1 //===- InstCombineCalls.cpp -----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visitCall, visitInvoke, and visitCallBr functions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/APFloat.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/APSInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/FloatingPointMode.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/ADT/Twine.h" 25 #include "llvm/Analysis/AliasAnalysis.h" 26 #include "llvm/Analysis/AssumeBundleQueries.h" 27 #include "llvm/Analysis/AssumptionCache.h" 28 #include "llvm/Analysis/InstructionSimplify.h" 29 #include "llvm/Analysis/Loads.h" 30 #include "llvm/Analysis/MemoryBuiltins.h" 31 #include "llvm/Analysis/TargetTransformInfo.h" 32 #include "llvm/Analysis/ValueTracking.h" 33 #include "llvm/Analysis/VectorUtils.h" 34 #include "llvm/IR/Attributes.h" 35 #include "llvm/IR/BasicBlock.h" 36 #include "llvm/IR/Constant.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GlobalVariable.h" 42 #include "llvm/IR/InlineAsm.h" 43 #include "llvm/IR/InstrTypes.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/Intrinsics.h" 48 #include "llvm/IR/IntrinsicsAArch64.h" 49 #include "llvm/IR/IntrinsicsAMDGPU.h" 50 #include "llvm/IR/IntrinsicsARM.h" 51 #include "llvm/IR/IntrinsicsHexagon.h" 52 #include "llvm/IR/LLVMContext.h" 53 #include "llvm/IR/Metadata.h" 54 #include "llvm/IR/PatternMatch.h" 55 #include "llvm/IR/Statepoint.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/User.h" 58 #include "llvm/IR/Value.h" 59 #include "llvm/IR/ValueHandle.h" 60 #include "llvm/Support/AtomicOrdering.h" 61 #include "llvm/Support/Casting.h" 62 #include "llvm/Support/CommandLine.h" 63 #include "llvm/Support/Compiler.h" 64 #include "llvm/Support/Debug.h" 65 #include "llvm/Support/ErrorHandling.h" 66 #include "llvm/Support/KnownBits.h" 67 #include "llvm/Support/MathExtras.h" 68 #include "llvm/Support/raw_ostream.h" 69 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h" 70 #include "llvm/Transforms/InstCombine/InstCombiner.h" 71 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h" 72 #include "llvm/Transforms/Utils/Local.h" 73 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstdint> 77 #include <cstring> 78 #include <utility> 79 #include <vector> 80 81 using namespace llvm; 82 using namespace PatternMatch; 83 84 #define DEBUG_TYPE "instcombine" 85 86 STATISTIC(NumSimplified, "Number of library calls simplified"); 87 88 static cl::opt<unsigned> GuardWideningWindow( 89 "instcombine-guard-widening-window", 90 cl::init(3), 91 cl::desc("How wide an instruction window to bypass looking for " 92 "another guard")); 93 94 namespace llvm { 95 /// enable preservation of attributes in assume like: 96 /// call void @llvm.assume(i1 true) [ "nonnull"(i32* %PTR) ] 97 extern cl::opt<bool> EnableKnowledgeRetention; 98 } // namespace llvm 99 100 /// Return the specified type promoted as it would be to pass though a va_arg 101 /// area. 102 static Type *getPromotedType(Type *Ty) { 103 if (IntegerType* ITy = dyn_cast<IntegerType>(Ty)) { 104 if (ITy->getBitWidth() < 32) 105 return Type::getInt32Ty(Ty->getContext()); 106 } 107 return Ty; 108 } 109 110 Instruction *InstCombinerImpl::SimplifyAnyMemTransfer(AnyMemTransferInst *MI) { 111 Align DstAlign = getKnownAlignment(MI->getRawDest(), DL, MI, &AC, &DT); 112 MaybeAlign CopyDstAlign = MI->getDestAlign(); 113 if (!CopyDstAlign || *CopyDstAlign < DstAlign) { 114 MI->setDestAlignment(DstAlign); 115 return MI; 116 } 117 118 Align SrcAlign = getKnownAlignment(MI->getRawSource(), DL, MI, &AC, &DT); 119 MaybeAlign CopySrcAlign = MI->getSourceAlign(); 120 if (!CopySrcAlign || *CopySrcAlign < SrcAlign) { 121 MI->setSourceAlignment(SrcAlign); 122 return MI; 123 } 124 125 // If we have a store to a location which is known constant, we can conclude 126 // that the store must be storing the constant value (else the memory 127 // wouldn't be constant), and this must be a noop. 128 if (AA->pointsToConstantMemory(MI->getDest())) { 129 // Set the size of the copy to 0, it will be deleted on the next iteration. 130 MI->setLength(Constant::getNullValue(MI->getLength()->getType())); 131 return MI; 132 } 133 134 // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with 135 // load/store. 136 ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getLength()); 137 if (!MemOpLength) return nullptr; 138 139 // Source and destination pointer types are always "i8*" for intrinsic. See 140 // if the size is something we can handle with a single primitive load/store. 141 // A single load+store correctly handles overlapping memory in the memmove 142 // case. 143 uint64_t Size = MemOpLength->getLimitedValue(); 144 assert(Size && "0-sized memory transferring should be removed already."); 145 146 if (Size > 8 || (Size&(Size-1))) 147 return nullptr; // If not 1/2/4/8 bytes, exit. 148 149 // If it is an atomic and alignment is less than the size then we will 150 // introduce the unaligned memory access which will be later transformed 151 // into libcall in CodeGen. This is not evident performance gain so disable 152 // it now. 153 if (isa<AtomicMemTransferInst>(MI)) 154 if (*CopyDstAlign < Size || *CopySrcAlign < Size) 155 return nullptr; 156 157 // Use an integer load+store unless we can find something better. 158 unsigned SrcAddrSp = 159 cast<PointerType>(MI->getArgOperand(1)->getType())->getAddressSpace(); 160 unsigned DstAddrSp = 161 cast<PointerType>(MI->getArgOperand(0)->getType())->getAddressSpace(); 162 163 IntegerType* IntType = IntegerType::get(MI->getContext(), Size<<3); 164 Type *NewSrcPtrTy = PointerType::get(IntType, SrcAddrSp); 165 Type *NewDstPtrTy = PointerType::get(IntType, DstAddrSp); 166 167 // If the memcpy has metadata describing the members, see if we can get the 168 // TBAA tag describing our copy. 169 MDNode *CopyMD = nullptr; 170 if (MDNode *M = MI->getMetadata(LLVMContext::MD_tbaa)) { 171 CopyMD = M; 172 } else if (MDNode *M = MI->getMetadata(LLVMContext::MD_tbaa_struct)) { 173 if (M->getNumOperands() == 3 && M->getOperand(0) && 174 mdconst::hasa<ConstantInt>(M->getOperand(0)) && 175 mdconst::extract<ConstantInt>(M->getOperand(0))->isZero() && 176 M->getOperand(1) && 177 mdconst::hasa<ConstantInt>(M->getOperand(1)) && 178 mdconst::extract<ConstantInt>(M->getOperand(1))->getValue() == 179 Size && 180 M->getOperand(2) && isa<MDNode>(M->getOperand(2))) 181 CopyMD = cast<MDNode>(M->getOperand(2)); 182 } 183 184 Value *Src = Builder.CreateBitCast(MI->getArgOperand(1), NewSrcPtrTy); 185 Value *Dest = Builder.CreateBitCast(MI->getArgOperand(0), NewDstPtrTy); 186 LoadInst *L = Builder.CreateLoad(IntType, Src); 187 // Alignment from the mem intrinsic will be better, so use it. 188 L->setAlignment(*CopySrcAlign); 189 if (CopyMD) 190 L->setMetadata(LLVMContext::MD_tbaa, CopyMD); 191 MDNode *LoopMemParallelMD = 192 MI->getMetadata(LLVMContext::MD_mem_parallel_loop_access); 193 if (LoopMemParallelMD) 194 L->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD); 195 MDNode *AccessGroupMD = MI->getMetadata(LLVMContext::MD_access_group); 196 if (AccessGroupMD) 197 L->setMetadata(LLVMContext::MD_access_group, AccessGroupMD); 198 199 StoreInst *S = Builder.CreateStore(L, Dest); 200 // Alignment from the mem intrinsic will be better, so use it. 201 S->setAlignment(*CopyDstAlign); 202 if (CopyMD) 203 S->setMetadata(LLVMContext::MD_tbaa, CopyMD); 204 if (LoopMemParallelMD) 205 S->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD); 206 if (AccessGroupMD) 207 S->setMetadata(LLVMContext::MD_access_group, AccessGroupMD); 208 209 if (auto *MT = dyn_cast<MemTransferInst>(MI)) { 210 // non-atomics can be volatile 211 L->setVolatile(MT->isVolatile()); 212 S->setVolatile(MT->isVolatile()); 213 } 214 if (isa<AtomicMemTransferInst>(MI)) { 215 // atomics have to be unordered 216 L->setOrdering(AtomicOrdering::Unordered); 217 S->setOrdering(AtomicOrdering::Unordered); 218 } 219 220 // Set the size of the copy to 0, it will be deleted on the next iteration. 221 MI->setLength(Constant::getNullValue(MemOpLength->getType())); 222 return MI; 223 } 224 225 Instruction *InstCombinerImpl::SimplifyAnyMemSet(AnyMemSetInst *MI) { 226 const Align KnownAlignment = 227 getKnownAlignment(MI->getDest(), DL, MI, &AC, &DT); 228 MaybeAlign MemSetAlign = MI->getDestAlign(); 229 if (!MemSetAlign || *MemSetAlign < KnownAlignment) { 230 MI->setDestAlignment(KnownAlignment); 231 return MI; 232 } 233 234 // If we have a store to a location which is known constant, we can conclude 235 // that the store must be storing the constant value (else the memory 236 // wouldn't be constant), and this must be a noop. 237 if (AA->pointsToConstantMemory(MI->getDest())) { 238 // Set the size of the copy to 0, it will be deleted on the next iteration. 239 MI->setLength(Constant::getNullValue(MI->getLength()->getType())); 240 return MI; 241 } 242 243 // Extract the length and alignment and fill if they are constant. 244 ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength()); 245 ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue()); 246 if (!LenC || !FillC || !FillC->getType()->isIntegerTy(8)) 247 return nullptr; 248 const uint64_t Len = LenC->getLimitedValue(); 249 assert(Len && "0-sized memory setting should be removed already."); 250 const Align Alignment = assumeAligned(MI->getDestAlignment()); 251 252 // If it is an atomic and alignment is less than the size then we will 253 // introduce the unaligned memory access which will be later transformed 254 // into libcall in CodeGen. This is not evident performance gain so disable 255 // it now. 256 if (isa<AtomicMemSetInst>(MI)) 257 if (Alignment < Len) 258 return nullptr; 259 260 // memset(s,c,n) -> store s, c (for n=1,2,4,8) 261 if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) { 262 Type *ITy = IntegerType::get(MI->getContext(), Len*8); // n=1 -> i8. 263 264 Value *Dest = MI->getDest(); 265 unsigned DstAddrSp = cast<PointerType>(Dest->getType())->getAddressSpace(); 266 Type *NewDstPtrTy = PointerType::get(ITy, DstAddrSp); 267 Dest = Builder.CreateBitCast(Dest, NewDstPtrTy); 268 269 // Extract the fill value and store. 270 uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL; 271 StoreInst *S = Builder.CreateStore(ConstantInt::get(ITy, Fill), Dest, 272 MI->isVolatile()); 273 S->setAlignment(Alignment); 274 if (isa<AtomicMemSetInst>(MI)) 275 S->setOrdering(AtomicOrdering::Unordered); 276 277 // Set the size of the copy to 0, it will be deleted on the next iteration. 278 MI->setLength(Constant::getNullValue(LenC->getType())); 279 return MI; 280 } 281 282 return nullptr; 283 } 284 285 // TODO, Obvious Missing Transforms: 286 // * Narrow width by halfs excluding zero/undef lanes 287 Value *InstCombinerImpl::simplifyMaskedLoad(IntrinsicInst &II) { 288 Value *LoadPtr = II.getArgOperand(0); 289 const Align Alignment = 290 cast<ConstantInt>(II.getArgOperand(1))->getAlignValue(); 291 292 // If the mask is all ones or undefs, this is a plain vector load of the 1st 293 // argument. 294 if (maskIsAllOneOrUndef(II.getArgOperand(2))) { 295 LoadInst *L = Builder.CreateAlignedLoad(II.getType(), LoadPtr, Alignment, 296 "unmaskedload"); 297 L->copyMetadata(II); 298 return L; 299 } 300 301 // If we can unconditionally load from this address, replace with a 302 // load/select idiom. TODO: use DT for context sensitive query 303 if (isDereferenceablePointer(LoadPtr, II.getType(), 304 II.getModule()->getDataLayout(), &II, nullptr)) { 305 LoadInst *LI = Builder.CreateAlignedLoad(II.getType(), LoadPtr, Alignment, 306 "unmaskedload"); 307 LI->copyMetadata(II); 308 return Builder.CreateSelect(II.getArgOperand(2), LI, II.getArgOperand(3)); 309 } 310 311 return nullptr; 312 } 313 314 // TODO, Obvious Missing Transforms: 315 // * Single constant active lane -> store 316 // * Narrow width by halfs excluding zero/undef lanes 317 Instruction *InstCombinerImpl::simplifyMaskedStore(IntrinsicInst &II) { 318 auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(3)); 319 if (!ConstMask) 320 return nullptr; 321 322 // If the mask is all zeros, this instruction does nothing. 323 if (ConstMask->isNullValue()) 324 return eraseInstFromFunction(II); 325 326 // If the mask is all ones, this is a plain vector store of the 1st argument. 327 if (ConstMask->isAllOnesValue()) { 328 Value *StorePtr = II.getArgOperand(1); 329 Align Alignment = cast<ConstantInt>(II.getArgOperand(2))->getAlignValue(); 330 StoreInst *S = 331 new StoreInst(II.getArgOperand(0), StorePtr, false, Alignment); 332 S->copyMetadata(II); 333 return S; 334 } 335 336 if (isa<ScalableVectorType>(ConstMask->getType())) 337 return nullptr; 338 339 // Use masked off lanes to simplify operands via SimplifyDemandedVectorElts 340 APInt DemandedElts = possiblyDemandedEltsInMask(ConstMask); 341 APInt UndefElts(DemandedElts.getBitWidth(), 0); 342 if (Value *V = 343 SimplifyDemandedVectorElts(II.getOperand(0), DemandedElts, UndefElts)) 344 return replaceOperand(II, 0, V); 345 346 return nullptr; 347 } 348 349 // TODO, Obvious Missing Transforms: 350 // * Single constant active lane load -> load 351 // * Dereferenceable address & few lanes -> scalarize speculative load/selects 352 // * Adjacent vector addresses -> masked.load 353 // * Narrow width by halfs excluding zero/undef lanes 354 // * Vector splat address w/known mask -> scalar load 355 // * Vector incrementing address -> vector masked load 356 Instruction *InstCombinerImpl::simplifyMaskedGather(IntrinsicInst &II) { 357 return nullptr; 358 } 359 360 // TODO, Obvious Missing Transforms: 361 // * Single constant active lane -> store 362 // * Adjacent vector addresses -> masked.store 363 // * Narrow store width by halfs excluding zero/undef lanes 364 // * Vector splat address w/known mask -> scalar store 365 // * Vector incrementing address -> vector masked store 366 Instruction *InstCombinerImpl::simplifyMaskedScatter(IntrinsicInst &II) { 367 auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(3)); 368 if (!ConstMask) 369 return nullptr; 370 371 // If the mask is all zeros, a scatter does nothing. 372 if (ConstMask->isNullValue()) 373 return eraseInstFromFunction(II); 374 375 if (isa<ScalableVectorType>(ConstMask->getType())) 376 return nullptr; 377 378 // Use masked off lanes to simplify operands via SimplifyDemandedVectorElts 379 APInt DemandedElts = possiblyDemandedEltsInMask(ConstMask); 380 APInt UndefElts(DemandedElts.getBitWidth(), 0); 381 if (Value *V = 382 SimplifyDemandedVectorElts(II.getOperand(0), DemandedElts, UndefElts)) 383 return replaceOperand(II, 0, V); 384 if (Value *V = 385 SimplifyDemandedVectorElts(II.getOperand(1), DemandedElts, UndefElts)) 386 return replaceOperand(II, 1, V); 387 388 return nullptr; 389 } 390 391 /// This function transforms launder.invariant.group and strip.invariant.group 392 /// like: 393 /// launder(launder(%x)) -> launder(%x) (the result is not the argument) 394 /// launder(strip(%x)) -> launder(%x) 395 /// strip(strip(%x)) -> strip(%x) (the result is not the argument) 396 /// strip(launder(%x)) -> strip(%x) 397 /// This is legal because it preserves the most recent information about 398 /// the presence or absence of invariant.group. 399 static Instruction *simplifyInvariantGroupIntrinsic(IntrinsicInst &II, 400 InstCombinerImpl &IC) { 401 auto *Arg = II.getArgOperand(0); 402 auto *StrippedArg = Arg->stripPointerCasts(); 403 auto *StrippedInvariantGroupsArg = StrippedArg; 404 while (auto *Intr = dyn_cast<IntrinsicInst>(StrippedInvariantGroupsArg)) { 405 if (Intr->getIntrinsicID() != Intrinsic::launder_invariant_group && 406 Intr->getIntrinsicID() != Intrinsic::strip_invariant_group) 407 break; 408 StrippedInvariantGroupsArg = Intr->getArgOperand(0)->stripPointerCasts(); 409 } 410 if (StrippedArg == StrippedInvariantGroupsArg) 411 return nullptr; // No launders/strips to remove. 412 413 Value *Result = nullptr; 414 415 if (II.getIntrinsicID() == Intrinsic::launder_invariant_group) 416 Result = IC.Builder.CreateLaunderInvariantGroup(StrippedInvariantGroupsArg); 417 else if (II.getIntrinsicID() == Intrinsic::strip_invariant_group) 418 Result = IC.Builder.CreateStripInvariantGroup(StrippedInvariantGroupsArg); 419 else 420 llvm_unreachable( 421 "simplifyInvariantGroupIntrinsic only handles launder and strip"); 422 if (Result->getType()->getPointerAddressSpace() != 423 II.getType()->getPointerAddressSpace()) 424 Result = IC.Builder.CreateAddrSpaceCast(Result, II.getType()); 425 if (Result->getType() != II.getType()) 426 Result = IC.Builder.CreateBitCast(Result, II.getType()); 427 428 return cast<Instruction>(Result); 429 } 430 431 static Instruction *foldCttzCtlz(IntrinsicInst &II, InstCombinerImpl &IC) { 432 assert((II.getIntrinsicID() == Intrinsic::cttz || 433 II.getIntrinsicID() == Intrinsic::ctlz) && 434 "Expected cttz or ctlz intrinsic"); 435 bool IsTZ = II.getIntrinsicID() == Intrinsic::cttz; 436 Value *Op0 = II.getArgOperand(0); 437 Value *Op1 = II.getArgOperand(1); 438 Value *X; 439 // ctlz(bitreverse(x)) -> cttz(x) 440 // cttz(bitreverse(x)) -> ctlz(x) 441 if (match(Op0, m_BitReverse(m_Value(X)))) { 442 Intrinsic::ID ID = IsTZ ? Intrinsic::ctlz : Intrinsic::cttz; 443 Function *F = Intrinsic::getDeclaration(II.getModule(), ID, II.getType()); 444 return CallInst::Create(F, {X, II.getArgOperand(1)}); 445 } 446 447 if (IsTZ) { 448 // cttz(-x) -> cttz(x) 449 if (match(Op0, m_Neg(m_Value(X)))) 450 return IC.replaceOperand(II, 0, X); 451 452 // cttz(sext(x)) -> cttz(zext(x)) 453 if (match(Op0, m_OneUse(m_SExt(m_Value(X))))) { 454 auto *Zext = IC.Builder.CreateZExt(X, II.getType()); 455 auto *CttzZext = 456 IC.Builder.CreateBinaryIntrinsic(Intrinsic::cttz, Zext, Op1); 457 return IC.replaceInstUsesWith(II, CttzZext); 458 } 459 460 // Zext doesn't change the number of trailing zeros, so narrow: 461 // cttz(zext(x)) -> zext(cttz(x)) if the 'ZeroIsUndef' parameter is 'true'. 462 if (match(Op0, m_OneUse(m_ZExt(m_Value(X)))) && match(Op1, m_One())) { 463 auto *Cttz = IC.Builder.CreateBinaryIntrinsic(Intrinsic::cttz, X, 464 IC.Builder.getTrue()); 465 auto *ZextCttz = IC.Builder.CreateZExt(Cttz, II.getType()); 466 return IC.replaceInstUsesWith(II, ZextCttz); 467 } 468 469 // cttz(abs(x)) -> cttz(x) 470 // cttz(nabs(x)) -> cttz(x) 471 Value *Y; 472 SelectPatternFlavor SPF = matchSelectPattern(Op0, X, Y).Flavor; 473 if (SPF == SPF_ABS || SPF == SPF_NABS) 474 return IC.replaceOperand(II, 0, X); 475 476 if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(X)))) 477 return IC.replaceOperand(II, 0, X); 478 } 479 480 KnownBits Known = IC.computeKnownBits(Op0, 0, &II); 481 482 // Create a mask for bits above (ctlz) or below (cttz) the first known one. 483 unsigned PossibleZeros = IsTZ ? Known.countMaxTrailingZeros() 484 : Known.countMaxLeadingZeros(); 485 unsigned DefiniteZeros = IsTZ ? Known.countMinTrailingZeros() 486 : Known.countMinLeadingZeros(); 487 488 // If all bits above (ctlz) or below (cttz) the first known one are known 489 // zero, this value is constant. 490 // FIXME: This should be in InstSimplify because we're replacing an 491 // instruction with a constant. 492 if (PossibleZeros == DefiniteZeros) { 493 auto *C = ConstantInt::get(Op0->getType(), DefiniteZeros); 494 return IC.replaceInstUsesWith(II, C); 495 } 496 497 // If the input to cttz/ctlz is known to be non-zero, 498 // then change the 'ZeroIsUndef' parameter to 'true' 499 // because we know the zero behavior can't affect the result. 500 if (!Known.One.isNullValue() || 501 isKnownNonZero(Op0, IC.getDataLayout(), 0, &IC.getAssumptionCache(), &II, 502 &IC.getDominatorTree())) { 503 if (!match(II.getArgOperand(1), m_One())) 504 return IC.replaceOperand(II, 1, IC.Builder.getTrue()); 505 } 506 507 // Add range metadata since known bits can't completely reflect what we know. 508 // TODO: Handle splat vectors. 509 auto *IT = dyn_cast<IntegerType>(Op0->getType()); 510 if (IT && IT->getBitWidth() != 1 && !II.getMetadata(LLVMContext::MD_range)) { 511 Metadata *LowAndHigh[] = { 512 ConstantAsMetadata::get(ConstantInt::get(IT, DefiniteZeros)), 513 ConstantAsMetadata::get(ConstantInt::get(IT, PossibleZeros + 1))}; 514 II.setMetadata(LLVMContext::MD_range, 515 MDNode::get(II.getContext(), LowAndHigh)); 516 return &II; 517 } 518 519 return nullptr; 520 } 521 522 static Instruction *foldCtpop(IntrinsicInst &II, InstCombinerImpl &IC) { 523 assert(II.getIntrinsicID() == Intrinsic::ctpop && 524 "Expected ctpop intrinsic"); 525 Type *Ty = II.getType(); 526 unsigned BitWidth = Ty->getScalarSizeInBits(); 527 Value *Op0 = II.getArgOperand(0); 528 Value *X, *Y; 529 530 // ctpop(bitreverse(x)) -> ctpop(x) 531 // ctpop(bswap(x)) -> ctpop(x) 532 if (match(Op0, m_BitReverse(m_Value(X))) || match(Op0, m_BSwap(m_Value(X)))) 533 return IC.replaceOperand(II, 0, X); 534 535 // ctpop(rot(x)) -> ctpop(x) 536 if ((match(Op0, m_FShl(m_Value(X), m_Value(Y), m_Value())) || 537 match(Op0, m_FShr(m_Value(X), m_Value(Y), m_Value()))) && 538 X == Y) 539 return IC.replaceOperand(II, 0, X); 540 541 // ctpop(x | -x) -> bitwidth - cttz(x, false) 542 if (Op0->hasOneUse() && 543 match(Op0, m_c_Or(m_Value(X), m_Neg(m_Deferred(X))))) { 544 Function *F = 545 Intrinsic::getDeclaration(II.getModule(), Intrinsic::cttz, Ty); 546 auto *Cttz = IC.Builder.CreateCall(F, {X, IC.Builder.getFalse()}); 547 auto *Bw = ConstantInt::get(Ty, APInt(BitWidth, BitWidth)); 548 return IC.replaceInstUsesWith(II, IC.Builder.CreateSub(Bw, Cttz)); 549 } 550 551 // ctpop(~x & (x - 1)) -> cttz(x, false) 552 if (match(Op0, 553 m_c_And(m_Not(m_Value(X)), m_Add(m_Deferred(X), m_AllOnes())))) { 554 Function *F = 555 Intrinsic::getDeclaration(II.getModule(), Intrinsic::cttz, Ty); 556 return CallInst::Create(F, {X, IC.Builder.getFalse()}); 557 } 558 559 // Zext doesn't change the number of set bits, so narrow: 560 // ctpop (zext X) --> zext (ctpop X) 561 if (match(Op0, m_OneUse(m_ZExt(m_Value(X))))) { 562 Value *NarrowPop = IC.Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, X); 563 return CastInst::Create(Instruction::ZExt, NarrowPop, Ty); 564 } 565 566 KnownBits Known(BitWidth); 567 IC.computeKnownBits(Op0, Known, 0, &II); 568 569 // If all bits are zero except for exactly one fixed bit, then the result 570 // must be 0 or 1, and we can get that answer by shifting to LSB: 571 // ctpop (X & 32) --> (X & 32) >> 5 572 if ((~Known.Zero).isPowerOf2()) 573 return BinaryOperator::CreateLShr( 574 Op0, ConstantInt::get(Ty, (~Known.Zero).exactLogBase2())); 575 576 // FIXME: Try to simplify vectors of integers. 577 auto *IT = dyn_cast<IntegerType>(Ty); 578 if (!IT) 579 return nullptr; 580 581 // Add range metadata since known bits can't completely reflect what we know. 582 unsigned MinCount = Known.countMinPopulation(); 583 unsigned MaxCount = Known.countMaxPopulation(); 584 if (IT->getBitWidth() != 1 && !II.getMetadata(LLVMContext::MD_range)) { 585 Metadata *LowAndHigh[] = { 586 ConstantAsMetadata::get(ConstantInt::get(IT, MinCount)), 587 ConstantAsMetadata::get(ConstantInt::get(IT, MaxCount + 1))}; 588 II.setMetadata(LLVMContext::MD_range, 589 MDNode::get(II.getContext(), LowAndHigh)); 590 return &II; 591 } 592 593 return nullptr; 594 } 595 596 /// Convert a table lookup to shufflevector if the mask is constant. 597 /// This could benefit tbl1 if the mask is { 7,6,5,4,3,2,1,0 }, in 598 /// which case we could lower the shufflevector with rev64 instructions 599 /// as it's actually a byte reverse. 600 static Value *simplifyNeonTbl1(const IntrinsicInst &II, 601 InstCombiner::BuilderTy &Builder) { 602 // Bail out if the mask is not a constant. 603 auto *C = dyn_cast<Constant>(II.getArgOperand(1)); 604 if (!C) 605 return nullptr; 606 607 auto *VecTy = cast<FixedVectorType>(II.getType()); 608 unsigned NumElts = VecTy->getNumElements(); 609 610 // Only perform this transformation for <8 x i8> vector types. 611 if (!VecTy->getElementType()->isIntegerTy(8) || NumElts != 8) 612 return nullptr; 613 614 int Indexes[8]; 615 616 for (unsigned I = 0; I < NumElts; ++I) { 617 Constant *COp = C->getAggregateElement(I); 618 619 if (!COp || !isa<ConstantInt>(COp)) 620 return nullptr; 621 622 Indexes[I] = cast<ConstantInt>(COp)->getLimitedValue(); 623 624 // Make sure the mask indices are in range. 625 if ((unsigned)Indexes[I] >= NumElts) 626 return nullptr; 627 } 628 629 auto *V1 = II.getArgOperand(0); 630 auto *V2 = Constant::getNullValue(V1->getType()); 631 return Builder.CreateShuffleVector(V1, V2, makeArrayRef(Indexes)); 632 } 633 634 // Returns true iff the 2 intrinsics have the same operands, limiting the 635 // comparison to the first NumOperands. 636 static bool haveSameOperands(const IntrinsicInst &I, const IntrinsicInst &E, 637 unsigned NumOperands) { 638 assert(I.getNumArgOperands() >= NumOperands && "Not enough operands"); 639 assert(E.getNumArgOperands() >= NumOperands && "Not enough operands"); 640 for (unsigned i = 0; i < NumOperands; i++) 641 if (I.getArgOperand(i) != E.getArgOperand(i)) 642 return false; 643 return true; 644 } 645 646 // Remove trivially empty start/end intrinsic ranges, i.e. a start 647 // immediately followed by an end (ignoring debuginfo or other 648 // start/end intrinsics in between). As this handles only the most trivial 649 // cases, tracking the nesting level is not needed: 650 // 651 // call @llvm.foo.start(i1 0) 652 // call @llvm.foo.start(i1 0) ; This one won't be skipped: it will be removed 653 // call @llvm.foo.end(i1 0) 654 // call @llvm.foo.end(i1 0) ; &I 655 static bool 656 removeTriviallyEmptyRange(IntrinsicInst &EndI, InstCombinerImpl &IC, 657 std::function<bool(const IntrinsicInst &)> IsStart) { 658 // We start from the end intrinsic and scan backwards, so that InstCombine 659 // has already processed (and potentially removed) all the instructions 660 // before the end intrinsic. 661 BasicBlock::reverse_iterator BI(EndI), BE(EndI.getParent()->rend()); 662 for (; BI != BE; ++BI) { 663 if (auto *I = dyn_cast<IntrinsicInst>(&*BI)) { 664 if (isa<DbgInfoIntrinsic>(I) || 665 I->getIntrinsicID() == EndI.getIntrinsicID()) 666 continue; 667 if (IsStart(*I)) { 668 if (haveSameOperands(EndI, *I, EndI.getNumArgOperands())) { 669 IC.eraseInstFromFunction(*I); 670 IC.eraseInstFromFunction(EndI); 671 return true; 672 } 673 // Skip start intrinsics that don't pair with this end intrinsic. 674 continue; 675 } 676 } 677 break; 678 } 679 680 return false; 681 } 682 683 Instruction *InstCombinerImpl::visitVAEndInst(VAEndInst &I) { 684 removeTriviallyEmptyRange(I, *this, [](const IntrinsicInst &I) { 685 return I.getIntrinsicID() == Intrinsic::vastart || 686 I.getIntrinsicID() == Intrinsic::vacopy; 687 }); 688 return nullptr; 689 } 690 691 static CallInst *canonicalizeConstantArg0ToArg1(CallInst &Call) { 692 assert(Call.getNumArgOperands() > 1 && "Need at least 2 args to swap"); 693 Value *Arg0 = Call.getArgOperand(0), *Arg1 = Call.getArgOperand(1); 694 if (isa<Constant>(Arg0) && !isa<Constant>(Arg1)) { 695 Call.setArgOperand(0, Arg1); 696 Call.setArgOperand(1, Arg0); 697 return &Call; 698 } 699 return nullptr; 700 } 701 702 /// Creates a result tuple for an overflow intrinsic \p II with a given 703 /// \p Result and a constant \p Overflow value. 704 static Instruction *createOverflowTuple(IntrinsicInst *II, Value *Result, 705 Constant *Overflow) { 706 Constant *V[] = {UndefValue::get(Result->getType()), Overflow}; 707 StructType *ST = cast<StructType>(II->getType()); 708 Constant *Struct = ConstantStruct::get(ST, V); 709 return InsertValueInst::Create(Struct, Result, 0); 710 } 711 712 Instruction * 713 InstCombinerImpl::foldIntrinsicWithOverflowCommon(IntrinsicInst *II) { 714 WithOverflowInst *WO = cast<WithOverflowInst>(II); 715 Value *OperationResult = nullptr; 716 Constant *OverflowResult = nullptr; 717 if (OptimizeOverflowCheck(WO->getBinaryOp(), WO->isSigned(), WO->getLHS(), 718 WO->getRHS(), *WO, OperationResult, OverflowResult)) 719 return createOverflowTuple(WO, OperationResult, OverflowResult); 720 return nullptr; 721 } 722 723 static Optional<bool> getKnownSign(Value *Op, Instruction *CxtI, 724 const DataLayout &DL, AssumptionCache *AC, 725 DominatorTree *DT) { 726 KnownBits Known = computeKnownBits(Op, DL, 0, AC, CxtI, DT); 727 if (Known.isNonNegative()) 728 return false; 729 if (Known.isNegative()) 730 return true; 731 732 return isImpliedByDomCondition( 733 ICmpInst::ICMP_SLT, Op, Constant::getNullValue(Op->getType()), CxtI, DL); 734 } 735 736 /// If we have a clamp pattern like max (min X, 42), 41 -- where the output 737 /// can only be one of two possible constant values -- turn that into a select 738 /// of constants. 739 static Instruction *foldClampRangeOfTwo(IntrinsicInst *II, 740 InstCombiner::BuilderTy &Builder) { 741 Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1); 742 Value *X; 743 const APInt *C0, *C1; 744 if (!match(I1, m_APInt(C1)) || !I0->hasOneUse()) 745 return nullptr; 746 747 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; 748 switch (II->getIntrinsicID()) { 749 case Intrinsic::smax: 750 if (match(I0, m_SMin(m_Value(X), m_APInt(C0))) && *C0 == *C1 + 1) 751 Pred = ICmpInst::ICMP_SGT; 752 break; 753 case Intrinsic::smin: 754 if (match(I0, m_SMax(m_Value(X), m_APInt(C0))) && *C1 == *C0 + 1) 755 Pred = ICmpInst::ICMP_SLT; 756 break; 757 case Intrinsic::umax: 758 if (match(I0, m_UMin(m_Value(X), m_APInt(C0))) && *C0 == *C1 + 1) 759 Pred = ICmpInst::ICMP_UGT; 760 break; 761 case Intrinsic::umin: 762 if (match(I0, m_UMax(m_Value(X), m_APInt(C0))) && *C1 == *C0 + 1) 763 Pred = ICmpInst::ICMP_ULT; 764 break; 765 default: 766 llvm_unreachable("Expected min/max intrinsic"); 767 } 768 if (Pred == CmpInst::BAD_ICMP_PREDICATE) 769 return nullptr; 770 771 // max (min X, 42), 41 --> X > 41 ? 42 : 41 772 // min (max X, 42), 43 --> X < 43 ? 42 : 43 773 Value *Cmp = Builder.CreateICmp(Pred, X, I1); 774 return SelectInst::Create(Cmp, ConstantInt::get(II->getType(), *C0), I1); 775 } 776 777 /// CallInst simplification. This mostly only handles folding of intrinsic 778 /// instructions. For normal calls, it allows visitCallBase to do the heavy 779 /// lifting. 780 Instruction *InstCombinerImpl::visitCallInst(CallInst &CI) { 781 // Don't try to simplify calls without uses. It will not do anything useful, 782 // but will result in the following folds being skipped. 783 if (!CI.use_empty()) 784 if (Value *V = SimplifyCall(&CI, SQ.getWithInstruction(&CI))) 785 return replaceInstUsesWith(CI, V); 786 787 if (isFreeCall(&CI, &TLI)) 788 return visitFree(CI); 789 790 // If the caller function is nounwind, mark the call as nounwind, even if the 791 // callee isn't. 792 if (CI.getFunction()->doesNotThrow() && !CI.doesNotThrow()) { 793 CI.setDoesNotThrow(); 794 return &CI; 795 } 796 797 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI); 798 if (!II) return visitCallBase(CI); 799 800 // For atomic unordered mem intrinsics if len is not a positive or 801 // not a multiple of element size then behavior is undefined. 802 if (auto *AMI = dyn_cast<AtomicMemIntrinsic>(II)) 803 if (ConstantInt *NumBytes = dyn_cast<ConstantInt>(AMI->getLength())) 804 if (NumBytes->getSExtValue() < 0 || 805 (NumBytes->getZExtValue() % AMI->getElementSizeInBytes() != 0)) { 806 CreateNonTerminatorUnreachable(AMI); 807 assert(AMI->getType()->isVoidTy() && 808 "non void atomic unordered mem intrinsic"); 809 return eraseInstFromFunction(*AMI); 810 } 811 812 // Intrinsics cannot occur in an invoke or a callbr, so handle them here 813 // instead of in visitCallBase. 814 if (auto *MI = dyn_cast<AnyMemIntrinsic>(II)) { 815 bool Changed = false; 816 817 // memmove/cpy/set of zero bytes is a noop. 818 if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) { 819 if (NumBytes->isNullValue()) 820 return eraseInstFromFunction(CI); 821 822 if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes)) 823 if (CI->getZExtValue() == 1) { 824 // Replace the instruction with just byte operations. We would 825 // transform other cases to loads/stores, but we don't know if 826 // alignment is sufficient. 827 } 828 } 829 830 // No other transformations apply to volatile transfers. 831 if (auto *M = dyn_cast<MemIntrinsic>(MI)) 832 if (M->isVolatile()) 833 return nullptr; 834 835 // If we have a memmove and the source operation is a constant global, 836 // then the source and dest pointers can't alias, so we can change this 837 // into a call to memcpy. 838 if (auto *MMI = dyn_cast<AnyMemMoveInst>(MI)) { 839 if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource())) 840 if (GVSrc->isConstant()) { 841 Module *M = CI.getModule(); 842 Intrinsic::ID MemCpyID = 843 isa<AtomicMemMoveInst>(MMI) 844 ? Intrinsic::memcpy_element_unordered_atomic 845 : Intrinsic::memcpy; 846 Type *Tys[3] = { CI.getArgOperand(0)->getType(), 847 CI.getArgOperand(1)->getType(), 848 CI.getArgOperand(2)->getType() }; 849 CI.setCalledFunction(Intrinsic::getDeclaration(M, MemCpyID, Tys)); 850 Changed = true; 851 } 852 } 853 854 if (AnyMemTransferInst *MTI = dyn_cast<AnyMemTransferInst>(MI)) { 855 // memmove(x,x,size) -> noop. 856 if (MTI->getSource() == MTI->getDest()) 857 return eraseInstFromFunction(CI); 858 } 859 860 // If we can determine a pointer alignment that is bigger than currently 861 // set, update the alignment. 862 if (auto *MTI = dyn_cast<AnyMemTransferInst>(MI)) { 863 if (Instruction *I = SimplifyAnyMemTransfer(MTI)) 864 return I; 865 } else if (auto *MSI = dyn_cast<AnyMemSetInst>(MI)) { 866 if (Instruction *I = SimplifyAnyMemSet(MSI)) 867 return I; 868 } 869 870 if (Changed) return II; 871 } 872 873 // For fixed width vector result intrinsics, use the generic demanded vector 874 // support. 875 if (auto *IIFVTy = dyn_cast<FixedVectorType>(II->getType())) { 876 auto VWidth = IIFVTy->getNumElements(); 877 APInt UndefElts(VWidth, 0); 878 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); 879 if (Value *V = SimplifyDemandedVectorElts(II, AllOnesEltMask, UndefElts)) { 880 if (V != II) 881 return replaceInstUsesWith(*II, V); 882 return II; 883 } 884 } 885 886 if (II->isCommutative()) { 887 if (CallInst *NewCall = canonicalizeConstantArg0ToArg1(CI)) 888 return NewCall; 889 } 890 891 Intrinsic::ID IID = II->getIntrinsicID(); 892 switch (IID) { 893 case Intrinsic::objectsize: 894 if (Value *V = lowerObjectSizeCall(II, DL, &TLI, /*MustSucceed=*/false)) 895 return replaceInstUsesWith(CI, V); 896 return nullptr; 897 case Intrinsic::abs: { 898 Value *IIOperand = II->getArgOperand(0); 899 bool IntMinIsPoison = cast<Constant>(II->getArgOperand(1))->isOneValue(); 900 901 // abs(-x) -> abs(x) 902 // TODO: Copy nsw if it was present on the neg? 903 Value *X; 904 if (match(IIOperand, m_Neg(m_Value(X)))) 905 return replaceOperand(*II, 0, X); 906 if (match(IIOperand, m_Select(m_Value(), m_Value(X), m_Neg(m_Deferred(X))))) 907 return replaceOperand(*II, 0, X); 908 if (match(IIOperand, m_Select(m_Value(), m_Neg(m_Value(X)), m_Deferred(X)))) 909 return replaceOperand(*II, 0, X); 910 911 if (Optional<bool> Sign = getKnownSign(IIOperand, II, DL, &AC, &DT)) { 912 // abs(x) -> x if x >= 0 913 if (!*Sign) 914 return replaceInstUsesWith(*II, IIOperand); 915 916 // abs(x) -> -x if x < 0 917 if (IntMinIsPoison) 918 return BinaryOperator::CreateNSWNeg(IIOperand); 919 return BinaryOperator::CreateNeg(IIOperand); 920 } 921 922 // abs (sext X) --> zext (abs X*) 923 // Clear the IsIntMin (nsw) bit on the abs to allow narrowing. 924 if (match(IIOperand, m_OneUse(m_SExt(m_Value(X))))) { 925 Value *NarrowAbs = 926 Builder.CreateBinaryIntrinsic(Intrinsic::abs, X, Builder.getFalse()); 927 return CastInst::Create(Instruction::ZExt, NarrowAbs, II->getType()); 928 } 929 930 // Match a complicated way to check if a number is odd/even: 931 // abs (srem X, 2) --> and X, 1 932 const APInt *C; 933 if (match(IIOperand, m_SRem(m_Value(X), m_APInt(C))) && *C == 2) 934 return BinaryOperator::CreateAnd(X, ConstantInt::get(II->getType(), 1)); 935 936 break; 937 } 938 case Intrinsic::umax: 939 case Intrinsic::umin: { 940 Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1); 941 Value *X, *Y; 942 if (match(I0, m_ZExt(m_Value(X))) && match(I1, m_ZExt(m_Value(Y))) && 943 (I0->hasOneUse() || I1->hasOneUse()) && X->getType() == Y->getType()) { 944 Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, Y); 945 return CastInst::Create(Instruction::ZExt, NarrowMaxMin, II->getType()); 946 } 947 Constant *C; 948 if (match(I0, m_ZExt(m_Value(X))) && match(I1, m_Constant(C)) && 949 I0->hasOneUse()) { 950 Constant *NarrowC = ConstantExpr::getTrunc(C, X->getType()); 951 if (ConstantExpr::getZExt(NarrowC, II->getType()) == C) { 952 Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, NarrowC); 953 return CastInst::Create(Instruction::ZExt, NarrowMaxMin, II->getType()); 954 } 955 } 956 // If both operands of unsigned min/max are sign-extended, it is still ok 957 // to narrow the operation. 958 LLVM_FALLTHROUGH; 959 } 960 case Intrinsic::smax: 961 case Intrinsic::smin: { 962 Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1); 963 Value *X, *Y; 964 if (match(I0, m_SExt(m_Value(X))) && match(I1, m_SExt(m_Value(Y))) && 965 (I0->hasOneUse() || I1->hasOneUse()) && X->getType() == Y->getType()) { 966 Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, Y); 967 return CastInst::Create(Instruction::SExt, NarrowMaxMin, II->getType()); 968 } 969 970 Constant *C; 971 if (match(I0, m_SExt(m_Value(X))) && match(I1, m_Constant(C)) && 972 I0->hasOneUse()) { 973 Constant *NarrowC = ConstantExpr::getTrunc(C, X->getType()); 974 if (ConstantExpr::getSExt(NarrowC, II->getType()) == C) { 975 Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, NarrowC); 976 return CastInst::Create(Instruction::SExt, NarrowMaxMin, II->getType()); 977 } 978 } 979 980 if (match(I0, m_Not(m_Value(X)))) { 981 // max (not X), (not Y) --> not (min X, Y) 982 Intrinsic::ID InvID = getInverseMinMaxIntrinsic(IID); 983 if (match(I1, m_Not(m_Value(Y))) && 984 (I0->hasOneUse() || I1->hasOneUse())) { 985 Value *InvMaxMin = Builder.CreateBinaryIntrinsic(InvID, X, Y); 986 return BinaryOperator::CreateNot(InvMaxMin); 987 } 988 // max (not X), C --> not(min X, ~C) 989 if (match(I1, m_Constant(C)) && I0->hasOneUse()) { 990 Constant *NotC = ConstantExpr::getNot(C); 991 Value *InvMaxMin = Builder.CreateBinaryIntrinsic(InvID, X, NotC); 992 return BinaryOperator::CreateNot(InvMaxMin); 993 } 994 } 995 996 // smax(X, -X) --> abs(X) 997 // smin(X, -X) --> -abs(X) 998 // umax(X, -X) --> -abs(X) 999 // umin(X, -X) --> abs(X) 1000 if (isKnownNegation(I0, I1)) { 1001 // We can choose either operand as the input to abs(), but if we can 1002 // eliminate the only use of a value, that's better for subsequent 1003 // transforms/analysis. 1004 if (I0->hasOneUse() && !I1->hasOneUse()) 1005 std::swap(I0, I1); 1006 1007 // This is some variant of abs(). See if we can propagate 'nsw' to the abs 1008 // operation and potentially its negation. 1009 bool IntMinIsPoison = isKnownNegation(I0, I1, /* NeedNSW */ true); 1010 Value *Abs = Builder.CreateBinaryIntrinsic( 1011 Intrinsic::abs, I0, 1012 ConstantInt::getBool(II->getContext(), IntMinIsPoison)); 1013 1014 // We don't have a "nabs" intrinsic, so negate if needed based on the 1015 // max/min operation. 1016 if (IID == Intrinsic::smin || IID == Intrinsic::umax) 1017 Abs = Builder.CreateNeg(Abs, "nabs", /* NUW */ false, IntMinIsPoison); 1018 return replaceInstUsesWith(CI, Abs); 1019 } 1020 1021 if (Instruction *Sel = foldClampRangeOfTwo(II, Builder)) 1022 return Sel; 1023 1024 break; 1025 } 1026 case Intrinsic::bswap: { 1027 Value *IIOperand = II->getArgOperand(0); 1028 Value *X = nullptr; 1029 1030 // bswap(trunc(bswap(x))) -> trunc(lshr(x, c)) 1031 if (match(IIOperand, m_Trunc(m_BSwap(m_Value(X))))) { 1032 unsigned C = X->getType()->getScalarSizeInBits() - 1033 IIOperand->getType()->getScalarSizeInBits(); 1034 Value *CV = ConstantInt::get(X->getType(), C); 1035 Value *V = Builder.CreateLShr(X, CV); 1036 return new TruncInst(V, IIOperand->getType()); 1037 } 1038 break; 1039 } 1040 case Intrinsic::masked_load: 1041 if (Value *SimplifiedMaskedOp = simplifyMaskedLoad(*II)) 1042 return replaceInstUsesWith(CI, SimplifiedMaskedOp); 1043 break; 1044 case Intrinsic::masked_store: 1045 return simplifyMaskedStore(*II); 1046 case Intrinsic::masked_gather: 1047 return simplifyMaskedGather(*II); 1048 case Intrinsic::masked_scatter: 1049 return simplifyMaskedScatter(*II); 1050 case Intrinsic::launder_invariant_group: 1051 case Intrinsic::strip_invariant_group: 1052 if (auto *SkippedBarrier = simplifyInvariantGroupIntrinsic(*II, *this)) 1053 return replaceInstUsesWith(*II, SkippedBarrier); 1054 break; 1055 case Intrinsic::powi: 1056 if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getArgOperand(1))) { 1057 // 0 and 1 are handled in instsimplify 1058 // powi(x, -1) -> 1/x 1059 if (Power->isMinusOne()) 1060 return BinaryOperator::CreateFDivFMF(ConstantFP::get(CI.getType(), 1.0), 1061 II->getArgOperand(0), II); 1062 // powi(x, 2) -> x*x 1063 if (Power->equalsInt(2)) 1064 return BinaryOperator::CreateFMulFMF(II->getArgOperand(0), 1065 II->getArgOperand(0), II); 1066 } 1067 break; 1068 1069 case Intrinsic::cttz: 1070 case Intrinsic::ctlz: 1071 if (auto *I = foldCttzCtlz(*II, *this)) 1072 return I; 1073 break; 1074 1075 case Intrinsic::ctpop: 1076 if (auto *I = foldCtpop(*II, *this)) 1077 return I; 1078 break; 1079 1080 case Intrinsic::fshl: 1081 case Intrinsic::fshr: { 1082 Value *Op0 = II->getArgOperand(0), *Op1 = II->getArgOperand(1); 1083 Type *Ty = II->getType(); 1084 unsigned BitWidth = Ty->getScalarSizeInBits(); 1085 Constant *ShAmtC; 1086 if (match(II->getArgOperand(2), m_ImmConstant(ShAmtC)) && 1087 !ShAmtC->containsConstantExpression()) { 1088 // Canonicalize a shift amount constant operand to modulo the bit-width. 1089 Constant *WidthC = ConstantInt::get(Ty, BitWidth); 1090 Constant *ModuloC = ConstantExpr::getURem(ShAmtC, WidthC); 1091 if (ModuloC != ShAmtC) 1092 return replaceOperand(*II, 2, ModuloC); 1093 1094 assert(ConstantExpr::getICmp(ICmpInst::ICMP_UGT, WidthC, ShAmtC) == 1095 ConstantInt::getTrue(CmpInst::makeCmpResultType(Ty)) && 1096 "Shift amount expected to be modulo bitwidth"); 1097 1098 // Canonicalize funnel shift right by constant to funnel shift left. This 1099 // is not entirely arbitrary. For historical reasons, the backend may 1100 // recognize rotate left patterns but miss rotate right patterns. 1101 if (IID == Intrinsic::fshr) { 1102 // fshr X, Y, C --> fshl X, Y, (BitWidth - C) 1103 Constant *LeftShiftC = ConstantExpr::getSub(WidthC, ShAmtC); 1104 Module *Mod = II->getModule(); 1105 Function *Fshl = Intrinsic::getDeclaration(Mod, Intrinsic::fshl, Ty); 1106 return CallInst::Create(Fshl, { Op0, Op1, LeftShiftC }); 1107 } 1108 assert(IID == Intrinsic::fshl && 1109 "All funnel shifts by simple constants should go left"); 1110 1111 // fshl(X, 0, C) --> shl X, C 1112 // fshl(X, undef, C) --> shl X, C 1113 if (match(Op1, m_ZeroInt()) || match(Op1, m_Undef())) 1114 return BinaryOperator::CreateShl(Op0, ShAmtC); 1115 1116 // fshl(0, X, C) --> lshr X, (BW-C) 1117 // fshl(undef, X, C) --> lshr X, (BW-C) 1118 if (match(Op0, m_ZeroInt()) || match(Op0, m_Undef())) 1119 return BinaryOperator::CreateLShr(Op1, 1120 ConstantExpr::getSub(WidthC, ShAmtC)); 1121 1122 // fshl i16 X, X, 8 --> bswap i16 X (reduce to more-specific form) 1123 if (Op0 == Op1 && BitWidth == 16 && match(ShAmtC, m_SpecificInt(8))) { 1124 Module *Mod = II->getModule(); 1125 Function *Bswap = Intrinsic::getDeclaration(Mod, Intrinsic::bswap, Ty); 1126 return CallInst::Create(Bswap, { Op0 }); 1127 } 1128 } 1129 1130 // Left or right might be masked. 1131 if (SimplifyDemandedInstructionBits(*II)) 1132 return &CI; 1133 1134 // The shift amount (operand 2) of a funnel shift is modulo the bitwidth, 1135 // so only the low bits of the shift amount are demanded if the bitwidth is 1136 // a power-of-2. 1137 if (!isPowerOf2_32(BitWidth)) 1138 break; 1139 APInt Op2Demanded = APInt::getLowBitsSet(BitWidth, Log2_32_Ceil(BitWidth)); 1140 KnownBits Op2Known(BitWidth); 1141 if (SimplifyDemandedBits(II, 2, Op2Demanded, Op2Known)) 1142 return &CI; 1143 break; 1144 } 1145 case Intrinsic::uadd_with_overflow: 1146 case Intrinsic::sadd_with_overflow: { 1147 if (Instruction *I = foldIntrinsicWithOverflowCommon(II)) 1148 return I; 1149 1150 // Given 2 constant operands whose sum does not overflow: 1151 // uaddo (X +nuw C0), C1 -> uaddo X, C0 + C1 1152 // saddo (X +nsw C0), C1 -> saddo X, C0 + C1 1153 Value *X; 1154 const APInt *C0, *C1; 1155 Value *Arg0 = II->getArgOperand(0); 1156 Value *Arg1 = II->getArgOperand(1); 1157 bool IsSigned = IID == Intrinsic::sadd_with_overflow; 1158 bool HasNWAdd = IsSigned ? match(Arg0, m_NSWAdd(m_Value(X), m_APInt(C0))) 1159 : match(Arg0, m_NUWAdd(m_Value(X), m_APInt(C0))); 1160 if (HasNWAdd && match(Arg1, m_APInt(C1))) { 1161 bool Overflow; 1162 APInt NewC = 1163 IsSigned ? C1->sadd_ov(*C0, Overflow) : C1->uadd_ov(*C0, Overflow); 1164 if (!Overflow) 1165 return replaceInstUsesWith( 1166 *II, Builder.CreateBinaryIntrinsic( 1167 IID, X, ConstantInt::get(Arg1->getType(), NewC))); 1168 } 1169 break; 1170 } 1171 1172 case Intrinsic::umul_with_overflow: 1173 case Intrinsic::smul_with_overflow: 1174 case Intrinsic::usub_with_overflow: 1175 if (Instruction *I = foldIntrinsicWithOverflowCommon(II)) 1176 return I; 1177 break; 1178 1179 case Intrinsic::ssub_with_overflow: { 1180 if (Instruction *I = foldIntrinsicWithOverflowCommon(II)) 1181 return I; 1182 1183 Constant *C; 1184 Value *Arg0 = II->getArgOperand(0); 1185 Value *Arg1 = II->getArgOperand(1); 1186 // Given a constant C that is not the minimum signed value 1187 // for an integer of a given bit width: 1188 // 1189 // ssubo X, C -> saddo X, -C 1190 if (match(Arg1, m_Constant(C)) && C->isNotMinSignedValue()) { 1191 Value *NegVal = ConstantExpr::getNeg(C); 1192 // Build a saddo call that is equivalent to the discovered 1193 // ssubo call. 1194 return replaceInstUsesWith( 1195 *II, Builder.CreateBinaryIntrinsic(Intrinsic::sadd_with_overflow, 1196 Arg0, NegVal)); 1197 } 1198 1199 break; 1200 } 1201 1202 case Intrinsic::uadd_sat: 1203 case Intrinsic::sadd_sat: 1204 case Intrinsic::usub_sat: 1205 case Intrinsic::ssub_sat: { 1206 SaturatingInst *SI = cast<SaturatingInst>(II); 1207 Type *Ty = SI->getType(); 1208 Value *Arg0 = SI->getLHS(); 1209 Value *Arg1 = SI->getRHS(); 1210 1211 // Make use of known overflow information. 1212 OverflowResult OR = computeOverflow(SI->getBinaryOp(), SI->isSigned(), 1213 Arg0, Arg1, SI); 1214 switch (OR) { 1215 case OverflowResult::MayOverflow: 1216 break; 1217 case OverflowResult::NeverOverflows: 1218 if (SI->isSigned()) 1219 return BinaryOperator::CreateNSW(SI->getBinaryOp(), Arg0, Arg1); 1220 else 1221 return BinaryOperator::CreateNUW(SI->getBinaryOp(), Arg0, Arg1); 1222 case OverflowResult::AlwaysOverflowsLow: { 1223 unsigned BitWidth = Ty->getScalarSizeInBits(); 1224 APInt Min = APSInt::getMinValue(BitWidth, !SI->isSigned()); 1225 return replaceInstUsesWith(*SI, ConstantInt::get(Ty, Min)); 1226 } 1227 case OverflowResult::AlwaysOverflowsHigh: { 1228 unsigned BitWidth = Ty->getScalarSizeInBits(); 1229 APInt Max = APSInt::getMaxValue(BitWidth, !SI->isSigned()); 1230 return replaceInstUsesWith(*SI, ConstantInt::get(Ty, Max)); 1231 } 1232 } 1233 1234 // ssub.sat(X, C) -> sadd.sat(X, -C) if C != MIN 1235 Constant *C; 1236 if (IID == Intrinsic::ssub_sat && match(Arg1, m_Constant(C)) && 1237 C->isNotMinSignedValue()) { 1238 Value *NegVal = ConstantExpr::getNeg(C); 1239 return replaceInstUsesWith( 1240 *II, Builder.CreateBinaryIntrinsic( 1241 Intrinsic::sadd_sat, Arg0, NegVal)); 1242 } 1243 1244 // sat(sat(X + Val2) + Val) -> sat(X + (Val+Val2)) 1245 // sat(sat(X - Val2) - Val) -> sat(X - (Val+Val2)) 1246 // if Val and Val2 have the same sign 1247 if (auto *Other = dyn_cast<IntrinsicInst>(Arg0)) { 1248 Value *X; 1249 const APInt *Val, *Val2; 1250 APInt NewVal; 1251 bool IsUnsigned = 1252 IID == Intrinsic::uadd_sat || IID == Intrinsic::usub_sat; 1253 if (Other->getIntrinsicID() == IID && 1254 match(Arg1, m_APInt(Val)) && 1255 match(Other->getArgOperand(0), m_Value(X)) && 1256 match(Other->getArgOperand(1), m_APInt(Val2))) { 1257 if (IsUnsigned) 1258 NewVal = Val->uadd_sat(*Val2); 1259 else if (Val->isNonNegative() == Val2->isNonNegative()) { 1260 bool Overflow; 1261 NewVal = Val->sadd_ov(*Val2, Overflow); 1262 if (Overflow) { 1263 // Both adds together may add more than SignedMaxValue 1264 // without saturating the final result. 1265 break; 1266 } 1267 } else { 1268 // Cannot fold saturated addition with different signs. 1269 break; 1270 } 1271 1272 return replaceInstUsesWith( 1273 *II, Builder.CreateBinaryIntrinsic( 1274 IID, X, ConstantInt::get(II->getType(), NewVal))); 1275 } 1276 } 1277 break; 1278 } 1279 1280 case Intrinsic::minnum: 1281 case Intrinsic::maxnum: 1282 case Intrinsic::minimum: 1283 case Intrinsic::maximum: { 1284 Value *Arg0 = II->getArgOperand(0); 1285 Value *Arg1 = II->getArgOperand(1); 1286 Value *X, *Y; 1287 if (match(Arg0, m_FNeg(m_Value(X))) && match(Arg1, m_FNeg(m_Value(Y))) && 1288 (Arg0->hasOneUse() || Arg1->hasOneUse())) { 1289 // If both operands are negated, invert the call and negate the result: 1290 // min(-X, -Y) --> -(max(X, Y)) 1291 // max(-X, -Y) --> -(min(X, Y)) 1292 Intrinsic::ID NewIID; 1293 switch (IID) { 1294 case Intrinsic::maxnum: 1295 NewIID = Intrinsic::minnum; 1296 break; 1297 case Intrinsic::minnum: 1298 NewIID = Intrinsic::maxnum; 1299 break; 1300 case Intrinsic::maximum: 1301 NewIID = Intrinsic::minimum; 1302 break; 1303 case Intrinsic::minimum: 1304 NewIID = Intrinsic::maximum; 1305 break; 1306 default: 1307 llvm_unreachable("unexpected intrinsic ID"); 1308 } 1309 Value *NewCall = Builder.CreateBinaryIntrinsic(NewIID, X, Y, II); 1310 Instruction *FNeg = UnaryOperator::CreateFNeg(NewCall); 1311 FNeg->copyIRFlags(II); 1312 return FNeg; 1313 } 1314 1315 // m(m(X, C2), C1) -> m(X, C) 1316 const APFloat *C1, *C2; 1317 if (auto *M = dyn_cast<IntrinsicInst>(Arg0)) { 1318 if (M->getIntrinsicID() == IID && match(Arg1, m_APFloat(C1)) && 1319 ((match(M->getArgOperand(0), m_Value(X)) && 1320 match(M->getArgOperand(1), m_APFloat(C2))) || 1321 (match(M->getArgOperand(1), m_Value(X)) && 1322 match(M->getArgOperand(0), m_APFloat(C2))))) { 1323 APFloat Res(0.0); 1324 switch (IID) { 1325 case Intrinsic::maxnum: 1326 Res = maxnum(*C1, *C2); 1327 break; 1328 case Intrinsic::minnum: 1329 Res = minnum(*C1, *C2); 1330 break; 1331 case Intrinsic::maximum: 1332 Res = maximum(*C1, *C2); 1333 break; 1334 case Intrinsic::minimum: 1335 Res = minimum(*C1, *C2); 1336 break; 1337 default: 1338 llvm_unreachable("unexpected intrinsic ID"); 1339 } 1340 Instruction *NewCall = Builder.CreateBinaryIntrinsic( 1341 IID, X, ConstantFP::get(Arg0->getType(), Res), II); 1342 // TODO: Conservatively intersecting FMF. If Res == C2, the transform 1343 // was a simplification (so Arg0 and its original flags could 1344 // propagate?) 1345 NewCall->andIRFlags(M); 1346 return replaceInstUsesWith(*II, NewCall); 1347 } 1348 } 1349 1350 Value *ExtSrc0; 1351 Value *ExtSrc1; 1352 1353 // minnum (fpext x), (fpext y) -> minnum x, y 1354 // maxnum (fpext x), (fpext y) -> maxnum x, y 1355 if (match(II->getArgOperand(0), m_OneUse(m_FPExt(m_Value(ExtSrc0)))) && 1356 match(II->getArgOperand(1), m_OneUse(m_FPExt(m_Value(ExtSrc1)))) && 1357 ExtSrc0->getType() == ExtSrc1->getType()) { 1358 Function *F = Intrinsic::getDeclaration( 1359 II->getModule(), II->getIntrinsicID(), {ExtSrc0->getType()}); 1360 CallInst *NewCall = Builder.CreateCall(F, { ExtSrc0, ExtSrc1 }); 1361 NewCall->copyFastMathFlags(II); 1362 NewCall->takeName(II); 1363 return new FPExtInst(NewCall, II->getType()); 1364 } 1365 1366 break; 1367 } 1368 case Intrinsic::fmuladd: { 1369 // Canonicalize fast fmuladd to the separate fmul + fadd. 1370 if (II->isFast()) { 1371 BuilderTy::FastMathFlagGuard Guard(Builder); 1372 Builder.setFastMathFlags(II->getFastMathFlags()); 1373 Value *Mul = Builder.CreateFMul(II->getArgOperand(0), 1374 II->getArgOperand(1)); 1375 Value *Add = Builder.CreateFAdd(Mul, II->getArgOperand(2)); 1376 Add->takeName(II); 1377 return replaceInstUsesWith(*II, Add); 1378 } 1379 1380 // Try to simplify the underlying FMul. 1381 if (Value *V = SimplifyFMulInst(II->getArgOperand(0), II->getArgOperand(1), 1382 II->getFastMathFlags(), 1383 SQ.getWithInstruction(II))) { 1384 auto *FAdd = BinaryOperator::CreateFAdd(V, II->getArgOperand(2)); 1385 FAdd->copyFastMathFlags(II); 1386 return FAdd; 1387 } 1388 1389 LLVM_FALLTHROUGH; 1390 } 1391 case Intrinsic::fma: { 1392 // fma fneg(x), fneg(y), z -> fma x, y, z 1393 Value *Src0 = II->getArgOperand(0); 1394 Value *Src1 = II->getArgOperand(1); 1395 Value *X, *Y; 1396 if (match(Src0, m_FNeg(m_Value(X))) && match(Src1, m_FNeg(m_Value(Y)))) { 1397 replaceOperand(*II, 0, X); 1398 replaceOperand(*II, 1, Y); 1399 return II; 1400 } 1401 1402 // fma fabs(x), fabs(x), z -> fma x, x, z 1403 if (match(Src0, m_FAbs(m_Value(X))) && 1404 match(Src1, m_FAbs(m_Specific(X)))) { 1405 replaceOperand(*II, 0, X); 1406 replaceOperand(*II, 1, X); 1407 return II; 1408 } 1409 1410 // Try to simplify the underlying FMul. We can only apply simplifications 1411 // that do not require rounding. 1412 if (Value *V = SimplifyFMAFMul(II->getArgOperand(0), II->getArgOperand(1), 1413 II->getFastMathFlags(), 1414 SQ.getWithInstruction(II))) { 1415 auto *FAdd = BinaryOperator::CreateFAdd(V, II->getArgOperand(2)); 1416 FAdd->copyFastMathFlags(II); 1417 return FAdd; 1418 } 1419 1420 // fma x, y, 0 -> fmul x, y 1421 // This is always valid for -0.0, but requires nsz for +0.0 as 1422 // -0.0 + 0.0 = 0.0, which would not be the same as the fmul on its own. 1423 if (match(II->getArgOperand(2), m_NegZeroFP()) || 1424 (match(II->getArgOperand(2), m_PosZeroFP()) && 1425 II->getFastMathFlags().noSignedZeros())) 1426 return BinaryOperator::CreateFMulFMF(Src0, Src1, II); 1427 1428 break; 1429 } 1430 case Intrinsic::copysign: { 1431 Value *Mag = II->getArgOperand(0), *Sign = II->getArgOperand(1); 1432 if (SignBitMustBeZero(Sign, &TLI)) { 1433 // If we know that the sign argument is positive, reduce to FABS: 1434 // copysign Mag, +Sign --> fabs Mag 1435 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, Mag, II); 1436 return replaceInstUsesWith(*II, Fabs); 1437 } 1438 // TODO: There should be a ValueTracking sibling like SignBitMustBeOne. 1439 const APFloat *C; 1440 if (match(Sign, m_APFloat(C)) && C->isNegative()) { 1441 // If we know that the sign argument is negative, reduce to FNABS: 1442 // copysign Mag, -Sign --> fneg (fabs Mag) 1443 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, Mag, II); 1444 return replaceInstUsesWith(*II, Builder.CreateFNegFMF(Fabs, II)); 1445 } 1446 1447 // Propagate sign argument through nested calls: 1448 // copysign Mag, (copysign ?, X) --> copysign Mag, X 1449 Value *X; 1450 if (match(Sign, m_Intrinsic<Intrinsic::copysign>(m_Value(), m_Value(X)))) 1451 return replaceOperand(*II, 1, X); 1452 1453 // Peek through changes of magnitude's sign-bit. This call rewrites those: 1454 // copysign (fabs X), Sign --> copysign X, Sign 1455 // copysign (fneg X), Sign --> copysign X, Sign 1456 if (match(Mag, m_FAbs(m_Value(X))) || match(Mag, m_FNeg(m_Value(X)))) 1457 return replaceOperand(*II, 0, X); 1458 1459 break; 1460 } 1461 case Intrinsic::fabs: { 1462 Value *Cond, *TVal, *FVal; 1463 if (match(II->getArgOperand(0), 1464 m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))) { 1465 // fabs (select Cond, TrueC, FalseC) --> select Cond, AbsT, AbsF 1466 if (isa<Constant>(TVal) && isa<Constant>(FVal)) { 1467 CallInst *AbsT = Builder.CreateCall(II->getCalledFunction(), {TVal}); 1468 CallInst *AbsF = Builder.CreateCall(II->getCalledFunction(), {FVal}); 1469 return SelectInst::Create(Cond, AbsT, AbsF); 1470 } 1471 // fabs (select Cond, -FVal, FVal) --> fabs FVal 1472 if (match(TVal, m_FNeg(m_Specific(FVal)))) 1473 return replaceOperand(*II, 0, FVal); 1474 // fabs (select Cond, TVal, -TVal) --> fabs TVal 1475 if (match(FVal, m_FNeg(m_Specific(TVal)))) 1476 return replaceOperand(*II, 0, TVal); 1477 } 1478 1479 LLVM_FALLTHROUGH; 1480 } 1481 case Intrinsic::ceil: 1482 case Intrinsic::floor: 1483 case Intrinsic::round: 1484 case Intrinsic::roundeven: 1485 case Intrinsic::nearbyint: 1486 case Intrinsic::rint: 1487 case Intrinsic::trunc: { 1488 Value *ExtSrc; 1489 if (match(II->getArgOperand(0), m_OneUse(m_FPExt(m_Value(ExtSrc))))) { 1490 // Narrow the call: intrinsic (fpext x) -> fpext (intrinsic x) 1491 Value *NarrowII = Builder.CreateUnaryIntrinsic(IID, ExtSrc, II); 1492 return new FPExtInst(NarrowII, II->getType()); 1493 } 1494 break; 1495 } 1496 case Intrinsic::cos: 1497 case Intrinsic::amdgcn_cos: { 1498 Value *X; 1499 Value *Src = II->getArgOperand(0); 1500 if (match(Src, m_FNeg(m_Value(X))) || match(Src, m_FAbs(m_Value(X)))) { 1501 // cos(-x) -> cos(x) 1502 // cos(fabs(x)) -> cos(x) 1503 return replaceOperand(*II, 0, X); 1504 } 1505 break; 1506 } 1507 case Intrinsic::sin: { 1508 Value *X; 1509 if (match(II->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X))))) { 1510 // sin(-x) --> -sin(x) 1511 Value *NewSin = Builder.CreateUnaryIntrinsic(Intrinsic::sin, X, II); 1512 Instruction *FNeg = UnaryOperator::CreateFNeg(NewSin); 1513 FNeg->copyFastMathFlags(II); 1514 return FNeg; 1515 } 1516 break; 1517 } 1518 1519 case Intrinsic::arm_neon_vtbl1: 1520 case Intrinsic::aarch64_neon_tbl1: 1521 if (Value *V = simplifyNeonTbl1(*II, Builder)) 1522 return replaceInstUsesWith(*II, V); 1523 break; 1524 1525 case Intrinsic::arm_neon_vmulls: 1526 case Intrinsic::arm_neon_vmullu: 1527 case Intrinsic::aarch64_neon_smull: 1528 case Intrinsic::aarch64_neon_umull: { 1529 Value *Arg0 = II->getArgOperand(0); 1530 Value *Arg1 = II->getArgOperand(1); 1531 1532 // Handle mul by zero first: 1533 if (isa<ConstantAggregateZero>(Arg0) || isa<ConstantAggregateZero>(Arg1)) { 1534 return replaceInstUsesWith(CI, ConstantAggregateZero::get(II->getType())); 1535 } 1536 1537 // Check for constant LHS & RHS - in this case we just simplify. 1538 bool Zext = (IID == Intrinsic::arm_neon_vmullu || 1539 IID == Intrinsic::aarch64_neon_umull); 1540 VectorType *NewVT = cast<VectorType>(II->getType()); 1541 if (Constant *CV0 = dyn_cast<Constant>(Arg0)) { 1542 if (Constant *CV1 = dyn_cast<Constant>(Arg1)) { 1543 CV0 = ConstantExpr::getIntegerCast(CV0, NewVT, /*isSigned=*/!Zext); 1544 CV1 = ConstantExpr::getIntegerCast(CV1, NewVT, /*isSigned=*/!Zext); 1545 1546 return replaceInstUsesWith(CI, ConstantExpr::getMul(CV0, CV1)); 1547 } 1548 1549 // Couldn't simplify - canonicalize constant to the RHS. 1550 std::swap(Arg0, Arg1); 1551 } 1552 1553 // Handle mul by one: 1554 if (Constant *CV1 = dyn_cast<Constant>(Arg1)) 1555 if (ConstantInt *Splat = 1556 dyn_cast_or_null<ConstantInt>(CV1->getSplatValue())) 1557 if (Splat->isOne()) 1558 return CastInst::CreateIntegerCast(Arg0, II->getType(), 1559 /*isSigned=*/!Zext); 1560 1561 break; 1562 } 1563 case Intrinsic::arm_neon_aesd: 1564 case Intrinsic::arm_neon_aese: 1565 case Intrinsic::aarch64_crypto_aesd: 1566 case Intrinsic::aarch64_crypto_aese: { 1567 Value *DataArg = II->getArgOperand(0); 1568 Value *KeyArg = II->getArgOperand(1); 1569 1570 // Try to use the builtin XOR in AESE and AESD to eliminate a prior XOR 1571 Value *Data, *Key; 1572 if (match(KeyArg, m_ZeroInt()) && 1573 match(DataArg, m_Xor(m_Value(Data), m_Value(Key)))) { 1574 replaceOperand(*II, 0, Data); 1575 replaceOperand(*II, 1, Key); 1576 return II; 1577 } 1578 break; 1579 } 1580 case Intrinsic::hexagon_V6_vandvrt: 1581 case Intrinsic::hexagon_V6_vandvrt_128B: { 1582 // Simplify Q -> V -> Q conversion. 1583 if (auto Op0 = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) { 1584 Intrinsic::ID ID0 = Op0->getIntrinsicID(); 1585 if (ID0 != Intrinsic::hexagon_V6_vandqrt && 1586 ID0 != Intrinsic::hexagon_V6_vandqrt_128B) 1587 break; 1588 Value *Bytes = Op0->getArgOperand(1), *Mask = II->getArgOperand(1); 1589 uint64_t Bytes1 = computeKnownBits(Bytes, 0, Op0).One.getZExtValue(); 1590 uint64_t Mask1 = computeKnownBits(Mask, 0, II).One.getZExtValue(); 1591 // Check if every byte has common bits in Bytes and Mask. 1592 uint64_t C = Bytes1 & Mask1; 1593 if ((C & 0xFF) && (C & 0xFF00) && (C & 0xFF0000) && (C & 0xFF000000)) 1594 return replaceInstUsesWith(*II, Op0->getArgOperand(0)); 1595 } 1596 break; 1597 } 1598 case Intrinsic::stackrestore: { 1599 // If the save is right next to the restore, remove the restore. This can 1600 // happen when variable allocas are DCE'd. 1601 if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) { 1602 if (SS->getIntrinsicID() == Intrinsic::stacksave) { 1603 // Skip over debug info. 1604 if (SS->getNextNonDebugInstruction() == II) { 1605 return eraseInstFromFunction(CI); 1606 } 1607 } 1608 } 1609 1610 // Scan down this block to see if there is another stack restore in the 1611 // same block without an intervening call/alloca. 1612 BasicBlock::iterator BI(II); 1613 Instruction *TI = II->getParent()->getTerminator(); 1614 bool CannotRemove = false; 1615 for (++BI; &*BI != TI; ++BI) { 1616 if (isa<AllocaInst>(BI)) { 1617 CannotRemove = true; 1618 break; 1619 } 1620 if (CallInst *BCI = dyn_cast<CallInst>(BI)) { 1621 if (auto *II2 = dyn_cast<IntrinsicInst>(BCI)) { 1622 // If there is a stackrestore below this one, remove this one. 1623 if (II2->getIntrinsicID() == Intrinsic::stackrestore) 1624 return eraseInstFromFunction(CI); 1625 1626 // Bail if we cross over an intrinsic with side effects, such as 1627 // llvm.stacksave, or llvm.read_register. 1628 if (II2->mayHaveSideEffects()) { 1629 CannotRemove = true; 1630 break; 1631 } 1632 } else { 1633 // If we found a non-intrinsic call, we can't remove the stack 1634 // restore. 1635 CannotRemove = true; 1636 break; 1637 } 1638 } 1639 } 1640 1641 // If the stack restore is in a return, resume, or unwind block and if there 1642 // are no allocas or calls between the restore and the return, nuke the 1643 // restore. 1644 if (!CannotRemove && (isa<ReturnInst>(TI) || isa<ResumeInst>(TI))) 1645 return eraseInstFromFunction(CI); 1646 break; 1647 } 1648 case Intrinsic::lifetime_end: 1649 // Asan needs to poison memory to detect invalid access which is possible 1650 // even for empty lifetime range. 1651 if (II->getFunction()->hasFnAttribute(Attribute::SanitizeAddress) || 1652 II->getFunction()->hasFnAttribute(Attribute::SanitizeMemory) || 1653 II->getFunction()->hasFnAttribute(Attribute::SanitizeHWAddress)) 1654 break; 1655 1656 if (removeTriviallyEmptyRange(*II, *this, [](const IntrinsicInst &I) { 1657 return I.getIntrinsicID() == Intrinsic::lifetime_start; 1658 })) 1659 return nullptr; 1660 break; 1661 case Intrinsic::assume: { 1662 Value *IIOperand = II->getArgOperand(0); 1663 SmallVector<OperandBundleDef, 4> OpBundles; 1664 II->getOperandBundlesAsDefs(OpBundles); 1665 1666 /// This will remove the boolean Condition from the assume given as 1667 /// argument and remove the assume if it becomes useless. 1668 /// always returns nullptr for use as a return values. 1669 auto RemoveConditionFromAssume = [&](Instruction *Assume) -> Instruction * { 1670 assert(isa<AssumeInst>(Assume)); 1671 if (isAssumeWithEmptyBundle(*cast<AssumeInst>(II))) 1672 return eraseInstFromFunction(CI); 1673 replaceUse(II->getOperandUse(0), ConstantInt::getTrue(II->getContext())); 1674 return nullptr; 1675 }; 1676 // Remove an assume if it is followed by an identical assume. 1677 // TODO: Do we need this? Unless there are conflicting assumptions, the 1678 // computeKnownBits(IIOperand) below here eliminates redundant assumes. 1679 Instruction *Next = II->getNextNonDebugInstruction(); 1680 if (match(Next, m_Intrinsic<Intrinsic::assume>(m_Specific(IIOperand)))) 1681 return RemoveConditionFromAssume(Next); 1682 1683 // Canonicalize assume(a && b) -> assume(a); assume(b); 1684 // Note: New assumption intrinsics created here are registered by 1685 // the InstCombineIRInserter object. 1686 FunctionType *AssumeIntrinsicTy = II->getFunctionType(); 1687 Value *AssumeIntrinsic = II->getCalledOperand(); 1688 Value *A, *B; 1689 if (match(IIOperand, m_LogicalAnd(m_Value(A), m_Value(B)))) { 1690 Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, A, OpBundles, 1691 II->getName()); 1692 Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, B, II->getName()); 1693 return eraseInstFromFunction(*II); 1694 } 1695 // assume(!(a || b)) -> assume(!a); assume(!b); 1696 if (match(IIOperand, m_Not(m_LogicalOr(m_Value(A), m_Value(B))))) { 1697 Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, 1698 Builder.CreateNot(A), OpBundles, II->getName()); 1699 Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, 1700 Builder.CreateNot(B), II->getName()); 1701 return eraseInstFromFunction(*II); 1702 } 1703 1704 // assume( (load addr) != null ) -> add 'nonnull' metadata to load 1705 // (if assume is valid at the load) 1706 CmpInst::Predicate Pred; 1707 Instruction *LHS; 1708 if (match(IIOperand, m_ICmp(Pred, m_Instruction(LHS), m_Zero())) && 1709 Pred == ICmpInst::ICMP_NE && LHS->getOpcode() == Instruction::Load && 1710 LHS->getType()->isPointerTy() && 1711 isValidAssumeForContext(II, LHS, &DT)) { 1712 MDNode *MD = MDNode::get(II->getContext(), None); 1713 LHS->setMetadata(LLVMContext::MD_nonnull, MD); 1714 return RemoveConditionFromAssume(II); 1715 1716 // TODO: apply nonnull return attributes to calls and invokes 1717 // TODO: apply range metadata for range check patterns? 1718 } 1719 1720 // Convert nonnull assume like: 1721 // %A = icmp ne i32* %PTR, null 1722 // call void @llvm.assume(i1 %A) 1723 // into 1724 // call void @llvm.assume(i1 true) [ "nonnull"(i32* %PTR) ] 1725 if (EnableKnowledgeRetention && 1726 match(IIOperand, m_Cmp(Pred, m_Value(A), m_Zero())) && 1727 Pred == CmpInst::ICMP_NE && A->getType()->isPointerTy()) { 1728 if (auto *Replacement = buildAssumeFromKnowledge( 1729 {RetainedKnowledge{Attribute::NonNull, 0, A}}, Next, &AC, &DT)) { 1730 1731 Replacement->insertBefore(Next); 1732 AC.registerAssumption(Replacement); 1733 return RemoveConditionFromAssume(II); 1734 } 1735 } 1736 1737 // Convert alignment assume like: 1738 // %B = ptrtoint i32* %A to i64 1739 // %C = and i64 %B, Constant 1740 // %D = icmp eq i64 %C, 0 1741 // call void @llvm.assume(i1 %D) 1742 // into 1743 // call void @llvm.assume(i1 true) [ "align"(i32* [[A]], i64 Constant + 1)] 1744 uint64_t AlignMask; 1745 if (EnableKnowledgeRetention && 1746 match(IIOperand, 1747 m_Cmp(Pred, m_And(m_Value(A), m_ConstantInt(AlignMask)), 1748 m_Zero())) && 1749 Pred == CmpInst::ICMP_EQ) { 1750 if (isPowerOf2_64(AlignMask + 1)) { 1751 uint64_t Offset = 0; 1752 match(A, m_Add(m_Value(A), m_ConstantInt(Offset))); 1753 if (match(A, m_PtrToInt(m_Value(A)))) { 1754 /// Note: this doesn't preserve the offset information but merges 1755 /// offset and alignment. 1756 /// TODO: we can generate a GEP instead of merging the alignment with 1757 /// the offset. 1758 RetainedKnowledge RK{Attribute::Alignment, 1759 (unsigned)MinAlign(Offset, AlignMask + 1), A}; 1760 if (auto *Replacement = 1761 buildAssumeFromKnowledge(RK, Next, &AC, &DT)) { 1762 1763 Replacement->insertAfter(II); 1764 AC.registerAssumption(Replacement); 1765 } 1766 return RemoveConditionFromAssume(II); 1767 } 1768 } 1769 } 1770 1771 /// Canonicalize Knowledge in operand bundles. 1772 if (EnableKnowledgeRetention && II->hasOperandBundles()) { 1773 for (unsigned Idx = 0; Idx < II->getNumOperandBundles(); Idx++) { 1774 auto &BOI = II->bundle_op_info_begin()[Idx]; 1775 RetainedKnowledge RK = 1776 llvm::getKnowledgeFromBundle(cast<AssumeInst>(*II), BOI); 1777 if (BOI.End - BOI.Begin > 2) 1778 continue; // Prevent reducing knowledge in an align with offset since 1779 // extracting a RetainedKnowledge form them looses offset 1780 // information 1781 RetainedKnowledge CanonRK = 1782 llvm::simplifyRetainedKnowledge(cast<AssumeInst>(II), RK, 1783 &getAssumptionCache(), 1784 &getDominatorTree()); 1785 if (CanonRK == RK) 1786 continue; 1787 if (!CanonRK) { 1788 if (BOI.End - BOI.Begin > 0) { 1789 Worklist.pushValue(II->op_begin()[BOI.Begin]); 1790 Value::dropDroppableUse(II->op_begin()[BOI.Begin]); 1791 } 1792 continue; 1793 } 1794 assert(RK.AttrKind == CanonRK.AttrKind); 1795 if (BOI.End - BOI.Begin > 0) 1796 II->op_begin()[BOI.Begin].set(CanonRK.WasOn); 1797 if (BOI.End - BOI.Begin > 1) 1798 II->op_begin()[BOI.Begin + 1].set(ConstantInt::get( 1799 Type::getInt64Ty(II->getContext()), CanonRK.ArgValue)); 1800 if (RK.WasOn) 1801 Worklist.pushValue(RK.WasOn); 1802 return II; 1803 } 1804 } 1805 1806 // If there is a dominating assume with the same condition as this one, 1807 // then this one is redundant, and should be removed. 1808 KnownBits Known(1); 1809 computeKnownBits(IIOperand, Known, 0, II); 1810 if (Known.isAllOnes() && isAssumeWithEmptyBundle(cast<AssumeInst>(*II))) 1811 return eraseInstFromFunction(*II); 1812 1813 // Update the cache of affected values for this assumption (we might be 1814 // here because we just simplified the condition). 1815 AC.updateAffectedValues(cast<AssumeInst>(II)); 1816 break; 1817 } 1818 case Intrinsic::experimental_guard: { 1819 // Is this guard followed by another guard? We scan forward over a small 1820 // fixed window of instructions to handle common cases with conditions 1821 // computed between guards. 1822 Instruction *NextInst = II->getNextNonDebugInstruction(); 1823 for (unsigned i = 0; i < GuardWideningWindow; i++) { 1824 // Note: Using context-free form to avoid compile time blow up 1825 if (!isSafeToSpeculativelyExecute(NextInst)) 1826 break; 1827 NextInst = NextInst->getNextNonDebugInstruction(); 1828 } 1829 Value *NextCond = nullptr; 1830 if (match(NextInst, 1831 m_Intrinsic<Intrinsic::experimental_guard>(m_Value(NextCond)))) { 1832 Value *CurrCond = II->getArgOperand(0); 1833 1834 // Remove a guard that it is immediately preceded by an identical guard. 1835 // Otherwise canonicalize guard(a); guard(b) -> guard(a & b). 1836 if (CurrCond != NextCond) { 1837 Instruction *MoveI = II->getNextNonDebugInstruction(); 1838 while (MoveI != NextInst) { 1839 auto *Temp = MoveI; 1840 MoveI = MoveI->getNextNonDebugInstruction(); 1841 Temp->moveBefore(II); 1842 } 1843 replaceOperand(*II, 0, Builder.CreateAnd(CurrCond, NextCond)); 1844 } 1845 eraseInstFromFunction(*NextInst); 1846 return II; 1847 } 1848 break; 1849 } 1850 case Intrinsic::experimental_vector_insert: { 1851 Value *Vec = II->getArgOperand(0); 1852 Value *SubVec = II->getArgOperand(1); 1853 Value *Idx = II->getArgOperand(2); 1854 auto *DstTy = dyn_cast<FixedVectorType>(II->getType()); 1855 auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType()); 1856 auto *SubVecTy = dyn_cast<FixedVectorType>(SubVec->getType()); 1857 1858 // Only canonicalize if the destination vector, Vec, and SubVec are all 1859 // fixed vectors. 1860 if (DstTy && VecTy && SubVecTy) { 1861 unsigned DstNumElts = DstTy->getNumElements(); 1862 unsigned VecNumElts = VecTy->getNumElements(); 1863 unsigned SubVecNumElts = SubVecTy->getNumElements(); 1864 unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue(); 1865 1866 // The result of this call is undefined if IdxN is not a constant multiple 1867 // of the SubVec's minimum vector length OR the insertion overruns Vec. 1868 if (IdxN % SubVecNumElts != 0 || IdxN + SubVecNumElts > VecNumElts) { 1869 replaceInstUsesWith(CI, UndefValue::get(CI.getType())); 1870 return eraseInstFromFunction(CI); 1871 } 1872 1873 // An insert that entirely overwrites Vec with SubVec is a nop. 1874 if (VecNumElts == SubVecNumElts) { 1875 replaceInstUsesWith(CI, SubVec); 1876 return eraseInstFromFunction(CI); 1877 } 1878 1879 // Widen SubVec into a vector of the same width as Vec, since 1880 // shufflevector requires the two input vectors to be the same width. 1881 // Elements beyond the bounds of SubVec within the widened vector are 1882 // undefined. 1883 SmallVector<int, 8> WidenMask; 1884 unsigned i; 1885 for (i = 0; i != SubVecNumElts; ++i) 1886 WidenMask.push_back(i); 1887 for (; i != VecNumElts; ++i) 1888 WidenMask.push_back(UndefMaskElem); 1889 1890 Value *WidenShuffle = Builder.CreateShuffleVector(SubVec, WidenMask); 1891 1892 SmallVector<int, 8> Mask; 1893 for (unsigned i = 0; i != IdxN; ++i) 1894 Mask.push_back(i); 1895 for (unsigned i = DstNumElts; i != DstNumElts + SubVecNumElts; ++i) 1896 Mask.push_back(i); 1897 for (unsigned i = IdxN + SubVecNumElts; i != DstNumElts; ++i) 1898 Mask.push_back(i); 1899 1900 Value *Shuffle = Builder.CreateShuffleVector(Vec, WidenShuffle, Mask); 1901 replaceInstUsesWith(CI, Shuffle); 1902 return eraseInstFromFunction(CI); 1903 } 1904 break; 1905 } 1906 case Intrinsic::experimental_vector_extract: { 1907 Value *Vec = II->getArgOperand(0); 1908 Value *Idx = II->getArgOperand(1); 1909 1910 auto *DstTy = dyn_cast<FixedVectorType>(II->getType()); 1911 auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType()); 1912 1913 // Only canonicalize if the the destination vector and Vec are fixed 1914 // vectors. 1915 if (DstTy && VecTy) { 1916 unsigned DstNumElts = DstTy->getNumElements(); 1917 unsigned VecNumElts = VecTy->getNumElements(); 1918 unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue(); 1919 1920 // The result of this call is undefined if IdxN is not a constant multiple 1921 // of the result type's minimum vector length OR the extraction overruns 1922 // Vec. 1923 if (IdxN % DstNumElts != 0 || IdxN + DstNumElts > VecNumElts) { 1924 replaceInstUsesWith(CI, UndefValue::get(CI.getType())); 1925 return eraseInstFromFunction(CI); 1926 } 1927 1928 // Extracting the entirety of Vec is a nop. 1929 if (VecNumElts == DstNumElts) { 1930 replaceInstUsesWith(CI, Vec); 1931 return eraseInstFromFunction(CI); 1932 } 1933 1934 SmallVector<int, 8> Mask; 1935 for (unsigned i = 0; i != DstNumElts; ++i) 1936 Mask.push_back(IdxN + i); 1937 1938 Value *Shuffle = 1939 Builder.CreateShuffleVector(Vec, UndefValue::get(VecTy), Mask); 1940 replaceInstUsesWith(CI, Shuffle); 1941 return eraseInstFromFunction(CI); 1942 } 1943 break; 1944 } 1945 case Intrinsic::vector_reduce_or: 1946 case Intrinsic::vector_reduce_and: { 1947 // Canonicalize logical or/and reductions: 1948 // Or reduction for i1 is represented as: 1949 // %val = bitcast <ReduxWidth x i1> to iReduxWidth 1950 // %res = cmp ne iReduxWidth %val, 0 1951 // And reduction for i1 is represented as: 1952 // %val = bitcast <ReduxWidth x i1> to iReduxWidth 1953 // %res = cmp eq iReduxWidth %val, 11111 1954 Value *Arg = II->getArgOperand(0); 1955 Type *RetTy = II->getType(); 1956 if (RetTy == Builder.getInt1Ty()) 1957 if (auto *FVTy = dyn_cast<FixedVectorType>(Arg->getType())) { 1958 Value *Res = Builder.CreateBitCast( 1959 Arg, Builder.getIntNTy(FVTy->getNumElements())); 1960 if (IID == Intrinsic::vector_reduce_and) { 1961 Res = Builder.CreateICmpEQ( 1962 Res, ConstantInt::getAllOnesValue(Res->getType())); 1963 } else { 1964 assert(IID == Intrinsic::vector_reduce_or && 1965 "Expected or reduction."); 1966 Res = Builder.CreateIsNotNull(Res); 1967 } 1968 replaceInstUsesWith(CI, Res); 1969 return eraseInstFromFunction(CI); 1970 } 1971 break; 1972 } 1973 default: { 1974 // Handle target specific intrinsics 1975 Optional<Instruction *> V = targetInstCombineIntrinsic(*II); 1976 if (V.hasValue()) 1977 return V.getValue(); 1978 break; 1979 } 1980 } 1981 // Some intrinsics (like experimental_gc_statepoint) can be used in invoke 1982 // context, so it is handled in visitCallBase and we should trigger it. 1983 return visitCallBase(*II); 1984 } 1985 1986 // Fence instruction simplification 1987 Instruction *InstCombinerImpl::visitFenceInst(FenceInst &FI) { 1988 // Remove identical consecutive fences. 1989 Instruction *Next = FI.getNextNonDebugInstruction(); 1990 if (auto *NFI = dyn_cast<FenceInst>(Next)) 1991 if (FI.isIdenticalTo(NFI)) 1992 return eraseInstFromFunction(FI); 1993 return nullptr; 1994 } 1995 1996 // InvokeInst simplification 1997 Instruction *InstCombinerImpl::visitInvokeInst(InvokeInst &II) { 1998 return visitCallBase(II); 1999 } 2000 2001 // CallBrInst simplification 2002 Instruction *InstCombinerImpl::visitCallBrInst(CallBrInst &CBI) { 2003 return visitCallBase(CBI); 2004 } 2005 2006 /// If this cast does not affect the value passed through the varargs area, we 2007 /// can eliminate the use of the cast. 2008 static bool isSafeToEliminateVarargsCast(const CallBase &Call, 2009 const DataLayout &DL, 2010 const CastInst *const CI, 2011 const int ix) { 2012 if (!CI->isLosslessCast()) 2013 return false; 2014 2015 // If this is a GC intrinsic, avoid munging types. We need types for 2016 // statepoint reconstruction in SelectionDAG. 2017 // TODO: This is probably something which should be expanded to all 2018 // intrinsics since the entire point of intrinsics is that 2019 // they are understandable by the optimizer. 2020 if (isa<GCStatepointInst>(Call) || isa<GCRelocateInst>(Call) || 2021 isa<GCResultInst>(Call)) 2022 return false; 2023 2024 // The size of ByVal or InAlloca arguments is derived from the type, so we 2025 // can't change to a type with a different size. If the size were 2026 // passed explicitly we could avoid this check. 2027 if (!Call.isPassPointeeByValueArgument(ix)) 2028 return true; 2029 2030 Type* SrcTy = 2031 cast<PointerType>(CI->getOperand(0)->getType())->getElementType(); 2032 Type *DstTy = Call.isByValArgument(ix) 2033 ? Call.getParamByValType(ix) 2034 : cast<PointerType>(CI->getType())->getElementType(); 2035 if (!SrcTy->isSized() || !DstTy->isSized()) 2036 return false; 2037 if (DL.getTypeAllocSize(SrcTy) != DL.getTypeAllocSize(DstTy)) 2038 return false; 2039 return true; 2040 } 2041 2042 Instruction *InstCombinerImpl::tryOptimizeCall(CallInst *CI) { 2043 if (!CI->getCalledFunction()) return nullptr; 2044 2045 auto InstCombineRAUW = [this](Instruction *From, Value *With) { 2046 replaceInstUsesWith(*From, With); 2047 }; 2048 auto InstCombineErase = [this](Instruction *I) { 2049 eraseInstFromFunction(*I); 2050 }; 2051 LibCallSimplifier Simplifier(DL, &TLI, ORE, BFI, PSI, InstCombineRAUW, 2052 InstCombineErase); 2053 if (Value *With = Simplifier.optimizeCall(CI, Builder)) { 2054 ++NumSimplified; 2055 return CI->use_empty() ? CI : replaceInstUsesWith(*CI, With); 2056 } 2057 2058 return nullptr; 2059 } 2060 2061 static IntrinsicInst *findInitTrampolineFromAlloca(Value *TrampMem) { 2062 // Strip off at most one level of pointer casts, looking for an alloca. This 2063 // is good enough in practice and simpler than handling any number of casts. 2064 Value *Underlying = TrampMem->stripPointerCasts(); 2065 if (Underlying != TrampMem && 2066 (!Underlying->hasOneUse() || Underlying->user_back() != TrampMem)) 2067 return nullptr; 2068 if (!isa<AllocaInst>(Underlying)) 2069 return nullptr; 2070 2071 IntrinsicInst *InitTrampoline = nullptr; 2072 for (User *U : TrampMem->users()) { 2073 IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 2074 if (!II) 2075 return nullptr; 2076 if (II->getIntrinsicID() == Intrinsic::init_trampoline) { 2077 if (InitTrampoline) 2078 // More than one init_trampoline writes to this value. Give up. 2079 return nullptr; 2080 InitTrampoline = II; 2081 continue; 2082 } 2083 if (II->getIntrinsicID() == Intrinsic::adjust_trampoline) 2084 // Allow any number of calls to adjust.trampoline. 2085 continue; 2086 return nullptr; 2087 } 2088 2089 // No call to init.trampoline found. 2090 if (!InitTrampoline) 2091 return nullptr; 2092 2093 // Check that the alloca is being used in the expected way. 2094 if (InitTrampoline->getOperand(0) != TrampMem) 2095 return nullptr; 2096 2097 return InitTrampoline; 2098 } 2099 2100 static IntrinsicInst *findInitTrampolineFromBB(IntrinsicInst *AdjustTramp, 2101 Value *TrampMem) { 2102 // Visit all the previous instructions in the basic block, and try to find a 2103 // init.trampoline which has a direct path to the adjust.trampoline. 2104 for (BasicBlock::iterator I = AdjustTramp->getIterator(), 2105 E = AdjustTramp->getParent()->begin(); 2106 I != E;) { 2107 Instruction *Inst = &*--I; 2108 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 2109 if (II->getIntrinsicID() == Intrinsic::init_trampoline && 2110 II->getOperand(0) == TrampMem) 2111 return II; 2112 if (Inst->mayWriteToMemory()) 2113 return nullptr; 2114 } 2115 return nullptr; 2116 } 2117 2118 // Given a call to llvm.adjust.trampoline, find and return the corresponding 2119 // call to llvm.init.trampoline if the call to the trampoline can be optimized 2120 // to a direct call to a function. Otherwise return NULL. 2121 static IntrinsicInst *findInitTrampoline(Value *Callee) { 2122 Callee = Callee->stripPointerCasts(); 2123 IntrinsicInst *AdjustTramp = dyn_cast<IntrinsicInst>(Callee); 2124 if (!AdjustTramp || 2125 AdjustTramp->getIntrinsicID() != Intrinsic::adjust_trampoline) 2126 return nullptr; 2127 2128 Value *TrampMem = AdjustTramp->getOperand(0); 2129 2130 if (IntrinsicInst *IT = findInitTrampolineFromAlloca(TrampMem)) 2131 return IT; 2132 if (IntrinsicInst *IT = findInitTrampolineFromBB(AdjustTramp, TrampMem)) 2133 return IT; 2134 return nullptr; 2135 } 2136 2137 void InstCombinerImpl::annotateAnyAllocSite(CallBase &Call, const TargetLibraryInfo *TLI) { 2138 unsigned NumArgs = Call.getNumArgOperands(); 2139 ConstantInt *Op0C = dyn_cast<ConstantInt>(Call.getOperand(0)); 2140 ConstantInt *Op1C = 2141 (NumArgs == 1) ? nullptr : dyn_cast<ConstantInt>(Call.getOperand(1)); 2142 // Bail out if the allocation size is zero (or an invalid alignment of zero 2143 // with aligned_alloc). 2144 if ((Op0C && Op0C->isNullValue()) || (Op1C && Op1C->isNullValue())) 2145 return; 2146 2147 if (isMallocLikeFn(&Call, TLI) && Op0C) { 2148 if (isOpNewLikeFn(&Call, TLI)) 2149 Call.addAttribute(AttributeList::ReturnIndex, 2150 Attribute::getWithDereferenceableBytes( 2151 Call.getContext(), Op0C->getZExtValue())); 2152 else 2153 Call.addAttribute(AttributeList::ReturnIndex, 2154 Attribute::getWithDereferenceableOrNullBytes( 2155 Call.getContext(), Op0C->getZExtValue())); 2156 } else if (isAlignedAllocLikeFn(&Call, TLI)) { 2157 if (Op1C) 2158 Call.addAttribute(AttributeList::ReturnIndex, 2159 Attribute::getWithDereferenceableOrNullBytes( 2160 Call.getContext(), Op1C->getZExtValue())); 2161 // Add alignment attribute if alignment is a power of two constant. 2162 if (Op0C && Op0C->getValue().ult(llvm::Value::MaximumAlignment) && 2163 isKnownNonZero(Call.getOperand(1), DL, 0, &AC, &Call, &DT)) { 2164 uint64_t AlignmentVal = Op0C->getZExtValue(); 2165 if (llvm::isPowerOf2_64(AlignmentVal)) { 2166 Call.removeAttribute(AttributeList::ReturnIndex, Attribute::Alignment); 2167 Call.addAttribute(AttributeList::ReturnIndex, 2168 Attribute::getWithAlignment(Call.getContext(), 2169 Align(AlignmentVal))); 2170 } 2171 } 2172 } else if (isReallocLikeFn(&Call, TLI) && Op1C) { 2173 Call.addAttribute(AttributeList::ReturnIndex, 2174 Attribute::getWithDereferenceableOrNullBytes( 2175 Call.getContext(), Op1C->getZExtValue())); 2176 } else if (isCallocLikeFn(&Call, TLI) && Op0C && Op1C) { 2177 bool Overflow; 2178 const APInt &N = Op0C->getValue(); 2179 APInt Size = N.umul_ov(Op1C->getValue(), Overflow); 2180 if (!Overflow) 2181 Call.addAttribute(AttributeList::ReturnIndex, 2182 Attribute::getWithDereferenceableOrNullBytes( 2183 Call.getContext(), Size.getZExtValue())); 2184 } else if (isStrdupLikeFn(&Call, TLI)) { 2185 uint64_t Len = GetStringLength(Call.getOperand(0)); 2186 if (Len) { 2187 // strdup 2188 if (NumArgs == 1) 2189 Call.addAttribute(AttributeList::ReturnIndex, 2190 Attribute::getWithDereferenceableOrNullBytes( 2191 Call.getContext(), Len)); 2192 // strndup 2193 else if (NumArgs == 2 && Op1C) 2194 Call.addAttribute( 2195 AttributeList::ReturnIndex, 2196 Attribute::getWithDereferenceableOrNullBytes( 2197 Call.getContext(), std::min(Len, Op1C->getZExtValue() + 1))); 2198 } 2199 } 2200 } 2201 2202 /// Improvements for call, callbr and invoke instructions. 2203 Instruction *InstCombinerImpl::visitCallBase(CallBase &Call) { 2204 if (isAllocationFn(&Call, &TLI)) 2205 annotateAnyAllocSite(Call, &TLI); 2206 2207 bool Changed = false; 2208 2209 // Mark any parameters that are known to be non-null with the nonnull 2210 // attribute. This is helpful for inlining calls to functions with null 2211 // checks on their arguments. 2212 SmallVector<unsigned, 4> ArgNos; 2213 unsigned ArgNo = 0; 2214 2215 for (Value *V : Call.args()) { 2216 if (V->getType()->isPointerTy() && 2217 !Call.paramHasAttr(ArgNo, Attribute::NonNull) && 2218 isKnownNonZero(V, DL, 0, &AC, &Call, &DT)) 2219 ArgNos.push_back(ArgNo); 2220 ArgNo++; 2221 } 2222 2223 assert(ArgNo == Call.arg_size() && "sanity check"); 2224 2225 if (!ArgNos.empty()) { 2226 AttributeList AS = Call.getAttributes(); 2227 LLVMContext &Ctx = Call.getContext(); 2228 AS = AS.addParamAttribute(Ctx, ArgNos, 2229 Attribute::get(Ctx, Attribute::NonNull)); 2230 Call.setAttributes(AS); 2231 Changed = true; 2232 } 2233 2234 // If the callee is a pointer to a function, attempt to move any casts to the 2235 // arguments of the call/callbr/invoke. 2236 Value *Callee = Call.getCalledOperand(); 2237 if (!isa<Function>(Callee) && transformConstExprCastCall(Call)) 2238 return nullptr; 2239 2240 if (Function *CalleeF = dyn_cast<Function>(Callee)) { 2241 // Remove the convergent attr on calls when the callee is not convergent. 2242 if (Call.isConvergent() && !CalleeF->isConvergent() && 2243 !CalleeF->isIntrinsic()) { 2244 LLVM_DEBUG(dbgs() << "Removing convergent attr from instr " << Call 2245 << "\n"); 2246 Call.setNotConvergent(); 2247 return &Call; 2248 } 2249 2250 // If the call and callee calling conventions don't match, and neither one 2251 // of the calling conventions is compatible with C calling convention 2252 // this call must be unreachable, as the call is undefined. 2253 if ((CalleeF->getCallingConv() != Call.getCallingConv() && 2254 !(CalleeF->getCallingConv() == llvm::CallingConv::C && 2255 TargetLibraryInfoImpl::isCallingConvCCompatible(&Call)) && 2256 !(Call.getCallingConv() == llvm::CallingConv::C && 2257 TargetLibraryInfoImpl::isCallingConvCCompatible(CalleeF))) && 2258 // Only do this for calls to a function with a body. A prototype may 2259 // not actually end up matching the implementation's calling conv for a 2260 // variety of reasons (e.g. it may be written in assembly). 2261 !CalleeF->isDeclaration()) { 2262 Instruction *OldCall = &Call; 2263 CreateNonTerminatorUnreachable(OldCall); 2264 // If OldCall does not return void then replaceInstUsesWith undef. 2265 // This allows ValueHandlers and custom metadata to adjust itself. 2266 if (!OldCall->getType()->isVoidTy()) 2267 replaceInstUsesWith(*OldCall, UndefValue::get(OldCall->getType())); 2268 if (isa<CallInst>(OldCall)) 2269 return eraseInstFromFunction(*OldCall); 2270 2271 // We cannot remove an invoke or a callbr, because it would change thexi 2272 // CFG, just change the callee to a null pointer. 2273 cast<CallBase>(OldCall)->setCalledFunction( 2274 CalleeF->getFunctionType(), 2275 Constant::getNullValue(CalleeF->getType())); 2276 return nullptr; 2277 } 2278 } 2279 2280 if ((isa<ConstantPointerNull>(Callee) && 2281 !NullPointerIsDefined(Call.getFunction())) || 2282 isa<UndefValue>(Callee)) { 2283 // If Call does not return void then replaceInstUsesWith undef. 2284 // This allows ValueHandlers and custom metadata to adjust itself. 2285 if (!Call.getType()->isVoidTy()) 2286 replaceInstUsesWith(Call, UndefValue::get(Call.getType())); 2287 2288 if (Call.isTerminator()) { 2289 // Can't remove an invoke or callbr because we cannot change the CFG. 2290 return nullptr; 2291 } 2292 2293 // This instruction is not reachable, just remove it. 2294 CreateNonTerminatorUnreachable(&Call); 2295 return eraseInstFromFunction(Call); 2296 } 2297 2298 if (IntrinsicInst *II = findInitTrampoline(Callee)) 2299 return transformCallThroughTrampoline(Call, *II); 2300 2301 PointerType *PTy = cast<PointerType>(Callee->getType()); 2302 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 2303 if (FTy->isVarArg()) { 2304 int ix = FTy->getNumParams(); 2305 // See if we can optimize any arguments passed through the varargs area of 2306 // the call. 2307 for (auto I = Call.arg_begin() + FTy->getNumParams(), E = Call.arg_end(); 2308 I != E; ++I, ++ix) { 2309 CastInst *CI = dyn_cast<CastInst>(*I); 2310 if (CI && isSafeToEliminateVarargsCast(Call, DL, CI, ix)) { 2311 replaceUse(*I, CI->getOperand(0)); 2312 2313 // Update the byval type to match the argument type. 2314 if (Call.isByValArgument(ix)) { 2315 Call.removeParamAttr(ix, Attribute::ByVal); 2316 Call.addParamAttr( 2317 ix, Attribute::getWithByValType( 2318 Call.getContext(), 2319 CI->getOperand(0)->getType()->getPointerElementType())); 2320 } 2321 Changed = true; 2322 } 2323 } 2324 } 2325 2326 if (isa<InlineAsm>(Callee) && !Call.doesNotThrow()) { 2327 InlineAsm *IA = cast<InlineAsm>(Callee); 2328 if (!IA->canThrow()) { 2329 // Normal inline asm calls cannot throw - mark them 2330 // 'nounwind'. 2331 Call.setDoesNotThrow(); 2332 Changed = true; 2333 } 2334 } 2335 2336 // Try to optimize the call if possible, we require DataLayout for most of 2337 // this. None of these calls are seen as possibly dead so go ahead and 2338 // delete the instruction now. 2339 if (CallInst *CI = dyn_cast<CallInst>(&Call)) { 2340 Instruction *I = tryOptimizeCall(CI); 2341 // If we changed something return the result, etc. Otherwise let 2342 // the fallthrough check. 2343 if (I) return eraseInstFromFunction(*I); 2344 } 2345 2346 if (!Call.use_empty() && !Call.isMustTailCall()) 2347 if (Value *ReturnedArg = Call.getReturnedArgOperand()) { 2348 Type *CallTy = Call.getType(); 2349 Type *RetArgTy = ReturnedArg->getType(); 2350 if (RetArgTy->canLosslesslyBitCastTo(CallTy)) 2351 return replaceInstUsesWith( 2352 Call, Builder.CreateBitOrPointerCast(ReturnedArg, CallTy)); 2353 } 2354 2355 if (isAllocLikeFn(&Call, &TLI)) 2356 return visitAllocSite(Call); 2357 2358 // Handle intrinsics which can be used in both call and invoke context. 2359 switch (Call.getIntrinsicID()) { 2360 case Intrinsic::experimental_gc_statepoint: { 2361 GCStatepointInst &GCSP = *cast<GCStatepointInst>(&Call); 2362 SmallPtrSet<Value *, 32> LiveGcValues; 2363 for (const GCRelocateInst *Reloc : GCSP.getGCRelocates()) { 2364 GCRelocateInst &GCR = *const_cast<GCRelocateInst *>(Reloc); 2365 2366 // Remove the relocation if unused. 2367 if (GCR.use_empty()) { 2368 eraseInstFromFunction(GCR); 2369 continue; 2370 } 2371 2372 Value *DerivedPtr = GCR.getDerivedPtr(); 2373 Value *BasePtr = GCR.getBasePtr(); 2374 2375 // Undef is undef, even after relocation. 2376 if (isa<UndefValue>(DerivedPtr) || isa<UndefValue>(BasePtr)) { 2377 replaceInstUsesWith(GCR, UndefValue::get(GCR.getType())); 2378 eraseInstFromFunction(GCR); 2379 continue; 2380 } 2381 2382 if (auto *PT = dyn_cast<PointerType>(GCR.getType())) { 2383 // The relocation of null will be null for most any collector. 2384 // TODO: provide a hook for this in GCStrategy. There might be some 2385 // weird collector this property does not hold for. 2386 if (isa<ConstantPointerNull>(DerivedPtr)) { 2387 // Use null-pointer of gc_relocate's type to replace it. 2388 replaceInstUsesWith(GCR, ConstantPointerNull::get(PT)); 2389 eraseInstFromFunction(GCR); 2390 continue; 2391 } 2392 2393 // isKnownNonNull -> nonnull attribute 2394 if (!GCR.hasRetAttr(Attribute::NonNull) && 2395 isKnownNonZero(DerivedPtr, DL, 0, &AC, &Call, &DT)) { 2396 GCR.addAttribute(AttributeList::ReturnIndex, Attribute::NonNull); 2397 // We discovered new fact, re-check users. 2398 Worklist.pushUsersToWorkList(GCR); 2399 } 2400 } 2401 2402 // If we have two copies of the same pointer in the statepoint argument 2403 // list, canonicalize to one. This may let us common gc.relocates. 2404 if (GCR.getBasePtr() == GCR.getDerivedPtr() && 2405 GCR.getBasePtrIndex() != GCR.getDerivedPtrIndex()) { 2406 auto *OpIntTy = GCR.getOperand(2)->getType(); 2407 GCR.setOperand(2, ConstantInt::get(OpIntTy, GCR.getBasePtrIndex())); 2408 } 2409 2410 // TODO: bitcast(relocate(p)) -> relocate(bitcast(p)) 2411 // Canonicalize on the type from the uses to the defs 2412 2413 // TODO: relocate((gep p, C, C2, ...)) -> gep(relocate(p), C, C2, ...) 2414 LiveGcValues.insert(BasePtr); 2415 LiveGcValues.insert(DerivedPtr); 2416 } 2417 Optional<OperandBundleUse> Bundle = 2418 GCSP.getOperandBundle(LLVMContext::OB_gc_live); 2419 unsigned NumOfGCLives = LiveGcValues.size(); 2420 if (!Bundle.hasValue() || NumOfGCLives == Bundle->Inputs.size()) 2421 break; 2422 // We can reduce the size of gc live bundle. 2423 DenseMap<Value *, unsigned> Val2Idx; 2424 std::vector<Value *> NewLiveGc; 2425 for (unsigned I = 0, E = Bundle->Inputs.size(); I < E; ++I) { 2426 Value *V = Bundle->Inputs[I]; 2427 if (Val2Idx.count(V)) 2428 continue; 2429 if (LiveGcValues.count(V)) { 2430 Val2Idx[V] = NewLiveGc.size(); 2431 NewLiveGc.push_back(V); 2432 } else 2433 Val2Idx[V] = NumOfGCLives; 2434 } 2435 // Update all gc.relocates 2436 for (const GCRelocateInst *Reloc : GCSP.getGCRelocates()) { 2437 GCRelocateInst &GCR = *const_cast<GCRelocateInst *>(Reloc); 2438 Value *BasePtr = GCR.getBasePtr(); 2439 assert(Val2Idx.count(BasePtr) && Val2Idx[BasePtr] != NumOfGCLives && 2440 "Missed live gc for base pointer"); 2441 auto *OpIntTy1 = GCR.getOperand(1)->getType(); 2442 GCR.setOperand(1, ConstantInt::get(OpIntTy1, Val2Idx[BasePtr])); 2443 Value *DerivedPtr = GCR.getDerivedPtr(); 2444 assert(Val2Idx.count(DerivedPtr) && Val2Idx[DerivedPtr] != NumOfGCLives && 2445 "Missed live gc for derived pointer"); 2446 auto *OpIntTy2 = GCR.getOperand(2)->getType(); 2447 GCR.setOperand(2, ConstantInt::get(OpIntTy2, Val2Idx[DerivedPtr])); 2448 } 2449 // Create new statepoint instruction. 2450 OperandBundleDef NewBundle("gc-live", NewLiveGc); 2451 return CallBase::Create(&Call, NewBundle); 2452 } 2453 default: { break; } 2454 } 2455 2456 return Changed ? &Call : nullptr; 2457 } 2458 2459 /// If the callee is a constexpr cast of a function, attempt to move the cast to 2460 /// the arguments of the call/callbr/invoke. 2461 bool InstCombinerImpl::transformConstExprCastCall(CallBase &Call) { 2462 auto *Callee = 2463 dyn_cast<Function>(Call.getCalledOperand()->stripPointerCasts()); 2464 if (!Callee) 2465 return false; 2466 2467 // If this is a call to a thunk function, don't remove the cast. Thunks are 2468 // used to transparently forward all incoming parameters and outgoing return 2469 // values, so it's important to leave the cast in place. 2470 if (Callee->hasFnAttribute("thunk")) 2471 return false; 2472 2473 // If this is a musttail call, the callee's prototype must match the caller's 2474 // prototype with the exception of pointee types. The code below doesn't 2475 // implement that, so we can't do this transform. 2476 // TODO: Do the transform if it only requires adding pointer casts. 2477 if (Call.isMustTailCall()) 2478 return false; 2479 2480 Instruction *Caller = &Call; 2481 const AttributeList &CallerPAL = Call.getAttributes(); 2482 2483 // Okay, this is a cast from a function to a different type. Unless doing so 2484 // would cause a type conversion of one of our arguments, change this call to 2485 // be a direct call with arguments casted to the appropriate types. 2486 FunctionType *FT = Callee->getFunctionType(); 2487 Type *OldRetTy = Caller->getType(); 2488 Type *NewRetTy = FT->getReturnType(); 2489 2490 // Check to see if we are changing the return type... 2491 if (OldRetTy != NewRetTy) { 2492 2493 if (NewRetTy->isStructTy()) 2494 return false; // TODO: Handle multiple return values. 2495 2496 if (!CastInst::isBitOrNoopPointerCastable(NewRetTy, OldRetTy, DL)) { 2497 if (Callee->isDeclaration()) 2498 return false; // Cannot transform this return value. 2499 2500 if (!Caller->use_empty() && 2501 // void -> non-void is handled specially 2502 !NewRetTy->isVoidTy()) 2503 return false; // Cannot transform this return value. 2504 } 2505 2506 if (!CallerPAL.isEmpty() && !Caller->use_empty()) { 2507 AttrBuilder RAttrs(CallerPAL, AttributeList::ReturnIndex); 2508 if (RAttrs.overlaps(AttributeFuncs::typeIncompatible(NewRetTy))) 2509 return false; // Attribute not compatible with transformed value. 2510 } 2511 2512 // If the callbase is an invoke/callbr instruction, and the return value is 2513 // used by a PHI node in a successor, we cannot change the return type of 2514 // the call because there is no place to put the cast instruction (without 2515 // breaking the critical edge). Bail out in this case. 2516 if (!Caller->use_empty()) { 2517 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) 2518 for (User *U : II->users()) 2519 if (PHINode *PN = dyn_cast<PHINode>(U)) 2520 if (PN->getParent() == II->getNormalDest() || 2521 PN->getParent() == II->getUnwindDest()) 2522 return false; 2523 // FIXME: Be conservative for callbr to avoid a quadratic search. 2524 if (isa<CallBrInst>(Caller)) 2525 return false; 2526 } 2527 } 2528 2529 unsigned NumActualArgs = Call.arg_size(); 2530 unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs); 2531 2532 // Prevent us turning: 2533 // declare void @takes_i32_inalloca(i32* inalloca) 2534 // call void bitcast (void (i32*)* @takes_i32_inalloca to void (i32)*)(i32 0) 2535 // 2536 // into: 2537 // call void @takes_i32_inalloca(i32* null) 2538 // 2539 // Similarly, avoid folding away bitcasts of byval calls. 2540 if (Callee->getAttributes().hasAttrSomewhere(Attribute::InAlloca) || 2541 Callee->getAttributes().hasAttrSomewhere(Attribute::Preallocated) || 2542 Callee->getAttributes().hasAttrSomewhere(Attribute::ByVal)) 2543 return false; 2544 2545 auto AI = Call.arg_begin(); 2546 for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) { 2547 Type *ParamTy = FT->getParamType(i); 2548 Type *ActTy = (*AI)->getType(); 2549 2550 if (!CastInst::isBitOrNoopPointerCastable(ActTy, ParamTy, DL)) 2551 return false; // Cannot transform this parameter value. 2552 2553 if (AttrBuilder(CallerPAL.getParamAttributes(i)) 2554 .overlaps(AttributeFuncs::typeIncompatible(ParamTy))) 2555 return false; // Attribute not compatible with transformed value. 2556 2557 if (Call.isInAllocaArgument(i)) 2558 return false; // Cannot transform to and from inalloca. 2559 2560 if (CallerPAL.hasParamAttribute(i, Attribute::SwiftError)) 2561 return false; 2562 2563 // If the parameter is passed as a byval argument, then we have to have a 2564 // sized type and the sized type has to have the same size as the old type. 2565 if (ParamTy != ActTy && CallerPAL.hasParamAttribute(i, Attribute::ByVal)) { 2566 PointerType *ParamPTy = dyn_cast<PointerType>(ParamTy); 2567 if (!ParamPTy || !ParamPTy->getElementType()->isSized()) 2568 return false; 2569 2570 Type *CurElTy = Call.getParamByValType(i); 2571 if (DL.getTypeAllocSize(CurElTy) != 2572 DL.getTypeAllocSize(ParamPTy->getElementType())) 2573 return false; 2574 } 2575 } 2576 2577 if (Callee->isDeclaration()) { 2578 // Do not delete arguments unless we have a function body. 2579 if (FT->getNumParams() < NumActualArgs && !FT->isVarArg()) 2580 return false; 2581 2582 // If the callee is just a declaration, don't change the varargsness of the 2583 // call. We don't want to introduce a varargs call where one doesn't 2584 // already exist. 2585 PointerType *APTy = cast<PointerType>(Call.getCalledOperand()->getType()); 2586 if (FT->isVarArg()!=cast<FunctionType>(APTy->getElementType())->isVarArg()) 2587 return false; 2588 2589 // If both the callee and the cast type are varargs, we still have to make 2590 // sure the number of fixed parameters are the same or we have the same 2591 // ABI issues as if we introduce a varargs call. 2592 if (FT->isVarArg() && 2593 cast<FunctionType>(APTy->getElementType())->isVarArg() && 2594 FT->getNumParams() != 2595 cast<FunctionType>(APTy->getElementType())->getNumParams()) 2596 return false; 2597 } 2598 2599 if (FT->getNumParams() < NumActualArgs && FT->isVarArg() && 2600 !CallerPAL.isEmpty()) { 2601 // In this case we have more arguments than the new function type, but we 2602 // won't be dropping them. Check that these extra arguments have attributes 2603 // that are compatible with being a vararg call argument. 2604 unsigned SRetIdx; 2605 if (CallerPAL.hasAttrSomewhere(Attribute::StructRet, &SRetIdx) && 2606 SRetIdx > FT->getNumParams()) 2607 return false; 2608 } 2609 2610 // Okay, we decided that this is a safe thing to do: go ahead and start 2611 // inserting cast instructions as necessary. 2612 SmallVector<Value *, 8> Args; 2613 SmallVector<AttributeSet, 8> ArgAttrs; 2614 Args.reserve(NumActualArgs); 2615 ArgAttrs.reserve(NumActualArgs); 2616 2617 // Get any return attributes. 2618 AttrBuilder RAttrs(CallerPAL, AttributeList::ReturnIndex); 2619 2620 // If the return value is not being used, the type may not be compatible 2621 // with the existing attributes. Wipe out any problematic attributes. 2622 RAttrs.remove(AttributeFuncs::typeIncompatible(NewRetTy)); 2623 2624 LLVMContext &Ctx = Call.getContext(); 2625 AI = Call.arg_begin(); 2626 for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) { 2627 Type *ParamTy = FT->getParamType(i); 2628 2629 Value *NewArg = *AI; 2630 if ((*AI)->getType() != ParamTy) 2631 NewArg = Builder.CreateBitOrPointerCast(*AI, ParamTy); 2632 Args.push_back(NewArg); 2633 2634 // Add any parameter attributes. 2635 if (CallerPAL.hasParamAttribute(i, Attribute::ByVal)) { 2636 AttrBuilder AB(CallerPAL.getParamAttributes(i)); 2637 AB.addByValAttr(NewArg->getType()->getPointerElementType()); 2638 ArgAttrs.push_back(AttributeSet::get(Ctx, AB)); 2639 } else 2640 ArgAttrs.push_back(CallerPAL.getParamAttributes(i)); 2641 } 2642 2643 // If the function takes more arguments than the call was taking, add them 2644 // now. 2645 for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i) { 2646 Args.push_back(Constant::getNullValue(FT->getParamType(i))); 2647 ArgAttrs.push_back(AttributeSet()); 2648 } 2649 2650 // If we are removing arguments to the function, emit an obnoxious warning. 2651 if (FT->getNumParams() < NumActualArgs) { 2652 // TODO: if (!FT->isVarArg()) this call may be unreachable. PR14722 2653 if (FT->isVarArg()) { 2654 // Add all of the arguments in their promoted form to the arg list. 2655 for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) { 2656 Type *PTy = getPromotedType((*AI)->getType()); 2657 Value *NewArg = *AI; 2658 if (PTy != (*AI)->getType()) { 2659 // Must promote to pass through va_arg area! 2660 Instruction::CastOps opcode = 2661 CastInst::getCastOpcode(*AI, false, PTy, false); 2662 NewArg = Builder.CreateCast(opcode, *AI, PTy); 2663 } 2664 Args.push_back(NewArg); 2665 2666 // Add any parameter attributes. 2667 ArgAttrs.push_back(CallerPAL.getParamAttributes(i)); 2668 } 2669 } 2670 } 2671 2672 AttributeSet FnAttrs = CallerPAL.getFnAttributes(); 2673 2674 if (NewRetTy->isVoidTy()) 2675 Caller->setName(""); // Void type should not have a name. 2676 2677 assert((ArgAttrs.size() == FT->getNumParams() || FT->isVarArg()) && 2678 "missing argument attributes"); 2679 AttributeList NewCallerPAL = AttributeList::get( 2680 Ctx, FnAttrs, AttributeSet::get(Ctx, RAttrs), ArgAttrs); 2681 2682 SmallVector<OperandBundleDef, 1> OpBundles; 2683 Call.getOperandBundlesAsDefs(OpBundles); 2684 2685 CallBase *NewCall; 2686 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) { 2687 NewCall = Builder.CreateInvoke(Callee, II->getNormalDest(), 2688 II->getUnwindDest(), Args, OpBundles); 2689 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(Caller)) { 2690 NewCall = Builder.CreateCallBr(Callee, CBI->getDefaultDest(), 2691 CBI->getIndirectDests(), Args, OpBundles); 2692 } else { 2693 NewCall = Builder.CreateCall(Callee, Args, OpBundles); 2694 cast<CallInst>(NewCall)->setTailCallKind( 2695 cast<CallInst>(Caller)->getTailCallKind()); 2696 } 2697 NewCall->takeName(Caller); 2698 NewCall->setCallingConv(Call.getCallingConv()); 2699 NewCall->setAttributes(NewCallerPAL); 2700 2701 // Preserve prof metadata if any. 2702 NewCall->copyMetadata(*Caller, {LLVMContext::MD_prof}); 2703 2704 // Insert a cast of the return type as necessary. 2705 Instruction *NC = NewCall; 2706 Value *NV = NC; 2707 if (OldRetTy != NV->getType() && !Caller->use_empty()) { 2708 if (!NV->getType()->isVoidTy()) { 2709 NV = NC = CastInst::CreateBitOrPointerCast(NC, OldRetTy); 2710 NC->setDebugLoc(Caller->getDebugLoc()); 2711 2712 // If this is an invoke/callbr instruction, we should insert it after the 2713 // first non-phi instruction in the normal successor block. 2714 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) { 2715 BasicBlock::iterator I = II->getNormalDest()->getFirstInsertionPt(); 2716 InsertNewInstBefore(NC, *I); 2717 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(Caller)) { 2718 BasicBlock::iterator I = CBI->getDefaultDest()->getFirstInsertionPt(); 2719 InsertNewInstBefore(NC, *I); 2720 } else { 2721 // Otherwise, it's a call, just insert cast right after the call. 2722 InsertNewInstBefore(NC, *Caller); 2723 } 2724 Worklist.pushUsersToWorkList(*Caller); 2725 } else { 2726 NV = UndefValue::get(Caller->getType()); 2727 } 2728 } 2729 2730 if (!Caller->use_empty()) 2731 replaceInstUsesWith(*Caller, NV); 2732 else if (Caller->hasValueHandle()) { 2733 if (OldRetTy == NV->getType()) 2734 ValueHandleBase::ValueIsRAUWd(Caller, NV); 2735 else 2736 // We cannot call ValueIsRAUWd with a different type, and the 2737 // actual tracked value will disappear. 2738 ValueHandleBase::ValueIsDeleted(Caller); 2739 } 2740 2741 eraseInstFromFunction(*Caller); 2742 return true; 2743 } 2744 2745 /// Turn a call to a function created by init_trampoline / adjust_trampoline 2746 /// intrinsic pair into a direct call to the underlying function. 2747 Instruction * 2748 InstCombinerImpl::transformCallThroughTrampoline(CallBase &Call, 2749 IntrinsicInst &Tramp) { 2750 Value *Callee = Call.getCalledOperand(); 2751 Type *CalleeTy = Callee->getType(); 2752 FunctionType *FTy = Call.getFunctionType(); 2753 AttributeList Attrs = Call.getAttributes(); 2754 2755 // If the call already has the 'nest' attribute somewhere then give up - 2756 // otherwise 'nest' would occur twice after splicing in the chain. 2757 if (Attrs.hasAttrSomewhere(Attribute::Nest)) 2758 return nullptr; 2759 2760 Function *NestF = cast<Function>(Tramp.getArgOperand(1)->stripPointerCasts()); 2761 FunctionType *NestFTy = NestF->getFunctionType(); 2762 2763 AttributeList NestAttrs = NestF->getAttributes(); 2764 if (!NestAttrs.isEmpty()) { 2765 unsigned NestArgNo = 0; 2766 Type *NestTy = nullptr; 2767 AttributeSet NestAttr; 2768 2769 // Look for a parameter marked with the 'nest' attribute. 2770 for (FunctionType::param_iterator I = NestFTy->param_begin(), 2771 E = NestFTy->param_end(); 2772 I != E; ++NestArgNo, ++I) { 2773 AttributeSet AS = NestAttrs.getParamAttributes(NestArgNo); 2774 if (AS.hasAttribute(Attribute::Nest)) { 2775 // Record the parameter type and any other attributes. 2776 NestTy = *I; 2777 NestAttr = AS; 2778 break; 2779 } 2780 } 2781 2782 if (NestTy) { 2783 std::vector<Value*> NewArgs; 2784 std::vector<AttributeSet> NewArgAttrs; 2785 NewArgs.reserve(Call.arg_size() + 1); 2786 NewArgAttrs.reserve(Call.arg_size()); 2787 2788 // Insert the nest argument into the call argument list, which may 2789 // mean appending it. Likewise for attributes. 2790 2791 { 2792 unsigned ArgNo = 0; 2793 auto I = Call.arg_begin(), E = Call.arg_end(); 2794 do { 2795 if (ArgNo == NestArgNo) { 2796 // Add the chain argument and attributes. 2797 Value *NestVal = Tramp.getArgOperand(2); 2798 if (NestVal->getType() != NestTy) 2799 NestVal = Builder.CreateBitCast(NestVal, NestTy, "nest"); 2800 NewArgs.push_back(NestVal); 2801 NewArgAttrs.push_back(NestAttr); 2802 } 2803 2804 if (I == E) 2805 break; 2806 2807 // Add the original argument and attributes. 2808 NewArgs.push_back(*I); 2809 NewArgAttrs.push_back(Attrs.getParamAttributes(ArgNo)); 2810 2811 ++ArgNo; 2812 ++I; 2813 } while (true); 2814 } 2815 2816 // The trampoline may have been bitcast to a bogus type (FTy). 2817 // Handle this by synthesizing a new function type, equal to FTy 2818 // with the chain parameter inserted. 2819 2820 std::vector<Type*> NewTypes; 2821 NewTypes.reserve(FTy->getNumParams()+1); 2822 2823 // Insert the chain's type into the list of parameter types, which may 2824 // mean appending it. 2825 { 2826 unsigned ArgNo = 0; 2827 FunctionType::param_iterator I = FTy->param_begin(), 2828 E = FTy->param_end(); 2829 2830 do { 2831 if (ArgNo == NestArgNo) 2832 // Add the chain's type. 2833 NewTypes.push_back(NestTy); 2834 2835 if (I == E) 2836 break; 2837 2838 // Add the original type. 2839 NewTypes.push_back(*I); 2840 2841 ++ArgNo; 2842 ++I; 2843 } while (true); 2844 } 2845 2846 // Replace the trampoline call with a direct call. Let the generic 2847 // code sort out any function type mismatches. 2848 FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes, 2849 FTy->isVarArg()); 2850 Constant *NewCallee = 2851 NestF->getType() == PointerType::getUnqual(NewFTy) ? 2852 NestF : ConstantExpr::getBitCast(NestF, 2853 PointerType::getUnqual(NewFTy)); 2854 AttributeList NewPAL = 2855 AttributeList::get(FTy->getContext(), Attrs.getFnAttributes(), 2856 Attrs.getRetAttributes(), NewArgAttrs); 2857 2858 SmallVector<OperandBundleDef, 1> OpBundles; 2859 Call.getOperandBundlesAsDefs(OpBundles); 2860 2861 Instruction *NewCaller; 2862 if (InvokeInst *II = dyn_cast<InvokeInst>(&Call)) { 2863 NewCaller = InvokeInst::Create(NewFTy, NewCallee, 2864 II->getNormalDest(), II->getUnwindDest(), 2865 NewArgs, OpBundles); 2866 cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv()); 2867 cast<InvokeInst>(NewCaller)->setAttributes(NewPAL); 2868 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(&Call)) { 2869 NewCaller = 2870 CallBrInst::Create(NewFTy, NewCallee, CBI->getDefaultDest(), 2871 CBI->getIndirectDests(), NewArgs, OpBundles); 2872 cast<CallBrInst>(NewCaller)->setCallingConv(CBI->getCallingConv()); 2873 cast<CallBrInst>(NewCaller)->setAttributes(NewPAL); 2874 } else { 2875 NewCaller = CallInst::Create(NewFTy, NewCallee, NewArgs, OpBundles); 2876 cast<CallInst>(NewCaller)->setTailCallKind( 2877 cast<CallInst>(Call).getTailCallKind()); 2878 cast<CallInst>(NewCaller)->setCallingConv( 2879 cast<CallInst>(Call).getCallingConv()); 2880 cast<CallInst>(NewCaller)->setAttributes(NewPAL); 2881 } 2882 NewCaller->setDebugLoc(Call.getDebugLoc()); 2883 2884 return NewCaller; 2885 } 2886 } 2887 2888 // Replace the trampoline call with a direct call. Since there is no 'nest' 2889 // parameter, there is no need to adjust the argument list. Let the generic 2890 // code sort out any function type mismatches. 2891 Constant *NewCallee = ConstantExpr::getBitCast(NestF, CalleeTy); 2892 Call.setCalledFunction(FTy, NewCallee); 2893 return &Call; 2894 } 2895