xref: /netbsd-src/external/bsd/libevent/dist/test/regress.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /*	$NetBSD: regress.c,v 1.9 2017/01/31 23:17:40 christos Exp $	*/
2 /*
3  * Copyright (c) 2003-2007 Niels Provos <provos@citi.umich.edu>
4  * Copyright (c) 2007-2012 Niels Provos and Nick Mathewson
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 #include "util-internal.h"
29 
30 #ifdef _WIN32
31 #include <winsock2.h>
32 #include <windows.h>
33 #endif
34 
35 #ifdef EVENT__HAVE_PTHREADS
36 #include <pthread.h>
37 #endif
38 
39 #include "event2/event-config.h"
40 #include <sys/cdefs.h>
41 __RCSID("$NetBSD: regress.c,v 1.9 2017/01/31 23:17:40 christos Exp $");
42 
43 #include <sys/types.h>
44 #include <sys/stat.h>
45 #ifdef EVENT__HAVE_SYS_TIME_H
46 #include <sys/time.h>
47 #endif
48 #include <sys/queue.h>
49 #ifndef _WIN32
50 #include <sys/socket.h>
51 #include <sys/wait.h>
52 #include <signal.h>
53 #include <unistd.h>
54 #include <netdb.h>
55 #endif
56 #include <fcntl.h>
57 #include <signal.h>
58 #include <stdlib.h>
59 #include <stdio.h>
60 #include <string.h>
61 #include <errno.h>
62 #include <assert.h>
63 #include <ctype.h>
64 
65 #include "event2/event.h"
66 #include "event2/event_struct.h"
67 #include "event2/event_compat.h"
68 #include "event2/tag.h"
69 #include "event2/buffer.h"
70 #include "event2/buffer_compat.h"
71 #include "event2/util.h"
72 #include "event-internal.h"
73 #include "evthread-internal.h"
74 #include "log-internal.h"
75 #include "time-internal.h"
76 
77 #include "regress.h"
78 
79 #ifndef _WIN32
80 #include "regress.gen.h"
81 #endif
82 
83 evutil_socket_t pair[2];
84 int test_ok;
85 int called;
86 struct event_base *global_base;
87 
88 static char wbuf[4096];
89 static char rbuf[4096];
90 static int woff;
91 static int roff;
92 static int usepersist;
93 static struct timeval tset;
94 static struct timeval tcalled;
95 
96 
97 #define TEST1	"this is a test"
98 
99 #ifdef _WIN32
100 #define write(fd,buf,len) send((fd),(buf),(int)(len),0)
101 #define read(fd,buf,len) recv((fd),(buf),(int)(len),0)
102 #endif
103 
104 struct basic_cb_args
105 {
106 	struct event_base *eb;
107 	struct event *ev;
108 	unsigned int callcount;
109 };
110 
111 static void
112 simple_read_cb(evutil_socket_t fd, short event, void *arg)
113 {
114 	char buf[256];
115 	int len;
116 
117 	len = read(fd, buf, sizeof(buf));
118 
119 	if (len) {
120 		if (!called) {
121 			if (event_add(arg, NULL) == -1)
122 				exit(1);
123 		}
124 	} else if (called == 1)
125 		test_ok = 1;
126 
127 	called++;
128 }
129 
130 static void
131 basic_read_cb(evutil_socket_t fd, short event, void *data)
132 {
133 	char buf[256];
134 	int len;
135 	struct basic_cb_args *arg = data;
136 
137 	len = read(fd, buf, sizeof(buf));
138 
139 	if (len < 0) {
140 		tt_fail_perror("read (callback)");
141 	} else {
142 		switch (arg->callcount++) {
143 		case 0:	 /* first call: expect to read data; cycle */
144 			if (len > 0)
145 				return;
146 
147 			tt_fail_msg("EOF before data read");
148 			break;
149 
150 		case 1:	 /* second call: expect EOF; stop */
151 			if (len > 0)
152 				tt_fail_msg("not all data read on first cycle");
153 			break;
154 
155 		default:  /* third call: should not happen */
156 			tt_fail_msg("too many cycles");
157 		}
158 	}
159 
160 	event_del(arg->ev);
161 	event_base_loopexit(arg->eb, NULL);
162 }
163 
164 static void
165 dummy_read_cb(evutil_socket_t fd, short event, void *arg)
166 {
167 }
168 
169 static void
170 simple_write_cb(evutil_socket_t fd, short event, void *arg)
171 {
172 	int len;
173 
174 	len = write(fd, TEST1, strlen(TEST1) + 1);
175 	if (len == -1)
176 		test_ok = 0;
177 	else
178 		test_ok = 1;
179 }
180 
181 static void
182 multiple_write_cb(evutil_socket_t fd, short event, void *arg)
183 {
184 	struct event *ev = arg;
185 	int len;
186 
187 	len = 128;
188 	if (woff + len >= (int)sizeof(wbuf))
189 		len = sizeof(wbuf) - woff;
190 
191 	len = write(fd, wbuf + woff, len);
192 	if (len == -1) {
193 		fprintf(stderr, "%s: write\n", __func__);
194 		if (usepersist)
195 			event_del(ev);
196 		return;
197 	}
198 
199 	woff += len;
200 
201 	if (woff >= (int)sizeof(wbuf)) {
202 		shutdown(fd, EVUTIL_SHUT_WR);
203 		if (usepersist)
204 			event_del(ev);
205 		return;
206 	}
207 
208 	if (!usepersist) {
209 		if (event_add(ev, NULL) == -1)
210 			exit(1);
211 	}
212 }
213 
214 static void
215 multiple_read_cb(evutil_socket_t fd, short event, void *arg)
216 {
217 	struct event *ev = arg;
218 	int len;
219 
220 	len = read(fd, rbuf + roff, sizeof(rbuf) - roff);
221 	if (len == -1)
222 		fprintf(stderr, "%s: read\n", __func__);
223 	if (len <= 0) {
224 		if (usepersist)
225 			event_del(ev);
226 		return;
227 	}
228 
229 	roff += len;
230 	if (!usepersist) {
231 		if (event_add(ev, NULL) == -1)
232 			exit(1);
233 	}
234 }
235 
236 static void
237 timeout_cb(evutil_socket_t fd, short event, void *arg)
238 {
239 	evutil_gettimeofday(&tcalled, NULL);
240 }
241 
242 struct both {
243 	struct event ev;
244 	int nread;
245 };
246 
247 static void
248 combined_read_cb(evutil_socket_t fd, short event, void *arg)
249 {
250 	struct both *both = arg;
251 	char buf[128];
252 	int len;
253 
254 	len = read(fd, buf, sizeof(buf));
255 	if (len == -1)
256 		fprintf(stderr, "%s: read\n", __func__);
257 	if (len <= 0)
258 		return;
259 
260 	both->nread += len;
261 	if (event_add(&both->ev, NULL) == -1)
262 		exit(1);
263 }
264 
265 static void
266 combined_write_cb(evutil_socket_t fd, short event, void *arg)
267 {
268 	struct both *both = arg;
269 	char buf[128];
270 	int len;
271 
272 	len = sizeof(buf);
273 	if (len > both->nread)
274 		len = both->nread;
275 
276 	memset(buf, 'q', len);
277 
278 	len = write(fd, buf, len);
279 	if (len == -1)
280 		fprintf(stderr, "%s: write\n", __func__);
281 	if (len <= 0) {
282 		shutdown(fd, EVUTIL_SHUT_WR);
283 		return;
284 	}
285 
286 	both->nread -= len;
287 	if (event_add(&both->ev, NULL) == -1)
288 		exit(1);
289 }
290 
291 /* These macros used to replicate the work of the legacy test wrapper code */
292 #define setup_test(x) do {						\
293 	if (!in_legacy_test_wrapper) {					\
294 		TT_FAIL(("Legacy test %s not wrapped properly", x));	\
295 		return;							\
296 	}								\
297 	} while (/*CONSTCOND*/0)
298 #define cleanup_test() setup_test("cleanup")
299 
300 static void
301 test_simpleread(void)
302 {
303 	struct event ev;
304 
305 	/* Very simple read test */
306 	setup_test("Simple read: ");
307 
308 	if (write(pair[0], TEST1, strlen(TEST1)+1) < 0) {
309 		tt_fail_perror("write");
310 	}
311 
312 	shutdown(pair[0], EVUTIL_SHUT_WR);
313 
314 	event_set(&ev, pair[1], EV_READ, simple_read_cb, &ev);
315 	if (event_add(&ev, NULL) == -1)
316 		exit(1);
317 	event_dispatch();
318 
319 	cleanup_test();
320 }
321 
322 static void
323 test_simplewrite(void)
324 {
325 	struct event ev;
326 
327 	/* Very simple write test */
328 	setup_test("Simple write: ");
329 
330 	event_set(&ev, pair[0], EV_WRITE, simple_write_cb, &ev);
331 	if (event_add(&ev, NULL) == -1)
332 		exit(1);
333 	event_dispatch();
334 
335 	cleanup_test();
336 }
337 
338 static void
339 simpleread_multiple_cb(evutil_socket_t fd, short event, void *arg)
340 {
341 	if (++called == 2)
342 		test_ok = 1;
343 }
344 
345 static void
346 test_simpleread_multiple(void)
347 {
348 	struct event one, two;
349 
350 	/* Very simple read test */
351 	setup_test("Simple read to multiple evens: ");
352 
353 	if (write(pair[0], TEST1, strlen(TEST1)+1) < 0) {
354 		tt_fail_perror("write");
355 	}
356 
357 	shutdown(pair[0], EVUTIL_SHUT_WR);
358 
359 	event_set(&one, pair[1], EV_READ, simpleread_multiple_cb, NULL);
360 	if (event_add(&one, NULL) == -1)
361 		exit(1);
362 	event_set(&two, pair[1], EV_READ, simpleread_multiple_cb, NULL);
363 	if (event_add(&two, NULL) == -1)
364 		exit(1);
365 	event_dispatch();
366 
367 	cleanup_test();
368 }
369 
370 static int have_closed = 0;
371 static int premature_event = 0;
372 static void
373 simpleclose_close_fd_cb(evutil_socket_t s, short what, void *ptr)
374 {
375 	evutil_socket_t **fds = ptr;
376 	TT_BLATHER(("Closing"));
377 	evutil_closesocket(*fds[0]);
378 	evutil_closesocket(*fds[1]);
379 	*fds[0] = -1;
380 	*fds[1] = -1;
381 	have_closed = 1;
382 }
383 
384 static void
385 record_event_cb(evutil_socket_t s, short what, void *ptr)
386 {
387 	short *whatp = ptr;
388 	if (!have_closed)
389 		premature_event = 1;
390 	*whatp = what;
391 	TT_BLATHER(("Recorded %d on socket %d", (int)what, (int)s));
392 }
393 
394 static void
395 test_simpleclose(void *ptr)
396 {
397 	/* Test that a close of FD is detected as a read and as a write. */
398 	struct event_base *base = event_base_new();
399 	evutil_socket_t pair1[2]={-1,-1}, pair2[2] = {-1, -1};
400 	evutil_socket_t *to_close[2];
401 	struct event *rev=NULL, *wev=NULL, *closeev=NULL;
402 	struct timeval tv;
403 	short got_read_on_close = 0, got_write_on_close = 0;
404 	char buf[1024];
405 	memset(buf, 99, sizeof(buf));
406 #ifdef _WIN32
407 #define LOCAL_SOCKETPAIR_AF AF_INET
408 #else
409 #define LOCAL_SOCKETPAIR_AF AF_UNIX
410 #endif
411 	if (evutil_socketpair(LOCAL_SOCKETPAIR_AF, SOCK_STREAM, 0, pair1)<0)
412 		TT_DIE(("socketpair: %s", strerror(errno)));
413 	if (evutil_socketpair(LOCAL_SOCKETPAIR_AF, SOCK_STREAM, 0, pair2)<0)
414 		TT_DIE(("socketpair: %s", strerror(errno)));
415 	if (evutil_make_socket_nonblocking(pair1[1]) < 0)
416 		TT_DIE(("make_socket_nonblocking"));
417 	if (evutil_make_socket_nonblocking(pair2[1]) < 0)
418 		TT_DIE(("make_socket_nonblocking"));
419 
420 	/** Stuff pair2[1] full of data, until write fails */
421 	while (1) {
422 		int r = write(pair2[1], buf, sizeof(buf));
423 		if (r<0) {
424 			int err = evutil_socket_geterror(pair2[1]);
425 			if (! EVUTIL_ERR_RW_RETRIABLE(err))
426 				TT_DIE(("write failed strangely: %s",
427 					evutil_socket_error_to_string(err)));
428 			break;
429 		}
430 	}
431 	to_close[0] = &pair1[0];
432 	to_close[1] = &pair2[0];
433 
434 	closeev = event_new(base, -1, EV_TIMEOUT, simpleclose_close_fd_cb,
435 	    to_close);
436 	rev = event_new(base, pair1[1], EV_READ, record_event_cb,
437 	    &got_read_on_close);
438 	TT_BLATHER(("Waiting for read on %d", (int)pair1[1]));
439 	wev = event_new(base, pair2[1], EV_WRITE, record_event_cb,
440 	    &got_write_on_close);
441 	TT_BLATHER(("Waiting for write on %d", (int)pair2[1]));
442 	tv.tv_sec = 0;
443 	tv.tv_usec = 100*1000; /* Close pair1[0] after a little while, and make
444 			       * sure we get a read event. */
445 	event_add(closeev, &tv);
446 	event_add(rev, NULL);
447 	event_add(wev, NULL);
448 	/* Don't let the test go on too long. */
449 	tv.tv_sec = 0;
450 	tv.tv_usec = 200*1000;
451 	event_base_loopexit(base, &tv);
452 	event_base_loop(base, 0);
453 
454 	tt_int_op(got_read_on_close, ==, EV_READ);
455 	tt_int_op(got_write_on_close, ==, EV_WRITE);
456 	tt_int_op(premature_event, ==, 0);
457 
458 end:
459 	if (pair1[0] >= 0)
460 		evutil_closesocket(pair1[0]);
461 	if (pair1[1] >= 0)
462 		evutil_closesocket(pair1[1]);
463 	if (pair2[0] >= 0)
464 		evutil_closesocket(pair2[0]);
465 	if (pair2[1] >= 0)
466 		evutil_closesocket(pair2[1]);
467 	if (rev)
468 		event_free(rev);
469 	if (wev)
470 		event_free(wev);
471 	if (closeev)
472 		event_free(closeev);
473 	if (base)
474 		event_base_free(base);
475 }
476 
477 
478 static void
479 test_multiple(void)
480 {
481 	struct event ev, ev2;
482 	int i;
483 
484 	/* Multiple read and write test */
485 	setup_test("Multiple read/write: ");
486 	memset(rbuf, 0, sizeof(rbuf));
487 	for (i = 0; i < (int)sizeof(wbuf); i++)
488 		wbuf[i] = i;
489 
490 	roff = woff = 0;
491 	usepersist = 0;
492 
493 	event_set(&ev, pair[0], EV_WRITE, multiple_write_cb, &ev);
494 	if (event_add(&ev, NULL) == -1)
495 		exit(1);
496 	event_set(&ev2, pair[1], EV_READ, multiple_read_cb, &ev2);
497 	if (event_add(&ev2, NULL) == -1)
498 		exit(1);
499 	event_dispatch();
500 
501 	if (roff == woff)
502 		test_ok = memcmp(rbuf, wbuf, sizeof(wbuf)) == 0;
503 
504 	cleanup_test();
505 }
506 
507 static void
508 test_persistent(void)
509 {
510 	struct event ev, ev2;
511 	int i;
512 
513 	/* Multiple read and write test with persist */
514 	setup_test("Persist read/write: ");
515 	memset(rbuf, 0, sizeof(rbuf));
516 	for (i = 0; i < (int)sizeof(wbuf); i++)
517 		wbuf[i] = i;
518 
519 	roff = woff = 0;
520 	usepersist = 1;
521 
522 	event_set(&ev, pair[0], EV_WRITE|EV_PERSIST, multiple_write_cb, &ev);
523 	if (event_add(&ev, NULL) == -1)
524 		exit(1);
525 	event_set(&ev2, pair[1], EV_READ|EV_PERSIST, multiple_read_cb, &ev2);
526 	if (event_add(&ev2, NULL) == -1)
527 		exit(1);
528 	event_dispatch();
529 
530 	if (roff == woff)
531 		test_ok = memcmp(rbuf, wbuf, sizeof(wbuf)) == 0;
532 
533 	cleanup_test();
534 }
535 
536 static void
537 test_combined(void)
538 {
539 	struct both r1, r2, w1, w2;
540 
541 	setup_test("Combined read/write: ");
542 	memset(&r1, 0, sizeof(r1));
543 	memset(&r2, 0, sizeof(r2));
544 	memset(&w1, 0, sizeof(w1));
545 	memset(&w2, 0, sizeof(w2));
546 
547 	w1.nread = 4096;
548 	w2.nread = 8192;
549 
550 	event_set(&r1.ev, pair[0], EV_READ, combined_read_cb, &r1);
551 	event_set(&w1.ev, pair[0], EV_WRITE, combined_write_cb, &w1);
552 	event_set(&r2.ev, pair[1], EV_READ, combined_read_cb, &r2);
553 	event_set(&w2.ev, pair[1], EV_WRITE, combined_write_cb, &w2);
554 	tt_assert(event_add(&r1.ev, NULL) != -1);
555 	tt_assert(!event_add(&w1.ev, NULL));
556 	tt_assert(!event_add(&r2.ev, NULL));
557 	tt_assert(!event_add(&w2.ev, NULL));
558 	event_dispatch();
559 
560 	if (r1.nread == 8192 && r2.nread == 4096)
561 		test_ok = 1;
562 
563 end:
564 	cleanup_test();
565 }
566 
567 static void
568 test_simpletimeout(void)
569 {
570 	struct timeval tv;
571 	struct event ev;
572 
573 	setup_test("Simple timeout: ");
574 
575 	tv.tv_usec = 200*1000;
576 	tv.tv_sec = 0;
577 	evutil_timerclear(&tcalled);
578 	evtimer_set(&ev, timeout_cb, NULL);
579 	evtimer_add(&ev, &tv);
580 
581 	evutil_gettimeofday(&tset, NULL);
582 	event_dispatch();
583 	test_timeval_diff_eq(&tset, &tcalled, 200);
584 
585 	test_ok = 1;
586 end:
587 	cleanup_test();
588 }
589 
590 static void
591 periodic_timeout_cb(evutil_socket_t fd, short event, void *arg)
592 {
593 	int *count = arg;
594 
595 	(*count)++;
596 	if (*count == 6) {
597 		/* call loopexit only once - on slow machines(?), it is
598 		 * apparently possible for this to get called twice. */
599 		test_ok = 1;
600 		event_base_loopexit(global_base, NULL);
601 	}
602 }
603 
604 static void
605 test_persistent_timeout(void)
606 {
607 	struct timeval tv;
608 	struct event ev;
609 	int count = 0;
610 
611 	evutil_timerclear(&tv);
612 	tv.tv_usec = 10000;
613 
614 	event_assign(&ev, global_base, -1, EV_TIMEOUT|EV_PERSIST,
615 	    periodic_timeout_cb, &count);
616 	event_add(&ev, &tv);
617 
618 	event_dispatch();
619 
620 	event_del(&ev);
621 }
622 
623 static void
624 test_persistent_timeout_jump(void *ptr)
625 {
626 	struct basic_test_data *data = ptr;
627 	struct event ev;
628 	int count = 0;
629 	struct timeval msec100 = { 0, 100 * 1000 };
630 	struct timeval msec50 = { 0, 50 * 1000 };
631 	struct timeval msec300 = { 0, 300 * 1000 };
632 
633 	event_assign(&ev, data->base, -1, EV_PERSIST, periodic_timeout_cb, &count);
634 	event_add(&ev, &msec100);
635 	/* Wait for a bit */
636 	evutil_usleep_(&msec300);
637 	event_base_loopexit(data->base, &msec50);
638 	event_base_dispatch(data->base);
639 	tt_int_op(count, ==, 1);
640 
641 end:
642 	event_del(&ev);
643 }
644 
645 struct persist_active_timeout_called {
646 	int n;
647 	short events[16];
648 	struct timeval tvs[16];
649 };
650 
651 static void
652 activate_cb(evutil_socket_t fd, short event, void *arg)
653 {
654 	struct event *ev = arg;
655 	event_active(ev, EV_READ, 1);
656 }
657 
658 static void
659 persist_active_timeout_cb(evutil_socket_t fd, short event, void *arg)
660 {
661 	struct persist_active_timeout_called *c = arg;
662 	if (c->n < 15) {
663 		c->events[c->n] = event;
664 		evutil_gettimeofday(&c->tvs[c->n], NULL);
665 		++c->n;
666 	}
667 }
668 
669 static void
670 test_persistent_active_timeout(void *ptr)
671 {
672 	struct timeval tv, tv2, tv_exit, start;
673 	struct event ev;
674 	struct persist_active_timeout_called res;
675 
676 	struct basic_test_data *data = ptr;
677 	struct event_base *base = data->base;
678 
679 	memset(&res, 0, sizeof(res));
680 
681 	tv.tv_sec = 0;
682 	tv.tv_usec = 200 * 1000;
683 	event_assign(&ev, base, -1, EV_TIMEOUT|EV_PERSIST,
684 	    persist_active_timeout_cb, &res);
685 	event_add(&ev, &tv);
686 
687 	tv2.tv_sec = 0;
688 	tv2.tv_usec = 100 * 1000;
689 	event_base_once(base, -1, EV_TIMEOUT, activate_cb, &ev, &tv2);
690 
691 	tv_exit.tv_sec = 0;
692 	tv_exit.tv_usec = 600 * 1000;
693 	event_base_loopexit(base, &tv_exit);
694 
695 	event_base_assert_ok_(base);
696 	evutil_gettimeofday(&start, NULL);
697 
698 	event_base_dispatch(base);
699 	event_base_assert_ok_(base);
700 
701 	tt_int_op(res.n, ==, 3);
702 	tt_int_op(res.events[0], ==, EV_READ);
703 	tt_int_op(res.events[1], ==, EV_TIMEOUT);
704 	tt_int_op(res.events[2], ==, EV_TIMEOUT);
705 	test_timeval_diff_eq(&start, &res.tvs[0], 100);
706 	test_timeval_diff_eq(&start, &res.tvs[1], 300);
707 	test_timeval_diff_eq(&start, &res.tvs[2], 500);
708 end:
709 	event_del(&ev);
710 }
711 
712 struct common_timeout_info {
713 	struct event ev;
714 	struct timeval called_at;
715 	int which;
716 	int count;
717 };
718 
719 static void
720 common_timeout_cb(evutil_socket_t fd, short event, void *arg)
721 {
722 	struct common_timeout_info *ti = arg;
723 	++ti->count;
724 	evutil_gettimeofday(&ti->called_at, NULL);
725 	if (ti->count >= 4)
726 		event_del(&ti->ev);
727 }
728 
729 static void
730 test_common_timeout(void *ptr)
731 {
732 	struct basic_test_data *data = ptr;
733 
734 	struct event_base *base = data->base;
735 	int i;
736 	struct common_timeout_info info[100];
737 
738 	struct timeval start;
739 	struct timeval tmp_100_ms = { 0, 100*1000 };
740 	struct timeval tmp_200_ms = { 0, 200*1000 };
741 	struct timeval tmp_5_sec = { 5, 0 };
742 	struct timeval tmp_5M_usec = { 0, 5*1000*1000 };
743 
744 	const struct timeval *ms_100, *ms_200, *sec_5;
745 
746 	ms_100 = event_base_init_common_timeout(base, &tmp_100_ms);
747 	ms_200 = event_base_init_common_timeout(base, &tmp_200_ms);
748 	sec_5 = event_base_init_common_timeout(base, &tmp_5_sec);
749 	tt_assert(ms_100);
750 	tt_assert(ms_200);
751 	tt_assert(sec_5);
752 	tt_ptr_op(event_base_init_common_timeout(base, &tmp_200_ms),
753 	    ==, ms_200);
754 	tt_ptr_op(event_base_init_common_timeout(base, ms_200), ==, ms_200);
755 	tt_ptr_op(event_base_init_common_timeout(base, &tmp_5M_usec), ==, sec_5);
756 	tt_int_op(ms_100->tv_sec, ==, 0);
757 	tt_int_op(ms_200->tv_sec, ==, 0);
758 	tt_int_op(sec_5->tv_sec, ==, 5);
759 	tt_int_op(ms_100->tv_usec, ==, 100000|0x50000000);
760 	tt_int_op(ms_200->tv_usec, ==, 200000|0x50100000);
761 	tt_int_op(sec_5->tv_usec, ==, 0|0x50200000);
762 
763 	memset(info, 0, sizeof(info));
764 
765 	for (i=0; i<100; ++i) {
766 		info[i].which = i;
767 		event_assign(&info[i].ev, base, -1, EV_TIMEOUT|EV_PERSIST,
768 		    common_timeout_cb, &info[i]);
769 		if (i % 2) {
770 			if ((i%20)==1) {
771 				/* Glass-box test: Make sure we survive the
772 				 * transition to non-common timeouts. It's
773 				 * a little tricky. */
774 				event_add(&info[i].ev, ms_200);
775 				event_add(&info[i].ev, &tmp_100_ms);
776 			} else if ((i%20)==3) {
777 				/* Check heap-to-common too. */
778 				event_add(&info[i].ev, &tmp_200_ms);
779 				event_add(&info[i].ev, ms_100);
780 			} else if ((i%20)==5) {
781 				/* Also check common-to-common. */
782 				event_add(&info[i].ev, ms_200);
783 				event_add(&info[i].ev, ms_100);
784 			} else {
785 				event_add(&info[i].ev, ms_100);
786 			}
787 		} else {
788 			event_add(&info[i].ev, ms_200);
789 		}
790 	}
791 
792 	event_base_assert_ok_(base);
793 	evutil_gettimeofday(&start, NULL);
794 	event_base_dispatch(base);
795 
796 	event_base_assert_ok_(base);
797 
798 	for (i=0; i<10; ++i) {
799 		tt_int_op(info[i].count, ==, 4);
800 		if (i % 2) {
801 			test_timeval_diff_eq(&start, &info[i].called_at, 400);
802 		} else {
803 			test_timeval_diff_eq(&start, &info[i].called_at, 800);
804 		}
805 	}
806 
807 	/* Make sure we can free the base with some events in. */
808 	for (i=0; i<100; ++i) {
809 		if (i % 2) {
810 			event_add(&info[i].ev, ms_100);
811 		} else {
812 			event_add(&info[i].ev, ms_200);
813 		}
814 	}
815 
816 end:
817 	event_base_free(data->base); /* need to do this here before info is
818 				      * out-of-scope */
819 	data->base = NULL;
820 }
821 
822 #ifndef _WIN32
823 
824 #define current_base event_global_current_base_
825 extern struct event_base *current_base;
826 
827 static void
828 fork_signal_cb(evutil_socket_t fd, short events, void *arg)
829 {
830 	event_del(arg);
831 }
832 
833 int child_pair[2] = { -1, -1 };
834 static void
835 simple_child_read_cb(evutil_socket_t fd, short event, void *arg)
836 {
837 	char buf[256];
838 	int len;
839 
840 	len = read(fd, buf, sizeof(buf));
841 	if (write(child_pair[0], "", 1) < 0)
842 		tt_fail_perror("write");
843 
844 	if (len) {
845 		if (!called) {
846 			if (event_add(arg, NULL) == -1)
847 				exit(1);
848 		}
849 	} else if (called == 1)
850 		test_ok = 1;
851 
852 	called++;
853 }
854 static void
855 test_fork(void)
856 {
857 	char c;
858 	int status;
859 	struct event ev, sig_ev, usr_ev, existing_ev;
860 	pid_t pid;
861 	int wait_flags = 0;
862 
863 #ifdef EVENT__HAVE_WAITPID_WITH_WNOWAIT
864 	wait_flags |= WNOWAIT;
865 #endif
866 
867 	setup_test("After fork: ");
868 
869 	{
870 		if (evutil_socketpair(AF_UNIX, SOCK_STREAM, 0, child_pair) == -1) {
871 			fprintf(stderr, "%s: socketpair\n", __func__);
872 			exit(1);
873 		}
874 
875 		if (evutil_make_socket_nonblocking(child_pair[0]) == -1) {
876 			fprintf(stderr, "fcntl(O_NONBLOCK)");
877 			exit(1);
878 		}
879 	}
880 
881 	tt_assert(current_base);
882 	evthread_make_base_notifiable(current_base);
883 
884 	if (write(pair[0], TEST1, strlen(TEST1)+1) < 0) {
885 		tt_fail_perror("write");
886 	}
887 
888 	event_set(&ev, pair[1], EV_READ, simple_child_read_cb, &ev);
889 	if (event_add(&ev, NULL) == -1)
890 		exit(1);
891 
892 	evsignal_set(&sig_ev, SIGCHLD, fork_signal_cb, &sig_ev);
893 	evsignal_add(&sig_ev, NULL);
894 
895 	evsignal_set(&existing_ev, SIGUSR2, fork_signal_cb, &existing_ev);
896 	evsignal_add(&existing_ev, NULL);
897 
898 	event_base_assert_ok_(current_base);
899 	TT_BLATHER(("Before fork"));
900 	if ((pid = regress_fork()) == 0) {
901 		/* in the child */
902 		TT_BLATHER(("In child, before reinit"));
903 		event_base_assert_ok_(current_base);
904 		if (event_reinit(current_base) == -1) {
905 			fprintf(stdout, "FAILED (reinit)\n");
906 			exit(1);
907 		}
908 		TT_BLATHER(("After reinit"));
909 		event_base_assert_ok_(current_base);
910 		TT_BLATHER(("After assert-ok"));
911 
912 		evsignal_del(&sig_ev);
913 
914 		evsignal_set(&usr_ev, SIGUSR1, fork_signal_cb, &usr_ev);
915 		evsignal_add(&usr_ev, NULL);
916 		raise(SIGUSR1);
917 		raise(SIGUSR2);
918 
919 		called = 0;
920 
921 		event_dispatch();
922 
923 		event_base_free(current_base);
924 
925 		/* we do not send an EOF; simple_read_cb requires an EOF
926 		 * to set test_ok.  we just verify that the callback was
927 		 * called. */
928 		exit(test_ok != 0 || called != 2 ? -2 : 76);
929 	}
930 
931 	/** wait until client read first message */
932 	if (read(child_pair[1], &c, 1) < 0) {
933 		tt_fail_perror("read");
934 	}
935 	if (write(pair[0], TEST1, strlen(TEST1)+1) < 0) {
936 		tt_fail_perror("write");
937 	}
938 
939 	TT_BLATHER(("Before waitpid"));
940 	if (waitpid(pid, &status, wait_flags) == -1) {
941 		perror("waitpid");
942 		exit(1);
943 	}
944 	TT_BLATHER(("After waitpid"));
945 
946 	if (WEXITSTATUS(status) != 76) {
947 		fprintf(stdout, "FAILED (exit): %d\n", WEXITSTATUS(status));
948 		exit(1);
949 	}
950 
951 	/* test that the current event loop still works */
952 	if (write(pair[0], TEST1, strlen(TEST1)+1) < 0) {
953 		fprintf(stderr, "%s: write\n", __func__);
954 	}
955 
956 	shutdown(pair[0], EVUTIL_SHUT_WR);
957 
958 	evsignal_set(&usr_ev, SIGUSR1, fork_signal_cb, &usr_ev);
959 	evsignal_add(&usr_ev, NULL);
960 	raise(SIGUSR1);
961 	raise(SIGUSR2);
962 
963 	event_dispatch();
964 
965 	evsignal_del(&sig_ev);
966 	tt_int_op(test_ok, ==, 1);
967 
968 	end:
969 	cleanup_test();
970 	if (child_pair[0] != -1)
971 		evutil_closesocket(child_pair[0]);
972 	if (child_pair[1] != -1)
973 		evutil_closesocket(child_pair[1]);
974 }
975 
976 #ifdef EVENT__HAVE_PTHREADS
977 static void* del_wait_thread(void *arg)
978 {
979 	struct timeval tv_start, tv_end;
980 
981 	evutil_gettimeofday(&tv_start, NULL);
982 	event_dispatch();
983 	evutil_gettimeofday(&tv_end, NULL);
984 
985 	test_timeval_diff_eq(&tv_start, &tv_end, 300);
986 
987 	end:
988 	return NULL;
989 }
990 
991 static void
992 del_wait_cb(evutil_socket_t fd, short event, void *arg)
993 {
994 	struct timeval delay = { 0, 300*1000 };
995 	TT_BLATHER(("Sleeping"));
996 	evutil_usleep_(&delay);
997 	test_ok = 1;
998 }
999 
1000 static void
1001 test_del_wait(void)
1002 {
1003 	struct event ev;
1004 	pthread_t thread;
1005 
1006 	setup_test("event_del will wait: ");
1007 
1008 	event_set(&ev, pair[1], EV_READ, del_wait_cb, &ev);
1009 	event_add(&ev, NULL);
1010 
1011 	pthread_create(&thread, NULL, del_wait_thread, NULL);
1012 
1013 	if (write(pair[0], TEST1, strlen(TEST1)+1) < 0) {
1014 		tt_fail_perror("write");
1015 	}
1016 
1017 	{
1018 		struct timeval delay = { 0, 30*1000 };
1019 		evutil_usleep_(&delay);
1020 	}
1021 
1022 	{
1023 		struct timeval tv_start, tv_end;
1024 		evutil_gettimeofday(&tv_start, NULL);
1025 		event_del(&ev);
1026 		evutil_gettimeofday(&tv_end, NULL);
1027 		test_timeval_diff_eq(&tv_start, &tv_end, 270);
1028 	}
1029 
1030 	pthread_join(thread, NULL);
1031 
1032 	end:
1033 	;
1034 }
1035 #endif
1036 
1037 static void
1038 signal_cb_sa(int sig)
1039 {
1040 	test_ok = 2;
1041 }
1042 
1043 static void
1044 signal_cb(evutil_socket_t fd, short event, void *arg)
1045 {
1046 	struct event *ev = arg;
1047 
1048 	evsignal_del(ev);
1049 	test_ok = 1;
1050 }
1051 
1052 static void
1053 test_simplesignal_impl(int find_reorder)
1054 {
1055 	struct event ev;
1056 	struct itimerval itv;
1057 
1058 	evsignal_set(&ev, SIGALRM, signal_cb, &ev);
1059 	evsignal_add(&ev, NULL);
1060 	/* find bugs in which operations are re-ordered */
1061 	if (find_reorder) {
1062 		evsignal_del(&ev);
1063 		evsignal_add(&ev, NULL);
1064 	}
1065 
1066 	memset(&itv, 0, sizeof(itv));
1067 	itv.it_value.tv_sec = 0;
1068 	itv.it_value.tv_usec = 100000;
1069 	if (setitimer(ITIMER_REAL, &itv, NULL) == -1)
1070 		goto skip_simplesignal;
1071 
1072 	event_dispatch();
1073  skip_simplesignal:
1074 	if (evsignal_del(&ev) == -1)
1075 		test_ok = 0;
1076 
1077 	cleanup_test();
1078 }
1079 
1080 static void
1081 test_simplestsignal(void)
1082 {
1083 	setup_test("Simplest one signal: ");
1084 	test_simplesignal_impl(0);
1085 }
1086 
1087 static void
1088 test_simplesignal(void)
1089 {
1090 	setup_test("Simple signal: ");
1091 	test_simplesignal_impl(1);
1092 }
1093 
1094 static void
1095 test_multiplesignal(void)
1096 {
1097 	struct event ev_one, ev_two;
1098 	struct itimerval itv;
1099 
1100 	setup_test("Multiple signal: ");
1101 
1102 	evsignal_set(&ev_one, SIGALRM, signal_cb, &ev_one);
1103 	evsignal_add(&ev_one, NULL);
1104 
1105 	evsignal_set(&ev_two, SIGALRM, signal_cb, &ev_two);
1106 	evsignal_add(&ev_two, NULL);
1107 
1108 	memset(&itv, 0, sizeof(itv));
1109 	itv.it_value.tv_sec = 0;
1110 	itv.it_value.tv_usec = 100000;
1111 	if (setitimer(ITIMER_REAL, &itv, NULL) == -1)
1112 		goto skip_simplesignal;
1113 
1114 	event_dispatch();
1115 
1116  skip_simplesignal:
1117 	if (evsignal_del(&ev_one) == -1)
1118 		test_ok = 0;
1119 	if (evsignal_del(&ev_two) == -1)
1120 		test_ok = 0;
1121 
1122 	cleanup_test();
1123 }
1124 
1125 static void
1126 test_immediatesignal(void)
1127 {
1128 	struct event ev;
1129 
1130 	test_ok = 0;
1131 	evsignal_set(&ev, SIGUSR1, signal_cb, &ev);
1132 	evsignal_add(&ev, NULL);
1133 	raise(SIGUSR1);
1134 	event_loop(EVLOOP_NONBLOCK);
1135 	evsignal_del(&ev);
1136 	cleanup_test();
1137 }
1138 
1139 static void
1140 test_signal_dealloc(void)
1141 {
1142 	/* make sure that evsignal_event is event_del'ed and pipe closed */
1143 	struct event ev;
1144 	struct event_base *base = event_init();
1145 	evsignal_set(&ev, SIGUSR1, signal_cb, &ev);
1146 	evsignal_add(&ev, NULL);
1147 	evsignal_del(&ev);
1148 	event_base_free(base);
1149 	/* If we got here without asserting, we're fine. */
1150 	test_ok = 1;
1151 	cleanup_test();
1152 }
1153 
1154 static void
1155 test_signal_pipeloss(void)
1156 {
1157 	/* make sure that the base1 pipe is closed correctly. */
1158 	struct event_base *base1, *base2;
1159 	int pipe1;
1160 	test_ok = 0;
1161 	base1 = event_init();
1162 	pipe1 = base1->sig.ev_signal_pair[0];
1163 	base2 = event_init();
1164 	event_base_free(base2);
1165 	event_base_free(base1);
1166 	if (close(pipe1) != -1 || errno!=EBADF) {
1167 		/* fd must be closed, so second close gives -1, EBADF */
1168 		printf("signal pipe not closed. ");
1169 		test_ok = 0;
1170 	} else {
1171 		test_ok = 1;
1172 	}
1173 	cleanup_test();
1174 }
1175 
1176 /*
1177  * make two bases to catch signals, use both of them.  this only works
1178  * for event mechanisms that use our signal pipe trick.	 kqueue handles
1179  * signals internally, and all interested kqueues get all the signals.
1180  */
1181 static void
1182 test_signal_switchbase(void)
1183 {
1184 	struct event ev1, ev2;
1185 	struct event_base *base1, *base2;
1186 	int is_kqueue;
1187 	test_ok = 0;
1188 	base1 = event_init();
1189 	base2 = event_init();
1190 	is_kqueue = !strcmp(event_get_method(),"kqueue");
1191 	evsignal_set(&ev1, SIGUSR1, signal_cb, &ev1);
1192 	evsignal_set(&ev2, SIGUSR1, signal_cb, &ev2);
1193 	if (event_base_set(base1, &ev1) ||
1194 	    event_base_set(base2, &ev2) ||
1195 	    event_add(&ev1, NULL) ||
1196 	    event_add(&ev2, NULL)) {
1197 		fprintf(stderr, "%s: cannot set base, add\n", __func__);
1198 		exit(1);
1199 	}
1200 
1201 	tt_ptr_op(event_get_base(&ev1), ==, base1);
1202 	tt_ptr_op(event_get_base(&ev2), ==, base2);
1203 
1204 	test_ok = 0;
1205 	/* can handle signal before loop is called */
1206 	raise(SIGUSR1);
1207 	event_base_loop(base2, EVLOOP_NONBLOCK);
1208 	if (is_kqueue) {
1209 		if (!test_ok)
1210 			goto end;
1211 		test_ok = 0;
1212 	}
1213 	event_base_loop(base1, EVLOOP_NONBLOCK);
1214 	if (test_ok && !is_kqueue) {
1215 		test_ok = 0;
1216 
1217 		/* set base1 to handle signals */
1218 		event_base_loop(base1, EVLOOP_NONBLOCK);
1219 		raise(SIGUSR1);
1220 		event_base_loop(base1, EVLOOP_NONBLOCK);
1221 		event_base_loop(base2, EVLOOP_NONBLOCK);
1222 	}
1223 end:
1224 	event_base_free(base1);
1225 	event_base_free(base2);
1226 	cleanup_test();
1227 }
1228 
1229 /*
1230  * assert that a signal event removed from the event queue really is
1231  * removed - with no possibility of it's parent handler being fired.
1232  */
1233 static void
1234 test_signal_assert(void)
1235 {
1236 	struct event ev;
1237 	struct event_base *base = event_init();
1238 	test_ok = 0;
1239 	/* use SIGCONT so we don't kill ourselves when we signal to nowhere */
1240 	evsignal_set(&ev, SIGCONT, signal_cb, &ev);
1241 	evsignal_add(&ev, NULL);
1242 	/*
1243 	 * if evsignal_del() fails to reset the handler, it's current handler
1244 	 * will still point to evsig_handler().
1245 	 */
1246 	evsignal_del(&ev);
1247 
1248 	raise(SIGCONT);
1249 #if 0
1250 	/* only way to verify we were in evsig_handler() */
1251 	/* XXXX Now there's no longer a good way. */
1252 	if (base->sig.evsig_caught)
1253 		test_ok = 0;
1254 	else
1255 		test_ok = 1;
1256 #else
1257 	test_ok = 1;
1258 #endif
1259 
1260 	event_base_free(base);
1261 	cleanup_test();
1262 	return;
1263 }
1264 
1265 /*
1266  * assert that we restore our previous signal handler properly.
1267  */
1268 static void
1269 test_signal_restore(void)
1270 {
1271 	struct event ev;
1272 	struct event_base *base = event_init();
1273 #ifdef EVENT__HAVE_SIGACTION
1274 	struct sigaction sa;
1275 #endif
1276 
1277 	test_ok = 0;
1278 #ifdef EVENT__HAVE_SIGACTION
1279 	sa.sa_handler = signal_cb_sa;
1280 	sa.sa_flags = 0x0;
1281 	sigemptyset(&sa.sa_mask);
1282 	if (sigaction(SIGUSR1, &sa, NULL) == -1)
1283 		goto out;
1284 #else
1285 	if (signal(SIGUSR1, signal_cb_sa) == SIG_ERR)
1286 		goto out;
1287 #endif
1288 	evsignal_set(&ev, SIGUSR1, signal_cb, &ev);
1289 	evsignal_add(&ev, NULL);
1290 	evsignal_del(&ev);
1291 
1292 	raise(SIGUSR1);
1293 	/* 1 == signal_cb, 2 == signal_cb_sa, we want our previous handler */
1294 	if (test_ok != 2)
1295 		test_ok = 0;
1296 out:
1297 	event_base_free(base);
1298 	cleanup_test();
1299 	return;
1300 }
1301 
1302 static void
1303 signal_cb_swp(int sig, short event, void *arg)
1304 {
1305 	called++;
1306 	if (called < 5)
1307 		raise(sig);
1308 	else
1309 		event_loopexit(NULL);
1310 }
1311 static void
1312 timeout_cb_swp(evutil_socket_t fd, short event, void *arg)
1313 {
1314 	if (called == -1) {
1315 		struct timeval tv = {5, 0};
1316 
1317 		called = 0;
1318 		evtimer_add((struct event *)arg, &tv);
1319 		raise(SIGUSR1);
1320 		return;
1321 	}
1322 	test_ok = 0;
1323 	event_loopexit(NULL);
1324 }
1325 
1326 static void
1327 test_signal_while_processing(void)
1328 {
1329 	struct event_base *base = event_init();
1330 	struct event ev, ev_timer;
1331 	struct timeval tv = {0, 0};
1332 
1333 	setup_test("Receiving a signal while processing other signal: ");
1334 
1335 	called = -1;
1336 	test_ok = 1;
1337 	signal_set(&ev, SIGUSR1, signal_cb_swp, NULL);
1338 	signal_add(&ev, NULL);
1339 	evtimer_set(&ev_timer, timeout_cb_swp, &ev_timer);
1340 	evtimer_add(&ev_timer, &tv);
1341 	event_dispatch();
1342 
1343 	event_base_free(base);
1344 	cleanup_test();
1345 	return;
1346 }
1347 #endif
1348 
1349 static void
1350 test_free_active_base(void *ptr)
1351 {
1352 	struct basic_test_data *data = ptr;
1353 	struct event_base *base1;
1354 	struct event ev1;
1355 
1356 	base1 = event_init();
1357 	if (base1) {
1358 		event_assign(&ev1, base1, data->pair[1], EV_READ,
1359 			     dummy_read_cb, NULL);
1360 		event_add(&ev1, NULL);
1361 		event_base_free(base1);	 /* should not crash */
1362 	} else {
1363 		tt_fail_msg("failed to create event_base for test");
1364 	}
1365 
1366 	base1 = event_init();
1367 	tt_assert(base1);
1368 	event_assign(&ev1, base1, 0, 0, dummy_read_cb, NULL);
1369 	event_active(&ev1, EV_READ, 1);
1370 	event_base_free(base1);
1371 end:
1372 	;
1373 }
1374 
1375 static void
1376 test_manipulate_active_events(void *ptr)
1377 {
1378 	struct basic_test_data *data = ptr;
1379 	struct event_base *base = data->base;
1380 	struct event ev1;
1381 
1382 	event_assign(&ev1, base, -1, EV_TIMEOUT, dummy_read_cb, NULL);
1383 
1384 	/* Make sure an active event is pending. */
1385 	event_active(&ev1, EV_READ, 1);
1386 	tt_int_op(event_pending(&ev1, EV_READ|EV_TIMEOUT|EV_WRITE, NULL),
1387 	    ==, EV_READ);
1388 
1389 	/* Make sure that activating an event twice works. */
1390 	event_active(&ev1, EV_WRITE, 1);
1391 	tt_int_op(event_pending(&ev1, EV_READ|EV_TIMEOUT|EV_WRITE, NULL),
1392 	    ==, EV_READ|EV_WRITE);
1393 
1394 end:
1395 	event_del(&ev1);
1396 }
1397 
1398 static void
1399 event_selfarg_cb(evutil_socket_t fd, short event, void *arg)
1400 {
1401 	struct event *ev = arg;
1402 	struct event_base *base = event_get_base(ev);
1403 	event_base_assert_ok_(base);
1404 	event_base_loopexit(base, NULL);
1405 	tt_want(ev == event_base_get_running_event(base));
1406 }
1407 
1408 static void
1409 test_event_new_selfarg(void *ptr)
1410 {
1411 	struct basic_test_data *data = ptr;
1412 	struct event_base *base = data->base;
1413 	struct event *ev = event_new(base, -1, EV_READ, event_selfarg_cb,
1414                                      event_self_cbarg());
1415 
1416 	event_active(ev, EV_READ, 1);
1417 	event_base_dispatch(base);
1418 
1419 	event_free(ev);
1420 }
1421 
1422 static void
1423 test_event_assign_selfarg(void *ptr)
1424 {
1425 	struct basic_test_data *data = ptr;
1426 	struct event_base *base = data->base;
1427 	struct event ev;
1428 
1429 	event_assign(&ev, base, -1, EV_READ, event_selfarg_cb,
1430                      event_self_cbarg());
1431 	event_active(&ev, EV_READ, 1);
1432 	event_base_dispatch(base);
1433 }
1434 
1435 static void
1436 test_event_base_get_num_events(void *ptr)
1437 {
1438 	struct basic_test_data *data = ptr;
1439 	struct event_base *base = data->base;
1440 	struct event ev;
1441 	int event_count_active;
1442 	int event_count_virtual;
1443 	int event_count_added;
1444 	int event_count_active_virtual;
1445 	int event_count_active_added;
1446 	int event_count_virtual_added;
1447 	int event_count_active_added_virtual;
1448 
1449 	struct timeval qsec = {0, 100000};
1450 
1451 	event_assign(&ev, base, -1, EV_READ, event_selfarg_cb,
1452 	    event_self_cbarg());
1453 
1454 	event_add(&ev, &qsec);
1455 	event_count_active = event_base_get_num_events(base,
1456 	    EVENT_BASE_COUNT_ACTIVE);
1457 	event_count_virtual = event_base_get_num_events(base,
1458 	    EVENT_BASE_COUNT_VIRTUAL);
1459 	event_count_added = event_base_get_num_events(base,
1460 	    EVENT_BASE_COUNT_ADDED);
1461 	event_count_active_virtual = event_base_get_num_events(base,
1462 	    EVENT_BASE_COUNT_ACTIVE|EVENT_BASE_COUNT_VIRTUAL);
1463 	event_count_active_added = event_base_get_num_events(base,
1464 	    EVENT_BASE_COUNT_ACTIVE|EVENT_BASE_COUNT_ADDED);
1465 	event_count_virtual_added = event_base_get_num_events(base,
1466 	    EVENT_BASE_COUNT_VIRTUAL|EVENT_BASE_COUNT_ADDED);
1467 	event_count_active_added_virtual = event_base_get_num_events(base,
1468 	    EVENT_BASE_COUNT_ACTIVE|
1469 	    EVENT_BASE_COUNT_ADDED|
1470 	    EVENT_BASE_COUNT_VIRTUAL);
1471 	tt_int_op(event_count_active, ==, 0);
1472 	tt_int_op(event_count_virtual, ==, 0);
1473 	/* libevent itself adds a timeout event, so the event_count is 2 here */
1474 	tt_int_op(event_count_added, ==, 2);
1475 	tt_int_op(event_count_active_virtual, ==, 0);
1476 	tt_int_op(event_count_active_added, ==, 2);
1477 	tt_int_op(event_count_virtual_added, ==, 2);
1478 	tt_int_op(event_count_active_added_virtual, ==, 2);
1479 
1480 	event_active(&ev, EV_READ, 1);
1481 	event_count_active = event_base_get_num_events(base,
1482 	    EVENT_BASE_COUNT_ACTIVE);
1483 	event_count_virtual = event_base_get_num_events(base,
1484 	    EVENT_BASE_COUNT_VIRTUAL);
1485 	event_count_added = event_base_get_num_events(base,
1486 	    EVENT_BASE_COUNT_ADDED);
1487 	event_count_active_virtual = event_base_get_num_events(base,
1488 	    EVENT_BASE_COUNT_ACTIVE|EVENT_BASE_COUNT_VIRTUAL);
1489 	event_count_active_added = event_base_get_num_events(base,
1490 	    EVENT_BASE_COUNT_ACTIVE|EVENT_BASE_COUNT_ADDED);
1491 	event_count_virtual_added = event_base_get_num_events(base,
1492 	    EVENT_BASE_COUNT_VIRTUAL|EVENT_BASE_COUNT_ADDED);
1493 	event_count_active_added_virtual = event_base_get_num_events(base,
1494 	    EVENT_BASE_COUNT_ACTIVE|
1495 	    EVENT_BASE_COUNT_ADDED|
1496 	    EVENT_BASE_COUNT_VIRTUAL);
1497 	tt_int_op(event_count_active, ==, 1);
1498 	tt_int_op(event_count_virtual, ==, 0);
1499 	tt_int_op(event_count_added, ==, 3);
1500 	tt_int_op(event_count_active_virtual, ==, 1);
1501 	tt_int_op(event_count_active_added, ==, 4);
1502 	tt_int_op(event_count_virtual_added, ==, 3);
1503 	tt_int_op(event_count_active_added_virtual, ==, 4);
1504 
1505        event_base_loop(base, 0);
1506        event_count_active = event_base_get_num_events(base,
1507 	   EVENT_BASE_COUNT_ACTIVE);
1508        event_count_virtual = event_base_get_num_events(base,
1509 	   EVENT_BASE_COUNT_VIRTUAL);
1510        event_count_added = event_base_get_num_events(base,
1511 	   EVENT_BASE_COUNT_ADDED);
1512        event_count_active_virtual = event_base_get_num_events(base,
1513 	   EVENT_BASE_COUNT_ACTIVE|EVENT_BASE_COUNT_VIRTUAL);
1514        event_count_active_added = event_base_get_num_events(base,
1515 	   EVENT_BASE_COUNT_ACTIVE|EVENT_BASE_COUNT_ADDED);
1516        event_count_virtual_added = event_base_get_num_events(base,
1517 	   EVENT_BASE_COUNT_VIRTUAL|EVENT_BASE_COUNT_ADDED);
1518        event_count_active_added_virtual = event_base_get_num_events(base,
1519 	   EVENT_BASE_COUNT_ACTIVE|
1520 	   EVENT_BASE_COUNT_ADDED|
1521 	   EVENT_BASE_COUNT_VIRTUAL);
1522        tt_int_op(event_count_active, ==, 0);
1523        tt_int_op(event_count_virtual, ==, 0);
1524        tt_int_op(event_count_added, ==, 0);
1525        tt_int_op(event_count_active_virtual, ==, 0);
1526        tt_int_op(event_count_active_added, ==, 0);
1527        tt_int_op(event_count_virtual_added, ==, 0);
1528        tt_int_op(event_count_active_added_virtual, ==, 0);
1529 
1530        event_base_add_virtual_(base);
1531        event_count_active = event_base_get_num_events(base,
1532 	   EVENT_BASE_COUNT_ACTIVE);
1533        event_count_virtual = event_base_get_num_events(base,
1534 	   EVENT_BASE_COUNT_VIRTUAL);
1535        event_count_added = event_base_get_num_events(base,
1536 	   EVENT_BASE_COUNT_ADDED);
1537        event_count_active_virtual = event_base_get_num_events(base,
1538 	   EVENT_BASE_COUNT_ACTIVE|EVENT_BASE_COUNT_VIRTUAL);
1539        event_count_active_added = event_base_get_num_events(base,
1540 	   EVENT_BASE_COUNT_ACTIVE|EVENT_BASE_COUNT_ADDED);
1541        event_count_virtual_added = event_base_get_num_events(base,
1542 	   EVENT_BASE_COUNT_VIRTUAL|EVENT_BASE_COUNT_ADDED);
1543        event_count_active_added_virtual = event_base_get_num_events(base,
1544 	   EVENT_BASE_COUNT_ACTIVE|
1545 	   EVENT_BASE_COUNT_ADDED|
1546 	   EVENT_BASE_COUNT_VIRTUAL);
1547        tt_int_op(event_count_active, ==, 0);
1548        tt_int_op(event_count_virtual, ==, 1);
1549        tt_int_op(event_count_added, ==, 0);
1550        tt_int_op(event_count_active_virtual, ==, 1);
1551        tt_int_op(event_count_active_added, ==, 0);
1552        tt_int_op(event_count_virtual_added, ==, 1);
1553        tt_int_op(event_count_active_added_virtual, ==, 1);
1554 
1555 end:
1556        ;
1557 }
1558 
1559 static void
1560 test_event_base_get_max_events(void *ptr)
1561 {
1562 	struct basic_test_data *data = ptr;
1563 	struct event_base *base = data->base;
1564 	struct event ev;
1565 	struct event ev2;
1566 	int event_count_active;
1567 	int event_count_virtual;
1568 	int event_count_added;
1569 	int event_count_active_virtual;
1570 	int event_count_active_added;
1571 	int event_count_virtual_added;
1572 	int event_count_active_added_virtual;
1573 
1574 	struct timeval qsec = {0, 100000};
1575 
1576 	event_assign(&ev, base, -1, EV_READ, event_selfarg_cb,
1577 	    event_self_cbarg());
1578 	event_assign(&ev2, base, -1, EV_READ, event_selfarg_cb,
1579 	    event_self_cbarg());
1580 
1581 	event_add(&ev, &qsec);
1582 	event_add(&ev2, &qsec);
1583 	event_del(&ev2);
1584 
1585 	event_count_active = event_base_get_max_events(base,
1586 	    EVENT_BASE_COUNT_ACTIVE, 0);
1587 	event_count_virtual = event_base_get_max_events(base,
1588 	    EVENT_BASE_COUNT_VIRTUAL, 0);
1589 	event_count_added = event_base_get_max_events(base,
1590 	    EVENT_BASE_COUNT_ADDED, 0);
1591 	event_count_active_virtual = event_base_get_max_events(base,
1592 	    EVENT_BASE_COUNT_ACTIVE | EVENT_BASE_COUNT_VIRTUAL, 0);
1593 	event_count_active_added = event_base_get_max_events(base,
1594 	    EVENT_BASE_COUNT_ACTIVE | EVENT_BASE_COUNT_ADDED, 0);
1595 	event_count_virtual_added = event_base_get_max_events(base,
1596 	    EVENT_BASE_COUNT_VIRTUAL | EVENT_BASE_COUNT_ADDED, 0);
1597 	event_count_active_added_virtual = event_base_get_max_events(base,
1598 	    EVENT_BASE_COUNT_ACTIVE |
1599 	    EVENT_BASE_COUNT_ADDED |
1600 	    EVENT_BASE_COUNT_VIRTUAL, 0);
1601 
1602 	tt_int_op(event_count_active, ==, 0);
1603 	tt_int_op(event_count_virtual, ==, 0);
1604 	/* libevent itself adds a timeout event, so the event_count is 4 here */
1605 	tt_int_op(event_count_added, ==, 4);
1606 	tt_int_op(event_count_active_virtual, ==, 0);
1607 	tt_int_op(event_count_active_added, ==, 4);
1608 	tt_int_op(event_count_virtual_added, ==, 4);
1609 	tt_int_op(event_count_active_added_virtual, ==, 4);
1610 
1611 	event_active(&ev, EV_READ, 1);
1612 	event_count_active = event_base_get_max_events(base,
1613 	    EVENT_BASE_COUNT_ACTIVE, 0);
1614 	event_count_virtual = event_base_get_max_events(base,
1615 	    EVENT_BASE_COUNT_VIRTUAL, 0);
1616 	event_count_added = event_base_get_max_events(base,
1617 	    EVENT_BASE_COUNT_ADDED, 0);
1618 	event_count_active_virtual = event_base_get_max_events(base,
1619 	    EVENT_BASE_COUNT_ACTIVE | EVENT_BASE_COUNT_VIRTUAL, 0);
1620 	event_count_active_added = event_base_get_max_events(base,
1621 	    EVENT_BASE_COUNT_ACTIVE | EVENT_BASE_COUNT_ADDED, 0);
1622 	event_count_virtual_added = event_base_get_max_events(base,
1623 	    EVENT_BASE_COUNT_VIRTUAL | EVENT_BASE_COUNT_ADDED, 0);
1624 	event_count_active_added_virtual = event_base_get_max_events(base,
1625 	    EVENT_BASE_COUNT_ACTIVE |
1626 	    EVENT_BASE_COUNT_ADDED |
1627 	    EVENT_BASE_COUNT_VIRTUAL, 0);
1628 
1629 	tt_int_op(event_count_active, ==, 1);
1630 	tt_int_op(event_count_virtual, ==, 0);
1631 	tt_int_op(event_count_added, ==, 4);
1632 	tt_int_op(event_count_active_virtual, ==, 1);
1633 	tt_int_op(event_count_active_added, ==, 5);
1634 	tt_int_op(event_count_virtual_added, ==, 4);
1635 	tt_int_op(event_count_active_added_virtual, ==, 5);
1636 
1637 	event_base_loop(base, 0);
1638 	event_count_active = event_base_get_max_events(base,
1639 	    EVENT_BASE_COUNT_ACTIVE, 1);
1640 	event_count_virtual = event_base_get_max_events(base,
1641 	    EVENT_BASE_COUNT_VIRTUAL, 1);
1642 	event_count_added = event_base_get_max_events(base,
1643 	    EVENT_BASE_COUNT_ADDED, 1);
1644 	event_count_active_virtual = event_base_get_max_events(base,
1645 	    EVENT_BASE_COUNT_ACTIVE | EVENT_BASE_COUNT_VIRTUAL, 0);
1646 	event_count_active_added = event_base_get_max_events(base,
1647 	    EVENT_BASE_COUNT_ACTIVE | EVENT_BASE_COUNT_ADDED, 0);
1648 	event_count_virtual_added = event_base_get_max_events(base,
1649 	    EVENT_BASE_COUNT_VIRTUAL | EVENT_BASE_COUNT_ADDED, 0);
1650 	event_count_active_added_virtual = event_base_get_max_events(base,
1651 	    EVENT_BASE_COUNT_ACTIVE |
1652 	    EVENT_BASE_COUNT_ADDED |
1653 	    EVENT_BASE_COUNT_VIRTUAL, 1);
1654 
1655 	tt_int_op(event_count_active, ==, 1);
1656 	tt_int_op(event_count_virtual, ==, 0);
1657 	tt_int_op(event_count_added, ==, 4);
1658 	tt_int_op(event_count_active_virtual, ==, 0);
1659 	tt_int_op(event_count_active_added, ==, 0);
1660 	tt_int_op(event_count_virtual_added, ==, 0);
1661 	tt_int_op(event_count_active_added_virtual, ==, 0);
1662 
1663 	event_count_active = event_base_get_max_events(base,
1664 	    EVENT_BASE_COUNT_ACTIVE, 0);
1665 	event_count_virtual = event_base_get_max_events(base,
1666 	    EVENT_BASE_COUNT_VIRTUAL, 0);
1667 	event_count_added = event_base_get_max_events(base,
1668 	    EVENT_BASE_COUNT_ADDED, 0);
1669 	tt_int_op(event_count_active, ==, 0);
1670 	tt_int_op(event_count_virtual, ==, 0);
1671 	tt_int_op(event_count_added, ==, 0);
1672 
1673 	event_base_add_virtual_(base);
1674 	event_count_active = event_base_get_max_events(base,
1675 	    EVENT_BASE_COUNT_ACTIVE, 0);
1676 	event_count_virtual = event_base_get_max_events(base,
1677 	    EVENT_BASE_COUNT_VIRTUAL, 0);
1678 	event_count_added = event_base_get_max_events(base,
1679 	    EVENT_BASE_COUNT_ADDED, 0);
1680 	event_count_active_virtual = event_base_get_max_events(base,
1681 	    EVENT_BASE_COUNT_ACTIVE | EVENT_BASE_COUNT_VIRTUAL, 0);
1682 	event_count_active_added = event_base_get_max_events(base,
1683 	    EVENT_BASE_COUNT_ACTIVE | EVENT_BASE_COUNT_ADDED, 0);
1684 	event_count_virtual_added = event_base_get_max_events(base,
1685 	    EVENT_BASE_COUNT_VIRTUAL | EVENT_BASE_COUNT_ADDED, 0);
1686 	event_count_active_added_virtual = event_base_get_max_events(base,
1687 	    EVENT_BASE_COUNT_ACTIVE |
1688 	    EVENT_BASE_COUNT_ADDED |
1689 	    EVENT_BASE_COUNT_VIRTUAL, 0);
1690 
1691 	tt_int_op(event_count_active, ==, 0);
1692 	tt_int_op(event_count_virtual, ==, 1);
1693 	tt_int_op(event_count_added, ==, 0);
1694 	tt_int_op(event_count_active_virtual, ==, 1);
1695 	tt_int_op(event_count_active_added, ==, 0);
1696 	tt_int_op(event_count_virtual_added, ==, 1);
1697 	tt_int_op(event_count_active_added_virtual, ==, 1);
1698 
1699 end:
1700        ;
1701 }
1702 
1703 static void
1704 test_bad_assign(void *ptr)
1705 {
1706 	struct event ev;
1707 	int r;
1708 	/* READ|SIGNAL is not allowed */
1709 	r = event_assign(&ev, NULL, -1, EV_SIGNAL|EV_READ, dummy_read_cb, NULL);
1710 	tt_int_op(r,==,-1);
1711 
1712 end:
1713 	;
1714 }
1715 
1716 static int reentrant_cb_run = 0;
1717 
1718 static void
1719 bad_reentrant_run_loop_cb(evutil_socket_t fd, short what, void *ptr)
1720 {
1721 	struct event_base *base = ptr;
1722 	int r;
1723 	reentrant_cb_run = 1;
1724 	/* This reentrant call to event_base_loop should be detected and
1725 	 * should fail */
1726 	r = event_base_loop(base, 0);
1727 	tt_int_op(r, ==, -1);
1728 end:
1729 	;
1730 }
1731 
1732 static void
1733 test_bad_reentrant(void *ptr)
1734 {
1735 	struct basic_test_data *data = ptr;
1736 	struct event_base *base = data->base;
1737 	struct event ev;
1738 	int r;
1739 	event_assign(&ev, base, -1,
1740 	    0, bad_reentrant_run_loop_cb, base);
1741 
1742 	event_active(&ev, EV_WRITE, 1);
1743 	r = event_base_loop(base, 0);
1744 	tt_int_op(r, ==, 1);
1745 	tt_int_op(reentrant_cb_run, ==, 1);
1746 end:
1747 	;
1748 }
1749 
1750 static int n_write_a_byte_cb=0;
1751 static int n_read_and_drain_cb=0;
1752 static int n_activate_other_event_cb=0;
1753 static void
1754 write_a_byte_cb(evutil_socket_t fd, short what, void *arg)
1755 {
1756 	char buf[] = "x";
1757 	if (write(fd, buf, 1) == 1)
1758 		++n_write_a_byte_cb;
1759 }
1760 static void
1761 read_and_drain_cb(evutil_socket_t fd, short what, void *arg)
1762 {
1763 	char buf[128];
1764 	int n;
1765 	++n_read_and_drain_cb;
1766 	while ((n = read(fd, buf, sizeof(buf))) > 0)
1767 		;
1768 }
1769 
1770 static void
1771 activate_other_event_cb(evutil_socket_t fd, short what, void *other_)
1772 {
1773 	struct event *ev_activate = other_;
1774 	++n_activate_other_event_cb;
1775 	event_active_later_(ev_activate, EV_READ);
1776 }
1777 
1778 static void
1779 test_active_later(void *ptr)
1780 {
1781 	struct basic_test_data *data = ptr;
1782 	struct event *ev1 = NULL, *ev2 = NULL;
1783 	struct event ev3, ev4;
1784 	struct timeval qsec = {0, 100000};
1785 	ev1 = event_new(data->base, data->pair[0], EV_READ|EV_PERSIST, read_and_drain_cb, NULL);
1786 	ev2 = event_new(data->base, data->pair[1], EV_WRITE|EV_PERSIST, write_a_byte_cb, NULL);
1787 	event_assign(&ev3, data->base, -1, 0, activate_other_event_cb, &ev4);
1788 	event_assign(&ev4, data->base, -1, 0, activate_other_event_cb, &ev3);
1789 	event_add(ev1, NULL);
1790 	event_add(ev2, NULL);
1791 	event_active_later_(&ev3, EV_READ);
1792 
1793 	event_base_loopexit(data->base, &qsec);
1794 
1795 	event_base_loop(data->base, 0);
1796 
1797 	TT_BLATHER(("%d write calls, %d read calls, %d activate-other calls.",
1798 		n_write_a_byte_cb, n_read_and_drain_cb, n_activate_other_event_cb));
1799 	event_del(&ev3);
1800 	event_del(&ev4);
1801 
1802 	tt_int_op(n_write_a_byte_cb, ==, n_activate_other_event_cb);
1803 	tt_int_op(n_write_a_byte_cb, >, 100);
1804 	tt_int_op(n_read_and_drain_cb, >, 100);
1805 	tt_int_op(n_activate_other_event_cb, >, 100);
1806 
1807 	event_active_later_(&ev4, EV_READ);
1808 	event_active(&ev4, EV_READ, 1); /* This should make the event
1809 					   active immediately. */
1810 	tt_assert((ev4.ev_flags & EVLIST_ACTIVE) != 0);
1811 	tt_assert((ev4.ev_flags & EVLIST_ACTIVE_LATER) == 0);
1812 
1813 	/* Now leave this one around, so that event_free sees it and removes
1814 	 * it. */
1815 	event_active_later_(&ev3, EV_READ);
1816 	event_base_assert_ok_(data->base);
1817 
1818 end:
1819 	if (ev1)
1820 		event_free(ev1);
1821 	if (ev2)
1822 		event_free(ev2);
1823 
1824 	event_base_free(data->base);
1825 	data->base = NULL;
1826 }
1827 
1828 
1829 static void incr_arg_cb(evutil_socket_t fd, short what, void *arg)
1830 {
1831 	int *intptr = arg;
1832 	(void) fd; (void) what;
1833 	++*intptr;
1834 }
1835 static void remove_timers_cb(evutil_socket_t fd, short what, void *arg)
1836 {
1837 	struct event **ep = arg;
1838 	(void) fd; (void) what;
1839 	event_remove_timer(ep[0]);
1840 	event_remove_timer(ep[1]);
1841 }
1842 static void send_a_byte_cb(evutil_socket_t fd, short what, void *arg)
1843 {
1844 	evutil_socket_t *sockp = arg;
1845 	(void) fd; (void) what;
1846 	(void) write(*sockp, "A", 1);
1847 }
1848 struct read_not_timeout_param
1849 {
1850 	struct event **ev;
1851 	int events;
1852 	int count;
1853 };
1854 static void read_not_timeout_cb(evutil_socket_t fd, short what, void *arg)
1855 {
1856 	struct read_not_timeout_param *rntp = arg;
1857 	char c;
1858 	ev_ssize_t n;
1859 	(void) fd; (void) what;
1860 	n = read(fd, &c, 1);
1861 	tt_int_op(n, ==, 1);
1862 	rntp->events |= what;
1863 	++rntp->count;
1864 	if(2 == rntp->count) event_del(rntp->ev[0]);
1865 end:
1866 	;
1867 }
1868 
1869 static void
1870 test_event_remove_timeout(void *ptr)
1871 {
1872 	struct basic_test_data *data = ptr;
1873 	struct event_base *base = data->base;
1874 	struct event *ev[5];
1875 	int ev1_fired=0;
1876 	struct timeval ms25 = { 0, 25*1000 },
1877 		ms40 = { 0, 40*1000 },
1878 		ms75 = { 0, 75*1000 },
1879 		ms125 = { 0, 125*1000 };
1880 	struct read_not_timeout_param rntp = { ev, 0, 0 };
1881 
1882 	event_base_assert_ok_(base);
1883 
1884 	ev[0] = event_new(base, data->pair[0], EV_READ|EV_PERSIST,
1885 	    read_not_timeout_cb, &rntp);
1886 	ev[1] = evtimer_new(base, incr_arg_cb, &ev1_fired);
1887 	ev[2] = evtimer_new(base, remove_timers_cb, ev);
1888 	ev[3] = evtimer_new(base, send_a_byte_cb, &data->pair[1]);
1889 	ev[4] = evtimer_new(base, send_a_byte_cb, &data->pair[1]);
1890 	tt_assert(base);
1891 	event_add(ev[2], &ms25); /* remove timers */
1892 	event_add(ev[4], &ms40); /* write to test if timer re-activates */
1893 	event_add(ev[0], &ms75); /* read */
1894 	event_add(ev[1], &ms75); /* timer */
1895 	event_add(ev[3], &ms125); /* timeout. */
1896 	event_base_assert_ok_(base);
1897 
1898 	event_base_dispatch(base);
1899 
1900 	tt_int_op(ev1_fired, ==, 0);
1901 	tt_int_op(rntp.events, ==, EV_READ);
1902 
1903 	event_base_assert_ok_(base);
1904 end:
1905 	event_free(ev[0]);
1906 	event_free(ev[1]);
1907 	event_free(ev[2]);
1908 	event_free(ev[3]);
1909 	event_free(ev[4]);
1910 }
1911 
1912 static void
1913 test_event_base_new(void *ptr)
1914 {
1915 	struct basic_test_data *data = ptr;
1916 	struct event_base *base = 0;
1917 	struct event ev1;
1918 	struct basic_cb_args args;
1919 
1920 	int towrite = (int)strlen(TEST1)+1;
1921 	int len = write(data->pair[0], TEST1, towrite);
1922 
1923 	if (len < 0)
1924 		tt_abort_perror("initial write");
1925 	else if (len != towrite)
1926 		tt_abort_printf(("initial write fell short (%d of %d bytes)",
1927 				 len, towrite));
1928 
1929 	if (shutdown(data->pair[0], EVUTIL_SHUT_WR))
1930 		tt_abort_perror("initial write shutdown");
1931 
1932 	base = event_base_new();
1933 	if (!base)
1934 		tt_abort_msg("failed to create event base");
1935 
1936 	args.eb = base;
1937 	args.ev = &ev1;
1938 	args.callcount = 0;
1939 	event_assign(&ev1, base, data->pair[1],
1940 		     EV_READ|EV_PERSIST, basic_read_cb, &args);
1941 
1942 	if (event_add(&ev1, NULL))
1943 		tt_abort_perror("initial event_add");
1944 
1945 	if (event_base_loop(base, 0))
1946 		tt_abort_msg("unsuccessful exit from event loop");
1947 
1948 end:
1949 	if (base)
1950 		event_base_free(base);
1951 }
1952 
1953 static void
1954 test_loopexit(void)
1955 {
1956 	struct timeval tv, tv_start, tv_end;
1957 	struct event ev;
1958 
1959 	setup_test("Loop exit: ");
1960 
1961 	tv.tv_usec = 0;
1962 	tv.tv_sec = 60*60*24;
1963 	evtimer_set(&ev, timeout_cb, NULL);
1964 	evtimer_add(&ev, &tv);
1965 
1966 	tv.tv_usec = 300*1000;
1967 	tv.tv_sec = 0;
1968 	event_loopexit(&tv);
1969 
1970 	evutil_gettimeofday(&tv_start, NULL);
1971 	event_dispatch();
1972 	evutil_gettimeofday(&tv_end, NULL);
1973 
1974 	evtimer_del(&ev);
1975 
1976 	tt_assert(event_base_got_exit(global_base));
1977 	tt_assert(!event_base_got_break(global_base));
1978 
1979 	test_timeval_diff_eq(&tv_start, &tv_end, 300);
1980 
1981 	test_ok = 1;
1982 end:
1983 	cleanup_test();
1984 }
1985 
1986 static void
1987 test_loopexit_multiple(void)
1988 {
1989 	struct timeval tv, tv_start, tv_end;
1990 	struct event_base *base;
1991 
1992 	setup_test("Loop Multiple exit: ");
1993 
1994 	base = event_base_new();
1995 
1996 	tv.tv_usec = 200*1000;
1997 	tv.tv_sec = 0;
1998 	event_base_loopexit(base, &tv);
1999 
2000 	tv.tv_usec = 0;
2001 	tv.tv_sec = 3;
2002 	event_base_loopexit(base, &tv);
2003 
2004 	evutil_gettimeofday(&tv_start, NULL);
2005 	event_base_dispatch(base);
2006 	evutil_gettimeofday(&tv_end, NULL);
2007 
2008 	tt_assert(event_base_got_exit(base));
2009 	tt_assert(!event_base_got_break(base));
2010 
2011 	event_base_free(base);
2012 
2013 	test_timeval_diff_eq(&tv_start, &tv_end, 200);
2014 
2015 	test_ok = 1;
2016 
2017 end:
2018 	cleanup_test();
2019 }
2020 
2021 static void
2022 break_cb(evutil_socket_t fd, short events, void *arg)
2023 {
2024 	test_ok = 1;
2025 	event_loopbreak();
2026 }
2027 
2028 static void
2029 fail_cb(evutil_socket_t fd, short events, void *arg)
2030 {
2031 	test_ok = 0;
2032 }
2033 
2034 static void
2035 test_loopbreak(void)
2036 {
2037 	struct event ev1, ev2;
2038 	struct timeval tv;
2039 
2040 	setup_test("Loop break: ");
2041 
2042 	tv.tv_sec = 0;
2043 	tv.tv_usec = 0;
2044 	evtimer_set(&ev1, break_cb, NULL);
2045 	evtimer_add(&ev1, &tv);
2046 	evtimer_set(&ev2, fail_cb, NULL);
2047 	evtimer_add(&ev2, &tv);
2048 
2049 	event_dispatch();
2050 
2051 	tt_assert(!event_base_got_exit(global_base));
2052 	tt_assert(event_base_got_break(global_base));
2053 
2054 	evtimer_del(&ev1);
2055 	evtimer_del(&ev2);
2056 
2057 end:
2058 	cleanup_test();
2059 }
2060 
2061 static struct event *readd_test_event_last_added = NULL;
2062 static void
2063 re_add_read_cb(evutil_socket_t fd, short event, void *arg)
2064 {
2065 	char buf[256];
2066 	struct event *ev_other = arg;
2067 	ev_ssize_t n_read;
2068 
2069 	readd_test_event_last_added = ev_other;
2070 
2071 	n_read = read(fd, buf, sizeof(buf));
2072 
2073 	if (n_read < 0) {
2074 		tt_fail_perror("read");
2075 		event_base_loopbreak(event_get_base(ev_other));
2076 		return;
2077 	} else {
2078 		event_add(ev_other, NULL);
2079 		++test_ok;
2080 	}
2081 }
2082 
2083 static void
2084 test_nonpersist_readd(void)
2085 {
2086 	struct event ev1, ev2;
2087 
2088 	setup_test("Re-add nonpersistent events: ");
2089 	event_set(&ev1, pair[0], EV_READ, re_add_read_cb, &ev2);
2090 	event_set(&ev2, pair[1], EV_READ, re_add_read_cb, &ev1);
2091 
2092 	if (write(pair[0], "Hello", 5) < 0) {
2093 		tt_fail_perror("write(pair[0])");
2094 	}
2095 
2096 	if (write(pair[1], "Hello", 5) < 0) {
2097 		tt_fail_perror("write(pair[1])\n");
2098 	}
2099 
2100 	if (event_add(&ev1, NULL) == -1 ||
2101 	    event_add(&ev2, NULL) == -1) {
2102 		test_ok = 0;
2103 	}
2104 	if (test_ok != 0)
2105 		exit(1);
2106 	event_loop(EVLOOP_ONCE);
2107 	if (test_ok != 2)
2108 		exit(1);
2109 	/* At this point, we executed both callbacks.  Whichever one got
2110 	 * called first added the second, but the second then immediately got
2111 	 * deleted before its callback was called.  At this point, though, it
2112 	 * re-added the first.
2113 	 */
2114 	if (!readd_test_event_last_added) {
2115 		test_ok = 0;
2116 	} else if (readd_test_event_last_added == &ev1) {
2117 		if (!event_pending(&ev1, EV_READ, NULL) ||
2118 		    event_pending(&ev2, EV_READ, NULL))
2119 			test_ok = 0;
2120 	} else {
2121 		if (event_pending(&ev1, EV_READ, NULL) ||
2122 		    !event_pending(&ev2, EV_READ, NULL))
2123 			test_ok = 0;
2124 	}
2125 
2126 	event_del(&ev1);
2127 	event_del(&ev2);
2128 
2129 	cleanup_test();
2130 }
2131 
2132 struct test_pri_event {
2133 	struct event ev;
2134 	int count;
2135 };
2136 
2137 static void
2138 test_priorities_cb(evutil_socket_t fd, short what, void *arg)
2139 {
2140 	struct test_pri_event *pri = arg;
2141 	struct timeval tv;
2142 
2143 	if (pri->count == 3) {
2144 		event_loopexit(NULL);
2145 		return;
2146 	}
2147 
2148 	pri->count++;
2149 
2150 	evutil_timerclear(&tv);
2151 	event_add(&pri->ev, &tv);
2152 }
2153 
2154 static void
2155 test_priorities_impl(int npriorities)
2156 {
2157 	struct test_pri_event one, two;
2158 	struct timeval tv;
2159 
2160 	TT_BLATHER(("Testing Priorities %d: ", npriorities));
2161 
2162 	event_base_priority_init(global_base, npriorities);
2163 
2164 	memset(&one, 0, sizeof(one));
2165 	memset(&two, 0, sizeof(two));
2166 
2167 	timeout_set(&one.ev, test_priorities_cb, &one);
2168 	if (event_priority_set(&one.ev, 0) == -1) {
2169 		fprintf(stderr, "%s: failed to set priority", __func__);
2170 		exit(1);
2171 	}
2172 
2173 	timeout_set(&two.ev, test_priorities_cb, &two);
2174 	if (event_priority_set(&two.ev, npriorities - 1) == -1) {
2175 		fprintf(stderr, "%s: failed to set priority", __func__);
2176 		exit(1);
2177 	}
2178 
2179 	evutil_timerclear(&tv);
2180 
2181 	if (event_add(&one.ev, &tv) == -1)
2182 		exit(1);
2183 	if (event_add(&two.ev, &tv) == -1)
2184 		exit(1);
2185 
2186 	event_dispatch();
2187 
2188 	event_del(&one.ev);
2189 	event_del(&two.ev);
2190 
2191 	if (npriorities == 1) {
2192 		if (one.count == 3 && two.count == 3)
2193 			test_ok = 1;
2194 	} else if (npriorities == 2) {
2195 		/* Two is called once because event_loopexit is priority 1 */
2196 		if (one.count == 3 && two.count == 1)
2197 			test_ok = 1;
2198 	} else {
2199 		if (one.count == 3 && two.count == 0)
2200 			test_ok = 1;
2201 	}
2202 }
2203 
2204 static void
2205 test_priorities(void)
2206 {
2207 	test_priorities_impl(1);
2208 	if (test_ok)
2209 		test_priorities_impl(2);
2210 	if (test_ok)
2211 		test_priorities_impl(3);
2212 }
2213 
2214 /* priority-active-inversion: activate a higher-priority event, and make sure
2215  * it keeps us from running a lower-priority event first. */
2216 static int n_pai_calls = 0;
2217 static struct event pai_events[3];
2218 
2219 static void
2220 prio_active_inversion_cb(evutil_socket_t fd, short what, void *arg)
2221 {
2222 	int *call_order = arg;
2223 	*call_order = n_pai_calls++;
2224 	if (n_pai_calls == 1) {
2225 		/* This should activate later, even though it shares a
2226 		   priority with us. */
2227 		event_active(&pai_events[1], EV_READ, 1);
2228 		/* This should activate next, since its priority is higher,
2229 		   even though we activated it second. */
2230 		event_active(&pai_events[2], EV_TIMEOUT, 1);
2231 	}
2232 }
2233 
2234 static void
2235 test_priority_active_inversion(void *data_)
2236 {
2237 	struct basic_test_data *data = data_;
2238 	struct event_base *base = data->base;
2239 	int call_order[3];
2240 	int i;
2241 	tt_int_op(event_base_priority_init(base, 8), ==, 0);
2242 
2243 	n_pai_calls = 0;
2244 	memset(call_order, 0, sizeof(call_order));
2245 
2246 	for (i=0;i<3;++i) {
2247 		event_assign(&pai_events[i], data->base, -1, 0,
2248 		    prio_active_inversion_cb, &call_order[i]);
2249 	}
2250 
2251 	event_priority_set(&pai_events[0], 4);
2252 	event_priority_set(&pai_events[1], 4);
2253 	event_priority_set(&pai_events[2], 0);
2254 
2255 	event_active(&pai_events[0], EV_WRITE, 1);
2256 
2257 	event_base_dispatch(base);
2258 	tt_int_op(n_pai_calls, ==, 3);
2259 	tt_int_op(call_order[0], ==, 0);
2260 	tt_int_op(call_order[1], ==, 2);
2261 	tt_int_op(call_order[2], ==, 1);
2262 end:
2263 	;
2264 }
2265 
2266 
2267 static void
2268 test_multiple_cb(evutil_socket_t fd, short event, void *arg)
2269 {
2270 	if (event & EV_READ)
2271 		test_ok |= 1;
2272 	else if (event & EV_WRITE)
2273 		test_ok |= 2;
2274 }
2275 
2276 static void
2277 test_multiple_events_for_same_fd(void)
2278 {
2279    struct event e1, e2;
2280 
2281    setup_test("Multiple events for same fd: ");
2282 
2283    event_set(&e1, pair[0], EV_READ, test_multiple_cb, NULL);
2284    event_add(&e1, NULL);
2285    event_set(&e2, pair[0], EV_WRITE, test_multiple_cb, NULL);
2286    event_add(&e2, NULL);
2287    event_loop(EVLOOP_ONCE);
2288    event_del(&e2);
2289 
2290    if (write(pair[1], TEST1, strlen(TEST1)+1) < 0) {
2291 	   tt_fail_perror("write");
2292    }
2293 
2294    event_loop(EVLOOP_ONCE);
2295    event_del(&e1);
2296 
2297    if (test_ok != 3)
2298 	   test_ok = 0;
2299 
2300    cleanup_test();
2301 }
2302 
2303 int evtag_decode_int(ev_uint32_t *pnumber, struct evbuffer *evbuf);
2304 int evtag_decode_int64(ev_uint64_t *pnumber, struct evbuffer *evbuf);
2305 int evtag_encode_tag(struct evbuffer *evbuf, ev_uint32_t number);
2306 int evtag_decode_tag(ev_uint32_t *pnumber, struct evbuffer *evbuf);
2307 
2308 static void
2309 read_once_cb(evutil_socket_t fd, short event, void *arg)
2310 {
2311 	char buf[256];
2312 	int len;
2313 
2314 	len = read(fd, buf, sizeof(buf));
2315 
2316 	if (called) {
2317 		test_ok = 0;
2318 	} else if (len) {
2319 		/* Assumes global pair[0] can be used for writing */
2320 		if (write(pair[0], TEST1, strlen(TEST1)+1) < 0) {
2321 			tt_fail_perror("write");
2322 			test_ok = 0;
2323 		} else {
2324 			test_ok = 1;
2325 		}
2326 	}
2327 
2328 	called++;
2329 }
2330 
2331 static void
2332 test_want_only_once(void)
2333 {
2334 	struct event ev;
2335 	struct timeval tv;
2336 
2337 	/* Very simple read test */
2338 	setup_test("Want read only once: ");
2339 
2340 	if (write(pair[0], TEST1, strlen(TEST1)+1) < 0) {
2341 		tt_fail_perror("write");
2342 	}
2343 
2344 	/* Setup the loop termination */
2345 	evutil_timerclear(&tv);
2346 	tv.tv_usec = 300*1000;
2347 	event_loopexit(&tv);
2348 
2349 	event_set(&ev, pair[1], EV_READ, read_once_cb, &ev);
2350 	if (event_add(&ev, NULL) == -1)
2351 		exit(1);
2352 	event_dispatch();
2353 
2354 	cleanup_test();
2355 }
2356 
2357 #define TEST_MAX_INT	6
2358 
2359 static void
2360 evtag_int_test(void *ptr)
2361 {
2362 	struct evbuffer *tmp = evbuffer_new();
2363 	ev_uint32_t integers[TEST_MAX_INT] = {
2364 		0xaf0, 0x1000, 0x1, 0xdeadbeef, 0x00, 0xbef000
2365 	};
2366 	ev_uint32_t integer;
2367 	ev_uint64_t big_int;
2368 	int i;
2369 
2370 	evtag_init();
2371 
2372 	for (i = 0; i < TEST_MAX_INT; i++) {
2373 		int oldlen, newlen;
2374 		oldlen = (int)EVBUFFER_LENGTH(tmp);
2375 		evtag_encode_int(tmp, integers[i]);
2376 		newlen = (int)EVBUFFER_LENGTH(tmp);
2377 		TT_BLATHER(("encoded 0x%08x with %d bytes",
2378 			(unsigned)integers[i], newlen - oldlen));
2379 		big_int = integers[i];
2380 		big_int *= 1000000000; /* 1 billion */
2381 		evtag_encode_int64(tmp, big_int);
2382 	}
2383 
2384 	for (i = 0; i < TEST_MAX_INT; i++) {
2385 		tt_int_op(evtag_decode_int(&integer, tmp), !=, -1);
2386 		tt_uint_op(integer, ==, integers[i]);
2387 		tt_int_op(evtag_decode_int64(&big_int, tmp), !=, -1);
2388 		tt_assert((big_int / 1000000000) == integers[i]);
2389 	}
2390 
2391 	tt_uint_op(EVBUFFER_LENGTH(tmp), ==, 0);
2392 end:
2393 	evbuffer_free(tmp);
2394 }
2395 
2396 static void
2397 evtag_fuzz(void *ptr)
2398 {
2399 	unsigned char buffer[4096];
2400 	struct evbuffer *tmp = evbuffer_new();
2401 	struct timeval tv;
2402 	int i, j;
2403 
2404 	int not_failed = 0;
2405 
2406 	evtag_init();
2407 
2408 	for (j = 0; j < 100; j++) {
2409 		for (i = 0; i < (int)sizeof(buffer); i++)
2410 			buffer[i] = test_weakrand();
2411 		evbuffer_drain(tmp, -1);
2412 		evbuffer_add(tmp, buffer, sizeof(buffer));
2413 
2414 		if (evtag_unmarshal_timeval(tmp, 0, &tv) != -1)
2415 			not_failed++;
2416 	}
2417 
2418 	/* The majority of decodes should fail */
2419 	tt_int_op(not_failed, <, 10);
2420 
2421 	/* Now insert some corruption into the tag length field */
2422 	evbuffer_drain(tmp, -1);
2423 	evutil_timerclear(&tv);
2424 	tv.tv_sec = 1;
2425 	evtag_marshal_timeval(tmp, 0, &tv);
2426 	evbuffer_add(tmp, buffer, sizeof(buffer));
2427 
2428 	((char *)EVBUFFER_DATA(tmp))[1] = '\xff';
2429 	if (evtag_unmarshal_timeval(tmp, 0, &tv) != -1) {
2430 		tt_abort_msg("evtag_unmarshal_timeval should have failed");
2431 	}
2432 
2433 end:
2434 	evbuffer_free(tmp);
2435 }
2436 
2437 static void
2438 evtag_tag_encoding(void *ptr)
2439 {
2440 	struct evbuffer *tmp = evbuffer_new();
2441 	ev_uint32_t integers[TEST_MAX_INT] = {
2442 		0xaf0, 0x1000, 0x1, 0xdeadbeef, 0x00, 0xbef000
2443 	};
2444 	ev_uint32_t integer;
2445 	int i;
2446 
2447 	evtag_init();
2448 
2449 	for (i = 0; i < TEST_MAX_INT; i++) {
2450 		int oldlen, newlen;
2451 		oldlen = (int)EVBUFFER_LENGTH(tmp);
2452 		evtag_encode_tag(tmp, integers[i]);
2453 		newlen = (int)EVBUFFER_LENGTH(tmp);
2454 		TT_BLATHER(("encoded 0x%08x with %d bytes",
2455 			(unsigned)integers[i], newlen - oldlen));
2456 	}
2457 
2458 	for (i = 0; i < TEST_MAX_INT; i++) {
2459 		tt_int_op(evtag_decode_tag(&integer, tmp), !=, -1);
2460 		tt_uint_op(integer, ==, integers[i]);
2461 	}
2462 
2463 	tt_uint_op(EVBUFFER_LENGTH(tmp), ==, 0);
2464 
2465 end:
2466 	evbuffer_free(tmp);
2467 }
2468 
2469 static void
2470 evtag_test_peek(void *ptr)
2471 {
2472 	struct evbuffer *tmp = evbuffer_new();
2473 	ev_uint32_t u32;
2474 
2475 	evtag_marshal_int(tmp, 30, 0);
2476 	evtag_marshal_string(tmp, 40, "Hello world");
2477 
2478 	tt_int_op(evtag_peek(tmp, &u32), ==, 1);
2479 	tt_int_op(u32, ==, 30);
2480 	tt_int_op(evtag_peek_length(tmp, &u32), ==, 0);
2481 	tt_int_op(u32, ==, 1+1+1);
2482 	tt_int_op(evtag_consume(tmp), ==, 0);
2483 
2484 	tt_int_op(evtag_peek(tmp, &u32), ==, 1);
2485 	tt_int_op(u32, ==, 40);
2486 	tt_int_op(evtag_peek_length(tmp, &u32), ==, 0);
2487 	tt_int_op(u32, ==, 1+1+11);
2488 	tt_int_op(evtag_payload_length(tmp, &u32), ==, 0);
2489 	tt_int_op(u32, ==, 11);
2490 
2491 end:
2492 	evbuffer_free(tmp);
2493 }
2494 
2495 
2496 static void
2497 test_methods(void *ptr)
2498 {
2499 	const char **methods = event_get_supported_methods();
2500 	struct event_config *cfg = NULL;
2501 	struct event_base *base = NULL;
2502 	const char *backend;
2503 	int n_methods = 0;
2504 
2505 	tt_assert(methods);
2506 
2507 	backend = methods[0];
2508 	while (*methods != NULL) {
2509 		TT_BLATHER(("Support method: %s", *methods));
2510 		++methods;
2511 		++n_methods;
2512 	}
2513 
2514 	cfg = event_config_new();
2515 	assert(cfg != NULL);
2516 
2517 	tt_int_op(event_config_avoid_method(cfg, backend), ==, 0);
2518 	event_config_set_flag(cfg, EVENT_BASE_FLAG_IGNORE_ENV);
2519 
2520 	base = event_base_new_with_config(cfg);
2521 	if (n_methods > 1) {
2522 		tt_assert(base);
2523 		tt_str_op(backend, !=, event_base_get_method(base));
2524 	} else {
2525 		tt_assert(base == NULL);
2526 	}
2527 
2528 end:
2529 	if (base)
2530 		event_base_free(base);
2531 	if (cfg)
2532 		event_config_free(cfg);
2533 }
2534 
2535 static void
2536 test_version(void *arg)
2537 {
2538 	const char *vstr;
2539 	ev_uint32_t vint;
2540 	int major, minor, patch, n;
2541 
2542 	vstr = event_get_version();
2543 	vint = event_get_version_number();
2544 
2545 	tt_assert(vstr);
2546 	tt_assert(vint);
2547 
2548 	tt_str_op(vstr, ==, LIBEVENT_VERSION);
2549 	tt_int_op(vint, ==, LIBEVENT_VERSION_NUMBER);
2550 
2551 	n = sscanf(vstr, "%d.%d.%d", &major, &minor, &patch);
2552 	tt_assert(3 == n);
2553 	tt_int_op((vint&0xffffff00), ==, ((major<<24)|(minor<<16)|(patch<<8)));
2554 end:
2555 	;
2556 }
2557 
2558 static void
2559 test_base_features(void *arg)
2560 {
2561 	struct event_base *base = NULL;
2562 	struct event_config *cfg = NULL;
2563 
2564 	cfg = event_config_new();
2565 
2566 	tt_assert(0 == event_config_require_features(cfg, EV_FEATURE_ET));
2567 
2568 	base = event_base_new_with_config(cfg);
2569 	if (base) {
2570 		tt_int_op(EV_FEATURE_ET, ==,
2571 		    event_base_get_features(base) & EV_FEATURE_ET);
2572 	} else {
2573 		base = event_base_new();
2574 		tt_int_op(0, ==, event_base_get_features(base) & EV_FEATURE_ET);
2575 	}
2576 
2577 end:
2578 	if (base)
2579 		event_base_free(base);
2580 	if (cfg)
2581 		event_config_free(cfg);
2582 }
2583 
2584 #ifdef EVENT__HAVE_SETENV
2585 #define SETENV_OK
2586 #elif !defined(EVENT__HAVE_SETENV) && defined(EVENT__HAVE_PUTENV)
2587 static void setenv(const char *k, const char *v, int o_)
2588 {
2589 	char b[256];
2590 	evutil_snprintf(b, sizeof(b), "%s=%s",k,v);
2591 	putenv(b);
2592 }
2593 #define SETENV_OK
2594 #endif
2595 
2596 #ifdef EVENT__HAVE_UNSETENV
2597 #define UNSETENV_OK
2598 #elif !defined(EVENT__HAVE_UNSETENV) && defined(EVENT__HAVE_PUTENV)
2599 static void unsetenv(const char *k)
2600 {
2601 	char b[256];
2602 	evutil_snprintf(b, sizeof(b), "%s=",k);
2603 	putenv(b);
2604 }
2605 #define UNSETENV_OK
2606 #endif
2607 
2608 #if defined(SETENV_OK) && defined(UNSETENV_OK)
2609 static void
2610 methodname_to_envvar(const char *mname, char *buf, size_t buflen)
2611 {
2612 	char *cp;
2613 	evutil_snprintf(buf, buflen, "EVENT_NO%s", mname);
2614 	for (cp = buf; *cp; ++cp) {
2615 		*cp = EVUTIL_TOUPPER_(*cp);
2616 	}
2617 }
2618 #endif
2619 
2620 static void
2621 test_base_environ(void *arg)
2622 {
2623 	struct event_base *base = NULL;
2624 	struct event_config *cfg = NULL;
2625 
2626 #if defined(SETENV_OK) && defined(UNSETENV_OK)
2627 	const char **basenames;
2628 	int i, n_methods=0;
2629 	char varbuf[128];
2630 	const char *defaultname, *ignoreenvname;
2631 
2632 	/* See if unsetenv works before we rely on it. */
2633 	setenv("EVENT_NOWAFFLES", "1", 1);
2634 	unsetenv("EVENT_NOWAFFLES");
2635 	if (getenv("EVENT_NOWAFFLES") != NULL) {
2636 #ifndef EVENT__HAVE_UNSETENV
2637 		TT_DECLARE("NOTE", ("Can't fake unsetenv; skipping test"));
2638 #else
2639 		TT_DECLARE("NOTE", ("unsetenv doesn't work; skipping test"));
2640 #endif
2641 		tt_skip();
2642 	}
2643 
2644 	basenames = event_get_supported_methods();
2645 	for (i = 0; basenames[i]; ++i) {
2646 		methodname_to_envvar(basenames[i], varbuf, sizeof(varbuf));
2647 		unsetenv(varbuf);
2648 		++n_methods;
2649 	}
2650 
2651 	base = event_base_new();
2652 	tt_assert(base);
2653 
2654 	defaultname = event_base_get_method(base);
2655 	TT_BLATHER(("default is <%s>", defaultname));
2656 	event_base_free(base);
2657 	base = NULL;
2658 
2659 	/* Can we disable the method with EVENT_NOfoo ? */
2660 	if (!strcmp(defaultname, "epoll (with changelist)")) {
2661  		setenv("EVENT_NOEPOLL", "1", 1);
2662 		ignoreenvname = "epoll";
2663 	} else {
2664 		methodname_to_envvar(defaultname, varbuf, sizeof(varbuf));
2665 		setenv(varbuf, "1", 1);
2666 		ignoreenvname = defaultname;
2667 	}
2668 
2669 	/* Use an empty cfg rather than NULL so a failure doesn't exit() */
2670 	cfg = event_config_new();
2671 	base = event_base_new_with_config(cfg);
2672 	event_config_free(cfg);
2673 	cfg = NULL;
2674 	if (n_methods == 1) {
2675 		tt_assert(!base);
2676 	} else {
2677 		tt_assert(base);
2678 		tt_str_op(defaultname, !=, event_base_get_method(base));
2679 		event_base_free(base);
2680 		base = NULL;
2681 	}
2682 
2683 	/* Can we disable looking at the environment with IGNORE_ENV ? */
2684 	cfg = event_config_new();
2685 	event_config_set_flag(cfg, EVENT_BASE_FLAG_IGNORE_ENV);
2686 	base = event_base_new_with_config(cfg);
2687 	tt_assert(base);
2688 	tt_str_op(ignoreenvname, ==, event_base_get_method(base));
2689 #else
2690 	tt_skip();
2691 #endif
2692 
2693 end:
2694 	if (base)
2695 		event_base_free(base);
2696 	if (cfg)
2697 		event_config_free(cfg);
2698 }
2699 
2700 static void
2701 read_called_once_cb(evutil_socket_t fd, short event, void *arg)
2702 {
2703 	tt_int_op(event, ==, EV_READ);
2704 	called += 1;
2705 end:
2706 	;
2707 }
2708 
2709 static void
2710 timeout_called_once_cb(evutil_socket_t fd, short event, void *arg)
2711 {
2712 	tt_int_op(event, ==, EV_TIMEOUT);
2713 	called += 100;
2714 end:
2715 	;
2716 }
2717 
2718 static void
2719 immediate_called_twice_cb(evutil_socket_t fd, short event, void *arg)
2720 {
2721 	tt_int_op(event, ==, EV_TIMEOUT);
2722 	called += 1000;
2723 end:
2724 	;
2725 }
2726 
2727 static void
2728 test_event_once(void *ptr)
2729 {
2730 	struct basic_test_data *data = ptr;
2731 	struct timeval tv;
2732 	int r;
2733 
2734 	tv.tv_sec = 0;
2735 	tv.tv_usec = 50*1000;
2736 	called = 0;
2737 	r = event_base_once(data->base, data->pair[0], EV_READ,
2738 	    read_called_once_cb, NULL, NULL);
2739 	tt_int_op(r, ==, 0);
2740 	r = event_base_once(data->base, -1, EV_TIMEOUT,
2741 	    timeout_called_once_cb, NULL, &tv);
2742 	tt_int_op(r, ==, 0);
2743 	r = event_base_once(data->base, -1, 0, NULL, NULL, NULL);
2744 	tt_int_op(r, <, 0);
2745 	r = event_base_once(data->base, -1, EV_TIMEOUT,
2746 	    immediate_called_twice_cb, NULL, NULL);
2747 	tt_int_op(r, ==, 0);
2748 	tv.tv_sec = 0;
2749 	tv.tv_usec = 0;
2750 	r = event_base_once(data->base, -1, EV_TIMEOUT,
2751 	    immediate_called_twice_cb, NULL, &tv);
2752 	tt_int_op(r, ==, 0);
2753 
2754 	if (write(data->pair[1], TEST1, strlen(TEST1)+1) < 0) {
2755 		tt_fail_perror("write");
2756 	}
2757 
2758 	shutdown(data->pair[1], EVUTIL_SHUT_WR);
2759 
2760 	event_base_dispatch(data->base);
2761 
2762 	tt_int_op(called, ==, 2101);
2763 end:
2764 	;
2765 }
2766 
2767 static void
2768 test_event_once_never(void *ptr)
2769 {
2770 	struct basic_test_data *data = ptr;
2771 	struct timeval tv;
2772 
2773 	/* Have one trigger in 10 seconds (don't worry, because) */
2774 	tv.tv_sec = 10;
2775 	tv.tv_usec = 0;
2776 	called = 0;
2777 	event_base_once(data->base, -1, EV_TIMEOUT,
2778 	    timeout_called_once_cb, NULL, &tv);
2779 
2780 	/* But shut down the base in 75 msec. */
2781 	tv.tv_sec = 0;
2782 	tv.tv_usec = 75*1000;
2783 	event_base_loopexit(data->base, &tv);
2784 
2785 	event_base_dispatch(data->base);
2786 
2787 	tt_int_op(called, ==, 0);
2788 end:
2789 	;
2790 }
2791 
2792 static void
2793 test_event_pending(void *ptr)
2794 {
2795 	struct basic_test_data *data = ptr;
2796 	struct event *r=NULL, *w=NULL, *t=NULL;
2797 	struct timeval tv, now, tv2;
2798 
2799 	tv.tv_sec = 0;
2800 	tv.tv_usec = 500 * 1000;
2801 	r = event_new(data->base, data->pair[0], EV_READ, simple_read_cb,
2802 	    NULL);
2803 	w = event_new(data->base, data->pair[1], EV_WRITE, simple_write_cb,
2804 	    NULL);
2805 	t = evtimer_new(data->base, timeout_cb, NULL);
2806 
2807 	tt_assert(r);
2808 	tt_assert(w);
2809 	tt_assert(t);
2810 
2811 	evutil_gettimeofday(&now, NULL);
2812 	event_add(r, NULL);
2813 	event_add(t, &tv);
2814 
2815 	tt_assert( event_pending(r, EV_READ, NULL));
2816 	tt_assert(!event_pending(w, EV_WRITE, NULL));
2817 	tt_assert(!event_pending(r, EV_WRITE, NULL));
2818 	tt_assert( event_pending(r, EV_READ|EV_WRITE, NULL));
2819 	tt_assert(!event_pending(r, EV_TIMEOUT, NULL));
2820 	tt_assert( event_pending(t, EV_TIMEOUT, NULL));
2821 	tt_assert( event_pending(t, EV_TIMEOUT, &tv2));
2822 
2823 	tt_assert(evutil_timercmp(&tv2, &now, >));
2824 
2825 	test_timeval_diff_eq(&now, &tv2, 500);
2826 
2827 end:
2828 	if (r) {
2829 		event_del(r);
2830 		event_free(r);
2831 	}
2832 	if (w) {
2833 		event_del(w);
2834 		event_free(w);
2835 	}
2836 	if (t) {
2837 		event_del(t);
2838 		event_free(t);
2839 	}
2840 }
2841 
2842 static void
2843 dfd_cb(evutil_socket_t fd, short e, void *data)
2844 {
2845 	*(int*)data = (int)e;
2846 }
2847 
2848 static void
2849 test_event_closed_fd_poll(void *arg)
2850 {
2851 	struct timeval tv;
2852 	struct event *e;
2853 	struct basic_test_data *data = (struct basic_test_data *)arg;
2854 	int i = 0;
2855 
2856 	if (strcmp(event_base_get_method(data->base), "poll")) {
2857 		tinytest_set_test_skipped_();
2858 		return;
2859 	}
2860 
2861 	e = event_new(data->base, data->pair[0], EV_READ, dfd_cb, &i);
2862 	tt_assert(e);
2863 
2864 	tv.tv_sec = 0;
2865 	tv.tv_usec = 500 * 1000;
2866 	event_add(e, &tv);
2867 	tt_assert(event_pending(e, EV_READ, NULL));
2868 	close(data->pair[0]);
2869 	data->pair[0] = -1; /** avoids double-close */
2870 	event_base_loop(data->base, EVLOOP_ONCE);
2871 	tt_int_op(i, ==, EV_READ);
2872 
2873 end:
2874 	if (e) {
2875 		event_del(e);
2876 		event_free(e);
2877 	}
2878 }
2879 
2880 #ifndef _WIN32
2881 /* You can't do this test on windows, since dup2 doesn't work on sockets */
2882 
2883 /* Regression test for our workaround for a fun epoll/linux related bug
2884  * where fd2 = dup(fd1); add(fd2); close(fd2); dup2(fd1,fd2); add(fd2)
2885  * will get you an EEXIST */
2886 static void
2887 test_dup_fd(void *arg)
2888 {
2889 	struct basic_test_data *data = arg;
2890 	struct event_base *base = data->base;
2891 	struct event *ev1=NULL, *ev2=NULL;
2892 	int fd, dfd=-1;
2893 	int ev1_got, ev2_got;
2894 
2895 	tt_int_op(write(data->pair[0], "Hello world",
2896 		strlen("Hello world")), >, 0);
2897 	fd = data->pair[1];
2898 
2899 	dfd = dup(fd);
2900 	tt_int_op(dfd, >=, 0);
2901 
2902 	ev1 = event_new(base, fd, EV_READ|EV_PERSIST, dfd_cb, &ev1_got);
2903 	ev2 = event_new(base, dfd, EV_READ|EV_PERSIST, dfd_cb, &ev2_got);
2904 	ev1_got = ev2_got = 0;
2905 	event_add(ev1, NULL);
2906 	event_add(ev2, NULL);
2907 	event_base_loop(base, EVLOOP_ONCE);
2908 	tt_int_op(ev1_got, ==, EV_READ);
2909 	tt_int_op(ev2_got, ==, EV_READ);
2910 
2911 	/* Now close and delete dfd then dispatch.  We need to do the
2912 	 * dispatch here so that when we add it later, we think there
2913 	 * was an intermediate delete. */
2914 	close(dfd);
2915 	event_del(ev2);
2916 	ev1_got = ev2_got = 0;
2917 	event_base_loop(base, EVLOOP_ONCE);
2918 	tt_want_int_op(ev1_got, ==, EV_READ);
2919 	tt_int_op(ev2_got, ==, 0);
2920 
2921 	/* Re-duplicate the fd.  We need to get the same duplicated
2922 	 * value that we closed to provoke the epoll quirk.  Also, we
2923 	 * need to change the events to write, or else the old lingering
2924 	 * read event will make the test pass whether the change was
2925 	 * successful or not. */
2926 	tt_int_op(dup2(fd, dfd), ==, dfd);
2927 	event_free(ev2);
2928 	ev2 = event_new(base, dfd, EV_WRITE|EV_PERSIST, dfd_cb, &ev2_got);
2929 	event_add(ev2, NULL);
2930 	ev1_got = ev2_got = 0;
2931 	event_base_loop(base, EVLOOP_ONCE);
2932 	tt_want_int_op(ev1_got, ==, EV_READ);
2933 	tt_int_op(ev2_got, ==, EV_WRITE);
2934 
2935 end:
2936 	if (ev1)
2937 		event_free(ev1);
2938 	if (ev2)
2939 		event_free(ev2);
2940 	if (dfd >= 0)
2941 		close(dfd);
2942 }
2943 #endif
2944 
2945 #ifdef EVENT__DISABLE_MM_REPLACEMENT
2946 static void
2947 test_mm_functions(void *arg)
2948 {
2949 	tinytest_set_test_skipped_();
2950 }
2951 #else
2952 static int
2953 check_dummy_mem_ok(void *mem_)
2954 {
2955 	char *mem = mem_;
2956 	mem -= 16;
2957 	return !memcmp(mem, "{[<guardedram>]}", 16);
2958 }
2959 
2960 static void *
2961 dummy_malloc(size_t len)
2962 {
2963 	char *mem = malloc(len+16);
2964 	memcpy(mem, "{[<guardedram>]}", 16);
2965 	return mem+16;
2966 }
2967 
2968 static void *
2969 dummy_realloc(void *mem_, size_t len)
2970 {
2971 	char *mem = mem_;
2972 	if (!mem)
2973 		return dummy_malloc(len);
2974 	tt_want(check_dummy_mem_ok(mem_));
2975 	mem -= 16;
2976 	mem = realloc(mem, len+16);
2977 	return mem+16;
2978 }
2979 
2980 static void
2981 dummy_free(void *mem_)
2982 {
2983 	char *mem = mem_;
2984 	tt_want(check_dummy_mem_ok(mem_));
2985 	mem -= 16;
2986 	free(mem);
2987 }
2988 
2989 static void
2990 test_mm_functions(void *arg)
2991 {
2992 	struct event_base *b = NULL;
2993 	struct event_config *cfg = NULL;
2994 	event_set_mem_functions(dummy_malloc, dummy_realloc, dummy_free);
2995 	cfg = event_config_new();
2996 	event_config_avoid_method(cfg, "Nonesuch");
2997 	b = event_base_new_with_config(cfg);
2998 	tt_assert(b);
2999 	tt_assert(check_dummy_mem_ok(b));
3000 end:
3001 	if (cfg)
3002 		event_config_free(cfg);
3003 	if (b)
3004 		event_base_free(b);
3005 }
3006 #endif
3007 
3008 static void
3009 many_event_cb(evutil_socket_t fd, short event, void *arg)
3010 {
3011 	int *calledp = arg;
3012 	*calledp += 1;
3013 }
3014 
3015 static void
3016 test_many_events(void *arg)
3017 {
3018 	/* Try 70 events that should all be ready at once.  This will
3019 	 * exercise the "resize" code on most of the backends, and will make
3020 	 * sure that we can get past the 64-handle limit of some windows
3021 	 * functions. */
3022 #define MANY 70
3023 
3024 	struct basic_test_data *data = arg;
3025 	struct event_base *base = data->base;
3026 	int one_at_a_time = data->setup_data != NULL;
3027 	evutil_socket_t sock[MANY];
3028 	struct event *ev[MANY];
3029 	int xcalled[MANY];
3030 	int i;
3031 	int loopflags = EVLOOP_NONBLOCK, evflags=0;
3032 	if (one_at_a_time) {
3033 		loopflags |= EVLOOP_ONCE;
3034 		evflags = EV_PERSIST;
3035 	}
3036 
3037 	memset(sock, 0xff, sizeof(sock));
3038 	memset(ev, 0, sizeof(ev));
3039 	memset(xcalled, 0, sizeof(xcalled));
3040 
3041 	for (i = 0; i < MANY; ++i) {
3042 		/* We need an event that will hit the backend, and that will
3043 		 * be ready immediately.  "Send a datagram" is an easy
3044 		 * instance of that. */
3045 		sock[i] = socket(AF_INET, SOCK_DGRAM, 0);
3046 		tt_assert(sock[i] >= 0);
3047 		xcalled[i] = 0;
3048 		ev[i] = event_new(base, sock[i], EV_WRITE|evflags,
3049 		    many_event_cb, &xcalled[i]);
3050 		event_add(ev[i], NULL);
3051 		if (one_at_a_time)
3052 			event_base_loop(base, EVLOOP_NONBLOCK|EVLOOP_ONCE);
3053 	}
3054 
3055 	event_base_loop(base, loopflags);
3056 
3057 	for (i = 0; i < MANY; ++i) {
3058 		if (one_at_a_time)
3059 			tt_int_op(xcalled[i], ==, MANY - i + 1);
3060 		else
3061 			tt_int_op(xcalled[i], ==, 1);
3062 	}
3063 
3064 end:
3065 	for (i = 0; i < MANY; ++i) {
3066 		if (ev[i])
3067 			event_free(ev[i]);
3068 		if (sock[i] >= 0)
3069 			evutil_closesocket(sock[i]);
3070 	}
3071 #undef MANY
3072 }
3073 
3074 static void
3075 test_struct_event_size(void *arg)
3076 {
3077 	tt_int_op(event_get_struct_event_size(), <=, sizeof(struct event));
3078 end:
3079 	;
3080 }
3081 
3082 static void
3083 test_get_assignment(void *arg)
3084 {
3085 	struct basic_test_data *data = arg;
3086 	struct event_base *base = data->base;
3087 	struct event *ev1 = NULL;
3088 	const char *str = "foo";
3089 
3090 	struct event_base *b;
3091 	evutil_socket_t s;
3092 	short what;
3093 	event_callback_fn cb;
3094 	void *cb_arg;
3095 
3096 	ev1 = event_new(base, data->pair[1], EV_READ, dummy_read_cb,
3097 	    __UNCONST(str));
3098 	event_get_assignment(ev1, &b, &s, &what, &cb, &cb_arg);
3099 
3100 	tt_ptr_op(b, ==, base);
3101 	tt_int_op(s, ==, data->pair[1]);
3102 	tt_int_op(what, ==, EV_READ);
3103 	tt_ptr_op(cb, ==, dummy_read_cb);
3104 	tt_ptr_op(cb_arg, ==, str);
3105 
3106 	/* Now make sure this doesn't crash. */
3107 	event_get_assignment(ev1, NULL, NULL, NULL, NULL, NULL);
3108 
3109 end:
3110 	if (ev1)
3111 		event_free(ev1);
3112 }
3113 
3114 struct foreach_helper {
3115 	int count;
3116 	const struct event *ev;
3117 };
3118 
3119 static int
3120 foreach_count_cb(const struct event_base *base, const struct event *ev, void *arg)
3121 {
3122 	struct foreach_helper *h = event_get_callback_arg(ev);
3123 	struct timeval *tv = arg;
3124 	if (event_get_callback(ev) != timeout_cb)
3125 		return 0;
3126 	tt_ptr_op(event_get_base(ev), ==, base);
3127 	tt_int_op(tv->tv_sec, ==, 10);
3128 	h->ev = ev;
3129 	h->count++;
3130 	return 0;
3131 end:
3132 	return -1;
3133 }
3134 
3135 static int
3136 foreach_find_cb(const struct event_base *base, const struct event *ev, void *arg)
3137 {
3138 	const struct event **ev_out = arg;
3139 	struct foreach_helper *h = event_get_callback_arg(ev);
3140 	if (event_get_callback(ev) != timeout_cb)
3141 		return 0;
3142 	if (h->count == 99) {
3143 		*ev_out = ev;
3144 		return 101;
3145 	}
3146 	return 0;
3147 }
3148 
3149 static void
3150 test_event_foreach(void *arg)
3151 {
3152 	struct basic_test_data *data = arg;
3153 	struct event_base *base = data->base;
3154 	struct event *ev[5];
3155 	struct foreach_helper visited[5];
3156 	int i;
3157 	struct timeval ten_sec = {10,0};
3158 	const struct event *ev_found = NULL;
3159 
3160 	for (i = 0; i < 5; ++i) {
3161 		visited[i].count = 0;
3162 		visited[i].ev = NULL;
3163 		ev[i] = event_new(base, -1, 0, timeout_cb, &visited[i]);
3164 	}
3165 
3166 	tt_int_op(-1, ==, event_base_foreach_event(NULL, foreach_count_cb, NULL));
3167 	tt_int_op(-1, ==, event_base_foreach_event(base, NULL, NULL));
3168 
3169 	event_add(ev[0], &ten_sec);
3170 	event_add(ev[1], &ten_sec);
3171 	event_active(ev[1], EV_TIMEOUT, 1);
3172 	event_active(ev[2], EV_TIMEOUT, 1);
3173 	event_add(ev[3], &ten_sec);
3174 	/* Don't touch ev[4]. */
3175 
3176 	tt_int_op(0, ==, event_base_foreach_event(base, foreach_count_cb,
3177 		&ten_sec));
3178 	tt_int_op(1, ==, visited[0].count);
3179 	tt_int_op(1, ==, visited[1].count);
3180 	tt_int_op(1, ==, visited[2].count);
3181 	tt_int_op(1, ==, visited[3].count);
3182 	tt_ptr_op(ev[0], ==, visited[0].ev);
3183 	tt_ptr_op(ev[1], ==, visited[1].ev);
3184 	tt_ptr_op(ev[2], ==, visited[2].ev);
3185 	tt_ptr_op(ev[3], ==, visited[3].ev);
3186 
3187 	visited[2].count = 99;
3188 	tt_int_op(101, ==, event_base_foreach_event(base, foreach_find_cb,
3189 		&ev_found));
3190 	tt_ptr_op(ev_found, ==, ev[2]);
3191 
3192 end:
3193 	for (i=0; i<5; ++i) {
3194 		event_free(ev[i]);
3195 	}
3196 }
3197 
3198 static struct event_base *cached_time_base = NULL;
3199 static int cached_time_reset = 0;
3200 static int cached_time_sleep = 0;
3201 static void
3202 cache_time_cb(evutil_socket_t fd, short what, void *arg)
3203 {
3204 	struct timeval *tv = arg;
3205 	tt_int_op(0, ==, event_base_gettimeofday_cached(cached_time_base, tv));
3206 	if (cached_time_sleep) {
3207 		struct timeval delay = { 0, 30*1000 };
3208 		evutil_usleep_(&delay);
3209 	}
3210 	if (cached_time_reset) {
3211 		event_base_update_cache_time(cached_time_base);
3212 	}
3213 end:
3214 	;
3215 }
3216 
3217 static void
3218 test_gettimeofday_cached(void *arg)
3219 {
3220 	struct basic_test_data *data = arg;
3221 	struct event_config *cfg = NULL;
3222 	struct event_base *base = NULL;
3223 	struct timeval tv1, tv2, tv3, now;
3224 	struct event *ev1=NULL, *ev2=NULL, *ev3=NULL;
3225 	int cached_time_disable = strstr(data->setup_data, "disable") != NULL;
3226 
3227 	cfg = event_config_new();
3228 	if (cached_time_disable) {
3229 		event_config_set_flag(cfg, EVENT_BASE_FLAG_NO_CACHE_TIME);
3230 	}
3231 	cached_time_base = base = event_base_new_with_config(cfg);
3232 	tt_assert(base);
3233 
3234 	/* Try gettimeofday_cached outside of an event loop. */
3235 	evutil_gettimeofday(&now, NULL);
3236 	tt_int_op(0, ==, event_base_gettimeofday_cached(NULL, &tv1));
3237 	tt_int_op(0, ==, event_base_gettimeofday_cached(base, &tv2));
3238 	tt_int_op(timeval_msec_diff(&tv1, &tv2), <, 10);
3239 	tt_int_op(timeval_msec_diff(&tv1, &now), <, 10);
3240 
3241 	cached_time_reset = strstr(data->setup_data, "reset") != NULL;
3242 	cached_time_sleep = strstr(data->setup_data, "sleep") != NULL;
3243 
3244 	ev1 = event_new(base, -1, 0, cache_time_cb, &tv1);
3245 	ev2 = event_new(base, -1, 0, cache_time_cb, &tv2);
3246 	ev3 = event_new(base, -1, 0, cache_time_cb, &tv3);
3247 
3248 	event_active(ev1, EV_TIMEOUT, 1);
3249 	event_active(ev2, EV_TIMEOUT, 1);
3250 	event_active(ev3, EV_TIMEOUT, 1);
3251 
3252 	event_base_dispatch(base);
3253 
3254 	if (cached_time_reset && cached_time_sleep) {
3255 		tt_int_op(labs(timeval_msec_diff(&tv1,&tv2)), >, 10);
3256 		tt_int_op(labs(timeval_msec_diff(&tv2,&tv3)), >, 10);
3257 	} else if (cached_time_disable && cached_time_sleep) {
3258 		tt_int_op(labs(timeval_msec_diff(&tv1,&tv2)), >, 10);
3259 		tt_int_op(labs(timeval_msec_diff(&tv2,&tv3)), >, 10);
3260 	} else if (! cached_time_disable) {
3261 		tt_assert(evutil_timercmp(&tv1, &tv2, ==));
3262 		tt_assert(evutil_timercmp(&tv2, &tv3, ==));
3263 	}
3264 
3265 end:
3266 	if (ev1)
3267 		event_free(ev1);
3268 	if (ev2)
3269 		event_free(ev2);
3270 	if (ev3)
3271 		event_free(ev3);
3272 	if (base)
3273 		event_base_free(base);
3274 	if (cfg)
3275 		event_config_free(cfg);
3276 }
3277 
3278 static void
3279 tabf_cb(evutil_socket_t fd, short what, void *arg)
3280 {
3281 	int *ptr = arg;
3282 	*ptr = what;
3283 	*ptr += 0x10000;
3284 }
3285 
3286 static void
3287 test_active_by_fd(void *arg)
3288 {
3289 	struct basic_test_data *data = arg;
3290 	struct event_base *base = data->base;
3291 	struct event *ev1 = NULL, *ev2 = NULL, *ev3 = NULL, *ev4 = NULL;
3292 	int e1,e2,e3,e4;
3293 #ifndef _WIN32
3294 	struct event *evsig = NULL;
3295 	int es;
3296 #endif
3297 	struct timeval tenmin = { 600, 0 };
3298 
3299 	/* Ensure no crash on nonexistent FD. */
3300 	event_base_active_by_fd(base, 1000, EV_READ);
3301 
3302 	/* Ensure no crash on bogus FD. */
3303 	event_base_active_by_fd(base, -1, EV_READ);
3304 
3305 	/* Ensure no crash on nonexistent/bogus signal. */
3306 	event_base_active_by_signal(base, 1000);
3307 	event_base_active_by_signal(base, -1);
3308 
3309 	event_base_assert_ok_(base);
3310 
3311 	e1 = e2 = e3 = e4 = 0;
3312 	ev1 = event_new(base, data->pair[0], EV_READ, tabf_cb, &e1);
3313 	ev2 = event_new(base, data->pair[0], EV_WRITE, tabf_cb, &e2);
3314 	ev3 = event_new(base, data->pair[1], EV_READ, tabf_cb, &e3);
3315 	ev4 = event_new(base, data->pair[1], EV_READ, tabf_cb, &e4);
3316 	tt_assert(ev1);
3317 	tt_assert(ev2);
3318 	tt_assert(ev3);
3319 	tt_assert(ev4);
3320 #ifndef _WIN32
3321 	evsig = event_new(base, SIGHUP, EV_SIGNAL, tabf_cb, &es);
3322 	tt_assert(evsig);
3323 	event_add(evsig, &tenmin);
3324 #endif
3325 
3326 	event_add(ev1, &tenmin);
3327 	event_add(ev2, NULL);
3328 	event_add(ev3, NULL);
3329 	event_add(ev4, &tenmin);
3330 
3331 
3332 	event_base_assert_ok_(base);
3333 
3334 	/* Trigger 2, 3, 4 */
3335 	event_base_active_by_fd(base, data->pair[0], EV_WRITE);
3336 	event_base_active_by_fd(base, data->pair[1], EV_READ);
3337 #ifndef _WIN32
3338 	event_base_active_by_signal(base, SIGHUP);
3339 #endif
3340 
3341 	event_base_assert_ok_(base);
3342 
3343 	event_base_loop(base, EVLOOP_ONCE);
3344 
3345 	tt_int_op(e1, ==, 0);
3346 	tt_int_op(e2, ==, EV_WRITE | 0x10000);
3347 	tt_int_op(e3, ==, EV_READ | 0x10000);
3348 	/* Mask out EV_WRITE here, since it could be genuinely writeable. */
3349 	tt_int_op((e4 & ~EV_WRITE), ==, EV_READ | 0x10000);
3350 #ifndef _WIN32
3351 	tt_int_op(es, ==, EV_SIGNAL | 0x10000);
3352 #endif
3353 
3354 end:
3355 	if (ev1)
3356 		event_free(ev1);
3357 	if (ev2)
3358 		event_free(ev2);
3359 	if (ev3)
3360 		event_free(ev3);
3361 	if (ev4)
3362 		event_free(ev4);
3363 #ifndef _WIN32
3364 	if (evsig)
3365 		event_free(evsig);
3366 #endif
3367 }
3368 
3369 struct testcase_t main_testcases[] = {
3370 	/* Some converted-over tests */
3371 	{ "methods", test_methods, TT_FORK, NULL, NULL },
3372 	{ "version", test_version, 0, NULL, NULL },
3373 	BASIC(base_features, TT_FORK|TT_NO_LOGS),
3374 	{ "base_environ", test_base_environ, TT_FORK, NULL, NULL },
3375 
3376 	BASIC(event_base_new, TT_FORK|TT_NEED_SOCKETPAIR),
3377 	BASIC(free_active_base, TT_FORK|TT_NEED_SOCKETPAIR),
3378 
3379 	BASIC(manipulate_active_events, TT_FORK|TT_NEED_BASE),
3380 	BASIC(event_new_selfarg, TT_FORK|TT_NEED_BASE),
3381 	BASIC(event_assign_selfarg, TT_FORK|TT_NEED_BASE),
3382 	BASIC(event_base_get_num_events, TT_FORK|TT_NEED_BASE),
3383 	BASIC(event_base_get_max_events, TT_FORK|TT_NEED_BASE),
3384 
3385 	BASIC(bad_assign, TT_FORK|TT_NEED_BASE|TT_NO_LOGS),
3386 	BASIC(bad_reentrant, TT_FORK|TT_NEED_BASE|TT_NO_LOGS),
3387 	BASIC(active_later, TT_FORK|TT_NEED_BASE|TT_NEED_SOCKETPAIR),
3388 	BASIC(event_remove_timeout, TT_FORK|TT_NEED_BASE|TT_NEED_SOCKETPAIR),
3389 
3390 	/* These are still using the old API */
3391 	LEGACY(persistent_timeout, TT_FORK|TT_NEED_BASE),
3392 	{ "persistent_timeout_jump", test_persistent_timeout_jump, TT_FORK|TT_NEED_BASE, &basic_setup, NULL },
3393 	{ "persistent_active_timeout", test_persistent_active_timeout,
3394 	  TT_FORK|TT_NEED_BASE, &basic_setup, NULL },
3395 	LEGACY(priorities, TT_FORK|TT_NEED_BASE),
3396 	BASIC(priority_active_inversion, TT_FORK|TT_NEED_BASE),
3397 	{ "common_timeout", test_common_timeout, TT_FORK|TT_NEED_BASE,
3398 	  &basic_setup, NULL },
3399 
3400 	/* These legacy tests may not all need all of these flags. */
3401 	LEGACY(simpleread, TT_ISOLATED),
3402 	LEGACY(simpleread_multiple, TT_ISOLATED),
3403 	LEGACY(simplewrite, TT_ISOLATED),
3404 	{ "simpleclose", test_simpleclose, TT_FORK, &basic_setup,
3405 	  NULL },
3406 	LEGACY(multiple, TT_ISOLATED),
3407 	LEGACY(persistent, TT_ISOLATED),
3408 	LEGACY(combined, TT_ISOLATED),
3409 	LEGACY(simpletimeout, TT_ISOLATED),
3410 	LEGACY(loopbreak, TT_ISOLATED),
3411 	LEGACY(loopexit, TT_ISOLATED),
3412 	LEGACY(loopexit_multiple, TT_ISOLATED),
3413 	LEGACY(nonpersist_readd, TT_ISOLATED),
3414 	LEGACY(multiple_events_for_same_fd, TT_ISOLATED),
3415 	LEGACY(want_only_once, TT_ISOLATED),
3416 	{ "event_once", test_event_once, TT_ISOLATED, &basic_setup, NULL },
3417 	{ "event_once_never", test_event_once_never, TT_ISOLATED, &basic_setup, NULL },
3418 	{ "event_pending", test_event_pending, TT_ISOLATED, &basic_setup,
3419 	  NULL },
3420 	{ "event_closed_fd_poll", test_event_closed_fd_poll, TT_ISOLATED, &basic_setup,
3421 	  NULL },
3422 
3423 #ifndef _WIN32
3424 	{ "dup_fd", test_dup_fd, TT_ISOLATED, &basic_setup, NULL },
3425 #endif
3426 	{ "mm_functions", test_mm_functions, TT_FORK, NULL, NULL },
3427 	{ "many_events", test_many_events, TT_ISOLATED, &basic_setup, NULL },
3428 	{ "many_events_slow_add", test_many_events, TT_ISOLATED, &basic_setup, (void*)1 },
3429 
3430 	{ "struct_event_size", test_struct_event_size, 0, NULL, NULL },
3431 	BASIC(get_assignment, TT_FORK|TT_NEED_BASE|TT_NEED_SOCKETPAIR),
3432 
3433 	BASIC(event_foreach, TT_FORK|TT_NEED_BASE),
3434 	{ "gettimeofday_cached", test_gettimeofday_cached, TT_FORK, &basic_setup, __UNCONST("") },
3435 	{ "gettimeofday_cached_sleep", test_gettimeofday_cached, TT_FORK, &basic_setup, __UNCONST("sleep") },
3436 	{ "gettimeofday_cached_reset", test_gettimeofday_cached, TT_FORK, &basic_setup, __UNCONST("sleep reset") },
3437 	{ "gettimeofday_cached_disabled", test_gettimeofday_cached, TT_FORK, &basic_setup, __UNCONST("sleep disable") },
3438 	{ "gettimeofday_cached_disabled_nosleep", test_gettimeofday_cached, TT_FORK, &basic_setup, __UNCONST("disable") },
3439 
3440 	BASIC(active_by_fd, TT_FORK|TT_NEED_BASE|TT_NEED_SOCKETPAIR),
3441 
3442 #ifndef _WIN32
3443 	LEGACY(fork, TT_ISOLATED),
3444 #endif
3445 #ifdef EVENT__HAVE_PTHREADS
3446 	/** TODO: support win32 */
3447 	LEGACY(del_wait, TT_ISOLATED|TT_NEED_THREADS),
3448 #endif
3449 
3450 	END_OF_TESTCASES
3451 };
3452 
3453 struct testcase_t evtag_testcases[] = {
3454 	{ "int", evtag_int_test, TT_FORK, NULL, NULL },
3455 	{ "fuzz", evtag_fuzz, TT_FORK, NULL, NULL },
3456 	{ "encoding", evtag_tag_encoding, TT_FORK, NULL, NULL },
3457 	{ "peek", evtag_test_peek, 0, NULL, NULL },
3458 
3459 	END_OF_TESTCASES
3460 };
3461 
3462 struct testcase_t signal_testcases[] = {
3463 #ifndef _WIN32
3464 	LEGACY(simplestsignal, TT_ISOLATED),
3465 	LEGACY(simplesignal, TT_ISOLATED),
3466 	LEGACY(multiplesignal, TT_ISOLATED),
3467 	LEGACY(immediatesignal, TT_ISOLATED),
3468 	LEGACY(signal_dealloc, TT_ISOLATED),
3469 	LEGACY(signal_pipeloss, TT_ISOLATED),
3470 	LEGACY(signal_switchbase, TT_ISOLATED|TT_NO_LOGS),
3471 	LEGACY(signal_restore, TT_ISOLATED),
3472 	LEGACY(signal_assert, TT_ISOLATED),
3473 	LEGACY(signal_while_processing, TT_ISOLATED),
3474 #endif
3475 	END_OF_TESTCASES
3476 };
3477 
3478