1 /* $NetBSD: optimize.c,v 1.6 2013/12/31 17:08:23 christos Exp $ */ 2 3 /* 4 * Copyright (c) 1988, 1989, 1990, 1991, 1993, 1994, 1995, 1996 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that: (1) source code distributions 9 * retain the above copyright notice and this paragraph in its entirety, (2) 10 * distributions including binary code include the above copyright notice and 11 * this paragraph in its entirety in the documentation or other materials 12 * provided with the distribution, and (3) all advertising materials mentioning 13 * features or use of this software display the following acknowledgement: 14 * ``This product includes software developed by the University of California, 15 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of 16 * the University nor the names of its contributors may be used to endorse 17 * or promote products derived from this software without specific prior 18 * written permission. 19 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED 20 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF 21 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. 22 * 23 * Optimization module for tcpdump intermediate representation. 24 */ 25 #ifndef lint 26 static const char rcsid[] _U_ = 27 "@(#) Header: /tcpdump/master/libpcap/optimize.c,v 1.91 2008-01-02 04:16:46 guy Exp (LBL)"; 28 #endif 29 30 #ifdef HAVE_CONFIG_H 31 #include "config.h" 32 #endif 33 34 #ifdef WIN32 35 #include <pcap-stdinc.h> 36 #else /* WIN32 */ 37 #if HAVE_INTTYPES_H 38 #include <inttypes.h> 39 #elif HAVE_STDINT_H 40 #include <stdint.h> 41 #endif 42 #ifdef HAVE_SYS_BITYPES_H 43 #include <sys/bitypes.h> 44 #endif 45 #include <sys/types.h> 46 #endif /* WIN32 */ 47 48 #include <stdio.h> 49 #include <stdlib.h> 50 #include <memory.h> 51 #include <string.h> 52 53 #include <errno.h> 54 55 #include "pcap-int.h" 56 57 #include "gencode.h" 58 59 #ifdef HAVE_OS_PROTO_H 60 #include "os-proto.h" 61 #endif 62 63 #ifdef BDEBUG 64 extern int dflag; 65 #endif 66 67 #if defined(MSDOS) && !defined(__DJGPP__) 68 extern int _w32_ffs (int mask); 69 #define ffs _w32_ffs 70 #endif 71 72 #if defined(WIN32) && defined (_MSC_VER) 73 int ffs(int mask); 74 #endif 75 76 /* 77 * Represents a deleted instruction. 78 */ 79 #define NOP -1 80 81 /* 82 * Register numbers for use-def values. 83 * 0 through BPF_MEMWORDS-1 represent the corresponding scratch memory 84 * location. A_ATOM is the accumulator and X_ATOM is the index 85 * register. 86 */ 87 #define A_ATOM BPF_MEMWORDS 88 #define X_ATOM (BPF_MEMWORDS+1) 89 90 /* 91 * This define is used to represent *both* the accumulator and 92 * x register in use-def computations. 93 * Currently, the use-def code assumes only one definition per instruction. 94 */ 95 #define AX_ATOM N_ATOMS 96 97 /* 98 * A flag to indicate that further optimization is needed. 99 * Iterative passes are continued until a given pass yields no 100 * branch movement. 101 */ 102 static int done; 103 104 /* 105 * A block is marked if only if its mark equals the current mark. 106 * Rather than traverse the code array, marking each item, 'cur_mark' is 107 * incremented. This automatically makes each element unmarked. 108 */ 109 static int cur_mark; 110 #define isMarked(p) ((p)->mark == cur_mark) 111 #define unMarkAll() cur_mark += 1 112 #define Mark(p) ((p)->mark = cur_mark) 113 114 static void opt_init(struct block *); 115 static void opt_cleanup(void); 116 117 static void intern_blocks(struct block *); 118 119 static void find_inedges(struct block *); 120 #ifdef BDEBUG 121 static void opt_dump(struct block *); 122 #endif 123 124 static int n_blocks; 125 struct block **blocks; 126 static int n_edges; 127 struct edge **edges; 128 129 /* 130 * A bit vector set representation of the dominators. 131 * We round up the set size to the next power of two. 132 */ 133 static int nodewords; 134 static int edgewords; 135 struct block **levels; 136 bpf_u_int32 *space; 137 #define BITS_PER_WORD (8*sizeof(bpf_u_int32)) 138 /* 139 * True if a is in uset {p} 140 */ 141 #define SET_MEMBER(p, a) \ 142 ((p)[(unsigned)(a) / BITS_PER_WORD] & (1 << ((unsigned)(a) % BITS_PER_WORD))) 143 144 /* 145 * Add 'a' to uset p. 146 */ 147 #define SET_INSERT(p, a) \ 148 (p)[(unsigned)(a) / BITS_PER_WORD] |= (1 << ((unsigned)(a) % BITS_PER_WORD)) 149 150 /* 151 * Delete 'a' from uset p. 152 */ 153 #define SET_DELETE(p, a) \ 154 (p)[(unsigned)(a) / BITS_PER_WORD] &= ~(1 << ((unsigned)(a) % BITS_PER_WORD)) 155 156 /* 157 * a := a intersect b 158 */ 159 #define SET_INTERSECT(a, b, n)\ 160 {\ 161 register bpf_u_int32 *_x = a, *_y = b;\ 162 register int _n = n;\ 163 while (--_n >= 0) *_x++ &= *_y++;\ 164 } 165 166 /* 167 * a := a - b 168 */ 169 #define SET_SUBTRACT(a, b, n)\ 170 {\ 171 register bpf_u_int32 *_x = a, *_y = b;\ 172 register int _n = n;\ 173 while (--_n >= 0) *_x++ &=~ *_y++;\ 174 } 175 176 /* 177 * a := a union b 178 */ 179 #define SET_UNION(a, b, n)\ 180 {\ 181 register bpf_u_int32 *_x = a, *_y = b;\ 182 register int _n = n;\ 183 while (--_n >= 0) *_x++ |= *_y++;\ 184 } 185 186 static uset all_dom_sets; 187 static uset all_closure_sets; 188 static uset all_edge_sets; 189 190 #ifndef MAX 191 #define MAX(a,b) ((a)>(b)?(a):(b)) 192 #endif 193 194 static void 195 find_levels_r(struct block *b) 196 { 197 int level; 198 199 if (isMarked(b)) 200 return; 201 202 Mark(b); 203 b->link = 0; 204 205 if (JT(b)) { 206 find_levels_r(JT(b)); 207 find_levels_r(JF(b)); 208 level = MAX(JT(b)->level, JF(b)->level) + 1; 209 } else 210 level = 0; 211 b->level = level; 212 b->link = levels[level]; 213 levels[level] = b; 214 } 215 216 /* 217 * Level graph. The levels go from 0 at the leaves to 218 * N_LEVELS at the root. The levels[] array points to the 219 * first node of the level list, whose elements are linked 220 * with the 'link' field of the struct block. 221 */ 222 static void 223 find_levels(struct block *root) 224 { 225 memset((char *)levels, 0, n_blocks * sizeof(*levels)); 226 unMarkAll(); 227 find_levels_r(root); 228 } 229 230 /* 231 * Find dominator relationships. 232 * Assumes graph has been leveled. 233 */ 234 static void 235 find_dom(struct block *root) 236 { 237 int i; 238 struct block *b; 239 bpf_u_int32 *x; 240 241 /* 242 * Initialize sets to contain all nodes. 243 */ 244 x = all_dom_sets; 245 i = n_blocks * nodewords; 246 while (--i >= 0) 247 *x++ = ~0; 248 /* Root starts off empty. */ 249 for (i = nodewords; --i >= 0;) 250 root->dom[i] = 0; 251 252 /* root->level is the highest level no found. */ 253 for (i = root->level; i >= 0; --i) { 254 for (b = levels[i]; b; b = b->link) { 255 SET_INSERT(b->dom, b->id); 256 if (JT(b) == 0) 257 continue; 258 SET_INTERSECT(JT(b)->dom, b->dom, nodewords); 259 SET_INTERSECT(JF(b)->dom, b->dom, nodewords); 260 } 261 } 262 } 263 264 static void 265 propedom(struct edge *ep) 266 { 267 SET_INSERT(ep->edom, ep->id); 268 if (ep->succ) { 269 SET_INTERSECT(ep->succ->et.edom, ep->edom, edgewords); 270 SET_INTERSECT(ep->succ->ef.edom, ep->edom, edgewords); 271 } 272 } 273 274 /* 275 * Compute edge dominators. 276 * Assumes graph has been leveled and predecessors established. 277 */ 278 static void 279 find_edom(struct block *root) 280 { 281 int i; 282 uset x; 283 struct block *b; 284 285 x = all_edge_sets; 286 for (i = n_edges * edgewords; --i >= 0; ) 287 x[i] = ~0; 288 289 /* root->level is the highest level no found. */ 290 memset(root->et.edom, 0, edgewords * sizeof(*(uset)0)); 291 memset(root->ef.edom, 0, edgewords * sizeof(*(uset)0)); 292 for (i = root->level; i >= 0; --i) { 293 for (b = levels[i]; b != 0; b = b->link) { 294 propedom(&b->et); 295 propedom(&b->ef); 296 } 297 } 298 } 299 300 /* 301 * Find the backwards transitive closure of the flow graph. These sets 302 * are backwards in the sense that we find the set of nodes that reach 303 * a given node, not the set of nodes that can be reached by a node. 304 * 305 * Assumes graph has been leveled. 306 */ 307 static void 308 find_closure(struct block *root) 309 { 310 int i; 311 struct block *b; 312 313 /* 314 * Initialize sets to contain no nodes. 315 */ 316 memset((char *)all_closure_sets, 0, 317 n_blocks * nodewords * sizeof(*all_closure_sets)); 318 319 /* root->level is the highest level no found. */ 320 for (i = root->level; i >= 0; --i) { 321 for (b = levels[i]; b; b = b->link) { 322 SET_INSERT(b->closure, b->id); 323 if (JT(b) == 0) 324 continue; 325 SET_UNION(JT(b)->closure, b->closure, nodewords); 326 SET_UNION(JF(b)->closure, b->closure, nodewords); 327 } 328 } 329 } 330 331 /* 332 * Return the register number that is used by s. If A and X are both 333 * used, return AX_ATOM. If no register is used, return -1. 334 * 335 * The implementation should probably change to an array access. 336 */ 337 static int 338 atomuse(struct stmt *s) 339 { 340 register int c = s->code; 341 342 if (c == NOP) 343 return -1; 344 345 switch (BPF_CLASS(c)) { 346 347 case BPF_RET: 348 return (BPF_RVAL(c) == BPF_A) ? A_ATOM : 349 (BPF_RVAL(c) == BPF_X) ? X_ATOM : -1; 350 351 case BPF_LD: 352 case BPF_LDX: 353 return (BPF_MODE(c) == BPF_IND) ? X_ATOM : 354 (BPF_MODE(c) == BPF_MEM) ? s->k : -1; 355 356 case BPF_ST: 357 return A_ATOM; 358 359 case BPF_STX: 360 return X_ATOM; 361 362 case BPF_JMP: 363 case BPF_ALU: 364 if (BPF_SRC(c) == BPF_X) 365 return AX_ATOM; 366 return A_ATOM; 367 368 case BPF_MISC: 369 return BPF_MISCOP(c) == BPF_TXA ? X_ATOM : A_ATOM; 370 } 371 abort(); 372 /* NOTREACHED */ 373 } 374 375 /* 376 * Return the register number that is defined by 's'. We assume that 377 * a single stmt cannot define more than one register. If no register 378 * is defined, return -1. 379 * 380 * The implementation should probably change to an array access. 381 */ 382 static int 383 atomdef(struct stmt *s) 384 { 385 if (s->code == NOP) 386 return -1; 387 388 switch (BPF_CLASS(s->code)) { 389 390 case BPF_LD: 391 case BPF_ALU: 392 return A_ATOM; 393 394 case BPF_LDX: 395 return X_ATOM; 396 397 case BPF_ST: 398 case BPF_STX: 399 return s->k; 400 401 case BPF_MISC: 402 return BPF_MISCOP(s->code) == BPF_TAX ? X_ATOM : A_ATOM; 403 } 404 return -1; 405 } 406 407 /* 408 * Compute the sets of registers used, defined, and killed by 'b'. 409 * 410 * "Used" means that a statement in 'b' uses the register before any 411 * statement in 'b' defines it, i.e. it uses the value left in 412 * that register by a predecessor block of this block. 413 * "Defined" means that a statement in 'b' defines it. 414 * "Killed" means that a statement in 'b' defines it before any 415 * statement in 'b' uses it, i.e. it kills the value left in that 416 * register by a predecessor block of this block. 417 */ 418 static void 419 compute_local_ud(struct block *b) 420 { 421 struct slist *s; 422 atomset def = 0, use = 0, kill = 0; 423 int atom; 424 425 for (s = b->stmts; s; s = s->next) { 426 if (s->s.code == NOP) 427 continue; 428 atom = atomuse(&s->s); 429 if (atom >= 0) { 430 if (atom == AX_ATOM) { 431 if (!ATOMELEM(def, X_ATOM)) 432 use |= ATOMMASK(X_ATOM); 433 if (!ATOMELEM(def, A_ATOM)) 434 use |= ATOMMASK(A_ATOM); 435 } 436 else if (atom < N_ATOMS) { 437 if (!ATOMELEM(def, atom)) 438 use |= ATOMMASK(atom); 439 } 440 else 441 abort(); 442 } 443 atom = atomdef(&s->s); 444 if (atom >= 0) { 445 if (!ATOMELEM(use, atom)) 446 kill |= ATOMMASK(atom); 447 def |= ATOMMASK(atom); 448 } 449 } 450 if (BPF_CLASS(b->s.code) == BPF_JMP) { 451 /* 452 * XXX - what about RET? 453 */ 454 atom = atomuse(&b->s); 455 if (atom >= 0) { 456 if (atom == AX_ATOM) { 457 if (!ATOMELEM(def, X_ATOM)) 458 use |= ATOMMASK(X_ATOM); 459 if (!ATOMELEM(def, A_ATOM)) 460 use |= ATOMMASK(A_ATOM); 461 } 462 else if (atom < N_ATOMS) { 463 if (!ATOMELEM(def, atom)) 464 use |= ATOMMASK(atom); 465 } 466 else 467 abort(); 468 } 469 } 470 471 b->def = def; 472 b->kill = kill; 473 b->in_use = use; 474 } 475 476 /* 477 * Assume graph is already leveled. 478 */ 479 static void 480 find_ud(struct block *root) 481 { 482 int i, maxlevel; 483 struct block *p; 484 485 /* 486 * root->level is the highest level no found; 487 * count down from there. 488 */ 489 maxlevel = root->level; 490 for (i = maxlevel; i >= 0; --i) 491 for (p = levels[i]; p; p = p->link) { 492 compute_local_ud(p); 493 p->out_use = 0; 494 } 495 496 for (i = 1; i <= maxlevel; ++i) { 497 for (p = levels[i]; p; p = p->link) { 498 p->out_use |= JT(p)->in_use | JF(p)->in_use; 499 p->in_use |= p->out_use &~ p->kill; 500 } 501 } 502 } 503 504 /* 505 * These data structures are used in a Cocke and Shwarz style 506 * value numbering scheme. Since the flowgraph is acyclic, 507 * exit values can be propagated from a node's predecessors 508 * provided it is uniquely defined. 509 */ 510 struct valnode { 511 int code; 512 int v0, v1; 513 int val; 514 struct valnode *next; 515 }; 516 517 #define MODULUS 213 518 static struct valnode *hashtbl[MODULUS]; 519 static int curval; 520 static int maxval; 521 522 /* Integer constants mapped with the load immediate opcode. */ 523 #define K(i) F(BPF_LD|BPF_IMM|BPF_W, i, 0L) 524 525 struct vmapinfo { 526 int is_const; 527 bpf_int32 const_val; 528 }; 529 530 struct vmapinfo *vmap; 531 struct valnode *vnode_base; 532 struct valnode *next_vnode; 533 534 static void 535 init_val(void) 536 { 537 curval = 0; 538 next_vnode = vnode_base; 539 memset((char *)vmap, 0, maxval * sizeof(*vmap)); 540 memset((char *)hashtbl, 0, sizeof hashtbl); 541 } 542 543 /* Because we really don't have an IR, this stuff is a little messy. */ 544 static int 545 F(int code, int v0, int v1) 546 { 547 u_int hash; 548 int val; 549 struct valnode *p; 550 551 hash = (u_int)code ^ (v0 << 4) ^ (v1 << 8); 552 hash %= MODULUS; 553 554 for (p = hashtbl[hash]; p; p = p->next) 555 if (p->code == code && p->v0 == v0 && p->v1 == v1) 556 return p->val; 557 558 val = ++curval; 559 if (BPF_MODE(code) == BPF_IMM && 560 (BPF_CLASS(code) == BPF_LD || BPF_CLASS(code) == BPF_LDX)) { 561 vmap[val].const_val = v0; 562 vmap[val].is_const = 1; 563 } 564 p = next_vnode++; 565 p->val = val; 566 p->code = code; 567 p->v0 = v0; 568 p->v1 = v1; 569 p->next = hashtbl[hash]; 570 hashtbl[hash] = p; 571 572 return val; 573 } 574 575 static inline void 576 vstore(struct stmt *s, int *valp, int newval, int alter) 577 { 578 if (alter && *valp == newval) 579 s->code = NOP; 580 else 581 *valp = newval; 582 } 583 584 /* 585 * Do constant-folding on binary operators. 586 * (Unary operators are handled elsewhere.) 587 */ 588 static void 589 fold_op(struct stmt *s, int v0, int v1) 590 { 591 bpf_u_int32 a, b; 592 593 a = vmap[v0].const_val; 594 b = vmap[v1].const_val; 595 596 switch (BPF_OP(s->code)) { 597 case BPF_ADD: 598 a += b; 599 break; 600 601 case BPF_SUB: 602 a -= b; 603 break; 604 605 case BPF_MUL: 606 a *= b; 607 break; 608 609 case BPF_DIV: 610 if (b == 0) 611 bpf_error("division by zero"); 612 a /= b; 613 break; 614 615 case BPF_AND: 616 a &= b; 617 break; 618 619 case BPF_OR: 620 a |= b; 621 break; 622 623 case BPF_LSH: 624 a <<= b; 625 break; 626 627 case BPF_RSH: 628 a >>= b; 629 break; 630 631 default: 632 abort(); 633 } 634 s->k = a; 635 s->code = BPF_LD|BPF_IMM; 636 done = 0; 637 } 638 639 static inline struct slist * 640 this_op(struct slist *s) 641 { 642 while (s != 0 && s->s.code == NOP) 643 s = s->next; 644 return s; 645 } 646 647 static void 648 opt_not(struct block *b) 649 { 650 struct block *tmp = JT(b); 651 652 JT(b) = JF(b); 653 JF(b) = tmp; 654 } 655 656 static void 657 opt_peep(struct block *b) 658 { 659 struct slist *s; 660 struct slist *next, *last; 661 int val; 662 663 s = b->stmts; 664 if (s == 0) 665 return; 666 667 last = s; 668 for (/*empty*/; /*empty*/; s = next) { 669 /* 670 * Skip over nops. 671 */ 672 s = this_op(s); 673 if (s == 0) 674 break; /* nothing left in the block */ 675 676 /* 677 * Find the next real instruction after that one 678 * (skipping nops). 679 */ 680 next = this_op(s->next); 681 if (next == 0) 682 break; /* no next instruction */ 683 last = next; 684 685 /* 686 * st M[k] --> st M[k] 687 * ldx M[k] tax 688 */ 689 if (s->s.code == BPF_ST && 690 next->s.code == (BPF_LDX|BPF_MEM) && 691 s->s.k == next->s.k) { 692 done = 0; 693 next->s.code = BPF_MISC|BPF_TAX; 694 } 695 /* 696 * ld #k --> ldx #k 697 * tax txa 698 */ 699 if (s->s.code == (BPF_LD|BPF_IMM) && 700 next->s.code == (BPF_MISC|BPF_TAX)) { 701 s->s.code = BPF_LDX|BPF_IMM; 702 next->s.code = BPF_MISC|BPF_TXA; 703 done = 0; 704 } 705 /* 706 * This is an ugly special case, but it happens 707 * when you say tcp[k] or udp[k] where k is a constant. 708 */ 709 if (s->s.code == (BPF_LD|BPF_IMM)) { 710 struct slist *add, *tax, *ild; 711 712 /* 713 * Check that X isn't used on exit from this 714 * block (which the optimizer might cause). 715 * We know the code generator won't generate 716 * any local dependencies. 717 */ 718 if (ATOMELEM(b->out_use, X_ATOM)) 719 continue; 720 721 /* 722 * Check that the instruction following the ldi 723 * is an addx, or it's an ldxms with an addx 724 * following it (with 0 or more nops between the 725 * ldxms and addx). 726 */ 727 if (next->s.code != (BPF_LDX|BPF_MSH|BPF_B)) 728 add = next; 729 else 730 add = this_op(next->next); 731 if (add == 0 || add->s.code != (BPF_ALU|BPF_ADD|BPF_X)) 732 continue; 733 734 /* 735 * Check that a tax follows that (with 0 or more 736 * nops between them). 737 */ 738 tax = this_op(add->next); 739 if (tax == 0 || tax->s.code != (BPF_MISC|BPF_TAX)) 740 continue; 741 742 /* 743 * Check that an ild follows that (with 0 or more 744 * nops between them). 745 */ 746 ild = this_op(tax->next); 747 if (ild == 0 || BPF_CLASS(ild->s.code) != BPF_LD || 748 BPF_MODE(ild->s.code) != BPF_IND) 749 continue; 750 /* 751 * We want to turn this sequence: 752 * 753 * (004) ldi #0x2 {s} 754 * (005) ldxms [14] {next} -- optional 755 * (006) addx {add} 756 * (007) tax {tax} 757 * (008) ild [x+0] {ild} 758 * 759 * into this sequence: 760 * 761 * (004) nop 762 * (005) ldxms [14] 763 * (006) nop 764 * (007) nop 765 * (008) ild [x+2] 766 * 767 * XXX We need to check that X is not 768 * subsequently used, because we want to change 769 * what'll be in it after this sequence. 770 * 771 * We know we can eliminate the accumulator 772 * modifications earlier in the sequence since 773 * it is defined by the last stmt of this sequence 774 * (i.e., the last statement of the sequence loads 775 * a value into the accumulator, so we can eliminate 776 * earlier operations on the accumulator). 777 */ 778 ild->s.k += s->s.k; 779 s->s.code = NOP; 780 add->s.code = NOP; 781 tax->s.code = NOP; 782 done = 0; 783 } 784 } 785 /* 786 * If the comparison at the end of a block is an equality 787 * comparison against a constant, and nobody uses the value 788 * we leave in the A register at the end of a block, and 789 * the operation preceding the comparison is an arithmetic 790 * operation, we can sometime optimize it away. 791 */ 792 if (b->s.code == (BPF_JMP|BPF_JEQ|BPF_K) && 793 !ATOMELEM(b->out_use, A_ATOM)) { 794 /* 795 * We can optimize away certain subtractions of the 796 * X register. 797 */ 798 if (last->s.code == (BPF_ALU|BPF_SUB|BPF_X)) { 799 val = b->val[X_ATOM]; 800 if (vmap[val].is_const) { 801 /* 802 * If we have a subtract to do a comparison, 803 * and the X register is a known constant, 804 * we can merge this value into the 805 * comparison: 806 * 807 * sub x -> nop 808 * jeq #y jeq #(x+y) 809 */ 810 b->s.k += vmap[val].const_val; 811 last->s.code = NOP; 812 done = 0; 813 } else if (b->s.k == 0) { 814 /* 815 * If the X register isn't a constant, 816 * and the comparison in the test is 817 * against 0, we can compare with the 818 * X register, instead: 819 * 820 * sub x -> nop 821 * jeq #0 jeq x 822 */ 823 last->s.code = NOP; 824 b->s.code = BPF_JMP|BPF_JEQ|BPF_X; 825 done = 0; 826 } 827 } 828 /* 829 * Likewise, a constant subtract can be simplified: 830 * 831 * sub #x -> nop 832 * jeq #y -> jeq #(x+y) 833 */ 834 else if (last->s.code == (BPF_ALU|BPF_SUB|BPF_K)) { 835 last->s.code = NOP; 836 b->s.k += last->s.k; 837 done = 0; 838 } 839 /* 840 * And, similarly, a constant AND can be simplified 841 * if we're testing against 0, i.e.: 842 * 843 * and #k nop 844 * jeq #0 -> jset #k 845 */ 846 else if (last->s.code == (BPF_ALU|BPF_AND|BPF_K) && 847 b->s.k == 0) { 848 b->s.k = last->s.k; 849 b->s.code = BPF_JMP|BPF_K|BPF_JSET; 850 last->s.code = NOP; 851 done = 0; 852 opt_not(b); 853 } 854 } 855 /* 856 * jset #0 -> never 857 * jset #ffffffff -> always 858 */ 859 if (b->s.code == (BPF_JMP|BPF_K|BPF_JSET)) { 860 if (b->s.k == 0) 861 JT(b) = JF(b); 862 if (b->s.k == (int)0xffffffff) 863 JF(b) = JT(b); 864 } 865 /* 866 * If we're comparing against the index register, and the index 867 * register is a known constant, we can just compare against that 868 * constant. 869 */ 870 val = b->val[X_ATOM]; 871 if (vmap[val].is_const && BPF_SRC(b->s.code) == BPF_X) { 872 bpf_int32 v = vmap[val].const_val; 873 b->s.code &= ~BPF_X; 874 b->s.k = v; 875 } 876 /* 877 * If the accumulator is a known constant, we can compute the 878 * comparison result. 879 */ 880 val = b->val[A_ATOM]; 881 if (vmap[val].is_const && BPF_SRC(b->s.code) == BPF_K) { 882 bpf_int32 v = vmap[val].const_val; 883 switch (BPF_OP(b->s.code)) { 884 885 case BPF_JEQ: 886 v = v == b->s.k; 887 break; 888 889 case BPF_JGT: 890 v = (unsigned)v > (unsigned)b->s.k; 891 break; 892 893 case BPF_JGE: 894 v = (unsigned)v >= (unsigned)b->s.k; 895 break; 896 897 case BPF_JSET: 898 v &= b->s.k; 899 break; 900 901 default: 902 abort(); 903 } 904 if (JF(b) != JT(b)) 905 done = 0; 906 if (v) 907 JF(b) = JT(b); 908 else 909 JT(b) = JF(b); 910 } 911 } 912 913 /* 914 * Compute the symbolic value of expression of 's', and update 915 * anything it defines in the value table 'val'. If 'alter' is true, 916 * do various optimizations. This code would be cleaner if symbolic 917 * evaluation and code transformations weren't folded together. 918 */ 919 static void 920 opt_stmt(struct stmt *s, int val[], int alter) 921 { 922 int op; 923 int v; 924 925 switch (s->code) { 926 927 case BPF_LD|BPF_ABS|BPF_W: 928 case BPF_LD|BPF_ABS|BPF_H: 929 case BPF_LD|BPF_ABS|BPF_B: 930 v = F(s->code, s->k, 0L); 931 vstore(s, &val[A_ATOM], v, alter); 932 break; 933 934 case BPF_LD|BPF_IND|BPF_W: 935 case BPF_LD|BPF_IND|BPF_H: 936 case BPF_LD|BPF_IND|BPF_B: 937 v = val[X_ATOM]; 938 if (alter && vmap[v].is_const) { 939 s->code = BPF_LD|BPF_ABS|BPF_SIZE(s->code); 940 s->k += vmap[v].const_val; 941 v = F(s->code, s->k, 0L); 942 done = 0; 943 } 944 else 945 v = F(s->code, s->k, v); 946 vstore(s, &val[A_ATOM], v, alter); 947 break; 948 949 case BPF_LD|BPF_LEN: 950 v = F(s->code, 0L, 0L); 951 vstore(s, &val[A_ATOM], v, alter); 952 break; 953 954 case BPF_LD|BPF_IMM: 955 v = K(s->k); 956 vstore(s, &val[A_ATOM], v, alter); 957 break; 958 959 case BPF_LDX|BPF_IMM: 960 v = K(s->k); 961 vstore(s, &val[X_ATOM], v, alter); 962 break; 963 964 case BPF_LDX|BPF_MSH|BPF_B: 965 v = F(s->code, s->k, 0L); 966 vstore(s, &val[X_ATOM], v, alter); 967 break; 968 969 case BPF_ALU|BPF_NEG: 970 if (alter && vmap[val[A_ATOM]].is_const) { 971 s->code = BPF_LD|BPF_IMM; 972 s->k = -vmap[val[A_ATOM]].const_val; 973 val[A_ATOM] = K(s->k); 974 } 975 else 976 val[A_ATOM] = F(s->code, val[A_ATOM], 0L); 977 break; 978 979 case BPF_ALU|BPF_ADD|BPF_K: 980 case BPF_ALU|BPF_SUB|BPF_K: 981 case BPF_ALU|BPF_MUL|BPF_K: 982 case BPF_ALU|BPF_DIV|BPF_K: 983 case BPF_ALU|BPF_AND|BPF_K: 984 case BPF_ALU|BPF_OR|BPF_K: 985 case BPF_ALU|BPF_LSH|BPF_K: 986 case BPF_ALU|BPF_RSH|BPF_K: 987 op = BPF_OP(s->code); 988 if (alter) { 989 if (s->k == 0) { 990 /* don't optimize away "sub #0" 991 * as it may be needed later to 992 * fixup the generated math code */ 993 if (op == BPF_ADD || 994 op == BPF_LSH || op == BPF_RSH || 995 op == BPF_OR) { 996 s->code = NOP; 997 break; 998 } 999 if (op == BPF_MUL || op == BPF_AND) { 1000 s->code = BPF_LD|BPF_IMM; 1001 val[A_ATOM] = K(s->k); 1002 break; 1003 } 1004 } 1005 if (vmap[val[A_ATOM]].is_const) { 1006 fold_op(s, val[A_ATOM], K(s->k)); 1007 val[A_ATOM] = K(s->k); 1008 break; 1009 } 1010 } 1011 val[A_ATOM] = F(s->code, val[A_ATOM], K(s->k)); 1012 break; 1013 1014 case BPF_ALU|BPF_ADD|BPF_X: 1015 case BPF_ALU|BPF_SUB|BPF_X: 1016 case BPF_ALU|BPF_MUL|BPF_X: 1017 case BPF_ALU|BPF_DIV|BPF_X: 1018 case BPF_ALU|BPF_AND|BPF_X: 1019 case BPF_ALU|BPF_OR|BPF_X: 1020 case BPF_ALU|BPF_LSH|BPF_X: 1021 case BPF_ALU|BPF_RSH|BPF_X: 1022 op = BPF_OP(s->code); 1023 if (alter && vmap[val[X_ATOM]].is_const) { 1024 if (vmap[val[A_ATOM]].is_const) { 1025 fold_op(s, val[A_ATOM], val[X_ATOM]); 1026 val[A_ATOM] = K(s->k); 1027 } 1028 else { 1029 s->code = BPF_ALU|BPF_K|op; 1030 s->k = vmap[val[X_ATOM]].const_val; 1031 done = 0; 1032 val[A_ATOM] = 1033 F(s->code, val[A_ATOM], K(s->k)); 1034 } 1035 break; 1036 } 1037 /* 1038 * Check if we're doing something to an accumulator 1039 * that is 0, and simplify. This may not seem like 1040 * much of a simplification but it could open up further 1041 * optimizations. 1042 * XXX We could also check for mul by 1, etc. 1043 */ 1044 if (alter && vmap[val[A_ATOM]].is_const 1045 && vmap[val[A_ATOM]].const_val == 0) { 1046 if (op == BPF_ADD || op == BPF_OR) { 1047 s->code = BPF_MISC|BPF_TXA; 1048 vstore(s, &val[A_ATOM], val[X_ATOM], alter); 1049 break; 1050 } 1051 else if (op == BPF_MUL || op == BPF_DIV || 1052 op == BPF_AND || op == BPF_LSH || op == BPF_RSH) { 1053 s->code = BPF_LD|BPF_IMM; 1054 s->k = 0; 1055 vstore(s, &val[A_ATOM], K(s->k), alter); 1056 break; 1057 } 1058 else if (op == BPF_NEG) { 1059 s->code = NOP; 1060 break; 1061 } 1062 } 1063 val[A_ATOM] = F(s->code, val[A_ATOM], val[X_ATOM]); 1064 break; 1065 1066 case BPF_MISC|BPF_TXA: 1067 vstore(s, &val[A_ATOM], val[X_ATOM], alter); 1068 break; 1069 1070 case BPF_LD|BPF_MEM: 1071 v = val[s->k]; 1072 if (alter && vmap[v].is_const) { 1073 s->code = BPF_LD|BPF_IMM; 1074 s->k = vmap[v].const_val; 1075 done = 0; 1076 } 1077 vstore(s, &val[A_ATOM], v, alter); 1078 break; 1079 1080 case BPF_MISC|BPF_TAX: 1081 vstore(s, &val[X_ATOM], val[A_ATOM], alter); 1082 break; 1083 1084 case BPF_LDX|BPF_MEM: 1085 v = val[s->k]; 1086 if (alter && vmap[v].is_const) { 1087 s->code = BPF_LDX|BPF_IMM; 1088 s->k = vmap[v].const_val; 1089 done = 0; 1090 } 1091 vstore(s, &val[X_ATOM], v, alter); 1092 break; 1093 1094 case BPF_ST: 1095 vstore(s, &val[s->k], val[A_ATOM], alter); 1096 break; 1097 1098 case BPF_STX: 1099 vstore(s, &val[s->k], val[X_ATOM], alter); 1100 break; 1101 } 1102 } 1103 1104 static void 1105 deadstmt(register struct stmt *s, register struct stmt *last[]) 1106 { 1107 register int atom; 1108 1109 atom = atomuse(s); 1110 if (atom >= 0) { 1111 if (atom == AX_ATOM) { 1112 last[X_ATOM] = 0; 1113 last[A_ATOM] = 0; 1114 } 1115 else 1116 last[atom] = 0; 1117 } 1118 atom = atomdef(s); 1119 if (atom >= 0) { 1120 if (last[atom]) { 1121 done = 0; 1122 last[atom]->code = NOP; 1123 } 1124 last[atom] = s; 1125 } 1126 } 1127 1128 static void 1129 opt_deadstores(register struct block *b) 1130 { 1131 register struct slist *s; 1132 register int atom; 1133 struct stmt *last[N_ATOMS]; 1134 1135 memset((char *)last, 0, sizeof last); 1136 1137 for (s = b->stmts; s != 0; s = s->next) 1138 deadstmt(&s->s, last); 1139 deadstmt(&b->s, last); 1140 1141 for (atom = 0; atom < N_ATOMS; ++atom) 1142 if (last[atom] && !ATOMELEM(b->out_use, atom)) { 1143 last[atom]->code = NOP; 1144 done = 0; 1145 } 1146 } 1147 1148 static void 1149 opt_blk(struct block *b, int do_stmts) 1150 { 1151 struct slist *s; 1152 struct edge *p; 1153 int i; 1154 bpf_int32 aval, xval; 1155 1156 #if 0 1157 for (s = b->stmts; s && s->next; s = s->next) 1158 if (BPF_CLASS(s->s.code) == BPF_JMP) { 1159 do_stmts = 0; 1160 break; 1161 } 1162 #endif 1163 1164 /* 1165 * Initialize the atom values. 1166 */ 1167 p = b->in_edges; 1168 if (p == 0) { 1169 /* 1170 * We have no predecessors, so everything is undefined 1171 * upon entry to this block. 1172 */ 1173 memset((char *)b->val, 0, sizeof(b->val)); 1174 } else { 1175 /* 1176 * Inherit values from our predecessors. 1177 * 1178 * First, get the values from the predecessor along the 1179 * first edge leading to this node. 1180 */ 1181 memcpy((char *)b->val, (char *)p->pred->val, sizeof(b->val)); 1182 /* 1183 * Now look at all the other nodes leading to this node. 1184 * If, for the predecessor along that edge, a register 1185 * has a different value from the one we have (i.e., 1186 * control paths are merging, and the merging paths 1187 * assign different values to that register), give the 1188 * register the undefined value of 0. 1189 */ 1190 while ((p = p->next) != NULL) { 1191 for (i = 0; i < N_ATOMS; ++i) 1192 if (b->val[i] != p->pred->val[i]) 1193 b->val[i] = 0; 1194 } 1195 } 1196 aval = b->val[A_ATOM]; 1197 xval = b->val[X_ATOM]; 1198 for (s = b->stmts; s; s = s->next) 1199 opt_stmt(&s->s, b->val, do_stmts); 1200 1201 /* 1202 * This is a special case: if we don't use anything from this 1203 * block, and we load the accumulator or index register with a 1204 * value that is already there, or if this block is a return, 1205 * eliminate all the statements. 1206 * 1207 * XXX - what if it does a store? 1208 * 1209 * XXX - why does it matter whether we use anything from this 1210 * block? If the accumulator or index register doesn't change 1211 * its value, isn't that OK even if we use that value? 1212 * 1213 * XXX - if we load the accumulator with a different value, 1214 * and the block ends with a conditional branch, we obviously 1215 * can't eliminate it, as the branch depends on that value. 1216 * For the index register, the conditional branch only depends 1217 * on the index register value if the test is against the index 1218 * register value rather than a constant; if nothing uses the 1219 * value we put into the index register, and we're not testing 1220 * against the index register's value, and there aren't any 1221 * other problems that would keep us from eliminating this 1222 * block, can we eliminate it? 1223 */ 1224 if (do_stmts && 1225 ((b->out_use == 0 && aval != 0 && b->val[A_ATOM] == aval && 1226 xval != 0 && b->val[X_ATOM] == xval) || 1227 BPF_CLASS(b->s.code) == BPF_RET)) { 1228 if (b->stmts != 0) { 1229 b->stmts = 0; 1230 done = 0; 1231 } 1232 } else { 1233 opt_peep(b); 1234 opt_deadstores(b); 1235 } 1236 /* 1237 * Set up values for branch optimizer. 1238 */ 1239 if (BPF_SRC(b->s.code) == BPF_K) 1240 b->oval = K(b->s.k); 1241 else 1242 b->oval = b->val[X_ATOM]; 1243 b->et.code = b->s.code; 1244 b->ef.code = -b->s.code; 1245 } 1246 1247 /* 1248 * Return true if any register that is used on exit from 'succ', has 1249 * an exit value that is different from the corresponding exit value 1250 * from 'b'. 1251 */ 1252 static int 1253 use_conflict(struct block *b, struct block *succ) 1254 { 1255 int atom; 1256 atomset use = succ->out_use; 1257 1258 if (use == 0) 1259 return 0; 1260 1261 for (atom = 0; atom < N_ATOMS; ++atom) 1262 if (ATOMELEM(use, atom)) 1263 if (b->val[atom] != succ->val[atom]) 1264 return 1; 1265 return 0; 1266 } 1267 1268 static struct block * 1269 fold_edge(struct block *child, struct edge *ep) 1270 { 1271 int sense; 1272 int aval0, aval1, oval0, oval1; 1273 int code = ep->code; 1274 1275 if (code < 0) { 1276 code = -code; 1277 sense = 0; 1278 } else 1279 sense = 1; 1280 1281 if (child->s.code != code) 1282 return 0; 1283 1284 aval0 = child->val[A_ATOM]; 1285 oval0 = child->oval; 1286 aval1 = ep->pred->val[A_ATOM]; 1287 oval1 = ep->pred->oval; 1288 1289 if (aval0 != aval1) 1290 return 0; 1291 1292 if (oval0 == oval1) 1293 /* 1294 * The operands of the branch instructions are 1295 * identical, so the result is true if a true 1296 * branch was taken to get here, otherwise false. 1297 */ 1298 return sense ? JT(child) : JF(child); 1299 1300 if (sense && code == (BPF_JMP|BPF_JEQ|BPF_K)) 1301 /* 1302 * At this point, we only know the comparison if we 1303 * came down the true branch, and it was an equality 1304 * comparison with a constant. 1305 * 1306 * I.e., if we came down the true branch, and the branch 1307 * was an equality comparison with a constant, we know the 1308 * accumulator contains that constant. If we came down 1309 * the false branch, or the comparison wasn't with a 1310 * constant, we don't know what was in the accumulator. 1311 * 1312 * We rely on the fact that distinct constants have distinct 1313 * value numbers. 1314 */ 1315 return JF(child); 1316 1317 return 0; 1318 } 1319 1320 static void 1321 opt_j(struct edge *ep) 1322 { 1323 register int i, k; 1324 register struct block *target; 1325 1326 if (JT(ep->succ) == 0) 1327 return; 1328 1329 if (JT(ep->succ) == JF(ep->succ)) { 1330 /* 1331 * Common branch targets can be eliminated, provided 1332 * there is no data dependency. 1333 */ 1334 if (!use_conflict(ep->pred, ep->succ->et.succ)) { 1335 done = 0; 1336 ep->succ = JT(ep->succ); 1337 } 1338 } 1339 /* 1340 * For each edge dominator that matches the successor of this 1341 * edge, promote the edge successor to the its grandchild. 1342 * 1343 * XXX We violate the set abstraction here in favor a reasonably 1344 * efficient loop. 1345 */ 1346 top: 1347 for (i = 0; i < edgewords; ++i) { 1348 register bpf_u_int32 x = ep->edom[i]; 1349 1350 while (x != 0) { 1351 k = ffs(x) - 1; 1352 x &=~ (1 << k); 1353 k += i * BITS_PER_WORD; 1354 1355 target = fold_edge(ep->succ, edges[k]); 1356 /* 1357 * Check that there is no data dependency between 1358 * nodes that will be violated if we move the edge. 1359 */ 1360 if (target != 0 && !use_conflict(ep->pred, target)) { 1361 done = 0; 1362 ep->succ = target; 1363 if (JT(target) != 0) 1364 /* 1365 * Start over unless we hit a leaf. 1366 */ 1367 goto top; 1368 return; 1369 } 1370 } 1371 } 1372 } 1373 1374 1375 static void 1376 or_pullup(struct block *b) 1377 { 1378 int val, at_top; 1379 struct block *pull; 1380 struct block **diffp, **samep; 1381 struct edge *ep; 1382 1383 ep = b->in_edges; 1384 if (ep == 0) 1385 return; 1386 1387 /* 1388 * Make sure each predecessor loads the same value. 1389 * XXX why? 1390 */ 1391 val = ep->pred->val[A_ATOM]; 1392 for (ep = ep->next; ep != 0; ep = ep->next) 1393 if (val != ep->pred->val[A_ATOM]) 1394 return; 1395 1396 if (JT(b->in_edges->pred) == b) 1397 diffp = &JT(b->in_edges->pred); 1398 else 1399 diffp = &JF(b->in_edges->pred); 1400 1401 at_top = 1; 1402 while (1) { 1403 if (*diffp == 0) 1404 return; 1405 1406 if (JT(*diffp) != JT(b)) 1407 return; 1408 1409 if (!SET_MEMBER((*diffp)->dom, b->id)) 1410 return; 1411 1412 if ((*diffp)->val[A_ATOM] != val) 1413 break; 1414 1415 diffp = &JF(*diffp); 1416 at_top = 0; 1417 } 1418 samep = &JF(*diffp); 1419 while (1) { 1420 if (*samep == 0) 1421 return; 1422 1423 if (JT(*samep) != JT(b)) 1424 return; 1425 1426 if (!SET_MEMBER((*samep)->dom, b->id)) 1427 return; 1428 1429 if ((*samep)->val[A_ATOM] == val) 1430 break; 1431 1432 /* XXX Need to check that there are no data dependencies 1433 between dp0 and dp1. Currently, the code generator 1434 will not produce such dependencies. */ 1435 samep = &JF(*samep); 1436 } 1437 #ifdef notdef 1438 /* XXX This doesn't cover everything. */ 1439 for (i = 0; i < N_ATOMS; ++i) 1440 if ((*samep)->val[i] != pred->val[i]) 1441 return; 1442 #endif 1443 /* Pull up the node. */ 1444 pull = *samep; 1445 *samep = JF(pull); 1446 JF(pull) = *diffp; 1447 1448 /* 1449 * At the top of the chain, each predecessor needs to point at the 1450 * pulled up node. Inside the chain, there is only one predecessor 1451 * to worry about. 1452 */ 1453 if (at_top) { 1454 for (ep = b->in_edges; ep != 0; ep = ep->next) { 1455 if (JT(ep->pred) == b) 1456 JT(ep->pred) = pull; 1457 else 1458 JF(ep->pred) = pull; 1459 } 1460 } 1461 else 1462 *diffp = pull; 1463 1464 done = 0; 1465 } 1466 1467 static void 1468 and_pullup(struct block *b) 1469 { 1470 int val, at_top; 1471 struct block *pull; 1472 struct block **diffp, **samep; 1473 struct edge *ep; 1474 1475 ep = b->in_edges; 1476 if (ep == 0) 1477 return; 1478 1479 /* 1480 * Make sure each predecessor loads the same value. 1481 */ 1482 val = ep->pred->val[A_ATOM]; 1483 for (ep = ep->next; ep != 0; ep = ep->next) 1484 if (val != ep->pred->val[A_ATOM]) 1485 return; 1486 1487 if (JT(b->in_edges->pred) == b) 1488 diffp = &JT(b->in_edges->pred); 1489 else 1490 diffp = &JF(b->in_edges->pred); 1491 1492 at_top = 1; 1493 while (1) { 1494 if (*diffp == 0) 1495 return; 1496 1497 if (JF(*diffp) != JF(b)) 1498 return; 1499 1500 if (!SET_MEMBER((*diffp)->dom, b->id)) 1501 return; 1502 1503 if ((*diffp)->val[A_ATOM] != val) 1504 break; 1505 1506 diffp = &JT(*diffp); 1507 at_top = 0; 1508 } 1509 samep = &JT(*diffp); 1510 while (1) { 1511 if (*samep == 0) 1512 return; 1513 1514 if (JF(*samep) != JF(b)) 1515 return; 1516 1517 if (!SET_MEMBER((*samep)->dom, b->id)) 1518 return; 1519 1520 if ((*samep)->val[A_ATOM] == val) 1521 break; 1522 1523 /* XXX Need to check that there are no data dependencies 1524 between diffp and samep. Currently, the code generator 1525 will not produce such dependencies. */ 1526 samep = &JT(*samep); 1527 } 1528 #ifdef notdef 1529 /* XXX This doesn't cover everything. */ 1530 for (i = 0; i < N_ATOMS; ++i) 1531 if ((*samep)->val[i] != pred->val[i]) 1532 return; 1533 #endif 1534 /* Pull up the node. */ 1535 pull = *samep; 1536 *samep = JT(pull); 1537 JT(pull) = *diffp; 1538 1539 /* 1540 * At the top of the chain, each predecessor needs to point at the 1541 * pulled up node. Inside the chain, there is only one predecessor 1542 * to worry about. 1543 */ 1544 if (at_top) { 1545 for (ep = b->in_edges; ep != 0; ep = ep->next) { 1546 if (JT(ep->pred) == b) 1547 JT(ep->pred) = pull; 1548 else 1549 JF(ep->pred) = pull; 1550 } 1551 } 1552 else 1553 *diffp = pull; 1554 1555 done = 0; 1556 } 1557 1558 static void 1559 opt_blks(struct block *root, int do_stmts) 1560 { 1561 int i, maxlevel; 1562 struct block *p; 1563 1564 init_val(); 1565 maxlevel = root->level; 1566 1567 find_inedges(root); 1568 for (i = maxlevel; i >= 0; --i) 1569 for (p = levels[i]; p; p = p->link) 1570 opt_blk(p, do_stmts); 1571 1572 if (do_stmts) 1573 /* 1574 * No point trying to move branches; it can't possibly 1575 * make a difference at this point. 1576 */ 1577 return; 1578 1579 for (i = 1; i <= maxlevel; ++i) { 1580 for (p = levels[i]; p; p = p->link) { 1581 opt_j(&p->et); 1582 opt_j(&p->ef); 1583 } 1584 } 1585 1586 find_inedges(root); 1587 for (i = 1; i <= maxlevel; ++i) { 1588 for (p = levels[i]; p; p = p->link) { 1589 or_pullup(p); 1590 and_pullup(p); 1591 } 1592 } 1593 } 1594 1595 static inline void 1596 link_inedge(struct edge *parent, struct block *child) 1597 { 1598 parent->next = child->in_edges; 1599 child->in_edges = parent; 1600 } 1601 1602 static void 1603 find_inedges(struct block *root) 1604 { 1605 int i; 1606 struct block *b; 1607 1608 for (i = 0; i < n_blocks; ++i) 1609 blocks[i]->in_edges = 0; 1610 1611 /* 1612 * Traverse the graph, adding each edge to the predecessor 1613 * list of its successors. Skip the leaves (i.e. level 0). 1614 */ 1615 for (i = root->level; i > 0; --i) { 1616 for (b = levels[i]; b != 0; b = b->link) { 1617 link_inedge(&b->et, JT(b)); 1618 link_inedge(&b->ef, JF(b)); 1619 } 1620 } 1621 } 1622 1623 static void 1624 opt_root(struct block **b) 1625 { 1626 struct slist *tmp, *s; 1627 1628 s = (*b)->stmts; 1629 (*b)->stmts = 0; 1630 while (BPF_CLASS((*b)->s.code) == BPF_JMP && JT(*b) == JF(*b)) 1631 *b = JT(*b); 1632 1633 tmp = (*b)->stmts; 1634 if (tmp != 0) 1635 sappend(s, tmp); 1636 (*b)->stmts = s; 1637 1638 /* 1639 * If the root node is a return, then there is no 1640 * point executing any statements (since the bpf machine 1641 * has no side effects). 1642 */ 1643 if (BPF_CLASS((*b)->s.code) == BPF_RET) 1644 (*b)->stmts = 0; 1645 } 1646 1647 static void 1648 opt_loop(struct block *root, int do_stmts) 1649 { 1650 1651 #ifdef BDEBUG 1652 if (dflag > 1) { 1653 printf("opt_loop(root, %d) begin\n", do_stmts); 1654 opt_dump(root); 1655 } 1656 #endif 1657 do { 1658 done = 1; 1659 find_levels(root); 1660 find_dom(root); 1661 find_closure(root); 1662 find_ud(root); 1663 find_edom(root); 1664 opt_blks(root, do_stmts); 1665 #ifdef BDEBUG 1666 if (dflag > 1) { 1667 printf("opt_loop(root, %d) bottom, done=%d\n", do_stmts, done); 1668 opt_dump(root); 1669 } 1670 #endif 1671 } while (!done); 1672 } 1673 1674 /* 1675 * Optimize the filter code in its dag representation. 1676 */ 1677 void 1678 bpf_optimize(struct block **rootp) 1679 { 1680 struct block *root; 1681 1682 root = *rootp; 1683 1684 opt_init(root); 1685 opt_loop(root, 0); 1686 opt_loop(root, 1); 1687 intern_blocks(root); 1688 #ifdef BDEBUG 1689 if (dflag > 1) { 1690 printf("after intern_blocks()\n"); 1691 opt_dump(root); 1692 } 1693 #endif 1694 opt_root(rootp); 1695 #ifdef BDEBUG 1696 if (dflag > 1) { 1697 printf("after opt_root()\n"); 1698 opt_dump(root); 1699 } 1700 #endif 1701 opt_cleanup(); 1702 } 1703 1704 static void 1705 make_marks(struct block *p) 1706 { 1707 if (!isMarked(p)) { 1708 Mark(p); 1709 if (BPF_CLASS(p->s.code) != BPF_RET) { 1710 make_marks(JT(p)); 1711 make_marks(JF(p)); 1712 } 1713 } 1714 } 1715 1716 /* 1717 * Mark code array such that isMarked(i) is true 1718 * only for nodes that are alive. 1719 */ 1720 static void 1721 mark_code(struct block *p) 1722 { 1723 cur_mark += 1; 1724 make_marks(p); 1725 } 1726 1727 /* 1728 * True iff the two stmt lists load the same value from the packet into 1729 * the accumulator. 1730 */ 1731 static int 1732 eq_slist(struct slist *x, struct slist *y) 1733 { 1734 while (1) { 1735 while (x && x->s.code == NOP) 1736 x = x->next; 1737 while (y && y->s.code == NOP) 1738 y = y->next; 1739 if (x == 0) 1740 return y == 0; 1741 if (y == 0) 1742 return x == 0; 1743 if (x->s.code != y->s.code || x->s.k != y->s.k) 1744 return 0; 1745 x = x->next; 1746 y = y->next; 1747 } 1748 } 1749 1750 static inline int 1751 eq_blk(struct block *b0, struct block *b1) 1752 { 1753 if (b0->s.code == b1->s.code && 1754 b0->s.k == b1->s.k && 1755 b0->et.succ == b1->et.succ && 1756 b0->ef.succ == b1->ef.succ) 1757 return eq_slist(b0->stmts, b1->stmts); 1758 return 0; 1759 } 1760 1761 static void 1762 intern_blocks(struct block *root) 1763 { 1764 struct block *p; 1765 int i, j; 1766 int done1; /* don't shadow global */ 1767 top: 1768 done1 = 1; 1769 for (i = 0; i < n_blocks; ++i) 1770 blocks[i]->link = 0; 1771 1772 mark_code(root); 1773 1774 for (i = n_blocks - 1; --i >= 0; ) { 1775 if (!isMarked(blocks[i])) 1776 continue; 1777 for (j = i + 1; j < n_blocks; ++j) { 1778 if (!isMarked(blocks[j])) 1779 continue; 1780 if (eq_blk(blocks[i], blocks[j])) { 1781 blocks[i]->link = blocks[j]->link ? 1782 blocks[j]->link : blocks[j]; 1783 break; 1784 } 1785 } 1786 } 1787 for (i = 0; i < n_blocks; ++i) { 1788 p = blocks[i]; 1789 if (JT(p) == 0) 1790 continue; 1791 if (JT(p)->link) { 1792 done1 = 0; 1793 JT(p) = JT(p)->link; 1794 } 1795 if (JF(p)->link) { 1796 done1 = 0; 1797 JF(p) = JF(p)->link; 1798 } 1799 } 1800 if (!done1) 1801 goto top; 1802 } 1803 1804 static void 1805 opt_cleanup(void) 1806 { 1807 free((void *)vnode_base); 1808 free((void *)vmap); 1809 free((void *)edges); 1810 free((void *)space); 1811 free((void *)levels); 1812 free((void *)blocks); 1813 } 1814 1815 /* 1816 * Return the number of stmts in 's'. 1817 */ 1818 static u_int 1819 slength(struct slist *s) 1820 { 1821 u_int n = 0; 1822 1823 for (; s; s = s->next) 1824 if (s->s.code != NOP) 1825 ++n; 1826 return n; 1827 } 1828 1829 /* 1830 * Return the number of nodes reachable by 'p'. 1831 * All nodes should be initially unmarked. 1832 */ 1833 static int 1834 count_blocks(struct block *p) 1835 { 1836 if (p == 0 || isMarked(p)) 1837 return 0; 1838 Mark(p); 1839 return count_blocks(JT(p)) + count_blocks(JF(p)) + 1; 1840 } 1841 1842 /* 1843 * Do a depth first search on the flow graph, numbering the 1844 * the basic blocks, and entering them into the 'blocks' array.` 1845 */ 1846 static void 1847 number_blks_r(struct block *p) 1848 { 1849 int n; 1850 1851 if (p == 0 || isMarked(p)) 1852 return; 1853 1854 Mark(p); 1855 n = n_blocks++; 1856 p->id = n; 1857 blocks[n] = p; 1858 1859 number_blks_r(JT(p)); 1860 number_blks_r(JF(p)); 1861 } 1862 1863 /* 1864 * Return the number of stmts in the flowgraph reachable by 'p'. 1865 * The nodes should be unmarked before calling. 1866 * 1867 * Note that "stmts" means "instructions", and that this includes 1868 * 1869 * side-effect statements in 'p' (slength(p->stmts)); 1870 * 1871 * statements in the true branch from 'p' (count_stmts(JT(p))); 1872 * 1873 * statements in the false branch from 'p' (count_stmts(JF(p))); 1874 * 1875 * the conditional jump itself (1); 1876 * 1877 * an extra long jump if the true branch requires it (p->longjt); 1878 * 1879 * an extra long jump if the false branch requires it (p->longjf). 1880 */ 1881 static u_int 1882 count_stmts(struct block *p) 1883 { 1884 u_int n; 1885 1886 if (p == 0 || isMarked(p)) 1887 return 0; 1888 Mark(p); 1889 n = count_stmts(JT(p)) + count_stmts(JF(p)); 1890 return slength(p->stmts) + n + 1 + p->longjt + p->longjf; 1891 } 1892 1893 /* 1894 * Allocate memory. All allocation is done before optimization 1895 * is begun. A linear bound on the size of all data structures is computed 1896 * from the total number of blocks and/or statements. 1897 */ 1898 static void 1899 opt_init(struct block *root) 1900 { 1901 bpf_u_int32 *p; 1902 int i, n, max_stmts; 1903 1904 /* 1905 * First, count the blocks, so we can malloc an array to map 1906 * block number to block. Then, put the blocks into the array. 1907 */ 1908 unMarkAll(); 1909 n = count_blocks(root); 1910 blocks = (struct block **)calloc(n, sizeof(*blocks)); 1911 if (blocks == NULL) 1912 bpf_error("malloc"); 1913 unMarkAll(); 1914 n_blocks = 0; 1915 number_blks_r(root); 1916 1917 n_edges = 2 * n_blocks; 1918 edges = (struct edge **)calloc(n_edges, sizeof(*edges)); 1919 if (edges == NULL) 1920 bpf_error("malloc"); 1921 1922 /* 1923 * The number of levels is bounded by the number of nodes. 1924 */ 1925 levels = (struct block **)calloc(n_blocks, sizeof(*levels)); 1926 if (levels == NULL) 1927 bpf_error("malloc"); 1928 1929 edgewords = n_edges / (8 * sizeof(bpf_u_int32)) + 1; 1930 nodewords = n_blocks / (8 * sizeof(bpf_u_int32)) + 1; 1931 1932 /* XXX */ 1933 space = (bpf_u_int32 *)malloc(2 * n_blocks * nodewords * sizeof(*space) 1934 + n_edges * edgewords * sizeof(*space)); 1935 if (space == NULL) 1936 bpf_error("malloc"); 1937 p = space; 1938 all_dom_sets = p; 1939 for (i = 0; i < n; ++i) { 1940 blocks[i]->dom = p; 1941 p += nodewords; 1942 } 1943 all_closure_sets = p; 1944 for (i = 0; i < n; ++i) { 1945 blocks[i]->closure = p; 1946 p += nodewords; 1947 } 1948 all_edge_sets = p; 1949 for (i = 0; i < n; ++i) { 1950 register struct block *b = blocks[i]; 1951 1952 b->et.edom = p; 1953 p += edgewords; 1954 b->ef.edom = p; 1955 p += edgewords; 1956 b->et.id = i; 1957 edges[i] = &b->et; 1958 b->ef.id = n_blocks + i; 1959 edges[n_blocks + i] = &b->ef; 1960 b->et.pred = b; 1961 b->ef.pred = b; 1962 } 1963 max_stmts = 0; 1964 for (i = 0; i < n; ++i) 1965 max_stmts += slength(blocks[i]->stmts) + 1; 1966 /* 1967 * We allocate at most 3 value numbers per statement, 1968 * so this is an upper bound on the number of valnodes 1969 * we'll need. 1970 */ 1971 maxval = 3 * max_stmts; 1972 vmap = (struct vmapinfo *)calloc(maxval, sizeof(*vmap)); 1973 vnode_base = (struct valnode *)calloc(maxval, sizeof(*vnode_base)); 1974 if (vmap == NULL || vnode_base == NULL) 1975 bpf_error("malloc"); 1976 } 1977 1978 /* 1979 * Some pointers used to convert the basic block form of the code, 1980 * into the array form that BPF requires. 'fstart' will point to 1981 * the malloc'd array while 'ftail' is used during the recursive traversal. 1982 */ 1983 static struct bpf_insn *fstart; 1984 static struct bpf_insn *ftail; 1985 1986 #ifdef BDEBUG 1987 int bids[1000]; 1988 #endif 1989 1990 /* 1991 * Returns true if successful. Returns false if a branch has 1992 * an offset that is too large. If so, we have marked that 1993 * branch so that on a subsequent iteration, it will be treated 1994 * properly. 1995 */ 1996 static int 1997 convert_code_r(struct block *p) 1998 { 1999 struct bpf_insn *dst; 2000 struct slist *src; 2001 u_int slen; 2002 u_int off; 2003 int extrajmps; /* number of extra jumps inserted */ 2004 struct slist **offset = NULL; 2005 2006 if (p == 0 || isMarked(p)) 2007 return (1); 2008 Mark(p); 2009 2010 if (convert_code_r(JF(p)) == 0) 2011 return (0); 2012 if (convert_code_r(JT(p)) == 0) 2013 return (0); 2014 2015 slen = slength(p->stmts); 2016 dst = ftail -= (slen + 1 + p->longjt + p->longjf); 2017 /* inflate length by any extra jumps */ 2018 2019 p->offset = dst - fstart; 2020 2021 /* generate offset[] for convenience */ 2022 if (slen) { 2023 offset = (struct slist **)calloc(slen, sizeof(struct slist *)); 2024 if (!offset) { 2025 bpf_error("not enough core"); 2026 /*NOTREACHED*/ 2027 } 2028 } 2029 src = p->stmts; 2030 for (off = 0; off < slen && src; off++) { 2031 #if 0 2032 printf("off=%d src=%x\n", off, src); 2033 #endif 2034 offset[off] = src; 2035 src = src->next; 2036 } 2037 2038 off = 0; 2039 for (src = p->stmts; src; src = src->next) { 2040 if (src->s.code == NOP) 2041 continue; 2042 dst->code = (u_short)src->s.code; 2043 dst->k = src->s.k; 2044 2045 /* fill block-local relative jump */ 2046 if (BPF_CLASS(src->s.code) != BPF_JMP || src->s.code == (BPF_JMP|BPF_JA)) { 2047 #if 0 2048 if (src->s.jt || src->s.jf) { 2049 bpf_error("illegal jmp destination"); 2050 /*NOTREACHED*/ 2051 } 2052 #endif 2053 goto filled; 2054 } 2055 if (off == slen - 2) /*???*/ 2056 goto filled; 2057 2058 { 2059 u_int i; 2060 int jt, jf; 2061 static const char ljerr[] = "%s for block-local relative jump: off=%d"; 2062 2063 #if 0 2064 printf("code=%x off=%d %x %x\n", src->s.code, 2065 off, src->s.jt, src->s.jf); 2066 #endif 2067 2068 if (!src->s.jt || !src->s.jf) { 2069 bpf_error(ljerr, "no jmp destination", off); 2070 /*NOTREACHED*/ 2071 } 2072 2073 jt = jf = 0; 2074 for (i = 0; i < slen; i++) { 2075 if (offset[i] == src->s.jt) { 2076 if (jt) { 2077 bpf_error(ljerr, "multiple matches", off); 2078 /*NOTREACHED*/ 2079 } 2080 2081 dst->jt = i - off - 1; 2082 jt++; 2083 } 2084 if (offset[i] == src->s.jf) { 2085 if (jf) { 2086 bpf_error(ljerr, "multiple matches", off); 2087 /*NOTREACHED*/ 2088 } 2089 dst->jf = i - off - 1; 2090 jf++; 2091 } 2092 } 2093 if (!jt || !jf) { 2094 bpf_error(ljerr, "no destination found", off); 2095 /*NOTREACHED*/ 2096 } 2097 } 2098 filled: 2099 ++dst; 2100 ++off; 2101 } 2102 if (offset) 2103 free(offset); 2104 2105 #ifdef BDEBUG 2106 bids[dst - fstart] = p->id + 1; 2107 #endif 2108 dst->code = (u_short)p->s.code; 2109 dst->k = p->s.k; 2110 if (JT(p)) { 2111 extrajmps = 0; 2112 off = JT(p)->offset - (p->offset + slen) - 1; 2113 if (off >= 256) { 2114 /* offset too large for branch, must add a jump */ 2115 if (p->longjt == 0) { 2116 /* mark this instruction and retry */ 2117 p->longjt++; 2118 return(0); 2119 } 2120 /* branch if T to following jump */ 2121 dst->jt = extrajmps; 2122 extrajmps++; 2123 dst[extrajmps].code = BPF_JMP|BPF_JA; 2124 dst[extrajmps].k = off - extrajmps; 2125 } 2126 else 2127 dst->jt = off; 2128 off = JF(p)->offset - (p->offset + slen) - 1; 2129 if (off >= 256) { 2130 /* offset too large for branch, must add a jump */ 2131 if (p->longjf == 0) { 2132 /* mark this instruction and retry */ 2133 p->longjf++; 2134 return(0); 2135 } 2136 /* branch if F to following jump */ 2137 /* if two jumps are inserted, F goes to second one */ 2138 dst->jf = extrajmps; 2139 extrajmps++; 2140 dst[extrajmps].code = BPF_JMP|BPF_JA; 2141 dst[extrajmps].k = off - extrajmps; 2142 } 2143 else 2144 dst->jf = off; 2145 } 2146 return (1); 2147 } 2148 2149 2150 /* 2151 * Convert flowgraph intermediate representation to the 2152 * BPF array representation. Set *lenp to the number of instructions. 2153 * 2154 * This routine does *NOT* leak the memory pointed to by fp. It *must 2155 * not* do free(fp) before returning fp; doing so would make no sense, 2156 * as the BPF array pointed to by the return value of icode_to_fcode() 2157 * must be valid - it's being returned for use in a bpf_program structure. 2158 * 2159 * If it appears that icode_to_fcode() is leaking, the problem is that 2160 * the program using pcap_compile() is failing to free the memory in 2161 * the BPF program when it's done - the leak is in the program, not in 2162 * the routine that happens to be allocating the memory. (By analogy, if 2163 * a program calls fopen() without ever calling fclose() on the FILE *, 2164 * it will leak the FILE structure; the leak is not in fopen(), it's in 2165 * the program.) Change the program to use pcap_freecode() when it's 2166 * done with the filter program. See the pcap man page. 2167 */ 2168 struct bpf_insn * 2169 icode_to_fcode(struct block *root, u_int *lenp) 2170 { 2171 u_int n; 2172 struct bpf_insn *fp; 2173 2174 /* 2175 * Loop doing convert_code_r() until no branches remain 2176 * with too-large offsets. 2177 */ 2178 while (1) { 2179 unMarkAll(); 2180 n = *lenp = count_stmts(root); 2181 2182 fp = (struct bpf_insn *)malloc(sizeof(*fp) * n); 2183 if (fp == NULL) 2184 bpf_error("malloc"); 2185 memset((char *)fp, 0, sizeof(*fp) * n); 2186 fstart = fp; 2187 ftail = fp + n; 2188 2189 unMarkAll(); 2190 if (convert_code_r(root)) 2191 break; 2192 free(fp); 2193 } 2194 2195 return fp; 2196 } 2197 2198 /* 2199 * Make a copy of a BPF program and put it in the "fcode" member of 2200 * a "pcap_t". 2201 * 2202 * If we fail to allocate memory for the copy, fill in the "errbuf" 2203 * member of the "pcap_t" with an error message, and return -1; 2204 * otherwise, return 0. 2205 */ 2206 int 2207 install_bpf_program(pcap_t *p, struct bpf_program *fp) 2208 { 2209 size_t prog_size; 2210 2211 /* 2212 * Validate the program. 2213 */ 2214 if (!bpf_validate(fp->bf_insns, fp->bf_len)) { 2215 snprintf(p->errbuf, sizeof(p->errbuf), 2216 "BPF program is not valid"); 2217 return (-1); 2218 } 2219 2220 /* 2221 * Free up any already installed program. 2222 */ 2223 pcap_freecode(&p->fcode); 2224 2225 prog_size = sizeof(*fp->bf_insns) * fp->bf_len; 2226 p->fcode.bf_len = fp->bf_len; 2227 p->fcode.bf_insns = (struct bpf_insn *)malloc(prog_size); 2228 if (p->fcode.bf_insns == NULL) { 2229 snprintf(p->errbuf, sizeof(p->errbuf), 2230 "malloc: %s", pcap_strerror(errno)); 2231 return (-1); 2232 } 2233 memcpy(p->fcode.bf_insns, fp->bf_insns, prog_size); 2234 return (0); 2235 } 2236 2237 #ifdef BDEBUG 2238 static void 2239 opt_dump(struct block *root) 2240 { 2241 struct bpf_program f; 2242 2243 memset(bids, 0, sizeof bids); 2244 f.bf_insns = icode_to_fcode(root, &f.bf_len); 2245 bpf_dump(&f, 1); 2246 putchar('\n'); 2247 free((char *)f.bf_insns); 2248 } 2249 #endif 2250