1 //=== DWARFLinker.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/DWARFLinker/DWARFLinker.h" 10 #include "llvm/ADT/ArrayRef.h" 11 #include "llvm/ADT/BitVector.h" 12 #include "llvm/ADT/STLExtras.h" 13 #include "llvm/ADT/Triple.h" 14 #include "llvm/CodeGen/NonRelocatableStringpool.h" 15 #include "llvm/DWARFLinker/DWARFLinkerDeclContext.h" 16 #include "llvm/DebugInfo/DWARF/DWARFAbbreviationDeclaration.h" 17 #include "llvm/DebugInfo/DWARF/DWARFContext.h" 18 #include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h" 19 #include "llvm/DebugInfo/DWARF/DWARFDebugLine.h" 20 #include "llvm/DebugInfo/DWARF/DWARFDebugRangeList.h" 21 #include "llvm/DebugInfo/DWARF/DWARFDie.h" 22 #include "llvm/DebugInfo/DWARF/DWARFFormValue.h" 23 #include "llvm/DebugInfo/DWARF/DWARFSection.h" 24 #include "llvm/DebugInfo/DWARF/DWARFUnit.h" 25 #include "llvm/Support/DataExtractor.h" 26 #include "llvm/Support/Error.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include "llvm/Support/ErrorOr.h" 29 #include "llvm/Support/FormatVariadic.h" 30 #include "llvm/Support/LEB128.h" 31 #include "llvm/Support/Path.h" 32 #include "llvm/Support/ThreadPool.h" 33 #include <vector> 34 35 namespace llvm { 36 37 /// Hold the input and output of the debug info size in bytes. 38 struct DebugInfoSize { 39 uint64_t Input; 40 uint64_t Output; 41 }; 42 43 /// Compute the total size of the debug info. 44 static uint64_t getDebugInfoSize(DWARFContext &Dwarf) { 45 uint64_t Size = 0; 46 for (auto &Unit : Dwarf.compile_units()) { 47 Size += Unit->getLength(); 48 } 49 return Size; 50 } 51 52 /// Similar to DWARFUnitSection::getUnitForOffset(), but returning our 53 /// CompileUnit object instead. 54 static CompileUnit *getUnitForOffset(const UnitListTy &Units, uint64_t Offset) { 55 auto CU = llvm::upper_bound( 56 Units, Offset, [](uint64_t LHS, const std::unique_ptr<CompileUnit> &RHS) { 57 return LHS < RHS->getOrigUnit().getNextUnitOffset(); 58 }); 59 return CU != Units.end() ? CU->get() : nullptr; 60 } 61 62 /// Resolve the DIE attribute reference that has been extracted in \p RefValue. 63 /// The resulting DIE might be in another CompileUnit which is stored into \p 64 /// ReferencedCU. \returns null if resolving fails for any reason. 65 DWARFDie DWARFLinker::resolveDIEReference(const DWARFFile &File, 66 const UnitListTy &Units, 67 const DWARFFormValue &RefValue, 68 const DWARFDie &DIE, 69 CompileUnit *&RefCU) { 70 assert(RefValue.isFormClass(DWARFFormValue::FC_Reference)); 71 uint64_t RefOffset = *RefValue.getAsReference(); 72 if ((RefCU = getUnitForOffset(Units, RefOffset))) 73 if (const auto RefDie = RefCU->getOrigUnit().getDIEForOffset(RefOffset)) { 74 // In a file with broken references, an attribute might point to a NULL 75 // DIE. 76 if (!RefDie.isNULL()) 77 return RefDie; 78 } 79 80 reportWarning("could not find referenced DIE", File, &DIE); 81 return DWARFDie(); 82 } 83 84 /// \returns whether the passed \a Attr type might contain a DIE reference 85 /// suitable for ODR uniquing. 86 static bool isODRAttribute(uint16_t Attr) { 87 switch (Attr) { 88 default: 89 return false; 90 case dwarf::DW_AT_type: 91 case dwarf::DW_AT_containing_type: 92 case dwarf::DW_AT_specification: 93 case dwarf::DW_AT_abstract_origin: 94 case dwarf::DW_AT_import: 95 return true; 96 } 97 llvm_unreachable("Improper attribute."); 98 } 99 100 static bool isTypeTag(uint16_t Tag) { 101 switch (Tag) { 102 case dwarf::DW_TAG_array_type: 103 case dwarf::DW_TAG_class_type: 104 case dwarf::DW_TAG_enumeration_type: 105 case dwarf::DW_TAG_pointer_type: 106 case dwarf::DW_TAG_reference_type: 107 case dwarf::DW_TAG_string_type: 108 case dwarf::DW_TAG_structure_type: 109 case dwarf::DW_TAG_subroutine_type: 110 case dwarf::DW_TAG_typedef: 111 case dwarf::DW_TAG_union_type: 112 case dwarf::DW_TAG_ptr_to_member_type: 113 case dwarf::DW_TAG_set_type: 114 case dwarf::DW_TAG_subrange_type: 115 case dwarf::DW_TAG_base_type: 116 case dwarf::DW_TAG_const_type: 117 case dwarf::DW_TAG_constant: 118 case dwarf::DW_TAG_file_type: 119 case dwarf::DW_TAG_namelist: 120 case dwarf::DW_TAG_packed_type: 121 case dwarf::DW_TAG_volatile_type: 122 case dwarf::DW_TAG_restrict_type: 123 case dwarf::DW_TAG_atomic_type: 124 case dwarf::DW_TAG_interface_type: 125 case dwarf::DW_TAG_unspecified_type: 126 case dwarf::DW_TAG_shared_type: 127 return true; 128 default: 129 break; 130 } 131 return false; 132 } 133 134 AddressesMap::~AddressesMap() {} 135 136 DwarfEmitter::~DwarfEmitter() {} 137 138 static Optional<StringRef> StripTemplateParameters(StringRef Name) { 139 // We are looking for template parameters to strip from Name. e.g. 140 // 141 // operator<<B> 142 // 143 // We look for > at the end but if it does not contain any < then we 144 // have something like operator>>. We check for the operator<=> case. 145 if (!Name.endswith(">") || Name.count("<") == 0 || Name.endswith("<=>")) 146 return {}; 147 148 // How many < until we have the start of the template parameters. 149 size_t NumLeftAnglesToSkip = 1; 150 151 // If we have operator<=> then we need to skip its < as well. 152 NumLeftAnglesToSkip += Name.count("<=>"); 153 154 size_t RightAngleCount = Name.count('>'); 155 size_t LeftAngleCount = Name.count('<'); 156 157 // If we have more < than > we have operator< or operator<< 158 // we to account for their < as well. 159 if (LeftAngleCount > RightAngleCount) 160 NumLeftAnglesToSkip += LeftAngleCount - RightAngleCount; 161 162 size_t StartOfTemplate = 0; 163 while (NumLeftAnglesToSkip--) 164 StartOfTemplate = Name.find('<', StartOfTemplate) + 1; 165 166 return Name.substr(0, StartOfTemplate - 1); 167 } 168 169 bool DWARFLinker::DIECloner::getDIENames(const DWARFDie &Die, 170 AttributesInfo &Info, 171 OffsetsStringPool &StringPool, 172 bool StripTemplate) { 173 // This function will be called on DIEs having low_pcs and 174 // ranges. As getting the name might be more expansive, filter out 175 // blocks directly. 176 if (Die.getTag() == dwarf::DW_TAG_lexical_block) 177 return false; 178 179 if (!Info.MangledName) 180 if (const char *MangledName = Die.getLinkageName()) 181 Info.MangledName = StringPool.getEntry(MangledName); 182 183 if (!Info.Name) 184 if (const char *Name = Die.getShortName()) 185 Info.Name = StringPool.getEntry(Name); 186 187 if (!Info.MangledName) 188 Info.MangledName = Info.Name; 189 190 if (StripTemplate && Info.Name && Info.MangledName != Info.Name) { 191 StringRef Name = Info.Name.getString(); 192 if (Optional<StringRef> StrippedName = StripTemplateParameters(Name)) 193 Info.NameWithoutTemplate = StringPool.getEntry(*StrippedName); 194 } 195 196 return Info.Name || Info.MangledName; 197 } 198 199 /// Resolve the relative path to a build artifact referenced by DWARF by 200 /// applying DW_AT_comp_dir. 201 static void resolveRelativeObjectPath(SmallVectorImpl<char> &Buf, DWARFDie CU) { 202 sys::path::append(Buf, dwarf::toString(CU.find(dwarf::DW_AT_comp_dir), "")); 203 } 204 205 /// Collect references to parseable Swift interfaces in imported 206 /// DW_TAG_module blocks. 207 static void analyzeImportedModule( 208 const DWARFDie &DIE, CompileUnit &CU, 209 swiftInterfacesMap *ParseableSwiftInterfaces, 210 std::function<void(const Twine &, const DWARFDie &)> ReportWarning) { 211 if (CU.getLanguage() != dwarf::DW_LANG_Swift) 212 return; 213 214 if (!ParseableSwiftInterfaces) 215 return; 216 217 StringRef Path = dwarf::toStringRef(DIE.find(dwarf::DW_AT_LLVM_include_path)); 218 if (!Path.endswith(".swiftinterface")) 219 return; 220 // Don't track interfaces that are part of the SDK. 221 StringRef SysRoot = dwarf::toStringRef(DIE.find(dwarf::DW_AT_LLVM_sysroot)); 222 if (SysRoot.empty()) 223 SysRoot = CU.getSysRoot(); 224 if (!SysRoot.empty() && Path.startswith(SysRoot)) 225 return; 226 if (Optional<DWARFFormValue> Val = DIE.find(dwarf::DW_AT_name)) 227 if (Optional<const char *> Name = Val->getAsCString()) { 228 auto &Entry = (*ParseableSwiftInterfaces)[*Name]; 229 // The prepend path is applied later when copying. 230 DWARFDie CUDie = CU.getOrigUnit().getUnitDIE(); 231 SmallString<128> ResolvedPath; 232 if (sys::path::is_relative(Path)) 233 resolveRelativeObjectPath(ResolvedPath, CUDie); 234 sys::path::append(ResolvedPath, Path); 235 if (!Entry.empty() && Entry != ResolvedPath) 236 ReportWarning( 237 Twine("Conflicting parseable interfaces for Swift Module ") + 238 *Name + ": " + Entry + " and " + Path, 239 DIE); 240 Entry = std::string(ResolvedPath.str()); 241 } 242 } 243 244 /// The distinct types of work performed by the work loop in 245 /// analyzeContextInfo. 246 enum class ContextWorklistItemType : uint8_t { 247 AnalyzeContextInfo, 248 UpdateChildPruning, 249 UpdatePruning, 250 }; 251 252 /// This class represents an item in the work list. The type defines what kind 253 /// of work needs to be performed when processing the current item. Everything 254 /// but the Type and Die fields are optional based on the type. 255 struct ContextWorklistItem { 256 DWARFDie Die; 257 unsigned ParentIdx; 258 union { 259 CompileUnit::DIEInfo *OtherInfo; 260 DeclContext *Context; 261 }; 262 ContextWorklistItemType Type; 263 bool InImportedModule; 264 265 ContextWorklistItem(DWARFDie Die, ContextWorklistItemType T, 266 CompileUnit::DIEInfo *OtherInfo = nullptr) 267 : Die(Die), ParentIdx(0), OtherInfo(OtherInfo), Type(T), 268 InImportedModule(false) {} 269 270 ContextWorklistItem(DWARFDie Die, DeclContext *Context, unsigned ParentIdx, 271 bool InImportedModule) 272 : Die(Die), ParentIdx(ParentIdx), Context(Context), 273 Type(ContextWorklistItemType::AnalyzeContextInfo), 274 InImportedModule(InImportedModule) {} 275 }; 276 277 static bool updatePruning(const DWARFDie &Die, CompileUnit &CU, 278 uint64_t ModulesEndOffset) { 279 CompileUnit::DIEInfo &Info = CU.getInfo(Die); 280 281 // Prune this DIE if it is either a forward declaration inside a 282 // DW_TAG_module or a DW_TAG_module that contains nothing but 283 // forward declarations. 284 Info.Prune &= (Die.getTag() == dwarf::DW_TAG_module) || 285 (isTypeTag(Die.getTag()) && 286 dwarf::toUnsigned(Die.find(dwarf::DW_AT_declaration), 0)); 287 288 // Only prune forward declarations inside a DW_TAG_module for which a 289 // definition exists elsewhere. 290 if (ModulesEndOffset == 0) 291 Info.Prune &= Info.Ctxt && Info.Ctxt->getCanonicalDIEOffset(); 292 else 293 Info.Prune &= Info.Ctxt && Info.Ctxt->getCanonicalDIEOffset() > 0 && 294 Info.Ctxt->getCanonicalDIEOffset() <= ModulesEndOffset; 295 296 return Info.Prune; 297 } 298 299 static void updateChildPruning(const DWARFDie &Die, CompileUnit &CU, 300 CompileUnit::DIEInfo &ChildInfo) { 301 CompileUnit::DIEInfo &Info = CU.getInfo(Die); 302 Info.Prune &= ChildInfo.Prune; 303 } 304 305 /// Recursive helper to build the global DeclContext information and 306 /// gather the child->parent relationships in the original compile unit. 307 /// 308 /// This function uses the same work list approach as lookForDIEsToKeep. 309 /// 310 /// \return true when this DIE and all of its children are only 311 /// forward declarations to types defined in external clang modules 312 /// (i.e., forward declarations that are children of a DW_TAG_module). 313 static bool analyzeContextInfo( 314 const DWARFDie &DIE, unsigned ParentIdx, CompileUnit &CU, 315 DeclContext *CurrentDeclContext, DeclContextTree &Contexts, 316 uint64_t ModulesEndOffset, swiftInterfacesMap *ParseableSwiftInterfaces, 317 std::function<void(const Twine &, const DWARFDie &)> ReportWarning, 318 bool InImportedModule = false) { 319 // LIFO work list. 320 std::vector<ContextWorklistItem> Worklist; 321 Worklist.emplace_back(DIE, CurrentDeclContext, ParentIdx, InImportedModule); 322 323 while (!Worklist.empty()) { 324 ContextWorklistItem Current = Worklist.back(); 325 Worklist.pop_back(); 326 327 switch (Current.Type) { 328 case ContextWorklistItemType::UpdatePruning: 329 updatePruning(Current.Die, CU, ModulesEndOffset); 330 continue; 331 case ContextWorklistItemType::UpdateChildPruning: 332 updateChildPruning(Current.Die, CU, *Current.OtherInfo); 333 continue; 334 case ContextWorklistItemType::AnalyzeContextInfo: 335 break; 336 } 337 338 unsigned Idx = CU.getOrigUnit().getDIEIndex(Current.Die); 339 CompileUnit::DIEInfo &Info = CU.getInfo(Idx); 340 341 // Clang imposes an ODR on modules(!) regardless of the language: 342 // "The module-id should consist of only a single identifier, 343 // which provides the name of the module being defined. Each 344 // module shall have a single definition." 345 // 346 // This does not extend to the types inside the modules: 347 // "[I]n C, this implies that if two structs are defined in 348 // different submodules with the same name, those two types are 349 // distinct types (but may be compatible types if their 350 // definitions match)." 351 // 352 // We treat non-C++ modules like namespaces for this reason. 353 if (Current.Die.getTag() == dwarf::DW_TAG_module && 354 Current.ParentIdx == 0 && 355 dwarf::toString(Current.Die.find(dwarf::DW_AT_name), "") != 356 CU.getClangModuleName()) { 357 Current.InImportedModule = true; 358 analyzeImportedModule(Current.Die, CU, ParseableSwiftInterfaces, 359 ReportWarning); 360 } 361 362 Info.ParentIdx = Current.ParentIdx; 363 bool InClangModule = CU.isClangModule() || Current.InImportedModule; 364 if (CU.hasODR() || InClangModule) { 365 if (Current.Context) { 366 auto PtrInvalidPair = Contexts.getChildDeclContext( 367 *Current.Context, Current.Die, CU, InClangModule); 368 Current.Context = PtrInvalidPair.getPointer(); 369 Info.Ctxt = 370 PtrInvalidPair.getInt() ? nullptr : PtrInvalidPair.getPointer(); 371 if (Info.Ctxt) 372 Info.Ctxt->setDefinedInClangModule(InClangModule); 373 } else 374 Info.Ctxt = Current.Context = nullptr; 375 } 376 377 Info.Prune = Current.InImportedModule; 378 // Add children in reverse order to the worklist to effectively process 379 // them in order. 380 Worklist.emplace_back(Current.Die, ContextWorklistItemType::UpdatePruning); 381 for (auto Child : reverse(Current.Die.children())) { 382 CompileUnit::DIEInfo &ChildInfo = CU.getInfo(Child); 383 Worklist.emplace_back( 384 Current.Die, ContextWorklistItemType::UpdateChildPruning, &ChildInfo); 385 Worklist.emplace_back(Child, Current.Context, Idx, 386 Current.InImportedModule); 387 } 388 } 389 390 return CU.getInfo(DIE).Prune; 391 } 392 393 static bool dieNeedsChildrenToBeMeaningful(uint32_t Tag) { 394 switch (Tag) { 395 default: 396 return false; 397 case dwarf::DW_TAG_class_type: 398 case dwarf::DW_TAG_common_block: 399 case dwarf::DW_TAG_lexical_block: 400 case dwarf::DW_TAG_structure_type: 401 case dwarf::DW_TAG_subprogram: 402 case dwarf::DW_TAG_subroutine_type: 403 case dwarf::DW_TAG_union_type: 404 return true; 405 } 406 llvm_unreachable("Invalid Tag"); 407 } 408 409 void DWARFLinker::cleanupAuxiliarryData(LinkContext &Context) { 410 Context.clear(); 411 412 for (auto I = DIEBlocks.begin(), E = DIEBlocks.end(); I != E; ++I) 413 (*I)->~DIEBlock(); 414 for (auto I = DIELocs.begin(), E = DIELocs.end(); I != E; ++I) 415 (*I)->~DIELoc(); 416 417 DIEBlocks.clear(); 418 DIELocs.clear(); 419 DIEAlloc.Reset(); 420 } 421 422 /// Check if a variable describing DIE should be kept. 423 /// \returns updated TraversalFlags. 424 unsigned DWARFLinker::shouldKeepVariableDIE(AddressesMap &RelocMgr, 425 const DWARFDie &DIE, 426 CompileUnit::DIEInfo &MyInfo, 427 unsigned Flags) { 428 const auto *Abbrev = DIE.getAbbreviationDeclarationPtr(); 429 430 // Global variables with constant value can always be kept. 431 if (!(Flags & TF_InFunctionScope) && 432 Abbrev->findAttributeIndex(dwarf::DW_AT_const_value)) { 433 MyInfo.InDebugMap = true; 434 return Flags | TF_Keep; 435 } 436 437 // See if there is a relocation to a valid debug map entry inside this 438 // variable's location. The order is important here. We want to always check 439 // if the variable has a valid relocation, so that the DIEInfo is filled. 440 // However, we don't want a static variable in a function to force us to keep 441 // the enclosing function, unless requested explicitly. 442 const bool HasLiveMemoryLocation = 443 RelocMgr.hasLiveMemoryLocation(DIE, MyInfo); 444 if (!HasLiveMemoryLocation || ((Flags & TF_InFunctionScope) && 445 !LLVM_UNLIKELY(Options.KeepFunctionForStatic))) 446 return Flags; 447 448 if (Options.Verbose) { 449 outs() << "Keeping variable DIE:"; 450 DIDumpOptions DumpOpts; 451 DumpOpts.ChildRecurseDepth = 0; 452 DumpOpts.Verbose = Options.Verbose; 453 DIE.dump(outs(), 8 /* Indent */, DumpOpts); 454 } 455 456 return Flags | TF_Keep; 457 } 458 459 /// Check if a function describing DIE should be kept. 460 /// \returns updated TraversalFlags. 461 unsigned DWARFLinker::shouldKeepSubprogramDIE( 462 AddressesMap &RelocMgr, RangesTy &Ranges, const DWARFDie &DIE, 463 const DWARFFile &File, CompileUnit &Unit, CompileUnit::DIEInfo &MyInfo, 464 unsigned Flags) { 465 Flags |= TF_InFunctionScope; 466 467 auto LowPc = dwarf::toAddress(DIE.find(dwarf::DW_AT_low_pc)); 468 if (!LowPc) 469 return Flags; 470 471 assert(LowPc.hasValue() && "low_pc attribute is not an address."); 472 if (!RelocMgr.hasLiveAddressRange(DIE, MyInfo)) 473 return Flags; 474 475 if (Options.Verbose) { 476 outs() << "Keeping subprogram DIE:"; 477 DIDumpOptions DumpOpts; 478 DumpOpts.ChildRecurseDepth = 0; 479 DumpOpts.Verbose = Options.Verbose; 480 DIE.dump(outs(), 8 /* Indent */, DumpOpts); 481 } 482 483 if (DIE.getTag() == dwarf::DW_TAG_label) { 484 if (Unit.hasLabelAt(*LowPc)) 485 return Flags; 486 487 DWARFUnit &OrigUnit = Unit.getOrigUnit(); 488 // FIXME: dsymutil-classic compat. dsymutil-classic doesn't consider labels 489 // that don't fall into the CU's aranges. This is wrong IMO. Debug info 490 // generation bugs aside, this is really wrong in the case of labels, where 491 // a label marking the end of a function will have a PC == CU's high_pc. 492 if (dwarf::toAddress(OrigUnit.getUnitDIE().find(dwarf::DW_AT_high_pc)) 493 .getValueOr(UINT64_MAX) <= LowPc) 494 return Flags; 495 Unit.addLabelLowPc(*LowPc, MyInfo.AddrAdjust); 496 return Flags | TF_Keep; 497 } 498 499 Flags |= TF_Keep; 500 501 Optional<uint64_t> HighPc = DIE.getHighPC(*LowPc); 502 if (!HighPc) { 503 reportWarning("Function without high_pc. Range will be discarded.\n", File, 504 &DIE); 505 return Flags; 506 } 507 508 // Replace the debug map range with a more accurate one. 509 Ranges[*LowPc] = ObjFileAddressRange(*HighPc, MyInfo.AddrAdjust); 510 Unit.addFunctionRange(*LowPc, *HighPc, MyInfo.AddrAdjust); 511 return Flags; 512 } 513 514 /// Check if a DIE should be kept. 515 /// \returns updated TraversalFlags. 516 unsigned DWARFLinker::shouldKeepDIE(AddressesMap &RelocMgr, RangesTy &Ranges, 517 const DWARFDie &DIE, const DWARFFile &File, 518 CompileUnit &Unit, 519 CompileUnit::DIEInfo &MyInfo, 520 unsigned Flags) { 521 switch (DIE.getTag()) { 522 case dwarf::DW_TAG_constant: 523 case dwarf::DW_TAG_variable: 524 return shouldKeepVariableDIE(RelocMgr, DIE, MyInfo, Flags); 525 case dwarf::DW_TAG_subprogram: 526 case dwarf::DW_TAG_label: 527 return shouldKeepSubprogramDIE(RelocMgr, Ranges, DIE, File, Unit, MyInfo, 528 Flags); 529 case dwarf::DW_TAG_base_type: 530 // DWARF Expressions may reference basic types, but scanning them 531 // is expensive. Basic types are tiny, so just keep all of them. 532 case dwarf::DW_TAG_imported_module: 533 case dwarf::DW_TAG_imported_declaration: 534 case dwarf::DW_TAG_imported_unit: 535 // We always want to keep these. 536 return Flags | TF_Keep; 537 default: 538 break; 539 } 540 541 return Flags; 542 } 543 544 /// Helper that updates the completeness of the current DIE based on the 545 /// completeness of one of its children. It depends on the incompleteness of 546 /// the children already being computed. 547 static void updateChildIncompleteness(const DWARFDie &Die, CompileUnit &CU, 548 CompileUnit::DIEInfo &ChildInfo) { 549 switch (Die.getTag()) { 550 case dwarf::DW_TAG_structure_type: 551 case dwarf::DW_TAG_class_type: 552 break; 553 default: 554 return; 555 } 556 557 CompileUnit::DIEInfo &MyInfo = CU.getInfo(Die); 558 559 if (ChildInfo.Incomplete || ChildInfo.Prune) 560 MyInfo.Incomplete = true; 561 } 562 563 /// Helper that updates the completeness of the current DIE based on the 564 /// completeness of the DIEs it references. It depends on the incompleteness of 565 /// the referenced DIE already being computed. 566 static void updateRefIncompleteness(const DWARFDie &Die, CompileUnit &CU, 567 CompileUnit::DIEInfo &RefInfo) { 568 switch (Die.getTag()) { 569 case dwarf::DW_TAG_typedef: 570 case dwarf::DW_TAG_member: 571 case dwarf::DW_TAG_reference_type: 572 case dwarf::DW_TAG_ptr_to_member_type: 573 case dwarf::DW_TAG_pointer_type: 574 break; 575 default: 576 return; 577 } 578 579 CompileUnit::DIEInfo &MyInfo = CU.getInfo(Die); 580 581 if (MyInfo.Incomplete) 582 return; 583 584 if (RefInfo.Incomplete) 585 MyInfo.Incomplete = true; 586 } 587 588 /// Look at the children of the given DIE and decide whether they should be 589 /// kept. 590 void DWARFLinker::lookForChildDIEsToKeep( 591 const DWARFDie &Die, CompileUnit &CU, unsigned Flags, 592 SmallVectorImpl<WorklistItem> &Worklist) { 593 // The TF_ParentWalk flag tells us that we are currently walking up the 594 // parent chain of a required DIE, and we don't want to mark all the children 595 // of the parents as kept (consider for example a DW_TAG_namespace node in 596 // the parent chain). There are however a set of DIE types for which we want 597 // to ignore that directive and still walk their children. 598 if (dieNeedsChildrenToBeMeaningful(Die.getTag())) 599 Flags &= ~DWARFLinker::TF_ParentWalk; 600 601 // We're finished if this DIE has no children or we're walking the parent 602 // chain. 603 if (!Die.hasChildren() || (Flags & DWARFLinker::TF_ParentWalk)) 604 return; 605 606 // Add children in reverse order to the worklist to effectively process them 607 // in order. 608 for (auto Child : reverse(Die.children())) { 609 // Add a worklist item before every child to calculate incompleteness right 610 // after the current child is processed. 611 CompileUnit::DIEInfo &ChildInfo = CU.getInfo(Child); 612 Worklist.emplace_back(Die, CU, WorklistItemType::UpdateChildIncompleteness, 613 &ChildInfo); 614 Worklist.emplace_back(Child, CU, Flags); 615 } 616 } 617 618 /// Look at DIEs referenced by the given DIE and decide whether they should be 619 /// kept. All DIEs referenced though attributes should be kept. 620 void DWARFLinker::lookForRefDIEsToKeep( 621 const DWARFDie &Die, CompileUnit &CU, unsigned Flags, 622 const UnitListTy &Units, const DWARFFile &File, 623 SmallVectorImpl<WorklistItem> &Worklist) { 624 bool UseOdr = (Flags & DWARFLinker::TF_DependencyWalk) 625 ? (Flags & DWARFLinker::TF_ODR) 626 : CU.hasODR(); 627 DWARFUnit &Unit = CU.getOrigUnit(); 628 DWARFDataExtractor Data = Unit.getDebugInfoExtractor(); 629 const auto *Abbrev = Die.getAbbreviationDeclarationPtr(); 630 uint64_t Offset = Die.getOffset() + getULEB128Size(Abbrev->getCode()); 631 632 SmallVector<std::pair<DWARFDie, CompileUnit &>, 4> ReferencedDIEs; 633 for (const auto &AttrSpec : Abbrev->attributes()) { 634 DWARFFormValue Val(AttrSpec.Form); 635 if (!Val.isFormClass(DWARFFormValue::FC_Reference) || 636 AttrSpec.Attr == dwarf::DW_AT_sibling) { 637 DWARFFormValue::skipValue(AttrSpec.Form, Data, &Offset, 638 Unit.getFormParams()); 639 continue; 640 } 641 642 Val.extractValue(Data, &Offset, Unit.getFormParams(), &Unit); 643 CompileUnit *ReferencedCU; 644 if (auto RefDie = 645 resolveDIEReference(File, Units, Val, Die, ReferencedCU)) { 646 CompileUnit::DIEInfo &Info = ReferencedCU->getInfo(RefDie); 647 bool IsModuleRef = Info.Ctxt && Info.Ctxt->getCanonicalDIEOffset() && 648 Info.Ctxt->isDefinedInClangModule(); 649 // If the referenced DIE has a DeclContext that has already been 650 // emitted, then do not keep the one in this CU. We'll link to 651 // the canonical DIE in cloneDieReferenceAttribute. 652 // 653 // FIXME: compatibility with dsymutil-classic. UseODR shouldn't 654 // be necessary and could be advantageously replaced by 655 // ReferencedCU->hasODR() && CU.hasODR(). 656 // 657 // FIXME: compatibility with dsymutil-classic. There is no 658 // reason not to unique ref_addr references. 659 if (AttrSpec.Form != dwarf::DW_FORM_ref_addr && (UseOdr || IsModuleRef) && 660 Info.Ctxt && 661 Info.Ctxt != ReferencedCU->getInfo(Info.ParentIdx).Ctxt && 662 Info.Ctxt->getCanonicalDIEOffset() && isODRAttribute(AttrSpec.Attr)) 663 continue; 664 665 // Keep a module forward declaration if there is no definition. 666 if (!(isODRAttribute(AttrSpec.Attr) && Info.Ctxt && 667 Info.Ctxt->getCanonicalDIEOffset())) 668 Info.Prune = false; 669 ReferencedDIEs.emplace_back(RefDie, *ReferencedCU); 670 } 671 } 672 673 unsigned ODRFlag = UseOdr ? DWARFLinker::TF_ODR : 0; 674 675 // Add referenced DIEs in reverse order to the worklist to effectively 676 // process them in order. 677 for (auto &P : reverse(ReferencedDIEs)) { 678 // Add a worklist item before every child to calculate incompleteness right 679 // after the current child is processed. 680 CompileUnit::DIEInfo &Info = P.second.getInfo(P.first); 681 Worklist.emplace_back(Die, CU, WorklistItemType::UpdateRefIncompleteness, 682 &Info); 683 Worklist.emplace_back(P.first, P.second, 684 DWARFLinker::TF_Keep | 685 DWARFLinker::TF_DependencyWalk | ODRFlag); 686 } 687 } 688 689 /// Look at the parent of the given DIE and decide whether they should be kept. 690 void DWARFLinker::lookForParentDIEsToKeep( 691 unsigned AncestorIdx, CompileUnit &CU, unsigned Flags, 692 SmallVectorImpl<WorklistItem> &Worklist) { 693 // Stop if we encounter an ancestor that's already marked as kept. 694 if (CU.getInfo(AncestorIdx).Keep) 695 return; 696 697 DWARFUnit &Unit = CU.getOrigUnit(); 698 DWARFDie ParentDIE = Unit.getDIEAtIndex(AncestorIdx); 699 Worklist.emplace_back(CU.getInfo(AncestorIdx).ParentIdx, CU, Flags); 700 Worklist.emplace_back(ParentDIE, CU, Flags); 701 } 702 703 /// Recursively walk the \p DIE tree and look for DIEs to keep. Store that 704 /// information in \p CU's DIEInfo. 705 /// 706 /// This function is the entry point of the DIE selection algorithm. It is 707 /// expected to walk the DIE tree in file order and (though the mediation of 708 /// its helper) call hasValidRelocation() on each DIE that might be a 'root 709 /// DIE' (See DwarfLinker class comment). 710 /// 711 /// While walking the dependencies of root DIEs, this function is also called, 712 /// but during these dependency walks the file order is not respected. The 713 /// TF_DependencyWalk flag tells us which kind of traversal we are currently 714 /// doing. 715 /// 716 /// The recursive algorithm is implemented iteratively as a work list because 717 /// very deep recursion could exhaust the stack for large projects. The work 718 /// list acts as a scheduler for different types of work that need to be 719 /// performed. 720 /// 721 /// The recursive nature of the algorithm is simulated by running the "main" 722 /// algorithm (LookForDIEsToKeep) followed by either looking at more DIEs 723 /// (LookForChildDIEsToKeep, LookForRefDIEsToKeep, LookForParentDIEsToKeep) or 724 /// fixing up a computed property (UpdateChildIncompleteness, 725 /// UpdateRefIncompleteness). 726 /// 727 /// The return value indicates whether the DIE is incomplete. 728 void DWARFLinker::lookForDIEsToKeep(AddressesMap &AddressesMap, 729 RangesTy &Ranges, const UnitListTy &Units, 730 const DWARFDie &Die, const DWARFFile &File, 731 CompileUnit &Cu, unsigned Flags) { 732 // LIFO work list. 733 SmallVector<WorklistItem, 4> Worklist; 734 Worklist.emplace_back(Die, Cu, Flags); 735 736 while (!Worklist.empty()) { 737 WorklistItem Current = Worklist.pop_back_val(); 738 739 // Look at the worklist type to decide what kind of work to perform. 740 switch (Current.Type) { 741 case WorklistItemType::UpdateChildIncompleteness: 742 updateChildIncompleteness(Current.Die, Current.CU, *Current.OtherInfo); 743 continue; 744 case WorklistItemType::UpdateRefIncompleteness: 745 updateRefIncompleteness(Current.Die, Current.CU, *Current.OtherInfo); 746 continue; 747 case WorklistItemType::LookForChildDIEsToKeep: 748 lookForChildDIEsToKeep(Current.Die, Current.CU, Current.Flags, Worklist); 749 continue; 750 case WorklistItemType::LookForRefDIEsToKeep: 751 lookForRefDIEsToKeep(Current.Die, Current.CU, Current.Flags, Units, File, 752 Worklist); 753 continue; 754 case WorklistItemType::LookForParentDIEsToKeep: 755 lookForParentDIEsToKeep(Current.AncestorIdx, Current.CU, Current.Flags, 756 Worklist); 757 continue; 758 case WorklistItemType::LookForDIEsToKeep: 759 break; 760 } 761 762 unsigned Idx = Current.CU.getOrigUnit().getDIEIndex(Current.Die); 763 CompileUnit::DIEInfo &MyInfo = Current.CU.getInfo(Idx); 764 765 if (MyInfo.Prune) 766 continue; 767 768 // If the Keep flag is set, we are marking a required DIE's dependencies. 769 // If our target is already marked as kept, we're all set. 770 bool AlreadyKept = MyInfo.Keep; 771 if ((Current.Flags & TF_DependencyWalk) && AlreadyKept) 772 continue; 773 774 // We must not call shouldKeepDIE while called from keepDIEAndDependencies, 775 // because it would screw up the relocation finding logic. 776 if (!(Current.Flags & TF_DependencyWalk)) 777 Current.Flags = shouldKeepDIE(AddressesMap, Ranges, Current.Die, File, 778 Current.CU, MyInfo, Current.Flags); 779 780 // Finish by looking for child DIEs. Because of the LIFO worklist we need 781 // to schedule that work before any subsequent items are added to the 782 // worklist. 783 Worklist.emplace_back(Current.Die, Current.CU, Current.Flags, 784 WorklistItemType::LookForChildDIEsToKeep); 785 786 if (AlreadyKept || !(Current.Flags & TF_Keep)) 787 continue; 788 789 // If it is a newly kept DIE mark it as well as all its dependencies as 790 // kept. 791 MyInfo.Keep = true; 792 793 // We're looking for incomplete types. 794 MyInfo.Incomplete = 795 Current.Die.getTag() != dwarf::DW_TAG_subprogram && 796 Current.Die.getTag() != dwarf::DW_TAG_member && 797 dwarf::toUnsigned(Current.Die.find(dwarf::DW_AT_declaration), 0); 798 799 // After looking at the parent chain, look for referenced DIEs. Because of 800 // the LIFO worklist we need to schedule that work before any subsequent 801 // items are added to the worklist. 802 Worklist.emplace_back(Current.Die, Current.CU, Current.Flags, 803 WorklistItemType::LookForRefDIEsToKeep); 804 805 bool UseOdr = (Current.Flags & TF_DependencyWalk) ? (Current.Flags & TF_ODR) 806 : Current.CU.hasODR(); 807 unsigned ODRFlag = UseOdr ? TF_ODR : 0; 808 unsigned ParFlags = TF_ParentWalk | TF_Keep | TF_DependencyWalk | ODRFlag; 809 810 // Now schedule the parent walk. 811 Worklist.emplace_back(MyInfo.ParentIdx, Current.CU, ParFlags); 812 } 813 } 814 815 /// Assign an abbreviation number to \p Abbrev. 816 /// 817 /// Our DIEs get freed after every DebugMapObject has been processed, 818 /// thus the FoldingSet we use to unique DIEAbbrevs cannot refer to 819 /// the instances hold by the DIEs. When we encounter an abbreviation 820 /// that we don't know, we create a permanent copy of it. 821 void DWARFLinker::assignAbbrev(DIEAbbrev &Abbrev) { 822 // Check the set for priors. 823 FoldingSetNodeID ID; 824 Abbrev.Profile(ID); 825 void *InsertToken; 826 DIEAbbrev *InSet = AbbreviationsSet.FindNodeOrInsertPos(ID, InsertToken); 827 828 // If it's newly added. 829 if (InSet) { 830 // Assign existing abbreviation number. 831 Abbrev.setNumber(InSet->getNumber()); 832 } else { 833 // Add to abbreviation list. 834 Abbreviations.push_back( 835 std::make_unique<DIEAbbrev>(Abbrev.getTag(), Abbrev.hasChildren())); 836 for (const auto &Attr : Abbrev.getData()) 837 Abbreviations.back()->AddAttribute(Attr.getAttribute(), Attr.getForm()); 838 AbbreviationsSet.InsertNode(Abbreviations.back().get(), InsertToken); 839 // Assign the unique abbreviation number. 840 Abbrev.setNumber(Abbreviations.size()); 841 Abbreviations.back()->setNumber(Abbreviations.size()); 842 } 843 } 844 845 unsigned DWARFLinker::DIECloner::cloneStringAttribute( 846 DIE &Die, AttributeSpec AttrSpec, const DWARFFormValue &Val, 847 const DWARFUnit &U, OffsetsStringPool &StringPool, AttributesInfo &Info) { 848 Optional<const char *> String = Val.getAsCString(); 849 if (!String) 850 return 0; 851 852 // Switch everything to out of line strings. 853 auto StringEntry = StringPool.getEntry(*String); 854 855 // Update attributes info. 856 if (AttrSpec.Attr == dwarf::DW_AT_name) 857 Info.Name = StringEntry; 858 else if (AttrSpec.Attr == dwarf::DW_AT_MIPS_linkage_name || 859 AttrSpec.Attr == dwarf::DW_AT_linkage_name) 860 Info.MangledName = StringEntry; 861 862 Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr), dwarf::DW_FORM_strp, 863 DIEInteger(StringEntry.getOffset())); 864 865 return 4; 866 } 867 868 unsigned DWARFLinker::DIECloner::cloneDieReferenceAttribute( 869 DIE &Die, const DWARFDie &InputDIE, AttributeSpec AttrSpec, 870 unsigned AttrSize, const DWARFFormValue &Val, const DWARFFile &File, 871 CompileUnit &Unit) { 872 const DWARFUnit &U = Unit.getOrigUnit(); 873 uint64_t Ref = *Val.getAsReference(); 874 875 DIE *NewRefDie = nullptr; 876 CompileUnit *RefUnit = nullptr; 877 DeclContext *Ctxt = nullptr; 878 879 DWARFDie RefDie = 880 Linker.resolveDIEReference(File, CompileUnits, Val, InputDIE, RefUnit); 881 882 // If the referenced DIE is not found, drop the attribute. 883 if (!RefDie || AttrSpec.Attr == dwarf::DW_AT_sibling) 884 return 0; 885 886 CompileUnit::DIEInfo &RefInfo = RefUnit->getInfo(RefDie); 887 888 // If we already have emitted an equivalent DeclContext, just point 889 // at it. 890 if (isODRAttribute(AttrSpec.Attr)) { 891 Ctxt = RefInfo.Ctxt; 892 if (Ctxt && Ctxt->getCanonicalDIEOffset()) { 893 DIEInteger Attr(Ctxt->getCanonicalDIEOffset()); 894 Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr), 895 dwarf::DW_FORM_ref_addr, Attr); 896 return U.getRefAddrByteSize(); 897 } 898 } 899 900 if (!RefInfo.Clone) { 901 assert(Ref > InputDIE.getOffset()); 902 // We haven't cloned this DIE yet. Just create an empty one and 903 // store it. It'll get really cloned when we process it. 904 RefInfo.Clone = DIE::get(DIEAlloc, dwarf::Tag(RefDie.getTag())); 905 } 906 NewRefDie = RefInfo.Clone; 907 908 if (AttrSpec.Form == dwarf::DW_FORM_ref_addr || 909 (Unit.hasODR() && isODRAttribute(AttrSpec.Attr))) { 910 // We cannot currently rely on a DIEEntry to emit ref_addr 911 // references, because the implementation calls back to DwarfDebug 912 // to find the unit offset. (We don't have a DwarfDebug) 913 // FIXME: we should be able to design DIEEntry reliance on 914 // DwarfDebug away. 915 uint64_t Attr; 916 if (Ref < InputDIE.getOffset()) { 917 // We must have already cloned that DIE. 918 uint32_t NewRefOffset = 919 RefUnit->getStartOffset() + NewRefDie->getOffset(); 920 Attr = NewRefOffset; 921 Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr), 922 dwarf::DW_FORM_ref_addr, DIEInteger(Attr)); 923 } else { 924 // A forward reference. Note and fixup later. 925 Attr = 0xBADDEF; 926 Unit.noteForwardReference( 927 NewRefDie, RefUnit, Ctxt, 928 Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr), 929 dwarf::DW_FORM_ref_addr, DIEInteger(Attr))); 930 } 931 return U.getRefAddrByteSize(); 932 } 933 934 Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr), 935 dwarf::Form(AttrSpec.Form), DIEEntry(*NewRefDie)); 936 937 return AttrSize; 938 } 939 940 void DWARFLinker::DIECloner::cloneExpression( 941 DataExtractor &Data, DWARFExpression Expression, const DWARFFile &File, 942 CompileUnit &Unit, SmallVectorImpl<uint8_t> &OutputBuffer) { 943 using Encoding = DWARFExpression::Operation::Encoding; 944 945 uint64_t OpOffset = 0; 946 for (auto &Op : Expression) { 947 auto Description = Op.getDescription(); 948 // DW_OP_const_type is variable-length and has 3 949 // operands. DWARFExpression thus far only supports 2. 950 auto Op0 = Description.Op[0]; 951 auto Op1 = Description.Op[1]; 952 if ((Op0 == Encoding::BaseTypeRef && Op1 != Encoding::SizeNA) || 953 (Op1 == Encoding::BaseTypeRef && Op0 != Encoding::Size1)) 954 Linker.reportWarning("Unsupported DW_OP encoding.", File); 955 956 if ((Op0 == Encoding::BaseTypeRef && Op1 == Encoding::SizeNA) || 957 (Op1 == Encoding::BaseTypeRef && Op0 == Encoding::Size1)) { 958 // This code assumes that the other non-typeref operand fits into 1 byte. 959 assert(OpOffset < Op.getEndOffset()); 960 uint32_t ULEBsize = Op.getEndOffset() - OpOffset - 1; 961 assert(ULEBsize <= 16); 962 963 // Copy over the operation. 964 OutputBuffer.push_back(Op.getCode()); 965 uint64_t RefOffset; 966 if (Op1 == Encoding::SizeNA) { 967 RefOffset = Op.getRawOperand(0); 968 } else { 969 OutputBuffer.push_back(Op.getRawOperand(0)); 970 RefOffset = Op.getRawOperand(1); 971 } 972 uint32_t Offset = 0; 973 // Look up the base type. For DW_OP_convert, the operand may be 0 to 974 // instead indicate the generic type. The same holds for 975 // DW_OP_reinterpret, which is currently not supported. 976 if (RefOffset > 0 || Op.getCode() != dwarf::DW_OP_convert) { 977 auto RefDie = Unit.getOrigUnit().getDIEForOffset(RefOffset); 978 CompileUnit::DIEInfo &Info = Unit.getInfo(RefDie); 979 if (DIE *Clone = Info.Clone) 980 Offset = Clone->getOffset(); 981 else 982 Linker.reportWarning( 983 "base type ref doesn't point to DW_TAG_base_type.", File); 984 } 985 uint8_t ULEB[16]; 986 unsigned RealSize = encodeULEB128(Offset, ULEB, ULEBsize); 987 if (RealSize > ULEBsize) { 988 // Emit the generic type as a fallback. 989 RealSize = encodeULEB128(0, ULEB, ULEBsize); 990 Linker.reportWarning("base type ref doesn't fit.", File); 991 } 992 assert(RealSize == ULEBsize && "padding failed"); 993 ArrayRef<uint8_t> ULEBbytes(ULEB, ULEBsize); 994 OutputBuffer.append(ULEBbytes.begin(), ULEBbytes.end()); 995 } else { 996 // Copy over everything else unmodified. 997 StringRef Bytes = Data.getData().slice(OpOffset, Op.getEndOffset()); 998 OutputBuffer.append(Bytes.begin(), Bytes.end()); 999 } 1000 OpOffset = Op.getEndOffset(); 1001 } 1002 } 1003 1004 unsigned DWARFLinker::DIECloner::cloneBlockAttribute( 1005 DIE &Die, const DWARFFile &File, CompileUnit &Unit, AttributeSpec AttrSpec, 1006 const DWARFFormValue &Val, unsigned AttrSize, bool IsLittleEndian) { 1007 DIEValueList *Attr; 1008 DIEValue Value; 1009 DIELoc *Loc = nullptr; 1010 DIEBlock *Block = nullptr; 1011 if (AttrSpec.Form == dwarf::DW_FORM_exprloc) { 1012 Loc = new (DIEAlloc) DIELoc; 1013 Linker.DIELocs.push_back(Loc); 1014 } else { 1015 Block = new (DIEAlloc) DIEBlock; 1016 Linker.DIEBlocks.push_back(Block); 1017 } 1018 Attr = Loc ? static_cast<DIEValueList *>(Loc) 1019 : static_cast<DIEValueList *>(Block); 1020 1021 if (Loc) 1022 Value = DIEValue(dwarf::Attribute(AttrSpec.Attr), 1023 dwarf::Form(AttrSpec.Form), Loc); 1024 else 1025 Value = DIEValue(dwarf::Attribute(AttrSpec.Attr), 1026 dwarf::Form(AttrSpec.Form), Block); 1027 1028 // If the block is a DWARF Expression, clone it into the temporary 1029 // buffer using cloneExpression(), otherwise copy the data directly. 1030 SmallVector<uint8_t, 32> Buffer; 1031 ArrayRef<uint8_t> Bytes = *Val.getAsBlock(); 1032 if (DWARFAttribute::mayHaveLocationDescription(AttrSpec.Attr) && 1033 (Val.isFormClass(DWARFFormValue::FC_Block) || 1034 Val.isFormClass(DWARFFormValue::FC_Exprloc))) { 1035 DWARFUnit &OrigUnit = Unit.getOrigUnit(); 1036 DataExtractor Data(StringRef((const char *)Bytes.data(), Bytes.size()), 1037 IsLittleEndian, OrigUnit.getAddressByteSize()); 1038 DWARFExpression Expr(Data, OrigUnit.getAddressByteSize(), 1039 OrigUnit.getFormParams().Format); 1040 cloneExpression(Data, Expr, File, Unit, Buffer); 1041 Bytes = Buffer; 1042 } 1043 for (auto Byte : Bytes) 1044 Attr->addValue(DIEAlloc, static_cast<dwarf::Attribute>(0), 1045 dwarf::DW_FORM_data1, DIEInteger(Byte)); 1046 1047 // FIXME: If DIEBlock and DIELoc just reuses the Size field of 1048 // the DIE class, this "if" could be replaced by 1049 // Attr->setSize(Bytes.size()). 1050 if (Loc) 1051 Loc->setSize(Bytes.size()); 1052 else 1053 Block->setSize(Bytes.size()); 1054 1055 Die.addValue(DIEAlloc, Value); 1056 return AttrSize; 1057 } 1058 1059 unsigned DWARFLinker::DIECloner::cloneAddressAttribute( 1060 DIE &Die, AttributeSpec AttrSpec, const DWARFFormValue &Val, 1061 const CompileUnit &Unit, AttributesInfo &Info) { 1062 if (LLVM_UNLIKELY(Linker.Options.Update)) { 1063 if (AttrSpec.Attr == dwarf::DW_AT_low_pc) 1064 Info.HasLowPc = true; 1065 Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr), 1066 dwarf::Form(AttrSpec.Form), DIEInteger(Val.getRawUValue())); 1067 return Unit.getOrigUnit().getAddressByteSize(); 1068 } 1069 1070 dwarf::Form Form = AttrSpec.Form; 1071 uint64_t Addr = 0; 1072 if (Form == dwarf::DW_FORM_addrx) { 1073 if (Optional<uint64_t> AddrOffsetSectionBase = 1074 Unit.getOrigUnit().getAddrOffsetSectionBase()) { 1075 uint64_t StartOffset = *AddrOffsetSectionBase + Val.getRawUValue(); 1076 uint64_t EndOffset = 1077 StartOffset + Unit.getOrigUnit().getAddressByteSize(); 1078 if (llvm::Expected<uint64_t> RelocAddr = 1079 ObjFile.Addresses->relocateIndexedAddr(StartOffset, EndOffset)) 1080 Addr = *RelocAddr; 1081 else 1082 Linker.reportWarning(toString(RelocAddr.takeError()), ObjFile); 1083 } else 1084 Linker.reportWarning("no base offset for address table", ObjFile); 1085 1086 // If this is an indexed address emit the debug_info address. 1087 Form = dwarf::DW_FORM_addr; 1088 } else 1089 Addr = *Val.getAsAddress(); 1090 1091 if (AttrSpec.Attr == dwarf::DW_AT_low_pc) { 1092 if (Die.getTag() == dwarf::DW_TAG_inlined_subroutine || 1093 Die.getTag() == dwarf::DW_TAG_lexical_block || 1094 Die.getTag() == dwarf::DW_TAG_label) { 1095 // The low_pc of a block or inline subroutine might get 1096 // relocated because it happens to match the low_pc of the 1097 // enclosing subprogram. To prevent issues with that, always use 1098 // the low_pc from the input DIE if relocations have been applied. 1099 Addr = (Info.OrigLowPc != std::numeric_limits<uint64_t>::max() 1100 ? Info.OrigLowPc 1101 : Addr) + 1102 Info.PCOffset; 1103 } else if (Die.getTag() == dwarf::DW_TAG_compile_unit) { 1104 Addr = Unit.getLowPc(); 1105 if (Addr == std::numeric_limits<uint64_t>::max()) 1106 return 0; 1107 } 1108 Info.HasLowPc = true; 1109 } else if (AttrSpec.Attr == dwarf::DW_AT_high_pc) { 1110 if (Die.getTag() == dwarf::DW_TAG_compile_unit) { 1111 if (uint64_t HighPc = Unit.getHighPc()) 1112 Addr = HighPc; 1113 else 1114 return 0; 1115 } else 1116 // If we have a high_pc recorded for the input DIE, use 1117 // it. Otherwise (when no relocations where applied) just use the 1118 // one we just decoded. 1119 Addr = (Info.OrigHighPc ? Info.OrigHighPc : Addr) + Info.PCOffset; 1120 } else if (AttrSpec.Attr == dwarf::DW_AT_call_return_pc) { 1121 // Relocate a return PC address within a call site entry. 1122 if (Die.getTag() == dwarf::DW_TAG_call_site) 1123 Addr = (Info.OrigCallReturnPc ? Info.OrigCallReturnPc : Addr) + 1124 Info.PCOffset; 1125 } else if (AttrSpec.Attr == dwarf::DW_AT_call_pc) { 1126 // Relocate the address of a branch instruction within a call site entry. 1127 if (Die.getTag() == dwarf::DW_TAG_call_site) 1128 Addr = (Info.OrigCallPc ? Info.OrigCallPc : Addr) + Info.PCOffset; 1129 } 1130 1131 Die.addValue(DIEAlloc, static_cast<dwarf::Attribute>(AttrSpec.Attr), 1132 static_cast<dwarf::Form>(Form), DIEInteger(Addr)); 1133 return Unit.getOrigUnit().getAddressByteSize(); 1134 } 1135 1136 unsigned DWARFLinker::DIECloner::cloneScalarAttribute( 1137 DIE &Die, const DWARFDie &InputDIE, const DWARFFile &File, 1138 CompileUnit &Unit, AttributeSpec AttrSpec, const DWARFFormValue &Val, 1139 unsigned AttrSize, AttributesInfo &Info) { 1140 uint64_t Value; 1141 1142 if (LLVM_UNLIKELY(Linker.Options.Update)) { 1143 if (auto OptionalValue = Val.getAsUnsignedConstant()) 1144 Value = *OptionalValue; 1145 else if (auto OptionalValue = Val.getAsSignedConstant()) 1146 Value = *OptionalValue; 1147 else if (auto OptionalValue = Val.getAsSectionOffset()) 1148 Value = *OptionalValue; 1149 else { 1150 Linker.reportWarning( 1151 "Unsupported scalar attribute form. Dropping attribute.", File, 1152 &InputDIE); 1153 return 0; 1154 } 1155 if (AttrSpec.Attr == dwarf::DW_AT_declaration && Value) 1156 Info.IsDeclaration = true; 1157 Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr), 1158 dwarf::Form(AttrSpec.Form), DIEInteger(Value)); 1159 return AttrSize; 1160 } 1161 1162 if (AttrSpec.Attr == dwarf::DW_AT_high_pc && 1163 Die.getTag() == dwarf::DW_TAG_compile_unit) { 1164 if (Unit.getLowPc() == -1ULL) 1165 return 0; 1166 // Dwarf >= 4 high_pc is an size, not an address. 1167 Value = Unit.getHighPc() - Unit.getLowPc(); 1168 } else if (AttrSpec.Form == dwarf::DW_FORM_sec_offset) 1169 Value = *Val.getAsSectionOffset(); 1170 else if (AttrSpec.Form == dwarf::DW_FORM_sdata) 1171 Value = *Val.getAsSignedConstant(); 1172 else if (auto OptionalValue = Val.getAsUnsignedConstant()) 1173 Value = *OptionalValue; 1174 else { 1175 Linker.reportWarning( 1176 "Unsupported scalar attribute form. Dropping attribute.", File, 1177 &InputDIE); 1178 return 0; 1179 } 1180 PatchLocation Patch = 1181 Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr), 1182 dwarf::Form(AttrSpec.Form), DIEInteger(Value)); 1183 if (AttrSpec.Attr == dwarf::DW_AT_ranges) { 1184 Unit.noteRangeAttribute(Die, Patch); 1185 Info.HasRanges = true; 1186 } 1187 1188 // A more generic way to check for location attributes would be 1189 // nice, but it's very unlikely that any other attribute needs a 1190 // location list. 1191 // FIXME: use DWARFAttribute::mayHaveLocationDescription(). 1192 else if (AttrSpec.Attr == dwarf::DW_AT_location || 1193 AttrSpec.Attr == dwarf::DW_AT_frame_base) { 1194 Unit.noteLocationAttribute(Patch, Info.PCOffset); 1195 } else if (AttrSpec.Attr == dwarf::DW_AT_declaration && Value) 1196 Info.IsDeclaration = true; 1197 1198 return AttrSize; 1199 } 1200 1201 /// Clone \p InputDIE's attribute described by \p AttrSpec with 1202 /// value \p Val, and add it to \p Die. 1203 /// \returns the size of the cloned attribute. 1204 unsigned DWARFLinker::DIECloner::cloneAttribute( 1205 DIE &Die, const DWARFDie &InputDIE, const DWARFFile &File, 1206 CompileUnit &Unit, OffsetsStringPool &StringPool, const DWARFFormValue &Val, 1207 const AttributeSpec AttrSpec, unsigned AttrSize, AttributesInfo &Info, 1208 bool IsLittleEndian) { 1209 const DWARFUnit &U = Unit.getOrigUnit(); 1210 1211 switch (AttrSpec.Form) { 1212 case dwarf::DW_FORM_strp: 1213 case dwarf::DW_FORM_string: 1214 case dwarf::DW_FORM_strx: 1215 case dwarf::DW_FORM_strx1: 1216 case dwarf::DW_FORM_strx2: 1217 case dwarf::DW_FORM_strx3: 1218 case dwarf::DW_FORM_strx4: 1219 return cloneStringAttribute(Die, AttrSpec, Val, U, StringPool, Info); 1220 case dwarf::DW_FORM_ref_addr: 1221 case dwarf::DW_FORM_ref1: 1222 case dwarf::DW_FORM_ref2: 1223 case dwarf::DW_FORM_ref4: 1224 case dwarf::DW_FORM_ref8: 1225 return cloneDieReferenceAttribute(Die, InputDIE, AttrSpec, AttrSize, Val, 1226 File, Unit); 1227 case dwarf::DW_FORM_block: 1228 case dwarf::DW_FORM_block1: 1229 case dwarf::DW_FORM_block2: 1230 case dwarf::DW_FORM_block4: 1231 case dwarf::DW_FORM_exprloc: 1232 return cloneBlockAttribute(Die, File, Unit, AttrSpec, Val, AttrSize, 1233 IsLittleEndian); 1234 case dwarf::DW_FORM_addr: 1235 case dwarf::DW_FORM_addrx: 1236 return cloneAddressAttribute(Die, AttrSpec, Val, Unit, Info); 1237 case dwarf::DW_FORM_data1: 1238 case dwarf::DW_FORM_data2: 1239 case dwarf::DW_FORM_data4: 1240 case dwarf::DW_FORM_data8: 1241 case dwarf::DW_FORM_udata: 1242 case dwarf::DW_FORM_sdata: 1243 case dwarf::DW_FORM_sec_offset: 1244 case dwarf::DW_FORM_flag: 1245 case dwarf::DW_FORM_flag_present: 1246 return cloneScalarAttribute(Die, InputDIE, File, Unit, AttrSpec, Val, 1247 AttrSize, Info); 1248 default: 1249 Linker.reportWarning("Unsupported attribute form " + 1250 dwarf::FormEncodingString(AttrSpec.Form) + 1251 " in cloneAttribute. Dropping.", 1252 File, &InputDIE); 1253 } 1254 1255 return 0; 1256 } 1257 1258 static bool isObjCSelector(StringRef Name) { 1259 return Name.size() > 2 && (Name[0] == '-' || Name[0] == '+') && 1260 (Name[1] == '['); 1261 } 1262 1263 void DWARFLinker::DIECloner::addObjCAccelerator(CompileUnit &Unit, 1264 const DIE *Die, 1265 DwarfStringPoolEntryRef Name, 1266 OffsetsStringPool &StringPool, 1267 bool SkipPubSection) { 1268 assert(isObjCSelector(Name.getString()) && "not an objc selector"); 1269 // Objective C method or class function. 1270 // "- [Class(Category) selector :withArg ...]" 1271 StringRef ClassNameStart(Name.getString().drop_front(2)); 1272 size_t FirstSpace = ClassNameStart.find(' '); 1273 if (FirstSpace == StringRef::npos) 1274 return; 1275 1276 StringRef SelectorStart(ClassNameStart.data() + FirstSpace + 1); 1277 if (!SelectorStart.size()) 1278 return; 1279 1280 StringRef Selector(SelectorStart.data(), SelectorStart.size() - 1); 1281 Unit.addNameAccelerator(Die, StringPool.getEntry(Selector), SkipPubSection); 1282 1283 // Add an entry for the class name that points to this 1284 // method/class function. 1285 StringRef ClassName(ClassNameStart.data(), FirstSpace); 1286 Unit.addObjCAccelerator(Die, StringPool.getEntry(ClassName), SkipPubSection); 1287 1288 if (ClassName[ClassName.size() - 1] == ')') { 1289 size_t OpenParens = ClassName.find('('); 1290 if (OpenParens != StringRef::npos) { 1291 StringRef ClassNameNoCategory(ClassName.data(), OpenParens); 1292 Unit.addObjCAccelerator(Die, StringPool.getEntry(ClassNameNoCategory), 1293 SkipPubSection); 1294 1295 std::string MethodNameNoCategory(Name.getString().data(), OpenParens + 2); 1296 // FIXME: The missing space here may be a bug, but 1297 // dsymutil-classic also does it this way. 1298 MethodNameNoCategory.append(std::string(SelectorStart)); 1299 Unit.addNameAccelerator(Die, StringPool.getEntry(MethodNameNoCategory), 1300 SkipPubSection); 1301 } 1302 } 1303 } 1304 1305 static bool 1306 shouldSkipAttribute(DWARFAbbreviationDeclaration::AttributeSpec AttrSpec, 1307 uint16_t Tag, bool InDebugMap, bool SkipPC, 1308 bool InFunctionScope) { 1309 switch (AttrSpec.Attr) { 1310 default: 1311 return false; 1312 case dwarf::DW_AT_low_pc: 1313 case dwarf::DW_AT_high_pc: 1314 case dwarf::DW_AT_ranges: 1315 return SkipPC; 1316 case dwarf::DW_AT_str_offsets_base: 1317 // FIXME: Use the string offset table with Dwarf 5. 1318 return true; 1319 case dwarf::DW_AT_location: 1320 case dwarf::DW_AT_frame_base: 1321 // FIXME: for some reason dsymutil-classic keeps the location attributes 1322 // when they are of block type (i.e. not location lists). This is totally 1323 // wrong for globals where we will keep a wrong address. It is mostly 1324 // harmless for locals, but there is no point in keeping these anyway when 1325 // the function wasn't linked. 1326 return (SkipPC || (!InFunctionScope && Tag == dwarf::DW_TAG_variable && 1327 !InDebugMap)) && 1328 !DWARFFormValue(AttrSpec.Form).isFormClass(DWARFFormValue::FC_Block); 1329 } 1330 } 1331 1332 DIE *DWARFLinker::DIECloner::cloneDIE(const DWARFDie &InputDIE, 1333 const DWARFFile &File, CompileUnit &Unit, 1334 OffsetsStringPool &StringPool, 1335 int64_t PCOffset, uint32_t OutOffset, 1336 unsigned Flags, bool IsLittleEndian, 1337 DIE *Die) { 1338 DWARFUnit &U = Unit.getOrigUnit(); 1339 unsigned Idx = U.getDIEIndex(InputDIE); 1340 CompileUnit::DIEInfo &Info = Unit.getInfo(Idx); 1341 1342 // Should the DIE appear in the output? 1343 if (!Unit.getInfo(Idx).Keep) 1344 return nullptr; 1345 1346 uint64_t Offset = InputDIE.getOffset(); 1347 assert(!(Die && Info.Clone) && "Can't supply a DIE and a cloned DIE"); 1348 if (!Die) { 1349 // The DIE might have been already created by a forward reference 1350 // (see cloneDieReferenceAttribute()). 1351 if (!Info.Clone) 1352 Info.Clone = DIE::get(DIEAlloc, dwarf::Tag(InputDIE.getTag())); 1353 Die = Info.Clone; 1354 } 1355 1356 assert(Die->getTag() == InputDIE.getTag()); 1357 Die->setOffset(OutOffset); 1358 if ((Unit.hasODR() || Unit.isClangModule()) && !Info.Incomplete && 1359 Die->getTag() != dwarf::DW_TAG_namespace && Info.Ctxt && 1360 Info.Ctxt != Unit.getInfo(Info.ParentIdx).Ctxt && 1361 !Info.Ctxt->getCanonicalDIEOffset()) { 1362 // We are about to emit a DIE that is the root of its own valid 1363 // DeclContext tree. Make the current offset the canonical offset 1364 // for this context. 1365 Info.Ctxt->setCanonicalDIEOffset(OutOffset + Unit.getStartOffset()); 1366 } 1367 1368 // Extract and clone every attribute. 1369 DWARFDataExtractor Data = U.getDebugInfoExtractor(); 1370 // Point to the next DIE (generally there is always at least a NULL 1371 // entry after the current one). If this is a lone 1372 // DW_TAG_compile_unit without any children, point to the next unit. 1373 uint64_t NextOffset = (Idx + 1 < U.getNumDIEs()) 1374 ? U.getDIEAtIndex(Idx + 1).getOffset() 1375 : U.getNextUnitOffset(); 1376 AttributesInfo AttrInfo; 1377 1378 // We could copy the data only if we need to apply a relocation to it. After 1379 // testing, it seems there is no performance downside to doing the copy 1380 // unconditionally, and it makes the code simpler. 1381 SmallString<40> DIECopy(Data.getData().substr(Offset, NextOffset - Offset)); 1382 Data = 1383 DWARFDataExtractor(DIECopy, Data.isLittleEndian(), Data.getAddressSize()); 1384 1385 // Modify the copy with relocated addresses. 1386 if (ObjFile.Addresses->areRelocationsResolved() && 1387 ObjFile.Addresses->applyValidRelocs(DIECopy, Offset, 1388 Data.isLittleEndian())) { 1389 // If we applied relocations, we store the value of high_pc that was 1390 // potentially stored in the input DIE. If high_pc is an address 1391 // (Dwarf version == 2), then it might have been relocated to a 1392 // totally unrelated value (because the end address in the object 1393 // file might be start address of another function which got moved 1394 // independently by the linker). The computation of the actual 1395 // high_pc value is done in cloneAddressAttribute(). 1396 AttrInfo.OrigHighPc = 1397 dwarf::toAddress(InputDIE.find(dwarf::DW_AT_high_pc), 0); 1398 // Also store the low_pc. It might get relocated in an 1399 // inline_subprogram that happens at the beginning of its 1400 // inlining function. 1401 AttrInfo.OrigLowPc = dwarf::toAddress(InputDIE.find(dwarf::DW_AT_low_pc), 1402 std::numeric_limits<uint64_t>::max()); 1403 AttrInfo.OrigCallReturnPc = 1404 dwarf::toAddress(InputDIE.find(dwarf::DW_AT_call_return_pc), 0); 1405 AttrInfo.OrigCallPc = 1406 dwarf::toAddress(InputDIE.find(dwarf::DW_AT_call_pc), 0); 1407 } 1408 1409 // Reset the Offset to 0 as we will be working on the local copy of 1410 // the data. 1411 Offset = 0; 1412 1413 const auto *Abbrev = InputDIE.getAbbreviationDeclarationPtr(); 1414 Offset += getULEB128Size(Abbrev->getCode()); 1415 1416 // We are entering a subprogram. Get and propagate the PCOffset. 1417 if (Die->getTag() == dwarf::DW_TAG_subprogram) 1418 PCOffset = Info.AddrAdjust; 1419 AttrInfo.PCOffset = PCOffset; 1420 1421 if (Abbrev->getTag() == dwarf::DW_TAG_subprogram) { 1422 Flags |= TF_InFunctionScope; 1423 if (!Info.InDebugMap && LLVM_LIKELY(!Update)) 1424 Flags |= TF_SkipPC; 1425 } 1426 1427 for (const auto &AttrSpec : Abbrev->attributes()) { 1428 if (LLVM_LIKELY(!Update) && 1429 shouldSkipAttribute(AttrSpec, Die->getTag(), Info.InDebugMap, 1430 Flags & TF_SkipPC, Flags & TF_InFunctionScope)) { 1431 DWARFFormValue::skipValue(AttrSpec.Form, Data, &Offset, 1432 U.getFormParams()); 1433 continue; 1434 } 1435 1436 DWARFFormValue Val(AttrSpec.Form); 1437 uint64_t AttrSize = Offset; 1438 Val.extractValue(Data, &Offset, U.getFormParams(), &U); 1439 AttrSize = Offset - AttrSize; 1440 1441 OutOffset += cloneAttribute(*Die, InputDIE, File, Unit, StringPool, Val, 1442 AttrSpec, AttrSize, AttrInfo, IsLittleEndian); 1443 } 1444 1445 // Look for accelerator entries. 1446 uint16_t Tag = InputDIE.getTag(); 1447 // FIXME: This is slightly wrong. An inline_subroutine without a 1448 // low_pc, but with AT_ranges might be interesting to get into the 1449 // accelerator tables too. For now stick with dsymutil's behavior. 1450 if ((Info.InDebugMap || AttrInfo.HasLowPc || AttrInfo.HasRanges) && 1451 Tag != dwarf::DW_TAG_compile_unit && 1452 getDIENames(InputDIE, AttrInfo, StringPool, 1453 Tag != dwarf::DW_TAG_inlined_subroutine)) { 1454 if (AttrInfo.MangledName && AttrInfo.MangledName != AttrInfo.Name) 1455 Unit.addNameAccelerator(Die, AttrInfo.MangledName, 1456 Tag == dwarf::DW_TAG_inlined_subroutine); 1457 if (AttrInfo.Name) { 1458 if (AttrInfo.NameWithoutTemplate) 1459 Unit.addNameAccelerator(Die, AttrInfo.NameWithoutTemplate, 1460 /* SkipPubSection */ true); 1461 Unit.addNameAccelerator(Die, AttrInfo.Name, 1462 Tag == dwarf::DW_TAG_inlined_subroutine); 1463 } 1464 if (AttrInfo.Name && isObjCSelector(AttrInfo.Name.getString())) 1465 addObjCAccelerator(Unit, Die, AttrInfo.Name, StringPool, 1466 /* SkipPubSection =*/true); 1467 1468 } else if (Tag == dwarf::DW_TAG_namespace) { 1469 if (!AttrInfo.Name) 1470 AttrInfo.Name = StringPool.getEntry("(anonymous namespace)"); 1471 Unit.addNamespaceAccelerator(Die, AttrInfo.Name); 1472 } else if (isTypeTag(Tag) && !AttrInfo.IsDeclaration && 1473 getDIENames(InputDIE, AttrInfo, StringPool) && AttrInfo.Name && 1474 AttrInfo.Name.getString()[0]) { 1475 uint32_t Hash = hashFullyQualifiedName(InputDIE, Unit, File); 1476 uint64_t RuntimeLang = 1477 dwarf::toUnsigned(InputDIE.find(dwarf::DW_AT_APPLE_runtime_class)) 1478 .getValueOr(0); 1479 bool ObjCClassIsImplementation = 1480 (RuntimeLang == dwarf::DW_LANG_ObjC || 1481 RuntimeLang == dwarf::DW_LANG_ObjC_plus_plus) && 1482 dwarf::toUnsigned(InputDIE.find(dwarf::DW_AT_APPLE_objc_complete_type)) 1483 .getValueOr(0); 1484 Unit.addTypeAccelerator(Die, AttrInfo.Name, ObjCClassIsImplementation, 1485 Hash); 1486 } 1487 1488 // Determine whether there are any children that we want to keep. 1489 bool HasChildren = false; 1490 for (auto Child : InputDIE.children()) { 1491 unsigned Idx = U.getDIEIndex(Child); 1492 if (Unit.getInfo(Idx).Keep) { 1493 HasChildren = true; 1494 break; 1495 } 1496 } 1497 1498 DIEAbbrev NewAbbrev = Die->generateAbbrev(); 1499 if (HasChildren) 1500 NewAbbrev.setChildrenFlag(dwarf::DW_CHILDREN_yes); 1501 // Assign a permanent abbrev number 1502 Linker.assignAbbrev(NewAbbrev); 1503 Die->setAbbrevNumber(NewAbbrev.getNumber()); 1504 1505 // Add the size of the abbreviation number to the output offset. 1506 OutOffset += getULEB128Size(Die->getAbbrevNumber()); 1507 1508 if (!HasChildren) { 1509 // Update our size. 1510 Die->setSize(OutOffset - Die->getOffset()); 1511 return Die; 1512 } 1513 1514 // Recursively clone children. 1515 for (auto Child : InputDIE.children()) { 1516 if (DIE *Clone = cloneDIE(Child, File, Unit, StringPool, PCOffset, 1517 OutOffset, Flags, IsLittleEndian)) { 1518 Die->addChild(Clone); 1519 OutOffset = Clone->getOffset() + Clone->getSize(); 1520 } 1521 } 1522 1523 // Account for the end of children marker. 1524 OutOffset += sizeof(int8_t); 1525 // Update our size. 1526 Die->setSize(OutOffset - Die->getOffset()); 1527 return Die; 1528 } 1529 1530 /// Patch the input object file relevant debug_ranges entries 1531 /// and emit them in the output file. Update the relevant attributes 1532 /// to point at the new entries. 1533 void DWARFLinker::patchRangesForUnit(const CompileUnit &Unit, 1534 DWARFContext &OrigDwarf, 1535 const DWARFFile &File) const { 1536 DWARFDebugRangeList RangeList; 1537 const auto &FunctionRanges = Unit.getFunctionRanges(); 1538 unsigned AddressSize = Unit.getOrigUnit().getAddressByteSize(); 1539 DWARFDataExtractor RangeExtractor(OrigDwarf.getDWARFObj(), 1540 OrigDwarf.getDWARFObj().getRangesSection(), 1541 OrigDwarf.isLittleEndian(), AddressSize); 1542 auto InvalidRange = FunctionRanges.end(), CurrRange = InvalidRange; 1543 DWARFUnit &OrigUnit = Unit.getOrigUnit(); 1544 auto OrigUnitDie = OrigUnit.getUnitDIE(false); 1545 uint64_t OrigLowPc = 1546 dwarf::toAddress(OrigUnitDie.find(dwarf::DW_AT_low_pc), -1ULL); 1547 // Ranges addresses are based on the unit's low_pc. Compute the 1548 // offset we need to apply to adapt to the new unit's low_pc. 1549 int64_t UnitPcOffset = 0; 1550 if (OrigLowPc != -1ULL) 1551 UnitPcOffset = int64_t(OrigLowPc) - Unit.getLowPc(); 1552 1553 for (const auto &RangeAttribute : Unit.getRangesAttributes()) { 1554 uint64_t Offset = RangeAttribute.get(); 1555 RangeAttribute.set(TheDwarfEmitter->getRangesSectionSize()); 1556 if (Error E = RangeList.extract(RangeExtractor, &Offset)) { 1557 llvm::consumeError(std::move(E)); 1558 reportWarning("invalid range list ignored.", File); 1559 RangeList.clear(); 1560 } 1561 const auto &Entries = RangeList.getEntries(); 1562 if (!Entries.empty()) { 1563 const DWARFDebugRangeList::RangeListEntry &First = Entries.front(); 1564 1565 if (CurrRange == InvalidRange || 1566 First.StartAddress + OrigLowPc < CurrRange.start() || 1567 First.StartAddress + OrigLowPc >= CurrRange.stop()) { 1568 CurrRange = FunctionRanges.find(First.StartAddress + OrigLowPc); 1569 if (CurrRange == InvalidRange || 1570 CurrRange.start() > First.StartAddress + OrigLowPc) { 1571 reportWarning("no mapping for range.", File); 1572 continue; 1573 } 1574 } 1575 } 1576 1577 TheDwarfEmitter->emitRangesEntries(UnitPcOffset, OrigLowPc, CurrRange, 1578 Entries, AddressSize); 1579 } 1580 } 1581 1582 /// Generate the debug_aranges entries for \p Unit and if the 1583 /// unit has a DW_AT_ranges attribute, also emit the debug_ranges 1584 /// contribution for this attribute. 1585 /// FIXME: this could actually be done right in patchRangesForUnit, 1586 /// but for the sake of initial bit-for-bit compatibility with legacy 1587 /// dsymutil, we have to do it in a delayed pass. 1588 void DWARFLinker::generateUnitRanges(CompileUnit &Unit) const { 1589 auto Attr = Unit.getUnitRangesAttribute(); 1590 if (Attr) 1591 Attr->set(TheDwarfEmitter->getRangesSectionSize()); 1592 TheDwarfEmitter->emitUnitRangesEntries(Unit, static_cast<bool>(Attr)); 1593 } 1594 1595 /// Insert the new line info sequence \p Seq into the current 1596 /// set of already linked line info \p Rows. 1597 static void insertLineSequence(std::vector<DWARFDebugLine::Row> &Seq, 1598 std::vector<DWARFDebugLine::Row> &Rows) { 1599 if (Seq.empty()) 1600 return; 1601 1602 if (!Rows.empty() && Rows.back().Address < Seq.front().Address) { 1603 llvm::append_range(Rows, Seq); 1604 Seq.clear(); 1605 return; 1606 } 1607 1608 object::SectionedAddress Front = Seq.front().Address; 1609 auto InsertPoint = partition_point( 1610 Rows, [=](const DWARFDebugLine::Row &O) { return O.Address < Front; }); 1611 1612 // FIXME: this only removes the unneeded end_sequence if the 1613 // sequences have been inserted in order. Using a global sort like 1614 // described in patchLineTableForUnit() and delaying the end_sequene 1615 // elimination to emitLineTableForUnit() we can get rid of all of them. 1616 if (InsertPoint != Rows.end() && InsertPoint->Address == Front && 1617 InsertPoint->EndSequence) { 1618 *InsertPoint = Seq.front(); 1619 Rows.insert(InsertPoint + 1, Seq.begin() + 1, Seq.end()); 1620 } else { 1621 Rows.insert(InsertPoint, Seq.begin(), Seq.end()); 1622 } 1623 1624 Seq.clear(); 1625 } 1626 1627 static void patchStmtList(DIE &Die, DIEInteger Offset) { 1628 for (auto &V : Die.values()) 1629 if (V.getAttribute() == dwarf::DW_AT_stmt_list) { 1630 V = DIEValue(V.getAttribute(), V.getForm(), Offset); 1631 return; 1632 } 1633 1634 llvm_unreachable("Didn't find DW_AT_stmt_list in cloned DIE!"); 1635 } 1636 1637 /// Extract the line table for \p Unit from \p OrigDwarf, and 1638 /// recreate a relocated version of these for the address ranges that 1639 /// are present in the binary. 1640 void DWARFLinker::patchLineTableForUnit(CompileUnit &Unit, 1641 DWARFContext &OrigDwarf, 1642 const DWARFFile &File) { 1643 DWARFDie CUDie = Unit.getOrigUnit().getUnitDIE(); 1644 auto StmtList = dwarf::toSectionOffset(CUDie.find(dwarf::DW_AT_stmt_list)); 1645 if (!StmtList) 1646 return; 1647 1648 // Update the cloned DW_AT_stmt_list with the correct debug_line offset. 1649 if (auto *OutputDIE = Unit.getOutputUnitDIE()) 1650 patchStmtList(*OutputDIE, 1651 DIEInteger(TheDwarfEmitter->getLineSectionSize())); 1652 1653 RangesTy &Ranges = File.Addresses->getValidAddressRanges(); 1654 1655 // Parse the original line info for the unit. 1656 DWARFDebugLine::LineTable LineTable; 1657 uint64_t StmtOffset = *StmtList; 1658 DWARFDataExtractor LineExtractor( 1659 OrigDwarf.getDWARFObj(), OrigDwarf.getDWARFObj().getLineSection(), 1660 OrigDwarf.isLittleEndian(), Unit.getOrigUnit().getAddressByteSize()); 1661 if (needToTranslateStrings()) 1662 return TheDwarfEmitter->translateLineTable(LineExtractor, StmtOffset); 1663 1664 if (Error Err = 1665 LineTable.parse(LineExtractor, &StmtOffset, OrigDwarf, 1666 &Unit.getOrigUnit(), OrigDwarf.getWarningHandler())) 1667 OrigDwarf.getWarningHandler()(std::move(Err)); 1668 1669 // This vector is the output line table. 1670 std::vector<DWARFDebugLine::Row> NewRows; 1671 NewRows.reserve(LineTable.Rows.size()); 1672 1673 // Current sequence of rows being extracted, before being inserted 1674 // in NewRows. 1675 std::vector<DWARFDebugLine::Row> Seq; 1676 const auto &FunctionRanges = Unit.getFunctionRanges(); 1677 auto InvalidRange = FunctionRanges.end(), CurrRange = InvalidRange; 1678 1679 // FIXME: This logic is meant to generate exactly the same output as 1680 // Darwin's classic dsymutil. There is a nicer way to implement this 1681 // by simply putting all the relocated line info in NewRows and simply 1682 // sorting NewRows before passing it to emitLineTableForUnit. This 1683 // should be correct as sequences for a function should stay 1684 // together in the sorted output. There are a few corner cases that 1685 // look suspicious though, and that required to implement the logic 1686 // this way. Revisit that once initial validation is finished. 1687 1688 // Iterate over the object file line info and extract the sequences 1689 // that correspond to linked functions. 1690 for (auto &Row : LineTable.Rows) { 1691 // Check whether we stepped out of the range. The range is 1692 // half-open, but consider accept the end address of the range if 1693 // it is marked as end_sequence in the input (because in that 1694 // case, the relocation offset is accurate and that entry won't 1695 // serve as the start of another function). 1696 if (CurrRange == InvalidRange || Row.Address.Address < CurrRange.start() || 1697 Row.Address.Address > CurrRange.stop() || 1698 (Row.Address.Address == CurrRange.stop() && !Row.EndSequence)) { 1699 // We just stepped out of a known range. Insert a end_sequence 1700 // corresponding to the end of the range. 1701 uint64_t StopAddress = CurrRange != InvalidRange 1702 ? CurrRange.stop() + CurrRange.value() 1703 : -1ULL; 1704 CurrRange = FunctionRanges.find(Row.Address.Address); 1705 bool CurrRangeValid = 1706 CurrRange != InvalidRange && CurrRange.start() <= Row.Address.Address; 1707 if (!CurrRangeValid) { 1708 CurrRange = InvalidRange; 1709 if (StopAddress != -1ULL) { 1710 // Try harder by looking in the Address ranges map. 1711 // There are corner cases where this finds a 1712 // valid entry. It's unclear if this is right or wrong, but 1713 // for now do as dsymutil. 1714 // FIXME: Understand exactly what cases this addresses and 1715 // potentially remove it along with the Ranges map. 1716 auto Range = Ranges.lower_bound(Row.Address.Address); 1717 if (Range != Ranges.begin() && Range != Ranges.end()) 1718 --Range; 1719 1720 if (Range != Ranges.end() && Range->first <= Row.Address.Address && 1721 Range->second.HighPC >= Row.Address.Address) { 1722 StopAddress = Row.Address.Address + Range->second.Offset; 1723 } 1724 } 1725 } 1726 if (StopAddress != -1ULL && !Seq.empty()) { 1727 // Insert end sequence row with the computed end address, but 1728 // the same line as the previous one. 1729 auto NextLine = Seq.back(); 1730 NextLine.Address.Address = StopAddress; 1731 NextLine.EndSequence = 1; 1732 NextLine.PrologueEnd = 0; 1733 NextLine.BasicBlock = 0; 1734 NextLine.EpilogueBegin = 0; 1735 Seq.push_back(NextLine); 1736 insertLineSequence(Seq, NewRows); 1737 } 1738 1739 if (!CurrRangeValid) 1740 continue; 1741 } 1742 1743 // Ignore empty sequences. 1744 if (Row.EndSequence && Seq.empty()) 1745 continue; 1746 1747 // Relocate row address and add it to the current sequence. 1748 Row.Address.Address += CurrRange.value(); 1749 Seq.emplace_back(Row); 1750 1751 if (Row.EndSequence) 1752 insertLineSequence(Seq, NewRows); 1753 } 1754 1755 // Finished extracting, now emit the line tables. 1756 // FIXME: LLVM hard-codes its prologue values. We just copy the 1757 // prologue over and that works because we act as both producer and 1758 // consumer. It would be nicer to have a real configurable line 1759 // table emitter. 1760 if (LineTable.Prologue.getVersion() < 2 || 1761 LineTable.Prologue.getVersion() > 5 || 1762 LineTable.Prologue.DefaultIsStmt != DWARF2_LINE_DEFAULT_IS_STMT || 1763 LineTable.Prologue.OpcodeBase > 13) 1764 reportWarning("line table parameters mismatch. Cannot emit.", File); 1765 else { 1766 uint32_t PrologueEnd = *StmtList + 10 + LineTable.Prologue.PrologueLength; 1767 // DWARF v5 has an extra 2 bytes of information before the header_length 1768 // field. 1769 if (LineTable.Prologue.getVersion() == 5) 1770 PrologueEnd += 2; 1771 StringRef LineData = OrigDwarf.getDWARFObj().getLineSection().Data; 1772 MCDwarfLineTableParams Params; 1773 Params.DWARF2LineOpcodeBase = LineTable.Prologue.OpcodeBase; 1774 Params.DWARF2LineBase = LineTable.Prologue.LineBase; 1775 Params.DWARF2LineRange = LineTable.Prologue.LineRange; 1776 TheDwarfEmitter->emitLineTableForUnit( 1777 Params, LineData.slice(*StmtList + 4, PrologueEnd), 1778 LineTable.Prologue.MinInstLength, NewRows, 1779 Unit.getOrigUnit().getAddressByteSize()); 1780 } 1781 } 1782 1783 void DWARFLinker::emitAcceleratorEntriesForUnit(CompileUnit &Unit) { 1784 switch (Options.TheAccelTableKind) { 1785 case AccelTableKind::Apple: 1786 emitAppleAcceleratorEntriesForUnit(Unit); 1787 break; 1788 case AccelTableKind::Dwarf: 1789 emitDwarfAcceleratorEntriesForUnit(Unit); 1790 break; 1791 case AccelTableKind::Pub: 1792 emitPubAcceleratorEntriesForUnit(Unit); 1793 break; 1794 case AccelTableKind::Default: 1795 llvm_unreachable("The default must be updated to a concrete value."); 1796 break; 1797 } 1798 } 1799 1800 void DWARFLinker::emitAppleAcceleratorEntriesForUnit(CompileUnit &Unit) { 1801 // Add namespaces. 1802 for (const auto &Namespace : Unit.getNamespaces()) 1803 AppleNamespaces.addName(Namespace.Name, 1804 Namespace.Die->getOffset() + Unit.getStartOffset()); 1805 1806 /// Add names. 1807 for (const auto &Pubname : Unit.getPubnames()) 1808 AppleNames.addName(Pubname.Name, 1809 Pubname.Die->getOffset() + Unit.getStartOffset()); 1810 1811 /// Add types. 1812 for (const auto &Pubtype : Unit.getPubtypes()) 1813 AppleTypes.addName( 1814 Pubtype.Name, Pubtype.Die->getOffset() + Unit.getStartOffset(), 1815 Pubtype.Die->getTag(), 1816 Pubtype.ObjcClassImplementation ? dwarf::DW_FLAG_type_implementation 1817 : 0, 1818 Pubtype.QualifiedNameHash); 1819 1820 /// Add ObjC names. 1821 for (const auto &ObjC : Unit.getObjC()) 1822 AppleObjc.addName(ObjC.Name, ObjC.Die->getOffset() + Unit.getStartOffset()); 1823 } 1824 1825 void DWARFLinker::emitDwarfAcceleratorEntriesForUnit(CompileUnit &Unit) { 1826 for (const auto &Namespace : Unit.getNamespaces()) 1827 DebugNames.addName(Namespace.Name, Namespace.Die->getOffset(), 1828 Namespace.Die->getTag(), Unit.getUniqueID()); 1829 for (const auto &Pubname : Unit.getPubnames()) 1830 DebugNames.addName(Pubname.Name, Pubname.Die->getOffset(), 1831 Pubname.Die->getTag(), Unit.getUniqueID()); 1832 for (const auto &Pubtype : Unit.getPubtypes()) 1833 DebugNames.addName(Pubtype.Name, Pubtype.Die->getOffset(), 1834 Pubtype.Die->getTag(), Unit.getUniqueID()); 1835 } 1836 1837 void DWARFLinker::emitPubAcceleratorEntriesForUnit(CompileUnit &Unit) { 1838 TheDwarfEmitter->emitPubNamesForUnit(Unit); 1839 TheDwarfEmitter->emitPubTypesForUnit(Unit); 1840 } 1841 1842 /// Read the frame info stored in the object, and emit the 1843 /// patched frame descriptions for the resulting file. 1844 /// 1845 /// This is actually pretty easy as the data of the CIEs and FDEs can 1846 /// be considered as black boxes and moved as is. The only thing to do 1847 /// is to patch the addresses in the headers. 1848 void DWARFLinker::patchFrameInfoForObject(const DWARFFile &File, 1849 RangesTy &Ranges, 1850 DWARFContext &OrigDwarf, 1851 unsigned AddrSize) { 1852 StringRef FrameData = OrigDwarf.getDWARFObj().getFrameSection().Data; 1853 if (FrameData.empty()) 1854 return; 1855 1856 DataExtractor Data(FrameData, OrigDwarf.isLittleEndian(), 0); 1857 uint64_t InputOffset = 0; 1858 1859 // Store the data of the CIEs defined in this object, keyed by their 1860 // offsets. 1861 DenseMap<uint64_t, StringRef> LocalCIES; 1862 1863 while (Data.isValidOffset(InputOffset)) { 1864 uint64_t EntryOffset = InputOffset; 1865 uint32_t InitialLength = Data.getU32(&InputOffset); 1866 if (InitialLength == 0xFFFFFFFF) 1867 return reportWarning("Dwarf64 bits no supported", File); 1868 1869 uint32_t CIEId = Data.getU32(&InputOffset); 1870 if (CIEId == 0xFFFFFFFF) { 1871 // This is a CIE, store it. 1872 StringRef CIEData = FrameData.substr(EntryOffset, InitialLength + 4); 1873 LocalCIES[EntryOffset] = CIEData; 1874 // The -4 is to account for the CIEId we just read. 1875 InputOffset += InitialLength - 4; 1876 continue; 1877 } 1878 1879 uint32_t Loc = Data.getUnsigned(&InputOffset, AddrSize); 1880 1881 // Some compilers seem to emit frame info that doesn't start at 1882 // the function entry point, thus we can't just lookup the address 1883 // in the debug map. Use the AddressInfo's range map to see if the FDE 1884 // describes something that we can relocate. 1885 auto Range = Ranges.upper_bound(Loc); 1886 if (Range != Ranges.begin()) 1887 --Range; 1888 if (Range == Ranges.end() || Range->first > Loc || 1889 Range->second.HighPC <= Loc) { 1890 // The +4 is to account for the size of the InitialLength field itself. 1891 InputOffset = EntryOffset + InitialLength + 4; 1892 continue; 1893 } 1894 1895 // This is an FDE, and we have a mapping. 1896 // Have we already emitted a corresponding CIE? 1897 StringRef CIEData = LocalCIES[CIEId]; 1898 if (CIEData.empty()) 1899 return reportWarning("Inconsistent debug_frame content. Dropping.", File); 1900 1901 // Look if we already emitted a CIE that corresponds to the 1902 // referenced one (the CIE data is the key of that lookup). 1903 auto IteratorInserted = EmittedCIEs.insert( 1904 std::make_pair(CIEData, TheDwarfEmitter->getFrameSectionSize())); 1905 // If there is no CIE yet for this ID, emit it. 1906 if (IteratorInserted.second) { 1907 LastCIEOffset = TheDwarfEmitter->getFrameSectionSize(); 1908 IteratorInserted.first->getValue() = LastCIEOffset; 1909 TheDwarfEmitter->emitCIE(CIEData); 1910 } 1911 1912 // Emit the FDE with updated address and CIE pointer. 1913 // (4 + AddrSize) is the size of the CIEId + initial_location 1914 // fields that will get reconstructed by emitFDE(). 1915 unsigned FDERemainingBytes = InitialLength - (4 + AddrSize); 1916 TheDwarfEmitter->emitFDE(IteratorInserted.first->getValue(), AddrSize, 1917 Loc + Range->second.Offset, 1918 FrameData.substr(InputOffset, FDERemainingBytes)); 1919 InputOffset += FDERemainingBytes; 1920 } 1921 } 1922 1923 uint32_t DWARFLinker::DIECloner::hashFullyQualifiedName(DWARFDie DIE, 1924 CompileUnit &U, 1925 const DWARFFile &File, 1926 int ChildRecurseDepth) { 1927 const char *Name = nullptr; 1928 DWARFUnit *OrigUnit = &U.getOrigUnit(); 1929 CompileUnit *CU = &U; 1930 Optional<DWARFFormValue> Ref; 1931 1932 while (1) { 1933 if (const char *CurrentName = DIE.getName(DINameKind::ShortName)) 1934 Name = CurrentName; 1935 1936 if (!(Ref = DIE.find(dwarf::DW_AT_specification)) && 1937 !(Ref = DIE.find(dwarf::DW_AT_abstract_origin))) 1938 break; 1939 1940 if (!Ref->isFormClass(DWARFFormValue::FC_Reference)) 1941 break; 1942 1943 CompileUnit *RefCU; 1944 if (auto RefDIE = 1945 Linker.resolveDIEReference(File, CompileUnits, *Ref, DIE, RefCU)) { 1946 CU = RefCU; 1947 OrigUnit = &RefCU->getOrigUnit(); 1948 DIE = RefDIE; 1949 } 1950 } 1951 1952 unsigned Idx = OrigUnit->getDIEIndex(DIE); 1953 if (!Name && DIE.getTag() == dwarf::DW_TAG_namespace) 1954 Name = "(anonymous namespace)"; 1955 1956 if (CU->getInfo(Idx).ParentIdx == 0 || 1957 // FIXME: dsymutil-classic compatibility. Ignore modules. 1958 CU->getOrigUnit().getDIEAtIndex(CU->getInfo(Idx).ParentIdx).getTag() == 1959 dwarf::DW_TAG_module) 1960 return djbHash(Name ? Name : "", djbHash(ChildRecurseDepth ? "" : "::")); 1961 1962 DWARFDie Die = OrigUnit->getDIEAtIndex(CU->getInfo(Idx).ParentIdx); 1963 return djbHash( 1964 (Name ? Name : ""), 1965 djbHash((Name ? "::" : ""), 1966 hashFullyQualifiedName(Die, *CU, File, ++ChildRecurseDepth))); 1967 } 1968 1969 static uint64_t getDwoId(const DWARFDie &CUDie, const DWARFUnit &Unit) { 1970 auto DwoId = dwarf::toUnsigned( 1971 CUDie.find({dwarf::DW_AT_dwo_id, dwarf::DW_AT_GNU_dwo_id})); 1972 if (DwoId) 1973 return *DwoId; 1974 return 0; 1975 } 1976 1977 static std::string remapPath(StringRef Path, 1978 const objectPrefixMap &ObjectPrefixMap) { 1979 if (ObjectPrefixMap.empty()) 1980 return Path.str(); 1981 1982 SmallString<256> p = Path; 1983 for (const auto &Entry : ObjectPrefixMap) 1984 if (llvm::sys::path::replace_path_prefix(p, Entry.first, Entry.second)) 1985 break; 1986 return p.str().str(); 1987 } 1988 1989 bool DWARFLinker::registerModuleReference(DWARFDie CUDie, const DWARFUnit &Unit, 1990 const DWARFFile &File, 1991 OffsetsStringPool &StringPool, 1992 DeclContextTree &ODRContexts, 1993 uint64_t ModulesEndOffset, 1994 unsigned &UnitID, bool IsLittleEndian, 1995 unsigned Indent, bool Quiet) { 1996 std::string PCMfile = dwarf::toString( 1997 CUDie.find({dwarf::DW_AT_dwo_name, dwarf::DW_AT_GNU_dwo_name}), ""); 1998 if (PCMfile.empty()) 1999 return false; 2000 if (Options.ObjectPrefixMap) 2001 PCMfile = remapPath(PCMfile, *Options.ObjectPrefixMap); 2002 2003 // Clang module DWARF skeleton CUs abuse this for the path to the module. 2004 uint64_t DwoId = getDwoId(CUDie, Unit); 2005 2006 std::string Name = dwarf::toString(CUDie.find(dwarf::DW_AT_name), ""); 2007 if (Name.empty()) { 2008 if (!Quiet) 2009 reportWarning("Anonymous module skeleton CU for " + PCMfile, File); 2010 return true; 2011 } 2012 2013 if (!Quiet && Options.Verbose) { 2014 outs().indent(Indent); 2015 outs() << "Found clang module reference " << PCMfile; 2016 } 2017 2018 auto Cached = ClangModules.find(PCMfile); 2019 if (Cached != ClangModules.end()) { 2020 // FIXME: Until PR27449 (https://llvm.org/bugs/show_bug.cgi?id=27449) is 2021 // fixed in clang, only warn about DWO_id mismatches in verbose mode. 2022 // ASTFileSignatures will change randomly when a module is rebuilt. 2023 if (!Quiet && Options.Verbose && (Cached->second != DwoId)) 2024 reportWarning(Twine("hash mismatch: this object file was built against a " 2025 "different version of the module ") + 2026 PCMfile, 2027 File); 2028 if (!Quiet && Options.Verbose) 2029 outs() << " [cached].\n"; 2030 return true; 2031 } 2032 if (!Quiet && Options.Verbose) 2033 outs() << " ...\n"; 2034 2035 // Cyclic dependencies are disallowed by Clang, but we still 2036 // shouldn't run into an infinite loop, so mark it as processed now. 2037 ClangModules.insert({PCMfile, DwoId}); 2038 2039 if (Error E = loadClangModule(CUDie, PCMfile, Name, DwoId, File, StringPool, 2040 ODRContexts, ModulesEndOffset, UnitID, 2041 IsLittleEndian, Indent + 2, Quiet)) { 2042 consumeError(std::move(E)); 2043 return false; 2044 } 2045 return true; 2046 } 2047 2048 Error DWARFLinker::loadClangModule( 2049 DWARFDie CUDie, StringRef Filename, StringRef ModuleName, uint64_t DwoId, 2050 const DWARFFile &File, OffsetsStringPool &StringPool, 2051 DeclContextTree &ODRContexts, uint64_t ModulesEndOffset, unsigned &UnitID, 2052 bool IsLittleEndian, unsigned Indent, bool Quiet) { 2053 /// Using a SmallString<0> because loadClangModule() is recursive. 2054 SmallString<0> Path(Options.PrependPath); 2055 if (sys::path::is_relative(Filename)) 2056 resolveRelativeObjectPath(Path, CUDie); 2057 sys::path::append(Path, Filename); 2058 // Don't use the cached binary holder because we have no thread-safety 2059 // guarantee and the lifetime is limited. 2060 2061 if (Options.ObjFileLoader == nullptr) 2062 return Error::success(); 2063 2064 auto ErrOrObj = Options.ObjFileLoader(File.FileName, Path); 2065 if (!ErrOrObj) 2066 return Error::success(); 2067 2068 std::unique_ptr<CompileUnit> Unit; 2069 2070 for (const auto &CU : ErrOrObj->Dwarf->compile_units()) { 2071 updateDwarfVersion(CU->getVersion()); 2072 // Recursively get all modules imported by this one. 2073 auto CUDie = CU->getUnitDIE(false); 2074 if (!CUDie) 2075 continue; 2076 if (!registerModuleReference(CUDie, *CU, File, StringPool, ODRContexts, 2077 ModulesEndOffset, UnitID, IsLittleEndian, 2078 Indent, Quiet)) { 2079 if (Unit) { 2080 std::string Err = 2081 (Filename + 2082 ": Clang modules are expected to have exactly 1 compile unit.\n") 2083 .str(); 2084 reportError(Err, File); 2085 return make_error<StringError>(Err, inconvertibleErrorCode()); 2086 } 2087 // FIXME: Until PR27449 (https://llvm.org/bugs/show_bug.cgi?id=27449) is 2088 // fixed in clang, only warn about DWO_id mismatches in verbose mode. 2089 // ASTFileSignatures will change randomly when a module is rebuilt. 2090 uint64_t PCMDwoId = getDwoId(CUDie, *CU); 2091 if (PCMDwoId != DwoId) { 2092 if (!Quiet && Options.Verbose) 2093 reportWarning( 2094 Twine("hash mismatch: this object file was built against a " 2095 "different version of the module ") + 2096 Filename, 2097 File); 2098 // Update the cache entry with the DwoId of the module loaded from disk. 2099 ClangModules[Filename] = PCMDwoId; 2100 } 2101 2102 // Add this module. 2103 Unit = std::make_unique<CompileUnit>(*CU, UnitID++, !Options.NoODR, 2104 ModuleName); 2105 Unit->setHasInterestingContent(); 2106 analyzeContextInfo(CUDie, 0, *Unit, &ODRContexts.getRoot(), ODRContexts, 2107 ModulesEndOffset, Options.ParseableSwiftInterfaces, 2108 [&](const Twine &Warning, const DWARFDie &DIE) { 2109 reportWarning(Warning, File, &DIE); 2110 }); 2111 // Keep everything. 2112 Unit->markEverythingAsKept(); 2113 } 2114 } 2115 assert(Unit && "CompileUnit is not set!"); 2116 if (!Unit->getOrigUnit().getUnitDIE().hasChildren()) 2117 return Error::success(); 2118 if (!Quiet && Options.Verbose) { 2119 outs().indent(Indent); 2120 outs() << "cloning .debug_info from " << Filename << "\n"; 2121 } 2122 2123 UnitListTy CompileUnits; 2124 CompileUnits.push_back(std::move(Unit)); 2125 assert(TheDwarfEmitter); 2126 DIECloner(*this, TheDwarfEmitter, *ErrOrObj, DIEAlloc, CompileUnits, 2127 Options.Update) 2128 .cloneAllCompileUnits(*(ErrOrObj->Dwarf), File, StringPool, 2129 IsLittleEndian); 2130 return Error::success(); 2131 } 2132 2133 uint64_t DWARFLinker::DIECloner::cloneAllCompileUnits( 2134 DWARFContext &DwarfContext, const DWARFFile &File, 2135 OffsetsStringPool &StringPool, bool IsLittleEndian) { 2136 uint64_t OutputDebugInfoSize = 2137 Linker.Options.NoOutput ? 0 : Emitter->getDebugInfoSectionSize(); 2138 const uint64_t StartOutputDebugInfoSize = OutputDebugInfoSize; 2139 2140 for (auto &CurrentUnit : CompileUnits) { 2141 const uint16_t DwarfVersion = CurrentUnit->getOrigUnit().getVersion(); 2142 const uint32_t UnitHeaderSize = DwarfVersion >= 5 ? 12 : 11; 2143 auto InputDIE = CurrentUnit->getOrigUnit().getUnitDIE(); 2144 CurrentUnit->setStartOffset(OutputDebugInfoSize); 2145 if (!InputDIE) { 2146 OutputDebugInfoSize = CurrentUnit->computeNextUnitOffset(DwarfVersion); 2147 continue; 2148 } 2149 if (CurrentUnit->getInfo(0).Keep) { 2150 // Clone the InputDIE into your Unit DIE in our compile unit since it 2151 // already has a DIE inside of it. 2152 CurrentUnit->createOutputDIE(); 2153 cloneDIE(InputDIE, File, *CurrentUnit, StringPool, 0 /* PC offset */, 2154 UnitHeaderSize, 0, IsLittleEndian, 2155 CurrentUnit->getOutputUnitDIE()); 2156 } 2157 2158 OutputDebugInfoSize = CurrentUnit->computeNextUnitOffset(DwarfVersion); 2159 2160 if (!Linker.Options.NoOutput) { 2161 assert(Emitter); 2162 2163 if (LLVM_LIKELY(!Linker.Options.Update) || 2164 Linker.needToTranslateStrings()) 2165 Linker.patchLineTableForUnit(*CurrentUnit, DwarfContext, File); 2166 2167 Linker.emitAcceleratorEntriesForUnit(*CurrentUnit); 2168 2169 if (LLVM_UNLIKELY(Linker.Options.Update)) 2170 continue; 2171 2172 Linker.patchRangesForUnit(*CurrentUnit, DwarfContext, File); 2173 auto ProcessExpr = [&](StringRef Bytes, 2174 SmallVectorImpl<uint8_t> &Buffer) { 2175 DWARFUnit &OrigUnit = CurrentUnit->getOrigUnit(); 2176 DataExtractor Data(Bytes, IsLittleEndian, 2177 OrigUnit.getAddressByteSize()); 2178 cloneExpression(Data, 2179 DWARFExpression(Data, OrigUnit.getAddressByteSize(), 2180 OrigUnit.getFormParams().Format), 2181 File, *CurrentUnit, Buffer); 2182 }; 2183 Emitter->emitLocationsForUnit(*CurrentUnit, DwarfContext, ProcessExpr); 2184 } 2185 } 2186 2187 if (!Linker.Options.NoOutput) { 2188 assert(Emitter); 2189 // Emit all the compile unit's debug information. 2190 for (auto &CurrentUnit : CompileUnits) { 2191 if (LLVM_LIKELY(!Linker.Options.Update)) 2192 Linker.generateUnitRanges(*CurrentUnit); 2193 2194 CurrentUnit->fixupForwardReferences(); 2195 2196 if (!CurrentUnit->getOutputUnitDIE()) 2197 continue; 2198 2199 unsigned DwarfVersion = CurrentUnit->getOrigUnit().getVersion(); 2200 2201 assert(Emitter->getDebugInfoSectionSize() == 2202 CurrentUnit->getStartOffset()); 2203 Emitter->emitCompileUnitHeader(*CurrentUnit, DwarfVersion); 2204 Emitter->emitDIE(*CurrentUnit->getOutputUnitDIE()); 2205 assert(Emitter->getDebugInfoSectionSize() == 2206 CurrentUnit->computeNextUnitOffset(DwarfVersion)); 2207 } 2208 } 2209 2210 return OutputDebugInfoSize - StartOutputDebugInfoSize; 2211 } 2212 2213 void DWARFLinker::updateAccelKind(DWARFContext &Dwarf) { 2214 if (Options.TheAccelTableKind != AccelTableKind::Default) 2215 return; 2216 2217 auto &DwarfObj = Dwarf.getDWARFObj(); 2218 2219 if (!AtLeastOneDwarfAccelTable && 2220 (!DwarfObj.getAppleNamesSection().Data.empty() || 2221 !DwarfObj.getAppleTypesSection().Data.empty() || 2222 !DwarfObj.getAppleNamespacesSection().Data.empty() || 2223 !DwarfObj.getAppleObjCSection().Data.empty())) { 2224 AtLeastOneAppleAccelTable = true; 2225 } 2226 2227 if (!AtLeastOneDwarfAccelTable && !DwarfObj.getNamesSection().Data.empty()) { 2228 AtLeastOneDwarfAccelTable = true; 2229 } 2230 } 2231 2232 bool DWARFLinker::emitPaperTrailWarnings(const DWARFFile &File, 2233 OffsetsStringPool &StringPool) { 2234 2235 if (File.Warnings.empty()) 2236 return false; 2237 2238 DIE *CUDie = DIE::get(DIEAlloc, dwarf::DW_TAG_compile_unit); 2239 CUDie->setOffset(11); 2240 StringRef Producer; 2241 StringRef WarningHeader; 2242 2243 switch (DwarfLinkerClientID) { 2244 case DwarfLinkerClient::Dsymutil: 2245 Producer = StringPool.internString("dsymutil"); 2246 WarningHeader = "dsymutil_warning"; 2247 break; 2248 2249 default: 2250 Producer = StringPool.internString("dwarfopt"); 2251 WarningHeader = "dwarfopt_warning"; 2252 break; 2253 } 2254 2255 StringRef FileName = StringPool.internString(File.FileName); 2256 CUDie->addValue(DIEAlloc, dwarf::DW_AT_producer, dwarf::DW_FORM_strp, 2257 DIEInteger(StringPool.getStringOffset(Producer))); 2258 DIEBlock *String = new (DIEAlloc) DIEBlock(); 2259 DIEBlocks.push_back(String); 2260 for (auto &C : FileName) 2261 String->addValue(DIEAlloc, dwarf::Attribute(0), dwarf::DW_FORM_data1, 2262 DIEInteger(C)); 2263 String->addValue(DIEAlloc, dwarf::Attribute(0), dwarf::DW_FORM_data1, 2264 DIEInteger(0)); 2265 2266 CUDie->addValue(DIEAlloc, dwarf::DW_AT_name, dwarf::DW_FORM_string, String); 2267 for (const auto &Warning : File.Warnings) { 2268 DIE &ConstDie = CUDie->addChild(DIE::get(DIEAlloc, dwarf::DW_TAG_constant)); 2269 ConstDie.addValue(DIEAlloc, dwarf::DW_AT_name, dwarf::DW_FORM_strp, 2270 DIEInteger(StringPool.getStringOffset(WarningHeader))); 2271 ConstDie.addValue(DIEAlloc, dwarf::DW_AT_artificial, dwarf::DW_FORM_flag, 2272 DIEInteger(1)); 2273 ConstDie.addValue(DIEAlloc, dwarf::DW_AT_const_value, dwarf::DW_FORM_strp, 2274 DIEInteger(StringPool.getStringOffset(Warning))); 2275 } 2276 unsigned Size = 4 /* FORM_strp */ + FileName.size() + 1 + 2277 File.Warnings.size() * (4 + 1 + 4) + 1 /* End of children */; 2278 DIEAbbrev Abbrev = CUDie->generateAbbrev(); 2279 assignAbbrev(Abbrev); 2280 CUDie->setAbbrevNumber(Abbrev.getNumber()); 2281 Size += getULEB128Size(Abbrev.getNumber()); 2282 // Abbreviation ordering needed for classic compatibility. 2283 for (auto &Child : CUDie->children()) { 2284 Abbrev = Child.generateAbbrev(); 2285 assignAbbrev(Abbrev); 2286 Child.setAbbrevNumber(Abbrev.getNumber()); 2287 Size += getULEB128Size(Abbrev.getNumber()); 2288 } 2289 CUDie->setSize(Size); 2290 TheDwarfEmitter->emitPaperTrailWarningsDie(*CUDie); 2291 2292 return true; 2293 } 2294 2295 void DWARFLinker::copyInvariantDebugSection(DWARFContext &Dwarf) { 2296 if (!needToTranslateStrings()) 2297 TheDwarfEmitter->emitSectionContents( 2298 Dwarf.getDWARFObj().getLineSection().Data, "debug_line"); 2299 TheDwarfEmitter->emitSectionContents(Dwarf.getDWARFObj().getLocSection().Data, 2300 "debug_loc"); 2301 TheDwarfEmitter->emitSectionContents( 2302 Dwarf.getDWARFObj().getRangesSection().Data, "debug_ranges"); 2303 TheDwarfEmitter->emitSectionContents( 2304 Dwarf.getDWARFObj().getFrameSection().Data, "debug_frame"); 2305 TheDwarfEmitter->emitSectionContents(Dwarf.getDWARFObj().getArangesSection(), 2306 "debug_aranges"); 2307 } 2308 2309 void DWARFLinker::addObjectFile(DWARFFile &File) { 2310 ObjectContexts.emplace_back(LinkContext(File)); 2311 2312 if (ObjectContexts.back().File.Dwarf) 2313 updateAccelKind(*ObjectContexts.back().File.Dwarf); 2314 } 2315 2316 bool DWARFLinker::link() { 2317 assert(Options.NoOutput || TheDwarfEmitter); 2318 2319 // A unique ID that identifies each compile unit. 2320 unsigned UnitID = 0; 2321 2322 // First populate the data structure we need for each iteration of the 2323 // parallel loop. 2324 unsigned NumObjects = ObjectContexts.size(); 2325 2326 // This Dwarf string pool which is used for emission. It must be used 2327 // serially as the order of calling getStringOffset matters for 2328 // reproducibility. 2329 OffsetsStringPool OffsetsStringPool(StringsTranslator, true); 2330 2331 // ODR Contexts for the optimize. 2332 DeclContextTree ODRContexts; 2333 2334 // If we haven't decided on an accelerator table kind yet, we base ourselves 2335 // on the DWARF we have seen so far. At this point we haven't pulled in debug 2336 // information from modules yet, so it is technically possible that they 2337 // would affect the decision. However, as they're built with the same 2338 // compiler and flags, it is safe to assume that they will follow the 2339 // decision made here. 2340 if (Options.TheAccelTableKind == AccelTableKind::Default) { 2341 if (AtLeastOneDwarfAccelTable && !AtLeastOneAppleAccelTable) 2342 Options.TheAccelTableKind = AccelTableKind::Dwarf; 2343 else 2344 Options.TheAccelTableKind = AccelTableKind::Apple; 2345 } 2346 2347 for (LinkContext &OptContext : ObjectContexts) { 2348 if (Options.Verbose) { 2349 if (DwarfLinkerClientID == DwarfLinkerClient::Dsymutil) 2350 outs() << "DEBUG MAP OBJECT: " << OptContext.File.FileName << "\n"; 2351 else 2352 outs() << "OBJECT FILE: " << OptContext.File.FileName << "\n"; 2353 } 2354 2355 if (emitPaperTrailWarnings(OptContext.File, OffsetsStringPool)) 2356 continue; 2357 2358 if (!OptContext.File.Dwarf) 2359 continue; 2360 // Look for relocations that correspond to address map entries. 2361 2362 // there was findvalidrelocations previously ... probably we need to gather 2363 // info here 2364 if (LLVM_LIKELY(!Options.Update) && 2365 !OptContext.File.Addresses->hasValidRelocs()) { 2366 if (Options.Verbose) 2367 outs() << "No valid relocations found. Skipping.\n"; 2368 2369 // Set "Skip" flag as a signal to other loops that we should not 2370 // process this iteration. 2371 OptContext.Skip = true; 2372 continue; 2373 } 2374 2375 // Setup access to the debug info. 2376 if (!OptContext.File.Dwarf) 2377 continue; 2378 2379 // In a first phase, just read in the debug info and load all clang modules. 2380 OptContext.CompileUnits.reserve( 2381 OptContext.File.Dwarf->getNumCompileUnits()); 2382 2383 for (const auto &CU : OptContext.File.Dwarf->compile_units()) { 2384 updateDwarfVersion(CU->getVersion()); 2385 auto CUDie = CU->getUnitDIE(false); 2386 if (Options.Verbose) { 2387 outs() << "Input compilation unit:"; 2388 DIDumpOptions DumpOpts; 2389 DumpOpts.ChildRecurseDepth = 0; 2390 DumpOpts.Verbose = Options.Verbose; 2391 CUDie.dump(outs(), 0, DumpOpts); 2392 } 2393 if (CUDie && !LLVM_UNLIKELY(Options.Update)) 2394 registerModuleReference(CUDie, *CU, OptContext.File, OffsetsStringPool, 2395 ODRContexts, 0, UnitID, 2396 OptContext.File.Dwarf->isLittleEndian()); 2397 } 2398 } 2399 2400 // If we haven't seen any CUs, pick an arbitrary valid Dwarf version anyway. 2401 if (MaxDwarfVersion == 0) 2402 MaxDwarfVersion = 3; 2403 2404 // At this point we know how much data we have emitted. We use this value to 2405 // compare canonical DIE offsets in analyzeContextInfo to see if a definition 2406 // is already emitted, without being affected by canonical die offsets set 2407 // later. This prevents undeterminism when analyze and clone execute 2408 // concurrently, as clone set the canonical DIE offset and analyze reads it. 2409 const uint64_t ModulesEndOffset = 2410 Options.NoOutput ? 0 : TheDwarfEmitter->getDebugInfoSectionSize(); 2411 2412 // These variables manage the list of processed object files. 2413 // The mutex and condition variable are to ensure that this is thread safe. 2414 std::mutex ProcessedFilesMutex; 2415 std::condition_variable ProcessedFilesConditionVariable; 2416 BitVector ProcessedFiles(NumObjects, false); 2417 2418 // Analyzing the context info is particularly expensive so it is executed in 2419 // parallel with emitting the previous compile unit. 2420 auto AnalyzeLambda = [&](size_t I) { 2421 auto &Context = ObjectContexts[I]; 2422 2423 if (Context.Skip || !Context.File.Dwarf) 2424 return; 2425 2426 for (const auto &CU : Context.File.Dwarf->compile_units()) { 2427 updateDwarfVersion(CU->getVersion()); 2428 // The !registerModuleReference() condition effectively skips 2429 // over fully resolved skeleton units. This second pass of 2430 // registerModuleReferences doesn't do any new work, but it 2431 // will collect top-level errors, which are suppressed. Module 2432 // warnings were already displayed in the first iteration. 2433 bool Quiet = true; 2434 auto CUDie = CU->getUnitDIE(false); 2435 if (!CUDie || LLVM_UNLIKELY(Options.Update) || 2436 !registerModuleReference(CUDie, *CU, Context.File, OffsetsStringPool, 2437 ODRContexts, ModulesEndOffset, UnitID, 2438 Quiet)) { 2439 Context.CompileUnits.push_back(std::make_unique<CompileUnit>( 2440 *CU, UnitID++, !Options.NoODR && !Options.Update, "")); 2441 } 2442 } 2443 2444 // Now build the DIE parent links that we will use during the next phase. 2445 for (auto &CurrentUnit : Context.CompileUnits) { 2446 auto CUDie = CurrentUnit->getOrigUnit().getUnitDIE(); 2447 if (!CUDie) 2448 continue; 2449 analyzeContextInfo(CurrentUnit->getOrigUnit().getUnitDIE(), 0, 2450 *CurrentUnit, &ODRContexts.getRoot(), ODRContexts, 2451 ModulesEndOffset, Options.ParseableSwiftInterfaces, 2452 [&](const Twine &Warning, const DWARFDie &DIE) { 2453 reportWarning(Warning, Context.File, &DIE); 2454 }); 2455 } 2456 }; 2457 2458 // For each object file map how many bytes were emitted. 2459 StringMap<DebugInfoSize> SizeByObject; 2460 2461 // And then the remaining work in serial again. 2462 // Note, although this loop runs in serial, it can run in parallel with 2463 // the analyzeContextInfo loop so long as we process files with indices >= 2464 // than those processed by analyzeContextInfo. 2465 auto CloneLambda = [&](size_t I) { 2466 auto &OptContext = ObjectContexts[I]; 2467 if (OptContext.Skip || !OptContext.File.Dwarf) 2468 return; 2469 2470 // Then mark all the DIEs that need to be present in the generated output 2471 // and collect some information about them. 2472 // Note that this loop can not be merged with the previous one because 2473 // cross-cu references require the ParentIdx to be setup for every CU in 2474 // the object file before calling this. 2475 if (LLVM_UNLIKELY(Options.Update)) { 2476 for (auto &CurrentUnit : OptContext.CompileUnits) 2477 CurrentUnit->markEverythingAsKept(); 2478 copyInvariantDebugSection(*OptContext.File.Dwarf); 2479 } else { 2480 for (auto &CurrentUnit : OptContext.CompileUnits) 2481 lookForDIEsToKeep(*OptContext.File.Addresses, 2482 OptContext.File.Addresses->getValidAddressRanges(), 2483 OptContext.CompileUnits, 2484 CurrentUnit->getOrigUnit().getUnitDIE(), 2485 OptContext.File, *CurrentUnit, 0); 2486 } 2487 2488 // The calls to applyValidRelocs inside cloneDIE will walk the reloc 2489 // array again (in the same way findValidRelocsInDebugInfo() did). We 2490 // need to reset the NextValidReloc index to the beginning. 2491 if (OptContext.File.Addresses->hasValidRelocs() || 2492 LLVM_UNLIKELY(Options.Update)) { 2493 SizeByObject[OptContext.File.FileName].Input = 2494 getDebugInfoSize(*OptContext.File.Dwarf); 2495 SizeByObject[OptContext.File.FileName].Output = 2496 DIECloner(*this, TheDwarfEmitter, OptContext.File, DIEAlloc, 2497 OptContext.CompileUnits, Options.Update) 2498 .cloneAllCompileUnits(*OptContext.File.Dwarf, OptContext.File, 2499 OffsetsStringPool, 2500 OptContext.File.Dwarf->isLittleEndian()); 2501 } 2502 if (!Options.NoOutput && !OptContext.CompileUnits.empty() && 2503 LLVM_LIKELY(!Options.Update)) 2504 patchFrameInfoForObject( 2505 OptContext.File, OptContext.File.Addresses->getValidAddressRanges(), 2506 *OptContext.File.Dwarf, 2507 OptContext.CompileUnits[0]->getOrigUnit().getAddressByteSize()); 2508 2509 // Clean-up before starting working on the next object. 2510 cleanupAuxiliarryData(OptContext); 2511 }; 2512 2513 auto EmitLambda = [&]() { 2514 // Emit everything that's global. 2515 if (!Options.NoOutput) { 2516 TheDwarfEmitter->emitAbbrevs(Abbreviations, MaxDwarfVersion); 2517 TheDwarfEmitter->emitStrings(OffsetsStringPool); 2518 switch (Options.TheAccelTableKind) { 2519 case AccelTableKind::Apple: 2520 TheDwarfEmitter->emitAppleNames(AppleNames); 2521 TheDwarfEmitter->emitAppleNamespaces(AppleNamespaces); 2522 TheDwarfEmitter->emitAppleTypes(AppleTypes); 2523 TheDwarfEmitter->emitAppleObjc(AppleObjc); 2524 break; 2525 case AccelTableKind::Dwarf: 2526 TheDwarfEmitter->emitDebugNames(DebugNames); 2527 break; 2528 case AccelTableKind::Pub: 2529 // Already emitted by emitPubAcceleratorEntriesForUnit. 2530 break; 2531 case AccelTableKind::Default: 2532 llvm_unreachable("Default should have already been resolved."); 2533 break; 2534 } 2535 } 2536 }; 2537 2538 auto AnalyzeAll = [&]() { 2539 for (unsigned I = 0, E = NumObjects; I != E; ++I) { 2540 AnalyzeLambda(I); 2541 2542 std::unique_lock<std::mutex> LockGuard(ProcessedFilesMutex); 2543 ProcessedFiles.set(I); 2544 ProcessedFilesConditionVariable.notify_one(); 2545 } 2546 }; 2547 2548 auto CloneAll = [&]() { 2549 for (unsigned I = 0, E = NumObjects; I != E; ++I) { 2550 { 2551 std::unique_lock<std::mutex> LockGuard(ProcessedFilesMutex); 2552 if (!ProcessedFiles[I]) { 2553 ProcessedFilesConditionVariable.wait( 2554 LockGuard, [&]() { return ProcessedFiles[I]; }); 2555 } 2556 } 2557 2558 CloneLambda(I); 2559 } 2560 EmitLambda(); 2561 }; 2562 2563 // To limit memory usage in the single threaded case, analyze and clone are 2564 // run sequentially so the OptContext is freed after processing each object 2565 // in endDebugObject. 2566 if (Options.Threads == 1) { 2567 for (unsigned I = 0, E = NumObjects; I != E; ++I) { 2568 AnalyzeLambda(I); 2569 CloneLambda(I); 2570 } 2571 EmitLambda(); 2572 } else { 2573 ThreadPool Pool(hardware_concurrency(2)); 2574 Pool.async(AnalyzeAll); 2575 Pool.async(CloneAll); 2576 Pool.wait(); 2577 } 2578 2579 if (Options.Statistics) { 2580 // Create a vector sorted in descending order by output size. 2581 std::vector<std::pair<StringRef, DebugInfoSize>> Sorted; 2582 for (auto &E : SizeByObject) 2583 Sorted.emplace_back(E.first(), E.second); 2584 llvm::sort(Sorted, [](auto &LHS, auto &RHS) { 2585 return LHS.second.Output > RHS.second.Output; 2586 }); 2587 2588 auto ComputePercentange = [](int64_t Input, int64_t Output) -> float { 2589 const float Difference = Output - Input; 2590 const float Sum = Input + Output; 2591 if (Sum == 0) 2592 return 0; 2593 return (Difference / (Sum / 2)); 2594 }; 2595 2596 int64_t InputTotal = 0; 2597 int64_t OutputTotal = 0; 2598 const char *FormatStr = "{0,-45} {1,10}b {2,10}b {3,8:P}\n"; 2599 2600 // Print header. 2601 outs() << ".debug_info section size (in bytes)\n"; 2602 outs() << "----------------------------------------------------------------" 2603 "---------------\n"; 2604 outs() << "Filename Object " 2605 " dSYM Change\n"; 2606 outs() << "----------------------------------------------------------------" 2607 "---------------\n"; 2608 2609 // Print body. 2610 for (auto &E : Sorted) { 2611 InputTotal += E.second.Input; 2612 OutputTotal += E.second.Output; 2613 llvm::outs() << formatv( 2614 FormatStr, sys::path::filename(E.first).take_back(45), E.second.Input, 2615 E.second.Output, ComputePercentange(E.second.Input, E.second.Output)); 2616 } 2617 // Print total and footer. 2618 outs() << "----------------------------------------------------------------" 2619 "---------------\n"; 2620 llvm::outs() << formatv(FormatStr, "Total", InputTotal, OutputTotal, 2621 ComputePercentange(InputTotal, OutputTotal)); 2622 outs() << "----------------------------------------------------------------" 2623 "---------------\n\n"; 2624 } 2625 2626 return true; 2627 } 2628 2629 } // namespace llvm 2630