1*f17b710fSchristosLeap Second Smearing with NTP 2*f17b710fSchristos----------------------------- 3*f17b710fSchristos 4*f17b710fSchristosBy Martin Burnicki 5*f17b710fSchristoswith some edits by Harlan Stenn 6*f17b710fSchristos 7*f17b710fSchristosThe NTP software protocol and its reference implementation, ntpd, were 8*f17b710fSchristosoriginally designed to distribute UTC time over a network as accurately as 9*f17b710fSchristospossible. 10*f17b710fSchristos 11*f17b710fSchristosUnfortunately, leap seconds are scheduled to be inserted into or deleted 12*f17b710fSchristosfrom the UTC time scale in irregular intervals to keep the UTC time scale 13*f17b710fSchristossynchronized with the Earth rotation. Deletions haven't happened, yet, but 14*f17b710fSchristosinsertions have happened over 30 times. 15*f17b710fSchristos 16*f17b710fSchristosThe problem is that POSIX requires 86400 seconds in a day, and there is no 17*f17b710fSchristosprescribed way to handle leap seconds in POSIX. 18*f17b710fSchristos 19*f17b710fSchristosWhenever a leap second is to be handled ntpd either: 20*f17b710fSchristos 21*f17b710fSchristos- passes the leap second announcement down to the OS kernel (if the OS 22*f17b710fSchristossupports this) and the kernel handles the leap second automatically, or 23*f17b710fSchristos 24*f17b710fSchristos- applies the leap second correction itself. 25*f17b710fSchristos 26*f17b710fSchristosNTP servers also pass a leap second warning flag down to their clients via 27*f17b710fSchristosthe normal NTP packet exchange, so clients also become aware of an 28*f17b710fSchristosapproaching leap second, and can handle the leap second appropriately. 29*f17b710fSchristos 30*f17b710fSchristos 31*f17b710fSchristosThe Problem on Unix-like Systems 32*f17b710fSchristos-------------------------------- 33*f17b710fSchristosIf a leap second is to be inserted then in most Unix-like systems the OS 34*f17b710fSchristoskernel just steps the time back by 1 second at the beginning of the leap 35*f17b710fSchristossecond, so the last second of the UTC day is repeated and thus duplicate 36*f17b710fSchristostimestamps can occur. 37*f17b710fSchristos 38*f17b710fSchristosUnfortunately there are lots of applications which get confused it the 39*f17b710fSchristossystem time is stepped back, e.g. due to a leap second insertion. Thus, 40*f17b710fSchristosmany users have been looking for ways to avoid this, and tried to introduce 41*f17b710fSchristosworkarounds which may work properly, or not. 42*f17b710fSchristos 43*f17b710fSchristosSo even though these Unix kernels normally can handle leap seconds, the way 44*f17b710fSchristosthey do this is not optimal for applications. 45*f17b710fSchristos 46*f17b710fSchristosOne good way to handle the leap second is to use ntp_gettime() instead of 47*f17b710fSchristosthe usual calls, because ntp_gettime() includes a "clock state" variable 48*f17b710fSchristosthat will actually tell you if the time you are receiving is OK or not, and 49*f17b710fSchristosif it is OK, if the current second is an in-progress leap second. But even 50*f17b710fSchristosthough this mechanism has been available for about 20 years' time, almost 51*f17b710fSchristosnobody uses it. 52*f17b710fSchristos 53*f17b710fSchristos 54*f17b710fSchristosNTP Client for Windows Contains a Workaround 55*f17b710fSchristos-------------------------------------------- 56*f17b710fSchristosThe Windows system time knows nothing about leap seconds, so for many years 57*f17b710fSchristosthe Windows port of ntpd provides a workaround where the system time is 58*f17b710fSchristosslewed by the client to compensate the leap second. 59*f17b710fSchristos 60*f17b710fSchristosThus it is not required to use a smearing NTP server for Windows clients, 61*f17b710fSchristosbut of course the smearing server approach also works. 62*f17b710fSchristos 63*f17b710fSchristos 64*f17b710fSchristosThe Leap Smear Approach 65*f17b710fSchristos----------------------- 66*f17b710fSchristosDue to the reasons mentioned above some support for leap smearing has 67*f17b710fSchristosrecently been implemented in ntpd. This means that to insert a leap second 68*f17b710fSchristosan NTP server adds a certain increasing "smear" offset to the real UTC time 69*f17b710fSchristossent to its clients, so that after some predefined interval the leap second 70*f17b710fSchristosoffset is compensated. The smear interval should be long enough, 71*f17b710fSchristose.g. several hours, so that NTP clients can easily follow the clock drift 72*f17b710fSchristoscaused by the smeared time. 73*f17b710fSchristos 74*f17b710fSchristosDuring the period while the leap smear is being performed, ntpd will include 75*f17b710fSchristosa specially-formatted 'refid' in time packets that contain "smeared" time. 76*f17b710fSchristosThis refid is of the form 254.x.y.z, where x.y.z are 24 encoded bits of the 77*f17b710fSchristossmear value. 78*f17b710fSchristos 79*f17b710fSchristosWith this approach the time an NTP server sends to its clients still matches 80*f17b710fSchristosUTC before the leap second, up to the beginning of the smear interval, and 81*f17b710fSchristosagain corresponds to UTC after the insertion of the leap second has 82*f17b710fSchristosfinished, at the end of the smear interval. By examining the first byte of 83*f17b710fSchristosthe refid, one can also determine if the server is offering smeared time or 84*f17b710fSchristosnot. 85*f17b710fSchristos 86*f17b710fSchristosOf course, clients which receive the "smeared" time from an NTP server don't 87*f17b710fSchristoshave to (and even must not) care about the leap second anymore. Smearing is 88*f17b710fSchristosjust transparent to the clients, and the clients don't even notice there's a 89*f17b710fSchristosleap second. 90*f17b710fSchristos 91*f17b710fSchristos 92*f17b710fSchristosPros and Cons of the Smearing Approach 93*f17b710fSchristos-------------------------------------- 94*f17b710fSchristosThe disadvantages of this approach are: 95*f17b710fSchristos 96*f17b710fSchristos- During the smear interval the time provided by smearing NTP servers 97*f17b710fSchristosdiffers significantly from UTC, and thus from the time provided by normal, 98*f17b710fSchristosnon-smearing NTP servers. The difference can be up to 1 second, depending 99*f17b710fSchristoson the smear algorithm. 100*f17b710fSchristos 101*f17b710fSchristos- Since smeared time differs from true UTC, and many applications require 102*f17b710fSchristoscorrect legal time (UTC), there may be legal consequences to using smeared 103*f17b710fSchristostime. Make sure you check to see if this requirement affects you. 104*f17b710fSchristos 105*f17b710fSchristosHowever, for applications where it's only important that all computers have 106*f17b710fSchristosthe same time and a temporary offset of up to 1 s to UTC is acceptable, a 107*f17b710fSchristosbetter approach may be to slew the time in a well defined way, over a 108*f17b710fSchristoscertain interval, which is what we call smearing the leap second. 109*f17b710fSchristos 110*f17b710fSchristos 111*f17b710fSchristosThe Motivation to Implement Leap Smearing 112*f17b710fSchristos----------------------------------------- 113*f17b710fSchristosHere is some historical background for ntpd, related to smearing/slewing 114*f17b710fSchristostime. 115*f17b710fSchristos 116*f17b710fSchristosUp to ntpd 4.2.4, if kernel support for leap seconds was either not 117*f17b710fSchristosavailable or was not enabled, ntpd didn't care about the leap second at all. 118*f17b710fSchristosSo if ntpd was run with -x and thus kernel support wasn't used, ntpd saw a 119*f17b710fSchristossudden 1 s offset after the leap second and normally would have stepped the 120*f17b710fSchristostime by -1 s a few minutes later. However, 'ntpd -x' does not step the time 121*f17b710fSchristosbut "slews" the 1-second correction, which takes 33 minutes and 20 seconds 122*f17b710fSchristosto complete. This could be considered a bug, but certainly this was only an 123*f17b710fSchristosaccidental behavior. 124*f17b710fSchristos 125*f17b710fSchristosHowever, as we learned in the discussion in http://bugs.ntp.org/2745, this 126*f17b710fSchristosbehavior was very much appreciated since indeed the time was never stepped 127*f17b710fSchristosback, and even though the start of the slewing was somewhat undefined and 128*f17b710fSchristosdepended on the poll interval. The system time was off by 1 second for 129*f17b710fSchristosseveral minutes before slewing even started. 130*f17b710fSchristos 131*f17b710fSchristosIn ntpd 4.2.6 some code was added which let ntpd step the time at UTC 132*f17b710fSchristosmidnight to insert a leap second, if kernel support was not used. 133*f17b710fSchristosUnfortunately this also happened if ntpd was started with -x, so the folks 134*f17b710fSchristoswho expected that the time was never stepped when ntpd was run with -x found 135*f17b710fSchristosthis wasn't true anymore, and again from the discussion in NTP bug 2745 we 136*f17b710fSchristoslearn that there were even some folks who patched ntpd to get the 4.2.4 137*f17b710fSchristosbehavior back. 138*f17b710fSchristos 139*f17b710fSchristosIn 4.2.8 the leap second code was rewritten and some enhancements were 140*f17b710fSchristosintroduced, but the resulting code still showed the behavior of 4.2.6, 141*f17b710fSchristosi.e. ntpd with -x would still step the time. This has only recently been 142*f17b710fSchristosfixed in the current ntpd stable code, but this fix is only available with a 143*f17b710fSchristoscertain patch level of ntpd 4.2.8. 144*f17b710fSchristos 145*f17b710fSchristosSo a possible solution for users who were looking for a way to come over the 146*f17b710fSchristosleap second without the time being stepped could have been to check the 147*f17b710fSchristosversion of ntpd installed on each of their systems. If it's still 4.2.4 be 148*f17b710fSchristossure to start the client ntpd with -x. If it's 4.2.6 or 4.2.8 it won't work 149*f17b710fSchristosanyway except if you had a patched ntpd version instead of the original 150*f17b710fSchristosversion. So you'd need to upgrade to the current -stable code to be able to 151*f17b710fSchristosrun ntpd with -x and get the desired result, so you'd still have the 152*f17b710fSchristosrequirement to check/update/configure every single machine in your network 153*f17b710fSchristosthat runs ntpd. 154*f17b710fSchristos 155*f17b710fSchristosGoogle's leap smear approach is a very efficient solution for this, for 156*f17b710fSchristossites that do not require correct timestamps for legal purposes. You just 157*f17b710fSchristoshave to take care that your NTP servers support leap smearing and configure 158*f17b710fSchristosthose few servers accordingly. If the smear interval is long enough so that 159*f17b710fSchristosNTP clients can follow the smeared time it doesn't matter at all which 160*f17b710fSchristosversion of ntpd is installed on a client machine, it just works, and it even 161*f17b710fSchristosworks around kernel bugs due to the leap second. 162*f17b710fSchristos 163*f17b710fSchristosSince all clients follow the same smeared time the time difference between 164*f17b710fSchristosthe clients during the smear interval is as small as possible, compared to 165*f17b710fSchristosthe -x approach. The current leap second code in ntpd determines the point 166*f17b710fSchristosin system time when the leap second is to be inserted, and given a 167*f17b710fSchristosparticular smear interval it's easy to determine the start point of the 168*f17b710fSchristossmearing, and the smearing is finished when the leap second ends, i.e. the 169*f17b710fSchristosnext UTC day begins. 170*f17b710fSchristos 171*f17b710fSchristosThe maximum error doesn't exceed what you'd get with the old smearing caused 172*f17b710fSchristosby -x in ntpd 4.2.4, so if users could accept the old behavior they would 173*f17b710fSchristoseven accept the smearing at the server side. 174*f17b710fSchristos 175*f17b710fSchristosIn order to affect the local timekeeping as little as possible the leap 176*f17b710fSchristossmear support currently implemented in ntpd does not affect the internal 177*f17b710fSchristossystem time at all. Only the timestamps and refid in outgoing reply packets 178*f17b710fSchristos*to clients* are modified by the smear offset, so this makes sure the basic 179*f17b710fSchristosfunctionality of ntpd is not accidentally broken. Also peer packets 180*f17b710fSchristosexchanged with other NTP servers are based on the real UTC system time and 181*f17b710fSchristosthe normal refid, as usual. 182*f17b710fSchristos 183*f17b710fSchristosThe leap smear implementation is optionally available in ntp-4.2.8p3 and 184*f17b710fSchristoslater, and the changes can be tracked via http://bugs.ntp.org/2855. 185*f17b710fSchristos 186*f17b710fSchristos 187*f17b710fSchristosUsing NTP's Leap Second Smearing 188*f17b710fSchristos-------------------------------- 189*f17b710fSchristos- Leap Second Smearing MUST NOT be used for public servers, e.g. servers 190*f17b710fSchristosprovided by metrology institutes, or servers participating in the NTP pool 191*f17b710fSchristosproject. There would be a high risk that NTP clients get the time from a 192*f17b710fSchristosmixture of smearing and non-smearing NTP servers which could result in 193*f17b710fSchristosundefined client behavior. Instead, leap second smearing should only be 194*f17b710fSchristosconfigured on time servers providing dedicated clients with time, if all 195*f17b710fSchristosthose clients can accept smeared time. 196*f17b710fSchristos 197*f17b710fSchristos- Leap Second Smearing is NOT configured by default. The only way to get 198*f17b710fSchristosthis behavior is to invoke the ./configure script from the NTP source code 199*f17b710fSchristospackage with the --enable-leap-smear parameter before the executables are 200*f17b710fSchristosbuilt. 201*f17b710fSchristos 202*f17b710fSchristos- Even if ntpd has been compiled to enable leap smearing support, leap 203*f17b710fSchristossmearing is only done if explicitly configured. 204*f17b710fSchristos 205*f17b710fSchristos- The leap smear interval should be at least several hours' long, and up to 206*f17b710fSchristos1 day (86400s). If the interval is too short then the applied smear offset 207*f17b710fSchristosis applied too quickly for clients to follow. 86400s (1 day) is a good 208*f17b710fSchristoschoice. 209*f17b710fSchristos 210*f17b710fSchristos- If several NTP servers are set up for leap smearing then the *same* smear 211*f17b710fSchristosinterval should be configured on each server. 212*f17b710fSchristos 213*f17b710fSchristos- Smearing NTP servers DO NOT send a leap second warning flag to client time 214*f17b710fSchristosrequests. Since the leap second is applied gradually the clients don't even 215*f17b710fSchristosnotice there's a leap second being inserted, and thus there will be no log 216*f17b710fSchristosmessage or similar related to the leap second be visible on the clients. 217*f17b710fSchristos 218*f17b710fSchristos- Since clients don't (and must not) become aware of the leap second at all, 219*f17b710fSchristosclients getting the time from a smearing NTP server MUST NOT be configured 220*f17b710fSchristosto use a leap second file. If they had a leap second file they would apply 221*f17b710fSchristosthe leap second twice: the smeared one from the server, plus another one 222*f17b710fSchristosinserted by themselves due to the leap second file. As a result, the 223*f17b710fSchristosadditional correction would soon be detected and corrected/adjusted. 224*f17b710fSchristos 225*f17b710fSchristos- Clients MUST NOT be configured to poll both smearing and non-smearing NTP 226*f17b710fSchristosservers at the same time. During the smear interval they would get 227*f17b710fSchristosdifferent times from different servers and wouldn't know which server(s) to 228*f17b710fSchristosaccept. 229*f17b710fSchristos 230*f17b710fSchristos 231*f17b710fSchristosSetting Up A Smearing NTP Server 232*f17b710fSchristos-------------------------------- 233*f17b710fSchristosIf an NTP server should perform leap smearing then the leap smear interval 234*f17b710fSchristos(in seconds) needs to be specified in the NTP configuration file ntp.conf, 235*f17b710fSchristose.g.: 236*f17b710fSchristos 237*f17b710fSchristos leapsmearinterval 86400 238*f17b710fSchristos 239*f17b710fSchristosPlease keep in mind the leap smear interval should be between several and 24 240*f17b710fSchristoshours' long. With shorter values clients may not be able to follow the 241*f17b710fSchristosdrift caused by the smeared time, and with longer values the discrepancy 242*f17b710fSchristosbetween system time and UTC will cause more problems when reconciling 243*f17b710fSchristostimestamp differences. 244*f17b710fSchristos 245*f17b710fSchristosWhen ntpd starts and a smear interval has been specified then a log message 246*f17b710fSchristosis generated, e.g.: 247*f17b710fSchristos 248*f17b710fSchristos ntpd[31120]: config: leap smear interval 86400 s 249*f17b710fSchristos 250*f17b710fSchristosWhile ntpd is running with a leap smear interval specified the command: 251*f17b710fSchristos 252*f17b710fSchristos ntpq -c rv 253*f17b710fSchristos 254*f17b710fSchristosreports the smear status, e.g.: 255*f17b710fSchristos 256*f17b710fSchristos# ntpq -c rv 257*f17b710fSchristosassocid=0 status=4419 leap_add_sec, sync_uhf_radio, 1 event, leap_armed, 258*f17b710fSchristosversion="ntpd 4.2.8p3-RC1@1.3349-o Mon Jun 22 14:24:09 UTC 2015 (26)", 259*f17b710fSchristosprocessor="i586", system="Linux/3.7.1", leap=01, stratum=1, 260*f17b710fSchristosprecision=-18, rootdelay=0.000, rootdisp=1.075, refid=MRS, 261*f17b710fSchristosreftime=d93dab96.09666671 Tue, Jun 30 2015 23:58:14.036, 262*f17b710fSchristosclock=d93dab9b.3386a8d5 Tue, Jun 30 2015 23:58:19.201, peer=2335, 263*f17b710fSchristostc=3, mintc=3, offset=-0.097015, frequency=44.627, sys_jitter=0.003815, 264*f17b710fSchristosclk_jitter=0.451, clk_wander=0.035, tai=35, leapsec=201507010000, 265*f17b710fSchristosexpire=201512280000, leapsmearinterval=86400, leapsmearoffset=-932.087 266*f17b710fSchristos 267*f17b710fSchristosIn the example above 'leapsmearinterval' reports the configured leap smear 268*f17b710fSchristosinterval all the time, while the 'leapsmearoffset' value is 0 outside the 269*f17b710fSchristosinterval and increases from 0 to -1000 ms over the interval. So this can be 270*f17b710fSchristosused to monitor if and how the time sent to clients is smeared. With a 271*f17b710fSchristosleapsmearoffset of -.932087, the refid reported in smeared packets would be 272*f17b710fSchristos254.196.88.176. 273