1 /* -*- Mode: C; tab-width: 4 -*- 2 * 3 * Copyright (c) 2002-2011 Apple Inc. All rights reserved. 4 * 5 * Licensed under the Apache License, Version 2.0 (the "License"); 6 * you may not use this file except in compliance with the License. 7 * You may obtain a copy of the License at 8 * 9 * http://www.apache.org/licenses/LICENSE-2.0 10 * 11 * Unless required by applicable law or agreed to in writing, software 12 * distributed under the License is distributed on an "AS IS" BASIS, 13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14 * See the License for the specific language governing permissions and 15 * limitations under the License. 16 */ 17 18 #ifdef __cplusplus 19 extern "C" { 20 #endif 21 22 #include "mDNSEmbeddedAPI.h" 23 #include "DNSCommon.h" 24 25 // Disable certain benign warnings with Microsoft compilers 26 #if (defined(_MSC_VER)) 27 // Disable "conditional expression is constant" warning for debug macros. 28 // Otherwise, this generates warnings for the perfectly natural construct "while(1)" 29 // If someone knows a variant way of writing "while(1)" that doesn't generate warning messages, please let us know 30 #pragma warning(disable:4127) 31 #endif 32 33 34 // *************************************************************************** 35 #if COMPILER_LIKES_PRAGMA_MARK 36 #pragma mark - Byte Swapping Functions 37 #endif 38 39 mDNSlocal mDNSu16 NToH16(mDNSu8 * bytes) 40 { 41 return (mDNSu16)((mDNSu16)bytes[0] << 8 | (mDNSu16)bytes[1]); 42 } 43 44 mDNSlocal mDNSu32 NToH32(mDNSu8 * bytes) 45 { 46 return (mDNSu32)((mDNSu32) bytes[0] << 24 | (mDNSu32) bytes[1] << 16 | (mDNSu32) bytes[2] << 8 | (mDNSu32)bytes[3]); 47 } 48 49 // *************************************************************************** 50 #if COMPILER_LIKES_PRAGMA_MARK 51 #pragma mark - MD5 Hash Functions 52 #endif 53 54 55 /* The source for the has is derived CommonCrypto files CommonDigest.h, md32_common.h, md5_locl.h, md5_locl.h, and openssl/md5.h. 56 * The following changes have been made to the original sources: 57 * replaced CC_LONG w/ mDNSu32 58 * replaced CC_MD5* with MD5* 59 * replaced CC_LONG w/ mDNSu32, removed conditional #defines from md5.h 60 * removed extern decls for MD5_Init/Update/Final from CommonDigest.h 61 * removed APPLE_COMMON_DIGEST specific #defines from md5_locl.h 62 * 63 * Note: machine archetecure specific conditionals from the original sources are turned off, but are left in the code 64 * to aid in platform-specific optimizations and debugging. 65 * Sources originally distributed under the following license headers: 66 * CommonDigest.h - APSL 67 * 68 * md32_Common.h 69 * ==================================================================== 70 * Copyright (c) 1999-2002 The OpenSSL Project. All rights reserved. 71 * 72 * Redistribution and use in source and binary forms, with or without 73 * modification, are permitted provided that the following conditions 74 * are met: 75 * 76 * 1. Redistributions of source code must retain the above copyright 77 * notice, this list of conditions and the following disclaimer. 78 * 79 * 2. Redistributions in binary form must reproduce the above copyright 80 * notice, this list of conditions and the following disclaimer in 81 * the documentation and/or other materials provided with the 82 * distribution. 83 * 84 * 3. All advertising materials mentioning features or use of this 85 * software must display the following acknowledgment: 86 * "This product includes software developed by the OpenSSL Project 87 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" 88 * 89 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to 90 * endorse or promote products derived from this software without 91 * prior written permission. For written permission, please contact 92 * licensing@OpenSSL.org. 93 * 94 * 5. Products derived from this software may not be called "OpenSSL" 95 * nor may "OpenSSL" appear in their names without prior written 96 * permission of the OpenSSL Project. 97 * 98 * 6. Redistributions of any form whatsoever must retain the following 99 * acknowledgment: 100 * "This product includes software developed by the OpenSSL Project 101 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" 102 * 103 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY 104 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 105 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 106 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR 107 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 108 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 109 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 110 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 111 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 112 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 113 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED 114 * OF THE POSSIBILITY OF SUCH DAMAGE. 115 * 116 * 117 * md5_dgst.c, md5_locl.h 118 * ==================================================================== 119 * 120 * This product includes cryptographic software written by Eric Young 121 * (eay@cryptsoft.com). This product includes software written by Tim 122 * Hudson (tjh@cryptsoft.com). 123 * 124 * Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) 125 * All rights reserved. 126 * 127 * This package is an SSL implementation written 128 * by Eric Young (eay@cryptsoft.com). 129 * The implementation was written so as to conform with Netscapes SSL. 130 * 131 * This library is free for commercial and non-commercial use as long as 132 * the following conditions are aheared to. The following conditions 133 * apply to all code found in this distribution, be it the RC4, RSA, 134 * lhash, DES, etc., code; not just the SSL code. The SSL documentation 135 * included with this distribution is covered by the same copyright terms 136 * except that the holder is Tim Hudson (tjh@cryptsoft.com). 137 * 138 * Copyright remains Eric Young's, and as such any Copyright notices in 139 * the code are not to be removed. 140 * If this package is used in a product, Eric Young should be given attribution 141 * as the author of the parts of the library used. 142 * This can be in the form of a textual message at program startup or 143 * in documentation (online or textual) provided with the package. 144 * 145 * Redistribution and use in source and binary forms, with or without 146 * modification, are permitted provided that the following conditions 147 * are met: 148 * 1. Redistributions of source code must retain the copyright 149 * notice, this list of conditions and the following disclaimer. 150 * 2. Redistributions in binary form must reproduce the above copyright 151 * notice, this list of conditions and the following disclaimer in the 152 * documentation and/or other materials provided with the distribution. 153 * 3. All advertising materials mentioning features or use of this software 154 * must display the following acknowledgement: 155 * "This product includes cryptographic software written by 156 * Eric Young (eay@cryptsoft.com)" 157 * The word 'cryptographic' can be left out if the rouines from the library 158 * being used are not cryptographic related :-). 159 * 4. If you include any Windows specific code (or a derivative thereof) from 160 * the apps directory (application code) you must include an acknowledgement: 161 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" 162 * 163 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND 164 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 165 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 166 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 167 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 168 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 169 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 170 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 171 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 172 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 173 * SUCH DAMAGE. 174 * 175 * The licence and distribution terms for any publically available version or 176 * derivative of this code cannot be changed. i.e. this code cannot simply be 177 * copied and put under another distribution licence 178 * [including the GNU Public Licence.] 179 * 180 */ 181 182 //from CommonDigest.h 183 184 185 186 // from openssl/md5.h 187 188 #define MD5_CBLOCK 64 189 #define MD5_LBLOCK (MD5_CBLOCK/4) 190 #define MD5_DIGEST_LENGTH 16 191 192 void MD5_Transform(MD5_CTX *c, const unsigned char *b); 193 194 // From md5_locl.h 195 196 #ifndef MD5_LONG_LOG2 197 #define MD5_LONG_LOG2 2 /* default to 32 bits */ 198 #endif 199 200 #ifdef MD5_ASM 201 # if defined(__i386) || defined(__i386__) || defined(_M_IX86) || defined(__INTEL__) 202 # define md5_block_host_order md5_block_asm_host_order 203 # elif defined(__sparc) && defined(OPENSSL_SYS_ULTRASPARC) 204 void md5_block_asm_data_order_aligned (MD5_CTX *c, const mDNSu32 *p,int num); 205 # define HASH_BLOCK_DATA_ORDER_ALIGNED md5_block_asm_data_order_aligned 206 # endif 207 #endif 208 209 void md5_block_host_order (MD5_CTX *c, const void *p,int num); 210 void md5_block_data_order (MD5_CTX *c, const void *p,int num); 211 212 #if defined(__i386) || defined(__i386__) || defined(_M_IX86) || defined(__INTEL__) 213 /* 214 * *_block_host_order is expected to handle aligned data while 215 * *_block_data_order - unaligned. As algorithm and host (x86) 216 * are in this case of the same "endianness" these two are 217 * otherwise indistinguishable. But normally you don't want to 218 * call the same function because unaligned access in places 219 * where alignment is expected is usually a "Bad Thing". Indeed, 220 * on RISCs you get punished with BUS ERROR signal or *severe* 221 * performance degradation. Intel CPUs are in turn perfectly 222 * capable of loading unaligned data without such drastic side 223 * effect. Yes, they say it's slower than aligned load, but no 224 * exception is generated and therefore performance degradation 225 * is *incomparable* with RISCs. What we should weight here is 226 * costs of unaligned access against costs of aligning data. 227 * According to my measurements allowing unaligned access results 228 * in ~9% performance improvement on Pentium II operating at 229 * 266MHz. I won't be surprised if the difference will be higher 230 * on faster systems:-) 231 * 232 * <appro@fy.chalmers.se> 233 */ 234 #define md5_block_data_order md5_block_host_order 235 #endif 236 237 #define DATA_ORDER_IS_LITTLE_ENDIAN 238 239 #define HASH_LONG mDNSu32 240 #define HASH_LONG_LOG2 MD5_LONG_LOG2 241 #define HASH_CTX MD5_CTX 242 #define HASH_CBLOCK MD5_CBLOCK 243 #define HASH_LBLOCK MD5_LBLOCK 244 245 #define HASH_UPDATE MD5_Update 246 #define HASH_TRANSFORM MD5_Transform 247 #define HASH_FINAL MD5_Final 248 249 #define HASH_MAKE_STRING(c,s) do { \ 250 unsigned long ll; \ 251 ll=(c)->A; HOST_l2c(ll,(s)); \ 252 ll=(c)->B; HOST_l2c(ll,(s)); \ 253 ll=(c)->C; HOST_l2c(ll,(s)); \ 254 ll=(c)->D; HOST_l2c(ll,(s)); \ 255 } while (0) 256 #define HASH_BLOCK_HOST_ORDER md5_block_host_order 257 #if !defined(L_ENDIAN) || defined(md5_block_data_order) 258 #define HASH_BLOCK_DATA_ORDER md5_block_data_order 259 /* 260 * Little-endians (Intel and Alpha) feel better without this. 261 * It looks like memcpy does better job than generic 262 * md5_block_data_order on copying-n-aligning input data. 263 * But frankly speaking I didn't expect such result on Alpha. 264 * On the other hand I've got this with egcs-1.0.2 and if 265 * program is compiled with another (better?) compiler it 266 * might turn out other way around. 267 * 268 * <appro@fy.chalmers.se> 269 */ 270 #endif 271 272 273 // from md32_common.h 274 275 /* 276 * This is a generic 32 bit "collector" for message digest algorithms. 277 * Whenever needed it collects input character stream into chunks of 278 * 32 bit values and invokes a block function that performs actual hash 279 * calculations. 280 * 281 * Porting guide. 282 * 283 * Obligatory macros: 284 * 285 * DATA_ORDER_IS_BIG_ENDIAN or DATA_ORDER_IS_LITTLE_ENDIAN 286 * this macro defines byte order of input stream. 287 * HASH_CBLOCK 288 * size of a unit chunk HASH_BLOCK operates on. 289 * HASH_LONG 290 * has to be at lest 32 bit wide, if it's wider, then 291 * HASH_LONG_LOG2 *has to* be defined along 292 * HASH_CTX 293 * context structure that at least contains following 294 * members: 295 * typedef struct { 296 * ... 297 * HASH_LONG Nl,Nh; 298 * HASH_LONG data[HASH_LBLOCK]; 299 * int num; 300 * ... 301 * } HASH_CTX; 302 * HASH_UPDATE 303 * name of "Update" function, implemented here. 304 * HASH_TRANSFORM 305 * name of "Transform" function, implemented here. 306 * HASH_FINAL 307 * name of "Final" function, implemented here. 308 * HASH_BLOCK_HOST_ORDER 309 * name of "block" function treating *aligned* input message 310 * in host byte order, implemented externally. 311 * HASH_BLOCK_DATA_ORDER 312 * name of "block" function treating *unaligned* input message 313 * in original (data) byte order, implemented externally (it 314 * actually is optional if data and host are of the same 315 * "endianess"). 316 * HASH_MAKE_STRING 317 * macro convering context variables to an ASCII hash string. 318 * 319 * Optional macros: 320 * 321 * B_ENDIAN or L_ENDIAN 322 * defines host byte-order. 323 * HASH_LONG_LOG2 324 * defaults to 2 if not states otherwise. 325 * HASH_LBLOCK 326 * assumed to be HASH_CBLOCK/4 if not stated otherwise. 327 * HASH_BLOCK_DATA_ORDER_ALIGNED 328 * alternative "block" function capable of treating 329 * aligned input message in original (data) order, 330 * implemented externally. 331 * 332 * MD5 example: 333 * 334 * #define DATA_ORDER_IS_LITTLE_ENDIAN 335 * 336 * #define HASH_LONG mDNSu32 337 * #define HASH_LONG_LOG2 mDNSu32_LOG2 338 * #define HASH_CTX MD5_CTX 339 * #define HASH_CBLOCK MD5_CBLOCK 340 * #define HASH_LBLOCK MD5_LBLOCK 341 * #define HASH_UPDATE MD5_Update 342 * #define HASH_TRANSFORM MD5_Transform 343 * #define HASH_FINAL MD5_Final 344 * #define HASH_BLOCK_HOST_ORDER md5_block_host_order 345 * #define HASH_BLOCK_DATA_ORDER md5_block_data_order 346 * 347 * <appro@fy.chalmers.se> 348 */ 349 350 #if !defined(DATA_ORDER_IS_BIG_ENDIAN) && !defined(DATA_ORDER_IS_LITTLE_ENDIAN) 351 #error "DATA_ORDER must be defined!" 352 #endif 353 354 #ifndef HASH_CBLOCK 355 #error "HASH_CBLOCK must be defined!" 356 #endif 357 #ifndef HASH_LONG 358 #error "HASH_LONG must be defined!" 359 #endif 360 #ifndef HASH_CTX 361 #error "HASH_CTX must be defined!" 362 #endif 363 364 #ifndef HASH_UPDATE 365 #error "HASH_UPDATE must be defined!" 366 #endif 367 #ifndef HASH_TRANSFORM 368 #error "HASH_TRANSFORM must be defined!" 369 #endif 370 #ifndef HASH_FINAL 371 #error "HASH_FINAL must be defined!" 372 #endif 373 374 #ifndef HASH_BLOCK_HOST_ORDER 375 #error "HASH_BLOCK_HOST_ORDER must be defined!" 376 #endif 377 378 #if 0 379 /* 380 * Moved below as it's required only if HASH_BLOCK_DATA_ORDER_ALIGNED 381 * isn't defined. 382 */ 383 #ifndef HASH_BLOCK_DATA_ORDER 384 #error "HASH_BLOCK_DATA_ORDER must be defined!" 385 #endif 386 #endif 387 388 #ifndef HASH_LBLOCK 389 #define HASH_LBLOCK (HASH_CBLOCK/4) 390 #endif 391 392 #ifndef HASH_LONG_LOG2 393 #define HASH_LONG_LOG2 2 394 #endif 395 396 /* 397 * Engage compiler specific rotate intrinsic function if available. 398 */ 399 #undef ROTATE 400 #ifndef PEDANTIC 401 # if 0 /* defined(_MSC_VER) */ 402 # define ROTATE(a,n) _lrotl(a,n) 403 # elif defined(__MWERKS__) 404 # if defined(__POWERPC__) 405 # define ROTATE(a,n) (unsigned MD32_REG_T)__rlwinm((int)a,n,0,31) 406 # elif defined(__MC68K__) 407 /* Motorola specific tweak. <appro@fy.chalmers.se> */ 408 # define ROTATE(a,n) (n<24 ? __rol(a,n) : __ror(a,32-n)) 409 # else 410 # define ROTATE(a,n) __rol(a,n) 411 # endif 412 # elif defined(__GNUC__) && __GNUC__>=2 && !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM) 413 /* 414 * Some GNU C inline assembler templates. Note that these are 415 * rotates by *constant* number of bits! But that's exactly 416 * what we need here... 417 * 418 * <appro@fy.chalmers.se> 419 */ 420 /* 421 * LLVM is more strict about compatibility of types between input & output constraints, 422 * but we want these to be rotations of 32 bits, not 64, so we explicitly drop the 423 * most significant bytes by casting to an unsigned int. 424 */ 425 # if defined(__i386) || defined(__i386__) || defined(__x86_64) || defined(__x86_64__) 426 # define ROTATE(a,n) ({ register unsigned int ret; \ 427 asm ( \ 428 "roll %1,%0" \ 429 : "=r" (ret) \ 430 : "I" (n), "0" ((unsigned int)a) \ 431 : "cc"); \ 432 ret; \ 433 }) 434 # elif defined(__powerpc) || defined(__ppc) 435 # define ROTATE(a,n) ({ register unsigned int ret; \ 436 asm ( \ 437 "rlwinm %0,%1,%2,0,31" \ 438 : "=r" (ret) \ 439 : "r" (a), "I" (n)); \ 440 ret; \ 441 }) 442 # endif 443 # endif 444 445 /* 446 * Engage compiler specific "fetch in reverse byte order" 447 * intrinsic function if available. 448 */ 449 # if defined(__GNUC__) && __GNUC__>=2 && !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM) 450 /* some GNU C inline assembler templates by <appro@fy.chalmers.se> */ 451 # if (defined(__i386) || defined(__i386__) || defined(__x86_64) || defined(__x86_64__)) && !defined(I386_ONLY) 452 # define BE_FETCH32(a) ({ register unsigned int l=(a); \ 453 asm ( \ 454 "bswapl %0" \ 455 : "=r" (l) : "0" (l)); \ 456 l; \ 457 }) 458 # elif defined(__powerpc) 459 # define LE_FETCH32(a) ({ register unsigned int l; \ 460 asm ( \ 461 "lwbrx %0,0,%1" \ 462 : "=r" (l) \ 463 : "r" (a)); \ 464 l; \ 465 }) 466 467 # elif defined(__sparc) && defined(OPENSSL_SYS_ULTRASPARC) 468 # define LE_FETCH32(a) ({ register unsigned int l; \ 469 asm ( \ 470 "lda [%1]#ASI_PRIMARY_LITTLE,%0" \ 471 : "=r" (l) \ 472 : "r" (a)); \ 473 l; \ 474 }) 475 # endif 476 # endif 477 #endif /* PEDANTIC */ 478 479 #if HASH_LONG_LOG2==2 /* Engage only if sizeof(HASH_LONG)== 4 */ 480 /* A nice byte order reversal from Wei Dai <weidai@eskimo.com> */ 481 #ifdef ROTATE 482 /* 5 instructions with rotate instruction, else 9 */ 483 #define REVERSE_FETCH32(a,l) ( \ 484 l=*(const HASH_LONG *)(a), \ 485 ((ROTATE(l,8)&0x00FF00FF)|(ROTATE((l&0x00FF00FF),24))) \ 486 ) 487 #else 488 /* 6 instructions with rotate instruction, else 8 */ 489 #define REVERSE_FETCH32(a,l) ( \ 490 l=*(const HASH_LONG *)(a), \ 491 l=(((l>>8)&0x00FF00FF)|((l&0x00FF00FF)<<8)), \ 492 ROTATE(l,16) \ 493 ) 494 /* 495 * Originally the middle line started with l=(((l&0xFF00FF00)>>8)|... 496 * It's rewritten as above for two reasons: 497 * - RISCs aren't good at long constants and have to explicitely 498 * compose 'em with several (well, usually 2) instructions in a 499 * register before performing the actual operation and (as you 500 * already realized:-) having same constant should inspire the 501 * compiler to permanently allocate the only register for it; 502 * - most modern CPUs have two ALUs, but usually only one has 503 * circuitry for shifts:-( this minor tweak inspires compiler 504 * to schedule shift instructions in a better way... 505 * 506 * <appro@fy.chalmers.se> 507 */ 508 #endif 509 #endif 510 511 #ifndef ROTATE 512 #define ROTATE(a,n) (((a)<<(n))|(((a)&0xffffffff)>>(32-(n)))) 513 #endif 514 515 /* 516 * Make some obvious choices. E.g., HASH_BLOCK_DATA_ORDER_ALIGNED 517 * and HASH_BLOCK_HOST_ORDER ought to be the same if input data 518 * and host are of the same "endianess". It's possible to mask 519 * this with blank #define HASH_BLOCK_DATA_ORDER though... 520 * 521 * <appro@fy.chalmers.se> 522 */ 523 #if defined(B_ENDIAN) 524 # if defined(DATA_ORDER_IS_BIG_ENDIAN) 525 # if !defined(HASH_BLOCK_DATA_ORDER_ALIGNED) && HASH_LONG_LOG2==2 526 # define HASH_BLOCK_DATA_ORDER_ALIGNED HASH_BLOCK_HOST_ORDER 527 # endif 528 # elif defined(DATA_ORDER_IS_LITTLE_ENDIAN) 529 # ifndef HOST_FETCH32 530 # ifdef LE_FETCH32 531 # define HOST_FETCH32(p,l) LE_FETCH32(p) 532 # elif defined(REVERSE_FETCH32) 533 # define HOST_FETCH32(p,l) REVERSE_FETCH32(p,l) 534 # endif 535 # endif 536 # endif 537 #elif defined(L_ENDIAN) 538 # if defined(DATA_ORDER_IS_LITTLE_ENDIAN) 539 # if !defined(HASH_BLOCK_DATA_ORDER_ALIGNED) && HASH_LONG_LOG2==2 540 # define HASH_BLOCK_DATA_ORDER_ALIGNED HASH_BLOCK_HOST_ORDER 541 # endif 542 # elif defined(DATA_ORDER_IS_BIG_ENDIAN) 543 # ifndef HOST_FETCH32 544 # ifdef BE_FETCH32 545 # define HOST_FETCH32(p,l) BE_FETCH32(p) 546 # elif defined(REVERSE_FETCH32) 547 # define HOST_FETCH32(p,l) REVERSE_FETCH32(p,l) 548 # endif 549 # endif 550 # endif 551 #endif 552 553 #if !defined(HASH_BLOCK_DATA_ORDER_ALIGNED) 554 #ifndef HASH_BLOCK_DATA_ORDER 555 #error "HASH_BLOCK_DATA_ORDER must be defined!" 556 #endif 557 #endif 558 559 // None of the invocations of the following macros actually use the result, 560 // so cast them to void to avoid any compiler warnings/errors about not using 561 // the result (e.g. when using clang). 562 // If the resultant values need to be used at some point, these must be changed. 563 #define HOST_c2l(c,l) ((void)_HOST_c2l(c,l)) 564 #define HOST_l2c(l,c) ((void)_HOST_l2c(l,c)) 565 566 #if defined(DATA_ORDER_IS_BIG_ENDIAN) 567 568 #define _HOST_c2l(c,l) (l =(((unsigned long)(*((c)++)))<<24), \ 569 l|=(((unsigned long)(*((c)++)))<<16), \ 570 l|=(((unsigned long)(*((c)++)))<< 8), \ 571 l|=(((unsigned long)(*((c)++))) ), \ 572 l) 573 #define HOST_p_c2l(c,l,n) { \ 574 switch (n) { \ 575 case 0: l =((unsigned long)(*((c)++)))<<24; \ 576 case 1: l|=((unsigned long)(*((c)++)))<<16; \ 577 case 2: l|=((unsigned long)(*((c)++)))<< 8; \ 578 case 3: l|=((unsigned long)(*((c)++))); \ 579 } } 580 #define HOST_p_c2l_p(c,l,sc,len) { \ 581 switch (sc) { \ 582 case 0: l =((unsigned long)(*((c)++)))<<24; \ 583 if (--len == 0) break; \ 584 case 1: l|=((unsigned long)(*((c)++)))<<16; \ 585 if (--len == 0) break; \ 586 case 2: l|=((unsigned long)(*((c)++)))<< 8; \ 587 } } 588 /* NOTE the pointer is not incremented at the end of this */ 589 #define HOST_c2l_p(c,l,n) { \ 590 l=0; (c)+=n; \ 591 switch (n) { \ 592 case 3: l =((unsigned long)(*(--(c))))<< 8; \ 593 case 2: l|=((unsigned long)(*(--(c))))<<16; \ 594 case 1: l|=((unsigned long)(*(--(c))))<<24; \ 595 } } 596 #define _HOST_l2c(l,c) (*((c)++)=(unsigned char)(((l)>>24)&0xff), \ 597 *((c)++)=(unsigned char)(((l)>>16)&0xff), \ 598 *((c)++)=(unsigned char)(((l)>> 8)&0xff), \ 599 *((c)++)=(unsigned char)(((l) )&0xff), \ 600 l) 601 602 #elif defined(DATA_ORDER_IS_LITTLE_ENDIAN) 603 604 #define _HOST_c2l(c,l) (l =(((unsigned long)(*((c)++))) ), \ 605 l|=(((unsigned long)(*((c)++)))<< 8), \ 606 l|=(((unsigned long)(*((c)++)))<<16), \ 607 l|=(((unsigned long)(*((c)++)))<<24), \ 608 l) 609 #define HOST_p_c2l(c,l,n) { \ 610 switch (n) { \ 611 case 0: l =((unsigned long)(*((c)++))); \ 612 case 1: l|=((unsigned long)(*((c)++)))<< 8; \ 613 case 2: l|=((unsigned long)(*((c)++)))<<16; \ 614 case 3: l|=((unsigned long)(*((c)++)))<<24; \ 615 } } 616 #define HOST_p_c2l_p(c,l,sc,len) { \ 617 switch (sc) { \ 618 case 0: l =((unsigned long)(*((c)++))); \ 619 if (--len == 0) break; \ 620 case 1: l|=((unsigned long)(*((c)++)))<< 8; \ 621 if (--len == 0) break; \ 622 case 2: l|=((unsigned long)(*((c)++)))<<16; \ 623 } } 624 /* NOTE the pointer is not incremented at the end of this */ 625 #define HOST_c2l_p(c,l,n) { \ 626 l=0; (c)+=n; \ 627 switch (n) { \ 628 case 3: l =((unsigned long)(*(--(c))))<<16; \ 629 case 2: l|=((unsigned long)(*(--(c))))<< 8; \ 630 case 1: l|=((unsigned long)(*(--(c)))); \ 631 } } 632 #define _HOST_l2c(l,c) (*((c)++)=(unsigned char)(((l) )&0xff), \ 633 *((c)++)=(unsigned char)(((l)>> 8)&0xff), \ 634 *((c)++)=(unsigned char)(((l)>>16)&0xff), \ 635 *((c)++)=(unsigned char)(((l)>>24)&0xff), \ 636 l) 637 638 #endif 639 640 /* 641 * Time for some action:-) 642 */ 643 644 int HASH_UPDATE (HASH_CTX *c, const void *data_, unsigned long len) 645 { 646 const unsigned char *data=(const unsigned char *)data_; 647 register HASH_LONG * p; 648 register unsigned long l; 649 int sw,sc,ew,ec; 650 651 if (len==0) return 1; 652 653 l=(c->Nl+(len<<3))&0xffffffffL; 654 /* 95-05-24 eay Fixed a bug with the overflow handling, thanks to 655 * Wei Dai <weidai@eskimo.com> for pointing it out. */ 656 if (l < c->Nl) /* overflow */ 657 c->Nh++; 658 c->Nh+=(len>>29); 659 c->Nl=l; 660 661 if (c->num != 0) 662 { 663 p=c->data; 664 sw=c->num>>2; 665 sc=c->num&0x03; 666 667 if ((c->num+len) >= HASH_CBLOCK) 668 { 669 l=p[sw]; HOST_p_c2l(data,l,sc); p[sw++]=l; 670 for (; sw<HASH_LBLOCK; sw++) 671 { 672 HOST_c2l(data,l); p[sw]=l; 673 } 674 HASH_BLOCK_HOST_ORDER (c,p,1); 675 len-=(HASH_CBLOCK-c->num); 676 c->num=0; 677 /* drop through and do the rest */ 678 } 679 else 680 { 681 c->num+=len; 682 if ((sc+len) < 4) /* ugly, add char's to a word */ 683 { 684 l=p[sw]; HOST_p_c2l_p(data,l,sc,len); p[sw]=l; 685 } 686 else 687 { 688 ew=(c->num>>2); 689 ec=(c->num&0x03); 690 if (sc) 691 l=p[sw]; 692 HOST_p_c2l(data,l,sc); 693 p[sw++]=l; 694 for (; sw < ew; sw++) 695 { 696 HOST_c2l(data,l); p[sw]=l; 697 } 698 if (ec) 699 { 700 HOST_c2l_p(data,l,ec); p[sw]=l; 701 } 702 } 703 return 1; 704 } 705 } 706 707 sw=(int)(len/HASH_CBLOCK); 708 if (sw > 0) 709 { 710 #if defined(HASH_BLOCK_DATA_ORDER_ALIGNED) 711 /* 712 * Note that HASH_BLOCK_DATA_ORDER_ALIGNED gets defined 713 * only if sizeof(HASH_LONG)==4. 714 */ 715 if ((((unsigned long)data)%4) == 0) 716 { 717 /* data is properly aligned so that we can cast it: */ 718 HASH_BLOCK_DATA_ORDER_ALIGNED (c,(HASH_LONG *)data,sw); 719 sw*=HASH_CBLOCK; 720 data+=sw; 721 len-=sw; 722 } 723 else 724 #if !defined(HASH_BLOCK_DATA_ORDER) 725 while (sw--) 726 { 727 mDNSPlatformMemCopy(p=c->data,data,HASH_CBLOCK); 728 HASH_BLOCK_DATA_ORDER_ALIGNED(c,p,1); 729 data+=HASH_CBLOCK; 730 len-=HASH_CBLOCK; 731 } 732 #endif 733 #endif 734 #if defined(HASH_BLOCK_DATA_ORDER) 735 { 736 HASH_BLOCK_DATA_ORDER(c,data,sw); 737 sw*=HASH_CBLOCK; 738 data+=sw; 739 len-=sw; 740 } 741 #endif 742 } 743 744 if (len!=0) 745 { 746 p = c->data; 747 c->num = (int)len; 748 ew=(int)(len>>2); /* words to copy */ 749 ec=(int)(len&0x03); 750 for (; ew; ew--,p++) 751 { 752 HOST_c2l(data,l); *p=l; 753 } 754 HOST_c2l_p(data,l,ec); 755 *p=l; 756 } 757 return 1; 758 } 759 760 761 void HASH_TRANSFORM (HASH_CTX *c, const unsigned char *data) 762 { 763 #if defined(HASH_BLOCK_DATA_ORDER_ALIGNED) 764 if ((((unsigned long)data)%4) == 0) 765 /* data is properly aligned so that we can cast it: */ 766 HASH_BLOCK_DATA_ORDER_ALIGNED (c,(HASH_LONG *)data,1); 767 else 768 #if !defined(HASH_BLOCK_DATA_ORDER) 769 { 770 mDNSPlatformMemCopy(c->data,data,HASH_CBLOCK); 771 HASH_BLOCK_DATA_ORDER_ALIGNED (c,c->data,1); 772 } 773 #endif 774 #endif 775 #if defined(HASH_BLOCK_DATA_ORDER) 776 HASH_BLOCK_DATA_ORDER (c,data,1); 777 #endif 778 } 779 780 781 int HASH_FINAL (unsigned char *md, HASH_CTX *c) 782 { 783 register HASH_LONG *p; 784 register unsigned long l; 785 register int i,j; 786 static const unsigned char end[4]={0x80,0x00,0x00,0x00}; 787 const unsigned char *cp=end; 788 789 /* c->num should definitly have room for at least one more byte. */ 790 p=c->data; 791 i=c->num>>2; 792 j=c->num&0x03; 793 794 #if 0 795 /* purify often complains about the following line as an 796 * Uninitialized Memory Read. While this can be true, the 797 * following p_c2l macro will reset l when that case is true. 798 * This is because j&0x03 contains the number of 'valid' bytes 799 * already in p[i]. If and only if j&0x03 == 0, the UMR will 800 * occur but this is also the only time p_c2l will do 801 * l= *(cp++) instead of l|= *(cp++) 802 * Many thanks to Alex Tang <altitude@cic.net> for pickup this 803 * 'potential bug' */ 804 #ifdef PURIFY 805 if (j==0) p[i]=0; /* Yeah, but that's not the way to fix it:-) */ 806 #endif 807 l=p[i]; 808 #else 809 l = (j==0) ? 0 : p[i]; 810 #endif 811 HOST_p_c2l(cp,l,j); p[i++]=l; /* i is the next 'undefined word' */ 812 813 if (i>(HASH_LBLOCK-2)) /* save room for Nl and Nh */ 814 { 815 if (i<HASH_LBLOCK) p[i]=0; 816 HASH_BLOCK_HOST_ORDER (c,p,1); 817 i=0; 818 } 819 for (; i<(HASH_LBLOCK-2); i++) 820 p[i]=0; 821 822 #if defined(DATA_ORDER_IS_BIG_ENDIAN) 823 p[HASH_LBLOCK-2]=c->Nh; 824 p[HASH_LBLOCK-1]=c->Nl; 825 #elif defined(DATA_ORDER_IS_LITTLE_ENDIAN) 826 p[HASH_LBLOCK-2]=c->Nl; 827 p[HASH_LBLOCK-1]=c->Nh; 828 #endif 829 HASH_BLOCK_HOST_ORDER (c,p,1); 830 831 #ifndef HASH_MAKE_STRING 832 #error "HASH_MAKE_STRING must be defined!" 833 #else 834 HASH_MAKE_STRING(c,md); 835 #endif 836 837 c->num=0; 838 /* clear stuff, HASH_BLOCK may be leaving some stuff on the stack 839 * but I'm not worried :-) 840 OPENSSL_cleanse((void *)c,sizeof(HASH_CTX)); 841 */ 842 return 1; 843 } 844 845 #ifndef MD32_REG_T 846 #define MD32_REG_T long 847 /* 848 * This comment was originaly written for MD5, which is why it 849 * discusses A-D. But it basically applies to all 32-bit digests, 850 * which is why it was moved to common header file. 851 * 852 * In case you wonder why A-D are declared as long and not 853 * as mDNSu32. Doing so results in slight performance 854 * boost on LP64 architectures. The catch is we don't 855 * really care if 32 MSBs of a 64-bit register get polluted 856 * with eventual overflows as we *save* only 32 LSBs in 857 * *either* case. Now declaring 'em long excuses the compiler 858 * from keeping 32 MSBs zeroed resulting in 13% performance 859 * improvement under SPARC Solaris7/64 and 5% under AlphaLinux. 860 * Well, to be honest it should say that this *prevents* 861 * performance degradation. 862 * <appro@fy.chalmers.se> 863 * Apparently there're LP64 compilers that generate better 864 * code if A-D are declared int. Most notably GCC-x86_64 865 * generates better code. 866 * <appro@fy.chalmers.se> 867 */ 868 #endif 869 870 871 // from md5_locl.h (continued) 872 873 /* 874 #define F(x,y,z) (((x) & (y)) | ((~(x)) & (z))) 875 #define G(x,y,z) (((x) & (z)) | ((y) & (~(z)))) 876 */ 877 878 /* As pointed out by Wei Dai <weidai@eskimo.com>, the above can be 879 * simplified to the code below. Wei attributes these optimizations 880 * to Peter Gutmann's SHS code, and he attributes it to Rich Schroeppel. 881 */ 882 #define F(b,c,d) ((((c) ^ (d)) & (b)) ^ (d)) 883 #define G(b,c,d) ((((b) ^ (c)) & (d)) ^ (c)) 884 #define H(b,c,d) ((b) ^ (c) ^ (d)) 885 #define I(b,c,d) (((~(d)) | (b)) ^ (c)) 886 887 #define R0(a,b,c,d,k,s,t) { \ 888 a+=((k)+(t)+F((b),(c),(d))); \ 889 a=ROTATE(a,s); \ 890 a+=b; }; \ 891 892 #define R1(a,b,c,d,k,s,t) { \ 893 a+=((k)+(t)+G((b),(c),(d))); \ 894 a=ROTATE(a,s); \ 895 a+=b; }; 896 897 #define R2(a,b,c,d,k,s,t) { \ 898 a+=((k)+(t)+H((b),(c),(d))); \ 899 a=ROTATE(a,s); \ 900 a+=b; }; 901 902 #define R3(a,b,c,d,k,s,t) { \ 903 a+=((k)+(t)+I((b),(c),(d))); \ 904 a=ROTATE(a,s); \ 905 a+=b; }; 906 907 // from md5_dgst.c 908 909 910 /* Implemented from RFC1321 The MD5 Message-Digest Algorithm 911 */ 912 913 #define INIT_DATA_A (unsigned long)0x67452301L 914 #define INIT_DATA_B (unsigned long)0xefcdab89L 915 #define INIT_DATA_C (unsigned long)0x98badcfeL 916 #define INIT_DATA_D (unsigned long)0x10325476L 917 918 int MD5_Init(MD5_CTX *c) 919 { 920 c->A=INIT_DATA_A; 921 c->B=INIT_DATA_B; 922 c->C=INIT_DATA_C; 923 c->D=INIT_DATA_D; 924 c->Nl=0; 925 c->Nh=0; 926 c->num=0; 927 return 1; 928 } 929 930 #ifndef md5_block_host_order 931 void md5_block_host_order (MD5_CTX *c, const void *data, int num) 932 { 933 const mDNSu32 *X=(const mDNSu32 *)data; 934 register unsigned MD32_REG_T A,B,C,D; 935 936 A=c->A; 937 B=c->B; 938 C=c->C; 939 D=c->D; 940 941 for (; num--; X+=HASH_LBLOCK) 942 { 943 /* Round 0 */ 944 R0(A,B,C,D,X[ 0], 7,0xd76aa478L); 945 R0(D,A,B,C,X[ 1],12,0xe8c7b756L); 946 R0(C,D,A,B,X[ 2],17,0x242070dbL); 947 R0(B,C,D,A,X[ 3],22,0xc1bdceeeL); 948 R0(A,B,C,D,X[ 4], 7,0xf57c0fafL); 949 R0(D,A,B,C,X[ 5],12,0x4787c62aL); 950 R0(C,D,A,B,X[ 6],17,0xa8304613L); 951 R0(B,C,D,A,X[ 7],22,0xfd469501L); 952 R0(A,B,C,D,X[ 8], 7,0x698098d8L); 953 R0(D,A,B,C,X[ 9],12,0x8b44f7afL); 954 R0(C,D,A,B,X[10],17,0xffff5bb1L); 955 R0(B,C,D,A,X[11],22,0x895cd7beL); 956 R0(A,B,C,D,X[12], 7,0x6b901122L); 957 R0(D,A,B,C,X[13],12,0xfd987193L); 958 R0(C,D,A,B,X[14],17,0xa679438eL); 959 R0(B,C,D,A,X[15],22,0x49b40821L); 960 /* Round 1 */ 961 R1(A,B,C,D,X[ 1], 5,0xf61e2562L); 962 R1(D,A,B,C,X[ 6], 9,0xc040b340L); 963 R1(C,D,A,B,X[11],14,0x265e5a51L); 964 R1(B,C,D,A,X[ 0],20,0xe9b6c7aaL); 965 R1(A,B,C,D,X[ 5], 5,0xd62f105dL); 966 R1(D,A,B,C,X[10], 9,0x02441453L); 967 R1(C,D,A,B,X[15],14,0xd8a1e681L); 968 R1(B,C,D,A,X[ 4],20,0xe7d3fbc8L); 969 R1(A,B,C,D,X[ 9], 5,0x21e1cde6L); 970 R1(D,A,B,C,X[14], 9,0xc33707d6L); 971 R1(C,D,A,B,X[ 3],14,0xf4d50d87L); 972 R1(B,C,D,A,X[ 8],20,0x455a14edL); 973 R1(A,B,C,D,X[13], 5,0xa9e3e905L); 974 R1(D,A,B,C,X[ 2], 9,0xfcefa3f8L); 975 R1(C,D,A,B,X[ 7],14,0x676f02d9L); 976 R1(B,C,D,A,X[12],20,0x8d2a4c8aL); 977 /* Round 2 */ 978 R2(A,B,C,D,X[ 5], 4,0xfffa3942L); 979 R2(D,A,B,C,X[ 8],11,0x8771f681L); 980 R2(C,D,A,B,X[11],16,0x6d9d6122L); 981 R2(B,C,D,A,X[14],23,0xfde5380cL); 982 R2(A,B,C,D,X[ 1], 4,0xa4beea44L); 983 R2(D,A,B,C,X[ 4],11,0x4bdecfa9L); 984 R2(C,D,A,B,X[ 7],16,0xf6bb4b60L); 985 R2(B,C,D,A,X[10],23,0xbebfbc70L); 986 R2(A,B,C,D,X[13], 4,0x289b7ec6L); 987 R2(D,A,B,C,X[ 0],11,0xeaa127faL); 988 R2(C,D,A,B,X[ 3],16,0xd4ef3085L); 989 R2(B,C,D,A,X[ 6],23,0x04881d05L); 990 R2(A,B,C,D,X[ 9], 4,0xd9d4d039L); 991 R2(D,A,B,C,X[12],11,0xe6db99e5L); 992 R2(C,D,A,B,X[15],16,0x1fa27cf8L); 993 R2(B,C,D,A,X[ 2],23,0xc4ac5665L); 994 /* Round 3 */ 995 R3(A,B,C,D,X[ 0], 6,0xf4292244L); 996 R3(D,A,B,C,X[ 7],10,0x432aff97L); 997 R3(C,D,A,B,X[14],15,0xab9423a7L); 998 R3(B,C,D,A,X[ 5],21,0xfc93a039L); 999 R3(A,B,C,D,X[12], 6,0x655b59c3L); 1000 R3(D,A,B,C,X[ 3],10,0x8f0ccc92L); 1001 R3(C,D,A,B,X[10],15,0xffeff47dL); 1002 R3(B,C,D,A,X[ 1],21,0x85845dd1L); 1003 R3(A,B,C,D,X[ 8], 6,0x6fa87e4fL); 1004 R3(D,A,B,C,X[15],10,0xfe2ce6e0L); 1005 R3(C,D,A,B,X[ 6],15,0xa3014314L); 1006 R3(B,C,D,A,X[13],21,0x4e0811a1L); 1007 R3(A,B,C,D,X[ 4], 6,0xf7537e82L); 1008 R3(D,A,B,C,X[11],10,0xbd3af235L); 1009 R3(C,D,A,B,X[ 2],15,0x2ad7d2bbL); 1010 R3(B,C,D,A,X[ 9],21,0xeb86d391L); 1011 1012 A = c->A += A; 1013 B = c->B += B; 1014 C = c->C += C; 1015 D = c->D += D; 1016 } 1017 } 1018 #endif 1019 1020 #ifndef md5_block_data_order 1021 #ifdef X 1022 #undef X 1023 #endif 1024 void md5_block_data_order (MD5_CTX *c, const void *data_, int num) 1025 { 1026 const unsigned char *data=data_; 1027 register unsigned MD32_REG_T A,B,C,D,l; 1028 #ifndef MD32_XARRAY 1029 /* See comment in crypto/sha/sha_locl.h for details. */ 1030 unsigned MD32_REG_T XX0, XX1, XX2, XX3, XX4, XX5, XX6, XX7, 1031 XX8, XX9,XX10,XX11,XX12,XX13,XX14,XX15; 1032 # define X(i) XX ## i 1033 #else 1034 mDNSu32 XX[MD5_LBLOCK]; 1035 # define X(i) XX[i] 1036 #endif 1037 1038 A=c->A; 1039 B=c->B; 1040 C=c->C; 1041 D=c->D; 1042 1043 for (; num--;) 1044 { 1045 HOST_c2l(data,l); X( 0)=l; HOST_c2l(data,l); X( 1)=l; 1046 /* Round 0 */ 1047 R0(A,B,C,D,X( 0), 7,0xd76aa478L); HOST_c2l(data,l); X( 2)=l; 1048 R0(D,A,B,C,X( 1),12,0xe8c7b756L); HOST_c2l(data,l); X( 3)=l; 1049 R0(C,D,A,B,X( 2),17,0x242070dbL); HOST_c2l(data,l); X( 4)=l; 1050 R0(B,C,D,A,X( 3),22,0xc1bdceeeL); HOST_c2l(data,l); X( 5)=l; 1051 R0(A,B,C,D,X( 4), 7,0xf57c0fafL); HOST_c2l(data,l); X( 6)=l; 1052 R0(D,A,B,C,X( 5),12,0x4787c62aL); HOST_c2l(data,l); X( 7)=l; 1053 R0(C,D,A,B,X( 6),17,0xa8304613L); HOST_c2l(data,l); X( 8)=l; 1054 R0(B,C,D,A,X( 7),22,0xfd469501L); HOST_c2l(data,l); X( 9)=l; 1055 R0(A,B,C,D,X( 8), 7,0x698098d8L); HOST_c2l(data,l); X(10)=l; 1056 R0(D,A,B,C,X( 9),12,0x8b44f7afL); HOST_c2l(data,l); X(11)=l; 1057 R0(C,D,A,B,X(10),17,0xffff5bb1L); HOST_c2l(data,l); X(12)=l; 1058 R0(B,C,D,A,X(11),22,0x895cd7beL); HOST_c2l(data,l); X(13)=l; 1059 R0(A,B,C,D,X(12), 7,0x6b901122L); HOST_c2l(data,l); X(14)=l; 1060 R0(D,A,B,C,X(13),12,0xfd987193L); HOST_c2l(data,l); X(15)=l; 1061 R0(C,D,A,B,X(14),17,0xa679438eL); 1062 R0(B,C,D,A,X(15),22,0x49b40821L); 1063 /* Round 1 */ 1064 R1(A,B,C,D,X( 1), 5,0xf61e2562L); 1065 R1(D,A,B,C,X( 6), 9,0xc040b340L); 1066 R1(C,D,A,B,X(11),14,0x265e5a51L); 1067 R1(B,C,D,A,X( 0),20,0xe9b6c7aaL); 1068 R1(A,B,C,D,X( 5), 5,0xd62f105dL); 1069 R1(D,A,B,C,X(10), 9,0x02441453L); 1070 R1(C,D,A,B,X(15),14,0xd8a1e681L); 1071 R1(B,C,D,A,X( 4),20,0xe7d3fbc8L); 1072 R1(A,B,C,D,X( 9), 5,0x21e1cde6L); 1073 R1(D,A,B,C,X(14), 9,0xc33707d6L); 1074 R1(C,D,A,B,X( 3),14,0xf4d50d87L); 1075 R1(B,C,D,A,X( 8),20,0x455a14edL); 1076 R1(A,B,C,D,X(13), 5,0xa9e3e905L); 1077 R1(D,A,B,C,X( 2), 9,0xfcefa3f8L); 1078 R1(C,D,A,B,X( 7),14,0x676f02d9L); 1079 R1(B,C,D,A,X(12),20,0x8d2a4c8aL); 1080 /* Round 2 */ 1081 R2(A,B,C,D,X( 5), 4,0xfffa3942L); 1082 R2(D,A,B,C,X( 8),11,0x8771f681L); 1083 R2(C,D,A,B,X(11),16,0x6d9d6122L); 1084 R2(B,C,D,A,X(14),23,0xfde5380cL); 1085 R2(A,B,C,D,X( 1), 4,0xa4beea44L); 1086 R2(D,A,B,C,X( 4),11,0x4bdecfa9L); 1087 R2(C,D,A,B,X( 7),16,0xf6bb4b60L); 1088 R2(B,C,D,A,X(10),23,0xbebfbc70L); 1089 R2(A,B,C,D,X(13), 4,0x289b7ec6L); 1090 R2(D,A,B,C,X( 0),11,0xeaa127faL); 1091 R2(C,D,A,B,X( 3),16,0xd4ef3085L); 1092 R2(B,C,D,A,X( 6),23,0x04881d05L); 1093 R2(A,B,C,D,X( 9), 4,0xd9d4d039L); 1094 R2(D,A,B,C,X(12),11,0xe6db99e5L); 1095 R2(C,D,A,B,X(15),16,0x1fa27cf8L); 1096 R2(B,C,D,A,X( 2),23,0xc4ac5665L); 1097 /* Round 3 */ 1098 R3(A,B,C,D,X( 0), 6,0xf4292244L); 1099 R3(D,A,B,C,X( 7),10,0x432aff97L); 1100 R3(C,D,A,B,X(14),15,0xab9423a7L); 1101 R3(B,C,D,A,X( 5),21,0xfc93a039L); 1102 R3(A,B,C,D,X(12), 6,0x655b59c3L); 1103 R3(D,A,B,C,X( 3),10,0x8f0ccc92L); 1104 R3(C,D,A,B,X(10),15,0xffeff47dL); 1105 R3(B,C,D,A,X( 1),21,0x85845dd1L); 1106 R3(A,B,C,D,X( 8), 6,0x6fa87e4fL); 1107 R3(D,A,B,C,X(15),10,0xfe2ce6e0L); 1108 R3(C,D,A,B,X( 6),15,0xa3014314L); 1109 R3(B,C,D,A,X(13),21,0x4e0811a1L); 1110 R3(A,B,C,D,X( 4), 6,0xf7537e82L); 1111 R3(D,A,B,C,X(11),10,0xbd3af235L); 1112 R3(C,D,A,B,X( 2),15,0x2ad7d2bbL); 1113 R3(B,C,D,A,X( 9),21,0xeb86d391L); 1114 1115 A = c->A += A; 1116 B = c->B += B; 1117 C = c->C += C; 1118 D = c->D += D; 1119 } 1120 } 1121 #endif 1122 1123 1124 // *************************************************************************** 1125 #if COMPILER_LIKES_PRAGMA_MARK 1126 #pragma mark - base64 -> binary conversion 1127 #endif 1128 1129 static const char Base64[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; 1130 static const char Pad64 = '='; 1131 1132 1133 #define mDNSisspace(x) (x == '\t' || x == '\n' || x == '\v' || x == '\f' || x == '\r' || x == ' ') 1134 1135 mDNSlocal const char *mDNSstrchr(const char *s, int c) 1136 { 1137 while (1) 1138 { 1139 if (c == *s) return s; 1140 if (!*s) return mDNSNULL; 1141 s++; 1142 } 1143 } 1144 1145 // skips all whitespace anywhere. 1146 // converts characters, four at a time, starting at (or after) 1147 // src from base - 64 numbers into three 8 bit bytes in the target area. 1148 // it returns the number of data bytes stored at the target, or -1 on error. 1149 // adapted from BIND sources 1150 1151 mDNSlocal mDNSs32 DNSDigest_Base64ToBin(const char *src, mDNSu8 *target, mDNSu32 targsize) 1152 { 1153 int tarindex, state, ch; 1154 const char *pos; 1155 1156 state = 0; 1157 tarindex = 0; 1158 1159 while ((ch = *src++) != '\0') { 1160 if (mDNSisspace(ch)) /* Skip whitespace anywhere. */ 1161 continue; 1162 1163 if (ch == Pad64) 1164 break; 1165 1166 pos = mDNSstrchr(Base64, ch); 1167 if (pos == 0) /* A non-base64 character. */ 1168 return (-1); 1169 1170 switch (state) { 1171 case 0: 1172 if (target) { 1173 if ((mDNSu32)tarindex >= targsize) 1174 return (-1); 1175 target[tarindex] = (mDNSu8)((pos - Base64) << 2); 1176 } 1177 state = 1; 1178 break; 1179 case 1: 1180 if (target) { 1181 if ((mDNSu32)tarindex + 1 >= targsize) 1182 return (-1); 1183 target[tarindex] |= (pos - Base64) >> 4; 1184 target[tarindex+1] = (mDNSu8)(((pos - Base64) & 0x0f) << 4); 1185 } 1186 tarindex++; 1187 state = 2; 1188 break; 1189 case 2: 1190 if (target) { 1191 if ((mDNSu32)tarindex + 1 >= targsize) 1192 return (-1); 1193 target[tarindex] |= (pos - Base64) >> 2; 1194 target[tarindex+1] = (mDNSu8)(((pos - Base64) & 0x03) << 6); 1195 } 1196 tarindex++; 1197 state = 3; 1198 break; 1199 case 3: 1200 if (target) { 1201 if ((mDNSu32)tarindex >= targsize) 1202 return (-1); 1203 target[tarindex] |= (pos - Base64); 1204 } 1205 tarindex++; 1206 state = 0; 1207 break; 1208 default: 1209 return -1; 1210 } 1211 } 1212 1213 /* 1214 * We are done decoding Base-64 chars. Let's see if we ended 1215 * on a byte boundary, and/or with erroneous trailing characters. 1216 */ 1217 1218 if (ch == Pad64) { /* We got a pad char. */ 1219 ch = *src++; /* Skip it, get next. */ 1220 switch (state) { 1221 case 0: /* Invalid = in first position */ 1222 case 1: /* Invalid = in second position */ 1223 return (-1); 1224 1225 case 2: /* Valid, means one byte of info */ 1226 /* Skip any number of spaces. */ 1227 for ((void)mDNSNULL; ch != '\0'; ch = *src++) 1228 if (!mDNSisspace(ch)) 1229 break; 1230 /* Make sure there is another trailing = sign. */ 1231 if (ch != Pad64) 1232 return (-1); 1233 ch = *src++; /* Skip the = */ 1234 /* Fall through to "single trailing =" case. */ 1235 /* FALLTHROUGH */ 1236 1237 case 3: /* Valid, means two bytes of info */ 1238 /* 1239 * We know this char is an =. Is there anything but 1240 * whitespace after it? 1241 */ 1242 for ((void)mDNSNULL; ch != '\0'; ch = *src++) 1243 if (!mDNSisspace(ch)) 1244 return (-1); 1245 1246 /* 1247 * Now make sure for cases 2 and 3 that the "extra" 1248 * bits that slopped past the last full byte were 1249 * zeros. If we don't check them, they become a 1250 * subliminal channel. 1251 */ 1252 if (target && target[tarindex] != 0) 1253 return (-1); 1254 } 1255 } else { 1256 /* 1257 * We ended by seeing the end of the string. Make sure we 1258 * have no partial bytes lying around. 1259 */ 1260 if (state != 0) 1261 return (-1); 1262 } 1263 1264 return (tarindex); 1265 } 1266 1267 1268 // *************************************************************************** 1269 #if COMPILER_LIKES_PRAGMA_MARK 1270 #pragma mark - API exported to mDNS Core 1271 #endif 1272 1273 // Constants 1274 #define HMAC_IPAD 0x36 1275 #define HMAC_OPAD 0x5c 1276 #define MD5_LEN 16 1277 1278 #define HMAC_MD5_AlgName (*(const domainname*) "\010" "hmac-md5" "\007" "sig-alg" "\003" "reg" "\003" "int") 1279 1280 // Adapted from Appendix, RFC 2104 1281 mDNSlocal void DNSDigest_ConstructHMACKey(DomainAuthInfo *info, const mDNSu8 *key, mDNSu32 len) 1282 { 1283 MD5_CTX k; 1284 mDNSu8 buf[MD5_LEN]; 1285 int i; 1286 1287 // If key is longer than HMAC_LEN reset it to MD5(key) 1288 if (len > HMAC_LEN) 1289 { 1290 MD5_Init(&k); 1291 MD5_Update(&k, key, len); 1292 MD5_Final(buf, &k); 1293 key = buf; 1294 len = MD5_LEN; 1295 } 1296 1297 // store key in pads 1298 mDNSPlatformMemZero(info->keydata_ipad, HMAC_LEN); 1299 mDNSPlatformMemZero(info->keydata_opad, HMAC_LEN); 1300 mDNSPlatformMemCopy(info->keydata_ipad, key, len); 1301 mDNSPlatformMemCopy(info->keydata_opad, key, len); 1302 1303 // XOR key with ipad and opad values 1304 for (i = 0; i < HMAC_LEN; i++) 1305 { 1306 info->keydata_ipad[i] ^= HMAC_IPAD; 1307 info->keydata_opad[i] ^= HMAC_OPAD; 1308 } 1309 1310 } 1311 1312 mDNSexport mDNSs32 DNSDigest_ConstructHMACKeyfromBase64(DomainAuthInfo *info, const char *b64key) 1313 { 1314 mDNSu8 keybuf[1024]; 1315 mDNSs32 keylen = DNSDigest_Base64ToBin(b64key, keybuf, sizeof(keybuf)); 1316 if (keylen < 0) return(keylen); 1317 DNSDigest_ConstructHMACKey(info, keybuf, (mDNSu32)keylen); 1318 return(keylen); 1319 } 1320 1321 mDNSexport void DNSDigest_SignMessage(DNSMessage *msg, mDNSu8 **end, DomainAuthInfo *info, mDNSu16 tcode) 1322 { 1323 AuthRecord tsig; 1324 mDNSu8 *rdata, *const countPtr = (mDNSu8 *)&msg->h.numAdditionals; // Get existing numAdditionals value 1325 mDNSu32 utc32; 1326 mDNSu8 utc48[6]; 1327 mDNSu8 digest[MD5_LEN]; 1328 mDNSu8 *ptr = *end; 1329 mDNSu32 len; 1330 mDNSOpaque16 buf; 1331 MD5_CTX c; 1332 mDNSu16 numAdditionals = (mDNSu16)((mDNSu16)countPtr[0] << 8 | countPtr[1]); 1333 1334 // Init MD5 context, digest inner key pad and message 1335 MD5_Init(&c); 1336 MD5_Update(&c, info->keydata_ipad, HMAC_LEN); 1337 MD5_Update(&c, (mDNSu8 *)msg, (unsigned long)(*end - (mDNSu8 *)msg)); 1338 1339 // Construct TSIG RR, digesting variables as apporpriate 1340 mDNS_SetupResourceRecord(&tsig, mDNSNULL, 0, kDNSType_TSIG, 0, kDNSRecordTypeKnownUnique, AuthRecordAny, mDNSNULL, mDNSNULL); 1341 1342 // key name 1343 AssignDomainName(&tsig.namestorage, &info->keyname); 1344 MD5_Update(&c, info->keyname.c, DomainNameLength(&info->keyname)); 1345 1346 // class 1347 tsig.resrec.rrclass = kDNSQClass_ANY; 1348 buf = mDNSOpaque16fromIntVal(kDNSQClass_ANY); 1349 MD5_Update(&c, buf.b, sizeof(mDNSOpaque16)); 1350 1351 // ttl 1352 tsig.resrec.rroriginalttl = 0; 1353 MD5_Update(&c, (mDNSu8 *)&tsig.resrec.rroriginalttl, sizeof(tsig.resrec.rroriginalttl)); 1354 1355 // alg name 1356 AssignDomainName(&tsig.resrec.rdata->u.name, &HMAC_MD5_AlgName); 1357 len = DomainNameLength(&HMAC_MD5_AlgName); 1358 rdata = tsig.resrec.rdata->u.data + len; 1359 MD5_Update(&c, HMAC_MD5_AlgName.c, len); 1360 1361 // time 1362 // get UTC (universal time), convert to 48-bit unsigned in network byte order 1363 utc32 = (mDNSu32)mDNSPlatformUTC(); 1364 if (utc32 == (unsigned)-1) { LogMsg("ERROR: DNSDigest_SignMessage - mDNSPlatformUTC returned bad time -1"); *end = mDNSNULL; } 1365 utc48[0] = 0; 1366 utc48[1] = 0; 1367 utc48[2] = (mDNSu8)((utc32 >> 24) & 0xff); 1368 utc48[3] = (mDNSu8)((utc32 >> 16) & 0xff); 1369 utc48[4] = (mDNSu8)((utc32 >> 8) & 0xff); 1370 utc48[5] = (mDNSu8)( utc32 & 0xff); 1371 1372 mDNSPlatformMemCopy(rdata, utc48, 6); 1373 rdata += 6; 1374 MD5_Update(&c, utc48, 6); 1375 1376 // 300 sec is fudge recommended in RFC 2485 1377 rdata[0] = (mDNSu8)((300 >> 8) & 0xff); 1378 rdata[1] = (mDNSu8)( 300 & 0xff); 1379 MD5_Update(&c, rdata, sizeof(mDNSOpaque16)); 1380 rdata += sizeof(mDNSOpaque16); 1381 1382 // digest error (tcode) and other data len (zero) - we'll add them to the rdata later 1383 buf.b[0] = (mDNSu8)((tcode >> 8) & 0xff); 1384 buf.b[1] = (mDNSu8)( tcode & 0xff); 1385 MD5_Update(&c, buf.b, sizeof(mDNSOpaque16)); // error 1386 buf.NotAnInteger = 0; 1387 MD5_Update(&c, buf.b, sizeof(mDNSOpaque16)); // other data len 1388 1389 // finish the message & tsig var hash 1390 MD5_Final(digest, &c); 1391 1392 // perform outer MD5 (outer key pad, inner digest) 1393 MD5_Init(&c); 1394 MD5_Update(&c, info->keydata_opad, HMAC_LEN); 1395 MD5_Update(&c, digest, MD5_LEN); 1396 MD5_Final(digest, &c); 1397 1398 // set remaining rdata fields 1399 rdata[0] = (mDNSu8)((MD5_LEN >> 8) & 0xff); 1400 rdata[1] = (mDNSu8)( MD5_LEN & 0xff); 1401 rdata += sizeof(mDNSOpaque16); 1402 mDNSPlatformMemCopy(rdata, digest, MD5_LEN); // MAC 1403 rdata += MD5_LEN; 1404 rdata[0] = msg->h.id.b[0]; // original ID 1405 rdata[1] = msg->h.id.b[1]; 1406 rdata[2] = (mDNSu8)((tcode >> 8) & 0xff); 1407 rdata[3] = (mDNSu8)( tcode & 0xff); 1408 rdata[4] = 0; // other data len 1409 rdata[5] = 0; 1410 rdata += 6; 1411 1412 tsig.resrec.rdlength = (mDNSu16)(rdata - tsig.resrec.rdata->u.data); 1413 *end = PutResourceRecordTTLJumbo(msg, ptr, &numAdditionals, &tsig.resrec, 0); 1414 if (!*end) { LogMsg("ERROR: DNSDigest_SignMessage - could not put TSIG"); *end = mDNSNULL; return; } 1415 1416 // Write back updated numAdditionals value 1417 countPtr[0] = (mDNSu8)(numAdditionals >> 8); 1418 countPtr[1] = (mDNSu8)(numAdditionals & 0xFF); 1419 } 1420 1421 mDNSexport mDNSBool DNSDigest_VerifyMessage(DNSMessage *msg, mDNSu8 *end, LargeCacheRecord * lcr, DomainAuthInfo *info, mDNSu16 * rcode, mDNSu16 * tcode) 1422 { 1423 mDNSu8 * ptr = (mDNSu8*) &lcr->r.resrec.rdata->u.data; 1424 mDNSs32 now; 1425 mDNSs32 then; 1426 mDNSu8 thisDigest[MD5_LEN]; 1427 mDNSu8 thatDigest[MD5_LEN]; 1428 mDNSOpaque16 buf; 1429 mDNSu8 utc48[6]; 1430 mDNSs32 delta; 1431 mDNSu16 fudge; 1432 domainname * algo; 1433 MD5_CTX c; 1434 mDNSBool ok = mDNSfalse; 1435 1436 // We only support HMAC-MD5 for now 1437 1438 algo = (domainname*) ptr; 1439 1440 if (!SameDomainName(algo, &HMAC_MD5_AlgName)) 1441 { 1442 LogMsg("ERROR: DNSDigest_VerifyMessage - TSIG algorithm not supported: %##s", algo->c); 1443 *rcode = kDNSFlag1_RC_NotAuth; 1444 *tcode = TSIG_ErrBadKey; 1445 ok = mDNSfalse; 1446 goto exit; 1447 } 1448 1449 ptr += DomainNameLength(algo); 1450 1451 // Check the times 1452 1453 now = mDNSPlatformUTC(); 1454 if (now == -1) 1455 { 1456 LogMsg("ERROR: DNSDigest_VerifyMessage - mDNSPlatformUTC returned bad time -1"); 1457 *rcode = kDNSFlag1_RC_NotAuth; 1458 *tcode = TSIG_ErrBadTime; 1459 ok = mDNSfalse; 1460 goto exit; 1461 } 1462 1463 // Get the 48 bit time field, skipping over the first word 1464 1465 utc48[0] = *ptr++; 1466 utc48[1] = *ptr++; 1467 utc48[2] = *ptr++; 1468 utc48[3] = *ptr++; 1469 utc48[4] = *ptr++; 1470 utc48[5] = *ptr++; 1471 1472 then = (mDNSs32)NToH32(utc48 + sizeof(mDNSu16)); 1473 1474 fudge = NToH16(ptr); 1475 1476 ptr += sizeof(mDNSu16); 1477 1478 delta = (now > then) ? now - then : then - now; 1479 1480 if (delta > fudge) 1481 { 1482 LogMsg("ERROR: DNSDigest_VerifyMessage - time skew > %d", fudge); 1483 *rcode = kDNSFlag1_RC_NotAuth; 1484 *tcode = TSIG_ErrBadTime; 1485 ok = mDNSfalse; 1486 goto exit; 1487 } 1488 1489 // MAC size 1490 1491 ptr += sizeof(mDNSu16); 1492 1493 // MAC 1494 1495 mDNSPlatformMemCopy(thatDigest, ptr, MD5_LEN); 1496 1497 // Init MD5 context, digest inner key pad and message 1498 1499 MD5_Init(&c); 1500 MD5_Update(&c, info->keydata_ipad, HMAC_LEN); 1501 MD5_Update(&c, (mDNSu8*) msg, (unsigned long)(end - (mDNSu8*) msg)); 1502 1503 // Key name 1504 1505 MD5_Update(&c, lcr->r.resrec.name->c, DomainNameLength(lcr->r.resrec.name)); 1506 1507 // Class name 1508 1509 buf = mDNSOpaque16fromIntVal(lcr->r.resrec.rrclass); 1510 MD5_Update(&c, buf.b, sizeof(mDNSOpaque16)); 1511 1512 // TTL 1513 1514 MD5_Update(&c, (mDNSu8*) &lcr->r.resrec.rroriginalttl, sizeof(lcr->r.resrec.rroriginalttl)); 1515 1516 // Algorithm 1517 1518 MD5_Update(&c, algo->c, DomainNameLength(algo)); 1519 1520 // Time 1521 1522 MD5_Update(&c, utc48, 6); 1523 1524 // Fudge 1525 1526 buf = mDNSOpaque16fromIntVal(fudge); 1527 MD5_Update(&c, buf.b, sizeof(mDNSOpaque16)); 1528 1529 // Digest error and other data len (both zero) - we'll add them to the rdata later 1530 1531 buf.NotAnInteger = 0; 1532 MD5_Update(&c, buf.b, sizeof(mDNSOpaque16)); // error 1533 MD5_Update(&c, buf.b, sizeof(mDNSOpaque16)); // other data len 1534 1535 // Finish the message & tsig var hash 1536 1537 MD5_Final(thisDigest, &c); 1538 1539 // perform outer MD5 (outer key pad, inner digest) 1540 1541 MD5_Init(&c); 1542 MD5_Update(&c, info->keydata_opad, HMAC_LEN); 1543 MD5_Update(&c, thisDigest, MD5_LEN); 1544 MD5_Final(thisDigest, &c); 1545 1546 if (!mDNSPlatformMemSame(thisDigest, thatDigest, MD5_LEN)) 1547 { 1548 LogMsg("ERROR: DNSDigest_VerifyMessage - bad signature"); 1549 *rcode = kDNSFlag1_RC_NotAuth; 1550 *tcode = TSIG_ErrBadSig; 1551 ok = mDNSfalse; 1552 goto exit; 1553 } 1554 1555 // set remaining rdata fields 1556 ok = mDNStrue; 1557 1558 exit: 1559 1560 return ok; 1561 } 1562 1563 1564 #ifdef __cplusplus 1565 } 1566 #endif 1567