xref: /netbsd-src/external/bsd/libpcap/dist/gencode.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /*	$NetBSD: gencode.c,v 1.10 2017/08/12 00:43:25 ginsbach Exp $	*/
2 
3 /*#define CHASE_CHAIN*/
4 /*
5  * Copyright (c) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that: (1) source code distributions
10  * retain the above copyright notice and this paragraph in its entirety, (2)
11  * distributions including binary code include the above copyright notice and
12  * this paragraph in its entirety in the documentation or other materials
13  * provided with the distribution, and (3) all advertising materials mentioning
14  * features or use of this software display the following acknowledgement:
15  * ``This product includes software developed by the University of California,
16  * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
17  * the University nor the names of its contributors may be used to endorse
18  * or promote products derived from this software without specific prior
19  * written permission.
20  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
21  * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
22  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
23  */
24 
25 #include <sys/cdefs.h>
26 __RCSID("$NetBSD: gencode.c,v 1.10 2017/08/12 00:43:25 ginsbach Exp $");
27 
28 #ifdef HAVE_CONFIG_H
29 #include "config.h"
30 #endif
31 
32 #ifdef _WIN32
33 #include <pcap-stdinc.h>
34 #else /* _WIN32 */
35 #if HAVE_INTTYPES_H
36 #include <inttypes.h>
37 #elif HAVE_STDINT_H
38 #include <stdint.h>
39 #endif
40 #ifdef HAVE_SYS_BITYPES_H
41 #include <sys/bitypes.h>
42 #endif
43 #include <sys/types.h>
44 #include <sys/socket.h>
45 #endif /* _WIN32 */
46 
47 #ifndef _WIN32
48 
49 #ifdef __NetBSD__
50 #include <sys/param.h>
51 #include <net/dlt.h>
52 #endif
53 
54 #include <netinet/in.h>
55 #include <arpa/inet.h>
56 
57 #endif /* _WIN32 */
58 
59 #include <stdlib.h>
60 #include <string.h>
61 #include <memory.h>
62 #include <setjmp.h>
63 #include <stdarg.h>
64 
65 #ifdef MSDOS
66 #include "pcap-dos.h"
67 #endif
68 
69 #include "pcap-int.h"
70 
71 #include "ethertype.h"
72 #include "nlpid.h"
73 #include "llc.h"
74 #include "gencode.h"
75 #include "ieee80211.h"
76 #include "atmuni31.h"
77 #include "sunatmpos.h"
78 #include "ppp.h"
79 #include "pcap/sll.h"
80 #include "pcap/ipnet.h"
81 #include "arcnet.h"
82 
83 #include "grammar.h"
84 #include "scanner.h"
85 
86 #if defined(linux) && defined(PF_PACKET) && defined(SO_ATTACH_FILTER)
87 #include <linux/types.h>
88 #include <linux/if_packet.h>
89 #include <linux/filter.h>
90 #endif
91 
92 #ifdef HAVE_NET_PFVAR_H
93 #include <sys/socket.h>
94 #include <net/if.h>
95 #include <net/pfvar.h>
96 #include <net/if_pflog.h>
97 #endif
98 
99 #ifndef offsetof
100 #define offsetof(s, e) ((size_t)&((s *)0)->e)
101 #endif
102 
103 #ifdef INET6
104 #ifdef _WIN32
105 #if defined(__MINGW32__) && defined(DEFINE_ADDITIONAL_IPV6_STUFF)
106 /* IPv6 address */
107 struct in6_addr
108   {
109     union
110       {
111 	u_int8_t		u6_addr8[16];
112 	u_int16_t	u6_addr16[8];
113 	u_int32_t	u6_addr32[4];
114       } in6_u;
115 #define s6_addr			in6_u.u6_addr8
116 #define s6_addr16		in6_u.u6_addr16
117 #define s6_addr32		in6_u.u6_addr32
118 #define s6_addr64		in6_u.u6_addr64
119   };
120 
121 typedef unsigned short	sa_family_t;
122 
123 #define	__SOCKADDR_COMMON(sa_prefix) \
124   sa_family_t sa_prefix##family
125 
126 /* Ditto, for IPv6.  */
127 struct sockaddr_in6
128   {
129     __SOCKADDR_COMMON (sin6_);
130     u_int16_t sin6_port;		/* Transport layer port # */
131     u_int32_t sin6_flowinfo;	/* IPv6 flow information */
132     struct in6_addr sin6_addr;	/* IPv6 address */
133   };
134 
135 #ifndef EAI_ADDRFAMILY
136 struct addrinfo {
137 	int	ai_flags;	/* AI_PASSIVE, AI_CANONNAME */
138 	int	ai_family;	/* PF_xxx */
139 	int	ai_socktype;	/* SOCK_xxx */
140 	int	ai_protocol;	/* 0 or IPPROTO_xxx for IPv4 and IPv6 */
141 	size_t	ai_addrlen;	/* length of ai_addr */
142 	char	*ai_canonname;	/* canonical name for hostname */
143 	struct sockaddr *ai_addr;	/* binary address */
144 	struct addrinfo *ai_next;	/* next structure in linked list */
145 };
146 #endif /* EAI_ADDRFAMILY */
147 #endif /* defined(__MINGW32__) && defined(DEFINE_ADDITIONAL_IPV6_STUFF) */
148 #else /* _WIN32 */
149 #include <netdb.h>	/* for "struct addrinfo" */
150 #endif /* _WIN32 */
151 #endif /* INET6 */
152 #include <pcap/namedb.h>
153 
154 #include "nametoaddr.h"
155 
156 #define ETHERMTU	1500
157 
158 #ifndef ETHERTYPE_TEB
159 #define ETHERTYPE_TEB 0x6558
160 #endif
161 
162 #ifndef IPPROTO_HOPOPTS
163 #define IPPROTO_HOPOPTS 0
164 #endif
165 #ifndef IPPROTO_ROUTING
166 #define IPPROTO_ROUTING 43
167 #endif
168 #ifndef IPPROTO_FRAGMENT
169 #define IPPROTO_FRAGMENT 44
170 #endif
171 #ifndef IPPROTO_DSTOPTS
172 #define IPPROTO_DSTOPTS 60
173 #endif
174 #ifndef IPPROTO_SCTP
175 #define IPPROTO_SCTP 132
176 #endif
177 
178 #define GENEVE_PORT 6081
179 
180 #ifdef HAVE_OS_PROTO_H
181 #include "os-proto.h"
182 #endif
183 
184 #define JMP(c) ((c)|BPF_JMP|BPF_K)
185 
186 /*
187  * "Push" the current value of the link-layer header type and link-layer
188  * header offset onto a "stack", and set a new value.  (It's not a
189  * full-blown stack; we keep only the top two items.)
190  */
191 #define PUSH_LINKHDR(cs, new_linktype, new_is_variable, new_constant_part, new_reg) \
192 { \
193 	(cs)->prevlinktype = (cs)->linktype; \
194 	(cs)->off_prevlinkhdr = (cs)->off_linkhdr; \
195 	(cs)->linktype = (new_linktype); \
196 	(cs)->off_linkhdr.is_variable = (new_is_variable); \
197 	(cs)->off_linkhdr.constant_part = (new_constant_part); \
198 	(cs)->off_linkhdr.reg = (new_reg); \
199 	(cs)->is_geneve = 0; \
200 }
201 
202 /*
203  * Offset "not set" value.
204  */
205 #define OFFSET_NOT_SET	0xffffffffU
206 
207 /*
208  * Absolute offsets, which are offsets from the beginning of the raw
209  * packet data, are, in the general case, the sum of a variable value
210  * and a constant value; the variable value may be absent, in which
211  * case the offset is only the constant value, and the constant value
212  * may be zero, in which case the offset is only the variable value.
213  *
214  * bpf_abs_offset is a structure containing all that information:
215  *
216  *   is_variable is 1 if there's a variable part.
217  *
218  *   constant_part is the constant part of the value, possibly zero;
219  *
220  *   if is_variable is 1, reg is the register number for a register
221  *   containing the variable value if the register has been assigned,
222  *   and -1 otherwise.
223  */
224 typedef struct {
225 	int	is_variable;
226 	u_int	constant_part;
227 	int	reg;
228 } bpf_abs_offset;
229 
230 /*
231  * Value passed to gen_load_a() to indicate what the offset argument
232  * is relative to the beginning of.
233  */
234 enum e_offrel {
235 	OR_PACKET,		/* full packet data */
236 	OR_LINKHDR,		/* link-layer header */
237 	OR_PREVLINKHDR,		/* previous link-layer header */
238 	OR_LLC,			/* 802.2 LLC header */
239 	OR_PREVMPLSHDR,		/* previous MPLS header */
240 	OR_LINKTYPE,		/* link-layer type */
241 	OR_LINKPL,		/* link-layer payload */
242 	OR_LINKPL_NOSNAP,	/* link-layer payload, with no SNAP header at the link layer */
243 	OR_TRAN_IPV4,		/* transport-layer header, with IPv4 network layer */
244 	OR_TRAN_IPV6		/* transport-layer header, with IPv6 network layer */
245 };
246 
247 /*
248  * We divy out chunks of memory rather than call malloc each time so
249  * we don't have to worry about leaking memory.  It's probably
250  * not a big deal if all this memory was wasted but if this ever
251  * goes into a library that would probably not be a good idea.
252  *
253  * XXX - this *is* in a library....
254  */
255 #define NCHUNKS 16
256 #define CHUNK0SIZE 1024
257 struct chunk {
258 	size_t n_left;
259 	void *m;
260 };
261 
262 /* Code generator state */
263 
264 struct _compiler_state {
265 	jmp_buf top_ctx;
266 	pcap_t *bpf_pcap;
267 
268 	struct icode ic;
269 
270 	int snaplen;
271 
272 	int linktype;
273 	int prevlinktype;
274 	int outermostlinktype;
275 
276 	bpf_u_int32 netmask;
277 	int no_optimize;
278 
279 	/* Hack for handling VLAN and MPLS stacks. */
280 	u_int label_stack_depth;
281 	u_int vlan_stack_depth;
282 
283 	/* XXX */
284 	u_int pcap_fddipad;
285 
286 #ifdef INET6
287 	/*
288 	 * As errors are handled by a longjmp, anything allocated must
289 	 * be freed in the longjmp handler, so it must be reachable
290 	 * from that handler.
291 	 *
292 	 * One thing that's allocated is the result of pcap_nametoaddrinfo();
293 	 * it must be freed with freeaddrinfo().  This variable points to
294 	 * any addrinfo structure that would need to be freed.
295 	 */
296 	struct addrinfo *ai;
297 #endif
298 
299 	/*
300 	 * Various code constructs need to know the layout of the packet.
301 	 * These values give the necessary offsets from the beginning
302 	 * of the packet data.
303 	 */
304 
305 	/*
306 	 * Absolute offset of the beginning of the link-layer header.
307 	 */
308 	bpf_abs_offset off_linkhdr;
309 
310 	/*
311 	 * If we're checking a link-layer header for a packet encapsulated
312 	 * in another protocol layer, this is the equivalent information
313 	 * for the previous layers' link-layer header from the beginning
314 	 * of the raw packet data.
315 	 */
316 	bpf_abs_offset off_prevlinkhdr;
317 
318 	/*
319 	 * This is the equivalent information for the outermost layers'
320 	 * link-layer header.
321 	 */
322 	bpf_abs_offset off_outermostlinkhdr;
323 
324 	/*
325 	 * Absolute offset of the beginning of the link-layer payload.
326 	 */
327 	bpf_abs_offset off_linkpl;
328 
329 	/*
330 	 * "off_linktype" is the offset to information in the link-layer
331 	 * header giving the packet type. This is an absolute offset
332 	 * from the beginning of the packet.
333 	 *
334 	 * For Ethernet, it's the offset of the Ethernet type field; this
335 	 * means that it must have a value that skips VLAN tags.
336 	 *
337 	 * For link-layer types that always use 802.2 headers, it's the
338 	 * offset of the LLC header; this means that it must have a value
339 	 * that skips VLAN tags.
340 	 *
341 	 * For PPP, it's the offset of the PPP type field.
342 	 *
343 	 * For Cisco HDLC, it's the offset of the CHDLC type field.
344 	 *
345 	 * For BSD loopback, it's the offset of the AF_ value.
346 	 *
347 	 * For Linux cooked sockets, it's the offset of the type field.
348 	 *
349 	 * off_linktype.constant_part is set to OFFSET_NOT_SET for no
350 	 * encapsulation, in which case, IP is assumed.
351 	 */
352 	bpf_abs_offset off_linktype;
353 
354 	/*
355 	 * TRUE if the link layer includes an ATM pseudo-header.
356 	 */
357 	int is_atm;
358 
359 	/*
360 	 * TRUE if "geneve" appeared in the filter; it causes us to
361 	 * generate code that checks for a Geneve header and assume
362 	 * that later filters apply to the encapsulated payload.
363 	 */
364 	int is_geneve;
365 
366 	/*
367 	 * These are offsets for the ATM pseudo-header.
368 	 */
369 	u_int off_vpi;
370 	u_int off_vci;
371 	u_int off_proto;
372 
373 	/*
374 	 * These are offsets for the MTP2 fields.
375 	 */
376 	u_int off_li;
377 	u_int off_li_hsl;
378 
379 	/*
380 	 * These are offsets for the MTP3 fields.
381 	 */
382 	u_int off_sio;
383 	u_int off_opc;
384 	u_int off_dpc;
385 	u_int off_sls;
386 
387 	/*
388 	 * This is the offset of the first byte after the ATM pseudo_header,
389 	 * or -1 if there is no ATM pseudo-header.
390 	 */
391 	u_int off_payload;
392 
393 	/*
394 	 * These are offsets to the beginning of the network-layer header.
395 	 * They are relative to the beginning of the link-layer payload
396 	 * (i.e., they don't include off_linkhdr.constant_part or
397 	 * off_linkpl.constant_part).
398 	 *
399 	 * If the link layer never uses 802.2 LLC:
400 	 *
401 	 *	"off_nl" and "off_nl_nosnap" are the same.
402 	 *
403 	 * If the link layer always uses 802.2 LLC:
404 	 *
405 	 *	"off_nl" is the offset if there's a SNAP header following
406 	 *	the 802.2 header;
407 	 *
408 	 *	"off_nl_nosnap" is the offset if there's no SNAP header.
409 	 *
410 	 * If the link layer is Ethernet:
411 	 *
412 	 *	"off_nl" is the offset if the packet is an Ethernet II packet
413 	 *	(we assume no 802.3+802.2+SNAP);
414 	 *
415 	 *	"off_nl_nosnap" is the offset if the packet is an 802.3 packet
416 	 *	with an 802.2 header following it.
417 	 */
418 	u_int off_nl;
419 	u_int off_nl_nosnap;
420 
421 	/*
422 	 * Here we handle simple allocation of the scratch registers.
423 	 * If too many registers are alloc'd, the allocator punts.
424 	 */
425 	int regused[BPF_MEMWORDS];
426 	int curreg;
427 
428 	/*
429 	 * Memory chunks.
430 	 */
431 	struct chunk chunks[NCHUNKS];
432 	int cur_chunk;
433 };
434 
435 void
436 bpf_syntax_error(compiler_state_t *cstate, const char *msg)
437 {
438 	bpf_error(cstate, "syntax error in filter expression: %s", msg);
439 	/* NOTREACHED */
440 }
441 
442 /* VARARGS */
443 void
444 bpf_error(compiler_state_t *cstate, const char *fmt, ...)
445 {
446 	va_list ap;
447 
448 	va_start(ap, fmt);
449 	if (cstate->bpf_pcap != NULL)
450 		(void)pcap_vsnprintf(pcap_geterr(cstate->bpf_pcap),
451 		    PCAP_ERRBUF_SIZE, fmt, ap);
452 	va_end(ap);
453 	longjmp(cstate->top_ctx, 1);
454 	/* NOTREACHED */
455 }
456 
457 static void init_linktype(compiler_state_t *, pcap_t *);
458 
459 static void init_regs(compiler_state_t *);
460 static int alloc_reg(compiler_state_t *);
461 static void free_reg(compiler_state_t *, int);
462 
463 static void initchunks(compiler_state_t *cstate);
464 static void *newchunk(compiler_state_t *cstate, size_t);
465 static void freechunks(compiler_state_t *cstate);
466 static inline struct block *new_block(compiler_state_t *cstate, int);
467 static inline struct slist *new_stmt(compiler_state_t *cstate, int);
468 static struct block *gen_retblk(compiler_state_t *cstate, int);
469 static inline void syntax(compiler_state_t *cstate);
470 
471 static void backpatch(struct block *, struct block *);
472 static void merge(struct block *, struct block *);
473 static struct block *gen_cmp(compiler_state_t *, enum e_offrel, u_int,
474     u_int, bpf_int32);
475 static struct block *gen_cmp_gt(compiler_state_t *, enum e_offrel, u_int,
476     u_int, bpf_int32);
477 static struct block *gen_cmp_ge(compiler_state_t *, enum e_offrel, u_int,
478     u_int, bpf_int32);
479 static struct block *gen_cmp_lt(compiler_state_t *, enum e_offrel, u_int,
480     u_int, bpf_int32);
481 static struct block *gen_cmp_le(compiler_state_t *, enum e_offrel, u_int,
482     u_int, bpf_int32);
483 static struct block *gen_mcmp(compiler_state_t *, enum e_offrel, u_int,
484     u_int, bpf_int32, bpf_u_int32);
485 static struct block *gen_bcmp(compiler_state_t *, enum e_offrel, u_int,
486     u_int, const u_char *);
487 static struct block *gen_ncmp(compiler_state_t *, enum e_offrel, bpf_u_int32,
488     bpf_u_int32, bpf_u_int32, bpf_u_int32, int, bpf_int32);
489 static struct slist *gen_load_absoffsetrel(compiler_state_t *, bpf_abs_offset *,
490     u_int, u_int);
491 static struct slist *gen_load_a(compiler_state_t *, enum e_offrel, u_int,
492     u_int);
493 static struct slist *gen_loadx_iphdrlen(compiler_state_t *);
494 static struct block *gen_uncond(compiler_state_t *, int);
495 static inline struct block *gen_true(compiler_state_t *);
496 static inline struct block *gen_false(compiler_state_t *);
497 static struct block *gen_ether_linktype(compiler_state_t *, int);
498 static struct block *gen_ipnet_linktype(compiler_state_t *, int);
499 static struct block *gen_linux_sll_linktype(compiler_state_t *, int);
500 static struct slist *gen_load_prism_llprefixlen(compiler_state_t *);
501 static struct slist *gen_load_avs_llprefixlen(compiler_state_t *);
502 static struct slist *gen_load_radiotap_llprefixlen(compiler_state_t *);
503 static struct slist *gen_load_ppi_llprefixlen(compiler_state_t *);
504 static void insert_compute_vloffsets(compiler_state_t *, struct block *);
505 static struct slist *gen_abs_offset_varpart(compiler_state_t *,
506     bpf_abs_offset *);
507 static int ethertype_to_ppptype(int);
508 static struct block *gen_linktype(compiler_state_t *, int);
509 static struct block *gen_snap(compiler_state_t *, bpf_u_int32, bpf_u_int32);
510 static struct block *gen_llc_linktype(compiler_state_t *, int);
511 static struct block *gen_hostop(compiler_state_t *, bpf_u_int32, bpf_u_int32,
512     int, int, u_int, u_int);
513 #ifdef INET6
514 static struct block *gen_hostop6(compiler_state_t *, struct in6_addr *,
515     struct in6_addr *, int, int, u_int, u_int);
516 #endif
517 static struct block *gen_ahostop(compiler_state_t *, const u_char *, int);
518 static struct block *gen_ehostop(compiler_state_t *, const u_char *, int);
519 static struct block *gen_fhostop(compiler_state_t *, const u_char *, int);
520 static struct block *gen_thostop(compiler_state_t *, const u_char *, int);
521 static struct block *gen_wlanhostop(compiler_state_t *, const u_char *, int);
522 static struct block *gen_ipfchostop(compiler_state_t *, const u_char *, int);
523 static struct block *gen_dnhostop(compiler_state_t *, bpf_u_int32, int);
524 static struct block *gen_mpls_linktype(compiler_state_t *, int);
525 static struct block *gen_host(compiler_state_t *, bpf_u_int32, bpf_u_int32,
526     int, int, int);
527 #ifdef INET6
528 static struct block *gen_host6(compiler_state_t *, struct in6_addr *,
529     struct in6_addr *, int, int, int);
530 #endif
531 #ifndef INET6
532 static struct block *gen_gateway(const u_char *, bpf_u_int32 **, int, int);
533 #endif
534 static struct block *gen_ipfrag(compiler_state_t *);
535 static struct block *gen_portatom(compiler_state_t *, int, bpf_int32);
536 static struct block *gen_portrangeatom(compiler_state_t *, int, bpf_int32,
537     bpf_int32);
538 static struct block *gen_portatom6(compiler_state_t *, int, bpf_int32);
539 static struct block *gen_portrangeatom6(compiler_state_t *, int, bpf_int32,
540     bpf_int32);
541 struct block *gen_portop(compiler_state_t *, int, int, int);
542 static struct block *gen_port(compiler_state_t *, int, int, int);
543 struct block *gen_portrangeop(compiler_state_t *, int, int, int, int);
544 static struct block *gen_portrange(compiler_state_t *, int, int, int, int);
545 struct block *gen_portop6(compiler_state_t *, int, int, int);
546 static struct block *gen_port6(compiler_state_t *, int, int, int);
547 struct block *gen_portrangeop6(compiler_state_t *, int, int, int, int);
548 static struct block *gen_portrange6(compiler_state_t *, int, int, int, int);
549 static int lookup_proto(compiler_state_t *, const char *, int);
550 static struct block *gen_protochain(compiler_state_t *, int, int, int);
551 static struct block *gen_proto(compiler_state_t *, int, int, int);
552 static struct slist *xfer_to_x(compiler_state_t *, struct arth *);
553 static struct slist *xfer_to_a(compiler_state_t *, struct arth *);
554 static struct block *gen_mac_multicast(compiler_state_t *, int);
555 static struct block *gen_len(compiler_state_t *, int, int);
556 static struct block *gen_check_802_11_data_frame(compiler_state_t *);
557 static struct block *gen_geneve_ll_check(compiler_state_t *cstate);
558 
559 static struct block *gen_ppi_dlt_check(compiler_state_t *);
560 static struct block *gen_msg_abbrev(compiler_state_t *, int type);
561 
562 static void
563 initchunks(compiler_state_t *cstate)
564 {
565 	int i;
566 
567 	for (i = 0; i < NCHUNKS; i++) {
568 		cstate->chunks[i].n_left = 0;
569 		cstate->chunks[i].m = NULL;
570 	}
571 	cstate->cur_chunk = 0;
572 }
573 
574 static void *
575 newchunk(compiler_state_t *cstate, size_t n)
576 {
577 	struct chunk *cp;
578 	int k;
579 	size_t size;
580 
581 #ifndef __NetBSD__
582 	/* XXX Round up to nearest long. */
583 	n = (n + sizeof(long) - 1) & ~(sizeof(long) - 1);
584 #else
585 	/* XXX Round up to structure boundary. */
586 	n = ALIGN(n);
587 #endif
588 
589 	cp = &cstate->chunks[cstate->cur_chunk];
590 	if (n > cp->n_left) {
591 		++cp, k = ++cstate->cur_chunk;
592 		if (k >= NCHUNKS)
593 			bpf_error(cstate, "out of memory");
594 		size = CHUNK0SIZE << k;
595 		cp->m = (void *)malloc(size);
596 		if (cp->m == NULL)
597 			bpf_error(cstate, "out of memory");
598 		memset((char *)cp->m, 0, size);
599 		cp->n_left = size;
600 		if (n > size)
601 			bpf_error(cstate, "out of memory");
602 	}
603 	cp->n_left -= n;
604 	return (void *)((char *)cp->m + cp->n_left);
605 }
606 
607 static void
608 freechunks(compiler_state_t *cstate)
609 {
610 	int i;
611 
612 	for (i = 0; i < NCHUNKS; ++i)
613 		if (cstate->chunks[i].m != NULL)
614 			free(cstate->chunks[i].m);
615 }
616 
617 /*
618  * A strdup whose allocations are freed after code generation is over.
619  */
620 char *
621 sdup(compiler_state_t *cstate, const char *s)
622 {
623 	size_t n = strlen(s) + 1;
624 	char *cp = newchunk(cstate, n);
625 
626 	strlcpy(cp, s, n);
627 	return (cp);
628 }
629 
630 static inline struct block *
631 new_block(compiler_state_t *cstate, int code)
632 {
633 	struct block *p;
634 
635 	p = (struct block *)newchunk(cstate, sizeof(*p));
636 	p->s.code = code;
637 	p->head = p;
638 
639 	return p;
640 }
641 
642 static inline struct slist *
643 new_stmt(compiler_state_t *cstate, int code)
644 {
645 	struct slist *p;
646 
647 	p = (struct slist *)newchunk(cstate, sizeof(*p));
648 	p->s.code = code;
649 
650 	return p;
651 }
652 
653 static struct block *
654 gen_retblk(compiler_state_t *cstate, int v)
655 {
656 	struct block *b = new_block(cstate, BPF_RET|BPF_K);
657 
658 	b->s.k = v;
659 	return b;
660 }
661 
662 __dead static inline void
663 syntax(compiler_state_t *cstate)
664 {
665 	bpf_error(cstate, "syntax error in filter expression");
666 }
667 
668 int
669 pcap_compile(pcap_t *p, struct bpf_program *program,
670 	     const char *buf, int optimize, bpf_u_int32 mask)
671 {
672 #ifdef _WIN32
673 	static int done = 0;
674 #endif
675 	compiler_state_t cstate;
676 	const char * volatile xbuf = buf;
677 	yyscan_t scanner = NULL;
678 	volatile YY_BUFFER_STATE in_buffer = NULL;
679 	u_int len;
680 	int  rc;
681 
682 	/*
683 	 * If this pcap_t hasn't been activated, it doesn't have a
684 	 * link-layer type, so we can't use it.
685 	 */
686 	if (!p->activated) {
687 		pcap_snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
688 		    "not-yet-activated pcap_t passed to pcap_compile");
689 		return  -1;
690 	}
691 
692 #ifdef _WIN32
693 	if (!done)
694 		pcap_wsockinit();
695 	done = 1;
696 #endif
697 	initchunks(&cstate);
698 	cstate.no_optimize = 0;
699 	cstate.ai = NULL;
700 	cstate.ic.root = NULL;
701 	cstate.ic.cur_mark = 0;
702 	cstate.bpf_pcap = p;
703 	init_regs(&cstate);
704 
705 	if (setjmp(cstate.top_ctx)) {
706 #ifdef INET6
707 		if (cstate.ai != NULL)
708 			freeaddrinfo(cstate.ai);
709 #endif
710 		rc = -1;
711 		goto quit;
712 	}
713 
714 	cstate.netmask = mask;
715 
716 	cstate.snaplen = pcap_snapshot(p);
717 	if (cstate.snaplen == 0) {
718 		pcap_snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
719 			 "snaplen of 0 rejects all packets");
720 		rc = -1;
721 		goto quit;
722 	}
723 
724 	if (pcap_lex_init(&scanner) != 0)
725 		bpf_error(&cstate, "can't initialize scanner: %s", pcap_strerror(errno));
726 	in_buffer = pcap__scan_string(xbuf ? xbuf : "", scanner);
727 
728 	/*
729 	 * Associate the compiler state with the lexical analyzer
730 	 * state.
731 	 */
732 	pcap_set_extra(&cstate, scanner);
733 
734 	init_linktype(&cstate, p);
735 	(void)pcap_parse(scanner, &cstate);
736 
737 	if (cstate.ic.root == NULL)
738 		cstate.ic.root = gen_retblk(&cstate, cstate.snaplen);
739 
740 	if (optimize && !cstate.no_optimize) {
741 		bpf_optimize(&cstate, &cstate.ic);
742 		if (cstate.ic.root == NULL ||
743 		    (cstate.ic.root->s.code == (BPF_RET|BPF_K) && cstate.ic.root->s.k == 0))
744 			bpf_error(&cstate, "expression rejects all packets");
745 	}
746 	program->bf_insns = icode_to_fcode(&cstate, &cstate.ic, cstate.ic.root, &len);
747 	program->bf_len = len;
748 
749 	rc = 0;  /* We're all okay */
750 
751 quit:
752 	/*
753 	 * Clean up everything for the lexical analyzer.
754 	 */
755 	if (in_buffer != NULL)
756 		pcap__delete_buffer(in_buffer, scanner);
757 	if (scanner != NULL)
758 		pcap_lex_destroy(scanner);
759 
760 	/*
761 	 * Clean up our own allocated memory.
762 	 */
763 	freechunks(&cstate);
764 
765 	return (rc);
766 }
767 
768 /*
769  * entry point for using the compiler with no pcap open
770  * pass in all the stuff that is needed explicitly instead.
771  */
772 int
773 pcap_compile_nopcap(int snaplen_arg, int linktype_arg,
774 		    struct bpf_program *program,
775 	     const char *buf, int optimize, bpf_u_int32 mask)
776 {
777 	pcap_t *p;
778 	int ret;
779 
780 	p = pcap_open_dead(linktype_arg, snaplen_arg);
781 	if (p == NULL)
782 		return (-1);
783 	ret = pcap_compile(p, program, buf, optimize, mask);
784 	pcap_close(p);
785 	return (ret);
786 }
787 
788 /*
789  * Clean up a "struct bpf_program" by freeing all the memory allocated
790  * in it.
791  */
792 void
793 pcap_freecode(struct bpf_program *program)
794 {
795 	program->bf_len = 0;
796 	if (program->bf_insns != NULL) {
797 		free((char *)program->bf_insns);
798 		program->bf_insns = NULL;
799 	}
800 }
801 
802 /*
803  * Backpatch the blocks in 'list' to 'target'.  The 'sense' field indicates
804  * which of the jt and jf fields has been resolved and which is a pointer
805  * back to another unresolved block (or nil).  At least one of the fields
806  * in each block is already resolved.
807  */
808 static void
809 backpatch(list, target)
810 	struct block *list, *target;
811 {
812 	struct block *next;
813 
814 	while (list) {
815 		if (!list->sense) {
816 			next = JT(list);
817 			JT(list) = target;
818 		} else {
819 			next = JF(list);
820 			JF(list) = target;
821 		}
822 		list = next;
823 	}
824 }
825 
826 /*
827  * Merge the lists in b0 and b1, using the 'sense' field to indicate
828  * which of jt and jf is the link.
829  */
830 static void
831 merge(b0, b1)
832 	struct block *b0, *b1;
833 {
834 	register struct block **p = &b0;
835 
836 	/* Find end of list. */
837 	while (*p)
838 		p = !((*p)->sense) ? &JT(*p) : &JF(*p);
839 
840 	/* Concatenate the lists. */
841 	*p = b1;
842 }
843 
844 void
845 finish_parse(compiler_state_t *cstate, struct block *p)
846 {
847 	struct block *ppi_dlt_check;
848 
849 	/*
850 	 * Insert before the statements of the first (root) block any
851 	 * statements needed to load the lengths of any variable-length
852 	 * headers into registers.
853 	 *
854 	 * XXX - a fancier strategy would be to insert those before the
855 	 * statements of all blocks that use those lengths and that
856 	 * have no predecessors that use them, so that we only compute
857 	 * the lengths if we need them.  There might be even better
858 	 * approaches than that.
859 	 *
860 	 * However, those strategies would be more complicated, and
861 	 * as we don't generate code to compute a length if the
862 	 * program has no tests that use the length, and as most
863 	 * tests will probably use those lengths, we would just
864 	 * postpone computing the lengths so that it's not done
865 	 * for tests that fail early, and it's not clear that's
866 	 * worth the effort.
867 	 */
868 	insert_compute_vloffsets(cstate, p->head);
869 
870 	/*
871 	 * For DLT_PPI captures, generate a check of the per-packet
872 	 * DLT value to make sure it's DLT_IEEE802_11.
873 	 *
874 	 * XXX - TurboCap cards use DLT_PPI for Ethernet.
875 	 * Can we just define some DLT_ETHERNET_WITH_PHDR pseudo-header
876 	 * with appropriate Ethernet information and use that rather
877 	 * than using something such as DLT_PPI where you don't know
878 	 * the link-layer header type until runtime, which, in the
879 	 * general case, would force us to generate both Ethernet *and*
880 	 * 802.11 code (*and* anything else for which PPI is used)
881 	 * and choose between them early in the BPF program?
882 	 */
883 	ppi_dlt_check = gen_ppi_dlt_check(cstate);
884 	if (ppi_dlt_check != NULL)
885 		gen_and(ppi_dlt_check, p);
886 
887 	backpatch(p, gen_retblk(cstate, cstate->snaplen));
888 	p->sense = !p->sense;
889 	backpatch(p, gen_retblk(cstate, 0));
890 	cstate->ic.root = p->head;
891 }
892 
893 void
894 gen_and(b0, b1)
895 	struct block *b0, *b1;
896 {
897 	backpatch(b0, b1->head);
898 	b0->sense = !b0->sense;
899 	b1->sense = !b1->sense;
900 	merge(b1, b0);
901 	b1->sense = !b1->sense;
902 	b1->head = b0->head;
903 }
904 
905 void
906 gen_or(b0, b1)
907 	struct block *b0, *b1;
908 {
909 	b0->sense = !b0->sense;
910 	backpatch(b0, b1->head);
911 	b0->sense = !b0->sense;
912 	merge(b1, b0);
913 	b1->head = b0->head;
914 }
915 
916 void
917 gen_not(b)
918 	struct block *b;
919 {
920 	b->sense = !b->sense;
921 }
922 
923 static struct block *
924 gen_cmp(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
925     u_int size, bpf_int32 v)
926 {
927 	return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JEQ, 0, v);
928 }
929 
930 static struct block *
931 gen_cmp_gt(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
932     u_int size, bpf_int32 v)
933 {
934 	return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGT, 0, v);
935 }
936 
937 static struct block *
938 gen_cmp_ge(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
939     u_int size, bpf_int32 v)
940 {
941 	return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGE, 0, v);
942 }
943 
944 static struct block *
945 gen_cmp_lt(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
946     u_int size, bpf_int32 v)
947 {
948 	return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGE, 1, v);
949 }
950 
951 static struct block *
952 gen_cmp_le(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
953     u_int size, bpf_int32 v)
954 {
955 	return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGT, 1, v);
956 }
957 
958 static struct block *
959 gen_mcmp(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
960     u_int size, bpf_int32 v, bpf_u_int32 mask)
961 {
962 	return gen_ncmp(cstate, offrel, offset, size, mask, BPF_JEQ, 0, v);
963 }
964 
965 static struct block *
966 gen_bcmp(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
967     u_int size, const u_char *v)
968 {
969 	register struct block *b, *tmp;
970 
971 	b = NULL;
972 	while (size >= 4) {
973 		register const u_char *p = &v[size - 4];
974 		bpf_int32 w = ((bpf_int32)p[0] << 24) |
975 		    ((bpf_int32)p[1] << 16) | ((bpf_int32)p[2] << 8) | p[3];
976 
977 		tmp = gen_cmp(cstate, offrel, offset + size - 4, BPF_W, w);
978 		if (b != NULL)
979 			gen_and(b, tmp);
980 		b = tmp;
981 		size -= 4;
982 	}
983 	while (size >= 2) {
984 		register const u_char *p = &v[size - 2];
985 		bpf_int32 w = ((bpf_int32)p[0] << 8) | p[1];
986 
987 		tmp = gen_cmp(cstate, offrel, offset + size - 2, BPF_H, w);
988 		if (b != NULL)
989 			gen_and(b, tmp);
990 		b = tmp;
991 		size -= 2;
992 	}
993 	if (size > 0) {
994 		tmp = gen_cmp(cstate, offrel, offset, BPF_B, (bpf_int32)v[0]);
995 		if (b != NULL)
996 			gen_and(b, tmp);
997 		b = tmp;
998 	}
999 	return b;
1000 }
1001 
1002 /*
1003  * AND the field of size "size" at offset "offset" relative to the header
1004  * specified by "offrel" with "mask", and compare it with the value "v"
1005  * with the test specified by "jtype"; if "reverse" is true, the test
1006  * should test the opposite of "jtype".
1007  */
1008 static struct block *
1009 gen_ncmp(compiler_state_t *cstate, enum e_offrel offrel, bpf_u_int32 offset,
1010     bpf_u_int32 size, bpf_u_int32 mask, bpf_u_int32 jtype, int reverse,
1011     bpf_int32 v)
1012 {
1013 	struct slist *s, *s2;
1014 	struct block *b;
1015 
1016 	s = gen_load_a(cstate, offrel, offset, size);
1017 
1018 	if (mask != 0xffffffff) {
1019 		s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
1020 		s2->s.k = mask;
1021 		sappend(s, s2);
1022 	}
1023 
1024 	b = new_block(cstate, JMP(jtype));
1025 	b->stmts = s;
1026 	b->s.k = v;
1027 	if (reverse && (jtype == BPF_JGT || jtype == BPF_JGE))
1028 		gen_not(b);
1029 	return b;
1030 }
1031 
1032 static void
1033 init_linktype(compiler_state_t *cstate, pcap_t *p)
1034 {
1035 	cstate->pcap_fddipad = p->fddipad;
1036 
1037 	/*
1038 	 * We start out with only one link-layer header.
1039 	 */
1040 	cstate->outermostlinktype = pcap_datalink(p);
1041 	cstate->off_outermostlinkhdr.constant_part = 0;
1042 	cstate->off_outermostlinkhdr.is_variable = 0;
1043 	cstate->off_outermostlinkhdr.reg = -1;
1044 
1045 	cstate->prevlinktype = cstate->outermostlinktype;
1046 	cstate->off_prevlinkhdr.constant_part = 0;
1047 	cstate->off_prevlinkhdr.is_variable = 0;
1048 	cstate->off_prevlinkhdr.reg = -1;
1049 
1050 	cstate->linktype = cstate->outermostlinktype;
1051 	cstate->off_linkhdr.constant_part = 0;
1052 	cstate->off_linkhdr.is_variable = 0;
1053 	cstate->off_linkhdr.reg = -1;
1054 
1055 	/*
1056 	 * XXX
1057 	 */
1058 	cstate->off_linkpl.constant_part = 0;
1059 	cstate->off_linkpl.is_variable = 0;
1060 	cstate->off_linkpl.reg = -1;
1061 
1062 	cstate->off_linktype.constant_part = 0;
1063 	cstate->off_linktype.is_variable = 0;
1064 	cstate->off_linktype.reg = -1;
1065 
1066 	/*
1067 	 * Assume it's not raw ATM with a pseudo-header, for now.
1068 	 */
1069 	cstate->is_atm = 0;
1070 	cstate->off_vpi = -1;
1071 	cstate->off_vci = -1;
1072 	cstate->off_proto = -1;
1073 	cstate->off_payload = -1;
1074 
1075 	/*
1076 	 * And not Geneve.
1077 	 */
1078 	cstate->is_geneve = 0;
1079 
1080 	/*
1081 	 * And assume we're not doing SS7.
1082 	 */
1083 	cstate->off_li = -1;
1084 	cstate->off_li_hsl = -1;
1085 	cstate->off_sio = -1;
1086 	cstate->off_opc = -1;
1087 	cstate->off_dpc = -1;
1088 	cstate->off_sls = -1;
1089 
1090 	cstate->label_stack_depth = 0;
1091 	cstate->vlan_stack_depth = 0;
1092 
1093 	switch (cstate->linktype) {
1094 
1095 	case DLT_ARCNET:
1096 		cstate->off_linktype.constant_part = 2;
1097 		cstate->off_linkpl.constant_part = 6;
1098 		cstate->off_nl = 0;	/* XXX in reality, variable! */
1099 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1100 		break;
1101 
1102 	case DLT_ARCNET_LINUX:
1103 		cstate->off_linktype.constant_part = 4;
1104 		cstate->off_linkpl.constant_part = 8;
1105 		cstate->off_nl = 0;		/* XXX in reality, variable! */
1106 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1107 		break;
1108 
1109 	case DLT_EN10MB:
1110 		cstate->off_linktype.constant_part = 12;
1111 		cstate->off_linkpl.constant_part = 14;	/* Ethernet header length */
1112 		cstate->off_nl = 0;		/* Ethernet II */
1113 		cstate->off_nl_nosnap = 3;	/* 802.3+802.2 */
1114 		break;
1115 
1116 	case DLT_SLIP:
1117 		/*
1118 		 * SLIP doesn't have a link level type.  The 16 byte
1119 		 * header is hacked into our SLIP driver.
1120 		 */
1121 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1122 		cstate->off_linkpl.constant_part = 16;
1123 		cstate->off_nl = 0;
1124 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1125 		break;
1126 
1127 	case DLT_SLIP_BSDOS:
1128 		/* XXX this may be the same as the DLT_PPP_BSDOS case */
1129 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1130 		/* XXX end */
1131 		cstate->off_linkpl.constant_part = 24;
1132 		cstate->off_nl = 0;
1133 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1134 		break;
1135 
1136 	case DLT_NULL:
1137 	case DLT_LOOP:
1138 		cstate->off_linktype.constant_part = 0;
1139 		cstate->off_linkpl.constant_part = 4;
1140 		cstate->off_nl = 0;
1141 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1142 		break;
1143 
1144 	case DLT_ENC:
1145 		cstate->off_linktype.constant_part = 0;
1146 		cstate->off_linkpl.constant_part = 12;
1147 		cstate->off_nl = 0;
1148 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1149 		break;
1150 
1151 	case DLT_PPP:
1152 	case DLT_PPP_PPPD:
1153 	case DLT_C_HDLC:		/* BSD/OS Cisco HDLC */
1154 	case DLT_PPP_SERIAL:		/* NetBSD sync/async serial PPP */
1155 		cstate->off_linktype.constant_part = 2;	/* skip HDLC-like framing */
1156 		cstate->off_linkpl.constant_part = 4;	/* skip HDLC-like framing and protocol field */
1157 		cstate->off_nl = 0;
1158 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1159 		break;
1160 
1161 	case DLT_PPP_ETHER:
1162 		/*
1163 		 * This does no include the Ethernet header, and
1164 		 * only covers session state.
1165 		 */
1166 		cstate->off_linktype.constant_part = 6;
1167 		cstate->off_linkpl.constant_part = 8;
1168 		cstate->off_nl = 0;
1169 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1170 		break;
1171 
1172 	case DLT_PPP_BSDOS:
1173 		cstate->off_linktype.constant_part = 5;
1174 		cstate->off_linkpl.constant_part = 24;
1175 		cstate->off_nl = 0;
1176 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1177 		break;
1178 
1179 	case DLT_FDDI:
1180 		/*
1181 		 * FDDI doesn't really have a link-level type field.
1182 		 * We set "off_linktype" to the offset of the LLC header.
1183 		 *
1184 		 * To check for Ethernet types, we assume that SSAP = SNAP
1185 		 * is being used and pick out the encapsulated Ethernet type.
1186 		 * XXX - should we generate code to check for SNAP?
1187 		 */
1188 		cstate->off_linktype.constant_part = 13;
1189 		cstate->off_linktype.constant_part += cstate->pcap_fddipad;
1190 		cstate->off_linkpl.constant_part = 13;	/* FDDI MAC header length */
1191 		cstate->off_linkpl.constant_part += cstate->pcap_fddipad;
1192 		cstate->off_nl = 8;		/* 802.2+SNAP */
1193 		cstate->off_nl_nosnap = 3;	/* 802.2 */
1194 		break;
1195 
1196 	case DLT_IEEE802:
1197 		/*
1198 		 * Token Ring doesn't really have a link-level type field.
1199 		 * We set "off_linktype" to the offset of the LLC header.
1200 		 *
1201 		 * To check for Ethernet types, we assume that SSAP = SNAP
1202 		 * is being used and pick out the encapsulated Ethernet type.
1203 		 * XXX - should we generate code to check for SNAP?
1204 		 *
1205 		 * XXX - the header is actually variable-length.
1206 		 * Some various Linux patched versions gave 38
1207 		 * as "off_linktype" and 40 as "off_nl"; however,
1208 		 * if a token ring packet has *no* routing
1209 		 * information, i.e. is not source-routed, the correct
1210 		 * values are 20 and 22, as they are in the vanilla code.
1211 		 *
1212 		 * A packet is source-routed iff the uppermost bit
1213 		 * of the first byte of the source address, at an
1214 		 * offset of 8, has the uppermost bit set.  If the
1215 		 * packet is source-routed, the total number of bytes
1216 		 * of routing information is 2 plus bits 0x1F00 of
1217 		 * the 16-bit value at an offset of 14 (shifted right
1218 		 * 8 - figure out which byte that is).
1219 		 */
1220 		cstate->off_linktype.constant_part = 14;
1221 		cstate->off_linkpl.constant_part = 14;	/* Token Ring MAC header length */
1222 		cstate->off_nl = 8;		/* 802.2+SNAP */
1223 		cstate->off_nl_nosnap = 3;	/* 802.2 */
1224 		break;
1225 
1226 	case DLT_PRISM_HEADER:
1227 	case DLT_IEEE802_11_RADIO_AVS:
1228 	case DLT_IEEE802_11_RADIO:
1229 		cstate->off_linkhdr.is_variable = 1;
1230 		/* Fall through, 802.11 doesn't have a variable link
1231 		 * prefix but is otherwise the same. */
1232 
1233 	case DLT_IEEE802_11:
1234 		/*
1235 		 * 802.11 doesn't really have a link-level type field.
1236 		 * We set "off_linktype.constant_part" to the offset of
1237 		 * the LLC header.
1238 		 *
1239 		 * To check for Ethernet types, we assume that SSAP = SNAP
1240 		 * is being used and pick out the encapsulated Ethernet type.
1241 		 * XXX - should we generate code to check for SNAP?
1242 		 *
1243 		 * We also handle variable-length radio headers here.
1244 		 * The Prism header is in theory variable-length, but in
1245 		 * practice it's always 144 bytes long.  However, some
1246 		 * drivers on Linux use ARPHRD_IEEE80211_PRISM, but
1247 		 * sometimes or always supply an AVS header, so we
1248 		 * have to check whether the radio header is a Prism
1249 		 * header or an AVS header, so, in practice, it's
1250 		 * variable-length.
1251 		 */
1252 		cstate->off_linktype.constant_part = 24;
1253 		cstate->off_linkpl.constant_part = 0;	/* link-layer header is variable-length */
1254 		cstate->off_linkpl.is_variable = 1;
1255 		cstate->off_nl = 8;		/* 802.2+SNAP */
1256 		cstate->off_nl_nosnap = 3;	/* 802.2 */
1257 		break;
1258 
1259 	case DLT_PPI:
1260 		/*
1261 		 * At the moment we treat PPI the same way that we treat
1262 		 * normal Radiotap encoded packets. The difference is in
1263 		 * the function that generates the code at the beginning
1264 		 * to compute the header length.  Since this code generator
1265 		 * of PPI supports bare 802.11 encapsulation only (i.e.
1266 		 * the encapsulated DLT should be DLT_IEEE802_11) we
1267 		 * generate code to check for this too.
1268 		 */
1269 		cstate->off_linktype.constant_part = 24;
1270 		cstate->off_linkpl.constant_part = 0;	/* link-layer header is variable-length */
1271 		cstate->off_linkpl.is_variable = 1;
1272 		cstate->off_linkhdr.is_variable = 1;
1273 		cstate->off_nl = 8;		/* 802.2+SNAP */
1274 		cstate->off_nl_nosnap = 3;	/* 802.2 */
1275 		break;
1276 
1277 	case DLT_ATM_RFC1483:
1278 	case DLT_ATM_CLIP:	/* Linux ATM defines this */
1279 		/*
1280 		 * assume routed, non-ISO PDUs
1281 		 * (i.e., LLC = 0xAA-AA-03, OUT = 0x00-00-00)
1282 		 *
1283 		 * XXX - what about ISO PDUs, e.g. CLNP, ISIS, ESIS,
1284 		 * or PPP with the PPP NLPID (e.g., PPPoA)?  The
1285 		 * latter would presumably be treated the way PPPoE
1286 		 * should be, so you can do "pppoe and udp port 2049"
1287 		 * or "pppoa and tcp port 80" and have it check for
1288 		 * PPPo{A,E} and a PPP protocol of IP and....
1289 		 */
1290 		cstate->off_linktype.constant_part = 0;
1291 		cstate->off_linkpl.constant_part = 0;	/* packet begins with LLC header */
1292 		cstate->off_nl = 8;		/* 802.2+SNAP */
1293 		cstate->off_nl_nosnap = 3;	/* 802.2 */
1294 		break;
1295 
1296 	case DLT_SUNATM:
1297 		/*
1298 		 * Full Frontal ATM; you get AALn PDUs with an ATM
1299 		 * pseudo-header.
1300 		 */
1301 		cstate->is_atm = 1;
1302 		cstate->off_vpi = SUNATM_VPI_POS;
1303 		cstate->off_vci = SUNATM_VCI_POS;
1304 		cstate->off_proto = PROTO_POS;
1305 		cstate->off_payload = SUNATM_PKT_BEGIN_POS;
1306 		cstate->off_linktype.constant_part = cstate->off_payload;
1307 		cstate->off_linkpl.constant_part = cstate->off_payload;	/* if LLC-encapsulated */
1308 		cstate->off_nl = 8;		/* 802.2+SNAP */
1309 		cstate->off_nl_nosnap = 3;	/* 802.2 */
1310 		break;
1311 
1312 	case DLT_RAW:
1313 	case DLT_IPV4:
1314 	case DLT_IPV6:
1315 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1316 		cstate->off_linkpl.constant_part = 0;
1317 		cstate->off_nl = 0;
1318 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1319 		break;
1320 
1321 	case DLT_LINUX_SLL:	/* fake header for Linux cooked socket */
1322 		cstate->off_linktype.constant_part = 14;
1323 		cstate->off_linkpl.constant_part = 16;
1324 		cstate->off_nl = 0;
1325 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1326 		break;
1327 
1328 	case DLT_LTALK:
1329 		/*
1330 		 * LocalTalk does have a 1-byte type field in the LLAP header,
1331 		 * but really it just indicates whether there is a "short" or
1332 		 * "long" DDP packet following.
1333 		 */
1334 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1335 		cstate->off_linkpl.constant_part = 0;
1336 		cstate->off_nl = 0;
1337 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1338 		break;
1339 
1340 	case DLT_IP_OVER_FC:
1341 		/*
1342 		 * RFC 2625 IP-over-Fibre-Channel doesn't really have a
1343 		 * link-level type field.  We set "off_linktype" to the
1344 		 * offset of the LLC header.
1345 		 *
1346 		 * To check for Ethernet types, we assume that SSAP = SNAP
1347 		 * is being used and pick out the encapsulated Ethernet type.
1348 		 * XXX - should we generate code to check for SNAP? RFC
1349 		 * 2625 says SNAP should be used.
1350 		 */
1351 		cstate->off_linktype.constant_part = 16;
1352 		cstate->off_linkpl.constant_part = 16;
1353 		cstate->off_nl = 8;		/* 802.2+SNAP */
1354 		cstate->off_nl_nosnap = 3;	/* 802.2 */
1355 		break;
1356 
1357 	case DLT_FRELAY:
1358 		/*
1359 		 * XXX - we should set this to handle SNAP-encapsulated
1360 		 * frames (NLPID of 0x80).
1361 		 */
1362 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1363 		cstate->off_linkpl.constant_part = 0;
1364 		cstate->off_nl = 0;
1365 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1366 		break;
1367 
1368                 /*
1369                  * the only BPF-interesting FRF.16 frames are non-control frames;
1370                  * Frame Relay has a variable length link-layer
1371                  * so lets start with offset 4 for now and increments later on (FIXME);
1372                  */
1373 	case DLT_MFR:
1374 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1375 		cstate->off_linkpl.constant_part = 0;
1376 		cstate->off_nl = 4;
1377 		cstate->off_nl_nosnap = 0;	/* XXX - for now -> no 802.2 LLC */
1378 		break;
1379 
1380 	case DLT_APPLE_IP_OVER_IEEE1394:
1381 		cstate->off_linktype.constant_part = 16;
1382 		cstate->off_linkpl.constant_part = 18;
1383 		cstate->off_nl = 0;
1384 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1385 		break;
1386 
1387 	case DLT_SYMANTEC_FIREWALL:
1388 		cstate->off_linktype.constant_part = 6;
1389 		cstate->off_linkpl.constant_part = 44;
1390 		cstate->off_nl = 0;		/* Ethernet II */
1391 		cstate->off_nl_nosnap = 0;	/* XXX - what does it do with 802.3 packets? */
1392 		break;
1393 
1394 #ifdef HAVE_NET_PFVAR_H
1395 	case DLT_PFLOG:
1396 		cstate->off_linktype.constant_part = 0;
1397 		cstate->off_linkpl.constant_part = PFLOG_HDRLEN;
1398 		cstate->off_nl = 0;
1399 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1400 		break;
1401 #endif
1402 
1403         case DLT_JUNIPER_MFR:
1404         case DLT_JUNIPER_MLFR:
1405         case DLT_JUNIPER_MLPPP:
1406         case DLT_JUNIPER_PPP:
1407         case DLT_JUNIPER_CHDLC:
1408         case DLT_JUNIPER_FRELAY:
1409 		cstate->off_linktype.constant_part = 4;
1410 		cstate->off_linkpl.constant_part = 4;
1411 		cstate->off_nl = 0;
1412 		cstate->off_nl_nosnap = -1;	/* no 802.2 LLC */
1413                 break;
1414 
1415 	case DLT_JUNIPER_ATM1:
1416 		cstate->off_linktype.constant_part = 4;		/* in reality variable between 4-8 */
1417 		cstate->off_linkpl.constant_part = 4;	/* in reality variable between 4-8 */
1418 		cstate->off_nl = 0;
1419 		cstate->off_nl_nosnap = 10;
1420 		break;
1421 
1422 	case DLT_JUNIPER_ATM2:
1423 		cstate->off_linktype.constant_part = 8;		/* in reality variable between 8-12 */
1424 		cstate->off_linkpl.constant_part = 8;	/* in reality variable between 8-12 */
1425 		cstate->off_nl = 0;
1426 		cstate->off_nl_nosnap = 10;
1427 		break;
1428 
1429 		/* frames captured on a Juniper PPPoE service PIC
1430 		 * contain raw ethernet frames */
1431 	case DLT_JUNIPER_PPPOE:
1432         case DLT_JUNIPER_ETHER:
1433 		cstate->off_linkpl.constant_part = 14;
1434 		cstate->off_linktype.constant_part = 16;
1435 		cstate->off_nl = 18;		/* Ethernet II */
1436 		cstate->off_nl_nosnap = 21;	/* 802.3+802.2 */
1437 		break;
1438 
1439 	case DLT_JUNIPER_PPPOE_ATM:
1440 		cstate->off_linktype.constant_part = 4;
1441 		cstate->off_linkpl.constant_part = 6;
1442 		cstate->off_nl = 0;
1443 		cstate->off_nl_nosnap = -1;	/* no 802.2 LLC */
1444 		break;
1445 
1446 	case DLT_JUNIPER_GGSN:
1447 		cstate->off_linktype.constant_part = 6;
1448 		cstate->off_linkpl.constant_part = 12;
1449 		cstate->off_nl = 0;
1450 		cstate->off_nl_nosnap = -1;	/* no 802.2 LLC */
1451 		break;
1452 
1453 	case DLT_JUNIPER_ES:
1454 		cstate->off_linktype.constant_part = 6;
1455 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;	/* not really a network layer but raw IP addresses */
1456 		cstate->off_nl = -1;		/* not really a network layer but raw IP addresses */
1457 		cstate->off_nl_nosnap = -1;	/* no 802.2 LLC */
1458 		break;
1459 
1460 	case DLT_JUNIPER_MONITOR:
1461 		cstate->off_linktype.constant_part = 12;
1462 		cstate->off_linkpl.constant_part = 12;
1463 		cstate->off_nl = 0;		/* raw IP/IP6 header */
1464 		cstate->off_nl_nosnap = -1;	/* no 802.2 LLC */
1465 		break;
1466 
1467 	case DLT_BACNET_MS_TP:
1468 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1469 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1470 		cstate->off_nl = -1;
1471 		cstate->off_nl_nosnap = -1;
1472 		break;
1473 
1474 	case DLT_JUNIPER_SERVICES:
1475 		cstate->off_linktype.constant_part = 12;
1476 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;	/* L3 proto location dep. on cookie type */
1477 		cstate->off_nl = -1;		/* L3 proto location dep. on cookie type */
1478 		cstate->off_nl_nosnap = -1;	/* no 802.2 LLC */
1479 		break;
1480 
1481 	case DLT_JUNIPER_VP:
1482 		cstate->off_linktype.constant_part = 18;
1483 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1484 		cstate->off_nl = -1;
1485 		cstate->off_nl_nosnap = -1;
1486 		break;
1487 
1488 	case DLT_JUNIPER_ST:
1489 		cstate->off_linktype.constant_part = 18;
1490 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1491 		cstate->off_nl = -1;
1492 		cstate->off_nl_nosnap = -1;
1493 		break;
1494 
1495 	case DLT_JUNIPER_ISM:
1496 		cstate->off_linktype.constant_part = 8;
1497 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1498 		cstate->off_nl = -1;
1499 		cstate->off_nl_nosnap = -1;
1500 		break;
1501 
1502 	case DLT_JUNIPER_VS:
1503 	case DLT_JUNIPER_SRX_E2E:
1504 	case DLT_JUNIPER_FIBRECHANNEL:
1505 	case DLT_JUNIPER_ATM_CEMIC:
1506 		cstate->off_linktype.constant_part = 8;
1507 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1508 		cstate->off_nl = -1;
1509 		cstate->off_nl_nosnap = -1;
1510 		break;
1511 
1512 	case DLT_MTP2:
1513 		cstate->off_li = 2;
1514 		cstate->off_li_hsl = 4;
1515 		cstate->off_sio = 3;
1516 		cstate->off_opc = 4;
1517 		cstate->off_dpc = 4;
1518 		cstate->off_sls = 7;
1519 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1520 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1521 		cstate->off_nl = -1;
1522 		cstate->off_nl_nosnap = -1;
1523 		break;
1524 
1525 	case DLT_MTP2_WITH_PHDR:
1526 		cstate->off_li = 6;
1527 		cstate->off_li_hsl = 8;
1528 		cstate->off_sio = 7;
1529 		cstate->off_opc = 8;
1530 		cstate->off_dpc = 8;
1531 		cstate->off_sls = 11;
1532 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1533 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1534 		cstate->off_nl = -1;
1535 		cstate->off_nl_nosnap = -1;
1536 		break;
1537 
1538 	case DLT_ERF:
1539 		cstate->off_li = 22;
1540 		cstate->off_li_hsl = 24;
1541 		cstate->off_sio = 23;
1542 		cstate->off_opc = 24;
1543 		cstate->off_dpc = 24;
1544 		cstate->off_sls = 27;
1545 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1546 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1547 		cstate->off_nl = -1;
1548 		cstate->off_nl_nosnap = -1;
1549 		break;
1550 
1551 	case DLT_PFSYNC:
1552 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1553 		cstate->off_linkpl.constant_part = 4;
1554 		cstate->off_nl = 0;
1555 		cstate->off_nl_nosnap = 0;
1556 		break;
1557 
1558 	case DLT_AX25_KISS:
1559 		/*
1560 		 * Currently, only raw "link[N:M]" filtering is supported.
1561 		 */
1562 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;	/* variable, min 15, max 71 steps of 7 */
1563 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1564 		cstate->off_nl = -1;		/* variable, min 16, max 71 steps of 7 */
1565 		cstate->off_nl_nosnap = -1;	/* no 802.2 LLC */
1566 		break;
1567 
1568 	case DLT_IPNET:
1569 		cstate->off_linktype.constant_part = 1;
1570 		cstate->off_linkpl.constant_part = 24;	/* ipnet header length */
1571 		cstate->off_nl = 0;
1572 		cstate->off_nl_nosnap = -1;
1573 		break;
1574 
1575 	case DLT_NETANALYZER:
1576 		cstate->off_linkhdr.constant_part = 4;	/* Ethernet header is past 4-byte pseudo-header */
1577 		cstate->off_linktype.constant_part = cstate->off_linkhdr.constant_part + 12;
1578 		cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 14;	/* pseudo-header+Ethernet header length */
1579 		cstate->off_nl = 0;		/* Ethernet II */
1580 		cstate->off_nl_nosnap = 3;	/* 802.3+802.2 */
1581 		break;
1582 
1583 	case DLT_NETANALYZER_TRANSPARENT:
1584 		cstate->off_linkhdr.constant_part = 12;	/* MAC header is past 4-byte pseudo-header, preamble, and SFD */
1585 		cstate->off_linktype.constant_part = cstate->off_linkhdr.constant_part + 12;
1586 		cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 14;	/* pseudo-header+preamble+SFD+Ethernet header length */
1587 		cstate->off_nl = 0;		/* Ethernet II */
1588 		cstate->off_nl_nosnap = 3;	/* 802.3+802.2 */
1589 		break;
1590 
1591 	default:
1592 		/*
1593 		 * For values in the range in which we've assigned new
1594 		 * DLT_ values, only raw "link[N:M]" filtering is supported.
1595 		 */
1596 		if (cstate->linktype >= DLT_MATCHING_MIN &&
1597 		    cstate->linktype <= DLT_MATCHING_MAX) {
1598 			cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1599 			cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1600 			cstate->off_nl = -1;
1601 			cstate->off_nl_nosnap = -1;
1602 		} else {
1603 			bpf_error(cstate, "unknown data link type %d", cstate->linktype);
1604 		}
1605 		break;
1606 	}
1607 
1608 	cstate->off_outermostlinkhdr = cstate->off_prevlinkhdr = cstate->off_linkhdr;
1609 }
1610 
1611 /*
1612  * Load a value relative to the specified absolute offset.
1613  */
1614 static struct slist *
1615 gen_load_absoffsetrel(compiler_state_t *cstate, bpf_abs_offset *abs_offset,
1616     u_int offset, u_int size)
1617 {
1618 	struct slist *s, *s2;
1619 
1620 	s = gen_abs_offset_varpart(cstate, abs_offset);
1621 
1622 	/*
1623 	 * If "s" is non-null, it has code to arrange that the X register
1624 	 * contains the variable part of the absolute offset, so we
1625 	 * generate a load relative to that, with an offset of
1626 	 * abs_offset->constant_part + offset.
1627 	 *
1628 	 * Otherwise, we can do an absolute load with an offset of
1629 	 * abs_offset->constant_part + offset.
1630 	 */
1631 	if (s != NULL) {
1632 		/*
1633 		 * "s" points to a list of statements that puts the
1634 		 * variable part of the absolute offset into the X register.
1635 		 * Do an indirect load, to use the X register as an offset.
1636 		 */
1637 		s2 = new_stmt(cstate, BPF_LD|BPF_IND|size);
1638 		s2->s.k = abs_offset->constant_part + offset;
1639 		sappend(s, s2);
1640 	} else {
1641 		/*
1642 		 * There is no variable part of the absolute offset, so
1643 		 * just do an absolute load.
1644 		 */
1645 		s = new_stmt(cstate, BPF_LD|BPF_ABS|size);
1646 		s->s.k = abs_offset->constant_part + offset;
1647 	}
1648 	return s;
1649 }
1650 
1651 /*
1652  * Load a value relative to the beginning of the specified header.
1653  */
1654 static struct slist *
1655 gen_load_a(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1656     u_int size)
1657 {
1658 	struct slist *s, *s2;
1659 
1660 	switch (offrel) {
1661 
1662 	case OR_PACKET:
1663                 s = new_stmt(cstate, BPF_LD|BPF_ABS|size);
1664                 s->s.k = offset;
1665 		break;
1666 
1667 	case OR_LINKHDR:
1668 		s = gen_load_absoffsetrel(cstate, &cstate->off_linkhdr, offset, size);
1669 		break;
1670 
1671 	case OR_PREVLINKHDR:
1672 		s = gen_load_absoffsetrel(cstate, &cstate->off_prevlinkhdr, offset, size);
1673 		break;
1674 
1675 	case OR_LLC:
1676 		s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, offset, size);
1677 		break;
1678 
1679 	case OR_PREVMPLSHDR:
1680 		s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl - 4 + offset, size);
1681 		break;
1682 
1683 	case OR_LINKPL:
1684 		s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl + offset, size);
1685 		break;
1686 
1687 	case OR_LINKPL_NOSNAP:
1688 		s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl_nosnap + offset, size);
1689 		break;
1690 
1691 	case OR_LINKTYPE:
1692 		s = gen_load_absoffsetrel(cstate, &cstate->off_linktype, offset, size);
1693 		break;
1694 
1695 	case OR_TRAN_IPV4:
1696 		/*
1697 		 * Load the X register with the length of the IPv4 header
1698 		 * (plus the offset of the link-layer header, if it's
1699 		 * preceded by a variable-length header such as a radio
1700 		 * header), in bytes.
1701 		 */
1702 		s = gen_loadx_iphdrlen(cstate);
1703 
1704 		/*
1705 		 * Load the item at {offset of the link-layer payload} +
1706 		 * {offset, relative to the start of the link-layer
1707 		 * paylod, of the IPv4 header} + {length of the IPv4 header} +
1708 		 * {specified offset}.
1709 		 *
1710 		 * If the offset of the link-layer payload is variable,
1711 		 * the variable part of that offset is included in the
1712 		 * value in the X register, and we include the constant
1713 		 * part in the offset of the load.
1714 		 */
1715 		s2 = new_stmt(cstate, BPF_LD|BPF_IND|size);
1716 		s2->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + offset;
1717 		sappend(s, s2);
1718 		break;
1719 
1720 	case OR_TRAN_IPV6:
1721 		s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl + 40 + offset, size);
1722 		break;
1723 
1724 	default:
1725 		abort();
1726 		return NULL;
1727 	}
1728 	return s;
1729 }
1730 
1731 /*
1732  * Generate code to load into the X register the sum of the length of
1733  * the IPv4 header and the variable part of the offset of the link-layer
1734  * payload.
1735  */
1736 static struct slist *
1737 gen_loadx_iphdrlen(compiler_state_t *cstate)
1738 {
1739 	struct slist *s, *s2;
1740 
1741 	s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl);
1742 	if (s != NULL) {
1743 		/*
1744 		 * The offset of the link-layer payload has a variable
1745 		 * part.  "s" points to a list of statements that put
1746 		 * the variable part of that offset into the X register.
1747 		 *
1748 		 * The 4*([k]&0xf) addressing mode can't be used, as we
1749 		 * don't have a constant offset, so we have to load the
1750 		 * value in question into the A register and add to it
1751 		 * the value from the X register.
1752 		 */
1753 		s2 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
1754 		s2->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
1755 		sappend(s, s2);
1756 		s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
1757 		s2->s.k = 0xf;
1758 		sappend(s, s2);
1759 		s2 = new_stmt(cstate, BPF_ALU|BPF_LSH|BPF_K);
1760 		s2->s.k = 2;
1761 		sappend(s, s2);
1762 
1763 		/*
1764 		 * The A register now contains the length of the IP header.
1765 		 * We need to add to it the variable part of the offset of
1766 		 * the link-layer payload, which is still in the X
1767 		 * register, and move the result into the X register.
1768 		 */
1769 		sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
1770 		sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
1771 	} else {
1772 		/*
1773 		 * The offset of the link-layer payload is a constant,
1774 		 * so no code was generated to load the (non-existent)
1775 		 * variable part of that offset.
1776 		 *
1777 		 * This means we can use the 4*([k]&0xf) addressing
1778 		 * mode.  Load the length of the IPv4 header, which
1779 		 * is at an offset of cstate->off_nl from the beginning of
1780 		 * the link-layer payload, and thus at an offset of
1781 		 * cstate->off_linkpl.constant_part + cstate->off_nl from the beginning
1782 		 * of the raw packet data, using that addressing mode.
1783 		 */
1784 		s = new_stmt(cstate, BPF_LDX|BPF_MSH|BPF_B);
1785 		s->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
1786 	}
1787 	return s;
1788 }
1789 
1790 static struct block *
1791 gen_uncond(compiler_state_t *cstate, int rsense)
1792 {
1793 	struct block *b;
1794 	struct slist *s;
1795 
1796 	s = new_stmt(cstate, BPF_LD|BPF_IMM);
1797 	s->s.k = !rsense;
1798 	b = new_block(cstate, JMP(BPF_JEQ));
1799 	b->stmts = s;
1800 
1801 	return b;
1802 }
1803 
1804 static inline struct block *
1805 gen_true(compiler_state_t *cstate)
1806 {
1807 	return gen_uncond(cstate, 1);
1808 }
1809 
1810 static inline struct block *
1811 gen_false(compiler_state_t *cstate)
1812 {
1813 	return gen_uncond(cstate, 0);
1814 }
1815 
1816 /*
1817  * Byte-swap a 32-bit number.
1818  * ("htonl()" or "ntohl()" won't work - we want to byte-swap even on
1819  * big-endian platforms.)
1820  */
1821 #define	SWAPLONG(y) \
1822 ((((y)&0xff)<<24) | (((y)&0xff00)<<8) | (((y)&0xff0000)>>8) | (((y)>>24)&0xff))
1823 
1824 /*
1825  * Generate code to match a particular packet type.
1826  *
1827  * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
1828  * value, if <= ETHERMTU.  We use that to determine whether to
1829  * match the type/length field or to check the type/length field for
1830  * a value <= ETHERMTU to see whether it's a type field and then do
1831  * the appropriate test.
1832  */
1833 static struct block *
1834 gen_ether_linktype(compiler_state_t *cstate, int proto)
1835 {
1836 	struct block *b0, *b1;
1837 
1838 	switch (proto) {
1839 
1840 	case LLCSAP_ISONS:
1841 	case LLCSAP_IP:
1842 	case LLCSAP_NETBEUI:
1843 		/*
1844 		 * OSI protocols and NetBEUI always use 802.2 encapsulation,
1845 		 * so we check the DSAP and SSAP.
1846 		 *
1847 		 * LLCSAP_IP checks for IP-over-802.2, rather
1848 		 * than IP-over-Ethernet or IP-over-SNAP.
1849 		 *
1850 		 * XXX - should we check both the DSAP and the
1851 		 * SSAP, like this, or should we check just the
1852 		 * DSAP, as we do for other types <= ETHERMTU
1853 		 * (i.e., other SAP values)?
1854 		 */
1855 		b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
1856 		gen_not(b0);
1857 		b1 = gen_cmp(cstate, OR_LLC, 0, BPF_H, (bpf_int32)
1858 			     ((proto << 8) | proto));
1859 		gen_and(b0, b1);
1860 		return b1;
1861 
1862 	case LLCSAP_IPX:
1863 		/*
1864 		 * Check for;
1865 		 *
1866 		 *	Ethernet_II frames, which are Ethernet
1867 		 *	frames with a frame type of ETHERTYPE_IPX;
1868 		 *
1869 		 *	Ethernet_802.3 frames, which are 802.3
1870 		 *	frames (i.e., the type/length field is
1871 		 *	a length field, <= ETHERMTU, rather than
1872 		 *	a type field) with the first two bytes
1873 		 *	after the Ethernet/802.3 header being
1874 		 *	0xFFFF;
1875 		 *
1876 		 *	Ethernet_802.2 frames, which are 802.3
1877 		 *	frames with an 802.2 LLC header and
1878 		 *	with the IPX LSAP as the DSAP in the LLC
1879 		 *	header;
1880 		 *
1881 		 *	Ethernet_SNAP frames, which are 802.3
1882 		 *	frames with an LLC header and a SNAP
1883 		 *	header and with an OUI of 0x000000
1884 		 *	(encapsulated Ethernet) and a protocol
1885 		 *	ID of ETHERTYPE_IPX in the SNAP header.
1886 		 *
1887 		 * XXX - should we generate the same code both
1888 		 * for tests for LLCSAP_IPX and for ETHERTYPE_IPX?
1889 		 */
1890 
1891 		/*
1892 		 * This generates code to check both for the
1893 		 * IPX LSAP (Ethernet_802.2) and for Ethernet_802.3.
1894 		 */
1895 		b0 = gen_cmp(cstate, OR_LLC, 0, BPF_B, (bpf_int32)LLCSAP_IPX);
1896 		b1 = gen_cmp(cstate, OR_LLC, 0, BPF_H, (bpf_int32)0xFFFF);
1897 		gen_or(b0, b1);
1898 
1899 		/*
1900 		 * Now we add code to check for SNAP frames with
1901 		 * ETHERTYPE_IPX, i.e. Ethernet_SNAP.
1902 		 */
1903 		b0 = gen_snap(cstate, 0x000000, ETHERTYPE_IPX);
1904 		gen_or(b0, b1);
1905 
1906 		/*
1907 		 * Now we generate code to check for 802.3
1908 		 * frames in general.
1909 		 */
1910 		b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
1911 		gen_not(b0);
1912 
1913 		/*
1914 		 * Now add the check for 802.3 frames before the
1915 		 * check for Ethernet_802.2 and Ethernet_802.3,
1916 		 * as those checks should only be done on 802.3
1917 		 * frames, not on Ethernet frames.
1918 		 */
1919 		gen_and(b0, b1);
1920 
1921 		/*
1922 		 * Now add the check for Ethernet_II frames, and
1923 		 * do that before checking for the other frame
1924 		 * types.
1925 		 */
1926 		b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, (bpf_int32)ETHERTYPE_IPX);
1927 		gen_or(b0, b1);
1928 		return b1;
1929 
1930 	case ETHERTYPE_ATALK:
1931 	case ETHERTYPE_AARP:
1932 		/*
1933 		 * EtherTalk (AppleTalk protocols on Ethernet link
1934 		 * layer) may use 802.2 encapsulation.
1935 		 */
1936 
1937 		/*
1938 		 * Check for 802.2 encapsulation (EtherTalk phase 2?);
1939 		 * we check for an Ethernet type field less than
1940 		 * 1500, which means it's an 802.3 length field.
1941 		 */
1942 		b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
1943 		gen_not(b0);
1944 
1945 		/*
1946 		 * 802.2-encapsulated ETHERTYPE_ATALK packets are
1947 		 * SNAP packets with an organization code of
1948 		 * 0x080007 (Apple, for Appletalk) and a protocol
1949 		 * type of ETHERTYPE_ATALK (Appletalk).
1950 		 *
1951 		 * 802.2-encapsulated ETHERTYPE_AARP packets are
1952 		 * SNAP packets with an organization code of
1953 		 * 0x000000 (encapsulated Ethernet) and a protocol
1954 		 * type of ETHERTYPE_AARP (Appletalk ARP).
1955 		 */
1956 		if (proto == ETHERTYPE_ATALK)
1957 			b1 = gen_snap(cstate, 0x080007, ETHERTYPE_ATALK);
1958 		else	/* proto == ETHERTYPE_AARP */
1959 			b1 = gen_snap(cstate, 0x000000, ETHERTYPE_AARP);
1960 		gen_and(b0, b1);
1961 
1962 		/*
1963 		 * Check for Ethernet encapsulation (Ethertalk
1964 		 * phase 1?); we just check for the Ethernet
1965 		 * protocol type.
1966 		 */
1967 		b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, (bpf_int32)proto);
1968 
1969 		gen_or(b0, b1);
1970 		return b1;
1971 
1972 	default:
1973 		if (proto <= ETHERMTU) {
1974 			/*
1975 			 * This is an LLC SAP value, so the frames
1976 			 * that match would be 802.2 frames.
1977 			 * Check that the frame is an 802.2 frame
1978 			 * (i.e., that the length/type field is
1979 			 * a length field, <= ETHERMTU) and
1980 			 * then check the DSAP.
1981 			 */
1982 			b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
1983 			gen_not(b0);
1984 			b1 = gen_cmp(cstate, OR_LINKTYPE, 2, BPF_B, (bpf_int32)proto);
1985 			gen_and(b0, b1);
1986 			return b1;
1987 		} else {
1988 			/*
1989 			 * This is an Ethernet type, so compare
1990 			 * the length/type field with it (if
1991 			 * the frame is an 802.2 frame, the length
1992 			 * field will be <= ETHERMTU, and, as
1993 			 * "proto" is > ETHERMTU, this test
1994 			 * will fail and the frame won't match,
1995 			 * which is what we want).
1996 			 */
1997 			return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H,
1998 			    (bpf_int32)proto);
1999 		}
2000 	}
2001 }
2002 
2003 static struct block *
2004 gen_loopback_linktype(compiler_state_t *cstate, int proto)
2005 {
2006 	/*
2007 	 * For DLT_NULL, the link-layer header is a 32-bit word
2008 	 * containing an AF_ value in *host* byte order, and for
2009 	 * DLT_ENC, the link-layer header begins with a 32-bit
2010 	 * word containing an AF_ value in host byte order.
2011 	 *
2012 	 * In addition, if we're reading a saved capture file,
2013 	 * the host byte order in the capture may not be the
2014 	 * same as the host byte order on this machine.
2015 	 *
2016 	 * For DLT_LOOP, the link-layer header is a 32-bit
2017 	 * word containing an AF_ value in *network* byte order.
2018 	 */
2019 	if (cstate->linktype == DLT_NULL || cstate->linktype == DLT_ENC) {
2020 		/*
2021 		 * The AF_ value is in host byte order, but the BPF
2022 		 * interpreter will convert it to network byte order.
2023 		 *
2024 		 * If this is a save file, and it's from a machine
2025 		 * with the opposite byte order to ours, we byte-swap
2026 		 * the AF_ value.
2027 		 *
2028 		 * Then we run it through "htonl()", and generate
2029 		 * code to compare against the result.
2030 		 */
2031 		if (cstate->bpf_pcap->rfile != NULL && cstate->bpf_pcap->swapped)
2032 			proto = SWAPLONG(proto);
2033 		proto = htonl(proto);
2034 	}
2035 	return (gen_cmp(cstate, OR_LINKHDR, 0, BPF_W, (bpf_int32)proto));
2036 }
2037 
2038 /*
2039  * "proto" is an Ethernet type value and for IPNET, if it is not IPv4
2040  * or IPv6 then we have an error.
2041  */
2042 static struct block *
2043 gen_ipnet_linktype(compiler_state_t *cstate, int proto)
2044 {
2045 	switch (proto) {
2046 
2047 	case ETHERTYPE_IP:
2048 		return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B, (bpf_int32)IPH_AF_INET);
2049 		/* NOTREACHED */
2050 
2051 	case ETHERTYPE_IPV6:
2052 		return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
2053 		    (bpf_int32)IPH_AF_INET6);
2054 		/* NOTREACHED */
2055 
2056 	default:
2057 		break;
2058 	}
2059 
2060 	return gen_false(cstate);
2061 }
2062 
2063 /*
2064  * Generate code to match a particular packet type.
2065  *
2066  * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
2067  * value, if <= ETHERMTU.  We use that to determine whether to
2068  * match the type field or to check the type field for the special
2069  * LINUX_SLL_P_802_2 value and then do the appropriate test.
2070  */
2071 static struct block *
2072 gen_linux_sll_linktype(compiler_state_t *cstate, int proto)
2073 {
2074 	struct block *b0, *b1;
2075 
2076 	switch (proto) {
2077 
2078 	case LLCSAP_ISONS:
2079 	case LLCSAP_IP:
2080 	case LLCSAP_NETBEUI:
2081 		/*
2082 		 * OSI protocols and NetBEUI always use 802.2 encapsulation,
2083 		 * so we check the DSAP and SSAP.
2084 		 *
2085 		 * LLCSAP_IP checks for IP-over-802.2, rather
2086 		 * than IP-over-Ethernet or IP-over-SNAP.
2087 		 *
2088 		 * XXX - should we check both the DSAP and the
2089 		 * SSAP, like this, or should we check just the
2090 		 * DSAP, as we do for other types <= ETHERMTU
2091 		 * (i.e., other SAP values)?
2092 		 */
2093 		b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
2094 		b1 = gen_cmp(cstate, OR_LLC, 0, BPF_H, (bpf_int32)
2095 			     ((proto << 8) | proto));
2096 		gen_and(b0, b1);
2097 		return b1;
2098 
2099 	case LLCSAP_IPX:
2100 		/*
2101 		 *	Ethernet_II frames, which are Ethernet
2102 		 *	frames with a frame type of ETHERTYPE_IPX;
2103 		 *
2104 		 *	Ethernet_802.3 frames, which have a frame
2105 		 *	type of LINUX_SLL_P_802_3;
2106 		 *
2107 		 *	Ethernet_802.2 frames, which are 802.3
2108 		 *	frames with an 802.2 LLC header (i.e, have
2109 		 *	a frame type of LINUX_SLL_P_802_2) and
2110 		 *	with the IPX LSAP as the DSAP in the LLC
2111 		 *	header;
2112 		 *
2113 		 *	Ethernet_SNAP frames, which are 802.3
2114 		 *	frames with an LLC header and a SNAP
2115 		 *	header and with an OUI of 0x000000
2116 		 *	(encapsulated Ethernet) and a protocol
2117 		 *	ID of ETHERTYPE_IPX in the SNAP header.
2118 		 *
2119 		 * First, do the checks on LINUX_SLL_P_802_2
2120 		 * frames; generate the check for either
2121 		 * Ethernet_802.2 or Ethernet_SNAP frames, and
2122 		 * then put a check for LINUX_SLL_P_802_2 frames
2123 		 * before it.
2124 		 */
2125 		b0 = gen_cmp(cstate, OR_LLC, 0, BPF_B, (bpf_int32)LLCSAP_IPX);
2126 		b1 = gen_snap(cstate, 0x000000, ETHERTYPE_IPX);
2127 		gen_or(b0, b1);
2128 		b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
2129 		gen_and(b0, b1);
2130 
2131 		/*
2132 		 * Now check for 802.3 frames and OR that with
2133 		 * the previous test.
2134 		 */
2135 		b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_3);
2136 		gen_or(b0, b1);
2137 
2138 		/*
2139 		 * Now add the check for Ethernet_II frames, and
2140 		 * do that before checking for the other frame
2141 		 * types.
2142 		 */
2143 		b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, (bpf_int32)ETHERTYPE_IPX);
2144 		gen_or(b0, b1);
2145 		return b1;
2146 
2147 	case ETHERTYPE_ATALK:
2148 	case ETHERTYPE_AARP:
2149 		/*
2150 		 * EtherTalk (AppleTalk protocols on Ethernet link
2151 		 * layer) may use 802.2 encapsulation.
2152 		 */
2153 
2154 		/*
2155 		 * Check for 802.2 encapsulation (EtherTalk phase 2?);
2156 		 * we check for the 802.2 protocol type in the
2157 		 * "Ethernet type" field.
2158 		 */
2159 		b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
2160 
2161 		/*
2162 		 * 802.2-encapsulated ETHERTYPE_ATALK packets are
2163 		 * SNAP packets with an organization code of
2164 		 * 0x080007 (Apple, for Appletalk) and a protocol
2165 		 * type of ETHERTYPE_ATALK (Appletalk).
2166 		 *
2167 		 * 802.2-encapsulated ETHERTYPE_AARP packets are
2168 		 * SNAP packets with an organization code of
2169 		 * 0x000000 (encapsulated Ethernet) and a protocol
2170 		 * type of ETHERTYPE_AARP (Appletalk ARP).
2171 		 */
2172 		if (proto == ETHERTYPE_ATALK)
2173 			b1 = gen_snap(cstate, 0x080007, ETHERTYPE_ATALK);
2174 		else	/* proto == ETHERTYPE_AARP */
2175 			b1 = gen_snap(cstate, 0x000000, ETHERTYPE_AARP);
2176 		gen_and(b0, b1);
2177 
2178 		/*
2179 		 * Check for Ethernet encapsulation (Ethertalk
2180 		 * phase 1?); we just check for the Ethernet
2181 		 * protocol type.
2182 		 */
2183 		b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, (bpf_int32)proto);
2184 
2185 		gen_or(b0, b1);
2186 		return b1;
2187 
2188 	default:
2189 		if (proto <= ETHERMTU) {
2190 			/*
2191 			 * This is an LLC SAP value, so the frames
2192 			 * that match would be 802.2 frames.
2193 			 * Check for the 802.2 protocol type
2194 			 * in the "Ethernet type" field, and
2195 			 * then check the DSAP.
2196 			 */
2197 			b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
2198 			b1 = gen_cmp(cstate, OR_LINKHDR, cstate->off_linkpl.constant_part, BPF_B,
2199 			     (bpf_int32)proto);
2200 			gen_and(b0, b1);
2201 			return b1;
2202 		} else {
2203 			/*
2204 			 * This is an Ethernet type, so compare
2205 			 * the length/type field with it (if
2206 			 * the frame is an 802.2 frame, the length
2207 			 * field will be <= ETHERMTU, and, as
2208 			 * "proto" is > ETHERMTU, this test
2209 			 * will fail and the frame won't match,
2210 			 * which is what we want).
2211 			 */
2212 			return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, (bpf_int32)proto);
2213 		}
2214 	}
2215 }
2216 
2217 static struct slist *
2218 gen_load_prism_llprefixlen(compiler_state_t *cstate)
2219 {
2220 	struct slist *s1, *s2;
2221 	struct slist *sjeq_avs_cookie;
2222 	struct slist *sjcommon;
2223 
2224 	/*
2225 	 * This code is not compatible with the optimizer, as
2226 	 * we are generating jmp instructions within a normal
2227 	 * slist of instructions
2228 	 */
2229 	cstate->no_optimize = 1;
2230 
2231 	/*
2232 	 * Generate code to load the length of the radio header into
2233 	 * the register assigned to hold that length, if one has been
2234 	 * assigned.  (If one hasn't been assigned, no code we've
2235 	 * generated uses that prefix, so we don't need to generate any
2236 	 * code to load it.)
2237 	 *
2238 	 * Some Linux drivers use ARPHRD_IEEE80211_PRISM but sometimes
2239 	 * or always use the AVS header rather than the Prism header.
2240 	 * We load a 4-byte big-endian value at the beginning of the
2241 	 * raw packet data, and see whether, when masked with 0xFFFFF000,
2242 	 * it's equal to 0x80211000.  If so, that indicates that it's
2243 	 * an AVS header (the masked-out bits are the version number).
2244 	 * Otherwise, it's a Prism header.
2245 	 *
2246 	 * XXX - the Prism header is also, in theory, variable-length,
2247 	 * but no known software generates headers that aren't 144
2248 	 * bytes long.
2249 	 */
2250 	if (cstate->off_linkhdr.reg != -1) {
2251 		/*
2252 		 * Load the cookie.
2253 		 */
2254 		s1 = new_stmt(cstate, BPF_LD|BPF_W|BPF_ABS);
2255 		s1->s.k = 0;
2256 
2257 		/*
2258 		 * AND it with 0xFFFFF000.
2259 		 */
2260 		s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
2261 		s2->s.k = 0xFFFFF000;
2262 		sappend(s1, s2);
2263 
2264 		/*
2265 		 * Compare with 0x80211000.
2266 		 */
2267 		sjeq_avs_cookie = new_stmt(cstate, JMP(BPF_JEQ));
2268 		sjeq_avs_cookie->s.k = 0x80211000;
2269 		sappend(s1, sjeq_avs_cookie);
2270 
2271 		/*
2272 		 * If it's AVS:
2273 		 *
2274 		 * The 4 bytes at an offset of 4 from the beginning of
2275 		 * the AVS header are the length of the AVS header.
2276 		 * That field is big-endian.
2277 		 */
2278 		s2 = new_stmt(cstate, BPF_LD|BPF_W|BPF_ABS);
2279 		s2->s.k = 4;
2280 		sappend(s1, s2);
2281 		sjeq_avs_cookie->s.jt = s2;
2282 
2283 		/*
2284 		 * Now jump to the code to allocate a register
2285 		 * into which to save the header length and
2286 		 * store the length there.  (The "jump always"
2287 		 * instruction needs to have the k field set;
2288 		 * it's added to the PC, so, as we're jumping
2289 		 * over a single instruction, it should be 1.)
2290 		 */
2291 		sjcommon = new_stmt(cstate, JMP(BPF_JA));
2292 		sjcommon->s.k = 1;
2293 		sappend(s1, sjcommon);
2294 
2295 		/*
2296 		 * Now for the code that handles the Prism header.
2297 		 * Just load the length of the Prism header (144)
2298 		 * into the A register.  Have the test for an AVS
2299 		 * header branch here if we don't have an AVS header.
2300 		 */
2301 		s2 = new_stmt(cstate, BPF_LD|BPF_W|BPF_IMM);
2302 		s2->s.k = 144;
2303 		sappend(s1, s2);
2304 		sjeq_avs_cookie->s.jf = s2;
2305 
2306 		/*
2307 		 * Now allocate a register to hold that value and store
2308 		 * it.  The code for the AVS header will jump here after
2309 		 * loading the length of the AVS header.
2310 		 */
2311 		s2 = new_stmt(cstate, BPF_ST);
2312 		s2->s.k = cstate->off_linkhdr.reg;
2313 		sappend(s1, s2);
2314 		sjcommon->s.jf = s2;
2315 
2316 		/*
2317 		 * Now move it into the X register.
2318 		 */
2319 		s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2320 		sappend(s1, s2);
2321 
2322 		return (s1);
2323 	} else
2324 		return (NULL);
2325 }
2326 
2327 static struct slist *
2328 gen_load_avs_llprefixlen(compiler_state_t *cstate)
2329 {
2330 	struct slist *s1, *s2;
2331 
2332 	/*
2333 	 * Generate code to load the length of the AVS header into
2334 	 * the register assigned to hold that length, if one has been
2335 	 * assigned.  (If one hasn't been assigned, no code we've
2336 	 * generated uses that prefix, so we don't need to generate any
2337 	 * code to load it.)
2338 	 */
2339 	if (cstate->off_linkhdr.reg != -1) {
2340 		/*
2341 		 * The 4 bytes at an offset of 4 from the beginning of
2342 		 * the AVS header are the length of the AVS header.
2343 		 * That field is big-endian.
2344 		 */
2345 		s1 = new_stmt(cstate, BPF_LD|BPF_W|BPF_ABS);
2346 		s1->s.k = 4;
2347 
2348 		/*
2349 		 * Now allocate a register to hold that value and store
2350 		 * it.
2351 		 */
2352 		s2 = new_stmt(cstate, BPF_ST);
2353 		s2->s.k = cstate->off_linkhdr.reg;
2354 		sappend(s1, s2);
2355 
2356 		/*
2357 		 * Now move it into the X register.
2358 		 */
2359 		s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2360 		sappend(s1, s2);
2361 
2362 		return (s1);
2363 	} else
2364 		return (NULL);
2365 }
2366 
2367 static struct slist *
2368 gen_load_radiotap_llprefixlen(compiler_state_t *cstate)
2369 {
2370 	struct slist *s1, *s2;
2371 
2372 	/*
2373 	 * Generate code to load the length of the radiotap header into
2374 	 * the register assigned to hold that length, if one has been
2375 	 * assigned.  (If one hasn't been assigned, no code we've
2376 	 * generated uses that prefix, so we don't need to generate any
2377 	 * code to load it.)
2378 	 */
2379 	if (cstate->off_linkhdr.reg != -1) {
2380 		/*
2381 		 * The 2 bytes at offsets of 2 and 3 from the beginning
2382 		 * of the radiotap header are the length of the radiotap
2383 		 * header; unfortunately, it's little-endian, so we have
2384 		 * to load it a byte at a time and construct the value.
2385 		 */
2386 
2387 		/*
2388 		 * Load the high-order byte, at an offset of 3, shift it
2389 		 * left a byte, and put the result in the X register.
2390 		 */
2391 		s1 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
2392 		s1->s.k = 3;
2393 		s2 = new_stmt(cstate, BPF_ALU|BPF_LSH|BPF_K);
2394 		sappend(s1, s2);
2395 		s2->s.k = 8;
2396 		s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2397 		sappend(s1, s2);
2398 
2399 		/*
2400 		 * Load the next byte, at an offset of 2, and OR the
2401 		 * value from the X register into it.
2402 		 */
2403 		s2 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
2404 		sappend(s1, s2);
2405 		s2->s.k = 2;
2406 		s2 = new_stmt(cstate, BPF_ALU|BPF_OR|BPF_X);
2407 		sappend(s1, s2);
2408 
2409 		/*
2410 		 * Now allocate a register to hold that value and store
2411 		 * it.
2412 		 */
2413 		s2 = new_stmt(cstate, BPF_ST);
2414 		s2->s.k = cstate->off_linkhdr.reg;
2415 		sappend(s1, s2);
2416 
2417 		/*
2418 		 * Now move it into the X register.
2419 		 */
2420 		s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2421 		sappend(s1, s2);
2422 
2423 		return (s1);
2424 	} else
2425 		return (NULL);
2426 }
2427 
2428 /*
2429  * At the moment we treat PPI as normal Radiotap encoded
2430  * packets. The difference is in the function that generates
2431  * the code at the beginning to compute the header length.
2432  * Since this code generator of PPI supports bare 802.11
2433  * encapsulation only (i.e. the encapsulated DLT should be
2434  * DLT_IEEE802_11) we generate code to check for this too;
2435  * that's done in finish_parse().
2436  */
2437 static struct slist *
2438 gen_load_ppi_llprefixlen(compiler_state_t *cstate)
2439 {
2440 	struct slist *s1, *s2;
2441 
2442 	/*
2443 	 * Generate code to load the length of the radiotap header
2444 	 * into the register assigned to hold that length, if one has
2445 	 * been assigned.
2446 	 */
2447 	if (cstate->off_linkhdr.reg != -1) {
2448 		/*
2449 		 * The 2 bytes at offsets of 2 and 3 from the beginning
2450 		 * of the radiotap header are the length of the radiotap
2451 		 * header; unfortunately, it's little-endian, so we have
2452 		 * to load it a byte at a time and construct the value.
2453 		 */
2454 
2455 		/*
2456 		 * Load the high-order byte, at an offset of 3, shift it
2457 		 * left a byte, and put the result in the X register.
2458 		 */
2459 		s1 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
2460 		s1->s.k = 3;
2461 		s2 = new_stmt(cstate, BPF_ALU|BPF_LSH|BPF_K);
2462 		sappend(s1, s2);
2463 		s2->s.k = 8;
2464 		s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2465 		sappend(s1, s2);
2466 
2467 		/*
2468 		 * Load the next byte, at an offset of 2, and OR the
2469 		 * value from the X register into it.
2470 		 */
2471 		s2 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
2472 		sappend(s1, s2);
2473 		s2->s.k = 2;
2474 		s2 = new_stmt(cstate, BPF_ALU|BPF_OR|BPF_X);
2475 		sappend(s1, s2);
2476 
2477 		/*
2478 		 * Now allocate a register to hold that value and store
2479 		 * it.
2480 		 */
2481 		s2 = new_stmt(cstate, BPF_ST);
2482 		s2->s.k = cstate->off_linkhdr.reg;
2483 		sappend(s1, s2);
2484 
2485 		/*
2486 		 * Now move it into the X register.
2487 		 */
2488 		s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2489 		sappend(s1, s2);
2490 
2491 		return (s1);
2492 	} else
2493 		return (NULL);
2494 }
2495 
2496 /*
2497  * Load a value relative to the beginning of the link-layer header after the 802.11
2498  * header, i.e. LLC_SNAP.
2499  * The link-layer header doesn't necessarily begin at the beginning
2500  * of the packet data; there might be a variable-length prefix containing
2501  * radio information.
2502  */
2503 static struct slist *
2504 gen_load_802_11_header_len(compiler_state_t *cstate, struct slist *s, struct slist *snext)
2505 {
2506 	struct slist *s2;
2507 	struct slist *sjset_data_frame_1;
2508 	struct slist *sjset_data_frame_2;
2509 	struct slist *sjset_qos;
2510 	struct slist *sjset_radiotap_flags_present;
2511 	struct slist *sjset_radiotap_ext_present;
2512 	struct slist *sjset_radiotap_tsft_present;
2513 	struct slist *sjset_tsft_datapad, *sjset_notsft_datapad;
2514 	struct slist *s_roundup;
2515 
2516 	if (cstate->off_linkpl.reg == -1) {
2517 		/*
2518 		 * No register has been assigned to the offset of
2519 		 * the link-layer payload, which means nobody needs
2520 		 * it; don't bother computing it - just return
2521 		 * what we already have.
2522 		 */
2523 		return (s);
2524 	}
2525 
2526 	/*
2527 	 * This code is not compatible with the optimizer, as
2528 	 * we are generating jmp instructions within a normal
2529 	 * slist of instructions
2530 	 */
2531 	cstate->no_optimize = 1;
2532 
2533 	/*
2534 	 * If "s" is non-null, it has code to arrange that the X register
2535 	 * contains the length of the prefix preceding the link-layer
2536 	 * header.
2537 	 *
2538 	 * Otherwise, the length of the prefix preceding the link-layer
2539 	 * header is "off_outermostlinkhdr.constant_part".
2540 	 */
2541 	if (s == NULL) {
2542 		/*
2543 		 * There is no variable-length header preceding the
2544 		 * link-layer header.
2545 		 *
2546 		 * Load the length of the fixed-length prefix preceding
2547 		 * the link-layer header (if any) into the X register,
2548 		 * and store it in the cstate->off_linkpl.reg register.
2549 		 * That length is off_outermostlinkhdr.constant_part.
2550 		 */
2551 		s = new_stmt(cstate, BPF_LDX|BPF_IMM);
2552 		s->s.k = cstate->off_outermostlinkhdr.constant_part;
2553 	}
2554 
2555 	/*
2556 	 * The X register contains the offset of the beginning of the
2557 	 * link-layer header; add 24, which is the minimum length
2558 	 * of the MAC header for a data frame, to that, and store it
2559 	 * in cstate->off_linkpl.reg, and then load the Frame Control field,
2560 	 * which is at the offset in the X register, with an indexed load.
2561 	 */
2562 	s2 = new_stmt(cstate, BPF_MISC|BPF_TXA);
2563 	sappend(s, s2);
2564 	s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
2565 	s2->s.k = 24;
2566 	sappend(s, s2);
2567 	s2 = new_stmt(cstate, BPF_ST);
2568 	s2->s.k = cstate->off_linkpl.reg;
2569 	sappend(s, s2);
2570 
2571 	s2 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
2572 	s2->s.k = 0;
2573 	sappend(s, s2);
2574 
2575 	/*
2576 	 * Check the Frame Control field to see if this is a data frame;
2577 	 * a data frame has the 0x08 bit (b3) in that field set and the
2578 	 * 0x04 bit (b2) clear.
2579 	 */
2580 	sjset_data_frame_1 = new_stmt(cstate, JMP(BPF_JSET));
2581 	sjset_data_frame_1->s.k = 0x08;
2582 	sappend(s, sjset_data_frame_1);
2583 
2584 	/*
2585 	 * If b3 is set, test b2, otherwise go to the first statement of
2586 	 * the rest of the program.
2587 	 */
2588 	sjset_data_frame_1->s.jt = sjset_data_frame_2 = new_stmt(cstate, JMP(BPF_JSET));
2589 	sjset_data_frame_2->s.k = 0x04;
2590 	sappend(s, sjset_data_frame_2);
2591 	sjset_data_frame_1->s.jf = snext;
2592 
2593 	/*
2594 	 * If b2 is not set, this is a data frame; test the QoS bit.
2595 	 * Otherwise, go to the first statement of the rest of the
2596 	 * program.
2597 	 */
2598 	sjset_data_frame_2->s.jt = snext;
2599 	sjset_data_frame_2->s.jf = sjset_qos = new_stmt(cstate, JMP(BPF_JSET));
2600 	sjset_qos->s.k = 0x80;	/* QoS bit */
2601 	sappend(s, sjset_qos);
2602 
2603 	/*
2604 	 * If it's set, add 2 to cstate->off_linkpl.reg, to skip the QoS
2605 	 * field.
2606 	 * Otherwise, go to the first statement of the rest of the
2607 	 * program.
2608 	 */
2609 	sjset_qos->s.jt = s2 = new_stmt(cstate, BPF_LD|BPF_MEM);
2610 	s2->s.k = cstate->off_linkpl.reg;
2611 	sappend(s, s2);
2612 	s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_IMM);
2613 	s2->s.k = 2;
2614 	sappend(s, s2);
2615 	s2 = new_stmt(cstate, BPF_ST);
2616 	s2->s.k = cstate->off_linkpl.reg;
2617 	sappend(s, s2);
2618 
2619 	/*
2620 	 * If we have a radiotap header, look at it to see whether
2621 	 * there's Atheros padding between the MAC-layer header
2622 	 * and the payload.
2623 	 *
2624 	 * Note: all of the fields in the radiotap header are
2625 	 * little-endian, so we byte-swap all of the values
2626 	 * we test against, as they will be loaded as big-endian
2627 	 * values.
2628 	 *
2629 	 * XXX - in the general case, we would have to scan through
2630 	 * *all* the presence bits, if there's more than one word of
2631 	 * presence bits.  That would require a loop, meaning that
2632 	 * we wouldn't be able to run the filter in the kernel.
2633 	 *
2634 	 * We assume here that the Atheros adapters that insert the
2635 	 * annoying padding don't have multiple antennae and therefore
2636 	 * do not generate radiotap headers with multiple presence words.
2637 	 */
2638 	if (cstate->linktype == DLT_IEEE802_11_RADIO) {
2639 		/*
2640 		 * Is the IEEE80211_RADIOTAP_FLAGS bit (0x0000002) set
2641 		 * in the first presence flag word?
2642 		 */
2643 		sjset_qos->s.jf = s2 = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_W);
2644 		s2->s.k = 4;
2645 		sappend(s, s2);
2646 
2647 		sjset_radiotap_flags_present = new_stmt(cstate, JMP(BPF_JSET));
2648 		sjset_radiotap_flags_present->s.k = SWAPLONG(0x00000002);
2649 		sappend(s, sjset_radiotap_flags_present);
2650 
2651 		/*
2652 		 * If not, skip all of this.
2653 		 */
2654 		sjset_radiotap_flags_present->s.jf = snext;
2655 
2656 		/*
2657 		 * Otherwise, is the "extension" bit set in that word?
2658 		 */
2659 		sjset_radiotap_ext_present = new_stmt(cstate, JMP(BPF_JSET));
2660 		sjset_radiotap_ext_present->s.k = SWAPLONG(0x80000000);
2661 		sappend(s, sjset_radiotap_ext_present);
2662 		sjset_radiotap_flags_present->s.jt = sjset_radiotap_ext_present;
2663 
2664 		/*
2665 		 * If so, skip all of this.
2666 		 */
2667 		sjset_radiotap_ext_present->s.jt = snext;
2668 
2669 		/*
2670 		 * Otherwise, is the IEEE80211_RADIOTAP_TSFT bit set?
2671 		 */
2672 		sjset_radiotap_tsft_present = new_stmt(cstate, JMP(BPF_JSET));
2673 		sjset_radiotap_tsft_present->s.k = SWAPLONG(0x00000001);
2674 		sappend(s, sjset_radiotap_tsft_present);
2675 		sjset_radiotap_ext_present->s.jf = sjset_radiotap_tsft_present;
2676 
2677 		/*
2678 		 * If IEEE80211_RADIOTAP_TSFT is set, the flags field is
2679 		 * at an offset of 16 from the beginning of the raw packet
2680 		 * data (8 bytes for the radiotap header and 8 bytes for
2681 		 * the TSFT field).
2682 		 *
2683 		 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
2684 		 * is set.
2685 		 */
2686 		s2 = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B);
2687 		s2->s.k = 16;
2688 		sappend(s, s2);
2689 		sjset_radiotap_tsft_present->s.jt = s2;
2690 
2691 		sjset_tsft_datapad = new_stmt(cstate, JMP(BPF_JSET));
2692 		sjset_tsft_datapad->s.k = 0x20;
2693 		sappend(s, sjset_tsft_datapad);
2694 
2695 		/*
2696 		 * If IEEE80211_RADIOTAP_TSFT is not set, the flags field is
2697 		 * at an offset of 8 from the beginning of the raw packet
2698 		 * data (8 bytes for the radiotap header).
2699 		 *
2700 		 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
2701 		 * is set.
2702 		 */
2703 		s2 = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B);
2704 		s2->s.k = 8;
2705 		sappend(s, s2);
2706 		sjset_radiotap_tsft_present->s.jf = s2;
2707 
2708 		sjset_notsft_datapad = new_stmt(cstate, JMP(BPF_JSET));
2709 		sjset_notsft_datapad->s.k = 0x20;
2710 		sappend(s, sjset_notsft_datapad);
2711 
2712 		/*
2713 		 * In either case, if IEEE80211_RADIOTAP_F_DATAPAD is
2714 		 * set, round the length of the 802.11 header to
2715 		 * a multiple of 4.  Do that by adding 3 and then
2716 		 * dividing by and multiplying by 4, which we do by
2717 		 * ANDing with ~3.
2718 		 */
2719 		s_roundup = new_stmt(cstate, BPF_LD|BPF_MEM);
2720 		s_roundup->s.k = cstate->off_linkpl.reg;
2721 		sappend(s, s_roundup);
2722 		s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_IMM);
2723 		s2->s.k = 3;
2724 		sappend(s, s2);
2725 		s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_IMM);
2726 		s2->s.k = ~3;
2727 		sappend(s, s2);
2728 		s2 = new_stmt(cstate, BPF_ST);
2729 		s2->s.k = cstate->off_linkpl.reg;
2730 		sappend(s, s2);
2731 
2732 		sjset_tsft_datapad->s.jt = s_roundup;
2733 		sjset_tsft_datapad->s.jf = snext;
2734 		sjset_notsft_datapad->s.jt = s_roundup;
2735 		sjset_notsft_datapad->s.jf = snext;
2736 	} else
2737 		sjset_qos->s.jf = snext;
2738 
2739 	return s;
2740 }
2741 
2742 static void
2743 insert_compute_vloffsets(compiler_state_t *cstate, struct block *b)
2744 {
2745 	struct slist *s;
2746 
2747 	/* There is an implicit dependency between the link
2748 	 * payload and link header since the payload computation
2749 	 * includes the variable part of the header. Therefore,
2750 	 * if nobody else has allocated a register for the link
2751 	 * header and we need it, do it now. */
2752 	if (cstate->off_linkpl.reg != -1 && cstate->off_linkhdr.is_variable &&
2753 	    cstate->off_linkhdr.reg == -1)
2754 		cstate->off_linkhdr.reg = alloc_reg(cstate);
2755 
2756 	/*
2757 	 * For link-layer types that have a variable-length header
2758 	 * preceding the link-layer header, generate code to load
2759 	 * the offset of the link-layer header into the register
2760 	 * assigned to that offset, if any.
2761 	 *
2762 	 * XXX - this, and the next switch statement, won't handle
2763 	 * encapsulation of 802.11 or 802.11+radio information in
2764 	 * some other protocol stack.  That's significantly more
2765 	 * complicated.
2766 	 */
2767 	switch (cstate->outermostlinktype) {
2768 
2769 	case DLT_PRISM_HEADER:
2770 		s = gen_load_prism_llprefixlen(cstate);
2771 		break;
2772 
2773 	case DLT_IEEE802_11_RADIO_AVS:
2774 		s = gen_load_avs_llprefixlen(cstate);
2775 		break;
2776 
2777 	case DLT_IEEE802_11_RADIO:
2778 		s = gen_load_radiotap_llprefixlen(cstate);
2779 		break;
2780 
2781 	case DLT_PPI:
2782 		s = gen_load_ppi_llprefixlen(cstate);
2783 		break;
2784 
2785 	default:
2786 		s = NULL;
2787 		break;
2788 	}
2789 
2790 	/*
2791 	 * For link-layer types that have a variable-length link-layer
2792 	 * header, generate code to load the offset of the link-layer
2793 	 * payload into the register assigned to that offset, if any.
2794 	 */
2795 	switch (cstate->outermostlinktype) {
2796 
2797 	case DLT_IEEE802_11:
2798 	case DLT_PRISM_HEADER:
2799 	case DLT_IEEE802_11_RADIO_AVS:
2800 	case DLT_IEEE802_11_RADIO:
2801 	case DLT_PPI:
2802 		s = gen_load_802_11_header_len(cstate, s, b->stmts);
2803 		break;
2804 	}
2805 
2806 	/*
2807 	 * If we have any offset-loading code, append all the
2808 	 * existing statements in the block to those statements,
2809 	 * and make the resulting list the list of statements
2810 	 * for the block.
2811 	 */
2812 	if (s != NULL) {
2813 		sappend(s, b->stmts);
2814 		b->stmts = s;
2815 	}
2816 }
2817 
2818 static struct block *
2819 gen_ppi_dlt_check(compiler_state_t *cstate)
2820 {
2821 	struct slist *s_load_dlt;
2822 	struct block *b;
2823 
2824 	if (cstate->linktype == DLT_PPI)
2825 	{
2826 		/* Create the statements that check for the DLT
2827 		 */
2828 		s_load_dlt = new_stmt(cstate, BPF_LD|BPF_W|BPF_ABS);
2829 		s_load_dlt->s.k = 4;
2830 
2831 		b = new_block(cstate, JMP(BPF_JEQ));
2832 
2833 		b->stmts = s_load_dlt;
2834 		b->s.k = SWAPLONG(DLT_IEEE802_11);
2835 	}
2836 	else
2837 	{
2838 		b = NULL;
2839 	}
2840 
2841 	return b;
2842 }
2843 
2844 /*
2845  * Take an absolute offset, and:
2846  *
2847  *    if it has no variable part, return NULL;
2848  *
2849  *    if it has a variable part, generate code to load the register
2850  *    containing that variable part into the X register, returning
2851  *    a pointer to that code - if no register for that offset has
2852  *    been allocated, allocate it first.
2853  *
2854  * (The code to set that register will be generated later, but will
2855  * be placed earlier in the code sequence.)
2856  */
2857 static struct slist *
2858 gen_abs_offset_varpart(compiler_state_t *cstate, bpf_abs_offset *off)
2859 {
2860 	struct slist *s;
2861 
2862 	if (off->is_variable) {
2863 		if (off->reg == -1) {
2864 			/*
2865 			 * We haven't yet assigned a register for the
2866 			 * variable part of the offset of the link-layer
2867 			 * header; allocate one.
2868 			 */
2869 			off->reg = alloc_reg(cstate);
2870 		}
2871 
2872 		/*
2873 		 * Load the register containing the variable part of the
2874 		 * offset of the link-layer header into the X register.
2875 		 */
2876 		s = new_stmt(cstate, BPF_LDX|BPF_MEM);
2877 		s->s.k = off->reg;
2878 		return s;
2879 	} else {
2880 		/*
2881 		 * That offset isn't variable, there's no variable part,
2882 		 * so we don't need to generate any code.
2883 		 */
2884 		return NULL;
2885 	}
2886 }
2887 
2888 /*
2889  * Map an Ethernet type to the equivalent PPP type.
2890  */
2891 static int
2892 ethertype_to_ppptype(proto)
2893 	int proto;
2894 {
2895 	switch (proto) {
2896 
2897 	case ETHERTYPE_IP:
2898 		proto = PPP_IP;
2899 		break;
2900 
2901 	case ETHERTYPE_IPV6:
2902 		proto = PPP_IPV6;
2903 		break;
2904 
2905 	case ETHERTYPE_DN:
2906 		proto = PPP_DECNET;
2907 		break;
2908 
2909 	case ETHERTYPE_ATALK:
2910 		proto = PPP_APPLE;
2911 		break;
2912 
2913 	case ETHERTYPE_NS:
2914 		proto = PPP_NS;
2915 		break;
2916 
2917 	case LLCSAP_ISONS:
2918 		proto = PPP_OSI;
2919 		break;
2920 
2921 	case LLCSAP_8021D:
2922 		/*
2923 		 * I'm assuming the "Bridging PDU"s that go
2924 		 * over PPP are Spanning Tree Protocol
2925 		 * Bridging PDUs.
2926 		 */
2927 		proto = PPP_BRPDU;
2928 		break;
2929 
2930 	case LLCSAP_IPX:
2931 		proto = PPP_IPX;
2932 		break;
2933 	}
2934 	return (proto);
2935 }
2936 
2937 /*
2938  * Generate any tests that, for encapsulation of a link-layer packet
2939  * inside another protocol stack, need to be done to check for those
2940  * link-layer packets (and that haven't already been done by a check
2941  * for that encapsulation).
2942  */
2943 static struct block *
2944 gen_prevlinkhdr_check(compiler_state_t *cstate)
2945 {
2946 	struct block *b0;
2947 
2948 	if (cstate->is_geneve)
2949 		return gen_geneve_ll_check(cstate);
2950 
2951 	switch (cstate->prevlinktype) {
2952 
2953 	case DLT_SUNATM:
2954 		/*
2955 		 * This is LANE-encapsulated Ethernet; check that the LANE
2956 		 * packet doesn't begin with an LE Control marker, i.e.
2957 		 * that it's data, not a control message.
2958 		 *
2959 		 * (We've already generated a test for LANE.)
2960 		 */
2961 		b0 = gen_cmp(cstate, OR_PREVLINKHDR, SUNATM_PKT_BEGIN_POS, BPF_H, 0xFF00);
2962 		gen_not(b0);
2963 		return b0;
2964 
2965 	default:
2966 		/*
2967 		 * No such tests are necessary.
2968 		 */
2969 		return NULL;
2970 	}
2971 	/*NOTREACHED*/
2972 }
2973 
2974 /*
2975  * The three different values we should check for when checking for an
2976  * IPv6 packet with DLT_NULL.
2977  */
2978 #define BSD_AFNUM_INET6_BSD	24	/* NetBSD, OpenBSD, BSD/OS, Npcap */
2979 #define BSD_AFNUM_INET6_FREEBSD	28	/* FreeBSD */
2980 #define BSD_AFNUM_INET6_DARWIN	30	/* OS X, iOS, other Darwin-based OSes */
2981 
2982 /*
2983  * Generate code to match a particular packet type by matching the
2984  * link-layer type field or fields in the 802.2 LLC header.
2985  *
2986  * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
2987  * value, if <= ETHERMTU.
2988  */
2989 static struct block *
2990 gen_linktype(compiler_state_t *cstate, int proto)
2991 {
2992 	struct block *b0, *b1, *b2;
2993 	const char *description;
2994 
2995 	/* are we checking MPLS-encapsulated packets? */
2996 	if (cstate->label_stack_depth > 0) {
2997 		switch (proto) {
2998 		case ETHERTYPE_IP:
2999 		case PPP_IP:
3000 			/* FIXME add other L3 proto IDs */
3001 			return gen_mpls_linktype(cstate, Q_IP);
3002 
3003 		case ETHERTYPE_IPV6:
3004 		case PPP_IPV6:
3005 			/* FIXME add other L3 proto IDs */
3006 			return gen_mpls_linktype(cstate, Q_IPV6);
3007 
3008 		default:
3009 			bpf_error(cstate, "unsupported protocol over mpls");
3010 			/* NOTREACHED */
3011 		}
3012 	}
3013 
3014 	switch (cstate->linktype) {
3015 
3016 	case DLT_EN10MB:
3017 	case DLT_NETANALYZER:
3018 	case DLT_NETANALYZER_TRANSPARENT:
3019 		/* Geneve has an EtherType regardless of whether there is an
3020 		 * L2 header. */
3021 		if (!cstate->is_geneve)
3022 			b0 = gen_prevlinkhdr_check(cstate);
3023 		else
3024 			b0 = NULL;
3025 
3026 		b1 = gen_ether_linktype(cstate, proto);
3027 		if (b0 != NULL)
3028 			gen_and(b0, b1);
3029 		return b1;
3030 		/*NOTREACHED*/
3031 		break;
3032 
3033 	case DLT_C_HDLC:
3034 		switch (proto) {
3035 
3036 		case LLCSAP_ISONS:
3037 			proto = (proto << 8 | LLCSAP_ISONS);
3038 			/* fall through */
3039 
3040 		default:
3041 			return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, (bpf_int32)proto);
3042 			/*NOTREACHED*/
3043 			break;
3044 		}
3045 		break;
3046 
3047 	case DLT_IEEE802_11:
3048 	case DLT_PRISM_HEADER:
3049 	case DLT_IEEE802_11_RADIO_AVS:
3050 	case DLT_IEEE802_11_RADIO:
3051 	case DLT_PPI:
3052 		/*
3053 		 * Check that we have a data frame.
3054 		 */
3055 		b0 = gen_check_802_11_data_frame(cstate);
3056 
3057 		/*
3058 		 * Now check for the specified link-layer type.
3059 		 */
3060 		b1 = gen_llc_linktype(cstate, proto);
3061 		gen_and(b0, b1);
3062 		return b1;
3063 		/*NOTREACHED*/
3064 		break;
3065 
3066 	case DLT_FDDI:
3067 		/*
3068 		 * XXX - check for LLC frames.
3069 		 */
3070 		return gen_llc_linktype(cstate, proto);
3071 		/*NOTREACHED*/
3072 		break;
3073 
3074 	case DLT_IEEE802:
3075 		/*
3076 		 * XXX - check for LLC PDUs, as per IEEE 802.5.
3077 		 */
3078 		return gen_llc_linktype(cstate, proto);
3079 		/*NOTREACHED*/
3080 		break;
3081 
3082 	case DLT_ATM_RFC1483:
3083 	case DLT_ATM_CLIP:
3084 	case DLT_IP_OVER_FC:
3085 		return gen_llc_linktype(cstate, proto);
3086 		/*NOTREACHED*/
3087 		break;
3088 
3089 	case DLT_SUNATM:
3090 		/*
3091 		 * Check for an LLC-encapsulated version of this protocol;
3092 		 * if we were checking for LANE, linktype would no longer
3093 		 * be DLT_SUNATM.
3094 		 *
3095 		 * Check for LLC encapsulation and then check the protocol.
3096 		 */
3097 		b0 = gen_atmfield_code(cstate, A_PROTOTYPE, PT_LLC, BPF_JEQ, 0);
3098 		b1 = gen_llc_linktype(cstate, proto);
3099 		gen_and(b0, b1);
3100 		return b1;
3101 		/*NOTREACHED*/
3102 		break;
3103 
3104 	case DLT_LINUX_SLL:
3105 		return gen_linux_sll_linktype(cstate, proto);
3106 		/*NOTREACHED*/
3107 		break;
3108 
3109 	case DLT_SLIP:
3110 	case DLT_SLIP_BSDOS:
3111 	case DLT_RAW:
3112 		/*
3113 		 * These types don't provide any type field; packets
3114 		 * are always IPv4 or IPv6.
3115 		 *
3116 		 * XXX - for IPv4, check for a version number of 4, and,
3117 		 * for IPv6, check for a version number of 6?
3118 		 */
3119 		switch (proto) {
3120 
3121 		case ETHERTYPE_IP:
3122 			/* Check for a version number of 4. */
3123 			return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, 0x40, 0xF0);
3124 
3125 		case ETHERTYPE_IPV6:
3126 			/* Check for a version number of 6. */
3127 			return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, 0x60, 0xF0);
3128 
3129 		default:
3130 			return gen_false(cstate);	/* always false */
3131 		}
3132 		/*NOTREACHED*/
3133 		break;
3134 
3135 	case DLT_IPV4:
3136 		/*
3137 		 * Raw IPv4, so no type field.
3138 		 */
3139 		if (proto == ETHERTYPE_IP)
3140 			return gen_true(cstate);	/* always true */
3141 
3142 		/* Checking for something other than IPv4; always false */
3143 		return gen_false(cstate);
3144 		/*NOTREACHED*/
3145 		break;
3146 
3147 	case DLT_IPV6:
3148 		/*
3149 		 * Raw IPv6, so no type field.
3150 		 */
3151 		if (proto == ETHERTYPE_IPV6)
3152 			return gen_true(cstate);	/* always true */
3153 
3154 		/* Checking for something other than IPv6; always false */
3155 		return gen_false(cstate);
3156 		/*NOTREACHED*/
3157 		break;
3158 
3159 	case DLT_PPP:
3160 	case DLT_PPP_PPPD:
3161 	case DLT_PPP_SERIAL:
3162 	case DLT_PPP_ETHER:
3163 		/*
3164 		 * We use Ethernet protocol types inside libpcap;
3165 		 * map them to the corresponding PPP protocol types.
3166 		 */
3167 		proto = ethertype_to_ppptype(proto);
3168 		return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, (bpf_int32)proto);
3169 		/*NOTREACHED*/
3170 		break;
3171 
3172 	case DLT_PPP_BSDOS:
3173 		/*
3174 		 * We use Ethernet protocol types inside libpcap;
3175 		 * map them to the corresponding PPP protocol types.
3176 		 */
3177 		switch (proto) {
3178 
3179 		case ETHERTYPE_IP:
3180 			/*
3181 			 * Also check for Van Jacobson-compressed IP.
3182 			 * XXX - do this for other forms of PPP?
3183 			 */
3184 			b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, PPP_IP);
3185 			b1 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, PPP_VJC);
3186 			gen_or(b0, b1);
3187 			b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, PPP_VJNC);
3188 			gen_or(b1, b0);
3189 			return b0;
3190 
3191 		default:
3192 			proto = ethertype_to_ppptype(proto);
3193 			return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H,
3194 				(bpf_int32)proto);
3195 		}
3196 		/*NOTREACHED*/
3197 		break;
3198 
3199 	case DLT_NULL:
3200 	case DLT_LOOP:
3201 	case DLT_ENC:
3202 		switch (proto) {
3203 
3204 		case ETHERTYPE_IP:
3205 			return (gen_loopback_linktype(cstate, AF_INET));
3206 
3207 		case ETHERTYPE_IPV6:
3208 			/*
3209 			 * AF_ values may, unfortunately, be platform-
3210 			 * dependent; AF_INET isn't, because everybody
3211 			 * used 4.2BSD's value, but AF_INET6 is, because
3212 			 * 4.2BSD didn't have a value for it (given that
3213 			 * IPv6 didn't exist back in the early 1980's),
3214 			 * and they all picked their own values.
3215 			 *
3216 			 * This means that, if we're reading from a
3217 			 * savefile, we need to check for all the
3218 			 * possible values.
3219 			 *
3220 			 * If we're doing a live capture, we only need
3221 			 * to check for this platform's value; however,
3222 			 * Npcap uses 24, which isn't Windows's AF_INET6
3223 			 * value.  (Given the multiple different values,
3224 			 * programs that read pcap files shouldn't be
3225 			 * checking for their platform's AF_INET6 value
3226 			 * anyway, they should check for all of the
3227 			 * possible values. and they might as well do
3228 			 * that even for live captures.)
3229 			 */
3230 			if (cstate->bpf_pcap->rfile != NULL) {
3231 				/*
3232 				 * Savefile - check for all three
3233 				 * possible IPv6 values.
3234 				 */
3235 				b0 = gen_loopback_linktype(cstate, BSD_AFNUM_INET6_BSD);
3236 				b1 = gen_loopback_linktype(cstate, BSD_AFNUM_INET6_FREEBSD);
3237 				gen_or(b0, b1);
3238 				b0 = gen_loopback_linktype(cstate, BSD_AFNUM_INET6_DARWIN);
3239 				gen_or(b0, b1);
3240 				return (b1);
3241 			} else {
3242 				/*
3243 				 * Live capture, so we only need to
3244 				 * check for the value used on this
3245 				 * platform.
3246 				 */
3247 #ifdef _WIN32
3248 				/*
3249 				 * Npcap doesn't use Windows's AF_INET6,
3250 				 * as that collides with AF_IPX on
3251 				 * some BSDs (both have the value 23).
3252 				 * Instead, it uses 24.
3253 				 */
3254 				return (gen_loopback_linktype(cstate, 24));
3255 #else /* _WIN32 */
3256 #ifdef AF_INET6
3257 				return (gen_loopback_linktype(cstate, AF_INET6));
3258 #else /* AF_INET6 */
3259 				/*
3260 				 * I guess this platform doesn't support
3261 				 * IPv6, so we just reject all packets.
3262 				 */
3263 				return gen_false(cstate);
3264 #endif /* AF_INET6 */
3265 #endif /* _WIN32 */
3266 			}
3267 
3268 		default:
3269 			/*
3270 			 * Not a type on which we support filtering.
3271 			 * XXX - support those that have AF_ values
3272 			 * #defined on this platform, at least?
3273 			 */
3274 			return gen_false(cstate);
3275 		}
3276 
3277 #ifdef HAVE_NET_PFVAR_H
3278 	case DLT_PFLOG:
3279 		/*
3280 		 * af field is host byte order in contrast to the rest of
3281 		 * the packet.
3282 		 */
3283 		if (proto == ETHERTYPE_IP)
3284 			return (gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, af),
3285 			    BPF_B, (bpf_int32)AF_INET));
3286 		else if (proto == ETHERTYPE_IPV6)
3287 			return (gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, af),
3288 			    BPF_B, (bpf_int32)AF_INET6));
3289 		else
3290 			return gen_false(cstate);
3291 		/*NOTREACHED*/
3292 		break;
3293 #endif /* HAVE_NET_PFVAR_H */
3294 
3295 	case DLT_ARCNET:
3296 	case DLT_ARCNET_LINUX:
3297 		/*
3298 		 * XXX should we check for first fragment if the protocol
3299 		 * uses PHDS?
3300 		 */
3301 		switch (proto) {
3302 
3303 		default:
3304 			return gen_false(cstate);
3305 
3306 		case ETHERTYPE_IPV6:
3307 			return (gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3308 				(bpf_int32)ARCTYPE_INET6));
3309 
3310 		case ETHERTYPE_IP:
3311 			b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3312 				     (bpf_int32)ARCTYPE_IP);
3313 			b1 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3314 				     (bpf_int32)ARCTYPE_IP_OLD);
3315 			gen_or(b0, b1);
3316 			return (b1);
3317 
3318 		case ETHERTYPE_ARP:
3319 			b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3320 				     (bpf_int32)ARCTYPE_ARP);
3321 			b1 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3322 				     (bpf_int32)ARCTYPE_ARP_OLD);
3323 			gen_or(b0, b1);
3324 			return (b1);
3325 
3326 		case ETHERTYPE_REVARP:
3327 			return (gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3328 					(bpf_int32)ARCTYPE_REVARP));
3329 
3330 		case ETHERTYPE_ATALK:
3331 			return (gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3332 					(bpf_int32)ARCTYPE_ATALK));
3333 		}
3334 		/*NOTREACHED*/
3335 		break;
3336 
3337 	case DLT_LTALK:
3338 		switch (proto) {
3339 		case ETHERTYPE_ATALK:
3340 			return gen_true(cstate);
3341 		default:
3342 			return gen_false(cstate);
3343 		}
3344 		/*NOTREACHED*/
3345 		break;
3346 
3347 	case DLT_FRELAY:
3348 		/*
3349 		 * XXX - assumes a 2-byte Frame Relay header with
3350 		 * DLCI and flags.  What if the address is longer?
3351 		 */
3352 		switch (proto) {
3353 
3354 		case ETHERTYPE_IP:
3355 			/*
3356 			 * Check for the special NLPID for IP.
3357 			 */
3358 			return gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | 0xcc);
3359 
3360 		case ETHERTYPE_IPV6:
3361 			/*
3362 			 * Check for the special NLPID for IPv6.
3363 			 */
3364 			return gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | 0x8e);
3365 
3366 		case LLCSAP_ISONS:
3367 			/*
3368 			 * Check for several OSI protocols.
3369 			 *
3370 			 * Frame Relay packets typically have an OSI
3371 			 * NLPID at the beginning; we check for each
3372 			 * of them.
3373 			 *
3374 			 * What we check for is the NLPID and a frame
3375 			 * control field of UI, i.e. 0x03 followed
3376 			 * by the NLPID.
3377 			 */
3378 			b0 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | ISO8473_CLNP);
3379 			b1 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | ISO9542_ESIS);
3380 			b2 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | ISO10589_ISIS);
3381 			gen_or(b1, b2);
3382 			gen_or(b0, b2);
3383 			return b2;
3384 
3385 		default:
3386 			return gen_false(cstate);
3387 		}
3388 		/*NOTREACHED*/
3389 		break;
3390 
3391 	case DLT_MFR:
3392 		bpf_error(cstate, "Multi-link Frame Relay link-layer type filtering not implemented");
3393 
3394         case DLT_JUNIPER_MFR:
3395         case DLT_JUNIPER_MLFR:
3396         case DLT_JUNIPER_MLPPP:
3397 	case DLT_JUNIPER_ATM1:
3398 	case DLT_JUNIPER_ATM2:
3399 	case DLT_JUNIPER_PPPOE:
3400 	case DLT_JUNIPER_PPPOE_ATM:
3401         case DLT_JUNIPER_GGSN:
3402         case DLT_JUNIPER_ES:
3403         case DLT_JUNIPER_MONITOR:
3404         case DLT_JUNIPER_SERVICES:
3405         case DLT_JUNIPER_ETHER:
3406         case DLT_JUNIPER_PPP:
3407         case DLT_JUNIPER_FRELAY:
3408         case DLT_JUNIPER_CHDLC:
3409         case DLT_JUNIPER_VP:
3410         case DLT_JUNIPER_ST:
3411         case DLT_JUNIPER_ISM:
3412         case DLT_JUNIPER_VS:
3413         case DLT_JUNIPER_SRX_E2E:
3414         case DLT_JUNIPER_FIBRECHANNEL:
3415 	case DLT_JUNIPER_ATM_CEMIC:
3416 
3417 		/* just lets verify the magic number for now -
3418 		 * on ATM we may have up to 6 different encapsulations on the wire
3419 		 * and need a lot of heuristics to figure out that the payload
3420 		 * might be;
3421 		 *
3422 		 * FIXME encapsulation specific BPF_ filters
3423 		 */
3424 		return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_W, 0x4d474300, 0xffffff00); /* compare the magic number */
3425 
3426 	case DLT_BACNET_MS_TP:
3427 		return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_W, 0x55FF0000, 0xffff0000);
3428 
3429 	case DLT_IPNET:
3430 		return gen_ipnet_linktype(cstate, proto);
3431 
3432 	case DLT_LINUX_IRDA:
3433 		bpf_error(cstate, "IrDA link-layer type filtering not implemented");
3434 
3435 	case DLT_DOCSIS:
3436 		bpf_error(cstate, "DOCSIS link-layer type filtering not implemented");
3437 
3438 	case DLT_MTP2:
3439 	case DLT_MTP2_WITH_PHDR:
3440 		bpf_error(cstate, "MTP2 link-layer type filtering not implemented");
3441 
3442 	case DLT_ERF:
3443 		bpf_error(cstate, "ERF link-layer type filtering not implemented");
3444 
3445 	case DLT_PFSYNC:
3446 		bpf_error(cstate, "PFSYNC link-layer type filtering not implemented");
3447 
3448 	case DLT_LINUX_LAPD:
3449 		bpf_error(cstate, "LAPD link-layer type filtering not implemented");
3450 
3451 	case DLT_USB_FREEBSD:
3452 	case DLT_USB_LINUX:
3453 	case DLT_USB_LINUX_MMAPPED:
3454 	case DLT_USBPCAP:
3455 		bpf_error(cstate, "USB link-layer type filtering not implemented");
3456 
3457 	case DLT_BLUETOOTH_HCI_H4:
3458 	case DLT_BLUETOOTH_HCI_H4_WITH_PHDR:
3459 		bpf_error(cstate, "Bluetooth link-layer type filtering not implemented");
3460 
3461 	case DLT_CAN20B:
3462 	case DLT_CAN_SOCKETCAN:
3463 		bpf_error(cstate, "CAN link-layer type filtering not implemented");
3464 
3465 	case DLT_IEEE802_15_4:
3466 	case DLT_IEEE802_15_4_LINUX:
3467 	case DLT_IEEE802_15_4_NONASK_PHY:
3468 	case DLT_IEEE802_15_4_NOFCS:
3469 		bpf_error(cstate, "IEEE 802.15.4 link-layer type filtering not implemented");
3470 
3471 	case DLT_IEEE802_16_MAC_CPS_RADIO:
3472 		bpf_error(cstate, "IEEE 802.16 link-layer type filtering not implemented");
3473 
3474 	case DLT_SITA:
3475 		bpf_error(cstate, "SITA link-layer type filtering not implemented");
3476 
3477 	case DLT_RAIF1:
3478 		bpf_error(cstate, "RAIF1 link-layer type filtering not implemented");
3479 
3480 	case DLT_IPMB:
3481 		bpf_error(cstate, "IPMB link-layer type filtering not implemented");
3482 
3483 	case DLT_AX25_KISS:
3484 		bpf_error(cstate, "AX.25 link-layer type filtering not implemented");
3485 
3486 	case DLT_NFLOG:
3487 		/* Using the fixed-size NFLOG header it is possible to tell only
3488 		 * the address family of the packet, other meaningful data is
3489 		 * either missing or behind TLVs.
3490 		 */
3491 		bpf_error(cstate, "NFLOG link-layer type filtering not implemented");
3492 
3493 	default:
3494 		/*
3495 		 * Does this link-layer header type have a field
3496 		 * indicating the type of the next protocol?  If
3497 		 * so, off_linktype.constant_part will be the offset of that
3498 		 * field in the packet; if not, it will be OFFSET_NOT_SET.
3499 		 */
3500 		if (cstate->off_linktype.constant_part != OFFSET_NOT_SET) {
3501 			/*
3502 			 * Yes; assume it's an Ethernet type.  (If
3503 			 * it's not, it needs to be handled specially
3504 			 * above.)
3505 			 */
3506 			return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, (bpf_int32)proto);
3507 		} else {
3508 			/*
3509 			 * No; report an error.
3510 			 */
3511 			description = pcap_datalink_val_to_description(cstate->linktype);
3512 			if (description != NULL) {
3513 				bpf_error(cstate, "%s link-layer type filtering not implemented",
3514 				    description);
3515 			} else {
3516 				bpf_error(cstate, "DLT %u link-layer type filtering not implemented",
3517 				    cstate->linktype);
3518 			}
3519 		}
3520 		break;
3521 	}
3522 }
3523 
3524 /*
3525  * Check for an LLC SNAP packet with a given organization code and
3526  * protocol type; we check the entire contents of the 802.2 LLC and
3527  * snap headers, checking for DSAP and SSAP of SNAP and a control
3528  * field of 0x03 in the LLC header, and for the specified organization
3529  * code and protocol type in the SNAP header.
3530  */
3531 static struct block *
3532 gen_snap(compiler_state_t *cstate, bpf_u_int32 orgcode, bpf_u_int32 ptype)
3533 {
3534 	u_char snapblock[8];
3535 
3536 	snapblock[0] = LLCSAP_SNAP;	/* DSAP = SNAP */
3537 	snapblock[1] = LLCSAP_SNAP;	/* SSAP = SNAP */
3538 	snapblock[2] = 0x03;		/* control = UI */
3539 	snapblock[3] = (orgcode >> 16);	/* upper 8 bits of organization code */
3540 	snapblock[4] = (orgcode >> 8);	/* middle 8 bits of organization code */
3541 	snapblock[5] = (orgcode >> 0);	/* lower 8 bits of organization code */
3542 	snapblock[6] = (ptype >> 8);	/* upper 8 bits of protocol type */
3543 	snapblock[7] = (ptype >> 0);	/* lower 8 bits of protocol type */
3544 	return gen_bcmp(cstate, OR_LLC, 0, 8, snapblock);
3545 }
3546 
3547 /*
3548  * Generate code to match frames with an LLC header.
3549  */
3550 struct block *
3551 gen_llc(compiler_state_t *cstate)
3552 {
3553 	struct block *b0, *b1;
3554 
3555 	switch (cstate->linktype) {
3556 
3557 	case DLT_EN10MB:
3558 		/*
3559 		 * We check for an Ethernet type field less than
3560 		 * 1500, which means it's an 802.3 length field.
3561 		 */
3562 		b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
3563 		gen_not(b0);
3564 
3565 		/*
3566 		 * Now check for the purported DSAP and SSAP not being
3567 		 * 0xFF, to rule out NetWare-over-802.3.
3568 		 */
3569 		b1 = gen_cmp(cstate, OR_LLC, 0, BPF_H, (bpf_int32)0xFFFF);
3570 		gen_not(b1);
3571 		gen_and(b0, b1);
3572 		return b1;
3573 
3574 	case DLT_SUNATM:
3575 		/*
3576 		 * We check for LLC traffic.
3577 		 */
3578 		b0 = gen_atmtype_abbrev(cstate, A_LLC);
3579 		return b0;
3580 
3581 	case DLT_IEEE802:	/* Token Ring */
3582 		/*
3583 		 * XXX - check for LLC frames.
3584 		 */
3585 		return gen_true(cstate);
3586 
3587 	case DLT_FDDI:
3588 		/*
3589 		 * XXX - check for LLC frames.
3590 		 */
3591 		return gen_true(cstate);
3592 
3593 	case DLT_ATM_RFC1483:
3594 		/*
3595 		 * For LLC encapsulation, these are defined to have an
3596 		 * 802.2 LLC header.
3597 		 *
3598 		 * For VC encapsulation, they don't, but there's no
3599 		 * way to check for that; the protocol used on the VC
3600 		 * is negotiated out of band.
3601 		 */
3602 		return gen_true(cstate);
3603 
3604 	case DLT_IEEE802_11:
3605 	case DLT_PRISM_HEADER:
3606 	case DLT_IEEE802_11_RADIO:
3607 	case DLT_IEEE802_11_RADIO_AVS:
3608 	case DLT_PPI:
3609 		/*
3610 		 * Check that we have a data frame.
3611 		 */
3612 		b0 = gen_check_802_11_data_frame(cstate);
3613 		return b0;
3614 
3615 	default:
3616 		bpf_error(cstate, "'llc' not supported for linktype %d", cstate->linktype);
3617 		/* NOTREACHED */
3618 	}
3619 }
3620 
3621 struct block *
3622 gen_llc_i(compiler_state_t *cstate)
3623 {
3624 	struct block *b0, *b1;
3625 	struct slist *s;
3626 
3627 	/*
3628 	 * Check whether this is an LLC frame.
3629 	 */
3630 	b0 = gen_llc(cstate);
3631 
3632 	/*
3633 	 * Load the control byte and test the low-order bit; it must
3634 	 * be clear for I frames.
3635 	 */
3636 	s = gen_load_a(cstate, OR_LLC, 2, BPF_B);
3637 	b1 = new_block(cstate, JMP(BPF_JSET));
3638 	b1->s.k = 0x01;
3639 	b1->stmts = s;
3640 	gen_not(b1);
3641 	gen_and(b0, b1);
3642 	return b1;
3643 }
3644 
3645 struct block *
3646 gen_llc_s(compiler_state_t *cstate)
3647 {
3648 	struct block *b0, *b1;
3649 
3650 	/*
3651 	 * Check whether this is an LLC frame.
3652 	 */
3653 	b0 = gen_llc(cstate);
3654 
3655 	/*
3656 	 * Now compare the low-order 2 bit of the control byte against
3657 	 * the appropriate value for S frames.
3658 	 */
3659 	b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, LLC_S_FMT, 0x03);
3660 	gen_and(b0, b1);
3661 	return b1;
3662 }
3663 
3664 struct block *
3665 gen_llc_u(compiler_state_t *cstate)
3666 {
3667 	struct block *b0, *b1;
3668 
3669 	/*
3670 	 * Check whether this is an LLC frame.
3671 	 */
3672 	b0 = gen_llc(cstate);
3673 
3674 	/*
3675 	 * Now compare the low-order 2 bit of the control byte against
3676 	 * the appropriate value for U frames.
3677 	 */
3678 	b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, LLC_U_FMT, 0x03);
3679 	gen_and(b0, b1);
3680 	return b1;
3681 }
3682 
3683 struct block *
3684 gen_llc_s_subtype(compiler_state_t *cstate, bpf_u_int32 subtype)
3685 {
3686 	struct block *b0, *b1;
3687 
3688 	/*
3689 	 * Check whether this is an LLC frame.
3690 	 */
3691 	b0 = gen_llc(cstate);
3692 
3693 	/*
3694 	 * Now check for an S frame with the appropriate type.
3695 	 */
3696 	b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, subtype, LLC_S_CMD_MASK);
3697 	gen_and(b0, b1);
3698 	return b1;
3699 }
3700 
3701 struct block *
3702 gen_llc_u_subtype(compiler_state_t *cstate, bpf_u_int32 subtype)
3703 {
3704 	struct block *b0, *b1;
3705 
3706 	/*
3707 	 * Check whether this is an LLC frame.
3708 	 */
3709 	b0 = gen_llc(cstate);
3710 
3711 	/*
3712 	 * Now check for a U frame with the appropriate type.
3713 	 */
3714 	b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, subtype, LLC_U_CMD_MASK);
3715 	gen_and(b0, b1);
3716 	return b1;
3717 }
3718 
3719 /*
3720  * Generate code to match a particular packet type, for link-layer types
3721  * using 802.2 LLC headers.
3722  *
3723  * This is *NOT* used for Ethernet; "gen_ether_linktype()" is used
3724  * for that - it handles the D/I/X Ethernet vs. 802.3+802.2 issues.
3725  *
3726  * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
3727  * value, if <= ETHERMTU.  We use that to determine whether to
3728  * match the DSAP or both DSAP and LSAP or to check the OUI and
3729  * protocol ID in a SNAP header.
3730  */
3731 static struct block *
3732 gen_llc_linktype(compiler_state_t *cstate, int proto)
3733 {
3734 	/*
3735 	 * XXX - handle token-ring variable-length header.
3736 	 */
3737 	switch (proto) {
3738 
3739 	case LLCSAP_IP:
3740 	case LLCSAP_ISONS:
3741 	case LLCSAP_NETBEUI:
3742 		/*
3743 		 * XXX - should we check both the DSAP and the
3744 		 * SSAP, like this, or should we check just the
3745 		 * DSAP, as we do for other SAP values?
3746 		 */
3747 		return gen_cmp(cstate, OR_LLC, 0, BPF_H, (bpf_u_int32)
3748 			     ((proto << 8) | proto));
3749 
3750 	case LLCSAP_IPX:
3751 		/*
3752 		 * XXX - are there ever SNAP frames for IPX on
3753 		 * non-Ethernet 802.x networks?
3754 		 */
3755 		return gen_cmp(cstate, OR_LLC, 0, BPF_B,
3756 		    (bpf_int32)LLCSAP_IPX);
3757 
3758 	case ETHERTYPE_ATALK:
3759 		/*
3760 		 * 802.2-encapsulated ETHERTYPE_ATALK packets are
3761 		 * SNAP packets with an organization code of
3762 		 * 0x080007 (Apple, for Appletalk) and a protocol
3763 		 * type of ETHERTYPE_ATALK (Appletalk).
3764 		 *
3765 		 * XXX - check for an organization code of
3766 		 * encapsulated Ethernet as well?
3767 		 */
3768 		return gen_snap(cstate, 0x080007, ETHERTYPE_ATALK);
3769 
3770 	default:
3771 		/*
3772 		 * XXX - we don't have to check for IPX 802.3
3773 		 * here, but should we check for the IPX Ethertype?
3774 		 */
3775 		if (proto <= ETHERMTU) {
3776 			/*
3777 			 * This is an LLC SAP value, so check
3778 			 * the DSAP.
3779 			 */
3780 			return gen_cmp(cstate, OR_LLC, 0, BPF_B, (bpf_int32)proto);
3781 		} else {
3782 			/*
3783 			 * This is an Ethernet type; we assume that it's
3784 			 * unlikely that it'll appear in the right place
3785 			 * at random, and therefore check only the
3786 			 * location that would hold the Ethernet type
3787 			 * in a SNAP frame with an organization code of
3788 			 * 0x000000 (encapsulated Ethernet).
3789 			 *
3790 			 * XXX - if we were to check for the SNAP DSAP and
3791 			 * LSAP, as per XXX, and were also to check for an
3792 			 * organization code of 0x000000 (encapsulated
3793 			 * Ethernet), we'd do
3794 			 *
3795 			 *	return gen_snap(cstate, 0x000000, proto);
3796 			 *
3797 			 * here; for now, we don't, as per the above.
3798 			 * I don't know whether it's worth the extra CPU
3799 			 * time to do the right check or not.
3800 			 */
3801 			return gen_cmp(cstate, OR_LLC, 6, BPF_H, (bpf_int32)proto);
3802 		}
3803 	}
3804 }
3805 
3806 static struct block *
3807 gen_hostop(compiler_state_t *cstate, bpf_u_int32 addr, bpf_u_int32 mask,
3808     int dir, int proto, u_int src_off, u_int dst_off)
3809 {
3810 	struct block *b0, *b1;
3811 	u_int offset;
3812 
3813 	switch (dir) {
3814 
3815 	case Q_SRC:
3816 		offset = src_off;
3817 		break;
3818 
3819 	case Q_DST:
3820 		offset = dst_off;
3821 		break;
3822 
3823 	case Q_AND:
3824 		b0 = gen_hostop(cstate, addr, mask, Q_SRC, proto, src_off, dst_off);
3825 		b1 = gen_hostop(cstate, addr, mask, Q_DST, proto, src_off, dst_off);
3826 		gen_and(b0, b1);
3827 		return b1;
3828 
3829 	case Q_OR:
3830 	case Q_DEFAULT:
3831 		b0 = gen_hostop(cstate, addr, mask, Q_SRC, proto, src_off, dst_off);
3832 		b1 = gen_hostop(cstate, addr, mask, Q_DST, proto, src_off, dst_off);
3833 		gen_or(b0, b1);
3834 		return b1;
3835 
3836 	default:
3837 		abort();
3838 	}
3839 	b0 = gen_linktype(cstate, proto);
3840 	b1 = gen_mcmp(cstate, OR_LINKPL, offset, BPF_W, (bpf_int32)addr, mask);
3841 	gen_and(b0, b1);
3842 	return b1;
3843 }
3844 
3845 #ifdef INET6
3846 static struct block *
3847 gen_hostop6(compiler_state_t *cstate, struct in6_addr *addr,
3848     struct in6_addr *mask, int dir, int proto, u_int src_off, u_int dst_off)
3849 {
3850 	struct block *b0, *b1;
3851 	u_int offset;
3852 	u_int32_t *a, *m;
3853 
3854 	switch (dir) {
3855 
3856 	case Q_SRC:
3857 		offset = src_off;
3858 		break;
3859 
3860 	case Q_DST:
3861 		offset = dst_off;
3862 		break;
3863 
3864 	case Q_AND:
3865 		b0 = gen_hostop6(cstate, addr, mask, Q_SRC, proto, src_off, dst_off);
3866 		b1 = gen_hostop6(cstate, addr, mask, Q_DST, proto, src_off, dst_off);
3867 		gen_and(b0, b1);
3868 		return b1;
3869 
3870 	case Q_OR:
3871 	case Q_DEFAULT:
3872 		b0 = gen_hostop6(cstate, addr, mask, Q_SRC, proto, src_off, dst_off);
3873 		b1 = gen_hostop6(cstate, addr, mask, Q_DST, proto, src_off, dst_off);
3874 		gen_or(b0, b1);
3875 		return b1;
3876 
3877 	default:
3878 		abort();
3879 	}
3880 	/* this order is important */
3881 	a = (u_int32_t *)addr;
3882 	m = (u_int32_t *)mask;
3883 	b1 = gen_mcmp(cstate, OR_LINKPL, offset + 12, BPF_W, ntohl(a[3]), ntohl(m[3]));
3884 	b0 = gen_mcmp(cstate, OR_LINKPL, offset + 8, BPF_W, ntohl(a[2]), ntohl(m[2]));
3885 	gen_and(b0, b1);
3886 	b0 = gen_mcmp(cstate, OR_LINKPL, offset + 4, BPF_W, ntohl(a[1]), ntohl(m[1]));
3887 	gen_and(b0, b1);
3888 	b0 = gen_mcmp(cstate, OR_LINKPL, offset + 0, BPF_W, ntohl(a[0]), ntohl(m[0]));
3889 	gen_and(b0, b1);
3890 	b0 = gen_linktype(cstate, proto);
3891 	gen_and(b0, b1);
3892 	return b1;
3893 }
3894 #endif
3895 
3896 static struct block *
3897 gen_ehostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
3898 {
3899 	register struct block *b0, *b1;
3900 
3901 	switch (dir) {
3902 	case Q_SRC:
3903 		return gen_bcmp(cstate, OR_LINKHDR, 6, 6, eaddr);
3904 
3905 	case Q_DST:
3906 		return gen_bcmp(cstate, OR_LINKHDR, 0, 6, eaddr);
3907 
3908 	case Q_AND:
3909 		b0 = gen_ehostop(cstate, eaddr, Q_SRC);
3910 		b1 = gen_ehostop(cstate, eaddr, Q_DST);
3911 		gen_and(b0, b1);
3912 		return b1;
3913 
3914 	case Q_DEFAULT:
3915 	case Q_OR:
3916 		b0 = gen_ehostop(cstate, eaddr, Q_SRC);
3917 		b1 = gen_ehostop(cstate, eaddr, Q_DST);
3918 		gen_or(b0, b1);
3919 		return b1;
3920 
3921 	case Q_ADDR1:
3922 		bpf_error(cstate, "'addr1' is only supported on 802.11 with 802.11 headers");
3923 		break;
3924 
3925 	case Q_ADDR2:
3926 		bpf_error(cstate, "'addr2' is only supported on 802.11 with 802.11 headers");
3927 		break;
3928 
3929 	case Q_ADDR3:
3930 		bpf_error(cstate, "'addr3' is only supported on 802.11 with 802.11 headers");
3931 		break;
3932 
3933 	case Q_ADDR4:
3934 		bpf_error(cstate, "'addr4' is only supported on 802.11 with 802.11 headers");
3935 		break;
3936 
3937 	case Q_RA:
3938 		bpf_error(cstate, "'ra' is only supported on 802.11 with 802.11 headers");
3939 		break;
3940 
3941 	case Q_TA:
3942 		bpf_error(cstate, "'ta' is only supported on 802.11 with 802.11 headers");
3943 		break;
3944 	}
3945 	abort();
3946 	/* NOTREACHED */
3947 }
3948 
3949 /*
3950  * Like gen_ehostop, but for DLT_FDDI
3951  */
3952 static struct block *
3953 gen_fhostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
3954 {
3955 	struct block *b0, *b1;
3956 
3957 	switch (dir) {
3958 	case Q_SRC:
3959 		return gen_bcmp(cstate, OR_LINKHDR, 6 + 1 + cstate->pcap_fddipad, 6, eaddr);
3960 
3961 	case Q_DST:
3962 		return gen_bcmp(cstate, OR_LINKHDR, 0 + 1 + cstate->pcap_fddipad, 6, eaddr);
3963 
3964 	case Q_AND:
3965 		b0 = gen_fhostop(cstate, eaddr, Q_SRC);
3966 		b1 = gen_fhostop(cstate, eaddr, Q_DST);
3967 		gen_and(b0, b1);
3968 		return b1;
3969 
3970 	case Q_DEFAULT:
3971 	case Q_OR:
3972 		b0 = gen_fhostop(cstate, eaddr, Q_SRC);
3973 		b1 = gen_fhostop(cstate, eaddr, Q_DST);
3974 		gen_or(b0, b1);
3975 		return b1;
3976 
3977 	case Q_ADDR1:
3978 		bpf_error(cstate, "'addr1' is only supported on 802.11");
3979 		break;
3980 
3981 	case Q_ADDR2:
3982 		bpf_error(cstate, "'addr2' is only supported on 802.11");
3983 		break;
3984 
3985 	case Q_ADDR3:
3986 		bpf_error(cstate, "'addr3' is only supported on 802.11");
3987 		break;
3988 
3989 	case Q_ADDR4:
3990 		bpf_error(cstate, "'addr4' is only supported on 802.11");
3991 		break;
3992 
3993 	case Q_RA:
3994 		bpf_error(cstate, "'ra' is only supported on 802.11");
3995 		break;
3996 
3997 	case Q_TA:
3998 		bpf_error(cstate, "'ta' is only supported on 802.11");
3999 		break;
4000 	}
4001 	abort();
4002 	/* NOTREACHED */
4003 }
4004 
4005 /*
4006  * Like gen_ehostop, but for DLT_IEEE802 (Token Ring)
4007  */
4008 static struct block *
4009 gen_thostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
4010 {
4011 	register struct block *b0, *b1;
4012 
4013 	switch (dir) {
4014 	case Q_SRC:
4015 		return gen_bcmp(cstate, OR_LINKHDR, 8, 6, eaddr);
4016 
4017 	case Q_DST:
4018 		return gen_bcmp(cstate, OR_LINKHDR, 2, 6, eaddr);
4019 
4020 	case Q_AND:
4021 		b0 = gen_thostop(cstate, eaddr, Q_SRC);
4022 		b1 = gen_thostop(cstate, eaddr, Q_DST);
4023 		gen_and(b0, b1);
4024 		return b1;
4025 
4026 	case Q_DEFAULT:
4027 	case Q_OR:
4028 		b0 = gen_thostop(cstate, eaddr, Q_SRC);
4029 		b1 = gen_thostop(cstate, eaddr, Q_DST);
4030 		gen_or(b0, b1);
4031 		return b1;
4032 
4033 	case Q_ADDR1:
4034 		bpf_error(cstate, "'addr1' is only supported on 802.11");
4035 		break;
4036 
4037 	case Q_ADDR2:
4038 		bpf_error(cstate, "'addr2' is only supported on 802.11");
4039 		break;
4040 
4041 	case Q_ADDR3:
4042 		bpf_error(cstate, "'addr3' is only supported on 802.11");
4043 		break;
4044 
4045 	case Q_ADDR4:
4046 		bpf_error(cstate, "'addr4' is only supported on 802.11");
4047 		break;
4048 
4049 	case Q_RA:
4050 		bpf_error(cstate, "'ra' is only supported on 802.11");
4051 		break;
4052 
4053 	case Q_TA:
4054 		bpf_error(cstate, "'ta' is only supported on 802.11");
4055 		break;
4056 	}
4057 	abort();
4058 	/* NOTREACHED */
4059 }
4060 
4061 /*
4062  * Like gen_ehostop, but for DLT_IEEE802_11 (802.11 wireless LAN) and
4063  * various 802.11 + radio headers.
4064  */
4065 static struct block *
4066 gen_wlanhostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
4067 {
4068 	register struct block *b0, *b1, *b2;
4069 	register struct slist *s;
4070 
4071 #ifdef ENABLE_WLAN_FILTERING_PATCH
4072 	/*
4073 	 * TODO GV 20070613
4074 	 * We need to disable the optimizer because the optimizer is buggy
4075 	 * and wipes out some LD instructions generated by the below
4076 	 * code to validate the Frame Control bits
4077 	 */
4078 	cstate->no_optimize = 1;
4079 #endif /* ENABLE_WLAN_FILTERING_PATCH */
4080 
4081 	switch (dir) {
4082 	case Q_SRC:
4083 		/*
4084 		 * Oh, yuk.
4085 		 *
4086 		 *	For control frames, there is no SA.
4087 		 *
4088 		 *	For management frames, SA is at an
4089 		 *	offset of 10 from the beginning of
4090 		 *	the packet.
4091 		 *
4092 		 *	For data frames, SA is at an offset
4093 		 *	of 10 from the beginning of the packet
4094 		 *	if From DS is clear, at an offset of
4095 		 *	16 from the beginning of the packet
4096 		 *	if From DS is set and To DS is clear,
4097 		 *	and an offset of 24 from the beginning
4098 		 *	of the packet if From DS is set and To DS
4099 		 *	is set.
4100 		 */
4101 
4102 		/*
4103 		 * Generate the tests to be done for data frames
4104 		 * with From DS set.
4105 		 *
4106 		 * First, check for To DS set, i.e. check "link[1] & 0x01".
4107 		 */
4108 		s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4109 		b1 = new_block(cstate, JMP(BPF_JSET));
4110 		b1->s.k = 0x01;	/* To DS */
4111 		b1->stmts = s;
4112 
4113 		/*
4114 		 * If To DS is set, the SA is at 24.
4115 		 */
4116 		b0 = gen_bcmp(cstate, OR_LINKHDR, 24, 6, eaddr);
4117 		gen_and(b1, b0);
4118 
4119 		/*
4120 		 * Now, check for To DS not set, i.e. check
4121 		 * "!(link[1] & 0x01)".
4122 		 */
4123 		s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4124 		b2 = new_block(cstate, JMP(BPF_JSET));
4125 		b2->s.k = 0x01;	/* To DS */
4126 		b2->stmts = s;
4127 		gen_not(b2);
4128 
4129 		/*
4130 		 * If To DS is not set, the SA is at 16.
4131 		 */
4132 		b1 = gen_bcmp(cstate, OR_LINKHDR, 16, 6, eaddr);
4133 		gen_and(b2, b1);
4134 
4135 		/*
4136 		 * Now OR together the last two checks.  That gives
4137 		 * the complete set of checks for data frames with
4138 		 * From DS set.
4139 		 */
4140 		gen_or(b1, b0);
4141 
4142 		/*
4143 		 * Now check for From DS being set, and AND that with
4144 		 * the ORed-together checks.
4145 		 */
4146 		s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4147 		b1 = new_block(cstate, JMP(BPF_JSET));
4148 		b1->s.k = 0x02;	/* From DS */
4149 		b1->stmts = s;
4150 		gen_and(b1, b0);
4151 
4152 		/*
4153 		 * Now check for data frames with From DS not set.
4154 		 */
4155 		s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4156 		b2 = new_block(cstate, JMP(BPF_JSET));
4157 		b2->s.k = 0x02;	/* From DS */
4158 		b2->stmts = s;
4159 		gen_not(b2);
4160 
4161 		/*
4162 		 * If From DS isn't set, the SA is at 10.
4163 		 */
4164 		b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4165 		gen_and(b2, b1);
4166 
4167 		/*
4168 		 * Now OR together the checks for data frames with
4169 		 * From DS not set and for data frames with From DS
4170 		 * set; that gives the checks done for data frames.
4171 		 */
4172 		gen_or(b1, b0);
4173 
4174 		/*
4175 		 * Now check for a data frame.
4176 		 * I.e, check "link[0] & 0x08".
4177 		 */
4178 		s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4179 		b1 = new_block(cstate, JMP(BPF_JSET));
4180 		b1->s.k = 0x08;
4181 		b1->stmts = s;
4182 
4183 		/*
4184 		 * AND that with the checks done for data frames.
4185 		 */
4186 		gen_and(b1, b0);
4187 
4188 		/*
4189 		 * If the high-order bit of the type value is 0, this
4190 		 * is a management frame.
4191 		 * I.e, check "!(link[0] & 0x08)".
4192 		 */
4193 		s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4194 		b2 = new_block(cstate, JMP(BPF_JSET));
4195 		b2->s.k = 0x08;
4196 		b2->stmts = s;
4197 		gen_not(b2);
4198 
4199 		/*
4200 		 * For management frames, the SA is at 10.
4201 		 */
4202 		b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4203 		gen_and(b2, b1);
4204 
4205 		/*
4206 		 * OR that with the checks done for data frames.
4207 		 * That gives the checks done for management and
4208 		 * data frames.
4209 		 */
4210 		gen_or(b1, b0);
4211 
4212 		/*
4213 		 * If the low-order bit of the type value is 1,
4214 		 * this is either a control frame or a frame
4215 		 * with a reserved type, and thus not a
4216 		 * frame with an SA.
4217 		 *
4218 		 * I.e., check "!(link[0] & 0x04)".
4219 		 */
4220 		s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4221 		b1 = new_block(cstate, JMP(BPF_JSET));
4222 		b1->s.k = 0x04;
4223 		b1->stmts = s;
4224 		gen_not(b1);
4225 
4226 		/*
4227 		 * AND that with the checks for data and management
4228 		 * frames.
4229 		 */
4230 		gen_and(b1, b0);
4231 		return b0;
4232 
4233 	case Q_DST:
4234 		/*
4235 		 * Oh, yuk.
4236 		 *
4237 		 *	For control frames, there is no DA.
4238 		 *
4239 		 *	For management frames, DA is at an
4240 		 *	offset of 4 from the beginning of
4241 		 *	the packet.
4242 		 *
4243 		 *	For data frames, DA is at an offset
4244 		 *	of 4 from the beginning of the packet
4245 		 *	if To DS is clear and at an offset of
4246 		 *	16 from the beginning of the packet
4247 		 *	if To DS is set.
4248 		 */
4249 
4250 		/*
4251 		 * Generate the tests to be done for data frames.
4252 		 *
4253 		 * First, check for To DS set, i.e. "link[1] & 0x01".
4254 		 */
4255 		s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4256 		b1 = new_block(cstate, JMP(BPF_JSET));
4257 		b1->s.k = 0x01;	/* To DS */
4258 		b1->stmts = s;
4259 
4260 		/*
4261 		 * If To DS is set, the DA is at 16.
4262 		 */
4263 		b0 = gen_bcmp(cstate, OR_LINKHDR, 16, 6, eaddr);
4264 		gen_and(b1, b0);
4265 
4266 		/*
4267 		 * Now, check for To DS not set, i.e. check
4268 		 * "!(link[1] & 0x01)".
4269 		 */
4270 		s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4271 		b2 = new_block(cstate, JMP(BPF_JSET));
4272 		b2->s.k = 0x01;	/* To DS */
4273 		b2->stmts = s;
4274 		gen_not(b2);
4275 
4276 		/*
4277 		 * If To DS is not set, the DA is at 4.
4278 		 */
4279 		b1 = gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr);
4280 		gen_and(b2, b1);
4281 
4282 		/*
4283 		 * Now OR together the last two checks.  That gives
4284 		 * the complete set of checks for data frames.
4285 		 */
4286 		gen_or(b1, b0);
4287 
4288 		/*
4289 		 * Now check for a data frame.
4290 		 * I.e, check "link[0] & 0x08".
4291 		 */
4292 		s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4293 		b1 = new_block(cstate, JMP(BPF_JSET));
4294 		b1->s.k = 0x08;
4295 		b1->stmts = s;
4296 
4297 		/*
4298 		 * AND that with the checks done for data frames.
4299 		 */
4300 		gen_and(b1, b0);
4301 
4302 		/*
4303 		 * If the high-order bit of the type value is 0, this
4304 		 * is a management frame.
4305 		 * I.e, check "!(link[0] & 0x08)".
4306 		 */
4307 		s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4308 		b2 = new_block(cstate, JMP(BPF_JSET));
4309 		b2->s.k = 0x08;
4310 		b2->stmts = s;
4311 		gen_not(b2);
4312 
4313 		/*
4314 		 * For management frames, the DA is at 4.
4315 		 */
4316 		b1 = gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr);
4317 		gen_and(b2, b1);
4318 
4319 		/*
4320 		 * OR that with the checks done for data frames.
4321 		 * That gives the checks done for management and
4322 		 * data frames.
4323 		 */
4324 		gen_or(b1, b0);
4325 
4326 		/*
4327 		 * If the low-order bit of the type value is 1,
4328 		 * this is either a control frame or a frame
4329 		 * with a reserved type, and thus not a
4330 		 * frame with an SA.
4331 		 *
4332 		 * I.e., check "!(link[0] & 0x04)".
4333 		 */
4334 		s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4335 		b1 = new_block(cstate, JMP(BPF_JSET));
4336 		b1->s.k = 0x04;
4337 		b1->stmts = s;
4338 		gen_not(b1);
4339 
4340 		/*
4341 		 * AND that with the checks for data and management
4342 		 * frames.
4343 		 */
4344 		gen_and(b1, b0);
4345 		return b0;
4346 
4347 	case Q_RA:
4348 		/*
4349 		 * Not present in management frames; addr1 in other
4350 		 * frames.
4351 		 */
4352 
4353 		/*
4354 		 * If the high-order bit of the type value is 0, this
4355 		 * is a management frame.
4356 		 * I.e, check "(link[0] & 0x08)".
4357 		 */
4358 		s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4359 		b1 = new_block(cstate, JMP(BPF_JSET));
4360 		b1->s.k = 0x08;
4361 		b1->stmts = s;
4362 
4363 		/*
4364 		 * Check addr1.
4365 		 */
4366 		b0 = gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr);
4367 
4368 		/*
4369 		 * AND that with the check of addr1.
4370 		 */
4371 		gen_and(b1, b0);
4372 		return (b0);
4373 
4374 	case Q_TA:
4375 		/*
4376 		 * Not present in management frames; addr2, if present,
4377 		 * in other frames.
4378 		 */
4379 
4380 		/*
4381 		 * Not present in CTS or ACK control frames.
4382 		 */
4383 		b0 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4384 			IEEE80211_FC0_TYPE_MASK);
4385 		gen_not(b0);
4386 		b1 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_CTS,
4387 			IEEE80211_FC0_SUBTYPE_MASK);
4388 		gen_not(b1);
4389 		b2 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_ACK,
4390 			IEEE80211_FC0_SUBTYPE_MASK);
4391 		gen_not(b2);
4392 		gen_and(b1, b2);
4393 		gen_or(b0, b2);
4394 
4395 		/*
4396 		 * If the high-order bit of the type value is 0, this
4397 		 * is a management frame.
4398 		 * I.e, check "(link[0] & 0x08)".
4399 		 */
4400 		s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4401 		b1 = new_block(cstate, JMP(BPF_JSET));
4402 		b1->s.k = 0x08;
4403 		b1->stmts = s;
4404 
4405 		/*
4406 		 * AND that with the check for frames other than
4407 		 * CTS and ACK frames.
4408 		 */
4409 		gen_and(b1, b2);
4410 
4411 		/*
4412 		 * Check addr2.
4413 		 */
4414 		b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4415 		gen_and(b2, b1);
4416 		return b1;
4417 
4418 	/*
4419 	 * XXX - add BSSID keyword?
4420 	 */
4421 	case Q_ADDR1:
4422 		return (gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr));
4423 
4424 	case Q_ADDR2:
4425 		/*
4426 		 * Not present in CTS or ACK control frames.
4427 		 */
4428 		b0 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4429 			IEEE80211_FC0_TYPE_MASK);
4430 		gen_not(b0);
4431 		b1 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_CTS,
4432 			IEEE80211_FC0_SUBTYPE_MASK);
4433 		gen_not(b1);
4434 		b2 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_ACK,
4435 			IEEE80211_FC0_SUBTYPE_MASK);
4436 		gen_not(b2);
4437 		gen_and(b1, b2);
4438 		gen_or(b0, b2);
4439 		b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4440 		gen_and(b2, b1);
4441 		return b1;
4442 
4443 	case Q_ADDR3:
4444 		/*
4445 		 * Not present in control frames.
4446 		 */
4447 		b0 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4448 			IEEE80211_FC0_TYPE_MASK);
4449 		gen_not(b0);
4450 		b1 = gen_bcmp(cstate, OR_LINKHDR, 16, 6, eaddr);
4451 		gen_and(b0, b1);
4452 		return b1;
4453 
4454 	case Q_ADDR4:
4455 		/*
4456 		 * Present only if the direction mask has both "From DS"
4457 		 * and "To DS" set.  Neither control frames nor management
4458 		 * frames should have both of those set, so we don't
4459 		 * check the frame type.
4460 		 */
4461 		b0 = gen_mcmp(cstate, OR_LINKHDR, 1, BPF_B,
4462 			IEEE80211_FC1_DIR_DSTODS, IEEE80211_FC1_DIR_MASK);
4463 		b1 = gen_bcmp(cstate, OR_LINKHDR, 24, 6, eaddr);
4464 		gen_and(b0, b1);
4465 		return b1;
4466 
4467 	case Q_AND:
4468 		b0 = gen_wlanhostop(cstate, eaddr, Q_SRC);
4469 		b1 = gen_wlanhostop(cstate, eaddr, Q_DST);
4470 		gen_and(b0, b1);
4471 		return b1;
4472 
4473 	case Q_DEFAULT:
4474 	case Q_OR:
4475 		b0 = gen_wlanhostop(cstate, eaddr, Q_SRC);
4476 		b1 = gen_wlanhostop(cstate, eaddr, Q_DST);
4477 		gen_or(b0, b1);
4478 		return b1;
4479 	}
4480 	abort();
4481 	/* NOTREACHED */
4482 }
4483 
4484 /*
4485  * Like gen_ehostop, but for RFC 2625 IP-over-Fibre-Channel.
4486  * (We assume that the addresses are IEEE 48-bit MAC addresses,
4487  * as the RFC states.)
4488  */
4489 static struct block *
4490 gen_ipfchostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
4491 {
4492 	register struct block *b0, *b1;
4493 
4494 	switch (dir) {
4495 	case Q_SRC:
4496 		return gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4497 
4498 	case Q_DST:
4499 		return gen_bcmp(cstate, OR_LINKHDR, 2, 6, eaddr);
4500 
4501 	case Q_AND:
4502 		b0 = gen_ipfchostop(cstate, eaddr, Q_SRC);
4503 		b1 = gen_ipfchostop(cstate, eaddr, Q_DST);
4504 		gen_and(b0, b1);
4505 		return b1;
4506 
4507 	case Q_DEFAULT:
4508 	case Q_OR:
4509 		b0 = gen_ipfchostop(cstate, eaddr, Q_SRC);
4510 		b1 = gen_ipfchostop(cstate, eaddr, Q_DST);
4511 		gen_or(b0, b1);
4512 		return b1;
4513 
4514 	case Q_ADDR1:
4515 		bpf_error(cstate, "'addr1' is only supported on 802.11");
4516 		break;
4517 
4518 	case Q_ADDR2:
4519 		bpf_error(cstate, "'addr2' is only supported on 802.11");
4520 		break;
4521 
4522 	case Q_ADDR3:
4523 		bpf_error(cstate, "'addr3' is only supported on 802.11");
4524 		break;
4525 
4526 	case Q_ADDR4:
4527 		bpf_error(cstate, "'addr4' is only supported on 802.11");
4528 		break;
4529 
4530 	case Q_RA:
4531 		bpf_error(cstate, "'ra' is only supported on 802.11");
4532 		break;
4533 
4534 	case Q_TA:
4535 		bpf_error(cstate, "'ta' is only supported on 802.11");
4536 		break;
4537 	}
4538 	abort();
4539 	/* NOTREACHED */
4540 }
4541 
4542 /*
4543  * This is quite tricky because there may be pad bytes in front of the
4544  * DECNET header, and then there are two possible data packet formats that
4545  * carry both src and dst addresses, plus 5 packet types in a format that
4546  * carries only the src node, plus 2 types that use a different format and
4547  * also carry just the src node.
4548  *
4549  * Yuck.
4550  *
4551  * Instead of doing those all right, we just look for data packets with
4552  * 0 or 1 bytes of padding.  If you want to look at other packets, that
4553  * will require a lot more hacking.
4554  *
4555  * To add support for filtering on DECNET "areas" (network numbers)
4556  * one would want to add a "mask" argument to this routine.  That would
4557  * make the filter even more inefficient, although one could be clever
4558  * and not generate masking instructions if the mask is 0xFFFF.
4559  */
4560 static struct block *
4561 gen_dnhostop(compiler_state_t *cstate, bpf_u_int32 addr, int dir)
4562 {
4563 	struct block *b0, *b1, *b2, *tmp;
4564 	u_int offset_lh;	/* offset if long header is received */
4565 	u_int offset_sh;	/* offset if short header is received */
4566 
4567 	switch (dir) {
4568 
4569 	case Q_DST:
4570 		offset_sh = 1;	/* follows flags */
4571 		offset_lh = 7;	/* flgs,darea,dsubarea,HIORD */
4572 		break;
4573 
4574 	case Q_SRC:
4575 		offset_sh = 3;	/* follows flags, dstnode */
4576 		offset_lh = 15;	/* flgs,darea,dsubarea,did,sarea,ssub,HIORD */
4577 		break;
4578 
4579 	case Q_AND:
4580 		/* Inefficient because we do our Calvinball dance twice */
4581 		b0 = gen_dnhostop(cstate, addr, Q_SRC);
4582 		b1 = gen_dnhostop(cstate, addr, Q_DST);
4583 		gen_and(b0, b1);
4584 		return b1;
4585 
4586 	case Q_OR:
4587 	case Q_DEFAULT:
4588 		/* Inefficient because we do our Calvinball dance twice */
4589 		b0 = gen_dnhostop(cstate, addr, Q_SRC);
4590 		b1 = gen_dnhostop(cstate, addr, Q_DST);
4591 		gen_or(b0, b1);
4592 		return b1;
4593 
4594 	case Q_ISO:
4595 		bpf_error(cstate, "ISO host filtering not implemented");
4596 
4597 	default:
4598 		abort();
4599 	}
4600 	b0 = gen_linktype(cstate, ETHERTYPE_DN);
4601 	/* Check for pad = 1, long header case */
4602 	tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_H,
4603 	    (bpf_int32)ntohs(0x0681), (bpf_int32)ntohs(0x07FF));
4604 	b1 = gen_cmp(cstate, OR_LINKPL, 2 + 1 + offset_lh,
4605 	    BPF_H, (bpf_int32)ntohs((u_short)addr));
4606 	gen_and(tmp, b1);
4607 	/* Check for pad = 0, long header case */
4608 	tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_B, (bpf_int32)0x06, (bpf_int32)0x7);
4609 	b2 = gen_cmp(cstate, OR_LINKPL, 2 + offset_lh, BPF_H, (bpf_int32)ntohs((u_short)addr));
4610 	gen_and(tmp, b2);
4611 	gen_or(b2, b1);
4612 	/* Check for pad = 1, short header case */
4613 	tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_H,
4614 	    (bpf_int32)ntohs(0x0281), (bpf_int32)ntohs(0x07FF));
4615 	b2 = gen_cmp(cstate, OR_LINKPL, 2 + 1 + offset_sh, BPF_H, (bpf_int32)ntohs((u_short)addr));
4616 	gen_and(tmp, b2);
4617 	gen_or(b2, b1);
4618 	/* Check for pad = 0, short header case */
4619 	tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_B, (bpf_int32)0x02, (bpf_int32)0x7);
4620 	b2 = gen_cmp(cstate, OR_LINKPL, 2 + offset_sh, BPF_H, (bpf_int32)ntohs((u_short)addr));
4621 	gen_and(tmp, b2);
4622 	gen_or(b2, b1);
4623 
4624 	/* Combine with test for cstate->linktype */
4625 	gen_and(b0, b1);
4626 	return b1;
4627 }
4628 
4629 /*
4630  * Generate a check for IPv4 or IPv6 for MPLS-encapsulated packets;
4631  * test the bottom-of-stack bit, and then check the version number
4632  * field in the IP header.
4633  */
4634 static struct block *
4635 gen_mpls_linktype(compiler_state_t *cstate, int proto)
4636 {
4637 	struct block *b0, *b1;
4638 
4639         switch (proto) {
4640 
4641         case Q_IP:
4642                 /* match the bottom-of-stack bit */
4643                 b0 = gen_mcmp(cstate, OR_LINKPL, -2, BPF_B, 0x01, 0x01);
4644                 /* match the IPv4 version number */
4645                 b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_B, 0x40, 0xf0);
4646                 gen_and(b0, b1);
4647                 return b1;
4648 
4649        case Q_IPV6:
4650                 /* match the bottom-of-stack bit */
4651                 b0 = gen_mcmp(cstate, OR_LINKPL, -2, BPF_B, 0x01, 0x01);
4652                 /* match the IPv4 version number */
4653                 b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_B, 0x60, 0xf0);
4654                 gen_and(b0, b1);
4655                 return b1;
4656 
4657        default:
4658                 abort();
4659         }
4660 }
4661 
4662 static struct block *
4663 gen_host(compiler_state_t *cstate, bpf_u_int32 addr, bpf_u_int32 mask,
4664     int proto, int dir, int type)
4665 {
4666 	struct block *b0, *b1;
4667 	const char *typestr;
4668 
4669 	if (type == Q_NET)
4670 		typestr = "net";
4671 	else
4672 		typestr = "host";
4673 
4674 	switch (proto) {
4675 
4676 	case Q_DEFAULT:
4677 		b0 = gen_host(cstate, addr, mask, Q_IP, dir, type);
4678 		/*
4679 		 * Only check for non-IPv4 addresses if we're not
4680 		 * checking MPLS-encapsulated packets.
4681 		 */
4682 		if (cstate->label_stack_depth == 0) {
4683 			b1 = gen_host(cstate, addr, mask, Q_ARP, dir, type);
4684 			gen_or(b0, b1);
4685 			b0 = gen_host(cstate, addr, mask, Q_RARP, dir, type);
4686 			gen_or(b1, b0);
4687 		}
4688 		return b0;
4689 
4690 	case Q_IP:
4691 		return gen_hostop(cstate, addr, mask, dir, ETHERTYPE_IP, 12, 16);
4692 
4693 	case Q_RARP:
4694 		return gen_hostop(cstate, addr, mask, dir, ETHERTYPE_REVARP, 14, 24);
4695 
4696 	case Q_ARP:
4697 		return gen_hostop(cstate, addr, mask, dir, ETHERTYPE_ARP, 14, 24);
4698 
4699 	case Q_TCP:
4700 		bpf_error(cstate, "'tcp' modifier applied to %s", typestr);
4701 
4702 	case Q_SCTP:
4703 		bpf_error(cstate, "'sctp' modifier applied to %s", typestr);
4704 
4705 	case Q_UDP:
4706 		bpf_error(cstate, "'udp' modifier applied to %s", typestr);
4707 
4708 	case Q_ICMP:
4709 		bpf_error(cstate, "'icmp' modifier applied to %s", typestr);
4710 
4711 	case Q_IGMP:
4712 		bpf_error(cstate, "'igmp' modifier applied to %s", typestr);
4713 
4714 	case Q_IGRP:
4715 		bpf_error(cstate, "'igrp' modifier applied to %s", typestr);
4716 
4717 	case Q_PIM:
4718 		bpf_error(cstate, "'pim' modifier applied to %s", typestr);
4719 
4720 	case Q_VRRP:
4721 		bpf_error(cstate, "'vrrp' modifier applied to %s", typestr);
4722 
4723 	case Q_CARP:
4724 		bpf_error(cstate, "'carp' modifier applied to %s", typestr);
4725 
4726 	case Q_ATALK:
4727 		bpf_error(cstate, "ATALK host filtering not implemented");
4728 
4729 	case Q_AARP:
4730 		bpf_error(cstate, "AARP host filtering not implemented");
4731 
4732 	case Q_DECNET:
4733 		return gen_dnhostop(cstate, addr, dir);
4734 
4735 	case Q_SCA:
4736 		bpf_error(cstate, "SCA host filtering not implemented");
4737 
4738 	case Q_LAT:
4739 		bpf_error(cstate, "LAT host filtering not implemented");
4740 
4741 	case Q_MOPDL:
4742 		bpf_error(cstate, "MOPDL host filtering not implemented");
4743 
4744 	case Q_MOPRC:
4745 		bpf_error(cstate, "MOPRC host filtering not implemented");
4746 
4747 	case Q_IPV6:
4748 		bpf_error(cstate, "'ip6' modifier applied to ip host");
4749 
4750 	case Q_ICMPV6:
4751 		bpf_error(cstate, "'icmp6' modifier applied to %s", typestr);
4752 
4753 	case Q_AH:
4754 		bpf_error(cstate, "'ah' modifier applied to %s", typestr);
4755 
4756 	case Q_ESP:
4757 		bpf_error(cstate, "'esp' modifier applied to %s", typestr);
4758 
4759 	case Q_ISO:
4760 		bpf_error(cstate, "ISO host filtering not implemented");
4761 
4762 	case Q_ESIS:
4763 		bpf_error(cstate, "'esis' modifier applied to %s", typestr);
4764 
4765 	case Q_ISIS:
4766 		bpf_error(cstate, "'isis' modifier applied to %s", typestr);
4767 
4768 	case Q_CLNP:
4769 		bpf_error(cstate, "'clnp' modifier applied to %s", typestr);
4770 
4771 	case Q_STP:
4772 		bpf_error(cstate, "'stp' modifier applied to %s", typestr);
4773 
4774 	case Q_IPX:
4775 		bpf_error(cstate, "IPX host filtering not implemented");
4776 
4777 	case Q_NETBEUI:
4778 		bpf_error(cstate, "'netbeui' modifier applied to %s", typestr);
4779 
4780 	case Q_RADIO:
4781 		bpf_error(cstate, "'radio' modifier applied to %s", typestr);
4782 
4783 	default:
4784 		abort();
4785 	}
4786 	/* NOTREACHED */
4787 }
4788 
4789 #ifdef INET6
4790 static struct block *
4791 gen_host6(compiler_state_t *cstate, struct in6_addr *addr,
4792     struct in6_addr *mask, int proto, int dir, int type)
4793 {
4794 	const char *typestr;
4795 
4796 	if (type == Q_NET)
4797 		typestr = "net";
4798 	else
4799 		typestr = "host";
4800 
4801 	switch (proto) {
4802 
4803 	case Q_DEFAULT:
4804 		return gen_host6(cstate, addr, mask, Q_IPV6, dir, type);
4805 
4806 	case Q_LINK:
4807 		bpf_error(cstate, "link-layer modifier applied to ip6 %s", typestr);
4808 
4809 	case Q_IP:
4810 		bpf_error(cstate, "'ip' modifier applied to ip6 %s", typestr);
4811 
4812 	case Q_RARP:
4813 		bpf_error(cstate, "'rarp' modifier applied to ip6 %s", typestr);
4814 
4815 	case Q_ARP:
4816 		bpf_error(cstate, "'arp' modifier applied to ip6 %s", typestr);
4817 
4818 	case Q_SCTP:
4819 		bpf_error(cstate, "'sctp' modifier applied to %s", typestr);
4820 
4821 	case Q_TCP:
4822 		bpf_error(cstate, "'tcp' modifier applied to %s", typestr);
4823 
4824 	case Q_UDP:
4825 		bpf_error(cstate, "'udp' modifier applied to %s", typestr);
4826 
4827 	case Q_ICMP:
4828 		bpf_error(cstate, "'icmp' modifier applied to %s", typestr);
4829 
4830 	case Q_IGMP:
4831 		bpf_error(cstate, "'igmp' modifier applied to %s", typestr);
4832 
4833 	case Q_IGRP:
4834 		bpf_error(cstate, "'igrp' modifier applied to %s", typestr);
4835 
4836 	case Q_PIM:
4837 		bpf_error(cstate, "'pim' modifier applied to %s", typestr);
4838 
4839 	case Q_VRRP:
4840 		bpf_error(cstate, "'vrrp' modifier applied to %s", typestr);
4841 
4842 	case Q_CARP:
4843 		bpf_error(cstate, "'carp' modifier applied to %s", typestr);
4844 
4845 	case Q_ATALK:
4846 		bpf_error(cstate, "ATALK host filtering not implemented");
4847 
4848 	case Q_AARP:
4849 		bpf_error(cstate, "AARP host filtering not implemented");
4850 
4851 	case Q_DECNET:
4852 		bpf_error(cstate, "'decnet' modifier applied to ip6 %s", typestr);
4853 
4854 	case Q_SCA:
4855 		bpf_error(cstate, "SCA host filtering not implemented");
4856 
4857 	case Q_LAT:
4858 		bpf_error(cstate, "LAT host filtering not implemented");
4859 
4860 	case Q_MOPDL:
4861 		bpf_error(cstate, "MOPDL host filtering not implemented");
4862 
4863 	case Q_MOPRC:
4864 		bpf_error(cstate, "MOPRC host filtering not implemented");
4865 
4866 	case Q_IPV6:
4867 		return gen_hostop6(cstate, addr, mask, dir, ETHERTYPE_IPV6, 8, 24);
4868 
4869 	case Q_ICMPV6:
4870 		bpf_error(cstate, "'icmp6' modifier applied to %s", typestr);
4871 
4872 	case Q_AH:
4873 		bpf_error(cstate, "'ah' modifier applied to %s", typestr);
4874 
4875 	case Q_ESP:
4876 		bpf_error(cstate, "'esp' modifier applied to %s", typestr);
4877 
4878 	case Q_ISO:
4879 		bpf_error(cstate, "ISO host filtering not implemented");
4880 
4881 	case Q_ESIS:
4882 		bpf_error(cstate, "'esis' modifier applied to %s", typestr);
4883 
4884 	case Q_ISIS:
4885 		bpf_error(cstate, "'isis' modifier applied to %s", typestr);
4886 
4887 	case Q_CLNP:
4888 		bpf_error(cstate, "'clnp' modifier applied to %s", typestr);
4889 
4890 	case Q_STP:
4891 		bpf_error(cstate, "'stp' modifier applied to %s", typestr);
4892 
4893 	case Q_IPX:
4894 		bpf_error(cstate, "IPX host filtering not implemented");
4895 
4896 	case Q_NETBEUI:
4897 		bpf_error(cstate, "'netbeui' modifier applied to %s", typestr);
4898 
4899 	case Q_RADIO:
4900 		bpf_error(cstate, "'radio' modifier applied to %s", typestr);
4901 
4902 	default:
4903 		abort();
4904 	}
4905 	/* NOTREACHED */
4906 }
4907 #endif
4908 
4909 #ifndef INET6
4910 static struct block *
4911 gen_gateway(eaddr, alist, proto, dir)
4912 	const u_char *eaddr;
4913 	bpf_u_int32 **alist;
4914 	int proto;
4915 	int dir;
4916 {
4917 	struct block *b0, *b1, *tmp;
4918 
4919 	if (dir != 0)
4920 		bpf_error(cstate, "direction applied to 'gateway'");
4921 
4922 	switch (proto) {
4923 	case Q_DEFAULT:
4924 	case Q_IP:
4925 	case Q_ARP:
4926 	case Q_RARP:
4927 		switch (cstate->linktype) {
4928 		case DLT_EN10MB:
4929 		case DLT_NETANALYZER:
4930 		case DLT_NETANALYZER_TRANSPARENT:
4931 			b1 = gen_prevlinkhdr_check(cstate);
4932 			b0 = gen_ehostop(cstate, eaddr, Q_OR);
4933 			if (b1 != NULL)
4934 				gen_and(b1, b0);
4935 			break;
4936 		case DLT_FDDI:
4937 			b0 = gen_fhostop(cstate, eaddr, Q_OR);
4938 			break;
4939 		case DLT_IEEE802:
4940 			b0 = gen_thostop(cstate, eaddr, Q_OR);
4941 			break;
4942 		case DLT_IEEE802_11:
4943 		case DLT_PRISM_HEADER:
4944 		case DLT_IEEE802_11_RADIO_AVS:
4945 		case DLT_IEEE802_11_RADIO:
4946 		case DLT_PPI:
4947 			b0 = gen_wlanhostop(cstate, eaddr, Q_OR);
4948 			break;
4949 		case DLT_SUNATM:
4950 			/*
4951 			 * This is LLC-multiplexed traffic; if it were
4952 			 * LANE, cstate->linktype would have been set to
4953 			 * DLT_EN10MB.
4954 			 */
4955 			bpf_error(cstate,
4956 			    "'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
4957 			break;
4958 		case DLT_IP_OVER_FC:
4959 			b0 = gen_ipfchostop(cstate, eaddr, Q_OR);
4960 			break;
4961 		default:
4962 			bpf_error(cstate,
4963 			    "'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
4964 		}
4965 		b1 = gen_host(cstate, **alist++, 0xffffffff, proto, Q_OR, Q_HOST);
4966 		while (*alist) {
4967 			tmp = gen_host(cstate, **alist++, 0xffffffff, proto, Q_OR,
4968 			    Q_HOST);
4969 			gen_or(b1, tmp);
4970 			b1 = tmp;
4971 		}
4972 		gen_not(b1);
4973 		gen_and(b0, b1);
4974 		return b1;
4975 	}
4976 	bpf_error(cstate, "illegal modifier of 'gateway'");
4977 	/* NOTREACHED */
4978 }
4979 #endif
4980 
4981 struct block *
4982 gen_proto_abbrev(compiler_state_t *cstate, int proto)
4983 {
4984 	struct block *b0;
4985 	struct block *b1;
4986 
4987 	switch (proto) {
4988 
4989 	case Q_SCTP:
4990 		b1 = gen_proto(cstate, IPPROTO_SCTP, Q_IP, Q_DEFAULT);
4991 		b0 = gen_proto(cstate, IPPROTO_SCTP, Q_IPV6, Q_DEFAULT);
4992 		gen_or(b0, b1);
4993 		break;
4994 
4995 	case Q_TCP:
4996 		b1 = gen_proto(cstate, IPPROTO_TCP, Q_IP, Q_DEFAULT);
4997 		b0 = gen_proto(cstate, IPPROTO_TCP, Q_IPV6, Q_DEFAULT);
4998 		gen_or(b0, b1);
4999 		break;
5000 
5001 	case Q_UDP:
5002 		b1 = gen_proto(cstate, IPPROTO_UDP, Q_IP, Q_DEFAULT);
5003 		b0 = gen_proto(cstate, IPPROTO_UDP, Q_IPV6, Q_DEFAULT);
5004 		gen_or(b0, b1);
5005 		break;
5006 
5007 	case Q_ICMP:
5008 		b1 = gen_proto(cstate, IPPROTO_ICMP, Q_IP, Q_DEFAULT);
5009 		break;
5010 
5011 #ifndef	IPPROTO_IGMP
5012 #define	IPPROTO_IGMP	2
5013 #endif
5014 
5015 	case Q_IGMP:
5016 		b1 = gen_proto(cstate, IPPROTO_IGMP, Q_IP, Q_DEFAULT);
5017 		break;
5018 
5019 #ifndef	IPPROTO_IGRP
5020 #define	IPPROTO_IGRP	9
5021 #endif
5022 	case Q_IGRP:
5023 		b1 = gen_proto(cstate, IPPROTO_IGRP, Q_IP, Q_DEFAULT);
5024 		break;
5025 
5026 #ifndef IPPROTO_PIM
5027 #define IPPROTO_PIM	103
5028 #endif
5029 
5030 	case Q_PIM:
5031 		b1 = gen_proto(cstate, IPPROTO_PIM, Q_IP, Q_DEFAULT);
5032 		b0 = gen_proto(cstate, IPPROTO_PIM, Q_IPV6, Q_DEFAULT);
5033 		gen_or(b0, b1);
5034 		break;
5035 
5036 #ifndef IPPROTO_VRRP
5037 #define IPPROTO_VRRP	112
5038 #endif
5039 
5040 	case Q_VRRP:
5041 		b1 = gen_proto(cstate, IPPROTO_VRRP, Q_IP, Q_DEFAULT);
5042 		break;
5043 
5044 #ifndef IPPROTO_CARP
5045 #define IPPROTO_CARP	112
5046 #endif
5047 
5048 	case Q_CARP:
5049 		b1 = gen_proto(cstate, IPPROTO_CARP, Q_IP, Q_DEFAULT);
5050 		break;
5051 
5052 	case Q_IP:
5053 		b1 = gen_linktype(cstate, ETHERTYPE_IP);
5054 		break;
5055 
5056 	case Q_ARP:
5057 		b1 = gen_linktype(cstate, ETHERTYPE_ARP);
5058 		break;
5059 
5060 	case Q_RARP:
5061 		b1 = gen_linktype(cstate, ETHERTYPE_REVARP);
5062 		break;
5063 
5064 	case Q_LINK:
5065 		bpf_error(cstate, "link layer applied in wrong context");
5066 
5067 	case Q_ATALK:
5068 		b1 = gen_linktype(cstate, ETHERTYPE_ATALK);
5069 		break;
5070 
5071 	case Q_AARP:
5072 		b1 = gen_linktype(cstate, ETHERTYPE_AARP);
5073 		break;
5074 
5075 	case Q_DECNET:
5076 		b1 = gen_linktype(cstate, ETHERTYPE_DN);
5077 		break;
5078 
5079 	case Q_SCA:
5080 		b1 = gen_linktype(cstate, ETHERTYPE_SCA);
5081 		break;
5082 
5083 	case Q_LAT:
5084 		b1 = gen_linktype(cstate, ETHERTYPE_LAT);
5085 		break;
5086 
5087 	case Q_MOPDL:
5088 		b1 = gen_linktype(cstate, ETHERTYPE_MOPDL);
5089 		break;
5090 
5091 	case Q_MOPRC:
5092 		b1 = gen_linktype(cstate, ETHERTYPE_MOPRC);
5093 		break;
5094 
5095 	case Q_IPV6:
5096 		b1 = gen_linktype(cstate, ETHERTYPE_IPV6);
5097 		break;
5098 
5099 #ifndef IPPROTO_ICMPV6
5100 #define IPPROTO_ICMPV6	58
5101 #endif
5102 	case Q_ICMPV6:
5103 		b1 = gen_proto(cstate, IPPROTO_ICMPV6, Q_IPV6, Q_DEFAULT);
5104 		break;
5105 
5106 #ifndef IPPROTO_AH
5107 #define IPPROTO_AH	51
5108 #endif
5109 	case Q_AH:
5110 		b1 = gen_proto(cstate, IPPROTO_AH, Q_IP, Q_DEFAULT);
5111 		b0 = gen_proto(cstate, IPPROTO_AH, Q_IPV6, Q_DEFAULT);
5112 		gen_or(b0, b1);
5113 		break;
5114 
5115 #ifndef IPPROTO_ESP
5116 #define IPPROTO_ESP	50
5117 #endif
5118 	case Q_ESP:
5119 		b1 = gen_proto(cstate, IPPROTO_ESP, Q_IP, Q_DEFAULT);
5120 		b0 = gen_proto(cstate, IPPROTO_ESP, Q_IPV6, Q_DEFAULT);
5121 		gen_or(b0, b1);
5122 		break;
5123 
5124 	case Q_ISO:
5125 		b1 = gen_linktype(cstate, LLCSAP_ISONS);
5126 		break;
5127 
5128 	case Q_ESIS:
5129 		b1 = gen_proto(cstate, ISO9542_ESIS, Q_ISO, Q_DEFAULT);
5130 		break;
5131 
5132 	case Q_ISIS:
5133 		b1 = gen_proto(cstate, ISO10589_ISIS, Q_ISO, Q_DEFAULT);
5134 		break;
5135 
5136 	case Q_ISIS_L1: /* all IS-IS Level1 PDU-Types */
5137 		b0 = gen_proto(cstate, ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT);
5138 		b1 = gen_proto(cstate, ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */
5139 		gen_or(b0, b1);
5140 		b0 = gen_proto(cstate, ISIS_L1_LSP, Q_ISIS, Q_DEFAULT);
5141 		gen_or(b0, b1);
5142 		b0 = gen_proto(cstate, ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
5143 		gen_or(b0, b1);
5144 		b0 = gen_proto(cstate, ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
5145 		gen_or(b0, b1);
5146 		break;
5147 
5148 	case Q_ISIS_L2: /* all IS-IS Level2 PDU-Types */
5149 		b0 = gen_proto(cstate, ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT);
5150 		b1 = gen_proto(cstate, ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */
5151 		gen_or(b0, b1);
5152 		b0 = gen_proto(cstate, ISIS_L2_LSP, Q_ISIS, Q_DEFAULT);
5153 		gen_or(b0, b1);
5154 		b0 = gen_proto(cstate, ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
5155 		gen_or(b0, b1);
5156 		b0 = gen_proto(cstate, ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
5157 		gen_or(b0, b1);
5158 		break;
5159 
5160 	case Q_ISIS_IIH: /* all IS-IS Hello PDU-Types */
5161 		b0 = gen_proto(cstate, ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT);
5162 		b1 = gen_proto(cstate, ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT);
5163 		gen_or(b0, b1);
5164 		b0 = gen_proto(cstate, ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT);
5165 		gen_or(b0, b1);
5166 		break;
5167 
5168 	case Q_ISIS_LSP:
5169 		b0 = gen_proto(cstate, ISIS_L1_LSP, Q_ISIS, Q_DEFAULT);
5170 		b1 = gen_proto(cstate, ISIS_L2_LSP, Q_ISIS, Q_DEFAULT);
5171 		gen_or(b0, b1);
5172 		break;
5173 
5174 	case Q_ISIS_SNP:
5175 		b0 = gen_proto(cstate, ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
5176 		b1 = gen_proto(cstate, ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
5177 		gen_or(b0, b1);
5178 		b0 = gen_proto(cstate, ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
5179 		gen_or(b0, b1);
5180 		b0 = gen_proto(cstate, ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
5181 		gen_or(b0, b1);
5182 		break;
5183 
5184 	case Q_ISIS_CSNP:
5185 		b0 = gen_proto(cstate, ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
5186 		b1 = gen_proto(cstate, ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
5187 		gen_or(b0, b1);
5188 		break;
5189 
5190 	case Q_ISIS_PSNP:
5191 		b0 = gen_proto(cstate, ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
5192 		b1 = gen_proto(cstate, ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
5193 		gen_or(b0, b1);
5194 		break;
5195 
5196 	case Q_CLNP:
5197 		b1 = gen_proto(cstate, ISO8473_CLNP, Q_ISO, Q_DEFAULT);
5198 		break;
5199 
5200 	case Q_STP:
5201 		b1 = gen_linktype(cstate, LLCSAP_8021D);
5202 		break;
5203 
5204 	case Q_IPX:
5205 		b1 = gen_linktype(cstate, LLCSAP_IPX);
5206 		break;
5207 
5208 	case Q_NETBEUI:
5209 		b1 = gen_linktype(cstate, LLCSAP_NETBEUI);
5210 		break;
5211 
5212 	case Q_RADIO:
5213 		bpf_error(cstate, "'radio' is not a valid protocol type");
5214 
5215 	default:
5216 		abort();
5217 	}
5218 	return b1;
5219 }
5220 
5221 static struct block *
5222 gen_ipfrag(compiler_state_t *cstate)
5223 {
5224 	struct slist *s;
5225 	struct block *b;
5226 
5227 	/* not IPv4 frag other than the first frag */
5228 	s = gen_load_a(cstate, OR_LINKPL, 6, BPF_H);
5229 	b = new_block(cstate, JMP(BPF_JSET));
5230 	b->s.k = 0x1fff;
5231 	b->stmts = s;
5232 	gen_not(b);
5233 
5234 	return b;
5235 }
5236 
5237 /*
5238  * Generate a comparison to a port value in the transport-layer header
5239  * at the specified offset from the beginning of that header.
5240  *
5241  * XXX - this handles a variable-length prefix preceding the link-layer
5242  * header, such as the radiotap or AVS radio prefix, but doesn't handle
5243  * variable-length link-layer headers (such as Token Ring or 802.11
5244  * headers).
5245  */
5246 static struct block *
5247 gen_portatom(compiler_state_t *cstate, int off, bpf_int32 v)
5248 {
5249 	return gen_cmp(cstate, OR_TRAN_IPV4, off, BPF_H, v);
5250 }
5251 
5252 static struct block *
5253 gen_portatom6(compiler_state_t *cstate, int off, bpf_int32 v)
5254 {
5255 	return gen_cmp(cstate, OR_TRAN_IPV6, off, BPF_H, v);
5256 }
5257 
5258 struct block *
5259 gen_portop(compiler_state_t *cstate, int port, int proto, int dir)
5260 {
5261 	struct block *b0, *b1, *tmp;
5262 
5263 	/* ip proto 'proto' and not a fragment other than the first fragment */
5264 	tmp = gen_cmp(cstate, OR_LINKPL, 9, BPF_B, (bpf_int32)proto);
5265 	b0 = gen_ipfrag(cstate);
5266 	gen_and(tmp, b0);
5267 
5268 	switch (dir) {
5269 	case Q_SRC:
5270 		b1 = gen_portatom(cstate, 0, (bpf_int32)port);
5271 		break;
5272 
5273 	case Q_DST:
5274 		b1 = gen_portatom(cstate, 2, (bpf_int32)port);
5275 		break;
5276 
5277 	case Q_OR:
5278 	case Q_DEFAULT:
5279 		tmp = gen_portatom(cstate, 0, (bpf_int32)port);
5280 		b1 = gen_portatom(cstate, 2, (bpf_int32)port);
5281 		gen_or(tmp, b1);
5282 		break;
5283 
5284 	case Q_AND:
5285 		tmp = gen_portatom(cstate, 0, (bpf_int32)port);
5286 		b1 = gen_portatom(cstate, 2, (bpf_int32)port);
5287 		gen_and(tmp, b1);
5288 		break;
5289 
5290 	default:
5291 		abort();
5292 	}
5293 	gen_and(b0, b1);
5294 
5295 	return b1;
5296 }
5297 
5298 static struct block *
5299 gen_port(compiler_state_t *cstate, int port, int ip_proto, int dir)
5300 {
5301 	struct block *b0, *b1, *tmp;
5302 
5303 	/*
5304 	 * ether proto ip
5305 	 *
5306 	 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
5307 	 * not LLC encapsulation with LLCSAP_IP.
5308 	 *
5309 	 * For IEEE 802 networks - which includes 802.5 token ring
5310 	 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
5311 	 * says that SNAP encapsulation is used, not LLC encapsulation
5312 	 * with LLCSAP_IP.
5313 	 *
5314 	 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
5315 	 * RFC 2225 say that SNAP encapsulation is used, not LLC
5316 	 * encapsulation with LLCSAP_IP.
5317 	 *
5318 	 * So we always check for ETHERTYPE_IP.
5319 	 */
5320 	b0 = gen_linktype(cstate, ETHERTYPE_IP);
5321 
5322 	switch (ip_proto) {
5323 	case IPPROTO_UDP:
5324 	case IPPROTO_TCP:
5325 	case IPPROTO_SCTP:
5326 		b1 = gen_portop(cstate, port, ip_proto, dir);
5327 		break;
5328 
5329 	case PROTO_UNDEF:
5330 		tmp = gen_portop(cstate, port, IPPROTO_TCP, dir);
5331 		b1 = gen_portop(cstate, port, IPPROTO_UDP, dir);
5332 		gen_or(tmp, b1);
5333 		tmp = gen_portop(cstate, port, IPPROTO_SCTP, dir);
5334 		gen_or(tmp, b1);
5335 		break;
5336 
5337 	default:
5338 		abort();
5339 	}
5340 	gen_and(b0, b1);
5341 	return b1;
5342 }
5343 
5344 struct block *
5345 gen_portop6(compiler_state_t *cstate, int port, int proto, int dir)
5346 {
5347 	struct block *b0, *b1, *tmp;
5348 
5349 	/* ip6 proto 'proto' */
5350 	/* XXX - catch the first fragment of a fragmented packet? */
5351 	b0 = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, (bpf_int32)proto);
5352 
5353 	switch (dir) {
5354 	case Q_SRC:
5355 		b1 = gen_portatom6(cstate, 0, (bpf_int32)port);
5356 		break;
5357 
5358 	case Q_DST:
5359 		b1 = gen_portatom6(cstate, 2, (bpf_int32)port);
5360 		break;
5361 
5362 	case Q_OR:
5363 	case Q_DEFAULT:
5364 		tmp = gen_portatom6(cstate, 0, (bpf_int32)port);
5365 		b1 = gen_portatom6(cstate, 2, (bpf_int32)port);
5366 		gen_or(tmp, b1);
5367 		break;
5368 
5369 	case Q_AND:
5370 		tmp = gen_portatom6(cstate, 0, (bpf_int32)port);
5371 		b1 = gen_portatom6(cstate, 2, (bpf_int32)port);
5372 		gen_and(tmp, b1);
5373 		break;
5374 
5375 	default:
5376 		abort();
5377 	}
5378 	gen_and(b0, b1);
5379 
5380 	return b1;
5381 }
5382 
5383 static struct block *
5384 gen_port6(compiler_state_t *cstate, int port, int ip_proto, int dir)
5385 {
5386 	struct block *b0, *b1, *tmp;
5387 
5388 	/* link proto ip6 */
5389 	b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
5390 
5391 	switch (ip_proto) {
5392 	case IPPROTO_UDP:
5393 	case IPPROTO_TCP:
5394 	case IPPROTO_SCTP:
5395 		b1 = gen_portop6(cstate, port, ip_proto, dir);
5396 		break;
5397 
5398 	case PROTO_UNDEF:
5399 		tmp = gen_portop6(cstate, port, IPPROTO_TCP, dir);
5400 		b1 = gen_portop6(cstate, port, IPPROTO_UDP, dir);
5401 		gen_or(tmp, b1);
5402 		tmp = gen_portop6(cstate, port, IPPROTO_SCTP, dir);
5403 		gen_or(tmp, b1);
5404 		break;
5405 
5406 	default:
5407 		abort();
5408 	}
5409 	gen_and(b0, b1);
5410 	return b1;
5411 }
5412 
5413 /* gen_portrange code */
5414 static struct block *
5415 gen_portrangeatom(compiler_state_t *cstate, int off, bpf_int32 v1,
5416     bpf_int32 v2)
5417 {
5418 	struct block *b1, *b2;
5419 
5420 	if (v1 > v2) {
5421 		/*
5422 		 * Reverse the order of the ports, so v1 is the lower one.
5423 		 */
5424 		bpf_int32 vtemp;
5425 
5426 		vtemp = v1;
5427 		v1 = v2;
5428 		v2 = vtemp;
5429 	}
5430 
5431 	b1 = gen_cmp_ge(cstate, OR_TRAN_IPV4, off, BPF_H, v1);
5432 	b2 = gen_cmp_le(cstate, OR_TRAN_IPV4, off, BPF_H, v2);
5433 
5434 	gen_and(b1, b2);
5435 
5436 	return b2;
5437 }
5438 
5439 struct block *
5440 gen_portrangeop(compiler_state_t *cstate, int port1, int port2, int proto,
5441     int dir)
5442 {
5443 	struct block *b0, *b1, *tmp;
5444 
5445 	/* ip proto 'proto' and not a fragment other than the first fragment */
5446 	tmp = gen_cmp(cstate, OR_LINKPL, 9, BPF_B, (bpf_int32)proto);
5447 	b0 = gen_ipfrag(cstate);
5448 	gen_and(tmp, b0);
5449 
5450 	switch (dir) {
5451 	case Q_SRC:
5452 		b1 = gen_portrangeatom(cstate, 0, (bpf_int32)port1, (bpf_int32)port2);
5453 		break;
5454 
5455 	case Q_DST:
5456 		b1 = gen_portrangeatom(cstate, 2, (bpf_int32)port1, (bpf_int32)port2);
5457 		break;
5458 
5459 	case Q_OR:
5460 	case Q_DEFAULT:
5461 		tmp = gen_portrangeatom(cstate, 0, (bpf_int32)port1, (bpf_int32)port2);
5462 		b1 = gen_portrangeatom(cstate, 2, (bpf_int32)port1, (bpf_int32)port2);
5463 		gen_or(tmp, b1);
5464 		break;
5465 
5466 	case Q_AND:
5467 		tmp = gen_portrangeatom(cstate, 0, (bpf_int32)port1, (bpf_int32)port2);
5468 		b1 = gen_portrangeatom(cstate, 2, (bpf_int32)port1, (bpf_int32)port2);
5469 		gen_and(tmp, b1);
5470 		break;
5471 
5472 	default:
5473 		abort();
5474 	}
5475 	gen_and(b0, b1);
5476 
5477 	return b1;
5478 }
5479 
5480 static struct block *
5481 gen_portrange(compiler_state_t *cstate, int port1, int port2, int ip_proto,
5482     int dir)
5483 {
5484 	struct block *b0, *b1, *tmp;
5485 
5486 	/* link proto ip */
5487 	b0 = gen_linktype(cstate, ETHERTYPE_IP);
5488 
5489 	switch (ip_proto) {
5490 	case IPPROTO_UDP:
5491 	case IPPROTO_TCP:
5492 	case IPPROTO_SCTP:
5493 		b1 = gen_portrangeop(cstate, port1, port2, ip_proto, dir);
5494 		break;
5495 
5496 	case PROTO_UNDEF:
5497 		tmp = gen_portrangeop(cstate, port1, port2, IPPROTO_TCP, dir);
5498 		b1 = gen_portrangeop(cstate, port1, port2, IPPROTO_UDP, dir);
5499 		gen_or(tmp, b1);
5500 		tmp = gen_portrangeop(cstate, port1, port2, IPPROTO_SCTP, dir);
5501 		gen_or(tmp, b1);
5502 		break;
5503 
5504 	default:
5505 		abort();
5506 	}
5507 	gen_and(b0, b1);
5508 	return b1;
5509 }
5510 
5511 static struct block *
5512 gen_portrangeatom6(compiler_state_t *cstate, int off, bpf_int32 v1,
5513     bpf_int32 v2)
5514 {
5515 	struct block *b1, *b2;
5516 
5517 	if (v1 > v2) {
5518 		/*
5519 		 * Reverse the order of the ports, so v1 is the lower one.
5520 		 */
5521 		bpf_int32 vtemp;
5522 
5523 		vtemp = v1;
5524 		v1 = v2;
5525 		v2 = vtemp;
5526 	}
5527 
5528 	b1 = gen_cmp_ge(cstate, OR_TRAN_IPV6, off, BPF_H, v1);
5529 	b2 = gen_cmp_le(cstate, OR_TRAN_IPV6, off, BPF_H, v2);
5530 
5531 	gen_and(b1, b2);
5532 
5533 	return b2;
5534 }
5535 
5536 struct block *
5537 gen_portrangeop6(compiler_state_t *cstate, int port1, int port2, int proto,
5538     int dir)
5539 {
5540 	struct block *b0, *b1, *tmp;
5541 
5542 	/* ip6 proto 'proto' */
5543 	/* XXX - catch the first fragment of a fragmented packet? */
5544 	b0 = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, (bpf_int32)proto);
5545 
5546 	switch (dir) {
5547 	case Q_SRC:
5548 		b1 = gen_portrangeatom6(cstate, 0, (bpf_int32)port1, (bpf_int32)port2);
5549 		break;
5550 
5551 	case Q_DST:
5552 		b1 = gen_portrangeatom6(cstate, 2, (bpf_int32)port1, (bpf_int32)port2);
5553 		break;
5554 
5555 	case Q_OR:
5556 	case Q_DEFAULT:
5557 		tmp = gen_portrangeatom6(cstate, 0, (bpf_int32)port1, (bpf_int32)port2);
5558 		b1 = gen_portrangeatom6(cstate, 2, (bpf_int32)port1, (bpf_int32)port2);
5559 		gen_or(tmp, b1);
5560 		break;
5561 
5562 	case Q_AND:
5563 		tmp = gen_portrangeatom6(cstate, 0, (bpf_int32)port1, (bpf_int32)port2);
5564 		b1 = gen_portrangeatom6(cstate, 2, (bpf_int32)port1, (bpf_int32)port2);
5565 		gen_and(tmp, b1);
5566 		break;
5567 
5568 	default:
5569 		abort();
5570 	}
5571 	gen_and(b0, b1);
5572 
5573 	return b1;
5574 }
5575 
5576 static struct block *
5577 gen_portrange6(compiler_state_t *cstate, int port1, int port2, int ip_proto,
5578     int dir)
5579 {
5580 	struct block *b0, *b1, *tmp;
5581 
5582 	/* link proto ip6 */
5583 	b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
5584 
5585 	switch (ip_proto) {
5586 	case IPPROTO_UDP:
5587 	case IPPROTO_TCP:
5588 	case IPPROTO_SCTP:
5589 		b1 = gen_portrangeop6(cstate, port1, port2, ip_proto, dir);
5590 		break;
5591 
5592 	case PROTO_UNDEF:
5593 		tmp = gen_portrangeop6(cstate, port1, port2, IPPROTO_TCP, dir);
5594 		b1 = gen_portrangeop6(cstate, port1, port2, IPPROTO_UDP, dir);
5595 		gen_or(tmp, b1);
5596 		tmp = gen_portrangeop6(cstate, port1, port2, IPPROTO_SCTP, dir);
5597 		gen_or(tmp, b1);
5598 		break;
5599 
5600 	default:
5601 		abort();
5602 	}
5603 	gen_and(b0, b1);
5604 	return b1;
5605 }
5606 
5607 static int
5608 lookup_proto(compiler_state_t *cstate, const char *name, int proto)
5609 {
5610 	register int v;
5611 
5612 	switch (proto) {
5613 
5614 	case Q_DEFAULT:
5615 	case Q_IP:
5616 	case Q_IPV6:
5617 		v = pcap_nametoproto(name);
5618 		if (v == PROTO_UNDEF)
5619 			bpf_error(cstate, "unknown ip proto '%s'", name);
5620 		break;
5621 
5622 	case Q_LINK:
5623 		/* XXX should look up h/w protocol type based on cstate->linktype */
5624 		v = pcap_nametoeproto(name);
5625 		if (v == PROTO_UNDEF) {
5626 			v = pcap_nametollc(name);
5627 			if (v == PROTO_UNDEF)
5628 				bpf_error(cstate, "unknown ether proto '%s'", name);
5629 		}
5630 		break;
5631 
5632 	case Q_ISO:
5633 		if (strcmp(name, "esis") == 0)
5634 			v = ISO9542_ESIS;
5635 		else if (strcmp(name, "isis") == 0)
5636 			v = ISO10589_ISIS;
5637 		else if (strcmp(name, "clnp") == 0)
5638 			v = ISO8473_CLNP;
5639 		else
5640 			bpf_error(cstate, "unknown osi proto '%s'", name);
5641 		break;
5642 
5643 	default:
5644 		v = PROTO_UNDEF;
5645 		break;
5646 	}
5647 	return v;
5648 }
5649 
5650 #if 0
5651 struct stmt *
5652 gen_joinsp(s, n)
5653 	struct stmt **s;
5654 	int n;
5655 {
5656 	return NULL;
5657 }
5658 #endif
5659 
5660 static struct block *
5661 gen_protochain(compiler_state_t *cstate, int v, int proto, int dir)
5662 {
5663 #ifdef NO_PROTOCHAIN
5664 	return gen_proto(cstate, v, proto, dir);
5665 #else
5666 	struct block *b0, *b;
5667 	struct slist *s[100];
5668 	int fix2, fix3, fix4, fix5;
5669 	int ahcheck, again, end;
5670 	int i, max;
5671 	int reg2 = alloc_reg(cstate);
5672 
5673 	memset(s, 0, sizeof(s));
5674 	fix3 = fix4 = fix5 = 0;
5675 
5676 	switch (proto) {
5677 	case Q_IP:
5678 	case Q_IPV6:
5679 		break;
5680 	case Q_DEFAULT:
5681 		b0 = gen_protochain(cstate, v, Q_IP, dir);
5682 		b = gen_protochain(cstate, v, Q_IPV6, dir);
5683 		gen_or(b0, b);
5684 		return b;
5685 	default:
5686 		bpf_error(cstate, "bad protocol applied for 'protochain'");
5687 		/*NOTREACHED*/
5688 	}
5689 
5690 	/*
5691 	 * We don't handle variable-length prefixes before the link-layer
5692 	 * header, or variable-length link-layer headers, here yet.
5693 	 * We might want to add BPF instructions to do the protochain
5694 	 * work, to simplify that and, on platforms that have a BPF
5695 	 * interpreter with the new instructions, let the filtering
5696 	 * be done in the kernel.  (We already require a modified BPF
5697 	 * engine to do the protochain stuff, to support backward
5698 	 * branches, and backward branch support is unlikely to appear
5699 	 * in kernel BPF engines.)
5700 	 */
5701 	if (cstate->off_linkpl.is_variable)
5702 		bpf_error(cstate, "'protochain' not supported with variable length headers");
5703 
5704 	cstate->no_optimize = 1; /*this code is not compatible with optimzer yet */
5705 
5706 	/*
5707 	 * s[0] is a dummy entry to protect other BPF insn from damage
5708 	 * by s[fix] = foo with uninitialized variable "fix".  It is somewhat
5709 	 * hard to find interdependency made by jump table fixup.
5710 	 */
5711 	i = 0;
5712 	s[i] = new_stmt(cstate, 0);	/*dummy*/
5713 	i++;
5714 
5715 	switch (proto) {
5716 	case Q_IP:
5717 		b0 = gen_linktype(cstate, ETHERTYPE_IP);
5718 
5719 		/* A = ip->ip_p */
5720 		s[i] = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B);
5721 		s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 9;
5722 		i++;
5723 		/* X = ip->ip_hl << 2 */
5724 		s[i] = new_stmt(cstate, BPF_LDX|BPF_MSH|BPF_B);
5725 		s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
5726 		i++;
5727 		break;
5728 
5729 	case Q_IPV6:
5730 		b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
5731 
5732 		/* A = ip6->ip_nxt */
5733 		s[i] = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B);
5734 		s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 6;
5735 		i++;
5736 		/* X = sizeof(struct ip6_hdr) */
5737 		s[i] = new_stmt(cstate, BPF_LDX|BPF_IMM);
5738 		s[i]->s.k = 40;
5739 		i++;
5740 		break;
5741 
5742 	default:
5743 		bpf_error(cstate, "unsupported proto to gen_protochain");
5744 		/*NOTREACHED*/
5745 	}
5746 
5747 	/* again: if (A == v) goto end; else fall through; */
5748 	again = i;
5749 	s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
5750 	s[i]->s.k = v;
5751 	s[i]->s.jt = NULL;		/*later*/
5752 	s[i]->s.jf = NULL;		/*update in next stmt*/
5753 	fix5 = i;
5754 	i++;
5755 
5756 #ifndef IPPROTO_NONE
5757 #define IPPROTO_NONE	59
5758 #endif
5759 	/* if (A == IPPROTO_NONE) goto end */
5760 	s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
5761 	s[i]->s.jt = NULL;	/*later*/
5762 	s[i]->s.jf = NULL;	/*update in next stmt*/
5763 	s[i]->s.k = IPPROTO_NONE;
5764 	s[fix5]->s.jf = s[i];
5765 	fix2 = i;
5766 	i++;
5767 
5768 	if (proto == Q_IPV6) {
5769 		int v6start, v6end, v6advance, j;
5770 
5771 		v6start = i;
5772 		/* if (A == IPPROTO_HOPOPTS) goto v6advance */
5773 		s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
5774 		s[i]->s.jt = NULL;	/*later*/
5775 		s[i]->s.jf = NULL;	/*update in next stmt*/
5776 		s[i]->s.k = IPPROTO_HOPOPTS;
5777 		s[fix2]->s.jf = s[i];
5778 		i++;
5779 		/* if (A == IPPROTO_DSTOPTS) goto v6advance */
5780 		s[i - 1]->s.jf = s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
5781 		s[i]->s.jt = NULL;	/*later*/
5782 		s[i]->s.jf = NULL;	/*update in next stmt*/
5783 		s[i]->s.k = IPPROTO_DSTOPTS;
5784 		i++;
5785 		/* if (A == IPPROTO_ROUTING) goto v6advance */
5786 		s[i - 1]->s.jf = s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
5787 		s[i]->s.jt = NULL;	/*later*/
5788 		s[i]->s.jf = NULL;	/*update in next stmt*/
5789 		s[i]->s.k = IPPROTO_ROUTING;
5790 		i++;
5791 		/* if (A == IPPROTO_FRAGMENT) goto v6advance; else goto ahcheck; */
5792 		s[i - 1]->s.jf = s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
5793 		s[i]->s.jt = NULL;	/*later*/
5794 		s[i]->s.jf = NULL;	/*later*/
5795 		s[i]->s.k = IPPROTO_FRAGMENT;
5796 		fix3 = i;
5797 		v6end = i;
5798 		i++;
5799 
5800 		/* v6advance: */
5801 		v6advance = i;
5802 
5803 		/*
5804 		 * in short,
5805 		 * A = P[X + packet head];
5806 		 * X = X + (P[X + packet head + 1] + 1) * 8;
5807 		 */
5808 		/* A = P[X + packet head] */
5809 		s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
5810 		s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
5811 		i++;
5812 		/* MEM[reg2] = A */
5813 		s[i] = new_stmt(cstate, BPF_ST);
5814 		s[i]->s.k = reg2;
5815 		i++;
5816 		/* A = P[X + packet head + 1]; */
5817 		s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
5818 		s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 1;
5819 		i++;
5820 		/* A += 1 */
5821 		s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
5822 		s[i]->s.k = 1;
5823 		i++;
5824 		/* A *= 8 */
5825 		s[i] = new_stmt(cstate, BPF_ALU|BPF_MUL|BPF_K);
5826 		s[i]->s.k = 8;
5827 		i++;
5828 		/* A += X */
5829 		s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X);
5830 		s[i]->s.k = 0;
5831 		i++;
5832 		/* X = A; */
5833 		s[i] = new_stmt(cstate, BPF_MISC|BPF_TAX);
5834 		i++;
5835 		/* A = MEM[reg2] */
5836 		s[i] = new_stmt(cstate, BPF_LD|BPF_MEM);
5837 		s[i]->s.k = reg2;
5838 		i++;
5839 
5840 		/* goto again; (must use BPF_JA for backward jump) */
5841 		s[i] = new_stmt(cstate, BPF_JMP|BPF_JA);
5842 		s[i]->s.k = again - i - 1;
5843 		s[i - 1]->s.jf = s[i];
5844 		i++;
5845 
5846 		/* fixup */
5847 		for (j = v6start; j <= v6end; j++)
5848 			s[j]->s.jt = s[v6advance];
5849 	} else {
5850 		/* nop */
5851 		s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
5852 		s[i]->s.k = 0;
5853 		s[fix2]->s.jf = s[i];
5854 		i++;
5855 	}
5856 
5857 	/* ahcheck: */
5858 	ahcheck = i;
5859 	/* if (A == IPPROTO_AH) then fall through; else goto end; */
5860 	s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
5861 	s[i]->s.jt = NULL;	/*later*/
5862 	s[i]->s.jf = NULL;	/*later*/
5863 	s[i]->s.k = IPPROTO_AH;
5864 	if (fix3)
5865 		s[fix3]->s.jf = s[ahcheck];
5866 	fix4 = i;
5867 	i++;
5868 
5869 	/*
5870 	 * in short,
5871 	 * A = P[X];
5872 	 * X = X + (P[X + 1] + 2) * 4;
5873 	 */
5874 	/* A = X */
5875 	s[i - 1]->s.jt = s[i] = new_stmt(cstate, BPF_MISC|BPF_TXA);
5876 	i++;
5877 	/* A = P[X + packet head]; */
5878 	s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
5879 	s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
5880 	i++;
5881 	/* MEM[reg2] = A */
5882 	s[i] = new_stmt(cstate, BPF_ST);
5883 	s[i]->s.k = reg2;
5884 	i++;
5885 	/* A = X */
5886 	s[i - 1]->s.jt = s[i] = new_stmt(cstate, BPF_MISC|BPF_TXA);
5887 	i++;
5888 	/* A += 1 */
5889 	s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
5890 	s[i]->s.k = 1;
5891 	i++;
5892 	/* X = A */
5893 	s[i] = new_stmt(cstate, BPF_MISC|BPF_TAX);
5894 	i++;
5895 	/* A = P[X + packet head] */
5896 	s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
5897 	s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
5898 	i++;
5899 	/* A += 2 */
5900 	s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
5901 	s[i]->s.k = 2;
5902 	i++;
5903 	/* A *= 4 */
5904 	s[i] = new_stmt(cstate, BPF_ALU|BPF_MUL|BPF_K);
5905 	s[i]->s.k = 4;
5906 	i++;
5907 	/* X = A; */
5908 	s[i] = new_stmt(cstate, BPF_MISC|BPF_TAX);
5909 	i++;
5910 	/* A = MEM[reg2] */
5911 	s[i] = new_stmt(cstate, BPF_LD|BPF_MEM);
5912 	s[i]->s.k = reg2;
5913 	i++;
5914 
5915 	/* goto again; (must use BPF_JA for backward jump) */
5916 	s[i] = new_stmt(cstate, BPF_JMP|BPF_JA);
5917 	s[i]->s.k = again - i - 1;
5918 	i++;
5919 
5920 	/* end: nop */
5921 	end = i;
5922 	s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
5923 	s[i]->s.k = 0;
5924 	s[fix2]->s.jt = s[end];
5925 	s[fix4]->s.jf = s[end];
5926 	s[fix5]->s.jt = s[end];
5927 	i++;
5928 
5929 	/*
5930 	 * make slist chain
5931 	 */
5932 	max = i;
5933 	for (i = 0; i < max - 1; i++)
5934 		s[i]->next = s[i + 1];
5935 	s[max - 1]->next = NULL;
5936 
5937 	/*
5938 	 * emit final check
5939 	 */
5940 	b = new_block(cstate, JMP(BPF_JEQ));
5941 	b->stmts = s[1];	/*remember, s[0] is dummy*/
5942 	b->s.k = v;
5943 
5944 	free_reg(cstate, reg2);
5945 
5946 	gen_and(b0, b);
5947 	return b;
5948 #endif
5949 }
5950 
5951 static struct block *
5952 gen_check_802_11_data_frame(compiler_state_t *cstate)
5953 {
5954 	struct slist *s;
5955 	struct block *b0, *b1;
5956 
5957 	/*
5958 	 * A data frame has the 0x08 bit (b3) in the frame control field set
5959 	 * and the 0x04 bit (b2) clear.
5960 	 */
5961 	s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
5962 	b0 = new_block(cstate, JMP(BPF_JSET));
5963 	b0->s.k = 0x08;
5964 	b0->stmts = s;
5965 
5966 	s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
5967 	b1 = new_block(cstate, JMP(BPF_JSET));
5968 	b1->s.k = 0x04;
5969 	b1->stmts = s;
5970 	gen_not(b1);
5971 
5972 	gen_and(b1, b0);
5973 
5974 	return b0;
5975 }
5976 
5977 /*
5978  * Generate code that checks whether the packet is a packet for protocol
5979  * <proto> and whether the type field in that protocol's header has
5980  * the value <v>, e.g. if <proto> is Q_IP, it checks whether it's an
5981  * IP packet and checks the protocol number in the IP header against <v>.
5982  *
5983  * If <proto> is Q_DEFAULT, i.e. just "proto" was specified, it checks
5984  * against Q_IP and Q_IPV6.
5985  */
5986 static struct block *
5987 gen_proto(compiler_state_t *cstate, int v, int proto, int dir)
5988 {
5989 	struct block *b0, *b1;
5990 #ifndef CHASE_CHAIN
5991 	struct block *b2;
5992 #endif
5993 
5994 	if (dir != Q_DEFAULT)
5995 		bpf_error(cstate, "direction applied to 'proto'");
5996 
5997 	switch (proto) {
5998 	case Q_DEFAULT:
5999 		b0 = gen_proto(cstate, v, Q_IP, dir);
6000 		b1 = gen_proto(cstate, v, Q_IPV6, dir);
6001 		gen_or(b0, b1);
6002 		return b1;
6003 
6004 	case Q_IP:
6005 		/*
6006 		 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
6007 		 * not LLC encapsulation with LLCSAP_IP.
6008 		 *
6009 		 * For IEEE 802 networks - which includes 802.5 token ring
6010 		 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
6011 		 * says that SNAP encapsulation is used, not LLC encapsulation
6012 		 * with LLCSAP_IP.
6013 		 *
6014 		 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
6015 		 * RFC 2225 say that SNAP encapsulation is used, not LLC
6016 		 * encapsulation with LLCSAP_IP.
6017 		 *
6018 		 * So we always check for ETHERTYPE_IP.
6019 		 */
6020 		b0 = gen_linktype(cstate, ETHERTYPE_IP);
6021 #ifndef CHASE_CHAIN
6022 		b1 = gen_cmp(cstate, OR_LINKPL, 9, BPF_B, (bpf_int32)v);
6023 #else
6024 		b1 = gen_protochain(cstate, v, Q_IP);
6025 #endif
6026 		gen_and(b0, b1);
6027 		return b1;
6028 
6029 	case Q_ISO:
6030 		switch (cstate->linktype) {
6031 
6032 		case DLT_FRELAY:
6033 			/*
6034 			 * Frame Relay packets typically have an OSI
6035 			 * NLPID at the beginning; "gen_linktype(cstate, LLCSAP_ISONS)"
6036 			 * generates code to check for all the OSI
6037 			 * NLPIDs, so calling it and then adding a check
6038 			 * for the particular NLPID for which we're
6039 			 * looking is bogus, as we can just check for
6040 			 * the NLPID.
6041 			 *
6042 			 * What we check for is the NLPID and a frame
6043 			 * control field value of UI, i.e. 0x03 followed
6044 			 * by the NLPID.
6045 			 *
6046 			 * XXX - assumes a 2-byte Frame Relay header with
6047 			 * DLCI and flags.  What if the address is longer?
6048 			 *
6049 			 * XXX - what about SNAP-encapsulated frames?
6050 			 */
6051 			return gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | v);
6052 			/*NOTREACHED*/
6053 			break;
6054 
6055 		case DLT_C_HDLC:
6056 			/*
6057 			 * Cisco uses an Ethertype lookalike - for OSI,
6058 			 * it's 0xfefe.
6059 			 */
6060 			b0 = gen_linktype(cstate, LLCSAP_ISONS<<8 | LLCSAP_ISONS);
6061 			/* OSI in C-HDLC is stuffed with a fudge byte */
6062 			b1 = gen_cmp(cstate, OR_LINKPL_NOSNAP, 1, BPF_B, (long)v);
6063 			gen_and(b0, b1);
6064 			return b1;
6065 
6066 		default:
6067 			b0 = gen_linktype(cstate, LLCSAP_ISONS);
6068 			b1 = gen_cmp(cstate, OR_LINKPL_NOSNAP, 0, BPF_B, (long)v);
6069 			gen_and(b0, b1);
6070 			return b1;
6071 		}
6072 
6073 	case Q_ISIS:
6074 		b0 = gen_proto(cstate, ISO10589_ISIS, Q_ISO, Q_DEFAULT);
6075 		/*
6076 		 * 4 is the offset of the PDU type relative to the IS-IS
6077 		 * header.
6078 		 */
6079 		b1 = gen_cmp(cstate, OR_LINKPL_NOSNAP, 4, BPF_B, (long)v);
6080 		gen_and(b0, b1);
6081 		return b1;
6082 
6083 	case Q_ARP:
6084 		bpf_error(cstate, "arp does not encapsulate another protocol");
6085 		/* NOTREACHED */
6086 
6087 	case Q_RARP:
6088 		bpf_error(cstate, "rarp does not encapsulate another protocol");
6089 		/* NOTREACHED */
6090 
6091 	case Q_ATALK:
6092 		bpf_error(cstate, "atalk encapsulation is not specifiable");
6093 		/* NOTREACHED */
6094 
6095 	case Q_DECNET:
6096 		bpf_error(cstate, "decnet encapsulation is not specifiable");
6097 		/* NOTREACHED */
6098 
6099 	case Q_SCA:
6100 		bpf_error(cstate, "sca does not encapsulate another protocol");
6101 		/* NOTREACHED */
6102 
6103 	case Q_LAT:
6104 		bpf_error(cstate, "lat does not encapsulate another protocol");
6105 		/* NOTREACHED */
6106 
6107 	case Q_MOPRC:
6108 		bpf_error(cstate, "moprc does not encapsulate another protocol");
6109 		/* NOTREACHED */
6110 
6111 	case Q_MOPDL:
6112 		bpf_error(cstate, "mopdl does not encapsulate another protocol");
6113 		/* NOTREACHED */
6114 
6115 	case Q_LINK:
6116 		return gen_linktype(cstate, v);
6117 
6118 	case Q_UDP:
6119 		bpf_error(cstate, "'udp proto' is bogus");
6120 		/* NOTREACHED */
6121 
6122 	case Q_TCP:
6123 		bpf_error(cstate, "'tcp proto' is bogus");
6124 		/* NOTREACHED */
6125 
6126 	case Q_SCTP:
6127 		bpf_error(cstate, "'sctp proto' is bogus");
6128 		/* NOTREACHED */
6129 
6130 	case Q_ICMP:
6131 		bpf_error(cstate, "'icmp proto' is bogus");
6132 		/* NOTREACHED */
6133 
6134 	case Q_IGMP:
6135 		bpf_error(cstate, "'igmp proto' is bogus");
6136 		/* NOTREACHED */
6137 
6138 	case Q_IGRP:
6139 		bpf_error(cstate, "'igrp proto' is bogus");
6140 		/* NOTREACHED */
6141 
6142 	case Q_PIM:
6143 		bpf_error(cstate, "'pim proto' is bogus");
6144 		/* NOTREACHED */
6145 
6146 	case Q_VRRP:
6147 		bpf_error(cstate, "'vrrp proto' is bogus");
6148 		/* NOTREACHED */
6149 
6150 	case Q_CARP:
6151 		bpf_error(cstate, "'carp proto' is bogus");
6152 		/* NOTREACHED */
6153 
6154 	case Q_IPV6:
6155 		b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
6156 #ifndef CHASE_CHAIN
6157 		/*
6158 		 * Also check for a fragment header before the final
6159 		 * header.
6160 		 */
6161 		b2 = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, IPPROTO_FRAGMENT);
6162 		b1 = gen_cmp(cstate, OR_LINKPL, 40, BPF_B, (bpf_int32)v);
6163 		gen_and(b2, b1);
6164 		b2 = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, (bpf_int32)v);
6165 		gen_or(b2, b1);
6166 #else
6167 		b1 = gen_protochain(cstate, v, Q_IPV6);
6168 #endif
6169 		gen_and(b0, b1);
6170 		return b1;
6171 
6172 	case Q_ICMPV6:
6173 		bpf_error(cstate, "'icmp6 proto' is bogus");
6174 
6175 	case Q_AH:
6176 		bpf_error(cstate, "'ah proto' is bogus");
6177 
6178 	case Q_ESP:
6179 		bpf_error(cstate, "'ah proto' is bogus");
6180 
6181 	case Q_STP:
6182 		bpf_error(cstate, "'stp proto' is bogus");
6183 
6184 	case Q_IPX:
6185 		bpf_error(cstate, "'ipx proto' is bogus");
6186 
6187 	case Q_NETBEUI:
6188 		bpf_error(cstate, "'netbeui proto' is bogus");
6189 
6190 	case Q_RADIO:
6191 		bpf_error(cstate, "'radio proto' is bogus");
6192 
6193 	default:
6194 		abort();
6195 		/* NOTREACHED */
6196 	}
6197 	/* NOTREACHED */
6198 }
6199 
6200 struct block *
6201 gen_scode(compiler_state_t *cstate, const char *name, struct qual q)
6202 {
6203 	int proto = q.proto;
6204 	int dir = q.dir;
6205 	int tproto;
6206 	u_char *eaddr;
6207 	bpf_u_int32 mask, addr;
6208 #ifndef INET6
6209 	bpf_u_int32 **alist;
6210 #else
6211 	int tproto6;
6212 	struct sockaddr_in *sin4;
6213 	struct sockaddr_in6 *sin6;
6214 	struct addrinfo *res, *res0;
6215 	struct in6_addr mask128;
6216 #endif /*INET6*/
6217 	struct block *b, *tmp;
6218 	int port, real_proto;
6219 	int port1, port2;
6220 
6221 	switch (q.addr) {
6222 
6223 	case Q_NET:
6224 		addr = pcap_nametonetaddr(name);
6225 		if (addr == 0)
6226 			bpf_error(cstate, "unknown network '%s'", name);
6227 		/* Left justify network addr and calculate its network mask */
6228 		mask = 0xffffffff;
6229 		while (addr && (addr & 0xff000000) == 0) {
6230 			addr <<= 8;
6231 			mask <<= 8;
6232 		}
6233 		return gen_host(cstate, addr, mask, proto, dir, q.addr);
6234 
6235 	case Q_DEFAULT:
6236 	case Q_HOST:
6237 		if (proto == Q_LINK) {
6238 			switch (cstate->linktype) {
6239 
6240 			case DLT_EN10MB:
6241 			case DLT_NETANALYZER:
6242 			case DLT_NETANALYZER_TRANSPARENT:
6243 				eaddr = pcap_ether_hostton(name);
6244 				if (eaddr == NULL)
6245 					bpf_error(cstate,
6246 					    "unknown ether host '%s'", name);
6247 				tmp = gen_prevlinkhdr_check(cstate);
6248 				b = gen_ehostop(cstate, eaddr, dir);
6249 				if (tmp != NULL)
6250 					gen_and(tmp, b);
6251 				free(eaddr);
6252 				return b;
6253 
6254 			case DLT_FDDI:
6255 				eaddr = pcap_ether_hostton(name);
6256 				if (eaddr == NULL)
6257 					bpf_error(cstate,
6258 					    "unknown FDDI host '%s'", name);
6259 				b = gen_fhostop(cstate, eaddr, dir);
6260 				free(eaddr);
6261 				return b;
6262 
6263 			case DLT_IEEE802:
6264 				eaddr = pcap_ether_hostton(name);
6265 				if (eaddr == NULL)
6266 					bpf_error(cstate,
6267 					    "unknown token ring host '%s'", name);
6268 				b = gen_thostop(cstate, eaddr, dir);
6269 				free(eaddr);
6270 				return b;
6271 
6272 			case DLT_IEEE802_11:
6273 			case DLT_PRISM_HEADER:
6274 			case DLT_IEEE802_11_RADIO_AVS:
6275 			case DLT_IEEE802_11_RADIO:
6276 			case DLT_PPI:
6277 				eaddr = pcap_ether_hostton(name);
6278 				if (eaddr == NULL)
6279 					bpf_error(cstate,
6280 					    "unknown 802.11 host '%s'", name);
6281 				b = gen_wlanhostop(cstate, eaddr, dir);
6282 				free(eaddr);
6283 				return b;
6284 
6285 			case DLT_IP_OVER_FC:
6286 				eaddr = pcap_ether_hostton(name);
6287 				if (eaddr == NULL)
6288 					bpf_error(cstate,
6289 					    "unknown Fibre Channel host '%s'", name);
6290 				b = gen_ipfchostop(cstate, eaddr, dir);
6291 				free(eaddr);
6292 				return b;
6293 			}
6294 
6295 			bpf_error(cstate, "only ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel supports link-level host name");
6296 		} else if (proto == Q_DECNET) {
6297 			unsigned short dn_addr;
6298 
6299 			if (!__pcap_nametodnaddr(name, &dn_addr)) {
6300 #ifdef	DECNETLIB
6301 				bpf_error(cstate, "unknown decnet host name '%s'\n", name);
6302 #else
6303 				bpf_error(cstate, "decnet name support not included, '%s' cannot be translated\n",
6304 					name);
6305 #endif
6306 			}
6307 			/*
6308 			 * I don't think DECNET hosts can be multihomed, so
6309 			 * there is no need to build up a list of addresses
6310 			 */
6311 			return (gen_host(cstate, dn_addr, 0, proto, dir, q.addr));
6312 		} else {
6313 #ifndef INET6
6314 			alist = pcap_nametoaddr(name);
6315 			if (alist == NULL || *alist == NULL)
6316 				bpf_error(cstate, "unknown host '%s'", name);
6317 			tproto = proto;
6318 			if (cstate->off_linktype.constant_part == OFFSET_NOT_SET &&
6319 			    tproto == Q_DEFAULT)
6320 				tproto = Q_IP;
6321 			b = gen_host(cstate, **alist++, 0xffffffff, tproto, dir, q.addr);
6322 			while (*alist) {
6323 				tmp = gen_host(cstate, **alist++, 0xffffffff,
6324 					       tproto, dir, q.addr);
6325 				gen_or(b, tmp);
6326 				b = tmp;
6327 			}
6328 			return b;
6329 #else
6330 			memset(&mask128, 0xff, sizeof(mask128));
6331 			res0 = res = pcap_nametoaddrinfo(name);
6332 			if (res == NULL)
6333 				bpf_error(cstate, "unknown host '%s'", name);
6334 			cstate->ai = res;
6335 			b = tmp = NULL;
6336 			tproto = tproto6 = proto;
6337 			if (cstate->off_linktype.constant_part == OFFSET_NOT_SET &&
6338 			    tproto == Q_DEFAULT) {
6339 				tproto = Q_IP;
6340 				tproto6 = Q_IPV6;
6341 			}
6342 			for (res = res0; res; res = res->ai_next) {
6343 				switch (res->ai_family) {
6344 				case AF_INET:
6345 					if (tproto == Q_IPV6)
6346 						continue;
6347 
6348 					sin4 = (struct sockaddr_in *)
6349 						res->ai_addr;
6350 					tmp = gen_host(cstate, ntohl(sin4->sin_addr.s_addr),
6351 						0xffffffff, tproto, dir, q.addr);
6352 					break;
6353 				case AF_INET6:
6354 					if (tproto6 == Q_IP)
6355 						continue;
6356 
6357 					sin6 = (struct sockaddr_in6 *)
6358 						res->ai_addr;
6359 					tmp = gen_host6(cstate, &sin6->sin6_addr,
6360 						&mask128, tproto6, dir, q.addr);
6361 					break;
6362 				default:
6363 					continue;
6364 				}
6365 				if (b)
6366 					gen_or(b, tmp);
6367 				b = tmp;
6368 			}
6369 			cstate->ai = NULL;
6370 			freeaddrinfo(res0);
6371 			if (b == NULL) {
6372 				bpf_error(cstate, "unknown host '%s'%s", name,
6373 				    (proto == Q_DEFAULT)
6374 					? ""
6375 					: " for specified address family");
6376 			}
6377 			return b;
6378 #endif /*INET6*/
6379 		}
6380 
6381 	case Q_PORT:
6382 		if (proto != Q_DEFAULT &&
6383 		    proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP)
6384 			bpf_error(cstate, "illegal qualifier of 'port'");
6385 		if (pcap_nametoport(name, &port, &real_proto) == 0)
6386 			bpf_error(cstate, "unknown port '%s'", name);
6387 		if (proto == Q_UDP) {
6388 			if (real_proto == IPPROTO_TCP)
6389 				bpf_error(cstate, "port '%s' is tcp", name);
6390 			else if (real_proto == IPPROTO_SCTP)
6391 				bpf_error(cstate, "port '%s' is sctp", name);
6392 			else
6393 				/* override PROTO_UNDEF */
6394 				real_proto = IPPROTO_UDP;
6395 		}
6396 		if (proto == Q_TCP) {
6397 			if (real_proto == IPPROTO_UDP)
6398 				bpf_error(cstate, "port '%s' is udp", name);
6399 
6400 			else if (real_proto == IPPROTO_SCTP)
6401 				bpf_error(cstate, "port '%s' is sctp", name);
6402 			else
6403 				/* override PROTO_UNDEF */
6404 				real_proto = IPPROTO_TCP;
6405 		}
6406 		if (proto == Q_SCTP) {
6407 			if (real_proto == IPPROTO_UDP)
6408 				bpf_error(cstate, "port '%s' is udp", name);
6409 
6410 			else if (real_proto == IPPROTO_TCP)
6411 				bpf_error(cstate, "port '%s' is tcp", name);
6412 			else
6413 				/* override PROTO_UNDEF */
6414 				real_proto = IPPROTO_SCTP;
6415 		}
6416 		if (port < 0)
6417 			bpf_error(cstate, "illegal port number %d < 0", port);
6418 		if (port > 65535)
6419 			bpf_error(cstate, "illegal port number %d > 65535", port);
6420 		b = gen_port(cstate, port, real_proto, dir);
6421 		gen_or(gen_port6(cstate, port, real_proto, dir), b);
6422 		return b;
6423 
6424 	case Q_PORTRANGE:
6425 		if (proto != Q_DEFAULT &&
6426 		    proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP)
6427 			bpf_error(cstate, "illegal qualifier of 'portrange'");
6428 		if (pcap_nametoportrange(name, &port1, &port2, &real_proto) == 0)
6429 			bpf_error(cstate, "unknown port in range '%s'", name);
6430 		if (proto == Q_UDP) {
6431 			if (real_proto == IPPROTO_TCP)
6432 				bpf_error(cstate, "port in range '%s' is tcp", name);
6433 			else if (real_proto == IPPROTO_SCTP)
6434 				bpf_error(cstate, "port in range '%s' is sctp", name);
6435 			else
6436 				/* override PROTO_UNDEF */
6437 				real_proto = IPPROTO_UDP;
6438 		}
6439 		if (proto == Q_TCP) {
6440 			if (real_proto == IPPROTO_UDP)
6441 				bpf_error(cstate, "port in range '%s' is udp", name);
6442 			else if (real_proto == IPPROTO_SCTP)
6443 				bpf_error(cstate, "port in range '%s' is sctp", name);
6444 			else
6445 				/* override PROTO_UNDEF */
6446 				real_proto = IPPROTO_TCP;
6447 		}
6448 		if (proto == Q_SCTP) {
6449 			if (real_proto == IPPROTO_UDP)
6450 				bpf_error(cstate, "port in range '%s' is udp", name);
6451 			else if (real_proto == IPPROTO_TCP)
6452 				bpf_error(cstate, "port in range '%s' is tcp", name);
6453 			else
6454 				/* override PROTO_UNDEF */
6455 				real_proto = IPPROTO_SCTP;
6456 		}
6457 		if (port1 < 0)
6458 			bpf_error(cstate, "illegal port number %d < 0", port1);
6459 		if (port1 > 65535)
6460 			bpf_error(cstate, "illegal port number %d > 65535", port1);
6461 		if (port2 < 0)
6462 			bpf_error(cstate, "illegal port number %d < 0", port2);
6463 		if (port2 > 65535)
6464 			bpf_error(cstate, "illegal port number %d > 65535", port2);
6465 
6466 		b = gen_portrange(cstate, port1, port2, real_proto, dir);
6467 		gen_or(gen_portrange6(cstate, port1, port2, real_proto, dir), b);
6468 		return b;
6469 
6470 	case Q_GATEWAY:
6471 #ifndef INET6
6472 		eaddr = pcap_ether_hostton(name);
6473 		if (eaddr == NULL)
6474 			bpf_error(cstate, "unknown ether host: %s", name);
6475 
6476 		alist = pcap_nametoaddr(name);
6477 		if (alist == NULL || *alist == NULL)
6478 			bpf_error(cstate, "unknown host '%s'", name);
6479 		b = gen_gateway(eaddr, alist, proto, dir);
6480 		free(eaddr);
6481 		return b;
6482 #else
6483 		bpf_error(cstate, "'gateway' not supported in this configuration");
6484 #endif /*INET6*/
6485 
6486 	case Q_PROTO:
6487 		real_proto = lookup_proto(cstate, name, proto);
6488 		if (real_proto >= 0)
6489 			return gen_proto(cstate, real_proto, proto, dir);
6490 		else
6491 			bpf_error(cstate, "unknown protocol: %s", name);
6492 
6493 	case Q_PROTOCHAIN:
6494 		real_proto = lookup_proto(cstate, name, proto);
6495 		if (real_proto >= 0)
6496 			return gen_protochain(cstate, real_proto, proto, dir);
6497 		else
6498 			bpf_error(cstate, "unknown protocol: %s", name);
6499 
6500 	case Q_UNDEF:
6501 		syntax(cstate);
6502 		/* NOTREACHED */
6503 	}
6504 	abort();
6505 	/* NOTREACHED */
6506 }
6507 
6508 struct block *
6509 gen_mcode(compiler_state_t *cstate, const char *s1, const char *s2,
6510     unsigned int masklen, struct qual q)
6511 {
6512 	register int nlen, mlen;
6513 	bpf_u_int32 n, m;
6514 
6515 	nlen = __pcap_atoin(s1, &n);
6516 	/* Promote short ipaddr */
6517 	n <<= 32 - nlen;
6518 
6519 	if (s2 != NULL) {
6520 		mlen = __pcap_atoin(s2, &m);
6521 		/* Promote short ipaddr */
6522 		m <<= 32 - mlen;
6523 		if ((n & ~m) != 0)
6524 			bpf_error(cstate, "non-network bits set in \"%s mask %s\"",
6525 			    s1, s2);
6526 	} else {
6527 		/* Convert mask len to mask */
6528 		if (masklen > 32)
6529 			bpf_error(cstate, "mask length must be <= 32");
6530 		if (masklen == 0) {
6531 			/*
6532 			 * X << 32 is not guaranteed by C to be 0; it's
6533 			 * undefined.
6534 			 */
6535 			m = 0;
6536 		} else
6537 			m = 0xffffffff << (32 - masklen);
6538 		if ((n & ~m) != 0)
6539 			bpf_error(cstate, "non-network bits set in \"%s/%d\"",
6540 			    s1, masklen);
6541 	}
6542 
6543 	switch (q.addr) {
6544 
6545 	case Q_NET:
6546 		return gen_host(cstate, n, m, q.proto, q.dir, q.addr);
6547 
6548 	default:
6549 		bpf_error(cstate, "Mask syntax for networks only");
6550 		/* NOTREACHED */
6551 	}
6552 	/* NOTREACHED */
6553 	return NULL;
6554 }
6555 
6556 struct block *
6557 gen_ncode(compiler_state_t *cstate, const char *s, bpf_u_int32 v, struct qual q)
6558 {
6559 	bpf_u_int32 mask;
6560 	int proto = q.proto;
6561 	int dir = q.dir;
6562 	register int vlen;
6563 
6564 	if (s == NULL)
6565 		vlen = 32;
6566 	else if (q.proto == Q_DECNET) {
6567 		vlen = __pcap_atodn(s, &v);
6568 		if (vlen == 0)
6569 			bpf_error(cstate, "malformed decnet address '%s'", s);
6570 	} else
6571 		vlen = __pcap_atoin(s, &v);
6572 
6573 	switch (q.addr) {
6574 
6575 	case Q_DEFAULT:
6576 	case Q_HOST:
6577 	case Q_NET:
6578 		if (proto == Q_DECNET)
6579 			return gen_host(cstate, v, 0, proto, dir, q.addr);
6580 		else if (proto == Q_LINK) {
6581 			bpf_error(cstate, "illegal link layer address");
6582 		} else {
6583 			mask = 0xffffffff;
6584 			if (s == NULL && q.addr == Q_NET) {
6585 				/* Promote short net number */
6586 				while (v && (v & 0xff000000) == 0) {
6587 					v <<= 8;
6588 					mask <<= 8;
6589 				}
6590 			} else {
6591 				/* Promote short ipaddr */
6592 				v <<= 32 - vlen;
6593 				mask <<= 32 - vlen ;
6594 			}
6595 			return gen_host(cstate, v, mask, proto, dir, q.addr);
6596 		}
6597 
6598 	case Q_PORT:
6599 		if (proto == Q_UDP)
6600 			proto = IPPROTO_UDP;
6601 		else if (proto == Q_TCP)
6602 			proto = IPPROTO_TCP;
6603 		else if (proto == Q_SCTP)
6604 			proto = IPPROTO_SCTP;
6605 		else if (proto == Q_DEFAULT)
6606 			proto = PROTO_UNDEF;
6607 		else
6608 			bpf_error(cstate, "illegal qualifier of 'port'");
6609 
6610 		if (v > 65535)
6611 			bpf_error(cstate, "illegal port number %u > 65535", v);
6612 
6613 	    {
6614 		struct block *b;
6615 		b = gen_port(cstate, (int)v, proto, dir);
6616 		gen_or(gen_port6(cstate, (int)v, proto, dir), b);
6617 		return b;
6618 	    }
6619 
6620 	case Q_PORTRANGE:
6621 		if (proto == Q_UDP)
6622 			proto = IPPROTO_UDP;
6623 		else if (proto == Q_TCP)
6624 			proto = IPPROTO_TCP;
6625 		else if (proto == Q_SCTP)
6626 			proto = IPPROTO_SCTP;
6627 		else if (proto == Q_DEFAULT)
6628 			proto = PROTO_UNDEF;
6629 		else
6630 			bpf_error(cstate, "illegal qualifier of 'portrange'");
6631 
6632 		if (v > 65535)
6633 			bpf_error(cstate, "illegal port number %u > 65535", v);
6634 
6635 	    {
6636 		struct block *b;
6637 		b = gen_portrange(cstate, (int)v, (int)v, proto, dir);
6638 		gen_or(gen_portrange6(cstate, (int)v, (int)v, proto, dir), b);
6639 		return b;
6640 	    }
6641 
6642 	case Q_GATEWAY:
6643 		bpf_error(cstate, "'gateway' requires a name");
6644 		/* NOTREACHED */
6645 
6646 	case Q_PROTO:
6647 		return gen_proto(cstate, (int)v, proto, dir);
6648 
6649 	case Q_PROTOCHAIN:
6650 		return gen_protochain(cstate, (int)v, proto, dir);
6651 
6652 	case Q_UNDEF:
6653 		syntax(cstate);
6654 		/* NOTREACHED */
6655 
6656 	default:
6657 		abort();
6658 		/* NOTREACHED */
6659 	}
6660 	/* NOTREACHED */
6661 }
6662 
6663 #ifdef INET6
6664 struct block *
6665 gen_mcode6(compiler_state_t *cstate, const char *s1, const char *s2,
6666     unsigned int masklen, struct qual q)
6667 {
6668 	struct addrinfo *res;
6669 	struct in6_addr *addr;
6670 	struct in6_addr mask;
6671 	struct block *b;
6672 	u_int32_t *a, *m;
6673 
6674 	if (s2)
6675 		bpf_error(cstate, "no mask %s supported", s2);
6676 
6677 	res = pcap_nametoaddrinfo(s1);
6678 	if (!res)
6679 		bpf_error(cstate, "invalid ip6 address %s", s1);
6680 	cstate->ai = res;
6681 	if (res->ai_next)
6682 		bpf_error(cstate, "%s resolved to multiple address", s1);
6683 	addr = &((struct sockaddr_in6 *)res->ai_addr)->sin6_addr;
6684 
6685 	if (sizeof(mask) * 8 < masklen)
6686 		bpf_error(cstate, "mask length must be <= %u", (unsigned int)(sizeof(mask) * 8));
6687 	memset(&mask, 0, sizeof(mask));
6688 	memset(&mask, 0xff, masklen / 8);
6689 	if (masklen % 8) {
6690 		mask.s6_addr[masklen / 8] =
6691 			(0xff << (8 - masklen % 8)) & 0xff;
6692 	}
6693 
6694 	a = (u_int32_t *)addr;
6695 	m = (u_int32_t *)&mask;
6696 	if ((a[0] & ~m[0]) || (a[1] & ~m[1])
6697 	 || (a[2] & ~m[2]) || (a[3] & ~m[3])) {
6698 		bpf_error(cstate, "non-network bits set in \"%s/%d\"", s1, masklen);
6699 	}
6700 
6701 	switch (q.addr) {
6702 
6703 	case Q_DEFAULT:
6704 	case Q_HOST:
6705 		if (masklen != 128)
6706 			bpf_error(cstate, "Mask syntax for networks only");
6707 		/* FALLTHROUGH */
6708 
6709 	case Q_NET:
6710 		b = gen_host6(cstate, addr, &mask, q.proto, q.dir, q.addr);
6711 		cstate->ai = NULL;
6712 		freeaddrinfo(res);
6713 		return b;
6714 
6715 	default:
6716 		bpf_error(cstate, "invalid qualifier against IPv6 address");
6717 		/* NOTREACHED */
6718 	}
6719 	return NULL;
6720 }
6721 #endif /*INET6*/
6722 
6723 struct block *
6724 gen_ecode(compiler_state_t *cstate, const u_char *eaddr, struct qual q)
6725 {
6726 	struct block *b, *tmp;
6727 
6728 	if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) && q.proto == Q_LINK) {
6729 		switch (cstate->linktype) {
6730 		case DLT_EN10MB:
6731 		case DLT_NETANALYZER:
6732 		case DLT_NETANALYZER_TRANSPARENT:
6733 			tmp = gen_prevlinkhdr_check(cstate);
6734 			b = gen_ehostop(cstate, eaddr, (int)q.dir);
6735 			if (tmp != NULL)
6736 				gen_and(tmp, b);
6737 			return b;
6738 		case DLT_FDDI:
6739 			return gen_fhostop(cstate, eaddr, (int)q.dir);
6740 		case DLT_IEEE802:
6741 			return gen_thostop(cstate, eaddr, (int)q.dir);
6742 		case DLT_IEEE802_11:
6743 		case DLT_PRISM_HEADER:
6744 		case DLT_IEEE802_11_RADIO_AVS:
6745 		case DLT_IEEE802_11_RADIO:
6746 		case DLT_PPI:
6747 			return gen_wlanhostop(cstate, eaddr, (int)q.dir);
6748 		case DLT_IP_OVER_FC:
6749 			return gen_ipfchostop(cstate, eaddr, (int)q.dir);
6750 		default:
6751 			bpf_error(cstate, "ethernet addresses supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
6752 			break;
6753 		}
6754 	}
6755 	bpf_error(cstate, "ethernet address used in non-ether expression");
6756 	/* NOTREACHED */
6757 	return NULL;
6758 }
6759 
6760 void
6761 sappend(s0, s1)
6762 	struct slist *s0, *s1;
6763 {
6764 	/*
6765 	 * This is definitely not the best way to do this, but the
6766 	 * lists will rarely get long.
6767 	 */
6768 	while (s0->next)
6769 		s0 = s0->next;
6770 	s0->next = s1;
6771 }
6772 
6773 static struct slist *
6774 xfer_to_x(compiler_state_t *cstate, struct arth *a)
6775 {
6776 	struct slist *s;
6777 
6778 	s = new_stmt(cstate, BPF_LDX|BPF_MEM);
6779 	s->s.k = a->regno;
6780 	return s;
6781 }
6782 
6783 static struct slist *
6784 xfer_to_a(compiler_state_t *cstate, struct arth *a)
6785 {
6786 	struct slist *s;
6787 
6788 	s = new_stmt(cstate, BPF_LD|BPF_MEM);
6789 	s->s.k = a->regno;
6790 	return s;
6791 }
6792 
6793 /*
6794  * Modify "index" to use the value stored into its register as an
6795  * offset relative to the beginning of the header for the protocol
6796  * "proto", and allocate a register and put an item "size" bytes long
6797  * (1, 2, or 4) at that offset into that register, making it the register
6798  * for "index".
6799  */
6800 struct arth *
6801 gen_load(compiler_state_t *cstate, int proto, struct arth *inst, int size)
6802 {
6803 	struct slist *s, *tmp;
6804 	struct block *b;
6805 	int regno = alloc_reg(cstate);
6806 
6807 	free_reg(cstate, inst->regno);
6808 	switch (size) {
6809 
6810 	default:
6811 		bpf_error(cstate, "data size must be 1, 2, or 4");
6812 
6813 	case 1:
6814 		size = BPF_B;
6815 		break;
6816 
6817 	case 2:
6818 		size = BPF_H;
6819 		break;
6820 
6821 	case 4:
6822 		size = BPF_W;
6823 		break;
6824 	}
6825 	switch (proto) {
6826 	default:
6827 		bpf_error(cstate, "unsupported index operation");
6828 
6829 	case Q_RADIO:
6830 		/*
6831 		 * The offset is relative to the beginning of the packet
6832 		 * data, if we have a radio header.  (If we don't, this
6833 		 * is an error.)
6834 		 */
6835 		if (cstate->linktype != DLT_IEEE802_11_RADIO_AVS &&
6836 		    cstate->linktype != DLT_IEEE802_11_RADIO &&
6837 		    cstate->linktype != DLT_PRISM_HEADER)
6838 			bpf_error(cstate, "radio information not present in capture");
6839 
6840 		/*
6841 		 * Load into the X register the offset computed into the
6842 		 * register specified by "index".
6843 		 */
6844 		s = xfer_to_x(cstate, inst);
6845 
6846 		/*
6847 		 * Load the item at that offset.
6848 		 */
6849 		tmp = new_stmt(cstate, BPF_LD|BPF_IND|size);
6850 		sappend(s, tmp);
6851 		sappend(inst->s, s);
6852 		break;
6853 
6854 	case Q_LINK:
6855 		/*
6856 		 * The offset is relative to the beginning of
6857 		 * the link-layer header.
6858 		 *
6859 		 * XXX - what about ATM LANE?  Should the index be
6860 		 * relative to the beginning of the AAL5 frame, so
6861 		 * that 0 refers to the beginning of the LE Control
6862 		 * field, or relative to the beginning of the LAN
6863 		 * frame, so that 0 refers, for Ethernet LANE, to
6864 		 * the beginning of the destination address?
6865 		 */
6866 		s = gen_abs_offset_varpart(cstate, &cstate->off_linkhdr);
6867 
6868 		/*
6869 		 * If "s" is non-null, it has code to arrange that the
6870 		 * X register contains the length of the prefix preceding
6871 		 * the link-layer header.  Add to it the offset computed
6872 		 * into the register specified by "index", and move that
6873 		 * into the X register.  Otherwise, just load into the X
6874 		 * register the offset computed into the register specified
6875 		 * by "index".
6876 		 */
6877 		if (s != NULL) {
6878 			sappend(s, xfer_to_a(cstate, inst));
6879 			sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
6880 			sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
6881 		} else
6882 			s = xfer_to_x(cstate, inst);
6883 
6884 		/*
6885 		 * Load the item at the sum of the offset we've put in the
6886 		 * X register and the offset of the start of the link
6887 		 * layer header (which is 0 if the radio header is
6888 		 * variable-length; that header length is what we put
6889 		 * into the X register and then added to the index).
6890 		 */
6891 		tmp = new_stmt(cstate, BPF_LD|BPF_IND|size);
6892 		tmp->s.k = cstate->off_linkhdr.constant_part;
6893 		sappend(s, tmp);
6894 		sappend(inst->s, s);
6895 		break;
6896 
6897 	case Q_IP:
6898 	case Q_ARP:
6899 	case Q_RARP:
6900 	case Q_ATALK:
6901 	case Q_DECNET:
6902 	case Q_SCA:
6903 	case Q_LAT:
6904 	case Q_MOPRC:
6905 	case Q_MOPDL:
6906 	case Q_IPV6:
6907 		/*
6908 		 * The offset is relative to the beginning of
6909 		 * the network-layer header.
6910 		 * XXX - are there any cases where we want
6911 		 * cstate->off_nl_nosnap?
6912 		 */
6913 		s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl);
6914 
6915 		/*
6916 		 * If "s" is non-null, it has code to arrange that the
6917 		 * X register contains the variable part of the offset
6918 		 * of the link-layer payload.  Add to it the offset
6919 		 * computed into the register specified by "index",
6920 		 * and move that into the X register.  Otherwise, just
6921 		 * load into the X register the offset computed into
6922 		 * the register specified by "index".
6923 		 */
6924 		if (s != NULL) {
6925 			sappend(s, xfer_to_a(cstate, inst));
6926 			sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
6927 			sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
6928 		} else
6929 			s = xfer_to_x(cstate, inst);
6930 
6931 		/*
6932 		 * Load the item at the sum of the offset we've put in the
6933 		 * X register, the offset of the start of the network
6934 		 * layer header from the beginning of the link-layer
6935 		 * payload, and the constant part of the offset of the
6936 		 * start of the link-layer payload.
6937 		 */
6938 		tmp = new_stmt(cstate, BPF_LD|BPF_IND|size);
6939 		tmp->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
6940 		sappend(s, tmp);
6941 		sappend(inst->s, s);
6942 
6943 		/*
6944 		 * Do the computation only if the packet contains
6945 		 * the protocol in question.
6946 		 */
6947 		b = gen_proto_abbrev(cstate, proto);
6948 		if (inst->b)
6949 			gen_and(inst->b, b);
6950 		inst->b = b;
6951 		break;
6952 
6953 	case Q_SCTP:
6954 	case Q_TCP:
6955 	case Q_UDP:
6956 	case Q_ICMP:
6957 	case Q_IGMP:
6958 	case Q_IGRP:
6959 	case Q_PIM:
6960 	case Q_VRRP:
6961 	case Q_CARP:
6962 		/*
6963 		 * The offset is relative to the beginning of
6964 		 * the transport-layer header.
6965 		 *
6966 		 * Load the X register with the length of the IPv4 header
6967 		 * (plus the offset of the link-layer header, if it's
6968 		 * a variable-length header), in bytes.
6969 		 *
6970 		 * XXX - are there any cases where we want
6971 		 * cstate->off_nl_nosnap?
6972 		 * XXX - we should, if we're built with
6973 		 * IPv6 support, generate code to load either
6974 		 * IPv4, IPv6, or both, as appropriate.
6975 		 */
6976 		s = gen_loadx_iphdrlen(cstate);
6977 
6978 		/*
6979 		 * The X register now contains the sum of the variable
6980 		 * part of the offset of the link-layer payload and the
6981 		 * length of the network-layer header.
6982 		 *
6983 		 * Load into the A register the offset relative to
6984 		 * the beginning of the transport layer header,
6985 		 * add the X register to that, move that to the
6986 		 * X register, and load with an offset from the
6987 		 * X register equal to the sum of the constant part of
6988 		 * the offset of the link-layer payload and the offset,
6989 		 * relative to the beginning of the link-layer payload,
6990 		 * of the network-layer header.
6991 		 */
6992 		sappend(s, xfer_to_a(cstate, inst));
6993 		sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
6994 		sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
6995 		sappend(s, tmp = new_stmt(cstate, BPF_LD|BPF_IND|size));
6996 		tmp->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
6997 		sappend(inst->s, s);
6998 
6999 		/*
7000 		 * Do the computation only if the packet contains
7001 		 * the protocol in question - which is true only
7002 		 * if this is an IP datagram and is the first or
7003 		 * only fragment of that datagram.
7004 		 */
7005 		gen_and(gen_proto_abbrev(cstate, proto), b = gen_ipfrag(cstate));
7006 		if (inst->b)
7007 			gen_and(inst->b, b);
7008 		gen_and(gen_proto_abbrev(cstate, Q_IP), b);
7009 		inst->b = b;
7010 		break;
7011 	case Q_ICMPV6:
7012 		bpf_error(cstate, "IPv6 upper-layer protocol is not supported by proto[x]");
7013 		/*NOTREACHED*/
7014 	}
7015 	inst->regno = regno;
7016 	s = new_stmt(cstate, BPF_ST);
7017 	s->s.k = regno;
7018 	sappend(inst->s, s);
7019 
7020 	return inst;
7021 }
7022 
7023 struct block *
7024 gen_relation(compiler_state_t *cstate, int code, struct arth *a0,
7025     struct arth *a1, int reversed)
7026 {
7027 	struct slist *s0, *s1, *s2;
7028 	struct block *b, *tmp;
7029 
7030 	s0 = xfer_to_x(cstate, a1);
7031 	s1 = xfer_to_a(cstate, a0);
7032 	if (code == BPF_JEQ) {
7033 		s2 = new_stmt(cstate, BPF_ALU|BPF_SUB|BPF_X);
7034 		b = new_block(cstate, JMP(code));
7035 		sappend(s1, s2);
7036 	}
7037 	else
7038 		b = new_block(cstate, BPF_JMP|code|BPF_X);
7039 	if (reversed)
7040 		gen_not(b);
7041 
7042 	sappend(s0, s1);
7043 	sappend(a1->s, s0);
7044 	sappend(a0->s, a1->s);
7045 
7046 	b->stmts = a0->s;
7047 
7048 	free_reg(cstate, a0->regno);
7049 	free_reg(cstate, a1->regno);
7050 
7051 	/* 'and' together protocol checks */
7052 	if (a0->b) {
7053 		if (a1->b) {
7054 			gen_and(a0->b, tmp = a1->b);
7055 		}
7056 		else
7057 			tmp = a0->b;
7058 	} else
7059 		tmp = a1->b;
7060 
7061 	if (tmp)
7062 		gen_and(tmp, b);
7063 
7064 	return b;
7065 }
7066 
7067 struct arth *
7068 gen_loadlen(compiler_state_t *cstate)
7069 {
7070 	int regno = alloc_reg(cstate);
7071 	struct arth *a = (struct arth *)newchunk(cstate, sizeof(*a));
7072 	struct slist *s;
7073 
7074 	s = new_stmt(cstate, BPF_LD|BPF_LEN);
7075 	s->next = new_stmt(cstate, BPF_ST);
7076 	s->next->s.k = regno;
7077 	a->s = s;
7078 	a->regno = regno;
7079 
7080 	return a;
7081 }
7082 
7083 struct arth *
7084 gen_loadi(compiler_state_t *cstate, int val)
7085 {
7086 	struct arth *a;
7087 	struct slist *s;
7088 	int reg;
7089 
7090 	a = (struct arth *)newchunk(cstate, sizeof(*a));
7091 
7092 	reg = alloc_reg(cstate);
7093 
7094 	s = new_stmt(cstate, BPF_LD|BPF_IMM);
7095 	s->s.k = val;
7096 	s->next = new_stmt(cstate, BPF_ST);
7097 	s->next->s.k = reg;
7098 	a->s = s;
7099 	a->regno = reg;
7100 
7101 	return a;
7102 }
7103 
7104 struct arth *
7105 gen_neg(compiler_state_t *cstate, struct arth *a)
7106 {
7107 	struct slist *s;
7108 
7109 	s = xfer_to_a(cstate, a);
7110 	sappend(a->s, s);
7111 	s = new_stmt(cstate, BPF_ALU|BPF_NEG);
7112 	s->s.k = 0;
7113 	sappend(a->s, s);
7114 	s = new_stmt(cstate, BPF_ST);
7115 	s->s.k = a->regno;
7116 	sappend(a->s, s);
7117 
7118 	return a;
7119 }
7120 
7121 struct arth *
7122 gen_arth(compiler_state_t *cstate, int code, struct arth *a0,
7123     struct arth *a1)
7124 {
7125 	struct slist *s0, *s1, *s2;
7126 
7127 	/*
7128 	 * Disallow division by, or modulus by, zero; we do this here
7129 	 * so that it gets done even if the optimizer is disabled.
7130 	 */
7131 	if (code == BPF_DIV) {
7132 		if (a1->s->s.code == (BPF_LD|BPF_IMM) && a1->s->s.k == 0)
7133 			bpf_error(cstate, "division by zero");
7134 	} else if (code == BPF_MOD) {
7135 		if (a1->s->s.code == (BPF_LD|BPF_IMM) && a1->s->s.k == 0)
7136 			bpf_error(cstate, "modulus by zero");
7137 	}
7138 	s0 = xfer_to_x(cstate, a1);
7139 	s1 = xfer_to_a(cstate, a0);
7140 	s2 = new_stmt(cstate, BPF_ALU|BPF_X|code);
7141 
7142 	sappend(s1, s2);
7143 	sappend(s0, s1);
7144 	sappend(a1->s, s0);
7145 	sappend(a0->s, a1->s);
7146 
7147 	free_reg(cstate, a0->regno);
7148 	free_reg(cstate, a1->regno);
7149 
7150 	s0 = new_stmt(cstate, BPF_ST);
7151 	a0->regno = s0->s.k = alloc_reg(cstate);
7152 	sappend(a0->s, s0);
7153 
7154 	return a0;
7155 }
7156 
7157 /*
7158  * Initialize the table of used registers and the current register.
7159  */
7160 static void
7161 init_regs(compiler_state_t *cstate)
7162 {
7163 	cstate->curreg = 0;
7164 	memset(cstate->regused, 0, sizeof cstate->regused);
7165 }
7166 
7167 /*
7168  * Return the next free register.
7169  */
7170 static int
7171 alloc_reg(compiler_state_t *cstate)
7172 {
7173 	int n = BPF_MEMWORDS;
7174 
7175 	while (--n >= 0) {
7176 		if (cstate->regused[cstate->curreg])
7177 			cstate->curreg = (cstate->curreg + 1) % BPF_MEMWORDS;
7178 		else {
7179 			cstate->regused[cstate->curreg] = 1;
7180 			return cstate->curreg;
7181 		}
7182 	}
7183 	bpf_error(cstate, "too many registers needed to evaluate expression");
7184 	/* NOTREACHED */
7185 	return 0;
7186 }
7187 
7188 /*
7189  * Return a register to the table so it can
7190  * be used later.
7191  */
7192 static void
7193 free_reg(compiler_state_t *cstate, int n)
7194 {
7195 	cstate->regused[n] = 0;
7196 }
7197 
7198 static struct block *
7199 gen_len(compiler_state_t *cstate, int jmp, int n)
7200 {
7201 	struct slist *s;
7202 	struct block *b;
7203 
7204 	s = new_stmt(cstate, BPF_LD|BPF_LEN);
7205 	b = new_block(cstate, JMP(jmp));
7206 	b->stmts = s;
7207 	b->s.k = n;
7208 
7209 	return b;
7210 }
7211 
7212 struct block *
7213 gen_greater(compiler_state_t *cstate, int n)
7214 {
7215 	return gen_len(cstate, BPF_JGE, n);
7216 }
7217 
7218 /*
7219  * Actually, this is less than or equal.
7220  */
7221 struct block *
7222 gen_less(compiler_state_t *cstate, int n)
7223 {
7224 	struct block *b;
7225 
7226 	b = gen_len(cstate, BPF_JGT, n);
7227 	gen_not(b);
7228 
7229 	return b;
7230 }
7231 
7232 /*
7233  * This is for "byte {idx} {op} {val}"; "idx" is treated as relative to
7234  * the beginning of the link-layer header.
7235  * XXX - that means you can't test values in the radiotap header, but
7236  * as that header is difficult if not impossible to parse generally
7237  * without a loop, that might not be a severe problem.  A new keyword
7238  * "radio" could be added for that, although what you'd really want
7239  * would be a way of testing particular radio header values, which
7240  * would generate code appropriate to the radio header in question.
7241  */
7242 struct block *
7243 gen_byteop(compiler_state_t *cstate, int op, int idx, int val)
7244 {
7245 	struct block *b;
7246 	struct slist *s;
7247 
7248 	switch (op) {
7249 	default:
7250 		abort();
7251 
7252 	case '=':
7253 		return gen_cmp(cstate, OR_LINKHDR, (u_int)idx, BPF_B, (bpf_int32)val);
7254 
7255 	case '<':
7256 		b = gen_cmp_lt(cstate, OR_LINKHDR, (u_int)idx, BPF_B, (bpf_int32)val);
7257 		return b;
7258 
7259 	case '>':
7260 		b = gen_cmp_gt(cstate, OR_LINKHDR, (u_int)idx, BPF_B, (bpf_int32)val);
7261 		return b;
7262 
7263 	case '|':
7264 		s = new_stmt(cstate, BPF_ALU|BPF_OR|BPF_K);
7265 		break;
7266 
7267 	case '&':
7268 		s = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
7269 		break;
7270 	}
7271 	s->s.k = val;
7272 	b = new_block(cstate, JMP(BPF_JEQ));
7273 	b->stmts = s;
7274 	gen_not(b);
7275 
7276 	return b;
7277 }
7278 
7279 static const u_char abroadcast[] = { 0x0 };
7280 
7281 struct block *
7282 gen_broadcast(compiler_state_t *cstate, int proto)
7283 {
7284 	bpf_u_int32 hostmask;
7285 	struct block *b0, *b1, *b2;
7286 	static const u_char ebroadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
7287 
7288 	switch (proto) {
7289 
7290 	case Q_DEFAULT:
7291 	case Q_LINK:
7292 		switch (cstate->linktype) {
7293 		case DLT_ARCNET:
7294 		case DLT_ARCNET_LINUX:
7295 			return gen_ahostop(cstate, abroadcast, Q_DST);
7296 		case DLT_EN10MB:
7297 		case DLT_NETANALYZER:
7298 		case DLT_NETANALYZER_TRANSPARENT:
7299 			b1 = gen_prevlinkhdr_check(cstate);
7300 			b0 = gen_ehostop(cstate, ebroadcast, Q_DST);
7301 			if (b1 != NULL)
7302 				gen_and(b1, b0);
7303 			return b0;
7304 		case DLT_FDDI:
7305 			return gen_fhostop(cstate, ebroadcast, Q_DST);
7306 		case DLT_IEEE802:
7307 			return gen_thostop(cstate, ebroadcast, Q_DST);
7308 		case DLT_IEEE802_11:
7309 		case DLT_PRISM_HEADER:
7310 		case DLT_IEEE802_11_RADIO_AVS:
7311 		case DLT_IEEE802_11_RADIO:
7312 		case DLT_PPI:
7313 			return gen_wlanhostop(cstate, ebroadcast, Q_DST);
7314 		case DLT_IP_OVER_FC:
7315 			return gen_ipfchostop(cstate, ebroadcast, Q_DST);
7316 		default:
7317 			bpf_error(cstate, "not a broadcast link");
7318 		}
7319 		break;
7320 
7321 	case Q_IP:
7322 		/*
7323 		 * We treat a netmask of PCAP_NETMASK_UNKNOWN (0xffffffff)
7324 		 * as an indication that we don't know the netmask, and fail
7325 		 * in that case.
7326 		 */
7327 		if (cstate->netmask == PCAP_NETMASK_UNKNOWN)
7328 			bpf_error(cstate, "netmask not known, so 'ip broadcast' not supported");
7329 		b0 = gen_linktype(cstate, ETHERTYPE_IP);
7330 		hostmask = ~cstate->netmask;
7331 		b1 = gen_mcmp(cstate, OR_LINKPL, 16, BPF_W, (bpf_int32)0, hostmask);
7332 		b2 = gen_mcmp(cstate, OR_LINKPL, 16, BPF_W,
7333 			      (bpf_int32)(~0 & hostmask), hostmask);
7334 		gen_or(b1, b2);
7335 		gen_and(b0, b2);
7336 		return b2;
7337 	}
7338 	bpf_error(cstate, "only link-layer/IP broadcast filters supported");
7339 	/* NOTREACHED */
7340 	return NULL;
7341 }
7342 
7343 /*
7344  * Generate code to test the low-order bit of a MAC address (that's
7345  * the bottom bit of the *first* byte).
7346  */
7347 static struct block *
7348 gen_mac_multicast(compiler_state_t *cstate, int offset)
7349 {
7350 	register struct block *b0;
7351 	register struct slist *s;
7352 
7353 	/* link[offset] & 1 != 0 */
7354 	s = gen_load_a(cstate, OR_LINKHDR, offset, BPF_B);
7355 	b0 = new_block(cstate, JMP(BPF_JSET));
7356 	b0->s.k = 1;
7357 	b0->stmts = s;
7358 	return b0;
7359 }
7360 
7361 struct block *
7362 gen_multicast(compiler_state_t *cstate, int proto)
7363 {
7364 	register struct block *b0, *b1, *b2;
7365 	register struct slist *s;
7366 
7367 	switch (proto) {
7368 
7369 	case Q_DEFAULT:
7370 	case Q_LINK:
7371 		switch (cstate->linktype) {
7372 		case DLT_ARCNET:
7373 		case DLT_ARCNET_LINUX:
7374 			/* all ARCnet multicasts use the same address */
7375 			return gen_ahostop(cstate, abroadcast, Q_DST);
7376 		case DLT_EN10MB:
7377 		case DLT_NETANALYZER:
7378 		case DLT_NETANALYZER_TRANSPARENT:
7379 			b1 = gen_prevlinkhdr_check(cstate);
7380 			/* ether[0] & 1 != 0 */
7381 			b0 = gen_mac_multicast(cstate, 0);
7382 			if (b1 != NULL)
7383 				gen_and(b1, b0);
7384 			return b0;
7385 		case DLT_FDDI:
7386 			/*
7387 			 * XXX TEST THIS: MIGHT NOT PORT PROPERLY XXX
7388 			 *
7389 			 * XXX - was that referring to bit-order issues?
7390 			 */
7391 			/* fddi[1] & 1 != 0 */
7392 			return gen_mac_multicast(cstate, 1);
7393 		case DLT_IEEE802:
7394 			/* tr[2] & 1 != 0 */
7395 			return gen_mac_multicast(cstate, 2);
7396 		case DLT_IEEE802_11:
7397 		case DLT_PRISM_HEADER:
7398 		case DLT_IEEE802_11_RADIO_AVS:
7399 		case DLT_IEEE802_11_RADIO:
7400 		case DLT_PPI:
7401 			/*
7402 			 * Oh, yuk.
7403 			 *
7404 			 *	For control frames, there is no DA.
7405 			 *
7406 			 *	For management frames, DA is at an
7407 			 *	offset of 4 from the beginning of
7408 			 *	the packet.
7409 			 *
7410 			 *	For data frames, DA is at an offset
7411 			 *	of 4 from the beginning of the packet
7412 			 *	if To DS is clear and at an offset of
7413 			 *	16 from the beginning of the packet
7414 			 *	if To DS is set.
7415 			 */
7416 
7417 			/*
7418 			 * Generate the tests to be done for data frames.
7419 			 *
7420 			 * First, check for To DS set, i.e. "link[1] & 0x01".
7421 			 */
7422 			s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
7423 			b1 = new_block(cstate, JMP(BPF_JSET));
7424 			b1->s.k = 0x01;	/* To DS */
7425 			b1->stmts = s;
7426 
7427 			/*
7428 			 * If To DS is set, the DA is at 16.
7429 			 */
7430 			b0 = gen_mac_multicast(cstate, 16);
7431 			gen_and(b1, b0);
7432 
7433 			/*
7434 			 * Now, check for To DS not set, i.e. check
7435 			 * "!(link[1] & 0x01)".
7436 			 */
7437 			s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
7438 			b2 = new_block(cstate, JMP(BPF_JSET));
7439 			b2->s.k = 0x01;	/* To DS */
7440 			b2->stmts = s;
7441 			gen_not(b2);
7442 
7443 			/*
7444 			 * If To DS is not set, the DA is at 4.
7445 			 */
7446 			b1 = gen_mac_multicast(cstate, 4);
7447 			gen_and(b2, b1);
7448 
7449 			/*
7450 			 * Now OR together the last two checks.  That gives
7451 			 * the complete set of checks for data frames.
7452 			 */
7453 			gen_or(b1, b0);
7454 
7455 			/*
7456 			 * Now check for a data frame.
7457 			 * I.e, check "link[0] & 0x08".
7458 			 */
7459 			s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
7460 			b1 = new_block(cstate, JMP(BPF_JSET));
7461 			b1->s.k = 0x08;
7462 			b1->stmts = s;
7463 
7464 			/*
7465 			 * AND that with the checks done for data frames.
7466 			 */
7467 			gen_and(b1, b0);
7468 
7469 			/*
7470 			 * If the high-order bit of the type value is 0, this
7471 			 * is a management frame.
7472 			 * I.e, check "!(link[0] & 0x08)".
7473 			 */
7474 			s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
7475 			b2 = new_block(cstate, JMP(BPF_JSET));
7476 			b2->s.k = 0x08;
7477 			b2->stmts = s;
7478 			gen_not(b2);
7479 
7480 			/*
7481 			 * For management frames, the DA is at 4.
7482 			 */
7483 			b1 = gen_mac_multicast(cstate, 4);
7484 			gen_and(b2, b1);
7485 
7486 			/*
7487 			 * OR that with the checks done for data frames.
7488 			 * That gives the checks done for management and
7489 			 * data frames.
7490 			 */
7491 			gen_or(b1, b0);
7492 
7493 			/*
7494 			 * If the low-order bit of the type value is 1,
7495 			 * this is either a control frame or a frame
7496 			 * with a reserved type, and thus not a
7497 			 * frame with an SA.
7498 			 *
7499 			 * I.e., check "!(link[0] & 0x04)".
7500 			 */
7501 			s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
7502 			b1 = new_block(cstate, JMP(BPF_JSET));
7503 			b1->s.k = 0x04;
7504 			b1->stmts = s;
7505 			gen_not(b1);
7506 
7507 			/*
7508 			 * AND that with the checks for data and management
7509 			 * frames.
7510 			 */
7511 			gen_and(b1, b0);
7512 			return b0;
7513 		case DLT_IP_OVER_FC:
7514 			b0 = gen_mac_multicast(cstate, 2);
7515 			return b0;
7516 		default:
7517 			break;
7518 		}
7519 		/* Link not known to support multicasts */
7520 		break;
7521 
7522 	case Q_IP:
7523 		b0 = gen_linktype(cstate, ETHERTYPE_IP);
7524 		b1 = gen_cmp_ge(cstate, OR_LINKPL, 16, BPF_B, (bpf_int32)224);
7525 		gen_and(b0, b1);
7526 		return b1;
7527 
7528 	case Q_IPV6:
7529 		b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
7530 		b1 = gen_cmp(cstate, OR_LINKPL, 24, BPF_B, (bpf_int32)255);
7531 		gen_and(b0, b1);
7532 		return b1;
7533 	}
7534 	bpf_error(cstate, "link-layer multicast filters supported only on ethernet/FDDI/token ring/ARCNET/802.11/ATM LANE/Fibre Channel");
7535 	/* NOTREACHED */
7536 	return NULL;
7537 }
7538 
7539 /*
7540  * Filter on inbound (dir == 0) or outbound (dir == 1) traffic.
7541  * Outbound traffic is sent by this machine, while inbound traffic is
7542  * sent by a remote machine (and may include packets destined for a
7543  * unicast or multicast link-layer address we are not subscribing to).
7544  * These are the same definitions implemented by pcap_setdirection().
7545  * Capturing only unicast traffic destined for this host is probably
7546  * better accomplished using a higher-layer filter.
7547  */
7548 struct block *
7549 gen_inbound(compiler_state_t *cstate, int dir)
7550 {
7551 	register struct block *b0;
7552 
7553 	/*
7554 	 * Only some data link types support inbound/outbound qualifiers.
7555 	 */
7556 	switch (cstate->linktype) {
7557 	case DLT_SLIP:
7558 		b0 = gen_relation(cstate, BPF_JEQ,
7559 			  gen_load(cstate, Q_LINK, gen_loadi(cstate, 0), 1),
7560 			  gen_loadi(cstate, 0),
7561 			  dir);
7562 		break;
7563 
7564 	case DLT_IPNET:
7565 		if (dir) {
7566 			/* match outgoing packets */
7567 			b0 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, IPNET_OUTBOUND);
7568 		} else {
7569 			/* match incoming packets */
7570 			b0 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, IPNET_INBOUND);
7571 		}
7572 		break;
7573 
7574 	case DLT_LINUX_SLL:
7575 		/* match outgoing packets */
7576 		b0 = gen_cmp(cstate, OR_LINKHDR, 0, BPF_H, LINUX_SLL_OUTGOING);
7577 		if (!dir) {
7578 			/* to filter on inbound traffic, invert the match */
7579 			gen_not(b0);
7580 		}
7581 		break;
7582 
7583 #ifdef HAVE_NET_PFVAR_H
7584 	case DLT_PFLOG:
7585 		b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, dir), BPF_B,
7586 		    (bpf_int32)((dir == 0) ? PF_IN : PF_OUT));
7587 		break;
7588 #endif
7589 
7590 	case DLT_PPP_PPPD:
7591 		if (dir) {
7592 			/* match outgoing packets */
7593 			b0 = gen_cmp(cstate, OR_LINKHDR, 0, BPF_B, PPP_PPPD_OUT);
7594 		} else {
7595 			/* match incoming packets */
7596 			b0 = gen_cmp(cstate, OR_LINKHDR, 0, BPF_B, PPP_PPPD_IN);
7597 		}
7598 		break;
7599 
7600         case DLT_JUNIPER_MFR:
7601         case DLT_JUNIPER_MLFR:
7602         case DLT_JUNIPER_MLPPP:
7603 	case DLT_JUNIPER_ATM1:
7604 	case DLT_JUNIPER_ATM2:
7605 	case DLT_JUNIPER_PPPOE:
7606 	case DLT_JUNIPER_PPPOE_ATM:
7607         case DLT_JUNIPER_GGSN:
7608         case DLT_JUNIPER_ES:
7609         case DLT_JUNIPER_MONITOR:
7610         case DLT_JUNIPER_SERVICES:
7611         case DLT_JUNIPER_ETHER:
7612         case DLT_JUNIPER_PPP:
7613         case DLT_JUNIPER_FRELAY:
7614         case DLT_JUNIPER_CHDLC:
7615         case DLT_JUNIPER_VP:
7616         case DLT_JUNIPER_ST:
7617         case DLT_JUNIPER_ISM:
7618         case DLT_JUNIPER_VS:
7619         case DLT_JUNIPER_SRX_E2E:
7620         case DLT_JUNIPER_FIBRECHANNEL:
7621 	case DLT_JUNIPER_ATM_CEMIC:
7622 
7623 		/* juniper flags (including direction) are stored
7624 		 * the byte after the 3-byte magic number */
7625 		if (dir) {
7626 			/* match outgoing packets */
7627 			b0 = gen_mcmp(cstate, OR_LINKHDR, 3, BPF_B, 0, 0x01);
7628 		} else {
7629 			/* match incoming packets */
7630 			b0 = gen_mcmp(cstate, OR_LINKHDR, 3, BPF_B, 1, 0x01);
7631 		}
7632 		break;
7633 
7634 	default:
7635 		/*
7636 		 * If we have packet meta-data indicating a direction,
7637 		 * check it, otherwise give up as this link-layer type
7638 		 * has nothing in the packet data.
7639 		 */
7640 #if defined(linux) && defined(PF_PACKET) && defined(SO_ATTACH_FILTER)
7641 		/*
7642 		 * This is Linux with PF_PACKET support.
7643 		 * If this is a *live* capture, we can look at
7644 		 * special meta-data in the filter expression;
7645 		 * if it's a savefile, we can't.
7646 		 */
7647 		if (cstate->bpf_pcap->rfile != NULL) {
7648 			/* We have a FILE *, so this is a savefile */
7649 			bpf_error(cstate, "inbound/outbound not supported on linktype %d when reading savefiles",
7650 			    cstate->linktype);
7651 			b0 = NULL;
7652 			/* NOTREACHED */
7653 		}
7654 		/* match outgoing packets */
7655 		b0 = gen_cmp(cstate, OR_LINKHDR, SKF_AD_OFF + SKF_AD_PKTTYPE, BPF_H,
7656 		             PACKET_OUTGOING);
7657 		if (!dir) {
7658 			/* to filter on inbound traffic, invert the match */
7659 			gen_not(b0);
7660 		}
7661 #else /* defined(linux) && defined(PF_PACKET) && defined(SO_ATTACH_FILTER) */
7662 		bpf_error(cstate, "inbound/outbound not supported on linktype %d",
7663 		    cstate->linktype);
7664 		b0 = NULL;
7665 		/* NOTREACHED */
7666 #endif /* defined(linux) && defined(PF_PACKET) && defined(SO_ATTACH_FILTER) */
7667 	}
7668 	return (b0);
7669 }
7670 
7671 #ifdef HAVE_NET_PFVAR_H
7672 /* PF firewall log matched interface */
7673 struct block *
7674 gen_pf_ifname(compiler_state_t *cstate, const char *ifname)
7675 {
7676 	struct block *b0;
7677 	u_int len, off;
7678 
7679 	if (cstate->linktype != DLT_PFLOG) {
7680 		bpf_error(cstate, "ifname supported only on PF linktype");
7681 		/* NOTREACHED */
7682 	}
7683 	len = sizeof(((struct pfloghdr *)0)->ifname);
7684 	off = offsetof(struct pfloghdr, ifname);
7685 	if (strlen(ifname) >= len) {
7686 		bpf_error(cstate, "ifname interface names can only be %d characters",
7687 		    len-1);
7688 		/* NOTREACHED */
7689 	}
7690 	b0 = gen_bcmp(cstate, OR_LINKHDR, off, strlen(ifname), (const u_char *)ifname);
7691 	return (b0);
7692 }
7693 
7694 /* PF firewall log ruleset name */
7695 struct block *
7696 gen_pf_ruleset(compiler_state_t *cstate, char *ruleset)
7697 {
7698 	struct block *b0;
7699 
7700 	if (cstate->linktype != DLT_PFLOG) {
7701 		bpf_error(cstate, "ruleset supported only on PF linktype");
7702 		/* NOTREACHED */
7703 	}
7704 
7705 	if (strlen(ruleset) >= sizeof(((struct pfloghdr *)0)->ruleset)) {
7706 		bpf_error(cstate, "ruleset names can only be %ld characters",
7707 		    (long)(sizeof(((struct pfloghdr *)0)->ruleset) - 1));
7708 		/* NOTREACHED */
7709 	}
7710 
7711 	b0 = gen_bcmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, ruleset),
7712 	    strlen(ruleset), (const u_char *)ruleset);
7713 	return (b0);
7714 }
7715 
7716 /* PF firewall log rule number */
7717 struct block *
7718 gen_pf_rnr(compiler_state_t *cstate, int rnr)
7719 {
7720 	struct block *b0;
7721 
7722 	if (cstate->linktype != DLT_PFLOG) {
7723 		bpf_error(cstate, "rnr supported only on PF linktype");
7724 		/* NOTREACHED */
7725 	}
7726 
7727 	b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, rulenr), BPF_W,
7728 		 (bpf_int32)rnr);
7729 	return (b0);
7730 }
7731 
7732 /* PF firewall log sub-rule number */
7733 struct block *
7734 gen_pf_srnr(compiler_state_t *cstate, int srnr)
7735 {
7736 	struct block *b0;
7737 
7738 	if (cstate->linktype != DLT_PFLOG) {
7739 		bpf_error(cstate, "srnr supported only on PF linktype");
7740 		/* NOTREACHED */
7741 	}
7742 
7743 	b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, subrulenr), BPF_W,
7744 	    (bpf_int32)srnr);
7745 	return (b0);
7746 }
7747 
7748 /* PF firewall log reason code */
7749 struct block *
7750 gen_pf_reason(compiler_state_t *cstate, int reason)
7751 {
7752 	struct block *b0;
7753 
7754 	if (cstate->linktype != DLT_PFLOG) {
7755 		bpf_error(cstate, "reason supported only on PF linktype");
7756 		/* NOTREACHED */
7757 	}
7758 
7759 	b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, reason), BPF_B,
7760 	    (bpf_int32)reason);
7761 	return (b0);
7762 }
7763 
7764 /* PF firewall log action */
7765 struct block *
7766 gen_pf_action(compiler_state_t *cstate, int action)
7767 {
7768 	struct block *b0;
7769 
7770 	if (cstate->linktype != DLT_PFLOG) {
7771 		bpf_error(cstate, "action supported only on PF linktype");
7772 		/* NOTREACHED */
7773 	}
7774 
7775 	b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, action), BPF_B,
7776 	    (bpf_int32)action);
7777 	return (b0);
7778 }
7779 #else /* !HAVE_NET_PFVAR_H */
7780 struct block *
7781 gen_pf_ifname(compiler_state_t *cstate, const char *ifname)
7782 {
7783 	bpf_error(cstate, "libpcap was compiled without pf support");
7784 	/* NOTREACHED */
7785 	return (NULL);
7786 }
7787 
7788 struct block *
7789 gen_pf_ruleset(compiler_state_t *cstate, char *ruleset)
7790 {
7791 	bpf_error(cstate, "libpcap was compiled on a machine without pf support");
7792 	/* NOTREACHED */
7793 	return (NULL);
7794 }
7795 
7796 struct block *
7797 gen_pf_rnr(compiler_state_t *cstate, int rnr)
7798 {
7799 	bpf_error(cstate, "libpcap was compiled on a machine without pf support");
7800 	/* NOTREACHED */
7801 	return (NULL);
7802 }
7803 
7804 struct block *
7805 gen_pf_srnr(compiler_state_t *cstate, int srnr)
7806 {
7807 	bpf_error(cstate, "libpcap was compiled on a machine without pf support");
7808 	/* NOTREACHED */
7809 	return (NULL);
7810 }
7811 
7812 struct block *
7813 gen_pf_reason(compiler_state_t *cstate, int reason)
7814 {
7815 	bpf_error(cstate, "libpcap was compiled on a machine without pf support");
7816 	/* NOTREACHED */
7817 	return (NULL);
7818 }
7819 
7820 struct block *
7821 gen_pf_action(compiler_state_t *cstate, int action)
7822 {
7823 	bpf_error(cstate, "libpcap was compiled on a machine without pf support");
7824 	/* NOTREACHED */
7825 	return (NULL);
7826 }
7827 #endif /* HAVE_NET_PFVAR_H */
7828 
7829 /* IEEE 802.11 wireless header */
7830 struct block *
7831 gen_p80211_type(compiler_state_t *cstate, int type, int mask)
7832 {
7833 	struct block *b0;
7834 
7835 	switch (cstate->linktype) {
7836 
7837 	case DLT_IEEE802_11:
7838 	case DLT_PRISM_HEADER:
7839 	case DLT_IEEE802_11_RADIO_AVS:
7840 	case DLT_IEEE802_11_RADIO:
7841 		b0 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, (bpf_int32)type,
7842 		    (bpf_int32)mask);
7843 		break;
7844 
7845 	default:
7846 		bpf_error(cstate, "802.11 link-layer types supported only on 802.11");
7847 		/* NOTREACHED */
7848 	}
7849 
7850 	return (b0);
7851 }
7852 
7853 struct block *
7854 gen_p80211_fcdir(compiler_state_t *cstate, int fcdir)
7855 {
7856 	struct block *b0;
7857 
7858 	switch (cstate->linktype) {
7859 
7860 	case DLT_IEEE802_11:
7861 	case DLT_PRISM_HEADER:
7862 	case DLT_IEEE802_11_RADIO_AVS:
7863 	case DLT_IEEE802_11_RADIO:
7864 		break;
7865 
7866 	default:
7867 		bpf_error(cstate, "frame direction supported only with 802.11 headers");
7868 		/* NOTREACHED */
7869 	}
7870 
7871 	b0 = gen_mcmp(cstate, OR_LINKHDR, 1, BPF_B, (bpf_int32)fcdir,
7872 		(bpf_u_int32)IEEE80211_FC1_DIR_MASK);
7873 
7874 	return (b0);
7875 }
7876 
7877 struct block *
7878 gen_acode(compiler_state_t *cstate, const u_char *eaddr, struct qual q)
7879 {
7880 	switch (cstate->linktype) {
7881 
7882 	case DLT_ARCNET:
7883 	case DLT_ARCNET_LINUX:
7884 		if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) &&
7885 		    q.proto == Q_LINK)
7886 			return (gen_ahostop(cstate, eaddr, (int)q.dir));
7887 		else {
7888 			bpf_error(cstate, "ARCnet address used in non-arc expression");
7889 			/* NOTREACHED */
7890 		}
7891 		break;
7892 
7893 	default:
7894 		bpf_error(cstate, "aid supported only on ARCnet");
7895 		/* NOTREACHED */
7896 	}
7897 	bpf_error(cstate, "ARCnet address used in non-arc expression");
7898 	/* NOTREACHED */
7899 	return NULL;
7900 }
7901 
7902 static struct block *
7903 gen_ahostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
7904 {
7905 	register struct block *b0, *b1;
7906 
7907 	switch (dir) {
7908 	/* src comes first, different from Ethernet */
7909 	case Q_SRC:
7910 		return gen_bcmp(cstate, OR_LINKHDR, 0, 1, eaddr);
7911 
7912 	case Q_DST:
7913 		return gen_bcmp(cstate, OR_LINKHDR, 1, 1, eaddr);
7914 
7915 	case Q_AND:
7916 		b0 = gen_ahostop(cstate, eaddr, Q_SRC);
7917 		b1 = gen_ahostop(cstate, eaddr, Q_DST);
7918 		gen_and(b0, b1);
7919 		return b1;
7920 
7921 	case Q_DEFAULT:
7922 	case Q_OR:
7923 		b0 = gen_ahostop(cstate, eaddr, Q_SRC);
7924 		b1 = gen_ahostop(cstate, eaddr, Q_DST);
7925 		gen_or(b0, b1);
7926 		return b1;
7927 
7928 	case Q_ADDR1:
7929 		bpf_error(cstate, "'addr1' is only supported on 802.11");
7930 		break;
7931 
7932 	case Q_ADDR2:
7933 		bpf_error(cstate, "'addr2' is only supported on 802.11");
7934 		break;
7935 
7936 	case Q_ADDR3:
7937 		bpf_error(cstate, "'addr3' is only supported on 802.11");
7938 		break;
7939 
7940 	case Q_ADDR4:
7941 		bpf_error(cstate, "'addr4' is only supported on 802.11");
7942 		break;
7943 
7944 	case Q_RA:
7945 		bpf_error(cstate, "'ra' is only supported on 802.11");
7946 		break;
7947 
7948 	case Q_TA:
7949 		bpf_error(cstate, "'ta' is only supported on 802.11");
7950 		break;
7951 	}
7952 	abort();
7953 	/* NOTREACHED */
7954 }
7955 
7956 #if defined(SKF_AD_VLAN_TAG) && defined(SKF_AD_VLAN_TAG_PRESENT)
7957 static struct block *
7958 gen_vlan_bpf_extensions(compiler_state_t *cstate, int vlan_num)
7959 {
7960         struct block *b0, *b1;
7961         struct slist *s;
7962 
7963         /* generate new filter code based on extracting packet
7964          * metadata */
7965         s = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
7966         s->s.k = SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT;
7967 
7968         b0 = new_block(cstate, JMP(BPF_JEQ));
7969         b0->stmts = s;
7970         b0->s.k = 1;
7971 
7972         if (vlan_num >= 0) {
7973                 s = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
7974                 s->s.k = SKF_AD_OFF + SKF_AD_VLAN_TAG;
7975 
7976                 b1 = new_block(cstate, JMP(BPF_JEQ));
7977                 b1->stmts = s;
7978                 b1->s.k = (bpf_int32) vlan_num;
7979 
7980                 gen_and(b0,b1);
7981                 b0 = b1;
7982         }
7983 
7984         return b0;
7985 }
7986 #endif
7987 
7988 static struct block *
7989 gen_vlan_no_bpf_extensions(compiler_state_t *cstate, int vlan_num)
7990 {
7991         struct block *b0, *b1;
7992 
7993         /* check for VLAN, including QinQ */
7994         b0 = gen_linktype(cstate, ETHERTYPE_8021Q);
7995         b1 = gen_linktype(cstate, ETHERTYPE_8021AD);
7996         gen_or(b0,b1);
7997         b0 = b1;
7998         b1 = gen_linktype(cstate, ETHERTYPE_8021QINQ);
7999         gen_or(b0,b1);
8000         b0 = b1;
8001 
8002         /* If a specific VLAN is requested, check VLAN id */
8003         if (vlan_num >= 0) {
8004                 b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_H,
8005                               (bpf_int32)vlan_num, 0x0fff);
8006                 gen_and(b0, b1);
8007                 b0 = b1;
8008         }
8009 
8010 	/*
8011 	 * The payload follows the full header, including the
8012 	 * VLAN tags, so skip past this VLAN tag.
8013 	 */
8014         cstate->off_linkpl.constant_part += 4;
8015 
8016 	/*
8017 	 * The link-layer type information follows the VLAN tags, so
8018 	 * skip past this VLAN tag.
8019 	 */
8020         cstate->off_linktype.constant_part += 4;
8021 
8022         return b0;
8023 }
8024 
8025 /*
8026  * support IEEE 802.1Q VLAN trunk over ethernet
8027  */
8028 struct block *
8029 gen_vlan(compiler_state_t *cstate, int vlan_num)
8030 {
8031 	struct	block	*b0;
8032 
8033 	/* can't check for VLAN-encapsulated packets inside MPLS */
8034 	if (cstate->label_stack_depth > 0)
8035 		bpf_error(cstate, "no VLAN match after MPLS");
8036 
8037 	/*
8038 	 * Check for a VLAN packet, and then change the offsets to point
8039 	 * to the type and data fields within the VLAN packet.  Just
8040 	 * increment the offsets, so that we can support a hierarchy, e.g.
8041 	 * "vlan 300 && vlan 200" to capture VLAN 200 encapsulated within
8042 	 * VLAN 100.
8043 	 *
8044 	 * XXX - this is a bit of a kludge.  If we were to split the
8045 	 * compiler into a parser that parses an expression and
8046 	 * generates an expression tree, and a code generator that
8047 	 * takes an expression tree (which could come from our
8048 	 * parser or from some other parser) and generates BPF code,
8049 	 * we could perhaps make the offsets parameters of routines
8050 	 * and, in the handler for an "AND" node, pass to subnodes
8051 	 * other than the VLAN node the adjusted offsets.
8052 	 *
8053 	 * This would mean that "vlan" would, instead of changing the
8054 	 * behavior of *all* tests after it, change only the behavior
8055 	 * of tests ANDed with it.  That would change the documented
8056 	 * semantics of "vlan", which might break some expressions.
8057 	 * However, it would mean that "(vlan and ip) or ip" would check
8058 	 * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
8059 	 * checking only for VLAN-encapsulated IP, so that could still
8060 	 * be considered worth doing; it wouldn't break expressions
8061 	 * that are of the form "vlan and ..." or "vlan N and ...",
8062 	 * which I suspect are the most common expressions involving
8063 	 * "vlan".  "vlan or ..." doesn't necessarily do what the user
8064 	 * would really want, now, as all the "or ..." tests would
8065 	 * be done assuming a VLAN, even though the "or" could be viewed
8066 	 * as meaning "or, if this isn't a VLAN packet...".
8067 	 */
8068 	switch (cstate->linktype) {
8069 
8070 	case DLT_EN10MB:
8071 	case DLT_NETANALYZER:
8072 	case DLT_NETANALYZER_TRANSPARENT:
8073 #if defined(SKF_AD_VLAN_TAG) && defined(SKF_AD_VLAN_TAG_PRESENT)
8074 		/* Verify that this is the outer part of the packet and
8075 		 * not encapsulated somehow. */
8076 		if (cstate->vlan_stack_depth == 0 && !cstate->off_linkhdr.is_variable &&
8077 		    cstate->off_linkhdr.constant_part ==
8078 		    cstate->off_outermostlinkhdr.constant_part) {
8079 			/*
8080 			 * Do we need special VLAN handling?
8081 			 */
8082 			if (cstate->bpf_pcap->bpf_codegen_flags & BPF_SPECIAL_VLAN_HANDLING)
8083 				b0 = gen_vlan_bpf_extensions(cstate, vlan_num);
8084 			else
8085 				b0 = gen_vlan_no_bpf_extensions(cstate, vlan_num);
8086 		} else
8087 #endif
8088 			b0 = gen_vlan_no_bpf_extensions(cstate, vlan_num);
8089                 break;
8090 
8091 	case DLT_IEEE802_11:
8092 	case DLT_PRISM_HEADER:
8093 	case DLT_IEEE802_11_RADIO_AVS:
8094 	case DLT_IEEE802_11_RADIO:
8095 		b0 = gen_vlan_no_bpf_extensions(cstate, vlan_num);
8096 		break;
8097 
8098 	default:
8099 		bpf_error(cstate, "no VLAN support for data link type %d",
8100 		      cstate->linktype);
8101 		/*NOTREACHED*/
8102 	}
8103 
8104         cstate->vlan_stack_depth++;
8105 
8106 	return (b0);
8107 }
8108 
8109 /*
8110  * support for MPLS
8111  */
8112 struct block *
8113 gen_mpls(compiler_state_t *cstate, int label_num)
8114 {
8115 	struct	block	*b0, *b1;
8116 
8117         if (cstate->label_stack_depth > 0) {
8118             /* just match the bottom-of-stack bit clear */
8119             b0 = gen_mcmp(cstate, OR_PREVMPLSHDR, 2, BPF_B, 0, 0x01);
8120         } else {
8121             /*
8122              * We're not in an MPLS stack yet, so check the link-layer
8123              * type against MPLS.
8124              */
8125             switch (cstate->linktype) {
8126 
8127             case DLT_C_HDLC: /* fall through */
8128             case DLT_EN10MB:
8129             case DLT_NETANALYZER:
8130             case DLT_NETANALYZER_TRANSPARENT:
8131                     b0 = gen_linktype(cstate, ETHERTYPE_MPLS);
8132                     break;
8133 
8134             case DLT_PPP:
8135                     b0 = gen_linktype(cstate, PPP_MPLS_UCAST);
8136                     break;
8137 
8138                     /* FIXME add other DLT_s ...
8139                      * for Frame-Relay/and ATM this may get messy due to SNAP headers
8140                      * leave it for now */
8141 
8142             default:
8143                     bpf_error(cstate, "no MPLS support for data link type %d",
8144                           cstate->linktype);
8145                     b0 = NULL;
8146                     /*NOTREACHED*/
8147                     break;
8148             }
8149         }
8150 
8151 	/* If a specific MPLS label is requested, check it */
8152 	if (label_num >= 0) {
8153 		label_num = label_num << 12; /* label is shifted 12 bits on the wire */
8154 		b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_W, (bpf_int32)label_num,
8155 		    0xfffff000); /* only compare the first 20 bits */
8156 		gen_and(b0, b1);
8157 		b0 = b1;
8158 	}
8159 
8160         /*
8161          * Change the offsets to point to the type and data fields within
8162          * the MPLS packet.  Just increment the offsets, so that we
8163          * can support a hierarchy, e.g. "mpls 100000 && mpls 1024" to
8164          * capture packets with an outer label of 100000 and an inner
8165          * label of 1024.
8166          *
8167          * Increment the MPLS stack depth as well; this indicates that
8168          * we're checking MPLS-encapsulated headers, to make sure higher
8169          * level code generators don't try to match against IP-related
8170          * protocols such as Q_ARP, Q_RARP etc.
8171          *
8172          * XXX - this is a bit of a kludge.  See comments in gen_vlan().
8173          */
8174         cstate->off_nl_nosnap += 4;
8175         cstate->off_nl += 4;
8176         cstate->label_stack_depth++;
8177 	return (b0);
8178 }
8179 
8180 /*
8181  * Support PPPOE discovery and session.
8182  */
8183 struct block *
8184 gen_pppoed(compiler_state_t *cstate)
8185 {
8186 	/* check for PPPoE discovery */
8187 	return gen_linktype(cstate, (bpf_int32)ETHERTYPE_PPPOED);
8188 }
8189 
8190 struct block *
8191 gen_pppoes(compiler_state_t *cstate, int sess_num)
8192 {
8193 	struct block *b0, *b1;
8194 
8195 	/*
8196 	 * Test against the PPPoE session link-layer type.
8197 	 */
8198 	b0 = gen_linktype(cstate, (bpf_int32)ETHERTYPE_PPPOES);
8199 
8200 	/* If a specific session is requested, check PPPoE session id */
8201 	if (sess_num >= 0) {
8202 		b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_W,
8203 		    (bpf_int32)sess_num, 0x0000ffff);
8204 		gen_and(b0, b1);
8205 		b0 = b1;
8206 	}
8207 
8208 	/*
8209 	 * Change the offsets to point to the type and data fields within
8210 	 * the PPP packet, and note that this is PPPoE rather than
8211 	 * raw PPP.
8212 	 *
8213 	 * XXX - this is a bit of a kludge.  If we were to split the
8214 	 * compiler into a parser that parses an expression and
8215 	 * generates an expression tree, and a code generator that
8216 	 * takes an expression tree (which could come from our
8217 	 * parser or from some other parser) and generates BPF code,
8218 	 * we could perhaps make the offsets parameters of routines
8219 	 * and, in the handler for an "AND" node, pass to subnodes
8220 	 * other than the PPPoE node the adjusted offsets.
8221 	 *
8222 	 * This would mean that "pppoes" would, instead of changing the
8223 	 * behavior of *all* tests after it, change only the behavior
8224 	 * of tests ANDed with it.  That would change the documented
8225 	 * semantics of "pppoes", which might break some expressions.
8226 	 * However, it would mean that "(pppoes and ip) or ip" would check
8227 	 * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
8228 	 * checking only for VLAN-encapsulated IP, so that could still
8229 	 * be considered worth doing; it wouldn't break expressions
8230 	 * that are of the form "pppoes and ..." which I suspect are the
8231 	 * most common expressions involving "pppoes".  "pppoes or ..."
8232 	 * doesn't necessarily do what the user would really want, now,
8233 	 * as all the "or ..." tests would be done assuming PPPoE, even
8234 	 * though the "or" could be viewed as meaning "or, if this isn't
8235 	 * a PPPoE packet...".
8236 	 *
8237 	 * The "network-layer" protocol is PPPoE, which has a 6-byte
8238 	 * PPPoE header, followed by a PPP packet.
8239 	 *
8240 	 * There is no HDLC encapsulation for the PPP packet (it's
8241 	 * encapsulated in PPPoES instead), so the link-layer type
8242 	 * starts at the first byte of the PPP packet.  For PPPoE,
8243 	 * that offset is relative to the beginning of the total
8244 	 * link-layer payload, including any 802.2 LLC header, so
8245 	 * it's 6 bytes past cstate->off_nl.
8246 	 */
8247 	PUSH_LINKHDR(cstate, DLT_PPP, cstate->off_linkpl.is_variable,
8248 	    cstate->off_linkpl.constant_part + cstate->off_nl + 6, /* 6 bytes past the PPPoE header */
8249 	    cstate->off_linkpl.reg);
8250 
8251 	cstate->off_linktype = cstate->off_linkhdr;
8252 	cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 2;
8253 
8254 	cstate->off_nl = 0;
8255 	cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
8256 
8257 	return b0;
8258 }
8259 
8260 /* Check that this is Geneve and the VNI is correct if
8261  * specified. Parameterized to handle both IPv4 and IPv6. */
8262 static struct block *
8263 gen_geneve_check(compiler_state_t *cstate,
8264     struct block *(*gen_portfn)(compiler_state_t *, int, int, int),
8265     enum e_offrel offrel, int vni)
8266 {
8267 	struct block *b0, *b1;
8268 
8269 	b0 = gen_portfn(cstate, GENEVE_PORT, IPPROTO_UDP, Q_DST);
8270 
8271 	/* Check that we are operating on version 0. Otherwise, we
8272 	 * can't decode the rest of the fields. The version is 2 bits
8273 	 * in the first byte of the Geneve header. */
8274 	b1 = gen_mcmp(cstate, offrel, 8, BPF_B, (bpf_int32)0, 0xc0);
8275 	gen_and(b0, b1);
8276 	b0 = b1;
8277 
8278 	if (vni >= 0) {
8279 		vni <<= 8; /* VNI is in the upper 3 bytes */
8280 		b1 = gen_mcmp(cstate, offrel, 12, BPF_W, (bpf_int32)vni,
8281 			      0xffffff00);
8282 		gen_and(b0, b1);
8283 		b0 = b1;
8284 	}
8285 
8286 	return b0;
8287 }
8288 
8289 /* The IPv4 and IPv6 Geneve checks need to do two things:
8290  * - Verify that this actually is Geneve with the right VNI.
8291  * - Place the IP header length (plus variable link prefix if
8292  *   needed) into register A to be used later to compute
8293  *   the inner packet offsets. */
8294 static struct block *
8295 gen_geneve4(compiler_state_t *cstate, int vni)
8296 {
8297 	struct block *b0, *b1;
8298 	struct slist *s, *s1;
8299 
8300 	b0 = gen_geneve_check(cstate, gen_port, OR_TRAN_IPV4, vni);
8301 
8302 	/* Load the IP header length into A. */
8303 	s = gen_loadx_iphdrlen(cstate);
8304 
8305 	s1 = new_stmt(cstate, BPF_MISC|BPF_TXA);
8306 	sappend(s, s1);
8307 
8308 	/* Forcibly append these statements to the true condition
8309 	 * of the protocol check by creating a new block that is
8310 	 * always true and ANDing them. */
8311 	b1 = new_block(cstate, BPF_JMP|BPF_JEQ|BPF_X);
8312 	b1->stmts = s;
8313 	b1->s.k = 0;
8314 
8315 	gen_and(b0, b1);
8316 
8317 	return b1;
8318 }
8319 
8320 static struct block *
8321 gen_geneve6(compiler_state_t *cstate, int vni)
8322 {
8323 	struct block *b0, *b1;
8324 	struct slist *s, *s1;
8325 
8326 	b0 = gen_geneve_check(cstate, gen_port6, OR_TRAN_IPV6, vni);
8327 
8328 	/* Load the IP header length. We need to account for a
8329 	 * variable length link prefix if there is one. */
8330 	s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl);
8331 	if (s) {
8332 		s1 = new_stmt(cstate, BPF_LD|BPF_IMM);
8333 		s1->s.k = 40;
8334 		sappend(s, s1);
8335 
8336 		s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X);
8337 		s1->s.k = 0;
8338 		sappend(s, s1);
8339 	} else {
8340 		s = new_stmt(cstate, BPF_LD|BPF_IMM);
8341 		s->s.k = 40;
8342 	}
8343 
8344 	/* Forcibly append these statements to the true condition
8345 	 * of the protocol check by creating a new block that is
8346 	 * always true and ANDing them. */
8347 	s1 = new_stmt(cstate, BPF_MISC|BPF_TAX);
8348 	sappend(s, s1);
8349 
8350 	b1 = new_block(cstate, BPF_JMP|BPF_JEQ|BPF_X);
8351 	b1->stmts = s;
8352 	b1->s.k = 0;
8353 
8354 	gen_and(b0, b1);
8355 
8356 	return b1;
8357 }
8358 
8359 /* We need to store three values based on the Geneve header::
8360  * - The offset of the linktype.
8361  * - The offset of the end of the Geneve header.
8362  * - The offset of the end of the encapsulated MAC header. */
8363 static struct slist *
8364 gen_geneve_offsets(compiler_state_t *cstate)
8365 {
8366 	struct slist *s, *s1, *s_proto;
8367 
8368 	/* First we need to calculate the offset of the Geneve header
8369 	 * itself. This is composed of the IP header previously calculated
8370 	 * (include any variable link prefix) and stored in A plus the
8371 	 * fixed sized headers (fixed link prefix, MAC length, and UDP
8372 	 * header). */
8373 	s = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
8374 	s->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 8;
8375 
8376 	/* Stash this in X since we'll need it later. */
8377 	s1 = new_stmt(cstate, BPF_MISC|BPF_TAX);
8378 	sappend(s, s1);
8379 
8380 	/* The EtherType in Geneve is 2 bytes in. Calculate this and
8381 	 * store it. */
8382 	s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
8383 	s1->s.k = 2;
8384 	sappend(s, s1);
8385 
8386 	cstate->off_linktype.reg = alloc_reg(cstate);
8387 	cstate->off_linktype.is_variable = 1;
8388 	cstate->off_linktype.constant_part = 0;
8389 
8390 	s1 = new_stmt(cstate, BPF_ST);
8391 	s1->s.k = cstate->off_linktype.reg;
8392 	sappend(s, s1);
8393 
8394 	/* Load the Geneve option length and mask and shift to get the
8395 	 * number of bytes. It is stored in the first byte of the Geneve
8396 	 * header. */
8397 	s1 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
8398 	s1->s.k = 0;
8399 	sappend(s, s1);
8400 
8401 	s1 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
8402 	s1->s.k = 0x3f;
8403 	sappend(s, s1);
8404 
8405 	s1 = new_stmt(cstate, BPF_ALU|BPF_MUL|BPF_K);
8406 	s1->s.k = 4;
8407 	sappend(s, s1);
8408 
8409 	/* Add in the rest of the Geneve base header. */
8410 	s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
8411 	s1->s.k = 8;
8412 	sappend(s, s1);
8413 
8414 	/* Add the Geneve header length to its offset and store. */
8415 	s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X);
8416 	s1->s.k = 0;
8417 	sappend(s, s1);
8418 
8419 	/* Set the encapsulated type as Ethernet. Even though we may
8420 	 * not actually have Ethernet inside there are two reasons this
8421 	 * is useful:
8422 	 * - The linktype field is always in EtherType format regardless
8423 	 *   of whether it is in Geneve or an inner Ethernet frame.
8424 	 * - The only link layer that we have specific support for is
8425 	 *   Ethernet. We will confirm that the packet actually is
8426 	 *   Ethernet at runtime before executing these checks. */
8427 	PUSH_LINKHDR(cstate, DLT_EN10MB, 1, 0, alloc_reg(cstate));
8428 
8429 	s1 = new_stmt(cstate, BPF_ST);
8430 	s1->s.k = cstate->off_linkhdr.reg;
8431 	sappend(s, s1);
8432 
8433 	/* Calculate whether we have an Ethernet header or just raw IP/
8434 	 * MPLS/etc. If we have Ethernet, advance the end of the MAC offset
8435 	 * and linktype by 14 bytes so that the network header can be found
8436 	 * seamlessly. Otherwise, keep what we've calculated already. */
8437 
8438 	/* We have a bare jmp so we can't use the optimizer. */
8439 	cstate->no_optimize = 1;
8440 
8441 	/* Load the EtherType in the Geneve header, 2 bytes in. */
8442 	s1 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_H);
8443 	s1->s.k = 2;
8444 	sappend(s, s1);
8445 
8446 	/* Load X with the end of the Geneve header. */
8447 	s1 = new_stmt(cstate, BPF_LDX|BPF_MEM);
8448 	s1->s.k = cstate->off_linkhdr.reg;
8449 	sappend(s, s1);
8450 
8451 	/* Check if the EtherType is Transparent Ethernet Bridging. At the
8452 	 * end of this check, we should have the total length in X. In
8453 	 * the non-Ethernet case, it's already there. */
8454 	s_proto = new_stmt(cstate, JMP(BPF_JEQ));
8455 	s_proto->s.k = ETHERTYPE_TEB;
8456 	sappend(s, s_proto);
8457 
8458 	s1 = new_stmt(cstate, BPF_MISC|BPF_TXA);
8459 	sappend(s, s1);
8460 	s_proto->s.jt = s1;
8461 
8462 	/* Since this is Ethernet, use the EtherType of the payload
8463 	 * directly as the linktype. Overwrite what we already have. */
8464 	s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
8465 	s1->s.k = 12;
8466 	sappend(s, s1);
8467 
8468 	s1 = new_stmt(cstate, BPF_ST);
8469 	s1->s.k = cstate->off_linktype.reg;
8470 	sappend(s, s1);
8471 
8472 	/* Advance two bytes further to get the end of the Ethernet
8473 	 * header. */
8474 	s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
8475 	s1->s.k = 2;
8476 	sappend(s, s1);
8477 
8478 	/* Move the result to X. */
8479 	s1 = new_stmt(cstate, BPF_MISC|BPF_TAX);
8480 	sappend(s, s1);
8481 
8482 	/* Store the final result of our linkpl calculation. */
8483 	cstate->off_linkpl.reg = alloc_reg(cstate);
8484 	cstate->off_linkpl.is_variable = 1;
8485 	cstate->off_linkpl.constant_part = 0;
8486 
8487 	s1 = new_stmt(cstate, BPF_STX);
8488 	s1->s.k = cstate->off_linkpl.reg;
8489 	sappend(s, s1);
8490 	s_proto->s.jf = s1;
8491 
8492 	cstate->off_nl = 0;
8493 
8494 	return s;
8495 }
8496 
8497 /* Check to see if this is a Geneve packet. */
8498 struct block *
8499 gen_geneve(compiler_state_t *cstate, int vni)
8500 {
8501 	struct block *b0, *b1;
8502 	struct slist *s;
8503 
8504 	b0 = gen_geneve4(cstate, vni);
8505 	b1 = gen_geneve6(cstate, vni);
8506 
8507 	gen_or(b0, b1);
8508 	b0 = b1;
8509 
8510 	/* Later filters should act on the payload of the Geneve frame,
8511 	 * update all of the header pointers. Attach this code so that
8512 	 * it gets executed in the event that the Geneve filter matches. */
8513 	s = gen_geneve_offsets(cstate);
8514 
8515 	b1 = gen_true(cstate);
8516 	sappend(s, b1->stmts);
8517 	b1->stmts = s;
8518 
8519 	gen_and(b0, b1);
8520 
8521 	cstate->is_geneve = 1;
8522 
8523 	return b1;
8524 }
8525 
8526 /* Check that the encapsulated frame has a link layer header
8527  * for Ethernet filters. */
8528 static struct block *
8529 gen_geneve_ll_check(compiler_state_t *cstate)
8530 {
8531 	struct block *b0;
8532 	struct slist *s, *s1;
8533 
8534 	/* The easiest way to see if there is a link layer present
8535 	 * is to check if the link layer header and payload are not
8536 	 * the same. */
8537 
8538 	/* Geneve always generates pure variable offsets so we can
8539 	 * compare only the registers. */
8540 	s = new_stmt(cstate, BPF_LD|BPF_MEM);
8541 	s->s.k = cstate->off_linkhdr.reg;
8542 
8543 	s1 = new_stmt(cstate, BPF_LDX|BPF_MEM);
8544 	s1->s.k = cstate->off_linkpl.reg;
8545 	sappend(s, s1);
8546 
8547 	b0 = new_block(cstate, BPF_JMP|BPF_JEQ|BPF_X);
8548 	b0->stmts = s;
8549 	b0->s.k = 0;
8550 	gen_not(b0);
8551 
8552 	return b0;
8553 }
8554 
8555 struct block *
8556 gen_atmfield_code(compiler_state_t *cstate, int atmfield, bpf_int32 jvalue,
8557     bpf_u_int32 jtype, int reverse)
8558 {
8559 	struct block *b0;
8560 
8561 	switch (atmfield) {
8562 
8563 	case A_VPI:
8564 		if (!cstate->is_atm)
8565 			bpf_error(cstate, "'vpi' supported only on raw ATM");
8566 		if (cstate->off_vpi == (u_int)-1)
8567 			abort();
8568 		b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_vpi, BPF_B, 0xffffffff, jtype,
8569 		    reverse, jvalue);
8570 		break;
8571 
8572 	case A_VCI:
8573 		if (!cstate->is_atm)
8574 			bpf_error(cstate, "'vci' supported only on raw ATM");
8575 		if (cstate->off_vci == (u_int)-1)
8576 			abort();
8577 		b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_vci, BPF_H, 0xffffffff, jtype,
8578 		    reverse, jvalue);
8579 		break;
8580 
8581 	case A_PROTOTYPE:
8582 		if (cstate->off_proto == (u_int)-1)
8583 			abort();	/* XXX - this isn't on FreeBSD */
8584 		b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_proto, BPF_B, 0x0f, jtype,
8585 		    reverse, jvalue);
8586 		break;
8587 
8588 	case A_MSGTYPE:
8589 		if (cstate->off_payload == (u_int)-1)
8590 			abort();
8591 		b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_payload + MSG_TYPE_POS, BPF_B,
8592 		    0xffffffff, jtype, reverse, jvalue);
8593 		break;
8594 
8595 	case A_CALLREFTYPE:
8596 		if (!cstate->is_atm)
8597 			bpf_error(cstate, "'callref' supported only on raw ATM");
8598 		if (cstate->off_proto == (u_int)-1)
8599 			abort();
8600 		b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_proto, BPF_B, 0xffffffff,
8601 		    jtype, reverse, jvalue);
8602 		break;
8603 
8604 	default:
8605 		abort();
8606 	}
8607 	return b0;
8608 }
8609 
8610 struct block *
8611 gen_atmtype_abbrev(compiler_state_t *cstate, int type)
8612 {
8613 	struct block *b0, *b1;
8614 
8615 	switch (type) {
8616 
8617 	case A_METAC:
8618 		/* Get all packets in Meta signalling Circuit */
8619 		if (!cstate->is_atm)
8620 			bpf_error(cstate, "'metac' supported only on raw ATM");
8621 		b0 = gen_atmfield_code(cstate, A_VPI, 0, BPF_JEQ, 0);
8622 		b1 = gen_atmfield_code(cstate, A_VCI, 1, BPF_JEQ, 0);
8623 		gen_and(b0, b1);
8624 		break;
8625 
8626 	case A_BCC:
8627 		/* Get all packets in Broadcast Circuit*/
8628 		if (!cstate->is_atm)
8629 			bpf_error(cstate, "'bcc' supported only on raw ATM");
8630 		b0 = gen_atmfield_code(cstate, A_VPI, 0, BPF_JEQ, 0);
8631 		b1 = gen_atmfield_code(cstate, A_VCI, 2, BPF_JEQ, 0);
8632 		gen_and(b0, b1);
8633 		break;
8634 
8635 	case A_OAMF4SC:
8636 		/* Get all cells in Segment OAM F4 circuit*/
8637 		if (!cstate->is_atm)
8638 			bpf_error(cstate, "'oam4sc' supported only on raw ATM");
8639 		b0 = gen_atmfield_code(cstate, A_VPI, 0, BPF_JEQ, 0);
8640 		b1 = gen_atmfield_code(cstate, A_VCI, 3, BPF_JEQ, 0);
8641 		gen_and(b0, b1);
8642 		break;
8643 
8644 	case A_OAMF4EC:
8645 		/* Get all cells in End-to-End OAM F4 Circuit*/
8646 		if (!cstate->is_atm)
8647 			bpf_error(cstate, "'oam4ec' supported only on raw ATM");
8648 		b0 = gen_atmfield_code(cstate, A_VPI, 0, BPF_JEQ, 0);
8649 		b1 = gen_atmfield_code(cstate, A_VCI, 4, BPF_JEQ, 0);
8650 		gen_and(b0, b1);
8651 		break;
8652 
8653 	case A_SC:
8654 		/*  Get all packets in connection Signalling Circuit */
8655 		if (!cstate->is_atm)
8656 			bpf_error(cstate, "'sc' supported only on raw ATM");
8657 		b0 = gen_atmfield_code(cstate, A_VPI, 0, BPF_JEQ, 0);
8658 		b1 = gen_atmfield_code(cstate, A_VCI, 5, BPF_JEQ, 0);
8659 		gen_and(b0, b1);
8660 		break;
8661 
8662 	case A_ILMIC:
8663 		/* Get all packets in ILMI Circuit */
8664 		if (!cstate->is_atm)
8665 			bpf_error(cstate, "'ilmic' supported only on raw ATM");
8666 		b0 = gen_atmfield_code(cstate, A_VPI, 0, BPF_JEQ, 0);
8667 		b1 = gen_atmfield_code(cstate, A_VCI, 16, BPF_JEQ, 0);
8668 		gen_and(b0, b1);
8669 		break;
8670 
8671 	case A_LANE:
8672 		/* Get all LANE packets */
8673 		if (!cstate->is_atm)
8674 			bpf_error(cstate, "'lane' supported only on raw ATM");
8675 		b1 = gen_atmfield_code(cstate, A_PROTOTYPE, PT_LANE, BPF_JEQ, 0);
8676 
8677 		/*
8678 		 * Arrange that all subsequent tests assume LANE
8679 		 * rather than LLC-encapsulated packets, and set
8680 		 * the offsets appropriately for LANE-encapsulated
8681 		 * Ethernet.
8682 		 *
8683 		 * We assume LANE means Ethernet, not Token Ring.
8684 		 */
8685 		PUSH_LINKHDR(cstate, DLT_EN10MB, 0,
8686 		    cstate->off_payload + 2,	/* Ethernet header */
8687 		    -1);
8688 		cstate->off_linktype.constant_part = cstate->off_linkhdr.constant_part + 12;
8689 		cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 14;	/* Ethernet */
8690 		cstate->off_nl = 0;			/* Ethernet II */
8691 		cstate->off_nl_nosnap = 3;		/* 802.3+802.2 */
8692 		break;
8693 
8694 	case A_LLC:
8695 		/* Get all LLC-encapsulated packets */
8696 		if (!cstate->is_atm)
8697 			bpf_error(cstate, "'llc' supported only on raw ATM");
8698 		b1 = gen_atmfield_code(cstate, A_PROTOTYPE, PT_LLC, BPF_JEQ, 0);
8699 		cstate->linktype = cstate->prevlinktype;
8700 		break;
8701 
8702 	default:
8703 		abort();
8704 	}
8705 	return b1;
8706 }
8707 
8708 /*
8709  * Filtering for MTP2 messages based on li value
8710  * FISU, length is null
8711  * LSSU, length is 1 or 2
8712  * MSU, length is 3 or more
8713  * For MTP2_HSL, sequences are on 2 bytes, and length on 9 bits
8714  */
8715 struct block *
8716 gen_mtp2type_abbrev(compiler_state_t *cstate, int type)
8717 {
8718 	struct block *b0, *b1;
8719 
8720 	switch (type) {
8721 
8722 	case M_FISU:
8723 		if ( (cstate->linktype != DLT_MTP2) &&
8724 		     (cstate->linktype != DLT_ERF) &&
8725 		     (cstate->linktype != DLT_MTP2_WITH_PHDR) )
8726 			bpf_error(cstate, "'fisu' supported only on MTP2");
8727 		/* gen_ncmp(cstate, offrel, offset, size, mask, jtype, reverse, value) */
8728 		b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B, 0x3f, BPF_JEQ, 0, 0);
8729 		break;
8730 
8731 	case M_LSSU:
8732 		if ( (cstate->linktype != DLT_MTP2) &&
8733 		     (cstate->linktype != DLT_ERF) &&
8734 		     (cstate->linktype != DLT_MTP2_WITH_PHDR) )
8735 			bpf_error(cstate, "'lssu' supported only on MTP2");
8736 		b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B, 0x3f, BPF_JGT, 1, 2);
8737 		b1 = gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B, 0x3f, BPF_JGT, 0, 0);
8738 		gen_and(b1, b0);
8739 		break;
8740 
8741 	case M_MSU:
8742 		if ( (cstate->linktype != DLT_MTP2) &&
8743 		     (cstate->linktype != DLT_ERF) &&
8744 		     (cstate->linktype != DLT_MTP2_WITH_PHDR) )
8745 			bpf_error(cstate, "'msu' supported only on MTP2");
8746 		b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B, 0x3f, BPF_JGT, 0, 2);
8747 		break;
8748 
8749 	case MH_FISU:
8750 		if ( (cstate->linktype != DLT_MTP2) &&
8751 		     (cstate->linktype != DLT_ERF) &&
8752 		     (cstate->linktype != DLT_MTP2_WITH_PHDR) )
8753 			bpf_error(cstate, "'hfisu' supported only on MTP2_HSL");
8754 		/* gen_ncmp(cstate, offrel, offset, size, mask, jtype, reverse, value) */
8755 		b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H, 0xff80, BPF_JEQ, 0, 0);
8756 		break;
8757 
8758 	case MH_LSSU:
8759 		if ( (cstate->linktype != DLT_MTP2) &&
8760 		     (cstate->linktype != DLT_ERF) &&
8761 		     (cstate->linktype != DLT_MTP2_WITH_PHDR) )
8762 			bpf_error(cstate, "'hlssu' supported only on MTP2_HSL");
8763 		b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H, 0xff80, BPF_JGT, 1, 0x0100);
8764 		b1 = gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H, 0xff80, BPF_JGT, 0, 0);
8765 		gen_and(b1, b0);
8766 		break;
8767 
8768 	case MH_MSU:
8769 		if ( (cstate->linktype != DLT_MTP2) &&
8770 		     (cstate->linktype != DLT_ERF) &&
8771 		     (cstate->linktype != DLT_MTP2_WITH_PHDR) )
8772 			bpf_error(cstate, "'hmsu' supported only on MTP2_HSL");
8773 		b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H, 0xff80, BPF_JGT, 0, 0x0100);
8774 		break;
8775 
8776 	default:
8777 		abort();
8778 	}
8779 	return b0;
8780 }
8781 
8782 struct block *
8783 gen_mtp3field_code(compiler_state_t *cstate, int mtp3field, bpf_u_int32 jvalue,
8784     bpf_u_int32 jtype, int reverse)
8785 {
8786 	struct block *b0;
8787 	bpf_u_int32 val1 , val2 , val3;
8788 	u_int newoff_sio = cstate->off_sio;
8789 	u_int newoff_opc = cstate->off_opc;
8790 	u_int newoff_dpc = cstate->off_dpc;
8791 	u_int newoff_sls = cstate->off_sls;
8792 
8793 	switch (mtp3field) {
8794 
8795 	case MH_SIO:
8796 		newoff_sio += 3; /* offset for MTP2_HSL */
8797 		/* FALLTHROUGH */
8798 
8799 	case M_SIO:
8800 		if (cstate->off_sio == (u_int)-1)
8801 			bpf_error(cstate, "'sio' supported only on SS7");
8802 		/* sio coded on 1 byte so max value 255 */
8803 		if(jvalue > 255)
8804 		        bpf_error(cstate, "sio value %u too big; max value = 255",
8805 		            jvalue);
8806 		b0 = gen_ncmp(cstate, OR_PACKET, newoff_sio, BPF_B, 0xffffffff,
8807 		    (u_int)jtype, reverse, (u_int)jvalue);
8808 		break;
8809 
8810 	case MH_OPC:
8811 		newoff_opc+=3;
8812         case M_OPC:
8813 	        if (cstate->off_opc == (u_int)-1)
8814 			bpf_error(cstate, "'opc' supported only on SS7");
8815 		/* opc coded on 14 bits so max value 16383 */
8816 		if (jvalue > 16383)
8817 		        bpf_error(cstate, "opc value %u too big; max value = 16383",
8818 		            jvalue);
8819 		/* the following instructions are made to convert jvalue
8820 		 * to the form used to write opc in an ss7 message*/
8821 		val1 = jvalue & 0x00003c00;
8822 		val1 = val1 >>10;
8823 		val2 = jvalue & 0x000003fc;
8824 		val2 = val2 <<6;
8825 		val3 = jvalue & 0x00000003;
8826 		val3 = val3 <<22;
8827 		jvalue = val1 + val2 + val3;
8828 		b0 = gen_ncmp(cstate, OR_PACKET, newoff_opc, BPF_W, 0x00c0ff0f,
8829 		    (u_int)jtype, reverse, (u_int)jvalue);
8830 		break;
8831 
8832 	case MH_DPC:
8833 		newoff_dpc += 3;
8834 		/* FALLTHROUGH */
8835 
8836 	case M_DPC:
8837 	        if (cstate->off_dpc == (u_int)-1)
8838 			bpf_error(cstate, "'dpc' supported only on SS7");
8839 		/* dpc coded on 14 bits so max value 16383 */
8840 		if (jvalue > 16383)
8841 		        bpf_error(cstate, "dpc value %u too big; max value = 16383",
8842 		            jvalue);
8843 		/* the following instructions are made to convert jvalue
8844 		 * to the forme used to write dpc in an ss7 message*/
8845 		val1 = jvalue & 0x000000ff;
8846 		val1 = val1 << 24;
8847 		val2 = jvalue & 0x00003f00;
8848 		val2 = val2 << 8;
8849 		jvalue = val1 + val2;
8850 		b0 = gen_ncmp(cstate, OR_PACKET, newoff_dpc, BPF_W, 0xff3f0000,
8851 		    (u_int)jtype, reverse, (u_int)jvalue);
8852 		break;
8853 
8854 	case MH_SLS:
8855 	  newoff_sls+=3;
8856 	case M_SLS:
8857 	        if (cstate->off_sls == (u_int)-1)
8858 			bpf_error(cstate, "'sls' supported only on SS7");
8859 		/* sls coded on 4 bits so max value 15 */
8860 		if (jvalue > 15)
8861 		         bpf_error(cstate, "sls value %u too big; max value = 15",
8862 		             jvalue);
8863 		/* the following instruction is made to convert jvalue
8864 		 * to the forme used to write sls in an ss7 message*/
8865 		jvalue = jvalue << 4;
8866 		b0 = gen_ncmp(cstate, OR_PACKET, newoff_sls, BPF_B, 0xf0,
8867 		    (u_int)jtype,reverse, (u_int)jvalue);
8868 		break;
8869 
8870 	default:
8871 		abort();
8872 	}
8873 	return b0;
8874 }
8875 
8876 static struct block *
8877 gen_msg_abbrev(compiler_state_t *cstate, int type)
8878 {
8879 	struct block *b1;
8880 
8881 	/*
8882 	 * Q.2931 signalling protocol messages for handling virtual circuits
8883 	 * establishment and teardown
8884 	 */
8885 	switch (type) {
8886 
8887 	case A_SETUP:
8888 		b1 = gen_atmfield_code(cstate, A_MSGTYPE, SETUP, BPF_JEQ, 0);
8889 		break;
8890 
8891 	case A_CALLPROCEED:
8892 		b1 = gen_atmfield_code(cstate, A_MSGTYPE, CALL_PROCEED, BPF_JEQ, 0);
8893 		break;
8894 
8895 	case A_CONNECT:
8896 		b1 = gen_atmfield_code(cstate, A_MSGTYPE, CONNECT, BPF_JEQ, 0);
8897 		break;
8898 
8899 	case A_CONNECTACK:
8900 		b1 = gen_atmfield_code(cstate, A_MSGTYPE, CONNECT_ACK, BPF_JEQ, 0);
8901 		break;
8902 
8903 	case A_RELEASE:
8904 		b1 = gen_atmfield_code(cstate, A_MSGTYPE, RELEASE, BPF_JEQ, 0);
8905 		break;
8906 
8907 	case A_RELEASE_DONE:
8908 		b1 = gen_atmfield_code(cstate, A_MSGTYPE, RELEASE_DONE, BPF_JEQ, 0);
8909 		break;
8910 
8911 	default:
8912 		abort();
8913 	}
8914 	return b1;
8915 }
8916 
8917 struct block *
8918 gen_atmmulti_abbrev(compiler_state_t *cstate, int type)
8919 {
8920 	struct block *b0, *b1;
8921 
8922 	switch (type) {
8923 
8924 	case A_OAM:
8925 		if (!cstate->is_atm)
8926 			bpf_error(cstate, "'oam' supported only on raw ATM");
8927 		b1 = gen_atmmulti_abbrev(cstate, A_OAMF4);
8928 		break;
8929 
8930 	case A_OAMF4:
8931 		if (!cstate->is_atm)
8932 			bpf_error(cstate, "'oamf4' supported only on raw ATM");
8933 		/* OAM F4 type */
8934 		b0 = gen_atmfield_code(cstate, A_VCI, 3, BPF_JEQ, 0);
8935 		b1 = gen_atmfield_code(cstate, A_VCI, 4, BPF_JEQ, 0);
8936 		gen_or(b0, b1);
8937 		b0 = gen_atmfield_code(cstate, A_VPI, 0, BPF_JEQ, 0);
8938 		gen_and(b0, b1);
8939 		break;
8940 
8941 	case A_CONNECTMSG:
8942 		/*
8943 		 * Get Q.2931 signalling messages for switched
8944 		 * virtual connection
8945 		 */
8946 		if (!cstate->is_atm)
8947 			bpf_error(cstate, "'connectmsg' supported only on raw ATM");
8948 		b0 = gen_msg_abbrev(cstate, A_SETUP);
8949 		b1 = gen_msg_abbrev(cstate, A_CALLPROCEED);
8950 		gen_or(b0, b1);
8951 		b0 = gen_msg_abbrev(cstate, A_CONNECT);
8952 		gen_or(b0, b1);
8953 		b0 = gen_msg_abbrev(cstate, A_CONNECTACK);
8954 		gen_or(b0, b1);
8955 		b0 = gen_msg_abbrev(cstate, A_RELEASE);
8956 		gen_or(b0, b1);
8957 		b0 = gen_msg_abbrev(cstate, A_RELEASE_DONE);
8958 		gen_or(b0, b1);
8959 		b0 = gen_atmtype_abbrev(cstate, A_SC);
8960 		gen_and(b0, b1);
8961 		break;
8962 
8963 	case A_METACONNECT:
8964 		if (!cstate->is_atm)
8965 			bpf_error(cstate, "'metaconnect' supported only on raw ATM");
8966 		b0 = gen_msg_abbrev(cstate, A_SETUP);
8967 		b1 = gen_msg_abbrev(cstate, A_CALLPROCEED);
8968 		gen_or(b0, b1);
8969 		b0 = gen_msg_abbrev(cstate, A_CONNECT);
8970 		gen_or(b0, b1);
8971 		b0 = gen_msg_abbrev(cstate, A_RELEASE);
8972 		gen_or(b0, b1);
8973 		b0 = gen_msg_abbrev(cstate, A_RELEASE_DONE);
8974 		gen_or(b0, b1);
8975 		b0 = gen_atmtype_abbrev(cstate, A_METAC);
8976 		gen_and(b0, b1);
8977 		break;
8978 
8979 	default:
8980 		abort();
8981 	}
8982 	return b1;
8983 }
8984