1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SystemZTargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SystemZISelLowering.h" 14 #include "SystemZCallingConv.h" 15 #include "SystemZConstantPoolValue.h" 16 #include "SystemZMachineFunctionInfo.h" 17 #include "SystemZTargetMachine.h" 18 #include "llvm/CodeGen/CallingConvLower.h" 19 #include "llvm/CodeGen/MachineInstrBuilder.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 22 #include "llvm/IR/IntrinsicInst.h" 23 #include "llvm/IR/Intrinsics.h" 24 #include "llvm/IR/IntrinsicsS390.h" 25 #include "llvm/Support/CommandLine.h" 26 #include "llvm/Support/KnownBits.h" 27 #include <cctype> 28 29 using namespace llvm; 30 31 #define DEBUG_TYPE "systemz-lower" 32 33 namespace { 34 // Represents information about a comparison. 35 struct Comparison { 36 Comparison(SDValue Op0In, SDValue Op1In, SDValue ChainIn) 37 : Op0(Op0In), Op1(Op1In), Chain(ChainIn), 38 Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {} 39 40 // The operands to the comparison. 41 SDValue Op0, Op1; 42 43 // Chain if this is a strict floating-point comparison. 44 SDValue Chain; 45 46 // The opcode that should be used to compare Op0 and Op1. 47 unsigned Opcode; 48 49 // A SystemZICMP value. Only used for integer comparisons. 50 unsigned ICmpType; 51 52 // The mask of CC values that Opcode can produce. 53 unsigned CCValid; 54 55 // The mask of CC values for which the original condition is true. 56 unsigned CCMask; 57 }; 58 } // end anonymous namespace 59 60 // Classify VT as either 32 or 64 bit. 61 static bool is32Bit(EVT VT) { 62 switch (VT.getSimpleVT().SimpleTy) { 63 case MVT::i32: 64 return true; 65 case MVT::i64: 66 return false; 67 default: 68 llvm_unreachable("Unsupported type"); 69 } 70 } 71 72 // Return a version of MachineOperand that can be safely used before the 73 // final use. 74 static MachineOperand earlyUseOperand(MachineOperand Op) { 75 if (Op.isReg()) 76 Op.setIsKill(false); 77 return Op; 78 } 79 80 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM, 81 const SystemZSubtarget &STI) 82 : TargetLowering(TM), Subtarget(STI) { 83 MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize(0)); 84 85 // Set up the register classes. 86 if (Subtarget.hasHighWord()) 87 addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass); 88 else 89 addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass); 90 addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass); 91 if (!useSoftFloat()) { 92 if (Subtarget.hasVector()) { 93 addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass); 94 addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass); 95 } else { 96 addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass); 97 addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass); 98 } 99 if (Subtarget.hasVectorEnhancements1()) 100 addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass); 101 else 102 addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass); 103 104 if (Subtarget.hasVector()) { 105 addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass); 106 addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass); 107 addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass); 108 addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass); 109 addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass); 110 addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass); 111 } 112 } 113 114 // Compute derived properties from the register classes 115 computeRegisterProperties(Subtarget.getRegisterInfo()); 116 117 // Set up special registers. 118 setStackPointerRegisterToSaveRestore(SystemZ::R15D); 119 120 // TODO: It may be better to default to latency-oriented scheduling, however 121 // LLVM's current latency-oriented scheduler can't handle physreg definitions 122 // such as SystemZ has with CC, so set this to the register-pressure 123 // scheduler, because it can. 124 setSchedulingPreference(Sched::RegPressure); 125 126 setBooleanContents(ZeroOrOneBooleanContent); 127 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 128 129 // Instructions are strings of 2-byte aligned 2-byte values. 130 setMinFunctionAlignment(Align(2)); 131 // For performance reasons we prefer 16-byte alignment. 132 setPrefFunctionAlignment(Align(16)); 133 134 // Handle operations that are handled in a similar way for all types. 135 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 136 I <= MVT::LAST_FP_VALUETYPE; 137 ++I) { 138 MVT VT = MVT::SimpleValueType(I); 139 if (isTypeLegal(VT)) { 140 // Lower SET_CC into an IPM-based sequence. 141 setOperationAction(ISD::SETCC, VT, Custom); 142 setOperationAction(ISD::STRICT_FSETCC, VT, Custom); 143 setOperationAction(ISD::STRICT_FSETCCS, VT, Custom); 144 145 // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE). 146 setOperationAction(ISD::SELECT, VT, Expand); 147 148 // Lower SELECT_CC and BR_CC into separate comparisons and branches. 149 setOperationAction(ISD::SELECT_CC, VT, Custom); 150 setOperationAction(ISD::BR_CC, VT, Custom); 151 } 152 } 153 154 // Expand jump table branches as address arithmetic followed by an 155 // indirect jump. 156 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 157 158 // Expand BRCOND into a BR_CC (see above). 159 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 160 161 // Handle integer types. 162 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 163 I <= MVT::LAST_INTEGER_VALUETYPE; 164 ++I) { 165 MVT VT = MVT::SimpleValueType(I); 166 if (isTypeLegal(VT)) { 167 setOperationAction(ISD::ABS, VT, Legal); 168 169 // Expand individual DIV and REMs into DIVREMs. 170 setOperationAction(ISD::SDIV, VT, Expand); 171 setOperationAction(ISD::UDIV, VT, Expand); 172 setOperationAction(ISD::SREM, VT, Expand); 173 setOperationAction(ISD::UREM, VT, Expand); 174 setOperationAction(ISD::SDIVREM, VT, Custom); 175 setOperationAction(ISD::UDIVREM, VT, Custom); 176 177 // Support addition/subtraction with overflow. 178 setOperationAction(ISD::SADDO, VT, Custom); 179 setOperationAction(ISD::SSUBO, VT, Custom); 180 181 // Support addition/subtraction with carry. 182 setOperationAction(ISD::UADDO, VT, Custom); 183 setOperationAction(ISD::USUBO, VT, Custom); 184 185 // Support carry in as value rather than glue. 186 setOperationAction(ISD::ADDCARRY, VT, Custom); 187 setOperationAction(ISD::SUBCARRY, VT, Custom); 188 189 // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and 190 // stores, putting a serialization instruction after the stores. 191 setOperationAction(ISD::ATOMIC_LOAD, VT, Custom); 192 setOperationAction(ISD::ATOMIC_STORE, VT, Custom); 193 194 // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are 195 // available, or if the operand is constant. 196 setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom); 197 198 // Use POPCNT on z196 and above. 199 if (Subtarget.hasPopulationCount()) 200 setOperationAction(ISD::CTPOP, VT, Custom); 201 else 202 setOperationAction(ISD::CTPOP, VT, Expand); 203 204 // No special instructions for these. 205 setOperationAction(ISD::CTTZ, VT, Expand); 206 setOperationAction(ISD::ROTR, VT, Expand); 207 208 // Use *MUL_LOHI where possible instead of MULH*. 209 setOperationAction(ISD::MULHS, VT, Expand); 210 setOperationAction(ISD::MULHU, VT, Expand); 211 setOperationAction(ISD::SMUL_LOHI, VT, Custom); 212 setOperationAction(ISD::UMUL_LOHI, VT, Custom); 213 214 // Only z196 and above have native support for conversions to unsigned. 215 // On z10, promoting to i64 doesn't generate an inexact condition for 216 // values that are outside the i32 range but in the i64 range, so use 217 // the default expansion. 218 if (!Subtarget.hasFPExtension()) 219 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 220 221 // Mirror those settings for STRICT_FP_TO_[SU]INT. Note that these all 222 // default to Expand, so need to be modified to Legal where appropriate. 223 setOperationAction(ISD::STRICT_FP_TO_SINT, VT, Legal); 224 if (Subtarget.hasFPExtension()) 225 setOperationAction(ISD::STRICT_FP_TO_UINT, VT, Legal); 226 227 // And similarly for STRICT_[SU]INT_TO_FP. 228 setOperationAction(ISD::STRICT_SINT_TO_FP, VT, Legal); 229 if (Subtarget.hasFPExtension()) 230 setOperationAction(ISD::STRICT_UINT_TO_FP, VT, Legal); 231 } 232 } 233 234 // Type legalization will convert 8- and 16-bit atomic operations into 235 // forms that operate on i32s (but still keeping the original memory VT). 236 // Lower them into full i32 operations. 237 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Custom); 238 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Custom); 239 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom); 240 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom); 241 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Custom); 242 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Custom); 243 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom); 244 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Custom); 245 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Custom); 246 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom); 247 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom); 248 249 // Even though i128 is not a legal type, we still need to custom lower 250 // the atomic operations in order to exploit SystemZ instructions. 251 setOperationAction(ISD::ATOMIC_LOAD, MVT::i128, Custom); 252 setOperationAction(ISD::ATOMIC_STORE, MVT::i128, Custom); 253 254 // We can use the CC result of compare-and-swap to implement 255 // the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS. 256 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Custom); 257 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Custom); 258 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom); 259 260 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); 261 262 // Traps are legal, as we will convert them to "j .+2". 263 setOperationAction(ISD::TRAP, MVT::Other, Legal); 264 265 // z10 has instructions for signed but not unsigned FP conversion. 266 // Handle unsigned 32-bit types as signed 64-bit types. 267 if (!Subtarget.hasFPExtension()) { 268 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote); 269 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 270 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Promote); 271 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand); 272 } 273 274 // We have native support for a 64-bit CTLZ, via FLOGR. 275 setOperationAction(ISD::CTLZ, MVT::i32, Promote); 276 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Promote); 277 setOperationAction(ISD::CTLZ, MVT::i64, Legal); 278 279 // On z15 we have native support for a 64-bit CTPOP. 280 if (Subtarget.hasMiscellaneousExtensions3()) { 281 setOperationAction(ISD::CTPOP, MVT::i32, Promote); 282 setOperationAction(ISD::CTPOP, MVT::i64, Legal); 283 } 284 285 // Give LowerOperation the chance to replace 64-bit ORs with subregs. 286 setOperationAction(ISD::OR, MVT::i64, Custom); 287 288 // Expand 128 bit shifts without using a libcall. 289 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand); 290 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand); 291 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand); 292 setLibcallName(RTLIB::SRL_I128, nullptr); 293 setLibcallName(RTLIB::SHL_I128, nullptr); 294 setLibcallName(RTLIB::SRA_I128, nullptr); 295 296 // We have native instructions for i8, i16 and i32 extensions, but not i1. 297 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 298 for (MVT VT : MVT::integer_valuetypes()) { 299 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 300 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 301 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 302 } 303 304 // Handle the various types of symbolic address. 305 setOperationAction(ISD::ConstantPool, PtrVT, Custom); 306 setOperationAction(ISD::GlobalAddress, PtrVT, Custom); 307 setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom); 308 setOperationAction(ISD::BlockAddress, PtrVT, Custom); 309 setOperationAction(ISD::JumpTable, PtrVT, Custom); 310 311 // We need to handle dynamic allocations specially because of the 312 // 160-byte area at the bottom of the stack. 313 setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom); 314 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom); 315 316 // Use custom expanders so that we can force the function to use 317 // a frame pointer. 318 setOperationAction(ISD::STACKSAVE, MVT::Other, Custom); 319 setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom); 320 321 // Handle prefetches with PFD or PFDRL. 322 setOperationAction(ISD::PREFETCH, MVT::Other, Custom); 323 324 for (MVT VT : MVT::fixedlen_vector_valuetypes()) { 325 // Assume by default that all vector operations need to be expanded. 326 for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode) 327 if (getOperationAction(Opcode, VT) == Legal) 328 setOperationAction(Opcode, VT, Expand); 329 330 // Likewise all truncating stores and extending loads. 331 for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) { 332 setTruncStoreAction(VT, InnerVT, Expand); 333 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 334 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 335 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 336 } 337 338 if (isTypeLegal(VT)) { 339 // These operations are legal for anything that can be stored in a 340 // vector register, even if there is no native support for the format 341 // as such. In particular, we can do these for v4f32 even though there 342 // are no specific instructions for that format. 343 setOperationAction(ISD::LOAD, VT, Legal); 344 setOperationAction(ISD::STORE, VT, Legal); 345 setOperationAction(ISD::VSELECT, VT, Legal); 346 setOperationAction(ISD::BITCAST, VT, Legal); 347 setOperationAction(ISD::UNDEF, VT, Legal); 348 349 // Likewise, except that we need to replace the nodes with something 350 // more specific. 351 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 352 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 353 } 354 } 355 356 // Handle integer vector types. 357 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 358 if (isTypeLegal(VT)) { 359 // These operations have direct equivalents. 360 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal); 361 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal); 362 setOperationAction(ISD::ADD, VT, Legal); 363 setOperationAction(ISD::SUB, VT, Legal); 364 if (VT != MVT::v2i64) 365 setOperationAction(ISD::MUL, VT, Legal); 366 setOperationAction(ISD::ABS, VT, Legal); 367 setOperationAction(ISD::AND, VT, Legal); 368 setOperationAction(ISD::OR, VT, Legal); 369 setOperationAction(ISD::XOR, VT, Legal); 370 if (Subtarget.hasVectorEnhancements1()) 371 setOperationAction(ISD::CTPOP, VT, Legal); 372 else 373 setOperationAction(ISD::CTPOP, VT, Custom); 374 setOperationAction(ISD::CTTZ, VT, Legal); 375 setOperationAction(ISD::CTLZ, VT, Legal); 376 377 // Convert a GPR scalar to a vector by inserting it into element 0. 378 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom); 379 380 // Use a series of unpacks for extensions. 381 setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom); 382 setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom); 383 384 // Detect shifts by a scalar amount and convert them into 385 // V*_BY_SCALAR. 386 setOperationAction(ISD::SHL, VT, Custom); 387 setOperationAction(ISD::SRA, VT, Custom); 388 setOperationAction(ISD::SRL, VT, Custom); 389 390 // At present ROTL isn't matched by DAGCombiner. ROTR should be 391 // converted into ROTL. 392 setOperationAction(ISD::ROTL, VT, Expand); 393 setOperationAction(ISD::ROTR, VT, Expand); 394 395 // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands 396 // and inverting the result as necessary. 397 setOperationAction(ISD::SETCC, VT, Custom); 398 setOperationAction(ISD::STRICT_FSETCC, VT, Custom); 399 if (Subtarget.hasVectorEnhancements1()) 400 setOperationAction(ISD::STRICT_FSETCCS, VT, Custom); 401 } 402 } 403 404 if (Subtarget.hasVector()) { 405 // There should be no need to check for float types other than v2f64 406 // since <2 x f32> isn't a legal type. 407 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 408 setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal); 409 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 410 setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal); 411 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 412 setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal); 413 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 414 setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal); 415 416 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal); 417 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2f64, Legal); 418 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal); 419 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2f64, Legal); 420 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal); 421 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2f64, Legal); 422 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal); 423 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2f64, Legal); 424 } 425 426 if (Subtarget.hasVectorEnhancements2()) { 427 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 428 setOperationAction(ISD::FP_TO_SINT, MVT::v4f32, Legal); 429 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 430 setOperationAction(ISD::FP_TO_UINT, MVT::v4f32, Legal); 431 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 432 setOperationAction(ISD::SINT_TO_FP, MVT::v4f32, Legal); 433 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 434 setOperationAction(ISD::UINT_TO_FP, MVT::v4f32, Legal); 435 436 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal); 437 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4f32, Legal); 438 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal); 439 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4f32, Legal); 440 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal); 441 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4f32, Legal); 442 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal); 443 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4f32, Legal); 444 } 445 446 // Handle floating-point types. 447 for (unsigned I = MVT::FIRST_FP_VALUETYPE; 448 I <= MVT::LAST_FP_VALUETYPE; 449 ++I) { 450 MVT VT = MVT::SimpleValueType(I); 451 if (isTypeLegal(VT)) { 452 // We can use FI for FRINT. 453 setOperationAction(ISD::FRINT, VT, Legal); 454 455 // We can use the extended form of FI for other rounding operations. 456 if (Subtarget.hasFPExtension()) { 457 setOperationAction(ISD::FNEARBYINT, VT, Legal); 458 setOperationAction(ISD::FFLOOR, VT, Legal); 459 setOperationAction(ISD::FCEIL, VT, Legal); 460 setOperationAction(ISD::FTRUNC, VT, Legal); 461 setOperationAction(ISD::FROUND, VT, Legal); 462 } 463 464 // No special instructions for these. 465 setOperationAction(ISD::FSIN, VT, Expand); 466 setOperationAction(ISD::FCOS, VT, Expand); 467 setOperationAction(ISD::FSINCOS, VT, Expand); 468 setOperationAction(ISD::FREM, VT, Expand); 469 setOperationAction(ISD::FPOW, VT, Expand); 470 471 // Handle constrained floating-point operations. 472 setOperationAction(ISD::STRICT_FADD, VT, Legal); 473 setOperationAction(ISD::STRICT_FSUB, VT, Legal); 474 setOperationAction(ISD::STRICT_FMUL, VT, Legal); 475 setOperationAction(ISD::STRICT_FDIV, VT, Legal); 476 setOperationAction(ISD::STRICT_FMA, VT, Legal); 477 setOperationAction(ISD::STRICT_FSQRT, VT, Legal); 478 setOperationAction(ISD::STRICT_FRINT, VT, Legal); 479 setOperationAction(ISD::STRICT_FP_ROUND, VT, Legal); 480 setOperationAction(ISD::STRICT_FP_EXTEND, VT, Legal); 481 if (Subtarget.hasFPExtension()) { 482 setOperationAction(ISD::STRICT_FNEARBYINT, VT, Legal); 483 setOperationAction(ISD::STRICT_FFLOOR, VT, Legal); 484 setOperationAction(ISD::STRICT_FCEIL, VT, Legal); 485 setOperationAction(ISD::STRICT_FROUND, VT, Legal); 486 setOperationAction(ISD::STRICT_FTRUNC, VT, Legal); 487 } 488 } 489 } 490 491 // Handle floating-point vector types. 492 if (Subtarget.hasVector()) { 493 // Scalar-to-vector conversion is just a subreg. 494 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 495 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 496 497 // Some insertions and extractions can be done directly but others 498 // need to go via integers. 499 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 500 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); 501 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); 502 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom); 503 504 // These operations have direct equivalents. 505 setOperationAction(ISD::FADD, MVT::v2f64, Legal); 506 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 507 setOperationAction(ISD::FSUB, MVT::v2f64, Legal); 508 setOperationAction(ISD::FMUL, MVT::v2f64, Legal); 509 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 510 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 511 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 512 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 513 setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 514 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 515 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 516 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 517 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 518 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 519 520 // Handle constrained floating-point operations. 521 setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal); 522 setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal); 523 setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal); 524 setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal); 525 setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal); 526 setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal); 527 setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal); 528 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v2f64, Legal); 529 setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal); 530 setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal); 531 setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal); 532 setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal); 533 } 534 535 // The vector enhancements facility 1 has instructions for these. 536 if (Subtarget.hasVectorEnhancements1()) { 537 setOperationAction(ISD::FADD, MVT::v4f32, Legal); 538 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 539 setOperationAction(ISD::FSUB, MVT::v4f32, Legal); 540 setOperationAction(ISD::FMUL, MVT::v4f32, Legal); 541 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 542 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 543 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 544 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 545 setOperationAction(ISD::FRINT, MVT::v4f32, Legal); 546 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 547 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 548 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 549 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 550 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 551 552 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 553 setOperationAction(ISD::FMAXIMUM, MVT::f64, Legal); 554 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 555 setOperationAction(ISD::FMINIMUM, MVT::f64, Legal); 556 557 setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal); 558 setOperationAction(ISD::FMAXIMUM, MVT::v2f64, Legal); 559 setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal); 560 setOperationAction(ISD::FMINIMUM, MVT::v2f64, Legal); 561 562 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 563 setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal); 564 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 565 setOperationAction(ISD::FMINIMUM, MVT::f32, Legal); 566 567 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal); 568 setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal); 569 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal); 570 setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal); 571 572 setOperationAction(ISD::FMAXNUM, MVT::f128, Legal); 573 setOperationAction(ISD::FMAXIMUM, MVT::f128, Legal); 574 setOperationAction(ISD::FMINNUM, MVT::f128, Legal); 575 setOperationAction(ISD::FMINIMUM, MVT::f128, Legal); 576 577 // Handle constrained floating-point operations. 578 setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal); 579 setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal); 580 setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal); 581 setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal); 582 setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal); 583 setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal); 584 setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal); 585 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v4f32, Legal); 586 setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal); 587 setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal); 588 setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal); 589 setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal); 590 for (auto VT : { MVT::f32, MVT::f64, MVT::f128, 591 MVT::v4f32, MVT::v2f64 }) { 592 setOperationAction(ISD::STRICT_FMAXNUM, VT, Legal); 593 setOperationAction(ISD::STRICT_FMINNUM, VT, Legal); 594 setOperationAction(ISD::STRICT_FMAXIMUM, VT, Legal); 595 setOperationAction(ISD::STRICT_FMINIMUM, VT, Legal); 596 } 597 } 598 599 // We only have fused f128 multiply-addition on vector registers. 600 if (!Subtarget.hasVectorEnhancements1()) { 601 setOperationAction(ISD::FMA, MVT::f128, Expand); 602 setOperationAction(ISD::STRICT_FMA, MVT::f128, Expand); 603 } 604 605 // We don't have a copysign instruction on vector registers. 606 if (Subtarget.hasVectorEnhancements1()) 607 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); 608 609 // Needed so that we don't try to implement f128 constant loads using 610 // a load-and-extend of a f80 constant (in cases where the constant 611 // would fit in an f80). 612 for (MVT VT : MVT::fp_valuetypes()) 613 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand); 614 615 // We don't have extending load instruction on vector registers. 616 if (Subtarget.hasVectorEnhancements1()) { 617 setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand); 618 setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand); 619 } 620 621 // Floating-point truncation and stores need to be done separately. 622 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 623 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 624 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 625 626 // We have 64-bit FPR<->GPR moves, but need special handling for 627 // 32-bit forms. 628 if (!Subtarget.hasVector()) { 629 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 630 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 631 } 632 633 // VASTART and VACOPY need to deal with the SystemZ-specific varargs 634 // structure, but VAEND is a no-op. 635 setOperationAction(ISD::VASTART, MVT::Other, Custom); 636 setOperationAction(ISD::VACOPY, MVT::Other, Custom); 637 setOperationAction(ISD::VAEND, MVT::Other, Expand); 638 639 // Codes for which we want to perform some z-specific combinations. 640 setTargetDAGCombine(ISD::ZERO_EXTEND); 641 setTargetDAGCombine(ISD::SIGN_EXTEND); 642 setTargetDAGCombine(ISD::SIGN_EXTEND_INREG); 643 setTargetDAGCombine(ISD::LOAD); 644 setTargetDAGCombine(ISD::STORE); 645 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 646 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT); 647 setTargetDAGCombine(ISD::FP_ROUND); 648 setTargetDAGCombine(ISD::STRICT_FP_ROUND); 649 setTargetDAGCombine(ISD::FP_EXTEND); 650 setTargetDAGCombine(ISD::SINT_TO_FP); 651 setTargetDAGCombine(ISD::UINT_TO_FP); 652 setTargetDAGCombine(ISD::STRICT_FP_EXTEND); 653 setTargetDAGCombine(ISD::BSWAP); 654 setTargetDAGCombine(ISD::SDIV); 655 setTargetDAGCombine(ISD::UDIV); 656 setTargetDAGCombine(ISD::SREM); 657 setTargetDAGCombine(ISD::UREM); 658 setTargetDAGCombine(ISD::INTRINSIC_VOID); 659 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 660 661 // Handle intrinsics. 662 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 663 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 664 665 // We want to use MVC in preference to even a single load/store pair. 666 MaxStoresPerMemcpy = 0; 667 MaxStoresPerMemcpyOptSize = 0; 668 669 // The main memset sequence is a byte store followed by an MVC. 670 // Two STC or MV..I stores win over that, but the kind of fused stores 671 // generated by target-independent code don't when the byte value is 672 // variable. E.g. "STC <reg>;MHI <reg>,257;STH <reg>" is not better 673 // than "STC;MVC". Handle the choice in target-specific code instead. 674 MaxStoresPerMemset = 0; 675 MaxStoresPerMemsetOptSize = 0; 676 677 // Default to having -disable-strictnode-mutation on 678 IsStrictFPEnabled = true; 679 } 680 681 bool SystemZTargetLowering::useSoftFloat() const { 682 return Subtarget.hasSoftFloat(); 683 } 684 685 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL, 686 LLVMContext &, EVT VT) const { 687 if (!VT.isVector()) 688 return MVT::i32; 689 return VT.changeVectorElementTypeToInteger(); 690 } 691 692 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd( 693 const MachineFunction &MF, EVT VT) const { 694 VT = VT.getScalarType(); 695 696 if (!VT.isSimple()) 697 return false; 698 699 switch (VT.getSimpleVT().SimpleTy) { 700 case MVT::f32: 701 case MVT::f64: 702 return true; 703 case MVT::f128: 704 return Subtarget.hasVectorEnhancements1(); 705 default: 706 break; 707 } 708 709 return false; 710 } 711 712 // Return true if the constant can be generated with a vector instruction, 713 // such as VGM, VGMB or VREPI. 714 bool SystemZVectorConstantInfo::isVectorConstantLegal( 715 const SystemZSubtarget &Subtarget) { 716 const SystemZInstrInfo *TII = 717 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 718 if (!Subtarget.hasVector() || 719 (isFP128 && !Subtarget.hasVectorEnhancements1())) 720 return false; 721 722 // Try using VECTOR GENERATE BYTE MASK. This is the architecturally- 723 // preferred way of creating all-zero and all-one vectors so give it 724 // priority over other methods below. 725 unsigned Mask = 0; 726 unsigned I = 0; 727 for (; I < SystemZ::VectorBytes; ++I) { 728 uint64_t Byte = IntBits.lshr(I * 8).trunc(8).getZExtValue(); 729 if (Byte == 0xff) 730 Mask |= 1ULL << I; 731 else if (Byte != 0) 732 break; 733 } 734 if (I == SystemZ::VectorBytes) { 735 Opcode = SystemZISD::BYTE_MASK; 736 OpVals.push_back(Mask); 737 VecVT = MVT::getVectorVT(MVT::getIntegerVT(8), 16); 738 return true; 739 } 740 741 if (SplatBitSize > 64) 742 return false; 743 744 auto tryValue = [&](uint64_t Value) -> bool { 745 // Try VECTOR REPLICATE IMMEDIATE 746 int64_t SignedValue = SignExtend64(Value, SplatBitSize); 747 if (isInt<16>(SignedValue)) { 748 OpVals.push_back(((unsigned) SignedValue)); 749 Opcode = SystemZISD::REPLICATE; 750 VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize), 751 SystemZ::VectorBits / SplatBitSize); 752 return true; 753 } 754 // Try VECTOR GENERATE MASK 755 unsigned Start, End; 756 if (TII->isRxSBGMask(Value, SplatBitSize, Start, End)) { 757 // isRxSBGMask returns the bit numbers for a full 64-bit value, with 0 758 // denoting 1 << 63 and 63 denoting 1. Convert them to bit numbers for 759 // an SplatBitSize value, so that 0 denotes 1 << (SplatBitSize-1). 760 OpVals.push_back(Start - (64 - SplatBitSize)); 761 OpVals.push_back(End - (64 - SplatBitSize)); 762 Opcode = SystemZISD::ROTATE_MASK; 763 VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize), 764 SystemZ::VectorBits / SplatBitSize); 765 return true; 766 } 767 return false; 768 }; 769 770 // First try assuming that any undefined bits above the highest set bit 771 // and below the lowest set bit are 1s. This increases the likelihood of 772 // being able to use a sign-extended element value in VECTOR REPLICATE 773 // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK. 774 uint64_t SplatBitsZ = SplatBits.getZExtValue(); 775 uint64_t SplatUndefZ = SplatUndef.getZExtValue(); 776 uint64_t Lower = 777 (SplatUndefZ & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1)); 778 uint64_t Upper = 779 (SplatUndefZ & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1)); 780 if (tryValue(SplatBitsZ | Upper | Lower)) 781 return true; 782 783 // Now try assuming that any undefined bits between the first and 784 // last defined set bits are set. This increases the chances of 785 // using a non-wraparound mask. 786 uint64_t Middle = SplatUndefZ & ~Upper & ~Lower; 787 return tryValue(SplatBitsZ | Middle); 788 } 789 790 SystemZVectorConstantInfo::SystemZVectorConstantInfo(APFloat FPImm) { 791 IntBits = FPImm.bitcastToAPInt().zextOrSelf(128); 792 isFP128 = (&FPImm.getSemantics() == &APFloat::IEEEquad()); 793 SplatBits = FPImm.bitcastToAPInt(); 794 unsigned Width = SplatBits.getBitWidth(); 795 IntBits <<= (SystemZ::VectorBits - Width); 796 797 // Find the smallest splat. 798 while (Width > 8) { 799 unsigned HalfSize = Width / 2; 800 APInt HighValue = SplatBits.lshr(HalfSize).trunc(HalfSize); 801 APInt LowValue = SplatBits.trunc(HalfSize); 802 803 // If the two halves do not match, stop here. 804 if (HighValue != LowValue || 8 > HalfSize) 805 break; 806 807 SplatBits = HighValue; 808 Width = HalfSize; 809 } 810 SplatUndef = 0; 811 SplatBitSize = Width; 812 } 813 814 SystemZVectorConstantInfo::SystemZVectorConstantInfo(BuildVectorSDNode *BVN) { 815 assert(BVN->isConstant() && "Expected a constant BUILD_VECTOR"); 816 bool HasAnyUndefs; 817 818 // Get IntBits by finding the 128 bit splat. 819 BVN->isConstantSplat(IntBits, SplatUndef, SplatBitSize, HasAnyUndefs, 128, 820 true); 821 822 // Get SplatBits by finding the 8 bit or greater splat. 823 BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 8, 824 true); 825 } 826 827 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 828 bool ForCodeSize) const { 829 // We can load zero using LZ?R and negative zero using LZ?R;LC?BR. 830 if (Imm.isZero() || Imm.isNegZero()) 831 return true; 832 833 return SystemZVectorConstantInfo(Imm).isVectorConstantLegal(Subtarget); 834 } 835 836 /// Returns true if stack probing through inline assembly is requested. 837 bool SystemZTargetLowering::hasInlineStackProbe(MachineFunction &MF) const { 838 // If the function specifically requests inline stack probes, emit them. 839 if (MF.getFunction().hasFnAttribute("probe-stack")) 840 return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() == 841 "inline-asm"; 842 return false; 843 } 844 845 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 846 // We can use CGFI or CLGFI. 847 return isInt<32>(Imm) || isUInt<32>(Imm); 848 } 849 850 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const { 851 // We can use ALGFI or SLGFI. 852 return isUInt<32>(Imm) || isUInt<32>(-Imm); 853 } 854 855 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses( 856 EVT VT, unsigned, Align, MachineMemOperand::Flags, bool *Fast) const { 857 // Unaligned accesses should never be slower than the expanded version. 858 // We check specifically for aligned accesses in the few cases where 859 // they are required. 860 if (Fast) 861 *Fast = true; 862 return true; 863 } 864 865 // Information about the addressing mode for a memory access. 866 struct AddressingMode { 867 // True if a long displacement is supported. 868 bool LongDisplacement; 869 870 // True if use of index register is supported. 871 bool IndexReg; 872 873 AddressingMode(bool LongDispl, bool IdxReg) : 874 LongDisplacement(LongDispl), IndexReg(IdxReg) {} 875 }; 876 877 // Return the desired addressing mode for a Load which has only one use (in 878 // the same block) which is a Store. 879 static AddressingMode getLoadStoreAddrMode(bool HasVector, 880 Type *Ty) { 881 // With vector support a Load->Store combination may be combined to either 882 // an MVC or vector operations and it seems to work best to allow the 883 // vector addressing mode. 884 if (HasVector) 885 return AddressingMode(false/*LongDispl*/, true/*IdxReg*/); 886 887 // Otherwise only the MVC case is special. 888 bool MVC = Ty->isIntegerTy(8); 889 return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/); 890 } 891 892 // Return the addressing mode which seems most desirable given an LLVM 893 // Instruction pointer. 894 static AddressingMode 895 supportedAddressingMode(Instruction *I, bool HasVector) { 896 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 897 switch (II->getIntrinsicID()) { 898 default: break; 899 case Intrinsic::memset: 900 case Intrinsic::memmove: 901 case Intrinsic::memcpy: 902 return AddressingMode(false/*LongDispl*/, false/*IdxReg*/); 903 } 904 } 905 906 if (isa<LoadInst>(I) && I->hasOneUse()) { 907 auto *SingleUser = cast<Instruction>(*I->user_begin()); 908 if (SingleUser->getParent() == I->getParent()) { 909 if (isa<ICmpInst>(SingleUser)) { 910 if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1))) 911 if (C->getBitWidth() <= 64 && 912 (isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue()))) 913 // Comparison of memory with 16 bit signed / unsigned immediate 914 return AddressingMode(false/*LongDispl*/, false/*IdxReg*/); 915 } else if (isa<StoreInst>(SingleUser)) 916 // Load->Store 917 return getLoadStoreAddrMode(HasVector, I->getType()); 918 } 919 } else if (auto *StoreI = dyn_cast<StoreInst>(I)) { 920 if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand())) 921 if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent()) 922 // Load->Store 923 return getLoadStoreAddrMode(HasVector, LoadI->getType()); 924 } 925 926 if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) { 927 928 // * Use LDE instead of LE/LEY for z13 to avoid partial register 929 // dependencies (LDE only supports small offsets). 930 // * Utilize the vector registers to hold floating point 931 // values (vector load / store instructions only support small 932 // offsets). 933 934 Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() : 935 I->getOperand(0)->getType()); 936 bool IsFPAccess = MemAccessTy->isFloatingPointTy(); 937 bool IsVectorAccess = MemAccessTy->isVectorTy(); 938 939 // A store of an extracted vector element will be combined into a VSTE type 940 // instruction. 941 if (!IsVectorAccess && isa<StoreInst>(I)) { 942 Value *DataOp = I->getOperand(0); 943 if (isa<ExtractElementInst>(DataOp)) 944 IsVectorAccess = true; 945 } 946 947 // A load which gets inserted into a vector element will be combined into a 948 // VLE type instruction. 949 if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) { 950 User *LoadUser = *I->user_begin(); 951 if (isa<InsertElementInst>(LoadUser)) 952 IsVectorAccess = true; 953 } 954 955 if (IsFPAccess || IsVectorAccess) 956 return AddressingMode(false/*LongDispl*/, true/*IdxReg*/); 957 } 958 959 return AddressingMode(true/*LongDispl*/, true/*IdxReg*/); 960 } 961 962 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL, 963 const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const { 964 // Punt on globals for now, although they can be used in limited 965 // RELATIVE LONG cases. 966 if (AM.BaseGV) 967 return false; 968 969 // Require a 20-bit signed offset. 970 if (!isInt<20>(AM.BaseOffs)) 971 return false; 972 973 AddressingMode SupportedAM(true, true); 974 if (I != nullptr) 975 SupportedAM = supportedAddressingMode(I, Subtarget.hasVector()); 976 977 if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs)) 978 return false; 979 980 if (!SupportedAM.IndexReg) 981 // No indexing allowed. 982 return AM.Scale == 0; 983 else 984 // Indexing is OK but no scale factor can be applied. 985 return AM.Scale == 0 || AM.Scale == 1; 986 } 987 988 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const { 989 if (!FromType->isIntegerTy() || !ToType->isIntegerTy()) 990 return false; 991 unsigned FromBits = FromType->getPrimitiveSizeInBits().getFixedSize(); 992 unsigned ToBits = ToType->getPrimitiveSizeInBits().getFixedSize(); 993 return FromBits > ToBits; 994 } 995 996 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const { 997 if (!FromVT.isInteger() || !ToVT.isInteger()) 998 return false; 999 unsigned FromBits = FromVT.getFixedSizeInBits(); 1000 unsigned ToBits = ToVT.getFixedSizeInBits(); 1001 return FromBits > ToBits; 1002 } 1003 1004 //===----------------------------------------------------------------------===// 1005 // Inline asm support 1006 //===----------------------------------------------------------------------===// 1007 1008 TargetLowering::ConstraintType 1009 SystemZTargetLowering::getConstraintType(StringRef Constraint) const { 1010 if (Constraint.size() == 1) { 1011 switch (Constraint[0]) { 1012 case 'a': // Address register 1013 case 'd': // Data register (equivalent to 'r') 1014 case 'f': // Floating-point register 1015 case 'h': // High-part register 1016 case 'r': // General-purpose register 1017 case 'v': // Vector register 1018 return C_RegisterClass; 1019 1020 case 'Q': // Memory with base and unsigned 12-bit displacement 1021 case 'R': // Likewise, plus an index 1022 case 'S': // Memory with base and signed 20-bit displacement 1023 case 'T': // Likewise, plus an index 1024 case 'm': // Equivalent to 'T'. 1025 return C_Memory; 1026 1027 case 'I': // Unsigned 8-bit constant 1028 case 'J': // Unsigned 12-bit constant 1029 case 'K': // Signed 16-bit constant 1030 case 'L': // Signed 20-bit displacement (on all targets we support) 1031 case 'M': // 0x7fffffff 1032 return C_Immediate; 1033 1034 default: 1035 break; 1036 } 1037 } 1038 return TargetLowering::getConstraintType(Constraint); 1039 } 1040 1041 TargetLowering::ConstraintWeight SystemZTargetLowering:: 1042 getSingleConstraintMatchWeight(AsmOperandInfo &info, 1043 const char *constraint) const { 1044 ConstraintWeight weight = CW_Invalid; 1045 Value *CallOperandVal = info.CallOperandVal; 1046 // If we don't have a value, we can't do a match, 1047 // but allow it at the lowest weight. 1048 if (!CallOperandVal) 1049 return CW_Default; 1050 Type *type = CallOperandVal->getType(); 1051 // Look at the constraint type. 1052 switch (*constraint) { 1053 default: 1054 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 1055 break; 1056 1057 case 'a': // Address register 1058 case 'd': // Data register (equivalent to 'r') 1059 case 'h': // High-part register 1060 case 'r': // General-purpose register 1061 if (CallOperandVal->getType()->isIntegerTy()) 1062 weight = CW_Register; 1063 break; 1064 1065 case 'f': // Floating-point register 1066 if (type->isFloatingPointTy()) 1067 weight = CW_Register; 1068 break; 1069 1070 case 'v': // Vector register 1071 if ((type->isVectorTy() || type->isFloatingPointTy()) && 1072 Subtarget.hasVector()) 1073 weight = CW_Register; 1074 break; 1075 1076 case 'I': // Unsigned 8-bit constant 1077 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1078 if (isUInt<8>(C->getZExtValue())) 1079 weight = CW_Constant; 1080 break; 1081 1082 case 'J': // Unsigned 12-bit constant 1083 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1084 if (isUInt<12>(C->getZExtValue())) 1085 weight = CW_Constant; 1086 break; 1087 1088 case 'K': // Signed 16-bit constant 1089 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1090 if (isInt<16>(C->getSExtValue())) 1091 weight = CW_Constant; 1092 break; 1093 1094 case 'L': // Signed 20-bit displacement (on all targets we support) 1095 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1096 if (isInt<20>(C->getSExtValue())) 1097 weight = CW_Constant; 1098 break; 1099 1100 case 'M': // 0x7fffffff 1101 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1102 if (C->getZExtValue() == 0x7fffffff) 1103 weight = CW_Constant; 1104 break; 1105 } 1106 return weight; 1107 } 1108 1109 // Parse a "{tNNN}" register constraint for which the register type "t" 1110 // has already been verified. MC is the class associated with "t" and 1111 // Map maps 0-based register numbers to LLVM register numbers. 1112 static std::pair<unsigned, const TargetRegisterClass *> 1113 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC, 1114 const unsigned *Map, unsigned Size) { 1115 assert(*(Constraint.end()-1) == '}' && "Missing '}'"); 1116 if (isdigit(Constraint[2])) { 1117 unsigned Index; 1118 bool Failed = 1119 Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index); 1120 if (!Failed && Index < Size && Map[Index]) 1121 return std::make_pair(Map[Index], RC); 1122 } 1123 return std::make_pair(0U, nullptr); 1124 } 1125 1126 std::pair<unsigned, const TargetRegisterClass *> 1127 SystemZTargetLowering::getRegForInlineAsmConstraint( 1128 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 1129 if (Constraint.size() == 1) { 1130 // GCC Constraint Letters 1131 switch (Constraint[0]) { 1132 default: break; 1133 case 'd': // Data register (equivalent to 'r') 1134 case 'r': // General-purpose register 1135 if (VT == MVT::i64) 1136 return std::make_pair(0U, &SystemZ::GR64BitRegClass); 1137 else if (VT == MVT::i128) 1138 return std::make_pair(0U, &SystemZ::GR128BitRegClass); 1139 return std::make_pair(0U, &SystemZ::GR32BitRegClass); 1140 1141 case 'a': // Address register 1142 if (VT == MVT::i64) 1143 return std::make_pair(0U, &SystemZ::ADDR64BitRegClass); 1144 else if (VT == MVT::i128) 1145 return std::make_pair(0U, &SystemZ::ADDR128BitRegClass); 1146 return std::make_pair(0U, &SystemZ::ADDR32BitRegClass); 1147 1148 case 'h': // High-part register (an LLVM extension) 1149 return std::make_pair(0U, &SystemZ::GRH32BitRegClass); 1150 1151 case 'f': // Floating-point register 1152 if (!useSoftFloat()) { 1153 if (VT == MVT::f64) 1154 return std::make_pair(0U, &SystemZ::FP64BitRegClass); 1155 else if (VT == MVT::f128) 1156 return std::make_pair(0U, &SystemZ::FP128BitRegClass); 1157 return std::make_pair(0U, &SystemZ::FP32BitRegClass); 1158 } 1159 break; 1160 case 'v': // Vector register 1161 if (Subtarget.hasVector()) { 1162 if (VT == MVT::f32) 1163 return std::make_pair(0U, &SystemZ::VR32BitRegClass); 1164 if (VT == MVT::f64) 1165 return std::make_pair(0U, &SystemZ::VR64BitRegClass); 1166 return std::make_pair(0U, &SystemZ::VR128BitRegClass); 1167 } 1168 break; 1169 } 1170 } 1171 if (Constraint.size() > 0 && Constraint[0] == '{') { 1172 // We need to override the default register parsing for GPRs and FPRs 1173 // because the interpretation depends on VT. The internal names of 1174 // the registers are also different from the external names 1175 // (F0D and F0S instead of F0, etc.). 1176 if (Constraint[1] == 'r') { 1177 if (VT == MVT::i32) 1178 return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass, 1179 SystemZMC::GR32Regs, 16); 1180 if (VT == MVT::i128) 1181 return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass, 1182 SystemZMC::GR128Regs, 16); 1183 return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass, 1184 SystemZMC::GR64Regs, 16); 1185 } 1186 if (Constraint[1] == 'f') { 1187 if (useSoftFloat()) 1188 return std::make_pair( 1189 0u, static_cast<const TargetRegisterClass *>(nullptr)); 1190 if (VT == MVT::f32) 1191 return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass, 1192 SystemZMC::FP32Regs, 16); 1193 if (VT == MVT::f128) 1194 return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass, 1195 SystemZMC::FP128Regs, 16); 1196 return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass, 1197 SystemZMC::FP64Regs, 16); 1198 } 1199 if (Constraint[1] == 'v') { 1200 if (!Subtarget.hasVector()) 1201 return std::make_pair( 1202 0u, static_cast<const TargetRegisterClass *>(nullptr)); 1203 if (VT == MVT::f32) 1204 return parseRegisterNumber(Constraint, &SystemZ::VR32BitRegClass, 1205 SystemZMC::VR32Regs, 32); 1206 if (VT == MVT::f64) 1207 return parseRegisterNumber(Constraint, &SystemZ::VR64BitRegClass, 1208 SystemZMC::VR64Regs, 32); 1209 return parseRegisterNumber(Constraint, &SystemZ::VR128BitRegClass, 1210 SystemZMC::VR128Regs, 32); 1211 } 1212 } 1213 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 1214 } 1215 1216 // FIXME? Maybe this could be a TableGen attribute on some registers and 1217 // this table could be generated automatically from RegInfo. 1218 Register SystemZTargetLowering::getRegisterByName(const char *RegName, LLT VT, 1219 const MachineFunction &MF) const { 1220 1221 Register Reg = StringSwitch<Register>(RegName) 1222 .Case("r15", SystemZ::R15D) 1223 .Default(0); 1224 if (Reg) 1225 return Reg; 1226 report_fatal_error("Invalid register name global variable"); 1227 } 1228 1229 void SystemZTargetLowering:: 1230 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, 1231 std::vector<SDValue> &Ops, 1232 SelectionDAG &DAG) const { 1233 // Only support length 1 constraints for now. 1234 if (Constraint.length() == 1) { 1235 switch (Constraint[0]) { 1236 case 'I': // Unsigned 8-bit constant 1237 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1238 if (isUInt<8>(C->getZExtValue())) 1239 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 1240 Op.getValueType())); 1241 return; 1242 1243 case 'J': // Unsigned 12-bit constant 1244 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1245 if (isUInt<12>(C->getZExtValue())) 1246 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 1247 Op.getValueType())); 1248 return; 1249 1250 case 'K': // Signed 16-bit constant 1251 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1252 if (isInt<16>(C->getSExtValue())) 1253 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 1254 Op.getValueType())); 1255 return; 1256 1257 case 'L': // Signed 20-bit displacement (on all targets we support) 1258 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1259 if (isInt<20>(C->getSExtValue())) 1260 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 1261 Op.getValueType())); 1262 return; 1263 1264 case 'M': // 0x7fffffff 1265 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1266 if (C->getZExtValue() == 0x7fffffff) 1267 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 1268 Op.getValueType())); 1269 return; 1270 } 1271 } 1272 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 1273 } 1274 1275 //===----------------------------------------------------------------------===// 1276 // Calling conventions 1277 //===----------------------------------------------------------------------===// 1278 1279 #include "SystemZGenCallingConv.inc" 1280 1281 const MCPhysReg *SystemZTargetLowering::getScratchRegisters( 1282 CallingConv::ID) const { 1283 static const MCPhysReg ScratchRegs[] = { SystemZ::R0D, SystemZ::R1D, 1284 SystemZ::R14D, 0 }; 1285 return ScratchRegs; 1286 } 1287 1288 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType, 1289 Type *ToType) const { 1290 return isTruncateFree(FromType, ToType); 1291 } 1292 1293 bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 1294 return CI->isTailCall(); 1295 } 1296 1297 // We do not yet support 128-bit single-element vector types. If the user 1298 // attempts to use such types as function argument or return type, prefer 1299 // to error out instead of emitting code violating the ABI. 1300 static void VerifyVectorType(MVT VT, EVT ArgVT) { 1301 if (ArgVT.isVector() && !VT.isVector()) 1302 report_fatal_error("Unsupported vector argument or return type"); 1303 } 1304 1305 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) { 1306 for (unsigned i = 0; i < Ins.size(); ++i) 1307 VerifyVectorType(Ins[i].VT, Ins[i].ArgVT); 1308 } 1309 1310 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) { 1311 for (unsigned i = 0; i < Outs.size(); ++i) 1312 VerifyVectorType(Outs[i].VT, Outs[i].ArgVT); 1313 } 1314 1315 // Value is a value that has been passed to us in the location described by VA 1316 // (and so has type VA.getLocVT()). Convert Value to VA.getValVT(), chaining 1317 // any loads onto Chain. 1318 static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL, 1319 CCValAssign &VA, SDValue Chain, 1320 SDValue Value) { 1321 // If the argument has been promoted from a smaller type, insert an 1322 // assertion to capture this. 1323 if (VA.getLocInfo() == CCValAssign::SExt) 1324 Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value, 1325 DAG.getValueType(VA.getValVT())); 1326 else if (VA.getLocInfo() == CCValAssign::ZExt) 1327 Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value, 1328 DAG.getValueType(VA.getValVT())); 1329 1330 if (VA.isExtInLoc()) 1331 Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value); 1332 else if (VA.getLocInfo() == CCValAssign::BCvt) { 1333 // If this is a short vector argument loaded from the stack, 1334 // extend from i64 to full vector size and then bitcast. 1335 assert(VA.getLocVT() == MVT::i64); 1336 assert(VA.getValVT().isVector()); 1337 Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)}); 1338 Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value); 1339 } else 1340 assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo"); 1341 return Value; 1342 } 1343 1344 // Value is a value of type VA.getValVT() that we need to copy into 1345 // the location described by VA. Return a copy of Value converted to 1346 // VA.getValVT(). The caller is responsible for handling indirect values. 1347 static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL, 1348 CCValAssign &VA, SDValue Value) { 1349 switch (VA.getLocInfo()) { 1350 case CCValAssign::SExt: 1351 return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value); 1352 case CCValAssign::ZExt: 1353 return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value); 1354 case CCValAssign::AExt: 1355 return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value); 1356 case CCValAssign::BCvt: 1357 // If this is a short vector argument to be stored to the stack, 1358 // bitcast to v2i64 and then extract first element. 1359 assert(VA.getLocVT() == MVT::i64); 1360 assert(VA.getValVT().isVector()); 1361 Value = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Value); 1362 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value, 1363 DAG.getConstant(0, DL, MVT::i32)); 1364 case CCValAssign::Full: 1365 return Value; 1366 default: 1367 llvm_unreachable("Unhandled getLocInfo()"); 1368 } 1369 } 1370 1371 SDValue SystemZTargetLowering::LowerFormalArguments( 1372 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 1373 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 1374 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 1375 MachineFunction &MF = DAG.getMachineFunction(); 1376 MachineFrameInfo &MFI = MF.getFrameInfo(); 1377 MachineRegisterInfo &MRI = MF.getRegInfo(); 1378 SystemZMachineFunctionInfo *FuncInfo = 1379 MF.getInfo<SystemZMachineFunctionInfo>(); 1380 auto *TFL = 1381 static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering()); 1382 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 1383 1384 // Detect unsupported vector argument types. 1385 if (Subtarget.hasVector()) 1386 VerifyVectorTypes(Ins); 1387 1388 // Assign locations to all of the incoming arguments. 1389 SmallVector<CCValAssign, 16> ArgLocs; 1390 SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1391 CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ); 1392 1393 unsigned NumFixedGPRs = 0; 1394 unsigned NumFixedFPRs = 0; 1395 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1396 SDValue ArgValue; 1397 CCValAssign &VA = ArgLocs[I]; 1398 EVT LocVT = VA.getLocVT(); 1399 if (VA.isRegLoc()) { 1400 // Arguments passed in registers 1401 const TargetRegisterClass *RC; 1402 switch (LocVT.getSimpleVT().SimpleTy) { 1403 default: 1404 // Integers smaller than i64 should be promoted to i64. 1405 llvm_unreachable("Unexpected argument type"); 1406 case MVT::i32: 1407 NumFixedGPRs += 1; 1408 RC = &SystemZ::GR32BitRegClass; 1409 break; 1410 case MVT::i64: 1411 NumFixedGPRs += 1; 1412 RC = &SystemZ::GR64BitRegClass; 1413 break; 1414 case MVT::f32: 1415 NumFixedFPRs += 1; 1416 RC = &SystemZ::FP32BitRegClass; 1417 break; 1418 case MVT::f64: 1419 NumFixedFPRs += 1; 1420 RC = &SystemZ::FP64BitRegClass; 1421 break; 1422 case MVT::v16i8: 1423 case MVT::v8i16: 1424 case MVT::v4i32: 1425 case MVT::v2i64: 1426 case MVT::v4f32: 1427 case MVT::v2f64: 1428 RC = &SystemZ::VR128BitRegClass; 1429 break; 1430 } 1431 1432 Register VReg = MRI.createVirtualRegister(RC); 1433 MRI.addLiveIn(VA.getLocReg(), VReg); 1434 ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 1435 } else { 1436 assert(VA.isMemLoc() && "Argument not register or memory"); 1437 1438 // Create the frame index object for this incoming parameter. 1439 int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8, 1440 VA.getLocMemOffset(), true); 1441 1442 // Create the SelectionDAG nodes corresponding to a load 1443 // from this parameter. Unpromoted ints and floats are 1444 // passed as right-justified 8-byte values. 1445 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 1446 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 1447 FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, 1448 DAG.getIntPtrConstant(4, DL)); 1449 ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN, 1450 MachinePointerInfo::getFixedStack(MF, FI)); 1451 } 1452 1453 // Convert the value of the argument register into the value that's 1454 // being passed. 1455 if (VA.getLocInfo() == CCValAssign::Indirect) { 1456 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 1457 MachinePointerInfo())); 1458 // If the original argument was split (e.g. i128), we need 1459 // to load all parts of it here (using the same address). 1460 unsigned ArgIndex = Ins[I].OrigArgIndex; 1461 assert (Ins[I].PartOffset == 0); 1462 while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) { 1463 CCValAssign &PartVA = ArgLocs[I + 1]; 1464 unsigned PartOffset = Ins[I + 1].PartOffset; 1465 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, 1466 DAG.getIntPtrConstant(PartOffset, DL)); 1467 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 1468 MachinePointerInfo())); 1469 ++I; 1470 } 1471 } else 1472 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue)); 1473 } 1474 1475 if (IsVarArg) { 1476 // Save the number of non-varargs registers for later use by va_start, etc. 1477 FuncInfo->setVarArgsFirstGPR(NumFixedGPRs); 1478 FuncInfo->setVarArgsFirstFPR(NumFixedFPRs); 1479 1480 // Likewise the address (in the form of a frame index) of where the 1481 // first stack vararg would be. The 1-byte size here is arbitrary. 1482 int64_t StackSize = CCInfo.getNextStackOffset(); 1483 FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true)); 1484 1485 // ...and a similar frame index for the caller-allocated save area 1486 // that will be used to store the incoming registers. 1487 int64_t RegSaveOffset = 1488 -SystemZMC::ELFCallFrameSize + TFL->getRegSpillOffset(MF, SystemZ::R2D) - 16; 1489 unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true); 1490 FuncInfo->setRegSaveFrameIndex(RegSaveIndex); 1491 1492 // Store the FPR varargs in the reserved frame slots. (We store the 1493 // GPRs as part of the prologue.) 1494 if (NumFixedFPRs < SystemZ::ELFNumArgFPRs && !useSoftFloat()) { 1495 SDValue MemOps[SystemZ::ELFNumArgFPRs]; 1496 for (unsigned I = NumFixedFPRs; I < SystemZ::ELFNumArgFPRs; ++I) { 1497 unsigned Offset = TFL->getRegSpillOffset(MF, SystemZ::ELFArgFPRs[I]); 1498 int FI = 1499 MFI.CreateFixedObject(8, -SystemZMC::ELFCallFrameSize + Offset, true); 1500 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 1501 unsigned VReg = MF.addLiveIn(SystemZ::ELFArgFPRs[I], 1502 &SystemZ::FP64BitRegClass); 1503 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64); 1504 MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN, 1505 MachinePointerInfo::getFixedStack(MF, FI)); 1506 } 1507 // Join the stores, which are independent of one another. 1508 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 1509 makeArrayRef(&MemOps[NumFixedFPRs], 1510 SystemZ::ELFNumArgFPRs-NumFixedFPRs)); 1511 } 1512 } 1513 1514 return Chain; 1515 } 1516 1517 static bool canUseSiblingCall(const CCState &ArgCCInfo, 1518 SmallVectorImpl<CCValAssign> &ArgLocs, 1519 SmallVectorImpl<ISD::OutputArg> &Outs) { 1520 // Punt if there are any indirect or stack arguments, or if the call 1521 // needs the callee-saved argument register R6, or if the call uses 1522 // the callee-saved register arguments SwiftSelf and SwiftError. 1523 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1524 CCValAssign &VA = ArgLocs[I]; 1525 if (VA.getLocInfo() == CCValAssign::Indirect) 1526 return false; 1527 if (!VA.isRegLoc()) 1528 return false; 1529 Register Reg = VA.getLocReg(); 1530 if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D) 1531 return false; 1532 if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError()) 1533 return false; 1534 } 1535 return true; 1536 } 1537 1538 SDValue 1539 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI, 1540 SmallVectorImpl<SDValue> &InVals) const { 1541 SelectionDAG &DAG = CLI.DAG; 1542 SDLoc &DL = CLI.DL; 1543 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 1544 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 1545 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 1546 SDValue Chain = CLI.Chain; 1547 SDValue Callee = CLI.Callee; 1548 bool &IsTailCall = CLI.IsTailCall; 1549 CallingConv::ID CallConv = CLI.CallConv; 1550 bool IsVarArg = CLI.IsVarArg; 1551 MachineFunction &MF = DAG.getMachineFunction(); 1552 EVT PtrVT = getPointerTy(MF.getDataLayout()); 1553 LLVMContext &Ctx = *DAG.getContext(); 1554 1555 // Detect unsupported vector argument and return types. 1556 if (Subtarget.hasVector()) { 1557 VerifyVectorTypes(Outs); 1558 VerifyVectorTypes(Ins); 1559 } 1560 1561 // Analyze the operands of the call, assigning locations to each operand. 1562 SmallVector<CCValAssign, 16> ArgLocs; 1563 SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, Ctx); 1564 ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ); 1565 1566 // We don't support GuaranteedTailCallOpt, only automatically-detected 1567 // sibling calls. 1568 if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs)) 1569 IsTailCall = false; 1570 1571 // Get a count of how many bytes are to be pushed on the stack. 1572 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 1573 1574 // Mark the start of the call. 1575 if (!IsTailCall) 1576 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL); 1577 1578 // Copy argument values to their designated locations. 1579 SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass; 1580 SmallVector<SDValue, 8> MemOpChains; 1581 SDValue StackPtr; 1582 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1583 CCValAssign &VA = ArgLocs[I]; 1584 SDValue ArgValue = OutVals[I]; 1585 1586 if (VA.getLocInfo() == CCValAssign::Indirect) { 1587 // Store the argument in a stack slot and pass its address. 1588 unsigned ArgIndex = Outs[I].OrigArgIndex; 1589 EVT SlotVT; 1590 if (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) { 1591 // Allocate the full stack space for a promoted (and split) argument. 1592 Type *OrigArgType = CLI.Args[Outs[I].OrigArgIndex].Ty; 1593 EVT OrigArgVT = getValueType(MF.getDataLayout(), OrigArgType); 1594 MVT PartVT = getRegisterTypeForCallingConv(Ctx, CLI.CallConv, OrigArgVT); 1595 unsigned N = getNumRegistersForCallingConv(Ctx, CLI.CallConv, OrigArgVT); 1596 SlotVT = EVT::getIntegerVT(Ctx, PartVT.getSizeInBits() * N); 1597 } else { 1598 SlotVT = Outs[I].ArgVT; 1599 } 1600 SDValue SpillSlot = DAG.CreateStackTemporary(SlotVT); 1601 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 1602 MemOpChains.push_back( 1603 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 1604 MachinePointerInfo::getFixedStack(MF, FI))); 1605 // If the original argument was split (e.g. i128), we need 1606 // to store all parts of it here (and pass just one address). 1607 assert (Outs[I].PartOffset == 0); 1608 while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) { 1609 SDValue PartValue = OutVals[I + 1]; 1610 unsigned PartOffset = Outs[I + 1].PartOffset; 1611 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, 1612 DAG.getIntPtrConstant(PartOffset, DL)); 1613 MemOpChains.push_back( 1614 DAG.getStore(Chain, DL, PartValue, Address, 1615 MachinePointerInfo::getFixedStack(MF, FI))); 1616 assert((PartOffset + PartValue.getValueType().getStoreSize() <= 1617 SlotVT.getStoreSize()) && "Not enough space for argument part!"); 1618 ++I; 1619 } 1620 ArgValue = SpillSlot; 1621 } else 1622 ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue); 1623 1624 if (VA.isRegLoc()) 1625 // Queue up the argument copies and emit them at the end. 1626 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 1627 else { 1628 assert(VA.isMemLoc() && "Argument not register or memory"); 1629 1630 // Work out the address of the stack slot. Unpromoted ints and 1631 // floats are passed as right-justified 8-byte values. 1632 if (!StackPtr.getNode()) 1633 StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT); 1634 unsigned Offset = SystemZMC::ELFCallFrameSize + VA.getLocMemOffset(); 1635 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 1636 Offset += 4; 1637 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 1638 DAG.getIntPtrConstant(Offset, DL)); 1639 1640 // Emit the store. 1641 MemOpChains.push_back( 1642 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 1643 } 1644 } 1645 1646 // Join the stores, which are independent of one another. 1647 if (!MemOpChains.empty()) 1648 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 1649 1650 // Accept direct calls by converting symbolic call addresses to the 1651 // associated Target* opcodes. Force %r1 to be used for indirect 1652 // tail calls. 1653 SDValue Glue; 1654 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 1655 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT); 1656 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1657 } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) { 1658 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT); 1659 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1660 } else if (IsTailCall) { 1661 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue); 1662 Glue = Chain.getValue(1); 1663 Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType()); 1664 } 1665 1666 // Build a sequence of copy-to-reg nodes, chained and glued together. 1667 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) { 1668 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first, 1669 RegsToPass[I].second, Glue); 1670 Glue = Chain.getValue(1); 1671 } 1672 1673 // The first call operand is the chain and the second is the target address. 1674 SmallVector<SDValue, 8> Ops; 1675 Ops.push_back(Chain); 1676 Ops.push_back(Callee); 1677 1678 // Add argument registers to the end of the list so that they are 1679 // known live into the call. 1680 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) 1681 Ops.push_back(DAG.getRegister(RegsToPass[I].first, 1682 RegsToPass[I].second.getValueType())); 1683 1684 // Add a register mask operand representing the call-preserved registers. 1685 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 1686 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 1687 assert(Mask && "Missing call preserved mask for calling convention"); 1688 Ops.push_back(DAG.getRegisterMask(Mask)); 1689 1690 // Glue the call to the argument copies, if any. 1691 if (Glue.getNode()) 1692 Ops.push_back(Glue); 1693 1694 // Emit the call. 1695 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1696 if (IsTailCall) 1697 return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops); 1698 Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops); 1699 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 1700 Glue = Chain.getValue(1); 1701 1702 // Mark the end of the call, which is glued to the call itself. 1703 Chain = DAG.getCALLSEQ_END(Chain, 1704 DAG.getConstant(NumBytes, DL, PtrVT, true), 1705 DAG.getConstant(0, DL, PtrVT, true), 1706 Glue, DL); 1707 Glue = Chain.getValue(1); 1708 1709 // Assign locations to each value returned by this call. 1710 SmallVector<CCValAssign, 16> RetLocs; 1711 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, Ctx); 1712 RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ); 1713 1714 // Copy all of the result registers out of their specified physreg. 1715 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1716 CCValAssign &VA = RetLocs[I]; 1717 1718 // Copy the value out, gluing the copy to the end of the call sequence. 1719 SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), 1720 VA.getLocVT(), Glue); 1721 Chain = RetValue.getValue(1); 1722 Glue = RetValue.getValue(2); 1723 1724 // Convert the value of the return register into the value that's 1725 // being returned. 1726 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue)); 1727 } 1728 1729 return Chain; 1730 } 1731 1732 bool SystemZTargetLowering:: 1733 CanLowerReturn(CallingConv::ID CallConv, 1734 MachineFunction &MF, bool isVarArg, 1735 const SmallVectorImpl<ISD::OutputArg> &Outs, 1736 LLVMContext &Context) const { 1737 // Detect unsupported vector return types. 1738 if (Subtarget.hasVector()) 1739 VerifyVectorTypes(Outs); 1740 1741 // Special case that we cannot easily detect in RetCC_SystemZ since 1742 // i128 is not a legal type. 1743 for (auto &Out : Outs) 1744 if (Out.ArgVT == MVT::i128) 1745 return false; 1746 1747 SmallVector<CCValAssign, 16> RetLocs; 1748 CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context); 1749 return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ); 1750 } 1751 1752 SDValue 1753 SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 1754 bool IsVarArg, 1755 const SmallVectorImpl<ISD::OutputArg> &Outs, 1756 const SmallVectorImpl<SDValue> &OutVals, 1757 const SDLoc &DL, SelectionDAG &DAG) const { 1758 MachineFunction &MF = DAG.getMachineFunction(); 1759 1760 // Detect unsupported vector return types. 1761 if (Subtarget.hasVector()) 1762 VerifyVectorTypes(Outs); 1763 1764 // Assign locations to each returned value. 1765 SmallVector<CCValAssign, 16> RetLocs; 1766 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 1767 RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ); 1768 1769 // Quick exit for void returns 1770 if (RetLocs.empty()) 1771 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain); 1772 1773 if (CallConv == CallingConv::GHC) 1774 report_fatal_error("GHC functions return void only"); 1775 1776 // Copy the result values into the output registers. 1777 SDValue Glue; 1778 SmallVector<SDValue, 4> RetOps; 1779 RetOps.push_back(Chain); 1780 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1781 CCValAssign &VA = RetLocs[I]; 1782 SDValue RetValue = OutVals[I]; 1783 1784 // Make the return register live on exit. 1785 assert(VA.isRegLoc() && "Can only return in registers!"); 1786 1787 // Promote the value as required. 1788 RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue); 1789 1790 // Chain and glue the copies together. 1791 Register Reg = VA.getLocReg(); 1792 Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue); 1793 Glue = Chain.getValue(1); 1794 RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT())); 1795 } 1796 1797 // Update chain and glue. 1798 RetOps[0] = Chain; 1799 if (Glue.getNode()) 1800 RetOps.push_back(Glue); 1801 1802 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps); 1803 } 1804 1805 // Return true if Op is an intrinsic node with chain that returns the CC value 1806 // as its only (other) argument. Provide the associated SystemZISD opcode and 1807 // the mask of valid CC values if so. 1808 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode, 1809 unsigned &CCValid) { 1810 unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1811 switch (Id) { 1812 case Intrinsic::s390_tbegin: 1813 Opcode = SystemZISD::TBEGIN; 1814 CCValid = SystemZ::CCMASK_TBEGIN; 1815 return true; 1816 1817 case Intrinsic::s390_tbegin_nofloat: 1818 Opcode = SystemZISD::TBEGIN_NOFLOAT; 1819 CCValid = SystemZ::CCMASK_TBEGIN; 1820 return true; 1821 1822 case Intrinsic::s390_tend: 1823 Opcode = SystemZISD::TEND; 1824 CCValid = SystemZ::CCMASK_TEND; 1825 return true; 1826 1827 default: 1828 return false; 1829 } 1830 } 1831 1832 // Return true if Op is an intrinsic node without chain that returns the 1833 // CC value as its final argument. Provide the associated SystemZISD 1834 // opcode and the mask of valid CC values if so. 1835 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) { 1836 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1837 switch (Id) { 1838 case Intrinsic::s390_vpkshs: 1839 case Intrinsic::s390_vpksfs: 1840 case Intrinsic::s390_vpksgs: 1841 Opcode = SystemZISD::PACKS_CC; 1842 CCValid = SystemZ::CCMASK_VCMP; 1843 return true; 1844 1845 case Intrinsic::s390_vpklshs: 1846 case Intrinsic::s390_vpklsfs: 1847 case Intrinsic::s390_vpklsgs: 1848 Opcode = SystemZISD::PACKLS_CC; 1849 CCValid = SystemZ::CCMASK_VCMP; 1850 return true; 1851 1852 case Intrinsic::s390_vceqbs: 1853 case Intrinsic::s390_vceqhs: 1854 case Intrinsic::s390_vceqfs: 1855 case Intrinsic::s390_vceqgs: 1856 Opcode = SystemZISD::VICMPES; 1857 CCValid = SystemZ::CCMASK_VCMP; 1858 return true; 1859 1860 case Intrinsic::s390_vchbs: 1861 case Intrinsic::s390_vchhs: 1862 case Intrinsic::s390_vchfs: 1863 case Intrinsic::s390_vchgs: 1864 Opcode = SystemZISD::VICMPHS; 1865 CCValid = SystemZ::CCMASK_VCMP; 1866 return true; 1867 1868 case Intrinsic::s390_vchlbs: 1869 case Intrinsic::s390_vchlhs: 1870 case Intrinsic::s390_vchlfs: 1871 case Intrinsic::s390_vchlgs: 1872 Opcode = SystemZISD::VICMPHLS; 1873 CCValid = SystemZ::CCMASK_VCMP; 1874 return true; 1875 1876 case Intrinsic::s390_vtm: 1877 Opcode = SystemZISD::VTM; 1878 CCValid = SystemZ::CCMASK_VCMP; 1879 return true; 1880 1881 case Intrinsic::s390_vfaebs: 1882 case Intrinsic::s390_vfaehs: 1883 case Intrinsic::s390_vfaefs: 1884 Opcode = SystemZISD::VFAE_CC; 1885 CCValid = SystemZ::CCMASK_ANY; 1886 return true; 1887 1888 case Intrinsic::s390_vfaezbs: 1889 case Intrinsic::s390_vfaezhs: 1890 case Intrinsic::s390_vfaezfs: 1891 Opcode = SystemZISD::VFAEZ_CC; 1892 CCValid = SystemZ::CCMASK_ANY; 1893 return true; 1894 1895 case Intrinsic::s390_vfeebs: 1896 case Intrinsic::s390_vfeehs: 1897 case Intrinsic::s390_vfeefs: 1898 Opcode = SystemZISD::VFEE_CC; 1899 CCValid = SystemZ::CCMASK_ANY; 1900 return true; 1901 1902 case Intrinsic::s390_vfeezbs: 1903 case Intrinsic::s390_vfeezhs: 1904 case Intrinsic::s390_vfeezfs: 1905 Opcode = SystemZISD::VFEEZ_CC; 1906 CCValid = SystemZ::CCMASK_ANY; 1907 return true; 1908 1909 case Intrinsic::s390_vfenebs: 1910 case Intrinsic::s390_vfenehs: 1911 case Intrinsic::s390_vfenefs: 1912 Opcode = SystemZISD::VFENE_CC; 1913 CCValid = SystemZ::CCMASK_ANY; 1914 return true; 1915 1916 case Intrinsic::s390_vfenezbs: 1917 case Intrinsic::s390_vfenezhs: 1918 case Intrinsic::s390_vfenezfs: 1919 Opcode = SystemZISD::VFENEZ_CC; 1920 CCValid = SystemZ::CCMASK_ANY; 1921 return true; 1922 1923 case Intrinsic::s390_vistrbs: 1924 case Intrinsic::s390_vistrhs: 1925 case Intrinsic::s390_vistrfs: 1926 Opcode = SystemZISD::VISTR_CC; 1927 CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3; 1928 return true; 1929 1930 case Intrinsic::s390_vstrcbs: 1931 case Intrinsic::s390_vstrchs: 1932 case Intrinsic::s390_vstrcfs: 1933 Opcode = SystemZISD::VSTRC_CC; 1934 CCValid = SystemZ::CCMASK_ANY; 1935 return true; 1936 1937 case Intrinsic::s390_vstrczbs: 1938 case Intrinsic::s390_vstrczhs: 1939 case Intrinsic::s390_vstrczfs: 1940 Opcode = SystemZISD::VSTRCZ_CC; 1941 CCValid = SystemZ::CCMASK_ANY; 1942 return true; 1943 1944 case Intrinsic::s390_vstrsb: 1945 case Intrinsic::s390_vstrsh: 1946 case Intrinsic::s390_vstrsf: 1947 Opcode = SystemZISD::VSTRS_CC; 1948 CCValid = SystemZ::CCMASK_ANY; 1949 return true; 1950 1951 case Intrinsic::s390_vstrszb: 1952 case Intrinsic::s390_vstrszh: 1953 case Intrinsic::s390_vstrszf: 1954 Opcode = SystemZISD::VSTRSZ_CC; 1955 CCValid = SystemZ::CCMASK_ANY; 1956 return true; 1957 1958 case Intrinsic::s390_vfcedbs: 1959 case Intrinsic::s390_vfcesbs: 1960 Opcode = SystemZISD::VFCMPES; 1961 CCValid = SystemZ::CCMASK_VCMP; 1962 return true; 1963 1964 case Intrinsic::s390_vfchdbs: 1965 case Intrinsic::s390_vfchsbs: 1966 Opcode = SystemZISD::VFCMPHS; 1967 CCValid = SystemZ::CCMASK_VCMP; 1968 return true; 1969 1970 case Intrinsic::s390_vfchedbs: 1971 case Intrinsic::s390_vfchesbs: 1972 Opcode = SystemZISD::VFCMPHES; 1973 CCValid = SystemZ::CCMASK_VCMP; 1974 return true; 1975 1976 case Intrinsic::s390_vftcidb: 1977 case Intrinsic::s390_vftcisb: 1978 Opcode = SystemZISD::VFTCI; 1979 CCValid = SystemZ::CCMASK_VCMP; 1980 return true; 1981 1982 case Intrinsic::s390_tdc: 1983 Opcode = SystemZISD::TDC; 1984 CCValid = SystemZ::CCMASK_TDC; 1985 return true; 1986 1987 default: 1988 return false; 1989 } 1990 } 1991 1992 // Emit an intrinsic with chain and an explicit CC register result. 1993 static SDNode *emitIntrinsicWithCCAndChain(SelectionDAG &DAG, SDValue Op, 1994 unsigned Opcode) { 1995 // Copy all operands except the intrinsic ID. 1996 unsigned NumOps = Op.getNumOperands(); 1997 SmallVector<SDValue, 6> Ops; 1998 Ops.reserve(NumOps - 1); 1999 Ops.push_back(Op.getOperand(0)); 2000 for (unsigned I = 2; I < NumOps; ++I) 2001 Ops.push_back(Op.getOperand(I)); 2002 2003 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 2004 SDVTList RawVTs = DAG.getVTList(MVT::i32, MVT::Other); 2005 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops); 2006 SDValue OldChain = SDValue(Op.getNode(), 1); 2007 SDValue NewChain = SDValue(Intr.getNode(), 1); 2008 DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain); 2009 return Intr.getNode(); 2010 } 2011 2012 // Emit an intrinsic with an explicit CC register result. 2013 static SDNode *emitIntrinsicWithCC(SelectionDAG &DAG, SDValue Op, 2014 unsigned Opcode) { 2015 // Copy all operands except the intrinsic ID. 2016 unsigned NumOps = Op.getNumOperands(); 2017 SmallVector<SDValue, 6> Ops; 2018 Ops.reserve(NumOps - 1); 2019 for (unsigned I = 1; I < NumOps; ++I) 2020 Ops.push_back(Op.getOperand(I)); 2021 2022 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), Op->getVTList(), Ops); 2023 return Intr.getNode(); 2024 } 2025 2026 // CC is a comparison that will be implemented using an integer or 2027 // floating-point comparison. Return the condition code mask for 2028 // a branch on true. In the integer case, CCMASK_CMP_UO is set for 2029 // unsigned comparisons and clear for signed ones. In the floating-point 2030 // case, CCMASK_CMP_UO has its normal mask meaning (unordered). 2031 static unsigned CCMaskForCondCode(ISD::CondCode CC) { 2032 #define CONV(X) \ 2033 case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \ 2034 case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \ 2035 case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X 2036 2037 switch (CC) { 2038 default: 2039 llvm_unreachable("Invalid integer condition!"); 2040 2041 CONV(EQ); 2042 CONV(NE); 2043 CONV(GT); 2044 CONV(GE); 2045 CONV(LT); 2046 CONV(LE); 2047 2048 case ISD::SETO: return SystemZ::CCMASK_CMP_O; 2049 case ISD::SETUO: return SystemZ::CCMASK_CMP_UO; 2050 } 2051 #undef CONV 2052 } 2053 2054 // If C can be converted to a comparison against zero, adjust the operands 2055 // as necessary. 2056 static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { 2057 if (C.ICmpType == SystemZICMP::UnsignedOnly) 2058 return; 2059 2060 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode()); 2061 if (!ConstOp1) 2062 return; 2063 2064 int64_t Value = ConstOp1->getSExtValue(); 2065 if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) || 2066 (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) || 2067 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) || 2068 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) { 2069 C.CCMask ^= SystemZ::CCMASK_CMP_EQ; 2070 C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType()); 2071 } 2072 } 2073 2074 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI, 2075 // adjust the operands as necessary. 2076 static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL, 2077 Comparison &C) { 2078 // For us to make any changes, it must a comparison between a single-use 2079 // load and a constant. 2080 if (!C.Op0.hasOneUse() || 2081 C.Op0.getOpcode() != ISD::LOAD || 2082 C.Op1.getOpcode() != ISD::Constant) 2083 return; 2084 2085 // We must have an 8- or 16-bit load. 2086 auto *Load = cast<LoadSDNode>(C.Op0); 2087 unsigned NumBits = Load->getMemoryVT().getSizeInBits(); 2088 if ((NumBits != 8 && NumBits != 16) || 2089 NumBits != Load->getMemoryVT().getStoreSizeInBits()) 2090 return; 2091 2092 // The load must be an extending one and the constant must be within the 2093 // range of the unextended value. 2094 auto *ConstOp1 = cast<ConstantSDNode>(C.Op1); 2095 uint64_t Value = ConstOp1->getZExtValue(); 2096 uint64_t Mask = (1 << NumBits) - 1; 2097 if (Load->getExtensionType() == ISD::SEXTLOAD) { 2098 // Make sure that ConstOp1 is in range of C.Op0. 2099 int64_t SignedValue = ConstOp1->getSExtValue(); 2100 if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask) 2101 return; 2102 if (C.ICmpType != SystemZICMP::SignedOnly) { 2103 // Unsigned comparison between two sign-extended values is equivalent 2104 // to unsigned comparison between two zero-extended values. 2105 Value &= Mask; 2106 } else if (NumBits == 8) { 2107 // Try to treat the comparison as unsigned, so that we can use CLI. 2108 // Adjust CCMask and Value as necessary. 2109 if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT) 2110 // Test whether the high bit of the byte is set. 2111 Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT; 2112 else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE) 2113 // Test whether the high bit of the byte is clear. 2114 Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT; 2115 else 2116 // No instruction exists for this combination. 2117 return; 2118 C.ICmpType = SystemZICMP::UnsignedOnly; 2119 } 2120 } else if (Load->getExtensionType() == ISD::ZEXTLOAD) { 2121 if (Value > Mask) 2122 return; 2123 // If the constant is in range, we can use any comparison. 2124 C.ICmpType = SystemZICMP::Any; 2125 } else 2126 return; 2127 2128 // Make sure that the first operand is an i32 of the right extension type. 2129 ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ? 2130 ISD::SEXTLOAD : 2131 ISD::ZEXTLOAD); 2132 if (C.Op0.getValueType() != MVT::i32 || 2133 Load->getExtensionType() != ExtType) { 2134 C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(), 2135 Load->getBasePtr(), Load->getPointerInfo(), 2136 Load->getMemoryVT(), Load->getAlignment(), 2137 Load->getMemOperand()->getFlags()); 2138 // Update the chain uses. 2139 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), C.Op0.getValue(1)); 2140 } 2141 2142 // Make sure that the second operand is an i32 with the right value. 2143 if (C.Op1.getValueType() != MVT::i32 || 2144 Value != ConstOp1->getZExtValue()) 2145 C.Op1 = DAG.getConstant(Value, DL, MVT::i32); 2146 } 2147 2148 // Return true if Op is either an unextended load, or a load suitable 2149 // for integer register-memory comparisons of type ICmpType. 2150 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) { 2151 auto *Load = dyn_cast<LoadSDNode>(Op.getNode()); 2152 if (Load) { 2153 // There are no instructions to compare a register with a memory byte. 2154 if (Load->getMemoryVT() == MVT::i8) 2155 return false; 2156 // Otherwise decide on extension type. 2157 switch (Load->getExtensionType()) { 2158 case ISD::NON_EXTLOAD: 2159 return true; 2160 case ISD::SEXTLOAD: 2161 return ICmpType != SystemZICMP::UnsignedOnly; 2162 case ISD::ZEXTLOAD: 2163 return ICmpType != SystemZICMP::SignedOnly; 2164 default: 2165 break; 2166 } 2167 } 2168 return false; 2169 } 2170 2171 // Return true if it is better to swap the operands of C. 2172 static bool shouldSwapCmpOperands(const Comparison &C) { 2173 // Leave f128 comparisons alone, since they have no memory forms. 2174 if (C.Op0.getValueType() == MVT::f128) 2175 return false; 2176 2177 // Always keep a floating-point constant second, since comparisons with 2178 // zero can use LOAD TEST and comparisons with other constants make a 2179 // natural memory operand. 2180 if (isa<ConstantFPSDNode>(C.Op1)) 2181 return false; 2182 2183 // Never swap comparisons with zero since there are many ways to optimize 2184 // those later. 2185 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 2186 if (ConstOp1 && ConstOp1->getZExtValue() == 0) 2187 return false; 2188 2189 // Also keep natural memory operands second if the loaded value is 2190 // only used here. Several comparisons have memory forms. 2191 if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse()) 2192 return false; 2193 2194 // Look for cases where Cmp0 is a single-use load and Cmp1 isn't. 2195 // In that case we generally prefer the memory to be second. 2196 if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) { 2197 // The only exceptions are when the second operand is a constant and 2198 // we can use things like CHHSI. 2199 if (!ConstOp1) 2200 return true; 2201 // The unsigned memory-immediate instructions can handle 16-bit 2202 // unsigned integers. 2203 if (C.ICmpType != SystemZICMP::SignedOnly && 2204 isUInt<16>(ConstOp1->getZExtValue())) 2205 return false; 2206 // The signed memory-immediate instructions can handle 16-bit 2207 // signed integers. 2208 if (C.ICmpType != SystemZICMP::UnsignedOnly && 2209 isInt<16>(ConstOp1->getSExtValue())) 2210 return false; 2211 return true; 2212 } 2213 2214 // Try to promote the use of CGFR and CLGFR. 2215 unsigned Opcode0 = C.Op0.getOpcode(); 2216 if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND) 2217 return true; 2218 if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND) 2219 return true; 2220 if (C.ICmpType != SystemZICMP::SignedOnly && 2221 Opcode0 == ISD::AND && 2222 C.Op0.getOperand(1).getOpcode() == ISD::Constant && 2223 cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff) 2224 return true; 2225 2226 return false; 2227 } 2228 2229 // Check whether C tests for equality between X and Y and whether X - Y 2230 // or Y - X is also computed. In that case it's better to compare the 2231 // result of the subtraction against zero. 2232 static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL, 2233 Comparison &C) { 2234 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 2235 C.CCMask == SystemZ::CCMASK_CMP_NE) { 2236 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) { 2237 SDNode *N = *I; 2238 if (N->getOpcode() == ISD::SUB && 2239 ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) || 2240 (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) { 2241 C.Op0 = SDValue(N, 0); 2242 C.Op1 = DAG.getConstant(0, DL, N->getValueType(0)); 2243 return; 2244 } 2245 } 2246 } 2247 } 2248 2249 // Check whether C compares a floating-point value with zero and if that 2250 // floating-point value is also negated. In this case we can use the 2251 // negation to set CC, so avoiding separate LOAD AND TEST and 2252 // LOAD (NEGATIVE/COMPLEMENT) instructions. 2253 static void adjustForFNeg(Comparison &C) { 2254 // This optimization is invalid for strict comparisons, since FNEG 2255 // does not raise any exceptions. 2256 if (C.Chain) 2257 return; 2258 auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1); 2259 if (C1 && C1->isZero()) { 2260 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) { 2261 SDNode *N = *I; 2262 if (N->getOpcode() == ISD::FNEG) { 2263 C.Op0 = SDValue(N, 0); 2264 C.CCMask = SystemZ::reverseCCMask(C.CCMask); 2265 return; 2266 } 2267 } 2268 } 2269 } 2270 2271 // Check whether C compares (shl X, 32) with 0 and whether X is 2272 // also sign-extended. In that case it is better to test the result 2273 // of the sign extension using LTGFR. 2274 // 2275 // This case is important because InstCombine transforms a comparison 2276 // with (sext (trunc X)) into a comparison with (shl X, 32). 2277 static void adjustForLTGFR(Comparison &C) { 2278 // Check for a comparison between (shl X, 32) and 0. 2279 if (C.Op0.getOpcode() == ISD::SHL && 2280 C.Op0.getValueType() == MVT::i64 && 2281 C.Op1.getOpcode() == ISD::Constant && 2282 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 2283 auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); 2284 if (C1 && C1->getZExtValue() == 32) { 2285 SDValue ShlOp0 = C.Op0.getOperand(0); 2286 // See whether X has any SIGN_EXTEND_INREG uses. 2287 for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) { 2288 SDNode *N = *I; 2289 if (N->getOpcode() == ISD::SIGN_EXTEND_INREG && 2290 cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) { 2291 C.Op0 = SDValue(N, 0); 2292 return; 2293 } 2294 } 2295 } 2296 } 2297 } 2298 2299 // If C compares the truncation of an extending load, try to compare 2300 // the untruncated value instead. This exposes more opportunities to 2301 // reuse CC. 2302 static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL, 2303 Comparison &C) { 2304 if (C.Op0.getOpcode() == ISD::TRUNCATE && 2305 C.Op0.getOperand(0).getOpcode() == ISD::LOAD && 2306 C.Op1.getOpcode() == ISD::Constant && 2307 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 2308 auto *L = cast<LoadSDNode>(C.Op0.getOperand(0)); 2309 if (L->getMemoryVT().getStoreSizeInBits().getFixedSize() <= 2310 C.Op0.getValueSizeInBits().getFixedSize()) { 2311 unsigned Type = L->getExtensionType(); 2312 if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) || 2313 (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) { 2314 C.Op0 = C.Op0.getOperand(0); 2315 C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType()); 2316 } 2317 } 2318 } 2319 } 2320 2321 // Return true if shift operation N has an in-range constant shift value. 2322 // Store it in ShiftVal if so. 2323 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) { 2324 auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1)); 2325 if (!Shift) 2326 return false; 2327 2328 uint64_t Amount = Shift->getZExtValue(); 2329 if (Amount >= N.getValueSizeInBits()) 2330 return false; 2331 2332 ShiftVal = Amount; 2333 return true; 2334 } 2335 2336 // Check whether an AND with Mask is suitable for a TEST UNDER MASK 2337 // instruction and whether the CC value is descriptive enough to handle 2338 // a comparison of type Opcode between the AND result and CmpVal. 2339 // CCMask says which comparison result is being tested and BitSize is 2340 // the number of bits in the operands. If TEST UNDER MASK can be used, 2341 // return the corresponding CC mask, otherwise return 0. 2342 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask, 2343 uint64_t Mask, uint64_t CmpVal, 2344 unsigned ICmpType) { 2345 assert(Mask != 0 && "ANDs with zero should have been removed by now"); 2346 2347 // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL. 2348 if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) && 2349 !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask)) 2350 return 0; 2351 2352 // Work out the masks for the lowest and highest bits. 2353 unsigned HighShift = 63 - countLeadingZeros(Mask); 2354 uint64_t High = uint64_t(1) << HighShift; 2355 uint64_t Low = uint64_t(1) << countTrailingZeros(Mask); 2356 2357 // Signed ordered comparisons are effectively unsigned if the sign 2358 // bit is dropped. 2359 bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly); 2360 2361 // Check for equality comparisons with 0, or the equivalent. 2362 if (CmpVal == 0) { 2363 if (CCMask == SystemZ::CCMASK_CMP_EQ) 2364 return SystemZ::CCMASK_TM_ALL_0; 2365 if (CCMask == SystemZ::CCMASK_CMP_NE) 2366 return SystemZ::CCMASK_TM_SOME_1; 2367 } 2368 if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) { 2369 if (CCMask == SystemZ::CCMASK_CMP_LT) 2370 return SystemZ::CCMASK_TM_ALL_0; 2371 if (CCMask == SystemZ::CCMASK_CMP_GE) 2372 return SystemZ::CCMASK_TM_SOME_1; 2373 } 2374 if (EffectivelyUnsigned && CmpVal < Low) { 2375 if (CCMask == SystemZ::CCMASK_CMP_LE) 2376 return SystemZ::CCMASK_TM_ALL_0; 2377 if (CCMask == SystemZ::CCMASK_CMP_GT) 2378 return SystemZ::CCMASK_TM_SOME_1; 2379 } 2380 2381 // Check for equality comparisons with the mask, or the equivalent. 2382 if (CmpVal == Mask) { 2383 if (CCMask == SystemZ::CCMASK_CMP_EQ) 2384 return SystemZ::CCMASK_TM_ALL_1; 2385 if (CCMask == SystemZ::CCMASK_CMP_NE) 2386 return SystemZ::CCMASK_TM_SOME_0; 2387 } 2388 if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) { 2389 if (CCMask == SystemZ::CCMASK_CMP_GT) 2390 return SystemZ::CCMASK_TM_ALL_1; 2391 if (CCMask == SystemZ::CCMASK_CMP_LE) 2392 return SystemZ::CCMASK_TM_SOME_0; 2393 } 2394 if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) { 2395 if (CCMask == SystemZ::CCMASK_CMP_GE) 2396 return SystemZ::CCMASK_TM_ALL_1; 2397 if (CCMask == SystemZ::CCMASK_CMP_LT) 2398 return SystemZ::CCMASK_TM_SOME_0; 2399 } 2400 2401 // Check for ordered comparisons with the top bit. 2402 if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) { 2403 if (CCMask == SystemZ::CCMASK_CMP_LE) 2404 return SystemZ::CCMASK_TM_MSB_0; 2405 if (CCMask == SystemZ::CCMASK_CMP_GT) 2406 return SystemZ::CCMASK_TM_MSB_1; 2407 } 2408 if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) { 2409 if (CCMask == SystemZ::CCMASK_CMP_LT) 2410 return SystemZ::CCMASK_TM_MSB_0; 2411 if (CCMask == SystemZ::CCMASK_CMP_GE) 2412 return SystemZ::CCMASK_TM_MSB_1; 2413 } 2414 2415 // If there are just two bits, we can do equality checks for Low and High 2416 // as well. 2417 if (Mask == Low + High) { 2418 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low) 2419 return SystemZ::CCMASK_TM_MIXED_MSB_0; 2420 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low) 2421 return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY; 2422 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High) 2423 return SystemZ::CCMASK_TM_MIXED_MSB_1; 2424 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High) 2425 return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY; 2426 } 2427 2428 // Looks like we've exhausted our options. 2429 return 0; 2430 } 2431 2432 // See whether C can be implemented as a TEST UNDER MASK instruction. 2433 // Update the arguments with the TM version if so. 2434 static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL, 2435 Comparison &C) { 2436 // Check that we have a comparison with a constant. 2437 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 2438 if (!ConstOp1) 2439 return; 2440 uint64_t CmpVal = ConstOp1->getZExtValue(); 2441 2442 // Check whether the nonconstant input is an AND with a constant mask. 2443 Comparison NewC(C); 2444 uint64_t MaskVal; 2445 ConstantSDNode *Mask = nullptr; 2446 if (C.Op0.getOpcode() == ISD::AND) { 2447 NewC.Op0 = C.Op0.getOperand(0); 2448 NewC.Op1 = C.Op0.getOperand(1); 2449 Mask = dyn_cast<ConstantSDNode>(NewC.Op1); 2450 if (!Mask) 2451 return; 2452 MaskVal = Mask->getZExtValue(); 2453 } else { 2454 // There is no instruction to compare with a 64-bit immediate 2455 // so use TMHH instead if possible. We need an unsigned ordered 2456 // comparison with an i64 immediate. 2457 if (NewC.Op0.getValueType() != MVT::i64 || 2458 NewC.CCMask == SystemZ::CCMASK_CMP_EQ || 2459 NewC.CCMask == SystemZ::CCMASK_CMP_NE || 2460 NewC.ICmpType == SystemZICMP::SignedOnly) 2461 return; 2462 // Convert LE and GT comparisons into LT and GE. 2463 if (NewC.CCMask == SystemZ::CCMASK_CMP_LE || 2464 NewC.CCMask == SystemZ::CCMASK_CMP_GT) { 2465 if (CmpVal == uint64_t(-1)) 2466 return; 2467 CmpVal += 1; 2468 NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ; 2469 } 2470 // If the low N bits of Op1 are zero than the low N bits of Op0 can 2471 // be masked off without changing the result. 2472 MaskVal = -(CmpVal & -CmpVal); 2473 NewC.ICmpType = SystemZICMP::UnsignedOnly; 2474 } 2475 if (!MaskVal) 2476 return; 2477 2478 // Check whether the combination of mask, comparison value and comparison 2479 // type are suitable. 2480 unsigned BitSize = NewC.Op0.getValueSizeInBits(); 2481 unsigned NewCCMask, ShiftVal; 2482 if (NewC.ICmpType != SystemZICMP::SignedOnly && 2483 NewC.Op0.getOpcode() == ISD::SHL && 2484 isSimpleShift(NewC.Op0, ShiftVal) && 2485 (MaskVal >> ShiftVal != 0) && 2486 ((CmpVal >> ShiftVal) << ShiftVal) == CmpVal && 2487 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 2488 MaskVal >> ShiftVal, 2489 CmpVal >> ShiftVal, 2490 SystemZICMP::Any))) { 2491 NewC.Op0 = NewC.Op0.getOperand(0); 2492 MaskVal >>= ShiftVal; 2493 } else if (NewC.ICmpType != SystemZICMP::SignedOnly && 2494 NewC.Op0.getOpcode() == ISD::SRL && 2495 isSimpleShift(NewC.Op0, ShiftVal) && 2496 (MaskVal << ShiftVal != 0) && 2497 ((CmpVal << ShiftVal) >> ShiftVal) == CmpVal && 2498 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 2499 MaskVal << ShiftVal, 2500 CmpVal << ShiftVal, 2501 SystemZICMP::UnsignedOnly))) { 2502 NewC.Op0 = NewC.Op0.getOperand(0); 2503 MaskVal <<= ShiftVal; 2504 } else { 2505 NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal, 2506 NewC.ICmpType); 2507 if (!NewCCMask) 2508 return; 2509 } 2510 2511 // Go ahead and make the change. 2512 C.Opcode = SystemZISD::TM; 2513 C.Op0 = NewC.Op0; 2514 if (Mask && Mask->getZExtValue() == MaskVal) 2515 C.Op1 = SDValue(Mask, 0); 2516 else 2517 C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType()); 2518 C.CCValid = SystemZ::CCMASK_TM; 2519 C.CCMask = NewCCMask; 2520 } 2521 2522 // See whether the comparison argument contains a redundant AND 2523 // and remove it if so. This sometimes happens due to the generic 2524 // BRCOND expansion. 2525 static void adjustForRedundantAnd(SelectionDAG &DAG, const SDLoc &DL, 2526 Comparison &C) { 2527 if (C.Op0.getOpcode() != ISD::AND) 2528 return; 2529 auto *Mask = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); 2530 if (!Mask) 2531 return; 2532 KnownBits Known = DAG.computeKnownBits(C.Op0.getOperand(0)); 2533 if ((~Known.Zero).getZExtValue() & ~Mask->getZExtValue()) 2534 return; 2535 2536 C.Op0 = C.Op0.getOperand(0); 2537 } 2538 2539 // Return a Comparison that tests the condition-code result of intrinsic 2540 // node Call against constant integer CC using comparison code Cond. 2541 // Opcode is the opcode of the SystemZISD operation for the intrinsic 2542 // and CCValid is the set of possible condition-code results. 2543 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode, 2544 SDValue Call, unsigned CCValid, uint64_t CC, 2545 ISD::CondCode Cond) { 2546 Comparison C(Call, SDValue(), SDValue()); 2547 C.Opcode = Opcode; 2548 C.CCValid = CCValid; 2549 if (Cond == ISD::SETEQ) 2550 // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3. 2551 C.CCMask = CC < 4 ? 1 << (3 - CC) : 0; 2552 else if (Cond == ISD::SETNE) 2553 // ...and the inverse of that. 2554 C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1; 2555 else if (Cond == ISD::SETLT || Cond == ISD::SETULT) 2556 // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3, 2557 // always true for CC>3. 2558 C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1; 2559 else if (Cond == ISD::SETGE || Cond == ISD::SETUGE) 2560 // ...and the inverse of that. 2561 C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0; 2562 else if (Cond == ISD::SETLE || Cond == ISD::SETULE) 2563 // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true), 2564 // always true for CC>3. 2565 C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1; 2566 else if (Cond == ISD::SETGT || Cond == ISD::SETUGT) 2567 // ...and the inverse of that. 2568 C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0; 2569 else 2570 llvm_unreachable("Unexpected integer comparison type"); 2571 C.CCMask &= CCValid; 2572 return C; 2573 } 2574 2575 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1. 2576 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1, 2577 ISD::CondCode Cond, const SDLoc &DL, 2578 SDValue Chain = SDValue(), 2579 bool IsSignaling = false) { 2580 if (CmpOp1.getOpcode() == ISD::Constant) { 2581 assert(!Chain); 2582 uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue(); 2583 unsigned Opcode, CCValid; 2584 if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN && 2585 CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) && 2586 isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid)) 2587 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2588 if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 2589 CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 && 2590 isIntrinsicWithCC(CmpOp0, Opcode, CCValid)) 2591 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2592 } 2593 Comparison C(CmpOp0, CmpOp1, Chain); 2594 C.CCMask = CCMaskForCondCode(Cond); 2595 if (C.Op0.getValueType().isFloatingPoint()) { 2596 C.CCValid = SystemZ::CCMASK_FCMP; 2597 if (!C.Chain) 2598 C.Opcode = SystemZISD::FCMP; 2599 else if (!IsSignaling) 2600 C.Opcode = SystemZISD::STRICT_FCMP; 2601 else 2602 C.Opcode = SystemZISD::STRICT_FCMPS; 2603 adjustForFNeg(C); 2604 } else { 2605 assert(!C.Chain); 2606 C.CCValid = SystemZ::CCMASK_ICMP; 2607 C.Opcode = SystemZISD::ICMP; 2608 // Choose the type of comparison. Equality and inequality tests can 2609 // use either signed or unsigned comparisons. The choice also doesn't 2610 // matter if both sign bits are known to be clear. In those cases we 2611 // want to give the main isel code the freedom to choose whichever 2612 // form fits best. 2613 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 2614 C.CCMask == SystemZ::CCMASK_CMP_NE || 2615 (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1))) 2616 C.ICmpType = SystemZICMP::Any; 2617 else if (C.CCMask & SystemZ::CCMASK_CMP_UO) 2618 C.ICmpType = SystemZICMP::UnsignedOnly; 2619 else 2620 C.ICmpType = SystemZICMP::SignedOnly; 2621 C.CCMask &= ~SystemZ::CCMASK_CMP_UO; 2622 adjustForRedundantAnd(DAG, DL, C); 2623 adjustZeroCmp(DAG, DL, C); 2624 adjustSubwordCmp(DAG, DL, C); 2625 adjustForSubtraction(DAG, DL, C); 2626 adjustForLTGFR(C); 2627 adjustICmpTruncate(DAG, DL, C); 2628 } 2629 2630 if (shouldSwapCmpOperands(C)) { 2631 std::swap(C.Op0, C.Op1); 2632 C.CCMask = SystemZ::reverseCCMask(C.CCMask); 2633 } 2634 2635 adjustForTestUnderMask(DAG, DL, C); 2636 return C; 2637 } 2638 2639 // Emit the comparison instruction described by C. 2640 static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { 2641 if (!C.Op1.getNode()) { 2642 SDNode *Node; 2643 switch (C.Op0.getOpcode()) { 2644 case ISD::INTRINSIC_W_CHAIN: 2645 Node = emitIntrinsicWithCCAndChain(DAG, C.Op0, C.Opcode); 2646 return SDValue(Node, 0); 2647 case ISD::INTRINSIC_WO_CHAIN: 2648 Node = emitIntrinsicWithCC(DAG, C.Op0, C.Opcode); 2649 return SDValue(Node, Node->getNumValues() - 1); 2650 default: 2651 llvm_unreachable("Invalid comparison operands"); 2652 } 2653 } 2654 if (C.Opcode == SystemZISD::ICMP) 2655 return DAG.getNode(SystemZISD::ICMP, DL, MVT::i32, C.Op0, C.Op1, 2656 DAG.getTargetConstant(C.ICmpType, DL, MVT::i32)); 2657 if (C.Opcode == SystemZISD::TM) { 2658 bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) != 2659 bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1)); 2660 return DAG.getNode(SystemZISD::TM, DL, MVT::i32, C.Op0, C.Op1, 2661 DAG.getTargetConstant(RegisterOnly, DL, MVT::i32)); 2662 } 2663 if (C.Chain) { 2664 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other); 2665 return DAG.getNode(C.Opcode, DL, VTs, C.Chain, C.Op0, C.Op1); 2666 } 2667 return DAG.getNode(C.Opcode, DL, MVT::i32, C.Op0, C.Op1); 2668 } 2669 2670 // Implement a 32-bit *MUL_LOHI operation by extending both operands to 2671 // 64 bits. Extend is the extension type to use. Store the high part 2672 // in Hi and the low part in Lo. 2673 static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend, 2674 SDValue Op0, SDValue Op1, SDValue &Hi, 2675 SDValue &Lo) { 2676 Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0); 2677 Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1); 2678 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1); 2679 Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, 2680 DAG.getConstant(32, DL, MVT::i64)); 2681 Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi); 2682 Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul); 2683 } 2684 2685 // Lower a binary operation that produces two VT results, one in each 2686 // half of a GR128 pair. Op0 and Op1 are the VT operands to the operation, 2687 // and Opcode performs the GR128 operation. Store the even register result 2688 // in Even and the odd register result in Odd. 2689 static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 2690 unsigned Opcode, SDValue Op0, SDValue Op1, 2691 SDValue &Even, SDValue &Odd) { 2692 SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1); 2693 bool Is32Bit = is32Bit(VT); 2694 Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result); 2695 Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result); 2696 } 2697 2698 // Return an i32 value that is 1 if the CC value produced by CCReg is 2699 // in the mask CCMask and 0 otherwise. CC is known to have a value 2700 // in CCValid, so other values can be ignored. 2701 static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue CCReg, 2702 unsigned CCValid, unsigned CCMask) { 2703 SDValue Ops[] = {DAG.getConstant(1, DL, MVT::i32), 2704 DAG.getConstant(0, DL, MVT::i32), 2705 DAG.getTargetConstant(CCValid, DL, MVT::i32), 2706 DAG.getTargetConstant(CCMask, DL, MVT::i32), CCReg}; 2707 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, MVT::i32, Ops); 2708 } 2709 2710 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot 2711 // be done directly. Mode is CmpMode::Int for integer comparisons, CmpMode::FP 2712 // for regular floating-point comparisons, CmpMode::StrictFP for strict (quiet) 2713 // floating-point comparisons, and CmpMode::SignalingFP for strict signaling 2714 // floating-point comparisons. 2715 enum class CmpMode { Int, FP, StrictFP, SignalingFP }; 2716 static unsigned getVectorComparison(ISD::CondCode CC, CmpMode Mode) { 2717 switch (CC) { 2718 case ISD::SETOEQ: 2719 case ISD::SETEQ: 2720 switch (Mode) { 2721 case CmpMode::Int: return SystemZISD::VICMPE; 2722 case CmpMode::FP: return SystemZISD::VFCMPE; 2723 case CmpMode::StrictFP: return SystemZISD::STRICT_VFCMPE; 2724 case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPES; 2725 } 2726 llvm_unreachable("Bad mode"); 2727 2728 case ISD::SETOGE: 2729 case ISD::SETGE: 2730 switch (Mode) { 2731 case CmpMode::Int: return 0; 2732 case CmpMode::FP: return SystemZISD::VFCMPHE; 2733 case CmpMode::StrictFP: return SystemZISD::STRICT_VFCMPHE; 2734 case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHES; 2735 } 2736 llvm_unreachable("Bad mode"); 2737 2738 case ISD::SETOGT: 2739 case ISD::SETGT: 2740 switch (Mode) { 2741 case CmpMode::Int: return SystemZISD::VICMPH; 2742 case CmpMode::FP: return SystemZISD::VFCMPH; 2743 case CmpMode::StrictFP: return SystemZISD::STRICT_VFCMPH; 2744 case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHS; 2745 } 2746 llvm_unreachable("Bad mode"); 2747 2748 case ISD::SETUGT: 2749 switch (Mode) { 2750 case CmpMode::Int: return SystemZISD::VICMPHL; 2751 case CmpMode::FP: return 0; 2752 case CmpMode::StrictFP: return 0; 2753 case CmpMode::SignalingFP: return 0; 2754 } 2755 llvm_unreachable("Bad mode"); 2756 2757 default: 2758 return 0; 2759 } 2760 } 2761 2762 // Return the SystemZISD vector comparison operation for CC or its inverse, 2763 // or 0 if neither can be done directly. Indicate in Invert whether the 2764 // result is for the inverse of CC. Mode is as above. 2765 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, CmpMode Mode, 2766 bool &Invert) { 2767 if (unsigned Opcode = getVectorComparison(CC, Mode)) { 2768 Invert = false; 2769 return Opcode; 2770 } 2771 2772 CC = ISD::getSetCCInverse(CC, Mode == CmpMode::Int ? MVT::i32 : MVT::f32); 2773 if (unsigned Opcode = getVectorComparison(CC, Mode)) { 2774 Invert = true; 2775 return Opcode; 2776 } 2777 2778 return 0; 2779 } 2780 2781 // Return a v2f64 that contains the extended form of elements Start and Start+1 2782 // of v4f32 value Op. If Chain is nonnull, return the strict form. 2783 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL, 2784 SDValue Op, SDValue Chain) { 2785 int Mask[] = { Start, -1, Start + 1, -1 }; 2786 Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask); 2787 if (Chain) { 2788 SDVTList VTs = DAG.getVTList(MVT::v2f64, MVT::Other); 2789 return DAG.getNode(SystemZISD::STRICT_VEXTEND, DL, VTs, Chain, Op); 2790 } 2791 return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op); 2792 } 2793 2794 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode, 2795 // producing a result of type VT. If Chain is nonnull, return the strict form. 2796 SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode, 2797 const SDLoc &DL, EVT VT, 2798 SDValue CmpOp0, 2799 SDValue CmpOp1, 2800 SDValue Chain) const { 2801 // There is no hardware support for v4f32 (unless we have the vector 2802 // enhancements facility 1), so extend the vector into two v2f64s 2803 // and compare those. 2804 if (CmpOp0.getValueType() == MVT::v4f32 && 2805 !Subtarget.hasVectorEnhancements1()) { 2806 SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0, Chain); 2807 SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0, Chain); 2808 SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1, Chain); 2809 SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1, Chain); 2810 if (Chain) { 2811 SDVTList VTs = DAG.getVTList(MVT::v2i64, MVT::Other); 2812 SDValue HRes = DAG.getNode(Opcode, DL, VTs, Chain, H0, H1); 2813 SDValue LRes = DAG.getNode(Opcode, DL, VTs, Chain, L0, L1); 2814 SDValue Res = DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes); 2815 SDValue Chains[6] = { H0.getValue(1), L0.getValue(1), 2816 H1.getValue(1), L1.getValue(1), 2817 HRes.getValue(1), LRes.getValue(1) }; 2818 SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 2819 SDValue Ops[2] = { Res, NewChain }; 2820 return DAG.getMergeValues(Ops, DL); 2821 } 2822 SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1); 2823 SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1); 2824 return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes); 2825 } 2826 if (Chain) { 2827 SDVTList VTs = DAG.getVTList(VT, MVT::Other); 2828 return DAG.getNode(Opcode, DL, VTs, Chain, CmpOp0, CmpOp1); 2829 } 2830 return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1); 2831 } 2832 2833 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing 2834 // an integer mask of type VT. If Chain is nonnull, we have a strict 2835 // floating-point comparison. If in addition IsSignaling is true, we have 2836 // a strict signaling floating-point comparison. 2837 SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG, 2838 const SDLoc &DL, EVT VT, 2839 ISD::CondCode CC, 2840 SDValue CmpOp0, 2841 SDValue CmpOp1, 2842 SDValue Chain, 2843 bool IsSignaling) const { 2844 bool IsFP = CmpOp0.getValueType().isFloatingPoint(); 2845 assert (!Chain || IsFP); 2846 assert (!IsSignaling || Chain); 2847 CmpMode Mode = IsSignaling ? CmpMode::SignalingFP : 2848 Chain ? CmpMode::StrictFP : IsFP ? CmpMode::FP : CmpMode::Int; 2849 bool Invert = false; 2850 SDValue Cmp; 2851 switch (CC) { 2852 // Handle tests for order using (or (ogt y x) (oge x y)). 2853 case ISD::SETUO: 2854 Invert = true; 2855 LLVM_FALLTHROUGH; 2856 case ISD::SETO: { 2857 assert(IsFP && "Unexpected integer comparison"); 2858 SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode), 2859 DL, VT, CmpOp1, CmpOp0, Chain); 2860 SDValue GE = getVectorCmp(DAG, getVectorComparison(ISD::SETOGE, Mode), 2861 DL, VT, CmpOp0, CmpOp1, Chain); 2862 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE); 2863 if (Chain) 2864 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 2865 LT.getValue(1), GE.getValue(1)); 2866 break; 2867 } 2868 2869 // Handle <> tests using (or (ogt y x) (ogt x y)). 2870 case ISD::SETUEQ: 2871 Invert = true; 2872 LLVM_FALLTHROUGH; 2873 case ISD::SETONE: { 2874 assert(IsFP && "Unexpected integer comparison"); 2875 SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode), 2876 DL, VT, CmpOp1, CmpOp0, Chain); 2877 SDValue GT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode), 2878 DL, VT, CmpOp0, CmpOp1, Chain); 2879 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT); 2880 if (Chain) 2881 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 2882 LT.getValue(1), GT.getValue(1)); 2883 break; 2884 } 2885 2886 // Otherwise a single comparison is enough. It doesn't really 2887 // matter whether we try the inversion or the swap first, since 2888 // there are no cases where both work. 2889 default: 2890 if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert)) 2891 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1, Chain); 2892 else { 2893 CC = ISD::getSetCCSwappedOperands(CC); 2894 if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert)) 2895 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0, Chain); 2896 else 2897 llvm_unreachable("Unhandled comparison"); 2898 } 2899 if (Chain) 2900 Chain = Cmp.getValue(1); 2901 break; 2902 } 2903 if (Invert) { 2904 SDValue Mask = 2905 DAG.getSplatBuildVector(VT, DL, DAG.getConstant(-1, DL, MVT::i64)); 2906 Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask); 2907 } 2908 if (Chain && Chain.getNode() != Cmp.getNode()) { 2909 SDValue Ops[2] = { Cmp, Chain }; 2910 Cmp = DAG.getMergeValues(Ops, DL); 2911 } 2912 return Cmp; 2913 } 2914 2915 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op, 2916 SelectionDAG &DAG) const { 2917 SDValue CmpOp0 = Op.getOperand(0); 2918 SDValue CmpOp1 = Op.getOperand(1); 2919 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 2920 SDLoc DL(Op); 2921 EVT VT = Op.getValueType(); 2922 if (VT.isVector()) 2923 return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1); 2924 2925 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2926 SDValue CCReg = emitCmp(DAG, DL, C); 2927 return emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask); 2928 } 2929 2930 SDValue SystemZTargetLowering::lowerSTRICT_FSETCC(SDValue Op, 2931 SelectionDAG &DAG, 2932 bool IsSignaling) const { 2933 SDValue Chain = Op.getOperand(0); 2934 SDValue CmpOp0 = Op.getOperand(1); 2935 SDValue CmpOp1 = Op.getOperand(2); 2936 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(3))->get(); 2937 SDLoc DL(Op); 2938 EVT VT = Op.getNode()->getValueType(0); 2939 if (VT.isVector()) { 2940 SDValue Res = lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1, 2941 Chain, IsSignaling); 2942 return Res.getValue(Op.getResNo()); 2943 } 2944 2945 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL, Chain, IsSignaling)); 2946 SDValue CCReg = emitCmp(DAG, DL, C); 2947 CCReg->setFlags(Op->getFlags()); 2948 SDValue Result = emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask); 2949 SDValue Ops[2] = { Result, CCReg.getValue(1) }; 2950 return DAG.getMergeValues(Ops, DL); 2951 } 2952 2953 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const { 2954 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); 2955 SDValue CmpOp0 = Op.getOperand(2); 2956 SDValue CmpOp1 = Op.getOperand(3); 2957 SDValue Dest = Op.getOperand(4); 2958 SDLoc DL(Op); 2959 2960 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2961 SDValue CCReg = emitCmp(DAG, DL, C); 2962 return DAG.getNode( 2963 SystemZISD::BR_CCMASK, DL, Op.getValueType(), Op.getOperand(0), 2964 DAG.getTargetConstant(C.CCValid, DL, MVT::i32), 2965 DAG.getTargetConstant(C.CCMask, DL, MVT::i32), Dest, CCReg); 2966 } 2967 2968 // Return true if Pos is CmpOp and Neg is the negative of CmpOp, 2969 // allowing Pos and Neg to be wider than CmpOp. 2970 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) { 2971 return (Neg.getOpcode() == ISD::SUB && 2972 Neg.getOperand(0).getOpcode() == ISD::Constant && 2973 cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 && 2974 Neg.getOperand(1) == Pos && 2975 (Pos == CmpOp || 2976 (Pos.getOpcode() == ISD::SIGN_EXTEND && 2977 Pos.getOperand(0) == CmpOp))); 2978 } 2979 2980 // Return the absolute or negative absolute of Op; IsNegative decides which. 2981 static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op, 2982 bool IsNegative) { 2983 Op = DAG.getNode(ISD::ABS, DL, Op.getValueType(), Op); 2984 if (IsNegative) 2985 Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(), 2986 DAG.getConstant(0, DL, Op.getValueType()), Op); 2987 return Op; 2988 } 2989 2990 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op, 2991 SelectionDAG &DAG) const { 2992 SDValue CmpOp0 = Op.getOperand(0); 2993 SDValue CmpOp1 = Op.getOperand(1); 2994 SDValue TrueOp = Op.getOperand(2); 2995 SDValue FalseOp = Op.getOperand(3); 2996 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 2997 SDLoc DL(Op); 2998 2999 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 3000 3001 // Check for absolute and negative-absolute selections, including those 3002 // where the comparison value is sign-extended (for LPGFR and LNGFR). 3003 // This check supplements the one in DAGCombiner. 3004 if (C.Opcode == SystemZISD::ICMP && 3005 C.CCMask != SystemZ::CCMASK_CMP_EQ && 3006 C.CCMask != SystemZ::CCMASK_CMP_NE && 3007 C.Op1.getOpcode() == ISD::Constant && 3008 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 3009 if (isAbsolute(C.Op0, TrueOp, FalseOp)) 3010 return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT); 3011 if (isAbsolute(C.Op0, FalseOp, TrueOp)) 3012 return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT); 3013 } 3014 3015 SDValue CCReg = emitCmp(DAG, DL, C); 3016 SDValue Ops[] = {TrueOp, FalseOp, 3017 DAG.getTargetConstant(C.CCValid, DL, MVT::i32), 3018 DAG.getTargetConstant(C.CCMask, DL, MVT::i32), CCReg}; 3019 3020 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, Op.getValueType(), Ops); 3021 } 3022 3023 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node, 3024 SelectionDAG &DAG) const { 3025 SDLoc DL(Node); 3026 const GlobalValue *GV = Node->getGlobal(); 3027 int64_t Offset = Node->getOffset(); 3028 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3029 CodeModel::Model CM = DAG.getTarget().getCodeModel(); 3030 3031 SDValue Result; 3032 if (Subtarget.isPC32DBLSymbol(GV, CM)) { 3033 if (isInt<32>(Offset)) { 3034 // Assign anchors at 1<<12 byte boundaries. 3035 uint64_t Anchor = Offset & ~uint64_t(0xfff); 3036 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor); 3037 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3038 3039 // The offset can be folded into the address if it is aligned to a 3040 // halfword. 3041 Offset -= Anchor; 3042 if (Offset != 0 && (Offset & 1) == 0) { 3043 SDValue Full = 3044 DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset); 3045 Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result); 3046 Offset = 0; 3047 } 3048 } else { 3049 // Conservatively load a constant offset greater than 32 bits into a 3050 // register below. 3051 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT); 3052 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3053 } 3054 } else { 3055 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT); 3056 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3057 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result, 3058 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 3059 } 3060 3061 // If there was a non-zero offset that we didn't fold, create an explicit 3062 // addition for it. 3063 if (Offset != 0) 3064 Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result, 3065 DAG.getConstant(Offset, DL, PtrVT)); 3066 3067 return Result; 3068 } 3069 3070 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node, 3071 SelectionDAG &DAG, 3072 unsigned Opcode, 3073 SDValue GOTOffset) const { 3074 SDLoc DL(Node); 3075 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3076 SDValue Chain = DAG.getEntryNode(); 3077 SDValue Glue; 3078 3079 if (DAG.getMachineFunction().getFunction().getCallingConv() == 3080 CallingConv::GHC) 3081 report_fatal_error("In GHC calling convention TLS is not supported"); 3082 3083 // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12. 3084 SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT); 3085 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue); 3086 Glue = Chain.getValue(1); 3087 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue); 3088 Glue = Chain.getValue(1); 3089 3090 // The first call operand is the chain and the second is the TLS symbol. 3091 SmallVector<SDValue, 8> Ops; 3092 Ops.push_back(Chain); 3093 Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL, 3094 Node->getValueType(0), 3095 0, 0)); 3096 3097 // Add argument registers to the end of the list so that they are 3098 // known live into the call. 3099 Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT)); 3100 Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT)); 3101 3102 // Add a register mask operand representing the call-preserved registers. 3103 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 3104 const uint32_t *Mask = 3105 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C); 3106 assert(Mask && "Missing call preserved mask for calling convention"); 3107 Ops.push_back(DAG.getRegisterMask(Mask)); 3108 3109 // Glue the call to the argument copies. 3110 Ops.push_back(Glue); 3111 3112 // Emit the call. 3113 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 3114 Chain = DAG.getNode(Opcode, DL, NodeTys, Ops); 3115 Glue = Chain.getValue(1); 3116 3117 // Copy the return value from %r2. 3118 return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue); 3119 } 3120 3121 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL, 3122 SelectionDAG &DAG) const { 3123 SDValue Chain = DAG.getEntryNode(); 3124 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3125 3126 // The high part of the thread pointer is in access register 0. 3127 SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32); 3128 TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi); 3129 3130 // The low part of the thread pointer is in access register 1. 3131 SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32); 3132 TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo); 3133 3134 // Merge them into a single 64-bit address. 3135 SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi, 3136 DAG.getConstant(32, DL, PtrVT)); 3137 return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo); 3138 } 3139 3140 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node, 3141 SelectionDAG &DAG) const { 3142 if (DAG.getTarget().useEmulatedTLS()) 3143 return LowerToTLSEmulatedModel(Node, DAG); 3144 SDLoc DL(Node); 3145 const GlobalValue *GV = Node->getGlobal(); 3146 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3147 TLSModel::Model model = DAG.getTarget().getTLSModel(GV); 3148 3149 if (DAG.getMachineFunction().getFunction().getCallingConv() == 3150 CallingConv::GHC) 3151 report_fatal_error("In GHC calling convention TLS is not supported"); 3152 3153 SDValue TP = lowerThreadPointer(DL, DAG); 3154 3155 // Get the offset of GA from the thread pointer, based on the TLS model. 3156 SDValue Offset; 3157 switch (model) { 3158 case TLSModel::GeneralDynamic: { 3159 // Load the GOT offset of the tls_index (module ID / per-symbol offset). 3160 SystemZConstantPoolValue *CPV = 3161 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD); 3162 3163 Offset = DAG.getConstantPool(CPV, PtrVT, Align(8)); 3164 Offset = DAG.getLoad( 3165 PtrVT, DL, DAG.getEntryNode(), Offset, 3166 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3167 3168 // Call __tls_get_offset to retrieve the offset. 3169 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset); 3170 break; 3171 } 3172 3173 case TLSModel::LocalDynamic: { 3174 // Load the GOT offset of the module ID. 3175 SystemZConstantPoolValue *CPV = 3176 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM); 3177 3178 Offset = DAG.getConstantPool(CPV, PtrVT, Align(8)); 3179 Offset = DAG.getLoad( 3180 PtrVT, DL, DAG.getEntryNode(), Offset, 3181 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3182 3183 // Call __tls_get_offset to retrieve the module base offset. 3184 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset); 3185 3186 // Note: The SystemZLDCleanupPass will remove redundant computations 3187 // of the module base offset. Count total number of local-dynamic 3188 // accesses to trigger execution of that pass. 3189 SystemZMachineFunctionInfo* MFI = 3190 DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>(); 3191 MFI->incNumLocalDynamicTLSAccesses(); 3192 3193 // Add the per-symbol offset. 3194 CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF); 3195 3196 SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, Align(8)); 3197 DTPOffset = DAG.getLoad( 3198 PtrVT, DL, DAG.getEntryNode(), DTPOffset, 3199 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3200 3201 Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset); 3202 break; 3203 } 3204 3205 case TLSModel::InitialExec: { 3206 // Load the offset from the GOT. 3207 Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 3208 SystemZII::MO_INDNTPOFF); 3209 Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset); 3210 Offset = 3211 DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset, 3212 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 3213 break; 3214 } 3215 3216 case TLSModel::LocalExec: { 3217 // Force the offset into the constant pool and load it from there. 3218 SystemZConstantPoolValue *CPV = 3219 SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF); 3220 3221 Offset = DAG.getConstantPool(CPV, PtrVT, Align(8)); 3222 Offset = DAG.getLoad( 3223 PtrVT, DL, DAG.getEntryNode(), Offset, 3224 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3225 break; 3226 } 3227 } 3228 3229 // Add the base and offset together. 3230 return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset); 3231 } 3232 3233 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node, 3234 SelectionDAG &DAG) const { 3235 SDLoc DL(Node); 3236 const BlockAddress *BA = Node->getBlockAddress(); 3237 int64_t Offset = Node->getOffset(); 3238 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3239 3240 SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset); 3241 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3242 return Result; 3243 } 3244 3245 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT, 3246 SelectionDAG &DAG) const { 3247 SDLoc DL(JT); 3248 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3249 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 3250 3251 // Use LARL to load the address of the table. 3252 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3253 } 3254 3255 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP, 3256 SelectionDAG &DAG) const { 3257 SDLoc DL(CP); 3258 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3259 3260 SDValue Result; 3261 if (CP->isMachineConstantPoolEntry()) 3262 Result = 3263 DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, CP->getAlign()); 3264 else 3265 Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlign(), 3266 CP->getOffset()); 3267 3268 // Use LARL to load the address of the constant pool entry. 3269 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3270 } 3271 3272 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op, 3273 SelectionDAG &DAG) const { 3274 auto *TFL = 3275 static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering()); 3276 MachineFunction &MF = DAG.getMachineFunction(); 3277 MachineFrameInfo &MFI = MF.getFrameInfo(); 3278 MFI.setFrameAddressIsTaken(true); 3279 3280 SDLoc DL(Op); 3281 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3282 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3283 3284 // By definition, the frame address is the address of the back chain. (In 3285 // the case of packed stack without backchain, return the address where the 3286 // backchain would have been stored. This will either be an unused space or 3287 // contain a saved register). 3288 int BackChainIdx = TFL->getOrCreateFramePointerSaveIndex(MF); 3289 SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT); 3290 3291 // FIXME The frontend should detect this case. 3292 if (Depth > 0) { 3293 report_fatal_error("Unsupported stack frame traversal count"); 3294 } 3295 3296 return BackChain; 3297 } 3298 3299 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op, 3300 SelectionDAG &DAG) const { 3301 MachineFunction &MF = DAG.getMachineFunction(); 3302 MachineFrameInfo &MFI = MF.getFrameInfo(); 3303 MFI.setReturnAddressIsTaken(true); 3304 3305 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 3306 return SDValue(); 3307 3308 SDLoc DL(Op); 3309 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3310 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3311 3312 // FIXME The frontend should detect this case. 3313 if (Depth > 0) { 3314 report_fatal_error("Unsupported stack frame traversal count"); 3315 } 3316 3317 // Return R14D, which has the return address. Mark it an implicit live-in. 3318 unsigned LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass); 3319 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT); 3320 } 3321 3322 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op, 3323 SelectionDAG &DAG) const { 3324 SDLoc DL(Op); 3325 SDValue In = Op.getOperand(0); 3326 EVT InVT = In.getValueType(); 3327 EVT ResVT = Op.getValueType(); 3328 3329 // Convert loads directly. This is normally done by DAGCombiner, 3330 // but we need this case for bitcasts that are created during lowering 3331 // and which are then lowered themselves. 3332 if (auto *LoadN = dyn_cast<LoadSDNode>(In)) 3333 if (ISD::isNormalLoad(LoadN)) { 3334 SDValue NewLoad = DAG.getLoad(ResVT, DL, LoadN->getChain(), 3335 LoadN->getBasePtr(), LoadN->getMemOperand()); 3336 // Update the chain uses. 3337 DAG.ReplaceAllUsesOfValueWith(SDValue(LoadN, 1), NewLoad.getValue(1)); 3338 return NewLoad; 3339 } 3340 3341 if (InVT == MVT::i32 && ResVT == MVT::f32) { 3342 SDValue In64; 3343 if (Subtarget.hasHighWord()) { 3344 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, 3345 MVT::i64); 3346 In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 3347 MVT::i64, SDValue(U64, 0), In); 3348 } else { 3349 In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In); 3350 In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64, 3351 DAG.getConstant(32, DL, MVT::i64)); 3352 } 3353 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64); 3354 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, 3355 DL, MVT::f32, Out64); 3356 } 3357 if (InVT == MVT::f32 && ResVT == MVT::i32) { 3358 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64); 3359 SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 3360 MVT::f64, SDValue(U64, 0), In); 3361 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64); 3362 if (Subtarget.hasHighWord()) 3363 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL, 3364 MVT::i32, Out64); 3365 SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64, 3366 DAG.getConstant(32, DL, MVT::i64)); 3367 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift); 3368 } 3369 llvm_unreachable("Unexpected bitcast combination"); 3370 } 3371 3372 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op, 3373 SelectionDAG &DAG) const { 3374 MachineFunction &MF = DAG.getMachineFunction(); 3375 SystemZMachineFunctionInfo *FuncInfo = 3376 MF.getInfo<SystemZMachineFunctionInfo>(); 3377 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3378 3379 SDValue Chain = Op.getOperand(0); 3380 SDValue Addr = Op.getOperand(1); 3381 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3382 SDLoc DL(Op); 3383 3384 // The initial values of each field. 3385 const unsigned NumFields = 4; 3386 SDValue Fields[NumFields] = { 3387 DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT), 3388 DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT), 3389 DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT), 3390 DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT) 3391 }; 3392 3393 // Store each field into its respective slot. 3394 SDValue MemOps[NumFields]; 3395 unsigned Offset = 0; 3396 for (unsigned I = 0; I < NumFields; ++I) { 3397 SDValue FieldAddr = Addr; 3398 if (Offset != 0) 3399 FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr, 3400 DAG.getIntPtrConstant(Offset, DL)); 3401 MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr, 3402 MachinePointerInfo(SV, Offset)); 3403 Offset += 8; 3404 } 3405 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); 3406 } 3407 3408 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op, 3409 SelectionDAG &DAG) const { 3410 SDValue Chain = Op.getOperand(0); 3411 SDValue DstPtr = Op.getOperand(1); 3412 SDValue SrcPtr = Op.getOperand(2); 3413 const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); 3414 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); 3415 SDLoc DL(Op); 3416 3417 return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL), 3418 Align(8), /*isVolatile*/ false, /*AlwaysInline*/ false, 3419 /*isTailCall*/ false, MachinePointerInfo(DstSV), 3420 MachinePointerInfo(SrcSV)); 3421 } 3422 3423 SDValue SystemZTargetLowering:: 3424 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const { 3425 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 3426 MachineFunction &MF = DAG.getMachineFunction(); 3427 bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack"); 3428 bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain"); 3429 3430 SDValue Chain = Op.getOperand(0); 3431 SDValue Size = Op.getOperand(1); 3432 SDValue Align = Op.getOperand(2); 3433 SDLoc DL(Op); 3434 3435 // If user has set the no alignment function attribute, ignore 3436 // alloca alignments. 3437 uint64_t AlignVal = 3438 (RealignOpt ? cast<ConstantSDNode>(Align)->getZExtValue() : 0); 3439 3440 uint64_t StackAlign = TFI->getStackAlignment(); 3441 uint64_t RequiredAlign = std::max(AlignVal, StackAlign); 3442 uint64_t ExtraAlignSpace = RequiredAlign - StackAlign; 3443 3444 Register SPReg = getStackPointerRegisterToSaveRestore(); 3445 SDValue NeededSpace = Size; 3446 3447 // Get a reference to the stack pointer. 3448 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64); 3449 3450 // If we need a backchain, save it now. 3451 SDValue Backchain; 3452 if (StoreBackchain) 3453 Backchain = DAG.getLoad(MVT::i64, DL, Chain, getBackchainAddress(OldSP, DAG), 3454 MachinePointerInfo()); 3455 3456 // Add extra space for alignment if needed. 3457 if (ExtraAlignSpace) 3458 NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace, 3459 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); 3460 3461 // Get the new stack pointer value. 3462 SDValue NewSP; 3463 if (hasInlineStackProbe(MF)) { 3464 NewSP = DAG.getNode(SystemZISD::PROBED_ALLOCA, DL, 3465 DAG.getVTList(MVT::i64, MVT::Other), Chain, OldSP, NeededSpace); 3466 Chain = NewSP.getValue(1); 3467 } 3468 else { 3469 NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace); 3470 // Copy the new stack pointer back. 3471 Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP); 3472 } 3473 3474 // The allocated data lives above the 160 bytes allocated for the standard 3475 // frame, plus any outgoing stack arguments. We don't know how much that 3476 // amounts to yet, so emit a special ADJDYNALLOC placeholder. 3477 SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 3478 SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust); 3479 3480 // Dynamically realign if needed. 3481 if (RequiredAlign > StackAlign) { 3482 Result = 3483 DAG.getNode(ISD::ADD, DL, MVT::i64, Result, 3484 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); 3485 Result = 3486 DAG.getNode(ISD::AND, DL, MVT::i64, Result, 3487 DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64)); 3488 } 3489 3490 if (StoreBackchain) 3491 Chain = DAG.getStore(Chain, DL, Backchain, getBackchainAddress(NewSP, DAG), 3492 MachinePointerInfo()); 3493 3494 SDValue Ops[2] = { Result, Chain }; 3495 return DAG.getMergeValues(Ops, DL); 3496 } 3497 3498 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET( 3499 SDValue Op, SelectionDAG &DAG) const { 3500 SDLoc DL(Op); 3501 3502 return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 3503 } 3504 3505 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op, 3506 SelectionDAG &DAG) const { 3507 EVT VT = Op.getValueType(); 3508 SDLoc DL(Op); 3509 SDValue Ops[2]; 3510 if (is32Bit(VT)) 3511 // Just do a normal 64-bit multiplication and extract the results. 3512 // We define this so that it can be used for constant division. 3513 lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0), 3514 Op.getOperand(1), Ops[1], Ops[0]); 3515 else if (Subtarget.hasMiscellaneousExtensions2()) 3516 // SystemZISD::SMUL_LOHI returns the low result in the odd register and 3517 // the high result in the even register. ISD::SMUL_LOHI is defined to 3518 // return the low half first, so the results are in reverse order. 3519 lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI, 3520 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3521 else { 3522 // Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI: 3523 // 3524 // (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64) 3525 // 3526 // but using the fact that the upper halves are either all zeros 3527 // or all ones: 3528 // 3529 // (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64) 3530 // 3531 // and grouping the right terms together since they are quicker than the 3532 // multiplication: 3533 // 3534 // (ll * rl) - (((lh & rl) + (ll & rh)) << 64) 3535 SDValue C63 = DAG.getConstant(63, DL, MVT::i64); 3536 SDValue LL = Op.getOperand(0); 3537 SDValue RL = Op.getOperand(1); 3538 SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63); 3539 SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63); 3540 // SystemZISD::UMUL_LOHI returns the low result in the odd register and 3541 // the high result in the even register. ISD::SMUL_LOHI is defined to 3542 // return the low half first, so the results are in reverse order. 3543 lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI, 3544 LL, RL, Ops[1], Ops[0]); 3545 SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH); 3546 SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL); 3547 SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL); 3548 Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum); 3549 } 3550 return DAG.getMergeValues(Ops, DL); 3551 } 3552 3553 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op, 3554 SelectionDAG &DAG) const { 3555 EVT VT = Op.getValueType(); 3556 SDLoc DL(Op); 3557 SDValue Ops[2]; 3558 if (is32Bit(VT)) 3559 // Just do a normal 64-bit multiplication and extract the results. 3560 // We define this so that it can be used for constant division. 3561 lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0), 3562 Op.getOperand(1), Ops[1], Ops[0]); 3563 else 3564 // SystemZISD::UMUL_LOHI returns the low result in the odd register and 3565 // the high result in the even register. ISD::UMUL_LOHI is defined to 3566 // return the low half first, so the results are in reverse order. 3567 lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI, 3568 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3569 return DAG.getMergeValues(Ops, DL); 3570 } 3571 3572 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op, 3573 SelectionDAG &DAG) const { 3574 SDValue Op0 = Op.getOperand(0); 3575 SDValue Op1 = Op.getOperand(1); 3576 EVT VT = Op.getValueType(); 3577 SDLoc DL(Op); 3578 3579 // We use DSGF for 32-bit division. This means the first operand must 3580 // always be 64-bit, and the second operand should be 32-bit whenever 3581 // that is possible, to improve performance. 3582 if (is32Bit(VT)) 3583 Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0); 3584 else if (DAG.ComputeNumSignBits(Op1) > 32) 3585 Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1); 3586 3587 // DSG(F) returns the remainder in the even register and the 3588 // quotient in the odd register. 3589 SDValue Ops[2]; 3590 lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]); 3591 return DAG.getMergeValues(Ops, DL); 3592 } 3593 3594 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op, 3595 SelectionDAG &DAG) const { 3596 EVT VT = Op.getValueType(); 3597 SDLoc DL(Op); 3598 3599 // DL(G) returns the remainder in the even register and the 3600 // quotient in the odd register. 3601 SDValue Ops[2]; 3602 lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM, 3603 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3604 return DAG.getMergeValues(Ops, DL); 3605 } 3606 3607 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const { 3608 assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation"); 3609 3610 // Get the known-zero masks for each operand. 3611 SDValue Ops[] = {Op.getOperand(0), Op.getOperand(1)}; 3612 KnownBits Known[2] = {DAG.computeKnownBits(Ops[0]), 3613 DAG.computeKnownBits(Ops[1])}; 3614 3615 // See if the upper 32 bits of one operand and the lower 32 bits of the 3616 // other are known zero. They are the low and high operands respectively. 3617 uint64_t Masks[] = { Known[0].Zero.getZExtValue(), 3618 Known[1].Zero.getZExtValue() }; 3619 unsigned High, Low; 3620 if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff) 3621 High = 1, Low = 0; 3622 else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff) 3623 High = 0, Low = 1; 3624 else 3625 return Op; 3626 3627 SDValue LowOp = Ops[Low]; 3628 SDValue HighOp = Ops[High]; 3629 3630 // If the high part is a constant, we're better off using IILH. 3631 if (HighOp.getOpcode() == ISD::Constant) 3632 return Op; 3633 3634 // If the low part is a constant that is outside the range of LHI, 3635 // then we're better off using IILF. 3636 if (LowOp.getOpcode() == ISD::Constant) { 3637 int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue()); 3638 if (!isInt<16>(Value)) 3639 return Op; 3640 } 3641 3642 // Check whether the high part is an AND that doesn't change the 3643 // high 32 bits and just masks out low bits. We can skip it if so. 3644 if (HighOp.getOpcode() == ISD::AND && 3645 HighOp.getOperand(1).getOpcode() == ISD::Constant) { 3646 SDValue HighOp0 = HighOp.getOperand(0); 3647 uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue(); 3648 if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff)))) 3649 HighOp = HighOp0; 3650 } 3651 3652 // Take advantage of the fact that all GR32 operations only change the 3653 // low 32 bits by truncating Low to an i32 and inserting it directly 3654 // using a subreg. The interesting cases are those where the truncation 3655 // can be folded. 3656 SDLoc DL(Op); 3657 SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp); 3658 return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL, 3659 MVT::i64, HighOp, Low32); 3660 } 3661 3662 // Lower SADDO/SSUBO/UADDO/USUBO nodes. 3663 SDValue SystemZTargetLowering::lowerXALUO(SDValue Op, 3664 SelectionDAG &DAG) const { 3665 SDNode *N = Op.getNode(); 3666 SDValue LHS = N->getOperand(0); 3667 SDValue RHS = N->getOperand(1); 3668 SDLoc DL(N); 3669 unsigned BaseOp = 0; 3670 unsigned CCValid = 0; 3671 unsigned CCMask = 0; 3672 3673 switch (Op.getOpcode()) { 3674 default: llvm_unreachable("Unknown instruction!"); 3675 case ISD::SADDO: 3676 BaseOp = SystemZISD::SADDO; 3677 CCValid = SystemZ::CCMASK_ARITH; 3678 CCMask = SystemZ::CCMASK_ARITH_OVERFLOW; 3679 break; 3680 case ISD::SSUBO: 3681 BaseOp = SystemZISD::SSUBO; 3682 CCValid = SystemZ::CCMASK_ARITH; 3683 CCMask = SystemZ::CCMASK_ARITH_OVERFLOW; 3684 break; 3685 case ISD::UADDO: 3686 BaseOp = SystemZISD::UADDO; 3687 CCValid = SystemZ::CCMASK_LOGICAL; 3688 CCMask = SystemZ::CCMASK_LOGICAL_CARRY; 3689 break; 3690 case ISD::USUBO: 3691 BaseOp = SystemZISD::USUBO; 3692 CCValid = SystemZ::CCMASK_LOGICAL; 3693 CCMask = SystemZ::CCMASK_LOGICAL_BORROW; 3694 break; 3695 } 3696 3697 SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32); 3698 SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS); 3699 3700 SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask); 3701 if (N->getValueType(1) == MVT::i1) 3702 SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC); 3703 3704 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC); 3705 } 3706 3707 static bool isAddCarryChain(SDValue Carry) { 3708 while (Carry.getOpcode() == ISD::ADDCARRY) 3709 Carry = Carry.getOperand(2); 3710 return Carry.getOpcode() == ISD::UADDO; 3711 } 3712 3713 static bool isSubBorrowChain(SDValue Carry) { 3714 while (Carry.getOpcode() == ISD::SUBCARRY) 3715 Carry = Carry.getOperand(2); 3716 return Carry.getOpcode() == ISD::USUBO; 3717 } 3718 3719 // Lower ADDCARRY/SUBCARRY nodes. 3720 SDValue SystemZTargetLowering::lowerADDSUBCARRY(SDValue Op, 3721 SelectionDAG &DAG) const { 3722 3723 SDNode *N = Op.getNode(); 3724 MVT VT = N->getSimpleValueType(0); 3725 3726 // Let legalize expand this if it isn't a legal type yet. 3727 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT)) 3728 return SDValue(); 3729 3730 SDValue LHS = N->getOperand(0); 3731 SDValue RHS = N->getOperand(1); 3732 SDValue Carry = Op.getOperand(2); 3733 SDLoc DL(N); 3734 unsigned BaseOp = 0; 3735 unsigned CCValid = 0; 3736 unsigned CCMask = 0; 3737 3738 switch (Op.getOpcode()) { 3739 default: llvm_unreachable("Unknown instruction!"); 3740 case ISD::ADDCARRY: 3741 if (!isAddCarryChain(Carry)) 3742 return SDValue(); 3743 3744 BaseOp = SystemZISD::ADDCARRY; 3745 CCValid = SystemZ::CCMASK_LOGICAL; 3746 CCMask = SystemZ::CCMASK_LOGICAL_CARRY; 3747 break; 3748 case ISD::SUBCARRY: 3749 if (!isSubBorrowChain(Carry)) 3750 return SDValue(); 3751 3752 BaseOp = SystemZISD::SUBCARRY; 3753 CCValid = SystemZ::CCMASK_LOGICAL; 3754 CCMask = SystemZ::CCMASK_LOGICAL_BORROW; 3755 break; 3756 } 3757 3758 // Set the condition code from the carry flag. 3759 Carry = DAG.getNode(SystemZISD::GET_CCMASK, DL, MVT::i32, Carry, 3760 DAG.getConstant(CCValid, DL, MVT::i32), 3761 DAG.getConstant(CCMask, DL, MVT::i32)); 3762 3763 SDVTList VTs = DAG.getVTList(VT, MVT::i32); 3764 SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS, Carry); 3765 3766 SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask); 3767 if (N->getValueType(1) == MVT::i1) 3768 SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC); 3769 3770 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC); 3771 } 3772 3773 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op, 3774 SelectionDAG &DAG) const { 3775 EVT VT = Op.getValueType(); 3776 SDLoc DL(Op); 3777 Op = Op.getOperand(0); 3778 3779 // Handle vector types via VPOPCT. 3780 if (VT.isVector()) { 3781 Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op); 3782 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op); 3783 switch (VT.getScalarSizeInBits()) { 3784 case 8: 3785 break; 3786 case 16: { 3787 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 3788 SDValue Shift = DAG.getConstant(8, DL, MVT::i32); 3789 SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift); 3790 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 3791 Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift); 3792 break; 3793 } 3794 case 32: { 3795 SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL, 3796 DAG.getConstant(0, DL, MVT::i32)); 3797 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 3798 break; 3799 } 3800 case 64: { 3801 SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL, 3802 DAG.getConstant(0, DL, MVT::i32)); 3803 Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp); 3804 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 3805 break; 3806 } 3807 default: 3808 llvm_unreachable("Unexpected type"); 3809 } 3810 return Op; 3811 } 3812 3813 // Get the known-zero mask for the operand. 3814 KnownBits Known = DAG.computeKnownBits(Op); 3815 unsigned NumSignificantBits = Known.getMaxValue().getActiveBits(); 3816 if (NumSignificantBits == 0) 3817 return DAG.getConstant(0, DL, VT); 3818 3819 // Skip known-zero high parts of the operand. 3820 int64_t OrigBitSize = VT.getSizeInBits(); 3821 int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits); 3822 BitSize = std::min(BitSize, OrigBitSize); 3823 3824 // The POPCNT instruction counts the number of bits in each byte. 3825 Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op); 3826 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op); 3827 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 3828 3829 // Add up per-byte counts in a binary tree. All bits of Op at 3830 // position larger than BitSize remain zero throughout. 3831 for (int64_t I = BitSize / 2; I >= 8; I = I / 2) { 3832 SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT)); 3833 if (BitSize != OrigBitSize) 3834 Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp, 3835 DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT)); 3836 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 3837 } 3838 3839 // Extract overall result from high byte. 3840 if (BitSize > 8) 3841 Op = DAG.getNode(ISD::SRL, DL, VT, Op, 3842 DAG.getConstant(BitSize - 8, DL, VT)); 3843 3844 return Op; 3845 } 3846 3847 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op, 3848 SelectionDAG &DAG) const { 3849 SDLoc DL(Op); 3850 AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>( 3851 cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()); 3852 SyncScope::ID FenceSSID = static_cast<SyncScope::ID>( 3853 cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue()); 3854 3855 // The only fence that needs an instruction is a sequentially-consistent 3856 // cross-thread fence. 3857 if (FenceOrdering == AtomicOrdering::SequentiallyConsistent && 3858 FenceSSID == SyncScope::System) { 3859 return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other, 3860 Op.getOperand(0)), 3861 0); 3862 } 3863 3864 // MEMBARRIER is a compiler barrier; it codegens to a no-op. 3865 return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0)); 3866 } 3867 3868 // Op is an atomic load. Lower it into a normal volatile load. 3869 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op, 3870 SelectionDAG &DAG) const { 3871 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3872 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(), 3873 Node->getChain(), Node->getBasePtr(), 3874 Node->getMemoryVT(), Node->getMemOperand()); 3875 } 3876 3877 // Op is an atomic store. Lower it into a normal volatile store. 3878 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op, 3879 SelectionDAG &DAG) const { 3880 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3881 SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(), 3882 Node->getBasePtr(), Node->getMemoryVT(), 3883 Node->getMemOperand()); 3884 // We have to enforce sequential consistency by performing a 3885 // serialization operation after the store. 3886 if (Node->getOrdering() == AtomicOrdering::SequentiallyConsistent) 3887 Chain = SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op), 3888 MVT::Other, Chain), 0); 3889 return Chain; 3890 } 3891 3892 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation. Lower the first 3893 // two into the fullword ATOMIC_LOADW_* operation given by Opcode. 3894 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op, 3895 SelectionDAG &DAG, 3896 unsigned Opcode) const { 3897 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3898 3899 // 32-bit operations need no code outside the main loop. 3900 EVT NarrowVT = Node->getMemoryVT(); 3901 EVT WideVT = MVT::i32; 3902 if (NarrowVT == WideVT) 3903 return Op; 3904 3905 int64_t BitSize = NarrowVT.getSizeInBits(); 3906 SDValue ChainIn = Node->getChain(); 3907 SDValue Addr = Node->getBasePtr(); 3908 SDValue Src2 = Node->getVal(); 3909 MachineMemOperand *MMO = Node->getMemOperand(); 3910 SDLoc DL(Node); 3911 EVT PtrVT = Addr.getValueType(); 3912 3913 // Convert atomic subtracts of constants into additions. 3914 if (Opcode == SystemZISD::ATOMIC_LOADW_SUB) 3915 if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) { 3916 Opcode = SystemZISD::ATOMIC_LOADW_ADD; 3917 Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType()); 3918 } 3919 3920 // Get the address of the containing word. 3921 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 3922 DAG.getConstant(-4, DL, PtrVT)); 3923 3924 // Get the number of bits that the word must be rotated left in order 3925 // to bring the field to the top bits of a GR32. 3926 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 3927 DAG.getConstant(3, DL, PtrVT)); 3928 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 3929 3930 // Get the complementing shift amount, for rotating a field in the top 3931 // bits back to its proper position. 3932 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 3933 DAG.getConstant(0, DL, WideVT), BitShift); 3934 3935 // Extend the source operand to 32 bits and prepare it for the inner loop. 3936 // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other 3937 // operations require the source to be shifted in advance. (This shift 3938 // can be folded if the source is constant.) For AND and NAND, the lower 3939 // bits must be set, while for other opcodes they should be left clear. 3940 if (Opcode != SystemZISD::ATOMIC_SWAPW) 3941 Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2, 3942 DAG.getConstant(32 - BitSize, DL, WideVT)); 3943 if (Opcode == SystemZISD::ATOMIC_LOADW_AND || 3944 Opcode == SystemZISD::ATOMIC_LOADW_NAND) 3945 Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2, 3946 DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT)); 3947 3948 // Construct the ATOMIC_LOADW_* node. 3949 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other); 3950 SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift, 3951 DAG.getConstant(BitSize, DL, WideVT) }; 3952 SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops, 3953 NarrowVT, MMO); 3954 3955 // Rotate the result of the final CS so that the field is in the lower 3956 // bits of a GR32, then truncate it. 3957 SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift, 3958 DAG.getConstant(BitSize, DL, WideVT)); 3959 SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift); 3960 3961 SDValue RetOps[2] = { Result, AtomicOp.getValue(1) }; 3962 return DAG.getMergeValues(RetOps, DL); 3963 } 3964 3965 // Op is an ATOMIC_LOAD_SUB operation. Lower 8- and 16-bit operations 3966 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit 3967 // operations into additions. 3968 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op, 3969 SelectionDAG &DAG) const { 3970 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3971 EVT MemVT = Node->getMemoryVT(); 3972 if (MemVT == MVT::i32 || MemVT == MVT::i64) { 3973 // A full-width operation. 3974 assert(Op.getValueType() == MemVT && "Mismatched VTs"); 3975 SDValue Src2 = Node->getVal(); 3976 SDValue NegSrc2; 3977 SDLoc DL(Src2); 3978 3979 if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) { 3980 // Use an addition if the operand is constant and either LAA(G) is 3981 // available or the negative value is in the range of A(G)FHI. 3982 int64_t Value = (-Op2->getAPIntValue()).getSExtValue(); 3983 if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1()) 3984 NegSrc2 = DAG.getConstant(Value, DL, MemVT); 3985 } else if (Subtarget.hasInterlockedAccess1()) 3986 // Use LAA(G) if available. 3987 NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT), 3988 Src2); 3989 3990 if (NegSrc2.getNode()) 3991 return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT, 3992 Node->getChain(), Node->getBasePtr(), NegSrc2, 3993 Node->getMemOperand()); 3994 3995 // Use the node as-is. 3996 return Op; 3997 } 3998 3999 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB); 4000 } 4001 4002 // Lower 8/16/32/64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS node. 4003 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op, 4004 SelectionDAG &DAG) const { 4005 auto *Node = cast<AtomicSDNode>(Op.getNode()); 4006 SDValue ChainIn = Node->getOperand(0); 4007 SDValue Addr = Node->getOperand(1); 4008 SDValue CmpVal = Node->getOperand(2); 4009 SDValue SwapVal = Node->getOperand(3); 4010 MachineMemOperand *MMO = Node->getMemOperand(); 4011 SDLoc DL(Node); 4012 4013 // We have native support for 32-bit and 64-bit compare and swap, but we 4014 // still need to expand extracting the "success" result from the CC. 4015 EVT NarrowVT = Node->getMemoryVT(); 4016 EVT WideVT = NarrowVT == MVT::i64 ? MVT::i64 : MVT::i32; 4017 if (NarrowVT == WideVT) { 4018 SDVTList Tys = DAG.getVTList(WideVT, MVT::i32, MVT::Other); 4019 SDValue Ops[] = { ChainIn, Addr, CmpVal, SwapVal }; 4020 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP, 4021 DL, Tys, Ops, NarrowVT, MMO); 4022 SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1), 4023 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ); 4024 4025 DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0)); 4026 DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success); 4027 DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2)); 4028 return SDValue(); 4029 } 4030 4031 // Convert 8-bit and 16-bit compare and swap to a loop, implemented 4032 // via a fullword ATOMIC_CMP_SWAPW operation. 4033 int64_t BitSize = NarrowVT.getSizeInBits(); 4034 EVT PtrVT = Addr.getValueType(); 4035 4036 // Get the address of the containing word. 4037 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 4038 DAG.getConstant(-4, DL, PtrVT)); 4039 4040 // Get the number of bits that the word must be rotated left in order 4041 // to bring the field to the top bits of a GR32. 4042 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 4043 DAG.getConstant(3, DL, PtrVT)); 4044 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 4045 4046 // Get the complementing shift amount, for rotating a field in the top 4047 // bits back to its proper position. 4048 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 4049 DAG.getConstant(0, DL, WideVT), BitShift); 4050 4051 // Construct the ATOMIC_CMP_SWAPW node. 4052 SDVTList VTList = DAG.getVTList(WideVT, MVT::i32, MVT::Other); 4053 SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift, 4054 NegBitShift, DAG.getConstant(BitSize, DL, WideVT) }; 4055 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL, 4056 VTList, Ops, NarrowVT, MMO); 4057 SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1), 4058 SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_EQ); 4059 4060 // emitAtomicCmpSwapW() will zero extend the result (original value). 4061 SDValue OrigVal = DAG.getNode(ISD::AssertZext, DL, WideVT, AtomicOp.getValue(0), 4062 DAG.getValueType(NarrowVT)); 4063 DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), OrigVal); 4064 DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success); 4065 DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2)); 4066 return SDValue(); 4067 } 4068 4069 MachineMemOperand::Flags 4070 SystemZTargetLowering::getTargetMMOFlags(const Instruction &I) const { 4071 // Because of how we convert atomic_load and atomic_store to normal loads and 4072 // stores in the DAG, we need to ensure that the MMOs are marked volatile 4073 // since DAGCombine hasn't been updated to account for atomic, but non 4074 // volatile loads. (See D57601) 4075 if (auto *SI = dyn_cast<StoreInst>(&I)) 4076 if (SI->isAtomic()) 4077 return MachineMemOperand::MOVolatile; 4078 if (auto *LI = dyn_cast<LoadInst>(&I)) 4079 if (LI->isAtomic()) 4080 return MachineMemOperand::MOVolatile; 4081 if (auto *AI = dyn_cast<AtomicRMWInst>(&I)) 4082 if (AI->isAtomic()) 4083 return MachineMemOperand::MOVolatile; 4084 if (auto *AI = dyn_cast<AtomicCmpXchgInst>(&I)) 4085 if (AI->isAtomic()) 4086 return MachineMemOperand::MOVolatile; 4087 return MachineMemOperand::MONone; 4088 } 4089 4090 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op, 4091 SelectionDAG &DAG) const { 4092 MachineFunction &MF = DAG.getMachineFunction(); 4093 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 4094 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 4095 report_fatal_error("Variable-sized stack allocations are not supported " 4096 "in GHC calling convention"); 4097 return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op), 4098 SystemZ::R15D, Op.getValueType()); 4099 } 4100 4101 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op, 4102 SelectionDAG &DAG) const { 4103 MachineFunction &MF = DAG.getMachineFunction(); 4104 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 4105 bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain"); 4106 4107 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 4108 report_fatal_error("Variable-sized stack allocations are not supported " 4109 "in GHC calling convention"); 4110 4111 SDValue Chain = Op.getOperand(0); 4112 SDValue NewSP = Op.getOperand(1); 4113 SDValue Backchain; 4114 SDLoc DL(Op); 4115 4116 if (StoreBackchain) { 4117 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, MVT::i64); 4118 Backchain = DAG.getLoad(MVT::i64, DL, Chain, getBackchainAddress(OldSP, DAG), 4119 MachinePointerInfo()); 4120 } 4121 4122 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R15D, NewSP); 4123 4124 if (StoreBackchain) 4125 Chain = DAG.getStore(Chain, DL, Backchain, getBackchainAddress(NewSP, DAG), 4126 MachinePointerInfo()); 4127 4128 return Chain; 4129 } 4130 4131 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op, 4132 SelectionDAG &DAG) const { 4133 bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue(); 4134 if (!IsData) 4135 // Just preserve the chain. 4136 return Op.getOperand(0); 4137 4138 SDLoc DL(Op); 4139 bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); 4140 unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ; 4141 auto *Node = cast<MemIntrinsicSDNode>(Op.getNode()); 4142 SDValue Ops[] = {Op.getOperand(0), DAG.getTargetConstant(Code, DL, MVT::i32), 4143 Op.getOperand(1)}; 4144 return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL, 4145 Node->getVTList(), Ops, 4146 Node->getMemoryVT(), Node->getMemOperand()); 4147 } 4148 4149 // Convert condition code in CCReg to an i32 value. 4150 static SDValue getCCResult(SelectionDAG &DAG, SDValue CCReg) { 4151 SDLoc DL(CCReg); 4152 SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, CCReg); 4153 return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM, 4154 DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32)); 4155 } 4156 4157 SDValue 4158 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op, 4159 SelectionDAG &DAG) const { 4160 unsigned Opcode, CCValid; 4161 if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) { 4162 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 4163 SDNode *Node = emitIntrinsicWithCCAndChain(DAG, Op, Opcode); 4164 SDValue CC = getCCResult(DAG, SDValue(Node, 0)); 4165 DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC); 4166 return SDValue(); 4167 } 4168 4169 return SDValue(); 4170 } 4171 4172 SDValue 4173 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op, 4174 SelectionDAG &DAG) const { 4175 unsigned Opcode, CCValid; 4176 if (isIntrinsicWithCC(Op, Opcode, CCValid)) { 4177 SDNode *Node = emitIntrinsicWithCC(DAG, Op, Opcode); 4178 if (Op->getNumValues() == 1) 4179 return getCCResult(DAG, SDValue(Node, 0)); 4180 assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result"); 4181 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(), 4182 SDValue(Node, 0), getCCResult(DAG, SDValue(Node, 1))); 4183 } 4184 4185 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4186 switch (Id) { 4187 case Intrinsic::thread_pointer: 4188 return lowerThreadPointer(SDLoc(Op), DAG); 4189 4190 case Intrinsic::s390_vpdi: 4191 return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(), 4192 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 4193 4194 case Intrinsic::s390_vperm: 4195 return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(), 4196 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 4197 4198 case Intrinsic::s390_vuphb: 4199 case Intrinsic::s390_vuphh: 4200 case Intrinsic::s390_vuphf: 4201 return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(), 4202 Op.getOperand(1)); 4203 4204 case Intrinsic::s390_vuplhb: 4205 case Intrinsic::s390_vuplhh: 4206 case Intrinsic::s390_vuplhf: 4207 return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(), 4208 Op.getOperand(1)); 4209 4210 case Intrinsic::s390_vuplb: 4211 case Intrinsic::s390_vuplhw: 4212 case Intrinsic::s390_vuplf: 4213 return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(), 4214 Op.getOperand(1)); 4215 4216 case Intrinsic::s390_vupllb: 4217 case Intrinsic::s390_vupllh: 4218 case Intrinsic::s390_vupllf: 4219 return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(), 4220 Op.getOperand(1)); 4221 4222 case Intrinsic::s390_vsumb: 4223 case Intrinsic::s390_vsumh: 4224 case Intrinsic::s390_vsumgh: 4225 case Intrinsic::s390_vsumgf: 4226 case Intrinsic::s390_vsumqf: 4227 case Intrinsic::s390_vsumqg: 4228 return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(), 4229 Op.getOperand(1), Op.getOperand(2)); 4230 } 4231 4232 return SDValue(); 4233 } 4234 4235 namespace { 4236 // Says that SystemZISD operation Opcode can be used to perform the equivalent 4237 // of a VPERM with permute vector Bytes. If Opcode takes three operands, 4238 // Operand is the constant third operand, otherwise it is the number of 4239 // bytes in each element of the result. 4240 struct Permute { 4241 unsigned Opcode; 4242 unsigned Operand; 4243 unsigned char Bytes[SystemZ::VectorBytes]; 4244 }; 4245 } 4246 4247 static const Permute PermuteForms[] = { 4248 // VMRHG 4249 { SystemZISD::MERGE_HIGH, 8, 4250 { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } }, 4251 // VMRHF 4252 { SystemZISD::MERGE_HIGH, 4, 4253 { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } }, 4254 // VMRHH 4255 { SystemZISD::MERGE_HIGH, 2, 4256 { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } }, 4257 // VMRHB 4258 { SystemZISD::MERGE_HIGH, 1, 4259 { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } }, 4260 // VMRLG 4261 { SystemZISD::MERGE_LOW, 8, 4262 { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } }, 4263 // VMRLF 4264 { SystemZISD::MERGE_LOW, 4, 4265 { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } }, 4266 // VMRLH 4267 { SystemZISD::MERGE_LOW, 2, 4268 { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } }, 4269 // VMRLB 4270 { SystemZISD::MERGE_LOW, 1, 4271 { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } }, 4272 // VPKG 4273 { SystemZISD::PACK, 4, 4274 { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } }, 4275 // VPKF 4276 { SystemZISD::PACK, 2, 4277 { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } }, 4278 // VPKH 4279 { SystemZISD::PACK, 1, 4280 { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } }, 4281 // VPDI V1, V2, 4 (low half of V1, high half of V2) 4282 { SystemZISD::PERMUTE_DWORDS, 4, 4283 { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } }, 4284 // VPDI V1, V2, 1 (high half of V1, low half of V2) 4285 { SystemZISD::PERMUTE_DWORDS, 1, 4286 { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } } 4287 }; 4288 4289 // Called after matching a vector shuffle against a particular pattern. 4290 // Both the original shuffle and the pattern have two vector operands. 4291 // OpNos[0] is the operand of the original shuffle that should be used for 4292 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything. 4293 // OpNos[1] is the same for operand 1 of the pattern. Resolve these -1s and 4294 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used 4295 // for operands 0 and 1 of the pattern. 4296 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) { 4297 if (OpNos[0] < 0) { 4298 if (OpNos[1] < 0) 4299 return false; 4300 OpNo0 = OpNo1 = OpNos[1]; 4301 } else if (OpNos[1] < 0) { 4302 OpNo0 = OpNo1 = OpNos[0]; 4303 } else { 4304 OpNo0 = OpNos[0]; 4305 OpNo1 = OpNos[1]; 4306 } 4307 return true; 4308 } 4309 4310 // Bytes is a VPERM-like permute vector, except that -1 is used for 4311 // undefined bytes. Return true if the VPERM can be implemented using P. 4312 // When returning true set OpNo0 to the VPERM operand that should be 4313 // used for operand 0 of P and likewise OpNo1 for operand 1 of P. 4314 // 4315 // For example, if swapping the VPERM operands allows P to match, OpNo0 4316 // will be 1 and OpNo1 will be 0. If instead Bytes only refers to one 4317 // operand, but rewriting it to use two duplicated operands allows it to 4318 // match P, then OpNo0 and OpNo1 will be the same. 4319 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P, 4320 unsigned &OpNo0, unsigned &OpNo1) { 4321 int OpNos[] = { -1, -1 }; 4322 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { 4323 int Elt = Bytes[I]; 4324 if (Elt >= 0) { 4325 // Make sure that the two permute vectors use the same suboperand 4326 // byte number. Only the operand numbers (the high bits) are 4327 // allowed to differ. 4328 if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1)) 4329 return false; 4330 int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes; 4331 int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes; 4332 // Make sure that the operand mappings are consistent with previous 4333 // elements. 4334 if (OpNos[ModelOpNo] == 1 - RealOpNo) 4335 return false; 4336 OpNos[ModelOpNo] = RealOpNo; 4337 } 4338 } 4339 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 4340 } 4341 4342 // As above, but search for a matching permute. 4343 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes, 4344 unsigned &OpNo0, unsigned &OpNo1) { 4345 for (auto &P : PermuteForms) 4346 if (matchPermute(Bytes, P, OpNo0, OpNo1)) 4347 return &P; 4348 return nullptr; 4349 } 4350 4351 // Bytes is a VPERM-like permute vector, except that -1 is used for 4352 // undefined bytes. This permute is an operand of an outer permute. 4353 // See whether redistributing the -1 bytes gives a shuffle that can be 4354 // implemented using P. If so, set Transform to a VPERM-like permute vector 4355 // that, when applied to the result of P, gives the original permute in Bytes. 4356 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes, 4357 const Permute &P, 4358 SmallVectorImpl<int> &Transform) { 4359 unsigned To = 0; 4360 for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) { 4361 int Elt = Bytes[From]; 4362 if (Elt < 0) 4363 // Byte number From of the result is undefined. 4364 Transform[From] = -1; 4365 else { 4366 while (P.Bytes[To] != Elt) { 4367 To += 1; 4368 if (To == SystemZ::VectorBytes) 4369 return false; 4370 } 4371 Transform[From] = To; 4372 } 4373 } 4374 return true; 4375 } 4376 4377 // As above, but search for a matching permute. 4378 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes, 4379 SmallVectorImpl<int> &Transform) { 4380 for (auto &P : PermuteForms) 4381 if (matchDoublePermute(Bytes, P, Transform)) 4382 return &P; 4383 return nullptr; 4384 } 4385 4386 // Convert the mask of the given shuffle op into a byte-level mask, 4387 // as if it had type vNi8. 4388 static bool getVPermMask(SDValue ShuffleOp, 4389 SmallVectorImpl<int> &Bytes) { 4390 EVT VT = ShuffleOp.getValueType(); 4391 unsigned NumElements = VT.getVectorNumElements(); 4392 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 4393 4394 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(ShuffleOp)) { 4395 Bytes.resize(NumElements * BytesPerElement, -1); 4396 for (unsigned I = 0; I < NumElements; ++I) { 4397 int Index = VSN->getMaskElt(I); 4398 if (Index >= 0) 4399 for (unsigned J = 0; J < BytesPerElement; ++J) 4400 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; 4401 } 4402 return true; 4403 } 4404 if (SystemZISD::SPLAT == ShuffleOp.getOpcode() && 4405 isa<ConstantSDNode>(ShuffleOp.getOperand(1))) { 4406 unsigned Index = ShuffleOp.getConstantOperandVal(1); 4407 Bytes.resize(NumElements * BytesPerElement, -1); 4408 for (unsigned I = 0; I < NumElements; ++I) 4409 for (unsigned J = 0; J < BytesPerElement; ++J) 4410 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; 4411 return true; 4412 } 4413 return false; 4414 } 4415 4416 // Bytes is a VPERM-like permute vector, except that -1 is used for 4417 // undefined bytes. See whether bytes [Start, Start + BytesPerElement) of 4418 // the result come from a contiguous sequence of bytes from one input. 4419 // Set Base to the selector for the first byte if so. 4420 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start, 4421 unsigned BytesPerElement, int &Base) { 4422 Base = -1; 4423 for (unsigned I = 0; I < BytesPerElement; ++I) { 4424 if (Bytes[Start + I] >= 0) { 4425 unsigned Elem = Bytes[Start + I]; 4426 if (Base < 0) { 4427 Base = Elem - I; 4428 // Make sure the bytes would come from one input operand. 4429 if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size()) 4430 return false; 4431 } else if (unsigned(Base) != Elem - I) 4432 return false; 4433 } 4434 } 4435 return true; 4436 } 4437 4438 // Bytes is a VPERM-like permute vector, except that -1 is used for 4439 // undefined bytes. Return true if it can be performed using VSLDB. 4440 // When returning true, set StartIndex to the shift amount and OpNo0 4441 // and OpNo1 to the VPERM operands that should be used as the first 4442 // and second shift operand respectively. 4443 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes, 4444 unsigned &StartIndex, unsigned &OpNo0, 4445 unsigned &OpNo1) { 4446 int OpNos[] = { -1, -1 }; 4447 int Shift = -1; 4448 for (unsigned I = 0; I < 16; ++I) { 4449 int Index = Bytes[I]; 4450 if (Index >= 0) { 4451 int ExpectedShift = (Index - I) % SystemZ::VectorBytes; 4452 int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes; 4453 int RealOpNo = unsigned(Index) / SystemZ::VectorBytes; 4454 if (Shift < 0) 4455 Shift = ExpectedShift; 4456 else if (Shift != ExpectedShift) 4457 return false; 4458 // Make sure that the operand mappings are consistent with previous 4459 // elements. 4460 if (OpNos[ModelOpNo] == 1 - RealOpNo) 4461 return false; 4462 OpNos[ModelOpNo] = RealOpNo; 4463 } 4464 } 4465 StartIndex = Shift; 4466 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 4467 } 4468 4469 // Create a node that performs P on operands Op0 and Op1, casting the 4470 // operands to the appropriate type. The type of the result is determined by P. 4471 static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL, 4472 const Permute &P, SDValue Op0, SDValue Op1) { 4473 // VPDI (PERMUTE_DWORDS) always operates on v2i64s. The input 4474 // elements of a PACK are twice as wide as the outputs. 4475 unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 : 4476 P.Opcode == SystemZISD::PACK ? P.Operand * 2 : 4477 P.Operand); 4478 // Cast both operands to the appropriate type. 4479 MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8), 4480 SystemZ::VectorBytes / InBytes); 4481 Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0); 4482 Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1); 4483 SDValue Op; 4484 if (P.Opcode == SystemZISD::PERMUTE_DWORDS) { 4485 SDValue Op2 = DAG.getTargetConstant(P.Operand, DL, MVT::i32); 4486 Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2); 4487 } else if (P.Opcode == SystemZISD::PACK) { 4488 MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8), 4489 SystemZ::VectorBytes / P.Operand); 4490 Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1); 4491 } else { 4492 Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1); 4493 } 4494 return Op; 4495 } 4496 4497 static bool isZeroVector(SDValue N) { 4498 if (N->getOpcode() == ISD::BITCAST) 4499 N = N->getOperand(0); 4500 if (N->getOpcode() == ISD::SPLAT_VECTOR) 4501 if (auto *Op = dyn_cast<ConstantSDNode>(N->getOperand(0))) 4502 return Op->getZExtValue() == 0; 4503 return ISD::isBuildVectorAllZeros(N.getNode()); 4504 } 4505 4506 // Return the index of the zero/undef vector, or UINT32_MAX if not found. 4507 static uint32_t findZeroVectorIdx(SDValue *Ops, unsigned Num) { 4508 for (unsigned I = 0; I < Num ; I++) 4509 if (isZeroVector(Ops[I])) 4510 return I; 4511 return UINT32_MAX; 4512 } 4513 4514 // Bytes is a VPERM-like permute vector, except that -1 is used for 4515 // undefined bytes. Implement it on operands Ops[0] and Ops[1] using 4516 // VSLDB or VPERM. 4517 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL, 4518 SDValue *Ops, 4519 const SmallVectorImpl<int> &Bytes) { 4520 for (unsigned I = 0; I < 2; ++I) 4521 Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]); 4522 4523 // First see whether VSLDB can be used. 4524 unsigned StartIndex, OpNo0, OpNo1; 4525 if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1)) 4526 return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0], 4527 Ops[OpNo1], 4528 DAG.getTargetConstant(StartIndex, DL, MVT::i32)); 4529 4530 // Fall back on VPERM. Construct an SDNode for the permute vector. Try to 4531 // eliminate a zero vector by reusing any zero index in the permute vector. 4532 unsigned ZeroVecIdx = findZeroVectorIdx(&Ops[0], 2); 4533 if (ZeroVecIdx != UINT32_MAX) { 4534 bool MaskFirst = true; 4535 int ZeroIdx = -1; 4536 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { 4537 unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes; 4538 unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes; 4539 if (OpNo == ZeroVecIdx && I == 0) { 4540 // If the first byte is zero, use mask as first operand. 4541 ZeroIdx = 0; 4542 break; 4543 } 4544 if (OpNo != ZeroVecIdx && Byte == 0) { 4545 // If mask contains a zero, use it by placing that vector first. 4546 ZeroIdx = I + SystemZ::VectorBytes; 4547 MaskFirst = false; 4548 break; 4549 } 4550 } 4551 if (ZeroIdx != -1) { 4552 SDValue IndexNodes[SystemZ::VectorBytes]; 4553 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { 4554 if (Bytes[I] >= 0) { 4555 unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes; 4556 unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes; 4557 if (OpNo == ZeroVecIdx) 4558 IndexNodes[I] = DAG.getConstant(ZeroIdx, DL, MVT::i32); 4559 else { 4560 unsigned BIdx = MaskFirst ? Byte + SystemZ::VectorBytes : Byte; 4561 IndexNodes[I] = DAG.getConstant(BIdx, DL, MVT::i32); 4562 } 4563 } else 4564 IndexNodes[I] = DAG.getUNDEF(MVT::i32); 4565 } 4566 SDValue Mask = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes); 4567 SDValue Src = ZeroVecIdx == 0 ? Ops[1] : Ops[0]; 4568 if (MaskFirst) 4569 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Mask, Src, 4570 Mask); 4571 else 4572 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Src, Mask, 4573 Mask); 4574 } 4575 } 4576 4577 SDValue IndexNodes[SystemZ::VectorBytes]; 4578 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 4579 if (Bytes[I] >= 0) 4580 IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32); 4581 else 4582 IndexNodes[I] = DAG.getUNDEF(MVT::i32); 4583 SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes); 4584 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0], 4585 (!Ops[1].isUndef() ? Ops[1] : Ops[0]), Op2); 4586 } 4587 4588 namespace { 4589 // Describes a general N-operand vector shuffle. 4590 struct GeneralShuffle { 4591 GeneralShuffle(EVT vt) : VT(vt), UnpackFromEltSize(UINT_MAX) {} 4592 void addUndef(); 4593 bool add(SDValue, unsigned); 4594 SDValue getNode(SelectionDAG &, const SDLoc &); 4595 void tryPrepareForUnpack(); 4596 bool unpackWasPrepared() { return UnpackFromEltSize <= 4; } 4597 SDValue insertUnpackIfPrepared(SelectionDAG &DAG, const SDLoc &DL, SDValue Op); 4598 4599 // The operands of the shuffle. 4600 SmallVector<SDValue, SystemZ::VectorBytes> Ops; 4601 4602 // Index I is -1 if byte I of the result is undefined. Otherwise the 4603 // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand 4604 // Bytes[I] / SystemZ::VectorBytes. 4605 SmallVector<int, SystemZ::VectorBytes> Bytes; 4606 4607 // The type of the shuffle result. 4608 EVT VT; 4609 4610 // Holds a value of 1, 2 or 4 if a final unpack has been prepared for. 4611 unsigned UnpackFromEltSize; 4612 }; 4613 } 4614 4615 // Add an extra undefined element to the shuffle. 4616 void GeneralShuffle::addUndef() { 4617 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 4618 for (unsigned I = 0; I < BytesPerElement; ++I) 4619 Bytes.push_back(-1); 4620 } 4621 4622 // Add an extra element to the shuffle, taking it from element Elem of Op. 4623 // A null Op indicates a vector input whose value will be calculated later; 4624 // there is at most one such input per shuffle and it always has the same 4625 // type as the result. Aborts and returns false if the source vector elements 4626 // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per 4627 // LLVM they become implicitly extended, but this is rare and not optimized. 4628 bool GeneralShuffle::add(SDValue Op, unsigned Elem) { 4629 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 4630 4631 // The source vector can have wider elements than the result, 4632 // either through an explicit TRUNCATE or because of type legalization. 4633 // We want the least significant part. 4634 EVT FromVT = Op.getNode() ? Op.getValueType() : VT; 4635 unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize(); 4636 4637 // Return false if the source elements are smaller than their destination 4638 // elements. 4639 if (FromBytesPerElement < BytesPerElement) 4640 return false; 4641 4642 unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes + 4643 (FromBytesPerElement - BytesPerElement)); 4644 4645 // Look through things like shuffles and bitcasts. 4646 while (Op.getNode()) { 4647 if (Op.getOpcode() == ISD::BITCAST) 4648 Op = Op.getOperand(0); 4649 else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) { 4650 // See whether the bytes we need come from a contiguous part of one 4651 // operand. 4652 SmallVector<int, SystemZ::VectorBytes> OpBytes; 4653 if (!getVPermMask(Op, OpBytes)) 4654 break; 4655 int NewByte; 4656 if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte)) 4657 break; 4658 if (NewByte < 0) { 4659 addUndef(); 4660 return true; 4661 } 4662 Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes); 4663 Byte = unsigned(NewByte) % SystemZ::VectorBytes; 4664 } else if (Op.isUndef()) { 4665 addUndef(); 4666 return true; 4667 } else 4668 break; 4669 } 4670 4671 // Make sure that the source of the extraction is in Ops. 4672 unsigned OpNo = 0; 4673 for (; OpNo < Ops.size(); ++OpNo) 4674 if (Ops[OpNo] == Op) 4675 break; 4676 if (OpNo == Ops.size()) 4677 Ops.push_back(Op); 4678 4679 // Add the element to Bytes. 4680 unsigned Base = OpNo * SystemZ::VectorBytes + Byte; 4681 for (unsigned I = 0; I < BytesPerElement; ++I) 4682 Bytes.push_back(Base + I); 4683 4684 return true; 4685 } 4686 4687 // Return SDNodes for the completed shuffle. 4688 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) { 4689 assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector"); 4690 4691 if (Ops.size() == 0) 4692 return DAG.getUNDEF(VT); 4693 4694 // Use a single unpack if possible as the last operation. 4695 tryPrepareForUnpack(); 4696 4697 // Make sure that there are at least two shuffle operands. 4698 if (Ops.size() == 1) 4699 Ops.push_back(DAG.getUNDEF(MVT::v16i8)); 4700 4701 // Create a tree of shuffles, deferring root node until after the loop. 4702 // Try to redistribute the undefined elements of non-root nodes so that 4703 // the non-root shuffles match something like a pack or merge, then adjust 4704 // the parent node's permute vector to compensate for the new order. 4705 // Among other things, this copes with vectors like <2 x i16> that were 4706 // padded with undefined elements during type legalization. 4707 // 4708 // In the best case this redistribution will lead to the whole tree 4709 // using packs and merges. It should rarely be a loss in other cases. 4710 unsigned Stride = 1; 4711 for (; Stride * 2 < Ops.size(); Stride *= 2) { 4712 for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) { 4713 SDValue SubOps[] = { Ops[I], Ops[I + Stride] }; 4714 4715 // Create a mask for just these two operands. 4716 SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes); 4717 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 4718 unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes; 4719 unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes; 4720 if (OpNo == I) 4721 NewBytes[J] = Byte; 4722 else if (OpNo == I + Stride) 4723 NewBytes[J] = SystemZ::VectorBytes + Byte; 4724 else 4725 NewBytes[J] = -1; 4726 } 4727 // See if it would be better to reorganize NewMask to avoid using VPERM. 4728 SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes); 4729 if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) { 4730 Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]); 4731 // Applying NewBytesMap to Ops[I] gets back to NewBytes. 4732 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 4733 if (NewBytes[J] >= 0) { 4734 assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes && 4735 "Invalid double permute"); 4736 Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J]; 4737 } else 4738 assert(NewBytesMap[J] < 0 && "Invalid double permute"); 4739 } 4740 } else { 4741 // Just use NewBytes on the operands. 4742 Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes); 4743 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) 4744 if (NewBytes[J] >= 0) 4745 Bytes[J] = I * SystemZ::VectorBytes + J; 4746 } 4747 } 4748 } 4749 4750 // Now we just have 2 inputs. Put the second operand in Ops[1]. 4751 if (Stride > 1) { 4752 Ops[1] = Ops[Stride]; 4753 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 4754 if (Bytes[I] >= int(SystemZ::VectorBytes)) 4755 Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes; 4756 } 4757 4758 // Look for an instruction that can do the permute without resorting 4759 // to VPERM. 4760 unsigned OpNo0, OpNo1; 4761 SDValue Op; 4762 if (unpackWasPrepared() && Ops[1].isUndef()) 4763 Op = Ops[0]; 4764 else if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1)) 4765 Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]); 4766 else 4767 Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes); 4768 4769 Op = insertUnpackIfPrepared(DAG, DL, Op); 4770 4771 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4772 } 4773 4774 #ifndef NDEBUG 4775 static void dumpBytes(const SmallVectorImpl<int> &Bytes, std::string Msg) { 4776 dbgs() << Msg.c_str() << " { "; 4777 for (unsigned i = 0; i < Bytes.size(); i++) 4778 dbgs() << Bytes[i] << " "; 4779 dbgs() << "}\n"; 4780 } 4781 #endif 4782 4783 // If the Bytes vector matches an unpack operation, prepare to do the unpack 4784 // after all else by removing the zero vector and the effect of the unpack on 4785 // Bytes. 4786 void GeneralShuffle::tryPrepareForUnpack() { 4787 uint32_t ZeroVecOpNo = findZeroVectorIdx(&Ops[0], Ops.size()); 4788 if (ZeroVecOpNo == UINT32_MAX || Ops.size() == 1) 4789 return; 4790 4791 // Only do this if removing the zero vector reduces the depth, otherwise 4792 // the critical path will increase with the final unpack. 4793 if (Ops.size() > 2 && 4794 Log2_32_Ceil(Ops.size()) == Log2_32_Ceil(Ops.size() - 1)) 4795 return; 4796 4797 // Find an unpack that would allow removing the zero vector from Ops. 4798 UnpackFromEltSize = 1; 4799 for (; UnpackFromEltSize <= 4; UnpackFromEltSize *= 2) { 4800 bool MatchUnpack = true; 4801 SmallVector<int, SystemZ::VectorBytes> SrcBytes; 4802 for (unsigned Elt = 0; Elt < SystemZ::VectorBytes; Elt++) { 4803 unsigned ToEltSize = UnpackFromEltSize * 2; 4804 bool IsZextByte = (Elt % ToEltSize) < UnpackFromEltSize; 4805 if (!IsZextByte) 4806 SrcBytes.push_back(Bytes[Elt]); 4807 if (Bytes[Elt] != -1) { 4808 unsigned OpNo = unsigned(Bytes[Elt]) / SystemZ::VectorBytes; 4809 if (IsZextByte != (OpNo == ZeroVecOpNo)) { 4810 MatchUnpack = false; 4811 break; 4812 } 4813 } 4814 } 4815 if (MatchUnpack) { 4816 if (Ops.size() == 2) { 4817 // Don't use unpack if a single source operand needs rearrangement. 4818 for (unsigned i = 0; i < SystemZ::VectorBytes / 2; i++) 4819 if (SrcBytes[i] != -1 && SrcBytes[i] % 16 != int(i)) { 4820 UnpackFromEltSize = UINT_MAX; 4821 return; 4822 } 4823 } 4824 break; 4825 } 4826 } 4827 if (UnpackFromEltSize > 4) 4828 return; 4829 4830 LLVM_DEBUG(dbgs() << "Preparing for final unpack of element size " 4831 << UnpackFromEltSize << ". Zero vector is Op#" << ZeroVecOpNo 4832 << ".\n"; 4833 dumpBytes(Bytes, "Original Bytes vector:");); 4834 4835 // Apply the unpack in reverse to the Bytes array. 4836 unsigned B = 0; 4837 for (unsigned Elt = 0; Elt < SystemZ::VectorBytes;) { 4838 Elt += UnpackFromEltSize; 4839 for (unsigned i = 0; i < UnpackFromEltSize; i++, Elt++, B++) 4840 Bytes[B] = Bytes[Elt]; 4841 } 4842 while (B < SystemZ::VectorBytes) 4843 Bytes[B++] = -1; 4844 4845 // Remove the zero vector from Ops 4846 Ops.erase(&Ops[ZeroVecOpNo]); 4847 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 4848 if (Bytes[I] >= 0) { 4849 unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes; 4850 if (OpNo > ZeroVecOpNo) 4851 Bytes[I] -= SystemZ::VectorBytes; 4852 } 4853 4854 LLVM_DEBUG(dumpBytes(Bytes, "Resulting Bytes vector, zero vector removed:"); 4855 dbgs() << "\n";); 4856 } 4857 4858 SDValue GeneralShuffle::insertUnpackIfPrepared(SelectionDAG &DAG, 4859 const SDLoc &DL, 4860 SDValue Op) { 4861 if (!unpackWasPrepared()) 4862 return Op; 4863 unsigned InBits = UnpackFromEltSize * 8; 4864 EVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBits), 4865 SystemZ::VectorBits / InBits); 4866 SDValue PackedOp = DAG.getNode(ISD::BITCAST, DL, InVT, Op); 4867 unsigned OutBits = InBits * 2; 4868 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(OutBits), 4869 SystemZ::VectorBits / OutBits); 4870 return DAG.getNode(SystemZISD::UNPACKL_HIGH, DL, OutVT, PackedOp); 4871 } 4872 4873 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion. 4874 static bool isScalarToVector(SDValue Op) { 4875 for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I) 4876 if (!Op.getOperand(I).isUndef()) 4877 return false; 4878 return true; 4879 } 4880 4881 // Return a vector of type VT that contains Value in the first element. 4882 // The other elements don't matter. 4883 static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 4884 SDValue Value) { 4885 // If we have a constant, replicate it to all elements and let the 4886 // BUILD_VECTOR lowering take care of it. 4887 if (Value.getOpcode() == ISD::Constant || 4888 Value.getOpcode() == ISD::ConstantFP) { 4889 SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value); 4890 return DAG.getBuildVector(VT, DL, Ops); 4891 } 4892 if (Value.isUndef()) 4893 return DAG.getUNDEF(VT); 4894 return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value); 4895 } 4896 4897 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in 4898 // element 1. Used for cases in which replication is cheap. 4899 static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 4900 SDValue Op0, SDValue Op1) { 4901 if (Op0.isUndef()) { 4902 if (Op1.isUndef()) 4903 return DAG.getUNDEF(VT); 4904 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1); 4905 } 4906 if (Op1.isUndef()) 4907 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0); 4908 return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT, 4909 buildScalarToVector(DAG, DL, VT, Op0), 4910 buildScalarToVector(DAG, DL, VT, Op1)); 4911 } 4912 4913 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64 4914 // vector for them. 4915 static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0, 4916 SDValue Op1) { 4917 if (Op0.isUndef() && Op1.isUndef()) 4918 return DAG.getUNDEF(MVT::v2i64); 4919 // If one of the two inputs is undefined then replicate the other one, 4920 // in order to avoid using another register unnecessarily. 4921 if (Op0.isUndef()) 4922 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 4923 else if (Op1.isUndef()) 4924 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 4925 else { 4926 Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 4927 Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 4928 } 4929 return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1); 4930 } 4931 4932 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually 4933 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for 4934 // the non-EXTRACT_VECTOR_ELT elements. See if the given BUILD_VECTOR 4935 // would benefit from this representation and return it if so. 4936 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG, 4937 BuildVectorSDNode *BVN) { 4938 EVT VT = BVN->getValueType(0); 4939 unsigned NumElements = VT.getVectorNumElements(); 4940 4941 // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation 4942 // on byte vectors. If there are non-EXTRACT_VECTOR_ELT elements that still 4943 // need a BUILD_VECTOR, add an additional placeholder operand for that 4944 // BUILD_VECTOR and store its operands in ResidueOps. 4945 GeneralShuffle GS(VT); 4946 SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps; 4947 bool FoundOne = false; 4948 for (unsigned I = 0; I < NumElements; ++I) { 4949 SDValue Op = BVN->getOperand(I); 4950 if (Op.getOpcode() == ISD::TRUNCATE) 4951 Op = Op.getOperand(0); 4952 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 4953 Op.getOperand(1).getOpcode() == ISD::Constant) { 4954 unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 4955 if (!GS.add(Op.getOperand(0), Elem)) 4956 return SDValue(); 4957 FoundOne = true; 4958 } else if (Op.isUndef()) { 4959 GS.addUndef(); 4960 } else { 4961 if (!GS.add(SDValue(), ResidueOps.size())) 4962 return SDValue(); 4963 ResidueOps.push_back(BVN->getOperand(I)); 4964 } 4965 } 4966 4967 // Nothing to do if there are no EXTRACT_VECTOR_ELTs. 4968 if (!FoundOne) 4969 return SDValue(); 4970 4971 // Create the BUILD_VECTOR for the remaining elements, if any. 4972 if (!ResidueOps.empty()) { 4973 while (ResidueOps.size() < NumElements) 4974 ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType())); 4975 for (auto &Op : GS.Ops) { 4976 if (!Op.getNode()) { 4977 Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps); 4978 break; 4979 } 4980 } 4981 } 4982 return GS.getNode(DAG, SDLoc(BVN)); 4983 } 4984 4985 bool SystemZTargetLowering::isVectorElementLoad(SDValue Op) const { 4986 if (Op.getOpcode() == ISD::LOAD && cast<LoadSDNode>(Op)->isUnindexed()) 4987 return true; 4988 if (Subtarget.hasVectorEnhancements2() && Op.getOpcode() == SystemZISD::LRV) 4989 return true; 4990 return false; 4991 } 4992 4993 // Combine GPR scalar values Elems into a vector of type VT. 4994 SDValue 4995 SystemZTargetLowering::buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 4996 SmallVectorImpl<SDValue> &Elems) const { 4997 // See whether there is a single replicated value. 4998 SDValue Single; 4999 unsigned int NumElements = Elems.size(); 5000 unsigned int Count = 0; 5001 for (auto Elem : Elems) { 5002 if (!Elem.isUndef()) { 5003 if (!Single.getNode()) 5004 Single = Elem; 5005 else if (Elem != Single) { 5006 Single = SDValue(); 5007 break; 5008 } 5009 Count += 1; 5010 } 5011 } 5012 // There are three cases here: 5013 // 5014 // - if the only defined element is a loaded one, the best sequence 5015 // is a replicating load. 5016 // 5017 // - otherwise, if the only defined element is an i64 value, we will 5018 // end up with the same VLVGP sequence regardless of whether we short-cut 5019 // for replication or fall through to the later code. 5020 // 5021 // - otherwise, if the only defined element is an i32 or smaller value, 5022 // we would need 2 instructions to replicate it: VLVGP followed by VREPx. 5023 // This is only a win if the single defined element is used more than once. 5024 // In other cases we're better off using a single VLVGx. 5025 if (Single.getNode() && (Count > 1 || isVectorElementLoad(Single))) 5026 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single); 5027 5028 // If all elements are loads, use VLREP/VLEs (below). 5029 bool AllLoads = true; 5030 for (auto Elem : Elems) 5031 if (!isVectorElementLoad(Elem)) { 5032 AllLoads = false; 5033 break; 5034 } 5035 5036 // The best way of building a v2i64 from two i64s is to use VLVGP. 5037 if (VT == MVT::v2i64 && !AllLoads) 5038 return joinDwords(DAG, DL, Elems[0], Elems[1]); 5039 5040 // Use a 64-bit merge high to combine two doubles. 5041 if (VT == MVT::v2f64 && !AllLoads) 5042 return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 5043 5044 // Build v4f32 values directly from the FPRs: 5045 // 5046 // <Axxx> <Bxxx> <Cxxxx> <Dxxx> 5047 // V V VMRHF 5048 // <ABxx> <CDxx> 5049 // V VMRHG 5050 // <ABCD> 5051 if (VT == MVT::v4f32 && !AllLoads) { 5052 SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 5053 SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]); 5054 // Avoid unnecessary undefs by reusing the other operand. 5055 if (Op01.isUndef()) 5056 Op01 = Op23; 5057 else if (Op23.isUndef()) 5058 Op23 = Op01; 5059 // Merging identical replications is a no-op. 5060 if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23) 5061 return Op01; 5062 Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01); 5063 Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23); 5064 SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH, 5065 DL, MVT::v2i64, Op01, Op23); 5066 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 5067 } 5068 5069 // Collect the constant terms. 5070 SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue()); 5071 SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false); 5072 5073 unsigned NumConstants = 0; 5074 for (unsigned I = 0; I < NumElements; ++I) { 5075 SDValue Elem = Elems[I]; 5076 if (Elem.getOpcode() == ISD::Constant || 5077 Elem.getOpcode() == ISD::ConstantFP) { 5078 NumConstants += 1; 5079 Constants[I] = Elem; 5080 Done[I] = true; 5081 } 5082 } 5083 // If there was at least one constant, fill in the other elements of 5084 // Constants with undefs to get a full vector constant and use that 5085 // as the starting point. 5086 SDValue Result; 5087 SDValue ReplicatedVal; 5088 if (NumConstants > 0) { 5089 for (unsigned I = 0; I < NumElements; ++I) 5090 if (!Constants[I].getNode()) 5091 Constants[I] = DAG.getUNDEF(Elems[I].getValueType()); 5092 Result = DAG.getBuildVector(VT, DL, Constants); 5093 } else { 5094 // Otherwise try to use VLREP or VLVGP to start the sequence in order to 5095 // avoid a false dependency on any previous contents of the vector 5096 // register. 5097 5098 // Use a VLREP if at least one element is a load. Make sure to replicate 5099 // the load with the most elements having its value. 5100 std::map<const SDNode*, unsigned> UseCounts; 5101 SDNode *LoadMaxUses = nullptr; 5102 for (unsigned I = 0; I < NumElements; ++I) 5103 if (isVectorElementLoad(Elems[I])) { 5104 SDNode *Ld = Elems[I].getNode(); 5105 UseCounts[Ld]++; 5106 if (LoadMaxUses == nullptr || UseCounts[LoadMaxUses] < UseCounts[Ld]) 5107 LoadMaxUses = Ld; 5108 } 5109 if (LoadMaxUses != nullptr) { 5110 ReplicatedVal = SDValue(LoadMaxUses, 0); 5111 Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, ReplicatedVal); 5112 } else { 5113 // Try to use VLVGP. 5114 unsigned I1 = NumElements / 2 - 1; 5115 unsigned I2 = NumElements - 1; 5116 bool Def1 = !Elems[I1].isUndef(); 5117 bool Def2 = !Elems[I2].isUndef(); 5118 if (Def1 || Def2) { 5119 SDValue Elem1 = Elems[Def1 ? I1 : I2]; 5120 SDValue Elem2 = Elems[Def2 ? I2 : I1]; 5121 Result = DAG.getNode(ISD::BITCAST, DL, VT, 5122 joinDwords(DAG, DL, Elem1, Elem2)); 5123 Done[I1] = true; 5124 Done[I2] = true; 5125 } else 5126 Result = DAG.getUNDEF(VT); 5127 } 5128 } 5129 5130 // Use VLVGx to insert the other elements. 5131 for (unsigned I = 0; I < NumElements; ++I) 5132 if (!Done[I] && !Elems[I].isUndef() && Elems[I] != ReplicatedVal) 5133 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I], 5134 DAG.getConstant(I, DL, MVT::i32)); 5135 return Result; 5136 } 5137 5138 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op, 5139 SelectionDAG &DAG) const { 5140 auto *BVN = cast<BuildVectorSDNode>(Op.getNode()); 5141 SDLoc DL(Op); 5142 EVT VT = Op.getValueType(); 5143 5144 if (BVN->isConstant()) { 5145 if (SystemZVectorConstantInfo(BVN).isVectorConstantLegal(Subtarget)) 5146 return Op; 5147 5148 // Fall back to loading it from memory. 5149 return SDValue(); 5150 } 5151 5152 // See if we should use shuffles to construct the vector from other vectors. 5153 if (SDValue Res = tryBuildVectorShuffle(DAG, BVN)) 5154 return Res; 5155 5156 // Detect SCALAR_TO_VECTOR conversions. 5157 if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op)) 5158 return buildScalarToVector(DAG, DL, VT, Op.getOperand(0)); 5159 5160 // Otherwise use buildVector to build the vector up from GPRs. 5161 unsigned NumElements = Op.getNumOperands(); 5162 SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements); 5163 for (unsigned I = 0; I < NumElements; ++I) 5164 Ops[I] = Op.getOperand(I); 5165 return buildVector(DAG, DL, VT, Ops); 5166 } 5167 5168 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op, 5169 SelectionDAG &DAG) const { 5170 auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode()); 5171 SDLoc DL(Op); 5172 EVT VT = Op.getValueType(); 5173 unsigned NumElements = VT.getVectorNumElements(); 5174 5175 if (VSN->isSplat()) { 5176 SDValue Op0 = Op.getOperand(0); 5177 unsigned Index = VSN->getSplatIndex(); 5178 assert(Index < VT.getVectorNumElements() && 5179 "Splat index should be defined and in first operand"); 5180 // See whether the value we're splatting is directly available as a scalar. 5181 if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 5182 Op0.getOpcode() == ISD::BUILD_VECTOR) 5183 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index)); 5184 // Otherwise keep it as a vector-to-vector operation. 5185 return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0), 5186 DAG.getTargetConstant(Index, DL, MVT::i32)); 5187 } 5188 5189 GeneralShuffle GS(VT); 5190 for (unsigned I = 0; I < NumElements; ++I) { 5191 int Elt = VSN->getMaskElt(I); 5192 if (Elt < 0) 5193 GS.addUndef(); 5194 else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements), 5195 unsigned(Elt) % NumElements)) 5196 return SDValue(); 5197 } 5198 return GS.getNode(DAG, SDLoc(VSN)); 5199 } 5200 5201 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op, 5202 SelectionDAG &DAG) const { 5203 SDLoc DL(Op); 5204 // Just insert the scalar into element 0 of an undefined vector. 5205 return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, 5206 Op.getValueType(), DAG.getUNDEF(Op.getValueType()), 5207 Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32)); 5208 } 5209 5210 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 5211 SelectionDAG &DAG) const { 5212 // Handle insertions of floating-point values. 5213 SDLoc DL(Op); 5214 SDValue Op0 = Op.getOperand(0); 5215 SDValue Op1 = Op.getOperand(1); 5216 SDValue Op2 = Op.getOperand(2); 5217 EVT VT = Op.getValueType(); 5218 5219 // Insertions into constant indices of a v2f64 can be done using VPDI. 5220 // However, if the inserted value is a bitcast or a constant then it's 5221 // better to use GPRs, as below. 5222 if (VT == MVT::v2f64 && 5223 Op1.getOpcode() != ISD::BITCAST && 5224 Op1.getOpcode() != ISD::ConstantFP && 5225 Op2.getOpcode() == ISD::Constant) { 5226 uint64_t Index = cast<ConstantSDNode>(Op2)->getZExtValue(); 5227 unsigned Mask = VT.getVectorNumElements() - 1; 5228 if (Index <= Mask) 5229 return Op; 5230 } 5231 5232 // Otherwise bitcast to the equivalent integer form and insert via a GPR. 5233 MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits()); 5234 MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements()); 5235 SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT, 5236 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), 5237 DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2); 5238 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 5239 } 5240 5241 SDValue 5242 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 5243 SelectionDAG &DAG) const { 5244 // Handle extractions of floating-point values. 5245 SDLoc DL(Op); 5246 SDValue Op0 = Op.getOperand(0); 5247 SDValue Op1 = Op.getOperand(1); 5248 EVT VT = Op.getValueType(); 5249 EVT VecVT = Op0.getValueType(); 5250 5251 // Extractions of constant indices can be done directly. 5252 if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) { 5253 uint64_t Index = CIndexN->getZExtValue(); 5254 unsigned Mask = VecVT.getVectorNumElements() - 1; 5255 if (Index <= Mask) 5256 return Op; 5257 } 5258 5259 // Otherwise bitcast to the equivalent integer form and extract via a GPR. 5260 MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits()); 5261 MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements()); 5262 SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT, 5263 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1); 5264 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 5265 } 5266 5267 SDValue SystemZTargetLowering:: 5268 lowerSIGN_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const { 5269 SDValue PackedOp = Op.getOperand(0); 5270 EVT OutVT = Op.getValueType(); 5271 EVT InVT = PackedOp.getValueType(); 5272 unsigned ToBits = OutVT.getScalarSizeInBits(); 5273 unsigned FromBits = InVT.getScalarSizeInBits(); 5274 do { 5275 FromBits *= 2; 5276 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits), 5277 SystemZ::VectorBits / FromBits); 5278 PackedOp = 5279 DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(PackedOp), OutVT, PackedOp); 5280 } while (FromBits != ToBits); 5281 return PackedOp; 5282 } 5283 5284 // Lower a ZERO_EXTEND_VECTOR_INREG to a vector shuffle with a zero vector. 5285 SDValue SystemZTargetLowering:: 5286 lowerZERO_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const { 5287 SDValue PackedOp = Op.getOperand(0); 5288 SDLoc DL(Op); 5289 EVT OutVT = Op.getValueType(); 5290 EVT InVT = PackedOp.getValueType(); 5291 unsigned InNumElts = InVT.getVectorNumElements(); 5292 unsigned OutNumElts = OutVT.getVectorNumElements(); 5293 unsigned NumInPerOut = InNumElts / OutNumElts; 5294 5295 SDValue ZeroVec = 5296 DAG.getSplatVector(InVT, DL, DAG.getConstant(0, DL, InVT.getScalarType())); 5297 5298 SmallVector<int, 16> Mask(InNumElts); 5299 unsigned ZeroVecElt = InNumElts; 5300 for (unsigned PackedElt = 0; PackedElt < OutNumElts; PackedElt++) { 5301 unsigned MaskElt = PackedElt * NumInPerOut; 5302 unsigned End = MaskElt + NumInPerOut - 1; 5303 for (; MaskElt < End; MaskElt++) 5304 Mask[MaskElt] = ZeroVecElt++; 5305 Mask[MaskElt] = PackedElt; 5306 } 5307 SDValue Shuf = DAG.getVectorShuffle(InVT, DL, PackedOp, ZeroVec, Mask); 5308 return DAG.getNode(ISD::BITCAST, DL, OutVT, Shuf); 5309 } 5310 5311 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG, 5312 unsigned ByScalar) const { 5313 // Look for cases where a vector shift can use the *_BY_SCALAR form. 5314 SDValue Op0 = Op.getOperand(0); 5315 SDValue Op1 = Op.getOperand(1); 5316 SDLoc DL(Op); 5317 EVT VT = Op.getValueType(); 5318 unsigned ElemBitSize = VT.getScalarSizeInBits(); 5319 5320 // See whether the shift vector is a splat represented as BUILD_VECTOR. 5321 if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) { 5322 APInt SplatBits, SplatUndef; 5323 unsigned SplatBitSize; 5324 bool HasAnyUndefs; 5325 // Check for constant splats. Use ElemBitSize as the minimum element 5326 // width and reject splats that need wider elements. 5327 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 5328 ElemBitSize, true) && 5329 SplatBitSize == ElemBitSize) { 5330 SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff, 5331 DL, MVT::i32); 5332 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 5333 } 5334 // Check for variable splats. 5335 BitVector UndefElements; 5336 SDValue Splat = BVN->getSplatValue(&UndefElements); 5337 if (Splat) { 5338 // Since i32 is the smallest legal type, we either need a no-op 5339 // or a truncation. 5340 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat); 5341 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 5342 } 5343 } 5344 5345 // See whether the shift vector is a splat represented as SHUFFLE_VECTOR, 5346 // and the shift amount is directly available in a GPR. 5347 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) { 5348 if (VSN->isSplat()) { 5349 SDValue VSNOp0 = VSN->getOperand(0); 5350 unsigned Index = VSN->getSplatIndex(); 5351 assert(Index < VT.getVectorNumElements() && 5352 "Splat index should be defined and in first operand"); 5353 if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 5354 VSNOp0.getOpcode() == ISD::BUILD_VECTOR) { 5355 // Since i32 is the smallest legal type, we either need a no-op 5356 // or a truncation. 5357 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, 5358 VSNOp0.getOperand(Index)); 5359 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 5360 } 5361 } 5362 } 5363 5364 // Otherwise just treat the current form as legal. 5365 return Op; 5366 } 5367 5368 SDValue SystemZTargetLowering::LowerOperation(SDValue Op, 5369 SelectionDAG &DAG) const { 5370 switch (Op.getOpcode()) { 5371 case ISD::FRAMEADDR: 5372 return lowerFRAMEADDR(Op, DAG); 5373 case ISD::RETURNADDR: 5374 return lowerRETURNADDR(Op, DAG); 5375 case ISD::BR_CC: 5376 return lowerBR_CC(Op, DAG); 5377 case ISD::SELECT_CC: 5378 return lowerSELECT_CC(Op, DAG); 5379 case ISD::SETCC: 5380 return lowerSETCC(Op, DAG); 5381 case ISD::STRICT_FSETCC: 5382 return lowerSTRICT_FSETCC(Op, DAG, false); 5383 case ISD::STRICT_FSETCCS: 5384 return lowerSTRICT_FSETCC(Op, DAG, true); 5385 case ISD::GlobalAddress: 5386 return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG); 5387 case ISD::GlobalTLSAddress: 5388 return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG); 5389 case ISD::BlockAddress: 5390 return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG); 5391 case ISD::JumpTable: 5392 return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG); 5393 case ISD::ConstantPool: 5394 return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG); 5395 case ISD::BITCAST: 5396 return lowerBITCAST(Op, DAG); 5397 case ISD::VASTART: 5398 return lowerVASTART(Op, DAG); 5399 case ISD::VACOPY: 5400 return lowerVACOPY(Op, DAG); 5401 case ISD::DYNAMIC_STACKALLOC: 5402 return lowerDYNAMIC_STACKALLOC(Op, DAG); 5403 case ISD::GET_DYNAMIC_AREA_OFFSET: 5404 return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 5405 case ISD::SMUL_LOHI: 5406 return lowerSMUL_LOHI(Op, DAG); 5407 case ISD::UMUL_LOHI: 5408 return lowerUMUL_LOHI(Op, DAG); 5409 case ISD::SDIVREM: 5410 return lowerSDIVREM(Op, DAG); 5411 case ISD::UDIVREM: 5412 return lowerUDIVREM(Op, DAG); 5413 case ISD::SADDO: 5414 case ISD::SSUBO: 5415 case ISD::UADDO: 5416 case ISD::USUBO: 5417 return lowerXALUO(Op, DAG); 5418 case ISD::ADDCARRY: 5419 case ISD::SUBCARRY: 5420 return lowerADDSUBCARRY(Op, DAG); 5421 case ISD::OR: 5422 return lowerOR(Op, DAG); 5423 case ISD::CTPOP: 5424 return lowerCTPOP(Op, DAG); 5425 case ISD::ATOMIC_FENCE: 5426 return lowerATOMIC_FENCE(Op, DAG); 5427 case ISD::ATOMIC_SWAP: 5428 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW); 5429 case ISD::ATOMIC_STORE: 5430 return lowerATOMIC_STORE(Op, DAG); 5431 case ISD::ATOMIC_LOAD: 5432 return lowerATOMIC_LOAD(Op, DAG); 5433 case ISD::ATOMIC_LOAD_ADD: 5434 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD); 5435 case ISD::ATOMIC_LOAD_SUB: 5436 return lowerATOMIC_LOAD_SUB(Op, DAG); 5437 case ISD::ATOMIC_LOAD_AND: 5438 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND); 5439 case ISD::ATOMIC_LOAD_OR: 5440 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR); 5441 case ISD::ATOMIC_LOAD_XOR: 5442 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR); 5443 case ISD::ATOMIC_LOAD_NAND: 5444 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND); 5445 case ISD::ATOMIC_LOAD_MIN: 5446 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN); 5447 case ISD::ATOMIC_LOAD_MAX: 5448 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX); 5449 case ISD::ATOMIC_LOAD_UMIN: 5450 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN); 5451 case ISD::ATOMIC_LOAD_UMAX: 5452 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX); 5453 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 5454 return lowerATOMIC_CMP_SWAP(Op, DAG); 5455 case ISD::STACKSAVE: 5456 return lowerSTACKSAVE(Op, DAG); 5457 case ISD::STACKRESTORE: 5458 return lowerSTACKRESTORE(Op, DAG); 5459 case ISD::PREFETCH: 5460 return lowerPREFETCH(Op, DAG); 5461 case ISD::INTRINSIC_W_CHAIN: 5462 return lowerINTRINSIC_W_CHAIN(Op, DAG); 5463 case ISD::INTRINSIC_WO_CHAIN: 5464 return lowerINTRINSIC_WO_CHAIN(Op, DAG); 5465 case ISD::BUILD_VECTOR: 5466 return lowerBUILD_VECTOR(Op, DAG); 5467 case ISD::VECTOR_SHUFFLE: 5468 return lowerVECTOR_SHUFFLE(Op, DAG); 5469 case ISD::SCALAR_TO_VECTOR: 5470 return lowerSCALAR_TO_VECTOR(Op, DAG); 5471 case ISD::INSERT_VECTOR_ELT: 5472 return lowerINSERT_VECTOR_ELT(Op, DAG); 5473 case ISD::EXTRACT_VECTOR_ELT: 5474 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 5475 case ISD::SIGN_EXTEND_VECTOR_INREG: 5476 return lowerSIGN_EXTEND_VECTOR_INREG(Op, DAG); 5477 case ISD::ZERO_EXTEND_VECTOR_INREG: 5478 return lowerZERO_EXTEND_VECTOR_INREG(Op, DAG); 5479 case ISD::SHL: 5480 return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR); 5481 case ISD::SRL: 5482 return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR); 5483 case ISD::SRA: 5484 return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR); 5485 default: 5486 llvm_unreachable("Unexpected node to lower"); 5487 } 5488 } 5489 5490 // Lower operations with invalid operand or result types (currently used 5491 // only for 128-bit integer types). 5492 5493 static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) { 5494 SDLoc DL(In); 5495 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In, 5496 DAG.getIntPtrConstant(0, DL)); 5497 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In, 5498 DAG.getIntPtrConstant(1, DL)); 5499 SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL, 5500 MVT::Untyped, Hi, Lo); 5501 return SDValue(Pair, 0); 5502 } 5503 5504 static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) { 5505 SDLoc DL(In); 5506 SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64, 5507 DL, MVT::i64, In); 5508 SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64, 5509 DL, MVT::i64, In); 5510 return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi); 5511 } 5512 5513 void 5514 SystemZTargetLowering::LowerOperationWrapper(SDNode *N, 5515 SmallVectorImpl<SDValue> &Results, 5516 SelectionDAG &DAG) const { 5517 switch (N->getOpcode()) { 5518 case ISD::ATOMIC_LOAD: { 5519 SDLoc DL(N); 5520 SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other); 5521 SDValue Ops[] = { N->getOperand(0), N->getOperand(1) }; 5522 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 5523 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128, 5524 DL, Tys, Ops, MVT::i128, MMO); 5525 Results.push_back(lowerGR128ToI128(DAG, Res)); 5526 Results.push_back(Res.getValue(1)); 5527 break; 5528 } 5529 case ISD::ATOMIC_STORE: { 5530 SDLoc DL(N); 5531 SDVTList Tys = DAG.getVTList(MVT::Other); 5532 SDValue Ops[] = { N->getOperand(0), 5533 lowerI128ToGR128(DAG, N->getOperand(2)), 5534 N->getOperand(1) }; 5535 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 5536 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128, 5537 DL, Tys, Ops, MVT::i128, MMO); 5538 // We have to enforce sequential consistency by performing a 5539 // serialization operation after the store. 5540 if (cast<AtomicSDNode>(N)->getOrdering() == 5541 AtomicOrdering::SequentiallyConsistent) 5542 Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, 5543 MVT::Other, Res), 0); 5544 Results.push_back(Res); 5545 break; 5546 } 5547 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: { 5548 SDLoc DL(N); 5549 SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other); 5550 SDValue Ops[] = { N->getOperand(0), N->getOperand(1), 5551 lowerI128ToGR128(DAG, N->getOperand(2)), 5552 lowerI128ToGR128(DAG, N->getOperand(3)) }; 5553 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 5554 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128, 5555 DL, Tys, Ops, MVT::i128, MMO); 5556 SDValue Success = emitSETCC(DAG, DL, Res.getValue(1), 5557 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ); 5558 Success = DAG.getZExtOrTrunc(Success, DL, N->getValueType(1)); 5559 Results.push_back(lowerGR128ToI128(DAG, Res)); 5560 Results.push_back(Success); 5561 Results.push_back(Res.getValue(2)); 5562 break; 5563 } 5564 default: 5565 llvm_unreachable("Unexpected node to lower"); 5566 } 5567 } 5568 5569 void 5570 SystemZTargetLowering::ReplaceNodeResults(SDNode *N, 5571 SmallVectorImpl<SDValue> &Results, 5572 SelectionDAG &DAG) const { 5573 return LowerOperationWrapper(N, Results, DAG); 5574 } 5575 5576 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const { 5577 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME 5578 switch ((SystemZISD::NodeType)Opcode) { 5579 case SystemZISD::FIRST_NUMBER: break; 5580 OPCODE(RET_FLAG); 5581 OPCODE(CALL); 5582 OPCODE(SIBCALL); 5583 OPCODE(TLS_GDCALL); 5584 OPCODE(TLS_LDCALL); 5585 OPCODE(PCREL_WRAPPER); 5586 OPCODE(PCREL_OFFSET); 5587 OPCODE(ICMP); 5588 OPCODE(FCMP); 5589 OPCODE(STRICT_FCMP); 5590 OPCODE(STRICT_FCMPS); 5591 OPCODE(TM); 5592 OPCODE(BR_CCMASK); 5593 OPCODE(SELECT_CCMASK); 5594 OPCODE(ADJDYNALLOC); 5595 OPCODE(PROBED_ALLOCA); 5596 OPCODE(POPCNT); 5597 OPCODE(SMUL_LOHI); 5598 OPCODE(UMUL_LOHI); 5599 OPCODE(SDIVREM); 5600 OPCODE(UDIVREM); 5601 OPCODE(SADDO); 5602 OPCODE(SSUBO); 5603 OPCODE(UADDO); 5604 OPCODE(USUBO); 5605 OPCODE(ADDCARRY); 5606 OPCODE(SUBCARRY); 5607 OPCODE(GET_CCMASK); 5608 OPCODE(MVC); 5609 OPCODE(MVC_LOOP); 5610 OPCODE(NC); 5611 OPCODE(NC_LOOP); 5612 OPCODE(OC); 5613 OPCODE(OC_LOOP); 5614 OPCODE(XC); 5615 OPCODE(XC_LOOP); 5616 OPCODE(CLC); 5617 OPCODE(CLC_LOOP); 5618 OPCODE(STPCPY); 5619 OPCODE(STRCMP); 5620 OPCODE(SEARCH_STRING); 5621 OPCODE(IPM); 5622 OPCODE(MEMBARRIER); 5623 OPCODE(TBEGIN); 5624 OPCODE(TBEGIN_NOFLOAT); 5625 OPCODE(TEND); 5626 OPCODE(BYTE_MASK); 5627 OPCODE(ROTATE_MASK); 5628 OPCODE(REPLICATE); 5629 OPCODE(JOIN_DWORDS); 5630 OPCODE(SPLAT); 5631 OPCODE(MERGE_HIGH); 5632 OPCODE(MERGE_LOW); 5633 OPCODE(SHL_DOUBLE); 5634 OPCODE(PERMUTE_DWORDS); 5635 OPCODE(PERMUTE); 5636 OPCODE(PACK); 5637 OPCODE(PACKS_CC); 5638 OPCODE(PACKLS_CC); 5639 OPCODE(UNPACK_HIGH); 5640 OPCODE(UNPACKL_HIGH); 5641 OPCODE(UNPACK_LOW); 5642 OPCODE(UNPACKL_LOW); 5643 OPCODE(VSHL_BY_SCALAR); 5644 OPCODE(VSRL_BY_SCALAR); 5645 OPCODE(VSRA_BY_SCALAR); 5646 OPCODE(VSUM); 5647 OPCODE(VICMPE); 5648 OPCODE(VICMPH); 5649 OPCODE(VICMPHL); 5650 OPCODE(VICMPES); 5651 OPCODE(VICMPHS); 5652 OPCODE(VICMPHLS); 5653 OPCODE(VFCMPE); 5654 OPCODE(STRICT_VFCMPE); 5655 OPCODE(STRICT_VFCMPES); 5656 OPCODE(VFCMPH); 5657 OPCODE(STRICT_VFCMPH); 5658 OPCODE(STRICT_VFCMPHS); 5659 OPCODE(VFCMPHE); 5660 OPCODE(STRICT_VFCMPHE); 5661 OPCODE(STRICT_VFCMPHES); 5662 OPCODE(VFCMPES); 5663 OPCODE(VFCMPHS); 5664 OPCODE(VFCMPHES); 5665 OPCODE(VFTCI); 5666 OPCODE(VEXTEND); 5667 OPCODE(STRICT_VEXTEND); 5668 OPCODE(VROUND); 5669 OPCODE(STRICT_VROUND); 5670 OPCODE(VTM); 5671 OPCODE(VFAE_CC); 5672 OPCODE(VFAEZ_CC); 5673 OPCODE(VFEE_CC); 5674 OPCODE(VFEEZ_CC); 5675 OPCODE(VFENE_CC); 5676 OPCODE(VFENEZ_CC); 5677 OPCODE(VISTR_CC); 5678 OPCODE(VSTRC_CC); 5679 OPCODE(VSTRCZ_CC); 5680 OPCODE(VSTRS_CC); 5681 OPCODE(VSTRSZ_CC); 5682 OPCODE(TDC); 5683 OPCODE(ATOMIC_SWAPW); 5684 OPCODE(ATOMIC_LOADW_ADD); 5685 OPCODE(ATOMIC_LOADW_SUB); 5686 OPCODE(ATOMIC_LOADW_AND); 5687 OPCODE(ATOMIC_LOADW_OR); 5688 OPCODE(ATOMIC_LOADW_XOR); 5689 OPCODE(ATOMIC_LOADW_NAND); 5690 OPCODE(ATOMIC_LOADW_MIN); 5691 OPCODE(ATOMIC_LOADW_MAX); 5692 OPCODE(ATOMIC_LOADW_UMIN); 5693 OPCODE(ATOMIC_LOADW_UMAX); 5694 OPCODE(ATOMIC_CMP_SWAPW); 5695 OPCODE(ATOMIC_CMP_SWAP); 5696 OPCODE(ATOMIC_LOAD_128); 5697 OPCODE(ATOMIC_STORE_128); 5698 OPCODE(ATOMIC_CMP_SWAP_128); 5699 OPCODE(LRV); 5700 OPCODE(STRV); 5701 OPCODE(VLER); 5702 OPCODE(VSTER); 5703 OPCODE(PREFETCH); 5704 } 5705 return nullptr; 5706 #undef OPCODE 5707 } 5708 5709 // Return true if VT is a vector whose elements are a whole number of bytes 5710 // in width. Also check for presence of vector support. 5711 bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const { 5712 if (!Subtarget.hasVector()) 5713 return false; 5714 5715 return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple(); 5716 } 5717 5718 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT 5719 // producing a result of type ResVT. Op is a possibly bitcast version 5720 // of the input vector and Index is the index (based on type VecVT) that 5721 // should be extracted. Return the new extraction if a simplification 5722 // was possible or if Force is true. 5723 SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT, 5724 EVT VecVT, SDValue Op, 5725 unsigned Index, 5726 DAGCombinerInfo &DCI, 5727 bool Force) const { 5728 SelectionDAG &DAG = DCI.DAG; 5729 5730 // The number of bytes being extracted. 5731 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 5732 5733 for (;;) { 5734 unsigned Opcode = Op.getOpcode(); 5735 if (Opcode == ISD::BITCAST) 5736 // Look through bitcasts. 5737 Op = Op.getOperand(0); 5738 else if ((Opcode == ISD::VECTOR_SHUFFLE || Opcode == SystemZISD::SPLAT) && 5739 canTreatAsByteVector(Op.getValueType())) { 5740 // Get a VPERM-like permute mask and see whether the bytes covered 5741 // by the extracted element are a contiguous sequence from one 5742 // source operand. 5743 SmallVector<int, SystemZ::VectorBytes> Bytes; 5744 if (!getVPermMask(Op, Bytes)) 5745 break; 5746 int First; 5747 if (!getShuffleInput(Bytes, Index * BytesPerElement, 5748 BytesPerElement, First)) 5749 break; 5750 if (First < 0) 5751 return DAG.getUNDEF(ResVT); 5752 // Make sure the contiguous sequence starts at a multiple of the 5753 // original element size. 5754 unsigned Byte = unsigned(First) % Bytes.size(); 5755 if (Byte % BytesPerElement != 0) 5756 break; 5757 // We can get the extracted value directly from an input. 5758 Index = Byte / BytesPerElement; 5759 Op = Op.getOperand(unsigned(First) / Bytes.size()); 5760 Force = true; 5761 } else if (Opcode == ISD::BUILD_VECTOR && 5762 canTreatAsByteVector(Op.getValueType())) { 5763 // We can only optimize this case if the BUILD_VECTOR elements are 5764 // at least as wide as the extracted value. 5765 EVT OpVT = Op.getValueType(); 5766 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 5767 if (OpBytesPerElement < BytesPerElement) 5768 break; 5769 // Make sure that the least-significant bit of the extracted value 5770 // is the least significant bit of an input. 5771 unsigned End = (Index + 1) * BytesPerElement; 5772 if (End % OpBytesPerElement != 0) 5773 break; 5774 // We're extracting the low part of one operand of the BUILD_VECTOR. 5775 Op = Op.getOperand(End / OpBytesPerElement - 1); 5776 if (!Op.getValueType().isInteger()) { 5777 EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits()); 5778 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 5779 DCI.AddToWorklist(Op.getNode()); 5780 } 5781 EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits()); 5782 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 5783 if (VT != ResVT) { 5784 DCI.AddToWorklist(Op.getNode()); 5785 Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op); 5786 } 5787 return Op; 5788 } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG || 5789 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG || 5790 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) && 5791 canTreatAsByteVector(Op.getValueType()) && 5792 canTreatAsByteVector(Op.getOperand(0).getValueType())) { 5793 // Make sure that only the unextended bits are significant. 5794 EVT ExtVT = Op.getValueType(); 5795 EVT OpVT = Op.getOperand(0).getValueType(); 5796 unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize(); 5797 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 5798 unsigned Byte = Index * BytesPerElement; 5799 unsigned SubByte = Byte % ExtBytesPerElement; 5800 unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement; 5801 if (SubByte < MinSubByte || 5802 SubByte + BytesPerElement > ExtBytesPerElement) 5803 break; 5804 // Get the byte offset of the unextended element 5805 Byte = Byte / ExtBytesPerElement * OpBytesPerElement; 5806 // ...then add the byte offset relative to that element. 5807 Byte += SubByte - MinSubByte; 5808 if (Byte % BytesPerElement != 0) 5809 break; 5810 Op = Op.getOperand(0); 5811 Index = Byte / BytesPerElement; 5812 Force = true; 5813 } else 5814 break; 5815 } 5816 if (Force) { 5817 if (Op.getValueType() != VecVT) { 5818 Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op); 5819 DCI.AddToWorklist(Op.getNode()); 5820 } 5821 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op, 5822 DAG.getConstant(Index, DL, MVT::i32)); 5823 } 5824 return SDValue(); 5825 } 5826 5827 // Optimize vector operations in scalar value Op on the basis that Op 5828 // is truncated to TruncVT. 5829 SDValue SystemZTargetLowering::combineTruncateExtract( 5830 const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const { 5831 // If we have (trunc (extract_vector_elt X, Y)), try to turn it into 5832 // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements 5833 // of type TruncVT. 5834 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5835 TruncVT.getSizeInBits() % 8 == 0) { 5836 SDValue Vec = Op.getOperand(0); 5837 EVT VecVT = Vec.getValueType(); 5838 if (canTreatAsByteVector(VecVT)) { 5839 if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 5840 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 5841 unsigned TruncBytes = TruncVT.getStoreSize(); 5842 if (BytesPerElement % TruncBytes == 0) { 5843 // Calculate the value of Y' in the above description. We are 5844 // splitting the original elements into Scale equal-sized pieces 5845 // and for truncation purposes want the last (least-significant) 5846 // of these pieces for IndexN. This is easiest to do by calculating 5847 // the start index of the following element and then subtracting 1. 5848 unsigned Scale = BytesPerElement / TruncBytes; 5849 unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1; 5850 5851 // Defer the creation of the bitcast from X to combineExtract, 5852 // which might be able to optimize the extraction. 5853 VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8), 5854 VecVT.getStoreSize() / TruncBytes); 5855 EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT); 5856 return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true); 5857 } 5858 } 5859 } 5860 } 5861 return SDValue(); 5862 } 5863 5864 SDValue SystemZTargetLowering::combineZERO_EXTEND( 5865 SDNode *N, DAGCombinerInfo &DCI) const { 5866 // Convert (zext (select_ccmask C1, C2)) into (select_ccmask C1', C2') 5867 SelectionDAG &DAG = DCI.DAG; 5868 SDValue N0 = N->getOperand(0); 5869 EVT VT = N->getValueType(0); 5870 if (N0.getOpcode() == SystemZISD::SELECT_CCMASK) { 5871 auto *TrueOp = dyn_cast<ConstantSDNode>(N0.getOperand(0)); 5872 auto *FalseOp = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 5873 if (TrueOp && FalseOp) { 5874 SDLoc DL(N0); 5875 SDValue Ops[] = { DAG.getConstant(TrueOp->getZExtValue(), DL, VT), 5876 DAG.getConstant(FalseOp->getZExtValue(), DL, VT), 5877 N0.getOperand(2), N0.getOperand(3), N0.getOperand(4) }; 5878 SDValue NewSelect = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VT, Ops); 5879 // If N0 has multiple uses, change other uses as well. 5880 if (!N0.hasOneUse()) { 5881 SDValue TruncSelect = 5882 DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), NewSelect); 5883 DCI.CombineTo(N0.getNode(), TruncSelect); 5884 } 5885 return NewSelect; 5886 } 5887 } 5888 return SDValue(); 5889 } 5890 5891 SDValue SystemZTargetLowering::combineSIGN_EXTEND_INREG( 5892 SDNode *N, DAGCombinerInfo &DCI) const { 5893 // Convert (sext_in_reg (setcc LHS, RHS, COND), i1) 5894 // and (sext_in_reg (any_extend (setcc LHS, RHS, COND)), i1) 5895 // into (select_cc LHS, RHS, -1, 0, COND) 5896 SelectionDAG &DAG = DCI.DAG; 5897 SDValue N0 = N->getOperand(0); 5898 EVT VT = N->getValueType(0); 5899 EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 5900 if (N0.hasOneUse() && N0.getOpcode() == ISD::ANY_EXTEND) 5901 N0 = N0.getOperand(0); 5902 if (EVT == MVT::i1 && N0.hasOneUse() && N0.getOpcode() == ISD::SETCC) { 5903 SDLoc DL(N0); 5904 SDValue Ops[] = { N0.getOperand(0), N0.getOperand(1), 5905 DAG.getConstant(-1, DL, VT), DAG.getConstant(0, DL, VT), 5906 N0.getOperand(2) }; 5907 return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops); 5908 } 5909 return SDValue(); 5910 } 5911 5912 SDValue SystemZTargetLowering::combineSIGN_EXTEND( 5913 SDNode *N, DAGCombinerInfo &DCI) const { 5914 // Convert (sext (ashr (shl X, C1), C2)) to 5915 // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as 5916 // cheap as narrower ones. 5917 SelectionDAG &DAG = DCI.DAG; 5918 SDValue N0 = N->getOperand(0); 5919 EVT VT = N->getValueType(0); 5920 if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) { 5921 auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 5922 SDValue Inner = N0.getOperand(0); 5923 if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) { 5924 if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) { 5925 unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits()); 5926 unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra; 5927 unsigned NewSraAmt = SraAmt->getZExtValue() + Extra; 5928 EVT ShiftVT = N0.getOperand(1).getValueType(); 5929 SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT, 5930 Inner.getOperand(0)); 5931 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext, 5932 DAG.getConstant(NewShlAmt, SDLoc(Inner), 5933 ShiftVT)); 5934 return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, 5935 DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT)); 5936 } 5937 } 5938 } 5939 return SDValue(); 5940 } 5941 5942 SDValue SystemZTargetLowering::combineMERGE( 5943 SDNode *N, DAGCombinerInfo &DCI) const { 5944 SelectionDAG &DAG = DCI.DAG; 5945 unsigned Opcode = N->getOpcode(); 5946 SDValue Op0 = N->getOperand(0); 5947 SDValue Op1 = N->getOperand(1); 5948 if (Op0.getOpcode() == ISD::BITCAST) 5949 Op0 = Op0.getOperand(0); 5950 if (ISD::isBuildVectorAllZeros(Op0.getNode())) { 5951 // (z_merge_* 0, 0) -> 0. This is mostly useful for using VLLEZF 5952 // for v4f32. 5953 if (Op1 == N->getOperand(0)) 5954 return Op1; 5955 // (z_merge_? 0, X) -> (z_unpackl_? 0, X). 5956 EVT VT = Op1.getValueType(); 5957 unsigned ElemBytes = VT.getVectorElementType().getStoreSize(); 5958 if (ElemBytes <= 4) { 5959 Opcode = (Opcode == SystemZISD::MERGE_HIGH ? 5960 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW); 5961 EVT InVT = VT.changeVectorElementTypeToInteger(); 5962 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16), 5963 SystemZ::VectorBytes / ElemBytes / 2); 5964 if (VT != InVT) { 5965 Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1); 5966 DCI.AddToWorklist(Op1.getNode()); 5967 } 5968 SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1); 5969 DCI.AddToWorklist(Op.getNode()); 5970 return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op); 5971 } 5972 } 5973 return SDValue(); 5974 } 5975 5976 SDValue SystemZTargetLowering::combineLOAD( 5977 SDNode *N, DAGCombinerInfo &DCI) const { 5978 SelectionDAG &DAG = DCI.DAG; 5979 EVT LdVT = N->getValueType(0); 5980 if (LdVT.isVector() || LdVT.isInteger()) 5981 return SDValue(); 5982 // Transform a scalar load that is REPLICATEd as well as having other 5983 // use(s) to the form where the other use(s) use the first element of the 5984 // REPLICATE instead of the load. Otherwise instruction selection will not 5985 // produce a VLREP. Avoid extracting to a GPR, so only do this for floating 5986 // point loads. 5987 5988 SDValue Replicate; 5989 SmallVector<SDNode*, 8> OtherUses; 5990 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 5991 UI != UE; ++UI) { 5992 if (UI->getOpcode() == SystemZISD::REPLICATE) { 5993 if (Replicate) 5994 return SDValue(); // Should never happen 5995 Replicate = SDValue(*UI, 0); 5996 } 5997 else if (UI.getUse().getResNo() == 0) 5998 OtherUses.push_back(*UI); 5999 } 6000 if (!Replicate || OtherUses.empty()) 6001 return SDValue(); 6002 6003 SDLoc DL(N); 6004 SDValue Extract0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, LdVT, 6005 Replicate, DAG.getConstant(0, DL, MVT::i32)); 6006 // Update uses of the loaded Value while preserving old chains. 6007 for (SDNode *U : OtherUses) { 6008 SmallVector<SDValue, 8> Ops; 6009 for (SDValue Op : U->ops()) 6010 Ops.push_back((Op.getNode() == N && Op.getResNo() == 0) ? Extract0 : Op); 6011 DAG.UpdateNodeOperands(U, Ops); 6012 } 6013 return SDValue(N, 0); 6014 } 6015 6016 bool SystemZTargetLowering::canLoadStoreByteSwapped(EVT VT) const { 6017 if (VT == MVT::i16 || VT == MVT::i32 || VT == MVT::i64) 6018 return true; 6019 if (Subtarget.hasVectorEnhancements2()) 6020 if (VT == MVT::v8i16 || VT == MVT::v4i32 || VT == MVT::v2i64) 6021 return true; 6022 return false; 6023 } 6024 6025 static bool isVectorElementSwap(ArrayRef<int> M, EVT VT) { 6026 if (!VT.isVector() || !VT.isSimple() || 6027 VT.getSizeInBits() != 128 || 6028 VT.getScalarSizeInBits() % 8 != 0) 6029 return false; 6030 6031 unsigned NumElts = VT.getVectorNumElements(); 6032 for (unsigned i = 0; i < NumElts; ++i) { 6033 if (M[i] < 0) continue; // ignore UNDEF indices 6034 if ((unsigned) M[i] != NumElts - 1 - i) 6035 return false; 6036 } 6037 6038 return true; 6039 } 6040 6041 SDValue SystemZTargetLowering::combineSTORE( 6042 SDNode *N, DAGCombinerInfo &DCI) const { 6043 SelectionDAG &DAG = DCI.DAG; 6044 auto *SN = cast<StoreSDNode>(N); 6045 auto &Op1 = N->getOperand(1); 6046 EVT MemVT = SN->getMemoryVT(); 6047 // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better 6048 // for the extraction to be done on a vMiN value, so that we can use VSTE. 6049 // If X has wider elements then convert it to: 6050 // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z). 6051 if (MemVT.isInteger() && SN->isTruncatingStore()) { 6052 if (SDValue Value = 6053 combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) { 6054 DCI.AddToWorklist(Value.getNode()); 6055 6056 // Rewrite the store with the new form of stored value. 6057 return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value, 6058 SN->getBasePtr(), SN->getMemoryVT(), 6059 SN->getMemOperand()); 6060 } 6061 } 6062 // Combine STORE (BSWAP) into STRVH/STRV/STRVG/VSTBR 6063 if (!SN->isTruncatingStore() && 6064 Op1.getOpcode() == ISD::BSWAP && 6065 Op1.getNode()->hasOneUse() && 6066 canLoadStoreByteSwapped(Op1.getValueType())) { 6067 6068 SDValue BSwapOp = Op1.getOperand(0); 6069 6070 if (BSwapOp.getValueType() == MVT::i16) 6071 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp); 6072 6073 SDValue Ops[] = { 6074 N->getOperand(0), BSwapOp, N->getOperand(2) 6075 }; 6076 6077 return 6078 DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other), 6079 Ops, MemVT, SN->getMemOperand()); 6080 } 6081 // Combine STORE (element-swap) into VSTER 6082 if (!SN->isTruncatingStore() && 6083 Op1.getOpcode() == ISD::VECTOR_SHUFFLE && 6084 Op1.getNode()->hasOneUse() && 6085 Subtarget.hasVectorEnhancements2()) { 6086 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op1.getNode()); 6087 ArrayRef<int> ShuffleMask = SVN->getMask(); 6088 if (isVectorElementSwap(ShuffleMask, Op1.getValueType())) { 6089 SDValue Ops[] = { 6090 N->getOperand(0), Op1.getOperand(0), N->getOperand(2) 6091 }; 6092 6093 return DAG.getMemIntrinsicNode(SystemZISD::VSTER, SDLoc(N), 6094 DAG.getVTList(MVT::Other), 6095 Ops, MemVT, SN->getMemOperand()); 6096 } 6097 } 6098 6099 return SDValue(); 6100 } 6101 6102 SDValue SystemZTargetLowering::combineVECTOR_SHUFFLE( 6103 SDNode *N, DAGCombinerInfo &DCI) const { 6104 SelectionDAG &DAG = DCI.DAG; 6105 // Combine element-swap (LOAD) into VLER 6106 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 6107 N->getOperand(0).hasOneUse() && 6108 Subtarget.hasVectorEnhancements2()) { 6109 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 6110 ArrayRef<int> ShuffleMask = SVN->getMask(); 6111 if (isVectorElementSwap(ShuffleMask, N->getValueType(0))) { 6112 SDValue Load = N->getOperand(0); 6113 LoadSDNode *LD = cast<LoadSDNode>(Load); 6114 6115 // Create the element-swapping load. 6116 SDValue Ops[] = { 6117 LD->getChain(), // Chain 6118 LD->getBasePtr() // Ptr 6119 }; 6120 SDValue ESLoad = 6121 DAG.getMemIntrinsicNode(SystemZISD::VLER, SDLoc(N), 6122 DAG.getVTList(LD->getValueType(0), MVT::Other), 6123 Ops, LD->getMemoryVT(), LD->getMemOperand()); 6124 6125 // First, combine the VECTOR_SHUFFLE away. This makes the value produced 6126 // by the load dead. 6127 DCI.CombineTo(N, ESLoad); 6128 6129 // Next, combine the load away, we give it a bogus result value but a real 6130 // chain result. The result value is dead because the shuffle is dead. 6131 DCI.CombineTo(Load.getNode(), ESLoad, ESLoad.getValue(1)); 6132 6133 // Return N so it doesn't get rechecked! 6134 return SDValue(N, 0); 6135 } 6136 } 6137 6138 return SDValue(); 6139 } 6140 6141 SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT( 6142 SDNode *N, DAGCombinerInfo &DCI) const { 6143 SelectionDAG &DAG = DCI.DAG; 6144 6145 if (!Subtarget.hasVector()) 6146 return SDValue(); 6147 6148 // Look through bitcasts that retain the number of vector elements. 6149 SDValue Op = N->getOperand(0); 6150 if (Op.getOpcode() == ISD::BITCAST && 6151 Op.getValueType().isVector() && 6152 Op.getOperand(0).getValueType().isVector() && 6153 Op.getValueType().getVectorNumElements() == 6154 Op.getOperand(0).getValueType().getVectorNumElements()) 6155 Op = Op.getOperand(0); 6156 6157 // Pull BSWAP out of a vector extraction. 6158 if (Op.getOpcode() == ISD::BSWAP && Op.hasOneUse()) { 6159 EVT VecVT = Op.getValueType(); 6160 EVT EltVT = VecVT.getVectorElementType(); 6161 Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), EltVT, 6162 Op.getOperand(0), N->getOperand(1)); 6163 DCI.AddToWorklist(Op.getNode()); 6164 Op = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Op); 6165 if (EltVT != N->getValueType(0)) { 6166 DCI.AddToWorklist(Op.getNode()); 6167 Op = DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0), Op); 6168 } 6169 return Op; 6170 } 6171 6172 // Try to simplify a vector extraction. 6173 if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) { 6174 SDValue Op0 = N->getOperand(0); 6175 EVT VecVT = Op0.getValueType(); 6176 return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0, 6177 IndexN->getZExtValue(), DCI, false); 6178 } 6179 return SDValue(); 6180 } 6181 6182 SDValue SystemZTargetLowering::combineJOIN_DWORDS( 6183 SDNode *N, DAGCombinerInfo &DCI) const { 6184 SelectionDAG &DAG = DCI.DAG; 6185 // (join_dwords X, X) == (replicate X) 6186 if (N->getOperand(0) == N->getOperand(1)) 6187 return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0), 6188 N->getOperand(0)); 6189 return SDValue(); 6190 } 6191 6192 static SDValue MergeInputChains(SDNode *N1, SDNode *N2) { 6193 SDValue Chain1 = N1->getOperand(0); 6194 SDValue Chain2 = N2->getOperand(0); 6195 6196 // Trivial case: both nodes take the same chain. 6197 if (Chain1 == Chain2) 6198 return Chain1; 6199 6200 // FIXME - we could handle more complex cases via TokenFactor, 6201 // assuming we can verify that this would not create a cycle. 6202 return SDValue(); 6203 } 6204 6205 SDValue SystemZTargetLowering::combineFP_ROUND( 6206 SDNode *N, DAGCombinerInfo &DCI) const { 6207 6208 if (!Subtarget.hasVector()) 6209 return SDValue(); 6210 6211 // (fpround (extract_vector_elt X 0)) 6212 // (fpround (extract_vector_elt X 1)) -> 6213 // (extract_vector_elt (VROUND X) 0) 6214 // (extract_vector_elt (VROUND X) 2) 6215 // 6216 // This is a special case since the target doesn't really support v2f32s. 6217 unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0; 6218 SelectionDAG &DAG = DCI.DAG; 6219 SDValue Op0 = N->getOperand(OpNo); 6220 if (N->getValueType(0) == MVT::f32 && 6221 Op0.hasOneUse() && 6222 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 6223 Op0.getOperand(0).getValueType() == MVT::v2f64 && 6224 Op0.getOperand(1).getOpcode() == ISD::Constant && 6225 cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) { 6226 SDValue Vec = Op0.getOperand(0); 6227 for (auto *U : Vec->uses()) { 6228 if (U != Op0.getNode() && 6229 U->hasOneUse() && 6230 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 6231 U->getOperand(0) == Vec && 6232 U->getOperand(1).getOpcode() == ISD::Constant && 6233 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) { 6234 SDValue OtherRound = SDValue(*U->use_begin(), 0); 6235 if (OtherRound.getOpcode() == N->getOpcode() && 6236 OtherRound.getOperand(OpNo) == SDValue(U, 0) && 6237 OtherRound.getValueType() == MVT::f32) { 6238 SDValue VRound, Chain; 6239 if (N->isStrictFPOpcode()) { 6240 Chain = MergeInputChains(N, OtherRound.getNode()); 6241 if (!Chain) 6242 continue; 6243 VRound = DAG.getNode(SystemZISD::STRICT_VROUND, SDLoc(N), 6244 {MVT::v4f32, MVT::Other}, {Chain, Vec}); 6245 Chain = VRound.getValue(1); 6246 } else 6247 VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N), 6248 MVT::v4f32, Vec); 6249 DCI.AddToWorklist(VRound.getNode()); 6250 SDValue Extract1 = 6251 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32, 6252 VRound, DAG.getConstant(2, SDLoc(U), MVT::i32)); 6253 DCI.AddToWorklist(Extract1.getNode()); 6254 DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1); 6255 if (Chain) 6256 DAG.ReplaceAllUsesOfValueWith(OtherRound.getValue(1), Chain); 6257 SDValue Extract0 = 6258 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32, 6259 VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32)); 6260 if (Chain) 6261 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0), 6262 N->getVTList(), Extract0, Chain); 6263 return Extract0; 6264 } 6265 } 6266 } 6267 } 6268 return SDValue(); 6269 } 6270 6271 SDValue SystemZTargetLowering::combineFP_EXTEND( 6272 SDNode *N, DAGCombinerInfo &DCI) const { 6273 6274 if (!Subtarget.hasVector()) 6275 return SDValue(); 6276 6277 // (fpextend (extract_vector_elt X 0)) 6278 // (fpextend (extract_vector_elt X 2)) -> 6279 // (extract_vector_elt (VEXTEND X) 0) 6280 // (extract_vector_elt (VEXTEND X) 1) 6281 // 6282 // This is a special case since the target doesn't really support v2f32s. 6283 unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0; 6284 SelectionDAG &DAG = DCI.DAG; 6285 SDValue Op0 = N->getOperand(OpNo); 6286 if (N->getValueType(0) == MVT::f64 && 6287 Op0.hasOneUse() && 6288 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 6289 Op0.getOperand(0).getValueType() == MVT::v4f32 && 6290 Op0.getOperand(1).getOpcode() == ISD::Constant && 6291 cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) { 6292 SDValue Vec = Op0.getOperand(0); 6293 for (auto *U : Vec->uses()) { 6294 if (U != Op0.getNode() && 6295 U->hasOneUse() && 6296 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 6297 U->getOperand(0) == Vec && 6298 U->getOperand(1).getOpcode() == ISD::Constant && 6299 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 2) { 6300 SDValue OtherExtend = SDValue(*U->use_begin(), 0); 6301 if (OtherExtend.getOpcode() == N->getOpcode() && 6302 OtherExtend.getOperand(OpNo) == SDValue(U, 0) && 6303 OtherExtend.getValueType() == MVT::f64) { 6304 SDValue VExtend, Chain; 6305 if (N->isStrictFPOpcode()) { 6306 Chain = MergeInputChains(N, OtherExtend.getNode()); 6307 if (!Chain) 6308 continue; 6309 VExtend = DAG.getNode(SystemZISD::STRICT_VEXTEND, SDLoc(N), 6310 {MVT::v2f64, MVT::Other}, {Chain, Vec}); 6311 Chain = VExtend.getValue(1); 6312 } else 6313 VExtend = DAG.getNode(SystemZISD::VEXTEND, SDLoc(N), 6314 MVT::v2f64, Vec); 6315 DCI.AddToWorklist(VExtend.getNode()); 6316 SDValue Extract1 = 6317 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f64, 6318 VExtend, DAG.getConstant(1, SDLoc(U), MVT::i32)); 6319 DCI.AddToWorklist(Extract1.getNode()); 6320 DAG.ReplaceAllUsesOfValueWith(OtherExtend, Extract1); 6321 if (Chain) 6322 DAG.ReplaceAllUsesOfValueWith(OtherExtend.getValue(1), Chain); 6323 SDValue Extract0 = 6324 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f64, 6325 VExtend, DAG.getConstant(0, SDLoc(Op0), MVT::i32)); 6326 if (Chain) 6327 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0), 6328 N->getVTList(), Extract0, Chain); 6329 return Extract0; 6330 } 6331 } 6332 } 6333 } 6334 return SDValue(); 6335 } 6336 6337 SDValue SystemZTargetLowering::combineINT_TO_FP( 6338 SDNode *N, DAGCombinerInfo &DCI) const { 6339 if (DCI.Level != BeforeLegalizeTypes) 6340 return SDValue(); 6341 unsigned Opcode = N->getOpcode(); 6342 EVT OutVT = N->getValueType(0); 6343 SelectionDAG &DAG = DCI.DAG; 6344 SDValue Op = N->getOperand(0); 6345 unsigned OutScalarBits = OutVT.getScalarSizeInBits(); 6346 unsigned InScalarBits = Op->getValueType(0).getScalarSizeInBits(); 6347 6348 // Insert an extension before type-legalization to avoid scalarization, e.g.: 6349 // v2f64 = uint_to_fp v2i16 6350 // => 6351 // v2f64 = uint_to_fp (v2i64 zero_extend v2i16) 6352 if (OutVT.isVector() && OutScalarBits > InScalarBits) { 6353 MVT ExtVT = MVT::getVectorVT(MVT::getIntegerVT(OutVT.getScalarSizeInBits()), 6354 OutVT.getVectorNumElements()); 6355 unsigned ExtOpcode = 6356 (Opcode == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND); 6357 SDValue ExtOp = DAG.getNode(ExtOpcode, SDLoc(N), ExtVT, Op); 6358 return DAG.getNode(Opcode, SDLoc(N), OutVT, ExtOp); 6359 } 6360 return SDValue(); 6361 } 6362 6363 SDValue SystemZTargetLowering::combineBSWAP( 6364 SDNode *N, DAGCombinerInfo &DCI) const { 6365 SelectionDAG &DAG = DCI.DAG; 6366 // Combine BSWAP (LOAD) into LRVH/LRV/LRVG/VLBR 6367 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 6368 N->getOperand(0).hasOneUse() && 6369 canLoadStoreByteSwapped(N->getValueType(0))) { 6370 SDValue Load = N->getOperand(0); 6371 LoadSDNode *LD = cast<LoadSDNode>(Load); 6372 6373 // Create the byte-swapping load. 6374 SDValue Ops[] = { 6375 LD->getChain(), // Chain 6376 LD->getBasePtr() // Ptr 6377 }; 6378 EVT LoadVT = N->getValueType(0); 6379 if (LoadVT == MVT::i16) 6380 LoadVT = MVT::i32; 6381 SDValue BSLoad = 6382 DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N), 6383 DAG.getVTList(LoadVT, MVT::Other), 6384 Ops, LD->getMemoryVT(), LD->getMemOperand()); 6385 6386 // If this is an i16 load, insert the truncate. 6387 SDValue ResVal = BSLoad; 6388 if (N->getValueType(0) == MVT::i16) 6389 ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad); 6390 6391 // First, combine the bswap away. This makes the value produced by the 6392 // load dead. 6393 DCI.CombineTo(N, ResVal); 6394 6395 // Next, combine the load away, we give it a bogus result value but a real 6396 // chain result. The result value is dead because the bswap is dead. 6397 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 6398 6399 // Return N so it doesn't get rechecked! 6400 return SDValue(N, 0); 6401 } 6402 6403 // Look through bitcasts that retain the number of vector elements. 6404 SDValue Op = N->getOperand(0); 6405 if (Op.getOpcode() == ISD::BITCAST && 6406 Op.getValueType().isVector() && 6407 Op.getOperand(0).getValueType().isVector() && 6408 Op.getValueType().getVectorNumElements() == 6409 Op.getOperand(0).getValueType().getVectorNumElements()) 6410 Op = Op.getOperand(0); 6411 6412 // Push BSWAP into a vector insertion if at least one side then simplifies. 6413 if (Op.getOpcode() == ISD::INSERT_VECTOR_ELT && Op.hasOneUse()) { 6414 SDValue Vec = Op.getOperand(0); 6415 SDValue Elt = Op.getOperand(1); 6416 SDValue Idx = Op.getOperand(2); 6417 6418 if (DAG.isConstantIntBuildVectorOrConstantInt(Vec) || 6419 Vec.getOpcode() == ISD::BSWAP || Vec.isUndef() || 6420 DAG.isConstantIntBuildVectorOrConstantInt(Elt) || 6421 Elt.getOpcode() == ISD::BSWAP || Elt.isUndef() || 6422 (canLoadStoreByteSwapped(N->getValueType(0)) && 6423 ISD::isNON_EXTLoad(Elt.getNode()) && Elt.hasOneUse())) { 6424 EVT VecVT = N->getValueType(0); 6425 EVT EltVT = N->getValueType(0).getVectorElementType(); 6426 if (VecVT != Vec.getValueType()) { 6427 Vec = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Vec); 6428 DCI.AddToWorklist(Vec.getNode()); 6429 } 6430 if (EltVT != Elt.getValueType()) { 6431 Elt = DAG.getNode(ISD::BITCAST, SDLoc(N), EltVT, Elt); 6432 DCI.AddToWorklist(Elt.getNode()); 6433 } 6434 Vec = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Vec); 6435 DCI.AddToWorklist(Vec.getNode()); 6436 Elt = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Elt); 6437 DCI.AddToWorklist(Elt.getNode()); 6438 return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N), VecVT, 6439 Vec, Elt, Idx); 6440 } 6441 } 6442 6443 // Push BSWAP into a vector shuffle if at least one side then simplifies. 6444 ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(Op); 6445 if (SV && Op.hasOneUse()) { 6446 SDValue Op0 = Op.getOperand(0); 6447 SDValue Op1 = Op.getOperand(1); 6448 6449 if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) || 6450 Op0.getOpcode() == ISD::BSWAP || Op0.isUndef() || 6451 DAG.isConstantIntBuildVectorOrConstantInt(Op1) || 6452 Op1.getOpcode() == ISD::BSWAP || Op1.isUndef()) { 6453 EVT VecVT = N->getValueType(0); 6454 if (VecVT != Op0.getValueType()) { 6455 Op0 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op0); 6456 DCI.AddToWorklist(Op0.getNode()); 6457 } 6458 if (VecVT != Op1.getValueType()) { 6459 Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op1); 6460 DCI.AddToWorklist(Op1.getNode()); 6461 } 6462 Op0 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op0); 6463 DCI.AddToWorklist(Op0.getNode()); 6464 Op1 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op1); 6465 DCI.AddToWorklist(Op1.getNode()); 6466 return DAG.getVectorShuffle(VecVT, SDLoc(N), Op0, Op1, SV->getMask()); 6467 } 6468 } 6469 6470 return SDValue(); 6471 } 6472 6473 static bool combineCCMask(SDValue &CCReg, int &CCValid, int &CCMask) { 6474 // We have a SELECT_CCMASK or BR_CCMASK comparing the condition code 6475 // set by the CCReg instruction using the CCValid / CCMask masks, 6476 // If the CCReg instruction is itself a ICMP testing the condition 6477 // code set by some other instruction, see whether we can directly 6478 // use that condition code. 6479 6480 // Verify that we have an ICMP against some constant. 6481 if (CCValid != SystemZ::CCMASK_ICMP) 6482 return false; 6483 auto *ICmp = CCReg.getNode(); 6484 if (ICmp->getOpcode() != SystemZISD::ICMP) 6485 return false; 6486 auto *CompareLHS = ICmp->getOperand(0).getNode(); 6487 auto *CompareRHS = dyn_cast<ConstantSDNode>(ICmp->getOperand(1)); 6488 if (!CompareRHS) 6489 return false; 6490 6491 // Optimize the case where CompareLHS is a SELECT_CCMASK. 6492 if (CompareLHS->getOpcode() == SystemZISD::SELECT_CCMASK) { 6493 // Verify that we have an appropriate mask for a EQ or NE comparison. 6494 bool Invert = false; 6495 if (CCMask == SystemZ::CCMASK_CMP_NE) 6496 Invert = !Invert; 6497 else if (CCMask != SystemZ::CCMASK_CMP_EQ) 6498 return false; 6499 6500 // Verify that the ICMP compares against one of select values. 6501 auto *TrueVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(0)); 6502 if (!TrueVal) 6503 return false; 6504 auto *FalseVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1)); 6505 if (!FalseVal) 6506 return false; 6507 if (CompareRHS->getZExtValue() == FalseVal->getZExtValue()) 6508 Invert = !Invert; 6509 else if (CompareRHS->getZExtValue() != TrueVal->getZExtValue()) 6510 return false; 6511 6512 // Compute the effective CC mask for the new branch or select. 6513 auto *NewCCValid = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(2)); 6514 auto *NewCCMask = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(3)); 6515 if (!NewCCValid || !NewCCMask) 6516 return false; 6517 CCValid = NewCCValid->getZExtValue(); 6518 CCMask = NewCCMask->getZExtValue(); 6519 if (Invert) 6520 CCMask ^= CCValid; 6521 6522 // Return the updated CCReg link. 6523 CCReg = CompareLHS->getOperand(4); 6524 return true; 6525 } 6526 6527 // Optimize the case where CompareRHS is (SRA (SHL (IPM))). 6528 if (CompareLHS->getOpcode() == ISD::SRA) { 6529 auto *SRACount = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1)); 6530 if (!SRACount || SRACount->getZExtValue() != 30) 6531 return false; 6532 auto *SHL = CompareLHS->getOperand(0).getNode(); 6533 if (SHL->getOpcode() != ISD::SHL) 6534 return false; 6535 auto *SHLCount = dyn_cast<ConstantSDNode>(SHL->getOperand(1)); 6536 if (!SHLCount || SHLCount->getZExtValue() != 30 - SystemZ::IPM_CC) 6537 return false; 6538 auto *IPM = SHL->getOperand(0).getNode(); 6539 if (IPM->getOpcode() != SystemZISD::IPM) 6540 return false; 6541 6542 // Avoid introducing CC spills (because SRA would clobber CC). 6543 if (!CompareLHS->hasOneUse()) 6544 return false; 6545 // Verify that the ICMP compares against zero. 6546 if (CompareRHS->getZExtValue() != 0) 6547 return false; 6548 6549 // Compute the effective CC mask for the new branch or select. 6550 CCMask = SystemZ::reverseCCMask(CCMask); 6551 6552 // Return the updated CCReg link. 6553 CCReg = IPM->getOperand(0); 6554 return true; 6555 } 6556 6557 return false; 6558 } 6559 6560 SDValue SystemZTargetLowering::combineBR_CCMASK( 6561 SDNode *N, DAGCombinerInfo &DCI) const { 6562 SelectionDAG &DAG = DCI.DAG; 6563 6564 // Combine BR_CCMASK (ICMP (SELECT_CCMASK)) into a single BR_CCMASK. 6565 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1)); 6566 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2)); 6567 if (!CCValid || !CCMask) 6568 return SDValue(); 6569 6570 int CCValidVal = CCValid->getZExtValue(); 6571 int CCMaskVal = CCMask->getZExtValue(); 6572 SDValue Chain = N->getOperand(0); 6573 SDValue CCReg = N->getOperand(4); 6574 6575 if (combineCCMask(CCReg, CCValidVal, CCMaskVal)) 6576 return DAG.getNode(SystemZISD::BR_CCMASK, SDLoc(N), N->getValueType(0), 6577 Chain, 6578 DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32), 6579 DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32), 6580 N->getOperand(3), CCReg); 6581 return SDValue(); 6582 } 6583 6584 SDValue SystemZTargetLowering::combineSELECT_CCMASK( 6585 SDNode *N, DAGCombinerInfo &DCI) const { 6586 SelectionDAG &DAG = DCI.DAG; 6587 6588 // Combine SELECT_CCMASK (ICMP (SELECT_CCMASK)) into a single SELECT_CCMASK. 6589 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(2)); 6590 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(3)); 6591 if (!CCValid || !CCMask) 6592 return SDValue(); 6593 6594 int CCValidVal = CCValid->getZExtValue(); 6595 int CCMaskVal = CCMask->getZExtValue(); 6596 SDValue CCReg = N->getOperand(4); 6597 6598 if (combineCCMask(CCReg, CCValidVal, CCMaskVal)) 6599 return DAG.getNode(SystemZISD::SELECT_CCMASK, SDLoc(N), N->getValueType(0), 6600 N->getOperand(0), N->getOperand(1), 6601 DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32), 6602 DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32), 6603 CCReg); 6604 return SDValue(); 6605 } 6606 6607 6608 SDValue SystemZTargetLowering::combineGET_CCMASK( 6609 SDNode *N, DAGCombinerInfo &DCI) const { 6610 6611 // Optimize away GET_CCMASK (SELECT_CCMASK) if the CC masks are compatible 6612 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1)); 6613 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2)); 6614 if (!CCValid || !CCMask) 6615 return SDValue(); 6616 int CCValidVal = CCValid->getZExtValue(); 6617 int CCMaskVal = CCMask->getZExtValue(); 6618 6619 SDValue Select = N->getOperand(0); 6620 if (Select->getOpcode() != SystemZISD::SELECT_CCMASK) 6621 return SDValue(); 6622 6623 auto *SelectCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2)); 6624 auto *SelectCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3)); 6625 if (!SelectCCValid || !SelectCCMask) 6626 return SDValue(); 6627 int SelectCCValidVal = SelectCCValid->getZExtValue(); 6628 int SelectCCMaskVal = SelectCCMask->getZExtValue(); 6629 6630 auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0)); 6631 auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1)); 6632 if (!TrueVal || !FalseVal) 6633 return SDValue(); 6634 if (TrueVal->getZExtValue() != 0 && FalseVal->getZExtValue() == 0) 6635 ; 6636 else if (TrueVal->getZExtValue() == 0 && FalseVal->getZExtValue() != 0) 6637 SelectCCMaskVal ^= SelectCCValidVal; 6638 else 6639 return SDValue(); 6640 6641 if (SelectCCValidVal & ~CCValidVal) 6642 return SDValue(); 6643 if (SelectCCMaskVal != (CCMaskVal & SelectCCValidVal)) 6644 return SDValue(); 6645 6646 return Select->getOperand(4); 6647 } 6648 6649 SDValue SystemZTargetLowering::combineIntDIVREM( 6650 SDNode *N, DAGCombinerInfo &DCI) const { 6651 SelectionDAG &DAG = DCI.DAG; 6652 EVT VT = N->getValueType(0); 6653 // In the case where the divisor is a vector of constants a cheaper 6654 // sequence of instructions can replace the divide. BuildSDIV is called to 6655 // do this during DAG combining, but it only succeeds when it can build a 6656 // multiplication node. The only option for SystemZ is ISD::SMUL_LOHI, and 6657 // since it is not Legal but Custom it can only happen before 6658 // legalization. Therefore we must scalarize this early before Combine 6659 // 1. For widened vectors, this is already the result of type legalization. 6660 if (DCI.Level == BeforeLegalizeTypes && VT.isVector() && isTypeLegal(VT) && 6661 DAG.isConstantIntBuildVectorOrConstantInt(N->getOperand(1))) 6662 return DAG.UnrollVectorOp(N); 6663 return SDValue(); 6664 } 6665 6666 SDValue SystemZTargetLowering::combineINTRINSIC( 6667 SDNode *N, DAGCombinerInfo &DCI) const { 6668 SelectionDAG &DAG = DCI.DAG; 6669 6670 unsigned Id = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 6671 switch (Id) { 6672 // VECTOR LOAD (RIGHTMOST) WITH LENGTH with a length operand of 15 6673 // or larger is simply a vector load. 6674 case Intrinsic::s390_vll: 6675 case Intrinsic::s390_vlrl: 6676 if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(2))) 6677 if (C->getZExtValue() >= 15) 6678 return DAG.getLoad(N->getValueType(0), SDLoc(N), N->getOperand(0), 6679 N->getOperand(3), MachinePointerInfo()); 6680 break; 6681 // Likewise for VECTOR STORE (RIGHTMOST) WITH LENGTH. 6682 case Intrinsic::s390_vstl: 6683 case Intrinsic::s390_vstrl: 6684 if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(3))) 6685 if (C->getZExtValue() >= 15) 6686 return DAG.getStore(N->getOperand(0), SDLoc(N), N->getOperand(2), 6687 N->getOperand(4), MachinePointerInfo()); 6688 break; 6689 } 6690 6691 return SDValue(); 6692 } 6693 6694 SDValue SystemZTargetLowering::unwrapAddress(SDValue N) const { 6695 if (N->getOpcode() == SystemZISD::PCREL_WRAPPER) 6696 return N->getOperand(0); 6697 return N; 6698 } 6699 6700 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N, 6701 DAGCombinerInfo &DCI) const { 6702 switch(N->getOpcode()) { 6703 default: break; 6704 case ISD::ZERO_EXTEND: return combineZERO_EXTEND(N, DCI); 6705 case ISD::SIGN_EXTEND: return combineSIGN_EXTEND(N, DCI); 6706 case ISD::SIGN_EXTEND_INREG: return combineSIGN_EXTEND_INREG(N, DCI); 6707 case SystemZISD::MERGE_HIGH: 6708 case SystemZISD::MERGE_LOW: return combineMERGE(N, DCI); 6709 case ISD::LOAD: return combineLOAD(N, DCI); 6710 case ISD::STORE: return combineSTORE(N, DCI); 6711 case ISD::VECTOR_SHUFFLE: return combineVECTOR_SHUFFLE(N, DCI); 6712 case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI); 6713 case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI); 6714 case ISD::STRICT_FP_ROUND: 6715 case ISD::FP_ROUND: return combineFP_ROUND(N, DCI); 6716 case ISD::STRICT_FP_EXTEND: 6717 case ISD::FP_EXTEND: return combineFP_EXTEND(N, DCI); 6718 case ISD::SINT_TO_FP: 6719 case ISD::UINT_TO_FP: return combineINT_TO_FP(N, DCI); 6720 case ISD::BSWAP: return combineBSWAP(N, DCI); 6721 case SystemZISD::BR_CCMASK: return combineBR_CCMASK(N, DCI); 6722 case SystemZISD::SELECT_CCMASK: return combineSELECT_CCMASK(N, DCI); 6723 case SystemZISD::GET_CCMASK: return combineGET_CCMASK(N, DCI); 6724 case ISD::SDIV: 6725 case ISD::UDIV: 6726 case ISD::SREM: 6727 case ISD::UREM: return combineIntDIVREM(N, DCI); 6728 case ISD::INTRINSIC_W_CHAIN: 6729 case ISD::INTRINSIC_VOID: return combineINTRINSIC(N, DCI); 6730 } 6731 6732 return SDValue(); 6733 } 6734 6735 // Return the demanded elements for the OpNo source operand of Op. DemandedElts 6736 // are for Op. 6737 static APInt getDemandedSrcElements(SDValue Op, const APInt &DemandedElts, 6738 unsigned OpNo) { 6739 EVT VT = Op.getValueType(); 6740 unsigned NumElts = (VT.isVector() ? VT.getVectorNumElements() : 1); 6741 APInt SrcDemE; 6742 unsigned Opcode = Op.getOpcode(); 6743 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 6744 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 6745 switch (Id) { 6746 case Intrinsic::s390_vpksh: // PACKS 6747 case Intrinsic::s390_vpksf: 6748 case Intrinsic::s390_vpksg: 6749 case Intrinsic::s390_vpkshs: // PACKS_CC 6750 case Intrinsic::s390_vpksfs: 6751 case Intrinsic::s390_vpksgs: 6752 case Intrinsic::s390_vpklsh: // PACKLS 6753 case Intrinsic::s390_vpklsf: 6754 case Intrinsic::s390_vpklsg: 6755 case Intrinsic::s390_vpklshs: // PACKLS_CC 6756 case Intrinsic::s390_vpklsfs: 6757 case Intrinsic::s390_vpklsgs: 6758 // VECTOR PACK truncates the elements of two source vectors into one. 6759 SrcDemE = DemandedElts; 6760 if (OpNo == 2) 6761 SrcDemE.lshrInPlace(NumElts / 2); 6762 SrcDemE = SrcDemE.trunc(NumElts / 2); 6763 break; 6764 // VECTOR UNPACK extends half the elements of the source vector. 6765 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 6766 case Intrinsic::s390_vuphh: 6767 case Intrinsic::s390_vuphf: 6768 case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH 6769 case Intrinsic::s390_vuplhh: 6770 case Intrinsic::s390_vuplhf: 6771 SrcDemE = APInt(NumElts * 2, 0); 6772 SrcDemE.insertBits(DemandedElts, 0); 6773 break; 6774 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 6775 case Intrinsic::s390_vuplhw: 6776 case Intrinsic::s390_vuplf: 6777 case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW 6778 case Intrinsic::s390_vupllh: 6779 case Intrinsic::s390_vupllf: 6780 SrcDemE = APInt(NumElts * 2, 0); 6781 SrcDemE.insertBits(DemandedElts, NumElts); 6782 break; 6783 case Intrinsic::s390_vpdi: { 6784 // VECTOR PERMUTE DWORD IMMEDIATE selects one element from each source. 6785 SrcDemE = APInt(NumElts, 0); 6786 if (!DemandedElts[OpNo - 1]) 6787 break; 6788 unsigned Mask = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); 6789 unsigned MaskBit = ((OpNo - 1) ? 1 : 4); 6790 // Demand input element 0 or 1, given by the mask bit value. 6791 SrcDemE.setBit((Mask & MaskBit)? 1 : 0); 6792 break; 6793 } 6794 case Intrinsic::s390_vsldb: { 6795 // VECTOR SHIFT LEFT DOUBLE BY BYTE 6796 assert(VT == MVT::v16i8 && "Unexpected type."); 6797 unsigned FirstIdx = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); 6798 assert (FirstIdx > 0 && FirstIdx < 16 && "Unused operand."); 6799 unsigned NumSrc0Els = 16 - FirstIdx; 6800 SrcDemE = APInt(NumElts, 0); 6801 if (OpNo == 1) { 6802 APInt DemEls = DemandedElts.trunc(NumSrc0Els); 6803 SrcDemE.insertBits(DemEls, FirstIdx); 6804 } else { 6805 APInt DemEls = DemandedElts.lshr(NumSrc0Els); 6806 SrcDemE.insertBits(DemEls, 0); 6807 } 6808 break; 6809 } 6810 case Intrinsic::s390_vperm: 6811 SrcDemE = APInt(NumElts, 1); 6812 break; 6813 default: 6814 llvm_unreachable("Unhandled intrinsic."); 6815 break; 6816 } 6817 } else { 6818 switch (Opcode) { 6819 case SystemZISD::JOIN_DWORDS: 6820 // Scalar operand. 6821 SrcDemE = APInt(1, 1); 6822 break; 6823 case SystemZISD::SELECT_CCMASK: 6824 SrcDemE = DemandedElts; 6825 break; 6826 default: 6827 llvm_unreachable("Unhandled opcode."); 6828 break; 6829 } 6830 } 6831 return SrcDemE; 6832 } 6833 6834 static void computeKnownBitsBinOp(const SDValue Op, KnownBits &Known, 6835 const APInt &DemandedElts, 6836 const SelectionDAG &DAG, unsigned Depth, 6837 unsigned OpNo) { 6838 APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo); 6839 APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1); 6840 KnownBits LHSKnown = 6841 DAG.computeKnownBits(Op.getOperand(OpNo), Src0DemE, Depth + 1); 6842 KnownBits RHSKnown = 6843 DAG.computeKnownBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1); 6844 Known = KnownBits::commonBits(LHSKnown, RHSKnown); 6845 } 6846 6847 void 6848 SystemZTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 6849 KnownBits &Known, 6850 const APInt &DemandedElts, 6851 const SelectionDAG &DAG, 6852 unsigned Depth) const { 6853 Known.resetAll(); 6854 6855 // Intrinsic CC result is returned in the two low bits. 6856 unsigned tmp0, tmp1; // not used 6857 if (Op.getResNo() == 1 && isIntrinsicWithCC(Op, tmp0, tmp1)) { 6858 Known.Zero.setBitsFrom(2); 6859 return; 6860 } 6861 EVT VT = Op.getValueType(); 6862 if (Op.getResNo() != 0 || VT == MVT::Untyped) 6863 return; 6864 assert (Known.getBitWidth() == VT.getScalarSizeInBits() && 6865 "KnownBits does not match VT in bitwidth"); 6866 assert ((!VT.isVector() || 6867 (DemandedElts.getBitWidth() == VT.getVectorNumElements())) && 6868 "DemandedElts does not match VT number of elements"); 6869 unsigned BitWidth = Known.getBitWidth(); 6870 unsigned Opcode = Op.getOpcode(); 6871 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 6872 bool IsLogical = false; 6873 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 6874 switch (Id) { 6875 case Intrinsic::s390_vpksh: // PACKS 6876 case Intrinsic::s390_vpksf: 6877 case Intrinsic::s390_vpksg: 6878 case Intrinsic::s390_vpkshs: // PACKS_CC 6879 case Intrinsic::s390_vpksfs: 6880 case Intrinsic::s390_vpksgs: 6881 case Intrinsic::s390_vpklsh: // PACKLS 6882 case Intrinsic::s390_vpklsf: 6883 case Intrinsic::s390_vpklsg: 6884 case Intrinsic::s390_vpklshs: // PACKLS_CC 6885 case Intrinsic::s390_vpklsfs: 6886 case Intrinsic::s390_vpklsgs: 6887 case Intrinsic::s390_vpdi: 6888 case Intrinsic::s390_vsldb: 6889 case Intrinsic::s390_vperm: 6890 computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 1); 6891 break; 6892 case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH 6893 case Intrinsic::s390_vuplhh: 6894 case Intrinsic::s390_vuplhf: 6895 case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW 6896 case Intrinsic::s390_vupllh: 6897 case Intrinsic::s390_vupllf: 6898 IsLogical = true; 6899 LLVM_FALLTHROUGH; 6900 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 6901 case Intrinsic::s390_vuphh: 6902 case Intrinsic::s390_vuphf: 6903 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 6904 case Intrinsic::s390_vuplhw: 6905 case Intrinsic::s390_vuplf: { 6906 SDValue SrcOp = Op.getOperand(1); 6907 APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 0); 6908 Known = DAG.computeKnownBits(SrcOp, SrcDemE, Depth + 1); 6909 if (IsLogical) { 6910 Known = Known.zext(BitWidth); 6911 } else 6912 Known = Known.sext(BitWidth); 6913 break; 6914 } 6915 default: 6916 break; 6917 } 6918 } else { 6919 switch (Opcode) { 6920 case SystemZISD::JOIN_DWORDS: 6921 case SystemZISD::SELECT_CCMASK: 6922 computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 0); 6923 break; 6924 case SystemZISD::REPLICATE: { 6925 SDValue SrcOp = Op.getOperand(0); 6926 Known = DAG.computeKnownBits(SrcOp, Depth + 1); 6927 if (Known.getBitWidth() < BitWidth && isa<ConstantSDNode>(SrcOp)) 6928 Known = Known.sext(BitWidth); // VREPI sign extends the immedate. 6929 break; 6930 } 6931 default: 6932 break; 6933 } 6934 } 6935 6936 // Known has the width of the source operand(s). Adjust if needed to match 6937 // the passed bitwidth. 6938 if (Known.getBitWidth() != BitWidth) 6939 Known = Known.anyextOrTrunc(BitWidth); 6940 } 6941 6942 static unsigned computeNumSignBitsBinOp(SDValue Op, const APInt &DemandedElts, 6943 const SelectionDAG &DAG, unsigned Depth, 6944 unsigned OpNo) { 6945 APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo); 6946 unsigned LHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo), Src0DemE, Depth + 1); 6947 if (LHS == 1) return 1; // Early out. 6948 APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1); 6949 unsigned RHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1); 6950 if (RHS == 1) return 1; // Early out. 6951 unsigned Common = std::min(LHS, RHS); 6952 unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits(); 6953 EVT VT = Op.getValueType(); 6954 unsigned VTBits = VT.getScalarSizeInBits(); 6955 if (SrcBitWidth > VTBits) { // PACK 6956 unsigned SrcExtraBits = SrcBitWidth - VTBits; 6957 if (Common > SrcExtraBits) 6958 return (Common - SrcExtraBits); 6959 return 1; 6960 } 6961 assert (SrcBitWidth == VTBits && "Expected operands of same bitwidth."); 6962 return Common; 6963 } 6964 6965 unsigned 6966 SystemZTargetLowering::ComputeNumSignBitsForTargetNode( 6967 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 6968 unsigned Depth) const { 6969 if (Op.getResNo() != 0) 6970 return 1; 6971 unsigned Opcode = Op.getOpcode(); 6972 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 6973 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 6974 switch (Id) { 6975 case Intrinsic::s390_vpksh: // PACKS 6976 case Intrinsic::s390_vpksf: 6977 case Intrinsic::s390_vpksg: 6978 case Intrinsic::s390_vpkshs: // PACKS_CC 6979 case Intrinsic::s390_vpksfs: 6980 case Intrinsic::s390_vpksgs: 6981 case Intrinsic::s390_vpklsh: // PACKLS 6982 case Intrinsic::s390_vpklsf: 6983 case Intrinsic::s390_vpklsg: 6984 case Intrinsic::s390_vpklshs: // PACKLS_CC 6985 case Intrinsic::s390_vpklsfs: 6986 case Intrinsic::s390_vpklsgs: 6987 case Intrinsic::s390_vpdi: 6988 case Intrinsic::s390_vsldb: 6989 case Intrinsic::s390_vperm: 6990 return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 1); 6991 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 6992 case Intrinsic::s390_vuphh: 6993 case Intrinsic::s390_vuphf: 6994 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 6995 case Intrinsic::s390_vuplhw: 6996 case Intrinsic::s390_vuplf: { 6997 SDValue PackedOp = Op.getOperand(1); 6998 APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 1); 6999 unsigned Tmp = DAG.ComputeNumSignBits(PackedOp, SrcDemE, Depth + 1); 7000 EVT VT = Op.getValueType(); 7001 unsigned VTBits = VT.getScalarSizeInBits(); 7002 Tmp += VTBits - PackedOp.getScalarValueSizeInBits(); 7003 return Tmp; 7004 } 7005 default: 7006 break; 7007 } 7008 } else { 7009 switch (Opcode) { 7010 case SystemZISD::SELECT_CCMASK: 7011 return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 0); 7012 default: 7013 break; 7014 } 7015 } 7016 7017 return 1; 7018 } 7019 7020 unsigned 7021 SystemZTargetLowering::getStackProbeSize(MachineFunction &MF) const { 7022 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 7023 unsigned StackAlign = TFI->getStackAlignment(); 7024 assert(StackAlign >=1 && isPowerOf2_32(StackAlign) && 7025 "Unexpected stack alignment"); 7026 // The default stack probe size is 4096 if the function has no 7027 // stack-probe-size attribute. 7028 unsigned StackProbeSize = 4096; 7029 const Function &Fn = MF.getFunction(); 7030 if (Fn.hasFnAttribute("stack-probe-size")) 7031 Fn.getFnAttribute("stack-probe-size") 7032 .getValueAsString() 7033 .getAsInteger(0, StackProbeSize); 7034 // Round down to the stack alignment. 7035 StackProbeSize &= ~(StackAlign - 1); 7036 return StackProbeSize ? StackProbeSize : StackAlign; 7037 } 7038 7039 //===----------------------------------------------------------------------===// 7040 // Custom insertion 7041 //===----------------------------------------------------------------------===// 7042 7043 // Force base value Base into a register before MI. Return the register. 7044 static Register forceReg(MachineInstr &MI, MachineOperand &Base, 7045 const SystemZInstrInfo *TII) { 7046 if (Base.isReg()) 7047 return Base.getReg(); 7048 7049 MachineBasicBlock *MBB = MI.getParent(); 7050 MachineFunction &MF = *MBB->getParent(); 7051 MachineRegisterInfo &MRI = MF.getRegInfo(); 7052 7053 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 7054 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg) 7055 .add(Base) 7056 .addImm(0) 7057 .addReg(0); 7058 return Reg; 7059 } 7060 7061 // The CC operand of MI might be missing a kill marker because there 7062 // were multiple uses of CC, and ISel didn't know which to mark. 7063 // Figure out whether MI should have had a kill marker. 7064 static bool checkCCKill(MachineInstr &MI, MachineBasicBlock *MBB) { 7065 // Scan forward through BB for a use/def of CC. 7066 MachineBasicBlock::iterator miI(std::next(MachineBasicBlock::iterator(MI))); 7067 for (MachineBasicBlock::iterator miE = MBB->end(); miI != miE; ++miI) { 7068 const MachineInstr& mi = *miI; 7069 if (mi.readsRegister(SystemZ::CC)) 7070 return false; 7071 if (mi.definesRegister(SystemZ::CC)) 7072 break; // Should have kill-flag - update below. 7073 } 7074 7075 // If we hit the end of the block, check whether CC is live into a 7076 // successor. 7077 if (miI == MBB->end()) { 7078 for (auto SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI) 7079 if ((*SI)->isLiveIn(SystemZ::CC)) 7080 return false; 7081 } 7082 7083 return true; 7084 } 7085 7086 // Return true if it is OK for this Select pseudo-opcode to be cascaded 7087 // together with other Select pseudo-opcodes into a single basic-block with 7088 // a conditional jump around it. 7089 static bool isSelectPseudo(MachineInstr &MI) { 7090 switch (MI.getOpcode()) { 7091 case SystemZ::Select32: 7092 case SystemZ::Select64: 7093 case SystemZ::SelectF32: 7094 case SystemZ::SelectF64: 7095 case SystemZ::SelectF128: 7096 case SystemZ::SelectVR32: 7097 case SystemZ::SelectVR64: 7098 case SystemZ::SelectVR128: 7099 return true; 7100 7101 default: 7102 return false; 7103 } 7104 } 7105 7106 // Helper function, which inserts PHI functions into SinkMBB: 7107 // %Result(i) = phi [ %FalseValue(i), FalseMBB ], [ %TrueValue(i), TrueMBB ], 7108 // where %FalseValue(i) and %TrueValue(i) are taken from Selects. 7109 static void createPHIsForSelects(SmallVector<MachineInstr*, 8> &Selects, 7110 MachineBasicBlock *TrueMBB, 7111 MachineBasicBlock *FalseMBB, 7112 MachineBasicBlock *SinkMBB) { 7113 MachineFunction *MF = TrueMBB->getParent(); 7114 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 7115 7116 MachineInstr *FirstMI = Selects.front(); 7117 unsigned CCValid = FirstMI->getOperand(3).getImm(); 7118 unsigned CCMask = FirstMI->getOperand(4).getImm(); 7119 7120 MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin(); 7121 7122 // As we are creating the PHIs, we have to be careful if there is more than 7123 // one. Later Selects may reference the results of earlier Selects, but later 7124 // PHIs have to reference the individual true/false inputs from earlier PHIs. 7125 // That also means that PHI construction must work forward from earlier to 7126 // later, and that the code must maintain a mapping from earlier PHI's 7127 // destination registers, and the registers that went into the PHI. 7128 DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable; 7129 7130 for (auto MI : Selects) { 7131 Register DestReg = MI->getOperand(0).getReg(); 7132 Register TrueReg = MI->getOperand(1).getReg(); 7133 Register FalseReg = MI->getOperand(2).getReg(); 7134 7135 // If this Select we are generating is the opposite condition from 7136 // the jump we generated, then we have to swap the operands for the 7137 // PHI that is going to be generated. 7138 if (MI->getOperand(4).getImm() == (CCValid ^ CCMask)) 7139 std::swap(TrueReg, FalseReg); 7140 7141 if (RegRewriteTable.find(TrueReg) != RegRewriteTable.end()) 7142 TrueReg = RegRewriteTable[TrueReg].first; 7143 7144 if (RegRewriteTable.find(FalseReg) != RegRewriteTable.end()) 7145 FalseReg = RegRewriteTable[FalseReg].second; 7146 7147 DebugLoc DL = MI->getDebugLoc(); 7148 BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(SystemZ::PHI), DestReg) 7149 .addReg(TrueReg).addMBB(TrueMBB) 7150 .addReg(FalseReg).addMBB(FalseMBB); 7151 7152 // Add this PHI to the rewrite table. 7153 RegRewriteTable[DestReg] = std::make_pair(TrueReg, FalseReg); 7154 } 7155 7156 MF->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 7157 } 7158 7159 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI. 7160 MachineBasicBlock * 7161 SystemZTargetLowering::emitSelect(MachineInstr &MI, 7162 MachineBasicBlock *MBB) const { 7163 assert(isSelectPseudo(MI) && "Bad call to emitSelect()"); 7164 const SystemZInstrInfo *TII = 7165 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7166 7167 unsigned CCValid = MI.getOperand(3).getImm(); 7168 unsigned CCMask = MI.getOperand(4).getImm(); 7169 7170 // If we have a sequence of Select* pseudo instructions using the 7171 // same condition code value, we want to expand all of them into 7172 // a single pair of basic blocks using the same condition. 7173 SmallVector<MachineInstr*, 8> Selects; 7174 SmallVector<MachineInstr*, 8> DbgValues; 7175 Selects.push_back(&MI); 7176 unsigned Count = 0; 7177 for (MachineBasicBlock::iterator NextMIIt = 7178 std::next(MachineBasicBlock::iterator(MI)); 7179 NextMIIt != MBB->end(); ++NextMIIt) { 7180 if (isSelectPseudo(*NextMIIt)) { 7181 assert(NextMIIt->getOperand(3).getImm() == CCValid && 7182 "Bad CCValid operands since CC was not redefined."); 7183 if (NextMIIt->getOperand(4).getImm() == CCMask || 7184 NextMIIt->getOperand(4).getImm() == (CCValid ^ CCMask)) { 7185 Selects.push_back(&*NextMIIt); 7186 continue; 7187 } 7188 break; 7189 } 7190 if (NextMIIt->definesRegister(SystemZ::CC) || 7191 NextMIIt->usesCustomInsertionHook()) 7192 break; 7193 bool User = false; 7194 for (auto SelMI : Selects) 7195 if (NextMIIt->readsVirtualRegister(SelMI->getOperand(0).getReg())) { 7196 User = true; 7197 break; 7198 } 7199 if (NextMIIt->isDebugInstr()) { 7200 if (User) { 7201 assert(NextMIIt->isDebugValue() && "Unhandled debug opcode."); 7202 DbgValues.push_back(&*NextMIIt); 7203 } 7204 } 7205 else if (User || ++Count > 20) 7206 break; 7207 } 7208 7209 MachineInstr *LastMI = Selects.back(); 7210 bool CCKilled = 7211 (LastMI->killsRegister(SystemZ::CC) || checkCCKill(*LastMI, MBB)); 7212 MachineBasicBlock *StartMBB = MBB; 7213 MachineBasicBlock *JoinMBB = SystemZ::splitBlockAfter(LastMI, MBB); 7214 MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB); 7215 7216 // Unless CC was killed in the last Select instruction, mark it as 7217 // live-in to both FalseMBB and JoinMBB. 7218 if (!CCKilled) { 7219 FalseMBB->addLiveIn(SystemZ::CC); 7220 JoinMBB->addLiveIn(SystemZ::CC); 7221 } 7222 7223 // StartMBB: 7224 // BRC CCMask, JoinMBB 7225 // # fallthrough to FalseMBB 7226 MBB = StartMBB; 7227 BuildMI(MBB, MI.getDebugLoc(), TII->get(SystemZ::BRC)) 7228 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 7229 MBB->addSuccessor(JoinMBB); 7230 MBB->addSuccessor(FalseMBB); 7231 7232 // FalseMBB: 7233 // # fallthrough to JoinMBB 7234 MBB = FalseMBB; 7235 MBB->addSuccessor(JoinMBB); 7236 7237 // JoinMBB: 7238 // %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ] 7239 // ... 7240 MBB = JoinMBB; 7241 createPHIsForSelects(Selects, StartMBB, FalseMBB, MBB); 7242 for (auto SelMI : Selects) 7243 SelMI->eraseFromParent(); 7244 7245 MachineBasicBlock::iterator InsertPos = MBB->getFirstNonPHI(); 7246 for (auto DbgMI : DbgValues) 7247 MBB->splice(InsertPos, StartMBB, DbgMI); 7248 7249 return JoinMBB; 7250 } 7251 7252 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI. 7253 // StoreOpcode is the store to use and Invert says whether the store should 7254 // happen when the condition is false rather than true. If a STORE ON 7255 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0. 7256 MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI, 7257 MachineBasicBlock *MBB, 7258 unsigned StoreOpcode, 7259 unsigned STOCOpcode, 7260 bool Invert) const { 7261 const SystemZInstrInfo *TII = 7262 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7263 7264 Register SrcReg = MI.getOperand(0).getReg(); 7265 MachineOperand Base = MI.getOperand(1); 7266 int64_t Disp = MI.getOperand(2).getImm(); 7267 Register IndexReg = MI.getOperand(3).getReg(); 7268 unsigned CCValid = MI.getOperand(4).getImm(); 7269 unsigned CCMask = MI.getOperand(5).getImm(); 7270 DebugLoc DL = MI.getDebugLoc(); 7271 7272 StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp); 7273 7274 // ISel pattern matching also adds a load memory operand of the same 7275 // address, so take special care to find the storing memory operand. 7276 MachineMemOperand *MMO = nullptr; 7277 for (auto *I : MI.memoperands()) 7278 if (I->isStore()) { 7279 MMO = I; 7280 break; 7281 } 7282 7283 // Use STOCOpcode if possible. We could use different store patterns in 7284 // order to avoid matching the index register, but the performance trade-offs 7285 // might be more complicated in that case. 7286 if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) { 7287 if (Invert) 7288 CCMask ^= CCValid; 7289 7290 BuildMI(*MBB, MI, DL, TII->get(STOCOpcode)) 7291 .addReg(SrcReg) 7292 .add(Base) 7293 .addImm(Disp) 7294 .addImm(CCValid) 7295 .addImm(CCMask) 7296 .addMemOperand(MMO); 7297 7298 MI.eraseFromParent(); 7299 return MBB; 7300 } 7301 7302 // Get the condition needed to branch around the store. 7303 if (!Invert) 7304 CCMask ^= CCValid; 7305 7306 MachineBasicBlock *StartMBB = MBB; 7307 MachineBasicBlock *JoinMBB = SystemZ::splitBlockBefore(MI, MBB); 7308 MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB); 7309 7310 // Unless CC was killed in the CondStore instruction, mark it as 7311 // live-in to both FalseMBB and JoinMBB. 7312 if (!MI.killsRegister(SystemZ::CC) && !checkCCKill(MI, JoinMBB)) { 7313 FalseMBB->addLiveIn(SystemZ::CC); 7314 JoinMBB->addLiveIn(SystemZ::CC); 7315 } 7316 7317 // StartMBB: 7318 // BRC CCMask, JoinMBB 7319 // # fallthrough to FalseMBB 7320 MBB = StartMBB; 7321 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7322 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 7323 MBB->addSuccessor(JoinMBB); 7324 MBB->addSuccessor(FalseMBB); 7325 7326 // FalseMBB: 7327 // store %SrcReg, %Disp(%Index,%Base) 7328 // # fallthrough to JoinMBB 7329 MBB = FalseMBB; 7330 BuildMI(MBB, DL, TII->get(StoreOpcode)) 7331 .addReg(SrcReg) 7332 .add(Base) 7333 .addImm(Disp) 7334 .addReg(IndexReg) 7335 .addMemOperand(MMO); 7336 MBB->addSuccessor(JoinMBB); 7337 7338 MI.eraseFromParent(); 7339 return JoinMBB; 7340 } 7341 7342 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_* 7343 // or ATOMIC_SWAP{,W} instruction MI. BinOpcode is the instruction that 7344 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}. 7345 // BitSize is the width of the field in bits, or 0 if this is a partword 7346 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize 7347 // is one of the operands. Invert says whether the field should be 7348 // inverted after performing BinOpcode (e.g. for NAND). 7349 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary( 7350 MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode, 7351 unsigned BitSize, bool Invert) const { 7352 MachineFunction &MF = *MBB->getParent(); 7353 const SystemZInstrInfo *TII = 7354 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7355 MachineRegisterInfo &MRI = MF.getRegInfo(); 7356 bool IsSubWord = (BitSize < 32); 7357 7358 // Extract the operands. Base can be a register or a frame index. 7359 // Src2 can be a register or immediate. 7360 Register Dest = MI.getOperand(0).getReg(); 7361 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 7362 int64_t Disp = MI.getOperand(2).getImm(); 7363 MachineOperand Src2 = earlyUseOperand(MI.getOperand(3)); 7364 Register BitShift = IsSubWord ? MI.getOperand(4).getReg() : Register(); 7365 Register NegBitShift = IsSubWord ? MI.getOperand(5).getReg() : Register(); 7366 DebugLoc DL = MI.getDebugLoc(); 7367 if (IsSubWord) 7368 BitSize = MI.getOperand(6).getImm(); 7369 7370 // Subword operations use 32-bit registers. 7371 const TargetRegisterClass *RC = (BitSize <= 32 ? 7372 &SystemZ::GR32BitRegClass : 7373 &SystemZ::GR64BitRegClass); 7374 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 7375 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 7376 7377 // Get the right opcodes for the displacement. 7378 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 7379 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 7380 assert(LOpcode && CSOpcode && "Displacement out of range"); 7381 7382 // Create virtual registers for temporary results. 7383 Register OrigVal = MRI.createVirtualRegister(RC); 7384 Register OldVal = MRI.createVirtualRegister(RC); 7385 Register NewVal = (BinOpcode || IsSubWord ? 7386 MRI.createVirtualRegister(RC) : Src2.getReg()); 7387 Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 7388 Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 7389 7390 // Insert a basic block for the main loop. 7391 MachineBasicBlock *StartMBB = MBB; 7392 MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB); 7393 MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB); 7394 7395 // StartMBB: 7396 // ... 7397 // %OrigVal = L Disp(%Base) 7398 // # fall through to LoopMMB 7399 MBB = StartMBB; 7400 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0); 7401 MBB->addSuccessor(LoopMBB); 7402 7403 // LoopMBB: 7404 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ] 7405 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 7406 // %RotatedNewVal = OP %RotatedOldVal, %Src2 7407 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 7408 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 7409 // JNE LoopMBB 7410 // # fall through to DoneMMB 7411 MBB = LoopMBB; 7412 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 7413 .addReg(OrigVal).addMBB(StartMBB) 7414 .addReg(Dest).addMBB(LoopMBB); 7415 if (IsSubWord) 7416 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 7417 .addReg(OldVal).addReg(BitShift).addImm(0); 7418 if (Invert) { 7419 // Perform the operation normally and then invert every bit of the field. 7420 Register Tmp = MRI.createVirtualRegister(RC); 7421 BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2); 7422 if (BitSize <= 32) 7423 // XILF with the upper BitSize bits set. 7424 BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal) 7425 .addReg(Tmp).addImm(-1U << (32 - BitSize)); 7426 else { 7427 // Use LCGR and add -1 to the result, which is more compact than 7428 // an XILF, XILH pair. 7429 Register Tmp2 = MRI.createVirtualRegister(RC); 7430 BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp); 7431 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal) 7432 .addReg(Tmp2).addImm(-1); 7433 } 7434 } else if (BinOpcode) 7435 // A simply binary operation. 7436 BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal) 7437 .addReg(RotatedOldVal) 7438 .add(Src2); 7439 else if (IsSubWord) 7440 // Use RISBG to rotate Src2 into position and use it to replace the 7441 // field in RotatedOldVal. 7442 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal) 7443 .addReg(RotatedOldVal).addReg(Src2.getReg()) 7444 .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize); 7445 if (IsSubWord) 7446 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 7447 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 7448 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 7449 .addReg(OldVal) 7450 .addReg(NewVal) 7451 .add(Base) 7452 .addImm(Disp); 7453 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7454 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 7455 MBB->addSuccessor(LoopMBB); 7456 MBB->addSuccessor(DoneMBB); 7457 7458 MI.eraseFromParent(); 7459 return DoneMBB; 7460 } 7461 7462 // Implement EmitInstrWithCustomInserter for pseudo 7463 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI. CompareOpcode is the 7464 // instruction that should be used to compare the current field with the 7465 // minimum or maximum value. KeepOldMask is the BRC condition-code mask 7466 // for when the current field should be kept. BitSize is the width of 7467 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction. 7468 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax( 7469 MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode, 7470 unsigned KeepOldMask, unsigned BitSize) const { 7471 MachineFunction &MF = *MBB->getParent(); 7472 const SystemZInstrInfo *TII = 7473 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7474 MachineRegisterInfo &MRI = MF.getRegInfo(); 7475 bool IsSubWord = (BitSize < 32); 7476 7477 // Extract the operands. Base can be a register or a frame index. 7478 Register Dest = MI.getOperand(0).getReg(); 7479 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 7480 int64_t Disp = MI.getOperand(2).getImm(); 7481 Register Src2 = MI.getOperand(3).getReg(); 7482 Register BitShift = (IsSubWord ? MI.getOperand(4).getReg() : Register()); 7483 Register NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : Register()); 7484 DebugLoc DL = MI.getDebugLoc(); 7485 if (IsSubWord) 7486 BitSize = MI.getOperand(6).getImm(); 7487 7488 // Subword operations use 32-bit registers. 7489 const TargetRegisterClass *RC = (BitSize <= 32 ? 7490 &SystemZ::GR32BitRegClass : 7491 &SystemZ::GR64BitRegClass); 7492 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 7493 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 7494 7495 // Get the right opcodes for the displacement. 7496 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 7497 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 7498 assert(LOpcode && CSOpcode && "Displacement out of range"); 7499 7500 // Create virtual registers for temporary results. 7501 Register OrigVal = MRI.createVirtualRegister(RC); 7502 Register OldVal = MRI.createVirtualRegister(RC); 7503 Register NewVal = MRI.createVirtualRegister(RC); 7504 Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 7505 Register RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2); 7506 Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 7507 7508 // Insert 3 basic blocks for the loop. 7509 MachineBasicBlock *StartMBB = MBB; 7510 MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB); 7511 MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB); 7512 MachineBasicBlock *UseAltMBB = SystemZ::emitBlockAfter(LoopMBB); 7513 MachineBasicBlock *UpdateMBB = SystemZ::emitBlockAfter(UseAltMBB); 7514 7515 // StartMBB: 7516 // ... 7517 // %OrigVal = L Disp(%Base) 7518 // # fall through to LoopMMB 7519 MBB = StartMBB; 7520 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0); 7521 MBB->addSuccessor(LoopMBB); 7522 7523 // LoopMBB: 7524 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ] 7525 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 7526 // CompareOpcode %RotatedOldVal, %Src2 7527 // BRC KeepOldMask, UpdateMBB 7528 MBB = LoopMBB; 7529 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 7530 .addReg(OrigVal).addMBB(StartMBB) 7531 .addReg(Dest).addMBB(UpdateMBB); 7532 if (IsSubWord) 7533 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 7534 .addReg(OldVal).addReg(BitShift).addImm(0); 7535 BuildMI(MBB, DL, TII->get(CompareOpcode)) 7536 .addReg(RotatedOldVal).addReg(Src2); 7537 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7538 .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB); 7539 MBB->addSuccessor(UpdateMBB); 7540 MBB->addSuccessor(UseAltMBB); 7541 7542 // UseAltMBB: 7543 // %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0 7544 // # fall through to UpdateMMB 7545 MBB = UseAltMBB; 7546 if (IsSubWord) 7547 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal) 7548 .addReg(RotatedOldVal).addReg(Src2) 7549 .addImm(32).addImm(31 + BitSize).addImm(0); 7550 MBB->addSuccessor(UpdateMBB); 7551 7552 // UpdateMBB: 7553 // %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ], 7554 // [ %RotatedAltVal, UseAltMBB ] 7555 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 7556 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 7557 // JNE LoopMBB 7558 // # fall through to DoneMMB 7559 MBB = UpdateMBB; 7560 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal) 7561 .addReg(RotatedOldVal).addMBB(LoopMBB) 7562 .addReg(RotatedAltVal).addMBB(UseAltMBB); 7563 if (IsSubWord) 7564 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 7565 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 7566 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 7567 .addReg(OldVal) 7568 .addReg(NewVal) 7569 .add(Base) 7570 .addImm(Disp); 7571 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7572 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 7573 MBB->addSuccessor(LoopMBB); 7574 MBB->addSuccessor(DoneMBB); 7575 7576 MI.eraseFromParent(); 7577 return DoneMBB; 7578 } 7579 7580 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW 7581 // instruction MI. 7582 MachineBasicBlock * 7583 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI, 7584 MachineBasicBlock *MBB) const { 7585 MachineFunction &MF = *MBB->getParent(); 7586 const SystemZInstrInfo *TII = 7587 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7588 MachineRegisterInfo &MRI = MF.getRegInfo(); 7589 7590 // Extract the operands. Base can be a register or a frame index. 7591 Register Dest = MI.getOperand(0).getReg(); 7592 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 7593 int64_t Disp = MI.getOperand(2).getImm(); 7594 Register CmpVal = MI.getOperand(3).getReg(); 7595 Register OrigSwapVal = MI.getOperand(4).getReg(); 7596 Register BitShift = MI.getOperand(5).getReg(); 7597 Register NegBitShift = MI.getOperand(6).getReg(); 7598 int64_t BitSize = MI.getOperand(7).getImm(); 7599 DebugLoc DL = MI.getDebugLoc(); 7600 7601 const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass; 7602 7603 // Get the right opcodes for the displacement and zero-extension. 7604 unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp); 7605 unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp); 7606 unsigned ZExtOpcode = BitSize == 8 ? SystemZ::LLCR : SystemZ::LLHR; 7607 assert(LOpcode && CSOpcode && "Displacement out of range"); 7608 7609 // Create virtual registers for temporary results. 7610 Register OrigOldVal = MRI.createVirtualRegister(RC); 7611 Register OldVal = MRI.createVirtualRegister(RC); 7612 Register SwapVal = MRI.createVirtualRegister(RC); 7613 Register StoreVal = MRI.createVirtualRegister(RC); 7614 Register OldValRot = MRI.createVirtualRegister(RC); 7615 Register RetryOldVal = MRI.createVirtualRegister(RC); 7616 Register RetrySwapVal = MRI.createVirtualRegister(RC); 7617 7618 // Insert 2 basic blocks for the loop. 7619 MachineBasicBlock *StartMBB = MBB; 7620 MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB); 7621 MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB); 7622 MachineBasicBlock *SetMBB = SystemZ::emitBlockAfter(LoopMBB); 7623 7624 // StartMBB: 7625 // ... 7626 // %OrigOldVal = L Disp(%Base) 7627 // # fall through to LoopMMB 7628 MBB = StartMBB; 7629 BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal) 7630 .add(Base) 7631 .addImm(Disp) 7632 .addReg(0); 7633 MBB->addSuccessor(LoopMBB); 7634 7635 // LoopMBB: 7636 // %OldVal = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ] 7637 // %SwapVal = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ] 7638 // %OldValRot = RLL %OldVal, BitSize(%BitShift) 7639 // ^^ The low BitSize bits contain the field 7640 // of interest. 7641 // %RetrySwapVal = RISBG32 %SwapVal, %OldValRot, 32, 63-BitSize, 0 7642 // ^^ Replace the upper 32-BitSize bits of the 7643 // swap value with those that we loaded and rotated. 7644 // %Dest = LL[CH] %OldValRot 7645 // CR %Dest, %CmpVal 7646 // JNE DoneMBB 7647 // # Fall through to SetMBB 7648 MBB = LoopMBB; 7649 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 7650 .addReg(OrigOldVal).addMBB(StartMBB) 7651 .addReg(RetryOldVal).addMBB(SetMBB); 7652 BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal) 7653 .addReg(OrigSwapVal).addMBB(StartMBB) 7654 .addReg(RetrySwapVal).addMBB(SetMBB); 7655 BuildMI(MBB, DL, TII->get(SystemZ::RLL), OldValRot) 7656 .addReg(OldVal).addReg(BitShift).addImm(BitSize); 7657 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal) 7658 .addReg(SwapVal).addReg(OldValRot).addImm(32).addImm(63 - BitSize).addImm(0); 7659 BuildMI(MBB, DL, TII->get(ZExtOpcode), Dest) 7660 .addReg(OldValRot); 7661 BuildMI(MBB, DL, TII->get(SystemZ::CR)) 7662 .addReg(Dest).addReg(CmpVal); 7663 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7664 .addImm(SystemZ::CCMASK_ICMP) 7665 .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB); 7666 MBB->addSuccessor(DoneMBB); 7667 MBB->addSuccessor(SetMBB); 7668 7669 // SetMBB: 7670 // %StoreVal = RLL %RetrySwapVal, -BitSize(%NegBitShift) 7671 // ^^ Rotate the new field to its proper position. 7672 // %RetryOldVal = CS %OldVal, %StoreVal, Disp(%Base) 7673 // JNE LoopMBB 7674 // # fall through to ExitMMB 7675 MBB = SetMBB; 7676 BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal) 7677 .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize); 7678 BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal) 7679 .addReg(OldVal) 7680 .addReg(StoreVal) 7681 .add(Base) 7682 .addImm(Disp); 7683 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7684 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 7685 MBB->addSuccessor(LoopMBB); 7686 MBB->addSuccessor(DoneMBB); 7687 7688 // If the CC def wasn't dead in the ATOMIC_CMP_SWAPW, mark CC as live-in 7689 // to the block after the loop. At this point, CC may have been defined 7690 // either by the CR in LoopMBB or by the CS in SetMBB. 7691 if (!MI.registerDefIsDead(SystemZ::CC)) 7692 DoneMBB->addLiveIn(SystemZ::CC); 7693 7694 MI.eraseFromParent(); 7695 return DoneMBB; 7696 } 7697 7698 // Emit a move from two GR64s to a GR128. 7699 MachineBasicBlock * 7700 SystemZTargetLowering::emitPair128(MachineInstr &MI, 7701 MachineBasicBlock *MBB) const { 7702 MachineFunction &MF = *MBB->getParent(); 7703 const SystemZInstrInfo *TII = 7704 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7705 MachineRegisterInfo &MRI = MF.getRegInfo(); 7706 DebugLoc DL = MI.getDebugLoc(); 7707 7708 Register Dest = MI.getOperand(0).getReg(); 7709 Register Hi = MI.getOperand(1).getReg(); 7710 Register Lo = MI.getOperand(2).getReg(); 7711 Register Tmp1 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 7712 Register Tmp2 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 7713 7714 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Tmp1); 7715 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Tmp2) 7716 .addReg(Tmp1).addReg(Hi).addImm(SystemZ::subreg_h64); 7717 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 7718 .addReg(Tmp2).addReg(Lo).addImm(SystemZ::subreg_l64); 7719 7720 MI.eraseFromParent(); 7721 return MBB; 7722 } 7723 7724 // Emit an extension from a GR64 to a GR128. ClearEven is true 7725 // if the high register of the GR128 value must be cleared or false if 7726 // it's "don't care". 7727 MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI, 7728 MachineBasicBlock *MBB, 7729 bool ClearEven) const { 7730 MachineFunction &MF = *MBB->getParent(); 7731 const SystemZInstrInfo *TII = 7732 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7733 MachineRegisterInfo &MRI = MF.getRegInfo(); 7734 DebugLoc DL = MI.getDebugLoc(); 7735 7736 Register Dest = MI.getOperand(0).getReg(); 7737 Register Src = MI.getOperand(1).getReg(); 7738 Register In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 7739 7740 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128); 7741 if (ClearEven) { 7742 Register NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 7743 Register Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass); 7744 7745 BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64) 7746 .addImm(0); 7747 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128) 7748 .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64); 7749 In128 = NewIn128; 7750 } 7751 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 7752 .addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64); 7753 7754 MI.eraseFromParent(); 7755 return MBB; 7756 } 7757 7758 MachineBasicBlock *SystemZTargetLowering::emitMemMemWrapper( 7759 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 7760 MachineFunction &MF = *MBB->getParent(); 7761 const SystemZInstrInfo *TII = 7762 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7763 MachineRegisterInfo &MRI = MF.getRegInfo(); 7764 DebugLoc DL = MI.getDebugLoc(); 7765 7766 MachineOperand DestBase = earlyUseOperand(MI.getOperand(0)); 7767 uint64_t DestDisp = MI.getOperand(1).getImm(); 7768 MachineOperand SrcBase = earlyUseOperand(MI.getOperand(2)); 7769 uint64_t SrcDisp = MI.getOperand(3).getImm(); 7770 uint64_t Length = MI.getOperand(4).getImm(); 7771 7772 // When generating more than one CLC, all but the last will need to 7773 // branch to the end when a difference is found. 7774 MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ? 7775 SystemZ::splitBlockAfter(MI, MBB) : nullptr); 7776 7777 // Check for the loop form, in which operand 5 is the trip count. 7778 if (MI.getNumExplicitOperands() > 5) { 7779 bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase); 7780 7781 Register StartCountReg = MI.getOperand(5).getReg(); 7782 Register StartSrcReg = forceReg(MI, SrcBase, TII); 7783 Register StartDestReg = (HaveSingleBase ? StartSrcReg : 7784 forceReg(MI, DestBase, TII)); 7785 7786 const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass; 7787 Register ThisSrcReg = MRI.createVirtualRegister(RC); 7788 Register ThisDestReg = (HaveSingleBase ? ThisSrcReg : 7789 MRI.createVirtualRegister(RC)); 7790 Register NextSrcReg = MRI.createVirtualRegister(RC); 7791 Register NextDestReg = (HaveSingleBase ? NextSrcReg : 7792 MRI.createVirtualRegister(RC)); 7793 7794 RC = &SystemZ::GR64BitRegClass; 7795 Register ThisCountReg = MRI.createVirtualRegister(RC); 7796 Register NextCountReg = MRI.createVirtualRegister(RC); 7797 7798 MachineBasicBlock *StartMBB = MBB; 7799 MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB); 7800 MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB); 7801 MachineBasicBlock *NextMBB = 7802 (EndMBB ? SystemZ::emitBlockAfter(LoopMBB) : LoopMBB); 7803 7804 // StartMBB: 7805 // # fall through to LoopMMB 7806 MBB->addSuccessor(LoopMBB); 7807 7808 // LoopMBB: 7809 // %ThisDestReg = phi [ %StartDestReg, StartMBB ], 7810 // [ %NextDestReg, NextMBB ] 7811 // %ThisSrcReg = phi [ %StartSrcReg, StartMBB ], 7812 // [ %NextSrcReg, NextMBB ] 7813 // %ThisCountReg = phi [ %StartCountReg, StartMBB ], 7814 // [ %NextCountReg, NextMBB ] 7815 // ( PFD 2, 768+DestDisp(%ThisDestReg) ) 7816 // Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg) 7817 // ( JLH EndMBB ) 7818 // 7819 // The prefetch is used only for MVC. The JLH is used only for CLC. 7820 MBB = LoopMBB; 7821 7822 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg) 7823 .addReg(StartDestReg).addMBB(StartMBB) 7824 .addReg(NextDestReg).addMBB(NextMBB); 7825 if (!HaveSingleBase) 7826 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg) 7827 .addReg(StartSrcReg).addMBB(StartMBB) 7828 .addReg(NextSrcReg).addMBB(NextMBB); 7829 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg) 7830 .addReg(StartCountReg).addMBB(StartMBB) 7831 .addReg(NextCountReg).addMBB(NextMBB); 7832 if (Opcode == SystemZ::MVC) 7833 BuildMI(MBB, DL, TII->get(SystemZ::PFD)) 7834 .addImm(SystemZ::PFD_WRITE) 7835 .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0); 7836 BuildMI(MBB, DL, TII->get(Opcode)) 7837 .addReg(ThisDestReg).addImm(DestDisp).addImm(256) 7838 .addReg(ThisSrcReg).addImm(SrcDisp); 7839 if (EndMBB) { 7840 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7841 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 7842 .addMBB(EndMBB); 7843 MBB->addSuccessor(EndMBB); 7844 MBB->addSuccessor(NextMBB); 7845 } 7846 7847 // NextMBB: 7848 // %NextDestReg = LA 256(%ThisDestReg) 7849 // %NextSrcReg = LA 256(%ThisSrcReg) 7850 // %NextCountReg = AGHI %ThisCountReg, -1 7851 // CGHI %NextCountReg, 0 7852 // JLH LoopMBB 7853 // # fall through to DoneMMB 7854 // 7855 // The AGHI, CGHI and JLH should be converted to BRCTG by later passes. 7856 MBB = NextMBB; 7857 7858 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg) 7859 .addReg(ThisDestReg).addImm(256).addReg(0); 7860 if (!HaveSingleBase) 7861 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg) 7862 .addReg(ThisSrcReg).addImm(256).addReg(0); 7863 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg) 7864 .addReg(ThisCountReg).addImm(-1); 7865 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 7866 .addReg(NextCountReg).addImm(0); 7867 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7868 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 7869 .addMBB(LoopMBB); 7870 MBB->addSuccessor(LoopMBB); 7871 MBB->addSuccessor(DoneMBB); 7872 7873 DestBase = MachineOperand::CreateReg(NextDestReg, false); 7874 SrcBase = MachineOperand::CreateReg(NextSrcReg, false); 7875 Length &= 255; 7876 if (EndMBB && !Length) 7877 // If the loop handled the whole CLC range, DoneMBB will be empty with 7878 // CC live-through into EndMBB, so add it as live-in. 7879 DoneMBB->addLiveIn(SystemZ::CC); 7880 MBB = DoneMBB; 7881 } 7882 // Handle any remaining bytes with straight-line code. 7883 while (Length > 0) { 7884 uint64_t ThisLength = std::min(Length, uint64_t(256)); 7885 // The previous iteration might have created out-of-range displacements. 7886 // Apply them using LAY if so. 7887 if (!isUInt<12>(DestDisp)) { 7888 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 7889 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg) 7890 .add(DestBase) 7891 .addImm(DestDisp) 7892 .addReg(0); 7893 DestBase = MachineOperand::CreateReg(Reg, false); 7894 DestDisp = 0; 7895 } 7896 if (!isUInt<12>(SrcDisp)) { 7897 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 7898 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg) 7899 .add(SrcBase) 7900 .addImm(SrcDisp) 7901 .addReg(0); 7902 SrcBase = MachineOperand::CreateReg(Reg, false); 7903 SrcDisp = 0; 7904 } 7905 BuildMI(*MBB, MI, DL, TII->get(Opcode)) 7906 .add(DestBase) 7907 .addImm(DestDisp) 7908 .addImm(ThisLength) 7909 .add(SrcBase) 7910 .addImm(SrcDisp) 7911 .setMemRefs(MI.memoperands()); 7912 DestDisp += ThisLength; 7913 SrcDisp += ThisLength; 7914 Length -= ThisLength; 7915 // If there's another CLC to go, branch to the end if a difference 7916 // was found. 7917 if (EndMBB && Length > 0) { 7918 MachineBasicBlock *NextMBB = SystemZ::splitBlockBefore(MI, MBB); 7919 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7920 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 7921 .addMBB(EndMBB); 7922 MBB->addSuccessor(EndMBB); 7923 MBB->addSuccessor(NextMBB); 7924 MBB = NextMBB; 7925 } 7926 } 7927 if (EndMBB) { 7928 MBB->addSuccessor(EndMBB); 7929 MBB = EndMBB; 7930 MBB->addLiveIn(SystemZ::CC); 7931 } 7932 7933 MI.eraseFromParent(); 7934 return MBB; 7935 } 7936 7937 // Decompose string pseudo-instruction MI into a loop that continually performs 7938 // Opcode until CC != 3. 7939 MachineBasicBlock *SystemZTargetLowering::emitStringWrapper( 7940 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 7941 MachineFunction &MF = *MBB->getParent(); 7942 const SystemZInstrInfo *TII = 7943 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7944 MachineRegisterInfo &MRI = MF.getRegInfo(); 7945 DebugLoc DL = MI.getDebugLoc(); 7946 7947 uint64_t End1Reg = MI.getOperand(0).getReg(); 7948 uint64_t Start1Reg = MI.getOperand(1).getReg(); 7949 uint64_t Start2Reg = MI.getOperand(2).getReg(); 7950 uint64_t CharReg = MI.getOperand(3).getReg(); 7951 7952 const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass; 7953 uint64_t This1Reg = MRI.createVirtualRegister(RC); 7954 uint64_t This2Reg = MRI.createVirtualRegister(RC); 7955 uint64_t End2Reg = MRI.createVirtualRegister(RC); 7956 7957 MachineBasicBlock *StartMBB = MBB; 7958 MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB); 7959 MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB); 7960 7961 // StartMBB: 7962 // # fall through to LoopMMB 7963 MBB->addSuccessor(LoopMBB); 7964 7965 // LoopMBB: 7966 // %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ] 7967 // %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ] 7968 // R0L = %CharReg 7969 // %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L 7970 // JO LoopMBB 7971 // # fall through to DoneMMB 7972 // 7973 // The load of R0L can be hoisted by post-RA LICM. 7974 MBB = LoopMBB; 7975 7976 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg) 7977 .addReg(Start1Reg).addMBB(StartMBB) 7978 .addReg(End1Reg).addMBB(LoopMBB); 7979 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg) 7980 .addReg(Start2Reg).addMBB(StartMBB) 7981 .addReg(End2Reg).addMBB(LoopMBB); 7982 BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg); 7983 BuildMI(MBB, DL, TII->get(Opcode)) 7984 .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define) 7985 .addReg(This1Reg).addReg(This2Reg); 7986 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7987 .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB); 7988 MBB->addSuccessor(LoopMBB); 7989 MBB->addSuccessor(DoneMBB); 7990 7991 DoneMBB->addLiveIn(SystemZ::CC); 7992 7993 MI.eraseFromParent(); 7994 return DoneMBB; 7995 } 7996 7997 // Update TBEGIN instruction with final opcode and register clobbers. 7998 MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin( 7999 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode, 8000 bool NoFloat) const { 8001 MachineFunction &MF = *MBB->getParent(); 8002 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 8003 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 8004 8005 // Update opcode. 8006 MI.setDesc(TII->get(Opcode)); 8007 8008 // We cannot handle a TBEGIN that clobbers the stack or frame pointer. 8009 // Make sure to add the corresponding GRSM bits if they are missing. 8010 uint64_t Control = MI.getOperand(2).getImm(); 8011 static const unsigned GPRControlBit[16] = { 8012 0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000, 8013 0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100 8014 }; 8015 Control |= GPRControlBit[15]; 8016 if (TFI->hasFP(MF)) 8017 Control |= GPRControlBit[11]; 8018 MI.getOperand(2).setImm(Control); 8019 8020 // Add GPR clobbers. 8021 for (int I = 0; I < 16; I++) { 8022 if ((Control & GPRControlBit[I]) == 0) { 8023 unsigned Reg = SystemZMC::GR64Regs[I]; 8024 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 8025 } 8026 } 8027 8028 // Add FPR/VR clobbers. 8029 if (!NoFloat && (Control & 4) != 0) { 8030 if (Subtarget.hasVector()) { 8031 for (int I = 0; I < 32; I++) { 8032 unsigned Reg = SystemZMC::VR128Regs[I]; 8033 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 8034 } 8035 } else { 8036 for (int I = 0; I < 16; I++) { 8037 unsigned Reg = SystemZMC::FP64Regs[I]; 8038 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 8039 } 8040 } 8041 } 8042 8043 return MBB; 8044 } 8045 8046 MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0( 8047 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 8048 MachineFunction &MF = *MBB->getParent(); 8049 MachineRegisterInfo *MRI = &MF.getRegInfo(); 8050 const SystemZInstrInfo *TII = 8051 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 8052 DebugLoc DL = MI.getDebugLoc(); 8053 8054 Register SrcReg = MI.getOperand(0).getReg(); 8055 8056 // Create new virtual register of the same class as source. 8057 const TargetRegisterClass *RC = MRI->getRegClass(SrcReg); 8058 Register DstReg = MRI->createVirtualRegister(RC); 8059 8060 // Replace pseudo with a normal load-and-test that models the def as 8061 // well. 8062 BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg) 8063 .addReg(SrcReg) 8064 .setMIFlags(MI.getFlags()); 8065 MI.eraseFromParent(); 8066 8067 return MBB; 8068 } 8069 8070 MachineBasicBlock *SystemZTargetLowering::emitProbedAlloca( 8071 MachineInstr &MI, MachineBasicBlock *MBB) const { 8072 MachineFunction &MF = *MBB->getParent(); 8073 MachineRegisterInfo *MRI = &MF.getRegInfo(); 8074 const SystemZInstrInfo *TII = 8075 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 8076 DebugLoc DL = MI.getDebugLoc(); 8077 const unsigned ProbeSize = getStackProbeSize(MF); 8078 Register DstReg = MI.getOperand(0).getReg(); 8079 Register SizeReg = MI.getOperand(2).getReg(); 8080 8081 MachineBasicBlock *StartMBB = MBB; 8082 MachineBasicBlock *DoneMBB = SystemZ::splitBlockAfter(MI, MBB); 8083 MachineBasicBlock *LoopTestMBB = SystemZ::emitBlockAfter(StartMBB); 8084 MachineBasicBlock *LoopBodyMBB = SystemZ::emitBlockAfter(LoopTestMBB); 8085 MachineBasicBlock *TailTestMBB = SystemZ::emitBlockAfter(LoopBodyMBB); 8086 MachineBasicBlock *TailMBB = SystemZ::emitBlockAfter(TailTestMBB); 8087 8088 MachineMemOperand *VolLdMMO = MF.getMachineMemOperand(MachinePointerInfo(), 8089 MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad, 8, Align(1)); 8090 8091 Register PHIReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass); 8092 Register IncReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass); 8093 8094 // LoopTestMBB 8095 // BRC TailTestMBB 8096 // # fallthrough to LoopBodyMBB 8097 StartMBB->addSuccessor(LoopTestMBB); 8098 MBB = LoopTestMBB; 8099 BuildMI(MBB, DL, TII->get(SystemZ::PHI), PHIReg) 8100 .addReg(SizeReg) 8101 .addMBB(StartMBB) 8102 .addReg(IncReg) 8103 .addMBB(LoopBodyMBB); 8104 BuildMI(MBB, DL, TII->get(SystemZ::CLGFI)) 8105 .addReg(PHIReg) 8106 .addImm(ProbeSize); 8107 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8108 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_LT) 8109 .addMBB(TailTestMBB); 8110 MBB->addSuccessor(LoopBodyMBB); 8111 MBB->addSuccessor(TailTestMBB); 8112 8113 // LoopBodyMBB: Allocate and probe by means of a volatile compare. 8114 // J LoopTestMBB 8115 MBB = LoopBodyMBB; 8116 BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), IncReg) 8117 .addReg(PHIReg) 8118 .addImm(ProbeSize); 8119 BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), SystemZ::R15D) 8120 .addReg(SystemZ::R15D) 8121 .addImm(ProbeSize); 8122 BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D) 8123 .addReg(SystemZ::R15D).addImm(ProbeSize - 8).addReg(0) 8124 .setMemRefs(VolLdMMO); 8125 BuildMI(MBB, DL, TII->get(SystemZ::J)).addMBB(LoopTestMBB); 8126 MBB->addSuccessor(LoopTestMBB); 8127 8128 // TailTestMBB 8129 // BRC DoneMBB 8130 // # fallthrough to TailMBB 8131 MBB = TailTestMBB; 8132 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 8133 .addReg(PHIReg) 8134 .addImm(0); 8135 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8136 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ) 8137 .addMBB(DoneMBB); 8138 MBB->addSuccessor(TailMBB); 8139 MBB->addSuccessor(DoneMBB); 8140 8141 // TailMBB 8142 // # fallthrough to DoneMBB 8143 MBB = TailMBB; 8144 BuildMI(MBB, DL, TII->get(SystemZ::SLGR), SystemZ::R15D) 8145 .addReg(SystemZ::R15D) 8146 .addReg(PHIReg); 8147 BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D) 8148 .addReg(SystemZ::R15D).addImm(-8).addReg(PHIReg) 8149 .setMemRefs(VolLdMMO); 8150 MBB->addSuccessor(DoneMBB); 8151 8152 // DoneMBB 8153 MBB = DoneMBB; 8154 BuildMI(*MBB, MBB->begin(), DL, TII->get(TargetOpcode::COPY), DstReg) 8155 .addReg(SystemZ::R15D); 8156 8157 MI.eraseFromParent(); 8158 return DoneMBB; 8159 } 8160 8161 SDValue SystemZTargetLowering:: 8162 getBackchainAddress(SDValue SP, SelectionDAG &DAG) const { 8163 MachineFunction &MF = DAG.getMachineFunction(); 8164 auto *TFL = 8165 static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering()); 8166 SDLoc DL(SP); 8167 return DAG.getNode(ISD::ADD, DL, MVT::i64, SP, 8168 DAG.getIntPtrConstant(TFL->getBackchainOffset(MF), DL)); 8169 } 8170 8171 MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter( 8172 MachineInstr &MI, MachineBasicBlock *MBB) const { 8173 switch (MI.getOpcode()) { 8174 case SystemZ::Select32: 8175 case SystemZ::Select64: 8176 case SystemZ::SelectF32: 8177 case SystemZ::SelectF64: 8178 case SystemZ::SelectF128: 8179 case SystemZ::SelectVR32: 8180 case SystemZ::SelectVR64: 8181 case SystemZ::SelectVR128: 8182 return emitSelect(MI, MBB); 8183 8184 case SystemZ::CondStore8Mux: 8185 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false); 8186 case SystemZ::CondStore8MuxInv: 8187 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true); 8188 case SystemZ::CondStore16Mux: 8189 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false); 8190 case SystemZ::CondStore16MuxInv: 8191 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true); 8192 case SystemZ::CondStore32Mux: 8193 return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false); 8194 case SystemZ::CondStore32MuxInv: 8195 return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true); 8196 case SystemZ::CondStore8: 8197 return emitCondStore(MI, MBB, SystemZ::STC, 0, false); 8198 case SystemZ::CondStore8Inv: 8199 return emitCondStore(MI, MBB, SystemZ::STC, 0, true); 8200 case SystemZ::CondStore16: 8201 return emitCondStore(MI, MBB, SystemZ::STH, 0, false); 8202 case SystemZ::CondStore16Inv: 8203 return emitCondStore(MI, MBB, SystemZ::STH, 0, true); 8204 case SystemZ::CondStore32: 8205 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false); 8206 case SystemZ::CondStore32Inv: 8207 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true); 8208 case SystemZ::CondStore64: 8209 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false); 8210 case SystemZ::CondStore64Inv: 8211 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true); 8212 case SystemZ::CondStoreF32: 8213 return emitCondStore(MI, MBB, SystemZ::STE, 0, false); 8214 case SystemZ::CondStoreF32Inv: 8215 return emitCondStore(MI, MBB, SystemZ::STE, 0, true); 8216 case SystemZ::CondStoreF64: 8217 return emitCondStore(MI, MBB, SystemZ::STD, 0, false); 8218 case SystemZ::CondStoreF64Inv: 8219 return emitCondStore(MI, MBB, SystemZ::STD, 0, true); 8220 8221 case SystemZ::PAIR128: 8222 return emitPair128(MI, MBB); 8223 case SystemZ::AEXT128: 8224 return emitExt128(MI, MBB, false); 8225 case SystemZ::ZEXT128: 8226 return emitExt128(MI, MBB, true); 8227 8228 case SystemZ::ATOMIC_SWAPW: 8229 return emitAtomicLoadBinary(MI, MBB, 0, 0); 8230 case SystemZ::ATOMIC_SWAP_32: 8231 return emitAtomicLoadBinary(MI, MBB, 0, 32); 8232 case SystemZ::ATOMIC_SWAP_64: 8233 return emitAtomicLoadBinary(MI, MBB, 0, 64); 8234 8235 case SystemZ::ATOMIC_LOADW_AR: 8236 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0); 8237 case SystemZ::ATOMIC_LOADW_AFI: 8238 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0); 8239 case SystemZ::ATOMIC_LOAD_AR: 8240 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32); 8241 case SystemZ::ATOMIC_LOAD_AHI: 8242 return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32); 8243 case SystemZ::ATOMIC_LOAD_AFI: 8244 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32); 8245 case SystemZ::ATOMIC_LOAD_AGR: 8246 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64); 8247 case SystemZ::ATOMIC_LOAD_AGHI: 8248 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64); 8249 case SystemZ::ATOMIC_LOAD_AGFI: 8250 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64); 8251 8252 case SystemZ::ATOMIC_LOADW_SR: 8253 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0); 8254 case SystemZ::ATOMIC_LOAD_SR: 8255 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32); 8256 case SystemZ::ATOMIC_LOAD_SGR: 8257 return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64); 8258 8259 case SystemZ::ATOMIC_LOADW_NR: 8260 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0); 8261 case SystemZ::ATOMIC_LOADW_NILH: 8262 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0); 8263 case SystemZ::ATOMIC_LOAD_NR: 8264 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32); 8265 case SystemZ::ATOMIC_LOAD_NILL: 8266 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32); 8267 case SystemZ::ATOMIC_LOAD_NILH: 8268 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32); 8269 case SystemZ::ATOMIC_LOAD_NILF: 8270 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32); 8271 case SystemZ::ATOMIC_LOAD_NGR: 8272 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64); 8273 case SystemZ::ATOMIC_LOAD_NILL64: 8274 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64); 8275 case SystemZ::ATOMIC_LOAD_NILH64: 8276 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64); 8277 case SystemZ::ATOMIC_LOAD_NIHL64: 8278 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64); 8279 case SystemZ::ATOMIC_LOAD_NIHH64: 8280 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64); 8281 case SystemZ::ATOMIC_LOAD_NILF64: 8282 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64); 8283 case SystemZ::ATOMIC_LOAD_NIHF64: 8284 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64); 8285 8286 case SystemZ::ATOMIC_LOADW_OR: 8287 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0); 8288 case SystemZ::ATOMIC_LOADW_OILH: 8289 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0); 8290 case SystemZ::ATOMIC_LOAD_OR: 8291 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32); 8292 case SystemZ::ATOMIC_LOAD_OILL: 8293 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32); 8294 case SystemZ::ATOMIC_LOAD_OILH: 8295 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32); 8296 case SystemZ::ATOMIC_LOAD_OILF: 8297 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32); 8298 case SystemZ::ATOMIC_LOAD_OGR: 8299 return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64); 8300 case SystemZ::ATOMIC_LOAD_OILL64: 8301 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64); 8302 case SystemZ::ATOMIC_LOAD_OILH64: 8303 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64); 8304 case SystemZ::ATOMIC_LOAD_OIHL64: 8305 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64); 8306 case SystemZ::ATOMIC_LOAD_OIHH64: 8307 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64); 8308 case SystemZ::ATOMIC_LOAD_OILF64: 8309 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64); 8310 case SystemZ::ATOMIC_LOAD_OIHF64: 8311 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64); 8312 8313 case SystemZ::ATOMIC_LOADW_XR: 8314 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0); 8315 case SystemZ::ATOMIC_LOADW_XILF: 8316 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0); 8317 case SystemZ::ATOMIC_LOAD_XR: 8318 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32); 8319 case SystemZ::ATOMIC_LOAD_XILF: 8320 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32); 8321 case SystemZ::ATOMIC_LOAD_XGR: 8322 return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64); 8323 case SystemZ::ATOMIC_LOAD_XILF64: 8324 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64); 8325 case SystemZ::ATOMIC_LOAD_XIHF64: 8326 return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64); 8327 8328 case SystemZ::ATOMIC_LOADW_NRi: 8329 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true); 8330 case SystemZ::ATOMIC_LOADW_NILHi: 8331 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true); 8332 case SystemZ::ATOMIC_LOAD_NRi: 8333 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true); 8334 case SystemZ::ATOMIC_LOAD_NILLi: 8335 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true); 8336 case SystemZ::ATOMIC_LOAD_NILHi: 8337 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true); 8338 case SystemZ::ATOMIC_LOAD_NILFi: 8339 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true); 8340 case SystemZ::ATOMIC_LOAD_NGRi: 8341 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true); 8342 case SystemZ::ATOMIC_LOAD_NILL64i: 8343 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true); 8344 case SystemZ::ATOMIC_LOAD_NILH64i: 8345 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true); 8346 case SystemZ::ATOMIC_LOAD_NIHL64i: 8347 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true); 8348 case SystemZ::ATOMIC_LOAD_NIHH64i: 8349 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true); 8350 case SystemZ::ATOMIC_LOAD_NILF64i: 8351 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true); 8352 case SystemZ::ATOMIC_LOAD_NIHF64i: 8353 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true); 8354 8355 case SystemZ::ATOMIC_LOADW_MIN: 8356 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 8357 SystemZ::CCMASK_CMP_LE, 0); 8358 case SystemZ::ATOMIC_LOAD_MIN_32: 8359 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 8360 SystemZ::CCMASK_CMP_LE, 32); 8361 case SystemZ::ATOMIC_LOAD_MIN_64: 8362 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 8363 SystemZ::CCMASK_CMP_LE, 64); 8364 8365 case SystemZ::ATOMIC_LOADW_MAX: 8366 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 8367 SystemZ::CCMASK_CMP_GE, 0); 8368 case SystemZ::ATOMIC_LOAD_MAX_32: 8369 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 8370 SystemZ::CCMASK_CMP_GE, 32); 8371 case SystemZ::ATOMIC_LOAD_MAX_64: 8372 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 8373 SystemZ::CCMASK_CMP_GE, 64); 8374 8375 case SystemZ::ATOMIC_LOADW_UMIN: 8376 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 8377 SystemZ::CCMASK_CMP_LE, 0); 8378 case SystemZ::ATOMIC_LOAD_UMIN_32: 8379 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 8380 SystemZ::CCMASK_CMP_LE, 32); 8381 case SystemZ::ATOMIC_LOAD_UMIN_64: 8382 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 8383 SystemZ::CCMASK_CMP_LE, 64); 8384 8385 case SystemZ::ATOMIC_LOADW_UMAX: 8386 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 8387 SystemZ::CCMASK_CMP_GE, 0); 8388 case SystemZ::ATOMIC_LOAD_UMAX_32: 8389 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 8390 SystemZ::CCMASK_CMP_GE, 32); 8391 case SystemZ::ATOMIC_LOAD_UMAX_64: 8392 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 8393 SystemZ::CCMASK_CMP_GE, 64); 8394 8395 case SystemZ::ATOMIC_CMP_SWAPW: 8396 return emitAtomicCmpSwapW(MI, MBB); 8397 case SystemZ::MVCSequence: 8398 case SystemZ::MVCLoop: 8399 return emitMemMemWrapper(MI, MBB, SystemZ::MVC); 8400 case SystemZ::NCSequence: 8401 case SystemZ::NCLoop: 8402 return emitMemMemWrapper(MI, MBB, SystemZ::NC); 8403 case SystemZ::OCSequence: 8404 case SystemZ::OCLoop: 8405 return emitMemMemWrapper(MI, MBB, SystemZ::OC); 8406 case SystemZ::XCSequence: 8407 case SystemZ::XCLoop: 8408 return emitMemMemWrapper(MI, MBB, SystemZ::XC); 8409 case SystemZ::CLCSequence: 8410 case SystemZ::CLCLoop: 8411 return emitMemMemWrapper(MI, MBB, SystemZ::CLC); 8412 case SystemZ::CLSTLoop: 8413 return emitStringWrapper(MI, MBB, SystemZ::CLST); 8414 case SystemZ::MVSTLoop: 8415 return emitStringWrapper(MI, MBB, SystemZ::MVST); 8416 case SystemZ::SRSTLoop: 8417 return emitStringWrapper(MI, MBB, SystemZ::SRST); 8418 case SystemZ::TBEGIN: 8419 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false); 8420 case SystemZ::TBEGIN_nofloat: 8421 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true); 8422 case SystemZ::TBEGINC: 8423 return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true); 8424 case SystemZ::LTEBRCompare_VecPseudo: 8425 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR); 8426 case SystemZ::LTDBRCompare_VecPseudo: 8427 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR); 8428 case SystemZ::LTXBRCompare_VecPseudo: 8429 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR); 8430 8431 case SystemZ::PROBED_ALLOCA: 8432 return emitProbedAlloca(MI, MBB); 8433 8434 case TargetOpcode::STACKMAP: 8435 case TargetOpcode::PATCHPOINT: 8436 return emitPatchPoint(MI, MBB); 8437 8438 default: 8439 llvm_unreachable("Unexpected instr type to insert"); 8440 } 8441 } 8442 8443 // This is only used by the isel schedulers, and is needed only to prevent 8444 // compiler from crashing when list-ilp is used. 8445 const TargetRegisterClass * 8446 SystemZTargetLowering::getRepRegClassFor(MVT VT) const { 8447 if (VT == MVT::Untyped) 8448 return &SystemZ::ADDR128BitRegClass; 8449 return TargetLowering::getRepRegClassFor(VT); 8450 } 8451