xref: /netbsd-src/external/bsd/libpcap/dist/optimize.c (revision 6cf6fe02a981b55727c49c3d37b0d8191a98c0ee)
1 /*	$NetBSD: optimize.c,v 1.6 2013/12/31 17:08:23 christos Exp $	*/
2 
3 /*
4  * Copyright (c) 1988, 1989, 1990, 1991, 1993, 1994, 1995, 1996
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that: (1) source code distributions
9  * retain the above copyright notice and this paragraph in its entirety, (2)
10  * distributions including binary code include the above copyright notice and
11  * this paragraph in its entirety in the documentation or other materials
12  * provided with the distribution, and (3) all advertising materials mentioning
13  * features or use of this software display the following acknowledgement:
14  * ``This product includes software developed by the University of California,
15  * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
16  * the University nor the names of its contributors may be used to endorse
17  * or promote products derived from this software without specific prior
18  * written permission.
19  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
20  * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
21  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
22  *
23  *  Optimization module for tcpdump intermediate representation.
24  */
25 #ifndef lint
26 static const char rcsid[] _U_ =
27     "@(#) Header: /tcpdump/master/libpcap/optimize.c,v 1.91 2008-01-02 04:16:46 guy Exp  (LBL)";
28 #endif
29 
30 #ifdef HAVE_CONFIG_H
31 #include "config.h"
32 #endif
33 
34 #ifdef WIN32
35 #include <pcap-stdinc.h>
36 #else /* WIN32 */
37 #if HAVE_INTTYPES_H
38 #include <inttypes.h>
39 #elif HAVE_STDINT_H
40 #include <stdint.h>
41 #endif
42 #ifdef HAVE_SYS_BITYPES_H
43 #include <sys/bitypes.h>
44 #endif
45 #include <sys/types.h>
46 #endif /* WIN32 */
47 
48 #include <stdio.h>
49 #include <stdlib.h>
50 #include <memory.h>
51 #include <string.h>
52 
53 #include <errno.h>
54 
55 #include "pcap-int.h"
56 
57 #include "gencode.h"
58 
59 #ifdef HAVE_OS_PROTO_H
60 #include "os-proto.h"
61 #endif
62 
63 #ifdef BDEBUG
64 extern int dflag;
65 #endif
66 
67 #if defined(MSDOS) && !defined(__DJGPP__)
68 extern int _w32_ffs (int mask);
69 #define ffs _w32_ffs
70 #endif
71 
72 #if defined(WIN32) && defined (_MSC_VER)
73 int ffs(int mask);
74 #endif
75 
76 /*
77  * Represents a deleted instruction.
78  */
79 #define NOP -1
80 
81 /*
82  * Register numbers for use-def values.
83  * 0 through BPF_MEMWORDS-1 represent the corresponding scratch memory
84  * location.  A_ATOM is the accumulator and X_ATOM is the index
85  * register.
86  */
87 #define A_ATOM BPF_MEMWORDS
88 #define X_ATOM (BPF_MEMWORDS+1)
89 
90 /*
91  * This define is used to represent *both* the accumulator and
92  * x register in use-def computations.
93  * Currently, the use-def code assumes only one definition per instruction.
94  */
95 #define AX_ATOM N_ATOMS
96 
97 /*
98  * A flag to indicate that further optimization is needed.
99  * Iterative passes are continued until a given pass yields no
100  * branch movement.
101  */
102 static int done;
103 
104 /*
105  * A block is marked if only if its mark equals the current mark.
106  * Rather than traverse the code array, marking each item, 'cur_mark' is
107  * incremented.  This automatically makes each element unmarked.
108  */
109 static int cur_mark;
110 #define isMarked(p) ((p)->mark == cur_mark)
111 #define unMarkAll() cur_mark += 1
112 #define Mark(p) ((p)->mark = cur_mark)
113 
114 static void opt_init(struct block *);
115 static void opt_cleanup(void);
116 
117 static void intern_blocks(struct block *);
118 
119 static void find_inedges(struct block *);
120 #ifdef BDEBUG
121 static void opt_dump(struct block *);
122 #endif
123 
124 static int n_blocks;
125 struct block **blocks;
126 static int n_edges;
127 struct edge **edges;
128 
129 /*
130  * A bit vector set representation of the dominators.
131  * We round up the set size to the next power of two.
132  */
133 static int nodewords;
134 static int edgewords;
135 struct block **levels;
136 bpf_u_int32 *space;
137 #define BITS_PER_WORD (8*sizeof(bpf_u_int32))
138 /*
139  * True if a is in uset {p}
140  */
141 #define SET_MEMBER(p, a) \
142 ((p)[(unsigned)(a) / BITS_PER_WORD] & (1 << ((unsigned)(a) % BITS_PER_WORD)))
143 
144 /*
145  * Add 'a' to uset p.
146  */
147 #define SET_INSERT(p, a) \
148 (p)[(unsigned)(a) / BITS_PER_WORD] |= (1 << ((unsigned)(a) % BITS_PER_WORD))
149 
150 /*
151  * Delete 'a' from uset p.
152  */
153 #define SET_DELETE(p, a) \
154 (p)[(unsigned)(a) / BITS_PER_WORD] &= ~(1 << ((unsigned)(a) % BITS_PER_WORD))
155 
156 /*
157  * a := a intersect b
158  */
159 #define SET_INTERSECT(a, b, n)\
160 {\
161 	register bpf_u_int32 *_x = a, *_y = b;\
162 	register int _n = n;\
163 	while (--_n >= 0) *_x++ &= *_y++;\
164 }
165 
166 /*
167  * a := a - b
168  */
169 #define SET_SUBTRACT(a, b, n)\
170 {\
171 	register bpf_u_int32 *_x = a, *_y = b;\
172 	register int _n = n;\
173 	while (--_n >= 0) *_x++ &=~ *_y++;\
174 }
175 
176 /*
177  * a := a union b
178  */
179 #define SET_UNION(a, b, n)\
180 {\
181 	register bpf_u_int32 *_x = a, *_y = b;\
182 	register int _n = n;\
183 	while (--_n >= 0) *_x++ |= *_y++;\
184 }
185 
186 static uset all_dom_sets;
187 static uset all_closure_sets;
188 static uset all_edge_sets;
189 
190 #ifndef MAX
191 #define MAX(a,b) ((a)>(b)?(a):(b))
192 #endif
193 
194 static void
195 find_levels_r(struct block *b)
196 {
197 	int level;
198 
199 	if (isMarked(b))
200 		return;
201 
202 	Mark(b);
203 	b->link = 0;
204 
205 	if (JT(b)) {
206 		find_levels_r(JT(b));
207 		find_levels_r(JF(b));
208 		level = MAX(JT(b)->level, JF(b)->level) + 1;
209 	} else
210 		level = 0;
211 	b->level = level;
212 	b->link = levels[level];
213 	levels[level] = b;
214 }
215 
216 /*
217  * Level graph.  The levels go from 0 at the leaves to
218  * N_LEVELS at the root.  The levels[] array points to the
219  * first node of the level list, whose elements are linked
220  * with the 'link' field of the struct block.
221  */
222 static void
223 find_levels(struct block *root)
224 {
225 	memset((char *)levels, 0, n_blocks * sizeof(*levels));
226 	unMarkAll();
227 	find_levels_r(root);
228 }
229 
230 /*
231  * Find dominator relationships.
232  * Assumes graph has been leveled.
233  */
234 static void
235 find_dom(struct block *root)
236 {
237 	int i;
238 	struct block *b;
239 	bpf_u_int32 *x;
240 
241 	/*
242 	 * Initialize sets to contain all nodes.
243 	 */
244 	x = all_dom_sets;
245 	i = n_blocks * nodewords;
246 	while (--i >= 0)
247 		*x++ = ~0;
248 	/* Root starts off empty. */
249 	for (i = nodewords; --i >= 0;)
250 		root->dom[i] = 0;
251 
252 	/* root->level is the highest level no found. */
253 	for (i = root->level; i >= 0; --i) {
254 		for (b = levels[i]; b; b = b->link) {
255 			SET_INSERT(b->dom, b->id);
256 			if (JT(b) == 0)
257 				continue;
258 			SET_INTERSECT(JT(b)->dom, b->dom, nodewords);
259 			SET_INTERSECT(JF(b)->dom, b->dom, nodewords);
260 		}
261 	}
262 }
263 
264 static void
265 propedom(struct edge *ep)
266 {
267 	SET_INSERT(ep->edom, ep->id);
268 	if (ep->succ) {
269 		SET_INTERSECT(ep->succ->et.edom, ep->edom, edgewords);
270 		SET_INTERSECT(ep->succ->ef.edom, ep->edom, edgewords);
271 	}
272 }
273 
274 /*
275  * Compute edge dominators.
276  * Assumes graph has been leveled and predecessors established.
277  */
278 static void
279 find_edom(struct block *root)
280 {
281 	int i;
282 	uset x;
283 	struct block *b;
284 
285 	x = all_edge_sets;
286 	for (i = n_edges * edgewords; --i >= 0; )
287 		x[i] = ~0;
288 
289 	/* root->level is the highest level no found. */
290 	memset(root->et.edom, 0, edgewords * sizeof(*(uset)0));
291 	memset(root->ef.edom, 0, edgewords * sizeof(*(uset)0));
292 	for (i = root->level; i >= 0; --i) {
293 		for (b = levels[i]; b != 0; b = b->link) {
294 			propedom(&b->et);
295 			propedom(&b->ef);
296 		}
297 	}
298 }
299 
300 /*
301  * Find the backwards transitive closure of the flow graph.  These sets
302  * are backwards in the sense that we find the set of nodes that reach
303  * a given node, not the set of nodes that can be reached by a node.
304  *
305  * Assumes graph has been leveled.
306  */
307 static void
308 find_closure(struct block *root)
309 {
310 	int i;
311 	struct block *b;
312 
313 	/*
314 	 * Initialize sets to contain no nodes.
315 	 */
316 	memset((char *)all_closure_sets, 0,
317 	      n_blocks * nodewords * sizeof(*all_closure_sets));
318 
319 	/* root->level is the highest level no found. */
320 	for (i = root->level; i >= 0; --i) {
321 		for (b = levels[i]; b; b = b->link) {
322 			SET_INSERT(b->closure, b->id);
323 			if (JT(b) == 0)
324 				continue;
325 			SET_UNION(JT(b)->closure, b->closure, nodewords);
326 			SET_UNION(JF(b)->closure, b->closure, nodewords);
327 		}
328 	}
329 }
330 
331 /*
332  * Return the register number that is used by s.  If A and X are both
333  * used, return AX_ATOM.  If no register is used, return -1.
334  *
335  * The implementation should probably change to an array access.
336  */
337 static int
338 atomuse(struct stmt *s)
339 {
340 	register int c = s->code;
341 
342 	if (c == NOP)
343 		return -1;
344 
345 	switch (BPF_CLASS(c)) {
346 
347 	case BPF_RET:
348 		return (BPF_RVAL(c) == BPF_A) ? A_ATOM :
349 			(BPF_RVAL(c) == BPF_X) ? X_ATOM : -1;
350 
351 	case BPF_LD:
352 	case BPF_LDX:
353 		return (BPF_MODE(c) == BPF_IND) ? X_ATOM :
354 			(BPF_MODE(c) == BPF_MEM) ? s->k : -1;
355 
356 	case BPF_ST:
357 		return A_ATOM;
358 
359 	case BPF_STX:
360 		return X_ATOM;
361 
362 	case BPF_JMP:
363 	case BPF_ALU:
364 		if (BPF_SRC(c) == BPF_X)
365 			return AX_ATOM;
366 		return A_ATOM;
367 
368 	case BPF_MISC:
369 		return BPF_MISCOP(c) == BPF_TXA ? X_ATOM : A_ATOM;
370 	}
371 	abort();
372 	/* NOTREACHED */
373 }
374 
375 /*
376  * Return the register number that is defined by 's'.  We assume that
377  * a single stmt cannot define more than one register.  If no register
378  * is defined, return -1.
379  *
380  * The implementation should probably change to an array access.
381  */
382 static int
383 atomdef(struct stmt *s)
384 {
385 	if (s->code == NOP)
386 		return -1;
387 
388 	switch (BPF_CLASS(s->code)) {
389 
390 	case BPF_LD:
391 	case BPF_ALU:
392 		return A_ATOM;
393 
394 	case BPF_LDX:
395 		return X_ATOM;
396 
397 	case BPF_ST:
398 	case BPF_STX:
399 		return s->k;
400 
401 	case BPF_MISC:
402 		return BPF_MISCOP(s->code) == BPF_TAX ? X_ATOM : A_ATOM;
403 	}
404 	return -1;
405 }
406 
407 /*
408  * Compute the sets of registers used, defined, and killed by 'b'.
409  *
410  * "Used" means that a statement in 'b' uses the register before any
411  * statement in 'b' defines it, i.e. it uses the value left in
412  * that register by a predecessor block of this block.
413  * "Defined" means that a statement in 'b' defines it.
414  * "Killed" means that a statement in 'b' defines it before any
415  * statement in 'b' uses it, i.e. it kills the value left in that
416  * register by a predecessor block of this block.
417  */
418 static void
419 compute_local_ud(struct block *b)
420 {
421 	struct slist *s;
422 	atomset def = 0, use = 0, kill = 0;
423 	int atom;
424 
425 	for (s = b->stmts; s; s = s->next) {
426 		if (s->s.code == NOP)
427 			continue;
428 		atom = atomuse(&s->s);
429 		if (atom >= 0) {
430 			if (atom == AX_ATOM) {
431 				if (!ATOMELEM(def, X_ATOM))
432 					use |= ATOMMASK(X_ATOM);
433 				if (!ATOMELEM(def, A_ATOM))
434 					use |= ATOMMASK(A_ATOM);
435 			}
436 			else if (atom < N_ATOMS) {
437 				if (!ATOMELEM(def, atom))
438 					use |= ATOMMASK(atom);
439 			}
440 			else
441 				abort();
442 		}
443 		atom = atomdef(&s->s);
444 		if (atom >= 0) {
445 			if (!ATOMELEM(use, atom))
446 				kill |= ATOMMASK(atom);
447 			def |= ATOMMASK(atom);
448 		}
449 	}
450 	if (BPF_CLASS(b->s.code) == BPF_JMP) {
451 		/*
452 		 * XXX - what about RET?
453 		 */
454 		atom = atomuse(&b->s);
455 		if (atom >= 0) {
456 			if (atom == AX_ATOM) {
457 				if (!ATOMELEM(def, X_ATOM))
458 					use |= ATOMMASK(X_ATOM);
459 				if (!ATOMELEM(def, A_ATOM))
460 					use |= ATOMMASK(A_ATOM);
461 			}
462 			else if (atom < N_ATOMS) {
463 				if (!ATOMELEM(def, atom))
464 					use |= ATOMMASK(atom);
465 			}
466 			else
467 				abort();
468 		}
469 	}
470 
471 	b->def = def;
472 	b->kill = kill;
473 	b->in_use = use;
474 }
475 
476 /*
477  * Assume graph is already leveled.
478  */
479 static void
480 find_ud(struct block *root)
481 {
482 	int i, maxlevel;
483 	struct block *p;
484 
485 	/*
486 	 * root->level is the highest level no found;
487 	 * count down from there.
488 	 */
489 	maxlevel = root->level;
490 	for (i = maxlevel; i >= 0; --i)
491 		for (p = levels[i]; p; p = p->link) {
492 			compute_local_ud(p);
493 			p->out_use = 0;
494 		}
495 
496 	for (i = 1; i <= maxlevel; ++i) {
497 		for (p = levels[i]; p; p = p->link) {
498 			p->out_use |= JT(p)->in_use | JF(p)->in_use;
499 			p->in_use |= p->out_use &~ p->kill;
500 		}
501 	}
502 }
503 
504 /*
505  * These data structures are used in a Cocke and Shwarz style
506  * value numbering scheme.  Since the flowgraph is acyclic,
507  * exit values can be propagated from a node's predecessors
508  * provided it is uniquely defined.
509  */
510 struct valnode {
511 	int code;
512 	int v0, v1;
513 	int val;
514 	struct valnode *next;
515 };
516 
517 #define MODULUS 213
518 static struct valnode *hashtbl[MODULUS];
519 static int curval;
520 static int maxval;
521 
522 /* Integer constants mapped with the load immediate opcode. */
523 #define K(i) F(BPF_LD|BPF_IMM|BPF_W, i, 0L)
524 
525 struct vmapinfo {
526 	int is_const;
527 	bpf_int32 const_val;
528 };
529 
530 struct vmapinfo *vmap;
531 struct valnode *vnode_base;
532 struct valnode *next_vnode;
533 
534 static void
535 init_val(void)
536 {
537 	curval = 0;
538 	next_vnode = vnode_base;
539 	memset((char *)vmap, 0, maxval * sizeof(*vmap));
540 	memset((char *)hashtbl, 0, sizeof hashtbl);
541 }
542 
543 /* Because we really don't have an IR, this stuff is a little messy. */
544 static int
545 F(int code, int v0, int v1)
546 {
547 	u_int hash;
548 	int val;
549 	struct valnode *p;
550 
551 	hash = (u_int)code ^ (v0 << 4) ^ (v1 << 8);
552 	hash %= MODULUS;
553 
554 	for (p = hashtbl[hash]; p; p = p->next)
555 		if (p->code == code && p->v0 == v0 && p->v1 == v1)
556 			return p->val;
557 
558 	val = ++curval;
559 	if (BPF_MODE(code) == BPF_IMM &&
560 	    (BPF_CLASS(code) == BPF_LD || BPF_CLASS(code) == BPF_LDX)) {
561 		vmap[val].const_val = v0;
562 		vmap[val].is_const = 1;
563 	}
564 	p = next_vnode++;
565 	p->val = val;
566 	p->code = code;
567 	p->v0 = v0;
568 	p->v1 = v1;
569 	p->next = hashtbl[hash];
570 	hashtbl[hash] = p;
571 
572 	return val;
573 }
574 
575 static inline void
576 vstore(struct stmt *s, int *valp, int newval, int alter)
577 {
578 	if (alter && *valp == newval)
579 		s->code = NOP;
580 	else
581 		*valp = newval;
582 }
583 
584 /*
585  * Do constant-folding on binary operators.
586  * (Unary operators are handled elsewhere.)
587  */
588 static void
589 fold_op(struct stmt *s, int v0, int v1)
590 {
591 	bpf_u_int32 a, b;
592 
593 	a = vmap[v0].const_val;
594 	b = vmap[v1].const_val;
595 
596 	switch (BPF_OP(s->code)) {
597 	case BPF_ADD:
598 		a += b;
599 		break;
600 
601 	case BPF_SUB:
602 		a -= b;
603 		break;
604 
605 	case BPF_MUL:
606 		a *= b;
607 		break;
608 
609 	case BPF_DIV:
610 		if (b == 0)
611 			bpf_error("division by zero");
612 		a /= b;
613 		break;
614 
615 	case BPF_AND:
616 		a &= b;
617 		break;
618 
619 	case BPF_OR:
620 		a |= b;
621 		break;
622 
623 	case BPF_LSH:
624 		a <<= b;
625 		break;
626 
627 	case BPF_RSH:
628 		a >>= b;
629 		break;
630 
631 	default:
632 		abort();
633 	}
634 	s->k = a;
635 	s->code = BPF_LD|BPF_IMM;
636 	done = 0;
637 }
638 
639 static inline struct slist *
640 this_op(struct slist *s)
641 {
642 	while (s != 0 && s->s.code == NOP)
643 		s = s->next;
644 	return s;
645 }
646 
647 static void
648 opt_not(struct block *b)
649 {
650 	struct block *tmp = JT(b);
651 
652 	JT(b) = JF(b);
653 	JF(b) = tmp;
654 }
655 
656 static void
657 opt_peep(struct block *b)
658 {
659 	struct slist *s;
660 	struct slist *next, *last;
661 	int val;
662 
663 	s = b->stmts;
664 	if (s == 0)
665 		return;
666 
667 	last = s;
668 	for (/*empty*/; /*empty*/; s = next) {
669 		/*
670 		 * Skip over nops.
671 		 */
672 		s = this_op(s);
673 		if (s == 0)
674 			break;	/* nothing left in the block */
675 
676 		/*
677 		 * Find the next real instruction after that one
678 		 * (skipping nops).
679 		 */
680 		next = this_op(s->next);
681 		if (next == 0)
682 			break;	/* no next instruction */
683 		last = next;
684 
685 		/*
686 		 * st  M[k]	-->	st  M[k]
687 		 * ldx M[k]		tax
688 		 */
689 		if (s->s.code == BPF_ST &&
690 		    next->s.code == (BPF_LDX|BPF_MEM) &&
691 		    s->s.k == next->s.k) {
692 			done = 0;
693 			next->s.code = BPF_MISC|BPF_TAX;
694 		}
695 		/*
696 		 * ld  #k	-->	ldx  #k
697 		 * tax			txa
698 		 */
699 		if (s->s.code == (BPF_LD|BPF_IMM) &&
700 		    next->s.code == (BPF_MISC|BPF_TAX)) {
701 			s->s.code = BPF_LDX|BPF_IMM;
702 			next->s.code = BPF_MISC|BPF_TXA;
703 			done = 0;
704 		}
705 		/*
706 		 * This is an ugly special case, but it happens
707 		 * when you say tcp[k] or udp[k] where k is a constant.
708 		 */
709 		if (s->s.code == (BPF_LD|BPF_IMM)) {
710 			struct slist *add, *tax, *ild;
711 
712 			/*
713 			 * Check that X isn't used on exit from this
714 			 * block (which the optimizer might cause).
715 			 * We know the code generator won't generate
716 			 * any local dependencies.
717 			 */
718 			if (ATOMELEM(b->out_use, X_ATOM))
719 				continue;
720 
721 			/*
722 			 * Check that the instruction following the ldi
723 			 * is an addx, or it's an ldxms with an addx
724 			 * following it (with 0 or more nops between the
725 			 * ldxms and addx).
726 			 */
727 			if (next->s.code != (BPF_LDX|BPF_MSH|BPF_B))
728 				add = next;
729 			else
730 				add = this_op(next->next);
731 			if (add == 0 || add->s.code != (BPF_ALU|BPF_ADD|BPF_X))
732 				continue;
733 
734 			/*
735 			 * Check that a tax follows that (with 0 or more
736 			 * nops between them).
737 			 */
738 			tax = this_op(add->next);
739 			if (tax == 0 || tax->s.code != (BPF_MISC|BPF_TAX))
740 				continue;
741 
742 			/*
743 			 * Check that an ild follows that (with 0 or more
744 			 * nops between them).
745 			 */
746 			ild = this_op(tax->next);
747 			if (ild == 0 || BPF_CLASS(ild->s.code) != BPF_LD ||
748 			    BPF_MODE(ild->s.code) != BPF_IND)
749 				continue;
750 			/*
751 			 * We want to turn this sequence:
752 			 *
753 			 * (004) ldi     #0x2		{s}
754 			 * (005) ldxms   [14]		{next}  -- optional
755 			 * (006) addx			{add}
756 			 * (007) tax			{tax}
757 			 * (008) ild     [x+0]		{ild}
758 			 *
759 			 * into this sequence:
760 			 *
761 			 * (004) nop
762 			 * (005) ldxms   [14]
763 			 * (006) nop
764 			 * (007) nop
765 			 * (008) ild     [x+2]
766 			 *
767 			 * XXX We need to check that X is not
768 			 * subsequently used, because we want to change
769 			 * what'll be in it after this sequence.
770 			 *
771 			 * We know we can eliminate the accumulator
772 			 * modifications earlier in the sequence since
773 			 * it is defined by the last stmt of this sequence
774 			 * (i.e., the last statement of the sequence loads
775 			 * a value into the accumulator, so we can eliminate
776 			 * earlier operations on the accumulator).
777 			 */
778 			ild->s.k += s->s.k;
779 			s->s.code = NOP;
780 			add->s.code = NOP;
781 			tax->s.code = NOP;
782 			done = 0;
783 		}
784 	}
785 	/*
786 	 * If the comparison at the end of a block is an equality
787 	 * comparison against a constant, and nobody uses the value
788 	 * we leave in the A register at the end of a block, and
789 	 * the operation preceding the comparison is an arithmetic
790 	 * operation, we can sometime optimize it away.
791 	 */
792 	if (b->s.code == (BPF_JMP|BPF_JEQ|BPF_K) &&
793 	    !ATOMELEM(b->out_use, A_ATOM)) {
794 	    	/*
795 	    	 * We can optimize away certain subtractions of the
796 	    	 * X register.
797 	    	 */
798 		if (last->s.code == (BPF_ALU|BPF_SUB|BPF_X)) {
799 			val = b->val[X_ATOM];
800 			if (vmap[val].is_const) {
801 				/*
802 				 * If we have a subtract to do a comparison,
803 				 * and the X register is a known constant,
804 				 * we can merge this value into the
805 				 * comparison:
806 				 *
807 				 * sub x  ->	nop
808 				 * jeq #y	jeq #(x+y)
809 				 */
810 				b->s.k += vmap[val].const_val;
811 				last->s.code = NOP;
812 				done = 0;
813 			} else if (b->s.k == 0) {
814 				/*
815 				 * If the X register isn't a constant,
816 				 * and the comparison in the test is
817 				 * against 0, we can compare with the
818 				 * X register, instead:
819 				 *
820 				 * sub x  ->	nop
821 				 * jeq #0	jeq x
822 				 */
823 				last->s.code = NOP;
824 				b->s.code = BPF_JMP|BPF_JEQ|BPF_X;
825 				done = 0;
826 			}
827 		}
828 		/*
829 		 * Likewise, a constant subtract can be simplified:
830 		 *
831 		 * sub #x ->	nop
832 		 * jeq #y ->	jeq #(x+y)
833 		 */
834 		else if (last->s.code == (BPF_ALU|BPF_SUB|BPF_K)) {
835 			last->s.code = NOP;
836 			b->s.k += last->s.k;
837 			done = 0;
838 		}
839 		/*
840 		 * And, similarly, a constant AND can be simplified
841 		 * if we're testing against 0, i.e.:
842 		 *
843 		 * and #k	nop
844 		 * jeq #0  ->	jset #k
845 		 */
846 		else if (last->s.code == (BPF_ALU|BPF_AND|BPF_K) &&
847 		    b->s.k == 0) {
848 			b->s.k = last->s.k;
849 			b->s.code = BPF_JMP|BPF_K|BPF_JSET;
850 			last->s.code = NOP;
851 			done = 0;
852 			opt_not(b);
853 		}
854 	}
855 	/*
856 	 * jset #0        ->   never
857 	 * jset #ffffffff ->   always
858 	 */
859 	if (b->s.code == (BPF_JMP|BPF_K|BPF_JSET)) {
860 		if (b->s.k == 0)
861 			JT(b) = JF(b);
862 		if (b->s.k == (int)0xffffffff)
863 			JF(b) = JT(b);
864 	}
865 	/*
866 	 * If we're comparing against the index register, and the index
867 	 * register is a known constant, we can just compare against that
868 	 * constant.
869 	 */
870 	val = b->val[X_ATOM];
871 	if (vmap[val].is_const && BPF_SRC(b->s.code) == BPF_X) {
872 		bpf_int32 v = vmap[val].const_val;
873 		b->s.code &= ~BPF_X;
874 		b->s.k = v;
875 	}
876 	/*
877 	 * If the accumulator is a known constant, we can compute the
878 	 * comparison result.
879 	 */
880 	val = b->val[A_ATOM];
881 	if (vmap[val].is_const && BPF_SRC(b->s.code) == BPF_K) {
882 		bpf_int32 v = vmap[val].const_val;
883 		switch (BPF_OP(b->s.code)) {
884 
885 		case BPF_JEQ:
886 			v = v == b->s.k;
887 			break;
888 
889 		case BPF_JGT:
890 			v = (unsigned)v > (unsigned)b->s.k;
891 			break;
892 
893 		case BPF_JGE:
894 			v = (unsigned)v >= (unsigned)b->s.k;
895 			break;
896 
897 		case BPF_JSET:
898 			v &= b->s.k;
899 			break;
900 
901 		default:
902 			abort();
903 		}
904 		if (JF(b) != JT(b))
905 			done = 0;
906 		if (v)
907 			JF(b) = JT(b);
908 		else
909 			JT(b) = JF(b);
910 	}
911 }
912 
913 /*
914  * Compute the symbolic value of expression of 's', and update
915  * anything it defines in the value table 'val'.  If 'alter' is true,
916  * do various optimizations.  This code would be cleaner if symbolic
917  * evaluation and code transformations weren't folded together.
918  */
919 static void
920 opt_stmt(struct stmt *s, int val[], int alter)
921 {
922 	int op;
923 	int v;
924 
925 	switch (s->code) {
926 
927 	case BPF_LD|BPF_ABS|BPF_W:
928 	case BPF_LD|BPF_ABS|BPF_H:
929 	case BPF_LD|BPF_ABS|BPF_B:
930 		v = F(s->code, s->k, 0L);
931 		vstore(s, &val[A_ATOM], v, alter);
932 		break;
933 
934 	case BPF_LD|BPF_IND|BPF_W:
935 	case BPF_LD|BPF_IND|BPF_H:
936 	case BPF_LD|BPF_IND|BPF_B:
937 		v = val[X_ATOM];
938 		if (alter && vmap[v].is_const) {
939 			s->code = BPF_LD|BPF_ABS|BPF_SIZE(s->code);
940 			s->k += vmap[v].const_val;
941 			v = F(s->code, s->k, 0L);
942 			done = 0;
943 		}
944 		else
945 			v = F(s->code, s->k, v);
946 		vstore(s, &val[A_ATOM], v, alter);
947 		break;
948 
949 	case BPF_LD|BPF_LEN:
950 		v = F(s->code, 0L, 0L);
951 		vstore(s, &val[A_ATOM], v, alter);
952 		break;
953 
954 	case BPF_LD|BPF_IMM:
955 		v = K(s->k);
956 		vstore(s, &val[A_ATOM], v, alter);
957 		break;
958 
959 	case BPF_LDX|BPF_IMM:
960 		v = K(s->k);
961 		vstore(s, &val[X_ATOM], v, alter);
962 		break;
963 
964 	case BPF_LDX|BPF_MSH|BPF_B:
965 		v = F(s->code, s->k, 0L);
966 		vstore(s, &val[X_ATOM], v, alter);
967 		break;
968 
969 	case BPF_ALU|BPF_NEG:
970 		if (alter && vmap[val[A_ATOM]].is_const) {
971 			s->code = BPF_LD|BPF_IMM;
972 			s->k = -vmap[val[A_ATOM]].const_val;
973 			val[A_ATOM] = K(s->k);
974 		}
975 		else
976 			val[A_ATOM] = F(s->code, val[A_ATOM], 0L);
977 		break;
978 
979 	case BPF_ALU|BPF_ADD|BPF_K:
980 	case BPF_ALU|BPF_SUB|BPF_K:
981 	case BPF_ALU|BPF_MUL|BPF_K:
982 	case BPF_ALU|BPF_DIV|BPF_K:
983 	case BPF_ALU|BPF_AND|BPF_K:
984 	case BPF_ALU|BPF_OR|BPF_K:
985 	case BPF_ALU|BPF_LSH|BPF_K:
986 	case BPF_ALU|BPF_RSH|BPF_K:
987 		op = BPF_OP(s->code);
988 		if (alter) {
989 			if (s->k == 0) {
990 				/* don't optimize away "sub #0"
991 				 * as it may be needed later to
992 				 * fixup the generated math code */
993 				if (op == BPF_ADD ||
994 				    op == BPF_LSH || op == BPF_RSH ||
995 				    op == BPF_OR) {
996 					s->code = NOP;
997 					break;
998 				}
999 				if (op == BPF_MUL || op == BPF_AND) {
1000 					s->code = BPF_LD|BPF_IMM;
1001 					val[A_ATOM] = K(s->k);
1002 					break;
1003 				}
1004 			}
1005 			if (vmap[val[A_ATOM]].is_const) {
1006 				fold_op(s, val[A_ATOM], K(s->k));
1007 				val[A_ATOM] = K(s->k);
1008 				break;
1009 			}
1010 		}
1011 		val[A_ATOM] = F(s->code, val[A_ATOM], K(s->k));
1012 		break;
1013 
1014 	case BPF_ALU|BPF_ADD|BPF_X:
1015 	case BPF_ALU|BPF_SUB|BPF_X:
1016 	case BPF_ALU|BPF_MUL|BPF_X:
1017 	case BPF_ALU|BPF_DIV|BPF_X:
1018 	case BPF_ALU|BPF_AND|BPF_X:
1019 	case BPF_ALU|BPF_OR|BPF_X:
1020 	case BPF_ALU|BPF_LSH|BPF_X:
1021 	case BPF_ALU|BPF_RSH|BPF_X:
1022 		op = BPF_OP(s->code);
1023 		if (alter && vmap[val[X_ATOM]].is_const) {
1024 			if (vmap[val[A_ATOM]].is_const) {
1025 				fold_op(s, val[A_ATOM], val[X_ATOM]);
1026 				val[A_ATOM] = K(s->k);
1027 			}
1028 			else {
1029 				s->code = BPF_ALU|BPF_K|op;
1030 				s->k = vmap[val[X_ATOM]].const_val;
1031 				done = 0;
1032 				val[A_ATOM] =
1033 					F(s->code, val[A_ATOM], K(s->k));
1034 			}
1035 			break;
1036 		}
1037 		/*
1038 		 * Check if we're doing something to an accumulator
1039 		 * that is 0, and simplify.  This may not seem like
1040 		 * much of a simplification but it could open up further
1041 		 * optimizations.
1042 		 * XXX We could also check for mul by 1, etc.
1043 		 */
1044 		if (alter && vmap[val[A_ATOM]].is_const
1045 		    && vmap[val[A_ATOM]].const_val == 0) {
1046 			if (op == BPF_ADD || op == BPF_OR) {
1047 				s->code = BPF_MISC|BPF_TXA;
1048 				vstore(s, &val[A_ATOM], val[X_ATOM], alter);
1049 				break;
1050 			}
1051 			else if (op == BPF_MUL || op == BPF_DIV ||
1052 				 op == BPF_AND || op == BPF_LSH || op == BPF_RSH) {
1053 				s->code = BPF_LD|BPF_IMM;
1054 				s->k = 0;
1055 				vstore(s, &val[A_ATOM], K(s->k), alter);
1056 				break;
1057 			}
1058 			else if (op == BPF_NEG) {
1059 				s->code = NOP;
1060 				break;
1061 			}
1062 		}
1063 		val[A_ATOM] = F(s->code, val[A_ATOM], val[X_ATOM]);
1064 		break;
1065 
1066 	case BPF_MISC|BPF_TXA:
1067 		vstore(s, &val[A_ATOM], val[X_ATOM], alter);
1068 		break;
1069 
1070 	case BPF_LD|BPF_MEM:
1071 		v = val[s->k];
1072 		if (alter && vmap[v].is_const) {
1073 			s->code = BPF_LD|BPF_IMM;
1074 			s->k = vmap[v].const_val;
1075 			done = 0;
1076 		}
1077 		vstore(s, &val[A_ATOM], v, alter);
1078 		break;
1079 
1080 	case BPF_MISC|BPF_TAX:
1081 		vstore(s, &val[X_ATOM], val[A_ATOM], alter);
1082 		break;
1083 
1084 	case BPF_LDX|BPF_MEM:
1085 		v = val[s->k];
1086 		if (alter && vmap[v].is_const) {
1087 			s->code = BPF_LDX|BPF_IMM;
1088 			s->k = vmap[v].const_val;
1089 			done = 0;
1090 		}
1091 		vstore(s, &val[X_ATOM], v, alter);
1092 		break;
1093 
1094 	case BPF_ST:
1095 		vstore(s, &val[s->k], val[A_ATOM], alter);
1096 		break;
1097 
1098 	case BPF_STX:
1099 		vstore(s, &val[s->k], val[X_ATOM], alter);
1100 		break;
1101 	}
1102 }
1103 
1104 static void
1105 deadstmt(register struct stmt *s, register struct stmt *last[])
1106 {
1107 	register int atom;
1108 
1109 	atom = atomuse(s);
1110 	if (atom >= 0) {
1111 		if (atom == AX_ATOM) {
1112 			last[X_ATOM] = 0;
1113 			last[A_ATOM] = 0;
1114 		}
1115 		else
1116 			last[atom] = 0;
1117 	}
1118 	atom = atomdef(s);
1119 	if (atom >= 0) {
1120 		if (last[atom]) {
1121 			done = 0;
1122 			last[atom]->code = NOP;
1123 		}
1124 		last[atom] = s;
1125 	}
1126 }
1127 
1128 static void
1129 opt_deadstores(register struct block *b)
1130 {
1131 	register struct slist *s;
1132 	register int atom;
1133 	struct stmt *last[N_ATOMS];
1134 
1135 	memset((char *)last, 0, sizeof last);
1136 
1137 	for (s = b->stmts; s != 0; s = s->next)
1138 		deadstmt(&s->s, last);
1139 	deadstmt(&b->s, last);
1140 
1141 	for (atom = 0; atom < N_ATOMS; ++atom)
1142 		if (last[atom] && !ATOMELEM(b->out_use, atom)) {
1143 			last[atom]->code = NOP;
1144 			done = 0;
1145 		}
1146 }
1147 
1148 static void
1149 opt_blk(struct block *b, int do_stmts)
1150 {
1151 	struct slist *s;
1152 	struct edge *p;
1153 	int i;
1154 	bpf_int32 aval, xval;
1155 
1156 #if 0
1157 	for (s = b->stmts; s && s->next; s = s->next)
1158 		if (BPF_CLASS(s->s.code) == BPF_JMP) {
1159 			do_stmts = 0;
1160 			break;
1161 		}
1162 #endif
1163 
1164 	/*
1165 	 * Initialize the atom values.
1166 	 */
1167 	p = b->in_edges;
1168 	if (p == 0) {
1169 		/*
1170 		 * We have no predecessors, so everything is undefined
1171 		 * upon entry to this block.
1172 		 */
1173 		memset((char *)b->val, 0, sizeof(b->val));
1174 	} else {
1175 		/*
1176 		 * Inherit values from our predecessors.
1177 		 *
1178 		 * First, get the values from the predecessor along the
1179 		 * first edge leading to this node.
1180 		 */
1181 		memcpy((char *)b->val, (char *)p->pred->val, sizeof(b->val));
1182 		/*
1183 		 * Now look at all the other nodes leading to this node.
1184 		 * If, for the predecessor along that edge, a register
1185 		 * has a different value from the one we have (i.e.,
1186 		 * control paths are merging, and the merging paths
1187 		 * assign different values to that register), give the
1188 		 * register the undefined value of 0.
1189 		 */
1190 		while ((p = p->next) != NULL) {
1191 			for (i = 0; i < N_ATOMS; ++i)
1192 				if (b->val[i] != p->pred->val[i])
1193 					b->val[i] = 0;
1194 		}
1195 	}
1196 	aval = b->val[A_ATOM];
1197 	xval = b->val[X_ATOM];
1198 	for (s = b->stmts; s; s = s->next)
1199 		opt_stmt(&s->s, b->val, do_stmts);
1200 
1201 	/*
1202 	 * This is a special case: if we don't use anything from this
1203 	 * block, and we load the accumulator or index register with a
1204 	 * value that is already there, or if this block is a return,
1205 	 * eliminate all the statements.
1206 	 *
1207 	 * XXX - what if it does a store?
1208 	 *
1209 	 * XXX - why does it matter whether we use anything from this
1210 	 * block?  If the accumulator or index register doesn't change
1211 	 * its value, isn't that OK even if we use that value?
1212 	 *
1213 	 * XXX - if we load the accumulator with a different value,
1214 	 * and the block ends with a conditional branch, we obviously
1215 	 * can't eliminate it, as the branch depends on that value.
1216 	 * For the index register, the conditional branch only depends
1217 	 * on the index register value if the test is against the index
1218 	 * register value rather than a constant; if nothing uses the
1219 	 * value we put into the index register, and we're not testing
1220 	 * against the index register's value, and there aren't any
1221 	 * other problems that would keep us from eliminating this
1222 	 * block, can we eliminate it?
1223 	 */
1224 	if (do_stmts &&
1225 	    ((b->out_use == 0 && aval != 0 && b->val[A_ATOM] == aval &&
1226 	      xval != 0 && b->val[X_ATOM] == xval) ||
1227 	     BPF_CLASS(b->s.code) == BPF_RET)) {
1228 		if (b->stmts != 0) {
1229 			b->stmts = 0;
1230 			done = 0;
1231 		}
1232 	} else {
1233 		opt_peep(b);
1234 		opt_deadstores(b);
1235 	}
1236 	/*
1237 	 * Set up values for branch optimizer.
1238 	 */
1239 	if (BPF_SRC(b->s.code) == BPF_K)
1240 		b->oval = K(b->s.k);
1241 	else
1242 		b->oval = b->val[X_ATOM];
1243 	b->et.code = b->s.code;
1244 	b->ef.code = -b->s.code;
1245 }
1246 
1247 /*
1248  * Return true if any register that is used on exit from 'succ', has
1249  * an exit value that is different from the corresponding exit value
1250  * from 'b'.
1251  */
1252 static int
1253 use_conflict(struct block *b, struct block *succ)
1254 {
1255 	int atom;
1256 	atomset use = succ->out_use;
1257 
1258 	if (use == 0)
1259 		return 0;
1260 
1261 	for (atom = 0; atom < N_ATOMS; ++atom)
1262 		if (ATOMELEM(use, atom))
1263 			if (b->val[atom] != succ->val[atom])
1264 				return 1;
1265 	return 0;
1266 }
1267 
1268 static struct block *
1269 fold_edge(struct block *child, struct edge *ep)
1270 {
1271 	int sense;
1272 	int aval0, aval1, oval0, oval1;
1273 	int code = ep->code;
1274 
1275 	if (code < 0) {
1276 		code = -code;
1277 		sense = 0;
1278 	} else
1279 		sense = 1;
1280 
1281 	if (child->s.code != code)
1282 		return 0;
1283 
1284 	aval0 = child->val[A_ATOM];
1285 	oval0 = child->oval;
1286 	aval1 = ep->pred->val[A_ATOM];
1287 	oval1 = ep->pred->oval;
1288 
1289 	if (aval0 != aval1)
1290 		return 0;
1291 
1292 	if (oval0 == oval1)
1293 		/*
1294 		 * The operands of the branch instructions are
1295 		 * identical, so the result is true if a true
1296 		 * branch was taken to get here, otherwise false.
1297 		 */
1298 		return sense ? JT(child) : JF(child);
1299 
1300 	if (sense && code == (BPF_JMP|BPF_JEQ|BPF_K))
1301 		/*
1302 		 * At this point, we only know the comparison if we
1303 		 * came down the true branch, and it was an equality
1304 		 * comparison with a constant.
1305 		 *
1306 		 * I.e., if we came down the true branch, and the branch
1307 		 * was an equality comparison with a constant, we know the
1308 		 * accumulator contains that constant.  If we came down
1309 		 * the false branch, or the comparison wasn't with a
1310 		 * constant, we don't know what was in the accumulator.
1311 		 *
1312 		 * We rely on the fact that distinct constants have distinct
1313 		 * value numbers.
1314 		 */
1315 		return JF(child);
1316 
1317 	return 0;
1318 }
1319 
1320 static void
1321 opt_j(struct edge *ep)
1322 {
1323 	register int i, k;
1324 	register struct block *target;
1325 
1326 	if (JT(ep->succ) == 0)
1327 		return;
1328 
1329 	if (JT(ep->succ) == JF(ep->succ)) {
1330 		/*
1331 		 * Common branch targets can be eliminated, provided
1332 		 * there is no data dependency.
1333 		 */
1334 		if (!use_conflict(ep->pred, ep->succ->et.succ)) {
1335 			done = 0;
1336 			ep->succ = JT(ep->succ);
1337 		}
1338 	}
1339 	/*
1340 	 * For each edge dominator that matches the successor of this
1341 	 * edge, promote the edge successor to the its grandchild.
1342 	 *
1343 	 * XXX We violate the set abstraction here in favor a reasonably
1344 	 * efficient loop.
1345 	 */
1346  top:
1347 	for (i = 0; i < edgewords; ++i) {
1348 		register bpf_u_int32 x = ep->edom[i];
1349 
1350 		while (x != 0) {
1351 			k = ffs(x) - 1;
1352 			x &=~ (1 << k);
1353 			k += i * BITS_PER_WORD;
1354 
1355 			target = fold_edge(ep->succ, edges[k]);
1356 			/*
1357 			 * Check that there is no data dependency between
1358 			 * nodes that will be violated if we move the edge.
1359 			 */
1360 			if (target != 0 && !use_conflict(ep->pred, target)) {
1361 				done = 0;
1362 				ep->succ = target;
1363 				if (JT(target) != 0)
1364 					/*
1365 					 * Start over unless we hit a leaf.
1366 					 */
1367 					goto top;
1368 				return;
1369 			}
1370 		}
1371 	}
1372 }
1373 
1374 
1375 static void
1376 or_pullup(struct block *b)
1377 {
1378 	int val, at_top;
1379 	struct block *pull;
1380 	struct block **diffp, **samep;
1381 	struct edge *ep;
1382 
1383 	ep = b->in_edges;
1384 	if (ep == 0)
1385 		return;
1386 
1387 	/*
1388 	 * Make sure each predecessor loads the same value.
1389 	 * XXX why?
1390 	 */
1391 	val = ep->pred->val[A_ATOM];
1392 	for (ep = ep->next; ep != 0; ep = ep->next)
1393 		if (val != ep->pred->val[A_ATOM])
1394 			return;
1395 
1396 	if (JT(b->in_edges->pred) == b)
1397 		diffp = &JT(b->in_edges->pred);
1398 	else
1399 		diffp = &JF(b->in_edges->pred);
1400 
1401 	at_top = 1;
1402 	while (1) {
1403 		if (*diffp == 0)
1404 			return;
1405 
1406 		if (JT(*diffp) != JT(b))
1407 			return;
1408 
1409 		if (!SET_MEMBER((*diffp)->dom, b->id))
1410 			return;
1411 
1412 		if ((*diffp)->val[A_ATOM] != val)
1413 			break;
1414 
1415 		diffp = &JF(*diffp);
1416 		at_top = 0;
1417 	}
1418 	samep = &JF(*diffp);
1419 	while (1) {
1420 		if (*samep == 0)
1421 			return;
1422 
1423 		if (JT(*samep) != JT(b))
1424 			return;
1425 
1426 		if (!SET_MEMBER((*samep)->dom, b->id))
1427 			return;
1428 
1429 		if ((*samep)->val[A_ATOM] == val)
1430 			break;
1431 
1432 		/* XXX Need to check that there are no data dependencies
1433 		   between dp0 and dp1.  Currently, the code generator
1434 		   will not produce such dependencies. */
1435 		samep = &JF(*samep);
1436 	}
1437 #ifdef notdef
1438 	/* XXX This doesn't cover everything. */
1439 	for (i = 0; i < N_ATOMS; ++i)
1440 		if ((*samep)->val[i] != pred->val[i])
1441 			return;
1442 #endif
1443 	/* Pull up the node. */
1444 	pull = *samep;
1445 	*samep = JF(pull);
1446 	JF(pull) = *diffp;
1447 
1448 	/*
1449 	 * At the top of the chain, each predecessor needs to point at the
1450 	 * pulled up node.  Inside the chain, there is only one predecessor
1451 	 * to worry about.
1452 	 */
1453 	if (at_top) {
1454 		for (ep = b->in_edges; ep != 0; ep = ep->next) {
1455 			if (JT(ep->pred) == b)
1456 				JT(ep->pred) = pull;
1457 			else
1458 				JF(ep->pred) = pull;
1459 		}
1460 	}
1461 	else
1462 		*diffp = pull;
1463 
1464 	done = 0;
1465 }
1466 
1467 static void
1468 and_pullup(struct block *b)
1469 {
1470 	int val, at_top;
1471 	struct block *pull;
1472 	struct block **diffp, **samep;
1473 	struct edge *ep;
1474 
1475 	ep = b->in_edges;
1476 	if (ep == 0)
1477 		return;
1478 
1479 	/*
1480 	 * Make sure each predecessor loads the same value.
1481 	 */
1482 	val = ep->pred->val[A_ATOM];
1483 	for (ep = ep->next; ep != 0; ep = ep->next)
1484 		if (val != ep->pred->val[A_ATOM])
1485 			return;
1486 
1487 	if (JT(b->in_edges->pred) == b)
1488 		diffp = &JT(b->in_edges->pred);
1489 	else
1490 		diffp = &JF(b->in_edges->pred);
1491 
1492 	at_top = 1;
1493 	while (1) {
1494 		if (*diffp == 0)
1495 			return;
1496 
1497 		if (JF(*diffp) != JF(b))
1498 			return;
1499 
1500 		if (!SET_MEMBER((*diffp)->dom, b->id))
1501 			return;
1502 
1503 		if ((*diffp)->val[A_ATOM] != val)
1504 			break;
1505 
1506 		diffp = &JT(*diffp);
1507 		at_top = 0;
1508 	}
1509 	samep = &JT(*diffp);
1510 	while (1) {
1511 		if (*samep == 0)
1512 			return;
1513 
1514 		if (JF(*samep) != JF(b))
1515 			return;
1516 
1517 		if (!SET_MEMBER((*samep)->dom, b->id))
1518 			return;
1519 
1520 		if ((*samep)->val[A_ATOM] == val)
1521 			break;
1522 
1523 		/* XXX Need to check that there are no data dependencies
1524 		   between diffp and samep.  Currently, the code generator
1525 		   will not produce such dependencies. */
1526 		samep = &JT(*samep);
1527 	}
1528 #ifdef notdef
1529 	/* XXX This doesn't cover everything. */
1530 	for (i = 0; i < N_ATOMS; ++i)
1531 		if ((*samep)->val[i] != pred->val[i])
1532 			return;
1533 #endif
1534 	/* Pull up the node. */
1535 	pull = *samep;
1536 	*samep = JT(pull);
1537 	JT(pull) = *diffp;
1538 
1539 	/*
1540 	 * At the top of the chain, each predecessor needs to point at the
1541 	 * pulled up node.  Inside the chain, there is only one predecessor
1542 	 * to worry about.
1543 	 */
1544 	if (at_top) {
1545 		for (ep = b->in_edges; ep != 0; ep = ep->next) {
1546 			if (JT(ep->pred) == b)
1547 				JT(ep->pred) = pull;
1548 			else
1549 				JF(ep->pred) = pull;
1550 		}
1551 	}
1552 	else
1553 		*diffp = pull;
1554 
1555 	done = 0;
1556 }
1557 
1558 static void
1559 opt_blks(struct block *root, int do_stmts)
1560 {
1561 	int i, maxlevel;
1562 	struct block *p;
1563 
1564 	init_val();
1565 	maxlevel = root->level;
1566 
1567 	find_inedges(root);
1568 	for (i = maxlevel; i >= 0; --i)
1569 		for (p = levels[i]; p; p = p->link)
1570 			opt_blk(p, do_stmts);
1571 
1572 	if (do_stmts)
1573 		/*
1574 		 * No point trying to move branches; it can't possibly
1575 		 * make a difference at this point.
1576 		 */
1577 		return;
1578 
1579 	for (i = 1; i <= maxlevel; ++i) {
1580 		for (p = levels[i]; p; p = p->link) {
1581 			opt_j(&p->et);
1582 			opt_j(&p->ef);
1583 		}
1584 	}
1585 
1586 	find_inedges(root);
1587 	for (i = 1; i <= maxlevel; ++i) {
1588 		for (p = levels[i]; p; p = p->link) {
1589 			or_pullup(p);
1590 			and_pullup(p);
1591 		}
1592 	}
1593 }
1594 
1595 static inline void
1596 link_inedge(struct edge *parent, struct block *child)
1597 {
1598 	parent->next = child->in_edges;
1599 	child->in_edges = parent;
1600 }
1601 
1602 static void
1603 find_inedges(struct block *root)
1604 {
1605 	int i;
1606 	struct block *b;
1607 
1608 	for (i = 0; i < n_blocks; ++i)
1609 		blocks[i]->in_edges = 0;
1610 
1611 	/*
1612 	 * Traverse the graph, adding each edge to the predecessor
1613 	 * list of its successors.  Skip the leaves (i.e. level 0).
1614 	 */
1615 	for (i = root->level; i > 0; --i) {
1616 		for (b = levels[i]; b != 0; b = b->link) {
1617 			link_inedge(&b->et, JT(b));
1618 			link_inedge(&b->ef, JF(b));
1619 		}
1620 	}
1621 }
1622 
1623 static void
1624 opt_root(struct block **b)
1625 {
1626 	struct slist *tmp, *s;
1627 
1628 	s = (*b)->stmts;
1629 	(*b)->stmts = 0;
1630 	while (BPF_CLASS((*b)->s.code) == BPF_JMP && JT(*b) == JF(*b))
1631 		*b = JT(*b);
1632 
1633 	tmp = (*b)->stmts;
1634 	if (tmp != 0)
1635 		sappend(s, tmp);
1636 	(*b)->stmts = s;
1637 
1638 	/*
1639 	 * If the root node is a return, then there is no
1640 	 * point executing any statements (since the bpf machine
1641 	 * has no side effects).
1642 	 */
1643 	if (BPF_CLASS((*b)->s.code) == BPF_RET)
1644 		(*b)->stmts = 0;
1645 }
1646 
1647 static void
1648 opt_loop(struct block *root, int do_stmts)
1649 {
1650 
1651 #ifdef BDEBUG
1652 	if (dflag > 1) {
1653 		printf("opt_loop(root, %d) begin\n", do_stmts);
1654 		opt_dump(root);
1655 	}
1656 #endif
1657 	do {
1658 		done = 1;
1659 		find_levels(root);
1660 		find_dom(root);
1661 		find_closure(root);
1662 		find_ud(root);
1663 		find_edom(root);
1664 		opt_blks(root, do_stmts);
1665 #ifdef BDEBUG
1666 		if (dflag > 1) {
1667 			printf("opt_loop(root, %d) bottom, done=%d\n", do_stmts, done);
1668 			opt_dump(root);
1669 		}
1670 #endif
1671 	} while (!done);
1672 }
1673 
1674 /*
1675  * Optimize the filter code in its dag representation.
1676  */
1677 void
1678 bpf_optimize(struct block **rootp)
1679 {
1680 	struct block *root;
1681 
1682 	root = *rootp;
1683 
1684 	opt_init(root);
1685 	opt_loop(root, 0);
1686 	opt_loop(root, 1);
1687 	intern_blocks(root);
1688 #ifdef BDEBUG
1689 	if (dflag > 1) {
1690 		printf("after intern_blocks()\n");
1691 		opt_dump(root);
1692 	}
1693 #endif
1694 	opt_root(rootp);
1695 #ifdef BDEBUG
1696 	if (dflag > 1) {
1697 		printf("after opt_root()\n");
1698 		opt_dump(root);
1699 	}
1700 #endif
1701 	opt_cleanup();
1702 }
1703 
1704 static void
1705 make_marks(struct block *p)
1706 {
1707 	if (!isMarked(p)) {
1708 		Mark(p);
1709 		if (BPF_CLASS(p->s.code) != BPF_RET) {
1710 			make_marks(JT(p));
1711 			make_marks(JF(p));
1712 		}
1713 	}
1714 }
1715 
1716 /*
1717  * Mark code array such that isMarked(i) is true
1718  * only for nodes that are alive.
1719  */
1720 static void
1721 mark_code(struct block *p)
1722 {
1723 	cur_mark += 1;
1724 	make_marks(p);
1725 }
1726 
1727 /*
1728  * True iff the two stmt lists load the same value from the packet into
1729  * the accumulator.
1730  */
1731 static int
1732 eq_slist(struct slist *x, struct slist *y)
1733 {
1734 	while (1) {
1735 		while (x && x->s.code == NOP)
1736 			x = x->next;
1737 		while (y && y->s.code == NOP)
1738 			y = y->next;
1739 		if (x == 0)
1740 			return y == 0;
1741 		if (y == 0)
1742 			return x == 0;
1743 		if (x->s.code != y->s.code || x->s.k != y->s.k)
1744 			return 0;
1745 		x = x->next;
1746 		y = y->next;
1747 	}
1748 }
1749 
1750 static inline int
1751 eq_blk(struct block *b0, struct block *b1)
1752 {
1753 	if (b0->s.code == b1->s.code &&
1754 	    b0->s.k == b1->s.k &&
1755 	    b0->et.succ == b1->et.succ &&
1756 	    b0->ef.succ == b1->ef.succ)
1757 		return eq_slist(b0->stmts, b1->stmts);
1758 	return 0;
1759 }
1760 
1761 static void
1762 intern_blocks(struct block *root)
1763 {
1764 	struct block *p;
1765 	int i, j;
1766 	int done1; /* don't shadow global */
1767  top:
1768 	done1 = 1;
1769 	for (i = 0; i < n_blocks; ++i)
1770 		blocks[i]->link = 0;
1771 
1772 	mark_code(root);
1773 
1774 	for (i = n_blocks - 1; --i >= 0; ) {
1775 		if (!isMarked(blocks[i]))
1776 			continue;
1777 		for (j = i + 1; j < n_blocks; ++j) {
1778 			if (!isMarked(blocks[j]))
1779 				continue;
1780 			if (eq_blk(blocks[i], blocks[j])) {
1781 				blocks[i]->link = blocks[j]->link ?
1782 					blocks[j]->link : blocks[j];
1783 				break;
1784 			}
1785 		}
1786 	}
1787 	for (i = 0; i < n_blocks; ++i) {
1788 		p = blocks[i];
1789 		if (JT(p) == 0)
1790 			continue;
1791 		if (JT(p)->link) {
1792 			done1 = 0;
1793 			JT(p) = JT(p)->link;
1794 		}
1795 		if (JF(p)->link) {
1796 			done1 = 0;
1797 			JF(p) = JF(p)->link;
1798 		}
1799 	}
1800 	if (!done1)
1801 		goto top;
1802 }
1803 
1804 static void
1805 opt_cleanup(void)
1806 {
1807 	free((void *)vnode_base);
1808 	free((void *)vmap);
1809 	free((void *)edges);
1810 	free((void *)space);
1811 	free((void *)levels);
1812 	free((void *)blocks);
1813 }
1814 
1815 /*
1816  * Return the number of stmts in 's'.
1817  */
1818 static u_int
1819 slength(struct slist *s)
1820 {
1821 	u_int n = 0;
1822 
1823 	for (; s; s = s->next)
1824 		if (s->s.code != NOP)
1825 			++n;
1826 	return n;
1827 }
1828 
1829 /*
1830  * Return the number of nodes reachable by 'p'.
1831  * All nodes should be initially unmarked.
1832  */
1833 static int
1834 count_blocks(struct block *p)
1835 {
1836 	if (p == 0 || isMarked(p))
1837 		return 0;
1838 	Mark(p);
1839 	return count_blocks(JT(p)) + count_blocks(JF(p)) + 1;
1840 }
1841 
1842 /*
1843  * Do a depth first search on the flow graph, numbering the
1844  * the basic blocks, and entering them into the 'blocks' array.`
1845  */
1846 static void
1847 number_blks_r(struct block *p)
1848 {
1849 	int n;
1850 
1851 	if (p == 0 || isMarked(p))
1852 		return;
1853 
1854 	Mark(p);
1855 	n = n_blocks++;
1856 	p->id = n;
1857 	blocks[n] = p;
1858 
1859 	number_blks_r(JT(p));
1860 	number_blks_r(JF(p));
1861 }
1862 
1863 /*
1864  * Return the number of stmts in the flowgraph reachable by 'p'.
1865  * The nodes should be unmarked before calling.
1866  *
1867  * Note that "stmts" means "instructions", and that this includes
1868  *
1869  *	side-effect statements in 'p' (slength(p->stmts));
1870  *
1871  *	statements in the true branch from 'p' (count_stmts(JT(p)));
1872  *
1873  *	statements in the false branch from 'p' (count_stmts(JF(p)));
1874  *
1875  *	the conditional jump itself (1);
1876  *
1877  *	an extra long jump if the true branch requires it (p->longjt);
1878  *
1879  *	an extra long jump if the false branch requires it (p->longjf).
1880  */
1881 static u_int
1882 count_stmts(struct block *p)
1883 {
1884 	u_int n;
1885 
1886 	if (p == 0 || isMarked(p))
1887 		return 0;
1888 	Mark(p);
1889 	n = count_stmts(JT(p)) + count_stmts(JF(p));
1890 	return slength(p->stmts) + n + 1 + p->longjt + p->longjf;
1891 }
1892 
1893 /*
1894  * Allocate memory.  All allocation is done before optimization
1895  * is begun.  A linear bound on the size of all data structures is computed
1896  * from the total number of blocks and/or statements.
1897  */
1898 static void
1899 opt_init(struct block *root)
1900 {
1901 	bpf_u_int32 *p;
1902 	int i, n, max_stmts;
1903 
1904 	/*
1905 	 * First, count the blocks, so we can malloc an array to map
1906 	 * block number to block.  Then, put the blocks into the array.
1907 	 */
1908 	unMarkAll();
1909 	n = count_blocks(root);
1910 	blocks = (struct block **)calloc(n, sizeof(*blocks));
1911 	if (blocks == NULL)
1912 		bpf_error("malloc");
1913 	unMarkAll();
1914 	n_blocks = 0;
1915 	number_blks_r(root);
1916 
1917 	n_edges = 2 * n_blocks;
1918 	edges = (struct edge **)calloc(n_edges, sizeof(*edges));
1919 	if (edges == NULL)
1920 		bpf_error("malloc");
1921 
1922 	/*
1923 	 * The number of levels is bounded by the number of nodes.
1924 	 */
1925 	levels = (struct block **)calloc(n_blocks, sizeof(*levels));
1926 	if (levels == NULL)
1927 		bpf_error("malloc");
1928 
1929 	edgewords = n_edges / (8 * sizeof(bpf_u_int32)) + 1;
1930 	nodewords = n_blocks / (8 * sizeof(bpf_u_int32)) + 1;
1931 
1932 	/* XXX */
1933 	space = (bpf_u_int32 *)malloc(2 * n_blocks * nodewords * sizeof(*space)
1934 				 + n_edges * edgewords * sizeof(*space));
1935 	if (space == NULL)
1936 		bpf_error("malloc");
1937 	p = space;
1938 	all_dom_sets = p;
1939 	for (i = 0; i < n; ++i) {
1940 		blocks[i]->dom = p;
1941 		p += nodewords;
1942 	}
1943 	all_closure_sets = p;
1944 	for (i = 0; i < n; ++i) {
1945 		blocks[i]->closure = p;
1946 		p += nodewords;
1947 	}
1948 	all_edge_sets = p;
1949 	for (i = 0; i < n; ++i) {
1950 		register struct block *b = blocks[i];
1951 
1952 		b->et.edom = p;
1953 		p += edgewords;
1954 		b->ef.edom = p;
1955 		p += edgewords;
1956 		b->et.id = i;
1957 		edges[i] = &b->et;
1958 		b->ef.id = n_blocks + i;
1959 		edges[n_blocks + i] = &b->ef;
1960 		b->et.pred = b;
1961 		b->ef.pred = b;
1962 	}
1963 	max_stmts = 0;
1964 	for (i = 0; i < n; ++i)
1965 		max_stmts += slength(blocks[i]->stmts) + 1;
1966 	/*
1967 	 * We allocate at most 3 value numbers per statement,
1968 	 * so this is an upper bound on the number of valnodes
1969 	 * we'll need.
1970 	 */
1971 	maxval = 3 * max_stmts;
1972 	vmap = (struct vmapinfo *)calloc(maxval, sizeof(*vmap));
1973 	vnode_base = (struct valnode *)calloc(maxval, sizeof(*vnode_base));
1974 	if (vmap == NULL || vnode_base == NULL)
1975 		bpf_error("malloc");
1976 }
1977 
1978 /*
1979  * Some pointers used to convert the basic block form of the code,
1980  * into the array form that BPF requires.  'fstart' will point to
1981  * the malloc'd array while 'ftail' is used during the recursive traversal.
1982  */
1983 static struct bpf_insn *fstart;
1984 static struct bpf_insn *ftail;
1985 
1986 #ifdef BDEBUG
1987 int bids[1000];
1988 #endif
1989 
1990 /*
1991  * Returns true if successful.  Returns false if a branch has
1992  * an offset that is too large.  If so, we have marked that
1993  * branch so that on a subsequent iteration, it will be treated
1994  * properly.
1995  */
1996 static int
1997 convert_code_r(struct block *p)
1998 {
1999 	struct bpf_insn *dst;
2000 	struct slist *src;
2001 	u_int slen;
2002 	u_int off;
2003 	int extrajmps;		/* number of extra jumps inserted */
2004 	struct slist **offset = NULL;
2005 
2006 	if (p == 0 || isMarked(p))
2007 		return (1);
2008 	Mark(p);
2009 
2010 	if (convert_code_r(JF(p)) == 0)
2011 		return (0);
2012 	if (convert_code_r(JT(p)) == 0)
2013 		return (0);
2014 
2015 	slen = slength(p->stmts);
2016 	dst = ftail -= (slen + 1 + p->longjt + p->longjf);
2017 		/* inflate length by any extra jumps */
2018 
2019 	p->offset = dst - fstart;
2020 
2021 	/* generate offset[] for convenience  */
2022 	if (slen) {
2023 		offset = (struct slist **)calloc(slen, sizeof(struct slist *));
2024 		if (!offset) {
2025 			bpf_error("not enough core");
2026 			/*NOTREACHED*/
2027 		}
2028 	}
2029 	src = p->stmts;
2030 	for (off = 0; off < slen && src; off++) {
2031 #if 0
2032 		printf("off=%d src=%x\n", off, src);
2033 #endif
2034 		offset[off] = src;
2035 		src = src->next;
2036 	}
2037 
2038 	off = 0;
2039 	for (src = p->stmts; src; src = src->next) {
2040 		if (src->s.code == NOP)
2041 			continue;
2042 		dst->code = (u_short)src->s.code;
2043 		dst->k = src->s.k;
2044 
2045 		/* fill block-local relative jump */
2046 		if (BPF_CLASS(src->s.code) != BPF_JMP || src->s.code == (BPF_JMP|BPF_JA)) {
2047 #if 0
2048 			if (src->s.jt || src->s.jf) {
2049 				bpf_error("illegal jmp destination");
2050 				/*NOTREACHED*/
2051 			}
2052 #endif
2053 			goto filled;
2054 		}
2055 		if (off == slen - 2)	/*???*/
2056 			goto filled;
2057 
2058 	    {
2059 		u_int i;
2060 		int jt, jf;
2061 static const char ljerr[] = "%s for block-local relative jump: off=%d";
2062 
2063 #if 0
2064 		printf("code=%x off=%d %x %x\n", src->s.code,
2065 			off, src->s.jt, src->s.jf);
2066 #endif
2067 
2068 		if (!src->s.jt || !src->s.jf) {
2069 			bpf_error(ljerr, "no jmp destination", off);
2070 			/*NOTREACHED*/
2071 		}
2072 
2073 		jt = jf = 0;
2074 		for (i = 0; i < slen; i++) {
2075 			if (offset[i] == src->s.jt) {
2076 				if (jt) {
2077 					bpf_error(ljerr, "multiple matches", off);
2078 					/*NOTREACHED*/
2079 				}
2080 
2081 				dst->jt = i - off - 1;
2082 				jt++;
2083 			}
2084 			if (offset[i] == src->s.jf) {
2085 				if (jf) {
2086 					bpf_error(ljerr, "multiple matches", off);
2087 					/*NOTREACHED*/
2088 				}
2089 				dst->jf = i - off - 1;
2090 				jf++;
2091 			}
2092 		}
2093 		if (!jt || !jf) {
2094 			bpf_error(ljerr, "no destination found", off);
2095 			/*NOTREACHED*/
2096 		}
2097 	    }
2098 filled:
2099 		++dst;
2100 		++off;
2101 	}
2102 	if (offset)
2103 		free(offset);
2104 
2105 #ifdef BDEBUG
2106 	bids[dst - fstart] = p->id + 1;
2107 #endif
2108 	dst->code = (u_short)p->s.code;
2109 	dst->k = p->s.k;
2110 	if (JT(p)) {
2111 		extrajmps = 0;
2112 		off = JT(p)->offset - (p->offset + slen) - 1;
2113 		if (off >= 256) {
2114 		    /* offset too large for branch, must add a jump */
2115 		    if (p->longjt == 0) {
2116 		    	/* mark this instruction and retry */
2117 			p->longjt++;
2118 			return(0);
2119 		    }
2120 		    /* branch if T to following jump */
2121 		    dst->jt = extrajmps;
2122 		    extrajmps++;
2123 		    dst[extrajmps].code = BPF_JMP|BPF_JA;
2124 		    dst[extrajmps].k = off - extrajmps;
2125 		}
2126 		else
2127 		    dst->jt = off;
2128 		off = JF(p)->offset - (p->offset + slen) - 1;
2129 		if (off >= 256) {
2130 		    /* offset too large for branch, must add a jump */
2131 		    if (p->longjf == 0) {
2132 		    	/* mark this instruction and retry */
2133 			p->longjf++;
2134 			return(0);
2135 		    }
2136 		    /* branch if F to following jump */
2137 		    /* if two jumps are inserted, F goes to second one */
2138 		    dst->jf = extrajmps;
2139 		    extrajmps++;
2140 		    dst[extrajmps].code = BPF_JMP|BPF_JA;
2141 		    dst[extrajmps].k = off - extrajmps;
2142 		}
2143 		else
2144 		    dst->jf = off;
2145 	}
2146 	return (1);
2147 }
2148 
2149 
2150 /*
2151  * Convert flowgraph intermediate representation to the
2152  * BPF array representation.  Set *lenp to the number of instructions.
2153  *
2154  * This routine does *NOT* leak the memory pointed to by fp.  It *must
2155  * not* do free(fp) before returning fp; doing so would make no sense,
2156  * as the BPF array pointed to by the return value of icode_to_fcode()
2157  * must be valid - it's being returned for use in a bpf_program structure.
2158  *
2159  * If it appears that icode_to_fcode() is leaking, the problem is that
2160  * the program using pcap_compile() is failing to free the memory in
2161  * the BPF program when it's done - the leak is in the program, not in
2162  * the routine that happens to be allocating the memory.  (By analogy, if
2163  * a program calls fopen() without ever calling fclose() on the FILE *,
2164  * it will leak the FILE structure; the leak is not in fopen(), it's in
2165  * the program.)  Change the program to use pcap_freecode() when it's
2166  * done with the filter program.  See the pcap man page.
2167  */
2168 struct bpf_insn *
2169 icode_to_fcode(struct block *root, u_int *lenp)
2170 {
2171 	u_int n;
2172 	struct bpf_insn *fp;
2173 
2174 	/*
2175 	 * Loop doing convert_code_r() until no branches remain
2176 	 * with too-large offsets.
2177 	 */
2178 	while (1) {
2179 	    unMarkAll();
2180 	    n = *lenp = count_stmts(root);
2181 
2182 	    fp = (struct bpf_insn *)malloc(sizeof(*fp) * n);
2183 	    if (fp == NULL)
2184 		    bpf_error("malloc");
2185 	    memset((char *)fp, 0, sizeof(*fp) * n);
2186 	    fstart = fp;
2187 	    ftail = fp + n;
2188 
2189 	    unMarkAll();
2190 	    if (convert_code_r(root))
2191 		break;
2192 	    free(fp);
2193 	}
2194 
2195 	return fp;
2196 }
2197 
2198 /*
2199  * Make a copy of a BPF program and put it in the "fcode" member of
2200  * a "pcap_t".
2201  *
2202  * If we fail to allocate memory for the copy, fill in the "errbuf"
2203  * member of the "pcap_t" with an error message, and return -1;
2204  * otherwise, return 0.
2205  */
2206 int
2207 install_bpf_program(pcap_t *p, struct bpf_program *fp)
2208 {
2209 	size_t prog_size;
2210 
2211 	/*
2212 	 * Validate the program.
2213 	 */
2214 	if (!bpf_validate(fp->bf_insns, fp->bf_len)) {
2215 		snprintf(p->errbuf, sizeof(p->errbuf),
2216 			"BPF program is not valid");
2217 		return (-1);
2218 	}
2219 
2220 	/*
2221 	 * Free up any already installed program.
2222 	 */
2223 	pcap_freecode(&p->fcode);
2224 
2225 	prog_size = sizeof(*fp->bf_insns) * fp->bf_len;
2226 	p->fcode.bf_len = fp->bf_len;
2227 	p->fcode.bf_insns = (struct bpf_insn *)malloc(prog_size);
2228 	if (p->fcode.bf_insns == NULL) {
2229 		snprintf(p->errbuf, sizeof(p->errbuf),
2230 			 "malloc: %s", pcap_strerror(errno));
2231 		return (-1);
2232 	}
2233 	memcpy(p->fcode.bf_insns, fp->bf_insns, prog_size);
2234 	return (0);
2235 }
2236 
2237 #ifdef BDEBUG
2238 static void
2239 opt_dump(struct block *root)
2240 {
2241 	struct bpf_program f;
2242 
2243 	memset(bids, 0, sizeof bids);
2244 	f.bf_insns = icode_to_fcode(root, &f.bf_len);
2245 	bpf_dump(&f, 1);
2246 	putchar('\n');
2247 	free((char *)f.bf_insns);
2248 }
2249 #endif
2250