xref: /netbsd-src/external/apache2/llvm/dist/llvm/lib/Transforms/InstCombine/InstCombineCalls.cpp (revision 404ee5b9334f618040b6cdef96a0ff35a6fc4636)
1 //===- InstCombineCalls.cpp -----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitCall, visitInvoke, and visitCallBr functions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APFloat.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/APSInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/Analysis/AssumptionCache.h"
25 #include "llvm/Analysis/InstructionSimplify.h"
26 #include "llvm/Analysis/Loads.h"
27 #include "llvm/Analysis/MemoryBuiltins.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/Analysis/VectorUtils.h"
30 #include "llvm/IR/Attributes.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DerivedTypes.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/GlobalVariable.h"
38 #include "llvm/IR/InstrTypes.h"
39 #include "llvm/IR/Instruction.h"
40 #include "llvm/IR/Instructions.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/IR/Intrinsics.h"
43 #include "llvm/IR/LLVMContext.h"
44 #include "llvm/IR/Metadata.h"
45 #include "llvm/IR/PatternMatch.h"
46 #include "llvm/IR/Statepoint.h"
47 #include "llvm/IR/Type.h"
48 #include "llvm/IR/User.h"
49 #include "llvm/IR/Value.h"
50 #include "llvm/IR/ValueHandle.h"
51 #include "llvm/Support/AtomicOrdering.h"
52 #include "llvm/Support/Casting.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Compiler.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/KnownBits.h"
58 #include "llvm/Support/MathExtras.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
61 #include "llvm/Transforms/Utils/Local.h"
62 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
63 #include <algorithm>
64 #include <cassert>
65 #include <cstdint>
66 #include <cstring>
67 #include <utility>
68 #include <vector>
69 
70 using namespace llvm;
71 using namespace PatternMatch;
72 
73 #define DEBUG_TYPE "instcombine"
74 
75 STATISTIC(NumSimplified, "Number of library calls simplified");
76 
77 static cl::opt<unsigned> GuardWideningWindow(
78     "instcombine-guard-widening-window",
79     cl::init(3),
80     cl::desc("How wide an instruction window to bypass looking for "
81              "another guard"));
82 
83 /// Return the specified type promoted as it would be to pass though a va_arg
84 /// area.
85 static Type *getPromotedType(Type *Ty) {
86   if (IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
87     if (ITy->getBitWidth() < 32)
88       return Type::getInt32Ty(Ty->getContext());
89   }
90   return Ty;
91 }
92 
93 /// Return a constant boolean vector that has true elements in all positions
94 /// where the input constant data vector has an element with the sign bit set.
95 static Constant *getNegativeIsTrueBoolVec(ConstantDataVector *V) {
96   SmallVector<Constant *, 32> BoolVec;
97   IntegerType *BoolTy = Type::getInt1Ty(V->getContext());
98   for (unsigned I = 0, E = V->getNumElements(); I != E; ++I) {
99     Constant *Elt = V->getElementAsConstant(I);
100     assert((isa<ConstantInt>(Elt) || isa<ConstantFP>(Elt)) &&
101            "Unexpected constant data vector element type");
102     bool Sign = V->getElementType()->isIntegerTy()
103                     ? cast<ConstantInt>(Elt)->isNegative()
104                     : cast<ConstantFP>(Elt)->isNegative();
105     BoolVec.push_back(ConstantInt::get(BoolTy, Sign));
106   }
107   return ConstantVector::get(BoolVec);
108 }
109 
110 Instruction *InstCombiner::SimplifyAnyMemTransfer(AnyMemTransferInst *MI) {
111   unsigned DstAlign = getKnownAlignment(MI->getRawDest(), DL, MI, &AC, &DT);
112   unsigned CopyDstAlign = MI->getDestAlignment();
113   if (CopyDstAlign < DstAlign){
114     MI->setDestAlignment(DstAlign);
115     return MI;
116   }
117 
118   unsigned SrcAlign = getKnownAlignment(MI->getRawSource(), DL, MI, &AC, &DT);
119   unsigned CopySrcAlign = MI->getSourceAlignment();
120   if (CopySrcAlign < SrcAlign) {
121     MI->setSourceAlignment(SrcAlign);
122     return MI;
123   }
124 
125   // If we have a store to a location which is known constant, we can conclude
126   // that the store must be storing the constant value (else the memory
127   // wouldn't be constant), and this must be a noop.
128   if (AA->pointsToConstantMemory(MI->getDest())) {
129     // Set the size of the copy to 0, it will be deleted on the next iteration.
130     MI->setLength(Constant::getNullValue(MI->getLength()->getType()));
131     return MI;
132   }
133 
134   // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
135   // load/store.
136   ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getLength());
137   if (!MemOpLength) return nullptr;
138 
139   // Source and destination pointer types are always "i8*" for intrinsic.  See
140   // if the size is something we can handle with a single primitive load/store.
141   // A single load+store correctly handles overlapping memory in the memmove
142   // case.
143   uint64_t Size = MemOpLength->getLimitedValue();
144   assert(Size && "0-sized memory transferring should be removed already.");
145 
146   if (Size > 8 || (Size&(Size-1)))
147     return nullptr;  // If not 1/2/4/8 bytes, exit.
148 
149   // If it is an atomic and alignment is less than the size then we will
150   // introduce the unaligned memory access which will be later transformed
151   // into libcall in CodeGen. This is not evident performance gain so disable
152   // it now.
153   if (isa<AtomicMemTransferInst>(MI))
154     if (CopyDstAlign < Size || CopySrcAlign < Size)
155       return nullptr;
156 
157   // Use an integer load+store unless we can find something better.
158   unsigned SrcAddrSp =
159     cast<PointerType>(MI->getArgOperand(1)->getType())->getAddressSpace();
160   unsigned DstAddrSp =
161     cast<PointerType>(MI->getArgOperand(0)->getType())->getAddressSpace();
162 
163   IntegerType* IntType = IntegerType::get(MI->getContext(), Size<<3);
164   Type *NewSrcPtrTy = PointerType::get(IntType, SrcAddrSp);
165   Type *NewDstPtrTy = PointerType::get(IntType, DstAddrSp);
166 
167   // If the memcpy has metadata describing the members, see if we can get the
168   // TBAA tag describing our copy.
169   MDNode *CopyMD = nullptr;
170   if (MDNode *M = MI->getMetadata(LLVMContext::MD_tbaa)) {
171     CopyMD = M;
172   } else if (MDNode *M = MI->getMetadata(LLVMContext::MD_tbaa_struct)) {
173     if (M->getNumOperands() == 3 && M->getOperand(0) &&
174         mdconst::hasa<ConstantInt>(M->getOperand(0)) &&
175         mdconst::extract<ConstantInt>(M->getOperand(0))->isZero() &&
176         M->getOperand(1) &&
177         mdconst::hasa<ConstantInt>(M->getOperand(1)) &&
178         mdconst::extract<ConstantInt>(M->getOperand(1))->getValue() ==
179         Size &&
180         M->getOperand(2) && isa<MDNode>(M->getOperand(2)))
181       CopyMD = cast<MDNode>(M->getOperand(2));
182   }
183 
184   Value *Src = Builder.CreateBitCast(MI->getArgOperand(1), NewSrcPtrTy);
185   Value *Dest = Builder.CreateBitCast(MI->getArgOperand(0), NewDstPtrTy);
186   LoadInst *L = Builder.CreateLoad(IntType, Src);
187   // Alignment from the mem intrinsic will be better, so use it.
188   L->setAlignment(
189       MaybeAlign(CopySrcAlign)); // FIXME: Check if we can use Align instead.
190   if (CopyMD)
191     L->setMetadata(LLVMContext::MD_tbaa, CopyMD);
192   MDNode *LoopMemParallelMD =
193     MI->getMetadata(LLVMContext::MD_mem_parallel_loop_access);
194   if (LoopMemParallelMD)
195     L->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD);
196   MDNode *AccessGroupMD = MI->getMetadata(LLVMContext::MD_access_group);
197   if (AccessGroupMD)
198     L->setMetadata(LLVMContext::MD_access_group, AccessGroupMD);
199 
200   StoreInst *S = Builder.CreateStore(L, Dest);
201   // Alignment from the mem intrinsic will be better, so use it.
202   S->setAlignment(
203       MaybeAlign(CopyDstAlign)); // FIXME: Check if we can use Align instead.
204   if (CopyMD)
205     S->setMetadata(LLVMContext::MD_tbaa, CopyMD);
206   if (LoopMemParallelMD)
207     S->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD);
208   if (AccessGroupMD)
209     S->setMetadata(LLVMContext::MD_access_group, AccessGroupMD);
210 
211   if (auto *MT = dyn_cast<MemTransferInst>(MI)) {
212     // non-atomics can be volatile
213     L->setVolatile(MT->isVolatile());
214     S->setVolatile(MT->isVolatile());
215   }
216   if (isa<AtomicMemTransferInst>(MI)) {
217     // atomics have to be unordered
218     L->setOrdering(AtomicOrdering::Unordered);
219     S->setOrdering(AtomicOrdering::Unordered);
220   }
221 
222   // Set the size of the copy to 0, it will be deleted on the next iteration.
223   MI->setLength(Constant::getNullValue(MemOpLength->getType()));
224   return MI;
225 }
226 
227 Instruction *InstCombiner::SimplifyAnyMemSet(AnyMemSetInst *MI) {
228   const unsigned KnownAlignment =
229       getKnownAlignment(MI->getDest(), DL, MI, &AC, &DT);
230   if (MI->getDestAlignment() < KnownAlignment) {
231     MI->setDestAlignment(KnownAlignment);
232     return MI;
233   }
234 
235   // If we have a store to a location which is known constant, we can conclude
236   // that the store must be storing the constant value (else the memory
237   // wouldn't be constant), and this must be a noop.
238   if (AA->pointsToConstantMemory(MI->getDest())) {
239     // Set the size of the copy to 0, it will be deleted on the next iteration.
240     MI->setLength(Constant::getNullValue(MI->getLength()->getType()));
241     return MI;
242   }
243 
244   // Extract the length and alignment and fill if they are constant.
245   ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
246   ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
247   if (!LenC || !FillC || !FillC->getType()->isIntegerTy(8))
248     return nullptr;
249   const uint64_t Len = LenC->getLimitedValue();
250   assert(Len && "0-sized memory setting should be removed already.");
251   const Align Alignment = assumeAligned(MI->getDestAlignment());
252 
253   // If it is an atomic and alignment is less than the size then we will
254   // introduce the unaligned memory access which will be later transformed
255   // into libcall in CodeGen. This is not evident performance gain so disable
256   // it now.
257   if (isa<AtomicMemSetInst>(MI))
258     if (Alignment < Len)
259       return nullptr;
260 
261   // memset(s,c,n) -> store s, c (for n=1,2,4,8)
262   if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
263     Type *ITy = IntegerType::get(MI->getContext(), Len*8);  // n=1 -> i8.
264 
265     Value *Dest = MI->getDest();
266     unsigned DstAddrSp = cast<PointerType>(Dest->getType())->getAddressSpace();
267     Type *NewDstPtrTy = PointerType::get(ITy, DstAddrSp);
268     Dest = Builder.CreateBitCast(Dest, NewDstPtrTy);
269 
270     // Extract the fill value and store.
271     uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
272     StoreInst *S = Builder.CreateStore(ConstantInt::get(ITy, Fill), Dest,
273                                        MI->isVolatile());
274     S->setAlignment(Alignment);
275     if (isa<AtomicMemSetInst>(MI))
276       S->setOrdering(AtomicOrdering::Unordered);
277 
278     // Set the size of the copy to 0, it will be deleted on the next iteration.
279     MI->setLength(Constant::getNullValue(LenC->getType()));
280     return MI;
281   }
282 
283   return nullptr;
284 }
285 
286 static Value *simplifyX86immShift(const IntrinsicInst &II,
287                                   InstCombiner::BuilderTy &Builder) {
288   bool LogicalShift = false;
289   bool ShiftLeft = false;
290 
291   switch (II.getIntrinsicID()) {
292   default: llvm_unreachable("Unexpected intrinsic!");
293   case Intrinsic::x86_sse2_psra_d:
294   case Intrinsic::x86_sse2_psra_w:
295   case Intrinsic::x86_sse2_psrai_d:
296   case Intrinsic::x86_sse2_psrai_w:
297   case Intrinsic::x86_avx2_psra_d:
298   case Intrinsic::x86_avx2_psra_w:
299   case Intrinsic::x86_avx2_psrai_d:
300   case Intrinsic::x86_avx2_psrai_w:
301   case Intrinsic::x86_avx512_psra_q_128:
302   case Intrinsic::x86_avx512_psrai_q_128:
303   case Intrinsic::x86_avx512_psra_q_256:
304   case Intrinsic::x86_avx512_psrai_q_256:
305   case Intrinsic::x86_avx512_psra_d_512:
306   case Intrinsic::x86_avx512_psra_q_512:
307   case Intrinsic::x86_avx512_psra_w_512:
308   case Intrinsic::x86_avx512_psrai_d_512:
309   case Intrinsic::x86_avx512_psrai_q_512:
310   case Intrinsic::x86_avx512_psrai_w_512:
311     LogicalShift = false; ShiftLeft = false;
312     break;
313   case Intrinsic::x86_sse2_psrl_d:
314   case Intrinsic::x86_sse2_psrl_q:
315   case Intrinsic::x86_sse2_psrl_w:
316   case Intrinsic::x86_sse2_psrli_d:
317   case Intrinsic::x86_sse2_psrli_q:
318   case Intrinsic::x86_sse2_psrli_w:
319   case Intrinsic::x86_avx2_psrl_d:
320   case Intrinsic::x86_avx2_psrl_q:
321   case Intrinsic::x86_avx2_psrl_w:
322   case Intrinsic::x86_avx2_psrli_d:
323   case Intrinsic::x86_avx2_psrli_q:
324   case Intrinsic::x86_avx2_psrli_w:
325   case Intrinsic::x86_avx512_psrl_d_512:
326   case Intrinsic::x86_avx512_psrl_q_512:
327   case Intrinsic::x86_avx512_psrl_w_512:
328   case Intrinsic::x86_avx512_psrli_d_512:
329   case Intrinsic::x86_avx512_psrli_q_512:
330   case Intrinsic::x86_avx512_psrli_w_512:
331     LogicalShift = true; ShiftLeft = false;
332     break;
333   case Intrinsic::x86_sse2_psll_d:
334   case Intrinsic::x86_sse2_psll_q:
335   case Intrinsic::x86_sse2_psll_w:
336   case Intrinsic::x86_sse2_pslli_d:
337   case Intrinsic::x86_sse2_pslli_q:
338   case Intrinsic::x86_sse2_pslli_w:
339   case Intrinsic::x86_avx2_psll_d:
340   case Intrinsic::x86_avx2_psll_q:
341   case Intrinsic::x86_avx2_psll_w:
342   case Intrinsic::x86_avx2_pslli_d:
343   case Intrinsic::x86_avx2_pslli_q:
344   case Intrinsic::x86_avx2_pslli_w:
345   case Intrinsic::x86_avx512_psll_d_512:
346   case Intrinsic::x86_avx512_psll_q_512:
347   case Intrinsic::x86_avx512_psll_w_512:
348   case Intrinsic::x86_avx512_pslli_d_512:
349   case Intrinsic::x86_avx512_pslli_q_512:
350   case Intrinsic::x86_avx512_pslli_w_512:
351     LogicalShift = true; ShiftLeft = true;
352     break;
353   }
354   assert((LogicalShift || !ShiftLeft) && "Only logical shifts can shift left");
355 
356   // Simplify if count is constant.
357   auto Arg1 = II.getArgOperand(1);
358   auto CAZ = dyn_cast<ConstantAggregateZero>(Arg1);
359   auto CDV = dyn_cast<ConstantDataVector>(Arg1);
360   auto CInt = dyn_cast<ConstantInt>(Arg1);
361   if (!CAZ && !CDV && !CInt)
362     return nullptr;
363 
364   APInt Count(64, 0);
365   if (CDV) {
366     // SSE2/AVX2 uses all the first 64-bits of the 128-bit vector
367     // operand to compute the shift amount.
368     auto VT = cast<VectorType>(CDV->getType());
369     unsigned BitWidth = VT->getElementType()->getPrimitiveSizeInBits();
370     assert((64 % BitWidth) == 0 && "Unexpected packed shift size");
371     unsigned NumSubElts = 64 / BitWidth;
372 
373     // Concatenate the sub-elements to create the 64-bit value.
374     for (unsigned i = 0; i != NumSubElts; ++i) {
375       unsigned SubEltIdx = (NumSubElts - 1) - i;
376       auto SubElt = cast<ConstantInt>(CDV->getElementAsConstant(SubEltIdx));
377       Count <<= BitWidth;
378       Count |= SubElt->getValue().zextOrTrunc(64);
379     }
380   }
381   else if (CInt)
382     Count = CInt->getValue();
383 
384   auto Vec = II.getArgOperand(0);
385   auto VT = cast<VectorType>(Vec->getType());
386   auto SVT = VT->getElementType();
387   unsigned VWidth = VT->getNumElements();
388   unsigned BitWidth = SVT->getPrimitiveSizeInBits();
389 
390   // If shift-by-zero then just return the original value.
391   if (Count.isNullValue())
392     return Vec;
393 
394   // Handle cases when Shift >= BitWidth.
395   if (Count.uge(BitWidth)) {
396     // If LogicalShift - just return zero.
397     if (LogicalShift)
398       return ConstantAggregateZero::get(VT);
399 
400     // If ArithmeticShift - clamp Shift to (BitWidth - 1).
401     Count = APInt(64, BitWidth - 1);
402   }
403 
404   // Get a constant vector of the same type as the first operand.
405   auto ShiftAmt = ConstantInt::get(SVT, Count.zextOrTrunc(BitWidth));
406   auto ShiftVec = Builder.CreateVectorSplat(VWidth, ShiftAmt);
407 
408   if (ShiftLeft)
409     return Builder.CreateShl(Vec, ShiftVec);
410 
411   if (LogicalShift)
412     return Builder.CreateLShr(Vec, ShiftVec);
413 
414   return Builder.CreateAShr(Vec, ShiftVec);
415 }
416 
417 // Attempt to simplify AVX2 per-element shift intrinsics to a generic IR shift.
418 // Unlike the generic IR shifts, the intrinsics have defined behaviour for out
419 // of range shift amounts (logical - set to zero, arithmetic - splat sign bit).
420 static Value *simplifyX86varShift(const IntrinsicInst &II,
421                                   InstCombiner::BuilderTy &Builder) {
422   bool LogicalShift = false;
423   bool ShiftLeft = false;
424 
425   switch (II.getIntrinsicID()) {
426   default: llvm_unreachable("Unexpected intrinsic!");
427   case Intrinsic::x86_avx2_psrav_d:
428   case Intrinsic::x86_avx2_psrav_d_256:
429   case Intrinsic::x86_avx512_psrav_q_128:
430   case Intrinsic::x86_avx512_psrav_q_256:
431   case Intrinsic::x86_avx512_psrav_d_512:
432   case Intrinsic::x86_avx512_psrav_q_512:
433   case Intrinsic::x86_avx512_psrav_w_128:
434   case Intrinsic::x86_avx512_psrav_w_256:
435   case Intrinsic::x86_avx512_psrav_w_512:
436     LogicalShift = false;
437     ShiftLeft = false;
438     break;
439   case Intrinsic::x86_avx2_psrlv_d:
440   case Intrinsic::x86_avx2_psrlv_d_256:
441   case Intrinsic::x86_avx2_psrlv_q:
442   case Intrinsic::x86_avx2_psrlv_q_256:
443   case Intrinsic::x86_avx512_psrlv_d_512:
444   case Intrinsic::x86_avx512_psrlv_q_512:
445   case Intrinsic::x86_avx512_psrlv_w_128:
446   case Intrinsic::x86_avx512_psrlv_w_256:
447   case Intrinsic::x86_avx512_psrlv_w_512:
448     LogicalShift = true;
449     ShiftLeft = false;
450     break;
451   case Intrinsic::x86_avx2_psllv_d:
452   case Intrinsic::x86_avx2_psllv_d_256:
453   case Intrinsic::x86_avx2_psllv_q:
454   case Intrinsic::x86_avx2_psllv_q_256:
455   case Intrinsic::x86_avx512_psllv_d_512:
456   case Intrinsic::x86_avx512_psllv_q_512:
457   case Intrinsic::x86_avx512_psllv_w_128:
458   case Intrinsic::x86_avx512_psllv_w_256:
459   case Intrinsic::x86_avx512_psllv_w_512:
460     LogicalShift = true;
461     ShiftLeft = true;
462     break;
463   }
464   assert((LogicalShift || !ShiftLeft) && "Only logical shifts can shift left");
465 
466   // Simplify if all shift amounts are constant/undef.
467   auto *CShift = dyn_cast<Constant>(II.getArgOperand(1));
468   if (!CShift)
469     return nullptr;
470 
471   auto Vec = II.getArgOperand(0);
472   auto VT = cast<VectorType>(II.getType());
473   auto SVT = VT->getVectorElementType();
474   int NumElts = VT->getNumElements();
475   int BitWidth = SVT->getIntegerBitWidth();
476 
477   // Collect each element's shift amount.
478   // We also collect special cases: UNDEF = -1, OUT-OF-RANGE = BitWidth.
479   bool AnyOutOfRange = false;
480   SmallVector<int, 8> ShiftAmts;
481   for (int I = 0; I < NumElts; ++I) {
482     auto *CElt = CShift->getAggregateElement(I);
483     if (CElt && isa<UndefValue>(CElt)) {
484       ShiftAmts.push_back(-1);
485       continue;
486     }
487 
488     auto *COp = dyn_cast_or_null<ConstantInt>(CElt);
489     if (!COp)
490       return nullptr;
491 
492     // Handle out of range shifts.
493     // If LogicalShift - set to BitWidth (special case).
494     // If ArithmeticShift - set to (BitWidth - 1) (sign splat).
495     APInt ShiftVal = COp->getValue();
496     if (ShiftVal.uge(BitWidth)) {
497       AnyOutOfRange = LogicalShift;
498       ShiftAmts.push_back(LogicalShift ? BitWidth : BitWidth - 1);
499       continue;
500     }
501 
502     ShiftAmts.push_back((int)ShiftVal.getZExtValue());
503   }
504 
505   // If all elements out of range or UNDEF, return vector of zeros/undefs.
506   // ArithmeticShift should only hit this if they are all UNDEF.
507   auto OutOfRange = [&](int Idx) { return (Idx < 0) || (BitWidth <= Idx); };
508   if (llvm::all_of(ShiftAmts, OutOfRange)) {
509     SmallVector<Constant *, 8> ConstantVec;
510     for (int Idx : ShiftAmts) {
511       if (Idx < 0) {
512         ConstantVec.push_back(UndefValue::get(SVT));
513       } else {
514         assert(LogicalShift && "Logical shift expected");
515         ConstantVec.push_back(ConstantInt::getNullValue(SVT));
516       }
517     }
518     return ConstantVector::get(ConstantVec);
519   }
520 
521   // We can't handle only some out of range values with generic logical shifts.
522   if (AnyOutOfRange)
523     return nullptr;
524 
525   // Build the shift amount constant vector.
526   SmallVector<Constant *, 8> ShiftVecAmts;
527   for (int Idx : ShiftAmts) {
528     if (Idx < 0)
529       ShiftVecAmts.push_back(UndefValue::get(SVT));
530     else
531       ShiftVecAmts.push_back(ConstantInt::get(SVT, Idx));
532   }
533   auto ShiftVec = ConstantVector::get(ShiftVecAmts);
534 
535   if (ShiftLeft)
536     return Builder.CreateShl(Vec, ShiftVec);
537 
538   if (LogicalShift)
539     return Builder.CreateLShr(Vec, ShiftVec);
540 
541   return Builder.CreateAShr(Vec, ShiftVec);
542 }
543 
544 static Value *simplifyX86pack(IntrinsicInst &II,
545                               InstCombiner::BuilderTy &Builder, bool IsSigned) {
546   Value *Arg0 = II.getArgOperand(0);
547   Value *Arg1 = II.getArgOperand(1);
548   Type *ResTy = II.getType();
549 
550   // Fast all undef handling.
551   if (isa<UndefValue>(Arg0) && isa<UndefValue>(Arg1))
552     return UndefValue::get(ResTy);
553 
554   Type *ArgTy = Arg0->getType();
555   unsigned NumLanes = ResTy->getPrimitiveSizeInBits() / 128;
556   unsigned NumSrcElts = ArgTy->getVectorNumElements();
557   assert(ResTy->getVectorNumElements() == (2 * NumSrcElts) &&
558          "Unexpected packing types");
559 
560   unsigned NumSrcEltsPerLane = NumSrcElts / NumLanes;
561   unsigned DstScalarSizeInBits = ResTy->getScalarSizeInBits();
562   unsigned SrcScalarSizeInBits = ArgTy->getScalarSizeInBits();
563   assert(SrcScalarSizeInBits == (2 * DstScalarSizeInBits) &&
564          "Unexpected packing types");
565 
566   // Constant folding.
567   if (!isa<Constant>(Arg0) || !isa<Constant>(Arg1))
568     return nullptr;
569 
570   // Clamp Values - signed/unsigned both use signed clamp values, but they
571   // differ on the min/max values.
572   APInt MinValue, MaxValue;
573   if (IsSigned) {
574     // PACKSS: Truncate signed value with signed saturation.
575     // Source values less than dst minint are saturated to minint.
576     // Source values greater than dst maxint are saturated to maxint.
577     MinValue =
578         APInt::getSignedMinValue(DstScalarSizeInBits).sext(SrcScalarSizeInBits);
579     MaxValue =
580         APInt::getSignedMaxValue(DstScalarSizeInBits).sext(SrcScalarSizeInBits);
581   } else {
582     // PACKUS: Truncate signed value with unsigned saturation.
583     // Source values less than zero are saturated to zero.
584     // Source values greater than dst maxuint are saturated to maxuint.
585     MinValue = APInt::getNullValue(SrcScalarSizeInBits);
586     MaxValue = APInt::getLowBitsSet(SrcScalarSizeInBits, DstScalarSizeInBits);
587   }
588 
589   auto *MinC = Constant::getIntegerValue(ArgTy, MinValue);
590   auto *MaxC = Constant::getIntegerValue(ArgTy, MaxValue);
591   Arg0 = Builder.CreateSelect(Builder.CreateICmpSLT(Arg0, MinC), MinC, Arg0);
592   Arg1 = Builder.CreateSelect(Builder.CreateICmpSLT(Arg1, MinC), MinC, Arg1);
593   Arg0 = Builder.CreateSelect(Builder.CreateICmpSGT(Arg0, MaxC), MaxC, Arg0);
594   Arg1 = Builder.CreateSelect(Builder.CreateICmpSGT(Arg1, MaxC), MaxC, Arg1);
595 
596   // Shuffle clamped args together at the lane level.
597   SmallVector<unsigned, 32> PackMask;
598   for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
599     for (unsigned Elt = 0; Elt != NumSrcEltsPerLane; ++Elt)
600       PackMask.push_back(Elt + (Lane * NumSrcEltsPerLane));
601     for (unsigned Elt = 0; Elt != NumSrcEltsPerLane; ++Elt)
602       PackMask.push_back(Elt + (Lane * NumSrcEltsPerLane) + NumSrcElts);
603   }
604   auto *Shuffle = Builder.CreateShuffleVector(Arg0, Arg1, PackMask);
605 
606   // Truncate to dst size.
607   return Builder.CreateTrunc(Shuffle, ResTy);
608 }
609 
610 static Value *simplifyX86movmsk(const IntrinsicInst &II,
611                                 InstCombiner::BuilderTy &Builder) {
612   Value *Arg = II.getArgOperand(0);
613   Type *ResTy = II.getType();
614   Type *ArgTy = Arg->getType();
615 
616   // movmsk(undef) -> zero as we must ensure the upper bits are zero.
617   if (isa<UndefValue>(Arg))
618     return Constant::getNullValue(ResTy);
619 
620   // We can't easily peek through x86_mmx types.
621   if (!ArgTy->isVectorTy())
622     return nullptr;
623 
624   // Expand MOVMSK to compare/bitcast/zext:
625   // e.g. PMOVMSKB(v16i8 x):
626   // %cmp = icmp slt <16 x i8> %x, zeroinitializer
627   // %int = bitcast <16 x i1> %cmp to i16
628   // %res = zext i16 %int to i32
629   unsigned NumElts = ArgTy->getVectorNumElements();
630   Type *IntegerVecTy = VectorType::getInteger(cast<VectorType>(ArgTy));
631   Type *IntegerTy = Builder.getIntNTy(NumElts);
632 
633   Value *Res = Builder.CreateBitCast(Arg, IntegerVecTy);
634   Res = Builder.CreateICmpSLT(Res, Constant::getNullValue(IntegerVecTy));
635   Res = Builder.CreateBitCast(Res, IntegerTy);
636   Res = Builder.CreateZExtOrTrunc(Res, ResTy);
637   return Res;
638 }
639 
640 static Value *simplifyX86addcarry(const IntrinsicInst &II,
641                                   InstCombiner::BuilderTy &Builder) {
642   Value *CarryIn = II.getArgOperand(0);
643   Value *Op1 = II.getArgOperand(1);
644   Value *Op2 = II.getArgOperand(2);
645   Type *RetTy = II.getType();
646   Type *OpTy = Op1->getType();
647   assert(RetTy->getStructElementType(0)->isIntegerTy(8) &&
648          RetTy->getStructElementType(1) == OpTy && OpTy == Op2->getType() &&
649          "Unexpected types for x86 addcarry");
650 
651   // If carry-in is zero, this is just an unsigned add with overflow.
652   if (match(CarryIn, m_ZeroInt())) {
653     Value *UAdd = Builder.CreateIntrinsic(Intrinsic::uadd_with_overflow, OpTy,
654                                           { Op1, Op2 });
655     // The types have to be adjusted to match the x86 call types.
656     Value *UAddResult = Builder.CreateExtractValue(UAdd, 0);
657     Value *UAddOV = Builder.CreateZExt(Builder.CreateExtractValue(UAdd, 1),
658                                        Builder.getInt8Ty());
659     Value *Res = UndefValue::get(RetTy);
660     Res = Builder.CreateInsertValue(Res, UAddOV, 0);
661     return Builder.CreateInsertValue(Res, UAddResult, 1);
662   }
663 
664   return nullptr;
665 }
666 
667 static Value *simplifyX86insertps(const IntrinsicInst &II,
668                                   InstCombiner::BuilderTy &Builder) {
669   auto *CInt = dyn_cast<ConstantInt>(II.getArgOperand(2));
670   if (!CInt)
671     return nullptr;
672 
673   VectorType *VecTy = cast<VectorType>(II.getType());
674   assert(VecTy->getNumElements() == 4 && "insertps with wrong vector type");
675 
676   // The immediate permute control byte looks like this:
677   //    [3:0] - zero mask for each 32-bit lane
678   //    [5:4] - select one 32-bit destination lane
679   //    [7:6] - select one 32-bit source lane
680 
681   uint8_t Imm = CInt->getZExtValue();
682   uint8_t ZMask = Imm & 0xf;
683   uint8_t DestLane = (Imm >> 4) & 0x3;
684   uint8_t SourceLane = (Imm >> 6) & 0x3;
685 
686   ConstantAggregateZero *ZeroVector = ConstantAggregateZero::get(VecTy);
687 
688   // If all zero mask bits are set, this was just a weird way to
689   // generate a zero vector.
690   if (ZMask == 0xf)
691     return ZeroVector;
692 
693   // Initialize by passing all of the first source bits through.
694   uint32_t ShuffleMask[4] = { 0, 1, 2, 3 };
695 
696   // We may replace the second operand with the zero vector.
697   Value *V1 = II.getArgOperand(1);
698 
699   if (ZMask) {
700     // If the zero mask is being used with a single input or the zero mask
701     // overrides the destination lane, this is a shuffle with the zero vector.
702     if ((II.getArgOperand(0) == II.getArgOperand(1)) ||
703         (ZMask & (1 << DestLane))) {
704       V1 = ZeroVector;
705       // We may still move 32-bits of the first source vector from one lane
706       // to another.
707       ShuffleMask[DestLane] = SourceLane;
708       // The zero mask may override the previous insert operation.
709       for (unsigned i = 0; i < 4; ++i)
710         if ((ZMask >> i) & 0x1)
711           ShuffleMask[i] = i + 4;
712     } else {
713       // TODO: Model this case as 2 shuffles or a 'logical and' plus shuffle?
714       return nullptr;
715     }
716   } else {
717     // Replace the selected destination lane with the selected source lane.
718     ShuffleMask[DestLane] = SourceLane + 4;
719   }
720 
721   return Builder.CreateShuffleVector(II.getArgOperand(0), V1, ShuffleMask);
722 }
723 
724 /// Attempt to simplify SSE4A EXTRQ/EXTRQI instructions using constant folding
725 /// or conversion to a shuffle vector.
726 static Value *simplifyX86extrq(IntrinsicInst &II, Value *Op0,
727                                ConstantInt *CILength, ConstantInt *CIIndex,
728                                InstCombiner::BuilderTy &Builder) {
729   auto LowConstantHighUndef = [&](uint64_t Val) {
730     Type *IntTy64 = Type::getInt64Ty(II.getContext());
731     Constant *Args[] = {ConstantInt::get(IntTy64, Val),
732                         UndefValue::get(IntTy64)};
733     return ConstantVector::get(Args);
734   };
735 
736   // See if we're dealing with constant values.
737   Constant *C0 = dyn_cast<Constant>(Op0);
738   ConstantInt *CI0 =
739       C0 ? dyn_cast_or_null<ConstantInt>(C0->getAggregateElement((unsigned)0))
740          : nullptr;
741 
742   // Attempt to constant fold.
743   if (CILength && CIIndex) {
744     // From AMD documentation: "The bit index and field length are each six
745     // bits in length other bits of the field are ignored."
746     APInt APIndex = CIIndex->getValue().zextOrTrunc(6);
747     APInt APLength = CILength->getValue().zextOrTrunc(6);
748 
749     unsigned Index = APIndex.getZExtValue();
750 
751     // From AMD documentation: "a value of zero in the field length is
752     // defined as length of 64".
753     unsigned Length = APLength == 0 ? 64 : APLength.getZExtValue();
754 
755     // From AMD documentation: "If the sum of the bit index + length field
756     // is greater than 64, the results are undefined".
757     unsigned End = Index + Length;
758 
759     // Note that both field index and field length are 8-bit quantities.
760     // Since variables 'Index' and 'Length' are unsigned values
761     // obtained from zero-extending field index and field length
762     // respectively, their sum should never wrap around.
763     if (End > 64)
764       return UndefValue::get(II.getType());
765 
766     // If we are inserting whole bytes, we can convert this to a shuffle.
767     // Lowering can recognize EXTRQI shuffle masks.
768     if ((Length % 8) == 0 && (Index % 8) == 0) {
769       // Convert bit indices to byte indices.
770       Length /= 8;
771       Index /= 8;
772 
773       Type *IntTy8 = Type::getInt8Ty(II.getContext());
774       Type *IntTy32 = Type::getInt32Ty(II.getContext());
775       VectorType *ShufTy = VectorType::get(IntTy8, 16);
776 
777       SmallVector<Constant *, 16> ShuffleMask;
778       for (int i = 0; i != (int)Length; ++i)
779         ShuffleMask.push_back(
780             Constant::getIntegerValue(IntTy32, APInt(32, i + Index)));
781       for (int i = Length; i != 8; ++i)
782         ShuffleMask.push_back(
783             Constant::getIntegerValue(IntTy32, APInt(32, i + 16)));
784       for (int i = 8; i != 16; ++i)
785         ShuffleMask.push_back(UndefValue::get(IntTy32));
786 
787       Value *SV = Builder.CreateShuffleVector(
788           Builder.CreateBitCast(Op0, ShufTy),
789           ConstantAggregateZero::get(ShufTy), ConstantVector::get(ShuffleMask));
790       return Builder.CreateBitCast(SV, II.getType());
791     }
792 
793     // Constant Fold - shift Index'th bit to lowest position and mask off
794     // Length bits.
795     if (CI0) {
796       APInt Elt = CI0->getValue();
797       Elt.lshrInPlace(Index);
798       Elt = Elt.zextOrTrunc(Length);
799       return LowConstantHighUndef(Elt.getZExtValue());
800     }
801 
802     // If we were an EXTRQ call, we'll save registers if we convert to EXTRQI.
803     if (II.getIntrinsicID() == Intrinsic::x86_sse4a_extrq) {
804       Value *Args[] = {Op0, CILength, CIIndex};
805       Module *M = II.getModule();
806       Function *F = Intrinsic::getDeclaration(M, Intrinsic::x86_sse4a_extrqi);
807       return Builder.CreateCall(F, Args);
808     }
809   }
810 
811   // Constant Fold - extraction from zero is always {zero, undef}.
812   if (CI0 && CI0->isZero())
813     return LowConstantHighUndef(0);
814 
815   return nullptr;
816 }
817 
818 /// Attempt to simplify SSE4A INSERTQ/INSERTQI instructions using constant
819 /// folding or conversion to a shuffle vector.
820 static Value *simplifyX86insertq(IntrinsicInst &II, Value *Op0, Value *Op1,
821                                  APInt APLength, APInt APIndex,
822                                  InstCombiner::BuilderTy &Builder) {
823   // From AMD documentation: "The bit index and field length are each six bits
824   // in length other bits of the field are ignored."
825   APIndex = APIndex.zextOrTrunc(6);
826   APLength = APLength.zextOrTrunc(6);
827 
828   // Attempt to constant fold.
829   unsigned Index = APIndex.getZExtValue();
830 
831   // From AMD documentation: "a value of zero in the field length is
832   // defined as length of 64".
833   unsigned Length = APLength == 0 ? 64 : APLength.getZExtValue();
834 
835   // From AMD documentation: "If the sum of the bit index + length field
836   // is greater than 64, the results are undefined".
837   unsigned End = Index + Length;
838 
839   // Note that both field index and field length are 8-bit quantities.
840   // Since variables 'Index' and 'Length' are unsigned values
841   // obtained from zero-extending field index and field length
842   // respectively, their sum should never wrap around.
843   if (End > 64)
844     return UndefValue::get(II.getType());
845 
846   // If we are inserting whole bytes, we can convert this to a shuffle.
847   // Lowering can recognize INSERTQI shuffle masks.
848   if ((Length % 8) == 0 && (Index % 8) == 0) {
849     // Convert bit indices to byte indices.
850     Length /= 8;
851     Index /= 8;
852 
853     Type *IntTy8 = Type::getInt8Ty(II.getContext());
854     Type *IntTy32 = Type::getInt32Ty(II.getContext());
855     VectorType *ShufTy = VectorType::get(IntTy8, 16);
856 
857     SmallVector<Constant *, 16> ShuffleMask;
858     for (int i = 0; i != (int)Index; ++i)
859       ShuffleMask.push_back(Constant::getIntegerValue(IntTy32, APInt(32, i)));
860     for (int i = 0; i != (int)Length; ++i)
861       ShuffleMask.push_back(
862           Constant::getIntegerValue(IntTy32, APInt(32, i + 16)));
863     for (int i = Index + Length; i != 8; ++i)
864       ShuffleMask.push_back(Constant::getIntegerValue(IntTy32, APInt(32, i)));
865     for (int i = 8; i != 16; ++i)
866       ShuffleMask.push_back(UndefValue::get(IntTy32));
867 
868     Value *SV = Builder.CreateShuffleVector(Builder.CreateBitCast(Op0, ShufTy),
869                                             Builder.CreateBitCast(Op1, ShufTy),
870                                             ConstantVector::get(ShuffleMask));
871     return Builder.CreateBitCast(SV, II.getType());
872   }
873 
874   // See if we're dealing with constant values.
875   Constant *C0 = dyn_cast<Constant>(Op0);
876   Constant *C1 = dyn_cast<Constant>(Op1);
877   ConstantInt *CI00 =
878       C0 ? dyn_cast_or_null<ConstantInt>(C0->getAggregateElement((unsigned)0))
879          : nullptr;
880   ConstantInt *CI10 =
881       C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)0))
882          : nullptr;
883 
884   // Constant Fold - insert bottom Length bits starting at the Index'th bit.
885   if (CI00 && CI10) {
886     APInt V00 = CI00->getValue();
887     APInt V10 = CI10->getValue();
888     APInt Mask = APInt::getLowBitsSet(64, Length).shl(Index);
889     V00 = V00 & ~Mask;
890     V10 = V10.zextOrTrunc(Length).zextOrTrunc(64).shl(Index);
891     APInt Val = V00 | V10;
892     Type *IntTy64 = Type::getInt64Ty(II.getContext());
893     Constant *Args[] = {ConstantInt::get(IntTy64, Val.getZExtValue()),
894                         UndefValue::get(IntTy64)};
895     return ConstantVector::get(Args);
896   }
897 
898   // If we were an INSERTQ call, we'll save demanded elements if we convert to
899   // INSERTQI.
900   if (II.getIntrinsicID() == Intrinsic::x86_sse4a_insertq) {
901     Type *IntTy8 = Type::getInt8Ty(II.getContext());
902     Constant *CILength = ConstantInt::get(IntTy8, Length, false);
903     Constant *CIIndex = ConstantInt::get(IntTy8, Index, false);
904 
905     Value *Args[] = {Op0, Op1, CILength, CIIndex};
906     Module *M = II.getModule();
907     Function *F = Intrinsic::getDeclaration(M, Intrinsic::x86_sse4a_insertqi);
908     return Builder.CreateCall(F, Args);
909   }
910 
911   return nullptr;
912 }
913 
914 /// Attempt to convert pshufb* to shufflevector if the mask is constant.
915 static Value *simplifyX86pshufb(const IntrinsicInst &II,
916                                 InstCombiner::BuilderTy &Builder) {
917   Constant *V = dyn_cast<Constant>(II.getArgOperand(1));
918   if (!V)
919     return nullptr;
920 
921   auto *VecTy = cast<VectorType>(II.getType());
922   auto *MaskEltTy = Type::getInt32Ty(II.getContext());
923   unsigned NumElts = VecTy->getNumElements();
924   assert((NumElts == 16 || NumElts == 32 || NumElts == 64) &&
925          "Unexpected number of elements in shuffle mask!");
926 
927   // Construct a shuffle mask from constant integers or UNDEFs.
928   Constant *Indexes[64] = {nullptr};
929 
930   // Each byte in the shuffle control mask forms an index to permute the
931   // corresponding byte in the destination operand.
932   for (unsigned I = 0; I < NumElts; ++I) {
933     Constant *COp = V->getAggregateElement(I);
934     if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp)))
935       return nullptr;
936 
937     if (isa<UndefValue>(COp)) {
938       Indexes[I] = UndefValue::get(MaskEltTy);
939       continue;
940     }
941 
942     int8_t Index = cast<ConstantInt>(COp)->getValue().getZExtValue();
943 
944     // If the most significant bit (bit[7]) of each byte of the shuffle
945     // control mask is set, then zero is written in the result byte.
946     // The zero vector is in the right-hand side of the resulting
947     // shufflevector.
948 
949     // The value of each index for the high 128-bit lane is the least
950     // significant 4 bits of the respective shuffle control byte.
951     Index = ((Index < 0) ? NumElts : Index & 0x0F) + (I & 0xF0);
952     Indexes[I] = ConstantInt::get(MaskEltTy, Index);
953   }
954 
955   auto ShuffleMask = ConstantVector::get(makeArrayRef(Indexes, NumElts));
956   auto V1 = II.getArgOperand(0);
957   auto V2 = Constant::getNullValue(VecTy);
958   return Builder.CreateShuffleVector(V1, V2, ShuffleMask);
959 }
960 
961 /// Attempt to convert vpermilvar* to shufflevector if the mask is constant.
962 static Value *simplifyX86vpermilvar(const IntrinsicInst &II,
963                                     InstCombiner::BuilderTy &Builder) {
964   Constant *V = dyn_cast<Constant>(II.getArgOperand(1));
965   if (!V)
966     return nullptr;
967 
968   auto *VecTy = cast<VectorType>(II.getType());
969   auto *MaskEltTy = Type::getInt32Ty(II.getContext());
970   unsigned NumElts = VecTy->getVectorNumElements();
971   bool IsPD = VecTy->getScalarType()->isDoubleTy();
972   unsigned NumLaneElts = IsPD ? 2 : 4;
973   assert(NumElts == 16 || NumElts == 8 || NumElts == 4 || NumElts == 2);
974 
975   // Construct a shuffle mask from constant integers or UNDEFs.
976   Constant *Indexes[16] = {nullptr};
977 
978   // The intrinsics only read one or two bits, clear the rest.
979   for (unsigned I = 0; I < NumElts; ++I) {
980     Constant *COp = V->getAggregateElement(I);
981     if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp)))
982       return nullptr;
983 
984     if (isa<UndefValue>(COp)) {
985       Indexes[I] = UndefValue::get(MaskEltTy);
986       continue;
987     }
988 
989     APInt Index = cast<ConstantInt>(COp)->getValue();
990     Index = Index.zextOrTrunc(32).getLoBits(2);
991 
992     // The PD variants uses bit 1 to select per-lane element index, so
993     // shift down to convert to generic shuffle mask index.
994     if (IsPD)
995       Index.lshrInPlace(1);
996 
997     // The _256 variants are a bit trickier since the mask bits always index
998     // into the corresponding 128 half. In order to convert to a generic
999     // shuffle, we have to make that explicit.
1000     Index += APInt(32, (I / NumLaneElts) * NumLaneElts);
1001 
1002     Indexes[I] = ConstantInt::get(MaskEltTy, Index);
1003   }
1004 
1005   auto ShuffleMask = ConstantVector::get(makeArrayRef(Indexes, NumElts));
1006   auto V1 = II.getArgOperand(0);
1007   auto V2 = UndefValue::get(V1->getType());
1008   return Builder.CreateShuffleVector(V1, V2, ShuffleMask);
1009 }
1010 
1011 /// Attempt to convert vpermd/vpermps to shufflevector if the mask is constant.
1012 static Value *simplifyX86vpermv(const IntrinsicInst &II,
1013                                 InstCombiner::BuilderTy &Builder) {
1014   auto *V = dyn_cast<Constant>(II.getArgOperand(1));
1015   if (!V)
1016     return nullptr;
1017 
1018   auto *VecTy = cast<VectorType>(II.getType());
1019   auto *MaskEltTy = Type::getInt32Ty(II.getContext());
1020   unsigned Size = VecTy->getNumElements();
1021   assert((Size == 4 || Size == 8 || Size == 16 || Size == 32 || Size == 64) &&
1022          "Unexpected shuffle mask size");
1023 
1024   // Construct a shuffle mask from constant integers or UNDEFs.
1025   Constant *Indexes[64] = {nullptr};
1026 
1027   for (unsigned I = 0; I < Size; ++I) {
1028     Constant *COp = V->getAggregateElement(I);
1029     if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp)))
1030       return nullptr;
1031 
1032     if (isa<UndefValue>(COp)) {
1033       Indexes[I] = UndefValue::get(MaskEltTy);
1034       continue;
1035     }
1036 
1037     uint32_t Index = cast<ConstantInt>(COp)->getZExtValue();
1038     Index &= Size - 1;
1039     Indexes[I] = ConstantInt::get(MaskEltTy, Index);
1040   }
1041 
1042   auto ShuffleMask = ConstantVector::get(makeArrayRef(Indexes, Size));
1043   auto V1 = II.getArgOperand(0);
1044   auto V2 = UndefValue::get(VecTy);
1045   return Builder.CreateShuffleVector(V1, V2, ShuffleMask);
1046 }
1047 
1048 // TODO, Obvious Missing Transforms:
1049 // * Narrow width by halfs excluding zero/undef lanes
1050 Value *InstCombiner::simplifyMaskedLoad(IntrinsicInst &II) {
1051   Value *LoadPtr = II.getArgOperand(0);
1052   unsigned Alignment = cast<ConstantInt>(II.getArgOperand(1))->getZExtValue();
1053 
1054   // If the mask is all ones or undefs, this is a plain vector load of the 1st
1055   // argument.
1056   if (maskIsAllOneOrUndef(II.getArgOperand(2)))
1057     return Builder.CreateAlignedLoad(II.getType(), LoadPtr, Alignment,
1058                                      "unmaskedload");
1059 
1060   // If we can unconditionally load from this address, replace with a
1061   // load/select idiom. TODO: use DT for context sensitive query
1062   if (isDereferenceableAndAlignedPointer(
1063           LoadPtr, II.getType(), MaybeAlign(Alignment),
1064           II.getModule()->getDataLayout(), &II, nullptr)) {
1065     Value *LI = Builder.CreateAlignedLoad(II.getType(), LoadPtr, Alignment,
1066                                          "unmaskedload");
1067     return Builder.CreateSelect(II.getArgOperand(2), LI, II.getArgOperand(3));
1068   }
1069 
1070   return nullptr;
1071 }
1072 
1073 // TODO, Obvious Missing Transforms:
1074 // * Single constant active lane -> store
1075 // * Narrow width by halfs excluding zero/undef lanes
1076 Instruction *InstCombiner::simplifyMaskedStore(IntrinsicInst &II) {
1077   auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(3));
1078   if (!ConstMask)
1079     return nullptr;
1080 
1081   // If the mask is all zeros, this instruction does nothing.
1082   if (ConstMask->isNullValue())
1083     return eraseInstFromFunction(II);
1084 
1085   // If the mask is all ones, this is a plain vector store of the 1st argument.
1086   if (ConstMask->isAllOnesValue()) {
1087     Value *StorePtr = II.getArgOperand(1);
1088     MaybeAlign Alignment(
1089         cast<ConstantInt>(II.getArgOperand(2))->getZExtValue());
1090     return new StoreInst(II.getArgOperand(0), StorePtr, false, Alignment);
1091   }
1092 
1093   // Use masked off lanes to simplify operands via SimplifyDemandedVectorElts
1094   APInt DemandedElts = possiblyDemandedEltsInMask(ConstMask);
1095   APInt UndefElts(DemandedElts.getBitWidth(), 0);
1096   if (Value *V = SimplifyDemandedVectorElts(II.getOperand(0),
1097                                             DemandedElts, UndefElts)) {
1098     II.setOperand(0, V);
1099     return &II;
1100   }
1101 
1102   return nullptr;
1103 }
1104 
1105 // TODO, Obvious Missing Transforms:
1106 // * Single constant active lane load -> load
1107 // * Dereferenceable address & few lanes -> scalarize speculative load/selects
1108 // * Adjacent vector addresses -> masked.load
1109 // * Narrow width by halfs excluding zero/undef lanes
1110 // * Vector splat address w/known mask -> scalar load
1111 // * Vector incrementing address -> vector masked load
1112 Instruction *InstCombiner::simplifyMaskedGather(IntrinsicInst &II) {
1113   return nullptr;
1114 }
1115 
1116 // TODO, Obvious Missing Transforms:
1117 // * Single constant active lane -> store
1118 // * Adjacent vector addresses -> masked.store
1119 // * Narrow store width by halfs excluding zero/undef lanes
1120 // * Vector splat address w/known mask -> scalar store
1121 // * Vector incrementing address -> vector masked store
1122 Instruction *InstCombiner::simplifyMaskedScatter(IntrinsicInst &II) {
1123   auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(3));
1124   if (!ConstMask)
1125     return nullptr;
1126 
1127   // If the mask is all zeros, a scatter does nothing.
1128   if (ConstMask->isNullValue())
1129     return eraseInstFromFunction(II);
1130 
1131   // Use masked off lanes to simplify operands via SimplifyDemandedVectorElts
1132   APInt DemandedElts = possiblyDemandedEltsInMask(ConstMask);
1133   APInt UndefElts(DemandedElts.getBitWidth(), 0);
1134   if (Value *V = SimplifyDemandedVectorElts(II.getOperand(0),
1135                                             DemandedElts, UndefElts)) {
1136     II.setOperand(0, V);
1137     return &II;
1138   }
1139   if (Value *V = SimplifyDemandedVectorElts(II.getOperand(1),
1140                                             DemandedElts, UndefElts)) {
1141     II.setOperand(1, V);
1142     return &II;
1143   }
1144 
1145   return nullptr;
1146 }
1147 
1148 /// This function transforms launder.invariant.group and strip.invariant.group
1149 /// like:
1150 /// launder(launder(%x)) -> launder(%x)       (the result is not the argument)
1151 /// launder(strip(%x)) -> launder(%x)
1152 /// strip(strip(%x)) -> strip(%x)             (the result is not the argument)
1153 /// strip(launder(%x)) -> strip(%x)
1154 /// This is legal because it preserves the most recent information about
1155 /// the presence or absence of invariant.group.
1156 static Instruction *simplifyInvariantGroupIntrinsic(IntrinsicInst &II,
1157                                                     InstCombiner &IC) {
1158   auto *Arg = II.getArgOperand(0);
1159   auto *StrippedArg = Arg->stripPointerCasts();
1160   auto *StrippedInvariantGroupsArg = Arg->stripPointerCastsAndInvariantGroups();
1161   if (StrippedArg == StrippedInvariantGroupsArg)
1162     return nullptr; // No launders/strips to remove.
1163 
1164   Value *Result = nullptr;
1165 
1166   if (II.getIntrinsicID() == Intrinsic::launder_invariant_group)
1167     Result = IC.Builder.CreateLaunderInvariantGroup(StrippedInvariantGroupsArg);
1168   else if (II.getIntrinsicID() == Intrinsic::strip_invariant_group)
1169     Result = IC.Builder.CreateStripInvariantGroup(StrippedInvariantGroupsArg);
1170   else
1171     llvm_unreachable(
1172         "simplifyInvariantGroupIntrinsic only handles launder and strip");
1173   if (Result->getType()->getPointerAddressSpace() !=
1174       II.getType()->getPointerAddressSpace())
1175     Result = IC.Builder.CreateAddrSpaceCast(Result, II.getType());
1176   if (Result->getType() != II.getType())
1177     Result = IC.Builder.CreateBitCast(Result, II.getType());
1178 
1179   return cast<Instruction>(Result);
1180 }
1181 
1182 static Instruction *foldCttzCtlz(IntrinsicInst &II, InstCombiner &IC) {
1183   assert((II.getIntrinsicID() == Intrinsic::cttz ||
1184           II.getIntrinsicID() == Intrinsic::ctlz) &&
1185          "Expected cttz or ctlz intrinsic");
1186   bool IsTZ = II.getIntrinsicID() == Intrinsic::cttz;
1187   Value *Op0 = II.getArgOperand(0);
1188   Value *X;
1189   // ctlz(bitreverse(x)) -> cttz(x)
1190   // cttz(bitreverse(x)) -> ctlz(x)
1191   if (match(Op0, m_BitReverse(m_Value(X)))) {
1192     Intrinsic::ID ID = IsTZ ? Intrinsic::ctlz : Intrinsic::cttz;
1193     Function *F = Intrinsic::getDeclaration(II.getModule(), ID, II.getType());
1194     return CallInst::Create(F, {X, II.getArgOperand(1)});
1195   }
1196 
1197   if (IsTZ) {
1198     // cttz(-x) -> cttz(x)
1199     if (match(Op0, m_Neg(m_Value(X)))) {
1200       II.setOperand(0, X);
1201       return &II;
1202     }
1203 
1204     // cttz(abs(x)) -> cttz(x)
1205     // cttz(nabs(x)) -> cttz(x)
1206     Value *Y;
1207     SelectPatternFlavor SPF = matchSelectPattern(Op0, X, Y).Flavor;
1208     if (SPF == SPF_ABS || SPF == SPF_NABS) {
1209       II.setOperand(0, X);
1210       return &II;
1211     }
1212   }
1213 
1214   KnownBits Known = IC.computeKnownBits(Op0, 0, &II);
1215 
1216   // Create a mask for bits above (ctlz) or below (cttz) the first known one.
1217   unsigned PossibleZeros = IsTZ ? Known.countMaxTrailingZeros()
1218                                 : Known.countMaxLeadingZeros();
1219   unsigned DefiniteZeros = IsTZ ? Known.countMinTrailingZeros()
1220                                 : Known.countMinLeadingZeros();
1221 
1222   // If all bits above (ctlz) or below (cttz) the first known one are known
1223   // zero, this value is constant.
1224   // FIXME: This should be in InstSimplify because we're replacing an
1225   // instruction with a constant.
1226   if (PossibleZeros == DefiniteZeros) {
1227     auto *C = ConstantInt::get(Op0->getType(), DefiniteZeros);
1228     return IC.replaceInstUsesWith(II, C);
1229   }
1230 
1231   // If the input to cttz/ctlz is known to be non-zero,
1232   // then change the 'ZeroIsUndef' parameter to 'true'
1233   // because we know the zero behavior can't affect the result.
1234   if (!Known.One.isNullValue() ||
1235       isKnownNonZero(Op0, IC.getDataLayout(), 0, &IC.getAssumptionCache(), &II,
1236                      &IC.getDominatorTree())) {
1237     if (!match(II.getArgOperand(1), m_One())) {
1238       II.setOperand(1, IC.Builder.getTrue());
1239       return &II;
1240     }
1241   }
1242 
1243   // Add range metadata since known bits can't completely reflect what we know.
1244   // TODO: Handle splat vectors.
1245   auto *IT = dyn_cast<IntegerType>(Op0->getType());
1246   if (IT && IT->getBitWidth() != 1 && !II.getMetadata(LLVMContext::MD_range)) {
1247     Metadata *LowAndHigh[] = {
1248         ConstantAsMetadata::get(ConstantInt::get(IT, DefiniteZeros)),
1249         ConstantAsMetadata::get(ConstantInt::get(IT, PossibleZeros + 1))};
1250     II.setMetadata(LLVMContext::MD_range,
1251                    MDNode::get(II.getContext(), LowAndHigh));
1252     return &II;
1253   }
1254 
1255   return nullptr;
1256 }
1257 
1258 static Instruction *foldCtpop(IntrinsicInst &II, InstCombiner &IC) {
1259   assert(II.getIntrinsicID() == Intrinsic::ctpop &&
1260          "Expected ctpop intrinsic");
1261   Value *Op0 = II.getArgOperand(0);
1262   Value *X;
1263   // ctpop(bitreverse(x)) -> ctpop(x)
1264   // ctpop(bswap(x)) -> ctpop(x)
1265   if (match(Op0, m_BitReverse(m_Value(X))) || match(Op0, m_BSwap(m_Value(X)))) {
1266     II.setOperand(0, X);
1267     return &II;
1268   }
1269 
1270   // FIXME: Try to simplify vectors of integers.
1271   auto *IT = dyn_cast<IntegerType>(Op0->getType());
1272   if (!IT)
1273     return nullptr;
1274 
1275   unsigned BitWidth = IT->getBitWidth();
1276   KnownBits Known(BitWidth);
1277   IC.computeKnownBits(Op0, Known, 0, &II);
1278 
1279   unsigned MinCount = Known.countMinPopulation();
1280   unsigned MaxCount = Known.countMaxPopulation();
1281 
1282   // Add range metadata since known bits can't completely reflect what we know.
1283   if (IT->getBitWidth() != 1 && !II.getMetadata(LLVMContext::MD_range)) {
1284     Metadata *LowAndHigh[] = {
1285         ConstantAsMetadata::get(ConstantInt::get(IT, MinCount)),
1286         ConstantAsMetadata::get(ConstantInt::get(IT, MaxCount + 1))};
1287     II.setMetadata(LLVMContext::MD_range,
1288                    MDNode::get(II.getContext(), LowAndHigh));
1289     return &II;
1290   }
1291 
1292   return nullptr;
1293 }
1294 
1295 // TODO: If the x86 backend knew how to convert a bool vector mask back to an
1296 // XMM register mask efficiently, we could transform all x86 masked intrinsics
1297 // to LLVM masked intrinsics and remove the x86 masked intrinsic defs.
1298 static Instruction *simplifyX86MaskedLoad(IntrinsicInst &II, InstCombiner &IC) {
1299   Value *Ptr = II.getOperand(0);
1300   Value *Mask = II.getOperand(1);
1301   Constant *ZeroVec = Constant::getNullValue(II.getType());
1302 
1303   // Special case a zero mask since that's not a ConstantDataVector.
1304   // This masked load instruction creates a zero vector.
1305   if (isa<ConstantAggregateZero>(Mask))
1306     return IC.replaceInstUsesWith(II, ZeroVec);
1307 
1308   auto *ConstMask = dyn_cast<ConstantDataVector>(Mask);
1309   if (!ConstMask)
1310     return nullptr;
1311 
1312   // The mask is constant. Convert this x86 intrinsic to the LLVM instrinsic
1313   // to allow target-independent optimizations.
1314 
1315   // First, cast the x86 intrinsic scalar pointer to a vector pointer to match
1316   // the LLVM intrinsic definition for the pointer argument.
1317   unsigned AddrSpace = cast<PointerType>(Ptr->getType())->getAddressSpace();
1318   PointerType *VecPtrTy = PointerType::get(II.getType(), AddrSpace);
1319   Value *PtrCast = IC.Builder.CreateBitCast(Ptr, VecPtrTy, "castvec");
1320 
1321   // Second, convert the x86 XMM integer vector mask to a vector of bools based
1322   // on each element's most significant bit (the sign bit).
1323   Constant *BoolMask = getNegativeIsTrueBoolVec(ConstMask);
1324 
1325   // The pass-through vector for an x86 masked load is a zero vector.
1326   CallInst *NewMaskedLoad =
1327       IC.Builder.CreateMaskedLoad(PtrCast, 1, BoolMask, ZeroVec);
1328   return IC.replaceInstUsesWith(II, NewMaskedLoad);
1329 }
1330 
1331 // TODO: If the x86 backend knew how to convert a bool vector mask back to an
1332 // XMM register mask efficiently, we could transform all x86 masked intrinsics
1333 // to LLVM masked intrinsics and remove the x86 masked intrinsic defs.
1334 static bool simplifyX86MaskedStore(IntrinsicInst &II, InstCombiner &IC) {
1335   Value *Ptr = II.getOperand(0);
1336   Value *Mask = II.getOperand(1);
1337   Value *Vec = II.getOperand(2);
1338 
1339   // Special case a zero mask since that's not a ConstantDataVector:
1340   // this masked store instruction does nothing.
1341   if (isa<ConstantAggregateZero>(Mask)) {
1342     IC.eraseInstFromFunction(II);
1343     return true;
1344   }
1345 
1346   // The SSE2 version is too weird (eg, unaligned but non-temporal) to do
1347   // anything else at this level.
1348   if (II.getIntrinsicID() == Intrinsic::x86_sse2_maskmov_dqu)
1349     return false;
1350 
1351   auto *ConstMask = dyn_cast<ConstantDataVector>(Mask);
1352   if (!ConstMask)
1353     return false;
1354 
1355   // The mask is constant. Convert this x86 intrinsic to the LLVM instrinsic
1356   // to allow target-independent optimizations.
1357 
1358   // First, cast the x86 intrinsic scalar pointer to a vector pointer to match
1359   // the LLVM intrinsic definition for the pointer argument.
1360   unsigned AddrSpace = cast<PointerType>(Ptr->getType())->getAddressSpace();
1361   PointerType *VecPtrTy = PointerType::get(Vec->getType(), AddrSpace);
1362   Value *PtrCast = IC.Builder.CreateBitCast(Ptr, VecPtrTy, "castvec");
1363 
1364   // Second, convert the x86 XMM integer vector mask to a vector of bools based
1365   // on each element's most significant bit (the sign bit).
1366   Constant *BoolMask = getNegativeIsTrueBoolVec(ConstMask);
1367 
1368   IC.Builder.CreateMaskedStore(Vec, PtrCast, 1, BoolMask);
1369 
1370   // 'Replace uses' doesn't work for stores. Erase the original masked store.
1371   IC.eraseInstFromFunction(II);
1372   return true;
1373 }
1374 
1375 // Constant fold llvm.amdgcn.fmed3 intrinsics for standard inputs.
1376 //
1377 // A single NaN input is folded to minnum, so we rely on that folding for
1378 // handling NaNs.
1379 static APFloat fmed3AMDGCN(const APFloat &Src0, const APFloat &Src1,
1380                            const APFloat &Src2) {
1381   APFloat Max3 = maxnum(maxnum(Src0, Src1), Src2);
1382 
1383   APFloat::cmpResult Cmp0 = Max3.compare(Src0);
1384   assert(Cmp0 != APFloat::cmpUnordered && "nans handled separately");
1385   if (Cmp0 == APFloat::cmpEqual)
1386     return maxnum(Src1, Src2);
1387 
1388   APFloat::cmpResult Cmp1 = Max3.compare(Src1);
1389   assert(Cmp1 != APFloat::cmpUnordered && "nans handled separately");
1390   if (Cmp1 == APFloat::cmpEqual)
1391     return maxnum(Src0, Src2);
1392 
1393   return maxnum(Src0, Src1);
1394 }
1395 
1396 /// Convert a table lookup to shufflevector if the mask is constant.
1397 /// This could benefit tbl1 if the mask is { 7,6,5,4,3,2,1,0 }, in
1398 /// which case we could lower the shufflevector with rev64 instructions
1399 /// as it's actually a byte reverse.
1400 static Value *simplifyNeonTbl1(const IntrinsicInst &II,
1401                                InstCombiner::BuilderTy &Builder) {
1402   // Bail out if the mask is not a constant.
1403   auto *C = dyn_cast<Constant>(II.getArgOperand(1));
1404   if (!C)
1405     return nullptr;
1406 
1407   auto *VecTy = cast<VectorType>(II.getType());
1408   unsigned NumElts = VecTy->getNumElements();
1409 
1410   // Only perform this transformation for <8 x i8> vector types.
1411   if (!VecTy->getElementType()->isIntegerTy(8) || NumElts != 8)
1412     return nullptr;
1413 
1414   uint32_t Indexes[8];
1415 
1416   for (unsigned I = 0; I < NumElts; ++I) {
1417     Constant *COp = C->getAggregateElement(I);
1418 
1419     if (!COp || !isa<ConstantInt>(COp))
1420       return nullptr;
1421 
1422     Indexes[I] = cast<ConstantInt>(COp)->getLimitedValue();
1423 
1424     // Make sure the mask indices are in range.
1425     if (Indexes[I] >= NumElts)
1426       return nullptr;
1427   }
1428 
1429   auto *ShuffleMask = ConstantDataVector::get(II.getContext(),
1430                                               makeArrayRef(Indexes));
1431   auto *V1 = II.getArgOperand(0);
1432   auto *V2 = Constant::getNullValue(V1->getType());
1433   return Builder.CreateShuffleVector(V1, V2, ShuffleMask);
1434 }
1435 
1436 /// Convert a vector load intrinsic into a simple llvm load instruction.
1437 /// This is beneficial when the underlying object being addressed comes
1438 /// from a constant, since we get constant-folding for free.
1439 static Value *simplifyNeonVld1(const IntrinsicInst &II,
1440                                unsigned MemAlign,
1441                                InstCombiner::BuilderTy &Builder) {
1442   auto *IntrAlign = dyn_cast<ConstantInt>(II.getArgOperand(1));
1443 
1444   if (!IntrAlign)
1445     return nullptr;
1446 
1447   unsigned Alignment = IntrAlign->getLimitedValue() < MemAlign ?
1448                        MemAlign : IntrAlign->getLimitedValue();
1449 
1450   if (!isPowerOf2_32(Alignment))
1451     return nullptr;
1452 
1453   auto *BCastInst = Builder.CreateBitCast(II.getArgOperand(0),
1454                                           PointerType::get(II.getType(), 0));
1455   return Builder.CreateAlignedLoad(II.getType(), BCastInst, Alignment);
1456 }
1457 
1458 // Returns true iff the 2 intrinsics have the same operands, limiting the
1459 // comparison to the first NumOperands.
1460 static bool haveSameOperands(const IntrinsicInst &I, const IntrinsicInst &E,
1461                              unsigned NumOperands) {
1462   assert(I.getNumArgOperands() >= NumOperands && "Not enough operands");
1463   assert(E.getNumArgOperands() >= NumOperands && "Not enough operands");
1464   for (unsigned i = 0; i < NumOperands; i++)
1465     if (I.getArgOperand(i) != E.getArgOperand(i))
1466       return false;
1467   return true;
1468 }
1469 
1470 // Remove trivially empty start/end intrinsic ranges, i.e. a start
1471 // immediately followed by an end (ignoring debuginfo or other
1472 // start/end intrinsics in between). As this handles only the most trivial
1473 // cases, tracking the nesting level is not needed:
1474 //
1475 //   call @llvm.foo.start(i1 0) ; &I
1476 //   call @llvm.foo.start(i1 0)
1477 //   call @llvm.foo.end(i1 0) ; This one will not be skipped: it will be removed
1478 //   call @llvm.foo.end(i1 0)
1479 static bool removeTriviallyEmptyRange(IntrinsicInst &I, unsigned StartID,
1480                                       unsigned EndID, InstCombiner &IC) {
1481   assert(I.getIntrinsicID() == StartID &&
1482          "Start intrinsic does not have expected ID");
1483   BasicBlock::iterator BI(I), BE(I.getParent()->end());
1484   for (++BI; BI != BE; ++BI) {
1485     if (auto *E = dyn_cast<IntrinsicInst>(BI)) {
1486       if (isa<DbgInfoIntrinsic>(E) || E->getIntrinsicID() == StartID)
1487         continue;
1488       if (E->getIntrinsicID() == EndID &&
1489           haveSameOperands(I, *E, E->getNumArgOperands())) {
1490         IC.eraseInstFromFunction(*E);
1491         IC.eraseInstFromFunction(I);
1492         return true;
1493       }
1494     }
1495     break;
1496   }
1497 
1498   return false;
1499 }
1500 
1501 // Convert NVVM intrinsics to target-generic LLVM code where possible.
1502 static Instruction *SimplifyNVVMIntrinsic(IntrinsicInst *II, InstCombiner &IC) {
1503   // Each NVVM intrinsic we can simplify can be replaced with one of:
1504   //
1505   //  * an LLVM intrinsic,
1506   //  * an LLVM cast operation,
1507   //  * an LLVM binary operation, or
1508   //  * ad-hoc LLVM IR for the particular operation.
1509 
1510   // Some transformations are only valid when the module's
1511   // flush-denormals-to-zero (ftz) setting is true/false, whereas other
1512   // transformations are valid regardless of the module's ftz setting.
1513   enum FtzRequirementTy {
1514     FTZ_Any,       // Any ftz setting is ok.
1515     FTZ_MustBeOn,  // Transformation is valid only if ftz is on.
1516     FTZ_MustBeOff, // Transformation is valid only if ftz is off.
1517   };
1518   // Classes of NVVM intrinsics that can't be replaced one-to-one with a
1519   // target-generic intrinsic, cast op, or binary op but that we can nonetheless
1520   // simplify.
1521   enum SpecialCase {
1522     SPC_Reciprocal,
1523   };
1524 
1525   // SimplifyAction is a poor-man's variant (plus an additional flag) that
1526   // represents how to replace an NVVM intrinsic with target-generic LLVM IR.
1527   struct SimplifyAction {
1528     // Invariant: At most one of these Optionals has a value.
1529     Optional<Intrinsic::ID> IID;
1530     Optional<Instruction::CastOps> CastOp;
1531     Optional<Instruction::BinaryOps> BinaryOp;
1532     Optional<SpecialCase> Special;
1533 
1534     FtzRequirementTy FtzRequirement = FTZ_Any;
1535 
1536     SimplifyAction() = default;
1537 
1538     SimplifyAction(Intrinsic::ID IID, FtzRequirementTy FtzReq)
1539         : IID(IID), FtzRequirement(FtzReq) {}
1540 
1541     // Cast operations don't have anything to do with FTZ, so we skip that
1542     // argument.
1543     SimplifyAction(Instruction::CastOps CastOp) : CastOp(CastOp) {}
1544 
1545     SimplifyAction(Instruction::BinaryOps BinaryOp, FtzRequirementTy FtzReq)
1546         : BinaryOp(BinaryOp), FtzRequirement(FtzReq) {}
1547 
1548     SimplifyAction(SpecialCase Special, FtzRequirementTy FtzReq)
1549         : Special(Special), FtzRequirement(FtzReq) {}
1550   };
1551 
1552   // Try to generate a SimplifyAction describing how to replace our
1553   // IntrinsicInstr with target-generic LLVM IR.
1554   const SimplifyAction Action = [II]() -> SimplifyAction {
1555     switch (II->getIntrinsicID()) {
1556     // NVVM intrinsics that map directly to LLVM intrinsics.
1557     case Intrinsic::nvvm_ceil_d:
1558       return {Intrinsic::ceil, FTZ_Any};
1559     case Intrinsic::nvvm_ceil_f:
1560       return {Intrinsic::ceil, FTZ_MustBeOff};
1561     case Intrinsic::nvvm_ceil_ftz_f:
1562       return {Intrinsic::ceil, FTZ_MustBeOn};
1563     case Intrinsic::nvvm_fabs_d:
1564       return {Intrinsic::fabs, FTZ_Any};
1565     case Intrinsic::nvvm_fabs_f:
1566       return {Intrinsic::fabs, FTZ_MustBeOff};
1567     case Intrinsic::nvvm_fabs_ftz_f:
1568       return {Intrinsic::fabs, FTZ_MustBeOn};
1569     case Intrinsic::nvvm_floor_d:
1570       return {Intrinsic::floor, FTZ_Any};
1571     case Intrinsic::nvvm_floor_f:
1572       return {Intrinsic::floor, FTZ_MustBeOff};
1573     case Intrinsic::nvvm_floor_ftz_f:
1574       return {Intrinsic::floor, FTZ_MustBeOn};
1575     case Intrinsic::nvvm_fma_rn_d:
1576       return {Intrinsic::fma, FTZ_Any};
1577     case Intrinsic::nvvm_fma_rn_f:
1578       return {Intrinsic::fma, FTZ_MustBeOff};
1579     case Intrinsic::nvvm_fma_rn_ftz_f:
1580       return {Intrinsic::fma, FTZ_MustBeOn};
1581     case Intrinsic::nvvm_fmax_d:
1582       return {Intrinsic::maxnum, FTZ_Any};
1583     case Intrinsic::nvvm_fmax_f:
1584       return {Intrinsic::maxnum, FTZ_MustBeOff};
1585     case Intrinsic::nvvm_fmax_ftz_f:
1586       return {Intrinsic::maxnum, FTZ_MustBeOn};
1587     case Intrinsic::nvvm_fmin_d:
1588       return {Intrinsic::minnum, FTZ_Any};
1589     case Intrinsic::nvvm_fmin_f:
1590       return {Intrinsic::minnum, FTZ_MustBeOff};
1591     case Intrinsic::nvvm_fmin_ftz_f:
1592       return {Intrinsic::minnum, FTZ_MustBeOn};
1593     case Intrinsic::nvvm_round_d:
1594       return {Intrinsic::round, FTZ_Any};
1595     case Intrinsic::nvvm_round_f:
1596       return {Intrinsic::round, FTZ_MustBeOff};
1597     case Intrinsic::nvvm_round_ftz_f:
1598       return {Intrinsic::round, FTZ_MustBeOn};
1599     case Intrinsic::nvvm_sqrt_rn_d:
1600       return {Intrinsic::sqrt, FTZ_Any};
1601     case Intrinsic::nvvm_sqrt_f:
1602       // nvvm_sqrt_f is a special case.  For  most intrinsics, foo_ftz_f is the
1603       // ftz version, and foo_f is the non-ftz version.  But nvvm_sqrt_f adopts
1604       // the ftz-ness of the surrounding code.  sqrt_rn_f and sqrt_rn_ftz_f are
1605       // the versions with explicit ftz-ness.
1606       return {Intrinsic::sqrt, FTZ_Any};
1607     case Intrinsic::nvvm_sqrt_rn_f:
1608       return {Intrinsic::sqrt, FTZ_MustBeOff};
1609     case Intrinsic::nvvm_sqrt_rn_ftz_f:
1610       return {Intrinsic::sqrt, FTZ_MustBeOn};
1611     case Intrinsic::nvvm_trunc_d:
1612       return {Intrinsic::trunc, FTZ_Any};
1613     case Intrinsic::nvvm_trunc_f:
1614       return {Intrinsic::trunc, FTZ_MustBeOff};
1615     case Intrinsic::nvvm_trunc_ftz_f:
1616       return {Intrinsic::trunc, FTZ_MustBeOn};
1617 
1618     // NVVM intrinsics that map to LLVM cast operations.
1619     //
1620     // Note that llvm's target-generic conversion operators correspond to the rz
1621     // (round to zero) versions of the nvvm conversion intrinsics, even though
1622     // most everything else here uses the rn (round to nearest even) nvvm ops.
1623     case Intrinsic::nvvm_d2i_rz:
1624     case Intrinsic::nvvm_f2i_rz:
1625     case Intrinsic::nvvm_d2ll_rz:
1626     case Intrinsic::nvvm_f2ll_rz:
1627       return {Instruction::FPToSI};
1628     case Intrinsic::nvvm_d2ui_rz:
1629     case Intrinsic::nvvm_f2ui_rz:
1630     case Intrinsic::nvvm_d2ull_rz:
1631     case Intrinsic::nvvm_f2ull_rz:
1632       return {Instruction::FPToUI};
1633     case Intrinsic::nvvm_i2d_rz:
1634     case Intrinsic::nvvm_i2f_rz:
1635     case Intrinsic::nvvm_ll2d_rz:
1636     case Intrinsic::nvvm_ll2f_rz:
1637       return {Instruction::SIToFP};
1638     case Intrinsic::nvvm_ui2d_rz:
1639     case Intrinsic::nvvm_ui2f_rz:
1640     case Intrinsic::nvvm_ull2d_rz:
1641     case Intrinsic::nvvm_ull2f_rz:
1642       return {Instruction::UIToFP};
1643 
1644     // NVVM intrinsics that map to LLVM binary ops.
1645     case Intrinsic::nvvm_add_rn_d:
1646       return {Instruction::FAdd, FTZ_Any};
1647     case Intrinsic::nvvm_add_rn_f:
1648       return {Instruction::FAdd, FTZ_MustBeOff};
1649     case Intrinsic::nvvm_add_rn_ftz_f:
1650       return {Instruction::FAdd, FTZ_MustBeOn};
1651     case Intrinsic::nvvm_mul_rn_d:
1652       return {Instruction::FMul, FTZ_Any};
1653     case Intrinsic::nvvm_mul_rn_f:
1654       return {Instruction::FMul, FTZ_MustBeOff};
1655     case Intrinsic::nvvm_mul_rn_ftz_f:
1656       return {Instruction::FMul, FTZ_MustBeOn};
1657     case Intrinsic::nvvm_div_rn_d:
1658       return {Instruction::FDiv, FTZ_Any};
1659     case Intrinsic::nvvm_div_rn_f:
1660       return {Instruction::FDiv, FTZ_MustBeOff};
1661     case Intrinsic::nvvm_div_rn_ftz_f:
1662       return {Instruction::FDiv, FTZ_MustBeOn};
1663 
1664     // The remainder of cases are NVVM intrinsics that map to LLVM idioms, but
1665     // need special handling.
1666     //
1667     // We seem to be missing intrinsics for rcp.approx.{ftz.}f32, which is just
1668     // as well.
1669     case Intrinsic::nvvm_rcp_rn_d:
1670       return {SPC_Reciprocal, FTZ_Any};
1671     case Intrinsic::nvvm_rcp_rn_f:
1672       return {SPC_Reciprocal, FTZ_MustBeOff};
1673     case Intrinsic::nvvm_rcp_rn_ftz_f:
1674       return {SPC_Reciprocal, FTZ_MustBeOn};
1675 
1676     // We do not currently simplify intrinsics that give an approximate answer.
1677     // These include:
1678     //
1679     //   - nvvm_cos_approx_{f,ftz_f}
1680     //   - nvvm_ex2_approx_{d,f,ftz_f}
1681     //   - nvvm_lg2_approx_{d,f,ftz_f}
1682     //   - nvvm_sin_approx_{f,ftz_f}
1683     //   - nvvm_sqrt_approx_{f,ftz_f}
1684     //   - nvvm_rsqrt_approx_{d,f,ftz_f}
1685     //   - nvvm_div_approx_{ftz_d,ftz_f,f}
1686     //   - nvvm_rcp_approx_ftz_d
1687     //
1688     // Ideally we'd encode them as e.g. "fast call @llvm.cos", where "fast"
1689     // means that fastmath is enabled in the intrinsic.  Unfortunately only
1690     // binary operators (currently) have a fastmath bit in SelectionDAG, so this
1691     // information gets lost and we can't select on it.
1692     //
1693     // TODO: div and rcp are lowered to a binary op, so these we could in theory
1694     // lower them to "fast fdiv".
1695 
1696     default:
1697       return {};
1698     }
1699   }();
1700 
1701   // If Action.FtzRequirementTy is not satisfied by the module's ftz state, we
1702   // can bail out now.  (Notice that in the case that IID is not an NVVM
1703   // intrinsic, we don't have to look up any module metadata, as
1704   // FtzRequirementTy will be FTZ_Any.)
1705   if (Action.FtzRequirement != FTZ_Any) {
1706     bool FtzEnabled =
1707         II->getFunction()->getFnAttribute("nvptx-f32ftz").getValueAsString() ==
1708         "true";
1709 
1710     if (FtzEnabled != (Action.FtzRequirement == FTZ_MustBeOn))
1711       return nullptr;
1712   }
1713 
1714   // Simplify to target-generic intrinsic.
1715   if (Action.IID) {
1716     SmallVector<Value *, 4> Args(II->arg_operands());
1717     // All the target-generic intrinsics currently of interest to us have one
1718     // type argument, equal to that of the nvvm intrinsic's argument.
1719     Type *Tys[] = {II->getArgOperand(0)->getType()};
1720     return CallInst::Create(
1721         Intrinsic::getDeclaration(II->getModule(), *Action.IID, Tys), Args);
1722   }
1723 
1724   // Simplify to target-generic binary op.
1725   if (Action.BinaryOp)
1726     return BinaryOperator::Create(*Action.BinaryOp, II->getArgOperand(0),
1727                                   II->getArgOperand(1), II->getName());
1728 
1729   // Simplify to target-generic cast op.
1730   if (Action.CastOp)
1731     return CastInst::Create(*Action.CastOp, II->getArgOperand(0), II->getType(),
1732                             II->getName());
1733 
1734   // All that's left are the special cases.
1735   if (!Action.Special)
1736     return nullptr;
1737 
1738   switch (*Action.Special) {
1739   case SPC_Reciprocal:
1740     // Simplify reciprocal.
1741     return BinaryOperator::Create(
1742         Instruction::FDiv, ConstantFP::get(II->getArgOperand(0)->getType(), 1),
1743         II->getArgOperand(0), II->getName());
1744   }
1745   llvm_unreachable("All SpecialCase enumerators should be handled in switch.");
1746 }
1747 
1748 Instruction *InstCombiner::visitVAStartInst(VAStartInst &I) {
1749   removeTriviallyEmptyRange(I, Intrinsic::vastart, Intrinsic::vaend, *this);
1750   return nullptr;
1751 }
1752 
1753 Instruction *InstCombiner::visitVACopyInst(VACopyInst &I) {
1754   removeTriviallyEmptyRange(I, Intrinsic::vacopy, Intrinsic::vaend, *this);
1755   return nullptr;
1756 }
1757 
1758 static Instruction *canonicalizeConstantArg0ToArg1(CallInst &Call) {
1759   assert(Call.getNumArgOperands() > 1 && "Need at least 2 args to swap");
1760   Value *Arg0 = Call.getArgOperand(0), *Arg1 = Call.getArgOperand(1);
1761   if (isa<Constant>(Arg0) && !isa<Constant>(Arg1)) {
1762     Call.setArgOperand(0, Arg1);
1763     Call.setArgOperand(1, Arg0);
1764     return &Call;
1765   }
1766   return nullptr;
1767 }
1768 
1769 Instruction *InstCombiner::foldIntrinsicWithOverflowCommon(IntrinsicInst *II) {
1770   WithOverflowInst *WO = cast<WithOverflowInst>(II);
1771   Value *OperationResult = nullptr;
1772   Constant *OverflowResult = nullptr;
1773   if (OptimizeOverflowCheck(WO->getBinaryOp(), WO->isSigned(), WO->getLHS(),
1774                             WO->getRHS(), *WO, OperationResult, OverflowResult))
1775     return CreateOverflowTuple(WO, OperationResult, OverflowResult);
1776   return nullptr;
1777 }
1778 
1779 /// CallInst simplification. This mostly only handles folding of intrinsic
1780 /// instructions. For normal calls, it allows visitCallBase to do the heavy
1781 /// lifting.
1782 Instruction *InstCombiner::visitCallInst(CallInst &CI) {
1783   if (Value *V = SimplifyCall(&CI, SQ.getWithInstruction(&CI)))
1784     return replaceInstUsesWith(CI, V);
1785 
1786   if (isFreeCall(&CI, &TLI))
1787     return visitFree(CI);
1788 
1789   // If the caller function is nounwind, mark the call as nounwind, even if the
1790   // callee isn't.
1791   if (CI.getFunction()->doesNotThrow() && !CI.doesNotThrow()) {
1792     CI.setDoesNotThrow();
1793     return &CI;
1794   }
1795 
1796   IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
1797   if (!II) return visitCallBase(CI);
1798 
1799   // Intrinsics cannot occur in an invoke or a callbr, so handle them here
1800   // instead of in visitCallBase.
1801   if (auto *MI = dyn_cast<AnyMemIntrinsic>(II)) {
1802     bool Changed = false;
1803 
1804     // memmove/cpy/set of zero bytes is a noop.
1805     if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
1806       if (NumBytes->isNullValue())
1807         return eraseInstFromFunction(CI);
1808 
1809       if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
1810         if (CI->getZExtValue() == 1) {
1811           // Replace the instruction with just byte operations.  We would
1812           // transform other cases to loads/stores, but we don't know if
1813           // alignment is sufficient.
1814         }
1815     }
1816 
1817     // No other transformations apply to volatile transfers.
1818     if (auto *M = dyn_cast<MemIntrinsic>(MI))
1819       if (M->isVolatile())
1820         return nullptr;
1821 
1822     // If we have a memmove and the source operation is a constant global,
1823     // then the source and dest pointers can't alias, so we can change this
1824     // into a call to memcpy.
1825     if (auto *MMI = dyn_cast<AnyMemMoveInst>(MI)) {
1826       if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
1827         if (GVSrc->isConstant()) {
1828           Module *M = CI.getModule();
1829           Intrinsic::ID MemCpyID =
1830               isa<AtomicMemMoveInst>(MMI)
1831                   ? Intrinsic::memcpy_element_unordered_atomic
1832                   : Intrinsic::memcpy;
1833           Type *Tys[3] = { CI.getArgOperand(0)->getType(),
1834                            CI.getArgOperand(1)->getType(),
1835                            CI.getArgOperand(2)->getType() };
1836           CI.setCalledFunction(Intrinsic::getDeclaration(M, MemCpyID, Tys));
1837           Changed = true;
1838         }
1839     }
1840 
1841     if (AnyMemTransferInst *MTI = dyn_cast<AnyMemTransferInst>(MI)) {
1842       // memmove(x,x,size) -> noop.
1843       if (MTI->getSource() == MTI->getDest())
1844         return eraseInstFromFunction(CI);
1845     }
1846 
1847     // If we can determine a pointer alignment that is bigger than currently
1848     // set, update the alignment.
1849     if (auto *MTI = dyn_cast<AnyMemTransferInst>(MI)) {
1850       if (Instruction *I = SimplifyAnyMemTransfer(MTI))
1851         return I;
1852     } else if (auto *MSI = dyn_cast<AnyMemSetInst>(MI)) {
1853       if (Instruction *I = SimplifyAnyMemSet(MSI))
1854         return I;
1855     }
1856 
1857     if (Changed) return II;
1858   }
1859 
1860   // For vector result intrinsics, use the generic demanded vector support.
1861   if (II->getType()->isVectorTy()) {
1862     auto VWidth = II->getType()->getVectorNumElements();
1863     APInt UndefElts(VWidth, 0);
1864     APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
1865     if (Value *V = SimplifyDemandedVectorElts(II, AllOnesEltMask, UndefElts)) {
1866       if (V != II)
1867         return replaceInstUsesWith(*II, V);
1868       return II;
1869     }
1870   }
1871 
1872   if (Instruction *I = SimplifyNVVMIntrinsic(II, *this))
1873     return I;
1874 
1875   auto SimplifyDemandedVectorEltsLow = [this](Value *Op, unsigned Width,
1876                                               unsigned DemandedWidth) {
1877     APInt UndefElts(Width, 0);
1878     APInt DemandedElts = APInt::getLowBitsSet(Width, DemandedWidth);
1879     return SimplifyDemandedVectorElts(Op, DemandedElts, UndefElts);
1880   };
1881 
1882   Intrinsic::ID IID = II->getIntrinsicID();
1883   switch (IID) {
1884   default: break;
1885   case Intrinsic::objectsize:
1886     if (Value *V = lowerObjectSizeCall(II, DL, &TLI, /*MustSucceed=*/false))
1887       return replaceInstUsesWith(CI, V);
1888     return nullptr;
1889   case Intrinsic::bswap: {
1890     Value *IIOperand = II->getArgOperand(0);
1891     Value *X = nullptr;
1892 
1893     // bswap(trunc(bswap(x))) -> trunc(lshr(x, c))
1894     if (match(IIOperand, m_Trunc(m_BSwap(m_Value(X))))) {
1895       unsigned C = X->getType()->getPrimitiveSizeInBits() -
1896         IIOperand->getType()->getPrimitiveSizeInBits();
1897       Value *CV = ConstantInt::get(X->getType(), C);
1898       Value *V = Builder.CreateLShr(X, CV);
1899       return new TruncInst(V, IIOperand->getType());
1900     }
1901     break;
1902   }
1903   case Intrinsic::masked_load:
1904     if (Value *SimplifiedMaskedOp = simplifyMaskedLoad(*II))
1905       return replaceInstUsesWith(CI, SimplifiedMaskedOp);
1906     break;
1907   case Intrinsic::masked_store:
1908     return simplifyMaskedStore(*II);
1909   case Intrinsic::masked_gather:
1910     return simplifyMaskedGather(*II);
1911   case Intrinsic::masked_scatter:
1912     return simplifyMaskedScatter(*II);
1913   case Intrinsic::launder_invariant_group:
1914   case Intrinsic::strip_invariant_group:
1915     if (auto *SkippedBarrier = simplifyInvariantGroupIntrinsic(*II, *this))
1916       return replaceInstUsesWith(*II, SkippedBarrier);
1917     break;
1918   case Intrinsic::powi:
1919     if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
1920       // 0 and 1 are handled in instsimplify
1921 
1922       // powi(x, -1) -> 1/x
1923       if (Power->isMinusOne())
1924         return BinaryOperator::CreateFDiv(ConstantFP::get(CI.getType(), 1.0),
1925                                           II->getArgOperand(0));
1926       // powi(x, 2) -> x*x
1927       if (Power->equalsInt(2))
1928         return BinaryOperator::CreateFMul(II->getArgOperand(0),
1929                                           II->getArgOperand(0));
1930     }
1931     break;
1932 
1933   case Intrinsic::cttz:
1934   case Intrinsic::ctlz:
1935     if (auto *I = foldCttzCtlz(*II, *this))
1936       return I;
1937     break;
1938 
1939   case Intrinsic::ctpop:
1940     if (auto *I = foldCtpop(*II, *this))
1941       return I;
1942     break;
1943 
1944   case Intrinsic::fshl:
1945   case Intrinsic::fshr: {
1946     Value *Op0 = II->getArgOperand(0), *Op1 = II->getArgOperand(1);
1947     Type *Ty = II->getType();
1948     unsigned BitWidth = Ty->getScalarSizeInBits();
1949     Constant *ShAmtC;
1950     if (match(II->getArgOperand(2), m_Constant(ShAmtC)) &&
1951         !isa<ConstantExpr>(ShAmtC) && !ShAmtC->containsConstantExpression()) {
1952       // Canonicalize a shift amount constant operand to modulo the bit-width.
1953       Constant *WidthC = ConstantInt::get(Ty, BitWidth);
1954       Constant *ModuloC = ConstantExpr::getURem(ShAmtC, WidthC);
1955       if (ModuloC != ShAmtC) {
1956         II->setArgOperand(2, ModuloC);
1957         return II;
1958       }
1959       assert(ConstantExpr::getICmp(ICmpInst::ICMP_UGT, WidthC, ShAmtC) ==
1960                  ConstantInt::getTrue(CmpInst::makeCmpResultType(Ty)) &&
1961              "Shift amount expected to be modulo bitwidth");
1962 
1963       // Canonicalize funnel shift right by constant to funnel shift left. This
1964       // is not entirely arbitrary. For historical reasons, the backend may
1965       // recognize rotate left patterns but miss rotate right patterns.
1966       if (IID == Intrinsic::fshr) {
1967         // fshr X, Y, C --> fshl X, Y, (BitWidth - C)
1968         Constant *LeftShiftC = ConstantExpr::getSub(WidthC, ShAmtC);
1969         Module *Mod = II->getModule();
1970         Function *Fshl = Intrinsic::getDeclaration(Mod, Intrinsic::fshl, Ty);
1971         return CallInst::Create(Fshl, { Op0, Op1, LeftShiftC });
1972       }
1973       assert(IID == Intrinsic::fshl &&
1974              "All funnel shifts by simple constants should go left");
1975 
1976       // fshl(X, 0, C) --> shl X, C
1977       // fshl(X, undef, C) --> shl X, C
1978       if (match(Op1, m_ZeroInt()) || match(Op1, m_Undef()))
1979         return BinaryOperator::CreateShl(Op0, ShAmtC);
1980 
1981       // fshl(0, X, C) --> lshr X, (BW-C)
1982       // fshl(undef, X, C) --> lshr X, (BW-C)
1983       if (match(Op0, m_ZeroInt()) || match(Op0, m_Undef()))
1984         return BinaryOperator::CreateLShr(Op1,
1985                                           ConstantExpr::getSub(WidthC, ShAmtC));
1986 
1987       // fshl i16 X, X, 8 --> bswap i16 X (reduce to more-specific form)
1988       if (Op0 == Op1 && BitWidth == 16 && match(ShAmtC, m_SpecificInt(8))) {
1989         Module *Mod = II->getModule();
1990         Function *Bswap = Intrinsic::getDeclaration(Mod, Intrinsic::bswap, Ty);
1991         return CallInst::Create(Bswap, { Op0 });
1992       }
1993     }
1994 
1995     // Left or right might be masked.
1996     if (SimplifyDemandedInstructionBits(*II))
1997       return &CI;
1998 
1999     // The shift amount (operand 2) of a funnel shift is modulo the bitwidth,
2000     // so only the low bits of the shift amount are demanded if the bitwidth is
2001     // a power-of-2.
2002     if (!isPowerOf2_32(BitWidth))
2003       break;
2004     APInt Op2Demanded = APInt::getLowBitsSet(BitWidth, Log2_32_Ceil(BitWidth));
2005     KnownBits Op2Known(BitWidth);
2006     if (SimplifyDemandedBits(II, 2, Op2Demanded, Op2Known))
2007       return &CI;
2008     break;
2009   }
2010   case Intrinsic::uadd_with_overflow:
2011   case Intrinsic::sadd_with_overflow: {
2012     if (Instruction *I = canonicalizeConstantArg0ToArg1(CI))
2013       return I;
2014     if (Instruction *I = foldIntrinsicWithOverflowCommon(II))
2015       return I;
2016 
2017     // Given 2 constant operands whose sum does not overflow:
2018     // uaddo (X +nuw C0), C1 -> uaddo X, C0 + C1
2019     // saddo (X +nsw C0), C1 -> saddo X, C0 + C1
2020     Value *X;
2021     const APInt *C0, *C1;
2022     Value *Arg0 = II->getArgOperand(0);
2023     Value *Arg1 = II->getArgOperand(1);
2024     bool IsSigned = IID == Intrinsic::sadd_with_overflow;
2025     bool HasNWAdd = IsSigned ? match(Arg0, m_NSWAdd(m_Value(X), m_APInt(C0)))
2026                              : match(Arg0, m_NUWAdd(m_Value(X), m_APInt(C0)));
2027     if (HasNWAdd && match(Arg1, m_APInt(C1))) {
2028       bool Overflow;
2029       APInt NewC =
2030           IsSigned ? C1->sadd_ov(*C0, Overflow) : C1->uadd_ov(*C0, Overflow);
2031       if (!Overflow)
2032         return replaceInstUsesWith(
2033             *II, Builder.CreateBinaryIntrinsic(
2034                      IID, X, ConstantInt::get(Arg1->getType(), NewC)));
2035     }
2036     break;
2037   }
2038 
2039   case Intrinsic::umul_with_overflow:
2040   case Intrinsic::smul_with_overflow:
2041     if (Instruction *I = canonicalizeConstantArg0ToArg1(CI))
2042       return I;
2043     LLVM_FALLTHROUGH;
2044 
2045   case Intrinsic::usub_with_overflow:
2046     if (Instruction *I = foldIntrinsicWithOverflowCommon(II))
2047       return I;
2048     break;
2049 
2050   case Intrinsic::ssub_with_overflow: {
2051     if (Instruction *I = foldIntrinsicWithOverflowCommon(II))
2052       return I;
2053 
2054     Constant *C;
2055     Value *Arg0 = II->getArgOperand(0);
2056     Value *Arg1 = II->getArgOperand(1);
2057     // Given a constant C that is not the minimum signed value
2058     // for an integer of a given bit width:
2059     //
2060     // ssubo X, C -> saddo X, -C
2061     if (match(Arg1, m_Constant(C)) && C->isNotMinSignedValue()) {
2062       Value *NegVal = ConstantExpr::getNeg(C);
2063       // Build a saddo call that is equivalent to the discovered
2064       // ssubo call.
2065       return replaceInstUsesWith(
2066           *II, Builder.CreateBinaryIntrinsic(Intrinsic::sadd_with_overflow,
2067                                              Arg0, NegVal));
2068     }
2069 
2070     break;
2071   }
2072 
2073   case Intrinsic::uadd_sat:
2074   case Intrinsic::sadd_sat:
2075     if (Instruction *I = canonicalizeConstantArg0ToArg1(CI))
2076       return I;
2077     LLVM_FALLTHROUGH;
2078   case Intrinsic::usub_sat:
2079   case Intrinsic::ssub_sat: {
2080     SaturatingInst *SI = cast<SaturatingInst>(II);
2081     Type *Ty = SI->getType();
2082     Value *Arg0 = SI->getLHS();
2083     Value *Arg1 = SI->getRHS();
2084 
2085     // Make use of known overflow information.
2086     OverflowResult OR = computeOverflow(SI->getBinaryOp(), SI->isSigned(),
2087                                         Arg0, Arg1, SI);
2088     switch (OR) {
2089       case OverflowResult::MayOverflow:
2090         break;
2091       case OverflowResult::NeverOverflows:
2092         if (SI->isSigned())
2093           return BinaryOperator::CreateNSW(SI->getBinaryOp(), Arg0, Arg1);
2094         else
2095           return BinaryOperator::CreateNUW(SI->getBinaryOp(), Arg0, Arg1);
2096       case OverflowResult::AlwaysOverflowsLow: {
2097         unsigned BitWidth = Ty->getScalarSizeInBits();
2098         APInt Min = APSInt::getMinValue(BitWidth, !SI->isSigned());
2099         return replaceInstUsesWith(*SI, ConstantInt::get(Ty, Min));
2100       }
2101       case OverflowResult::AlwaysOverflowsHigh: {
2102         unsigned BitWidth = Ty->getScalarSizeInBits();
2103         APInt Max = APSInt::getMaxValue(BitWidth, !SI->isSigned());
2104         return replaceInstUsesWith(*SI, ConstantInt::get(Ty, Max));
2105       }
2106     }
2107 
2108     // ssub.sat(X, C) -> sadd.sat(X, -C) if C != MIN
2109     Constant *C;
2110     if (IID == Intrinsic::ssub_sat && match(Arg1, m_Constant(C)) &&
2111         C->isNotMinSignedValue()) {
2112       Value *NegVal = ConstantExpr::getNeg(C);
2113       return replaceInstUsesWith(
2114           *II, Builder.CreateBinaryIntrinsic(
2115               Intrinsic::sadd_sat, Arg0, NegVal));
2116     }
2117 
2118     // sat(sat(X + Val2) + Val) -> sat(X + (Val+Val2))
2119     // sat(sat(X - Val2) - Val) -> sat(X - (Val+Val2))
2120     // if Val and Val2 have the same sign
2121     if (auto *Other = dyn_cast<IntrinsicInst>(Arg0)) {
2122       Value *X;
2123       const APInt *Val, *Val2;
2124       APInt NewVal;
2125       bool IsUnsigned =
2126           IID == Intrinsic::uadd_sat || IID == Intrinsic::usub_sat;
2127       if (Other->getIntrinsicID() == IID &&
2128           match(Arg1, m_APInt(Val)) &&
2129           match(Other->getArgOperand(0), m_Value(X)) &&
2130           match(Other->getArgOperand(1), m_APInt(Val2))) {
2131         if (IsUnsigned)
2132           NewVal = Val->uadd_sat(*Val2);
2133         else if (Val->isNonNegative() == Val2->isNonNegative()) {
2134           bool Overflow;
2135           NewVal = Val->sadd_ov(*Val2, Overflow);
2136           if (Overflow) {
2137             // Both adds together may add more than SignedMaxValue
2138             // without saturating the final result.
2139             break;
2140           }
2141         } else {
2142           // Cannot fold saturated addition with different signs.
2143           break;
2144         }
2145 
2146         return replaceInstUsesWith(
2147             *II, Builder.CreateBinaryIntrinsic(
2148                      IID, X, ConstantInt::get(II->getType(), NewVal)));
2149       }
2150     }
2151     break;
2152   }
2153 
2154   case Intrinsic::minnum:
2155   case Intrinsic::maxnum:
2156   case Intrinsic::minimum:
2157   case Intrinsic::maximum: {
2158     if (Instruction *I = canonicalizeConstantArg0ToArg1(CI))
2159       return I;
2160     Value *Arg0 = II->getArgOperand(0);
2161     Value *Arg1 = II->getArgOperand(1);
2162     Value *X, *Y;
2163     if (match(Arg0, m_FNeg(m_Value(X))) && match(Arg1, m_FNeg(m_Value(Y))) &&
2164         (Arg0->hasOneUse() || Arg1->hasOneUse())) {
2165       // If both operands are negated, invert the call and negate the result:
2166       // min(-X, -Y) --> -(max(X, Y))
2167       // max(-X, -Y) --> -(min(X, Y))
2168       Intrinsic::ID NewIID;
2169       switch (IID) {
2170       case Intrinsic::maxnum:
2171         NewIID = Intrinsic::minnum;
2172         break;
2173       case Intrinsic::minnum:
2174         NewIID = Intrinsic::maxnum;
2175         break;
2176       case Intrinsic::maximum:
2177         NewIID = Intrinsic::minimum;
2178         break;
2179       case Intrinsic::minimum:
2180         NewIID = Intrinsic::maximum;
2181         break;
2182       default:
2183         llvm_unreachable("unexpected intrinsic ID");
2184       }
2185       Value *NewCall = Builder.CreateBinaryIntrinsic(NewIID, X, Y, II);
2186       Instruction *FNeg = BinaryOperator::CreateFNeg(NewCall);
2187       FNeg->copyIRFlags(II);
2188       return FNeg;
2189     }
2190 
2191     // m(m(X, C2), C1) -> m(X, C)
2192     const APFloat *C1, *C2;
2193     if (auto *M = dyn_cast<IntrinsicInst>(Arg0)) {
2194       if (M->getIntrinsicID() == IID && match(Arg1, m_APFloat(C1)) &&
2195           ((match(M->getArgOperand(0), m_Value(X)) &&
2196             match(M->getArgOperand(1), m_APFloat(C2))) ||
2197            (match(M->getArgOperand(1), m_Value(X)) &&
2198             match(M->getArgOperand(0), m_APFloat(C2))))) {
2199         APFloat Res(0.0);
2200         switch (IID) {
2201         case Intrinsic::maxnum:
2202           Res = maxnum(*C1, *C2);
2203           break;
2204         case Intrinsic::minnum:
2205           Res = minnum(*C1, *C2);
2206           break;
2207         case Intrinsic::maximum:
2208           Res = maximum(*C1, *C2);
2209           break;
2210         case Intrinsic::minimum:
2211           Res = minimum(*C1, *C2);
2212           break;
2213         default:
2214           llvm_unreachable("unexpected intrinsic ID");
2215         }
2216         Instruction *NewCall = Builder.CreateBinaryIntrinsic(
2217             IID, X, ConstantFP::get(Arg0->getType(), Res));
2218         NewCall->copyIRFlags(II);
2219         return replaceInstUsesWith(*II, NewCall);
2220       }
2221     }
2222 
2223     break;
2224   }
2225   case Intrinsic::fmuladd: {
2226     // Canonicalize fast fmuladd to the separate fmul + fadd.
2227     if (II->isFast()) {
2228       BuilderTy::FastMathFlagGuard Guard(Builder);
2229       Builder.setFastMathFlags(II->getFastMathFlags());
2230       Value *Mul = Builder.CreateFMul(II->getArgOperand(0),
2231                                       II->getArgOperand(1));
2232       Value *Add = Builder.CreateFAdd(Mul, II->getArgOperand(2));
2233       Add->takeName(II);
2234       return replaceInstUsesWith(*II, Add);
2235     }
2236 
2237     // Try to simplify the underlying FMul.
2238     if (Value *V = SimplifyFMulInst(II->getArgOperand(0), II->getArgOperand(1),
2239                                     II->getFastMathFlags(),
2240                                     SQ.getWithInstruction(II))) {
2241       auto *FAdd = BinaryOperator::CreateFAdd(V, II->getArgOperand(2));
2242       FAdd->copyFastMathFlags(II);
2243       return FAdd;
2244     }
2245 
2246     LLVM_FALLTHROUGH;
2247   }
2248   case Intrinsic::fma: {
2249     if (Instruction *I = canonicalizeConstantArg0ToArg1(CI))
2250       return I;
2251 
2252     // fma fneg(x), fneg(y), z -> fma x, y, z
2253     Value *Src0 = II->getArgOperand(0);
2254     Value *Src1 = II->getArgOperand(1);
2255     Value *X, *Y;
2256     if (match(Src0, m_FNeg(m_Value(X))) && match(Src1, m_FNeg(m_Value(Y)))) {
2257       II->setArgOperand(0, X);
2258       II->setArgOperand(1, Y);
2259       return II;
2260     }
2261 
2262     // fma fabs(x), fabs(x), z -> fma x, x, z
2263     if (match(Src0, m_FAbs(m_Value(X))) &&
2264         match(Src1, m_FAbs(m_Specific(X)))) {
2265       II->setArgOperand(0, X);
2266       II->setArgOperand(1, X);
2267       return II;
2268     }
2269 
2270     // Try to simplify the underlying FMul. We can only apply simplifications
2271     // that do not require rounding.
2272     if (Value *V = SimplifyFMAFMul(II->getArgOperand(0), II->getArgOperand(1),
2273                                    II->getFastMathFlags(),
2274                                    SQ.getWithInstruction(II))) {
2275       auto *FAdd = BinaryOperator::CreateFAdd(V, II->getArgOperand(2));
2276       FAdd->copyFastMathFlags(II);
2277       return FAdd;
2278     }
2279 
2280     break;
2281   }
2282   case Intrinsic::fabs: {
2283     Value *Cond;
2284     Constant *LHS, *RHS;
2285     if (match(II->getArgOperand(0),
2286               m_Select(m_Value(Cond), m_Constant(LHS), m_Constant(RHS)))) {
2287       CallInst *Call0 = Builder.CreateCall(II->getCalledFunction(), {LHS});
2288       CallInst *Call1 = Builder.CreateCall(II->getCalledFunction(), {RHS});
2289       return SelectInst::Create(Cond, Call0, Call1);
2290     }
2291 
2292     LLVM_FALLTHROUGH;
2293   }
2294   case Intrinsic::ceil:
2295   case Intrinsic::floor:
2296   case Intrinsic::round:
2297   case Intrinsic::nearbyint:
2298   case Intrinsic::rint:
2299   case Intrinsic::trunc: {
2300     Value *ExtSrc;
2301     if (match(II->getArgOperand(0), m_OneUse(m_FPExt(m_Value(ExtSrc))))) {
2302       // Narrow the call: intrinsic (fpext x) -> fpext (intrinsic x)
2303       Value *NarrowII = Builder.CreateUnaryIntrinsic(IID, ExtSrc, II);
2304       return new FPExtInst(NarrowII, II->getType());
2305     }
2306     break;
2307   }
2308   case Intrinsic::cos:
2309   case Intrinsic::amdgcn_cos: {
2310     Value *X;
2311     Value *Src = II->getArgOperand(0);
2312     if (match(Src, m_FNeg(m_Value(X))) || match(Src, m_FAbs(m_Value(X)))) {
2313       // cos(-x) -> cos(x)
2314       // cos(fabs(x)) -> cos(x)
2315       II->setArgOperand(0, X);
2316       return II;
2317     }
2318     break;
2319   }
2320   case Intrinsic::sin: {
2321     Value *X;
2322     if (match(II->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X))))) {
2323       // sin(-x) --> -sin(x)
2324       Value *NewSin = Builder.CreateUnaryIntrinsic(Intrinsic::sin, X, II);
2325       Instruction *FNeg = BinaryOperator::CreateFNeg(NewSin);
2326       FNeg->copyFastMathFlags(II);
2327       return FNeg;
2328     }
2329     break;
2330   }
2331   case Intrinsic::ppc_altivec_lvx:
2332   case Intrinsic::ppc_altivec_lvxl:
2333     // Turn PPC lvx -> load if the pointer is known aligned.
2334     if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, DL, II, &AC,
2335                                    &DT) >= 16) {
2336       Value *Ptr = Builder.CreateBitCast(II->getArgOperand(0),
2337                                          PointerType::getUnqual(II->getType()));
2338       return new LoadInst(II->getType(), Ptr);
2339     }
2340     break;
2341   case Intrinsic::ppc_vsx_lxvw4x:
2342   case Intrinsic::ppc_vsx_lxvd2x: {
2343     // Turn PPC VSX loads into normal loads.
2344     Value *Ptr = Builder.CreateBitCast(II->getArgOperand(0),
2345                                        PointerType::getUnqual(II->getType()));
2346     return new LoadInst(II->getType(), Ptr, Twine(""), false, Align::None());
2347   }
2348   case Intrinsic::ppc_altivec_stvx:
2349   case Intrinsic::ppc_altivec_stvxl:
2350     // Turn stvx -> store if the pointer is known aligned.
2351     if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, DL, II, &AC,
2352                                    &DT) >= 16) {
2353       Type *OpPtrTy =
2354         PointerType::getUnqual(II->getArgOperand(0)->getType());
2355       Value *Ptr = Builder.CreateBitCast(II->getArgOperand(1), OpPtrTy);
2356       return new StoreInst(II->getArgOperand(0), Ptr);
2357     }
2358     break;
2359   case Intrinsic::ppc_vsx_stxvw4x:
2360   case Intrinsic::ppc_vsx_stxvd2x: {
2361     // Turn PPC VSX stores into normal stores.
2362     Type *OpPtrTy = PointerType::getUnqual(II->getArgOperand(0)->getType());
2363     Value *Ptr = Builder.CreateBitCast(II->getArgOperand(1), OpPtrTy);
2364     return new StoreInst(II->getArgOperand(0), Ptr, false, Align::None());
2365   }
2366   case Intrinsic::ppc_qpx_qvlfs:
2367     // Turn PPC QPX qvlfs -> load if the pointer is known aligned.
2368     if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, DL, II, &AC,
2369                                    &DT) >= 16) {
2370       Type *VTy = VectorType::get(Builder.getFloatTy(),
2371                                   II->getType()->getVectorNumElements());
2372       Value *Ptr = Builder.CreateBitCast(II->getArgOperand(0),
2373                                          PointerType::getUnqual(VTy));
2374       Value *Load = Builder.CreateLoad(VTy, Ptr);
2375       return new FPExtInst(Load, II->getType());
2376     }
2377     break;
2378   case Intrinsic::ppc_qpx_qvlfd:
2379     // Turn PPC QPX qvlfd -> load if the pointer is known aligned.
2380     if (getOrEnforceKnownAlignment(II->getArgOperand(0), 32, DL, II, &AC,
2381                                    &DT) >= 32) {
2382       Value *Ptr = Builder.CreateBitCast(II->getArgOperand(0),
2383                                          PointerType::getUnqual(II->getType()));
2384       return new LoadInst(II->getType(), Ptr);
2385     }
2386     break;
2387   case Intrinsic::ppc_qpx_qvstfs:
2388     // Turn PPC QPX qvstfs -> store if the pointer is known aligned.
2389     if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, DL, II, &AC,
2390                                    &DT) >= 16) {
2391       Type *VTy = VectorType::get(Builder.getFloatTy(),
2392           II->getArgOperand(0)->getType()->getVectorNumElements());
2393       Value *TOp = Builder.CreateFPTrunc(II->getArgOperand(0), VTy);
2394       Type *OpPtrTy = PointerType::getUnqual(VTy);
2395       Value *Ptr = Builder.CreateBitCast(II->getArgOperand(1), OpPtrTy);
2396       return new StoreInst(TOp, Ptr);
2397     }
2398     break;
2399   case Intrinsic::ppc_qpx_qvstfd:
2400     // Turn PPC QPX qvstfd -> store if the pointer is known aligned.
2401     if (getOrEnforceKnownAlignment(II->getArgOperand(1), 32, DL, II, &AC,
2402                                    &DT) >= 32) {
2403       Type *OpPtrTy =
2404         PointerType::getUnqual(II->getArgOperand(0)->getType());
2405       Value *Ptr = Builder.CreateBitCast(II->getArgOperand(1), OpPtrTy);
2406       return new StoreInst(II->getArgOperand(0), Ptr);
2407     }
2408     break;
2409 
2410   case Intrinsic::x86_bmi_bextr_32:
2411   case Intrinsic::x86_bmi_bextr_64:
2412   case Intrinsic::x86_tbm_bextri_u32:
2413   case Intrinsic::x86_tbm_bextri_u64:
2414     // If the RHS is a constant we can try some simplifications.
2415     if (auto *C = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
2416       uint64_t Shift = C->getZExtValue();
2417       uint64_t Length = (Shift >> 8) & 0xff;
2418       Shift &= 0xff;
2419       unsigned BitWidth = II->getType()->getIntegerBitWidth();
2420       // If the length is 0 or the shift is out of range, replace with zero.
2421       if (Length == 0 || Shift >= BitWidth)
2422         return replaceInstUsesWith(CI, ConstantInt::get(II->getType(), 0));
2423       // If the LHS is also a constant, we can completely constant fold this.
2424       if (auto *InC = dyn_cast<ConstantInt>(II->getArgOperand(0))) {
2425         uint64_t Result = InC->getZExtValue() >> Shift;
2426         if (Length > BitWidth)
2427           Length = BitWidth;
2428         Result &= maskTrailingOnes<uint64_t>(Length);
2429         return replaceInstUsesWith(CI, ConstantInt::get(II->getType(), Result));
2430       }
2431       // TODO should we turn this into 'and' if shift is 0? Or 'shl' if we
2432       // are only masking bits that a shift already cleared?
2433     }
2434     break;
2435 
2436   case Intrinsic::x86_bmi_bzhi_32:
2437   case Intrinsic::x86_bmi_bzhi_64:
2438     // If the RHS is a constant we can try some simplifications.
2439     if (auto *C = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
2440       uint64_t Index = C->getZExtValue() & 0xff;
2441       unsigned BitWidth = II->getType()->getIntegerBitWidth();
2442       if (Index >= BitWidth)
2443         return replaceInstUsesWith(CI, II->getArgOperand(0));
2444       if (Index == 0)
2445         return replaceInstUsesWith(CI, ConstantInt::get(II->getType(), 0));
2446       // If the LHS is also a constant, we can completely constant fold this.
2447       if (auto *InC = dyn_cast<ConstantInt>(II->getArgOperand(0))) {
2448         uint64_t Result = InC->getZExtValue();
2449         Result &= maskTrailingOnes<uint64_t>(Index);
2450         return replaceInstUsesWith(CI, ConstantInt::get(II->getType(), Result));
2451       }
2452       // TODO should we convert this to an AND if the RHS is constant?
2453     }
2454     break;
2455 
2456   case Intrinsic::x86_vcvtph2ps_128:
2457   case Intrinsic::x86_vcvtph2ps_256: {
2458     auto Arg = II->getArgOperand(0);
2459     auto ArgType = cast<VectorType>(Arg->getType());
2460     auto RetType = cast<VectorType>(II->getType());
2461     unsigned ArgWidth = ArgType->getNumElements();
2462     unsigned RetWidth = RetType->getNumElements();
2463     assert(RetWidth <= ArgWidth && "Unexpected input/return vector widths");
2464     assert(ArgType->isIntOrIntVectorTy() &&
2465            ArgType->getScalarSizeInBits() == 16 &&
2466            "CVTPH2PS input type should be 16-bit integer vector");
2467     assert(RetType->getScalarType()->isFloatTy() &&
2468            "CVTPH2PS output type should be 32-bit float vector");
2469 
2470     // Constant folding: Convert to generic half to single conversion.
2471     if (isa<ConstantAggregateZero>(Arg))
2472       return replaceInstUsesWith(*II, ConstantAggregateZero::get(RetType));
2473 
2474     if (isa<ConstantDataVector>(Arg)) {
2475       auto VectorHalfAsShorts = Arg;
2476       if (RetWidth < ArgWidth) {
2477         SmallVector<uint32_t, 8> SubVecMask;
2478         for (unsigned i = 0; i != RetWidth; ++i)
2479           SubVecMask.push_back((int)i);
2480         VectorHalfAsShorts = Builder.CreateShuffleVector(
2481             Arg, UndefValue::get(ArgType), SubVecMask);
2482       }
2483 
2484       auto VectorHalfType =
2485           VectorType::get(Type::getHalfTy(II->getContext()), RetWidth);
2486       auto VectorHalfs =
2487           Builder.CreateBitCast(VectorHalfAsShorts, VectorHalfType);
2488       auto VectorFloats = Builder.CreateFPExt(VectorHalfs, RetType);
2489       return replaceInstUsesWith(*II, VectorFloats);
2490     }
2491 
2492     // We only use the lowest lanes of the argument.
2493     if (Value *V = SimplifyDemandedVectorEltsLow(Arg, ArgWidth, RetWidth)) {
2494       II->setArgOperand(0, V);
2495       return II;
2496     }
2497     break;
2498   }
2499 
2500   case Intrinsic::x86_sse_cvtss2si:
2501   case Intrinsic::x86_sse_cvtss2si64:
2502   case Intrinsic::x86_sse_cvttss2si:
2503   case Intrinsic::x86_sse_cvttss2si64:
2504   case Intrinsic::x86_sse2_cvtsd2si:
2505   case Intrinsic::x86_sse2_cvtsd2si64:
2506   case Intrinsic::x86_sse2_cvttsd2si:
2507   case Intrinsic::x86_sse2_cvttsd2si64:
2508   case Intrinsic::x86_avx512_vcvtss2si32:
2509   case Intrinsic::x86_avx512_vcvtss2si64:
2510   case Intrinsic::x86_avx512_vcvtss2usi32:
2511   case Intrinsic::x86_avx512_vcvtss2usi64:
2512   case Intrinsic::x86_avx512_vcvtsd2si32:
2513   case Intrinsic::x86_avx512_vcvtsd2si64:
2514   case Intrinsic::x86_avx512_vcvtsd2usi32:
2515   case Intrinsic::x86_avx512_vcvtsd2usi64:
2516   case Intrinsic::x86_avx512_cvttss2si:
2517   case Intrinsic::x86_avx512_cvttss2si64:
2518   case Intrinsic::x86_avx512_cvttss2usi:
2519   case Intrinsic::x86_avx512_cvttss2usi64:
2520   case Intrinsic::x86_avx512_cvttsd2si:
2521   case Intrinsic::x86_avx512_cvttsd2si64:
2522   case Intrinsic::x86_avx512_cvttsd2usi:
2523   case Intrinsic::x86_avx512_cvttsd2usi64: {
2524     // These intrinsics only demand the 0th element of their input vectors. If
2525     // we can simplify the input based on that, do so now.
2526     Value *Arg = II->getArgOperand(0);
2527     unsigned VWidth = Arg->getType()->getVectorNumElements();
2528     if (Value *V = SimplifyDemandedVectorEltsLow(Arg, VWidth, 1)) {
2529       II->setArgOperand(0, V);
2530       return II;
2531     }
2532     break;
2533   }
2534 
2535   case Intrinsic::x86_mmx_pmovmskb:
2536   case Intrinsic::x86_sse_movmsk_ps:
2537   case Intrinsic::x86_sse2_movmsk_pd:
2538   case Intrinsic::x86_sse2_pmovmskb_128:
2539   case Intrinsic::x86_avx_movmsk_pd_256:
2540   case Intrinsic::x86_avx_movmsk_ps_256:
2541   case Intrinsic::x86_avx2_pmovmskb:
2542     if (Value *V = simplifyX86movmsk(*II, Builder))
2543       return replaceInstUsesWith(*II, V);
2544     break;
2545 
2546   case Intrinsic::x86_sse_comieq_ss:
2547   case Intrinsic::x86_sse_comige_ss:
2548   case Intrinsic::x86_sse_comigt_ss:
2549   case Intrinsic::x86_sse_comile_ss:
2550   case Intrinsic::x86_sse_comilt_ss:
2551   case Intrinsic::x86_sse_comineq_ss:
2552   case Intrinsic::x86_sse_ucomieq_ss:
2553   case Intrinsic::x86_sse_ucomige_ss:
2554   case Intrinsic::x86_sse_ucomigt_ss:
2555   case Intrinsic::x86_sse_ucomile_ss:
2556   case Intrinsic::x86_sse_ucomilt_ss:
2557   case Intrinsic::x86_sse_ucomineq_ss:
2558   case Intrinsic::x86_sse2_comieq_sd:
2559   case Intrinsic::x86_sse2_comige_sd:
2560   case Intrinsic::x86_sse2_comigt_sd:
2561   case Intrinsic::x86_sse2_comile_sd:
2562   case Intrinsic::x86_sse2_comilt_sd:
2563   case Intrinsic::x86_sse2_comineq_sd:
2564   case Intrinsic::x86_sse2_ucomieq_sd:
2565   case Intrinsic::x86_sse2_ucomige_sd:
2566   case Intrinsic::x86_sse2_ucomigt_sd:
2567   case Intrinsic::x86_sse2_ucomile_sd:
2568   case Intrinsic::x86_sse2_ucomilt_sd:
2569   case Intrinsic::x86_sse2_ucomineq_sd:
2570   case Intrinsic::x86_avx512_vcomi_ss:
2571   case Intrinsic::x86_avx512_vcomi_sd:
2572   case Intrinsic::x86_avx512_mask_cmp_ss:
2573   case Intrinsic::x86_avx512_mask_cmp_sd: {
2574     // These intrinsics only demand the 0th element of their input vectors. If
2575     // we can simplify the input based on that, do so now.
2576     bool MadeChange = false;
2577     Value *Arg0 = II->getArgOperand(0);
2578     Value *Arg1 = II->getArgOperand(1);
2579     unsigned VWidth = Arg0->getType()->getVectorNumElements();
2580     if (Value *V = SimplifyDemandedVectorEltsLow(Arg0, VWidth, 1)) {
2581       II->setArgOperand(0, V);
2582       MadeChange = true;
2583     }
2584     if (Value *V = SimplifyDemandedVectorEltsLow(Arg1, VWidth, 1)) {
2585       II->setArgOperand(1, V);
2586       MadeChange = true;
2587     }
2588     if (MadeChange)
2589       return II;
2590     break;
2591   }
2592   case Intrinsic::x86_avx512_cmp_pd_128:
2593   case Intrinsic::x86_avx512_cmp_pd_256:
2594   case Intrinsic::x86_avx512_cmp_pd_512:
2595   case Intrinsic::x86_avx512_cmp_ps_128:
2596   case Intrinsic::x86_avx512_cmp_ps_256:
2597   case Intrinsic::x86_avx512_cmp_ps_512: {
2598     // Folding cmp(sub(a,b),0) -> cmp(a,b) and cmp(0,sub(a,b)) -> cmp(b,a)
2599     Value *Arg0 = II->getArgOperand(0);
2600     Value *Arg1 = II->getArgOperand(1);
2601     bool Arg0IsZero = match(Arg0, m_PosZeroFP());
2602     if (Arg0IsZero)
2603       std::swap(Arg0, Arg1);
2604     Value *A, *B;
2605     // This fold requires only the NINF(not +/- inf) since inf minus
2606     // inf is nan.
2607     // NSZ(No Signed Zeros) is not needed because zeros of any sign are
2608     // equal for both compares.
2609     // NNAN is not needed because nans compare the same for both compares.
2610     // The compare intrinsic uses the above assumptions and therefore
2611     // doesn't require additional flags.
2612     if ((match(Arg0, m_OneUse(m_FSub(m_Value(A), m_Value(B)))) &&
2613          match(Arg1, m_PosZeroFP()) && isa<Instruction>(Arg0) &&
2614          cast<Instruction>(Arg0)->getFastMathFlags().noInfs())) {
2615       if (Arg0IsZero)
2616         std::swap(A, B);
2617       II->setArgOperand(0, A);
2618       II->setArgOperand(1, B);
2619       return II;
2620     }
2621     break;
2622   }
2623 
2624   case Intrinsic::x86_avx512_add_ps_512:
2625   case Intrinsic::x86_avx512_div_ps_512:
2626   case Intrinsic::x86_avx512_mul_ps_512:
2627   case Intrinsic::x86_avx512_sub_ps_512:
2628   case Intrinsic::x86_avx512_add_pd_512:
2629   case Intrinsic::x86_avx512_div_pd_512:
2630   case Intrinsic::x86_avx512_mul_pd_512:
2631   case Intrinsic::x86_avx512_sub_pd_512:
2632     // If the rounding mode is CUR_DIRECTION(4) we can turn these into regular
2633     // IR operations.
2634     if (auto *R = dyn_cast<ConstantInt>(II->getArgOperand(2))) {
2635       if (R->getValue() == 4) {
2636         Value *Arg0 = II->getArgOperand(0);
2637         Value *Arg1 = II->getArgOperand(1);
2638 
2639         Value *V;
2640         switch (IID) {
2641         default: llvm_unreachable("Case stmts out of sync!");
2642         case Intrinsic::x86_avx512_add_ps_512:
2643         case Intrinsic::x86_avx512_add_pd_512:
2644           V = Builder.CreateFAdd(Arg0, Arg1);
2645           break;
2646         case Intrinsic::x86_avx512_sub_ps_512:
2647         case Intrinsic::x86_avx512_sub_pd_512:
2648           V = Builder.CreateFSub(Arg0, Arg1);
2649           break;
2650         case Intrinsic::x86_avx512_mul_ps_512:
2651         case Intrinsic::x86_avx512_mul_pd_512:
2652           V = Builder.CreateFMul(Arg0, Arg1);
2653           break;
2654         case Intrinsic::x86_avx512_div_ps_512:
2655         case Intrinsic::x86_avx512_div_pd_512:
2656           V = Builder.CreateFDiv(Arg0, Arg1);
2657           break;
2658         }
2659 
2660         return replaceInstUsesWith(*II, V);
2661       }
2662     }
2663     break;
2664 
2665   case Intrinsic::x86_avx512_mask_add_ss_round:
2666   case Intrinsic::x86_avx512_mask_div_ss_round:
2667   case Intrinsic::x86_avx512_mask_mul_ss_round:
2668   case Intrinsic::x86_avx512_mask_sub_ss_round:
2669   case Intrinsic::x86_avx512_mask_add_sd_round:
2670   case Intrinsic::x86_avx512_mask_div_sd_round:
2671   case Intrinsic::x86_avx512_mask_mul_sd_round:
2672   case Intrinsic::x86_avx512_mask_sub_sd_round:
2673     // If the rounding mode is CUR_DIRECTION(4) we can turn these into regular
2674     // IR operations.
2675     if (auto *R = dyn_cast<ConstantInt>(II->getArgOperand(4))) {
2676       if (R->getValue() == 4) {
2677         // Extract the element as scalars.
2678         Value *Arg0 = II->getArgOperand(0);
2679         Value *Arg1 = II->getArgOperand(1);
2680         Value *LHS = Builder.CreateExtractElement(Arg0, (uint64_t)0);
2681         Value *RHS = Builder.CreateExtractElement(Arg1, (uint64_t)0);
2682 
2683         Value *V;
2684         switch (IID) {
2685         default: llvm_unreachable("Case stmts out of sync!");
2686         case Intrinsic::x86_avx512_mask_add_ss_round:
2687         case Intrinsic::x86_avx512_mask_add_sd_round:
2688           V = Builder.CreateFAdd(LHS, RHS);
2689           break;
2690         case Intrinsic::x86_avx512_mask_sub_ss_round:
2691         case Intrinsic::x86_avx512_mask_sub_sd_round:
2692           V = Builder.CreateFSub(LHS, RHS);
2693           break;
2694         case Intrinsic::x86_avx512_mask_mul_ss_round:
2695         case Intrinsic::x86_avx512_mask_mul_sd_round:
2696           V = Builder.CreateFMul(LHS, RHS);
2697           break;
2698         case Intrinsic::x86_avx512_mask_div_ss_round:
2699         case Intrinsic::x86_avx512_mask_div_sd_round:
2700           V = Builder.CreateFDiv(LHS, RHS);
2701           break;
2702         }
2703 
2704         // Handle the masking aspect of the intrinsic.
2705         Value *Mask = II->getArgOperand(3);
2706         auto *C = dyn_cast<ConstantInt>(Mask);
2707         // We don't need a select if we know the mask bit is a 1.
2708         if (!C || !C->getValue()[0]) {
2709           // Cast the mask to an i1 vector and then extract the lowest element.
2710           auto *MaskTy = VectorType::get(Builder.getInt1Ty(),
2711                              cast<IntegerType>(Mask->getType())->getBitWidth());
2712           Mask = Builder.CreateBitCast(Mask, MaskTy);
2713           Mask = Builder.CreateExtractElement(Mask, (uint64_t)0);
2714           // Extract the lowest element from the passthru operand.
2715           Value *Passthru = Builder.CreateExtractElement(II->getArgOperand(2),
2716                                                           (uint64_t)0);
2717           V = Builder.CreateSelect(Mask, V, Passthru);
2718         }
2719 
2720         // Insert the result back into the original argument 0.
2721         V = Builder.CreateInsertElement(Arg0, V, (uint64_t)0);
2722 
2723         return replaceInstUsesWith(*II, V);
2724       }
2725     }
2726     break;
2727 
2728   // Constant fold ashr( <A x Bi>, Ci ).
2729   // Constant fold lshr( <A x Bi>, Ci ).
2730   // Constant fold shl( <A x Bi>, Ci ).
2731   case Intrinsic::x86_sse2_psrai_d:
2732   case Intrinsic::x86_sse2_psrai_w:
2733   case Intrinsic::x86_avx2_psrai_d:
2734   case Intrinsic::x86_avx2_psrai_w:
2735   case Intrinsic::x86_avx512_psrai_q_128:
2736   case Intrinsic::x86_avx512_psrai_q_256:
2737   case Intrinsic::x86_avx512_psrai_d_512:
2738   case Intrinsic::x86_avx512_psrai_q_512:
2739   case Intrinsic::x86_avx512_psrai_w_512:
2740   case Intrinsic::x86_sse2_psrli_d:
2741   case Intrinsic::x86_sse2_psrli_q:
2742   case Intrinsic::x86_sse2_psrli_w:
2743   case Intrinsic::x86_avx2_psrli_d:
2744   case Intrinsic::x86_avx2_psrli_q:
2745   case Intrinsic::x86_avx2_psrli_w:
2746   case Intrinsic::x86_avx512_psrli_d_512:
2747   case Intrinsic::x86_avx512_psrli_q_512:
2748   case Intrinsic::x86_avx512_psrli_w_512:
2749   case Intrinsic::x86_sse2_pslli_d:
2750   case Intrinsic::x86_sse2_pslli_q:
2751   case Intrinsic::x86_sse2_pslli_w:
2752   case Intrinsic::x86_avx2_pslli_d:
2753   case Intrinsic::x86_avx2_pslli_q:
2754   case Intrinsic::x86_avx2_pslli_w:
2755   case Intrinsic::x86_avx512_pslli_d_512:
2756   case Intrinsic::x86_avx512_pslli_q_512:
2757   case Intrinsic::x86_avx512_pslli_w_512:
2758     if (Value *V = simplifyX86immShift(*II, Builder))
2759       return replaceInstUsesWith(*II, V);
2760     break;
2761 
2762   case Intrinsic::x86_sse2_psra_d:
2763   case Intrinsic::x86_sse2_psra_w:
2764   case Intrinsic::x86_avx2_psra_d:
2765   case Intrinsic::x86_avx2_psra_w:
2766   case Intrinsic::x86_avx512_psra_q_128:
2767   case Intrinsic::x86_avx512_psra_q_256:
2768   case Intrinsic::x86_avx512_psra_d_512:
2769   case Intrinsic::x86_avx512_psra_q_512:
2770   case Intrinsic::x86_avx512_psra_w_512:
2771   case Intrinsic::x86_sse2_psrl_d:
2772   case Intrinsic::x86_sse2_psrl_q:
2773   case Intrinsic::x86_sse2_psrl_w:
2774   case Intrinsic::x86_avx2_psrl_d:
2775   case Intrinsic::x86_avx2_psrl_q:
2776   case Intrinsic::x86_avx2_psrl_w:
2777   case Intrinsic::x86_avx512_psrl_d_512:
2778   case Intrinsic::x86_avx512_psrl_q_512:
2779   case Intrinsic::x86_avx512_psrl_w_512:
2780   case Intrinsic::x86_sse2_psll_d:
2781   case Intrinsic::x86_sse2_psll_q:
2782   case Intrinsic::x86_sse2_psll_w:
2783   case Intrinsic::x86_avx2_psll_d:
2784   case Intrinsic::x86_avx2_psll_q:
2785   case Intrinsic::x86_avx2_psll_w:
2786   case Intrinsic::x86_avx512_psll_d_512:
2787   case Intrinsic::x86_avx512_psll_q_512:
2788   case Intrinsic::x86_avx512_psll_w_512: {
2789     if (Value *V = simplifyX86immShift(*II, Builder))
2790       return replaceInstUsesWith(*II, V);
2791 
2792     // SSE2/AVX2 uses only the first 64-bits of the 128-bit vector
2793     // operand to compute the shift amount.
2794     Value *Arg1 = II->getArgOperand(1);
2795     assert(Arg1->getType()->getPrimitiveSizeInBits() == 128 &&
2796            "Unexpected packed shift size");
2797     unsigned VWidth = Arg1->getType()->getVectorNumElements();
2798 
2799     if (Value *V = SimplifyDemandedVectorEltsLow(Arg1, VWidth, VWidth / 2)) {
2800       II->setArgOperand(1, V);
2801       return II;
2802     }
2803     break;
2804   }
2805 
2806   case Intrinsic::x86_avx2_psllv_d:
2807   case Intrinsic::x86_avx2_psllv_d_256:
2808   case Intrinsic::x86_avx2_psllv_q:
2809   case Intrinsic::x86_avx2_psllv_q_256:
2810   case Intrinsic::x86_avx512_psllv_d_512:
2811   case Intrinsic::x86_avx512_psllv_q_512:
2812   case Intrinsic::x86_avx512_psllv_w_128:
2813   case Intrinsic::x86_avx512_psllv_w_256:
2814   case Intrinsic::x86_avx512_psllv_w_512:
2815   case Intrinsic::x86_avx2_psrav_d:
2816   case Intrinsic::x86_avx2_psrav_d_256:
2817   case Intrinsic::x86_avx512_psrav_q_128:
2818   case Intrinsic::x86_avx512_psrav_q_256:
2819   case Intrinsic::x86_avx512_psrav_d_512:
2820   case Intrinsic::x86_avx512_psrav_q_512:
2821   case Intrinsic::x86_avx512_psrav_w_128:
2822   case Intrinsic::x86_avx512_psrav_w_256:
2823   case Intrinsic::x86_avx512_psrav_w_512:
2824   case Intrinsic::x86_avx2_psrlv_d:
2825   case Intrinsic::x86_avx2_psrlv_d_256:
2826   case Intrinsic::x86_avx2_psrlv_q:
2827   case Intrinsic::x86_avx2_psrlv_q_256:
2828   case Intrinsic::x86_avx512_psrlv_d_512:
2829   case Intrinsic::x86_avx512_psrlv_q_512:
2830   case Intrinsic::x86_avx512_psrlv_w_128:
2831   case Intrinsic::x86_avx512_psrlv_w_256:
2832   case Intrinsic::x86_avx512_psrlv_w_512:
2833     if (Value *V = simplifyX86varShift(*II, Builder))
2834       return replaceInstUsesWith(*II, V);
2835     break;
2836 
2837   case Intrinsic::x86_sse2_packssdw_128:
2838   case Intrinsic::x86_sse2_packsswb_128:
2839   case Intrinsic::x86_avx2_packssdw:
2840   case Intrinsic::x86_avx2_packsswb:
2841   case Intrinsic::x86_avx512_packssdw_512:
2842   case Intrinsic::x86_avx512_packsswb_512:
2843     if (Value *V = simplifyX86pack(*II, Builder, true))
2844       return replaceInstUsesWith(*II, V);
2845     break;
2846 
2847   case Intrinsic::x86_sse2_packuswb_128:
2848   case Intrinsic::x86_sse41_packusdw:
2849   case Intrinsic::x86_avx2_packusdw:
2850   case Intrinsic::x86_avx2_packuswb:
2851   case Intrinsic::x86_avx512_packusdw_512:
2852   case Intrinsic::x86_avx512_packuswb_512:
2853     if (Value *V = simplifyX86pack(*II, Builder, false))
2854       return replaceInstUsesWith(*II, V);
2855     break;
2856 
2857   case Intrinsic::x86_pclmulqdq:
2858   case Intrinsic::x86_pclmulqdq_256:
2859   case Intrinsic::x86_pclmulqdq_512: {
2860     if (auto *C = dyn_cast<ConstantInt>(II->getArgOperand(2))) {
2861       unsigned Imm = C->getZExtValue();
2862 
2863       bool MadeChange = false;
2864       Value *Arg0 = II->getArgOperand(0);
2865       Value *Arg1 = II->getArgOperand(1);
2866       unsigned VWidth = Arg0->getType()->getVectorNumElements();
2867 
2868       APInt UndefElts1(VWidth, 0);
2869       APInt DemandedElts1 = APInt::getSplat(VWidth,
2870                                             APInt(2, (Imm & 0x01) ? 2 : 1));
2871       if (Value *V = SimplifyDemandedVectorElts(Arg0, DemandedElts1,
2872                                                 UndefElts1)) {
2873         II->setArgOperand(0, V);
2874         MadeChange = true;
2875       }
2876 
2877       APInt UndefElts2(VWidth, 0);
2878       APInt DemandedElts2 = APInt::getSplat(VWidth,
2879                                             APInt(2, (Imm & 0x10) ? 2 : 1));
2880       if (Value *V = SimplifyDemandedVectorElts(Arg1, DemandedElts2,
2881                                                 UndefElts2)) {
2882         II->setArgOperand(1, V);
2883         MadeChange = true;
2884       }
2885 
2886       // If either input elements are undef, the result is zero.
2887       if (DemandedElts1.isSubsetOf(UndefElts1) ||
2888           DemandedElts2.isSubsetOf(UndefElts2))
2889         return replaceInstUsesWith(*II,
2890                                    ConstantAggregateZero::get(II->getType()));
2891 
2892       if (MadeChange)
2893         return II;
2894     }
2895     break;
2896   }
2897 
2898   case Intrinsic::x86_sse41_insertps:
2899     if (Value *V = simplifyX86insertps(*II, Builder))
2900       return replaceInstUsesWith(*II, V);
2901     break;
2902 
2903   case Intrinsic::x86_sse4a_extrq: {
2904     Value *Op0 = II->getArgOperand(0);
2905     Value *Op1 = II->getArgOperand(1);
2906     unsigned VWidth0 = Op0->getType()->getVectorNumElements();
2907     unsigned VWidth1 = Op1->getType()->getVectorNumElements();
2908     assert(Op0->getType()->getPrimitiveSizeInBits() == 128 &&
2909            Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth0 == 2 &&
2910            VWidth1 == 16 && "Unexpected operand sizes");
2911 
2912     // See if we're dealing with constant values.
2913     Constant *C1 = dyn_cast<Constant>(Op1);
2914     ConstantInt *CILength =
2915         C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)0))
2916            : nullptr;
2917     ConstantInt *CIIndex =
2918         C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)1))
2919            : nullptr;
2920 
2921     // Attempt to simplify to a constant, shuffle vector or EXTRQI call.
2922     if (Value *V = simplifyX86extrq(*II, Op0, CILength, CIIndex, Builder))
2923       return replaceInstUsesWith(*II, V);
2924 
2925     // EXTRQ only uses the lowest 64-bits of the first 128-bit vector
2926     // operands and the lowest 16-bits of the second.
2927     bool MadeChange = false;
2928     if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth0, 1)) {
2929       II->setArgOperand(0, V);
2930       MadeChange = true;
2931     }
2932     if (Value *V = SimplifyDemandedVectorEltsLow(Op1, VWidth1, 2)) {
2933       II->setArgOperand(1, V);
2934       MadeChange = true;
2935     }
2936     if (MadeChange)
2937       return II;
2938     break;
2939   }
2940 
2941   case Intrinsic::x86_sse4a_extrqi: {
2942     // EXTRQI: Extract Length bits starting from Index. Zero pad the remaining
2943     // bits of the lower 64-bits. The upper 64-bits are undefined.
2944     Value *Op0 = II->getArgOperand(0);
2945     unsigned VWidth = Op0->getType()->getVectorNumElements();
2946     assert(Op0->getType()->getPrimitiveSizeInBits() == 128 && VWidth == 2 &&
2947            "Unexpected operand size");
2948 
2949     // See if we're dealing with constant values.
2950     ConstantInt *CILength = dyn_cast<ConstantInt>(II->getArgOperand(1));
2951     ConstantInt *CIIndex = dyn_cast<ConstantInt>(II->getArgOperand(2));
2952 
2953     // Attempt to simplify to a constant or shuffle vector.
2954     if (Value *V = simplifyX86extrq(*II, Op0, CILength, CIIndex, Builder))
2955       return replaceInstUsesWith(*II, V);
2956 
2957     // EXTRQI only uses the lowest 64-bits of the first 128-bit vector
2958     // operand.
2959     if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth, 1)) {
2960       II->setArgOperand(0, V);
2961       return II;
2962     }
2963     break;
2964   }
2965 
2966   case Intrinsic::x86_sse4a_insertq: {
2967     Value *Op0 = II->getArgOperand(0);
2968     Value *Op1 = II->getArgOperand(1);
2969     unsigned VWidth = Op0->getType()->getVectorNumElements();
2970     assert(Op0->getType()->getPrimitiveSizeInBits() == 128 &&
2971            Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth == 2 &&
2972            Op1->getType()->getVectorNumElements() == 2 &&
2973            "Unexpected operand size");
2974 
2975     // See if we're dealing with constant values.
2976     Constant *C1 = dyn_cast<Constant>(Op1);
2977     ConstantInt *CI11 =
2978         C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)1))
2979            : nullptr;
2980 
2981     // Attempt to simplify to a constant, shuffle vector or INSERTQI call.
2982     if (CI11) {
2983       const APInt &V11 = CI11->getValue();
2984       APInt Len = V11.zextOrTrunc(6);
2985       APInt Idx = V11.lshr(8).zextOrTrunc(6);
2986       if (Value *V = simplifyX86insertq(*II, Op0, Op1, Len, Idx, Builder))
2987         return replaceInstUsesWith(*II, V);
2988     }
2989 
2990     // INSERTQ only uses the lowest 64-bits of the first 128-bit vector
2991     // operand.
2992     if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth, 1)) {
2993       II->setArgOperand(0, V);
2994       return II;
2995     }
2996     break;
2997   }
2998 
2999   case Intrinsic::x86_sse4a_insertqi: {
3000     // INSERTQI: Extract lowest Length bits from lower half of second source and
3001     // insert over first source starting at Index bit. The upper 64-bits are
3002     // undefined.
3003     Value *Op0 = II->getArgOperand(0);
3004     Value *Op1 = II->getArgOperand(1);
3005     unsigned VWidth0 = Op0->getType()->getVectorNumElements();
3006     unsigned VWidth1 = Op1->getType()->getVectorNumElements();
3007     assert(Op0->getType()->getPrimitiveSizeInBits() == 128 &&
3008            Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth0 == 2 &&
3009            VWidth1 == 2 && "Unexpected operand sizes");
3010 
3011     // See if we're dealing with constant values.
3012     ConstantInt *CILength = dyn_cast<ConstantInt>(II->getArgOperand(2));
3013     ConstantInt *CIIndex = dyn_cast<ConstantInt>(II->getArgOperand(3));
3014 
3015     // Attempt to simplify to a constant or shuffle vector.
3016     if (CILength && CIIndex) {
3017       APInt Len = CILength->getValue().zextOrTrunc(6);
3018       APInt Idx = CIIndex->getValue().zextOrTrunc(6);
3019       if (Value *V = simplifyX86insertq(*II, Op0, Op1, Len, Idx, Builder))
3020         return replaceInstUsesWith(*II, V);
3021     }
3022 
3023     // INSERTQI only uses the lowest 64-bits of the first two 128-bit vector
3024     // operands.
3025     bool MadeChange = false;
3026     if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth0, 1)) {
3027       II->setArgOperand(0, V);
3028       MadeChange = true;
3029     }
3030     if (Value *V = SimplifyDemandedVectorEltsLow(Op1, VWidth1, 1)) {
3031       II->setArgOperand(1, V);
3032       MadeChange = true;
3033     }
3034     if (MadeChange)
3035       return II;
3036     break;
3037   }
3038 
3039   case Intrinsic::x86_sse41_pblendvb:
3040   case Intrinsic::x86_sse41_blendvps:
3041   case Intrinsic::x86_sse41_blendvpd:
3042   case Intrinsic::x86_avx_blendv_ps_256:
3043   case Intrinsic::x86_avx_blendv_pd_256:
3044   case Intrinsic::x86_avx2_pblendvb: {
3045     // fold (blend A, A, Mask) -> A
3046     Value *Op0 = II->getArgOperand(0);
3047     Value *Op1 = II->getArgOperand(1);
3048     Value *Mask = II->getArgOperand(2);
3049     if (Op0 == Op1)
3050       return replaceInstUsesWith(CI, Op0);
3051 
3052     // Zero Mask - select 1st argument.
3053     if (isa<ConstantAggregateZero>(Mask))
3054       return replaceInstUsesWith(CI, Op0);
3055 
3056     // Constant Mask - select 1st/2nd argument lane based on top bit of mask.
3057     if (auto *ConstantMask = dyn_cast<ConstantDataVector>(Mask)) {
3058       Constant *NewSelector = getNegativeIsTrueBoolVec(ConstantMask);
3059       return SelectInst::Create(NewSelector, Op1, Op0, "blendv");
3060     }
3061 
3062     // Convert to a vector select if we can bypass casts and find a boolean
3063     // vector condition value.
3064     Value *BoolVec;
3065     Mask = peekThroughBitcast(Mask);
3066     if (match(Mask, m_SExt(m_Value(BoolVec))) &&
3067         BoolVec->getType()->isVectorTy() &&
3068         BoolVec->getType()->getScalarSizeInBits() == 1) {
3069       assert(Mask->getType()->getPrimitiveSizeInBits() ==
3070              II->getType()->getPrimitiveSizeInBits() &&
3071              "Not expecting mask and operands with different sizes");
3072 
3073       unsigned NumMaskElts = Mask->getType()->getVectorNumElements();
3074       unsigned NumOperandElts = II->getType()->getVectorNumElements();
3075       if (NumMaskElts == NumOperandElts)
3076         return SelectInst::Create(BoolVec, Op1, Op0);
3077 
3078       // If the mask has less elements than the operands, each mask bit maps to
3079       // multiple elements of the operands. Bitcast back and forth.
3080       if (NumMaskElts < NumOperandElts) {
3081         Value *CastOp0 = Builder.CreateBitCast(Op0, Mask->getType());
3082         Value *CastOp1 = Builder.CreateBitCast(Op1, Mask->getType());
3083         Value *Sel = Builder.CreateSelect(BoolVec, CastOp1, CastOp0);
3084         return new BitCastInst(Sel, II->getType());
3085       }
3086     }
3087 
3088     break;
3089   }
3090 
3091   case Intrinsic::x86_ssse3_pshuf_b_128:
3092   case Intrinsic::x86_avx2_pshuf_b:
3093   case Intrinsic::x86_avx512_pshuf_b_512:
3094     if (Value *V = simplifyX86pshufb(*II, Builder))
3095       return replaceInstUsesWith(*II, V);
3096     break;
3097 
3098   case Intrinsic::x86_avx_vpermilvar_ps:
3099   case Intrinsic::x86_avx_vpermilvar_ps_256:
3100   case Intrinsic::x86_avx512_vpermilvar_ps_512:
3101   case Intrinsic::x86_avx_vpermilvar_pd:
3102   case Intrinsic::x86_avx_vpermilvar_pd_256:
3103   case Intrinsic::x86_avx512_vpermilvar_pd_512:
3104     if (Value *V = simplifyX86vpermilvar(*II, Builder))
3105       return replaceInstUsesWith(*II, V);
3106     break;
3107 
3108   case Intrinsic::x86_avx2_permd:
3109   case Intrinsic::x86_avx2_permps:
3110   case Intrinsic::x86_avx512_permvar_df_256:
3111   case Intrinsic::x86_avx512_permvar_df_512:
3112   case Intrinsic::x86_avx512_permvar_di_256:
3113   case Intrinsic::x86_avx512_permvar_di_512:
3114   case Intrinsic::x86_avx512_permvar_hi_128:
3115   case Intrinsic::x86_avx512_permvar_hi_256:
3116   case Intrinsic::x86_avx512_permvar_hi_512:
3117   case Intrinsic::x86_avx512_permvar_qi_128:
3118   case Intrinsic::x86_avx512_permvar_qi_256:
3119   case Intrinsic::x86_avx512_permvar_qi_512:
3120   case Intrinsic::x86_avx512_permvar_sf_512:
3121   case Intrinsic::x86_avx512_permvar_si_512:
3122     if (Value *V = simplifyX86vpermv(*II, Builder))
3123       return replaceInstUsesWith(*II, V);
3124     break;
3125 
3126   case Intrinsic::x86_avx_maskload_ps:
3127   case Intrinsic::x86_avx_maskload_pd:
3128   case Intrinsic::x86_avx_maskload_ps_256:
3129   case Intrinsic::x86_avx_maskload_pd_256:
3130   case Intrinsic::x86_avx2_maskload_d:
3131   case Intrinsic::x86_avx2_maskload_q:
3132   case Intrinsic::x86_avx2_maskload_d_256:
3133   case Intrinsic::x86_avx2_maskload_q_256:
3134     if (Instruction *I = simplifyX86MaskedLoad(*II, *this))
3135       return I;
3136     break;
3137 
3138   case Intrinsic::x86_sse2_maskmov_dqu:
3139   case Intrinsic::x86_avx_maskstore_ps:
3140   case Intrinsic::x86_avx_maskstore_pd:
3141   case Intrinsic::x86_avx_maskstore_ps_256:
3142   case Intrinsic::x86_avx_maskstore_pd_256:
3143   case Intrinsic::x86_avx2_maskstore_d:
3144   case Intrinsic::x86_avx2_maskstore_q:
3145   case Intrinsic::x86_avx2_maskstore_d_256:
3146   case Intrinsic::x86_avx2_maskstore_q_256:
3147     if (simplifyX86MaskedStore(*II, *this))
3148       return nullptr;
3149     break;
3150 
3151   case Intrinsic::x86_addcarry_32:
3152   case Intrinsic::x86_addcarry_64:
3153     if (Value *V = simplifyX86addcarry(*II, Builder))
3154       return replaceInstUsesWith(*II, V);
3155     break;
3156 
3157   case Intrinsic::ppc_altivec_vperm:
3158     // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
3159     // Note that ppc_altivec_vperm has a big-endian bias, so when creating
3160     // a vectorshuffle for little endian, we must undo the transformation
3161     // performed on vec_perm in altivec.h.  That is, we must complement
3162     // the permutation mask with respect to 31 and reverse the order of
3163     // V1 and V2.
3164     if (Constant *Mask = dyn_cast<Constant>(II->getArgOperand(2))) {
3165       assert(Mask->getType()->getVectorNumElements() == 16 &&
3166              "Bad type for intrinsic!");
3167 
3168       // Check that all of the elements are integer constants or undefs.
3169       bool AllEltsOk = true;
3170       for (unsigned i = 0; i != 16; ++i) {
3171         Constant *Elt = Mask->getAggregateElement(i);
3172         if (!Elt || !(isa<ConstantInt>(Elt) || isa<UndefValue>(Elt))) {
3173           AllEltsOk = false;
3174           break;
3175         }
3176       }
3177 
3178       if (AllEltsOk) {
3179         // Cast the input vectors to byte vectors.
3180         Value *Op0 = Builder.CreateBitCast(II->getArgOperand(0),
3181                                            Mask->getType());
3182         Value *Op1 = Builder.CreateBitCast(II->getArgOperand(1),
3183                                            Mask->getType());
3184         Value *Result = UndefValue::get(Op0->getType());
3185 
3186         // Only extract each element once.
3187         Value *ExtractedElts[32];
3188         memset(ExtractedElts, 0, sizeof(ExtractedElts));
3189 
3190         for (unsigned i = 0; i != 16; ++i) {
3191           if (isa<UndefValue>(Mask->getAggregateElement(i)))
3192             continue;
3193           unsigned Idx =
3194             cast<ConstantInt>(Mask->getAggregateElement(i))->getZExtValue();
3195           Idx &= 31;  // Match the hardware behavior.
3196           if (DL.isLittleEndian())
3197             Idx = 31 - Idx;
3198 
3199           if (!ExtractedElts[Idx]) {
3200             Value *Op0ToUse = (DL.isLittleEndian()) ? Op1 : Op0;
3201             Value *Op1ToUse = (DL.isLittleEndian()) ? Op0 : Op1;
3202             ExtractedElts[Idx] =
3203               Builder.CreateExtractElement(Idx < 16 ? Op0ToUse : Op1ToUse,
3204                                            Builder.getInt32(Idx&15));
3205           }
3206 
3207           // Insert this value into the result vector.
3208           Result = Builder.CreateInsertElement(Result, ExtractedElts[Idx],
3209                                                Builder.getInt32(i));
3210         }
3211         return CastInst::Create(Instruction::BitCast, Result, CI.getType());
3212       }
3213     }
3214     break;
3215 
3216   case Intrinsic::arm_neon_vld1: {
3217     unsigned MemAlign = getKnownAlignment(II->getArgOperand(0),
3218                                           DL, II, &AC, &DT);
3219     if (Value *V = simplifyNeonVld1(*II, MemAlign, Builder))
3220       return replaceInstUsesWith(*II, V);
3221     break;
3222   }
3223 
3224   case Intrinsic::arm_neon_vld2:
3225   case Intrinsic::arm_neon_vld3:
3226   case Intrinsic::arm_neon_vld4:
3227   case Intrinsic::arm_neon_vld2lane:
3228   case Intrinsic::arm_neon_vld3lane:
3229   case Intrinsic::arm_neon_vld4lane:
3230   case Intrinsic::arm_neon_vst1:
3231   case Intrinsic::arm_neon_vst2:
3232   case Intrinsic::arm_neon_vst3:
3233   case Intrinsic::arm_neon_vst4:
3234   case Intrinsic::arm_neon_vst2lane:
3235   case Intrinsic::arm_neon_vst3lane:
3236   case Intrinsic::arm_neon_vst4lane: {
3237     unsigned MemAlign =
3238         getKnownAlignment(II->getArgOperand(0), DL, II, &AC, &DT);
3239     unsigned AlignArg = II->getNumArgOperands() - 1;
3240     ConstantInt *IntrAlign = dyn_cast<ConstantInt>(II->getArgOperand(AlignArg));
3241     if (IntrAlign && IntrAlign->getZExtValue() < MemAlign) {
3242       II->setArgOperand(AlignArg,
3243                         ConstantInt::get(Type::getInt32Ty(II->getContext()),
3244                                          MemAlign, false));
3245       return II;
3246     }
3247     break;
3248   }
3249 
3250   case Intrinsic::arm_neon_vtbl1:
3251   case Intrinsic::aarch64_neon_tbl1:
3252     if (Value *V = simplifyNeonTbl1(*II, Builder))
3253       return replaceInstUsesWith(*II, V);
3254     break;
3255 
3256   case Intrinsic::arm_neon_vmulls:
3257   case Intrinsic::arm_neon_vmullu:
3258   case Intrinsic::aarch64_neon_smull:
3259   case Intrinsic::aarch64_neon_umull: {
3260     Value *Arg0 = II->getArgOperand(0);
3261     Value *Arg1 = II->getArgOperand(1);
3262 
3263     // Handle mul by zero first:
3264     if (isa<ConstantAggregateZero>(Arg0) || isa<ConstantAggregateZero>(Arg1)) {
3265       return replaceInstUsesWith(CI, ConstantAggregateZero::get(II->getType()));
3266     }
3267 
3268     // Check for constant LHS & RHS - in this case we just simplify.
3269     bool Zext = (IID == Intrinsic::arm_neon_vmullu ||
3270                  IID == Intrinsic::aarch64_neon_umull);
3271     VectorType *NewVT = cast<VectorType>(II->getType());
3272     if (Constant *CV0 = dyn_cast<Constant>(Arg0)) {
3273       if (Constant *CV1 = dyn_cast<Constant>(Arg1)) {
3274         CV0 = ConstantExpr::getIntegerCast(CV0, NewVT, /*isSigned=*/!Zext);
3275         CV1 = ConstantExpr::getIntegerCast(CV1, NewVT, /*isSigned=*/!Zext);
3276 
3277         return replaceInstUsesWith(CI, ConstantExpr::getMul(CV0, CV1));
3278       }
3279 
3280       // Couldn't simplify - canonicalize constant to the RHS.
3281       std::swap(Arg0, Arg1);
3282     }
3283 
3284     // Handle mul by one:
3285     if (Constant *CV1 = dyn_cast<Constant>(Arg1))
3286       if (ConstantInt *Splat =
3287               dyn_cast_or_null<ConstantInt>(CV1->getSplatValue()))
3288         if (Splat->isOne())
3289           return CastInst::CreateIntegerCast(Arg0, II->getType(),
3290                                              /*isSigned=*/!Zext);
3291 
3292     break;
3293   }
3294   case Intrinsic::arm_neon_aesd:
3295   case Intrinsic::arm_neon_aese:
3296   case Intrinsic::aarch64_crypto_aesd:
3297   case Intrinsic::aarch64_crypto_aese: {
3298     Value *DataArg = II->getArgOperand(0);
3299     Value *KeyArg  = II->getArgOperand(1);
3300 
3301     // Try to use the builtin XOR in AESE and AESD to eliminate a prior XOR
3302     Value *Data, *Key;
3303     if (match(KeyArg, m_ZeroInt()) &&
3304         match(DataArg, m_Xor(m_Value(Data), m_Value(Key)))) {
3305       II->setArgOperand(0, Data);
3306       II->setArgOperand(1, Key);
3307       return II;
3308     }
3309     break;
3310   }
3311   case Intrinsic::arm_mve_vadc:
3312   case Intrinsic::arm_mve_vadc_predicated: {
3313     unsigned CarryOp =
3314         (II->getIntrinsicID() == Intrinsic::arm_mve_vadc_predicated) ? 3 : 2;
3315     assert(II->getArgOperand(CarryOp)->getType()->getScalarSizeInBits() == 32 &&
3316            "Bad type for intrinsic!");
3317 
3318     KnownBits CarryKnown(32);
3319     if (SimplifyDemandedBits(II, CarryOp, APInt::getOneBitSet(32, 29),
3320                              CarryKnown))
3321       return II;
3322     break;
3323   }
3324   case Intrinsic::amdgcn_rcp: {
3325     Value *Src = II->getArgOperand(0);
3326 
3327     // TODO: Move to ConstantFolding/InstSimplify?
3328     if (isa<UndefValue>(Src))
3329       return replaceInstUsesWith(CI, Src);
3330 
3331     if (const ConstantFP *C = dyn_cast<ConstantFP>(Src)) {
3332       const APFloat &ArgVal = C->getValueAPF();
3333       APFloat Val(ArgVal.getSemantics(), 1.0);
3334       APFloat::opStatus Status = Val.divide(ArgVal,
3335                                             APFloat::rmNearestTiesToEven);
3336       // Only do this if it was exact and therefore not dependent on the
3337       // rounding mode.
3338       if (Status == APFloat::opOK)
3339         return replaceInstUsesWith(CI, ConstantFP::get(II->getContext(), Val));
3340     }
3341 
3342     break;
3343   }
3344   case Intrinsic::amdgcn_rsq: {
3345     Value *Src = II->getArgOperand(0);
3346 
3347     // TODO: Move to ConstantFolding/InstSimplify?
3348     if (isa<UndefValue>(Src))
3349       return replaceInstUsesWith(CI, Src);
3350     break;
3351   }
3352   case Intrinsic::amdgcn_frexp_mant:
3353   case Intrinsic::amdgcn_frexp_exp: {
3354     Value *Src = II->getArgOperand(0);
3355     if (const ConstantFP *C = dyn_cast<ConstantFP>(Src)) {
3356       int Exp;
3357       APFloat Significand = frexp(C->getValueAPF(), Exp,
3358                                   APFloat::rmNearestTiesToEven);
3359 
3360       if (IID == Intrinsic::amdgcn_frexp_mant) {
3361         return replaceInstUsesWith(CI, ConstantFP::get(II->getContext(),
3362                                                        Significand));
3363       }
3364 
3365       // Match instruction special case behavior.
3366       if (Exp == APFloat::IEK_NaN || Exp == APFloat::IEK_Inf)
3367         Exp = 0;
3368 
3369       return replaceInstUsesWith(CI, ConstantInt::get(II->getType(), Exp));
3370     }
3371 
3372     if (isa<UndefValue>(Src))
3373       return replaceInstUsesWith(CI, UndefValue::get(II->getType()));
3374 
3375     break;
3376   }
3377   case Intrinsic::amdgcn_class: {
3378     enum  {
3379       S_NAN = 1 << 0,        // Signaling NaN
3380       Q_NAN = 1 << 1,        // Quiet NaN
3381       N_INFINITY = 1 << 2,   // Negative infinity
3382       N_NORMAL = 1 << 3,     // Negative normal
3383       N_SUBNORMAL = 1 << 4,  // Negative subnormal
3384       N_ZERO = 1 << 5,       // Negative zero
3385       P_ZERO = 1 << 6,       // Positive zero
3386       P_SUBNORMAL = 1 << 7,  // Positive subnormal
3387       P_NORMAL = 1 << 8,     // Positive normal
3388       P_INFINITY = 1 << 9    // Positive infinity
3389     };
3390 
3391     const uint32_t FullMask = S_NAN | Q_NAN | N_INFINITY | N_NORMAL |
3392       N_SUBNORMAL | N_ZERO | P_ZERO | P_SUBNORMAL | P_NORMAL | P_INFINITY;
3393 
3394     Value *Src0 = II->getArgOperand(0);
3395     Value *Src1 = II->getArgOperand(1);
3396     const ConstantInt *CMask = dyn_cast<ConstantInt>(Src1);
3397     if (!CMask) {
3398       if (isa<UndefValue>(Src0))
3399         return replaceInstUsesWith(*II, UndefValue::get(II->getType()));
3400 
3401       if (isa<UndefValue>(Src1))
3402         return replaceInstUsesWith(*II, ConstantInt::get(II->getType(), false));
3403       break;
3404     }
3405 
3406     uint32_t Mask = CMask->getZExtValue();
3407 
3408     // If all tests are made, it doesn't matter what the value is.
3409     if ((Mask & FullMask) == FullMask)
3410       return replaceInstUsesWith(*II, ConstantInt::get(II->getType(), true));
3411 
3412     if ((Mask & FullMask) == 0)
3413       return replaceInstUsesWith(*II, ConstantInt::get(II->getType(), false));
3414 
3415     if (Mask == (S_NAN | Q_NAN)) {
3416       // Equivalent of isnan. Replace with standard fcmp.
3417       Value *FCmp = Builder.CreateFCmpUNO(Src0, Src0);
3418       FCmp->takeName(II);
3419       return replaceInstUsesWith(*II, FCmp);
3420     }
3421 
3422     if (Mask == (N_ZERO | P_ZERO)) {
3423       // Equivalent of == 0.
3424       Value *FCmp = Builder.CreateFCmpOEQ(
3425         Src0, ConstantFP::get(Src0->getType(), 0.0));
3426 
3427       FCmp->takeName(II);
3428       return replaceInstUsesWith(*II, FCmp);
3429     }
3430 
3431     // fp_class (nnan x), qnan|snan|other -> fp_class (nnan x), other
3432     if (((Mask & S_NAN) || (Mask & Q_NAN)) && isKnownNeverNaN(Src0, &TLI)) {
3433       II->setArgOperand(1, ConstantInt::get(Src1->getType(),
3434                                             Mask & ~(S_NAN | Q_NAN)));
3435       return II;
3436     }
3437 
3438     const ConstantFP *CVal = dyn_cast<ConstantFP>(Src0);
3439     if (!CVal) {
3440       if (isa<UndefValue>(Src0))
3441         return replaceInstUsesWith(*II, UndefValue::get(II->getType()));
3442 
3443       // Clamp mask to used bits
3444       if ((Mask & FullMask) != Mask) {
3445         CallInst *NewCall = Builder.CreateCall(II->getCalledFunction(),
3446           { Src0, ConstantInt::get(Src1->getType(), Mask & FullMask) }
3447         );
3448 
3449         NewCall->takeName(II);
3450         return replaceInstUsesWith(*II, NewCall);
3451       }
3452 
3453       break;
3454     }
3455 
3456     const APFloat &Val = CVal->getValueAPF();
3457 
3458     bool Result =
3459       ((Mask & S_NAN) && Val.isNaN() && Val.isSignaling()) ||
3460       ((Mask & Q_NAN) && Val.isNaN() && !Val.isSignaling()) ||
3461       ((Mask & N_INFINITY) && Val.isInfinity() && Val.isNegative()) ||
3462       ((Mask & N_NORMAL) && Val.isNormal() && Val.isNegative()) ||
3463       ((Mask & N_SUBNORMAL) && Val.isDenormal() && Val.isNegative()) ||
3464       ((Mask & N_ZERO) && Val.isZero() && Val.isNegative()) ||
3465       ((Mask & P_ZERO) && Val.isZero() && !Val.isNegative()) ||
3466       ((Mask & P_SUBNORMAL) && Val.isDenormal() && !Val.isNegative()) ||
3467       ((Mask & P_NORMAL) && Val.isNormal() && !Val.isNegative()) ||
3468       ((Mask & P_INFINITY) && Val.isInfinity() && !Val.isNegative());
3469 
3470     return replaceInstUsesWith(*II, ConstantInt::get(II->getType(), Result));
3471   }
3472   case Intrinsic::amdgcn_cvt_pkrtz: {
3473     Value *Src0 = II->getArgOperand(0);
3474     Value *Src1 = II->getArgOperand(1);
3475     if (const ConstantFP *C0 = dyn_cast<ConstantFP>(Src0)) {
3476       if (const ConstantFP *C1 = dyn_cast<ConstantFP>(Src1)) {
3477         const fltSemantics &HalfSem
3478           = II->getType()->getScalarType()->getFltSemantics();
3479         bool LosesInfo;
3480         APFloat Val0 = C0->getValueAPF();
3481         APFloat Val1 = C1->getValueAPF();
3482         Val0.convert(HalfSem, APFloat::rmTowardZero, &LosesInfo);
3483         Val1.convert(HalfSem, APFloat::rmTowardZero, &LosesInfo);
3484 
3485         Constant *Folded = ConstantVector::get({
3486             ConstantFP::get(II->getContext(), Val0),
3487             ConstantFP::get(II->getContext(), Val1) });
3488         return replaceInstUsesWith(*II, Folded);
3489       }
3490     }
3491 
3492     if (isa<UndefValue>(Src0) && isa<UndefValue>(Src1))
3493       return replaceInstUsesWith(*II, UndefValue::get(II->getType()));
3494 
3495     break;
3496   }
3497   case Intrinsic::amdgcn_cvt_pknorm_i16:
3498   case Intrinsic::amdgcn_cvt_pknorm_u16:
3499   case Intrinsic::amdgcn_cvt_pk_i16:
3500   case Intrinsic::amdgcn_cvt_pk_u16: {
3501     Value *Src0 = II->getArgOperand(0);
3502     Value *Src1 = II->getArgOperand(1);
3503 
3504     if (isa<UndefValue>(Src0) && isa<UndefValue>(Src1))
3505       return replaceInstUsesWith(*II, UndefValue::get(II->getType()));
3506 
3507     break;
3508   }
3509   case Intrinsic::amdgcn_ubfe:
3510   case Intrinsic::amdgcn_sbfe: {
3511     // Decompose simple cases into standard shifts.
3512     Value *Src = II->getArgOperand(0);
3513     if (isa<UndefValue>(Src))
3514       return replaceInstUsesWith(*II, Src);
3515 
3516     unsigned Width;
3517     Type *Ty = II->getType();
3518     unsigned IntSize = Ty->getIntegerBitWidth();
3519 
3520     ConstantInt *CWidth = dyn_cast<ConstantInt>(II->getArgOperand(2));
3521     if (CWidth) {
3522       Width = CWidth->getZExtValue();
3523       if ((Width & (IntSize - 1)) == 0)
3524         return replaceInstUsesWith(*II, ConstantInt::getNullValue(Ty));
3525 
3526       if (Width >= IntSize) {
3527         // Hardware ignores high bits, so remove those.
3528         II->setArgOperand(2, ConstantInt::get(CWidth->getType(),
3529                                               Width & (IntSize - 1)));
3530         return II;
3531       }
3532     }
3533 
3534     unsigned Offset;
3535     ConstantInt *COffset = dyn_cast<ConstantInt>(II->getArgOperand(1));
3536     if (COffset) {
3537       Offset = COffset->getZExtValue();
3538       if (Offset >= IntSize) {
3539         II->setArgOperand(1, ConstantInt::get(COffset->getType(),
3540                                               Offset & (IntSize - 1)));
3541         return II;
3542       }
3543     }
3544 
3545     bool Signed = IID == Intrinsic::amdgcn_sbfe;
3546 
3547     if (!CWidth || !COffset)
3548       break;
3549 
3550     // The case of Width == 0 is handled above, which makes this tranformation
3551     // safe.  If Width == 0, then the ashr and lshr instructions become poison
3552     // value since the shift amount would be equal to the bit size.
3553     assert(Width != 0);
3554 
3555     // TODO: This allows folding to undef when the hardware has specific
3556     // behavior?
3557     if (Offset + Width < IntSize) {
3558       Value *Shl = Builder.CreateShl(Src, IntSize - Offset - Width);
3559       Value *RightShift = Signed ? Builder.CreateAShr(Shl, IntSize - Width)
3560                                  : Builder.CreateLShr(Shl, IntSize - Width);
3561       RightShift->takeName(II);
3562       return replaceInstUsesWith(*II, RightShift);
3563     }
3564 
3565     Value *RightShift = Signed ? Builder.CreateAShr(Src, Offset)
3566                                : Builder.CreateLShr(Src, Offset);
3567 
3568     RightShift->takeName(II);
3569     return replaceInstUsesWith(*II, RightShift);
3570   }
3571   case Intrinsic::amdgcn_exp:
3572   case Intrinsic::amdgcn_exp_compr: {
3573     ConstantInt *En = cast<ConstantInt>(II->getArgOperand(1));
3574     unsigned EnBits = En->getZExtValue();
3575     if (EnBits == 0xf)
3576       break; // All inputs enabled.
3577 
3578     bool IsCompr = IID == Intrinsic::amdgcn_exp_compr;
3579     bool Changed = false;
3580     for (int I = 0; I < (IsCompr ? 2 : 4); ++I) {
3581       if ((!IsCompr && (EnBits & (1 << I)) == 0) ||
3582           (IsCompr && ((EnBits & (0x3 << (2 * I))) == 0))) {
3583         Value *Src = II->getArgOperand(I + 2);
3584         if (!isa<UndefValue>(Src)) {
3585           II->setArgOperand(I + 2, UndefValue::get(Src->getType()));
3586           Changed = true;
3587         }
3588       }
3589     }
3590 
3591     if (Changed)
3592       return II;
3593 
3594     break;
3595   }
3596   case Intrinsic::amdgcn_fmed3: {
3597     // Note this does not preserve proper sNaN behavior if IEEE-mode is enabled
3598     // for the shader.
3599 
3600     Value *Src0 = II->getArgOperand(0);
3601     Value *Src1 = II->getArgOperand(1);
3602     Value *Src2 = II->getArgOperand(2);
3603 
3604     // Checking for NaN before canonicalization provides better fidelity when
3605     // mapping other operations onto fmed3 since the order of operands is
3606     // unchanged.
3607     CallInst *NewCall = nullptr;
3608     if (match(Src0, m_NaN()) || isa<UndefValue>(Src0)) {
3609       NewCall = Builder.CreateMinNum(Src1, Src2);
3610     } else if (match(Src1, m_NaN()) || isa<UndefValue>(Src1)) {
3611       NewCall = Builder.CreateMinNum(Src0, Src2);
3612     } else if (match(Src2, m_NaN()) || isa<UndefValue>(Src2)) {
3613       NewCall = Builder.CreateMaxNum(Src0, Src1);
3614     }
3615 
3616     if (NewCall) {
3617       NewCall->copyFastMathFlags(II);
3618       NewCall->takeName(II);
3619       return replaceInstUsesWith(*II, NewCall);
3620     }
3621 
3622     bool Swap = false;
3623     // Canonicalize constants to RHS operands.
3624     //
3625     // fmed3(c0, x, c1) -> fmed3(x, c0, c1)
3626     if (isa<Constant>(Src0) && !isa<Constant>(Src1)) {
3627       std::swap(Src0, Src1);
3628       Swap = true;
3629     }
3630 
3631     if (isa<Constant>(Src1) && !isa<Constant>(Src2)) {
3632       std::swap(Src1, Src2);
3633       Swap = true;
3634     }
3635 
3636     if (isa<Constant>(Src0) && !isa<Constant>(Src1)) {
3637       std::swap(Src0, Src1);
3638       Swap = true;
3639     }
3640 
3641     if (Swap) {
3642       II->setArgOperand(0, Src0);
3643       II->setArgOperand(1, Src1);
3644       II->setArgOperand(2, Src2);
3645       return II;
3646     }
3647 
3648     if (const ConstantFP *C0 = dyn_cast<ConstantFP>(Src0)) {
3649       if (const ConstantFP *C1 = dyn_cast<ConstantFP>(Src1)) {
3650         if (const ConstantFP *C2 = dyn_cast<ConstantFP>(Src2)) {
3651           APFloat Result = fmed3AMDGCN(C0->getValueAPF(), C1->getValueAPF(),
3652                                        C2->getValueAPF());
3653           return replaceInstUsesWith(*II,
3654             ConstantFP::get(Builder.getContext(), Result));
3655         }
3656       }
3657     }
3658 
3659     break;
3660   }
3661   case Intrinsic::amdgcn_icmp:
3662   case Intrinsic::amdgcn_fcmp: {
3663     const ConstantInt *CC = cast<ConstantInt>(II->getArgOperand(2));
3664     // Guard against invalid arguments.
3665     int64_t CCVal = CC->getZExtValue();
3666     bool IsInteger = IID == Intrinsic::amdgcn_icmp;
3667     if ((IsInteger && (CCVal < CmpInst::FIRST_ICMP_PREDICATE ||
3668                        CCVal > CmpInst::LAST_ICMP_PREDICATE)) ||
3669         (!IsInteger && (CCVal < CmpInst::FIRST_FCMP_PREDICATE ||
3670                         CCVal > CmpInst::LAST_FCMP_PREDICATE)))
3671       break;
3672 
3673     Value *Src0 = II->getArgOperand(0);
3674     Value *Src1 = II->getArgOperand(1);
3675 
3676     if (auto *CSrc0 = dyn_cast<Constant>(Src0)) {
3677       if (auto *CSrc1 = dyn_cast<Constant>(Src1)) {
3678         Constant *CCmp = ConstantExpr::getCompare(CCVal, CSrc0, CSrc1);
3679         if (CCmp->isNullValue()) {
3680           return replaceInstUsesWith(
3681               *II, ConstantExpr::getSExt(CCmp, II->getType()));
3682         }
3683 
3684         // The result of V_ICMP/V_FCMP assembly instructions (which this
3685         // intrinsic exposes) is one bit per thread, masked with the EXEC
3686         // register (which contains the bitmask of live threads). So a
3687         // comparison that always returns true is the same as a read of the
3688         // EXEC register.
3689         Function *NewF = Intrinsic::getDeclaration(
3690             II->getModule(), Intrinsic::read_register, II->getType());
3691         Metadata *MDArgs[] = {MDString::get(II->getContext(), "exec")};
3692         MDNode *MD = MDNode::get(II->getContext(), MDArgs);
3693         Value *Args[] = {MetadataAsValue::get(II->getContext(), MD)};
3694         CallInst *NewCall = Builder.CreateCall(NewF, Args);
3695         NewCall->addAttribute(AttributeList::FunctionIndex,
3696                               Attribute::Convergent);
3697         NewCall->takeName(II);
3698         return replaceInstUsesWith(*II, NewCall);
3699       }
3700 
3701       // Canonicalize constants to RHS.
3702       CmpInst::Predicate SwapPred
3703         = CmpInst::getSwappedPredicate(static_cast<CmpInst::Predicate>(CCVal));
3704       II->setArgOperand(0, Src1);
3705       II->setArgOperand(1, Src0);
3706       II->setArgOperand(2, ConstantInt::get(CC->getType(),
3707                                             static_cast<int>(SwapPred)));
3708       return II;
3709     }
3710 
3711     if (CCVal != CmpInst::ICMP_EQ && CCVal != CmpInst::ICMP_NE)
3712       break;
3713 
3714     // Canonicalize compare eq with true value to compare != 0
3715     // llvm.amdgcn.icmp(zext (i1 x), 1, eq)
3716     //   -> llvm.amdgcn.icmp(zext (i1 x), 0, ne)
3717     // llvm.amdgcn.icmp(sext (i1 x), -1, eq)
3718     //   -> llvm.amdgcn.icmp(sext (i1 x), 0, ne)
3719     Value *ExtSrc;
3720     if (CCVal == CmpInst::ICMP_EQ &&
3721         ((match(Src1, m_One()) && match(Src0, m_ZExt(m_Value(ExtSrc)))) ||
3722          (match(Src1, m_AllOnes()) && match(Src0, m_SExt(m_Value(ExtSrc))))) &&
3723         ExtSrc->getType()->isIntegerTy(1)) {
3724       II->setArgOperand(1, ConstantInt::getNullValue(Src1->getType()));
3725       II->setArgOperand(2, ConstantInt::get(CC->getType(), CmpInst::ICMP_NE));
3726       return II;
3727     }
3728 
3729     CmpInst::Predicate SrcPred;
3730     Value *SrcLHS;
3731     Value *SrcRHS;
3732 
3733     // Fold compare eq/ne with 0 from a compare result as the predicate to the
3734     // intrinsic. The typical use is a wave vote function in the library, which
3735     // will be fed from a user code condition compared with 0. Fold in the
3736     // redundant compare.
3737 
3738     // llvm.amdgcn.icmp([sz]ext ([if]cmp pred a, b), 0, ne)
3739     //   -> llvm.amdgcn.[if]cmp(a, b, pred)
3740     //
3741     // llvm.amdgcn.icmp([sz]ext ([if]cmp pred a, b), 0, eq)
3742     //   -> llvm.amdgcn.[if]cmp(a, b, inv pred)
3743     if (match(Src1, m_Zero()) &&
3744         match(Src0,
3745               m_ZExtOrSExt(m_Cmp(SrcPred, m_Value(SrcLHS), m_Value(SrcRHS))))) {
3746       if (CCVal == CmpInst::ICMP_EQ)
3747         SrcPred = CmpInst::getInversePredicate(SrcPred);
3748 
3749       Intrinsic::ID NewIID = CmpInst::isFPPredicate(SrcPred) ?
3750         Intrinsic::amdgcn_fcmp : Intrinsic::amdgcn_icmp;
3751 
3752       Type *Ty = SrcLHS->getType();
3753       if (auto *CmpType = dyn_cast<IntegerType>(Ty)) {
3754         // Promote to next legal integer type.
3755         unsigned Width = CmpType->getBitWidth();
3756         unsigned NewWidth = Width;
3757 
3758         // Don't do anything for i1 comparisons.
3759         if (Width == 1)
3760           break;
3761 
3762         if (Width <= 16)
3763           NewWidth = 16;
3764         else if (Width <= 32)
3765           NewWidth = 32;
3766         else if (Width <= 64)
3767           NewWidth = 64;
3768         else if (Width > 64)
3769           break; // Can't handle this.
3770 
3771         if (Width != NewWidth) {
3772           IntegerType *CmpTy = Builder.getIntNTy(NewWidth);
3773           if (CmpInst::isSigned(SrcPred)) {
3774             SrcLHS = Builder.CreateSExt(SrcLHS, CmpTy);
3775             SrcRHS = Builder.CreateSExt(SrcRHS, CmpTy);
3776           } else {
3777             SrcLHS = Builder.CreateZExt(SrcLHS, CmpTy);
3778             SrcRHS = Builder.CreateZExt(SrcRHS, CmpTy);
3779           }
3780         }
3781       } else if (!Ty->isFloatTy() && !Ty->isDoubleTy() && !Ty->isHalfTy())
3782         break;
3783 
3784       Function *NewF =
3785           Intrinsic::getDeclaration(II->getModule(), NewIID,
3786                                     { II->getType(),
3787                                       SrcLHS->getType() });
3788       Value *Args[] = { SrcLHS, SrcRHS,
3789                         ConstantInt::get(CC->getType(), SrcPred) };
3790       CallInst *NewCall = Builder.CreateCall(NewF, Args);
3791       NewCall->takeName(II);
3792       return replaceInstUsesWith(*II, NewCall);
3793     }
3794 
3795     break;
3796   }
3797   case Intrinsic::amdgcn_wqm_vote: {
3798     // wqm_vote is identity when the argument is constant.
3799     if (!isa<Constant>(II->getArgOperand(0)))
3800       break;
3801 
3802     return replaceInstUsesWith(*II, II->getArgOperand(0));
3803   }
3804   case Intrinsic::amdgcn_kill: {
3805     const ConstantInt *C = dyn_cast<ConstantInt>(II->getArgOperand(0));
3806     if (!C || !C->getZExtValue())
3807       break;
3808 
3809     // amdgcn.kill(i1 1) is a no-op
3810     return eraseInstFromFunction(CI);
3811   }
3812   case Intrinsic::amdgcn_update_dpp: {
3813     Value *Old = II->getArgOperand(0);
3814 
3815     auto BC = cast<ConstantInt>(II->getArgOperand(5));
3816     auto RM = cast<ConstantInt>(II->getArgOperand(3));
3817     auto BM = cast<ConstantInt>(II->getArgOperand(4));
3818     if (BC->isZeroValue() ||
3819         RM->getZExtValue() != 0xF ||
3820         BM->getZExtValue() != 0xF ||
3821         isa<UndefValue>(Old))
3822       break;
3823 
3824     // If bound_ctrl = 1, row mask = bank mask = 0xf we can omit old value.
3825     II->setOperand(0, UndefValue::get(Old->getType()));
3826     return II;
3827   }
3828   case Intrinsic::amdgcn_readfirstlane:
3829   case Intrinsic::amdgcn_readlane: {
3830     // A constant value is trivially uniform.
3831     if (Constant *C = dyn_cast<Constant>(II->getArgOperand(0)))
3832       return replaceInstUsesWith(*II, C);
3833 
3834     // The rest of these may not be safe if the exec may not be the same between
3835     // the def and use.
3836     Value *Src = II->getArgOperand(0);
3837     Instruction *SrcInst = dyn_cast<Instruction>(Src);
3838     if (SrcInst && SrcInst->getParent() != II->getParent())
3839       break;
3840 
3841     // readfirstlane (readfirstlane x) -> readfirstlane x
3842     // readlane (readfirstlane x), y -> readfirstlane x
3843     if (match(Src, m_Intrinsic<Intrinsic::amdgcn_readfirstlane>()))
3844       return replaceInstUsesWith(*II, Src);
3845 
3846     if (IID == Intrinsic::amdgcn_readfirstlane) {
3847       // readfirstlane (readlane x, y) -> readlane x, y
3848       if (match(Src, m_Intrinsic<Intrinsic::amdgcn_readlane>()))
3849         return replaceInstUsesWith(*II, Src);
3850     } else {
3851       // readlane (readlane x, y), y -> readlane x, y
3852       if (match(Src, m_Intrinsic<Intrinsic::amdgcn_readlane>(
3853                   m_Value(), m_Specific(II->getArgOperand(1)))))
3854         return replaceInstUsesWith(*II, Src);
3855     }
3856 
3857     break;
3858   }
3859   case Intrinsic::stackrestore: {
3860     // If the save is right next to the restore, remove the restore.  This can
3861     // happen when variable allocas are DCE'd.
3862     if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) {
3863       if (SS->getIntrinsicID() == Intrinsic::stacksave) {
3864         // Skip over debug info.
3865         if (SS->getNextNonDebugInstruction() == II) {
3866           return eraseInstFromFunction(CI);
3867         }
3868       }
3869     }
3870 
3871     // Scan down this block to see if there is another stack restore in the
3872     // same block without an intervening call/alloca.
3873     BasicBlock::iterator BI(II);
3874     Instruction *TI = II->getParent()->getTerminator();
3875     bool CannotRemove = false;
3876     for (++BI; &*BI != TI; ++BI) {
3877       if (isa<AllocaInst>(BI)) {
3878         CannotRemove = true;
3879         break;
3880       }
3881       if (CallInst *BCI = dyn_cast<CallInst>(BI)) {
3882         if (auto *II2 = dyn_cast<IntrinsicInst>(BCI)) {
3883           // If there is a stackrestore below this one, remove this one.
3884           if (II2->getIntrinsicID() == Intrinsic::stackrestore)
3885             return eraseInstFromFunction(CI);
3886 
3887           // Bail if we cross over an intrinsic with side effects, such as
3888           // llvm.stacksave, llvm.read_register, or llvm.setjmp.
3889           if (II2->mayHaveSideEffects()) {
3890             CannotRemove = true;
3891             break;
3892           }
3893         } else {
3894           // If we found a non-intrinsic call, we can't remove the stack
3895           // restore.
3896           CannotRemove = true;
3897           break;
3898         }
3899       }
3900     }
3901 
3902     // If the stack restore is in a return, resume, or unwind block and if there
3903     // are no allocas or calls between the restore and the return, nuke the
3904     // restore.
3905     if (!CannotRemove && (isa<ReturnInst>(TI) || isa<ResumeInst>(TI)))
3906       return eraseInstFromFunction(CI);
3907     break;
3908   }
3909   case Intrinsic::lifetime_start:
3910     // Asan needs to poison memory to detect invalid access which is possible
3911     // even for empty lifetime range.
3912     if (II->getFunction()->hasFnAttribute(Attribute::SanitizeAddress) ||
3913         II->getFunction()->hasFnAttribute(Attribute::SanitizeMemory) ||
3914         II->getFunction()->hasFnAttribute(Attribute::SanitizeHWAddress))
3915       break;
3916 
3917     if (removeTriviallyEmptyRange(*II, Intrinsic::lifetime_start,
3918                                   Intrinsic::lifetime_end, *this))
3919       return nullptr;
3920     break;
3921   case Intrinsic::assume: {
3922     Value *IIOperand = II->getArgOperand(0);
3923     // Remove an assume if it is followed by an identical assume.
3924     // TODO: Do we need this? Unless there are conflicting assumptions, the
3925     // computeKnownBits(IIOperand) below here eliminates redundant assumes.
3926     Instruction *Next = II->getNextNonDebugInstruction();
3927     if (match(Next, m_Intrinsic<Intrinsic::assume>(m_Specific(IIOperand))))
3928       return eraseInstFromFunction(CI);
3929 
3930     // Canonicalize assume(a && b) -> assume(a); assume(b);
3931     // Note: New assumption intrinsics created here are registered by
3932     // the InstCombineIRInserter object.
3933     FunctionType *AssumeIntrinsicTy = II->getFunctionType();
3934     Value *AssumeIntrinsic = II->getCalledValue();
3935     Value *A, *B;
3936     if (match(IIOperand, m_And(m_Value(A), m_Value(B)))) {
3937       Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, A, II->getName());
3938       Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, B, II->getName());
3939       return eraseInstFromFunction(*II);
3940     }
3941     // assume(!(a || b)) -> assume(!a); assume(!b);
3942     if (match(IIOperand, m_Not(m_Or(m_Value(A), m_Value(B))))) {
3943       Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic,
3944                          Builder.CreateNot(A), II->getName());
3945       Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic,
3946                          Builder.CreateNot(B), II->getName());
3947       return eraseInstFromFunction(*II);
3948     }
3949 
3950     // assume( (load addr) != null ) -> add 'nonnull' metadata to load
3951     // (if assume is valid at the load)
3952     CmpInst::Predicate Pred;
3953     Instruction *LHS;
3954     if (match(IIOperand, m_ICmp(Pred, m_Instruction(LHS), m_Zero())) &&
3955         Pred == ICmpInst::ICMP_NE && LHS->getOpcode() == Instruction::Load &&
3956         LHS->getType()->isPointerTy() &&
3957         isValidAssumeForContext(II, LHS, &DT)) {
3958       MDNode *MD = MDNode::get(II->getContext(), None);
3959       LHS->setMetadata(LLVMContext::MD_nonnull, MD);
3960       return eraseInstFromFunction(*II);
3961 
3962       // TODO: apply nonnull return attributes to calls and invokes
3963       // TODO: apply range metadata for range check patterns?
3964     }
3965 
3966     // If there is a dominating assume with the same condition as this one,
3967     // then this one is redundant, and should be removed.
3968     KnownBits Known(1);
3969     computeKnownBits(IIOperand, Known, 0, II);
3970     if (Known.isAllOnes())
3971       return eraseInstFromFunction(*II);
3972 
3973     // Update the cache of affected values for this assumption (we might be
3974     // here because we just simplified the condition).
3975     AC.updateAffectedValues(II);
3976     break;
3977   }
3978   case Intrinsic::experimental_gc_relocate: {
3979     auto &GCR = *cast<GCRelocateInst>(II);
3980 
3981     // If we have two copies of the same pointer in the statepoint argument
3982     // list, canonicalize to one.  This may let us common gc.relocates.
3983     if (GCR.getBasePtr() == GCR.getDerivedPtr() &&
3984         GCR.getBasePtrIndex() != GCR.getDerivedPtrIndex()) {
3985       auto *OpIntTy = GCR.getOperand(2)->getType();
3986       II->setOperand(2, ConstantInt::get(OpIntTy, GCR.getBasePtrIndex()));
3987       return II;
3988     }
3989 
3990     // Translate facts known about a pointer before relocating into
3991     // facts about the relocate value, while being careful to
3992     // preserve relocation semantics.
3993     Value *DerivedPtr = GCR.getDerivedPtr();
3994 
3995     // Remove the relocation if unused, note that this check is required
3996     // to prevent the cases below from looping forever.
3997     if (II->use_empty())
3998       return eraseInstFromFunction(*II);
3999 
4000     // Undef is undef, even after relocation.
4001     // TODO: provide a hook for this in GCStrategy.  This is clearly legal for
4002     // most practical collectors, but there was discussion in the review thread
4003     // about whether it was legal for all possible collectors.
4004     if (isa<UndefValue>(DerivedPtr))
4005       // Use undef of gc_relocate's type to replace it.
4006       return replaceInstUsesWith(*II, UndefValue::get(II->getType()));
4007 
4008     if (auto *PT = dyn_cast<PointerType>(II->getType())) {
4009       // The relocation of null will be null for most any collector.
4010       // TODO: provide a hook for this in GCStrategy.  There might be some
4011       // weird collector this property does not hold for.
4012       if (isa<ConstantPointerNull>(DerivedPtr))
4013         // Use null-pointer of gc_relocate's type to replace it.
4014         return replaceInstUsesWith(*II, ConstantPointerNull::get(PT));
4015 
4016       // isKnownNonNull -> nonnull attribute
4017       if (!II->hasRetAttr(Attribute::NonNull) &&
4018           isKnownNonZero(DerivedPtr, DL, 0, &AC, II, &DT)) {
4019         II->addAttribute(AttributeList::ReturnIndex, Attribute::NonNull);
4020         return II;
4021       }
4022     }
4023 
4024     // TODO: bitcast(relocate(p)) -> relocate(bitcast(p))
4025     // Canonicalize on the type from the uses to the defs
4026 
4027     // TODO: relocate((gep p, C, C2, ...)) -> gep(relocate(p), C, C2, ...)
4028     break;
4029   }
4030 
4031   case Intrinsic::experimental_guard: {
4032     // Is this guard followed by another guard?  We scan forward over a small
4033     // fixed window of instructions to handle common cases with conditions
4034     // computed between guards.
4035     Instruction *NextInst = II->getNextNode();
4036     for (unsigned i = 0; i < GuardWideningWindow; i++) {
4037       // Note: Using context-free form to avoid compile time blow up
4038       if (!isSafeToSpeculativelyExecute(NextInst))
4039         break;
4040       NextInst = NextInst->getNextNode();
4041     }
4042     Value *NextCond = nullptr;
4043     if (match(NextInst,
4044               m_Intrinsic<Intrinsic::experimental_guard>(m_Value(NextCond)))) {
4045       Value *CurrCond = II->getArgOperand(0);
4046 
4047       // Remove a guard that it is immediately preceded by an identical guard.
4048       if (CurrCond == NextCond)
4049         return eraseInstFromFunction(*NextInst);
4050 
4051       // Otherwise canonicalize guard(a); guard(b) -> guard(a & b).
4052       Instruction* MoveI = II->getNextNode();
4053       while (MoveI != NextInst) {
4054         auto *Temp = MoveI;
4055         MoveI = MoveI->getNextNode();
4056         Temp->moveBefore(II);
4057       }
4058       II->setArgOperand(0, Builder.CreateAnd(CurrCond, NextCond));
4059       return eraseInstFromFunction(*NextInst);
4060     }
4061     break;
4062   }
4063   }
4064   return visitCallBase(*II);
4065 }
4066 
4067 // Fence instruction simplification
4068 Instruction *InstCombiner::visitFenceInst(FenceInst &FI) {
4069   // Remove identical consecutive fences.
4070   Instruction *Next = FI.getNextNonDebugInstruction();
4071   if (auto *NFI = dyn_cast<FenceInst>(Next))
4072     if (FI.isIdenticalTo(NFI))
4073       return eraseInstFromFunction(FI);
4074   return nullptr;
4075 }
4076 
4077 // InvokeInst simplification
4078 Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
4079   return visitCallBase(II);
4080 }
4081 
4082 // CallBrInst simplification
4083 Instruction *InstCombiner::visitCallBrInst(CallBrInst &CBI) {
4084   return visitCallBase(CBI);
4085 }
4086 
4087 /// If this cast does not affect the value passed through the varargs area, we
4088 /// can eliminate the use of the cast.
4089 static bool isSafeToEliminateVarargsCast(const CallBase &Call,
4090                                          const DataLayout &DL,
4091                                          const CastInst *const CI,
4092                                          const int ix) {
4093   if (!CI->isLosslessCast())
4094     return false;
4095 
4096   // If this is a GC intrinsic, avoid munging types.  We need types for
4097   // statepoint reconstruction in SelectionDAG.
4098   // TODO: This is probably something which should be expanded to all
4099   // intrinsics since the entire point of intrinsics is that
4100   // they are understandable by the optimizer.
4101   if (isStatepoint(&Call) || isGCRelocate(&Call) || isGCResult(&Call))
4102     return false;
4103 
4104   // The size of ByVal or InAlloca arguments is derived from the type, so we
4105   // can't change to a type with a different size.  If the size were
4106   // passed explicitly we could avoid this check.
4107   if (!Call.isByValOrInAllocaArgument(ix))
4108     return true;
4109 
4110   Type* SrcTy =
4111             cast<PointerType>(CI->getOperand(0)->getType())->getElementType();
4112   Type *DstTy = Call.isByValArgument(ix)
4113                     ? Call.getParamByValType(ix)
4114                     : cast<PointerType>(CI->getType())->getElementType();
4115   if (!SrcTy->isSized() || !DstTy->isSized())
4116     return false;
4117   if (DL.getTypeAllocSize(SrcTy) != DL.getTypeAllocSize(DstTy))
4118     return false;
4119   return true;
4120 }
4121 
4122 Instruction *InstCombiner::tryOptimizeCall(CallInst *CI) {
4123   if (!CI->getCalledFunction()) return nullptr;
4124 
4125   auto InstCombineRAUW = [this](Instruction *From, Value *With) {
4126     replaceInstUsesWith(*From, With);
4127   };
4128   auto InstCombineErase = [this](Instruction *I) {
4129     eraseInstFromFunction(*I);
4130   };
4131   LibCallSimplifier Simplifier(DL, &TLI, ORE, BFI, PSI, InstCombineRAUW,
4132                                InstCombineErase);
4133   if (Value *With = Simplifier.optimizeCall(CI)) {
4134     ++NumSimplified;
4135     return CI->use_empty() ? CI : replaceInstUsesWith(*CI, With);
4136   }
4137 
4138   return nullptr;
4139 }
4140 
4141 static IntrinsicInst *findInitTrampolineFromAlloca(Value *TrampMem) {
4142   // Strip off at most one level of pointer casts, looking for an alloca.  This
4143   // is good enough in practice and simpler than handling any number of casts.
4144   Value *Underlying = TrampMem->stripPointerCasts();
4145   if (Underlying != TrampMem &&
4146       (!Underlying->hasOneUse() || Underlying->user_back() != TrampMem))
4147     return nullptr;
4148   if (!isa<AllocaInst>(Underlying))
4149     return nullptr;
4150 
4151   IntrinsicInst *InitTrampoline = nullptr;
4152   for (User *U : TrampMem->users()) {
4153     IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
4154     if (!II)
4155       return nullptr;
4156     if (II->getIntrinsicID() == Intrinsic::init_trampoline) {
4157       if (InitTrampoline)
4158         // More than one init_trampoline writes to this value.  Give up.
4159         return nullptr;
4160       InitTrampoline = II;
4161       continue;
4162     }
4163     if (II->getIntrinsicID() == Intrinsic::adjust_trampoline)
4164       // Allow any number of calls to adjust.trampoline.
4165       continue;
4166     return nullptr;
4167   }
4168 
4169   // No call to init.trampoline found.
4170   if (!InitTrampoline)
4171     return nullptr;
4172 
4173   // Check that the alloca is being used in the expected way.
4174   if (InitTrampoline->getOperand(0) != TrampMem)
4175     return nullptr;
4176 
4177   return InitTrampoline;
4178 }
4179 
4180 static IntrinsicInst *findInitTrampolineFromBB(IntrinsicInst *AdjustTramp,
4181                                                Value *TrampMem) {
4182   // Visit all the previous instructions in the basic block, and try to find a
4183   // init.trampoline which has a direct path to the adjust.trampoline.
4184   for (BasicBlock::iterator I = AdjustTramp->getIterator(),
4185                             E = AdjustTramp->getParent()->begin();
4186        I != E;) {
4187     Instruction *Inst = &*--I;
4188     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
4189       if (II->getIntrinsicID() == Intrinsic::init_trampoline &&
4190           II->getOperand(0) == TrampMem)
4191         return II;
4192     if (Inst->mayWriteToMemory())
4193       return nullptr;
4194   }
4195   return nullptr;
4196 }
4197 
4198 // Given a call to llvm.adjust.trampoline, find and return the corresponding
4199 // call to llvm.init.trampoline if the call to the trampoline can be optimized
4200 // to a direct call to a function.  Otherwise return NULL.
4201 static IntrinsicInst *findInitTrampoline(Value *Callee) {
4202   Callee = Callee->stripPointerCasts();
4203   IntrinsicInst *AdjustTramp = dyn_cast<IntrinsicInst>(Callee);
4204   if (!AdjustTramp ||
4205       AdjustTramp->getIntrinsicID() != Intrinsic::adjust_trampoline)
4206     return nullptr;
4207 
4208   Value *TrampMem = AdjustTramp->getOperand(0);
4209 
4210   if (IntrinsicInst *IT = findInitTrampolineFromAlloca(TrampMem))
4211     return IT;
4212   if (IntrinsicInst *IT = findInitTrampolineFromBB(AdjustTramp, TrampMem))
4213     return IT;
4214   return nullptr;
4215 }
4216 
4217 static void annotateAnyAllocSite(CallBase &Call, const TargetLibraryInfo *TLI) {
4218   unsigned NumArgs = Call.getNumArgOperands();
4219   ConstantInt *Op0C = dyn_cast<ConstantInt>(Call.getOperand(0));
4220   ConstantInt *Op1C =
4221       (NumArgs == 1) ? nullptr : dyn_cast<ConstantInt>(Call.getOperand(1));
4222   // Bail out if the allocation size is zero.
4223   if ((Op0C && Op0C->isNullValue()) || (Op1C && Op1C->isNullValue()))
4224     return;
4225 
4226   if (isMallocLikeFn(&Call, TLI) && Op0C) {
4227     if (isOpNewLikeFn(&Call, TLI))
4228       Call.addAttribute(AttributeList::ReturnIndex,
4229                         Attribute::getWithDereferenceableBytes(
4230                             Call.getContext(), Op0C->getZExtValue()));
4231     else
4232       Call.addAttribute(AttributeList::ReturnIndex,
4233                         Attribute::getWithDereferenceableOrNullBytes(
4234                             Call.getContext(), Op0C->getZExtValue()));
4235   } else if (isReallocLikeFn(&Call, TLI) && Op1C) {
4236     Call.addAttribute(AttributeList::ReturnIndex,
4237                       Attribute::getWithDereferenceableOrNullBytes(
4238                           Call.getContext(), Op1C->getZExtValue()));
4239   } else if (isCallocLikeFn(&Call, TLI) && Op0C && Op1C) {
4240     bool Overflow;
4241     const APInt &N = Op0C->getValue();
4242     APInt Size = N.umul_ov(Op1C->getValue(), Overflow);
4243     if (!Overflow)
4244       Call.addAttribute(AttributeList::ReturnIndex,
4245                         Attribute::getWithDereferenceableOrNullBytes(
4246                             Call.getContext(), Size.getZExtValue()));
4247   } else if (isStrdupLikeFn(&Call, TLI)) {
4248     uint64_t Len = GetStringLength(Call.getOperand(0));
4249     if (Len) {
4250       // strdup
4251       if (NumArgs == 1)
4252         Call.addAttribute(AttributeList::ReturnIndex,
4253                           Attribute::getWithDereferenceableOrNullBytes(
4254                               Call.getContext(), Len));
4255       // strndup
4256       else if (NumArgs == 2 && Op1C)
4257         Call.addAttribute(
4258             AttributeList::ReturnIndex,
4259             Attribute::getWithDereferenceableOrNullBytes(
4260                 Call.getContext(), std::min(Len, Op1C->getZExtValue() + 1)));
4261     }
4262   }
4263 }
4264 
4265 /// Improvements for call, callbr and invoke instructions.
4266 Instruction *InstCombiner::visitCallBase(CallBase &Call) {
4267   if (isAllocationFn(&Call, &TLI))
4268     annotateAnyAllocSite(Call, &TLI);
4269 
4270   bool Changed = false;
4271 
4272   // Mark any parameters that are known to be non-null with the nonnull
4273   // attribute.  This is helpful for inlining calls to functions with null
4274   // checks on their arguments.
4275   SmallVector<unsigned, 4> ArgNos;
4276   unsigned ArgNo = 0;
4277 
4278   for (Value *V : Call.args()) {
4279     if (V->getType()->isPointerTy() &&
4280         !Call.paramHasAttr(ArgNo, Attribute::NonNull) &&
4281         isKnownNonZero(V, DL, 0, &AC, &Call, &DT))
4282       ArgNos.push_back(ArgNo);
4283     ArgNo++;
4284   }
4285 
4286   assert(ArgNo == Call.arg_size() && "sanity check");
4287 
4288   if (!ArgNos.empty()) {
4289     AttributeList AS = Call.getAttributes();
4290     LLVMContext &Ctx = Call.getContext();
4291     AS = AS.addParamAttribute(Ctx, ArgNos,
4292                               Attribute::get(Ctx, Attribute::NonNull));
4293     Call.setAttributes(AS);
4294     Changed = true;
4295   }
4296 
4297   // If the callee is a pointer to a function, attempt to move any casts to the
4298   // arguments of the call/callbr/invoke.
4299   Value *Callee = Call.getCalledValue();
4300   if (!isa<Function>(Callee) && transformConstExprCastCall(Call))
4301     return nullptr;
4302 
4303   if (Function *CalleeF = dyn_cast<Function>(Callee)) {
4304     // Remove the convergent attr on calls when the callee is not convergent.
4305     if (Call.isConvergent() && !CalleeF->isConvergent() &&
4306         !CalleeF->isIntrinsic()) {
4307       LLVM_DEBUG(dbgs() << "Removing convergent attr from instr " << Call
4308                         << "\n");
4309       Call.setNotConvergent();
4310       return &Call;
4311     }
4312 
4313     // If the call and callee calling conventions don't match, this call must
4314     // be unreachable, as the call is undefined.
4315     if (CalleeF->getCallingConv() != Call.getCallingConv() &&
4316         // Only do this for calls to a function with a body.  A prototype may
4317         // not actually end up matching the implementation's calling conv for a
4318         // variety of reasons (e.g. it may be written in assembly).
4319         !CalleeF->isDeclaration()) {
4320       Instruction *OldCall = &Call;
4321       CreateNonTerminatorUnreachable(OldCall);
4322       // If OldCall does not return void then replaceAllUsesWith undef.
4323       // This allows ValueHandlers and custom metadata to adjust itself.
4324       if (!OldCall->getType()->isVoidTy())
4325         replaceInstUsesWith(*OldCall, UndefValue::get(OldCall->getType()));
4326       if (isa<CallInst>(OldCall))
4327         return eraseInstFromFunction(*OldCall);
4328 
4329       // We cannot remove an invoke or a callbr, because it would change thexi
4330       // CFG, just change the callee to a null pointer.
4331       cast<CallBase>(OldCall)->setCalledFunction(
4332           CalleeF->getFunctionType(),
4333           Constant::getNullValue(CalleeF->getType()));
4334       return nullptr;
4335     }
4336   }
4337 
4338   if ((isa<ConstantPointerNull>(Callee) &&
4339        !NullPointerIsDefined(Call.getFunction())) ||
4340       isa<UndefValue>(Callee)) {
4341     // If Call does not return void then replaceAllUsesWith undef.
4342     // This allows ValueHandlers and custom metadata to adjust itself.
4343     if (!Call.getType()->isVoidTy())
4344       replaceInstUsesWith(Call, UndefValue::get(Call.getType()));
4345 
4346     if (Call.isTerminator()) {
4347       // Can't remove an invoke or callbr because we cannot change the CFG.
4348       return nullptr;
4349     }
4350 
4351     // This instruction is not reachable, just remove it.
4352     CreateNonTerminatorUnreachable(&Call);
4353     return eraseInstFromFunction(Call);
4354   }
4355 
4356   if (IntrinsicInst *II = findInitTrampoline(Callee))
4357     return transformCallThroughTrampoline(Call, *II);
4358 
4359   PointerType *PTy = cast<PointerType>(Callee->getType());
4360   FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
4361   if (FTy->isVarArg()) {
4362     int ix = FTy->getNumParams();
4363     // See if we can optimize any arguments passed through the varargs area of
4364     // the call.
4365     for (auto I = Call.arg_begin() + FTy->getNumParams(), E = Call.arg_end();
4366          I != E; ++I, ++ix) {
4367       CastInst *CI = dyn_cast<CastInst>(*I);
4368       if (CI && isSafeToEliminateVarargsCast(Call, DL, CI, ix)) {
4369         *I = CI->getOperand(0);
4370 
4371         // Update the byval type to match the argument type.
4372         if (Call.isByValArgument(ix)) {
4373           Call.removeParamAttr(ix, Attribute::ByVal);
4374           Call.addParamAttr(
4375               ix, Attribute::getWithByValType(
4376                       Call.getContext(),
4377                       CI->getOperand(0)->getType()->getPointerElementType()));
4378         }
4379         Changed = true;
4380       }
4381     }
4382   }
4383 
4384   if (isa<InlineAsm>(Callee) && !Call.doesNotThrow()) {
4385     // Inline asm calls cannot throw - mark them 'nounwind'.
4386     Call.setDoesNotThrow();
4387     Changed = true;
4388   }
4389 
4390   // Try to optimize the call if possible, we require DataLayout for most of
4391   // this.  None of these calls are seen as possibly dead so go ahead and
4392   // delete the instruction now.
4393   if (CallInst *CI = dyn_cast<CallInst>(&Call)) {
4394     Instruction *I = tryOptimizeCall(CI);
4395     // If we changed something return the result, etc. Otherwise let
4396     // the fallthrough check.
4397     if (I) return eraseInstFromFunction(*I);
4398   }
4399 
4400   if (isAllocLikeFn(&Call, &TLI))
4401     return visitAllocSite(Call);
4402 
4403   return Changed ? &Call : nullptr;
4404 }
4405 
4406 /// If the callee is a constexpr cast of a function, attempt to move the cast to
4407 /// the arguments of the call/callbr/invoke.
4408 bool InstCombiner::transformConstExprCastCall(CallBase &Call) {
4409   auto *Callee = dyn_cast<Function>(Call.getCalledValue()->stripPointerCasts());
4410   if (!Callee)
4411     return false;
4412 
4413   // If this is a call to a thunk function, don't remove the cast. Thunks are
4414   // used to transparently forward all incoming parameters and outgoing return
4415   // values, so it's important to leave the cast in place.
4416   if (Callee->hasFnAttribute("thunk"))
4417     return false;
4418 
4419   // If this is a musttail call, the callee's prototype must match the caller's
4420   // prototype with the exception of pointee types. The code below doesn't
4421   // implement that, so we can't do this transform.
4422   // TODO: Do the transform if it only requires adding pointer casts.
4423   if (Call.isMustTailCall())
4424     return false;
4425 
4426   Instruction *Caller = &Call;
4427   const AttributeList &CallerPAL = Call.getAttributes();
4428 
4429   // Okay, this is a cast from a function to a different type.  Unless doing so
4430   // would cause a type conversion of one of our arguments, change this call to
4431   // be a direct call with arguments casted to the appropriate types.
4432   FunctionType *FT = Callee->getFunctionType();
4433   Type *OldRetTy = Caller->getType();
4434   Type *NewRetTy = FT->getReturnType();
4435 
4436   // Check to see if we are changing the return type...
4437   if (OldRetTy != NewRetTy) {
4438 
4439     if (NewRetTy->isStructTy())
4440       return false; // TODO: Handle multiple return values.
4441 
4442     if (!CastInst::isBitOrNoopPointerCastable(NewRetTy, OldRetTy, DL)) {
4443       if (Callee->isDeclaration())
4444         return false;   // Cannot transform this return value.
4445 
4446       if (!Caller->use_empty() &&
4447           // void -> non-void is handled specially
4448           !NewRetTy->isVoidTy())
4449         return false;   // Cannot transform this return value.
4450     }
4451 
4452     if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
4453       AttrBuilder RAttrs(CallerPAL, AttributeList::ReturnIndex);
4454       if (RAttrs.overlaps(AttributeFuncs::typeIncompatible(NewRetTy)))
4455         return false;   // Attribute not compatible with transformed value.
4456     }
4457 
4458     // If the callbase is an invoke/callbr instruction, and the return value is
4459     // used by a PHI node in a successor, we cannot change the return type of
4460     // the call because there is no place to put the cast instruction (without
4461     // breaking the critical edge).  Bail out in this case.
4462     if (!Caller->use_empty()) {
4463       if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
4464         for (User *U : II->users())
4465           if (PHINode *PN = dyn_cast<PHINode>(U))
4466             if (PN->getParent() == II->getNormalDest() ||
4467                 PN->getParent() == II->getUnwindDest())
4468               return false;
4469       // FIXME: Be conservative for callbr to avoid a quadratic search.
4470       if (isa<CallBrInst>(Caller))
4471         return false;
4472     }
4473   }
4474 
4475   unsigned NumActualArgs = Call.arg_size();
4476   unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
4477 
4478   // Prevent us turning:
4479   // declare void @takes_i32_inalloca(i32* inalloca)
4480   //  call void bitcast (void (i32*)* @takes_i32_inalloca to void (i32)*)(i32 0)
4481   //
4482   // into:
4483   //  call void @takes_i32_inalloca(i32* null)
4484   //
4485   //  Similarly, avoid folding away bitcasts of byval calls.
4486   if (Callee->getAttributes().hasAttrSomewhere(Attribute::InAlloca) ||
4487       Callee->getAttributes().hasAttrSomewhere(Attribute::ByVal))
4488     return false;
4489 
4490   auto AI = Call.arg_begin();
4491   for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
4492     Type *ParamTy = FT->getParamType(i);
4493     Type *ActTy = (*AI)->getType();
4494 
4495     if (!CastInst::isBitOrNoopPointerCastable(ActTy, ParamTy, DL))
4496       return false;   // Cannot transform this parameter value.
4497 
4498     if (AttrBuilder(CallerPAL.getParamAttributes(i))
4499             .overlaps(AttributeFuncs::typeIncompatible(ParamTy)))
4500       return false;   // Attribute not compatible with transformed value.
4501 
4502     if (Call.isInAllocaArgument(i))
4503       return false;   // Cannot transform to and from inalloca.
4504 
4505     // If the parameter is passed as a byval argument, then we have to have a
4506     // sized type and the sized type has to have the same size as the old type.
4507     if (ParamTy != ActTy && CallerPAL.hasParamAttribute(i, Attribute::ByVal)) {
4508       PointerType *ParamPTy = dyn_cast<PointerType>(ParamTy);
4509       if (!ParamPTy || !ParamPTy->getElementType()->isSized())
4510         return false;
4511 
4512       Type *CurElTy = Call.getParamByValType(i);
4513       if (DL.getTypeAllocSize(CurElTy) !=
4514           DL.getTypeAllocSize(ParamPTy->getElementType()))
4515         return false;
4516     }
4517   }
4518 
4519   if (Callee->isDeclaration()) {
4520     // Do not delete arguments unless we have a function body.
4521     if (FT->getNumParams() < NumActualArgs && !FT->isVarArg())
4522       return false;
4523 
4524     // If the callee is just a declaration, don't change the varargsness of the
4525     // call.  We don't want to introduce a varargs call where one doesn't
4526     // already exist.
4527     PointerType *APTy = cast<PointerType>(Call.getCalledValue()->getType());
4528     if (FT->isVarArg()!=cast<FunctionType>(APTy->getElementType())->isVarArg())
4529       return false;
4530 
4531     // If both the callee and the cast type are varargs, we still have to make
4532     // sure the number of fixed parameters are the same or we have the same
4533     // ABI issues as if we introduce a varargs call.
4534     if (FT->isVarArg() &&
4535         cast<FunctionType>(APTy->getElementType())->isVarArg() &&
4536         FT->getNumParams() !=
4537         cast<FunctionType>(APTy->getElementType())->getNumParams())
4538       return false;
4539   }
4540 
4541   if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
4542       !CallerPAL.isEmpty()) {
4543     // In this case we have more arguments than the new function type, but we
4544     // won't be dropping them.  Check that these extra arguments have attributes
4545     // that are compatible with being a vararg call argument.
4546     unsigned SRetIdx;
4547     if (CallerPAL.hasAttrSomewhere(Attribute::StructRet, &SRetIdx) &&
4548         SRetIdx > FT->getNumParams())
4549       return false;
4550   }
4551 
4552   // Okay, we decided that this is a safe thing to do: go ahead and start
4553   // inserting cast instructions as necessary.
4554   SmallVector<Value *, 8> Args;
4555   SmallVector<AttributeSet, 8> ArgAttrs;
4556   Args.reserve(NumActualArgs);
4557   ArgAttrs.reserve(NumActualArgs);
4558 
4559   // Get any return attributes.
4560   AttrBuilder RAttrs(CallerPAL, AttributeList::ReturnIndex);
4561 
4562   // If the return value is not being used, the type may not be compatible
4563   // with the existing attributes.  Wipe out any problematic attributes.
4564   RAttrs.remove(AttributeFuncs::typeIncompatible(NewRetTy));
4565 
4566   LLVMContext &Ctx = Call.getContext();
4567   AI = Call.arg_begin();
4568   for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
4569     Type *ParamTy = FT->getParamType(i);
4570 
4571     Value *NewArg = *AI;
4572     if ((*AI)->getType() != ParamTy)
4573       NewArg = Builder.CreateBitOrPointerCast(*AI, ParamTy);
4574     Args.push_back(NewArg);
4575 
4576     // Add any parameter attributes.
4577     if (CallerPAL.hasParamAttribute(i, Attribute::ByVal)) {
4578       AttrBuilder AB(CallerPAL.getParamAttributes(i));
4579       AB.addByValAttr(NewArg->getType()->getPointerElementType());
4580       ArgAttrs.push_back(AttributeSet::get(Ctx, AB));
4581     } else
4582       ArgAttrs.push_back(CallerPAL.getParamAttributes(i));
4583   }
4584 
4585   // If the function takes more arguments than the call was taking, add them
4586   // now.
4587   for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i) {
4588     Args.push_back(Constant::getNullValue(FT->getParamType(i)));
4589     ArgAttrs.push_back(AttributeSet());
4590   }
4591 
4592   // If we are removing arguments to the function, emit an obnoxious warning.
4593   if (FT->getNumParams() < NumActualArgs) {
4594     // TODO: if (!FT->isVarArg()) this call may be unreachable. PR14722
4595     if (FT->isVarArg()) {
4596       // Add all of the arguments in their promoted form to the arg list.
4597       for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
4598         Type *PTy = getPromotedType((*AI)->getType());
4599         Value *NewArg = *AI;
4600         if (PTy != (*AI)->getType()) {
4601           // Must promote to pass through va_arg area!
4602           Instruction::CastOps opcode =
4603             CastInst::getCastOpcode(*AI, false, PTy, false);
4604           NewArg = Builder.CreateCast(opcode, *AI, PTy);
4605         }
4606         Args.push_back(NewArg);
4607 
4608         // Add any parameter attributes.
4609         ArgAttrs.push_back(CallerPAL.getParamAttributes(i));
4610       }
4611     }
4612   }
4613 
4614   AttributeSet FnAttrs = CallerPAL.getFnAttributes();
4615 
4616   if (NewRetTy->isVoidTy())
4617     Caller->setName("");   // Void type should not have a name.
4618 
4619   assert((ArgAttrs.size() == FT->getNumParams() || FT->isVarArg()) &&
4620          "missing argument attributes");
4621   AttributeList NewCallerPAL = AttributeList::get(
4622       Ctx, FnAttrs, AttributeSet::get(Ctx, RAttrs), ArgAttrs);
4623 
4624   SmallVector<OperandBundleDef, 1> OpBundles;
4625   Call.getOperandBundlesAsDefs(OpBundles);
4626 
4627   CallBase *NewCall;
4628   if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
4629     NewCall = Builder.CreateInvoke(Callee, II->getNormalDest(),
4630                                    II->getUnwindDest(), Args, OpBundles);
4631   } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(Caller)) {
4632     NewCall = Builder.CreateCallBr(Callee, CBI->getDefaultDest(),
4633                                    CBI->getIndirectDests(), Args, OpBundles);
4634   } else {
4635     NewCall = Builder.CreateCall(Callee, Args, OpBundles);
4636     cast<CallInst>(NewCall)->setTailCallKind(
4637         cast<CallInst>(Caller)->getTailCallKind());
4638   }
4639   NewCall->takeName(Caller);
4640   NewCall->setCallingConv(Call.getCallingConv());
4641   NewCall->setAttributes(NewCallerPAL);
4642 
4643   // Preserve the weight metadata for the new call instruction. The metadata
4644   // is used by SamplePGO to check callsite's hotness.
4645   uint64_t W;
4646   if (Caller->extractProfTotalWeight(W))
4647     NewCall->setProfWeight(W);
4648 
4649   // Insert a cast of the return type as necessary.
4650   Instruction *NC = NewCall;
4651   Value *NV = NC;
4652   if (OldRetTy != NV->getType() && !Caller->use_empty()) {
4653     if (!NV->getType()->isVoidTy()) {
4654       NV = NC = CastInst::CreateBitOrPointerCast(NC, OldRetTy);
4655       NC->setDebugLoc(Caller->getDebugLoc());
4656 
4657       // If this is an invoke/callbr instruction, we should insert it after the
4658       // first non-phi instruction in the normal successor block.
4659       if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
4660         BasicBlock::iterator I = II->getNormalDest()->getFirstInsertionPt();
4661         InsertNewInstBefore(NC, *I);
4662       } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(Caller)) {
4663         BasicBlock::iterator I = CBI->getDefaultDest()->getFirstInsertionPt();
4664         InsertNewInstBefore(NC, *I);
4665       } else {
4666         // Otherwise, it's a call, just insert cast right after the call.
4667         InsertNewInstBefore(NC, *Caller);
4668       }
4669       Worklist.AddUsersToWorkList(*Caller);
4670     } else {
4671       NV = UndefValue::get(Caller->getType());
4672     }
4673   }
4674 
4675   if (!Caller->use_empty())
4676     replaceInstUsesWith(*Caller, NV);
4677   else if (Caller->hasValueHandle()) {
4678     if (OldRetTy == NV->getType())
4679       ValueHandleBase::ValueIsRAUWd(Caller, NV);
4680     else
4681       // We cannot call ValueIsRAUWd with a different type, and the
4682       // actual tracked value will disappear.
4683       ValueHandleBase::ValueIsDeleted(Caller);
4684   }
4685 
4686   eraseInstFromFunction(*Caller);
4687   return true;
4688 }
4689 
4690 /// Turn a call to a function created by init_trampoline / adjust_trampoline
4691 /// intrinsic pair into a direct call to the underlying function.
4692 Instruction *
4693 InstCombiner::transformCallThroughTrampoline(CallBase &Call,
4694                                              IntrinsicInst &Tramp) {
4695   Value *Callee = Call.getCalledValue();
4696   Type *CalleeTy = Callee->getType();
4697   FunctionType *FTy = Call.getFunctionType();
4698   AttributeList Attrs = Call.getAttributes();
4699 
4700   // If the call already has the 'nest' attribute somewhere then give up -
4701   // otherwise 'nest' would occur twice after splicing in the chain.
4702   if (Attrs.hasAttrSomewhere(Attribute::Nest))
4703     return nullptr;
4704 
4705   Function *NestF = cast<Function>(Tramp.getArgOperand(1)->stripPointerCasts());
4706   FunctionType *NestFTy = NestF->getFunctionType();
4707 
4708   AttributeList NestAttrs = NestF->getAttributes();
4709   if (!NestAttrs.isEmpty()) {
4710     unsigned NestArgNo = 0;
4711     Type *NestTy = nullptr;
4712     AttributeSet NestAttr;
4713 
4714     // Look for a parameter marked with the 'nest' attribute.
4715     for (FunctionType::param_iterator I = NestFTy->param_begin(),
4716                                       E = NestFTy->param_end();
4717          I != E; ++NestArgNo, ++I) {
4718       AttributeSet AS = NestAttrs.getParamAttributes(NestArgNo);
4719       if (AS.hasAttribute(Attribute::Nest)) {
4720         // Record the parameter type and any other attributes.
4721         NestTy = *I;
4722         NestAttr = AS;
4723         break;
4724       }
4725     }
4726 
4727     if (NestTy) {
4728       std::vector<Value*> NewArgs;
4729       std::vector<AttributeSet> NewArgAttrs;
4730       NewArgs.reserve(Call.arg_size() + 1);
4731       NewArgAttrs.reserve(Call.arg_size());
4732 
4733       // Insert the nest argument into the call argument list, which may
4734       // mean appending it.  Likewise for attributes.
4735 
4736       {
4737         unsigned ArgNo = 0;
4738         auto I = Call.arg_begin(), E = Call.arg_end();
4739         do {
4740           if (ArgNo == NestArgNo) {
4741             // Add the chain argument and attributes.
4742             Value *NestVal = Tramp.getArgOperand(2);
4743             if (NestVal->getType() != NestTy)
4744               NestVal = Builder.CreateBitCast(NestVal, NestTy, "nest");
4745             NewArgs.push_back(NestVal);
4746             NewArgAttrs.push_back(NestAttr);
4747           }
4748 
4749           if (I == E)
4750             break;
4751 
4752           // Add the original argument and attributes.
4753           NewArgs.push_back(*I);
4754           NewArgAttrs.push_back(Attrs.getParamAttributes(ArgNo));
4755 
4756           ++ArgNo;
4757           ++I;
4758         } while (true);
4759       }
4760 
4761       // The trampoline may have been bitcast to a bogus type (FTy).
4762       // Handle this by synthesizing a new function type, equal to FTy
4763       // with the chain parameter inserted.
4764 
4765       std::vector<Type*> NewTypes;
4766       NewTypes.reserve(FTy->getNumParams()+1);
4767 
4768       // Insert the chain's type into the list of parameter types, which may
4769       // mean appending it.
4770       {
4771         unsigned ArgNo = 0;
4772         FunctionType::param_iterator I = FTy->param_begin(),
4773           E = FTy->param_end();
4774 
4775         do {
4776           if (ArgNo == NestArgNo)
4777             // Add the chain's type.
4778             NewTypes.push_back(NestTy);
4779 
4780           if (I == E)
4781             break;
4782 
4783           // Add the original type.
4784           NewTypes.push_back(*I);
4785 
4786           ++ArgNo;
4787           ++I;
4788         } while (true);
4789       }
4790 
4791       // Replace the trampoline call with a direct call.  Let the generic
4792       // code sort out any function type mismatches.
4793       FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes,
4794                                                 FTy->isVarArg());
4795       Constant *NewCallee =
4796         NestF->getType() == PointerType::getUnqual(NewFTy) ?
4797         NestF : ConstantExpr::getBitCast(NestF,
4798                                          PointerType::getUnqual(NewFTy));
4799       AttributeList NewPAL =
4800           AttributeList::get(FTy->getContext(), Attrs.getFnAttributes(),
4801                              Attrs.getRetAttributes(), NewArgAttrs);
4802 
4803       SmallVector<OperandBundleDef, 1> OpBundles;
4804       Call.getOperandBundlesAsDefs(OpBundles);
4805 
4806       Instruction *NewCaller;
4807       if (InvokeInst *II = dyn_cast<InvokeInst>(&Call)) {
4808         NewCaller = InvokeInst::Create(NewFTy, NewCallee,
4809                                        II->getNormalDest(), II->getUnwindDest(),
4810                                        NewArgs, OpBundles);
4811         cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
4812         cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
4813       } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(&Call)) {
4814         NewCaller =
4815             CallBrInst::Create(NewFTy, NewCallee, CBI->getDefaultDest(),
4816                                CBI->getIndirectDests(), NewArgs, OpBundles);
4817         cast<CallBrInst>(NewCaller)->setCallingConv(CBI->getCallingConv());
4818         cast<CallBrInst>(NewCaller)->setAttributes(NewPAL);
4819       } else {
4820         NewCaller = CallInst::Create(NewFTy, NewCallee, NewArgs, OpBundles);
4821         cast<CallInst>(NewCaller)->setTailCallKind(
4822             cast<CallInst>(Call).getTailCallKind());
4823         cast<CallInst>(NewCaller)->setCallingConv(
4824             cast<CallInst>(Call).getCallingConv());
4825         cast<CallInst>(NewCaller)->setAttributes(NewPAL);
4826       }
4827       NewCaller->setDebugLoc(Call.getDebugLoc());
4828 
4829       return NewCaller;
4830     }
4831   }
4832 
4833   // Replace the trampoline call with a direct call.  Since there is no 'nest'
4834   // parameter, there is no need to adjust the argument list.  Let the generic
4835   // code sort out any function type mismatches.
4836   Constant *NewCallee = ConstantExpr::getBitCast(NestF, CalleeTy);
4837   Call.setCalledFunction(FTy, NewCallee);
4838   return &Call;
4839 }
4840