xref: /netbsd-src/external/apache2/llvm/dist/llvm/lib/CodeGen/MachineVerifier.cpp (revision f31867506b3d03104824848de4007d9c967e81b2)
1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Pass to verify generated machine code. The following is checked:
10 //
11 // Operand counts: All explicit operands must be present.
12 //
13 // Register classes: All physical and virtual register operands must be
14 // compatible with the register class required by the instruction descriptor.
15 //
16 // Register live intervals: Registers must be defined only once, and must be
17 // defined before use.
18 //
19 // The machine code verifier is enabled with the command-line option
20 // -verify-machineinstrs.
21 //===----------------------------------------------------------------------===//
22 
23 #include "llvm/ADT/BitVector.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/DenseSet.h"
26 #include "llvm/ADT/DepthFirstIterator.h"
27 #include "llvm/ADT/PostOrderIterator.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/SetOperations.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/StringRef.h"
33 #include "llvm/ADT/Twine.h"
34 #include "llvm/Analysis/EHPersonalities.h"
35 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
36 #include "llvm/CodeGen/LiveInterval.h"
37 #include "llvm/CodeGen/LiveIntervalCalc.h"
38 #include "llvm/CodeGen/LiveIntervals.h"
39 #include "llvm/CodeGen/LiveStacks.h"
40 #include "llvm/CodeGen/LiveVariables.h"
41 #include "llvm/CodeGen/MachineBasicBlock.h"
42 #include "llvm/CodeGen/MachineFrameInfo.h"
43 #include "llvm/CodeGen/MachineFunction.h"
44 #include "llvm/CodeGen/MachineFunctionPass.h"
45 #include "llvm/CodeGen/MachineInstr.h"
46 #include "llvm/CodeGen/MachineInstrBundle.h"
47 #include "llvm/CodeGen/MachineMemOperand.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/PseudoSourceValue.h"
51 #include "llvm/CodeGen/SlotIndexes.h"
52 #include "llvm/CodeGen/StackMaps.h"
53 #include "llvm/CodeGen/TargetInstrInfo.h"
54 #include "llvm/CodeGen/TargetOpcodes.h"
55 #include "llvm/CodeGen/TargetRegisterInfo.h"
56 #include "llvm/CodeGen/TargetSubtargetInfo.h"
57 #include "llvm/IR/BasicBlock.h"
58 #include "llvm/IR/Function.h"
59 #include "llvm/IR/InlineAsm.h"
60 #include "llvm/IR/Instructions.h"
61 #include "llvm/InitializePasses.h"
62 #include "llvm/MC/LaneBitmask.h"
63 #include "llvm/MC/MCAsmInfo.h"
64 #include "llvm/MC/MCInstrDesc.h"
65 #include "llvm/MC/MCRegisterInfo.h"
66 #include "llvm/MC/MCTargetOptions.h"
67 #include "llvm/Pass.h"
68 #include "llvm/Support/Casting.h"
69 #include "llvm/Support/ErrorHandling.h"
70 #include "llvm/Support/LowLevelTypeImpl.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include "llvm/Target/TargetMachine.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstddef>
77 #include <cstdint>
78 #include <iterator>
79 #include <string>
80 #include <utility>
81 
82 using namespace llvm;
83 
84 namespace {
85 
86   struct MachineVerifier {
87     MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {}
88 
89     unsigned verify(const MachineFunction &MF);
90 
91     Pass *const PASS;
92     const char *Banner;
93     const MachineFunction *MF;
94     const TargetMachine *TM;
95     const TargetInstrInfo *TII;
96     const TargetRegisterInfo *TRI;
97     const MachineRegisterInfo *MRI;
98 
99     unsigned foundErrors;
100 
101     // Avoid querying the MachineFunctionProperties for each operand.
102     bool isFunctionRegBankSelected;
103     bool isFunctionSelected;
104 
105     using RegVector = SmallVector<Register, 16>;
106     using RegMaskVector = SmallVector<const uint32_t *, 4>;
107     using RegSet = DenseSet<Register>;
108     using RegMap = DenseMap<Register, const MachineInstr *>;
109     using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>;
110 
111     const MachineInstr *FirstNonPHI;
112     const MachineInstr *FirstTerminator;
113     BlockSet FunctionBlocks;
114 
115     BitVector regsReserved;
116     RegSet regsLive;
117     RegVector regsDefined, regsDead, regsKilled;
118     RegMaskVector regMasks;
119 
120     SlotIndex lastIndex;
121 
122     // Add Reg and any sub-registers to RV
123     void addRegWithSubRegs(RegVector &RV, Register Reg) {
124       RV.push_back(Reg);
125       if (Reg.isPhysical())
126         append_range(RV, TRI->subregs(Reg.asMCReg()));
127     }
128 
129     struct BBInfo {
130       // Is this MBB reachable from the MF entry point?
131       bool reachable = false;
132 
133       // Vregs that must be live in because they are used without being
134       // defined. Map value is the user. vregsLiveIn doesn't include regs
135       // that only are used by PHI nodes.
136       RegMap vregsLiveIn;
137 
138       // Regs killed in MBB. They may be defined again, and will then be in both
139       // regsKilled and regsLiveOut.
140       RegSet regsKilled;
141 
142       // Regs defined in MBB and live out. Note that vregs passing through may
143       // be live out without being mentioned here.
144       RegSet regsLiveOut;
145 
146       // Vregs that pass through MBB untouched. This set is disjoint from
147       // regsKilled and regsLiveOut.
148       RegSet vregsPassed;
149 
150       // Vregs that must pass through MBB because they are needed by a successor
151       // block. This set is disjoint from regsLiveOut.
152       RegSet vregsRequired;
153 
154       // Set versions of block's predecessor and successor lists.
155       BlockSet Preds, Succs;
156 
157       BBInfo() = default;
158 
159       // Add register to vregsRequired if it belongs there. Return true if
160       // anything changed.
161       bool addRequired(Register Reg) {
162         if (!Reg.isVirtual())
163           return false;
164         if (regsLiveOut.count(Reg))
165           return false;
166         return vregsRequired.insert(Reg).second;
167       }
168 
169       // Same for a full set.
170       bool addRequired(const RegSet &RS) {
171         bool Changed = false;
172         for (Register Reg : RS)
173           Changed |= addRequired(Reg);
174         return Changed;
175       }
176 
177       // Same for a full map.
178       bool addRequired(const RegMap &RM) {
179         bool Changed = false;
180         for (const auto &I : RM)
181           Changed |= addRequired(I.first);
182         return Changed;
183       }
184 
185       // Live-out registers are either in regsLiveOut or vregsPassed.
186       bool isLiveOut(Register Reg) const {
187         return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
188       }
189     };
190 
191     // Extra register info per MBB.
192     DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
193 
194     bool isReserved(Register Reg) {
195       return Reg.id() < regsReserved.size() && regsReserved.test(Reg.id());
196     }
197 
198     bool isAllocatable(Register Reg) const {
199       return Reg.id() < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) &&
200              !regsReserved.test(Reg.id());
201     }
202 
203     // Analysis information if available
204     LiveVariables *LiveVars;
205     LiveIntervals *LiveInts;
206     LiveStacks *LiveStks;
207     SlotIndexes *Indexes;
208 
209     void visitMachineFunctionBefore();
210     void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
211     void visitMachineBundleBefore(const MachineInstr *MI);
212 
213     bool verifyVectorElementMatch(LLT Ty0, LLT Ty1, const MachineInstr *MI);
214     void verifyPreISelGenericInstruction(const MachineInstr *MI);
215     void visitMachineInstrBefore(const MachineInstr *MI);
216     void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
217     void visitMachineBundleAfter(const MachineInstr *MI);
218     void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
219     void visitMachineFunctionAfter();
220 
221     void report(const char *msg, const MachineFunction *MF);
222     void report(const char *msg, const MachineBasicBlock *MBB);
223     void report(const char *msg, const MachineInstr *MI);
224     void report(const char *msg, const MachineOperand *MO, unsigned MONum,
225                 LLT MOVRegType = LLT{});
226     void report(const Twine &Msg, const MachineInstr *MI);
227 
228     void report_context(const LiveInterval &LI) const;
229     void report_context(const LiveRange &LR, Register VRegUnit,
230                         LaneBitmask LaneMask) const;
231     void report_context(const LiveRange::Segment &S) const;
232     void report_context(const VNInfo &VNI) const;
233     void report_context(SlotIndex Pos) const;
234     void report_context(MCPhysReg PhysReg) const;
235     void report_context_liverange(const LiveRange &LR) const;
236     void report_context_lanemask(LaneBitmask LaneMask) const;
237     void report_context_vreg(Register VReg) const;
238     void report_context_vreg_regunit(Register VRegOrUnit) const;
239 
240     void verifyInlineAsm(const MachineInstr *MI);
241 
242     void checkLiveness(const MachineOperand *MO, unsigned MONum);
243     void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum,
244                             SlotIndex UseIdx, const LiveRange &LR,
245                             Register VRegOrUnit,
246                             LaneBitmask LaneMask = LaneBitmask::getNone());
247     void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum,
248                             SlotIndex DefIdx, const LiveRange &LR,
249                             Register VRegOrUnit, bool SubRangeCheck = false,
250                             LaneBitmask LaneMask = LaneBitmask::getNone());
251 
252     void markReachable(const MachineBasicBlock *MBB);
253     void calcRegsPassed();
254     void checkPHIOps(const MachineBasicBlock &MBB);
255 
256     void calcRegsRequired();
257     void verifyLiveVariables();
258     void verifyLiveIntervals();
259     void verifyLiveInterval(const LiveInterval&);
260     void verifyLiveRangeValue(const LiveRange &, const VNInfo *, Register,
261                               LaneBitmask);
262     void verifyLiveRangeSegment(const LiveRange &,
263                                 const LiveRange::const_iterator I, Register,
264                                 LaneBitmask);
265     void verifyLiveRange(const LiveRange &, Register,
266                          LaneBitmask LaneMask = LaneBitmask::getNone());
267 
268     void verifyStackFrame();
269 
270     void verifySlotIndexes() const;
271     void verifyProperties(const MachineFunction &MF);
272   };
273 
274   struct MachineVerifierPass : public MachineFunctionPass {
275     static char ID; // Pass ID, replacement for typeid
276 
277     const std::string Banner;
278 
279     MachineVerifierPass(std::string banner = std::string())
280       : MachineFunctionPass(ID), Banner(std::move(banner)) {
281         initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
282       }
283 
284     void getAnalysisUsage(AnalysisUsage &AU) const override {
285       AU.setPreservesAll();
286       MachineFunctionPass::getAnalysisUsage(AU);
287     }
288 
289     bool runOnMachineFunction(MachineFunction &MF) override {
290       unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF);
291       if (FoundErrors)
292         report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
293       return false;
294     }
295   };
296 
297 } // end anonymous namespace
298 
299 char MachineVerifierPass::ID = 0;
300 
301 INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
302                 "Verify generated machine code", false, false)
303 
304 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) {
305   return new MachineVerifierPass(Banner);
306 }
307 
308 void llvm::verifyMachineFunction(MachineFunctionAnalysisManager *,
309                                  const std::string &Banner,
310                                  const MachineFunction &MF) {
311   // TODO: Use MFAM after porting below analyses.
312   // LiveVariables *LiveVars;
313   // LiveIntervals *LiveInts;
314   // LiveStacks *LiveStks;
315   // SlotIndexes *Indexes;
316   unsigned FoundErrors = MachineVerifier(nullptr, Banner.c_str()).verify(MF);
317   if (FoundErrors)
318     report_fatal_error("Found " + Twine(FoundErrors) + " machine code errors.");
319 }
320 
321 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors)
322     const {
323   MachineFunction &MF = const_cast<MachineFunction&>(*this);
324   unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF);
325   if (AbortOnErrors && FoundErrors)
326     report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
327   return FoundErrors == 0;
328 }
329 
330 void MachineVerifier::verifySlotIndexes() const {
331   if (Indexes == nullptr)
332     return;
333 
334   // Ensure the IdxMBB list is sorted by slot indexes.
335   SlotIndex Last;
336   for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(),
337        E = Indexes->MBBIndexEnd(); I != E; ++I) {
338     assert(!Last.isValid() || I->first > Last);
339     Last = I->first;
340   }
341 }
342 
343 void MachineVerifier::verifyProperties(const MachineFunction &MF) {
344   // If a pass has introduced virtual registers without clearing the
345   // NoVRegs property (or set it without allocating the vregs)
346   // then report an error.
347   if (MF.getProperties().hasProperty(
348           MachineFunctionProperties::Property::NoVRegs) &&
349       MRI->getNumVirtRegs())
350     report("Function has NoVRegs property but there are VReg operands", &MF);
351 }
352 
353 unsigned MachineVerifier::verify(const MachineFunction &MF) {
354   foundErrors = 0;
355 
356   this->MF = &MF;
357   TM = &MF.getTarget();
358   TII = MF.getSubtarget().getInstrInfo();
359   TRI = MF.getSubtarget().getRegisterInfo();
360   MRI = &MF.getRegInfo();
361 
362   const bool isFunctionFailedISel = MF.getProperties().hasProperty(
363       MachineFunctionProperties::Property::FailedISel);
364 
365   // If we're mid-GlobalISel and we already triggered the fallback path then
366   // it's expected that the MIR is somewhat broken but that's ok since we'll
367   // reset it and clear the FailedISel attribute in ResetMachineFunctions.
368   if (isFunctionFailedISel)
369     return foundErrors;
370 
371   isFunctionRegBankSelected = MF.getProperties().hasProperty(
372       MachineFunctionProperties::Property::RegBankSelected);
373   isFunctionSelected = MF.getProperties().hasProperty(
374       MachineFunctionProperties::Property::Selected);
375 
376   LiveVars = nullptr;
377   LiveInts = nullptr;
378   LiveStks = nullptr;
379   Indexes = nullptr;
380   if (PASS) {
381     LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
382     // We don't want to verify LiveVariables if LiveIntervals is available.
383     if (!LiveInts)
384       LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
385     LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
386     Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
387   }
388 
389   verifySlotIndexes();
390 
391   verifyProperties(MF);
392 
393   visitMachineFunctionBefore();
394   for (const MachineBasicBlock &MBB : MF) {
395     visitMachineBasicBlockBefore(&MBB);
396     // Keep track of the current bundle header.
397     const MachineInstr *CurBundle = nullptr;
398     // Do we expect the next instruction to be part of the same bundle?
399     bool InBundle = false;
400 
401     for (const MachineInstr &MI : MBB.instrs()) {
402       if (MI.getParent() != &MBB) {
403         report("Bad instruction parent pointer", &MBB);
404         errs() << "Instruction: " << MI;
405         continue;
406       }
407 
408       // Check for consistent bundle flags.
409       if (InBundle && !MI.isBundledWithPred())
410         report("Missing BundledPred flag, "
411                "BundledSucc was set on predecessor",
412                &MI);
413       if (!InBundle && MI.isBundledWithPred())
414         report("BundledPred flag is set, "
415                "but BundledSucc not set on predecessor",
416                &MI);
417 
418       // Is this a bundle header?
419       if (!MI.isInsideBundle()) {
420         if (CurBundle)
421           visitMachineBundleAfter(CurBundle);
422         CurBundle = &MI;
423         visitMachineBundleBefore(CurBundle);
424       } else if (!CurBundle)
425         report("No bundle header", &MI);
426       visitMachineInstrBefore(&MI);
427       for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
428         const MachineOperand &Op = MI.getOperand(I);
429         if (Op.getParent() != &MI) {
430           // Make sure to use correct addOperand / RemoveOperand / ChangeTo
431           // functions when replacing operands of a MachineInstr.
432           report("Instruction has operand with wrong parent set", &MI);
433         }
434 
435         visitMachineOperand(&Op, I);
436       }
437 
438       // Was this the last bundled instruction?
439       InBundle = MI.isBundledWithSucc();
440     }
441     if (CurBundle)
442       visitMachineBundleAfter(CurBundle);
443     if (InBundle)
444       report("BundledSucc flag set on last instruction in block", &MBB.back());
445     visitMachineBasicBlockAfter(&MBB);
446   }
447   visitMachineFunctionAfter();
448 
449   // Clean up.
450   regsLive.clear();
451   regsDefined.clear();
452   regsDead.clear();
453   regsKilled.clear();
454   regMasks.clear();
455   MBBInfoMap.clear();
456 
457   return foundErrors;
458 }
459 
460 void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
461   assert(MF);
462   errs() << '\n';
463   if (!foundErrors++) {
464     if (Banner)
465       errs() << "# " << Banner << '\n';
466     if (LiveInts != nullptr)
467       LiveInts->print(errs());
468     else
469       MF->print(errs(), Indexes);
470   }
471   errs() << "*** Bad machine code: " << msg << " ***\n"
472       << "- function:    " << MF->getName() << "\n";
473 }
474 
475 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
476   assert(MBB);
477   report(msg, MBB->getParent());
478   errs() << "- basic block: " << printMBBReference(*MBB) << ' '
479          << MBB->getName() << " (" << (const void *)MBB << ')';
480   if (Indexes)
481     errs() << " [" << Indexes->getMBBStartIdx(MBB)
482         << ';' <<  Indexes->getMBBEndIdx(MBB) << ')';
483   errs() << '\n';
484 }
485 
486 void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
487   assert(MI);
488   report(msg, MI->getParent());
489   errs() << "- instruction: ";
490   if (Indexes && Indexes->hasIndex(*MI))
491     errs() << Indexes->getInstructionIndex(*MI) << '\t';
492   MI->print(errs(), /*IsStandalone=*/true);
493 }
494 
495 void MachineVerifier::report(const char *msg, const MachineOperand *MO,
496                              unsigned MONum, LLT MOVRegType) {
497   assert(MO);
498   report(msg, MO->getParent());
499   errs() << "- operand " << MONum << ":   ";
500   MO->print(errs(), MOVRegType, TRI);
501   errs() << "\n";
502 }
503 
504 void MachineVerifier::report(const Twine &Msg, const MachineInstr *MI) {
505   report(Msg.str().c_str(), MI);
506 }
507 
508 void MachineVerifier::report_context(SlotIndex Pos) const {
509   errs() << "- at:          " << Pos << '\n';
510 }
511 
512 void MachineVerifier::report_context(const LiveInterval &LI) const {
513   errs() << "- interval:    " << LI << '\n';
514 }
515 
516 void MachineVerifier::report_context(const LiveRange &LR, Register VRegUnit,
517                                      LaneBitmask LaneMask) const {
518   report_context_liverange(LR);
519   report_context_vreg_regunit(VRegUnit);
520   if (LaneMask.any())
521     report_context_lanemask(LaneMask);
522 }
523 
524 void MachineVerifier::report_context(const LiveRange::Segment &S) const {
525   errs() << "- segment:     " << S << '\n';
526 }
527 
528 void MachineVerifier::report_context(const VNInfo &VNI) const {
529   errs() << "- ValNo:       " << VNI.id << " (def " << VNI.def << ")\n";
530 }
531 
532 void MachineVerifier::report_context_liverange(const LiveRange &LR) const {
533   errs() << "- liverange:   " << LR << '\n';
534 }
535 
536 void MachineVerifier::report_context(MCPhysReg PReg) const {
537   errs() << "- p. register: " << printReg(PReg, TRI) << '\n';
538 }
539 
540 void MachineVerifier::report_context_vreg(Register VReg) const {
541   errs() << "- v. register: " << printReg(VReg, TRI) << '\n';
542 }
543 
544 void MachineVerifier::report_context_vreg_regunit(Register VRegOrUnit) const {
545   if (Register::isVirtualRegister(VRegOrUnit)) {
546     report_context_vreg(VRegOrUnit);
547   } else {
548     errs() << "- regunit:     " << printRegUnit(VRegOrUnit, TRI) << '\n';
549   }
550 }
551 
552 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const {
553   errs() << "- lanemask:    " << PrintLaneMask(LaneMask) << '\n';
554 }
555 
556 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
557   BBInfo &MInfo = MBBInfoMap[MBB];
558   if (!MInfo.reachable) {
559     MInfo.reachable = true;
560     for (const MachineBasicBlock *Succ : MBB->successors())
561       markReachable(Succ);
562   }
563 }
564 
565 void MachineVerifier::visitMachineFunctionBefore() {
566   lastIndex = SlotIndex();
567   regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs()
568                                            : TRI->getReservedRegs(*MF);
569 
570   if (!MF->empty())
571     markReachable(&MF->front());
572 
573   // Build a set of the basic blocks in the function.
574   FunctionBlocks.clear();
575   for (const auto &MBB : *MF) {
576     FunctionBlocks.insert(&MBB);
577     BBInfo &MInfo = MBBInfoMap[&MBB];
578 
579     MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end());
580     if (MInfo.Preds.size() != MBB.pred_size())
581       report("MBB has duplicate entries in its predecessor list.", &MBB);
582 
583     MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end());
584     if (MInfo.Succs.size() != MBB.succ_size())
585       report("MBB has duplicate entries in its successor list.", &MBB);
586   }
587 
588   // Check that the register use lists are sane.
589   MRI->verifyUseLists();
590 
591   if (!MF->empty())
592     verifyStackFrame();
593 }
594 
595 void
596 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
597   FirstTerminator = nullptr;
598   FirstNonPHI = nullptr;
599 
600   if (!MF->getProperties().hasProperty(
601       MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) {
602     // If this block has allocatable physical registers live-in, check that
603     // it is an entry block or landing pad.
604     for (const auto &LI : MBB->liveins()) {
605       if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() &&
606           MBB->getIterator() != MBB->getParent()->begin()) {
607         report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB);
608         report_context(LI.PhysReg);
609       }
610     }
611   }
612 
613   // Count the number of landing pad successors.
614   SmallPtrSet<const MachineBasicBlock*, 4> LandingPadSuccs;
615   for (const auto *succ : MBB->successors()) {
616     if (succ->isEHPad())
617       LandingPadSuccs.insert(succ);
618     if (!FunctionBlocks.count(succ))
619       report("MBB has successor that isn't part of the function.", MBB);
620     if (!MBBInfoMap[succ].Preds.count(MBB)) {
621       report("Inconsistent CFG", MBB);
622       errs() << "MBB is not in the predecessor list of the successor "
623              << printMBBReference(*succ) << ".\n";
624     }
625   }
626 
627   // Check the predecessor list.
628   for (const MachineBasicBlock *Pred : MBB->predecessors()) {
629     if (!FunctionBlocks.count(Pred))
630       report("MBB has predecessor that isn't part of the function.", MBB);
631     if (!MBBInfoMap[Pred].Succs.count(MBB)) {
632       report("Inconsistent CFG", MBB);
633       errs() << "MBB is not in the successor list of the predecessor "
634              << printMBBReference(*Pred) << ".\n";
635     }
636   }
637 
638   const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
639   const BasicBlock *BB = MBB->getBasicBlock();
640   const Function &F = MF->getFunction();
641   if (LandingPadSuccs.size() > 1 &&
642       !(AsmInfo &&
643         AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
644         BB && isa<SwitchInst>(BB->getTerminator())) &&
645       !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn())))
646     report("MBB has more than one landing pad successor", MBB);
647 
648   // Call analyzeBranch. If it succeeds, there several more conditions to check.
649   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
650   SmallVector<MachineOperand, 4> Cond;
651   if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB,
652                           Cond)) {
653     // Ok, analyzeBranch thinks it knows what's going on with this block. Let's
654     // check whether its answers match up with reality.
655     if (!TBB && !FBB) {
656       // Block falls through to its successor.
657       if (!MBB->empty() && MBB->back().isBarrier() &&
658           !TII->isPredicated(MBB->back())) {
659         report("MBB exits via unconditional fall-through but ends with a "
660                "barrier instruction!", MBB);
661       }
662       if (!Cond.empty()) {
663         report("MBB exits via unconditional fall-through but has a condition!",
664                MBB);
665       }
666     } else if (TBB && !FBB && Cond.empty()) {
667       // Block unconditionally branches somewhere.
668       if (MBB->empty()) {
669         report("MBB exits via unconditional branch but doesn't contain "
670                "any instructions!", MBB);
671       } else if (!MBB->back().isBarrier()) {
672         report("MBB exits via unconditional branch but doesn't end with a "
673                "barrier instruction!", MBB);
674       } else if (!MBB->back().isTerminator()) {
675         report("MBB exits via unconditional branch but the branch isn't a "
676                "terminator instruction!", MBB);
677       }
678     } else if (TBB && !FBB && !Cond.empty()) {
679       // Block conditionally branches somewhere, otherwise falls through.
680       if (MBB->empty()) {
681         report("MBB exits via conditional branch/fall-through but doesn't "
682                "contain any instructions!", MBB);
683       } else if (MBB->back().isBarrier()) {
684         report("MBB exits via conditional branch/fall-through but ends with a "
685                "barrier instruction!", MBB);
686       } else if (!MBB->back().isTerminator()) {
687         report("MBB exits via conditional branch/fall-through but the branch "
688                "isn't a terminator instruction!", MBB);
689       }
690     } else if (TBB && FBB) {
691       // Block conditionally branches somewhere, otherwise branches
692       // somewhere else.
693       if (MBB->empty()) {
694         report("MBB exits via conditional branch/branch but doesn't "
695                "contain any instructions!", MBB);
696       } else if (!MBB->back().isBarrier()) {
697         report("MBB exits via conditional branch/branch but doesn't end with a "
698                "barrier instruction!", MBB);
699       } else if (!MBB->back().isTerminator()) {
700         report("MBB exits via conditional branch/branch but the branch "
701                "isn't a terminator instruction!", MBB);
702       }
703       if (Cond.empty()) {
704         report("MBB exits via conditional branch/branch but there's no "
705                "condition!", MBB);
706       }
707     } else {
708       report("analyzeBranch returned invalid data!", MBB);
709     }
710 
711     // Now check that the successors match up with the answers reported by
712     // analyzeBranch.
713     if (TBB && !MBB->isSuccessor(TBB))
714       report("MBB exits via jump or conditional branch, but its target isn't a "
715              "CFG successor!",
716              MBB);
717     if (FBB && !MBB->isSuccessor(FBB))
718       report("MBB exits via conditional branch, but its target isn't a CFG "
719              "successor!",
720              MBB);
721 
722     // There might be a fallthrough to the next block if there's either no
723     // unconditional true branch, or if there's a condition, and one of the
724     // branches is missing.
725     bool Fallthrough = !TBB || (!Cond.empty() && !FBB);
726 
727     // A conditional fallthrough must be an actual CFG successor, not
728     // unreachable. (Conversely, an unconditional fallthrough might not really
729     // be a successor, because the block might end in unreachable.)
730     if (!Cond.empty() && !FBB) {
731       MachineFunction::const_iterator MBBI = std::next(MBB->getIterator());
732       if (MBBI == MF->end()) {
733         report("MBB conditionally falls through out of function!", MBB);
734       } else if (!MBB->isSuccessor(&*MBBI))
735         report("MBB exits via conditional branch/fall-through but the CFG "
736                "successors don't match the actual successors!",
737                MBB);
738     }
739 
740     // Verify that there aren't any extra un-accounted-for successors.
741     for (const MachineBasicBlock *SuccMBB : MBB->successors()) {
742       // If this successor is one of the branch targets, it's okay.
743       if (SuccMBB == TBB || SuccMBB == FBB)
744         continue;
745       // If we might have a fallthrough, and the successor is the fallthrough
746       // block, that's also ok.
747       if (Fallthrough && SuccMBB == MBB->getNextNode())
748         continue;
749       // Also accept successors which are for exception-handling or might be
750       // inlineasm_br targets.
751       if (SuccMBB->isEHPad() || SuccMBB->isInlineAsmBrIndirectTarget())
752         continue;
753       report("MBB has unexpected successors which are not branch targets, "
754              "fallthrough, EHPads, or inlineasm_br targets.",
755              MBB);
756     }
757   }
758 
759   regsLive.clear();
760   if (MRI->tracksLiveness()) {
761     for (const auto &LI : MBB->liveins()) {
762       if (!Register::isPhysicalRegister(LI.PhysReg)) {
763         report("MBB live-in list contains non-physical register", MBB);
764         continue;
765       }
766       for (const MCPhysReg &SubReg : TRI->subregs_inclusive(LI.PhysReg))
767         regsLive.insert(SubReg);
768     }
769   }
770 
771   const MachineFrameInfo &MFI = MF->getFrameInfo();
772   BitVector PR = MFI.getPristineRegs(*MF);
773   for (unsigned I : PR.set_bits()) {
774     for (const MCPhysReg &SubReg : TRI->subregs_inclusive(I))
775       regsLive.insert(SubReg);
776   }
777 
778   regsKilled.clear();
779   regsDefined.clear();
780 
781   if (Indexes)
782     lastIndex = Indexes->getMBBStartIdx(MBB);
783 }
784 
785 // This function gets called for all bundle headers, including normal
786 // stand-alone unbundled instructions.
787 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) {
788   if (Indexes && Indexes->hasIndex(*MI)) {
789     SlotIndex idx = Indexes->getInstructionIndex(*MI);
790     if (!(idx > lastIndex)) {
791       report("Instruction index out of order", MI);
792       errs() << "Last instruction was at " << lastIndex << '\n';
793     }
794     lastIndex = idx;
795   }
796 
797   // Ensure non-terminators don't follow terminators.
798   if (MI->isTerminator()) {
799     if (!FirstTerminator)
800       FirstTerminator = MI;
801   } else if (FirstTerminator) {
802     report("Non-terminator instruction after the first terminator", MI);
803     errs() << "First terminator was:\t" << *FirstTerminator;
804   }
805 }
806 
807 // The operands on an INLINEASM instruction must follow a template.
808 // Verify that the flag operands make sense.
809 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) {
810   // The first two operands on INLINEASM are the asm string and global flags.
811   if (MI->getNumOperands() < 2) {
812     report("Too few operands on inline asm", MI);
813     return;
814   }
815   if (!MI->getOperand(0).isSymbol())
816     report("Asm string must be an external symbol", MI);
817   if (!MI->getOperand(1).isImm())
818     report("Asm flags must be an immediate", MI);
819   // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2,
820   // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16,
821   // and Extra_IsConvergent = 32.
822   if (!isUInt<6>(MI->getOperand(1).getImm()))
823     report("Unknown asm flags", &MI->getOperand(1), 1);
824 
825   static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed");
826 
827   unsigned OpNo = InlineAsm::MIOp_FirstOperand;
828   unsigned NumOps;
829   for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) {
830     const MachineOperand &MO = MI->getOperand(OpNo);
831     // There may be implicit ops after the fixed operands.
832     if (!MO.isImm())
833       break;
834     NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm());
835   }
836 
837   if (OpNo > MI->getNumOperands())
838     report("Missing operands in last group", MI);
839 
840   // An optional MDNode follows the groups.
841   if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata())
842     ++OpNo;
843 
844   // All trailing operands must be implicit registers.
845   for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) {
846     const MachineOperand &MO = MI->getOperand(OpNo);
847     if (!MO.isReg() || !MO.isImplicit())
848       report("Expected implicit register after groups", &MO, OpNo);
849   }
850 }
851 
852 /// Check that types are consistent when two operands need to have the same
853 /// number of vector elements.
854 /// \return true if the types are valid.
855 bool MachineVerifier::verifyVectorElementMatch(LLT Ty0, LLT Ty1,
856                                                const MachineInstr *MI) {
857   if (Ty0.isVector() != Ty1.isVector()) {
858     report("operand types must be all-vector or all-scalar", MI);
859     // Generally we try to report as many issues as possible at once, but in
860     // this case it's not clear what should we be comparing the size of the
861     // scalar with: the size of the whole vector or its lane. Instead of
862     // making an arbitrary choice and emitting not so helpful message, let's
863     // avoid the extra noise and stop here.
864     return false;
865   }
866 
867   if (Ty0.isVector() && Ty0.getNumElements() != Ty1.getNumElements()) {
868     report("operand types must preserve number of vector elements", MI);
869     return false;
870   }
871 
872   return true;
873 }
874 
875 void MachineVerifier::verifyPreISelGenericInstruction(const MachineInstr *MI) {
876   if (isFunctionSelected)
877     report("Unexpected generic instruction in a Selected function", MI);
878 
879   const MCInstrDesc &MCID = MI->getDesc();
880   unsigned NumOps = MI->getNumOperands();
881 
882   // Branches must reference a basic block if they are not indirect
883   if (MI->isBranch() && !MI->isIndirectBranch()) {
884     bool HasMBB = false;
885     for (const MachineOperand &Op : MI->operands()) {
886       if (Op.isMBB()) {
887         HasMBB = true;
888         break;
889       }
890     }
891 
892     if (!HasMBB) {
893       report("Branch instruction is missing a basic block operand or "
894              "isIndirectBranch property",
895              MI);
896     }
897   }
898 
899   // Check types.
900   SmallVector<LLT, 4> Types;
901   for (unsigned I = 0, E = std::min(MCID.getNumOperands(), NumOps);
902        I != E; ++I) {
903     if (!MCID.OpInfo[I].isGenericType())
904       continue;
905     // Generic instructions specify type equality constraints between some of
906     // their operands. Make sure these are consistent.
907     size_t TypeIdx = MCID.OpInfo[I].getGenericTypeIndex();
908     Types.resize(std::max(TypeIdx + 1, Types.size()));
909 
910     const MachineOperand *MO = &MI->getOperand(I);
911     if (!MO->isReg()) {
912       report("generic instruction must use register operands", MI);
913       continue;
914     }
915 
916     LLT OpTy = MRI->getType(MO->getReg());
917     // Don't report a type mismatch if there is no actual mismatch, only a
918     // type missing, to reduce noise:
919     if (OpTy.isValid()) {
920       // Only the first valid type for a type index will be printed: don't
921       // overwrite it later so it's always clear which type was expected:
922       if (!Types[TypeIdx].isValid())
923         Types[TypeIdx] = OpTy;
924       else if (Types[TypeIdx] != OpTy)
925         report("Type mismatch in generic instruction", MO, I, OpTy);
926     } else {
927       // Generic instructions must have types attached to their operands.
928       report("Generic instruction is missing a virtual register type", MO, I);
929     }
930   }
931 
932   // Generic opcodes must not have physical register operands.
933   for (unsigned I = 0; I < MI->getNumOperands(); ++I) {
934     const MachineOperand *MO = &MI->getOperand(I);
935     if (MO->isReg() && Register::isPhysicalRegister(MO->getReg()))
936       report("Generic instruction cannot have physical register", MO, I);
937   }
938 
939   // Avoid out of bounds in checks below. This was already reported earlier.
940   if (MI->getNumOperands() < MCID.getNumOperands())
941     return;
942 
943   StringRef ErrorInfo;
944   if (!TII->verifyInstruction(*MI, ErrorInfo))
945     report(ErrorInfo.data(), MI);
946 
947   // Verify properties of various specific instruction types
948   unsigned Opc = MI->getOpcode();
949   switch (Opc) {
950   case TargetOpcode::G_ASSERT_SEXT:
951   case TargetOpcode::G_ASSERT_ZEXT: {
952     std::string OpcName =
953         Opc == TargetOpcode::G_ASSERT_ZEXT ? "G_ASSERT_ZEXT" : "G_ASSERT_SEXT";
954     if (!MI->getOperand(2).isImm()) {
955       report(Twine(OpcName, " expects an immediate operand #2"), MI);
956       break;
957     }
958 
959     Register Dst = MI->getOperand(0).getReg();
960     Register Src = MI->getOperand(1).getReg();
961     LLT SrcTy = MRI->getType(Src);
962     int64_t Imm = MI->getOperand(2).getImm();
963     if (Imm <= 0) {
964       report(Twine(OpcName, " size must be >= 1"), MI);
965       break;
966     }
967 
968     if (Imm >= SrcTy.getScalarSizeInBits()) {
969       report(Twine(OpcName, " size must be less than source bit width"), MI);
970       break;
971     }
972 
973     if (MRI->getRegBankOrNull(Src) != MRI->getRegBankOrNull(Dst)) {
974       report(
975           Twine(OpcName, " source and destination register banks must match"),
976           MI);
977       break;
978     }
979 
980     if (MRI->getRegClassOrNull(Src) != MRI->getRegClassOrNull(Dst))
981       report(
982           Twine(OpcName, " source and destination register classes must match"),
983           MI);
984 
985     break;
986   }
987 
988   case TargetOpcode::G_CONSTANT:
989   case TargetOpcode::G_FCONSTANT: {
990     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
991     if (DstTy.isVector())
992       report("Instruction cannot use a vector result type", MI);
993 
994     if (MI->getOpcode() == TargetOpcode::G_CONSTANT) {
995       if (!MI->getOperand(1).isCImm()) {
996         report("G_CONSTANT operand must be cimm", MI);
997         break;
998       }
999 
1000       const ConstantInt *CI = MI->getOperand(1).getCImm();
1001       if (CI->getBitWidth() != DstTy.getSizeInBits())
1002         report("inconsistent constant size", MI);
1003     } else {
1004       if (!MI->getOperand(1).isFPImm()) {
1005         report("G_FCONSTANT operand must be fpimm", MI);
1006         break;
1007       }
1008       const ConstantFP *CF = MI->getOperand(1).getFPImm();
1009 
1010       if (APFloat::getSizeInBits(CF->getValueAPF().getSemantics()) !=
1011           DstTy.getSizeInBits()) {
1012         report("inconsistent constant size", MI);
1013       }
1014     }
1015 
1016     break;
1017   }
1018   case TargetOpcode::G_LOAD:
1019   case TargetOpcode::G_STORE:
1020   case TargetOpcode::G_ZEXTLOAD:
1021   case TargetOpcode::G_SEXTLOAD: {
1022     LLT ValTy = MRI->getType(MI->getOperand(0).getReg());
1023     LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
1024     if (!PtrTy.isPointer())
1025       report("Generic memory instruction must access a pointer", MI);
1026 
1027     // Generic loads and stores must have a single MachineMemOperand
1028     // describing that access.
1029     if (!MI->hasOneMemOperand()) {
1030       report("Generic instruction accessing memory must have one mem operand",
1031              MI);
1032     } else {
1033       const MachineMemOperand &MMO = **MI->memoperands_begin();
1034       if (MI->getOpcode() == TargetOpcode::G_ZEXTLOAD ||
1035           MI->getOpcode() == TargetOpcode::G_SEXTLOAD) {
1036         if (MMO.getSizeInBits() >= ValTy.getSizeInBits())
1037           report("Generic extload must have a narrower memory type", MI);
1038       } else if (MI->getOpcode() == TargetOpcode::G_LOAD) {
1039         if (MMO.getSize() > ValTy.getSizeInBytes())
1040           report("load memory size cannot exceed result size", MI);
1041       } else if (MI->getOpcode() == TargetOpcode::G_STORE) {
1042         if (ValTy.getSizeInBytes() < MMO.getSize())
1043           report("store memory size cannot exceed value size", MI);
1044       }
1045     }
1046 
1047     break;
1048   }
1049   case TargetOpcode::G_PHI: {
1050     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1051     if (!DstTy.isValid() || !all_of(drop_begin(MI->operands()),
1052                                     [this, &DstTy](const MachineOperand &MO) {
1053                                       if (!MO.isReg())
1054                                         return true;
1055                                       LLT Ty = MRI->getType(MO.getReg());
1056                                       if (!Ty.isValid() || (Ty != DstTy))
1057                                         return false;
1058                                       return true;
1059                                     }))
1060       report("Generic Instruction G_PHI has operands with incompatible/missing "
1061              "types",
1062              MI);
1063     break;
1064   }
1065   case TargetOpcode::G_BITCAST: {
1066     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1067     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1068     if (!DstTy.isValid() || !SrcTy.isValid())
1069       break;
1070 
1071     if (SrcTy.isPointer() != DstTy.isPointer())
1072       report("bitcast cannot convert between pointers and other types", MI);
1073 
1074     if (SrcTy.getSizeInBits() != DstTy.getSizeInBits())
1075       report("bitcast sizes must match", MI);
1076 
1077     if (SrcTy == DstTy)
1078       report("bitcast must change the type", MI);
1079 
1080     break;
1081   }
1082   case TargetOpcode::G_INTTOPTR:
1083   case TargetOpcode::G_PTRTOINT:
1084   case TargetOpcode::G_ADDRSPACE_CAST: {
1085     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1086     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1087     if (!DstTy.isValid() || !SrcTy.isValid())
1088       break;
1089 
1090     verifyVectorElementMatch(DstTy, SrcTy, MI);
1091 
1092     DstTy = DstTy.getScalarType();
1093     SrcTy = SrcTy.getScalarType();
1094 
1095     if (MI->getOpcode() == TargetOpcode::G_INTTOPTR) {
1096       if (!DstTy.isPointer())
1097         report("inttoptr result type must be a pointer", MI);
1098       if (SrcTy.isPointer())
1099         report("inttoptr source type must not be a pointer", MI);
1100     } else if (MI->getOpcode() == TargetOpcode::G_PTRTOINT) {
1101       if (!SrcTy.isPointer())
1102         report("ptrtoint source type must be a pointer", MI);
1103       if (DstTy.isPointer())
1104         report("ptrtoint result type must not be a pointer", MI);
1105     } else {
1106       assert(MI->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST);
1107       if (!SrcTy.isPointer() || !DstTy.isPointer())
1108         report("addrspacecast types must be pointers", MI);
1109       else {
1110         if (SrcTy.getAddressSpace() == DstTy.getAddressSpace())
1111           report("addrspacecast must convert different address spaces", MI);
1112       }
1113     }
1114 
1115     break;
1116   }
1117   case TargetOpcode::G_PTR_ADD: {
1118     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1119     LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
1120     LLT OffsetTy = MRI->getType(MI->getOperand(2).getReg());
1121     if (!DstTy.isValid() || !PtrTy.isValid() || !OffsetTy.isValid())
1122       break;
1123 
1124     if (!PtrTy.getScalarType().isPointer())
1125       report("gep first operand must be a pointer", MI);
1126 
1127     if (OffsetTy.getScalarType().isPointer())
1128       report("gep offset operand must not be a pointer", MI);
1129 
1130     // TODO: Is the offset allowed to be a scalar with a vector?
1131     break;
1132   }
1133   case TargetOpcode::G_PTRMASK: {
1134     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1135     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1136     LLT MaskTy = MRI->getType(MI->getOperand(2).getReg());
1137     if (!DstTy.isValid() || !SrcTy.isValid() || !MaskTy.isValid())
1138       break;
1139 
1140     if (!DstTy.getScalarType().isPointer())
1141       report("ptrmask result type must be a pointer", MI);
1142 
1143     if (!MaskTy.getScalarType().isScalar())
1144       report("ptrmask mask type must be an integer", MI);
1145 
1146     verifyVectorElementMatch(DstTy, MaskTy, MI);
1147     break;
1148   }
1149   case TargetOpcode::G_SEXT:
1150   case TargetOpcode::G_ZEXT:
1151   case TargetOpcode::G_ANYEXT:
1152   case TargetOpcode::G_TRUNC:
1153   case TargetOpcode::G_FPEXT:
1154   case TargetOpcode::G_FPTRUNC: {
1155     // Number of operands and presense of types is already checked (and
1156     // reported in case of any issues), so no need to report them again. As
1157     // we're trying to report as many issues as possible at once, however, the
1158     // instructions aren't guaranteed to have the right number of operands or
1159     // types attached to them at this point
1160     assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}");
1161     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1162     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1163     if (!DstTy.isValid() || !SrcTy.isValid())
1164       break;
1165 
1166     LLT DstElTy = DstTy.getScalarType();
1167     LLT SrcElTy = SrcTy.getScalarType();
1168     if (DstElTy.isPointer() || SrcElTy.isPointer())
1169       report("Generic extend/truncate can not operate on pointers", MI);
1170 
1171     verifyVectorElementMatch(DstTy, SrcTy, MI);
1172 
1173     unsigned DstSize = DstElTy.getSizeInBits();
1174     unsigned SrcSize = SrcElTy.getSizeInBits();
1175     switch (MI->getOpcode()) {
1176     default:
1177       if (DstSize <= SrcSize)
1178         report("Generic extend has destination type no larger than source", MI);
1179       break;
1180     case TargetOpcode::G_TRUNC:
1181     case TargetOpcode::G_FPTRUNC:
1182       if (DstSize >= SrcSize)
1183         report("Generic truncate has destination type no smaller than source",
1184                MI);
1185       break;
1186     }
1187     break;
1188   }
1189   case TargetOpcode::G_SELECT: {
1190     LLT SelTy = MRI->getType(MI->getOperand(0).getReg());
1191     LLT CondTy = MRI->getType(MI->getOperand(1).getReg());
1192     if (!SelTy.isValid() || !CondTy.isValid())
1193       break;
1194 
1195     // Scalar condition select on a vector is valid.
1196     if (CondTy.isVector())
1197       verifyVectorElementMatch(SelTy, CondTy, MI);
1198     break;
1199   }
1200   case TargetOpcode::G_MERGE_VALUES: {
1201     // G_MERGE_VALUES should only be used to merge scalars into a larger scalar,
1202     // e.g. s2N = MERGE sN, sN
1203     // Merging multiple scalars into a vector is not allowed, should use
1204     // G_BUILD_VECTOR for that.
1205     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1206     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1207     if (DstTy.isVector() || SrcTy.isVector())
1208       report("G_MERGE_VALUES cannot operate on vectors", MI);
1209 
1210     const unsigned NumOps = MI->getNumOperands();
1211     if (DstTy.getSizeInBits() != SrcTy.getSizeInBits() * (NumOps - 1))
1212       report("G_MERGE_VALUES result size is inconsistent", MI);
1213 
1214     for (unsigned I = 2; I != NumOps; ++I) {
1215       if (MRI->getType(MI->getOperand(I).getReg()) != SrcTy)
1216         report("G_MERGE_VALUES source types do not match", MI);
1217     }
1218 
1219     break;
1220   }
1221   case TargetOpcode::G_UNMERGE_VALUES: {
1222     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1223     LLT SrcTy = MRI->getType(MI->getOperand(MI->getNumOperands()-1).getReg());
1224     // For now G_UNMERGE can split vectors.
1225     for (unsigned i = 0; i < MI->getNumOperands()-1; ++i) {
1226       if (MRI->getType(MI->getOperand(i).getReg()) != DstTy)
1227         report("G_UNMERGE_VALUES destination types do not match", MI);
1228     }
1229     if (SrcTy.getSizeInBits() !=
1230         (DstTy.getSizeInBits() * (MI->getNumOperands() - 1))) {
1231       report("G_UNMERGE_VALUES source operand does not cover dest operands",
1232              MI);
1233     }
1234     break;
1235   }
1236   case TargetOpcode::G_BUILD_VECTOR: {
1237     // Source types must be scalars, dest type a vector. Total size of scalars
1238     // must match the dest vector size.
1239     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1240     LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1241     if (!DstTy.isVector() || SrcEltTy.isVector()) {
1242       report("G_BUILD_VECTOR must produce a vector from scalar operands", MI);
1243       break;
1244     }
1245 
1246     if (DstTy.getElementType() != SrcEltTy)
1247       report("G_BUILD_VECTOR result element type must match source type", MI);
1248 
1249     if (DstTy.getNumElements() != MI->getNumOperands() - 1)
1250       report("G_BUILD_VECTOR must have an operand for each elemement", MI);
1251 
1252     for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1253       if (MRI->getType(MI->getOperand(1).getReg()) !=
1254           MRI->getType(MI->getOperand(i).getReg()))
1255         report("G_BUILD_VECTOR source operand types are not homogeneous", MI);
1256     }
1257 
1258     break;
1259   }
1260   case TargetOpcode::G_BUILD_VECTOR_TRUNC: {
1261     // Source types must be scalars, dest type a vector. Scalar types must be
1262     // larger than the dest vector elt type, as this is a truncating operation.
1263     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1264     LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1265     if (!DstTy.isVector() || SrcEltTy.isVector())
1266       report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands",
1267              MI);
1268     for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1269       if (MRI->getType(MI->getOperand(1).getReg()) !=
1270           MRI->getType(MI->getOperand(i).getReg()))
1271         report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous",
1272                MI);
1273     }
1274     if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits())
1275       report("G_BUILD_VECTOR_TRUNC source operand types are not larger than "
1276              "dest elt type",
1277              MI);
1278     break;
1279   }
1280   case TargetOpcode::G_CONCAT_VECTORS: {
1281     // Source types should be vectors, and total size should match the dest
1282     // vector size.
1283     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1284     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1285     if (!DstTy.isVector() || !SrcTy.isVector())
1286       report("G_CONCAT_VECTOR requires vector source and destination operands",
1287              MI);
1288 
1289     if (MI->getNumOperands() < 3)
1290       report("G_CONCAT_VECTOR requires at least 2 source operands", MI);
1291 
1292     for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1293       if (MRI->getType(MI->getOperand(1).getReg()) !=
1294           MRI->getType(MI->getOperand(i).getReg()))
1295         report("G_CONCAT_VECTOR source operand types are not homogeneous", MI);
1296     }
1297     if (DstTy.getNumElements() !=
1298         SrcTy.getNumElements() * (MI->getNumOperands() - 1))
1299       report("G_CONCAT_VECTOR num dest and source elements should match", MI);
1300     break;
1301   }
1302   case TargetOpcode::G_ICMP:
1303   case TargetOpcode::G_FCMP: {
1304     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1305     LLT SrcTy = MRI->getType(MI->getOperand(2).getReg());
1306 
1307     if ((DstTy.isVector() != SrcTy.isVector()) ||
1308         (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements()))
1309       report("Generic vector icmp/fcmp must preserve number of lanes", MI);
1310 
1311     break;
1312   }
1313   case TargetOpcode::G_EXTRACT: {
1314     const MachineOperand &SrcOp = MI->getOperand(1);
1315     if (!SrcOp.isReg()) {
1316       report("extract source must be a register", MI);
1317       break;
1318     }
1319 
1320     const MachineOperand &OffsetOp = MI->getOperand(2);
1321     if (!OffsetOp.isImm()) {
1322       report("extract offset must be a constant", MI);
1323       break;
1324     }
1325 
1326     unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
1327     unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();
1328     if (SrcSize == DstSize)
1329       report("extract source must be larger than result", MI);
1330 
1331     if (DstSize + OffsetOp.getImm() > SrcSize)
1332       report("extract reads past end of register", MI);
1333     break;
1334   }
1335   case TargetOpcode::G_INSERT: {
1336     const MachineOperand &SrcOp = MI->getOperand(2);
1337     if (!SrcOp.isReg()) {
1338       report("insert source must be a register", MI);
1339       break;
1340     }
1341 
1342     const MachineOperand &OffsetOp = MI->getOperand(3);
1343     if (!OffsetOp.isImm()) {
1344       report("insert offset must be a constant", MI);
1345       break;
1346     }
1347 
1348     unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
1349     unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();
1350 
1351     if (DstSize <= SrcSize)
1352       report("inserted size must be smaller than total register", MI);
1353 
1354     if (SrcSize + OffsetOp.getImm() > DstSize)
1355       report("insert writes past end of register", MI);
1356 
1357     break;
1358   }
1359   case TargetOpcode::G_JUMP_TABLE: {
1360     if (!MI->getOperand(1).isJTI())
1361       report("G_JUMP_TABLE source operand must be a jump table index", MI);
1362     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1363     if (!DstTy.isPointer())
1364       report("G_JUMP_TABLE dest operand must have a pointer type", MI);
1365     break;
1366   }
1367   case TargetOpcode::G_BRJT: {
1368     if (!MRI->getType(MI->getOperand(0).getReg()).isPointer())
1369       report("G_BRJT src operand 0 must be a pointer type", MI);
1370 
1371     if (!MI->getOperand(1).isJTI())
1372       report("G_BRJT src operand 1 must be a jump table index", MI);
1373 
1374     const auto &IdxOp = MI->getOperand(2);
1375     if (!IdxOp.isReg() || MRI->getType(IdxOp.getReg()).isPointer())
1376       report("G_BRJT src operand 2 must be a scalar reg type", MI);
1377     break;
1378   }
1379   case TargetOpcode::G_INTRINSIC:
1380   case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS: {
1381     // TODO: Should verify number of def and use operands, but the current
1382     // interface requires passing in IR types for mangling.
1383     const MachineOperand &IntrIDOp = MI->getOperand(MI->getNumExplicitDefs());
1384     if (!IntrIDOp.isIntrinsicID()) {
1385       report("G_INTRINSIC first src operand must be an intrinsic ID", MI);
1386       break;
1387     }
1388 
1389     bool NoSideEffects = MI->getOpcode() == TargetOpcode::G_INTRINSIC;
1390     unsigned IntrID = IntrIDOp.getIntrinsicID();
1391     if (IntrID != 0 && IntrID < Intrinsic::num_intrinsics) {
1392       AttributeList Attrs
1393         = Intrinsic::getAttributes(MF->getFunction().getContext(),
1394                                    static_cast<Intrinsic::ID>(IntrID));
1395       bool DeclHasSideEffects = !Attrs.hasFnAttribute(Attribute::ReadNone);
1396       if (NoSideEffects && DeclHasSideEffects) {
1397         report("G_INTRINSIC used with intrinsic that accesses memory", MI);
1398         break;
1399       }
1400       if (!NoSideEffects && !DeclHasSideEffects) {
1401         report("G_INTRINSIC_W_SIDE_EFFECTS used with readnone intrinsic", MI);
1402         break;
1403       }
1404     }
1405 
1406     break;
1407   }
1408   case TargetOpcode::G_SEXT_INREG: {
1409     if (!MI->getOperand(2).isImm()) {
1410       report("G_SEXT_INREG expects an immediate operand #2", MI);
1411       break;
1412     }
1413 
1414     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1415     int64_t Imm = MI->getOperand(2).getImm();
1416     if (Imm <= 0)
1417       report("G_SEXT_INREG size must be >= 1", MI);
1418     if (Imm >= SrcTy.getScalarSizeInBits())
1419       report("G_SEXT_INREG size must be less than source bit width", MI);
1420     break;
1421   }
1422   case TargetOpcode::G_SHUFFLE_VECTOR: {
1423     const MachineOperand &MaskOp = MI->getOperand(3);
1424     if (!MaskOp.isShuffleMask()) {
1425       report("Incorrect mask operand type for G_SHUFFLE_VECTOR", MI);
1426       break;
1427     }
1428 
1429     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1430     LLT Src0Ty = MRI->getType(MI->getOperand(1).getReg());
1431     LLT Src1Ty = MRI->getType(MI->getOperand(2).getReg());
1432 
1433     if (Src0Ty != Src1Ty)
1434       report("Source operands must be the same type", MI);
1435 
1436     if (Src0Ty.getScalarType() != DstTy.getScalarType())
1437       report("G_SHUFFLE_VECTOR cannot change element type", MI);
1438 
1439     // Don't check that all operands are vector because scalars are used in
1440     // place of 1 element vectors.
1441     int SrcNumElts = Src0Ty.isVector() ? Src0Ty.getNumElements() : 1;
1442     int DstNumElts = DstTy.isVector() ? DstTy.getNumElements() : 1;
1443 
1444     ArrayRef<int> MaskIdxes = MaskOp.getShuffleMask();
1445 
1446     if (static_cast<int>(MaskIdxes.size()) != DstNumElts)
1447       report("Wrong result type for shufflemask", MI);
1448 
1449     for (int Idx : MaskIdxes) {
1450       if (Idx < 0)
1451         continue;
1452 
1453       if (Idx >= 2 * SrcNumElts)
1454         report("Out of bounds shuffle index", MI);
1455     }
1456 
1457     break;
1458   }
1459   case TargetOpcode::G_DYN_STACKALLOC: {
1460     const MachineOperand &DstOp = MI->getOperand(0);
1461     const MachineOperand &AllocOp = MI->getOperand(1);
1462     const MachineOperand &AlignOp = MI->getOperand(2);
1463 
1464     if (!DstOp.isReg() || !MRI->getType(DstOp.getReg()).isPointer()) {
1465       report("dst operand 0 must be a pointer type", MI);
1466       break;
1467     }
1468 
1469     if (!AllocOp.isReg() || !MRI->getType(AllocOp.getReg()).isScalar()) {
1470       report("src operand 1 must be a scalar reg type", MI);
1471       break;
1472     }
1473 
1474     if (!AlignOp.isImm()) {
1475       report("src operand 2 must be an immediate type", MI);
1476       break;
1477     }
1478     break;
1479   }
1480   case TargetOpcode::G_MEMCPY:
1481   case TargetOpcode::G_MEMMOVE: {
1482     ArrayRef<MachineMemOperand *> MMOs = MI->memoperands();
1483     if (MMOs.size() != 2) {
1484       report("memcpy/memmove must have 2 memory operands", MI);
1485       break;
1486     }
1487 
1488     if ((!MMOs[0]->isStore() || MMOs[0]->isLoad()) ||
1489         (MMOs[1]->isStore() || !MMOs[1]->isLoad())) {
1490       report("wrong memory operand types", MI);
1491       break;
1492     }
1493 
1494     if (MMOs[0]->getSize() != MMOs[1]->getSize())
1495       report("inconsistent memory operand sizes", MI);
1496 
1497     LLT DstPtrTy = MRI->getType(MI->getOperand(0).getReg());
1498     LLT SrcPtrTy = MRI->getType(MI->getOperand(1).getReg());
1499 
1500     if (!DstPtrTy.isPointer() || !SrcPtrTy.isPointer()) {
1501       report("memory instruction operand must be a pointer", MI);
1502       break;
1503     }
1504 
1505     if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace())
1506       report("inconsistent store address space", MI);
1507     if (SrcPtrTy.getAddressSpace() != MMOs[1]->getAddrSpace())
1508       report("inconsistent load address space", MI);
1509 
1510     break;
1511   }
1512   case TargetOpcode::G_BZERO:
1513   case TargetOpcode::G_MEMSET: {
1514     ArrayRef<MachineMemOperand *> MMOs = MI->memoperands();
1515     std::string Name = Opc == TargetOpcode::G_MEMSET ? "memset" : "bzero";
1516     if (MMOs.size() != 1) {
1517       report(Twine(Name, " must have 1 memory operand"), MI);
1518       break;
1519     }
1520 
1521     if ((!MMOs[0]->isStore() || MMOs[0]->isLoad())) {
1522       report(Twine(Name, " memory operand must be a store"), MI);
1523       break;
1524     }
1525 
1526     LLT DstPtrTy = MRI->getType(MI->getOperand(0).getReg());
1527     if (!DstPtrTy.isPointer()) {
1528       report(Twine(Name, " operand must be a pointer"), MI);
1529       break;
1530     }
1531 
1532     if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace())
1533       report("inconsistent " + Twine(Name, " address space"), MI);
1534 
1535     break;
1536   }
1537   case TargetOpcode::G_VECREDUCE_SEQ_FADD:
1538   case TargetOpcode::G_VECREDUCE_SEQ_FMUL: {
1539     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1540     LLT Src1Ty = MRI->getType(MI->getOperand(1).getReg());
1541     LLT Src2Ty = MRI->getType(MI->getOperand(2).getReg());
1542     if (!DstTy.isScalar())
1543       report("Vector reduction requires a scalar destination type", MI);
1544     if (!Src1Ty.isScalar())
1545       report("Sequential FADD/FMUL vector reduction requires a scalar 1st operand", MI);
1546     if (!Src2Ty.isVector())
1547       report("Sequential FADD/FMUL vector reduction must have a vector 2nd operand", MI);
1548     break;
1549   }
1550   case TargetOpcode::G_VECREDUCE_FADD:
1551   case TargetOpcode::G_VECREDUCE_FMUL:
1552   case TargetOpcode::G_VECREDUCE_FMAX:
1553   case TargetOpcode::G_VECREDUCE_FMIN:
1554   case TargetOpcode::G_VECREDUCE_ADD:
1555   case TargetOpcode::G_VECREDUCE_MUL:
1556   case TargetOpcode::G_VECREDUCE_AND:
1557   case TargetOpcode::G_VECREDUCE_OR:
1558   case TargetOpcode::G_VECREDUCE_XOR:
1559   case TargetOpcode::G_VECREDUCE_SMAX:
1560   case TargetOpcode::G_VECREDUCE_SMIN:
1561   case TargetOpcode::G_VECREDUCE_UMAX:
1562   case TargetOpcode::G_VECREDUCE_UMIN: {
1563     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1564     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1565     if (!DstTy.isScalar())
1566       report("Vector reduction requires a scalar destination type", MI);
1567     if (!SrcTy.isVector())
1568       report("Vector reduction requires vector source=", MI);
1569     break;
1570   }
1571 
1572   case TargetOpcode::G_SBFX:
1573   case TargetOpcode::G_UBFX: {
1574     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1575     if (DstTy.isVector()) {
1576       report("Bitfield extraction is not supported on vectors", MI);
1577       break;
1578     }
1579     break;
1580   }
1581   case TargetOpcode::G_ROTR:
1582   case TargetOpcode::G_ROTL: {
1583     LLT Src1Ty = MRI->getType(MI->getOperand(1).getReg());
1584     LLT Src2Ty = MRI->getType(MI->getOperand(2).getReg());
1585     if (Src1Ty.isVector() != Src2Ty.isVector()) {
1586       report("Rotate requires operands to be either all scalars or all vectors",
1587              MI);
1588       break;
1589     }
1590     break;
1591   }
1592 
1593   default:
1594     break;
1595   }
1596 }
1597 
1598 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
1599   const MCInstrDesc &MCID = MI->getDesc();
1600   if (MI->getNumOperands() < MCID.getNumOperands()) {
1601     report("Too few operands", MI);
1602     errs() << MCID.getNumOperands() << " operands expected, but "
1603            << MI->getNumOperands() << " given.\n";
1604   }
1605 
1606   if (MI->isPHI()) {
1607     if (MF->getProperties().hasProperty(
1608             MachineFunctionProperties::Property::NoPHIs))
1609       report("Found PHI instruction with NoPHIs property set", MI);
1610 
1611     if (FirstNonPHI)
1612       report("Found PHI instruction after non-PHI", MI);
1613   } else if (FirstNonPHI == nullptr)
1614     FirstNonPHI = MI;
1615 
1616   // Check the tied operands.
1617   if (MI->isInlineAsm())
1618     verifyInlineAsm(MI);
1619 
1620   // Check that unspillable terminators define a reg and have at most one use.
1621   if (TII->isUnspillableTerminator(MI)) {
1622     if (!MI->getOperand(0).isReg() || !MI->getOperand(0).isDef())
1623       report("Unspillable Terminator does not define a reg", MI);
1624     Register Def = MI->getOperand(0).getReg();
1625     if (Def.isVirtual() &&
1626         std::distance(MRI->use_nodbg_begin(Def), MRI->use_nodbg_end()) > 1)
1627       report("Unspillable Terminator expected to have at most one use!", MI);
1628   }
1629 
1630   // A fully-formed DBG_VALUE must have a location. Ignore partially formed
1631   // DBG_VALUEs: these are convenient to use in tests, but should never get
1632   // generated.
1633   if (MI->isDebugValue() && MI->getNumOperands() == 4)
1634     if (!MI->getDebugLoc())
1635       report("Missing DebugLoc for debug instruction", MI);
1636 
1637   // Meta instructions should never be the subject of debug value tracking,
1638   // they don't create a value in the output program at all.
1639   if (MI->isMetaInstruction() && MI->peekDebugInstrNum())
1640     report("Metadata instruction should not have a value tracking number", MI);
1641 
1642   // Check the MachineMemOperands for basic consistency.
1643   for (MachineMemOperand *Op : MI->memoperands()) {
1644     if (Op->isLoad() && !MI->mayLoad())
1645       report("Missing mayLoad flag", MI);
1646     if (Op->isStore() && !MI->mayStore())
1647       report("Missing mayStore flag", MI);
1648   }
1649 
1650   // Debug values must not have a slot index.
1651   // Other instructions must have one, unless they are inside a bundle.
1652   if (LiveInts) {
1653     bool mapped = !LiveInts->isNotInMIMap(*MI);
1654     if (MI->isDebugOrPseudoInstr()) {
1655       if (mapped)
1656         report("Debug instruction has a slot index", MI);
1657     } else if (MI->isInsideBundle()) {
1658       if (mapped)
1659         report("Instruction inside bundle has a slot index", MI);
1660     } else {
1661       if (!mapped)
1662         report("Missing slot index", MI);
1663     }
1664   }
1665 
1666   unsigned Opc = MCID.getOpcode();
1667   if (isPreISelGenericOpcode(Opc) || isPreISelGenericOptimizationHint(Opc)) {
1668     verifyPreISelGenericInstruction(MI);
1669     return;
1670   }
1671 
1672   StringRef ErrorInfo;
1673   if (!TII->verifyInstruction(*MI, ErrorInfo))
1674     report(ErrorInfo.data(), MI);
1675 
1676   // Verify properties of various specific instruction types
1677   switch (MI->getOpcode()) {
1678   case TargetOpcode::COPY: {
1679     const MachineOperand &DstOp = MI->getOperand(0);
1680     const MachineOperand &SrcOp = MI->getOperand(1);
1681     const Register SrcReg = SrcOp.getReg();
1682     const Register DstReg = DstOp.getReg();
1683 
1684     LLT DstTy = MRI->getType(DstReg);
1685     LLT SrcTy = MRI->getType(SrcReg);
1686     if (SrcTy.isValid() && DstTy.isValid()) {
1687       // If both types are valid, check that the types are the same.
1688       if (SrcTy != DstTy) {
1689         report("Copy Instruction is illegal with mismatching types", MI);
1690         errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n";
1691       }
1692 
1693       break;
1694     }
1695 
1696     if (!SrcTy.isValid() && !DstTy.isValid())
1697       break;
1698 
1699     // If we have only one valid type, this is likely a copy between a virtual
1700     // and physical register.
1701     unsigned SrcSize = 0;
1702     unsigned DstSize = 0;
1703     if (SrcReg.isPhysical() && DstTy.isValid()) {
1704       const TargetRegisterClass *SrcRC =
1705           TRI->getMinimalPhysRegClassLLT(SrcReg, DstTy);
1706       if (SrcRC)
1707         SrcSize = TRI->getRegSizeInBits(*SrcRC);
1708     }
1709 
1710     if (SrcSize == 0)
1711       SrcSize = TRI->getRegSizeInBits(SrcReg, *MRI);
1712 
1713     if (DstReg.isPhysical() && SrcTy.isValid()) {
1714       const TargetRegisterClass *DstRC =
1715           TRI->getMinimalPhysRegClassLLT(DstReg, SrcTy);
1716       if (DstRC)
1717         DstSize = TRI->getRegSizeInBits(*DstRC);
1718     }
1719 
1720     if (DstSize == 0)
1721       DstSize = TRI->getRegSizeInBits(DstReg, *MRI);
1722 
1723     if (SrcSize != 0 && DstSize != 0 && SrcSize != DstSize) {
1724       if (!DstOp.getSubReg() && !SrcOp.getSubReg()) {
1725         report("Copy Instruction is illegal with mismatching sizes", MI);
1726         errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize
1727                << "\n";
1728       }
1729     }
1730     break;
1731   }
1732   case TargetOpcode::STATEPOINT: {
1733     StatepointOpers SO(MI);
1734     if (!MI->getOperand(SO.getIDPos()).isImm() ||
1735         !MI->getOperand(SO.getNBytesPos()).isImm() ||
1736         !MI->getOperand(SO.getNCallArgsPos()).isImm()) {
1737       report("meta operands to STATEPOINT not constant!", MI);
1738       break;
1739     }
1740 
1741     auto VerifyStackMapConstant = [&](unsigned Offset) {
1742       if (Offset >= MI->getNumOperands()) {
1743         report("stack map constant to STATEPOINT is out of range!", MI);
1744         return;
1745       }
1746       if (!MI->getOperand(Offset - 1).isImm() ||
1747           MI->getOperand(Offset - 1).getImm() != StackMaps::ConstantOp ||
1748           !MI->getOperand(Offset).isImm())
1749         report("stack map constant to STATEPOINT not well formed!", MI);
1750     };
1751     VerifyStackMapConstant(SO.getCCIdx());
1752     VerifyStackMapConstant(SO.getFlagsIdx());
1753     VerifyStackMapConstant(SO.getNumDeoptArgsIdx());
1754     VerifyStackMapConstant(SO.getNumGCPtrIdx());
1755     VerifyStackMapConstant(SO.getNumAllocaIdx());
1756     VerifyStackMapConstant(SO.getNumGcMapEntriesIdx());
1757 
1758     // Verify that all explicit statepoint defs are tied to gc operands as
1759     // they are expected to be a relocation of gc operands.
1760     unsigned FirstGCPtrIdx = SO.getFirstGCPtrIdx();
1761     unsigned LastGCPtrIdx = SO.getNumAllocaIdx() - 2;
1762     for (unsigned Idx = 0; Idx < MI->getNumDefs(); Idx++) {
1763       unsigned UseOpIdx;
1764       if (!MI->isRegTiedToUseOperand(Idx, &UseOpIdx)) {
1765         report("STATEPOINT defs expected to be tied", MI);
1766         break;
1767       }
1768       if (UseOpIdx < FirstGCPtrIdx || UseOpIdx > LastGCPtrIdx) {
1769         report("STATEPOINT def tied to non-gc operand", MI);
1770         break;
1771       }
1772     }
1773 
1774     // TODO: verify we have properly encoded deopt arguments
1775   } break;
1776   }
1777 }
1778 
1779 void
1780 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
1781   const MachineInstr *MI = MO->getParent();
1782   const MCInstrDesc &MCID = MI->getDesc();
1783   unsigned NumDefs = MCID.getNumDefs();
1784   if (MCID.getOpcode() == TargetOpcode::PATCHPOINT)
1785     NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0;
1786 
1787   // The first MCID.NumDefs operands must be explicit register defines
1788   if (MONum < NumDefs) {
1789     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1790     if (!MO->isReg())
1791       report("Explicit definition must be a register", MO, MONum);
1792     else if (!MO->isDef() && !MCOI.isOptionalDef())
1793       report("Explicit definition marked as use", MO, MONum);
1794     else if (MO->isImplicit())
1795       report("Explicit definition marked as implicit", MO, MONum);
1796   } else if (MONum < MCID.getNumOperands()) {
1797     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1798     // Don't check if it's the last operand in a variadic instruction. See,
1799     // e.g., LDM_RET in the arm back end. Check non-variadic operands only.
1800     bool IsOptional = MI->isVariadic() && MONum == MCID.getNumOperands() - 1;
1801     if (!IsOptional) {
1802       if (MO->isReg()) {
1803         if (MO->isDef() && !MCOI.isOptionalDef() && !MCID.variadicOpsAreDefs())
1804           report("Explicit operand marked as def", MO, MONum);
1805         if (MO->isImplicit())
1806           report("Explicit operand marked as implicit", MO, MONum);
1807       }
1808 
1809       // Check that an instruction has register operands only as expected.
1810       if (MCOI.OperandType == MCOI::OPERAND_REGISTER &&
1811           !MO->isReg() && !MO->isFI())
1812         report("Expected a register operand.", MO, MONum);
1813       if (MO->isReg()) {
1814         if (MCOI.OperandType == MCOI::OPERAND_IMMEDIATE ||
1815             (MCOI.OperandType == MCOI::OPERAND_PCREL &&
1816              !TII->isPCRelRegisterOperandLegal(*MO)))
1817           report("Expected a non-register operand.", MO, MONum);
1818       }
1819     }
1820 
1821     int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO);
1822     if (TiedTo != -1) {
1823       if (!MO->isReg())
1824         report("Tied use must be a register", MO, MONum);
1825       else if (!MO->isTied())
1826         report("Operand should be tied", MO, MONum);
1827       else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum))
1828         report("Tied def doesn't match MCInstrDesc", MO, MONum);
1829       else if (Register::isPhysicalRegister(MO->getReg())) {
1830         const MachineOperand &MOTied = MI->getOperand(TiedTo);
1831         if (!MOTied.isReg())
1832           report("Tied counterpart must be a register", &MOTied, TiedTo);
1833         else if (Register::isPhysicalRegister(MOTied.getReg()) &&
1834                  MO->getReg() != MOTied.getReg())
1835           report("Tied physical registers must match.", &MOTied, TiedTo);
1836       }
1837     } else if (MO->isReg() && MO->isTied())
1838       report("Explicit operand should not be tied", MO, MONum);
1839   } else {
1840     // ARM adds %reg0 operands to indicate predicates. We'll allow that.
1841     if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg())
1842       report("Extra explicit operand on non-variadic instruction", MO, MONum);
1843   }
1844 
1845   switch (MO->getType()) {
1846   case MachineOperand::MO_Register: {
1847     const Register Reg = MO->getReg();
1848     if (!Reg)
1849       return;
1850     if (MRI->tracksLiveness() && !MI->isDebugValue())
1851       checkLiveness(MO, MONum);
1852 
1853     // Verify the consistency of tied operands.
1854     if (MO->isTied()) {
1855       unsigned OtherIdx = MI->findTiedOperandIdx(MONum);
1856       const MachineOperand &OtherMO = MI->getOperand(OtherIdx);
1857       if (!OtherMO.isReg())
1858         report("Must be tied to a register", MO, MONum);
1859       if (!OtherMO.isTied())
1860         report("Missing tie flags on tied operand", MO, MONum);
1861       if (MI->findTiedOperandIdx(OtherIdx) != MONum)
1862         report("Inconsistent tie links", MO, MONum);
1863       if (MONum < MCID.getNumDefs()) {
1864         if (OtherIdx < MCID.getNumOperands()) {
1865           if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO))
1866             report("Explicit def tied to explicit use without tie constraint",
1867                    MO, MONum);
1868         } else {
1869           if (!OtherMO.isImplicit())
1870             report("Explicit def should be tied to implicit use", MO, MONum);
1871         }
1872       }
1873     }
1874 
1875     // Verify two-address constraints after the twoaddressinstruction pass.
1876     // Both twoaddressinstruction pass and phi-node-elimination pass call
1877     // MRI->leaveSSA() to set MF as NoSSA, we should do the verification after
1878     // twoaddressinstruction pass not after phi-node-elimination pass. So we
1879     // shouldn't use the NoSSA as the condition, we should based on
1880     // TiedOpsRewritten property to verify two-address constraints, this
1881     // property will be set in twoaddressinstruction pass.
1882     unsigned DefIdx;
1883     if (MF->getProperties().hasProperty(
1884             MachineFunctionProperties::Property::TiedOpsRewritten) &&
1885         MO->isUse() && MI->isRegTiedToDefOperand(MONum, &DefIdx) &&
1886         Reg != MI->getOperand(DefIdx).getReg())
1887       report("Two-address instruction operands must be identical", MO, MONum);
1888 
1889     // Check register classes.
1890     unsigned SubIdx = MO->getSubReg();
1891 
1892     if (Register::isPhysicalRegister(Reg)) {
1893       if (SubIdx) {
1894         report("Illegal subregister index for physical register", MO, MONum);
1895         return;
1896       }
1897       if (MONum < MCID.getNumOperands()) {
1898         if (const TargetRegisterClass *DRC =
1899               TII->getRegClass(MCID, MONum, TRI, *MF)) {
1900           if (!DRC->contains(Reg)) {
1901             report("Illegal physical register for instruction", MO, MONum);
1902             errs() << printReg(Reg, TRI) << " is not a "
1903                    << TRI->getRegClassName(DRC) << " register.\n";
1904           }
1905         }
1906       }
1907       if (MO->isRenamable()) {
1908         if (MRI->isReserved(Reg)) {
1909           report("isRenamable set on reserved register", MO, MONum);
1910           return;
1911         }
1912       }
1913       if (MI->isDebugValue() && MO->isUse() && !MO->isDebug()) {
1914         report("Use-reg is not IsDebug in a DBG_VALUE", MO, MONum);
1915         return;
1916       }
1917     } else {
1918       // Virtual register.
1919       const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg);
1920       if (!RC) {
1921         // This is a generic virtual register.
1922 
1923         // Do not allow undef uses for generic virtual registers. This ensures
1924         // getVRegDef can never fail and return null on a generic register.
1925         //
1926         // FIXME: This restriction should probably be broadened to all SSA
1927         // MIR. However, DetectDeadLanes/ProcessImplicitDefs technically still
1928         // run on the SSA function just before phi elimination.
1929         if (MO->isUndef())
1930           report("Generic virtual register use cannot be undef", MO, MONum);
1931 
1932         // If we're post-Select, we can't have gvregs anymore.
1933         if (isFunctionSelected) {
1934           report("Generic virtual register invalid in a Selected function",
1935                  MO, MONum);
1936           return;
1937         }
1938 
1939         // The gvreg must have a type and it must not have a SubIdx.
1940         LLT Ty = MRI->getType(Reg);
1941         if (!Ty.isValid()) {
1942           report("Generic virtual register must have a valid type", MO,
1943                  MONum);
1944           return;
1945         }
1946 
1947         const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg);
1948 
1949         // If we're post-RegBankSelect, the gvreg must have a bank.
1950         if (!RegBank && isFunctionRegBankSelected) {
1951           report("Generic virtual register must have a bank in a "
1952                  "RegBankSelected function",
1953                  MO, MONum);
1954           return;
1955         }
1956 
1957         // Make sure the register fits into its register bank if any.
1958         if (RegBank && Ty.isValid() &&
1959             RegBank->getSize() < Ty.getSizeInBits()) {
1960           report("Register bank is too small for virtual register", MO,
1961                  MONum);
1962           errs() << "Register bank " << RegBank->getName() << " too small("
1963                  << RegBank->getSize() << ") to fit " << Ty.getSizeInBits()
1964                  << "-bits\n";
1965           return;
1966         }
1967         if (SubIdx)  {
1968           report("Generic virtual register does not allow subregister index", MO,
1969                  MONum);
1970           return;
1971         }
1972 
1973         // If this is a target specific instruction and this operand
1974         // has register class constraint, the virtual register must
1975         // comply to it.
1976         if (!isPreISelGenericOpcode(MCID.getOpcode()) &&
1977             MONum < MCID.getNumOperands() &&
1978             TII->getRegClass(MCID, MONum, TRI, *MF)) {
1979           report("Virtual register does not match instruction constraint", MO,
1980                  MONum);
1981           errs() << "Expect register class "
1982                  << TRI->getRegClassName(
1983                         TII->getRegClass(MCID, MONum, TRI, *MF))
1984                  << " but got nothing\n";
1985           return;
1986         }
1987 
1988         break;
1989       }
1990       if (SubIdx) {
1991         const TargetRegisterClass *SRC =
1992           TRI->getSubClassWithSubReg(RC, SubIdx);
1993         if (!SRC) {
1994           report("Invalid subregister index for virtual register", MO, MONum);
1995           errs() << "Register class " << TRI->getRegClassName(RC)
1996               << " does not support subreg index " << SubIdx << "\n";
1997           return;
1998         }
1999         if (RC != SRC) {
2000           report("Invalid register class for subregister index", MO, MONum);
2001           errs() << "Register class " << TRI->getRegClassName(RC)
2002               << " does not fully support subreg index " << SubIdx << "\n";
2003           return;
2004         }
2005       }
2006       if (MONum < MCID.getNumOperands()) {
2007         if (const TargetRegisterClass *DRC =
2008               TII->getRegClass(MCID, MONum, TRI, *MF)) {
2009           if (SubIdx) {
2010             const TargetRegisterClass *SuperRC =
2011                 TRI->getLargestLegalSuperClass(RC, *MF);
2012             if (!SuperRC) {
2013               report("No largest legal super class exists.", MO, MONum);
2014               return;
2015             }
2016             DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
2017             if (!DRC) {
2018               report("No matching super-reg register class.", MO, MONum);
2019               return;
2020             }
2021           }
2022           if (!RC->hasSuperClassEq(DRC)) {
2023             report("Illegal virtual register for instruction", MO, MONum);
2024             errs() << "Expected a " << TRI->getRegClassName(DRC)
2025                 << " register, but got a " << TRI->getRegClassName(RC)
2026                 << " register\n";
2027           }
2028         }
2029       }
2030     }
2031     break;
2032   }
2033 
2034   case MachineOperand::MO_RegisterMask:
2035     regMasks.push_back(MO->getRegMask());
2036     break;
2037 
2038   case MachineOperand::MO_MachineBasicBlock:
2039     if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
2040       report("PHI operand is not in the CFG", MO, MONum);
2041     break;
2042 
2043   case MachineOperand::MO_FrameIndex:
2044     if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
2045         LiveInts && !LiveInts->isNotInMIMap(*MI)) {
2046       int FI = MO->getIndex();
2047       LiveInterval &LI = LiveStks->getInterval(FI);
2048       SlotIndex Idx = LiveInts->getInstructionIndex(*MI);
2049 
2050       bool stores = MI->mayStore();
2051       bool loads = MI->mayLoad();
2052       // For a memory-to-memory move, we need to check if the frame
2053       // index is used for storing or loading, by inspecting the
2054       // memory operands.
2055       if (stores && loads) {
2056         for (auto *MMO : MI->memoperands()) {
2057           const PseudoSourceValue *PSV = MMO->getPseudoValue();
2058           if (PSV == nullptr) continue;
2059           const FixedStackPseudoSourceValue *Value =
2060             dyn_cast<FixedStackPseudoSourceValue>(PSV);
2061           if (Value == nullptr) continue;
2062           if (Value->getFrameIndex() != FI) continue;
2063 
2064           if (MMO->isStore())
2065             loads = false;
2066           else
2067             stores = false;
2068           break;
2069         }
2070         if (loads == stores)
2071           report("Missing fixed stack memoperand.", MI);
2072       }
2073       if (loads && !LI.liveAt(Idx.getRegSlot(true))) {
2074         report("Instruction loads from dead spill slot", MO, MONum);
2075         errs() << "Live stack: " << LI << '\n';
2076       }
2077       if (stores && !LI.liveAt(Idx.getRegSlot())) {
2078         report("Instruction stores to dead spill slot", MO, MONum);
2079         errs() << "Live stack: " << LI << '\n';
2080       }
2081     }
2082     break;
2083 
2084   default:
2085     break;
2086   }
2087 }
2088 
2089 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO,
2090                                          unsigned MONum, SlotIndex UseIdx,
2091                                          const LiveRange &LR,
2092                                          Register VRegOrUnit,
2093                                          LaneBitmask LaneMask) {
2094   LiveQueryResult LRQ = LR.Query(UseIdx);
2095   // Check if we have a segment at the use, note however that we only need one
2096   // live subregister range, the others may be dead.
2097   if (!LRQ.valueIn() && LaneMask.none()) {
2098     report("No live segment at use", MO, MONum);
2099     report_context_liverange(LR);
2100     report_context_vreg_regunit(VRegOrUnit);
2101     report_context(UseIdx);
2102   }
2103   if (MO->isKill() && !LRQ.isKill()) {
2104     report("Live range continues after kill flag", MO, MONum);
2105     report_context_liverange(LR);
2106     report_context_vreg_regunit(VRegOrUnit);
2107     if (LaneMask.any())
2108       report_context_lanemask(LaneMask);
2109     report_context(UseIdx);
2110   }
2111 }
2112 
2113 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO,
2114                                          unsigned MONum, SlotIndex DefIdx,
2115                                          const LiveRange &LR,
2116                                          Register VRegOrUnit,
2117                                          bool SubRangeCheck,
2118                                          LaneBitmask LaneMask) {
2119   if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) {
2120     assert(VNI && "NULL valno is not allowed");
2121     if (VNI->def != DefIdx) {
2122       report("Inconsistent valno->def", MO, MONum);
2123       report_context_liverange(LR);
2124       report_context_vreg_regunit(VRegOrUnit);
2125       if (LaneMask.any())
2126         report_context_lanemask(LaneMask);
2127       report_context(*VNI);
2128       report_context(DefIdx);
2129     }
2130   } else {
2131     report("No live segment at def", MO, MONum);
2132     report_context_liverange(LR);
2133     report_context_vreg_regunit(VRegOrUnit);
2134     if (LaneMask.any())
2135       report_context_lanemask(LaneMask);
2136     report_context(DefIdx);
2137   }
2138   // Check that, if the dead def flag is present, LiveInts agree.
2139   if (MO->isDead()) {
2140     LiveQueryResult LRQ = LR.Query(DefIdx);
2141     if (!LRQ.isDeadDef()) {
2142       assert(Register::isVirtualRegister(VRegOrUnit) &&
2143              "Expecting a virtual register.");
2144       // A dead subreg def only tells us that the specific subreg is dead. There
2145       // could be other non-dead defs of other subregs, or we could have other
2146       // parts of the register being live through the instruction. So unless we
2147       // are checking liveness for a subrange it is ok for the live range to
2148       // continue, given that we have a dead def of a subregister.
2149       if (SubRangeCheck || MO->getSubReg() == 0) {
2150         report("Live range continues after dead def flag", MO, MONum);
2151         report_context_liverange(LR);
2152         report_context_vreg_regunit(VRegOrUnit);
2153         if (LaneMask.any())
2154           report_context_lanemask(LaneMask);
2155       }
2156     }
2157   }
2158 }
2159 
2160 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
2161   const MachineInstr *MI = MO->getParent();
2162   const Register Reg = MO->getReg();
2163 
2164   // Both use and def operands can read a register.
2165   if (MO->readsReg()) {
2166     if (MO->isKill())
2167       addRegWithSubRegs(regsKilled, Reg);
2168 
2169     // Check that LiveVars knows this kill.
2170     if (LiveVars && Register::isVirtualRegister(Reg) && MO->isKill()) {
2171       LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
2172       if (!is_contained(VI.Kills, MI))
2173         report("Kill missing from LiveVariables", MO, MONum);
2174     }
2175 
2176     // Check LiveInts liveness and kill.
2177     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
2178       SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI);
2179       // Check the cached regunit intervals.
2180       if (Reg.isPhysical() && !isReserved(Reg)) {
2181         for (MCRegUnitIterator Units(Reg.asMCReg(), TRI); Units.isValid();
2182              ++Units) {
2183           if (MRI->isReservedRegUnit(*Units))
2184             continue;
2185           if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units))
2186             checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units);
2187         }
2188       }
2189 
2190       if (Register::isVirtualRegister(Reg)) {
2191         if (LiveInts->hasInterval(Reg)) {
2192           // This is a virtual register interval.
2193           const LiveInterval &LI = LiveInts->getInterval(Reg);
2194           checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg);
2195 
2196           if (LI.hasSubRanges() && !MO->isDef()) {
2197             unsigned SubRegIdx = MO->getSubReg();
2198             LaneBitmask MOMask = SubRegIdx != 0
2199                                ? TRI->getSubRegIndexLaneMask(SubRegIdx)
2200                                : MRI->getMaxLaneMaskForVReg(Reg);
2201             LaneBitmask LiveInMask;
2202             for (const LiveInterval::SubRange &SR : LI.subranges()) {
2203               if ((MOMask & SR.LaneMask).none())
2204                 continue;
2205               checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask);
2206               LiveQueryResult LRQ = SR.Query(UseIdx);
2207               if (LRQ.valueIn())
2208                 LiveInMask |= SR.LaneMask;
2209             }
2210             // At least parts of the register has to be live at the use.
2211             if ((LiveInMask & MOMask).none()) {
2212               report("No live subrange at use", MO, MONum);
2213               report_context(LI);
2214               report_context(UseIdx);
2215             }
2216           }
2217         } else {
2218           report("Virtual register has no live interval", MO, MONum);
2219         }
2220       }
2221     }
2222 
2223     // Use of a dead register.
2224     if (!regsLive.count(Reg)) {
2225       if (Register::isPhysicalRegister(Reg)) {
2226         // Reserved registers may be used even when 'dead'.
2227         bool Bad = !isReserved(Reg);
2228         // We are fine if just any subregister has a defined value.
2229         if (Bad) {
2230 
2231           for (const MCPhysReg &SubReg : TRI->subregs(Reg)) {
2232             if (regsLive.count(SubReg)) {
2233               Bad = false;
2234               break;
2235             }
2236           }
2237         }
2238         // If there is an additional implicit-use of a super register we stop
2239         // here. By definition we are fine if the super register is not
2240         // (completely) dead, if the complete super register is dead we will
2241         // get a report for its operand.
2242         if (Bad) {
2243           for (const MachineOperand &MOP : MI->uses()) {
2244             if (!MOP.isReg() || !MOP.isImplicit())
2245               continue;
2246 
2247             if (!Register::isPhysicalRegister(MOP.getReg()))
2248               continue;
2249 
2250             if (llvm::is_contained(TRI->subregs(MOP.getReg()), Reg))
2251               Bad = false;
2252           }
2253         }
2254         if (Bad)
2255           report("Using an undefined physical register", MO, MONum);
2256       } else if (MRI->def_empty(Reg)) {
2257         report("Reading virtual register without a def", MO, MONum);
2258       } else {
2259         BBInfo &MInfo = MBBInfoMap[MI->getParent()];
2260         // We don't know which virtual registers are live in, so only complain
2261         // if vreg was killed in this MBB. Otherwise keep track of vregs that
2262         // must be live in. PHI instructions are handled separately.
2263         if (MInfo.regsKilled.count(Reg))
2264           report("Using a killed virtual register", MO, MONum);
2265         else if (!MI->isPHI())
2266           MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
2267       }
2268     }
2269   }
2270 
2271   if (MO->isDef()) {
2272     // Register defined.
2273     // TODO: verify that earlyclobber ops are not used.
2274     if (MO->isDead())
2275       addRegWithSubRegs(regsDead, Reg);
2276     else
2277       addRegWithSubRegs(regsDefined, Reg);
2278 
2279     // Verify SSA form.
2280     if (MRI->isSSA() && Register::isVirtualRegister(Reg) &&
2281         std::next(MRI->def_begin(Reg)) != MRI->def_end())
2282       report("Multiple virtual register defs in SSA form", MO, MONum);
2283 
2284     // Check LiveInts for a live segment, but only for virtual registers.
2285     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
2286       SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI);
2287       DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber());
2288 
2289       if (Register::isVirtualRegister(Reg)) {
2290         if (LiveInts->hasInterval(Reg)) {
2291           const LiveInterval &LI = LiveInts->getInterval(Reg);
2292           checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg);
2293 
2294           if (LI.hasSubRanges()) {
2295             unsigned SubRegIdx = MO->getSubReg();
2296             LaneBitmask MOMask = SubRegIdx != 0
2297               ? TRI->getSubRegIndexLaneMask(SubRegIdx)
2298               : MRI->getMaxLaneMaskForVReg(Reg);
2299             for (const LiveInterval::SubRange &SR : LI.subranges()) {
2300               if ((SR.LaneMask & MOMask).none())
2301                 continue;
2302               checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask);
2303             }
2304           }
2305         } else {
2306           report("Virtual register has no Live interval", MO, MONum);
2307         }
2308       }
2309     }
2310   }
2311 }
2312 
2313 // This function gets called after visiting all instructions in a bundle. The
2314 // argument points to the bundle header.
2315 // Normal stand-alone instructions are also considered 'bundles', and this
2316 // function is called for all of them.
2317 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) {
2318   BBInfo &MInfo = MBBInfoMap[MI->getParent()];
2319   set_union(MInfo.regsKilled, regsKilled);
2320   set_subtract(regsLive, regsKilled); regsKilled.clear();
2321   // Kill any masked registers.
2322   while (!regMasks.empty()) {
2323     const uint32_t *Mask = regMasks.pop_back_val();
2324     for (Register Reg : regsLive)
2325       if (Reg.isPhysical() &&
2326           MachineOperand::clobbersPhysReg(Mask, Reg.asMCReg()))
2327         regsDead.push_back(Reg);
2328   }
2329   set_subtract(regsLive, regsDead);   regsDead.clear();
2330   set_union(regsLive, regsDefined);   regsDefined.clear();
2331 }
2332 
2333 void
2334 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
2335   MBBInfoMap[MBB].regsLiveOut = regsLive;
2336   regsLive.clear();
2337 
2338   if (Indexes) {
2339     SlotIndex stop = Indexes->getMBBEndIdx(MBB);
2340     if (!(stop > lastIndex)) {
2341       report("Block ends before last instruction index", MBB);
2342       errs() << "Block ends at " << stop
2343           << " last instruction was at " << lastIndex << '\n';
2344     }
2345     lastIndex = stop;
2346   }
2347 }
2348 
2349 namespace {
2350 // This implements a set of registers that serves as a filter: can filter other
2351 // sets by passing through elements not in the filter and blocking those that
2352 // are. Any filter implicitly includes the full set of physical registers upon
2353 // creation, thus filtering them all out. The filter itself as a set only grows,
2354 // and needs to be as efficient as possible.
2355 struct VRegFilter {
2356   // Add elements to the filter itself. \pre Input set \p FromRegSet must have
2357   // no duplicates. Both virtual and physical registers are fine.
2358   template <typename RegSetT> void add(const RegSetT &FromRegSet) {
2359     SmallVector<Register, 0> VRegsBuffer;
2360     filterAndAdd(FromRegSet, VRegsBuffer);
2361   }
2362   // Filter \p FromRegSet through the filter and append passed elements into \p
2363   // ToVRegs. All elements appended are then added to the filter itself.
2364   // \returns true if anything changed.
2365   template <typename RegSetT>
2366   bool filterAndAdd(const RegSetT &FromRegSet,
2367                     SmallVectorImpl<Register> &ToVRegs) {
2368     unsigned SparseUniverse = Sparse.size();
2369     unsigned NewSparseUniverse = SparseUniverse;
2370     unsigned NewDenseSize = Dense.size();
2371     size_t Begin = ToVRegs.size();
2372     for (Register Reg : FromRegSet) {
2373       if (!Reg.isVirtual())
2374         continue;
2375       unsigned Index = Register::virtReg2Index(Reg);
2376       if (Index < SparseUniverseMax) {
2377         if (Index < SparseUniverse && Sparse.test(Index))
2378           continue;
2379         NewSparseUniverse = std::max(NewSparseUniverse, Index + 1);
2380       } else {
2381         if (Dense.count(Reg))
2382           continue;
2383         ++NewDenseSize;
2384       }
2385       ToVRegs.push_back(Reg);
2386     }
2387     size_t End = ToVRegs.size();
2388     if (Begin == End)
2389       return false;
2390     // Reserving space in sets once performs better than doing so continuously
2391     // and pays easily for double look-ups (even in Dense with SparseUniverseMax
2392     // tuned all the way down) and double iteration (the second one is over a
2393     // SmallVector, which is a lot cheaper compared to DenseSet or BitVector).
2394     Sparse.resize(NewSparseUniverse);
2395     Dense.reserve(NewDenseSize);
2396     for (unsigned I = Begin; I < End; ++I) {
2397       Register Reg = ToVRegs[I];
2398       unsigned Index = Register::virtReg2Index(Reg);
2399       if (Index < SparseUniverseMax)
2400         Sparse.set(Index);
2401       else
2402         Dense.insert(Reg);
2403     }
2404     return true;
2405   }
2406 
2407 private:
2408   static constexpr unsigned SparseUniverseMax = 10 * 1024 * 8;
2409   // VRegs indexed within SparseUniverseMax are tracked by Sparse, those beyound
2410   // are tracked by Dense. The only purpose of the threashold and the Dense set
2411   // is to have a reasonably growing memory usage in pathological cases (large
2412   // number of very sparse VRegFilter instances live at the same time). In
2413   // practice even in the worst-by-execution time cases having all elements
2414   // tracked by Sparse (very large SparseUniverseMax scenario) tends to be more
2415   // space efficient than if tracked by Dense. The threashold is set to keep the
2416   // worst-case memory usage within 2x of figures determined empirically for
2417   // "all Dense" scenario in such worst-by-execution-time cases.
2418   BitVector Sparse;
2419   DenseSet<unsigned> Dense;
2420 };
2421 
2422 // Implements both a transfer function and a (binary, in-place) join operator
2423 // for a dataflow over register sets with set union join and filtering transfer
2424 // (out_b = in_b \ filter_b). filter_b is expected to be set-up ahead of time.
2425 // Maintains out_b as its state, allowing for O(n) iteration over it at any
2426 // time, where n is the size of the set (as opposed to O(U) where U is the
2427 // universe). filter_b implicitly contains all physical registers at all times.
2428 class FilteringVRegSet {
2429   VRegFilter Filter;
2430   SmallVector<Register, 0> VRegs;
2431 
2432 public:
2433   // Set-up the filter_b. \pre Input register set \p RS must have no duplicates.
2434   // Both virtual and physical registers are fine.
2435   template <typename RegSetT> void addToFilter(const RegSetT &RS) {
2436     Filter.add(RS);
2437   }
2438   // Passes \p RS through the filter_b (transfer function) and adds what's left
2439   // to itself (out_b).
2440   template <typename RegSetT> bool add(const RegSetT &RS) {
2441     // Double-duty the Filter: to maintain VRegs a set (and the join operation
2442     // a set union) just add everything being added here to the Filter as well.
2443     return Filter.filterAndAdd(RS, VRegs);
2444   }
2445   using const_iterator = decltype(VRegs)::const_iterator;
2446   const_iterator begin() const { return VRegs.begin(); }
2447   const_iterator end() const { return VRegs.end(); }
2448   size_t size() const { return VRegs.size(); }
2449 };
2450 } // namespace
2451 
2452 // Calculate the largest possible vregsPassed sets. These are the registers that
2453 // can pass through an MBB live, but may not be live every time. It is assumed
2454 // that all vregsPassed sets are empty before the call.
2455 void MachineVerifier::calcRegsPassed() {
2456   if (MF->empty())
2457     // ReversePostOrderTraversal doesn't handle empty functions.
2458     return;
2459 
2460   for (const MachineBasicBlock *MB :
2461        ReversePostOrderTraversal<const MachineFunction *>(MF)) {
2462     FilteringVRegSet VRegs;
2463     BBInfo &Info = MBBInfoMap[MB];
2464     assert(Info.reachable);
2465 
2466     VRegs.addToFilter(Info.regsKilled);
2467     VRegs.addToFilter(Info.regsLiveOut);
2468     for (const MachineBasicBlock *Pred : MB->predecessors()) {
2469       const BBInfo &PredInfo = MBBInfoMap[Pred];
2470       if (!PredInfo.reachable)
2471         continue;
2472 
2473       VRegs.add(PredInfo.regsLiveOut);
2474       VRegs.add(PredInfo.vregsPassed);
2475     }
2476     Info.vregsPassed.reserve(VRegs.size());
2477     Info.vregsPassed.insert(VRegs.begin(), VRegs.end());
2478   }
2479 }
2480 
2481 // Calculate the set of virtual registers that must be passed through each basic
2482 // block in order to satisfy the requirements of successor blocks. This is very
2483 // similar to calcRegsPassed, only backwards.
2484 void MachineVerifier::calcRegsRequired() {
2485   // First push live-in regs to predecessors' vregsRequired.
2486   SmallPtrSet<const MachineBasicBlock*, 8> todo;
2487   for (const auto &MBB : *MF) {
2488     BBInfo &MInfo = MBBInfoMap[&MBB];
2489     for (const MachineBasicBlock *Pred : MBB.predecessors()) {
2490       BBInfo &PInfo = MBBInfoMap[Pred];
2491       if (PInfo.addRequired(MInfo.vregsLiveIn))
2492         todo.insert(Pred);
2493     }
2494 
2495     // Handle the PHI node.
2496     for (const MachineInstr &MI : MBB.phis()) {
2497       for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) {
2498         // Skip those Operands which are undef regs or not regs.
2499         if (!MI.getOperand(i).isReg() || !MI.getOperand(i).readsReg())
2500           continue;
2501 
2502         // Get register and predecessor for one PHI edge.
2503         Register Reg = MI.getOperand(i).getReg();
2504         const MachineBasicBlock *Pred = MI.getOperand(i + 1).getMBB();
2505 
2506         BBInfo &PInfo = MBBInfoMap[Pred];
2507         if (PInfo.addRequired(Reg))
2508           todo.insert(Pred);
2509       }
2510     }
2511   }
2512 
2513   // Iteratively push vregsRequired to predecessors. This will converge to the
2514   // same final state regardless of DenseSet iteration order.
2515   while (!todo.empty()) {
2516     const MachineBasicBlock *MBB = *todo.begin();
2517     todo.erase(MBB);
2518     BBInfo &MInfo = MBBInfoMap[MBB];
2519     for (const MachineBasicBlock *Pred : MBB->predecessors()) {
2520       if (Pred == MBB)
2521         continue;
2522       BBInfo &SInfo = MBBInfoMap[Pred];
2523       if (SInfo.addRequired(MInfo.vregsRequired))
2524         todo.insert(Pred);
2525     }
2526   }
2527 }
2528 
2529 // Check PHI instructions at the beginning of MBB. It is assumed that
2530 // calcRegsPassed has been run so BBInfo::isLiveOut is valid.
2531 void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) {
2532   BBInfo &MInfo = MBBInfoMap[&MBB];
2533 
2534   SmallPtrSet<const MachineBasicBlock*, 8> seen;
2535   for (const MachineInstr &Phi : MBB) {
2536     if (!Phi.isPHI())
2537       break;
2538     seen.clear();
2539 
2540     const MachineOperand &MODef = Phi.getOperand(0);
2541     if (!MODef.isReg() || !MODef.isDef()) {
2542       report("Expected first PHI operand to be a register def", &MODef, 0);
2543       continue;
2544     }
2545     if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() ||
2546         MODef.isEarlyClobber() || MODef.isDebug())
2547       report("Unexpected flag on PHI operand", &MODef, 0);
2548     Register DefReg = MODef.getReg();
2549     if (!Register::isVirtualRegister(DefReg))
2550       report("Expected first PHI operand to be a virtual register", &MODef, 0);
2551 
2552     for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) {
2553       const MachineOperand &MO0 = Phi.getOperand(I);
2554       if (!MO0.isReg()) {
2555         report("Expected PHI operand to be a register", &MO0, I);
2556         continue;
2557       }
2558       if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() ||
2559           MO0.isDebug() || MO0.isTied())
2560         report("Unexpected flag on PHI operand", &MO0, I);
2561 
2562       const MachineOperand &MO1 = Phi.getOperand(I + 1);
2563       if (!MO1.isMBB()) {
2564         report("Expected PHI operand to be a basic block", &MO1, I + 1);
2565         continue;
2566       }
2567 
2568       const MachineBasicBlock &Pre = *MO1.getMBB();
2569       if (!Pre.isSuccessor(&MBB)) {
2570         report("PHI input is not a predecessor block", &MO1, I + 1);
2571         continue;
2572       }
2573 
2574       if (MInfo.reachable) {
2575         seen.insert(&Pre);
2576         BBInfo &PrInfo = MBBInfoMap[&Pre];
2577         if (!MO0.isUndef() && PrInfo.reachable &&
2578             !PrInfo.isLiveOut(MO0.getReg()))
2579           report("PHI operand is not live-out from predecessor", &MO0, I);
2580       }
2581     }
2582 
2583     // Did we see all predecessors?
2584     if (MInfo.reachable) {
2585       for (MachineBasicBlock *Pred : MBB.predecessors()) {
2586         if (!seen.count(Pred)) {
2587           report("Missing PHI operand", &Phi);
2588           errs() << printMBBReference(*Pred)
2589                  << " is a predecessor according to the CFG.\n";
2590         }
2591       }
2592     }
2593   }
2594 }
2595 
2596 void MachineVerifier::visitMachineFunctionAfter() {
2597   calcRegsPassed();
2598 
2599   for (const MachineBasicBlock &MBB : *MF)
2600     checkPHIOps(MBB);
2601 
2602   // Now check liveness info if available
2603   calcRegsRequired();
2604 
2605   // Check for killed virtual registers that should be live out.
2606   for (const auto &MBB : *MF) {
2607     BBInfo &MInfo = MBBInfoMap[&MBB];
2608     for (Register VReg : MInfo.vregsRequired)
2609       if (MInfo.regsKilled.count(VReg)) {
2610         report("Virtual register killed in block, but needed live out.", &MBB);
2611         errs() << "Virtual register " << printReg(VReg)
2612                << " is used after the block.\n";
2613       }
2614   }
2615 
2616   if (!MF->empty()) {
2617     BBInfo &MInfo = MBBInfoMap[&MF->front()];
2618     for (Register VReg : MInfo.vregsRequired) {
2619       report("Virtual register defs don't dominate all uses.", MF);
2620       report_context_vreg(VReg);
2621     }
2622   }
2623 
2624   if (LiveVars)
2625     verifyLiveVariables();
2626   if (LiveInts)
2627     verifyLiveIntervals();
2628 
2629   // Check live-in list of each MBB. If a register is live into MBB, check
2630   // that the register is in regsLiveOut of each predecessor block. Since
2631   // this must come from a definition in the predecesssor or its live-in
2632   // list, this will catch a live-through case where the predecessor does not
2633   // have the register in its live-in list.  This currently only checks
2634   // registers that have no aliases, are not allocatable and are not
2635   // reserved, which could mean a condition code register for instance.
2636   if (MRI->tracksLiveness())
2637     for (const auto &MBB : *MF)
2638       for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) {
2639         MCPhysReg LiveInReg = P.PhysReg;
2640         bool hasAliases = MCRegAliasIterator(LiveInReg, TRI, false).isValid();
2641         if (hasAliases || isAllocatable(LiveInReg) || isReserved(LiveInReg))
2642           continue;
2643         for (const MachineBasicBlock *Pred : MBB.predecessors()) {
2644           BBInfo &PInfo = MBBInfoMap[Pred];
2645           if (!PInfo.regsLiveOut.count(LiveInReg)) {
2646             report("Live in register not found to be live out from predecessor.",
2647                    &MBB);
2648             errs() << TRI->getName(LiveInReg)
2649                    << " not found to be live out from "
2650                    << printMBBReference(*Pred) << "\n";
2651           }
2652         }
2653       }
2654 
2655   for (auto CSInfo : MF->getCallSitesInfo())
2656     if (!CSInfo.first->isCall())
2657       report("Call site info referencing instruction that is not call", MF);
2658 
2659   // If there's debug-info, check that we don't have any duplicate value
2660   // tracking numbers.
2661   if (MF->getFunction().getSubprogram()) {
2662     DenseSet<unsigned> SeenNumbers;
2663     for (auto &MBB : *MF) {
2664       for (auto &MI : MBB) {
2665         if (auto Num = MI.peekDebugInstrNum()) {
2666           auto Result = SeenNumbers.insert((unsigned)Num);
2667           if (!Result.second)
2668             report("Instruction has a duplicated value tracking number", &MI);
2669         }
2670       }
2671     }
2672   }
2673 }
2674 
2675 void MachineVerifier::verifyLiveVariables() {
2676   assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
2677   for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) {
2678     Register Reg = Register::index2VirtReg(I);
2679     LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
2680     for (const auto &MBB : *MF) {
2681       BBInfo &MInfo = MBBInfoMap[&MBB];
2682 
2683       // Our vregsRequired should be identical to LiveVariables' AliveBlocks
2684       if (MInfo.vregsRequired.count(Reg)) {
2685         if (!VI.AliveBlocks.test(MBB.getNumber())) {
2686           report("LiveVariables: Block missing from AliveBlocks", &MBB);
2687           errs() << "Virtual register " << printReg(Reg)
2688                  << " must be live through the block.\n";
2689         }
2690       } else {
2691         if (VI.AliveBlocks.test(MBB.getNumber())) {
2692           report("LiveVariables: Block should not be in AliveBlocks", &MBB);
2693           errs() << "Virtual register " << printReg(Reg)
2694                  << " is not needed live through the block.\n";
2695         }
2696       }
2697     }
2698   }
2699 }
2700 
2701 void MachineVerifier::verifyLiveIntervals() {
2702   assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
2703   for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) {
2704     Register Reg = Register::index2VirtReg(I);
2705 
2706     // Spilling and splitting may leave unused registers around. Skip them.
2707     if (MRI->reg_nodbg_empty(Reg))
2708       continue;
2709 
2710     if (!LiveInts->hasInterval(Reg)) {
2711       report("Missing live interval for virtual register", MF);
2712       errs() << printReg(Reg, TRI) << " still has defs or uses\n";
2713       continue;
2714     }
2715 
2716     const LiveInterval &LI = LiveInts->getInterval(Reg);
2717     assert(Reg == LI.reg() && "Invalid reg to interval mapping");
2718     verifyLiveInterval(LI);
2719   }
2720 
2721   // Verify all the cached regunit intervals.
2722   for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
2723     if (const LiveRange *LR = LiveInts->getCachedRegUnit(i))
2724       verifyLiveRange(*LR, i);
2725 }
2726 
2727 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
2728                                            const VNInfo *VNI, Register Reg,
2729                                            LaneBitmask LaneMask) {
2730   if (VNI->isUnused())
2731     return;
2732 
2733   const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def);
2734 
2735   if (!DefVNI) {
2736     report("Value not live at VNInfo def and not marked unused", MF);
2737     report_context(LR, Reg, LaneMask);
2738     report_context(*VNI);
2739     return;
2740   }
2741 
2742   if (DefVNI != VNI) {
2743     report("Live segment at def has different VNInfo", MF);
2744     report_context(LR, Reg, LaneMask);
2745     report_context(*VNI);
2746     return;
2747   }
2748 
2749   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
2750   if (!MBB) {
2751     report("Invalid VNInfo definition index", MF);
2752     report_context(LR, Reg, LaneMask);
2753     report_context(*VNI);
2754     return;
2755   }
2756 
2757   if (VNI->isPHIDef()) {
2758     if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
2759       report("PHIDef VNInfo is not defined at MBB start", MBB);
2760       report_context(LR, Reg, LaneMask);
2761       report_context(*VNI);
2762     }
2763     return;
2764   }
2765 
2766   // Non-PHI def.
2767   const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
2768   if (!MI) {
2769     report("No instruction at VNInfo def index", MBB);
2770     report_context(LR, Reg, LaneMask);
2771     report_context(*VNI);
2772     return;
2773   }
2774 
2775   if (Reg != 0) {
2776     bool hasDef = false;
2777     bool isEarlyClobber = false;
2778     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
2779       if (!MOI->isReg() || !MOI->isDef())
2780         continue;
2781       if (Register::isVirtualRegister(Reg)) {
2782         if (MOI->getReg() != Reg)
2783           continue;
2784       } else {
2785         if (!Register::isPhysicalRegister(MOI->getReg()) ||
2786             !TRI->hasRegUnit(MOI->getReg(), Reg))
2787           continue;
2788       }
2789       if (LaneMask.any() &&
2790           (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none())
2791         continue;
2792       hasDef = true;
2793       if (MOI->isEarlyClobber())
2794         isEarlyClobber = true;
2795     }
2796 
2797     if (!hasDef) {
2798       report("Defining instruction does not modify register", MI);
2799       report_context(LR, Reg, LaneMask);
2800       report_context(*VNI);
2801     }
2802 
2803     // Early clobber defs begin at USE slots, but other defs must begin at
2804     // DEF slots.
2805     if (isEarlyClobber) {
2806       if (!VNI->def.isEarlyClobber()) {
2807         report("Early clobber def must be at an early-clobber slot", MBB);
2808         report_context(LR, Reg, LaneMask);
2809         report_context(*VNI);
2810       }
2811     } else if (!VNI->def.isRegister()) {
2812       report("Non-PHI, non-early clobber def must be at a register slot", MBB);
2813       report_context(LR, Reg, LaneMask);
2814       report_context(*VNI);
2815     }
2816   }
2817 }
2818 
2819 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
2820                                              const LiveRange::const_iterator I,
2821                                              Register Reg,
2822                                              LaneBitmask LaneMask) {
2823   const LiveRange::Segment &S = *I;
2824   const VNInfo *VNI = S.valno;
2825   assert(VNI && "Live segment has no valno");
2826 
2827   if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) {
2828     report("Foreign valno in live segment", MF);
2829     report_context(LR, Reg, LaneMask);
2830     report_context(S);
2831     report_context(*VNI);
2832   }
2833 
2834   if (VNI->isUnused()) {
2835     report("Live segment valno is marked unused", MF);
2836     report_context(LR, Reg, LaneMask);
2837     report_context(S);
2838   }
2839 
2840   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start);
2841   if (!MBB) {
2842     report("Bad start of live segment, no basic block", MF);
2843     report_context(LR, Reg, LaneMask);
2844     report_context(S);
2845     return;
2846   }
2847   SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
2848   if (S.start != MBBStartIdx && S.start != VNI->def) {
2849     report("Live segment must begin at MBB entry or valno def", MBB);
2850     report_context(LR, Reg, LaneMask);
2851     report_context(S);
2852   }
2853 
2854   const MachineBasicBlock *EndMBB =
2855     LiveInts->getMBBFromIndex(S.end.getPrevSlot());
2856   if (!EndMBB) {
2857     report("Bad end of live segment, no basic block", MF);
2858     report_context(LR, Reg, LaneMask);
2859     report_context(S);
2860     return;
2861   }
2862 
2863   // No more checks for live-out segments.
2864   if (S.end == LiveInts->getMBBEndIdx(EndMBB))
2865     return;
2866 
2867   // RegUnit intervals are allowed dead phis.
2868   if (!Register::isVirtualRegister(Reg) && VNI->isPHIDef() &&
2869       S.start == VNI->def && S.end == VNI->def.getDeadSlot())
2870     return;
2871 
2872   // The live segment is ending inside EndMBB
2873   const MachineInstr *MI =
2874     LiveInts->getInstructionFromIndex(S.end.getPrevSlot());
2875   if (!MI) {
2876     report("Live segment doesn't end at a valid instruction", EndMBB);
2877     report_context(LR, Reg, LaneMask);
2878     report_context(S);
2879     return;
2880   }
2881 
2882   // The block slot must refer to a basic block boundary.
2883   if (S.end.isBlock()) {
2884     report("Live segment ends at B slot of an instruction", EndMBB);
2885     report_context(LR, Reg, LaneMask);
2886     report_context(S);
2887   }
2888 
2889   if (S.end.isDead()) {
2890     // Segment ends on the dead slot.
2891     // That means there must be a dead def.
2892     if (!SlotIndex::isSameInstr(S.start, S.end)) {
2893       report("Live segment ending at dead slot spans instructions", EndMBB);
2894       report_context(LR, Reg, LaneMask);
2895       report_context(S);
2896     }
2897   }
2898 
2899   // A live segment can only end at an early-clobber slot if it is being
2900   // redefined by an early-clobber def.
2901   if (S.end.isEarlyClobber()) {
2902     if (I+1 == LR.end() || (I+1)->start != S.end) {
2903       report("Live segment ending at early clobber slot must be "
2904              "redefined by an EC def in the same instruction", EndMBB);
2905       report_context(LR, Reg, LaneMask);
2906       report_context(S);
2907     }
2908   }
2909 
2910   // The following checks only apply to virtual registers. Physreg liveness
2911   // is too weird to check.
2912   if (Register::isVirtualRegister(Reg)) {
2913     // A live segment can end with either a redefinition, a kill flag on a
2914     // use, or a dead flag on a def.
2915     bool hasRead = false;
2916     bool hasSubRegDef = false;
2917     bool hasDeadDef = false;
2918     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
2919       if (!MOI->isReg() || MOI->getReg() != Reg)
2920         continue;
2921       unsigned Sub = MOI->getSubReg();
2922       LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub)
2923                                  : LaneBitmask::getAll();
2924       if (MOI->isDef()) {
2925         if (Sub != 0) {
2926           hasSubRegDef = true;
2927           // An operand %0:sub0 reads %0:sub1..n. Invert the lane
2928           // mask for subregister defs. Read-undef defs will be handled by
2929           // readsReg below.
2930           SLM = ~SLM;
2931         }
2932         if (MOI->isDead())
2933           hasDeadDef = true;
2934       }
2935       if (LaneMask.any() && (LaneMask & SLM).none())
2936         continue;
2937       if (MOI->readsReg())
2938         hasRead = true;
2939     }
2940     if (S.end.isDead()) {
2941       // Make sure that the corresponding machine operand for a "dead" live
2942       // range has the dead flag. We cannot perform this check for subregister
2943       // liveranges as partially dead values are allowed.
2944       if (LaneMask.none() && !hasDeadDef) {
2945         report("Instruction ending live segment on dead slot has no dead flag",
2946                MI);
2947         report_context(LR, Reg, LaneMask);
2948         report_context(S);
2949       }
2950     } else {
2951       if (!hasRead) {
2952         // When tracking subregister liveness, the main range must start new
2953         // values on partial register writes, even if there is no read.
2954         if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() ||
2955             !hasSubRegDef) {
2956           report("Instruction ending live segment doesn't read the register",
2957                  MI);
2958           report_context(LR, Reg, LaneMask);
2959           report_context(S);
2960         }
2961       }
2962     }
2963   }
2964 
2965   // Now check all the basic blocks in this live segment.
2966   MachineFunction::const_iterator MFI = MBB->getIterator();
2967   // Is this live segment the beginning of a non-PHIDef VN?
2968   if (S.start == VNI->def && !VNI->isPHIDef()) {
2969     // Not live-in to any blocks.
2970     if (MBB == EndMBB)
2971       return;
2972     // Skip this block.
2973     ++MFI;
2974   }
2975 
2976   SmallVector<SlotIndex, 4> Undefs;
2977   if (LaneMask.any()) {
2978     LiveInterval &OwnerLI = LiveInts->getInterval(Reg);
2979     OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes);
2980   }
2981 
2982   while (true) {
2983     assert(LiveInts->isLiveInToMBB(LR, &*MFI));
2984     // We don't know how to track physregs into a landing pad.
2985     if (!Register::isVirtualRegister(Reg) && MFI->isEHPad()) {
2986       if (&*MFI == EndMBB)
2987         break;
2988       ++MFI;
2989       continue;
2990     }
2991 
2992     // Is VNI a PHI-def in the current block?
2993     bool IsPHI = VNI->isPHIDef() &&
2994       VNI->def == LiveInts->getMBBStartIdx(&*MFI);
2995 
2996     // Check that VNI is live-out of all predecessors.
2997     for (const MachineBasicBlock *Pred : MFI->predecessors()) {
2998       SlotIndex PEnd = LiveInts->getMBBEndIdx(Pred);
2999       // Predecessor of landing pad live-out on last call.
3000       if (MFI->isEHPad()) {
3001         for (auto I = Pred->rbegin(), E = Pred->rend(); I != E; ++I) {
3002           if (I->isCall()) {
3003             PEnd = Indexes->getInstructionIndex(*I).getBoundaryIndex();
3004             break;
3005           }
3006         }
3007       }
3008       const VNInfo *PVNI = LR.getVNInfoBefore(PEnd);
3009 
3010       // All predecessors must have a live-out value. However for a phi
3011       // instruction with subregister intervals
3012       // only one of the subregisters (not necessarily the current one) needs to
3013       // be defined.
3014       if (!PVNI && (LaneMask.none() || !IsPHI)) {
3015         if (LiveRangeCalc::isJointlyDominated(Pred, Undefs, *Indexes))
3016           continue;
3017         report("Register not marked live out of predecessor", Pred);
3018         report_context(LR, Reg, LaneMask);
3019         report_context(*VNI);
3020         errs() << " live into " << printMBBReference(*MFI) << '@'
3021                << LiveInts->getMBBStartIdx(&*MFI) << ", not live before "
3022                << PEnd << '\n';
3023         continue;
3024       }
3025 
3026       // Only PHI-defs can take different predecessor values.
3027       if (!IsPHI && PVNI != VNI) {
3028         report("Different value live out of predecessor", Pred);
3029         report_context(LR, Reg, LaneMask);
3030         errs() << "Valno #" << PVNI->id << " live out of "
3031                << printMBBReference(*Pred) << '@' << PEnd << "\nValno #"
3032                << VNI->id << " live into " << printMBBReference(*MFI) << '@'
3033                << LiveInts->getMBBStartIdx(&*MFI) << '\n';
3034       }
3035     }
3036     if (&*MFI == EndMBB)
3037       break;
3038     ++MFI;
3039   }
3040 }
3041 
3042 void MachineVerifier::verifyLiveRange(const LiveRange &LR, Register Reg,
3043                                       LaneBitmask LaneMask) {
3044   for (const VNInfo *VNI : LR.valnos)
3045     verifyLiveRangeValue(LR, VNI, Reg, LaneMask);
3046 
3047   for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I)
3048     verifyLiveRangeSegment(LR, I, Reg, LaneMask);
3049 }
3050 
3051 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
3052   Register Reg = LI.reg();
3053   assert(Register::isVirtualRegister(Reg));
3054   verifyLiveRange(LI, Reg);
3055 
3056   LaneBitmask Mask;
3057   LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
3058   for (const LiveInterval::SubRange &SR : LI.subranges()) {
3059     if ((Mask & SR.LaneMask).any()) {
3060       report("Lane masks of sub ranges overlap in live interval", MF);
3061       report_context(LI);
3062     }
3063     if ((SR.LaneMask & ~MaxMask).any()) {
3064       report("Subrange lanemask is invalid", MF);
3065       report_context(LI);
3066     }
3067     if (SR.empty()) {
3068       report("Subrange must not be empty", MF);
3069       report_context(SR, LI.reg(), SR.LaneMask);
3070     }
3071     Mask |= SR.LaneMask;
3072     verifyLiveRange(SR, LI.reg(), SR.LaneMask);
3073     if (!LI.covers(SR)) {
3074       report("A Subrange is not covered by the main range", MF);
3075       report_context(LI);
3076     }
3077   }
3078 
3079   // Check the LI only has one connected component.
3080   ConnectedVNInfoEqClasses ConEQ(*LiveInts);
3081   unsigned NumComp = ConEQ.Classify(LI);
3082   if (NumComp > 1) {
3083     report("Multiple connected components in live interval", MF);
3084     report_context(LI);
3085     for (unsigned comp = 0; comp != NumComp; ++comp) {
3086       errs() << comp << ": valnos";
3087       for (const VNInfo *I : LI.valnos)
3088         if (comp == ConEQ.getEqClass(I))
3089           errs() << ' ' << I->id;
3090       errs() << '\n';
3091     }
3092   }
3093 }
3094 
3095 namespace {
3096 
3097   // FrameSetup and FrameDestroy can have zero adjustment, so using a single
3098   // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the
3099   // value is zero.
3100   // We use a bool plus an integer to capture the stack state.
3101   struct StackStateOfBB {
3102     StackStateOfBB() = default;
3103     StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) :
3104       EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup),
3105       ExitIsSetup(ExitSetup) {}
3106 
3107     // Can be negative, which means we are setting up a frame.
3108     int EntryValue = 0;
3109     int ExitValue = 0;
3110     bool EntryIsSetup = false;
3111     bool ExitIsSetup = false;
3112   };
3113 
3114 } // end anonymous namespace
3115 
3116 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed
3117 /// by a FrameDestroy <n>, stack adjustments are identical on all
3118 /// CFG edges to a merge point, and frame is destroyed at end of a return block.
3119 void MachineVerifier::verifyStackFrame() {
3120   unsigned FrameSetupOpcode   = TII->getCallFrameSetupOpcode();
3121   unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
3122   if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u)
3123     return;
3124 
3125   SmallVector<StackStateOfBB, 8> SPState;
3126   SPState.resize(MF->getNumBlockIDs());
3127   df_iterator_default_set<const MachineBasicBlock*> Reachable;
3128 
3129   // Visit the MBBs in DFS order.
3130   for (df_ext_iterator<const MachineFunction *,
3131                        df_iterator_default_set<const MachineBasicBlock *>>
3132        DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable);
3133        DFI != DFE; ++DFI) {
3134     const MachineBasicBlock *MBB = *DFI;
3135 
3136     StackStateOfBB BBState;
3137     // Check the exit state of the DFS stack predecessor.
3138     if (DFI.getPathLength() >= 2) {
3139       const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2);
3140       assert(Reachable.count(StackPred) &&
3141              "DFS stack predecessor is already visited.\n");
3142       BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue;
3143       BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup;
3144       BBState.ExitValue = BBState.EntryValue;
3145       BBState.ExitIsSetup = BBState.EntryIsSetup;
3146     }
3147 
3148     // Update stack state by checking contents of MBB.
3149     for (const auto &I : *MBB) {
3150       if (I.getOpcode() == FrameSetupOpcode) {
3151         if (BBState.ExitIsSetup)
3152           report("FrameSetup is after another FrameSetup", &I);
3153         BBState.ExitValue -= TII->getFrameTotalSize(I);
3154         BBState.ExitIsSetup = true;
3155       }
3156 
3157       if (I.getOpcode() == FrameDestroyOpcode) {
3158         int Size = TII->getFrameTotalSize(I);
3159         if (!BBState.ExitIsSetup)
3160           report("FrameDestroy is not after a FrameSetup", &I);
3161         int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue :
3162                                                BBState.ExitValue;
3163         if (BBState.ExitIsSetup && AbsSPAdj != Size) {
3164           report("FrameDestroy <n> is after FrameSetup <m>", &I);
3165           errs() << "FrameDestroy <" << Size << "> is after FrameSetup <"
3166               << AbsSPAdj << ">.\n";
3167         }
3168         BBState.ExitValue += Size;
3169         BBState.ExitIsSetup = false;
3170       }
3171     }
3172     SPState[MBB->getNumber()] = BBState;
3173 
3174     // Make sure the exit state of any predecessor is consistent with the entry
3175     // state.
3176     for (const MachineBasicBlock *Pred : MBB->predecessors()) {
3177       if (Reachable.count(Pred) &&
3178           (SPState[Pred->getNumber()].ExitValue != BBState.EntryValue ||
3179            SPState[Pred->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) {
3180         report("The exit stack state of a predecessor is inconsistent.", MBB);
3181         errs() << "Predecessor " << printMBBReference(*Pred)
3182                << " has exit state (" << SPState[Pred->getNumber()].ExitValue
3183                << ", " << SPState[Pred->getNumber()].ExitIsSetup << "), while "
3184                << printMBBReference(*MBB) << " has entry state ("
3185                << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n";
3186       }
3187     }
3188 
3189     // Make sure the entry state of any successor is consistent with the exit
3190     // state.
3191     for (const MachineBasicBlock *Succ : MBB->successors()) {
3192       if (Reachable.count(Succ) &&
3193           (SPState[Succ->getNumber()].EntryValue != BBState.ExitValue ||
3194            SPState[Succ->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) {
3195         report("The entry stack state of a successor is inconsistent.", MBB);
3196         errs() << "Successor " << printMBBReference(*Succ)
3197                << " has entry state (" << SPState[Succ->getNumber()].EntryValue
3198                << ", " << SPState[Succ->getNumber()].EntryIsSetup << "), while "
3199                << printMBBReference(*MBB) << " has exit state ("
3200                << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n";
3201       }
3202     }
3203 
3204     // Make sure a basic block with return ends with zero stack adjustment.
3205     if (!MBB->empty() && MBB->back().isReturn()) {
3206       if (BBState.ExitIsSetup)
3207         report("A return block ends with a FrameSetup.", MBB);
3208       if (BBState.ExitValue)
3209         report("A return block ends with a nonzero stack adjustment.", MBB);
3210     }
3211   }
3212 }
3213