xref: /netbsd-src/external/apache2/mDNSResponder/dist/mDNSCore/DNSDigest.c (revision 122b5006ee1bd67145794b4cde92f4fe4781a5ec)
1 /* -*- Mode: C; tab-width: 4 -*-
2  *
3  * Copyright (c) 2002-2011 Apple Inc. All rights reserved.
4  *
5  * Licensed under the Apache License, Version 2.0 (the "License");
6  * you may not use this file except in compliance with the License.
7  * You may obtain a copy of the License at
8  *
9  *     http://www.apache.org/licenses/LICENSE-2.0
10  *
11  * Unless required by applicable law or agreed to in writing, software
12  * distributed under the License is distributed on an "AS IS" BASIS,
13  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14  * See the License for the specific language governing permissions and
15  * limitations under the License.
16  */
17 
18 #ifdef __cplusplus
19 extern "C" {
20 #endif
21 
22 #include "mDNSEmbeddedAPI.h"
23 #include "DNSCommon.h"
24 
25 // Disable certain benign warnings with Microsoft compilers
26 #if (defined(_MSC_VER))
27 // Disable "conditional expression is constant" warning for debug macros.
28 // Otherwise, this generates warnings for the perfectly natural construct "while(1)"
29 // If someone knows a variant way of writing "while(1)" that doesn't generate warning messages, please let us know
30     #pragma warning(disable:4127)
31 #endif
32 
33 
34 // ***************************************************************************
35 #if COMPILER_LIKES_PRAGMA_MARK
36 #pragma mark - Byte Swapping Functions
37 #endif
38 
39 mDNSlocal mDNSu16 NToH16(mDNSu8 * bytes)
40 {
41     return (mDNSu16)((mDNSu16)bytes[0] << 8 | (mDNSu16)bytes[1]);
42 }
43 
44 mDNSlocal mDNSu32 NToH32(mDNSu8 * bytes)
45 {
46     return (mDNSu32)((mDNSu32) bytes[0] << 24 | (mDNSu32) bytes[1] << 16 | (mDNSu32) bytes[2] << 8 | (mDNSu32)bytes[3]);
47 }
48 
49 // ***************************************************************************
50 #if COMPILER_LIKES_PRAGMA_MARK
51 #pragma mark - MD5 Hash Functions
52 #endif
53 
54 
55 /* The source for the has is derived CommonCrypto files CommonDigest.h, md32_common.h, md5_locl.h, md5_locl.h, and openssl/md5.h.
56  * The following changes have been made to the original sources:
57  *    replaced CC_LONG w/ mDNSu32
58  *    replaced CC_MD5* with MD5*
59  *    replaced CC_LONG w/ mDNSu32, removed conditional #defines from md5.h
60  *    removed extern decls for MD5_Init/Update/Final from CommonDigest.h
61  *    removed APPLE_COMMON_DIGEST specific #defines from md5_locl.h
62  *
63  * Note: machine archetecure specific conditionals from the original sources are turned off, but are left in the code
64  * to aid in platform-specific optimizations and debugging.
65  * Sources originally distributed under the following license headers:
66  * CommonDigest.h - APSL
67  *
68  * md32_Common.h
69  * ====================================================================
70  * Copyright (c) 1999-2002 The OpenSSL Project.  All rights reserved.
71  *
72  * Redistribution and use in source and binary forms, with or without
73  * modification, are permitted provided that the following conditions
74  * are met:
75  *
76  * 1. Redistributions of source code must retain the above copyright
77  *    notice, this list of conditions and the following disclaimer.
78  *
79  * 2. Redistributions in binary form must reproduce the above copyright
80  *    notice, this list of conditions and the following disclaimer in
81  *    the documentation and/or other materials provided with the
82  *    distribution.
83  *
84  * 3. All advertising materials mentioning features or use of this
85  *    software must display the following acknowledgment:
86  *    "This product includes software developed by the OpenSSL Project
87  *    for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
88  *
89  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
90  *    endorse or promote products derived from this software without
91  *    prior written permission. For written permission, please contact
92  *    licensing@OpenSSL.org.
93  *
94  * 5. Products derived from this software may not be called "OpenSSL"
95  *    nor may "OpenSSL" appear in their names without prior written
96  *    permission of the OpenSSL Project.
97  *
98  * 6. Redistributions of any form whatsoever must retain the following
99  *    acknowledgment:
100  *    "This product includes software developed by the OpenSSL Project
101  *    for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
102  *
103  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
104  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
105  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
106  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
107  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
108  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
109  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
110  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
111  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
112  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
113  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
114  * OF THE POSSIBILITY OF SUCH DAMAGE.
115  *
116  *
117  * md5_dgst.c, md5_locl.h
118  * ====================================================================
119  *
120  * This product includes cryptographic software written by Eric Young
121  * (eay@cryptsoft.com).  This product includes software written by Tim
122  * Hudson (tjh@cryptsoft.com).
123  *
124  * Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
125  * All rights reserved.
126  *
127  * This package is an SSL implementation written
128  * by Eric Young (eay@cryptsoft.com).
129  * The implementation was written so as to conform with Netscapes SSL.
130  *
131  * This library is free for commercial and non-commercial use as long as
132  * the following conditions are aheared to.  The following conditions
133  * apply to all code found in this distribution, be it the RC4, RSA,
134  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
135  * included with this distribution is covered by the same copyright terms
136  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
137  *
138  * Copyright remains Eric Young's, and as such any Copyright notices in
139  * the code are not to be removed.
140  * If this package is used in a product, Eric Young should be given attribution
141  * as the author of the parts of the library used.
142  * This can be in the form of a textual message at program startup or
143  * in documentation (online or textual) provided with the package.
144  *
145  * Redistribution and use in source and binary forms, with or without
146  * modification, are permitted provided that the following conditions
147  * are met:
148  * 1. Redistributions of source code must retain the copyright
149  *    notice, this list of conditions and the following disclaimer.
150  * 2. Redistributions in binary form must reproduce the above copyright
151  *    notice, this list of conditions and the following disclaimer in the
152  *    documentation and/or other materials provided with the distribution.
153  * 3. All advertising materials mentioning features or use of this software
154  *    must display the following acknowledgement:
155  *    "This product includes cryptographic software written by
156  *     Eric Young (eay@cryptsoft.com)"
157  *    The word 'cryptographic' can be left out if the rouines from the library
158  *    being used are not cryptographic related :-).
159  * 4. If you include any Windows specific code (or a derivative thereof) from
160  *    the apps directory (application code) you must include an acknowledgement:
161  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
162  *
163  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
164  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
165  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
166  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
167  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
168  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
169  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
170  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
171  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
172  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
173  * SUCH DAMAGE.
174  *
175  * The licence and distribution terms for any publically available version or
176  * derivative of this code cannot be changed.  i.e. this code cannot simply be
177  * copied and put under another distribution licence
178  * [including the GNU Public Licence.]
179  *
180  */
181 
182 //from CommonDigest.h
183 
184 
185 
186 // from openssl/md5.h
187 
188 #define MD5_CBLOCK  64
189 #define MD5_LBLOCK  (MD5_CBLOCK/4)
190 #define MD5_DIGEST_LENGTH 16
191 
192 void MD5_Transform(MD5_CTX *c, const unsigned char *b);
193 
194 // From md5_locl.h
195 
196 #ifndef MD5_LONG_LOG2
197 #define MD5_LONG_LOG2 2 /* default to 32 bits */
198 #endif
199 
200 #ifdef MD5_ASM
201 # if defined(__i386) || defined(__i386__) || defined(_M_IX86) || defined(__INTEL__)
202 #  define md5_block_host_order md5_block_asm_host_order
203 # elif defined(__sparc) && defined(OPENSSL_SYS_ULTRASPARC)
204 void md5_block_asm_data_order_aligned (MD5_CTX *c, const mDNSu32 *p,int num);
205 #  define HASH_BLOCK_DATA_ORDER_ALIGNED md5_block_asm_data_order_aligned
206 # endif
207 #endif
208 
209 void md5_block_host_order (MD5_CTX *c, const void *p,int num);
210 void md5_block_data_order (MD5_CTX *c, const void *p,int num);
211 
212 #if defined(__i386) || defined(__i386__) || defined(_M_IX86) || defined(__INTEL__)
213 /*
214  * *_block_host_order is expected to handle aligned data while
215  * *_block_data_order - unaligned. As algorithm and host (x86)
216  * are in this case of the same "endianness" these two are
217  * otherwise indistinguishable. But normally you don't want to
218  * call the same function because unaligned access in places
219  * where alignment is expected is usually a "Bad Thing". Indeed,
220  * on RISCs you get punished with BUS ERROR signal or *severe*
221  * performance degradation. Intel CPUs are in turn perfectly
222  * capable of loading unaligned data without such drastic side
223  * effect. Yes, they say it's slower than aligned load, but no
224  * exception is generated and therefore performance degradation
225  * is *incomparable* with RISCs. What we should weight here is
226  * costs of unaligned access against costs of aligning data.
227  * According to my measurements allowing unaligned access results
228  * in ~9% performance improvement on Pentium II operating at
229  * 266MHz. I won't be surprised if the difference will be higher
230  * on faster systems:-)
231  *
232  *				<appro@fy.chalmers.se>
233  */
234 #define md5_block_data_order md5_block_host_order
235 #endif
236 
237 #define DATA_ORDER_IS_LITTLE_ENDIAN
238 
239 #define HASH_LONG       mDNSu32
240 #define HASH_LONG_LOG2  MD5_LONG_LOG2
241 #define HASH_CTX        MD5_CTX
242 #define HASH_CBLOCK     MD5_CBLOCK
243 #define HASH_LBLOCK     MD5_LBLOCK
244 
245 #define HASH_UPDATE     MD5_Update
246 #define HASH_TRANSFORM  MD5_Transform
247 #define HASH_FINAL      MD5_Final
248 
249 #define HASH_MAKE_STRING(c,s)   do {    \
250         unsigned long ll;       \
251         ll=(c)->A; HOST_l2c(ll,(s));    \
252         ll=(c)->B; HOST_l2c(ll,(s));    \
253         ll=(c)->C; HOST_l2c(ll,(s));    \
254         ll=(c)->D; HOST_l2c(ll,(s));    \
255 } while (0)
256 #define HASH_BLOCK_HOST_ORDER   md5_block_host_order
257 #if !defined(L_ENDIAN) || defined(md5_block_data_order)
258 #define HASH_BLOCK_DATA_ORDER   md5_block_data_order
259 /*
260  * Little-endians (Intel and Alpha) feel better without this.
261  * It looks like memcpy does better job than generic
262  * md5_block_data_order on copying-n-aligning input data.
263  * But frankly speaking I didn't expect such result on Alpha.
264  * On the other hand I've got this with egcs-1.0.2 and if
265  * program is compiled with another (better?) compiler it
266  * might turn out other way around.
267  *
268  *				<appro@fy.chalmers.se>
269  */
270 #endif
271 
272 
273 // from md32_common.h
274 
275 /*
276  * This is a generic 32 bit "collector" for message digest algorithms.
277  * Whenever needed it collects input character stream into chunks of
278  * 32 bit values and invokes a block function that performs actual hash
279  * calculations.
280  *
281  * Porting guide.
282  *
283  * Obligatory macros:
284  *
285  * DATA_ORDER_IS_BIG_ENDIAN or DATA_ORDER_IS_LITTLE_ENDIAN
286  *	this macro defines byte order of input stream.
287  * HASH_CBLOCK
288  *	size of a unit chunk HASH_BLOCK operates on.
289  * HASH_LONG
290  *	has to be at lest 32 bit wide, if it's wider, then
291  *	HASH_LONG_LOG2 *has to* be defined along
292  * HASH_CTX
293  *	context structure that at least contains following
294  *	members:
295  *		typedef struct {
296  *			...
297  *			HASH_LONG	Nl,Nh;
298  *			HASH_LONG	data[HASH_LBLOCK];
299  *			int		num;
300  *			...
301  *			} HASH_CTX;
302  * HASH_UPDATE
303  *	name of "Update" function, implemented here.
304  * HASH_TRANSFORM
305  *	name of "Transform" function, implemented here.
306  * HASH_FINAL
307  *	name of "Final" function, implemented here.
308  * HASH_BLOCK_HOST_ORDER
309  *	name of "block" function treating *aligned* input message
310  *	in host byte order, implemented externally.
311  * HASH_BLOCK_DATA_ORDER
312  *	name of "block" function treating *unaligned* input message
313  *	in original (data) byte order, implemented externally (it
314  *	actually is optional if data and host are of the same
315  *	"endianess").
316  * HASH_MAKE_STRING
317  *	macro convering context variables to an ASCII hash string.
318  *
319  * Optional macros:
320  *
321  * B_ENDIAN or L_ENDIAN
322  *	defines host byte-order.
323  * HASH_LONG_LOG2
324  *	defaults to 2 if not states otherwise.
325  * HASH_LBLOCK
326  *	assumed to be HASH_CBLOCK/4 if not stated otherwise.
327  * HASH_BLOCK_DATA_ORDER_ALIGNED
328  *	alternative "block" function capable of treating
329  *	aligned input message in original (data) order,
330  *	implemented externally.
331  *
332  * MD5 example:
333  *
334  *	#define DATA_ORDER_IS_LITTLE_ENDIAN
335  *
336  *	#define HASH_LONG		mDNSu32
337  *	#define HASH_LONG_LOG2	mDNSu32_LOG2
338  *	#define HASH_CTX		MD5_CTX
339  *	#define HASH_CBLOCK		MD5_CBLOCK
340  *	#define HASH_LBLOCK		MD5_LBLOCK
341  *	#define HASH_UPDATE		MD5_Update
342  *	#define HASH_TRANSFORM		MD5_Transform
343  *	#define HASH_FINAL		MD5_Final
344  *	#define HASH_BLOCK_HOST_ORDER	md5_block_host_order
345  *	#define HASH_BLOCK_DATA_ORDER	md5_block_data_order
346  *
347  *					<appro@fy.chalmers.se>
348  */
349 
350 #if !defined(DATA_ORDER_IS_BIG_ENDIAN) && !defined(DATA_ORDER_IS_LITTLE_ENDIAN)
351 #error "DATA_ORDER must be defined!"
352 #endif
353 
354 #ifndef HASH_CBLOCK
355 #error "HASH_CBLOCK must be defined!"
356 #endif
357 #ifndef HASH_LONG
358 #error "HASH_LONG must be defined!"
359 #endif
360 #ifndef HASH_CTX
361 #error "HASH_CTX must be defined!"
362 #endif
363 
364 #ifndef HASH_UPDATE
365 #error "HASH_UPDATE must be defined!"
366 #endif
367 #ifndef HASH_TRANSFORM
368 #error "HASH_TRANSFORM must be defined!"
369 #endif
370 #ifndef HASH_FINAL
371 #error "HASH_FINAL must be defined!"
372 #endif
373 
374 #ifndef HASH_BLOCK_HOST_ORDER
375 #error "HASH_BLOCK_HOST_ORDER must be defined!"
376 #endif
377 
378 #if 0
379 /*
380  * Moved below as it's required only if HASH_BLOCK_DATA_ORDER_ALIGNED
381  * isn't defined.
382  */
383 #ifndef HASH_BLOCK_DATA_ORDER
384 #error "HASH_BLOCK_DATA_ORDER must be defined!"
385 #endif
386 #endif
387 
388 #ifndef HASH_LBLOCK
389 #define HASH_LBLOCK (HASH_CBLOCK/4)
390 #endif
391 
392 #ifndef HASH_LONG_LOG2
393 #define HASH_LONG_LOG2  2
394 #endif
395 
396 /*
397  * Engage compiler specific rotate intrinsic function if available.
398  */
399 #undef ROTATE
400 #ifndef PEDANTIC
401 # if 0 /* defined(_MSC_VER) */
402 #  define ROTATE(a,n)   _lrotl(a,n)
403 # elif defined(__MWERKS__)
404 #  if defined(__POWERPC__)
405 #   define ROTATE(a,n)  (unsigned MD32_REG_T)__rlwinm((int)a,n,0,31)
406 #  elif defined(__MC68K__)
407 /* Motorola specific tweak. <appro@fy.chalmers.se> */
408 #   define ROTATE(a,n)  (n<24 ? __rol(a,n) : __ror(a,32-n))
409 #  else
410 #   define ROTATE(a,n)  __rol(a,n)
411 #  endif
412 # elif defined(__GNUC__) && __GNUC__>=2 && !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM)
413 /*
414  * Some GNU C inline assembler templates. Note that these are
415  * rotates by *constant* number of bits! But that's exactly
416  * what we need here...
417  *
418  *                  <appro@fy.chalmers.se>
419  */
420 /*
421  * LLVM is more strict about compatibility of types between input & output constraints,
422  * but we want these to be rotations of 32 bits, not 64, so we explicitly drop the
423  * most significant bytes by casting to an unsigned int.
424  */
425 #  if defined(__i386) || defined(__i386__) || defined(__x86_64) || defined(__x86_64__)
426 #   define ROTATE(a,n)  ({ register unsigned int ret;   \
427                            asm (           \
428                                "roll %1,%0"        \
429                                : "=r" (ret)     \
430                                : "I" (n), "0" ((unsigned int)a)  \
431                                : "cc");        \
432                            ret;             \
433                          })
434 #  elif defined(__powerpc) || defined(__ppc)
435 #   define ROTATE(a,n)  ({ register unsigned int ret;   \
436                            asm (           \
437                                "rlwinm %0,%1,%2,0,31"  \
438                                : "=r" (ret)     \
439                                : "r" (a), "I" (n));  \
440                            ret;             \
441                          })
442 #  endif
443 # endif
444 
445 /*
446  * Engage compiler specific "fetch in reverse byte order"
447  * intrinsic function if available.
448  */
449 # if defined(__GNUC__) && __GNUC__>=2 && !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM)
450 /* some GNU C inline assembler templates by <appro@fy.chalmers.se> */
451 #  if (defined(__i386) || defined(__i386__) || defined(__x86_64) || defined(__x86_64__)) && !defined(I386_ONLY)
452 #   define BE_FETCH32(a)    ({ register unsigned int l=(a); \
453                                asm (           \
454                                    "bswapl %0"     \
455                                    : "=r" (l) : "0" (l));    \
456                                l;                \
457                              })
458 #  elif defined(__powerpc)
459 #   define LE_FETCH32(a)    ({ register unsigned int l; \
460                                asm (           \
461                                    "lwbrx %0,0,%1"     \
462                                    : "=r" (l)       \
463                                    : "r" (a));      \
464                                l;               \
465                              })
466 
467 #  elif defined(__sparc) && defined(OPENSSL_SYS_ULTRASPARC)
468 #  define LE_FETCH32(a) ({ register unsigned int l;     \
469                            asm (               \
470                                "lda [%1]#ASI_PRIMARY_LITTLE,%0" \
471                                : "=r" (l)           \
472                                : "r" (a));          \
473                            l;                   \
474                          })
475 #  endif
476 # endif
477 #endif /* PEDANTIC */
478 
479 #if HASH_LONG_LOG2==2   /* Engage only if sizeof(HASH_LONG)== 4 */
480 /* A nice byte order reversal from Wei Dai <weidai@eskimo.com> */
481 #ifdef ROTATE
482 /* 5 instructions with rotate instruction, else 9 */
483 #define REVERSE_FETCH32(a,l)    (                   \
484         l=*(const HASH_LONG *)(a),              \
485         ((ROTATE(l,8)&0x00FF00FF)|(ROTATE((l&0x00FF00FF),24)))  \
486         )
487 #else
488 /* 6 instructions with rotate instruction, else 8 */
489 #define REVERSE_FETCH32(a,l)    (               \
490         l=*(const HASH_LONG *)(a),          \
491         l=(((l>>8)&0x00FF00FF)|((l&0x00FF00FF)<<8)),    \
492         ROTATE(l,16)                    \
493         )
494 /*
495  * Originally the middle line started with l=(((l&0xFF00FF00)>>8)|...
496  * It's rewritten as above for two reasons:
497  *	- RISCs aren't good at long constants and have to explicitely
498  *	  compose 'em with several (well, usually 2) instructions in a
499  *	  register before performing the actual operation and (as you
500  *	  already realized:-) having same constant should inspire the
501  *	  compiler to permanently allocate the only register for it;
502  *	- most modern CPUs have two ALUs, but usually only one has
503  *	  circuitry for shifts:-( this minor tweak inspires compiler
504  *	  to schedule shift instructions in a better way...
505  *
506  *				<appro@fy.chalmers.se>
507  */
508 #endif
509 #endif
510 
511 #ifndef ROTATE
512 #define ROTATE(a,n)     (((a)<<(n))|(((a)&0xffffffff)>>(32-(n))))
513 #endif
514 
515 /*
516  * Make some obvious choices. E.g., HASH_BLOCK_DATA_ORDER_ALIGNED
517  * and HASH_BLOCK_HOST_ORDER ought to be the same if input data
518  * and host are of the same "endianess". It's possible to mask
519  * this with blank #define HASH_BLOCK_DATA_ORDER though...
520  *
521  *				<appro@fy.chalmers.se>
522  */
523 #if defined(B_ENDIAN)
524 #  if defined(DATA_ORDER_IS_BIG_ENDIAN)
525 #    if !defined(HASH_BLOCK_DATA_ORDER_ALIGNED) && HASH_LONG_LOG2==2
526 #      define HASH_BLOCK_DATA_ORDER_ALIGNED HASH_BLOCK_HOST_ORDER
527 #    endif
528 #  elif defined(DATA_ORDER_IS_LITTLE_ENDIAN)
529 #    ifndef HOST_FETCH32
530 #      ifdef LE_FETCH32
531 #        define HOST_FETCH32(p,l)   LE_FETCH32(p)
532 #      elif defined(REVERSE_FETCH32)
533 #        define HOST_FETCH32(p,l)   REVERSE_FETCH32(p,l)
534 #      endif
535 #    endif
536 #  endif
537 #elif defined(L_ENDIAN)
538 #  if defined(DATA_ORDER_IS_LITTLE_ENDIAN)
539 #    if !defined(HASH_BLOCK_DATA_ORDER_ALIGNED) && HASH_LONG_LOG2==2
540 #      define HASH_BLOCK_DATA_ORDER_ALIGNED HASH_BLOCK_HOST_ORDER
541 #    endif
542 #  elif defined(DATA_ORDER_IS_BIG_ENDIAN)
543 #    ifndef HOST_FETCH32
544 #      ifdef BE_FETCH32
545 #        define HOST_FETCH32(p,l)   BE_FETCH32(p)
546 #      elif defined(REVERSE_FETCH32)
547 #        define HOST_FETCH32(p,l)   REVERSE_FETCH32(p,l)
548 #      endif
549 #    endif
550 #  endif
551 #endif
552 
553 #if !defined(HASH_BLOCK_DATA_ORDER_ALIGNED)
554 #ifndef HASH_BLOCK_DATA_ORDER
555 #error "HASH_BLOCK_DATA_ORDER must be defined!"
556 #endif
557 #endif
558 
559 // None of the invocations of the following macros actually use the result,
560 // so cast them to void to avoid any compiler warnings/errors about not using
561 // the result (e.g. when using clang).
562 // If the resultant values need to be used at some point, these must be changed.
563 #define HOST_c2l(c,l) ((void)_HOST_c2l(c,l))
564 #define HOST_l2c(l,c) ((void)_HOST_l2c(l,c))
565 
566 #if defined(DATA_ORDER_IS_BIG_ENDIAN)
567 
568 #define _HOST_c2l(c,l)  (l =(((unsigned long)(*((c)++)))<<24),      \
569                          l|=(((unsigned long)(*((c)++)))<<16),      \
570                          l|=(((unsigned long)(*((c)++)))<< 8),      \
571                          l|=(((unsigned long)(*((c)++)))    ),      \
572                          l)
573 #define HOST_p_c2l(c,l,n)   {                   \
574         switch (n) {                    \
575         case 0: l =((unsigned long)(*((c)++)))<<24; \
576         case 1: l|=((unsigned long)(*((c)++)))<<16; \
577         case 2: l|=((unsigned long)(*((c)++)))<< 8; \
578         case 3: l|=((unsigned long)(*((c)++)));     \
579         } }
580 #define HOST_p_c2l_p(c,l,sc,len) {                  \
581         switch (sc) {                   \
582         case 0: l =((unsigned long)(*((c)++)))<<24; \
583             if (--len == 0) break;                                                 \
584         case 1: l|=((unsigned long)(*((c)++)))<<16; \
585             if (--len == 0) break;                                                 \
586         case 2: l|=((unsigned long)(*((c)++)))<< 8; \
587         } }
588 /* NOTE the pointer is not incremented at the end of this */
589 #define HOST_c2l_p(c,l,n)   {                   \
590         l=0; (c)+=n;                    \
591         switch (n) {                    \
592         case 3: l =((unsigned long)(*(--(c))))<< 8; \
593         case 2: l|=((unsigned long)(*(--(c))))<<16; \
594         case 1: l|=((unsigned long)(*(--(c))))<<24; \
595         } }
596 #define _HOST_l2c(l,c)  (*((c)++)=(unsigned char)(((l)>>24)&0xff),  \
597                          *((c)++)=(unsigned char)(((l)>>16)&0xff),  \
598                          *((c)++)=(unsigned char)(((l)>> 8)&0xff),  \
599                          *((c)++)=(unsigned char)(((l)    )&0xff),  \
600                          l)
601 
602 #elif defined(DATA_ORDER_IS_LITTLE_ENDIAN)
603 
604 #define _HOST_c2l(c,l)  (l =(((unsigned long)(*((c)++)))    ),      \
605                          l|=(((unsigned long)(*((c)++)))<< 8),      \
606                          l|=(((unsigned long)(*((c)++)))<<16),      \
607                          l|=(((unsigned long)(*((c)++)))<<24),      \
608                          l)
609 #define HOST_p_c2l(c,l,n)   {                   \
610         switch (n) {                    \
611         case 0: l =((unsigned long)(*((c)++)));     \
612         case 1: l|=((unsigned long)(*((c)++)))<< 8; \
613         case 2: l|=((unsigned long)(*((c)++)))<<16; \
614         case 3: l|=((unsigned long)(*((c)++)))<<24; \
615         } }
616 #define HOST_p_c2l_p(c,l,sc,len) {                  \
617         switch (sc) {                   \
618         case 0: l =((unsigned long)(*((c)++)));     \
619             if (--len == 0) break;                                                 \
620         case 1: l|=((unsigned long)(*((c)++)))<< 8; \
621             if (--len == 0) break;                                                 \
622         case 2: l|=((unsigned long)(*((c)++)))<<16; \
623         } }
624 /* NOTE the pointer is not incremented at the end of this */
625 #define HOST_c2l_p(c,l,n)   {                   \
626         l=0; (c)+=n;                    \
627         switch (n) {                    \
628         case 3: l =((unsigned long)(*(--(c))))<<16; \
629         case 2: l|=((unsigned long)(*(--(c))))<< 8; \
630         case 1: l|=((unsigned long)(*(--(c))));     \
631         } }
632 #define _HOST_l2c(l,c)  (*((c)++)=(unsigned char)(((l)    )&0xff),  \
633                          *((c)++)=(unsigned char)(((l)>> 8)&0xff),  \
634                          *((c)++)=(unsigned char)(((l)>>16)&0xff),  \
635                          *((c)++)=(unsigned char)(((l)>>24)&0xff),  \
636                          l)
637 
638 #endif
639 
640 /*
641  * Time for some action:-)
642  */
643 
644 int HASH_UPDATE (HASH_CTX *c, const void *data_, unsigned long len)
645 {
646     const unsigned char *data=(const unsigned char *)data_;
647     register HASH_LONG * p;
648     register unsigned long l;
649     int sw,sc,ew,ec;
650 
651     if (len==0) return 1;
652 
653     l=(c->Nl+(len<<3))&0xffffffffL;
654     /* 95-05-24 eay Fixed a bug with the overflow handling, thanks to
655      * Wei Dai <weidai@eskimo.com> for pointing it out. */
656     if (l < c->Nl) /* overflow */
657         c->Nh++;
658     c->Nh+=(len>>29);
659     c->Nl=l;
660 
661     if (c->num != 0)
662     {
663         p=c->data;
664         sw=c->num>>2;
665         sc=c->num&0x03;
666 
667         if ((c->num+len) >= HASH_CBLOCK)
668         {
669             l=p[sw]; HOST_p_c2l(data,l,sc); p[sw++]=l;
670             for (; sw<HASH_LBLOCK; sw++)
671             {
672                 HOST_c2l(data,l); p[sw]=l;
673             }
674             HASH_BLOCK_HOST_ORDER (c,p,1);
675             len-=(HASH_CBLOCK-c->num);
676             c->num=0;
677             /* drop through and do the rest */
678         }
679         else
680         {
681             c->num+=len;
682             if ((sc+len) < 4) /* ugly, add char's to a word */
683             {
684                 l=p[sw]; HOST_p_c2l_p(data,l,sc,len); p[sw]=l;
685             }
686             else
687             {
688                 ew=(c->num>>2);
689                 ec=(c->num&0x03);
690                 if (sc)
691                     l=p[sw];
692                 HOST_p_c2l(data,l,sc);
693                 p[sw++]=l;
694                 for (; sw < ew; sw++)
695                 {
696                     HOST_c2l(data,l); p[sw]=l;
697                 }
698                 if (ec)
699                 {
700                     HOST_c2l_p(data,l,ec); p[sw]=l;
701                 }
702             }
703             return 1;
704         }
705     }
706 
707     sw=(int)(len/HASH_CBLOCK);
708     if (sw > 0)
709     {
710 #if defined(HASH_BLOCK_DATA_ORDER_ALIGNED)
711         /*
712          * Note that HASH_BLOCK_DATA_ORDER_ALIGNED gets defined
713          * only if sizeof(HASH_LONG)==4.
714          */
715         if ((((unsigned long)data)%4) == 0)
716         {
717             /* data is properly aligned so that we can cast it: */
718             HASH_BLOCK_DATA_ORDER_ALIGNED (c,(HASH_LONG *)data,sw);
719             sw*=HASH_CBLOCK;
720             data+=sw;
721             len-=sw;
722         }
723         else
724 #if !defined(HASH_BLOCK_DATA_ORDER)
725             while (sw--)
726             {
727                 mDNSPlatformMemCopy(p=c->data,data,HASH_CBLOCK);
728                 HASH_BLOCK_DATA_ORDER_ALIGNED(c,p,1);
729                 data+=HASH_CBLOCK;
730                 len-=HASH_CBLOCK;
731             }
732 #endif
733 #endif
734 #if defined(HASH_BLOCK_DATA_ORDER)
735         {
736             HASH_BLOCK_DATA_ORDER(c,data,sw);
737             sw*=HASH_CBLOCK;
738             data+=sw;
739             len-=sw;
740         }
741 #endif
742     }
743 
744     if (len!=0)
745     {
746         p = c->data;
747         c->num = (int)len;
748         ew=(int)(len>>2);   /* words to copy */
749         ec=(int)(len&0x03);
750         for (; ew; ew--,p++)
751         {
752             HOST_c2l(data,l); *p=l;
753         }
754         HOST_c2l_p(data,l,ec);
755         *p=l;
756     }
757     return 1;
758 }
759 
760 
761 void HASH_TRANSFORM (HASH_CTX *c, const unsigned char *data)
762 {
763 #if defined(HASH_BLOCK_DATA_ORDER_ALIGNED)
764     if ((((unsigned long)data)%4) == 0)
765         /* data is properly aligned so that we can cast it: */
766         HASH_BLOCK_DATA_ORDER_ALIGNED (c,(HASH_LONG *)data,1);
767     else
768 #if !defined(HASH_BLOCK_DATA_ORDER)
769     {
770         mDNSPlatformMemCopy(c->data,data,HASH_CBLOCK);
771         HASH_BLOCK_DATA_ORDER_ALIGNED (c,c->data,1);
772     }
773 #endif
774 #endif
775 #if defined(HASH_BLOCK_DATA_ORDER)
776     HASH_BLOCK_DATA_ORDER (c,data,1);
777 #endif
778 }
779 
780 
781 int HASH_FINAL (unsigned char *md, HASH_CTX *c)
782 {
783     register HASH_LONG *p;
784     register unsigned long l;
785     register int i,j;
786     static const unsigned char end[4]={0x80,0x00,0x00,0x00};
787     const unsigned char *cp=end;
788 
789     /* c->num should definitly have room for at least one more byte. */
790     p=c->data;
791     i=c->num>>2;
792     j=c->num&0x03;
793 
794 #if 0
795     /* purify often complains about the following line as an
796      * Uninitialized Memory Read.  While this can be true, the
797      * following p_c2l macro will reset l when that case is true.
798      * This is because j&0x03 contains the number of 'valid' bytes
799      * already in p[i].  If and only if j&0x03 == 0, the UMR will
800      * occur but this is also the only time p_c2l will do
801      * l= *(cp++) instead of l|= *(cp++)
802      * Many thanks to Alex Tang <altitude@cic.net> for pickup this
803      * 'potential bug' */
804 #ifdef PURIFY
805     if (j==0) p[i]=0; /* Yeah, but that's not the way to fix it:-) */
806 #endif
807     l=p[i];
808 #else
809     l = (j==0) ? 0 : p[i];
810 #endif
811     HOST_p_c2l(cp,l,j); p[i++]=l; /* i is the next 'undefined word' */
812 
813     if (i>(HASH_LBLOCK-2)) /* save room for Nl and Nh */
814     {
815         if (i<HASH_LBLOCK) p[i]=0;
816         HASH_BLOCK_HOST_ORDER (c,p,1);
817         i=0;
818     }
819     for (; i<(HASH_LBLOCK-2); i++)
820         p[i]=0;
821 
822 #if   defined(DATA_ORDER_IS_BIG_ENDIAN)
823     p[HASH_LBLOCK-2]=c->Nh;
824     p[HASH_LBLOCK-1]=c->Nl;
825 #elif defined(DATA_ORDER_IS_LITTLE_ENDIAN)
826     p[HASH_LBLOCK-2]=c->Nl;
827     p[HASH_LBLOCK-1]=c->Nh;
828 #endif
829     HASH_BLOCK_HOST_ORDER (c,p,1);
830 
831 #ifndef HASH_MAKE_STRING
832 #error "HASH_MAKE_STRING must be defined!"
833 #else
834     HASH_MAKE_STRING(c,md);
835 #endif
836 
837     c->num=0;
838     /* clear stuff, HASH_BLOCK may be leaving some stuff on the stack
839      * but I'm not worried :-)
840        OPENSSL_cleanse((void *)c,sizeof(HASH_CTX));
841      */
842     return 1;
843 }
844 
845 #ifndef MD32_REG_T
846 #define MD32_REG_T long
847 /*
848  * This comment was originaly written for MD5, which is why it
849  * discusses A-D. But it basically applies to all 32-bit digests,
850  * which is why it was moved to common header file.
851  *
852  * In case you wonder why A-D are declared as long and not
853  * as mDNSu32. Doing so results in slight performance
854  * boost on LP64 architectures. The catch is we don't
855  * really care if 32 MSBs of a 64-bit register get polluted
856  * with eventual overflows as we *save* only 32 LSBs in
857  * *either* case. Now declaring 'em long excuses the compiler
858  * from keeping 32 MSBs zeroed resulting in 13% performance
859  * improvement under SPARC Solaris7/64 and 5% under AlphaLinux.
860  * Well, to be honest it should say that this *prevents*
861  * performance degradation.
862  *				<appro@fy.chalmers.se>
863  * Apparently there're LP64 compilers that generate better
864  * code if A-D are declared int. Most notably GCC-x86_64
865  * generates better code.
866  *				<appro@fy.chalmers.se>
867  */
868 #endif
869 
870 
871 // from md5_locl.h (continued)
872 
873 /*
874  #define	F(x,y,z)	(((x) & (y))  |  ((~(x)) & (z)))
875  #define	G(x,y,z)	(((x) & (z))  |  ((y) & (~(z))))
876  */
877 
878 /* As pointed out by Wei Dai <weidai@eskimo.com>, the above can be
879  * simplified to the code below.  Wei attributes these optimizations
880  * to Peter Gutmann's SHS code, and he attributes it to Rich Schroeppel.
881  */
882 #define F(b,c,d)    ((((c) ^ (d)) & (b)) ^ (d))
883 #define G(b,c,d)    ((((b) ^ (c)) & (d)) ^ (c))
884 #define H(b,c,d)    ((b) ^ (c) ^ (d))
885 #define I(b,c,d)    (((~(d)) | (b)) ^ (c))
886 
887 #define R0(a,b,c,d,k,s,t) { \
888         a+=((k)+(t)+F((b),(c),(d))); \
889         a=ROTATE(a,s); \
890         a+=b; }; \
891 
892 #define R1(a,b,c,d,k,s,t) { \
893         a+=((k)+(t)+G((b),(c),(d))); \
894         a=ROTATE(a,s); \
895         a+=b; };
896 
897 #define R2(a,b,c,d,k,s,t) { \
898         a+=((k)+(t)+H((b),(c),(d))); \
899         a=ROTATE(a,s); \
900         a+=b; };
901 
902 #define R3(a,b,c,d,k,s,t) { \
903         a+=((k)+(t)+I((b),(c),(d))); \
904         a=ROTATE(a,s); \
905         a+=b; };
906 
907 // from md5_dgst.c
908 
909 
910 /* Implemented from RFC1321 The MD5 Message-Digest Algorithm
911  */
912 
913 #define INIT_DATA_A (unsigned long)0x67452301L
914 #define INIT_DATA_B (unsigned long)0xefcdab89L
915 #define INIT_DATA_C (unsigned long)0x98badcfeL
916 #define INIT_DATA_D (unsigned long)0x10325476L
917 
918 int MD5_Init(MD5_CTX *c)
919 {
920     c->A=INIT_DATA_A;
921     c->B=INIT_DATA_B;
922     c->C=INIT_DATA_C;
923     c->D=INIT_DATA_D;
924     c->Nl=0;
925     c->Nh=0;
926     c->num=0;
927     return 1;
928 }
929 
930 #ifndef md5_block_host_order
931 void md5_block_host_order (MD5_CTX *c, const void *data, int num)
932 {
933     const mDNSu32 *X=(const mDNSu32 *)data;
934     register unsigned MD32_REG_T A,B,C,D;
935 
936     A=c->A;
937     B=c->B;
938     C=c->C;
939     D=c->D;
940 
941     for (; num--; X+=HASH_LBLOCK)
942     {
943         /* Round 0 */
944         R0(A,B,C,D,X[ 0], 7,0xd76aa478L);
945         R0(D,A,B,C,X[ 1],12,0xe8c7b756L);
946         R0(C,D,A,B,X[ 2],17,0x242070dbL);
947         R0(B,C,D,A,X[ 3],22,0xc1bdceeeL);
948         R0(A,B,C,D,X[ 4], 7,0xf57c0fafL);
949         R0(D,A,B,C,X[ 5],12,0x4787c62aL);
950         R0(C,D,A,B,X[ 6],17,0xa8304613L);
951         R0(B,C,D,A,X[ 7],22,0xfd469501L);
952         R0(A,B,C,D,X[ 8], 7,0x698098d8L);
953         R0(D,A,B,C,X[ 9],12,0x8b44f7afL);
954         R0(C,D,A,B,X[10],17,0xffff5bb1L);
955         R0(B,C,D,A,X[11],22,0x895cd7beL);
956         R0(A,B,C,D,X[12], 7,0x6b901122L);
957         R0(D,A,B,C,X[13],12,0xfd987193L);
958         R0(C,D,A,B,X[14],17,0xa679438eL);
959         R0(B,C,D,A,X[15],22,0x49b40821L);
960         /* Round 1 */
961         R1(A,B,C,D,X[ 1], 5,0xf61e2562L);
962         R1(D,A,B,C,X[ 6], 9,0xc040b340L);
963         R1(C,D,A,B,X[11],14,0x265e5a51L);
964         R1(B,C,D,A,X[ 0],20,0xe9b6c7aaL);
965         R1(A,B,C,D,X[ 5], 5,0xd62f105dL);
966         R1(D,A,B,C,X[10], 9,0x02441453L);
967         R1(C,D,A,B,X[15],14,0xd8a1e681L);
968         R1(B,C,D,A,X[ 4],20,0xe7d3fbc8L);
969         R1(A,B,C,D,X[ 9], 5,0x21e1cde6L);
970         R1(D,A,B,C,X[14], 9,0xc33707d6L);
971         R1(C,D,A,B,X[ 3],14,0xf4d50d87L);
972         R1(B,C,D,A,X[ 8],20,0x455a14edL);
973         R1(A,B,C,D,X[13], 5,0xa9e3e905L);
974         R1(D,A,B,C,X[ 2], 9,0xfcefa3f8L);
975         R1(C,D,A,B,X[ 7],14,0x676f02d9L);
976         R1(B,C,D,A,X[12],20,0x8d2a4c8aL);
977         /* Round 2 */
978         R2(A,B,C,D,X[ 5], 4,0xfffa3942L);
979         R2(D,A,B,C,X[ 8],11,0x8771f681L);
980         R2(C,D,A,B,X[11],16,0x6d9d6122L);
981         R2(B,C,D,A,X[14],23,0xfde5380cL);
982         R2(A,B,C,D,X[ 1], 4,0xa4beea44L);
983         R2(D,A,B,C,X[ 4],11,0x4bdecfa9L);
984         R2(C,D,A,B,X[ 7],16,0xf6bb4b60L);
985         R2(B,C,D,A,X[10],23,0xbebfbc70L);
986         R2(A,B,C,D,X[13], 4,0x289b7ec6L);
987         R2(D,A,B,C,X[ 0],11,0xeaa127faL);
988         R2(C,D,A,B,X[ 3],16,0xd4ef3085L);
989         R2(B,C,D,A,X[ 6],23,0x04881d05L);
990         R2(A,B,C,D,X[ 9], 4,0xd9d4d039L);
991         R2(D,A,B,C,X[12],11,0xe6db99e5L);
992         R2(C,D,A,B,X[15],16,0x1fa27cf8L);
993         R2(B,C,D,A,X[ 2],23,0xc4ac5665L);
994         /* Round 3 */
995         R3(A,B,C,D,X[ 0], 6,0xf4292244L);
996         R3(D,A,B,C,X[ 7],10,0x432aff97L);
997         R3(C,D,A,B,X[14],15,0xab9423a7L);
998         R3(B,C,D,A,X[ 5],21,0xfc93a039L);
999         R3(A,B,C,D,X[12], 6,0x655b59c3L);
1000         R3(D,A,B,C,X[ 3],10,0x8f0ccc92L);
1001         R3(C,D,A,B,X[10],15,0xffeff47dL);
1002         R3(B,C,D,A,X[ 1],21,0x85845dd1L);
1003         R3(A,B,C,D,X[ 8], 6,0x6fa87e4fL);
1004         R3(D,A,B,C,X[15],10,0xfe2ce6e0L);
1005         R3(C,D,A,B,X[ 6],15,0xa3014314L);
1006         R3(B,C,D,A,X[13],21,0x4e0811a1L);
1007         R3(A,B,C,D,X[ 4], 6,0xf7537e82L);
1008         R3(D,A,B,C,X[11],10,0xbd3af235L);
1009         R3(C,D,A,B,X[ 2],15,0x2ad7d2bbL);
1010         R3(B,C,D,A,X[ 9],21,0xeb86d391L);
1011 
1012         A = c->A += A;
1013         B = c->B += B;
1014         C = c->C += C;
1015         D = c->D += D;
1016     }
1017 }
1018 #endif
1019 
1020 #ifndef md5_block_data_order
1021 #ifdef X
1022 #undef X
1023 #endif
1024 void md5_block_data_order (MD5_CTX *c, const void *data_, int num)
1025 {
1026     const unsigned char *data=data_;
1027     register unsigned MD32_REG_T A,B,C,D,l;
1028 #ifndef MD32_XARRAY
1029     /* See comment in crypto/sha/sha_locl.h for details. */
1030     unsigned MD32_REG_T XX0, XX1, XX2, XX3, XX4, XX5, XX6, XX7,
1031                         XX8, XX9,XX10,XX11,XX12,XX13,XX14,XX15;
1032 # define X(i)   XX ## i
1033 #else
1034     mDNSu32 XX[MD5_LBLOCK];
1035 # define X(i)   XX[i]
1036 #endif
1037 
1038     A=c->A;
1039     B=c->B;
1040     C=c->C;
1041     D=c->D;
1042 
1043     for (; num--;)
1044     {
1045         HOST_c2l(data,l); X( 0)=l;      HOST_c2l(data,l); X( 1)=l;
1046         /* Round 0 */
1047         R0(A,B,C,D,X( 0), 7,0xd76aa478L);   HOST_c2l(data,l); X( 2)=l;
1048         R0(D,A,B,C,X( 1),12,0xe8c7b756L);   HOST_c2l(data,l); X( 3)=l;
1049         R0(C,D,A,B,X( 2),17,0x242070dbL);   HOST_c2l(data,l); X( 4)=l;
1050         R0(B,C,D,A,X( 3),22,0xc1bdceeeL);   HOST_c2l(data,l); X( 5)=l;
1051         R0(A,B,C,D,X( 4), 7,0xf57c0fafL);   HOST_c2l(data,l); X( 6)=l;
1052         R0(D,A,B,C,X( 5),12,0x4787c62aL);   HOST_c2l(data,l); X( 7)=l;
1053         R0(C,D,A,B,X( 6),17,0xa8304613L);   HOST_c2l(data,l); X( 8)=l;
1054         R0(B,C,D,A,X( 7),22,0xfd469501L);   HOST_c2l(data,l); X( 9)=l;
1055         R0(A,B,C,D,X( 8), 7,0x698098d8L);   HOST_c2l(data,l); X(10)=l;
1056         R0(D,A,B,C,X( 9),12,0x8b44f7afL);   HOST_c2l(data,l); X(11)=l;
1057         R0(C,D,A,B,X(10),17,0xffff5bb1L);   HOST_c2l(data,l); X(12)=l;
1058         R0(B,C,D,A,X(11),22,0x895cd7beL);   HOST_c2l(data,l); X(13)=l;
1059         R0(A,B,C,D,X(12), 7,0x6b901122L);   HOST_c2l(data,l); X(14)=l;
1060         R0(D,A,B,C,X(13),12,0xfd987193L);   HOST_c2l(data,l); X(15)=l;
1061         R0(C,D,A,B,X(14),17,0xa679438eL);
1062         R0(B,C,D,A,X(15),22,0x49b40821L);
1063         /* Round 1 */
1064         R1(A,B,C,D,X( 1), 5,0xf61e2562L);
1065         R1(D,A,B,C,X( 6), 9,0xc040b340L);
1066         R1(C,D,A,B,X(11),14,0x265e5a51L);
1067         R1(B,C,D,A,X( 0),20,0xe9b6c7aaL);
1068         R1(A,B,C,D,X( 5), 5,0xd62f105dL);
1069         R1(D,A,B,C,X(10), 9,0x02441453L);
1070         R1(C,D,A,B,X(15),14,0xd8a1e681L);
1071         R1(B,C,D,A,X( 4),20,0xe7d3fbc8L);
1072         R1(A,B,C,D,X( 9), 5,0x21e1cde6L);
1073         R1(D,A,B,C,X(14), 9,0xc33707d6L);
1074         R1(C,D,A,B,X( 3),14,0xf4d50d87L);
1075         R1(B,C,D,A,X( 8),20,0x455a14edL);
1076         R1(A,B,C,D,X(13), 5,0xa9e3e905L);
1077         R1(D,A,B,C,X( 2), 9,0xfcefa3f8L);
1078         R1(C,D,A,B,X( 7),14,0x676f02d9L);
1079         R1(B,C,D,A,X(12),20,0x8d2a4c8aL);
1080         /* Round 2 */
1081         R2(A,B,C,D,X( 5), 4,0xfffa3942L);
1082         R2(D,A,B,C,X( 8),11,0x8771f681L);
1083         R2(C,D,A,B,X(11),16,0x6d9d6122L);
1084         R2(B,C,D,A,X(14),23,0xfde5380cL);
1085         R2(A,B,C,D,X( 1), 4,0xa4beea44L);
1086         R2(D,A,B,C,X( 4),11,0x4bdecfa9L);
1087         R2(C,D,A,B,X( 7),16,0xf6bb4b60L);
1088         R2(B,C,D,A,X(10),23,0xbebfbc70L);
1089         R2(A,B,C,D,X(13), 4,0x289b7ec6L);
1090         R2(D,A,B,C,X( 0),11,0xeaa127faL);
1091         R2(C,D,A,B,X( 3),16,0xd4ef3085L);
1092         R2(B,C,D,A,X( 6),23,0x04881d05L);
1093         R2(A,B,C,D,X( 9), 4,0xd9d4d039L);
1094         R2(D,A,B,C,X(12),11,0xe6db99e5L);
1095         R2(C,D,A,B,X(15),16,0x1fa27cf8L);
1096         R2(B,C,D,A,X( 2),23,0xc4ac5665L);
1097         /* Round 3 */
1098         R3(A,B,C,D,X( 0), 6,0xf4292244L);
1099         R3(D,A,B,C,X( 7),10,0x432aff97L);
1100         R3(C,D,A,B,X(14),15,0xab9423a7L);
1101         R3(B,C,D,A,X( 5),21,0xfc93a039L);
1102         R3(A,B,C,D,X(12), 6,0x655b59c3L);
1103         R3(D,A,B,C,X( 3),10,0x8f0ccc92L);
1104         R3(C,D,A,B,X(10),15,0xffeff47dL);
1105         R3(B,C,D,A,X( 1),21,0x85845dd1L);
1106         R3(A,B,C,D,X( 8), 6,0x6fa87e4fL);
1107         R3(D,A,B,C,X(15),10,0xfe2ce6e0L);
1108         R3(C,D,A,B,X( 6),15,0xa3014314L);
1109         R3(B,C,D,A,X(13),21,0x4e0811a1L);
1110         R3(A,B,C,D,X( 4), 6,0xf7537e82L);
1111         R3(D,A,B,C,X(11),10,0xbd3af235L);
1112         R3(C,D,A,B,X( 2),15,0x2ad7d2bbL);
1113         R3(B,C,D,A,X( 9),21,0xeb86d391L);
1114 
1115         A = c->A += A;
1116         B = c->B += B;
1117         C = c->C += C;
1118         D = c->D += D;
1119     }
1120 }
1121 #endif
1122 
1123 
1124 // ***************************************************************************
1125 #if COMPILER_LIKES_PRAGMA_MARK
1126 #pragma mark - base64 -> binary conversion
1127 #endif
1128 
1129 static const char Base64[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
1130 static const char Pad64 = '=';
1131 
1132 
1133 #define mDNSisspace(x) (x == '\t' || x == '\n' || x == '\v' || x == '\f' || x == '\r' || x == ' ')
1134 
1135 mDNSlocal const char *mDNSstrchr(const char *s, int c)
1136 {
1137     while (1)
1138     {
1139         if (c == *s) return s;
1140         if (!*s) return mDNSNULL;
1141         s++;
1142     }
1143 }
1144 
1145 // skips all whitespace anywhere.
1146 // converts characters, four at a time, starting at (or after)
1147 // src from base - 64 numbers into three 8 bit bytes in the target area.
1148 // it returns the number of data bytes stored at the target, or -1 on error.
1149 // adapted from BIND sources
1150 
1151 mDNSlocal mDNSs32 DNSDigest_Base64ToBin(const char *src, mDNSu8 *target, mDNSu32 targsize)
1152 {
1153     int tarindex, state, ch;
1154     const char *pos;
1155 
1156     state = 0;
1157     tarindex = 0;
1158 
1159     while ((ch = *src++) != '\0') {
1160         if (mDNSisspace(ch))    /* Skip whitespace anywhere. */
1161             continue;
1162 
1163         if (ch == Pad64)
1164             break;
1165 
1166         pos = mDNSstrchr(Base64, ch);
1167         if (pos == 0)       /* A non-base64 character. */
1168             return (-1);
1169 
1170         switch (state) {
1171         case 0:
1172             if (target) {
1173                 if ((mDNSu32)tarindex >= targsize)
1174                     return (-1);
1175                 target[tarindex] = (mDNSu8)((pos - Base64) << 2);
1176             }
1177             state = 1;
1178             break;
1179         case 1:
1180             if (target) {
1181                 if ((mDNSu32)tarindex + 1 >= targsize)
1182                     return (-1);
1183                 target[tarindex]   |=  (pos - Base64) >> 4;
1184                 target[tarindex+1]  = (mDNSu8)(((pos - Base64) & 0x0f) << 4);
1185             }
1186             tarindex++;
1187             state = 2;
1188             break;
1189         case 2:
1190             if (target) {
1191                 if ((mDNSu32)tarindex + 1 >= targsize)
1192                     return (-1);
1193                 target[tarindex]   |=  (pos - Base64) >> 2;
1194                 target[tarindex+1]  = (mDNSu8)(((pos - Base64) & 0x03) << 6);
1195             }
1196             tarindex++;
1197             state = 3;
1198             break;
1199         case 3:
1200             if (target) {
1201                 if ((mDNSu32)tarindex >= targsize)
1202                     return (-1);
1203                 target[tarindex] |= (pos - Base64);
1204             }
1205             tarindex++;
1206             state = 0;
1207             break;
1208         default:
1209             return -1;
1210         }
1211     }
1212 
1213     /*
1214      * We are done decoding Base-64 chars.  Let's see if we ended
1215      * on a byte boundary, and/or with erroneous trailing characters.
1216      */
1217 
1218     if (ch == Pad64) {      /* We got a pad char. */
1219         ch = *src++;        /* Skip it, get next. */
1220         switch (state) {
1221         case 0:     /* Invalid = in first position */
1222         case 1:     /* Invalid = in second position */
1223             return (-1);
1224 
1225         case 2:     /* Valid, means one byte of info */
1226             /* Skip any number of spaces. */
1227             for ((void)mDNSNULL; ch != '\0'; ch = *src++)
1228                 if (!mDNSisspace(ch))
1229                     break;
1230             /* Make sure there is another trailing = sign. */
1231             if (ch != Pad64)
1232                 return (-1);
1233             ch = *src++;        /* Skip the = */
1234         /* Fall through to "single trailing =" case. */
1235         /* FALLTHROUGH */
1236 
1237         case 3:     /* Valid, means two bytes of info */
1238             /*
1239              * We know this char is an =.  Is there anything but
1240              * whitespace after it?
1241              */
1242             for ((void)mDNSNULL; ch != '\0'; ch = *src++)
1243                 if (!mDNSisspace(ch))
1244                     return (-1);
1245 
1246             /*
1247              * Now make sure for cases 2 and 3 that the "extra"
1248              * bits that slopped past the last full byte were
1249              * zeros.  If we don't check them, they become a
1250              * subliminal channel.
1251              */
1252             if (target && target[tarindex] != 0)
1253                 return (-1);
1254         }
1255     } else {
1256         /*
1257          * We ended by seeing the end of the string.  Make sure we
1258          * have no partial bytes lying around.
1259          */
1260         if (state != 0)
1261             return (-1);
1262     }
1263 
1264     return (tarindex);
1265 }
1266 
1267 
1268 // ***************************************************************************
1269 #if COMPILER_LIKES_PRAGMA_MARK
1270 #pragma mark - API exported to mDNS Core
1271 #endif
1272 
1273 // Constants
1274 #define HMAC_IPAD   0x36
1275 #define HMAC_OPAD   0x5c
1276 #define MD5_LEN     16
1277 
1278 #define HMAC_MD5_AlgName (*(const domainname*) "\010" "hmac-md5" "\007" "sig-alg" "\003" "reg" "\003" "int")
1279 
1280 // Adapted from Appendix, RFC 2104
1281 mDNSlocal void DNSDigest_ConstructHMACKey(DomainAuthInfo *info, const mDNSu8 *key, mDNSu32 len)
1282 {
1283     MD5_CTX k;
1284     mDNSu8 buf[MD5_LEN];
1285     int i;
1286 
1287     // If key is longer than HMAC_LEN reset it to MD5(key)
1288     if (len > HMAC_LEN)
1289     {
1290         MD5_Init(&k);
1291         MD5_Update(&k, key, len);
1292         MD5_Final(buf, &k);
1293         key = buf;
1294         len = MD5_LEN;
1295     }
1296 
1297     // store key in pads
1298     mDNSPlatformMemZero(info->keydata_ipad, HMAC_LEN);
1299     mDNSPlatformMemZero(info->keydata_opad, HMAC_LEN);
1300     mDNSPlatformMemCopy(info->keydata_ipad, key, len);
1301     mDNSPlatformMemCopy(info->keydata_opad, key, len);
1302 
1303     // XOR key with ipad and opad values
1304     for (i = 0; i < HMAC_LEN; i++)
1305     {
1306         info->keydata_ipad[i] ^= HMAC_IPAD;
1307         info->keydata_opad[i] ^= HMAC_OPAD;
1308     }
1309 
1310 }
1311 
1312 mDNSexport mDNSs32 DNSDigest_ConstructHMACKeyfromBase64(DomainAuthInfo *info, const char *b64key)
1313 {
1314     mDNSu8 keybuf[1024];
1315     mDNSs32 keylen = DNSDigest_Base64ToBin(b64key, keybuf, sizeof(keybuf));
1316     if (keylen < 0) return(keylen);
1317     DNSDigest_ConstructHMACKey(info, keybuf, (mDNSu32)keylen);
1318     return(keylen);
1319 }
1320 
1321 mDNSexport void DNSDigest_SignMessage(DNSMessage *msg, mDNSu8 **end, DomainAuthInfo *info, mDNSu16 tcode)
1322 {
1323     AuthRecord tsig;
1324     mDNSu8  *rdata, *const countPtr = (mDNSu8 *)&msg->h.numAdditionals; // Get existing numAdditionals value
1325     mDNSu32 utc32;
1326     mDNSu8 utc48[6];
1327     mDNSu8 digest[MD5_LEN];
1328     mDNSu8 *ptr = *end;
1329     mDNSu32 len;
1330     mDNSOpaque16 buf;
1331     MD5_CTX c;
1332     mDNSu16 numAdditionals = (mDNSu16)((mDNSu16)countPtr[0] << 8 | countPtr[1]);
1333 
1334     // Init MD5 context, digest inner key pad and message
1335     MD5_Init(&c);
1336     MD5_Update(&c, info->keydata_ipad, HMAC_LEN);
1337     MD5_Update(&c, (mDNSu8 *)msg, (unsigned long)(*end - (mDNSu8 *)msg));
1338 
1339     // Construct TSIG RR, digesting variables as apporpriate
1340     mDNS_SetupResourceRecord(&tsig, mDNSNULL, 0, kDNSType_TSIG, 0, kDNSRecordTypeKnownUnique, AuthRecordAny, mDNSNULL, mDNSNULL);
1341 
1342     // key name
1343     AssignDomainName(&tsig.namestorage, &info->keyname);
1344     MD5_Update(&c, info->keyname.c, DomainNameLength(&info->keyname));
1345 
1346     // class
1347     tsig.resrec.rrclass = kDNSQClass_ANY;
1348     buf = mDNSOpaque16fromIntVal(kDNSQClass_ANY);
1349     MD5_Update(&c, buf.b, sizeof(mDNSOpaque16));
1350 
1351     // ttl
1352     tsig.resrec.rroriginalttl = 0;
1353     MD5_Update(&c, (mDNSu8 *)&tsig.resrec.rroriginalttl, sizeof(tsig.resrec.rroriginalttl));
1354 
1355     // alg name
1356     AssignDomainName(&tsig.resrec.rdata->u.name, &HMAC_MD5_AlgName);
1357     len = DomainNameLength(&HMAC_MD5_AlgName);
1358     rdata = tsig.resrec.rdata->u.data + len;
1359     MD5_Update(&c, HMAC_MD5_AlgName.c, len);
1360 
1361     // time
1362     // get UTC (universal time), convert to 48-bit unsigned in network byte order
1363     utc32 = (mDNSu32)mDNSPlatformUTC();
1364     if (utc32 == (unsigned)-1) { LogMsg("ERROR: DNSDigest_SignMessage - mDNSPlatformUTC returned bad time -1"); *end = mDNSNULL; }
1365     utc48[0] = 0;
1366     utc48[1] = 0;
1367     utc48[2] = (mDNSu8)((utc32 >> 24) & 0xff);
1368     utc48[3] = (mDNSu8)((utc32 >> 16) & 0xff);
1369     utc48[4] = (mDNSu8)((utc32 >>  8) & 0xff);
1370     utc48[5] = (mDNSu8)( utc32        & 0xff);
1371 
1372     mDNSPlatformMemCopy(rdata, utc48, 6);
1373     rdata += 6;
1374     MD5_Update(&c, utc48, 6);
1375 
1376     // 300 sec is fudge recommended in RFC 2485
1377     rdata[0] = (mDNSu8)((300 >> 8)  & 0xff);
1378     rdata[1] = (mDNSu8)( 300        & 0xff);
1379     MD5_Update(&c, rdata, sizeof(mDNSOpaque16));
1380     rdata += sizeof(mDNSOpaque16);
1381 
1382     // digest error (tcode) and other data len (zero) - we'll add them to the rdata later
1383     buf.b[0] = (mDNSu8)((tcode >> 8) & 0xff);
1384     buf.b[1] = (mDNSu8)( tcode       & 0xff);
1385     MD5_Update(&c, buf.b, sizeof(mDNSOpaque16));  // error
1386     buf.NotAnInteger = 0;
1387     MD5_Update(&c, buf.b, sizeof(mDNSOpaque16));  // other data len
1388 
1389     // finish the message & tsig var hash
1390     MD5_Final(digest, &c);
1391 
1392     // perform outer MD5 (outer key pad, inner digest)
1393     MD5_Init(&c);
1394     MD5_Update(&c, info->keydata_opad, HMAC_LEN);
1395     MD5_Update(&c, digest, MD5_LEN);
1396     MD5_Final(digest, &c);
1397 
1398     // set remaining rdata fields
1399     rdata[0] = (mDNSu8)((MD5_LEN >> 8)  & 0xff);
1400     rdata[1] = (mDNSu8)( MD5_LEN        & 0xff);
1401     rdata += sizeof(mDNSOpaque16);
1402     mDNSPlatformMemCopy(rdata, digest, MD5_LEN);                          // MAC
1403     rdata += MD5_LEN;
1404     rdata[0] = msg->h.id.b[0];                                            // original ID
1405     rdata[1] = msg->h.id.b[1];
1406     rdata[2] = (mDNSu8)((tcode >> 8) & 0xff);
1407     rdata[3] = (mDNSu8)( tcode       & 0xff);
1408     rdata[4] = 0;                                                         // other data len
1409     rdata[5] = 0;
1410     rdata += 6;
1411 
1412     tsig.resrec.rdlength = (mDNSu16)(rdata - tsig.resrec.rdata->u.data);
1413     *end = PutResourceRecordTTLJumbo(msg, ptr, &numAdditionals, &tsig.resrec, 0);
1414     if (!*end) { LogMsg("ERROR: DNSDigest_SignMessage - could not put TSIG"); *end = mDNSNULL; return; }
1415 
1416     // Write back updated numAdditionals value
1417     countPtr[0] = (mDNSu8)(numAdditionals >> 8);
1418     countPtr[1] = (mDNSu8)(numAdditionals &  0xFF);
1419 }
1420 
1421 mDNSexport mDNSBool DNSDigest_VerifyMessage(DNSMessage *msg, mDNSu8 *end, LargeCacheRecord * lcr, DomainAuthInfo *info, mDNSu16 * rcode, mDNSu16 * tcode)
1422 {
1423     mDNSu8          *   ptr = (mDNSu8*) &lcr->r.resrec.rdata->u.data;
1424     mDNSs32 now;
1425     mDNSs32 then;
1426     mDNSu8 thisDigest[MD5_LEN];
1427     mDNSu8 thatDigest[MD5_LEN];
1428     mDNSOpaque16 buf;
1429     mDNSu8 utc48[6];
1430     mDNSs32 delta;
1431     mDNSu16 fudge;
1432     domainname      *   algo;
1433     MD5_CTX c;
1434     mDNSBool ok = mDNSfalse;
1435 
1436     // We only support HMAC-MD5 for now
1437 
1438     algo = (domainname*) ptr;
1439 
1440     if (!SameDomainName(algo, &HMAC_MD5_AlgName))
1441     {
1442         LogMsg("ERROR: DNSDigest_VerifyMessage - TSIG algorithm not supported: %##s", algo->c);
1443         *rcode = kDNSFlag1_RC_NotAuth;
1444         *tcode = TSIG_ErrBadKey;
1445         ok = mDNSfalse;
1446         goto exit;
1447     }
1448 
1449     ptr += DomainNameLength(algo);
1450 
1451     // Check the times
1452 
1453     now = mDNSPlatformUTC();
1454     if (now == -1)
1455     {
1456         LogMsg("ERROR: DNSDigest_VerifyMessage - mDNSPlatformUTC returned bad time -1");
1457         *rcode = kDNSFlag1_RC_NotAuth;
1458         *tcode = TSIG_ErrBadTime;
1459         ok = mDNSfalse;
1460         goto exit;
1461     }
1462 
1463     // Get the 48 bit time field, skipping over the first word
1464 
1465     utc48[0] = *ptr++;
1466     utc48[1] = *ptr++;
1467     utc48[2] = *ptr++;
1468     utc48[3] = *ptr++;
1469     utc48[4] = *ptr++;
1470     utc48[5] = *ptr++;
1471 
1472     then  = (mDNSs32)NToH32(utc48 + sizeof(mDNSu16));
1473 
1474     fudge = NToH16(ptr);
1475 
1476     ptr += sizeof(mDNSu16);
1477 
1478     delta = (now > then) ? now - then : then - now;
1479 
1480     if (delta > fudge)
1481     {
1482         LogMsg("ERROR: DNSDigest_VerifyMessage - time skew > %d", fudge);
1483         *rcode = kDNSFlag1_RC_NotAuth;
1484         *tcode = TSIG_ErrBadTime;
1485         ok = mDNSfalse;
1486         goto exit;
1487     }
1488 
1489     // MAC size
1490 
1491     ptr += sizeof(mDNSu16);
1492 
1493     // MAC
1494 
1495     mDNSPlatformMemCopy(thatDigest, ptr, MD5_LEN);
1496 
1497     // Init MD5 context, digest inner key pad and message
1498 
1499     MD5_Init(&c);
1500     MD5_Update(&c, info->keydata_ipad, HMAC_LEN);
1501     MD5_Update(&c, (mDNSu8*) msg, (unsigned long)(end - (mDNSu8*) msg));
1502 
1503     // Key name
1504 
1505     MD5_Update(&c, lcr->r.resrec.name->c, DomainNameLength(lcr->r.resrec.name));
1506 
1507     // Class name
1508 
1509     buf = mDNSOpaque16fromIntVal(lcr->r.resrec.rrclass);
1510     MD5_Update(&c, buf.b, sizeof(mDNSOpaque16));
1511 
1512     // TTL
1513 
1514     MD5_Update(&c, (mDNSu8*) &lcr->r.resrec.rroriginalttl, sizeof(lcr->r.resrec.rroriginalttl));
1515 
1516     // Algorithm
1517 
1518     MD5_Update(&c, algo->c, DomainNameLength(algo));
1519 
1520     // Time
1521 
1522     MD5_Update(&c, utc48, 6);
1523 
1524     // Fudge
1525 
1526     buf = mDNSOpaque16fromIntVal(fudge);
1527     MD5_Update(&c, buf.b, sizeof(mDNSOpaque16));
1528 
1529     // Digest error and other data len (both zero) - we'll add them to the rdata later
1530 
1531     buf.NotAnInteger = 0;
1532     MD5_Update(&c, buf.b, sizeof(mDNSOpaque16));  // error
1533     MD5_Update(&c, buf.b, sizeof(mDNSOpaque16));  // other data len
1534 
1535     // Finish the message & tsig var hash
1536 
1537     MD5_Final(thisDigest, &c);
1538 
1539     // perform outer MD5 (outer key pad, inner digest)
1540 
1541     MD5_Init(&c);
1542     MD5_Update(&c, info->keydata_opad, HMAC_LEN);
1543     MD5_Update(&c, thisDigest, MD5_LEN);
1544     MD5_Final(thisDigest, &c);
1545 
1546     if (!mDNSPlatformMemSame(thisDigest, thatDigest, MD5_LEN))
1547     {
1548         LogMsg("ERROR: DNSDigest_VerifyMessage - bad signature");
1549         *rcode = kDNSFlag1_RC_NotAuth;
1550         *tcode = TSIG_ErrBadSig;
1551         ok = mDNSfalse;
1552         goto exit;
1553     }
1554 
1555     // set remaining rdata fields
1556     ok = mDNStrue;
1557 
1558 exit:
1559 
1560     return ok;
1561 }
1562 
1563 
1564 #ifdef __cplusplus
1565 }
1566 #endif
1567