1 //===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This program is a utility that works like binutils "objdump", that is, it 10 // dumps out a plethora of information about an object file depending on the 11 // flags. 12 // 13 // The flags and output of this program should be near identical to those of 14 // binutils objdump. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm-objdump.h" 19 #include "COFFDump.h" 20 #include "ELFDump.h" 21 #include "MachODump.h" 22 #include "ObjdumpOptID.h" 23 #include "SourcePrinter.h" 24 #include "WasmDump.h" 25 #include "XCOFFDump.h" 26 #include "llvm/ADT/IndexedMap.h" 27 #include "llvm/ADT/Optional.h" 28 #include "llvm/ADT/STLExtras.h" 29 #include "llvm/ADT/SetOperations.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/StringExtras.h" 32 #include "llvm/ADT/StringSet.h" 33 #include "llvm/ADT/Triple.h" 34 #include "llvm/ADT/Twine.h" 35 #include "llvm/DebugInfo/DWARF/DWARFContext.h" 36 #include "llvm/DebugInfo/Symbolize/Symbolize.h" 37 #include "llvm/Demangle/Demangle.h" 38 #include "llvm/MC/MCAsmInfo.h" 39 #include "llvm/MC/MCContext.h" 40 #include "llvm/MC/MCDisassembler/MCDisassembler.h" 41 #include "llvm/MC/MCDisassembler/MCRelocationInfo.h" 42 #include "llvm/MC/MCInst.h" 43 #include "llvm/MC/MCInstPrinter.h" 44 #include "llvm/MC/MCInstrAnalysis.h" 45 #include "llvm/MC/MCInstrInfo.h" 46 #include "llvm/MC/MCObjectFileInfo.h" 47 #include "llvm/MC/MCRegisterInfo.h" 48 #include "llvm/MC/MCSubtargetInfo.h" 49 #include "llvm/MC/MCTargetOptions.h" 50 #include "llvm/Object/Archive.h" 51 #include "llvm/Object/COFF.h" 52 #include "llvm/Object/COFFImportFile.h" 53 #include "llvm/Object/ELFObjectFile.h" 54 #include "llvm/Object/FaultMapParser.h" 55 #include "llvm/Object/MachO.h" 56 #include "llvm/Object/MachOUniversal.h" 57 #include "llvm/Object/ObjectFile.h" 58 #include "llvm/Object/Wasm.h" 59 #include "llvm/Option/Arg.h" 60 #include "llvm/Option/ArgList.h" 61 #include "llvm/Option/Option.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/Debug.h" 64 #include "llvm/Support/Errc.h" 65 #include "llvm/Support/FileSystem.h" 66 #include "llvm/Support/Format.h" 67 #include "llvm/Support/FormatVariadic.h" 68 #include "llvm/Support/GraphWriter.h" 69 #include "llvm/Support/Host.h" 70 #include "llvm/Support/InitLLVM.h" 71 #include "llvm/Support/MemoryBuffer.h" 72 #include "llvm/Support/SourceMgr.h" 73 #include "llvm/Support/StringSaver.h" 74 #include "llvm/Support/TargetRegistry.h" 75 #include "llvm/Support/TargetSelect.h" 76 #include "llvm/Support/WithColor.h" 77 #include "llvm/Support/raw_ostream.h" 78 #include <algorithm> 79 #include <cctype> 80 #include <cstring> 81 #include <system_error> 82 #include <unordered_map> 83 #include <utility> 84 85 using namespace llvm; 86 using namespace llvm::object; 87 using namespace llvm::objdump; 88 using namespace llvm::opt; 89 90 namespace { 91 92 class CommonOptTable : public opt::OptTable { 93 public: 94 CommonOptTable(ArrayRef<Info> OptionInfos, const char *Usage, 95 const char *Description) 96 : OptTable(OptionInfos), Usage(Usage), Description(Description) { 97 setGroupedShortOptions(true); 98 } 99 100 void printHelp(StringRef Argv0, bool ShowHidden = false) const { 101 Argv0 = sys::path::filename(Argv0); 102 PrintHelp(outs(), (Argv0 + Usage).str().c_str(), Description, ShowHidden, 103 ShowHidden); 104 // TODO Replace this with OptTable API once it adds extrahelp support. 105 outs() << "\nPass @FILE as argument to read options from FILE.\n"; 106 } 107 108 private: 109 const char *Usage; 110 const char *Description; 111 }; 112 113 // ObjdumpOptID is in ObjdumpOptID.h 114 115 #define PREFIX(NAME, VALUE) const char *const OBJDUMP_##NAME[] = VALUE; 116 #include "ObjdumpOpts.inc" 117 #undef PREFIX 118 119 static constexpr opt::OptTable::Info ObjdumpInfoTable[] = { 120 #define OBJDUMP_nullptr nullptr 121 #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM, \ 122 HELPTEXT, METAVAR, VALUES) \ 123 {OBJDUMP_##PREFIX, NAME, HELPTEXT, \ 124 METAVAR, OBJDUMP_##ID, opt::Option::KIND##Class, \ 125 PARAM, FLAGS, OBJDUMP_##GROUP, \ 126 OBJDUMP_##ALIAS, ALIASARGS, VALUES}, 127 #include "ObjdumpOpts.inc" 128 #undef OPTION 129 #undef OBJDUMP_nullptr 130 }; 131 132 class ObjdumpOptTable : public CommonOptTable { 133 public: 134 ObjdumpOptTable() 135 : CommonOptTable(ObjdumpInfoTable, " [options] <input object files>", 136 "llvm object file dumper") {} 137 }; 138 139 enum OtoolOptID { 140 OTOOL_INVALID = 0, // This is not an option ID. 141 #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM, \ 142 HELPTEXT, METAVAR, VALUES) \ 143 OTOOL_##ID, 144 #include "OtoolOpts.inc" 145 #undef OPTION 146 }; 147 148 #define PREFIX(NAME, VALUE) const char *const OTOOL_##NAME[] = VALUE; 149 #include "OtoolOpts.inc" 150 #undef PREFIX 151 152 static constexpr opt::OptTable::Info OtoolInfoTable[] = { 153 #define OTOOL_nullptr nullptr 154 #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM, \ 155 HELPTEXT, METAVAR, VALUES) \ 156 {OTOOL_##PREFIX, NAME, HELPTEXT, \ 157 METAVAR, OTOOL_##ID, opt::Option::KIND##Class, \ 158 PARAM, FLAGS, OTOOL_##GROUP, \ 159 OTOOL_##ALIAS, ALIASARGS, VALUES}, 160 #include "OtoolOpts.inc" 161 #undef OPTION 162 #undef OTOOL_nullptr 163 }; 164 165 class OtoolOptTable : public CommonOptTable { 166 public: 167 OtoolOptTable() 168 : CommonOptTable(OtoolInfoTable, " [option...] [file...]", 169 "Mach-O object file displaying tool") {} 170 }; 171 172 } // namespace 173 174 #define DEBUG_TYPE "objdump" 175 176 static uint64_t AdjustVMA; 177 static bool AllHeaders; 178 static std::string ArchName; 179 bool objdump::ArchiveHeaders; 180 bool objdump::Demangle; 181 bool objdump::Disassemble; 182 bool objdump::DisassembleAll; 183 bool objdump::SymbolDescription; 184 static std::vector<std::string> DisassembleSymbols; 185 static bool DisassembleZeroes; 186 static std::vector<std::string> DisassemblerOptions; 187 DIDumpType objdump::DwarfDumpType; 188 static bool DynamicRelocations; 189 static bool FaultMapSection; 190 static bool FileHeaders; 191 bool objdump::SectionContents; 192 static std::vector<std::string> InputFilenames; 193 bool objdump::PrintLines; 194 static bool MachOOpt; 195 std::string objdump::MCPU; 196 std::vector<std::string> objdump::MAttrs; 197 bool objdump::ShowRawInsn; 198 bool objdump::LeadingAddr; 199 static bool RawClangAST; 200 bool objdump::Relocations; 201 bool objdump::PrintImmHex; 202 bool objdump::PrivateHeaders; 203 std::vector<std::string> objdump::FilterSections; 204 bool objdump::SectionHeaders; 205 static bool ShowLMA; 206 bool objdump::PrintSource; 207 208 static uint64_t StartAddress; 209 static bool HasStartAddressFlag; 210 static uint64_t StopAddress = UINT64_MAX; 211 static bool HasStopAddressFlag; 212 213 bool objdump::SymbolTable; 214 static bool SymbolizeOperands; 215 static bool DynamicSymbolTable; 216 std::string objdump::TripleName; 217 bool objdump::UnwindInfo; 218 static bool Wide; 219 std::string objdump::Prefix; 220 uint32_t objdump::PrefixStrip; 221 222 DebugVarsFormat objdump::DbgVariables = DVDisabled; 223 224 int objdump::DbgIndent = 40; 225 226 static StringSet<> DisasmSymbolSet; 227 StringSet<> objdump::FoundSectionSet; 228 static StringRef ToolName; 229 230 namespace { 231 struct FilterResult { 232 // True if the section should not be skipped. 233 bool Keep; 234 235 // True if the index counter should be incremented, even if the section should 236 // be skipped. For example, sections may be skipped if they are not included 237 // in the --section flag, but we still want those to count toward the section 238 // count. 239 bool IncrementIndex; 240 }; 241 } // namespace 242 243 static FilterResult checkSectionFilter(object::SectionRef S) { 244 if (FilterSections.empty()) 245 return {/*Keep=*/true, /*IncrementIndex=*/true}; 246 247 Expected<StringRef> SecNameOrErr = S.getName(); 248 if (!SecNameOrErr) { 249 consumeError(SecNameOrErr.takeError()); 250 return {/*Keep=*/false, /*IncrementIndex=*/false}; 251 } 252 StringRef SecName = *SecNameOrErr; 253 254 // StringSet does not allow empty key so avoid adding sections with 255 // no name (such as the section with index 0) here. 256 if (!SecName.empty()) 257 FoundSectionSet.insert(SecName); 258 259 // Only show the section if it's in the FilterSections list, but always 260 // increment so the indexing is stable. 261 return {/*Keep=*/is_contained(FilterSections, SecName), 262 /*IncrementIndex=*/true}; 263 } 264 265 SectionFilter objdump::ToolSectionFilter(object::ObjectFile const &O, 266 uint64_t *Idx) { 267 // Start at UINT64_MAX so that the first index returned after an increment is 268 // zero (after the unsigned wrap). 269 if (Idx) 270 *Idx = UINT64_MAX; 271 return SectionFilter( 272 [Idx](object::SectionRef S) { 273 FilterResult Result = checkSectionFilter(S); 274 if (Idx != nullptr && Result.IncrementIndex) 275 *Idx += 1; 276 return Result.Keep; 277 }, 278 O); 279 } 280 281 std::string objdump::getFileNameForError(const object::Archive::Child &C, 282 unsigned Index) { 283 Expected<StringRef> NameOrErr = C.getName(); 284 if (NameOrErr) 285 return std::string(NameOrErr.get()); 286 // If we have an error getting the name then we print the index of the archive 287 // member. Since we are already in an error state, we just ignore this error. 288 consumeError(NameOrErr.takeError()); 289 return "<file index: " + std::to_string(Index) + ">"; 290 } 291 292 void objdump::reportWarning(const Twine &Message, StringRef File) { 293 // Output order between errs() and outs() matters especially for archive 294 // files where the output is per member object. 295 outs().flush(); 296 WithColor::warning(errs(), ToolName) 297 << "'" << File << "': " << Message << "\n"; 298 } 299 300 LLVM_ATTRIBUTE_NORETURN void objdump::reportError(StringRef File, 301 const Twine &Message) { 302 outs().flush(); 303 WithColor::error(errs(), ToolName) << "'" << File << "': " << Message << "\n"; 304 exit(1); 305 } 306 307 LLVM_ATTRIBUTE_NORETURN void objdump::reportError(Error E, StringRef FileName, 308 StringRef ArchiveName, 309 StringRef ArchitectureName) { 310 assert(E); 311 outs().flush(); 312 WithColor::error(errs(), ToolName); 313 if (ArchiveName != "") 314 errs() << ArchiveName << "(" << FileName << ")"; 315 else 316 errs() << "'" << FileName << "'"; 317 if (!ArchitectureName.empty()) 318 errs() << " (for architecture " << ArchitectureName << ")"; 319 errs() << ": "; 320 logAllUnhandledErrors(std::move(E), errs()); 321 exit(1); 322 } 323 324 static void reportCmdLineWarning(const Twine &Message) { 325 WithColor::warning(errs(), ToolName) << Message << "\n"; 326 } 327 328 LLVM_ATTRIBUTE_NORETURN static void reportCmdLineError(const Twine &Message) { 329 WithColor::error(errs(), ToolName) << Message << "\n"; 330 exit(1); 331 } 332 333 static void warnOnNoMatchForSections() { 334 SetVector<StringRef> MissingSections; 335 for (StringRef S : FilterSections) { 336 if (FoundSectionSet.count(S)) 337 return; 338 // User may specify a unnamed section. Don't warn for it. 339 if (!S.empty()) 340 MissingSections.insert(S); 341 } 342 343 // Warn only if no section in FilterSections is matched. 344 for (StringRef S : MissingSections) 345 reportCmdLineWarning("section '" + S + 346 "' mentioned in a -j/--section option, but not " 347 "found in any input file"); 348 } 349 350 static const Target *getTarget(const ObjectFile *Obj) { 351 // Figure out the target triple. 352 Triple TheTriple("unknown-unknown-unknown"); 353 if (TripleName.empty()) { 354 TheTriple = Obj->makeTriple(); 355 } else { 356 TheTriple.setTriple(Triple::normalize(TripleName)); 357 auto Arch = Obj->getArch(); 358 if (Arch == Triple::arm || Arch == Triple::armeb) 359 Obj->setARMSubArch(TheTriple); 360 } 361 362 // Get the target specific parser. 363 std::string Error; 364 const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple, 365 Error); 366 if (!TheTarget) 367 reportError(Obj->getFileName(), "can't find target: " + Error); 368 369 // Update the triple name and return the found target. 370 TripleName = TheTriple.getTriple(); 371 return TheTarget; 372 } 373 374 bool objdump::isRelocAddressLess(RelocationRef A, RelocationRef B) { 375 return A.getOffset() < B.getOffset(); 376 } 377 378 static Error getRelocationValueString(const RelocationRef &Rel, 379 SmallVectorImpl<char> &Result) { 380 const ObjectFile *Obj = Rel.getObject(); 381 if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj)) 382 return getELFRelocationValueString(ELF, Rel, Result); 383 if (auto *COFF = dyn_cast<COFFObjectFile>(Obj)) 384 return getCOFFRelocationValueString(COFF, Rel, Result); 385 if (auto *Wasm = dyn_cast<WasmObjectFile>(Obj)) 386 return getWasmRelocationValueString(Wasm, Rel, Result); 387 if (auto *MachO = dyn_cast<MachOObjectFile>(Obj)) 388 return getMachORelocationValueString(MachO, Rel, Result); 389 if (auto *XCOFF = dyn_cast<XCOFFObjectFile>(Obj)) 390 return getXCOFFRelocationValueString(XCOFF, Rel, Result); 391 llvm_unreachable("unknown object file format"); 392 } 393 394 /// Indicates whether this relocation should hidden when listing 395 /// relocations, usually because it is the trailing part of a multipart 396 /// relocation that will be printed as part of the leading relocation. 397 static bool getHidden(RelocationRef RelRef) { 398 auto *MachO = dyn_cast<MachOObjectFile>(RelRef.getObject()); 399 if (!MachO) 400 return false; 401 402 unsigned Arch = MachO->getArch(); 403 DataRefImpl Rel = RelRef.getRawDataRefImpl(); 404 uint64_t Type = MachO->getRelocationType(Rel); 405 406 // On arches that use the generic relocations, GENERIC_RELOC_PAIR 407 // is always hidden. 408 if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc) 409 return Type == MachO::GENERIC_RELOC_PAIR; 410 411 if (Arch == Triple::x86_64) { 412 // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows 413 // an X86_64_RELOC_SUBTRACTOR. 414 if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) { 415 DataRefImpl RelPrev = Rel; 416 RelPrev.d.a--; 417 uint64_t PrevType = MachO->getRelocationType(RelPrev); 418 if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR) 419 return true; 420 } 421 } 422 423 return false; 424 } 425 426 namespace { 427 428 /// Get the column at which we want to start printing the instruction 429 /// disassembly, taking into account anything which appears to the left of it. 430 unsigned getInstStartColumn(const MCSubtargetInfo &STI) { 431 return !ShowRawInsn ? 16 : STI.getTargetTriple().isX86() ? 40 : 24; 432 } 433 434 static bool isAArch64Elf(const ObjectFile *Obj) { 435 const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj); 436 return Elf && Elf->getEMachine() == ELF::EM_AARCH64; 437 } 438 439 static bool isArmElf(const ObjectFile *Obj) { 440 const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj); 441 return Elf && Elf->getEMachine() == ELF::EM_ARM; 442 } 443 444 static bool hasMappingSymbols(const ObjectFile *Obj) { 445 return isArmElf(Obj) || isAArch64Elf(Obj); 446 } 447 448 static void printRelocation(formatted_raw_ostream &OS, StringRef FileName, 449 const RelocationRef &Rel, uint64_t Address, 450 bool Is64Bits) { 451 StringRef Fmt = Is64Bits ? "\t\t%016" PRIx64 ": " : "\t\t\t%08" PRIx64 ": "; 452 SmallString<16> Name; 453 SmallString<32> Val; 454 Rel.getTypeName(Name); 455 if (Error E = getRelocationValueString(Rel, Val)) 456 reportError(std::move(E), FileName); 457 OS << format(Fmt.data(), Address) << Name << "\t" << Val; 458 } 459 460 class PrettyPrinter { 461 public: 462 virtual ~PrettyPrinter() = default; 463 virtual void 464 printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 465 object::SectionedAddress Address, formatted_raw_ostream &OS, 466 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, 467 StringRef ObjectFilename, std::vector<RelocationRef> *Rels, 468 LiveVariablePrinter &LVP) { 469 if (SP && (PrintSource || PrintLines)) 470 SP->printSourceLine(OS, Address, ObjectFilename, LVP); 471 LVP.printBetweenInsts(OS, false); 472 473 size_t Start = OS.tell(); 474 if (LeadingAddr) 475 OS << format("%8" PRIx64 ":", Address.Address); 476 if (ShowRawInsn) { 477 OS << ' '; 478 dumpBytes(Bytes, OS); 479 } 480 481 // The output of printInst starts with a tab. Print some spaces so that 482 // the tab has 1 column and advances to the target tab stop. 483 unsigned TabStop = getInstStartColumn(STI); 484 unsigned Column = OS.tell() - Start; 485 OS.indent(Column < TabStop - 1 ? TabStop - 1 - Column : 7 - Column % 8); 486 487 if (MI) { 488 // See MCInstPrinter::printInst. On targets where a PC relative immediate 489 // is relative to the next instruction and the length of a MCInst is 490 // difficult to measure (x86), this is the address of the next 491 // instruction. 492 uint64_t Addr = 493 Address.Address + (STI.getTargetTriple().isX86() ? Bytes.size() : 0); 494 IP.printInst(MI, Addr, "", STI, OS); 495 } else 496 OS << "\t<unknown>"; 497 } 498 }; 499 PrettyPrinter PrettyPrinterInst; 500 501 class HexagonPrettyPrinter : public PrettyPrinter { 502 public: 503 void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address, 504 formatted_raw_ostream &OS) { 505 uint32_t opcode = 506 (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0]; 507 if (LeadingAddr) 508 OS << format("%8" PRIx64 ":", Address); 509 if (ShowRawInsn) { 510 OS << "\t"; 511 dumpBytes(Bytes.slice(0, 4), OS); 512 OS << format("\t%08" PRIx32, opcode); 513 } 514 } 515 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 516 object::SectionedAddress Address, formatted_raw_ostream &OS, 517 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, 518 StringRef ObjectFilename, std::vector<RelocationRef> *Rels, 519 LiveVariablePrinter &LVP) override { 520 if (SP && (PrintSource || PrintLines)) 521 SP->printSourceLine(OS, Address, ObjectFilename, LVP, ""); 522 if (!MI) { 523 printLead(Bytes, Address.Address, OS); 524 OS << " <unknown>"; 525 return; 526 } 527 std::string Buffer; 528 { 529 raw_string_ostream TempStream(Buffer); 530 IP.printInst(MI, Address.Address, "", STI, TempStream); 531 } 532 StringRef Contents(Buffer); 533 // Split off bundle attributes 534 auto PacketBundle = Contents.rsplit('\n'); 535 // Split off first instruction from the rest 536 auto HeadTail = PacketBundle.first.split('\n'); 537 auto Preamble = " { "; 538 auto Separator = ""; 539 540 // Hexagon's packets require relocations to be inline rather than 541 // clustered at the end of the packet. 542 std::vector<RelocationRef>::const_iterator RelCur = Rels->begin(); 543 std::vector<RelocationRef>::const_iterator RelEnd = Rels->end(); 544 auto PrintReloc = [&]() -> void { 545 while ((RelCur != RelEnd) && (RelCur->getOffset() <= Address.Address)) { 546 if (RelCur->getOffset() == Address.Address) { 547 printRelocation(OS, ObjectFilename, *RelCur, Address.Address, false); 548 return; 549 } 550 ++RelCur; 551 } 552 }; 553 554 while (!HeadTail.first.empty()) { 555 OS << Separator; 556 Separator = "\n"; 557 if (SP && (PrintSource || PrintLines)) 558 SP->printSourceLine(OS, Address, ObjectFilename, LVP, ""); 559 printLead(Bytes, Address.Address, OS); 560 OS << Preamble; 561 Preamble = " "; 562 StringRef Inst; 563 auto Duplex = HeadTail.first.split('\v'); 564 if (!Duplex.second.empty()) { 565 OS << Duplex.first; 566 OS << "; "; 567 Inst = Duplex.second; 568 } 569 else 570 Inst = HeadTail.first; 571 OS << Inst; 572 HeadTail = HeadTail.second.split('\n'); 573 if (HeadTail.first.empty()) 574 OS << " } " << PacketBundle.second; 575 PrintReloc(); 576 Bytes = Bytes.slice(4); 577 Address.Address += 4; 578 } 579 } 580 }; 581 HexagonPrettyPrinter HexagonPrettyPrinterInst; 582 583 class AMDGCNPrettyPrinter : public PrettyPrinter { 584 public: 585 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 586 object::SectionedAddress Address, formatted_raw_ostream &OS, 587 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, 588 StringRef ObjectFilename, std::vector<RelocationRef> *Rels, 589 LiveVariablePrinter &LVP) override { 590 if (SP && (PrintSource || PrintLines)) 591 SP->printSourceLine(OS, Address, ObjectFilename, LVP); 592 593 if (MI) { 594 SmallString<40> InstStr; 595 raw_svector_ostream IS(InstStr); 596 597 IP.printInst(MI, Address.Address, "", STI, IS); 598 599 OS << left_justify(IS.str(), 60); 600 } else { 601 // an unrecognized encoding - this is probably data so represent it 602 // using the .long directive, or .byte directive if fewer than 4 bytes 603 // remaining 604 if (Bytes.size() >= 4) { 605 OS << format("\t.long 0x%08" PRIx32 " ", 606 support::endian::read32<support::little>(Bytes.data())); 607 OS.indent(42); 608 } else { 609 OS << format("\t.byte 0x%02" PRIx8, Bytes[0]); 610 for (unsigned int i = 1; i < Bytes.size(); i++) 611 OS << format(", 0x%02" PRIx8, Bytes[i]); 612 OS.indent(55 - (6 * Bytes.size())); 613 } 614 } 615 616 OS << format("// %012" PRIX64 ":", Address.Address); 617 if (Bytes.size() >= 4) { 618 // D should be casted to uint32_t here as it is passed by format to 619 // snprintf as vararg. 620 for (uint32_t D : makeArrayRef( 621 reinterpret_cast<const support::little32_t *>(Bytes.data()), 622 Bytes.size() / 4)) 623 OS << format(" %08" PRIX32, D); 624 } else { 625 for (unsigned char B : Bytes) 626 OS << format(" %02" PRIX8, B); 627 } 628 629 if (!Annot.empty()) 630 OS << " // " << Annot; 631 } 632 }; 633 AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst; 634 635 class BPFPrettyPrinter : public PrettyPrinter { 636 public: 637 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 638 object::SectionedAddress Address, formatted_raw_ostream &OS, 639 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, 640 StringRef ObjectFilename, std::vector<RelocationRef> *Rels, 641 LiveVariablePrinter &LVP) override { 642 if (SP && (PrintSource || PrintLines)) 643 SP->printSourceLine(OS, Address, ObjectFilename, LVP); 644 if (LeadingAddr) 645 OS << format("%8" PRId64 ":", Address.Address / 8); 646 if (ShowRawInsn) { 647 OS << "\t"; 648 dumpBytes(Bytes, OS); 649 } 650 if (MI) 651 IP.printInst(MI, Address.Address, "", STI, OS); 652 else 653 OS << "\t<unknown>"; 654 } 655 }; 656 BPFPrettyPrinter BPFPrettyPrinterInst; 657 658 PrettyPrinter &selectPrettyPrinter(Triple const &Triple) { 659 switch(Triple.getArch()) { 660 default: 661 return PrettyPrinterInst; 662 case Triple::hexagon: 663 return HexagonPrettyPrinterInst; 664 case Triple::amdgcn: 665 return AMDGCNPrettyPrinterInst; 666 case Triple::bpfel: 667 case Triple::bpfeb: 668 return BPFPrettyPrinterInst; 669 } 670 } 671 } 672 673 static uint8_t getElfSymbolType(const ObjectFile *Obj, const SymbolRef &Sym) { 674 assert(Obj->isELF()); 675 if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj)) 676 return unwrapOrError(Elf32LEObj->getSymbol(Sym.getRawDataRefImpl()), 677 Obj->getFileName()) 678 ->getType(); 679 if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj)) 680 return unwrapOrError(Elf64LEObj->getSymbol(Sym.getRawDataRefImpl()), 681 Obj->getFileName()) 682 ->getType(); 683 if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj)) 684 return unwrapOrError(Elf32BEObj->getSymbol(Sym.getRawDataRefImpl()), 685 Obj->getFileName()) 686 ->getType(); 687 if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj)) 688 return unwrapOrError(Elf64BEObj->getSymbol(Sym.getRawDataRefImpl()), 689 Obj->getFileName()) 690 ->getType(); 691 llvm_unreachable("Unsupported binary format"); 692 } 693 694 template <class ELFT> static void 695 addDynamicElfSymbols(const ELFObjectFile<ELFT> *Obj, 696 std::map<SectionRef, SectionSymbolsTy> &AllSymbols) { 697 for (auto Symbol : Obj->getDynamicSymbolIterators()) { 698 uint8_t SymbolType = Symbol.getELFType(); 699 if (SymbolType == ELF::STT_SECTION) 700 continue; 701 702 uint64_t Address = unwrapOrError(Symbol.getAddress(), Obj->getFileName()); 703 // ELFSymbolRef::getAddress() returns size instead of value for common 704 // symbols which is not desirable for disassembly output. Overriding. 705 if (SymbolType == ELF::STT_COMMON) 706 Address = unwrapOrError(Obj->getSymbol(Symbol.getRawDataRefImpl()), 707 Obj->getFileName()) 708 ->st_value; 709 710 StringRef Name = unwrapOrError(Symbol.getName(), Obj->getFileName()); 711 if (Name.empty()) 712 continue; 713 714 section_iterator SecI = 715 unwrapOrError(Symbol.getSection(), Obj->getFileName()); 716 if (SecI == Obj->section_end()) 717 continue; 718 719 AllSymbols[*SecI].emplace_back(Address, Name, SymbolType); 720 } 721 } 722 723 static void 724 addDynamicElfSymbols(const ObjectFile *Obj, 725 std::map<SectionRef, SectionSymbolsTy> &AllSymbols) { 726 assert(Obj->isELF()); 727 if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj)) 728 addDynamicElfSymbols(Elf32LEObj, AllSymbols); 729 else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj)) 730 addDynamicElfSymbols(Elf64LEObj, AllSymbols); 731 else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj)) 732 addDynamicElfSymbols(Elf32BEObj, AllSymbols); 733 else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj)) 734 addDynamicElfSymbols(Elf64BEObj, AllSymbols); 735 else 736 llvm_unreachable("Unsupported binary format"); 737 } 738 739 static void addPltEntries(const ObjectFile *Obj, 740 std::map<SectionRef, SectionSymbolsTy> &AllSymbols, 741 StringSaver &Saver) { 742 Optional<SectionRef> Plt = None; 743 for (const SectionRef &Section : Obj->sections()) { 744 Expected<StringRef> SecNameOrErr = Section.getName(); 745 if (!SecNameOrErr) { 746 consumeError(SecNameOrErr.takeError()); 747 continue; 748 } 749 if (*SecNameOrErr == ".plt") 750 Plt = Section; 751 } 752 if (!Plt) 753 return; 754 if (auto *ElfObj = dyn_cast<ELFObjectFileBase>(Obj)) { 755 for (auto PltEntry : ElfObj->getPltAddresses()) { 756 if (PltEntry.first) { 757 SymbolRef Symbol(*PltEntry.first, ElfObj); 758 uint8_t SymbolType = getElfSymbolType(Obj, Symbol); 759 if (Expected<StringRef> NameOrErr = Symbol.getName()) { 760 if (!NameOrErr->empty()) 761 AllSymbols[*Plt].emplace_back( 762 PltEntry.second, Saver.save((*NameOrErr + "@plt").str()), 763 SymbolType); 764 continue; 765 } else { 766 // The warning has been reported in disassembleObject(). 767 consumeError(NameOrErr.takeError()); 768 } 769 } 770 reportWarning("PLT entry at 0x" + Twine::utohexstr(PltEntry.second) + 771 " references an invalid symbol", 772 Obj->getFileName()); 773 } 774 } 775 } 776 777 // Normally the disassembly output will skip blocks of zeroes. This function 778 // returns the number of zero bytes that can be skipped when dumping the 779 // disassembly of the instructions in Buf. 780 static size_t countSkippableZeroBytes(ArrayRef<uint8_t> Buf) { 781 // Find the number of leading zeroes. 782 size_t N = 0; 783 while (N < Buf.size() && !Buf[N]) 784 ++N; 785 786 // We may want to skip blocks of zero bytes, but unless we see 787 // at least 8 of them in a row. 788 if (N < 8) 789 return 0; 790 791 // We skip zeroes in multiples of 4 because do not want to truncate an 792 // instruction if it starts with a zero byte. 793 return N & ~0x3; 794 } 795 796 // Returns a map from sections to their relocations. 797 static std::map<SectionRef, std::vector<RelocationRef>> 798 getRelocsMap(object::ObjectFile const &Obj) { 799 std::map<SectionRef, std::vector<RelocationRef>> Ret; 800 uint64_t I = (uint64_t)-1; 801 for (SectionRef Sec : Obj.sections()) { 802 ++I; 803 Expected<section_iterator> RelocatedOrErr = Sec.getRelocatedSection(); 804 if (!RelocatedOrErr) 805 reportError(Obj.getFileName(), 806 "section (" + Twine(I) + 807 "): failed to get a relocated section: " + 808 toString(RelocatedOrErr.takeError())); 809 810 section_iterator Relocated = *RelocatedOrErr; 811 if (Relocated == Obj.section_end() || !checkSectionFilter(*Relocated).Keep) 812 continue; 813 std::vector<RelocationRef> &V = Ret[*Relocated]; 814 append_range(V, Sec.relocations()); 815 // Sort relocations by address. 816 llvm::stable_sort(V, isRelocAddressLess); 817 } 818 return Ret; 819 } 820 821 // Used for --adjust-vma to check if address should be adjusted by the 822 // specified value for a given section. 823 // For ELF we do not adjust non-allocatable sections like debug ones, 824 // because they are not loadable. 825 // TODO: implement for other file formats. 826 static bool shouldAdjustVA(const SectionRef &Section) { 827 const ObjectFile *Obj = Section.getObject(); 828 if (Obj->isELF()) 829 return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC; 830 return false; 831 } 832 833 834 typedef std::pair<uint64_t, char> MappingSymbolPair; 835 static char getMappingSymbolKind(ArrayRef<MappingSymbolPair> MappingSymbols, 836 uint64_t Address) { 837 auto It = 838 partition_point(MappingSymbols, [Address](const MappingSymbolPair &Val) { 839 return Val.first <= Address; 840 }); 841 // Return zero for any address before the first mapping symbol; this means 842 // we should use the default disassembly mode, depending on the target. 843 if (It == MappingSymbols.begin()) 844 return '\x00'; 845 return (It - 1)->second; 846 } 847 848 static uint64_t dumpARMELFData(uint64_t SectionAddr, uint64_t Index, 849 uint64_t End, const ObjectFile *Obj, 850 ArrayRef<uint8_t> Bytes, 851 ArrayRef<MappingSymbolPair> MappingSymbols, 852 raw_ostream &OS) { 853 support::endianness Endian = 854 Obj->isLittleEndian() ? support::little : support::big; 855 OS << format("%8" PRIx64 ":\t", SectionAddr + Index); 856 if (Index + 4 <= End) { 857 dumpBytes(Bytes.slice(Index, 4), OS); 858 OS << "\t.word\t" 859 << format_hex(support::endian::read32(Bytes.data() + Index, Endian), 860 10); 861 return 4; 862 } 863 if (Index + 2 <= End) { 864 dumpBytes(Bytes.slice(Index, 2), OS); 865 OS << "\t\t.short\t" 866 << format_hex(support::endian::read16(Bytes.data() + Index, Endian), 867 6); 868 return 2; 869 } 870 dumpBytes(Bytes.slice(Index, 1), OS); 871 OS << "\t\t.byte\t" << format_hex(Bytes[0], 4); 872 return 1; 873 } 874 875 static void dumpELFData(uint64_t SectionAddr, uint64_t Index, uint64_t End, 876 ArrayRef<uint8_t> Bytes) { 877 // print out data up to 8 bytes at a time in hex and ascii 878 uint8_t AsciiData[9] = {'\0'}; 879 uint8_t Byte; 880 int NumBytes = 0; 881 882 for (; Index < End; ++Index) { 883 if (NumBytes == 0) 884 outs() << format("%8" PRIx64 ":", SectionAddr + Index); 885 Byte = Bytes.slice(Index)[0]; 886 outs() << format(" %02x", Byte); 887 AsciiData[NumBytes] = isPrint(Byte) ? Byte : '.'; 888 889 uint8_t IndentOffset = 0; 890 NumBytes++; 891 if (Index == End - 1 || NumBytes > 8) { 892 // Indent the space for less than 8 bytes data. 893 // 2 spaces for byte and one for space between bytes 894 IndentOffset = 3 * (8 - NumBytes); 895 for (int Excess = NumBytes; Excess < 8; Excess++) 896 AsciiData[Excess] = '\0'; 897 NumBytes = 8; 898 } 899 if (NumBytes == 8) { 900 AsciiData[8] = '\0'; 901 outs() << std::string(IndentOffset, ' ') << " "; 902 outs() << reinterpret_cast<char *>(AsciiData); 903 outs() << '\n'; 904 NumBytes = 0; 905 } 906 } 907 } 908 909 SymbolInfoTy objdump::createSymbolInfo(const ObjectFile *Obj, 910 const SymbolRef &Symbol) { 911 const StringRef FileName = Obj->getFileName(); 912 const uint64_t Addr = unwrapOrError(Symbol.getAddress(), FileName); 913 const StringRef Name = unwrapOrError(Symbol.getName(), FileName); 914 915 if (Obj->isXCOFF() && SymbolDescription) { 916 const auto *XCOFFObj = cast<XCOFFObjectFile>(Obj); 917 DataRefImpl SymbolDRI = Symbol.getRawDataRefImpl(); 918 919 const uint32_t SymbolIndex = XCOFFObj->getSymbolIndex(SymbolDRI.p); 920 Optional<XCOFF::StorageMappingClass> Smc = 921 getXCOFFSymbolCsectSMC(XCOFFObj, Symbol); 922 return SymbolInfoTy(Addr, Name, Smc, SymbolIndex, 923 isLabel(XCOFFObj, Symbol)); 924 } else 925 return SymbolInfoTy(Addr, Name, 926 Obj->isELF() ? getElfSymbolType(Obj, Symbol) 927 : (uint8_t)ELF::STT_NOTYPE); 928 } 929 930 static SymbolInfoTy createDummySymbolInfo(const ObjectFile *Obj, 931 const uint64_t Addr, StringRef &Name, 932 uint8_t Type) { 933 if (Obj->isXCOFF() && SymbolDescription) 934 return SymbolInfoTy(Addr, Name, None, None, false); 935 else 936 return SymbolInfoTy(Addr, Name, Type); 937 } 938 939 static void 940 collectLocalBranchTargets(ArrayRef<uint8_t> Bytes, const MCInstrAnalysis *MIA, 941 MCDisassembler *DisAsm, MCInstPrinter *IP, 942 const MCSubtargetInfo *STI, uint64_t SectionAddr, 943 uint64_t Start, uint64_t End, 944 std::unordered_map<uint64_t, std::string> &Labels) { 945 // So far only supports X86. 946 if (!STI->getTargetTriple().isX86()) 947 return; 948 949 Labels.clear(); 950 unsigned LabelCount = 0; 951 Start += SectionAddr; 952 End += SectionAddr; 953 uint64_t Index = Start; 954 while (Index < End) { 955 // Disassemble a real instruction and record function-local branch labels. 956 MCInst Inst; 957 uint64_t Size; 958 bool Disassembled = DisAsm->getInstruction( 959 Inst, Size, Bytes.slice(Index - SectionAddr), Index, nulls()); 960 if (Size == 0) 961 Size = 1; 962 963 if (Disassembled && MIA) { 964 uint64_t Target; 965 bool TargetKnown = MIA->evaluateBranch(Inst, Index, Size, Target); 966 if (TargetKnown && (Target >= Start && Target < End) && 967 !Labels.count(Target)) 968 Labels[Target] = ("L" + Twine(LabelCount++)).str(); 969 } 970 971 Index += Size; 972 } 973 } 974 975 // Create an MCSymbolizer for the target and add it to the MCDisassembler. 976 // This is currently only used on AMDGPU, and assumes the format of the 977 // void * argument passed to AMDGPU's createMCSymbolizer. 978 static void addSymbolizer( 979 MCContext &Ctx, const Target *Target, StringRef TripleName, 980 MCDisassembler *DisAsm, uint64_t SectionAddr, ArrayRef<uint8_t> Bytes, 981 SectionSymbolsTy &Symbols, 982 std::vector<std::unique_ptr<std::string>> &SynthesizedLabelNames) { 983 984 std::unique_ptr<MCRelocationInfo> RelInfo( 985 Target->createMCRelocationInfo(TripleName, Ctx)); 986 if (!RelInfo) 987 return; 988 std::unique_ptr<MCSymbolizer> Symbolizer(Target->createMCSymbolizer( 989 TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo))); 990 MCSymbolizer *SymbolizerPtr = &*Symbolizer; 991 DisAsm->setSymbolizer(std::move(Symbolizer)); 992 993 if (!SymbolizeOperands) 994 return; 995 996 // Synthesize labels referenced by branch instructions by 997 // disassembling, discarding the output, and collecting the referenced 998 // addresses from the symbolizer. 999 for (size_t Index = 0; Index != Bytes.size();) { 1000 MCInst Inst; 1001 uint64_t Size; 1002 DisAsm->getInstruction(Inst, Size, Bytes.slice(Index), SectionAddr + Index, 1003 nulls()); 1004 if (Size == 0) 1005 Size = 1; 1006 Index += Size; 1007 } 1008 ArrayRef<uint64_t> LabelAddrsRef = SymbolizerPtr->getReferencedAddresses(); 1009 // Copy and sort to remove duplicates. 1010 std::vector<uint64_t> LabelAddrs; 1011 LabelAddrs.insert(LabelAddrs.end(), LabelAddrsRef.begin(), 1012 LabelAddrsRef.end()); 1013 llvm::sort(LabelAddrs); 1014 LabelAddrs.resize(std::unique(LabelAddrs.begin(), LabelAddrs.end()) - 1015 LabelAddrs.begin()); 1016 // Add the labels. 1017 for (unsigned LabelNum = 0; LabelNum != LabelAddrs.size(); ++LabelNum) { 1018 auto Name = std::make_unique<std::string>(); 1019 *Name = (Twine("L") + Twine(LabelNum)).str(); 1020 SynthesizedLabelNames.push_back(std::move(Name)); 1021 Symbols.push_back(SymbolInfoTy( 1022 LabelAddrs[LabelNum], *SynthesizedLabelNames.back(), ELF::STT_NOTYPE)); 1023 } 1024 llvm::stable_sort(Symbols); 1025 // Recreate the symbolizer with the new symbols list. 1026 RelInfo.reset(Target->createMCRelocationInfo(TripleName, Ctx)); 1027 Symbolizer.reset(Target->createMCSymbolizer( 1028 TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo))); 1029 DisAsm->setSymbolizer(std::move(Symbolizer)); 1030 } 1031 1032 static StringRef getSegmentName(const MachOObjectFile *MachO, 1033 const SectionRef &Section) { 1034 if (MachO) { 1035 DataRefImpl DR = Section.getRawDataRefImpl(); 1036 StringRef SegmentName = MachO->getSectionFinalSegmentName(DR); 1037 return SegmentName; 1038 } 1039 return ""; 1040 } 1041 1042 static void disassembleObject(const Target *TheTarget, const ObjectFile *Obj, 1043 MCContext &Ctx, MCDisassembler *PrimaryDisAsm, 1044 MCDisassembler *SecondaryDisAsm, 1045 const MCInstrAnalysis *MIA, MCInstPrinter *IP, 1046 const MCSubtargetInfo *PrimarySTI, 1047 const MCSubtargetInfo *SecondarySTI, 1048 PrettyPrinter &PIP, 1049 SourcePrinter &SP, bool InlineRelocs) { 1050 const MCSubtargetInfo *STI = PrimarySTI; 1051 MCDisassembler *DisAsm = PrimaryDisAsm; 1052 bool PrimaryIsThumb = false; 1053 if (isArmElf(Obj)) 1054 PrimaryIsThumb = STI->checkFeatures("+thumb-mode"); 1055 1056 std::map<SectionRef, std::vector<RelocationRef>> RelocMap; 1057 if (InlineRelocs) 1058 RelocMap = getRelocsMap(*Obj); 1059 bool Is64Bits = Obj->getBytesInAddress() > 4; 1060 1061 // Create a mapping from virtual address to symbol name. This is used to 1062 // pretty print the symbols while disassembling. 1063 std::map<SectionRef, SectionSymbolsTy> AllSymbols; 1064 SectionSymbolsTy AbsoluteSymbols; 1065 const StringRef FileName = Obj->getFileName(); 1066 const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj); 1067 for (const SymbolRef &Symbol : Obj->symbols()) { 1068 Expected<StringRef> NameOrErr = Symbol.getName(); 1069 if (!NameOrErr) { 1070 reportWarning(toString(NameOrErr.takeError()), FileName); 1071 continue; 1072 } 1073 if (NameOrErr->empty() && !(Obj->isXCOFF() && SymbolDescription)) 1074 continue; 1075 1076 if (Obj->isELF() && getElfSymbolType(Obj, Symbol) == ELF::STT_SECTION) 1077 continue; 1078 1079 if (MachO) { 1080 // __mh_(execute|dylib|dylinker|bundle|preload|object)_header are special 1081 // symbols that support MachO header introspection. They do not bind to 1082 // code locations and are irrelevant for disassembly. 1083 if (NameOrErr->startswith("__mh_") && NameOrErr->endswith("_header")) 1084 continue; 1085 // Don't ask a Mach-O STAB symbol for its section unless you know that 1086 // STAB symbol's section field refers to a valid section index. Otherwise 1087 // the symbol may error trying to load a section that does not exist. 1088 DataRefImpl SymDRI = Symbol.getRawDataRefImpl(); 1089 uint8_t NType = (MachO->is64Bit() ? 1090 MachO->getSymbol64TableEntry(SymDRI).n_type: 1091 MachO->getSymbolTableEntry(SymDRI).n_type); 1092 if (NType & MachO::N_STAB) 1093 continue; 1094 } 1095 1096 section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName); 1097 if (SecI != Obj->section_end()) 1098 AllSymbols[*SecI].push_back(createSymbolInfo(Obj, Symbol)); 1099 else 1100 AbsoluteSymbols.push_back(createSymbolInfo(Obj, Symbol)); 1101 } 1102 1103 if (AllSymbols.empty() && Obj->isELF()) 1104 addDynamicElfSymbols(Obj, AllSymbols); 1105 1106 BumpPtrAllocator A; 1107 StringSaver Saver(A); 1108 addPltEntries(Obj, AllSymbols, Saver); 1109 1110 // Create a mapping from virtual address to section. An empty section can 1111 // cause more than one section at the same address. Sort such sections to be 1112 // before same-addressed non-empty sections so that symbol lookups prefer the 1113 // non-empty section. 1114 std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses; 1115 for (SectionRef Sec : Obj->sections()) 1116 SectionAddresses.emplace_back(Sec.getAddress(), Sec); 1117 llvm::stable_sort(SectionAddresses, [](const auto &LHS, const auto &RHS) { 1118 if (LHS.first != RHS.first) 1119 return LHS.first < RHS.first; 1120 return LHS.second.getSize() < RHS.second.getSize(); 1121 }); 1122 1123 // Linked executables (.exe and .dll files) typically don't include a real 1124 // symbol table but they might contain an export table. 1125 if (const auto *COFFObj = dyn_cast<COFFObjectFile>(Obj)) { 1126 for (const auto &ExportEntry : COFFObj->export_directories()) { 1127 StringRef Name; 1128 if (Error E = ExportEntry.getSymbolName(Name)) 1129 reportError(std::move(E), Obj->getFileName()); 1130 if (Name.empty()) 1131 continue; 1132 1133 uint32_t RVA; 1134 if (Error E = ExportEntry.getExportRVA(RVA)) 1135 reportError(std::move(E), Obj->getFileName()); 1136 1137 uint64_t VA = COFFObj->getImageBase() + RVA; 1138 auto Sec = partition_point( 1139 SectionAddresses, [VA](const std::pair<uint64_t, SectionRef> &O) { 1140 return O.first <= VA; 1141 }); 1142 if (Sec != SectionAddresses.begin()) { 1143 --Sec; 1144 AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE); 1145 } else 1146 AbsoluteSymbols.emplace_back(VA, Name, ELF::STT_NOTYPE); 1147 } 1148 } 1149 1150 // Sort all the symbols, this allows us to use a simple binary search to find 1151 // Multiple symbols can have the same address. Use a stable sort to stabilize 1152 // the output. 1153 StringSet<> FoundDisasmSymbolSet; 1154 for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols) 1155 llvm::stable_sort(SecSyms.second); 1156 llvm::stable_sort(AbsoluteSymbols); 1157 1158 std::unique_ptr<DWARFContext> DICtx; 1159 LiveVariablePrinter LVP(*Ctx.getRegisterInfo(), *STI); 1160 1161 if (DbgVariables != DVDisabled) { 1162 DICtx = DWARFContext::create(*Obj); 1163 for (const std::unique_ptr<DWARFUnit> &CU : DICtx->compile_units()) 1164 LVP.addCompileUnit(CU->getUnitDIE(false)); 1165 } 1166 1167 LLVM_DEBUG(LVP.dump()); 1168 1169 for (const SectionRef &Section : ToolSectionFilter(*Obj)) { 1170 if (FilterSections.empty() && !DisassembleAll && 1171 (!Section.isText() || Section.isVirtual())) 1172 continue; 1173 1174 uint64_t SectionAddr = Section.getAddress(); 1175 uint64_t SectSize = Section.getSize(); 1176 if (!SectSize) 1177 continue; 1178 1179 // Get the list of all the symbols in this section. 1180 SectionSymbolsTy &Symbols = AllSymbols[Section]; 1181 std::vector<MappingSymbolPair> MappingSymbols; 1182 if (hasMappingSymbols(Obj)) { 1183 for (const auto &Symb : Symbols) { 1184 uint64_t Address = Symb.Addr; 1185 StringRef Name = Symb.Name; 1186 if (Name.startswith("$d")) 1187 MappingSymbols.emplace_back(Address - SectionAddr, 'd'); 1188 if (Name.startswith("$x")) 1189 MappingSymbols.emplace_back(Address - SectionAddr, 'x'); 1190 if (Name.startswith("$a")) 1191 MappingSymbols.emplace_back(Address - SectionAddr, 'a'); 1192 if (Name.startswith("$t")) 1193 MappingSymbols.emplace_back(Address - SectionAddr, 't'); 1194 } 1195 } 1196 1197 llvm::sort(MappingSymbols); 1198 1199 ArrayRef<uint8_t> Bytes = arrayRefFromStringRef( 1200 unwrapOrError(Section.getContents(), Obj->getFileName())); 1201 1202 std::vector<std::unique_ptr<std::string>> SynthesizedLabelNames; 1203 if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) { 1204 // AMDGPU disassembler uses symbolizer for printing labels 1205 addSymbolizer(Ctx, TheTarget, TripleName, DisAsm, SectionAddr, Bytes, 1206 Symbols, SynthesizedLabelNames); 1207 } 1208 1209 StringRef SegmentName = getSegmentName(MachO, Section); 1210 StringRef SectionName = unwrapOrError(Section.getName(), Obj->getFileName()); 1211 // If the section has no symbol at the start, just insert a dummy one. 1212 if (Symbols.empty() || Symbols[0].Addr != 0) { 1213 Symbols.insert(Symbols.begin(), 1214 createDummySymbolInfo(Obj, SectionAddr, SectionName, 1215 Section.isText() ? ELF::STT_FUNC 1216 : ELF::STT_OBJECT)); 1217 } 1218 1219 SmallString<40> Comments; 1220 raw_svector_ostream CommentStream(Comments); 1221 1222 uint64_t VMAAdjustment = 0; 1223 if (shouldAdjustVA(Section)) 1224 VMAAdjustment = AdjustVMA; 1225 1226 uint64_t Size; 1227 uint64_t Index; 1228 bool PrintedSection = false; 1229 std::vector<RelocationRef> Rels = RelocMap[Section]; 1230 std::vector<RelocationRef>::const_iterator RelCur = Rels.begin(); 1231 std::vector<RelocationRef>::const_iterator RelEnd = Rels.end(); 1232 // Disassemble symbol by symbol. 1233 for (unsigned SI = 0, SE = Symbols.size(); SI != SE; ++SI) { 1234 std::string SymbolName = Symbols[SI].Name.str(); 1235 if (Demangle) 1236 SymbolName = demangle(SymbolName); 1237 1238 // Skip if --disassemble-symbols is not empty and the symbol is not in 1239 // the list. 1240 if (!DisasmSymbolSet.empty() && !DisasmSymbolSet.count(SymbolName)) 1241 continue; 1242 1243 uint64_t Start = Symbols[SI].Addr; 1244 if (Start < SectionAddr || StopAddress <= Start) 1245 continue; 1246 else 1247 FoundDisasmSymbolSet.insert(SymbolName); 1248 1249 // The end is the section end, the beginning of the next symbol, or 1250 // --stop-address. 1251 uint64_t End = std::min<uint64_t>(SectionAddr + SectSize, StopAddress); 1252 if (SI + 1 < SE) 1253 End = std::min(End, Symbols[SI + 1].Addr); 1254 if (Start >= End || End <= StartAddress) 1255 continue; 1256 Start -= SectionAddr; 1257 End -= SectionAddr; 1258 1259 if (!PrintedSection) { 1260 PrintedSection = true; 1261 outs() << "\nDisassembly of section "; 1262 if (!SegmentName.empty()) 1263 outs() << SegmentName << ","; 1264 outs() << SectionName << ":\n"; 1265 } 1266 1267 outs() << '\n'; 1268 if (LeadingAddr) 1269 outs() << format(Is64Bits ? "%016" PRIx64 " " : "%08" PRIx64 " ", 1270 SectionAddr + Start + VMAAdjustment); 1271 if (Obj->isXCOFF() && SymbolDescription) { 1272 outs() << getXCOFFSymbolDescription(Symbols[SI], SymbolName) << ":\n"; 1273 } else 1274 outs() << '<' << SymbolName << ">:\n"; 1275 1276 // Don't print raw contents of a virtual section. A virtual section 1277 // doesn't have any contents in the file. 1278 if (Section.isVirtual()) { 1279 outs() << "...\n"; 1280 continue; 1281 } 1282 1283 auto Status = DisAsm->onSymbolStart(Symbols[SI], Size, 1284 Bytes.slice(Start, End - Start), 1285 SectionAddr + Start, CommentStream); 1286 // To have round trippable disassembly, we fall back to decoding the 1287 // remaining bytes as instructions. 1288 // 1289 // If there is a failure, we disassemble the failed region as bytes before 1290 // falling back. The target is expected to print nothing in this case. 1291 // 1292 // If there is Success or SoftFail i.e no 'real' failure, we go ahead by 1293 // Size bytes before falling back. 1294 // So if the entire symbol is 'eaten' by the target: 1295 // Start += Size // Now Start = End and we will never decode as 1296 // // instructions 1297 // 1298 // Right now, most targets return None i.e ignore to treat a symbol 1299 // separately. But WebAssembly decodes preludes for some symbols. 1300 // 1301 if (Status.hasValue()) { 1302 if (Status.getValue() == MCDisassembler::Fail) { 1303 outs() << "// Error in decoding " << SymbolName 1304 << " : Decoding failed region as bytes.\n"; 1305 for (uint64_t I = 0; I < Size; ++I) { 1306 outs() << "\t.byte\t " << format_hex(Bytes[I], 1, /*Upper=*/true) 1307 << "\n"; 1308 } 1309 } 1310 } else { 1311 Size = 0; 1312 } 1313 1314 Start += Size; 1315 1316 Index = Start; 1317 if (SectionAddr < StartAddress) 1318 Index = std::max<uint64_t>(Index, StartAddress - SectionAddr); 1319 1320 // If there is a data/common symbol inside an ELF text section and we are 1321 // only disassembling text (applicable all architectures), we are in a 1322 // situation where we must print the data and not disassemble it. 1323 if (Obj->isELF() && !DisassembleAll && Section.isText()) { 1324 uint8_t SymTy = Symbols[SI].Type; 1325 if (SymTy == ELF::STT_OBJECT || SymTy == ELF::STT_COMMON) { 1326 dumpELFData(SectionAddr, Index, End, Bytes); 1327 Index = End; 1328 } 1329 } 1330 1331 bool CheckARMELFData = hasMappingSymbols(Obj) && 1332 Symbols[SI].Type != ELF::STT_OBJECT && 1333 !DisassembleAll; 1334 bool DumpARMELFData = false; 1335 formatted_raw_ostream FOS(outs()); 1336 1337 std::unordered_map<uint64_t, std::string> AllLabels; 1338 if (SymbolizeOperands) 1339 collectLocalBranchTargets(Bytes, MIA, DisAsm, IP, PrimarySTI, 1340 SectionAddr, Index, End, AllLabels); 1341 1342 while (Index < End) { 1343 // ARM and AArch64 ELF binaries can interleave data and text in the 1344 // same section. We rely on the markers introduced to understand what 1345 // we need to dump. If the data marker is within a function, it is 1346 // denoted as a word/short etc. 1347 if (CheckARMELFData) { 1348 char Kind = getMappingSymbolKind(MappingSymbols, Index); 1349 DumpARMELFData = Kind == 'd'; 1350 if (SecondarySTI) { 1351 if (Kind == 'a') { 1352 STI = PrimaryIsThumb ? SecondarySTI : PrimarySTI; 1353 DisAsm = PrimaryIsThumb ? SecondaryDisAsm : PrimaryDisAsm; 1354 } else if (Kind == 't') { 1355 STI = PrimaryIsThumb ? PrimarySTI : SecondarySTI; 1356 DisAsm = PrimaryIsThumb ? PrimaryDisAsm : SecondaryDisAsm; 1357 } 1358 } 1359 } 1360 1361 if (DumpARMELFData) { 1362 Size = dumpARMELFData(SectionAddr, Index, End, Obj, Bytes, 1363 MappingSymbols, FOS); 1364 } else { 1365 // When -z or --disassemble-zeroes are given we always dissasemble 1366 // them. Otherwise we might want to skip zero bytes we see. 1367 if (!DisassembleZeroes) { 1368 uint64_t MaxOffset = End - Index; 1369 // For --reloc: print zero blocks patched by relocations, so that 1370 // relocations can be shown in the dump. 1371 if (RelCur != RelEnd) 1372 MaxOffset = RelCur->getOffset() - Index; 1373 1374 if (size_t N = 1375 countSkippableZeroBytes(Bytes.slice(Index, MaxOffset))) { 1376 FOS << "\t\t..." << '\n'; 1377 Index += N; 1378 continue; 1379 } 1380 } 1381 1382 // Print local label if there's any. 1383 auto Iter = AllLabels.find(SectionAddr + Index); 1384 if (Iter != AllLabels.end()) 1385 FOS << "<" << Iter->second << ">:\n"; 1386 1387 // Disassemble a real instruction or a data when disassemble all is 1388 // provided 1389 MCInst Inst; 1390 bool Disassembled = 1391 DisAsm->getInstruction(Inst, Size, Bytes.slice(Index), 1392 SectionAddr + Index, CommentStream); 1393 if (Size == 0) 1394 Size = 1; 1395 1396 LVP.update({Index, Section.getIndex()}, 1397 {Index + Size, Section.getIndex()}, Index + Size != End); 1398 1399 PIP.printInst( 1400 *IP, Disassembled ? &Inst : nullptr, Bytes.slice(Index, Size), 1401 {SectionAddr + Index + VMAAdjustment, Section.getIndex()}, FOS, 1402 "", *STI, &SP, Obj->getFileName(), &Rels, LVP); 1403 FOS << CommentStream.str(); 1404 Comments.clear(); 1405 1406 // If disassembly has failed, avoid analysing invalid/incomplete 1407 // instruction information. Otherwise, try to resolve the target 1408 // address (jump target or memory operand address) and print it on the 1409 // right of the instruction. 1410 if (Disassembled && MIA) { 1411 uint64_t Target; 1412 bool PrintTarget = 1413 MIA->evaluateBranch(Inst, SectionAddr + Index, Size, Target); 1414 if (!PrintTarget) 1415 if (Optional<uint64_t> MaybeTarget = 1416 MIA->evaluateMemoryOperandAddress( 1417 Inst, SectionAddr + Index, Size)) { 1418 Target = *MaybeTarget; 1419 PrintTarget = true; 1420 // Do not print real address when symbolizing. 1421 if (!SymbolizeOperands) 1422 FOS << " # " << Twine::utohexstr(Target); 1423 } 1424 if (PrintTarget) { 1425 // In a relocatable object, the target's section must reside in 1426 // the same section as the call instruction or it is accessed 1427 // through a relocation. 1428 // 1429 // In a non-relocatable object, the target may be in any section. 1430 // In that case, locate the section(s) containing the target 1431 // address and find the symbol in one of those, if possible. 1432 // 1433 // N.B. We don't walk the relocations in the relocatable case yet. 1434 std::vector<const SectionSymbolsTy *> TargetSectionSymbols; 1435 if (!Obj->isRelocatableObject()) { 1436 auto It = llvm::partition_point( 1437 SectionAddresses, 1438 [=](const std::pair<uint64_t, SectionRef> &O) { 1439 return O.first <= Target; 1440 }); 1441 uint64_t TargetSecAddr = 0; 1442 while (It != SectionAddresses.begin()) { 1443 --It; 1444 if (TargetSecAddr == 0) 1445 TargetSecAddr = It->first; 1446 if (It->first != TargetSecAddr) 1447 break; 1448 TargetSectionSymbols.push_back(&AllSymbols[It->second]); 1449 } 1450 } else { 1451 TargetSectionSymbols.push_back(&Symbols); 1452 } 1453 TargetSectionSymbols.push_back(&AbsoluteSymbols); 1454 1455 // Find the last symbol in the first candidate section whose 1456 // offset is less than or equal to the target. If there are no 1457 // such symbols, try in the next section and so on, before finally 1458 // using the nearest preceding absolute symbol (if any), if there 1459 // are no other valid symbols. 1460 const SymbolInfoTy *TargetSym = nullptr; 1461 for (const SectionSymbolsTy *TargetSymbols : 1462 TargetSectionSymbols) { 1463 auto It = llvm::partition_point( 1464 *TargetSymbols, 1465 [=](const SymbolInfoTy &O) { return O.Addr <= Target; }); 1466 if (It != TargetSymbols->begin()) { 1467 TargetSym = &*(It - 1); 1468 break; 1469 } 1470 } 1471 1472 // Print the labels corresponding to the target if there's any. 1473 bool LabelAvailable = AllLabels.count(Target); 1474 if (TargetSym != nullptr) { 1475 uint64_t TargetAddress = TargetSym->Addr; 1476 uint64_t Disp = Target - TargetAddress; 1477 std::string TargetName = TargetSym->Name.str(); 1478 if (Demangle) 1479 TargetName = demangle(TargetName); 1480 1481 FOS << " <"; 1482 if (!Disp) { 1483 // Always Print the binary symbol precisely corresponding to 1484 // the target address. 1485 FOS << TargetName; 1486 } else if (!LabelAvailable) { 1487 // Always Print the binary symbol plus an offset if there's no 1488 // local label corresponding to the target address. 1489 FOS << TargetName << "+0x" << Twine::utohexstr(Disp); 1490 } else { 1491 FOS << AllLabels[Target]; 1492 } 1493 FOS << ">"; 1494 } else if (LabelAvailable) { 1495 FOS << " <" << AllLabels[Target] << ">"; 1496 } 1497 } 1498 } 1499 } 1500 1501 LVP.printAfterInst(FOS); 1502 FOS << "\n"; 1503 1504 // Hexagon does this in pretty printer 1505 if (Obj->getArch() != Triple::hexagon) { 1506 // Print relocation for instruction and data. 1507 while (RelCur != RelEnd) { 1508 uint64_t Offset = RelCur->getOffset(); 1509 // If this relocation is hidden, skip it. 1510 if (getHidden(*RelCur) || SectionAddr + Offset < StartAddress) { 1511 ++RelCur; 1512 continue; 1513 } 1514 1515 // Stop when RelCur's offset is past the disassembled 1516 // instruction/data. Note that it's possible the disassembled data 1517 // is not the complete data: we might see the relocation printed in 1518 // the middle of the data, but this matches the binutils objdump 1519 // output. 1520 if (Offset >= Index + Size) 1521 break; 1522 1523 // When --adjust-vma is used, update the address printed. 1524 if (RelCur->getSymbol() != Obj->symbol_end()) { 1525 Expected<section_iterator> SymSI = 1526 RelCur->getSymbol()->getSection(); 1527 if (SymSI && *SymSI != Obj->section_end() && 1528 shouldAdjustVA(**SymSI)) 1529 Offset += AdjustVMA; 1530 } 1531 1532 printRelocation(FOS, Obj->getFileName(), *RelCur, 1533 SectionAddr + Offset, Is64Bits); 1534 LVP.printAfterOtherLine(FOS, true); 1535 ++RelCur; 1536 } 1537 } 1538 1539 Index += Size; 1540 } 1541 } 1542 } 1543 StringSet<> MissingDisasmSymbolSet = 1544 set_difference(DisasmSymbolSet, FoundDisasmSymbolSet); 1545 for (StringRef Sym : MissingDisasmSymbolSet.keys()) 1546 reportWarning("failed to disassemble missing symbol " + Sym, FileName); 1547 } 1548 1549 static void disassembleObject(const ObjectFile *Obj, bool InlineRelocs) { 1550 const Target *TheTarget = getTarget(Obj); 1551 1552 // Package up features to be passed to target/subtarget 1553 SubtargetFeatures Features = Obj->getFeatures(); 1554 if (!MAttrs.empty()) 1555 for (unsigned I = 0; I != MAttrs.size(); ++I) 1556 Features.AddFeature(MAttrs[I]); 1557 1558 std::unique_ptr<const MCRegisterInfo> MRI( 1559 TheTarget->createMCRegInfo(TripleName)); 1560 if (!MRI) 1561 reportError(Obj->getFileName(), 1562 "no register info for target " + TripleName); 1563 1564 // Set up disassembler. 1565 MCTargetOptions MCOptions; 1566 std::unique_ptr<const MCAsmInfo> AsmInfo( 1567 TheTarget->createMCAsmInfo(*MRI, TripleName, MCOptions)); 1568 if (!AsmInfo) 1569 reportError(Obj->getFileName(), 1570 "no assembly info for target " + TripleName); 1571 1572 if (MCPU.empty()) 1573 MCPU = Obj->tryGetCPUName().getValueOr("").str(); 1574 1575 std::unique_ptr<const MCSubtargetInfo> STI( 1576 TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString())); 1577 if (!STI) 1578 reportError(Obj->getFileName(), 1579 "no subtarget info for target " + TripleName); 1580 std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo()); 1581 if (!MII) 1582 reportError(Obj->getFileName(), 1583 "no instruction info for target " + TripleName); 1584 MCContext Ctx(Triple(TripleName), AsmInfo.get(), MRI.get(), STI.get()); 1585 // FIXME: for now initialize MCObjectFileInfo with default values 1586 std::unique_ptr<MCObjectFileInfo> MOFI( 1587 TheTarget->createMCObjectFileInfo(Ctx, /*PIC=*/false)); 1588 Ctx.setObjectFileInfo(MOFI.get()); 1589 1590 std::unique_ptr<MCDisassembler> DisAsm( 1591 TheTarget->createMCDisassembler(*STI, Ctx)); 1592 if (!DisAsm) 1593 reportError(Obj->getFileName(), "no disassembler for target " + TripleName); 1594 1595 // If we have an ARM object file, we need a second disassembler, because 1596 // ARM CPUs have two different instruction sets: ARM mode, and Thumb mode. 1597 // We use mapping symbols to switch between the two assemblers, where 1598 // appropriate. 1599 std::unique_ptr<MCDisassembler> SecondaryDisAsm; 1600 std::unique_ptr<const MCSubtargetInfo> SecondarySTI; 1601 if (isArmElf(Obj) && !STI->checkFeatures("+mclass")) { 1602 if (STI->checkFeatures("+thumb-mode")) 1603 Features.AddFeature("-thumb-mode"); 1604 else 1605 Features.AddFeature("+thumb-mode"); 1606 SecondarySTI.reset(TheTarget->createMCSubtargetInfo(TripleName, MCPU, 1607 Features.getString())); 1608 SecondaryDisAsm.reset(TheTarget->createMCDisassembler(*SecondarySTI, Ctx)); 1609 } 1610 1611 std::unique_ptr<const MCInstrAnalysis> MIA( 1612 TheTarget->createMCInstrAnalysis(MII.get())); 1613 1614 int AsmPrinterVariant = AsmInfo->getAssemblerDialect(); 1615 std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter( 1616 Triple(TripleName), AsmPrinterVariant, *AsmInfo, *MII, *MRI)); 1617 if (!IP) 1618 reportError(Obj->getFileName(), 1619 "no instruction printer for target " + TripleName); 1620 IP->setPrintImmHex(PrintImmHex); 1621 IP->setPrintBranchImmAsAddress(true); 1622 IP->setSymbolizeOperands(SymbolizeOperands); 1623 IP->setMCInstrAnalysis(MIA.get()); 1624 1625 PrettyPrinter &PIP = selectPrettyPrinter(Triple(TripleName)); 1626 SourcePrinter SP(Obj, TheTarget->getName()); 1627 1628 for (StringRef Opt : DisassemblerOptions) 1629 if (!IP->applyTargetSpecificCLOption(Opt)) 1630 reportError(Obj->getFileName(), 1631 "Unrecognized disassembler option: " + Opt); 1632 1633 disassembleObject(TheTarget, Obj, Ctx, DisAsm.get(), SecondaryDisAsm.get(), 1634 MIA.get(), IP.get(), STI.get(), SecondarySTI.get(), PIP, 1635 SP, InlineRelocs); 1636 } 1637 1638 void objdump::printRelocations(const ObjectFile *Obj) { 1639 StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 : 1640 "%08" PRIx64; 1641 // Regular objdump doesn't print relocations in non-relocatable object 1642 // files. 1643 if (!Obj->isRelocatableObject()) 1644 return; 1645 1646 // Build a mapping from relocation target to a vector of relocation 1647 // sections. Usually, there is an only one relocation section for 1648 // each relocated section. 1649 MapVector<SectionRef, std::vector<SectionRef>> SecToRelSec; 1650 uint64_t Ndx; 1651 for (const SectionRef &Section : ToolSectionFilter(*Obj, &Ndx)) { 1652 if (Section.relocation_begin() == Section.relocation_end()) 1653 continue; 1654 Expected<section_iterator> SecOrErr = Section.getRelocatedSection(); 1655 if (!SecOrErr) 1656 reportError(Obj->getFileName(), 1657 "section (" + Twine(Ndx) + 1658 "): unable to get a relocation target: " + 1659 toString(SecOrErr.takeError())); 1660 SecToRelSec[**SecOrErr].push_back(Section); 1661 } 1662 1663 for (std::pair<SectionRef, std::vector<SectionRef>> &P : SecToRelSec) { 1664 StringRef SecName = unwrapOrError(P.first.getName(), Obj->getFileName()); 1665 outs() << "\nRELOCATION RECORDS FOR [" << SecName << "]:\n"; 1666 uint32_t OffsetPadding = (Obj->getBytesInAddress() > 4 ? 16 : 8); 1667 uint32_t TypePadding = 24; 1668 outs() << left_justify("OFFSET", OffsetPadding) << " " 1669 << left_justify("TYPE", TypePadding) << " " 1670 << "VALUE\n"; 1671 1672 for (SectionRef Section : P.second) { 1673 for (const RelocationRef &Reloc : Section.relocations()) { 1674 uint64_t Address = Reloc.getOffset(); 1675 SmallString<32> RelocName; 1676 SmallString<32> ValueStr; 1677 if (Address < StartAddress || Address > StopAddress || getHidden(Reloc)) 1678 continue; 1679 Reloc.getTypeName(RelocName); 1680 if (Error E = getRelocationValueString(Reloc, ValueStr)) 1681 reportError(std::move(E), Obj->getFileName()); 1682 1683 outs() << format(Fmt.data(), Address) << " " 1684 << left_justify(RelocName, TypePadding) << " " << ValueStr 1685 << "\n"; 1686 } 1687 } 1688 } 1689 } 1690 1691 void objdump::printDynamicRelocations(const ObjectFile *Obj) { 1692 // For the moment, this option is for ELF only 1693 if (!Obj->isELF()) 1694 return; 1695 1696 const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj); 1697 if (!Elf || Elf->getEType() != ELF::ET_DYN) { 1698 reportError(Obj->getFileName(), "not a dynamic object"); 1699 return; 1700 } 1701 1702 std::vector<SectionRef> DynRelSec = Obj->dynamic_relocation_sections(); 1703 if (DynRelSec.empty()) 1704 return; 1705 1706 outs() << "DYNAMIC RELOCATION RECORDS\n"; 1707 StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64; 1708 for (const SectionRef &Section : DynRelSec) 1709 for (const RelocationRef &Reloc : Section.relocations()) { 1710 uint64_t Address = Reloc.getOffset(); 1711 SmallString<32> RelocName; 1712 SmallString<32> ValueStr; 1713 Reloc.getTypeName(RelocName); 1714 if (Error E = getRelocationValueString(Reloc, ValueStr)) 1715 reportError(std::move(E), Obj->getFileName()); 1716 outs() << format(Fmt.data(), Address) << " " << RelocName << " " 1717 << ValueStr << "\n"; 1718 } 1719 } 1720 1721 // Returns true if we need to show LMA column when dumping section headers. We 1722 // show it only when the platform is ELF and either we have at least one section 1723 // whose VMA and LMA are different and/or when --show-lma flag is used. 1724 static bool shouldDisplayLMA(const ObjectFile *Obj) { 1725 if (!Obj->isELF()) 1726 return false; 1727 for (const SectionRef &S : ToolSectionFilter(*Obj)) 1728 if (S.getAddress() != getELFSectionLMA(S)) 1729 return true; 1730 return ShowLMA; 1731 } 1732 1733 static size_t getMaxSectionNameWidth(const ObjectFile *Obj) { 1734 // Default column width for names is 13 even if no names are that long. 1735 size_t MaxWidth = 13; 1736 for (const SectionRef &Section : ToolSectionFilter(*Obj)) { 1737 StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName()); 1738 MaxWidth = std::max(MaxWidth, Name.size()); 1739 } 1740 return MaxWidth; 1741 } 1742 1743 void objdump::printSectionHeaders(const ObjectFile *Obj) { 1744 size_t NameWidth = getMaxSectionNameWidth(Obj); 1745 size_t AddressWidth = 2 * Obj->getBytesInAddress(); 1746 bool HasLMAColumn = shouldDisplayLMA(Obj); 1747 outs() << "\nSections:\n"; 1748 if (HasLMAColumn) 1749 outs() << "Idx " << left_justify("Name", NameWidth) << " Size " 1750 << left_justify("VMA", AddressWidth) << " " 1751 << left_justify("LMA", AddressWidth) << " Type\n"; 1752 else 1753 outs() << "Idx " << left_justify("Name", NameWidth) << " Size " 1754 << left_justify("VMA", AddressWidth) << " Type\n"; 1755 1756 uint64_t Idx; 1757 for (const SectionRef &Section : ToolSectionFilter(*Obj, &Idx)) { 1758 StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName()); 1759 uint64_t VMA = Section.getAddress(); 1760 if (shouldAdjustVA(Section)) 1761 VMA += AdjustVMA; 1762 1763 uint64_t Size = Section.getSize(); 1764 1765 std::string Type = Section.isText() ? "TEXT" : ""; 1766 if (Section.isData()) 1767 Type += Type.empty() ? "DATA" : " DATA"; 1768 if (Section.isBSS()) 1769 Type += Type.empty() ? "BSS" : " BSS"; 1770 1771 if (HasLMAColumn) 1772 outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth, 1773 Name.str().c_str(), Size) 1774 << format_hex_no_prefix(VMA, AddressWidth) << " " 1775 << format_hex_no_prefix(getELFSectionLMA(Section), AddressWidth) 1776 << " " << Type << "\n"; 1777 else 1778 outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth, 1779 Name.str().c_str(), Size) 1780 << format_hex_no_prefix(VMA, AddressWidth) << " " << Type << "\n"; 1781 } 1782 } 1783 1784 void objdump::printSectionContents(const ObjectFile *Obj) { 1785 const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj); 1786 1787 for (const SectionRef &Section : ToolSectionFilter(*Obj)) { 1788 StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName()); 1789 uint64_t BaseAddr = Section.getAddress(); 1790 uint64_t Size = Section.getSize(); 1791 if (!Size) 1792 continue; 1793 1794 outs() << "Contents of section "; 1795 StringRef SegmentName = getSegmentName(MachO, Section); 1796 if (!SegmentName.empty()) 1797 outs() << SegmentName << ","; 1798 outs() << Name << ":\n"; 1799 if (Section.isBSS()) { 1800 outs() << format("<skipping contents of bss section at [%04" PRIx64 1801 ", %04" PRIx64 ")>\n", 1802 BaseAddr, BaseAddr + Size); 1803 continue; 1804 } 1805 1806 StringRef Contents = unwrapOrError(Section.getContents(), Obj->getFileName()); 1807 1808 // Dump out the content as hex and printable ascii characters. 1809 for (std::size_t Addr = 0, End = Contents.size(); Addr < End; Addr += 16) { 1810 outs() << format(" %04" PRIx64 " ", BaseAddr + Addr); 1811 // Dump line of hex. 1812 for (std::size_t I = 0; I < 16; ++I) { 1813 if (I != 0 && I % 4 == 0) 1814 outs() << ' '; 1815 if (Addr + I < End) 1816 outs() << hexdigit((Contents[Addr + I] >> 4) & 0xF, true) 1817 << hexdigit(Contents[Addr + I] & 0xF, true); 1818 else 1819 outs() << " "; 1820 } 1821 // Print ascii. 1822 outs() << " "; 1823 for (std::size_t I = 0; I < 16 && Addr + I < End; ++I) { 1824 if (isPrint(static_cast<unsigned char>(Contents[Addr + I]) & 0xFF)) 1825 outs() << Contents[Addr + I]; 1826 else 1827 outs() << "."; 1828 } 1829 outs() << "\n"; 1830 } 1831 } 1832 } 1833 1834 void objdump::printSymbolTable(const ObjectFile *O, StringRef ArchiveName, 1835 StringRef ArchitectureName, bool DumpDynamic) { 1836 if (O->isCOFF() && !DumpDynamic) { 1837 outs() << "\nSYMBOL TABLE:\n"; 1838 printCOFFSymbolTable(cast<const COFFObjectFile>(O)); 1839 return; 1840 } 1841 1842 const StringRef FileName = O->getFileName(); 1843 1844 if (!DumpDynamic) { 1845 outs() << "\nSYMBOL TABLE:\n"; 1846 for (auto I = O->symbol_begin(); I != O->symbol_end(); ++I) 1847 printSymbol(O, *I, FileName, ArchiveName, ArchitectureName, DumpDynamic); 1848 return; 1849 } 1850 1851 outs() << "\nDYNAMIC SYMBOL TABLE:\n"; 1852 if (!O->isELF()) { 1853 reportWarning( 1854 "this operation is not currently supported for this file format", 1855 FileName); 1856 return; 1857 } 1858 1859 const ELFObjectFileBase *ELF = cast<const ELFObjectFileBase>(O); 1860 for (auto I = ELF->getDynamicSymbolIterators().begin(); 1861 I != ELF->getDynamicSymbolIterators().end(); ++I) 1862 printSymbol(O, *I, FileName, ArchiveName, ArchitectureName, DumpDynamic); 1863 } 1864 1865 void objdump::printSymbol(const ObjectFile *O, const SymbolRef &Symbol, 1866 StringRef FileName, StringRef ArchiveName, 1867 StringRef ArchitectureName, bool DumpDynamic) { 1868 const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(O); 1869 uint64_t Address = unwrapOrError(Symbol.getAddress(), FileName, ArchiveName, 1870 ArchitectureName); 1871 if ((Address < StartAddress) || (Address > StopAddress)) 1872 return; 1873 SymbolRef::Type Type = 1874 unwrapOrError(Symbol.getType(), FileName, ArchiveName, ArchitectureName); 1875 uint32_t Flags = 1876 unwrapOrError(Symbol.getFlags(), FileName, ArchiveName, ArchitectureName); 1877 1878 // Don't ask a Mach-O STAB symbol for its section unless you know that 1879 // STAB symbol's section field refers to a valid section index. Otherwise 1880 // the symbol may error trying to load a section that does not exist. 1881 bool IsSTAB = false; 1882 if (MachO) { 1883 DataRefImpl SymDRI = Symbol.getRawDataRefImpl(); 1884 uint8_t NType = 1885 (MachO->is64Bit() ? MachO->getSymbol64TableEntry(SymDRI).n_type 1886 : MachO->getSymbolTableEntry(SymDRI).n_type); 1887 if (NType & MachO::N_STAB) 1888 IsSTAB = true; 1889 } 1890 section_iterator Section = IsSTAB 1891 ? O->section_end() 1892 : unwrapOrError(Symbol.getSection(), FileName, 1893 ArchiveName, ArchitectureName); 1894 1895 StringRef Name; 1896 if (Type == SymbolRef::ST_Debug && Section != O->section_end()) { 1897 if (Expected<StringRef> NameOrErr = Section->getName()) 1898 Name = *NameOrErr; 1899 else 1900 consumeError(NameOrErr.takeError()); 1901 1902 } else { 1903 Name = unwrapOrError(Symbol.getName(), FileName, ArchiveName, 1904 ArchitectureName); 1905 } 1906 1907 bool Global = Flags & SymbolRef::SF_Global; 1908 bool Weak = Flags & SymbolRef::SF_Weak; 1909 bool Absolute = Flags & SymbolRef::SF_Absolute; 1910 bool Common = Flags & SymbolRef::SF_Common; 1911 bool Hidden = Flags & SymbolRef::SF_Hidden; 1912 1913 char GlobLoc = ' '; 1914 if ((Section != O->section_end() || Absolute) && !Weak) 1915 GlobLoc = Global ? 'g' : 'l'; 1916 char IFunc = ' '; 1917 if (O->isELF()) { 1918 if (ELFSymbolRef(Symbol).getELFType() == ELF::STT_GNU_IFUNC) 1919 IFunc = 'i'; 1920 if (ELFSymbolRef(Symbol).getBinding() == ELF::STB_GNU_UNIQUE) 1921 GlobLoc = 'u'; 1922 } 1923 1924 char Debug = ' '; 1925 if (DumpDynamic) 1926 Debug = 'D'; 1927 else if (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File) 1928 Debug = 'd'; 1929 1930 char FileFunc = ' '; 1931 if (Type == SymbolRef::ST_File) 1932 FileFunc = 'f'; 1933 else if (Type == SymbolRef::ST_Function) 1934 FileFunc = 'F'; 1935 else if (Type == SymbolRef::ST_Data) 1936 FileFunc = 'O'; 1937 1938 const char *Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64; 1939 1940 outs() << format(Fmt, Address) << " " 1941 << GlobLoc // Local -> 'l', Global -> 'g', Neither -> ' ' 1942 << (Weak ? 'w' : ' ') // Weak? 1943 << ' ' // Constructor. Not supported yet. 1944 << ' ' // Warning. Not supported yet. 1945 << IFunc // Indirect reference to another symbol. 1946 << Debug // Debugging (d) or dynamic (D) symbol. 1947 << FileFunc // Name of function (F), file (f) or object (O). 1948 << ' '; 1949 if (Absolute) { 1950 outs() << "*ABS*"; 1951 } else if (Common) { 1952 outs() << "*COM*"; 1953 } else if (Section == O->section_end()) { 1954 outs() << "*UND*"; 1955 } else { 1956 StringRef SegmentName = getSegmentName(MachO, *Section); 1957 if (!SegmentName.empty()) 1958 outs() << SegmentName << ","; 1959 StringRef SectionName = unwrapOrError(Section->getName(), FileName); 1960 outs() << SectionName; 1961 } 1962 1963 if (Common || O->isELF()) { 1964 uint64_t Val = 1965 Common ? Symbol.getAlignment() : ELFSymbolRef(Symbol).getSize(); 1966 outs() << '\t' << format(Fmt, Val); 1967 } 1968 1969 if (O->isELF()) { 1970 uint8_t Other = ELFSymbolRef(Symbol).getOther(); 1971 switch (Other) { 1972 case ELF::STV_DEFAULT: 1973 break; 1974 case ELF::STV_INTERNAL: 1975 outs() << " .internal"; 1976 break; 1977 case ELF::STV_HIDDEN: 1978 outs() << " .hidden"; 1979 break; 1980 case ELF::STV_PROTECTED: 1981 outs() << " .protected"; 1982 break; 1983 default: 1984 outs() << format(" 0x%02x", Other); 1985 break; 1986 } 1987 } else if (Hidden) { 1988 outs() << " .hidden"; 1989 } 1990 1991 if (Demangle) 1992 outs() << ' ' << demangle(std::string(Name)) << '\n'; 1993 else 1994 outs() << ' ' << Name << '\n'; 1995 } 1996 1997 static void printUnwindInfo(const ObjectFile *O) { 1998 outs() << "Unwind info:\n\n"; 1999 2000 if (const COFFObjectFile *Coff = dyn_cast<COFFObjectFile>(O)) 2001 printCOFFUnwindInfo(Coff); 2002 else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(O)) 2003 printMachOUnwindInfo(MachO); 2004 else 2005 // TODO: Extract DWARF dump tool to objdump. 2006 WithColor::error(errs(), ToolName) 2007 << "This operation is only currently supported " 2008 "for COFF and MachO object files.\n"; 2009 } 2010 2011 /// Dump the raw contents of the __clangast section so the output can be piped 2012 /// into llvm-bcanalyzer. 2013 static void printRawClangAST(const ObjectFile *Obj) { 2014 if (outs().is_displayed()) { 2015 WithColor::error(errs(), ToolName) 2016 << "The -raw-clang-ast option will dump the raw binary contents of " 2017 "the clang ast section.\n" 2018 "Please redirect the output to a file or another program such as " 2019 "llvm-bcanalyzer.\n"; 2020 return; 2021 } 2022 2023 StringRef ClangASTSectionName("__clangast"); 2024 if (Obj->isCOFF()) { 2025 ClangASTSectionName = "clangast"; 2026 } 2027 2028 Optional<object::SectionRef> ClangASTSection; 2029 for (auto Sec : ToolSectionFilter(*Obj)) { 2030 StringRef Name; 2031 if (Expected<StringRef> NameOrErr = Sec.getName()) 2032 Name = *NameOrErr; 2033 else 2034 consumeError(NameOrErr.takeError()); 2035 2036 if (Name == ClangASTSectionName) { 2037 ClangASTSection = Sec; 2038 break; 2039 } 2040 } 2041 if (!ClangASTSection) 2042 return; 2043 2044 StringRef ClangASTContents = unwrapOrError( 2045 ClangASTSection.getValue().getContents(), Obj->getFileName()); 2046 outs().write(ClangASTContents.data(), ClangASTContents.size()); 2047 } 2048 2049 static void printFaultMaps(const ObjectFile *Obj) { 2050 StringRef FaultMapSectionName; 2051 2052 if (Obj->isELF()) { 2053 FaultMapSectionName = ".llvm_faultmaps"; 2054 } else if (Obj->isMachO()) { 2055 FaultMapSectionName = "__llvm_faultmaps"; 2056 } else { 2057 WithColor::error(errs(), ToolName) 2058 << "This operation is only currently supported " 2059 "for ELF and Mach-O executable files.\n"; 2060 return; 2061 } 2062 2063 Optional<object::SectionRef> FaultMapSection; 2064 2065 for (auto Sec : ToolSectionFilter(*Obj)) { 2066 StringRef Name; 2067 if (Expected<StringRef> NameOrErr = Sec.getName()) 2068 Name = *NameOrErr; 2069 else 2070 consumeError(NameOrErr.takeError()); 2071 2072 if (Name == FaultMapSectionName) { 2073 FaultMapSection = Sec; 2074 break; 2075 } 2076 } 2077 2078 outs() << "FaultMap table:\n"; 2079 2080 if (!FaultMapSection.hasValue()) { 2081 outs() << "<not found>\n"; 2082 return; 2083 } 2084 2085 StringRef FaultMapContents = 2086 unwrapOrError(FaultMapSection.getValue().getContents(), Obj->getFileName()); 2087 FaultMapParser FMP(FaultMapContents.bytes_begin(), 2088 FaultMapContents.bytes_end()); 2089 2090 outs() << FMP; 2091 } 2092 2093 static void printPrivateFileHeaders(const ObjectFile *O, bool OnlyFirst) { 2094 if (O->isELF()) { 2095 printELFFileHeader(O); 2096 printELFDynamicSection(O); 2097 printELFSymbolVersionInfo(O); 2098 return; 2099 } 2100 if (O->isCOFF()) 2101 return printCOFFFileHeader(O); 2102 if (O->isWasm()) 2103 return printWasmFileHeader(O); 2104 if (O->isMachO()) { 2105 printMachOFileHeader(O); 2106 if (!OnlyFirst) 2107 printMachOLoadCommands(O); 2108 return; 2109 } 2110 reportError(O->getFileName(), "Invalid/Unsupported object file format"); 2111 } 2112 2113 static void printFileHeaders(const ObjectFile *O) { 2114 if (!O->isELF() && !O->isCOFF()) 2115 reportError(O->getFileName(), "Invalid/Unsupported object file format"); 2116 2117 Triple::ArchType AT = O->getArch(); 2118 outs() << "architecture: " << Triple::getArchTypeName(AT) << "\n"; 2119 uint64_t Address = unwrapOrError(O->getStartAddress(), O->getFileName()); 2120 2121 StringRef Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64; 2122 outs() << "start address: " 2123 << "0x" << format(Fmt.data(), Address) << "\n"; 2124 } 2125 2126 static void printArchiveChild(StringRef Filename, const Archive::Child &C) { 2127 Expected<sys::fs::perms> ModeOrErr = C.getAccessMode(); 2128 if (!ModeOrErr) { 2129 WithColor::error(errs(), ToolName) << "ill-formed archive entry.\n"; 2130 consumeError(ModeOrErr.takeError()); 2131 return; 2132 } 2133 sys::fs::perms Mode = ModeOrErr.get(); 2134 outs() << ((Mode & sys::fs::owner_read) ? "r" : "-"); 2135 outs() << ((Mode & sys::fs::owner_write) ? "w" : "-"); 2136 outs() << ((Mode & sys::fs::owner_exe) ? "x" : "-"); 2137 outs() << ((Mode & sys::fs::group_read) ? "r" : "-"); 2138 outs() << ((Mode & sys::fs::group_write) ? "w" : "-"); 2139 outs() << ((Mode & sys::fs::group_exe) ? "x" : "-"); 2140 outs() << ((Mode & sys::fs::others_read) ? "r" : "-"); 2141 outs() << ((Mode & sys::fs::others_write) ? "w" : "-"); 2142 outs() << ((Mode & sys::fs::others_exe) ? "x" : "-"); 2143 2144 outs() << " "; 2145 2146 outs() << format("%d/%d %6" PRId64 " ", unwrapOrError(C.getUID(), Filename), 2147 unwrapOrError(C.getGID(), Filename), 2148 unwrapOrError(C.getRawSize(), Filename)); 2149 2150 StringRef RawLastModified = C.getRawLastModified(); 2151 unsigned Seconds; 2152 if (RawLastModified.getAsInteger(10, Seconds)) 2153 outs() << "(date: \"" << RawLastModified 2154 << "\" contains non-decimal chars) "; 2155 else { 2156 // Since ctime(3) returns a 26 character string of the form: 2157 // "Sun Sep 16 01:03:52 1973\n\0" 2158 // just print 24 characters. 2159 time_t t = Seconds; 2160 outs() << format("%.24s ", ctime(&t)); 2161 } 2162 2163 StringRef Name = ""; 2164 Expected<StringRef> NameOrErr = C.getName(); 2165 if (!NameOrErr) { 2166 consumeError(NameOrErr.takeError()); 2167 Name = unwrapOrError(C.getRawName(), Filename); 2168 } else { 2169 Name = NameOrErr.get(); 2170 } 2171 outs() << Name << "\n"; 2172 } 2173 2174 // For ELF only now. 2175 static bool shouldWarnForInvalidStartStopAddress(ObjectFile *Obj) { 2176 if (const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj)) { 2177 if (Elf->getEType() != ELF::ET_REL) 2178 return true; 2179 } 2180 return false; 2181 } 2182 2183 static void checkForInvalidStartStopAddress(ObjectFile *Obj, 2184 uint64_t Start, uint64_t Stop) { 2185 if (!shouldWarnForInvalidStartStopAddress(Obj)) 2186 return; 2187 2188 for (const SectionRef &Section : Obj->sections()) 2189 if (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC) { 2190 uint64_t BaseAddr = Section.getAddress(); 2191 uint64_t Size = Section.getSize(); 2192 if ((Start < BaseAddr + Size) && Stop > BaseAddr) 2193 return; 2194 } 2195 2196 if (!HasStartAddressFlag) 2197 reportWarning("no section has address less than 0x" + 2198 Twine::utohexstr(Stop) + " specified by --stop-address", 2199 Obj->getFileName()); 2200 else if (!HasStopAddressFlag) 2201 reportWarning("no section has address greater than or equal to 0x" + 2202 Twine::utohexstr(Start) + " specified by --start-address", 2203 Obj->getFileName()); 2204 else 2205 reportWarning("no section overlaps the range [0x" + 2206 Twine::utohexstr(Start) + ",0x" + Twine::utohexstr(Stop) + 2207 ") specified by --start-address/--stop-address", 2208 Obj->getFileName()); 2209 } 2210 2211 static void dumpObject(ObjectFile *O, const Archive *A = nullptr, 2212 const Archive::Child *C = nullptr) { 2213 // Avoid other output when using a raw option. 2214 if (!RawClangAST) { 2215 outs() << '\n'; 2216 if (A) 2217 outs() << A->getFileName() << "(" << O->getFileName() << ")"; 2218 else 2219 outs() << O->getFileName(); 2220 outs() << ":\tfile format " << O->getFileFormatName().lower() << "\n"; 2221 } 2222 2223 if (HasStartAddressFlag || HasStopAddressFlag) 2224 checkForInvalidStartStopAddress(O, StartAddress, StopAddress); 2225 2226 // Note: the order here matches GNU objdump for compatability. 2227 StringRef ArchiveName = A ? A->getFileName() : ""; 2228 if (ArchiveHeaders && !MachOOpt && C) 2229 printArchiveChild(ArchiveName, *C); 2230 if (FileHeaders) 2231 printFileHeaders(O); 2232 if (PrivateHeaders || FirstPrivateHeader) 2233 printPrivateFileHeaders(O, FirstPrivateHeader); 2234 if (SectionHeaders) 2235 printSectionHeaders(O); 2236 if (SymbolTable) 2237 printSymbolTable(O, ArchiveName); 2238 if (DynamicSymbolTable) 2239 printSymbolTable(O, ArchiveName, /*ArchitectureName=*/"", 2240 /*DumpDynamic=*/true); 2241 if (DwarfDumpType != DIDT_Null) { 2242 std::unique_ptr<DIContext> DICtx = DWARFContext::create(*O); 2243 // Dump the complete DWARF structure. 2244 DIDumpOptions DumpOpts; 2245 DumpOpts.DumpType = DwarfDumpType; 2246 DICtx->dump(outs(), DumpOpts); 2247 } 2248 if (Relocations && !Disassemble) 2249 printRelocations(O); 2250 if (DynamicRelocations) 2251 printDynamicRelocations(O); 2252 if (SectionContents) 2253 printSectionContents(O); 2254 if (Disassemble) 2255 disassembleObject(O, Relocations); 2256 if (UnwindInfo) 2257 printUnwindInfo(O); 2258 2259 // Mach-O specific options: 2260 if (ExportsTrie) 2261 printExportsTrie(O); 2262 if (Rebase) 2263 printRebaseTable(O); 2264 if (Bind) 2265 printBindTable(O); 2266 if (LazyBind) 2267 printLazyBindTable(O); 2268 if (WeakBind) 2269 printWeakBindTable(O); 2270 2271 // Other special sections: 2272 if (RawClangAST) 2273 printRawClangAST(O); 2274 if (FaultMapSection) 2275 printFaultMaps(O); 2276 } 2277 2278 static void dumpObject(const COFFImportFile *I, const Archive *A, 2279 const Archive::Child *C = nullptr) { 2280 StringRef ArchiveName = A ? A->getFileName() : ""; 2281 2282 // Avoid other output when using a raw option. 2283 if (!RawClangAST) 2284 outs() << '\n' 2285 << ArchiveName << "(" << I->getFileName() << ")" 2286 << ":\tfile format COFF-import-file" 2287 << "\n\n"; 2288 2289 if (ArchiveHeaders && !MachOOpt && C) 2290 printArchiveChild(ArchiveName, *C); 2291 if (SymbolTable) 2292 printCOFFSymbolTable(I); 2293 } 2294 2295 /// Dump each object file in \a a; 2296 static void dumpArchive(const Archive *A) { 2297 Error Err = Error::success(); 2298 unsigned I = -1; 2299 for (auto &C : A->children(Err)) { 2300 ++I; 2301 Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary(); 2302 if (!ChildOrErr) { 2303 if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError())) 2304 reportError(std::move(E), getFileNameForError(C, I), A->getFileName()); 2305 continue; 2306 } 2307 if (ObjectFile *O = dyn_cast<ObjectFile>(&*ChildOrErr.get())) 2308 dumpObject(O, A, &C); 2309 else if (COFFImportFile *I = dyn_cast<COFFImportFile>(&*ChildOrErr.get())) 2310 dumpObject(I, A, &C); 2311 else 2312 reportError(errorCodeToError(object_error::invalid_file_type), 2313 A->getFileName()); 2314 } 2315 if (Err) 2316 reportError(std::move(Err), A->getFileName()); 2317 } 2318 2319 /// Open file and figure out how to dump it. 2320 static void dumpInput(StringRef file) { 2321 // If we are using the Mach-O specific object file parser, then let it parse 2322 // the file and process the command line options. So the -arch flags can 2323 // be used to select specific slices, etc. 2324 if (MachOOpt) { 2325 parseInputMachO(file); 2326 return; 2327 } 2328 2329 // Attempt to open the binary. 2330 OwningBinary<Binary> OBinary = unwrapOrError(createBinary(file), file); 2331 Binary &Binary = *OBinary.getBinary(); 2332 2333 if (Archive *A = dyn_cast<Archive>(&Binary)) 2334 dumpArchive(A); 2335 else if (ObjectFile *O = dyn_cast<ObjectFile>(&Binary)) 2336 dumpObject(O); 2337 else if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Binary)) 2338 parseInputMachO(UB); 2339 else 2340 reportError(errorCodeToError(object_error::invalid_file_type), file); 2341 } 2342 2343 template <typename T> 2344 static void parseIntArg(const llvm::opt::InputArgList &InputArgs, int ID, 2345 T &Value) { 2346 if (const opt::Arg *A = InputArgs.getLastArg(ID)) { 2347 StringRef V(A->getValue()); 2348 if (!llvm::to_integer(V, Value, 0)) { 2349 reportCmdLineError(A->getSpelling() + 2350 ": expected a non-negative integer, but got '" + V + 2351 "'"); 2352 } 2353 } 2354 } 2355 2356 static std::vector<std::string> 2357 commaSeparatedValues(const llvm::opt::InputArgList &InputArgs, int ID) { 2358 std::vector<std::string> Values; 2359 for (StringRef Value : InputArgs.getAllArgValues(ID)) { 2360 llvm::SmallVector<StringRef, 2> SplitValues; 2361 llvm::SplitString(Value, SplitValues, ","); 2362 for (StringRef SplitValue : SplitValues) 2363 Values.push_back(SplitValue.str()); 2364 } 2365 return Values; 2366 } 2367 2368 static void parseOtoolOptions(const llvm::opt::InputArgList &InputArgs) { 2369 MachOOpt = true; 2370 FullLeadingAddr = true; 2371 PrintImmHex = true; 2372 2373 ArchName = InputArgs.getLastArgValue(OTOOL_arch).str(); 2374 LinkOptHints = InputArgs.hasArg(OTOOL_C); 2375 if (InputArgs.hasArg(OTOOL_d)) 2376 FilterSections.push_back("__DATA,__data"); 2377 DylibId = InputArgs.hasArg(OTOOL_D); 2378 UniversalHeaders = InputArgs.hasArg(OTOOL_f); 2379 DataInCode = InputArgs.hasArg(OTOOL_G); 2380 FirstPrivateHeader = InputArgs.hasArg(OTOOL_h); 2381 IndirectSymbols = InputArgs.hasArg(OTOOL_I); 2382 ShowRawInsn = InputArgs.hasArg(OTOOL_j); 2383 PrivateHeaders = InputArgs.hasArg(OTOOL_l); 2384 DylibsUsed = InputArgs.hasArg(OTOOL_L); 2385 MCPU = InputArgs.getLastArgValue(OTOOL_mcpu_EQ).str(); 2386 ObjcMetaData = InputArgs.hasArg(OTOOL_o); 2387 DisSymName = InputArgs.getLastArgValue(OTOOL_p).str(); 2388 InfoPlist = InputArgs.hasArg(OTOOL_P); 2389 Relocations = InputArgs.hasArg(OTOOL_r); 2390 if (const Arg *A = InputArgs.getLastArg(OTOOL_s)) { 2391 auto Filter = (A->getValue(0) + StringRef(",") + A->getValue(1)).str(); 2392 FilterSections.push_back(Filter); 2393 } 2394 if (InputArgs.hasArg(OTOOL_t)) 2395 FilterSections.push_back("__TEXT,__text"); 2396 Verbose = InputArgs.hasArg(OTOOL_v) || InputArgs.hasArg(OTOOL_V) || 2397 InputArgs.hasArg(OTOOL_o); 2398 SymbolicOperands = InputArgs.hasArg(OTOOL_V); 2399 if (InputArgs.hasArg(OTOOL_x)) 2400 FilterSections.push_back(",__text"); 2401 LeadingAddr = LeadingHeaders = !InputArgs.hasArg(OTOOL_X); 2402 2403 InputFilenames = InputArgs.getAllArgValues(OTOOL_INPUT); 2404 if (InputFilenames.empty()) 2405 reportCmdLineError("no input file"); 2406 2407 for (const Arg *A : InputArgs) { 2408 const Option &O = A->getOption(); 2409 if (O.getGroup().isValid() && O.getGroup().getID() == OTOOL_grp_obsolete) { 2410 reportCmdLineWarning(O.getPrefixedName() + 2411 " is obsolete and not implemented"); 2412 } 2413 } 2414 } 2415 2416 static void parseObjdumpOptions(const llvm::opt::InputArgList &InputArgs) { 2417 parseIntArg(InputArgs, OBJDUMP_adjust_vma_EQ, AdjustVMA); 2418 AllHeaders = InputArgs.hasArg(OBJDUMP_all_headers); 2419 ArchName = InputArgs.getLastArgValue(OBJDUMP_arch_name_EQ).str(); 2420 ArchiveHeaders = InputArgs.hasArg(OBJDUMP_archive_headers); 2421 Demangle = InputArgs.hasArg(OBJDUMP_demangle); 2422 Disassemble = InputArgs.hasArg(OBJDUMP_disassemble); 2423 DisassembleAll = InputArgs.hasArg(OBJDUMP_disassemble_all); 2424 SymbolDescription = InputArgs.hasArg(OBJDUMP_symbol_description); 2425 DisassembleSymbols = 2426 commaSeparatedValues(InputArgs, OBJDUMP_disassemble_symbols_EQ); 2427 DisassembleZeroes = InputArgs.hasArg(OBJDUMP_disassemble_zeroes); 2428 if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_dwarf_EQ)) { 2429 DwarfDumpType = 2430 StringSwitch<DIDumpType>(A->getValue()).Case("frames", DIDT_DebugFrame); 2431 } 2432 DynamicRelocations = InputArgs.hasArg(OBJDUMP_dynamic_reloc); 2433 FaultMapSection = InputArgs.hasArg(OBJDUMP_fault_map_section); 2434 FileHeaders = InputArgs.hasArg(OBJDUMP_file_headers); 2435 SectionContents = InputArgs.hasArg(OBJDUMP_full_contents); 2436 PrintLines = InputArgs.hasArg(OBJDUMP_line_numbers); 2437 InputFilenames = InputArgs.getAllArgValues(OBJDUMP_INPUT); 2438 MachOOpt = InputArgs.hasArg(OBJDUMP_macho); 2439 MCPU = InputArgs.getLastArgValue(OBJDUMP_mcpu_EQ).str(); 2440 MAttrs = commaSeparatedValues(InputArgs, OBJDUMP_mattr_EQ); 2441 ShowRawInsn = !InputArgs.hasArg(OBJDUMP_no_show_raw_insn); 2442 LeadingAddr = !InputArgs.hasArg(OBJDUMP_no_leading_addr); 2443 RawClangAST = InputArgs.hasArg(OBJDUMP_raw_clang_ast); 2444 Relocations = InputArgs.hasArg(OBJDUMP_reloc); 2445 PrintImmHex = 2446 InputArgs.hasFlag(OBJDUMP_print_imm_hex, OBJDUMP_no_print_imm_hex, false); 2447 PrivateHeaders = InputArgs.hasArg(OBJDUMP_private_headers); 2448 FilterSections = InputArgs.getAllArgValues(OBJDUMP_section_EQ); 2449 SectionHeaders = InputArgs.hasArg(OBJDUMP_section_headers); 2450 ShowLMA = InputArgs.hasArg(OBJDUMP_show_lma); 2451 PrintSource = InputArgs.hasArg(OBJDUMP_source); 2452 parseIntArg(InputArgs, OBJDUMP_start_address_EQ, StartAddress); 2453 HasStartAddressFlag = InputArgs.hasArg(OBJDUMP_start_address_EQ); 2454 parseIntArg(InputArgs, OBJDUMP_stop_address_EQ, StopAddress); 2455 HasStopAddressFlag = InputArgs.hasArg(OBJDUMP_stop_address_EQ); 2456 SymbolTable = InputArgs.hasArg(OBJDUMP_syms); 2457 SymbolizeOperands = InputArgs.hasArg(OBJDUMP_symbolize_operands); 2458 DynamicSymbolTable = InputArgs.hasArg(OBJDUMP_dynamic_syms); 2459 TripleName = InputArgs.getLastArgValue(OBJDUMP_triple_EQ).str(); 2460 UnwindInfo = InputArgs.hasArg(OBJDUMP_unwind_info); 2461 Wide = InputArgs.hasArg(OBJDUMP_wide); 2462 Prefix = InputArgs.getLastArgValue(OBJDUMP_prefix).str(); 2463 parseIntArg(InputArgs, OBJDUMP_prefix_strip, PrefixStrip); 2464 if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_debug_vars_EQ)) { 2465 DbgVariables = StringSwitch<DebugVarsFormat>(A->getValue()) 2466 .Case("ascii", DVASCII) 2467 .Case("unicode", DVUnicode); 2468 } 2469 parseIntArg(InputArgs, OBJDUMP_debug_vars_indent_EQ, DbgIndent); 2470 2471 parseMachOOptions(InputArgs); 2472 2473 // Parse -M (--disassembler-options) and deprecated 2474 // --x86-asm-syntax={att,intel}. 2475 // 2476 // Note, for x86, the asm dialect (AssemblerDialect) is initialized when the 2477 // MCAsmInfo is constructed. MCInstPrinter::applyTargetSpecificCLOption is 2478 // called too late. For now we have to use the internal cl::opt option. 2479 const char *AsmSyntax = nullptr; 2480 for (const auto *A : InputArgs.filtered(OBJDUMP_disassembler_options_EQ, 2481 OBJDUMP_x86_asm_syntax_att, 2482 OBJDUMP_x86_asm_syntax_intel)) { 2483 switch (A->getOption().getID()) { 2484 case OBJDUMP_x86_asm_syntax_att: 2485 AsmSyntax = "--x86-asm-syntax=att"; 2486 continue; 2487 case OBJDUMP_x86_asm_syntax_intel: 2488 AsmSyntax = "--x86-asm-syntax=intel"; 2489 continue; 2490 } 2491 2492 SmallVector<StringRef, 2> Values; 2493 llvm::SplitString(A->getValue(), Values, ","); 2494 for (StringRef V : Values) { 2495 if (V == "att") 2496 AsmSyntax = "--x86-asm-syntax=att"; 2497 else if (V == "intel") 2498 AsmSyntax = "--x86-asm-syntax=intel"; 2499 else 2500 DisassemblerOptions.push_back(V.str()); 2501 } 2502 } 2503 if (AsmSyntax) { 2504 const char *Argv[] = {"llvm-objdump", AsmSyntax}; 2505 llvm::cl::ParseCommandLineOptions(2, Argv); 2506 } 2507 2508 // objdump defaults to a.out if no filenames specified. 2509 if (InputFilenames.empty()) 2510 InputFilenames.push_back("a.out"); 2511 } 2512 2513 int main(int argc, char **argv) { 2514 using namespace llvm; 2515 InitLLVM X(argc, argv); 2516 2517 ToolName = argv[0]; 2518 std::unique_ptr<CommonOptTable> T; 2519 OptSpecifier Unknown, HelpFlag, HelpHiddenFlag, VersionFlag; 2520 2521 StringRef Stem = sys::path::stem(ToolName); 2522 auto Is = [=](StringRef Tool) { 2523 // We need to recognize the following filenames: 2524 // 2525 // llvm-objdump -> objdump 2526 // llvm-otool-10.exe -> otool 2527 // powerpc64-unknown-freebsd13-objdump -> objdump 2528 auto I = Stem.rfind_lower(Tool); 2529 return I != StringRef::npos && 2530 (I + Tool.size() == Stem.size() || !isAlnum(Stem[I + Tool.size()])); 2531 }; 2532 if (Is("otool")) { 2533 T = std::make_unique<OtoolOptTable>(); 2534 Unknown = OTOOL_UNKNOWN; 2535 HelpFlag = OTOOL_help; 2536 HelpHiddenFlag = OTOOL_help_hidden; 2537 VersionFlag = OTOOL_version; 2538 } else { 2539 T = std::make_unique<ObjdumpOptTable>(); 2540 Unknown = OBJDUMP_UNKNOWN; 2541 HelpFlag = OBJDUMP_help; 2542 HelpHiddenFlag = OBJDUMP_help_hidden; 2543 VersionFlag = OBJDUMP_version; 2544 } 2545 2546 BumpPtrAllocator A; 2547 StringSaver Saver(A); 2548 opt::InputArgList InputArgs = 2549 T->parseArgs(argc, argv, Unknown, Saver, 2550 [&](StringRef Msg) { reportCmdLineError(Msg); }); 2551 2552 if (InputArgs.size() == 0 || InputArgs.hasArg(HelpFlag)) { 2553 T->printHelp(ToolName); 2554 return 0; 2555 } 2556 if (InputArgs.hasArg(HelpHiddenFlag)) { 2557 T->printHelp(ToolName, /*show_hidden=*/true); 2558 return 0; 2559 } 2560 2561 // Initialize targets and assembly printers/parsers. 2562 InitializeAllTargetInfos(); 2563 InitializeAllTargetMCs(); 2564 InitializeAllDisassemblers(); 2565 2566 if (InputArgs.hasArg(VersionFlag)) { 2567 cl::PrintVersionMessage(); 2568 if (!Is("otool")) { 2569 outs() << '\n'; 2570 TargetRegistry::printRegisteredTargetsForVersion(outs()); 2571 } 2572 return 0; 2573 } 2574 2575 if (Is("otool")) 2576 parseOtoolOptions(InputArgs); 2577 else 2578 parseObjdumpOptions(InputArgs); 2579 2580 if (StartAddress >= StopAddress) 2581 reportCmdLineError("start address should be less than stop address"); 2582 2583 // Removes trailing separators from prefix. 2584 while (!Prefix.empty() && sys::path::is_separator(Prefix.back())) 2585 Prefix.pop_back(); 2586 2587 if (AllHeaders) 2588 ArchiveHeaders = FileHeaders = PrivateHeaders = Relocations = 2589 SectionHeaders = SymbolTable = true; 2590 2591 if (DisassembleAll || PrintSource || PrintLines || 2592 !DisassembleSymbols.empty()) 2593 Disassemble = true; 2594 2595 if (!ArchiveHeaders && !Disassemble && DwarfDumpType == DIDT_Null && 2596 !DynamicRelocations && !FileHeaders && !PrivateHeaders && !RawClangAST && 2597 !Relocations && !SectionHeaders && !SectionContents && !SymbolTable && 2598 !DynamicSymbolTable && !UnwindInfo && !FaultMapSection && 2599 !(MachOOpt && 2600 (Bind || DataInCode || DylibId || DylibsUsed || ExportsTrie || 2601 FirstPrivateHeader || FunctionStarts || IndirectSymbols || InfoPlist || 2602 LazyBind || LinkOptHints || ObjcMetaData || Rebase || Rpaths || 2603 UniversalHeaders || WeakBind || !FilterSections.empty()))) { 2604 T->printHelp(ToolName); 2605 return 2; 2606 } 2607 2608 DisasmSymbolSet.insert(DisassembleSymbols.begin(), DisassembleSymbols.end()); 2609 2610 llvm::for_each(InputFilenames, dumpInput); 2611 2612 warnOnNoMatchForSections(); 2613 2614 return EXIT_SUCCESS; 2615 } 2616