)));
3686 	}
3687 	MD5Update(&ctx, __UNCONST(&NSRCPORT(addr)), sizeof(NSRCPORT(addr)));
3688 	MD5Update(&ctx, __UNCONST(salt), sizeof(salt));
3689 	MD5Final(d.digest, &ctx);
3690 
3691 	return d.extract;
3692 }
3693 
3694 
3695 /*
3696  * generate_nonce - generate client-address-specific nonce string.
3697  */
3698 static void generate_nonce(
3699 	struct recvbuf *	rbufp,
3700 	char *			nonce,
3701 	size_t			nonce_octets
3702 	)
3703 {
3704 	u_int32 derived;
3705 
3706 	derived = derive_nonce(&rbufp->recv_srcadr,
3707 			       rbufp->recv_time.l_ui,
3708 			       rbufp->recv_time.l_uf);
3709 	snprintf(nonce, nonce_octets, "%08x%08x%08x",
3710 		 rbufp->recv_time.l_ui, rbufp->recv_time.l_uf, derived);
3711 }
3712 
3713 
3714 /*
3715  * validate_nonce - validate client-address-specific nonce string.
3716  *
3717  * Returns TRUE if the local calculation of the nonce matches the
3718  * client-provided value and the timestamp is recent enough.
3719  */
3720 static int validate_nonce(
3721 	const char *		pnonce,
3722 	struct recvbuf *	rbufp
3723 	)
3724 {
3725 	u_int	ts_i;
3726 	u_int	ts_f;
3727 	l_fp	ts;
3728 	l_fp	now_delta;
3729 	u_int	supposed;
3730 	u_int	derived;
3731 
3732 	if (3 != sscanf(pnonce, "%08x%08x%08x", &ts_i, &ts_f, &supposed))
3733 		return FALSE;
3734 
3735 	ts.l_ui = (u_int32)ts_i;
3736 	ts.l_uf = (u_int32)ts_f;
3737 	derived = derive_nonce(&rbufp->recv_srcadr, ts.l_ui, ts.l_uf);
3738 	get_systime(&now_delta);
3739 	L_SUB(&now_delta, &ts);
3740 
3741 	return (supposed == derived && now_delta.l_ui < 16);
3742 }
3743 
3744 
3745 /*
3746  * send_random_tag_value - send a randomly-generated three character
3747  *			   tag prefix, a '.', an index, a '=' and a
3748  *			   random integer value.
3749  *
3750  * To try to force clients to ignore unrecognized tags in mrulist,
3751  * reslist, and ifstats responses, the first and last rows are spiced
3752  * with randomly-generated tag names with correct .# index.  Make it
3753  * three characters knowing that none of the currently-used subscripted
3754  * tags have that length, avoiding the need to test for
3755  * tag collision.
3756  */
3757 static void
3758 send_random_tag_value(
3759 	int	indx
3760 	)
3761 {
3762 	int	noise;
3763 	char	buf[32];
3764 
3765 	noise = rand() ^ (rand() << 16);
3766 	buf[0] = 'a' + noise % 26;
3767 	noise >>= 5;
3768 	buf[1] = 'a' + noise % 26;
3769 	noise >>= 5;
3770 	buf[2] = 'a' + noise % 26;
3771 	noise >>= 5;
3772 	buf[3] = '.';
3773 	snprintf(&buf[4], sizeof(buf) - 4, "%d", indx);
3774 	ctl_putuint(buf, noise);
3775 }
3776 
3777 
3778 /*
3779  * Send a MRU list entry in response to a "ntpq -c mrulist" operation.
3780  *
3781  * To keep clients honest about not depending on the order of values,
3782  * and thereby avoid being locked into ugly workarounds to maintain
3783  * backward compatibility later as new fields are added to the response,
3784  * the order is random.
3785  */
3786 static void
3787 send_mru_entry(
3788 	mon_entry *	mon,
3789 	int		count
3790 	)
3791 {
3792 	const char first_fmt[] =	"first.%d";
3793 	const char ct_fmt[] =		"ct.%d";
3794 	const char mv_fmt[] =		"mv.%d";
3795 	const char rs_fmt[] =		"rs.%d";
3796 	char	tag[32];
3797 	u_char	sent[6]; /* 6 tag=value pairs */
3798 	u_int32 noise;
3799 	u_int	which;
3800 	u_int	remaining;
3801 	const char * pch;
3802 
3803 	remaining = COUNTOF(sent);
3804 	ZERO(sent);
3805 	noise = (u_int32)(rand() ^ (rand() << 16));
3806 	while (remaining > 0) {
3807 		which = (noise & 7) % COUNTOF(sent);
3808 		noise >>= 3;
3809 		while (sent[which])
3810 			which = (which + 1) % COUNTOF(sent);
3811 
3812 		switch (which) {
3813 
3814 		case 0:
3815 			snprintf(tag, sizeof(tag), addr_fmt, count);
3816 			pch = sptoa(&mon->rmtadr);
3817 			ctl_putunqstr(tag, pch, strlen(pch));
3818 			break;
3819 
3820 		case 1:
3821 			snprintf(tag, sizeof(tag), last_fmt, count);
3822 			ctl_putts(tag, &mon->last);
3823 			break;
3824 
3825 		case 2:
3826 			snprintf(tag, sizeof(tag), first_fmt, count);
3827 			ctl_putts(tag, &mon->first);
3828 			break;
3829 
3830 		case 3:
3831 			snprintf(tag, sizeof(tag), ct_fmt, count);
3832 			ctl_putint(tag, mon->count);
3833 			break;
3834 
3835 		case 4:
3836 			snprintf(tag, sizeof(tag), mv_fmt, count);
3837 			ctl_putuint(tag, mon->vn_mode);
3838 			break;
3839 
3840 		case 5:
3841 			snprintf(tag, sizeof(tag), rs_fmt, count);
3842 			ctl_puthex(tag, mon->flags);
3843 			break;
3844 		}
3845 		sent[which] = TRUE;
3846 		remaining--;
3847 	}
3848 }
3849 
3850 
3851 /*
3852  * read_mru_list - supports ntpq's mrulist command.
3853  *
3854  * The challenge here is to match ntpdc's monlist functionality without
3855  * being limited to hundreds of entries returned total, and without
3856  * requiring state on the server.  If state were required, ntpq's
3857  * mrulist command would require authentication.
3858  *
3859  * The approach was suggested by Ry Jones.  A finite and variable number
3860  * of entries are retrieved per request, to avoid having responses with
3861  * such large numbers of packets that socket buffers are overflowed and
3862  * packets lost.  The entries are retrieved oldest-first, taking into
3863  * account that the MRU list will be changing between each request.  We
3864  * can expect to see duplicate entries for addresses updated in the MRU
3865  * list during the fetch operation.  In the end, the client can assemble
3866  * a close approximation of the MRU list at the point in time the last
3867  * response was sent by ntpd.  The only difference is it may be longer,
3868  * containing some number of oldest entries which have since been
3869  * reclaimed.  If necessary, the protocol could be extended to zap those
3870  * from the client snapshot at the end, but so far that doesn't seem
3871  * useful.
3872  *
3873  * To accomodate the changing MRU list, the starting point for requests
3874  * after the first request is supplied as a series of last seen
3875  * timestamps and associated addresses, the newest ones the client has
3876  * received.  As long as at least one of those entries hasn't been
3877  * bumped to the head of the MRU list, ntpd can pick up at that point.
3878  * Otherwise, the request is failed and it is up to ntpq to back up and
3879  * provide the next newest entry's timestamps and addresses, conceivably
3880  * backing up all the way to the starting point.
3881  *
3882  * input parameters:
3883  *	nonce=		Regurgitated nonce retrieved by the client
3884  *			previously using CTL_OP_REQ_NONCE, demonstrating
3885  *			ability to receive traffic sent to its address.
3886  *	frags=		Limit on datagrams (fragments) in response.  Used
3887  *			by newer ntpq versions instead of limit= when
3888  *			retrieving multiple entries.
3889  *	limit=		Limit on MRU entries returned.  One of frags= or
3890  *			limit= must be provided.
3891  *			limit=1 is a special case:  Instead of fetching
3892  *			beginning with the supplied starting point's
3893  *			newer neighbor, fetch the supplied entry, and
3894  *			in that case the #.last timestamp can be zero.
3895  *			This enables fetching a single entry by IP
3896  *			address.  When limit is not one and frags= is
3897  *			provided, the fragment limit controls.
3898  *	mincount=	(decimal) Return entries with count >= mincount.
3899  *	laddr=		Return entries associated with the server's IP
3900  *			address given.  No port specification is needed,
3901  *			and any supplied is ignored.
3902  *	resall=		0x-prefixed hex restrict bits which must all be
3903  *			lit for an MRU entry to be included.
3904  *			Has precedence over any resany=.
3905  *	resany=		0x-prefixed hex restrict bits, at least one of
3906  *			which must be list for an MRU entry to be
3907  *			included.
3908  *	last.0=		0x-prefixed hex l_fp timestamp of newest entry
3909  *			which client previously received.
3910  *	addr.0=		text of newest entry's IP address and port,
3911  *			IPv6 addresses in bracketed form: [::]:123
3912  *	last.1=		timestamp of 2nd newest entry client has.
3913  *	addr.1=		address of 2nd newest entry.
3914  *	[...]
3915  *
3916  * ntpq provides as many last/addr pairs as will fit in a single request
3917  * packet, except for the first request in a MRU fetch operation.
3918  *
3919  * The response begins with a new nonce value to be used for any
3920  * followup request.  Following the nonce is the next newer entry than
3921  * referred to by last.0 and addr.0, if the "0" entry has not been
3922  * bumped to the front.  If it has, the first entry returned will be the
3923  * next entry newer than referred to by last.1 and addr.1, and so on.
3924  * If none of the referenced entries remain unchanged, the request fails
3925  * and ntpq backs up to the next earlier set of entries to resync.
3926  *
3927  * Except for the first response, the response begins with confirmation
3928  * of the entry that precedes the first additional entry provided:
3929  *
3930  *	last.older=	hex l_fp timestamp matching one of the input
3931  *			.last timestamps, which entry now precedes the
3932  *			response 0. entry in the MRU list.
3933  *	addr.older=	text of address corresponding to older.last.
3934  *
3935  * And in any case, a successful response contains sets of values
3936  * comprising entries, with the oldest numbered 0 and incrementing from
3937  * there:
3938  *
3939  *	addr.#		text of IPv4 or IPv6 address and port
3940  *	last.#		hex l_fp timestamp of last receipt
3941  *	first.#		hex l_fp timestamp of first receipt
3942  *	ct.#		count of packets received
3943  *	mv.#		mode and version
3944  *	rs.#		restriction mask (RES_* bits)
3945  *
3946  * Note the code currently assumes there are no valid three letter
3947  * tags sent with each row, and needs to be adjusted if that changes.
3948  *
3949  * The client should accept the values in any order, and ignore .#
3950  * values which it does not understand, to allow a smooth path to
3951  * future changes without requiring a new opcode.  Clients can rely
3952  * on all *.0 values preceding any *.1 values, that is all values for
3953  * a given index number are together in the response.
3954  *
3955  * The end of the response list is noted with one or two tag=value
3956  * pairs.  Unconditionally:
3957  *
3958  *	now=		0x-prefixed l_fp timestamp at the server marking
3959  *			the end of the operation.
3960  *
3961  * If any entries were returned, now= is followed by:
3962  *
3963  *	last.newest=	hex l_fp identical to last.# of the prior
3964  *			entry.
3965  */
3966 static void read_mru_list(
3967 	struct recvbuf *rbufp,
3968 	int restrict_mask
3969 	)
3970 {
3971 	static const char	nulltxt[1] = 		{ '\0' };
3972 	static const char	nonce_text[] =		"nonce";
3973 	static const char	frags_text[] =		"frags";
3974 	static const char	limit_text[] =		"limit";
3975 	static const char	mincount_text[] =	"mincount";
3976 	static const char	resall_text[] =		"resall";
3977 	static const char	resany_text[] =		"resany";
3978 	static const char	maxlstint_text[] =	"maxlstint";
3979 	static const char	laddr_text[] =		"laddr";
3980 	static const char	resaxx_fmt[] =		"0x%hx";
3981 
3982 	u_int			limit;
3983 	u_short			frags;
3984 	u_short			resall;
3985 	u_short			resany;
3986 	int			mincount;
3987 	u_int			maxlstint;
3988 	sockaddr_u		laddr;
3989 	endpt *			lcladr;
3990 	u_int			count;
3991 	u_int			ui;
3992 	u_int			uf;
3993 	l_fp			last[16];
3994 	sockaddr_u		addr[COUNTOF(last)];
3995 	char			buf[128];
3996 	struct ctl_var *	in_parms;
3997 	const struct ctl_var *	v;
3998 	const char *		val;
3999 	const char *		pch;
4000 	char *			pnonce;
4001 	int			nonce_valid;
4002 	size_t			i;
4003 	int			priors;
4004 	u_short			hash;
4005 	mon_entry *		mon;
4006 	mon_entry *		prior_mon;
4007 	l_fp			now;
4008 
4009 	if (RES_NOMRULIST & restrict_mask) {
4010 		ctl_error(CERR_PERMISSION);
4011 		NLOG(NLOG_SYSINFO)
4012 			msyslog(LOG_NOTICE,
4013 				"mrulist from %s rejected due to nomrulist restriction",
4014 				stoa(&rbufp->recv_srcadr));
4015 		sys_restricted++;
4016 		return;
4017 	}
4018 	/*
4019 	 * fill in_parms var list with all possible input parameters.
4020 	 */
4021 	in_parms = NULL;
4022 	set_var(&in_parms, nonce_text, sizeof(nonce_text), 0);
4023 	set_var(&in_parms, frags_text, sizeof(frags_text), 0);
4024 	set_var(&in_parms, limit_text, sizeof(limit_text), 0);
4025 	set_var(&in_parms, mincount_text, sizeof(mincount_text), 0);
4026 	set_var(&in_parms, resall_text, sizeof(resall_text), 0);
4027 	set_var(&in_parms, resany_text, sizeof(resany_text), 0);
4028 	set_var(&in_parms, maxlstint_text, sizeof(maxlstint_text), 0);
4029 	set_var(&in_parms, laddr_text, sizeof(laddr_text), 0);
4030 	for (i = 0; i < COUNTOF(last); i++) {
4031 		snprintf(buf, sizeof(buf), last_fmt, (int)i);
4032 		set_var(&in_parms, buf, strlen(buf) + 1, 0);
4033 		snprintf(buf, sizeof(buf), addr_fmt, (int)i);
4034 		set_var(&in_parms, buf, strlen(buf) + 1, 0);
4035 	}
4036 
4037 	/* decode input parms */
4038 	pnonce = NULL;
4039 	frags = 0;
4040 	limit = 0;
4041 	mincount = 0;
4042 	resall = 0;
4043 	resany = 0;
4044 	maxlstint = 0;
4045 	lcladr = NULL;
4046 	priors = 0;
4047 	ZERO(last);
4048 	ZERO(addr);
4049 
4050 	/* have to go through '(void*)' to drop 'const' property from pointer.
4051 	 * ctl_getitem()' needs some cleanup, too.... perlinger@ntp.org
4052 	 */
4053 	while (NULL != (v = ctl_getitem(in_parms, (void*)&val)) &&
4054 	       !(EOV & v->flags)) {
4055 		int si;
4056 
4057 		if (NULL == val)
4058 			val = nulltxt;
4059 
4060 		if (!strcmp(nonce_text, v->text)) {
4061 			free(pnonce);
4062 			pnonce = (*val) ? estrdup(val) : NULL;
4063 		} else if (!strcmp(frags_text, v->text)) {
4064 			if (1 != sscanf(val, "%hu", &frags))
4065 				goto blooper;
4066 		} else if (!strcmp(limit_text, v->text)) {
4067 			if (1 != sscanf(val, "%u", &limit))
4068 				goto blooper;
4069 		} else if (!strcmp(mincount_text, v->text)) {
4070 			if (1 != sscanf(val, "%d", &mincount))
4071 				goto blooper;
4072 			if (mincount < 0)
4073 				mincount = 0;
4074 		} else if (!strcmp(resall_text, v->text)) {
4075 			if (1 != sscanf(val, resaxx_fmt, &resall))
4076 				goto blooper;
4077 		} else if (!strcmp(resany_text, v->text)) {
4078 			if (1 != sscanf(val, resaxx_fmt, &resany))
4079 				goto blooper;
4080 		} else if (!strcmp(maxlstint_text, v->text)) {
4081 			if (1 != sscanf(val, "%u", &maxlstint))
4082 				goto blooper;
4083 		} else if (!strcmp(laddr_text, v->text)) {
4084 			if (!decodenetnum(val, &laddr))
4085 				goto blooper;
4086 			lcladr = getinterface(&laddr, 0);
4087 		} else if (1 == sscanf(v->text, last_fmt, &si) &&
4088 			   (size_t)si < COUNTOF(last)) {
4089 			if (2 != sscanf(val, "0x%08x.%08x", &ui, &uf))
4090 				goto blooper;
4091 			last[si].l_ui = ui;
4092 			last[si].l_uf = uf;
4093 			if (!SOCK_UNSPEC(&addr[si]) && si == priors)
4094 				priors++;
4095 		} else if (1 == sscanf(v->text, addr_fmt, &si) &&
4096 			   (size_t)si < COUNTOF(addr)) {
4097 			if (!decodenetnum(val, &addr[si]))
4098 				goto blooper;
4099 			if (last[si].l_ui && last[si].l_uf && si == priors)
4100 				priors++;
4101 		} else {
4102 			DPRINTF(1, ("read_mru_list: invalid key item: '%s' (ignored)\n",
4103 				    v->text));
4104 			continue;
4105 
4106 		blooper:
4107 			DPRINTF(1, ("read_mru_list: invalid param for '%s': '%s' (bailing)\n",
4108 				    v->text, val));
4109 			free(pnonce);
4110 			pnonce = NULL;
4111 			break;
4112 		}
4113 	}
4114 	free_varlist(in_parms);
4115 	in_parms = NULL;
4116 
4117 	/* return no responses until the nonce is validated */
4118 	if (NULL == pnonce)
4119 		return;
4120 
4121 	nonce_valid = validate_nonce(pnonce, rbufp);
4122 	free(pnonce);
4123 	if (!nonce_valid)
4124 		return;
4125 
4126 	if ((0 == frags && !(0 < limit && limit <= MRU_ROW_LIMIT)) ||
4127 	    frags > MRU_FRAGS_LIMIT) {
4128 		ctl_error(CERR_BADVALUE);
4129 		return;
4130 	}
4131 
4132 	/*
4133 	 * If either frags or limit is not given, use the max.
4134 	 */
4135 	if (0 != frags && 0 == limit)
4136 		limit = UINT_MAX;
4137 	else if (0 != limit && 0 == frags)
4138 		frags = MRU_FRAGS_LIMIT;
4139 
4140 	/*
4141 	 * Find the starting point if one was provided.
4142 	 */
4143 	mon = NULL;
4144 	for (i = 0; i < (size_t)priors; i++) {
4145 		hash = MON_HASH(&addr[i]);
4146 		for (mon = mon_hash[hash];
4147 		     mon != NULL;
4148 		     mon = mon->hash_next)
4149 			if (ADDR_PORT_EQ(&mon->rmtadr, &addr[i]))
4150 				break;
4151 		if (mon != NULL) {
4152 			if (L_ISEQU(&mon->last, &last[i]))
4153 				break;
4154 			mon = NULL;
4155 		}
4156 	}
4157 
4158 	/* If a starting point was provided... */
4159 	if (priors) {
4160 		/* and none could be found unmodified... */
4161 		if (NULL == mon) {
4162 			/* tell ntpq to try again with older entries */
4163 			ctl_error(CERR_UNKNOWNVAR);
4164 			return;
4165 		}
4166 		/* confirm the prior entry used as starting point */
4167 		ctl_putts("last.older", &mon->last);
4168 		pch = sptoa(&mon->rmtadr);
4169 		ctl_putunqstr("addr.older", pch, strlen(pch));
4170 
4171 		/*
4172 		 * Move on to the first entry the client doesn't have,
4173 		 * except in the special case of a limit of one.  In
4174 		 * that case return the starting point entry.
4175 		 */
4176 		if (limit > 1)
4177 			mon = PREV_DLIST(mon_mru_list, mon, mru);
4178 	} else {	/* start with the oldest */
4179 		mon = TAIL_DLIST(mon_mru_list, mru);
4180 	}
4181 
4182 	/*
4183 	 * send up to limit= entries in up to frags= datagrams
4184 	 */
4185 	get_systime(&now);
4186 	generate_nonce(rbufp, buf, sizeof(buf));
4187 	ctl_putunqstr("nonce", buf, strlen(buf));
4188 	prior_mon = NULL;
4189 	for (count = 0;
4190 	     mon != NULL && res_frags < frags && count < limit;
4191 	     mon = PREV_DLIST(mon_mru_list, mon, mru)) {
4192 
4193 		if (mon->count < mincount)
4194 			continue;
4195 		if (resall && resall != (resall & mon->flags))
4196 			continue;
4197 		if (resany && !(resany & mon->flags))
4198 			continue;
4199 		if (maxlstint > 0 && now.l_ui - mon->last.l_ui >
4200 		    maxlstint)
4201 			continue;
4202 		if (lcladr != NULL && mon->lcladr != lcladr)
4203 			continue;
4204 
4205 		send_mru_entry(mon, count);
4206 		if (!count)
4207 			send_random_tag_value(0);
4208 		count++;
4209 		prior_mon = mon;
4210 	}
4211 
4212 	/*
4213 	 * If this batch completes the MRU list, say so explicitly with
4214 	 * a now= l_fp timestamp.
4215 	 */
4216 	if (NULL == mon) {
4217 		if (count > 1)
4218 			send_random_tag_value(count - 1);
4219 		ctl_putts("now", &now);
4220 		/* if any entries were returned confirm the last */
4221 		if (prior_mon != NULL)
4222 			ctl_putts("last.newest", &prior_mon->last);
4223 	}
4224 	ctl_flushpkt(0);
4225 }
4226 
4227 
4228 /*
4229  * Send a ifstats entry in response to a "ntpq -c ifstats" request.
4230  *
4231  * To keep clients honest about not depending on the order of values,
4232  * and thereby avoid being locked into ugly workarounds to maintain
4233  * backward compatibility later as new fields are added to the response,
4234  * the order is random.
4235  */
4236 static void
4237 send_ifstats_entry(
4238 	endpt *	la,
4239 	u_int	ifnum
4240 	)
4241 {
4242 	const char addr_fmtu[] =	"addr.%u";
4243 	const char bcast_fmt[] =	"bcast.%u";
4244 	const char en_fmt[] =		"en.%u";	/* enabled */
4245 	const char name_fmt[] =		"name.%u";
4246 	const char flags_fmt[] =	"flags.%u";
4247 	const char tl_fmt[] =		"tl.%u";	/* ttl */
4248 	const char mc_fmt[] =		"mc.%u";	/* mcast count */
4249 	const char rx_fmt[] =		"rx.%u";
4250 	const char tx_fmt[] =		"tx.%u";
4251 	const char txerr_fmt[] =	"txerr.%u";
4252 	const char pc_fmt[] =		"pc.%u";	/* peer count */
4253 	const char up_fmt[] =		"up.%u";	/* uptime */
4254 	char	tag[32];
4255 	u_char	sent[IFSTATS_FIELDS]; /* 12 tag=value pairs */
4256 	int	noisebits;
4257 	u_int32 noise;
4258 	u_int	which;
4259 	u_int	remaining;
4260 	const char *pch;
4261 
4262 	remaining = COUNTOF(sent);
4263 	ZERO(sent);
4264 	noise = 0;
4265 	noisebits = 0;
4266 	while (remaining > 0) {
4267 		if (noisebits < 4) {
4268 			noise = rand() ^ (rand() << 16);
4269 			noisebits = 31;
4270 		}
4271 		which = (noise & 0xf) % COUNTOF(sent);
4272 		noise >>= 4;
4273 		noisebits -= 4;
4274 
4275 		while (sent[which])
4276 			which = (which + 1) % COUNTOF(sent);
4277 
4278 		switch (which) {
4279 
4280 		case 0:
4281 			snprintf(tag, sizeof(tag), addr_fmtu, ifnum);
4282 			pch = sptoa(&la->sin);
4283 			ctl_putunqstr(tag, pch, strlen(pch));
4284 			break;
4285 
4286 		case 1:
4287 			snprintf(tag, sizeof(tag), bcast_fmt, ifnum);
4288 			if (INT_BCASTOPEN & la->flags)
4289 				pch = sptoa(&la->bcast);
4290 			else
4291 				pch = "";
4292 			ctl_putunqstr(tag, pch, strlen(pch));
4293 			break;
4294 
4295 		case 2:
4296 			snprintf(tag, sizeof(tag), en_fmt, ifnum);
4297 			ctl_putint(tag, !la->ignore_packets);
4298 			break;
4299 
4300 		case 3:
4301 			snprintf(tag, sizeof(tag), name_fmt, ifnum);
4302 			ctl_putstr(tag, la->name, strlen(la->name));
4303 			break;
4304 
4305 		case 4:
4306 			snprintf(tag, sizeof(tag), flags_fmt, ifnum);
4307 			ctl_puthex(tag, (u_int)la->flags);
4308 			break;
4309 
4310 		case 5:
4311 			snprintf(tag, sizeof(tag), tl_fmt, ifnum);
4312 			ctl_putint(tag, la->last_ttl);
4313 			break;
4314 
4315 		case 6:
4316 			snprintf(tag, sizeof(tag), mc_fmt, ifnum);
4317 			ctl_putint(tag, la->num_mcast);
4318 			break;
4319 
4320 		case 7:
4321 			snprintf(tag, sizeof(tag), rx_fmt, ifnum);
4322 			ctl_putint(tag, la->received);
4323 			break;
4324 
4325 		case 8:
4326 			snprintf(tag, sizeof(tag), tx_fmt, ifnum);
4327 			ctl_putint(tag, la->sent);
4328 			break;
4329 
4330 		case 9:
4331 			snprintf(tag, sizeof(tag), txerr_fmt, ifnum);
4332 			ctl_putint(tag, la->notsent);
4333 			break;
4334 
4335 		case 10:
4336 			snprintf(tag, sizeof(tag), pc_fmt, ifnum);
4337 			ctl_putuint(tag, la->peercnt);
4338 			break;
4339 
4340 		case 11:
4341 			snprintf(tag, sizeof(tag), up_fmt, ifnum);
4342 			ctl_putuint(tag, current_time - la->starttime);
4343 			break;
4344 		}
4345 		sent[which] = TRUE;
4346 		remaining--;
4347 	}
4348 	send_random_tag_value((int)ifnum);
4349 }
4350 
4351 
4352 /*
4353  * read_ifstats - send statistics for each local address, exposed by
4354  *		  ntpq -c ifstats
4355  */
4356 static void
4357 read_ifstats(
4358 	struct recvbuf *	rbufp
4359 	)
4360 {
4361 	u_int	ifidx;
4362 	endpt *	la;
4363 
4364 	/*
4365 	 * loop over [0..sys_ifnum] searching ep_list for each
4366 	 * ifnum in turn.
4367 	 */
4368 	for (ifidx = 0; ifidx < sys_ifnum; ifidx++) {
4369 		for (la = ep_list; la != NULL; la = la->elink)
4370 			if (ifidx == la->ifnum)
4371 				break;
4372 		if (NULL == la)
4373 			continue;
4374 		/* return stats for one local address */
4375 		send_ifstats_entry(la, ifidx);
4376 	}
4377 	ctl_flushpkt(0);
4378 }
4379 
4380 static void
4381 sockaddrs_from_struct_restrict_4(
4382 	sockaddr_u *	psaA,
4383 	sockaddr_u *	psaM,
4384 	struct restrict_4 *	pres
4385 	)
4386 {
4387 	ZERO(*psaA);
4388 	ZERO(*psaM);
4389 	psaA->sa.sa_family = AF_INET;
4390 	psaA->sa4.sin_addr.s_addr = htonl(pres->v4.addr);
4391 	psaM->sa.sa_family = AF_INET;
4392 	psaM->sa4.sin_addr.s_addr = htonl(pres->v4.mask);
4393 }
4394 
4395 static void
4396 sockaddrs_from_struct_restrict_6(
4397 	sockaddr_u *	psaA,
4398 	sockaddr_u *	psaM,
4399 	struct restrict_6 *	pres
4400 	)
4401 {
4402 	ZERO(*psaA);
4403 	ZERO(*psaM);
4404 	psaA->sa.sa_family = AF_INET6;
4405 	memcpy(&psaA->sa6.sin6_addr, &pres->v6.addr,
4406 	       sizeof(psaA->sa6.sin6_addr));
4407 	psaM->sa.sa_family = AF_INET6;
4408 	memcpy(&psaM->sa6.sin6_addr, &pres->v6.mask,
4409 	       sizeof(psaA->sa6.sin6_addr));
4410 }
4411 
4412 /*
4413  * Send a restrict entry in response to a "ntpq -c reslist" request.
4414  *
4415  * To keep clients honest about not depending on the order of values,
4416  * and thereby avoid being locked into ugly workarounds to maintain
4417  * backward compatibility later as new fields are added to the response,
4418  * the order is random.
4419  */
4420 static void
4421 send_restrict_entry(
4422 	struct restrict_info *ri,
4423 	sockaddr_u *addr,
4424 	sockaddr_u *mask,
4425 	u_int		idx
4426 	)
4427 {
4428 	const char addr_fmtu[] =	"addr.%u";
4429 	const char mask_fmtu[] =	"mask.%u";
4430 	const char hits_fmt[] =		"hits.%u";
4431 	const char flags_fmt[] =	"flags.%u";
4432 	char		tag[32];
4433 	u_char		sent[RESLIST_FIELDS]; /* 4 tag=value pairs */
4434 	int		noisebits;
4435 	u_int32		noise;
4436 	u_int		which;
4437 	u_int		remaining;
4438 	const char *	pch;
4439 	char *		buf;
4440 	const char *	match_str;
4441 	const char *	access_str;
4442 
4443 	remaining = COUNTOF(sent);
4444 	ZERO(sent);
4445 	noise = 0;
4446 	noisebits = 0;
4447 	while (remaining > 0) {
4448 		if (noisebits < 2) {
4449 			noise = rand() ^ (rand() << 16);
4450 			noisebits = 31;
4451 		}
4452 		which = (noise & 0x3) % COUNTOF(sent);
4453 		noise >>= 2;
4454 		noisebits -= 2;
4455 
4456 		while (sent[which])
4457 			which = (which + 1) % COUNTOF(sent);
4458 
4459 		/* XXX: Numbers?  Really? */
4460 		switch (which) {
4461 
4462 		case 0:
4463 			snprintf(tag, sizeof(tag), addr_fmtu, idx);
4464 			pch = stoa(addr);
4465 			ctl_putunqstr(tag, pch, strlen(pch));
4466 			break;
4467 
4468 		case 1:
4469 			snprintf(tag, sizeof(tag), mask_fmtu, idx);
4470 			pch = stoa(mask);
4471 			ctl_putunqstr(tag, pch, strlen(pch));
4472 			break;
4473 
4474 		case 2:
4475 			snprintf(tag, sizeof(tag), hits_fmt, idx);
4476 			ctl_putuint(tag, ri->count);
4477 			break;
4478 
4479 		case 3:
4480 			snprintf(tag, sizeof(tag), flags_fmt, idx);
4481 			match_str = res_match_flags(ri->mflags);
4482 			access_str = res_access_flags(ri->rflags);
4483 			if ('\0' == match_str[0]) {
4484 				pch = access_str;
4485 			} else {
4486 				LIB_GETBUF(buf);
4487 				snprintf(buf, LIB_BUFLENGTH, "%s %s",
4488 					 match_str, access_str);
4489 				pch = buf;
4490 			}
4491 			ctl_putunqstr(tag, pch, strlen(pch));
4492 			break;
4493 		}
4494 		sent[which] = TRUE;
4495 		remaining--;
4496 	}
4497 	send_random_tag_value((int)idx);
4498 }
4499 
4500 static void
4501 send_restrict4_entry(
4502 	struct restrict_4 *	pres,
4503 	u_int 		pidx)
4504 {
4505 	sockaddr_u	addr;
4506 	sockaddr_u	mask;
4507 	sockaddrs_from_struct_restrict_4(&addr, &mask, pres);
4508 	send_restrict_entry(&pres->ri, &addr, &mask, pidx);
4509 }
4510 
4511 static void
4512 send_restrict6_entry(
4513 	struct restrict_6 *	pres,
4514 	u_int 		pidx)
4515 {
4516 	sockaddr_u	addr;
4517 	sockaddr_u	mask;
4518 	sockaddrs_from_struct_restrict_6(&addr, &mask, pres);
4519 	send_restrict_entry(&pres->ri, &addr, &mask, pidx);
4520 }
4521 
4522 static void
4523 send_restrict4_list(
4524 	struct restrict_4 *	pres,
4525 	u_int *		pidx
4526 	)
4527 {
4528 	for ( ; pres != NULL; pres = pres->link) {
4529 		send_restrict4_entry(pres, *pidx);
4530 		(*pidx)++;
4531 	}
4532 }
4533 
4534 static void
4535 send_restrict6_list(
4536 	struct restrict_6 *	pres,
4537 	u_int *		pidx
4538 	)
4539 {
4540 	for ( ; pres != NULL; pres = pres->link) {
4541 		send_restrict6_entry(pres, *pidx);
4542 		(*pidx)++;
4543 	}
4544 }
4545 
4546 /*
4547  * read_addr_restrictions - returns IPv4 and IPv6 access control lists
4548  */
4549 static void
4550 read_addr_restrictions(
4551 	struct recvbuf *	rbufp
4552 )
4553 {
4554 	u_int idx;
4555 
4556 	idx = 0;
4557 	send_restrict4_list(restrictlist4, &idx);
4558 	send_restrict6_list(restrictlist6, &idx);
4559 	ctl_flushpkt(0);
4560 }
4561 
4562 
4563 /*
4564  * read_ordlist - CTL_OP_READ_ORDLIST_A for ntpq -c ifstats & reslist
4565  */
4566 static void
4567 read_ordlist(
4568 	struct recvbuf *	rbufp,
4569 	int			restrict_mask
4570 	)
4571 {
4572 	const char ifstats_s[] = "ifstats";
4573 	const size_t ifstats_chars = COUNTOF(ifstats_s) - 1;
4574 	const char addr_rst_s[] = "addr_restrictions";
4575 	const size_t a_r_chars = COUNTOF(addr_rst_s) - 1;
4576 	struct ntp_control *	cpkt;
4577 	u_short			qdata_octets;
4578 
4579 	/*
4580 	 * CTL_OP_READ_ORDLIST_A was first named CTL_OP_READ_IFSTATS and
4581 	 * used only for ntpq -c ifstats.  With the addition of reslist
4582 	 * the same opcode was generalized to retrieve ordered lists
4583 	 * which require authentication.  The request data is empty or
4584 	 * contains "ifstats" (not null terminated) to retrieve local
4585 	 * addresses and associated stats.  It is "addr_restrictions"
4586 	 * to retrieve the IPv4 then IPv6 remote address restrictions,
4587 	 * which are access control lists.  Other request data return
4588 	 * CERR_UNKNOWNVAR.
4589 	 */
4590 	cpkt = (struct ntp_control *)&rbufp->recv_pkt;
4591 	qdata_octets = ntohs(cpkt->count);
4592 	if (0 == qdata_octets || (ifstats_chars == qdata_octets &&
4593 	    !memcmp(ifstats_s, cpkt->u.data, ifstats_chars))) {
4594 		read_ifstats(rbufp);
4595 		return;
4596 	}
4597 	if (a_r_chars == qdata_octets &&
4598 	    !memcmp(addr_rst_s, cpkt->u.data, a_r_chars)) {
4599 		read_addr_restrictions(rbufp);
4600 		return;
4601 	}
4602 	ctl_error(CERR_UNKNOWNVAR);
4603 }
4604 
4605 
4606 /*
4607  * req_nonce - CTL_OP_REQ_NONCE for ntpq -c mrulist prerequisite.
4608  */
4609 static void req_nonce(
4610 	struct recvbuf *	rbufp,
4611 	int			restrict_mask
4612 	)
4613 {
4614 	char	buf[64];
4615 
4616 	generate_nonce(rbufp, buf, sizeof(buf));
4617 	ctl_putunqstr("nonce", buf, strlen(buf));
4618 	ctl_flushpkt(0);
4619 }
4620 
4621 
4622 /*
4623  * read_clockstatus - return clock radio status
4624  */
4625 /*ARGSUSED*/
4626 static void
4627 read_clockstatus(
4628 	struct recvbuf *rbufp,
4629 	int restrict_mask
4630 	)
4631 {
4632 #ifndef REFCLOCK
4633 	/*
4634 	 * If no refclock support, no data to return
4635 	 */
4636 	ctl_error(CERR_BADASSOC);
4637 #else
4638 	const struct ctl_var *	v;
4639 	int			i;
4640 	struct peer *		peer;
4641 	char *			valuep;
4642 	u_char *		wants;
4643 	size_t			wants_alloc;
4644 	int			gotvar;
4645 	const u_char *		cc;
4646 	struct ctl_var *	kv;
4647 	struct refclockstat	cs;
4648 
4649 	if (res_associd != 0) {
4650 		peer = findpeerbyassoc(res_associd);
4651 	} else {
4652 		/*
4653 		 * Find a clock for this jerk.	If the system peer
4654 		 * is a clock use it, else search peer_list for one.
4655 		 */
4656 		if (sys_peer != NULL && (FLAG_REFCLOCK &
4657 		    sys_peer->flags))
4658 			peer = sys_peer;
4659 		else
4660 			for (peer = peer_list;
4661 			     peer != NULL;
4662 			     peer = peer->p_link)
4663 				if (FLAG_REFCLOCK & peer->flags)
4664 					break;
4665 	}
4666 	if (NULL == peer || !(FLAG_REFCLOCK & peer->flags)) {
4667 		ctl_error(CERR_BADASSOC);
4668 		return;
4669 	}
4670 	/*
4671 	 * If we got here we have a peer which is a clock. Get his
4672 	 * status.
4673 	 */
4674 	cs.kv_list = NULL;
4675 	refclock_control(&peer->srcadr, NULL, &cs);
4676 	kv = cs.kv_list;
4677 	/*
4678 	 * Look for variables in the packet.
4679 	 */
4680 	rpkt.status = htons(ctlclkstatus(&cs));
4681 	wants_alloc = CC_MAXCODE + 1 + count_var(kv);
4682 	wants = emalloc_zero(wants_alloc);
4683 	gotvar = FALSE;
4684 	while (NULL != (v = ctl_getitem(clock_var, &valuep))) {
4685 		if (!(EOV & v->flags)) {
4686 			wants[v->code] = TRUE;
4687 			gotvar = TRUE;
4688 		} else {
4689 			v = ctl_getitem(kv, &valuep);
4690 			if (NULL == v) {
4691 				ctl_error(CERR_BADVALUE);
4692 				free(wants);
4693 				free_varlist(cs.kv_list);
4694 				return;
4695 			}
4696 			if (EOV & v->flags) {
4697 				ctl_error(CERR_UNKNOWNVAR);
4698 				free(wants);
4699 				free_varlist(cs.kv_list);
4700 				return;
4701 			}
4702 			wants[CC_MAXCODE + 1 + v->code] = TRUE;
4703 			gotvar = TRUE;
4704 		}
4705 	}
4706 
4707 	if (gotvar) {
4708 		for (i = 1; i <= CC_MAXCODE; i++)
4709 			if (wants[i])
4710 				ctl_putclock(i, &cs, TRUE);
4711 		if (kv != NULL)
4712 			for (i = 0; !(EOV & kv[i].flags); i++)
4713 				if (wants[i + CC_MAXCODE + 1])
4714 					ctl_putdata(kv[i].text,
4715 						    strlen(kv[i].text),
4716 						    FALSE);
4717 	} else {
4718 		for (cc = def_clock_var; *cc != 0; cc++)
4719 			ctl_putclock((int)*cc, &cs, FALSE);
4720 		for ( ; kv != NULL && !(EOV & kv->flags); kv++)
4721 			if (DEF & kv->flags)
4722 				ctl_putdata(kv->text, strlen(kv->text),
4723 					    FALSE);
4724 	}
4725 
4726 	free(wants);
4727 	free_varlist(cs.kv_list);
4728 
4729 	ctl_flushpkt(0);
4730 #endif
4731 }
4732 
4733 
4734 /*
4735  * write_clockstatus - we don't do this
4736  */
4737 /*ARGSUSED*/
4738 static void
4739 write_clockstatus(
4740 	struct recvbuf *rbufp,
4741 	int restrict_mask
4742 	)
4743 {
4744 	ctl_error(CERR_PERMISSION);
4745 }
4746 
4747 /*
4748  * Trap support from here on down. We send async trap messages when the
4749  * upper levels report trouble. Traps can by set either by control
4750  * messages or by configuration.
4751  */
4752 /*
4753  * set_trap - set a trap in response to a control message
4754  */
4755 static void
4756 set_trap(
4757 	struct recvbuf *rbufp,
4758 	int restrict_mask
4759 	)
4760 {
4761 	int traptype;
4762 
4763 	/*
4764 	 * See if this guy is allowed
4765 	 */
4766 	if (restrict_mask & RES_NOTRAP) {
4767 		ctl_error(CERR_PERMISSION);
4768 		return;
4769 	}
4770 
4771 	/*
4772 	 * Determine his allowed trap type.
4773 	 */
4774 	traptype = TRAP_TYPE_PRIO;
4775 	if (restrict_mask & RES_LPTRAP)
4776 		traptype = TRAP_TYPE_NONPRIO;
4777 
4778 	/*
4779 	 * Call ctlsettrap() to do the work.  Return
4780 	 * an error if it can't assign the trap.
4781 	 */
4782 	if (!ctlsettrap(&rbufp->recv_srcadr, rbufp->dstadr, traptype,
4783 			(int)res_version))
4784 		ctl_error(CERR_NORESOURCE);
4785 	ctl_flushpkt(0);
4786 }
4787 
4788 
4789 /*
4790  * unset_trap - unset a trap in response to a control message
4791  */
4792 static void
4793 unset_trap(
4794 	struct recvbuf *rbufp,
4795 	int restrict_mask
4796 	)
4797 {
4798 	int traptype;
4799 
4800 	/*
4801 	 * We don't prevent anyone from removing his own trap unless the
4802 	 * trap is configured. Note we also must be aware of the
4803 	 * possibility that restriction flags were changed since this
4804 	 * guy last set his trap. Set the trap type based on this.
4805 	 */
4806 	traptype = TRAP_TYPE_PRIO;
4807 	if (restrict_mask & RES_LPTRAP)
4808 		traptype = TRAP_TYPE_NONPRIO;
4809 
4810 	/*
4811 	 * Call ctlclrtrap() to clear this out.
4812 	 */
4813 	if (!ctlclrtrap(&rbufp->recv_srcadr, rbufp->dstadr, traptype))
4814 		ctl_error(CERR_BADASSOC);
4815 	ctl_flushpkt(0);
4816 }
4817 
4818 
4819 /*
4820  * ctlsettrap - called to set a trap
4821  */
4822 int
4823 ctlsettrap(
4824 	sockaddr_u *raddr,
4825 	endpt *linter,
4826 	int traptype,
4827 	int version
4828 	)
4829 {
4830 	size_t n;
4831 	struct ctl_trap *tp;
4832 	struct ctl_trap *tptouse;
4833 
4834 	/*
4835 	 * See if we can find this trap.  If so, we only need update
4836 	 * the flags and the time.
4837 	 */
4838 	if ((tp = ctlfindtrap(raddr, linter)) != NULL) {
4839 		switch (traptype) {
4840 
4841 		case TRAP_TYPE_CONFIG:
4842 			tp->tr_flags = TRAP_INUSE|TRAP_CONFIGURED;
4843 			break;
4844 
4845 		case TRAP_TYPE_PRIO:
4846 			if (tp->tr_flags & TRAP_CONFIGURED)
4847 				return (1); /* don't change anything */
4848 			tp->tr_flags = TRAP_INUSE;
4849 			break;
4850 
4851 		case TRAP_TYPE_NONPRIO:
4852 			if (tp->tr_flags & TRAP_CONFIGURED)
4853 				return (1); /* don't change anything */
4854 			tp->tr_flags = TRAP_INUSE|TRAP_NONPRIO;
4855 			break;
4856 		}
4857 		tp->tr_settime = current_time;
4858 		tp->tr_resets++;
4859 		return (1);
4860 	}
4861 
4862 	/*
4863 	 * First we heard of this guy.	Try to find a trap structure
4864 	 * for him to use, clearing out lesser priority guys if we
4865 	 * have to. Clear out anyone who's expired while we're at it.
4866 	 */
4867 	tptouse = NULL;
4868 	for (n = 0; n < COUNTOF(ctl_traps); n++) {
4869 		tp = &ctl_traps[n];
4870 		if ((TRAP_INUSE & tp->tr_flags) &&
4871 		    !(TRAP_CONFIGURED & tp->tr_flags) &&
4872 		    ((tp->tr_settime + CTL_TRAPTIME) > current_time)) {
4873 			tp->tr_flags = 0;
4874 			num_ctl_traps--;
4875 		}
4876 		if (!(TRAP_INUSE & tp->tr_flags)) {
4877 			tptouse = tp;
4878 		} else if (!(TRAP_CONFIGURED & tp->tr_flags)) {
4879 			switch (traptype) {
4880 
4881 			case TRAP_TYPE_CONFIG:
4882 				if (tptouse == NULL) {
4883 					tptouse = tp;
4884 					break;
4885 				}
4886 				if ((TRAP_NONPRIO & tptouse->tr_flags) &&
4887 				    !(TRAP_NONPRIO & tp->tr_flags))
4888 					break;
4889 
4890 				if (!(TRAP_NONPRIO & tptouse->tr_flags)
4891 				    && (TRAP_NONPRIO & tp->tr_flags)) {
4892 					tptouse = tp;
4893 					break;
4894 				}
4895 				if (tptouse->tr_origtime <
4896 				    tp->tr_origtime)
4897 					tptouse = tp;
4898 				break;
4899 
4900 			case TRAP_TYPE_PRIO:
4901 				if ( TRAP_NONPRIO & tp->tr_flags) {
4902 					if (tptouse == NULL ||
4903 					    ((TRAP_INUSE &
4904 					      tptouse->tr_flags) &&
4905 					     tptouse->tr_origtime <
4906 					     tp->tr_origtime))
4907 						tptouse = tp;
4908 				}
4909 				break;
4910 
4911 			case TRAP_TYPE_NONPRIO:
4912 				break;
4913 			}
4914 		}
4915 	}
4916 
4917 	/*
4918 	 * If we don't have room for him return an error.
4919 	 */
4920 	if (tptouse == NULL)
4921 		return (0);
4922 
4923 	/*
4924 	 * Set up this structure for him.
4925 	 */
4926 	tptouse->tr_settime = tptouse->tr_origtime = current_time;
4927 	tptouse->tr_count = tptouse->tr_resets = 0;
4928 	tptouse->tr_sequence = 1;
4929 	tptouse->tr_addr = *raddr;
4930 	tptouse->tr_localaddr = linter;
4931 	tptouse->tr_version = (u_char) version;
4932 	tptouse->tr_flags = TRAP_INUSE;
4933 	if (traptype == TRAP_TYPE_CONFIG)
4934 		tptouse->tr_flags |= TRAP_CONFIGURED;
4935 	else if (traptype == TRAP_TYPE_NONPRIO)
4936 		tptouse->tr_flags |= TRAP_NONPRIO;
4937 	num_ctl_traps++;
4938 	return (1);
4939 }
4940 
4941 
4942 /*
4943  * ctlclrtrap - called to clear a trap
4944  */
4945 int
4946 ctlclrtrap(
4947 	sockaddr_u *raddr,
4948 	endpt *linter,
4949 	int traptype
4950 	)
4951 {
4952 	register struct ctl_trap *tp;
4953 
4954 	if ((tp = ctlfindtrap(raddr, linter)) == NULL)
4955 		return (0);
4956 
4957 	if (tp->tr_flags & TRAP_CONFIGURED
4958 	    && traptype != TRAP_TYPE_CONFIG)
4959 		return (0);
4960 
4961 	tp->tr_flags = 0;
4962 	num_ctl_traps--;
4963 	return (1);
4964 }
4965 
4966 
4967 /*
4968  * ctlfindtrap - find a trap given the remote and local addresses
4969  */
4970 static struct ctl_trap *
4971 ctlfindtrap(
4972 	sockaddr_u *raddr,
4973 	endpt *linter
4974 	)
4975 {
4976 	size_t	n;
4977 
4978 	for (n = 0; n < COUNTOF(ctl_traps); n++)
4979 		if ((ctl_traps[n].tr_flags & TRAP_INUSE)
4980 		    && ADDR_PORT_EQ(raddr, &ctl_traps[n].tr_addr)
4981 		    && (linter == ctl_traps[n].tr_localaddr))
4982 			return &ctl_traps[n];
4983 
4984 	return NULL;
4985 }
4986 
4987 
4988 /*
4989  * report_event - report an event to the trappers
4990  */
4991 void
4992 report_event(
4993 	int	err,		/* error code */
4994 	struct peer *peer,	/* peer structure pointer */
4995 	const char *str		/* protostats string */
4996 	)
4997 {
4998 	char	statstr[NTP_MAXSTRLEN];
4999 	int	i;
5000 	size_t	len;
5001 
5002 	/*
5003 	 * Report the error to the protostats file, system log and
5004 	 * trappers.
5005 	 */
5006 	if (peer == NULL) {
5007 
5008 		/*
5009 		 * Discard a system report if the number of reports of
5010 		 * the same type exceeds the maximum.
5011 		 */
5012 		if (ctl_sys_last_event != (u_char)err)
5013 			ctl_sys_num_events= 0;
5014 		if (ctl_sys_num_events >= CTL_SYS_MAXEVENTS)
5015 			return;
5016 
5017 		ctl_sys_last_event = (u_char)err;
5018 		ctl_sys_num_events++;
5019 		snprintf(statstr, sizeof(statstr),
5020 		    "0.0.0.0 %04x %02x %s",
5021 		    ctlsysstatus(), err, eventstr(err));
5022 		if (str != NULL) {
5023 			len = strlen(statstr);
5024 			snprintf(statstr + len, sizeof(statstr) - len,
5025 			    " %s", str);
5026 		}
5027 		NLOG(NLOG_SYSEVENT)
5028 			msyslog(LOG_INFO, "%s", statstr);
5029 	} else {
5030 
5031 		/*
5032 		 * Discard a peer report if the number of reports of
5033 		 * the same type exceeds the maximum for that peer.
5034 		 */
5035 		const char *	src;
5036 		u_char		errlast;
5037 
5038 		errlast = (u_char)err & ~PEER_EVENT;
5039 		if (peer->last_event != errlast)
5040 			peer->num_events = 0;
5041 		if (peer->num_events >= CTL_PEER_MAXEVENTS)
5042 			return;
5043 
5044 		peer->last_event = errlast;
5045 		peer->num_events++;
5046 		if (ISREFCLOCKADR(&peer->srcadr))
5047 			src = refnumtoa(&peer->srcadr);
5048 		else
5049 			src = stoa(&peer->srcadr);
5050 
5051 		snprintf(statstr, sizeof(statstr),
5052 		    "%s %04x %02x %s", src,
5053 		    ctlpeerstatus(peer), err, eventstr(err));
5054 		if (str != NULL) {
5055 			len = strlen(statstr);
5056 			snprintf(statstr + len, sizeof(statstr) - len,
5057 			    " %s", str);
5058 		}
5059 		NLOG(NLOG_PEEREVENT)
5060 			msyslog(LOG_INFO, "%s", statstr);
5061 	}
5062 	record_proto_stats(statstr);
5063 #if DEBUG
5064 	if (debug)
5065 		printf("event at %lu %s\n", current_time, statstr);
5066 #endif
5067 
5068 	/*
5069 	 * If no trappers, return.
5070 	 */
5071 	if (num_ctl_traps <= 0)
5072 		return;
5073 
5074 	/* [Bug 3119]
5075 	 * Peer Events should be associated with a peer -- hence the
5076 	 * name. But there are instances where this function is called
5077 	 * *without* a valid peer. This happens e.g. with an unsolicited
5078 	 * CryptoNAK, or when a leap second alarm is going off while
5079 	 * currently without a system peer.
5080 	 *
5081 	 * The most sensible approach to this seems to bail out here if
5082 	 * this happens. Avoiding to call this function would also
5083 	 * bypass the log reporting in the first part of this function,
5084 	 * and this is probably not the best of all options.
5085 	 *   -*-perlinger@ntp.org-*-
5086 	 */
5087 	if ((err & PEER_EVENT) && !peer)
5088 		return;
5089 
5090 	/*
5091 	 * Set up the outgoing packet variables
5092 	 */
5093 	res_opcode = CTL_OP_ASYNCMSG;
5094 	res_offset = 0;
5095 	res_async = TRUE;
5096 	res_authenticate = FALSE;
5097 	datapt = rpkt.u.data;
5098 	dataend = &rpkt.u.data[CTL_MAX_DATA_LEN];
5099 	if (!(err & PEER_EVENT)) {
5100 		rpkt.associd = 0;
5101 		rpkt.status = htons(ctlsysstatus());
5102 
5103 		/* Include the core system variables and the list. */
5104 		for (i = 1; i <= CS_VARLIST; i++)
5105 			ctl_putsys(i);
5106 	} else if (NULL != peer) { /* paranoia -- skip output */
5107 		rpkt.associd = htons(peer->associd);
5108 		rpkt.status = htons(ctlpeerstatus(peer));
5109 
5110 		/* Dump it all. Later, maybe less. */
5111 		for (i = 1; i <= CP_MAX_NOAUTOKEY; i++)
5112 			ctl_putpeer(i, peer);
5113 #	    ifdef REFCLOCK
5114 		/*
5115 		 * for clock exception events: add clock variables to
5116 		 * reflect info on exception
5117 		 */
5118 		if (err == PEVNT_CLOCK) {
5119 			struct refclockstat cs;
5120 			struct ctl_var *kv;
5121 
5122 			cs.kv_list = NULL;
5123 			refclock_control(&peer->srcadr, NULL, &cs);
5124 
5125 			ctl_puthex("refclockstatus",
5126 				   ctlclkstatus(&cs));
5127 
5128 			for (i = 1; i <= CC_MAXCODE; i++)
5129 				ctl_putclock(i, &cs, FALSE);
5130 			for (kv = cs.kv_list;
5131 			     kv != NULL && !(EOV & kv->flags);
5132 			     kv++)
5133 				if (DEF & kv->flags)
5134 					ctl_putdata(kv->text,
5135 						    strlen(kv->text),
5136 						    FALSE);
5137 			free_varlist(cs.kv_list);
5138 		}
5139 #	    endif /* REFCLOCK */
5140 	}
5141 
5142 	/*
5143 	 * We're done, return.
5144 	 */
5145 	ctl_flushpkt(0);
5146 }
5147 
5148 
5149 /*
5150  * mprintf_event - printf-style varargs variant of report_event()
5151  */
5152 int
5153 mprintf_event(
5154 	int		evcode,		/* event code */
5155 	struct peer *	p,		/* may be NULL */
5156 	const char *	fmt,		/* msnprintf format */
5157 	...
5158 	)
5159 {
5160 	va_list	ap;
5161 	int	rc;
5162 	char	msg[512];
5163 
5164 	va_start(ap, fmt);
5165 	rc = mvsnprintf(msg, sizeof(msg), fmt, ap);
5166 	va_end(ap);
5167 	report_event(evcode, p, msg);
5168 
5169 	return rc;
5170 }
5171 
5172 
5173 /*
5174  * ctl_clr_stats - clear stat counters
5175  */
5176 void
5177 ctl_clr_stats(void)
5178 {
5179 	ctltimereset = current_time;
5180 	numctlreq = 0;
5181 	numctlbadpkts = 0;
5182 	numctlresponses = 0;
5183 	numctlfrags = 0;
5184 	numctlerrors = 0;
5185 	numctlfrags = 0;
5186 	numctltooshort = 0;
5187 	numctlinputresp = 0;
5188 	numctlinputfrag = 0;
5189 	numctlinputerr = 0;
5190 	numctlbadoffset = 0;
5191 	numctlbadversion = 0;
5192 	numctldatatooshort = 0;
5193 	numctlbadop = 0;
5194 	numasyncmsgs = 0;
5195 }
5196 
5197 static u_short
5198 count_var(
5199 	const struct ctl_var *k
5200 	)
5201 {
5202 	u_int c;
5203 
5204 	if (NULL == k)
5205 		return 0;
5206 
5207 	c = 0;
5208 	while (!(EOV & (k++)->flags))
5209 		c++;
5210 
5211 	ENSURE(c <= USHRT_MAX);
5212 	return (u_short)c;
5213 }
5214 
5215 
5216 char *
5217 add_var(
5218 	struct ctl_var **kv,
5219 	u_long size,
5220 	u_short def
5221 	)
5222 {
5223 	u_short		c;
5224 	struct ctl_var *k;
5225 	char *		buf;
5226 
5227 	c = count_var(*kv);
5228 	*kv  = erealloc(*kv, (c + 2) * sizeof(**kv));
5229 	k = *kv;
5230 	buf = emalloc(size);
5231 	k[c].code  = c;
5232 	k[c].text  = buf;
5233 	k[c].flags = def;
5234 	k[c + 1].code  = 0;
5235 	k[c + 1].text  = NULL;
5236 	k[c + 1].flags = EOV;
5237 
5238 	return buf;
5239 }
5240 
5241 
5242 void
5243 set_var(
5244 	struct ctl_var **kv,
5245 	const char *data,
5246 	u_long size,
5247 	u_short def
5248 	)
5249 {
5250 	struct ctl_var *k;
5251 	const char *s;
5252 	const char *t;
5253 	char *td;
5254 
5255 	if (NULL == data || !size)
5256 		return;
5257 
5258 	k = *kv;
5259 	if (k != NULL) {
5260 		while (!(EOV & k->flags)) {
5261 			if (NULL == k->text)	{
5262 				td = emalloc(size);
5263 				memcpy(td, data, size);
5264 				k->text = td;
5265 				k->flags = def;
5266 				return;
5267 			} else {
5268 				s = data;
5269 				t = k->text;
5270 				while (*t != '=' && *s == *t) {
5271 					s++;
5272 					t++;
5273 				}
5274 				if (*s == *t && ((*t == '=') || !*t)) {
5275 					td = erealloc((void *)(intptr_t)k->text, size);
5276 					memcpy(td, data, size);
5277 					k->text = td;
5278 					k->flags = def;
5279 					return;
5280 				}
5281 			}
5282 			k++;
5283 		}
5284 	}
5285 	td = add_var(kv, size, def);
5286 	memcpy(td, data, size);
5287 }
5288 
5289 
5290 void
5291 set_sys_var(
5292 	const char *data,
5293 	u_long size,
5294 	u_short def
5295 	)
5296 {
5297 	set_var(&ext_sys_var, data, size, def);
5298 }
5299 
5300 
5301 /*
5302  * get_ext_sys_var() retrieves the value of a user-defined variable or
5303  * NULL if the variable has not been setvar'd.
5304  */
5305 const char *
5306 get_ext_sys_var(const char *tag)
5307 {
5308 	struct ctl_var *	v;
5309 	size_t			c;
5310 	const char *		val;
5311 
5312 	val = NULL;
5313 	c = strlen(tag);
5314 	for (v = ext_sys_var; !(EOV & v->flags); v++) {
5315 		if (NULL != v->text && !memcmp(tag, v->text, c)) {
5316 			if ('=' == v->text[c]) {
5317 				val = v->text + c + 1;
5318 				break;
5319 			} else if ('\0' == v->text[c]) {
5320 				val = "";
5321 				break;
5322 			}
5323 		}
5324 	}
5325 
5326 	return val;
5327 }
5328 
5329 
5330 void
5331 free_varlist(
5332 	struct ctl_var *kv
5333 	)
5334 {
5335 	struct ctl_var *k;
5336 	if (kv) {
5337 		for (k = kv; !(k->flags & EOV); k++)
5338 			free((void *)(intptr_t)k->text);
5339 		free((void *)kv);
5340 	}
5341 }
5342