xref: /netbsd-src/external/bsd/libpcap/dist/gencode.c (revision ccd9df534e375a4366c5b55f23782053c7a98d82)
1 /*	$NetBSD: gencode.c,v 1.13 2023/08/17 15:18:12 christos Exp $	*/
2 
3 /*
4  * Copyright (c) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that: (1) source code distributions
9  * retain the above copyright notice and this paragraph in its entirety, (2)
10  * distributions including binary code include the above copyright notice and
11  * this paragraph in its entirety in the documentation or other materials
12  * provided with the distribution, and (3) all advertising materials mentioning
13  * features or use of this software display the following acknowledgement:
14  * ``This product includes software developed by the University of California,
15  * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
16  * the University nor the names of its contributors may be used to endorse
17  * or promote products derived from this software without specific prior
18  * written permission.
19  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
20  * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
21  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
22  */
23 
24 #include <sys/cdefs.h>
25 __RCSID("$NetBSD: gencode.c,v 1.13 2023/08/17 15:18:12 christos Exp $");
26 
27 #ifdef HAVE_CONFIG_H
28 #include <config.h>
29 #endif
30 
31 #ifdef _WIN32
32   #include <ws2tcpip.h>
33 #else
34   #include <sys/socket.h>
35 
36   #ifdef __NetBSD__
37     #include <sys/param.h>
38   #endif
39 
40   #include <netinet/in.h>
41   #include <arpa/inet.h>
42 #endif /* _WIN32 */
43 
44 #include <stdlib.h>
45 #include <string.h>
46 #include <memory.h>
47 #include <setjmp.h>
48 #include <stdarg.h>
49 #include <stdio.h>
50 
51 #ifdef MSDOS
52 #include "pcap-dos.h"
53 #endif
54 
55 #include "pcap-int.h"
56 
57 #include "extract.h"
58 
59 #include "ethertype.h"
60 #include "nlpid.h"
61 #include "llc.h"
62 #include "gencode.h"
63 #include "ieee80211.h"
64 #include "atmuni31.h"
65 #include "sunatmpos.h"
66 #include "pflog.h"
67 #include "ppp.h"
68 #include "pcap/sll.h"
69 #include "pcap/ipnet.h"
70 #include "arcnet.h"
71 #include "diag-control.h"
72 
73 #include "scanner.h"
74 
75 #if defined(linux)
76 #include <linux/types.h>
77 #include <linux/if_packet.h>
78 #include <linux/filter.h>
79 #endif
80 
81 #ifndef offsetof
82 #define offsetof(s, e) ((size_t)&((s *)0)->e)
83 #endif
84 
85 #ifdef _WIN32
86   #ifdef INET6
87     #if defined(__MINGW32__) && defined(DEFINE_ADDITIONAL_IPV6_STUFF)
88 /* IPv6 address */
89 struct in6_addr
90   {
91     union
92       {
93 	uint8_t		u6_addr8[16];
94 	uint16_t	u6_addr16[8];
95 	uint32_t	u6_addr32[4];
96       } in6_u;
97 #define s6_addr			in6_u.u6_addr8
98 #define s6_addr16		in6_u.u6_addr16
99 #define s6_addr32		in6_u.u6_addr32
100 #define s6_addr64		in6_u.u6_addr64
101   };
102 
103 typedef unsigned short	sa_family_t;
104 
105 #define	__SOCKADDR_COMMON(sa_prefix) \
106   sa_family_t sa_prefix##family
107 
108 /* Ditto, for IPv6.  */
109 struct sockaddr_in6
110   {
111     __SOCKADDR_COMMON (sin6_);
112     uint16_t sin6_port;		/* Transport layer port # */
113     uint32_t sin6_flowinfo;	/* IPv6 flow information */
114     struct in6_addr sin6_addr;	/* IPv6 address */
115   };
116 
117       #ifndef EAI_ADDRFAMILY
118 struct addrinfo {
119 	int	ai_flags;	/* AI_PASSIVE, AI_CANONNAME */
120 	int	ai_family;	/* PF_xxx */
121 	int	ai_socktype;	/* SOCK_xxx */
122 	int	ai_protocol;	/* 0 or IPPROTO_xxx for IPv4 and IPv6 */
123 	size_t	ai_addrlen;	/* length of ai_addr */
124 	char	*ai_canonname;	/* canonical name for hostname */
125 	struct sockaddr *ai_addr;	/* binary address */
126 	struct addrinfo *ai_next;	/* next structure in linked list */
127 };
128       #endif /* EAI_ADDRFAMILY */
129     #endif /* defined(__MINGW32__) && defined(DEFINE_ADDITIONAL_IPV6_STUFF) */
130   #endif /* INET6 */
131 #else /* _WIN32 */
132   #include <netdb.h>	/* for "struct addrinfo" */
133 #endif /* _WIN32 */
134 #include <pcap/namedb.h>
135 
136 #include "nametoaddr.h"
137 
138 #define ETHERMTU	1500
139 
140 #ifndef IPPROTO_HOPOPTS
141 #define IPPROTO_HOPOPTS 0
142 #endif
143 #ifndef IPPROTO_ROUTING
144 #define IPPROTO_ROUTING 43
145 #endif
146 #ifndef IPPROTO_FRAGMENT
147 #define IPPROTO_FRAGMENT 44
148 #endif
149 #ifndef IPPROTO_DSTOPTS
150 #define IPPROTO_DSTOPTS 60
151 #endif
152 #ifndef IPPROTO_SCTP
153 #define IPPROTO_SCTP 132
154 #endif
155 
156 #define GENEVE_PORT 6081
157 
158 #ifdef HAVE_OS_PROTO_H
159 #include "os-proto.h"
160 #endif
161 
162 #define JMP(c) ((c)|BPF_JMP|BPF_K)
163 
164 /*
165  * "Push" the current value of the link-layer header type and link-layer
166  * header offset onto a "stack", and set a new value.  (It's not a
167  * full-blown stack; we keep only the top two items.)
168  */
169 #define PUSH_LINKHDR(cs, new_linktype, new_is_variable, new_constant_part, new_reg) \
170 { \
171 	(cs)->prevlinktype = (cs)->linktype; \
172 	(cs)->off_prevlinkhdr = (cs)->off_linkhdr; \
173 	(cs)->linktype = (new_linktype); \
174 	(cs)->off_linkhdr.is_variable = (new_is_variable); \
175 	(cs)->off_linkhdr.constant_part = (new_constant_part); \
176 	(cs)->off_linkhdr.reg = (new_reg); \
177 	(cs)->is_geneve = 0; \
178 }
179 
180 /*
181  * Offset "not set" value.
182  */
183 #define OFFSET_NOT_SET	0xffffffffU
184 
185 /*
186  * Absolute offsets, which are offsets from the beginning of the raw
187  * packet data, are, in the general case, the sum of a variable value
188  * and a constant value; the variable value may be absent, in which
189  * case the offset is only the constant value, and the constant value
190  * may be zero, in which case the offset is only the variable value.
191  *
192  * bpf_abs_offset is a structure containing all that information:
193  *
194  *   is_variable is 1 if there's a variable part.
195  *
196  *   constant_part is the constant part of the value, possibly zero;
197  *
198  *   if is_variable is 1, reg is the register number for a register
199  *   containing the variable value if the register has been assigned,
200  *   and -1 otherwise.
201  */
202 typedef struct {
203 	int	is_variable;
204 	u_int	constant_part;
205 	int	reg;
206 } bpf_abs_offset;
207 
208 /*
209  * Value passed to gen_load_a() to indicate what the offset argument
210  * is relative to the beginning of.
211  */
212 enum e_offrel {
213 	OR_PACKET,		/* full packet data */
214 	OR_LINKHDR,		/* link-layer header */
215 	OR_PREVLINKHDR,		/* previous link-layer header */
216 	OR_LLC,			/* 802.2 LLC header */
217 	OR_PREVMPLSHDR,		/* previous MPLS header */
218 	OR_LINKTYPE,		/* link-layer type */
219 	OR_LINKPL,		/* link-layer payload */
220 	OR_LINKPL_NOSNAP,	/* link-layer payload, with no SNAP header at the link layer */
221 	OR_TRAN_IPV4,		/* transport-layer header, with IPv4 network layer */
222 	OR_TRAN_IPV6		/* transport-layer header, with IPv6 network layer */
223 };
224 
225 /*
226  * We divy out chunks of memory rather than call malloc each time so
227  * we don't have to worry about leaking memory.  It's probably
228  * not a big deal if all this memory was wasted but if this ever
229  * goes into a library that would probably not be a good idea.
230  *
231  * XXX - this *is* in a library....
232  */
233 #define NCHUNKS 16
234 #define CHUNK0SIZE 1024
235 struct chunk {
236 	size_t n_left;
237 	void *m;
238 };
239 
240 /* Code generator state */
241 
242 struct _compiler_state {
243 	jmp_buf top_ctx;
244 	pcap_t *bpf_pcap;
245 	int error_set;
246 
247 	struct icode ic;
248 
249 	int snaplen;
250 
251 	int linktype;
252 	int prevlinktype;
253 	int outermostlinktype;
254 
255 	bpf_u_int32 netmask;
256 	int no_optimize;
257 
258 	/* Hack for handling VLAN and MPLS stacks. */
259 	u_int label_stack_depth;
260 	u_int vlan_stack_depth;
261 
262 	/* XXX */
263 	u_int pcap_fddipad;
264 
265 	/*
266 	 * As errors are handled by a longjmp, anything allocated must
267 	 * be freed in the longjmp handler, so it must be reachable
268 	 * from that handler.
269 	 *
270 	 * One thing that's allocated is the result of pcap_nametoaddrinfo();
271 	 * it must be freed with freeaddrinfo().  This variable points to
272 	 * any addrinfo structure that would need to be freed.
273 	 */
274 	struct addrinfo *ai;
275 
276 	/*
277 	 * Another thing that's allocated is the result of pcap_ether_aton();
278 	 * it must be freed with free().  This variable points to any
279 	 * address that would need to be freed.
280 	 */
281 	u_char *e;
282 
283 	/*
284 	 * Various code constructs need to know the layout of the packet.
285 	 * These values give the necessary offsets from the beginning
286 	 * of the packet data.
287 	 */
288 
289 	/*
290 	 * Absolute offset of the beginning of the link-layer header.
291 	 */
292 	bpf_abs_offset off_linkhdr;
293 
294 	/*
295 	 * If we're checking a link-layer header for a packet encapsulated
296 	 * in another protocol layer, this is the equivalent information
297 	 * for the previous layers' link-layer header from the beginning
298 	 * of the raw packet data.
299 	 */
300 	bpf_abs_offset off_prevlinkhdr;
301 
302 	/*
303 	 * This is the equivalent information for the outermost layers'
304 	 * link-layer header.
305 	 */
306 	bpf_abs_offset off_outermostlinkhdr;
307 
308 	/*
309 	 * Absolute offset of the beginning of the link-layer payload.
310 	 */
311 	bpf_abs_offset off_linkpl;
312 
313 	/*
314 	 * "off_linktype" is the offset to information in the link-layer
315 	 * header giving the packet type. This is an absolute offset
316 	 * from the beginning of the packet.
317 	 *
318 	 * For Ethernet, it's the offset of the Ethernet type field; this
319 	 * means that it must have a value that skips VLAN tags.
320 	 *
321 	 * For link-layer types that always use 802.2 headers, it's the
322 	 * offset of the LLC header; this means that it must have a value
323 	 * that skips VLAN tags.
324 	 *
325 	 * For PPP, it's the offset of the PPP type field.
326 	 *
327 	 * For Cisco HDLC, it's the offset of the CHDLC type field.
328 	 *
329 	 * For BSD loopback, it's the offset of the AF_ value.
330 	 *
331 	 * For Linux cooked sockets, it's the offset of the type field.
332 	 *
333 	 * off_linktype.constant_part is set to OFFSET_NOT_SET for no
334 	 * encapsulation, in which case, IP is assumed.
335 	 */
336 	bpf_abs_offset off_linktype;
337 
338 	/*
339 	 * TRUE if the link layer includes an ATM pseudo-header.
340 	 */
341 	int is_atm;
342 
343 	/*
344 	 * TRUE if "geneve" appeared in the filter; it causes us to
345 	 * generate code that checks for a Geneve header and assume
346 	 * that later filters apply to the encapsulated payload.
347 	 */
348 	int is_geneve;
349 
350 	/*
351 	 * TRUE if we need variable length part of VLAN offset
352 	 */
353 	int is_vlan_vloffset;
354 
355 	/*
356 	 * These are offsets for the ATM pseudo-header.
357 	 */
358 	u_int off_vpi;
359 	u_int off_vci;
360 	u_int off_proto;
361 
362 	/*
363 	 * These are offsets for the MTP2 fields.
364 	 */
365 	u_int off_li;
366 	u_int off_li_hsl;
367 
368 	/*
369 	 * These are offsets for the MTP3 fields.
370 	 */
371 	u_int off_sio;
372 	u_int off_opc;
373 	u_int off_dpc;
374 	u_int off_sls;
375 
376 	/*
377 	 * This is the offset of the first byte after the ATM pseudo_header,
378 	 * or -1 if there is no ATM pseudo-header.
379 	 */
380 	u_int off_payload;
381 
382 	/*
383 	 * These are offsets to the beginning of the network-layer header.
384 	 * They are relative to the beginning of the link-layer payload
385 	 * (i.e., they don't include off_linkhdr.constant_part or
386 	 * off_linkpl.constant_part).
387 	 *
388 	 * If the link layer never uses 802.2 LLC:
389 	 *
390 	 *	"off_nl" and "off_nl_nosnap" are the same.
391 	 *
392 	 * If the link layer always uses 802.2 LLC:
393 	 *
394 	 *	"off_nl" is the offset if there's a SNAP header following
395 	 *	the 802.2 header;
396 	 *
397 	 *	"off_nl_nosnap" is the offset if there's no SNAP header.
398 	 *
399 	 * If the link layer is Ethernet:
400 	 *
401 	 *	"off_nl" is the offset if the packet is an Ethernet II packet
402 	 *	(we assume no 802.3+802.2+SNAP);
403 	 *
404 	 *	"off_nl_nosnap" is the offset if the packet is an 802.3 packet
405 	 *	with an 802.2 header following it.
406 	 */
407 	u_int off_nl;
408 	u_int off_nl_nosnap;
409 
410 	/*
411 	 * Here we handle simple allocation of the scratch registers.
412 	 * If too many registers are alloc'd, the allocator punts.
413 	 */
414 	int regused[BPF_MEMWORDS];
415 	int curreg;
416 
417 	/*
418 	 * Memory chunks.
419 	 */
420 	struct chunk chunks[NCHUNKS];
421 	int cur_chunk;
422 };
423 
424 /*
425  * For use by routines outside this file.
426  */
427 /* VARARGS */
428 void
429 bpf_set_error(compiler_state_t *cstate, const char *fmt, ...)
430 {
431 	va_list ap;
432 
433 	/*
434 	 * If we've already set an error, don't override it.
435 	 * The lexical analyzer reports some errors by setting
436 	 * the error and then returning a LEX_ERROR token, which
437 	 * is not recognized by any grammar rule, and thus forces
438 	 * the parse to stop.  We don't want the error reported
439 	 * by the lexical analyzer to be overwritten by the syntax
440 	 * error.
441 	 */
442 	if (!cstate->error_set) {
443 		va_start(ap, fmt);
444 		(void)vsnprintf(cstate->bpf_pcap->errbuf, PCAP_ERRBUF_SIZE,
445 		    fmt, ap);
446 		va_end(ap);
447 		cstate->error_set = 1;
448 	}
449 }
450 
451 /*
452  * For use *ONLY* in routines in this file.
453  */
454 static void PCAP_NORETURN bpf_error(compiler_state_t *, const char *, ...)
455     PCAP_PRINTFLIKE(2, 3);
456 
457 /* VARARGS */
458 static void PCAP_NORETURN
459 bpf_error(compiler_state_t *cstate, const char *fmt, ...)
460 {
461 	va_list ap;
462 
463 	va_start(ap, fmt);
464 	(void)vsnprintf(cstate->bpf_pcap->errbuf, PCAP_ERRBUF_SIZE,
465 	    fmt, ap);
466 	va_end(ap);
467 	longjmp(cstate->top_ctx, 1);
468 	/*NOTREACHED*/
469 #ifdef _AIX
470 	PCAP_UNREACHABLE
471 #endif /* _AIX */
472 }
473 
474 static int init_linktype(compiler_state_t *, pcap_t *);
475 
476 static void init_regs(compiler_state_t *);
477 static int alloc_reg(compiler_state_t *);
478 static void free_reg(compiler_state_t *, int);
479 
480 static void initchunks(compiler_state_t *cstate);
481 static void *newchunk_nolongjmp(compiler_state_t *cstate, size_t);
482 static void *newchunk(compiler_state_t *cstate, size_t);
483 static void freechunks(compiler_state_t *cstate);
484 static inline struct block *new_block(compiler_state_t *cstate, int);
485 static inline struct slist *new_stmt(compiler_state_t *cstate, int);
486 static struct block *gen_retblk(compiler_state_t *cstate, int);
487 static inline void syntax(compiler_state_t *cstate);
488 
489 static void backpatch(struct block *, struct block *);
490 static void merge(struct block *, struct block *);
491 static struct block *gen_cmp(compiler_state_t *, enum e_offrel, u_int,
492     u_int, bpf_u_int32);
493 static struct block *gen_cmp_gt(compiler_state_t *, enum e_offrel, u_int,
494     u_int, bpf_u_int32);
495 static struct block *gen_cmp_ge(compiler_state_t *, enum e_offrel, u_int,
496     u_int, bpf_u_int32);
497 static struct block *gen_cmp_lt(compiler_state_t *, enum e_offrel, u_int,
498     u_int, bpf_u_int32);
499 static struct block *gen_cmp_le(compiler_state_t *, enum e_offrel, u_int,
500     u_int, bpf_u_int32);
501 static struct block *gen_mcmp(compiler_state_t *, enum e_offrel, u_int,
502     u_int, bpf_u_int32, bpf_u_int32);
503 static struct block *gen_bcmp(compiler_state_t *, enum e_offrel, u_int,
504     u_int, const u_char *);
505 static struct block *gen_ncmp(compiler_state_t *, enum e_offrel, u_int,
506     u_int, bpf_u_int32, int, int, bpf_u_int32);
507 static struct slist *gen_load_absoffsetrel(compiler_state_t *, bpf_abs_offset *,
508     u_int, u_int);
509 static struct slist *gen_load_a(compiler_state_t *, enum e_offrel, u_int,
510     u_int);
511 static struct slist *gen_loadx_iphdrlen(compiler_state_t *);
512 static struct block *gen_uncond(compiler_state_t *, int);
513 static inline struct block *gen_true(compiler_state_t *);
514 static inline struct block *gen_false(compiler_state_t *);
515 static struct block *gen_ether_linktype(compiler_state_t *, bpf_u_int32);
516 static struct block *gen_ipnet_linktype(compiler_state_t *, bpf_u_int32);
517 static struct block *gen_linux_sll_linktype(compiler_state_t *, bpf_u_int32);
518 static struct slist *gen_load_pflog_llprefixlen(compiler_state_t *);
519 static struct slist *gen_load_prism_llprefixlen(compiler_state_t *);
520 static struct slist *gen_load_avs_llprefixlen(compiler_state_t *);
521 static struct slist *gen_load_radiotap_llprefixlen(compiler_state_t *);
522 static struct slist *gen_load_ppi_llprefixlen(compiler_state_t *);
523 static void insert_compute_vloffsets(compiler_state_t *, struct block *);
524 static struct slist *gen_abs_offset_varpart(compiler_state_t *,
525     bpf_abs_offset *);
526 static bpf_u_int32 ethertype_to_ppptype(bpf_u_int32);
527 static struct block *gen_linktype(compiler_state_t *, bpf_u_int32);
528 static struct block *gen_snap(compiler_state_t *, bpf_u_int32, bpf_u_int32);
529 static struct block *gen_llc_linktype(compiler_state_t *, bpf_u_int32);
530 static struct block *gen_hostop(compiler_state_t *, bpf_u_int32, bpf_u_int32,
531     int, bpf_u_int32, u_int, u_int);
532 #ifdef INET6
533 static struct block *gen_hostop6(compiler_state_t *, struct in6_addr *,
534     struct in6_addr *, int, bpf_u_int32, u_int, u_int);
535 #endif
536 static struct block *gen_ahostop(compiler_state_t *, const u_char *, int);
537 static struct block *gen_ehostop(compiler_state_t *, const u_char *, int);
538 static struct block *gen_fhostop(compiler_state_t *, const u_char *, int);
539 static struct block *gen_thostop(compiler_state_t *, const u_char *, int);
540 static struct block *gen_wlanhostop(compiler_state_t *, const u_char *, int);
541 static struct block *gen_ipfchostop(compiler_state_t *, const u_char *, int);
542 static struct block *gen_dnhostop(compiler_state_t *, bpf_u_int32, int);
543 static struct block *gen_mpls_linktype(compiler_state_t *, bpf_u_int32);
544 static struct block *gen_host(compiler_state_t *, bpf_u_int32, bpf_u_int32,
545     int, int, int);
546 #ifdef INET6
547 static struct block *gen_host6(compiler_state_t *, struct in6_addr *,
548     struct in6_addr *, int, int, int);
549 #endif
550 #ifndef INET6
551 static struct block *gen_gateway(compiler_state_t *, const u_char *,
552     struct addrinfo *, int, int);
553 #endif
554 static struct block *gen_ipfrag(compiler_state_t *);
555 static struct block *gen_portatom(compiler_state_t *, int, bpf_u_int32);
556 static struct block *gen_portrangeatom(compiler_state_t *, u_int, bpf_u_int32,
557     bpf_u_int32);
558 static struct block *gen_portatom6(compiler_state_t *, int, bpf_u_int32);
559 static struct block *gen_portrangeatom6(compiler_state_t *, u_int, bpf_u_int32,
560     bpf_u_int32);
561 static struct block *gen_portop(compiler_state_t *, u_int, u_int, int);
562 static struct block *gen_port(compiler_state_t *, u_int, int, int);
563 static struct block *gen_portrangeop(compiler_state_t *, u_int, u_int,
564     bpf_u_int32, int);
565 static struct block *gen_portrange(compiler_state_t *, u_int, u_int, int, int);
566 struct block *gen_portop6(compiler_state_t *, u_int, u_int, int);
567 static struct block *gen_port6(compiler_state_t *, u_int, int, int);
568 static struct block *gen_portrangeop6(compiler_state_t *, u_int, u_int,
569     bpf_u_int32, int);
570 static struct block *gen_portrange6(compiler_state_t *, u_int, u_int, int, int);
571 static int lookup_proto(compiler_state_t *, const char *, int);
572 #if !defined(NO_PROTOCHAIN)
573 static struct block *gen_protochain(compiler_state_t *, bpf_u_int32, int);
574 #endif /* !defined(NO_PROTOCHAIN) */
575 static struct block *gen_proto(compiler_state_t *, bpf_u_int32, int, int);
576 static struct slist *xfer_to_x(compiler_state_t *, struct arth *);
577 static struct slist *xfer_to_a(compiler_state_t *, struct arth *);
578 static struct block *gen_mac_multicast(compiler_state_t *, int);
579 static struct block *gen_len(compiler_state_t *, int, int);
580 static struct block *gen_check_802_11_data_frame(compiler_state_t *);
581 static struct block *gen_geneve_ll_check(compiler_state_t *cstate);
582 
583 static struct block *gen_ppi_dlt_check(compiler_state_t *);
584 static struct block *gen_atmfield_code_internal(compiler_state_t *, int,
585     bpf_u_int32, int, int);
586 static struct block *gen_atmtype_llc(compiler_state_t *);
587 static struct block *gen_msg_abbrev(compiler_state_t *, int type);
588 
589 static void
590 initchunks(compiler_state_t *cstate)
591 {
592 	int i;
593 
594 	for (i = 0; i < NCHUNKS; i++) {
595 		cstate->chunks[i].n_left = 0;
596 		cstate->chunks[i].m = NULL;
597 	}
598 	cstate->cur_chunk = 0;
599 }
600 
601 static void *
602 newchunk_nolongjmp(compiler_state_t *cstate, size_t n)
603 {
604 	struct chunk *cp;
605 	int k;
606 	size_t size;
607 
608 #ifndef __NetBSD__
609 	/* XXX Round up to nearest long. */
610 	n = (n + sizeof(long) - 1) & ~(sizeof(long) - 1);
611 #else
612 	/* XXX Round up to structure boundary. */
613 	n = ALIGN(n);
614 #endif
615 
616 	cp = &cstate->chunks[cstate->cur_chunk];
617 	if (n > cp->n_left) {
618 		++cp;
619 		k = ++cstate->cur_chunk;
620 		if (k >= NCHUNKS) {
621 			bpf_set_error(cstate, "out of memory");
622 			return (NULL);
623 		}
624 		size = CHUNK0SIZE << k;
625 		cp->m = (void *)malloc(size);
626 		if (cp->m == NULL) {
627 			bpf_set_error(cstate, "out of memory");
628 			return (NULL);
629 		}
630 		memset((char *)cp->m, 0, size);
631 		cp->n_left = size;
632 		if (n > size) {
633 			bpf_set_error(cstate, "out of memory");
634 			return (NULL);
635 		}
636 	}
637 	cp->n_left -= n;
638 	return (void *)((char *)cp->m + cp->n_left);
639 }
640 
641 static void *
642 newchunk(compiler_state_t *cstate, size_t n)
643 {
644 	void *p;
645 
646 	p = newchunk_nolongjmp(cstate, n);
647 	if (p == NULL) {
648 		longjmp(cstate->top_ctx, 1);
649 		/*NOTREACHED*/
650 	}
651 	return (p);
652 }
653 
654 static void
655 freechunks(compiler_state_t *cstate)
656 {
657 	int i;
658 
659 	for (i = 0; i < NCHUNKS; ++i)
660 		if (cstate->chunks[i].m != NULL)
661 			free(cstate->chunks[i].m);
662 }
663 
664 /*
665  * A strdup whose allocations are freed after code generation is over.
666  * This is used by the lexical analyzer, so it can't longjmp; it just
667  * returns NULL on an allocation error, and the callers must check
668  * for it.
669  */
670 char *
671 sdup(compiler_state_t *cstate, const char *s)
672 {
673 	size_t n = strlen(s) + 1;
674 	char *cp = newchunk_nolongjmp(cstate, n);
675 
676 	if (cp == NULL)
677 		return (NULL);
678 	pcap_strlcpy(cp, s, n);
679 	return (cp);
680 }
681 
682 static inline struct block *
683 new_block(compiler_state_t *cstate, int code)
684 {
685 	struct block *p;
686 
687 	p = (struct block *)newchunk(cstate, sizeof(*p));
688 	p->s.code = code;
689 	p->head = p;
690 
691 	return p;
692 }
693 
694 static inline struct slist *
695 new_stmt(compiler_state_t *cstate, int code)
696 {
697 	struct slist *p;
698 
699 	p = (struct slist *)newchunk(cstate, sizeof(*p));
700 	p->s.code = code;
701 
702 	return p;
703 }
704 
705 static struct block *
706 gen_retblk(compiler_state_t *cstate, int v)
707 {
708 	struct block *b = new_block(cstate, BPF_RET|BPF_K);
709 
710 	b->s.k = v;
711 	return b;
712 }
713 
714 static inline PCAP_NORETURN_DEF void
715 syntax(compiler_state_t *cstate)
716 {
717 	bpf_error(cstate, "syntax error in filter expression");
718 }
719 
720 int
721 pcap_compile(pcap_t *p, struct bpf_program *program,
722 	     const char *buf, int optimize, bpf_u_int32 mask)
723 {
724 #ifdef _WIN32
725 	static int done = 0;
726 #endif
727 	compiler_state_t cstate;
728 	const char * volatile xbuf = buf;
729 	yyscan_t scanner = NULL;
730 	volatile YY_BUFFER_STATE in_buffer = NULL;
731 	u_int len;
732 	int  rc;
733 
734 	/*
735 	 * If this pcap_t hasn't been activated, it doesn't have a
736 	 * link-layer type, so we can't use it.
737 	 */
738 	if (!p->activated) {
739 		snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
740 		    "not-yet-activated pcap_t passed to pcap_compile");
741 		return (PCAP_ERROR);
742 	}
743 
744 #ifdef _WIN32
745 	if (!done)
746 		pcap_wsockinit();
747 	done = 1;
748 #endif
749 
750 #ifdef ENABLE_REMOTE
751 	/*
752 	 * If the device on which we're capturing need to be notified
753 	 * that a new filter is being compiled, do so.
754 	 *
755 	 * This allows them to save a copy of it, in case, for example,
756 	 * they're implementing a form of remote packet capture, and
757 	 * want the remote machine to filter out the packets in which
758 	 * it's sending the packets it's captured.
759 	 *
760 	 * XXX - the fact that we happen to be compiling a filter
761 	 * doesn't necessarily mean we'll be installing it as the
762 	 * filter for this pcap_t; we might be running it from userland
763 	 * on captured packets to do packet classification.  We really
764 	 * need a better way of handling this, but this is all that
765 	 * the WinPcap remote capture code did.
766 	 */
767 	if (p->save_current_filter_op != NULL)
768 		(p->save_current_filter_op)(p, buf);
769 #endif
770 
771 	initchunks(&cstate);
772 	cstate.no_optimize = 0;
773 #ifdef INET6
774 	cstate.ai = NULL;
775 #endif
776 	cstate.e = NULL;
777 	cstate.ic.root = NULL;
778 	cstate.ic.cur_mark = 0;
779 	cstate.bpf_pcap = p;
780 	cstate.error_set = 0;
781 	init_regs(&cstate);
782 
783 	cstate.netmask = mask;
784 
785 	cstate.snaplen = pcap_snapshot(p);
786 	if (cstate.snaplen == 0) {
787 		snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
788 			 "snaplen of 0 rejects all packets");
789 		rc = PCAP_ERROR;
790 		goto quit;
791 	}
792 
793 	if (pcap_lex_init(&scanner) != 0)
794 		pcap_fmt_errmsg_for_errno(p->errbuf, PCAP_ERRBUF_SIZE,
795 		    errno, "can't initialize scanner");
796 	in_buffer = pcap__scan_string(xbuf ? xbuf : "", scanner);
797 
798 	/*
799 	 * Associate the compiler state with the lexical analyzer
800 	 * state.
801 	 */
802 	pcap_set_extra(&cstate, scanner);
803 
804 	if (init_linktype(&cstate, p) == -1) {
805 		rc = PCAP_ERROR;
806 		goto quit;
807 	}
808 	if (pcap_parse(scanner, &cstate) != 0) {
809 #ifdef INET6
810 		if (cstate.ai != NULL)
811 			freeaddrinfo(cstate.ai);
812 #endif
813 		if (cstate.e != NULL)
814 			free(cstate.e);
815 		rc = PCAP_ERROR;
816 		goto quit;
817 	}
818 
819 	if (cstate.ic.root == NULL) {
820 		/*
821 		 * Catch errors reported by gen_retblk().
822 		 */
823 		if (setjmp(cstate.top_ctx)) {
824 			rc = PCAP_ERROR;
825 			goto quit;
826 		}
827 		cstate.ic.root = gen_retblk(&cstate, cstate.snaplen);
828 	}
829 
830 	if (optimize && !cstate.no_optimize) {
831 		if (bpf_optimize(&cstate.ic, p->errbuf) == -1) {
832 			/* Failure */
833 			rc = PCAP_ERROR;
834 			goto quit;
835 		}
836 		if (cstate.ic.root == NULL ||
837 		    (cstate.ic.root->s.code == (BPF_RET|BPF_K) && cstate.ic.root->s.k == 0)) {
838 			(void)snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
839 			    "expression rejects all packets");
840 			rc = PCAP_ERROR;
841 			goto quit;
842 		}
843 	}
844 	program->bf_insns = icode_to_fcode(&cstate.ic,
845 	    cstate.ic.root, &len, p->errbuf);
846 	if (program->bf_insns == NULL) {
847 		/* Failure */
848 		rc = PCAP_ERROR;
849 		goto quit;
850 	}
851 	program->bf_len = len;
852 
853 	rc = 0;  /* We're all okay */
854 
855 quit:
856 	/*
857 	 * Clean up everything for the lexical analyzer.
858 	 */
859 	if (in_buffer != NULL)
860 		pcap__delete_buffer(in_buffer, scanner);
861 	if (scanner != NULL)
862 		pcap_lex_destroy(scanner);
863 
864 	/*
865 	 * Clean up our own allocated memory.
866 	 */
867 	freechunks(&cstate);
868 
869 	return (rc);
870 }
871 
872 /*
873  * entry point for using the compiler with no pcap open
874  * pass in all the stuff that is needed explicitly instead.
875  */
876 int
877 pcap_compile_nopcap(int snaplen_arg, int linktype_arg,
878 		    struct bpf_program *program,
879 	     const char *buf, int optimize, bpf_u_int32 mask)
880 {
881 	pcap_t *p;
882 	int ret;
883 
884 	p = pcap_open_dead(linktype_arg, snaplen_arg);
885 	if (p == NULL)
886 		return (PCAP_ERROR);
887 	ret = pcap_compile(p, program, buf, optimize, mask);
888 	pcap_close(p);
889 	return (ret);
890 }
891 
892 /*
893  * Clean up a "struct bpf_program" by freeing all the memory allocated
894  * in it.
895  */
896 void
897 pcap_freecode(struct bpf_program *program)
898 {
899 	program->bf_len = 0;
900 	if (program->bf_insns != NULL) {
901 		free((char *)program->bf_insns);
902 		program->bf_insns = NULL;
903 	}
904 }
905 
906 /*
907  * Backpatch the blocks in 'list' to 'target'.  The 'sense' field indicates
908  * which of the jt and jf fields has been resolved and which is a pointer
909  * back to another unresolved block (or nil).  At least one of the fields
910  * in each block is already resolved.
911  */
912 static void
913 backpatch(struct block *list, struct block *target)
914 {
915 	struct block *next;
916 
917 	while (list) {
918 		if (!list->sense) {
919 			next = JT(list);
920 			JT(list) = target;
921 		} else {
922 			next = JF(list);
923 			JF(list) = target;
924 		}
925 		list = next;
926 	}
927 }
928 
929 /*
930  * Merge the lists in b0 and b1, using the 'sense' field to indicate
931  * which of jt and jf is the link.
932  */
933 static void
934 merge(struct block *b0, struct block *b1)
935 {
936 	register struct block **p = &b0;
937 
938 	/* Find end of list. */
939 	while (*p)
940 		p = !((*p)->sense) ? &JT(*p) : &JF(*p);
941 
942 	/* Concatenate the lists. */
943 	*p = b1;
944 }
945 
946 int
947 finish_parse(compiler_state_t *cstate, struct block *p)
948 {
949 	struct block *ppi_dlt_check;
950 
951 	/*
952 	 * Catch errors reported by us and routines below us, and return -1
953 	 * on an error.
954 	 */
955 	if (setjmp(cstate->top_ctx))
956 		return (-1);
957 
958 	/*
959 	 * Insert before the statements of the first (root) block any
960 	 * statements needed to load the lengths of any variable-length
961 	 * headers into registers.
962 	 *
963 	 * XXX - a fancier strategy would be to insert those before the
964 	 * statements of all blocks that use those lengths and that
965 	 * have no predecessors that use them, so that we only compute
966 	 * the lengths if we need them.  There might be even better
967 	 * approaches than that.
968 	 *
969 	 * However, those strategies would be more complicated, and
970 	 * as we don't generate code to compute a length if the
971 	 * program has no tests that use the length, and as most
972 	 * tests will probably use those lengths, we would just
973 	 * postpone computing the lengths so that it's not done
974 	 * for tests that fail early, and it's not clear that's
975 	 * worth the effort.
976 	 */
977 	insert_compute_vloffsets(cstate, p->head);
978 
979 	/*
980 	 * For DLT_PPI captures, generate a check of the per-packet
981 	 * DLT value to make sure it's DLT_IEEE802_11.
982 	 *
983 	 * XXX - TurboCap cards use DLT_PPI for Ethernet.
984 	 * Can we just define some DLT_ETHERNET_WITH_PHDR pseudo-header
985 	 * with appropriate Ethernet information and use that rather
986 	 * than using something such as DLT_PPI where you don't know
987 	 * the link-layer header type until runtime, which, in the
988 	 * general case, would force us to generate both Ethernet *and*
989 	 * 802.11 code (*and* anything else for which PPI is used)
990 	 * and choose between them early in the BPF program?
991 	 */
992 	ppi_dlt_check = gen_ppi_dlt_check(cstate);
993 	if (ppi_dlt_check != NULL)
994 		gen_and(ppi_dlt_check, p);
995 
996 	backpatch(p, gen_retblk(cstate, cstate->snaplen));
997 	p->sense = !p->sense;
998 	backpatch(p, gen_retblk(cstate, 0));
999 	cstate->ic.root = p->head;
1000 	return (0);
1001 }
1002 
1003 void
1004 gen_and(struct block *b0, struct block *b1)
1005 {
1006 	backpatch(b0, b1->head);
1007 	b0->sense = !b0->sense;
1008 	b1->sense = !b1->sense;
1009 	merge(b1, b0);
1010 	b1->sense = !b1->sense;
1011 	b1->head = b0->head;
1012 }
1013 
1014 void
1015 gen_or(struct block *b0, struct block *b1)
1016 {
1017 	b0->sense = !b0->sense;
1018 	backpatch(b0, b1->head);
1019 	b0->sense = !b0->sense;
1020 	merge(b1, b0);
1021 	b1->head = b0->head;
1022 }
1023 
1024 void
1025 gen_not(struct block *b)
1026 {
1027 	b->sense = !b->sense;
1028 }
1029 
1030 static struct block *
1031 gen_cmp(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1032     u_int size, bpf_u_int32 v)
1033 {
1034 	return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JEQ, 0, v);
1035 }
1036 
1037 static struct block *
1038 gen_cmp_gt(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1039     u_int size, bpf_u_int32 v)
1040 {
1041 	return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGT, 0, v);
1042 }
1043 
1044 static struct block *
1045 gen_cmp_ge(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1046     u_int size, bpf_u_int32 v)
1047 {
1048 	return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGE, 0, v);
1049 }
1050 
1051 static struct block *
1052 gen_cmp_lt(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1053     u_int size, bpf_u_int32 v)
1054 {
1055 	return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGE, 1, v);
1056 }
1057 
1058 static struct block *
1059 gen_cmp_le(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1060     u_int size, bpf_u_int32 v)
1061 {
1062 	return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGT, 1, v);
1063 }
1064 
1065 static struct block *
1066 gen_mcmp(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1067     u_int size, bpf_u_int32 v, bpf_u_int32 mask)
1068 {
1069 	return gen_ncmp(cstate, offrel, offset, size, mask, BPF_JEQ, 0, v);
1070 }
1071 
1072 static struct block *
1073 gen_bcmp(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1074     u_int size, const u_char *v)
1075 {
1076 	register struct block *b, *tmp;
1077 
1078 	b = NULL;
1079 	while (size >= 4) {
1080 		register const u_char *p = &v[size - 4];
1081 
1082 		tmp = gen_cmp(cstate, offrel, offset + size - 4, BPF_W,
1083 		    EXTRACT_BE_U_4(p));
1084 		if (b != NULL)
1085 			gen_and(b, tmp);
1086 		b = tmp;
1087 		size -= 4;
1088 	}
1089 	while (size >= 2) {
1090 		register const u_char *p = &v[size - 2];
1091 
1092 		tmp = gen_cmp(cstate, offrel, offset + size - 2, BPF_H,
1093 		    EXTRACT_BE_U_2(p));
1094 		if (b != NULL)
1095 			gen_and(b, tmp);
1096 		b = tmp;
1097 		size -= 2;
1098 	}
1099 	if (size > 0) {
1100 		tmp = gen_cmp(cstate, offrel, offset, BPF_B, v[0]);
1101 		if (b != NULL)
1102 			gen_and(b, tmp);
1103 		b = tmp;
1104 	}
1105 	return b;
1106 }
1107 
1108 /*
1109  * AND the field of size "size" at offset "offset" relative to the header
1110  * specified by "offrel" with "mask", and compare it with the value "v"
1111  * with the test specified by "jtype"; if "reverse" is true, the test
1112  * should test the opposite of "jtype".
1113  */
1114 static struct block *
1115 gen_ncmp(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1116     u_int size, bpf_u_int32 mask, int jtype, int reverse,
1117     bpf_u_int32 v)
1118 {
1119 	struct slist *s, *s2;
1120 	struct block *b;
1121 
1122 	s = gen_load_a(cstate, offrel, offset, size);
1123 
1124 	if (mask != 0xffffffff) {
1125 		s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
1126 		s2->s.k = mask;
1127 		sappend(s, s2);
1128 	}
1129 
1130 	b = new_block(cstate, JMP(jtype));
1131 	b->stmts = s;
1132 	b->s.k = v;
1133 	if (reverse && (jtype == BPF_JGT || jtype == BPF_JGE))
1134 		gen_not(b);
1135 	return b;
1136 }
1137 
1138 static int
1139 init_linktype(compiler_state_t *cstate, pcap_t *p)
1140 {
1141 	cstate->pcap_fddipad = p->fddipad;
1142 
1143 	/*
1144 	 * We start out with only one link-layer header.
1145 	 */
1146 	cstate->outermostlinktype = pcap_datalink(p);
1147 	cstate->off_outermostlinkhdr.constant_part = 0;
1148 	cstate->off_outermostlinkhdr.is_variable = 0;
1149 	cstate->off_outermostlinkhdr.reg = -1;
1150 
1151 	cstate->prevlinktype = cstate->outermostlinktype;
1152 	cstate->off_prevlinkhdr.constant_part = 0;
1153 	cstate->off_prevlinkhdr.is_variable = 0;
1154 	cstate->off_prevlinkhdr.reg = -1;
1155 
1156 	cstate->linktype = cstate->outermostlinktype;
1157 	cstate->off_linkhdr.constant_part = 0;
1158 	cstate->off_linkhdr.is_variable = 0;
1159 	cstate->off_linkhdr.reg = -1;
1160 
1161 	/*
1162 	 * XXX
1163 	 */
1164 	cstate->off_linkpl.constant_part = 0;
1165 	cstate->off_linkpl.is_variable = 0;
1166 	cstate->off_linkpl.reg = -1;
1167 
1168 	cstate->off_linktype.constant_part = 0;
1169 	cstate->off_linktype.is_variable = 0;
1170 	cstate->off_linktype.reg = -1;
1171 
1172 	/*
1173 	 * Assume it's not raw ATM with a pseudo-header, for now.
1174 	 */
1175 	cstate->is_atm = 0;
1176 	cstate->off_vpi = OFFSET_NOT_SET;
1177 	cstate->off_vci = OFFSET_NOT_SET;
1178 	cstate->off_proto = OFFSET_NOT_SET;
1179 	cstate->off_payload = OFFSET_NOT_SET;
1180 
1181 	/*
1182 	 * And not Geneve.
1183 	 */
1184 	cstate->is_geneve = 0;
1185 
1186 	/*
1187 	 * No variable length VLAN offset by default
1188 	 */
1189 	cstate->is_vlan_vloffset = 0;
1190 
1191 	/*
1192 	 * And assume we're not doing SS7.
1193 	 */
1194 	cstate->off_li = OFFSET_NOT_SET;
1195 	cstate->off_li_hsl = OFFSET_NOT_SET;
1196 	cstate->off_sio = OFFSET_NOT_SET;
1197 	cstate->off_opc = OFFSET_NOT_SET;
1198 	cstate->off_dpc = OFFSET_NOT_SET;
1199 	cstate->off_sls = OFFSET_NOT_SET;
1200 
1201 	cstate->label_stack_depth = 0;
1202 	cstate->vlan_stack_depth = 0;
1203 
1204 	switch (cstate->linktype) {
1205 
1206 	case DLT_ARCNET:
1207 		cstate->off_linktype.constant_part = 2;
1208 		cstate->off_linkpl.constant_part = 6;
1209 		cstate->off_nl = 0;		/* XXX in reality, variable! */
1210 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1211 		break;
1212 
1213 	case DLT_ARCNET_LINUX:
1214 		cstate->off_linktype.constant_part = 4;
1215 		cstate->off_linkpl.constant_part = 8;
1216 		cstate->off_nl = 0;		/* XXX in reality, variable! */
1217 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1218 		break;
1219 
1220 	case DLT_EN10MB:
1221 		cstate->off_linktype.constant_part = 12;
1222 		cstate->off_linkpl.constant_part = 14;	/* Ethernet header length */
1223 		cstate->off_nl = 0;		/* Ethernet II */
1224 		cstate->off_nl_nosnap = 3;	/* 802.3+802.2 */
1225 		break;
1226 
1227 	case DLT_SLIP:
1228 		/*
1229 		 * SLIP doesn't have a link level type.  The 16 byte
1230 		 * header is hacked into our SLIP driver.
1231 		 */
1232 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1233 		cstate->off_linkpl.constant_part = 16;
1234 		cstate->off_nl = 0;
1235 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1236 		break;
1237 
1238 	case DLT_SLIP_BSDOS:
1239 		/* XXX this may be the same as the DLT_PPP_BSDOS case */
1240 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1241 		/* XXX end */
1242 		cstate->off_linkpl.constant_part = 24;
1243 		cstate->off_nl = 0;
1244 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1245 		break;
1246 
1247 	case DLT_NULL:
1248 	case DLT_LOOP:
1249 		cstate->off_linktype.constant_part = 0;
1250 		cstate->off_linkpl.constant_part = 4;
1251 		cstate->off_nl = 0;
1252 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1253 		break;
1254 
1255 	case DLT_ENC:
1256 		cstate->off_linktype.constant_part = 0;
1257 		cstate->off_linkpl.constant_part = 12;
1258 		cstate->off_nl = 0;
1259 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1260 		break;
1261 
1262 	case DLT_PPP:
1263 	case DLT_PPP_PPPD:
1264 	case DLT_C_HDLC:		/* BSD/OS Cisco HDLC */
1265 	case DLT_HDLC:			/* NetBSD (Cisco) HDLC */
1266 	case DLT_PPP_SERIAL:		/* NetBSD sync/async serial PPP */
1267 		cstate->off_linktype.constant_part = 2;	/* skip HDLC-like framing */
1268 		cstate->off_linkpl.constant_part = 4;	/* skip HDLC-like framing and protocol field */
1269 		cstate->off_nl = 0;
1270 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1271 		break;
1272 
1273 	case DLT_PPP_ETHER:
1274 		/*
1275 		 * This does no include the Ethernet header, and
1276 		 * only covers session state.
1277 		 */
1278 		cstate->off_linktype.constant_part = 6;
1279 		cstate->off_linkpl.constant_part = 8;
1280 		cstate->off_nl = 0;
1281 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1282 		break;
1283 
1284 	case DLT_PPP_BSDOS:
1285 		cstate->off_linktype.constant_part = 5;
1286 		cstate->off_linkpl.constant_part = 24;
1287 		cstate->off_nl = 0;
1288 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1289 		break;
1290 
1291 	case DLT_FDDI:
1292 		/*
1293 		 * FDDI doesn't really have a link-level type field.
1294 		 * We set "off_linktype" to the offset of the LLC header.
1295 		 *
1296 		 * To check for Ethernet types, we assume that SSAP = SNAP
1297 		 * is being used and pick out the encapsulated Ethernet type.
1298 		 * XXX - should we generate code to check for SNAP?
1299 		 */
1300 		cstate->off_linktype.constant_part = 13;
1301 		cstate->off_linktype.constant_part += cstate->pcap_fddipad;
1302 		cstate->off_linkpl.constant_part = 13;	/* FDDI MAC header length */
1303 		cstate->off_linkpl.constant_part += cstate->pcap_fddipad;
1304 		cstate->off_nl = 8;		/* 802.2+SNAP */
1305 		cstate->off_nl_nosnap = 3;	/* 802.2 */
1306 		break;
1307 
1308 	case DLT_IEEE802:
1309 		/*
1310 		 * Token Ring doesn't really have a link-level type field.
1311 		 * We set "off_linktype" to the offset of the LLC header.
1312 		 *
1313 		 * To check for Ethernet types, we assume that SSAP = SNAP
1314 		 * is being used and pick out the encapsulated Ethernet type.
1315 		 * XXX - should we generate code to check for SNAP?
1316 		 *
1317 		 * XXX - the header is actually variable-length.
1318 		 * Some various Linux patched versions gave 38
1319 		 * as "off_linktype" and 40 as "off_nl"; however,
1320 		 * if a token ring packet has *no* routing
1321 		 * information, i.e. is not source-routed, the correct
1322 		 * values are 20 and 22, as they are in the vanilla code.
1323 		 *
1324 		 * A packet is source-routed iff the uppermost bit
1325 		 * of the first byte of the source address, at an
1326 		 * offset of 8, has the uppermost bit set.  If the
1327 		 * packet is source-routed, the total number of bytes
1328 		 * of routing information is 2 plus bits 0x1F00 of
1329 		 * the 16-bit value at an offset of 14 (shifted right
1330 		 * 8 - figure out which byte that is).
1331 		 */
1332 		cstate->off_linktype.constant_part = 14;
1333 		cstate->off_linkpl.constant_part = 14;	/* Token Ring MAC header length */
1334 		cstate->off_nl = 8;		/* 802.2+SNAP */
1335 		cstate->off_nl_nosnap = 3;	/* 802.2 */
1336 		break;
1337 
1338 	case DLT_PRISM_HEADER:
1339 	case DLT_IEEE802_11_RADIO_AVS:
1340 	case DLT_IEEE802_11_RADIO:
1341 		cstate->off_linkhdr.is_variable = 1;
1342 		/* Fall through, 802.11 doesn't have a variable link
1343 		 * prefix but is otherwise the same. */
1344 		/* FALLTHROUGH */
1345 
1346 	case DLT_IEEE802_11:
1347 		/*
1348 		 * 802.11 doesn't really have a link-level type field.
1349 		 * We set "off_linktype.constant_part" to the offset of
1350 		 * the LLC header.
1351 		 *
1352 		 * To check for Ethernet types, we assume that SSAP = SNAP
1353 		 * is being used and pick out the encapsulated Ethernet type.
1354 		 * XXX - should we generate code to check for SNAP?
1355 		 *
1356 		 * We also handle variable-length radio headers here.
1357 		 * The Prism header is in theory variable-length, but in
1358 		 * practice it's always 144 bytes long.  However, some
1359 		 * drivers on Linux use ARPHRD_IEEE80211_PRISM, but
1360 		 * sometimes or always supply an AVS header, so we
1361 		 * have to check whether the radio header is a Prism
1362 		 * header or an AVS header, so, in practice, it's
1363 		 * variable-length.
1364 		 */
1365 		cstate->off_linktype.constant_part = 24;
1366 		cstate->off_linkpl.constant_part = 0;	/* link-layer header is variable-length */
1367 		cstate->off_linkpl.is_variable = 1;
1368 		cstate->off_nl = 8;		/* 802.2+SNAP */
1369 		cstate->off_nl_nosnap = 3;	/* 802.2 */
1370 		break;
1371 
1372 	case DLT_PPI:
1373 		/*
1374 		 * At the moment we treat PPI the same way that we treat
1375 		 * normal Radiotap encoded packets. The difference is in
1376 		 * the function that generates the code at the beginning
1377 		 * to compute the header length.  Since this code generator
1378 		 * of PPI supports bare 802.11 encapsulation only (i.e.
1379 		 * the encapsulated DLT should be DLT_IEEE802_11) we
1380 		 * generate code to check for this too.
1381 		 */
1382 		cstate->off_linktype.constant_part = 24;
1383 		cstate->off_linkpl.constant_part = 0;	/* link-layer header is variable-length */
1384 		cstate->off_linkpl.is_variable = 1;
1385 		cstate->off_linkhdr.is_variable = 1;
1386 		cstate->off_nl = 8;		/* 802.2+SNAP */
1387 		cstate->off_nl_nosnap = 3;	/* 802.2 */
1388 		break;
1389 
1390 	case DLT_ATM_RFC1483:
1391 	case DLT_ATM_CLIP:	/* Linux ATM defines this */
1392 		/*
1393 		 * assume routed, non-ISO PDUs
1394 		 * (i.e., LLC = 0xAA-AA-03, OUT = 0x00-00-00)
1395 		 *
1396 		 * XXX - what about ISO PDUs, e.g. CLNP, ISIS, ESIS,
1397 		 * or PPP with the PPP NLPID (e.g., PPPoA)?  The
1398 		 * latter would presumably be treated the way PPPoE
1399 		 * should be, so you can do "pppoe and udp port 2049"
1400 		 * or "pppoa and tcp port 80" and have it check for
1401 		 * PPPo{A,E} and a PPP protocol of IP and....
1402 		 */
1403 		cstate->off_linktype.constant_part = 0;
1404 		cstate->off_linkpl.constant_part = 0;	/* packet begins with LLC header */
1405 		cstate->off_nl = 8;		/* 802.2+SNAP */
1406 		cstate->off_nl_nosnap = 3;	/* 802.2 */
1407 		break;
1408 
1409 	case DLT_SUNATM:
1410 		/*
1411 		 * Full Frontal ATM; you get AALn PDUs with an ATM
1412 		 * pseudo-header.
1413 		 */
1414 		cstate->is_atm = 1;
1415 		cstate->off_vpi = SUNATM_VPI_POS;
1416 		cstate->off_vci = SUNATM_VCI_POS;
1417 		cstate->off_proto = PROTO_POS;
1418 		cstate->off_payload = SUNATM_PKT_BEGIN_POS;
1419 		cstate->off_linktype.constant_part = cstate->off_payload;
1420 		cstate->off_linkpl.constant_part = cstate->off_payload;	/* if LLC-encapsulated */
1421 		cstate->off_nl = 8;		/* 802.2+SNAP */
1422 		cstate->off_nl_nosnap = 3;	/* 802.2 */
1423 		break;
1424 
1425 	case DLT_RAW:
1426 	case DLT_IPV4:
1427 	case DLT_IPV6:
1428 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1429 		cstate->off_linkpl.constant_part = 0;
1430 		cstate->off_nl = 0;
1431 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1432 		break;
1433 
1434 	case DLT_LINUX_SLL:	/* fake header for Linux cooked socket v1 */
1435 		cstate->off_linktype.constant_part = 14;
1436 		cstate->off_linkpl.constant_part = 16;
1437 		cstate->off_nl = 0;
1438 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1439 		break;
1440 
1441 	case DLT_LINUX_SLL2:	/* fake header for Linux cooked socket v2 */
1442 		cstate->off_linktype.constant_part = 0;
1443 		cstate->off_linkpl.constant_part = 20;
1444 		cstate->off_nl = 0;
1445 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1446 		break;
1447 
1448 	case DLT_LTALK:
1449 		/*
1450 		 * LocalTalk does have a 1-byte type field in the LLAP header,
1451 		 * but really it just indicates whether there is a "short" or
1452 		 * "long" DDP packet following.
1453 		 */
1454 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1455 		cstate->off_linkpl.constant_part = 0;
1456 		cstate->off_nl = 0;
1457 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1458 		break;
1459 
1460 	case DLT_IP_OVER_FC:
1461 		/*
1462 		 * RFC 2625 IP-over-Fibre-Channel doesn't really have a
1463 		 * link-level type field.  We set "off_linktype" to the
1464 		 * offset of the LLC header.
1465 		 *
1466 		 * To check for Ethernet types, we assume that SSAP = SNAP
1467 		 * is being used and pick out the encapsulated Ethernet type.
1468 		 * XXX - should we generate code to check for SNAP? RFC
1469 		 * 2625 says SNAP should be used.
1470 		 */
1471 		cstate->off_linktype.constant_part = 16;
1472 		cstate->off_linkpl.constant_part = 16;
1473 		cstate->off_nl = 8;		/* 802.2+SNAP */
1474 		cstate->off_nl_nosnap = 3;	/* 802.2 */
1475 		break;
1476 
1477 	case DLT_FRELAY:
1478 		/*
1479 		 * XXX - we should set this to handle SNAP-encapsulated
1480 		 * frames (NLPID of 0x80).
1481 		 */
1482 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1483 		cstate->off_linkpl.constant_part = 0;
1484 		cstate->off_nl = 0;
1485 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1486 		break;
1487 
1488                 /*
1489                  * the only BPF-interesting FRF.16 frames are non-control frames;
1490                  * Frame Relay has a variable length link-layer
1491                  * so lets start with offset 4 for now and increments later on (FIXME);
1492                  */
1493 	case DLT_MFR:
1494 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1495 		cstate->off_linkpl.constant_part = 0;
1496 		cstate->off_nl = 4;
1497 		cstate->off_nl_nosnap = 0;	/* XXX - for now -> no 802.2 LLC */
1498 		break;
1499 
1500 	case DLT_APPLE_IP_OVER_IEEE1394:
1501 		cstate->off_linktype.constant_part = 16;
1502 		cstate->off_linkpl.constant_part = 18;
1503 		cstate->off_nl = 0;
1504 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1505 		break;
1506 
1507 	case DLT_SYMANTEC_FIREWALL:
1508 		cstate->off_linktype.constant_part = 6;
1509 		cstate->off_linkpl.constant_part = 44;
1510 		cstate->off_nl = 0;		/* Ethernet II */
1511 		cstate->off_nl_nosnap = 0;	/* XXX - what does it do with 802.3 packets? */
1512 		break;
1513 
1514 	case DLT_PFLOG:
1515 		cstate->off_linktype.constant_part = 0;
1516 		cstate->off_linkpl.constant_part = 0;	/* link-layer header is variable-length */
1517 		cstate->off_linkpl.is_variable = 1;
1518 		cstate->off_nl = 0;
1519 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1520 		break;
1521 
1522         case DLT_JUNIPER_MFR:
1523         case DLT_JUNIPER_MLFR:
1524         case DLT_JUNIPER_MLPPP:
1525         case DLT_JUNIPER_PPP:
1526         case DLT_JUNIPER_CHDLC:
1527         case DLT_JUNIPER_FRELAY:
1528 		cstate->off_linktype.constant_part = 4;
1529 		cstate->off_linkpl.constant_part = 4;
1530 		cstate->off_nl = 0;
1531 		cstate->off_nl_nosnap = OFFSET_NOT_SET;	/* no 802.2 LLC */
1532                 break;
1533 
1534 	case DLT_JUNIPER_ATM1:
1535 		cstate->off_linktype.constant_part = 4;		/* in reality variable between 4-8 */
1536 		cstate->off_linkpl.constant_part = 4;	/* in reality variable between 4-8 */
1537 		cstate->off_nl = 0;
1538 		cstate->off_nl_nosnap = 10;
1539 		break;
1540 
1541 	case DLT_JUNIPER_ATM2:
1542 		cstate->off_linktype.constant_part = 8;		/* in reality variable between 8-12 */
1543 		cstate->off_linkpl.constant_part = 8;	/* in reality variable between 8-12 */
1544 		cstate->off_nl = 0;
1545 		cstate->off_nl_nosnap = 10;
1546 		break;
1547 
1548 		/* frames captured on a Juniper PPPoE service PIC
1549 		 * contain raw ethernet frames */
1550 	case DLT_JUNIPER_PPPOE:
1551         case DLT_JUNIPER_ETHER:
1552 		cstate->off_linkpl.constant_part = 14;
1553 		cstate->off_linktype.constant_part = 16;
1554 		cstate->off_nl = 18;		/* Ethernet II */
1555 		cstate->off_nl_nosnap = 21;	/* 802.3+802.2 */
1556 		break;
1557 
1558 	case DLT_JUNIPER_PPPOE_ATM:
1559 		cstate->off_linktype.constant_part = 4;
1560 		cstate->off_linkpl.constant_part = 6;
1561 		cstate->off_nl = 0;
1562 		cstate->off_nl_nosnap = OFFSET_NOT_SET;	/* no 802.2 LLC */
1563 		break;
1564 
1565 	case DLT_JUNIPER_GGSN:
1566 		cstate->off_linktype.constant_part = 6;
1567 		cstate->off_linkpl.constant_part = 12;
1568 		cstate->off_nl = 0;
1569 		cstate->off_nl_nosnap = OFFSET_NOT_SET;	/* no 802.2 LLC */
1570 		break;
1571 
1572 	case DLT_JUNIPER_ES:
1573 		cstate->off_linktype.constant_part = 6;
1574 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;	/* not really a network layer but raw IP addresses */
1575 		cstate->off_nl = OFFSET_NOT_SET;	/* not really a network layer but raw IP addresses */
1576 		cstate->off_nl_nosnap = OFFSET_NOT_SET;	/* no 802.2 LLC */
1577 		break;
1578 
1579 	case DLT_JUNIPER_MONITOR:
1580 		cstate->off_linktype.constant_part = 12;
1581 		cstate->off_linkpl.constant_part = 12;
1582 		cstate->off_nl = 0;			/* raw IP/IP6 header */
1583 		cstate->off_nl_nosnap = OFFSET_NOT_SET;	/* no 802.2 LLC */
1584 		break;
1585 
1586 	case DLT_BACNET_MS_TP:
1587 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1588 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1589 		cstate->off_nl = OFFSET_NOT_SET;
1590 		cstate->off_nl_nosnap = OFFSET_NOT_SET;
1591 		break;
1592 
1593 	case DLT_JUNIPER_SERVICES:
1594 		cstate->off_linktype.constant_part = 12;
1595 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;	/* L3 proto location dep. on cookie type */
1596 		cstate->off_nl = OFFSET_NOT_SET;	/* L3 proto location dep. on cookie type */
1597 		cstate->off_nl_nosnap = OFFSET_NOT_SET;	/* no 802.2 LLC */
1598 		break;
1599 
1600 	case DLT_JUNIPER_VP:
1601 		cstate->off_linktype.constant_part = 18;
1602 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1603 		cstate->off_nl = OFFSET_NOT_SET;
1604 		cstate->off_nl_nosnap = OFFSET_NOT_SET;
1605 		break;
1606 
1607 	case DLT_JUNIPER_ST:
1608 		cstate->off_linktype.constant_part = 18;
1609 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1610 		cstate->off_nl = OFFSET_NOT_SET;
1611 		cstate->off_nl_nosnap = OFFSET_NOT_SET;
1612 		break;
1613 
1614 	case DLT_JUNIPER_ISM:
1615 		cstate->off_linktype.constant_part = 8;
1616 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1617 		cstate->off_nl = OFFSET_NOT_SET;
1618 		cstate->off_nl_nosnap = OFFSET_NOT_SET;
1619 		break;
1620 
1621 	case DLT_JUNIPER_VS:
1622 	case DLT_JUNIPER_SRX_E2E:
1623 	case DLT_JUNIPER_FIBRECHANNEL:
1624 	case DLT_JUNIPER_ATM_CEMIC:
1625 		cstate->off_linktype.constant_part = 8;
1626 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1627 		cstate->off_nl = OFFSET_NOT_SET;
1628 		cstate->off_nl_nosnap = OFFSET_NOT_SET;
1629 		break;
1630 
1631 	case DLT_MTP2:
1632 		cstate->off_li = 2;
1633 		cstate->off_li_hsl = 4;
1634 		cstate->off_sio = 3;
1635 		cstate->off_opc = 4;
1636 		cstate->off_dpc = 4;
1637 		cstate->off_sls = 7;
1638 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1639 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1640 		cstate->off_nl = OFFSET_NOT_SET;
1641 		cstate->off_nl_nosnap = OFFSET_NOT_SET;
1642 		break;
1643 
1644 	case DLT_MTP2_WITH_PHDR:
1645 		cstate->off_li = 6;
1646 		cstate->off_li_hsl = 8;
1647 		cstate->off_sio = 7;
1648 		cstate->off_opc = 8;
1649 		cstate->off_dpc = 8;
1650 		cstate->off_sls = 11;
1651 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1652 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1653 		cstate->off_nl = OFFSET_NOT_SET;
1654 		cstate->off_nl_nosnap = OFFSET_NOT_SET;
1655 		break;
1656 
1657 	case DLT_ERF:
1658 		cstate->off_li = 22;
1659 		cstate->off_li_hsl = 24;
1660 		cstate->off_sio = 23;
1661 		cstate->off_opc = 24;
1662 		cstate->off_dpc = 24;
1663 		cstate->off_sls = 27;
1664 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1665 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1666 		cstate->off_nl = OFFSET_NOT_SET;
1667 		cstate->off_nl_nosnap = OFFSET_NOT_SET;
1668 		break;
1669 
1670 	case DLT_PFSYNC:
1671 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1672 		cstate->off_linkpl.constant_part = 4;
1673 		cstate->off_nl = 0;
1674 		cstate->off_nl_nosnap = 0;
1675 		break;
1676 
1677 	case DLT_AX25_KISS:
1678 		/*
1679 		 * Currently, only raw "link[N:M]" filtering is supported.
1680 		 */
1681 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;	/* variable, min 15, max 71 steps of 7 */
1682 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1683 		cstate->off_nl = OFFSET_NOT_SET;	/* variable, min 16, max 71 steps of 7 */
1684 		cstate->off_nl_nosnap = OFFSET_NOT_SET;	/* no 802.2 LLC */
1685 		break;
1686 
1687 	case DLT_IPNET:
1688 		cstate->off_linktype.constant_part = 1;
1689 		cstate->off_linkpl.constant_part = 24;	/* ipnet header length */
1690 		cstate->off_nl = 0;
1691 		cstate->off_nl_nosnap = OFFSET_NOT_SET;
1692 		break;
1693 
1694 	case DLT_NETANALYZER:
1695 		cstate->off_linkhdr.constant_part = 4;	/* Ethernet header is past 4-byte pseudo-header */
1696 		cstate->off_linktype.constant_part = cstate->off_linkhdr.constant_part + 12;
1697 		cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 14;	/* pseudo-header+Ethernet header length */
1698 		cstate->off_nl = 0;		/* Ethernet II */
1699 		cstate->off_nl_nosnap = 3;	/* 802.3+802.2 */
1700 		break;
1701 
1702 	case DLT_NETANALYZER_TRANSPARENT:
1703 		cstate->off_linkhdr.constant_part = 12;	/* MAC header is past 4-byte pseudo-header, preamble, and SFD */
1704 		cstate->off_linktype.constant_part = cstate->off_linkhdr.constant_part + 12;
1705 		cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 14;	/* pseudo-header+preamble+SFD+Ethernet header length */
1706 		cstate->off_nl = 0;		/* Ethernet II */
1707 		cstate->off_nl_nosnap = 3;	/* 802.3+802.2 */
1708 		break;
1709 
1710 	default:
1711 		/*
1712 		 * For values in the range in which we've assigned new
1713 		 * DLT_ values, only raw "link[N:M]" filtering is supported.
1714 		 */
1715 		if (cstate->linktype >= DLT_MATCHING_MIN &&
1716 		    cstate->linktype <= DLT_MATCHING_MAX) {
1717 			cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1718 			cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1719 			cstate->off_nl = OFFSET_NOT_SET;
1720 			cstate->off_nl_nosnap = OFFSET_NOT_SET;
1721 		} else {
1722 			bpf_set_error(cstate, "unknown data link type %d (min %d, max %d)",
1723 			    cstate->linktype, DLT_MATCHING_MIN, DLT_MATCHING_MAX);
1724 			return (-1);
1725 		}
1726 		break;
1727 	}
1728 
1729 	cstate->off_outermostlinkhdr = cstate->off_prevlinkhdr = cstate->off_linkhdr;
1730 	return (0);
1731 }
1732 
1733 /*
1734  * Load a value relative to the specified absolute offset.
1735  */
1736 static struct slist *
1737 gen_load_absoffsetrel(compiler_state_t *cstate, bpf_abs_offset *abs_offset,
1738     u_int offset, u_int size)
1739 {
1740 	struct slist *s, *s2;
1741 
1742 	s = gen_abs_offset_varpart(cstate, abs_offset);
1743 
1744 	/*
1745 	 * If "s" is non-null, it has code to arrange that the X register
1746 	 * contains the variable part of the absolute offset, so we
1747 	 * generate a load relative to that, with an offset of
1748 	 * abs_offset->constant_part + offset.
1749 	 *
1750 	 * Otherwise, we can do an absolute load with an offset of
1751 	 * abs_offset->constant_part + offset.
1752 	 */
1753 	if (s != NULL) {
1754 		/*
1755 		 * "s" points to a list of statements that puts the
1756 		 * variable part of the absolute offset into the X register.
1757 		 * Do an indirect load, to use the X register as an offset.
1758 		 */
1759 		s2 = new_stmt(cstate, BPF_LD|BPF_IND|size);
1760 		s2->s.k = abs_offset->constant_part + offset;
1761 		sappend(s, s2);
1762 	} else {
1763 		/*
1764 		 * There is no variable part of the absolute offset, so
1765 		 * just do an absolute load.
1766 		 */
1767 		s = new_stmt(cstate, BPF_LD|BPF_ABS|size);
1768 		s->s.k = abs_offset->constant_part + offset;
1769 	}
1770 	return s;
1771 }
1772 
1773 /*
1774  * Load a value relative to the beginning of the specified header.
1775  */
1776 static struct slist *
1777 gen_load_a(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1778     u_int size)
1779 {
1780 	struct slist *s, *s2;
1781 
1782 	/*
1783 	 * Squelch warnings from compilers that *don't* assume that
1784 	 * offrel always has a valid enum value and therefore don't
1785 	 * assume that we'll always go through one of the case arms.
1786 	 *
1787 	 * If we have a default case, compilers that *do* assume that
1788 	 * will then complain about the default case code being
1789 	 * unreachable.
1790 	 *
1791 	 * Damned if you do, damned if you don't.
1792 	 */
1793 	s = NULL;
1794 
1795 	switch (offrel) {
1796 
1797 	case OR_PACKET:
1798                 s = new_stmt(cstate, BPF_LD|BPF_ABS|size);
1799                 s->s.k = offset;
1800 		break;
1801 
1802 	case OR_LINKHDR:
1803 		s = gen_load_absoffsetrel(cstate, &cstate->off_linkhdr, offset, size);
1804 		break;
1805 
1806 	case OR_PREVLINKHDR:
1807 		s = gen_load_absoffsetrel(cstate, &cstate->off_prevlinkhdr, offset, size);
1808 		break;
1809 
1810 	case OR_LLC:
1811 		s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, offset, size);
1812 		break;
1813 
1814 	case OR_PREVMPLSHDR:
1815 		s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl - 4 + offset, size);
1816 		break;
1817 
1818 	case OR_LINKPL:
1819 		s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl + offset, size);
1820 		break;
1821 
1822 	case OR_LINKPL_NOSNAP:
1823 		s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl_nosnap + offset, size);
1824 		break;
1825 
1826 	case OR_LINKTYPE:
1827 		s = gen_load_absoffsetrel(cstate, &cstate->off_linktype, offset, size);
1828 		break;
1829 
1830 	case OR_TRAN_IPV4:
1831 		/*
1832 		 * Load the X register with the length of the IPv4 header
1833 		 * (plus the offset of the link-layer header, if it's
1834 		 * preceded by a variable-length header such as a radio
1835 		 * header), in bytes.
1836 		 */
1837 		s = gen_loadx_iphdrlen(cstate);
1838 
1839 		/*
1840 		 * Load the item at {offset of the link-layer payload} +
1841 		 * {offset, relative to the start of the link-layer
1842 		 * paylod, of the IPv4 header} + {length of the IPv4 header} +
1843 		 * {specified offset}.
1844 		 *
1845 		 * If the offset of the link-layer payload is variable,
1846 		 * the variable part of that offset is included in the
1847 		 * value in the X register, and we include the constant
1848 		 * part in the offset of the load.
1849 		 */
1850 		s2 = new_stmt(cstate, BPF_LD|BPF_IND|size);
1851 		s2->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + offset;
1852 		sappend(s, s2);
1853 		break;
1854 
1855 	case OR_TRAN_IPV6:
1856 		s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl + 40 + offset, size);
1857 		break;
1858 	}
1859 	return s;
1860 }
1861 
1862 /*
1863  * Generate code to load into the X register the sum of the length of
1864  * the IPv4 header and the variable part of the offset of the link-layer
1865  * payload.
1866  */
1867 static struct slist *
1868 gen_loadx_iphdrlen(compiler_state_t *cstate)
1869 {
1870 	struct slist *s, *s2;
1871 
1872 	s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl);
1873 	if (s != NULL) {
1874 		/*
1875 		 * The offset of the link-layer payload has a variable
1876 		 * part.  "s" points to a list of statements that put
1877 		 * the variable part of that offset into the X register.
1878 		 *
1879 		 * The 4*([k]&0xf) addressing mode can't be used, as we
1880 		 * don't have a constant offset, so we have to load the
1881 		 * value in question into the A register and add to it
1882 		 * the value from the X register.
1883 		 */
1884 		s2 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
1885 		s2->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
1886 		sappend(s, s2);
1887 		s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
1888 		s2->s.k = 0xf;
1889 		sappend(s, s2);
1890 		s2 = new_stmt(cstate, BPF_ALU|BPF_LSH|BPF_K);
1891 		s2->s.k = 2;
1892 		sappend(s, s2);
1893 
1894 		/*
1895 		 * The A register now contains the length of the IP header.
1896 		 * We need to add to it the variable part of the offset of
1897 		 * the link-layer payload, which is still in the X
1898 		 * register, and move the result into the X register.
1899 		 */
1900 		sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
1901 		sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
1902 	} else {
1903 		/*
1904 		 * The offset of the link-layer payload is a constant,
1905 		 * so no code was generated to load the (non-existent)
1906 		 * variable part of that offset.
1907 		 *
1908 		 * This means we can use the 4*([k]&0xf) addressing
1909 		 * mode.  Load the length of the IPv4 header, which
1910 		 * is at an offset of cstate->off_nl from the beginning of
1911 		 * the link-layer payload, and thus at an offset of
1912 		 * cstate->off_linkpl.constant_part + cstate->off_nl from the beginning
1913 		 * of the raw packet data, using that addressing mode.
1914 		 */
1915 		s = new_stmt(cstate, BPF_LDX|BPF_MSH|BPF_B);
1916 		s->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
1917 	}
1918 	return s;
1919 }
1920 
1921 
1922 static struct block *
1923 gen_uncond(compiler_state_t *cstate, int rsense)
1924 {
1925 	struct block *b;
1926 	struct slist *s;
1927 
1928 	s = new_stmt(cstate, BPF_LD|BPF_IMM);
1929 	s->s.k = !rsense;
1930 	b = new_block(cstate, JMP(BPF_JEQ));
1931 	b->stmts = s;
1932 
1933 	return b;
1934 }
1935 
1936 static inline struct block *
1937 gen_true(compiler_state_t *cstate)
1938 {
1939 	return gen_uncond(cstate, 1);
1940 }
1941 
1942 static inline struct block *
1943 gen_false(compiler_state_t *cstate)
1944 {
1945 	return gen_uncond(cstate, 0);
1946 }
1947 
1948 /*
1949  * Byte-swap a 32-bit number.
1950  * ("htonl()" or "ntohl()" won't work - we want to byte-swap even on
1951  * big-endian platforms.)
1952  */
1953 #define	SWAPLONG(y) \
1954 ((((y)&0xff)<<24) | (((y)&0xff00)<<8) | (((y)&0xff0000)>>8) | (((y)>>24)&0xff))
1955 
1956 /*
1957  * Generate code to match a particular packet type.
1958  *
1959  * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
1960  * value, if <= ETHERMTU.  We use that to determine whether to
1961  * match the type/length field or to check the type/length field for
1962  * a value <= ETHERMTU to see whether it's a type field and then do
1963  * the appropriate test.
1964  */
1965 static struct block *
1966 gen_ether_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
1967 {
1968 	struct block *b0, *b1;
1969 
1970 	switch (ll_proto) {
1971 
1972 	case LLCSAP_ISONS:
1973 	case LLCSAP_IP:
1974 	case LLCSAP_NETBEUI:
1975 		/*
1976 		 * OSI protocols and NetBEUI always use 802.2 encapsulation,
1977 		 * so we check the DSAP and SSAP.
1978 		 *
1979 		 * LLCSAP_IP checks for IP-over-802.2, rather
1980 		 * than IP-over-Ethernet or IP-over-SNAP.
1981 		 *
1982 		 * XXX - should we check both the DSAP and the
1983 		 * SSAP, like this, or should we check just the
1984 		 * DSAP, as we do for other types <= ETHERMTU
1985 		 * (i.e., other SAP values)?
1986 		 */
1987 		b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
1988 		gen_not(b0);
1989 		b1 = gen_cmp(cstate, OR_LLC, 0, BPF_H, (ll_proto << 8) | ll_proto);
1990 		gen_and(b0, b1);
1991 		return b1;
1992 
1993 	case LLCSAP_IPX:
1994 		/*
1995 		 * Check for;
1996 		 *
1997 		 *	Ethernet_II frames, which are Ethernet
1998 		 *	frames with a frame type of ETHERTYPE_IPX;
1999 		 *
2000 		 *	Ethernet_802.3 frames, which are 802.3
2001 		 *	frames (i.e., the type/length field is
2002 		 *	a length field, <= ETHERMTU, rather than
2003 		 *	a type field) with the first two bytes
2004 		 *	after the Ethernet/802.3 header being
2005 		 *	0xFFFF;
2006 		 *
2007 		 *	Ethernet_802.2 frames, which are 802.3
2008 		 *	frames with an 802.2 LLC header and
2009 		 *	with the IPX LSAP as the DSAP in the LLC
2010 		 *	header;
2011 		 *
2012 		 *	Ethernet_SNAP frames, which are 802.3
2013 		 *	frames with an LLC header and a SNAP
2014 		 *	header and with an OUI of 0x000000
2015 		 *	(encapsulated Ethernet) and a protocol
2016 		 *	ID of ETHERTYPE_IPX in the SNAP header.
2017 		 *
2018 		 * XXX - should we generate the same code both
2019 		 * for tests for LLCSAP_IPX and for ETHERTYPE_IPX?
2020 		 */
2021 
2022 		/*
2023 		 * This generates code to check both for the
2024 		 * IPX LSAP (Ethernet_802.2) and for Ethernet_802.3.
2025 		 */
2026 		b0 = gen_cmp(cstate, OR_LLC, 0, BPF_B, LLCSAP_IPX);
2027 		b1 = gen_cmp(cstate, OR_LLC, 0, BPF_H, 0xFFFF);
2028 		gen_or(b0, b1);
2029 
2030 		/*
2031 		 * Now we add code to check for SNAP frames with
2032 		 * ETHERTYPE_IPX, i.e. Ethernet_SNAP.
2033 		 */
2034 		b0 = gen_snap(cstate, 0x000000, ETHERTYPE_IPX);
2035 		gen_or(b0, b1);
2036 
2037 		/*
2038 		 * Now we generate code to check for 802.3
2039 		 * frames in general.
2040 		 */
2041 		b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
2042 		gen_not(b0);
2043 
2044 		/*
2045 		 * Now add the check for 802.3 frames before the
2046 		 * check for Ethernet_802.2 and Ethernet_802.3,
2047 		 * as those checks should only be done on 802.3
2048 		 * frames, not on Ethernet frames.
2049 		 */
2050 		gen_and(b0, b1);
2051 
2052 		/*
2053 		 * Now add the check for Ethernet_II frames, and
2054 		 * do that before checking for the other frame
2055 		 * types.
2056 		 */
2057 		b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ETHERTYPE_IPX);
2058 		gen_or(b0, b1);
2059 		return b1;
2060 
2061 	case ETHERTYPE_ATALK:
2062 	case ETHERTYPE_AARP:
2063 		/*
2064 		 * EtherTalk (AppleTalk protocols on Ethernet link
2065 		 * layer) may use 802.2 encapsulation.
2066 		 */
2067 
2068 		/*
2069 		 * Check for 802.2 encapsulation (EtherTalk phase 2?);
2070 		 * we check for an Ethernet type field less than
2071 		 * 1500, which means it's an 802.3 length field.
2072 		 */
2073 		b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
2074 		gen_not(b0);
2075 
2076 		/*
2077 		 * 802.2-encapsulated ETHERTYPE_ATALK packets are
2078 		 * SNAP packets with an organization code of
2079 		 * 0x080007 (Apple, for Appletalk) and a protocol
2080 		 * type of ETHERTYPE_ATALK (Appletalk).
2081 		 *
2082 		 * 802.2-encapsulated ETHERTYPE_AARP packets are
2083 		 * SNAP packets with an organization code of
2084 		 * 0x000000 (encapsulated Ethernet) and a protocol
2085 		 * type of ETHERTYPE_AARP (Appletalk ARP).
2086 		 */
2087 		if (ll_proto == ETHERTYPE_ATALK)
2088 			b1 = gen_snap(cstate, 0x080007, ETHERTYPE_ATALK);
2089 		else	/* ll_proto == ETHERTYPE_AARP */
2090 			b1 = gen_snap(cstate, 0x000000, ETHERTYPE_AARP);
2091 		gen_and(b0, b1);
2092 
2093 		/*
2094 		 * Check for Ethernet encapsulation (Ethertalk
2095 		 * phase 1?); we just check for the Ethernet
2096 		 * protocol type.
2097 		 */
2098 		b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ll_proto);
2099 
2100 		gen_or(b0, b1);
2101 		return b1;
2102 
2103 	default:
2104 		if (ll_proto <= ETHERMTU) {
2105 			/*
2106 			 * This is an LLC SAP value, so the frames
2107 			 * that match would be 802.2 frames.
2108 			 * Check that the frame is an 802.2 frame
2109 			 * (i.e., that the length/type field is
2110 			 * a length field, <= ETHERMTU) and
2111 			 * then check the DSAP.
2112 			 */
2113 			b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
2114 			gen_not(b0);
2115 			b1 = gen_cmp(cstate, OR_LINKTYPE, 2, BPF_B, ll_proto);
2116 			gen_and(b0, b1);
2117 			return b1;
2118 		} else {
2119 			/*
2120 			 * This is an Ethernet type, so compare
2121 			 * the length/type field with it (if
2122 			 * the frame is an 802.2 frame, the length
2123 			 * field will be <= ETHERMTU, and, as
2124 			 * "ll_proto" is > ETHERMTU, this test
2125 			 * will fail and the frame won't match,
2126 			 * which is what we want).
2127 			 */
2128 			return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ll_proto);
2129 		}
2130 	}
2131 }
2132 
2133 static struct block *
2134 gen_loopback_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
2135 {
2136 	/*
2137 	 * For DLT_NULL, the link-layer header is a 32-bit word
2138 	 * containing an AF_ value in *host* byte order, and for
2139 	 * DLT_ENC, the link-layer header begins with a 32-bit
2140 	 * word containing an AF_ value in host byte order.
2141 	 *
2142 	 * In addition, if we're reading a saved capture file,
2143 	 * the host byte order in the capture may not be the
2144 	 * same as the host byte order on this machine.
2145 	 *
2146 	 * For DLT_LOOP, the link-layer header is a 32-bit
2147 	 * word containing an AF_ value in *network* byte order.
2148 	 */
2149 	if (cstate->linktype == DLT_NULL || cstate->linktype == DLT_ENC) {
2150 		/*
2151 		 * The AF_ value is in host byte order, but the BPF
2152 		 * interpreter will convert it to network byte order.
2153 		 *
2154 		 * If this is a save file, and it's from a machine
2155 		 * with the opposite byte order to ours, we byte-swap
2156 		 * the AF_ value.
2157 		 *
2158 		 * Then we run it through "htonl()", and generate
2159 		 * code to compare against the result.
2160 		 */
2161 		if (cstate->bpf_pcap->rfile != NULL && cstate->bpf_pcap->swapped)
2162 			ll_proto = SWAPLONG(ll_proto);
2163 		ll_proto = htonl(ll_proto);
2164 	}
2165 	return (gen_cmp(cstate, OR_LINKHDR, 0, BPF_W, ll_proto));
2166 }
2167 
2168 /*
2169  * "proto" is an Ethernet type value and for IPNET, if it is not IPv4
2170  * or IPv6 then we have an error.
2171  */
2172 static struct block *
2173 gen_ipnet_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
2174 {
2175 	switch (ll_proto) {
2176 
2177 	case ETHERTYPE_IP:
2178 		return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B, IPH_AF_INET);
2179 		/*NOTREACHED*/
2180 
2181 	case ETHERTYPE_IPV6:
2182 		return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B, IPH_AF_INET6);
2183 		/*NOTREACHED*/
2184 
2185 	default:
2186 		break;
2187 	}
2188 
2189 	return gen_false(cstate);
2190 }
2191 
2192 /*
2193  * Generate code to match a particular packet type.
2194  *
2195  * "ll_proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
2196  * value, if <= ETHERMTU.  We use that to determine whether to
2197  * match the type field or to check the type field for the special
2198  * LINUX_SLL_P_802_2 value and then do the appropriate test.
2199  */
2200 static struct block *
2201 gen_linux_sll_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
2202 {
2203 	struct block *b0, *b1;
2204 
2205 	switch (ll_proto) {
2206 
2207 	case LLCSAP_ISONS:
2208 	case LLCSAP_IP:
2209 	case LLCSAP_NETBEUI:
2210 		/*
2211 		 * OSI protocols and NetBEUI always use 802.2 encapsulation,
2212 		 * so we check the DSAP and SSAP.
2213 		 *
2214 		 * LLCSAP_IP checks for IP-over-802.2, rather
2215 		 * than IP-over-Ethernet or IP-over-SNAP.
2216 		 *
2217 		 * XXX - should we check both the DSAP and the
2218 		 * SSAP, like this, or should we check just the
2219 		 * DSAP, as we do for other types <= ETHERMTU
2220 		 * (i.e., other SAP values)?
2221 		 */
2222 		b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
2223 		b1 = gen_cmp(cstate, OR_LLC, 0, BPF_H, (ll_proto << 8) | ll_proto);
2224 		gen_and(b0, b1);
2225 		return b1;
2226 
2227 	case LLCSAP_IPX:
2228 		/*
2229 		 *	Ethernet_II frames, which are Ethernet
2230 		 *	frames with a frame type of ETHERTYPE_IPX;
2231 		 *
2232 		 *	Ethernet_802.3 frames, which have a frame
2233 		 *	type of LINUX_SLL_P_802_3;
2234 		 *
2235 		 *	Ethernet_802.2 frames, which are 802.3
2236 		 *	frames with an 802.2 LLC header (i.e, have
2237 		 *	a frame type of LINUX_SLL_P_802_2) and
2238 		 *	with the IPX LSAP as the DSAP in the LLC
2239 		 *	header;
2240 		 *
2241 		 *	Ethernet_SNAP frames, which are 802.3
2242 		 *	frames with an LLC header and a SNAP
2243 		 *	header and with an OUI of 0x000000
2244 		 *	(encapsulated Ethernet) and a protocol
2245 		 *	ID of ETHERTYPE_IPX in the SNAP header.
2246 		 *
2247 		 * First, do the checks on LINUX_SLL_P_802_2
2248 		 * frames; generate the check for either
2249 		 * Ethernet_802.2 or Ethernet_SNAP frames, and
2250 		 * then put a check for LINUX_SLL_P_802_2 frames
2251 		 * before it.
2252 		 */
2253 		b0 = gen_cmp(cstate, OR_LLC, 0, BPF_B, LLCSAP_IPX);
2254 		b1 = gen_snap(cstate, 0x000000, ETHERTYPE_IPX);
2255 		gen_or(b0, b1);
2256 		b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
2257 		gen_and(b0, b1);
2258 
2259 		/*
2260 		 * Now check for 802.3 frames and OR that with
2261 		 * the previous test.
2262 		 */
2263 		b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_3);
2264 		gen_or(b0, b1);
2265 
2266 		/*
2267 		 * Now add the check for Ethernet_II frames, and
2268 		 * do that before checking for the other frame
2269 		 * types.
2270 		 */
2271 		b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ETHERTYPE_IPX);
2272 		gen_or(b0, b1);
2273 		return b1;
2274 
2275 	case ETHERTYPE_ATALK:
2276 	case ETHERTYPE_AARP:
2277 		/*
2278 		 * EtherTalk (AppleTalk protocols on Ethernet link
2279 		 * layer) may use 802.2 encapsulation.
2280 		 */
2281 
2282 		/*
2283 		 * Check for 802.2 encapsulation (EtherTalk phase 2?);
2284 		 * we check for the 802.2 protocol type in the
2285 		 * "Ethernet type" field.
2286 		 */
2287 		b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
2288 
2289 		/*
2290 		 * 802.2-encapsulated ETHERTYPE_ATALK packets are
2291 		 * SNAP packets with an organization code of
2292 		 * 0x080007 (Apple, for Appletalk) and a protocol
2293 		 * type of ETHERTYPE_ATALK (Appletalk).
2294 		 *
2295 		 * 802.2-encapsulated ETHERTYPE_AARP packets are
2296 		 * SNAP packets with an organization code of
2297 		 * 0x000000 (encapsulated Ethernet) and a protocol
2298 		 * type of ETHERTYPE_AARP (Appletalk ARP).
2299 		 */
2300 		if (ll_proto == ETHERTYPE_ATALK)
2301 			b1 = gen_snap(cstate, 0x080007, ETHERTYPE_ATALK);
2302 		else	/* ll_proto == ETHERTYPE_AARP */
2303 			b1 = gen_snap(cstate, 0x000000, ETHERTYPE_AARP);
2304 		gen_and(b0, b1);
2305 
2306 		/*
2307 		 * Check for Ethernet encapsulation (Ethertalk
2308 		 * phase 1?); we just check for the Ethernet
2309 		 * protocol type.
2310 		 */
2311 		b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ll_proto);
2312 
2313 		gen_or(b0, b1);
2314 		return b1;
2315 
2316 	default:
2317 		if (ll_proto <= ETHERMTU) {
2318 			/*
2319 			 * This is an LLC SAP value, so the frames
2320 			 * that match would be 802.2 frames.
2321 			 * Check for the 802.2 protocol type
2322 			 * in the "Ethernet type" field, and
2323 			 * then check the DSAP.
2324 			 */
2325 			b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
2326 			b1 = gen_cmp(cstate, OR_LINKHDR, cstate->off_linkpl.constant_part, BPF_B,
2327 			     ll_proto);
2328 			gen_and(b0, b1);
2329 			return b1;
2330 		} else {
2331 			/*
2332 			 * This is an Ethernet type, so compare
2333 			 * the length/type field with it (if
2334 			 * the frame is an 802.2 frame, the length
2335 			 * field will be <= ETHERMTU, and, as
2336 			 * "ll_proto" is > ETHERMTU, this test
2337 			 * will fail and the frame won't match,
2338 			 * which is what we want).
2339 			 */
2340 			return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ll_proto);
2341 		}
2342 	}
2343 }
2344 
2345 /*
2346  * Load a value relative to the beginning of the link-layer header after the
2347  * pflog header.
2348  */
2349 static struct slist *
2350 gen_load_pflog_llprefixlen(compiler_state_t *cstate)
2351 {
2352 	struct slist *s1, *s2;
2353 
2354 	/*
2355 	 * Generate code to load the length of the pflog header into
2356 	 * the register assigned to hold that length, if one has been
2357 	 * assigned.  (If one hasn't been assigned, no code we've
2358 	 * generated uses that prefix, so we don't need to generate any
2359 	 * code to load it.)
2360 	 */
2361 	if (cstate->off_linkpl.reg != -1) {
2362 		/*
2363 		 * The length is in the first byte of the header.
2364 		 */
2365 		s1 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
2366 		s1->s.k = 0;
2367 
2368 		/*
2369 		 * Round it up to a multiple of 4.
2370 		 * Add 3, and clear the lower 2 bits.
2371 		 */
2372 		s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
2373 		s2->s.k = 3;
2374 		sappend(s1, s2);
2375 		s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
2376 		s2->s.k = 0xfffffffc;
2377 		sappend(s1, s2);
2378 
2379 		/*
2380 		 * Now allocate a register to hold that value and store
2381 		 * it.
2382 		 */
2383 		s2 = new_stmt(cstate, BPF_ST);
2384 		s2->s.k = cstate->off_linkpl.reg;
2385 		sappend(s1, s2);
2386 
2387 		/*
2388 		 * Now move it into the X register.
2389 		 */
2390 		s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2391 		sappend(s1, s2);
2392 
2393 		return (s1);
2394 	} else
2395 		return (NULL);
2396 }
2397 
2398 static struct slist *
2399 gen_load_prism_llprefixlen(compiler_state_t *cstate)
2400 {
2401 	struct slist *s1, *s2;
2402 	struct slist *sjeq_avs_cookie;
2403 	struct slist *sjcommon;
2404 
2405 	/*
2406 	 * This code is not compatible with the optimizer, as
2407 	 * we are generating jmp instructions within a normal
2408 	 * slist of instructions
2409 	 */
2410 	cstate->no_optimize = 1;
2411 
2412 	/*
2413 	 * Generate code to load the length of the radio header into
2414 	 * the register assigned to hold that length, if one has been
2415 	 * assigned.  (If one hasn't been assigned, no code we've
2416 	 * generated uses that prefix, so we don't need to generate any
2417 	 * code to load it.)
2418 	 *
2419 	 * Some Linux drivers use ARPHRD_IEEE80211_PRISM but sometimes
2420 	 * or always use the AVS header rather than the Prism header.
2421 	 * We load a 4-byte big-endian value at the beginning of the
2422 	 * raw packet data, and see whether, when masked with 0xFFFFF000,
2423 	 * it's equal to 0x80211000.  If so, that indicates that it's
2424 	 * an AVS header (the masked-out bits are the version number).
2425 	 * Otherwise, it's a Prism header.
2426 	 *
2427 	 * XXX - the Prism header is also, in theory, variable-length,
2428 	 * but no known software generates headers that aren't 144
2429 	 * bytes long.
2430 	 */
2431 	if (cstate->off_linkhdr.reg != -1) {
2432 		/*
2433 		 * Load the cookie.
2434 		 */
2435 		s1 = new_stmt(cstate, BPF_LD|BPF_W|BPF_ABS);
2436 		s1->s.k = 0;
2437 
2438 		/*
2439 		 * AND it with 0xFFFFF000.
2440 		 */
2441 		s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
2442 		s2->s.k = 0xFFFFF000;
2443 		sappend(s1, s2);
2444 
2445 		/*
2446 		 * Compare with 0x80211000.
2447 		 */
2448 		sjeq_avs_cookie = new_stmt(cstate, JMP(BPF_JEQ));
2449 		sjeq_avs_cookie->s.k = 0x80211000;
2450 		sappend(s1, sjeq_avs_cookie);
2451 
2452 		/*
2453 		 * If it's AVS:
2454 		 *
2455 		 * The 4 bytes at an offset of 4 from the beginning of
2456 		 * the AVS header are the length of the AVS header.
2457 		 * That field is big-endian.
2458 		 */
2459 		s2 = new_stmt(cstate, BPF_LD|BPF_W|BPF_ABS);
2460 		s2->s.k = 4;
2461 		sappend(s1, s2);
2462 		sjeq_avs_cookie->s.jt = s2;
2463 
2464 		/*
2465 		 * Now jump to the code to allocate a register
2466 		 * into which to save the header length and
2467 		 * store the length there.  (The "jump always"
2468 		 * instruction needs to have the k field set;
2469 		 * it's added to the PC, so, as we're jumping
2470 		 * over a single instruction, it should be 1.)
2471 		 */
2472 		sjcommon = new_stmt(cstate, JMP(BPF_JA));
2473 		sjcommon->s.k = 1;
2474 		sappend(s1, sjcommon);
2475 
2476 		/*
2477 		 * Now for the code that handles the Prism header.
2478 		 * Just load the length of the Prism header (144)
2479 		 * into the A register.  Have the test for an AVS
2480 		 * header branch here if we don't have an AVS header.
2481 		 */
2482 		s2 = new_stmt(cstate, BPF_LD|BPF_W|BPF_IMM);
2483 		s2->s.k = 144;
2484 		sappend(s1, s2);
2485 		sjeq_avs_cookie->s.jf = s2;
2486 
2487 		/*
2488 		 * Now allocate a register to hold that value and store
2489 		 * it.  The code for the AVS header will jump here after
2490 		 * loading the length of the AVS header.
2491 		 */
2492 		s2 = new_stmt(cstate, BPF_ST);
2493 		s2->s.k = cstate->off_linkhdr.reg;
2494 		sappend(s1, s2);
2495 		sjcommon->s.jf = s2;
2496 
2497 		/*
2498 		 * Now move it into the X register.
2499 		 */
2500 		s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2501 		sappend(s1, s2);
2502 
2503 		return (s1);
2504 	} else
2505 		return (NULL);
2506 }
2507 
2508 static struct slist *
2509 gen_load_avs_llprefixlen(compiler_state_t *cstate)
2510 {
2511 	struct slist *s1, *s2;
2512 
2513 	/*
2514 	 * Generate code to load the length of the AVS header into
2515 	 * the register assigned to hold that length, if one has been
2516 	 * assigned.  (If one hasn't been assigned, no code we've
2517 	 * generated uses that prefix, so we don't need to generate any
2518 	 * code to load it.)
2519 	 */
2520 	if (cstate->off_linkhdr.reg != -1) {
2521 		/*
2522 		 * The 4 bytes at an offset of 4 from the beginning of
2523 		 * the AVS header are the length of the AVS header.
2524 		 * That field is big-endian.
2525 		 */
2526 		s1 = new_stmt(cstate, BPF_LD|BPF_W|BPF_ABS);
2527 		s1->s.k = 4;
2528 
2529 		/*
2530 		 * Now allocate a register to hold that value and store
2531 		 * it.
2532 		 */
2533 		s2 = new_stmt(cstate, BPF_ST);
2534 		s2->s.k = cstate->off_linkhdr.reg;
2535 		sappend(s1, s2);
2536 
2537 		/*
2538 		 * Now move it into the X register.
2539 		 */
2540 		s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2541 		sappend(s1, s2);
2542 
2543 		return (s1);
2544 	} else
2545 		return (NULL);
2546 }
2547 
2548 static struct slist *
2549 gen_load_radiotap_llprefixlen(compiler_state_t *cstate)
2550 {
2551 	struct slist *s1, *s2;
2552 
2553 	/*
2554 	 * Generate code to load the length of the radiotap header into
2555 	 * the register assigned to hold that length, if one has been
2556 	 * assigned.  (If one hasn't been assigned, no code we've
2557 	 * generated uses that prefix, so we don't need to generate any
2558 	 * code to load it.)
2559 	 */
2560 	if (cstate->off_linkhdr.reg != -1) {
2561 		/*
2562 		 * The 2 bytes at offsets of 2 and 3 from the beginning
2563 		 * of the radiotap header are the length of the radiotap
2564 		 * header; unfortunately, it's little-endian, so we have
2565 		 * to load it a byte at a time and construct the value.
2566 		 */
2567 
2568 		/*
2569 		 * Load the high-order byte, at an offset of 3, shift it
2570 		 * left a byte, and put the result in the X register.
2571 		 */
2572 		s1 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
2573 		s1->s.k = 3;
2574 		s2 = new_stmt(cstate, BPF_ALU|BPF_LSH|BPF_K);
2575 		sappend(s1, s2);
2576 		s2->s.k = 8;
2577 		s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2578 		sappend(s1, s2);
2579 
2580 		/*
2581 		 * Load the next byte, at an offset of 2, and OR the
2582 		 * value from the X register into it.
2583 		 */
2584 		s2 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
2585 		sappend(s1, s2);
2586 		s2->s.k = 2;
2587 		s2 = new_stmt(cstate, BPF_ALU|BPF_OR|BPF_X);
2588 		sappend(s1, s2);
2589 
2590 		/*
2591 		 * Now allocate a register to hold that value and store
2592 		 * it.
2593 		 */
2594 		s2 = new_stmt(cstate, BPF_ST);
2595 		s2->s.k = cstate->off_linkhdr.reg;
2596 		sappend(s1, s2);
2597 
2598 		/*
2599 		 * Now move it into the X register.
2600 		 */
2601 		s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2602 		sappend(s1, s2);
2603 
2604 		return (s1);
2605 	} else
2606 		return (NULL);
2607 }
2608 
2609 /*
2610  * At the moment we treat PPI as normal Radiotap encoded
2611  * packets. The difference is in the function that generates
2612  * the code at the beginning to compute the header length.
2613  * Since this code generator of PPI supports bare 802.11
2614  * encapsulation only (i.e. the encapsulated DLT should be
2615  * DLT_IEEE802_11) we generate code to check for this too;
2616  * that's done in finish_parse().
2617  */
2618 static struct slist *
2619 gen_load_ppi_llprefixlen(compiler_state_t *cstate)
2620 {
2621 	struct slist *s1, *s2;
2622 
2623 	/*
2624 	 * Generate code to load the length of the radiotap header
2625 	 * into the register assigned to hold that length, if one has
2626 	 * been assigned.
2627 	 */
2628 	if (cstate->off_linkhdr.reg != -1) {
2629 		/*
2630 		 * The 2 bytes at offsets of 2 and 3 from the beginning
2631 		 * of the radiotap header are the length of the radiotap
2632 		 * header; unfortunately, it's little-endian, so we have
2633 		 * to load it a byte at a time and construct the value.
2634 		 */
2635 
2636 		/*
2637 		 * Load the high-order byte, at an offset of 3, shift it
2638 		 * left a byte, and put the result in the X register.
2639 		 */
2640 		s1 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
2641 		s1->s.k = 3;
2642 		s2 = new_stmt(cstate, BPF_ALU|BPF_LSH|BPF_K);
2643 		sappend(s1, s2);
2644 		s2->s.k = 8;
2645 		s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2646 		sappend(s1, s2);
2647 
2648 		/*
2649 		 * Load the next byte, at an offset of 2, and OR the
2650 		 * value from the X register into it.
2651 		 */
2652 		s2 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
2653 		sappend(s1, s2);
2654 		s2->s.k = 2;
2655 		s2 = new_stmt(cstate, BPF_ALU|BPF_OR|BPF_X);
2656 		sappend(s1, s2);
2657 
2658 		/*
2659 		 * Now allocate a register to hold that value and store
2660 		 * it.
2661 		 */
2662 		s2 = new_stmt(cstate, BPF_ST);
2663 		s2->s.k = cstate->off_linkhdr.reg;
2664 		sappend(s1, s2);
2665 
2666 		/*
2667 		 * Now move it into the X register.
2668 		 */
2669 		s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2670 		sappend(s1, s2);
2671 
2672 		return (s1);
2673 	} else
2674 		return (NULL);
2675 }
2676 
2677 /*
2678  * Load a value relative to the beginning of the link-layer header after the 802.11
2679  * header, i.e. LLC_SNAP.
2680  * The link-layer header doesn't necessarily begin at the beginning
2681  * of the packet data; there might be a variable-length prefix containing
2682  * radio information.
2683  */
2684 static struct slist *
2685 gen_load_802_11_header_len(compiler_state_t *cstate, struct slist *s, struct slist *snext)
2686 {
2687 	struct slist *s2;
2688 	struct slist *sjset_data_frame_1;
2689 	struct slist *sjset_data_frame_2;
2690 	struct slist *sjset_qos;
2691 	struct slist *sjset_radiotap_flags_present;
2692 	struct slist *sjset_radiotap_ext_present;
2693 	struct slist *sjset_radiotap_tsft_present;
2694 	struct slist *sjset_tsft_datapad, *sjset_notsft_datapad;
2695 	struct slist *s_roundup;
2696 
2697 	if (cstate->off_linkpl.reg == -1) {
2698 		/*
2699 		 * No register has been assigned to the offset of
2700 		 * the link-layer payload, which means nobody needs
2701 		 * it; don't bother computing it - just return
2702 		 * what we already have.
2703 		 */
2704 		return (s);
2705 	}
2706 
2707 	/*
2708 	 * This code is not compatible with the optimizer, as
2709 	 * we are generating jmp instructions within a normal
2710 	 * slist of instructions
2711 	 */
2712 	cstate->no_optimize = 1;
2713 
2714 	/*
2715 	 * If "s" is non-null, it has code to arrange that the X register
2716 	 * contains the length of the prefix preceding the link-layer
2717 	 * header.
2718 	 *
2719 	 * Otherwise, the length of the prefix preceding the link-layer
2720 	 * header is "off_outermostlinkhdr.constant_part".
2721 	 */
2722 	if (s == NULL) {
2723 		/*
2724 		 * There is no variable-length header preceding the
2725 		 * link-layer header.
2726 		 *
2727 		 * Load the length of the fixed-length prefix preceding
2728 		 * the link-layer header (if any) into the X register,
2729 		 * and store it in the cstate->off_linkpl.reg register.
2730 		 * That length is off_outermostlinkhdr.constant_part.
2731 		 */
2732 		s = new_stmt(cstate, BPF_LDX|BPF_IMM);
2733 		s->s.k = cstate->off_outermostlinkhdr.constant_part;
2734 	}
2735 
2736 	/*
2737 	 * The X register contains the offset of the beginning of the
2738 	 * link-layer header; add 24, which is the minimum length
2739 	 * of the MAC header for a data frame, to that, and store it
2740 	 * in cstate->off_linkpl.reg, and then load the Frame Control field,
2741 	 * which is at the offset in the X register, with an indexed load.
2742 	 */
2743 	s2 = new_stmt(cstate, BPF_MISC|BPF_TXA);
2744 	sappend(s, s2);
2745 	s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
2746 	s2->s.k = 24;
2747 	sappend(s, s2);
2748 	s2 = new_stmt(cstate, BPF_ST);
2749 	s2->s.k = cstate->off_linkpl.reg;
2750 	sappend(s, s2);
2751 
2752 	s2 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
2753 	s2->s.k = 0;
2754 	sappend(s, s2);
2755 
2756 	/*
2757 	 * Check the Frame Control field to see if this is a data frame;
2758 	 * a data frame has the 0x08 bit (b3) in that field set and the
2759 	 * 0x04 bit (b2) clear.
2760 	 */
2761 	sjset_data_frame_1 = new_stmt(cstate, JMP(BPF_JSET));
2762 	sjset_data_frame_1->s.k = 0x08;
2763 	sappend(s, sjset_data_frame_1);
2764 
2765 	/*
2766 	 * If b3 is set, test b2, otherwise go to the first statement of
2767 	 * the rest of the program.
2768 	 */
2769 	sjset_data_frame_1->s.jt = sjset_data_frame_2 = new_stmt(cstate, JMP(BPF_JSET));
2770 	sjset_data_frame_2->s.k = 0x04;
2771 	sappend(s, sjset_data_frame_2);
2772 	sjset_data_frame_1->s.jf = snext;
2773 
2774 	/*
2775 	 * If b2 is not set, this is a data frame; test the QoS bit.
2776 	 * Otherwise, go to the first statement of the rest of the
2777 	 * program.
2778 	 */
2779 	sjset_data_frame_2->s.jt = snext;
2780 	sjset_data_frame_2->s.jf = sjset_qos = new_stmt(cstate, JMP(BPF_JSET));
2781 	sjset_qos->s.k = 0x80;	/* QoS bit */
2782 	sappend(s, sjset_qos);
2783 
2784 	/*
2785 	 * If it's set, add 2 to cstate->off_linkpl.reg, to skip the QoS
2786 	 * field.
2787 	 * Otherwise, go to the first statement of the rest of the
2788 	 * program.
2789 	 */
2790 	sjset_qos->s.jt = s2 = new_stmt(cstate, BPF_LD|BPF_MEM);
2791 	s2->s.k = cstate->off_linkpl.reg;
2792 	sappend(s, s2);
2793 	s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_IMM);
2794 	s2->s.k = 2;
2795 	sappend(s, s2);
2796 	s2 = new_stmt(cstate, BPF_ST);
2797 	s2->s.k = cstate->off_linkpl.reg;
2798 	sappend(s, s2);
2799 
2800 	/*
2801 	 * If we have a radiotap header, look at it to see whether
2802 	 * there's Atheros padding between the MAC-layer header
2803 	 * and the payload.
2804 	 *
2805 	 * Note: all of the fields in the radiotap header are
2806 	 * little-endian, so we byte-swap all of the values
2807 	 * we test against, as they will be loaded as big-endian
2808 	 * values.
2809 	 *
2810 	 * XXX - in the general case, we would have to scan through
2811 	 * *all* the presence bits, if there's more than one word of
2812 	 * presence bits.  That would require a loop, meaning that
2813 	 * we wouldn't be able to run the filter in the kernel.
2814 	 *
2815 	 * We assume here that the Atheros adapters that insert the
2816 	 * annoying padding don't have multiple antennae and therefore
2817 	 * do not generate radiotap headers with multiple presence words.
2818 	 */
2819 	if (cstate->linktype == DLT_IEEE802_11_RADIO) {
2820 		/*
2821 		 * Is the IEEE80211_RADIOTAP_FLAGS bit (0x0000002) set
2822 		 * in the first presence flag word?
2823 		 */
2824 		sjset_qos->s.jf = s2 = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_W);
2825 		s2->s.k = 4;
2826 		sappend(s, s2);
2827 
2828 		sjset_radiotap_flags_present = new_stmt(cstate, JMP(BPF_JSET));
2829 		sjset_radiotap_flags_present->s.k = SWAPLONG(0x00000002);
2830 		sappend(s, sjset_radiotap_flags_present);
2831 
2832 		/*
2833 		 * If not, skip all of this.
2834 		 */
2835 		sjset_radiotap_flags_present->s.jf = snext;
2836 
2837 		/*
2838 		 * Otherwise, is the "extension" bit set in that word?
2839 		 */
2840 		sjset_radiotap_ext_present = new_stmt(cstate, JMP(BPF_JSET));
2841 		sjset_radiotap_ext_present->s.k = SWAPLONG(0x80000000);
2842 		sappend(s, sjset_radiotap_ext_present);
2843 		sjset_radiotap_flags_present->s.jt = sjset_radiotap_ext_present;
2844 
2845 		/*
2846 		 * If so, skip all of this.
2847 		 */
2848 		sjset_radiotap_ext_present->s.jt = snext;
2849 
2850 		/*
2851 		 * Otherwise, is the IEEE80211_RADIOTAP_TSFT bit set?
2852 		 */
2853 		sjset_radiotap_tsft_present = new_stmt(cstate, JMP(BPF_JSET));
2854 		sjset_radiotap_tsft_present->s.k = SWAPLONG(0x00000001);
2855 		sappend(s, sjset_radiotap_tsft_present);
2856 		sjset_radiotap_ext_present->s.jf = sjset_radiotap_tsft_present;
2857 
2858 		/*
2859 		 * If IEEE80211_RADIOTAP_TSFT is set, the flags field is
2860 		 * at an offset of 16 from the beginning of the raw packet
2861 		 * data (8 bytes for the radiotap header and 8 bytes for
2862 		 * the TSFT field).
2863 		 *
2864 		 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
2865 		 * is set.
2866 		 */
2867 		s2 = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B);
2868 		s2->s.k = 16;
2869 		sappend(s, s2);
2870 		sjset_radiotap_tsft_present->s.jt = s2;
2871 
2872 		sjset_tsft_datapad = new_stmt(cstate, JMP(BPF_JSET));
2873 		sjset_tsft_datapad->s.k = 0x20;
2874 		sappend(s, sjset_tsft_datapad);
2875 
2876 		/*
2877 		 * If IEEE80211_RADIOTAP_TSFT is not set, the flags field is
2878 		 * at an offset of 8 from the beginning of the raw packet
2879 		 * data (8 bytes for the radiotap header).
2880 		 *
2881 		 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
2882 		 * is set.
2883 		 */
2884 		s2 = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B);
2885 		s2->s.k = 8;
2886 		sappend(s, s2);
2887 		sjset_radiotap_tsft_present->s.jf = s2;
2888 
2889 		sjset_notsft_datapad = new_stmt(cstate, JMP(BPF_JSET));
2890 		sjset_notsft_datapad->s.k = 0x20;
2891 		sappend(s, sjset_notsft_datapad);
2892 
2893 		/*
2894 		 * In either case, if IEEE80211_RADIOTAP_F_DATAPAD is
2895 		 * set, round the length of the 802.11 header to
2896 		 * a multiple of 4.  Do that by adding 3 and then
2897 		 * dividing by and multiplying by 4, which we do by
2898 		 * ANDing with ~3.
2899 		 */
2900 		s_roundup = new_stmt(cstate, BPF_LD|BPF_MEM);
2901 		s_roundup->s.k = cstate->off_linkpl.reg;
2902 		sappend(s, s_roundup);
2903 		s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_IMM);
2904 		s2->s.k = 3;
2905 		sappend(s, s2);
2906 		s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_IMM);
2907 		s2->s.k = (bpf_u_int32)~3;
2908 		sappend(s, s2);
2909 		s2 = new_stmt(cstate, BPF_ST);
2910 		s2->s.k = cstate->off_linkpl.reg;
2911 		sappend(s, s2);
2912 
2913 		sjset_tsft_datapad->s.jt = s_roundup;
2914 		sjset_tsft_datapad->s.jf = snext;
2915 		sjset_notsft_datapad->s.jt = s_roundup;
2916 		sjset_notsft_datapad->s.jf = snext;
2917 	} else
2918 		sjset_qos->s.jf = snext;
2919 
2920 	return s;
2921 }
2922 
2923 static void
2924 insert_compute_vloffsets(compiler_state_t *cstate, struct block *b)
2925 {
2926 	struct slist *s;
2927 
2928 	/* There is an implicit dependency between the link
2929 	 * payload and link header since the payload computation
2930 	 * includes the variable part of the header. Therefore,
2931 	 * if nobody else has allocated a register for the link
2932 	 * header and we need it, do it now. */
2933 	if (cstate->off_linkpl.reg != -1 && cstate->off_linkhdr.is_variable &&
2934 	    cstate->off_linkhdr.reg == -1)
2935 		cstate->off_linkhdr.reg = alloc_reg(cstate);
2936 
2937 	/*
2938 	 * For link-layer types that have a variable-length header
2939 	 * preceding the link-layer header, generate code to load
2940 	 * the offset of the link-layer header into the register
2941 	 * assigned to that offset, if any.
2942 	 *
2943 	 * XXX - this, and the next switch statement, won't handle
2944 	 * encapsulation of 802.11 or 802.11+radio information in
2945 	 * some other protocol stack.  That's significantly more
2946 	 * complicated.
2947 	 */
2948 	switch (cstate->outermostlinktype) {
2949 
2950 	case DLT_PRISM_HEADER:
2951 		s = gen_load_prism_llprefixlen(cstate);
2952 		break;
2953 
2954 	case DLT_IEEE802_11_RADIO_AVS:
2955 		s = gen_load_avs_llprefixlen(cstate);
2956 		break;
2957 
2958 	case DLT_IEEE802_11_RADIO:
2959 		s = gen_load_radiotap_llprefixlen(cstate);
2960 		break;
2961 
2962 	case DLT_PPI:
2963 		s = gen_load_ppi_llprefixlen(cstate);
2964 		break;
2965 
2966 	default:
2967 		s = NULL;
2968 		break;
2969 	}
2970 
2971 	/*
2972 	 * For link-layer types that have a variable-length link-layer
2973 	 * header, generate code to load the offset of the link-layer
2974 	 * payload into the register assigned to that offset, if any.
2975 	 */
2976 	switch (cstate->outermostlinktype) {
2977 
2978 	case DLT_IEEE802_11:
2979 	case DLT_PRISM_HEADER:
2980 	case DLT_IEEE802_11_RADIO_AVS:
2981 	case DLT_IEEE802_11_RADIO:
2982 	case DLT_PPI:
2983 		s = gen_load_802_11_header_len(cstate, s, b->stmts);
2984 		break;
2985 
2986 	case DLT_PFLOG:
2987 		s = gen_load_pflog_llprefixlen(cstate);
2988 		break;
2989 	}
2990 
2991 	/*
2992 	 * If there is no initialization yet and we need variable
2993 	 * length offsets for VLAN, initialize them to zero
2994 	 */
2995 	if (s == NULL && cstate->is_vlan_vloffset) {
2996 		struct slist *s2;
2997 
2998 		if (cstate->off_linkpl.reg == -1)
2999 			cstate->off_linkpl.reg = alloc_reg(cstate);
3000 		if (cstate->off_linktype.reg == -1)
3001 			cstate->off_linktype.reg = alloc_reg(cstate);
3002 
3003 		s = new_stmt(cstate, BPF_LD|BPF_W|BPF_IMM);
3004 		s->s.k = 0;
3005 		s2 = new_stmt(cstate, BPF_ST);
3006 		s2->s.k = cstate->off_linkpl.reg;
3007 		sappend(s, s2);
3008 		s2 = new_stmt(cstate, BPF_ST);
3009 		s2->s.k = cstate->off_linktype.reg;
3010 		sappend(s, s2);
3011 	}
3012 
3013 	/*
3014 	 * If we have any offset-loading code, append all the
3015 	 * existing statements in the block to those statements,
3016 	 * and make the resulting list the list of statements
3017 	 * for the block.
3018 	 */
3019 	if (s != NULL) {
3020 		sappend(s, b->stmts);
3021 		b->stmts = s;
3022 	}
3023 }
3024 
3025 static struct block *
3026 gen_ppi_dlt_check(compiler_state_t *cstate)
3027 {
3028 	struct slist *s_load_dlt;
3029 	struct block *b;
3030 
3031 	if (cstate->linktype == DLT_PPI)
3032 	{
3033 		/* Create the statements that check for the DLT
3034 		 */
3035 		s_load_dlt = new_stmt(cstate, BPF_LD|BPF_W|BPF_ABS);
3036 		s_load_dlt->s.k = 4;
3037 
3038 		b = new_block(cstate, JMP(BPF_JEQ));
3039 
3040 		b->stmts = s_load_dlt;
3041 		b->s.k = SWAPLONG(DLT_IEEE802_11);
3042 	}
3043 	else
3044 	{
3045 		b = NULL;
3046 	}
3047 
3048 	return b;
3049 }
3050 
3051 /*
3052  * Take an absolute offset, and:
3053  *
3054  *    if it has no variable part, return NULL;
3055  *
3056  *    if it has a variable part, generate code to load the register
3057  *    containing that variable part into the X register, returning
3058  *    a pointer to that code - if no register for that offset has
3059  *    been allocated, allocate it first.
3060  *
3061  * (The code to set that register will be generated later, but will
3062  * be placed earlier in the code sequence.)
3063  */
3064 static struct slist *
3065 gen_abs_offset_varpart(compiler_state_t *cstate, bpf_abs_offset *off)
3066 {
3067 	struct slist *s;
3068 
3069 	if (off->is_variable) {
3070 		if (off->reg == -1) {
3071 			/*
3072 			 * We haven't yet assigned a register for the
3073 			 * variable part of the offset of the link-layer
3074 			 * header; allocate one.
3075 			 */
3076 			off->reg = alloc_reg(cstate);
3077 		}
3078 
3079 		/*
3080 		 * Load the register containing the variable part of the
3081 		 * offset of the link-layer header into the X register.
3082 		 */
3083 		s = new_stmt(cstate, BPF_LDX|BPF_MEM);
3084 		s->s.k = off->reg;
3085 		return s;
3086 	} else {
3087 		/*
3088 		 * That offset isn't variable, there's no variable part,
3089 		 * so we don't need to generate any code.
3090 		 */
3091 		return NULL;
3092 	}
3093 }
3094 
3095 /*
3096  * Map an Ethernet type to the equivalent PPP type.
3097  */
3098 static bpf_u_int32
3099 ethertype_to_ppptype(bpf_u_int32 ll_proto)
3100 {
3101 	switch (ll_proto) {
3102 
3103 	case ETHERTYPE_IP:
3104 		ll_proto = PPP_IP;
3105 		break;
3106 
3107 	case ETHERTYPE_IPV6:
3108 		ll_proto = PPP_IPV6;
3109 		break;
3110 
3111 	case ETHERTYPE_DN:
3112 		ll_proto = PPP_DECNET;
3113 		break;
3114 
3115 	case ETHERTYPE_ATALK:
3116 		ll_proto = PPP_APPLE;
3117 		break;
3118 
3119 	case ETHERTYPE_NS:
3120 		ll_proto = PPP_NS;
3121 		break;
3122 
3123 	case LLCSAP_ISONS:
3124 		ll_proto = PPP_OSI;
3125 		break;
3126 
3127 	case LLCSAP_8021D:
3128 		/*
3129 		 * I'm assuming the "Bridging PDU"s that go
3130 		 * over PPP are Spanning Tree Protocol
3131 		 * Bridging PDUs.
3132 		 */
3133 		ll_proto = PPP_BRPDU;
3134 		break;
3135 
3136 	case LLCSAP_IPX:
3137 		ll_proto = PPP_IPX;
3138 		break;
3139 	}
3140 	return (ll_proto);
3141 }
3142 
3143 /*
3144  * Generate any tests that, for encapsulation of a link-layer packet
3145  * inside another protocol stack, need to be done to check for those
3146  * link-layer packets (and that haven't already been done by a check
3147  * for that encapsulation).
3148  */
3149 static struct block *
3150 gen_prevlinkhdr_check(compiler_state_t *cstate)
3151 {
3152 	struct block *b0;
3153 
3154 	if (cstate->is_geneve)
3155 		return gen_geneve_ll_check(cstate);
3156 
3157 	switch (cstate->prevlinktype) {
3158 
3159 	case DLT_SUNATM:
3160 		/*
3161 		 * This is LANE-encapsulated Ethernet; check that the LANE
3162 		 * packet doesn't begin with an LE Control marker, i.e.
3163 		 * that it's data, not a control message.
3164 		 *
3165 		 * (We've already generated a test for LANE.)
3166 		 */
3167 		b0 = gen_cmp(cstate, OR_PREVLINKHDR, SUNATM_PKT_BEGIN_POS, BPF_H, 0xFF00);
3168 		gen_not(b0);
3169 		return b0;
3170 
3171 	default:
3172 		/*
3173 		 * No such tests are necessary.
3174 		 */
3175 		return NULL;
3176 	}
3177 	/*NOTREACHED*/
3178 }
3179 
3180 /*
3181  * The three different values we should check for when checking for an
3182  * IPv6 packet with DLT_NULL.
3183  */
3184 #define BSD_AFNUM_INET6_BSD	24	/* NetBSD, OpenBSD, BSD/OS, Npcap */
3185 #define BSD_AFNUM_INET6_FREEBSD	28	/* FreeBSD */
3186 #define BSD_AFNUM_INET6_DARWIN	30	/* macOS, iOS, other Darwin-based OSes */
3187 
3188 /*
3189  * Generate code to match a particular packet type by matching the
3190  * link-layer type field or fields in the 802.2 LLC header.
3191  *
3192  * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
3193  * value, if <= ETHERMTU.
3194  */
3195 static struct block *
3196 gen_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
3197 {
3198 	struct block *b0, *b1, *b2;
3199 	const char *description;
3200 
3201 	/* are we checking MPLS-encapsulated packets? */
3202 	if (cstate->label_stack_depth > 0)
3203 		return gen_mpls_linktype(cstate, ll_proto);
3204 
3205 	switch (cstate->linktype) {
3206 
3207 	case DLT_EN10MB:
3208 	case DLT_NETANALYZER:
3209 	case DLT_NETANALYZER_TRANSPARENT:
3210 		/* Geneve has an EtherType regardless of whether there is an
3211 		 * L2 header. */
3212 		if (!cstate->is_geneve)
3213 			b0 = gen_prevlinkhdr_check(cstate);
3214 		else
3215 			b0 = NULL;
3216 
3217 		b1 = gen_ether_linktype(cstate, ll_proto);
3218 		if (b0 != NULL)
3219 			gen_and(b0, b1);
3220 		return b1;
3221 		/*NOTREACHED*/
3222 
3223 	case DLT_C_HDLC:
3224 	case DLT_HDLC:
3225 		switch (ll_proto) {
3226 
3227 		case LLCSAP_ISONS:
3228 			ll_proto = (ll_proto << 8 | LLCSAP_ISONS);
3229 			/* fall through */
3230 
3231 		default:
3232 			return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ll_proto);
3233 			/*NOTREACHED*/
3234 		}
3235 
3236 	case DLT_IEEE802_11:
3237 	case DLT_PRISM_HEADER:
3238 	case DLT_IEEE802_11_RADIO_AVS:
3239 	case DLT_IEEE802_11_RADIO:
3240 	case DLT_PPI:
3241 		/*
3242 		 * Check that we have a data frame.
3243 		 */
3244 		b0 = gen_check_802_11_data_frame(cstate);
3245 
3246 		/*
3247 		 * Now check for the specified link-layer type.
3248 		 */
3249 		b1 = gen_llc_linktype(cstate, ll_proto);
3250 		gen_and(b0, b1);
3251 		return b1;
3252 		/*NOTREACHED*/
3253 
3254 	case DLT_FDDI:
3255 		/*
3256 		 * XXX - check for LLC frames.
3257 		 */
3258 		return gen_llc_linktype(cstate, ll_proto);
3259 		/*NOTREACHED*/
3260 
3261 	case DLT_IEEE802:
3262 		/*
3263 		 * XXX - check for LLC PDUs, as per IEEE 802.5.
3264 		 */
3265 		return gen_llc_linktype(cstate, ll_proto);
3266 		/*NOTREACHED*/
3267 
3268 	case DLT_ATM_RFC1483:
3269 	case DLT_ATM_CLIP:
3270 	case DLT_IP_OVER_FC:
3271 		return gen_llc_linktype(cstate, ll_proto);
3272 		/*NOTREACHED*/
3273 
3274 	case DLT_SUNATM:
3275 		/*
3276 		 * Check for an LLC-encapsulated version of this protocol;
3277 		 * if we were checking for LANE, linktype would no longer
3278 		 * be DLT_SUNATM.
3279 		 *
3280 		 * Check for LLC encapsulation and then check the protocol.
3281 		 */
3282 		b0 = gen_atmfield_code_internal(cstate, A_PROTOTYPE, PT_LLC, BPF_JEQ, 0);
3283 		b1 = gen_llc_linktype(cstate, ll_proto);
3284 		gen_and(b0, b1);
3285 		return b1;
3286 		/*NOTREACHED*/
3287 
3288 	case DLT_LINUX_SLL:
3289 		return gen_linux_sll_linktype(cstate, ll_proto);
3290 		/*NOTREACHED*/
3291 
3292 	case DLT_SLIP:
3293 	case DLT_SLIP_BSDOS:
3294 	case DLT_RAW:
3295 		/*
3296 		 * These types don't provide any type field; packets
3297 		 * are always IPv4 or IPv6.
3298 		 *
3299 		 * XXX - for IPv4, check for a version number of 4, and,
3300 		 * for IPv6, check for a version number of 6?
3301 		 */
3302 		switch (ll_proto) {
3303 
3304 		case ETHERTYPE_IP:
3305 			/* Check for a version number of 4. */
3306 			return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, 0x40, 0xF0);
3307 
3308 		case ETHERTYPE_IPV6:
3309 			/* Check for a version number of 6. */
3310 			return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, 0x60, 0xF0);
3311 
3312 		default:
3313 			return gen_false(cstate);	/* always false */
3314 		}
3315 		/*NOTREACHED*/
3316 
3317 	case DLT_IPV4:
3318 		/*
3319 		 * Raw IPv4, so no type field.
3320 		 */
3321 		if (ll_proto == ETHERTYPE_IP)
3322 			return gen_true(cstate);	/* always true */
3323 
3324 		/* Checking for something other than IPv4; always false */
3325 		return gen_false(cstate);
3326 		/*NOTREACHED*/
3327 
3328 	case DLT_IPV6:
3329 		/*
3330 		 * Raw IPv6, so no type field.
3331 		 */
3332 		if (ll_proto == ETHERTYPE_IPV6)
3333 			return gen_true(cstate);	/* always true */
3334 
3335 		/* Checking for something other than IPv6; always false */
3336 		return gen_false(cstate);
3337 		/*NOTREACHED*/
3338 
3339 	case DLT_PPP:
3340 	case DLT_PPP_PPPD:
3341 	case DLT_PPP_SERIAL:
3342 	case DLT_PPP_ETHER:
3343 		/*
3344 		 * We use Ethernet protocol types inside libpcap;
3345 		 * map them to the corresponding PPP protocol types.
3346 		 */
3347 		return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H,
3348 		    ethertype_to_ppptype(ll_proto));
3349 		/*NOTREACHED*/
3350 
3351 	case DLT_PPP_BSDOS:
3352 		/*
3353 		 * We use Ethernet protocol types inside libpcap;
3354 		 * map them to the corresponding PPP protocol types.
3355 		 */
3356 		switch (ll_proto) {
3357 
3358 		case ETHERTYPE_IP:
3359 			/*
3360 			 * Also check for Van Jacobson-compressed IP.
3361 			 * XXX - do this for other forms of PPP?
3362 			 */
3363 			b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, PPP_IP);
3364 			b1 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, PPP_VJC);
3365 			gen_or(b0, b1);
3366 			b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, PPP_VJNC);
3367 			gen_or(b1, b0);
3368 			return b0;
3369 
3370 		default:
3371 			return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H,
3372 			    ethertype_to_ppptype(ll_proto));
3373 		}
3374 		/*NOTREACHED*/
3375 
3376 	case DLT_NULL:
3377 	case DLT_LOOP:
3378 	case DLT_ENC:
3379 		switch (ll_proto) {
3380 
3381 		case ETHERTYPE_IP:
3382 			return (gen_loopback_linktype(cstate, AF_INET));
3383 
3384 		case ETHERTYPE_IPV6:
3385 			/*
3386 			 * AF_ values may, unfortunately, be platform-
3387 			 * dependent; AF_INET isn't, because everybody
3388 			 * used 4.2BSD's value, but AF_INET6 is, because
3389 			 * 4.2BSD didn't have a value for it (given that
3390 			 * IPv6 didn't exist back in the early 1980's),
3391 			 * and they all picked their own values.
3392 			 *
3393 			 * This means that, if we're reading from a
3394 			 * savefile, we need to check for all the
3395 			 * possible values.
3396 			 *
3397 			 * If we're doing a live capture, we only need
3398 			 * to check for this platform's value; however,
3399 			 * Npcap uses 24, which isn't Windows's AF_INET6
3400 			 * value.  (Given the multiple different values,
3401 			 * programs that read pcap files shouldn't be
3402 			 * checking for their platform's AF_INET6 value
3403 			 * anyway, they should check for all of the
3404 			 * possible values. and they might as well do
3405 			 * that even for live captures.)
3406 			 */
3407 			if (cstate->bpf_pcap->rfile != NULL) {
3408 				/*
3409 				 * Savefile - check for all three
3410 				 * possible IPv6 values.
3411 				 */
3412 				b0 = gen_loopback_linktype(cstate, BSD_AFNUM_INET6_BSD);
3413 				b1 = gen_loopback_linktype(cstate, BSD_AFNUM_INET6_FREEBSD);
3414 				gen_or(b0, b1);
3415 				b0 = gen_loopback_linktype(cstate, BSD_AFNUM_INET6_DARWIN);
3416 				gen_or(b0, b1);
3417 				return (b1);
3418 			} else {
3419 				/*
3420 				 * Live capture, so we only need to
3421 				 * check for the value used on this
3422 				 * platform.
3423 				 */
3424 #ifdef _WIN32
3425 				/*
3426 				 * Npcap doesn't use Windows's AF_INET6,
3427 				 * as that collides with AF_IPX on
3428 				 * some BSDs (both have the value 23).
3429 				 * Instead, it uses 24.
3430 				 */
3431 				return (gen_loopback_linktype(cstate, 24));
3432 #else /* _WIN32 */
3433 #ifdef AF_INET6
3434 				return (gen_loopback_linktype(cstate, AF_INET6));
3435 #else /* AF_INET6 */
3436 				/*
3437 				 * I guess this platform doesn't support
3438 				 * IPv6, so we just reject all packets.
3439 				 */
3440 				return gen_false(cstate);
3441 #endif /* AF_INET6 */
3442 #endif /* _WIN32 */
3443 			}
3444 
3445 		default:
3446 			/*
3447 			 * Not a type on which we support filtering.
3448 			 * XXX - support those that have AF_ values
3449 			 * #defined on this platform, at least?
3450 			 */
3451 			return gen_false(cstate);
3452 		}
3453 
3454 	case DLT_PFLOG:
3455 		/*
3456 		 * af field is host byte order in contrast to the rest of
3457 		 * the packet.
3458 		 */
3459 		if (ll_proto == ETHERTYPE_IP)
3460 			return (gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, af),
3461 			    BPF_B, AF_INET));
3462 		else if (ll_proto == ETHERTYPE_IPV6)
3463 			return (gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, af),
3464 			    BPF_B, AF_INET6));
3465 		else
3466 			return gen_false(cstate);
3467 		/*NOTREACHED*/
3468 
3469 	case DLT_ARCNET:
3470 	case DLT_ARCNET_LINUX:
3471 		/*
3472 		 * XXX should we check for first fragment if the protocol
3473 		 * uses PHDS?
3474 		 */
3475 		switch (ll_proto) {
3476 
3477 		default:
3478 			return gen_false(cstate);
3479 
3480 		case ETHERTYPE_IPV6:
3481 			return (gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3482 				ARCTYPE_INET6));
3483 
3484 		case ETHERTYPE_IP:
3485 			b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3486 			    ARCTYPE_IP);
3487 			b1 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3488 			    ARCTYPE_IP_OLD);
3489 			gen_or(b0, b1);
3490 			return (b1);
3491 
3492 		case ETHERTYPE_ARP:
3493 			b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3494 			    ARCTYPE_ARP);
3495 			b1 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3496 			    ARCTYPE_ARP_OLD);
3497 			gen_or(b0, b1);
3498 			return (b1);
3499 
3500 		case ETHERTYPE_REVARP:
3501 			return (gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3502 			    ARCTYPE_REVARP));
3503 
3504 		case ETHERTYPE_ATALK:
3505 			return (gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3506 			    ARCTYPE_ATALK));
3507 		}
3508 		/*NOTREACHED*/
3509 
3510 	case DLT_LTALK:
3511 		switch (ll_proto) {
3512 		case ETHERTYPE_ATALK:
3513 			return gen_true(cstate);
3514 		default:
3515 			return gen_false(cstate);
3516 		}
3517 		/*NOTREACHED*/
3518 
3519 	case DLT_FRELAY:
3520 		/*
3521 		 * XXX - assumes a 2-byte Frame Relay header with
3522 		 * DLCI and flags.  What if the address is longer?
3523 		 */
3524 		switch (ll_proto) {
3525 
3526 		case ETHERTYPE_IP:
3527 			/*
3528 			 * Check for the special NLPID for IP.
3529 			 */
3530 			return gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | 0xcc);
3531 
3532 		case ETHERTYPE_IPV6:
3533 			/*
3534 			 * Check for the special NLPID for IPv6.
3535 			 */
3536 			return gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | 0x8e);
3537 
3538 		case LLCSAP_ISONS:
3539 			/*
3540 			 * Check for several OSI protocols.
3541 			 *
3542 			 * Frame Relay packets typically have an OSI
3543 			 * NLPID at the beginning; we check for each
3544 			 * of them.
3545 			 *
3546 			 * What we check for is the NLPID and a frame
3547 			 * control field of UI, i.e. 0x03 followed
3548 			 * by the NLPID.
3549 			 */
3550 			b0 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | ISO8473_CLNP);
3551 			b1 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | ISO9542_ESIS);
3552 			b2 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | ISO10589_ISIS);
3553 			gen_or(b1, b2);
3554 			gen_or(b0, b2);
3555 			return b2;
3556 
3557 		default:
3558 			return gen_false(cstate);
3559 		}
3560 		/*NOTREACHED*/
3561 
3562 	case DLT_MFR:
3563 		bpf_error(cstate, "Multi-link Frame Relay link-layer type filtering not implemented");
3564 
3565         case DLT_JUNIPER_MFR:
3566         case DLT_JUNIPER_MLFR:
3567         case DLT_JUNIPER_MLPPP:
3568 	case DLT_JUNIPER_ATM1:
3569 	case DLT_JUNIPER_ATM2:
3570 	case DLT_JUNIPER_PPPOE:
3571 	case DLT_JUNIPER_PPPOE_ATM:
3572         case DLT_JUNIPER_GGSN:
3573         case DLT_JUNIPER_ES:
3574         case DLT_JUNIPER_MONITOR:
3575         case DLT_JUNIPER_SERVICES:
3576         case DLT_JUNIPER_ETHER:
3577         case DLT_JUNIPER_PPP:
3578         case DLT_JUNIPER_FRELAY:
3579         case DLT_JUNIPER_CHDLC:
3580         case DLT_JUNIPER_VP:
3581         case DLT_JUNIPER_ST:
3582         case DLT_JUNIPER_ISM:
3583         case DLT_JUNIPER_VS:
3584         case DLT_JUNIPER_SRX_E2E:
3585         case DLT_JUNIPER_FIBRECHANNEL:
3586 	case DLT_JUNIPER_ATM_CEMIC:
3587 
3588 		/* just lets verify the magic number for now -
3589 		 * on ATM we may have up to 6 different encapsulations on the wire
3590 		 * and need a lot of heuristics to figure out that the payload
3591 		 * might be;
3592 		 *
3593 		 * FIXME encapsulation specific BPF_ filters
3594 		 */
3595 		return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_W, 0x4d474300, 0xffffff00); /* compare the magic number */
3596 
3597 	case DLT_BACNET_MS_TP:
3598 		return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_W, 0x55FF0000, 0xffff0000);
3599 
3600 	case DLT_IPNET:
3601 		return gen_ipnet_linktype(cstate, ll_proto);
3602 
3603 	case DLT_LINUX_IRDA:
3604 		bpf_error(cstate, "IrDA link-layer type filtering not implemented");
3605 
3606 	case DLT_DOCSIS:
3607 		bpf_error(cstate, "DOCSIS link-layer type filtering not implemented");
3608 
3609 	case DLT_MTP2:
3610 	case DLT_MTP2_WITH_PHDR:
3611 		bpf_error(cstate, "MTP2 link-layer type filtering not implemented");
3612 
3613 	case DLT_ERF:
3614 		bpf_error(cstate, "ERF link-layer type filtering not implemented");
3615 
3616 	case DLT_PFSYNC:
3617 		bpf_error(cstate, "PFSYNC link-layer type filtering not implemented");
3618 
3619 	case DLT_LINUX_LAPD:
3620 		bpf_error(cstate, "LAPD link-layer type filtering not implemented");
3621 
3622 	case DLT_USB_FREEBSD:
3623 	case DLT_USB_LINUX:
3624 	case DLT_USB_LINUX_MMAPPED:
3625 	case DLT_USBPCAP:
3626 		bpf_error(cstate, "USB link-layer type filtering not implemented");
3627 
3628 	case DLT_BLUETOOTH_HCI_H4:
3629 	case DLT_BLUETOOTH_HCI_H4_WITH_PHDR:
3630 		bpf_error(cstate, "Bluetooth link-layer type filtering not implemented");
3631 
3632 	case DLT_CAN20B:
3633 	case DLT_CAN_SOCKETCAN:
3634 		bpf_error(cstate, "CAN link-layer type filtering not implemented");
3635 
3636 	case DLT_IEEE802_15_4:
3637 	case DLT_IEEE802_15_4_LINUX:
3638 	case DLT_IEEE802_15_4_NONASK_PHY:
3639 	case DLT_IEEE802_15_4_NOFCS:
3640 	case DLT_IEEE802_15_4_TAP:
3641 		bpf_error(cstate, "IEEE 802.15.4 link-layer type filtering not implemented");
3642 
3643 	case DLT_IEEE802_16_MAC_CPS_RADIO:
3644 		bpf_error(cstate, "IEEE 802.16 link-layer type filtering not implemented");
3645 
3646 	case DLT_SITA:
3647 		bpf_error(cstate, "SITA link-layer type filtering not implemented");
3648 
3649 	case DLT_RAIF1:
3650 		bpf_error(cstate, "RAIF1 link-layer type filtering not implemented");
3651 
3652 	case DLT_IPMB_KONTRON:
3653 	case DLT_IPMB_LINUX:
3654 		bpf_error(cstate, "IPMB link-layer type filtering not implemented");
3655 
3656 	case DLT_AX25_KISS:
3657 		bpf_error(cstate, "AX.25 link-layer type filtering not implemented");
3658 
3659 	case DLT_NFLOG:
3660 		/* Using the fixed-size NFLOG header it is possible to tell only
3661 		 * the address family of the packet, other meaningful data is
3662 		 * either missing or behind TLVs.
3663 		 */
3664 		bpf_error(cstate, "NFLOG link-layer type filtering not implemented");
3665 
3666 	default:
3667 		/*
3668 		 * Does this link-layer header type have a field
3669 		 * indicating the type of the next protocol?  If
3670 		 * so, off_linktype.constant_part will be the offset of that
3671 		 * field in the packet; if not, it will be OFFSET_NOT_SET.
3672 		 */
3673 		if (cstate->off_linktype.constant_part != OFFSET_NOT_SET) {
3674 			/*
3675 			 * Yes; assume it's an Ethernet type.  (If
3676 			 * it's not, it needs to be handled specially
3677 			 * above.)
3678 			 */
3679 			return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ll_proto);
3680 			/*NOTREACHED */
3681 		} else {
3682 			/*
3683 			 * No; report an error.
3684 			 */
3685 			description = pcap_datalink_val_to_description_or_dlt(cstate->linktype);
3686 			bpf_error(cstate, "%s link-layer type filtering not implemented",
3687 			    description);
3688 			/*NOTREACHED */
3689 		}
3690 	}
3691 }
3692 
3693 /*
3694  * Check for an LLC SNAP packet with a given organization code and
3695  * protocol type; we check the entire contents of the 802.2 LLC and
3696  * snap headers, checking for DSAP and SSAP of SNAP and a control
3697  * field of 0x03 in the LLC header, and for the specified organization
3698  * code and protocol type in the SNAP header.
3699  */
3700 static struct block *
3701 gen_snap(compiler_state_t *cstate, bpf_u_int32 orgcode, bpf_u_int32 ptype)
3702 {
3703 	u_char snapblock[8];
3704 
3705 	snapblock[0] = LLCSAP_SNAP;		/* DSAP = SNAP */
3706 	snapblock[1] = LLCSAP_SNAP;		/* SSAP = SNAP */
3707 	snapblock[2] = 0x03;			/* control = UI */
3708 	snapblock[3] = (u_char)(orgcode >> 16);	/* upper 8 bits of organization code */
3709 	snapblock[4] = (u_char)(orgcode >> 8);	/* middle 8 bits of organization code */
3710 	snapblock[5] = (u_char)(orgcode >> 0);	/* lower 8 bits of organization code */
3711 	snapblock[6] = (u_char)(ptype >> 8);	/* upper 8 bits of protocol type */
3712 	snapblock[7] = (u_char)(ptype >> 0);	/* lower 8 bits of protocol type */
3713 	return gen_bcmp(cstate, OR_LLC, 0, 8, snapblock);
3714 }
3715 
3716 /*
3717  * Generate code to match frames with an LLC header.
3718  */
3719 static struct block *
3720 gen_llc_internal(compiler_state_t *cstate)
3721 {
3722 	struct block *b0, *b1;
3723 
3724 	switch (cstate->linktype) {
3725 
3726 	case DLT_EN10MB:
3727 		/*
3728 		 * We check for an Ethernet type field less than
3729 		 * 1500, which means it's an 802.3 length field.
3730 		 */
3731 		b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
3732 		gen_not(b0);
3733 
3734 		/*
3735 		 * Now check for the purported DSAP and SSAP not being
3736 		 * 0xFF, to rule out NetWare-over-802.3.
3737 		 */
3738 		b1 = gen_cmp(cstate, OR_LLC, 0, BPF_H, 0xFFFF);
3739 		gen_not(b1);
3740 		gen_and(b0, b1);
3741 		return b1;
3742 
3743 	case DLT_SUNATM:
3744 		/*
3745 		 * We check for LLC traffic.
3746 		 */
3747 		b0 = gen_atmtype_llc(cstate);
3748 		return b0;
3749 
3750 	case DLT_IEEE802:	/* Token Ring */
3751 		/*
3752 		 * XXX - check for LLC frames.
3753 		 */
3754 		return gen_true(cstate);
3755 
3756 	case DLT_FDDI:
3757 		/*
3758 		 * XXX - check for LLC frames.
3759 		 */
3760 		return gen_true(cstate);
3761 
3762 	case DLT_ATM_RFC1483:
3763 		/*
3764 		 * For LLC encapsulation, these are defined to have an
3765 		 * 802.2 LLC header.
3766 		 *
3767 		 * For VC encapsulation, they don't, but there's no
3768 		 * way to check for that; the protocol used on the VC
3769 		 * is negotiated out of band.
3770 		 */
3771 		return gen_true(cstate);
3772 
3773 	case DLT_IEEE802_11:
3774 	case DLT_PRISM_HEADER:
3775 	case DLT_IEEE802_11_RADIO:
3776 	case DLT_IEEE802_11_RADIO_AVS:
3777 	case DLT_PPI:
3778 		/*
3779 		 * Check that we have a data frame.
3780 		 */
3781 		b0 = gen_check_802_11_data_frame(cstate);
3782 		return b0;
3783 
3784 	default:
3785 		bpf_error(cstate, "'llc' not supported for %s",
3786 			  pcap_datalink_val_to_description_or_dlt(cstate->linktype));
3787 		/*NOTREACHED*/
3788 	}
3789 }
3790 
3791 struct block *
3792 gen_llc(compiler_state_t *cstate)
3793 {
3794 	/*
3795 	 * Catch errors reported by us and routines below us, and return NULL
3796 	 * on an error.
3797 	 */
3798 	if (setjmp(cstate->top_ctx))
3799 		return (NULL);
3800 
3801 	return gen_llc_internal(cstate);
3802 }
3803 
3804 struct block *
3805 gen_llc_i(compiler_state_t *cstate)
3806 {
3807 	struct block *b0, *b1;
3808 	struct slist *s;
3809 
3810 	/*
3811 	 * Catch errors reported by us and routines below us, and return NULL
3812 	 * on an error.
3813 	 */
3814 	if (setjmp(cstate->top_ctx))
3815 		return (NULL);
3816 
3817 	/*
3818 	 * Check whether this is an LLC frame.
3819 	 */
3820 	b0 = gen_llc_internal(cstate);
3821 
3822 	/*
3823 	 * Load the control byte and test the low-order bit; it must
3824 	 * be clear for I frames.
3825 	 */
3826 	s = gen_load_a(cstate, OR_LLC, 2, BPF_B);
3827 	b1 = new_block(cstate, JMP(BPF_JSET));
3828 	b1->s.k = 0x01;
3829 	b1->stmts = s;
3830 	gen_not(b1);
3831 	gen_and(b0, b1);
3832 	return b1;
3833 }
3834 
3835 struct block *
3836 gen_llc_s(compiler_state_t *cstate)
3837 {
3838 	struct block *b0, *b1;
3839 
3840 	/*
3841 	 * Catch errors reported by us and routines below us, and return NULL
3842 	 * on an error.
3843 	 */
3844 	if (setjmp(cstate->top_ctx))
3845 		return (NULL);
3846 
3847 	/*
3848 	 * Check whether this is an LLC frame.
3849 	 */
3850 	b0 = gen_llc_internal(cstate);
3851 
3852 	/*
3853 	 * Now compare the low-order 2 bit of the control byte against
3854 	 * the appropriate value for S frames.
3855 	 */
3856 	b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, LLC_S_FMT, 0x03);
3857 	gen_and(b0, b1);
3858 	return b1;
3859 }
3860 
3861 struct block *
3862 gen_llc_u(compiler_state_t *cstate)
3863 {
3864 	struct block *b0, *b1;
3865 
3866 	/*
3867 	 * Catch errors reported by us and routines below us, and return NULL
3868 	 * on an error.
3869 	 */
3870 	if (setjmp(cstate->top_ctx))
3871 		return (NULL);
3872 
3873 	/*
3874 	 * Check whether this is an LLC frame.
3875 	 */
3876 	b0 = gen_llc_internal(cstate);
3877 
3878 	/*
3879 	 * Now compare the low-order 2 bit of the control byte against
3880 	 * the appropriate value for U frames.
3881 	 */
3882 	b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, LLC_U_FMT, 0x03);
3883 	gen_and(b0, b1);
3884 	return b1;
3885 }
3886 
3887 struct block *
3888 gen_llc_s_subtype(compiler_state_t *cstate, bpf_u_int32 subtype)
3889 {
3890 	struct block *b0, *b1;
3891 
3892 	/*
3893 	 * Catch errors reported by us and routines below us, and return NULL
3894 	 * on an error.
3895 	 */
3896 	if (setjmp(cstate->top_ctx))
3897 		return (NULL);
3898 
3899 	/*
3900 	 * Check whether this is an LLC frame.
3901 	 */
3902 	b0 = gen_llc_internal(cstate);
3903 
3904 	/*
3905 	 * Now check for an S frame with the appropriate type.
3906 	 */
3907 	b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, subtype, LLC_S_CMD_MASK);
3908 	gen_and(b0, b1);
3909 	return b1;
3910 }
3911 
3912 struct block *
3913 gen_llc_u_subtype(compiler_state_t *cstate, bpf_u_int32 subtype)
3914 {
3915 	struct block *b0, *b1;
3916 
3917 	/*
3918 	 * Catch errors reported by us and routines below us, and return NULL
3919 	 * on an error.
3920 	 */
3921 	if (setjmp(cstate->top_ctx))
3922 		return (NULL);
3923 
3924 	/*
3925 	 * Check whether this is an LLC frame.
3926 	 */
3927 	b0 = gen_llc_internal(cstate);
3928 
3929 	/*
3930 	 * Now check for a U frame with the appropriate type.
3931 	 */
3932 	b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, subtype, LLC_U_CMD_MASK);
3933 	gen_and(b0, b1);
3934 	return b1;
3935 }
3936 
3937 /*
3938  * Generate code to match a particular packet type, for link-layer types
3939  * using 802.2 LLC headers.
3940  *
3941  * This is *NOT* used for Ethernet; "gen_ether_linktype()" is used
3942  * for that - it handles the D/I/X Ethernet vs. 802.3+802.2 issues.
3943  *
3944  * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
3945  * value, if <= ETHERMTU.  We use that to determine whether to
3946  * match the DSAP or both DSAP and LSAP or to check the OUI and
3947  * protocol ID in a SNAP header.
3948  */
3949 static struct block *
3950 gen_llc_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
3951 {
3952 	/*
3953 	 * XXX - handle token-ring variable-length header.
3954 	 */
3955 	switch (ll_proto) {
3956 
3957 	case LLCSAP_IP:
3958 	case LLCSAP_ISONS:
3959 	case LLCSAP_NETBEUI:
3960 		/*
3961 		 * XXX - should we check both the DSAP and the
3962 		 * SSAP, like this, or should we check just the
3963 		 * DSAP, as we do for other SAP values?
3964 		 */
3965 		return gen_cmp(cstate, OR_LLC, 0, BPF_H, (bpf_u_int32)
3966 			     ((ll_proto << 8) | ll_proto));
3967 
3968 	case LLCSAP_IPX:
3969 		/*
3970 		 * XXX - are there ever SNAP frames for IPX on
3971 		 * non-Ethernet 802.x networks?
3972 		 */
3973 		return gen_cmp(cstate, OR_LLC, 0, BPF_B, LLCSAP_IPX);
3974 
3975 	case ETHERTYPE_ATALK:
3976 		/*
3977 		 * 802.2-encapsulated ETHERTYPE_ATALK packets are
3978 		 * SNAP packets with an organization code of
3979 		 * 0x080007 (Apple, for Appletalk) and a protocol
3980 		 * type of ETHERTYPE_ATALK (Appletalk).
3981 		 *
3982 		 * XXX - check for an organization code of
3983 		 * encapsulated Ethernet as well?
3984 		 */
3985 		return gen_snap(cstate, 0x080007, ETHERTYPE_ATALK);
3986 
3987 	default:
3988 		/*
3989 		 * XXX - we don't have to check for IPX 802.3
3990 		 * here, but should we check for the IPX Ethertype?
3991 		 */
3992 		if (ll_proto <= ETHERMTU) {
3993 			/*
3994 			 * This is an LLC SAP value, so check
3995 			 * the DSAP.
3996 			 */
3997 			return gen_cmp(cstate, OR_LLC, 0, BPF_B, ll_proto);
3998 		} else {
3999 			/*
4000 			 * This is an Ethernet type; we assume that it's
4001 			 * unlikely that it'll appear in the right place
4002 			 * at random, and therefore check only the
4003 			 * location that would hold the Ethernet type
4004 			 * in a SNAP frame with an organization code of
4005 			 * 0x000000 (encapsulated Ethernet).
4006 			 *
4007 			 * XXX - if we were to check for the SNAP DSAP and
4008 			 * LSAP, as per XXX, and were also to check for an
4009 			 * organization code of 0x000000 (encapsulated
4010 			 * Ethernet), we'd do
4011 			 *
4012 			 *	return gen_snap(cstate, 0x000000, ll_proto);
4013 			 *
4014 			 * here; for now, we don't, as per the above.
4015 			 * I don't know whether it's worth the extra CPU
4016 			 * time to do the right check or not.
4017 			 */
4018 			return gen_cmp(cstate, OR_LLC, 6, BPF_H, ll_proto);
4019 		}
4020 	}
4021 }
4022 
4023 static struct block *
4024 gen_hostop(compiler_state_t *cstate, bpf_u_int32 addr, bpf_u_int32 mask,
4025     int dir, bpf_u_int32 ll_proto, u_int src_off, u_int dst_off)
4026 {
4027 	struct block *b0, *b1;
4028 	u_int offset;
4029 
4030 	switch (dir) {
4031 
4032 	case Q_SRC:
4033 		offset = src_off;
4034 		break;
4035 
4036 	case Q_DST:
4037 		offset = dst_off;
4038 		break;
4039 
4040 	case Q_AND:
4041 		b0 = gen_hostop(cstate, addr, mask, Q_SRC, ll_proto, src_off, dst_off);
4042 		b1 = gen_hostop(cstate, addr, mask, Q_DST, ll_proto, src_off, dst_off);
4043 		gen_and(b0, b1);
4044 		return b1;
4045 
4046 	case Q_DEFAULT:
4047 	case Q_OR:
4048 		b0 = gen_hostop(cstate, addr, mask, Q_SRC, ll_proto, src_off, dst_off);
4049 		b1 = gen_hostop(cstate, addr, mask, Q_DST, ll_proto, src_off, dst_off);
4050 		gen_or(b0, b1);
4051 		return b1;
4052 
4053 	case Q_ADDR1:
4054 		bpf_error(cstate, "'addr1' and 'address1' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4055 		/*NOTREACHED*/
4056 
4057 	case Q_ADDR2:
4058 		bpf_error(cstate, "'addr2' and 'address2' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4059 		/*NOTREACHED*/
4060 
4061 	case Q_ADDR3:
4062 		bpf_error(cstate, "'addr3' and 'address3' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4063 		/*NOTREACHED*/
4064 
4065 	case Q_ADDR4:
4066 		bpf_error(cstate, "'addr4' and 'address4' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4067 		/*NOTREACHED*/
4068 
4069 	case Q_RA:
4070 		bpf_error(cstate, "'ra' is not a valid qualifier for addresses other than 802.11 MAC addresses");
4071 		/*NOTREACHED*/
4072 
4073 	case Q_TA:
4074 		bpf_error(cstate, "'ta' is not a valid qualifier for addresses other than 802.11 MAC addresses");
4075 		/*NOTREACHED*/
4076 
4077 	default:
4078 		abort();
4079 		/*NOTREACHED*/
4080 	}
4081 	b0 = gen_linktype(cstate, ll_proto);
4082 	b1 = gen_mcmp(cstate, OR_LINKPL, offset, BPF_W, addr, mask);
4083 	gen_and(b0, b1);
4084 	return b1;
4085 }
4086 
4087 #ifdef INET6
4088 static struct block *
4089 gen_hostop6(compiler_state_t *cstate, struct in6_addr *addr,
4090     struct in6_addr *mask, int dir, bpf_u_int32 ll_proto, u_int src_off,
4091     u_int dst_off)
4092 {
4093 	struct block *b0, *b1;
4094 	u_int offset;
4095 	uint32_t *a, *m;
4096 
4097 	switch (dir) {
4098 
4099 	case Q_SRC:
4100 		offset = src_off;
4101 		break;
4102 
4103 	case Q_DST:
4104 		offset = dst_off;
4105 		break;
4106 
4107 	case Q_AND:
4108 		b0 = gen_hostop6(cstate, addr, mask, Q_SRC, ll_proto, src_off, dst_off);
4109 		b1 = gen_hostop6(cstate, addr, mask, Q_DST, ll_proto, src_off, dst_off);
4110 		gen_and(b0, b1);
4111 		return b1;
4112 
4113 	case Q_DEFAULT:
4114 	case Q_OR:
4115 		b0 = gen_hostop6(cstate, addr, mask, Q_SRC, ll_proto, src_off, dst_off);
4116 		b1 = gen_hostop6(cstate, addr, mask, Q_DST, ll_proto, src_off, dst_off);
4117 		gen_or(b0, b1);
4118 		return b1;
4119 
4120 	case Q_ADDR1:
4121 		bpf_error(cstate, "'addr1' and 'address1' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4122 		/*NOTREACHED*/
4123 
4124 	case Q_ADDR2:
4125 		bpf_error(cstate, "'addr2' and 'address2' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4126 		/*NOTREACHED*/
4127 
4128 	case Q_ADDR3:
4129 		bpf_error(cstate, "'addr3' and 'address3' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4130 		/*NOTREACHED*/
4131 
4132 	case Q_ADDR4:
4133 		bpf_error(cstate, "'addr4' and 'address4' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4134 		/*NOTREACHED*/
4135 
4136 	case Q_RA:
4137 		bpf_error(cstate, "'ra' is not a valid qualifier for addresses other than 802.11 MAC addresses");
4138 		/*NOTREACHED*/
4139 
4140 	case Q_TA:
4141 		bpf_error(cstate, "'ta' is not a valid qualifier for addresses other than 802.11 MAC addresses");
4142 		/*NOTREACHED*/
4143 
4144 	default:
4145 		abort();
4146 		/*NOTREACHED*/
4147 	}
4148 	/* this order is important */
4149 	a = (uint32_t *)addr;
4150 	m = (uint32_t *)mask;
4151 	b1 = gen_mcmp(cstate, OR_LINKPL, offset + 12, BPF_W, ntohl(a[3]), ntohl(m[3]));
4152 	b0 = gen_mcmp(cstate, OR_LINKPL, offset + 8, BPF_W, ntohl(a[2]), ntohl(m[2]));
4153 	gen_and(b0, b1);
4154 	b0 = gen_mcmp(cstate, OR_LINKPL, offset + 4, BPF_W, ntohl(a[1]), ntohl(m[1]));
4155 	gen_and(b0, b1);
4156 	b0 = gen_mcmp(cstate, OR_LINKPL, offset + 0, BPF_W, ntohl(a[0]), ntohl(m[0]));
4157 	gen_and(b0, b1);
4158 	b0 = gen_linktype(cstate, ll_proto);
4159 	gen_and(b0, b1);
4160 	return b1;
4161 }
4162 #endif
4163 
4164 static struct block *
4165 gen_ehostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
4166 {
4167 	register struct block *b0, *b1;
4168 
4169 	switch (dir) {
4170 	case Q_SRC:
4171 		return gen_bcmp(cstate, OR_LINKHDR, 6, 6, eaddr);
4172 
4173 	case Q_DST:
4174 		return gen_bcmp(cstate, OR_LINKHDR, 0, 6, eaddr);
4175 
4176 	case Q_AND:
4177 		b0 = gen_ehostop(cstate, eaddr, Q_SRC);
4178 		b1 = gen_ehostop(cstate, eaddr, Q_DST);
4179 		gen_and(b0, b1);
4180 		return b1;
4181 
4182 	case Q_DEFAULT:
4183 	case Q_OR:
4184 		b0 = gen_ehostop(cstate, eaddr, Q_SRC);
4185 		b1 = gen_ehostop(cstate, eaddr, Q_DST);
4186 		gen_or(b0, b1);
4187 		return b1;
4188 
4189 	case Q_ADDR1:
4190 		bpf_error(cstate, "'addr1' and 'address1' are only supported on 802.11 with 802.11 headers");
4191 		/*NOTREACHED*/
4192 
4193 	case Q_ADDR2:
4194 		bpf_error(cstate, "'addr2' and 'address2' are only supported on 802.11 with 802.11 headers");
4195 		/*NOTREACHED*/
4196 
4197 	case Q_ADDR3:
4198 		bpf_error(cstate, "'addr3' and 'address3' are only supported on 802.11 with 802.11 headers");
4199 		/*NOTREACHED*/
4200 
4201 	case Q_ADDR4:
4202 		bpf_error(cstate, "'addr4' and 'address4' are only supported on 802.11 with 802.11 headers");
4203 		/*NOTREACHED*/
4204 
4205 	case Q_RA:
4206 		bpf_error(cstate, "'ra' is only supported on 802.11 with 802.11 headers");
4207 		/*NOTREACHED*/
4208 
4209 	case Q_TA:
4210 		bpf_error(cstate, "'ta' is only supported on 802.11 with 802.11 headers");
4211 		/*NOTREACHED*/
4212 	}
4213 	abort();
4214 	/*NOTREACHED*/
4215 }
4216 
4217 /*
4218  * Like gen_ehostop, but for DLT_FDDI
4219  */
4220 static struct block *
4221 gen_fhostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
4222 {
4223 	struct block *b0, *b1;
4224 
4225 	switch (dir) {
4226 	case Q_SRC:
4227 		return gen_bcmp(cstate, OR_LINKHDR, 6 + 1 + cstate->pcap_fddipad, 6, eaddr);
4228 
4229 	case Q_DST:
4230 		return gen_bcmp(cstate, OR_LINKHDR, 0 + 1 + cstate->pcap_fddipad, 6, eaddr);
4231 
4232 	case Q_AND:
4233 		b0 = gen_fhostop(cstate, eaddr, Q_SRC);
4234 		b1 = gen_fhostop(cstate, eaddr, Q_DST);
4235 		gen_and(b0, b1);
4236 		return b1;
4237 
4238 	case Q_DEFAULT:
4239 	case Q_OR:
4240 		b0 = gen_fhostop(cstate, eaddr, Q_SRC);
4241 		b1 = gen_fhostop(cstate, eaddr, Q_DST);
4242 		gen_or(b0, b1);
4243 		return b1;
4244 
4245 	case Q_ADDR1:
4246 		bpf_error(cstate, "'addr1' and 'address1' are only supported on 802.11");
4247 		/*NOTREACHED*/
4248 
4249 	case Q_ADDR2:
4250 		bpf_error(cstate, "'addr2' and 'address2' are only supported on 802.11");
4251 		/*NOTREACHED*/
4252 
4253 	case Q_ADDR3:
4254 		bpf_error(cstate, "'addr3' and 'address3' are only supported on 802.11");
4255 		/*NOTREACHED*/
4256 
4257 	case Q_ADDR4:
4258 		bpf_error(cstate, "'addr4' and 'address4' are only supported on 802.11");
4259 		/*NOTREACHED*/
4260 
4261 	case Q_RA:
4262 		bpf_error(cstate, "'ra' is only supported on 802.11");
4263 		/*NOTREACHED*/
4264 
4265 	case Q_TA:
4266 		bpf_error(cstate, "'ta' is only supported on 802.11");
4267 		/*NOTREACHED*/
4268 	}
4269 	abort();
4270 	/*NOTREACHED*/
4271 }
4272 
4273 /*
4274  * Like gen_ehostop, but for DLT_IEEE802 (Token Ring)
4275  */
4276 static struct block *
4277 gen_thostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
4278 {
4279 	register struct block *b0, *b1;
4280 
4281 	switch (dir) {
4282 	case Q_SRC:
4283 		return gen_bcmp(cstate, OR_LINKHDR, 8, 6, eaddr);
4284 
4285 	case Q_DST:
4286 		return gen_bcmp(cstate, OR_LINKHDR, 2, 6, eaddr);
4287 
4288 	case Q_AND:
4289 		b0 = gen_thostop(cstate, eaddr, Q_SRC);
4290 		b1 = gen_thostop(cstate, eaddr, Q_DST);
4291 		gen_and(b0, b1);
4292 		return b1;
4293 
4294 	case Q_DEFAULT:
4295 	case Q_OR:
4296 		b0 = gen_thostop(cstate, eaddr, Q_SRC);
4297 		b1 = gen_thostop(cstate, eaddr, Q_DST);
4298 		gen_or(b0, b1);
4299 		return b1;
4300 
4301 	case Q_ADDR1:
4302 		bpf_error(cstate, "'addr1' and 'address1' are only supported on 802.11");
4303 		/*NOTREACHED*/
4304 
4305 	case Q_ADDR2:
4306 		bpf_error(cstate, "'addr2' and 'address2' are only supported on 802.11");
4307 		/*NOTREACHED*/
4308 
4309 	case Q_ADDR3:
4310 		bpf_error(cstate, "'addr3' and 'address3' are only supported on 802.11");
4311 		/*NOTREACHED*/
4312 
4313 	case Q_ADDR4:
4314 		bpf_error(cstate, "'addr4' and 'address4' are only supported on 802.11");
4315 		/*NOTREACHED*/
4316 
4317 	case Q_RA:
4318 		bpf_error(cstate, "'ra' is only supported on 802.11");
4319 		/*NOTREACHED*/
4320 
4321 	case Q_TA:
4322 		bpf_error(cstate, "'ta' is only supported on 802.11");
4323 		/*NOTREACHED*/
4324 	}
4325 	abort();
4326 	/*NOTREACHED*/
4327 }
4328 
4329 /*
4330  * Like gen_ehostop, but for DLT_IEEE802_11 (802.11 wireless LAN) and
4331  * various 802.11 + radio headers.
4332  */
4333 static struct block *
4334 gen_wlanhostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
4335 {
4336 	register struct block *b0, *b1, *b2;
4337 	register struct slist *s;
4338 
4339 #ifdef ENABLE_WLAN_FILTERING_PATCH
4340 	/*
4341 	 * TODO GV 20070613
4342 	 * We need to disable the optimizer because the optimizer is buggy
4343 	 * and wipes out some LD instructions generated by the below
4344 	 * code to validate the Frame Control bits
4345 	 */
4346 	cstate->no_optimize = 1;
4347 #endif /* ENABLE_WLAN_FILTERING_PATCH */
4348 
4349 	switch (dir) {
4350 	case Q_SRC:
4351 		/*
4352 		 * Oh, yuk.
4353 		 *
4354 		 *	For control frames, there is no SA.
4355 		 *
4356 		 *	For management frames, SA is at an
4357 		 *	offset of 10 from the beginning of
4358 		 *	the packet.
4359 		 *
4360 		 *	For data frames, SA is at an offset
4361 		 *	of 10 from the beginning of the packet
4362 		 *	if From DS is clear, at an offset of
4363 		 *	16 from the beginning of the packet
4364 		 *	if From DS is set and To DS is clear,
4365 		 *	and an offset of 24 from the beginning
4366 		 *	of the packet if From DS is set and To DS
4367 		 *	is set.
4368 		 */
4369 
4370 		/*
4371 		 * Generate the tests to be done for data frames
4372 		 * with From DS set.
4373 		 *
4374 		 * First, check for To DS set, i.e. check "link[1] & 0x01".
4375 		 */
4376 		s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4377 		b1 = new_block(cstate, JMP(BPF_JSET));
4378 		b1->s.k = 0x01;	/* To DS */
4379 		b1->stmts = s;
4380 
4381 		/*
4382 		 * If To DS is set, the SA is at 24.
4383 		 */
4384 		b0 = gen_bcmp(cstate, OR_LINKHDR, 24, 6, eaddr);
4385 		gen_and(b1, b0);
4386 
4387 		/*
4388 		 * Now, check for To DS not set, i.e. check
4389 		 * "!(link[1] & 0x01)".
4390 		 */
4391 		s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4392 		b2 = new_block(cstate, JMP(BPF_JSET));
4393 		b2->s.k = 0x01;	/* To DS */
4394 		b2->stmts = s;
4395 		gen_not(b2);
4396 
4397 		/*
4398 		 * If To DS is not set, the SA is at 16.
4399 		 */
4400 		b1 = gen_bcmp(cstate, OR_LINKHDR, 16, 6, eaddr);
4401 		gen_and(b2, b1);
4402 
4403 		/*
4404 		 * Now OR together the last two checks.  That gives
4405 		 * the complete set of checks for data frames with
4406 		 * From DS set.
4407 		 */
4408 		gen_or(b1, b0);
4409 
4410 		/*
4411 		 * Now check for From DS being set, and AND that with
4412 		 * the ORed-together checks.
4413 		 */
4414 		s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4415 		b1 = new_block(cstate, JMP(BPF_JSET));
4416 		b1->s.k = 0x02;	/* From DS */
4417 		b1->stmts = s;
4418 		gen_and(b1, b0);
4419 
4420 		/*
4421 		 * Now check for data frames with From DS not set.
4422 		 */
4423 		s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4424 		b2 = new_block(cstate, JMP(BPF_JSET));
4425 		b2->s.k = 0x02;	/* From DS */
4426 		b2->stmts = s;
4427 		gen_not(b2);
4428 
4429 		/*
4430 		 * If From DS isn't set, the SA is at 10.
4431 		 */
4432 		b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4433 		gen_and(b2, b1);
4434 
4435 		/*
4436 		 * Now OR together the checks for data frames with
4437 		 * From DS not set and for data frames with From DS
4438 		 * set; that gives the checks done for data frames.
4439 		 */
4440 		gen_or(b1, b0);
4441 
4442 		/*
4443 		 * Now check for a data frame.
4444 		 * I.e, check "link[0] & 0x08".
4445 		 */
4446 		s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4447 		b1 = new_block(cstate, JMP(BPF_JSET));
4448 		b1->s.k = 0x08;
4449 		b1->stmts = s;
4450 
4451 		/*
4452 		 * AND that with the checks done for data frames.
4453 		 */
4454 		gen_and(b1, b0);
4455 
4456 		/*
4457 		 * If the high-order bit of the type value is 0, this
4458 		 * is a management frame.
4459 		 * I.e, check "!(link[0] & 0x08)".
4460 		 */
4461 		s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4462 		b2 = new_block(cstate, JMP(BPF_JSET));
4463 		b2->s.k = 0x08;
4464 		b2->stmts = s;
4465 		gen_not(b2);
4466 
4467 		/*
4468 		 * For management frames, the SA is at 10.
4469 		 */
4470 		b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4471 		gen_and(b2, b1);
4472 
4473 		/*
4474 		 * OR that with the checks done for data frames.
4475 		 * That gives the checks done for management and
4476 		 * data frames.
4477 		 */
4478 		gen_or(b1, b0);
4479 
4480 		/*
4481 		 * If the low-order bit of the type value is 1,
4482 		 * this is either a control frame or a frame
4483 		 * with a reserved type, and thus not a
4484 		 * frame with an SA.
4485 		 *
4486 		 * I.e., check "!(link[0] & 0x04)".
4487 		 */
4488 		s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4489 		b1 = new_block(cstate, JMP(BPF_JSET));
4490 		b1->s.k = 0x04;
4491 		b1->stmts = s;
4492 		gen_not(b1);
4493 
4494 		/*
4495 		 * AND that with the checks for data and management
4496 		 * frames.
4497 		 */
4498 		gen_and(b1, b0);
4499 		return b0;
4500 
4501 	case Q_DST:
4502 		/*
4503 		 * Oh, yuk.
4504 		 *
4505 		 *	For control frames, there is no DA.
4506 		 *
4507 		 *	For management frames, DA is at an
4508 		 *	offset of 4 from the beginning of
4509 		 *	the packet.
4510 		 *
4511 		 *	For data frames, DA is at an offset
4512 		 *	of 4 from the beginning of the packet
4513 		 *	if To DS is clear and at an offset of
4514 		 *	16 from the beginning of the packet
4515 		 *	if To DS is set.
4516 		 */
4517 
4518 		/*
4519 		 * Generate the tests to be done for data frames.
4520 		 *
4521 		 * First, check for To DS set, i.e. "link[1] & 0x01".
4522 		 */
4523 		s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4524 		b1 = new_block(cstate, JMP(BPF_JSET));
4525 		b1->s.k = 0x01;	/* To DS */
4526 		b1->stmts = s;
4527 
4528 		/*
4529 		 * If To DS is set, the DA is at 16.
4530 		 */
4531 		b0 = gen_bcmp(cstate, OR_LINKHDR, 16, 6, eaddr);
4532 		gen_and(b1, b0);
4533 
4534 		/*
4535 		 * Now, check for To DS not set, i.e. check
4536 		 * "!(link[1] & 0x01)".
4537 		 */
4538 		s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4539 		b2 = new_block(cstate, JMP(BPF_JSET));
4540 		b2->s.k = 0x01;	/* To DS */
4541 		b2->stmts = s;
4542 		gen_not(b2);
4543 
4544 		/*
4545 		 * If To DS is not set, the DA is at 4.
4546 		 */
4547 		b1 = gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr);
4548 		gen_and(b2, b1);
4549 
4550 		/*
4551 		 * Now OR together the last two checks.  That gives
4552 		 * the complete set of checks for data frames.
4553 		 */
4554 		gen_or(b1, b0);
4555 
4556 		/*
4557 		 * Now check for a data frame.
4558 		 * I.e, check "link[0] & 0x08".
4559 		 */
4560 		s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4561 		b1 = new_block(cstate, JMP(BPF_JSET));
4562 		b1->s.k = 0x08;
4563 		b1->stmts = s;
4564 
4565 		/*
4566 		 * AND that with the checks done for data frames.
4567 		 */
4568 		gen_and(b1, b0);
4569 
4570 		/*
4571 		 * If the high-order bit of the type value is 0, this
4572 		 * is a management frame.
4573 		 * I.e, check "!(link[0] & 0x08)".
4574 		 */
4575 		s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4576 		b2 = new_block(cstate, JMP(BPF_JSET));
4577 		b2->s.k = 0x08;
4578 		b2->stmts = s;
4579 		gen_not(b2);
4580 
4581 		/*
4582 		 * For management frames, the DA is at 4.
4583 		 */
4584 		b1 = gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr);
4585 		gen_and(b2, b1);
4586 
4587 		/*
4588 		 * OR that with the checks done for data frames.
4589 		 * That gives the checks done for management and
4590 		 * data frames.
4591 		 */
4592 		gen_or(b1, b0);
4593 
4594 		/*
4595 		 * If the low-order bit of the type value is 1,
4596 		 * this is either a control frame or a frame
4597 		 * with a reserved type, and thus not a
4598 		 * frame with an SA.
4599 		 *
4600 		 * I.e., check "!(link[0] & 0x04)".
4601 		 */
4602 		s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4603 		b1 = new_block(cstate, JMP(BPF_JSET));
4604 		b1->s.k = 0x04;
4605 		b1->stmts = s;
4606 		gen_not(b1);
4607 
4608 		/*
4609 		 * AND that with the checks for data and management
4610 		 * frames.
4611 		 */
4612 		gen_and(b1, b0);
4613 		return b0;
4614 
4615 	case Q_AND:
4616 		b0 = gen_wlanhostop(cstate, eaddr, Q_SRC);
4617 		b1 = gen_wlanhostop(cstate, eaddr, Q_DST);
4618 		gen_and(b0, b1);
4619 		return b1;
4620 
4621 	case Q_DEFAULT:
4622 	case Q_OR:
4623 		b0 = gen_wlanhostop(cstate, eaddr, Q_SRC);
4624 		b1 = gen_wlanhostop(cstate, eaddr, Q_DST);
4625 		gen_or(b0, b1);
4626 		return b1;
4627 
4628 	/*
4629 	 * XXX - add BSSID keyword?
4630 	 */
4631 	case Q_ADDR1:
4632 		return (gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr));
4633 
4634 	case Q_ADDR2:
4635 		/*
4636 		 * Not present in CTS or ACK control frames.
4637 		 */
4638 		b0 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4639 			IEEE80211_FC0_TYPE_MASK);
4640 		gen_not(b0);
4641 		b1 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_CTS,
4642 			IEEE80211_FC0_SUBTYPE_MASK);
4643 		gen_not(b1);
4644 		b2 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_ACK,
4645 			IEEE80211_FC0_SUBTYPE_MASK);
4646 		gen_not(b2);
4647 		gen_and(b1, b2);
4648 		gen_or(b0, b2);
4649 		b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4650 		gen_and(b2, b1);
4651 		return b1;
4652 
4653 	case Q_ADDR3:
4654 		/*
4655 		 * Not present in control frames.
4656 		 */
4657 		b0 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4658 			IEEE80211_FC0_TYPE_MASK);
4659 		gen_not(b0);
4660 		b1 = gen_bcmp(cstate, OR_LINKHDR, 16, 6, eaddr);
4661 		gen_and(b0, b1);
4662 		return b1;
4663 
4664 	case Q_ADDR4:
4665 		/*
4666 		 * Present only if the direction mask has both "From DS"
4667 		 * and "To DS" set.  Neither control frames nor management
4668 		 * frames should have both of those set, so we don't
4669 		 * check the frame type.
4670 		 */
4671 		b0 = gen_mcmp(cstate, OR_LINKHDR, 1, BPF_B,
4672 			IEEE80211_FC1_DIR_DSTODS, IEEE80211_FC1_DIR_MASK);
4673 		b1 = gen_bcmp(cstate, OR_LINKHDR, 24, 6, eaddr);
4674 		gen_and(b0, b1);
4675 		return b1;
4676 
4677 	case Q_RA:
4678 		/*
4679 		 * Not present in management frames; addr1 in other
4680 		 * frames.
4681 		 */
4682 
4683 		/*
4684 		 * If the high-order bit of the type value is 0, this
4685 		 * is a management frame.
4686 		 * I.e, check "(link[0] & 0x08)".
4687 		 */
4688 		s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4689 		b1 = new_block(cstate, JMP(BPF_JSET));
4690 		b1->s.k = 0x08;
4691 		b1->stmts = s;
4692 
4693 		/*
4694 		 * Check addr1.
4695 		 */
4696 		b0 = gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr);
4697 
4698 		/*
4699 		 * AND that with the check of addr1.
4700 		 */
4701 		gen_and(b1, b0);
4702 		return (b0);
4703 
4704 	case Q_TA:
4705 		/*
4706 		 * Not present in management frames; addr2, if present,
4707 		 * in other frames.
4708 		 */
4709 
4710 		/*
4711 		 * Not present in CTS or ACK control frames.
4712 		 */
4713 		b0 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4714 			IEEE80211_FC0_TYPE_MASK);
4715 		gen_not(b0);
4716 		b1 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_CTS,
4717 			IEEE80211_FC0_SUBTYPE_MASK);
4718 		gen_not(b1);
4719 		b2 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_ACK,
4720 			IEEE80211_FC0_SUBTYPE_MASK);
4721 		gen_not(b2);
4722 		gen_and(b1, b2);
4723 		gen_or(b0, b2);
4724 
4725 		/*
4726 		 * If the high-order bit of the type value is 0, this
4727 		 * is a management frame.
4728 		 * I.e, check "(link[0] & 0x08)".
4729 		 */
4730 		s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4731 		b1 = new_block(cstate, JMP(BPF_JSET));
4732 		b1->s.k = 0x08;
4733 		b1->stmts = s;
4734 
4735 		/*
4736 		 * AND that with the check for frames other than
4737 		 * CTS and ACK frames.
4738 		 */
4739 		gen_and(b1, b2);
4740 
4741 		/*
4742 		 * Check addr2.
4743 		 */
4744 		b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4745 		gen_and(b2, b1);
4746 		return b1;
4747 	}
4748 	abort();
4749 	/*NOTREACHED*/
4750 }
4751 
4752 /*
4753  * Like gen_ehostop, but for RFC 2625 IP-over-Fibre-Channel.
4754  * (We assume that the addresses are IEEE 48-bit MAC addresses,
4755  * as the RFC states.)
4756  */
4757 static struct block *
4758 gen_ipfchostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
4759 {
4760 	register struct block *b0, *b1;
4761 
4762 	switch (dir) {
4763 	case Q_SRC:
4764 		return gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4765 
4766 	case Q_DST:
4767 		return gen_bcmp(cstate, OR_LINKHDR, 2, 6, eaddr);
4768 
4769 	case Q_AND:
4770 		b0 = gen_ipfchostop(cstate, eaddr, Q_SRC);
4771 		b1 = gen_ipfchostop(cstate, eaddr, Q_DST);
4772 		gen_and(b0, b1);
4773 		return b1;
4774 
4775 	case Q_DEFAULT:
4776 	case Q_OR:
4777 		b0 = gen_ipfchostop(cstate, eaddr, Q_SRC);
4778 		b1 = gen_ipfchostop(cstate, eaddr, Q_DST);
4779 		gen_or(b0, b1);
4780 		return b1;
4781 
4782 	case Q_ADDR1:
4783 		bpf_error(cstate, "'addr1' and 'address1' are only supported on 802.11");
4784 		/*NOTREACHED*/
4785 
4786 	case Q_ADDR2:
4787 		bpf_error(cstate, "'addr2' and 'address2' are only supported on 802.11");
4788 		/*NOTREACHED*/
4789 
4790 	case Q_ADDR3:
4791 		bpf_error(cstate, "'addr3' and 'address3' are only supported on 802.11");
4792 		/*NOTREACHED*/
4793 
4794 	case Q_ADDR4:
4795 		bpf_error(cstate, "'addr4' and 'address4' are only supported on 802.11");
4796 		/*NOTREACHED*/
4797 
4798 	case Q_RA:
4799 		bpf_error(cstate, "'ra' is only supported on 802.11");
4800 		/*NOTREACHED*/
4801 
4802 	case Q_TA:
4803 		bpf_error(cstate, "'ta' is only supported on 802.11");
4804 		/*NOTREACHED*/
4805 	}
4806 	abort();
4807 	/*NOTREACHED*/
4808 }
4809 
4810 /*
4811  * This is quite tricky because there may be pad bytes in front of the
4812  * DECNET header, and then there are two possible data packet formats that
4813  * carry both src and dst addresses, plus 5 packet types in a format that
4814  * carries only the src node, plus 2 types that use a different format and
4815  * also carry just the src node.
4816  *
4817  * Yuck.
4818  *
4819  * Instead of doing those all right, we just look for data packets with
4820  * 0 or 1 bytes of padding.  If you want to look at other packets, that
4821  * will require a lot more hacking.
4822  *
4823  * To add support for filtering on DECNET "areas" (network numbers)
4824  * one would want to add a "mask" argument to this routine.  That would
4825  * make the filter even more inefficient, although one could be clever
4826  * and not generate masking instructions if the mask is 0xFFFF.
4827  */
4828 static struct block *
4829 gen_dnhostop(compiler_state_t *cstate, bpf_u_int32 addr, int dir)
4830 {
4831 	struct block *b0, *b1, *b2, *tmp;
4832 	u_int offset_lh;	/* offset if long header is received */
4833 	u_int offset_sh;	/* offset if short header is received */
4834 
4835 	switch (dir) {
4836 
4837 	case Q_DST:
4838 		offset_sh = 1;	/* follows flags */
4839 		offset_lh = 7;	/* flgs,darea,dsubarea,HIORD */
4840 		break;
4841 
4842 	case Q_SRC:
4843 		offset_sh = 3;	/* follows flags, dstnode */
4844 		offset_lh = 15;	/* flgs,darea,dsubarea,did,sarea,ssub,HIORD */
4845 		break;
4846 
4847 	case Q_AND:
4848 		/* Inefficient because we do our Calvinball dance twice */
4849 		b0 = gen_dnhostop(cstate, addr, Q_SRC);
4850 		b1 = gen_dnhostop(cstate, addr, Q_DST);
4851 		gen_and(b0, b1);
4852 		return b1;
4853 
4854 	case Q_DEFAULT:
4855 	case Q_OR:
4856 		/* Inefficient because we do our Calvinball dance twice */
4857 		b0 = gen_dnhostop(cstate, addr, Q_SRC);
4858 		b1 = gen_dnhostop(cstate, addr, Q_DST);
4859 		gen_or(b0, b1);
4860 		return b1;
4861 
4862 	case Q_ADDR1:
4863 		bpf_error(cstate, "'addr1' and 'address1' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4864 		/*NOTREACHED*/
4865 
4866 	case Q_ADDR2:
4867 		bpf_error(cstate, "'addr2' and 'address2' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4868 		/*NOTREACHED*/
4869 
4870 	case Q_ADDR3:
4871 		bpf_error(cstate, "'addr3' and 'address3' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4872 		/*NOTREACHED*/
4873 
4874 	case Q_ADDR4:
4875 		bpf_error(cstate, "'addr4' and 'address4' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4876 		/*NOTREACHED*/
4877 
4878 	case Q_RA:
4879 		bpf_error(cstate, "'ra' is not a valid qualifier for addresses other than 802.11 MAC addresses");
4880 		/*NOTREACHED*/
4881 
4882 	case Q_TA:
4883 		bpf_error(cstate, "'ta' is not a valid qualifier for addresses other than 802.11 MAC addresses");
4884 		/*NOTREACHED*/
4885 
4886 	default:
4887 		abort();
4888 		/*NOTREACHED*/
4889 	}
4890 	b0 = gen_linktype(cstate, ETHERTYPE_DN);
4891 	/* Check for pad = 1, long header case */
4892 	tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_H,
4893 	    (bpf_u_int32)ntohs(0x0681), (bpf_u_int32)ntohs(0x07FF));
4894 	b1 = gen_cmp(cstate, OR_LINKPL, 2 + 1 + offset_lh,
4895 	    BPF_H, (bpf_u_int32)ntohs((u_short)addr));
4896 	gen_and(tmp, b1);
4897 	/* Check for pad = 0, long header case */
4898 	tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_B, (bpf_u_int32)0x06,
4899 	    (bpf_u_int32)0x7);
4900 	b2 = gen_cmp(cstate, OR_LINKPL, 2 + offset_lh, BPF_H,
4901 	    (bpf_u_int32)ntohs((u_short)addr));
4902 	gen_and(tmp, b2);
4903 	gen_or(b2, b1);
4904 	/* Check for pad = 1, short header case */
4905 	tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_H,
4906 	    (bpf_u_int32)ntohs(0x0281), (bpf_u_int32)ntohs(0x07FF));
4907 	b2 = gen_cmp(cstate, OR_LINKPL, 2 + 1 + offset_sh, BPF_H,
4908 	    (bpf_u_int32)ntohs((u_short)addr));
4909 	gen_and(tmp, b2);
4910 	gen_or(b2, b1);
4911 	/* Check for pad = 0, short header case */
4912 	tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_B, (bpf_u_int32)0x02,
4913 	    (bpf_u_int32)0x7);
4914 	b2 = gen_cmp(cstate, OR_LINKPL, 2 + offset_sh, BPF_H,
4915 	    (bpf_u_int32)ntohs((u_short)addr));
4916 	gen_and(tmp, b2);
4917 	gen_or(b2, b1);
4918 
4919 	/* Combine with test for cstate->linktype */
4920 	gen_and(b0, b1);
4921 	return b1;
4922 }
4923 
4924 /*
4925  * Generate a check for IPv4 or IPv6 for MPLS-encapsulated packets;
4926  * test the bottom-of-stack bit, and then check the version number
4927  * field in the IP header.
4928  */
4929 static struct block *
4930 gen_mpls_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
4931 {
4932 	struct block *b0, *b1;
4933 
4934         switch (ll_proto) {
4935 
4936         case ETHERTYPE_IP:
4937                 /* match the bottom-of-stack bit */
4938                 b0 = gen_mcmp(cstate, OR_LINKPL, (u_int)-2, BPF_B, 0x01, 0x01);
4939                 /* match the IPv4 version number */
4940                 b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_B, 0x40, 0xf0);
4941                 gen_and(b0, b1);
4942                 return b1;
4943 
4944         case ETHERTYPE_IPV6:
4945                 /* match the bottom-of-stack bit */
4946                 b0 = gen_mcmp(cstate, OR_LINKPL, (u_int)-2, BPF_B, 0x01, 0x01);
4947                 /* match the IPv4 version number */
4948                 b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_B, 0x60, 0xf0);
4949                 gen_and(b0, b1);
4950                 return b1;
4951 
4952         default:
4953                /* FIXME add other L3 proto IDs */
4954                bpf_error(cstate, "unsupported protocol over mpls");
4955                /*NOTREACHED*/
4956         }
4957 }
4958 
4959 static struct block *
4960 gen_host(compiler_state_t *cstate, bpf_u_int32 addr, bpf_u_int32 mask,
4961     int proto, int dir, int type)
4962 {
4963 	struct block *b0, *b1;
4964 	const char *typestr;
4965 
4966 	if (type == Q_NET)
4967 		typestr = "net";
4968 	else
4969 		typestr = "host";
4970 
4971 	switch (proto) {
4972 
4973 	case Q_DEFAULT:
4974 		b0 = gen_host(cstate, addr, mask, Q_IP, dir, type);
4975 		/*
4976 		 * Only check for non-IPv4 addresses if we're not
4977 		 * checking MPLS-encapsulated packets.
4978 		 */
4979 		if (cstate->label_stack_depth == 0) {
4980 			b1 = gen_host(cstate, addr, mask, Q_ARP, dir, type);
4981 			gen_or(b0, b1);
4982 			b0 = gen_host(cstate, addr, mask, Q_RARP, dir, type);
4983 			gen_or(b1, b0);
4984 		}
4985 		return b0;
4986 
4987 	case Q_LINK:
4988 		bpf_error(cstate, "link-layer modifier applied to %s", typestr);
4989 
4990 	case Q_IP:
4991 		return gen_hostop(cstate, addr, mask, dir, ETHERTYPE_IP, 12, 16);
4992 
4993 	case Q_RARP:
4994 		return gen_hostop(cstate, addr, mask, dir, ETHERTYPE_REVARP, 14, 24);
4995 
4996 	case Q_ARP:
4997 		return gen_hostop(cstate, addr, mask, dir, ETHERTYPE_ARP, 14, 24);
4998 
4999 	case Q_SCTP:
5000 		bpf_error(cstate, "'sctp' modifier applied to %s", typestr);
5001 
5002 	case Q_TCP:
5003 		bpf_error(cstate, "'tcp' modifier applied to %s", typestr);
5004 
5005 	case Q_UDP:
5006 		bpf_error(cstate, "'udp' modifier applied to %s", typestr);
5007 
5008 	case Q_ICMP:
5009 		bpf_error(cstate, "'icmp' modifier applied to %s", typestr);
5010 
5011 	case Q_IGMP:
5012 		bpf_error(cstate, "'igmp' modifier applied to %s", typestr);
5013 
5014 	case Q_IGRP:
5015 		bpf_error(cstate, "'igrp' modifier applied to %s", typestr);
5016 
5017 	case Q_ATALK:
5018 		bpf_error(cstate, "AppleTalk host filtering not implemented");
5019 
5020 	case Q_DECNET:
5021 		return gen_dnhostop(cstate, addr, dir);
5022 
5023 	case Q_LAT:
5024 		bpf_error(cstate, "LAT host filtering not implemented");
5025 
5026 	case Q_SCA:
5027 		bpf_error(cstate, "SCA host filtering not implemented");
5028 
5029 	case Q_MOPRC:
5030 		bpf_error(cstate, "MOPRC host filtering not implemented");
5031 
5032 	case Q_MOPDL:
5033 		bpf_error(cstate, "MOPDL host filtering not implemented");
5034 
5035 	case Q_IPV6:
5036 		bpf_error(cstate, "'ip6' modifier applied to ip host");
5037 
5038 	case Q_ICMPV6:
5039 		bpf_error(cstate, "'icmp6' modifier applied to %s", typestr);
5040 
5041 	case Q_AH:
5042 		bpf_error(cstate, "'ah' modifier applied to %s", typestr);
5043 
5044 	case Q_ESP:
5045 		bpf_error(cstate, "'esp' modifier applied to %s", typestr);
5046 
5047 	case Q_PIM:
5048 		bpf_error(cstate, "'pim' modifier applied to %s", typestr);
5049 
5050 	case Q_VRRP:
5051 		bpf_error(cstate, "'vrrp' modifier applied to %s", typestr);
5052 
5053 	case Q_AARP:
5054 		bpf_error(cstate, "AARP host filtering not implemented");
5055 
5056 	case Q_ISO:
5057 		bpf_error(cstate, "ISO host filtering not implemented");
5058 
5059 	case Q_ESIS:
5060 		bpf_error(cstate, "'esis' modifier applied to %s", typestr);
5061 
5062 	case Q_ISIS:
5063 		bpf_error(cstate, "'isis' modifier applied to %s", typestr);
5064 
5065 	case Q_CLNP:
5066 		bpf_error(cstate, "'clnp' modifier applied to %s", typestr);
5067 
5068 	case Q_STP:
5069 		bpf_error(cstate, "'stp' modifier applied to %s", typestr);
5070 
5071 	case Q_IPX:
5072 		bpf_error(cstate, "IPX host filtering not implemented");
5073 
5074 	case Q_NETBEUI:
5075 		bpf_error(cstate, "'netbeui' modifier applied to %s", typestr);
5076 
5077 	case Q_ISIS_L1:
5078 		bpf_error(cstate, "'l1' modifier applied to %s", typestr);
5079 
5080 	case Q_ISIS_L2:
5081 		bpf_error(cstate, "'l2' modifier applied to %s", typestr);
5082 
5083 	case Q_ISIS_IIH:
5084 		bpf_error(cstate, "'iih' modifier applied to %s", typestr);
5085 
5086 	case Q_ISIS_SNP:
5087 		bpf_error(cstate, "'snp' modifier applied to %s", typestr);
5088 
5089 	case Q_ISIS_CSNP:
5090 		bpf_error(cstate, "'csnp' modifier applied to %s", typestr);
5091 
5092 	case Q_ISIS_PSNP:
5093 		bpf_error(cstate, "'psnp' modifier applied to %s", typestr);
5094 
5095 	case Q_ISIS_LSP:
5096 		bpf_error(cstate, "'lsp' modifier applied to %s", typestr);
5097 
5098 	case Q_RADIO:
5099 		bpf_error(cstate, "'radio' modifier applied to %s", typestr);
5100 
5101 	case Q_CARP:
5102 		bpf_error(cstate, "'carp' modifier applied to %s", typestr);
5103 
5104 	default:
5105 		abort();
5106 	}
5107 	/*NOTREACHED*/
5108 }
5109 
5110 #ifdef INET6
5111 static struct block *
5112 gen_host6(compiler_state_t *cstate, struct in6_addr *addr,
5113     struct in6_addr *mask, int proto, int dir, int type)
5114 {
5115 	const char *typestr;
5116 
5117 	if (type == Q_NET)
5118 		typestr = "net";
5119 	else
5120 		typestr = "host";
5121 
5122 	switch (proto) {
5123 
5124 	case Q_DEFAULT:
5125 		return gen_host6(cstate, addr, mask, Q_IPV6, dir, type);
5126 
5127 	case Q_LINK:
5128 		bpf_error(cstate, "link-layer modifier applied to ip6 %s", typestr);
5129 
5130 	case Q_IP:
5131 		bpf_error(cstate, "'ip' modifier applied to ip6 %s", typestr);
5132 
5133 	case Q_RARP:
5134 		bpf_error(cstate, "'rarp' modifier applied to ip6 %s", typestr);
5135 
5136 	case Q_ARP:
5137 		bpf_error(cstate, "'arp' modifier applied to ip6 %s", typestr);
5138 
5139 	case Q_SCTP:
5140 		bpf_error(cstate, "'sctp' modifier applied to ip6 %s", typestr);
5141 
5142 	case Q_TCP:
5143 		bpf_error(cstate, "'tcp' modifier applied to ip6 %s", typestr);
5144 
5145 	case Q_UDP:
5146 		bpf_error(cstate, "'udp' modifier applied to ip6 %s", typestr);
5147 
5148 	case Q_ICMP:
5149 		bpf_error(cstate, "'icmp' modifier applied to ip6 %s", typestr);
5150 
5151 	case Q_IGMP:
5152 		bpf_error(cstate, "'igmp' modifier applied to ip6 %s", typestr);
5153 
5154 	case Q_IGRP:
5155 		bpf_error(cstate, "'igrp' modifier applied to ip6 %s", typestr);
5156 
5157 	case Q_ATALK:
5158 		bpf_error(cstate, "AppleTalk modifier applied to ip6 %s", typestr);
5159 
5160 	case Q_DECNET:
5161 		bpf_error(cstate, "'decnet' modifier applied to ip6 %s", typestr);
5162 
5163 	case Q_LAT:
5164 		bpf_error(cstate, "'lat' modifier applied to ip6 %s", typestr);
5165 
5166 	case Q_SCA:
5167 		bpf_error(cstate, "'sca' modifier applied to ip6 %s", typestr);
5168 
5169 	case Q_MOPRC:
5170 		bpf_error(cstate, "'moprc' modifier applied to ip6 %s", typestr);
5171 
5172 	case Q_MOPDL:
5173 		bpf_error(cstate, "'mopdl' modifier applied to ip6 %s", typestr);
5174 
5175 	case Q_IPV6:
5176 		return gen_hostop6(cstate, addr, mask, dir, ETHERTYPE_IPV6, 8, 24);
5177 
5178 	case Q_ICMPV6:
5179 		bpf_error(cstate, "'icmp6' modifier applied to ip6 %s", typestr);
5180 
5181 	case Q_AH:
5182 		bpf_error(cstate, "'ah' modifier applied to ip6 %s", typestr);
5183 
5184 	case Q_ESP:
5185 		bpf_error(cstate, "'esp' modifier applied to ip6 %s", typestr);
5186 
5187 	case Q_PIM:
5188 		bpf_error(cstate, "'pim' modifier applied to ip6 %s", typestr);
5189 
5190 	case Q_VRRP:
5191 		bpf_error(cstate, "'vrrp' modifier applied to ip6 %s", typestr);
5192 
5193 	case Q_AARP:
5194 		bpf_error(cstate, "'aarp' modifier applied to ip6 %s", typestr);
5195 
5196 	case Q_ISO:
5197 		bpf_error(cstate, "'iso' modifier applied to ip6 %s", typestr);
5198 
5199 	case Q_ESIS:
5200 		bpf_error(cstate, "'esis' modifier applied to ip6 %s", typestr);
5201 
5202 	case Q_ISIS:
5203 		bpf_error(cstate, "'isis' modifier applied to ip6 %s", typestr);
5204 
5205 	case Q_CLNP:
5206 		bpf_error(cstate, "'clnp' modifier applied to ip6 %s", typestr);
5207 
5208 	case Q_STP:
5209 		bpf_error(cstate, "'stp' modifier applied to ip6 %s", typestr);
5210 
5211 	case Q_IPX:
5212 		bpf_error(cstate, "'ipx' modifier applied to ip6 %s", typestr);
5213 
5214 	case Q_NETBEUI:
5215 		bpf_error(cstate, "'netbeui' modifier applied to ip6 %s", typestr);
5216 
5217 	case Q_ISIS_L1:
5218 		bpf_error(cstate, "'l1' modifier applied to ip6 %s", typestr);
5219 
5220 	case Q_ISIS_L2:
5221 		bpf_error(cstate, "'l2' modifier applied to ip6 %s", typestr);
5222 
5223 	case Q_ISIS_IIH:
5224 		bpf_error(cstate, "'iih' modifier applied to ip6 %s", typestr);
5225 
5226 	case Q_ISIS_SNP:
5227 		bpf_error(cstate, "'snp' modifier applied to ip6 %s", typestr);
5228 
5229 	case Q_ISIS_CSNP:
5230 		bpf_error(cstate, "'csnp' modifier applied to ip6 %s", typestr);
5231 
5232 	case Q_ISIS_PSNP:
5233 		bpf_error(cstate, "'psnp' modifier applied to ip6 %s", typestr);
5234 
5235 	case Q_ISIS_LSP:
5236 		bpf_error(cstate, "'lsp' modifier applied to ip6 %s", typestr);
5237 
5238 	case Q_RADIO:
5239 		bpf_error(cstate, "'radio' modifier applied to ip6 %s", typestr);
5240 
5241 	case Q_CARP:
5242 		bpf_error(cstate, "'carp' modifier applied to ip6 %s", typestr);
5243 
5244 	default:
5245 		abort();
5246 	}
5247 	/*NOTREACHED*/
5248 }
5249 #endif
5250 
5251 #ifndef INET6
5252 static struct block *
5253 gen_gateway(compiler_state_t *cstate, const u_char *eaddr,
5254     struct addrinfo *alist, int proto, int dir)
5255 {
5256 	struct block *b0, *b1, *tmp;
5257 	struct addrinfo *ai;
5258 	struct sockaddr_in *sin;
5259 
5260 	if (dir != 0)
5261 		bpf_error(cstate, "direction applied to 'gateway'");
5262 
5263 	switch (proto) {
5264 	case Q_DEFAULT:
5265 	case Q_IP:
5266 	case Q_ARP:
5267 	case Q_RARP:
5268 		switch (cstate->linktype) {
5269 		case DLT_EN10MB:
5270 		case DLT_NETANALYZER:
5271 		case DLT_NETANALYZER_TRANSPARENT:
5272 			b1 = gen_prevlinkhdr_check(cstate);
5273 			b0 = gen_ehostop(cstate, eaddr, Q_OR);
5274 			if (b1 != NULL)
5275 				gen_and(b1, b0);
5276 			break;
5277 		case DLT_FDDI:
5278 			b0 = gen_fhostop(cstate, eaddr, Q_OR);
5279 			break;
5280 		case DLT_IEEE802:
5281 			b0 = gen_thostop(cstate, eaddr, Q_OR);
5282 			break;
5283 		case DLT_IEEE802_11:
5284 		case DLT_PRISM_HEADER:
5285 		case DLT_IEEE802_11_RADIO_AVS:
5286 		case DLT_IEEE802_11_RADIO:
5287 		case DLT_PPI:
5288 			b0 = gen_wlanhostop(cstate, eaddr, Q_OR);
5289 			break;
5290 		case DLT_SUNATM:
5291 			/*
5292 			 * This is LLC-multiplexed traffic; if it were
5293 			 * LANE, cstate->linktype would have been set to
5294 			 * DLT_EN10MB.
5295 			 */
5296 			bpf_error(cstate,
5297 			    "'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
5298 			break;
5299 		case DLT_IP_OVER_FC:
5300 			b0 = gen_ipfchostop(cstate, eaddr, Q_OR);
5301 			break;
5302 		default:
5303 			bpf_error(cstate,
5304 			    "'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
5305 		}
5306 		b1 = NULL;
5307 		for (ai = alist; ai != NULL; ai = ai->ai_next) {
5308 			/*
5309 			 * Does it have an address?
5310 			 */
5311 			if (ai->ai_addr != NULL) {
5312 				/*
5313 				 * Yes.  Is it an IPv4 address?
5314 				 */
5315 				if (ai->ai_addr->sa_family == AF_INET) {
5316 					/*
5317 					 * Generate an entry for it.
5318 					 */
5319 					sin = (struct sockaddr_in *)ai->ai_addr;
5320 					tmp = gen_host(cstate,
5321 					    ntohl(sin->sin_addr.s_addr),
5322 					    0xffffffff, proto, Q_OR, Q_HOST);
5323 					/*
5324 					 * Is it the *first* IPv4 address?
5325 					 */
5326 					if (b1 == NULL) {
5327 						/*
5328 						 * Yes, so start with it.
5329 						 */
5330 						b1 = tmp;
5331 					} else {
5332 						/*
5333 						 * No, so OR it into the
5334 						 * existing set of
5335 						 * addresses.
5336 						 */
5337 						gen_or(b1, tmp);
5338 						b1 = tmp;
5339 					}
5340 				}
5341 			}
5342 		}
5343 		if (b1 == NULL) {
5344 			/*
5345 			 * No IPv4 addresses found.
5346 			 */
5347 			return (NULL);
5348 		}
5349 		gen_not(b1);
5350 		gen_and(b0, b1);
5351 		return b1;
5352 	}
5353 	bpf_error(cstate, "illegal modifier of 'gateway'");
5354 	/*NOTREACHED*/
5355 }
5356 #endif
5357 
5358 static struct block *
5359 gen_proto_abbrev_internal(compiler_state_t *cstate, int proto)
5360 {
5361 	struct block *b0;
5362 	struct block *b1;
5363 
5364 	switch (proto) {
5365 
5366 	case Q_SCTP:
5367 		b1 = gen_proto(cstate, IPPROTO_SCTP, Q_DEFAULT, Q_DEFAULT);
5368 		break;
5369 
5370 	case Q_TCP:
5371 		b1 = gen_proto(cstate, IPPROTO_TCP, Q_DEFAULT, Q_DEFAULT);
5372 		break;
5373 
5374 	case Q_UDP:
5375 		b1 = gen_proto(cstate, IPPROTO_UDP, Q_DEFAULT, Q_DEFAULT);
5376 		break;
5377 
5378 	case Q_ICMP:
5379 		b1 = gen_proto(cstate, IPPROTO_ICMP, Q_IP, Q_DEFAULT);
5380 		break;
5381 
5382 #ifndef	IPPROTO_IGMP
5383 #define	IPPROTO_IGMP	2
5384 #endif
5385 
5386 	case Q_IGMP:
5387 		b1 = gen_proto(cstate, IPPROTO_IGMP, Q_IP, Q_DEFAULT);
5388 		break;
5389 
5390 #ifndef	IPPROTO_IGRP
5391 #define	IPPROTO_IGRP	9
5392 #endif
5393 	case Q_IGRP:
5394 		b1 = gen_proto(cstate, IPPROTO_IGRP, Q_IP, Q_DEFAULT);
5395 		break;
5396 
5397 #ifndef IPPROTO_PIM
5398 #define IPPROTO_PIM	103
5399 #endif
5400 
5401 	case Q_PIM:
5402 		b1 = gen_proto(cstate, IPPROTO_PIM, Q_DEFAULT, Q_DEFAULT);
5403 		break;
5404 
5405 #ifndef IPPROTO_VRRP
5406 #define IPPROTO_VRRP	112
5407 #endif
5408 
5409 	case Q_VRRP:
5410 		b1 = gen_proto(cstate, IPPROTO_VRRP, Q_IP, Q_DEFAULT);
5411 		break;
5412 
5413 #ifndef IPPROTO_CARP
5414 #define IPPROTO_CARP	112
5415 #endif
5416 
5417 	case Q_CARP:
5418 		b1 = gen_proto(cstate, IPPROTO_CARP, Q_IP, Q_DEFAULT);
5419 		break;
5420 
5421 	case Q_IP:
5422 		b1 = gen_linktype(cstate, ETHERTYPE_IP);
5423 		break;
5424 
5425 	case Q_ARP:
5426 		b1 = gen_linktype(cstate, ETHERTYPE_ARP);
5427 		break;
5428 
5429 	case Q_RARP:
5430 		b1 = gen_linktype(cstate, ETHERTYPE_REVARP);
5431 		break;
5432 
5433 	case Q_LINK:
5434 		bpf_error(cstate, "link layer applied in wrong context");
5435 
5436 	case Q_ATALK:
5437 		b1 = gen_linktype(cstate, ETHERTYPE_ATALK);
5438 		break;
5439 
5440 	case Q_AARP:
5441 		b1 = gen_linktype(cstate, ETHERTYPE_AARP);
5442 		break;
5443 
5444 	case Q_DECNET:
5445 		b1 = gen_linktype(cstate, ETHERTYPE_DN);
5446 		break;
5447 
5448 	case Q_SCA:
5449 		b1 = gen_linktype(cstate, ETHERTYPE_SCA);
5450 		break;
5451 
5452 	case Q_LAT:
5453 		b1 = gen_linktype(cstate, ETHERTYPE_LAT);
5454 		break;
5455 
5456 	case Q_MOPDL:
5457 		b1 = gen_linktype(cstate, ETHERTYPE_MOPDL);
5458 		break;
5459 
5460 	case Q_MOPRC:
5461 		b1 = gen_linktype(cstate, ETHERTYPE_MOPRC);
5462 		break;
5463 
5464 	case Q_IPV6:
5465 		b1 = gen_linktype(cstate, ETHERTYPE_IPV6);
5466 		break;
5467 
5468 #ifndef IPPROTO_ICMPV6
5469 #define IPPROTO_ICMPV6	58
5470 #endif
5471 	case Q_ICMPV6:
5472 		b1 = gen_proto(cstate, IPPROTO_ICMPV6, Q_IPV6, Q_DEFAULT);
5473 		break;
5474 
5475 #ifndef IPPROTO_AH
5476 #define IPPROTO_AH	51
5477 #endif
5478 	case Q_AH:
5479 		b1 = gen_proto(cstate, IPPROTO_AH, Q_DEFAULT, Q_DEFAULT);
5480 		break;
5481 
5482 #ifndef IPPROTO_ESP
5483 #define IPPROTO_ESP	50
5484 #endif
5485 	case Q_ESP:
5486 		b1 = gen_proto(cstate, IPPROTO_ESP, Q_DEFAULT, Q_DEFAULT);
5487 		break;
5488 
5489 	case Q_ISO:
5490 		b1 = gen_linktype(cstate, LLCSAP_ISONS);
5491 		break;
5492 
5493 	case Q_ESIS:
5494 		b1 = gen_proto(cstate, ISO9542_ESIS, Q_ISO, Q_DEFAULT);
5495 		break;
5496 
5497 	case Q_ISIS:
5498 		b1 = gen_proto(cstate, ISO10589_ISIS, Q_ISO, Q_DEFAULT);
5499 		break;
5500 
5501 	case Q_ISIS_L1: /* all IS-IS Level1 PDU-Types */
5502 		b0 = gen_proto(cstate, ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT);
5503 		b1 = gen_proto(cstate, ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */
5504 		gen_or(b0, b1);
5505 		b0 = gen_proto(cstate, ISIS_L1_LSP, Q_ISIS, Q_DEFAULT);
5506 		gen_or(b0, b1);
5507 		b0 = gen_proto(cstate, ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
5508 		gen_or(b0, b1);
5509 		b0 = gen_proto(cstate, ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
5510 		gen_or(b0, b1);
5511 		break;
5512 
5513 	case Q_ISIS_L2: /* all IS-IS Level2 PDU-Types */
5514 		b0 = gen_proto(cstate, ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT);
5515 		b1 = gen_proto(cstate, ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */
5516 		gen_or(b0, b1);
5517 		b0 = gen_proto(cstate, ISIS_L2_LSP, Q_ISIS, Q_DEFAULT);
5518 		gen_or(b0, b1);
5519 		b0 = gen_proto(cstate, ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
5520 		gen_or(b0, b1);
5521 		b0 = gen_proto(cstate, ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
5522 		gen_or(b0, b1);
5523 		break;
5524 
5525 	case Q_ISIS_IIH: /* all IS-IS Hello PDU-Types */
5526 		b0 = gen_proto(cstate, ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT);
5527 		b1 = gen_proto(cstate, ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT);
5528 		gen_or(b0, b1);
5529 		b0 = gen_proto(cstate, ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT);
5530 		gen_or(b0, b1);
5531 		break;
5532 
5533 	case Q_ISIS_LSP:
5534 		b0 = gen_proto(cstate, ISIS_L1_LSP, Q_ISIS, Q_DEFAULT);
5535 		b1 = gen_proto(cstate, ISIS_L2_LSP, Q_ISIS, Q_DEFAULT);
5536 		gen_or(b0, b1);
5537 		break;
5538 
5539 	case Q_ISIS_SNP:
5540 		b0 = gen_proto(cstate, ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
5541 		b1 = gen_proto(cstate, ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
5542 		gen_or(b0, b1);
5543 		b0 = gen_proto(cstate, ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
5544 		gen_or(b0, b1);
5545 		b0 = gen_proto(cstate, ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
5546 		gen_or(b0, b1);
5547 		break;
5548 
5549 	case Q_ISIS_CSNP:
5550 		b0 = gen_proto(cstate, ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
5551 		b1 = gen_proto(cstate, ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
5552 		gen_or(b0, b1);
5553 		break;
5554 
5555 	case Q_ISIS_PSNP:
5556 		b0 = gen_proto(cstate, ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
5557 		b1 = gen_proto(cstate, ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
5558 		gen_or(b0, b1);
5559 		break;
5560 
5561 	case Q_CLNP:
5562 		b1 = gen_proto(cstate, ISO8473_CLNP, Q_ISO, Q_DEFAULT);
5563 		break;
5564 
5565 	case Q_STP:
5566 		b1 = gen_linktype(cstate, LLCSAP_8021D);
5567 		break;
5568 
5569 	case Q_IPX:
5570 		b1 = gen_linktype(cstate, LLCSAP_IPX);
5571 		break;
5572 
5573 	case Q_NETBEUI:
5574 		b1 = gen_linktype(cstate, LLCSAP_NETBEUI);
5575 		break;
5576 
5577 	case Q_RADIO:
5578 		bpf_error(cstate, "'radio' is not a valid protocol type");
5579 
5580 	default:
5581 		abort();
5582 	}
5583 	return b1;
5584 }
5585 
5586 struct block *
5587 gen_proto_abbrev(compiler_state_t *cstate, int proto)
5588 {
5589 	/*
5590 	 * Catch errors reported by us and routines below us, and return NULL
5591 	 * on an error.
5592 	 */
5593 	if (setjmp(cstate->top_ctx))
5594 		return (NULL);
5595 
5596 	return gen_proto_abbrev_internal(cstate, proto);
5597 }
5598 
5599 static struct block *
5600 gen_ipfrag(compiler_state_t *cstate)
5601 {
5602 	struct slist *s;
5603 	struct block *b;
5604 
5605 	/* not IPv4 frag other than the first frag */
5606 	s = gen_load_a(cstate, OR_LINKPL, 6, BPF_H);
5607 	b = new_block(cstate, JMP(BPF_JSET));
5608 	b->s.k = 0x1fff;
5609 	b->stmts = s;
5610 	gen_not(b);
5611 
5612 	return b;
5613 }
5614 
5615 /*
5616  * Generate a comparison to a port value in the transport-layer header
5617  * at the specified offset from the beginning of that header.
5618  *
5619  * XXX - this handles a variable-length prefix preceding the link-layer
5620  * header, such as the radiotap or AVS radio prefix, but doesn't handle
5621  * variable-length link-layer headers (such as Token Ring or 802.11
5622  * headers).
5623  */
5624 static struct block *
5625 gen_portatom(compiler_state_t *cstate, int off, bpf_u_int32 v)
5626 {
5627 	return gen_cmp(cstate, OR_TRAN_IPV4, off, BPF_H, v);
5628 }
5629 
5630 static struct block *
5631 gen_portatom6(compiler_state_t *cstate, int off, bpf_u_int32 v)
5632 {
5633 	return gen_cmp(cstate, OR_TRAN_IPV6, off, BPF_H, v);
5634 }
5635 
5636 static struct block *
5637 gen_portop(compiler_state_t *cstate, u_int port, u_int proto, int dir)
5638 {
5639 	struct block *b0, *b1, *tmp;
5640 
5641 	/* ip proto 'proto' and not a fragment other than the first fragment */
5642 	tmp = gen_cmp(cstate, OR_LINKPL, 9, BPF_B, proto);
5643 	b0 = gen_ipfrag(cstate);
5644 	gen_and(tmp, b0);
5645 
5646 	switch (dir) {
5647 	case Q_SRC:
5648 		b1 = gen_portatom(cstate, 0, port);
5649 		break;
5650 
5651 	case Q_DST:
5652 		b1 = gen_portatom(cstate, 2, port);
5653 		break;
5654 
5655 	case Q_AND:
5656 		tmp = gen_portatom(cstate, 0, port);
5657 		b1 = gen_portatom(cstate, 2, port);
5658 		gen_and(tmp, b1);
5659 		break;
5660 
5661 	case Q_DEFAULT:
5662 	case Q_OR:
5663 		tmp = gen_portatom(cstate, 0, port);
5664 		b1 = gen_portatom(cstate, 2, port);
5665 		gen_or(tmp, b1);
5666 		break;
5667 
5668 	case Q_ADDR1:
5669 		bpf_error(cstate, "'addr1' and 'address1' are not valid qualifiers for ports");
5670 		/*NOTREACHED*/
5671 
5672 	case Q_ADDR2:
5673 		bpf_error(cstate, "'addr2' and 'address2' are not valid qualifiers for ports");
5674 		/*NOTREACHED*/
5675 
5676 	case Q_ADDR3:
5677 		bpf_error(cstate, "'addr3' and 'address3' are not valid qualifiers for ports");
5678 		/*NOTREACHED*/
5679 
5680 	case Q_ADDR4:
5681 		bpf_error(cstate, "'addr4' and 'address4' are not valid qualifiers for ports");
5682 		/*NOTREACHED*/
5683 
5684 	case Q_RA:
5685 		bpf_error(cstate, "'ra' is not a valid qualifier for ports");
5686 		/*NOTREACHED*/
5687 
5688 	case Q_TA:
5689 		bpf_error(cstate, "'ta' is not a valid qualifier for ports");
5690 		/*NOTREACHED*/
5691 
5692 	default:
5693 		abort();
5694 		/*NOTREACHED*/
5695 	}
5696 	gen_and(b0, b1);
5697 
5698 	return b1;
5699 }
5700 
5701 static struct block *
5702 gen_port(compiler_state_t *cstate, u_int port, int ip_proto, int dir)
5703 {
5704 	struct block *b0, *b1, *tmp;
5705 
5706 	/*
5707 	 * ether proto ip
5708 	 *
5709 	 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
5710 	 * not LLC encapsulation with LLCSAP_IP.
5711 	 *
5712 	 * For IEEE 802 networks - which includes 802.5 token ring
5713 	 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
5714 	 * says that SNAP encapsulation is used, not LLC encapsulation
5715 	 * with LLCSAP_IP.
5716 	 *
5717 	 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
5718 	 * RFC 2225 say that SNAP encapsulation is used, not LLC
5719 	 * encapsulation with LLCSAP_IP.
5720 	 *
5721 	 * So we always check for ETHERTYPE_IP.
5722 	 */
5723 	b0 = gen_linktype(cstate, ETHERTYPE_IP);
5724 
5725 	switch (ip_proto) {
5726 	case IPPROTO_UDP:
5727 	case IPPROTO_TCP:
5728 	case IPPROTO_SCTP:
5729 		b1 = gen_portop(cstate, port, (u_int)ip_proto, dir);
5730 		break;
5731 
5732 	case PROTO_UNDEF:
5733 		tmp = gen_portop(cstate, port, IPPROTO_TCP, dir);
5734 		b1 = gen_portop(cstate, port, IPPROTO_UDP, dir);
5735 		gen_or(tmp, b1);
5736 		tmp = gen_portop(cstate, port, IPPROTO_SCTP, dir);
5737 		gen_or(tmp, b1);
5738 		break;
5739 
5740 	default:
5741 		abort();
5742 	}
5743 	gen_and(b0, b1);
5744 	return b1;
5745 }
5746 
5747 struct block *
5748 gen_portop6(compiler_state_t *cstate, u_int port, u_int proto, int dir)
5749 {
5750 	struct block *b0, *b1, *tmp;
5751 
5752 	/* ip6 proto 'proto' */
5753 	/* XXX - catch the first fragment of a fragmented packet? */
5754 	b0 = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, proto);
5755 
5756 	switch (dir) {
5757 	case Q_SRC:
5758 		b1 = gen_portatom6(cstate, 0, port);
5759 		break;
5760 
5761 	case Q_DST:
5762 		b1 = gen_portatom6(cstate, 2, port);
5763 		break;
5764 
5765 	case Q_AND:
5766 		tmp = gen_portatom6(cstate, 0, port);
5767 		b1 = gen_portatom6(cstate, 2, port);
5768 		gen_and(tmp, b1);
5769 		break;
5770 
5771 	case Q_DEFAULT:
5772 	case Q_OR:
5773 		tmp = gen_portatom6(cstate, 0, port);
5774 		b1 = gen_portatom6(cstate, 2, port);
5775 		gen_or(tmp, b1);
5776 		break;
5777 
5778 	default:
5779 		abort();
5780 	}
5781 	gen_and(b0, b1);
5782 
5783 	return b1;
5784 }
5785 
5786 static struct block *
5787 gen_port6(compiler_state_t *cstate, u_int port, int ip_proto, int dir)
5788 {
5789 	struct block *b0, *b1, *tmp;
5790 
5791 	/* link proto ip6 */
5792 	b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
5793 
5794 	switch (ip_proto) {
5795 	case IPPROTO_UDP:
5796 	case IPPROTO_TCP:
5797 	case IPPROTO_SCTP:
5798 		b1 = gen_portop6(cstate, port, (u_int)ip_proto, dir);
5799 		break;
5800 
5801 	case PROTO_UNDEF:
5802 		tmp = gen_portop6(cstate, port, IPPROTO_TCP, dir);
5803 		b1 = gen_portop6(cstate, port, IPPROTO_UDP, dir);
5804 		gen_or(tmp, b1);
5805 		tmp = gen_portop6(cstate, port, IPPROTO_SCTP, dir);
5806 		gen_or(tmp, b1);
5807 		break;
5808 
5809 	default:
5810 		abort();
5811 	}
5812 	gen_and(b0, b1);
5813 	return b1;
5814 }
5815 
5816 /* gen_portrange code */
5817 static struct block *
5818 gen_portrangeatom(compiler_state_t *cstate, u_int off, bpf_u_int32 v1,
5819     bpf_u_int32 v2)
5820 {
5821 	struct block *b1, *b2;
5822 
5823 	if (v1 > v2) {
5824 		/*
5825 		 * Reverse the order of the ports, so v1 is the lower one.
5826 		 */
5827 		bpf_u_int32 vtemp;
5828 
5829 		vtemp = v1;
5830 		v1 = v2;
5831 		v2 = vtemp;
5832 	}
5833 
5834 	b1 = gen_cmp_ge(cstate, OR_TRAN_IPV4, off, BPF_H, v1);
5835 	b2 = gen_cmp_le(cstate, OR_TRAN_IPV4, off, BPF_H, v2);
5836 
5837 	gen_and(b1, b2);
5838 
5839 	return b2;
5840 }
5841 
5842 static struct block *
5843 gen_portrangeop(compiler_state_t *cstate, u_int port1, u_int port2,
5844     bpf_u_int32 proto, int dir)
5845 {
5846 	struct block *b0, *b1, *tmp;
5847 
5848 	/* ip proto 'proto' and not a fragment other than the first fragment */
5849 	tmp = gen_cmp(cstate, OR_LINKPL, 9, BPF_B, proto);
5850 	b0 = gen_ipfrag(cstate);
5851 	gen_and(tmp, b0);
5852 
5853 	switch (dir) {
5854 	case Q_SRC:
5855 		b1 = gen_portrangeatom(cstate, 0, port1, port2);
5856 		break;
5857 
5858 	case Q_DST:
5859 		b1 = gen_portrangeatom(cstate, 2, port1, port2);
5860 		break;
5861 
5862 	case Q_AND:
5863 		tmp = gen_portrangeatom(cstate, 0, port1, port2);
5864 		b1 = gen_portrangeatom(cstate, 2, port1, port2);
5865 		gen_and(tmp, b1);
5866 		break;
5867 
5868 	case Q_DEFAULT:
5869 	case Q_OR:
5870 		tmp = gen_portrangeatom(cstate, 0, port1, port2);
5871 		b1 = gen_portrangeatom(cstate, 2, port1, port2);
5872 		gen_or(tmp, b1);
5873 		break;
5874 
5875 	case Q_ADDR1:
5876 		bpf_error(cstate, "'addr1' and 'address1' are not valid qualifiers for port ranges");
5877 		/*NOTREACHED*/
5878 
5879 	case Q_ADDR2:
5880 		bpf_error(cstate, "'addr2' and 'address2' are not valid qualifiers for port ranges");
5881 		/*NOTREACHED*/
5882 
5883 	case Q_ADDR3:
5884 		bpf_error(cstate, "'addr3' and 'address3' are not valid qualifiers for port ranges");
5885 		/*NOTREACHED*/
5886 
5887 	case Q_ADDR4:
5888 		bpf_error(cstate, "'addr4' and 'address4' are not valid qualifiers for port ranges");
5889 		/*NOTREACHED*/
5890 
5891 	case Q_RA:
5892 		bpf_error(cstate, "'ra' is not a valid qualifier for port ranges");
5893 		/*NOTREACHED*/
5894 
5895 	case Q_TA:
5896 		bpf_error(cstate, "'ta' is not a valid qualifier for port ranges");
5897 		/*NOTREACHED*/
5898 
5899 	default:
5900 		abort();
5901 		/*NOTREACHED*/
5902 	}
5903 	gen_and(b0, b1);
5904 
5905 	return b1;
5906 }
5907 
5908 static struct block *
5909 gen_portrange(compiler_state_t *cstate, u_int port1, u_int port2, int ip_proto,
5910     int dir)
5911 {
5912 	struct block *b0, *b1, *tmp;
5913 
5914 	/* link proto ip */
5915 	b0 = gen_linktype(cstate, ETHERTYPE_IP);
5916 
5917 	switch (ip_proto) {
5918 	case IPPROTO_UDP:
5919 	case IPPROTO_TCP:
5920 	case IPPROTO_SCTP:
5921 		b1 = gen_portrangeop(cstate, port1, port2, (bpf_u_int32)ip_proto,
5922 		    dir);
5923 		break;
5924 
5925 	case PROTO_UNDEF:
5926 		tmp = gen_portrangeop(cstate, port1, port2, IPPROTO_TCP, dir);
5927 		b1 = gen_portrangeop(cstate, port1, port2, IPPROTO_UDP, dir);
5928 		gen_or(tmp, b1);
5929 		tmp = gen_portrangeop(cstate, port1, port2, IPPROTO_SCTP, dir);
5930 		gen_or(tmp, b1);
5931 		break;
5932 
5933 	default:
5934 		abort();
5935 	}
5936 	gen_and(b0, b1);
5937 	return b1;
5938 }
5939 
5940 static struct block *
5941 gen_portrangeatom6(compiler_state_t *cstate, u_int off, bpf_u_int32 v1,
5942     bpf_u_int32 v2)
5943 {
5944 	struct block *b1, *b2;
5945 
5946 	if (v1 > v2) {
5947 		/*
5948 		 * Reverse the order of the ports, so v1 is the lower one.
5949 		 */
5950 		bpf_u_int32 vtemp;
5951 
5952 		vtemp = v1;
5953 		v1 = v2;
5954 		v2 = vtemp;
5955 	}
5956 
5957 	b1 = gen_cmp_ge(cstate, OR_TRAN_IPV6, off, BPF_H, v1);
5958 	b2 = gen_cmp_le(cstate, OR_TRAN_IPV6, off, BPF_H, v2);
5959 
5960 	gen_and(b1, b2);
5961 
5962 	return b2;
5963 }
5964 
5965 static struct block *
5966 gen_portrangeop6(compiler_state_t *cstate, u_int port1, u_int port2,
5967     bpf_u_int32 proto, int dir)
5968 {
5969 	struct block *b0, *b1, *tmp;
5970 
5971 	/* ip6 proto 'proto' */
5972 	/* XXX - catch the first fragment of a fragmented packet? */
5973 	b0 = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, proto);
5974 
5975 	switch (dir) {
5976 	case Q_SRC:
5977 		b1 = gen_portrangeatom6(cstate, 0, port1, port2);
5978 		break;
5979 
5980 	case Q_DST:
5981 		b1 = gen_portrangeatom6(cstate, 2, port1, port2);
5982 		break;
5983 
5984 	case Q_AND:
5985 		tmp = gen_portrangeatom6(cstate, 0, port1, port2);
5986 		b1 = gen_portrangeatom6(cstate, 2, port1, port2);
5987 		gen_and(tmp, b1);
5988 		break;
5989 
5990 	case Q_DEFAULT:
5991 	case Q_OR:
5992 		tmp = gen_portrangeatom6(cstate, 0, port1, port2);
5993 		b1 = gen_portrangeatom6(cstate, 2, port1, port2);
5994 		gen_or(tmp, b1);
5995 		break;
5996 
5997 	default:
5998 		abort();
5999 	}
6000 	gen_and(b0, b1);
6001 
6002 	return b1;
6003 }
6004 
6005 static struct block *
6006 gen_portrange6(compiler_state_t *cstate, u_int port1, u_int port2, int ip_proto,
6007     int dir)
6008 {
6009 	struct block *b0, *b1, *tmp;
6010 
6011 	/* link proto ip6 */
6012 	b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
6013 
6014 	switch (ip_proto) {
6015 	case IPPROTO_UDP:
6016 	case IPPROTO_TCP:
6017 	case IPPROTO_SCTP:
6018 		b1 = gen_portrangeop6(cstate, port1, port2, (bpf_u_int32)ip_proto,
6019 		    dir);
6020 		break;
6021 
6022 	case PROTO_UNDEF:
6023 		tmp = gen_portrangeop6(cstate, port1, port2, IPPROTO_TCP, dir);
6024 		b1 = gen_portrangeop6(cstate, port1, port2, IPPROTO_UDP, dir);
6025 		gen_or(tmp, b1);
6026 		tmp = gen_portrangeop6(cstate, port1, port2, IPPROTO_SCTP, dir);
6027 		gen_or(tmp, b1);
6028 		break;
6029 
6030 	default:
6031 		abort();
6032 	}
6033 	gen_and(b0, b1);
6034 	return b1;
6035 }
6036 
6037 static int
6038 lookup_proto(compiler_state_t *cstate, const char *name, int proto)
6039 {
6040 	register int v;
6041 
6042 	switch (proto) {
6043 
6044 	case Q_DEFAULT:
6045 	case Q_IP:
6046 	case Q_IPV6:
6047 		v = pcap_nametoproto(name);
6048 		if (v == PROTO_UNDEF)
6049 			bpf_error(cstate, "unknown ip proto '%s'", name);
6050 		break;
6051 
6052 	case Q_LINK:
6053 		/* XXX should look up h/w protocol type based on cstate->linktype */
6054 		v = pcap_nametoeproto(name);
6055 		if (v == PROTO_UNDEF) {
6056 			v = pcap_nametollc(name);
6057 			if (v == PROTO_UNDEF)
6058 				bpf_error(cstate, "unknown ether proto '%s'", name);
6059 		}
6060 		break;
6061 
6062 	case Q_ISO:
6063 		if (strcmp(name, "esis") == 0)
6064 			v = ISO9542_ESIS;
6065 		else if (strcmp(name, "isis") == 0)
6066 			v = ISO10589_ISIS;
6067 		else if (strcmp(name, "clnp") == 0)
6068 			v = ISO8473_CLNP;
6069 		else
6070 			bpf_error(cstate, "unknown osi proto '%s'", name);
6071 		break;
6072 
6073 	default:
6074 		v = PROTO_UNDEF;
6075 		break;
6076 	}
6077 	return v;
6078 }
6079 
6080 #if !defined(NO_PROTOCHAIN)
6081 static struct block *
6082 gen_protochain(compiler_state_t *cstate, bpf_u_int32 v, int proto)
6083 {
6084 	struct block *b0, *b;
6085 	struct slist *s[100];
6086 	int fix2, fix3, fix4, fix5;
6087 	int ahcheck, again, end;
6088 	int i, max;
6089 	int reg2 = alloc_reg(cstate);
6090 
6091 	memset(s, 0, sizeof(s));
6092 	fix3 = fix4 = fix5 = 0;
6093 
6094 	switch (proto) {
6095 	case Q_IP:
6096 	case Q_IPV6:
6097 		break;
6098 	case Q_DEFAULT:
6099 		b0 = gen_protochain(cstate, v, Q_IP);
6100 		b = gen_protochain(cstate, v, Q_IPV6);
6101 		gen_or(b0, b);
6102 		return b;
6103 	default:
6104 		bpf_error(cstate, "bad protocol applied for 'protochain'");
6105 		/*NOTREACHED*/
6106 	}
6107 
6108 	/*
6109 	 * We don't handle variable-length prefixes before the link-layer
6110 	 * header, or variable-length link-layer headers, here yet.
6111 	 * We might want to add BPF instructions to do the protochain
6112 	 * work, to simplify that and, on platforms that have a BPF
6113 	 * interpreter with the new instructions, let the filtering
6114 	 * be done in the kernel.  (We already require a modified BPF
6115 	 * engine to do the protochain stuff, to support backward
6116 	 * branches, and backward branch support is unlikely to appear
6117 	 * in kernel BPF engines.)
6118 	 */
6119 	if (cstate->off_linkpl.is_variable)
6120 		bpf_error(cstate, "'protochain' not supported with variable length headers");
6121 
6122 	/*
6123 	 * To quote a comment in optimize.c:
6124 	 *
6125 	 * "These data structures are used in a Cocke and Shwarz style
6126 	 * value numbering scheme.  Since the flowgraph is acyclic,
6127 	 * exit values can be propagated from a node's predecessors
6128 	 * provided it is uniquely defined."
6129 	 *
6130 	 * "Acyclic" means "no backward branches", which means "no
6131 	 * loops", so we have to turn the optimizer off.
6132 	 */
6133 	cstate->no_optimize = 1;
6134 
6135 	/*
6136 	 * s[0] is a dummy entry to protect other BPF insn from damage
6137 	 * by s[fix] = foo with uninitialized variable "fix".  It is somewhat
6138 	 * hard to find interdependency made by jump table fixup.
6139 	 */
6140 	i = 0;
6141 	s[i] = new_stmt(cstate, 0);	/*dummy*/
6142 	i++;
6143 
6144 	switch (proto) {
6145 	case Q_IP:
6146 		b0 = gen_linktype(cstate, ETHERTYPE_IP);
6147 
6148 		/* A = ip->ip_p */
6149 		s[i] = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B);
6150 		s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 9;
6151 		i++;
6152 		/* X = ip->ip_hl << 2 */
6153 		s[i] = new_stmt(cstate, BPF_LDX|BPF_MSH|BPF_B);
6154 		s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
6155 		i++;
6156 		break;
6157 
6158 	case Q_IPV6:
6159 		b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
6160 
6161 		/* A = ip6->ip_nxt */
6162 		s[i] = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B);
6163 		s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 6;
6164 		i++;
6165 		/* X = sizeof(struct ip6_hdr) */
6166 		s[i] = new_stmt(cstate, BPF_LDX|BPF_IMM);
6167 		s[i]->s.k = 40;
6168 		i++;
6169 		break;
6170 
6171 	default:
6172 		bpf_error(cstate, "unsupported proto to gen_protochain");
6173 		/*NOTREACHED*/
6174 	}
6175 
6176 	/* again: if (A == v) goto end; else fall through; */
6177 	again = i;
6178 	s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6179 	s[i]->s.k = v;
6180 	s[i]->s.jt = NULL;		/*later*/
6181 	s[i]->s.jf = NULL;		/*update in next stmt*/
6182 	fix5 = i;
6183 	i++;
6184 
6185 #ifndef IPPROTO_NONE
6186 #define IPPROTO_NONE	59
6187 #endif
6188 	/* if (A == IPPROTO_NONE) goto end */
6189 	s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6190 	s[i]->s.jt = NULL;	/*later*/
6191 	s[i]->s.jf = NULL;	/*update in next stmt*/
6192 	s[i]->s.k = IPPROTO_NONE;
6193 	s[fix5]->s.jf = s[i];
6194 	fix2 = i;
6195 	i++;
6196 
6197 	if (proto == Q_IPV6) {
6198 		int v6start, v6end, v6advance, j;
6199 
6200 		v6start = i;
6201 		/* if (A == IPPROTO_HOPOPTS) goto v6advance */
6202 		s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6203 		s[i]->s.jt = NULL;	/*later*/
6204 		s[i]->s.jf = NULL;	/*update in next stmt*/
6205 		s[i]->s.k = IPPROTO_HOPOPTS;
6206 		s[fix2]->s.jf = s[i];
6207 		i++;
6208 		/* if (A == IPPROTO_DSTOPTS) goto v6advance */
6209 		s[i - 1]->s.jf = s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6210 		s[i]->s.jt = NULL;	/*later*/
6211 		s[i]->s.jf = NULL;	/*update in next stmt*/
6212 		s[i]->s.k = IPPROTO_DSTOPTS;
6213 		i++;
6214 		/* if (A == IPPROTO_ROUTING) goto v6advance */
6215 		s[i - 1]->s.jf = s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6216 		s[i]->s.jt = NULL;	/*later*/
6217 		s[i]->s.jf = NULL;	/*update in next stmt*/
6218 		s[i]->s.k = IPPROTO_ROUTING;
6219 		i++;
6220 		/* if (A == IPPROTO_FRAGMENT) goto v6advance; else goto ahcheck; */
6221 		s[i - 1]->s.jf = s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6222 		s[i]->s.jt = NULL;	/*later*/
6223 		s[i]->s.jf = NULL;	/*later*/
6224 		s[i]->s.k = IPPROTO_FRAGMENT;
6225 		fix3 = i;
6226 		v6end = i;
6227 		i++;
6228 
6229 		/* v6advance: */
6230 		v6advance = i;
6231 
6232 		/*
6233 		 * in short,
6234 		 * A = P[X + packet head];
6235 		 * X = X + (P[X + packet head + 1] + 1) * 8;
6236 		 */
6237 		/* A = P[X + packet head] */
6238 		s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
6239 		s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
6240 		i++;
6241 		/* MEM[reg2] = A */
6242 		s[i] = new_stmt(cstate, BPF_ST);
6243 		s[i]->s.k = reg2;
6244 		i++;
6245 		/* A = P[X + packet head + 1]; */
6246 		s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
6247 		s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 1;
6248 		i++;
6249 		/* A += 1 */
6250 		s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
6251 		s[i]->s.k = 1;
6252 		i++;
6253 		/* A *= 8 */
6254 		s[i] = new_stmt(cstate, BPF_ALU|BPF_MUL|BPF_K);
6255 		s[i]->s.k = 8;
6256 		i++;
6257 		/* A += X */
6258 		s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X);
6259 		s[i]->s.k = 0;
6260 		i++;
6261 		/* X = A; */
6262 		s[i] = new_stmt(cstate, BPF_MISC|BPF_TAX);
6263 		i++;
6264 		/* A = MEM[reg2] */
6265 		s[i] = new_stmt(cstate, BPF_LD|BPF_MEM);
6266 		s[i]->s.k = reg2;
6267 		i++;
6268 
6269 		/* goto again; (must use BPF_JA for backward jump) */
6270 		s[i] = new_stmt(cstate, BPF_JMP|BPF_JA);
6271 		s[i]->s.k = again - i - 1;
6272 		s[i - 1]->s.jf = s[i];
6273 		i++;
6274 
6275 		/* fixup */
6276 		for (j = v6start; j <= v6end; j++)
6277 			s[j]->s.jt = s[v6advance];
6278 	} else {
6279 		/* nop */
6280 		s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
6281 		s[i]->s.k = 0;
6282 		s[fix2]->s.jf = s[i];
6283 		i++;
6284 	}
6285 
6286 	/* ahcheck: */
6287 	ahcheck = i;
6288 	/* if (A == IPPROTO_AH) then fall through; else goto end; */
6289 	s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6290 	s[i]->s.jt = NULL;	/*later*/
6291 	s[i]->s.jf = NULL;	/*later*/
6292 	s[i]->s.k = IPPROTO_AH;
6293 	if (fix3)
6294 		s[fix3]->s.jf = s[ahcheck];
6295 	fix4 = i;
6296 	i++;
6297 
6298 	/*
6299 	 * in short,
6300 	 * A = P[X];
6301 	 * X = X + (P[X + 1] + 2) * 4;
6302 	 */
6303 	/* A = X */
6304 	s[i - 1]->s.jt = s[i] = new_stmt(cstate, BPF_MISC|BPF_TXA);
6305 	i++;
6306 	/* A = P[X + packet head]; */
6307 	s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
6308 	s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
6309 	i++;
6310 	/* MEM[reg2] = A */
6311 	s[i] = new_stmt(cstate, BPF_ST);
6312 	s[i]->s.k = reg2;
6313 	i++;
6314 	/* A = X */
6315 	s[i - 1]->s.jt = s[i] = new_stmt(cstate, BPF_MISC|BPF_TXA);
6316 	i++;
6317 	/* A += 1 */
6318 	s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
6319 	s[i]->s.k = 1;
6320 	i++;
6321 	/* X = A */
6322 	s[i] = new_stmt(cstate, BPF_MISC|BPF_TAX);
6323 	i++;
6324 	/* A = P[X + packet head] */
6325 	s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
6326 	s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
6327 	i++;
6328 	/* A += 2 */
6329 	s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
6330 	s[i]->s.k = 2;
6331 	i++;
6332 	/* A *= 4 */
6333 	s[i] = new_stmt(cstate, BPF_ALU|BPF_MUL|BPF_K);
6334 	s[i]->s.k = 4;
6335 	i++;
6336 	/* X = A; */
6337 	s[i] = new_stmt(cstate, BPF_MISC|BPF_TAX);
6338 	i++;
6339 	/* A = MEM[reg2] */
6340 	s[i] = new_stmt(cstate, BPF_LD|BPF_MEM);
6341 	s[i]->s.k = reg2;
6342 	i++;
6343 
6344 	/* goto again; (must use BPF_JA for backward jump) */
6345 	s[i] = new_stmt(cstate, BPF_JMP|BPF_JA);
6346 	s[i]->s.k = again - i - 1;
6347 	i++;
6348 
6349 	/* end: nop */
6350 	end = i;
6351 	s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
6352 	s[i]->s.k = 0;
6353 	s[fix2]->s.jt = s[end];
6354 	s[fix4]->s.jf = s[end];
6355 	s[fix5]->s.jt = s[end];
6356 	i++;
6357 
6358 	/*
6359 	 * make slist chain
6360 	 */
6361 	max = i;
6362 	for (i = 0; i < max - 1; i++)
6363 		s[i]->next = s[i + 1];
6364 	s[max - 1]->next = NULL;
6365 
6366 	/*
6367 	 * emit final check
6368 	 */
6369 	b = new_block(cstate, JMP(BPF_JEQ));
6370 	b->stmts = s[1];	/*remember, s[0] is dummy*/
6371 	b->s.k = v;
6372 
6373 	free_reg(cstate, reg2);
6374 
6375 	gen_and(b0, b);
6376 	return b;
6377 }
6378 #endif /* !defined(NO_PROTOCHAIN) */
6379 
6380 static struct block *
6381 gen_check_802_11_data_frame(compiler_state_t *cstate)
6382 {
6383 	struct slist *s;
6384 	struct block *b0, *b1;
6385 
6386 	/*
6387 	 * A data frame has the 0x08 bit (b3) in the frame control field set
6388 	 * and the 0x04 bit (b2) clear.
6389 	 */
6390 	s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
6391 	b0 = new_block(cstate, JMP(BPF_JSET));
6392 	b0->s.k = 0x08;
6393 	b0->stmts = s;
6394 
6395 	s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
6396 	b1 = new_block(cstate, JMP(BPF_JSET));
6397 	b1->s.k = 0x04;
6398 	b1->stmts = s;
6399 	gen_not(b1);
6400 
6401 	gen_and(b1, b0);
6402 
6403 	return b0;
6404 }
6405 
6406 /*
6407  * Generate code that checks whether the packet is a packet for protocol
6408  * <proto> and whether the type field in that protocol's header has
6409  * the value <v>, e.g. if <proto> is Q_IP, it checks whether it's an
6410  * IP packet and checks the protocol number in the IP header against <v>.
6411  *
6412  * If <proto> is Q_DEFAULT, i.e. just "proto" was specified, it checks
6413  * against Q_IP and Q_IPV6.
6414  */
6415 static struct block *
6416 gen_proto(compiler_state_t *cstate, bpf_u_int32 v, int proto, int dir)
6417 {
6418 	struct block *b0, *b1;
6419 	struct block *b2;
6420 
6421 	if (dir != Q_DEFAULT)
6422 		bpf_error(cstate, "direction applied to 'proto'");
6423 
6424 	switch (proto) {
6425 	case Q_DEFAULT:
6426 		b0 = gen_proto(cstate, v, Q_IP, dir);
6427 		b1 = gen_proto(cstate, v, Q_IPV6, dir);
6428 		gen_or(b0, b1);
6429 		return b1;
6430 
6431 	case Q_LINK:
6432 		return gen_linktype(cstate, v);
6433 
6434 	case Q_IP:
6435 		/*
6436 		 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
6437 		 * not LLC encapsulation with LLCSAP_IP.
6438 		 *
6439 		 * For IEEE 802 networks - which includes 802.5 token ring
6440 		 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
6441 		 * says that SNAP encapsulation is used, not LLC encapsulation
6442 		 * with LLCSAP_IP.
6443 		 *
6444 		 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
6445 		 * RFC 2225 say that SNAP encapsulation is used, not LLC
6446 		 * encapsulation with LLCSAP_IP.
6447 		 *
6448 		 * So we always check for ETHERTYPE_IP.
6449 		 */
6450 		b0 = gen_linktype(cstate, ETHERTYPE_IP);
6451 		b1 = gen_cmp(cstate, OR_LINKPL, 9, BPF_B, v);
6452 		gen_and(b0, b1);
6453 		return b1;
6454 
6455 	case Q_ARP:
6456 		bpf_error(cstate, "arp does not encapsulate another protocol");
6457 		/*NOTREACHED*/
6458 
6459 	case Q_RARP:
6460 		bpf_error(cstate, "rarp does not encapsulate another protocol");
6461 		/*NOTREACHED*/
6462 
6463 	case Q_SCTP:
6464 		bpf_error(cstate, "'sctp proto' is bogus");
6465 		/*NOTREACHED*/
6466 
6467 	case Q_TCP:
6468 		bpf_error(cstate, "'tcp proto' is bogus");
6469 		/*NOTREACHED*/
6470 
6471 	case Q_UDP:
6472 		bpf_error(cstate, "'udp proto' is bogus");
6473 		/*NOTREACHED*/
6474 
6475 	case Q_ICMP:
6476 		bpf_error(cstate, "'icmp proto' is bogus");
6477 		/*NOTREACHED*/
6478 
6479 	case Q_IGMP:
6480 		bpf_error(cstate, "'igmp proto' is bogus");
6481 		/*NOTREACHED*/
6482 
6483 	case Q_IGRP:
6484 		bpf_error(cstate, "'igrp proto' is bogus");
6485 		/*NOTREACHED*/
6486 
6487 	case Q_ATALK:
6488 		bpf_error(cstate, "AppleTalk encapsulation is not specifiable");
6489 		/*NOTREACHED*/
6490 
6491 	case Q_DECNET:
6492 		bpf_error(cstate, "DECNET encapsulation is not specifiable");
6493 		/*NOTREACHED*/
6494 
6495 	case Q_LAT:
6496 		bpf_error(cstate, "LAT does not encapsulate another protocol");
6497 		/*NOTREACHED*/
6498 
6499 	case Q_SCA:
6500 		bpf_error(cstate, "SCA does not encapsulate another protocol");
6501 		/*NOTREACHED*/
6502 
6503 	case Q_MOPRC:
6504 		bpf_error(cstate, "MOPRC does not encapsulate another protocol");
6505 		/*NOTREACHED*/
6506 
6507 	case Q_MOPDL:
6508 		bpf_error(cstate, "MOPDL does not encapsulate another protocol");
6509 		/*NOTREACHED*/
6510 
6511 	case Q_IPV6:
6512 		b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
6513 		/*
6514 		 * Also check for a fragment header before the final
6515 		 * header.
6516 		 */
6517 		b2 = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, IPPROTO_FRAGMENT);
6518 		b1 = gen_cmp(cstate, OR_LINKPL, 40, BPF_B, v);
6519 		gen_and(b2, b1);
6520 		b2 = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, v);
6521 		gen_or(b2, b1);
6522 		gen_and(b0, b1);
6523 		return b1;
6524 
6525 	case Q_ICMPV6:
6526 		bpf_error(cstate, "'icmp6 proto' is bogus");
6527 		/*NOTREACHED*/
6528 
6529 	case Q_AH:
6530 		bpf_error(cstate, "'ah proto' is bogus");
6531 		/*NOTREACHED*/
6532 
6533 	case Q_ESP:
6534 		bpf_error(cstate, "'esp proto' is bogus");
6535 		/*NOTREACHED*/
6536 
6537 	case Q_PIM:
6538 		bpf_error(cstate, "'pim proto' is bogus");
6539 		/*NOTREACHED*/
6540 
6541 	case Q_VRRP:
6542 		bpf_error(cstate, "'vrrp proto' is bogus");
6543 		/*NOTREACHED*/
6544 
6545 	case Q_AARP:
6546 		bpf_error(cstate, "'aarp proto' is bogus");
6547 		/*NOTREACHED*/
6548 
6549 	case Q_ISO:
6550 		switch (cstate->linktype) {
6551 
6552 		case DLT_FRELAY:
6553 			/*
6554 			 * Frame Relay packets typically have an OSI
6555 			 * NLPID at the beginning; "gen_linktype(cstate, LLCSAP_ISONS)"
6556 			 * generates code to check for all the OSI
6557 			 * NLPIDs, so calling it and then adding a check
6558 			 * for the particular NLPID for which we're
6559 			 * looking is bogus, as we can just check for
6560 			 * the NLPID.
6561 			 *
6562 			 * What we check for is the NLPID and a frame
6563 			 * control field value of UI, i.e. 0x03 followed
6564 			 * by the NLPID.
6565 			 *
6566 			 * XXX - assumes a 2-byte Frame Relay header with
6567 			 * DLCI and flags.  What if the address is longer?
6568 			 *
6569 			 * XXX - what about SNAP-encapsulated frames?
6570 			 */
6571 			return gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | v);
6572 			/*NOTREACHED*/
6573 
6574 		case DLT_C_HDLC:
6575 		case DLT_HDLC:
6576 			/*
6577 			 * Cisco uses an Ethertype lookalike - for OSI,
6578 			 * it's 0xfefe.
6579 			 */
6580 			b0 = gen_linktype(cstate, LLCSAP_ISONS<<8 | LLCSAP_ISONS);
6581 			/* OSI in C-HDLC is stuffed with a fudge byte */
6582 			b1 = gen_cmp(cstate, OR_LINKPL_NOSNAP, 1, BPF_B, v);
6583 			gen_and(b0, b1);
6584 			return b1;
6585 
6586 		default:
6587 			b0 = gen_linktype(cstate, LLCSAP_ISONS);
6588 			b1 = gen_cmp(cstate, OR_LINKPL_NOSNAP, 0, BPF_B, v);
6589 			gen_and(b0, b1);
6590 			return b1;
6591 		}
6592 
6593 	case Q_ESIS:
6594 		bpf_error(cstate, "'esis proto' is bogus");
6595 		/*NOTREACHED*/
6596 
6597 	case Q_ISIS:
6598 		b0 = gen_proto(cstate, ISO10589_ISIS, Q_ISO, Q_DEFAULT);
6599 		/*
6600 		 * 4 is the offset of the PDU type relative to the IS-IS
6601 		 * header.
6602 		 */
6603 		b1 = gen_cmp(cstate, OR_LINKPL_NOSNAP, 4, BPF_B, v);
6604 		gen_and(b0, b1);
6605 		return b1;
6606 
6607 	case Q_CLNP:
6608 		bpf_error(cstate, "'clnp proto' is not supported");
6609 		/*NOTREACHED*/
6610 
6611 	case Q_STP:
6612 		bpf_error(cstate, "'stp proto' is bogus");
6613 		/*NOTREACHED*/
6614 
6615 	case Q_IPX:
6616 		bpf_error(cstate, "'ipx proto' is bogus");
6617 		/*NOTREACHED*/
6618 
6619 	case Q_NETBEUI:
6620 		bpf_error(cstate, "'netbeui proto' is bogus");
6621 		/*NOTREACHED*/
6622 
6623 	case Q_ISIS_L1:
6624 		bpf_error(cstate, "'l1 proto' is bogus");
6625 		/*NOTREACHED*/
6626 
6627 	case Q_ISIS_L2:
6628 		bpf_error(cstate, "'l2 proto' is bogus");
6629 		/*NOTREACHED*/
6630 
6631 	case Q_ISIS_IIH:
6632 		bpf_error(cstate, "'iih proto' is bogus");
6633 		/*NOTREACHED*/
6634 
6635 	case Q_ISIS_SNP:
6636 		bpf_error(cstate, "'snp proto' is bogus");
6637 		/*NOTREACHED*/
6638 
6639 	case Q_ISIS_CSNP:
6640 		bpf_error(cstate, "'csnp proto' is bogus");
6641 		/*NOTREACHED*/
6642 
6643 	case Q_ISIS_PSNP:
6644 		bpf_error(cstate, "'psnp proto' is bogus");
6645 		/*NOTREACHED*/
6646 
6647 	case Q_ISIS_LSP:
6648 		bpf_error(cstate, "'lsp proto' is bogus");
6649 		/*NOTREACHED*/
6650 
6651 	case Q_RADIO:
6652 		bpf_error(cstate, "'radio proto' is bogus");
6653 		/*NOTREACHED*/
6654 
6655 	case Q_CARP:
6656 		bpf_error(cstate, "'carp proto' is bogus");
6657 		/*NOTREACHED*/
6658 
6659 	default:
6660 		abort();
6661 		/*NOTREACHED*/
6662 	}
6663 	/*NOTREACHED*/
6664 }
6665 
6666 struct block *
6667 gen_scode(compiler_state_t *cstate, const char *name, struct qual q)
6668 {
6669 	int proto = q.proto;
6670 	int dir = q.dir;
6671 	int tproto;
6672 	u_char *eaddr;
6673 	bpf_u_int32 mask, addr;
6674 	struct addrinfo *res, *res0;
6675 	struct sockaddr_in *sin4;
6676 #ifdef INET6
6677 	int tproto6;
6678 	struct sockaddr_in6 *sin6;
6679 	struct in6_addr mask128;
6680 #endif /*INET6*/
6681 	struct block *b, *tmp;
6682 	int port, real_proto;
6683 	int port1, port2;
6684 
6685 	/*
6686 	 * Catch errors reported by us and routines below us, and return NULL
6687 	 * on an error.
6688 	 */
6689 	if (setjmp(cstate->top_ctx))
6690 		return (NULL);
6691 
6692 	switch (q.addr) {
6693 
6694 	case Q_NET:
6695 		addr = pcap_nametonetaddr(name);
6696 		if (addr == 0)
6697 			bpf_error(cstate, "unknown network '%s'", name);
6698 		/* Left justify network addr and calculate its network mask */
6699 		mask = 0xffffffff;
6700 		while (addr && (addr & 0xff000000) == 0) {
6701 			addr <<= 8;
6702 			mask <<= 8;
6703 		}
6704 		return gen_host(cstate, addr, mask, proto, dir, q.addr);
6705 
6706 	case Q_DEFAULT:
6707 	case Q_HOST:
6708 		if (proto == Q_LINK) {
6709 			switch (cstate->linktype) {
6710 
6711 			case DLT_EN10MB:
6712 			case DLT_NETANALYZER:
6713 			case DLT_NETANALYZER_TRANSPARENT:
6714 				eaddr = pcap_ether_hostton(name);
6715 				if (eaddr == NULL)
6716 					bpf_error(cstate,
6717 					    "unknown ether host '%s'", name);
6718 				tmp = gen_prevlinkhdr_check(cstate);
6719 				b = gen_ehostop(cstate, eaddr, dir);
6720 				if (tmp != NULL)
6721 					gen_and(tmp, b);
6722 				free(eaddr);
6723 				return b;
6724 
6725 			case DLT_FDDI:
6726 				eaddr = pcap_ether_hostton(name);
6727 				if (eaddr == NULL)
6728 					bpf_error(cstate,
6729 					    "unknown FDDI host '%s'", name);
6730 				b = gen_fhostop(cstate, eaddr, dir);
6731 				free(eaddr);
6732 				return b;
6733 
6734 			case DLT_IEEE802:
6735 				eaddr = pcap_ether_hostton(name);
6736 				if (eaddr == NULL)
6737 					bpf_error(cstate,
6738 					    "unknown token ring host '%s'", name);
6739 				b = gen_thostop(cstate, eaddr, dir);
6740 				free(eaddr);
6741 				return b;
6742 
6743 			case DLT_IEEE802_11:
6744 			case DLT_PRISM_HEADER:
6745 			case DLT_IEEE802_11_RADIO_AVS:
6746 			case DLT_IEEE802_11_RADIO:
6747 			case DLT_PPI:
6748 				eaddr = pcap_ether_hostton(name);
6749 				if (eaddr == NULL)
6750 					bpf_error(cstate,
6751 					    "unknown 802.11 host '%s'", name);
6752 				b = gen_wlanhostop(cstate, eaddr, dir);
6753 				free(eaddr);
6754 				return b;
6755 
6756 			case DLT_IP_OVER_FC:
6757 				eaddr = pcap_ether_hostton(name);
6758 				if (eaddr == NULL)
6759 					bpf_error(cstate,
6760 					    "unknown Fibre Channel host '%s'", name);
6761 				b = gen_ipfchostop(cstate, eaddr, dir);
6762 				free(eaddr);
6763 				return b;
6764 			}
6765 
6766 			bpf_error(cstate, "only ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel supports link-level host name");
6767 		} else if (proto == Q_DECNET) {
6768 			unsigned short dn_addr;
6769 
6770 			if (!__pcap_nametodnaddr(name, &dn_addr)) {
6771 #ifdef	DECNETLIB
6772 				bpf_error(cstate, "unknown decnet host name '%s'\n", name);
6773 #else
6774 				bpf_error(cstate, "decnet name support not included, '%s' cannot be translated\n",
6775 					name);
6776 #endif
6777 			}
6778 			/*
6779 			 * I don't think DECNET hosts can be multihomed, so
6780 			 * there is no need to build up a list of addresses
6781 			 */
6782 			return (gen_host(cstate, dn_addr, 0, proto, dir, q.addr));
6783 		} else {
6784 #ifdef INET6
6785 			memset(&mask128, 0xff, sizeof(mask128));
6786 #endif
6787 			res0 = res = pcap_nametoaddrinfo(name);
6788 			if (res == NULL)
6789 				bpf_error(cstate, "unknown host '%s'", name);
6790 			cstate->ai = res;
6791 			b = tmp = NULL;
6792 			tproto = proto;
6793 #ifdef INET6
6794 			tproto6 = proto;
6795 #endif
6796 			if (cstate->off_linktype.constant_part == OFFSET_NOT_SET &&
6797 			    tproto == Q_DEFAULT) {
6798 				tproto = Q_IP;
6799 #ifdef INET6
6800 				tproto6 = Q_IPV6;
6801 #endif
6802 			}
6803 			for (res = res0; res; res = res->ai_next) {
6804 				switch (res->ai_family) {
6805 				case AF_INET:
6806 #ifdef INET6
6807 					if (tproto == Q_IPV6)
6808 						continue;
6809 #endif
6810 
6811 					sin4 = (struct sockaddr_in *)
6812 						res->ai_addr;
6813 					tmp = gen_host(cstate, ntohl(sin4->sin_addr.s_addr),
6814 						0xffffffff, tproto, dir, q.addr);
6815 					break;
6816 #ifdef INET6
6817 				case AF_INET6:
6818 					if (tproto6 == Q_IP)
6819 						continue;
6820 
6821 					sin6 = (struct sockaddr_in6 *)
6822 						res->ai_addr;
6823 					tmp = gen_host6(cstate, &sin6->sin6_addr,
6824 						&mask128, tproto6, dir, q.addr);
6825 					break;
6826 #endif
6827 				default:
6828 					continue;
6829 				}
6830 				if (b)
6831 					gen_or(b, tmp);
6832 				b = tmp;
6833 			}
6834 			cstate->ai = NULL;
6835 			freeaddrinfo(res0);
6836 			if (b == NULL) {
6837 				bpf_error(cstate, "unknown host '%s'%s", name,
6838 				    (proto == Q_DEFAULT)
6839 					? ""
6840 					: " for specified address family");
6841 			}
6842 			return b;
6843 		}
6844 
6845 	case Q_PORT:
6846 		if (proto != Q_DEFAULT &&
6847 		    proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP)
6848 			bpf_error(cstate, "illegal qualifier of 'port'");
6849 		if (pcap_nametoport(name, &port, &real_proto) == 0)
6850 			bpf_error(cstate, "unknown port '%s'", name);
6851 		if (proto == Q_UDP) {
6852 			if (real_proto == IPPROTO_TCP)
6853 				bpf_error(cstate, "port '%s' is tcp", name);
6854 			else if (real_proto == IPPROTO_SCTP)
6855 				bpf_error(cstate, "port '%s' is sctp", name);
6856 			else
6857 				/* override PROTO_UNDEF */
6858 				real_proto = IPPROTO_UDP;
6859 		}
6860 		if (proto == Q_TCP) {
6861 			if (real_proto == IPPROTO_UDP)
6862 				bpf_error(cstate, "port '%s' is udp", name);
6863 
6864 			else if (real_proto == IPPROTO_SCTP)
6865 				bpf_error(cstate, "port '%s' is sctp", name);
6866 			else
6867 				/* override PROTO_UNDEF */
6868 				real_proto = IPPROTO_TCP;
6869 		}
6870 		if (proto == Q_SCTP) {
6871 			if (real_proto == IPPROTO_UDP)
6872 				bpf_error(cstate, "port '%s' is udp", name);
6873 
6874 			else if (real_proto == IPPROTO_TCP)
6875 				bpf_error(cstate, "port '%s' is tcp", name);
6876 			else
6877 				/* override PROTO_UNDEF */
6878 				real_proto = IPPROTO_SCTP;
6879 		}
6880 		if (port < 0)
6881 			bpf_error(cstate, "illegal port number %d < 0", port);
6882 		if (port > 65535)
6883 			bpf_error(cstate, "illegal port number %d > 65535", port);
6884 		b = gen_port(cstate, port, real_proto, dir);
6885 		gen_or(gen_port6(cstate, port, real_proto, dir), b);
6886 		return b;
6887 
6888 	case Q_PORTRANGE:
6889 		if (proto != Q_DEFAULT &&
6890 		    proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP)
6891 			bpf_error(cstate, "illegal qualifier of 'portrange'");
6892 		if (pcap_nametoportrange(name, &port1, &port2, &real_proto) == 0)
6893 			bpf_error(cstate, "unknown port in range '%s'", name);
6894 		if (proto == Q_UDP) {
6895 			if (real_proto == IPPROTO_TCP)
6896 				bpf_error(cstate, "port in range '%s' is tcp", name);
6897 			else if (real_proto == IPPROTO_SCTP)
6898 				bpf_error(cstate, "port in range '%s' is sctp", name);
6899 			else
6900 				/* override PROTO_UNDEF */
6901 				real_proto = IPPROTO_UDP;
6902 		}
6903 		if (proto == Q_TCP) {
6904 			if (real_proto == IPPROTO_UDP)
6905 				bpf_error(cstate, "port in range '%s' is udp", name);
6906 			else if (real_proto == IPPROTO_SCTP)
6907 				bpf_error(cstate, "port in range '%s' is sctp", name);
6908 			else
6909 				/* override PROTO_UNDEF */
6910 				real_proto = IPPROTO_TCP;
6911 		}
6912 		if (proto == Q_SCTP) {
6913 			if (real_proto == IPPROTO_UDP)
6914 				bpf_error(cstate, "port in range '%s' is udp", name);
6915 			else if (real_proto == IPPROTO_TCP)
6916 				bpf_error(cstate, "port in range '%s' is tcp", name);
6917 			else
6918 				/* override PROTO_UNDEF */
6919 				real_proto = IPPROTO_SCTP;
6920 		}
6921 		if (port1 < 0)
6922 			bpf_error(cstate, "illegal port number %d < 0", port1);
6923 		if (port1 > 65535)
6924 			bpf_error(cstate, "illegal port number %d > 65535", port1);
6925 		if (port2 < 0)
6926 			bpf_error(cstate, "illegal port number %d < 0", port2);
6927 		if (port2 > 65535)
6928 			bpf_error(cstate, "illegal port number %d > 65535", port2);
6929 
6930 		b = gen_portrange(cstate, port1, port2, real_proto, dir);
6931 		gen_or(gen_portrange6(cstate, port1, port2, real_proto, dir), b);
6932 		return b;
6933 
6934 	case Q_GATEWAY:
6935 #ifndef INET6
6936 		eaddr = pcap_ether_hostton(name);
6937 		if (eaddr == NULL)
6938 			bpf_error(cstate, "unknown ether host: %s", name);
6939 
6940 		res = pcap_nametoaddrinfo(name);
6941 		cstate->ai = res;
6942 		if (res == NULL)
6943 			bpf_error(cstate, "unknown host '%s'", name);
6944 		b = gen_gateway(cstate, eaddr, res, proto, dir);
6945 		cstate->ai = NULL;
6946 		freeaddrinfo(res);
6947 		if (b == NULL)
6948 			bpf_error(cstate, "unknown host '%s'", name);
6949 		return b;
6950 #else
6951 		bpf_error(cstate, "'gateway' not supported in this configuration");
6952 #endif /*INET6*/
6953 
6954 	case Q_PROTO:
6955 		real_proto = lookup_proto(cstate, name, proto);
6956 		if (real_proto >= 0)
6957 			return gen_proto(cstate, real_proto, proto, dir);
6958 		else
6959 			bpf_error(cstate, "unknown protocol: %s", name);
6960 
6961 #if !defined(NO_PROTOCHAIN)
6962 	case Q_PROTOCHAIN:
6963 		real_proto = lookup_proto(cstate, name, proto);
6964 		if (real_proto >= 0)
6965 			return gen_protochain(cstate, real_proto, proto);
6966 		else
6967 			bpf_error(cstate, "unknown protocol: %s", name);
6968 #endif /* !defined(NO_PROTOCHAIN) */
6969 
6970 	case Q_UNDEF:
6971 		syntax(cstate);
6972 		/*NOTREACHED*/
6973 	}
6974 	abort();
6975 	/*NOTREACHED*/
6976 }
6977 
6978 struct block *
6979 gen_mcode(compiler_state_t *cstate, const char *s1, const char *s2,
6980     bpf_u_int32 masklen, struct qual q)
6981 {
6982 	register int nlen, mlen;
6983 	bpf_u_int32 n, m;
6984 
6985 	/*
6986 	 * Catch errors reported by us and routines below us, and return NULL
6987 	 * on an error.
6988 	 */
6989 	if (setjmp(cstate->top_ctx))
6990 		return (NULL);
6991 
6992 	nlen = __pcap_atoin(s1, &n);
6993 	if (nlen < 0)
6994 		bpf_error(cstate, "invalid IPv4 address '%s'", s1);
6995 	/* Promote short ipaddr */
6996 	n <<= 32 - nlen;
6997 
6998 	if (s2 != NULL) {
6999 		mlen = __pcap_atoin(s2, &m);
7000 		if (mlen < 0)
7001 			bpf_error(cstate, "invalid IPv4 address '%s'", s2);
7002 		/* Promote short ipaddr */
7003 		m <<= 32 - mlen;
7004 		if ((n & ~m) != 0)
7005 			bpf_error(cstate, "non-network bits set in \"%s mask %s\"",
7006 			    s1, s2);
7007 	} else {
7008 		/* Convert mask len to mask */
7009 		if (masklen > 32)
7010 			bpf_error(cstate, "mask length must be <= 32");
7011 		if (masklen == 0) {
7012 			/*
7013 			 * X << 32 is not guaranteed by C to be 0; it's
7014 			 * undefined.
7015 			 */
7016 			m = 0;
7017 		} else
7018 			m = 0xffffffff << (32 - masklen);
7019 		if ((n & ~m) != 0)
7020 			bpf_error(cstate, "non-network bits set in \"%s/%d\"",
7021 			    s1, masklen);
7022 	}
7023 
7024 	switch (q.addr) {
7025 
7026 	case Q_NET:
7027 		return gen_host(cstate, n, m, q.proto, q.dir, q.addr);
7028 
7029 	default:
7030 		bpf_error(cstate, "Mask syntax for networks only");
7031 		/*NOTREACHED*/
7032 	}
7033 	/*NOTREACHED*/
7034 }
7035 
7036 struct block *
7037 gen_ncode(compiler_state_t *cstate, const char *s, bpf_u_int32 v, struct qual q)
7038 {
7039 	bpf_u_int32 mask;
7040 	int proto;
7041 	int dir;
7042 	register int vlen;
7043 
7044 	/*
7045 	 * Catch errors reported by us and routines below us, and return NULL
7046 	 * on an error.
7047 	 */
7048 	if (setjmp(cstate->top_ctx))
7049 		return (NULL);
7050 
7051 	proto = q.proto;
7052 	dir = q.dir;
7053 	if (s == NULL)
7054 		vlen = 32;
7055 	else if (q.proto == Q_DECNET) {
7056 		vlen = __pcap_atodn(s, &v);
7057 		if (vlen == 0)
7058 			bpf_error(cstate, "malformed decnet address '%s'", s);
7059 	} else {
7060 		vlen = __pcap_atoin(s, &v);
7061 		if (vlen < 0)
7062 			bpf_error(cstate, "invalid IPv4 address '%s'", s);
7063 	}
7064 
7065 	switch (q.addr) {
7066 
7067 	case Q_DEFAULT:
7068 	case Q_HOST:
7069 	case Q_NET:
7070 		if (proto == Q_DECNET)
7071 			return gen_host(cstate, v, 0, proto, dir, q.addr);
7072 		else if (proto == Q_LINK) {
7073 			bpf_error(cstate, "illegal link layer address");
7074 		} else {
7075 			mask = 0xffffffff;
7076 			if (s == NULL && q.addr == Q_NET) {
7077 				/* Promote short net number */
7078 				while (v && (v & 0xff000000) == 0) {
7079 					v <<= 8;
7080 					mask <<= 8;
7081 				}
7082 			} else {
7083 				/* Promote short ipaddr */
7084 				v <<= 32 - vlen;
7085 				mask <<= 32 - vlen ;
7086 			}
7087 			return gen_host(cstate, v, mask, proto, dir, q.addr);
7088 		}
7089 
7090 	case Q_PORT:
7091 		if (proto == Q_UDP)
7092 			proto = IPPROTO_UDP;
7093 		else if (proto == Q_TCP)
7094 			proto = IPPROTO_TCP;
7095 		else if (proto == Q_SCTP)
7096 			proto = IPPROTO_SCTP;
7097 		else if (proto == Q_DEFAULT)
7098 			proto = PROTO_UNDEF;
7099 		else
7100 			bpf_error(cstate, "illegal qualifier of 'port'");
7101 
7102 		if (v > 65535)
7103 			bpf_error(cstate, "illegal port number %u > 65535", v);
7104 
7105 	    {
7106 		struct block *b;
7107 		b = gen_port(cstate, v, proto, dir);
7108 		gen_or(gen_port6(cstate, v, proto, dir), b);
7109 		return b;
7110 	    }
7111 
7112 	case Q_PORTRANGE:
7113 		if (proto == Q_UDP)
7114 			proto = IPPROTO_UDP;
7115 		else if (proto == Q_TCP)
7116 			proto = IPPROTO_TCP;
7117 		else if (proto == Q_SCTP)
7118 			proto = IPPROTO_SCTP;
7119 		else if (proto == Q_DEFAULT)
7120 			proto = PROTO_UNDEF;
7121 		else
7122 			bpf_error(cstate, "illegal qualifier of 'portrange'");
7123 
7124 		if (v > 65535)
7125 			bpf_error(cstate, "illegal port number %u > 65535", v);
7126 
7127 	    {
7128 		struct block *b;
7129 		b = gen_portrange(cstate, v, v, proto, dir);
7130 		gen_or(gen_portrange6(cstate, v, v, proto, dir), b);
7131 		return b;
7132 	    }
7133 
7134 	case Q_GATEWAY:
7135 		bpf_error(cstate, "'gateway' requires a name");
7136 		/*NOTREACHED*/
7137 
7138 	case Q_PROTO:
7139 		return gen_proto(cstate, v, proto, dir);
7140 
7141 #if !defined(NO_PROTOCHAIN)
7142 	case Q_PROTOCHAIN:
7143 		return gen_protochain(cstate, v, proto);
7144 #endif
7145 
7146 	case Q_UNDEF:
7147 		syntax(cstate);
7148 		/*NOTREACHED*/
7149 
7150 	default:
7151 		abort();
7152 		/*NOTREACHED*/
7153 	}
7154 	/*NOTREACHED*/
7155 }
7156 
7157 #ifdef INET6
7158 struct block *
7159 gen_mcode6(compiler_state_t *cstate, const char *s1, const char *s2,
7160     bpf_u_int32 masklen, struct qual q)
7161 {
7162 	struct addrinfo *res;
7163 	struct in6_addr *addr;
7164 	struct in6_addr mask;
7165 	struct block *b;
7166 	uint32_t *a, *m;
7167 
7168 	/*
7169 	 * Catch errors reported by us and routines below us, and return NULL
7170 	 * on an error.
7171 	 */
7172 	if (setjmp(cstate->top_ctx))
7173 		return (NULL);
7174 
7175 	if (s2)
7176 		bpf_error(cstate, "no mask %s supported", s2);
7177 
7178 	res = pcap_nametoaddrinfo(s1);
7179 	if (!res)
7180 		bpf_error(cstate, "invalid ip6 address %s", s1);
7181 	cstate->ai = res;
7182 	if (res->ai_next)
7183 		bpf_error(cstate, "%s resolved to multiple address", s1);
7184 	addr = &((struct sockaddr_in6 *)res->ai_addr)->sin6_addr;
7185 
7186 	if (masklen > sizeof(mask.s6_addr) * 8)
7187 		bpf_error(cstate, "mask length must be <= %u", (unsigned int)(sizeof(mask.s6_addr) * 8));
7188 	memset(&mask, 0, sizeof(mask));
7189 	memset(&mask.s6_addr, 0xff, masklen / 8);
7190 	if (masklen % 8) {
7191 		mask.s6_addr[masklen / 8] =
7192 			(0xff << (8 - masklen % 8)) & 0xff;
7193 	}
7194 
7195 	a = (uint32_t *)addr;
7196 	m = (uint32_t *)&mask;
7197 	if ((a[0] & ~m[0]) || (a[1] & ~m[1])
7198 	 || (a[2] & ~m[2]) || (a[3] & ~m[3])) {
7199 		bpf_error(cstate, "non-network bits set in \"%s/%d\"", s1, masklen);
7200 	}
7201 
7202 	switch (q.addr) {
7203 
7204 	case Q_DEFAULT:
7205 	case Q_HOST:
7206 		if (masklen != 128)
7207 			bpf_error(cstate, "Mask syntax for networks only");
7208 		/* FALLTHROUGH */
7209 
7210 	case Q_NET:
7211 		b = gen_host6(cstate, addr, &mask, q.proto, q.dir, q.addr);
7212 		cstate->ai = NULL;
7213 		freeaddrinfo(res);
7214 		return b;
7215 
7216 	default:
7217 		bpf_error(cstate, "invalid qualifier against IPv6 address");
7218 		/*NOTREACHED*/
7219 	}
7220 }
7221 #endif /*INET6*/
7222 
7223 struct block *
7224 gen_ecode(compiler_state_t *cstate, const char *s, struct qual q)
7225 {
7226 	struct block *b, *tmp;
7227 
7228 	/*
7229 	 * Catch errors reported by us and routines below us, and return NULL
7230 	 * on an error.
7231 	 */
7232 	if (setjmp(cstate->top_ctx))
7233 		return (NULL);
7234 
7235 	if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) && q.proto == Q_LINK) {
7236 		cstate->e = pcap_ether_aton(s);
7237 		if (cstate->e == NULL)
7238 			bpf_error(cstate, "malloc");
7239 		switch (cstate->linktype) {
7240 		case DLT_EN10MB:
7241 		case DLT_NETANALYZER:
7242 		case DLT_NETANALYZER_TRANSPARENT:
7243 			tmp = gen_prevlinkhdr_check(cstate);
7244 			b = gen_ehostop(cstate, cstate->e, (int)q.dir);
7245 			if (tmp != NULL)
7246 				gen_and(tmp, b);
7247 			break;
7248 		case DLT_FDDI:
7249 			b = gen_fhostop(cstate, cstate->e, (int)q.dir);
7250 			break;
7251 		case DLT_IEEE802:
7252 			b = gen_thostop(cstate, cstate->e, (int)q.dir);
7253 			break;
7254 		case DLT_IEEE802_11:
7255 		case DLT_PRISM_HEADER:
7256 		case DLT_IEEE802_11_RADIO_AVS:
7257 		case DLT_IEEE802_11_RADIO:
7258 		case DLT_PPI:
7259 			b = gen_wlanhostop(cstate, cstate->e, (int)q.dir);
7260 			break;
7261 		case DLT_IP_OVER_FC:
7262 			b = gen_ipfchostop(cstate, cstate->e, (int)q.dir);
7263 			break;
7264 		default:
7265 			free(cstate->e);
7266 			cstate->e = NULL;
7267 			bpf_error(cstate, "ethernet addresses supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
7268 			/*NOTREACHED*/
7269 		}
7270 		free(cstate->e);
7271 		cstate->e = NULL;
7272 		return (b);
7273 	}
7274 	bpf_error(cstate, "ethernet address used in non-ether expression");
7275 	/*NOTREACHED*/
7276 }
7277 
7278 void
7279 sappend(struct slist *s0, struct slist *s1)
7280 {
7281 	/*
7282 	 * This is definitely not the best way to do this, but the
7283 	 * lists will rarely get long.
7284 	 */
7285 	while (s0->next)
7286 		s0 = s0->next;
7287 	s0->next = s1;
7288 }
7289 
7290 static struct slist *
7291 xfer_to_x(compiler_state_t *cstate, struct arth *a)
7292 {
7293 	struct slist *s;
7294 
7295 	s = new_stmt(cstate, BPF_LDX|BPF_MEM);
7296 	s->s.k = a->regno;
7297 	return s;
7298 }
7299 
7300 static struct slist *
7301 xfer_to_a(compiler_state_t *cstate, struct arth *a)
7302 {
7303 	struct slist *s;
7304 
7305 	s = new_stmt(cstate, BPF_LD|BPF_MEM);
7306 	s->s.k = a->regno;
7307 	return s;
7308 }
7309 
7310 /*
7311  * Modify "index" to use the value stored into its register as an
7312  * offset relative to the beginning of the header for the protocol
7313  * "proto", and allocate a register and put an item "size" bytes long
7314  * (1, 2, or 4) at that offset into that register, making it the register
7315  * for "index".
7316  */
7317 static struct arth *
7318 gen_load_internal(compiler_state_t *cstate, int proto, struct arth *inst,
7319     bpf_u_int32 size)
7320 {
7321 	int size_code;
7322 	struct slist *s, *tmp;
7323 	struct block *b;
7324 	int regno = alloc_reg(cstate);
7325 
7326 	free_reg(cstate, inst->regno);
7327 	switch (size) {
7328 
7329 	default:
7330 		bpf_error(cstate, "data size must be 1, 2, or 4");
7331 		/*NOTREACHED*/
7332 
7333 	case 1:
7334 		size_code = BPF_B;
7335 		break;
7336 
7337 	case 2:
7338 		size_code = BPF_H;
7339 		break;
7340 
7341 	case 4:
7342 		size_code = BPF_W;
7343 		break;
7344 	}
7345 	switch (proto) {
7346 	default:
7347 		bpf_error(cstate, "unsupported index operation");
7348 
7349 	case Q_RADIO:
7350 		/*
7351 		 * The offset is relative to the beginning of the packet
7352 		 * data, if we have a radio header.  (If we don't, this
7353 		 * is an error.)
7354 		 */
7355 		if (cstate->linktype != DLT_IEEE802_11_RADIO_AVS &&
7356 		    cstate->linktype != DLT_IEEE802_11_RADIO &&
7357 		    cstate->linktype != DLT_PRISM_HEADER)
7358 			bpf_error(cstate, "radio information not present in capture");
7359 
7360 		/*
7361 		 * Load into the X register the offset computed into the
7362 		 * register specified by "index".
7363 		 */
7364 		s = xfer_to_x(cstate, inst);
7365 
7366 		/*
7367 		 * Load the item at that offset.
7368 		 */
7369 		tmp = new_stmt(cstate, BPF_LD|BPF_IND|size_code);
7370 		sappend(s, tmp);
7371 		sappend(inst->s, s);
7372 		break;
7373 
7374 	case Q_LINK:
7375 		/*
7376 		 * The offset is relative to the beginning of
7377 		 * the link-layer header.
7378 		 *
7379 		 * XXX - what about ATM LANE?  Should the index be
7380 		 * relative to the beginning of the AAL5 frame, so
7381 		 * that 0 refers to the beginning of the LE Control
7382 		 * field, or relative to the beginning of the LAN
7383 		 * frame, so that 0 refers, for Ethernet LANE, to
7384 		 * the beginning of the destination address?
7385 		 */
7386 		s = gen_abs_offset_varpart(cstate, &cstate->off_linkhdr);
7387 
7388 		/*
7389 		 * If "s" is non-null, it has code to arrange that the
7390 		 * X register contains the length of the prefix preceding
7391 		 * the link-layer header.  Add to it the offset computed
7392 		 * into the register specified by "index", and move that
7393 		 * into the X register.  Otherwise, just load into the X
7394 		 * register the offset computed into the register specified
7395 		 * by "index".
7396 		 */
7397 		if (s != NULL) {
7398 			sappend(s, xfer_to_a(cstate, inst));
7399 			sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
7400 			sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
7401 		} else
7402 			s = xfer_to_x(cstate, inst);
7403 
7404 		/*
7405 		 * Load the item at the sum of the offset we've put in the
7406 		 * X register and the offset of the start of the link
7407 		 * layer header (which is 0 if the radio header is
7408 		 * variable-length; that header length is what we put
7409 		 * into the X register and then added to the index).
7410 		 */
7411 		tmp = new_stmt(cstate, BPF_LD|BPF_IND|size_code);
7412 		tmp->s.k = cstate->off_linkhdr.constant_part;
7413 		sappend(s, tmp);
7414 		sappend(inst->s, s);
7415 		break;
7416 
7417 	case Q_IP:
7418 	case Q_ARP:
7419 	case Q_RARP:
7420 	case Q_ATALK:
7421 	case Q_DECNET:
7422 	case Q_SCA:
7423 	case Q_LAT:
7424 	case Q_MOPRC:
7425 	case Q_MOPDL:
7426 	case Q_IPV6:
7427 		/*
7428 		 * The offset is relative to the beginning of
7429 		 * the network-layer header.
7430 		 * XXX - are there any cases where we want
7431 		 * cstate->off_nl_nosnap?
7432 		 */
7433 		s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl);
7434 
7435 		/*
7436 		 * If "s" is non-null, it has code to arrange that the
7437 		 * X register contains the variable part of the offset
7438 		 * of the link-layer payload.  Add to it the offset
7439 		 * computed into the register specified by "index",
7440 		 * and move that into the X register.  Otherwise, just
7441 		 * load into the X register the offset computed into
7442 		 * the register specified by "index".
7443 		 */
7444 		if (s != NULL) {
7445 			sappend(s, xfer_to_a(cstate, inst));
7446 			sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
7447 			sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
7448 		} else
7449 			s = xfer_to_x(cstate, inst);
7450 
7451 		/*
7452 		 * Load the item at the sum of the offset we've put in the
7453 		 * X register, the offset of the start of the network
7454 		 * layer header from the beginning of the link-layer
7455 		 * payload, and the constant part of the offset of the
7456 		 * start of the link-layer payload.
7457 		 */
7458 		tmp = new_stmt(cstate, BPF_LD|BPF_IND|size_code);
7459 		tmp->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
7460 		sappend(s, tmp);
7461 		sappend(inst->s, s);
7462 
7463 		/*
7464 		 * Do the computation only if the packet contains
7465 		 * the protocol in question.
7466 		 */
7467 		b = gen_proto_abbrev_internal(cstate, proto);
7468 		if (inst->b)
7469 			gen_and(inst->b, b);
7470 		inst->b = b;
7471 		break;
7472 
7473 	case Q_SCTP:
7474 	case Q_TCP:
7475 	case Q_UDP:
7476 	case Q_ICMP:
7477 	case Q_IGMP:
7478 	case Q_IGRP:
7479 	case Q_PIM:
7480 	case Q_VRRP:
7481 	case Q_CARP:
7482 		/*
7483 		 * The offset is relative to the beginning of
7484 		 * the transport-layer header.
7485 		 *
7486 		 * Load the X register with the length of the IPv4 header
7487 		 * (plus the offset of the link-layer header, if it's
7488 		 * a variable-length header), in bytes.
7489 		 *
7490 		 * XXX - are there any cases where we want
7491 		 * cstate->off_nl_nosnap?
7492 		 * XXX - we should, if we're built with
7493 		 * IPv6 support, generate code to load either
7494 		 * IPv4, IPv6, or both, as appropriate.
7495 		 */
7496 		s = gen_loadx_iphdrlen(cstate);
7497 
7498 		/*
7499 		 * The X register now contains the sum of the variable
7500 		 * part of the offset of the link-layer payload and the
7501 		 * length of the network-layer header.
7502 		 *
7503 		 * Load into the A register the offset relative to
7504 		 * the beginning of the transport layer header,
7505 		 * add the X register to that, move that to the
7506 		 * X register, and load with an offset from the
7507 		 * X register equal to the sum of the constant part of
7508 		 * the offset of the link-layer payload and the offset,
7509 		 * relative to the beginning of the link-layer payload,
7510 		 * of the network-layer header.
7511 		 */
7512 		sappend(s, xfer_to_a(cstate, inst));
7513 		sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
7514 		sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
7515 		sappend(s, tmp = new_stmt(cstate, BPF_LD|BPF_IND|size_code));
7516 		tmp->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
7517 		sappend(inst->s, s);
7518 
7519 		/*
7520 		 * Do the computation only if the packet contains
7521 		 * the protocol in question - which is true only
7522 		 * if this is an IP datagram and is the first or
7523 		 * only fragment of that datagram.
7524 		 */
7525 		gen_and(gen_proto_abbrev_internal(cstate, proto), b = gen_ipfrag(cstate));
7526 		if (inst->b)
7527 			gen_and(inst->b, b);
7528 		gen_and(gen_proto_abbrev_internal(cstate, Q_IP), b);
7529 		inst->b = b;
7530 		break;
7531 	case Q_ICMPV6:
7532         /*
7533         * Do the computation only if the packet contains
7534         * the protocol in question.
7535         */
7536         b = gen_proto_abbrev_internal(cstate, Q_IPV6);
7537         if (inst->b) {
7538             gen_and(inst->b, b);
7539         }
7540         inst->b = b;
7541 
7542         /*
7543         * Check if we have an icmp6 next header
7544         */
7545         b = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, 58);
7546         if (inst->b) {
7547             gen_and(inst->b, b);
7548         }
7549         inst->b = b;
7550 
7551 
7552         s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl);
7553         /*
7554         * If "s" is non-null, it has code to arrange that the
7555         * X register contains the variable part of the offset
7556         * of the link-layer payload.  Add to it the offset
7557         * computed into the register specified by "index",
7558         * and move that into the X register.  Otherwise, just
7559         * load into the X register the offset computed into
7560         * the register specified by "index".
7561         */
7562         if (s != NULL) {
7563             sappend(s, xfer_to_a(cstate, inst));
7564             sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
7565             sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
7566         } else {
7567             s = xfer_to_x(cstate, inst);
7568         }
7569 
7570         /*
7571         * Load the item at the sum of the offset we've put in the
7572         * X register, the offset of the start of the network
7573         * layer header from the beginning of the link-layer
7574         * payload, and the constant part of the offset of the
7575         * start of the link-layer payload.
7576         */
7577         tmp = new_stmt(cstate, BPF_LD|BPF_IND|size_code);
7578         tmp->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 40;
7579 
7580         sappend(s, tmp);
7581         sappend(inst->s, s);
7582 
7583         break;
7584 	}
7585 	inst->regno = regno;
7586 	s = new_stmt(cstate, BPF_ST);
7587 	s->s.k = regno;
7588 	sappend(inst->s, s);
7589 
7590 	return inst;
7591 }
7592 
7593 struct arth *
7594 gen_load(compiler_state_t *cstate, int proto, struct arth *inst,
7595     bpf_u_int32 size)
7596 {
7597 	/*
7598 	 * Catch errors reported by us and routines below us, and return NULL
7599 	 * on an error.
7600 	 */
7601 	if (setjmp(cstate->top_ctx))
7602 		return (NULL);
7603 
7604 	return gen_load_internal(cstate, proto, inst, size);
7605 }
7606 
7607 static struct block *
7608 gen_relation_internal(compiler_state_t *cstate, int code, struct arth *a0,
7609     struct arth *a1, int reversed)
7610 {
7611 	struct slist *s0, *s1, *s2;
7612 	struct block *b, *tmp;
7613 
7614 	s0 = xfer_to_x(cstate, a1);
7615 	s1 = xfer_to_a(cstate, a0);
7616 	if (code == BPF_JEQ) {
7617 		s2 = new_stmt(cstate, BPF_ALU|BPF_SUB|BPF_X);
7618 		b = new_block(cstate, JMP(code));
7619 		sappend(s1, s2);
7620 	}
7621 	else
7622 		b = new_block(cstate, BPF_JMP|code|BPF_X);
7623 	if (reversed)
7624 		gen_not(b);
7625 
7626 	sappend(s0, s1);
7627 	sappend(a1->s, s0);
7628 	sappend(a0->s, a1->s);
7629 
7630 	b->stmts = a0->s;
7631 
7632 	free_reg(cstate, a0->regno);
7633 	free_reg(cstate, a1->regno);
7634 
7635 	/* 'and' together protocol checks */
7636 	if (a0->b) {
7637 		if (a1->b) {
7638 			gen_and(a0->b, tmp = a1->b);
7639 		}
7640 		else
7641 			tmp = a0->b;
7642 	} else
7643 		tmp = a1->b;
7644 
7645 	if (tmp)
7646 		gen_and(tmp, b);
7647 
7648 	return b;
7649 }
7650 
7651 struct block *
7652 gen_relation(compiler_state_t *cstate, int code, struct arth *a0,
7653     struct arth *a1, int reversed)
7654 {
7655 	/*
7656 	 * Catch errors reported by us and routines below us, and return NULL
7657 	 * on an error.
7658 	 */
7659 	if (setjmp(cstate->top_ctx))
7660 		return (NULL);
7661 
7662 	return gen_relation_internal(cstate, code, a0, a1, reversed);
7663 }
7664 
7665 struct arth *
7666 gen_loadlen(compiler_state_t *cstate)
7667 {
7668 	int regno;
7669 	struct arth *a;
7670 	struct slist *s;
7671 
7672 	/*
7673 	 * Catch errors reported by us and routines below us, and return NULL
7674 	 * on an error.
7675 	 */
7676 	if (setjmp(cstate->top_ctx))
7677 		return (NULL);
7678 
7679 	regno = alloc_reg(cstate);
7680 	a = (struct arth *)newchunk(cstate, sizeof(*a));
7681 	s = new_stmt(cstate, BPF_LD|BPF_LEN);
7682 	s->next = new_stmt(cstate, BPF_ST);
7683 	s->next->s.k = regno;
7684 	a->s = s;
7685 	a->regno = regno;
7686 
7687 	return a;
7688 }
7689 
7690 static struct arth *
7691 gen_loadi_internal(compiler_state_t *cstate, bpf_u_int32 val)
7692 {
7693 	struct arth *a;
7694 	struct slist *s;
7695 	int reg;
7696 
7697 	a = (struct arth *)newchunk(cstate, sizeof(*a));
7698 
7699 	reg = alloc_reg(cstate);
7700 
7701 	s = new_stmt(cstate, BPF_LD|BPF_IMM);
7702 	s->s.k = val;
7703 	s->next = new_stmt(cstate, BPF_ST);
7704 	s->next->s.k = reg;
7705 	a->s = s;
7706 	a->regno = reg;
7707 
7708 	return a;
7709 }
7710 
7711 struct arth *
7712 gen_loadi(compiler_state_t *cstate, bpf_u_int32 val)
7713 {
7714 	/*
7715 	 * Catch errors reported by us and routines below us, and return NULL
7716 	 * on an error.
7717 	 */
7718 	if (setjmp(cstate->top_ctx))
7719 		return (NULL);
7720 
7721 	return gen_loadi_internal(cstate, val);
7722 }
7723 
7724 /*
7725  * The a_arg dance is to avoid annoying whining by compilers that
7726  * a might be clobbered by longjmp - yeah, it might, but *WHO CARES*?
7727  * It's not *used* after setjmp returns.
7728  */
7729 struct arth *
7730 gen_neg(compiler_state_t *cstate, struct arth *a_arg)
7731 {
7732 	struct arth * volatile a = a_arg;
7733 	struct slist *s;
7734 
7735 	/*
7736 	 * Catch errors reported by us and routines below us, and return NULL
7737 	 * on an error.
7738 	 */
7739 	if (setjmp(cstate->top_ctx))
7740 		return (NULL);
7741 
7742 	s = xfer_to_a(cstate, a);
7743 	sappend(a->s, s);
7744 	s = new_stmt(cstate, BPF_ALU|BPF_NEG);
7745 	s->s.k = 0;
7746 	sappend(a->s, s);
7747 	s = new_stmt(cstate, BPF_ST);
7748 	s->s.k = a->regno;
7749 	sappend(a->s, s);
7750 
7751 	return a;
7752 }
7753 
7754 /*
7755  * The a0_arg dance is to avoid annoying whining by compilers that
7756  * a0 might be clobbered by longjmp - yeah, it might, but *WHO CARES*?
7757  * It's not *used* after setjmp returns.
7758  */
7759 struct arth *
7760 gen_arth(compiler_state_t *cstate, int code, struct arth *a0_arg,
7761     struct arth *a1)
7762 {
7763 	struct arth * volatile a0 = a0_arg;
7764 	struct slist *s0, *s1, *s2;
7765 
7766 	/*
7767 	 * Catch errors reported by us and routines below us, and return NULL
7768 	 * on an error.
7769 	 */
7770 	if (setjmp(cstate->top_ctx))
7771 		return (NULL);
7772 
7773 	/*
7774 	 * Disallow division by, or modulus by, zero; we do this here
7775 	 * so that it gets done even if the optimizer is disabled.
7776 	 *
7777 	 * Also disallow shifts by a value greater than 31; we do this
7778 	 * here, for the same reason.
7779 	 */
7780 	if (code == BPF_DIV) {
7781 		if (a1->s->s.code == (BPF_LD|BPF_IMM) && a1->s->s.k == 0)
7782 			bpf_error(cstate, "division by zero");
7783 	} else if (code == BPF_MOD) {
7784 		if (a1->s->s.code == (BPF_LD|BPF_IMM) && a1->s->s.k == 0)
7785 			bpf_error(cstate, "modulus by zero");
7786 	} else if (code == BPF_LSH || code == BPF_RSH) {
7787 		if (a1->s->s.code == (BPF_LD|BPF_IMM) && a1->s->s.k > 31)
7788 			bpf_error(cstate, "shift by more than 31 bits");
7789 	}
7790 	s0 = xfer_to_x(cstate, a1);
7791 	s1 = xfer_to_a(cstate, a0);
7792 	s2 = new_stmt(cstate, BPF_ALU|BPF_X|code);
7793 
7794 	sappend(s1, s2);
7795 	sappend(s0, s1);
7796 	sappend(a1->s, s0);
7797 	sappend(a0->s, a1->s);
7798 
7799 	free_reg(cstate, a0->regno);
7800 	free_reg(cstate, a1->regno);
7801 
7802 	s0 = new_stmt(cstate, BPF_ST);
7803 	a0->regno = s0->s.k = alloc_reg(cstate);
7804 	sappend(a0->s, s0);
7805 
7806 	return a0;
7807 }
7808 
7809 /*
7810  * Initialize the table of used registers and the current register.
7811  */
7812 static void
7813 init_regs(compiler_state_t *cstate)
7814 {
7815 	cstate->curreg = 0;
7816 	memset(cstate->regused, 0, sizeof cstate->regused);
7817 }
7818 
7819 /*
7820  * Return the next free register.
7821  */
7822 static int
7823 alloc_reg(compiler_state_t *cstate)
7824 {
7825 	int n = BPF_MEMWORDS;
7826 
7827 	while (--n >= 0) {
7828 		if (cstate->regused[cstate->curreg])
7829 			cstate->curreg = (cstate->curreg + 1) % BPF_MEMWORDS;
7830 		else {
7831 			cstate->regused[cstate->curreg] = 1;
7832 			return cstate->curreg;
7833 		}
7834 	}
7835 	bpf_error(cstate, "too many registers needed to evaluate expression");
7836 	/*NOTREACHED*/
7837 }
7838 
7839 /*
7840  * Return a register to the table so it can
7841  * be used later.
7842  */
7843 static void
7844 free_reg(compiler_state_t *cstate, int n)
7845 {
7846 	cstate->regused[n] = 0;
7847 }
7848 
7849 static struct block *
7850 gen_len(compiler_state_t *cstate, int jmp, int n)
7851 {
7852 	struct slist *s;
7853 	struct block *b;
7854 
7855 	s = new_stmt(cstate, BPF_LD|BPF_LEN);
7856 	b = new_block(cstate, JMP(jmp));
7857 	b->stmts = s;
7858 	b->s.k = n;
7859 
7860 	return b;
7861 }
7862 
7863 struct block *
7864 gen_greater(compiler_state_t *cstate, int n)
7865 {
7866 	/*
7867 	 * Catch errors reported by us and routines below us, and return NULL
7868 	 * on an error.
7869 	 */
7870 	if (setjmp(cstate->top_ctx))
7871 		return (NULL);
7872 
7873 	return gen_len(cstate, BPF_JGE, n);
7874 }
7875 
7876 /*
7877  * Actually, this is less than or equal.
7878  */
7879 struct block *
7880 gen_less(compiler_state_t *cstate, int n)
7881 {
7882 	struct block *b;
7883 
7884 	/*
7885 	 * Catch errors reported by us and routines below us, and return NULL
7886 	 * on an error.
7887 	 */
7888 	if (setjmp(cstate->top_ctx))
7889 		return (NULL);
7890 
7891 	b = gen_len(cstate, BPF_JGT, n);
7892 	gen_not(b);
7893 
7894 	return b;
7895 }
7896 
7897 /*
7898  * This is for "byte {idx} {op} {val}"; "idx" is treated as relative to
7899  * the beginning of the link-layer header.
7900  * XXX - that means you can't test values in the radiotap header, but
7901  * as that header is difficult if not impossible to parse generally
7902  * without a loop, that might not be a severe problem.  A new keyword
7903  * "radio" could be added for that, although what you'd really want
7904  * would be a way of testing particular radio header values, which
7905  * would generate code appropriate to the radio header in question.
7906  */
7907 struct block *
7908 gen_byteop(compiler_state_t *cstate, int op, int idx, bpf_u_int32 val)
7909 {
7910 	struct block *b;
7911 	struct slist *s;
7912 
7913 	/*
7914 	 * Catch errors reported by us and routines below us, and return NULL
7915 	 * on an error.
7916 	 */
7917 	if (setjmp(cstate->top_ctx))
7918 		return (NULL);
7919 
7920 	switch (op) {
7921 	default:
7922 		abort();
7923 
7924 	case '=':
7925 		return gen_cmp(cstate, OR_LINKHDR, (u_int)idx, BPF_B, val);
7926 
7927 	case '<':
7928 		b = gen_cmp_lt(cstate, OR_LINKHDR, (u_int)idx, BPF_B, val);
7929 		return b;
7930 
7931 	case '>':
7932 		b = gen_cmp_gt(cstate, OR_LINKHDR, (u_int)idx, BPF_B, val);
7933 		return b;
7934 
7935 	case '|':
7936 		s = new_stmt(cstate, BPF_ALU|BPF_OR|BPF_K);
7937 		break;
7938 
7939 	case '&':
7940 		s = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
7941 		break;
7942 	}
7943 	s->s.k = val;
7944 	b = new_block(cstate, JMP(BPF_JEQ));
7945 	b->stmts = s;
7946 	gen_not(b);
7947 
7948 	return b;
7949 }
7950 
7951 static const u_char abroadcast[] = { 0x0 };
7952 
7953 struct block *
7954 gen_broadcast(compiler_state_t *cstate, int proto)
7955 {
7956 	bpf_u_int32 hostmask;
7957 	struct block *b0, *b1, *b2;
7958 	static const u_char ebroadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
7959 
7960 	/*
7961 	 * Catch errors reported by us and routines below us, and return NULL
7962 	 * on an error.
7963 	 */
7964 	if (setjmp(cstate->top_ctx))
7965 		return (NULL);
7966 
7967 	switch (proto) {
7968 
7969 	case Q_DEFAULT:
7970 	case Q_LINK:
7971 		switch (cstate->linktype) {
7972 		case DLT_ARCNET:
7973 		case DLT_ARCNET_LINUX:
7974 			return gen_ahostop(cstate, abroadcast, Q_DST);
7975 		case DLT_EN10MB:
7976 		case DLT_NETANALYZER:
7977 		case DLT_NETANALYZER_TRANSPARENT:
7978 			b1 = gen_prevlinkhdr_check(cstate);
7979 			b0 = gen_ehostop(cstate, ebroadcast, Q_DST);
7980 			if (b1 != NULL)
7981 				gen_and(b1, b0);
7982 			return b0;
7983 		case DLT_FDDI:
7984 			return gen_fhostop(cstate, ebroadcast, Q_DST);
7985 		case DLT_IEEE802:
7986 			return gen_thostop(cstate, ebroadcast, Q_DST);
7987 		case DLT_IEEE802_11:
7988 		case DLT_PRISM_HEADER:
7989 		case DLT_IEEE802_11_RADIO_AVS:
7990 		case DLT_IEEE802_11_RADIO:
7991 		case DLT_PPI:
7992 			return gen_wlanhostop(cstate, ebroadcast, Q_DST);
7993 		case DLT_IP_OVER_FC:
7994 			return gen_ipfchostop(cstate, ebroadcast, Q_DST);
7995 		default:
7996 			bpf_error(cstate, "not a broadcast link");
7997 		}
7998 		/*NOTREACHED*/
7999 
8000 	case Q_IP:
8001 		/*
8002 		 * We treat a netmask of PCAP_NETMASK_UNKNOWN (0xffffffff)
8003 		 * as an indication that we don't know the netmask, and fail
8004 		 * in that case.
8005 		 */
8006 		if (cstate->netmask == PCAP_NETMASK_UNKNOWN)
8007 			bpf_error(cstate, "netmask not known, so 'ip broadcast' not supported");
8008 		b0 = gen_linktype(cstate, ETHERTYPE_IP);
8009 		hostmask = ~cstate->netmask;
8010 		b1 = gen_mcmp(cstate, OR_LINKPL, 16, BPF_W, 0, hostmask);
8011 		b2 = gen_mcmp(cstate, OR_LINKPL, 16, BPF_W,
8012 			      ~0 & hostmask, hostmask);
8013 		gen_or(b1, b2);
8014 		gen_and(b0, b2);
8015 		return b2;
8016 	}
8017 	bpf_error(cstate, "only link-layer/IP broadcast filters supported");
8018 	/*NOTREACHED*/
8019 }
8020 
8021 /*
8022  * Generate code to test the low-order bit of a MAC address (that's
8023  * the bottom bit of the *first* byte).
8024  */
8025 static struct block *
8026 gen_mac_multicast(compiler_state_t *cstate, int offset)
8027 {
8028 	register struct block *b0;
8029 	register struct slist *s;
8030 
8031 	/* link[offset] & 1 != 0 */
8032 	s = gen_load_a(cstate, OR_LINKHDR, offset, BPF_B);
8033 	b0 = new_block(cstate, JMP(BPF_JSET));
8034 	b0->s.k = 1;
8035 	b0->stmts = s;
8036 	return b0;
8037 }
8038 
8039 struct block *
8040 gen_multicast(compiler_state_t *cstate, int proto)
8041 {
8042 	register struct block *b0, *b1, *b2;
8043 	register struct slist *s;
8044 
8045 	/*
8046 	 * Catch errors reported by us and routines below us, and return NULL
8047 	 * on an error.
8048 	 */
8049 	if (setjmp(cstate->top_ctx))
8050 		return (NULL);
8051 
8052 	switch (proto) {
8053 
8054 	case Q_DEFAULT:
8055 	case Q_LINK:
8056 		switch (cstate->linktype) {
8057 		case DLT_ARCNET:
8058 		case DLT_ARCNET_LINUX:
8059 			/* all ARCnet multicasts use the same address */
8060 			return gen_ahostop(cstate, abroadcast, Q_DST);
8061 		case DLT_EN10MB:
8062 		case DLT_NETANALYZER:
8063 		case DLT_NETANALYZER_TRANSPARENT:
8064 			b1 = gen_prevlinkhdr_check(cstate);
8065 			/* ether[0] & 1 != 0 */
8066 			b0 = gen_mac_multicast(cstate, 0);
8067 			if (b1 != NULL)
8068 				gen_and(b1, b0);
8069 			return b0;
8070 		case DLT_FDDI:
8071 			/*
8072 			 * XXX TEST THIS: MIGHT NOT PORT PROPERLY XXX
8073 			 *
8074 			 * XXX - was that referring to bit-order issues?
8075 			 */
8076 			/* fddi[1] & 1 != 0 */
8077 			return gen_mac_multicast(cstate, 1);
8078 		case DLT_IEEE802:
8079 			/* tr[2] & 1 != 0 */
8080 			return gen_mac_multicast(cstate, 2);
8081 		case DLT_IEEE802_11:
8082 		case DLT_PRISM_HEADER:
8083 		case DLT_IEEE802_11_RADIO_AVS:
8084 		case DLT_IEEE802_11_RADIO:
8085 		case DLT_PPI:
8086 			/*
8087 			 * Oh, yuk.
8088 			 *
8089 			 *	For control frames, there is no DA.
8090 			 *
8091 			 *	For management frames, DA is at an
8092 			 *	offset of 4 from the beginning of
8093 			 *	the packet.
8094 			 *
8095 			 *	For data frames, DA is at an offset
8096 			 *	of 4 from the beginning of the packet
8097 			 *	if To DS is clear and at an offset of
8098 			 *	16 from the beginning of the packet
8099 			 *	if To DS is set.
8100 			 */
8101 
8102 			/*
8103 			 * Generate the tests to be done for data frames.
8104 			 *
8105 			 * First, check for To DS set, i.e. "link[1] & 0x01".
8106 			 */
8107 			s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
8108 			b1 = new_block(cstate, JMP(BPF_JSET));
8109 			b1->s.k = 0x01;	/* To DS */
8110 			b1->stmts = s;
8111 
8112 			/*
8113 			 * If To DS is set, the DA is at 16.
8114 			 */
8115 			b0 = gen_mac_multicast(cstate, 16);
8116 			gen_and(b1, b0);
8117 
8118 			/*
8119 			 * Now, check for To DS not set, i.e. check
8120 			 * "!(link[1] & 0x01)".
8121 			 */
8122 			s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
8123 			b2 = new_block(cstate, JMP(BPF_JSET));
8124 			b2->s.k = 0x01;	/* To DS */
8125 			b2->stmts = s;
8126 			gen_not(b2);
8127 
8128 			/*
8129 			 * If To DS is not set, the DA is at 4.
8130 			 */
8131 			b1 = gen_mac_multicast(cstate, 4);
8132 			gen_and(b2, b1);
8133 
8134 			/*
8135 			 * Now OR together the last two checks.  That gives
8136 			 * the complete set of checks for data frames.
8137 			 */
8138 			gen_or(b1, b0);
8139 
8140 			/*
8141 			 * Now check for a data frame.
8142 			 * I.e, check "link[0] & 0x08".
8143 			 */
8144 			s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
8145 			b1 = new_block(cstate, JMP(BPF_JSET));
8146 			b1->s.k = 0x08;
8147 			b1->stmts = s;
8148 
8149 			/*
8150 			 * AND that with the checks done for data frames.
8151 			 */
8152 			gen_and(b1, b0);
8153 
8154 			/*
8155 			 * If the high-order bit of the type value is 0, this
8156 			 * is a management frame.
8157 			 * I.e, check "!(link[0] & 0x08)".
8158 			 */
8159 			s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
8160 			b2 = new_block(cstate, JMP(BPF_JSET));
8161 			b2->s.k = 0x08;
8162 			b2->stmts = s;
8163 			gen_not(b2);
8164 
8165 			/*
8166 			 * For management frames, the DA is at 4.
8167 			 */
8168 			b1 = gen_mac_multicast(cstate, 4);
8169 			gen_and(b2, b1);
8170 
8171 			/*
8172 			 * OR that with the checks done for data frames.
8173 			 * That gives the checks done for management and
8174 			 * data frames.
8175 			 */
8176 			gen_or(b1, b0);
8177 
8178 			/*
8179 			 * If the low-order bit of the type value is 1,
8180 			 * this is either a control frame or a frame
8181 			 * with a reserved type, and thus not a
8182 			 * frame with an SA.
8183 			 *
8184 			 * I.e., check "!(link[0] & 0x04)".
8185 			 */
8186 			s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
8187 			b1 = new_block(cstate, JMP(BPF_JSET));
8188 			b1->s.k = 0x04;
8189 			b1->stmts = s;
8190 			gen_not(b1);
8191 
8192 			/*
8193 			 * AND that with the checks for data and management
8194 			 * frames.
8195 			 */
8196 			gen_and(b1, b0);
8197 			return b0;
8198 		case DLT_IP_OVER_FC:
8199 			b0 = gen_mac_multicast(cstate, 2);
8200 			return b0;
8201 		default:
8202 			break;
8203 		}
8204 		/* Link not known to support multicasts */
8205 		break;
8206 
8207 	case Q_IP:
8208 		b0 = gen_linktype(cstate, ETHERTYPE_IP);
8209 		b1 = gen_cmp_ge(cstate, OR_LINKPL, 16, BPF_B, 224);
8210 		gen_and(b0, b1);
8211 		return b1;
8212 
8213 	case Q_IPV6:
8214 		b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
8215 		b1 = gen_cmp(cstate, OR_LINKPL, 24, BPF_B, 255);
8216 		gen_and(b0, b1);
8217 		return b1;
8218 	}
8219 	bpf_error(cstate, "link-layer multicast filters supported only on ethernet/FDDI/token ring/ARCNET/802.11/ATM LANE/Fibre Channel");
8220 	/*NOTREACHED*/
8221 }
8222 
8223 struct block *
8224 gen_ifindex(compiler_state_t *cstate, int ifindex)
8225 {
8226 	register struct block *b0;
8227 
8228 	/*
8229 	 * Catch errors reported by us and routines below us, and return NULL
8230 	 * on an error.
8231 	 */
8232 	if (setjmp(cstate->top_ctx))
8233 		return (NULL);
8234 
8235 	/*
8236 	 * Only some data link types support ifindex qualifiers.
8237 	 */
8238 	switch (cstate->linktype) {
8239 	case DLT_LINUX_SLL2:
8240 		/* match packets on this interface */
8241 		b0 = gen_cmp(cstate, OR_LINKHDR, 4, BPF_W, ifindex);
8242 		break;
8243         default:
8244 #if defined(linux)
8245 		/*
8246 		 * This is Linux; we require PF_PACKET support.
8247 		 * If this is a *live* capture, we can look at
8248 		 * special meta-data in the filter expression;
8249 		 * if it's a savefile, we can't.
8250 		 */
8251 		if (cstate->bpf_pcap->rfile != NULL) {
8252 			/* We have a FILE *, so this is a savefile */
8253 			bpf_error(cstate, "ifindex not supported on %s when reading savefiles",
8254 			    pcap_datalink_val_to_description_or_dlt(cstate->linktype));
8255 			b0 = NULL;
8256 			/*NOTREACHED*/
8257 		}
8258 		/* match ifindex */
8259 		b0 = gen_cmp(cstate, OR_LINKHDR, SKF_AD_OFF + SKF_AD_IFINDEX, BPF_W,
8260 		             ifindex);
8261 #else /* defined(linux) */
8262 		bpf_error(cstate, "ifindex not supported on %s",
8263 		    pcap_datalink_val_to_description_or_dlt(cstate->linktype));
8264 		/*NOTREACHED*/
8265 #endif /* defined(linux) */
8266 	}
8267 	return (b0);
8268 }
8269 
8270 /*
8271  * Filter on inbound (dir == 0) or outbound (dir == 1) traffic.
8272  * Outbound traffic is sent by this machine, while inbound traffic is
8273  * sent by a remote machine (and may include packets destined for a
8274  * unicast or multicast link-layer address we are not subscribing to).
8275  * These are the same definitions implemented by pcap_setdirection().
8276  * Capturing only unicast traffic destined for this host is probably
8277  * better accomplished using a higher-layer filter.
8278  */
8279 struct block *
8280 gen_inbound(compiler_state_t *cstate, int dir)
8281 {
8282 	register struct block *b0;
8283 
8284 	/*
8285 	 * Catch errors reported by us and routines below us, and return NULL
8286 	 * on an error.
8287 	 */
8288 	if (setjmp(cstate->top_ctx))
8289 		return (NULL);
8290 
8291 	/*
8292 	 * Only some data link types support inbound/outbound qualifiers.
8293 	 */
8294 	switch (cstate->linktype) {
8295 	case DLT_SLIP:
8296 		b0 = gen_relation_internal(cstate, BPF_JEQ,
8297 			  gen_load_internal(cstate, Q_LINK, gen_loadi_internal(cstate, 0), 1),
8298 			  gen_loadi_internal(cstate, 0),
8299 			  dir);
8300 		break;
8301 
8302 	case DLT_IPNET:
8303 		if (dir) {
8304 			/* match outgoing packets */
8305 			b0 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, IPNET_OUTBOUND);
8306 		} else {
8307 			/* match incoming packets */
8308 			b0 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, IPNET_INBOUND);
8309 		}
8310 		break;
8311 
8312 	case DLT_LINUX_SLL:
8313 		/* match outgoing packets */
8314 		b0 = gen_cmp(cstate, OR_LINKHDR, 0, BPF_H, LINUX_SLL_OUTGOING);
8315 		if (!dir) {
8316 			/* to filter on inbound traffic, invert the match */
8317 			gen_not(b0);
8318 		}
8319 		break;
8320 
8321 	case DLT_LINUX_SLL2:
8322 		/* match outgoing packets */
8323 		b0 = gen_cmp(cstate, OR_LINKHDR, 10, BPF_B, LINUX_SLL_OUTGOING);
8324 		if (!dir) {
8325 			/* to filter on inbound traffic, invert the match */
8326 			gen_not(b0);
8327 		}
8328 		break;
8329 
8330 	case DLT_PFLOG:
8331 		b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, dir), BPF_B,
8332 		    ((dir == 0) ? PF_IN : PF_OUT));
8333 		break;
8334 
8335 	case DLT_PPP_PPPD:
8336 		if (dir) {
8337 			/* match outgoing packets */
8338 			b0 = gen_cmp(cstate, OR_LINKHDR, 0, BPF_B, PPP_PPPD_OUT);
8339 		} else {
8340 			/* match incoming packets */
8341 			b0 = gen_cmp(cstate, OR_LINKHDR, 0, BPF_B, PPP_PPPD_IN);
8342 		}
8343 		break;
8344 
8345         case DLT_JUNIPER_MFR:
8346         case DLT_JUNIPER_MLFR:
8347         case DLT_JUNIPER_MLPPP:
8348 	case DLT_JUNIPER_ATM1:
8349 	case DLT_JUNIPER_ATM2:
8350 	case DLT_JUNIPER_PPPOE:
8351 	case DLT_JUNIPER_PPPOE_ATM:
8352         case DLT_JUNIPER_GGSN:
8353         case DLT_JUNIPER_ES:
8354         case DLT_JUNIPER_MONITOR:
8355         case DLT_JUNIPER_SERVICES:
8356         case DLT_JUNIPER_ETHER:
8357         case DLT_JUNIPER_PPP:
8358         case DLT_JUNIPER_FRELAY:
8359         case DLT_JUNIPER_CHDLC:
8360         case DLT_JUNIPER_VP:
8361         case DLT_JUNIPER_ST:
8362         case DLT_JUNIPER_ISM:
8363         case DLT_JUNIPER_VS:
8364         case DLT_JUNIPER_SRX_E2E:
8365         case DLT_JUNIPER_FIBRECHANNEL:
8366 	case DLT_JUNIPER_ATM_CEMIC:
8367 
8368 		/* juniper flags (including direction) are stored
8369 		 * the byte after the 3-byte magic number */
8370 		if (dir) {
8371 			/* match outgoing packets */
8372 			b0 = gen_mcmp(cstate, OR_LINKHDR, 3, BPF_B, 0, 0x01);
8373 		} else {
8374 			/* match incoming packets */
8375 			b0 = gen_mcmp(cstate, OR_LINKHDR, 3, BPF_B, 1, 0x01);
8376 		}
8377 		break;
8378 
8379 	default:
8380 		/*
8381 		 * If we have packet meta-data indicating a direction,
8382 		 * and that metadata can be checked by BPF code, check
8383 		 * it.  Otherwise, give up, as this link-layer type has
8384 		 * nothing in the packet data.
8385 		 *
8386 		 * Currently, the only platform where a BPF filter can
8387 		 * check that metadata is Linux with the in-kernel
8388 		 * BPF interpreter.  If other packet capture mechanisms
8389 		 * and BPF filters also supported this, it would be
8390 		 * nice.  It would be even better if they made that
8391 		 * metadata available so that we could provide it
8392 		 * with newer capture APIs, allowing it to be saved
8393 		 * in pcapng files.
8394 		 */
8395 #if defined(linux)
8396 		/*
8397 		 * This is Linux; we require PF_PACKET support.
8398 		 * If this is a *live* capture, we can look at
8399 		 * special meta-data in the filter expression;
8400 		 * if it's a savefile, we can't.
8401 		 */
8402 		if (cstate->bpf_pcap->rfile != NULL) {
8403 			/* We have a FILE *, so this is a savefile */
8404 			bpf_error(cstate, "inbound/outbound not supported on %s when reading savefiles",
8405 			    pcap_datalink_val_to_description_or_dlt(cstate->linktype));
8406 			/*NOTREACHED*/
8407 		}
8408 		/* match outgoing packets */
8409 		b0 = gen_cmp(cstate, OR_LINKHDR, SKF_AD_OFF + SKF_AD_PKTTYPE, BPF_H,
8410 		             PACKET_OUTGOING);
8411 		if (!dir) {
8412 			/* to filter on inbound traffic, invert the match */
8413 			gen_not(b0);
8414 		}
8415 #else /* defined(linux) */
8416 		bpf_error(cstate, "inbound/outbound not supported on %s",
8417 		    pcap_datalink_val_to_description_or_dlt(cstate->linktype));
8418 		/*NOTREACHED*/
8419 #endif /* defined(linux) */
8420 	}
8421 	return (b0);
8422 }
8423 
8424 /* PF firewall log matched interface */
8425 struct block *
8426 gen_pf_ifname(compiler_state_t *cstate, const char *ifname)
8427 {
8428 	struct block *b0;
8429 	u_int len, off;
8430 
8431 	/*
8432 	 * Catch errors reported by us and routines below us, and return NULL
8433 	 * on an error.
8434 	 */
8435 	if (setjmp(cstate->top_ctx))
8436 		return (NULL);
8437 
8438 	if (cstate->linktype != DLT_PFLOG) {
8439 		bpf_error(cstate, "ifname supported only on PF linktype");
8440 		/*NOTREACHED*/
8441 	}
8442 	len = sizeof(((struct pfloghdr *)0)->ifname);
8443 	off = offsetof(struct pfloghdr, ifname);
8444 	if (strlen(ifname) >= len) {
8445 		bpf_error(cstate, "ifname interface names can only be %d characters",
8446 		    len-1);
8447 		/*NOTREACHED*/
8448 	}
8449 	b0 = gen_bcmp(cstate, OR_LINKHDR, off, (u_int)strlen(ifname),
8450 	    (const u_char *)ifname);
8451 	return (b0);
8452 }
8453 
8454 /* PF firewall log ruleset name */
8455 struct block *
8456 gen_pf_ruleset(compiler_state_t *cstate, char *ruleset)
8457 {
8458 	struct block *b0;
8459 
8460 	/*
8461 	 * Catch errors reported by us and routines below us, and return NULL
8462 	 * on an error.
8463 	 */
8464 	if (setjmp(cstate->top_ctx))
8465 		return (NULL);
8466 
8467 	if (cstate->linktype != DLT_PFLOG) {
8468 		bpf_error(cstate, "ruleset supported only on PF linktype");
8469 		/*NOTREACHED*/
8470 	}
8471 
8472 	if (strlen(ruleset) >= sizeof(((struct pfloghdr *)0)->ruleset)) {
8473 		bpf_error(cstate, "ruleset names can only be %ld characters",
8474 		    (long)(sizeof(((struct pfloghdr *)0)->ruleset) - 1));
8475 		/*NOTREACHED*/
8476 	}
8477 
8478 	b0 = gen_bcmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, ruleset),
8479 	    (u_int)strlen(ruleset), (const u_char *)ruleset);
8480 	return (b0);
8481 }
8482 
8483 /* PF firewall log rule number */
8484 struct block *
8485 gen_pf_rnr(compiler_state_t *cstate, int rnr)
8486 {
8487 	struct block *b0;
8488 
8489 	/*
8490 	 * Catch errors reported by us and routines below us, and return NULL
8491 	 * on an error.
8492 	 */
8493 	if (setjmp(cstate->top_ctx))
8494 		return (NULL);
8495 
8496 	if (cstate->linktype != DLT_PFLOG) {
8497 		bpf_error(cstate, "rnr supported only on PF linktype");
8498 		/*NOTREACHED*/
8499 	}
8500 
8501 	b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, rulenr), BPF_W,
8502 		 (bpf_u_int32)rnr);
8503 	return (b0);
8504 }
8505 
8506 /* PF firewall log sub-rule number */
8507 struct block *
8508 gen_pf_srnr(compiler_state_t *cstate, int srnr)
8509 {
8510 	struct block *b0;
8511 
8512 	/*
8513 	 * Catch errors reported by us and routines below us, and return NULL
8514 	 * on an error.
8515 	 */
8516 	if (setjmp(cstate->top_ctx))
8517 		return (NULL);
8518 
8519 	if (cstate->linktype != DLT_PFLOG) {
8520 		bpf_error(cstate, "srnr supported only on PF linktype");
8521 		/*NOTREACHED*/
8522 	}
8523 
8524 	b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, subrulenr), BPF_W,
8525 	    (bpf_u_int32)srnr);
8526 	return (b0);
8527 }
8528 
8529 /* PF firewall log reason code */
8530 struct block *
8531 gen_pf_reason(compiler_state_t *cstate, int reason)
8532 {
8533 	struct block *b0;
8534 
8535 	/*
8536 	 * Catch errors reported by us and routines below us, and return NULL
8537 	 * on an error.
8538 	 */
8539 	if (setjmp(cstate->top_ctx))
8540 		return (NULL);
8541 
8542 	if (cstate->linktype != DLT_PFLOG) {
8543 		bpf_error(cstate, "reason supported only on PF linktype");
8544 		/*NOTREACHED*/
8545 	}
8546 
8547 	b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, reason), BPF_B,
8548 	    (bpf_u_int32)reason);
8549 	return (b0);
8550 }
8551 
8552 /* PF firewall log action */
8553 struct block *
8554 gen_pf_action(compiler_state_t *cstate, int action)
8555 {
8556 	struct block *b0;
8557 
8558 	/*
8559 	 * Catch errors reported by us and routines below us, and return NULL
8560 	 * on an error.
8561 	 */
8562 	if (setjmp(cstate->top_ctx))
8563 		return (NULL);
8564 
8565 	if (cstate->linktype != DLT_PFLOG) {
8566 		bpf_error(cstate, "action supported only on PF linktype");
8567 		/*NOTREACHED*/
8568 	}
8569 
8570 	b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, action), BPF_B,
8571 	    (bpf_u_int32)action);
8572 	return (b0);
8573 }
8574 
8575 /* IEEE 802.11 wireless header */
8576 struct block *
8577 gen_p80211_type(compiler_state_t *cstate, bpf_u_int32 type, bpf_u_int32 mask)
8578 {
8579 	struct block *b0;
8580 
8581 	/*
8582 	 * Catch errors reported by us and routines below us, and return NULL
8583 	 * on an error.
8584 	 */
8585 	if (setjmp(cstate->top_ctx))
8586 		return (NULL);
8587 
8588 	switch (cstate->linktype) {
8589 
8590 	case DLT_IEEE802_11:
8591 	case DLT_PRISM_HEADER:
8592 	case DLT_IEEE802_11_RADIO_AVS:
8593 	case DLT_IEEE802_11_RADIO:
8594 		b0 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, type, mask);
8595 		break;
8596 
8597 	default:
8598 		bpf_error(cstate, "802.11 link-layer types supported only on 802.11");
8599 		/*NOTREACHED*/
8600 	}
8601 
8602 	return (b0);
8603 }
8604 
8605 struct block *
8606 gen_p80211_fcdir(compiler_state_t *cstate, bpf_u_int32 fcdir)
8607 {
8608 	struct block *b0;
8609 
8610 	/*
8611 	 * Catch errors reported by us and routines below us, and return NULL
8612 	 * on an error.
8613 	 */
8614 	if (setjmp(cstate->top_ctx))
8615 		return (NULL);
8616 
8617 	switch (cstate->linktype) {
8618 
8619 	case DLT_IEEE802_11:
8620 	case DLT_PRISM_HEADER:
8621 	case DLT_IEEE802_11_RADIO_AVS:
8622 	case DLT_IEEE802_11_RADIO:
8623 		break;
8624 
8625 	default:
8626 		bpf_error(cstate, "frame direction supported only with 802.11 headers");
8627 		/*NOTREACHED*/
8628 	}
8629 
8630 	b0 = gen_mcmp(cstate, OR_LINKHDR, 1, BPF_B, fcdir,
8631 	    IEEE80211_FC1_DIR_MASK);
8632 
8633 	return (b0);
8634 }
8635 
8636 struct block *
8637 gen_acode(compiler_state_t *cstate, const char *s, struct qual q)
8638 {
8639 	struct block *b;
8640 
8641 	/*
8642 	 * Catch errors reported by us and routines below us, and return NULL
8643 	 * on an error.
8644 	 */
8645 	if (setjmp(cstate->top_ctx))
8646 		return (NULL);
8647 
8648 	switch (cstate->linktype) {
8649 
8650 	case DLT_ARCNET:
8651 	case DLT_ARCNET_LINUX:
8652 		if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) &&
8653 		    q.proto == Q_LINK) {
8654 			cstate->e = pcap_ether_aton(s);
8655 			if (cstate->e == NULL)
8656 				bpf_error(cstate, "malloc");
8657 			b = gen_ahostop(cstate, cstate->e, (int)q.dir);
8658 			free(cstate->e);
8659 			cstate->e = NULL;
8660 			return (b);
8661 		} else
8662 			bpf_error(cstate, "ARCnet address used in non-arc expression");
8663 		/*NOTREACHED*/
8664 
8665 	default:
8666 		bpf_error(cstate, "aid supported only on ARCnet");
8667 		/*NOTREACHED*/
8668 	}
8669 }
8670 
8671 static struct block *
8672 gen_ahostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
8673 {
8674 	register struct block *b0, *b1;
8675 
8676 	switch (dir) {
8677 	/* src comes first, different from Ethernet */
8678 	case Q_SRC:
8679 		return gen_bcmp(cstate, OR_LINKHDR, 0, 1, eaddr);
8680 
8681 	case Q_DST:
8682 		return gen_bcmp(cstate, OR_LINKHDR, 1, 1, eaddr);
8683 
8684 	case Q_AND:
8685 		b0 = gen_ahostop(cstate, eaddr, Q_SRC);
8686 		b1 = gen_ahostop(cstate, eaddr, Q_DST);
8687 		gen_and(b0, b1);
8688 		return b1;
8689 
8690 	case Q_DEFAULT:
8691 	case Q_OR:
8692 		b0 = gen_ahostop(cstate, eaddr, Q_SRC);
8693 		b1 = gen_ahostop(cstate, eaddr, Q_DST);
8694 		gen_or(b0, b1);
8695 		return b1;
8696 
8697 	case Q_ADDR1:
8698 		bpf_error(cstate, "'addr1' and 'address1' are only supported on 802.11");
8699 		/*NOTREACHED*/
8700 
8701 	case Q_ADDR2:
8702 		bpf_error(cstate, "'addr2' and 'address2' are only supported on 802.11");
8703 		/*NOTREACHED*/
8704 
8705 	case Q_ADDR3:
8706 		bpf_error(cstate, "'addr3' and 'address3' are only supported on 802.11");
8707 		/*NOTREACHED*/
8708 
8709 	case Q_ADDR4:
8710 		bpf_error(cstate, "'addr4' and 'address4' are only supported on 802.11");
8711 		/*NOTREACHED*/
8712 
8713 	case Q_RA:
8714 		bpf_error(cstate, "'ra' is only supported on 802.11");
8715 		/*NOTREACHED*/
8716 
8717 	case Q_TA:
8718 		bpf_error(cstate, "'ta' is only supported on 802.11");
8719 		/*NOTREACHED*/
8720 	}
8721 	abort();
8722 	/*NOTREACHED*/
8723 }
8724 
8725 static struct block *
8726 gen_vlan_tpid_test(compiler_state_t *cstate)
8727 {
8728 	struct block *b0, *b1;
8729 
8730 	/* check for VLAN, including 802.1ad and QinQ */
8731 	b0 = gen_linktype(cstate, ETHERTYPE_8021Q);
8732 	b1 = gen_linktype(cstate, ETHERTYPE_8021AD);
8733 	gen_or(b0,b1);
8734 	b0 = b1;
8735 	b1 = gen_linktype(cstate, ETHERTYPE_8021QINQ);
8736 	gen_or(b0,b1);
8737 
8738 	return b1;
8739 }
8740 
8741 static struct block *
8742 gen_vlan_vid_test(compiler_state_t *cstate, bpf_u_int32 vlan_num)
8743 {
8744 	if (vlan_num > 0x0fff) {
8745 		bpf_error(cstate, "VLAN tag %u greater than maximum %u",
8746 		    vlan_num, 0x0fff);
8747 	}
8748 	return gen_mcmp(cstate, OR_LINKPL, 0, BPF_H, vlan_num, 0x0fff);
8749 }
8750 
8751 static struct block *
8752 gen_vlan_no_bpf_extensions(compiler_state_t *cstate, bpf_u_int32 vlan_num,
8753     int has_vlan_tag)
8754 {
8755 	struct block *b0, *b1;
8756 
8757 	b0 = gen_vlan_tpid_test(cstate);
8758 
8759 	if (has_vlan_tag) {
8760 		b1 = gen_vlan_vid_test(cstate, vlan_num);
8761 		gen_and(b0, b1);
8762 		b0 = b1;
8763 	}
8764 
8765 	/*
8766 	 * Both payload and link header type follow the VLAN tags so that
8767 	 * both need to be updated.
8768 	 */
8769 	cstate->off_linkpl.constant_part += 4;
8770 	cstate->off_linktype.constant_part += 4;
8771 
8772 	return b0;
8773 }
8774 
8775 #if defined(SKF_AD_VLAN_TAG_PRESENT)
8776 /* add v to variable part of off */
8777 static void
8778 gen_vlan_vloffset_add(compiler_state_t *cstate, bpf_abs_offset *off,
8779     bpf_u_int32 v, struct slist *s)
8780 {
8781 	struct slist *s2;
8782 
8783 	if (!off->is_variable)
8784 		off->is_variable = 1;
8785 	if (off->reg == -1)
8786 		off->reg = alloc_reg(cstate);
8787 
8788 	s2 = new_stmt(cstate, BPF_LD|BPF_MEM);
8789 	s2->s.k = off->reg;
8790 	sappend(s, s2);
8791 	s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_IMM);
8792 	s2->s.k = v;
8793 	sappend(s, s2);
8794 	s2 = new_stmt(cstate, BPF_ST);
8795 	s2->s.k = off->reg;
8796 	sappend(s, s2);
8797 }
8798 
8799 /*
8800  * patch block b_tpid (VLAN TPID test) to update variable parts of link payload
8801  * and link type offsets first
8802  */
8803 static void
8804 gen_vlan_patch_tpid_test(compiler_state_t *cstate, struct block *b_tpid)
8805 {
8806 	struct slist s;
8807 
8808 	/* offset determined at run time, shift variable part */
8809 	s.next = NULL;
8810 	cstate->is_vlan_vloffset = 1;
8811 	gen_vlan_vloffset_add(cstate, &cstate->off_linkpl, 4, &s);
8812 	gen_vlan_vloffset_add(cstate, &cstate->off_linktype, 4, &s);
8813 
8814 	/* we get a pointer to a chain of or-ed blocks, patch first of them */
8815 	sappend(s.next, b_tpid->head->stmts);
8816 	b_tpid->head->stmts = s.next;
8817 }
8818 
8819 /*
8820  * patch block b_vid (VLAN id test) to load VID value either from packet
8821  * metadata (using BPF extensions) if SKF_AD_VLAN_TAG_PRESENT is true
8822  */
8823 static void
8824 gen_vlan_patch_vid_test(compiler_state_t *cstate, struct block *b_vid)
8825 {
8826 	struct slist *s, *s2, *sjeq;
8827 	unsigned cnt;
8828 
8829 	s = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
8830 	s->s.k = SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT;
8831 
8832 	/* true -> next instructions, false -> beginning of b_vid */
8833 	sjeq = new_stmt(cstate, JMP(BPF_JEQ));
8834 	sjeq->s.k = 1;
8835 	sjeq->s.jf = b_vid->stmts;
8836 	sappend(s, sjeq);
8837 
8838 	s2 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
8839 	s2->s.k = SKF_AD_OFF + SKF_AD_VLAN_TAG;
8840 	sappend(s, s2);
8841 	sjeq->s.jt = s2;
8842 
8843 	/* Jump to the test in b_vid. We need to jump one instruction before
8844 	 * the end of the b_vid block so that we only skip loading the TCI
8845 	 * from packet data and not the 'and' instruction extractging VID.
8846 	 */
8847 	cnt = 0;
8848 	for (s2 = b_vid->stmts; s2; s2 = s2->next)
8849 		cnt++;
8850 	s2 = new_stmt(cstate, JMP(BPF_JA));
8851 	s2->s.k = cnt - 1;
8852 	sappend(s, s2);
8853 
8854 	/* insert our statements at the beginning of b_vid */
8855 	sappend(s, b_vid->stmts);
8856 	b_vid->stmts = s;
8857 }
8858 
8859 /*
8860  * Generate check for "vlan" or "vlan <id>" on systems with support for BPF
8861  * extensions.  Even if kernel supports VLAN BPF extensions, (outermost) VLAN
8862  * tag can be either in metadata or in packet data; therefore if the
8863  * SKF_AD_VLAN_TAG_PRESENT test is negative, we need to check link
8864  * header for VLAN tag. As the decision is done at run time, we need
8865  * update variable part of the offsets
8866  */
8867 static struct block *
8868 gen_vlan_bpf_extensions(compiler_state_t *cstate, bpf_u_int32 vlan_num,
8869     int has_vlan_tag)
8870 {
8871         struct block *b0, *b_tpid, *b_vid = NULL;
8872         struct slist *s;
8873 
8874         /* generate new filter code based on extracting packet
8875          * metadata */
8876         s = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
8877         s->s.k = SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT;
8878 
8879         b0 = new_block(cstate, JMP(BPF_JEQ));
8880         b0->stmts = s;
8881         b0->s.k = 1;
8882 
8883 	/*
8884 	 * This is tricky. We need to insert the statements updating variable
8885 	 * parts of offsets before the traditional TPID and VID tests so
8886 	 * that they are called whenever SKF_AD_VLAN_TAG_PRESENT fails but
8887 	 * we do not want this update to affect those checks. That's why we
8888 	 * generate both test blocks first and insert the statements updating
8889 	 * variable parts of both offsets after that. This wouldn't work if
8890 	 * there already were variable length link header when entering this
8891 	 * function but gen_vlan_bpf_extensions() isn't called in that case.
8892 	 */
8893 	b_tpid = gen_vlan_tpid_test(cstate);
8894 	if (has_vlan_tag)
8895 		b_vid = gen_vlan_vid_test(cstate, vlan_num);
8896 
8897 	gen_vlan_patch_tpid_test(cstate, b_tpid);
8898 	gen_or(b0, b_tpid);
8899 	b0 = b_tpid;
8900 
8901 	if (has_vlan_tag) {
8902 		gen_vlan_patch_vid_test(cstate, b_vid);
8903 		gen_and(b0, b_vid);
8904 		b0 = b_vid;
8905 	}
8906 
8907         return b0;
8908 }
8909 #endif
8910 
8911 /*
8912  * support IEEE 802.1Q VLAN trunk over ethernet
8913  */
8914 struct block *
8915 gen_vlan(compiler_state_t *cstate, bpf_u_int32 vlan_num, int has_vlan_tag)
8916 {
8917 	struct	block	*b0;
8918 
8919 	/*
8920 	 * Catch errors reported by us and routines below us, and return NULL
8921 	 * on an error.
8922 	 */
8923 	if (setjmp(cstate->top_ctx))
8924 		return (NULL);
8925 
8926 	/* can't check for VLAN-encapsulated packets inside MPLS */
8927 	if (cstate->label_stack_depth > 0)
8928 		bpf_error(cstate, "no VLAN match after MPLS");
8929 
8930 	/*
8931 	 * Check for a VLAN packet, and then change the offsets to point
8932 	 * to the type and data fields within the VLAN packet.  Just
8933 	 * increment the offsets, so that we can support a hierarchy, e.g.
8934 	 * "vlan 300 && vlan 200" to capture VLAN 200 encapsulated within
8935 	 * VLAN 100.
8936 	 *
8937 	 * XXX - this is a bit of a kludge.  If we were to split the
8938 	 * compiler into a parser that parses an expression and
8939 	 * generates an expression tree, and a code generator that
8940 	 * takes an expression tree (which could come from our
8941 	 * parser or from some other parser) and generates BPF code,
8942 	 * we could perhaps make the offsets parameters of routines
8943 	 * and, in the handler for an "AND" node, pass to subnodes
8944 	 * other than the VLAN node the adjusted offsets.
8945 	 *
8946 	 * This would mean that "vlan" would, instead of changing the
8947 	 * behavior of *all* tests after it, change only the behavior
8948 	 * of tests ANDed with it.  That would change the documented
8949 	 * semantics of "vlan", which might break some expressions.
8950 	 * However, it would mean that "(vlan and ip) or ip" would check
8951 	 * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
8952 	 * checking only for VLAN-encapsulated IP, so that could still
8953 	 * be considered worth doing; it wouldn't break expressions
8954 	 * that are of the form "vlan and ..." or "vlan N and ...",
8955 	 * which I suspect are the most common expressions involving
8956 	 * "vlan".  "vlan or ..." doesn't necessarily do what the user
8957 	 * would really want, now, as all the "or ..." tests would
8958 	 * be done assuming a VLAN, even though the "or" could be viewed
8959 	 * as meaning "or, if this isn't a VLAN packet...".
8960 	 */
8961 	switch (cstate->linktype) {
8962 
8963 	case DLT_EN10MB:
8964 	case DLT_NETANALYZER:
8965 	case DLT_NETANALYZER_TRANSPARENT:
8966 #if defined(SKF_AD_VLAN_TAG_PRESENT)
8967 		/* Verify that this is the outer part of the packet and
8968 		 * not encapsulated somehow. */
8969 		if (cstate->vlan_stack_depth == 0 && !cstate->off_linkhdr.is_variable &&
8970 		    cstate->off_linkhdr.constant_part ==
8971 		    cstate->off_outermostlinkhdr.constant_part) {
8972 			/*
8973 			 * Do we need special VLAN handling?
8974 			 */
8975 			if (cstate->bpf_pcap->bpf_codegen_flags & BPF_SPECIAL_VLAN_HANDLING)
8976 				b0 = gen_vlan_bpf_extensions(cstate, vlan_num,
8977 				    has_vlan_tag);
8978 			else
8979 				b0 = gen_vlan_no_bpf_extensions(cstate,
8980 				    vlan_num, has_vlan_tag);
8981 		} else
8982 #endif
8983 			b0 = gen_vlan_no_bpf_extensions(cstate, vlan_num,
8984 			    has_vlan_tag);
8985                 break;
8986 
8987 	case DLT_IEEE802_11:
8988 	case DLT_PRISM_HEADER:
8989 	case DLT_IEEE802_11_RADIO_AVS:
8990 	case DLT_IEEE802_11_RADIO:
8991 		b0 = gen_vlan_no_bpf_extensions(cstate, vlan_num, has_vlan_tag);
8992 		break;
8993 
8994 	default:
8995 		bpf_error(cstate, "no VLAN support for %s",
8996 		      pcap_datalink_val_to_description_or_dlt(cstate->linktype));
8997 		/*NOTREACHED*/
8998 	}
8999 
9000         cstate->vlan_stack_depth++;
9001 
9002 	return (b0);
9003 }
9004 
9005 /*
9006  * support for MPLS
9007  *
9008  * The label_num_arg dance is to avoid annoying whining by compilers that
9009  * label_num might be clobbered by longjmp - yeah, it might, but *WHO CARES*?
9010  * It's not *used* after setjmp returns.
9011  */
9012 struct block *
9013 gen_mpls(compiler_state_t *cstate, bpf_u_int32 label_num_arg,
9014     int has_label_num)
9015 {
9016 	volatile bpf_u_int32 label_num = label_num_arg;
9017 	struct	block	*b0, *b1;
9018 
9019 	/*
9020 	 * Catch errors reported by us and routines below us, and return NULL
9021 	 * on an error.
9022 	 */
9023 	if (setjmp(cstate->top_ctx))
9024 		return (NULL);
9025 
9026         if (cstate->label_stack_depth > 0) {
9027             /* just match the bottom-of-stack bit clear */
9028             b0 = gen_mcmp(cstate, OR_PREVMPLSHDR, 2, BPF_B, 0, 0x01);
9029         } else {
9030             /*
9031              * We're not in an MPLS stack yet, so check the link-layer
9032              * type against MPLS.
9033              */
9034             switch (cstate->linktype) {
9035 
9036             case DLT_C_HDLC: /* fall through */
9037             case DLT_HDLC:
9038             case DLT_EN10MB:
9039             case DLT_NETANALYZER:
9040             case DLT_NETANALYZER_TRANSPARENT:
9041                     b0 = gen_linktype(cstate, ETHERTYPE_MPLS);
9042                     break;
9043 
9044             case DLT_PPP:
9045                     b0 = gen_linktype(cstate, PPP_MPLS_UCAST);
9046                     break;
9047 
9048                     /* FIXME add other DLT_s ...
9049                      * for Frame-Relay/and ATM this may get messy due to SNAP headers
9050                      * leave it for now */
9051 
9052             default:
9053                     bpf_error(cstate, "no MPLS support for %s",
9054                           pcap_datalink_val_to_description_or_dlt(cstate->linktype));
9055                     /*NOTREACHED*/
9056             }
9057         }
9058 
9059 	/* If a specific MPLS label is requested, check it */
9060 	if (has_label_num) {
9061 		if (label_num > 0xFFFFF) {
9062 			bpf_error(cstate, "MPLS label %u greater than maximum %u",
9063 			    label_num, 0xFFFFF);
9064 		}
9065 		label_num = label_num << 12; /* label is shifted 12 bits on the wire */
9066 		b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_W, label_num,
9067 		    0xfffff000); /* only compare the first 20 bits */
9068 		gen_and(b0, b1);
9069 		b0 = b1;
9070 	}
9071 
9072         /*
9073          * Change the offsets to point to the type and data fields within
9074          * the MPLS packet.  Just increment the offsets, so that we
9075          * can support a hierarchy, e.g. "mpls 100000 && mpls 1024" to
9076          * capture packets with an outer label of 100000 and an inner
9077          * label of 1024.
9078          *
9079          * Increment the MPLS stack depth as well; this indicates that
9080          * we're checking MPLS-encapsulated headers, to make sure higher
9081          * level code generators don't try to match against IP-related
9082          * protocols such as Q_ARP, Q_RARP etc.
9083          *
9084          * XXX - this is a bit of a kludge.  See comments in gen_vlan().
9085          */
9086         cstate->off_nl_nosnap += 4;
9087         cstate->off_nl += 4;
9088         cstate->label_stack_depth++;
9089 	return (b0);
9090 }
9091 
9092 /*
9093  * Support PPPOE discovery and session.
9094  */
9095 struct block *
9096 gen_pppoed(compiler_state_t *cstate)
9097 {
9098 	/*
9099 	 * Catch errors reported by us and routines below us, and return NULL
9100 	 * on an error.
9101 	 */
9102 	if (setjmp(cstate->top_ctx))
9103 		return (NULL);
9104 
9105 	/* check for PPPoE discovery */
9106 	return gen_linktype(cstate, ETHERTYPE_PPPOED);
9107 }
9108 
9109 struct block *
9110 gen_pppoes(compiler_state_t *cstate, bpf_u_int32 sess_num, int has_sess_num)
9111 {
9112 	struct block *b0, *b1;
9113 
9114 	/*
9115 	 * Catch errors reported by us and routines below us, and return NULL
9116 	 * on an error.
9117 	 */
9118 	if (setjmp(cstate->top_ctx))
9119 		return (NULL);
9120 
9121 	/*
9122 	 * Test against the PPPoE session link-layer type.
9123 	 */
9124 	b0 = gen_linktype(cstate, ETHERTYPE_PPPOES);
9125 
9126 	/* If a specific session is requested, check PPPoE session id */
9127 	if (has_sess_num) {
9128 		if (sess_num > 0x0000ffff) {
9129 			bpf_error(cstate, "PPPoE session number %u greater than maximum %u",
9130 			    sess_num, 0x0000ffff);
9131 		}
9132 		b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_W, sess_num, 0x0000ffff);
9133 		gen_and(b0, b1);
9134 		b0 = b1;
9135 	}
9136 
9137 	/*
9138 	 * Change the offsets to point to the type and data fields within
9139 	 * the PPP packet, and note that this is PPPoE rather than
9140 	 * raw PPP.
9141 	 *
9142 	 * XXX - this is a bit of a kludge.  See the comments in
9143 	 * gen_vlan().
9144 	 *
9145 	 * The "network-layer" protocol is PPPoE, which has a 6-byte
9146 	 * PPPoE header, followed by a PPP packet.
9147 	 *
9148 	 * There is no HDLC encapsulation for the PPP packet (it's
9149 	 * encapsulated in PPPoES instead), so the link-layer type
9150 	 * starts at the first byte of the PPP packet.  For PPPoE,
9151 	 * that offset is relative to the beginning of the total
9152 	 * link-layer payload, including any 802.2 LLC header, so
9153 	 * it's 6 bytes past cstate->off_nl.
9154 	 */
9155 	PUSH_LINKHDR(cstate, DLT_PPP, cstate->off_linkpl.is_variable,
9156 	    cstate->off_linkpl.constant_part + cstate->off_nl + 6, /* 6 bytes past the PPPoE header */
9157 	    cstate->off_linkpl.reg);
9158 
9159 	cstate->off_linktype = cstate->off_linkhdr;
9160 	cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 2;
9161 
9162 	cstate->off_nl = 0;
9163 	cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
9164 
9165 	return b0;
9166 }
9167 
9168 /* Check that this is Geneve and the VNI is correct if
9169  * specified. Parameterized to handle both IPv4 and IPv6. */
9170 static struct block *
9171 gen_geneve_check(compiler_state_t *cstate,
9172     struct block *(*gen_portfn)(compiler_state_t *, u_int, int, int),
9173     enum e_offrel offrel, bpf_u_int32 vni, int has_vni)
9174 {
9175 	struct block *b0, *b1;
9176 
9177 	b0 = gen_portfn(cstate, GENEVE_PORT, IPPROTO_UDP, Q_DST);
9178 
9179 	/* Check that we are operating on version 0. Otherwise, we
9180 	 * can't decode the rest of the fields. The version is 2 bits
9181 	 * in the first byte of the Geneve header. */
9182 	b1 = gen_mcmp(cstate, offrel, 8, BPF_B, 0, 0xc0);
9183 	gen_and(b0, b1);
9184 	b0 = b1;
9185 
9186 	if (has_vni) {
9187 		if (vni > 0xffffff) {
9188 			bpf_error(cstate, "Geneve VNI %u greater than maximum %u",
9189 			    vni, 0xffffff);
9190 		}
9191 		vni <<= 8; /* VNI is in the upper 3 bytes */
9192 		b1 = gen_mcmp(cstate, offrel, 12, BPF_W, vni, 0xffffff00);
9193 		gen_and(b0, b1);
9194 		b0 = b1;
9195 	}
9196 
9197 	return b0;
9198 }
9199 
9200 /* The IPv4 and IPv6 Geneve checks need to do two things:
9201  * - Verify that this actually is Geneve with the right VNI.
9202  * - Place the IP header length (plus variable link prefix if
9203  *   needed) into register A to be used later to compute
9204  *   the inner packet offsets. */
9205 static struct block *
9206 gen_geneve4(compiler_state_t *cstate, bpf_u_int32 vni, int has_vni)
9207 {
9208 	struct block *b0, *b1;
9209 	struct slist *s, *s1;
9210 
9211 	b0 = gen_geneve_check(cstate, gen_port, OR_TRAN_IPV4, vni, has_vni);
9212 
9213 	/* Load the IP header length into A. */
9214 	s = gen_loadx_iphdrlen(cstate);
9215 
9216 	s1 = new_stmt(cstate, BPF_MISC|BPF_TXA);
9217 	sappend(s, s1);
9218 
9219 	/* Forcibly append these statements to the true condition
9220 	 * of the protocol check by creating a new block that is
9221 	 * always true and ANDing them. */
9222 	b1 = new_block(cstate, BPF_JMP|BPF_JEQ|BPF_X);
9223 	b1->stmts = s;
9224 	b1->s.k = 0;
9225 
9226 	gen_and(b0, b1);
9227 
9228 	return b1;
9229 }
9230 
9231 static struct block *
9232 gen_geneve6(compiler_state_t *cstate, bpf_u_int32 vni, int has_vni)
9233 {
9234 	struct block *b0, *b1;
9235 	struct slist *s, *s1;
9236 
9237 	b0 = gen_geneve_check(cstate, gen_port6, OR_TRAN_IPV6, vni, has_vni);
9238 
9239 	/* Load the IP header length. We need to account for a
9240 	 * variable length link prefix if there is one. */
9241 	s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl);
9242 	if (s) {
9243 		s1 = new_stmt(cstate, BPF_LD|BPF_IMM);
9244 		s1->s.k = 40;
9245 		sappend(s, s1);
9246 
9247 		s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X);
9248 		s1->s.k = 0;
9249 		sappend(s, s1);
9250 	} else {
9251 		s = new_stmt(cstate, BPF_LD|BPF_IMM);
9252 		s->s.k = 40;
9253 	}
9254 
9255 	/* Forcibly append these statements to the true condition
9256 	 * of the protocol check by creating a new block that is
9257 	 * always true and ANDing them. */
9258 	s1 = new_stmt(cstate, BPF_MISC|BPF_TAX);
9259 	sappend(s, s1);
9260 
9261 	b1 = new_block(cstate, BPF_JMP|BPF_JEQ|BPF_X);
9262 	b1->stmts = s;
9263 	b1->s.k = 0;
9264 
9265 	gen_and(b0, b1);
9266 
9267 	return b1;
9268 }
9269 
9270 /* We need to store three values based on the Geneve header::
9271  * - The offset of the linktype.
9272  * - The offset of the end of the Geneve header.
9273  * - The offset of the end of the encapsulated MAC header. */
9274 static struct slist *
9275 gen_geneve_offsets(compiler_state_t *cstate)
9276 {
9277 	struct slist *s, *s1, *s_proto;
9278 
9279 	/* First we need to calculate the offset of the Geneve header
9280 	 * itself. This is composed of the IP header previously calculated
9281 	 * (include any variable link prefix) and stored in A plus the
9282 	 * fixed sized headers (fixed link prefix, MAC length, and UDP
9283 	 * header). */
9284 	s = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
9285 	s->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 8;
9286 
9287 	/* Stash this in X since we'll need it later. */
9288 	s1 = new_stmt(cstate, BPF_MISC|BPF_TAX);
9289 	sappend(s, s1);
9290 
9291 	/* The EtherType in Geneve is 2 bytes in. Calculate this and
9292 	 * store it. */
9293 	s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
9294 	s1->s.k = 2;
9295 	sappend(s, s1);
9296 
9297 	cstate->off_linktype.reg = alloc_reg(cstate);
9298 	cstate->off_linktype.is_variable = 1;
9299 	cstate->off_linktype.constant_part = 0;
9300 
9301 	s1 = new_stmt(cstate, BPF_ST);
9302 	s1->s.k = cstate->off_linktype.reg;
9303 	sappend(s, s1);
9304 
9305 	/* Load the Geneve option length and mask and shift to get the
9306 	 * number of bytes. It is stored in the first byte of the Geneve
9307 	 * header. */
9308 	s1 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
9309 	s1->s.k = 0;
9310 	sappend(s, s1);
9311 
9312 	s1 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
9313 	s1->s.k = 0x3f;
9314 	sappend(s, s1);
9315 
9316 	s1 = new_stmt(cstate, BPF_ALU|BPF_MUL|BPF_K);
9317 	s1->s.k = 4;
9318 	sappend(s, s1);
9319 
9320 	/* Add in the rest of the Geneve base header. */
9321 	s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
9322 	s1->s.k = 8;
9323 	sappend(s, s1);
9324 
9325 	/* Add the Geneve header length to its offset and store. */
9326 	s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X);
9327 	s1->s.k = 0;
9328 	sappend(s, s1);
9329 
9330 	/* Set the encapsulated type as Ethernet. Even though we may
9331 	 * not actually have Ethernet inside there are two reasons this
9332 	 * is useful:
9333 	 * - The linktype field is always in EtherType format regardless
9334 	 *   of whether it is in Geneve or an inner Ethernet frame.
9335 	 * - The only link layer that we have specific support for is
9336 	 *   Ethernet. We will confirm that the packet actually is
9337 	 *   Ethernet at runtime before executing these checks. */
9338 	PUSH_LINKHDR(cstate, DLT_EN10MB, 1, 0, alloc_reg(cstate));
9339 
9340 	s1 = new_stmt(cstate, BPF_ST);
9341 	s1->s.k = cstate->off_linkhdr.reg;
9342 	sappend(s, s1);
9343 
9344 	/* Calculate whether we have an Ethernet header or just raw IP/
9345 	 * MPLS/etc. If we have Ethernet, advance the end of the MAC offset
9346 	 * and linktype by 14 bytes so that the network header can be found
9347 	 * seamlessly. Otherwise, keep what we've calculated already. */
9348 
9349 	/* We have a bare jmp so we can't use the optimizer. */
9350 	cstate->no_optimize = 1;
9351 
9352 	/* Load the EtherType in the Geneve header, 2 bytes in. */
9353 	s1 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_H);
9354 	s1->s.k = 2;
9355 	sappend(s, s1);
9356 
9357 	/* Load X with the end of the Geneve header. */
9358 	s1 = new_stmt(cstate, BPF_LDX|BPF_MEM);
9359 	s1->s.k = cstate->off_linkhdr.reg;
9360 	sappend(s, s1);
9361 
9362 	/* Check if the EtherType is Transparent Ethernet Bridging. At the
9363 	 * end of this check, we should have the total length in X. In
9364 	 * the non-Ethernet case, it's already there. */
9365 	s_proto = new_stmt(cstate, JMP(BPF_JEQ));
9366 	s_proto->s.k = ETHERTYPE_TEB;
9367 	sappend(s, s_proto);
9368 
9369 	s1 = new_stmt(cstate, BPF_MISC|BPF_TXA);
9370 	sappend(s, s1);
9371 	s_proto->s.jt = s1;
9372 
9373 	/* Since this is Ethernet, use the EtherType of the payload
9374 	 * directly as the linktype. Overwrite what we already have. */
9375 	s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
9376 	s1->s.k = 12;
9377 	sappend(s, s1);
9378 
9379 	s1 = new_stmt(cstate, BPF_ST);
9380 	s1->s.k = cstate->off_linktype.reg;
9381 	sappend(s, s1);
9382 
9383 	/* Advance two bytes further to get the end of the Ethernet
9384 	 * header. */
9385 	s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
9386 	s1->s.k = 2;
9387 	sappend(s, s1);
9388 
9389 	/* Move the result to X. */
9390 	s1 = new_stmt(cstate, BPF_MISC|BPF_TAX);
9391 	sappend(s, s1);
9392 
9393 	/* Store the final result of our linkpl calculation. */
9394 	cstate->off_linkpl.reg = alloc_reg(cstate);
9395 	cstate->off_linkpl.is_variable = 1;
9396 	cstate->off_linkpl.constant_part = 0;
9397 
9398 	s1 = new_stmt(cstate, BPF_STX);
9399 	s1->s.k = cstate->off_linkpl.reg;
9400 	sappend(s, s1);
9401 	s_proto->s.jf = s1;
9402 
9403 	cstate->off_nl = 0;
9404 
9405 	return s;
9406 }
9407 
9408 /* Check to see if this is a Geneve packet. */
9409 struct block *
9410 gen_geneve(compiler_state_t *cstate, bpf_u_int32 vni, int has_vni)
9411 {
9412 	struct block *b0, *b1;
9413 	struct slist *s;
9414 
9415 	/*
9416 	 * Catch errors reported by us and routines below us, and return NULL
9417 	 * on an error.
9418 	 */
9419 	if (setjmp(cstate->top_ctx))
9420 		return (NULL);
9421 
9422 	b0 = gen_geneve4(cstate, vni, has_vni);
9423 	b1 = gen_geneve6(cstate, vni, has_vni);
9424 
9425 	gen_or(b0, b1);
9426 	b0 = b1;
9427 
9428 	/* Later filters should act on the payload of the Geneve frame,
9429 	 * update all of the header pointers. Attach this code so that
9430 	 * it gets executed in the event that the Geneve filter matches. */
9431 	s = gen_geneve_offsets(cstate);
9432 
9433 	b1 = gen_true(cstate);
9434 	sappend(s, b1->stmts);
9435 	b1->stmts = s;
9436 
9437 	gen_and(b0, b1);
9438 
9439 	cstate->is_geneve = 1;
9440 
9441 	return b1;
9442 }
9443 
9444 /* Check that the encapsulated frame has a link layer header
9445  * for Ethernet filters. */
9446 static struct block *
9447 gen_geneve_ll_check(compiler_state_t *cstate)
9448 {
9449 	struct block *b0;
9450 	struct slist *s, *s1;
9451 
9452 	/* The easiest way to see if there is a link layer present
9453 	 * is to check if the link layer header and payload are not
9454 	 * the same. */
9455 
9456 	/* Geneve always generates pure variable offsets so we can
9457 	 * compare only the registers. */
9458 	s = new_stmt(cstate, BPF_LD|BPF_MEM);
9459 	s->s.k = cstate->off_linkhdr.reg;
9460 
9461 	s1 = new_stmt(cstate, BPF_LDX|BPF_MEM);
9462 	s1->s.k = cstate->off_linkpl.reg;
9463 	sappend(s, s1);
9464 
9465 	b0 = new_block(cstate, BPF_JMP|BPF_JEQ|BPF_X);
9466 	b0->stmts = s;
9467 	b0->s.k = 0;
9468 	gen_not(b0);
9469 
9470 	return b0;
9471 }
9472 
9473 static struct block *
9474 gen_atmfield_code_internal(compiler_state_t *cstate, int atmfield,
9475     bpf_u_int32 jvalue, int jtype, int reverse)
9476 {
9477 	struct block *b0;
9478 
9479 	switch (atmfield) {
9480 
9481 	case A_VPI:
9482 		if (!cstate->is_atm)
9483 			bpf_error(cstate, "'vpi' supported only on raw ATM");
9484 		if (cstate->off_vpi == OFFSET_NOT_SET)
9485 			abort();
9486 		b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_vpi, BPF_B,
9487 		    0xffffffffU, jtype, reverse, jvalue);
9488 		break;
9489 
9490 	case A_VCI:
9491 		if (!cstate->is_atm)
9492 			bpf_error(cstate, "'vci' supported only on raw ATM");
9493 		if (cstate->off_vci == OFFSET_NOT_SET)
9494 			abort();
9495 		b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_vci, BPF_H,
9496 		    0xffffffffU, jtype, reverse, jvalue);
9497 		break;
9498 
9499 	case A_PROTOTYPE:
9500 		if (cstate->off_proto == OFFSET_NOT_SET)
9501 			abort();	/* XXX - this isn't on FreeBSD */
9502 		b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_proto, BPF_B,
9503 		    0x0fU, jtype, reverse, jvalue);
9504 		break;
9505 
9506 	case A_MSGTYPE:
9507 		if (cstate->off_payload == OFFSET_NOT_SET)
9508 			abort();
9509 		b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_payload + MSG_TYPE_POS, BPF_B,
9510 		    0xffffffffU, jtype, reverse, jvalue);
9511 		break;
9512 
9513 	case A_CALLREFTYPE:
9514 		if (!cstate->is_atm)
9515 			bpf_error(cstate, "'callref' supported only on raw ATM");
9516 		if (cstate->off_proto == OFFSET_NOT_SET)
9517 			abort();
9518 		b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_proto, BPF_B,
9519 		    0xffffffffU, jtype, reverse, jvalue);
9520 		break;
9521 
9522 	default:
9523 		abort();
9524 	}
9525 	return b0;
9526 }
9527 
9528 static struct block *
9529 gen_atmtype_metac(compiler_state_t *cstate)
9530 {
9531 	struct block *b0, *b1;
9532 
9533 	b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
9534 	b1 = gen_atmfield_code_internal(cstate, A_VCI, 1, BPF_JEQ, 0);
9535 	gen_and(b0, b1);
9536 	return b1;
9537 }
9538 
9539 static struct block *
9540 gen_atmtype_sc(compiler_state_t *cstate)
9541 {
9542 	struct block *b0, *b1;
9543 
9544 	b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
9545 	b1 = gen_atmfield_code_internal(cstate, A_VCI, 5, BPF_JEQ, 0);
9546 	gen_and(b0, b1);
9547 	return b1;
9548 }
9549 
9550 static struct block *
9551 gen_atmtype_llc(compiler_state_t *cstate)
9552 {
9553 	struct block *b0;
9554 
9555 	b0 = gen_atmfield_code_internal(cstate, A_PROTOTYPE, PT_LLC, BPF_JEQ, 0);
9556 	cstate->linktype = cstate->prevlinktype;
9557 	return b0;
9558 }
9559 
9560 struct block *
9561 gen_atmfield_code(compiler_state_t *cstate, int atmfield,
9562     bpf_u_int32 jvalue, int jtype, int reverse)
9563 {
9564 	/*
9565 	 * Catch errors reported by us and routines below us, and return NULL
9566 	 * on an error.
9567 	 */
9568 	if (setjmp(cstate->top_ctx))
9569 		return (NULL);
9570 
9571 	return gen_atmfield_code_internal(cstate, atmfield, jvalue, jtype,
9572 	    reverse);
9573 }
9574 
9575 struct block *
9576 gen_atmtype_abbrev(compiler_state_t *cstate, int type)
9577 {
9578 	struct block *b0, *b1;
9579 
9580 	/*
9581 	 * Catch errors reported by us and routines below us, and return NULL
9582 	 * on an error.
9583 	 */
9584 	if (setjmp(cstate->top_ctx))
9585 		return (NULL);
9586 
9587 	switch (type) {
9588 
9589 	case A_METAC:
9590 		/* Get all packets in Meta signalling Circuit */
9591 		if (!cstate->is_atm)
9592 			bpf_error(cstate, "'metac' supported only on raw ATM");
9593 		b1 = gen_atmtype_metac(cstate);
9594 		break;
9595 
9596 	case A_BCC:
9597 		/* Get all packets in Broadcast Circuit*/
9598 		if (!cstate->is_atm)
9599 			bpf_error(cstate, "'bcc' supported only on raw ATM");
9600 		b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
9601 		b1 = gen_atmfield_code_internal(cstate, A_VCI, 2, BPF_JEQ, 0);
9602 		gen_and(b0, b1);
9603 		break;
9604 
9605 	case A_OAMF4SC:
9606 		/* Get all cells in Segment OAM F4 circuit*/
9607 		if (!cstate->is_atm)
9608 			bpf_error(cstate, "'oam4sc' supported only on raw ATM");
9609 		b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
9610 		b1 = gen_atmfield_code_internal(cstate, A_VCI, 3, BPF_JEQ, 0);
9611 		gen_and(b0, b1);
9612 		break;
9613 
9614 	case A_OAMF4EC:
9615 		/* Get all cells in End-to-End OAM F4 Circuit*/
9616 		if (!cstate->is_atm)
9617 			bpf_error(cstate, "'oam4ec' supported only on raw ATM");
9618 		b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
9619 		b1 = gen_atmfield_code_internal(cstate, A_VCI, 4, BPF_JEQ, 0);
9620 		gen_and(b0, b1);
9621 		break;
9622 
9623 	case A_SC:
9624 		/*  Get all packets in connection Signalling Circuit */
9625 		if (!cstate->is_atm)
9626 			bpf_error(cstate, "'sc' supported only on raw ATM");
9627 		b1 = gen_atmtype_sc(cstate);
9628 		break;
9629 
9630 	case A_ILMIC:
9631 		/* Get all packets in ILMI Circuit */
9632 		if (!cstate->is_atm)
9633 			bpf_error(cstate, "'ilmic' supported only on raw ATM");
9634 		b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
9635 		b1 = gen_atmfield_code_internal(cstate, A_VCI, 16, BPF_JEQ, 0);
9636 		gen_and(b0, b1);
9637 		break;
9638 
9639 	case A_LANE:
9640 		/* Get all LANE packets */
9641 		if (!cstate->is_atm)
9642 			bpf_error(cstate, "'lane' supported only on raw ATM");
9643 		b1 = gen_atmfield_code_internal(cstate, A_PROTOTYPE, PT_LANE, BPF_JEQ, 0);
9644 
9645 		/*
9646 		 * Arrange that all subsequent tests assume LANE
9647 		 * rather than LLC-encapsulated packets, and set
9648 		 * the offsets appropriately for LANE-encapsulated
9649 		 * Ethernet.
9650 		 *
9651 		 * We assume LANE means Ethernet, not Token Ring.
9652 		 */
9653 		PUSH_LINKHDR(cstate, DLT_EN10MB, 0,
9654 		    cstate->off_payload + 2,	/* Ethernet header */
9655 		    -1);
9656 		cstate->off_linktype.constant_part = cstate->off_linkhdr.constant_part + 12;
9657 		cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 14;	/* Ethernet */
9658 		cstate->off_nl = 0;			/* Ethernet II */
9659 		cstate->off_nl_nosnap = 3;		/* 802.3+802.2 */
9660 		break;
9661 
9662 	case A_LLC:
9663 		/* Get all LLC-encapsulated packets */
9664 		if (!cstate->is_atm)
9665 			bpf_error(cstate, "'llc' supported only on raw ATM");
9666 		b1 = gen_atmtype_llc(cstate);
9667 		break;
9668 
9669 	default:
9670 		abort();
9671 	}
9672 	return b1;
9673 }
9674 
9675 /*
9676  * Filtering for MTP2 messages based on li value
9677  * FISU, length is null
9678  * LSSU, length is 1 or 2
9679  * MSU, length is 3 or more
9680  * For MTP2_HSL, sequences are on 2 bytes, and length on 9 bits
9681  */
9682 struct block *
9683 gen_mtp2type_abbrev(compiler_state_t *cstate, int type)
9684 {
9685 	struct block *b0, *b1;
9686 
9687 	/*
9688 	 * Catch errors reported by us and routines below us, and return NULL
9689 	 * on an error.
9690 	 */
9691 	if (setjmp(cstate->top_ctx))
9692 		return (NULL);
9693 
9694 	switch (type) {
9695 
9696 	case M_FISU:
9697 		if ( (cstate->linktype != DLT_MTP2) &&
9698 		     (cstate->linktype != DLT_ERF) &&
9699 		     (cstate->linktype != DLT_MTP2_WITH_PHDR) )
9700 			bpf_error(cstate, "'fisu' supported only on MTP2");
9701 		/* gen_ncmp(cstate, offrel, offset, size, mask, jtype, reverse, value) */
9702 		b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B,
9703 		    0x3fU, BPF_JEQ, 0, 0U);
9704 		break;
9705 
9706 	case M_LSSU:
9707 		if ( (cstate->linktype != DLT_MTP2) &&
9708 		     (cstate->linktype != DLT_ERF) &&
9709 		     (cstate->linktype != DLT_MTP2_WITH_PHDR) )
9710 			bpf_error(cstate, "'lssu' supported only on MTP2");
9711 		b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B,
9712 		    0x3fU, BPF_JGT, 1, 2U);
9713 		b1 = gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B,
9714 		    0x3fU, BPF_JGT, 0, 0U);
9715 		gen_and(b1, b0);
9716 		break;
9717 
9718 	case M_MSU:
9719 		if ( (cstate->linktype != DLT_MTP2) &&
9720 		     (cstate->linktype != DLT_ERF) &&
9721 		     (cstate->linktype != DLT_MTP2_WITH_PHDR) )
9722 			bpf_error(cstate, "'msu' supported only on MTP2");
9723 		b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B,
9724 		    0x3fU, BPF_JGT, 0, 2U);
9725 		break;
9726 
9727 	case MH_FISU:
9728 		if ( (cstate->linktype != DLT_MTP2) &&
9729 		     (cstate->linktype != DLT_ERF) &&
9730 		     (cstate->linktype != DLT_MTP2_WITH_PHDR) )
9731 			bpf_error(cstate, "'hfisu' supported only on MTP2_HSL");
9732 		/* gen_ncmp(cstate, offrel, offset, size, mask, jtype, reverse, value) */
9733 		b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H,
9734 		    0xff80U, BPF_JEQ, 0, 0U);
9735 		break;
9736 
9737 	case MH_LSSU:
9738 		if ( (cstate->linktype != DLT_MTP2) &&
9739 		     (cstate->linktype != DLT_ERF) &&
9740 		     (cstate->linktype != DLT_MTP2_WITH_PHDR) )
9741 			bpf_error(cstate, "'hlssu' supported only on MTP2_HSL");
9742 		b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H,
9743 		    0xff80U, BPF_JGT, 1, 0x0100U);
9744 		b1 = gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H,
9745 		    0xff80U, BPF_JGT, 0, 0U);
9746 		gen_and(b1, b0);
9747 		break;
9748 
9749 	case MH_MSU:
9750 		if ( (cstate->linktype != DLT_MTP2) &&
9751 		     (cstate->linktype != DLT_ERF) &&
9752 		     (cstate->linktype != DLT_MTP2_WITH_PHDR) )
9753 			bpf_error(cstate, "'hmsu' supported only on MTP2_HSL");
9754 		b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H,
9755 		    0xff80U, BPF_JGT, 0, 0x0100U);
9756 		break;
9757 
9758 	default:
9759 		abort();
9760 	}
9761 	return b0;
9762 }
9763 
9764 /*
9765  * The jvalue_arg dance is to avoid annoying whining by compilers that
9766  * jvalue might be clobbered by longjmp - yeah, it might, but *WHO CARES*?
9767  * It's not *used* after setjmp returns.
9768  */
9769 struct block *
9770 gen_mtp3field_code(compiler_state_t *cstate, int mtp3field,
9771     bpf_u_int32 jvalue_arg, int jtype, int reverse)
9772 {
9773 	volatile bpf_u_int32 jvalue = jvalue_arg;
9774 	struct block *b0;
9775 	bpf_u_int32 val1 , val2 , val3;
9776 	u_int newoff_sio;
9777 	u_int newoff_opc;
9778 	u_int newoff_dpc;
9779 	u_int newoff_sls;
9780 
9781 	/*
9782 	 * Catch errors reported by us and routines below us, and return NULL
9783 	 * on an error.
9784 	 */
9785 	if (setjmp(cstate->top_ctx))
9786 		return (NULL);
9787 
9788 	newoff_sio = cstate->off_sio;
9789 	newoff_opc = cstate->off_opc;
9790 	newoff_dpc = cstate->off_dpc;
9791 	newoff_sls = cstate->off_sls;
9792 	switch (mtp3field) {
9793 
9794 	case MH_SIO:
9795 		newoff_sio += 3; /* offset for MTP2_HSL */
9796 		/* FALLTHROUGH */
9797 
9798 	case M_SIO:
9799 		if (cstate->off_sio == OFFSET_NOT_SET)
9800 			bpf_error(cstate, "'sio' supported only on SS7");
9801 		/* sio coded on 1 byte so max value 255 */
9802 		if(jvalue > 255)
9803 		        bpf_error(cstate, "sio value %u too big; max value = 255",
9804 		            jvalue);
9805 		b0 = gen_ncmp(cstate, OR_PACKET, newoff_sio, BPF_B, 0xffffffffU,
9806 		    jtype, reverse, jvalue);
9807 		break;
9808 
9809 	case MH_OPC:
9810 		newoff_opc += 3;
9811 
9812 		/* FALLTHROUGH */
9813         case M_OPC:
9814 	        if (cstate->off_opc == OFFSET_NOT_SET)
9815 			bpf_error(cstate, "'opc' supported only on SS7");
9816 		/* opc coded on 14 bits so max value 16383 */
9817 		if (jvalue > 16383)
9818 		        bpf_error(cstate, "opc value %u too big; max value = 16383",
9819 		            jvalue);
9820 		/* the following instructions are made to convert jvalue
9821 		 * to the form used to write opc in an ss7 message*/
9822 		val1 = jvalue & 0x00003c00;
9823 		val1 = val1 >>10;
9824 		val2 = jvalue & 0x000003fc;
9825 		val2 = val2 <<6;
9826 		val3 = jvalue & 0x00000003;
9827 		val3 = val3 <<22;
9828 		jvalue = val1 + val2 + val3;
9829 		b0 = gen_ncmp(cstate, OR_PACKET, newoff_opc, BPF_W, 0x00c0ff0fU,
9830 		    jtype, reverse, jvalue);
9831 		break;
9832 
9833 	case MH_DPC:
9834 		newoff_dpc += 3;
9835 		/* FALLTHROUGH */
9836 
9837 	case M_DPC:
9838 	        if (cstate->off_dpc == OFFSET_NOT_SET)
9839 			bpf_error(cstate, "'dpc' supported only on SS7");
9840 		/* dpc coded on 14 bits so max value 16383 */
9841 		if (jvalue > 16383)
9842 		        bpf_error(cstate, "dpc value %u too big; max value = 16383",
9843 		            jvalue);
9844 		/* the following instructions are made to convert jvalue
9845 		 * to the forme used to write dpc in an ss7 message*/
9846 		val1 = jvalue & 0x000000ff;
9847 		val1 = val1 << 24;
9848 		val2 = jvalue & 0x00003f00;
9849 		val2 = val2 << 8;
9850 		jvalue = val1 + val2;
9851 		b0 = gen_ncmp(cstate, OR_PACKET, newoff_dpc, BPF_W, 0xff3f0000U,
9852 		    jtype, reverse, jvalue);
9853 		break;
9854 
9855 	case MH_SLS:
9856 		newoff_sls += 3;
9857 		/* FALLTHROUGH */
9858 
9859 	case M_SLS:
9860 	        if (cstate->off_sls == OFFSET_NOT_SET)
9861 			bpf_error(cstate, "'sls' supported only on SS7");
9862 		/* sls coded on 4 bits so max value 15 */
9863 		if (jvalue > 15)
9864 		         bpf_error(cstate, "sls value %u too big; max value = 15",
9865 		             jvalue);
9866 		/* the following instruction is made to convert jvalue
9867 		 * to the forme used to write sls in an ss7 message*/
9868 		jvalue = jvalue << 4;
9869 		b0 = gen_ncmp(cstate, OR_PACKET, newoff_sls, BPF_B, 0xf0U,
9870 		    jtype, reverse, jvalue);
9871 		break;
9872 
9873 	default:
9874 		abort();
9875 	}
9876 	return b0;
9877 }
9878 
9879 static struct block *
9880 gen_msg_abbrev(compiler_state_t *cstate, int type)
9881 {
9882 	struct block *b1;
9883 
9884 	/*
9885 	 * Q.2931 signalling protocol messages for handling virtual circuits
9886 	 * establishment and teardown
9887 	 */
9888 	switch (type) {
9889 
9890 	case A_SETUP:
9891 		b1 = gen_atmfield_code_internal(cstate, A_MSGTYPE, SETUP, BPF_JEQ, 0);
9892 		break;
9893 
9894 	case A_CALLPROCEED:
9895 		b1 = gen_atmfield_code_internal(cstate, A_MSGTYPE, CALL_PROCEED, BPF_JEQ, 0);
9896 		break;
9897 
9898 	case A_CONNECT:
9899 		b1 = gen_atmfield_code_internal(cstate, A_MSGTYPE, CONNECT, BPF_JEQ, 0);
9900 		break;
9901 
9902 	case A_CONNECTACK:
9903 		b1 = gen_atmfield_code_internal(cstate, A_MSGTYPE, CONNECT_ACK, BPF_JEQ, 0);
9904 		break;
9905 
9906 	case A_RELEASE:
9907 		b1 = gen_atmfield_code_internal(cstate, A_MSGTYPE, RELEASE, BPF_JEQ, 0);
9908 		break;
9909 
9910 	case A_RELEASE_DONE:
9911 		b1 = gen_atmfield_code_internal(cstate, A_MSGTYPE, RELEASE_DONE, BPF_JEQ, 0);
9912 		break;
9913 
9914 	default:
9915 		abort();
9916 	}
9917 	return b1;
9918 }
9919 
9920 struct block *
9921 gen_atmmulti_abbrev(compiler_state_t *cstate, int type)
9922 {
9923 	struct block *b0, *b1;
9924 
9925 	/*
9926 	 * Catch errors reported by us and routines below us, and return NULL
9927 	 * on an error.
9928 	 */
9929 	if (setjmp(cstate->top_ctx))
9930 		return (NULL);
9931 
9932 	switch (type) {
9933 
9934 	case A_OAM:
9935 		if (!cstate->is_atm)
9936 			bpf_error(cstate, "'oam' supported only on raw ATM");
9937 		/* OAM F4 type */
9938 		b0 = gen_atmfield_code_internal(cstate, A_VCI, 3, BPF_JEQ, 0);
9939 		b1 = gen_atmfield_code_internal(cstate, A_VCI, 4, BPF_JEQ, 0);
9940 		gen_or(b0, b1);
9941 		b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
9942 		gen_and(b0, b1);
9943 		break;
9944 
9945 	case A_OAMF4:
9946 		if (!cstate->is_atm)
9947 			bpf_error(cstate, "'oamf4' supported only on raw ATM");
9948 		/* OAM F4 type */
9949 		b0 = gen_atmfield_code_internal(cstate, A_VCI, 3, BPF_JEQ, 0);
9950 		b1 = gen_atmfield_code_internal(cstate, A_VCI, 4, BPF_JEQ, 0);
9951 		gen_or(b0, b1);
9952 		b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
9953 		gen_and(b0, b1);
9954 		break;
9955 
9956 	case A_CONNECTMSG:
9957 		/*
9958 		 * Get Q.2931 signalling messages for switched
9959 		 * virtual connection
9960 		 */
9961 		if (!cstate->is_atm)
9962 			bpf_error(cstate, "'connectmsg' supported only on raw ATM");
9963 		b0 = gen_msg_abbrev(cstate, A_SETUP);
9964 		b1 = gen_msg_abbrev(cstate, A_CALLPROCEED);
9965 		gen_or(b0, b1);
9966 		b0 = gen_msg_abbrev(cstate, A_CONNECT);
9967 		gen_or(b0, b1);
9968 		b0 = gen_msg_abbrev(cstate, A_CONNECTACK);
9969 		gen_or(b0, b1);
9970 		b0 = gen_msg_abbrev(cstate, A_RELEASE);
9971 		gen_or(b0, b1);
9972 		b0 = gen_msg_abbrev(cstate, A_RELEASE_DONE);
9973 		gen_or(b0, b1);
9974 		b0 = gen_atmtype_sc(cstate);
9975 		gen_and(b0, b1);
9976 		break;
9977 
9978 	case A_METACONNECT:
9979 		if (!cstate->is_atm)
9980 			bpf_error(cstate, "'metaconnect' supported only on raw ATM");
9981 		b0 = gen_msg_abbrev(cstate, A_SETUP);
9982 		b1 = gen_msg_abbrev(cstate, A_CALLPROCEED);
9983 		gen_or(b0, b1);
9984 		b0 = gen_msg_abbrev(cstate, A_CONNECT);
9985 		gen_or(b0, b1);
9986 		b0 = gen_msg_abbrev(cstate, A_RELEASE);
9987 		gen_or(b0, b1);
9988 		b0 = gen_msg_abbrev(cstate, A_RELEASE_DONE);
9989 		gen_or(b0, b1);
9990 		b0 = gen_atmtype_metac(cstate);
9991 		gen_and(b0, b1);
9992 		break;
9993 
9994 	default:
9995 		abort();
9996 	}
9997 	return b1;
9998 }
9999