xref: /netbsd-src/external/bsd/libpcap/dist/gencode.c (revision 3117ece4fc4a4ca4489ba793710b60b0d26bab6c)
1 /*	$NetBSD: gencode.c,v 1.14 2024/09/02 15:33:36 christos Exp $	*/
2 
3 /*
4  * Copyright (c) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that: (1) source code distributions
9  * retain the above copyright notice and this paragraph in its entirety, (2)
10  * distributions including binary code include the above copyright notice and
11  * this paragraph in its entirety in the documentation or other materials
12  * provided with the distribution, and (3) all advertising materials mentioning
13  * features or use of this software display the following acknowledgement:
14  * ``This product includes software developed by the University of California,
15  * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
16  * the University nor the names of its contributors may be used to endorse
17  * or promote products derived from this software without specific prior
18  * written permission.
19  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
20  * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
21  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
22  */
23 
24 #include <sys/cdefs.h>
25 __RCSID("$NetBSD: gencode.c,v 1.14 2024/09/02 15:33:36 christos Exp $");
26 
27 #include <config.h>
28 
29 #ifdef _WIN32
30   #include <ws2tcpip.h>
31 #else
32   #include <sys/socket.h>
33 
34   #ifdef __NetBSD__
35     #include <sys/param.h>
36   #endif
37 
38   #include <netinet/in.h>
39   #include <arpa/inet.h>
40 #endif /* _WIN32 */
41 
42 #include <stdlib.h>
43 #include <string.h>
44 #include <memory.h>
45 #include <setjmp.h>
46 #include <stdarg.h>
47 #include <stdio.h>
48 
49 #ifdef MSDOS
50 #include "pcap-dos.h"
51 #endif
52 
53 #include "pcap-int.h"
54 
55 #include "extract.h"
56 
57 #include "ethertype.h"
58 #include "nlpid.h"
59 #include "llc.h"
60 #include "gencode.h"
61 #include "ieee80211.h"
62 #include "atmuni31.h"
63 #include "sunatmpos.h"
64 #include "pflog.h"
65 #include "ppp.h"
66 #include "pcap/sll.h"
67 #include "pcap/ipnet.h"
68 #include "arcnet.h"
69 #include "diag-control.h"
70 
71 #include "scanner.h"
72 
73 #if defined(__linux__)
74 #include <linux/types.h>
75 #include <linux/if_packet.h>
76 #include <linux/filter.h>
77 #endif
78 
79 #ifndef offsetof
80 #define offsetof(s, e) ((size_t)&((s *)0)->e)
81 #endif
82 
83 #ifdef _WIN32
84   #ifdef INET6
85     #if defined(__MINGW32__) && defined(DEFINE_ADDITIONAL_IPV6_STUFF)
86 /* IPv6 address */
87 struct in6_addr
88   {
89     union
90       {
91 	uint8_t		u6_addr8[16];
92 	uint16_t	u6_addr16[8];
93 	uint32_t	u6_addr32[4];
94       } in6_u;
95 #define s6_addr			in6_u.u6_addr8
96 #define s6_addr16		in6_u.u6_addr16
97 #define s6_addr32		in6_u.u6_addr32
98 #define s6_addr64		in6_u.u6_addr64
99   };
100 
101 typedef unsigned short	sa_family_t;
102 
103 #define	__SOCKADDR_COMMON(sa_prefix) \
104   sa_family_t sa_prefix##family
105 
106 /* Ditto, for IPv6.  */
107 struct sockaddr_in6
108   {
109     __SOCKADDR_COMMON (sin6_);
110     uint16_t sin6_port;		/* Transport layer port # */
111     uint32_t sin6_flowinfo;	/* IPv6 flow information */
112     struct in6_addr sin6_addr;	/* IPv6 address */
113   };
114 
115       #ifndef EAI_ADDRFAMILY
116 struct addrinfo {
117 	int	ai_flags;	/* AI_PASSIVE, AI_CANONNAME */
118 	int	ai_family;	/* PF_xxx */
119 	int	ai_socktype;	/* SOCK_xxx */
120 	int	ai_protocol;	/* 0 or IPPROTO_xxx for IPv4 and IPv6 */
121 	size_t	ai_addrlen;	/* length of ai_addr */
122 	char	*ai_canonname;	/* canonical name for hostname */
123 	struct sockaddr *ai_addr;	/* binary address */
124 	struct addrinfo *ai_next;	/* next structure in linked list */
125 };
126       #endif /* EAI_ADDRFAMILY */
127     #endif /* defined(__MINGW32__) && defined(DEFINE_ADDITIONAL_IPV6_STUFF) */
128   #endif /* INET6 */
129 #else /* _WIN32 */
130   #include <netdb.h>	/* for "struct addrinfo" */
131 #endif /* _WIN32 */
132 #include <pcap/namedb.h>
133 
134 #include "nametoaddr.h"
135 
136 #define ETHERMTU	1500
137 
138 #ifndef IPPROTO_HOPOPTS
139 #define IPPROTO_HOPOPTS 0
140 #endif
141 #ifndef IPPROTO_ROUTING
142 #define IPPROTO_ROUTING 43
143 #endif
144 #ifndef IPPROTO_FRAGMENT
145 #define IPPROTO_FRAGMENT 44
146 #endif
147 #ifndef IPPROTO_DSTOPTS
148 #define IPPROTO_DSTOPTS 60
149 #endif
150 #ifndef IPPROTO_SCTP
151 #define IPPROTO_SCTP 132
152 #endif
153 
154 #define GENEVE_PORT 6081
155 
156 #ifdef HAVE_OS_PROTO_H
157 #include "os-proto.h"
158 #endif
159 
160 #define JMP(c) ((c)|BPF_JMP|BPF_K)
161 
162 /*
163  * "Push" the current value of the link-layer header type and link-layer
164  * header offset onto a "stack", and set a new value.  (It's not a
165  * full-blown stack; we keep only the top two items.)
166  */
167 #define PUSH_LINKHDR(cs, new_linktype, new_is_variable, new_constant_part, new_reg) \
168 { \
169 	(cs)->prevlinktype = (cs)->linktype; \
170 	(cs)->off_prevlinkhdr = (cs)->off_linkhdr; \
171 	(cs)->linktype = (new_linktype); \
172 	(cs)->off_linkhdr.is_variable = (new_is_variable); \
173 	(cs)->off_linkhdr.constant_part = (new_constant_part); \
174 	(cs)->off_linkhdr.reg = (new_reg); \
175 	(cs)->is_geneve = 0; \
176 }
177 
178 /*
179  * Offset "not set" value.
180  */
181 #define OFFSET_NOT_SET	0xffffffffU
182 
183 /*
184  * Absolute offsets, which are offsets from the beginning of the raw
185  * packet data, are, in the general case, the sum of a variable value
186  * and a constant value; the variable value may be absent, in which
187  * case the offset is only the constant value, and the constant value
188  * may be zero, in which case the offset is only the variable value.
189  *
190  * bpf_abs_offset is a structure containing all that information:
191  *
192  *   is_variable is 1 if there's a variable part.
193  *
194  *   constant_part is the constant part of the value, possibly zero;
195  *
196  *   if is_variable is 1, reg is the register number for a register
197  *   containing the variable value if the register has been assigned,
198  *   and -1 otherwise.
199  */
200 typedef struct {
201 	int	is_variable;
202 	u_int	constant_part;
203 	int	reg;
204 } bpf_abs_offset;
205 
206 /*
207  * Value passed to gen_load_a() to indicate what the offset argument
208  * is relative to the beginning of.
209  */
210 enum e_offrel {
211 	OR_PACKET,		/* full packet data */
212 	OR_LINKHDR,		/* link-layer header */
213 	OR_PREVLINKHDR,		/* previous link-layer header */
214 	OR_LLC,			/* 802.2 LLC header */
215 	OR_PREVMPLSHDR,		/* previous MPLS header */
216 	OR_LINKTYPE,		/* link-layer type */
217 	OR_LINKPL,		/* link-layer payload */
218 	OR_LINKPL_NOSNAP,	/* link-layer payload, with no SNAP header at the link layer */
219 	OR_TRAN_IPV4,		/* transport-layer header, with IPv4 network layer */
220 	OR_TRAN_IPV6		/* transport-layer header, with IPv6 network layer */
221 };
222 
223 /*
224  * We divvy out chunks of memory rather than call malloc each time so
225  * we don't have to worry about leaking memory.  It's probably
226  * not a big deal if all this memory was wasted but if this ever
227  * goes into a library that would probably not be a good idea.
228  *
229  * XXX - this *is* in a library....
230  */
231 #define NCHUNKS 16
232 #define CHUNK0SIZE 1024
233 struct chunk {
234 	size_t n_left;
235 	void *m;
236 };
237 
238 /* Code generator state */
239 
240 struct _compiler_state {
241 	jmp_buf top_ctx;
242 	pcap_t *bpf_pcap;
243 	int error_set;
244 
245 	struct icode ic;
246 
247 	int snaplen;
248 
249 	int linktype;
250 	int prevlinktype;
251 	int outermostlinktype;
252 
253 	bpf_u_int32 netmask;
254 	int no_optimize;
255 
256 	/* Hack for handling VLAN and MPLS stacks. */
257 	u_int label_stack_depth;
258 	u_int vlan_stack_depth;
259 
260 	/* XXX */
261 	u_int pcap_fddipad;
262 
263 	/*
264 	 * As errors are handled by a longjmp, anything allocated must
265 	 * be freed in the longjmp handler, so it must be reachable
266 	 * from that handler.
267 	 *
268 	 * One thing that's allocated is the result of pcap_nametoaddrinfo();
269 	 * it must be freed with freeaddrinfo().  This variable points to
270 	 * any addrinfo structure that would need to be freed.
271 	 */
272 	struct addrinfo *ai;
273 
274 	/*
275 	 * Another thing that's allocated is the result of pcap_ether_aton();
276 	 * it must be freed with free().  This variable points to any
277 	 * address that would need to be freed.
278 	 */
279 	u_char *e;
280 
281 	/*
282 	 * Various code constructs need to know the layout of the packet.
283 	 * These values give the necessary offsets from the beginning
284 	 * of the packet data.
285 	 */
286 
287 	/*
288 	 * Absolute offset of the beginning of the link-layer header.
289 	 */
290 	bpf_abs_offset off_linkhdr;
291 
292 	/*
293 	 * If we're checking a link-layer header for a packet encapsulated
294 	 * in another protocol layer, this is the equivalent information
295 	 * for the previous layers' link-layer header from the beginning
296 	 * of the raw packet data.
297 	 */
298 	bpf_abs_offset off_prevlinkhdr;
299 
300 	/*
301 	 * This is the equivalent information for the outermost layers'
302 	 * link-layer header.
303 	 */
304 	bpf_abs_offset off_outermostlinkhdr;
305 
306 	/*
307 	 * Absolute offset of the beginning of the link-layer payload.
308 	 */
309 	bpf_abs_offset off_linkpl;
310 
311 	/*
312 	 * "off_linktype" is the offset to information in the link-layer
313 	 * header giving the packet type. This is an absolute offset
314 	 * from the beginning of the packet.
315 	 *
316 	 * For Ethernet, it's the offset of the Ethernet type field; this
317 	 * means that it must have a value that skips VLAN tags.
318 	 *
319 	 * For link-layer types that always use 802.2 headers, it's the
320 	 * offset of the LLC header; this means that it must have a value
321 	 * that skips VLAN tags.
322 	 *
323 	 * For PPP, it's the offset of the PPP type field.
324 	 *
325 	 * For Cisco HDLC, it's the offset of the CHDLC type field.
326 	 *
327 	 * For BSD loopback, it's the offset of the AF_ value.
328 	 *
329 	 * For Linux cooked sockets, it's the offset of the type field.
330 	 *
331 	 * off_linktype.constant_part is set to OFFSET_NOT_SET for no
332 	 * encapsulation, in which case, IP is assumed.
333 	 */
334 	bpf_abs_offset off_linktype;
335 
336 	/*
337 	 * TRUE if the link layer includes an ATM pseudo-header.
338 	 */
339 	int is_atm;
340 
341 	/*
342 	 * TRUE if "geneve" appeared in the filter; it causes us to
343 	 * generate code that checks for a Geneve header and assume
344 	 * that later filters apply to the encapsulated payload.
345 	 */
346 	int is_geneve;
347 
348 	/*
349 	 * TRUE if we need variable length part of VLAN offset
350 	 */
351 	int is_vlan_vloffset;
352 
353 	/*
354 	 * These are offsets for the ATM pseudo-header.
355 	 */
356 	u_int off_vpi;
357 	u_int off_vci;
358 	u_int off_proto;
359 
360 	/*
361 	 * These are offsets for the MTP2 fields.
362 	 */
363 	u_int off_li;
364 	u_int off_li_hsl;
365 
366 	/*
367 	 * These are offsets for the MTP3 fields.
368 	 */
369 	u_int off_sio;
370 	u_int off_opc;
371 	u_int off_dpc;
372 	u_int off_sls;
373 
374 	/*
375 	 * This is the offset of the first byte after the ATM pseudo_header,
376 	 * or -1 if there is no ATM pseudo-header.
377 	 */
378 	u_int off_payload;
379 
380 	/*
381 	 * These are offsets to the beginning of the network-layer header.
382 	 * They are relative to the beginning of the link-layer payload
383 	 * (i.e., they don't include off_linkhdr.constant_part or
384 	 * off_linkpl.constant_part).
385 	 *
386 	 * If the link layer never uses 802.2 LLC:
387 	 *
388 	 *	"off_nl" and "off_nl_nosnap" are the same.
389 	 *
390 	 * If the link layer always uses 802.2 LLC:
391 	 *
392 	 *	"off_nl" is the offset if there's a SNAP header following
393 	 *	the 802.2 header;
394 	 *
395 	 *	"off_nl_nosnap" is the offset if there's no SNAP header.
396 	 *
397 	 * If the link layer is Ethernet:
398 	 *
399 	 *	"off_nl" is the offset if the packet is an Ethernet II packet
400 	 *	(we assume no 802.3+802.2+SNAP);
401 	 *
402 	 *	"off_nl_nosnap" is the offset if the packet is an 802.3 packet
403 	 *	with an 802.2 header following it.
404 	 */
405 	u_int off_nl;
406 	u_int off_nl_nosnap;
407 
408 	/*
409 	 * Here we handle simple allocation of the scratch registers.
410 	 * If too many registers are alloc'd, the allocator punts.
411 	 */
412 	int regused[BPF_MEMWORDS];
413 	int curreg;
414 
415 	/*
416 	 * Memory chunks.
417 	 */
418 	struct chunk chunks[NCHUNKS];
419 	int cur_chunk;
420 };
421 
422 /*
423  * For use by routines outside this file.
424  */
425 /* VARARGS */
426 void
427 bpf_set_error(compiler_state_t *cstate, const char *fmt, ...)
428 {
429 	va_list ap;
430 
431 	/*
432 	 * If we've already set an error, don't override it.
433 	 * The lexical analyzer reports some errors by setting
434 	 * the error and then returning a LEX_ERROR token, which
435 	 * is not recognized by any grammar rule, and thus forces
436 	 * the parse to stop.  We don't want the error reported
437 	 * by the lexical analyzer to be overwritten by the syntax
438 	 * error.
439 	 */
440 	if (!cstate->error_set) {
441 		va_start(ap, fmt);
442 		(void)vsnprintf(cstate->bpf_pcap->errbuf, PCAP_ERRBUF_SIZE,
443 		    fmt, ap);
444 		va_end(ap);
445 		cstate->error_set = 1;
446 	}
447 }
448 
449 /*
450  * For use *ONLY* in routines in this file.
451  */
452 static void PCAP_NORETURN bpf_error(compiler_state_t *, const char *, ...)
453     PCAP_PRINTFLIKE(2, 3);
454 
455 /* VARARGS */
456 static void PCAP_NORETURN
457 bpf_error(compiler_state_t *cstate, const char *fmt, ...)
458 {
459 	va_list ap;
460 
461 	va_start(ap, fmt);
462 	(void)vsnprintf(cstate->bpf_pcap->errbuf, PCAP_ERRBUF_SIZE,
463 	    fmt, ap);
464 	va_end(ap);
465 	longjmp(cstate->top_ctx, 1);
466 	/*NOTREACHED*/
467 #ifdef _AIX
468 	PCAP_UNREACHABLE
469 #endif /* _AIX */
470 }
471 
472 static int init_linktype(compiler_state_t *, pcap_t *);
473 
474 static void init_regs(compiler_state_t *);
475 static int alloc_reg(compiler_state_t *);
476 static void free_reg(compiler_state_t *, int);
477 
478 static void initchunks(compiler_state_t *cstate);
479 static void *newchunk_nolongjmp(compiler_state_t *cstate, size_t);
480 static void *newchunk(compiler_state_t *cstate, size_t);
481 static void freechunks(compiler_state_t *cstate);
482 static inline struct block *new_block(compiler_state_t *cstate, int);
483 static inline struct slist *new_stmt(compiler_state_t *cstate, int);
484 static struct block *gen_retblk(compiler_state_t *cstate, int);
485 static inline void syntax(compiler_state_t *cstate);
486 
487 static void backpatch(struct block *, struct block *);
488 static void merge(struct block *, struct block *);
489 static struct block *gen_cmp(compiler_state_t *, enum e_offrel, u_int,
490     u_int, bpf_u_int32);
491 static struct block *gen_cmp_gt(compiler_state_t *, enum e_offrel, u_int,
492     u_int, bpf_u_int32);
493 static struct block *gen_cmp_ge(compiler_state_t *, enum e_offrel, u_int,
494     u_int, bpf_u_int32);
495 static struct block *gen_cmp_lt(compiler_state_t *, enum e_offrel, u_int,
496     u_int, bpf_u_int32);
497 static struct block *gen_cmp_le(compiler_state_t *, enum e_offrel, u_int,
498     u_int, bpf_u_int32);
499 static struct block *gen_mcmp(compiler_state_t *, enum e_offrel, u_int,
500     u_int, bpf_u_int32, bpf_u_int32);
501 static struct block *gen_bcmp(compiler_state_t *, enum e_offrel, u_int,
502     u_int, const u_char *);
503 static struct block *gen_ncmp(compiler_state_t *, enum e_offrel, u_int,
504     u_int, bpf_u_int32, int, int, bpf_u_int32);
505 static struct slist *gen_load_absoffsetrel(compiler_state_t *, bpf_abs_offset *,
506     u_int, u_int);
507 static struct slist *gen_load_a(compiler_state_t *, enum e_offrel, u_int,
508     u_int);
509 static struct slist *gen_loadx_iphdrlen(compiler_state_t *);
510 static struct block *gen_uncond(compiler_state_t *, int);
511 static inline struct block *gen_true(compiler_state_t *);
512 static inline struct block *gen_false(compiler_state_t *);
513 static struct block *gen_ether_linktype(compiler_state_t *, bpf_u_int32);
514 static struct block *gen_ipnet_linktype(compiler_state_t *, bpf_u_int32);
515 static struct block *gen_linux_sll_linktype(compiler_state_t *, bpf_u_int32);
516 static struct slist *gen_load_pflog_llprefixlen(compiler_state_t *);
517 static struct slist *gen_load_prism_llprefixlen(compiler_state_t *);
518 static struct slist *gen_load_avs_llprefixlen(compiler_state_t *);
519 static struct slist *gen_load_radiotap_llprefixlen(compiler_state_t *);
520 static struct slist *gen_load_ppi_llprefixlen(compiler_state_t *);
521 static void insert_compute_vloffsets(compiler_state_t *, struct block *);
522 static struct slist *gen_abs_offset_varpart(compiler_state_t *,
523     bpf_abs_offset *);
524 static bpf_u_int32 ethertype_to_ppptype(bpf_u_int32);
525 static struct block *gen_linktype(compiler_state_t *, bpf_u_int32);
526 static struct block *gen_snap(compiler_state_t *, bpf_u_int32, bpf_u_int32);
527 static struct block *gen_llc_linktype(compiler_state_t *, bpf_u_int32);
528 static struct block *gen_hostop(compiler_state_t *, bpf_u_int32, bpf_u_int32,
529     int, bpf_u_int32, u_int, u_int);
530 #ifdef INET6
531 static struct block *gen_hostop6(compiler_state_t *, struct in6_addr *,
532     struct in6_addr *, int, bpf_u_int32, u_int, u_int);
533 #endif
534 static struct block *gen_ahostop(compiler_state_t *, const u_char *, int);
535 static struct block *gen_ehostop(compiler_state_t *, const u_char *, int);
536 static struct block *gen_fhostop(compiler_state_t *, const u_char *, int);
537 static struct block *gen_thostop(compiler_state_t *, const u_char *, int);
538 static struct block *gen_wlanhostop(compiler_state_t *, const u_char *, int);
539 static struct block *gen_ipfchostop(compiler_state_t *, const u_char *, int);
540 static struct block *gen_dnhostop(compiler_state_t *, bpf_u_int32, int);
541 static struct block *gen_mpls_linktype(compiler_state_t *, bpf_u_int32);
542 static struct block *gen_host(compiler_state_t *, bpf_u_int32, bpf_u_int32,
543     int, int, int);
544 #ifdef INET6
545 static struct block *gen_host6(compiler_state_t *, struct in6_addr *,
546     struct in6_addr *, int, int, int);
547 #endif
548 #ifndef INET6
549 static struct block *gen_gateway(compiler_state_t *, const u_char *,
550     struct addrinfo *, int, int);
551 #endif
552 static struct block *gen_ipfrag(compiler_state_t *);
553 static struct block *gen_portatom(compiler_state_t *, int, bpf_u_int32);
554 static struct block *gen_portrangeatom(compiler_state_t *, u_int, bpf_u_int32,
555     bpf_u_int32);
556 static struct block *gen_portatom6(compiler_state_t *, int, bpf_u_int32);
557 static struct block *gen_portrangeatom6(compiler_state_t *, u_int, bpf_u_int32,
558     bpf_u_int32);
559 static struct block *gen_portop(compiler_state_t *, u_int, u_int, int);
560 static struct block *gen_port(compiler_state_t *, u_int, int, int);
561 static struct block *gen_portrangeop(compiler_state_t *, u_int, u_int,
562     bpf_u_int32, int);
563 static struct block *gen_portrange(compiler_state_t *, u_int, u_int, int, int);
564 struct block *gen_portop6(compiler_state_t *, u_int, u_int, int);
565 static struct block *gen_port6(compiler_state_t *, u_int, int, int);
566 static struct block *gen_portrangeop6(compiler_state_t *, u_int, u_int,
567     bpf_u_int32, int);
568 static struct block *gen_portrange6(compiler_state_t *, u_int, u_int, int, int);
569 static int lookup_proto(compiler_state_t *, const char *, int);
570 #if !defined(NO_PROTOCHAIN)
571 static struct block *gen_protochain(compiler_state_t *, bpf_u_int32, int);
572 #endif /* !defined(NO_PROTOCHAIN) */
573 static struct block *gen_proto(compiler_state_t *, bpf_u_int32, int, int);
574 static struct slist *xfer_to_x(compiler_state_t *, struct arth *);
575 static struct slist *xfer_to_a(compiler_state_t *, struct arth *);
576 static struct block *gen_mac_multicast(compiler_state_t *, int);
577 static struct block *gen_len(compiler_state_t *, int, int);
578 static struct block *gen_check_802_11_data_frame(compiler_state_t *);
579 static struct block *gen_geneve_ll_check(compiler_state_t *cstate);
580 
581 static struct block *gen_ppi_dlt_check(compiler_state_t *);
582 static struct block *gen_atmfield_code_internal(compiler_state_t *, int,
583     bpf_u_int32, int, int);
584 static struct block *gen_atmtype_llc(compiler_state_t *);
585 static struct block *gen_msg_abbrev(compiler_state_t *, int type);
586 
587 static void
588 initchunks(compiler_state_t *cstate)
589 {
590 	int i;
591 
592 	for (i = 0; i < NCHUNKS; i++) {
593 		cstate->chunks[i].n_left = 0;
594 		cstate->chunks[i].m = NULL;
595 	}
596 	cstate->cur_chunk = 0;
597 }
598 
599 static void *
600 newchunk_nolongjmp(compiler_state_t *cstate, size_t n)
601 {
602 	struct chunk *cp;
603 	int k;
604 	size_t size;
605 
606 #ifndef __NetBSD__
607 	/* XXX Round up to nearest long. */
608 	n = (n + sizeof(long) - 1) & ~(sizeof(long) - 1);
609 #else
610 	/* XXX Round up to structure boundary. */
611 	n = ALIGN(n);
612 #endif
613 
614 	cp = &cstate->chunks[cstate->cur_chunk];
615 	if (n > cp->n_left) {
616 		++cp;
617 		k = ++cstate->cur_chunk;
618 		if (k >= NCHUNKS) {
619 			bpf_set_error(cstate, "out of memory");
620 			return (NULL);
621 		}
622 		size = CHUNK0SIZE << k;
623 		cp->m = (void *)malloc(size);
624 		if (cp->m == NULL) {
625 			bpf_set_error(cstate, "out of memory");
626 			return (NULL);
627 		}
628 		memset((char *)cp->m, 0, size);
629 		cp->n_left = size;
630 		if (n > size) {
631 			bpf_set_error(cstate, "out of memory");
632 			return (NULL);
633 		}
634 	}
635 	cp->n_left -= n;
636 	return (void *)((char *)cp->m + cp->n_left);
637 }
638 
639 static void *
640 newchunk(compiler_state_t *cstate, size_t n)
641 {
642 	void *p;
643 
644 	p = newchunk_nolongjmp(cstate, n);
645 	if (p == NULL) {
646 		longjmp(cstate->top_ctx, 1);
647 		/*NOTREACHED*/
648 	}
649 	return (p);
650 }
651 
652 static void
653 freechunks(compiler_state_t *cstate)
654 {
655 	int i;
656 
657 	for (i = 0; i < NCHUNKS; ++i)
658 		if (cstate->chunks[i].m != NULL)
659 			free(cstate->chunks[i].m);
660 }
661 
662 /*
663  * A strdup whose allocations are freed after code generation is over.
664  * This is used by the lexical analyzer, so it can't longjmp; it just
665  * returns NULL on an allocation error, and the callers must check
666  * for it.
667  */
668 char *
669 sdup(compiler_state_t *cstate, const char *s)
670 {
671 	size_t n = strlen(s) + 1;
672 	char *cp = newchunk_nolongjmp(cstate, n);
673 
674 	if (cp == NULL)
675 		return (NULL);
676 	pcapint_strlcpy(cp, s, n);
677 	return (cp);
678 }
679 
680 static inline struct block *
681 new_block(compiler_state_t *cstate, int code)
682 {
683 	struct block *p;
684 
685 	p = (struct block *)newchunk(cstate, sizeof(*p));
686 	p->s.code = code;
687 	p->head = p;
688 
689 	return p;
690 }
691 
692 static inline struct slist *
693 new_stmt(compiler_state_t *cstate, int code)
694 {
695 	struct slist *p;
696 
697 	p = (struct slist *)newchunk(cstate, sizeof(*p));
698 	p->s.code = code;
699 
700 	return p;
701 }
702 
703 static struct block *
704 gen_retblk(compiler_state_t *cstate, int v)
705 {
706 	struct block *b = new_block(cstate, BPF_RET|BPF_K);
707 
708 	b->s.k = v;
709 	return b;
710 }
711 
712 static inline PCAP_NORETURN_DEF void
713 syntax(compiler_state_t *cstate)
714 {
715 	bpf_error(cstate, "syntax error in filter expression");
716 }
717 
718 int
719 pcap_compile(pcap_t *p, struct bpf_program *program,
720 	     const char *buf, int optimize, bpf_u_int32 mask)
721 {
722 #ifdef _WIN32
723 	static int done = 0;
724 #endif
725 	compiler_state_t cstate;
726 	const char * volatile xbuf = buf;
727 	yyscan_t scanner = NULL;
728 	volatile YY_BUFFER_STATE in_buffer = NULL;
729 	u_int len;
730 	int rc;
731 
732 	/*
733 	 * If this pcap_t hasn't been activated, it doesn't have a
734 	 * link-layer type, so we can't use it.
735 	 */
736 	if (!p->activated) {
737 		(void)snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
738 		    "not-yet-activated pcap_t passed to pcap_compile");
739 		return (PCAP_ERROR);
740 	}
741 
742 #ifdef _WIN32
743 	if (!done) {
744 		pcap_wsockinit();
745 		done = 1;
746 	}
747 #endif
748 
749 #ifdef ENABLE_REMOTE
750 	/*
751 	 * If the device on which we're capturing need to be notified
752 	 * that a new filter is being compiled, do so.
753 	 *
754 	 * This allows them to save a copy of it, in case, for example,
755 	 * they're implementing a form of remote packet capture, and
756 	 * want the remote machine to filter out the packets in which
757 	 * it's sending the packets it's captured.
758 	 *
759 	 * XXX - the fact that we happen to be compiling a filter
760 	 * doesn't necessarily mean we'll be installing it as the
761 	 * filter for this pcap_t; we might be running it from userland
762 	 * on captured packets to do packet classification.  We really
763 	 * need a better way of handling this, but this is all that
764 	 * the WinPcap remote capture code did.
765 	 */
766 	if (p->save_current_filter_op != NULL)
767 		(p->save_current_filter_op)(p, buf);
768 #endif
769 
770 	initchunks(&cstate);
771 	cstate.no_optimize = 0;
772 #ifdef INET6
773 	cstate.ai = NULL;
774 #endif
775 	cstate.e = NULL;
776 	cstate.ic.root = NULL;
777 	cstate.ic.cur_mark = 0;
778 	cstate.bpf_pcap = p;
779 	cstate.error_set = 0;
780 	init_regs(&cstate);
781 
782 	cstate.netmask = mask;
783 
784 	cstate.snaplen = pcap_snapshot(p);
785 	if (cstate.snaplen == 0) {
786 		(void)snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
787 			 "snaplen of 0 rejects all packets");
788 		rc = PCAP_ERROR;
789 		goto quit;
790 	}
791 
792 	if (pcap_lex_init(&scanner) != 0) {
793 		pcapint_fmt_errmsg_for_errno(p->errbuf, PCAP_ERRBUF_SIZE,
794 		    errno, "can't initialize scanner");
795 		rc = PCAP_ERROR;
796 		goto quit;
797 	}
798 	in_buffer = pcap__scan_string(xbuf ? xbuf : "", scanner);
799 
800 	/*
801 	 * Associate the compiler state with the lexical analyzer
802 	 * state.
803 	 */
804 	pcap_set_extra(&cstate, scanner);
805 
806 	if (init_linktype(&cstate, p) == -1) {
807 		rc = PCAP_ERROR;
808 		goto quit;
809 	}
810 	if (pcap_parse(scanner, &cstate) != 0) {
811 #ifdef INET6
812 		if (cstate.ai != NULL)
813 			freeaddrinfo(cstate.ai);
814 #endif
815 		if (cstate.e != NULL)
816 			free(cstate.e);
817 		rc = PCAP_ERROR;
818 		goto quit;
819 	}
820 
821 	if (cstate.ic.root == NULL) {
822 		/*
823 		 * Catch errors reported by gen_retblk().
824 		 */
825 		if (setjmp(cstate.top_ctx)) {
826 			rc = PCAP_ERROR;
827 			goto quit;
828 		}
829 		cstate.ic.root = gen_retblk(&cstate, cstate.snaplen);
830 	}
831 
832 	if (optimize && !cstate.no_optimize) {
833 		if (bpf_optimize(&cstate.ic, p->errbuf) == -1) {
834 			/* Failure */
835 			rc = PCAP_ERROR;
836 			goto quit;
837 		}
838 		if (cstate.ic.root == NULL ||
839 		    (cstate.ic.root->s.code == (BPF_RET|BPF_K) && cstate.ic.root->s.k == 0)) {
840 			(void)snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
841 			    "expression rejects all packets");
842 			rc = PCAP_ERROR;
843 			goto quit;
844 		}
845 	}
846 	program->bf_insns = icode_to_fcode(&cstate.ic,
847 	    cstate.ic.root, &len, p->errbuf);
848 	if (program->bf_insns == NULL) {
849 		/* Failure */
850 		rc = PCAP_ERROR;
851 		goto quit;
852 	}
853 	program->bf_len = len;
854 
855 	rc = 0;  /* We're all okay */
856 
857 quit:
858 	/*
859 	 * Clean up everything for the lexical analyzer.
860 	 */
861 	if (in_buffer != NULL)
862 		pcap__delete_buffer(in_buffer, scanner);
863 	if (scanner != NULL)
864 		pcap_lex_destroy(scanner);
865 
866 	/*
867 	 * Clean up our own allocated memory.
868 	 */
869 	freechunks(&cstate);
870 
871 	return (rc);
872 }
873 
874 /*
875  * entry point for using the compiler with no pcap open
876  * pass in all the stuff that is needed explicitly instead.
877  */
878 int
879 pcap_compile_nopcap(int snaplen_arg, int linktype_arg,
880 		    struct bpf_program *program,
881 		    const char *buf, int optimize, bpf_u_int32 mask)
882 {
883 	pcap_t *p;
884 	int ret;
885 
886 	p = pcap_open_dead(linktype_arg, snaplen_arg);
887 	if (p == NULL)
888 		return (PCAP_ERROR);
889 	ret = pcap_compile(p, program, buf, optimize, mask);
890 	pcap_close(p);
891 	return (ret);
892 }
893 
894 /*
895  * Clean up a "struct bpf_program" by freeing all the memory allocated
896  * in it.
897  */
898 void
899 pcap_freecode(struct bpf_program *program)
900 {
901 	program->bf_len = 0;
902 	if (program->bf_insns != NULL) {
903 		free((char *)program->bf_insns);
904 		program->bf_insns = NULL;
905 	}
906 }
907 
908 /*
909  * Backpatch the blocks in 'list' to 'target'.  The 'sense' field indicates
910  * which of the jt and jf fields has been resolved and which is a pointer
911  * back to another unresolved block (or nil).  At least one of the fields
912  * in each block is already resolved.
913  */
914 static void
915 backpatch(struct block *list, struct block *target)
916 {
917 	struct block *next;
918 
919 	while (list) {
920 		if (!list->sense) {
921 			next = JT(list);
922 			JT(list) = target;
923 		} else {
924 			next = JF(list);
925 			JF(list) = target;
926 		}
927 		list = next;
928 	}
929 }
930 
931 /*
932  * Merge the lists in b0 and b1, using the 'sense' field to indicate
933  * which of jt and jf is the link.
934  */
935 static void
936 merge(struct block *b0, struct block *b1)
937 {
938 	register struct block **p = &b0;
939 
940 	/* Find end of list. */
941 	while (*p)
942 		p = !((*p)->sense) ? &JT(*p) : &JF(*p);
943 
944 	/* Concatenate the lists. */
945 	*p = b1;
946 }
947 
948 int
949 finish_parse(compiler_state_t *cstate, struct block *p)
950 {
951 	struct block *ppi_dlt_check;
952 
953 	/*
954 	 * Catch errors reported by us and routines below us, and return -1
955 	 * on an error.
956 	 */
957 	if (setjmp(cstate->top_ctx))
958 		return (-1);
959 
960 	/*
961 	 * Insert before the statements of the first (root) block any
962 	 * statements needed to load the lengths of any variable-length
963 	 * headers into registers.
964 	 *
965 	 * XXX - a fancier strategy would be to insert those before the
966 	 * statements of all blocks that use those lengths and that
967 	 * have no predecessors that use them, so that we only compute
968 	 * the lengths if we need them.  There might be even better
969 	 * approaches than that.
970 	 *
971 	 * However, those strategies would be more complicated, and
972 	 * as we don't generate code to compute a length if the
973 	 * program has no tests that use the length, and as most
974 	 * tests will probably use those lengths, we would just
975 	 * postpone computing the lengths so that it's not done
976 	 * for tests that fail early, and it's not clear that's
977 	 * worth the effort.
978 	 */
979 	insert_compute_vloffsets(cstate, p->head);
980 
981 	/*
982 	 * For DLT_PPI captures, generate a check of the per-packet
983 	 * DLT value to make sure it's DLT_IEEE802_11.
984 	 *
985 	 * XXX - TurboCap cards use DLT_PPI for Ethernet.
986 	 * Can we just define some DLT_ETHERNET_WITH_PHDR pseudo-header
987 	 * with appropriate Ethernet information and use that rather
988 	 * than using something such as DLT_PPI where you don't know
989 	 * the link-layer header type until runtime, which, in the
990 	 * general case, would force us to generate both Ethernet *and*
991 	 * 802.11 code (*and* anything else for which PPI is used)
992 	 * and choose between them early in the BPF program?
993 	 */
994 	ppi_dlt_check = gen_ppi_dlt_check(cstate);
995 	if (ppi_dlt_check != NULL)
996 		gen_and(ppi_dlt_check, p);
997 
998 	backpatch(p, gen_retblk(cstate, cstate->snaplen));
999 	p->sense = !p->sense;
1000 	backpatch(p, gen_retblk(cstate, 0));
1001 	cstate->ic.root = p->head;
1002 	return (0);
1003 }
1004 
1005 void
1006 gen_and(struct block *b0, struct block *b1)
1007 {
1008 	backpatch(b0, b1->head);
1009 	b0->sense = !b0->sense;
1010 	b1->sense = !b1->sense;
1011 	merge(b1, b0);
1012 	b1->sense = !b1->sense;
1013 	b1->head = b0->head;
1014 }
1015 
1016 void
1017 gen_or(struct block *b0, struct block *b1)
1018 {
1019 	b0->sense = !b0->sense;
1020 	backpatch(b0, b1->head);
1021 	b0->sense = !b0->sense;
1022 	merge(b1, b0);
1023 	b1->head = b0->head;
1024 }
1025 
1026 void
1027 gen_not(struct block *b)
1028 {
1029 	b->sense = !b->sense;
1030 }
1031 
1032 static struct block *
1033 gen_cmp(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1034     u_int size, bpf_u_int32 v)
1035 {
1036 	return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JEQ, 0, v);
1037 }
1038 
1039 static struct block *
1040 gen_cmp_gt(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1041     u_int size, bpf_u_int32 v)
1042 {
1043 	return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGT, 0, v);
1044 }
1045 
1046 static struct block *
1047 gen_cmp_ge(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1048     u_int size, bpf_u_int32 v)
1049 {
1050 	return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGE, 0, v);
1051 }
1052 
1053 static struct block *
1054 gen_cmp_lt(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1055     u_int size, bpf_u_int32 v)
1056 {
1057 	return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGE, 1, v);
1058 }
1059 
1060 static struct block *
1061 gen_cmp_le(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1062     u_int size, bpf_u_int32 v)
1063 {
1064 	return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGT, 1, v);
1065 }
1066 
1067 static struct block *
1068 gen_mcmp(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1069     u_int size, bpf_u_int32 v, bpf_u_int32 mask)
1070 {
1071 	return gen_ncmp(cstate, offrel, offset, size, mask, BPF_JEQ, 0, v);
1072 }
1073 
1074 static struct block *
1075 gen_bcmp(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1076     u_int size, const u_char *v)
1077 {
1078 	register struct block *b, *tmp;
1079 
1080 	b = NULL;
1081 	while (size >= 4) {
1082 		register const u_char *p = &v[size - 4];
1083 
1084 		tmp = gen_cmp(cstate, offrel, offset + size - 4, BPF_W,
1085 		    EXTRACT_BE_U_4(p));
1086 		if (b != NULL)
1087 			gen_and(b, tmp);
1088 		b = tmp;
1089 		size -= 4;
1090 	}
1091 	while (size >= 2) {
1092 		register const u_char *p = &v[size - 2];
1093 
1094 		tmp = gen_cmp(cstate, offrel, offset + size - 2, BPF_H,
1095 		    EXTRACT_BE_U_2(p));
1096 		if (b != NULL)
1097 			gen_and(b, tmp);
1098 		b = tmp;
1099 		size -= 2;
1100 	}
1101 	if (size > 0) {
1102 		tmp = gen_cmp(cstate, offrel, offset, BPF_B, v[0]);
1103 		if (b != NULL)
1104 			gen_and(b, tmp);
1105 		b = tmp;
1106 	}
1107 	return b;
1108 }
1109 
1110 /*
1111  * AND the field of size "size" at offset "offset" relative to the header
1112  * specified by "offrel" with "mask", and compare it with the value "v"
1113  * with the test specified by "jtype"; if "reverse" is true, the test
1114  * should test the opposite of "jtype".
1115  */
1116 static struct block *
1117 gen_ncmp(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1118     u_int size, bpf_u_int32 mask, int jtype, int reverse,
1119     bpf_u_int32 v)
1120 {
1121 	struct slist *s, *s2;
1122 	struct block *b;
1123 
1124 	s = gen_load_a(cstate, offrel, offset, size);
1125 
1126 	if (mask != 0xffffffff) {
1127 		s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
1128 		s2->s.k = mask;
1129 		sappend(s, s2);
1130 	}
1131 
1132 	b = new_block(cstate, JMP(jtype));
1133 	b->stmts = s;
1134 	b->s.k = v;
1135 	if (reverse && (jtype == BPF_JGT || jtype == BPF_JGE))
1136 		gen_not(b);
1137 	return b;
1138 }
1139 
1140 static int
1141 init_linktype(compiler_state_t *cstate, pcap_t *p)
1142 {
1143 	cstate->pcap_fddipad = p->fddipad;
1144 
1145 	/*
1146 	 * We start out with only one link-layer header.
1147 	 */
1148 	cstate->outermostlinktype = pcap_datalink(p);
1149 	cstate->off_outermostlinkhdr.constant_part = 0;
1150 	cstate->off_outermostlinkhdr.is_variable = 0;
1151 	cstate->off_outermostlinkhdr.reg = -1;
1152 
1153 	cstate->prevlinktype = cstate->outermostlinktype;
1154 	cstate->off_prevlinkhdr.constant_part = 0;
1155 	cstate->off_prevlinkhdr.is_variable = 0;
1156 	cstate->off_prevlinkhdr.reg = -1;
1157 
1158 	cstate->linktype = cstate->outermostlinktype;
1159 	cstate->off_linkhdr.constant_part = 0;
1160 	cstate->off_linkhdr.is_variable = 0;
1161 	cstate->off_linkhdr.reg = -1;
1162 
1163 	/*
1164 	 * XXX
1165 	 */
1166 	cstate->off_linkpl.constant_part = 0;
1167 	cstate->off_linkpl.is_variable = 0;
1168 	cstate->off_linkpl.reg = -1;
1169 
1170 	cstate->off_linktype.constant_part = 0;
1171 	cstate->off_linktype.is_variable = 0;
1172 	cstate->off_linktype.reg = -1;
1173 
1174 	/*
1175 	 * Assume it's not raw ATM with a pseudo-header, for now.
1176 	 */
1177 	cstate->is_atm = 0;
1178 	cstate->off_vpi = OFFSET_NOT_SET;
1179 	cstate->off_vci = OFFSET_NOT_SET;
1180 	cstate->off_proto = OFFSET_NOT_SET;
1181 	cstate->off_payload = OFFSET_NOT_SET;
1182 
1183 	/*
1184 	 * And not Geneve.
1185 	 */
1186 	cstate->is_geneve = 0;
1187 
1188 	/*
1189 	 * No variable length VLAN offset by default
1190 	 */
1191 	cstate->is_vlan_vloffset = 0;
1192 
1193 	/*
1194 	 * And assume we're not doing SS7.
1195 	 */
1196 	cstate->off_li = OFFSET_NOT_SET;
1197 	cstate->off_li_hsl = OFFSET_NOT_SET;
1198 	cstate->off_sio = OFFSET_NOT_SET;
1199 	cstate->off_opc = OFFSET_NOT_SET;
1200 	cstate->off_dpc = OFFSET_NOT_SET;
1201 	cstate->off_sls = OFFSET_NOT_SET;
1202 
1203 	cstate->label_stack_depth = 0;
1204 	cstate->vlan_stack_depth = 0;
1205 
1206 	switch (cstate->linktype) {
1207 
1208 	case DLT_ARCNET:
1209 		cstate->off_linktype.constant_part = 2;
1210 		cstate->off_linkpl.constant_part = 6;
1211 		cstate->off_nl = 0;		/* XXX in reality, variable! */
1212 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1213 		break;
1214 
1215 	case DLT_ARCNET_LINUX:
1216 		cstate->off_linktype.constant_part = 4;
1217 		cstate->off_linkpl.constant_part = 8;
1218 		cstate->off_nl = 0;		/* XXX in reality, variable! */
1219 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1220 		break;
1221 
1222 	case DLT_EN10MB:
1223 		cstate->off_linktype.constant_part = 12;
1224 		cstate->off_linkpl.constant_part = 14;	/* Ethernet header length */
1225 		cstate->off_nl = 0;		/* Ethernet II */
1226 		cstate->off_nl_nosnap = 3;	/* 802.3+802.2 */
1227 		break;
1228 
1229 	case DLT_SLIP:
1230 		/*
1231 		 * SLIP doesn't have a link level type.  The 16 byte
1232 		 * header is hacked into our SLIP driver.
1233 		 */
1234 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1235 		cstate->off_linkpl.constant_part = 16;
1236 		cstate->off_nl = 0;
1237 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1238 		break;
1239 
1240 	case DLT_SLIP_BSDOS:
1241 		/* XXX this may be the same as the DLT_PPP_BSDOS case */
1242 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1243 		/* XXX end */
1244 		cstate->off_linkpl.constant_part = 24;
1245 		cstate->off_nl = 0;
1246 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1247 		break;
1248 
1249 	case DLT_NULL:
1250 	case DLT_LOOP:
1251 		cstate->off_linktype.constant_part = 0;
1252 		cstate->off_linkpl.constant_part = 4;
1253 		cstate->off_nl = 0;
1254 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1255 		break;
1256 
1257 	case DLT_ENC:
1258 		cstate->off_linktype.constant_part = 0;
1259 		cstate->off_linkpl.constant_part = 12;
1260 		cstate->off_nl = 0;
1261 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1262 		break;
1263 
1264 	case DLT_PPP:
1265 	case DLT_PPP_PPPD:
1266 	case DLT_C_HDLC:		/* BSD/OS Cisco HDLC */
1267 	case DLT_HDLC:			/* NetBSD (Cisco) HDLC */
1268 	case DLT_PPP_SERIAL:		/* NetBSD sync/async serial PPP */
1269 		cstate->off_linktype.constant_part = 2;	/* skip HDLC-like framing */
1270 		cstate->off_linkpl.constant_part = 4;	/* skip HDLC-like framing and protocol field */
1271 		cstate->off_nl = 0;
1272 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1273 		break;
1274 
1275 	case DLT_PPP_ETHER:
1276 		/*
1277 		 * This does no include the Ethernet header, and
1278 		 * only covers session state.
1279 		 */
1280 		cstate->off_linktype.constant_part = 6;
1281 		cstate->off_linkpl.constant_part = 8;
1282 		cstate->off_nl = 0;
1283 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1284 		break;
1285 
1286 	case DLT_PPP_BSDOS:
1287 		cstate->off_linktype.constant_part = 5;
1288 		cstate->off_linkpl.constant_part = 24;
1289 		cstate->off_nl = 0;
1290 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1291 		break;
1292 
1293 	case DLT_FDDI:
1294 		/*
1295 		 * FDDI doesn't really have a link-level type field.
1296 		 * We set "off_linktype" to the offset of the LLC header.
1297 		 *
1298 		 * To check for Ethernet types, we assume that SSAP = SNAP
1299 		 * is being used and pick out the encapsulated Ethernet type.
1300 		 * XXX - should we generate code to check for SNAP?
1301 		 */
1302 		cstate->off_linktype.constant_part = 13;
1303 		cstate->off_linktype.constant_part += cstate->pcap_fddipad;
1304 		cstate->off_linkpl.constant_part = 13;	/* FDDI MAC header length */
1305 		cstate->off_linkpl.constant_part += cstate->pcap_fddipad;
1306 		cstate->off_nl = 8;		/* 802.2+SNAP */
1307 		cstate->off_nl_nosnap = 3;	/* 802.2 */
1308 		break;
1309 
1310 	case DLT_IEEE802:
1311 		/*
1312 		 * Token Ring doesn't really have a link-level type field.
1313 		 * We set "off_linktype" to the offset of the LLC header.
1314 		 *
1315 		 * To check for Ethernet types, we assume that SSAP = SNAP
1316 		 * is being used and pick out the encapsulated Ethernet type.
1317 		 * XXX - should we generate code to check for SNAP?
1318 		 *
1319 		 * XXX - the header is actually variable-length.
1320 		 * Some various Linux patched versions gave 38
1321 		 * as "off_linktype" and 40 as "off_nl"; however,
1322 		 * if a token ring packet has *no* routing
1323 		 * information, i.e. is not source-routed, the correct
1324 		 * values are 20 and 22, as they are in the vanilla code.
1325 		 *
1326 		 * A packet is source-routed iff the uppermost bit
1327 		 * of the first byte of the source address, at an
1328 		 * offset of 8, has the uppermost bit set.  If the
1329 		 * packet is source-routed, the total number of bytes
1330 		 * of routing information is 2 plus bits 0x1F00 of
1331 		 * the 16-bit value at an offset of 14 (shifted right
1332 		 * 8 - figure out which byte that is).
1333 		 */
1334 		cstate->off_linktype.constant_part = 14;
1335 		cstate->off_linkpl.constant_part = 14;	/* Token Ring MAC header length */
1336 		cstate->off_nl = 8;		/* 802.2+SNAP */
1337 		cstate->off_nl_nosnap = 3;	/* 802.2 */
1338 		break;
1339 
1340 	case DLT_PRISM_HEADER:
1341 	case DLT_IEEE802_11_RADIO_AVS:
1342 	case DLT_IEEE802_11_RADIO:
1343 		cstate->off_linkhdr.is_variable = 1;
1344 		/* Fall through, 802.11 doesn't have a variable link
1345 		 * prefix but is otherwise the same. */
1346 		/* FALLTHROUGH */
1347 
1348 	case DLT_IEEE802_11:
1349 		/*
1350 		 * 802.11 doesn't really have a link-level type field.
1351 		 * We set "off_linktype.constant_part" to the offset of
1352 		 * the LLC header.
1353 		 *
1354 		 * To check for Ethernet types, we assume that SSAP = SNAP
1355 		 * is being used and pick out the encapsulated Ethernet type.
1356 		 * XXX - should we generate code to check for SNAP?
1357 		 *
1358 		 * We also handle variable-length radio headers here.
1359 		 * The Prism header is in theory variable-length, but in
1360 		 * practice it's always 144 bytes long.  However, some
1361 		 * drivers on Linux use ARPHRD_IEEE80211_PRISM, but
1362 		 * sometimes or always supply an AVS header, so we
1363 		 * have to check whether the radio header is a Prism
1364 		 * header or an AVS header, so, in practice, it's
1365 		 * variable-length.
1366 		 */
1367 		cstate->off_linktype.constant_part = 24;
1368 		cstate->off_linkpl.constant_part = 0;	/* link-layer header is variable-length */
1369 		cstate->off_linkpl.is_variable = 1;
1370 		cstate->off_nl = 8;		/* 802.2+SNAP */
1371 		cstate->off_nl_nosnap = 3;	/* 802.2 */
1372 		break;
1373 
1374 	case DLT_PPI:
1375 		/*
1376 		 * At the moment we treat PPI the same way that we treat
1377 		 * normal Radiotap encoded packets. The difference is in
1378 		 * the function that generates the code at the beginning
1379 		 * to compute the header length.  Since this code generator
1380 		 * of PPI supports bare 802.11 encapsulation only (i.e.
1381 		 * the encapsulated DLT should be DLT_IEEE802_11) we
1382 		 * generate code to check for this too.
1383 		 */
1384 		cstate->off_linktype.constant_part = 24;
1385 		cstate->off_linkpl.constant_part = 0;	/* link-layer header is variable-length */
1386 		cstate->off_linkpl.is_variable = 1;
1387 		cstate->off_linkhdr.is_variable = 1;
1388 		cstate->off_nl = 8;		/* 802.2+SNAP */
1389 		cstate->off_nl_nosnap = 3;	/* 802.2 */
1390 		break;
1391 
1392 	case DLT_ATM_RFC1483:
1393 	case DLT_ATM_CLIP:	/* Linux ATM defines this */
1394 		/*
1395 		 * assume routed, non-ISO PDUs
1396 		 * (i.e., LLC = 0xAA-AA-03, OUT = 0x00-00-00)
1397 		 *
1398 		 * XXX - what about ISO PDUs, e.g. CLNP, ISIS, ESIS,
1399 		 * or PPP with the PPP NLPID (e.g., PPPoA)?  The
1400 		 * latter would presumably be treated the way PPPoE
1401 		 * should be, so you can do "pppoe and udp port 2049"
1402 		 * or "pppoa and tcp port 80" and have it check for
1403 		 * PPPo{A,E} and a PPP protocol of IP and....
1404 		 */
1405 		cstate->off_linktype.constant_part = 0;
1406 		cstate->off_linkpl.constant_part = 0;	/* packet begins with LLC header */
1407 		cstate->off_nl = 8;		/* 802.2+SNAP */
1408 		cstate->off_nl_nosnap = 3;	/* 802.2 */
1409 		break;
1410 
1411 	case DLT_SUNATM:
1412 		/*
1413 		 * Full Frontal ATM; you get AALn PDUs with an ATM
1414 		 * pseudo-header.
1415 		 */
1416 		cstate->is_atm = 1;
1417 		cstate->off_vpi = SUNATM_VPI_POS;
1418 		cstate->off_vci = SUNATM_VCI_POS;
1419 		cstate->off_proto = PROTO_POS;
1420 		cstate->off_payload = SUNATM_PKT_BEGIN_POS;
1421 		cstate->off_linktype.constant_part = cstate->off_payload;
1422 		cstate->off_linkpl.constant_part = cstate->off_payload;	/* if LLC-encapsulated */
1423 		cstate->off_nl = 8;		/* 802.2+SNAP */
1424 		cstate->off_nl_nosnap = 3;	/* 802.2 */
1425 		break;
1426 
1427 	case DLT_RAW:
1428 	case DLT_IPV4:
1429 	case DLT_IPV6:
1430 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1431 		cstate->off_linkpl.constant_part = 0;
1432 		cstate->off_nl = 0;
1433 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1434 		break;
1435 
1436 	case DLT_LINUX_SLL:	/* fake header for Linux cooked socket v1 */
1437 		cstate->off_linktype.constant_part = 14;
1438 		cstate->off_linkpl.constant_part = 16;
1439 		cstate->off_nl = 0;
1440 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1441 		break;
1442 
1443 	case DLT_LINUX_SLL2:	/* fake header for Linux cooked socket v2 */
1444 		cstate->off_linktype.constant_part = 0;
1445 		cstate->off_linkpl.constant_part = 20;
1446 		cstate->off_nl = 0;
1447 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1448 		break;
1449 
1450 	case DLT_LTALK:
1451 		/*
1452 		 * LocalTalk does have a 1-byte type field in the LLAP header,
1453 		 * but really it just indicates whether there is a "short" or
1454 		 * "long" DDP packet following.
1455 		 */
1456 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1457 		cstate->off_linkpl.constant_part = 0;
1458 		cstate->off_nl = 0;
1459 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1460 		break;
1461 
1462 	case DLT_IP_OVER_FC:
1463 		/*
1464 		 * RFC 2625 IP-over-Fibre-Channel doesn't really have a
1465 		 * link-level type field.  We set "off_linktype" to the
1466 		 * offset of the LLC header.
1467 		 *
1468 		 * To check for Ethernet types, we assume that SSAP = SNAP
1469 		 * is being used and pick out the encapsulated Ethernet type.
1470 		 * XXX - should we generate code to check for SNAP? RFC
1471 		 * 2625 says SNAP should be used.
1472 		 */
1473 		cstate->off_linktype.constant_part = 16;
1474 		cstate->off_linkpl.constant_part = 16;
1475 		cstate->off_nl = 8;		/* 802.2+SNAP */
1476 		cstate->off_nl_nosnap = 3;	/* 802.2 */
1477 		break;
1478 
1479 	case DLT_FRELAY:
1480 		/*
1481 		 * XXX - we should set this to handle SNAP-encapsulated
1482 		 * frames (NLPID of 0x80).
1483 		 */
1484 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1485 		cstate->off_linkpl.constant_part = 0;
1486 		cstate->off_nl = 0;
1487 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1488 		break;
1489 
1490                 /*
1491                  * the only BPF-interesting FRF.16 frames are non-control frames;
1492                  * Frame Relay has a variable length link-layer
1493                  * so lets start with offset 4 for now and increments later on (FIXME);
1494                  */
1495 	case DLT_MFR:
1496 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1497 		cstate->off_linkpl.constant_part = 0;
1498 		cstate->off_nl = 4;
1499 		cstate->off_nl_nosnap = 0;	/* XXX - for now -> no 802.2 LLC */
1500 		break;
1501 
1502 	case DLT_APPLE_IP_OVER_IEEE1394:
1503 		cstate->off_linktype.constant_part = 16;
1504 		cstate->off_linkpl.constant_part = 18;
1505 		cstate->off_nl = 0;
1506 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1507 		break;
1508 
1509 	case DLT_SYMANTEC_FIREWALL:
1510 		cstate->off_linktype.constant_part = 6;
1511 		cstate->off_linkpl.constant_part = 44;
1512 		cstate->off_nl = 0;		/* Ethernet II */
1513 		cstate->off_nl_nosnap = 0;	/* XXX - what does it do with 802.3 packets? */
1514 		break;
1515 
1516 	case DLT_PFLOG:
1517 		cstate->off_linktype.constant_part = 0;
1518 		cstate->off_linkpl.constant_part = 0;	/* link-layer header is variable-length */
1519 		cstate->off_linkpl.is_variable = 1;
1520 		cstate->off_nl = 0;
1521 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1522 		break;
1523 
1524         case DLT_JUNIPER_MFR:
1525         case DLT_JUNIPER_MLFR:
1526         case DLT_JUNIPER_MLPPP:
1527         case DLT_JUNIPER_PPP:
1528         case DLT_JUNIPER_CHDLC:
1529         case DLT_JUNIPER_FRELAY:
1530 		cstate->off_linktype.constant_part = 4;
1531 		cstate->off_linkpl.constant_part = 4;
1532 		cstate->off_nl = 0;
1533 		cstate->off_nl_nosnap = OFFSET_NOT_SET;	/* no 802.2 LLC */
1534                 break;
1535 
1536 	case DLT_JUNIPER_ATM1:
1537 		cstate->off_linktype.constant_part = 4;		/* in reality variable between 4-8 */
1538 		cstate->off_linkpl.constant_part = 4;	/* in reality variable between 4-8 */
1539 		cstate->off_nl = 0;
1540 		cstate->off_nl_nosnap = 10;
1541 		break;
1542 
1543 	case DLT_JUNIPER_ATM2:
1544 		cstate->off_linktype.constant_part = 8;		/* in reality variable between 8-12 */
1545 		cstate->off_linkpl.constant_part = 8;	/* in reality variable between 8-12 */
1546 		cstate->off_nl = 0;
1547 		cstate->off_nl_nosnap = 10;
1548 		break;
1549 
1550 		/* frames captured on a Juniper PPPoE service PIC
1551 		 * contain raw ethernet frames */
1552 	case DLT_JUNIPER_PPPOE:
1553         case DLT_JUNIPER_ETHER:
1554 		cstate->off_linkpl.constant_part = 14;
1555 		cstate->off_linktype.constant_part = 16;
1556 		cstate->off_nl = 18;		/* Ethernet II */
1557 		cstate->off_nl_nosnap = 21;	/* 802.3+802.2 */
1558 		break;
1559 
1560 	case DLT_JUNIPER_PPPOE_ATM:
1561 		cstate->off_linktype.constant_part = 4;
1562 		cstate->off_linkpl.constant_part = 6;
1563 		cstate->off_nl = 0;
1564 		cstate->off_nl_nosnap = OFFSET_NOT_SET;	/* no 802.2 LLC */
1565 		break;
1566 
1567 	case DLT_JUNIPER_GGSN:
1568 		cstate->off_linktype.constant_part = 6;
1569 		cstate->off_linkpl.constant_part = 12;
1570 		cstate->off_nl = 0;
1571 		cstate->off_nl_nosnap = OFFSET_NOT_SET;	/* no 802.2 LLC */
1572 		break;
1573 
1574 	case DLT_JUNIPER_ES:
1575 		cstate->off_linktype.constant_part = 6;
1576 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;	/* not really a network layer but raw IP addresses */
1577 		cstate->off_nl = OFFSET_NOT_SET;	/* not really a network layer but raw IP addresses */
1578 		cstate->off_nl_nosnap = OFFSET_NOT_SET;	/* no 802.2 LLC */
1579 		break;
1580 
1581 	case DLT_JUNIPER_MONITOR:
1582 		cstate->off_linktype.constant_part = 12;
1583 		cstate->off_linkpl.constant_part = 12;
1584 		cstate->off_nl = 0;			/* raw IP/IP6 header */
1585 		cstate->off_nl_nosnap = OFFSET_NOT_SET;	/* no 802.2 LLC */
1586 		break;
1587 
1588 	case DLT_BACNET_MS_TP:
1589 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1590 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1591 		cstate->off_nl = OFFSET_NOT_SET;
1592 		cstate->off_nl_nosnap = OFFSET_NOT_SET;
1593 		break;
1594 
1595 	case DLT_JUNIPER_SERVICES:
1596 		cstate->off_linktype.constant_part = 12;
1597 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;	/* L3 proto location dep. on cookie type */
1598 		cstate->off_nl = OFFSET_NOT_SET;	/* L3 proto location dep. on cookie type */
1599 		cstate->off_nl_nosnap = OFFSET_NOT_SET;	/* no 802.2 LLC */
1600 		break;
1601 
1602 	case DLT_JUNIPER_VP:
1603 		cstate->off_linktype.constant_part = 18;
1604 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1605 		cstate->off_nl = OFFSET_NOT_SET;
1606 		cstate->off_nl_nosnap = OFFSET_NOT_SET;
1607 		break;
1608 
1609 	case DLT_JUNIPER_ST:
1610 		cstate->off_linktype.constant_part = 18;
1611 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1612 		cstate->off_nl = OFFSET_NOT_SET;
1613 		cstate->off_nl_nosnap = OFFSET_NOT_SET;
1614 		break;
1615 
1616 	case DLT_JUNIPER_ISM:
1617 		cstate->off_linktype.constant_part = 8;
1618 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1619 		cstate->off_nl = OFFSET_NOT_SET;
1620 		cstate->off_nl_nosnap = OFFSET_NOT_SET;
1621 		break;
1622 
1623 	case DLT_JUNIPER_VS:
1624 	case DLT_JUNIPER_SRX_E2E:
1625 	case DLT_JUNIPER_FIBRECHANNEL:
1626 	case DLT_JUNIPER_ATM_CEMIC:
1627 		cstate->off_linktype.constant_part = 8;
1628 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1629 		cstate->off_nl = OFFSET_NOT_SET;
1630 		cstate->off_nl_nosnap = OFFSET_NOT_SET;
1631 		break;
1632 
1633 	case DLT_MTP2:
1634 		cstate->off_li = 2;
1635 		cstate->off_li_hsl = 4;
1636 		cstate->off_sio = 3;
1637 		cstate->off_opc = 4;
1638 		cstate->off_dpc = 4;
1639 		cstate->off_sls = 7;
1640 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1641 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1642 		cstate->off_nl = OFFSET_NOT_SET;
1643 		cstate->off_nl_nosnap = OFFSET_NOT_SET;
1644 		break;
1645 
1646 	case DLT_MTP2_WITH_PHDR:
1647 		cstate->off_li = 6;
1648 		cstate->off_li_hsl = 8;
1649 		cstate->off_sio = 7;
1650 		cstate->off_opc = 8;
1651 		cstate->off_dpc = 8;
1652 		cstate->off_sls = 11;
1653 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1654 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1655 		cstate->off_nl = OFFSET_NOT_SET;
1656 		cstate->off_nl_nosnap = OFFSET_NOT_SET;
1657 		break;
1658 
1659 	case DLT_ERF:
1660 		cstate->off_li = 22;
1661 		cstate->off_li_hsl = 24;
1662 		cstate->off_sio = 23;
1663 		cstate->off_opc = 24;
1664 		cstate->off_dpc = 24;
1665 		cstate->off_sls = 27;
1666 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1667 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1668 		cstate->off_nl = OFFSET_NOT_SET;
1669 		cstate->off_nl_nosnap = OFFSET_NOT_SET;
1670 		break;
1671 
1672 	case DLT_PFSYNC:
1673 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1674 		cstate->off_linkpl.constant_part = 4;
1675 		cstate->off_nl = 0;
1676 		cstate->off_nl_nosnap = 0;
1677 		break;
1678 
1679 	case DLT_AX25_KISS:
1680 		/*
1681 		 * Currently, only raw "link[N:M]" filtering is supported.
1682 		 */
1683 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;	/* variable, min 15, max 71 steps of 7 */
1684 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1685 		cstate->off_nl = OFFSET_NOT_SET;	/* variable, min 16, max 71 steps of 7 */
1686 		cstate->off_nl_nosnap = OFFSET_NOT_SET;	/* no 802.2 LLC */
1687 		break;
1688 
1689 	case DLT_IPNET:
1690 		cstate->off_linktype.constant_part = 1;
1691 		cstate->off_linkpl.constant_part = 24;	/* ipnet header length */
1692 		cstate->off_nl = 0;
1693 		cstate->off_nl_nosnap = OFFSET_NOT_SET;
1694 		break;
1695 
1696 	case DLT_NETANALYZER:
1697 		cstate->off_linkhdr.constant_part = 4;	/* Ethernet header is past 4-byte pseudo-header */
1698 		cstate->off_linktype.constant_part = cstate->off_linkhdr.constant_part + 12;
1699 		cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 14;	/* pseudo-header+Ethernet header length */
1700 		cstate->off_nl = 0;		/* Ethernet II */
1701 		cstate->off_nl_nosnap = 3;	/* 802.3+802.2 */
1702 		break;
1703 
1704 	case DLT_NETANALYZER_TRANSPARENT:
1705 		cstate->off_linkhdr.constant_part = 12;	/* MAC header is past 4-byte pseudo-header, preamble, and SFD */
1706 		cstate->off_linktype.constant_part = cstate->off_linkhdr.constant_part + 12;
1707 		cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 14;	/* pseudo-header+preamble+SFD+Ethernet header length */
1708 		cstate->off_nl = 0;		/* Ethernet II */
1709 		cstate->off_nl_nosnap = 3;	/* 802.3+802.2 */
1710 		break;
1711 
1712 	default:
1713 		/*
1714 		 * For values in the range in which we've assigned new
1715 		 * DLT_ values, only raw "link[N:M]" filtering is supported.
1716 		 */
1717 		if (cstate->linktype >= DLT_HIGH_MATCHING_MIN &&
1718 		    cstate->linktype <= DLT_HIGH_MATCHING_MAX) {
1719 			cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1720 			cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1721 			cstate->off_nl = OFFSET_NOT_SET;
1722 			cstate->off_nl_nosnap = OFFSET_NOT_SET;
1723 		} else {
1724 			bpf_set_error(cstate, "unknown data link type %d (min %d, max %d)",
1725 			    cstate->linktype, DLT_HIGH_MATCHING_MIN, DLT_HIGH_MATCHING_MAX);
1726 			return (-1);
1727 		}
1728 		break;
1729 	}
1730 
1731 	cstate->off_outermostlinkhdr = cstate->off_prevlinkhdr = cstate->off_linkhdr;
1732 	return (0);
1733 }
1734 
1735 /*
1736  * Load a value relative to the specified absolute offset.
1737  */
1738 static struct slist *
1739 gen_load_absoffsetrel(compiler_state_t *cstate, bpf_abs_offset *abs_offset,
1740     u_int offset, u_int size)
1741 {
1742 	struct slist *s, *s2;
1743 
1744 	s = gen_abs_offset_varpart(cstate, abs_offset);
1745 
1746 	/*
1747 	 * If "s" is non-null, it has code to arrange that the X register
1748 	 * contains the variable part of the absolute offset, so we
1749 	 * generate a load relative to that, with an offset of
1750 	 * abs_offset->constant_part + offset.
1751 	 *
1752 	 * Otherwise, we can do an absolute load with an offset of
1753 	 * abs_offset->constant_part + offset.
1754 	 */
1755 	if (s != NULL) {
1756 		/*
1757 		 * "s" points to a list of statements that puts the
1758 		 * variable part of the absolute offset into the X register.
1759 		 * Do an indirect load, to use the X register as an offset.
1760 		 */
1761 		s2 = new_stmt(cstate, BPF_LD|BPF_IND|size);
1762 		s2->s.k = abs_offset->constant_part + offset;
1763 		sappend(s, s2);
1764 	} else {
1765 		/*
1766 		 * There is no variable part of the absolute offset, so
1767 		 * just do an absolute load.
1768 		 */
1769 		s = new_stmt(cstate, BPF_LD|BPF_ABS|size);
1770 		s->s.k = abs_offset->constant_part + offset;
1771 	}
1772 	return s;
1773 }
1774 
1775 /*
1776  * Load a value relative to the beginning of the specified header.
1777  */
1778 static struct slist *
1779 gen_load_a(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1780     u_int size)
1781 {
1782 	struct slist *s, *s2;
1783 
1784 	/*
1785 	 * Squelch warnings from compilers that *don't* assume that
1786 	 * offrel always has a valid enum value and therefore don't
1787 	 * assume that we'll always go through one of the case arms.
1788 	 *
1789 	 * If we have a default case, compilers that *do* assume that
1790 	 * will then complain about the default case code being
1791 	 * unreachable.
1792 	 *
1793 	 * Damned if you do, damned if you don't.
1794 	 */
1795 	s = NULL;
1796 
1797 	switch (offrel) {
1798 
1799 	case OR_PACKET:
1800                 s = new_stmt(cstate, BPF_LD|BPF_ABS|size);
1801                 s->s.k = offset;
1802 		break;
1803 
1804 	case OR_LINKHDR:
1805 		s = gen_load_absoffsetrel(cstate, &cstate->off_linkhdr, offset, size);
1806 		break;
1807 
1808 	case OR_PREVLINKHDR:
1809 		s = gen_load_absoffsetrel(cstate, &cstate->off_prevlinkhdr, offset, size);
1810 		break;
1811 
1812 	case OR_LLC:
1813 		s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, offset, size);
1814 		break;
1815 
1816 	case OR_PREVMPLSHDR:
1817 		s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl - 4 + offset, size);
1818 		break;
1819 
1820 	case OR_LINKPL:
1821 		s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl + offset, size);
1822 		break;
1823 
1824 	case OR_LINKPL_NOSNAP:
1825 		s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl_nosnap + offset, size);
1826 		break;
1827 
1828 	case OR_LINKTYPE:
1829 		s = gen_load_absoffsetrel(cstate, &cstate->off_linktype, offset, size);
1830 		break;
1831 
1832 	case OR_TRAN_IPV4:
1833 		/*
1834 		 * Load the X register with the length of the IPv4 header
1835 		 * (plus the offset of the link-layer header, if it's
1836 		 * preceded by a variable-length header such as a radio
1837 		 * header), in bytes.
1838 		 */
1839 		s = gen_loadx_iphdrlen(cstate);
1840 
1841 		/*
1842 		 * Load the item at {offset of the link-layer payload} +
1843 		 * {offset, relative to the start of the link-layer
1844 		 * payload, of the IPv4 header} + {length of the IPv4 header} +
1845 		 * {specified offset}.
1846 		 *
1847 		 * If the offset of the link-layer payload is variable,
1848 		 * the variable part of that offset is included in the
1849 		 * value in the X register, and we include the constant
1850 		 * part in the offset of the load.
1851 		 */
1852 		s2 = new_stmt(cstate, BPF_LD|BPF_IND|size);
1853 		s2->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + offset;
1854 		sappend(s, s2);
1855 		break;
1856 
1857 	case OR_TRAN_IPV6:
1858 		s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl + 40 + offset, size);
1859 		break;
1860 	}
1861 	return s;
1862 }
1863 
1864 /*
1865  * Generate code to load into the X register the sum of the length of
1866  * the IPv4 header and the variable part of the offset of the link-layer
1867  * payload.
1868  */
1869 static struct slist *
1870 gen_loadx_iphdrlen(compiler_state_t *cstate)
1871 {
1872 	struct slist *s, *s2;
1873 
1874 	s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl);
1875 	if (s != NULL) {
1876 		/*
1877 		 * The offset of the link-layer payload has a variable
1878 		 * part.  "s" points to a list of statements that put
1879 		 * the variable part of that offset into the X register.
1880 		 *
1881 		 * The 4*([k]&0xf) addressing mode can't be used, as we
1882 		 * don't have a constant offset, so we have to load the
1883 		 * value in question into the A register and add to it
1884 		 * the value from the X register.
1885 		 */
1886 		s2 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
1887 		s2->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
1888 		sappend(s, s2);
1889 		s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
1890 		s2->s.k = 0xf;
1891 		sappend(s, s2);
1892 		s2 = new_stmt(cstate, BPF_ALU|BPF_LSH|BPF_K);
1893 		s2->s.k = 2;
1894 		sappend(s, s2);
1895 
1896 		/*
1897 		 * The A register now contains the length of the IP header.
1898 		 * We need to add to it the variable part of the offset of
1899 		 * the link-layer payload, which is still in the X
1900 		 * register, and move the result into the X register.
1901 		 */
1902 		sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
1903 		sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
1904 	} else {
1905 		/*
1906 		 * The offset of the link-layer payload is a constant,
1907 		 * so no code was generated to load the (nonexistent)
1908 		 * variable part of that offset.
1909 		 *
1910 		 * This means we can use the 4*([k]&0xf) addressing
1911 		 * mode.  Load the length of the IPv4 header, which
1912 		 * is at an offset of cstate->off_nl from the beginning of
1913 		 * the link-layer payload, and thus at an offset of
1914 		 * cstate->off_linkpl.constant_part + cstate->off_nl from the beginning
1915 		 * of the raw packet data, using that addressing mode.
1916 		 */
1917 		s = new_stmt(cstate, BPF_LDX|BPF_MSH|BPF_B);
1918 		s->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
1919 	}
1920 	return s;
1921 }
1922 
1923 
1924 static struct block *
1925 gen_uncond(compiler_state_t *cstate, int rsense)
1926 {
1927 	struct block *b;
1928 	struct slist *s;
1929 
1930 	s = new_stmt(cstate, BPF_LD|BPF_IMM);
1931 	s->s.k = !rsense;
1932 	b = new_block(cstate, JMP(BPF_JEQ));
1933 	b->stmts = s;
1934 
1935 	return b;
1936 }
1937 
1938 static inline struct block *
1939 gen_true(compiler_state_t *cstate)
1940 {
1941 	return gen_uncond(cstate, 1);
1942 }
1943 
1944 static inline struct block *
1945 gen_false(compiler_state_t *cstate)
1946 {
1947 	return gen_uncond(cstate, 0);
1948 }
1949 
1950 /*
1951  * Byte-swap a 32-bit number.
1952  * ("htonl()" or "ntohl()" won't work - we want to byte-swap even on
1953  * big-endian platforms.)
1954  */
1955 #define	SWAPLONG(y) \
1956 ((((y)&0xff)<<24) | (((y)&0xff00)<<8) | (((y)&0xff0000)>>8) | (((y)>>24)&0xff))
1957 
1958 /*
1959  * Generate code to match a particular packet type.
1960  *
1961  * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
1962  * value, if <= ETHERMTU.  We use that to determine whether to
1963  * match the type/length field or to check the type/length field for
1964  * a value <= ETHERMTU to see whether it's a type field and then do
1965  * the appropriate test.
1966  */
1967 static struct block *
1968 gen_ether_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
1969 {
1970 	struct block *b0, *b1;
1971 
1972 	switch (ll_proto) {
1973 
1974 	case LLCSAP_ISONS:
1975 	case LLCSAP_IP:
1976 	case LLCSAP_NETBEUI:
1977 		/*
1978 		 * OSI protocols and NetBEUI always use 802.2 encapsulation,
1979 		 * so we check the DSAP and SSAP.
1980 		 *
1981 		 * LLCSAP_IP checks for IP-over-802.2, rather
1982 		 * than IP-over-Ethernet or IP-over-SNAP.
1983 		 *
1984 		 * XXX - should we check both the DSAP and the
1985 		 * SSAP, like this, or should we check just the
1986 		 * DSAP, as we do for other types <= ETHERMTU
1987 		 * (i.e., other SAP values)?
1988 		 */
1989 		b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
1990 		gen_not(b0);
1991 		b1 = gen_cmp(cstate, OR_LLC, 0, BPF_H, (ll_proto << 8) | ll_proto);
1992 		gen_and(b0, b1);
1993 		return b1;
1994 
1995 	case LLCSAP_IPX:
1996 		/*
1997 		 * Check for;
1998 		 *
1999 		 *	Ethernet_II frames, which are Ethernet
2000 		 *	frames with a frame type of ETHERTYPE_IPX;
2001 		 *
2002 		 *	Ethernet_802.3 frames, which are 802.3
2003 		 *	frames (i.e., the type/length field is
2004 		 *	a length field, <= ETHERMTU, rather than
2005 		 *	a type field) with the first two bytes
2006 		 *	after the Ethernet/802.3 header being
2007 		 *	0xFFFF;
2008 		 *
2009 		 *	Ethernet_802.2 frames, which are 802.3
2010 		 *	frames with an 802.2 LLC header and
2011 		 *	with the IPX LSAP as the DSAP in the LLC
2012 		 *	header;
2013 		 *
2014 		 *	Ethernet_SNAP frames, which are 802.3
2015 		 *	frames with an LLC header and a SNAP
2016 		 *	header and with an OUI of 0x000000
2017 		 *	(encapsulated Ethernet) and a protocol
2018 		 *	ID of ETHERTYPE_IPX in the SNAP header.
2019 		 *
2020 		 * XXX - should we generate the same code both
2021 		 * for tests for LLCSAP_IPX and for ETHERTYPE_IPX?
2022 		 */
2023 
2024 		/*
2025 		 * This generates code to check both for the
2026 		 * IPX LSAP (Ethernet_802.2) and for Ethernet_802.3.
2027 		 */
2028 		b0 = gen_cmp(cstate, OR_LLC, 0, BPF_B, LLCSAP_IPX);
2029 		b1 = gen_cmp(cstate, OR_LLC, 0, BPF_H, 0xFFFF);
2030 		gen_or(b0, b1);
2031 
2032 		/*
2033 		 * Now we add code to check for SNAP frames with
2034 		 * ETHERTYPE_IPX, i.e. Ethernet_SNAP.
2035 		 */
2036 		b0 = gen_snap(cstate, 0x000000, ETHERTYPE_IPX);
2037 		gen_or(b0, b1);
2038 
2039 		/*
2040 		 * Now we generate code to check for 802.3
2041 		 * frames in general.
2042 		 */
2043 		b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
2044 		gen_not(b0);
2045 
2046 		/*
2047 		 * Now add the check for 802.3 frames before the
2048 		 * check for Ethernet_802.2 and Ethernet_802.3,
2049 		 * as those checks should only be done on 802.3
2050 		 * frames, not on Ethernet frames.
2051 		 */
2052 		gen_and(b0, b1);
2053 
2054 		/*
2055 		 * Now add the check for Ethernet_II frames, and
2056 		 * do that before checking for the other frame
2057 		 * types.
2058 		 */
2059 		b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ETHERTYPE_IPX);
2060 		gen_or(b0, b1);
2061 		return b1;
2062 
2063 	case ETHERTYPE_ATALK:
2064 	case ETHERTYPE_AARP:
2065 		/*
2066 		 * EtherTalk (AppleTalk protocols on Ethernet link
2067 		 * layer) may use 802.2 encapsulation.
2068 		 */
2069 
2070 		/*
2071 		 * Check for 802.2 encapsulation (EtherTalk phase 2?);
2072 		 * we check for an Ethernet type field less than
2073 		 * 1500, which means it's an 802.3 length field.
2074 		 */
2075 		b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
2076 		gen_not(b0);
2077 
2078 		/*
2079 		 * 802.2-encapsulated ETHERTYPE_ATALK packets are
2080 		 * SNAP packets with an organization code of
2081 		 * 0x080007 (Apple, for Appletalk) and a protocol
2082 		 * type of ETHERTYPE_ATALK (Appletalk).
2083 		 *
2084 		 * 802.2-encapsulated ETHERTYPE_AARP packets are
2085 		 * SNAP packets with an organization code of
2086 		 * 0x000000 (encapsulated Ethernet) and a protocol
2087 		 * type of ETHERTYPE_AARP (Appletalk ARP).
2088 		 */
2089 		if (ll_proto == ETHERTYPE_ATALK)
2090 			b1 = gen_snap(cstate, 0x080007, ETHERTYPE_ATALK);
2091 		else	/* ll_proto == ETHERTYPE_AARP */
2092 			b1 = gen_snap(cstate, 0x000000, ETHERTYPE_AARP);
2093 		gen_and(b0, b1);
2094 
2095 		/*
2096 		 * Check for Ethernet encapsulation (Ethertalk
2097 		 * phase 1?); we just check for the Ethernet
2098 		 * protocol type.
2099 		 */
2100 		b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ll_proto);
2101 
2102 		gen_or(b0, b1);
2103 		return b1;
2104 
2105 	default:
2106 		if (ll_proto <= ETHERMTU) {
2107 			/*
2108 			 * This is an LLC SAP value, so the frames
2109 			 * that match would be 802.2 frames.
2110 			 * Check that the frame is an 802.2 frame
2111 			 * (i.e., that the length/type field is
2112 			 * a length field, <= ETHERMTU) and
2113 			 * then check the DSAP.
2114 			 */
2115 			b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
2116 			gen_not(b0);
2117 			b1 = gen_cmp(cstate, OR_LINKTYPE, 2, BPF_B, ll_proto);
2118 			gen_and(b0, b1);
2119 			return b1;
2120 		} else {
2121 			/*
2122 			 * This is an Ethernet type, so compare
2123 			 * the length/type field with it (if
2124 			 * the frame is an 802.2 frame, the length
2125 			 * field will be <= ETHERMTU, and, as
2126 			 * "ll_proto" is > ETHERMTU, this test
2127 			 * will fail and the frame won't match,
2128 			 * which is what we want).
2129 			 */
2130 			return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ll_proto);
2131 		}
2132 	}
2133 }
2134 
2135 static struct block *
2136 gen_loopback_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
2137 {
2138 	/*
2139 	 * For DLT_NULL, the link-layer header is a 32-bit word
2140 	 * containing an AF_ value in *host* byte order, and for
2141 	 * DLT_ENC, the link-layer header begins with a 32-bit
2142 	 * word containing an AF_ value in host byte order.
2143 	 *
2144 	 * In addition, if we're reading a saved capture file,
2145 	 * the host byte order in the capture may not be the
2146 	 * same as the host byte order on this machine.
2147 	 *
2148 	 * For DLT_LOOP, the link-layer header is a 32-bit
2149 	 * word containing an AF_ value in *network* byte order.
2150 	 */
2151 	if (cstate->linktype == DLT_NULL || cstate->linktype == DLT_ENC) {
2152 		/*
2153 		 * The AF_ value is in host byte order, but the BPF
2154 		 * interpreter will convert it to network byte order.
2155 		 *
2156 		 * If this is a save file, and it's from a machine
2157 		 * with the opposite byte order to ours, we byte-swap
2158 		 * the AF_ value.
2159 		 *
2160 		 * Then we run it through "htonl()", and generate
2161 		 * code to compare against the result.
2162 		 */
2163 		if (cstate->bpf_pcap->rfile != NULL && cstate->bpf_pcap->swapped)
2164 			ll_proto = SWAPLONG(ll_proto);
2165 		ll_proto = htonl(ll_proto);
2166 	}
2167 	return (gen_cmp(cstate, OR_LINKHDR, 0, BPF_W, ll_proto));
2168 }
2169 
2170 /*
2171  * "proto" is an Ethernet type value and for IPNET, if it is not IPv4
2172  * or IPv6 then we have an error.
2173  */
2174 static struct block *
2175 gen_ipnet_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
2176 {
2177 	switch (ll_proto) {
2178 
2179 	case ETHERTYPE_IP:
2180 		return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B, IPH_AF_INET);
2181 		/*NOTREACHED*/
2182 
2183 	case ETHERTYPE_IPV6:
2184 		return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B, IPH_AF_INET6);
2185 		/*NOTREACHED*/
2186 
2187 	default:
2188 		break;
2189 	}
2190 
2191 	return gen_false(cstate);
2192 }
2193 
2194 /*
2195  * Generate code to match a particular packet type.
2196  *
2197  * "ll_proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
2198  * value, if <= ETHERMTU.  We use that to determine whether to
2199  * match the type field or to check the type field for the special
2200  * LINUX_SLL_P_802_2 value and then do the appropriate test.
2201  */
2202 static struct block *
2203 gen_linux_sll_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
2204 {
2205 	struct block *b0, *b1;
2206 
2207 	switch (ll_proto) {
2208 
2209 	case LLCSAP_ISONS:
2210 	case LLCSAP_IP:
2211 	case LLCSAP_NETBEUI:
2212 		/*
2213 		 * OSI protocols and NetBEUI always use 802.2 encapsulation,
2214 		 * so we check the DSAP and SSAP.
2215 		 *
2216 		 * LLCSAP_IP checks for IP-over-802.2, rather
2217 		 * than IP-over-Ethernet or IP-over-SNAP.
2218 		 *
2219 		 * XXX - should we check both the DSAP and the
2220 		 * SSAP, like this, or should we check just the
2221 		 * DSAP, as we do for other types <= ETHERMTU
2222 		 * (i.e., other SAP values)?
2223 		 */
2224 		b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
2225 		b1 = gen_cmp(cstate, OR_LLC, 0, BPF_H, (ll_proto << 8) | ll_proto);
2226 		gen_and(b0, b1);
2227 		return b1;
2228 
2229 	case LLCSAP_IPX:
2230 		/*
2231 		 *	Ethernet_II frames, which are Ethernet
2232 		 *	frames with a frame type of ETHERTYPE_IPX;
2233 		 *
2234 		 *	Ethernet_802.3 frames, which have a frame
2235 		 *	type of LINUX_SLL_P_802_3;
2236 		 *
2237 		 *	Ethernet_802.2 frames, which are 802.3
2238 		 *	frames with an 802.2 LLC header (i.e, have
2239 		 *	a frame type of LINUX_SLL_P_802_2) and
2240 		 *	with the IPX LSAP as the DSAP in the LLC
2241 		 *	header;
2242 		 *
2243 		 *	Ethernet_SNAP frames, which are 802.3
2244 		 *	frames with an LLC header and a SNAP
2245 		 *	header and with an OUI of 0x000000
2246 		 *	(encapsulated Ethernet) and a protocol
2247 		 *	ID of ETHERTYPE_IPX in the SNAP header.
2248 		 *
2249 		 * First, do the checks on LINUX_SLL_P_802_2
2250 		 * frames; generate the check for either
2251 		 * Ethernet_802.2 or Ethernet_SNAP frames, and
2252 		 * then put a check for LINUX_SLL_P_802_2 frames
2253 		 * before it.
2254 		 */
2255 		b0 = gen_cmp(cstate, OR_LLC, 0, BPF_B, LLCSAP_IPX);
2256 		b1 = gen_snap(cstate, 0x000000, ETHERTYPE_IPX);
2257 		gen_or(b0, b1);
2258 		b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
2259 		gen_and(b0, b1);
2260 
2261 		/*
2262 		 * Now check for 802.3 frames and OR that with
2263 		 * the previous test.
2264 		 */
2265 		b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_3);
2266 		gen_or(b0, b1);
2267 
2268 		/*
2269 		 * Now add the check for Ethernet_II frames, and
2270 		 * do that before checking for the other frame
2271 		 * types.
2272 		 */
2273 		b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ETHERTYPE_IPX);
2274 		gen_or(b0, b1);
2275 		return b1;
2276 
2277 	case ETHERTYPE_ATALK:
2278 	case ETHERTYPE_AARP:
2279 		/*
2280 		 * EtherTalk (AppleTalk protocols on Ethernet link
2281 		 * layer) may use 802.2 encapsulation.
2282 		 */
2283 
2284 		/*
2285 		 * Check for 802.2 encapsulation (EtherTalk phase 2?);
2286 		 * we check for the 802.2 protocol type in the
2287 		 * "Ethernet type" field.
2288 		 */
2289 		b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
2290 
2291 		/*
2292 		 * 802.2-encapsulated ETHERTYPE_ATALK packets are
2293 		 * SNAP packets with an organization code of
2294 		 * 0x080007 (Apple, for Appletalk) and a protocol
2295 		 * type of ETHERTYPE_ATALK (Appletalk).
2296 		 *
2297 		 * 802.2-encapsulated ETHERTYPE_AARP packets are
2298 		 * SNAP packets with an organization code of
2299 		 * 0x000000 (encapsulated Ethernet) and a protocol
2300 		 * type of ETHERTYPE_AARP (Appletalk ARP).
2301 		 */
2302 		if (ll_proto == ETHERTYPE_ATALK)
2303 			b1 = gen_snap(cstate, 0x080007, ETHERTYPE_ATALK);
2304 		else	/* ll_proto == ETHERTYPE_AARP */
2305 			b1 = gen_snap(cstate, 0x000000, ETHERTYPE_AARP);
2306 		gen_and(b0, b1);
2307 
2308 		/*
2309 		 * Check for Ethernet encapsulation (Ethertalk
2310 		 * phase 1?); we just check for the Ethernet
2311 		 * protocol type.
2312 		 */
2313 		b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ll_proto);
2314 
2315 		gen_or(b0, b1);
2316 		return b1;
2317 
2318 	default:
2319 		if (ll_proto <= ETHERMTU) {
2320 			/*
2321 			 * This is an LLC SAP value, so the frames
2322 			 * that match would be 802.2 frames.
2323 			 * Check for the 802.2 protocol type
2324 			 * in the "Ethernet type" field, and
2325 			 * then check the DSAP.
2326 			 */
2327 			b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
2328 			b1 = gen_cmp(cstate, OR_LINKHDR, cstate->off_linkpl.constant_part, BPF_B,
2329 			     ll_proto);
2330 			gen_and(b0, b1);
2331 			return b1;
2332 		} else {
2333 			/*
2334 			 * This is an Ethernet type, so compare
2335 			 * the length/type field with it (if
2336 			 * the frame is an 802.2 frame, the length
2337 			 * field will be <= ETHERMTU, and, as
2338 			 * "ll_proto" is > ETHERMTU, this test
2339 			 * will fail and the frame won't match,
2340 			 * which is what we want).
2341 			 */
2342 			return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ll_proto);
2343 		}
2344 	}
2345 }
2346 
2347 /*
2348  * Load a value relative to the beginning of the link-layer header after the
2349  * pflog header.
2350  */
2351 static struct slist *
2352 gen_load_pflog_llprefixlen(compiler_state_t *cstate)
2353 {
2354 	struct slist *s1, *s2;
2355 
2356 	/*
2357 	 * Generate code to load the length of the pflog header into
2358 	 * the register assigned to hold that length, if one has been
2359 	 * assigned.  (If one hasn't been assigned, no code we've
2360 	 * generated uses that prefix, so we don't need to generate any
2361 	 * code to load it.)
2362 	 */
2363 	if (cstate->off_linkpl.reg != -1) {
2364 		/*
2365 		 * The length is in the first byte of the header.
2366 		 */
2367 		s1 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
2368 		s1->s.k = 0;
2369 
2370 		/*
2371 		 * Round it up to a multiple of 4.
2372 		 * Add 3, and clear the lower 2 bits.
2373 		 */
2374 		s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
2375 		s2->s.k = 3;
2376 		sappend(s1, s2);
2377 		s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
2378 		s2->s.k = 0xfffffffc;
2379 		sappend(s1, s2);
2380 
2381 		/*
2382 		 * Now allocate a register to hold that value and store
2383 		 * it.
2384 		 */
2385 		s2 = new_stmt(cstate, BPF_ST);
2386 		s2->s.k = cstate->off_linkpl.reg;
2387 		sappend(s1, s2);
2388 
2389 		/*
2390 		 * Now move it into the X register.
2391 		 */
2392 		s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2393 		sappend(s1, s2);
2394 
2395 		return (s1);
2396 	} else
2397 		return (NULL);
2398 }
2399 
2400 static struct slist *
2401 gen_load_prism_llprefixlen(compiler_state_t *cstate)
2402 {
2403 	struct slist *s1, *s2;
2404 	struct slist *sjeq_avs_cookie;
2405 	struct slist *sjcommon;
2406 
2407 	/*
2408 	 * This code is not compatible with the optimizer, as
2409 	 * we are generating jmp instructions within a normal
2410 	 * slist of instructions
2411 	 */
2412 	cstate->no_optimize = 1;
2413 
2414 	/*
2415 	 * Generate code to load the length of the radio header into
2416 	 * the register assigned to hold that length, if one has been
2417 	 * assigned.  (If one hasn't been assigned, no code we've
2418 	 * generated uses that prefix, so we don't need to generate any
2419 	 * code to load it.)
2420 	 *
2421 	 * Some Linux drivers use ARPHRD_IEEE80211_PRISM but sometimes
2422 	 * or always use the AVS header rather than the Prism header.
2423 	 * We load a 4-byte big-endian value at the beginning of the
2424 	 * raw packet data, and see whether, when masked with 0xFFFFF000,
2425 	 * it's equal to 0x80211000.  If so, that indicates that it's
2426 	 * an AVS header (the masked-out bits are the version number).
2427 	 * Otherwise, it's a Prism header.
2428 	 *
2429 	 * XXX - the Prism header is also, in theory, variable-length,
2430 	 * but no known software generates headers that aren't 144
2431 	 * bytes long.
2432 	 */
2433 	if (cstate->off_linkhdr.reg != -1) {
2434 		/*
2435 		 * Load the cookie.
2436 		 */
2437 		s1 = new_stmt(cstate, BPF_LD|BPF_W|BPF_ABS);
2438 		s1->s.k = 0;
2439 
2440 		/*
2441 		 * AND it with 0xFFFFF000.
2442 		 */
2443 		s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
2444 		s2->s.k = 0xFFFFF000;
2445 		sappend(s1, s2);
2446 
2447 		/*
2448 		 * Compare with 0x80211000.
2449 		 */
2450 		sjeq_avs_cookie = new_stmt(cstate, JMP(BPF_JEQ));
2451 		sjeq_avs_cookie->s.k = 0x80211000;
2452 		sappend(s1, sjeq_avs_cookie);
2453 
2454 		/*
2455 		 * If it's AVS:
2456 		 *
2457 		 * The 4 bytes at an offset of 4 from the beginning of
2458 		 * the AVS header are the length of the AVS header.
2459 		 * That field is big-endian.
2460 		 */
2461 		s2 = new_stmt(cstate, BPF_LD|BPF_W|BPF_ABS);
2462 		s2->s.k = 4;
2463 		sappend(s1, s2);
2464 		sjeq_avs_cookie->s.jt = s2;
2465 
2466 		/*
2467 		 * Now jump to the code to allocate a register
2468 		 * into which to save the header length and
2469 		 * store the length there.  (The "jump always"
2470 		 * instruction needs to have the k field set;
2471 		 * it's added to the PC, so, as we're jumping
2472 		 * over a single instruction, it should be 1.)
2473 		 */
2474 		sjcommon = new_stmt(cstate, JMP(BPF_JA));
2475 		sjcommon->s.k = 1;
2476 		sappend(s1, sjcommon);
2477 
2478 		/*
2479 		 * Now for the code that handles the Prism header.
2480 		 * Just load the length of the Prism header (144)
2481 		 * into the A register.  Have the test for an AVS
2482 		 * header branch here if we don't have an AVS header.
2483 		 */
2484 		s2 = new_stmt(cstate, BPF_LD|BPF_W|BPF_IMM);
2485 		s2->s.k = 144;
2486 		sappend(s1, s2);
2487 		sjeq_avs_cookie->s.jf = s2;
2488 
2489 		/*
2490 		 * Now allocate a register to hold that value and store
2491 		 * it.  The code for the AVS header will jump here after
2492 		 * loading the length of the AVS header.
2493 		 */
2494 		s2 = new_stmt(cstate, BPF_ST);
2495 		s2->s.k = cstate->off_linkhdr.reg;
2496 		sappend(s1, s2);
2497 		sjcommon->s.jf = s2;
2498 
2499 		/*
2500 		 * Now move it into the X register.
2501 		 */
2502 		s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2503 		sappend(s1, s2);
2504 
2505 		return (s1);
2506 	} else
2507 		return (NULL);
2508 }
2509 
2510 static struct slist *
2511 gen_load_avs_llprefixlen(compiler_state_t *cstate)
2512 {
2513 	struct slist *s1, *s2;
2514 
2515 	/*
2516 	 * Generate code to load the length of the AVS header into
2517 	 * the register assigned to hold that length, if one has been
2518 	 * assigned.  (If one hasn't been assigned, no code we've
2519 	 * generated uses that prefix, so we don't need to generate any
2520 	 * code to load it.)
2521 	 */
2522 	if (cstate->off_linkhdr.reg != -1) {
2523 		/*
2524 		 * The 4 bytes at an offset of 4 from the beginning of
2525 		 * the AVS header are the length of the AVS header.
2526 		 * That field is big-endian.
2527 		 */
2528 		s1 = new_stmt(cstate, BPF_LD|BPF_W|BPF_ABS);
2529 		s1->s.k = 4;
2530 
2531 		/*
2532 		 * Now allocate a register to hold that value and store
2533 		 * it.
2534 		 */
2535 		s2 = new_stmt(cstate, BPF_ST);
2536 		s2->s.k = cstate->off_linkhdr.reg;
2537 		sappend(s1, s2);
2538 
2539 		/*
2540 		 * Now move it into the X register.
2541 		 */
2542 		s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2543 		sappend(s1, s2);
2544 
2545 		return (s1);
2546 	} else
2547 		return (NULL);
2548 }
2549 
2550 static struct slist *
2551 gen_load_radiotap_llprefixlen(compiler_state_t *cstate)
2552 {
2553 	struct slist *s1, *s2;
2554 
2555 	/*
2556 	 * Generate code to load the length of the radiotap header into
2557 	 * the register assigned to hold that length, if one has been
2558 	 * assigned.  (If one hasn't been assigned, no code we've
2559 	 * generated uses that prefix, so we don't need to generate any
2560 	 * code to load it.)
2561 	 */
2562 	if (cstate->off_linkhdr.reg != -1) {
2563 		/*
2564 		 * The 2 bytes at offsets of 2 and 3 from the beginning
2565 		 * of the radiotap header are the length of the radiotap
2566 		 * header; unfortunately, it's little-endian, so we have
2567 		 * to load it a byte at a time and construct the value.
2568 		 */
2569 
2570 		/*
2571 		 * Load the high-order byte, at an offset of 3, shift it
2572 		 * left a byte, and put the result in the X register.
2573 		 */
2574 		s1 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
2575 		s1->s.k = 3;
2576 		s2 = new_stmt(cstate, BPF_ALU|BPF_LSH|BPF_K);
2577 		sappend(s1, s2);
2578 		s2->s.k = 8;
2579 		s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2580 		sappend(s1, s2);
2581 
2582 		/*
2583 		 * Load the next byte, at an offset of 2, and OR the
2584 		 * value from the X register into it.
2585 		 */
2586 		s2 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
2587 		sappend(s1, s2);
2588 		s2->s.k = 2;
2589 		s2 = new_stmt(cstate, BPF_ALU|BPF_OR|BPF_X);
2590 		sappend(s1, s2);
2591 
2592 		/*
2593 		 * Now allocate a register to hold that value and store
2594 		 * it.
2595 		 */
2596 		s2 = new_stmt(cstate, BPF_ST);
2597 		s2->s.k = cstate->off_linkhdr.reg;
2598 		sappend(s1, s2);
2599 
2600 		/*
2601 		 * Now move it into the X register.
2602 		 */
2603 		s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2604 		sappend(s1, s2);
2605 
2606 		return (s1);
2607 	} else
2608 		return (NULL);
2609 }
2610 
2611 /*
2612  * At the moment we treat PPI as normal Radiotap encoded
2613  * packets. The difference is in the function that generates
2614  * the code at the beginning to compute the header length.
2615  * Since this code generator of PPI supports bare 802.11
2616  * encapsulation only (i.e. the encapsulated DLT should be
2617  * DLT_IEEE802_11) we generate code to check for this too;
2618  * that's done in finish_parse().
2619  */
2620 static struct slist *
2621 gen_load_ppi_llprefixlen(compiler_state_t *cstate)
2622 {
2623 	struct slist *s1, *s2;
2624 
2625 	/*
2626 	 * Generate code to load the length of the radiotap header
2627 	 * into the register assigned to hold that length, if one has
2628 	 * been assigned.
2629 	 */
2630 	if (cstate->off_linkhdr.reg != -1) {
2631 		/*
2632 		 * The 2 bytes at offsets of 2 and 3 from the beginning
2633 		 * of the radiotap header are the length of the radiotap
2634 		 * header; unfortunately, it's little-endian, so we have
2635 		 * to load it a byte at a time and construct the value.
2636 		 */
2637 
2638 		/*
2639 		 * Load the high-order byte, at an offset of 3, shift it
2640 		 * left a byte, and put the result in the X register.
2641 		 */
2642 		s1 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
2643 		s1->s.k = 3;
2644 		s2 = new_stmt(cstate, BPF_ALU|BPF_LSH|BPF_K);
2645 		sappend(s1, s2);
2646 		s2->s.k = 8;
2647 		s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2648 		sappend(s1, s2);
2649 
2650 		/*
2651 		 * Load the next byte, at an offset of 2, and OR the
2652 		 * value from the X register into it.
2653 		 */
2654 		s2 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
2655 		sappend(s1, s2);
2656 		s2->s.k = 2;
2657 		s2 = new_stmt(cstate, BPF_ALU|BPF_OR|BPF_X);
2658 		sappend(s1, s2);
2659 
2660 		/*
2661 		 * Now allocate a register to hold that value and store
2662 		 * it.
2663 		 */
2664 		s2 = new_stmt(cstate, BPF_ST);
2665 		s2->s.k = cstate->off_linkhdr.reg;
2666 		sappend(s1, s2);
2667 
2668 		/*
2669 		 * Now move it into the X register.
2670 		 */
2671 		s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2672 		sappend(s1, s2);
2673 
2674 		return (s1);
2675 	} else
2676 		return (NULL);
2677 }
2678 
2679 /*
2680  * Load a value relative to the beginning of the link-layer header after the 802.11
2681  * header, i.e. LLC_SNAP.
2682  * The link-layer header doesn't necessarily begin at the beginning
2683  * of the packet data; there might be a variable-length prefix containing
2684  * radio information.
2685  */
2686 static struct slist *
2687 gen_load_802_11_header_len(compiler_state_t *cstate, struct slist *s, struct slist *snext)
2688 {
2689 	struct slist *s2;
2690 	struct slist *sjset_data_frame_1;
2691 	struct slist *sjset_data_frame_2;
2692 	struct slist *sjset_qos;
2693 	struct slist *sjset_radiotap_flags_present;
2694 	struct slist *sjset_radiotap_ext_present;
2695 	struct slist *sjset_radiotap_tsft_present;
2696 	struct slist *sjset_tsft_datapad, *sjset_notsft_datapad;
2697 	struct slist *s_roundup;
2698 
2699 	if (cstate->off_linkpl.reg == -1) {
2700 		/*
2701 		 * No register has been assigned to the offset of
2702 		 * the link-layer payload, which means nobody needs
2703 		 * it; don't bother computing it - just return
2704 		 * what we already have.
2705 		 */
2706 		return (s);
2707 	}
2708 
2709 	/*
2710 	 * This code is not compatible with the optimizer, as
2711 	 * we are generating jmp instructions within a normal
2712 	 * slist of instructions
2713 	 */
2714 	cstate->no_optimize = 1;
2715 
2716 	/*
2717 	 * If "s" is non-null, it has code to arrange that the X register
2718 	 * contains the length of the prefix preceding the link-layer
2719 	 * header.
2720 	 *
2721 	 * Otherwise, the length of the prefix preceding the link-layer
2722 	 * header is "off_outermostlinkhdr.constant_part".
2723 	 */
2724 	if (s == NULL) {
2725 		/*
2726 		 * There is no variable-length header preceding the
2727 		 * link-layer header.
2728 		 *
2729 		 * Load the length of the fixed-length prefix preceding
2730 		 * the link-layer header (if any) into the X register,
2731 		 * and store it in the cstate->off_linkpl.reg register.
2732 		 * That length is off_outermostlinkhdr.constant_part.
2733 		 */
2734 		s = new_stmt(cstate, BPF_LDX|BPF_IMM);
2735 		s->s.k = cstate->off_outermostlinkhdr.constant_part;
2736 	}
2737 
2738 	/*
2739 	 * The X register contains the offset of the beginning of the
2740 	 * link-layer header; add 24, which is the minimum length
2741 	 * of the MAC header for a data frame, to that, and store it
2742 	 * in cstate->off_linkpl.reg, and then load the Frame Control field,
2743 	 * which is at the offset in the X register, with an indexed load.
2744 	 */
2745 	s2 = new_stmt(cstate, BPF_MISC|BPF_TXA);
2746 	sappend(s, s2);
2747 	s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
2748 	s2->s.k = 24;
2749 	sappend(s, s2);
2750 	s2 = new_stmt(cstate, BPF_ST);
2751 	s2->s.k = cstate->off_linkpl.reg;
2752 	sappend(s, s2);
2753 
2754 	s2 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
2755 	s2->s.k = 0;
2756 	sappend(s, s2);
2757 
2758 	/*
2759 	 * Check the Frame Control field to see if this is a data frame;
2760 	 * a data frame has the 0x08 bit (b3) in that field set and the
2761 	 * 0x04 bit (b2) clear.
2762 	 */
2763 	sjset_data_frame_1 = new_stmt(cstate, JMP(BPF_JSET));
2764 	sjset_data_frame_1->s.k = 0x08;
2765 	sappend(s, sjset_data_frame_1);
2766 
2767 	/*
2768 	 * If b3 is set, test b2, otherwise go to the first statement of
2769 	 * the rest of the program.
2770 	 */
2771 	sjset_data_frame_1->s.jt = sjset_data_frame_2 = new_stmt(cstate, JMP(BPF_JSET));
2772 	sjset_data_frame_2->s.k = 0x04;
2773 	sappend(s, sjset_data_frame_2);
2774 	sjset_data_frame_1->s.jf = snext;
2775 
2776 	/*
2777 	 * If b2 is not set, this is a data frame; test the QoS bit.
2778 	 * Otherwise, go to the first statement of the rest of the
2779 	 * program.
2780 	 */
2781 	sjset_data_frame_2->s.jt = snext;
2782 	sjset_data_frame_2->s.jf = sjset_qos = new_stmt(cstate, JMP(BPF_JSET));
2783 	sjset_qos->s.k = 0x80;	/* QoS bit */
2784 	sappend(s, sjset_qos);
2785 
2786 	/*
2787 	 * If it's set, add 2 to cstate->off_linkpl.reg, to skip the QoS
2788 	 * field.
2789 	 * Otherwise, go to the first statement of the rest of the
2790 	 * program.
2791 	 */
2792 	sjset_qos->s.jt = s2 = new_stmt(cstate, BPF_LD|BPF_MEM);
2793 	s2->s.k = cstate->off_linkpl.reg;
2794 	sappend(s, s2);
2795 	s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_IMM);
2796 	s2->s.k = 2;
2797 	sappend(s, s2);
2798 	s2 = new_stmt(cstate, BPF_ST);
2799 	s2->s.k = cstate->off_linkpl.reg;
2800 	sappend(s, s2);
2801 
2802 	/*
2803 	 * If we have a radiotap header, look at it to see whether
2804 	 * there's Atheros padding between the MAC-layer header
2805 	 * and the payload.
2806 	 *
2807 	 * Note: all of the fields in the radiotap header are
2808 	 * little-endian, so we byte-swap all of the values
2809 	 * we test against, as they will be loaded as big-endian
2810 	 * values.
2811 	 *
2812 	 * XXX - in the general case, we would have to scan through
2813 	 * *all* the presence bits, if there's more than one word of
2814 	 * presence bits.  That would require a loop, meaning that
2815 	 * we wouldn't be able to run the filter in the kernel.
2816 	 *
2817 	 * We assume here that the Atheros adapters that insert the
2818 	 * annoying padding don't have multiple antennae and therefore
2819 	 * do not generate radiotap headers with multiple presence words.
2820 	 */
2821 	if (cstate->linktype == DLT_IEEE802_11_RADIO) {
2822 		/*
2823 		 * Is the IEEE80211_RADIOTAP_FLAGS bit (0x0000002) set
2824 		 * in the first presence flag word?
2825 		 */
2826 		sjset_qos->s.jf = s2 = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_W);
2827 		s2->s.k = 4;
2828 		sappend(s, s2);
2829 
2830 		sjset_radiotap_flags_present = new_stmt(cstate, JMP(BPF_JSET));
2831 		sjset_radiotap_flags_present->s.k = SWAPLONG(0x00000002);
2832 		sappend(s, sjset_radiotap_flags_present);
2833 
2834 		/*
2835 		 * If not, skip all of this.
2836 		 */
2837 		sjset_radiotap_flags_present->s.jf = snext;
2838 
2839 		/*
2840 		 * Otherwise, is the "extension" bit set in that word?
2841 		 */
2842 		sjset_radiotap_ext_present = new_stmt(cstate, JMP(BPF_JSET));
2843 		sjset_radiotap_ext_present->s.k = SWAPLONG(0x80000000);
2844 		sappend(s, sjset_radiotap_ext_present);
2845 		sjset_radiotap_flags_present->s.jt = sjset_radiotap_ext_present;
2846 
2847 		/*
2848 		 * If so, skip all of this.
2849 		 */
2850 		sjset_radiotap_ext_present->s.jt = snext;
2851 
2852 		/*
2853 		 * Otherwise, is the IEEE80211_RADIOTAP_TSFT bit set?
2854 		 */
2855 		sjset_radiotap_tsft_present = new_stmt(cstate, JMP(BPF_JSET));
2856 		sjset_radiotap_tsft_present->s.k = SWAPLONG(0x00000001);
2857 		sappend(s, sjset_radiotap_tsft_present);
2858 		sjset_radiotap_ext_present->s.jf = sjset_radiotap_tsft_present;
2859 
2860 		/*
2861 		 * If IEEE80211_RADIOTAP_TSFT is set, the flags field is
2862 		 * at an offset of 16 from the beginning of the raw packet
2863 		 * data (8 bytes for the radiotap header and 8 bytes for
2864 		 * the TSFT field).
2865 		 *
2866 		 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
2867 		 * is set.
2868 		 */
2869 		s2 = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B);
2870 		s2->s.k = 16;
2871 		sappend(s, s2);
2872 		sjset_radiotap_tsft_present->s.jt = s2;
2873 
2874 		sjset_tsft_datapad = new_stmt(cstate, JMP(BPF_JSET));
2875 		sjset_tsft_datapad->s.k = 0x20;
2876 		sappend(s, sjset_tsft_datapad);
2877 
2878 		/*
2879 		 * If IEEE80211_RADIOTAP_TSFT is not set, the flags field is
2880 		 * at an offset of 8 from the beginning of the raw packet
2881 		 * data (8 bytes for the radiotap header).
2882 		 *
2883 		 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
2884 		 * is set.
2885 		 */
2886 		s2 = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B);
2887 		s2->s.k = 8;
2888 		sappend(s, s2);
2889 		sjset_radiotap_tsft_present->s.jf = s2;
2890 
2891 		sjset_notsft_datapad = new_stmt(cstate, JMP(BPF_JSET));
2892 		sjset_notsft_datapad->s.k = 0x20;
2893 		sappend(s, sjset_notsft_datapad);
2894 
2895 		/*
2896 		 * In either case, if IEEE80211_RADIOTAP_F_DATAPAD is
2897 		 * set, round the length of the 802.11 header to
2898 		 * a multiple of 4.  Do that by adding 3 and then
2899 		 * dividing by and multiplying by 4, which we do by
2900 		 * ANDing with ~3.
2901 		 */
2902 		s_roundup = new_stmt(cstate, BPF_LD|BPF_MEM);
2903 		s_roundup->s.k = cstate->off_linkpl.reg;
2904 		sappend(s, s_roundup);
2905 		s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_IMM);
2906 		s2->s.k = 3;
2907 		sappend(s, s2);
2908 		s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_IMM);
2909 		s2->s.k = (bpf_u_int32)~3;
2910 		sappend(s, s2);
2911 		s2 = new_stmt(cstate, BPF_ST);
2912 		s2->s.k = cstate->off_linkpl.reg;
2913 		sappend(s, s2);
2914 
2915 		sjset_tsft_datapad->s.jt = s_roundup;
2916 		sjset_tsft_datapad->s.jf = snext;
2917 		sjset_notsft_datapad->s.jt = s_roundup;
2918 		sjset_notsft_datapad->s.jf = snext;
2919 	} else
2920 		sjset_qos->s.jf = snext;
2921 
2922 	return s;
2923 }
2924 
2925 static void
2926 insert_compute_vloffsets(compiler_state_t *cstate, struct block *b)
2927 {
2928 	struct slist *s;
2929 
2930 	/* There is an implicit dependency between the link
2931 	 * payload and link header since the payload computation
2932 	 * includes the variable part of the header. Therefore,
2933 	 * if nobody else has allocated a register for the link
2934 	 * header and we need it, do it now. */
2935 	if (cstate->off_linkpl.reg != -1 && cstate->off_linkhdr.is_variable &&
2936 	    cstate->off_linkhdr.reg == -1)
2937 		cstate->off_linkhdr.reg = alloc_reg(cstate);
2938 
2939 	/*
2940 	 * For link-layer types that have a variable-length header
2941 	 * preceding the link-layer header, generate code to load
2942 	 * the offset of the link-layer header into the register
2943 	 * assigned to that offset, if any.
2944 	 *
2945 	 * XXX - this, and the next switch statement, won't handle
2946 	 * encapsulation of 802.11 or 802.11+radio information in
2947 	 * some other protocol stack.  That's significantly more
2948 	 * complicated.
2949 	 */
2950 	switch (cstate->outermostlinktype) {
2951 
2952 	case DLT_PRISM_HEADER:
2953 		s = gen_load_prism_llprefixlen(cstate);
2954 		break;
2955 
2956 	case DLT_IEEE802_11_RADIO_AVS:
2957 		s = gen_load_avs_llprefixlen(cstate);
2958 		break;
2959 
2960 	case DLT_IEEE802_11_RADIO:
2961 		s = gen_load_radiotap_llprefixlen(cstate);
2962 		break;
2963 
2964 	case DLT_PPI:
2965 		s = gen_load_ppi_llprefixlen(cstate);
2966 		break;
2967 
2968 	default:
2969 		s = NULL;
2970 		break;
2971 	}
2972 
2973 	/*
2974 	 * For link-layer types that have a variable-length link-layer
2975 	 * header, generate code to load the offset of the link-layer
2976 	 * payload into the register assigned to that offset, if any.
2977 	 */
2978 	switch (cstate->outermostlinktype) {
2979 
2980 	case DLT_IEEE802_11:
2981 	case DLT_PRISM_HEADER:
2982 	case DLT_IEEE802_11_RADIO_AVS:
2983 	case DLT_IEEE802_11_RADIO:
2984 	case DLT_PPI:
2985 		s = gen_load_802_11_header_len(cstate, s, b->stmts);
2986 		break;
2987 
2988 	case DLT_PFLOG:
2989 		s = gen_load_pflog_llprefixlen(cstate);
2990 		break;
2991 	}
2992 
2993 	/*
2994 	 * If there is no initialization yet and we need variable
2995 	 * length offsets for VLAN, initialize them to zero
2996 	 */
2997 	if (s == NULL && cstate->is_vlan_vloffset) {
2998 		struct slist *s2;
2999 
3000 		if (cstate->off_linkpl.reg == -1)
3001 			cstate->off_linkpl.reg = alloc_reg(cstate);
3002 		if (cstate->off_linktype.reg == -1)
3003 			cstate->off_linktype.reg = alloc_reg(cstate);
3004 
3005 		s = new_stmt(cstate, BPF_LD|BPF_W|BPF_IMM);
3006 		s->s.k = 0;
3007 		s2 = new_stmt(cstate, BPF_ST);
3008 		s2->s.k = cstate->off_linkpl.reg;
3009 		sappend(s, s2);
3010 		s2 = new_stmt(cstate, BPF_ST);
3011 		s2->s.k = cstate->off_linktype.reg;
3012 		sappend(s, s2);
3013 	}
3014 
3015 	/*
3016 	 * If we have any offset-loading code, append all the
3017 	 * existing statements in the block to those statements,
3018 	 * and make the resulting list the list of statements
3019 	 * for the block.
3020 	 */
3021 	if (s != NULL) {
3022 		sappend(s, b->stmts);
3023 		b->stmts = s;
3024 	}
3025 }
3026 
3027 static struct block *
3028 gen_ppi_dlt_check(compiler_state_t *cstate)
3029 {
3030 	struct slist *s_load_dlt;
3031 	struct block *b;
3032 
3033 	if (cstate->linktype == DLT_PPI)
3034 	{
3035 		/* Create the statements that check for the DLT
3036 		 */
3037 		s_load_dlt = new_stmt(cstate, BPF_LD|BPF_W|BPF_ABS);
3038 		s_load_dlt->s.k = 4;
3039 
3040 		b = new_block(cstate, JMP(BPF_JEQ));
3041 
3042 		b->stmts = s_load_dlt;
3043 		b->s.k = SWAPLONG(DLT_IEEE802_11);
3044 	}
3045 	else
3046 	{
3047 		b = NULL;
3048 	}
3049 
3050 	return b;
3051 }
3052 
3053 /*
3054  * Take an absolute offset, and:
3055  *
3056  *    if it has no variable part, return NULL;
3057  *
3058  *    if it has a variable part, generate code to load the register
3059  *    containing that variable part into the X register, returning
3060  *    a pointer to that code - if no register for that offset has
3061  *    been allocated, allocate it first.
3062  *
3063  * (The code to set that register will be generated later, but will
3064  * be placed earlier in the code sequence.)
3065  */
3066 static struct slist *
3067 gen_abs_offset_varpart(compiler_state_t *cstate, bpf_abs_offset *off)
3068 {
3069 	struct slist *s;
3070 
3071 	if (off->is_variable) {
3072 		if (off->reg == -1) {
3073 			/*
3074 			 * We haven't yet assigned a register for the
3075 			 * variable part of the offset of the link-layer
3076 			 * header; allocate one.
3077 			 */
3078 			off->reg = alloc_reg(cstate);
3079 		}
3080 
3081 		/*
3082 		 * Load the register containing the variable part of the
3083 		 * offset of the link-layer header into the X register.
3084 		 */
3085 		s = new_stmt(cstate, BPF_LDX|BPF_MEM);
3086 		s->s.k = off->reg;
3087 		return s;
3088 	} else {
3089 		/*
3090 		 * That offset isn't variable, there's no variable part,
3091 		 * so we don't need to generate any code.
3092 		 */
3093 		return NULL;
3094 	}
3095 }
3096 
3097 /*
3098  * Map an Ethernet type to the equivalent PPP type.
3099  */
3100 static bpf_u_int32
3101 ethertype_to_ppptype(bpf_u_int32 ll_proto)
3102 {
3103 	switch (ll_proto) {
3104 
3105 	case ETHERTYPE_IP:
3106 		ll_proto = PPP_IP;
3107 		break;
3108 
3109 	case ETHERTYPE_IPV6:
3110 		ll_proto = PPP_IPV6;
3111 		break;
3112 
3113 	case ETHERTYPE_DN:
3114 		ll_proto = PPP_DECNET;
3115 		break;
3116 
3117 	case ETHERTYPE_ATALK:
3118 		ll_proto = PPP_APPLE;
3119 		break;
3120 
3121 	case ETHERTYPE_NS:
3122 		ll_proto = PPP_NS;
3123 		break;
3124 
3125 	case LLCSAP_ISONS:
3126 		ll_proto = PPP_OSI;
3127 		break;
3128 
3129 	case LLCSAP_8021D:
3130 		/*
3131 		 * I'm assuming the "Bridging PDU"s that go
3132 		 * over PPP are Spanning Tree Protocol
3133 		 * Bridging PDUs.
3134 		 */
3135 		ll_proto = PPP_BRPDU;
3136 		break;
3137 
3138 	case LLCSAP_IPX:
3139 		ll_proto = PPP_IPX;
3140 		break;
3141 	}
3142 	return (ll_proto);
3143 }
3144 
3145 /*
3146  * Generate any tests that, for encapsulation of a link-layer packet
3147  * inside another protocol stack, need to be done to check for those
3148  * link-layer packets (and that haven't already been done by a check
3149  * for that encapsulation).
3150  */
3151 static struct block *
3152 gen_prevlinkhdr_check(compiler_state_t *cstate)
3153 {
3154 	struct block *b0;
3155 
3156 	if (cstate->is_geneve)
3157 		return gen_geneve_ll_check(cstate);
3158 
3159 	switch (cstate->prevlinktype) {
3160 
3161 	case DLT_SUNATM:
3162 		/*
3163 		 * This is LANE-encapsulated Ethernet; check that the LANE
3164 		 * packet doesn't begin with an LE Control marker, i.e.
3165 		 * that it's data, not a control message.
3166 		 *
3167 		 * (We've already generated a test for LANE.)
3168 		 */
3169 		b0 = gen_cmp(cstate, OR_PREVLINKHDR, SUNATM_PKT_BEGIN_POS, BPF_H, 0xFF00);
3170 		gen_not(b0);
3171 		return b0;
3172 
3173 	default:
3174 		/*
3175 		 * No such tests are necessary.
3176 		 */
3177 		return NULL;
3178 	}
3179 	/*NOTREACHED*/
3180 }
3181 
3182 /*
3183  * The three different values we should check for when checking for an
3184  * IPv6 packet with DLT_NULL.
3185  */
3186 #define BSD_AFNUM_INET6_BSD	24	/* NetBSD, OpenBSD, BSD/OS, Npcap */
3187 #define BSD_AFNUM_INET6_FREEBSD	28	/* FreeBSD */
3188 #define BSD_AFNUM_INET6_DARWIN	30	/* macOS, iOS, other Darwin-based OSes */
3189 
3190 /*
3191  * Generate code to match a particular packet type by matching the
3192  * link-layer type field or fields in the 802.2 LLC header.
3193  *
3194  * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
3195  * value, if <= ETHERMTU.
3196  */
3197 static struct block *
3198 gen_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
3199 {
3200 	struct block *b0, *b1, *b2;
3201 	const char *description;
3202 
3203 	/* are we checking MPLS-encapsulated packets? */
3204 	if (cstate->label_stack_depth > 0)
3205 		return gen_mpls_linktype(cstate, ll_proto);
3206 
3207 	switch (cstate->linktype) {
3208 
3209 	case DLT_EN10MB:
3210 	case DLT_NETANALYZER:
3211 	case DLT_NETANALYZER_TRANSPARENT:
3212 		/* Geneve has an EtherType regardless of whether there is an
3213 		 * L2 header. */
3214 		if (!cstate->is_geneve)
3215 			b0 = gen_prevlinkhdr_check(cstate);
3216 		else
3217 			b0 = NULL;
3218 
3219 		b1 = gen_ether_linktype(cstate, ll_proto);
3220 		if (b0 != NULL)
3221 			gen_and(b0, b1);
3222 		return b1;
3223 		/*NOTREACHED*/
3224 
3225 	case DLT_C_HDLC:
3226 	case DLT_HDLC:
3227 		switch (ll_proto) {
3228 
3229 		case LLCSAP_ISONS:
3230 			ll_proto = (ll_proto << 8 | LLCSAP_ISONS);
3231 			/* fall through */
3232 
3233 		default:
3234 			return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ll_proto);
3235 			/*NOTREACHED*/
3236 		}
3237 
3238 	case DLT_IEEE802_11:
3239 	case DLT_PRISM_HEADER:
3240 	case DLT_IEEE802_11_RADIO_AVS:
3241 	case DLT_IEEE802_11_RADIO:
3242 	case DLT_PPI:
3243 		/*
3244 		 * Check that we have a data frame.
3245 		 */
3246 		b0 = gen_check_802_11_data_frame(cstate);
3247 
3248 		/*
3249 		 * Now check for the specified link-layer type.
3250 		 */
3251 		b1 = gen_llc_linktype(cstate, ll_proto);
3252 		gen_and(b0, b1);
3253 		return b1;
3254 		/*NOTREACHED*/
3255 
3256 	case DLT_FDDI:
3257 		/*
3258 		 * XXX - check for LLC frames.
3259 		 */
3260 		return gen_llc_linktype(cstate, ll_proto);
3261 		/*NOTREACHED*/
3262 
3263 	case DLT_IEEE802:
3264 		/*
3265 		 * XXX - check for LLC PDUs, as per IEEE 802.5.
3266 		 */
3267 		return gen_llc_linktype(cstate, ll_proto);
3268 		/*NOTREACHED*/
3269 
3270 	case DLT_ATM_RFC1483:
3271 	case DLT_ATM_CLIP:
3272 	case DLT_IP_OVER_FC:
3273 		return gen_llc_linktype(cstate, ll_proto);
3274 		/*NOTREACHED*/
3275 
3276 	case DLT_SUNATM:
3277 		/*
3278 		 * Check for an LLC-encapsulated version of this protocol;
3279 		 * if we were checking for LANE, linktype would no longer
3280 		 * be DLT_SUNATM.
3281 		 *
3282 		 * Check for LLC encapsulation and then check the protocol.
3283 		 */
3284 		b0 = gen_atmfield_code_internal(cstate, A_PROTOTYPE, PT_LLC, BPF_JEQ, 0);
3285 		b1 = gen_llc_linktype(cstate, ll_proto);
3286 		gen_and(b0, b1);
3287 		return b1;
3288 		/*NOTREACHED*/
3289 
3290 	case DLT_LINUX_SLL:
3291 		return gen_linux_sll_linktype(cstate, ll_proto);
3292 		/*NOTREACHED*/
3293 
3294 	case DLT_SLIP:
3295 	case DLT_SLIP_BSDOS:
3296 	case DLT_RAW:
3297 		/*
3298 		 * These types don't provide any type field; packets
3299 		 * are always IPv4 or IPv6.
3300 		 *
3301 		 * XXX - for IPv4, check for a version number of 4, and,
3302 		 * for IPv6, check for a version number of 6?
3303 		 */
3304 		switch (ll_proto) {
3305 
3306 		case ETHERTYPE_IP:
3307 			/* Check for a version number of 4. */
3308 			return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, 0x40, 0xF0);
3309 
3310 		case ETHERTYPE_IPV6:
3311 			/* Check for a version number of 6. */
3312 			return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, 0x60, 0xF0);
3313 
3314 		default:
3315 			return gen_false(cstate);	/* always false */
3316 		}
3317 		/*NOTREACHED*/
3318 
3319 	case DLT_IPV4:
3320 		/*
3321 		 * Raw IPv4, so no type field.
3322 		 */
3323 		if (ll_proto == ETHERTYPE_IP)
3324 			return gen_true(cstate);	/* always true */
3325 
3326 		/* Checking for something other than IPv4; always false */
3327 		return gen_false(cstate);
3328 		/*NOTREACHED*/
3329 
3330 	case DLT_IPV6:
3331 		/*
3332 		 * Raw IPv6, so no type field.
3333 		 */
3334 		if (ll_proto == ETHERTYPE_IPV6)
3335 			return gen_true(cstate);	/* always true */
3336 
3337 		/* Checking for something other than IPv6; always false */
3338 		return gen_false(cstate);
3339 		/*NOTREACHED*/
3340 
3341 	case DLT_PPP:
3342 	case DLT_PPP_PPPD:
3343 	case DLT_PPP_SERIAL:
3344 	case DLT_PPP_ETHER:
3345 		/*
3346 		 * We use Ethernet protocol types inside libpcap;
3347 		 * map them to the corresponding PPP protocol types.
3348 		 */
3349 		return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H,
3350 		    ethertype_to_ppptype(ll_proto));
3351 		/*NOTREACHED*/
3352 
3353 	case DLT_PPP_BSDOS:
3354 		/*
3355 		 * We use Ethernet protocol types inside libpcap;
3356 		 * map them to the corresponding PPP protocol types.
3357 		 */
3358 		switch (ll_proto) {
3359 
3360 		case ETHERTYPE_IP:
3361 			/*
3362 			 * Also check for Van Jacobson-compressed IP.
3363 			 * XXX - do this for other forms of PPP?
3364 			 */
3365 			b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, PPP_IP);
3366 			b1 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, PPP_VJC);
3367 			gen_or(b0, b1);
3368 			b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, PPP_VJNC);
3369 			gen_or(b1, b0);
3370 			return b0;
3371 
3372 		default:
3373 			return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H,
3374 			    ethertype_to_ppptype(ll_proto));
3375 		}
3376 		/*NOTREACHED*/
3377 
3378 	case DLT_NULL:
3379 	case DLT_LOOP:
3380 	case DLT_ENC:
3381 		switch (ll_proto) {
3382 
3383 		case ETHERTYPE_IP:
3384 			return (gen_loopback_linktype(cstate, AF_INET));
3385 
3386 		case ETHERTYPE_IPV6:
3387 			/*
3388 			 * AF_ values may, unfortunately, be platform-
3389 			 * dependent; AF_INET isn't, because everybody
3390 			 * used 4.2BSD's value, but AF_INET6 is, because
3391 			 * 4.2BSD didn't have a value for it (given that
3392 			 * IPv6 didn't exist back in the early 1980's),
3393 			 * and they all picked their own values.
3394 			 *
3395 			 * This means that, if we're reading from a
3396 			 * savefile, we need to check for all the
3397 			 * possible values.
3398 			 *
3399 			 * If we're doing a live capture, we only need
3400 			 * to check for this platform's value; however,
3401 			 * Npcap uses 24, which isn't Windows's AF_INET6
3402 			 * value.  (Given the multiple different values,
3403 			 * programs that read pcap files shouldn't be
3404 			 * checking for their platform's AF_INET6 value
3405 			 * anyway, they should check for all of the
3406 			 * possible values. and they might as well do
3407 			 * that even for live captures.)
3408 			 */
3409 			if (cstate->bpf_pcap->rfile != NULL) {
3410 				/*
3411 				 * Savefile - check for all three
3412 				 * possible IPv6 values.
3413 				 */
3414 				b0 = gen_loopback_linktype(cstate, BSD_AFNUM_INET6_BSD);
3415 				b1 = gen_loopback_linktype(cstate, BSD_AFNUM_INET6_FREEBSD);
3416 				gen_or(b0, b1);
3417 				b0 = gen_loopback_linktype(cstate, BSD_AFNUM_INET6_DARWIN);
3418 				gen_or(b0, b1);
3419 				return (b1);
3420 			} else {
3421 				/*
3422 				 * Live capture, so we only need to
3423 				 * check for the value used on this
3424 				 * platform.
3425 				 */
3426 #ifdef _WIN32
3427 				/*
3428 				 * Npcap doesn't use Windows's AF_INET6,
3429 				 * as that collides with AF_IPX on
3430 				 * some BSDs (both have the value 23).
3431 				 * Instead, it uses 24.
3432 				 */
3433 				return (gen_loopback_linktype(cstate, 24));
3434 #else /* _WIN32 */
3435 #ifdef AF_INET6
3436 				return (gen_loopback_linktype(cstate, AF_INET6));
3437 #else /* AF_INET6 */
3438 				/*
3439 				 * I guess this platform doesn't support
3440 				 * IPv6, so we just reject all packets.
3441 				 */
3442 				return gen_false(cstate);
3443 #endif /* AF_INET6 */
3444 #endif /* _WIN32 */
3445 			}
3446 
3447 		default:
3448 			/*
3449 			 * Not a type on which we support filtering.
3450 			 * XXX - support those that have AF_ values
3451 			 * #defined on this platform, at least?
3452 			 */
3453 			return gen_false(cstate);
3454 		}
3455 
3456 	case DLT_PFLOG:
3457 		/*
3458 		 * af field is host byte order in contrast to the rest of
3459 		 * the packet.
3460 		 */
3461 		if (ll_proto == ETHERTYPE_IP)
3462 			return (gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, af),
3463 			    BPF_B, AF_INET));
3464 		else if (ll_proto == ETHERTYPE_IPV6)
3465 			return (gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, af),
3466 			    BPF_B, AF_INET6));
3467 		else
3468 			return gen_false(cstate);
3469 		/*NOTREACHED*/
3470 
3471 	case DLT_ARCNET:
3472 	case DLT_ARCNET_LINUX:
3473 		/*
3474 		 * XXX should we check for first fragment if the protocol
3475 		 * uses PHDS?
3476 		 */
3477 		switch (ll_proto) {
3478 
3479 		default:
3480 			return gen_false(cstate);
3481 
3482 		case ETHERTYPE_IPV6:
3483 			return (gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3484 				ARCTYPE_INET6));
3485 
3486 		case ETHERTYPE_IP:
3487 			b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3488 			    ARCTYPE_IP);
3489 			b1 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3490 			    ARCTYPE_IP_OLD);
3491 			gen_or(b0, b1);
3492 			return (b1);
3493 
3494 		case ETHERTYPE_ARP:
3495 			b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3496 			    ARCTYPE_ARP);
3497 			b1 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3498 			    ARCTYPE_ARP_OLD);
3499 			gen_or(b0, b1);
3500 			return (b1);
3501 
3502 		case ETHERTYPE_REVARP:
3503 			return (gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3504 			    ARCTYPE_REVARP));
3505 
3506 		case ETHERTYPE_ATALK:
3507 			return (gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3508 			    ARCTYPE_ATALK));
3509 		}
3510 		/*NOTREACHED*/
3511 
3512 	case DLT_LTALK:
3513 		switch (ll_proto) {
3514 		case ETHERTYPE_ATALK:
3515 			return gen_true(cstate);
3516 		default:
3517 			return gen_false(cstate);
3518 		}
3519 		/*NOTREACHED*/
3520 
3521 	case DLT_FRELAY:
3522 		/*
3523 		 * XXX - assumes a 2-byte Frame Relay header with
3524 		 * DLCI and flags.  What if the address is longer?
3525 		 */
3526 		switch (ll_proto) {
3527 
3528 		case ETHERTYPE_IP:
3529 			/*
3530 			 * Check for the special NLPID for IP.
3531 			 */
3532 			return gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | 0xcc);
3533 
3534 		case ETHERTYPE_IPV6:
3535 			/*
3536 			 * Check for the special NLPID for IPv6.
3537 			 */
3538 			return gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | 0x8e);
3539 
3540 		case LLCSAP_ISONS:
3541 			/*
3542 			 * Check for several OSI protocols.
3543 			 *
3544 			 * Frame Relay packets typically have an OSI
3545 			 * NLPID at the beginning; we check for each
3546 			 * of them.
3547 			 *
3548 			 * What we check for is the NLPID and a frame
3549 			 * control field of UI, i.e. 0x03 followed
3550 			 * by the NLPID.
3551 			 */
3552 			b0 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | ISO8473_CLNP);
3553 			b1 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | ISO9542_ESIS);
3554 			b2 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | ISO10589_ISIS);
3555 			gen_or(b1, b2);
3556 			gen_or(b0, b2);
3557 			return b2;
3558 
3559 		default:
3560 			return gen_false(cstate);
3561 		}
3562 		/*NOTREACHED*/
3563 
3564 	case DLT_MFR:
3565 		bpf_error(cstate, "Multi-link Frame Relay link-layer type filtering not implemented");
3566 
3567         case DLT_JUNIPER_MFR:
3568         case DLT_JUNIPER_MLFR:
3569         case DLT_JUNIPER_MLPPP:
3570 	case DLT_JUNIPER_ATM1:
3571 	case DLT_JUNIPER_ATM2:
3572 	case DLT_JUNIPER_PPPOE:
3573 	case DLT_JUNIPER_PPPOE_ATM:
3574         case DLT_JUNIPER_GGSN:
3575         case DLT_JUNIPER_ES:
3576         case DLT_JUNIPER_MONITOR:
3577         case DLT_JUNIPER_SERVICES:
3578         case DLT_JUNIPER_ETHER:
3579         case DLT_JUNIPER_PPP:
3580         case DLT_JUNIPER_FRELAY:
3581         case DLT_JUNIPER_CHDLC:
3582         case DLT_JUNIPER_VP:
3583         case DLT_JUNIPER_ST:
3584         case DLT_JUNIPER_ISM:
3585         case DLT_JUNIPER_VS:
3586         case DLT_JUNIPER_SRX_E2E:
3587         case DLT_JUNIPER_FIBRECHANNEL:
3588 	case DLT_JUNIPER_ATM_CEMIC:
3589 
3590 		/* just lets verify the magic number for now -
3591 		 * on ATM we may have up to 6 different encapsulations on the wire
3592 		 * and need a lot of heuristics to figure out that the payload
3593 		 * might be;
3594 		 *
3595 		 * FIXME encapsulation specific BPF_ filters
3596 		 */
3597 		return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_W, 0x4d474300, 0xffffff00); /* compare the magic number */
3598 
3599 	case DLT_BACNET_MS_TP:
3600 		return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_W, 0x55FF0000, 0xffff0000);
3601 
3602 	case DLT_IPNET:
3603 		return gen_ipnet_linktype(cstate, ll_proto);
3604 
3605 	case DLT_LINUX_IRDA:
3606 		bpf_error(cstate, "IrDA link-layer type filtering not implemented");
3607 
3608 	case DLT_DOCSIS:
3609 		bpf_error(cstate, "DOCSIS link-layer type filtering not implemented");
3610 
3611 	case DLT_MTP2:
3612 	case DLT_MTP2_WITH_PHDR:
3613 		bpf_error(cstate, "MTP2 link-layer type filtering not implemented");
3614 
3615 	case DLT_ERF:
3616 		bpf_error(cstate, "ERF link-layer type filtering not implemented");
3617 
3618 	case DLT_PFSYNC:
3619 		bpf_error(cstate, "PFSYNC link-layer type filtering not implemented");
3620 
3621 	case DLT_LINUX_LAPD:
3622 		bpf_error(cstate, "LAPD link-layer type filtering not implemented");
3623 
3624 	case DLT_USB_FREEBSD:
3625 	case DLT_USB_LINUX:
3626 	case DLT_USB_LINUX_MMAPPED:
3627 	case DLT_USBPCAP:
3628 		bpf_error(cstate, "USB link-layer type filtering not implemented");
3629 
3630 	case DLT_BLUETOOTH_HCI_H4:
3631 	case DLT_BLUETOOTH_HCI_H4_WITH_PHDR:
3632 		bpf_error(cstate, "Bluetooth link-layer type filtering not implemented");
3633 
3634 	case DLT_CAN20B:
3635 	case DLT_CAN_SOCKETCAN:
3636 		bpf_error(cstate, "CAN link-layer type filtering not implemented");
3637 
3638 	case DLT_IEEE802_15_4:
3639 	case DLT_IEEE802_15_4_LINUX:
3640 	case DLT_IEEE802_15_4_NONASK_PHY:
3641 	case DLT_IEEE802_15_4_NOFCS:
3642 	case DLT_IEEE802_15_4_TAP:
3643 		bpf_error(cstate, "IEEE 802.15.4 link-layer type filtering not implemented");
3644 
3645 	case DLT_IEEE802_16_MAC_CPS_RADIO:
3646 		bpf_error(cstate, "IEEE 802.16 link-layer type filtering not implemented");
3647 
3648 	case DLT_SITA:
3649 		bpf_error(cstate, "SITA link-layer type filtering not implemented");
3650 
3651 	case DLT_RAIF1:
3652 		bpf_error(cstate, "RAIF1 link-layer type filtering not implemented");
3653 
3654 	case DLT_IPMB_KONTRON:
3655 	case DLT_IPMB_LINUX:
3656 		bpf_error(cstate, "IPMB link-layer type filtering not implemented");
3657 
3658 	case DLT_AX25_KISS:
3659 		bpf_error(cstate, "AX.25 link-layer type filtering not implemented");
3660 
3661 	case DLT_NFLOG:
3662 		/* Using the fixed-size NFLOG header it is possible to tell only
3663 		 * the address family of the packet, other meaningful data is
3664 		 * either missing or behind TLVs.
3665 		 */
3666 		bpf_error(cstate, "NFLOG link-layer type filtering not implemented");
3667 
3668 	default:
3669 		/*
3670 		 * Does this link-layer header type have a field
3671 		 * indicating the type of the next protocol?  If
3672 		 * so, off_linktype.constant_part will be the offset of that
3673 		 * field in the packet; if not, it will be OFFSET_NOT_SET.
3674 		 */
3675 		if (cstate->off_linktype.constant_part != OFFSET_NOT_SET) {
3676 			/*
3677 			 * Yes; assume it's an Ethernet type.  (If
3678 			 * it's not, it needs to be handled specially
3679 			 * above.)
3680 			 */
3681 			return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ll_proto);
3682 			/*NOTREACHED */
3683 		} else {
3684 			/*
3685 			 * No; report an error.
3686 			 */
3687 			description = pcap_datalink_val_to_description_or_dlt(cstate->linktype);
3688 			bpf_error(cstate, "%s link-layer type filtering not implemented",
3689 			    description);
3690 			/*NOTREACHED */
3691 		}
3692 	}
3693 }
3694 
3695 /*
3696  * Check for an LLC SNAP packet with a given organization code and
3697  * protocol type; we check the entire contents of the 802.2 LLC and
3698  * snap headers, checking for DSAP and SSAP of SNAP and a control
3699  * field of 0x03 in the LLC header, and for the specified organization
3700  * code and protocol type in the SNAP header.
3701  */
3702 static struct block *
3703 gen_snap(compiler_state_t *cstate, bpf_u_int32 orgcode, bpf_u_int32 ptype)
3704 {
3705 	u_char snapblock[8];
3706 
3707 	snapblock[0] = LLCSAP_SNAP;		/* DSAP = SNAP */
3708 	snapblock[1] = LLCSAP_SNAP;		/* SSAP = SNAP */
3709 	snapblock[2] = 0x03;			/* control = UI */
3710 	snapblock[3] = (u_char)(orgcode >> 16);	/* upper 8 bits of organization code */
3711 	snapblock[4] = (u_char)(orgcode >> 8);	/* middle 8 bits of organization code */
3712 	snapblock[5] = (u_char)(orgcode >> 0);	/* lower 8 bits of organization code */
3713 	snapblock[6] = (u_char)(ptype >> 8);	/* upper 8 bits of protocol type */
3714 	snapblock[7] = (u_char)(ptype >> 0);	/* lower 8 bits of protocol type */
3715 	return gen_bcmp(cstate, OR_LLC, 0, 8, snapblock);
3716 }
3717 
3718 /*
3719  * Generate code to match frames with an LLC header.
3720  */
3721 static struct block *
3722 gen_llc_internal(compiler_state_t *cstate)
3723 {
3724 	struct block *b0, *b1;
3725 
3726 	switch (cstate->linktype) {
3727 
3728 	case DLT_EN10MB:
3729 		/*
3730 		 * We check for an Ethernet type field less than
3731 		 * 1500, which means it's an 802.3 length field.
3732 		 */
3733 		b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
3734 		gen_not(b0);
3735 
3736 		/*
3737 		 * Now check for the purported DSAP and SSAP not being
3738 		 * 0xFF, to rule out NetWare-over-802.3.
3739 		 */
3740 		b1 = gen_cmp(cstate, OR_LLC, 0, BPF_H, 0xFFFF);
3741 		gen_not(b1);
3742 		gen_and(b0, b1);
3743 		return b1;
3744 
3745 	case DLT_SUNATM:
3746 		/*
3747 		 * We check for LLC traffic.
3748 		 */
3749 		b0 = gen_atmtype_llc(cstate);
3750 		return b0;
3751 
3752 	case DLT_IEEE802:	/* Token Ring */
3753 		/*
3754 		 * XXX - check for LLC frames.
3755 		 */
3756 		return gen_true(cstate);
3757 
3758 	case DLT_FDDI:
3759 		/*
3760 		 * XXX - check for LLC frames.
3761 		 */
3762 		return gen_true(cstate);
3763 
3764 	case DLT_ATM_RFC1483:
3765 		/*
3766 		 * For LLC encapsulation, these are defined to have an
3767 		 * 802.2 LLC header.
3768 		 *
3769 		 * For VC encapsulation, they don't, but there's no
3770 		 * way to check for that; the protocol used on the VC
3771 		 * is negotiated out of band.
3772 		 */
3773 		return gen_true(cstate);
3774 
3775 	case DLT_IEEE802_11:
3776 	case DLT_PRISM_HEADER:
3777 	case DLT_IEEE802_11_RADIO:
3778 	case DLT_IEEE802_11_RADIO_AVS:
3779 	case DLT_PPI:
3780 		/*
3781 		 * Check that we have a data frame.
3782 		 */
3783 		b0 = gen_check_802_11_data_frame(cstate);
3784 		return b0;
3785 
3786 	default:
3787 		bpf_error(cstate, "'llc' not supported for %s",
3788 			  pcap_datalink_val_to_description_or_dlt(cstate->linktype));
3789 		/*NOTREACHED*/
3790 	}
3791 }
3792 
3793 struct block *
3794 gen_llc(compiler_state_t *cstate)
3795 {
3796 	/*
3797 	 * Catch errors reported by us and routines below us, and return NULL
3798 	 * on an error.
3799 	 */
3800 	if (setjmp(cstate->top_ctx))
3801 		return (NULL);
3802 
3803 	return gen_llc_internal(cstate);
3804 }
3805 
3806 struct block *
3807 gen_llc_i(compiler_state_t *cstate)
3808 {
3809 	struct block *b0, *b1;
3810 	struct slist *s;
3811 
3812 	/*
3813 	 * Catch errors reported by us and routines below us, and return NULL
3814 	 * on an error.
3815 	 */
3816 	if (setjmp(cstate->top_ctx))
3817 		return (NULL);
3818 
3819 	/*
3820 	 * Check whether this is an LLC frame.
3821 	 */
3822 	b0 = gen_llc_internal(cstate);
3823 
3824 	/*
3825 	 * Load the control byte and test the low-order bit; it must
3826 	 * be clear for I frames.
3827 	 */
3828 	s = gen_load_a(cstate, OR_LLC, 2, BPF_B);
3829 	b1 = new_block(cstate, JMP(BPF_JSET));
3830 	b1->s.k = 0x01;
3831 	b1->stmts = s;
3832 	gen_not(b1);
3833 	gen_and(b0, b1);
3834 	return b1;
3835 }
3836 
3837 struct block *
3838 gen_llc_s(compiler_state_t *cstate)
3839 {
3840 	struct block *b0, *b1;
3841 
3842 	/*
3843 	 * Catch errors reported by us and routines below us, and return NULL
3844 	 * on an error.
3845 	 */
3846 	if (setjmp(cstate->top_ctx))
3847 		return (NULL);
3848 
3849 	/*
3850 	 * Check whether this is an LLC frame.
3851 	 */
3852 	b0 = gen_llc_internal(cstate);
3853 
3854 	/*
3855 	 * Now compare the low-order 2 bit of the control byte against
3856 	 * the appropriate value for S frames.
3857 	 */
3858 	b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, LLC_S_FMT, 0x03);
3859 	gen_and(b0, b1);
3860 	return b1;
3861 }
3862 
3863 struct block *
3864 gen_llc_u(compiler_state_t *cstate)
3865 {
3866 	struct block *b0, *b1;
3867 
3868 	/*
3869 	 * Catch errors reported by us and routines below us, and return NULL
3870 	 * on an error.
3871 	 */
3872 	if (setjmp(cstate->top_ctx))
3873 		return (NULL);
3874 
3875 	/*
3876 	 * Check whether this is an LLC frame.
3877 	 */
3878 	b0 = gen_llc_internal(cstate);
3879 
3880 	/*
3881 	 * Now compare the low-order 2 bit of the control byte against
3882 	 * the appropriate value for U frames.
3883 	 */
3884 	b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, LLC_U_FMT, 0x03);
3885 	gen_and(b0, b1);
3886 	return b1;
3887 }
3888 
3889 struct block *
3890 gen_llc_s_subtype(compiler_state_t *cstate, bpf_u_int32 subtype)
3891 {
3892 	struct block *b0, *b1;
3893 
3894 	/*
3895 	 * Catch errors reported by us and routines below us, and return NULL
3896 	 * on an error.
3897 	 */
3898 	if (setjmp(cstate->top_ctx))
3899 		return (NULL);
3900 
3901 	/*
3902 	 * Check whether this is an LLC frame.
3903 	 */
3904 	b0 = gen_llc_internal(cstate);
3905 
3906 	/*
3907 	 * Now check for an S frame with the appropriate type.
3908 	 */
3909 	b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, subtype, LLC_S_CMD_MASK);
3910 	gen_and(b0, b1);
3911 	return b1;
3912 }
3913 
3914 struct block *
3915 gen_llc_u_subtype(compiler_state_t *cstate, bpf_u_int32 subtype)
3916 {
3917 	struct block *b0, *b1;
3918 
3919 	/*
3920 	 * Catch errors reported by us and routines below us, and return NULL
3921 	 * on an error.
3922 	 */
3923 	if (setjmp(cstate->top_ctx))
3924 		return (NULL);
3925 
3926 	/*
3927 	 * Check whether this is an LLC frame.
3928 	 */
3929 	b0 = gen_llc_internal(cstate);
3930 
3931 	/*
3932 	 * Now check for a U frame with the appropriate type.
3933 	 */
3934 	b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, subtype, LLC_U_CMD_MASK);
3935 	gen_and(b0, b1);
3936 	return b1;
3937 }
3938 
3939 /*
3940  * Generate code to match a particular packet type, for link-layer types
3941  * using 802.2 LLC headers.
3942  *
3943  * This is *NOT* used for Ethernet; "gen_ether_linktype()" is used
3944  * for that - it handles the D/I/X Ethernet vs. 802.3+802.2 issues.
3945  *
3946  * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
3947  * value, if <= ETHERMTU.  We use that to determine whether to
3948  * match the DSAP or both DSAP and LSAP or to check the OUI and
3949  * protocol ID in a SNAP header.
3950  */
3951 static struct block *
3952 gen_llc_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
3953 {
3954 	/*
3955 	 * XXX - handle token-ring variable-length header.
3956 	 */
3957 	switch (ll_proto) {
3958 
3959 	case LLCSAP_IP:
3960 	case LLCSAP_ISONS:
3961 	case LLCSAP_NETBEUI:
3962 		/*
3963 		 * XXX - should we check both the DSAP and the
3964 		 * SSAP, like this, or should we check just the
3965 		 * DSAP, as we do for other SAP values?
3966 		 */
3967 		return gen_cmp(cstate, OR_LLC, 0, BPF_H, (bpf_u_int32)
3968 			     ((ll_proto << 8) | ll_proto));
3969 
3970 	case LLCSAP_IPX:
3971 		/*
3972 		 * XXX - are there ever SNAP frames for IPX on
3973 		 * non-Ethernet 802.x networks?
3974 		 */
3975 		return gen_cmp(cstate, OR_LLC, 0, BPF_B, LLCSAP_IPX);
3976 
3977 	case ETHERTYPE_ATALK:
3978 		/*
3979 		 * 802.2-encapsulated ETHERTYPE_ATALK packets are
3980 		 * SNAP packets with an organization code of
3981 		 * 0x080007 (Apple, for Appletalk) and a protocol
3982 		 * type of ETHERTYPE_ATALK (Appletalk).
3983 		 *
3984 		 * XXX - check for an organization code of
3985 		 * encapsulated Ethernet as well?
3986 		 */
3987 		return gen_snap(cstate, 0x080007, ETHERTYPE_ATALK);
3988 
3989 	default:
3990 		/*
3991 		 * XXX - we don't have to check for IPX 802.3
3992 		 * here, but should we check for the IPX Ethertype?
3993 		 */
3994 		if (ll_proto <= ETHERMTU) {
3995 			/*
3996 			 * This is an LLC SAP value, so check
3997 			 * the DSAP.
3998 			 */
3999 			return gen_cmp(cstate, OR_LLC, 0, BPF_B, ll_proto);
4000 		} else {
4001 			/*
4002 			 * This is an Ethernet type; we assume that it's
4003 			 * unlikely that it'll appear in the right place
4004 			 * at random, and therefore check only the
4005 			 * location that would hold the Ethernet type
4006 			 * in a SNAP frame with an organization code of
4007 			 * 0x000000 (encapsulated Ethernet).
4008 			 *
4009 			 * XXX - if we were to check for the SNAP DSAP and
4010 			 * LSAP, as per XXX, and were also to check for an
4011 			 * organization code of 0x000000 (encapsulated
4012 			 * Ethernet), we'd do
4013 			 *
4014 			 *	return gen_snap(cstate, 0x000000, ll_proto);
4015 			 *
4016 			 * here; for now, we don't, as per the above.
4017 			 * I don't know whether it's worth the extra CPU
4018 			 * time to do the right check or not.
4019 			 */
4020 			return gen_cmp(cstate, OR_LLC, 6, BPF_H, ll_proto);
4021 		}
4022 	}
4023 }
4024 
4025 static struct block *
4026 gen_hostop(compiler_state_t *cstate, bpf_u_int32 addr, bpf_u_int32 mask,
4027     int dir, bpf_u_int32 ll_proto, u_int src_off, u_int dst_off)
4028 {
4029 	struct block *b0, *b1;
4030 	u_int offset;
4031 
4032 	switch (dir) {
4033 
4034 	case Q_SRC:
4035 		offset = src_off;
4036 		break;
4037 
4038 	case Q_DST:
4039 		offset = dst_off;
4040 		break;
4041 
4042 	case Q_AND:
4043 		b0 = gen_hostop(cstate, addr, mask, Q_SRC, ll_proto, src_off, dst_off);
4044 		b1 = gen_hostop(cstate, addr, mask, Q_DST, ll_proto, src_off, dst_off);
4045 		gen_and(b0, b1);
4046 		return b1;
4047 
4048 	case Q_DEFAULT:
4049 	case Q_OR:
4050 		b0 = gen_hostop(cstate, addr, mask, Q_SRC, ll_proto, src_off, dst_off);
4051 		b1 = gen_hostop(cstate, addr, mask, Q_DST, ll_proto, src_off, dst_off);
4052 		gen_or(b0, b1);
4053 		return b1;
4054 
4055 	case Q_ADDR1:
4056 		bpf_error(cstate, "'addr1' and 'address1' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4057 		/*NOTREACHED*/
4058 
4059 	case Q_ADDR2:
4060 		bpf_error(cstate, "'addr2' and 'address2' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4061 		/*NOTREACHED*/
4062 
4063 	case Q_ADDR3:
4064 		bpf_error(cstate, "'addr3' and 'address3' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4065 		/*NOTREACHED*/
4066 
4067 	case Q_ADDR4:
4068 		bpf_error(cstate, "'addr4' and 'address4' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4069 		/*NOTREACHED*/
4070 
4071 	case Q_RA:
4072 		bpf_error(cstate, "'ra' is not a valid qualifier for addresses other than 802.11 MAC addresses");
4073 		/*NOTREACHED*/
4074 
4075 	case Q_TA:
4076 		bpf_error(cstate, "'ta' is not a valid qualifier for addresses other than 802.11 MAC addresses");
4077 		/*NOTREACHED*/
4078 
4079 	default:
4080 		abort();
4081 		/*NOTREACHED*/
4082 	}
4083 	b0 = gen_linktype(cstate, ll_proto);
4084 	b1 = gen_mcmp(cstate, OR_LINKPL, offset, BPF_W, addr, mask);
4085 	gen_and(b0, b1);
4086 	return b1;
4087 }
4088 
4089 #ifdef INET6
4090 static struct block *
4091 gen_hostop6(compiler_state_t *cstate, struct in6_addr *addr,
4092     struct in6_addr *mask, int dir, bpf_u_int32 ll_proto, u_int src_off,
4093     u_int dst_off)
4094 {
4095 	struct block *b0, *b1;
4096 	u_int offset;
4097 	/*
4098 	 * Code below needs to access four separate 32-bit parts of the 128-bit
4099 	 * IPv6 address and mask.  In some OSes this is as simple as using the
4100 	 * s6_addr32 pseudo-member of struct in6_addr, which contains a union of
4101 	 * 8-, 16- and 32-bit arrays.  In other OSes this is not the case, as
4102 	 * far as libpcap sees it.  Hence copy the data before use to avoid
4103 	 * potential unaligned memory access and the associated compiler
4104 	 * warnings (whether genuine or not).
4105 	 */
4106 	bpf_u_int32 a[4], m[4];
4107 
4108 	switch (dir) {
4109 
4110 	case Q_SRC:
4111 		offset = src_off;
4112 		break;
4113 
4114 	case Q_DST:
4115 		offset = dst_off;
4116 		break;
4117 
4118 	case Q_AND:
4119 		b0 = gen_hostop6(cstate, addr, mask, Q_SRC, ll_proto, src_off, dst_off);
4120 		b1 = gen_hostop6(cstate, addr, mask, Q_DST, ll_proto, src_off, dst_off);
4121 		gen_and(b0, b1);
4122 		return b1;
4123 
4124 	case Q_DEFAULT:
4125 	case Q_OR:
4126 		b0 = gen_hostop6(cstate, addr, mask, Q_SRC, ll_proto, src_off, dst_off);
4127 		b1 = gen_hostop6(cstate, addr, mask, Q_DST, ll_proto, src_off, dst_off);
4128 		gen_or(b0, b1);
4129 		return b1;
4130 
4131 	case Q_ADDR1:
4132 		bpf_error(cstate, "'addr1' and 'address1' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4133 		/*NOTREACHED*/
4134 
4135 	case Q_ADDR2:
4136 		bpf_error(cstate, "'addr2' and 'address2' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4137 		/*NOTREACHED*/
4138 
4139 	case Q_ADDR3:
4140 		bpf_error(cstate, "'addr3' and 'address3' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4141 		/*NOTREACHED*/
4142 
4143 	case Q_ADDR4:
4144 		bpf_error(cstate, "'addr4' and 'address4' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4145 		/*NOTREACHED*/
4146 
4147 	case Q_RA:
4148 		bpf_error(cstate, "'ra' is not a valid qualifier for addresses other than 802.11 MAC addresses");
4149 		/*NOTREACHED*/
4150 
4151 	case Q_TA:
4152 		bpf_error(cstate, "'ta' is not a valid qualifier for addresses other than 802.11 MAC addresses");
4153 		/*NOTREACHED*/
4154 
4155 	default:
4156 		abort();
4157 		/*NOTREACHED*/
4158 	}
4159 	/* this order is important */
4160 	memcpy(a, addr, sizeof(a));
4161 	memcpy(m, mask, sizeof(m));
4162 	b1 = gen_mcmp(cstate, OR_LINKPL, offset + 12, BPF_W, ntohl(a[3]), ntohl(m[3]));
4163 	b0 = gen_mcmp(cstate, OR_LINKPL, offset + 8, BPF_W, ntohl(a[2]), ntohl(m[2]));
4164 	gen_and(b0, b1);
4165 	b0 = gen_mcmp(cstate, OR_LINKPL, offset + 4, BPF_W, ntohl(a[1]), ntohl(m[1]));
4166 	gen_and(b0, b1);
4167 	b0 = gen_mcmp(cstate, OR_LINKPL, offset + 0, BPF_W, ntohl(a[0]), ntohl(m[0]));
4168 	gen_and(b0, b1);
4169 	b0 = gen_linktype(cstate, ll_proto);
4170 	gen_and(b0, b1);
4171 	return b1;
4172 }
4173 #endif
4174 
4175 static struct block *
4176 gen_ehostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
4177 {
4178 	register struct block *b0, *b1;
4179 
4180 	switch (dir) {
4181 	case Q_SRC:
4182 		return gen_bcmp(cstate, OR_LINKHDR, 6, 6, eaddr);
4183 
4184 	case Q_DST:
4185 		return gen_bcmp(cstate, OR_LINKHDR, 0, 6, eaddr);
4186 
4187 	case Q_AND:
4188 		b0 = gen_ehostop(cstate, eaddr, Q_SRC);
4189 		b1 = gen_ehostop(cstate, eaddr, Q_DST);
4190 		gen_and(b0, b1);
4191 		return b1;
4192 
4193 	case Q_DEFAULT:
4194 	case Q_OR:
4195 		b0 = gen_ehostop(cstate, eaddr, Q_SRC);
4196 		b1 = gen_ehostop(cstate, eaddr, Q_DST);
4197 		gen_or(b0, b1);
4198 		return b1;
4199 
4200 	case Q_ADDR1:
4201 		bpf_error(cstate, "'addr1' and 'address1' are only supported on 802.11 with 802.11 headers");
4202 		/*NOTREACHED*/
4203 
4204 	case Q_ADDR2:
4205 		bpf_error(cstate, "'addr2' and 'address2' are only supported on 802.11 with 802.11 headers");
4206 		/*NOTREACHED*/
4207 
4208 	case Q_ADDR3:
4209 		bpf_error(cstate, "'addr3' and 'address3' are only supported on 802.11 with 802.11 headers");
4210 		/*NOTREACHED*/
4211 
4212 	case Q_ADDR4:
4213 		bpf_error(cstate, "'addr4' and 'address4' are only supported on 802.11 with 802.11 headers");
4214 		/*NOTREACHED*/
4215 
4216 	case Q_RA:
4217 		bpf_error(cstate, "'ra' is only supported on 802.11 with 802.11 headers");
4218 		/*NOTREACHED*/
4219 
4220 	case Q_TA:
4221 		bpf_error(cstate, "'ta' is only supported on 802.11 with 802.11 headers");
4222 		/*NOTREACHED*/
4223 	}
4224 	abort();
4225 	/*NOTREACHED*/
4226 }
4227 
4228 /*
4229  * Like gen_ehostop, but for DLT_FDDI
4230  */
4231 static struct block *
4232 gen_fhostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
4233 {
4234 	struct block *b0, *b1;
4235 
4236 	switch (dir) {
4237 	case Q_SRC:
4238 		return gen_bcmp(cstate, OR_LINKHDR, 6 + 1 + cstate->pcap_fddipad, 6, eaddr);
4239 
4240 	case Q_DST:
4241 		return gen_bcmp(cstate, OR_LINKHDR, 0 + 1 + cstate->pcap_fddipad, 6, eaddr);
4242 
4243 	case Q_AND:
4244 		b0 = gen_fhostop(cstate, eaddr, Q_SRC);
4245 		b1 = gen_fhostop(cstate, eaddr, Q_DST);
4246 		gen_and(b0, b1);
4247 		return b1;
4248 
4249 	case Q_DEFAULT:
4250 	case Q_OR:
4251 		b0 = gen_fhostop(cstate, eaddr, Q_SRC);
4252 		b1 = gen_fhostop(cstate, eaddr, Q_DST);
4253 		gen_or(b0, b1);
4254 		return b1;
4255 
4256 	case Q_ADDR1:
4257 		bpf_error(cstate, "'addr1' and 'address1' are only supported on 802.11");
4258 		/*NOTREACHED*/
4259 
4260 	case Q_ADDR2:
4261 		bpf_error(cstate, "'addr2' and 'address2' are only supported on 802.11");
4262 		/*NOTREACHED*/
4263 
4264 	case Q_ADDR3:
4265 		bpf_error(cstate, "'addr3' and 'address3' are only supported on 802.11");
4266 		/*NOTREACHED*/
4267 
4268 	case Q_ADDR4:
4269 		bpf_error(cstate, "'addr4' and 'address4' are only supported on 802.11");
4270 		/*NOTREACHED*/
4271 
4272 	case Q_RA:
4273 		bpf_error(cstate, "'ra' is only supported on 802.11");
4274 		/*NOTREACHED*/
4275 
4276 	case Q_TA:
4277 		bpf_error(cstate, "'ta' is only supported on 802.11");
4278 		/*NOTREACHED*/
4279 	}
4280 	abort();
4281 	/*NOTREACHED*/
4282 }
4283 
4284 /*
4285  * Like gen_ehostop, but for DLT_IEEE802 (Token Ring)
4286  */
4287 static struct block *
4288 gen_thostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
4289 {
4290 	register struct block *b0, *b1;
4291 
4292 	switch (dir) {
4293 	case Q_SRC:
4294 		return gen_bcmp(cstate, OR_LINKHDR, 8, 6, eaddr);
4295 
4296 	case Q_DST:
4297 		return gen_bcmp(cstate, OR_LINKHDR, 2, 6, eaddr);
4298 
4299 	case Q_AND:
4300 		b0 = gen_thostop(cstate, eaddr, Q_SRC);
4301 		b1 = gen_thostop(cstate, eaddr, Q_DST);
4302 		gen_and(b0, b1);
4303 		return b1;
4304 
4305 	case Q_DEFAULT:
4306 	case Q_OR:
4307 		b0 = gen_thostop(cstate, eaddr, Q_SRC);
4308 		b1 = gen_thostop(cstate, eaddr, Q_DST);
4309 		gen_or(b0, b1);
4310 		return b1;
4311 
4312 	case Q_ADDR1:
4313 		bpf_error(cstate, "'addr1' and 'address1' are only supported on 802.11");
4314 		/*NOTREACHED*/
4315 
4316 	case Q_ADDR2:
4317 		bpf_error(cstate, "'addr2' and 'address2' are only supported on 802.11");
4318 		/*NOTREACHED*/
4319 
4320 	case Q_ADDR3:
4321 		bpf_error(cstate, "'addr3' and 'address3' are only supported on 802.11");
4322 		/*NOTREACHED*/
4323 
4324 	case Q_ADDR4:
4325 		bpf_error(cstate, "'addr4' and 'address4' are only supported on 802.11");
4326 		/*NOTREACHED*/
4327 
4328 	case Q_RA:
4329 		bpf_error(cstate, "'ra' is only supported on 802.11");
4330 		/*NOTREACHED*/
4331 
4332 	case Q_TA:
4333 		bpf_error(cstate, "'ta' is only supported on 802.11");
4334 		/*NOTREACHED*/
4335 	}
4336 	abort();
4337 	/*NOTREACHED*/
4338 }
4339 
4340 /*
4341  * Like gen_ehostop, but for DLT_IEEE802_11 (802.11 wireless LAN) and
4342  * various 802.11 + radio headers.
4343  */
4344 static struct block *
4345 gen_wlanhostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
4346 {
4347 	register struct block *b0, *b1, *b2;
4348 	register struct slist *s;
4349 
4350 #ifdef ENABLE_WLAN_FILTERING_PATCH
4351 	/*
4352 	 * TODO GV 20070613
4353 	 * We need to disable the optimizer because the optimizer is buggy
4354 	 * and wipes out some LD instructions generated by the below
4355 	 * code to validate the Frame Control bits
4356 	 */
4357 	cstate->no_optimize = 1;
4358 #endif /* ENABLE_WLAN_FILTERING_PATCH */
4359 
4360 	switch (dir) {
4361 	case Q_SRC:
4362 		/*
4363 		 * Oh, yuk.
4364 		 *
4365 		 *	For control frames, there is no SA.
4366 		 *
4367 		 *	For management frames, SA is at an
4368 		 *	offset of 10 from the beginning of
4369 		 *	the packet.
4370 		 *
4371 		 *	For data frames, SA is at an offset
4372 		 *	of 10 from the beginning of the packet
4373 		 *	if From DS is clear, at an offset of
4374 		 *	16 from the beginning of the packet
4375 		 *	if From DS is set and To DS is clear,
4376 		 *	and an offset of 24 from the beginning
4377 		 *	of the packet if From DS is set and To DS
4378 		 *	is set.
4379 		 */
4380 
4381 		/*
4382 		 * Generate the tests to be done for data frames
4383 		 * with From DS set.
4384 		 *
4385 		 * First, check for To DS set, i.e. check "link[1] & 0x01".
4386 		 */
4387 		s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4388 		b1 = new_block(cstate, JMP(BPF_JSET));
4389 		b1->s.k = 0x01;	/* To DS */
4390 		b1->stmts = s;
4391 
4392 		/*
4393 		 * If To DS is set, the SA is at 24.
4394 		 */
4395 		b0 = gen_bcmp(cstate, OR_LINKHDR, 24, 6, eaddr);
4396 		gen_and(b1, b0);
4397 
4398 		/*
4399 		 * Now, check for To DS not set, i.e. check
4400 		 * "!(link[1] & 0x01)".
4401 		 */
4402 		s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4403 		b2 = new_block(cstate, JMP(BPF_JSET));
4404 		b2->s.k = 0x01;	/* To DS */
4405 		b2->stmts = s;
4406 		gen_not(b2);
4407 
4408 		/*
4409 		 * If To DS is not set, the SA is at 16.
4410 		 */
4411 		b1 = gen_bcmp(cstate, OR_LINKHDR, 16, 6, eaddr);
4412 		gen_and(b2, b1);
4413 
4414 		/*
4415 		 * Now OR together the last two checks.  That gives
4416 		 * the complete set of checks for data frames with
4417 		 * From DS set.
4418 		 */
4419 		gen_or(b1, b0);
4420 
4421 		/*
4422 		 * Now check for From DS being set, and AND that with
4423 		 * the ORed-together checks.
4424 		 */
4425 		s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4426 		b1 = new_block(cstate, JMP(BPF_JSET));
4427 		b1->s.k = 0x02;	/* From DS */
4428 		b1->stmts = s;
4429 		gen_and(b1, b0);
4430 
4431 		/*
4432 		 * Now check for data frames with From DS not set.
4433 		 */
4434 		s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4435 		b2 = new_block(cstate, JMP(BPF_JSET));
4436 		b2->s.k = 0x02;	/* From DS */
4437 		b2->stmts = s;
4438 		gen_not(b2);
4439 
4440 		/*
4441 		 * If From DS isn't set, the SA is at 10.
4442 		 */
4443 		b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4444 		gen_and(b2, b1);
4445 
4446 		/*
4447 		 * Now OR together the checks for data frames with
4448 		 * From DS not set and for data frames with From DS
4449 		 * set; that gives the checks done for data frames.
4450 		 */
4451 		gen_or(b1, b0);
4452 
4453 		/*
4454 		 * Now check for a data frame.
4455 		 * I.e, check "link[0] & 0x08".
4456 		 */
4457 		s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4458 		b1 = new_block(cstate, JMP(BPF_JSET));
4459 		b1->s.k = 0x08;
4460 		b1->stmts = s;
4461 
4462 		/*
4463 		 * AND that with the checks done for data frames.
4464 		 */
4465 		gen_and(b1, b0);
4466 
4467 		/*
4468 		 * If the high-order bit of the type value is 0, this
4469 		 * is a management frame.
4470 		 * I.e, check "!(link[0] & 0x08)".
4471 		 */
4472 		s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4473 		b2 = new_block(cstate, JMP(BPF_JSET));
4474 		b2->s.k = 0x08;
4475 		b2->stmts = s;
4476 		gen_not(b2);
4477 
4478 		/*
4479 		 * For management frames, the SA is at 10.
4480 		 */
4481 		b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4482 		gen_and(b2, b1);
4483 
4484 		/*
4485 		 * OR that with the checks done for data frames.
4486 		 * That gives the checks done for management and
4487 		 * data frames.
4488 		 */
4489 		gen_or(b1, b0);
4490 
4491 		/*
4492 		 * If the low-order bit of the type value is 1,
4493 		 * this is either a control frame or a frame
4494 		 * with a reserved type, and thus not a
4495 		 * frame with an SA.
4496 		 *
4497 		 * I.e., check "!(link[0] & 0x04)".
4498 		 */
4499 		s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4500 		b1 = new_block(cstate, JMP(BPF_JSET));
4501 		b1->s.k = 0x04;
4502 		b1->stmts = s;
4503 		gen_not(b1);
4504 
4505 		/*
4506 		 * AND that with the checks for data and management
4507 		 * frames.
4508 		 */
4509 		gen_and(b1, b0);
4510 		return b0;
4511 
4512 	case Q_DST:
4513 		/*
4514 		 * Oh, yuk.
4515 		 *
4516 		 *	For control frames, there is no DA.
4517 		 *
4518 		 *	For management frames, DA is at an
4519 		 *	offset of 4 from the beginning of
4520 		 *	the packet.
4521 		 *
4522 		 *	For data frames, DA is at an offset
4523 		 *	of 4 from the beginning of the packet
4524 		 *	if To DS is clear and at an offset of
4525 		 *	16 from the beginning of the packet
4526 		 *	if To DS is set.
4527 		 */
4528 
4529 		/*
4530 		 * Generate the tests to be done for data frames.
4531 		 *
4532 		 * First, check for To DS set, i.e. "link[1] & 0x01".
4533 		 */
4534 		s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4535 		b1 = new_block(cstate, JMP(BPF_JSET));
4536 		b1->s.k = 0x01;	/* To DS */
4537 		b1->stmts = s;
4538 
4539 		/*
4540 		 * If To DS is set, the DA is at 16.
4541 		 */
4542 		b0 = gen_bcmp(cstate, OR_LINKHDR, 16, 6, eaddr);
4543 		gen_and(b1, b0);
4544 
4545 		/*
4546 		 * Now, check for To DS not set, i.e. check
4547 		 * "!(link[1] & 0x01)".
4548 		 */
4549 		s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4550 		b2 = new_block(cstate, JMP(BPF_JSET));
4551 		b2->s.k = 0x01;	/* To DS */
4552 		b2->stmts = s;
4553 		gen_not(b2);
4554 
4555 		/*
4556 		 * If To DS is not set, the DA is at 4.
4557 		 */
4558 		b1 = gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr);
4559 		gen_and(b2, b1);
4560 
4561 		/*
4562 		 * Now OR together the last two checks.  That gives
4563 		 * the complete set of checks for data frames.
4564 		 */
4565 		gen_or(b1, b0);
4566 
4567 		/*
4568 		 * Now check for a data frame.
4569 		 * I.e, check "link[0] & 0x08".
4570 		 */
4571 		s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4572 		b1 = new_block(cstate, JMP(BPF_JSET));
4573 		b1->s.k = 0x08;
4574 		b1->stmts = s;
4575 
4576 		/*
4577 		 * AND that with the checks done for data frames.
4578 		 */
4579 		gen_and(b1, b0);
4580 
4581 		/*
4582 		 * If the high-order bit of the type value is 0, this
4583 		 * is a management frame.
4584 		 * I.e, check "!(link[0] & 0x08)".
4585 		 */
4586 		s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4587 		b2 = new_block(cstate, JMP(BPF_JSET));
4588 		b2->s.k = 0x08;
4589 		b2->stmts = s;
4590 		gen_not(b2);
4591 
4592 		/*
4593 		 * For management frames, the DA is at 4.
4594 		 */
4595 		b1 = gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr);
4596 		gen_and(b2, b1);
4597 
4598 		/*
4599 		 * OR that with the checks done for data frames.
4600 		 * That gives the checks done for management and
4601 		 * data frames.
4602 		 */
4603 		gen_or(b1, b0);
4604 
4605 		/*
4606 		 * If the low-order bit of the type value is 1,
4607 		 * this is either a control frame or a frame
4608 		 * with a reserved type, and thus not a
4609 		 * frame with an SA.
4610 		 *
4611 		 * I.e., check "!(link[0] & 0x04)".
4612 		 */
4613 		s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4614 		b1 = new_block(cstate, JMP(BPF_JSET));
4615 		b1->s.k = 0x04;
4616 		b1->stmts = s;
4617 		gen_not(b1);
4618 
4619 		/*
4620 		 * AND that with the checks for data and management
4621 		 * frames.
4622 		 */
4623 		gen_and(b1, b0);
4624 		return b0;
4625 
4626 	case Q_AND:
4627 		b0 = gen_wlanhostop(cstate, eaddr, Q_SRC);
4628 		b1 = gen_wlanhostop(cstate, eaddr, Q_DST);
4629 		gen_and(b0, b1);
4630 		return b1;
4631 
4632 	case Q_DEFAULT:
4633 	case Q_OR:
4634 		b0 = gen_wlanhostop(cstate, eaddr, Q_SRC);
4635 		b1 = gen_wlanhostop(cstate, eaddr, Q_DST);
4636 		gen_or(b0, b1);
4637 		return b1;
4638 
4639 	/*
4640 	 * XXX - add BSSID keyword?
4641 	 */
4642 	case Q_ADDR1:
4643 		return (gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr));
4644 
4645 	case Q_ADDR2:
4646 		/*
4647 		 * Not present in CTS or ACK control frames.
4648 		 */
4649 		b0 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4650 			IEEE80211_FC0_TYPE_MASK);
4651 		gen_not(b0);
4652 		b1 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_CTS,
4653 			IEEE80211_FC0_SUBTYPE_MASK);
4654 		gen_not(b1);
4655 		b2 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_ACK,
4656 			IEEE80211_FC0_SUBTYPE_MASK);
4657 		gen_not(b2);
4658 		gen_and(b1, b2);
4659 		gen_or(b0, b2);
4660 		b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4661 		gen_and(b2, b1);
4662 		return b1;
4663 
4664 	case Q_ADDR3:
4665 		/*
4666 		 * Not present in control frames.
4667 		 */
4668 		b0 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4669 			IEEE80211_FC0_TYPE_MASK);
4670 		gen_not(b0);
4671 		b1 = gen_bcmp(cstate, OR_LINKHDR, 16, 6, eaddr);
4672 		gen_and(b0, b1);
4673 		return b1;
4674 
4675 	case Q_ADDR4:
4676 		/*
4677 		 * Present only if the direction mask has both "From DS"
4678 		 * and "To DS" set.  Neither control frames nor management
4679 		 * frames should have both of those set, so we don't
4680 		 * check the frame type.
4681 		 */
4682 		b0 = gen_mcmp(cstate, OR_LINKHDR, 1, BPF_B,
4683 			IEEE80211_FC1_DIR_DSTODS, IEEE80211_FC1_DIR_MASK);
4684 		b1 = gen_bcmp(cstate, OR_LINKHDR, 24, 6, eaddr);
4685 		gen_and(b0, b1);
4686 		return b1;
4687 
4688 	case Q_RA:
4689 		/*
4690 		 * Not present in management frames; addr1 in other
4691 		 * frames.
4692 		 */
4693 
4694 		/*
4695 		 * If the high-order bit of the type value is 0, this
4696 		 * is a management frame.
4697 		 * I.e, check "(link[0] & 0x08)".
4698 		 */
4699 		s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4700 		b1 = new_block(cstate, JMP(BPF_JSET));
4701 		b1->s.k = 0x08;
4702 		b1->stmts = s;
4703 
4704 		/*
4705 		 * Check addr1.
4706 		 */
4707 		b0 = gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr);
4708 
4709 		/*
4710 		 * AND that with the check of addr1.
4711 		 */
4712 		gen_and(b1, b0);
4713 		return (b0);
4714 
4715 	case Q_TA:
4716 		/*
4717 		 * Not present in management frames; addr2, if present,
4718 		 * in other frames.
4719 		 */
4720 
4721 		/*
4722 		 * Not present in CTS or ACK control frames.
4723 		 */
4724 		b0 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4725 			IEEE80211_FC0_TYPE_MASK);
4726 		gen_not(b0);
4727 		b1 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_CTS,
4728 			IEEE80211_FC0_SUBTYPE_MASK);
4729 		gen_not(b1);
4730 		b2 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_ACK,
4731 			IEEE80211_FC0_SUBTYPE_MASK);
4732 		gen_not(b2);
4733 		gen_and(b1, b2);
4734 		gen_or(b0, b2);
4735 
4736 		/*
4737 		 * If the high-order bit of the type value is 0, this
4738 		 * is a management frame.
4739 		 * I.e, check "(link[0] & 0x08)".
4740 		 */
4741 		s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4742 		b1 = new_block(cstate, JMP(BPF_JSET));
4743 		b1->s.k = 0x08;
4744 		b1->stmts = s;
4745 
4746 		/*
4747 		 * AND that with the check for frames other than
4748 		 * CTS and ACK frames.
4749 		 */
4750 		gen_and(b1, b2);
4751 
4752 		/*
4753 		 * Check addr2.
4754 		 */
4755 		b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4756 		gen_and(b2, b1);
4757 		return b1;
4758 	}
4759 	abort();
4760 	/*NOTREACHED*/
4761 }
4762 
4763 /*
4764  * Like gen_ehostop, but for RFC 2625 IP-over-Fibre-Channel.
4765  * (We assume that the addresses are IEEE 48-bit MAC addresses,
4766  * as the RFC states.)
4767  */
4768 static struct block *
4769 gen_ipfchostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
4770 {
4771 	register struct block *b0, *b1;
4772 
4773 	switch (dir) {
4774 	case Q_SRC:
4775 		return gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4776 
4777 	case Q_DST:
4778 		return gen_bcmp(cstate, OR_LINKHDR, 2, 6, eaddr);
4779 
4780 	case Q_AND:
4781 		b0 = gen_ipfchostop(cstate, eaddr, Q_SRC);
4782 		b1 = gen_ipfchostop(cstate, eaddr, Q_DST);
4783 		gen_and(b0, b1);
4784 		return b1;
4785 
4786 	case Q_DEFAULT:
4787 	case Q_OR:
4788 		b0 = gen_ipfchostop(cstate, eaddr, Q_SRC);
4789 		b1 = gen_ipfchostop(cstate, eaddr, Q_DST);
4790 		gen_or(b0, b1);
4791 		return b1;
4792 
4793 	case Q_ADDR1:
4794 		bpf_error(cstate, "'addr1' and 'address1' are only supported on 802.11");
4795 		/*NOTREACHED*/
4796 
4797 	case Q_ADDR2:
4798 		bpf_error(cstate, "'addr2' and 'address2' are only supported on 802.11");
4799 		/*NOTREACHED*/
4800 
4801 	case Q_ADDR3:
4802 		bpf_error(cstate, "'addr3' and 'address3' are only supported on 802.11");
4803 		/*NOTREACHED*/
4804 
4805 	case Q_ADDR4:
4806 		bpf_error(cstate, "'addr4' and 'address4' are only supported on 802.11");
4807 		/*NOTREACHED*/
4808 
4809 	case Q_RA:
4810 		bpf_error(cstate, "'ra' is only supported on 802.11");
4811 		/*NOTREACHED*/
4812 
4813 	case Q_TA:
4814 		bpf_error(cstate, "'ta' is only supported on 802.11");
4815 		/*NOTREACHED*/
4816 	}
4817 	abort();
4818 	/*NOTREACHED*/
4819 }
4820 
4821 /*
4822  * This is quite tricky because there may be pad bytes in front of the
4823  * DECNET header, and then there are two possible data packet formats that
4824  * carry both src and dst addresses, plus 5 packet types in a format that
4825  * carries only the src node, plus 2 types that use a different format and
4826  * also carry just the src node.
4827  *
4828  * Yuck.
4829  *
4830  * Instead of doing those all right, we just look for data packets with
4831  * 0 or 1 bytes of padding.  If you want to look at other packets, that
4832  * will require a lot more hacking.
4833  *
4834  * To add support for filtering on DECNET "areas" (network numbers)
4835  * one would want to add a "mask" argument to this routine.  That would
4836  * make the filter even more inefficient, although one could be clever
4837  * and not generate masking instructions if the mask is 0xFFFF.
4838  */
4839 static struct block *
4840 gen_dnhostop(compiler_state_t *cstate, bpf_u_int32 addr, int dir)
4841 {
4842 	struct block *b0, *b1, *b2, *tmp;
4843 	u_int offset_lh;	/* offset if long header is received */
4844 	u_int offset_sh;	/* offset if short header is received */
4845 
4846 	switch (dir) {
4847 
4848 	case Q_DST:
4849 		offset_sh = 1;	/* follows flags */
4850 		offset_lh = 7;	/* flgs,darea,dsubarea,HIORD */
4851 		break;
4852 
4853 	case Q_SRC:
4854 		offset_sh = 3;	/* follows flags, dstnode */
4855 		offset_lh = 15;	/* flgs,darea,dsubarea,did,sarea,ssub,HIORD */
4856 		break;
4857 
4858 	case Q_AND:
4859 		/* Inefficient because we do our Calvinball dance twice */
4860 		b0 = gen_dnhostop(cstate, addr, Q_SRC);
4861 		b1 = gen_dnhostop(cstate, addr, Q_DST);
4862 		gen_and(b0, b1);
4863 		return b1;
4864 
4865 	case Q_DEFAULT:
4866 	case Q_OR:
4867 		/* Inefficient because we do our Calvinball dance twice */
4868 		b0 = gen_dnhostop(cstate, addr, Q_SRC);
4869 		b1 = gen_dnhostop(cstate, addr, Q_DST);
4870 		gen_or(b0, b1);
4871 		return b1;
4872 
4873 	case Q_ADDR1:
4874 		bpf_error(cstate, "'addr1' and 'address1' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4875 		/*NOTREACHED*/
4876 
4877 	case Q_ADDR2:
4878 		bpf_error(cstate, "'addr2' and 'address2' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4879 		/*NOTREACHED*/
4880 
4881 	case Q_ADDR3:
4882 		bpf_error(cstate, "'addr3' and 'address3' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4883 		/*NOTREACHED*/
4884 
4885 	case Q_ADDR4:
4886 		bpf_error(cstate, "'addr4' and 'address4' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4887 		/*NOTREACHED*/
4888 
4889 	case Q_RA:
4890 		bpf_error(cstate, "'ra' is not a valid qualifier for addresses other than 802.11 MAC addresses");
4891 		/*NOTREACHED*/
4892 
4893 	case Q_TA:
4894 		bpf_error(cstate, "'ta' is not a valid qualifier for addresses other than 802.11 MAC addresses");
4895 		/*NOTREACHED*/
4896 
4897 	default:
4898 		abort();
4899 		/*NOTREACHED*/
4900 	}
4901 	b0 = gen_linktype(cstate, ETHERTYPE_DN);
4902 	/* Check for pad = 1, long header case */
4903 	tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_H,
4904 	    (bpf_u_int32)ntohs(0x0681), (bpf_u_int32)ntohs(0x07FF));
4905 	b1 = gen_cmp(cstate, OR_LINKPL, 2 + 1 + offset_lh,
4906 	    BPF_H, (bpf_u_int32)ntohs((u_short)addr));
4907 	gen_and(tmp, b1);
4908 	/* Check for pad = 0, long header case */
4909 	tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_B, (bpf_u_int32)0x06,
4910 	    (bpf_u_int32)0x7);
4911 	b2 = gen_cmp(cstate, OR_LINKPL, 2 + offset_lh, BPF_H,
4912 	    (bpf_u_int32)ntohs((u_short)addr));
4913 	gen_and(tmp, b2);
4914 	gen_or(b2, b1);
4915 	/* Check for pad = 1, short header case */
4916 	tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_H,
4917 	    (bpf_u_int32)ntohs(0x0281), (bpf_u_int32)ntohs(0x07FF));
4918 	b2 = gen_cmp(cstate, OR_LINKPL, 2 + 1 + offset_sh, BPF_H,
4919 	    (bpf_u_int32)ntohs((u_short)addr));
4920 	gen_and(tmp, b2);
4921 	gen_or(b2, b1);
4922 	/* Check for pad = 0, short header case */
4923 	tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_B, (bpf_u_int32)0x02,
4924 	    (bpf_u_int32)0x7);
4925 	b2 = gen_cmp(cstate, OR_LINKPL, 2 + offset_sh, BPF_H,
4926 	    (bpf_u_int32)ntohs((u_short)addr));
4927 	gen_and(tmp, b2);
4928 	gen_or(b2, b1);
4929 
4930 	/* Combine with test for cstate->linktype */
4931 	gen_and(b0, b1);
4932 	return b1;
4933 }
4934 
4935 /*
4936  * Generate a check for IPv4 or IPv6 for MPLS-encapsulated packets;
4937  * test the bottom-of-stack bit, and then check the version number
4938  * field in the IP header.
4939  */
4940 static struct block *
4941 gen_mpls_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
4942 {
4943 	struct block *b0, *b1;
4944 
4945         switch (ll_proto) {
4946 
4947         case ETHERTYPE_IP:
4948                 /* match the bottom-of-stack bit */
4949                 b0 = gen_mcmp(cstate, OR_LINKPL, (u_int)-2, BPF_B, 0x01, 0x01);
4950                 /* match the IPv4 version number */
4951                 b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_B, 0x40, 0xf0);
4952                 gen_and(b0, b1);
4953                 return b1;
4954 
4955         case ETHERTYPE_IPV6:
4956                 /* match the bottom-of-stack bit */
4957                 b0 = gen_mcmp(cstate, OR_LINKPL, (u_int)-2, BPF_B, 0x01, 0x01);
4958                 /* match the IPv4 version number */
4959                 b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_B, 0x60, 0xf0);
4960                 gen_and(b0, b1);
4961                 return b1;
4962 
4963         default:
4964                /* FIXME add other L3 proto IDs */
4965                bpf_error(cstate, "unsupported protocol over mpls");
4966                /*NOTREACHED*/
4967         }
4968 }
4969 
4970 static struct block *
4971 gen_host(compiler_state_t *cstate, bpf_u_int32 addr, bpf_u_int32 mask,
4972     int proto, int dir, int type)
4973 {
4974 	struct block *b0, *b1;
4975 	const char *typestr;
4976 
4977 	if (type == Q_NET)
4978 		typestr = "net";
4979 	else
4980 		typestr = "host";
4981 
4982 	switch (proto) {
4983 
4984 	case Q_DEFAULT:
4985 		b0 = gen_host(cstate, addr, mask, Q_IP, dir, type);
4986 		/*
4987 		 * Only check for non-IPv4 addresses if we're not
4988 		 * checking MPLS-encapsulated packets.
4989 		 */
4990 		if (cstate->label_stack_depth == 0) {
4991 			b1 = gen_host(cstate, addr, mask, Q_ARP, dir, type);
4992 			gen_or(b0, b1);
4993 			b0 = gen_host(cstate, addr, mask, Q_RARP, dir, type);
4994 			gen_or(b1, b0);
4995 		}
4996 		return b0;
4997 
4998 	case Q_LINK:
4999 		bpf_error(cstate, "link-layer modifier applied to %s", typestr);
5000 
5001 	case Q_IP:
5002 		return gen_hostop(cstate, addr, mask, dir, ETHERTYPE_IP, 12, 16);
5003 
5004 	case Q_RARP:
5005 		return gen_hostop(cstate, addr, mask, dir, ETHERTYPE_REVARP, 14, 24);
5006 
5007 	case Q_ARP:
5008 		return gen_hostop(cstate, addr, mask, dir, ETHERTYPE_ARP, 14, 24);
5009 
5010 	case Q_SCTP:
5011 		bpf_error(cstate, "'sctp' modifier applied to %s", typestr);
5012 
5013 	case Q_TCP:
5014 		bpf_error(cstate, "'tcp' modifier applied to %s", typestr);
5015 
5016 	case Q_UDP:
5017 		bpf_error(cstate, "'udp' modifier applied to %s", typestr);
5018 
5019 	case Q_ICMP:
5020 		bpf_error(cstate, "'icmp' modifier applied to %s", typestr);
5021 
5022 	case Q_IGMP:
5023 		bpf_error(cstate, "'igmp' modifier applied to %s", typestr);
5024 
5025 	case Q_IGRP:
5026 		bpf_error(cstate, "'igrp' modifier applied to %s", typestr);
5027 
5028 	case Q_ATALK:
5029 		bpf_error(cstate, "AppleTalk host filtering not implemented");
5030 
5031 	case Q_DECNET:
5032 		return gen_dnhostop(cstate, addr, dir);
5033 
5034 	case Q_LAT:
5035 		bpf_error(cstate, "LAT host filtering not implemented");
5036 
5037 	case Q_SCA:
5038 		bpf_error(cstate, "SCA host filtering not implemented");
5039 
5040 	case Q_MOPRC:
5041 		bpf_error(cstate, "MOPRC host filtering not implemented");
5042 
5043 	case Q_MOPDL:
5044 		bpf_error(cstate, "MOPDL host filtering not implemented");
5045 
5046 	case Q_IPV6:
5047 		bpf_error(cstate, "'ip6' modifier applied to ip host");
5048 
5049 	case Q_ICMPV6:
5050 		bpf_error(cstate, "'icmp6' modifier applied to %s", typestr);
5051 
5052 	case Q_AH:
5053 		bpf_error(cstate, "'ah' modifier applied to %s", typestr);
5054 
5055 	case Q_ESP:
5056 		bpf_error(cstate, "'esp' modifier applied to %s", typestr);
5057 
5058 	case Q_PIM:
5059 		bpf_error(cstate, "'pim' modifier applied to %s", typestr);
5060 
5061 	case Q_VRRP:
5062 		bpf_error(cstate, "'vrrp' modifier applied to %s", typestr);
5063 
5064 	case Q_AARP:
5065 		bpf_error(cstate, "AARP host filtering not implemented");
5066 
5067 	case Q_ISO:
5068 		bpf_error(cstate, "ISO host filtering not implemented");
5069 
5070 	case Q_ESIS:
5071 		bpf_error(cstate, "'esis' modifier applied to %s", typestr);
5072 
5073 	case Q_ISIS:
5074 		bpf_error(cstate, "'isis' modifier applied to %s", typestr);
5075 
5076 	case Q_CLNP:
5077 		bpf_error(cstate, "'clnp' modifier applied to %s", typestr);
5078 
5079 	case Q_STP:
5080 		bpf_error(cstate, "'stp' modifier applied to %s", typestr);
5081 
5082 	case Q_IPX:
5083 		bpf_error(cstate, "IPX host filtering not implemented");
5084 
5085 	case Q_NETBEUI:
5086 		bpf_error(cstate, "'netbeui' modifier applied to %s", typestr);
5087 
5088 	case Q_ISIS_L1:
5089 		bpf_error(cstate, "'l1' modifier applied to %s", typestr);
5090 
5091 	case Q_ISIS_L2:
5092 		bpf_error(cstate, "'l2' modifier applied to %s", typestr);
5093 
5094 	case Q_ISIS_IIH:
5095 		bpf_error(cstate, "'iih' modifier applied to %s", typestr);
5096 
5097 	case Q_ISIS_SNP:
5098 		bpf_error(cstate, "'snp' modifier applied to %s", typestr);
5099 
5100 	case Q_ISIS_CSNP:
5101 		bpf_error(cstate, "'csnp' modifier applied to %s", typestr);
5102 
5103 	case Q_ISIS_PSNP:
5104 		bpf_error(cstate, "'psnp' modifier applied to %s", typestr);
5105 
5106 	case Q_ISIS_LSP:
5107 		bpf_error(cstate, "'lsp' modifier applied to %s", typestr);
5108 
5109 	case Q_RADIO:
5110 		bpf_error(cstate, "'radio' modifier applied to %s", typestr);
5111 
5112 	case Q_CARP:
5113 		bpf_error(cstate, "'carp' modifier applied to %s", typestr);
5114 
5115 	default:
5116 		abort();
5117 	}
5118 	/*NOTREACHED*/
5119 }
5120 
5121 #ifdef INET6
5122 static struct block *
5123 gen_host6(compiler_state_t *cstate, struct in6_addr *addr,
5124     struct in6_addr *mask, int proto, int dir, int type)
5125 {
5126 	const char *typestr;
5127 
5128 	if (type == Q_NET)
5129 		typestr = "net";
5130 	else
5131 		typestr = "host";
5132 
5133 	switch (proto) {
5134 
5135 	case Q_DEFAULT:
5136 		return gen_host6(cstate, addr, mask, Q_IPV6, dir, type);
5137 
5138 	case Q_LINK:
5139 		bpf_error(cstate, "link-layer modifier applied to ip6 %s", typestr);
5140 
5141 	case Q_IP:
5142 		bpf_error(cstate, "'ip' modifier applied to ip6 %s", typestr);
5143 
5144 	case Q_RARP:
5145 		bpf_error(cstate, "'rarp' modifier applied to ip6 %s", typestr);
5146 
5147 	case Q_ARP:
5148 		bpf_error(cstate, "'arp' modifier applied to ip6 %s", typestr);
5149 
5150 	case Q_SCTP:
5151 		bpf_error(cstate, "'sctp' modifier applied to ip6 %s", typestr);
5152 
5153 	case Q_TCP:
5154 		bpf_error(cstate, "'tcp' modifier applied to ip6 %s", typestr);
5155 
5156 	case Q_UDP:
5157 		bpf_error(cstate, "'udp' modifier applied to ip6 %s", typestr);
5158 
5159 	case Q_ICMP:
5160 		bpf_error(cstate, "'icmp' modifier applied to ip6 %s", typestr);
5161 
5162 	case Q_IGMP:
5163 		bpf_error(cstate, "'igmp' modifier applied to ip6 %s", typestr);
5164 
5165 	case Q_IGRP:
5166 		bpf_error(cstate, "'igrp' modifier applied to ip6 %s", typestr);
5167 
5168 	case Q_ATALK:
5169 		bpf_error(cstate, "AppleTalk modifier applied to ip6 %s", typestr);
5170 
5171 	case Q_DECNET:
5172 		bpf_error(cstate, "'decnet' modifier applied to ip6 %s", typestr);
5173 
5174 	case Q_LAT:
5175 		bpf_error(cstate, "'lat' modifier applied to ip6 %s", typestr);
5176 
5177 	case Q_SCA:
5178 		bpf_error(cstate, "'sca' modifier applied to ip6 %s", typestr);
5179 
5180 	case Q_MOPRC:
5181 		bpf_error(cstate, "'moprc' modifier applied to ip6 %s", typestr);
5182 
5183 	case Q_MOPDL:
5184 		bpf_error(cstate, "'mopdl' modifier applied to ip6 %s", typestr);
5185 
5186 	case Q_IPV6:
5187 		return gen_hostop6(cstate, addr, mask, dir, ETHERTYPE_IPV6, 8, 24);
5188 
5189 	case Q_ICMPV6:
5190 		bpf_error(cstate, "'icmp6' modifier applied to ip6 %s", typestr);
5191 
5192 	case Q_AH:
5193 		bpf_error(cstate, "'ah' modifier applied to ip6 %s", typestr);
5194 
5195 	case Q_ESP:
5196 		bpf_error(cstate, "'esp' modifier applied to ip6 %s", typestr);
5197 
5198 	case Q_PIM:
5199 		bpf_error(cstate, "'pim' modifier applied to ip6 %s", typestr);
5200 
5201 	case Q_VRRP:
5202 		bpf_error(cstate, "'vrrp' modifier applied to ip6 %s", typestr);
5203 
5204 	case Q_AARP:
5205 		bpf_error(cstate, "'aarp' modifier applied to ip6 %s", typestr);
5206 
5207 	case Q_ISO:
5208 		bpf_error(cstate, "'iso' modifier applied to ip6 %s", typestr);
5209 
5210 	case Q_ESIS:
5211 		bpf_error(cstate, "'esis' modifier applied to ip6 %s", typestr);
5212 
5213 	case Q_ISIS:
5214 		bpf_error(cstate, "'isis' modifier applied to ip6 %s", typestr);
5215 
5216 	case Q_CLNP:
5217 		bpf_error(cstate, "'clnp' modifier applied to ip6 %s", typestr);
5218 
5219 	case Q_STP:
5220 		bpf_error(cstate, "'stp' modifier applied to ip6 %s", typestr);
5221 
5222 	case Q_IPX:
5223 		bpf_error(cstate, "'ipx' modifier applied to ip6 %s", typestr);
5224 
5225 	case Q_NETBEUI:
5226 		bpf_error(cstate, "'netbeui' modifier applied to ip6 %s", typestr);
5227 
5228 	case Q_ISIS_L1:
5229 		bpf_error(cstate, "'l1' modifier applied to ip6 %s", typestr);
5230 
5231 	case Q_ISIS_L2:
5232 		bpf_error(cstate, "'l2' modifier applied to ip6 %s", typestr);
5233 
5234 	case Q_ISIS_IIH:
5235 		bpf_error(cstate, "'iih' modifier applied to ip6 %s", typestr);
5236 
5237 	case Q_ISIS_SNP:
5238 		bpf_error(cstate, "'snp' modifier applied to ip6 %s", typestr);
5239 
5240 	case Q_ISIS_CSNP:
5241 		bpf_error(cstate, "'csnp' modifier applied to ip6 %s", typestr);
5242 
5243 	case Q_ISIS_PSNP:
5244 		bpf_error(cstate, "'psnp' modifier applied to ip6 %s", typestr);
5245 
5246 	case Q_ISIS_LSP:
5247 		bpf_error(cstate, "'lsp' modifier applied to ip6 %s", typestr);
5248 
5249 	case Q_RADIO:
5250 		bpf_error(cstate, "'radio' modifier applied to ip6 %s", typestr);
5251 
5252 	case Q_CARP:
5253 		bpf_error(cstate, "'carp' modifier applied to ip6 %s", typestr);
5254 
5255 	default:
5256 		abort();
5257 	}
5258 	/*NOTREACHED*/
5259 }
5260 #endif
5261 
5262 #ifndef INET6
5263 static struct block *
5264 gen_gateway(compiler_state_t *cstate, const u_char *eaddr,
5265     struct addrinfo *alist, int proto, int dir)
5266 {
5267 	struct block *b0, *b1, *tmp;
5268 	struct addrinfo *ai;
5269 	struct sockaddr_in *sin;
5270 
5271 	if (dir != 0)
5272 		bpf_error(cstate, "direction applied to 'gateway'");
5273 
5274 	switch (proto) {
5275 	case Q_DEFAULT:
5276 	case Q_IP:
5277 	case Q_ARP:
5278 	case Q_RARP:
5279 		switch (cstate->linktype) {
5280 		case DLT_EN10MB:
5281 		case DLT_NETANALYZER:
5282 		case DLT_NETANALYZER_TRANSPARENT:
5283 			b1 = gen_prevlinkhdr_check(cstate);
5284 			b0 = gen_ehostop(cstate, eaddr, Q_OR);
5285 			if (b1 != NULL)
5286 				gen_and(b1, b0);
5287 			break;
5288 		case DLT_FDDI:
5289 			b0 = gen_fhostop(cstate, eaddr, Q_OR);
5290 			break;
5291 		case DLT_IEEE802:
5292 			b0 = gen_thostop(cstate, eaddr, Q_OR);
5293 			break;
5294 		case DLT_IEEE802_11:
5295 		case DLT_PRISM_HEADER:
5296 		case DLT_IEEE802_11_RADIO_AVS:
5297 		case DLT_IEEE802_11_RADIO:
5298 		case DLT_PPI:
5299 			b0 = gen_wlanhostop(cstate, eaddr, Q_OR);
5300 			break;
5301 		case DLT_SUNATM:
5302 			/*
5303 			 * This is LLC-multiplexed traffic; if it were
5304 			 * LANE, cstate->linktype would have been set to
5305 			 * DLT_EN10MB.
5306 			 */
5307 			bpf_error(cstate,
5308 			    "'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
5309 		case DLT_IP_OVER_FC:
5310 			b0 = gen_ipfchostop(cstate, eaddr, Q_OR);
5311 			break;
5312 		default:
5313 			bpf_error(cstate,
5314 			    "'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
5315 		}
5316 		b1 = NULL;
5317 		for (ai = alist; ai != NULL; ai = ai->ai_next) {
5318 			/*
5319 			 * Does it have an address?
5320 			 */
5321 			if (ai->ai_addr != NULL) {
5322 				/*
5323 				 * Yes.  Is it an IPv4 address?
5324 				 */
5325 				if (ai->ai_addr->sa_family == AF_INET) {
5326 					/*
5327 					 * Generate an entry for it.
5328 					 */
5329 					sin = (struct sockaddr_in *)ai->ai_addr;
5330 					tmp = gen_host(cstate,
5331 					    ntohl(sin->sin_addr.s_addr),
5332 					    0xffffffff, proto, Q_OR, Q_HOST);
5333 					/*
5334 					 * Is it the *first* IPv4 address?
5335 					 */
5336 					if (b1 == NULL) {
5337 						/*
5338 						 * Yes, so start with it.
5339 						 */
5340 						b1 = tmp;
5341 					} else {
5342 						/*
5343 						 * No, so OR it into the
5344 						 * existing set of
5345 						 * addresses.
5346 						 */
5347 						gen_or(b1, tmp);
5348 						b1 = tmp;
5349 					}
5350 				}
5351 			}
5352 		}
5353 		if (b1 == NULL) {
5354 			/*
5355 			 * No IPv4 addresses found.
5356 			 */
5357 			return (NULL);
5358 		}
5359 		gen_not(b1);
5360 		gen_and(b0, b1);
5361 		return b1;
5362 	}
5363 	bpf_error(cstate, "illegal modifier of 'gateway'");
5364 	/*NOTREACHED*/
5365 }
5366 #endif
5367 
5368 static struct block *
5369 gen_proto_abbrev_internal(compiler_state_t *cstate, int proto)
5370 {
5371 	struct block *b0;
5372 	struct block *b1;
5373 
5374 	switch (proto) {
5375 
5376 	case Q_SCTP:
5377 		b1 = gen_proto(cstate, IPPROTO_SCTP, Q_DEFAULT, Q_DEFAULT);
5378 		break;
5379 
5380 	case Q_TCP:
5381 		b1 = gen_proto(cstate, IPPROTO_TCP, Q_DEFAULT, Q_DEFAULT);
5382 		break;
5383 
5384 	case Q_UDP:
5385 		b1 = gen_proto(cstate, IPPROTO_UDP, Q_DEFAULT, Q_DEFAULT);
5386 		break;
5387 
5388 	case Q_ICMP:
5389 		b1 = gen_proto(cstate, IPPROTO_ICMP, Q_IP, Q_DEFAULT);
5390 		break;
5391 
5392 #ifndef	IPPROTO_IGMP
5393 #define	IPPROTO_IGMP	2
5394 #endif
5395 
5396 	case Q_IGMP:
5397 		b1 = gen_proto(cstate, IPPROTO_IGMP, Q_IP, Q_DEFAULT);
5398 		break;
5399 
5400 #ifndef	IPPROTO_IGRP
5401 #define	IPPROTO_IGRP	9
5402 #endif
5403 	case Q_IGRP:
5404 		b1 = gen_proto(cstate, IPPROTO_IGRP, Q_IP, Q_DEFAULT);
5405 		break;
5406 
5407 #ifndef IPPROTO_PIM
5408 #define IPPROTO_PIM	103
5409 #endif
5410 
5411 	case Q_PIM:
5412 		b1 = gen_proto(cstate, IPPROTO_PIM, Q_DEFAULT, Q_DEFAULT);
5413 		break;
5414 
5415 #ifndef IPPROTO_VRRP
5416 #define IPPROTO_VRRP	112
5417 #endif
5418 
5419 	case Q_VRRP:
5420 		b1 = gen_proto(cstate, IPPROTO_VRRP, Q_IP, Q_DEFAULT);
5421 		break;
5422 
5423 #ifndef IPPROTO_CARP
5424 #define IPPROTO_CARP	112
5425 #endif
5426 
5427 	case Q_CARP:
5428 		b1 = gen_proto(cstate, IPPROTO_CARP, Q_IP, Q_DEFAULT);
5429 		break;
5430 
5431 	case Q_IP:
5432 		b1 = gen_linktype(cstate, ETHERTYPE_IP);
5433 		break;
5434 
5435 	case Q_ARP:
5436 		b1 = gen_linktype(cstate, ETHERTYPE_ARP);
5437 		break;
5438 
5439 	case Q_RARP:
5440 		b1 = gen_linktype(cstate, ETHERTYPE_REVARP);
5441 		break;
5442 
5443 	case Q_LINK:
5444 		bpf_error(cstate, "link layer applied in wrong context");
5445 
5446 	case Q_ATALK:
5447 		b1 = gen_linktype(cstate, ETHERTYPE_ATALK);
5448 		break;
5449 
5450 	case Q_AARP:
5451 		b1 = gen_linktype(cstate, ETHERTYPE_AARP);
5452 		break;
5453 
5454 	case Q_DECNET:
5455 		b1 = gen_linktype(cstate, ETHERTYPE_DN);
5456 		break;
5457 
5458 	case Q_SCA:
5459 		b1 = gen_linktype(cstate, ETHERTYPE_SCA);
5460 		break;
5461 
5462 	case Q_LAT:
5463 		b1 = gen_linktype(cstate, ETHERTYPE_LAT);
5464 		break;
5465 
5466 	case Q_MOPDL:
5467 		b1 = gen_linktype(cstate, ETHERTYPE_MOPDL);
5468 		break;
5469 
5470 	case Q_MOPRC:
5471 		b1 = gen_linktype(cstate, ETHERTYPE_MOPRC);
5472 		break;
5473 
5474 	case Q_IPV6:
5475 		b1 = gen_linktype(cstate, ETHERTYPE_IPV6);
5476 		break;
5477 
5478 #ifndef IPPROTO_ICMPV6
5479 #define IPPROTO_ICMPV6	58
5480 #endif
5481 	case Q_ICMPV6:
5482 		b1 = gen_proto(cstate, IPPROTO_ICMPV6, Q_IPV6, Q_DEFAULT);
5483 		break;
5484 
5485 #ifndef IPPROTO_AH
5486 #define IPPROTO_AH	51
5487 #endif
5488 	case Q_AH:
5489 		b1 = gen_proto(cstate, IPPROTO_AH, Q_DEFAULT, Q_DEFAULT);
5490 		break;
5491 
5492 #ifndef IPPROTO_ESP
5493 #define IPPROTO_ESP	50
5494 #endif
5495 	case Q_ESP:
5496 		b1 = gen_proto(cstate, IPPROTO_ESP, Q_DEFAULT, Q_DEFAULT);
5497 		break;
5498 
5499 	case Q_ISO:
5500 		b1 = gen_linktype(cstate, LLCSAP_ISONS);
5501 		break;
5502 
5503 	case Q_ESIS:
5504 		b1 = gen_proto(cstate, ISO9542_ESIS, Q_ISO, Q_DEFAULT);
5505 		break;
5506 
5507 	case Q_ISIS:
5508 		b1 = gen_proto(cstate, ISO10589_ISIS, Q_ISO, Q_DEFAULT);
5509 		break;
5510 
5511 	case Q_ISIS_L1: /* all IS-IS Level1 PDU-Types */
5512 		b0 = gen_proto(cstate, ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT);
5513 		b1 = gen_proto(cstate, ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */
5514 		gen_or(b0, b1);
5515 		b0 = gen_proto(cstate, ISIS_L1_LSP, Q_ISIS, Q_DEFAULT);
5516 		gen_or(b0, b1);
5517 		b0 = gen_proto(cstate, ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
5518 		gen_or(b0, b1);
5519 		b0 = gen_proto(cstate, ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
5520 		gen_or(b0, b1);
5521 		break;
5522 
5523 	case Q_ISIS_L2: /* all IS-IS Level2 PDU-Types */
5524 		b0 = gen_proto(cstate, ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT);
5525 		b1 = gen_proto(cstate, ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */
5526 		gen_or(b0, b1);
5527 		b0 = gen_proto(cstate, ISIS_L2_LSP, Q_ISIS, Q_DEFAULT);
5528 		gen_or(b0, b1);
5529 		b0 = gen_proto(cstate, ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
5530 		gen_or(b0, b1);
5531 		b0 = gen_proto(cstate, ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
5532 		gen_or(b0, b1);
5533 		break;
5534 
5535 	case Q_ISIS_IIH: /* all IS-IS Hello PDU-Types */
5536 		b0 = gen_proto(cstate, ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT);
5537 		b1 = gen_proto(cstate, ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT);
5538 		gen_or(b0, b1);
5539 		b0 = gen_proto(cstate, ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT);
5540 		gen_or(b0, b1);
5541 		break;
5542 
5543 	case Q_ISIS_LSP:
5544 		b0 = gen_proto(cstate, ISIS_L1_LSP, Q_ISIS, Q_DEFAULT);
5545 		b1 = gen_proto(cstate, ISIS_L2_LSP, Q_ISIS, Q_DEFAULT);
5546 		gen_or(b0, b1);
5547 		break;
5548 
5549 	case Q_ISIS_SNP:
5550 		b0 = gen_proto(cstate, ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
5551 		b1 = gen_proto(cstate, ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
5552 		gen_or(b0, b1);
5553 		b0 = gen_proto(cstate, ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
5554 		gen_or(b0, b1);
5555 		b0 = gen_proto(cstate, ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
5556 		gen_or(b0, b1);
5557 		break;
5558 
5559 	case Q_ISIS_CSNP:
5560 		b0 = gen_proto(cstate, ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
5561 		b1 = gen_proto(cstate, ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
5562 		gen_or(b0, b1);
5563 		break;
5564 
5565 	case Q_ISIS_PSNP:
5566 		b0 = gen_proto(cstate, ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
5567 		b1 = gen_proto(cstate, ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
5568 		gen_or(b0, b1);
5569 		break;
5570 
5571 	case Q_CLNP:
5572 		b1 = gen_proto(cstate, ISO8473_CLNP, Q_ISO, Q_DEFAULT);
5573 		break;
5574 
5575 	case Q_STP:
5576 		b1 = gen_linktype(cstate, LLCSAP_8021D);
5577 		break;
5578 
5579 	case Q_IPX:
5580 		b1 = gen_linktype(cstate, LLCSAP_IPX);
5581 		break;
5582 
5583 	case Q_NETBEUI:
5584 		b1 = gen_linktype(cstate, LLCSAP_NETBEUI);
5585 		break;
5586 
5587 	case Q_RADIO:
5588 		bpf_error(cstate, "'radio' is not a valid protocol type");
5589 
5590 	default:
5591 		abort();
5592 	}
5593 	return b1;
5594 }
5595 
5596 struct block *
5597 gen_proto_abbrev(compiler_state_t *cstate, int proto)
5598 {
5599 	/*
5600 	 * Catch errors reported by us and routines below us, and return NULL
5601 	 * on an error.
5602 	 */
5603 	if (setjmp(cstate->top_ctx))
5604 		return (NULL);
5605 
5606 	return gen_proto_abbrev_internal(cstate, proto);
5607 }
5608 
5609 static struct block *
5610 gen_ipfrag(compiler_state_t *cstate)
5611 {
5612 	struct slist *s;
5613 	struct block *b;
5614 
5615 	/* not IPv4 frag other than the first frag */
5616 	s = gen_load_a(cstate, OR_LINKPL, 6, BPF_H);
5617 	b = new_block(cstate, JMP(BPF_JSET));
5618 	b->s.k = 0x1fff;
5619 	b->stmts = s;
5620 	gen_not(b);
5621 
5622 	return b;
5623 }
5624 
5625 /*
5626  * Generate a comparison to a port value in the transport-layer header
5627  * at the specified offset from the beginning of that header.
5628  *
5629  * XXX - this handles a variable-length prefix preceding the link-layer
5630  * header, such as the radiotap or AVS radio prefix, but doesn't handle
5631  * variable-length link-layer headers (such as Token Ring or 802.11
5632  * headers).
5633  */
5634 static struct block *
5635 gen_portatom(compiler_state_t *cstate, int off, bpf_u_int32 v)
5636 {
5637 	return gen_cmp(cstate, OR_TRAN_IPV4, off, BPF_H, v);
5638 }
5639 
5640 static struct block *
5641 gen_portatom6(compiler_state_t *cstate, int off, bpf_u_int32 v)
5642 {
5643 	return gen_cmp(cstate, OR_TRAN_IPV6, off, BPF_H, v);
5644 }
5645 
5646 static struct block *
5647 gen_portop(compiler_state_t *cstate, u_int port, u_int proto, int dir)
5648 {
5649 	struct block *b0, *b1, *tmp;
5650 
5651 	/* ip proto 'proto' and not a fragment other than the first fragment */
5652 	tmp = gen_cmp(cstate, OR_LINKPL, 9, BPF_B, proto);
5653 	b0 = gen_ipfrag(cstate);
5654 	gen_and(tmp, b0);
5655 
5656 	switch (dir) {
5657 	case Q_SRC:
5658 		b1 = gen_portatom(cstate, 0, port);
5659 		break;
5660 
5661 	case Q_DST:
5662 		b1 = gen_portatom(cstate, 2, port);
5663 		break;
5664 
5665 	case Q_AND:
5666 		tmp = gen_portatom(cstate, 0, port);
5667 		b1 = gen_portatom(cstate, 2, port);
5668 		gen_and(tmp, b1);
5669 		break;
5670 
5671 	case Q_DEFAULT:
5672 	case Q_OR:
5673 		tmp = gen_portatom(cstate, 0, port);
5674 		b1 = gen_portatom(cstate, 2, port);
5675 		gen_or(tmp, b1);
5676 		break;
5677 
5678 	case Q_ADDR1:
5679 		bpf_error(cstate, "'addr1' and 'address1' are not valid qualifiers for ports");
5680 		/*NOTREACHED*/
5681 
5682 	case Q_ADDR2:
5683 		bpf_error(cstate, "'addr2' and 'address2' are not valid qualifiers for ports");
5684 		/*NOTREACHED*/
5685 
5686 	case Q_ADDR3:
5687 		bpf_error(cstate, "'addr3' and 'address3' are not valid qualifiers for ports");
5688 		/*NOTREACHED*/
5689 
5690 	case Q_ADDR4:
5691 		bpf_error(cstate, "'addr4' and 'address4' are not valid qualifiers for ports");
5692 		/*NOTREACHED*/
5693 
5694 	case Q_RA:
5695 		bpf_error(cstate, "'ra' is not a valid qualifier for ports");
5696 		/*NOTREACHED*/
5697 
5698 	case Q_TA:
5699 		bpf_error(cstate, "'ta' is not a valid qualifier for ports");
5700 		/*NOTREACHED*/
5701 
5702 	default:
5703 		abort();
5704 		/*NOTREACHED*/
5705 	}
5706 	gen_and(b0, b1);
5707 
5708 	return b1;
5709 }
5710 
5711 static struct block *
5712 gen_port(compiler_state_t *cstate, u_int port, int ip_proto, int dir)
5713 {
5714 	struct block *b0, *b1, *tmp;
5715 
5716 	/*
5717 	 * ether proto ip
5718 	 *
5719 	 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
5720 	 * not LLC encapsulation with LLCSAP_IP.
5721 	 *
5722 	 * For IEEE 802 networks - which includes 802.5 token ring
5723 	 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
5724 	 * says that SNAP encapsulation is used, not LLC encapsulation
5725 	 * with LLCSAP_IP.
5726 	 *
5727 	 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
5728 	 * RFC 2225 say that SNAP encapsulation is used, not LLC
5729 	 * encapsulation with LLCSAP_IP.
5730 	 *
5731 	 * So we always check for ETHERTYPE_IP.
5732 	 */
5733 	b0 = gen_linktype(cstate, ETHERTYPE_IP);
5734 
5735 	switch (ip_proto) {
5736 	case IPPROTO_UDP:
5737 	case IPPROTO_TCP:
5738 	case IPPROTO_SCTP:
5739 		b1 = gen_portop(cstate, port, (u_int)ip_proto, dir);
5740 		break;
5741 
5742 	case PROTO_UNDEF:
5743 		tmp = gen_portop(cstate, port, IPPROTO_TCP, dir);
5744 		b1 = gen_portop(cstate, port, IPPROTO_UDP, dir);
5745 		gen_or(tmp, b1);
5746 		tmp = gen_portop(cstate, port, IPPROTO_SCTP, dir);
5747 		gen_or(tmp, b1);
5748 		break;
5749 
5750 	default:
5751 		abort();
5752 	}
5753 	gen_and(b0, b1);
5754 	return b1;
5755 }
5756 
5757 struct block *
5758 gen_portop6(compiler_state_t *cstate, u_int port, u_int proto, int dir)
5759 {
5760 	struct block *b0, *b1, *tmp;
5761 
5762 	/* ip6 proto 'proto' */
5763 	/* XXX - catch the first fragment of a fragmented packet? */
5764 	b0 = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, proto);
5765 
5766 	switch (dir) {
5767 	case Q_SRC:
5768 		b1 = gen_portatom6(cstate, 0, port);
5769 		break;
5770 
5771 	case Q_DST:
5772 		b1 = gen_portatom6(cstate, 2, port);
5773 		break;
5774 
5775 	case Q_AND:
5776 		tmp = gen_portatom6(cstate, 0, port);
5777 		b1 = gen_portatom6(cstate, 2, port);
5778 		gen_and(tmp, b1);
5779 		break;
5780 
5781 	case Q_DEFAULT:
5782 	case Q_OR:
5783 		tmp = gen_portatom6(cstate, 0, port);
5784 		b1 = gen_portatom6(cstate, 2, port);
5785 		gen_or(tmp, b1);
5786 		break;
5787 
5788 	default:
5789 		abort();
5790 	}
5791 	gen_and(b0, b1);
5792 
5793 	return b1;
5794 }
5795 
5796 static struct block *
5797 gen_port6(compiler_state_t *cstate, u_int port, int ip_proto, int dir)
5798 {
5799 	struct block *b0, *b1, *tmp;
5800 
5801 	/* link proto ip6 */
5802 	b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
5803 
5804 	switch (ip_proto) {
5805 	case IPPROTO_UDP:
5806 	case IPPROTO_TCP:
5807 	case IPPROTO_SCTP:
5808 		b1 = gen_portop6(cstate, port, (u_int)ip_proto, dir);
5809 		break;
5810 
5811 	case PROTO_UNDEF:
5812 		tmp = gen_portop6(cstate, port, IPPROTO_TCP, dir);
5813 		b1 = gen_portop6(cstate, port, IPPROTO_UDP, dir);
5814 		gen_or(tmp, b1);
5815 		tmp = gen_portop6(cstate, port, IPPROTO_SCTP, dir);
5816 		gen_or(tmp, b1);
5817 		break;
5818 
5819 	default:
5820 		abort();
5821 	}
5822 	gen_and(b0, b1);
5823 	return b1;
5824 }
5825 
5826 /* gen_portrange code */
5827 static struct block *
5828 gen_portrangeatom(compiler_state_t *cstate, u_int off, bpf_u_int32 v1,
5829     bpf_u_int32 v2)
5830 {
5831 	struct block *b1, *b2;
5832 
5833 	if (v1 > v2) {
5834 		/*
5835 		 * Reverse the order of the ports, so v1 is the lower one.
5836 		 */
5837 		bpf_u_int32 vtemp;
5838 
5839 		vtemp = v1;
5840 		v1 = v2;
5841 		v2 = vtemp;
5842 	}
5843 
5844 	b1 = gen_cmp_ge(cstate, OR_TRAN_IPV4, off, BPF_H, v1);
5845 	b2 = gen_cmp_le(cstate, OR_TRAN_IPV4, off, BPF_H, v2);
5846 
5847 	gen_and(b1, b2);
5848 
5849 	return b2;
5850 }
5851 
5852 static struct block *
5853 gen_portrangeop(compiler_state_t *cstate, u_int port1, u_int port2,
5854     bpf_u_int32 proto, int dir)
5855 {
5856 	struct block *b0, *b1, *tmp;
5857 
5858 	/* ip proto 'proto' and not a fragment other than the first fragment */
5859 	tmp = gen_cmp(cstate, OR_LINKPL, 9, BPF_B, proto);
5860 	b0 = gen_ipfrag(cstate);
5861 	gen_and(tmp, b0);
5862 
5863 	switch (dir) {
5864 	case Q_SRC:
5865 		b1 = gen_portrangeatom(cstate, 0, port1, port2);
5866 		break;
5867 
5868 	case Q_DST:
5869 		b1 = gen_portrangeatom(cstate, 2, port1, port2);
5870 		break;
5871 
5872 	case Q_AND:
5873 		tmp = gen_portrangeatom(cstate, 0, port1, port2);
5874 		b1 = gen_portrangeatom(cstate, 2, port1, port2);
5875 		gen_and(tmp, b1);
5876 		break;
5877 
5878 	case Q_DEFAULT:
5879 	case Q_OR:
5880 		tmp = gen_portrangeatom(cstate, 0, port1, port2);
5881 		b1 = gen_portrangeatom(cstate, 2, port1, port2);
5882 		gen_or(tmp, b1);
5883 		break;
5884 
5885 	case Q_ADDR1:
5886 		bpf_error(cstate, "'addr1' and 'address1' are not valid qualifiers for port ranges");
5887 		/*NOTREACHED*/
5888 
5889 	case Q_ADDR2:
5890 		bpf_error(cstate, "'addr2' and 'address2' are not valid qualifiers for port ranges");
5891 		/*NOTREACHED*/
5892 
5893 	case Q_ADDR3:
5894 		bpf_error(cstate, "'addr3' and 'address3' are not valid qualifiers for port ranges");
5895 		/*NOTREACHED*/
5896 
5897 	case Q_ADDR4:
5898 		bpf_error(cstate, "'addr4' and 'address4' are not valid qualifiers for port ranges");
5899 		/*NOTREACHED*/
5900 
5901 	case Q_RA:
5902 		bpf_error(cstate, "'ra' is not a valid qualifier for port ranges");
5903 		/*NOTREACHED*/
5904 
5905 	case Q_TA:
5906 		bpf_error(cstate, "'ta' is not a valid qualifier for port ranges");
5907 		/*NOTREACHED*/
5908 
5909 	default:
5910 		abort();
5911 		/*NOTREACHED*/
5912 	}
5913 	gen_and(b0, b1);
5914 
5915 	return b1;
5916 }
5917 
5918 static struct block *
5919 gen_portrange(compiler_state_t *cstate, u_int port1, u_int port2, int ip_proto,
5920     int dir)
5921 {
5922 	struct block *b0, *b1, *tmp;
5923 
5924 	/* link proto ip */
5925 	b0 = gen_linktype(cstate, ETHERTYPE_IP);
5926 
5927 	switch (ip_proto) {
5928 	case IPPROTO_UDP:
5929 	case IPPROTO_TCP:
5930 	case IPPROTO_SCTP:
5931 		b1 = gen_portrangeop(cstate, port1, port2, (bpf_u_int32)ip_proto,
5932 		    dir);
5933 		break;
5934 
5935 	case PROTO_UNDEF:
5936 		tmp = gen_portrangeop(cstate, port1, port2, IPPROTO_TCP, dir);
5937 		b1 = gen_portrangeop(cstate, port1, port2, IPPROTO_UDP, dir);
5938 		gen_or(tmp, b1);
5939 		tmp = gen_portrangeop(cstate, port1, port2, IPPROTO_SCTP, dir);
5940 		gen_or(tmp, b1);
5941 		break;
5942 
5943 	default:
5944 		abort();
5945 	}
5946 	gen_and(b0, b1);
5947 	return b1;
5948 }
5949 
5950 static struct block *
5951 gen_portrangeatom6(compiler_state_t *cstate, u_int off, bpf_u_int32 v1,
5952     bpf_u_int32 v2)
5953 {
5954 	struct block *b1, *b2;
5955 
5956 	if (v1 > v2) {
5957 		/*
5958 		 * Reverse the order of the ports, so v1 is the lower one.
5959 		 */
5960 		bpf_u_int32 vtemp;
5961 
5962 		vtemp = v1;
5963 		v1 = v2;
5964 		v2 = vtemp;
5965 	}
5966 
5967 	b1 = gen_cmp_ge(cstate, OR_TRAN_IPV6, off, BPF_H, v1);
5968 	b2 = gen_cmp_le(cstate, OR_TRAN_IPV6, off, BPF_H, v2);
5969 
5970 	gen_and(b1, b2);
5971 
5972 	return b2;
5973 }
5974 
5975 static struct block *
5976 gen_portrangeop6(compiler_state_t *cstate, u_int port1, u_int port2,
5977     bpf_u_int32 proto, int dir)
5978 {
5979 	struct block *b0, *b1, *tmp;
5980 
5981 	/* ip6 proto 'proto' */
5982 	/* XXX - catch the first fragment of a fragmented packet? */
5983 	b0 = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, proto);
5984 
5985 	switch (dir) {
5986 	case Q_SRC:
5987 		b1 = gen_portrangeatom6(cstate, 0, port1, port2);
5988 		break;
5989 
5990 	case Q_DST:
5991 		b1 = gen_portrangeatom6(cstate, 2, port1, port2);
5992 		break;
5993 
5994 	case Q_AND:
5995 		tmp = gen_portrangeatom6(cstate, 0, port1, port2);
5996 		b1 = gen_portrangeatom6(cstate, 2, port1, port2);
5997 		gen_and(tmp, b1);
5998 		break;
5999 
6000 	case Q_DEFAULT:
6001 	case Q_OR:
6002 		tmp = gen_portrangeatom6(cstate, 0, port1, port2);
6003 		b1 = gen_portrangeatom6(cstate, 2, port1, port2);
6004 		gen_or(tmp, b1);
6005 		break;
6006 
6007 	default:
6008 		abort();
6009 	}
6010 	gen_and(b0, b1);
6011 
6012 	return b1;
6013 }
6014 
6015 static struct block *
6016 gen_portrange6(compiler_state_t *cstate, u_int port1, u_int port2, int ip_proto,
6017     int dir)
6018 {
6019 	struct block *b0, *b1, *tmp;
6020 
6021 	/* link proto ip6 */
6022 	b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
6023 
6024 	switch (ip_proto) {
6025 	case IPPROTO_UDP:
6026 	case IPPROTO_TCP:
6027 	case IPPROTO_SCTP:
6028 		b1 = gen_portrangeop6(cstate, port1, port2, (bpf_u_int32)ip_proto,
6029 		    dir);
6030 		break;
6031 
6032 	case PROTO_UNDEF:
6033 		tmp = gen_portrangeop6(cstate, port1, port2, IPPROTO_TCP, dir);
6034 		b1 = gen_portrangeop6(cstate, port1, port2, IPPROTO_UDP, dir);
6035 		gen_or(tmp, b1);
6036 		tmp = gen_portrangeop6(cstate, port1, port2, IPPROTO_SCTP, dir);
6037 		gen_or(tmp, b1);
6038 		break;
6039 
6040 	default:
6041 		abort();
6042 	}
6043 	gen_and(b0, b1);
6044 	return b1;
6045 }
6046 
6047 static int
6048 lookup_proto(compiler_state_t *cstate, const char *name, int proto)
6049 {
6050 	register int v;
6051 
6052 	switch (proto) {
6053 
6054 	case Q_DEFAULT:
6055 	case Q_IP:
6056 	case Q_IPV6:
6057 		v = pcap_nametoproto(name);
6058 		if (v == PROTO_UNDEF)
6059 			bpf_error(cstate, "unknown ip proto '%s'", name);
6060 		break;
6061 
6062 	case Q_LINK:
6063 		/* XXX should look up h/w protocol type based on cstate->linktype */
6064 		v = pcap_nametoeproto(name);
6065 		if (v == PROTO_UNDEF) {
6066 			v = pcap_nametollc(name);
6067 			if (v == PROTO_UNDEF)
6068 				bpf_error(cstate, "unknown ether proto '%s'", name);
6069 		}
6070 		break;
6071 
6072 	case Q_ISO:
6073 		if (strcmp(name, "esis") == 0)
6074 			v = ISO9542_ESIS;
6075 		else if (strcmp(name, "isis") == 0)
6076 			v = ISO10589_ISIS;
6077 		else if (strcmp(name, "clnp") == 0)
6078 			v = ISO8473_CLNP;
6079 		else
6080 			bpf_error(cstate, "unknown osi proto '%s'", name);
6081 		break;
6082 
6083 	default:
6084 		v = PROTO_UNDEF;
6085 		break;
6086 	}
6087 	return v;
6088 }
6089 
6090 #if !defined(NO_PROTOCHAIN)
6091 static struct block *
6092 gen_protochain(compiler_state_t *cstate, bpf_u_int32 v, int proto)
6093 {
6094 	struct block *b0, *b;
6095 	struct slist *s[100];
6096 	int fix2, fix3, fix4, fix5;
6097 	int ahcheck, again, end;
6098 	int i, max;
6099 	int reg2 = alloc_reg(cstate);
6100 
6101 	memset(s, 0, sizeof(s));
6102 	fix3 = fix4 = fix5 = 0;
6103 
6104 	switch (proto) {
6105 	case Q_IP:
6106 	case Q_IPV6:
6107 		break;
6108 	case Q_DEFAULT:
6109 		b0 = gen_protochain(cstate, v, Q_IP);
6110 		b = gen_protochain(cstate, v, Q_IPV6);
6111 		gen_or(b0, b);
6112 		return b;
6113 	default:
6114 		bpf_error(cstate, "bad protocol applied for 'protochain'");
6115 		/*NOTREACHED*/
6116 	}
6117 
6118 	/*
6119 	 * We don't handle variable-length prefixes before the link-layer
6120 	 * header, or variable-length link-layer headers, here yet.
6121 	 * We might want to add BPF instructions to do the protochain
6122 	 * work, to simplify that and, on platforms that have a BPF
6123 	 * interpreter with the new instructions, let the filtering
6124 	 * be done in the kernel.  (We already require a modified BPF
6125 	 * engine to do the protochain stuff, to support backward
6126 	 * branches, and backward branch support is unlikely to appear
6127 	 * in kernel BPF engines.)
6128 	 */
6129 	if (cstate->off_linkpl.is_variable)
6130 		bpf_error(cstate, "'protochain' not supported with variable length headers");
6131 
6132 	/*
6133 	 * To quote a comment in optimize.c:
6134 	 *
6135 	 * "These data structures are used in a Cocke and Schwartz style
6136 	 * value numbering scheme.  Since the flowgraph is acyclic,
6137 	 * exit values can be propagated from a node's predecessors
6138 	 * provided it is uniquely defined."
6139 	 *
6140 	 * "Acyclic" means "no backward branches", which means "no
6141 	 * loops", so we have to turn the optimizer off.
6142 	 */
6143 	cstate->no_optimize = 1;
6144 
6145 	/*
6146 	 * s[0] is a dummy entry to protect other BPF insn from damage
6147 	 * by s[fix] = foo with uninitialized variable "fix".  It is somewhat
6148 	 * hard to find interdependency made by jump table fixup.
6149 	 */
6150 	i = 0;
6151 	s[i] = new_stmt(cstate, 0);	/*dummy*/
6152 	i++;
6153 
6154 	switch (proto) {
6155 	case Q_IP:
6156 		b0 = gen_linktype(cstate, ETHERTYPE_IP);
6157 
6158 		/* A = ip->ip_p */
6159 		s[i] = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B);
6160 		s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 9;
6161 		i++;
6162 		/* X = ip->ip_hl << 2 */
6163 		s[i] = new_stmt(cstate, BPF_LDX|BPF_MSH|BPF_B);
6164 		s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
6165 		i++;
6166 		break;
6167 
6168 	case Q_IPV6:
6169 		b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
6170 
6171 		/* A = ip6->ip_nxt */
6172 		s[i] = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B);
6173 		s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 6;
6174 		i++;
6175 		/* X = sizeof(struct ip6_hdr) */
6176 		s[i] = new_stmt(cstate, BPF_LDX|BPF_IMM);
6177 		s[i]->s.k = 40;
6178 		i++;
6179 		break;
6180 
6181 	default:
6182 		bpf_error(cstate, "unsupported proto to gen_protochain");
6183 		/*NOTREACHED*/
6184 	}
6185 
6186 	/* again: if (A == v) goto end; else fall through; */
6187 	again = i;
6188 	s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6189 	s[i]->s.k = v;
6190 	s[i]->s.jt = NULL;		/*later*/
6191 	s[i]->s.jf = NULL;		/*update in next stmt*/
6192 	fix5 = i;
6193 	i++;
6194 
6195 #ifndef IPPROTO_NONE
6196 #define IPPROTO_NONE	59
6197 #endif
6198 	/* if (A == IPPROTO_NONE) goto end */
6199 	s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6200 	s[i]->s.jt = NULL;	/*later*/
6201 	s[i]->s.jf = NULL;	/*update in next stmt*/
6202 	s[i]->s.k = IPPROTO_NONE;
6203 	s[fix5]->s.jf = s[i];
6204 	fix2 = i;
6205 	i++;
6206 
6207 	if (proto == Q_IPV6) {
6208 		int v6start, v6end, v6advance, j;
6209 
6210 		v6start = i;
6211 		/* if (A == IPPROTO_HOPOPTS) goto v6advance */
6212 		s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6213 		s[i]->s.jt = NULL;	/*later*/
6214 		s[i]->s.jf = NULL;	/*update in next stmt*/
6215 		s[i]->s.k = IPPROTO_HOPOPTS;
6216 		s[fix2]->s.jf = s[i];
6217 		i++;
6218 		/* if (A == IPPROTO_DSTOPTS) goto v6advance */
6219 		s[i - 1]->s.jf = s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6220 		s[i]->s.jt = NULL;	/*later*/
6221 		s[i]->s.jf = NULL;	/*update in next stmt*/
6222 		s[i]->s.k = IPPROTO_DSTOPTS;
6223 		i++;
6224 		/* if (A == IPPROTO_ROUTING) goto v6advance */
6225 		s[i - 1]->s.jf = s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6226 		s[i]->s.jt = NULL;	/*later*/
6227 		s[i]->s.jf = NULL;	/*update in next stmt*/
6228 		s[i]->s.k = IPPROTO_ROUTING;
6229 		i++;
6230 		/* if (A == IPPROTO_FRAGMENT) goto v6advance; else goto ahcheck; */
6231 		s[i - 1]->s.jf = s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6232 		s[i]->s.jt = NULL;	/*later*/
6233 		s[i]->s.jf = NULL;	/*later*/
6234 		s[i]->s.k = IPPROTO_FRAGMENT;
6235 		fix3 = i;
6236 		v6end = i;
6237 		i++;
6238 
6239 		/* v6advance: */
6240 		v6advance = i;
6241 
6242 		/*
6243 		 * in short,
6244 		 * A = P[X + packet head];
6245 		 * X = X + (P[X + packet head + 1] + 1) * 8;
6246 		 */
6247 		/* A = P[X + packet head] */
6248 		s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
6249 		s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
6250 		i++;
6251 		/* MEM[reg2] = A */
6252 		s[i] = new_stmt(cstate, BPF_ST);
6253 		s[i]->s.k = reg2;
6254 		i++;
6255 		/* A = P[X + packet head + 1]; */
6256 		s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
6257 		s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 1;
6258 		i++;
6259 		/* A += 1 */
6260 		s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
6261 		s[i]->s.k = 1;
6262 		i++;
6263 		/* A *= 8 */
6264 		s[i] = new_stmt(cstate, BPF_ALU|BPF_MUL|BPF_K);
6265 		s[i]->s.k = 8;
6266 		i++;
6267 		/* A += X */
6268 		s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X);
6269 		s[i]->s.k = 0;
6270 		i++;
6271 		/* X = A; */
6272 		s[i] = new_stmt(cstate, BPF_MISC|BPF_TAX);
6273 		i++;
6274 		/* A = MEM[reg2] */
6275 		s[i] = new_stmt(cstate, BPF_LD|BPF_MEM);
6276 		s[i]->s.k = reg2;
6277 		i++;
6278 
6279 		/* goto again; (must use BPF_JA for backward jump) */
6280 		s[i] = new_stmt(cstate, BPF_JMP|BPF_JA);
6281 		s[i]->s.k = again - i - 1;
6282 		s[i - 1]->s.jf = s[i];
6283 		i++;
6284 
6285 		/* fixup */
6286 		for (j = v6start; j <= v6end; j++)
6287 			s[j]->s.jt = s[v6advance];
6288 	} else {
6289 		/* nop */
6290 		s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
6291 		s[i]->s.k = 0;
6292 		s[fix2]->s.jf = s[i];
6293 		i++;
6294 	}
6295 
6296 	/* ahcheck: */
6297 	ahcheck = i;
6298 	/* if (A == IPPROTO_AH) then fall through; else goto end; */
6299 	s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6300 	s[i]->s.jt = NULL;	/*later*/
6301 	s[i]->s.jf = NULL;	/*later*/
6302 	s[i]->s.k = IPPROTO_AH;
6303 	if (fix3)
6304 		s[fix3]->s.jf = s[ahcheck];
6305 	fix4 = i;
6306 	i++;
6307 
6308 	/*
6309 	 * in short,
6310 	 * A = P[X];
6311 	 * X = X + (P[X + 1] + 2) * 4;
6312 	 */
6313 	/* A = X */
6314 	s[i - 1]->s.jt = s[i] = new_stmt(cstate, BPF_MISC|BPF_TXA);
6315 	i++;
6316 	/* A = P[X + packet head]; */
6317 	s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
6318 	s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
6319 	i++;
6320 	/* MEM[reg2] = A */
6321 	s[i] = new_stmt(cstate, BPF_ST);
6322 	s[i]->s.k = reg2;
6323 	i++;
6324 	/* A = X */
6325 	s[i - 1]->s.jt = s[i] = new_stmt(cstate, BPF_MISC|BPF_TXA);
6326 	i++;
6327 	/* A += 1 */
6328 	s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
6329 	s[i]->s.k = 1;
6330 	i++;
6331 	/* X = A */
6332 	s[i] = new_stmt(cstate, BPF_MISC|BPF_TAX);
6333 	i++;
6334 	/* A = P[X + packet head] */
6335 	s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
6336 	s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
6337 	i++;
6338 	/* A += 2 */
6339 	s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
6340 	s[i]->s.k = 2;
6341 	i++;
6342 	/* A *= 4 */
6343 	s[i] = new_stmt(cstate, BPF_ALU|BPF_MUL|BPF_K);
6344 	s[i]->s.k = 4;
6345 	i++;
6346 	/* X = A; */
6347 	s[i] = new_stmt(cstate, BPF_MISC|BPF_TAX);
6348 	i++;
6349 	/* A = MEM[reg2] */
6350 	s[i] = new_stmt(cstate, BPF_LD|BPF_MEM);
6351 	s[i]->s.k = reg2;
6352 	i++;
6353 
6354 	/* goto again; (must use BPF_JA for backward jump) */
6355 	s[i] = new_stmt(cstate, BPF_JMP|BPF_JA);
6356 	s[i]->s.k = again - i - 1;
6357 	i++;
6358 
6359 	/* end: nop */
6360 	end = i;
6361 	s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
6362 	s[i]->s.k = 0;
6363 	s[fix2]->s.jt = s[end];
6364 	s[fix4]->s.jf = s[end];
6365 	s[fix5]->s.jt = s[end];
6366 	i++;
6367 
6368 	/*
6369 	 * make slist chain
6370 	 */
6371 	max = i;
6372 	for (i = 0; i < max - 1; i++)
6373 		s[i]->next = s[i + 1];
6374 	s[max - 1]->next = NULL;
6375 
6376 	/*
6377 	 * emit final check
6378 	 */
6379 	b = new_block(cstate, JMP(BPF_JEQ));
6380 	b->stmts = s[1];	/*remember, s[0] is dummy*/
6381 	b->s.k = v;
6382 
6383 	free_reg(cstate, reg2);
6384 
6385 	gen_and(b0, b);
6386 	return b;
6387 }
6388 #endif /* !defined(NO_PROTOCHAIN) */
6389 
6390 static struct block *
6391 gen_check_802_11_data_frame(compiler_state_t *cstate)
6392 {
6393 	struct slist *s;
6394 	struct block *b0, *b1;
6395 
6396 	/*
6397 	 * A data frame has the 0x08 bit (b3) in the frame control field set
6398 	 * and the 0x04 bit (b2) clear.
6399 	 */
6400 	s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
6401 	b0 = new_block(cstate, JMP(BPF_JSET));
6402 	b0->s.k = 0x08;
6403 	b0->stmts = s;
6404 
6405 	s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
6406 	b1 = new_block(cstate, JMP(BPF_JSET));
6407 	b1->s.k = 0x04;
6408 	b1->stmts = s;
6409 	gen_not(b1);
6410 
6411 	gen_and(b1, b0);
6412 
6413 	return b0;
6414 }
6415 
6416 /*
6417  * Generate code that checks whether the packet is a packet for protocol
6418  * <proto> and whether the type field in that protocol's header has
6419  * the value <v>, e.g. if <proto> is Q_IP, it checks whether it's an
6420  * IP packet and checks the protocol number in the IP header against <v>.
6421  *
6422  * If <proto> is Q_DEFAULT, i.e. just "proto" was specified, it checks
6423  * against Q_IP and Q_IPV6.
6424  */
6425 static struct block *
6426 gen_proto(compiler_state_t *cstate, bpf_u_int32 v, int proto, int dir)
6427 {
6428 	struct block *b0, *b1;
6429 	struct block *b2;
6430 
6431 	if (dir != Q_DEFAULT)
6432 		bpf_error(cstate, "direction applied to 'proto'");
6433 
6434 	switch (proto) {
6435 	case Q_DEFAULT:
6436 		b0 = gen_proto(cstate, v, Q_IP, dir);
6437 		b1 = gen_proto(cstate, v, Q_IPV6, dir);
6438 		gen_or(b0, b1);
6439 		return b1;
6440 
6441 	case Q_LINK:
6442 		return gen_linktype(cstate, v);
6443 
6444 	case Q_IP:
6445 		/*
6446 		 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
6447 		 * not LLC encapsulation with LLCSAP_IP.
6448 		 *
6449 		 * For IEEE 802 networks - which includes 802.5 token ring
6450 		 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
6451 		 * says that SNAP encapsulation is used, not LLC encapsulation
6452 		 * with LLCSAP_IP.
6453 		 *
6454 		 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
6455 		 * RFC 2225 say that SNAP encapsulation is used, not LLC
6456 		 * encapsulation with LLCSAP_IP.
6457 		 *
6458 		 * So we always check for ETHERTYPE_IP.
6459 		 */
6460 		b0 = gen_linktype(cstate, ETHERTYPE_IP);
6461 		b1 = gen_cmp(cstate, OR_LINKPL, 9, BPF_B, v);
6462 		gen_and(b0, b1);
6463 		return b1;
6464 
6465 	case Q_ARP:
6466 		bpf_error(cstate, "arp does not encapsulate another protocol");
6467 		/*NOTREACHED*/
6468 
6469 	case Q_RARP:
6470 		bpf_error(cstate, "rarp does not encapsulate another protocol");
6471 		/*NOTREACHED*/
6472 
6473 	case Q_SCTP:
6474 		bpf_error(cstate, "'sctp proto' is bogus");
6475 		/*NOTREACHED*/
6476 
6477 	case Q_TCP:
6478 		bpf_error(cstate, "'tcp proto' is bogus");
6479 		/*NOTREACHED*/
6480 
6481 	case Q_UDP:
6482 		bpf_error(cstate, "'udp proto' is bogus");
6483 		/*NOTREACHED*/
6484 
6485 	case Q_ICMP:
6486 		bpf_error(cstate, "'icmp proto' is bogus");
6487 		/*NOTREACHED*/
6488 
6489 	case Q_IGMP:
6490 		bpf_error(cstate, "'igmp proto' is bogus");
6491 		/*NOTREACHED*/
6492 
6493 	case Q_IGRP:
6494 		bpf_error(cstate, "'igrp proto' is bogus");
6495 		/*NOTREACHED*/
6496 
6497 	case Q_ATALK:
6498 		bpf_error(cstate, "AppleTalk encapsulation is not specifiable");
6499 		/*NOTREACHED*/
6500 
6501 	case Q_DECNET:
6502 		bpf_error(cstate, "DECNET encapsulation is not specifiable");
6503 		/*NOTREACHED*/
6504 
6505 	case Q_LAT:
6506 		bpf_error(cstate, "LAT does not encapsulate another protocol");
6507 		/*NOTREACHED*/
6508 
6509 	case Q_SCA:
6510 		bpf_error(cstate, "SCA does not encapsulate another protocol");
6511 		/*NOTREACHED*/
6512 
6513 	case Q_MOPRC:
6514 		bpf_error(cstate, "MOPRC does not encapsulate another protocol");
6515 		/*NOTREACHED*/
6516 
6517 	case Q_MOPDL:
6518 		bpf_error(cstate, "MOPDL does not encapsulate another protocol");
6519 		/*NOTREACHED*/
6520 
6521 	case Q_IPV6:
6522 		b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
6523 		/*
6524 		 * Also check for a fragment header before the final
6525 		 * header.
6526 		 */
6527 		b2 = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, IPPROTO_FRAGMENT);
6528 		b1 = gen_cmp(cstate, OR_LINKPL, 40, BPF_B, v);
6529 		gen_and(b2, b1);
6530 		b2 = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, v);
6531 		gen_or(b2, b1);
6532 		gen_and(b0, b1);
6533 		return b1;
6534 
6535 	case Q_ICMPV6:
6536 		bpf_error(cstate, "'icmp6 proto' is bogus");
6537 		/*NOTREACHED*/
6538 
6539 	case Q_AH:
6540 		bpf_error(cstate, "'ah proto' is bogus");
6541 		/*NOTREACHED*/
6542 
6543 	case Q_ESP:
6544 		bpf_error(cstate, "'esp proto' is bogus");
6545 		/*NOTREACHED*/
6546 
6547 	case Q_PIM:
6548 		bpf_error(cstate, "'pim proto' is bogus");
6549 		/*NOTREACHED*/
6550 
6551 	case Q_VRRP:
6552 		bpf_error(cstate, "'vrrp proto' is bogus");
6553 		/*NOTREACHED*/
6554 
6555 	case Q_AARP:
6556 		bpf_error(cstate, "'aarp proto' is bogus");
6557 		/*NOTREACHED*/
6558 
6559 	case Q_ISO:
6560 		switch (cstate->linktype) {
6561 
6562 		case DLT_FRELAY:
6563 			/*
6564 			 * Frame Relay packets typically have an OSI
6565 			 * NLPID at the beginning; "gen_linktype(cstate, LLCSAP_ISONS)"
6566 			 * generates code to check for all the OSI
6567 			 * NLPIDs, so calling it and then adding a check
6568 			 * for the particular NLPID for which we're
6569 			 * looking is bogus, as we can just check for
6570 			 * the NLPID.
6571 			 *
6572 			 * What we check for is the NLPID and a frame
6573 			 * control field value of UI, i.e. 0x03 followed
6574 			 * by the NLPID.
6575 			 *
6576 			 * XXX - assumes a 2-byte Frame Relay header with
6577 			 * DLCI and flags.  What if the address is longer?
6578 			 *
6579 			 * XXX - what about SNAP-encapsulated frames?
6580 			 */
6581 			return gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | v);
6582 			/*NOTREACHED*/
6583 
6584 		case DLT_C_HDLC:
6585 		case DLT_HDLC:
6586 			/*
6587 			 * Cisco uses an Ethertype lookalike - for OSI,
6588 			 * it's 0xfefe.
6589 			 */
6590 			b0 = gen_linktype(cstate, LLCSAP_ISONS<<8 | LLCSAP_ISONS);
6591 			/* OSI in C-HDLC is stuffed with a fudge byte */
6592 			b1 = gen_cmp(cstate, OR_LINKPL_NOSNAP, 1, BPF_B, v);
6593 			gen_and(b0, b1);
6594 			return b1;
6595 
6596 		default:
6597 			b0 = gen_linktype(cstate, LLCSAP_ISONS);
6598 			b1 = gen_cmp(cstate, OR_LINKPL_NOSNAP, 0, BPF_B, v);
6599 			gen_and(b0, b1);
6600 			return b1;
6601 		}
6602 
6603 	case Q_ESIS:
6604 		bpf_error(cstate, "'esis proto' is bogus");
6605 		/*NOTREACHED*/
6606 
6607 	case Q_ISIS:
6608 		b0 = gen_proto(cstate, ISO10589_ISIS, Q_ISO, Q_DEFAULT);
6609 		/*
6610 		 * 4 is the offset of the PDU type relative to the IS-IS
6611 		 * header.
6612 		 */
6613 		b1 = gen_cmp(cstate, OR_LINKPL_NOSNAP, 4, BPF_B, v);
6614 		gen_and(b0, b1);
6615 		return b1;
6616 
6617 	case Q_CLNP:
6618 		bpf_error(cstate, "'clnp proto' is not supported");
6619 		/*NOTREACHED*/
6620 
6621 	case Q_STP:
6622 		bpf_error(cstate, "'stp proto' is bogus");
6623 		/*NOTREACHED*/
6624 
6625 	case Q_IPX:
6626 		bpf_error(cstate, "'ipx proto' is bogus");
6627 		/*NOTREACHED*/
6628 
6629 	case Q_NETBEUI:
6630 		bpf_error(cstate, "'netbeui proto' is bogus");
6631 		/*NOTREACHED*/
6632 
6633 	case Q_ISIS_L1:
6634 		bpf_error(cstate, "'l1 proto' is bogus");
6635 		/*NOTREACHED*/
6636 
6637 	case Q_ISIS_L2:
6638 		bpf_error(cstate, "'l2 proto' is bogus");
6639 		/*NOTREACHED*/
6640 
6641 	case Q_ISIS_IIH:
6642 		bpf_error(cstate, "'iih proto' is bogus");
6643 		/*NOTREACHED*/
6644 
6645 	case Q_ISIS_SNP:
6646 		bpf_error(cstate, "'snp proto' is bogus");
6647 		/*NOTREACHED*/
6648 
6649 	case Q_ISIS_CSNP:
6650 		bpf_error(cstate, "'csnp proto' is bogus");
6651 		/*NOTREACHED*/
6652 
6653 	case Q_ISIS_PSNP:
6654 		bpf_error(cstate, "'psnp proto' is bogus");
6655 		/*NOTREACHED*/
6656 
6657 	case Q_ISIS_LSP:
6658 		bpf_error(cstate, "'lsp proto' is bogus");
6659 		/*NOTREACHED*/
6660 
6661 	case Q_RADIO:
6662 		bpf_error(cstate, "'radio proto' is bogus");
6663 		/*NOTREACHED*/
6664 
6665 	case Q_CARP:
6666 		bpf_error(cstate, "'carp proto' is bogus");
6667 		/*NOTREACHED*/
6668 
6669 	default:
6670 		abort();
6671 		/*NOTREACHED*/
6672 	}
6673 	/*NOTREACHED*/
6674 }
6675 
6676 /*
6677  * Convert a non-numeric name to a port number.
6678  */
6679 static int
6680 nametoport(compiler_state_t *cstate, const char *name, int ipproto)
6681 {
6682 	struct addrinfo hints, *res, *ai;
6683 	int error;
6684 	struct sockaddr_in *in4;
6685 #ifdef INET6
6686 	struct sockaddr_in6 *in6;
6687 #endif
6688 	int port = -1;
6689 
6690 	/*
6691 	 * We check for both TCP and UDP in case there are
6692 	 * ambiguous entries.
6693 	 */
6694 	memset(&hints, 0, sizeof(hints));
6695 	hints.ai_family = PF_UNSPEC;
6696 	hints.ai_socktype = (ipproto == IPPROTO_TCP) ? SOCK_STREAM : SOCK_DGRAM;
6697 	hints.ai_protocol = ipproto;
6698 	error = getaddrinfo(NULL, name, &hints, &res);
6699 	if (error != 0) {
6700 		switch (error) {
6701 
6702 		case EAI_NONAME:
6703 		case EAI_SERVICE:
6704 			/*
6705 			 * No such port.  Just return -1.
6706 			 */
6707 			break;
6708 
6709 #ifdef EAI_SYSTEM
6710 		case EAI_SYSTEM:
6711 			/*
6712 			 * We don't use strerror() because it's not
6713 			 * guaranteed to be thread-safe on all platforms
6714 			 * (probably because it might use a non-thread-local
6715 			 * buffer into which to format an error message
6716 			 * if the error code isn't one for which it has
6717 			 * a canned string; three cheers for C string
6718 			 * handling).
6719 			 */
6720 			bpf_set_error(cstate, "getaddrinfo(\"%s\" fails with system error: %d",
6721 			    name, errno);
6722 			port = -2;	/* a real error */
6723 			break;
6724 #endif
6725 
6726 		default:
6727 			/*
6728 			 * This is a real error, not just "there's
6729 			 * no such service name".
6730 			 *
6731 			 * We don't use gai_strerror() because it's not
6732 			 * guaranteed to be thread-safe on all platforms
6733 			 * (probably because it might use a non-thread-local
6734 			 * buffer into which to format an error message
6735 			 * if the error code isn't one for which it has
6736 			 * a canned string; three cheers for C string
6737 			 * handling).
6738 			 */
6739 			bpf_set_error(cstate, "getaddrinfo(\"%s\") fails with error: %d",
6740 			    name, error);
6741 			port = -2;	/* a real error */
6742 			break;
6743 		}
6744 	} else {
6745 		/*
6746 		 * OK, we found it.  Did it find anything?
6747 		 */
6748 		for (ai = res; ai != NULL; ai = ai->ai_next) {
6749 			/*
6750 			 * Does it have an address?
6751 			 */
6752 			if (ai->ai_addr != NULL) {
6753 				/*
6754 				 * Yes.  Get a port number; we're done.
6755 				 */
6756 				if (ai->ai_addr->sa_family == AF_INET) {
6757 					in4 = (struct sockaddr_in *)ai->ai_addr;
6758 					port = ntohs(in4->sin_port);
6759 					break;
6760 				}
6761 #ifdef INET6
6762 				if (ai->ai_addr->sa_family == AF_INET6) {
6763 					in6 = (struct sockaddr_in6 *)ai->ai_addr;
6764 					port = ntohs(in6->sin6_port);
6765 					break;
6766 				}
6767 #endif
6768 			}
6769 		}
6770 		freeaddrinfo(res);
6771 	}
6772 	return port;
6773 }
6774 
6775 /*
6776  * Convert a string to a port number.
6777  */
6778 static bpf_u_int32
6779 stringtoport(compiler_state_t *cstate, const char *string, size_t string_size,
6780     int *proto)
6781 {
6782 	stoulen_ret ret;
6783 	char *cpy;
6784 	bpf_u_int32 val;
6785 	int tcp_port = -1;
6786 	int udp_port = -1;
6787 
6788 	/*
6789 	 * See if it's a number.
6790 	 */
6791 	ret = stoulen(string, string_size, &val, cstate);
6792 	switch (ret) {
6793 
6794 	case STOULEN_OK:
6795 		/* Unknown port type - it's just a number. */
6796 		*proto = PROTO_UNDEF;
6797 		break;
6798 
6799 	case STOULEN_NOT_OCTAL_NUMBER:
6800 	case STOULEN_NOT_HEX_NUMBER:
6801 	case STOULEN_NOT_DECIMAL_NUMBER:
6802 		/*
6803 		 * Not a valid number; try looking it up as a port.
6804 		 */
6805 		cpy = malloc(string_size + 1);	/* +1 for terminating '\0' */
6806 		memcpy(cpy, string, string_size);
6807 		cpy[string_size] = '\0';
6808 		tcp_port = nametoport(cstate, cpy, IPPROTO_TCP);
6809 		if (tcp_port == -2) {
6810 			/*
6811 			 * We got a hard error; the error string has
6812 			 * already been set.
6813 			 */
6814 			free(cpy);
6815 			longjmp(cstate->top_ctx, 1);
6816 			/*NOTREACHED*/
6817 		}
6818 		udp_port = nametoport(cstate, cpy, IPPROTO_UDP);
6819 		if (udp_port == -2) {
6820 			/*
6821 			 * We got a hard error; the error string has
6822 			 * already been set.
6823 			 */
6824 			free(cpy);
6825 			longjmp(cstate->top_ctx, 1);
6826 			/*NOTREACHED*/
6827 		}
6828 
6829 		/*
6830 		 * We need to check /etc/services for ambiguous entries.
6831 		 * If we find an ambiguous entry, and it has the
6832 		 * same port number, change the proto to PROTO_UNDEF
6833 		 * so both TCP and UDP will be checked.
6834 		 */
6835 		if (tcp_port >= 0) {
6836 			val = (bpf_u_int32)tcp_port;
6837 			*proto = IPPROTO_TCP;
6838 			if (udp_port >= 0) {
6839 				if (udp_port == tcp_port)
6840 					*proto = PROTO_UNDEF;
6841 #ifdef notdef
6842 				else
6843 					/* Can't handle ambiguous names that refer
6844 					   to different port numbers. */
6845 					warning("ambiguous port %s in /etc/services",
6846 						cpy);
6847 #endif
6848 			}
6849 			free(cpy);
6850 			break;
6851 		}
6852 		if (udp_port >= 0) {
6853 			val = (bpf_u_int32)udp_port;
6854 			*proto = IPPROTO_UDP;
6855 			free(cpy);
6856 			break;
6857 		}
6858 #if defined(ultrix) || defined(__osf__)
6859 		/* Special hack in case NFS isn't in /etc/services */
6860 		if (strcmp(cpy, "nfs") == 0) {
6861 			val = 2049;
6862 			*proto = PROTO_UNDEF;
6863 			free(cpy);
6864 			break;
6865 		}
6866 #endif
6867 		bpf_set_error(cstate, "'%s' is not a valid port", cpy);
6868 		free(cpy);
6869 		longjmp(cstate->top_ctx, 1);
6870 		/*NOTREACHED*/
6871 
6872 	case STOULEN_ERROR:
6873 		/* Error already set. */
6874 		longjmp(cstate->top_ctx, 1);
6875 		/*NOTREACHED*/
6876 
6877 	default:
6878 		/* Should not happen */
6879 		bpf_set_error(cstate, "stoulen returned %d - this should not happen", ret);
6880 		longjmp(cstate->top_ctx, 1);
6881 		/*NOTREACHED*/
6882 	}
6883 	return (val);
6884 }
6885 
6886 /*
6887  * Convert a string in the form PPP-PPP, which correspond to ports, to
6888  * a starting and ending port in a port range.
6889  */
6890 static void
6891 stringtoportrange(compiler_state_t *cstate, const char *string,
6892     bpf_u_int32 *port1, bpf_u_int32 *port2, int *proto)
6893 {
6894 	char *hyphen_off;
6895 	const char *first, *second;
6896 	size_t first_size, second_size;
6897 	int save_proto;
6898 
6899 	if ((hyphen_off = strchr(string, '-')) == NULL)
6900 		bpf_error(cstate, "port range '%s' contains no hyphen", string);
6901 
6902 	/*
6903 	 * Make sure there are no other hyphens.
6904 	 *
6905 	 * XXX - we support named ports, but there are some port names
6906 	 * in /etc/services that include hyphens, so this would rule
6907 	 * that out.
6908 	 */
6909 	if (strchr(hyphen_off + 1, '-') != NULL)
6910 		bpf_error(cstate, "port range '%s' contains more than one hyphen",
6911 		    string);
6912 
6913 	/*
6914 	 * Get the length of the first port.
6915 	 */
6916 	first = string;
6917 	first_size = hyphen_off - string;
6918 	if (first_size == 0) {
6919 		/* Range of "-port", which we don't support. */
6920 		bpf_error(cstate, "port range '%s' has no starting port", string);
6921 	}
6922 
6923 	/*
6924 	 * Try to convert it to a port.
6925 	 */
6926 	*port1 = stringtoport(cstate, first, first_size, proto);
6927 	save_proto = *proto;
6928 
6929 	/*
6930 	 * Get the length of the second port.
6931 	 */
6932 	second = hyphen_off + 1;
6933 	second_size = strlen(second);
6934 	if (second_size == 0) {
6935 		/* Range of "port-", which we don't support. */
6936 		bpf_error(cstate, "port range '%s' has no ending port", string);
6937 	}
6938 
6939 	/*
6940 	 * Try to convert it to a port.
6941 	 */
6942 	*port2 = stringtoport(cstate, second, second_size, proto);
6943 	if (*proto != save_proto)
6944 		*proto = PROTO_UNDEF;
6945 }
6946 
6947 struct block *
6948 gen_scode(compiler_state_t *cstate, const char *name, struct qual q)
6949 {
6950 	int proto = q.proto;
6951 	int dir = q.dir;
6952 	int tproto;
6953 	u_char *eaddr;
6954 	bpf_u_int32 mask, addr;
6955 	struct addrinfo *res, *res0;
6956 	struct sockaddr_in *sin4;
6957 #ifdef INET6
6958 	int tproto6;
6959 	struct sockaddr_in6 *sin6;
6960 	struct in6_addr mask128;
6961 #endif /*INET6*/
6962 	struct block *b, *tmp;
6963 	int port, real_proto;
6964 	bpf_u_int32 port1, port2;
6965 
6966 	/*
6967 	 * Catch errors reported by us and routines below us, and return NULL
6968 	 * on an error.
6969 	 */
6970 	if (setjmp(cstate->top_ctx))
6971 		return (NULL);
6972 
6973 	switch (q.addr) {
6974 
6975 	case Q_NET:
6976 		addr = pcap_nametonetaddr(name);
6977 		if (addr == 0)
6978 			bpf_error(cstate, "unknown network '%s'", name);
6979 		/* Left justify network addr and calculate its network mask */
6980 		mask = 0xffffffff;
6981 		while (addr && (addr & 0xff000000) == 0) {
6982 			addr <<= 8;
6983 			mask <<= 8;
6984 		}
6985 		return gen_host(cstate, addr, mask, proto, dir, q.addr);
6986 
6987 	case Q_DEFAULT:
6988 	case Q_HOST:
6989 		if (proto == Q_LINK) {
6990 			switch (cstate->linktype) {
6991 
6992 			case DLT_EN10MB:
6993 			case DLT_NETANALYZER:
6994 			case DLT_NETANALYZER_TRANSPARENT:
6995 				eaddr = pcap_ether_hostton(name);
6996 				if (eaddr == NULL)
6997 					bpf_error(cstate,
6998 					    "unknown ether host '%s'", name);
6999 				tmp = gen_prevlinkhdr_check(cstate);
7000 				b = gen_ehostop(cstate, eaddr, dir);
7001 				if (tmp != NULL)
7002 					gen_and(tmp, b);
7003 				free(eaddr);
7004 				return b;
7005 
7006 			case DLT_FDDI:
7007 				eaddr = pcap_ether_hostton(name);
7008 				if (eaddr == NULL)
7009 					bpf_error(cstate,
7010 					    "unknown FDDI host '%s'", name);
7011 				b = gen_fhostop(cstate, eaddr, dir);
7012 				free(eaddr);
7013 				return b;
7014 
7015 			case DLT_IEEE802:
7016 				eaddr = pcap_ether_hostton(name);
7017 				if (eaddr == NULL)
7018 					bpf_error(cstate,
7019 					    "unknown token ring host '%s'", name);
7020 				b = gen_thostop(cstate, eaddr, dir);
7021 				free(eaddr);
7022 				return b;
7023 
7024 			case DLT_IEEE802_11:
7025 			case DLT_PRISM_HEADER:
7026 			case DLT_IEEE802_11_RADIO_AVS:
7027 			case DLT_IEEE802_11_RADIO:
7028 			case DLT_PPI:
7029 				eaddr = pcap_ether_hostton(name);
7030 				if (eaddr == NULL)
7031 					bpf_error(cstate,
7032 					    "unknown 802.11 host '%s'", name);
7033 				b = gen_wlanhostop(cstate, eaddr, dir);
7034 				free(eaddr);
7035 				return b;
7036 
7037 			case DLT_IP_OVER_FC:
7038 				eaddr = pcap_ether_hostton(name);
7039 				if (eaddr == NULL)
7040 					bpf_error(cstate,
7041 					    "unknown Fibre Channel host '%s'", name);
7042 				b = gen_ipfchostop(cstate, eaddr, dir);
7043 				free(eaddr);
7044 				return b;
7045 			}
7046 
7047 			bpf_error(cstate, "only ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel supports link-level host name");
7048 		} else if (proto == Q_DECNET) {
7049 			unsigned short dn_addr;
7050 
7051 			if (!__pcap_nametodnaddr(name, &dn_addr)) {
7052 #ifdef	DECNETLIB
7053 				bpf_error(cstate, "unknown decnet host name '%s'\n", name);
7054 #else
7055 				bpf_error(cstate, "decnet name support not included, '%s' cannot be translated\n",
7056 					name);
7057 #endif
7058 			}
7059 			/*
7060 			 * I don't think DECNET hosts can be multihomed, so
7061 			 * there is no need to build up a list of addresses
7062 			 */
7063 			return (gen_host(cstate, dn_addr, 0, proto, dir, q.addr));
7064 		} else {
7065 #ifdef INET6
7066 			memset(&mask128, 0xff, sizeof(mask128));
7067 #endif
7068 			res0 = res = pcap_nametoaddrinfo(name);
7069 			if (res == NULL)
7070 				bpf_error(cstate, "unknown host '%s'", name);
7071 			cstate->ai = res;
7072 			b = tmp = NULL;
7073 			tproto = proto;
7074 #ifdef INET6
7075 			tproto6 = proto;
7076 #endif
7077 			if (cstate->off_linktype.constant_part == OFFSET_NOT_SET &&
7078 			    tproto == Q_DEFAULT) {
7079 				tproto = Q_IP;
7080 #ifdef INET6
7081 				tproto6 = Q_IPV6;
7082 #endif
7083 			}
7084 			for (res = res0; res; res = res->ai_next) {
7085 				switch (res->ai_family) {
7086 				case AF_INET:
7087 #ifdef INET6
7088 					if (tproto == Q_IPV6)
7089 						continue;
7090 #endif
7091 
7092 					sin4 = (struct sockaddr_in *)
7093 						res->ai_addr;
7094 					tmp = gen_host(cstate, ntohl(sin4->sin_addr.s_addr),
7095 						0xffffffff, tproto, dir, q.addr);
7096 					break;
7097 #ifdef INET6
7098 				case AF_INET6:
7099 					if (tproto6 == Q_IP)
7100 						continue;
7101 
7102 					sin6 = (struct sockaddr_in6 *)
7103 						res->ai_addr;
7104 					tmp = gen_host6(cstate, &sin6->sin6_addr,
7105 						&mask128, tproto6, dir, q.addr);
7106 					break;
7107 #endif
7108 				default:
7109 					continue;
7110 				}
7111 				if (b)
7112 					gen_or(b, tmp);
7113 				b = tmp;
7114 			}
7115 			cstate->ai = NULL;
7116 			freeaddrinfo(res0);
7117 			if (b == NULL) {
7118 				bpf_error(cstate, "unknown host '%s'%s", name,
7119 				    (proto == Q_DEFAULT)
7120 					? ""
7121 					: " for specified address family");
7122 			}
7123 			return b;
7124 		}
7125 
7126 	case Q_PORT:
7127 		if (proto != Q_DEFAULT &&
7128 		    proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP)
7129 			bpf_error(cstate, "illegal qualifier of 'port'");
7130 		if (pcap_nametoport(name, &port, &real_proto) == 0)
7131 			bpf_error(cstate, "unknown port '%s'", name);
7132 		if (proto == Q_UDP) {
7133 			if (real_proto == IPPROTO_TCP)
7134 				bpf_error(cstate, "port '%s' is tcp", name);
7135 			else if (real_proto == IPPROTO_SCTP)
7136 				bpf_error(cstate, "port '%s' is sctp", name);
7137 			else
7138 				/* override PROTO_UNDEF */
7139 				real_proto = IPPROTO_UDP;
7140 		}
7141 		if (proto == Q_TCP) {
7142 			if (real_proto == IPPROTO_UDP)
7143 				bpf_error(cstate, "port '%s' is udp", name);
7144 
7145 			else if (real_proto == IPPROTO_SCTP)
7146 				bpf_error(cstate, "port '%s' is sctp", name);
7147 			else
7148 				/* override PROTO_UNDEF */
7149 				real_proto = IPPROTO_TCP;
7150 		}
7151 		if (proto == Q_SCTP) {
7152 			if (real_proto == IPPROTO_UDP)
7153 				bpf_error(cstate, "port '%s' is udp", name);
7154 
7155 			else if (real_proto == IPPROTO_TCP)
7156 				bpf_error(cstate, "port '%s' is tcp", name);
7157 			else
7158 				/* override PROTO_UNDEF */
7159 				real_proto = IPPROTO_SCTP;
7160 		}
7161 		if (port < 0)
7162 			bpf_error(cstate, "illegal port number %d < 0", port);
7163 		if (port > 65535)
7164 			bpf_error(cstate, "illegal port number %d > 65535", port);
7165 		b = gen_port(cstate, port, real_proto, dir);
7166 		gen_or(gen_port6(cstate, port, real_proto, dir), b);
7167 		return b;
7168 
7169 	case Q_PORTRANGE:
7170 		if (proto != Q_DEFAULT &&
7171 		    proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP)
7172 			bpf_error(cstate, "illegal qualifier of 'portrange'");
7173 		stringtoportrange(cstate, name, &port1, &port2, &real_proto);
7174 		if (proto == Q_UDP) {
7175 			if (real_proto == IPPROTO_TCP)
7176 				bpf_error(cstate, "port in range '%s' is tcp", name);
7177 			else if (real_proto == IPPROTO_SCTP)
7178 				bpf_error(cstate, "port in range '%s' is sctp", name);
7179 			else
7180 				/* override PROTO_UNDEF */
7181 				real_proto = IPPROTO_UDP;
7182 		}
7183 		if (proto == Q_TCP) {
7184 			if (real_proto == IPPROTO_UDP)
7185 				bpf_error(cstate, "port in range '%s' is udp", name);
7186 			else if (real_proto == IPPROTO_SCTP)
7187 				bpf_error(cstate, "port in range '%s' is sctp", name);
7188 			else
7189 				/* override PROTO_UNDEF */
7190 				real_proto = IPPROTO_TCP;
7191 		}
7192 		if (proto == Q_SCTP) {
7193 			if (real_proto == IPPROTO_UDP)
7194 				bpf_error(cstate, "port in range '%s' is udp", name);
7195 			else if (real_proto == IPPROTO_TCP)
7196 				bpf_error(cstate, "port in range '%s' is tcp", name);
7197 			else
7198 				/* override PROTO_UNDEF */
7199 				real_proto = IPPROTO_SCTP;
7200 		}
7201 		if (port1 > 65535)
7202 			bpf_error(cstate, "illegal port number %d > 65535", port1);
7203 		if (port2 > 65535)
7204 			bpf_error(cstate, "illegal port number %d > 65535", port2);
7205 
7206 		b = gen_portrange(cstate, port1, port2, real_proto, dir);
7207 		gen_or(gen_portrange6(cstate, port1, port2, real_proto, dir), b);
7208 		return b;
7209 
7210 	case Q_GATEWAY:
7211 #ifndef INET6
7212 		eaddr = pcap_ether_hostton(name);
7213 		if (eaddr == NULL)
7214 			bpf_error(cstate, "unknown ether host: %s", name);
7215 
7216 		res = pcap_nametoaddrinfo(name);
7217 		cstate->ai = res;
7218 		if (res == NULL)
7219 			bpf_error(cstate, "unknown host '%s'", name);
7220 		b = gen_gateway(cstate, eaddr, res, proto, dir);
7221 		cstate->ai = NULL;
7222 		freeaddrinfo(res);
7223 		if (b == NULL)
7224 			bpf_error(cstate, "unknown host '%s'", name);
7225 		return b;
7226 #else
7227 		bpf_error(cstate, "'gateway' not supported in this configuration");
7228 #endif /*INET6*/
7229 
7230 	case Q_PROTO:
7231 		real_proto = lookup_proto(cstate, name, proto);
7232 		if (real_proto >= 0)
7233 			return gen_proto(cstate, real_proto, proto, dir);
7234 		else
7235 			bpf_error(cstate, "unknown protocol: %s", name);
7236 
7237 #if !defined(NO_PROTOCHAIN)
7238 	case Q_PROTOCHAIN:
7239 		real_proto = lookup_proto(cstate, name, proto);
7240 		if (real_proto >= 0)
7241 			return gen_protochain(cstate, real_proto, proto);
7242 		else
7243 			bpf_error(cstate, "unknown protocol: %s", name);
7244 #endif /* !defined(NO_PROTOCHAIN) */
7245 
7246 	case Q_UNDEF:
7247 		syntax(cstate);
7248 		/*NOTREACHED*/
7249 	}
7250 	abort();
7251 	/*NOTREACHED*/
7252 }
7253 
7254 struct block *
7255 gen_mcode(compiler_state_t *cstate, const char *s1, const char *s2,
7256     bpf_u_int32 masklen, struct qual q)
7257 {
7258 	register int nlen, mlen;
7259 	bpf_u_int32 n, m;
7260 
7261 	/*
7262 	 * Catch errors reported by us and routines below us, and return NULL
7263 	 * on an error.
7264 	 */
7265 	if (setjmp(cstate->top_ctx))
7266 		return (NULL);
7267 
7268 	nlen = __pcap_atoin(s1, &n);
7269 	if (nlen < 0)
7270 		bpf_error(cstate, "invalid IPv4 address '%s'", s1);
7271 	/* Promote short ipaddr */
7272 	n <<= 32 - nlen;
7273 
7274 	if (s2 != NULL) {
7275 		mlen = __pcap_atoin(s2, &m);
7276 		if (mlen < 0)
7277 			bpf_error(cstate, "invalid IPv4 address '%s'", s2);
7278 		/* Promote short ipaddr */
7279 		m <<= 32 - mlen;
7280 		if ((n & ~m) != 0)
7281 			bpf_error(cstate, "non-network bits set in \"%s mask %s\"",
7282 			    s1, s2);
7283 	} else {
7284 		/* Convert mask len to mask */
7285 		if (masklen > 32)
7286 			bpf_error(cstate, "mask length must be <= 32");
7287 		if (masklen == 0) {
7288 			/*
7289 			 * X << 32 is not guaranteed by C to be 0; it's
7290 			 * undefined.
7291 			 */
7292 			m = 0;
7293 		} else
7294 			m = 0xffffffff << (32 - masklen);
7295 		if ((n & ~m) != 0)
7296 			bpf_error(cstate, "non-network bits set in \"%s/%d\"",
7297 			    s1, masklen);
7298 	}
7299 
7300 	switch (q.addr) {
7301 
7302 	case Q_NET:
7303 		return gen_host(cstate, n, m, q.proto, q.dir, q.addr);
7304 
7305 	default:
7306 		bpf_error(cstate, "Mask syntax for networks only");
7307 		/*NOTREACHED*/
7308 	}
7309 	/*NOTREACHED*/
7310 }
7311 
7312 struct block *
7313 gen_ncode(compiler_state_t *cstate, const char *s, bpf_u_int32 v, struct qual q)
7314 {
7315 	bpf_u_int32 mask;
7316 	int proto;
7317 	int dir;
7318 	register int vlen;
7319 
7320 	/*
7321 	 * Catch errors reported by us and routines below us, and return NULL
7322 	 * on an error.
7323 	 */
7324 	if (setjmp(cstate->top_ctx))
7325 		return (NULL);
7326 
7327 	proto = q.proto;
7328 	dir = q.dir;
7329 	if (s == NULL)
7330 		vlen = 32;
7331 	else if (q.proto == Q_DECNET) {
7332 		vlen = __pcap_atodn(s, &v);
7333 		if (vlen == 0)
7334 			bpf_error(cstate, "malformed decnet address '%s'", s);
7335 	} else {
7336 		vlen = __pcap_atoin(s, &v);
7337 		if (vlen < 0)
7338 			bpf_error(cstate, "invalid IPv4 address '%s'", s);
7339 	}
7340 
7341 	switch (q.addr) {
7342 
7343 	case Q_DEFAULT:
7344 	case Q_HOST:
7345 	case Q_NET:
7346 		if (proto == Q_DECNET)
7347 			return gen_host(cstate, v, 0, proto, dir, q.addr);
7348 		else if (proto == Q_LINK) {
7349 			bpf_error(cstate, "illegal link layer address");
7350 		} else {
7351 			mask = 0xffffffff;
7352 			if (s == NULL && q.addr == Q_NET) {
7353 				/* Promote short net number */
7354 				while (v && (v & 0xff000000) == 0) {
7355 					v <<= 8;
7356 					mask <<= 8;
7357 				}
7358 			} else {
7359 				/* Promote short ipaddr */
7360 				v <<= 32 - vlen;
7361 				mask <<= 32 - vlen ;
7362 			}
7363 			return gen_host(cstate, v, mask, proto, dir, q.addr);
7364 		}
7365 
7366 	case Q_PORT:
7367 		if (proto == Q_UDP)
7368 			proto = IPPROTO_UDP;
7369 		else if (proto == Q_TCP)
7370 			proto = IPPROTO_TCP;
7371 		else if (proto == Q_SCTP)
7372 			proto = IPPROTO_SCTP;
7373 		else if (proto == Q_DEFAULT)
7374 			proto = PROTO_UNDEF;
7375 		else
7376 			bpf_error(cstate, "illegal qualifier of 'port'");
7377 
7378 		if (v > 65535)
7379 			bpf_error(cstate, "illegal port number %u > 65535", v);
7380 
7381 	    {
7382 		struct block *b;
7383 		b = gen_port(cstate, v, proto, dir);
7384 		gen_or(gen_port6(cstate, v, proto, dir), b);
7385 		return b;
7386 	    }
7387 
7388 	case Q_PORTRANGE:
7389 		if (proto == Q_UDP)
7390 			proto = IPPROTO_UDP;
7391 		else if (proto == Q_TCP)
7392 			proto = IPPROTO_TCP;
7393 		else if (proto == Q_SCTP)
7394 			proto = IPPROTO_SCTP;
7395 		else if (proto == Q_DEFAULT)
7396 			proto = PROTO_UNDEF;
7397 		else
7398 			bpf_error(cstate, "illegal qualifier of 'portrange'");
7399 
7400 		if (v > 65535)
7401 			bpf_error(cstate, "illegal port number %u > 65535", v);
7402 
7403 	    {
7404 		struct block *b;
7405 		b = gen_portrange(cstate, v, v, proto, dir);
7406 		gen_or(gen_portrange6(cstate, v, v, proto, dir), b);
7407 		return b;
7408 	    }
7409 
7410 	case Q_GATEWAY:
7411 		bpf_error(cstate, "'gateway' requires a name");
7412 		/*NOTREACHED*/
7413 
7414 	case Q_PROTO:
7415 		return gen_proto(cstate, v, proto, dir);
7416 
7417 #if !defined(NO_PROTOCHAIN)
7418 	case Q_PROTOCHAIN:
7419 		return gen_protochain(cstate, v, proto);
7420 #endif
7421 
7422 	case Q_UNDEF:
7423 		syntax(cstate);
7424 		/*NOTREACHED*/
7425 
7426 	default:
7427 		abort();
7428 		/*NOTREACHED*/
7429 	}
7430 	/*NOTREACHED*/
7431 }
7432 
7433 #ifdef INET6
7434 struct block *
7435 gen_mcode6(compiler_state_t *cstate, const char *s, bpf_u_int32 masklen,
7436     struct qual q)
7437 {
7438 	struct addrinfo *res;
7439 	struct in6_addr *addr;
7440 	struct in6_addr mask;
7441 	struct block *b;
7442 	bpf_u_int32 a[4], m[4]; /* Same as in gen_hostop6(). */
7443 
7444 	/*
7445 	 * Catch errors reported by us and routines below us, and return NULL
7446 	 * on an error.
7447 	 */
7448 	if (setjmp(cstate->top_ctx))
7449 		return (NULL);
7450 
7451 	res = pcap_nametoaddrinfo(s);
7452 	if (!res)
7453 		bpf_error(cstate, "invalid ip6 address %s", s);
7454 	cstate->ai = res;
7455 	if (res->ai_next)
7456 		bpf_error(cstate, "%s resolved to multiple address", s);
7457 	addr = &((struct sockaddr_in6 *)res->ai_addr)->sin6_addr;
7458 
7459 	if (masklen > sizeof(mask.s6_addr) * 8)
7460 		bpf_error(cstate, "mask length must be <= %zu", sizeof(mask.s6_addr) * 8);
7461 	memset(&mask, 0, sizeof(mask));
7462 	memset(&mask.s6_addr, 0xff, masklen / 8);
7463 	if (masklen % 8) {
7464 		mask.s6_addr[masklen / 8] =
7465 			(0xff << (8 - masklen % 8)) & 0xff;
7466 	}
7467 
7468 	memcpy(a, addr, sizeof(a));
7469 	memcpy(m, &mask, sizeof(m));
7470 	if ((a[0] & ~m[0]) || (a[1] & ~m[1])
7471 	 || (a[2] & ~m[2]) || (a[3] & ~m[3])) {
7472 		bpf_error(cstate, "non-network bits set in \"%s/%d\"", s, masklen);
7473 	}
7474 
7475 	switch (q.addr) {
7476 
7477 	case Q_DEFAULT:
7478 	case Q_HOST:
7479 		if (masklen != 128)
7480 			bpf_error(cstate, "Mask syntax for networks only");
7481 		/* FALLTHROUGH */
7482 
7483 	case Q_NET:
7484 		b = gen_host6(cstate, addr, &mask, q.proto, q.dir, q.addr);
7485 		cstate->ai = NULL;
7486 		freeaddrinfo(res);
7487 		return b;
7488 
7489 	default:
7490 		bpf_error(cstate, "invalid qualifier against IPv6 address");
7491 		/*NOTREACHED*/
7492 	}
7493 }
7494 #endif /*INET6*/
7495 
7496 struct block *
7497 gen_ecode(compiler_state_t *cstate, const char *s, struct qual q)
7498 {
7499 	struct block *b, *tmp;
7500 
7501 	/*
7502 	 * Catch errors reported by us and routines below us, and return NULL
7503 	 * on an error.
7504 	 */
7505 	if (setjmp(cstate->top_ctx))
7506 		return (NULL);
7507 
7508 	if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) && q.proto == Q_LINK) {
7509 		cstate->e = pcap_ether_aton(s);
7510 		if (cstate->e == NULL)
7511 			bpf_error(cstate, "malloc");
7512 		switch (cstate->linktype) {
7513 		case DLT_EN10MB:
7514 		case DLT_NETANALYZER:
7515 		case DLT_NETANALYZER_TRANSPARENT:
7516 			tmp = gen_prevlinkhdr_check(cstate);
7517 			b = gen_ehostop(cstate, cstate->e, (int)q.dir);
7518 			if (tmp != NULL)
7519 				gen_and(tmp, b);
7520 			break;
7521 		case DLT_FDDI:
7522 			b = gen_fhostop(cstate, cstate->e, (int)q.dir);
7523 			break;
7524 		case DLT_IEEE802:
7525 			b = gen_thostop(cstate, cstate->e, (int)q.dir);
7526 			break;
7527 		case DLT_IEEE802_11:
7528 		case DLT_PRISM_HEADER:
7529 		case DLT_IEEE802_11_RADIO_AVS:
7530 		case DLT_IEEE802_11_RADIO:
7531 		case DLT_PPI:
7532 			b = gen_wlanhostop(cstate, cstate->e, (int)q.dir);
7533 			break;
7534 		case DLT_IP_OVER_FC:
7535 			b = gen_ipfchostop(cstate, cstate->e, (int)q.dir);
7536 			break;
7537 		default:
7538 			free(cstate->e);
7539 			cstate->e = NULL;
7540 			bpf_error(cstate, "ethernet addresses supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
7541 			/*NOTREACHED*/
7542 		}
7543 		free(cstate->e);
7544 		cstate->e = NULL;
7545 		return (b);
7546 	}
7547 	bpf_error(cstate, "ethernet address used in non-ether expression");
7548 	/*NOTREACHED*/
7549 }
7550 
7551 void
7552 sappend(struct slist *s0, struct slist *s1)
7553 {
7554 	/*
7555 	 * This is definitely not the best way to do this, but the
7556 	 * lists will rarely get long.
7557 	 */
7558 	while (s0->next)
7559 		s0 = s0->next;
7560 	s0->next = s1;
7561 }
7562 
7563 static struct slist *
7564 xfer_to_x(compiler_state_t *cstate, struct arth *a)
7565 {
7566 	struct slist *s;
7567 
7568 	s = new_stmt(cstate, BPF_LDX|BPF_MEM);
7569 	s->s.k = a->regno;
7570 	return s;
7571 }
7572 
7573 static struct slist *
7574 xfer_to_a(compiler_state_t *cstate, struct arth *a)
7575 {
7576 	struct slist *s;
7577 
7578 	s = new_stmt(cstate, BPF_LD|BPF_MEM);
7579 	s->s.k = a->regno;
7580 	return s;
7581 }
7582 
7583 /*
7584  * Modify "index" to use the value stored into its register as an
7585  * offset relative to the beginning of the header for the protocol
7586  * "proto", and allocate a register and put an item "size" bytes long
7587  * (1, 2, or 4) at that offset into that register, making it the register
7588  * for "index".
7589  */
7590 static struct arth *
7591 gen_load_internal(compiler_state_t *cstate, int proto, struct arth *inst,
7592     bpf_u_int32 size)
7593 {
7594 	int size_code;
7595 	struct slist *s, *tmp;
7596 	struct block *b;
7597 	int regno = alloc_reg(cstate);
7598 
7599 	free_reg(cstate, inst->regno);
7600 	switch (size) {
7601 
7602 	default:
7603 		bpf_error(cstate, "data size must be 1, 2, or 4");
7604 		/*NOTREACHED*/
7605 
7606 	case 1:
7607 		size_code = BPF_B;
7608 		break;
7609 
7610 	case 2:
7611 		size_code = BPF_H;
7612 		break;
7613 
7614 	case 4:
7615 		size_code = BPF_W;
7616 		break;
7617 	}
7618 	switch (proto) {
7619 	default:
7620 		bpf_error(cstate, "unsupported index operation");
7621 
7622 	case Q_RADIO:
7623 		/*
7624 		 * The offset is relative to the beginning of the packet
7625 		 * data, if we have a radio header.  (If we don't, this
7626 		 * is an error.)
7627 		 */
7628 		if (cstate->linktype != DLT_IEEE802_11_RADIO_AVS &&
7629 		    cstate->linktype != DLT_IEEE802_11_RADIO &&
7630 		    cstate->linktype != DLT_PRISM_HEADER)
7631 			bpf_error(cstate, "radio information not present in capture");
7632 
7633 		/*
7634 		 * Load into the X register the offset computed into the
7635 		 * register specified by "index".
7636 		 */
7637 		s = xfer_to_x(cstate, inst);
7638 
7639 		/*
7640 		 * Load the item at that offset.
7641 		 */
7642 		tmp = new_stmt(cstate, BPF_LD|BPF_IND|size_code);
7643 		sappend(s, tmp);
7644 		sappend(inst->s, s);
7645 		break;
7646 
7647 	case Q_LINK:
7648 		/*
7649 		 * The offset is relative to the beginning of
7650 		 * the link-layer header.
7651 		 *
7652 		 * XXX - what about ATM LANE?  Should the index be
7653 		 * relative to the beginning of the AAL5 frame, so
7654 		 * that 0 refers to the beginning of the LE Control
7655 		 * field, or relative to the beginning of the LAN
7656 		 * frame, so that 0 refers, for Ethernet LANE, to
7657 		 * the beginning of the destination address?
7658 		 */
7659 		s = gen_abs_offset_varpart(cstate, &cstate->off_linkhdr);
7660 
7661 		/*
7662 		 * If "s" is non-null, it has code to arrange that the
7663 		 * X register contains the length of the prefix preceding
7664 		 * the link-layer header.  Add to it the offset computed
7665 		 * into the register specified by "index", and move that
7666 		 * into the X register.  Otherwise, just load into the X
7667 		 * register the offset computed into the register specified
7668 		 * by "index".
7669 		 */
7670 		if (s != NULL) {
7671 			sappend(s, xfer_to_a(cstate, inst));
7672 			sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
7673 			sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
7674 		} else
7675 			s = xfer_to_x(cstate, inst);
7676 
7677 		/*
7678 		 * Load the item at the sum of the offset we've put in the
7679 		 * X register and the offset of the start of the link
7680 		 * layer header (which is 0 if the radio header is
7681 		 * variable-length; that header length is what we put
7682 		 * into the X register and then added to the index).
7683 		 */
7684 		tmp = new_stmt(cstate, BPF_LD|BPF_IND|size_code);
7685 		tmp->s.k = cstate->off_linkhdr.constant_part;
7686 		sappend(s, tmp);
7687 		sappend(inst->s, s);
7688 		break;
7689 
7690 	case Q_IP:
7691 	case Q_ARP:
7692 	case Q_RARP:
7693 	case Q_ATALK:
7694 	case Q_DECNET:
7695 	case Q_SCA:
7696 	case Q_LAT:
7697 	case Q_MOPRC:
7698 	case Q_MOPDL:
7699 	case Q_IPV6:
7700 		/*
7701 		 * The offset is relative to the beginning of
7702 		 * the network-layer header.
7703 		 * XXX - are there any cases where we want
7704 		 * cstate->off_nl_nosnap?
7705 		 */
7706 		s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl);
7707 
7708 		/*
7709 		 * If "s" is non-null, it has code to arrange that the
7710 		 * X register contains the variable part of the offset
7711 		 * of the link-layer payload.  Add to it the offset
7712 		 * computed into the register specified by "index",
7713 		 * and move that into the X register.  Otherwise, just
7714 		 * load into the X register the offset computed into
7715 		 * the register specified by "index".
7716 		 */
7717 		if (s != NULL) {
7718 			sappend(s, xfer_to_a(cstate, inst));
7719 			sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
7720 			sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
7721 		} else
7722 			s = xfer_to_x(cstate, inst);
7723 
7724 		/*
7725 		 * Load the item at the sum of the offset we've put in the
7726 		 * X register, the offset of the start of the network
7727 		 * layer header from the beginning of the link-layer
7728 		 * payload, and the constant part of the offset of the
7729 		 * start of the link-layer payload.
7730 		 */
7731 		tmp = new_stmt(cstate, BPF_LD|BPF_IND|size_code);
7732 		tmp->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
7733 		sappend(s, tmp);
7734 		sappend(inst->s, s);
7735 
7736 		/*
7737 		 * Do the computation only if the packet contains
7738 		 * the protocol in question.
7739 		 */
7740 		b = gen_proto_abbrev_internal(cstate, proto);
7741 		if (inst->b)
7742 			gen_and(inst->b, b);
7743 		inst->b = b;
7744 		break;
7745 
7746 	case Q_SCTP:
7747 	case Q_TCP:
7748 	case Q_UDP:
7749 	case Q_ICMP:
7750 	case Q_IGMP:
7751 	case Q_IGRP:
7752 	case Q_PIM:
7753 	case Q_VRRP:
7754 	case Q_CARP:
7755 		/*
7756 		 * The offset is relative to the beginning of
7757 		 * the transport-layer header.
7758 		 *
7759 		 * Load the X register with the length of the IPv4 header
7760 		 * (plus the offset of the link-layer header, if it's
7761 		 * a variable-length header), in bytes.
7762 		 *
7763 		 * XXX - are there any cases where we want
7764 		 * cstate->off_nl_nosnap?
7765 		 * XXX - we should, if we're built with
7766 		 * IPv6 support, generate code to load either
7767 		 * IPv4, IPv6, or both, as appropriate.
7768 		 */
7769 		s = gen_loadx_iphdrlen(cstate);
7770 
7771 		/*
7772 		 * The X register now contains the sum of the variable
7773 		 * part of the offset of the link-layer payload and the
7774 		 * length of the network-layer header.
7775 		 *
7776 		 * Load into the A register the offset relative to
7777 		 * the beginning of the transport layer header,
7778 		 * add the X register to that, move that to the
7779 		 * X register, and load with an offset from the
7780 		 * X register equal to the sum of the constant part of
7781 		 * the offset of the link-layer payload and the offset,
7782 		 * relative to the beginning of the link-layer payload,
7783 		 * of the network-layer header.
7784 		 */
7785 		sappend(s, xfer_to_a(cstate, inst));
7786 		sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
7787 		sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
7788 		sappend(s, tmp = new_stmt(cstate, BPF_LD|BPF_IND|size_code));
7789 		tmp->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
7790 		sappend(inst->s, s);
7791 
7792 		/*
7793 		 * Do the computation only if the packet contains
7794 		 * the protocol in question - which is true only
7795 		 * if this is an IP datagram and is the first or
7796 		 * only fragment of that datagram.
7797 		 */
7798 		gen_and(gen_proto_abbrev_internal(cstate, proto), b = gen_ipfrag(cstate));
7799 		if (inst->b)
7800 			gen_and(inst->b, b);
7801 		gen_and(gen_proto_abbrev_internal(cstate, Q_IP), b);
7802 		inst->b = b;
7803 		break;
7804 	case Q_ICMPV6:
7805 		/*
7806 		 * Do the computation only if the packet contains
7807 		 * the protocol in question.
7808 		 */
7809 		b = gen_proto_abbrev_internal(cstate, Q_IPV6);
7810 		if (inst->b)
7811 			gen_and(inst->b, b);
7812 		inst->b = b;
7813 
7814 		/*
7815 		 * Check if we have an icmp6 next header
7816 		 */
7817 		b = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, 58);
7818 		if (inst->b)
7819 			gen_and(inst->b, b);
7820 		inst->b = b;
7821 
7822 		s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl);
7823 		/*
7824 		 * If "s" is non-null, it has code to arrange that the
7825 		 * X register contains the variable part of the offset
7826 		 * of the link-layer payload.  Add to it the offset
7827 		 * computed into the register specified by "index",
7828 		 * and move that into the X register.  Otherwise, just
7829 		 * load into the X register the offset computed into
7830 		 * the register specified by "index".
7831 		 */
7832 		if (s != NULL) {
7833 			sappend(s, xfer_to_a(cstate, inst));
7834 			sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
7835 			sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
7836 		} else
7837 			s = xfer_to_x(cstate, inst);
7838 
7839 		/*
7840 		 * Load the item at the sum of the offset we've put in the
7841 		 * X register, the offset of the start of the network
7842 		 * layer header from the beginning of the link-layer
7843 		 * payload, and the constant part of the offset of the
7844 		 * start of the link-layer payload.
7845 		 */
7846 		tmp = new_stmt(cstate, BPF_LD|BPF_IND|size_code);
7847 		tmp->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 40;
7848 
7849 		sappend(s, tmp);
7850 		sappend(inst->s, s);
7851 
7852 		break;
7853 	}
7854 	inst->regno = regno;
7855 	s = new_stmt(cstate, BPF_ST);
7856 	s->s.k = regno;
7857 	sappend(inst->s, s);
7858 
7859 	return inst;
7860 }
7861 
7862 struct arth *
7863 gen_load(compiler_state_t *cstate, int proto, struct arth *inst,
7864     bpf_u_int32 size)
7865 {
7866 	/*
7867 	 * Catch errors reported by us and routines below us, and return NULL
7868 	 * on an error.
7869 	 */
7870 	if (setjmp(cstate->top_ctx))
7871 		return (NULL);
7872 
7873 	return gen_load_internal(cstate, proto, inst, size);
7874 }
7875 
7876 static struct block *
7877 gen_relation_internal(compiler_state_t *cstate, int code, struct arth *a0,
7878     struct arth *a1, int reversed)
7879 {
7880 	struct slist *s0, *s1, *s2;
7881 	struct block *b, *tmp;
7882 
7883 	s0 = xfer_to_x(cstate, a1);
7884 	s1 = xfer_to_a(cstate, a0);
7885 	if (code == BPF_JEQ) {
7886 		s2 = new_stmt(cstate, BPF_ALU|BPF_SUB|BPF_X);
7887 		b = new_block(cstate, JMP(code));
7888 		sappend(s1, s2);
7889 	}
7890 	else
7891 		b = new_block(cstate, BPF_JMP|code|BPF_X);
7892 	if (reversed)
7893 		gen_not(b);
7894 
7895 	sappend(s0, s1);
7896 	sappend(a1->s, s0);
7897 	sappend(a0->s, a1->s);
7898 
7899 	b->stmts = a0->s;
7900 
7901 	free_reg(cstate, a0->regno);
7902 	free_reg(cstate, a1->regno);
7903 
7904 	/* 'and' together protocol checks */
7905 	if (a0->b) {
7906 		if (a1->b) {
7907 			gen_and(a0->b, tmp = a1->b);
7908 		}
7909 		else
7910 			tmp = a0->b;
7911 	} else
7912 		tmp = a1->b;
7913 
7914 	if (tmp)
7915 		gen_and(tmp, b);
7916 
7917 	return b;
7918 }
7919 
7920 struct block *
7921 gen_relation(compiler_state_t *cstate, int code, struct arth *a0,
7922     struct arth *a1, int reversed)
7923 {
7924 	/*
7925 	 * Catch errors reported by us and routines below us, and return NULL
7926 	 * on an error.
7927 	 */
7928 	if (setjmp(cstate->top_ctx))
7929 		return (NULL);
7930 
7931 	return gen_relation_internal(cstate, code, a0, a1, reversed);
7932 }
7933 
7934 struct arth *
7935 gen_loadlen(compiler_state_t *cstate)
7936 {
7937 	int regno;
7938 	struct arth *a;
7939 	struct slist *s;
7940 
7941 	/*
7942 	 * Catch errors reported by us and routines below us, and return NULL
7943 	 * on an error.
7944 	 */
7945 	if (setjmp(cstate->top_ctx))
7946 		return (NULL);
7947 
7948 	regno = alloc_reg(cstate);
7949 	a = (struct arth *)newchunk(cstate, sizeof(*a));
7950 	s = new_stmt(cstate, BPF_LD|BPF_LEN);
7951 	s->next = new_stmt(cstate, BPF_ST);
7952 	s->next->s.k = regno;
7953 	a->s = s;
7954 	a->regno = regno;
7955 
7956 	return a;
7957 }
7958 
7959 static struct arth *
7960 gen_loadi_internal(compiler_state_t *cstate, bpf_u_int32 val)
7961 {
7962 	struct arth *a;
7963 	struct slist *s;
7964 	int reg;
7965 
7966 	a = (struct arth *)newchunk(cstate, sizeof(*a));
7967 
7968 	reg = alloc_reg(cstate);
7969 
7970 	s = new_stmt(cstate, BPF_LD|BPF_IMM);
7971 	s->s.k = val;
7972 	s->next = new_stmt(cstate, BPF_ST);
7973 	s->next->s.k = reg;
7974 	a->s = s;
7975 	a->regno = reg;
7976 
7977 	return a;
7978 }
7979 
7980 struct arth *
7981 gen_loadi(compiler_state_t *cstate, bpf_u_int32 val)
7982 {
7983 	/*
7984 	 * Catch errors reported by us and routines below us, and return NULL
7985 	 * on an error.
7986 	 */
7987 	if (setjmp(cstate->top_ctx))
7988 		return (NULL);
7989 
7990 	return gen_loadi_internal(cstate, val);
7991 }
7992 
7993 /*
7994  * The a_arg dance is to avoid annoying whining by compilers that
7995  * a might be clobbered by longjmp - yeah, it might, but *WHO CARES*?
7996  * It's not *used* after setjmp returns.
7997  */
7998 struct arth *
7999 gen_neg(compiler_state_t *cstate, struct arth *a_arg)
8000 {
8001 	struct arth * volatile a = a_arg;
8002 	struct slist *s;
8003 
8004 	/*
8005 	 * Catch errors reported by us and routines below us, and return NULL
8006 	 * on an error.
8007 	 */
8008 	if (setjmp(cstate->top_ctx))
8009 		return (NULL);
8010 
8011 	s = xfer_to_a(cstate, a);
8012 	sappend(a->s, s);
8013 	s = new_stmt(cstate, BPF_ALU|BPF_NEG);
8014 	s->s.k = 0;
8015 	sappend(a->s, s);
8016 	s = new_stmt(cstate, BPF_ST);
8017 	s->s.k = a->regno;
8018 	sappend(a->s, s);
8019 
8020 	return a;
8021 }
8022 
8023 /*
8024  * The a0_arg dance is to avoid annoying whining by compilers that
8025  * a0 might be clobbered by longjmp - yeah, it might, but *WHO CARES*?
8026  * It's not *used* after setjmp returns.
8027  */
8028 struct arth *
8029 gen_arth(compiler_state_t *cstate, int code, struct arth *a0_arg,
8030     struct arth *a1)
8031 {
8032 	struct arth * volatile a0 = a0_arg;
8033 	struct slist *s0, *s1, *s2;
8034 
8035 	/*
8036 	 * Catch errors reported by us and routines below us, and return NULL
8037 	 * on an error.
8038 	 */
8039 	if (setjmp(cstate->top_ctx))
8040 		return (NULL);
8041 
8042 	/*
8043 	 * Disallow division by, or modulus by, zero; we do this here
8044 	 * so that it gets done even if the optimizer is disabled.
8045 	 *
8046 	 * Also disallow shifts by a value greater than 31; we do this
8047 	 * here, for the same reason.
8048 	 */
8049 	if (code == BPF_DIV) {
8050 		if (a1->s->s.code == (BPF_LD|BPF_IMM) && a1->s->s.k == 0)
8051 			bpf_error(cstate, "division by zero");
8052 	} else if (code == BPF_MOD) {
8053 		if (a1->s->s.code == (BPF_LD|BPF_IMM) && a1->s->s.k == 0)
8054 			bpf_error(cstate, "modulus by zero");
8055 	} else if (code == BPF_LSH || code == BPF_RSH) {
8056 		if (a1->s->s.code == (BPF_LD|BPF_IMM) && a1->s->s.k > 31)
8057 			bpf_error(cstate, "shift by more than 31 bits");
8058 	}
8059 	s0 = xfer_to_x(cstate, a1);
8060 	s1 = xfer_to_a(cstate, a0);
8061 	s2 = new_stmt(cstate, BPF_ALU|BPF_X|code);
8062 
8063 	sappend(s1, s2);
8064 	sappend(s0, s1);
8065 	sappend(a1->s, s0);
8066 	sappend(a0->s, a1->s);
8067 
8068 	free_reg(cstate, a0->regno);
8069 	free_reg(cstate, a1->regno);
8070 
8071 	s0 = new_stmt(cstate, BPF_ST);
8072 	a0->regno = s0->s.k = alloc_reg(cstate);
8073 	sappend(a0->s, s0);
8074 
8075 	return a0;
8076 }
8077 
8078 /*
8079  * Initialize the table of used registers and the current register.
8080  */
8081 static void
8082 init_regs(compiler_state_t *cstate)
8083 {
8084 	cstate->curreg = 0;
8085 	memset(cstate->regused, 0, sizeof cstate->regused);
8086 }
8087 
8088 /*
8089  * Return the next free register.
8090  */
8091 static int
8092 alloc_reg(compiler_state_t *cstate)
8093 {
8094 	int n = BPF_MEMWORDS;
8095 
8096 	while (--n >= 0) {
8097 		if (cstate->regused[cstate->curreg])
8098 			cstate->curreg = (cstate->curreg + 1) % BPF_MEMWORDS;
8099 		else {
8100 			cstate->regused[cstate->curreg] = 1;
8101 			return cstate->curreg;
8102 		}
8103 	}
8104 	bpf_error(cstate, "too many registers needed to evaluate expression");
8105 	/*NOTREACHED*/
8106 }
8107 
8108 /*
8109  * Return a register to the table so it can
8110  * be used later.
8111  */
8112 static void
8113 free_reg(compiler_state_t *cstate, int n)
8114 {
8115 	cstate->regused[n] = 0;
8116 }
8117 
8118 static struct block *
8119 gen_len(compiler_state_t *cstate, int jmp, int n)
8120 {
8121 	struct slist *s;
8122 	struct block *b;
8123 
8124 	s = new_stmt(cstate, BPF_LD|BPF_LEN);
8125 	b = new_block(cstate, JMP(jmp));
8126 	b->stmts = s;
8127 	b->s.k = n;
8128 
8129 	return b;
8130 }
8131 
8132 struct block *
8133 gen_greater(compiler_state_t *cstate, int n)
8134 {
8135 	/*
8136 	 * Catch errors reported by us and routines below us, and return NULL
8137 	 * on an error.
8138 	 */
8139 	if (setjmp(cstate->top_ctx))
8140 		return (NULL);
8141 
8142 	return gen_len(cstate, BPF_JGE, n);
8143 }
8144 
8145 /*
8146  * Actually, this is less than or equal.
8147  */
8148 struct block *
8149 gen_less(compiler_state_t *cstate, int n)
8150 {
8151 	struct block *b;
8152 
8153 	/*
8154 	 * Catch errors reported by us and routines below us, and return NULL
8155 	 * on an error.
8156 	 */
8157 	if (setjmp(cstate->top_ctx))
8158 		return (NULL);
8159 
8160 	b = gen_len(cstate, BPF_JGT, n);
8161 	gen_not(b);
8162 
8163 	return b;
8164 }
8165 
8166 /*
8167  * This is for "byte {idx} {op} {val}"; "idx" is treated as relative to
8168  * the beginning of the link-layer header.
8169  * XXX - that means you can't test values in the radiotap header, but
8170  * as that header is difficult if not impossible to parse generally
8171  * without a loop, that might not be a severe problem.  A new keyword
8172  * "radio" could be added for that, although what you'd really want
8173  * would be a way of testing particular radio header values, which
8174  * would generate code appropriate to the radio header in question.
8175  */
8176 struct block *
8177 gen_byteop(compiler_state_t *cstate, int op, int idx, bpf_u_int32 val)
8178 {
8179 	struct block *b;
8180 	struct slist *s;
8181 
8182 	/*
8183 	 * Catch errors reported by us and routines below us, and return NULL
8184 	 * on an error.
8185 	 */
8186 	if (setjmp(cstate->top_ctx))
8187 		return (NULL);
8188 
8189 	switch (op) {
8190 	default:
8191 		abort();
8192 
8193 	case '=':
8194 		return gen_cmp(cstate, OR_LINKHDR, (u_int)idx, BPF_B, val);
8195 
8196 	case '<':
8197 		b = gen_cmp_lt(cstate, OR_LINKHDR, (u_int)idx, BPF_B, val);
8198 		return b;
8199 
8200 	case '>':
8201 		b = gen_cmp_gt(cstate, OR_LINKHDR, (u_int)idx, BPF_B, val);
8202 		return b;
8203 
8204 	case '|':
8205 		s = new_stmt(cstate, BPF_ALU|BPF_OR|BPF_K);
8206 		break;
8207 
8208 	case '&':
8209 		s = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
8210 		break;
8211 	}
8212 	s->s.k = val;
8213 	b = new_block(cstate, JMP(BPF_JEQ));
8214 	b->stmts = s;
8215 	gen_not(b);
8216 
8217 	return b;
8218 }
8219 
8220 static const u_char abroadcast[] = { 0x0 };
8221 
8222 struct block *
8223 gen_broadcast(compiler_state_t *cstate, int proto)
8224 {
8225 	bpf_u_int32 hostmask;
8226 	struct block *b0, *b1, *b2;
8227 	static const u_char ebroadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
8228 
8229 	/*
8230 	 * Catch errors reported by us and routines below us, and return NULL
8231 	 * on an error.
8232 	 */
8233 	if (setjmp(cstate->top_ctx))
8234 		return (NULL);
8235 
8236 	switch (proto) {
8237 
8238 	case Q_DEFAULT:
8239 	case Q_LINK:
8240 		switch (cstate->linktype) {
8241 		case DLT_ARCNET:
8242 		case DLT_ARCNET_LINUX:
8243 			return gen_ahostop(cstate, abroadcast, Q_DST);
8244 		case DLT_EN10MB:
8245 		case DLT_NETANALYZER:
8246 		case DLT_NETANALYZER_TRANSPARENT:
8247 			b1 = gen_prevlinkhdr_check(cstate);
8248 			b0 = gen_ehostop(cstate, ebroadcast, Q_DST);
8249 			if (b1 != NULL)
8250 				gen_and(b1, b0);
8251 			return b0;
8252 		case DLT_FDDI:
8253 			return gen_fhostop(cstate, ebroadcast, Q_DST);
8254 		case DLT_IEEE802:
8255 			return gen_thostop(cstate, ebroadcast, Q_DST);
8256 		case DLT_IEEE802_11:
8257 		case DLT_PRISM_HEADER:
8258 		case DLT_IEEE802_11_RADIO_AVS:
8259 		case DLT_IEEE802_11_RADIO:
8260 		case DLT_PPI:
8261 			return gen_wlanhostop(cstate, ebroadcast, Q_DST);
8262 		case DLT_IP_OVER_FC:
8263 			return gen_ipfchostop(cstate, ebroadcast, Q_DST);
8264 		default:
8265 			bpf_error(cstate, "not a broadcast link");
8266 		}
8267 		/*NOTREACHED*/
8268 
8269 	case Q_IP:
8270 		/*
8271 		 * We treat a netmask of PCAP_NETMASK_UNKNOWN (0xffffffff)
8272 		 * as an indication that we don't know the netmask, and fail
8273 		 * in that case.
8274 		 */
8275 		if (cstate->netmask == PCAP_NETMASK_UNKNOWN)
8276 			bpf_error(cstate, "netmask not known, so 'ip broadcast' not supported");
8277 		b0 = gen_linktype(cstate, ETHERTYPE_IP);
8278 		hostmask = ~cstate->netmask;
8279 		b1 = gen_mcmp(cstate, OR_LINKPL, 16, BPF_W, 0, hostmask);
8280 		b2 = gen_mcmp(cstate, OR_LINKPL, 16, BPF_W,
8281 			      ~0 & hostmask, hostmask);
8282 		gen_or(b1, b2);
8283 		gen_and(b0, b2);
8284 		return b2;
8285 	}
8286 	bpf_error(cstate, "only link-layer/IP broadcast filters supported");
8287 	/*NOTREACHED*/
8288 }
8289 
8290 /*
8291  * Generate code to test the low-order bit of a MAC address (that's
8292  * the bottom bit of the *first* byte).
8293  */
8294 static struct block *
8295 gen_mac_multicast(compiler_state_t *cstate, int offset)
8296 {
8297 	register struct block *b0;
8298 	register struct slist *s;
8299 
8300 	/* link[offset] & 1 != 0 */
8301 	s = gen_load_a(cstate, OR_LINKHDR, offset, BPF_B);
8302 	b0 = new_block(cstate, JMP(BPF_JSET));
8303 	b0->s.k = 1;
8304 	b0->stmts = s;
8305 	return b0;
8306 }
8307 
8308 struct block *
8309 gen_multicast(compiler_state_t *cstate, int proto)
8310 {
8311 	register struct block *b0, *b1, *b2;
8312 	register struct slist *s;
8313 
8314 	/*
8315 	 * Catch errors reported by us and routines below us, and return NULL
8316 	 * on an error.
8317 	 */
8318 	if (setjmp(cstate->top_ctx))
8319 		return (NULL);
8320 
8321 	switch (proto) {
8322 
8323 	case Q_DEFAULT:
8324 	case Q_LINK:
8325 		switch (cstate->linktype) {
8326 		case DLT_ARCNET:
8327 		case DLT_ARCNET_LINUX:
8328 			/* all ARCnet multicasts use the same address */
8329 			return gen_ahostop(cstate, abroadcast, Q_DST);
8330 		case DLT_EN10MB:
8331 		case DLT_NETANALYZER:
8332 		case DLT_NETANALYZER_TRANSPARENT:
8333 			b1 = gen_prevlinkhdr_check(cstate);
8334 			/* ether[0] & 1 != 0 */
8335 			b0 = gen_mac_multicast(cstate, 0);
8336 			if (b1 != NULL)
8337 				gen_and(b1, b0);
8338 			return b0;
8339 		case DLT_FDDI:
8340 			/*
8341 			 * XXX TEST THIS: MIGHT NOT PORT PROPERLY XXX
8342 			 *
8343 			 * XXX - was that referring to bit-order issues?
8344 			 */
8345 			/* fddi[1] & 1 != 0 */
8346 			return gen_mac_multicast(cstate, 1);
8347 		case DLT_IEEE802:
8348 			/* tr[2] & 1 != 0 */
8349 			return gen_mac_multicast(cstate, 2);
8350 		case DLT_IEEE802_11:
8351 		case DLT_PRISM_HEADER:
8352 		case DLT_IEEE802_11_RADIO_AVS:
8353 		case DLT_IEEE802_11_RADIO:
8354 		case DLT_PPI:
8355 			/*
8356 			 * Oh, yuk.
8357 			 *
8358 			 *	For control frames, there is no DA.
8359 			 *
8360 			 *	For management frames, DA is at an
8361 			 *	offset of 4 from the beginning of
8362 			 *	the packet.
8363 			 *
8364 			 *	For data frames, DA is at an offset
8365 			 *	of 4 from the beginning of the packet
8366 			 *	if To DS is clear and at an offset of
8367 			 *	16 from the beginning of the packet
8368 			 *	if To DS is set.
8369 			 */
8370 
8371 			/*
8372 			 * Generate the tests to be done for data frames.
8373 			 *
8374 			 * First, check for To DS set, i.e. "link[1] & 0x01".
8375 			 */
8376 			s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
8377 			b1 = new_block(cstate, JMP(BPF_JSET));
8378 			b1->s.k = 0x01;	/* To DS */
8379 			b1->stmts = s;
8380 
8381 			/*
8382 			 * If To DS is set, the DA is at 16.
8383 			 */
8384 			b0 = gen_mac_multicast(cstate, 16);
8385 			gen_and(b1, b0);
8386 
8387 			/*
8388 			 * Now, check for To DS not set, i.e. check
8389 			 * "!(link[1] & 0x01)".
8390 			 */
8391 			s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
8392 			b2 = new_block(cstate, JMP(BPF_JSET));
8393 			b2->s.k = 0x01;	/* To DS */
8394 			b2->stmts = s;
8395 			gen_not(b2);
8396 
8397 			/*
8398 			 * If To DS is not set, the DA is at 4.
8399 			 */
8400 			b1 = gen_mac_multicast(cstate, 4);
8401 			gen_and(b2, b1);
8402 
8403 			/*
8404 			 * Now OR together the last two checks.  That gives
8405 			 * the complete set of checks for data frames.
8406 			 */
8407 			gen_or(b1, b0);
8408 
8409 			/*
8410 			 * Now check for a data frame.
8411 			 * I.e, check "link[0] & 0x08".
8412 			 */
8413 			s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
8414 			b1 = new_block(cstate, JMP(BPF_JSET));
8415 			b1->s.k = 0x08;
8416 			b1->stmts = s;
8417 
8418 			/*
8419 			 * AND that with the checks done for data frames.
8420 			 */
8421 			gen_and(b1, b0);
8422 
8423 			/*
8424 			 * If the high-order bit of the type value is 0, this
8425 			 * is a management frame.
8426 			 * I.e, check "!(link[0] & 0x08)".
8427 			 */
8428 			s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
8429 			b2 = new_block(cstate, JMP(BPF_JSET));
8430 			b2->s.k = 0x08;
8431 			b2->stmts = s;
8432 			gen_not(b2);
8433 
8434 			/*
8435 			 * For management frames, the DA is at 4.
8436 			 */
8437 			b1 = gen_mac_multicast(cstate, 4);
8438 			gen_and(b2, b1);
8439 
8440 			/*
8441 			 * OR that with the checks done for data frames.
8442 			 * That gives the checks done for management and
8443 			 * data frames.
8444 			 */
8445 			gen_or(b1, b0);
8446 
8447 			/*
8448 			 * If the low-order bit of the type value is 1,
8449 			 * this is either a control frame or a frame
8450 			 * with a reserved type, and thus not a
8451 			 * frame with an SA.
8452 			 *
8453 			 * I.e., check "!(link[0] & 0x04)".
8454 			 */
8455 			s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
8456 			b1 = new_block(cstate, JMP(BPF_JSET));
8457 			b1->s.k = 0x04;
8458 			b1->stmts = s;
8459 			gen_not(b1);
8460 
8461 			/*
8462 			 * AND that with the checks for data and management
8463 			 * frames.
8464 			 */
8465 			gen_and(b1, b0);
8466 			return b0;
8467 		case DLT_IP_OVER_FC:
8468 			b0 = gen_mac_multicast(cstate, 2);
8469 			return b0;
8470 		default:
8471 			break;
8472 		}
8473 		/* Link not known to support multicasts */
8474 		break;
8475 
8476 	case Q_IP:
8477 		b0 = gen_linktype(cstate, ETHERTYPE_IP);
8478 		b1 = gen_cmp_ge(cstate, OR_LINKPL, 16, BPF_B, 224);
8479 		gen_and(b0, b1);
8480 		return b1;
8481 
8482 	case Q_IPV6:
8483 		b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
8484 		b1 = gen_cmp(cstate, OR_LINKPL, 24, BPF_B, 255);
8485 		gen_and(b0, b1);
8486 		return b1;
8487 	}
8488 	bpf_error(cstate, "link-layer multicast filters supported only on ethernet/FDDI/token ring/ARCNET/802.11/ATM LANE/Fibre Channel");
8489 	/*NOTREACHED*/
8490 }
8491 
8492 struct block *
8493 gen_ifindex(compiler_state_t *cstate, int ifindex)
8494 {
8495 	register struct block *b0;
8496 
8497 	/*
8498 	 * Catch errors reported by us and routines below us, and return NULL
8499 	 * on an error.
8500 	 */
8501 	if (setjmp(cstate->top_ctx))
8502 		return (NULL);
8503 
8504 	/*
8505 	 * Only some data link types support ifindex qualifiers.
8506 	 */
8507 	switch (cstate->linktype) {
8508 	case DLT_LINUX_SLL2:
8509 		/* match packets on this interface */
8510 		b0 = gen_cmp(cstate, OR_LINKHDR, 4, BPF_W, ifindex);
8511 		break;
8512 	default:
8513 #if defined(__linux__)
8514 		/*
8515 		 * This is Linux; we require PF_PACKET support.
8516 		 * If this is a *live* capture, we can look at
8517 		 * special meta-data in the filter expression;
8518 		 * if it's a savefile, we can't.
8519 		 */
8520 		if (cstate->bpf_pcap->rfile != NULL) {
8521 			/* We have a FILE *, so this is a savefile */
8522 			bpf_error(cstate, "ifindex not supported on %s when reading savefiles",
8523 			    pcap_datalink_val_to_description_or_dlt(cstate->linktype));
8524 			/*NOTREACHED*/
8525 		}
8526 		/* match ifindex */
8527 		b0 = gen_cmp(cstate, OR_LINKHDR, SKF_AD_OFF + SKF_AD_IFINDEX, BPF_W,
8528 		             ifindex);
8529 #else /* defined(__linux__) */
8530 		bpf_error(cstate, "ifindex not supported on %s",
8531 		    pcap_datalink_val_to_description_or_dlt(cstate->linktype));
8532 		/*NOTREACHED*/
8533 #endif /* defined(__linux__) */
8534 	}
8535 	return (b0);
8536 }
8537 
8538 /*
8539  * Filter on inbound (dir == 0) or outbound (dir == 1) traffic.
8540  * Outbound traffic is sent by this machine, while inbound traffic is
8541  * sent by a remote machine (and may include packets destined for a
8542  * unicast or multicast link-layer address we are not subscribing to).
8543  * These are the same definitions implemented by pcap_setdirection().
8544  * Capturing only unicast traffic destined for this host is probably
8545  * better accomplished using a higher-layer filter.
8546  */
8547 struct block *
8548 gen_inbound(compiler_state_t *cstate, int dir)
8549 {
8550 	register struct block *b0;
8551 
8552 	/*
8553 	 * Catch errors reported by us and routines below us, and return NULL
8554 	 * on an error.
8555 	 */
8556 	if (setjmp(cstate->top_ctx))
8557 		return (NULL);
8558 
8559 	/*
8560 	 * Only some data link types support inbound/outbound qualifiers.
8561 	 */
8562 	switch (cstate->linktype) {
8563 	case DLT_SLIP:
8564 		b0 = gen_relation_internal(cstate, BPF_JEQ,
8565 			  gen_load_internal(cstate, Q_LINK, gen_loadi_internal(cstate, 0), 1),
8566 			  gen_loadi_internal(cstate, 0),
8567 			  dir);
8568 		break;
8569 
8570 	case DLT_IPNET:
8571 		if (dir) {
8572 			/* match outgoing packets */
8573 			b0 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, IPNET_OUTBOUND);
8574 		} else {
8575 			/* match incoming packets */
8576 			b0 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, IPNET_INBOUND);
8577 		}
8578 		break;
8579 
8580 	case DLT_LINUX_SLL:
8581 		/* match outgoing packets */
8582 		b0 = gen_cmp(cstate, OR_LINKHDR, 0, BPF_H, LINUX_SLL_OUTGOING);
8583 		if (!dir) {
8584 			/* to filter on inbound traffic, invert the match */
8585 			gen_not(b0);
8586 		}
8587 		break;
8588 
8589 	case DLT_LINUX_SLL2:
8590 		/* match outgoing packets */
8591 		b0 = gen_cmp(cstate, OR_LINKHDR, 10, BPF_B, LINUX_SLL_OUTGOING);
8592 		if (!dir) {
8593 			/* to filter on inbound traffic, invert the match */
8594 			gen_not(b0);
8595 		}
8596 		break;
8597 
8598 	case DLT_PFLOG:
8599 		b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, dir), BPF_B,
8600 		    ((dir == 0) ? PF_IN : PF_OUT));
8601 		break;
8602 
8603 	case DLT_PPP_PPPD:
8604 		if (dir) {
8605 			/* match outgoing packets */
8606 			b0 = gen_cmp(cstate, OR_LINKHDR, 0, BPF_B, PPP_PPPD_OUT);
8607 		} else {
8608 			/* match incoming packets */
8609 			b0 = gen_cmp(cstate, OR_LINKHDR, 0, BPF_B, PPP_PPPD_IN);
8610 		}
8611 		break;
8612 
8613         case DLT_JUNIPER_MFR:
8614         case DLT_JUNIPER_MLFR:
8615         case DLT_JUNIPER_MLPPP:
8616 	case DLT_JUNIPER_ATM1:
8617 	case DLT_JUNIPER_ATM2:
8618 	case DLT_JUNIPER_PPPOE:
8619 	case DLT_JUNIPER_PPPOE_ATM:
8620         case DLT_JUNIPER_GGSN:
8621         case DLT_JUNIPER_ES:
8622         case DLT_JUNIPER_MONITOR:
8623         case DLT_JUNIPER_SERVICES:
8624         case DLT_JUNIPER_ETHER:
8625         case DLT_JUNIPER_PPP:
8626         case DLT_JUNIPER_FRELAY:
8627         case DLT_JUNIPER_CHDLC:
8628         case DLT_JUNIPER_VP:
8629         case DLT_JUNIPER_ST:
8630         case DLT_JUNIPER_ISM:
8631         case DLT_JUNIPER_VS:
8632         case DLT_JUNIPER_SRX_E2E:
8633         case DLT_JUNIPER_FIBRECHANNEL:
8634 	case DLT_JUNIPER_ATM_CEMIC:
8635 
8636 		/* juniper flags (including direction) are stored
8637 		 * the byte after the 3-byte magic number */
8638 		if (dir) {
8639 			/* match outgoing packets */
8640 			b0 = gen_mcmp(cstate, OR_LINKHDR, 3, BPF_B, 0, 0x01);
8641 		} else {
8642 			/* match incoming packets */
8643 			b0 = gen_mcmp(cstate, OR_LINKHDR, 3, BPF_B, 1, 0x01);
8644 		}
8645 		break;
8646 
8647 	default:
8648 		/*
8649 		 * If we have packet meta-data indicating a direction,
8650 		 * and that metadata can be checked by BPF code, check
8651 		 * it.  Otherwise, give up, as this link-layer type has
8652 		 * nothing in the packet data.
8653 		 *
8654 		 * Currently, the only platform where a BPF filter can
8655 		 * check that metadata is Linux with the in-kernel
8656 		 * BPF interpreter.  If other packet capture mechanisms
8657 		 * and BPF filters also supported this, it would be
8658 		 * nice.  It would be even better if they made that
8659 		 * metadata available so that we could provide it
8660 		 * with newer capture APIs, allowing it to be saved
8661 		 * in pcapng files.
8662 		 */
8663 #if defined(__linux__)
8664 		/*
8665 		 * This is Linux; we require PF_PACKET support.
8666 		 * If this is a *live* capture, we can look at
8667 		 * special meta-data in the filter expression;
8668 		 * if it's a savefile, we can't.
8669 		 */
8670 		if (cstate->bpf_pcap->rfile != NULL) {
8671 			/* We have a FILE *, so this is a savefile */
8672 			bpf_error(cstate, "inbound/outbound not supported on %s when reading savefiles",
8673 			    pcap_datalink_val_to_description_or_dlt(cstate->linktype));
8674 			/*NOTREACHED*/
8675 		}
8676 		/* match outgoing packets */
8677 		b0 = gen_cmp(cstate, OR_LINKHDR, SKF_AD_OFF + SKF_AD_PKTTYPE, BPF_H,
8678 		             PACKET_OUTGOING);
8679 		if (!dir) {
8680 			/* to filter on inbound traffic, invert the match */
8681 			gen_not(b0);
8682 		}
8683 #else /* defined(__linux__) */
8684 		bpf_error(cstate, "inbound/outbound not supported on %s",
8685 		    pcap_datalink_val_to_description_or_dlt(cstate->linktype));
8686 		/*NOTREACHED*/
8687 #endif /* defined(__linux__) */
8688 	}
8689 	return (b0);
8690 }
8691 
8692 /* PF firewall log matched interface */
8693 struct block *
8694 gen_pf_ifname(compiler_state_t *cstate, const char *ifname)
8695 {
8696 	struct block *b0;
8697 	u_int len, off;
8698 
8699 	/*
8700 	 * Catch errors reported by us and routines below us, and return NULL
8701 	 * on an error.
8702 	 */
8703 	if (setjmp(cstate->top_ctx))
8704 		return (NULL);
8705 
8706 	if (cstate->linktype != DLT_PFLOG) {
8707 		bpf_error(cstate, "ifname supported only on PF linktype");
8708 		/*NOTREACHED*/
8709 	}
8710 	len = sizeof(((struct pfloghdr *)0)->ifname);
8711 	off = offsetof(struct pfloghdr, ifname);
8712 	if (strlen(ifname) >= len) {
8713 		bpf_error(cstate, "ifname interface names can only be %d characters",
8714 		    len-1);
8715 		/*NOTREACHED*/
8716 	}
8717 	b0 = gen_bcmp(cstate, OR_LINKHDR, off, (u_int)strlen(ifname),
8718 	    (const u_char *)ifname);
8719 	return (b0);
8720 }
8721 
8722 /* PF firewall log ruleset name */
8723 struct block *
8724 gen_pf_ruleset(compiler_state_t *cstate, char *ruleset)
8725 {
8726 	struct block *b0;
8727 
8728 	/*
8729 	 * Catch errors reported by us and routines below us, and return NULL
8730 	 * on an error.
8731 	 */
8732 	if (setjmp(cstate->top_ctx))
8733 		return (NULL);
8734 
8735 	if (cstate->linktype != DLT_PFLOG) {
8736 		bpf_error(cstate, "ruleset supported only on PF linktype");
8737 		/*NOTREACHED*/
8738 	}
8739 
8740 	if (strlen(ruleset) >= sizeof(((struct pfloghdr *)0)->ruleset)) {
8741 		bpf_error(cstate, "ruleset names can only be %ld characters",
8742 		    (long)(sizeof(((struct pfloghdr *)0)->ruleset) - 1));
8743 		/*NOTREACHED*/
8744 	}
8745 
8746 	b0 = gen_bcmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, ruleset),
8747 	    (u_int)strlen(ruleset), (const u_char *)ruleset);
8748 	return (b0);
8749 }
8750 
8751 /* PF firewall log rule number */
8752 struct block *
8753 gen_pf_rnr(compiler_state_t *cstate, int rnr)
8754 {
8755 	struct block *b0;
8756 
8757 	/*
8758 	 * Catch errors reported by us and routines below us, and return NULL
8759 	 * on an error.
8760 	 */
8761 	if (setjmp(cstate->top_ctx))
8762 		return (NULL);
8763 
8764 	if (cstate->linktype != DLT_PFLOG) {
8765 		bpf_error(cstate, "rnr supported only on PF linktype");
8766 		/*NOTREACHED*/
8767 	}
8768 
8769 	b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, rulenr), BPF_W,
8770 		 (bpf_u_int32)rnr);
8771 	return (b0);
8772 }
8773 
8774 /* PF firewall log sub-rule number */
8775 struct block *
8776 gen_pf_srnr(compiler_state_t *cstate, int srnr)
8777 {
8778 	struct block *b0;
8779 
8780 	/*
8781 	 * Catch errors reported by us and routines below us, and return NULL
8782 	 * on an error.
8783 	 */
8784 	if (setjmp(cstate->top_ctx))
8785 		return (NULL);
8786 
8787 	if (cstate->linktype != DLT_PFLOG) {
8788 		bpf_error(cstate, "srnr supported only on PF linktype");
8789 		/*NOTREACHED*/
8790 	}
8791 
8792 	b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, subrulenr), BPF_W,
8793 	    (bpf_u_int32)srnr);
8794 	return (b0);
8795 }
8796 
8797 /* PF firewall log reason code */
8798 struct block *
8799 gen_pf_reason(compiler_state_t *cstate, int reason)
8800 {
8801 	struct block *b0;
8802 
8803 	/*
8804 	 * Catch errors reported by us and routines below us, and return NULL
8805 	 * on an error.
8806 	 */
8807 	if (setjmp(cstate->top_ctx))
8808 		return (NULL);
8809 
8810 	if (cstate->linktype != DLT_PFLOG) {
8811 		bpf_error(cstate, "reason supported only on PF linktype");
8812 		/*NOTREACHED*/
8813 	}
8814 
8815 	b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, reason), BPF_B,
8816 	    (bpf_u_int32)reason);
8817 	return (b0);
8818 }
8819 
8820 /* PF firewall log action */
8821 struct block *
8822 gen_pf_action(compiler_state_t *cstate, int action)
8823 {
8824 	struct block *b0;
8825 
8826 	/*
8827 	 * Catch errors reported by us and routines below us, and return NULL
8828 	 * on an error.
8829 	 */
8830 	if (setjmp(cstate->top_ctx))
8831 		return (NULL);
8832 
8833 	if (cstate->linktype != DLT_PFLOG) {
8834 		bpf_error(cstate, "action supported only on PF linktype");
8835 		/*NOTREACHED*/
8836 	}
8837 
8838 	b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, action), BPF_B,
8839 	    (bpf_u_int32)action);
8840 	return (b0);
8841 }
8842 
8843 /* IEEE 802.11 wireless header */
8844 struct block *
8845 gen_p80211_type(compiler_state_t *cstate, bpf_u_int32 type, bpf_u_int32 mask)
8846 {
8847 	struct block *b0;
8848 
8849 	/*
8850 	 * Catch errors reported by us and routines below us, and return NULL
8851 	 * on an error.
8852 	 */
8853 	if (setjmp(cstate->top_ctx))
8854 		return (NULL);
8855 
8856 	switch (cstate->linktype) {
8857 
8858 	case DLT_IEEE802_11:
8859 	case DLT_PRISM_HEADER:
8860 	case DLT_IEEE802_11_RADIO_AVS:
8861 	case DLT_IEEE802_11_RADIO:
8862 		b0 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, type, mask);
8863 		break;
8864 
8865 	default:
8866 		bpf_error(cstate, "802.11 link-layer types supported only on 802.11");
8867 		/*NOTREACHED*/
8868 	}
8869 
8870 	return (b0);
8871 }
8872 
8873 struct block *
8874 gen_p80211_fcdir(compiler_state_t *cstate, bpf_u_int32 fcdir)
8875 {
8876 	struct block *b0;
8877 
8878 	/*
8879 	 * Catch errors reported by us and routines below us, and return NULL
8880 	 * on an error.
8881 	 */
8882 	if (setjmp(cstate->top_ctx))
8883 		return (NULL);
8884 
8885 	switch (cstate->linktype) {
8886 
8887 	case DLT_IEEE802_11:
8888 	case DLT_PRISM_HEADER:
8889 	case DLT_IEEE802_11_RADIO_AVS:
8890 	case DLT_IEEE802_11_RADIO:
8891 		break;
8892 
8893 	default:
8894 		bpf_error(cstate, "frame direction supported only with 802.11 headers");
8895 		/*NOTREACHED*/
8896 	}
8897 
8898 	b0 = gen_mcmp(cstate, OR_LINKHDR, 1, BPF_B, fcdir,
8899 	    IEEE80211_FC1_DIR_MASK);
8900 
8901 	return (b0);
8902 }
8903 
8904 struct block *
8905 gen_acode(compiler_state_t *cstate, const char *s, struct qual q)
8906 {
8907 	struct block *b;
8908 
8909 	/*
8910 	 * Catch errors reported by us and routines below us, and return NULL
8911 	 * on an error.
8912 	 */
8913 	if (setjmp(cstate->top_ctx))
8914 		return (NULL);
8915 
8916 	switch (cstate->linktype) {
8917 
8918 	case DLT_ARCNET:
8919 	case DLT_ARCNET_LINUX:
8920 		if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) &&
8921 		    q.proto == Q_LINK) {
8922 			cstate->e = pcap_ether_aton(s);
8923 			if (cstate->e == NULL)
8924 				bpf_error(cstate, "malloc");
8925 			b = gen_ahostop(cstate, cstate->e, (int)q.dir);
8926 			free(cstate->e);
8927 			cstate->e = NULL;
8928 			return (b);
8929 		} else
8930 			bpf_error(cstate, "ARCnet address used in non-arc expression");
8931 		/*NOTREACHED*/
8932 
8933 	default:
8934 		bpf_error(cstate, "aid supported only on ARCnet");
8935 		/*NOTREACHED*/
8936 	}
8937 }
8938 
8939 static struct block *
8940 gen_ahostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
8941 {
8942 	register struct block *b0, *b1;
8943 
8944 	switch (dir) {
8945 	/* src comes first, different from Ethernet */
8946 	case Q_SRC:
8947 		return gen_bcmp(cstate, OR_LINKHDR, 0, 1, eaddr);
8948 
8949 	case Q_DST:
8950 		return gen_bcmp(cstate, OR_LINKHDR, 1, 1, eaddr);
8951 
8952 	case Q_AND:
8953 		b0 = gen_ahostop(cstate, eaddr, Q_SRC);
8954 		b1 = gen_ahostop(cstate, eaddr, Q_DST);
8955 		gen_and(b0, b1);
8956 		return b1;
8957 
8958 	case Q_DEFAULT:
8959 	case Q_OR:
8960 		b0 = gen_ahostop(cstate, eaddr, Q_SRC);
8961 		b1 = gen_ahostop(cstate, eaddr, Q_DST);
8962 		gen_or(b0, b1);
8963 		return b1;
8964 
8965 	case Q_ADDR1:
8966 		bpf_error(cstate, "'addr1' and 'address1' are only supported on 802.11");
8967 		/*NOTREACHED*/
8968 
8969 	case Q_ADDR2:
8970 		bpf_error(cstate, "'addr2' and 'address2' are only supported on 802.11");
8971 		/*NOTREACHED*/
8972 
8973 	case Q_ADDR3:
8974 		bpf_error(cstate, "'addr3' and 'address3' are only supported on 802.11");
8975 		/*NOTREACHED*/
8976 
8977 	case Q_ADDR4:
8978 		bpf_error(cstate, "'addr4' and 'address4' are only supported on 802.11");
8979 		/*NOTREACHED*/
8980 
8981 	case Q_RA:
8982 		bpf_error(cstate, "'ra' is only supported on 802.11");
8983 		/*NOTREACHED*/
8984 
8985 	case Q_TA:
8986 		bpf_error(cstate, "'ta' is only supported on 802.11");
8987 		/*NOTREACHED*/
8988 	}
8989 	abort();
8990 	/*NOTREACHED*/
8991 }
8992 
8993 static struct block *
8994 gen_vlan_tpid_test(compiler_state_t *cstate)
8995 {
8996 	struct block *b0, *b1;
8997 
8998 	/* check for VLAN, including 802.1ad and QinQ */
8999 	b0 = gen_linktype(cstate, ETHERTYPE_8021Q);
9000 	b1 = gen_linktype(cstate, ETHERTYPE_8021AD);
9001 	gen_or(b0,b1);
9002 	b0 = b1;
9003 	b1 = gen_linktype(cstate, ETHERTYPE_8021QINQ);
9004 	gen_or(b0,b1);
9005 
9006 	return b1;
9007 }
9008 
9009 static struct block *
9010 gen_vlan_vid_test(compiler_state_t *cstate, bpf_u_int32 vlan_num)
9011 {
9012 	if (vlan_num > 0x0fff) {
9013 		bpf_error(cstate, "VLAN tag %u greater than maximum %u",
9014 		    vlan_num, 0x0fff);
9015 	}
9016 	return gen_mcmp(cstate, OR_LINKPL, 0, BPF_H, vlan_num, 0x0fff);
9017 }
9018 
9019 static struct block *
9020 gen_vlan_no_bpf_extensions(compiler_state_t *cstate, bpf_u_int32 vlan_num,
9021     int has_vlan_tag)
9022 {
9023 	struct block *b0, *b1;
9024 
9025 	b0 = gen_vlan_tpid_test(cstate);
9026 
9027 	if (has_vlan_tag) {
9028 		b1 = gen_vlan_vid_test(cstate, vlan_num);
9029 		gen_and(b0, b1);
9030 		b0 = b1;
9031 	}
9032 
9033 	/*
9034 	 * Both payload and link header type follow the VLAN tags so that
9035 	 * both need to be updated.
9036 	 */
9037 	cstate->off_linkpl.constant_part += 4;
9038 	cstate->off_linktype.constant_part += 4;
9039 
9040 	return b0;
9041 }
9042 
9043 #if defined(SKF_AD_VLAN_TAG_PRESENT)
9044 /* add v to variable part of off */
9045 static void
9046 gen_vlan_vloffset_add(compiler_state_t *cstate, bpf_abs_offset *off,
9047     bpf_u_int32 v, struct slist *s)
9048 {
9049 	struct slist *s2;
9050 
9051 	if (!off->is_variable)
9052 		off->is_variable = 1;
9053 	if (off->reg == -1)
9054 		off->reg = alloc_reg(cstate);
9055 
9056 	s2 = new_stmt(cstate, BPF_LD|BPF_MEM);
9057 	s2->s.k = off->reg;
9058 	sappend(s, s2);
9059 	s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_IMM);
9060 	s2->s.k = v;
9061 	sappend(s, s2);
9062 	s2 = new_stmt(cstate, BPF_ST);
9063 	s2->s.k = off->reg;
9064 	sappend(s, s2);
9065 }
9066 
9067 /*
9068  * patch block b_tpid (VLAN TPID test) to update variable parts of link payload
9069  * and link type offsets first
9070  */
9071 static void
9072 gen_vlan_patch_tpid_test(compiler_state_t *cstate, struct block *b_tpid)
9073 {
9074 	struct slist s;
9075 
9076 	/* offset determined at run time, shift variable part */
9077 	s.next = NULL;
9078 	cstate->is_vlan_vloffset = 1;
9079 	gen_vlan_vloffset_add(cstate, &cstate->off_linkpl, 4, &s);
9080 	gen_vlan_vloffset_add(cstate, &cstate->off_linktype, 4, &s);
9081 
9082 	/* we get a pointer to a chain of or-ed blocks, patch first of them */
9083 	sappend(s.next, b_tpid->head->stmts);
9084 	b_tpid->head->stmts = s.next;
9085 }
9086 
9087 /*
9088  * patch block b_vid (VLAN id test) to load VID value either from packet
9089  * metadata (using BPF extensions) if SKF_AD_VLAN_TAG_PRESENT is true
9090  */
9091 static void
9092 gen_vlan_patch_vid_test(compiler_state_t *cstate, struct block *b_vid)
9093 {
9094 	struct slist *s, *s2, *sjeq;
9095 	unsigned cnt;
9096 
9097 	s = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
9098 	s->s.k = SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT;
9099 
9100 	/* true -> next instructions, false -> beginning of b_vid */
9101 	sjeq = new_stmt(cstate, JMP(BPF_JEQ));
9102 	sjeq->s.k = 1;
9103 	sjeq->s.jf = b_vid->stmts;
9104 	sappend(s, sjeq);
9105 
9106 	s2 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
9107 	s2->s.k = SKF_AD_OFF + SKF_AD_VLAN_TAG;
9108 	sappend(s, s2);
9109 	sjeq->s.jt = s2;
9110 
9111 	/* Jump to the test in b_vid. We need to jump one instruction before
9112 	 * the end of the b_vid block so that we only skip loading the TCI
9113 	 * from packet data and not the 'and' instruction extracting VID.
9114 	 */
9115 	cnt = 0;
9116 	for (s2 = b_vid->stmts; s2; s2 = s2->next)
9117 		cnt++;
9118 	s2 = new_stmt(cstate, JMP(BPF_JA));
9119 	s2->s.k = cnt - 1;
9120 	sappend(s, s2);
9121 
9122 	/* insert our statements at the beginning of b_vid */
9123 	sappend(s, b_vid->stmts);
9124 	b_vid->stmts = s;
9125 }
9126 
9127 /*
9128  * Generate check for "vlan" or "vlan <id>" on systems with support for BPF
9129  * extensions.  Even if kernel supports VLAN BPF extensions, (outermost) VLAN
9130  * tag can be either in metadata or in packet data; therefore if the
9131  * SKF_AD_VLAN_TAG_PRESENT test is negative, we need to check link
9132  * header for VLAN tag. As the decision is done at run time, we need
9133  * update variable part of the offsets
9134  */
9135 static struct block *
9136 gen_vlan_bpf_extensions(compiler_state_t *cstate, bpf_u_int32 vlan_num,
9137     int has_vlan_tag)
9138 {
9139         struct block *b0, *b_tpid, *b_vid = NULL;
9140         struct slist *s;
9141 
9142         /* generate new filter code based on extracting packet
9143          * metadata */
9144         s = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
9145         s->s.k = SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT;
9146 
9147         b0 = new_block(cstate, JMP(BPF_JEQ));
9148         b0->stmts = s;
9149         b0->s.k = 1;
9150 
9151 	/*
9152 	 * This is tricky. We need to insert the statements updating variable
9153 	 * parts of offsets before the traditional TPID and VID tests so
9154 	 * that they are called whenever SKF_AD_VLAN_TAG_PRESENT fails but
9155 	 * we do not want this update to affect those checks. That's why we
9156 	 * generate both test blocks first and insert the statements updating
9157 	 * variable parts of both offsets after that. This wouldn't work if
9158 	 * there already were variable length link header when entering this
9159 	 * function but gen_vlan_bpf_extensions() isn't called in that case.
9160 	 */
9161 	b_tpid = gen_vlan_tpid_test(cstate);
9162 	if (has_vlan_tag)
9163 		b_vid = gen_vlan_vid_test(cstate, vlan_num);
9164 
9165 	gen_vlan_patch_tpid_test(cstate, b_tpid);
9166 	gen_or(b0, b_tpid);
9167 	b0 = b_tpid;
9168 
9169 	if (has_vlan_tag) {
9170 		gen_vlan_patch_vid_test(cstate, b_vid);
9171 		gen_and(b0, b_vid);
9172 		b0 = b_vid;
9173 	}
9174 
9175         return b0;
9176 }
9177 #endif
9178 
9179 /*
9180  * support IEEE 802.1Q VLAN trunk over ethernet
9181  */
9182 struct block *
9183 gen_vlan(compiler_state_t *cstate, bpf_u_int32 vlan_num, int has_vlan_tag)
9184 {
9185 	struct	block	*b0;
9186 
9187 	/*
9188 	 * Catch errors reported by us and routines below us, and return NULL
9189 	 * on an error.
9190 	 */
9191 	if (setjmp(cstate->top_ctx))
9192 		return (NULL);
9193 
9194 	/* can't check for VLAN-encapsulated packets inside MPLS */
9195 	if (cstate->label_stack_depth > 0)
9196 		bpf_error(cstate, "no VLAN match after MPLS");
9197 
9198 	/*
9199 	 * Check for a VLAN packet, and then change the offsets to point
9200 	 * to the type and data fields within the VLAN packet.  Just
9201 	 * increment the offsets, so that we can support a hierarchy, e.g.
9202 	 * "vlan 300 && vlan 200" to capture VLAN 200 encapsulated within
9203 	 * VLAN 100.
9204 	 *
9205 	 * XXX - this is a bit of a kludge.  If we were to split the
9206 	 * compiler into a parser that parses an expression and
9207 	 * generates an expression tree, and a code generator that
9208 	 * takes an expression tree (which could come from our
9209 	 * parser or from some other parser) and generates BPF code,
9210 	 * we could perhaps make the offsets parameters of routines
9211 	 * and, in the handler for an "AND" node, pass to subnodes
9212 	 * other than the VLAN node the adjusted offsets.
9213 	 *
9214 	 * This would mean that "vlan" would, instead of changing the
9215 	 * behavior of *all* tests after it, change only the behavior
9216 	 * of tests ANDed with it.  That would change the documented
9217 	 * semantics of "vlan", which might break some expressions.
9218 	 * However, it would mean that "(vlan and ip) or ip" would check
9219 	 * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
9220 	 * checking only for VLAN-encapsulated IP, so that could still
9221 	 * be considered worth doing; it wouldn't break expressions
9222 	 * that are of the form "vlan and ..." or "vlan N and ...",
9223 	 * which I suspect are the most common expressions involving
9224 	 * "vlan".  "vlan or ..." doesn't necessarily do what the user
9225 	 * would really want, now, as all the "or ..." tests would
9226 	 * be done assuming a VLAN, even though the "or" could be viewed
9227 	 * as meaning "or, if this isn't a VLAN packet...".
9228 	 */
9229 	switch (cstate->linktype) {
9230 
9231 	case DLT_EN10MB:
9232 	case DLT_NETANALYZER:
9233 	case DLT_NETANALYZER_TRANSPARENT:
9234 #if defined(SKF_AD_VLAN_TAG_PRESENT)
9235 		/* Verify that this is the outer part of the packet and
9236 		 * not encapsulated somehow. */
9237 		if (cstate->vlan_stack_depth == 0 && !cstate->off_linkhdr.is_variable &&
9238 		    cstate->off_linkhdr.constant_part ==
9239 		    cstate->off_outermostlinkhdr.constant_part) {
9240 			/*
9241 			 * Do we need special VLAN handling?
9242 			 */
9243 			if (cstate->bpf_pcap->bpf_codegen_flags & BPF_SPECIAL_VLAN_HANDLING)
9244 				b0 = gen_vlan_bpf_extensions(cstate, vlan_num,
9245 				    has_vlan_tag);
9246 			else
9247 				b0 = gen_vlan_no_bpf_extensions(cstate,
9248 				    vlan_num, has_vlan_tag);
9249 		} else
9250 #endif
9251 			b0 = gen_vlan_no_bpf_extensions(cstate, vlan_num,
9252 			    has_vlan_tag);
9253 		break;
9254 
9255 	case DLT_IEEE802_11:
9256 	case DLT_PRISM_HEADER:
9257 	case DLT_IEEE802_11_RADIO_AVS:
9258 	case DLT_IEEE802_11_RADIO:
9259 		b0 = gen_vlan_no_bpf_extensions(cstate, vlan_num, has_vlan_tag);
9260 		break;
9261 
9262 	default:
9263 		bpf_error(cstate, "no VLAN support for %s",
9264 		      pcap_datalink_val_to_description_or_dlt(cstate->linktype));
9265 		/*NOTREACHED*/
9266 	}
9267 
9268 	cstate->vlan_stack_depth++;
9269 
9270 	return (b0);
9271 }
9272 
9273 /*
9274  * support for MPLS
9275  *
9276  * The label_num_arg dance is to avoid annoying whining by compilers that
9277  * label_num might be clobbered by longjmp - yeah, it might, but *WHO CARES*?
9278  * It's not *used* after setjmp returns.
9279  */
9280 struct block *
9281 gen_mpls(compiler_state_t *cstate, bpf_u_int32 label_num_arg,
9282     int has_label_num)
9283 {
9284 	volatile bpf_u_int32 label_num = label_num_arg;
9285 	struct	block	*b0, *b1;
9286 
9287 	/*
9288 	 * Catch errors reported by us and routines below us, and return NULL
9289 	 * on an error.
9290 	 */
9291 	if (setjmp(cstate->top_ctx))
9292 		return (NULL);
9293 
9294 	if (cstate->label_stack_depth > 0) {
9295 		/* just match the bottom-of-stack bit clear */
9296 		b0 = gen_mcmp(cstate, OR_PREVMPLSHDR, 2, BPF_B, 0, 0x01);
9297 	} else {
9298 		/*
9299 		 * We're not in an MPLS stack yet, so check the link-layer
9300 		 * type against MPLS.
9301 		 */
9302 		switch (cstate->linktype) {
9303 
9304 		case DLT_C_HDLC: /* fall through */
9305 		case DLT_HDLC:
9306 		case DLT_EN10MB:
9307 		case DLT_NETANALYZER:
9308 		case DLT_NETANALYZER_TRANSPARENT:
9309 			b0 = gen_linktype(cstate, ETHERTYPE_MPLS);
9310 			break;
9311 
9312 		case DLT_PPP:
9313 			b0 = gen_linktype(cstate, PPP_MPLS_UCAST);
9314 			break;
9315 
9316 			/* FIXME add other DLT_s ...
9317 			 * for Frame-Relay/and ATM this may get messy due to SNAP headers
9318 			 * leave it for now */
9319 
9320 		default:
9321 			bpf_error(cstate, "no MPLS support for %s",
9322 			    pcap_datalink_val_to_description_or_dlt(cstate->linktype));
9323 			/*NOTREACHED*/
9324 		}
9325 	}
9326 
9327 	/* If a specific MPLS label is requested, check it */
9328 	if (has_label_num) {
9329 		if (label_num > 0xFFFFF) {
9330 			bpf_error(cstate, "MPLS label %u greater than maximum %u",
9331 			    label_num, 0xFFFFF);
9332 		}
9333 		label_num = label_num << 12; /* label is shifted 12 bits on the wire */
9334 		b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_W, label_num,
9335 		    0xfffff000); /* only compare the first 20 bits */
9336 		gen_and(b0, b1);
9337 		b0 = b1;
9338 	}
9339 
9340 	/*
9341 	 * Change the offsets to point to the type and data fields within
9342 	 * the MPLS packet.  Just increment the offsets, so that we
9343 	 * can support a hierarchy, e.g. "mpls 100000 && mpls 1024" to
9344 	 * capture packets with an outer label of 100000 and an inner
9345 	 * label of 1024.
9346 	 *
9347 	 * Increment the MPLS stack depth as well; this indicates that
9348 	 * we're checking MPLS-encapsulated headers, to make sure higher
9349 	 * level code generators don't try to match against IP-related
9350 	 * protocols such as Q_ARP, Q_RARP etc.
9351 	 *
9352 	 * XXX - this is a bit of a kludge.  See comments in gen_vlan().
9353 	 */
9354 	cstate->off_nl_nosnap += 4;
9355 	cstate->off_nl += 4;
9356 	cstate->label_stack_depth++;
9357 	return (b0);
9358 }
9359 
9360 /*
9361  * Support PPPOE discovery and session.
9362  */
9363 struct block *
9364 gen_pppoed(compiler_state_t *cstate)
9365 {
9366 	/*
9367 	 * Catch errors reported by us and routines below us, and return NULL
9368 	 * on an error.
9369 	 */
9370 	if (setjmp(cstate->top_ctx))
9371 		return (NULL);
9372 
9373 	/* check for PPPoE discovery */
9374 	return gen_linktype(cstate, ETHERTYPE_PPPOED);
9375 }
9376 
9377 struct block *
9378 gen_pppoes(compiler_state_t *cstate, bpf_u_int32 sess_num, int has_sess_num)
9379 {
9380 	struct block *b0, *b1;
9381 
9382 	/*
9383 	 * Catch errors reported by us and routines below us, and return NULL
9384 	 * on an error.
9385 	 */
9386 	if (setjmp(cstate->top_ctx))
9387 		return (NULL);
9388 
9389 	/*
9390 	 * Test against the PPPoE session link-layer type.
9391 	 */
9392 	b0 = gen_linktype(cstate, ETHERTYPE_PPPOES);
9393 
9394 	/* If a specific session is requested, check PPPoE session id */
9395 	if (has_sess_num) {
9396 		if (sess_num > 0x0000ffff) {
9397 			bpf_error(cstate, "PPPoE session number %u greater than maximum %u",
9398 			    sess_num, 0x0000ffff);
9399 		}
9400 		b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_W, sess_num, 0x0000ffff);
9401 		gen_and(b0, b1);
9402 		b0 = b1;
9403 	}
9404 
9405 	/*
9406 	 * Change the offsets to point to the type and data fields within
9407 	 * the PPP packet, and note that this is PPPoE rather than
9408 	 * raw PPP.
9409 	 *
9410 	 * XXX - this is a bit of a kludge.  See the comments in
9411 	 * gen_vlan().
9412 	 *
9413 	 * The "network-layer" protocol is PPPoE, which has a 6-byte
9414 	 * PPPoE header, followed by a PPP packet.
9415 	 *
9416 	 * There is no HDLC encapsulation for the PPP packet (it's
9417 	 * encapsulated in PPPoES instead), so the link-layer type
9418 	 * starts at the first byte of the PPP packet.  For PPPoE,
9419 	 * that offset is relative to the beginning of the total
9420 	 * link-layer payload, including any 802.2 LLC header, so
9421 	 * it's 6 bytes past cstate->off_nl.
9422 	 */
9423 	PUSH_LINKHDR(cstate, DLT_PPP, cstate->off_linkpl.is_variable,
9424 	    cstate->off_linkpl.constant_part + cstate->off_nl + 6, /* 6 bytes past the PPPoE header */
9425 	    cstate->off_linkpl.reg);
9426 
9427 	cstate->off_linktype = cstate->off_linkhdr;
9428 	cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 2;
9429 
9430 	cstate->off_nl = 0;
9431 	cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
9432 
9433 	return b0;
9434 }
9435 
9436 /* Check that this is Geneve and the VNI is correct if
9437  * specified. Parameterized to handle both IPv4 and IPv6. */
9438 static struct block *
9439 gen_geneve_check(compiler_state_t *cstate,
9440     struct block *(*gen_portfn)(compiler_state_t *, u_int, int, int),
9441     enum e_offrel offrel, bpf_u_int32 vni, int has_vni)
9442 {
9443 	struct block *b0, *b1;
9444 
9445 	b0 = gen_portfn(cstate, GENEVE_PORT, IPPROTO_UDP, Q_DST);
9446 
9447 	/* Check that we are operating on version 0. Otherwise, we
9448 	 * can't decode the rest of the fields. The version is 2 bits
9449 	 * in the first byte of the Geneve header. */
9450 	b1 = gen_mcmp(cstate, offrel, 8, BPF_B, 0, 0xc0);
9451 	gen_and(b0, b1);
9452 	b0 = b1;
9453 
9454 	if (has_vni) {
9455 		if (vni > 0xffffff) {
9456 			bpf_error(cstate, "Geneve VNI %u greater than maximum %u",
9457 			    vni, 0xffffff);
9458 		}
9459 		vni <<= 8; /* VNI is in the upper 3 bytes */
9460 		b1 = gen_mcmp(cstate, offrel, 12, BPF_W, vni, 0xffffff00);
9461 		gen_and(b0, b1);
9462 		b0 = b1;
9463 	}
9464 
9465 	return b0;
9466 }
9467 
9468 /* The IPv4 and IPv6 Geneve checks need to do two things:
9469  * - Verify that this actually is Geneve with the right VNI.
9470  * - Place the IP header length (plus variable link prefix if
9471  *   needed) into register A to be used later to compute
9472  *   the inner packet offsets. */
9473 static struct block *
9474 gen_geneve4(compiler_state_t *cstate, bpf_u_int32 vni, int has_vni)
9475 {
9476 	struct block *b0, *b1;
9477 	struct slist *s, *s1;
9478 
9479 	b0 = gen_geneve_check(cstate, gen_port, OR_TRAN_IPV4, vni, has_vni);
9480 
9481 	/* Load the IP header length into A. */
9482 	s = gen_loadx_iphdrlen(cstate);
9483 
9484 	s1 = new_stmt(cstate, BPF_MISC|BPF_TXA);
9485 	sappend(s, s1);
9486 
9487 	/* Forcibly append these statements to the true condition
9488 	 * of the protocol check by creating a new block that is
9489 	 * always true and ANDing them. */
9490 	b1 = new_block(cstate, BPF_JMP|BPF_JEQ|BPF_X);
9491 	b1->stmts = s;
9492 	b1->s.k = 0;
9493 
9494 	gen_and(b0, b1);
9495 
9496 	return b1;
9497 }
9498 
9499 static struct block *
9500 gen_geneve6(compiler_state_t *cstate, bpf_u_int32 vni, int has_vni)
9501 {
9502 	struct block *b0, *b1;
9503 	struct slist *s, *s1;
9504 
9505 	b0 = gen_geneve_check(cstate, gen_port6, OR_TRAN_IPV6, vni, has_vni);
9506 
9507 	/* Load the IP header length. We need to account for a
9508 	 * variable length link prefix if there is one. */
9509 	s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl);
9510 	if (s) {
9511 		s1 = new_stmt(cstate, BPF_LD|BPF_IMM);
9512 		s1->s.k = 40;
9513 		sappend(s, s1);
9514 
9515 		s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X);
9516 		s1->s.k = 0;
9517 		sappend(s, s1);
9518 	} else {
9519 		s = new_stmt(cstate, BPF_LD|BPF_IMM);
9520 		s->s.k = 40;
9521 	}
9522 
9523 	/* Forcibly append these statements to the true condition
9524 	 * of the protocol check by creating a new block that is
9525 	 * always true and ANDing them. */
9526 	s1 = new_stmt(cstate, BPF_MISC|BPF_TAX);
9527 	sappend(s, s1);
9528 
9529 	b1 = new_block(cstate, BPF_JMP|BPF_JEQ|BPF_X);
9530 	b1->stmts = s;
9531 	b1->s.k = 0;
9532 
9533 	gen_and(b0, b1);
9534 
9535 	return b1;
9536 }
9537 
9538 /* We need to store three values based on the Geneve header::
9539  * - The offset of the linktype.
9540  * - The offset of the end of the Geneve header.
9541  * - The offset of the end of the encapsulated MAC header. */
9542 static struct slist *
9543 gen_geneve_offsets(compiler_state_t *cstate)
9544 {
9545 	struct slist *s, *s1, *s_proto;
9546 
9547 	/* First we need to calculate the offset of the Geneve header
9548 	 * itself. This is composed of the IP header previously calculated
9549 	 * (include any variable link prefix) and stored in A plus the
9550 	 * fixed sized headers (fixed link prefix, MAC length, and UDP
9551 	 * header). */
9552 	s = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
9553 	s->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 8;
9554 
9555 	/* Stash this in X since we'll need it later. */
9556 	s1 = new_stmt(cstate, BPF_MISC|BPF_TAX);
9557 	sappend(s, s1);
9558 
9559 	/* The EtherType in Geneve is 2 bytes in. Calculate this and
9560 	 * store it. */
9561 	s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
9562 	s1->s.k = 2;
9563 	sappend(s, s1);
9564 
9565 	cstate->off_linktype.reg = alloc_reg(cstate);
9566 	cstate->off_linktype.is_variable = 1;
9567 	cstate->off_linktype.constant_part = 0;
9568 
9569 	s1 = new_stmt(cstate, BPF_ST);
9570 	s1->s.k = cstate->off_linktype.reg;
9571 	sappend(s, s1);
9572 
9573 	/* Load the Geneve option length and mask and shift to get the
9574 	 * number of bytes. It is stored in the first byte of the Geneve
9575 	 * header. */
9576 	s1 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
9577 	s1->s.k = 0;
9578 	sappend(s, s1);
9579 
9580 	s1 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
9581 	s1->s.k = 0x3f;
9582 	sappend(s, s1);
9583 
9584 	s1 = new_stmt(cstate, BPF_ALU|BPF_MUL|BPF_K);
9585 	s1->s.k = 4;
9586 	sappend(s, s1);
9587 
9588 	/* Add in the rest of the Geneve base header. */
9589 	s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
9590 	s1->s.k = 8;
9591 	sappend(s, s1);
9592 
9593 	/* Add the Geneve header length to its offset and store. */
9594 	s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X);
9595 	s1->s.k = 0;
9596 	sappend(s, s1);
9597 
9598 	/* Set the encapsulated type as Ethernet. Even though we may
9599 	 * not actually have Ethernet inside there are two reasons this
9600 	 * is useful:
9601 	 * - The linktype field is always in EtherType format regardless
9602 	 *   of whether it is in Geneve or an inner Ethernet frame.
9603 	 * - The only link layer that we have specific support for is
9604 	 *   Ethernet. We will confirm that the packet actually is
9605 	 *   Ethernet at runtime before executing these checks. */
9606 	PUSH_LINKHDR(cstate, DLT_EN10MB, 1, 0, alloc_reg(cstate));
9607 
9608 	s1 = new_stmt(cstate, BPF_ST);
9609 	s1->s.k = cstate->off_linkhdr.reg;
9610 	sappend(s, s1);
9611 
9612 	/* Calculate whether we have an Ethernet header or just raw IP/
9613 	 * MPLS/etc. If we have Ethernet, advance the end of the MAC offset
9614 	 * and linktype by 14 bytes so that the network header can be found
9615 	 * seamlessly. Otherwise, keep what we've calculated already. */
9616 
9617 	/* We have a bare jmp so we can't use the optimizer. */
9618 	cstate->no_optimize = 1;
9619 
9620 	/* Load the EtherType in the Geneve header, 2 bytes in. */
9621 	s1 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_H);
9622 	s1->s.k = 2;
9623 	sappend(s, s1);
9624 
9625 	/* Load X with the end of the Geneve header. */
9626 	s1 = new_stmt(cstate, BPF_LDX|BPF_MEM);
9627 	s1->s.k = cstate->off_linkhdr.reg;
9628 	sappend(s, s1);
9629 
9630 	/* Check if the EtherType is Transparent Ethernet Bridging. At the
9631 	 * end of this check, we should have the total length in X. In
9632 	 * the non-Ethernet case, it's already there. */
9633 	s_proto = new_stmt(cstate, JMP(BPF_JEQ));
9634 	s_proto->s.k = ETHERTYPE_TEB;
9635 	sappend(s, s_proto);
9636 
9637 	s1 = new_stmt(cstate, BPF_MISC|BPF_TXA);
9638 	sappend(s, s1);
9639 	s_proto->s.jt = s1;
9640 
9641 	/* Since this is Ethernet, use the EtherType of the payload
9642 	 * directly as the linktype. Overwrite what we already have. */
9643 	s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
9644 	s1->s.k = 12;
9645 	sappend(s, s1);
9646 
9647 	s1 = new_stmt(cstate, BPF_ST);
9648 	s1->s.k = cstate->off_linktype.reg;
9649 	sappend(s, s1);
9650 
9651 	/* Advance two bytes further to get the end of the Ethernet
9652 	 * header. */
9653 	s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
9654 	s1->s.k = 2;
9655 	sappend(s, s1);
9656 
9657 	/* Move the result to X. */
9658 	s1 = new_stmt(cstate, BPF_MISC|BPF_TAX);
9659 	sappend(s, s1);
9660 
9661 	/* Store the final result of our linkpl calculation. */
9662 	cstate->off_linkpl.reg = alloc_reg(cstate);
9663 	cstate->off_linkpl.is_variable = 1;
9664 	cstate->off_linkpl.constant_part = 0;
9665 
9666 	s1 = new_stmt(cstate, BPF_STX);
9667 	s1->s.k = cstate->off_linkpl.reg;
9668 	sappend(s, s1);
9669 	s_proto->s.jf = s1;
9670 
9671 	cstate->off_nl = 0;
9672 
9673 	return s;
9674 }
9675 
9676 /* Check to see if this is a Geneve packet. */
9677 struct block *
9678 gen_geneve(compiler_state_t *cstate, bpf_u_int32 vni, int has_vni)
9679 {
9680 	struct block *b0, *b1;
9681 	struct slist *s;
9682 
9683 	/*
9684 	 * Catch errors reported by us and routines below us, and return NULL
9685 	 * on an error.
9686 	 */
9687 	if (setjmp(cstate->top_ctx))
9688 		return (NULL);
9689 
9690 	b0 = gen_geneve4(cstate, vni, has_vni);
9691 	b1 = gen_geneve6(cstate, vni, has_vni);
9692 
9693 	gen_or(b0, b1);
9694 	b0 = b1;
9695 
9696 	/* Later filters should act on the payload of the Geneve frame,
9697 	 * update all of the header pointers. Attach this code so that
9698 	 * it gets executed in the event that the Geneve filter matches. */
9699 	s = gen_geneve_offsets(cstate);
9700 
9701 	b1 = gen_true(cstate);
9702 	sappend(s, b1->stmts);
9703 	b1->stmts = s;
9704 
9705 	gen_and(b0, b1);
9706 
9707 	cstate->is_geneve = 1;
9708 
9709 	return b1;
9710 }
9711 
9712 /* Check that the encapsulated frame has a link layer header
9713  * for Ethernet filters. */
9714 static struct block *
9715 gen_geneve_ll_check(compiler_state_t *cstate)
9716 {
9717 	struct block *b0;
9718 	struct slist *s, *s1;
9719 
9720 	/* The easiest way to see if there is a link layer present
9721 	 * is to check if the link layer header and payload are not
9722 	 * the same. */
9723 
9724 	/* Geneve always generates pure variable offsets so we can
9725 	 * compare only the registers. */
9726 	s = new_stmt(cstate, BPF_LD|BPF_MEM);
9727 	s->s.k = cstate->off_linkhdr.reg;
9728 
9729 	s1 = new_stmt(cstate, BPF_LDX|BPF_MEM);
9730 	s1->s.k = cstate->off_linkpl.reg;
9731 	sappend(s, s1);
9732 
9733 	b0 = new_block(cstate, BPF_JMP|BPF_JEQ|BPF_X);
9734 	b0->stmts = s;
9735 	b0->s.k = 0;
9736 	gen_not(b0);
9737 
9738 	return b0;
9739 }
9740 
9741 static struct block *
9742 gen_atmfield_code_internal(compiler_state_t *cstate, int atmfield,
9743     bpf_u_int32 jvalue, int jtype, int reverse)
9744 {
9745 	struct block *b0;
9746 
9747 	switch (atmfield) {
9748 
9749 	case A_VPI:
9750 		if (!cstate->is_atm)
9751 			bpf_error(cstate, "'vpi' supported only on raw ATM");
9752 		if (cstate->off_vpi == OFFSET_NOT_SET)
9753 			abort();
9754 		b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_vpi, BPF_B,
9755 		    0xffffffffU, jtype, reverse, jvalue);
9756 		break;
9757 
9758 	case A_VCI:
9759 		if (!cstate->is_atm)
9760 			bpf_error(cstate, "'vci' supported only on raw ATM");
9761 		if (cstate->off_vci == OFFSET_NOT_SET)
9762 			abort();
9763 		b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_vci, BPF_H,
9764 		    0xffffffffU, jtype, reverse, jvalue);
9765 		break;
9766 
9767 	case A_PROTOTYPE:
9768 		if (cstate->off_proto == OFFSET_NOT_SET)
9769 			abort();	/* XXX - this isn't on FreeBSD */
9770 		b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_proto, BPF_B,
9771 		    0x0fU, jtype, reverse, jvalue);
9772 		break;
9773 
9774 	case A_MSGTYPE:
9775 		if (cstate->off_payload == OFFSET_NOT_SET)
9776 			abort();
9777 		b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_payload + MSG_TYPE_POS, BPF_B,
9778 		    0xffffffffU, jtype, reverse, jvalue);
9779 		break;
9780 
9781 	case A_CALLREFTYPE:
9782 		if (!cstate->is_atm)
9783 			bpf_error(cstate, "'callref' supported only on raw ATM");
9784 		if (cstate->off_proto == OFFSET_NOT_SET)
9785 			abort();
9786 		b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_proto, BPF_B,
9787 		    0xffffffffU, jtype, reverse, jvalue);
9788 		break;
9789 
9790 	default:
9791 		abort();
9792 	}
9793 	return b0;
9794 }
9795 
9796 static struct block *
9797 gen_atmtype_metac(compiler_state_t *cstate)
9798 {
9799 	struct block *b0, *b1;
9800 
9801 	b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
9802 	b1 = gen_atmfield_code_internal(cstate, A_VCI, 1, BPF_JEQ, 0);
9803 	gen_and(b0, b1);
9804 	return b1;
9805 }
9806 
9807 static struct block *
9808 gen_atmtype_sc(compiler_state_t *cstate)
9809 {
9810 	struct block *b0, *b1;
9811 
9812 	b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
9813 	b1 = gen_atmfield_code_internal(cstate, A_VCI, 5, BPF_JEQ, 0);
9814 	gen_and(b0, b1);
9815 	return b1;
9816 }
9817 
9818 static struct block *
9819 gen_atmtype_llc(compiler_state_t *cstate)
9820 {
9821 	struct block *b0;
9822 
9823 	b0 = gen_atmfield_code_internal(cstate, A_PROTOTYPE, PT_LLC, BPF_JEQ, 0);
9824 	cstate->linktype = cstate->prevlinktype;
9825 	return b0;
9826 }
9827 
9828 struct block *
9829 gen_atmfield_code(compiler_state_t *cstate, int atmfield,
9830     bpf_u_int32 jvalue, int jtype, int reverse)
9831 {
9832 	/*
9833 	 * Catch errors reported by us and routines below us, and return NULL
9834 	 * on an error.
9835 	 */
9836 	if (setjmp(cstate->top_ctx))
9837 		return (NULL);
9838 
9839 	return gen_atmfield_code_internal(cstate, atmfield, jvalue, jtype,
9840 	    reverse);
9841 }
9842 
9843 struct block *
9844 gen_atmtype_abbrev(compiler_state_t *cstate, int type)
9845 {
9846 	struct block *b0, *b1;
9847 
9848 	/*
9849 	 * Catch errors reported by us and routines below us, and return NULL
9850 	 * on an error.
9851 	 */
9852 	if (setjmp(cstate->top_ctx))
9853 		return (NULL);
9854 
9855 	switch (type) {
9856 
9857 	case A_METAC:
9858 		/* Get all packets in Meta signalling Circuit */
9859 		if (!cstate->is_atm)
9860 			bpf_error(cstate, "'metac' supported only on raw ATM");
9861 		b1 = gen_atmtype_metac(cstate);
9862 		break;
9863 
9864 	case A_BCC:
9865 		/* Get all packets in Broadcast Circuit*/
9866 		if (!cstate->is_atm)
9867 			bpf_error(cstate, "'bcc' supported only on raw ATM");
9868 		b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
9869 		b1 = gen_atmfield_code_internal(cstate, A_VCI, 2, BPF_JEQ, 0);
9870 		gen_and(b0, b1);
9871 		break;
9872 
9873 	case A_OAMF4SC:
9874 		/* Get all cells in Segment OAM F4 circuit*/
9875 		if (!cstate->is_atm)
9876 			bpf_error(cstate, "'oam4sc' supported only on raw ATM");
9877 		b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
9878 		b1 = gen_atmfield_code_internal(cstate, A_VCI, 3, BPF_JEQ, 0);
9879 		gen_and(b0, b1);
9880 		break;
9881 
9882 	case A_OAMF4EC:
9883 		/* Get all cells in End-to-End OAM F4 Circuit*/
9884 		if (!cstate->is_atm)
9885 			bpf_error(cstate, "'oam4ec' supported only on raw ATM");
9886 		b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
9887 		b1 = gen_atmfield_code_internal(cstate, A_VCI, 4, BPF_JEQ, 0);
9888 		gen_and(b0, b1);
9889 		break;
9890 
9891 	case A_SC:
9892 		/*  Get all packets in connection Signalling Circuit */
9893 		if (!cstate->is_atm)
9894 			bpf_error(cstate, "'sc' supported only on raw ATM");
9895 		b1 = gen_atmtype_sc(cstate);
9896 		break;
9897 
9898 	case A_ILMIC:
9899 		/* Get all packets in ILMI Circuit */
9900 		if (!cstate->is_atm)
9901 			bpf_error(cstate, "'ilmic' supported only on raw ATM");
9902 		b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
9903 		b1 = gen_atmfield_code_internal(cstate, A_VCI, 16, BPF_JEQ, 0);
9904 		gen_and(b0, b1);
9905 		break;
9906 
9907 	case A_LANE:
9908 		/* Get all LANE packets */
9909 		if (!cstate->is_atm)
9910 			bpf_error(cstate, "'lane' supported only on raw ATM");
9911 		b1 = gen_atmfield_code_internal(cstate, A_PROTOTYPE, PT_LANE, BPF_JEQ, 0);
9912 
9913 		/*
9914 		 * Arrange that all subsequent tests assume LANE
9915 		 * rather than LLC-encapsulated packets, and set
9916 		 * the offsets appropriately for LANE-encapsulated
9917 		 * Ethernet.
9918 		 *
9919 		 * We assume LANE means Ethernet, not Token Ring.
9920 		 */
9921 		PUSH_LINKHDR(cstate, DLT_EN10MB, 0,
9922 		    cstate->off_payload + 2,	/* Ethernet header */
9923 		    -1);
9924 		cstate->off_linktype.constant_part = cstate->off_linkhdr.constant_part + 12;
9925 		cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 14;	/* Ethernet */
9926 		cstate->off_nl = 0;			/* Ethernet II */
9927 		cstate->off_nl_nosnap = 3;		/* 802.3+802.2 */
9928 		break;
9929 
9930 	case A_LLC:
9931 		/* Get all LLC-encapsulated packets */
9932 		if (!cstate->is_atm)
9933 			bpf_error(cstate, "'llc' supported only on raw ATM");
9934 		b1 = gen_atmtype_llc(cstate);
9935 		break;
9936 
9937 	default:
9938 		abort();
9939 	}
9940 	return b1;
9941 }
9942 
9943 /*
9944  * Filtering for MTP2 messages based on li value
9945  * FISU, length is null
9946  * LSSU, length is 1 or 2
9947  * MSU, length is 3 or more
9948  * For MTP2_HSL, sequences are on 2 bytes, and length on 9 bits
9949  */
9950 struct block *
9951 gen_mtp2type_abbrev(compiler_state_t *cstate, int type)
9952 {
9953 	struct block *b0, *b1;
9954 
9955 	/*
9956 	 * Catch errors reported by us and routines below us, and return NULL
9957 	 * on an error.
9958 	 */
9959 	if (setjmp(cstate->top_ctx))
9960 		return (NULL);
9961 
9962 	switch (type) {
9963 
9964 	case M_FISU:
9965 		if ( (cstate->linktype != DLT_MTP2) &&
9966 		     (cstate->linktype != DLT_ERF) &&
9967 		     (cstate->linktype != DLT_MTP2_WITH_PHDR) )
9968 			bpf_error(cstate, "'fisu' supported only on MTP2");
9969 		/* gen_ncmp(cstate, offrel, offset, size, mask, jtype, reverse, value) */
9970 		b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B,
9971 		    0x3fU, BPF_JEQ, 0, 0U);
9972 		break;
9973 
9974 	case M_LSSU:
9975 		if ( (cstate->linktype != DLT_MTP2) &&
9976 		     (cstate->linktype != DLT_ERF) &&
9977 		     (cstate->linktype != DLT_MTP2_WITH_PHDR) )
9978 			bpf_error(cstate, "'lssu' supported only on MTP2");
9979 		b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B,
9980 		    0x3fU, BPF_JGT, 1, 2U);
9981 		b1 = gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B,
9982 		    0x3fU, BPF_JGT, 0, 0U);
9983 		gen_and(b1, b0);
9984 		break;
9985 
9986 	case M_MSU:
9987 		if ( (cstate->linktype != DLT_MTP2) &&
9988 		     (cstate->linktype != DLT_ERF) &&
9989 		     (cstate->linktype != DLT_MTP2_WITH_PHDR) )
9990 			bpf_error(cstate, "'msu' supported only on MTP2");
9991 		b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B,
9992 		    0x3fU, BPF_JGT, 0, 2U);
9993 		break;
9994 
9995 	case MH_FISU:
9996 		if ( (cstate->linktype != DLT_MTP2) &&
9997 		     (cstate->linktype != DLT_ERF) &&
9998 		     (cstate->linktype != DLT_MTP2_WITH_PHDR) )
9999 			bpf_error(cstate, "'hfisu' supported only on MTP2_HSL");
10000 		/* gen_ncmp(cstate, offrel, offset, size, mask, jtype, reverse, value) */
10001 		b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H,
10002 		    0xff80U, BPF_JEQ, 0, 0U);
10003 		break;
10004 
10005 	case MH_LSSU:
10006 		if ( (cstate->linktype != DLT_MTP2) &&
10007 		     (cstate->linktype != DLT_ERF) &&
10008 		     (cstate->linktype != DLT_MTP2_WITH_PHDR) )
10009 			bpf_error(cstate, "'hlssu' supported only on MTP2_HSL");
10010 		b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H,
10011 		    0xff80U, BPF_JGT, 1, 0x0100U);
10012 		b1 = gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H,
10013 		    0xff80U, BPF_JGT, 0, 0U);
10014 		gen_and(b1, b0);
10015 		break;
10016 
10017 	case MH_MSU:
10018 		if ( (cstate->linktype != DLT_MTP2) &&
10019 		     (cstate->linktype != DLT_ERF) &&
10020 		     (cstate->linktype != DLT_MTP2_WITH_PHDR) )
10021 			bpf_error(cstate, "'hmsu' supported only on MTP2_HSL");
10022 		b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H,
10023 		    0xff80U, BPF_JGT, 0, 0x0100U);
10024 		break;
10025 
10026 	default:
10027 		abort();
10028 	}
10029 	return b0;
10030 }
10031 
10032 /*
10033  * The jvalue_arg dance is to avoid annoying whining by compilers that
10034  * jvalue might be clobbered by longjmp - yeah, it might, but *WHO CARES*?
10035  * It's not *used* after setjmp returns.
10036  */
10037 struct block *
10038 gen_mtp3field_code(compiler_state_t *cstate, int mtp3field,
10039     bpf_u_int32 jvalue_arg, int jtype, int reverse)
10040 {
10041 	volatile bpf_u_int32 jvalue = jvalue_arg;
10042 	struct block *b0;
10043 	bpf_u_int32 val1 , val2 , val3;
10044 	u_int newoff_sio;
10045 	u_int newoff_opc;
10046 	u_int newoff_dpc;
10047 	u_int newoff_sls;
10048 
10049 	/*
10050 	 * Catch errors reported by us and routines below us, and return NULL
10051 	 * on an error.
10052 	 */
10053 	if (setjmp(cstate->top_ctx))
10054 		return (NULL);
10055 
10056 	newoff_sio = cstate->off_sio;
10057 	newoff_opc = cstate->off_opc;
10058 	newoff_dpc = cstate->off_dpc;
10059 	newoff_sls = cstate->off_sls;
10060 	switch (mtp3field) {
10061 
10062 	case MH_SIO:
10063 		newoff_sio += 3; /* offset for MTP2_HSL */
10064 		/* FALLTHROUGH */
10065 
10066 	case M_SIO:
10067 		if (cstate->off_sio == OFFSET_NOT_SET)
10068 			bpf_error(cstate, "'sio' supported only on SS7");
10069 		/* sio coded on 1 byte so max value 255 */
10070 		if(jvalue > 255)
10071 			bpf_error(cstate, "sio value %u too big; max value = 255",
10072 			    jvalue);
10073 		b0 = gen_ncmp(cstate, OR_PACKET, newoff_sio, BPF_B, 0xffffffffU,
10074 		    jtype, reverse, jvalue);
10075 		break;
10076 
10077 	case MH_OPC:
10078 		newoff_opc += 3;
10079 
10080 		/* FALLTHROUGH */
10081 	case M_OPC:
10082 		if (cstate->off_opc == OFFSET_NOT_SET)
10083 			bpf_error(cstate, "'opc' supported only on SS7");
10084 		/* opc coded on 14 bits so max value 16383 */
10085 		if (jvalue > 16383)
10086 			bpf_error(cstate, "opc value %u too big; max value = 16383",
10087 			    jvalue);
10088 		/* the following instructions are made to convert jvalue
10089 		 * to the form used to write opc in an ss7 message*/
10090 		val1 = jvalue & 0x00003c00;
10091 		val1 = val1 >>10;
10092 		val2 = jvalue & 0x000003fc;
10093 		val2 = val2 <<6;
10094 		val3 = jvalue & 0x00000003;
10095 		val3 = val3 <<22;
10096 		jvalue = val1 + val2 + val3;
10097 		b0 = gen_ncmp(cstate, OR_PACKET, newoff_opc, BPF_W, 0x00c0ff0fU,
10098 		    jtype, reverse, jvalue);
10099 		break;
10100 
10101 	case MH_DPC:
10102 		newoff_dpc += 3;
10103 		/* FALLTHROUGH */
10104 
10105 	case M_DPC:
10106 		if (cstate->off_dpc == OFFSET_NOT_SET)
10107 			bpf_error(cstate, "'dpc' supported only on SS7");
10108 		/* dpc coded on 14 bits so max value 16383 */
10109 		if (jvalue > 16383)
10110 			bpf_error(cstate, "dpc value %u too big; max value = 16383",
10111 			    jvalue);
10112 		/* the following instructions are made to convert jvalue
10113 		 * to the forme used to write dpc in an ss7 message*/
10114 		val1 = jvalue & 0x000000ff;
10115 		val1 = val1 << 24;
10116 		val2 = jvalue & 0x00003f00;
10117 		val2 = val2 << 8;
10118 		jvalue = val1 + val2;
10119 		b0 = gen_ncmp(cstate, OR_PACKET, newoff_dpc, BPF_W, 0xff3f0000U,
10120 		    jtype, reverse, jvalue);
10121 		break;
10122 
10123 	case MH_SLS:
10124 		newoff_sls += 3;
10125 		/* FALLTHROUGH */
10126 
10127 	case M_SLS:
10128 		if (cstate->off_sls == OFFSET_NOT_SET)
10129 			bpf_error(cstate, "'sls' supported only on SS7");
10130 		/* sls coded on 4 bits so max value 15 */
10131 		if (jvalue > 15)
10132 			 bpf_error(cstate, "sls value %u too big; max value = 15",
10133 			     jvalue);
10134 		/* the following instruction is made to convert jvalue
10135 		 * to the forme used to write sls in an ss7 message*/
10136 		jvalue = jvalue << 4;
10137 		b0 = gen_ncmp(cstate, OR_PACKET, newoff_sls, BPF_B, 0xf0U,
10138 		    jtype, reverse, jvalue);
10139 		break;
10140 
10141 	default:
10142 		abort();
10143 	}
10144 	return b0;
10145 }
10146 
10147 static struct block *
10148 gen_msg_abbrev(compiler_state_t *cstate, int type)
10149 {
10150 	struct block *b1;
10151 
10152 	/*
10153 	 * Q.2931 signalling protocol messages for handling virtual circuits
10154 	 * establishment and teardown
10155 	 */
10156 	switch (type) {
10157 
10158 	case A_SETUP:
10159 		b1 = gen_atmfield_code_internal(cstate, A_MSGTYPE, SETUP, BPF_JEQ, 0);
10160 		break;
10161 
10162 	case A_CALLPROCEED:
10163 		b1 = gen_atmfield_code_internal(cstate, A_MSGTYPE, CALL_PROCEED, BPF_JEQ, 0);
10164 		break;
10165 
10166 	case A_CONNECT:
10167 		b1 = gen_atmfield_code_internal(cstate, A_MSGTYPE, CONNECT, BPF_JEQ, 0);
10168 		break;
10169 
10170 	case A_CONNECTACK:
10171 		b1 = gen_atmfield_code_internal(cstate, A_MSGTYPE, CONNECT_ACK, BPF_JEQ, 0);
10172 		break;
10173 
10174 	case A_RELEASE:
10175 		b1 = gen_atmfield_code_internal(cstate, A_MSGTYPE, RELEASE, BPF_JEQ, 0);
10176 		break;
10177 
10178 	case A_RELEASE_DONE:
10179 		b1 = gen_atmfield_code_internal(cstate, A_MSGTYPE, RELEASE_DONE, BPF_JEQ, 0);
10180 		break;
10181 
10182 	default:
10183 		abort();
10184 	}
10185 	return b1;
10186 }
10187 
10188 struct block *
10189 gen_atmmulti_abbrev(compiler_state_t *cstate, int type)
10190 {
10191 	struct block *b0, *b1;
10192 
10193 	/*
10194 	 * Catch errors reported by us and routines below us, and return NULL
10195 	 * on an error.
10196 	 */
10197 	if (setjmp(cstate->top_ctx))
10198 		return (NULL);
10199 
10200 	switch (type) {
10201 
10202 	case A_OAM:
10203 		if (!cstate->is_atm)
10204 			bpf_error(cstate, "'oam' supported only on raw ATM");
10205 		/* OAM F4 type */
10206 		b0 = gen_atmfield_code_internal(cstate, A_VCI, 3, BPF_JEQ, 0);
10207 		b1 = gen_atmfield_code_internal(cstate, A_VCI, 4, BPF_JEQ, 0);
10208 		gen_or(b0, b1);
10209 		b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
10210 		gen_and(b0, b1);
10211 		break;
10212 
10213 	case A_OAMF4:
10214 		if (!cstate->is_atm)
10215 			bpf_error(cstate, "'oamf4' supported only on raw ATM");
10216 		/* OAM F4 type */
10217 		b0 = gen_atmfield_code_internal(cstate, A_VCI, 3, BPF_JEQ, 0);
10218 		b1 = gen_atmfield_code_internal(cstate, A_VCI, 4, BPF_JEQ, 0);
10219 		gen_or(b0, b1);
10220 		b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
10221 		gen_and(b0, b1);
10222 		break;
10223 
10224 	case A_CONNECTMSG:
10225 		/*
10226 		 * Get Q.2931 signalling messages for switched
10227 		 * virtual connection
10228 		 */
10229 		if (!cstate->is_atm)
10230 			bpf_error(cstate, "'connectmsg' supported only on raw ATM");
10231 		b0 = gen_msg_abbrev(cstate, A_SETUP);
10232 		b1 = gen_msg_abbrev(cstate, A_CALLPROCEED);
10233 		gen_or(b0, b1);
10234 		b0 = gen_msg_abbrev(cstate, A_CONNECT);
10235 		gen_or(b0, b1);
10236 		b0 = gen_msg_abbrev(cstate, A_CONNECTACK);
10237 		gen_or(b0, b1);
10238 		b0 = gen_msg_abbrev(cstate, A_RELEASE);
10239 		gen_or(b0, b1);
10240 		b0 = gen_msg_abbrev(cstate, A_RELEASE_DONE);
10241 		gen_or(b0, b1);
10242 		b0 = gen_atmtype_sc(cstate);
10243 		gen_and(b0, b1);
10244 		break;
10245 
10246 	case A_METACONNECT:
10247 		if (!cstate->is_atm)
10248 			bpf_error(cstate, "'metaconnect' supported only on raw ATM");
10249 		b0 = gen_msg_abbrev(cstate, A_SETUP);
10250 		b1 = gen_msg_abbrev(cstate, A_CALLPROCEED);
10251 		gen_or(b0, b1);
10252 		b0 = gen_msg_abbrev(cstate, A_CONNECT);
10253 		gen_or(b0, b1);
10254 		b0 = gen_msg_abbrev(cstate, A_RELEASE);
10255 		gen_or(b0, b1);
10256 		b0 = gen_msg_abbrev(cstate, A_RELEASE_DONE);
10257 		gen_or(b0, b1);
10258 		b0 = gen_atmtype_metac(cstate);
10259 		gen_and(b0, b1);
10260 		break;
10261 
10262 	default:
10263 		abort();
10264 	}
10265 	return b1;
10266 }
10267