1 /* $NetBSD: tblcmp.c,v 1.2 2016/01/09 17:38:57 christos Exp $ */ 2 3 /* tblcmp - table compression routines */ 4 5 /* Copyright (c) 1990 The Regents of the University of California. */ 6 /* All rights reserved. */ 7 8 /* This code is derived from software contributed to Berkeley by */ 9 /* Vern Paxson. */ 10 11 /* The United States Government has rights in this work pursuant */ 12 /* to contract no. DE-AC03-76SF00098 between the United States */ 13 /* Department of Energy and the University of California. */ 14 15 /* This file is part of flex. */ 16 17 /* Redistribution and use in source and binary forms, with or without */ 18 /* modification, are permitted provided that the following conditions */ 19 /* are met: */ 20 21 /* 1. Redistributions of source code must retain the above copyright */ 22 /* notice, this list of conditions and the following disclaimer. */ 23 /* 2. Redistributions in binary form must reproduce the above copyright */ 24 /* notice, this list of conditions and the following disclaimer in the */ 25 /* documentation and/or other materials provided with the distribution. */ 26 27 /* Neither the name of the University nor the names of its contributors */ 28 /* may be used to endorse or promote products derived from this software */ 29 /* without specific prior written permission. */ 30 31 /* THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR */ 32 /* IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED */ 33 /* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR */ 34 /* PURPOSE. */ 35 #include "flexdef.h" 36 __RCSID("$NetBSD: tblcmp.c,v 1.2 2016/01/09 17:38:57 christos Exp $"); 37 38 39 40 /* declarations for functions that have forward references */ 41 42 void mkentry PROTO ((int *, int, int, int, int)); 43 void mkprot PROTO ((int[], int, int)); 44 void mktemplate PROTO ((int[], int, int)); 45 void mv2front PROTO ((int)); 46 int tbldiff PROTO ((int[], int, int[])); 47 48 49 /* bldtbl - build table entries for dfa state 50 * 51 * synopsis 52 * int state[numecs], statenum, totaltrans, comstate, comfreq; 53 * bldtbl( state, statenum, totaltrans, comstate, comfreq ); 54 * 55 * State is the statenum'th dfa state. It is indexed by equivalence class and 56 * gives the number of the state to enter for a given equivalence class. 57 * totaltrans is the total number of transitions out of the state. Comstate 58 * is that state which is the destination of the most transitions out of State. 59 * Comfreq is how many transitions there are out of State to Comstate. 60 * 61 * A note on terminology: 62 * "protos" are transition tables which have a high probability of 63 * either being redundant (a state processed later will have an identical 64 * transition table) or nearly redundant (a state processed later will have 65 * many of the same out-transitions). A "most recently used" queue of 66 * protos is kept around with the hope that most states will find a proto 67 * which is similar enough to be usable, and therefore compacting the 68 * output tables. 69 * "templates" are a special type of proto. If a transition table is 70 * homogeneous or nearly homogeneous (all transitions go to the same 71 * destination) then the odds are good that future states will also go 72 * to the same destination state on basically the same character set. 73 * These homogeneous states are so common when dealing with large rule 74 * sets that they merit special attention. If the transition table were 75 * simply made into a proto, then (typically) each subsequent, similar 76 * state will differ from the proto for two out-transitions. One of these 77 * out-transitions will be that character on which the proto does not go 78 * to the common destination, and one will be that character on which the 79 * state does not go to the common destination. Templates, on the other 80 * hand, go to the common state on EVERY transition character, and therefore 81 * cost only one difference. 82 */ 83 84 void bldtbl (state, statenum, totaltrans, comstate, comfreq) 85 int state[], statenum, totaltrans, comstate, comfreq; 86 { 87 int extptr, extrct[2][CSIZE + 1]; 88 int mindiff, minprot, i, d; 89 90 /* If extptr is 0 then the first array of extrct holds the result 91 * of the "best difference" to date, which is those transitions 92 * which occur in "state" but not in the proto which, to date, 93 * has the fewest differences between itself and "state". If 94 * extptr is 1 then the second array of extrct hold the best 95 * difference. The two arrays are toggled between so that the 96 * best difference to date can be kept around and also a difference 97 * just created by checking against a candidate "best" proto. 98 */ 99 100 extptr = 0; 101 102 /* If the state has too few out-transitions, don't bother trying to 103 * compact its tables. 104 */ 105 106 if ((totaltrans * 100) < (numecs * PROTO_SIZE_PERCENTAGE)) 107 mkentry (state, numecs, statenum, JAMSTATE, totaltrans); 108 109 else { 110 /* "checkcom" is true if we should only check "state" against 111 * protos which have the same "comstate" value. 112 */ 113 int checkcom = 114 115 comfreq * 100 > totaltrans * CHECK_COM_PERCENTAGE; 116 117 minprot = firstprot; 118 mindiff = totaltrans; 119 120 if (checkcom) { 121 /* Find first proto which has the same "comstate". */ 122 for (i = firstprot; i != NIL; i = protnext[i]) 123 if (protcomst[i] == comstate) { 124 minprot = i; 125 mindiff = tbldiff (state, minprot, 126 extrct[extptr]); 127 break; 128 } 129 } 130 131 else { 132 /* Since we've decided that the most common destination 133 * out of "state" does not occur with a high enough 134 * frequency, we set the "comstate" to zero, assuring 135 * that if this state is entered into the proto list, 136 * it will not be considered a template. 137 */ 138 comstate = 0; 139 140 if (firstprot != NIL) { 141 minprot = firstprot; 142 mindiff = tbldiff (state, minprot, 143 extrct[extptr]); 144 } 145 } 146 147 /* We now have the first interesting proto in "minprot". If 148 * it matches within the tolerances set for the first proto, 149 * we don't want to bother scanning the rest of the proto list 150 * to see if we have any other reasonable matches. 151 */ 152 153 if (mindiff * 100 > 154 totaltrans * FIRST_MATCH_DIFF_PERCENTAGE) { 155 /* Not a good enough match. Scan the rest of the 156 * protos. 157 */ 158 for (i = minprot; i != NIL; i = protnext[i]) { 159 d = tbldiff (state, i, extrct[1 - extptr]); 160 if (d < mindiff) { 161 extptr = 1 - extptr; 162 mindiff = d; 163 minprot = i; 164 } 165 } 166 } 167 168 /* Check if the proto we've decided on as our best bet is close 169 * enough to the state we want to match to be usable. 170 */ 171 172 if (mindiff * 100 > 173 totaltrans * ACCEPTABLE_DIFF_PERCENTAGE) { 174 /* No good. If the state is homogeneous enough, 175 * we make a template out of it. Otherwise, we 176 * make a proto. 177 */ 178 179 if (comfreq * 100 >= 180 totaltrans * TEMPLATE_SAME_PERCENTAGE) 181 mktemplate (state, statenum, 182 comstate); 183 184 else { 185 mkprot (state, statenum, comstate); 186 mkentry (state, numecs, statenum, 187 JAMSTATE, totaltrans); 188 } 189 } 190 191 else { /* use the proto */ 192 mkentry (extrct[extptr], numecs, statenum, 193 prottbl[minprot], mindiff); 194 195 /* If this state was sufficiently different from the 196 * proto we built it from, make it, too, a proto. 197 */ 198 199 if (mindiff * 100 >= 200 totaltrans * NEW_PROTO_DIFF_PERCENTAGE) 201 mkprot (state, statenum, comstate); 202 203 /* Since mkprot added a new proto to the proto queue, 204 * it's possible that "minprot" is no longer on the 205 * proto queue (if it happened to have been the last 206 * entry, it would have been bumped off). If it's 207 * not there, then the new proto took its physical 208 * place (though logically the new proto is at the 209 * beginning of the queue), so in that case the 210 * following call will do nothing. 211 */ 212 213 mv2front (minprot); 214 } 215 } 216 } 217 218 219 /* cmptmps - compress template table entries 220 * 221 * Template tables are compressed by using the 'template equivalence 222 * classes', which are collections of transition character equivalence 223 * classes which always appear together in templates - really meta-equivalence 224 * classes. 225 */ 226 227 void cmptmps () 228 { 229 int tmpstorage[CSIZE + 1]; 230 int *tmp = tmpstorage, i, j; 231 int totaltrans, trans; 232 233 peakpairs = numtemps * numecs + tblend; 234 235 if (usemecs) { 236 /* Create equivalence classes based on data gathered on 237 * template transitions. 238 */ 239 nummecs = cre8ecs (tecfwd, tecbck, numecs); 240 } 241 242 else 243 nummecs = numecs; 244 245 while (lastdfa + numtemps + 1 >= current_max_dfas) 246 increase_max_dfas (); 247 248 /* Loop through each template. */ 249 250 for (i = 1; i <= numtemps; ++i) { 251 /* Number of non-jam transitions out of this template. */ 252 totaltrans = 0; 253 254 for (j = 1; j <= numecs; ++j) { 255 trans = tnxt[numecs * i + j]; 256 257 if (usemecs) { 258 /* The absolute value of tecbck is the 259 * meta-equivalence class of a given 260 * equivalence class, as set up by cre8ecs(). 261 */ 262 if (tecbck[j] > 0) { 263 tmp[tecbck[j]] = trans; 264 265 if (trans > 0) 266 ++totaltrans; 267 } 268 } 269 270 else { 271 tmp[j] = trans; 272 273 if (trans > 0) 274 ++totaltrans; 275 } 276 } 277 278 /* It is assumed (in a rather subtle way) in the skeleton 279 * that if we're using meta-equivalence classes, the def[] 280 * entry for all templates is the jam template, i.e., 281 * templates never default to other non-jam table entries 282 * (e.g., another template) 283 */ 284 285 /* Leave room for the jam-state after the last real state. */ 286 mkentry (tmp, nummecs, lastdfa + i + 1, JAMSTATE, 287 totaltrans); 288 } 289 } 290 291 292 293 /* expand_nxt_chk - expand the next check arrays */ 294 295 void expand_nxt_chk () 296 { 297 int old_max = current_max_xpairs; 298 299 current_max_xpairs += MAX_XPAIRS_INCREMENT; 300 301 ++num_reallocs; 302 303 nxt = reallocate_integer_array (nxt, current_max_xpairs); 304 chk = reallocate_integer_array (chk, current_max_xpairs); 305 306 zero_out ((char *) (chk + old_max), 307 (size_t) (MAX_XPAIRS_INCREMENT * sizeof (int))); 308 } 309 310 311 /* find_table_space - finds a space in the table for a state to be placed 312 * 313 * synopsis 314 * int *state, numtrans, block_start; 315 * int find_table_space(); 316 * 317 * block_start = find_table_space( state, numtrans ); 318 * 319 * State is the state to be added to the full speed transition table. 320 * Numtrans is the number of out-transitions for the state. 321 * 322 * find_table_space() returns the position of the start of the first block (in 323 * chk) able to accommodate the state 324 * 325 * In determining if a state will or will not fit, find_table_space() must take 326 * into account the fact that an end-of-buffer state will be added at [0], 327 * and an action number will be added in [-1]. 328 */ 329 330 int find_table_space (state, numtrans) 331 int *state, numtrans; 332 { 333 /* Firstfree is the position of the first possible occurrence of two 334 * consecutive unused records in the chk and nxt arrays. 335 */ 336 int i; 337 int *state_ptr, *chk_ptr; 338 int *ptr_to_last_entry_in_state; 339 340 /* If there are too many out-transitions, put the state at the end of 341 * nxt and chk. 342 */ 343 if (numtrans > MAX_XTIONS_FULL_INTERIOR_FIT) { 344 /* If table is empty, return the first available spot in 345 * chk/nxt, which should be 1. 346 */ 347 if (tblend < 2) 348 return 1; 349 350 /* Start searching for table space near the end of 351 * chk/nxt arrays. 352 */ 353 i = tblend - numecs; 354 } 355 356 else 357 /* Start searching for table space from the beginning 358 * (skipping only the elements which will definitely not 359 * hold the new state). 360 */ 361 i = firstfree; 362 363 while (1) { /* loops until a space is found */ 364 while (i + numecs >= current_max_xpairs) 365 expand_nxt_chk (); 366 367 /* Loops until space for end-of-buffer and action number 368 * are found. 369 */ 370 while (1) { 371 /* Check for action number space. */ 372 if (chk[i - 1] == 0) { 373 /* Check for end-of-buffer space. */ 374 if (chk[i] == 0) 375 break; 376 377 else 378 /* Since i != 0, there is no use 379 * checking to see if (++i) - 1 == 0, 380 * because that's the same as i == 0, 381 * so we skip a space. 382 */ 383 i += 2; 384 } 385 386 else 387 ++i; 388 389 while (i + numecs >= current_max_xpairs) 390 expand_nxt_chk (); 391 } 392 393 /* If we started search from the beginning, store the new 394 * firstfree for the next call of find_table_space(). 395 */ 396 if (numtrans <= MAX_XTIONS_FULL_INTERIOR_FIT) 397 firstfree = i + 1; 398 399 /* Check to see if all elements in chk (and therefore nxt) 400 * that are needed for the new state have not yet been taken. 401 */ 402 403 state_ptr = &state[1]; 404 ptr_to_last_entry_in_state = &chk[i + numecs + 1]; 405 406 for (chk_ptr = &chk[i + 1]; 407 chk_ptr != ptr_to_last_entry_in_state; ++chk_ptr) 408 if (*(state_ptr++) != 0 && *chk_ptr != 0) 409 break; 410 411 if (chk_ptr == ptr_to_last_entry_in_state) 412 return i; 413 414 else 415 ++i; 416 } 417 } 418 419 420 /* inittbl - initialize transition tables 421 * 422 * Initializes "firstfree" to be one beyond the end of the table. Initializes 423 * all "chk" entries to be zero. 424 */ 425 void inittbl () 426 { 427 int i; 428 429 zero_out ((char *) chk, 430 431 (size_t) (current_max_xpairs * sizeof (int))); 432 433 tblend = 0; 434 firstfree = tblend + 1; 435 numtemps = 0; 436 437 if (usemecs) { 438 /* Set up doubly-linked meta-equivalence classes; these 439 * are sets of equivalence classes which all have identical 440 * transitions out of TEMPLATES. 441 */ 442 443 tecbck[1] = NIL; 444 445 for (i = 2; i <= numecs; ++i) { 446 tecbck[i] = i - 1; 447 tecfwd[i - 1] = i; 448 } 449 450 tecfwd[numecs] = NIL; 451 } 452 } 453 454 455 /* mkdeftbl - make the default, "jam" table entries */ 456 457 void mkdeftbl () 458 { 459 int i; 460 461 jamstate = lastdfa + 1; 462 463 ++tblend; /* room for transition on end-of-buffer character */ 464 465 while (tblend + numecs >= current_max_xpairs) 466 expand_nxt_chk (); 467 468 /* Add in default end-of-buffer transition. */ 469 nxt[tblend] = end_of_buffer_state; 470 chk[tblend] = jamstate; 471 472 for (i = 1; i <= numecs; ++i) { 473 nxt[tblend + i] = 0; 474 chk[tblend + i] = jamstate; 475 } 476 477 jambase = tblend; 478 479 base[jamstate] = jambase; 480 def[jamstate] = 0; 481 482 tblend += numecs; 483 ++numtemps; 484 } 485 486 487 /* mkentry - create base/def and nxt/chk entries for transition array 488 * 489 * synopsis 490 * int state[numchars + 1], numchars, statenum, deflink, totaltrans; 491 * mkentry( state, numchars, statenum, deflink, totaltrans ); 492 * 493 * "state" is a transition array "numchars" characters in size, "statenum" 494 * is the offset to be used into the base/def tables, and "deflink" is the 495 * entry to put in the "def" table entry. If "deflink" is equal to 496 * "JAMSTATE", then no attempt will be made to fit zero entries of "state" 497 * (i.e., jam entries) into the table. It is assumed that by linking to 498 * "JAMSTATE" they will be taken care of. In any case, entries in "state" 499 * marking transitions to "SAME_TRANS" are treated as though they will be 500 * taken care of by whereever "deflink" points. "totaltrans" is the total 501 * number of transitions out of the state. If it is below a certain threshold, 502 * the tables are searched for an interior spot that will accommodate the 503 * state array. 504 */ 505 506 void mkentry (state, numchars, statenum, deflink, totaltrans) 507 int *state; 508 int numchars, statenum, deflink, totaltrans; 509 { 510 int minec, maxec, i, baseaddr; 511 int tblbase, tbllast; 512 513 if (totaltrans == 0) { /* there are no out-transitions */ 514 if (deflink == JAMSTATE) 515 base[statenum] = JAMSTATE; 516 else 517 base[statenum] = 0; 518 519 def[statenum] = deflink; 520 return; 521 } 522 523 for (minec = 1; minec <= numchars; ++minec) { 524 if (state[minec] != SAME_TRANS) 525 if (state[minec] != 0 || deflink != JAMSTATE) 526 break; 527 } 528 529 if (totaltrans == 1) { 530 /* There's only one out-transition. Save it for later to fill 531 * in holes in the tables. 532 */ 533 stack1 (statenum, minec, state[minec], deflink); 534 return; 535 } 536 537 for (maxec = numchars; maxec > 0; --maxec) { 538 if (state[maxec] != SAME_TRANS) 539 if (state[maxec] != 0 || deflink != JAMSTATE) 540 break; 541 } 542 543 /* Whether we try to fit the state table in the middle of the table 544 * entries we have already generated, or if we just take the state 545 * table at the end of the nxt/chk tables, we must make sure that we 546 * have a valid base address (i.e., non-negative). Note that 547 * negative base addresses dangerous at run-time (because indexing 548 * the nxt array with one and a low-valued character will access 549 * memory before the start of the array. 550 */ 551 552 /* Find the first transition of state that we need to worry about. */ 553 if (totaltrans * 100 <= numchars * INTERIOR_FIT_PERCENTAGE) { 554 /* Attempt to squeeze it into the middle of the tables. */ 555 baseaddr = firstfree; 556 557 while (baseaddr < minec) { 558 /* Using baseaddr would result in a negative base 559 * address below; find the next free slot. 560 */ 561 for (++baseaddr; chk[baseaddr] != 0; ++baseaddr) ; 562 } 563 564 while (baseaddr + maxec - minec + 1 >= current_max_xpairs) 565 expand_nxt_chk (); 566 567 for (i = minec; i <= maxec; ++i) 568 if (state[i] != SAME_TRANS && 569 (state[i] != 0 || deflink != JAMSTATE) && 570 chk[baseaddr + i - minec] != 0) { /* baseaddr unsuitable - find another */ 571 for (++baseaddr; 572 baseaddr < current_max_xpairs && 573 chk[baseaddr] != 0; ++baseaddr) ; 574 575 while (baseaddr + maxec - minec + 1 >= 576 current_max_xpairs) 577 expand_nxt_chk (); 578 579 /* Reset the loop counter so we'll start all 580 * over again next time it's incremented. 581 */ 582 583 i = minec - 1; 584 } 585 } 586 587 else { 588 /* Ensure that the base address we eventually generate is 589 * non-negative. 590 */ 591 baseaddr = MAX (tblend + 1, minec); 592 } 593 594 tblbase = baseaddr - minec; 595 tbllast = tblbase + maxec; 596 597 while (tbllast + 1 >= current_max_xpairs) 598 expand_nxt_chk (); 599 600 base[statenum] = tblbase; 601 def[statenum] = deflink; 602 603 for (i = minec; i <= maxec; ++i) 604 if (state[i] != SAME_TRANS) 605 if (state[i] != 0 || deflink != JAMSTATE) { 606 nxt[tblbase + i] = state[i]; 607 chk[tblbase + i] = statenum; 608 } 609 610 if (baseaddr == firstfree) 611 /* Find next free slot in tables. */ 612 for (++firstfree; chk[firstfree] != 0; ++firstfree) ; 613 614 tblend = MAX (tblend, tbllast); 615 } 616 617 618 /* mk1tbl - create table entries for a state (or state fragment) which 619 * has only one out-transition 620 */ 621 622 void mk1tbl (state, sym, onenxt, onedef) 623 int state, sym, onenxt, onedef; 624 { 625 if (firstfree < sym) 626 firstfree = sym; 627 628 while (chk[firstfree] != 0) 629 if (++firstfree >= current_max_xpairs) 630 expand_nxt_chk (); 631 632 base[state] = firstfree - sym; 633 def[state] = onedef; 634 chk[firstfree] = state; 635 nxt[firstfree] = onenxt; 636 637 if (firstfree > tblend) { 638 tblend = firstfree++; 639 640 if (firstfree >= current_max_xpairs) 641 expand_nxt_chk (); 642 } 643 } 644 645 646 /* mkprot - create new proto entry */ 647 648 void mkprot (state, statenum, comstate) 649 int state[], statenum, comstate; 650 { 651 int i, slot, tblbase; 652 653 if (++numprots >= MSP || numecs * numprots >= PROT_SAVE_SIZE) { 654 /* Gotta make room for the new proto by dropping last entry in 655 * the queue. 656 */ 657 slot = lastprot; 658 lastprot = protprev[lastprot]; 659 protnext[lastprot] = NIL; 660 } 661 662 else 663 slot = numprots; 664 665 protnext[slot] = firstprot; 666 667 if (firstprot != NIL) 668 protprev[firstprot] = slot; 669 670 firstprot = slot; 671 prottbl[slot] = statenum; 672 protcomst[slot] = comstate; 673 674 /* Copy state into save area so it can be compared with rapidly. */ 675 tblbase = numecs * (slot - 1); 676 677 for (i = 1; i <= numecs; ++i) 678 protsave[tblbase + i] = state[i]; 679 } 680 681 682 /* mktemplate - create a template entry based on a state, and connect the state 683 * to it 684 */ 685 686 void mktemplate (state, statenum, comstate) 687 int state[], statenum, comstate; 688 { 689 int i, numdiff, tmpbase, tmp[CSIZE + 1]; 690 Char transset[CSIZE + 1]; 691 int tsptr; 692 693 ++numtemps; 694 695 tsptr = 0; 696 697 /* Calculate where we will temporarily store the transition table 698 * of the template in the tnxt[] array. The final transition table 699 * gets created by cmptmps(). 700 */ 701 702 tmpbase = numtemps * numecs; 703 704 if (tmpbase + numecs >= current_max_template_xpairs) { 705 current_max_template_xpairs += 706 MAX_TEMPLATE_XPAIRS_INCREMENT; 707 708 ++num_reallocs; 709 710 tnxt = reallocate_integer_array (tnxt, 711 current_max_template_xpairs); 712 } 713 714 for (i = 1; i <= numecs; ++i) 715 if (state[i] == 0) 716 tnxt[tmpbase + i] = 0; 717 else { 718 transset[tsptr++] = i; 719 tnxt[tmpbase + i] = comstate; 720 } 721 722 if (usemecs) 723 mkeccl (transset, tsptr, tecfwd, tecbck, numecs, 0); 724 725 mkprot (tnxt + tmpbase, -numtemps, comstate); 726 727 /* We rely on the fact that mkprot adds things to the beginning 728 * of the proto queue. 729 */ 730 731 numdiff = tbldiff (state, firstprot, tmp); 732 mkentry (tmp, numecs, statenum, -numtemps, numdiff); 733 } 734 735 736 /* mv2front - move proto queue element to front of queue */ 737 738 void mv2front (qelm) 739 int qelm; 740 { 741 if (firstprot != qelm) { 742 if (qelm == lastprot) 743 lastprot = protprev[lastprot]; 744 745 protnext[protprev[qelm]] = protnext[qelm]; 746 747 if (protnext[qelm] != NIL) 748 protprev[protnext[qelm]] = protprev[qelm]; 749 750 protprev[qelm] = NIL; 751 protnext[qelm] = firstprot; 752 protprev[firstprot] = qelm; 753 firstprot = qelm; 754 } 755 } 756 757 758 /* place_state - place a state into full speed transition table 759 * 760 * State is the statenum'th state. It is indexed by equivalence class and 761 * gives the number of the state to enter for a given equivalence class. 762 * Transnum is the number of out-transitions for the state. 763 */ 764 765 void place_state (state, statenum, transnum) 766 int *state, statenum, transnum; 767 { 768 int i; 769 int *state_ptr; 770 int position = find_table_space (state, transnum); 771 772 /* "base" is the table of start positions. */ 773 base[statenum] = position; 774 775 /* Put in action number marker; this non-zero number makes sure that 776 * find_table_space() knows that this position in chk/nxt is taken 777 * and should not be used for another accepting number in another 778 * state. 779 */ 780 chk[position - 1] = 1; 781 782 /* Put in end-of-buffer marker; this is for the same purposes as 783 * above. 784 */ 785 chk[position] = 1; 786 787 /* Place the state into chk and nxt. */ 788 state_ptr = &state[1]; 789 790 for (i = 1; i <= numecs; ++i, ++state_ptr) 791 if (*state_ptr != 0) { 792 chk[position + i] = i; 793 nxt[position + i] = *state_ptr; 794 } 795 796 if (position + numecs > tblend) 797 tblend = position + numecs; 798 } 799 800 801 /* stack1 - save states with only one out-transition to be processed later 802 * 803 * If there's room for another state on the "one-transition" stack, the 804 * state is pushed onto it, to be processed later by mk1tbl. If there's 805 * no room, we process the sucker right now. 806 */ 807 808 void stack1 (statenum, sym, nextstate, deflink) 809 int statenum, sym, nextstate, deflink; 810 { 811 if (onesp >= ONE_STACK_SIZE - 1) 812 mk1tbl (statenum, sym, nextstate, deflink); 813 814 else { 815 ++onesp; 816 onestate[onesp] = statenum; 817 onesym[onesp] = sym; 818 onenext[onesp] = nextstate; 819 onedef[onesp] = deflink; 820 } 821 } 822 823 824 /* tbldiff - compute differences between two state tables 825 * 826 * "state" is the state array which is to be extracted from the pr'th 827 * proto. "pr" is both the number of the proto we are extracting from 828 * and an index into the save area where we can find the proto's complete 829 * state table. Each entry in "state" which differs from the corresponding 830 * entry of "pr" will appear in "ext". 831 * 832 * Entries which are the same in both "state" and "pr" will be marked 833 * as transitions to "SAME_TRANS" in "ext". The total number of differences 834 * between "state" and "pr" is returned as function value. Note that this 835 * number is "numecs" minus the number of "SAME_TRANS" entries in "ext". 836 */ 837 838 int tbldiff (state, pr, ext) 839 int state[], pr, ext[]; 840 { 841 int i, *sp = state, *ep = ext, *protp; 842 int numdiff = 0; 843 844 protp = &protsave[numecs * (pr - 1)]; 845 846 for (i = numecs; i > 0; --i) { 847 if (*++protp == *++sp) 848 *++ep = SAME_TRANS; 849 else { 850 *++ep = *sp; 851 ++numdiff; 852 } 853 } 854 855 return numdiff; 856 } 857