1 /* $NetBSD: pcap-bpf.c,v 1.6 2015/03/31 21:39:42 christos Exp $ */ 2 3 /* 4 * Copyright (c) 1993, 1994, 1995, 1996, 1998 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that: (1) source code distributions 9 * retain the above copyright notice and this paragraph in its entirety, (2) 10 * distributions including binary code include the above copyright notice and 11 * this paragraph in its entirety in the documentation or other materials 12 * provided with the distribution, and (3) all advertising materials mentioning 13 * features or use of this software display the following acknowledgement: 14 * ``This product includes software developed by the University of California, 15 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of 16 * the University nor the names of its contributors may be used to endorse 17 * or promote products derived from this software without specific prior 18 * written permission. 19 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED 20 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF 21 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. 22 */ 23 24 #include <sys/cdefs.h> 25 __RCSID("$NetBSD: pcap-bpf.c,v 1.6 2015/03/31 21:39:42 christos Exp $"); 26 27 #ifdef HAVE_CONFIG_H 28 #include "config.h" 29 #endif 30 31 #include <sys/param.h> /* optionally get BSD define */ 32 #ifdef HAVE_ZEROCOPY_BPF 33 #include <sys/mman.h> 34 #endif 35 #include <sys/socket.h> 36 #include <time.h> 37 /* 38 * <net/bpf.h> defines ioctls, but doesn't include <sys/ioccom.h>. 39 * 40 * We include <sys/ioctl.h> as it might be necessary to declare ioctl(); 41 * at least on *BSD and Mac OS X, it also defines various SIOC ioctls - 42 * we could include <sys/sockio.h>, but if we're already including 43 * <sys/ioctl.h>, which includes <sys/sockio.h> on those platforms, 44 * there's not much point in doing so. 45 * 46 * If we have <sys/ioccom.h>, we include it as well, to handle systems 47 * such as Solaris which don't arrange to include <sys/ioccom.h> if you 48 * include <sys/ioctl.h> 49 */ 50 #include <sys/ioctl.h> 51 #ifdef HAVE_SYS_IOCCOM_H 52 #include <sys/ioccom.h> 53 #endif 54 #include <sys/utsname.h> 55 #ifdef __NetBSD__ 56 #include <paths.h> 57 #endif 58 59 #ifdef HAVE_ZEROCOPY_BPF 60 #include <machine/atomic.h> 61 #endif 62 63 #include <net/if.h> 64 65 #ifdef _AIX 66 67 /* 68 * Make "pcap.h" not include "pcap/bpf.h"; we are going to include the 69 * native OS version, as we need "struct bpf_config" from it. 70 */ 71 #define PCAP_DONT_INCLUDE_PCAP_BPF_H 72 73 #include <sys/types.h> 74 75 /* 76 * Prevent bpf.h from redefining the DLT_ values to their 77 * IFT_ values, as we're going to return the standard libpcap 78 * values, not IBM's non-standard IFT_ values. 79 */ 80 #undef _AIX 81 #include <net/bpf.h> 82 #define _AIX 83 84 #include <net/if_types.h> /* for IFT_ values */ 85 #include <sys/sysconfig.h> 86 #include <sys/device.h> 87 #include <sys/cfgodm.h> 88 #include <cf.h> 89 90 #ifdef __64BIT__ 91 #define domakedev makedev64 92 #define getmajor major64 93 #define bpf_hdr bpf_hdr32 94 #else /* __64BIT__ */ 95 #define domakedev makedev 96 #define getmajor major 97 #endif /* __64BIT__ */ 98 99 #define BPF_NAME "bpf" 100 #define BPF_MINORS 4 101 #define DRIVER_PATH "/usr/lib/drivers" 102 #define BPF_NODE "/dev/bpf" 103 static int bpfloadedflag = 0; 104 static int odmlockid = 0; 105 106 static int bpf_load(char *errbuf); 107 108 #else /* _AIX */ 109 110 #include <net/bpf.h> 111 112 #endif /* _AIX */ 113 114 #include <ctype.h> 115 #include <fcntl.h> 116 #include <errno.h> 117 #include <netdb.h> 118 #include <stdio.h> 119 #include <stdlib.h> 120 #include <string.h> 121 #include <unistd.h> 122 123 #ifdef HAVE_NET_IF_MEDIA_H 124 # include <net/if_media.h> 125 #endif 126 127 #include "pcap-int.h" 128 129 #ifdef HAVE_OS_PROTO_H 130 #include "os-proto.h" 131 #endif 132 133 /* 134 * Later versions of NetBSD stick padding in front of FDDI frames 135 * to align the IP header on a 4-byte boundary. 136 */ 137 #if defined(__NetBSD__) && __NetBSD_Version__ > 106000000 138 #define PCAP_FDDIPAD 3 139 #endif 140 141 /* 142 * Private data for capturing on BPF devices. 143 */ 144 struct pcap_bpf { 145 #ifdef PCAP_FDDIPAD 146 int fddipad; 147 #endif 148 149 #ifdef HAVE_ZEROCOPY_BPF 150 /* 151 * Zero-copy read buffer -- for zero-copy BPF. 'buffer' above will 152 * alternative between these two actual mmap'd buffers as required. 153 * As there is a header on the front size of the mmap'd buffer, only 154 * some of the buffer is exposed to libpcap as a whole via bufsize; 155 * zbufsize is the true size. zbuffer tracks the current zbuf 156 * assocated with buffer so that it can be used to decide which the 157 * next buffer to read will be. 158 */ 159 u_char *zbuf1, *zbuf2, *zbuffer; 160 u_int zbufsize; 161 u_int zerocopy; 162 u_int interrupted; 163 struct timespec firstsel; 164 /* 165 * If there's currently a buffer being actively processed, then it is 166 * referenced here; 'buffer' is also pointed at it, but offset by the 167 * size of the header. 168 */ 169 struct bpf_zbuf_header *bzh; 170 int nonblock; /* true if in nonblocking mode */ 171 #endif /* HAVE_ZEROCOPY_BPF */ 172 173 char *device; /* device name */ 174 int filtering_in_kernel; /* using kernel filter */ 175 int must_do_on_close; /* stuff we must do when we close */ 176 }; 177 178 /* 179 * Stuff to do when we close. 180 */ 181 #define MUST_CLEAR_RFMON 0x00000001 /* clear rfmon (monitor) mode */ 182 183 #ifdef BIOCGDLTLIST 184 # if (defined(HAVE_NET_IF_MEDIA_H) && defined(IFM_IEEE80211)) && !defined(__APPLE__) 185 #define HAVE_BSD_IEEE80211 186 # endif 187 188 # if defined(__APPLE__) || defined(HAVE_BSD_IEEE80211) 189 static int find_802_11(struct bpf_dltlist *); 190 191 # ifdef HAVE_BSD_IEEE80211 192 static int monitor_mode(pcap_t *, int); 193 # endif 194 195 # if defined(__APPLE__) 196 static void remove_en(pcap_t *); 197 static void remove_802_11(pcap_t *); 198 # endif 199 200 # endif /* defined(__APPLE__) || defined(HAVE_BSD_IEEE80211) */ 201 202 #endif /* BIOCGDLTLIST */ 203 204 #if defined(sun) && defined(LIFNAMSIZ) && defined(lifr_zoneid) 205 #include <zone.h> 206 #endif 207 208 /* 209 * We include the OS's <net/bpf.h>, not our "pcap/bpf.h", so we probably 210 * don't get DLT_DOCSIS defined. 211 */ 212 #ifndef DLT_DOCSIS 213 #define DLT_DOCSIS 143 214 #endif 215 216 /* 217 * On OS X, we don't even get any of the 802.11-plus-radio-header DLT_'s 218 * defined, even though some of them are used by various Airport drivers. 219 */ 220 #ifndef DLT_PRISM_HEADER 221 #define DLT_PRISM_HEADER 119 222 #endif 223 #ifndef DLT_AIRONET_HEADER 224 #define DLT_AIRONET_HEADER 120 225 #endif 226 #ifndef DLT_IEEE802_11_RADIO 227 #define DLT_IEEE802_11_RADIO 127 228 #endif 229 #ifndef DLT_IEEE802_11_RADIO_AVS 230 #define DLT_IEEE802_11_RADIO_AVS 163 231 #endif 232 233 static int pcap_can_set_rfmon_bpf(pcap_t *p); 234 static int pcap_activate_bpf(pcap_t *p); 235 static int pcap_setfilter_bpf(pcap_t *p, struct bpf_program *fp); 236 static int pcap_setdirection_bpf(pcap_t *, pcap_direction_t); 237 static int pcap_set_datalink_bpf(pcap_t *p, int dlt); 238 239 /* 240 * For zerocopy bpf, the setnonblock/getnonblock routines need to modify 241 * pb->nonblock so we don't call select(2) if the pcap handle is in non- 242 * blocking mode. 243 */ 244 static int 245 pcap_getnonblock_bpf(pcap_t *p, char *errbuf) 246 { 247 #ifdef HAVE_ZEROCOPY_BPF 248 struct pcap_bpf *pb = p->priv; 249 250 if (pb->zerocopy) 251 return (pb->nonblock); 252 #endif 253 return (pcap_getnonblock_fd(p, errbuf)); 254 } 255 256 static int 257 pcap_setnonblock_bpf(pcap_t *p, int nonblock, char *errbuf) 258 { 259 #ifdef HAVE_ZEROCOPY_BPF 260 struct pcap_bpf *pb = p->priv; 261 262 if (pb->zerocopy) { 263 pb->nonblock = nonblock; 264 return (0); 265 } 266 #endif 267 return (pcap_setnonblock_fd(p, nonblock, errbuf)); 268 } 269 270 #ifdef HAVE_ZEROCOPY_BPF 271 /* 272 * Zero-copy BPF buffer routines to check for and acknowledge BPF data in 273 * shared memory buffers. 274 * 275 * pcap_next_zbuf_shm(): Check for a newly available shared memory buffer, 276 * and set up p->buffer and cc to reflect one if available. Notice that if 277 * there was no prior buffer, we select zbuf1 as this will be the first 278 * buffer filled for a fresh BPF session. 279 */ 280 static int 281 pcap_next_zbuf_shm(pcap_t *p, int *cc) 282 { 283 struct pcap_bpf *pb = p->priv; 284 struct bpf_zbuf_header *bzh; 285 286 if (pb->zbuffer == pb->zbuf2 || pb->zbuffer == NULL) { 287 bzh = (struct bpf_zbuf_header *)pb->zbuf1; 288 if (bzh->bzh_user_gen != 289 atomic_load_acq_int(&bzh->bzh_kernel_gen)) { 290 pb->bzh = bzh; 291 pb->zbuffer = (u_char *)pb->zbuf1; 292 p->buffer = pb->zbuffer + sizeof(*bzh); 293 *cc = bzh->bzh_kernel_len; 294 return (1); 295 } 296 } else if (pb->zbuffer == pb->zbuf1) { 297 bzh = (struct bpf_zbuf_header *)pb->zbuf2; 298 if (bzh->bzh_user_gen != 299 atomic_load_acq_int(&bzh->bzh_kernel_gen)) { 300 pb->bzh = bzh; 301 pb->zbuffer = (u_char *)pb->zbuf2; 302 p->buffer = pb->zbuffer + sizeof(*bzh); 303 *cc = bzh->bzh_kernel_len; 304 return (1); 305 } 306 } 307 *cc = 0; 308 return (0); 309 } 310 311 /* 312 * pcap_next_zbuf() -- Similar to pcap_next_zbuf_shm(), except wait using 313 * select() for data or a timeout, and possibly force rotation of the buffer 314 * in the event we time out or are in immediate mode. Invoke the shared 315 * memory check before doing system calls in order to avoid doing avoidable 316 * work. 317 */ 318 static int 319 pcap_next_zbuf(pcap_t *p, int *cc) 320 { 321 struct pcap_bpf *pb = p->priv; 322 struct bpf_zbuf bz; 323 struct timeval tv; 324 struct timespec cur; 325 fd_set r_set; 326 int data, r; 327 int expire, tmout; 328 329 #define TSTOMILLI(ts) (((ts)->tv_sec * 1000) + ((ts)->tv_nsec / 1000000)) 330 /* 331 * Start out by seeing whether anything is waiting by checking the 332 * next shared memory buffer for data. 333 */ 334 data = pcap_next_zbuf_shm(p, cc); 335 if (data) 336 return (data); 337 /* 338 * If a previous sleep was interrupted due to signal delivery, make 339 * sure that the timeout gets adjusted accordingly. This requires 340 * that we analyze when the timeout should be been expired, and 341 * subtract the current time from that. If after this operation, 342 * our timeout is less then or equal to zero, handle it like a 343 * regular timeout. 344 */ 345 tmout = p->opt.timeout; 346 if (tmout) 347 (void) clock_gettime(CLOCK_MONOTONIC, &cur); 348 if (pb->interrupted && p->opt.timeout) { 349 expire = TSTOMILLI(&pb->firstsel) + p->opt.timeout; 350 tmout = expire - TSTOMILLI(&cur); 351 #undef TSTOMILLI 352 if (tmout <= 0) { 353 pb->interrupted = 0; 354 data = pcap_next_zbuf_shm(p, cc); 355 if (data) 356 return (data); 357 if (ioctl(p->fd, BIOCROTZBUF, &bz) < 0) { 358 (void) snprintf(p->errbuf, PCAP_ERRBUF_SIZE, 359 "BIOCROTZBUF: %s", strerror(errno)); 360 return (PCAP_ERROR); 361 } 362 return (pcap_next_zbuf_shm(p, cc)); 363 } 364 } 365 /* 366 * No data in the buffer, so must use select() to wait for data or 367 * the next timeout. Note that we only call select if the handle 368 * is in blocking mode. 369 */ 370 if (!pb->nonblock) { 371 FD_ZERO(&r_set); 372 FD_SET(p->fd, &r_set); 373 if (tmout != 0) { 374 tv.tv_sec = tmout / 1000; 375 tv.tv_usec = (tmout * 1000) % 1000000; 376 } 377 r = select(p->fd + 1, &r_set, NULL, NULL, 378 p->opt.timeout != 0 ? &tv : NULL); 379 if (r < 0 && errno == EINTR) { 380 if (!pb->interrupted && p->opt.timeout) { 381 pb->interrupted = 1; 382 pb->firstsel = cur; 383 } 384 return (0); 385 } else if (r < 0) { 386 (void) snprintf(p->errbuf, PCAP_ERRBUF_SIZE, 387 "select: %s", strerror(errno)); 388 return (PCAP_ERROR); 389 } 390 } 391 pb->interrupted = 0; 392 /* 393 * Check again for data, which may exist now that we've either been 394 * woken up as a result of data or timed out. Try the "there's data" 395 * case first since it doesn't require a system call. 396 */ 397 data = pcap_next_zbuf_shm(p, cc); 398 if (data) 399 return (data); 400 /* 401 * Try forcing a buffer rotation to dislodge timed out or immediate 402 * data. 403 */ 404 if (ioctl(p->fd, BIOCROTZBUF, &bz) < 0) { 405 (void) snprintf(p->errbuf, PCAP_ERRBUF_SIZE, 406 "BIOCROTZBUF: %s", strerror(errno)); 407 return (PCAP_ERROR); 408 } 409 return (pcap_next_zbuf_shm(p, cc)); 410 } 411 412 /* 413 * Notify kernel that we are done with the buffer. We don't reset zbuffer so 414 * that we know which buffer to use next time around. 415 */ 416 static int 417 pcap_ack_zbuf(pcap_t *p) 418 { 419 struct pcap_bpf *pb = p->priv; 420 421 atomic_store_rel_int(&pb->bzh->bzh_user_gen, 422 pb->bzh->bzh_kernel_gen); 423 pb->bzh = NULL; 424 p->buffer = NULL; 425 return (0); 426 } 427 #endif /* HAVE_ZEROCOPY_BPF */ 428 429 pcap_t * 430 pcap_create_interface(const char *device, char *ebuf) 431 { 432 pcap_t *p; 433 434 p = pcap_create_common(device, ebuf, sizeof (struct pcap_bpf)); 435 if (p == NULL) 436 return (NULL); 437 438 p->activate_op = pcap_activate_bpf; 439 p->can_set_rfmon_op = pcap_can_set_rfmon_bpf; 440 return (p); 441 } 442 443 /* 444 * On success, returns a file descriptor for a BPF device. 445 * On failure, returns a PCAP_ERROR_ value, and sets p->errbuf. 446 */ 447 static int 448 bpf_open(pcap_t *p) 449 { 450 int fd; 451 #ifdef HAVE_CLONING_BPF 452 static const char device[] = "/dev/bpf"; 453 #else 454 int n = 0; 455 char device[sizeof "/dev/bpf0000000000"]; 456 #endif 457 458 #ifdef _AIX 459 /* 460 * Load the bpf driver, if it isn't already loaded, 461 * and create the BPF device entries, if they don't 462 * already exist. 463 */ 464 if (bpf_load(p->errbuf) == PCAP_ERROR) 465 return (PCAP_ERROR); 466 #endif 467 468 #ifdef HAVE_CLONING_BPF 469 if ((fd = open(device, O_RDWR)) == -1 && 470 (errno != EACCES || (fd = open(device, O_RDONLY)) == -1)) { 471 if (errno == EACCES) 472 fd = PCAP_ERROR_PERM_DENIED; 473 else 474 fd = PCAP_ERROR; 475 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, 476 "(cannot open device) %s: %s", device, pcap_strerror(errno)); 477 } 478 #else 479 /* 480 * Go through all the minors and find one that isn't in use. 481 */ 482 do { 483 (void)snprintf(device, sizeof(device), "/dev/bpf%d", n++); 484 /* 485 * Initially try a read/write open (to allow the inject 486 * method to work). If that fails due to permission 487 * issues, fall back to read-only. This allows a 488 * non-root user to be granted specific access to pcap 489 * capabilities via file permissions. 490 * 491 * XXX - we should have an API that has a flag that 492 * controls whether to open read-only or read-write, 493 * so that denial of permission to send (or inability 494 * to send, if sending packets isn't supported on 495 * the device in question) can be indicated at open 496 * time. 497 */ 498 fd = open(device, O_RDWR); 499 if (fd == -1 && errno == EACCES) 500 fd = open(device, O_RDONLY); 501 } while (fd < 0 && errno == EBUSY); 502 503 /* 504 * XXX better message for all minors used 505 */ 506 if (fd < 0) { 507 switch (errno) { 508 509 case ENOENT: 510 fd = PCAP_ERROR; 511 if (n == 1) { 512 /* 513 * /dev/bpf0 doesn't exist, which 514 * means we probably have no BPF 515 * devices. 516 */ 517 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, 518 "(there are no BPF devices)"); 519 } else { 520 /* 521 * We got EBUSY on at least one 522 * BPF device, so we have BPF 523 * devices, but all the ones 524 * that exist are busy. 525 */ 526 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, 527 "(all BPF devices are busy)"); 528 } 529 break; 530 531 case EACCES: 532 /* 533 * Got EACCES on the last device we tried, 534 * and EBUSY on all devices before that, 535 * if any. 536 */ 537 fd = PCAP_ERROR_PERM_DENIED; 538 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, 539 "(cannot open BPF device) %s: %s", device, 540 pcap_strerror(errno)); 541 break; 542 543 default: 544 /* 545 * Some other problem. 546 */ 547 fd = PCAP_ERROR; 548 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, 549 "(cannot open BPF device) %s: %s", device, 550 pcap_strerror(errno)); 551 break; 552 } 553 } 554 #endif 555 556 return (fd); 557 } 558 559 #ifdef BIOCGDLTLIST 560 static int 561 get_dlt_list(int fd, int v, struct bpf_dltlist *bdlp, char *ebuf) 562 { 563 memset(bdlp, 0, sizeof(*bdlp)); 564 if (ioctl(fd, BIOCGDLTLIST, (caddr_t)bdlp) == 0) { 565 u_int i; 566 int is_ethernet; 567 568 bdlp->bfl_list = (u_int *) malloc(sizeof(u_int) * (bdlp->bfl_len + 1)); 569 if (bdlp->bfl_list == NULL) { 570 (void)snprintf(ebuf, PCAP_ERRBUF_SIZE, "malloc: %s", 571 pcap_strerror(errno)); 572 return (PCAP_ERROR); 573 } 574 575 if (ioctl(fd, BIOCGDLTLIST, (caddr_t)bdlp) < 0) { 576 (void)snprintf(ebuf, PCAP_ERRBUF_SIZE, 577 "BIOCGDLTLIST: %s", pcap_strerror(errno)); 578 free(bdlp->bfl_list); 579 return (PCAP_ERROR); 580 } 581 582 /* 583 * OK, for real Ethernet devices, add DLT_DOCSIS to the 584 * list, so that an application can let you choose it, 585 * in case you're capturing DOCSIS traffic that a Cisco 586 * Cable Modem Termination System is putting out onto 587 * an Ethernet (it doesn't put an Ethernet header onto 588 * the wire, it puts raw DOCSIS frames out on the wire 589 * inside the low-level Ethernet framing). 590 * 591 * A "real Ethernet device" is defined here as a device 592 * that has a link-layer type of DLT_EN10MB and that has 593 * no alternate link-layer types; that's done to exclude 594 * 802.11 interfaces (which might or might not be the 595 * right thing to do, but I suspect it is - Ethernet <-> 596 * 802.11 bridges would probably badly mishandle frames 597 * that don't have Ethernet headers). 598 * 599 * On Solaris with BPF, Ethernet devices also offer 600 * DLT_IPNET, so we, if DLT_IPNET is defined, we don't 601 * treat it as an indication that the device isn't an 602 * Ethernet. 603 */ 604 if (v == DLT_EN10MB) { 605 is_ethernet = 1; 606 for (i = 0; i < bdlp->bfl_len; i++) { 607 if (bdlp->bfl_list[i] != DLT_EN10MB 608 #ifdef DLT_IPNET 609 && bdlp->bfl_list[i] != DLT_IPNET 610 #endif 611 ) { 612 is_ethernet = 0; 613 break; 614 } 615 } 616 if (is_ethernet) { 617 /* 618 * We reserved one more slot at the end of 619 * the list. 620 */ 621 bdlp->bfl_list[bdlp->bfl_len] = DLT_DOCSIS; 622 bdlp->bfl_len++; 623 } 624 } 625 } else { 626 /* 627 * EINVAL just means "we don't support this ioctl on 628 * this device"; don't treat it as an error. 629 */ 630 if (errno != EINVAL) { 631 (void)snprintf(ebuf, PCAP_ERRBUF_SIZE, 632 "BIOCGDLTLIST: %s", pcap_strerror(errno)); 633 return (PCAP_ERROR); 634 } 635 } 636 return (0); 637 } 638 #endif 639 640 static int 641 pcap_can_set_rfmon_bpf(pcap_t *p) 642 { 643 #if defined(__APPLE__) 644 struct utsname osinfo; 645 struct ifreq ifr; 646 int fd; 647 #ifdef BIOCGDLTLIST 648 struct bpf_dltlist bdl; 649 #endif 650 651 /* 652 * The joys of monitor mode on OS X. 653 * 654 * Prior to 10.4, it's not supported at all. 655 * 656 * In 10.4, if adapter enN supports monitor mode, there's a 657 * wltN adapter corresponding to it; you open it, instead of 658 * enN, to get monitor mode. You get whatever link-layer 659 * headers it supplies. 660 * 661 * In 10.5, and, we assume, later releases, if adapter enN 662 * supports monitor mode, it offers, among its selectable 663 * DLT_ values, values that let you get the 802.11 header; 664 * selecting one of those values puts the adapter into monitor 665 * mode (i.e., you can't get 802.11 headers except in monitor 666 * mode, and you can't get Ethernet headers in monitor mode). 667 */ 668 if (uname(&osinfo) == -1) { 669 /* 670 * Can't get the OS version; just say "no". 671 */ 672 return (0); 673 } 674 /* 675 * We assume osinfo.sysname is "Darwin", because 676 * __APPLE__ is defined. We just check the version. 677 */ 678 if (osinfo.release[0] < '8' && osinfo.release[1] == '.') { 679 /* 680 * 10.3 (Darwin 7.x) or earlier. 681 * Monitor mode not supported. 682 */ 683 return (0); 684 } 685 if (osinfo.release[0] == '8' && osinfo.release[1] == '.') { 686 /* 687 * 10.4 (Darwin 8.x). s/en/wlt/, and check 688 * whether the device exists. 689 */ 690 if (strncmp(p->opt.source, "en", 2) != 0) { 691 /* 692 * Not an enN device; no monitor mode. 693 */ 694 return (0); 695 } 696 fd = socket(AF_INET, SOCK_DGRAM, 0); 697 if (fd == -1) { 698 (void)snprintf(p->errbuf, PCAP_ERRBUF_SIZE, 699 "socket: %s", pcap_strerror(errno)); 700 return (PCAP_ERROR); 701 } 702 strlcpy(ifr.ifr_name, "wlt", sizeof(ifr.ifr_name)); 703 strlcat(ifr.ifr_name, p->opt.source + 2, sizeof(ifr.ifr_name)); 704 if (ioctl(fd, SIOCGIFFLAGS, (char *)&ifr) < 0) { 705 /* 706 * No such device? 707 */ 708 close(fd); 709 return (0); 710 } 711 close(fd); 712 return (1); 713 } 714 715 #ifdef BIOCGDLTLIST 716 /* 717 * Everything else is 10.5 or later; for those, 718 * we just open the enN device, and check whether 719 * we have any 802.11 devices. 720 * 721 * First, open a BPF device. 722 */ 723 fd = bpf_open(p); 724 if (fd < 0) 725 return (fd); /* fd is the appropriate error code */ 726 727 /* 728 * Now bind to the device. 729 */ 730 (void)strncpy(ifr.ifr_name, p->opt.source, sizeof(ifr.ifr_name)); 731 if (ioctl(fd, BIOCSETIF, (caddr_t)&ifr) < 0) { 732 switch (errno) { 733 734 case ENXIO: 735 /* 736 * There's no such device. 737 */ 738 close(fd); 739 return (PCAP_ERROR_NO_SUCH_DEVICE); 740 741 case ENETDOWN: 742 /* 743 * Return a "network down" indication, so that 744 * the application can report that rather than 745 * saying we had a mysterious failure and 746 * suggest that they report a problem to the 747 * libpcap developers. 748 */ 749 close(fd); 750 return (PCAP_ERROR_IFACE_NOT_UP); 751 752 default: 753 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, 754 "BIOCSETIF: %s: %s", 755 p->opt.source, pcap_strerror(errno)); 756 close(fd); 757 return (PCAP_ERROR); 758 } 759 } 760 761 /* 762 * We know the default link type -- now determine all the DLTs 763 * this interface supports. If this fails with EINVAL, it's 764 * not fatal; we just don't get to use the feature later. 765 * (We don't care about DLT_DOCSIS, so we pass DLT_NULL 766 * as the default DLT for this adapter.) 767 */ 768 if (get_dlt_list(fd, DLT_NULL, &bdl, p->errbuf) == PCAP_ERROR) { 769 close(fd); 770 return (PCAP_ERROR); 771 } 772 if (find_802_11(&bdl) != -1) { 773 /* 774 * We have an 802.11 DLT, so we can set monitor mode. 775 */ 776 free(bdl.bfl_list); 777 close(fd); 778 return (1); 779 } 780 free(bdl.bfl_list); 781 #endif /* BIOCGDLTLIST */ 782 return (0); 783 #elif defined(HAVE_BSD_IEEE80211) 784 int ret; 785 786 ret = monitor_mode(p, 0); 787 if (ret == PCAP_ERROR_RFMON_NOTSUP) 788 return (0); /* not an error, just a "can't do" */ 789 if (ret == 0) 790 return (1); /* success */ 791 return (ret); 792 #else 793 return (0); 794 #endif 795 } 796 797 static int 798 pcap_stats_bpf(pcap_t *p, struct pcap_stat *ps) 799 { 800 struct bpf_stat s; 801 802 /* 803 * "ps_recv" counts packets handed to the filter, not packets 804 * that passed the filter. This includes packets later dropped 805 * because we ran out of buffer space. 806 * 807 * "ps_drop" counts packets dropped inside the BPF device 808 * because we ran out of buffer space. It doesn't count 809 * packets dropped by the interface driver. It counts 810 * only packets that passed the filter. 811 * 812 * Both statistics include packets not yet read from the kernel 813 * by libpcap, and thus not yet seen by the application. 814 */ 815 if (ioctl(p->fd, BIOCGSTATS, (caddr_t)&s) < 0) { 816 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "BIOCGSTATS: %s", 817 pcap_strerror(errno)); 818 return (PCAP_ERROR); 819 } 820 821 ps->ps_recv = s.bs_recv; 822 ps->ps_drop = s.bs_drop; 823 ps->ps_ifdrop = 0; 824 return (0); 825 } 826 827 static int 828 pcap_read_bpf(pcap_t *p, int cnt, pcap_handler callback, u_char *user) 829 { 830 struct pcap_bpf *pb = p->priv; 831 int cc; 832 int n = 0; 833 register u_char *bp, *ep; 834 u_char *datap; 835 #ifdef PCAP_FDDIPAD 836 register u_int pad; 837 #endif 838 #ifdef HAVE_ZEROCOPY_BPF 839 int i; 840 #endif 841 842 again: 843 /* 844 * Has "pcap_breakloop()" been called? 845 */ 846 if (p->break_loop) { 847 /* 848 * Yes - clear the flag that indicates that it 849 * has, and return PCAP_ERROR_BREAK to indicate 850 * that we were told to break out of the loop. 851 */ 852 p->break_loop = 0; 853 return (PCAP_ERROR_BREAK); 854 } 855 cc = p->cc; 856 if (p->cc == 0) { 857 /* 858 * When reading without zero-copy from a file descriptor, we 859 * use a single buffer and return a length of data in the 860 * buffer. With zero-copy, we update the p->buffer pointer 861 * to point at whatever underlying buffer contains the next 862 * data and update cc to reflect the data found in the 863 * buffer. 864 */ 865 #ifdef HAVE_ZEROCOPY_BPF 866 if (pb->zerocopy) { 867 if (p->buffer != NULL) 868 pcap_ack_zbuf(p); 869 i = pcap_next_zbuf(p, &cc); 870 if (i == 0) 871 goto again; 872 if (i < 0) 873 return (PCAP_ERROR); 874 } else 875 #endif 876 { 877 cc = read(p->fd, (char *)p->buffer, p->bufsize); 878 } 879 if (cc < 0) { 880 /* Don't choke when we get ptraced */ 881 switch (errno) { 882 883 case EINTR: 884 goto again; 885 886 #ifdef _AIX 887 case EFAULT: 888 /* 889 * Sigh. More AIX wonderfulness. 890 * 891 * For some unknown reason the uiomove() 892 * operation in the bpf kernel extension 893 * used to copy the buffer into user 894 * space sometimes returns EFAULT. I have 895 * no idea why this is the case given that 896 * a kernel debugger shows the user buffer 897 * is correct. This problem appears to 898 * be mostly mitigated by the memset of 899 * the buffer before it is first used. 900 * Very strange.... Shaun Clowes 901 * 902 * In any case this means that we shouldn't 903 * treat EFAULT as a fatal error; as we 904 * don't have an API for returning 905 * a "some packets were dropped since 906 * the last packet you saw" indication, 907 * we just ignore EFAULT and keep reading. 908 */ 909 goto again; 910 #endif 911 912 case EWOULDBLOCK: 913 return (0); 914 915 case ENXIO: 916 /* 917 * The device on which we're capturing 918 * went away. 919 * 920 * XXX - we should really return 921 * PCAP_ERROR_IFACE_NOT_UP, but 922 * pcap_dispatch() etc. aren't 923 * defined to retur that. 924 */ 925 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, 926 "The interface went down"); 927 return (PCAP_ERROR); 928 929 #if defined(sun) && !defined(BSD) && !defined(__svr4__) && !defined(__SVR4) 930 /* 931 * Due to a SunOS bug, after 2^31 bytes, the kernel 932 * file offset overflows and read fails with EINVAL. 933 * The lseek() to 0 will fix things. 934 */ 935 case EINVAL: 936 if (lseek(p->fd, 0L, SEEK_CUR) + 937 p->bufsize < 0) { 938 (void)lseek(p->fd, 0L, SEEK_SET); 939 goto again; 940 } 941 /* fall through */ 942 #endif 943 } 944 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "read: %s", 945 pcap_strerror(errno)); 946 return (PCAP_ERROR); 947 } 948 bp = p->buffer; 949 } else 950 bp = p->bp; 951 952 /* 953 * Loop through each packet. 954 */ 955 #define bhp ((struct bpf_hdr *)bp) 956 ep = bp + cc; 957 #ifdef PCAP_FDDIPAD 958 pad = p->fddipad; 959 #endif 960 while (bp < ep) { 961 register u_int caplen, hdrlen; 962 963 /* 964 * Has "pcap_breakloop()" been called? 965 * If so, return immediately - if we haven't read any 966 * packets, clear the flag and return PCAP_ERROR_BREAK 967 * to indicate that we were told to break out of the loop, 968 * otherwise leave the flag set, so that the *next* call 969 * will break out of the loop without having read any 970 * packets, and return the number of packets we've 971 * processed so far. 972 */ 973 if (p->break_loop) { 974 p->bp = bp; 975 p->cc = ep - bp; 976 /* 977 * ep is set based on the return value of read(), 978 * but read() from a BPF device doesn't necessarily 979 * return a value that's a multiple of the alignment 980 * value for BPF_WORDALIGN(). However, whenever we 981 * increment bp, we round up the increment value by 982 * a value rounded up by BPF_WORDALIGN(), so we 983 * could increment bp past ep after processing the 984 * last packet in the buffer. 985 * 986 * We treat ep < bp as an indication that this 987 * happened, and just set p->cc to 0. 988 */ 989 if (p->cc < 0) 990 p->cc = 0; 991 if (n == 0) { 992 p->break_loop = 0; 993 return (PCAP_ERROR_BREAK); 994 } else 995 return (n); 996 } 997 998 caplen = bhp->bh_caplen; 999 hdrlen = bhp->bh_hdrlen; 1000 datap = bp + hdrlen; 1001 /* 1002 * Short-circuit evaluation: if using BPF filter 1003 * in kernel, no need to do it now - we already know 1004 * the packet passed the filter. 1005 * 1006 #ifdef PCAP_FDDIPAD 1007 * Note: the filter code was generated assuming 1008 * that p->fddipad was the amount of padding 1009 * before the header, as that's what's required 1010 * in the kernel, so we run the filter before 1011 * skipping that padding. 1012 #endif 1013 */ 1014 if (pb->filtering_in_kernel || 1015 bpf_filter(p->fcode.bf_insns, datap, bhp->bh_datalen, caplen)) { 1016 struct pcap_pkthdr pkthdr; 1017 1018 pkthdr.ts.tv_sec = bhp->bh_tstamp.tv_sec; 1019 #ifdef _AIX 1020 /* 1021 * AIX's BPF returns seconds/nanoseconds time 1022 * stamps, not seconds/microseconds time stamps. 1023 */ 1024 pkthdr.ts.tv_usec = bhp->bh_tstamp.tv_usec/1000; 1025 #else 1026 pkthdr.ts.tv_usec = bhp->bh_tstamp.tv_usec; 1027 #endif 1028 #ifdef PCAP_FDDIPAD 1029 if (caplen > pad) 1030 pkthdr.caplen = caplen - pad; 1031 else 1032 pkthdr.caplen = 0; 1033 if (bhp->bh_datalen > pad) 1034 pkthdr.len = bhp->bh_datalen - pad; 1035 else 1036 pkthdr.len = 0; 1037 datap += pad; 1038 #else 1039 pkthdr.caplen = caplen; 1040 pkthdr.len = bhp->bh_datalen; 1041 #endif 1042 (*callback)(user, &pkthdr, datap); 1043 bp += BPF_WORDALIGN(caplen + hdrlen); 1044 if (++n >= cnt && !PACKET_COUNT_IS_UNLIMITED(cnt)) { 1045 p->bp = bp; 1046 p->cc = ep - bp; 1047 /* 1048 * See comment above about p->cc < 0. 1049 */ 1050 if (p->cc < 0) 1051 p->cc = 0; 1052 return (n); 1053 } 1054 } else { 1055 /* 1056 * Skip this packet. 1057 */ 1058 bp += BPF_WORDALIGN(caplen + hdrlen); 1059 } 1060 } 1061 #undef bhp 1062 p->cc = 0; 1063 return (n); 1064 } 1065 1066 static int 1067 pcap_inject_bpf(pcap_t *p, const void *buf, size_t size) 1068 { 1069 int ret; 1070 1071 ret = write(p->fd, buf, size); 1072 #ifdef __APPLE__ 1073 if (ret == -1 && errno == EAFNOSUPPORT) { 1074 /* 1075 * In Mac OS X, there's a bug wherein setting the 1076 * BIOCSHDRCMPLT flag causes writes to fail; see, 1077 * for example: 1078 * 1079 * http://cerberus.sourcefire.com/~jeff/archives/patches/macosx/BIOCSHDRCMPLT-10.3.3.patch 1080 * 1081 * So, if, on OS X, we get EAFNOSUPPORT from the write, we 1082 * assume it's due to that bug, and turn off that flag 1083 * and try again. If we succeed, it either means that 1084 * somebody applied the fix from that URL, or other patches 1085 * for that bug from 1086 * 1087 * http://cerberus.sourcefire.com/~jeff/archives/patches/macosx/ 1088 * 1089 * and are running a Darwin kernel with those fixes, or 1090 * that Apple fixed the problem in some OS X release. 1091 */ 1092 u_int spoof_eth_src = 0; 1093 1094 if (ioctl(p->fd, BIOCSHDRCMPLT, &spoof_eth_src) == -1) { 1095 (void)snprintf(p->errbuf, PCAP_ERRBUF_SIZE, 1096 "send: can't turn off BIOCSHDRCMPLT: %s", 1097 pcap_strerror(errno)); 1098 return (PCAP_ERROR); 1099 } 1100 1101 /* 1102 * Now try the write again. 1103 */ 1104 ret = write(p->fd, buf, size); 1105 } 1106 #endif /* __APPLE__ */ 1107 if (ret == -1) { 1108 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "send: %s", 1109 pcap_strerror(errno)); 1110 return (PCAP_ERROR); 1111 } 1112 return (ret); 1113 } 1114 1115 #ifdef _AIX 1116 static int 1117 bpf_odminit(char *errbuf) 1118 { 1119 char *errstr; 1120 1121 if (odm_initialize() == -1) { 1122 if (odm_err_msg(odmerrno, &errstr) == -1) 1123 errstr = "Unknown error"; 1124 snprintf(errbuf, PCAP_ERRBUF_SIZE, 1125 "bpf_load: odm_initialize failed: %s", 1126 errstr); 1127 return (PCAP_ERROR); 1128 } 1129 1130 if ((odmlockid = odm_lock("/etc/objrepos/config_lock", ODM_WAIT)) == -1) { 1131 if (odm_err_msg(odmerrno, &errstr) == -1) 1132 errstr = "Unknown error"; 1133 snprintf(errbuf, PCAP_ERRBUF_SIZE, 1134 "bpf_load: odm_lock of /etc/objrepos/config_lock failed: %s", 1135 errstr); 1136 (void)odm_terminate(); 1137 return (PCAP_ERROR); 1138 } 1139 1140 return (0); 1141 } 1142 1143 static int 1144 bpf_odmcleanup(char *errbuf) 1145 { 1146 char *errstr; 1147 1148 if (odm_unlock(odmlockid) == -1) { 1149 if (errbuf != NULL) { 1150 if (odm_err_msg(odmerrno, &errstr) == -1) 1151 errstr = "Unknown error"; 1152 snprintf(errbuf, PCAP_ERRBUF_SIZE, 1153 "bpf_load: odm_unlock failed: %s", 1154 errstr); 1155 } 1156 return (PCAP_ERROR); 1157 } 1158 1159 if (odm_terminate() == -1) { 1160 if (errbuf != NULL) { 1161 if (odm_err_msg(odmerrno, &errstr) == -1) 1162 errstr = "Unknown error"; 1163 snprintf(errbuf, PCAP_ERRBUF_SIZE, 1164 "bpf_load: odm_terminate failed: %s", 1165 errstr); 1166 } 1167 return (PCAP_ERROR); 1168 } 1169 1170 return (0); 1171 } 1172 1173 static int 1174 bpf_load(char *errbuf) 1175 { 1176 long major; 1177 int *minors; 1178 int numminors, i, rc; 1179 char buf[1024]; 1180 struct stat sbuf; 1181 struct bpf_config cfg_bpf; 1182 struct cfg_load cfg_ld; 1183 struct cfg_kmod cfg_km; 1184 1185 /* 1186 * This is very very close to what happens in the real implementation 1187 * but I've fixed some (unlikely) bug situations. 1188 */ 1189 if (bpfloadedflag) 1190 return (0); 1191 1192 if (bpf_odminit(errbuf) == PCAP_ERROR) 1193 return (PCAP_ERROR); 1194 1195 major = genmajor(BPF_NAME); 1196 if (major == -1) { 1197 snprintf(errbuf, PCAP_ERRBUF_SIZE, 1198 "bpf_load: genmajor failed: %s", pcap_strerror(errno)); 1199 (void)bpf_odmcleanup(NULL); 1200 return (PCAP_ERROR); 1201 } 1202 1203 minors = getminor(major, &numminors, BPF_NAME); 1204 if (!minors) { 1205 minors = genminor("bpf", major, 0, BPF_MINORS, 1, 1); 1206 if (!minors) { 1207 snprintf(errbuf, PCAP_ERRBUF_SIZE, 1208 "bpf_load: genminor failed: %s", 1209 pcap_strerror(errno)); 1210 (void)bpf_odmcleanup(NULL); 1211 return (PCAP_ERROR); 1212 } 1213 } 1214 1215 if (bpf_odmcleanup(errbuf) == PCAP_ERROR) 1216 return (PCAP_ERROR); 1217 1218 rc = stat(BPF_NODE "0", &sbuf); 1219 if (rc == -1 && errno != ENOENT) { 1220 snprintf(errbuf, PCAP_ERRBUF_SIZE, 1221 "bpf_load: can't stat %s: %s", 1222 BPF_NODE "0", pcap_strerror(errno)); 1223 return (PCAP_ERROR); 1224 } 1225 1226 if (rc == -1 || getmajor(sbuf.st_rdev) != major) { 1227 for (i = 0; i < BPF_MINORS; i++) { 1228 sprintf(buf, "%s%d", BPF_NODE, i); 1229 unlink(buf); 1230 if (mknod(buf, S_IRUSR | S_IFCHR, domakedev(major, i)) == -1) { 1231 snprintf(errbuf, PCAP_ERRBUF_SIZE, 1232 "bpf_load: can't mknod %s: %s", 1233 buf, pcap_strerror(errno)); 1234 return (PCAP_ERROR); 1235 } 1236 } 1237 } 1238 1239 /* Check if the driver is loaded */ 1240 memset(&cfg_ld, 0x0, sizeof(cfg_ld)); 1241 cfg_ld.path = buf; 1242 sprintf(cfg_ld.path, "%s/%s", DRIVER_PATH, BPF_NAME); 1243 if ((sysconfig(SYS_QUERYLOAD, (void *)&cfg_ld, sizeof(cfg_ld)) == -1) || 1244 (cfg_ld.kmid == 0)) { 1245 /* Driver isn't loaded, load it now */ 1246 if (sysconfig(SYS_SINGLELOAD, (void *)&cfg_ld, sizeof(cfg_ld)) == -1) { 1247 snprintf(errbuf, PCAP_ERRBUF_SIZE, 1248 "bpf_load: could not load driver: %s", 1249 strerror(errno)); 1250 return (PCAP_ERROR); 1251 } 1252 } 1253 1254 /* Configure the driver */ 1255 cfg_km.cmd = CFG_INIT; 1256 cfg_km.kmid = cfg_ld.kmid; 1257 cfg_km.mdilen = sizeof(cfg_bpf); 1258 cfg_km.mdiptr = (void *)&cfg_bpf; 1259 for (i = 0; i < BPF_MINORS; i++) { 1260 cfg_bpf.devno = domakedev(major, i); 1261 if (sysconfig(SYS_CFGKMOD, (void *)&cfg_km, sizeof(cfg_km)) == -1) { 1262 snprintf(errbuf, PCAP_ERRBUF_SIZE, 1263 "bpf_load: could not configure driver: %s", 1264 strerror(errno)); 1265 return (PCAP_ERROR); 1266 } 1267 } 1268 1269 bpfloadedflag = 1; 1270 1271 return (0); 1272 } 1273 #endif 1274 1275 /* 1276 * Turn off rfmon mode if necessary. 1277 */ 1278 static void 1279 pcap_cleanup_bpf(pcap_t *p) 1280 { 1281 struct pcap_bpf *pb = p->priv; 1282 #ifdef HAVE_BSD_IEEE80211 1283 int sock; 1284 struct ifmediareq req; 1285 struct ifreq ifr; 1286 #endif 1287 1288 if (pb->must_do_on_close != 0) { 1289 /* 1290 * There's something we have to do when closing this 1291 * pcap_t. 1292 */ 1293 #ifdef HAVE_BSD_IEEE80211 1294 if (pb->must_do_on_close & MUST_CLEAR_RFMON) { 1295 /* 1296 * We put the interface into rfmon mode; 1297 * take it out of rfmon mode. 1298 * 1299 * XXX - if somebody else wants it in rfmon 1300 * mode, this code cannot know that, so it'll take 1301 * it out of rfmon mode. 1302 */ 1303 sock = socket(AF_INET, SOCK_DGRAM, 0); 1304 if (sock == -1) { 1305 fprintf(stderr, 1306 "Can't restore interface flags (socket() failed: %s).\n" 1307 "Please adjust manually.\n", 1308 strerror(errno)); 1309 } else { 1310 memset(&req, 0, sizeof(req)); 1311 strncpy(req.ifm_name, pb->device, 1312 sizeof(req.ifm_name)); 1313 if (ioctl(sock, SIOCGIFMEDIA, &req) < 0) { 1314 fprintf(stderr, 1315 "Can't restore interface flags (SIOCGIFMEDIA failed: %s).\n" 1316 "Please adjust manually.\n", 1317 strerror(errno)); 1318 } else { 1319 if (req.ifm_current & IFM_IEEE80211_MONITOR) { 1320 /* 1321 * Rfmon mode is currently on; 1322 * turn it off. 1323 */ 1324 memset(&ifr, 0, sizeof(ifr)); 1325 (void)strncpy(ifr.ifr_name, 1326 pb->device, 1327 sizeof(ifr.ifr_name)); 1328 ifr.ifr_media = 1329 req.ifm_current & ~IFM_IEEE80211_MONITOR; 1330 if (ioctl(sock, SIOCSIFMEDIA, 1331 &ifr) == -1) { 1332 fprintf(stderr, 1333 "Can't restore interface flags (SIOCSIFMEDIA failed: %s).\n" 1334 "Please adjust manually.\n", 1335 strerror(errno)); 1336 } 1337 } 1338 } 1339 close(sock); 1340 } 1341 } 1342 #endif /* HAVE_BSD_IEEE80211 */ 1343 1344 /* 1345 * Take this pcap out of the list of pcaps for which we 1346 * have to take the interface out of some mode. 1347 */ 1348 pcap_remove_from_pcaps_to_close(p); 1349 pb->must_do_on_close = 0; 1350 } 1351 1352 #ifdef HAVE_ZEROCOPY_BPF 1353 if (pb->zerocopy) { 1354 /* 1355 * Delete the mappings. Note that p->buffer gets 1356 * initialized to one of the mmapped regions in 1357 * this case, so do not try and free it directly; 1358 * null it out so that pcap_cleanup_live_common() 1359 * doesn't try to free it. 1360 */ 1361 if (pb->zbuf1 != MAP_FAILED && pb->zbuf1 != NULL) 1362 (void) munmap(pb->zbuf1, pb->zbufsize); 1363 if (pb->zbuf2 != MAP_FAILED && pb->zbuf2 != NULL) 1364 (void) munmap(pb->zbuf2, pb->zbufsize); 1365 p->buffer = NULL; 1366 } 1367 #endif 1368 if (pb->device != NULL) { 1369 free(pb->device); 1370 pb->device = NULL; 1371 } 1372 pcap_cleanup_live_common(p); 1373 } 1374 1375 static int 1376 check_setif_failure(pcap_t *p, int error) 1377 { 1378 #ifdef __APPLE__ 1379 int fd; 1380 struct ifreq ifr; 1381 int err; 1382 #endif 1383 1384 if (error == ENXIO) { 1385 /* 1386 * No such device exists. 1387 */ 1388 #ifdef __APPLE__ 1389 if (p->opt.rfmon && strncmp(p->opt.source, "wlt", 3) == 0) { 1390 /* 1391 * Monitor mode was requested, and we're trying 1392 * to open a "wltN" device. Assume that this 1393 * is 10.4 and that we were asked to open an 1394 * "enN" device; if that device exists, return 1395 * "monitor mode not supported on the device". 1396 */ 1397 fd = socket(AF_INET, SOCK_DGRAM, 0); 1398 if (fd != -1) { 1399 strlcpy(ifr.ifr_name, "en", 1400 sizeof(ifr.ifr_name)); 1401 strlcat(ifr.ifr_name, p->opt.source + 3, 1402 sizeof(ifr.ifr_name)); 1403 if (ioctl(fd, SIOCGIFFLAGS, (char *)&ifr) < 0) { 1404 /* 1405 * We assume this failed because 1406 * the underlying device doesn't 1407 * exist. 1408 */ 1409 err = PCAP_ERROR_NO_SUCH_DEVICE; 1410 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, 1411 "SIOCGIFFLAGS on %s failed: %s", 1412 ifr.ifr_name, pcap_strerror(errno)); 1413 } else { 1414 /* 1415 * The underlying "enN" device 1416 * exists, but there's no 1417 * corresponding "wltN" device; 1418 * that means that the "enN" 1419 * device doesn't support 1420 * monitor mode, probably because 1421 * it's an Ethernet device rather 1422 * than a wireless device. 1423 */ 1424 err = PCAP_ERROR_RFMON_NOTSUP; 1425 } 1426 close(fd); 1427 } else { 1428 /* 1429 * We can't find out whether there's 1430 * an underlying "enN" device, so 1431 * just report "no such device". 1432 */ 1433 err = PCAP_ERROR_NO_SUCH_DEVICE; 1434 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, 1435 "socket() failed: %s", 1436 pcap_strerror(errno)); 1437 } 1438 return (err); 1439 } 1440 #endif 1441 /* 1442 * No such device. 1443 */ 1444 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "BIOCSETIF failed: %s", 1445 pcap_strerror(errno)); 1446 return (PCAP_ERROR_NO_SUCH_DEVICE); 1447 } else if (errno == ENETDOWN) { 1448 /* 1449 * Return a "network down" indication, so that 1450 * the application can report that rather than 1451 * saying we had a mysterious failure and 1452 * suggest that they report a problem to the 1453 * libpcap developers. 1454 */ 1455 return (PCAP_ERROR_IFACE_NOT_UP); 1456 } else { 1457 /* 1458 * Some other error; fill in the error string, and 1459 * return PCAP_ERROR. 1460 */ 1461 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "BIOCSETIF: %s: %s", 1462 p->opt.source, pcap_strerror(errno)); 1463 return (PCAP_ERROR); 1464 } 1465 } 1466 1467 /* 1468 * Default capture buffer size. 1469 * 32K isn't very much for modern machines with fast networks; we 1470 * pick .5M, as that's the maximum on at least some systems with BPF. 1471 * 1472 * However, on AIX 3.5, the larger buffer sized caused unrecoverable 1473 * read failures under stress, so we leave it as 32K; yet another 1474 * place where AIX's BPF is broken. 1475 */ 1476 #ifdef _AIX 1477 #define DEFAULT_BUFSIZE 32768 1478 #else 1479 #define DEFAULT_BUFSIZE 524288 1480 #endif 1481 1482 static int 1483 pcap_activate_bpf(pcap_t *p) 1484 { 1485 struct pcap_bpf *pb = p->priv; 1486 int status = 0; 1487 #ifdef HAVE_BSD_IEEE80211 1488 int retv; 1489 #endif 1490 int fd; 1491 #ifdef LIFNAMSIZ 1492 char *zonesep; 1493 struct lifreq ifr; 1494 char *ifrname = ifr.lifr_name; 1495 const size_t ifnamsiz = sizeof(ifr.lifr_name); 1496 #else 1497 struct ifreq ifr; 1498 char *ifrname = ifr.ifr_name; 1499 const size_t ifnamsiz = sizeof(ifr.ifr_name); 1500 #endif 1501 struct bpf_version bv; 1502 #ifdef __APPLE__ 1503 int sockfd; 1504 char *wltdev = NULL; 1505 #endif 1506 #ifdef BIOCGDLTLIST 1507 struct bpf_dltlist bdl; 1508 #if defined(__APPLE__) || defined(HAVE_BSD_IEEE80211) 1509 u_int new_dlt; 1510 #endif 1511 #endif /* BIOCGDLTLIST */ 1512 #if defined(BIOCGHDRCMPLT) && defined(BIOCSHDRCMPLT) 1513 u_int spoof_eth_src = 1; 1514 #endif 1515 u_int v; 1516 struct bpf_insn total_insn; 1517 struct bpf_program total_prog; 1518 struct utsname osinfo; 1519 int have_osinfo = 0; 1520 #ifdef HAVE_ZEROCOPY_BPF 1521 struct bpf_zbuf bz; 1522 u_int bufmode, zbufmax; 1523 #endif 1524 1525 fd = bpf_open(p); 1526 if (fd < 0) { 1527 status = fd; 1528 goto bad; 1529 } 1530 1531 p->fd = fd; 1532 1533 if (ioctl(fd, BIOCVERSION, (caddr_t)&bv) < 0) { 1534 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "BIOCVERSION: %s", 1535 pcap_strerror(errno)); 1536 status = PCAP_ERROR; 1537 goto bad; 1538 } 1539 if (bv.bv_major != BPF_MAJOR_VERSION || 1540 bv.bv_minor < BPF_MINOR_VERSION) { 1541 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, 1542 "kernel bpf filter out of date"); 1543 status = PCAP_ERROR; 1544 goto bad; 1545 } 1546 1547 #if defined(LIFNAMSIZ) && defined(ZONENAME_MAX) && defined(lifr_zoneid) 1548 /* 1549 * Retrieve the zoneid of the zone we are currently executing in. 1550 */ 1551 if ((ifr.lifr_zoneid = getzoneid()) == -1) { 1552 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "getzoneid(): %s", 1553 pcap_strerror(errno)); 1554 status = PCAP_ERROR; 1555 goto bad; 1556 } 1557 /* 1558 * Check if the given source datalink name has a '/' separated 1559 * zonename prefix string. The zonename prefixed source datalink can 1560 * be used by pcap consumers in the Solaris global zone to capture 1561 * traffic on datalinks in non-global zones. Non-global zones 1562 * do not have access to datalinks outside of their own namespace. 1563 */ 1564 if ((zonesep = strchr(p->opt.source, '/')) != NULL) { 1565 char path_zname[ZONENAME_MAX]; 1566 int znamelen; 1567 char *lnamep; 1568 1569 if (ifr.lifr_zoneid != GLOBAL_ZONEID) { 1570 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, 1571 "zonename/linkname only valid in global zone."); 1572 status = PCAP_ERROR; 1573 goto bad; 1574 } 1575 znamelen = zonesep - p->opt.source; 1576 (void) strlcpy(path_zname, p->opt.source, znamelen + 1); 1577 ifr.lifr_zoneid = getzoneidbyname(path_zname); 1578 if (ifr.lifr_zoneid == -1) { 1579 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, 1580 "getzoneidbyname(%s): %s", path_zname, 1581 pcap_strerror(errno)); 1582 status = PCAP_ERROR; 1583 goto bad; 1584 } 1585 lnamep = strdup(zonesep + 1); 1586 free(p->opt.source); 1587 p->opt.source = lnamep; 1588 } 1589 #endif 1590 1591 pb->device = strdup(p->opt.source); 1592 if (pb->device == NULL) { 1593 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "strdup: %s", 1594 pcap_strerror(errno)); 1595 status = PCAP_ERROR; 1596 goto bad; 1597 } 1598 1599 /* 1600 * Attempt to find out the version of the OS on which we're running. 1601 */ 1602 if (uname(&osinfo) == 0) 1603 have_osinfo = 1; 1604 1605 #ifdef __APPLE__ 1606 /* 1607 * See comment in pcap_can_set_rfmon_bpf() for an explanation 1608 * of why we check the version number. 1609 */ 1610 if (p->opt.rfmon) { 1611 if (have_osinfo) { 1612 /* 1613 * We assume osinfo.sysname is "Darwin", because 1614 * __APPLE__ is defined. We just check the version. 1615 */ 1616 if (osinfo.release[0] < '8' && 1617 osinfo.release[1] == '.') { 1618 /* 1619 * 10.3 (Darwin 7.x) or earlier. 1620 */ 1621 status = PCAP_ERROR_RFMON_NOTSUP; 1622 goto bad; 1623 } 1624 if (osinfo.release[0] == '8' && 1625 osinfo.release[1] == '.') { 1626 /* 1627 * 10.4 (Darwin 8.x). s/en/wlt/ 1628 */ 1629 if (strncmp(p->opt.source, "en", 2) != 0) { 1630 /* 1631 * Not an enN device; check 1632 * whether the device even exists. 1633 */ 1634 sockfd = socket(AF_INET, SOCK_DGRAM, 0); 1635 if (sockfd != -1) { 1636 strlcpy(ifrname, 1637 p->opt.source, ifnamsiz); 1638 if (ioctl(sockfd, SIOCGIFFLAGS, 1639 (char *)&ifr) < 0) { 1640 /* 1641 * We assume this 1642 * failed because 1643 * the underlying 1644 * device doesn't 1645 * exist. 1646 */ 1647 status = PCAP_ERROR_NO_SUCH_DEVICE; 1648 snprintf(p->errbuf, 1649 PCAP_ERRBUF_SIZE, 1650 "SIOCGIFFLAGS failed: %s", 1651 pcap_strerror(errno)); 1652 } else 1653 status = PCAP_ERROR_RFMON_NOTSUP; 1654 close(sockfd); 1655 } else { 1656 /* 1657 * We can't find out whether 1658 * the device exists, so just 1659 * report "no such device". 1660 */ 1661 status = PCAP_ERROR_NO_SUCH_DEVICE; 1662 snprintf(p->errbuf, 1663 PCAP_ERRBUF_SIZE, 1664 "socket() failed: %s", 1665 pcap_strerror(errno)); 1666 } 1667 goto bad; 1668 } 1669 wltdev = malloc(strlen(p->opt.source) + 2); 1670 if (wltdev == NULL) { 1671 (void)snprintf(p->errbuf, 1672 PCAP_ERRBUF_SIZE, "malloc: %s", 1673 pcap_strerror(errno)); 1674 status = PCAP_ERROR; 1675 goto bad; 1676 } 1677 strcpy(wltdev, "wlt"); 1678 strcat(wltdev, p->opt.source + 2); 1679 free(p->opt.source); 1680 p->opt.source = wltdev; 1681 } 1682 /* 1683 * Everything else is 10.5 or later; for those, 1684 * we just open the enN device, and set the DLT. 1685 */ 1686 } 1687 } 1688 #endif /* __APPLE__ */ 1689 #ifdef HAVE_ZEROCOPY_BPF 1690 /* 1691 * If the BPF extension to set buffer mode is present, try setting 1692 * the mode to zero-copy. If that fails, use regular buffering. If 1693 * it succeeds but other setup fails, return an error to the user. 1694 */ 1695 bufmode = BPF_BUFMODE_ZBUF; 1696 if (ioctl(fd, BIOCSETBUFMODE, (caddr_t)&bufmode) == 0) { 1697 /* 1698 * We have zerocopy BPF; use it. 1699 */ 1700 pb->zerocopy = 1; 1701 1702 /* 1703 * How to pick a buffer size: first, query the maximum buffer 1704 * size supported by zero-copy. This also lets us quickly 1705 * determine whether the kernel generally supports zero-copy. 1706 * Then, if a buffer size was specified, use that, otherwise 1707 * query the default buffer size, which reflects kernel 1708 * policy for a desired default. Round to the nearest page 1709 * size. 1710 */ 1711 if (ioctl(fd, BIOCGETZMAX, (caddr_t)&zbufmax) < 0) { 1712 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "BIOCGETZMAX: %s", 1713 pcap_strerror(errno)); 1714 status = PCAP_ERROR; 1715 goto bad; 1716 } 1717 1718 if (p->opt.buffer_size != 0) { 1719 /* 1720 * A buffer size was explicitly specified; use it. 1721 */ 1722 v = p->opt.buffer_size; 1723 } else { 1724 if ((ioctl(fd, BIOCGBLEN, (caddr_t)&v) < 0) || 1725 v < DEFAULT_BUFSIZE) 1726 v = DEFAULT_BUFSIZE; 1727 } 1728 #ifndef roundup 1729 #define roundup(x, y) ((((x)+((y)-1))/(y))*(y)) /* to any y */ 1730 #endif 1731 pb->zbufsize = roundup(v, getpagesize()); 1732 if (pb->zbufsize > zbufmax) 1733 pb->zbufsize = zbufmax; 1734 pb->zbuf1 = mmap(NULL, pb->zbufsize, PROT_READ | PROT_WRITE, 1735 MAP_ANON, -1, 0); 1736 pb->zbuf2 = mmap(NULL, pb->zbufsize, PROT_READ | PROT_WRITE, 1737 MAP_ANON, -1, 0); 1738 if (pb->zbuf1 == MAP_FAILED || pb->zbuf2 == MAP_FAILED) { 1739 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "mmap: %s", 1740 pcap_strerror(errno)); 1741 status = PCAP_ERROR; 1742 goto bad; 1743 } 1744 memset(&bz, 0, sizeof(bz)); /* bzero() deprecated, replaced with memset() */ 1745 bz.bz_bufa = pb->zbuf1; 1746 bz.bz_bufb = pb->zbuf2; 1747 bz.bz_buflen = pb->zbufsize; 1748 if (ioctl(fd, BIOCSETZBUF, (caddr_t)&bz) < 0) { 1749 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "BIOCSETZBUF: %s", 1750 pcap_strerror(errno)); 1751 status = PCAP_ERROR; 1752 goto bad; 1753 } 1754 (void)strncpy(ifrname, p->opt.source, ifnamsiz); 1755 if (ioctl(fd, BIOCSETIF, (caddr_t)&ifr) < 0) { 1756 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "BIOCSETIF: %s: %s", 1757 p->opt.source, pcap_strerror(errno)); 1758 status = PCAP_ERROR; 1759 goto bad; 1760 } 1761 v = pb->zbufsize - sizeof(struct bpf_zbuf_header); 1762 } else 1763 #endif 1764 { 1765 /* 1766 * We don't have zerocopy BPF. 1767 * Set the buffer size. 1768 */ 1769 if (p->opt.buffer_size != 0) { 1770 /* 1771 * A buffer size was explicitly specified; use it. 1772 */ 1773 if (ioctl(fd, BIOCSBLEN, 1774 (caddr_t)&p->opt.buffer_size) < 0) { 1775 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, 1776 "BIOCSBLEN: %s: %s", p->opt.source, 1777 pcap_strerror(errno)); 1778 status = PCAP_ERROR; 1779 goto bad; 1780 } 1781 1782 /* 1783 * Now bind to the device. 1784 */ 1785 (void)strncpy(ifrname, p->opt.source, ifnamsiz); 1786 #ifdef BIOCSETLIF 1787 if (ioctl(fd, BIOCSETLIF, (caddr_t)&ifr) < 0) 1788 #else 1789 if (ioctl(fd, BIOCSETIF, (caddr_t)&ifr) < 0) 1790 #endif 1791 { 1792 status = check_setif_failure(p, errno); 1793 goto bad; 1794 } 1795 } else { 1796 /* 1797 * No buffer size was explicitly specified. 1798 * 1799 * Try finding a good size for the buffer; 1800 * DEFAULT_BUFSIZE may be too big, so keep 1801 * cutting it in half until we find a size 1802 * that works, or run out of sizes to try. 1803 * If the default is larger, don't make it smaller. 1804 */ 1805 if ((ioctl(fd, BIOCGBLEN, (caddr_t)&v) < 0) || 1806 v < DEFAULT_BUFSIZE) 1807 v = DEFAULT_BUFSIZE; 1808 for ( ; v != 0; v >>= 1) { 1809 /* 1810 * Ignore the return value - this is because the 1811 * call fails on BPF systems that don't have 1812 * kernel malloc. And if the call fails, it's 1813 * no big deal, we just continue to use the 1814 * standard buffer size. 1815 */ 1816 (void) ioctl(fd, BIOCSBLEN, (caddr_t)&v); 1817 1818 (void)strncpy(ifrname, p->opt.source, ifnamsiz); 1819 #ifdef BIOCSETLIF 1820 if (ioctl(fd, BIOCSETLIF, (caddr_t)&ifr) >= 0) 1821 #else 1822 if (ioctl(fd, BIOCSETIF, (caddr_t)&ifr) >= 0) 1823 #endif 1824 break; /* that size worked; we're done */ 1825 1826 if (errno != ENOBUFS) { 1827 status = check_setif_failure(p, errno); 1828 goto bad; 1829 } 1830 } 1831 1832 if (v == 0) { 1833 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, 1834 "BIOCSBLEN: %s: No buffer size worked", 1835 p->opt.source); 1836 status = PCAP_ERROR; 1837 goto bad; 1838 } 1839 } 1840 } 1841 1842 /* Get the data link layer type. */ 1843 if (ioctl(fd, BIOCGDLT, (caddr_t)&v) < 0) { 1844 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "BIOCGDLT: %s", 1845 pcap_strerror(errno)); 1846 status = PCAP_ERROR; 1847 goto bad; 1848 } 1849 1850 #ifdef _AIX 1851 /* 1852 * AIX's BPF returns IFF_ types, not DLT_ types, in BIOCGDLT. 1853 */ 1854 switch (v) { 1855 1856 case IFT_ETHER: 1857 case IFT_ISO88023: 1858 v = DLT_EN10MB; 1859 break; 1860 1861 case IFT_FDDI: 1862 v = DLT_FDDI; 1863 break; 1864 1865 case IFT_ISO88025: 1866 v = DLT_IEEE802; 1867 break; 1868 1869 case IFT_LOOP: 1870 v = DLT_NULL; 1871 break; 1872 1873 default: 1874 /* 1875 * We don't know what to map this to yet. 1876 */ 1877 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "unknown interface type %u", 1878 v); 1879 status = PCAP_ERROR; 1880 goto bad; 1881 } 1882 #endif 1883 #if _BSDI_VERSION - 0 >= 199510 1884 /* The SLIP and PPP link layer header changed in BSD/OS 2.1 */ 1885 switch (v) { 1886 1887 case DLT_SLIP: 1888 v = DLT_SLIP_BSDOS; 1889 break; 1890 1891 case DLT_PPP: 1892 v = DLT_PPP_BSDOS; 1893 break; 1894 1895 case 11: /*DLT_FR*/ 1896 v = DLT_FRELAY; 1897 break; 1898 1899 case 12: /*DLT_C_HDLC*/ 1900 v = DLT_CHDLC; 1901 break; 1902 } 1903 #endif 1904 1905 #ifdef BIOCGDLTLIST 1906 /* 1907 * We know the default link type -- now determine all the DLTs 1908 * this interface supports. If this fails with EINVAL, it's 1909 * not fatal; we just don't get to use the feature later. 1910 */ 1911 if (get_dlt_list(fd, v, &bdl, p->errbuf) == -1) { 1912 status = PCAP_ERROR; 1913 goto bad; 1914 } 1915 p->dlt_count = bdl.bfl_len; 1916 p->dlt_list = bdl.bfl_list; 1917 1918 #ifdef __APPLE__ 1919 /* 1920 * Monitor mode fun, continued. 1921 * 1922 * For 10.5 and, we're assuming, later releases, as noted above, 1923 * 802.1 adapters that support monitor mode offer both DLT_EN10MB, 1924 * DLT_IEEE802_11, and possibly some 802.11-plus-radio-information 1925 * DLT_ value. Choosing one of the 802.11 DLT_ values will turn 1926 * monitor mode on. 1927 * 1928 * Therefore, if the user asked for monitor mode, we filter out 1929 * the DLT_EN10MB value, as you can't get that in monitor mode, 1930 * and, if the user didn't ask for monitor mode, we filter out 1931 * the 802.11 DLT_ values, because selecting those will turn 1932 * monitor mode on. Then, for monitor mode, if an 802.11-plus- 1933 * radio DLT_ value is offered, we try to select that, otherwise 1934 * we try to select DLT_IEEE802_11. 1935 */ 1936 if (have_osinfo) { 1937 if (isdigit((unsigned)osinfo.release[0]) && 1938 (osinfo.release[0] == '9' || 1939 isdigit((unsigned)osinfo.release[1]))) { 1940 /* 1941 * 10.5 (Darwin 9.x), or later. 1942 */ 1943 new_dlt = find_802_11(&bdl); 1944 if (new_dlt != -1) { 1945 /* 1946 * We have at least one 802.11 DLT_ value, 1947 * so this is an 802.11 interface. 1948 * new_dlt is the best of the 802.11 1949 * DLT_ values in the list. 1950 */ 1951 if (p->opt.rfmon) { 1952 /* 1953 * Our caller wants monitor mode. 1954 * Purge DLT_EN10MB from the list 1955 * of link-layer types, as selecting 1956 * it will keep monitor mode off. 1957 */ 1958 remove_en(p); 1959 1960 /* 1961 * If the new mode we want isn't 1962 * the default mode, attempt to 1963 * select the new mode. 1964 */ 1965 if (new_dlt != v) { 1966 if (ioctl(p->fd, BIOCSDLT, 1967 &new_dlt) != -1) { 1968 /* 1969 * We succeeded; 1970 * make this the 1971 * new DLT_ value. 1972 */ 1973 v = new_dlt; 1974 } 1975 } 1976 } else { 1977 /* 1978 * Our caller doesn't want 1979 * monitor mode. Unless this 1980 * is being done by pcap_open_live(), 1981 * purge the 802.11 link-layer types 1982 * from the list, as selecting 1983 * one of them will turn monitor 1984 * mode on. 1985 */ 1986 if (!p->oldstyle) 1987 remove_802_11(p); 1988 } 1989 } else { 1990 if (p->opt.rfmon) { 1991 /* 1992 * The caller requested monitor 1993 * mode, but we have no 802.11 1994 * link-layer types, so they 1995 * can't have it. 1996 */ 1997 status = PCAP_ERROR_RFMON_NOTSUP; 1998 goto bad; 1999 } 2000 } 2001 } 2002 } 2003 #elif defined(HAVE_BSD_IEEE80211) 2004 /* 2005 * *BSD with the new 802.11 ioctls. 2006 * Do we want monitor mode? 2007 */ 2008 if (p->opt.rfmon) { 2009 /* 2010 * Try to put the interface into monitor mode. 2011 */ 2012 retv = monitor_mode(p, 1); 2013 if (retv != 0) { 2014 /* 2015 * We failed. 2016 */ 2017 status = retv; 2018 goto bad; 2019 } 2020 2021 /* 2022 * We're in monitor mode. 2023 * Try to find the best 802.11 DLT_ value and, if we 2024 * succeed, try to switch to that mode if we're not 2025 * already in that mode. 2026 */ 2027 new_dlt = find_802_11(&bdl); 2028 if (new_dlt != (unsigned)-1) { 2029 /* 2030 * We have at least one 802.11 DLT_ value. 2031 * new_dlt is the best of the 802.11 2032 * DLT_ values in the list. 2033 * 2034 * If the new mode we want isn't the default mode, 2035 * attempt to select the new mode. 2036 */ 2037 if (new_dlt != v) { 2038 if (ioctl(p->fd, BIOCSDLT, &new_dlt) != -1) { 2039 /* 2040 * We succeeded; make this the 2041 * new DLT_ value. 2042 */ 2043 v = new_dlt; 2044 } 2045 } 2046 } 2047 } 2048 #endif /* various platforms */ 2049 #endif /* BIOCGDLTLIST */ 2050 2051 /* 2052 * If this is an Ethernet device, and we don't have a DLT_ list, 2053 * give it a list with DLT_EN10MB and DLT_DOCSIS. (That'd give 2054 * 802.11 interfaces DLT_DOCSIS, which isn't the right thing to 2055 * do, but there's not much we can do about that without finding 2056 * some other way of determining whether it's an Ethernet or 802.11 2057 * device.) 2058 */ 2059 if (v == DLT_EN10MB && p->dlt_count == 0) { 2060 p->dlt_list = (u_int *) malloc(sizeof(u_int) * 2); 2061 /* 2062 * If that fails, just leave the list empty. 2063 */ 2064 if (p->dlt_list != NULL) { 2065 p->dlt_list[0] = DLT_EN10MB; 2066 p->dlt_list[1] = DLT_DOCSIS; 2067 p->dlt_count = 2; 2068 } 2069 } 2070 #ifdef PCAP_FDDIPAD 2071 if (v == DLT_FDDI) 2072 p->fddipad = PCAP_FDDIPAD; 2073 else 2074 #endif 2075 p->fddipad = 0; 2076 p->linktype = v; 2077 2078 #if defined(BIOCGHDRCMPLT) && defined(BIOCSHDRCMPLT) 2079 /* 2080 * Do a BIOCSHDRCMPLT, if defined, to turn that flag on, so 2081 * the link-layer source address isn't forcibly overwritten. 2082 * (Should we ignore errors? Should we do this only if 2083 * we're open for writing?) 2084 * 2085 * XXX - I seem to remember some packet-sending bug in some 2086 * BSDs - check CVS log for "bpf.c"? 2087 */ 2088 if (ioctl(fd, BIOCSHDRCMPLT, &spoof_eth_src) == -1) { 2089 (void)snprintf(p->errbuf, PCAP_ERRBUF_SIZE, 2090 "BIOCSHDRCMPLT: %s", pcap_strerror(errno)); 2091 status = PCAP_ERROR; 2092 goto bad; 2093 } 2094 #endif 2095 /* set timeout */ 2096 #ifdef HAVE_ZEROCOPY_BPF 2097 /* 2098 * In zero-copy mode, we just use the timeout in select(). 2099 * XXX - what if we're in non-blocking mode and the *application* 2100 * is using select() or poll() or kqueues or....? 2101 */ 2102 if (p->opt.timeout && !pb->zerocopy) { 2103 #else 2104 if (p->opt.timeout) { 2105 #endif 2106 /* 2107 * XXX - is this seconds/nanoseconds in AIX? 2108 * (Treating it as such doesn't fix the timeout 2109 * problem described below.) 2110 * 2111 * XXX - Mac OS X 10.6 mishandles BIOCSRTIMEOUT in 2112 * 64-bit userland - it takes, as an argument, a 2113 * "struct BPF_TIMEVAL", which has 32-bit tv_sec 2114 * and tv_usec, rather than a "struct timeval". 2115 * 2116 * If this platform defines "struct BPF_TIMEVAL", 2117 * we check whether the structure size in BIOCSRTIMEOUT 2118 * is that of a "struct timeval" and, if not, we use 2119 * a "struct BPF_TIMEVAL" rather than a "struct timeval". 2120 * (That way, if the bug is fixed in a future release, 2121 * we will still do the right thing.) 2122 */ 2123 struct timeval to; 2124 #ifdef HAVE_STRUCT_BPF_TIMEVAL 2125 struct BPF_TIMEVAL bpf_to; 2126 2127 if (IOCPARM_LEN(BIOCSRTIMEOUT) != sizeof(struct timeval)) { 2128 bpf_to.tv_sec = p->opt.timeout / 1000; 2129 bpf_to.tv_usec = (p->opt.timeout * 1000) % 1000000; 2130 if (ioctl(p->fd, BIOCSRTIMEOUT, (caddr_t)&bpf_to) < 0) { 2131 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, 2132 "BIOCSRTIMEOUT: %s", pcap_strerror(errno)); 2133 status = PCAP_ERROR; 2134 goto bad; 2135 } 2136 } else { 2137 #endif 2138 to.tv_sec = p->opt.timeout / 1000; 2139 to.tv_usec = (p->opt.timeout * 1000) % 1000000; 2140 if (ioctl(p->fd, BIOCSRTIMEOUT, (caddr_t)&to) < 0) { 2141 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, 2142 "BIOCSRTIMEOUT: %s", pcap_strerror(errno)); 2143 status = PCAP_ERROR; 2144 goto bad; 2145 } 2146 #ifdef HAVE_STRUCT_BPF_TIMEVAL 2147 } 2148 #endif 2149 } 2150 2151 #ifdef BIOCIMMEDIATE 2152 /* 2153 * Darren Reed notes that 2154 * 2155 * On AIX (4.2 at least), if BIOCIMMEDIATE is not set, the 2156 * timeout appears to be ignored and it waits until the buffer 2157 * is filled before returning. The result of not having it 2158 * set is almost worse than useless if your BPF filter 2159 * is reducing things to only a few packets (i.e. one every 2160 * second or so). 2161 * 2162 * so we always turn BIOCIMMEDIATE mode on if this is AIX. 2163 * 2164 * For other platforms, we don't turn immediate mode on by default, 2165 * as that would mean we get woken up for every packet, which 2166 * probably isn't what you want for a packet sniffer. 2167 * 2168 * We set immediate mode if the caller requested it by calling 2169 * pcap_set_immediate() before calling pcap_activate(). 2170 */ 2171 #ifndef _AIX 2172 if (p->opt.immediate) { 2173 #endif /* _AIX */ 2174 v = 1; 2175 if (ioctl(p->fd, BIOCIMMEDIATE, &v) < 0) { 2176 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, 2177 "BIOCIMMEDIATE: %s", pcap_strerror(errno)); 2178 status = PCAP_ERROR; 2179 goto bad; 2180 } 2181 #ifndef _AIX 2182 } 2183 #endif /* _AIX */ 2184 #else /* BIOCIMMEDIATE */ 2185 if (p->opt.immediate) { 2186 /* 2187 * We don't support immediate mode. Fail. 2188 */ 2189 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "Immediate mode not supported"); 2190 status = PCAP_ERROR; 2191 goto bad; 2192 } 2193 #endif /* BIOCIMMEDIATE */ 2194 2195 if (p->opt.promisc) { 2196 /* set promiscuous mode, just warn if it fails */ 2197 if (ioctl(p->fd, BIOCPROMISC, NULL) < 0) { 2198 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "BIOCPROMISC: %s", 2199 pcap_strerror(errno)); 2200 status = PCAP_WARNING_PROMISC_NOTSUP; 2201 } 2202 } 2203 2204 if (ioctl(fd, BIOCGBLEN, (caddr_t)&v) < 0) { 2205 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "BIOCGBLEN: %s", 2206 pcap_strerror(errno)); 2207 status = PCAP_ERROR; 2208 goto bad; 2209 } 2210 p->bufsize = v; 2211 #ifdef HAVE_ZEROCOPY_BPF 2212 if (!pb->zerocopy) { 2213 #endif 2214 p->buffer = (u_char *)malloc(p->bufsize); 2215 if (p->buffer == NULL) { 2216 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "malloc: %s", 2217 pcap_strerror(errno)); 2218 status = PCAP_ERROR; 2219 goto bad; 2220 } 2221 #ifdef _AIX 2222 /* For some strange reason this seems to prevent the EFAULT 2223 * problems we have experienced from AIX BPF. */ 2224 memset(p->buffer, 0x0, p->bufsize); 2225 #endif 2226 #ifdef HAVE_ZEROCOPY_BPF 2227 } 2228 #endif 2229 2230 /* 2231 * If there's no filter program installed, there's 2232 * no indication to the kernel of what the snapshot 2233 * length should be, so no snapshotting is done. 2234 * 2235 * Therefore, when we open the device, we install 2236 * an "accept everything" filter with the specified 2237 * snapshot length. 2238 */ 2239 total_insn.code = (u_short)(BPF_RET | BPF_K); 2240 total_insn.jt = 0; 2241 total_insn.jf = 0; 2242 total_insn.k = p->snapshot; 2243 2244 total_prog.bf_len = 1; 2245 total_prog.bf_insns = &total_insn; 2246 if (ioctl(p->fd, BIOCSETF, (caddr_t)&total_prog) < 0) { 2247 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "BIOCSETF: %s", 2248 pcap_strerror(errno)); 2249 status = PCAP_ERROR; 2250 goto bad; 2251 } 2252 2253 /* 2254 * On most BPF platforms, either you can do a "select()" or 2255 * "poll()" on a BPF file descriptor and it works correctly, 2256 * or you can do it and it will return "readable" if the 2257 * hold buffer is full but not if the timeout expires *and* 2258 * a non-blocking read will, if the hold buffer is empty 2259 * but the store buffer isn't empty, rotate the buffers 2260 * and return what packets are available. 2261 * 2262 * In the latter case, the fact that a non-blocking read 2263 * will give you the available packets means you can work 2264 * around the failure of "select()" and "poll()" to wake up 2265 * and return "readable" when the timeout expires by using 2266 * the timeout as the "select()" or "poll()" timeout, putting 2267 * the BPF descriptor into non-blocking mode, and read from 2268 * it regardless of whether "select()" reports it as readable 2269 * or not. 2270 * 2271 * However, in FreeBSD 4.3 and 4.4, "select()" and "poll()" 2272 * won't wake up and return "readable" if the timer expires 2273 * and non-blocking reads return EWOULDBLOCK if the hold 2274 * buffer is empty, even if the store buffer is non-empty. 2275 * 2276 * This means the workaround in question won't work. 2277 * 2278 * Therefore, on FreeBSD 4.3 and 4.4, we set "p->selectable_fd" 2279 * to -1, which means "sorry, you can't use 'select()' or 'poll()' 2280 * here". On all other BPF platforms, we set it to the FD for 2281 * the BPF device; in NetBSD, OpenBSD, and Darwin, a non-blocking 2282 * read will, if the hold buffer is empty and the store buffer 2283 * isn't empty, rotate the buffers and return what packets are 2284 * there (and in sufficiently recent versions of OpenBSD 2285 * "select()" and "poll()" should work correctly). 2286 * 2287 * XXX - what about AIX? 2288 */ 2289 p->selectable_fd = p->fd; /* assume select() works until we know otherwise */ 2290 if (have_osinfo) { 2291 /* 2292 * We can check what OS this is. 2293 */ 2294 if (strcmp(osinfo.sysname, "FreeBSD") == 0) { 2295 if (strncmp(osinfo.release, "4.3-", 4) == 0 || 2296 strncmp(osinfo.release, "4.4-", 4) == 0) 2297 p->selectable_fd = -1; 2298 } 2299 } 2300 2301 p->read_op = pcap_read_bpf; 2302 p->inject_op = pcap_inject_bpf; 2303 p->setfilter_op = pcap_setfilter_bpf; 2304 p->setdirection_op = pcap_setdirection_bpf; 2305 p->set_datalink_op = pcap_set_datalink_bpf; 2306 p->getnonblock_op = pcap_getnonblock_bpf; 2307 p->setnonblock_op = pcap_setnonblock_bpf; 2308 p->stats_op = pcap_stats_bpf; 2309 p->cleanup_op = pcap_cleanup_bpf; 2310 2311 return (status); 2312 bad: 2313 pcap_cleanup_bpf(p); 2314 return (status); 2315 } 2316 2317 int 2318 pcap_platform_finddevs(pcap_if_t **alldevsp, char *errbuf) 2319 { 2320 return (0); 2321 } 2322 2323 #ifdef HAVE_BSD_IEEE80211 2324 static int 2325 monitor_mode(pcap_t *p, int set) 2326 { 2327 struct pcap_bpf *pb = p->priv; 2328 int sock; 2329 struct ifmediareq req; 2330 int *media_list; 2331 int i; 2332 int can_do; 2333 struct ifreq ifr; 2334 2335 sock = socket(AF_INET, SOCK_DGRAM, 0); 2336 if (sock == -1) { 2337 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "can't open socket: %s", 2338 pcap_strerror(errno)); 2339 return (PCAP_ERROR); 2340 } 2341 2342 memset(&req, 0, sizeof req); 2343 strncpy(req.ifm_name, p->opt.source, sizeof req.ifm_name); 2344 2345 /* 2346 * Find out how many media types we have. 2347 */ 2348 if (ioctl(sock, SIOCGIFMEDIA, &req) < 0) { 2349 /* 2350 * Can't get the media types. 2351 */ 2352 switch (errno) { 2353 2354 case ENXIO: 2355 /* 2356 * There's no such device. 2357 */ 2358 close(sock); 2359 return (PCAP_ERROR_NO_SUCH_DEVICE); 2360 2361 case EINVAL: 2362 /* 2363 * Interface doesn't support SIOC{G,S}IFMEDIA. 2364 */ 2365 close(sock); 2366 return (PCAP_ERROR_RFMON_NOTSUP); 2367 2368 default: 2369 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, 2370 "SIOCGIFMEDIA 1: %s", pcap_strerror(errno)); 2371 close(sock); 2372 return (PCAP_ERROR); 2373 } 2374 } 2375 if (req.ifm_count == 0) { 2376 /* 2377 * No media types. 2378 */ 2379 close(sock); 2380 return (PCAP_ERROR_RFMON_NOTSUP); 2381 } 2382 2383 /* 2384 * Allocate a buffer to hold all the media types, and 2385 * get the media types. 2386 */ 2387 media_list = malloc(req.ifm_count * sizeof(int)); 2388 if (media_list == NULL) { 2389 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "malloc: %s", 2390 pcap_strerror(errno)); 2391 close(sock); 2392 return (PCAP_ERROR); 2393 } 2394 req.ifm_ulist = media_list; 2395 if (ioctl(sock, SIOCGIFMEDIA, &req) < 0) { 2396 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "SIOCGIFMEDIA: %s", 2397 pcap_strerror(errno)); 2398 free(media_list); 2399 close(sock); 2400 return (PCAP_ERROR); 2401 } 2402 2403 /* 2404 * Look for an 802.11 "automatic" media type. 2405 * We assume that all 802.11 adapters have that media type, 2406 * and that it will carry the monitor mode supported flag. 2407 */ 2408 can_do = 0; 2409 for (i = 0; i < req.ifm_count; i++) { 2410 if (IFM_TYPE(media_list[i]) == IFM_IEEE80211 2411 && IFM_SUBTYPE(media_list[i]) == IFM_AUTO) { 2412 /* OK, does it do monitor mode? */ 2413 if (media_list[i] & IFM_IEEE80211_MONITOR) { 2414 can_do = 1; 2415 break; 2416 } 2417 } 2418 } 2419 free(media_list); 2420 if (!can_do) { 2421 /* 2422 * This adapter doesn't support monitor mode. 2423 */ 2424 close(sock); 2425 return (PCAP_ERROR_RFMON_NOTSUP); 2426 } 2427 2428 if (set) { 2429 /* 2430 * Don't just check whether we can enable monitor mode, 2431 * do so, if it's not already enabled. 2432 */ 2433 if ((req.ifm_current & IFM_IEEE80211_MONITOR) == 0) { 2434 /* 2435 * Monitor mode isn't currently on, so turn it on, 2436 * and remember that we should turn it off when the 2437 * pcap_t is closed. 2438 */ 2439 2440 /* 2441 * If we haven't already done so, arrange to have 2442 * "pcap_close_all()" called when we exit. 2443 */ 2444 if (!pcap_do_addexit(p)) { 2445 /* 2446 * "atexit()" failed; don't put the interface 2447 * in monitor mode, just give up. 2448 */ 2449 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, 2450 "atexit failed"); 2451 close(sock); 2452 return (PCAP_ERROR); 2453 } 2454 memset(&ifr, 0, sizeof(ifr)); 2455 (void)strncpy(ifr.ifr_name, p->opt.source, 2456 sizeof(ifr.ifr_name)); 2457 ifr.ifr_media = req.ifm_current | IFM_IEEE80211_MONITOR; 2458 if (ioctl(sock, SIOCSIFMEDIA, &ifr) == -1) { 2459 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, 2460 "SIOCSIFMEDIA: %s", pcap_strerror(errno)); 2461 close(sock); 2462 return (PCAP_ERROR); 2463 } 2464 2465 pb->must_do_on_close |= MUST_CLEAR_RFMON; 2466 2467 /* 2468 * Add this to the list of pcaps to close when we exit. 2469 */ 2470 pcap_add_to_pcaps_to_close(p); 2471 } 2472 } 2473 return (0); 2474 } 2475 #endif /* HAVE_BSD_IEEE80211 */ 2476 2477 #if defined(BIOCGDLTLIST) && (defined(__APPLE__) || defined(HAVE_BSD_IEEE80211)) 2478 /* 2479 * Check whether we have any 802.11 link-layer types; return the best 2480 * of the 802.11 link-layer types if we find one, and return -1 2481 * otherwise. 2482 * 2483 * DLT_IEEE802_11_RADIO, with the radiotap header, is considered the 2484 * best 802.11 link-layer type; any of the other 802.11-plus-radio 2485 * headers are second-best; 802.11 with no radio information is 2486 * the least good. 2487 */ 2488 static int 2489 find_802_11(struct bpf_dltlist *bdlp) 2490 { 2491 int new_dlt; 2492 u_int i; 2493 2494 /* 2495 * Scan the list of DLT_ values, looking for 802.11 values, 2496 * and, if we find any, choose the best of them. 2497 */ 2498 new_dlt = -1; 2499 for (i = 0; i < bdlp->bfl_len; i++) { 2500 switch (bdlp->bfl_list[i]) { 2501 2502 case DLT_IEEE802_11: 2503 /* 2504 * 802.11, but no radio. 2505 * 2506 * Offer this, and select it as the new mode 2507 * unless we've already found an 802.11 2508 * header with radio information. 2509 */ 2510 if (new_dlt == -1) 2511 new_dlt = bdlp->bfl_list[i]; 2512 break; 2513 2514 case DLT_PRISM_HEADER: 2515 case DLT_AIRONET_HEADER: 2516 case DLT_IEEE802_11_RADIO_AVS: 2517 /* 2518 * 802.11 with radio, but not radiotap. 2519 * 2520 * Offer this, and select it as the new mode 2521 * unless we've already found the radiotap DLT_. 2522 */ 2523 if (new_dlt != DLT_IEEE802_11_RADIO) 2524 new_dlt = bdlp->bfl_list[i]; 2525 break; 2526 2527 case DLT_IEEE802_11_RADIO: 2528 /* 2529 * 802.11 with radiotap. 2530 * 2531 * Offer this, and select it as the new mode. 2532 */ 2533 new_dlt = bdlp->bfl_list[i]; 2534 break; 2535 2536 default: 2537 /* 2538 * Not 802.11. 2539 */ 2540 break; 2541 } 2542 } 2543 2544 return (new_dlt); 2545 } 2546 #endif /* defined(BIOCGDLTLIST) && (defined(__APPLE__) || defined(HAVE_BSD_IEEE80211)) */ 2547 2548 #if defined(__APPLE__) && defined(BIOCGDLTLIST) 2549 /* 2550 * Remove DLT_EN10MB from the list of DLT_ values, as we're in monitor mode, 2551 * and DLT_EN10MB isn't supported in monitor mode. 2552 */ 2553 static void 2554 remove_en(pcap_t *p) 2555 { 2556 int i, j; 2557 2558 /* 2559 * Scan the list of DLT_ values and discard DLT_EN10MB. 2560 */ 2561 j = 0; 2562 for (i = 0; i < p->dlt_count; i++) { 2563 switch (p->dlt_list[i]) { 2564 2565 case DLT_EN10MB: 2566 /* 2567 * Don't offer this one. 2568 */ 2569 continue; 2570 2571 default: 2572 /* 2573 * Just copy this mode over. 2574 */ 2575 break; 2576 } 2577 2578 /* 2579 * Copy this DLT_ value to its new position. 2580 */ 2581 p->dlt_list[j] = p->dlt_list[i]; 2582 j++; 2583 } 2584 2585 /* 2586 * Set the DLT_ count to the number of entries we copied. 2587 */ 2588 p->dlt_count = j; 2589 } 2590 2591 /* 2592 * Remove 802.11 link-layer types from the list of DLT_ values, as 2593 * we're not in monitor mode, and those DLT_ values will switch us 2594 * to monitor mode. 2595 */ 2596 static void 2597 remove_802_11(pcap_t *p) 2598 { 2599 int i, j; 2600 2601 /* 2602 * Scan the list of DLT_ values and discard 802.11 values. 2603 */ 2604 j = 0; 2605 for (i = 0; i < p->dlt_count; i++) { 2606 switch (p->dlt_list[i]) { 2607 2608 case DLT_IEEE802_11: 2609 case DLT_PRISM_HEADER: 2610 case DLT_AIRONET_HEADER: 2611 case DLT_IEEE802_11_RADIO: 2612 case DLT_IEEE802_11_RADIO_AVS: 2613 /* 2614 * 802.11. Don't offer this one. 2615 */ 2616 continue; 2617 2618 default: 2619 /* 2620 * Just copy this mode over. 2621 */ 2622 break; 2623 } 2624 2625 /* 2626 * Copy this DLT_ value to its new position. 2627 */ 2628 p->dlt_list[j] = p->dlt_list[i]; 2629 j++; 2630 } 2631 2632 /* 2633 * Set the DLT_ count to the number of entries we copied. 2634 */ 2635 p->dlt_count = j; 2636 } 2637 #endif /* defined(__APPLE__) && defined(BIOCGDLTLIST) */ 2638 2639 static int 2640 pcap_setfilter_bpf(pcap_t *p, struct bpf_program *fp) 2641 { 2642 struct pcap_bpf *pb = p->priv; 2643 2644 /* 2645 * Free any user-mode filter we might happen to have installed. 2646 */ 2647 pcap_freecode(&p->fcode); 2648 2649 /* 2650 * Try to install the kernel filter. 2651 */ 2652 if (ioctl(p->fd, BIOCSETF, (caddr_t)fp) == 0) { 2653 /* 2654 * It worked. 2655 */ 2656 pb->filtering_in_kernel = 1; /* filtering in the kernel */ 2657 2658 /* 2659 * Discard any previously-received packets, as they might 2660 * have passed whatever filter was formerly in effect, but 2661 * might not pass this filter (BIOCSETF discards packets 2662 * buffered in the kernel, so you can lose packets in any 2663 * case). 2664 */ 2665 p->cc = 0; 2666 return (0); 2667 } 2668 2669 /* 2670 * We failed. 2671 * 2672 * If it failed with EINVAL, that's probably because the program 2673 * is invalid or too big. Validate it ourselves; if we like it 2674 * (we currently allow backward branches, to support protochain), 2675 * run it in userland. (There's no notion of "too big" for 2676 * userland.) 2677 * 2678 * Otherwise, just give up. 2679 * XXX - if the copy of the program into the kernel failed, 2680 * we will get EINVAL rather than, say, EFAULT on at least 2681 * some kernels. 2682 */ 2683 if (errno != EINVAL) { 2684 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "BIOCSETF: %s", 2685 pcap_strerror(errno)); 2686 return (-1); 2687 } 2688 2689 /* 2690 * install_bpf_program() validates the program. 2691 * 2692 * XXX - what if we already have a filter in the kernel? 2693 */ 2694 if (install_bpf_program(p, fp) < 0) 2695 return (-1); 2696 pb->filtering_in_kernel = 0; /* filtering in userland */ 2697 return (0); 2698 } 2699 2700 /* 2701 * Set direction flag: Which packets do we accept on a forwarding 2702 * single device? IN, OUT or both? 2703 */ 2704 static int 2705 pcap_setdirection_bpf(pcap_t *p, pcap_direction_t d) 2706 { 2707 #if defined(BIOCSDIRECTION) 2708 u_int direction; 2709 2710 direction = (d == PCAP_D_IN) ? BPF_D_IN : 2711 ((d == PCAP_D_OUT) ? BPF_D_OUT : BPF_D_INOUT); 2712 if (ioctl(p->fd, BIOCSDIRECTION, &direction) == -1) { 2713 (void) snprintf(p->errbuf, sizeof(p->errbuf), 2714 "Cannot set direction to %s: %s", 2715 (d == PCAP_D_IN) ? "PCAP_D_IN" : 2716 ((d == PCAP_D_OUT) ? "PCAP_D_OUT" : "PCAP_D_INOUT"), 2717 strerror(errno)); 2718 return (-1); 2719 } 2720 return (0); 2721 #elif defined(BIOCSSEESENT) 2722 u_int seesent; 2723 2724 /* 2725 * We don't support PCAP_D_OUT. 2726 */ 2727 if (d == PCAP_D_OUT) { 2728 snprintf(p->errbuf, sizeof(p->errbuf), 2729 "Setting direction to PCAP_D_OUT is not supported on BPF"); 2730 return -1; 2731 } 2732 2733 seesent = (d == PCAP_D_INOUT); 2734 if (ioctl(p->fd, BIOCSSEESENT, &seesent) == -1) { 2735 (void) snprintf(p->errbuf, sizeof(p->errbuf), 2736 "Cannot set direction to %s: %s", 2737 (d == PCAP_D_INOUT) ? "PCAP_D_INOUT" : "PCAP_D_IN", 2738 strerror(errno)); 2739 return (-1); 2740 } 2741 return (0); 2742 #else 2743 (void) snprintf(p->errbuf, sizeof(p->errbuf), 2744 "This system doesn't support BIOCSSEESENT, so the direction can't be set"); 2745 return (-1); 2746 #endif 2747 } 2748 2749 static int 2750 pcap_set_datalink_bpf(pcap_t *p, int dlt) 2751 { 2752 #ifdef BIOCSDLT 2753 if (ioctl(p->fd, BIOCSDLT, &dlt) == -1) { 2754 (void) snprintf(p->errbuf, sizeof(p->errbuf), 2755 "Cannot set DLT %d: %s", dlt, strerror(errno)); 2756 return (-1); 2757 } 2758 #endif 2759 return (0); 2760 } 2761