1 /* $NetBSD: ntp_calendar.c,v 1.11 2020/05/25 20:47:24 christos Exp $ */ 2 3 /* 4 * ntp_calendar.c - calendar and helper functions 5 * 6 * Written by Juergen Perlinger (perlinger@ntp.org) for the NTP project. 7 * The contents of 'html/copyright.html' apply. 8 * 9 * -------------------------------------------------------------------- 10 * Some notes on the implementation: 11 * 12 * Calendar algorithms thrive on the division operation, which is one of 13 * the slowest numerical operations in any CPU. What saves us here from 14 * abysmal performance is the fact that all divisions are divisions by 15 * constant numbers, and most compilers can do this by a multiplication 16 * operation. But this might not work when using the div/ldiv/lldiv 17 * function family, because many compilers are not able to do inline 18 * expansion of the code with following optimisation for the 19 * constant-divider case. 20 * 21 * Also div/ldiv/lldiv are defined in terms of int/long/longlong, which 22 * are inherently target dependent. Nothing that could not be cured with 23 * autoconf, but still a mess... 24 * 25 * Furthermore, we need floor division in many places. C either leaves 26 * the division behaviour undefined (< C99) or demands truncation to 27 * zero (>= C99), so additional steps are required to make sure the 28 * algorithms work. The {l,ll}div function family is requested to 29 * truncate towards zero, which is also the wrong direction for our 30 * purpose. 31 * 32 * For all this, all divisions by constant are coded manually, even when 33 * there is a joined div/mod operation: The optimiser should sort that 34 * out, if possible. Most of the calculations are done with unsigned 35 * types, explicitely using two's complement arithmetics where 36 * necessary. This minimises the dependecies to compiler and target, 37 * while still giving reasonable to good performance. 38 * 39 * The implementation uses a few tricks that exploit properties of the 40 * two's complement: Floor division on negative dividents can be 41 * executed by using the one's complement of the divident. One's 42 * complement can be easily created using XOR and a mask. 43 * 44 * Finally, check for overflow conditions is minimal. There are only two 45 * calculation steps in the whole calendar that potentially suffer from 46 * an internal overflow, and these are coded in a way that avoids 47 * it. All other functions do not suffer from internal overflow and 48 * simply return the result truncated to 32 bits. 49 */ 50 51 #include <config.h> 52 #include <sys/types.h> 53 54 #include "ntp_types.h" 55 #include "ntp_calendar.h" 56 #include "ntp_stdlib.h" 57 #include "ntp_fp.h" 58 #include "ntp_unixtime.h" 59 60 #include "ntpd.h" 61 #include "lib_strbuf.h" 62 63 /* For now, let's take the conservative approach: if the target property 64 * macros are not defined, check a few well-known compiler/architecture 65 * settings. Default is to assume that the representation of signed 66 * integers is unknown and shift-arithmetic-right is not available. 67 */ 68 #ifndef TARGET_HAS_2CPL 69 # if defined(__GNUC__) 70 # if defined(__i386__) || defined(__x86_64__) || defined(__arm__) 71 # define TARGET_HAS_2CPL 1 72 # else 73 # define TARGET_HAS_2CPL 0 74 # endif 75 # elif defined(_MSC_VER) 76 # if defined(_M_IX86) || defined(_M_X64) || defined(_M_ARM) 77 # define TARGET_HAS_2CPL 1 78 # else 79 # define TARGET_HAS_2CPL 0 80 # endif 81 # else 82 # define TARGET_HAS_2CPL 0 83 # endif 84 #endif 85 86 #ifndef TARGET_HAS_SAR 87 # define TARGET_HAS_SAR 0 88 #endif 89 90 #if !defined(HAVE_64BITREGS) && defined(UINT64_MAX) && (SIZE_MAX >= UINT64_MAX) 91 # define HAVE_64BITREGS 92 #endif 93 94 /* 95 *--------------------------------------------------------------------- 96 * replacing the 'time()' function 97 *--------------------------------------------------------------------- 98 */ 99 100 static systime_func_ptr systime_func = &time; 101 static inline time_t now(void); 102 103 104 systime_func_ptr 105 ntpcal_set_timefunc( 106 systime_func_ptr nfunc 107 ) 108 { 109 systime_func_ptr res; 110 111 res = systime_func; 112 if (NULL == nfunc) 113 nfunc = &time; 114 systime_func = nfunc; 115 116 return res; 117 } 118 119 120 static inline time_t 121 now(void) 122 { 123 return (*systime_func)(NULL); 124 } 125 126 /* 127 *--------------------------------------------------------------------- 128 * Get sign extension mask and unsigned 2cpl rep for a signed integer 129 *--------------------------------------------------------------------- 130 */ 131 132 static inline uint32_t 133 int32_sflag( 134 const int32_t v) 135 { 136 # if TARGET_HAS_2CPL && TARGET_HAS_SAR && SIZEOF_INT >= 4 137 138 /* Let's assume that shift is the fastest way to get the sign 139 * extension of of a signed integer. This might not always be 140 * true, though -- On 8bit CPUs or machines without barrel 141 * shifter this will kill the performance. So we make sure 142 * we do this only if 'int' has at least 4 bytes. 143 */ 144 return (uint32_t)(v >> 31); 145 146 # else 147 148 /* This should be a rather generic approach for getting a sign 149 * extension mask... 150 */ 151 return UINT32_C(0) - (uint32_t)(v < 0); 152 153 # endif 154 } 155 156 static inline int32_t 157 uint32_2cpl_to_int32( 158 const uint32_t vu) 159 { 160 int32_t v; 161 162 # if TARGET_HAS_2CPL 163 164 /* Just copy through the 32 bits from the unsigned value if 165 * we're on a two's complement target. 166 */ 167 v = (int32_t)vu; 168 169 # else 170 171 /* Convert to signed integer, making sure signed integer 172 * overflow cannot happen. Again, the optimiser might or might 173 * not find out that this is just a copy of 32 bits on a target 174 * with two's complement representation for signed integers. 175 */ 176 if (vu > INT32_MAX) 177 v = -(int32_t)(~vu) - 1; 178 else 179 v = (int32_t)vu; 180 181 # endif 182 183 return v; 184 } 185 186 /* 187 *--------------------------------------------------------------------- 188 * Convert between 'time_t' and 'vint64' 189 *--------------------------------------------------------------------- 190 */ 191 vint64 192 time_to_vint64( 193 const time_t * ptt 194 ) 195 { 196 vint64 res; 197 time_t tt; 198 199 tt = *ptt; 200 201 # if SIZEOF_TIME_T <= 4 202 203 res.D_s.hi = 0; 204 if (tt < 0) { 205 res.D_s.lo = (uint32_t)-tt; 206 M_NEG(res.D_s.hi, res.D_s.lo); 207 } else { 208 res.D_s.lo = (uint32_t)tt; 209 } 210 211 # elif defined(HAVE_INT64) 212 213 res.q_s = tt; 214 215 # else 216 /* 217 * shifting negative signed quantities is compiler-dependent, so 218 * we better avoid it and do it all manually. And shifting more 219 * than the width of a quantity is undefined. Also a don't do! 220 */ 221 if (tt < 0) { 222 tt = -tt; 223 res.D_s.lo = (uint32_t)tt; 224 res.D_s.hi = (uint32_t)(tt >> 32); 225 M_NEG(res.D_s.hi, res.D_s.lo); 226 } else { 227 res.D_s.lo = (uint32_t)tt; 228 res.D_s.hi = (uint32_t)(tt >> 32); 229 } 230 231 # endif 232 233 return res; 234 } 235 236 237 time_t 238 vint64_to_time( 239 const vint64 *tv 240 ) 241 { 242 time_t res; 243 244 # if SIZEOF_TIME_T <= 4 245 246 res = (time_t)tv->D_s.lo; 247 248 # elif defined(HAVE_INT64) 249 250 res = (time_t)tv->q_s; 251 252 # else 253 254 res = ((time_t)tv->d_s.hi << 32) | tv->D_s.lo; 255 256 # endif 257 258 return res; 259 } 260 261 /* 262 *--------------------------------------------------------------------- 263 * Get the build date & time 264 *--------------------------------------------------------------------- 265 */ 266 int 267 ntpcal_get_build_date( 268 struct calendar * jd 269 ) 270 { 271 /* The C standard tells us the format of '__DATE__': 272 * 273 * __DATE__ The date of translation of the preprocessing 274 * translation unit: a character string literal of the form "Mmm 275 * dd yyyy", where the names of the months are the same as those 276 * generated by the asctime function, and the first character of 277 * dd is a space character if the value is less than 10. If the 278 * date of translation is not available, an 279 * implementation-defined valid date shall be supplied. 280 * 281 * __TIME__ The time of translation of the preprocessing 282 * translation unit: a character string literal of the form 283 * "hh:mm:ss" as in the time generated by the asctime 284 * function. If the time of translation is not available, an 285 * implementation-defined valid time shall be supplied. 286 * 287 * Note that MSVC declares DATE and TIME to be in the local time 288 * zone, while neither the C standard nor the GCC docs make any 289 * statement about this. As a result, we may be +/-12hrs off 290 * UTC. But for practical purposes, this should not be a 291 * problem. 292 * 293 */ 294 # ifdef MKREPRO_DATE 295 static const char build[] = MKREPRO_TIME "/" MKREPRO_DATE; 296 # else 297 static const char build[] = __TIME__ "/" __DATE__; 298 # endif 299 static const char mlist[] = "JanFebMarAprMayJunJulAugSepOctNovDec"; 300 301 char monstr[4]; 302 const char * cp; 303 unsigned short hour, minute, second, day, year; 304 /* Note: The above quantities are used for sscanf 'hu' format, 305 * so using 'uint16_t' is contra-indicated! 306 */ 307 308 # ifdef DEBUG 309 static int ignore = 0; 310 # endif 311 312 ZERO(*jd); 313 jd->year = 1970; 314 jd->month = 1; 315 jd->monthday = 1; 316 317 # ifdef DEBUG 318 /* check environment if build date should be ignored */ 319 if (0 == ignore) { 320 const char * envstr; 321 envstr = getenv("NTPD_IGNORE_BUILD_DATE"); 322 ignore = 1 + (envstr && (!*envstr || !strcasecmp(envstr, "yes"))); 323 } 324 if (ignore > 1) 325 return FALSE; 326 # endif 327 328 if (6 == sscanf(build, "%hu:%hu:%hu/%3s %hu %hu", 329 &hour, &minute, &second, monstr, &day, &year)) { 330 cp = strstr(mlist, monstr); 331 if (NULL != cp) { 332 jd->year = year; 333 jd->month = (uint8_t)((cp - mlist) / 3 + 1); 334 jd->monthday = (uint8_t)day; 335 jd->hour = (uint8_t)hour; 336 jd->minute = (uint8_t)minute; 337 jd->second = (uint8_t)second; 338 339 return TRUE; 340 } 341 } 342 343 return FALSE; 344 } 345 346 347 /* 348 *--------------------------------------------------------------------- 349 * basic calendar stuff 350 *--------------------------------------------------------------------- 351 */ 352 353 /* 354 * Some notes on the terminology: 355 * 356 * We use the proleptic Gregorian calendar, which is the Gregorian 357 * calendar extended in both directions ad infinitum. This totally 358 * disregards the fact that this calendar was invented in 1582, and 359 * was adopted at various dates over the world; sometimes even after 360 * the start of the NTP epoch. 361 * 362 * Normally date parts are given as current cycles, while time parts 363 * are given as elapsed cycles: 364 * 365 * 1970-01-01/03:04:05 means 'IN the 1970st. year, IN the first month, 366 * ON the first day, with 3hrs, 4minutes and 5 seconds elapsed. 367 * 368 * The basic calculations for this calendar implementation deal with 369 * ELAPSED date units, which is the number of full years, full months 370 * and full days before a date: 1970-01-01 would be (1969, 0, 0) in 371 * that notation. 372 * 373 * To ease the numeric computations, month and day values outside the 374 * normal range are acceptable: 2001-03-00 will be treated as the day 375 * before 2001-03-01, 2000-13-32 will give the same result as 376 * 2001-02-01 and so on. 377 * 378 * 'rd' or 'RD' is used as an abbreviation for the latin 'rata die' 379 * (day number). This is the number of days elapsed since 0000-12-31 380 * in the proleptic Gregorian calendar. The begin of the Christian Era 381 * (0001-01-01) is RD(1). 382 */ 383 384 /* 385 * ==================================================================== 386 * 387 * General algorithmic stuff 388 * 389 * ==================================================================== 390 */ 391 392 /* 393 *--------------------------------------------------------------------- 394 * fast modulo 7 operations (floor/mathematical convention) 395 *--------------------------------------------------------------------- 396 */ 397 int 398 u32mod7( 399 uint32_t x 400 ) 401 { 402 /* This is a combination of tricks from "Hacker's Delight" with 403 * some modifications, like a multiplication that rounds up to 404 * drop the final adjustment stage. 405 * 406 * Do a partial reduction by digit sum to keep the value in the 407 * range permitted for the mul/shift stage. There are several 408 * possible and absolutely equivalent shift/mask combinations; 409 * this one is ARM-friendly because of a mask that fits into 16 410 * bit. 411 */ 412 x = (x >> 15) + (x & UINT32_C(0x7FFF)); 413 /* Take reminder as (mod 8) by mul/shift. Since the multiplier 414 * was calculated using ceil() instead of floor(), it skips the 415 * value '7' properly. 416 * M <- ceil(ldexp(8/7, 29)) 417 */ 418 return (int)((x * UINT32_C(0x24924925)) >> 29); 419 } 420 421 int 422 i32mod7( 423 int32_t x 424 ) 425 { 426 /* We add (2**32 - 2**32 % 7), which is (2**32 - 4), to negative 427 * numbers to map them into the postive range. Only the term '-4' 428 * survives, obviously. 429 */ 430 uint32_t ux = (uint32_t)x; 431 return u32mod7((x < 0) ? (ux - 4u) : ux); 432 } 433 434 uint32_t 435 i32fmod( 436 int32_t x, 437 uint32_t d 438 ) 439 { 440 uint32_t ux = (uint32_t)x; 441 uint32_t sf = UINT32_C(0) - (x < 0); 442 ux = (sf ^ ux ) % d; 443 return (d & sf) + (sf ^ ux); 444 } 445 446 /* 447 *--------------------------------------------------------------------- 448 * Do a periodic extension of 'value' around 'pivot' with a period of 449 * 'cycle'. 450 * 451 * The result 'res' is a number that holds to the following properties: 452 * 453 * 1) res MOD cycle == value MOD cycle 454 * 2) pivot <= res < pivot + cycle 455 * (replace </<= with >/>= for negative cycles) 456 * 457 * where 'MOD' denotes the modulo operator for FLOOR DIVISION, which 458 * is not the same as the '%' operator in C: C requires division to be 459 * a truncated division, where remainder and dividend have the same 460 * sign if the remainder is not zero, whereas floor division requires 461 * divider and modulus to have the same sign for a non-zero modulus. 462 * 463 * This function has some useful applications: 464 * 465 * + let Y be a calendar year and V a truncated 2-digit year: then 466 * periodic_extend(Y-50, V, 100) 467 * is the closest expansion of the truncated year with respect to 468 * the full year, that is a 4-digit year with a difference of less 469 * than 50 years to the year Y. ("century unfolding") 470 * 471 * + let T be a UN*X time stamp and V be seconds-of-day: then 472 * perodic_extend(T-43200, V, 86400) 473 * is a time stamp that has the same seconds-of-day as the input 474 * value, with an absolute difference to T of <= 12hrs. ("day 475 * unfolding") 476 * 477 * + Wherever you have a truncated periodic value and a non-truncated 478 * base value and you want to match them somehow... 479 * 480 * Basically, the function delivers 'pivot + (value - pivot) % cycle', 481 * but the implementation takes some pains to avoid internal signed 482 * integer overflows in the '(value - pivot) % cycle' part and adheres 483 * to the floor division convention. 484 * 485 * If 64bit scalars where available on all intended platforms, writing a 486 * version that uses 64 bit ops would be easy; writing a general 487 * division routine for 64bit ops on a platform that can only do 488 * 32/16bit divisions and is still performant is a bit more 489 * difficult. Since most usecases can be coded in a way that does only 490 * require the 32bit version a 64bit version is NOT provided here. 491 *--------------------------------------------------------------------- 492 */ 493 int32_t 494 ntpcal_periodic_extend( 495 int32_t pivot, 496 int32_t value, 497 int32_t cycle 498 ) 499 { 500 /* Implement a 4-quadrant modulus calculation by 2 2-quadrant 501 * branches, one for positive and one for negative dividers. 502 * Everything else can be handled by bit level logic and 503 * conditional one's complement arithmetic. By convention, we 504 * assume 505 * 506 * x % b == 0 if |b| < 2 507 * 508 * that is, we don't actually divide for cycles of -1,0,1 and 509 * return the pivot value in that case. 510 */ 511 uint32_t uv = (uint32_t)value; 512 uint32_t up = (uint32_t)pivot; 513 uint32_t uc, sf; 514 515 if (cycle > 1) 516 { 517 uc = (uint32_t)cycle; 518 sf = UINT32_C(0) - (value < pivot); 519 520 uv = sf ^ (uv - up); 521 uv %= uc; 522 pivot += (uc & sf) + (sf ^ uv); 523 } 524 else if (cycle < -1) 525 { 526 uc = ~(uint32_t)cycle + 1; 527 sf = UINT32_C(0) - (value > pivot); 528 529 uv = sf ^ (up - uv); 530 uv %= uc; 531 pivot -= (uc & sf) + (sf ^ uv); 532 } 533 return pivot; 534 } 535 536 /*--------------------------------------------------------------------- 537 * Note to the casual reader 538 * 539 * In the next two functions you will find (or would have found...) 540 * the expression 541 * 542 * res.Q_s -= 0x80000000; 543 * 544 * There was some ruckus about a possible programming error due to 545 * integer overflow and sign propagation. 546 * 547 * This assumption is based on a lack of understanding of the C 548 * standard. (Though this is admittedly not one of the most 'natural' 549 * aspects of the 'C' language and easily to get wrong.) 550 * 551 * see 552 * http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf 553 * "ISO/IEC 9899:201x Committee Draft — April 12, 2011" 554 * 6.4.4.1 Integer constants, clause 5 555 * 556 * why there is no sign extension/overflow problem here. 557 * 558 * But to ease the minds of the doubtful, I added back the 'u' qualifiers 559 * that somehow got lost over the last years. 560 */ 561 562 563 /* 564 *--------------------------------------------------------------------- 565 * Convert a timestamp in NTP scale to a 64bit seconds value in the UN*X 566 * scale with proper epoch unfolding around a given pivot or the current 567 * system time. This function happily accepts negative pivot values as 568 * timestamps before 1970-01-01, so be aware of possible trouble on 569 * platforms with 32bit 'time_t'! 570 * 571 * This is also a periodic extension, but since the cycle is 2^32 and 572 * the shift is 2^31, we can do some *very* fast math without explicit 573 * divisions. 574 *--------------------------------------------------------------------- 575 */ 576 vint64 577 ntpcal_ntp_to_time( 578 uint32_t ntp, 579 const time_t * pivot 580 ) 581 { 582 vint64 res; 583 584 # if defined(HAVE_INT64) 585 586 res.q_s = (pivot != NULL) 587 ? *pivot 588 : now(); 589 res.Q_s -= 0x80000000u; /* unshift of half range */ 590 ntp -= (uint32_t)JAN_1970; /* warp into UN*X domain */ 591 ntp -= res.D_s.lo; /* cycle difference */ 592 res.Q_s += (uint64_t)ntp; /* get expanded time */ 593 594 # else /* no 64bit scalars */ 595 596 time_t tmp; 597 598 tmp = (pivot != NULL) 599 ? *pivot 600 : now(); 601 res = time_to_vint64(&tmp); 602 M_SUB(res.D_s.hi, res.D_s.lo, 0, 0x80000000u); 603 ntp -= (uint32_t)JAN_1970; /* warp into UN*X domain */ 604 ntp -= res.D_s.lo; /* cycle difference */ 605 M_ADD(res.D_s.hi, res.D_s.lo, 0, ntp); 606 607 # endif /* no 64bit scalars */ 608 609 return res; 610 } 611 612 /* 613 *--------------------------------------------------------------------- 614 * Convert a timestamp in NTP scale to a 64bit seconds value in the NTP 615 * scale with proper epoch unfolding around a given pivot or the current 616 * system time. 617 * 618 * Note: The pivot must be given in the UN*X time domain! 619 * 620 * This is also a periodic extension, but since the cycle is 2^32 and 621 * the shift is 2^31, we can do some *very* fast math without explicit 622 * divisions. 623 *--------------------------------------------------------------------- 624 */ 625 vint64 626 ntpcal_ntp_to_ntp( 627 uint32_t ntp, 628 const time_t *pivot 629 ) 630 { 631 vint64 res; 632 633 # if defined(HAVE_INT64) 634 635 res.q_s = (pivot) 636 ? *pivot 637 : now(); 638 res.Q_s -= 0x80000000u; /* unshift of half range */ 639 res.Q_s += (uint32_t)JAN_1970; /* warp into NTP domain */ 640 ntp -= res.D_s.lo; /* cycle difference */ 641 res.Q_s += (uint64_t)ntp; /* get expanded time */ 642 643 # else /* no 64bit scalars */ 644 645 time_t tmp; 646 647 tmp = (pivot) 648 ? *pivot 649 : now(); 650 res = time_to_vint64(&tmp); 651 M_SUB(res.D_s.hi, res.D_s.lo, 0, 0x80000000u); 652 M_ADD(res.D_s.hi, res.D_s.lo, 0, (uint32_t)JAN_1970);/*into NTP */ 653 ntp -= res.D_s.lo; /* cycle difference */ 654 M_ADD(res.D_s.hi, res.D_s.lo, 0, ntp); 655 656 # endif /* no 64bit scalars */ 657 658 return res; 659 } 660 661 662 /* 663 * ==================================================================== 664 * 665 * Splitting values to composite entities 666 * 667 * ==================================================================== 668 */ 669 670 /* 671 *--------------------------------------------------------------------- 672 * Split a 64bit seconds value into elapsed days in 'res.hi' and 673 * elapsed seconds since midnight in 'res.lo' using explicit floor 674 * division. This function happily accepts negative time values as 675 * timestamps before the respective epoch start. 676 *--------------------------------------------------------------------- 677 */ 678 ntpcal_split 679 ntpcal_daysplit( 680 const vint64 *ts 681 ) 682 { 683 ntpcal_split res; 684 uint32_t Q, R; 685 686 # if defined(HAVE_64BITREGS) 687 688 /* Assume we have 64bit registers an can do a divison by 689 * constant reasonably fast using the one's complement trick.. 690 */ 691 uint64_t sf64 = (uint64_t)-(ts->q_s < 0); 692 Q = (uint32_t)(sf64 ^ ((sf64 ^ ts->Q_s) / SECSPERDAY)); 693 R = (uint32_t)(ts->Q_s - Q * SECSPERDAY); 694 695 # elif defined(UINT64_MAX) && !defined(__arm__) 696 697 /* We rely on the compiler to do efficient 64bit divisions as 698 * good as possible. Which might or might not be true. At least 699 * for ARM CPUs, the sum-by-digit code in the next section is 700 * faster for many compilers. (This might change over time, but 701 * the 64bit-by-32bit division will never outperform the exact 702 * division by a substantial factor....) 703 */ 704 if (ts->q_s < 0) 705 Q = ~(uint32_t)(~ts->Q_s / SECSPERDAY); 706 else 707 Q = (uint32_t)( ts->Q_s / SECSPERDAY); 708 R = ts->D_s.lo - Q * SECSPERDAY; 709 710 # else 711 712 /* We don't have 64bit regs. That hurts a bit. 713 * 714 * Here we use a mean trick to get away with just one explicit 715 * modulo operation and pure 32bit ops. 716 * 717 * Remember: 86400 <--> 128 * 675 718 * 719 * So we discard the lowest 7 bit and do an exact division by 720 * 675, modulo 2**32. 721 * 722 * First we shift out the lower 7 bits. 723 * 724 * Then we use a digit-wise pseudo-reduction, where a 'digit' is 725 * actually a 16-bit group. This is followed by a full reduction 726 * with a 'true' division step. This yields the modulus of the 727 * full 64bit value. The sign bit gets some extra treatment. 728 * 729 * Then we decrement the lower limb by that modulus, so it is 730 * exactly divisible by 675. [*] 731 * 732 * Then we multiply with the modular inverse of 675 (mod 2**32) 733 * and voila, we have the result. 734 * 735 * Special Thanks to Henry S. Warren and his "Hacker's delight" 736 * for giving that idea. 737 * 738 * (Note[*]: that's not the full truth. We would have to 739 * subtract the modulus from the full 64 bit number to get a 740 * number that is divisible by 675. But since we use the 741 * multiplicative inverse (mod 2**32) there's no reason to carry 742 * the subtraction into the upper bits!) 743 */ 744 uint32_t al = ts->D_s.lo; 745 uint32_t ah = ts->D_s.hi; 746 747 /* shift out the lower 7 bits, smash sign bit */ 748 al = (al >> 7) | (ah << 25); 749 ah = (ah >> 7) & 0x00FFFFFFu; 750 751 R = (ts->d_s.hi < 0) ? 239 : 0;/* sign bit value */ 752 R += (al & 0xFFFF); 753 R += (al >> 16 ) * 61u; /* 2**16 % 675 */ 754 R += (ah & 0xFFFF) * 346u; /* 2**32 % 675 */ 755 R += (ah >> 16 ) * 181u; /* 2**48 % 675 */ 756 R %= 675u; /* final reduction */ 757 Q = (al - R) * 0x2D21C10Bu; /* modinv(675, 2**32) */ 758 R = (R << 7) | (ts->d_s.lo & 0x07F); 759 760 # endif 761 762 res.hi = uint32_2cpl_to_int32(Q); 763 res.lo = R; 764 765 return res; 766 } 767 768 /* 769 *--------------------------------------------------------------------- 770 * Split a 64bit seconds value into elapsed weeks in 'res.hi' and 771 * elapsed seconds since week start in 'res.lo' using explicit floor 772 * division. This function happily accepts negative time values as 773 * timestamps before the respective epoch start. 774 *--------------------------------------------------------------------- 775 */ 776 ntpcal_split 777 ntpcal_weeksplit( 778 const vint64 *ts 779 ) 780 { 781 ntpcal_split res; 782 uint32_t Q, R; 783 784 /* This is a very close relative to the day split function; for 785 * details, see there! 786 */ 787 788 # if defined(HAVE_64BITREGS) 789 790 uint64_t sf64 = (uint64_t)-(ts->q_s < 0); 791 Q = (uint32_t)(sf64 ^ ((sf64 ^ ts->Q_s) / SECSPERWEEK)); 792 R = (uint32_t)(ts->Q_s - Q * SECSPERWEEK); 793 794 # elif defined(UINT64_MAX) && !defined(__arm__) 795 796 if (ts->q_s < 0) 797 Q = ~(uint32_t)(~ts->Q_s / SECSPERWEEK); 798 else 799 Q = (uint32_t)( ts->Q_s / SECSPERWEEK); 800 R = ts->D_s.lo - Q * SECSPERWEEK; 801 802 # else 803 804 /* Remember: 7*86400 <--> 604800 <--> 128 * 4725 */ 805 uint32_t al = ts->D_s.lo; 806 uint32_t ah = ts->D_s.hi; 807 808 al = (al >> 7) | (ah << 25); 809 ah = (ah >> 7) & 0x00FFFFFF; 810 811 R = (ts->d_s.hi < 0) ? 2264 : 0;/* sign bit value */ 812 R += (al & 0xFFFF); 813 R += (al >> 16 ) * 4111u; /* 2**16 % 4725 */ 814 R += (ah & 0xFFFF) * 3721u; /* 2**32 % 4725 */ 815 R += (ah >> 16 ) * 2206u; /* 2**48 % 4725 */ 816 R %= 4725u; /* final reduction */ 817 Q = (al - R) * 0x98BBADDDu; /* modinv(4725, 2**32) */ 818 R = (R << 7) | (ts->d_s.lo & 0x07F); 819 820 # endif 821 822 res.hi = uint32_2cpl_to_int32(Q); 823 res.lo = R; 824 825 return res; 826 } 827 828 /* 829 *--------------------------------------------------------------------- 830 * Split a 32bit seconds value into h/m/s and excessive days. This 831 * function happily accepts negative time values as timestamps before 832 * midnight. 833 *--------------------------------------------------------------------- 834 */ 835 static int32_t 836 priv_timesplit( 837 int32_t split[3], 838 int32_t ts 839 ) 840 { 841 /* Do 3 chained floor divisions by positive constants, using the 842 * one's complement trick and factoring out the intermediate XOR 843 * ops to reduce the number of operations. 844 */ 845 uint32_t us, um, uh, ud, sf32; 846 847 sf32 = int32_sflag(ts); 848 849 us = (uint32_t)ts; 850 um = (sf32 ^ us) / SECSPERMIN; 851 uh = um / MINSPERHR; 852 ud = uh / HRSPERDAY; 853 854 um ^= sf32; 855 uh ^= sf32; 856 ud ^= sf32; 857 858 split[0] = (int32_t)(uh - ud * HRSPERDAY ); 859 split[1] = (int32_t)(um - uh * MINSPERHR ); 860 split[2] = (int32_t)(us - um * SECSPERMIN); 861 862 return uint32_2cpl_to_int32(ud); 863 } 864 865 /* 866 *--------------------------------------------------------------------- 867 * Given the number of elapsed days in the calendar era, split this 868 * number into the number of elapsed years in 'res.hi' and the number 869 * of elapsed days of that year in 'res.lo'. 870 * 871 * if 'isleapyear' is not NULL, it will receive an integer that is 0 for 872 * regular years and a non-zero value for leap years. 873 *--------------------------------------------------------------------- 874 */ 875 ntpcal_split 876 ntpcal_split_eradays( 877 int32_t days, 878 int *isleapyear 879 ) 880 { 881 /* Use the fast cycle split algorithm here, to calculate the 882 * centuries and years in a century with one division each. This 883 * reduces the number of division operations to two, but is 884 * susceptible to internal range overflow. We take some extra 885 * steps to avoid the gap. 886 */ 887 ntpcal_split res; 888 int32_t n100, n001; /* calendar year cycles */ 889 uint32_t uday, Q; 890 891 /* split off centuries first 892 * 893 * We want to execute '(days * 4 + 3) /% 146097' under floor 894 * division rules in the first step. Well, actually we want to 895 * calculate 'floor((days + 0.75) / 36524.25)', but we want to 896 * do it in scaled integer calculation. 897 */ 898 # if defined(HAVE_64BITREGS) 899 900 /* not too complicated with an intermediate 64bit value */ 901 uint64_t ud64, sf64; 902 ud64 = ((uint64_t)days << 2) | 3u; 903 sf64 = (uint64_t)-(days < 0); 904 Q = (uint32_t)(sf64 ^ ((sf64 ^ ud64) / GREGORIAN_CYCLE_DAYS)); 905 uday = (uint32_t)(ud64 - Q * GREGORIAN_CYCLE_DAYS); 906 n100 = uint32_2cpl_to_int32(Q); 907 908 # else 909 910 /* '4*days+3' suffers from range overflow when going to the 911 * limits. We solve this by doing an exact division (mod 2^32) 912 * after caclulating the remainder first. 913 * 914 * We start with a partial reduction by digit sums, extracting 915 * the upper bits from the original value before they get lost 916 * by scaling, and do one full division step to get the true 917 * remainder. Then a final multiplication with the 918 * multiplicative inverse of 146097 (mod 2^32) gives us the full 919 * quotient. 920 * 921 * (-2^33) % 146097 --> 130717 : the sign bit value 922 * ( 2^20) % 146097 --> 25897 : the upper digit value 923 * modinv(146097, 2^32) --> 660721233 : the inverse 924 */ 925 uint32_t ux = ((uint32_t)days << 2) | 3; 926 uday = (days < 0) ? 130717u : 0u; /* sign dgt */ 927 uday += ((days >> 18) & 0x01FFFu) * 25897u; /* hi dgt (src!) */ 928 uday += (ux & 0xFFFFFu); /* lo dgt */ 929 uday %= GREGORIAN_CYCLE_DAYS; /* full reduction */ 930 Q = (ux - uday) * 660721233u; /* exact div */ 931 n100 = uint32_2cpl_to_int32(Q); 932 933 # endif 934 935 /* Split off years in century -- days >= 0 here, and we're far 936 * away from integer overflow trouble now. */ 937 uday |= 3; 938 n001 = uday / GREGORIAN_NORMAL_LEAP_CYCLE_DAYS; 939 uday -= n001 * GREGORIAN_NORMAL_LEAP_CYCLE_DAYS; 940 941 /* Assemble the year and day in year */ 942 res.hi = n100 * 100 + n001; 943 res.lo = uday / 4u; 944 945 /* Possibly set the leap year flag */ 946 if (isleapyear) { 947 uint32_t tc = (uint32_t)n100 + 1; 948 uint32_t ty = (uint32_t)n001 + 1; 949 *isleapyear = !(ty & 3) 950 && ((ty != 100) || !(tc & 3)); 951 } 952 return res; 953 } 954 955 /* 956 *--------------------------------------------------------------------- 957 * Given a number of elapsed days in a year and a leap year indicator, 958 * split the number of elapsed days into the number of elapsed months in 959 * 'res.hi' and the number of elapsed days of that month in 'res.lo'. 960 * 961 * This function will fail and return {-1,-1} if the number of elapsed 962 * days is not in the valid range! 963 *--------------------------------------------------------------------- 964 */ 965 ntpcal_split 966 ntpcal_split_yeardays( 967 int32_t eyd, 968 int isleap 969 ) 970 { 971 /* Use the unshifted-year, February-with-30-days approach here. 972 * Fractional interpolations are used in both directions, with 973 * the smallest power-of-two divider to avoid any true division. 974 */ 975 ntpcal_split res = {-1, -1}; 976 977 /* convert 'isleap' to number of defective days */ 978 isleap = 1 + !isleap; 979 /* adjust for February of 30 nominal days */ 980 if (eyd >= 61 - isleap) 981 eyd += isleap; 982 /* if in range, convert to months and days in month */ 983 if (eyd >= 0 && eyd < 367) { 984 res.hi = (eyd * 67 + 32) >> 11; 985 res.lo = eyd - ((489 * res.hi + 8) >> 4); 986 } 987 988 return res; 989 } 990 991 /* 992 *--------------------------------------------------------------------- 993 * Convert a RD into the date part of a 'struct calendar'. 994 *--------------------------------------------------------------------- 995 */ 996 int 997 ntpcal_rd_to_date( 998 struct calendar *jd, 999 int32_t rd 1000 ) 1001 { 1002 ntpcal_split split; 1003 int leapy; 1004 u_int ymask; 1005 1006 /* Get day-of-week first. It's simply the RD (mod 7)... */ 1007 jd->weekday = i32mod7(rd); 1008 1009 split = ntpcal_split_eradays(rd - 1, &leapy); 1010 /* Get year and day-of-year, with overflow check. If any of the 1011 * upper 16 bits is set after shifting to unity-based years, we 1012 * will have an overflow when converting to an unsigned 16bit 1013 * year. Shifting to the right is OK here, since it does not 1014 * matter if the shift is logic or arithmetic. 1015 */ 1016 split.hi += 1; 1017 ymask = 0u - ((split.hi >> 16) == 0); 1018 jd->year = (uint16_t)(split.hi & ymask); 1019 jd->yearday = (uint16_t)split.lo + 1; 1020 1021 /* convert to month and mday */ 1022 split = ntpcal_split_yeardays(split.lo, leapy); 1023 jd->month = (uint8_t)split.hi + 1; 1024 jd->monthday = (uint8_t)split.lo + 1; 1025 1026 return ymask ? leapy : -1; 1027 } 1028 1029 /* 1030 *--------------------------------------------------------------------- 1031 * Convert a RD into the date part of a 'struct tm'. 1032 *--------------------------------------------------------------------- 1033 */ 1034 int 1035 ntpcal_rd_to_tm( 1036 struct tm *utm, 1037 int32_t rd 1038 ) 1039 { 1040 ntpcal_split split; 1041 int leapy; 1042 1043 /* get day-of-week first */ 1044 utm->tm_wday = i32mod7(rd); 1045 1046 /* get year and day-of-year */ 1047 split = ntpcal_split_eradays(rd - 1, &leapy); 1048 utm->tm_year = split.hi - 1899; 1049 utm->tm_yday = split.lo; /* 0-based */ 1050 1051 /* convert to month and mday */ 1052 split = ntpcal_split_yeardays(split.lo, leapy); 1053 utm->tm_mon = split.hi; /* 0-based */ 1054 utm->tm_mday = split.lo + 1; /* 1-based */ 1055 1056 return leapy; 1057 } 1058 1059 /* 1060 *--------------------------------------------------------------------- 1061 * Take a value of seconds since midnight and split it into hhmmss in a 1062 * 'struct calendar'. 1063 *--------------------------------------------------------------------- 1064 */ 1065 int32_t 1066 ntpcal_daysec_to_date( 1067 struct calendar *jd, 1068 int32_t sec 1069 ) 1070 { 1071 int32_t days; 1072 int ts[3]; 1073 1074 days = priv_timesplit(ts, sec); 1075 jd->hour = (uint8_t)ts[0]; 1076 jd->minute = (uint8_t)ts[1]; 1077 jd->second = (uint8_t)ts[2]; 1078 1079 return days; 1080 } 1081 1082 /* 1083 *--------------------------------------------------------------------- 1084 * Take a value of seconds since midnight and split it into hhmmss in a 1085 * 'struct tm'. 1086 *--------------------------------------------------------------------- 1087 */ 1088 int32_t 1089 ntpcal_daysec_to_tm( 1090 struct tm *utm, 1091 int32_t sec 1092 ) 1093 { 1094 int32_t days; 1095 int32_t ts[3]; 1096 1097 days = priv_timesplit(ts, sec); 1098 utm->tm_hour = ts[0]; 1099 utm->tm_min = ts[1]; 1100 utm->tm_sec = ts[2]; 1101 1102 return days; 1103 } 1104 1105 /* 1106 *--------------------------------------------------------------------- 1107 * take a split representation for day/second-of-day and day offset 1108 * and convert it to a 'struct calendar'. The seconds will be normalised 1109 * into the range of a day, and the day will be adjusted accordingly. 1110 * 1111 * returns >0 if the result is in a leap year, 0 if in a regular 1112 * year and <0 if the result did not fit into the calendar struct. 1113 *--------------------------------------------------------------------- 1114 */ 1115 int 1116 ntpcal_daysplit_to_date( 1117 struct calendar *jd, 1118 const ntpcal_split *ds, 1119 int32_t dof 1120 ) 1121 { 1122 dof += ntpcal_daysec_to_date(jd, ds->lo); 1123 return ntpcal_rd_to_date(jd, ds->hi + dof); 1124 } 1125 1126 /* 1127 *--------------------------------------------------------------------- 1128 * take a split representation for day/second-of-day and day offset 1129 * and convert it to a 'struct tm'. The seconds will be normalised 1130 * into the range of a day, and the day will be adjusted accordingly. 1131 * 1132 * returns 1 if the result is in a leap year and zero if in a regular 1133 * year. 1134 *--------------------------------------------------------------------- 1135 */ 1136 int 1137 ntpcal_daysplit_to_tm( 1138 struct tm *utm, 1139 const ntpcal_split *ds , 1140 int32_t dof 1141 ) 1142 { 1143 dof += ntpcal_daysec_to_tm(utm, ds->lo); 1144 1145 return ntpcal_rd_to_tm(utm, ds->hi + dof); 1146 } 1147 1148 /* 1149 *--------------------------------------------------------------------- 1150 * Take a UN*X time and convert to a calendar structure. 1151 *--------------------------------------------------------------------- 1152 */ 1153 int 1154 ntpcal_time_to_date( 1155 struct calendar *jd, 1156 const vint64 *ts 1157 ) 1158 { 1159 ntpcal_split ds; 1160 1161 ds = ntpcal_daysplit(ts); 1162 ds.hi += ntpcal_daysec_to_date(jd, ds.lo); 1163 ds.hi += DAY_UNIX_STARTS; 1164 1165 return ntpcal_rd_to_date(jd, ds.hi); 1166 } 1167 1168 1169 /* 1170 * ==================================================================== 1171 * 1172 * merging composite entities 1173 * 1174 * ==================================================================== 1175 */ 1176 1177 #if !defined(HAVE_INT64) 1178 /* multiplication helper. Seconds in days and weeks are multiples of 128, 1179 * and without that factor fit well into 16 bit. So a multiplication 1180 * of 32bit by 16bit and some shifting can be used on pure 32bit machines 1181 * with compilers that do not support 64bit integers. 1182 * 1183 * Calculate ( hi * mul * 128 ) + lo 1184 */ 1185 static vint64 1186 _dwjoin( 1187 uint16_t mul, 1188 int32_t hi, 1189 int32_t lo 1190 ) 1191 { 1192 vint64 res; 1193 uint32_t p1, p2, sf; 1194 1195 /* get sign flag and absolute value of 'hi' in p1 */ 1196 sf = (uint32_t)-(hi < 0); 1197 p1 = ((uint32_t)hi + sf) ^ sf; 1198 1199 /* assemble major units: res <- |hi| * mul */ 1200 res.D_s.lo = (p1 & 0xFFFF) * mul; 1201 res.D_s.hi = 0; 1202 p1 = (p1 >> 16) * mul; 1203 p2 = p1 >> 16; 1204 p1 = p1 << 16; 1205 M_ADD(res.D_s.hi, res.D_s.lo, p2, p1); 1206 1207 /* mul by 128, using shift: res <-- res << 7 */ 1208 res.D_s.hi = (res.D_s.hi << 7) | (res.D_s.lo >> 25); 1209 res.D_s.lo = (res.D_s.lo << 7); 1210 1211 /* fix up sign: res <-- (res + [sf|sf]) ^ [sf|sf] */ 1212 M_ADD(res.D_s.hi, res.D_s.lo, sf, sf); 1213 res.D_s.lo ^= sf; 1214 res.D_s.hi ^= sf; 1215 1216 /* properly add seconds: res <-- res + [sx(lo)|lo] */ 1217 p2 = (uint32_t)-(lo < 0); 1218 p1 = (uint32_t)lo; 1219 M_ADD(res.D_s.hi, res.D_s.lo, p2, p1); 1220 return res; 1221 } 1222 #endif 1223 1224 /* 1225 *--------------------------------------------------------------------- 1226 * Merge a number of days and a number of seconds into seconds, 1227 * expressed in 64 bits to avoid overflow. 1228 *--------------------------------------------------------------------- 1229 */ 1230 vint64 1231 ntpcal_dayjoin( 1232 int32_t days, 1233 int32_t secs 1234 ) 1235 { 1236 vint64 res; 1237 1238 # if defined(HAVE_INT64) 1239 1240 res.q_s = days; 1241 res.q_s *= SECSPERDAY; 1242 res.q_s += secs; 1243 1244 # else 1245 1246 res = _dwjoin(675, days, secs); 1247 1248 # endif 1249 1250 return res; 1251 } 1252 1253 /* 1254 *--------------------------------------------------------------------- 1255 * Merge a number of weeks and a number of seconds into seconds, 1256 * expressed in 64 bits to avoid overflow. 1257 *--------------------------------------------------------------------- 1258 */ 1259 vint64 1260 ntpcal_weekjoin( 1261 int32_t week, 1262 int32_t secs 1263 ) 1264 { 1265 vint64 res; 1266 1267 # if defined(HAVE_INT64) 1268 1269 res.q_s = week; 1270 res.q_s *= SECSPERWEEK; 1271 res.q_s += secs; 1272 1273 # else 1274 1275 res = _dwjoin(4725, week, secs); 1276 1277 # endif 1278 1279 return res; 1280 } 1281 1282 /* 1283 *--------------------------------------------------------------------- 1284 * get leap years since epoch in elapsed years 1285 *--------------------------------------------------------------------- 1286 */ 1287 int32_t 1288 ntpcal_leapyears_in_years( 1289 int32_t years 1290 ) 1291 { 1292 /* We use the in-out-in algorithm here, using the one's 1293 * complement division trick for negative numbers. The chained 1294 * division sequence by 4/25/4 gives the compiler the chance to 1295 * get away with only one true division and doing shifts otherwise. 1296 */ 1297 1298 uint32_t sf32, sum, uyear; 1299 1300 sf32 = int32_sflag(years); 1301 uyear = (uint32_t)years; 1302 uyear ^= sf32; 1303 1304 sum = (uyear /= 4u); /* 4yr rule --> IN */ 1305 sum -= (uyear /= 25u); /* 100yr rule --> OUT */ 1306 sum += (uyear /= 4u); /* 400yr rule --> IN */ 1307 1308 /* Thanks to the alternation of IN/OUT/IN we can do the sum 1309 * directly and have a single one's complement operation 1310 * here. (Only if the years are negative, of course.) Otherwise 1311 * the one's complement would have to be done when 1312 * adding/subtracting the terms. 1313 */ 1314 return uint32_2cpl_to_int32(sf32 ^ sum); 1315 } 1316 1317 /* 1318 *--------------------------------------------------------------------- 1319 * Convert elapsed years in Era into elapsed days in Era. 1320 *--------------------------------------------------------------------- 1321 */ 1322 int32_t 1323 ntpcal_days_in_years( 1324 int32_t years 1325 ) 1326 { 1327 return years * DAYSPERYEAR + ntpcal_leapyears_in_years(years); 1328 } 1329 1330 /* 1331 *--------------------------------------------------------------------- 1332 * Convert a number of elapsed month in a year into elapsed days in year. 1333 * 1334 * The month will be normalized, and 'res.hi' will contain the 1335 * excessive years that must be considered when converting the years, 1336 * while 'res.lo' will contain the number of elapsed days since start 1337 * of the year. 1338 * 1339 * This code uses the shifted-month-approach to convert month to days, 1340 * because then there is no need to have explicit leap year 1341 * information. The slight disadvantage is that for most month values 1342 * the result is a negative value, and the year excess is one; the 1343 * conversion is then simply based on the start of the following year. 1344 *--------------------------------------------------------------------- 1345 */ 1346 ntpcal_split 1347 ntpcal_days_in_months( 1348 int32_t m 1349 ) 1350 { 1351 ntpcal_split res; 1352 1353 /* Add ten months with proper year adjustment. */ 1354 if (m < 2) { 1355 res.lo = m + 10; 1356 res.hi = 0; 1357 } else { 1358 res.lo = m - 2; 1359 res.hi = 1; 1360 } 1361 1362 /* Possibly normalise by floor division. This does not hapen for 1363 * input in normal range. */ 1364 if (res.lo < 0 || res.lo >= 12) { 1365 uint32_t mu, Q, sf32; 1366 sf32 = int32_sflag(res.lo); 1367 mu = (uint32_t)res.lo; 1368 Q = sf32 ^ ((sf32 ^ mu) / 12u); 1369 1370 res.hi += uint32_2cpl_to_int32(Q); 1371 res.lo = mu - Q * 12u; 1372 } 1373 1374 /* Get cummulated days in year with unshift. Use the fractional 1375 * interpolation with smallest possible power of two in the 1376 * divider. 1377 */ 1378 res.lo = ((res.lo * 979 + 16) >> 5) - 306; 1379 1380 return res; 1381 } 1382 1383 /* 1384 *--------------------------------------------------------------------- 1385 * Convert ELAPSED years/months/days of gregorian calendar to elapsed 1386 * days in Gregorian epoch. 1387 * 1388 * If you want to convert years and days-of-year, just give a month of 1389 * zero. 1390 *--------------------------------------------------------------------- 1391 */ 1392 int32_t 1393 ntpcal_edate_to_eradays( 1394 int32_t years, 1395 int32_t mons, 1396 int32_t mdays 1397 ) 1398 { 1399 ntpcal_split tmp; 1400 int32_t res; 1401 1402 if (mons) { 1403 tmp = ntpcal_days_in_months(mons); 1404 res = ntpcal_days_in_years(years + tmp.hi) + tmp.lo; 1405 } else 1406 res = ntpcal_days_in_years(years); 1407 res += mdays; 1408 1409 return res; 1410 } 1411 1412 /* 1413 *--------------------------------------------------------------------- 1414 * Convert ELAPSED years/months/days of gregorian calendar to elapsed 1415 * days in year. 1416 * 1417 * Note: This will give the true difference to the start of the given 1418 * year, even if months & days are off-scale. 1419 *--------------------------------------------------------------------- 1420 */ 1421 int32_t 1422 ntpcal_edate_to_yeardays( 1423 int32_t years, 1424 int32_t mons, 1425 int32_t mdays 1426 ) 1427 { 1428 ntpcal_split tmp; 1429 1430 if (0 <= mons && mons < 12) { 1431 if (mons >= 2) 1432 mdays -= 2 - is_leapyear(years+1); 1433 mdays += (489 * mons + 8) >> 4; 1434 } else { 1435 tmp = ntpcal_days_in_months(mons); 1436 mdays += tmp.lo 1437 + ntpcal_days_in_years(years + tmp.hi) 1438 - ntpcal_days_in_years(years); 1439 } 1440 1441 return mdays; 1442 } 1443 1444 /* 1445 *--------------------------------------------------------------------- 1446 * Convert elapsed days and the hour/minute/second information into 1447 * total seconds. 1448 * 1449 * If 'isvalid' is not NULL, do a range check on the time specification 1450 * and tell if the time input is in the normal range, permitting for a 1451 * single leapsecond. 1452 *--------------------------------------------------------------------- 1453 */ 1454 int32_t 1455 ntpcal_etime_to_seconds( 1456 int32_t hours, 1457 int32_t minutes, 1458 int32_t seconds 1459 ) 1460 { 1461 int32_t res; 1462 1463 res = (hours * MINSPERHR + minutes) * SECSPERMIN + seconds; 1464 1465 return res; 1466 } 1467 1468 /* 1469 *--------------------------------------------------------------------- 1470 * Convert the date part of a 'struct tm' (that is, year, month, 1471 * day-of-month) into the RD of that day. 1472 *--------------------------------------------------------------------- 1473 */ 1474 int32_t 1475 ntpcal_tm_to_rd( 1476 const struct tm *utm 1477 ) 1478 { 1479 return ntpcal_edate_to_eradays(utm->tm_year + 1899, 1480 utm->tm_mon, 1481 utm->tm_mday - 1) + 1; 1482 } 1483 1484 /* 1485 *--------------------------------------------------------------------- 1486 * Convert the date part of a 'struct calendar' (that is, year, month, 1487 * day-of-month) into the RD of that day. 1488 *--------------------------------------------------------------------- 1489 */ 1490 int32_t 1491 ntpcal_date_to_rd( 1492 const struct calendar *jd 1493 ) 1494 { 1495 return ntpcal_edate_to_eradays((int32_t)jd->year - 1, 1496 (int32_t)jd->month - 1, 1497 (int32_t)jd->monthday - 1) + 1; 1498 } 1499 1500 /* 1501 *--------------------------------------------------------------------- 1502 * convert a year number to rata die of year start 1503 *--------------------------------------------------------------------- 1504 */ 1505 int32_t 1506 ntpcal_year_to_ystart( 1507 int32_t year 1508 ) 1509 { 1510 return ntpcal_days_in_years(year - 1) + 1; 1511 } 1512 1513 /* 1514 *--------------------------------------------------------------------- 1515 * For a given RD, get the RD of the associated year start, 1516 * that is, the RD of the last January,1st on or before that day. 1517 *--------------------------------------------------------------------- 1518 */ 1519 int32_t 1520 ntpcal_rd_to_ystart( 1521 int32_t rd 1522 ) 1523 { 1524 /* 1525 * Rather simple exercise: split the day number into elapsed 1526 * years and elapsed days, then remove the elapsed days from the 1527 * input value. Nice'n sweet... 1528 */ 1529 return rd - ntpcal_split_eradays(rd - 1, NULL).lo; 1530 } 1531 1532 /* 1533 *--------------------------------------------------------------------- 1534 * For a given RD, get the RD of the associated month start. 1535 *--------------------------------------------------------------------- 1536 */ 1537 int32_t 1538 ntpcal_rd_to_mstart( 1539 int32_t rd 1540 ) 1541 { 1542 ntpcal_split split; 1543 int leaps; 1544 1545 split = ntpcal_split_eradays(rd - 1, &leaps); 1546 split = ntpcal_split_yeardays(split.lo, leaps); 1547 1548 return rd - split.lo; 1549 } 1550 1551 /* 1552 *--------------------------------------------------------------------- 1553 * take a 'struct calendar' and get the seconds-of-day from it. 1554 *--------------------------------------------------------------------- 1555 */ 1556 int32_t 1557 ntpcal_date_to_daysec( 1558 const struct calendar *jd 1559 ) 1560 { 1561 return ntpcal_etime_to_seconds(jd->hour, jd->minute, 1562 jd->second); 1563 } 1564 1565 /* 1566 *--------------------------------------------------------------------- 1567 * take a 'struct tm' and get the seconds-of-day from it. 1568 *--------------------------------------------------------------------- 1569 */ 1570 int32_t 1571 ntpcal_tm_to_daysec( 1572 const struct tm *utm 1573 ) 1574 { 1575 return ntpcal_etime_to_seconds(utm->tm_hour, utm->tm_min, 1576 utm->tm_sec); 1577 } 1578 1579 /* 1580 *--------------------------------------------------------------------- 1581 * take a 'struct calendar' and convert it to a 'time_t' 1582 *--------------------------------------------------------------------- 1583 */ 1584 time_t 1585 ntpcal_date_to_time( 1586 const struct calendar *jd 1587 ) 1588 { 1589 vint64 join; 1590 int32_t days, secs; 1591 1592 days = ntpcal_date_to_rd(jd) - DAY_UNIX_STARTS; 1593 secs = ntpcal_date_to_daysec(jd); 1594 join = ntpcal_dayjoin(days, secs); 1595 1596 return vint64_to_time(&join); 1597 } 1598 1599 1600 /* 1601 * ==================================================================== 1602 * 1603 * extended and unchecked variants of caljulian/caltontp 1604 * 1605 * ==================================================================== 1606 */ 1607 int 1608 ntpcal_ntp64_to_date( 1609 struct calendar *jd, 1610 const vint64 *ntp 1611 ) 1612 { 1613 ntpcal_split ds; 1614 1615 ds = ntpcal_daysplit(ntp); 1616 ds.hi += ntpcal_daysec_to_date(jd, ds.lo); 1617 1618 return ntpcal_rd_to_date(jd, ds.hi + DAY_NTP_STARTS); 1619 } 1620 1621 int 1622 ntpcal_ntp_to_date( 1623 struct calendar *jd, 1624 uint32_t ntp, 1625 const time_t *piv 1626 ) 1627 { 1628 vint64 ntp64; 1629 1630 /* 1631 * Unfold ntp time around current time into NTP domain. Split 1632 * into days and seconds, shift days into CE domain and 1633 * process the parts. 1634 */ 1635 ntp64 = ntpcal_ntp_to_ntp(ntp, piv); 1636 return ntpcal_ntp64_to_date(jd, &ntp64); 1637 } 1638 1639 1640 vint64 1641 ntpcal_date_to_ntp64( 1642 const struct calendar *jd 1643 ) 1644 { 1645 /* 1646 * Convert date to NTP. Ignore yearday, use d/m/y only. 1647 */ 1648 return ntpcal_dayjoin(ntpcal_date_to_rd(jd) - DAY_NTP_STARTS, 1649 ntpcal_date_to_daysec(jd)); 1650 } 1651 1652 1653 uint32_t 1654 ntpcal_date_to_ntp( 1655 const struct calendar *jd 1656 ) 1657 { 1658 /* 1659 * Get lower half of 64bit NTP timestamp from date/time. 1660 */ 1661 return ntpcal_date_to_ntp64(jd).d_s.lo; 1662 } 1663 1664 1665 1666 /* 1667 * ==================================================================== 1668 * 1669 * day-of-week calculations 1670 * 1671 * ==================================================================== 1672 */ 1673 /* 1674 * Given a RataDie and a day-of-week, calculate a RDN that is reater-than, 1675 * greater-or equal, closest, less-or-equal or less-than the given RDN 1676 * and denotes the given day-of-week 1677 */ 1678 int32_t 1679 ntpcal_weekday_gt( 1680 int32_t rdn, 1681 int32_t dow 1682 ) 1683 { 1684 return ntpcal_periodic_extend(rdn+1, dow, 7); 1685 } 1686 1687 int32_t 1688 ntpcal_weekday_ge( 1689 int32_t rdn, 1690 int32_t dow 1691 ) 1692 { 1693 return ntpcal_periodic_extend(rdn, dow, 7); 1694 } 1695 1696 int32_t 1697 ntpcal_weekday_close( 1698 int32_t rdn, 1699 int32_t dow 1700 ) 1701 { 1702 return ntpcal_periodic_extend(rdn-3, dow, 7); 1703 } 1704 1705 int32_t 1706 ntpcal_weekday_le( 1707 int32_t rdn, 1708 int32_t dow 1709 ) 1710 { 1711 return ntpcal_periodic_extend(rdn, dow, -7); 1712 } 1713 1714 int32_t 1715 ntpcal_weekday_lt( 1716 int32_t rdn, 1717 int32_t dow 1718 ) 1719 { 1720 return ntpcal_periodic_extend(rdn-1, dow, -7); 1721 } 1722 1723 /* 1724 * ==================================================================== 1725 * 1726 * ISO week-calendar conversions 1727 * 1728 * The ISO8601 calendar defines a calendar of years, weeks and weekdays. 1729 * It is related to the Gregorian calendar, and a ISO year starts at the 1730 * Monday closest to Jan,1st of the corresponding Gregorian year. A ISO 1731 * calendar year has always 52 or 53 weeks, and like the Grogrian 1732 * calendar the ISO8601 calendar repeats itself every 400 years, or 1733 * 146097 days, or 20871 weeks. 1734 * 1735 * While it is possible to write ISO calendar functions based on the 1736 * Gregorian calendar functions, the following implementation takes a 1737 * different approach, based directly on years and weeks. 1738 * 1739 * Analysis of the tabulated data shows that it is not possible to 1740 * interpolate from years to weeks over a full 400 year range; cyclic 1741 * shifts over 400 years do not provide a solution here. But it *is* 1742 * possible to interpolate over every single century of the 400-year 1743 * cycle. (The centennial leap year rule seems to be the culprit here.) 1744 * 1745 * It can be shown that a conversion from years to weeks can be done 1746 * using a linear transformation of the form 1747 * 1748 * w = floor( y * a + b ) 1749 * 1750 * where the slope a must hold to 1751 * 1752 * 52.1780821918 <= a < 52.1791044776 1753 * 1754 * and b must be chosen according to the selected slope and the number 1755 * of the century in a 400-year period. 1756 * 1757 * The inverse calculation can also be done in this way. Careful scaling 1758 * provides an unlimited set of integer coefficients a,k,b that enable 1759 * us to write the calulation in the form 1760 * 1761 * w = (y * a + b ) / k 1762 * y = (w * a' + b') / k' 1763 * 1764 * In this implementation the values of k and k' are chosen to be the 1765 * smallest possible powers of two, so the division can be implemented 1766 * as shifts if the optimiser chooses to do so. 1767 * 1768 * ==================================================================== 1769 */ 1770 1771 /* 1772 * Given a number of elapsed (ISO-)years since the begin of the 1773 * christian era, return the number of elapsed weeks corresponding to 1774 * the number of years. 1775 */ 1776 int32_t 1777 isocal_weeks_in_years( 1778 int32_t years 1779 ) 1780 { 1781 /* 1782 * use: w = (y * 53431 + b[c]) / 1024 as interpolation 1783 */ 1784 static const uint16_t bctab[4] = { 157, 449, 597, 889 }; 1785 1786 int32_t cs, cw; 1787 uint32_t cc, ci, yu, sf32; 1788 1789 sf32 = int32_sflag(years); 1790 yu = (uint32_t)years; 1791 1792 /* split off centuries, using floor division */ 1793 cc = sf32 ^ ((sf32 ^ yu) / 100u); 1794 yu -= cc * 100u; 1795 1796 /* calculate century cycles shift and cycle index: 1797 * Assuming a century is 5217 weeks, we have to add a cycle 1798 * shift that is 3 for every 4 centuries, because 3 of the four 1799 * centuries have 5218 weeks. So '(cc*3 + 1) / 4' is the actual 1800 * correction, and the second century is the defective one. 1801 * 1802 * Needs floor division by 4, which is done with masking and 1803 * shifting. 1804 */ 1805 ci = cc * 3u + 1; 1806 cs = uint32_2cpl_to_int32(sf32 ^ ((sf32 ^ ci) >> 2)); 1807 ci = ci & 3u; 1808 1809 /* Get weeks in century. Can use plain division here as all ops 1810 * are >= 0, and let the compiler sort out the possible 1811 * optimisations. 1812 */ 1813 cw = (yu * 53431u + bctab[ci]) / 1024u; 1814 1815 return uint32_2cpl_to_int32(cc) * 5217 + cs + cw; 1816 } 1817 1818 /* 1819 * Given a number of elapsed weeks since the begin of the christian 1820 * era, split this number into the number of elapsed years in res.hi 1821 * and the excessive number of weeks in res.lo. (That is, res.lo is 1822 * the number of elapsed weeks in the remaining partial year.) 1823 */ 1824 ntpcal_split 1825 isocal_split_eraweeks( 1826 int32_t weeks 1827 ) 1828 { 1829 /* 1830 * use: y = (w * 157 + b[c]) / 8192 as interpolation 1831 */ 1832 1833 static const uint16_t bctab[4] = { 85, 130, 17, 62 }; 1834 1835 ntpcal_split res; 1836 int32_t cc, ci; 1837 uint32_t sw, cy, Q; 1838 1839 /* Use two fast cycle-split divisions again. Herew e want to 1840 * execute '(weeks * 4 + 2) /% 20871' under floor division rules 1841 * in the first step. 1842 * 1843 * This is of course (again) susceptible to internal overflow if 1844 * coded directly in 32bit. And again we use 64bit division on 1845 * a 64bit target and exact division after calculating the 1846 * remainder first on a 32bit target. With the smaller divider, 1847 * that's even a bit neater. 1848 */ 1849 # if defined(HAVE_64BITREGS) 1850 1851 /* Full floor division with 64bit values. */ 1852 uint64_t sf64, sw64; 1853 sf64 = (uint64_t)-(weeks < 0); 1854 sw64 = ((uint64_t)weeks << 2) | 2u; 1855 Q = (uint32_t)(sf64 ^ ((sf64 ^ sw64) / GREGORIAN_CYCLE_WEEKS)); 1856 sw = (uint32_t)(sw64 - Q * GREGORIAN_CYCLE_WEEKS); 1857 1858 # else 1859 1860 /* Exact division after calculating the remainder via partial 1861 * reduction by digit sum. 1862 * (-2^33) % 20871 --> 5491 : the sign bit value 1863 * ( 2^20) % 20871 --> 5026 : the upper digit value 1864 * modinv(20871, 2^32) --> 330081335 : the inverse 1865 */ 1866 uint32_t ux = ((uint32_t)weeks << 2) | 2; 1867 sw = (weeks < 0) ? 5491u : 0u; /* sign dgt */ 1868 sw += ((weeks >> 18) & 0x01FFFu) * 5026u; /* hi dgt (src!) */ 1869 sw += (ux & 0xFFFFFu); /* lo dgt */ 1870 sw %= GREGORIAN_CYCLE_WEEKS; /* full reduction */ 1871 Q = (ux - sw) * 330081335u; /* exact div */ 1872 1873 # endif 1874 1875 ci = Q & 3u; 1876 cc = uint32_2cpl_to_int32(Q); 1877 1878 /* Split off years; sw >= 0 here! The scaled weeks in the years 1879 * are scaled up by 157 afterwards. 1880 */ 1881 sw = (sw / 4u) * 157u + bctab[ci]; 1882 cy = sw / 8192u; /* sw >> 13 , let the compiler sort it out */ 1883 sw = sw % 8192u; /* sw & 8191, let the compiler sort it out */ 1884 1885 /* assemble elapsed years and downscale the elapsed weeks in 1886 * the year. 1887 */ 1888 res.hi = 100*cc + cy; 1889 res.lo = sw / 157u; 1890 1891 return res; 1892 } 1893 1894 /* 1895 * Given a second in the NTP time scale and a pivot, expand the NTP 1896 * time stamp around the pivot and convert into an ISO calendar time 1897 * stamp. 1898 */ 1899 int 1900 isocal_ntp64_to_date( 1901 struct isodate *id, 1902 const vint64 *ntp 1903 ) 1904 { 1905 ntpcal_split ds; 1906 int32_t ts[3]; 1907 uint32_t uw, ud, sf32; 1908 1909 /* 1910 * Split NTP time into days and seconds, shift days into CE 1911 * domain and process the parts. 1912 */ 1913 ds = ntpcal_daysplit(ntp); 1914 1915 /* split time part */ 1916 ds.hi += priv_timesplit(ts, ds.lo); 1917 id->hour = (uint8_t)ts[0]; 1918 id->minute = (uint8_t)ts[1]; 1919 id->second = (uint8_t)ts[2]; 1920 1921 /* split days into days and weeks, using floor division in unsigned */ 1922 ds.hi += DAY_NTP_STARTS - 1; /* shift from NTP to RDN */ 1923 sf32 = int32_sflag(ds.hi); 1924 ud = (uint32_t)ds.hi; 1925 uw = sf32 ^ ((sf32 ^ ud) / DAYSPERWEEK); 1926 ud -= uw * DAYSPERWEEK; 1927 1928 ds.hi = uint32_2cpl_to_int32(uw); 1929 ds.lo = ud; 1930 1931 id->weekday = (uint8_t)ds.lo + 1; /* weekday result */ 1932 1933 /* get year and week in year */ 1934 ds = isocal_split_eraweeks(ds.hi); /* elapsed years&week*/ 1935 id->year = (uint16_t)ds.hi + 1; /* shift to current */ 1936 id->week = (uint8_t )ds.lo + 1; 1937 1938 return (ds.hi >= 0 && ds.hi < 0x0000FFFF); 1939 } 1940 1941 int 1942 isocal_ntp_to_date( 1943 struct isodate *id, 1944 uint32_t ntp, 1945 const time_t *piv 1946 ) 1947 { 1948 vint64 ntp64; 1949 1950 /* 1951 * Unfold ntp time around current time into NTP domain, then 1952 * convert the full time stamp. 1953 */ 1954 ntp64 = ntpcal_ntp_to_ntp(ntp, piv); 1955 return isocal_ntp64_to_date(id, &ntp64); 1956 } 1957 1958 /* 1959 * Convert a ISO date spec into a second in the NTP time scale, 1960 * properly truncated to 32 bit. 1961 */ 1962 vint64 1963 isocal_date_to_ntp64( 1964 const struct isodate *id 1965 ) 1966 { 1967 int32_t weeks, days, secs; 1968 1969 weeks = isocal_weeks_in_years((int32_t)id->year - 1) 1970 + (int32_t)id->week - 1; 1971 days = weeks * 7 + (int32_t)id->weekday; 1972 /* days is RDN of ISO date now */ 1973 secs = ntpcal_etime_to_seconds(id->hour, id->minute, id->second); 1974 1975 return ntpcal_dayjoin(days - DAY_NTP_STARTS, secs); 1976 } 1977 1978 uint32_t 1979 isocal_date_to_ntp( 1980 const struct isodate *id 1981 ) 1982 { 1983 /* 1984 * Get lower half of 64bit NTP timestamp from date/time. 1985 */ 1986 return isocal_date_to_ntp64(id).d_s.lo; 1987 } 1988 1989 /* 1990 * ==================================================================== 1991 * 'basedate' support functions 1992 * ==================================================================== 1993 */ 1994 1995 static int32_t s_baseday = NTP_TO_UNIX_DAYS; 1996 static int32_t s_gpsweek = 0; 1997 1998 int32_t 1999 basedate_eval_buildstamp(void) 2000 { 2001 struct calendar jd; 2002 int32_t ed; 2003 2004 if (!ntpcal_get_build_date(&jd)) 2005 return NTP_TO_UNIX_DAYS; 2006 2007 /* The time zone of the build stamp is unspecified; we remove 2008 * one day to provide a certain slack. And in case somebody 2009 * fiddled with the system clock, we make sure we do not go 2010 * before the UNIX epoch (1970-01-01). It's probably not possible 2011 * to do this to the clock on most systems, but there are other 2012 * ways to tweak the build stamp. 2013 */ 2014 jd.monthday -= 1; 2015 ed = ntpcal_date_to_rd(&jd) - DAY_NTP_STARTS; 2016 return (ed < NTP_TO_UNIX_DAYS) ? NTP_TO_UNIX_DAYS : ed; 2017 } 2018 2019 int32_t 2020 basedate_eval_string( 2021 const char * str 2022 ) 2023 { 2024 u_short y,m,d; 2025 u_long ned; 2026 int rc, nc; 2027 size_t sl; 2028 2029 sl = strlen(str); 2030 rc = sscanf(str, "%4hu-%2hu-%2hu%n", &y, &m, &d, &nc); 2031 if (rc == 3 && (size_t)nc == sl) { 2032 if (m >= 1 && m <= 12 && d >= 1 && d <= 31) 2033 return ntpcal_edate_to_eradays(y-1, m-1, d) 2034 - DAY_NTP_STARTS; 2035 goto buildstamp; 2036 } 2037 2038 rc = sscanf(str, "%lu%n", &ned, &nc); 2039 if (rc == 1 && (size_t)nc == sl) { 2040 if (ned <= INT32_MAX) 2041 return (int32_t)ned; 2042 goto buildstamp; 2043 } 2044 2045 buildstamp: 2046 msyslog(LOG_WARNING, 2047 "basedate string \"%s\" invalid, build date substituted!", 2048 str); 2049 return basedate_eval_buildstamp(); 2050 } 2051 2052 uint32_t 2053 basedate_get_day(void) 2054 { 2055 return s_baseday; 2056 } 2057 2058 int32_t 2059 basedate_set_day( 2060 int32_t day 2061 ) 2062 { 2063 struct calendar jd; 2064 int32_t retv; 2065 2066 /* set NTP base date for NTP era unfolding */ 2067 if (day < NTP_TO_UNIX_DAYS) { 2068 msyslog(LOG_WARNING, 2069 "baseday_set_day: invalid day (%lu), UNIX epoch substituted", 2070 (unsigned long)day); 2071 day = NTP_TO_UNIX_DAYS; 2072 } 2073 retv = s_baseday; 2074 s_baseday = day; 2075 ntpcal_rd_to_date(&jd, day + DAY_NTP_STARTS); 2076 msyslog(LOG_INFO, "basedate set to %04hu-%02hu-%02hu", 2077 jd.year, (u_short)jd.month, (u_short)jd.monthday); 2078 2079 /* set GPS base week for GPS week unfolding */ 2080 day = ntpcal_weekday_ge(day + DAY_NTP_STARTS, CAL_SUNDAY) 2081 - DAY_NTP_STARTS; 2082 if (day < NTP_TO_GPS_DAYS) 2083 day = NTP_TO_GPS_DAYS; 2084 s_gpsweek = (day - NTP_TO_GPS_DAYS) / DAYSPERWEEK; 2085 ntpcal_rd_to_date(&jd, day + DAY_NTP_STARTS); 2086 msyslog(LOG_INFO, "gps base set to %04hu-%02hu-%02hu (week %d)", 2087 jd.year, (u_short)jd.month, (u_short)jd.monthday, s_gpsweek); 2088 2089 return retv; 2090 } 2091 2092 time_t 2093 basedate_get_eracenter(void) 2094 { 2095 time_t retv; 2096 retv = (time_t)(s_baseday - NTP_TO_UNIX_DAYS); 2097 retv *= SECSPERDAY; 2098 retv += (UINT32_C(1) << 31); 2099 return retv; 2100 } 2101 2102 time_t 2103 basedate_get_erabase(void) 2104 { 2105 time_t retv; 2106 retv = (time_t)(s_baseday - NTP_TO_UNIX_DAYS); 2107 retv *= SECSPERDAY; 2108 return retv; 2109 } 2110 2111 uint32_t 2112 basedate_get_gpsweek(void) 2113 { 2114 return s_gpsweek; 2115 } 2116 2117 uint32_t 2118 basedate_expand_gpsweek( 2119 unsigned short weekno 2120 ) 2121 { 2122 /* We do a fast modulus expansion here. Since all quantities are 2123 * unsigned and we cannot go before the start of the GPS epoch 2124 * anyway, and since the truncated GPS week number is 10 bit, the 2125 * expansion becomes a simple sub/and/add sequence. 2126 */ 2127 #if GPSWEEKS != 1024 2128 # error GPSWEEKS defined wrong -- should be 1024! 2129 #endif 2130 2131 uint32_t diff; 2132 diff = ((uint32_t)weekno - s_gpsweek) & (GPSWEEKS - 1); 2133 return s_gpsweek + diff; 2134 } 2135 2136 /* 2137 * ==================================================================== 2138 * misc. helpers 2139 * ==================================================================== 2140 */ 2141 2142 /* -------------------------------------------------------------------- 2143 * reconstruct the centrury from a truncated date and a day-of-week 2144 * 2145 * Given a date with truncated year (2-digit, 0..99) and a day-of-week 2146 * from 1(Mon) to 7(Sun), recover the full year between 1900AD and 2300AD. 2147 */ 2148 int32_t 2149 ntpcal_expand_century( 2150 uint32_t y, 2151 uint32_t m, 2152 uint32_t d, 2153 uint32_t wd) 2154 { 2155 /* This algorithm is short but tricky... It's related to 2156 * Zeller's congruence, partially done backwards. 2157 * 2158 * A few facts to remember: 2159 * 1) The Gregorian calendar has a cycle of 400 years. 2160 * 2) The weekday of the 1st day of a century shifts by 5 days 2161 * during a great cycle. 2162 * 3) For calendar math, a century starts with the 1st year, 2163 * which is year 1, !not! zero. 2164 * 2165 * So we start with taking the weekday difference (mod 7) 2166 * between the truncated date (which is taken as an absolute 2167 * date in the 1st century in the proleptic calendar) and the 2168 * weekday given. 2169 * 2170 * When dividing this residual by 5, we obtain the number of 2171 * centuries to add to the base. But since the residual is (mod 2172 * 7), we have to make this an exact division by multiplication 2173 * with the modular inverse of 5 (mod 7), which is 3: 2174 * 3*5 === 1 (mod 7). 2175 * 2176 * If this yields a result of 4/5/6, the given date/day-of-week 2177 * combination is impossible, and we return zero as resulting 2178 * year to indicate failure. 2179 * 2180 * Then we remap the century to the range starting with year 2181 * 1900. 2182 */ 2183 2184 uint32_t c; 2185 2186 /* check basic constraints */ 2187 if ((y >= 100u) || (--m >= 12u) || (--d >= 31u)) 2188 return 0; 2189 2190 if ((m += 10u) >= 12u) /* shift base to prev. March,1st */ 2191 m -= 12u; 2192 else if (--y >= 100u) 2193 y += 100u; 2194 d += y + (y >> 2) + 2u; /* year share */ 2195 d += (m * 83u + 16u) >> 5; /* month share */ 2196 2197 /* get (wd - d), shifted to positive value, and multiply with 2198 * 3(mod 7). (Exact division, see to comment) 2199 * Note: 1) d <= 184 at this point. 2200 * 2) 252 % 7 == 0, but 'wd' is off by one since we did 2201 * '--d' above, so we add just 251 here! 2202 */ 2203 c = u32mod7(3 * (251u + wd - d)); 2204 if (c > 3u) 2205 return 0; 2206 2207 if ((m > 9u) && (++y >= 100u)) {/* undo base shift */ 2208 y -= 100u; 2209 c = (c + 1) & 3u; 2210 } 2211 y += (c * 100u); /* combine into 1st cycle */ 2212 y += (y < 300u) ? 2000 : 1600; /* map to destination era */ 2213 return (int)y; 2214 } 2215 2216 char * 2217 ntpcal_iso8601std( 2218 char * buf, 2219 size_t len, 2220 TcCivilDate * cdp 2221 ) 2222 { 2223 if (!buf) { 2224 LIB_GETBUF(buf); 2225 len = LIB_BUFLENGTH; 2226 } 2227 if (len) { 2228 int slen = snprintf(buf, len, "%04u-%02u-%02uT%02u:%02u:%02u", 2229 cdp->year, cdp->month, cdp->monthday, 2230 cdp->hour, cdp->minute, cdp->second); 2231 if (slen < 0) 2232 *buf = '\0'; 2233 } 2234 return buf; 2235 } 2236 2237 /* -*-EOF-*- */ 2238