xref: /netbsd-src/external/bsd/libevent/dist/test/regress_util.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /*	$NetBSD: regress_util.c,v 1.3 2017/01/31 23:17:40 christos Exp $	*/
2 /*
3  * Copyright (c) 2009-2012 Nick Mathewson and Niels Provos
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. The name of the author may not be used to endorse or promote products
14  *    derived from this software without specific prior written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 #include "../util-internal.h"
28 
29 #ifdef _WIN32
30 #include <winsock2.h>
31 #include <windows.h>
32 #include <ws2tcpip.h>
33 #endif
34 
35 #include "event2/event-config.h"
36 #include <sys/cdefs.h>
37 __RCSID("$NetBSD: regress_util.c,v 1.3 2017/01/31 23:17:40 christos Exp $");
38 
39 #include <sys/types.h>
40 
41 #ifndef _WIN32
42 #include <sys/socket.h>
43 #include <netinet/in.h>
44 #include <arpa/inet.h>
45 #include <unistd.h>
46 #endif
47 #ifdef EVENT__HAVE_NETINET_IN6_H
48 #include <netinet/in6.h>
49 #endif
50 #ifdef EVENT__HAVE_SYS_WAIT_H
51 #include <sys/wait.h>
52 #endif
53 #include <signal.h>
54 #include <stdio.h>
55 #include <stdlib.h>
56 #include <string.h>
57 #include <limits.h>
58 
59 #include "event2/event.h"
60 #include "event2/util.h"
61 #include "../ipv6-internal.h"
62 #include "../log-internal.h"
63 #include "../strlcpy-internal.h"
64 #include "../mm-internal.h"
65 #include "../time-internal.h"
66 
67 #include "regress.h"
68 
69 enum entry_status { NORMAL, CANONICAL, BAD };
70 
71 /* This is a big table of results we expect from generating and parsing */
72 static struct ipv4_entry {
73 	const char *addr;
74 	ev_uint32_t res;
75 	enum entry_status status;
76 } ipv4_entries[] = {
77 	{ "1.2.3.4", 0x01020304u, CANONICAL },
78 	{ "255.255.255.255", 0xffffffffu, CANONICAL },
79 	{ "256.0.0.0", 0, BAD },
80 	{ "ABC", 0, BAD },
81 	{ "1.2.3.4.5", 0, BAD },
82 	{ "176.192.208.244", 0xb0c0d0f4, CANONICAL },
83 	{ NULL, 0, BAD },
84 };
85 
86 static struct ipv6_entry {
87 	const char *addr;
88 	ev_uint32_t res[4];
89 	enum entry_status status;
90 } ipv6_entries[] = {
91 	{ "::", { 0, 0, 0, 0, }, CANONICAL },
92 	{ "0:0:0:0:0:0:0:0", { 0, 0, 0, 0, }, NORMAL },
93 	{ "::1", { 0, 0, 0, 1, }, CANONICAL },
94 	{ "::1.2.3.4", { 0, 0, 0, 0x01020304, }, CANONICAL },
95 	{ "ffff:1::", { 0xffff0001u, 0, 0, 0, }, CANONICAL },
96 	{ "ffff:0000::", { 0xffff0000u, 0, 0, 0, }, NORMAL },
97 	{ "ffff::1234", { 0xffff0000u, 0, 0, 0x1234, }, CANONICAL },
98 	{ "0102::1.2.3.4", {0x01020000u, 0, 0, 0x01020304u }, NORMAL },
99 	{ "::9:c0a8:1:1", { 0, 0, 0x0009c0a8u, 0x00010001u }, CANONICAL },
100 	{ "::ffff:1.2.3.4", { 0, 0, 0x000ffffu, 0x01020304u }, CANONICAL },
101 	{ "FFFF::", { 0xffff0000u, 0, 0, 0 }, NORMAL },
102 	{ "foobar.", { 0, 0, 0, 0 }, BAD },
103 	{ "foobar", { 0, 0, 0, 0 }, BAD },
104 	{ "fo:obar", { 0, 0, 0, 0 }, BAD },
105 	{ "ffff", { 0, 0, 0, 0 }, BAD },
106 	{ "fffff::", { 0, 0, 0, 0 }, BAD },
107 	{ "fffff::", { 0, 0, 0, 0 }, BAD },
108 	{ "::1.0.1.1000", { 0, 0, 0, 0 }, BAD },
109 	{ "1:2:33333:4::", { 0, 0, 0, 0 }, BAD },
110 	{ "1:2:3:4:5:6:7:8:9", { 0, 0, 0, 0 }, BAD },
111 	{ "1::2::3", { 0, 0, 0, 0 }, BAD },
112 	{ ":::1", { 0, 0, 0, 0 }, BAD },
113 	{ NULL, { 0, 0, 0, 0,  }, BAD },
114 };
115 
116 static void
117 regress_ipv4_parse(void *ptr)
118 {
119 	int i;
120 	for (i = 0; ipv4_entries[i].addr; ++i) {
121 		char written[128];
122 		struct ipv4_entry *ent = &ipv4_entries[i];
123 		struct in_addr in;
124 		int r;
125 		r = evutil_inet_pton(AF_INET, ent->addr, &in);
126 		if (r == 0) {
127 			if (ent->status != BAD) {
128 				TT_FAIL(("%s did not parse, but it's a good address!",
129 					ent->addr));
130 			}
131 			continue;
132 		}
133 		if (ent->status == BAD) {
134 			TT_FAIL(("%s parsed, but we expected an error", ent->addr));
135 			continue;
136 		}
137 		if (ntohl(in.s_addr) != ent->res) {
138 			TT_FAIL(("%s parsed to %lx, but we expected %lx", ent->addr,
139 				(unsigned long)ntohl(in.s_addr),
140 				(unsigned long)ent->res));
141 			continue;
142 		}
143 		if (ent->status == CANONICAL) {
144 			const char *w = evutil_inet_ntop(AF_INET, &in, written,
145 											 sizeof(written));
146 			if (!w) {
147 				TT_FAIL(("Tried to write out %s; got NULL.", ent->addr));
148 				continue;
149 			}
150 			if (strcmp(written, ent->addr)) {
151 				TT_FAIL(("Tried to write out %s; got %s",
152 					ent->addr, written));
153 				continue;
154 			}
155 		}
156 
157 	}
158 
159 }
160 
161 static void
162 regress_ipv6_parse(void *ptr)
163 {
164 #ifdef AF_INET6
165 	int i, j;
166 
167 	for (i = 0; ipv6_entries[i].addr; ++i) {
168 		char written[128];
169 		struct ipv6_entry *ent = &ipv6_entries[i];
170 		struct in6_addr in6;
171 		int r;
172 		r = evutil_inet_pton(AF_INET6, ent->addr, &in6);
173 		if (r == 0) {
174 			if (ent->status != BAD)
175 				TT_FAIL(("%s did not parse, but it's a good address!",
176 					ent->addr));
177 			continue;
178 		}
179 		if (ent->status == BAD) {
180 			TT_FAIL(("%s parsed, but we expected an error", ent->addr));
181 			continue;
182 		}
183 		for (j = 0; j < 4; ++j) {
184 			/* Can't use s6_addr32 here; some don't have it. */
185 			ev_uint32_t u =
186 			    ((ev_uint32_t)in6.s6_addr[j*4  ] << 24) |
187 			    ((ev_uint32_t)in6.s6_addr[j*4+1] << 16) |
188 			    ((ev_uint32_t)in6.s6_addr[j*4+2] << 8) |
189 			    ((ev_uint32_t)in6.s6_addr[j*4+3]);
190 			if (u != ent->res[j]) {
191 				TT_FAIL(("%s did not parse as expected.", ent->addr));
192 				continue;
193 			}
194 		}
195 		if (ent->status == CANONICAL) {
196 			const char *w = evutil_inet_ntop(AF_INET6, &in6, written,
197 											 sizeof(written));
198 			if (!w) {
199 				TT_FAIL(("Tried to write out %s; got NULL.", ent->addr));
200 				continue;
201 			}
202 			if (strcmp(written, ent->addr)) {
203 				TT_FAIL(("Tried to write out %s; got %s", ent->addr, written));
204 				continue;
205 			}
206 		}
207 
208 	}
209 #else
210 	TT_BLATHER(("Skipping IPv6 address parsing."));
211 #endif
212 }
213 
214 static struct sa_port_ent {
215 	const char *parse;
216 	int safamily;
217 	const char *addr;
218 	int port;
219 } sa_port_ents[] = {
220 	{ "[ffff::1]:1000", AF_INET6, "ffff::1", 1000 },
221 	{ "[ffff::1]", AF_INET6, "ffff::1", 0 },
222 	{ "[ffff::1", 0, NULL, 0 },
223 	{ "[ffff::1]:65599", 0, NULL, 0 },
224 	{ "[ffff::1]:0", 0, NULL, 0 },
225 	{ "[ffff::1]:-1", 0, NULL, 0 },
226 	{ "::1", AF_INET6, "::1", 0 },
227 	{ "1:2::1", AF_INET6, "1:2::1", 0 },
228 	{ "192.168.0.1:50", AF_INET, "192.168.0.1", 50 },
229 	{ "1.2.3.4", AF_INET, "1.2.3.4", 0 },
230 	{ NULL, 0, NULL, 0 },
231 };
232 
233 static void
234 regress_sockaddr_port_parse(void *ptr)
235 {
236 	struct sockaddr_storage ss;
237 	int i, r;
238 
239 	for (i = 0; sa_port_ents[i].parse; ++i) {
240 		struct sa_port_ent *ent = &sa_port_ents[i];
241 		int len = sizeof(ss);
242 		memset(&ss, 0, sizeof(ss));
243 		r = evutil_parse_sockaddr_port(ent->parse, (struct sockaddr*)&ss, &len);
244 		if (r < 0) {
245 			if (ent->safamily)
246 				TT_FAIL(("Couldn't parse %s!", ent->parse));
247 			continue;
248 		} else if (! ent->safamily) {
249 			TT_FAIL(("Shouldn't have been able to parse %s!", ent->parse));
250 			continue;
251 		}
252 		if (ent->safamily == AF_INET) {
253 			struct sockaddr_in sin;
254 			memset(&sin, 0, sizeof(sin));
255 #ifdef EVENT__HAVE_STRUCT_SOCKADDR_IN_SIN_LEN
256 			sin.sin_len = sizeof(sin);
257 #endif
258 			sin.sin_family = AF_INET;
259 			sin.sin_port = htons(ent->port);
260 			r = evutil_inet_pton(AF_INET, ent->addr, &sin.sin_addr);
261 			if (1 != r) {
262 				TT_FAIL(("Couldn't parse ipv4 target %s.", ent->addr));
263 			} else if (memcmp(&sin, &ss, sizeof(sin))) {
264 				TT_FAIL(("Parse for %s was not as expected.", ent->parse));
265 			} else if (len != sizeof(sin)) {
266 				TT_FAIL(("Length for %s not as expected.",ent->parse));
267 			}
268 		} else {
269 			struct sockaddr_in6 sin6;
270 			memset(&sin6, 0, sizeof(sin6));
271 #ifdef EVENT__HAVE_STRUCT_SOCKADDR_IN6_SIN6_LEN
272 			sin6.sin6_len = sizeof(sin6);
273 #endif
274 			sin6.sin6_family = AF_INET6;
275 			sin6.sin6_port = htons(ent->port);
276 			r = evutil_inet_pton(AF_INET6, ent->addr, &sin6.sin6_addr);
277 			if (1 != r) {
278 				TT_FAIL(("Couldn't parse ipv6 target %s.", ent->addr));
279 			} else if (memcmp(&sin6, &ss, sizeof(sin6))) {
280 				TT_FAIL(("Parse for %s was not as expected.", ent->parse));
281 			} else if (len != sizeof(sin6)) {
282 				TT_FAIL(("Length for %s not as expected.",ent->parse));
283 			}
284 		}
285 	}
286 }
287 
288 
289 static void
290 regress_sockaddr_port_format(void *ptr)
291 {
292 	struct sockaddr_storage ss;
293 	int len;
294 	const char *cp;
295 	char cbuf[128];
296 	int r;
297 
298 	len = sizeof(ss);
299 	r = evutil_parse_sockaddr_port("192.168.1.1:80",
300 	    (struct sockaddr*)&ss, &len);
301 	tt_int_op(r,==,0);
302 	cp = evutil_format_sockaddr_port_(
303 		(struct sockaddr*)&ss, cbuf, sizeof(cbuf));
304 	tt_ptr_op(cp,==,cbuf);
305 	tt_str_op(cp,==,"192.168.1.1:80");
306 
307 	len = sizeof(ss);
308 	r = evutil_parse_sockaddr_port("[ff00::8010]:999",
309 	    (struct sockaddr*)&ss, &len);
310 	tt_int_op(r,==,0);
311 	cp = evutil_format_sockaddr_port_(
312 		(struct sockaddr*)&ss, cbuf, sizeof(cbuf));
313 	tt_ptr_op(cp,==,cbuf);
314 	tt_str_op(cp,==,"[ff00::8010]:999");
315 
316 	ss.ss_family=99;
317 	cp = evutil_format_sockaddr_port_(
318 		(struct sockaddr*)&ss, cbuf, sizeof(cbuf));
319 	tt_ptr_op(cp,==,cbuf);
320 	tt_str_op(cp,==,"<addr with socktype 99>");
321 end:
322 	;
323 }
324 
325 static struct sa_pred_ent {
326 	const char *parse;
327 
328 	int is_loopback;
329 } sa_pred_entries[] = {
330 	{ "127.0.0.1",	 1 },
331 	{ "127.0.3.2",	 1 },
332 	{ "128.1.2.3",	 0 },
333 	{ "18.0.0.1",	 0 },
334 	{ "129.168.1.1", 0 },
335 
336 	{ "::1",	 1 },
337 	{ "::0",	 0 },
338 	{ "f::1",	 0 },
339 	{ "::501",	 0 },
340 	{ NULL,		 0 },
341 
342 };
343 
344 static void
345 test_evutil_sockaddr_predicates(void *ptr)
346 {
347 	struct sockaddr_storage ss;
348 	int r, i;
349 
350 	for (i=0; sa_pred_entries[i].parse; ++i) {
351 		struct sa_pred_ent *ent = &sa_pred_entries[i];
352 		int len = sizeof(ss);
353 
354 		r = evutil_parse_sockaddr_port(ent->parse, (struct sockaddr*)&ss, &len);
355 
356 		if (r<0) {
357 			TT_FAIL(("Couldn't parse %s!", ent->parse));
358 			continue;
359 		}
360 
361 		/* sockaddr_is_loopback */
362 		if (ent->is_loopback != evutil_sockaddr_is_loopback_((struct sockaddr*)&ss)) {
363 			TT_FAIL(("evutil_sockaddr_loopback(%s) not as expected",
364 				ent->parse));
365 		}
366 	}
367 }
368 
369 static void
370 test_evutil_strtoll(void *ptr)
371 {
372 	const char *s;
373 	char *endptr;
374 
375 	tt_want(evutil_strtoll("5000000000", NULL, 10) ==
376 		((ev_int64_t)5000000)*1000);
377 	tt_want(evutil_strtoll("-5000000000", NULL, 10) ==
378 		((ev_int64_t)5000000)*-1000);
379 	s = " 99999stuff";
380 	tt_want(evutil_strtoll(s, &endptr, 10) == (ev_int64_t)99999);
381 	tt_want(endptr == s+6);
382 	tt_want(evutil_strtoll("foo", NULL, 10) == 0);
383  }
384 
385 static void
386 test_evutil_snprintf(void *ptr)
387 {
388 	char buf[16];
389 	int r;
390 	ev_uint64_t u64 = ((ev_uint64_t)1000000000)*200;
391 	ev_int64_t i64 = -1 * (ev_int64_t) u64;
392 	size_t size = 8000;
393 	ev_ssize_t ssize = -9000;
394 
395 	r = evutil_snprintf(buf, sizeof(buf), "%d %d", 50, 100);
396 	tt_str_op(buf, ==, "50 100");
397 	tt_int_op(r, ==, 6);
398 
399 	r = evutil_snprintf(buf, sizeof(buf), "longish %d", 1234567890);
400 	tt_str_op(buf, ==, "longish 1234567");
401 	tt_int_op(r, ==, 18);
402 
403 	r = evutil_snprintf(buf, sizeof(buf), EV_U64_FMT, EV_U64_ARG(u64));
404 	tt_str_op(buf, ==, "200000000000");
405 	tt_int_op(r, ==, 12);
406 
407 	r = evutil_snprintf(buf, sizeof(buf), EV_I64_FMT, EV_I64_ARG(i64));
408 	tt_str_op(buf, ==, "-200000000000");
409 	tt_int_op(r, ==, 13);
410 
411 	r = evutil_snprintf(buf, sizeof(buf), EV_SIZE_FMT" "EV_SSIZE_FMT,
412 	    EV_SIZE_ARG(size), EV_SSIZE_ARG(ssize));
413 	tt_str_op(buf, ==, "8000 -9000");
414 	tt_int_op(r, ==, 10);
415 
416       end:
417 	;
418 }
419 
420 static void
421 test_evutil_casecmp(void *ptr)
422 {
423 	tt_int_op(evutil_ascii_strcasecmp("ABC", "ABC"), ==, 0);
424 	tt_int_op(evutil_ascii_strcasecmp("ABC", "abc"), ==, 0);
425 	tt_int_op(evutil_ascii_strcasecmp("ABC", "abcd"), <, 0);
426 	tt_int_op(evutil_ascii_strcasecmp("ABC", "abb"), >, 0);
427 	tt_int_op(evutil_ascii_strcasecmp("ABCd", "abc"), >, 0);
428 
429 	tt_int_op(evutil_ascii_strncasecmp("Libevent", "LibEvEnT", 100), ==, 0);
430 	tt_int_op(evutil_ascii_strncasecmp("Libevent", "LibEvEnT", 4), ==, 0);
431 	tt_int_op(evutil_ascii_strncasecmp("Libevent", "LibEXXXX", 4), ==, 0);
432 	tt_int_op(evutil_ascii_strncasecmp("Libevent", "LibE", 4), ==, 0);
433 	tt_int_op(evutil_ascii_strncasecmp("Libe", "LibEvEnT", 4), ==, 0);
434 	tt_int_op(evutil_ascii_strncasecmp("Lib", "LibEvEnT", 4), <, 0);
435 	tt_int_op(evutil_ascii_strncasecmp("abc", "def", 99), <, 0);
436 	tt_int_op(evutil_ascii_strncasecmp("Z", "qrst", 1), >, 0);
437 end:
438 	;
439 }
440 
441 static void
442 test_evutil_rtrim(void *ptr)
443 {
444 #define TEST_TRIM(s, result) \
445 	do {						\
446 	    if (cp) mm_free(cp);			\
447 	    cp = mm_strdup(s);				\
448 	    tt_assert(cp);				\
449 	    evutil_rtrim_lws_(cp);			\
450 	    tt_str_op(cp, ==, result);			\
451 	} while(0)
452 
453 	char *cp = NULL;
454 	(void) ptr;
455 
456 	TEST_TRIM("", "");
457 	TEST_TRIM("a", "a");
458 	TEST_TRIM("abcdef ghi", "abcdef ghi");
459 
460 	TEST_TRIM(" ", "");
461 	TEST_TRIM("  ", "");
462 	TEST_TRIM("a ", "a");
463 	TEST_TRIM("abcdef  gH       ", "abcdef  gH");
464 
465 	TEST_TRIM("\t\t", "");
466 	TEST_TRIM(" \t", "");
467 	TEST_TRIM("\t", "");
468 	TEST_TRIM("a \t", "a");
469 	TEST_TRIM("a\t ", "a");
470 	TEST_TRIM("a\t", "a");
471 	TEST_TRIM("abcdef  gH    \t  ", "abcdef  gH");
472 
473 end:
474 	if (cp)
475 		mm_free(cp);
476 }
477 
478 static int logsev = 0;
479 static char *logmsg = NULL;
480 
481 static void
482 logfn(int severity, const char *msg)
483 {
484 	logsev = severity;
485 	tt_want(msg);
486 	if (msg) {
487 		if (logmsg)
488 			free(logmsg);
489 		logmsg = strdup(msg);
490 	}
491 }
492 
493 static int fatal_want_severity = 0;
494 static const char *fatal_want_message = NULL;
495 static void
496 fatalfn(int exitcode)
497 {
498 	if (logsev != fatal_want_severity ||
499 	    !logmsg ||
500 	    strcmp(logmsg, fatal_want_message))
501 		exit(0);
502 	else
503 		exit(exitcode);
504 }
505 
506 #ifndef _WIN32
507 #define CAN_CHECK_ERR
508 static void
509 check_error_logging(void (*fn)(void), int wantexitcode,
510     int wantseverity, const char *wantmsg)
511 {
512 	pid_t pid;
513 	int status = 0, exitcode;
514 	fatal_want_severity = wantseverity;
515 	fatal_want_message = wantmsg;
516 	if ((pid = regress_fork()) == 0) {
517 		/* child process */
518 		fn();
519 		exit(0); /* should be unreachable. */
520 	} else {
521 		wait(&status);
522 		exitcode = WEXITSTATUS(status);
523 		tt_int_op(wantexitcode, ==, exitcode);
524 	}
525 end:
526 	;
527 }
528 
529 static void
530 errx_fn(void)
531 {
532 	event_errx(2, "Fatal error; too many kumquats (%d)", 5);
533 }
534 
535 static void
536 err_fn(void)
537 {
538 	errno = ENOENT;
539 	event_err(5,"Couldn't open %s", "/very/bad/file");
540 }
541 
542 static void
543 sock_err_fn(void)
544 {
545 	evutil_socket_t fd = socket(AF_INET, SOCK_STREAM, 0);
546 #ifdef _WIN32
547 	EVUTIL_SET_SOCKET_ERROR(WSAEWOULDBLOCK);
548 #else
549 	errno = EAGAIN;
550 #endif
551 	event_sock_err(20, fd, "Unhappy socket");
552 }
553 #endif
554 
555 static void
556 test_evutil_log(void *ptr)
557 {
558 	evutil_socket_t fd = -1;
559 	char buf[128];
560 
561 	event_set_log_callback(logfn);
562 	event_set_fatal_callback(fatalfn);
563 #define RESET() do {				\
564 		logsev = 0;	\
565 		if (logmsg) free(logmsg);	\
566 		logmsg = NULL;			\
567 	} while (/*CONSTCOND*/0)
568 #define LOGEQ(sev,msg) do {			\
569 		tt_int_op(logsev,==,sev);	\
570 		tt_assert(logmsg != NULL);	\
571 		tt_str_op(logmsg,==,msg);	\
572 	} while (/*CONSTCOND*/0)
573 
574 #ifdef CAN_CHECK_ERR
575 	/* We need to disable these tests for now.  Previously, the logging
576 	 * module didn't enforce the requirement that a fatal callback
577 	 * actually exit.  Now, it exits no matter what, so if we wan to
578 	 * reinstate these tests, we'll need to fork for each one. */
579 	check_error_logging(errx_fn, 2, EVENT_LOG_ERR,
580 	    "Fatal error; too many kumquats (5)");
581 	RESET();
582 #endif
583 
584 	event_warnx("Far too many %s (%d)", "wombats", 99);
585 	LOGEQ(EVENT_LOG_WARN, "Far too many wombats (99)");
586 	RESET();
587 
588 	event_msgx("Connecting lime to coconut");
589 	LOGEQ(EVENT_LOG_MSG, "Connecting lime to coconut");
590 	RESET();
591 
592 	event_debug(("A millisecond passed! We should log that!"));
593 #ifdef USE_DEBUG
594 	LOGEQ(EVENT_LOG_DEBUG, "A millisecond passed! We should log that!");
595 #else
596 	tt_int_op(logsev,==,0);
597 	tt_ptr_op(logmsg,==,NULL);
598 #endif
599 	RESET();
600 
601 	/* Try with an errno. */
602 	errno = ENOENT;
603 	event_warn("Couldn't open %s", "/bad/file");
604 	evutil_snprintf(buf, sizeof(buf),
605 	    "Couldn't open /bad/file: %s",strerror(ENOENT));
606 	LOGEQ(EVENT_LOG_WARN,buf);
607 	RESET();
608 
609 #ifdef CAN_CHECK_ERR
610 	evutil_snprintf(buf, sizeof(buf),
611 	    "Couldn't open /very/bad/file: %s",strerror(ENOENT));
612 	check_error_logging(err_fn, 5, EVENT_LOG_ERR, buf);
613 	RESET();
614 #endif
615 
616 	/* Try with a socket errno. */
617 	fd = socket(AF_INET, SOCK_STREAM, 0);
618 #ifdef _WIN32
619 	evutil_snprintf(buf, sizeof(buf),
620 	    "Unhappy socket: %s",
621 	    evutil_socket_error_to_string(WSAEWOULDBLOCK));
622 	EVUTIL_SET_SOCKET_ERROR(WSAEWOULDBLOCK);
623 #else
624 	evutil_snprintf(buf, sizeof(buf),
625 	    "Unhappy socket: %s", strerror(EAGAIN));
626 	errno = EAGAIN;
627 #endif
628 	event_sock_warn(fd, "Unhappy socket");
629 	LOGEQ(EVENT_LOG_WARN, buf);
630 	RESET();
631 
632 #ifdef CAN_CHECK_ERR
633 	check_error_logging(sock_err_fn, 20, EVENT_LOG_ERR, buf);
634 	RESET();
635 #endif
636 
637 #undef RESET
638 #undef LOGEQ
639 end:
640 	if (logmsg)
641 		free(logmsg);
642 	if (fd >= 0)
643 		evutil_closesocket(fd);
644 }
645 
646 static void
647 test_evutil_strlcpy(void *arg)
648 {
649 	char buf[8];
650 
651 	/* Successful case. */
652 	tt_int_op(5, ==, strlcpy(buf, "Hello", sizeof(buf)));
653 	tt_str_op(buf, ==, "Hello");
654 
655 	/* Overflow by a lot. */
656 	tt_int_op(13, ==, strlcpy(buf, "pentasyllabic", sizeof(buf)));
657 	tt_str_op(buf, ==, "pentasy");
658 
659 	/* Overflow by exactly one. */
660 	tt_int_op(8, ==, strlcpy(buf, "overlong", sizeof(buf)));
661 	tt_str_op(buf, ==, "overlon");
662 end:
663 	;
664 }
665 
666 struct example_struct {
667 	const char *a;
668 	const char *b;
669 	long c;
670 };
671 
672 static void
673 test_evutil_upcast(void *arg)
674 {
675 	struct example_struct es1;
676 	const char **cp;
677 	es1.a = "World";
678 	es1.b = "Hello";
679 	es1.c = -99;
680 
681 	tt_int_op(evutil_offsetof(struct example_struct, b), ==, sizeof(char*));
682 
683 	cp = &es1.b;
684 	tt_ptr_op(EVUTIL_UPCAST(cp, struct example_struct, b), ==, &es1);
685 
686 end:
687 	;
688 }
689 
690 static void
691 test_evutil_integers(void *arg)
692 {
693 	ev_int64_t i64;
694 	ev_uint64_t u64;
695 	ev_int32_t i32;
696 	ev_uint32_t u32;
697 	ev_int16_t i16;
698 	ev_uint16_t u16;
699 	ev_int8_t  i8;
700 	ev_uint8_t  u8;
701 
702 	void *ptr;
703 	ev_intptr_t iptr;
704 	ev_uintptr_t uptr;
705 
706 	ev_ssize_t ssize;
707 
708 	tt_int_op(sizeof(u64), ==, 8);
709 	tt_int_op(sizeof(i64), ==, 8);
710 	tt_int_op(sizeof(u32), ==, 4);
711 	tt_int_op(sizeof(i32), ==, 4);
712 	tt_int_op(sizeof(u16), ==, 2);
713 	tt_int_op(sizeof(i16), ==, 2);
714 	tt_int_op(sizeof(u8), ==,  1);
715 	tt_int_op(sizeof(i8), ==,  1);
716 
717 	tt_int_op(sizeof(ev_ssize_t), ==, sizeof(size_t));
718 	tt_int_op(sizeof(ev_intptr_t), >=, sizeof(void *));
719 	tt_int_op(sizeof(ev_uintptr_t), ==, sizeof(intptr_t));
720 
721 	u64 = 1000000000;
722 	u64 *= 1000000000;
723 	tt_assert(u64 / 1000000000 == 1000000000);
724 	i64 = -1000000000;
725 	i64 *= 1000000000;
726 	tt_assert(i64 / 1000000000 == -1000000000);
727 
728 	u64 = EV_UINT64_MAX;
729 	i64 = EV_INT64_MAX;
730 	tt_assert(u64 > 0);
731 	tt_assert(i64 > 0);
732 	u64++;
733 /*	i64++; */
734 	tt_assert(u64 == 0);
735 /*	tt_assert(i64 == EV_INT64_MIN); */
736 /*	tt_assert(i64 < 0); */
737 
738 	u32 = EV_UINT32_MAX;
739 	i32 = EV_INT32_MAX;
740 	tt_assert(u32 > 0);
741 	tt_assert(i32 > 0);
742 	u32++;
743 /*	i32++; */
744 	tt_assert(u32 == 0);
745 /*	tt_assert(i32 == EV_INT32_MIN); */
746 /*	tt_assert(i32 < 0); */
747 
748 	u16 = EV_UINT16_MAX;
749 	i16 = EV_INT16_MAX;
750 	tt_assert(u16 > 0);
751 	tt_assert(i16 > 0);
752 	u16++;
753 /*	i16++; */
754 	tt_assert(u16 == 0);
755 /*	tt_assert(i16 == EV_INT16_MIN); */
756 /* 	tt_assert(i16 < 0); */
757 
758 	u8 = EV_UINT8_MAX;
759 	i8 = EV_INT8_MAX;
760 	tt_assert(u8 > 0);
761 	tt_assert(i8 > 0);
762 	u8++;
763 /*	i8++;*/
764 	tt_assert(u8 == 0);
765 /*	tt_assert(i8 == EV_INT8_MIN); */
766 /*	tt_assert(i8 < 0); */
767 
768 /*
769 	ssize = EV_SSIZE_MAX;
770 	tt_assert(ssize > 0);
771 	ssize++;
772 	tt_assert(ssize < 0);
773 	tt_assert(ssize == EV_SSIZE_MIN);
774 */
775 
776 	ptr = &ssize;
777 	iptr = (ev_intptr_t)ptr;
778 	uptr = (ev_uintptr_t)ptr;
779 	ptr = (void *)iptr;
780 	tt_assert(ptr == &ssize);
781 	ptr = (void *)uptr;
782 	tt_assert(ptr == &ssize);
783 
784 	iptr = -1;
785 	tt_assert(iptr < 0);
786 end:
787 	;
788 }
789 
790 struct evutil_addrinfo *
791 ai_find_by_family(struct evutil_addrinfo *ai, int family)
792 {
793 	while (ai) {
794 		if (ai->ai_family == family)
795 			return ai;
796 		ai = ai->ai_next;
797 	}
798 	return NULL;
799 }
800 
801 struct evutil_addrinfo *
802 ai_find_by_protocol(struct evutil_addrinfo *ai, int protocol)
803 {
804 	while (ai) {
805 		if (ai->ai_protocol == protocol)
806 			return ai;
807 		ai = ai->ai_next;
808 	}
809 	return NULL;
810 }
811 
812 
813 int
814 test_ai_eq_(const struct evutil_addrinfo *ai, const char *sockaddr_port,
815     int socktype, int protocol, int line)
816 {
817 	struct sockaddr_storage ss;
818 	int slen = sizeof(ss);
819 	int gotport;
820 	char buf[128];
821 	memset(&ss, 0, sizeof(ss));
822 	if (socktype > 0)
823 		tt_int_op(ai->ai_socktype, ==, socktype);
824 	if (protocol > 0)
825 		tt_int_op(ai->ai_protocol, ==, protocol);
826 
827 	if (evutil_parse_sockaddr_port(
828 		    sockaddr_port, (struct sockaddr*)&ss, &slen)<0) {
829 		TT_FAIL(("Couldn't parse expected address %s on line %d",
830 			sockaddr_port, line));
831 		return -1;
832 	}
833 	if (ai->ai_family != ss.ss_family) {
834 		TT_FAIL(("Address family %d did not match %d on line %d",
835 			ai->ai_family, ss.ss_family, line));
836 		return -1;
837 	}
838 	if (ai->ai_addr->sa_family == AF_INET) {
839 		struct sockaddr_in *sin = (struct sockaddr_in*)ai->ai_addr;
840 		evutil_inet_ntop(AF_INET, &sin->sin_addr, buf, sizeof(buf));
841 		gotport = ntohs(sin->sin_port);
842 		if (ai->ai_addrlen != sizeof(struct sockaddr_in)) {
843 			TT_FAIL(("Addr size mismatch on line %d", line));
844 			return -1;
845 		}
846 	} else {
847 		struct sockaddr_in6 *sin6 = (struct sockaddr_in6*)ai->ai_addr;
848 		evutil_inet_ntop(AF_INET6, &sin6->sin6_addr, buf, sizeof(buf));
849 		gotport = ntohs(sin6->sin6_port);
850 		if (ai->ai_addrlen != sizeof(struct sockaddr_in6)) {
851 			TT_FAIL(("Addr size mismatch on line %d", line));
852 			return -1;
853 		}
854 	}
855 	if (evutil_sockaddr_cmp(ai->ai_addr, (struct sockaddr*)&ss, 1)) {
856 		TT_FAIL(("Wanted %s, got %s:%d on line %d", sockaddr_port,
857 			buf, gotport, line));
858 		return -1;
859 	} else {
860 		TT_BLATHER(("Wanted %s, got %s:%d on line %d", sockaddr_port,
861 			buf, gotport, line));
862 	}
863 	return 0;
864 end:
865 	TT_FAIL(("Test failed on line %d", line));
866 	return -1;
867 }
868 
869 static void
870 test_evutil_rand(void *arg)
871 {
872 	char buf1[32];
873 	char buf2[32];
874 	int counts[256];
875 	int i, j, k, n=0;
876 	struct evutil_weakrand_state seed = { 12346789U };
877 
878 	memset(buf2, 0, sizeof(buf2));
879 	memset(counts, 0, sizeof(counts));
880 
881 	for (k=0;k<32;++k) {
882 		/* Try a few different start and end points; try to catch
883 		 * the various misaligned cases of arc4random_buf */
884 		int startpoint = evutil_weakrand_(&seed) % 4;
885 		int endpoint = 32 - (evutil_weakrand_(&seed) % 4);
886 
887 		memset(buf2, 0, sizeof(buf2));
888 
889 		/* Do 6 runs over buf1, or-ing the result into buf2 each
890 		 * time, to make sure we're setting each byte that we mean
891 		 * to set. */
892 		for (i=0;i<8;++i) {
893 			memset(buf1, 0, sizeof(buf1));
894 			evutil_secure_rng_get_bytes(buf1 + startpoint,
895 			    endpoint-startpoint);
896 			n += endpoint - startpoint;
897 			for (j=0; j<32; ++j) {
898 				if (j >= startpoint && j < endpoint) {
899 					buf2[j] |= buf1[j];
900 					++counts[(unsigned char)buf1[j]];
901 				} else {
902 					tt_assert(buf1[j] == 0);
903 					tt_int_op(buf1[j], ==, 0);
904 
905 				}
906 			}
907 		}
908 
909 		/* This will give a false positive with P=(256**8)==(2**64)
910 		 * for each character. */
911 		for (j=startpoint;j<endpoint;++j) {
912 			tt_int_op(buf2[j], !=, 0);
913 		}
914 	}
915 
916 	evutil_weakrand_seed_(&seed, 0);
917 	for (i = 0; i < 10000; ++i) {
918 		ev_int32_t r = evutil_weakrand_range_(&seed, 9999);
919 		tt_int_op(0, <=, r);
920 		tt_int_op(r, <, 9999);
921 	}
922 
923 	/* for (i=0;i<256;++i) { printf("%3d %2d\n", i, counts[i]); } */
924 end:
925 	;
926 }
927 
928 static void
929 test_evutil_getaddrinfo(void *arg)
930 {
931 	struct evutil_addrinfo *ai = NULL, *a;
932 	struct evutil_addrinfo hints;
933 	int r;
934 
935 	/* Try using it as a pton. */
936 	memset(&hints, 0, sizeof(hints));
937 	hints.ai_family = PF_UNSPEC;
938 	hints.ai_socktype = SOCK_STREAM;
939 	r = evutil_getaddrinfo("1.2.3.4", "8080", &hints, &ai);
940 	tt_int_op(r, ==, 0);
941 	tt_assert(ai);
942 	tt_ptr_op(ai->ai_next, ==, NULL); /* no ambiguity */
943 	test_ai_eq(ai, "1.2.3.4:8080", SOCK_STREAM, IPPROTO_TCP);
944 	evutil_freeaddrinfo(ai);
945 	ai = NULL;
946 
947 	memset(&hints, 0, sizeof(hints));
948 	hints.ai_family = PF_UNSPEC;
949 	hints.ai_protocol = IPPROTO_UDP;
950 	r = evutil_getaddrinfo("1001:b0b::f00f", "4321", &hints, &ai);
951 	tt_int_op(r, ==, 0);
952 	tt_assert(ai);
953 	tt_ptr_op(ai->ai_next, ==, NULL); /* no ambiguity */
954 	test_ai_eq(ai, "[1001:b0b::f00f]:4321", SOCK_DGRAM, IPPROTO_UDP);
955 	evutil_freeaddrinfo(ai);
956 	ai = NULL;
957 
958 	/* Try out the behavior of nodename=NULL */
959 	memset(&hints, 0, sizeof(hints));
960 	hints.ai_family = PF_INET;
961 	hints.ai_protocol = IPPROTO_TCP;
962 	hints.ai_flags = EVUTIL_AI_PASSIVE; /* as if for bind */
963 	r = evutil_getaddrinfo(NULL, "9999", &hints, &ai);
964 	tt_int_op(r,==,0);
965 	tt_assert(ai);
966 	tt_ptr_op(ai->ai_next, ==, NULL);
967 	test_ai_eq(ai, "0.0.0.0:9999", SOCK_STREAM, IPPROTO_TCP);
968 	evutil_freeaddrinfo(ai);
969 	ai = NULL;
970 	hints.ai_flags = 0; /* as if for connect */
971 	r = evutil_getaddrinfo(NULL, "9998", &hints, &ai);
972 	tt_assert(ai);
973 	tt_int_op(r,==,0);
974 	test_ai_eq(ai, "127.0.0.1:9998", SOCK_STREAM, IPPROTO_TCP);
975 	tt_ptr_op(ai->ai_next, ==, NULL);
976 	evutil_freeaddrinfo(ai);
977 	ai = NULL;
978 
979 	hints.ai_flags = 0; /* as if for connect */
980 	hints.ai_family = PF_INET6;
981 	r = evutil_getaddrinfo(NULL, "9997", &hints, &ai);
982 	tt_assert(ai);
983 	tt_int_op(r,==,0);
984 	tt_ptr_op(ai->ai_next, ==, NULL);
985 	test_ai_eq(ai, "[::1]:9997", SOCK_STREAM, IPPROTO_TCP);
986 	evutil_freeaddrinfo(ai);
987 	ai = NULL;
988 
989 	hints.ai_flags = EVUTIL_AI_PASSIVE; /* as if for bind. */
990 	hints.ai_family = PF_INET6;
991 	r = evutil_getaddrinfo(NULL, "9996", &hints, &ai);
992 	tt_assert(ai);
993 	tt_int_op(r,==,0);
994 	tt_ptr_op(ai->ai_next, ==, NULL);
995 	test_ai_eq(ai, "[::]:9996", SOCK_STREAM, IPPROTO_TCP);
996 	evutil_freeaddrinfo(ai);
997 	ai = NULL;
998 
999 	/* Now try an unspec one. We should get a v6 and a v4. */
1000 	hints.ai_family = PF_UNSPEC;
1001 	r = evutil_getaddrinfo(NULL, "9996", &hints, &ai);
1002 	tt_assert(ai);
1003 	tt_int_op(r,==,0);
1004 	a = ai_find_by_family(ai, PF_INET6);
1005 	tt_assert(a);
1006 	test_ai_eq(a, "[::]:9996", SOCK_STREAM, IPPROTO_TCP);
1007 	a = ai_find_by_family(ai, PF_INET);
1008 	tt_assert(a);
1009 	test_ai_eq(a, "0.0.0.0:9996", SOCK_STREAM, IPPROTO_TCP);
1010 	evutil_freeaddrinfo(ai);
1011 	ai = NULL;
1012 
1013 	/* Try out AI_NUMERICHOST: successful case.  Also try
1014 	 * multiprotocol. */
1015 	memset(&hints, 0, sizeof(hints));
1016 	hints.ai_family = PF_UNSPEC;
1017 	hints.ai_flags = EVUTIL_AI_NUMERICHOST;
1018 	r = evutil_getaddrinfo("1.2.3.4", NULL, &hints, &ai);
1019 	tt_int_op(r, ==, 0);
1020 	a = ai_find_by_protocol(ai, IPPROTO_TCP);
1021 	tt_assert(a);
1022 	test_ai_eq(a, "1.2.3.4", SOCK_STREAM, IPPROTO_TCP);
1023 	a = ai_find_by_protocol(ai, IPPROTO_UDP);
1024 	tt_assert(a);
1025 	test_ai_eq(a, "1.2.3.4", SOCK_DGRAM, IPPROTO_UDP);
1026 	evutil_freeaddrinfo(ai);
1027 	ai = NULL;
1028 
1029 	/* Try the failing case of AI_NUMERICHOST */
1030 	memset(&hints, 0, sizeof(hints));
1031 	hints.ai_family = PF_UNSPEC;
1032 	hints.ai_flags = EVUTIL_AI_NUMERICHOST;
1033 	r = evutil_getaddrinfo("www.google.com", "80", &hints, &ai);
1034 	tt_int_op(r, ==, EVUTIL_EAI_NONAME);
1035 	tt_ptr_op(ai, ==, NULL);
1036 
1037 	/* Try symbolic service names wit AI_NUMERICSERV */
1038 	memset(&hints, 0, sizeof(hints));
1039 	hints.ai_family = PF_UNSPEC;
1040 	hints.ai_socktype = SOCK_STREAM;
1041 	hints.ai_flags = EVUTIL_AI_NUMERICSERV;
1042 	r = evutil_getaddrinfo("1.2.3.4", "http", &hints, &ai);
1043 	tt_int_op(r,==,EVUTIL_EAI_NONAME);
1044 
1045 	/* Try symbolic service names */
1046 	memset(&hints, 0, sizeof(hints));
1047 	hints.ai_family = PF_UNSPEC;
1048 	hints.ai_socktype = SOCK_STREAM;
1049 	r = evutil_getaddrinfo("1.2.3.4", "http", &hints, &ai);
1050 	if (r!=0) {
1051 		TT_DECLARE("SKIP", ("Symbolic service names seem broken."));
1052 	} else {
1053 		tt_assert(ai);
1054 		test_ai_eq(ai, "1.2.3.4:80", SOCK_STREAM, IPPROTO_TCP);
1055 		evutil_freeaddrinfo(ai);
1056 		ai = NULL;
1057 	}
1058 
1059 end:
1060 	if (ai)
1061 		evutil_freeaddrinfo(ai);
1062 }
1063 
1064 static void
1065 test_evutil_getaddrinfo_live(void *arg)
1066 {
1067 	struct evutil_addrinfo *ai = NULL;
1068 	struct evutil_addrinfo hints;
1069 
1070 	struct sockaddr_in6 *sin6;
1071 	struct sockaddr_in *sin;
1072 	char buf[128];
1073 	const char *cp;
1074 	int r;
1075 
1076 	/* Now do some actual lookups. */
1077 	memset(&hints, 0, sizeof(hints));
1078 	hints.ai_family = PF_INET;
1079 	hints.ai_protocol = IPPROTO_TCP;
1080 	hints.ai_socktype = SOCK_STREAM;
1081 	r = evutil_getaddrinfo("www.google.com", "80", &hints, &ai);
1082 	if (r != 0) {
1083 		TT_DECLARE("SKIP", ("Couldn't resolve www.google.com"));
1084 	} else {
1085 		tt_assert(ai);
1086 		tt_int_op(ai->ai_family, ==, PF_INET);
1087 		tt_int_op(ai->ai_protocol, ==, IPPROTO_TCP);
1088 		tt_int_op(ai->ai_socktype, ==, SOCK_STREAM);
1089 		tt_int_op(ai->ai_addrlen, ==, sizeof(struct sockaddr_in));
1090 		sin = (struct sockaddr_in*)ai->ai_addr;
1091 		tt_int_op(sin->sin_family, ==, AF_INET);
1092 		tt_int_op(sin->sin_port, ==, htons(80));
1093 		tt_int_op(sin->sin_addr.s_addr, !=, 0xffffffff);
1094 
1095 		cp = evutil_inet_ntop(AF_INET, &sin->sin_addr, buf, sizeof(buf));
1096 		TT_BLATHER(("www.google.com resolved to %s",
1097 			cp?cp:"<unwriteable>"));
1098 		evutil_freeaddrinfo(ai);
1099 		ai = NULL;
1100 	}
1101 
1102 	hints.ai_family = PF_INET6;
1103 	r = evutil_getaddrinfo("ipv6.google.com", "80", &hints, &ai);
1104 	if (r != 0) {
1105 		TT_BLATHER(("Couldn't do an ipv6 lookup for ipv6.google.com"));
1106 	} else {
1107 		tt_assert(ai);
1108 		tt_int_op(ai->ai_family, ==, PF_INET6);
1109 		tt_int_op(ai->ai_addrlen, ==, sizeof(struct sockaddr_in6));
1110 		sin6 = (struct sockaddr_in6*)ai->ai_addr;
1111 		tt_int_op(sin6->sin6_port, ==, htons(80));
1112 
1113 		cp = evutil_inet_ntop(AF_INET6, &sin6->sin6_addr, buf,
1114 		    sizeof(buf));
1115 		TT_BLATHER(("ipv6.google.com resolved to %s",
1116 			cp?cp:"<unwriteable>"));
1117 	}
1118 
1119 end:
1120 	if (ai)
1121 		evutil_freeaddrinfo(ai);
1122 }
1123 
1124 #ifdef _WIN32
1125 static void
1126 test_evutil_loadsyslib(void *arg)
1127 {
1128 	HMODULE h=NULL;
1129 
1130 	h = evutil_load_windows_system_library_(TEXT("kernel32.dll"));
1131 	tt_assert(h);
1132 
1133 end:
1134 	if (h)
1135 		CloseHandle(h);
1136 
1137 }
1138 #endif
1139 
1140 /** Test mm_malloc(). */
1141 static void
1142 test_event_malloc(void *arg)
1143 {
1144 	void *p = NULL;
1145 	(void)arg;
1146 
1147 	/* mm_malloc(0) should simply return NULL. */
1148 #ifndef EVENT__DISABLE_MM_REPLACEMENT
1149 	errno = 0;
1150 	p = mm_malloc(0);
1151 	tt_assert(p == NULL);
1152 	tt_int_op(errno, ==, 0);
1153 #endif
1154 
1155 	/* Trivial case. */
1156 	errno = 0;
1157 	p = mm_malloc(8);
1158 	tt_assert(p != NULL);
1159 	tt_int_op(errno, ==, 0);
1160 	mm_free(p);
1161 
1162  end:
1163 	errno = 0;
1164 	return;
1165 }
1166 
1167 static void
1168 test_event_calloc(void *arg)
1169 {
1170 	void *p = NULL;
1171 	(void)arg;
1172 
1173 #ifndef EVENT__DISABLE_MM_REPLACEMENT
1174 	/* mm_calloc() should simply return NULL
1175 	 * if either argument is zero. */
1176 	errno = 0;
1177 	p = mm_calloc(0, 0);
1178 	tt_assert(p == NULL);
1179 	tt_int_op(errno, ==, 0);
1180 	errno = 0;
1181 	p = mm_calloc(0, 1);
1182 	tt_assert(p == NULL);
1183 	tt_int_op(errno, ==, 0);
1184 	errno = 0;
1185 	p = mm_calloc(1, 0);
1186 	tt_assert(p == NULL);
1187 	tt_int_op(errno, ==, 0);
1188 #endif
1189 
1190 	/* Trivial case. */
1191 	errno = 0;
1192 	p = mm_calloc(8, 8);
1193 	tt_assert(p != NULL);
1194 	tt_int_op(errno, ==, 0);
1195 	mm_free(p);
1196 	p = NULL;
1197 
1198 	/* mm_calloc() should set errno = ENOMEM and return NULL
1199 	 * in case of potential overflow. */
1200 	errno = 0;
1201 	p = mm_calloc(EV_SIZE_MAX/2, EV_SIZE_MAX/2 + 8);
1202 	tt_assert(p == NULL);
1203 	tt_int_op(errno, ==, ENOMEM);
1204 
1205  end:
1206 	errno = 0;
1207 	if (p)
1208 		mm_free(p);
1209 
1210 	return;
1211 }
1212 
1213 static void
1214 test_event_strdup(void *arg)
1215 {
1216 	void *p = NULL;
1217 	(void)arg;
1218 
1219 #ifndef EVENT__DISABLE_MM_REPLACEMENT
1220 	/* mm_strdup(NULL) should set errno = EINVAL and return NULL. */
1221 	errno = 0;
1222 	p = mm_strdup(NULL);
1223 	tt_assert(p == NULL);
1224 	tt_int_op(errno, ==, EINVAL);
1225 #endif
1226 
1227 	/* Trivial cases. */
1228 
1229 	errno = 0;
1230 	p = mm_strdup("");
1231 	tt_assert(p != NULL);
1232 	tt_int_op(errno, ==, 0);
1233 	tt_str_op(p, ==, "");
1234 	mm_free(p);
1235 
1236 	errno = 0;
1237 	p = mm_strdup("foo");
1238 	tt_assert(p != NULL);
1239 	tt_int_op(errno, ==, 0);
1240 	tt_str_op(p, ==, "foo");
1241 	mm_free(p);
1242 
1243 	/* XXX
1244 	 * mm_strdup(str) where str is a string of length EV_SIZE_MAX
1245 	 * should set errno = ENOMEM and return NULL. */
1246 
1247  end:
1248 	errno = 0;
1249 	return;
1250 }
1251 
1252 static void
1253 test_evutil_usleep(void *arg)
1254 {
1255 	struct timeval tv1, tv2, tv3, diff1, diff2;
1256 	const struct timeval quarter_sec = {0, 250*1000};
1257 	const struct timeval tenth_sec = {0, 100*1000};
1258 	long usec1, usec2;
1259 
1260 	evutil_gettimeofday(&tv1, NULL);
1261 	evutil_usleep_(&quarter_sec);
1262 	evutil_gettimeofday(&tv2, NULL);
1263 	evutil_usleep_(&tenth_sec);
1264 	evutil_gettimeofday(&tv3, NULL);
1265 
1266 	evutil_timersub(&tv2, &tv1, &diff1);
1267 	evutil_timersub(&tv3, &tv2, &diff2);
1268 	usec1 = diff1.tv_sec * 1000000 + diff1.tv_usec;
1269 	usec2 = diff2.tv_sec * 1000000 + diff2.tv_usec;
1270 
1271 	tt_int_op(usec1, >, 200000);
1272 	tt_int_op(usec1, <, 300000);
1273 	tt_int_op(usec2, >,  80000);
1274 	tt_int_op(usec2, <, 120000);
1275 
1276 end:
1277 	;
1278 }
1279 
1280 static void
1281 test_evutil_monotonic_res(void *data_)
1282 {
1283 	/* Basic santity-test for monotonic timers.  What we'd really like
1284 	 * to do is make sure that they can't go backwards even when the
1285 	 * system clock goes backwards. But we haven't got a good way to
1286 	 * move the system clock backwards.
1287 	 */
1288 	struct basic_test_data *data = data_;
1289 	struct evutil_monotonic_timer timer;
1290 	const int precise = strstr(data->setup_data, "precise") != NULL;
1291 	const int fallback = strstr(data->setup_data, "fallback") != NULL;
1292 	struct timeval tv[10], delay;
1293 	int total_diff = 0;
1294 
1295 	int flags = 0, wantres, acceptdiff, i;
1296 	if (precise)
1297 		flags |= EV_MONOT_PRECISE;
1298 	if (fallback)
1299 		flags |= EV_MONOT_FALLBACK;
1300 	if (precise || fallback) {
1301 #ifdef _WIN32
1302 		wantres = 10*1000;
1303 		acceptdiff = 1000;
1304 #else
1305 		wantres = 1000;
1306 		acceptdiff = 300;
1307 #endif
1308 	} else {
1309 		wantres = 40*1000;
1310 		acceptdiff = 20*1000;
1311 	}
1312 
1313 	TT_BLATHER(("Precise = %d", precise));
1314 	TT_BLATHER(("Fallback = %d", fallback));
1315 
1316 	/* First, make sure we match up with usleep. */
1317 
1318 	delay.tv_sec = 0;
1319 	delay.tv_usec = wantres;
1320 
1321 	tt_int_op(evutil_configure_monotonic_time_(&timer, flags), ==, 0);
1322 
1323 	for (i = 0; i < 10; ++i) {
1324 		evutil_gettime_monotonic_(&timer, &tv[i]);
1325 		evutil_usleep_(&delay);
1326 	}
1327 
1328 	for (i = 0; i < 9; ++i) {
1329 		struct timeval diff;
1330 		tt_assert(evutil_timercmp(&tv[i], &tv[i+1], <));
1331 		evutil_timersub(&tv[i+1], &tv[i], &diff);
1332 		tt_int_op(diff.tv_sec, ==, 0);
1333 		total_diff += diff.tv_usec;
1334 		TT_BLATHER(("Difference = %d", (int)diff.tv_usec));
1335 	}
1336 	tt_int_op(abs(total_diff/9 - wantres), <, acceptdiff);
1337 
1338 end:
1339 	;
1340 }
1341 
1342 static void
1343 test_evutil_monotonic_prc(void *data_)
1344 {
1345 	struct basic_test_data *data = data_;
1346 	struct evutil_monotonic_timer timer;
1347 	const int precise = strstr(data->setup_data, "precise") != NULL;
1348 	const int fallback = strstr(data->setup_data, "fallback") != NULL;
1349 	struct timeval tv[10];
1350 	int total_diff = 0;
1351 	int i, maxstep = 25*1000,flags=0;
1352 	if (precise)
1353 		maxstep = 500;
1354 	if (precise)
1355 		flags |= EV_MONOT_PRECISE;
1356 	if (fallback)
1357 		flags |= EV_MONOT_FALLBACK;
1358 	tt_int_op(evutil_configure_monotonic_time_(&timer, flags), ==, 0);
1359 
1360 	/* find out what precision we actually see. */
1361 
1362 	evutil_gettime_monotonic_(&timer, &tv[0]);
1363 	for (i = 1; i < 10; ++i) {
1364 		do {
1365 			evutil_gettime_monotonic_(&timer, &tv[i]);
1366 		} while (evutil_timercmp(&tv[i-1], &tv[i], ==));
1367 	}
1368 
1369 	total_diff = 0;
1370 	for (i = 0; i < 9; ++i) {
1371 		struct timeval diff;
1372 		tt_assert(evutil_timercmp(&tv[i], &tv[i+1], <));
1373 		evutil_timersub(&tv[i+1], &tv[i], &diff);
1374 		tt_int_op(diff.tv_sec, ==, 0);
1375 		total_diff += diff.tv_usec;
1376 		TT_BLATHER(("Step difference = %d", (int)diff.tv_usec));
1377 	}
1378 	TT_BLATHER(("Average step difference = %d", total_diff / 9));
1379 	tt_int_op(total_diff/9, <, maxstep);
1380 
1381 end:
1382 	;
1383 }
1384 
1385 static void
1386 create_tm_from_unix_epoch(struct tm *cur_p, const time_t t)
1387 {
1388 #ifdef _WIN32
1389 	struct tm *tmp = gmtime(&t);
1390 	if (!tmp) {
1391 		fprintf(stderr, "gmtime: %s (%i)", strerror(errno), (int)t);
1392 		exit(1);
1393 	}
1394 	*cur_p = *tmp;
1395 #else
1396 	gmtime_r(&t, cur_p);
1397 #endif
1398 }
1399 
1400 static struct date_rfc1123_case {
1401 	time_t t;
1402 	char date[30];
1403 } date_rfc1123_cases[] = {
1404 	{           0, "Thu, 01 Jan 1970 00:00:00 GMT"} /* UNIX time of zero */,
1405 	{   946684799, "Fri, 31 Dec 1999 23:59:59 GMT"} /* the last moment of the 20th century */,
1406 	{   946684800, "Sat, 01 Jan 2000 00:00:00 GMT"} /* the first moment of the 21st century */,
1407 	{   981072000, "Fri, 02 Feb 2001 00:00:00 GMT"},
1408 	{  1015113600, "Sun, 03 Mar 2002 00:00:00 GMT"},
1409 	{  1049414400, "Fri, 04 Apr 2003 00:00:00 GMT"},
1410 	{  1083715200, "Wed, 05 May 2004 00:00:00 GMT"},
1411 	{  1118016000, "Mon, 06 Jun 2005 00:00:00 GMT"},
1412 	{  1152230400, "Fri, 07 Jul 2006 00:00:00 GMT"},
1413 	{  1186531200, "Wed, 08 Aug 2007 00:00:00 GMT"},
1414 	{  1220918400, "Tue, 09 Sep 2008 00:00:00 GMT"},
1415 	{  1255132800, "Sat, 10 Oct 2009 00:00:00 GMT"},
1416 	{  1289433600, "Thu, 11 Nov 2010 00:00:00 GMT"},
1417 	{  1323648000, "Mon, 12 Dec 2011 00:00:00 GMT"},
1418 #ifndef _WIN32
1419 	/** In win32 case we have max   "23:59:59 January 18, 2038, UTC" for time32 */
1420 	{  4294967296, "Sun, 07 Feb 2106 06:28:16 GMT"} /* 2^32 */,
1421 	/** In win32 case we have max "23:59:59, December 31, 3000, UTC" for time64 */
1422 	{253402300799, "Fri, 31 Dec 9999 23:59:59 GMT"} /* long long future no one can imagine */,
1423 	{  1456704000, "Mon, 29 Feb 2016 00:00:00 GMT"} /* leap year */,
1424 #endif
1425 	{  1435708800, "Wed, 01 Jul 2015 00:00:00 GMT"} /* leap second */,
1426 	{  1481866376, "Fri, 16 Dec 2016 05:32:56 GMT"} /* the time this test case is generated */,
1427 	{0, ""} /* end of test cases. */
1428 };
1429 
1430 static void
1431 test_evutil_date_rfc1123(void *arg)
1432 {
1433 	struct tm query;
1434 	char result[30];
1435 	size_t i = 0;
1436 
1437 	/* Checks if too small buffers are safely accepted. */
1438 	{
1439 		create_tm_from_unix_epoch(&query, 0);
1440 		evutil_date_rfc1123(result, 8, &query);
1441 		tt_str_op(result, ==, "Thu, 01");
1442 	}
1443 
1444 	/* Checks for testcases. */
1445 	for (i = 0; ; i++) {
1446 		struct date_rfc1123_case c = date_rfc1123_cases[i];
1447 
1448 		if (strlen(c.date) == 0)
1449 			break;
1450 
1451 		create_tm_from_unix_epoch(&query, c.t);
1452 		evutil_date_rfc1123(result, sizeof(result), &query);
1453 		tt_str_op(result, ==, c.date);
1454 	}
1455 
1456 end:
1457 	;
1458 }
1459 
1460 struct testcase_t util_testcases[] = {
1461 	{ "ipv4_parse", regress_ipv4_parse, 0, NULL, NULL },
1462 	{ "ipv6_parse", regress_ipv6_parse, 0, NULL, NULL },
1463 	{ "sockaddr_port_parse", regress_sockaddr_port_parse, 0, NULL, NULL },
1464 	{ "sockaddr_port_format", regress_sockaddr_port_format, 0, NULL, NULL },
1465 	{ "sockaddr_predicates", test_evutil_sockaddr_predicates, 0,NULL,NULL },
1466 	{ "evutil_snprintf", test_evutil_snprintf, 0, NULL, NULL },
1467 	{ "evutil_strtoll", test_evutil_strtoll, 0, NULL, NULL },
1468 	{ "evutil_casecmp", test_evutil_casecmp, 0, NULL, NULL },
1469 	{ "evutil_rtrim", test_evutil_rtrim, 0, NULL, NULL },
1470 	{ "strlcpy", test_evutil_strlcpy, 0, NULL, NULL },
1471 	{ "log", test_evutil_log, TT_FORK, NULL, NULL },
1472 	{ "upcast", test_evutil_upcast, 0, NULL, NULL },
1473 	{ "integers", test_evutil_integers, 0, NULL, NULL },
1474 	{ "rand", test_evutil_rand, TT_FORK, NULL, NULL },
1475 	{ "getaddrinfo", test_evutil_getaddrinfo, TT_FORK, NULL, NULL },
1476 	{ "getaddrinfo_live", test_evutil_getaddrinfo_live, TT_FORK|TT_OFF_BY_DEFAULT, NULL, NULL },
1477 #ifdef _WIN32
1478 	{ "loadsyslib", test_evutil_loadsyslib, TT_FORK, NULL, NULL },
1479 #endif
1480 	{ "mm_malloc", test_event_malloc, 0, NULL, NULL },
1481 	{ "mm_calloc", test_event_calloc, 0, NULL, NULL },
1482 	{ "mm_strdup", test_event_strdup, 0, NULL, NULL },
1483 	{ "usleep", test_evutil_usleep, 0, NULL, NULL },
1484 	{ "monotonic_res", test_evutil_monotonic_res, 0, &basic_setup, __UNCONST("") },
1485 	{ "monotonic_res_precise", test_evutil_monotonic_res, TT_OFF_BY_DEFAULT, &basic_setup, __UNCONST("precise") },
1486 	{ "monotonic_res_fallback", test_evutil_monotonic_res, TT_OFF_BY_DEFAULT, &basic_setup, __UNCONST("fallback") },
1487 	{ "monotonic_prc", test_evutil_monotonic_prc, 0, &basic_setup, __UNCONST("") },
1488 	{ "monotonic_prc_precise", test_evutil_monotonic_prc, 0, &basic_setup, __UNCONST("precise") },
1489 	{ "monotonic_prc_fallback", test_evutil_monotonic_prc, 0, &basic_setup, __UNCONST("fallback") },
1490 	{ "date_rfc1123", test_evutil_date_rfc1123, 0, NULL, NULL },
1491 	END_OF_TESTCASES,
1492 };
1493 
1494