1 /* $NetBSD: tblcmp.c,v 1.3 2017/01/02 17:45:27 christos Exp $ */ 2 3 /* tblcmp - table compression routines */ 4 5 /* Copyright (c) 1990 The Regents of the University of California. */ 6 /* All rights reserved. */ 7 8 /* This code is derived from software contributed to Berkeley by */ 9 /* Vern Paxson. */ 10 11 /* The United States Government has rights in this work pursuant */ 12 /* to contract no. DE-AC03-76SF00098 between the United States */ 13 /* Department of Energy and the University of California. */ 14 15 /* This file is part of flex. */ 16 17 /* Redistribution and use in source and binary forms, with or without */ 18 /* modification, are permitted provided that the following conditions */ 19 /* are met: */ 20 21 /* 1. Redistributions of source code must retain the above copyright */ 22 /* notice, this list of conditions and the following disclaimer. */ 23 /* 2. Redistributions in binary form must reproduce the above copyright */ 24 /* notice, this list of conditions and the following disclaimer in the */ 25 /* documentation and/or other materials provided with the distribution. */ 26 27 /* Neither the name of the University nor the names of its contributors */ 28 /* may be used to endorse or promote products derived from this software */ 29 /* without specific prior written permission. */ 30 31 /* THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR */ 32 /* IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED */ 33 /* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR */ 34 /* PURPOSE. */ 35 #include "flexdef.h" 36 __RCSID("$NetBSD: tblcmp.c,v 1.3 2017/01/02 17:45:27 christos Exp $"); 37 38 39 40 /* declarations for functions that have forward references */ 41 42 void mkentry(int *, int, int, int, int); 43 void mkprot(int[], int, int); 44 void mktemplate(int[], int, int); 45 void mv2front(int); 46 int tbldiff(int[], int, int[]); 47 48 49 /* bldtbl - build table entries for dfa state 50 * 51 * synopsis 52 * int state[numecs], statenum, totaltrans, comstate, comfreq; 53 * bldtbl( state, statenum, totaltrans, comstate, comfreq ); 54 * 55 * State is the statenum'th dfa state. It is indexed by equivalence class and 56 * gives the number of the state to enter for a given equivalence class. 57 * totaltrans is the total number of transitions out of the state. Comstate 58 * is that state which is the destination of the most transitions out of State. 59 * Comfreq is how many transitions there are out of State to Comstate. 60 * 61 * A note on terminology: 62 * "protos" are transition tables which have a high probability of 63 * either being redundant (a state processed later will have an identical 64 * transition table) or nearly redundant (a state processed later will have 65 * many of the same out-transitions). A "most recently used" queue of 66 * protos is kept around with the hope that most states will find a proto 67 * which is similar enough to be usable, and therefore compacting the 68 * output tables. 69 * "templates" are a special type of proto. If a transition table is 70 * homogeneous or nearly homogeneous (all transitions go to the same 71 * destination) then the odds are good that future states will also go 72 * to the same destination state on basically the same character set. 73 * These homogeneous states are so common when dealing with large rule 74 * sets that they merit special attention. If the transition table were 75 * simply made into a proto, then (typically) each subsequent, similar 76 * state will differ from the proto for two out-transitions. One of these 77 * out-transitions will be that character on which the proto does not go 78 * to the common destination, and one will be that character on which the 79 * state does not go to the common destination. Templates, on the other 80 * hand, go to the common state on EVERY transition character, and therefore 81 * cost only one difference. 82 */ 83 84 void bldtbl (int state[], int statenum, int totaltrans, int comstate, int comfreq) 85 { 86 int extptr, extrct[2][CSIZE + 1]; 87 int mindiff, minprot, i, d; 88 89 /* If extptr is 0 then the first array of extrct holds the result 90 * of the "best difference" to date, which is those transitions 91 * which occur in "state" but not in the proto which, to date, 92 * has the fewest differences between itself and "state". If 93 * extptr is 1 then the second array of extrct hold the best 94 * difference. The two arrays are toggled between so that the 95 * best difference to date can be kept around and also a difference 96 * just created by checking against a candidate "best" proto. 97 */ 98 99 extptr = 0; 100 101 /* If the state has too few out-transitions, don't bother trying to 102 * compact its tables. 103 */ 104 105 if ((totaltrans * 100) < (numecs * PROTO_SIZE_PERCENTAGE)) 106 mkentry (state, numecs, statenum, JAMSTATE, totaltrans); 107 108 else { 109 /* "checkcom" is true if we should only check "state" against 110 * protos which have the same "comstate" value. 111 */ 112 int checkcom = 113 114 comfreq * 100 > totaltrans * CHECK_COM_PERCENTAGE; 115 116 minprot = firstprot; 117 mindiff = totaltrans; 118 119 if (checkcom) { 120 /* Find first proto which has the same "comstate". */ 121 for (i = firstprot; i != NIL; i = protnext[i]) 122 if (protcomst[i] == comstate) { 123 minprot = i; 124 mindiff = tbldiff (state, minprot, 125 extrct[extptr]); 126 break; 127 } 128 } 129 130 else { 131 /* Since we've decided that the most common destination 132 * out of "state" does not occur with a high enough 133 * frequency, we set the "comstate" to zero, assuring 134 * that if this state is entered into the proto list, 135 * it will not be considered a template. 136 */ 137 comstate = 0; 138 139 if (firstprot != NIL) { 140 minprot = firstprot; 141 mindiff = tbldiff (state, minprot, 142 extrct[extptr]); 143 } 144 } 145 146 /* We now have the first interesting proto in "minprot". If 147 * it matches within the tolerances set for the first proto, 148 * we don't want to bother scanning the rest of the proto list 149 * to see if we have any other reasonable matches. 150 */ 151 152 if (mindiff * 100 > 153 totaltrans * FIRST_MATCH_DIFF_PERCENTAGE) { 154 /* Not a good enough match. Scan the rest of the 155 * protos. 156 */ 157 for (i = minprot; i != NIL; i = protnext[i]) { 158 d = tbldiff (state, i, extrct[1 - extptr]); 159 if (d < mindiff) { 160 extptr = 1 - extptr; 161 mindiff = d; 162 minprot = i; 163 } 164 } 165 } 166 167 /* Check if the proto we've decided on as our best bet is close 168 * enough to the state we want to match to be usable. 169 */ 170 171 if (mindiff * 100 > 172 totaltrans * ACCEPTABLE_DIFF_PERCENTAGE) { 173 /* No good. If the state is homogeneous enough, 174 * we make a template out of it. Otherwise, we 175 * make a proto. 176 */ 177 178 if (comfreq * 100 >= 179 totaltrans * TEMPLATE_SAME_PERCENTAGE) 180 mktemplate (state, statenum, 181 comstate); 182 183 else { 184 mkprot (state, statenum, comstate); 185 mkentry (state, numecs, statenum, 186 JAMSTATE, totaltrans); 187 } 188 } 189 190 else { /* use the proto */ 191 mkentry (extrct[extptr], numecs, statenum, 192 prottbl[minprot], mindiff); 193 194 /* If this state was sufficiently different from the 195 * proto we built it from, make it, too, a proto. 196 */ 197 198 if (mindiff * 100 >= 199 totaltrans * NEW_PROTO_DIFF_PERCENTAGE) 200 mkprot (state, statenum, comstate); 201 202 /* Since mkprot added a new proto to the proto queue, 203 * it's possible that "minprot" is no longer on the 204 * proto queue (if it happened to have been the last 205 * entry, it would have been bumped off). If it's 206 * not there, then the new proto took its physical 207 * place (though logically the new proto is at the 208 * beginning of the queue), so in that case the 209 * following call will do nothing. 210 */ 211 212 mv2front (minprot); 213 } 214 } 215 } 216 217 218 /* cmptmps - compress template table entries 219 * 220 * Template tables are compressed by using the 'template equivalence 221 * classes', which are collections of transition character equivalence 222 * classes which always appear together in templates - really meta-equivalence 223 * classes. 224 */ 225 226 void cmptmps (void) 227 { 228 int tmpstorage[CSIZE + 1]; 229 int *tmp = tmpstorage, i, j; 230 int totaltrans, trans; 231 232 peakpairs = numtemps * numecs + tblend; 233 234 if (usemecs) { 235 /* Create equivalence classes based on data gathered on 236 * template transitions. 237 */ 238 nummecs = cre8ecs (tecfwd, tecbck, numecs); 239 } 240 241 else 242 nummecs = numecs; 243 244 while (lastdfa + numtemps + 1 >= current_max_dfas) 245 increase_max_dfas (); 246 247 /* Loop through each template. */ 248 249 for (i = 1; i <= numtemps; ++i) { 250 /* Number of non-jam transitions out of this template. */ 251 totaltrans = 0; 252 253 for (j = 1; j <= numecs; ++j) { 254 trans = tnxt[numecs * i + j]; 255 256 if (usemecs) { 257 /* The absolute value of tecbck is the 258 * meta-equivalence class of a given 259 * equivalence class, as set up by cre8ecs(). 260 */ 261 if (tecbck[j] > 0) { 262 tmp[tecbck[j]] = trans; 263 264 if (trans > 0) 265 ++totaltrans; 266 } 267 } 268 269 else { 270 tmp[j] = trans; 271 272 if (trans > 0) 273 ++totaltrans; 274 } 275 } 276 277 /* It is assumed (in a rather subtle way) in the skeleton 278 * that if we're using meta-equivalence classes, the def[] 279 * entry for all templates is the jam template, i.e., 280 * templates never default to other non-jam table entries 281 * (e.g., another template) 282 */ 283 284 /* Leave room for the jam-state after the last real state. */ 285 mkentry (tmp, nummecs, lastdfa + i + 1, JAMSTATE, 286 totaltrans); 287 } 288 } 289 290 291 292 /* expand_nxt_chk - expand the next check arrays */ 293 294 void expand_nxt_chk (void) 295 { 296 int old_max = current_max_xpairs; 297 298 current_max_xpairs += MAX_XPAIRS_INCREMENT; 299 300 ++num_reallocs; 301 302 nxt = reallocate_integer_array (nxt, current_max_xpairs); 303 chk = reallocate_integer_array (chk, current_max_xpairs); 304 305 memset(chk + old_max, 0, MAX_XPAIRS_INCREMENT * sizeof(int)); 306 } 307 308 309 /* find_table_space - finds a space in the table for a state to be placed 310 * 311 * synopsis 312 * int *state, numtrans, block_start; 313 * int find_table_space(); 314 * 315 * block_start = find_table_space( state, numtrans ); 316 * 317 * State is the state to be added to the full speed transition table. 318 * Numtrans is the number of out-transitions for the state. 319 * 320 * find_table_space() returns the position of the start of the first block (in 321 * chk) able to accommodate the state 322 * 323 * In determining if a state will or will not fit, find_table_space() must take 324 * into account the fact that an end-of-buffer state will be added at [0], 325 * and an action number will be added in [-1]. 326 */ 327 328 int find_table_space (int *state, int numtrans) 329 { 330 /* Firstfree is the position of the first possible occurrence of two 331 * consecutive unused records in the chk and nxt arrays. 332 */ 333 int i; 334 int *state_ptr, *chk_ptr; 335 int *ptr_to_last_entry_in_state; 336 337 /* If there are too many out-transitions, put the state at the end of 338 * nxt and chk. 339 */ 340 if (numtrans > MAX_XTIONS_FULL_INTERIOR_FIT) { 341 /* If table is empty, return the first available spot in 342 * chk/nxt, which should be 1. 343 */ 344 if (tblend < 2) 345 return 1; 346 347 /* Start searching for table space near the end of 348 * chk/nxt arrays. 349 */ 350 i = tblend - numecs; 351 } 352 353 else 354 /* Start searching for table space from the beginning 355 * (skipping only the elements which will definitely not 356 * hold the new state). 357 */ 358 i = firstfree; 359 360 while (1) { /* loops until a space is found */ 361 while (i + numecs >= current_max_xpairs) 362 expand_nxt_chk (); 363 364 /* Loops until space for end-of-buffer and action number 365 * are found. 366 */ 367 while (1) { 368 /* Check for action number space. */ 369 if (chk[i - 1] == 0) { 370 /* Check for end-of-buffer space. */ 371 if (chk[i] == 0) 372 break; 373 374 else 375 /* Since i != 0, there is no use 376 * checking to see if (++i) - 1 == 0, 377 * because that's the same as i == 0, 378 * so we skip a space. 379 */ 380 i += 2; 381 } 382 383 else 384 ++i; 385 386 while (i + numecs >= current_max_xpairs) 387 expand_nxt_chk (); 388 } 389 390 /* If we started search from the beginning, store the new 391 * firstfree for the next call of find_table_space(). 392 */ 393 if (numtrans <= MAX_XTIONS_FULL_INTERIOR_FIT) 394 firstfree = i + 1; 395 396 /* Check to see if all elements in chk (and therefore nxt) 397 * that are needed for the new state have not yet been taken. 398 */ 399 400 state_ptr = &state[1]; 401 ptr_to_last_entry_in_state = &chk[i + numecs + 1]; 402 403 for (chk_ptr = &chk[i + 1]; 404 chk_ptr != ptr_to_last_entry_in_state; ++chk_ptr) 405 if (*(state_ptr++) != 0 && *chk_ptr != 0) 406 break; 407 408 if (chk_ptr == ptr_to_last_entry_in_state) 409 return i; 410 411 else 412 ++i; 413 } 414 } 415 416 417 /* inittbl - initialize transition tables 418 * 419 * Initializes "firstfree" to be one beyond the end of the table. Initializes 420 * all "chk" entries to be zero. 421 */ 422 void inittbl (void) 423 { 424 int i; 425 426 memset(chk, 0, (size_t) current_max_xpairs * sizeof(int)); 427 428 tblend = 0; 429 firstfree = tblend + 1; 430 numtemps = 0; 431 432 if (usemecs) { 433 /* Set up doubly-linked meta-equivalence classes; these 434 * are sets of equivalence classes which all have identical 435 * transitions out of TEMPLATES. 436 */ 437 438 tecbck[1] = NIL; 439 440 for (i = 2; i <= numecs; ++i) { 441 tecbck[i] = i - 1; 442 tecfwd[i - 1] = i; 443 } 444 445 tecfwd[numecs] = NIL; 446 } 447 } 448 449 450 /* mkdeftbl - make the default, "jam" table entries */ 451 452 void mkdeftbl (void) 453 { 454 int i; 455 456 jamstate = lastdfa + 1; 457 458 ++tblend; /* room for transition on end-of-buffer character */ 459 460 while (tblend + numecs >= current_max_xpairs) 461 expand_nxt_chk (); 462 463 /* Add in default end-of-buffer transition. */ 464 nxt[tblend] = end_of_buffer_state; 465 chk[tblend] = jamstate; 466 467 for (i = 1; i <= numecs; ++i) { 468 nxt[tblend + i] = 0; 469 chk[tblend + i] = jamstate; 470 } 471 472 jambase = tblend; 473 474 base[jamstate] = jambase; 475 def[jamstate] = 0; 476 477 tblend += numecs; 478 ++numtemps; 479 } 480 481 482 /* mkentry - create base/def and nxt/chk entries for transition array 483 * 484 * synopsis 485 * int state[numchars + 1], numchars, statenum, deflink, totaltrans; 486 * mkentry( state, numchars, statenum, deflink, totaltrans ); 487 * 488 * "state" is a transition array "numchars" characters in size, "statenum" 489 * is the offset to be used into the base/def tables, and "deflink" is the 490 * entry to put in the "def" table entry. If "deflink" is equal to 491 * "JAMSTATE", then no attempt will be made to fit zero entries of "state" 492 * (i.e., jam entries) into the table. It is assumed that by linking to 493 * "JAMSTATE" they will be taken care of. In any case, entries in "state" 494 * marking transitions to "SAME_TRANS" are treated as though they will be 495 * taken care of by whereever "deflink" points. "totaltrans" is the total 496 * number of transitions out of the state. If it is below a certain threshold, 497 * the tables are searched for an interior spot that will accommodate the 498 * state array. 499 */ 500 501 void mkentry (int *state, int numchars, int statenum, int deflink, 502 int totaltrans) 503 { 504 int minec, maxec, i, baseaddr; 505 int tblbase, tbllast; 506 507 if (totaltrans == 0) { /* there are no out-transitions */ 508 if (deflink == JAMSTATE) 509 base[statenum] = JAMSTATE; 510 else 511 base[statenum] = 0; 512 513 def[statenum] = deflink; 514 return; 515 } 516 517 for (minec = 1; minec <= numchars; ++minec) { 518 if (state[minec] != SAME_TRANS) 519 if (state[minec] != 0 || deflink != JAMSTATE) 520 break; 521 } 522 523 if (totaltrans == 1) { 524 /* There's only one out-transition. Save it for later to fill 525 * in holes in the tables. 526 */ 527 stack1 (statenum, minec, state[minec], deflink); 528 return; 529 } 530 531 for (maxec = numchars; maxec > 0; --maxec) { 532 if (state[maxec] != SAME_TRANS) 533 if (state[maxec] != 0 || deflink != JAMSTATE) 534 break; 535 } 536 537 /* Whether we try to fit the state table in the middle of the table 538 * entries we have already generated, or if we just take the state 539 * table at the end of the nxt/chk tables, we must make sure that we 540 * have a valid base address (i.e., non-negative). Note that 541 * negative base addresses dangerous at run-time (because indexing 542 * the nxt array with one and a low-valued character will access 543 * memory before the start of the array. 544 */ 545 546 /* Find the first transition of state that we need to worry about. */ 547 if (totaltrans * 100 <= numchars * INTERIOR_FIT_PERCENTAGE) { 548 /* Attempt to squeeze it into the middle of the tables. */ 549 baseaddr = firstfree; 550 551 while (baseaddr < minec) { 552 /* Using baseaddr would result in a negative base 553 * address below; find the next free slot. 554 */ 555 for (++baseaddr; chk[baseaddr] != 0; ++baseaddr) ; 556 } 557 558 while (baseaddr + maxec - minec + 1 >= current_max_xpairs) 559 expand_nxt_chk (); 560 561 for (i = minec; i <= maxec; ++i) 562 if (state[i] != SAME_TRANS && 563 (state[i] != 0 || deflink != JAMSTATE) && 564 chk[baseaddr + i - minec] != 0) { /* baseaddr unsuitable - find another */ 565 for (++baseaddr; 566 baseaddr < current_max_xpairs && 567 chk[baseaddr] != 0; ++baseaddr) ; 568 569 while (baseaddr + maxec - minec + 1 >= 570 current_max_xpairs) 571 expand_nxt_chk (); 572 573 /* Reset the loop counter so we'll start all 574 * over again next time it's incremented. 575 */ 576 577 i = minec - 1; 578 } 579 } 580 581 else { 582 /* Ensure that the base address we eventually generate is 583 * non-negative. 584 */ 585 baseaddr = MAX (tblend + 1, minec); 586 } 587 588 tblbase = baseaddr - minec; 589 tbllast = tblbase + maxec; 590 591 while (tbllast + 1 >= current_max_xpairs) 592 expand_nxt_chk (); 593 594 base[statenum] = tblbase; 595 def[statenum] = deflink; 596 597 for (i = minec; i <= maxec; ++i) 598 if (state[i] != SAME_TRANS) 599 if (state[i] != 0 || deflink != JAMSTATE) { 600 nxt[tblbase + i] = state[i]; 601 chk[tblbase + i] = statenum; 602 } 603 604 if (baseaddr == firstfree) 605 /* Find next free slot in tables. */ 606 for (++firstfree; chk[firstfree] != 0; ++firstfree) ; 607 608 tblend = MAX (tblend, tbllast); 609 } 610 611 612 /* mk1tbl - create table entries for a state (or state fragment) which 613 * has only one out-transition 614 */ 615 616 void mk1tbl (int state, int sym, int onenxt, int onedef) 617 { 618 if (firstfree < sym) 619 firstfree = sym; 620 621 while (chk[firstfree] != 0) 622 if (++firstfree >= current_max_xpairs) 623 expand_nxt_chk (); 624 625 base[state] = firstfree - sym; 626 def[state] = onedef; 627 chk[firstfree] = state; 628 nxt[firstfree] = onenxt; 629 630 if (firstfree > tblend) { 631 tblend = firstfree++; 632 633 if (firstfree >= current_max_xpairs) 634 expand_nxt_chk (); 635 } 636 } 637 638 639 /* mkprot - create new proto entry */ 640 641 void mkprot (int state[], int statenum, int comstate) 642 { 643 int i, slot, tblbase; 644 645 if (++numprots >= MSP || numecs * numprots >= PROT_SAVE_SIZE) { 646 /* Gotta make room for the new proto by dropping last entry in 647 * the queue. 648 */ 649 slot = lastprot; 650 lastprot = protprev[lastprot]; 651 protnext[lastprot] = NIL; 652 } 653 654 else 655 slot = numprots; 656 657 protnext[slot] = firstprot; 658 659 if (firstprot != NIL) 660 protprev[firstprot] = slot; 661 662 firstprot = slot; 663 prottbl[slot] = statenum; 664 protcomst[slot] = comstate; 665 666 /* Copy state into save area so it can be compared with rapidly. */ 667 tblbase = numecs * (slot - 1); 668 669 for (i = 1; i <= numecs; ++i) 670 protsave[tblbase + i] = state[i]; 671 } 672 673 674 /* mktemplate - create a template entry based on a state, and connect the state 675 * to it 676 */ 677 678 void mktemplate (int state[], int statenum, int comstate) 679 { 680 int i, numdiff, tmpbase, tmp[CSIZE + 1]; 681 unsigned char transset[CSIZE + 1]; 682 int tsptr; 683 684 ++numtemps; 685 686 tsptr = 0; 687 688 /* Calculate where we will temporarily store the transition table 689 * of the template in the tnxt[] array. The final transition table 690 * gets created by cmptmps(). 691 */ 692 693 tmpbase = numtemps * numecs; 694 695 if (tmpbase + numecs >= current_max_template_xpairs) { 696 current_max_template_xpairs += 697 MAX_TEMPLATE_XPAIRS_INCREMENT; 698 699 ++num_reallocs; 700 701 tnxt = reallocate_integer_array (tnxt, 702 current_max_template_xpairs); 703 } 704 705 for (i = 1; i <= numecs; ++i) 706 if (state[i] == 0) 707 tnxt[tmpbase + i] = 0; 708 else { 709 /* Note: range 1..256 is mapped to 1..255,0 */ 710 transset[tsptr++] = (unsigned char) i; 711 tnxt[tmpbase + i] = comstate; 712 } 713 714 if (usemecs) 715 mkeccl (transset, tsptr, tecfwd, tecbck, numecs, 0); 716 717 mkprot (tnxt + tmpbase, -numtemps, comstate); 718 719 /* We rely on the fact that mkprot adds things to the beginning 720 * of the proto queue. 721 */ 722 723 numdiff = tbldiff (state, firstprot, tmp); 724 mkentry (tmp, numecs, statenum, -numtemps, numdiff); 725 } 726 727 728 /* mv2front - move proto queue element to front of queue */ 729 730 void mv2front (int qelm) 731 { 732 if (firstprot != qelm) { 733 if (qelm == lastprot) 734 lastprot = protprev[lastprot]; 735 736 protnext[protprev[qelm]] = protnext[qelm]; 737 738 if (protnext[qelm] != NIL) 739 protprev[protnext[qelm]] = protprev[qelm]; 740 741 protprev[qelm] = NIL; 742 protnext[qelm] = firstprot; 743 protprev[firstprot] = qelm; 744 firstprot = qelm; 745 } 746 } 747 748 749 /* place_state - place a state into full speed transition table 750 * 751 * State is the statenum'th state. It is indexed by equivalence class and 752 * gives the number of the state to enter for a given equivalence class. 753 * Transnum is the number of out-transitions for the state. 754 */ 755 756 void place_state (int *state, int statenum, int transnum) 757 { 758 int i; 759 int *state_ptr; 760 int position = find_table_space (state, transnum); 761 762 /* "base" is the table of start positions. */ 763 base[statenum] = position; 764 765 /* Put in action number marker; this non-zero number makes sure that 766 * find_table_space() knows that this position in chk/nxt is taken 767 * and should not be used for another accepting number in another 768 * state. 769 */ 770 chk[position - 1] = 1; 771 772 /* Put in end-of-buffer marker; this is for the same purposes as 773 * above. 774 */ 775 chk[position] = 1; 776 777 /* Place the state into chk and nxt. */ 778 state_ptr = &state[1]; 779 780 for (i = 1; i <= numecs; ++i, ++state_ptr) 781 if (*state_ptr != 0) { 782 chk[position + i] = i; 783 nxt[position + i] = *state_ptr; 784 } 785 786 if (position + numecs > tblend) 787 tblend = position + numecs; 788 } 789 790 791 /* stack1 - save states with only one out-transition to be processed later 792 * 793 * If there's room for another state on the "one-transition" stack, the 794 * state is pushed onto it, to be processed later by mk1tbl. If there's 795 * no room, we process the sucker right now. 796 */ 797 798 void stack1 (int statenum, int sym, int nextstate, int deflink) 799 { 800 if (onesp >= ONE_STACK_SIZE - 1) 801 mk1tbl (statenum, sym, nextstate, deflink); 802 803 else { 804 ++onesp; 805 onestate[onesp] = statenum; 806 onesym[onesp] = sym; 807 onenext[onesp] = nextstate; 808 onedef[onesp] = deflink; 809 } 810 } 811 812 813 /* tbldiff - compute differences between two state tables 814 * 815 * "state" is the state array which is to be extracted from the pr'th 816 * proto. "pr" is both the number of the proto we are extracting from 817 * and an index into the save area where we can find the proto's complete 818 * state table. Each entry in "state" which differs from the corresponding 819 * entry of "pr" will appear in "ext". 820 * 821 * Entries which are the same in both "state" and "pr" will be marked 822 * as transitions to "SAME_TRANS" in "ext". The total number of differences 823 * between "state" and "pr" is returned as function value. Note that this 824 * number is "numecs" minus the number of "SAME_TRANS" entries in "ext". 825 */ 826 827 int tbldiff (int state[], int pr, int ext[]) 828 { 829 int i, *sp = state, *ep = ext, *protp; 830 int numdiff = 0; 831 832 protp = &protsave[numecs * (pr - 1)]; 833 834 for (i = numecs; i > 0; --i) { 835 if (*++protp == *++sp) 836 *++ep = SAME_TRANS; 837 else { 838 *++ep = *sp; 839 ++numdiff; 840 } 841 } 842 843 return numdiff; 844 } 845