1 /* $NetBSD: ntp_calendar.c,v 1.12 2024/08/18 20:47:13 christos Exp $ */ 2 3 /* 4 * ntp_calendar.c - calendar and helper functions 5 * 6 * Written by Juergen Perlinger (perlinger@ntp.org) for the NTP project. 7 * The contents of 'html/copyright.html' apply. 8 * 9 * -------------------------------------------------------------------- 10 * Some notes on the implementation: 11 * 12 * Calendar algorithms thrive on the division operation, which is one of 13 * the slowest numerical operations in any CPU. What saves us here from 14 * abysmal performance is the fact that all divisions are divisions by 15 * constant numbers, and most compilers can do this by a multiplication 16 * operation. But this might not work when using the div/ldiv/lldiv 17 * function family, because many compilers are not able to do inline 18 * expansion of the code with following optimisation for the 19 * constant-divider case. 20 * 21 * Also div/ldiv/lldiv are defined in terms of int/long/longlong, which 22 * are inherently target dependent. Nothing that could not be cured with 23 * autoconf, but still a mess... 24 * 25 * Furthermore, we need floor division in many places. C either leaves 26 * the division behaviour undefined (< C99) or demands truncation to 27 * zero (>= C99), so additional steps are required to make sure the 28 * algorithms work. The {l,ll}div function family is requested to 29 * truncate towards zero, which is also the wrong direction for our 30 * purpose. 31 * 32 * For all this, all divisions by constant are coded manually, even when 33 * there is a joined div/mod operation: The optimiser should sort that 34 * out, if possible. Most of the calculations are done with unsigned 35 * types, explicitely using two's complement arithmetics where 36 * necessary. This minimises the dependecies to compiler and target, 37 * while still giving reasonable to good performance. 38 * 39 * The implementation uses a few tricks that exploit properties of the 40 * two's complement: Floor division on negative dividents can be 41 * executed by using the one's complement of the divident. One's 42 * complement can be easily created using XOR and a mask. 43 * 44 * Finally, check for overflow conditions is minimal. There are only two 45 * calculation steps in the whole calendar that potentially suffer from 46 * an internal overflow, and these are coded in a way that avoids 47 * it. All other functions do not suffer from internal overflow and 48 * simply return the result truncated to 32 bits. 49 */ 50 51 #include <config.h> 52 #include <sys/types.h> 53 54 #include "ntp_types.h" 55 #include "ntp_calendar.h" 56 #include "ntp_stdlib.h" 57 #include "ntp_fp.h" 58 #include "ntp_unixtime.h" 59 60 #include "ntpd.h" 61 62 /* For now, let's take the conservative approach: if the target property 63 * macros are not defined, check a few well-known compiler/architecture 64 * settings. Default is to assume that the representation of signed 65 * integers is unknown and shift-arithmetic-right is not available. 66 */ 67 #ifndef TARGET_HAS_2CPL 68 # if defined(__GNUC__) 69 # if defined(__i386__) || defined(__x86_64__) || defined(__arm__) 70 # define TARGET_HAS_2CPL 1 71 # else 72 # define TARGET_HAS_2CPL 0 73 # endif 74 # elif defined(_MSC_VER) 75 # if defined(_M_IX86) || defined(_M_X64) || defined(_M_ARM) 76 # define TARGET_HAS_2CPL 1 77 # else 78 # define TARGET_HAS_2CPL 0 79 # endif 80 # else 81 # define TARGET_HAS_2CPL 0 82 # endif 83 #endif 84 85 #ifndef TARGET_HAS_SAR 86 # define TARGET_HAS_SAR 0 87 #endif 88 89 #if !defined(HAVE_64BITREGS) && defined(UINT64_MAX) && (SIZE_MAX >= UINT64_MAX) 90 # define HAVE_64BITREGS 91 #endif 92 93 /* 94 *--------------------------------------------------------------------- 95 * replacing the 'time()' function 96 *--------------------------------------------------------------------- 97 */ 98 99 static systime_func_ptr systime_func = &time; 100 static inline time_t now(void); 101 102 103 systime_func_ptr 104 ntpcal_set_timefunc( 105 systime_func_ptr nfunc 106 ) 107 { 108 systime_func_ptr res; 109 110 res = systime_func; 111 if (NULL == nfunc) 112 nfunc = &time; 113 systime_func = nfunc; 114 115 return res; 116 } 117 118 119 static inline time_t 120 now(void) 121 { 122 return (*systime_func)(NULL); 123 } 124 125 /* 126 *--------------------------------------------------------------------- 127 * Get sign extension mask and unsigned 2cpl rep for a signed integer 128 *--------------------------------------------------------------------- 129 */ 130 131 static inline uint32_t 132 int32_sflag( 133 const int32_t v) 134 { 135 # if TARGET_HAS_2CPL && TARGET_HAS_SAR && SIZEOF_INT >= 4 136 137 /* Let's assume that shift is the fastest way to get the sign 138 * extension of of a signed integer. This might not always be 139 * true, though -- On 8bit CPUs or machines without barrel 140 * shifter this will kill the performance. So we make sure 141 * we do this only if 'int' has at least 4 bytes. 142 */ 143 return (uint32_t)(v >> 31); 144 145 # else 146 147 /* This should be a rather generic approach for getting a sign 148 * extension mask... 149 */ 150 return UINT32_C(0) - (uint32_t)(v < 0); 151 152 # endif 153 } 154 155 static inline int32_t 156 uint32_2cpl_to_int32( 157 const uint32_t vu) 158 { 159 int32_t v; 160 161 # if TARGET_HAS_2CPL 162 163 /* Just copy through the 32 bits from the unsigned value if 164 * we're on a two's complement target. 165 */ 166 v = (int32_t)vu; 167 168 # else 169 170 /* Convert to signed integer, making sure signed integer 171 * overflow cannot happen. Again, the optimiser might or might 172 * not find out that this is just a copy of 32 bits on a target 173 * with two's complement representation for signed integers. 174 */ 175 if (vu > INT32_MAX) 176 v = -(int32_t)(~vu) - 1; 177 else 178 v = (int32_t)vu; 179 180 # endif 181 182 return v; 183 } 184 185 /* 186 *--------------------------------------------------------------------- 187 * Convert between 'time_t' and 'vint64' 188 *--------------------------------------------------------------------- 189 */ 190 vint64 191 time_to_vint64( 192 const time_t * ptt 193 ) 194 { 195 vint64 res; 196 time_t tt; 197 198 tt = *ptt; 199 200 # if SIZEOF_TIME_T <= 4 201 202 res.D_s.hi = 0; 203 if (tt < 0) { 204 res.D_s.lo = (uint32_t)-tt; 205 M_NEG(res.D_s.hi, res.D_s.lo); 206 } else { 207 res.D_s.lo = (uint32_t)tt; 208 } 209 210 # elif defined(HAVE_INT64) 211 212 res.q_s = tt; 213 214 # else 215 /* 216 * shifting negative signed quantities is compiler-dependent, so 217 * we better avoid it and do it all manually. And shifting more 218 * than the width of a quantity is undefined. Also a don't do! 219 */ 220 if (tt < 0) { 221 tt = -tt; 222 res.D_s.lo = (uint32_t)tt; 223 res.D_s.hi = (uint32_t)(tt >> 32); 224 M_NEG(res.D_s.hi, res.D_s.lo); 225 } else { 226 res.D_s.lo = (uint32_t)tt; 227 res.D_s.hi = (uint32_t)(tt >> 32); 228 } 229 230 # endif 231 232 return res; 233 } 234 235 236 time_t 237 vint64_to_time( 238 const vint64 *tv 239 ) 240 { 241 time_t res; 242 243 # if SIZEOF_TIME_T <= 4 244 245 res = (time_t)tv->D_s.lo; 246 247 # elif defined(HAVE_INT64) 248 249 res = (time_t)tv->q_s; 250 251 # else 252 253 res = ((time_t)tv->d_s.hi << 32) | tv->D_s.lo; 254 255 # endif 256 257 return res; 258 } 259 260 /* 261 *--------------------------------------------------------------------- 262 * Get the build date & time 263 *--------------------------------------------------------------------- 264 */ 265 int 266 ntpcal_get_build_date( 267 struct calendar * jd 268 ) 269 { 270 /* The C standard tells us the format of '__DATE__': 271 * 272 * __DATE__ The date of translation of the preprocessing 273 * translation unit: a character string literal of the form "Mmm 274 * dd yyyy", where the names of the months are the same as those 275 * generated by the asctime function, and the first character of 276 * dd is a space character if the value is less than 10. If the 277 * date of translation is not available, an 278 * implementation-defined valid date shall be supplied. 279 * 280 * __TIME__ The time of translation of the preprocessing 281 * translation unit: a character string literal of the form 282 * "hh:mm:ss" as in the time generated by the asctime 283 * function. If the time of translation is not available, an 284 * implementation-defined valid time shall be supplied. 285 * 286 * Note that MSVC declares DATE and TIME to be in the local time 287 * zone, while neither the C standard nor the GCC docs make any 288 * statement about this. As a result, we may be +/-12hrs off 289 * UTC. But for practical purposes, this should not be a 290 * problem. 291 * 292 */ 293 # ifdef MKREPRO_DATE 294 static const char build[] = MKREPRO_TIME "/" MKREPRO_DATE; 295 # else 296 static const char build[] = __TIME__ "/" __DATE__; 297 # endif 298 static const char mlist[] = "JanFebMarAprMayJunJulAugSepOctNovDec"; 299 300 char monstr[4]; 301 const char * cp; 302 unsigned short hour, minute, second, day, year; 303 /* Note: The above quantities are used for sscanf 'hu' format, 304 * so using 'uint16_t' is contra-indicated! 305 */ 306 307 # ifdef DEBUG 308 static int ignore = 0; 309 # endif 310 311 ZERO(*jd); 312 jd->year = 1970; 313 jd->month = 1; 314 jd->monthday = 1; 315 316 # ifdef DEBUG 317 /* check environment if build date should be ignored */ 318 if (0 == ignore) { 319 const char * envstr; 320 envstr = getenv("NTPD_IGNORE_BUILD_DATE"); 321 ignore = 1 + (envstr && (!*envstr || !strcasecmp(envstr, "yes"))); 322 } 323 if (ignore > 1) 324 return FALSE; 325 # endif 326 327 if (6 == sscanf(build, "%hu:%hu:%hu/%3s %hu %hu", 328 &hour, &minute, &second, monstr, &day, &year)) { 329 cp = strstr(mlist, monstr); 330 if (NULL != cp) { 331 jd->year = year; 332 jd->month = (uint8_t)((cp - mlist) / 3 + 1); 333 jd->monthday = (uint8_t)day; 334 jd->hour = (uint8_t)hour; 335 jd->minute = (uint8_t)minute; 336 jd->second = (uint8_t)second; 337 338 return TRUE; 339 } 340 } 341 342 return FALSE; 343 } 344 345 346 /* 347 *--------------------------------------------------------------------- 348 * basic calendar stuff 349 *--------------------------------------------------------------------- 350 */ 351 352 /* 353 * Some notes on the terminology: 354 * 355 * We use the proleptic Gregorian calendar, which is the Gregorian 356 * calendar extended in both directions ad infinitum. This totally 357 * disregards the fact that this calendar was invented in 1582, and 358 * was adopted at various dates over the world; sometimes even after 359 * the start of the NTP epoch. 360 * 361 * Normally date parts are given as current cycles, while time parts 362 * are given as elapsed cycles: 363 * 364 * 1970-01-01/03:04:05 means 'IN the 1970st. year, IN the first month, 365 * ON the first day, with 3hrs, 4minutes and 5 seconds elapsed. 366 * 367 * The basic calculations for this calendar implementation deal with 368 * ELAPSED date units, which is the number of full years, full months 369 * and full days before a date: 1970-01-01 would be (1969, 0, 0) in 370 * that notation. 371 * 372 * To ease the numeric computations, month and day values outside the 373 * normal range are acceptable: 2001-03-00 will be treated as the day 374 * before 2001-03-01, 2000-13-32 will give the same result as 375 * 2001-02-01 and so on. 376 * 377 * 'rd' or 'RD' is used as an abbreviation for the latin 'rata die' 378 * (day number). This is the number of days elapsed since 0000-12-31 379 * in the proleptic Gregorian calendar. The begin of the Christian Era 380 * (0001-01-01) is RD(1). 381 */ 382 383 /* 384 * ==================================================================== 385 * 386 * General algorithmic stuff 387 * 388 * ==================================================================== 389 */ 390 391 /* 392 *--------------------------------------------------------------------- 393 * fast modulo 7 operations (floor/mathematical convention) 394 *--------------------------------------------------------------------- 395 */ 396 int 397 u32mod7( 398 uint32_t x 399 ) 400 { 401 /* This is a combination of tricks from "Hacker's Delight" with 402 * some modifications, like a multiplication that rounds up to 403 * drop the final adjustment stage. 404 * 405 * Do a partial reduction by digit sum to keep the value in the 406 * range permitted for the mul/shift stage. There are several 407 * possible and absolutely equivalent shift/mask combinations; 408 * this one is ARM-friendly because of a mask that fits into 16 409 * bit. 410 */ 411 x = (x >> 15) + (x & UINT32_C(0x7FFF)); 412 /* Take reminder as (mod 8) by mul/shift. Since the multiplier 413 * was calculated using ceil() instead of floor(), it skips the 414 * value '7' properly. 415 * M <- ceil(ldexp(8/7, 29)) 416 */ 417 return (int)((x * UINT32_C(0x24924925)) >> 29); 418 } 419 420 int 421 i32mod7( 422 int32_t x 423 ) 424 { 425 /* We add (2**32 - 2**32 % 7), which is (2**32 - 4), to negative 426 * numbers to map them into the postive range. Only the term '-4' 427 * survives, obviously. 428 */ 429 uint32_t ux = (uint32_t)x; 430 return u32mod7((x < 0) ? (ux - 4u) : ux); 431 } 432 433 uint32_t 434 i32fmod( 435 int32_t x, 436 uint32_t d 437 ) 438 { 439 uint32_t ux = (uint32_t)x; 440 uint32_t sf = UINT32_C(0) - (x < 0); 441 ux = (sf ^ ux ) % d; 442 return (d & sf) + (sf ^ ux); 443 } 444 445 /* 446 *--------------------------------------------------------------------- 447 * Do a periodic extension of 'value' around 'pivot' with a period of 448 * 'cycle'. 449 * 450 * The result 'res' is a number that holds to the following properties: 451 * 452 * 1) res MOD cycle == value MOD cycle 453 * 2) pivot <= res < pivot + cycle 454 * (replace </<= with >/>= for negative cycles) 455 * 456 * where 'MOD' denotes the modulo operator for FLOOR DIVISION, which 457 * is not the same as the '%' operator in C: C requires division to be 458 * a truncated division, where remainder and dividend have the same 459 * sign if the remainder is not zero, whereas floor division requires 460 * divider and modulus to have the same sign for a non-zero modulus. 461 * 462 * This function has some useful applications: 463 * 464 * + let Y be a calendar year and V a truncated 2-digit year: then 465 * periodic_extend(Y-50, V, 100) 466 * is the closest expansion of the truncated year with respect to 467 * the full year, that is a 4-digit year with a difference of less 468 * than 50 years to the year Y. ("century unfolding") 469 * 470 * + let T be a UN*X time stamp and V be seconds-of-day: then 471 * perodic_extend(T-43200, V, 86400) 472 * is a time stamp that has the same seconds-of-day as the input 473 * value, with an absolute difference to T of <= 12hrs. ("day 474 * unfolding") 475 * 476 * + Wherever you have a truncated periodic value and a non-truncated 477 * base value and you want to match them somehow... 478 * 479 * Basically, the function delivers 'pivot + (value - pivot) % cycle', 480 * but the implementation takes some pains to avoid internal signed 481 * integer overflows in the '(value - pivot) % cycle' part and adheres 482 * to the floor division convention. 483 * 484 * If 64bit scalars where available on all intended platforms, writing a 485 * version that uses 64 bit ops would be easy; writing a general 486 * division routine for 64bit ops on a platform that can only do 487 * 32/16bit divisions and is still performant is a bit more 488 * difficult. Since most usecases can be coded in a way that does only 489 * require the 32bit version a 64bit version is NOT provided here. 490 *--------------------------------------------------------------------- 491 */ 492 int32_t 493 ntpcal_periodic_extend( 494 int32_t pivot, 495 int32_t value, 496 int32_t cycle 497 ) 498 { 499 /* Implement a 4-quadrant modulus calculation by 2 2-quadrant 500 * branches, one for positive and one for negative dividers. 501 * Everything else can be handled by bit level logic and 502 * conditional one's complement arithmetic. By convention, we 503 * assume 504 * 505 * x % b == 0 if |b| < 2 506 * 507 * that is, we don't actually divide for cycles of -1,0,1 and 508 * return the pivot value in that case. 509 */ 510 uint32_t uv = (uint32_t)value; 511 uint32_t up = (uint32_t)pivot; 512 uint32_t uc, sf; 513 514 if (cycle > 1) 515 { 516 uc = (uint32_t)cycle; 517 sf = UINT32_C(0) - (value < pivot); 518 519 uv = sf ^ (uv - up); 520 uv %= uc; 521 pivot += (uc & sf) + (sf ^ uv); 522 } 523 else if (cycle < -1) 524 { 525 uc = ~(uint32_t)cycle + 1; 526 sf = UINT32_C(0) - (value > pivot); 527 528 uv = sf ^ (up - uv); 529 uv %= uc; 530 pivot -= (uc & sf) + (sf ^ uv); 531 } 532 return pivot; 533 } 534 535 /*--------------------------------------------------------------------- 536 * Note to the casual reader 537 * 538 * In the next two functions you will find (or would have found...) 539 * the expression 540 * 541 * res.Q_s -= 0x80000000; 542 * 543 * There was some ruckus about a possible programming error due to 544 * integer overflow and sign propagation. 545 * 546 * This assumption is based on a lack of understanding of the C 547 * standard. (Though this is admittedly not one of the most 'natural' 548 * aspects of the 'C' language and easily to get wrong.) 549 * 550 * see 551 * http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf 552 * "ISO/IEC 9899:201x Committee Draft — April 12, 2011" 553 * 6.4.4.1 Integer constants, clause 5 554 * 555 * why there is no sign extension/overflow problem here. 556 * 557 * But to ease the minds of the doubtful, I added back the 'u' qualifiers 558 * that somehow got lost over the last years. 559 */ 560 561 562 /* 563 *--------------------------------------------------------------------- 564 * Convert a timestamp in NTP scale to a 64bit seconds value in the UN*X 565 * scale with proper epoch unfolding around a given pivot or the current 566 * system time. This function happily accepts negative pivot values as 567 * timestamps before 1970-01-01, so be aware of possible trouble on 568 * platforms with 32bit 'time_t'! 569 * 570 * This is also a periodic extension, but since the cycle is 2^32 and 571 * the shift is 2^31, we can do some *very* fast math without explicit 572 * divisions. 573 *--------------------------------------------------------------------- 574 */ 575 vint64 576 ntpcal_ntp_to_time( 577 uint32_t ntp, 578 const time_t * pivot 579 ) 580 { 581 vint64 res; 582 583 # if defined(HAVE_INT64) 584 585 res.q_s = (pivot != NULL) 586 ? *pivot 587 : now(); 588 res.Q_s -= 0x80000000u; /* unshift of half range */ 589 ntp -= (uint32_t)JAN_1970; /* warp into UN*X domain */ 590 ntp -= res.D_s.lo; /* cycle difference */ 591 res.Q_s += (uint64_t)ntp; /* get expanded time */ 592 593 # else /* no 64bit scalars */ 594 595 time_t tmp; 596 597 tmp = (pivot != NULL) 598 ? *pivot 599 : now(); 600 res = time_to_vint64(&tmp); 601 M_SUB(res.D_s.hi, res.D_s.lo, 0, 0x80000000u); 602 ntp -= (uint32_t)JAN_1970; /* warp into UN*X domain */ 603 ntp -= res.D_s.lo; /* cycle difference */ 604 M_ADD(res.D_s.hi, res.D_s.lo, 0, ntp); 605 606 # endif /* no 64bit scalars */ 607 608 return res; 609 } 610 611 /* 612 *--------------------------------------------------------------------- 613 * Convert a timestamp in NTP scale to a 64bit seconds value in the NTP 614 * scale with proper epoch unfolding around a given pivot or the current 615 * system time. 616 * 617 * Note: The pivot must be given in the UN*X time domain! 618 * 619 * This is also a periodic extension, but since the cycle is 2^32 and 620 * the shift is 2^31, we can do some *very* fast math without explicit 621 * divisions. 622 *--------------------------------------------------------------------- 623 */ 624 vint64 625 ntpcal_ntp_to_ntp( 626 uint32_t ntp, 627 const time_t *pivot 628 ) 629 { 630 vint64 res; 631 632 # if defined(HAVE_INT64) 633 634 res.q_s = (pivot) 635 ? *pivot 636 : now(); 637 res.Q_s -= 0x80000000u; /* unshift of half range */ 638 res.Q_s += (uint32_t)JAN_1970; /* warp into NTP domain */ 639 ntp -= res.D_s.lo; /* cycle difference */ 640 res.Q_s += (uint64_t)ntp; /* get expanded time */ 641 642 # else /* no 64bit scalars */ 643 644 time_t tmp; 645 646 tmp = (pivot) 647 ? *pivot 648 : now(); 649 res = time_to_vint64(&tmp); 650 M_SUB(res.D_s.hi, res.D_s.lo, 0, 0x80000000u); 651 M_ADD(res.D_s.hi, res.D_s.lo, 0, (uint32_t)JAN_1970);/*into NTP */ 652 ntp -= res.D_s.lo; /* cycle difference */ 653 M_ADD(res.D_s.hi, res.D_s.lo, 0, ntp); 654 655 # endif /* no 64bit scalars */ 656 657 return res; 658 } 659 660 661 /* 662 * ==================================================================== 663 * 664 * Splitting values to composite entities 665 * 666 * ==================================================================== 667 */ 668 669 /* 670 *--------------------------------------------------------------------- 671 * Split a 64bit seconds value into elapsed days in 'res.hi' and 672 * elapsed seconds since midnight in 'res.lo' using explicit floor 673 * division. This function happily accepts negative time values as 674 * timestamps before the respective epoch start. 675 *--------------------------------------------------------------------- 676 */ 677 ntpcal_split 678 ntpcal_daysplit( 679 const vint64 *ts 680 ) 681 { 682 ntpcal_split res; 683 uint32_t Q, R; 684 685 # if defined(HAVE_64BITREGS) 686 687 /* Assume we have 64bit registers an can do a divison by 688 * constant reasonably fast using the one's complement trick.. 689 */ 690 uint64_t sf64 = (uint64_t)-(ts->q_s < 0); 691 Q = (uint32_t)(sf64 ^ ((sf64 ^ ts->Q_s) / SECSPERDAY)); 692 R = (uint32_t)(ts->Q_s - Q * SECSPERDAY); 693 694 # elif defined(UINT64_MAX) && !defined(__arm__) 695 696 /* We rely on the compiler to do efficient 64bit divisions as 697 * good as possible. Which might or might not be true. At least 698 * for ARM CPUs, the sum-by-digit code in the next section is 699 * faster for many compilers. (This might change over time, but 700 * the 64bit-by-32bit division will never outperform the exact 701 * division by a substantial factor....) 702 */ 703 if (ts->q_s < 0) 704 Q = ~(uint32_t)(~ts->Q_s / SECSPERDAY); 705 else 706 Q = (uint32_t)( ts->Q_s / SECSPERDAY); 707 R = ts->D_s.lo - Q * SECSPERDAY; 708 709 # else 710 711 /* We don't have 64bit regs. That hurts a bit. 712 * 713 * Here we use a mean trick to get away with just one explicit 714 * modulo operation and pure 32bit ops. 715 * 716 * Remember: 86400 <--> 128 * 675 717 * 718 * So we discard the lowest 7 bit and do an exact division by 719 * 675, modulo 2**32. 720 * 721 * First we shift out the lower 7 bits. 722 * 723 * Then we use a digit-wise pseudo-reduction, where a 'digit' is 724 * actually a 16-bit group. This is followed by a full reduction 725 * with a 'true' division step. This yields the modulus of the 726 * full 64bit value. The sign bit gets some extra treatment. 727 * 728 * Then we decrement the lower limb by that modulus, so it is 729 * exactly divisible by 675. [*] 730 * 731 * Then we multiply with the modular inverse of 675 (mod 2**32) 732 * and voila, we have the result. 733 * 734 * Special Thanks to Henry S. Warren and his "Hacker's delight" 735 * for giving that idea. 736 * 737 * (Note[*]: that's not the full truth. We would have to 738 * subtract the modulus from the full 64 bit number to get a 739 * number that is divisible by 675. But since we use the 740 * multiplicative inverse (mod 2**32) there's no reason to carry 741 * the subtraction into the upper bits!) 742 */ 743 uint32_t al = ts->D_s.lo; 744 uint32_t ah = ts->D_s.hi; 745 746 /* shift out the lower 7 bits, smash sign bit */ 747 al = (al >> 7) | (ah << 25); 748 ah = (ah >> 7) & 0x00FFFFFFu; 749 750 R = (ts->d_s.hi < 0) ? 239 : 0;/* sign bit value */ 751 R += (al & 0xFFFF); 752 R += (al >> 16 ) * 61u; /* 2**16 % 675 */ 753 R += (ah & 0xFFFF) * 346u; /* 2**32 % 675 */ 754 R += (ah >> 16 ) * 181u; /* 2**48 % 675 */ 755 R %= 675u; /* final reduction */ 756 Q = (al - R) * 0x2D21C10Bu; /* modinv(675, 2**32) */ 757 R = (R << 7) | (ts->d_s.lo & 0x07F); 758 759 # endif 760 761 res.hi = uint32_2cpl_to_int32(Q); 762 res.lo = R; 763 764 return res; 765 } 766 767 /* 768 *--------------------------------------------------------------------- 769 * Split a 64bit seconds value into elapsed weeks in 'res.hi' and 770 * elapsed seconds since week start in 'res.lo' using explicit floor 771 * division. This function happily accepts negative time values as 772 * timestamps before the respective epoch start. 773 *--------------------------------------------------------------------- 774 */ 775 ntpcal_split 776 ntpcal_weeksplit( 777 const vint64 *ts 778 ) 779 { 780 ntpcal_split res; 781 uint32_t Q, R; 782 783 /* This is a very close relative to the day split function; for 784 * details, see there! 785 */ 786 787 # if defined(HAVE_64BITREGS) 788 789 uint64_t sf64 = (uint64_t)-(ts->q_s < 0); 790 Q = (uint32_t)(sf64 ^ ((sf64 ^ ts->Q_s) / SECSPERWEEK)); 791 R = (uint32_t)(ts->Q_s - Q * SECSPERWEEK); 792 793 # elif defined(UINT64_MAX) && !defined(__arm__) 794 795 if (ts->q_s < 0) 796 Q = ~(uint32_t)(~ts->Q_s / SECSPERWEEK); 797 else 798 Q = (uint32_t)( ts->Q_s / SECSPERWEEK); 799 R = ts->D_s.lo - Q * SECSPERWEEK; 800 801 # else 802 803 /* Remember: 7*86400 <--> 604800 <--> 128 * 4725 */ 804 uint32_t al = ts->D_s.lo; 805 uint32_t ah = ts->D_s.hi; 806 807 al = (al >> 7) | (ah << 25); 808 ah = (ah >> 7) & 0x00FFFFFF; 809 810 R = (ts->d_s.hi < 0) ? 2264 : 0;/* sign bit value */ 811 R += (al & 0xFFFF); 812 R += (al >> 16 ) * 4111u; /* 2**16 % 4725 */ 813 R += (ah & 0xFFFF) * 3721u; /* 2**32 % 4725 */ 814 R += (ah >> 16 ) * 2206u; /* 2**48 % 4725 */ 815 R %= 4725u; /* final reduction */ 816 Q = (al - R) * 0x98BBADDDu; /* modinv(4725, 2**32) */ 817 R = (R << 7) | (ts->d_s.lo & 0x07F); 818 819 # endif 820 821 res.hi = uint32_2cpl_to_int32(Q); 822 res.lo = R; 823 824 return res; 825 } 826 827 /* 828 *--------------------------------------------------------------------- 829 * Split a 32bit seconds value into h/m/s and excessive days. This 830 * function happily accepts negative time values as timestamps before 831 * midnight. 832 *--------------------------------------------------------------------- 833 */ 834 static int32_t 835 priv_timesplit( 836 int32_t split[3], 837 int32_t ts 838 ) 839 { 840 /* Do 3 chained floor divisions by positive constants, using the 841 * one's complement trick and factoring out the intermediate XOR 842 * ops to reduce the number of operations. 843 */ 844 uint32_t us, um, uh, ud, sf32; 845 846 sf32 = int32_sflag(ts); 847 848 us = (uint32_t)ts; 849 um = (sf32 ^ us) / SECSPERMIN; 850 uh = um / MINSPERHR; 851 ud = uh / HRSPERDAY; 852 853 um ^= sf32; 854 uh ^= sf32; 855 ud ^= sf32; 856 857 split[0] = (int32_t)(uh - ud * HRSPERDAY ); 858 split[1] = (int32_t)(um - uh * MINSPERHR ); 859 split[2] = (int32_t)(us - um * SECSPERMIN); 860 861 return uint32_2cpl_to_int32(ud); 862 } 863 864 /* 865 *--------------------------------------------------------------------- 866 * Given the number of elapsed days in the calendar era, split this 867 * number into the number of elapsed years in 'res.hi' and the number 868 * of elapsed days of that year in 'res.lo'. 869 * 870 * if 'isleapyear' is not NULL, it will receive an integer that is 0 for 871 * regular years and a non-zero value for leap years. 872 *--------------------------------------------------------------------- 873 */ 874 ntpcal_split 875 ntpcal_split_eradays( 876 int32_t days, 877 int *isleapyear 878 ) 879 { 880 /* Use the fast cycle split algorithm here, to calculate the 881 * centuries and years in a century with one division each. This 882 * reduces the number of division operations to two, but is 883 * susceptible to internal range overflow. We take some extra 884 * steps to avoid the gap. 885 */ 886 ntpcal_split res; 887 int32_t n100, n001; /* calendar year cycles */ 888 uint32_t uday, Q; 889 890 /* split off centuries first 891 * 892 * We want to execute '(days * 4 + 3) /% 146097' under floor 893 * division rules in the first step. Well, actually we want to 894 * calculate 'floor((days + 0.75) / 36524.25)', but we want to 895 * do it in scaled integer calculation. 896 */ 897 # if defined(HAVE_64BITREGS) 898 899 /* not too complicated with an intermediate 64bit value */ 900 uint64_t ud64, sf64; 901 ud64 = ((uint64_t)days << 2) | 3u; 902 sf64 = (uint64_t)-(days < 0); 903 Q = (uint32_t)(sf64 ^ ((sf64 ^ ud64) / GREGORIAN_CYCLE_DAYS)); 904 uday = (uint32_t)(ud64 - Q * GREGORIAN_CYCLE_DAYS); 905 n100 = uint32_2cpl_to_int32(Q); 906 907 # else 908 909 /* '4*days+3' suffers from range overflow when going to the 910 * limits. We solve this by doing an exact division (mod 2^32) 911 * after caclulating the remainder first. 912 * 913 * We start with a partial reduction by digit sums, extracting 914 * the upper bits from the original value before they get lost 915 * by scaling, and do one full division step to get the true 916 * remainder. Then a final multiplication with the 917 * multiplicative inverse of 146097 (mod 2^32) gives us the full 918 * quotient. 919 * 920 * (-2^33) % 146097 --> 130717 : the sign bit value 921 * ( 2^20) % 146097 --> 25897 : the upper digit value 922 * modinv(146097, 2^32) --> 660721233 : the inverse 923 */ 924 uint32_t ux = ((uint32_t)days << 2) | 3; 925 uday = (days < 0) ? 130717u : 0u; /* sign dgt */ 926 uday += ((days >> 18) & 0x01FFFu) * 25897u; /* hi dgt (src!) */ 927 uday += (ux & 0xFFFFFu); /* lo dgt */ 928 uday %= GREGORIAN_CYCLE_DAYS; /* full reduction */ 929 Q = (ux - uday) * 660721233u; /* exact div */ 930 n100 = uint32_2cpl_to_int32(Q); 931 932 # endif 933 934 /* Split off years in century -- days >= 0 here, and we're far 935 * away from integer overflow trouble now. */ 936 uday |= 3; 937 n001 = uday / GREGORIAN_NORMAL_LEAP_CYCLE_DAYS; 938 uday -= n001 * GREGORIAN_NORMAL_LEAP_CYCLE_DAYS; 939 940 /* Assemble the year and day in year */ 941 res.hi = n100 * 100 + n001; 942 res.lo = uday / 4u; 943 944 /* Possibly set the leap year flag */ 945 if (isleapyear) { 946 uint32_t tc = (uint32_t)n100 + 1; 947 uint32_t ty = (uint32_t)n001 + 1; 948 *isleapyear = !(ty & 3) 949 && ((ty != 100) || !(tc & 3)); 950 } 951 return res; 952 } 953 954 /* 955 *--------------------------------------------------------------------- 956 * Given a number of elapsed days in a year and a leap year indicator, 957 * split the number of elapsed days into the number of elapsed months in 958 * 'res.hi' and the number of elapsed days of that month in 'res.lo'. 959 * 960 * This function will fail and return {-1,-1} if the number of elapsed 961 * days is not in the valid range! 962 *--------------------------------------------------------------------- 963 */ 964 ntpcal_split 965 ntpcal_split_yeardays( 966 int32_t eyd, 967 int isleap 968 ) 969 { 970 /* Use the unshifted-year, February-with-30-days approach here. 971 * Fractional interpolations are used in both directions, with 972 * the smallest power-of-two divider to avoid any true division. 973 */ 974 ntpcal_split res = {-1, -1}; 975 976 /* convert 'isleap' to number of defective days */ 977 isleap = 1 + !isleap; 978 /* adjust for February of 30 nominal days */ 979 if (eyd >= 61 - isleap) 980 eyd += isleap; 981 /* if in range, convert to months and days in month */ 982 if (eyd >= 0 && eyd < 367) { 983 res.hi = (eyd * 67 + 32) >> 11; 984 res.lo = eyd - ((489 * res.hi + 8) >> 4); 985 } 986 987 return res; 988 } 989 990 /* 991 *--------------------------------------------------------------------- 992 * Convert a RD into the date part of a 'struct calendar'. 993 *--------------------------------------------------------------------- 994 */ 995 int 996 ntpcal_rd_to_date( 997 struct calendar *jd, 998 int32_t rd 999 ) 1000 { 1001 ntpcal_split split; 1002 int leapy; 1003 u_int ymask; 1004 1005 /* Get day-of-week first. It's simply the RD (mod 7)... */ 1006 jd->weekday = i32mod7(rd); 1007 1008 split = ntpcal_split_eradays(rd - 1, &leapy); 1009 /* Get year and day-of-year, with overflow check. If any of the 1010 * upper 16 bits is set after shifting to unity-based years, we 1011 * will have an overflow when converting to an unsigned 16bit 1012 * year. Shifting to the right is OK here, since it does not 1013 * matter if the shift is logic or arithmetic. 1014 */ 1015 split.hi += 1; 1016 ymask = 0u - ((split.hi >> 16) == 0); 1017 jd->year = (uint16_t)(split.hi & ymask); 1018 jd->yearday = (uint16_t)split.lo + 1; 1019 1020 /* convert to month and mday */ 1021 split = ntpcal_split_yeardays(split.lo, leapy); 1022 jd->month = (uint8_t)split.hi + 1; 1023 jd->monthday = (uint8_t)split.lo + 1; 1024 1025 return ymask ? leapy : -1; 1026 } 1027 1028 /* 1029 *--------------------------------------------------------------------- 1030 * Convert a RD into the date part of a 'struct tm'. 1031 *--------------------------------------------------------------------- 1032 */ 1033 int 1034 ntpcal_rd_to_tm( 1035 struct tm *utm, 1036 int32_t rd 1037 ) 1038 { 1039 ntpcal_split split; 1040 int leapy; 1041 1042 /* get day-of-week first */ 1043 utm->tm_wday = i32mod7(rd); 1044 1045 /* get year and day-of-year */ 1046 split = ntpcal_split_eradays(rd - 1, &leapy); 1047 utm->tm_year = split.hi - 1899; 1048 utm->tm_yday = split.lo; /* 0-based */ 1049 1050 /* convert to month and mday */ 1051 split = ntpcal_split_yeardays(split.lo, leapy); 1052 utm->tm_mon = split.hi; /* 0-based */ 1053 utm->tm_mday = split.lo + 1; /* 1-based */ 1054 1055 return leapy; 1056 } 1057 1058 /* 1059 *--------------------------------------------------------------------- 1060 * Take a value of seconds since midnight and split it into hhmmss in a 1061 * 'struct calendar'. 1062 *--------------------------------------------------------------------- 1063 */ 1064 int32_t 1065 ntpcal_daysec_to_date( 1066 struct calendar *jd, 1067 int32_t sec 1068 ) 1069 { 1070 int32_t days; 1071 int ts[3]; 1072 1073 days = priv_timesplit(ts, sec); 1074 jd->hour = (uint8_t)ts[0]; 1075 jd->minute = (uint8_t)ts[1]; 1076 jd->second = (uint8_t)ts[2]; 1077 1078 return days; 1079 } 1080 1081 /* 1082 *--------------------------------------------------------------------- 1083 * Take a value of seconds since midnight and split it into hhmmss in a 1084 * 'struct tm'. 1085 *--------------------------------------------------------------------- 1086 */ 1087 int32_t 1088 ntpcal_daysec_to_tm( 1089 struct tm *utm, 1090 int32_t sec 1091 ) 1092 { 1093 int32_t days; 1094 int32_t ts[3]; 1095 1096 days = priv_timesplit(ts, sec); 1097 utm->tm_hour = ts[0]; 1098 utm->tm_min = ts[1]; 1099 utm->tm_sec = ts[2]; 1100 1101 return days; 1102 } 1103 1104 /* 1105 *--------------------------------------------------------------------- 1106 * take a split representation for day/second-of-day and day offset 1107 * and convert it to a 'struct calendar'. The seconds will be normalised 1108 * into the range of a day, and the day will be adjusted accordingly. 1109 * 1110 * returns >0 if the result is in a leap year, 0 if in a regular 1111 * year and <0 if the result did not fit into the calendar struct. 1112 *--------------------------------------------------------------------- 1113 */ 1114 int 1115 ntpcal_daysplit_to_date( 1116 struct calendar *jd, 1117 const ntpcal_split *ds, 1118 int32_t dof 1119 ) 1120 { 1121 dof += ntpcal_daysec_to_date(jd, ds->lo); 1122 return ntpcal_rd_to_date(jd, ds->hi + dof); 1123 } 1124 1125 /* 1126 *--------------------------------------------------------------------- 1127 * take a split representation for day/second-of-day and day offset 1128 * and convert it to a 'struct tm'. The seconds will be normalised 1129 * into the range of a day, and the day will be adjusted accordingly. 1130 * 1131 * returns 1 if the result is in a leap year and zero if in a regular 1132 * year. 1133 *--------------------------------------------------------------------- 1134 */ 1135 int 1136 ntpcal_daysplit_to_tm( 1137 struct tm *utm, 1138 const ntpcal_split *ds , 1139 int32_t dof 1140 ) 1141 { 1142 dof += ntpcal_daysec_to_tm(utm, ds->lo); 1143 1144 return ntpcal_rd_to_tm(utm, ds->hi + dof); 1145 } 1146 1147 /* 1148 *--------------------------------------------------------------------- 1149 * Take a UN*X time and convert to a calendar structure. 1150 *--------------------------------------------------------------------- 1151 */ 1152 int 1153 ntpcal_time_to_date( 1154 struct calendar *jd, 1155 const vint64 *ts 1156 ) 1157 { 1158 ntpcal_split ds; 1159 1160 ds = ntpcal_daysplit(ts); 1161 ds.hi += ntpcal_daysec_to_date(jd, ds.lo); 1162 ds.hi += DAY_UNIX_STARTS; 1163 1164 return ntpcal_rd_to_date(jd, ds.hi); 1165 } 1166 1167 1168 /* 1169 * ==================================================================== 1170 * 1171 * merging composite entities 1172 * 1173 * ==================================================================== 1174 */ 1175 1176 #if !defined(HAVE_INT64) 1177 /* multiplication helper. Seconds in days and weeks are multiples of 128, 1178 * and without that factor fit well into 16 bit. So a multiplication 1179 * of 32bit by 16bit and some shifting can be used on pure 32bit machines 1180 * with compilers that do not support 64bit integers. 1181 * 1182 * Calculate ( hi * mul * 128 ) + lo 1183 */ 1184 static vint64 1185 _dwjoin( 1186 uint16_t mul, 1187 int32_t hi, 1188 int32_t lo 1189 ) 1190 { 1191 vint64 res; 1192 uint32_t p1, p2, sf; 1193 1194 /* get sign flag and absolute value of 'hi' in p1 */ 1195 sf = (uint32_t)-(hi < 0); 1196 p1 = ((uint32_t)hi + sf) ^ sf; 1197 1198 /* assemble major units: res <- |hi| * mul */ 1199 res.D_s.lo = (p1 & 0xFFFF) * mul; 1200 res.D_s.hi = 0; 1201 p1 = (p1 >> 16) * mul; 1202 p2 = p1 >> 16; 1203 p1 = p1 << 16; 1204 M_ADD(res.D_s.hi, res.D_s.lo, p2, p1); 1205 1206 /* mul by 128, using shift: res <-- res << 7 */ 1207 res.D_s.hi = (res.D_s.hi << 7) | (res.D_s.lo >> 25); 1208 res.D_s.lo = (res.D_s.lo << 7); 1209 1210 /* fix up sign: res <-- (res + [sf|sf]) ^ [sf|sf] */ 1211 M_ADD(res.D_s.hi, res.D_s.lo, sf, sf); 1212 res.D_s.lo ^= sf; 1213 res.D_s.hi ^= sf; 1214 1215 /* properly add seconds: res <-- res + [sx(lo)|lo] */ 1216 p2 = (uint32_t)-(lo < 0); 1217 p1 = (uint32_t)lo; 1218 M_ADD(res.D_s.hi, res.D_s.lo, p2, p1); 1219 return res; 1220 } 1221 #endif 1222 1223 /* 1224 *--------------------------------------------------------------------- 1225 * Merge a number of days and a number of seconds into seconds, 1226 * expressed in 64 bits to avoid overflow. 1227 *--------------------------------------------------------------------- 1228 */ 1229 vint64 1230 ntpcal_dayjoin( 1231 int32_t days, 1232 int32_t secs 1233 ) 1234 { 1235 vint64 res; 1236 1237 # if defined(HAVE_INT64) 1238 1239 res.q_s = days; 1240 res.q_s *= SECSPERDAY; 1241 res.q_s += secs; 1242 1243 # else 1244 1245 res = _dwjoin(675, days, secs); 1246 1247 # endif 1248 1249 return res; 1250 } 1251 1252 /* 1253 *--------------------------------------------------------------------- 1254 * Merge a number of weeks and a number of seconds into seconds, 1255 * expressed in 64 bits to avoid overflow. 1256 *--------------------------------------------------------------------- 1257 */ 1258 vint64 1259 ntpcal_weekjoin( 1260 int32_t week, 1261 int32_t secs 1262 ) 1263 { 1264 vint64 res; 1265 1266 # if defined(HAVE_INT64) 1267 1268 res.q_s = week; 1269 res.q_s *= SECSPERWEEK; 1270 res.q_s += secs; 1271 1272 # else 1273 1274 res = _dwjoin(4725, week, secs); 1275 1276 # endif 1277 1278 return res; 1279 } 1280 1281 /* 1282 *--------------------------------------------------------------------- 1283 * get leap years since epoch in elapsed years 1284 *--------------------------------------------------------------------- 1285 */ 1286 int32_t 1287 ntpcal_leapyears_in_years( 1288 int32_t years 1289 ) 1290 { 1291 /* We use the in-out-in algorithm here, using the one's 1292 * complement division trick for negative numbers. The chained 1293 * division sequence by 4/25/4 gives the compiler the chance to 1294 * get away with only one true division and doing shifts otherwise. 1295 */ 1296 1297 uint32_t sf32, sum, uyear; 1298 1299 sf32 = int32_sflag(years); 1300 uyear = (uint32_t)years; 1301 uyear ^= sf32; 1302 1303 sum = (uyear /= 4u); /* 4yr rule --> IN */ 1304 sum -= (uyear /= 25u); /* 100yr rule --> OUT */ 1305 sum += (uyear /= 4u); /* 400yr rule --> IN */ 1306 1307 /* Thanks to the alternation of IN/OUT/IN we can do the sum 1308 * directly and have a single one's complement operation 1309 * here. (Only if the years are negative, of course.) Otherwise 1310 * the one's complement would have to be done when 1311 * adding/subtracting the terms. 1312 */ 1313 return uint32_2cpl_to_int32(sf32 ^ sum); 1314 } 1315 1316 /* 1317 *--------------------------------------------------------------------- 1318 * Convert elapsed years in Era into elapsed days in Era. 1319 *--------------------------------------------------------------------- 1320 */ 1321 int32_t 1322 ntpcal_days_in_years( 1323 int32_t years 1324 ) 1325 { 1326 return years * DAYSPERYEAR + ntpcal_leapyears_in_years(years); 1327 } 1328 1329 /* 1330 *--------------------------------------------------------------------- 1331 * Convert a number of elapsed month in a year into elapsed days in year. 1332 * 1333 * The month will be normalized, and 'res.hi' will contain the 1334 * excessive years that must be considered when converting the years, 1335 * while 'res.lo' will contain the number of elapsed days since start 1336 * of the year. 1337 * 1338 * This code uses the shifted-month-approach to convert month to days, 1339 * because then there is no need to have explicit leap year 1340 * information. The slight disadvantage is that for most month values 1341 * the result is a negative value, and the year excess is one; the 1342 * conversion is then simply based on the start of the following year. 1343 *--------------------------------------------------------------------- 1344 */ 1345 ntpcal_split 1346 ntpcal_days_in_months( 1347 int32_t m 1348 ) 1349 { 1350 ntpcal_split res; 1351 1352 /* Add ten months with proper year adjustment. */ 1353 if (m < 2) { 1354 res.lo = m + 10; 1355 res.hi = 0; 1356 } else { 1357 res.lo = m - 2; 1358 res.hi = 1; 1359 } 1360 1361 /* Possibly normalise by floor division. This does not hapen for 1362 * input in normal range. */ 1363 if (res.lo < 0 || res.lo >= 12) { 1364 uint32_t mu, Q, sf32; 1365 sf32 = int32_sflag(res.lo); 1366 mu = (uint32_t)res.lo; 1367 Q = sf32 ^ ((sf32 ^ mu) / 12u); 1368 1369 res.hi += uint32_2cpl_to_int32(Q); 1370 res.lo = mu - Q * 12u; 1371 } 1372 1373 /* Get cummulated days in year with unshift. Use the fractional 1374 * interpolation with smallest possible power of two in the 1375 * divider. 1376 */ 1377 res.lo = ((res.lo * 979 + 16) >> 5) - 306; 1378 1379 return res; 1380 } 1381 1382 /* 1383 *--------------------------------------------------------------------- 1384 * Convert ELAPSED years/months/days of gregorian calendar to elapsed 1385 * days in Gregorian epoch. 1386 * 1387 * If you want to convert years and days-of-year, just give a month of 1388 * zero. 1389 *--------------------------------------------------------------------- 1390 */ 1391 int32_t 1392 ntpcal_edate_to_eradays( 1393 int32_t years, 1394 int32_t mons, 1395 int32_t mdays 1396 ) 1397 { 1398 ntpcal_split tmp; 1399 int32_t res; 1400 1401 if (mons) { 1402 tmp = ntpcal_days_in_months(mons); 1403 res = ntpcal_days_in_years(years + tmp.hi) + tmp.lo; 1404 } else 1405 res = ntpcal_days_in_years(years); 1406 res += mdays; 1407 1408 return res; 1409 } 1410 1411 /* 1412 *--------------------------------------------------------------------- 1413 * Convert ELAPSED years/months/days of gregorian calendar to elapsed 1414 * days in year. 1415 * 1416 * Note: This will give the true difference to the start of the given 1417 * year, even if months & days are off-scale. 1418 *--------------------------------------------------------------------- 1419 */ 1420 int32_t 1421 ntpcal_edate_to_yeardays( 1422 int32_t years, 1423 int32_t mons, 1424 int32_t mdays 1425 ) 1426 { 1427 ntpcal_split tmp; 1428 1429 if (0 <= mons && mons < 12) { 1430 if (mons >= 2) 1431 mdays -= 2 - is_leapyear(years+1); 1432 mdays += (489 * mons + 8) >> 4; 1433 } else { 1434 tmp = ntpcal_days_in_months(mons); 1435 mdays += tmp.lo 1436 + ntpcal_days_in_years(years + tmp.hi) 1437 - ntpcal_days_in_years(years); 1438 } 1439 1440 return mdays; 1441 } 1442 1443 /* 1444 *--------------------------------------------------------------------- 1445 * Convert elapsed days and the hour/minute/second information into 1446 * total seconds. 1447 * 1448 * If 'isvalid' is not NULL, do a range check on the time specification 1449 * and tell if the time input is in the normal range, permitting for a 1450 * single leapsecond. 1451 *--------------------------------------------------------------------- 1452 */ 1453 int32_t 1454 ntpcal_etime_to_seconds( 1455 int32_t hours, 1456 int32_t minutes, 1457 int32_t seconds 1458 ) 1459 { 1460 int32_t res; 1461 1462 res = (hours * MINSPERHR + minutes) * SECSPERMIN + seconds; 1463 1464 return res; 1465 } 1466 1467 /* 1468 *--------------------------------------------------------------------- 1469 * Convert the date part of a 'struct tm' (that is, year, month, 1470 * day-of-month) into the RD of that day. 1471 *--------------------------------------------------------------------- 1472 */ 1473 int32_t 1474 ntpcal_tm_to_rd( 1475 const struct tm *utm 1476 ) 1477 { 1478 return ntpcal_edate_to_eradays(utm->tm_year + 1899, 1479 utm->tm_mon, 1480 utm->tm_mday - 1) + 1; 1481 } 1482 1483 /* 1484 *--------------------------------------------------------------------- 1485 * Convert the date part of a 'struct calendar' (that is, year, month, 1486 * day-of-month) into the RD of that day. 1487 *--------------------------------------------------------------------- 1488 */ 1489 int32_t 1490 ntpcal_date_to_rd( 1491 const struct calendar *jd 1492 ) 1493 { 1494 return ntpcal_edate_to_eradays((int32_t)jd->year - 1, 1495 (int32_t)jd->month - 1, 1496 (int32_t)jd->monthday - 1) + 1; 1497 } 1498 1499 /* 1500 *--------------------------------------------------------------------- 1501 * convert a year number to rata die of year start 1502 *--------------------------------------------------------------------- 1503 */ 1504 int32_t 1505 ntpcal_year_to_ystart( 1506 int32_t year 1507 ) 1508 { 1509 return ntpcal_days_in_years(year - 1) + 1; 1510 } 1511 1512 /* 1513 *--------------------------------------------------------------------- 1514 * For a given RD, get the RD of the associated year start, 1515 * that is, the RD of the last January,1st on or before that day. 1516 *--------------------------------------------------------------------- 1517 */ 1518 int32_t 1519 ntpcal_rd_to_ystart( 1520 int32_t rd 1521 ) 1522 { 1523 /* 1524 * Rather simple exercise: split the day number into elapsed 1525 * years and elapsed days, then remove the elapsed days from the 1526 * input value. Nice'n sweet... 1527 */ 1528 return rd - ntpcal_split_eradays(rd - 1, NULL).lo; 1529 } 1530 1531 /* 1532 *--------------------------------------------------------------------- 1533 * For a given RD, get the RD of the associated month start. 1534 *--------------------------------------------------------------------- 1535 */ 1536 int32_t 1537 ntpcal_rd_to_mstart( 1538 int32_t rd 1539 ) 1540 { 1541 ntpcal_split split; 1542 int leaps; 1543 1544 split = ntpcal_split_eradays(rd - 1, &leaps); 1545 split = ntpcal_split_yeardays(split.lo, leaps); 1546 1547 return rd - split.lo; 1548 } 1549 1550 /* 1551 *--------------------------------------------------------------------- 1552 * take a 'struct calendar' and get the seconds-of-day from it. 1553 *--------------------------------------------------------------------- 1554 */ 1555 int32_t 1556 ntpcal_date_to_daysec( 1557 const struct calendar *jd 1558 ) 1559 { 1560 return ntpcal_etime_to_seconds(jd->hour, jd->minute, 1561 jd->second); 1562 } 1563 1564 /* 1565 *--------------------------------------------------------------------- 1566 * take a 'struct tm' and get the seconds-of-day from it. 1567 *--------------------------------------------------------------------- 1568 */ 1569 int32_t 1570 ntpcal_tm_to_daysec( 1571 const struct tm *utm 1572 ) 1573 { 1574 return ntpcal_etime_to_seconds(utm->tm_hour, utm->tm_min, 1575 utm->tm_sec); 1576 } 1577 1578 /* 1579 *--------------------------------------------------------------------- 1580 * take a 'struct calendar' and convert it to a 'time_t' 1581 *--------------------------------------------------------------------- 1582 */ 1583 time_t 1584 ntpcal_date_to_time( 1585 const struct calendar *jd 1586 ) 1587 { 1588 vint64 join; 1589 int32_t days, secs; 1590 1591 days = ntpcal_date_to_rd(jd) - DAY_UNIX_STARTS; 1592 secs = ntpcal_date_to_daysec(jd); 1593 join = ntpcal_dayjoin(days, secs); 1594 1595 return vint64_to_time(&join); 1596 } 1597 1598 1599 /* 1600 * ==================================================================== 1601 * 1602 * extended and unchecked variants of caljulian/caltontp 1603 * 1604 * ==================================================================== 1605 */ 1606 int 1607 ntpcal_ntp64_to_date( 1608 struct calendar *jd, 1609 const vint64 *ntp 1610 ) 1611 { 1612 ntpcal_split ds; 1613 1614 ds = ntpcal_daysplit(ntp); 1615 ds.hi += ntpcal_daysec_to_date(jd, ds.lo); 1616 1617 return ntpcal_rd_to_date(jd, ds.hi + DAY_NTP_STARTS); 1618 } 1619 1620 int 1621 ntpcal_ntp_to_date( 1622 struct calendar *jd, 1623 uint32_t ntp, 1624 const time_t *piv 1625 ) 1626 { 1627 vint64 ntp64; 1628 1629 /* 1630 * Unfold ntp time around current time into NTP domain. Split 1631 * into days and seconds, shift days into CE domain and 1632 * process the parts. 1633 */ 1634 ntp64 = ntpcal_ntp_to_ntp(ntp, piv); 1635 return ntpcal_ntp64_to_date(jd, &ntp64); 1636 } 1637 1638 1639 vint64 1640 ntpcal_date_to_ntp64( 1641 const struct calendar *jd 1642 ) 1643 { 1644 /* 1645 * Convert date to NTP. Ignore yearday, use d/m/y only. 1646 */ 1647 return ntpcal_dayjoin(ntpcal_date_to_rd(jd) - DAY_NTP_STARTS, 1648 ntpcal_date_to_daysec(jd)); 1649 } 1650 1651 1652 uint32_t 1653 ntpcal_date_to_ntp( 1654 const struct calendar *jd 1655 ) 1656 { 1657 /* 1658 * Get lower half of 64bit NTP timestamp from date/time. 1659 */ 1660 return ntpcal_date_to_ntp64(jd).d_s.lo; 1661 } 1662 1663 1664 1665 /* 1666 * ==================================================================== 1667 * 1668 * day-of-week calculations 1669 * 1670 * ==================================================================== 1671 */ 1672 /* 1673 * Given a RataDie and a day-of-week, calculate a RDN that is reater-than, 1674 * greater-or equal, closest, less-or-equal or less-than the given RDN 1675 * and denotes the given day-of-week 1676 */ 1677 int32_t 1678 ntpcal_weekday_gt( 1679 int32_t rdn, 1680 int32_t dow 1681 ) 1682 { 1683 return ntpcal_periodic_extend(rdn+1, dow, 7); 1684 } 1685 1686 int32_t 1687 ntpcal_weekday_ge( 1688 int32_t rdn, 1689 int32_t dow 1690 ) 1691 { 1692 return ntpcal_periodic_extend(rdn, dow, 7); 1693 } 1694 1695 int32_t 1696 ntpcal_weekday_close( 1697 int32_t rdn, 1698 int32_t dow 1699 ) 1700 { 1701 return ntpcal_periodic_extend(rdn-3, dow, 7); 1702 } 1703 1704 int32_t 1705 ntpcal_weekday_le( 1706 int32_t rdn, 1707 int32_t dow 1708 ) 1709 { 1710 return ntpcal_periodic_extend(rdn, dow, -7); 1711 } 1712 1713 int32_t 1714 ntpcal_weekday_lt( 1715 int32_t rdn, 1716 int32_t dow 1717 ) 1718 { 1719 return ntpcal_periodic_extend(rdn-1, dow, -7); 1720 } 1721 1722 /* 1723 * ==================================================================== 1724 * 1725 * ISO week-calendar conversions 1726 * 1727 * The ISO8601 calendar defines a calendar of years, weeks and weekdays. 1728 * It is related to the Gregorian calendar, and a ISO year starts at the 1729 * Monday closest to Jan,1st of the corresponding Gregorian year. A ISO 1730 * calendar year has always 52 or 53 weeks, and like the Grogrian 1731 * calendar the ISO8601 calendar repeats itself every 400 years, or 1732 * 146097 days, or 20871 weeks. 1733 * 1734 * While it is possible to write ISO calendar functions based on the 1735 * Gregorian calendar functions, the following implementation takes a 1736 * different approach, based directly on years and weeks. 1737 * 1738 * Analysis of the tabulated data shows that it is not possible to 1739 * interpolate from years to weeks over a full 400 year range; cyclic 1740 * shifts over 400 years do not provide a solution here. But it *is* 1741 * possible to interpolate over every single century of the 400-year 1742 * cycle. (The centennial leap year rule seems to be the culprit here.) 1743 * 1744 * It can be shown that a conversion from years to weeks can be done 1745 * using a linear transformation of the form 1746 * 1747 * w = floor( y * a + b ) 1748 * 1749 * where the slope a must hold to 1750 * 1751 * 52.1780821918 <= a < 52.1791044776 1752 * 1753 * and b must be chosen according to the selected slope and the number 1754 * of the century in a 400-year period. 1755 * 1756 * The inverse calculation can also be done in this way. Careful scaling 1757 * provides an unlimited set of integer coefficients a,k,b that enable 1758 * us to write the calulation in the form 1759 * 1760 * w = (y * a + b ) / k 1761 * y = (w * a' + b') / k' 1762 * 1763 * In this implementation the values of k and k' are chosen to be the 1764 * smallest possible powers of two, so the division can be implemented 1765 * as shifts if the optimiser chooses to do so. 1766 * 1767 * ==================================================================== 1768 */ 1769 1770 /* 1771 * Given a number of elapsed (ISO-)years since the begin of the 1772 * christian era, return the number of elapsed weeks corresponding to 1773 * the number of years. 1774 */ 1775 int32_t 1776 isocal_weeks_in_years( 1777 int32_t years 1778 ) 1779 { 1780 /* 1781 * use: w = (y * 53431 + b[c]) / 1024 as interpolation 1782 */ 1783 static const uint16_t bctab[4] = { 157, 449, 597, 889 }; 1784 1785 int32_t cs, cw; 1786 uint32_t cc, ci, yu, sf32; 1787 1788 sf32 = int32_sflag(years); 1789 yu = (uint32_t)years; 1790 1791 /* split off centuries, using floor division */ 1792 cc = sf32 ^ ((sf32 ^ yu) / 100u); 1793 yu -= cc * 100u; 1794 1795 /* calculate century cycles shift and cycle index: 1796 * Assuming a century is 5217 weeks, we have to add a cycle 1797 * shift that is 3 for every 4 centuries, because 3 of the four 1798 * centuries have 5218 weeks. So '(cc*3 + 1) / 4' is the actual 1799 * correction, and the second century is the defective one. 1800 * 1801 * Needs floor division by 4, which is done with masking and 1802 * shifting. 1803 */ 1804 ci = cc * 3u + 1; 1805 cs = uint32_2cpl_to_int32(sf32 ^ ((sf32 ^ ci) >> 2)); 1806 ci = ci & 3u; 1807 1808 /* Get weeks in century. Can use plain division here as all ops 1809 * are >= 0, and let the compiler sort out the possible 1810 * optimisations. 1811 */ 1812 cw = (yu * 53431u + bctab[ci]) / 1024u; 1813 1814 return uint32_2cpl_to_int32(cc) * 5217 + cs + cw; 1815 } 1816 1817 /* 1818 * Given a number of elapsed weeks since the begin of the christian 1819 * era, split this number into the number of elapsed years in res.hi 1820 * and the excessive number of weeks in res.lo. (That is, res.lo is 1821 * the number of elapsed weeks in the remaining partial year.) 1822 */ 1823 ntpcal_split 1824 isocal_split_eraweeks( 1825 int32_t weeks 1826 ) 1827 { 1828 /* 1829 * use: y = (w * 157 + b[c]) / 8192 as interpolation 1830 */ 1831 1832 static const uint16_t bctab[4] = { 85, 130, 17, 62 }; 1833 1834 ntpcal_split res; 1835 int32_t cc, ci; 1836 uint32_t sw, cy, Q; 1837 1838 /* Use two fast cycle-split divisions again. Herew e want to 1839 * execute '(weeks * 4 + 2) /% 20871' under floor division rules 1840 * in the first step. 1841 * 1842 * This is of course (again) susceptible to internal overflow if 1843 * coded directly in 32bit. And again we use 64bit division on 1844 * a 64bit target and exact division after calculating the 1845 * remainder first on a 32bit target. With the smaller divider, 1846 * that's even a bit neater. 1847 */ 1848 # if defined(HAVE_64BITREGS) 1849 1850 /* Full floor division with 64bit values. */ 1851 uint64_t sf64, sw64; 1852 sf64 = (uint64_t)-(weeks < 0); 1853 sw64 = ((uint64_t)weeks << 2) | 2u; 1854 Q = (uint32_t)(sf64 ^ ((sf64 ^ sw64) / GREGORIAN_CYCLE_WEEKS)); 1855 sw = (uint32_t)(sw64 - Q * GREGORIAN_CYCLE_WEEKS); 1856 1857 # else 1858 1859 /* Exact division after calculating the remainder via partial 1860 * reduction by digit sum. 1861 * (-2^33) % 20871 --> 5491 : the sign bit value 1862 * ( 2^20) % 20871 --> 5026 : the upper digit value 1863 * modinv(20871, 2^32) --> 330081335 : the inverse 1864 */ 1865 uint32_t ux = ((uint32_t)weeks << 2) | 2; 1866 sw = (weeks < 0) ? 5491u : 0u; /* sign dgt */ 1867 sw += ((weeks >> 18) & 0x01FFFu) * 5026u; /* hi dgt (src!) */ 1868 sw += (ux & 0xFFFFFu); /* lo dgt */ 1869 sw %= GREGORIAN_CYCLE_WEEKS; /* full reduction */ 1870 Q = (ux - sw) * 330081335u; /* exact div */ 1871 1872 # endif 1873 1874 ci = Q & 3u; 1875 cc = uint32_2cpl_to_int32(Q); 1876 1877 /* Split off years; sw >= 0 here! The scaled weeks in the years 1878 * are scaled up by 157 afterwards. 1879 */ 1880 sw = (sw / 4u) * 157u + bctab[ci]; 1881 cy = sw / 8192u; /* sw >> 13 , let the compiler sort it out */ 1882 sw = sw % 8192u; /* sw & 8191, let the compiler sort it out */ 1883 1884 /* assemble elapsed years and downscale the elapsed weeks in 1885 * the year. 1886 */ 1887 res.hi = 100*cc + cy; 1888 res.lo = sw / 157u; 1889 1890 return res; 1891 } 1892 1893 /* 1894 * Given a second in the NTP time scale and a pivot, expand the NTP 1895 * time stamp around the pivot and convert into an ISO calendar time 1896 * stamp. 1897 */ 1898 int 1899 isocal_ntp64_to_date( 1900 struct isodate *id, 1901 const vint64 *ntp 1902 ) 1903 { 1904 ntpcal_split ds; 1905 int32_t ts[3]; 1906 uint32_t uw, ud, sf32; 1907 1908 /* 1909 * Split NTP time into days and seconds, shift days into CE 1910 * domain and process the parts. 1911 */ 1912 ds = ntpcal_daysplit(ntp); 1913 1914 /* split time part */ 1915 ds.hi += priv_timesplit(ts, ds.lo); 1916 id->hour = (uint8_t)ts[0]; 1917 id->minute = (uint8_t)ts[1]; 1918 id->second = (uint8_t)ts[2]; 1919 1920 /* split days into days and weeks, using floor division in unsigned */ 1921 ds.hi += DAY_NTP_STARTS - 1; /* shift from NTP to RDN */ 1922 sf32 = int32_sflag(ds.hi); 1923 ud = (uint32_t)ds.hi; 1924 uw = sf32 ^ ((sf32 ^ ud) / DAYSPERWEEK); 1925 ud -= uw * DAYSPERWEEK; 1926 1927 ds.hi = uint32_2cpl_to_int32(uw); 1928 ds.lo = ud; 1929 1930 id->weekday = (uint8_t)ds.lo + 1; /* weekday result */ 1931 1932 /* get year and week in year */ 1933 ds = isocal_split_eraweeks(ds.hi); /* elapsed years&week*/ 1934 id->year = (uint16_t)ds.hi + 1; /* shift to current */ 1935 id->week = (uint8_t )ds.lo + 1; 1936 1937 return (ds.hi >= 0 && ds.hi < 0x0000FFFF); 1938 } 1939 1940 int 1941 isocal_ntp_to_date( 1942 struct isodate *id, 1943 uint32_t ntp, 1944 const time_t *piv 1945 ) 1946 { 1947 vint64 ntp64; 1948 1949 /* 1950 * Unfold ntp time around current time into NTP domain, then 1951 * convert the full time stamp. 1952 */ 1953 ntp64 = ntpcal_ntp_to_ntp(ntp, piv); 1954 return isocal_ntp64_to_date(id, &ntp64); 1955 } 1956 1957 /* 1958 * Convert a ISO date spec into a second in the NTP time scale, 1959 * properly truncated to 32 bit. 1960 */ 1961 vint64 1962 isocal_date_to_ntp64( 1963 const struct isodate *id 1964 ) 1965 { 1966 int32_t weeks, days, secs; 1967 1968 weeks = isocal_weeks_in_years((int32_t)id->year - 1) 1969 + (int32_t)id->week - 1; 1970 days = weeks * 7 + (int32_t)id->weekday; 1971 /* days is RDN of ISO date now */ 1972 secs = ntpcal_etime_to_seconds(id->hour, id->minute, id->second); 1973 1974 return ntpcal_dayjoin(days - DAY_NTP_STARTS, secs); 1975 } 1976 1977 uint32_t 1978 isocal_date_to_ntp( 1979 const struct isodate *id 1980 ) 1981 { 1982 /* 1983 * Get lower half of 64bit NTP timestamp from date/time. 1984 */ 1985 return isocal_date_to_ntp64(id).d_s.lo; 1986 } 1987 1988 /* 1989 * ==================================================================== 1990 * 'basedate' support functions 1991 * ==================================================================== 1992 */ 1993 1994 static int32_t s_baseday = NTP_TO_UNIX_DAYS; 1995 static int32_t s_gpsweek = 0; 1996 1997 int32_t 1998 basedate_eval_buildstamp(void) 1999 { 2000 struct calendar jd; 2001 int32_t ed; 2002 2003 if (!ntpcal_get_build_date(&jd)) 2004 return NTP_TO_UNIX_DAYS; 2005 2006 /* The time zone of the build stamp is unspecified; we remove 2007 * one day to provide a certain slack. And in case somebody 2008 * fiddled with the system clock, we make sure we do not go 2009 * before the UNIX epoch (1970-01-01). It's probably not possible 2010 * to do this to the clock on most systems, but there are other 2011 * ways to tweak the build stamp. 2012 */ 2013 jd.monthday -= 1; 2014 ed = ntpcal_date_to_rd(&jd) - DAY_NTP_STARTS; 2015 return (ed < NTP_TO_UNIX_DAYS) ? NTP_TO_UNIX_DAYS : ed; 2016 } 2017 2018 int32_t 2019 basedate_eval_string( 2020 const char * str 2021 ) 2022 { 2023 u_short y,m,d; 2024 u_long ned; 2025 int rc, nc; 2026 size_t sl; 2027 2028 sl = strlen(str); 2029 rc = sscanf(str, "%4hu-%2hu-%2hu%n", &y, &m, &d, &nc); 2030 if (rc == 3 && (size_t)nc == sl) { 2031 if (m >= 1 && m <= 12 && d >= 1 && d <= 31) 2032 return ntpcal_edate_to_eradays(y-1, m-1, d) 2033 - DAY_NTP_STARTS; 2034 goto buildstamp; 2035 } 2036 2037 rc = sscanf(str, "%lu%n", &ned, &nc); 2038 if (rc == 1 && (size_t)nc == sl) { 2039 if (ned <= INT32_MAX) 2040 return (int32_t)ned; 2041 goto buildstamp; 2042 } 2043 2044 buildstamp: 2045 msyslog(LOG_WARNING, 2046 "basedate string \"%s\" invalid, build date substituted!", 2047 str); 2048 return basedate_eval_buildstamp(); 2049 } 2050 2051 uint32_t 2052 basedate_get_day(void) 2053 { 2054 return s_baseday; 2055 } 2056 2057 int32_t 2058 basedate_set_day( 2059 int32_t day 2060 ) 2061 { 2062 struct calendar jd; 2063 int32_t retv; 2064 2065 /* set NTP base date for NTP era unfolding */ 2066 if (day < NTP_TO_UNIX_DAYS) { 2067 msyslog(LOG_WARNING, 2068 "baseday_set_day: invalid day (%lu), UNIX epoch substituted", 2069 (unsigned long)day); 2070 day = NTP_TO_UNIX_DAYS; 2071 } 2072 retv = s_baseday; 2073 s_baseday = day; 2074 ntpcal_rd_to_date(&jd, day + DAY_NTP_STARTS); 2075 msyslog(LOG_INFO, "basedate set to %04hu-%02hu-%02hu", 2076 jd.year, (u_short)jd.month, (u_short)jd.monthday); 2077 2078 /* set GPS base week for GPS week unfolding */ 2079 day = ntpcal_weekday_ge(day + DAY_NTP_STARTS, CAL_SUNDAY) 2080 - DAY_NTP_STARTS; 2081 if (day < NTP_TO_GPS_DAYS) 2082 day = NTP_TO_GPS_DAYS; 2083 s_gpsweek = (day - NTP_TO_GPS_DAYS) / DAYSPERWEEK; 2084 ntpcal_rd_to_date(&jd, day + DAY_NTP_STARTS); 2085 msyslog(LOG_INFO, "gps base set to %04hu-%02hu-%02hu (week %d)", 2086 jd.year, (u_short)jd.month, (u_short)jd.monthday, s_gpsweek); 2087 2088 return retv; 2089 } 2090 2091 time_t 2092 basedate_get_eracenter(void) 2093 { 2094 time_t retv; 2095 retv = (time_t)(s_baseday - NTP_TO_UNIX_DAYS); 2096 retv *= SECSPERDAY; 2097 retv += (UINT32_C(1) << 31); 2098 return retv; 2099 } 2100 2101 time_t 2102 basedate_get_erabase(void) 2103 { 2104 time_t retv; 2105 retv = (time_t)(s_baseday - NTP_TO_UNIX_DAYS); 2106 retv *= SECSPERDAY; 2107 return retv; 2108 } 2109 2110 uint32_t 2111 basedate_get_gpsweek(void) 2112 { 2113 return s_gpsweek; 2114 } 2115 2116 uint32_t 2117 basedate_expand_gpsweek( 2118 unsigned short weekno 2119 ) 2120 { 2121 /* We do a fast modulus expansion here. Since all quantities are 2122 * unsigned and we cannot go before the start of the GPS epoch 2123 * anyway, and since the truncated GPS week number is 10 bit, the 2124 * expansion becomes a simple sub/and/add sequence. 2125 */ 2126 #if GPSWEEKS != 1024 2127 # error GPSWEEKS defined wrong -- should be 1024! 2128 #endif 2129 2130 uint32_t diff; 2131 diff = ((uint32_t)weekno - s_gpsweek) & (GPSWEEKS - 1); 2132 return s_gpsweek + diff; 2133 } 2134 2135 /* 2136 * ==================================================================== 2137 * misc. helpers 2138 * ==================================================================== 2139 */ 2140 2141 /* -------------------------------------------------------------------- 2142 * reconstruct the centrury from a truncated date and a day-of-week 2143 * 2144 * Given a date with truncated year (2-digit, 0..99) and a day-of-week 2145 * from 1(Mon) to 7(Sun), recover the full year between 1900AD and 2300AD. 2146 */ 2147 int32_t 2148 ntpcal_expand_century( 2149 uint32_t y, 2150 uint32_t m, 2151 uint32_t d, 2152 uint32_t wd) 2153 { 2154 /* This algorithm is short but tricky... It's related to 2155 * Zeller's congruence, partially done backwards. 2156 * 2157 * A few facts to remember: 2158 * 1) The Gregorian calendar has a cycle of 400 years. 2159 * 2) The weekday of the 1st day of a century shifts by 5 days 2160 * during a great cycle. 2161 * 3) For calendar math, a century starts with the 1st year, 2162 * which is year 1, !not! zero. 2163 * 2164 * So we start with taking the weekday difference (mod 7) 2165 * between the truncated date (which is taken as an absolute 2166 * date in the 1st century in the proleptic calendar) and the 2167 * weekday given. 2168 * 2169 * When dividing this residual by 5, we obtain the number of 2170 * centuries to add to the base. But since the residual is (mod 2171 * 7), we have to make this an exact division by multiplication 2172 * with the modular inverse of 5 (mod 7), which is 3: 2173 * 3*5 === 1 (mod 7). 2174 * 2175 * If this yields a result of 4/5/6, the given date/day-of-week 2176 * combination is impossible, and we return zero as resulting 2177 * year to indicate failure. 2178 * 2179 * Then we remap the century to the range starting with year 2180 * 1900. 2181 */ 2182 2183 uint32_t c; 2184 2185 /* check basic constraints */ 2186 if ((y >= 100u) || (--m >= 12u) || (--d >= 31u)) 2187 return 0; 2188 2189 if ((m += 10u) >= 12u) /* shift base to prev. March,1st */ 2190 m -= 12u; 2191 else if (--y >= 100u) 2192 y += 100u; 2193 d += y + (y >> 2) + 2u; /* year share */ 2194 d += (m * 83u + 16u) >> 5; /* month share */ 2195 2196 /* get (wd - d), shifted to positive value, and multiply with 2197 * 3(mod 7). (Exact division, see to comment) 2198 * Note: 1) d <= 184 at this point. 2199 * 2) 252 % 7 == 0, but 'wd' is off by one since we did 2200 * '--d' above, so we add just 251 here! 2201 */ 2202 c = u32mod7(3 * (251u + wd - d)); 2203 if (c > 3u) 2204 return 0; 2205 2206 if ((m > 9u) && (++y >= 100u)) {/* undo base shift */ 2207 y -= 100u; 2208 c = (c + 1) & 3u; 2209 } 2210 y += (c * 100u); /* combine into 1st cycle */ 2211 y += (y < 300u) ? 2000 : 1600; /* map to destination era */ 2212 return (int)y; 2213 } 2214 2215 char * 2216 ntpcal_iso8601std( 2217 char * buf, 2218 size_t len, 2219 TcCivilDate * cdp 2220 ) 2221 { 2222 if (!buf) { 2223 LIB_GETBUF(buf); 2224 len = LIB_BUFLENGTH; 2225 } 2226 if (len) { 2227 int slen = snprintf(buf, len, "%04u-%02u-%02uT%02u:%02u:%02u", 2228 cdp->year, cdp->month, cdp->monthday, 2229 cdp->hour, cdp->minute, cdp->second); 2230 if (slen < 0) 2231 *buf = '\0'; 2232 } 2233 return buf; 2234 } 2235 2236 /* -*-EOF-*- */ 2237