1 //===--- SemaTemplateInstantiateDecl.cpp - C++ Template Decl Instantiation ===/ 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 //===----------------------------------------------------------------------===/ 7 // 8 // This file implements C++ template instantiation for declarations. 9 // 10 //===----------------------------------------------------------------------===/ 11 #include "clang/Sema/SemaInternal.h" 12 #include "clang/AST/ASTConsumer.h" 13 #include "clang/AST/ASTContext.h" 14 #include "clang/AST/ASTMutationListener.h" 15 #include "clang/AST/DeclTemplate.h" 16 #include "clang/AST/DeclVisitor.h" 17 #include "clang/AST/DependentDiagnostic.h" 18 #include "clang/AST/Expr.h" 19 #include "clang/AST/ExprCXX.h" 20 #include "clang/AST/PrettyDeclStackTrace.h" 21 #include "clang/AST/TypeLoc.h" 22 #include "clang/Sema/Initialization.h" 23 #include "clang/Sema/Lookup.h" 24 #include "clang/Sema/Template.h" 25 #include "clang/Sema/TemplateInstCallback.h" 26 #include "llvm/Support/TimeProfiler.h" 27 28 using namespace clang; 29 30 static bool isDeclWithinFunction(const Decl *D) { 31 const DeclContext *DC = D->getDeclContext(); 32 if (DC->isFunctionOrMethod()) 33 return true; 34 35 if (DC->isRecord()) 36 return cast<CXXRecordDecl>(DC)->isLocalClass(); 37 38 return false; 39 } 40 41 template<typename DeclT> 42 static bool SubstQualifier(Sema &SemaRef, const DeclT *OldDecl, DeclT *NewDecl, 43 const MultiLevelTemplateArgumentList &TemplateArgs) { 44 if (!OldDecl->getQualifierLoc()) 45 return false; 46 47 assert((NewDecl->getFriendObjectKind() || 48 !OldDecl->getLexicalDeclContext()->isDependentContext()) && 49 "non-friend with qualified name defined in dependent context"); 50 Sema::ContextRAII SavedContext( 51 SemaRef, 52 const_cast<DeclContext *>(NewDecl->getFriendObjectKind() 53 ? NewDecl->getLexicalDeclContext() 54 : OldDecl->getLexicalDeclContext())); 55 56 NestedNameSpecifierLoc NewQualifierLoc 57 = SemaRef.SubstNestedNameSpecifierLoc(OldDecl->getQualifierLoc(), 58 TemplateArgs); 59 60 if (!NewQualifierLoc) 61 return true; 62 63 NewDecl->setQualifierInfo(NewQualifierLoc); 64 return false; 65 } 66 67 bool TemplateDeclInstantiator::SubstQualifier(const DeclaratorDecl *OldDecl, 68 DeclaratorDecl *NewDecl) { 69 return ::SubstQualifier(SemaRef, OldDecl, NewDecl, TemplateArgs); 70 } 71 72 bool TemplateDeclInstantiator::SubstQualifier(const TagDecl *OldDecl, 73 TagDecl *NewDecl) { 74 return ::SubstQualifier(SemaRef, OldDecl, NewDecl, TemplateArgs); 75 } 76 77 // Include attribute instantiation code. 78 #include "clang/Sema/AttrTemplateInstantiate.inc" 79 80 static void instantiateDependentAlignedAttr( 81 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 82 const AlignedAttr *Aligned, Decl *New, bool IsPackExpansion) { 83 if (Aligned->isAlignmentExpr()) { 84 // The alignment expression is a constant expression. 85 EnterExpressionEvaluationContext Unevaluated( 86 S, Sema::ExpressionEvaluationContext::ConstantEvaluated); 87 ExprResult Result = S.SubstExpr(Aligned->getAlignmentExpr(), TemplateArgs); 88 if (!Result.isInvalid()) 89 S.AddAlignedAttr(New, *Aligned, Result.getAs<Expr>(), IsPackExpansion); 90 } else { 91 TypeSourceInfo *Result = S.SubstType(Aligned->getAlignmentType(), 92 TemplateArgs, Aligned->getLocation(), 93 DeclarationName()); 94 if (Result) 95 S.AddAlignedAttr(New, *Aligned, Result, IsPackExpansion); 96 } 97 } 98 99 static void instantiateDependentAlignedAttr( 100 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 101 const AlignedAttr *Aligned, Decl *New) { 102 if (!Aligned->isPackExpansion()) { 103 instantiateDependentAlignedAttr(S, TemplateArgs, Aligned, New, false); 104 return; 105 } 106 107 SmallVector<UnexpandedParameterPack, 2> Unexpanded; 108 if (Aligned->isAlignmentExpr()) 109 S.collectUnexpandedParameterPacks(Aligned->getAlignmentExpr(), 110 Unexpanded); 111 else 112 S.collectUnexpandedParameterPacks(Aligned->getAlignmentType()->getTypeLoc(), 113 Unexpanded); 114 assert(!Unexpanded.empty() && "Pack expansion without parameter packs?"); 115 116 // Determine whether we can expand this attribute pack yet. 117 bool Expand = true, RetainExpansion = false; 118 Optional<unsigned> NumExpansions; 119 // FIXME: Use the actual location of the ellipsis. 120 SourceLocation EllipsisLoc = Aligned->getLocation(); 121 if (S.CheckParameterPacksForExpansion(EllipsisLoc, Aligned->getRange(), 122 Unexpanded, TemplateArgs, Expand, 123 RetainExpansion, NumExpansions)) 124 return; 125 126 if (!Expand) { 127 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(S, -1); 128 instantiateDependentAlignedAttr(S, TemplateArgs, Aligned, New, true); 129 } else { 130 for (unsigned I = 0; I != *NumExpansions; ++I) { 131 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(S, I); 132 instantiateDependentAlignedAttr(S, TemplateArgs, Aligned, New, false); 133 } 134 } 135 } 136 137 static void instantiateDependentAssumeAlignedAttr( 138 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 139 const AssumeAlignedAttr *Aligned, Decl *New) { 140 // The alignment expression is a constant expression. 141 EnterExpressionEvaluationContext Unevaluated( 142 S, Sema::ExpressionEvaluationContext::ConstantEvaluated); 143 144 Expr *E, *OE = nullptr; 145 ExprResult Result = S.SubstExpr(Aligned->getAlignment(), TemplateArgs); 146 if (Result.isInvalid()) 147 return; 148 E = Result.getAs<Expr>(); 149 150 if (Aligned->getOffset()) { 151 Result = S.SubstExpr(Aligned->getOffset(), TemplateArgs); 152 if (Result.isInvalid()) 153 return; 154 OE = Result.getAs<Expr>(); 155 } 156 157 S.AddAssumeAlignedAttr(New, *Aligned, E, OE); 158 } 159 160 static void instantiateDependentAlignValueAttr( 161 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 162 const AlignValueAttr *Aligned, Decl *New) { 163 // The alignment expression is a constant expression. 164 EnterExpressionEvaluationContext Unevaluated( 165 S, Sema::ExpressionEvaluationContext::ConstantEvaluated); 166 ExprResult Result = S.SubstExpr(Aligned->getAlignment(), TemplateArgs); 167 if (!Result.isInvalid()) 168 S.AddAlignValueAttr(New, *Aligned, Result.getAs<Expr>()); 169 } 170 171 static void instantiateDependentAllocAlignAttr( 172 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 173 const AllocAlignAttr *Align, Decl *New) { 174 Expr *Param = IntegerLiteral::Create( 175 S.getASTContext(), 176 llvm::APInt(64, Align->getParamIndex().getSourceIndex()), 177 S.getASTContext().UnsignedLongLongTy, Align->getLocation()); 178 S.AddAllocAlignAttr(New, *Align, Param); 179 } 180 181 static Expr *instantiateDependentFunctionAttrCondition( 182 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 183 const Attr *A, Expr *OldCond, const Decl *Tmpl, FunctionDecl *New) { 184 Expr *Cond = nullptr; 185 { 186 Sema::ContextRAII SwitchContext(S, New); 187 EnterExpressionEvaluationContext Unevaluated( 188 S, Sema::ExpressionEvaluationContext::ConstantEvaluated); 189 ExprResult Result = S.SubstExpr(OldCond, TemplateArgs); 190 if (Result.isInvalid()) 191 return nullptr; 192 Cond = Result.getAs<Expr>(); 193 } 194 if (!Cond->isTypeDependent()) { 195 ExprResult Converted = S.PerformContextuallyConvertToBool(Cond); 196 if (Converted.isInvalid()) 197 return nullptr; 198 Cond = Converted.get(); 199 } 200 201 SmallVector<PartialDiagnosticAt, 8> Diags; 202 if (OldCond->isValueDependent() && !Cond->isValueDependent() && 203 !Expr::isPotentialConstantExprUnevaluated(Cond, New, Diags)) { 204 S.Diag(A->getLocation(), diag::err_attr_cond_never_constant_expr) << A; 205 for (const auto &P : Diags) 206 S.Diag(P.first, P.second); 207 return nullptr; 208 } 209 return Cond; 210 } 211 212 static void instantiateDependentEnableIfAttr( 213 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 214 const EnableIfAttr *EIA, const Decl *Tmpl, FunctionDecl *New) { 215 Expr *Cond = instantiateDependentFunctionAttrCondition( 216 S, TemplateArgs, EIA, EIA->getCond(), Tmpl, New); 217 218 if (Cond) 219 New->addAttr(new (S.getASTContext()) EnableIfAttr(S.getASTContext(), *EIA, 220 Cond, EIA->getMessage())); 221 } 222 223 static void instantiateDependentDiagnoseIfAttr( 224 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 225 const DiagnoseIfAttr *DIA, const Decl *Tmpl, FunctionDecl *New) { 226 Expr *Cond = instantiateDependentFunctionAttrCondition( 227 S, TemplateArgs, DIA, DIA->getCond(), Tmpl, New); 228 229 if (Cond) 230 New->addAttr(new (S.getASTContext()) DiagnoseIfAttr( 231 S.getASTContext(), *DIA, Cond, DIA->getMessage(), 232 DIA->getDiagnosticType(), DIA->getArgDependent(), New)); 233 } 234 235 // Constructs and adds to New a new instance of CUDALaunchBoundsAttr using 236 // template A as the base and arguments from TemplateArgs. 237 static void instantiateDependentCUDALaunchBoundsAttr( 238 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 239 const CUDALaunchBoundsAttr &Attr, Decl *New) { 240 // The alignment expression is a constant expression. 241 EnterExpressionEvaluationContext Unevaluated( 242 S, Sema::ExpressionEvaluationContext::ConstantEvaluated); 243 244 ExprResult Result = S.SubstExpr(Attr.getMaxThreads(), TemplateArgs); 245 if (Result.isInvalid()) 246 return; 247 Expr *MaxThreads = Result.getAs<Expr>(); 248 249 Expr *MinBlocks = nullptr; 250 if (Attr.getMinBlocks()) { 251 Result = S.SubstExpr(Attr.getMinBlocks(), TemplateArgs); 252 if (Result.isInvalid()) 253 return; 254 MinBlocks = Result.getAs<Expr>(); 255 } 256 257 S.AddLaunchBoundsAttr(New, Attr, MaxThreads, MinBlocks); 258 } 259 260 static void 261 instantiateDependentModeAttr(Sema &S, 262 const MultiLevelTemplateArgumentList &TemplateArgs, 263 const ModeAttr &Attr, Decl *New) { 264 S.AddModeAttr(New, Attr, Attr.getMode(), 265 /*InInstantiation=*/true); 266 } 267 268 /// Instantiation of 'declare simd' attribute and its arguments. 269 static void instantiateOMPDeclareSimdDeclAttr( 270 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 271 const OMPDeclareSimdDeclAttr &Attr, Decl *New) { 272 // Allow 'this' in clauses with varlists. 273 if (auto *FTD = dyn_cast<FunctionTemplateDecl>(New)) 274 New = FTD->getTemplatedDecl(); 275 auto *FD = cast<FunctionDecl>(New); 276 auto *ThisContext = dyn_cast_or_null<CXXRecordDecl>(FD->getDeclContext()); 277 SmallVector<Expr *, 4> Uniforms, Aligneds, Alignments, Linears, Steps; 278 SmallVector<unsigned, 4> LinModifiers; 279 280 auto SubstExpr = [&](Expr *E) -> ExprResult { 281 if (auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) 282 if (auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) { 283 Sema::ContextRAII SavedContext(S, FD); 284 LocalInstantiationScope Local(S); 285 if (FD->getNumParams() > PVD->getFunctionScopeIndex()) 286 Local.InstantiatedLocal( 287 PVD, FD->getParamDecl(PVD->getFunctionScopeIndex())); 288 return S.SubstExpr(E, TemplateArgs); 289 } 290 Sema::CXXThisScopeRAII ThisScope(S, ThisContext, Qualifiers(), 291 FD->isCXXInstanceMember()); 292 return S.SubstExpr(E, TemplateArgs); 293 }; 294 295 // Substitute a single OpenMP clause, which is a potentially-evaluated 296 // full-expression. 297 auto Subst = [&](Expr *E) -> ExprResult { 298 EnterExpressionEvaluationContext Evaluated( 299 S, Sema::ExpressionEvaluationContext::PotentiallyEvaluated); 300 ExprResult Res = SubstExpr(E); 301 if (Res.isInvalid()) 302 return Res; 303 return S.ActOnFinishFullExpr(Res.get(), false); 304 }; 305 306 ExprResult Simdlen; 307 if (auto *E = Attr.getSimdlen()) 308 Simdlen = Subst(E); 309 310 if (Attr.uniforms_size() > 0) { 311 for(auto *E : Attr.uniforms()) { 312 ExprResult Inst = Subst(E); 313 if (Inst.isInvalid()) 314 continue; 315 Uniforms.push_back(Inst.get()); 316 } 317 } 318 319 auto AI = Attr.alignments_begin(); 320 for (auto *E : Attr.aligneds()) { 321 ExprResult Inst = Subst(E); 322 if (Inst.isInvalid()) 323 continue; 324 Aligneds.push_back(Inst.get()); 325 Inst = ExprEmpty(); 326 if (*AI) 327 Inst = S.SubstExpr(*AI, TemplateArgs); 328 Alignments.push_back(Inst.get()); 329 ++AI; 330 } 331 332 auto SI = Attr.steps_begin(); 333 for (auto *E : Attr.linears()) { 334 ExprResult Inst = Subst(E); 335 if (Inst.isInvalid()) 336 continue; 337 Linears.push_back(Inst.get()); 338 Inst = ExprEmpty(); 339 if (*SI) 340 Inst = S.SubstExpr(*SI, TemplateArgs); 341 Steps.push_back(Inst.get()); 342 ++SI; 343 } 344 LinModifiers.append(Attr.modifiers_begin(), Attr.modifiers_end()); 345 (void)S.ActOnOpenMPDeclareSimdDirective( 346 S.ConvertDeclToDeclGroup(New), Attr.getBranchState(), Simdlen.get(), 347 Uniforms, Aligneds, Alignments, Linears, LinModifiers, Steps, 348 Attr.getRange()); 349 } 350 351 /// Instantiation of 'declare variant' attribute and its arguments. 352 static void instantiateOMPDeclareVariantAttr( 353 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 354 const OMPDeclareVariantAttr &Attr, Decl *New) { 355 // Allow 'this' in clauses with varlists. 356 if (auto *FTD = dyn_cast<FunctionTemplateDecl>(New)) 357 New = FTD->getTemplatedDecl(); 358 auto *FD = cast<FunctionDecl>(New); 359 auto *ThisContext = dyn_cast_or_null<CXXRecordDecl>(FD->getDeclContext()); 360 361 auto &&SubstExpr = [FD, ThisContext, &S, &TemplateArgs](Expr *E) { 362 if (auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) 363 if (auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) { 364 Sema::ContextRAII SavedContext(S, FD); 365 LocalInstantiationScope Local(S); 366 if (FD->getNumParams() > PVD->getFunctionScopeIndex()) 367 Local.InstantiatedLocal( 368 PVD, FD->getParamDecl(PVD->getFunctionScopeIndex())); 369 return S.SubstExpr(E, TemplateArgs); 370 } 371 Sema::CXXThisScopeRAII ThisScope(S, ThisContext, Qualifiers(), 372 FD->isCXXInstanceMember()); 373 return S.SubstExpr(E, TemplateArgs); 374 }; 375 376 // Substitute a single OpenMP clause, which is a potentially-evaluated 377 // full-expression. 378 auto &&Subst = [&SubstExpr, &S](Expr *E) { 379 EnterExpressionEvaluationContext Evaluated( 380 S, Sema::ExpressionEvaluationContext::PotentiallyEvaluated); 381 ExprResult Res = SubstExpr(E); 382 if (Res.isInvalid()) 383 return Res; 384 return S.ActOnFinishFullExpr(Res.get(), false); 385 }; 386 387 ExprResult VariantFuncRef; 388 if (Expr *E = Attr.getVariantFuncRef()) 389 VariantFuncRef = Subst(E); 390 391 ExprResult Score; 392 if (Expr *E = Attr.getScore()) 393 Score = Subst(E); 394 395 // Check function/variant ref. 396 Optional<std::pair<FunctionDecl *, Expr *>> DeclVarData = 397 S.checkOpenMPDeclareVariantFunction( 398 S.ConvertDeclToDeclGroup(New), VariantFuncRef.get(), Attr.getRange()); 399 if (!DeclVarData) 400 return; 401 // Instantiate the attribute. 402 Sema::OpenMPDeclareVariantCtsSelectorData Data( 403 Attr.getCtxSelectorSet(), Attr.getCtxSelector(), 404 llvm::makeMutableArrayRef(Attr.implVendors_begin(), 405 Attr.implVendors_size()), 406 Score); 407 S.ActOnOpenMPDeclareVariantDirective(DeclVarData.getValue().first, 408 DeclVarData.getValue().second, 409 Attr.getRange(), Data); 410 } 411 412 static void instantiateDependentAMDGPUFlatWorkGroupSizeAttr( 413 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 414 const AMDGPUFlatWorkGroupSizeAttr &Attr, Decl *New) { 415 // Both min and max expression are constant expressions. 416 EnterExpressionEvaluationContext Unevaluated( 417 S, Sema::ExpressionEvaluationContext::ConstantEvaluated); 418 419 ExprResult Result = S.SubstExpr(Attr.getMin(), TemplateArgs); 420 if (Result.isInvalid()) 421 return; 422 Expr *MinExpr = Result.getAs<Expr>(); 423 424 Result = S.SubstExpr(Attr.getMax(), TemplateArgs); 425 if (Result.isInvalid()) 426 return; 427 Expr *MaxExpr = Result.getAs<Expr>(); 428 429 S.addAMDGPUFlatWorkGroupSizeAttr(New, Attr, MinExpr, MaxExpr); 430 } 431 432 static ExplicitSpecifier 433 instantiateExplicitSpecifier(Sema &S, 434 const MultiLevelTemplateArgumentList &TemplateArgs, 435 ExplicitSpecifier ES, FunctionDecl *New) { 436 if (!ES.getExpr()) 437 return ES; 438 Expr *OldCond = ES.getExpr(); 439 Expr *Cond = nullptr; 440 { 441 EnterExpressionEvaluationContext Unevaluated( 442 S, Sema::ExpressionEvaluationContext::ConstantEvaluated); 443 ExprResult SubstResult = S.SubstExpr(OldCond, TemplateArgs); 444 if (SubstResult.isInvalid()) { 445 return ExplicitSpecifier::Invalid(); 446 } 447 Cond = SubstResult.get(); 448 } 449 ExplicitSpecifier Result(Cond, ES.getKind()); 450 if (!Cond->isTypeDependent()) 451 S.tryResolveExplicitSpecifier(Result); 452 return Result; 453 } 454 455 static void instantiateDependentAMDGPUWavesPerEUAttr( 456 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 457 const AMDGPUWavesPerEUAttr &Attr, Decl *New) { 458 // Both min and max expression are constant expressions. 459 EnterExpressionEvaluationContext Unevaluated( 460 S, Sema::ExpressionEvaluationContext::ConstantEvaluated); 461 462 ExprResult Result = S.SubstExpr(Attr.getMin(), TemplateArgs); 463 if (Result.isInvalid()) 464 return; 465 Expr *MinExpr = Result.getAs<Expr>(); 466 467 Expr *MaxExpr = nullptr; 468 if (auto Max = Attr.getMax()) { 469 Result = S.SubstExpr(Max, TemplateArgs); 470 if (Result.isInvalid()) 471 return; 472 MaxExpr = Result.getAs<Expr>(); 473 } 474 475 S.addAMDGPUWavesPerEUAttr(New, Attr, MinExpr, MaxExpr); 476 } 477 478 void Sema::InstantiateAttrsForDecl( 479 const MultiLevelTemplateArgumentList &TemplateArgs, const Decl *Tmpl, 480 Decl *New, LateInstantiatedAttrVec *LateAttrs, 481 LocalInstantiationScope *OuterMostScope) { 482 if (NamedDecl *ND = dyn_cast<NamedDecl>(New)) { 483 for (const auto *TmplAttr : Tmpl->attrs()) { 484 // FIXME: If any of the special case versions from InstantiateAttrs become 485 // applicable to template declaration, we'll need to add them here. 486 CXXThisScopeRAII ThisScope( 487 *this, dyn_cast_or_null<CXXRecordDecl>(ND->getDeclContext()), 488 Qualifiers(), ND->isCXXInstanceMember()); 489 490 Attr *NewAttr = sema::instantiateTemplateAttributeForDecl( 491 TmplAttr, Context, *this, TemplateArgs); 492 if (NewAttr) 493 New->addAttr(NewAttr); 494 } 495 } 496 } 497 498 static Sema::RetainOwnershipKind 499 attrToRetainOwnershipKind(const Attr *A) { 500 switch (A->getKind()) { 501 case clang::attr::CFConsumed: 502 return Sema::RetainOwnershipKind::CF; 503 case clang::attr::OSConsumed: 504 return Sema::RetainOwnershipKind::OS; 505 case clang::attr::NSConsumed: 506 return Sema::RetainOwnershipKind::NS; 507 default: 508 llvm_unreachable("Wrong argument supplied"); 509 } 510 } 511 512 void Sema::InstantiateAttrs(const MultiLevelTemplateArgumentList &TemplateArgs, 513 const Decl *Tmpl, Decl *New, 514 LateInstantiatedAttrVec *LateAttrs, 515 LocalInstantiationScope *OuterMostScope) { 516 for (const auto *TmplAttr : Tmpl->attrs()) { 517 // FIXME: This should be generalized to more than just the AlignedAttr. 518 const AlignedAttr *Aligned = dyn_cast<AlignedAttr>(TmplAttr); 519 if (Aligned && Aligned->isAlignmentDependent()) { 520 instantiateDependentAlignedAttr(*this, TemplateArgs, Aligned, New); 521 continue; 522 } 523 524 if (const auto *AssumeAligned = dyn_cast<AssumeAlignedAttr>(TmplAttr)) { 525 instantiateDependentAssumeAlignedAttr(*this, TemplateArgs, AssumeAligned, New); 526 continue; 527 } 528 529 if (const auto *AlignValue = dyn_cast<AlignValueAttr>(TmplAttr)) { 530 instantiateDependentAlignValueAttr(*this, TemplateArgs, AlignValue, New); 531 continue; 532 } 533 534 if (const auto *AllocAlign = dyn_cast<AllocAlignAttr>(TmplAttr)) { 535 instantiateDependentAllocAlignAttr(*this, TemplateArgs, AllocAlign, New); 536 continue; 537 } 538 539 540 if (const auto *EnableIf = dyn_cast<EnableIfAttr>(TmplAttr)) { 541 instantiateDependentEnableIfAttr(*this, TemplateArgs, EnableIf, Tmpl, 542 cast<FunctionDecl>(New)); 543 continue; 544 } 545 546 if (const auto *DiagnoseIf = dyn_cast<DiagnoseIfAttr>(TmplAttr)) { 547 instantiateDependentDiagnoseIfAttr(*this, TemplateArgs, DiagnoseIf, Tmpl, 548 cast<FunctionDecl>(New)); 549 continue; 550 } 551 552 if (const auto *CUDALaunchBounds = 553 dyn_cast<CUDALaunchBoundsAttr>(TmplAttr)) { 554 instantiateDependentCUDALaunchBoundsAttr(*this, TemplateArgs, 555 *CUDALaunchBounds, New); 556 continue; 557 } 558 559 if (const auto *Mode = dyn_cast<ModeAttr>(TmplAttr)) { 560 instantiateDependentModeAttr(*this, TemplateArgs, *Mode, New); 561 continue; 562 } 563 564 if (const auto *OMPAttr = dyn_cast<OMPDeclareSimdDeclAttr>(TmplAttr)) { 565 instantiateOMPDeclareSimdDeclAttr(*this, TemplateArgs, *OMPAttr, New); 566 continue; 567 } 568 569 if (const auto *OMPAttr = dyn_cast<OMPDeclareVariantAttr>(TmplAttr)) { 570 instantiateOMPDeclareVariantAttr(*this, TemplateArgs, *OMPAttr, New); 571 continue; 572 } 573 574 if (const auto *AMDGPUFlatWorkGroupSize = 575 dyn_cast<AMDGPUFlatWorkGroupSizeAttr>(TmplAttr)) { 576 instantiateDependentAMDGPUFlatWorkGroupSizeAttr( 577 *this, TemplateArgs, *AMDGPUFlatWorkGroupSize, New); 578 } 579 580 if (const auto *AMDGPUFlatWorkGroupSize = 581 dyn_cast<AMDGPUWavesPerEUAttr>(TmplAttr)) { 582 instantiateDependentAMDGPUWavesPerEUAttr(*this, TemplateArgs, 583 *AMDGPUFlatWorkGroupSize, New); 584 } 585 586 // Existing DLL attribute on the instantiation takes precedence. 587 if (TmplAttr->getKind() == attr::DLLExport || 588 TmplAttr->getKind() == attr::DLLImport) { 589 if (New->hasAttr<DLLExportAttr>() || New->hasAttr<DLLImportAttr>()) { 590 continue; 591 } 592 } 593 594 if (const auto *ABIAttr = dyn_cast<ParameterABIAttr>(TmplAttr)) { 595 AddParameterABIAttr(New, *ABIAttr, ABIAttr->getABI()); 596 continue; 597 } 598 599 if (isa<NSConsumedAttr>(TmplAttr) || isa<OSConsumedAttr>(TmplAttr) || 600 isa<CFConsumedAttr>(TmplAttr)) { 601 AddXConsumedAttr(New, *TmplAttr, attrToRetainOwnershipKind(TmplAttr), 602 /*template instantiation=*/true); 603 continue; 604 } 605 606 if (auto *A = dyn_cast<PointerAttr>(TmplAttr)) { 607 if (!New->hasAttr<PointerAttr>()) 608 New->addAttr(A->clone(Context)); 609 continue; 610 } 611 612 if (auto *A = dyn_cast<OwnerAttr>(TmplAttr)) { 613 if (!New->hasAttr<OwnerAttr>()) 614 New->addAttr(A->clone(Context)); 615 continue; 616 } 617 618 assert(!TmplAttr->isPackExpansion()); 619 if (TmplAttr->isLateParsed() && LateAttrs) { 620 // Late parsed attributes must be instantiated and attached after the 621 // enclosing class has been instantiated. See Sema::InstantiateClass. 622 LocalInstantiationScope *Saved = nullptr; 623 if (CurrentInstantiationScope) 624 Saved = CurrentInstantiationScope->cloneScopes(OuterMostScope); 625 LateAttrs->push_back(LateInstantiatedAttribute(TmplAttr, Saved, New)); 626 } else { 627 // Allow 'this' within late-parsed attributes. 628 NamedDecl *ND = dyn_cast<NamedDecl>(New); 629 CXXRecordDecl *ThisContext = 630 dyn_cast_or_null<CXXRecordDecl>(ND->getDeclContext()); 631 CXXThisScopeRAII ThisScope(*this, ThisContext, Qualifiers(), 632 ND && ND->isCXXInstanceMember()); 633 634 Attr *NewAttr = sema::instantiateTemplateAttribute(TmplAttr, Context, 635 *this, TemplateArgs); 636 if (NewAttr) 637 New->addAttr(NewAttr); 638 } 639 } 640 } 641 642 /// Get the previous declaration of a declaration for the purposes of template 643 /// instantiation. If this finds a previous declaration, then the previous 644 /// declaration of the instantiation of D should be an instantiation of the 645 /// result of this function. 646 template<typename DeclT> 647 static DeclT *getPreviousDeclForInstantiation(DeclT *D) { 648 DeclT *Result = D->getPreviousDecl(); 649 650 // If the declaration is within a class, and the previous declaration was 651 // merged from a different definition of that class, then we don't have a 652 // previous declaration for the purpose of template instantiation. 653 if (Result && isa<CXXRecordDecl>(D->getDeclContext()) && 654 D->getLexicalDeclContext() != Result->getLexicalDeclContext()) 655 return nullptr; 656 657 return Result; 658 } 659 660 Decl * 661 TemplateDeclInstantiator::VisitTranslationUnitDecl(TranslationUnitDecl *D) { 662 llvm_unreachable("Translation units cannot be instantiated"); 663 } 664 665 Decl * 666 TemplateDeclInstantiator::VisitPragmaCommentDecl(PragmaCommentDecl *D) { 667 llvm_unreachable("pragma comment cannot be instantiated"); 668 } 669 670 Decl *TemplateDeclInstantiator::VisitPragmaDetectMismatchDecl( 671 PragmaDetectMismatchDecl *D) { 672 llvm_unreachable("pragma comment cannot be instantiated"); 673 } 674 675 Decl * 676 TemplateDeclInstantiator::VisitExternCContextDecl(ExternCContextDecl *D) { 677 llvm_unreachable("extern \"C\" context cannot be instantiated"); 678 } 679 680 Decl * 681 TemplateDeclInstantiator::VisitLabelDecl(LabelDecl *D) { 682 LabelDecl *Inst = LabelDecl::Create(SemaRef.Context, Owner, D->getLocation(), 683 D->getIdentifier()); 684 Owner->addDecl(Inst); 685 return Inst; 686 } 687 688 Decl * 689 TemplateDeclInstantiator::VisitNamespaceDecl(NamespaceDecl *D) { 690 llvm_unreachable("Namespaces cannot be instantiated"); 691 } 692 693 Decl * 694 TemplateDeclInstantiator::VisitNamespaceAliasDecl(NamespaceAliasDecl *D) { 695 NamespaceAliasDecl *Inst 696 = NamespaceAliasDecl::Create(SemaRef.Context, Owner, 697 D->getNamespaceLoc(), 698 D->getAliasLoc(), 699 D->getIdentifier(), 700 D->getQualifierLoc(), 701 D->getTargetNameLoc(), 702 D->getNamespace()); 703 Owner->addDecl(Inst); 704 return Inst; 705 } 706 707 Decl *TemplateDeclInstantiator::InstantiateTypedefNameDecl(TypedefNameDecl *D, 708 bool IsTypeAlias) { 709 bool Invalid = false; 710 TypeSourceInfo *DI = D->getTypeSourceInfo(); 711 if (DI->getType()->isInstantiationDependentType() || 712 DI->getType()->isVariablyModifiedType()) { 713 DI = SemaRef.SubstType(DI, TemplateArgs, 714 D->getLocation(), D->getDeclName()); 715 if (!DI) { 716 Invalid = true; 717 DI = SemaRef.Context.getTrivialTypeSourceInfo(SemaRef.Context.IntTy); 718 } 719 } else { 720 SemaRef.MarkDeclarationsReferencedInType(D->getLocation(), DI->getType()); 721 } 722 723 // HACK: g++ has a bug where it gets the value kind of ?: wrong. 724 // libstdc++ relies upon this bug in its implementation of common_type. 725 // If we happen to be processing that implementation, fake up the g++ ?: 726 // semantics. See LWG issue 2141 for more information on the bug. 727 const DecltypeType *DT = DI->getType()->getAs<DecltypeType>(); 728 CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D->getDeclContext()); 729 if (DT && RD && isa<ConditionalOperator>(DT->getUnderlyingExpr()) && 730 DT->isReferenceType() && 731 RD->getEnclosingNamespaceContext() == SemaRef.getStdNamespace() && 732 RD->getIdentifier() && RD->getIdentifier()->isStr("common_type") && 733 D->getIdentifier() && D->getIdentifier()->isStr("type") && 734 SemaRef.getSourceManager().isInSystemHeader(D->getBeginLoc())) 735 // Fold it to the (non-reference) type which g++ would have produced. 736 DI = SemaRef.Context.getTrivialTypeSourceInfo( 737 DI->getType().getNonReferenceType()); 738 739 // Create the new typedef 740 TypedefNameDecl *Typedef; 741 if (IsTypeAlias) 742 Typedef = TypeAliasDecl::Create(SemaRef.Context, Owner, D->getBeginLoc(), 743 D->getLocation(), D->getIdentifier(), DI); 744 else 745 Typedef = TypedefDecl::Create(SemaRef.Context, Owner, D->getBeginLoc(), 746 D->getLocation(), D->getIdentifier(), DI); 747 if (Invalid) 748 Typedef->setInvalidDecl(); 749 750 // If the old typedef was the name for linkage purposes of an anonymous 751 // tag decl, re-establish that relationship for the new typedef. 752 if (const TagType *oldTagType = D->getUnderlyingType()->getAs<TagType>()) { 753 TagDecl *oldTag = oldTagType->getDecl(); 754 if (oldTag->getTypedefNameForAnonDecl() == D && !Invalid) { 755 TagDecl *newTag = DI->getType()->castAs<TagType>()->getDecl(); 756 assert(!newTag->hasNameForLinkage()); 757 newTag->setTypedefNameForAnonDecl(Typedef); 758 } 759 } 760 761 if (TypedefNameDecl *Prev = getPreviousDeclForInstantiation(D)) { 762 NamedDecl *InstPrev = SemaRef.FindInstantiatedDecl(D->getLocation(), Prev, 763 TemplateArgs); 764 if (!InstPrev) 765 return nullptr; 766 767 TypedefNameDecl *InstPrevTypedef = cast<TypedefNameDecl>(InstPrev); 768 769 // If the typedef types are not identical, reject them. 770 SemaRef.isIncompatibleTypedef(InstPrevTypedef, Typedef); 771 772 Typedef->setPreviousDecl(InstPrevTypedef); 773 } 774 775 SemaRef.InstantiateAttrs(TemplateArgs, D, Typedef); 776 777 if (D->getUnderlyingType()->getAs<DependentNameType>()) 778 SemaRef.inferGslPointerAttribute(Typedef); 779 780 Typedef->setAccess(D->getAccess()); 781 782 return Typedef; 783 } 784 785 Decl *TemplateDeclInstantiator::VisitTypedefDecl(TypedefDecl *D) { 786 Decl *Typedef = InstantiateTypedefNameDecl(D, /*IsTypeAlias=*/false); 787 if (Typedef) 788 Owner->addDecl(Typedef); 789 return Typedef; 790 } 791 792 Decl *TemplateDeclInstantiator::VisitTypeAliasDecl(TypeAliasDecl *D) { 793 Decl *Typedef = InstantiateTypedefNameDecl(D, /*IsTypeAlias=*/true); 794 if (Typedef) 795 Owner->addDecl(Typedef); 796 return Typedef; 797 } 798 799 Decl * 800 TemplateDeclInstantiator::VisitTypeAliasTemplateDecl(TypeAliasTemplateDecl *D) { 801 // Create a local instantiation scope for this type alias template, which 802 // will contain the instantiations of the template parameters. 803 LocalInstantiationScope Scope(SemaRef); 804 805 TemplateParameterList *TempParams = D->getTemplateParameters(); 806 TemplateParameterList *InstParams = SubstTemplateParams(TempParams); 807 if (!InstParams) 808 return nullptr; 809 810 TypeAliasDecl *Pattern = D->getTemplatedDecl(); 811 812 TypeAliasTemplateDecl *PrevAliasTemplate = nullptr; 813 if (getPreviousDeclForInstantiation<TypedefNameDecl>(Pattern)) { 814 DeclContext::lookup_result Found = Owner->lookup(Pattern->getDeclName()); 815 if (!Found.empty()) { 816 PrevAliasTemplate = dyn_cast<TypeAliasTemplateDecl>(Found.front()); 817 } 818 } 819 820 TypeAliasDecl *AliasInst = cast_or_null<TypeAliasDecl>( 821 InstantiateTypedefNameDecl(Pattern, /*IsTypeAlias=*/true)); 822 if (!AliasInst) 823 return nullptr; 824 825 TypeAliasTemplateDecl *Inst 826 = TypeAliasTemplateDecl::Create(SemaRef.Context, Owner, D->getLocation(), 827 D->getDeclName(), InstParams, AliasInst); 828 AliasInst->setDescribedAliasTemplate(Inst); 829 if (PrevAliasTemplate) 830 Inst->setPreviousDecl(PrevAliasTemplate); 831 832 Inst->setAccess(D->getAccess()); 833 834 if (!PrevAliasTemplate) 835 Inst->setInstantiatedFromMemberTemplate(D); 836 837 Owner->addDecl(Inst); 838 839 return Inst; 840 } 841 842 Decl *TemplateDeclInstantiator::VisitBindingDecl(BindingDecl *D) { 843 auto *NewBD = BindingDecl::Create(SemaRef.Context, Owner, D->getLocation(), 844 D->getIdentifier()); 845 NewBD->setReferenced(D->isReferenced()); 846 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, NewBD); 847 return NewBD; 848 } 849 850 Decl *TemplateDeclInstantiator::VisitDecompositionDecl(DecompositionDecl *D) { 851 // Transform the bindings first. 852 SmallVector<BindingDecl*, 16> NewBindings; 853 for (auto *OldBD : D->bindings()) 854 NewBindings.push_back(cast<BindingDecl>(VisitBindingDecl(OldBD))); 855 ArrayRef<BindingDecl*> NewBindingArray = NewBindings; 856 857 auto *NewDD = cast_or_null<DecompositionDecl>( 858 VisitVarDecl(D, /*InstantiatingVarTemplate=*/false, &NewBindingArray)); 859 860 if (!NewDD || NewDD->isInvalidDecl()) 861 for (auto *NewBD : NewBindings) 862 NewBD->setInvalidDecl(); 863 864 return NewDD; 865 } 866 867 Decl *TemplateDeclInstantiator::VisitVarDecl(VarDecl *D) { 868 return VisitVarDecl(D, /*InstantiatingVarTemplate=*/false); 869 } 870 871 Decl *TemplateDeclInstantiator::VisitVarDecl(VarDecl *D, 872 bool InstantiatingVarTemplate, 873 ArrayRef<BindingDecl*> *Bindings) { 874 875 // Do substitution on the type of the declaration 876 TypeSourceInfo *DI = SemaRef.SubstType( 877 D->getTypeSourceInfo(), TemplateArgs, D->getTypeSpecStartLoc(), 878 D->getDeclName(), /*AllowDeducedTST*/true); 879 if (!DI) 880 return nullptr; 881 882 if (DI->getType()->isFunctionType()) { 883 SemaRef.Diag(D->getLocation(), diag::err_variable_instantiates_to_function) 884 << D->isStaticDataMember() << DI->getType(); 885 return nullptr; 886 } 887 888 DeclContext *DC = Owner; 889 if (D->isLocalExternDecl()) 890 SemaRef.adjustContextForLocalExternDecl(DC); 891 892 // Build the instantiated declaration. 893 VarDecl *Var; 894 if (Bindings) 895 Var = DecompositionDecl::Create(SemaRef.Context, DC, D->getInnerLocStart(), 896 D->getLocation(), DI->getType(), DI, 897 D->getStorageClass(), *Bindings); 898 else 899 Var = VarDecl::Create(SemaRef.Context, DC, D->getInnerLocStart(), 900 D->getLocation(), D->getIdentifier(), DI->getType(), 901 DI, D->getStorageClass()); 902 903 // In ARC, infer 'retaining' for variables of retainable type. 904 if (SemaRef.getLangOpts().ObjCAutoRefCount && 905 SemaRef.inferObjCARCLifetime(Var)) 906 Var->setInvalidDecl(); 907 908 // Substitute the nested name specifier, if any. 909 if (SubstQualifier(D, Var)) 910 return nullptr; 911 912 SemaRef.BuildVariableInstantiation(Var, D, TemplateArgs, LateAttrs, Owner, 913 StartingScope, InstantiatingVarTemplate); 914 915 if (D->isNRVOVariable()) { 916 QualType ReturnType = cast<FunctionDecl>(DC)->getReturnType(); 917 if (SemaRef.isCopyElisionCandidate(ReturnType, Var, Sema::CES_Strict)) 918 Var->setNRVOVariable(true); 919 } 920 921 Var->setImplicit(D->isImplicit()); 922 923 if (Var->isStaticLocal()) 924 SemaRef.CheckStaticLocalForDllExport(Var); 925 926 return Var; 927 } 928 929 Decl *TemplateDeclInstantiator::VisitAccessSpecDecl(AccessSpecDecl *D) { 930 AccessSpecDecl* AD 931 = AccessSpecDecl::Create(SemaRef.Context, D->getAccess(), Owner, 932 D->getAccessSpecifierLoc(), D->getColonLoc()); 933 Owner->addHiddenDecl(AD); 934 return AD; 935 } 936 937 Decl *TemplateDeclInstantiator::VisitFieldDecl(FieldDecl *D) { 938 bool Invalid = false; 939 TypeSourceInfo *DI = D->getTypeSourceInfo(); 940 if (DI->getType()->isInstantiationDependentType() || 941 DI->getType()->isVariablyModifiedType()) { 942 DI = SemaRef.SubstType(DI, TemplateArgs, 943 D->getLocation(), D->getDeclName()); 944 if (!DI) { 945 DI = D->getTypeSourceInfo(); 946 Invalid = true; 947 } else if (DI->getType()->isFunctionType()) { 948 // C++ [temp.arg.type]p3: 949 // If a declaration acquires a function type through a type 950 // dependent on a template-parameter and this causes a 951 // declaration that does not use the syntactic form of a 952 // function declarator to have function type, the program is 953 // ill-formed. 954 SemaRef.Diag(D->getLocation(), diag::err_field_instantiates_to_function) 955 << DI->getType(); 956 Invalid = true; 957 } 958 } else { 959 SemaRef.MarkDeclarationsReferencedInType(D->getLocation(), DI->getType()); 960 } 961 962 Expr *BitWidth = D->getBitWidth(); 963 if (Invalid) 964 BitWidth = nullptr; 965 else if (BitWidth) { 966 // The bit-width expression is a constant expression. 967 EnterExpressionEvaluationContext Unevaluated( 968 SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated); 969 970 ExprResult InstantiatedBitWidth 971 = SemaRef.SubstExpr(BitWidth, TemplateArgs); 972 if (InstantiatedBitWidth.isInvalid()) { 973 Invalid = true; 974 BitWidth = nullptr; 975 } else 976 BitWidth = InstantiatedBitWidth.getAs<Expr>(); 977 } 978 979 FieldDecl *Field = SemaRef.CheckFieldDecl(D->getDeclName(), 980 DI->getType(), DI, 981 cast<RecordDecl>(Owner), 982 D->getLocation(), 983 D->isMutable(), 984 BitWidth, 985 D->getInClassInitStyle(), 986 D->getInnerLocStart(), 987 D->getAccess(), 988 nullptr); 989 if (!Field) { 990 cast<Decl>(Owner)->setInvalidDecl(); 991 return nullptr; 992 } 993 994 SemaRef.InstantiateAttrs(TemplateArgs, D, Field, LateAttrs, StartingScope); 995 996 if (Field->hasAttrs()) 997 SemaRef.CheckAlignasUnderalignment(Field); 998 999 if (Invalid) 1000 Field->setInvalidDecl(); 1001 1002 if (!Field->getDeclName()) { 1003 // Keep track of where this decl came from. 1004 SemaRef.Context.setInstantiatedFromUnnamedFieldDecl(Field, D); 1005 } 1006 if (CXXRecordDecl *Parent= dyn_cast<CXXRecordDecl>(Field->getDeclContext())) { 1007 if (Parent->isAnonymousStructOrUnion() && 1008 Parent->getRedeclContext()->isFunctionOrMethod()) 1009 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Field); 1010 } 1011 1012 Field->setImplicit(D->isImplicit()); 1013 Field->setAccess(D->getAccess()); 1014 Owner->addDecl(Field); 1015 1016 return Field; 1017 } 1018 1019 Decl *TemplateDeclInstantiator::VisitMSPropertyDecl(MSPropertyDecl *D) { 1020 bool Invalid = false; 1021 TypeSourceInfo *DI = D->getTypeSourceInfo(); 1022 1023 if (DI->getType()->isVariablyModifiedType()) { 1024 SemaRef.Diag(D->getLocation(), diag::err_property_is_variably_modified) 1025 << D; 1026 Invalid = true; 1027 } else if (DI->getType()->isInstantiationDependentType()) { 1028 DI = SemaRef.SubstType(DI, TemplateArgs, 1029 D->getLocation(), D->getDeclName()); 1030 if (!DI) { 1031 DI = D->getTypeSourceInfo(); 1032 Invalid = true; 1033 } else if (DI->getType()->isFunctionType()) { 1034 // C++ [temp.arg.type]p3: 1035 // If a declaration acquires a function type through a type 1036 // dependent on a template-parameter and this causes a 1037 // declaration that does not use the syntactic form of a 1038 // function declarator to have function type, the program is 1039 // ill-formed. 1040 SemaRef.Diag(D->getLocation(), diag::err_field_instantiates_to_function) 1041 << DI->getType(); 1042 Invalid = true; 1043 } 1044 } else { 1045 SemaRef.MarkDeclarationsReferencedInType(D->getLocation(), DI->getType()); 1046 } 1047 1048 MSPropertyDecl *Property = MSPropertyDecl::Create( 1049 SemaRef.Context, Owner, D->getLocation(), D->getDeclName(), DI->getType(), 1050 DI, D->getBeginLoc(), D->getGetterId(), D->getSetterId()); 1051 1052 SemaRef.InstantiateAttrs(TemplateArgs, D, Property, LateAttrs, 1053 StartingScope); 1054 1055 if (Invalid) 1056 Property->setInvalidDecl(); 1057 1058 Property->setAccess(D->getAccess()); 1059 Owner->addDecl(Property); 1060 1061 return Property; 1062 } 1063 1064 Decl *TemplateDeclInstantiator::VisitIndirectFieldDecl(IndirectFieldDecl *D) { 1065 NamedDecl **NamedChain = 1066 new (SemaRef.Context)NamedDecl*[D->getChainingSize()]; 1067 1068 int i = 0; 1069 for (auto *PI : D->chain()) { 1070 NamedDecl *Next = SemaRef.FindInstantiatedDecl(D->getLocation(), PI, 1071 TemplateArgs); 1072 if (!Next) 1073 return nullptr; 1074 1075 NamedChain[i++] = Next; 1076 } 1077 1078 QualType T = cast<FieldDecl>(NamedChain[i-1])->getType(); 1079 IndirectFieldDecl *IndirectField = IndirectFieldDecl::Create( 1080 SemaRef.Context, Owner, D->getLocation(), D->getIdentifier(), T, 1081 {NamedChain, D->getChainingSize()}); 1082 1083 for (const auto *Attr : D->attrs()) 1084 IndirectField->addAttr(Attr->clone(SemaRef.Context)); 1085 1086 IndirectField->setImplicit(D->isImplicit()); 1087 IndirectField->setAccess(D->getAccess()); 1088 Owner->addDecl(IndirectField); 1089 return IndirectField; 1090 } 1091 1092 Decl *TemplateDeclInstantiator::VisitFriendDecl(FriendDecl *D) { 1093 // Handle friend type expressions by simply substituting template 1094 // parameters into the pattern type and checking the result. 1095 if (TypeSourceInfo *Ty = D->getFriendType()) { 1096 TypeSourceInfo *InstTy; 1097 // If this is an unsupported friend, don't bother substituting template 1098 // arguments into it. The actual type referred to won't be used by any 1099 // parts of Clang, and may not be valid for instantiating. Just use the 1100 // same info for the instantiated friend. 1101 if (D->isUnsupportedFriend()) { 1102 InstTy = Ty; 1103 } else { 1104 InstTy = SemaRef.SubstType(Ty, TemplateArgs, 1105 D->getLocation(), DeclarationName()); 1106 } 1107 if (!InstTy) 1108 return nullptr; 1109 1110 FriendDecl *FD = SemaRef.CheckFriendTypeDecl(D->getBeginLoc(), 1111 D->getFriendLoc(), InstTy); 1112 if (!FD) 1113 return nullptr; 1114 1115 FD->setAccess(AS_public); 1116 FD->setUnsupportedFriend(D->isUnsupportedFriend()); 1117 Owner->addDecl(FD); 1118 return FD; 1119 } 1120 1121 NamedDecl *ND = D->getFriendDecl(); 1122 assert(ND && "friend decl must be a decl or a type!"); 1123 1124 // All of the Visit implementations for the various potential friend 1125 // declarations have to be carefully written to work for friend 1126 // objects, with the most important detail being that the target 1127 // decl should almost certainly not be placed in Owner. 1128 Decl *NewND = Visit(ND); 1129 if (!NewND) return nullptr; 1130 1131 FriendDecl *FD = 1132 FriendDecl::Create(SemaRef.Context, Owner, D->getLocation(), 1133 cast<NamedDecl>(NewND), D->getFriendLoc()); 1134 FD->setAccess(AS_public); 1135 FD->setUnsupportedFriend(D->isUnsupportedFriend()); 1136 Owner->addDecl(FD); 1137 return FD; 1138 } 1139 1140 Decl *TemplateDeclInstantiator::VisitStaticAssertDecl(StaticAssertDecl *D) { 1141 Expr *AssertExpr = D->getAssertExpr(); 1142 1143 // The expression in a static assertion is a constant expression. 1144 EnterExpressionEvaluationContext Unevaluated( 1145 SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated); 1146 1147 ExprResult InstantiatedAssertExpr 1148 = SemaRef.SubstExpr(AssertExpr, TemplateArgs); 1149 if (InstantiatedAssertExpr.isInvalid()) 1150 return nullptr; 1151 1152 return SemaRef.BuildStaticAssertDeclaration(D->getLocation(), 1153 InstantiatedAssertExpr.get(), 1154 D->getMessage(), 1155 D->getRParenLoc(), 1156 D->isFailed()); 1157 } 1158 1159 Decl *TemplateDeclInstantiator::VisitEnumDecl(EnumDecl *D) { 1160 EnumDecl *PrevDecl = nullptr; 1161 if (EnumDecl *PatternPrev = getPreviousDeclForInstantiation(D)) { 1162 NamedDecl *Prev = SemaRef.FindInstantiatedDecl(D->getLocation(), 1163 PatternPrev, 1164 TemplateArgs); 1165 if (!Prev) return nullptr; 1166 PrevDecl = cast<EnumDecl>(Prev); 1167 } 1168 1169 EnumDecl *Enum = 1170 EnumDecl::Create(SemaRef.Context, Owner, D->getBeginLoc(), 1171 D->getLocation(), D->getIdentifier(), PrevDecl, 1172 D->isScoped(), D->isScopedUsingClassTag(), D->isFixed()); 1173 if (D->isFixed()) { 1174 if (TypeSourceInfo *TI = D->getIntegerTypeSourceInfo()) { 1175 // If we have type source information for the underlying type, it means it 1176 // has been explicitly set by the user. Perform substitution on it before 1177 // moving on. 1178 SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc(); 1179 TypeSourceInfo *NewTI = SemaRef.SubstType(TI, TemplateArgs, UnderlyingLoc, 1180 DeclarationName()); 1181 if (!NewTI || SemaRef.CheckEnumUnderlyingType(NewTI)) 1182 Enum->setIntegerType(SemaRef.Context.IntTy); 1183 else 1184 Enum->setIntegerTypeSourceInfo(NewTI); 1185 } else { 1186 assert(!D->getIntegerType()->isDependentType() 1187 && "Dependent type without type source info"); 1188 Enum->setIntegerType(D->getIntegerType()); 1189 } 1190 } 1191 1192 SemaRef.InstantiateAttrs(TemplateArgs, D, Enum); 1193 1194 Enum->setInstantiationOfMemberEnum(D, TSK_ImplicitInstantiation); 1195 Enum->setAccess(D->getAccess()); 1196 // Forward the mangling number from the template to the instantiated decl. 1197 SemaRef.Context.setManglingNumber(Enum, SemaRef.Context.getManglingNumber(D)); 1198 // See if the old tag was defined along with a declarator. 1199 // If it did, mark the new tag as being associated with that declarator. 1200 if (DeclaratorDecl *DD = SemaRef.Context.getDeclaratorForUnnamedTagDecl(D)) 1201 SemaRef.Context.addDeclaratorForUnnamedTagDecl(Enum, DD); 1202 // See if the old tag was defined along with a typedef. 1203 // If it did, mark the new tag as being associated with that typedef. 1204 if (TypedefNameDecl *TND = SemaRef.Context.getTypedefNameForUnnamedTagDecl(D)) 1205 SemaRef.Context.addTypedefNameForUnnamedTagDecl(Enum, TND); 1206 if (SubstQualifier(D, Enum)) return nullptr; 1207 Owner->addDecl(Enum); 1208 1209 EnumDecl *Def = D->getDefinition(); 1210 if (Def && Def != D) { 1211 // If this is an out-of-line definition of an enum member template, check 1212 // that the underlying types match in the instantiation of both 1213 // declarations. 1214 if (TypeSourceInfo *TI = Def->getIntegerTypeSourceInfo()) { 1215 SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc(); 1216 QualType DefnUnderlying = 1217 SemaRef.SubstType(TI->getType(), TemplateArgs, 1218 UnderlyingLoc, DeclarationName()); 1219 SemaRef.CheckEnumRedeclaration(Def->getLocation(), Def->isScoped(), 1220 DefnUnderlying, /*IsFixed=*/true, Enum); 1221 } 1222 } 1223 1224 // C++11 [temp.inst]p1: The implicit instantiation of a class template 1225 // specialization causes the implicit instantiation of the declarations, but 1226 // not the definitions of scoped member enumerations. 1227 // 1228 // DR1484 clarifies that enumeration definitions inside of a template 1229 // declaration aren't considered entities that can be separately instantiated 1230 // from the rest of the entity they are declared inside of. 1231 if (isDeclWithinFunction(D) ? D == Def : Def && !Enum->isScoped()) { 1232 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Enum); 1233 InstantiateEnumDefinition(Enum, Def); 1234 } 1235 1236 return Enum; 1237 } 1238 1239 void TemplateDeclInstantiator::InstantiateEnumDefinition( 1240 EnumDecl *Enum, EnumDecl *Pattern) { 1241 Enum->startDefinition(); 1242 1243 // Update the location to refer to the definition. 1244 Enum->setLocation(Pattern->getLocation()); 1245 1246 SmallVector<Decl*, 4> Enumerators; 1247 1248 EnumConstantDecl *LastEnumConst = nullptr; 1249 for (auto *EC : Pattern->enumerators()) { 1250 // The specified value for the enumerator. 1251 ExprResult Value((Expr *)nullptr); 1252 if (Expr *UninstValue = EC->getInitExpr()) { 1253 // The enumerator's value expression is a constant expression. 1254 EnterExpressionEvaluationContext Unevaluated( 1255 SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated); 1256 1257 Value = SemaRef.SubstExpr(UninstValue, TemplateArgs); 1258 } 1259 1260 // Drop the initial value and continue. 1261 bool isInvalid = false; 1262 if (Value.isInvalid()) { 1263 Value = nullptr; 1264 isInvalid = true; 1265 } 1266 1267 EnumConstantDecl *EnumConst 1268 = SemaRef.CheckEnumConstant(Enum, LastEnumConst, 1269 EC->getLocation(), EC->getIdentifier(), 1270 Value.get()); 1271 1272 if (isInvalid) { 1273 if (EnumConst) 1274 EnumConst->setInvalidDecl(); 1275 Enum->setInvalidDecl(); 1276 } 1277 1278 if (EnumConst) { 1279 SemaRef.InstantiateAttrs(TemplateArgs, EC, EnumConst); 1280 1281 EnumConst->setAccess(Enum->getAccess()); 1282 Enum->addDecl(EnumConst); 1283 Enumerators.push_back(EnumConst); 1284 LastEnumConst = EnumConst; 1285 1286 if (Pattern->getDeclContext()->isFunctionOrMethod() && 1287 !Enum->isScoped()) { 1288 // If the enumeration is within a function or method, record the enum 1289 // constant as a local. 1290 SemaRef.CurrentInstantiationScope->InstantiatedLocal(EC, EnumConst); 1291 } 1292 } 1293 } 1294 1295 SemaRef.ActOnEnumBody(Enum->getLocation(), Enum->getBraceRange(), Enum, 1296 Enumerators, nullptr, ParsedAttributesView()); 1297 } 1298 1299 Decl *TemplateDeclInstantiator::VisitEnumConstantDecl(EnumConstantDecl *D) { 1300 llvm_unreachable("EnumConstantDecls can only occur within EnumDecls."); 1301 } 1302 1303 Decl * 1304 TemplateDeclInstantiator::VisitBuiltinTemplateDecl(BuiltinTemplateDecl *D) { 1305 llvm_unreachable("BuiltinTemplateDecls cannot be instantiated."); 1306 } 1307 1308 Decl *TemplateDeclInstantiator::VisitClassTemplateDecl(ClassTemplateDecl *D) { 1309 bool isFriend = (D->getFriendObjectKind() != Decl::FOK_None); 1310 1311 // Create a local instantiation scope for this class template, which 1312 // will contain the instantiations of the template parameters. 1313 LocalInstantiationScope Scope(SemaRef); 1314 TemplateParameterList *TempParams = D->getTemplateParameters(); 1315 TemplateParameterList *InstParams = SubstTemplateParams(TempParams); 1316 if (!InstParams) 1317 return nullptr; 1318 1319 CXXRecordDecl *Pattern = D->getTemplatedDecl(); 1320 1321 // Instantiate the qualifier. We have to do this first in case 1322 // we're a friend declaration, because if we are then we need to put 1323 // the new declaration in the appropriate context. 1324 NestedNameSpecifierLoc QualifierLoc = Pattern->getQualifierLoc(); 1325 if (QualifierLoc) { 1326 QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, 1327 TemplateArgs); 1328 if (!QualifierLoc) 1329 return nullptr; 1330 } 1331 1332 CXXRecordDecl *PrevDecl = nullptr; 1333 ClassTemplateDecl *PrevClassTemplate = nullptr; 1334 1335 if (!isFriend && getPreviousDeclForInstantiation(Pattern)) { 1336 DeclContext::lookup_result Found = Owner->lookup(Pattern->getDeclName()); 1337 if (!Found.empty()) { 1338 PrevClassTemplate = dyn_cast<ClassTemplateDecl>(Found.front()); 1339 if (PrevClassTemplate) 1340 PrevDecl = PrevClassTemplate->getTemplatedDecl(); 1341 } 1342 } 1343 1344 // If this isn't a friend, then it's a member template, in which 1345 // case we just want to build the instantiation in the 1346 // specialization. If it is a friend, we want to build it in 1347 // the appropriate context. 1348 DeclContext *DC = Owner; 1349 if (isFriend) { 1350 if (QualifierLoc) { 1351 CXXScopeSpec SS; 1352 SS.Adopt(QualifierLoc); 1353 DC = SemaRef.computeDeclContext(SS); 1354 if (!DC) return nullptr; 1355 } else { 1356 DC = SemaRef.FindInstantiatedContext(Pattern->getLocation(), 1357 Pattern->getDeclContext(), 1358 TemplateArgs); 1359 } 1360 1361 // Look for a previous declaration of the template in the owning 1362 // context. 1363 LookupResult R(SemaRef, Pattern->getDeclName(), Pattern->getLocation(), 1364 Sema::LookupOrdinaryName, 1365 SemaRef.forRedeclarationInCurContext()); 1366 SemaRef.LookupQualifiedName(R, DC); 1367 1368 if (R.isSingleResult()) { 1369 PrevClassTemplate = R.getAsSingle<ClassTemplateDecl>(); 1370 if (PrevClassTemplate) 1371 PrevDecl = PrevClassTemplate->getTemplatedDecl(); 1372 } 1373 1374 if (!PrevClassTemplate && QualifierLoc) { 1375 SemaRef.Diag(Pattern->getLocation(), diag::err_not_tag_in_scope) 1376 << D->getTemplatedDecl()->getTagKind() << Pattern->getDeclName() << DC 1377 << QualifierLoc.getSourceRange(); 1378 return nullptr; 1379 } 1380 1381 bool AdoptedPreviousTemplateParams = false; 1382 if (PrevClassTemplate) { 1383 bool Complain = true; 1384 1385 // HACK: libstdc++ 4.2.1 contains an ill-formed friend class 1386 // template for struct std::tr1::__detail::_Map_base, where the 1387 // template parameters of the friend declaration don't match the 1388 // template parameters of the original declaration. In this one 1389 // case, we don't complain about the ill-formed friend 1390 // declaration. 1391 if (isFriend && Pattern->getIdentifier() && 1392 Pattern->getIdentifier()->isStr("_Map_base") && 1393 DC->isNamespace() && 1394 cast<NamespaceDecl>(DC)->getIdentifier() && 1395 cast<NamespaceDecl>(DC)->getIdentifier()->isStr("__detail")) { 1396 DeclContext *DCParent = DC->getParent(); 1397 if (DCParent->isNamespace() && 1398 cast<NamespaceDecl>(DCParent)->getIdentifier() && 1399 cast<NamespaceDecl>(DCParent)->getIdentifier()->isStr("tr1")) { 1400 if (cast<Decl>(DCParent)->isInStdNamespace()) 1401 Complain = false; 1402 } 1403 } 1404 1405 TemplateParameterList *PrevParams 1406 = PrevClassTemplate->getMostRecentDecl()->getTemplateParameters(); 1407 1408 // Make sure the parameter lists match. 1409 if (!SemaRef.TemplateParameterListsAreEqual(InstParams, PrevParams, 1410 Complain, 1411 Sema::TPL_TemplateMatch)) { 1412 if (Complain) 1413 return nullptr; 1414 1415 AdoptedPreviousTemplateParams = true; 1416 InstParams = PrevParams; 1417 } 1418 1419 // Do some additional validation, then merge default arguments 1420 // from the existing declarations. 1421 if (!AdoptedPreviousTemplateParams && 1422 SemaRef.CheckTemplateParameterList(InstParams, PrevParams, 1423 Sema::TPC_ClassTemplate)) 1424 return nullptr; 1425 } 1426 } 1427 1428 CXXRecordDecl *RecordInst = CXXRecordDecl::Create( 1429 SemaRef.Context, Pattern->getTagKind(), DC, Pattern->getBeginLoc(), 1430 Pattern->getLocation(), Pattern->getIdentifier(), PrevDecl, 1431 /*DelayTypeCreation=*/true); 1432 1433 if (QualifierLoc) 1434 RecordInst->setQualifierInfo(QualifierLoc); 1435 1436 SemaRef.InstantiateAttrsForDecl(TemplateArgs, Pattern, RecordInst, LateAttrs, 1437 StartingScope); 1438 1439 ClassTemplateDecl *Inst 1440 = ClassTemplateDecl::Create(SemaRef.Context, DC, D->getLocation(), 1441 D->getIdentifier(), InstParams, RecordInst); 1442 assert(!(isFriend && Owner->isDependentContext())); 1443 Inst->setPreviousDecl(PrevClassTemplate); 1444 1445 RecordInst->setDescribedClassTemplate(Inst); 1446 1447 if (isFriend) { 1448 if (PrevClassTemplate) 1449 Inst->setAccess(PrevClassTemplate->getAccess()); 1450 else 1451 Inst->setAccess(D->getAccess()); 1452 1453 Inst->setObjectOfFriendDecl(); 1454 // TODO: do we want to track the instantiation progeny of this 1455 // friend target decl? 1456 } else { 1457 Inst->setAccess(D->getAccess()); 1458 if (!PrevClassTemplate) 1459 Inst->setInstantiatedFromMemberTemplate(D); 1460 } 1461 1462 // Trigger creation of the type for the instantiation. 1463 SemaRef.Context.getInjectedClassNameType(RecordInst, 1464 Inst->getInjectedClassNameSpecialization()); 1465 1466 // Finish handling of friends. 1467 if (isFriend) { 1468 DC->makeDeclVisibleInContext(Inst); 1469 Inst->setLexicalDeclContext(Owner); 1470 RecordInst->setLexicalDeclContext(Owner); 1471 return Inst; 1472 } 1473 1474 if (D->isOutOfLine()) { 1475 Inst->setLexicalDeclContext(D->getLexicalDeclContext()); 1476 RecordInst->setLexicalDeclContext(D->getLexicalDeclContext()); 1477 } 1478 1479 Owner->addDecl(Inst); 1480 1481 if (!PrevClassTemplate) { 1482 // Queue up any out-of-line partial specializations of this member 1483 // class template; the client will force their instantiation once 1484 // the enclosing class has been instantiated. 1485 SmallVector<ClassTemplatePartialSpecializationDecl *, 4> PartialSpecs; 1486 D->getPartialSpecializations(PartialSpecs); 1487 for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I) 1488 if (PartialSpecs[I]->getFirstDecl()->isOutOfLine()) 1489 OutOfLinePartialSpecs.push_back(std::make_pair(Inst, PartialSpecs[I])); 1490 } 1491 1492 return Inst; 1493 } 1494 1495 Decl * 1496 TemplateDeclInstantiator::VisitClassTemplatePartialSpecializationDecl( 1497 ClassTemplatePartialSpecializationDecl *D) { 1498 ClassTemplateDecl *ClassTemplate = D->getSpecializedTemplate(); 1499 1500 // Lookup the already-instantiated declaration in the instantiation 1501 // of the class template and return that. 1502 DeclContext::lookup_result Found 1503 = Owner->lookup(ClassTemplate->getDeclName()); 1504 if (Found.empty()) 1505 return nullptr; 1506 1507 ClassTemplateDecl *InstClassTemplate 1508 = dyn_cast<ClassTemplateDecl>(Found.front()); 1509 if (!InstClassTemplate) 1510 return nullptr; 1511 1512 if (ClassTemplatePartialSpecializationDecl *Result 1513 = InstClassTemplate->findPartialSpecInstantiatedFromMember(D)) 1514 return Result; 1515 1516 return InstantiateClassTemplatePartialSpecialization(InstClassTemplate, D); 1517 } 1518 1519 Decl *TemplateDeclInstantiator::VisitVarTemplateDecl(VarTemplateDecl *D) { 1520 assert(D->getTemplatedDecl()->isStaticDataMember() && 1521 "Only static data member templates are allowed."); 1522 1523 // Create a local instantiation scope for this variable template, which 1524 // will contain the instantiations of the template parameters. 1525 LocalInstantiationScope Scope(SemaRef); 1526 TemplateParameterList *TempParams = D->getTemplateParameters(); 1527 TemplateParameterList *InstParams = SubstTemplateParams(TempParams); 1528 if (!InstParams) 1529 return nullptr; 1530 1531 VarDecl *Pattern = D->getTemplatedDecl(); 1532 VarTemplateDecl *PrevVarTemplate = nullptr; 1533 1534 if (getPreviousDeclForInstantiation(Pattern)) { 1535 DeclContext::lookup_result Found = Owner->lookup(Pattern->getDeclName()); 1536 if (!Found.empty()) 1537 PrevVarTemplate = dyn_cast<VarTemplateDecl>(Found.front()); 1538 } 1539 1540 VarDecl *VarInst = 1541 cast_or_null<VarDecl>(VisitVarDecl(Pattern, 1542 /*InstantiatingVarTemplate=*/true)); 1543 if (!VarInst) return nullptr; 1544 1545 DeclContext *DC = Owner; 1546 1547 VarTemplateDecl *Inst = VarTemplateDecl::Create( 1548 SemaRef.Context, DC, D->getLocation(), D->getIdentifier(), InstParams, 1549 VarInst); 1550 VarInst->setDescribedVarTemplate(Inst); 1551 Inst->setPreviousDecl(PrevVarTemplate); 1552 1553 Inst->setAccess(D->getAccess()); 1554 if (!PrevVarTemplate) 1555 Inst->setInstantiatedFromMemberTemplate(D); 1556 1557 if (D->isOutOfLine()) { 1558 Inst->setLexicalDeclContext(D->getLexicalDeclContext()); 1559 VarInst->setLexicalDeclContext(D->getLexicalDeclContext()); 1560 } 1561 1562 Owner->addDecl(Inst); 1563 1564 if (!PrevVarTemplate) { 1565 // Queue up any out-of-line partial specializations of this member 1566 // variable template; the client will force their instantiation once 1567 // the enclosing class has been instantiated. 1568 SmallVector<VarTemplatePartialSpecializationDecl *, 4> PartialSpecs; 1569 D->getPartialSpecializations(PartialSpecs); 1570 for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I) 1571 if (PartialSpecs[I]->getFirstDecl()->isOutOfLine()) 1572 OutOfLineVarPartialSpecs.push_back( 1573 std::make_pair(Inst, PartialSpecs[I])); 1574 } 1575 1576 return Inst; 1577 } 1578 1579 Decl *TemplateDeclInstantiator::VisitVarTemplatePartialSpecializationDecl( 1580 VarTemplatePartialSpecializationDecl *D) { 1581 assert(D->isStaticDataMember() && 1582 "Only static data member templates are allowed."); 1583 1584 VarTemplateDecl *VarTemplate = D->getSpecializedTemplate(); 1585 1586 // Lookup the already-instantiated declaration and return that. 1587 DeclContext::lookup_result Found = Owner->lookup(VarTemplate->getDeclName()); 1588 assert(!Found.empty() && "Instantiation found nothing?"); 1589 1590 VarTemplateDecl *InstVarTemplate = dyn_cast<VarTemplateDecl>(Found.front()); 1591 assert(InstVarTemplate && "Instantiation did not find a variable template?"); 1592 1593 if (VarTemplatePartialSpecializationDecl *Result = 1594 InstVarTemplate->findPartialSpecInstantiatedFromMember(D)) 1595 return Result; 1596 1597 return InstantiateVarTemplatePartialSpecialization(InstVarTemplate, D); 1598 } 1599 1600 Decl * 1601 TemplateDeclInstantiator::VisitFunctionTemplateDecl(FunctionTemplateDecl *D) { 1602 // Create a local instantiation scope for this function template, which 1603 // will contain the instantiations of the template parameters and then get 1604 // merged with the local instantiation scope for the function template 1605 // itself. 1606 LocalInstantiationScope Scope(SemaRef); 1607 1608 TemplateParameterList *TempParams = D->getTemplateParameters(); 1609 TemplateParameterList *InstParams = SubstTemplateParams(TempParams); 1610 if (!InstParams) 1611 return nullptr; 1612 1613 FunctionDecl *Instantiated = nullptr; 1614 if (CXXMethodDecl *DMethod = dyn_cast<CXXMethodDecl>(D->getTemplatedDecl())) 1615 Instantiated = cast_or_null<FunctionDecl>(VisitCXXMethodDecl(DMethod, 1616 InstParams)); 1617 else 1618 Instantiated = cast_or_null<FunctionDecl>(VisitFunctionDecl( 1619 D->getTemplatedDecl(), 1620 InstParams)); 1621 1622 if (!Instantiated) 1623 return nullptr; 1624 1625 // Link the instantiated function template declaration to the function 1626 // template from which it was instantiated. 1627 FunctionTemplateDecl *InstTemplate 1628 = Instantiated->getDescribedFunctionTemplate(); 1629 InstTemplate->setAccess(D->getAccess()); 1630 assert(InstTemplate && 1631 "VisitFunctionDecl/CXXMethodDecl didn't create a template!"); 1632 1633 bool isFriend = (InstTemplate->getFriendObjectKind() != Decl::FOK_None); 1634 1635 // Link the instantiation back to the pattern *unless* this is a 1636 // non-definition friend declaration. 1637 if (!InstTemplate->getInstantiatedFromMemberTemplate() && 1638 !(isFriend && !D->getTemplatedDecl()->isThisDeclarationADefinition())) 1639 InstTemplate->setInstantiatedFromMemberTemplate(D); 1640 1641 // Make declarations visible in the appropriate context. 1642 if (!isFriend) { 1643 Owner->addDecl(InstTemplate); 1644 } else if (InstTemplate->getDeclContext()->isRecord() && 1645 !getPreviousDeclForInstantiation(D)) { 1646 SemaRef.CheckFriendAccess(InstTemplate); 1647 } 1648 1649 return InstTemplate; 1650 } 1651 1652 Decl *TemplateDeclInstantiator::VisitCXXRecordDecl(CXXRecordDecl *D) { 1653 CXXRecordDecl *PrevDecl = nullptr; 1654 if (D->isInjectedClassName()) 1655 PrevDecl = cast<CXXRecordDecl>(Owner); 1656 else if (CXXRecordDecl *PatternPrev = getPreviousDeclForInstantiation(D)) { 1657 NamedDecl *Prev = SemaRef.FindInstantiatedDecl(D->getLocation(), 1658 PatternPrev, 1659 TemplateArgs); 1660 if (!Prev) return nullptr; 1661 PrevDecl = cast<CXXRecordDecl>(Prev); 1662 } 1663 1664 CXXRecordDecl *Record = CXXRecordDecl::Create( 1665 SemaRef.Context, D->getTagKind(), Owner, D->getBeginLoc(), 1666 D->getLocation(), D->getIdentifier(), PrevDecl); 1667 1668 // Substitute the nested name specifier, if any. 1669 if (SubstQualifier(D, Record)) 1670 return nullptr; 1671 1672 SemaRef.InstantiateAttrsForDecl(TemplateArgs, D, Record, LateAttrs, 1673 StartingScope); 1674 1675 Record->setImplicit(D->isImplicit()); 1676 // FIXME: Check against AS_none is an ugly hack to work around the issue that 1677 // the tag decls introduced by friend class declarations don't have an access 1678 // specifier. Remove once this area of the code gets sorted out. 1679 if (D->getAccess() != AS_none) 1680 Record->setAccess(D->getAccess()); 1681 if (!D->isInjectedClassName()) 1682 Record->setInstantiationOfMemberClass(D, TSK_ImplicitInstantiation); 1683 1684 // If the original function was part of a friend declaration, 1685 // inherit its namespace state. 1686 if (D->getFriendObjectKind()) 1687 Record->setObjectOfFriendDecl(); 1688 1689 // Make sure that anonymous structs and unions are recorded. 1690 if (D->isAnonymousStructOrUnion()) 1691 Record->setAnonymousStructOrUnion(true); 1692 1693 if (D->isLocalClass()) 1694 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Record); 1695 1696 // Forward the mangling number from the template to the instantiated decl. 1697 SemaRef.Context.setManglingNumber(Record, 1698 SemaRef.Context.getManglingNumber(D)); 1699 1700 // See if the old tag was defined along with a declarator. 1701 // If it did, mark the new tag as being associated with that declarator. 1702 if (DeclaratorDecl *DD = SemaRef.Context.getDeclaratorForUnnamedTagDecl(D)) 1703 SemaRef.Context.addDeclaratorForUnnamedTagDecl(Record, DD); 1704 1705 // See if the old tag was defined along with a typedef. 1706 // If it did, mark the new tag as being associated with that typedef. 1707 if (TypedefNameDecl *TND = SemaRef.Context.getTypedefNameForUnnamedTagDecl(D)) 1708 SemaRef.Context.addTypedefNameForUnnamedTagDecl(Record, TND); 1709 1710 Owner->addDecl(Record); 1711 1712 // DR1484 clarifies that the members of a local class are instantiated as part 1713 // of the instantiation of their enclosing entity. 1714 if (D->isCompleteDefinition() && D->isLocalClass()) { 1715 Sema::LocalEagerInstantiationScope LocalInstantiations(SemaRef); 1716 1717 SemaRef.InstantiateClass(D->getLocation(), Record, D, TemplateArgs, 1718 TSK_ImplicitInstantiation, 1719 /*Complain=*/true); 1720 1721 // For nested local classes, we will instantiate the members when we 1722 // reach the end of the outermost (non-nested) local class. 1723 if (!D->isCXXClassMember()) 1724 SemaRef.InstantiateClassMembers(D->getLocation(), Record, TemplateArgs, 1725 TSK_ImplicitInstantiation); 1726 1727 // This class may have local implicit instantiations that need to be 1728 // performed within this scope. 1729 LocalInstantiations.perform(); 1730 } 1731 1732 SemaRef.DiagnoseUnusedNestedTypedefs(Record); 1733 1734 return Record; 1735 } 1736 1737 /// Adjust the given function type for an instantiation of the 1738 /// given declaration, to cope with modifications to the function's type that 1739 /// aren't reflected in the type-source information. 1740 /// 1741 /// \param D The declaration we're instantiating. 1742 /// \param TInfo The already-instantiated type. 1743 static QualType adjustFunctionTypeForInstantiation(ASTContext &Context, 1744 FunctionDecl *D, 1745 TypeSourceInfo *TInfo) { 1746 const FunctionProtoType *OrigFunc 1747 = D->getType()->castAs<FunctionProtoType>(); 1748 const FunctionProtoType *NewFunc 1749 = TInfo->getType()->castAs<FunctionProtoType>(); 1750 if (OrigFunc->getExtInfo() == NewFunc->getExtInfo()) 1751 return TInfo->getType(); 1752 1753 FunctionProtoType::ExtProtoInfo NewEPI = NewFunc->getExtProtoInfo(); 1754 NewEPI.ExtInfo = OrigFunc->getExtInfo(); 1755 return Context.getFunctionType(NewFunc->getReturnType(), 1756 NewFunc->getParamTypes(), NewEPI); 1757 } 1758 1759 /// Normal class members are of more specific types and therefore 1760 /// don't make it here. This function serves three purposes: 1761 /// 1) instantiating function templates 1762 /// 2) substituting friend declarations 1763 /// 3) substituting deduction guide declarations for nested class templates 1764 Decl *TemplateDeclInstantiator::VisitFunctionDecl(FunctionDecl *D, 1765 TemplateParameterList *TemplateParams) { 1766 // Check whether there is already a function template specialization for 1767 // this declaration. 1768 FunctionTemplateDecl *FunctionTemplate = D->getDescribedFunctionTemplate(); 1769 if (FunctionTemplate && !TemplateParams) { 1770 ArrayRef<TemplateArgument> Innermost = TemplateArgs.getInnermost(); 1771 1772 void *InsertPos = nullptr; 1773 FunctionDecl *SpecFunc 1774 = FunctionTemplate->findSpecialization(Innermost, InsertPos); 1775 1776 // If we already have a function template specialization, return it. 1777 if (SpecFunc) 1778 return SpecFunc; 1779 } 1780 1781 bool isFriend; 1782 if (FunctionTemplate) 1783 isFriend = (FunctionTemplate->getFriendObjectKind() != Decl::FOK_None); 1784 else 1785 isFriend = (D->getFriendObjectKind() != Decl::FOK_None); 1786 1787 bool MergeWithParentScope = (TemplateParams != nullptr) || 1788 Owner->isFunctionOrMethod() || 1789 !(isa<Decl>(Owner) && 1790 cast<Decl>(Owner)->isDefinedOutsideFunctionOrMethod()); 1791 LocalInstantiationScope Scope(SemaRef, MergeWithParentScope); 1792 1793 ExplicitSpecifier InstantiatedExplicitSpecifier; 1794 if (auto *DGuide = dyn_cast<CXXDeductionGuideDecl>(D)) { 1795 InstantiatedExplicitSpecifier = instantiateExplicitSpecifier( 1796 SemaRef, TemplateArgs, DGuide->getExplicitSpecifier(), DGuide); 1797 if (InstantiatedExplicitSpecifier.isInvalid()) 1798 return nullptr; 1799 } 1800 1801 SmallVector<ParmVarDecl *, 4> Params; 1802 TypeSourceInfo *TInfo = SubstFunctionType(D, Params); 1803 if (!TInfo) 1804 return nullptr; 1805 QualType T = adjustFunctionTypeForInstantiation(SemaRef.Context, D, TInfo); 1806 1807 NestedNameSpecifierLoc QualifierLoc = D->getQualifierLoc(); 1808 if (QualifierLoc) { 1809 QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, 1810 TemplateArgs); 1811 if (!QualifierLoc) 1812 return nullptr; 1813 } 1814 1815 // If we're instantiating a local function declaration, put the result 1816 // in the enclosing namespace; otherwise we need to find the instantiated 1817 // context. 1818 DeclContext *DC; 1819 if (D->isLocalExternDecl()) { 1820 DC = Owner; 1821 SemaRef.adjustContextForLocalExternDecl(DC); 1822 } else if (isFriend && QualifierLoc) { 1823 CXXScopeSpec SS; 1824 SS.Adopt(QualifierLoc); 1825 DC = SemaRef.computeDeclContext(SS); 1826 if (!DC) return nullptr; 1827 } else { 1828 DC = SemaRef.FindInstantiatedContext(D->getLocation(), D->getDeclContext(), 1829 TemplateArgs); 1830 } 1831 1832 DeclarationNameInfo NameInfo 1833 = SemaRef.SubstDeclarationNameInfo(D->getNameInfo(), TemplateArgs); 1834 1835 FunctionDecl *Function; 1836 if (auto *DGuide = dyn_cast<CXXDeductionGuideDecl>(D)) { 1837 Function = CXXDeductionGuideDecl::Create( 1838 SemaRef.Context, DC, D->getInnerLocStart(), 1839 InstantiatedExplicitSpecifier, NameInfo, T, TInfo, 1840 D->getSourceRange().getEnd()); 1841 if (DGuide->isCopyDeductionCandidate()) 1842 cast<CXXDeductionGuideDecl>(Function)->setIsCopyDeductionCandidate(); 1843 Function->setAccess(D->getAccess()); 1844 } else { 1845 Function = FunctionDecl::Create( 1846 SemaRef.Context, DC, D->getInnerLocStart(), NameInfo, T, TInfo, 1847 D->getCanonicalDecl()->getStorageClass(), D->isInlineSpecified(), 1848 D->hasWrittenPrototype(), D->getConstexprKind()); 1849 Function->setRangeEnd(D->getSourceRange().getEnd()); 1850 } 1851 1852 if (D->isInlined()) 1853 Function->setImplicitlyInline(); 1854 1855 if (QualifierLoc) 1856 Function->setQualifierInfo(QualifierLoc); 1857 1858 if (D->isLocalExternDecl()) 1859 Function->setLocalExternDecl(); 1860 1861 DeclContext *LexicalDC = Owner; 1862 if (!isFriend && D->isOutOfLine() && !D->isLocalExternDecl()) { 1863 assert(D->getDeclContext()->isFileContext()); 1864 LexicalDC = D->getDeclContext(); 1865 } 1866 1867 Function->setLexicalDeclContext(LexicalDC); 1868 1869 // Attach the parameters 1870 for (unsigned P = 0; P < Params.size(); ++P) 1871 if (Params[P]) 1872 Params[P]->setOwningFunction(Function); 1873 Function->setParams(Params); 1874 1875 if (TemplateParams) { 1876 // Our resulting instantiation is actually a function template, since we 1877 // are substituting only the outer template parameters. For example, given 1878 // 1879 // template<typename T> 1880 // struct X { 1881 // template<typename U> friend void f(T, U); 1882 // }; 1883 // 1884 // X<int> x; 1885 // 1886 // We are instantiating the friend function template "f" within X<int>, 1887 // which means substituting int for T, but leaving "f" as a friend function 1888 // template. 1889 // Build the function template itself. 1890 FunctionTemplate = FunctionTemplateDecl::Create(SemaRef.Context, DC, 1891 Function->getLocation(), 1892 Function->getDeclName(), 1893 TemplateParams, Function); 1894 Function->setDescribedFunctionTemplate(FunctionTemplate); 1895 1896 FunctionTemplate->setLexicalDeclContext(LexicalDC); 1897 1898 if (isFriend && D->isThisDeclarationADefinition()) { 1899 FunctionTemplate->setInstantiatedFromMemberTemplate( 1900 D->getDescribedFunctionTemplate()); 1901 } 1902 } else if (FunctionTemplate) { 1903 // Record this function template specialization. 1904 ArrayRef<TemplateArgument> Innermost = TemplateArgs.getInnermost(); 1905 Function->setFunctionTemplateSpecialization(FunctionTemplate, 1906 TemplateArgumentList::CreateCopy(SemaRef.Context, 1907 Innermost), 1908 /*InsertPos=*/nullptr); 1909 } else if (isFriend && D->isThisDeclarationADefinition()) { 1910 // Do not connect the friend to the template unless it's actually a 1911 // definition. We don't want non-template functions to be marked as being 1912 // template instantiations. 1913 Function->setInstantiationOfMemberFunction(D, TSK_ImplicitInstantiation); 1914 } 1915 1916 if (isFriend) 1917 Function->setObjectOfFriendDecl(); 1918 1919 if (InitFunctionInstantiation(Function, D)) 1920 Function->setInvalidDecl(); 1921 1922 bool IsExplicitSpecialization = false; 1923 1924 LookupResult Previous( 1925 SemaRef, Function->getDeclName(), SourceLocation(), 1926 D->isLocalExternDecl() ? Sema::LookupRedeclarationWithLinkage 1927 : Sema::LookupOrdinaryName, 1928 D->isLocalExternDecl() ? Sema::ForExternalRedeclaration 1929 : SemaRef.forRedeclarationInCurContext()); 1930 1931 if (DependentFunctionTemplateSpecializationInfo *Info 1932 = D->getDependentSpecializationInfo()) { 1933 assert(isFriend && "non-friend has dependent specialization info?"); 1934 1935 // Instantiate the explicit template arguments. 1936 TemplateArgumentListInfo ExplicitArgs(Info->getLAngleLoc(), 1937 Info->getRAngleLoc()); 1938 if (SemaRef.Subst(Info->getTemplateArgs(), Info->getNumTemplateArgs(), 1939 ExplicitArgs, TemplateArgs)) 1940 return nullptr; 1941 1942 // Map the candidate templates to their instantiations. 1943 for (unsigned I = 0, E = Info->getNumTemplates(); I != E; ++I) { 1944 Decl *Temp = SemaRef.FindInstantiatedDecl(D->getLocation(), 1945 Info->getTemplate(I), 1946 TemplateArgs); 1947 if (!Temp) return nullptr; 1948 1949 Previous.addDecl(cast<FunctionTemplateDecl>(Temp)); 1950 } 1951 1952 if (SemaRef.CheckFunctionTemplateSpecialization(Function, 1953 &ExplicitArgs, 1954 Previous)) 1955 Function->setInvalidDecl(); 1956 1957 IsExplicitSpecialization = true; 1958 } else if (const ASTTemplateArgumentListInfo *Info = 1959 D->getTemplateSpecializationArgsAsWritten()) { 1960 // The name of this function was written as a template-id. 1961 SemaRef.LookupQualifiedName(Previous, DC); 1962 1963 // Instantiate the explicit template arguments. 1964 TemplateArgumentListInfo ExplicitArgs(Info->getLAngleLoc(), 1965 Info->getRAngleLoc()); 1966 if (SemaRef.Subst(Info->getTemplateArgs(), Info->getNumTemplateArgs(), 1967 ExplicitArgs, TemplateArgs)) 1968 return nullptr; 1969 1970 if (SemaRef.CheckFunctionTemplateSpecialization(Function, 1971 &ExplicitArgs, 1972 Previous)) 1973 Function->setInvalidDecl(); 1974 1975 IsExplicitSpecialization = true; 1976 } else if (TemplateParams || !FunctionTemplate) { 1977 // Look only into the namespace where the friend would be declared to 1978 // find a previous declaration. This is the innermost enclosing namespace, 1979 // as described in ActOnFriendFunctionDecl. 1980 SemaRef.LookupQualifiedName(Previous, DC); 1981 1982 // In C++, the previous declaration we find might be a tag type 1983 // (class or enum). In this case, the new declaration will hide the 1984 // tag type. Note that this does does not apply if we're declaring a 1985 // typedef (C++ [dcl.typedef]p4). 1986 if (Previous.isSingleTagDecl()) 1987 Previous.clear(); 1988 } 1989 1990 SemaRef.CheckFunctionDeclaration(/*Scope*/ nullptr, Function, Previous, 1991 IsExplicitSpecialization); 1992 1993 NamedDecl *PrincipalDecl = (TemplateParams 1994 ? cast<NamedDecl>(FunctionTemplate) 1995 : Function); 1996 1997 // If the original function was part of a friend declaration, 1998 // inherit its namespace state and add it to the owner. 1999 if (isFriend) { 2000 Function->setObjectOfFriendDecl(); 2001 if (FunctionTemplateDecl *FT = Function->getDescribedFunctionTemplate()) 2002 FT->setObjectOfFriendDecl(); 2003 DC->makeDeclVisibleInContext(PrincipalDecl); 2004 2005 bool QueuedInstantiation = false; 2006 2007 // C++11 [temp.friend]p4 (DR329): 2008 // When a function is defined in a friend function declaration in a class 2009 // template, the function is instantiated when the function is odr-used. 2010 // The same restrictions on multiple declarations and definitions that 2011 // apply to non-template function declarations and definitions also apply 2012 // to these implicit definitions. 2013 if (D->isThisDeclarationADefinition()) { 2014 SemaRef.CheckForFunctionRedefinition(Function); 2015 if (!Function->isInvalidDecl()) { 2016 for (auto R : Function->redecls()) { 2017 if (R == Function) 2018 continue; 2019 2020 // If some prior declaration of this function has been used, we need 2021 // to instantiate its definition. 2022 if (!QueuedInstantiation && R->isUsed(false)) { 2023 if (MemberSpecializationInfo *MSInfo = 2024 Function->getMemberSpecializationInfo()) { 2025 if (MSInfo->getPointOfInstantiation().isInvalid()) { 2026 SourceLocation Loc = R->getLocation(); // FIXME 2027 MSInfo->setPointOfInstantiation(Loc); 2028 SemaRef.PendingLocalImplicitInstantiations.push_back( 2029 std::make_pair(Function, Loc)); 2030 QueuedInstantiation = true; 2031 } 2032 } 2033 } 2034 } 2035 } 2036 } 2037 2038 // Check the template parameter list against the previous declaration. The 2039 // goal here is to pick up default arguments added since the friend was 2040 // declared; we know the template parameter lists match, since otherwise 2041 // we would not have picked this template as the previous declaration. 2042 if (TemplateParams && FunctionTemplate->getPreviousDecl()) { 2043 SemaRef.CheckTemplateParameterList( 2044 TemplateParams, 2045 FunctionTemplate->getPreviousDecl()->getTemplateParameters(), 2046 Function->isThisDeclarationADefinition() 2047 ? Sema::TPC_FriendFunctionTemplateDefinition 2048 : Sema::TPC_FriendFunctionTemplate); 2049 } 2050 } 2051 2052 if (D->isExplicitlyDefaulted()) 2053 SemaRef.SetDeclDefaulted(Function, D->getLocation()); 2054 if (D->isDeleted()) 2055 SemaRef.SetDeclDeleted(Function, D->getLocation()); 2056 2057 if (Function->isLocalExternDecl() && !Function->getPreviousDecl()) 2058 DC->makeDeclVisibleInContext(PrincipalDecl); 2059 2060 if (Function->isOverloadedOperator() && !DC->isRecord() && 2061 PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary)) 2062 PrincipalDecl->setNonMemberOperator(); 2063 2064 return Function; 2065 } 2066 2067 Decl *TemplateDeclInstantiator::VisitCXXMethodDecl( 2068 CXXMethodDecl *D, TemplateParameterList *TemplateParams, 2069 Optional<const ASTTemplateArgumentListInfo *> 2070 ClassScopeSpecializationArgs) { 2071 FunctionTemplateDecl *FunctionTemplate = D->getDescribedFunctionTemplate(); 2072 if (FunctionTemplate && !TemplateParams) { 2073 // We are creating a function template specialization from a function 2074 // template. Check whether there is already a function template 2075 // specialization for this particular set of template arguments. 2076 ArrayRef<TemplateArgument> Innermost = TemplateArgs.getInnermost(); 2077 2078 void *InsertPos = nullptr; 2079 FunctionDecl *SpecFunc 2080 = FunctionTemplate->findSpecialization(Innermost, InsertPos); 2081 2082 // If we already have a function template specialization, return it. 2083 if (SpecFunc) 2084 return SpecFunc; 2085 } 2086 2087 bool isFriend; 2088 if (FunctionTemplate) 2089 isFriend = (FunctionTemplate->getFriendObjectKind() != Decl::FOK_None); 2090 else 2091 isFriend = (D->getFriendObjectKind() != Decl::FOK_None); 2092 2093 bool MergeWithParentScope = (TemplateParams != nullptr) || 2094 !(isa<Decl>(Owner) && 2095 cast<Decl>(Owner)->isDefinedOutsideFunctionOrMethod()); 2096 LocalInstantiationScope Scope(SemaRef, MergeWithParentScope); 2097 2098 // Instantiate enclosing template arguments for friends. 2099 SmallVector<TemplateParameterList *, 4> TempParamLists; 2100 unsigned NumTempParamLists = 0; 2101 if (isFriend && (NumTempParamLists = D->getNumTemplateParameterLists())) { 2102 TempParamLists.resize(NumTempParamLists); 2103 for (unsigned I = 0; I != NumTempParamLists; ++I) { 2104 TemplateParameterList *TempParams = D->getTemplateParameterList(I); 2105 TemplateParameterList *InstParams = SubstTemplateParams(TempParams); 2106 if (!InstParams) 2107 return nullptr; 2108 TempParamLists[I] = InstParams; 2109 } 2110 } 2111 2112 ExplicitSpecifier InstantiatedExplicitSpecifier = 2113 instantiateExplicitSpecifier(SemaRef, TemplateArgs, 2114 ExplicitSpecifier::getFromDecl(D), D); 2115 if (InstantiatedExplicitSpecifier.isInvalid()) 2116 return nullptr; 2117 2118 SmallVector<ParmVarDecl *, 4> Params; 2119 TypeSourceInfo *TInfo = SubstFunctionType(D, Params); 2120 if (!TInfo) 2121 return nullptr; 2122 QualType T = adjustFunctionTypeForInstantiation(SemaRef.Context, D, TInfo); 2123 2124 NestedNameSpecifierLoc QualifierLoc = D->getQualifierLoc(); 2125 if (QualifierLoc) { 2126 QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, 2127 TemplateArgs); 2128 if (!QualifierLoc) 2129 return nullptr; 2130 } 2131 2132 DeclContext *DC = Owner; 2133 if (isFriend) { 2134 if (QualifierLoc) { 2135 CXXScopeSpec SS; 2136 SS.Adopt(QualifierLoc); 2137 DC = SemaRef.computeDeclContext(SS); 2138 2139 if (DC && SemaRef.RequireCompleteDeclContext(SS, DC)) 2140 return nullptr; 2141 } else { 2142 DC = SemaRef.FindInstantiatedContext(D->getLocation(), 2143 D->getDeclContext(), 2144 TemplateArgs); 2145 } 2146 if (!DC) return nullptr; 2147 } 2148 2149 // Build the instantiated method declaration. 2150 CXXRecordDecl *Record = cast<CXXRecordDecl>(DC); 2151 CXXMethodDecl *Method = nullptr; 2152 2153 SourceLocation StartLoc = D->getInnerLocStart(); 2154 DeclarationNameInfo NameInfo 2155 = SemaRef.SubstDeclarationNameInfo(D->getNameInfo(), TemplateArgs); 2156 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) { 2157 Method = CXXConstructorDecl::Create( 2158 SemaRef.Context, Record, StartLoc, NameInfo, T, TInfo, 2159 InstantiatedExplicitSpecifier, Constructor->isInlineSpecified(), false, 2160 Constructor->getConstexprKind()); 2161 Method->setRangeEnd(Constructor->getEndLoc()); 2162 } else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(D)) { 2163 Method = CXXDestructorDecl::Create( 2164 SemaRef.Context, Record, StartLoc, NameInfo, T, TInfo, 2165 Destructor->isInlineSpecified(), false, Destructor->getConstexprKind()); 2166 Method->setRangeEnd(Destructor->getEndLoc()); 2167 } else if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(D)) { 2168 Method = CXXConversionDecl::Create( 2169 SemaRef.Context, Record, StartLoc, NameInfo, T, TInfo, 2170 Conversion->isInlineSpecified(), InstantiatedExplicitSpecifier, 2171 Conversion->getConstexprKind(), Conversion->getEndLoc()); 2172 } else { 2173 StorageClass SC = D->isStatic() ? SC_Static : SC_None; 2174 Method = CXXMethodDecl::Create(SemaRef.Context, Record, StartLoc, NameInfo, 2175 T, TInfo, SC, D->isInlineSpecified(), 2176 D->getConstexprKind(), D->getEndLoc()); 2177 } 2178 2179 if (D->isInlined()) 2180 Method->setImplicitlyInline(); 2181 2182 if (QualifierLoc) 2183 Method->setQualifierInfo(QualifierLoc); 2184 2185 if (TemplateParams) { 2186 // Our resulting instantiation is actually a function template, since we 2187 // are substituting only the outer template parameters. For example, given 2188 // 2189 // template<typename T> 2190 // struct X { 2191 // template<typename U> void f(T, U); 2192 // }; 2193 // 2194 // X<int> x; 2195 // 2196 // We are instantiating the member template "f" within X<int>, which means 2197 // substituting int for T, but leaving "f" as a member function template. 2198 // Build the function template itself. 2199 FunctionTemplate = FunctionTemplateDecl::Create(SemaRef.Context, Record, 2200 Method->getLocation(), 2201 Method->getDeclName(), 2202 TemplateParams, Method); 2203 if (isFriend) { 2204 FunctionTemplate->setLexicalDeclContext(Owner); 2205 FunctionTemplate->setObjectOfFriendDecl(); 2206 } else if (D->isOutOfLine()) 2207 FunctionTemplate->setLexicalDeclContext(D->getLexicalDeclContext()); 2208 Method->setDescribedFunctionTemplate(FunctionTemplate); 2209 } else if (FunctionTemplate) { 2210 // Record this function template specialization. 2211 ArrayRef<TemplateArgument> Innermost = TemplateArgs.getInnermost(); 2212 Method->setFunctionTemplateSpecialization(FunctionTemplate, 2213 TemplateArgumentList::CreateCopy(SemaRef.Context, 2214 Innermost), 2215 /*InsertPos=*/nullptr); 2216 } else if (!isFriend) { 2217 // Record that this is an instantiation of a member function. 2218 Method->setInstantiationOfMemberFunction(D, TSK_ImplicitInstantiation); 2219 } 2220 2221 // If we are instantiating a member function defined 2222 // out-of-line, the instantiation will have the same lexical 2223 // context (which will be a namespace scope) as the template. 2224 if (isFriend) { 2225 if (NumTempParamLists) 2226 Method->setTemplateParameterListsInfo( 2227 SemaRef.Context, 2228 llvm::makeArrayRef(TempParamLists.data(), NumTempParamLists)); 2229 2230 Method->setLexicalDeclContext(Owner); 2231 Method->setObjectOfFriendDecl(); 2232 } else if (D->isOutOfLine()) 2233 Method->setLexicalDeclContext(D->getLexicalDeclContext()); 2234 2235 // Attach the parameters 2236 for (unsigned P = 0; P < Params.size(); ++P) 2237 Params[P]->setOwningFunction(Method); 2238 Method->setParams(Params); 2239 2240 if (InitMethodInstantiation(Method, D)) 2241 Method->setInvalidDecl(); 2242 2243 LookupResult Previous(SemaRef, NameInfo, Sema::LookupOrdinaryName, 2244 Sema::ForExternalRedeclaration); 2245 2246 bool IsExplicitSpecialization = false; 2247 2248 // If the name of this function was written as a template-id, instantiate 2249 // the explicit template arguments. 2250 if (DependentFunctionTemplateSpecializationInfo *Info 2251 = D->getDependentSpecializationInfo()) { 2252 assert(isFriend && "non-friend has dependent specialization info?"); 2253 2254 // Instantiate the explicit template arguments. 2255 TemplateArgumentListInfo ExplicitArgs(Info->getLAngleLoc(), 2256 Info->getRAngleLoc()); 2257 if (SemaRef.Subst(Info->getTemplateArgs(), Info->getNumTemplateArgs(), 2258 ExplicitArgs, TemplateArgs)) 2259 return nullptr; 2260 2261 // Map the candidate templates to their instantiations. 2262 for (unsigned I = 0, E = Info->getNumTemplates(); I != E; ++I) { 2263 Decl *Temp = SemaRef.FindInstantiatedDecl(D->getLocation(), 2264 Info->getTemplate(I), 2265 TemplateArgs); 2266 if (!Temp) return nullptr; 2267 2268 Previous.addDecl(cast<FunctionTemplateDecl>(Temp)); 2269 } 2270 2271 if (SemaRef.CheckFunctionTemplateSpecialization(Method, 2272 &ExplicitArgs, 2273 Previous)) 2274 Method->setInvalidDecl(); 2275 2276 IsExplicitSpecialization = true; 2277 } else if (const ASTTemplateArgumentListInfo *Info = 2278 ClassScopeSpecializationArgs.getValueOr( 2279 D->getTemplateSpecializationArgsAsWritten())) { 2280 SemaRef.LookupQualifiedName(Previous, DC); 2281 2282 TemplateArgumentListInfo ExplicitArgs(Info->getLAngleLoc(), 2283 Info->getRAngleLoc()); 2284 if (SemaRef.Subst(Info->getTemplateArgs(), Info->getNumTemplateArgs(), 2285 ExplicitArgs, TemplateArgs)) 2286 return nullptr; 2287 2288 if (SemaRef.CheckFunctionTemplateSpecialization(Method, 2289 &ExplicitArgs, 2290 Previous)) 2291 Method->setInvalidDecl(); 2292 2293 IsExplicitSpecialization = true; 2294 } else if (ClassScopeSpecializationArgs) { 2295 // Class-scope explicit specialization written without explicit template 2296 // arguments. 2297 SemaRef.LookupQualifiedName(Previous, DC); 2298 if (SemaRef.CheckFunctionTemplateSpecialization(Method, nullptr, Previous)) 2299 Method->setInvalidDecl(); 2300 2301 IsExplicitSpecialization = true; 2302 } else if (!FunctionTemplate || TemplateParams || isFriend) { 2303 SemaRef.LookupQualifiedName(Previous, Record); 2304 2305 // In C++, the previous declaration we find might be a tag type 2306 // (class or enum). In this case, the new declaration will hide the 2307 // tag type. Note that this does does not apply if we're declaring a 2308 // typedef (C++ [dcl.typedef]p4). 2309 if (Previous.isSingleTagDecl()) 2310 Previous.clear(); 2311 } 2312 2313 SemaRef.CheckFunctionDeclaration(nullptr, Method, Previous, 2314 IsExplicitSpecialization); 2315 2316 if (D->isPure()) 2317 SemaRef.CheckPureMethod(Method, SourceRange()); 2318 2319 // Propagate access. For a non-friend declaration, the access is 2320 // whatever we're propagating from. For a friend, it should be the 2321 // previous declaration we just found. 2322 if (isFriend && Method->getPreviousDecl()) 2323 Method->setAccess(Method->getPreviousDecl()->getAccess()); 2324 else 2325 Method->setAccess(D->getAccess()); 2326 if (FunctionTemplate) 2327 FunctionTemplate->setAccess(Method->getAccess()); 2328 2329 SemaRef.CheckOverrideControl(Method); 2330 2331 // If a function is defined as defaulted or deleted, mark it as such now. 2332 if (D->isExplicitlyDefaulted()) 2333 SemaRef.SetDeclDefaulted(Method, Method->getLocation()); 2334 if (D->isDeletedAsWritten()) 2335 SemaRef.SetDeclDeleted(Method, Method->getLocation()); 2336 2337 // If this is an explicit specialization, mark the implicitly-instantiated 2338 // template specialization as being an explicit specialization too. 2339 // FIXME: Is this necessary? 2340 if (IsExplicitSpecialization && !isFriend) 2341 SemaRef.CompleteMemberSpecialization(Method, Previous); 2342 2343 // If there's a function template, let our caller handle it. 2344 if (FunctionTemplate) { 2345 // do nothing 2346 2347 // Don't hide a (potentially) valid declaration with an invalid one. 2348 } else if (Method->isInvalidDecl() && !Previous.empty()) { 2349 // do nothing 2350 2351 // Otherwise, check access to friends and make them visible. 2352 } else if (isFriend) { 2353 // We only need to re-check access for methods which we didn't 2354 // manage to match during parsing. 2355 if (!D->getPreviousDecl()) 2356 SemaRef.CheckFriendAccess(Method); 2357 2358 Record->makeDeclVisibleInContext(Method); 2359 2360 // Otherwise, add the declaration. We don't need to do this for 2361 // class-scope specializations because we'll have matched them with 2362 // the appropriate template. 2363 } else { 2364 Owner->addDecl(Method); 2365 } 2366 2367 // PR17480: Honor the used attribute to instantiate member function 2368 // definitions 2369 if (Method->hasAttr<UsedAttr>()) { 2370 if (const auto *A = dyn_cast<CXXRecordDecl>(Owner)) { 2371 SourceLocation Loc; 2372 if (const MemberSpecializationInfo *MSInfo = 2373 A->getMemberSpecializationInfo()) 2374 Loc = MSInfo->getPointOfInstantiation(); 2375 else if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(A)) 2376 Loc = Spec->getPointOfInstantiation(); 2377 SemaRef.MarkFunctionReferenced(Loc, Method); 2378 } 2379 } 2380 2381 return Method; 2382 } 2383 2384 Decl *TemplateDeclInstantiator::VisitCXXConstructorDecl(CXXConstructorDecl *D) { 2385 return VisitCXXMethodDecl(D); 2386 } 2387 2388 Decl *TemplateDeclInstantiator::VisitCXXDestructorDecl(CXXDestructorDecl *D) { 2389 return VisitCXXMethodDecl(D); 2390 } 2391 2392 Decl *TemplateDeclInstantiator::VisitCXXConversionDecl(CXXConversionDecl *D) { 2393 return VisitCXXMethodDecl(D); 2394 } 2395 2396 Decl *TemplateDeclInstantiator::VisitParmVarDecl(ParmVarDecl *D) { 2397 return SemaRef.SubstParmVarDecl(D, TemplateArgs, /*indexAdjustment*/ 0, None, 2398 /*ExpectParameterPack=*/ false); 2399 } 2400 2401 Decl *TemplateDeclInstantiator::VisitTemplateTypeParmDecl( 2402 TemplateTypeParmDecl *D) { 2403 // TODO: don't always clone when decls are refcounted. 2404 assert(D->getTypeForDecl()->isTemplateTypeParmType()); 2405 2406 TemplateTypeParmDecl *Inst = TemplateTypeParmDecl::Create( 2407 SemaRef.Context, Owner, D->getBeginLoc(), D->getLocation(), 2408 D->getDepth() - TemplateArgs.getNumSubstitutedLevels(), D->getIndex(), 2409 D->getIdentifier(), D->wasDeclaredWithTypename(), D->isParameterPack()); 2410 Inst->setAccess(AS_public); 2411 Inst->setImplicit(D->isImplicit()); 2412 2413 if (D->hasDefaultArgument() && !D->defaultArgumentWasInherited()) { 2414 TypeSourceInfo *InstantiatedDefaultArg = 2415 SemaRef.SubstType(D->getDefaultArgumentInfo(), TemplateArgs, 2416 D->getDefaultArgumentLoc(), D->getDeclName()); 2417 if (InstantiatedDefaultArg) 2418 Inst->setDefaultArgument(InstantiatedDefaultArg); 2419 } 2420 2421 // Introduce this template parameter's instantiation into the instantiation 2422 // scope. 2423 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Inst); 2424 2425 return Inst; 2426 } 2427 2428 Decl *TemplateDeclInstantiator::VisitNonTypeTemplateParmDecl( 2429 NonTypeTemplateParmDecl *D) { 2430 // Substitute into the type of the non-type template parameter. 2431 TypeLoc TL = D->getTypeSourceInfo()->getTypeLoc(); 2432 SmallVector<TypeSourceInfo *, 4> ExpandedParameterPackTypesAsWritten; 2433 SmallVector<QualType, 4> ExpandedParameterPackTypes; 2434 bool IsExpandedParameterPack = false; 2435 TypeSourceInfo *DI; 2436 QualType T; 2437 bool Invalid = false; 2438 2439 if (D->isExpandedParameterPack()) { 2440 // The non-type template parameter pack is an already-expanded pack 2441 // expansion of types. Substitute into each of the expanded types. 2442 ExpandedParameterPackTypes.reserve(D->getNumExpansionTypes()); 2443 ExpandedParameterPackTypesAsWritten.reserve(D->getNumExpansionTypes()); 2444 for (unsigned I = 0, N = D->getNumExpansionTypes(); I != N; ++I) { 2445 TypeSourceInfo *NewDI = 2446 SemaRef.SubstType(D->getExpansionTypeSourceInfo(I), TemplateArgs, 2447 D->getLocation(), D->getDeclName()); 2448 if (!NewDI) 2449 return nullptr; 2450 2451 QualType NewT = 2452 SemaRef.CheckNonTypeTemplateParameterType(NewDI, D->getLocation()); 2453 if (NewT.isNull()) 2454 return nullptr; 2455 2456 ExpandedParameterPackTypesAsWritten.push_back(NewDI); 2457 ExpandedParameterPackTypes.push_back(NewT); 2458 } 2459 2460 IsExpandedParameterPack = true; 2461 DI = D->getTypeSourceInfo(); 2462 T = DI->getType(); 2463 } else if (D->isPackExpansion()) { 2464 // The non-type template parameter pack's type is a pack expansion of types. 2465 // Determine whether we need to expand this parameter pack into separate 2466 // types. 2467 PackExpansionTypeLoc Expansion = TL.castAs<PackExpansionTypeLoc>(); 2468 TypeLoc Pattern = Expansion.getPatternLoc(); 2469 SmallVector<UnexpandedParameterPack, 2> Unexpanded; 2470 SemaRef.collectUnexpandedParameterPacks(Pattern, Unexpanded); 2471 2472 // Determine whether the set of unexpanded parameter packs can and should 2473 // be expanded. 2474 bool Expand = true; 2475 bool RetainExpansion = false; 2476 Optional<unsigned> OrigNumExpansions 2477 = Expansion.getTypePtr()->getNumExpansions(); 2478 Optional<unsigned> NumExpansions = OrigNumExpansions; 2479 if (SemaRef.CheckParameterPacksForExpansion(Expansion.getEllipsisLoc(), 2480 Pattern.getSourceRange(), 2481 Unexpanded, 2482 TemplateArgs, 2483 Expand, RetainExpansion, 2484 NumExpansions)) 2485 return nullptr; 2486 2487 if (Expand) { 2488 for (unsigned I = 0; I != *NumExpansions; ++I) { 2489 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, I); 2490 TypeSourceInfo *NewDI = SemaRef.SubstType(Pattern, TemplateArgs, 2491 D->getLocation(), 2492 D->getDeclName()); 2493 if (!NewDI) 2494 return nullptr; 2495 2496 QualType NewT = 2497 SemaRef.CheckNonTypeTemplateParameterType(NewDI, D->getLocation()); 2498 if (NewT.isNull()) 2499 return nullptr; 2500 2501 ExpandedParameterPackTypesAsWritten.push_back(NewDI); 2502 ExpandedParameterPackTypes.push_back(NewT); 2503 } 2504 2505 // Note that we have an expanded parameter pack. The "type" of this 2506 // expanded parameter pack is the original expansion type, but callers 2507 // will end up using the expanded parameter pack types for type-checking. 2508 IsExpandedParameterPack = true; 2509 DI = D->getTypeSourceInfo(); 2510 T = DI->getType(); 2511 } else { 2512 // We cannot fully expand the pack expansion now, so substitute into the 2513 // pattern and create a new pack expansion type. 2514 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, -1); 2515 TypeSourceInfo *NewPattern = SemaRef.SubstType(Pattern, TemplateArgs, 2516 D->getLocation(), 2517 D->getDeclName()); 2518 if (!NewPattern) 2519 return nullptr; 2520 2521 SemaRef.CheckNonTypeTemplateParameterType(NewPattern, D->getLocation()); 2522 DI = SemaRef.CheckPackExpansion(NewPattern, Expansion.getEllipsisLoc(), 2523 NumExpansions); 2524 if (!DI) 2525 return nullptr; 2526 2527 T = DI->getType(); 2528 } 2529 } else { 2530 // Simple case: substitution into a parameter that is not a parameter pack. 2531 DI = SemaRef.SubstType(D->getTypeSourceInfo(), TemplateArgs, 2532 D->getLocation(), D->getDeclName()); 2533 if (!DI) 2534 return nullptr; 2535 2536 // Check that this type is acceptable for a non-type template parameter. 2537 T = SemaRef.CheckNonTypeTemplateParameterType(DI, D->getLocation()); 2538 if (T.isNull()) { 2539 T = SemaRef.Context.IntTy; 2540 Invalid = true; 2541 } 2542 } 2543 2544 NonTypeTemplateParmDecl *Param; 2545 if (IsExpandedParameterPack) 2546 Param = NonTypeTemplateParmDecl::Create( 2547 SemaRef.Context, Owner, D->getInnerLocStart(), D->getLocation(), 2548 D->getDepth() - TemplateArgs.getNumSubstitutedLevels(), 2549 D->getPosition(), D->getIdentifier(), T, DI, ExpandedParameterPackTypes, 2550 ExpandedParameterPackTypesAsWritten); 2551 else 2552 Param = NonTypeTemplateParmDecl::Create( 2553 SemaRef.Context, Owner, D->getInnerLocStart(), D->getLocation(), 2554 D->getDepth() - TemplateArgs.getNumSubstitutedLevels(), 2555 D->getPosition(), D->getIdentifier(), T, D->isParameterPack(), DI); 2556 2557 Param->setAccess(AS_public); 2558 Param->setImplicit(D->isImplicit()); 2559 if (Invalid) 2560 Param->setInvalidDecl(); 2561 2562 if (D->hasDefaultArgument() && !D->defaultArgumentWasInherited()) { 2563 EnterExpressionEvaluationContext ConstantEvaluated( 2564 SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated); 2565 ExprResult Value = SemaRef.SubstExpr(D->getDefaultArgument(), TemplateArgs); 2566 if (!Value.isInvalid()) 2567 Param->setDefaultArgument(Value.get()); 2568 } 2569 2570 // Introduce this template parameter's instantiation into the instantiation 2571 // scope. 2572 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Param); 2573 return Param; 2574 } 2575 2576 static void collectUnexpandedParameterPacks( 2577 Sema &S, 2578 TemplateParameterList *Params, 2579 SmallVectorImpl<UnexpandedParameterPack> &Unexpanded) { 2580 for (const auto &P : *Params) { 2581 if (P->isTemplateParameterPack()) 2582 continue; 2583 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) 2584 S.collectUnexpandedParameterPacks(NTTP->getTypeSourceInfo()->getTypeLoc(), 2585 Unexpanded); 2586 if (TemplateTemplateParmDecl *TTP = dyn_cast<TemplateTemplateParmDecl>(P)) 2587 collectUnexpandedParameterPacks(S, TTP->getTemplateParameters(), 2588 Unexpanded); 2589 } 2590 } 2591 2592 Decl * 2593 TemplateDeclInstantiator::VisitTemplateTemplateParmDecl( 2594 TemplateTemplateParmDecl *D) { 2595 // Instantiate the template parameter list of the template template parameter. 2596 TemplateParameterList *TempParams = D->getTemplateParameters(); 2597 TemplateParameterList *InstParams; 2598 SmallVector<TemplateParameterList*, 8> ExpandedParams; 2599 2600 bool IsExpandedParameterPack = false; 2601 2602 if (D->isExpandedParameterPack()) { 2603 // The template template parameter pack is an already-expanded pack 2604 // expansion of template parameters. Substitute into each of the expanded 2605 // parameters. 2606 ExpandedParams.reserve(D->getNumExpansionTemplateParameters()); 2607 for (unsigned I = 0, N = D->getNumExpansionTemplateParameters(); 2608 I != N; ++I) { 2609 LocalInstantiationScope Scope(SemaRef); 2610 TemplateParameterList *Expansion = 2611 SubstTemplateParams(D->getExpansionTemplateParameters(I)); 2612 if (!Expansion) 2613 return nullptr; 2614 ExpandedParams.push_back(Expansion); 2615 } 2616 2617 IsExpandedParameterPack = true; 2618 InstParams = TempParams; 2619 } else if (D->isPackExpansion()) { 2620 // The template template parameter pack expands to a pack of template 2621 // template parameters. Determine whether we need to expand this parameter 2622 // pack into separate parameters. 2623 SmallVector<UnexpandedParameterPack, 2> Unexpanded; 2624 collectUnexpandedParameterPacks(SemaRef, D->getTemplateParameters(), 2625 Unexpanded); 2626 2627 // Determine whether the set of unexpanded parameter packs can and should 2628 // be expanded. 2629 bool Expand = true; 2630 bool RetainExpansion = false; 2631 Optional<unsigned> NumExpansions; 2632 if (SemaRef.CheckParameterPacksForExpansion(D->getLocation(), 2633 TempParams->getSourceRange(), 2634 Unexpanded, 2635 TemplateArgs, 2636 Expand, RetainExpansion, 2637 NumExpansions)) 2638 return nullptr; 2639 2640 if (Expand) { 2641 for (unsigned I = 0; I != *NumExpansions; ++I) { 2642 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, I); 2643 LocalInstantiationScope Scope(SemaRef); 2644 TemplateParameterList *Expansion = SubstTemplateParams(TempParams); 2645 if (!Expansion) 2646 return nullptr; 2647 ExpandedParams.push_back(Expansion); 2648 } 2649 2650 // Note that we have an expanded parameter pack. The "type" of this 2651 // expanded parameter pack is the original expansion type, but callers 2652 // will end up using the expanded parameter pack types for type-checking. 2653 IsExpandedParameterPack = true; 2654 InstParams = TempParams; 2655 } else { 2656 // We cannot fully expand the pack expansion now, so just substitute 2657 // into the pattern. 2658 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, -1); 2659 2660 LocalInstantiationScope Scope(SemaRef); 2661 InstParams = SubstTemplateParams(TempParams); 2662 if (!InstParams) 2663 return nullptr; 2664 } 2665 } else { 2666 // Perform the actual substitution of template parameters within a new, 2667 // local instantiation scope. 2668 LocalInstantiationScope Scope(SemaRef); 2669 InstParams = SubstTemplateParams(TempParams); 2670 if (!InstParams) 2671 return nullptr; 2672 } 2673 2674 // Build the template template parameter. 2675 TemplateTemplateParmDecl *Param; 2676 if (IsExpandedParameterPack) 2677 Param = TemplateTemplateParmDecl::Create( 2678 SemaRef.Context, Owner, D->getLocation(), 2679 D->getDepth() - TemplateArgs.getNumSubstitutedLevels(), 2680 D->getPosition(), D->getIdentifier(), InstParams, ExpandedParams); 2681 else 2682 Param = TemplateTemplateParmDecl::Create( 2683 SemaRef.Context, Owner, D->getLocation(), 2684 D->getDepth() - TemplateArgs.getNumSubstitutedLevels(), 2685 D->getPosition(), D->isParameterPack(), D->getIdentifier(), InstParams); 2686 if (D->hasDefaultArgument() && !D->defaultArgumentWasInherited()) { 2687 NestedNameSpecifierLoc QualifierLoc = 2688 D->getDefaultArgument().getTemplateQualifierLoc(); 2689 QualifierLoc = 2690 SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, TemplateArgs); 2691 TemplateName TName = SemaRef.SubstTemplateName( 2692 QualifierLoc, D->getDefaultArgument().getArgument().getAsTemplate(), 2693 D->getDefaultArgument().getTemplateNameLoc(), TemplateArgs); 2694 if (!TName.isNull()) 2695 Param->setDefaultArgument( 2696 SemaRef.Context, 2697 TemplateArgumentLoc(TemplateArgument(TName), 2698 D->getDefaultArgument().getTemplateQualifierLoc(), 2699 D->getDefaultArgument().getTemplateNameLoc())); 2700 } 2701 Param->setAccess(AS_public); 2702 Param->setImplicit(D->isImplicit()); 2703 2704 // Introduce this template parameter's instantiation into the instantiation 2705 // scope. 2706 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Param); 2707 2708 return Param; 2709 } 2710 2711 Decl *TemplateDeclInstantiator::VisitUsingDirectiveDecl(UsingDirectiveDecl *D) { 2712 // Using directives are never dependent (and never contain any types or 2713 // expressions), so they require no explicit instantiation work. 2714 2715 UsingDirectiveDecl *Inst 2716 = UsingDirectiveDecl::Create(SemaRef.Context, Owner, D->getLocation(), 2717 D->getNamespaceKeyLocation(), 2718 D->getQualifierLoc(), 2719 D->getIdentLocation(), 2720 D->getNominatedNamespace(), 2721 D->getCommonAncestor()); 2722 2723 // Add the using directive to its declaration context 2724 // only if this is not a function or method. 2725 if (!Owner->isFunctionOrMethod()) 2726 Owner->addDecl(Inst); 2727 2728 return Inst; 2729 } 2730 2731 Decl *TemplateDeclInstantiator::VisitUsingDecl(UsingDecl *D) { 2732 2733 // The nested name specifier may be dependent, for example 2734 // template <typename T> struct t { 2735 // struct s1 { T f1(); }; 2736 // struct s2 : s1 { using s1::f1; }; 2737 // }; 2738 // template struct t<int>; 2739 // Here, in using s1::f1, s1 refers to t<T>::s1; 2740 // we need to substitute for t<int>::s1. 2741 NestedNameSpecifierLoc QualifierLoc 2742 = SemaRef.SubstNestedNameSpecifierLoc(D->getQualifierLoc(), 2743 TemplateArgs); 2744 if (!QualifierLoc) 2745 return nullptr; 2746 2747 // For an inheriting constructor declaration, the name of the using 2748 // declaration is the name of a constructor in this class, not in the 2749 // base class. 2750 DeclarationNameInfo NameInfo = D->getNameInfo(); 2751 if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) 2752 if (auto *RD = dyn_cast<CXXRecordDecl>(SemaRef.CurContext)) 2753 NameInfo.setName(SemaRef.Context.DeclarationNames.getCXXConstructorName( 2754 SemaRef.Context.getCanonicalType(SemaRef.Context.getRecordType(RD)))); 2755 2756 // We only need to do redeclaration lookups if we're in a class 2757 // scope (in fact, it's not really even possible in non-class 2758 // scopes). 2759 bool CheckRedeclaration = Owner->isRecord(); 2760 2761 LookupResult Prev(SemaRef, NameInfo, Sema::LookupUsingDeclName, 2762 Sema::ForVisibleRedeclaration); 2763 2764 UsingDecl *NewUD = UsingDecl::Create(SemaRef.Context, Owner, 2765 D->getUsingLoc(), 2766 QualifierLoc, 2767 NameInfo, 2768 D->hasTypename()); 2769 2770 CXXScopeSpec SS; 2771 SS.Adopt(QualifierLoc); 2772 if (CheckRedeclaration) { 2773 Prev.setHideTags(false); 2774 SemaRef.LookupQualifiedName(Prev, Owner); 2775 2776 // Check for invalid redeclarations. 2777 if (SemaRef.CheckUsingDeclRedeclaration(D->getUsingLoc(), 2778 D->hasTypename(), SS, 2779 D->getLocation(), Prev)) 2780 NewUD->setInvalidDecl(); 2781 2782 } 2783 2784 if (!NewUD->isInvalidDecl() && 2785 SemaRef.CheckUsingDeclQualifier(D->getUsingLoc(), D->hasTypename(), 2786 SS, NameInfo, D->getLocation())) 2787 NewUD->setInvalidDecl(); 2788 2789 SemaRef.Context.setInstantiatedFromUsingDecl(NewUD, D); 2790 NewUD->setAccess(D->getAccess()); 2791 Owner->addDecl(NewUD); 2792 2793 // Don't process the shadow decls for an invalid decl. 2794 if (NewUD->isInvalidDecl()) 2795 return NewUD; 2796 2797 if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) 2798 SemaRef.CheckInheritingConstructorUsingDecl(NewUD); 2799 2800 bool isFunctionScope = Owner->isFunctionOrMethod(); 2801 2802 // Process the shadow decls. 2803 for (auto *Shadow : D->shadows()) { 2804 // FIXME: UsingShadowDecl doesn't preserve its immediate target, so 2805 // reconstruct it in the case where it matters. 2806 NamedDecl *OldTarget = Shadow->getTargetDecl(); 2807 if (auto *CUSD = dyn_cast<ConstructorUsingShadowDecl>(Shadow)) 2808 if (auto *BaseShadow = CUSD->getNominatedBaseClassShadowDecl()) 2809 OldTarget = BaseShadow; 2810 2811 NamedDecl *InstTarget = 2812 cast_or_null<NamedDecl>(SemaRef.FindInstantiatedDecl( 2813 Shadow->getLocation(), OldTarget, TemplateArgs)); 2814 if (!InstTarget) 2815 return nullptr; 2816 2817 UsingShadowDecl *PrevDecl = nullptr; 2818 if (CheckRedeclaration) { 2819 if (SemaRef.CheckUsingShadowDecl(NewUD, InstTarget, Prev, PrevDecl)) 2820 continue; 2821 } else if (UsingShadowDecl *OldPrev = 2822 getPreviousDeclForInstantiation(Shadow)) { 2823 PrevDecl = cast_or_null<UsingShadowDecl>(SemaRef.FindInstantiatedDecl( 2824 Shadow->getLocation(), OldPrev, TemplateArgs)); 2825 } 2826 2827 UsingShadowDecl *InstShadow = 2828 SemaRef.BuildUsingShadowDecl(/*Scope*/nullptr, NewUD, InstTarget, 2829 PrevDecl); 2830 SemaRef.Context.setInstantiatedFromUsingShadowDecl(InstShadow, Shadow); 2831 2832 if (isFunctionScope) 2833 SemaRef.CurrentInstantiationScope->InstantiatedLocal(Shadow, InstShadow); 2834 } 2835 2836 return NewUD; 2837 } 2838 2839 Decl *TemplateDeclInstantiator::VisitUsingShadowDecl(UsingShadowDecl *D) { 2840 // Ignore these; we handle them in bulk when processing the UsingDecl. 2841 return nullptr; 2842 } 2843 2844 Decl *TemplateDeclInstantiator::VisitConstructorUsingShadowDecl( 2845 ConstructorUsingShadowDecl *D) { 2846 // Ignore these; we handle them in bulk when processing the UsingDecl. 2847 return nullptr; 2848 } 2849 2850 template <typename T> 2851 Decl *TemplateDeclInstantiator::instantiateUnresolvedUsingDecl( 2852 T *D, bool InstantiatingPackElement) { 2853 // If this is a pack expansion, expand it now. 2854 if (D->isPackExpansion() && !InstantiatingPackElement) { 2855 SmallVector<UnexpandedParameterPack, 2> Unexpanded; 2856 SemaRef.collectUnexpandedParameterPacks(D->getQualifierLoc(), Unexpanded); 2857 SemaRef.collectUnexpandedParameterPacks(D->getNameInfo(), Unexpanded); 2858 2859 // Determine whether the set of unexpanded parameter packs can and should 2860 // be expanded. 2861 bool Expand = true; 2862 bool RetainExpansion = false; 2863 Optional<unsigned> NumExpansions; 2864 if (SemaRef.CheckParameterPacksForExpansion( 2865 D->getEllipsisLoc(), D->getSourceRange(), Unexpanded, TemplateArgs, 2866 Expand, RetainExpansion, NumExpansions)) 2867 return nullptr; 2868 2869 // This declaration cannot appear within a function template signature, 2870 // so we can't have a partial argument list for a parameter pack. 2871 assert(!RetainExpansion && 2872 "should never need to retain an expansion for UsingPackDecl"); 2873 2874 if (!Expand) { 2875 // We cannot fully expand the pack expansion now, so substitute into the 2876 // pattern and create a new pack expansion. 2877 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, -1); 2878 return instantiateUnresolvedUsingDecl(D, true); 2879 } 2880 2881 // Within a function, we don't have any normal way to check for conflicts 2882 // between shadow declarations from different using declarations in the 2883 // same pack expansion, but this is always ill-formed because all expansions 2884 // must produce (conflicting) enumerators. 2885 // 2886 // Sadly we can't just reject this in the template definition because it 2887 // could be valid if the pack is empty or has exactly one expansion. 2888 if (D->getDeclContext()->isFunctionOrMethod() && *NumExpansions > 1) { 2889 SemaRef.Diag(D->getEllipsisLoc(), 2890 diag::err_using_decl_redeclaration_expansion); 2891 return nullptr; 2892 } 2893 2894 // Instantiate the slices of this pack and build a UsingPackDecl. 2895 SmallVector<NamedDecl*, 8> Expansions; 2896 for (unsigned I = 0; I != *NumExpansions; ++I) { 2897 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, I); 2898 Decl *Slice = instantiateUnresolvedUsingDecl(D, true); 2899 if (!Slice) 2900 return nullptr; 2901 // Note that we can still get unresolved using declarations here, if we 2902 // had arguments for all packs but the pattern also contained other 2903 // template arguments (this only happens during partial substitution, eg 2904 // into the body of a generic lambda in a function template). 2905 Expansions.push_back(cast<NamedDecl>(Slice)); 2906 } 2907 2908 auto *NewD = SemaRef.BuildUsingPackDecl(D, Expansions); 2909 if (isDeclWithinFunction(D)) 2910 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, NewD); 2911 return NewD; 2912 } 2913 2914 UnresolvedUsingTypenameDecl *TD = dyn_cast<UnresolvedUsingTypenameDecl>(D); 2915 SourceLocation TypenameLoc = TD ? TD->getTypenameLoc() : SourceLocation(); 2916 2917 NestedNameSpecifierLoc QualifierLoc 2918 = SemaRef.SubstNestedNameSpecifierLoc(D->getQualifierLoc(), 2919 TemplateArgs); 2920 if (!QualifierLoc) 2921 return nullptr; 2922 2923 CXXScopeSpec SS; 2924 SS.Adopt(QualifierLoc); 2925 2926 DeclarationNameInfo NameInfo 2927 = SemaRef.SubstDeclarationNameInfo(D->getNameInfo(), TemplateArgs); 2928 2929 // Produce a pack expansion only if we're not instantiating a particular 2930 // slice of a pack expansion. 2931 bool InstantiatingSlice = D->getEllipsisLoc().isValid() && 2932 SemaRef.ArgumentPackSubstitutionIndex != -1; 2933 SourceLocation EllipsisLoc = 2934 InstantiatingSlice ? SourceLocation() : D->getEllipsisLoc(); 2935 2936 NamedDecl *UD = SemaRef.BuildUsingDeclaration( 2937 /*Scope*/ nullptr, D->getAccess(), D->getUsingLoc(), 2938 /*HasTypename*/ TD, TypenameLoc, SS, NameInfo, EllipsisLoc, 2939 ParsedAttributesView(), 2940 /*IsInstantiation*/ true); 2941 if (UD) 2942 SemaRef.Context.setInstantiatedFromUsingDecl(UD, D); 2943 2944 return UD; 2945 } 2946 2947 Decl *TemplateDeclInstantiator::VisitUnresolvedUsingTypenameDecl( 2948 UnresolvedUsingTypenameDecl *D) { 2949 return instantiateUnresolvedUsingDecl(D); 2950 } 2951 2952 Decl *TemplateDeclInstantiator::VisitUnresolvedUsingValueDecl( 2953 UnresolvedUsingValueDecl *D) { 2954 return instantiateUnresolvedUsingDecl(D); 2955 } 2956 2957 Decl *TemplateDeclInstantiator::VisitUsingPackDecl(UsingPackDecl *D) { 2958 SmallVector<NamedDecl*, 8> Expansions; 2959 for (auto *UD : D->expansions()) { 2960 if (NamedDecl *NewUD = 2961 SemaRef.FindInstantiatedDecl(D->getLocation(), UD, TemplateArgs)) 2962 Expansions.push_back(NewUD); 2963 else 2964 return nullptr; 2965 } 2966 2967 auto *NewD = SemaRef.BuildUsingPackDecl(D, Expansions); 2968 if (isDeclWithinFunction(D)) 2969 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, NewD); 2970 return NewD; 2971 } 2972 2973 Decl *TemplateDeclInstantiator::VisitClassScopeFunctionSpecializationDecl( 2974 ClassScopeFunctionSpecializationDecl *Decl) { 2975 CXXMethodDecl *OldFD = Decl->getSpecialization(); 2976 return cast_or_null<CXXMethodDecl>( 2977 VisitCXXMethodDecl(OldFD, nullptr, Decl->getTemplateArgsAsWritten())); 2978 } 2979 2980 Decl *TemplateDeclInstantiator::VisitOMPThreadPrivateDecl( 2981 OMPThreadPrivateDecl *D) { 2982 SmallVector<Expr *, 5> Vars; 2983 for (auto *I : D->varlists()) { 2984 Expr *Var = SemaRef.SubstExpr(I, TemplateArgs).get(); 2985 assert(isa<DeclRefExpr>(Var) && "threadprivate arg is not a DeclRefExpr"); 2986 Vars.push_back(Var); 2987 } 2988 2989 OMPThreadPrivateDecl *TD = 2990 SemaRef.CheckOMPThreadPrivateDecl(D->getLocation(), Vars); 2991 2992 TD->setAccess(AS_public); 2993 Owner->addDecl(TD); 2994 2995 return TD; 2996 } 2997 2998 Decl *TemplateDeclInstantiator::VisitOMPAllocateDecl(OMPAllocateDecl *D) { 2999 SmallVector<Expr *, 5> Vars; 3000 for (auto *I : D->varlists()) { 3001 Expr *Var = SemaRef.SubstExpr(I, TemplateArgs).get(); 3002 assert(isa<DeclRefExpr>(Var) && "allocate arg is not a DeclRefExpr"); 3003 Vars.push_back(Var); 3004 } 3005 SmallVector<OMPClause *, 4> Clauses; 3006 // Copy map clauses from the original mapper. 3007 for (OMPClause *C : D->clauselists()) { 3008 auto *AC = cast<OMPAllocatorClause>(C); 3009 ExprResult NewE = SemaRef.SubstExpr(AC->getAllocator(), TemplateArgs); 3010 if (!NewE.isUsable()) 3011 continue; 3012 OMPClause *IC = SemaRef.ActOnOpenMPAllocatorClause( 3013 NewE.get(), AC->getBeginLoc(), AC->getLParenLoc(), AC->getEndLoc()); 3014 Clauses.push_back(IC); 3015 } 3016 3017 Sema::DeclGroupPtrTy Res = SemaRef.ActOnOpenMPAllocateDirective( 3018 D->getLocation(), Vars, Clauses, Owner); 3019 if (Res.get().isNull()) 3020 return nullptr; 3021 return Res.get().getSingleDecl(); 3022 } 3023 3024 Decl *TemplateDeclInstantiator::VisitOMPRequiresDecl(OMPRequiresDecl *D) { 3025 llvm_unreachable( 3026 "Requires directive cannot be instantiated within a dependent context"); 3027 } 3028 3029 Decl *TemplateDeclInstantiator::VisitOMPDeclareReductionDecl( 3030 OMPDeclareReductionDecl *D) { 3031 // Instantiate type and check if it is allowed. 3032 const bool RequiresInstantiation = 3033 D->getType()->isDependentType() || 3034 D->getType()->isInstantiationDependentType() || 3035 D->getType()->containsUnexpandedParameterPack(); 3036 QualType SubstReductionType; 3037 if (RequiresInstantiation) { 3038 SubstReductionType = SemaRef.ActOnOpenMPDeclareReductionType( 3039 D->getLocation(), 3040 ParsedType::make(SemaRef.SubstType( 3041 D->getType(), TemplateArgs, D->getLocation(), DeclarationName()))); 3042 } else { 3043 SubstReductionType = D->getType(); 3044 } 3045 if (SubstReductionType.isNull()) 3046 return nullptr; 3047 bool IsCorrect = !SubstReductionType.isNull(); 3048 // Create instantiated copy. 3049 std::pair<QualType, SourceLocation> ReductionTypes[] = { 3050 std::make_pair(SubstReductionType, D->getLocation())}; 3051 auto *PrevDeclInScope = D->getPrevDeclInScope(); 3052 if (PrevDeclInScope && !PrevDeclInScope->isInvalidDecl()) { 3053 PrevDeclInScope = cast<OMPDeclareReductionDecl>( 3054 SemaRef.CurrentInstantiationScope->findInstantiationOf(PrevDeclInScope) 3055 ->get<Decl *>()); 3056 } 3057 auto DRD = SemaRef.ActOnOpenMPDeclareReductionDirectiveStart( 3058 /*S=*/nullptr, Owner, D->getDeclName(), ReductionTypes, D->getAccess(), 3059 PrevDeclInScope); 3060 auto *NewDRD = cast<OMPDeclareReductionDecl>(DRD.get().getSingleDecl()); 3061 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, NewDRD); 3062 if (!RequiresInstantiation) { 3063 if (Expr *Combiner = D->getCombiner()) { 3064 NewDRD->setCombinerData(D->getCombinerIn(), D->getCombinerOut()); 3065 NewDRD->setCombiner(Combiner); 3066 if (Expr *Init = D->getInitializer()) { 3067 NewDRD->setInitializerData(D->getInitOrig(), D->getInitPriv()); 3068 NewDRD->setInitializer(Init, D->getInitializerKind()); 3069 } 3070 } 3071 (void)SemaRef.ActOnOpenMPDeclareReductionDirectiveEnd( 3072 /*S=*/nullptr, DRD, IsCorrect && !D->isInvalidDecl()); 3073 return NewDRD; 3074 } 3075 Expr *SubstCombiner = nullptr; 3076 Expr *SubstInitializer = nullptr; 3077 // Combiners instantiation sequence. 3078 if (D->getCombiner()) { 3079 SemaRef.ActOnOpenMPDeclareReductionCombinerStart( 3080 /*S=*/nullptr, NewDRD); 3081 SemaRef.CurrentInstantiationScope->InstantiatedLocal( 3082 cast<DeclRefExpr>(D->getCombinerIn())->getDecl(), 3083 cast<DeclRefExpr>(NewDRD->getCombinerIn())->getDecl()); 3084 SemaRef.CurrentInstantiationScope->InstantiatedLocal( 3085 cast<DeclRefExpr>(D->getCombinerOut())->getDecl(), 3086 cast<DeclRefExpr>(NewDRD->getCombinerOut())->getDecl()); 3087 auto *ThisContext = dyn_cast_or_null<CXXRecordDecl>(Owner); 3088 Sema::CXXThisScopeRAII ThisScope(SemaRef, ThisContext, Qualifiers(), 3089 ThisContext); 3090 SubstCombiner = SemaRef.SubstExpr(D->getCombiner(), TemplateArgs).get(); 3091 SemaRef.ActOnOpenMPDeclareReductionCombinerEnd(NewDRD, SubstCombiner); 3092 // Initializers instantiation sequence. 3093 if (D->getInitializer()) { 3094 VarDecl *OmpPrivParm = 3095 SemaRef.ActOnOpenMPDeclareReductionInitializerStart( 3096 /*S=*/nullptr, NewDRD); 3097 SemaRef.CurrentInstantiationScope->InstantiatedLocal( 3098 cast<DeclRefExpr>(D->getInitOrig())->getDecl(), 3099 cast<DeclRefExpr>(NewDRD->getInitOrig())->getDecl()); 3100 SemaRef.CurrentInstantiationScope->InstantiatedLocal( 3101 cast<DeclRefExpr>(D->getInitPriv())->getDecl(), 3102 cast<DeclRefExpr>(NewDRD->getInitPriv())->getDecl()); 3103 if (D->getInitializerKind() == OMPDeclareReductionDecl::CallInit) { 3104 SubstInitializer = 3105 SemaRef.SubstExpr(D->getInitializer(), TemplateArgs).get(); 3106 } else { 3107 IsCorrect = IsCorrect && OmpPrivParm->hasInit(); 3108 } 3109 SemaRef.ActOnOpenMPDeclareReductionInitializerEnd( 3110 NewDRD, SubstInitializer, OmpPrivParm); 3111 } 3112 IsCorrect = 3113 IsCorrect && SubstCombiner && 3114 (!D->getInitializer() || 3115 (D->getInitializerKind() == OMPDeclareReductionDecl::CallInit && 3116 SubstInitializer) || 3117 (D->getInitializerKind() != OMPDeclareReductionDecl::CallInit && 3118 !SubstInitializer && !SubstInitializer)); 3119 } else { 3120 IsCorrect = false; 3121 } 3122 3123 (void)SemaRef.ActOnOpenMPDeclareReductionDirectiveEnd(/*S=*/nullptr, DRD, 3124 IsCorrect); 3125 3126 return NewDRD; 3127 } 3128 3129 Decl * 3130 TemplateDeclInstantiator::VisitOMPDeclareMapperDecl(OMPDeclareMapperDecl *D) { 3131 // Instantiate type and check if it is allowed. 3132 const bool RequiresInstantiation = 3133 D->getType()->isDependentType() || 3134 D->getType()->isInstantiationDependentType() || 3135 D->getType()->containsUnexpandedParameterPack(); 3136 QualType SubstMapperTy; 3137 DeclarationName VN = D->getVarName(); 3138 if (RequiresInstantiation) { 3139 SubstMapperTy = SemaRef.ActOnOpenMPDeclareMapperType( 3140 D->getLocation(), 3141 ParsedType::make(SemaRef.SubstType(D->getType(), TemplateArgs, 3142 D->getLocation(), VN))); 3143 } else { 3144 SubstMapperTy = D->getType(); 3145 } 3146 if (SubstMapperTy.isNull()) 3147 return nullptr; 3148 // Create an instantiated copy of mapper. 3149 auto *PrevDeclInScope = D->getPrevDeclInScope(); 3150 if (PrevDeclInScope && !PrevDeclInScope->isInvalidDecl()) { 3151 PrevDeclInScope = cast<OMPDeclareMapperDecl>( 3152 SemaRef.CurrentInstantiationScope->findInstantiationOf(PrevDeclInScope) 3153 ->get<Decl *>()); 3154 } 3155 OMPDeclareMapperDecl *NewDMD = SemaRef.ActOnOpenMPDeclareMapperDirectiveStart( 3156 /*S=*/nullptr, Owner, D->getDeclName(), SubstMapperTy, D->getLocation(), 3157 VN, D->getAccess(), PrevDeclInScope); 3158 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, NewDMD); 3159 SmallVector<OMPClause *, 6> Clauses; 3160 bool IsCorrect = true; 3161 if (!RequiresInstantiation) { 3162 // Copy the mapper variable. 3163 NewDMD->setMapperVarRef(D->getMapperVarRef()); 3164 // Copy map clauses from the original mapper. 3165 for (OMPClause *C : D->clauselists()) 3166 Clauses.push_back(C); 3167 } else { 3168 // Instantiate the mapper variable. 3169 DeclarationNameInfo DirName; 3170 SemaRef.StartOpenMPDSABlock(OMPD_declare_mapper, DirName, /*S=*/nullptr, 3171 (*D->clauselist_begin())->getBeginLoc()); 3172 SemaRef.ActOnOpenMPDeclareMapperDirectiveVarDecl( 3173 NewDMD, /*S=*/nullptr, SubstMapperTy, D->getLocation(), VN); 3174 SemaRef.CurrentInstantiationScope->InstantiatedLocal( 3175 cast<DeclRefExpr>(D->getMapperVarRef())->getDecl(), 3176 cast<DeclRefExpr>(NewDMD->getMapperVarRef())->getDecl()); 3177 auto *ThisContext = dyn_cast_or_null<CXXRecordDecl>(Owner); 3178 Sema::CXXThisScopeRAII ThisScope(SemaRef, ThisContext, Qualifiers(), 3179 ThisContext); 3180 // Instantiate map clauses. 3181 for (OMPClause *C : D->clauselists()) { 3182 auto *OldC = cast<OMPMapClause>(C); 3183 SmallVector<Expr *, 4> NewVars; 3184 for (Expr *OE : OldC->varlists()) { 3185 Expr *NE = SemaRef.SubstExpr(OE, TemplateArgs).get(); 3186 if (!NE) { 3187 IsCorrect = false; 3188 break; 3189 } 3190 NewVars.push_back(NE); 3191 } 3192 if (!IsCorrect) 3193 break; 3194 NestedNameSpecifierLoc NewQualifierLoc = 3195 SemaRef.SubstNestedNameSpecifierLoc(OldC->getMapperQualifierLoc(), 3196 TemplateArgs); 3197 CXXScopeSpec SS; 3198 SS.Adopt(NewQualifierLoc); 3199 DeclarationNameInfo NewNameInfo = SemaRef.SubstDeclarationNameInfo( 3200 OldC->getMapperIdInfo(), TemplateArgs); 3201 OMPVarListLocTy Locs(OldC->getBeginLoc(), OldC->getLParenLoc(), 3202 OldC->getEndLoc()); 3203 OMPClause *NewC = SemaRef.ActOnOpenMPMapClause( 3204 OldC->getMapTypeModifiers(), OldC->getMapTypeModifiersLoc(), SS, 3205 NewNameInfo, OldC->getMapType(), OldC->isImplicitMapType(), 3206 OldC->getMapLoc(), OldC->getColonLoc(), NewVars, Locs); 3207 Clauses.push_back(NewC); 3208 } 3209 SemaRef.EndOpenMPDSABlock(nullptr); 3210 } 3211 (void)SemaRef.ActOnOpenMPDeclareMapperDirectiveEnd(NewDMD, /*S=*/nullptr, 3212 Clauses); 3213 if (!IsCorrect) 3214 return nullptr; 3215 return NewDMD; 3216 } 3217 3218 Decl *TemplateDeclInstantiator::VisitOMPCapturedExprDecl( 3219 OMPCapturedExprDecl * /*D*/) { 3220 llvm_unreachable("Should not be met in templates"); 3221 } 3222 3223 Decl *TemplateDeclInstantiator::VisitFunctionDecl(FunctionDecl *D) { 3224 return VisitFunctionDecl(D, nullptr); 3225 } 3226 3227 Decl * 3228 TemplateDeclInstantiator::VisitCXXDeductionGuideDecl(CXXDeductionGuideDecl *D) { 3229 Decl *Inst = VisitFunctionDecl(D, nullptr); 3230 if (Inst && !D->getDescribedFunctionTemplate()) 3231 Owner->addDecl(Inst); 3232 return Inst; 3233 } 3234 3235 Decl *TemplateDeclInstantiator::VisitCXXMethodDecl(CXXMethodDecl *D) { 3236 return VisitCXXMethodDecl(D, nullptr); 3237 } 3238 3239 Decl *TemplateDeclInstantiator::VisitRecordDecl(RecordDecl *D) { 3240 llvm_unreachable("There are only CXXRecordDecls in C++"); 3241 } 3242 3243 Decl * 3244 TemplateDeclInstantiator::VisitClassTemplateSpecializationDecl( 3245 ClassTemplateSpecializationDecl *D) { 3246 // As a MS extension, we permit class-scope explicit specialization 3247 // of member class templates. 3248 ClassTemplateDecl *ClassTemplate = D->getSpecializedTemplate(); 3249 assert(ClassTemplate->getDeclContext()->isRecord() && 3250 D->getTemplateSpecializationKind() == TSK_ExplicitSpecialization && 3251 "can only instantiate an explicit specialization " 3252 "for a member class template"); 3253 3254 // Lookup the already-instantiated declaration in the instantiation 3255 // of the class template. 3256 ClassTemplateDecl *InstClassTemplate = 3257 cast_or_null<ClassTemplateDecl>(SemaRef.FindInstantiatedDecl( 3258 D->getLocation(), ClassTemplate, TemplateArgs)); 3259 if (!InstClassTemplate) 3260 return nullptr; 3261 3262 // Substitute into the template arguments of the class template explicit 3263 // specialization. 3264 TemplateSpecializationTypeLoc Loc = D->getTypeAsWritten()->getTypeLoc(). 3265 castAs<TemplateSpecializationTypeLoc>(); 3266 TemplateArgumentListInfo InstTemplateArgs(Loc.getLAngleLoc(), 3267 Loc.getRAngleLoc()); 3268 SmallVector<TemplateArgumentLoc, 4> ArgLocs; 3269 for (unsigned I = 0; I != Loc.getNumArgs(); ++I) 3270 ArgLocs.push_back(Loc.getArgLoc(I)); 3271 if (SemaRef.Subst(ArgLocs.data(), ArgLocs.size(), 3272 InstTemplateArgs, TemplateArgs)) 3273 return nullptr; 3274 3275 // Check that the template argument list is well-formed for this 3276 // class template. 3277 SmallVector<TemplateArgument, 4> Converted; 3278 if (SemaRef.CheckTemplateArgumentList(InstClassTemplate, 3279 D->getLocation(), 3280 InstTemplateArgs, 3281 false, 3282 Converted)) 3283 return nullptr; 3284 3285 // Figure out where to insert this class template explicit specialization 3286 // in the member template's set of class template explicit specializations. 3287 void *InsertPos = nullptr; 3288 ClassTemplateSpecializationDecl *PrevDecl = 3289 InstClassTemplate->findSpecialization(Converted, InsertPos); 3290 3291 // Check whether we've already seen a conflicting instantiation of this 3292 // declaration (for instance, if there was a prior implicit instantiation). 3293 bool Ignored; 3294 if (PrevDecl && 3295 SemaRef.CheckSpecializationInstantiationRedecl(D->getLocation(), 3296 D->getSpecializationKind(), 3297 PrevDecl, 3298 PrevDecl->getSpecializationKind(), 3299 PrevDecl->getPointOfInstantiation(), 3300 Ignored)) 3301 return nullptr; 3302 3303 // If PrevDecl was a definition and D is also a definition, diagnose. 3304 // This happens in cases like: 3305 // 3306 // template<typename T, typename U> 3307 // struct Outer { 3308 // template<typename X> struct Inner; 3309 // template<> struct Inner<T> {}; 3310 // template<> struct Inner<U> {}; 3311 // }; 3312 // 3313 // Outer<int, int> outer; // error: the explicit specializations of Inner 3314 // // have the same signature. 3315 if (PrevDecl && PrevDecl->getDefinition() && 3316 D->isThisDeclarationADefinition()) { 3317 SemaRef.Diag(D->getLocation(), diag::err_redefinition) << PrevDecl; 3318 SemaRef.Diag(PrevDecl->getDefinition()->getLocation(), 3319 diag::note_previous_definition); 3320 return nullptr; 3321 } 3322 3323 // Create the class template partial specialization declaration. 3324 ClassTemplateSpecializationDecl *InstD = 3325 ClassTemplateSpecializationDecl::Create( 3326 SemaRef.Context, D->getTagKind(), Owner, D->getBeginLoc(), 3327 D->getLocation(), InstClassTemplate, Converted, PrevDecl); 3328 3329 // Add this partial specialization to the set of class template partial 3330 // specializations. 3331 if (!PrevDecl) 3332 InstClassTemplate->AddSpecialization(InstD, InsertPos); 3333 3334 // Substitute the nested name specifier, if any. 3335 if (SubstQualifier(D, InstD)) 3336 return nullptr; 3337 3338 // Build the canonical type that describes the converted template 3339 // arguments of the class template explicit specialization. 3340 QualType CanonType = SemaRef.Context.getTemplateSpecializationType( 3341 TemplateName(InstClassTemplate), Converted, 3342 SemaRef.Context.getRecordType(InstD)); 3343 3344 // Build the fully-sugared type for this class template 3345 // specialization as the user wrote in the specialization 3346 // itself. This means that we'll pretty-print the type retrieved 3347 // from the specialization's declaration the way that the user 3348 // actually wrote the specialization, rather than formatting the 3349 // name based on the "canonical" representation used to store the 3350 // template arguments in the specialization. 3351 TypeSourceInfo *WrittenTy = SemaRef.Context.getTemplateSpecializationTypeInfo( 3352 TemplateName(InstClassTemplate), D->getLocation(), InstTemplateArgs, 3353 CanonType); 3354 3355 InstD->setAccess(D->getAccess()); 3356 InstD->setInstantiationOfMemberClass(D, TSK_ImplicitInstantiation); 3357 InstD->setSpecializationKind(D->getSpecializationKind()); 3358 InstD->setTypeAsWritten(WrittenTy); 3359 InstD->setExternLoc(D->getExternLoc()); 3360 InstD->setTemplateKeywordLoc(D->getTemplateKeywordLoc()); 3361 3362 Owner->addDecl(InstD); 3363 3364 // Instantiate the members of the class-scope explicit specialization eagerly. 3365 // We don't have support for lazy instantiation of an explicit specialization 3366 // yet, and MSVC eagerly instantiates in this case. 3367 // FIXME: This is wrong in standard C++. 3368 if (D->isThisDeclarationADefinition() && 3369 SemaRef.InstantiateClass(D->getLocation(), InstD, D, TemplateArgs, 3370 TSK_ImplicitInstantiation, 3371 /*Complain=*/true)) 3372 return nullptr; 3373 3374 return InstD; 3375 } 3376 3377 Decl *TemplateDeclInstantiator::VisitVarTemplateSpecializationDecl( 3378 VarTemplateSpecializationDecl *D) { 3379 3380 TemplateArgumentListInfo VarTemplateArgsInfo; 3381 VarTemplateDecl *VarTemplate = D->getSpecializedTemplate(); 3382 assert(VarTemplate && 3383 "A template specialization without specialized template?"); 3384 3385 VarTemplateDecl *InstVarTemplate = 3386 cast_or_null<VarTemplateDecl>(SemaRef.FindInstantiatedDecl( 3387 D->getLocation(), VarTemplate, TemplateArgs)); 3388 if (!InstVarTemplate) 3389 return nullptr; 3390 3391 // Substitute the current template arguments. 3392 const TemplateArgumentListInfo &TemplateArgsInfo = D->getTemplateArgsInfo(); 3393 VarTemplateArgsInfo.setLAngleLoc(TemplateArgsInfo.getLAngleLoc()); 3394 VarTemplateArgsInfo.setRAngleLoc(TemplateArgsInfo.getRAngleLoc()); 3395 3396 if (SemaRef.Subst(TemplateArgsInfo.getArgumentArray(), 3397 TemplateArgsInfo.size(), VarTemplateArgsInfo, TemplateArgs)) 3398 return nullptr; 3399 3400 // Check that the template argument list is well-formed for this template. 3401 SmallVector<TemplateArgument, 4> Converted; 3402 if (SemaRef.CheckTemplateArgumentList(InstVarTemplate, D->getLocation(), 3403 VarTemplateArgsInfo, false, Converted)) 3404 return nullptr; 3405 3406 // Check whether we've already seen a declaration of this specialization. 3407 void *InsertPos = nullptr; 3408 VarTemplateSpecializationDecl *PrevDecl = 3409 InstVarTemplate->findSpecialization(Converted, InsertPos); 3410 3411 // Check whether we've already seen a conflicting instantiation of this 3412 // declaration (for instance, if there was a prior implicit instantiation). 3413 bool Ignored; 3414 if (PrevDecl && SemaRef.CheckSpecializationInstantiationRedecl( 3415 D->getLocation(), D->getSpecializationKind(), PrevDecl, 3416 PrevDecl->getSpecializationKind(), 3417 PrevDecl->getPointOfInstantiation(), Ignored)) 3418 return nullptr; 3419 3420 return VisitVarTemplateSpecializationDecl( 3421 InstVarTemplate, D, InsertPos, VarTemplateArgsInfo, Converted, PrevDecl); 3422 } 3423 3424 Decl *TemplateDeclInstantiator::VisitVarTemplateSpecializationDecl( 3425 VarTemplateDecl *VarTemplate, VarDecl *D, void *InsertPos, 3426 const TemplateArgumentListInfo &TemplateArgsInfo, 3427 ArrayRef<TemplateArgument> Converted, 3428 VarTemplateSpecializationDecl *PrevDecl) { 3429 3430 // Do substitution on the type of the declaration 3431 TypeSourceInfo *DI = 3432 SemaRef.SubstType(D->getTypeSourceInfo(), TemplateArgs, 3433 D->getTypeSpecStartLoc(), D->getDeclName()); 3434 if (!DI) 3435 return nullptr; 3436 3437 if (DI->getType()->isFunctionType()) { 3438 SemaRef.Diag(D->getLocation(), diag::err_variable_instantiates_to_function) 3439 << D->isStaticDataMember() << DI->getType(); 3440 return nullptr; 3441 } 3442 3443 // Build the instantiated declaration 3444 VarTemplateSpecializationDecl *Var = VarTemplateSpecializationDecl::Create( 3445 SemaRef.Context, Owner, D->getInnerLocStart(), D->getLocation(), 3446 VarTemplate, DI->getType(), DI, D->getStorageClass(), Converted); 3447 Var->setTemplateArgsInfo(TemplateArgsInfo); 3448 if (InsertPos) 3449 VarTemplate->AddSpecialization(Var, InsertPos); 3450 3451 // Substitute the nested name specifier, if any. 3452 if (SubstQualifier(D, Var)) 3453 return nullptr; 3454 3455 SemaRef.BuildVariableInstantiation(Var, D, TemplateArgs, LateAttrs, Owner, 3456 StartingScope, false, PrevDecl); 3457 3458 return Var; 3459 } 3460 3461 Decl *TemplateDeclInstantiator::VisitObjCAtDefsFieldDecl(ObjCAtDefsFieldDecl *D) { 3462 llvm_unreachable("@defs is not supported in Objective-C++"); 3463 } 3464 3465 Decl *TemplateDeclInstantiator::VisitFriendTemplateDecl(FriendTemplateDecl *D) { 3466 // FIXME: We need to be able to instantiate FriendTemplateDecls. 3467 unsigned DiagID = SemaRef.getDiagnostics().getCustomDiagID( 3468 DiagnosticsEngine::Error, 3469 "cannot instantiate %0 yet"); 3470 SemaRef.Diag(D->getLocation(), DiagID) 3471 << D->getDeclKindName(); 3472 3473 return nullptr; 3474 } 3475 3476 Decl *TemplateDeclInstantiator::VisitConceptDecl(ConceptDecl *D) { 3477 llvm_unreachable("Concept definitions cannot reside inside a template"); 3478 } 3479 3480 Decl *TemplateDeclInstantiator::VisitDecl(Decl *D) { 3481 llvm_unreachable("Unexpected decl"); 3482 } 3483 3484 Decl *Sema::SubstDecl(Decl *D, DeclContext *Owner, 3485 const MultiLevelTemplateArgumentList &TemplateArgs) { 3486 TemplateDeclInstantiator Instantiator(*this, Owner, TemplateArgs); 3487 if (D->isInvalidDecl()) 3488 return nullptr; 3489 3490 Decl *SubstD; 3491 runWithSufficientStackSpace(D->getLocation(), [&] { 3492 SubstD = Instantiator.Visit(D); 3493 }); 3494 return SubstD; 3495 } 3496 3497 /// Instantiates a nested template parameter list in the current 3498 /// instantiation context. 3499 /// 3500 /// \param L The parameter list to instantiate 3501 /// 3502 /// \returns NULL if there was an error 3503 TemplateParameterList * 3504 TemplateDeclInstantiator::SubstTemplateParams(TemplateParameterList *L) { 3505 // Get errors for all the parameters before bailing out. 3506 bool Invalid = false; 3507 3508 unsigned N = L->size(); 3509 typedef SmallVector<NamedDecl *, 8> ParamVector; 3510 ParamVector Params; 3511 Params.reserve(N); 3512 for (auto &P : *L) { 3513 NamedDecl *D = cast_or_null<NamedDecl>(Visit(P)); 3514 Params.push_back(D); 3515 Invalid = Invalid || !D || D->isInvalidDecl(); 3516 } 3517 3518 // Clean up if we had an error. 3519 if (Invalid) 3520 return nullptr; 3521 3522 // FIXME: Concepts: Substitution into requires clause should only happen when 3523 // checking satisfaction. 3524 Expr *InstRequiresClause = nullptr; 3525 if (Expr *E = L->getRequiresClause()) { 3526 ExprResult Res = SemaRef.SubstExpr(E, TemplateArgs); 3527 if (Res.isInvalid() || !Res.isUsable()) { 3528 return nullptr; 3529 } 3530 InstRequiresClause = Res.get(); 3531 } 3532 3533 TemplateParameterList *InstL 3534 = TemplateParameterList::Create(SemaRef.Context, L->getTemplateLoc(), 3535 L->getLAngleLoc(), Params, 3536 L->getRAngleLoc(), InstRequiresClause); 3537 return InstL; 3538 } 3539 3540 TemplateParameterList * 3541 Sema::SubstTemplateParams(TemplateParameterList *Params, DeclContext *Owner, 3542 const MultiLevelTemplateArgumentList &TemplateArgs) { 3543 TemplateDeclInstantiator Instantiator(*this, Owner, TemplateArgs); 3544 return Instantiator.SubstTemplateParams(Params); 3545 } 3546 3547 /// Instantiate the declaration of a class template partial 3548 /// specialization. 3549 /// 3550 /// \param ClassTemplate the (instantiated) class template that is partially 3551 // specialized by the instantiation of \p PartialSpec. 3552 /// 3553 /// \param PartialSpec the (uninstantiated) class template partial 3554 /// specialization that we are instantiating. 3555 /// 3556 /// \returns The instantiated partial specialization, if successful; otherwise, 3557 /// NULL to indicate an error. 3558 ClassTemplatePartialSpecializationDecl * 3559 TemplateDeclInstantiator::InstantiateClassTemplatePartialSpecialization( 3560 ClassTemplateDecl *ClassTemplate, 3561 ClassTemplatePartialSpecializationDecl *PartialSpec) { 3562 // Create a local instantiation scope for this class template partial 3563 // specialization, which will contain the instantiations of the template 3564 // parameters. 3565 LocalInstantiationScope Scope(SemaRef); 3566 3567 // Substitute into the template parameters of the class template partial 3568 // specialization. 3569 TemplateParameterList *TempParams = PartialSpec->getTemplateParameters(); 3570 TemplateParameterList *InstParams = SubstTemplateParams(TempParams); 3571 if (!InstParams) 3572 return nullptr; 3573 3574 // Substitute into the template arguments of the class template partial 3575 // specialization. 3576 const ASTTemplateArgumentListInfo *TemplArgInfo 3577 = PartialSpec->getTemplateArgsAsWritten(); 3578 TemplateArgumentListInfo InstTemplateArgs(TemplArgInfo->LAngleLoc, 3579 TemplArgInfo->RAngleLoc); 3580 if (SemaRef.Subst(TemplArgInfo->getTemplateArgs(), 3581 TemplArgInfo->NumTemplateArgs, 3582 InstTemplateArgs, TemplateArgs)) 3583 return nullptr; 3584 3585 // Check that the template argument list is well-formed for this 3586 // class template. 3587 SmallVector<TemplateArgument, 4> Converted; 3588 if (SemaRef.CheckTemplateArgumentList(ClassTemplate, 3589 PartialSpec->getLocation(), 3590 InstTemplateArgs, 3591 false, 3592 Converted)) 3593 return nullptr; 3594 3595 // Check these arguments are valid for a template partial specialization. 3596 if (SemaRef.CheckTemplatePartialSpecializationArgs( 3597 PartialSpec->getLocation(), ClassTemplate, InstTemplateArgs.size(), 3598 Converted)) 3599 return nullptr; 3600 3601 // Figure out where to insert this class template partial specialization 3602 // in the member template's set of class template partial specializations. 3603 void *InsertPos = nullptr; 3604 ClassTemplateSpecializationDecl *PrevDecl 3605 = ClassTemplate->findPartialSpecialization(Converted, InsertPos); 3606 3607 // Build the canonical type that describes the converted template 3608 // arguments of the class template partial specialization. 3609 QualType CanonType 3610 = SemaRef.Context.getTemplateSpecializationType(TemplateName(ClassTemplate), 3611 Converted); 3612 3613 // Build the fully-sugared type for this class template 3614 // specialization as the user wrote in the specialization 3615 // itself. This means that we'll pretty-print the type retrieved 3616 // from the specialization's declaration the way that the user 3617 // actually wrote the specialization, rather than formatting the 3618 // name based on the "canonical" representation used to store the 3619 // template arguments in the specialization. 3620 TypeSourceInfo *WrittenTy 3621 = SemaRef.Context.getTemplateSpecializationTypeInfo( 3622 TemplateName(ClassTemplate), 3623 PartialSpec->getLocation(), 3624 InstTemplateArgs, 3625 CanonType); 3626 3627 if (PrevDecl) { 3628 // We've already seen a partial specialization with the same template 3629 // parameters and template arguments. This can happen, for example, when 3630 // substituting the outer template arguments ends up causing two 3631 // class template partial specializations of a member class template 3632 // to have identical forms, e.g., 3633 // 3634 // template<typename T, typename U> 3635 // struct Outer { 3636 // template<typename X, typename Y> struct Inner; 3637 // template<typename Y> struct Inner<T, Y>; 3638 // template<typename Y> struct Inner<U, Y>; 3639 // }; 3640 // 3641 // Outer<int, int> outer; // error: the partial specializations of Inner 3642 // // have the same signature. 3643 SemaRef.Diag(PartialSpec->getLocation(), diag::err_partial_spec_redeclared) 3644 << WrittenTy->getType(); 3645 SemaRef.Diag(PrevDecl->getLocation(), diag::note_prev_partial_spec_here) 3646 << SemaRef.Context.getTypeDeclType(PrevDecl); 3647 return nullptr; 3648 } 3649 3650 3651 // Create the class template partial specialization declaration. 3652 ClassTemplatePartialSpecializationDecl *InstPartialSpec = 3653 ClassTemplatePartialSpecializationDecl::Create( 3654 SemaRef.Context, PartialSpec->getTagKind(), Owner, 3655 PartialSpec->getBeginLoc(), PartialSpec->getLocation(), InstParams, 3656 ClassTemplate, Converted, InstTemplateArgs, CanonType, nullptr); 3657 // Substitute the nested name specifier, if any. 3658 if (SubstQualifier(PartialSpec, InstPartialSpec)) 3659 return nullptr; 3660 3661 InstPartialSpec->setInstantiatedFromMember(PartialSpec); 3662 InstPartialSpec->setTypeAsWritten(WrittenTy); 3663 3664 // Check the completed partial specialization. 3665 SemaRef.CheckTemplatePartialSpecialization(InstPartialSpec); 3666 3667 // Add this partial specialization to the set of class template partial 3668 // specializations. 3669 ClassTemplate->AddPartialSpecialization(InstPartialSpec, 3670 /*InsertPos=*/nullptr); 3671 return InstPartialSpec; 3672 } 3673 3674 /// Instantiate the declaration of a variable template partial 3675 /// specialization. 3676 /// 3677 /// \param VarTemplate the (instantiated) variable template that is partially 3678 /// specialized by the instantiation of \p PartialSpec. 3679 /// 3680 /// \param PartialSpec the (uninstantiated) variable template partial 3681 /// specialization that we are instantiating. 3682 /// 3683 /// \returns The instantiated partial specialization, if successful; otherwise, 3684 /// NULL to indicate an error. 3685 VarTemplatePartialSpecializationDecl * 3686 TemplateDeclInstantiator::InstantiateVarTemplatePartialSpecialization( 3687 VarTemplateDecl *VarTemplate, 3688 VarTemplatePartialSpecializationDecl *PartialSpec) { 3689 // Create a local instantiation scope for this variable template partial 3690 // specialization, which will contain the instantiations of the template 3691 // parameters. 3692 LocalInstantiationScope Scope(SemaRef); 3693 3694 // Substitute into the template parameters of the variable template partial 3695 // specialization. 3696 TemplateParameterList *TempParams = PartialSpec->getTemplateParameters(); 3697 TemplateParameterList *InstParams = SubstTemplateParams(TempParams); 3698 if (!InstParams) 3699 return nullptr; 3700 3701 // Substitute into the template arguments of the variable template partial 3702 // specialization. 3703 const ASTTemplateArgumentListInfo *TemplArgInfo 3704 = PartialSpec->getTemplateArgsAsWritten(); 3705 TemplateArgumentListInfo InstTemplateArgs(TemplArgInfo->LAngleLoc, 3706 TemplArgInfo->RAngleLoc); 3707 if (SemaRef.Subst(TemplArgInfo->getTemplateArgs(), 3708 TemplArgInfo->NumTemplateArgs, 3709 InstTemplateArgs, TemplateArgs)) 3710 return nullptr; 3711 3712 // Check that the template argument list is well-formed for this 3713 // class template. 3714 SmallVector<TemplateArgument, 4> Converted; 3715 if (SemaRef.CheckTemplateArgumentList(VarTemplate, PartialSpec->getLocation(), 3716 InstTemplateArgs, false, Converted)) 3717 return nullptr; 3718 3719 // Check these arguments are valid for a template partial specialization. 3720 if (SemaRef.CheckTemplatePartialSpecializationArgs( 3721 PartialSpec->getLocation(), VarTemplate, InstTemplateArgs.size(), 3722 Converted)) 3723 return nullptr; 3724 3725 // Figure out where to insert this variable template partial specialization 3726 // in the member template's set of variable template partial specializations. 3727 void *InsertPos = nullptr; 3728 VarTemplateSpecializationDecl *PrevDecl = 3729 VarTemplate->findPartialSpecialization(Converted, InsertPos); 3730 3731 // Build the canonical type that describes the converted template 3732 // arguments of the variable template partial specialization. 3733 QualType CanonType = SemaRef.Context.getTemplateSpecializationType( 3734 TemplateName(VarTemplate), Converted); 3735 3736 // Build the fully-sugared type for this variable template 3737 // specialization as the user wrote in the specialization 3738 // itself. This means that we'll pretty-print the type retrieved 3739 // from the specialization's declaration the way that the user 3740 // actually wrote the specialization, rather than formatting the 3741 // name based on the "canonical" representation used to store the 3742 // template arguments in the specialization. 3743 TypeSourceInfo *WrittenTy = SemaRef.Context.getTemplateSpecializationTypeInfo( 3744 TemplateName(VarTemplate), PartialSpec->getLocation(), InstTemplateArgs, 3745 CanonType); 3746 3747 if (PrevDecl) { 3748 // We've already seen a partial specialization with the same template 3749 // parameters and template arguments. This can happen, for example, when 3750 // substituting the outer template arguments ends up causing two 3751 // variable template partial specializations of a member variable template 3752 // to have identical forms, e.g., 3753 // 3754 // template<typename T, typename U> 3755 // struct Outer { 3756 // template<typename X, typename Y> pair<X,Y> p; 3757 // template<typename Y> pair<T, Y> p; 3758 // template<typename Y> pair<U, Y> p; 3759 // }; 3760 // 3761 // Outer<int, int> outer; // error: the partial specializations of Inner 3762 // // have the same signature. 3763 SemaRef.Diag(PartialSpec->getLocation(), 3764 diag::err_var_partial_spec_redeclared) 3765 << WrittenTy->getType(); 3766 SemaRef.Diag(PrevDecl->getLocation(), 3767 diag::note_var_prev_partial_spec_here); 3768 return nullptr; 3769 } 3770 3771 // Do substitution on the type of the declaration 3772 TypeSourceInfo *DI = SemaRef.SubstType( 3773 PartialSpec->getTypeSourceInfo(), TemplateArgs, 3774 PartialSpec->getTypeSpecStartLoc(), PartialSpec->getDeclName()); 3775 if (!DI) 3776 return nullptr; 3777 3778 if (DI->getType()->isFunctionType()) { 3779 SemaRef.Diag(PartialSpec->getLocation(), 3780 diag::err_variable_instantiates_to_function) 3781 << PartialSpec->isStaticDataMember() << DI->getType(); 3782 return nullptr; 3783 } 3784 3785 // Create the variable template partial specialization declaration. 3786 VarTemplatePartialSpecializationDecl *InstPartialSpec = 3787 VarTemplatePartialSpecializationDecl::Create( 3788 SemaRef.Context, Owner, PartialSpec->getInnerLocStart(), 3789 PartialSpec->getLocation(), InstParams, VarTemplate, DI->getType(), 3790 DI, PartialSpec->getStorageClass(), Converted, InstTemplateArgs); 3791 3792 // Substitute the nested name specifier, if any. 3793 if (SubstQualifier(PartialSpec, InstPartialSpec)) 3794 return nullptr; 3795 3796 InstPartialSpec->setInstantiatedFromMember(PartialSpec); 3797 InstPartialSpec->setTypeAsWritten(WrittenTy); 3798 3799 // Check the completed partial specialization. 3800 SemaRef.CheckTemplatePartialSpecialization(InstPartialSpec); 3801 3802 // Add this partial specialization to the set of variable template partial 3803 // specializations. The instantiation of the initializer is not necessary. 3804 VarTemplate->AddPartialSpecialization(InstPartialSpec, /*InsertPos=*/nullptr); 3805 3806 SemaRef.BuildVariableInstantiation(InstPartialSpec, PartialSpec, TemplateArgs, 3807 LateAttrs, Owner, StartingScope); 3808 3809 return InstPartialSpec; 3810 } 3811 3812 TypeSourceInfo* 3813 TemplateDeclInstantiator::SubstFunctionType(FunctionDecl *D, 3814 SmallVectorImpl<ParmVarDecl *> &Params) { 3815 TypeSourceInfo *OldTInfo = D->getTypeSourceInfo(); 3816 assert(OldTInfo && "substituting function without type source info"); 3817 assert(Params.empty() && "parameter vector is non-empty at start"); 3818 3819 CXXRecordDecl *ThisContext = nullptr; 3820 Qualifiers ThisTypeQuals; 3821 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 3822 ThisContext = cast<CXXRecordDecl>(Owner); 3823 ThisTypeQuals = Method->getMethodQualifiers(); 3824 } 3825 3826 TypeSourceInfo *NewTInfo 3827 = SemaRef.SubstFunctionDeclType(OldTInfo, TemplateArgs, 3828 D->getTypeSpecStartLoc(), 3829 D->getDeclName(), 3830 ThisContext, ThisTypeQuals); 3831 if (!NewTInfo) 3832 return nullptr; 3833 3834 TypeLoc OldTL = OldTInfo->getTypeLoc().IgnoreParens(); 3835 if (FunctionProtoTypeLoc OldProtoLoc = OldTL.getAs<FunctionProtoTypeLoc>()) { 3836 if (NewTInfo != OldTInfo) { 3837 // Get parameters from the new type info. 3838 TypeLoc NewTL = NewTInfo->getTypeLoc().IgnoreParens(); 3839 FunctionProtoTypeLoc NewProtoLoc = NewTL.castAs<FunctionProtoTypeLoc>(); 3840 unsigned NewIdx = 0; 3841 for (unsigned OldIdx = 0, NumOldParams = OldProtoLoc.getNumParams(); 3842 OldIdx != NumOldParams; ++OldIdx) { 3843 ParmVarDecl *OldParam = OldProtoLoc.getParam(OldIdx); 3844 LocalInstantiationScope *Scope = SemaRef.CurrentInstantiationScope; 3845 3846 Optional<unsigned> NumArgumentsInExpansion; 3847 if (OldParam->isParameterPack()) 3848 NumArgumentsInExpansion = 3849 SemaRef.getNumArgumentsInExpansion(OldParam->getType(), 3850 TemplateArgs); 3851 if (!NumArgumentsInExpansion) { 3852 // Simple case: normal parameter, or a parameter pack that's 3853 // instantiated to a (still-dependent) parameter pack. 3854 ParmVarDecl *NewParam = NewProtoLoc.getParam(NewIdx++); 3855 Params.push_back(NewParam); 3856 Scope->InstantiatedLocal(OldParam, NewParam); 3857 } else { 3858 // Parameter pack expansion: make the instantiation an argument pack. 3859 Scope->MakeInstantiatedLocalArgPack(OldParam); 3860 for (unsigned I = 0; I != *NumArgumentsInExpansion; ++I) { 3861 ParmVarDecl *NewParam = NewProtoLoc.getParam(NewIdx++); 3862 Params.push_back(NewParam); 3863 Scope->InstantiatedLocalPackArg(OldParam, NewParam); 3864 } 3865 } 3866 } 3867 } else { 3868 // The function type itself was not dependent and therefore no 3869 // substitution occurred. However, we still need to instantiate 3870 // the function parameters themselves. 3871 const FunctionProtoType *OldProto = 3872 cast<FunctionProtoType>(OldProtoLoc.getType()); 3873 for (unsigned i = 0, i_end = OldProtoLoc.getNumParams(); i != i_end; 3874 ++i) { 3875 ParmVarDecl *OldParam = OldProtoLoc.getParam(i); 3876 if (!OldParam) { 3877 Params.push_back(SemaRef.BuildParmVarDeclForTypedef( 3878 D, D->getLocation(), OldProto->getParamType(i))); 3879 continue; 3880 } 3881 3882 ParmVarDecl *Parm = 3883 cast_or_null<ParmVarDecl>(VisitParmVarDecl(OldParam)); 3884 if (!Parm) 3885 return nullptr; 3886 Params.push_back(Parm); 3887 } 3888 } 3889 } else { 3890 // If the type of this function, after ignoring parentheses, is not 3891 // *directly* a function type, then we're instantiating a function that 3892 // was declared via a typedef or with attributes, e.g., 3893 // 3894 // typedef int functype(int, int); 3895 // functype func; 3896 // int __cdecl meth(int, int); 3897 // 3898 // In this case, we'll just go instantiate the ParmVarDecls that we 3899 // synthesized in the method declaration. 3900 SmallVector<QualType, 4> ParamTypes; 3901 Sema::ExtParameterInfoBuilder ExtParamInfos; 3902 if (SemaRef.SubstParmTypes(D->getLocation(), D->parameters(), nullptr, 3903 TemplateArgs, ParamTypes, &Params, 3904 ExtParamInfos)) 3905 return nullptr; 3906 } 3907 3908 return NewTInfo; 3909 } 3910 3911 /// Introduce the instantiated function parameters into the local 3912 /// instantiation scope, and set the parameter names to those used 3913 /// in the template. 3914 static bool addInstantiatedParametersToScope(Sema &S, FunctionDecl *Function, 3915 const FunctionDecl *PatternDecl, 3916 LocalInstantiationScope &Scope, 3917 const MultiLevelTemplateArgumentList &TemplateArgs) { 3918 unsigned FParamIdx = 0; 3919 for (unsigned I = 0, N = PatternDecl->getNumParams(); I != N; ++I) { 3920 const ParmVarDecl *PatternParam = PatternDecl->getParamDecl(I); 3921 if (!PatternParam->isParameterPack()) { 3922 // Simple case: not a parameter pack. 3923 assert(FParamIdx < Function->getNumParams()); 3924 ParmVarDecl *FunctionParam = Function->getParamDecl(FParamIdx); 3925 FunctionParam->setDeclName(PatternParam->getDeclName()); 3926 // If the parameter's type is not dependent, update it to match the type 3927 // in the pattern. They can differ in top-level cv-qualifiers, and we want 3928 // the pattern's type here. If the type is dependent, they can't differ, 3929 // per core issue 1668. Substitute into the type from the pattern, in case 3930 // it's instantiation-dependent. 3931 // FIXME: Updating the type to work around this is at best fragile. 3932 if (!PatternDecl->getType()->isDependentType()) { 3933 QualType T = S.SubstType(PatternParam->getType(), TemplateArgs, 3934 FunctionParam->getLocation(), 3935 FunctionParam->getDeclName()); 3936 if (T.isNull()) 3937 return true; 3938 FunctionParam->setType(T); 3939 } 3940 3941 Scope.InstantiatedLocal(PatternParam, FunctionParam); 3942 ++FParamIdx; 3943 continue; 3944 } 3945 3946 // Expand the parameter pack. 3947 Scope.MakeInstantiatedLocalArgPack(PatternParam); 3948 Optional<unsigned> NumArgumentsInExpansion 3949 = S.getNumArgumentsInExpansion(PatternParam->getType(), TemplateArgs); 3950 if (NumArgumentsInExpansion) { 3951 QualType PatternType = 3952 PatternParam->getType()->castAs<PackExpansionType>()->getPattern(); 3953 for (unsigned Arg = 0; Arg < *NumArgumentsInExpansion; ++Arg) { 3954 ParmVarDecl *FunctionParam = Function->getParamDecl(FParamIdx); 3955 FunctionParam->setDeclName(PatternParam->getDeclName()); 3956 if (!PatternDecl->getType()->isDependentType()) { 3957 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(S, Arg); 3958 QualType T = S.SubstType(PatternType, TemplateArgs, 3959 FunctionParam->getLocation(), 3960 FunctionParam->getDeclName()); 3961 if (T.isNull()) 3962 return true; 3963 FunctionParam->setType(T); 3964 } 3965 3966 Scope.InstantiatedLocalPackArg(PatternParam, FunctionParam); 3967 ++FParamIdx; 3968 } 3969 } 3970 } 3971 3972 return false; 3973 } 3974 3975 void Sema::InstantiateExceptionSpec(SourceLocation PointOfInstantiation, 3976 FunctionDecl *Decl) { 3977 const FunctionProtoType *Proto = Decl->getType()->castAs<FunctionProtoType>(); 3978 if (Proto->getExceptionSpecType() != EST_Uninstantiated) 3979 return; 3980 3981 InstantiatingTemplate Inst(*this, PointOfInstantiation, Decl, 3982 InstantiatingTemplate::ExceptionSpecification()); 3983 if (Inst.isInvalid()) { 3984 // We hit the instantiation depth limit. Clear the exception specification 3985 // so that our callers don't have to cope with EST_Uninstantiated. 3986 UpdateExceptionSpec(Decl, EST_None); 3987 return; 3988 } 3989 if (Inst.isAlreadyInstantiating()) { 3990 // This exception specification indirectly depends on itself. Reject. 3991 // FIXME: Corresponding rule in the standard? 3992 Diag(PointOfInstantiation, diag::err_exception_spec_cycle) << Decl; 3993 UpdateExceptionSpec(Decl, EST_None); 3994 return; 3995 } 3996 3997 // Enter the scope of this instantiation. We don't use 3998 // PushDeclContext because we don't have a scope. 3999 Sema::ContextRAII savedContext(*this, Decl); 4000 LocalInstantiationScope Scope(*this); 4001 4002 MultiLevelTemplateArgumentList TemplateArgs = 4003 getTemplateInstantiationArgs(Decl, nullptr, /*RelativeToPrimary*/true); 4004 4005 FunctionDecl *Template = Proto->getExceptionSpecTemplate(); 4006 if (addInstantiatedParametersToScope(*this, Decl, Template, Scope, 4007 TemplateArgs)) { 4008 UpdateExceptionSpec(Decl, EST_None); 4009 return; 4010 } 4011 4012 SubstExceptionSpec(Decl, Template->getType()->castAs<FunctionProtoType>(), 4013 TemplateArgs); 4014 } 4015 4016 /// Initializes the common fields of an instantiation function 4017 /// declaration (New) from the corresponding fields of its template (Tmpl). 4018 /// 4019 /// \returns true if there was an error 4020 bool 4021 TemplateDeclInstantiator::InitFunctionInstantiation(FunctionDecl *New, 4022 FunctionDecl *Tmpl) { 4023 New->setImplicit(Tmpl->isImplicit()); 4024 4025 // Forward the mangling number from the template to the instantiated decl. 4026 SemaRef.Context.setManglingNumber(New, 4027 SemaRef.Context.getManglingNumber(Tmpl)); 4028 4029 // If we are performing substituting explicitly-specified template arguments 4030 // or deduced template arguments into a function template and we reach this 4031 // point, we are now past the point where SFINAE applies and have committed 4032 // to keeping the new function template specialization. We therefore 4033 // convert the active template instantiation for the function template 4034 // into a template instantiation for this specific function template 4035 // specialization, which is not a SFINAE context, so that we diagnose any 4036 // further errors in the declaration itself. 4037 typedef Sema::CodeSynthesisContext ActiveInstType; 4038 ActiveInstType &ActiveInst = SemaRef.CodeSynthesisContexts.back(); 4039 if (ActiveInst.Kind == ActiveInstType::ExplicitTemplateArgumentSubstitution || 4040 ActiveInst.Kind == ActiveInstType::DeducedTemplateArgumentSubstitution) { 4041 if (FunctionTemplateDecl *FunTmpl 4042 = dyn_cast<FunctionTemplateDecl>(ActiveInst.Entity)) { 4043 assert(FunTmpl->getTemplatedDecl() == Tmpl && 4044 "Deduction from the wrong function template?"); 4045 (void) FunTmpl; 4046 atTemplateEnd(SemaRef.TemplateInstCallbacks, SemaRef, ActiveInst); 4047 ActiveInst.Kind = ActiveInstType::TemplateInstantiation; 4048 ActiveInst.Entity = New; 4049 atTemplateBegin(SemaRef.TemplateInstCallbacks, SemaRef, ActiveInst); 4050 } 4051 } 4052 4053 const FunctionProtoType *Proto = Tmpl->getType()->getAs<FunctionProtoType>(); 4054 assert(Proto && "Function template without prototype?"); 4055 4056 if (Proto->hasExceptionSpec() || Proto->getNoReturnAttr()) { 4057 FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo(); 4058 4059 // DR1330: In C++11, defer instantiation of a non-trivial 4060 // exception specification. 4061 // DR1484: Local classes and their members are instantiated along with the 4062 // containing function. 4063 if (SemaRef.getLangOpts().CPlusPlus11 && 4064 EPI.ExceptionSpec.Type != EST_None && 4065 EPI.ExceptionSpec.Type != EST_DynamicNone && 4066 EPI.ExceptionSpec.Type != EST_BasicNoexcept && 4067 !Tmpl->isLexicallyWithinFunctionOrMethod()) { 4068 FunctionDecl *ExceptionSpecTemplate = Tmpl; 4069 if (EPI.ExceptionSpec.Type == EST_Uninstantiated) 4070 ExceptionSpecTemplate = EPI.ExceptionSpec.SourceTemplate; 4071 ExceptionSpecificationType NewEST = EST_Uninstantiated; 4072 if (EPI.ExceptionSpec.Type == EST_Unevaluated) 4073 NewEST = EST_Unevaluated; 4074 4075 // Mark the function has having an uninstantiated exception specification. 4076 const FunctionProtoType *NewProto 4077 = New->getType()->getAs<FunctionProtoType>(); 4078 assert(NewProto && "Template instantiation without function prototype?"); 4079 EPI = NewProto->getExtProtoInfo(); 4080 EPI.ExceptionSpec.Type = NewEST; 4081 EPI.ExceptionSpec.SourceDecl = New; 4082 EPI.ExceptionSpec.SourceTemplate = ExceptionSpecTemplate; 4083 New->setType(SemaRef.Context.getFunctionType( 4084 NewProto->getReturnType(), NewProto->getParamTypes(), EPI)); 4085 } else { 4086 Sema::ContextRAII SwitchContext(SemaRef, New); 4087 SemaRef.SubstExceptionSpec(New, Proto, TemplateArgs); 4088 } 4089 } 4090 4091 // Get the definition. Leaves the variable unchanged if undefined. 4092 const FunctionDecl *Definition = Tmpl; 4093 Tmpl->isDefined(Definition); 4094 4095 SemaRef.InstantiateAttrs(TemplateArgs, Definition, New, 4096 LateAttrs, StartingScope); 4097 4098 return false; 4099 } 4100 4101 /// Initializes common fields of an instantiated method 4102 /// declaration (New) from the corresponding fields of its template 4103 /// (Tmpl). 4104 /// 4105 /// \returns true if there was an error 4106 bool 4107 TemplateDeclInstantiator::InitMethodInstantiation(CXXMethodDecl *New, 4108 CXXMethodDecl *Tmpl) { 4109 if (InitFunctionInstantiation(New, Tmpl)) 4110 return true; 4111 4112 if (isa<CXXDestructorDecl>(New) && SemaRef.getLangOpts().CPlusPlus11) 4113 SemaRef.AdjustDestructorExceptionSpec(cast<CXXDestructorDecl>(New)); 4114 4115 New->setAccess(Tmpl->getAccess()); 4116 if (Tmpl->isVirtualAsWritten()) 4117 New->setVirtualAsWritten(true); 4118 4119 // FIXME: New needs a pointer to Tmpl 4120 return false; 4121 } 4122 4123 /// Instantiate (or find existing instantiation of) a function template with a 4124 /// given set of template arguments. 4125 /// 4126 /// Usually this should not be used, and template argument deduction should be 4127 /// used in its place. 4128 FunctionDecl * 4129 Sema::InstantiateFunctionDeclaration(FunctionTemplateDecl *FTD, 4130 const TemplateArgumentList *Args, 4131 SourceLocation Loc) { 4132 FunctionDecl *FD = FTD->getTemplatedDecl(); 4133 4134 sema::TemplateDeductionInfo Info(Loc); 4135 InstantiatingTemplate Inst( 4136 *this, Loc, FTD, Args->asArray(), 4137 CodeSynthesisContext::ExplicitTemplateArgumentSubstitution, Info); 4138 if (Inst.isInvalid()) 4139 return nullptr; 4140 4141 ContextRAII SavedContext(*this, FD); 4142 MultiLevelTemplateArgumentList MArgs(*Args); 4143 4144 return cast_or_null<FunctionDecl>(SubstDecl(FD, FD->getParent(), MArgs)); 4145 } 4146 4147 /// In the MS ABI, we need to instantiate default arguments of dllexported 4148 /// default constructors along with the constructor definition. This allows IR 4149 /// gen to emit a constructor closure which calls the default constructor with 4150 /// its default arguments. 4151 static void InstantiateDefaultCtorDefaultArgs(Sema &S, 4152 CXXConstructorDecl *Ctor) { 4153 assert(S.Context.getTargetInfo().getCXXABI().isMicrosoft() && 4154 Ctor->isDefaultConstructor()); 4155 unsigned NumParams = Ctor->getNumParams(); 4156 if (NumParams == 0) 4157 return; 4158 DLLExportAttr *Attr = Ctor->getAttr<DLLExportAttr>(); 4159 if (!Attr) 4160 return; 4161 for (unsigned I = 0; I != NumParams; ++I) { 4162 (void)S.CheckCXXDefaultArgExpr(Attr->getLocation(), Ctor, 4163 Ctor->getParamDecl(I)); 4164 S.DiscardCleanupsInEvaluationContext(); 4165 } 4166 } 4167 4168 /// Instantiate the definition of the given function from its 4169 /// template. 4170 /// 4171 /// \param PointOfInstantiation the point at which the instantiation was 4172 /// required. Note that this is not precisely a "point of instantiation" 4173 /// for the function, but it's close. 4174 /// 4175 /// \param Function the already-instantiated declaration of a 4176 /// function template specialization or member function of a class template 4177 /// specialization. 4178 /// 4179 /// \param Recursive if true, recursively instantiates any functions that 4180 /// are required by this instantiation. 4181 /// 4182 /// \param DefinitionRequired if true, then we are performing an explicit 4183 /// instantiation where the body of the function is required. Complain if 4184 /// there is no such body. 4185 void Sema::InstantiateFunctionDefinition(SourceLocation PointOfInstantiation, 4186 FunctionDecl *Function, 4187 bool Recursive, 4188 bool DefinitionRequired, 4189 bool AtEndOfTU) { 4190 if (Function->isInvalidDecl() || Function->isDefined() || 4191 isa<CXXDeductionGuideDecl>(Function)) 4192 return; 4193 4194 // Never instantiate an explicit specialization except if it is a class scope 4195 // explicit specialization. 4196 TemplateSpecializationKind TSK = 4197 Function->getTemplateSpecializationKindForInstantiation(); 4198 if (TSK == TSK_ExplicitSpecialization) 4199 return; 4200 4201 // Find the function body that we'll be substituting. 4202 const FunctionDecl *PatternDecl = Function->getTemplateInstantiationPattern(); 4203 assert(PatternDecl && "instantiating a non-template"); 4204 4205 const FunctionDecl *PatternDef = PatternDecl->getDefinition(); 4206 Stmt *Pattern = nullptr; 4207 if (PatternDef) { 4208 Pattern = PatternDef->getBody(PatternDef); 4209 PatternDecl = PatternDef; 4210 if (PatternDef->willHaveBody()) 4211 PatternDef = nullptr; 4212 } 4213 4214 // FIXME: We need to track the instantiation stack in order to know which 4215 // definitions should be visible within this instantiation. 4216 if (DiagnoseUninstantiableTemplate(PointOfInstantiation, Function, 4217 Function->getInstantiatedFromMemberFunction(), 4218 PatternDecl, PatternDef, TSK, 4219 /*Complain*/DefinitionRequired)) { 4220 if (DefinitionRequired) 4221 Function->setInvalidDecl(); 4222 else if (TSK == TSK_ExplicitInstantiationDefinition) { 4223 // Try again at the end of the translation unit (at which point a 4224 // definition will be required). 4225 assert(!Recursive); 4226 Function->setInstantiationIsPending(true); 4227 PendingInstantiations.push_back( 4228 std::make_pair(Function, PointOfInstantiation)); 4229 } else if (TSK == TSK_ImplicitInstantiation) { 4230 if (AtEndOfTU && !getDiagnostics().hasErrorOccurred() && 4231 !getSourceManager().isInSystemHeader(PatternDecl->getBeginLoc())) { 4232 Diag(PointOfInstantiation, diag::warn_func_template_missing) 4233 << Function; 4234 Diag(PatternDecl->getLocation(), diag::note_forward_template_decl); 4235 if (getLangOpts().CPlusPlus11) 4236 Diag(PointOfInstantiation, diag::note_inst_declaration_hint) 4237 << Function; 4238 } 4239 } 4240 4241 return; 4242 } 4243 4244 // Postpone late parsed template instantiations. 4245 if (PatternDecl->isLateTemplateParsed() && 4246 !LateTemplateParser) { 4247 Function->setInstantiationIsPending(true); 4248 LateParsedInstantiations.push_back( 4249 std::make_pair(Function, PointOfInstantiation)); 4250 return; 4251 } 4252 4253 llvm::TimeTraceScope TimeScope("InstantiateFunction", [&]() { 4254 std::string Name; 4255 llvm::raw_string_ostream OS(Name); 4256 Function->getNameForDiagnostic(OS, getPrintingPolicy(), 4257 /*Qualified=*/true); 4258 return Name; 4259 }); 4260 4261 // If we're performing recursive template instantiation, create our own 4262 // queue of pending implicit instantiations that we will instantiate later, 4263 // while we're still within our own instantiation context. 4264 // This has to happen before LateTemplateParser below is called, so that 4265 // it marks vtables used in late parsed templates as used. 4266 GlobalEagerInstantiationScope GlobalInstantiations(*this, 4267 /*Enabled=*/Recursive); 4268 LocalEagerInstantiationScope LocalInstantiations(*this); 4269 4270 // Call the LateTemplateParser callback if there is a need to late parse 4271 // a templated function definition. 4272 if (!Pattern && PatternDecl->isLateTemplateParsed() && 4273 LateTemplateParser) { 4274 // FIXME: Optimize to allow individual templates to be deserialized. 4275 if (PatternDecl->isFromASTFile()) 4276 ExternalSource->ReadLateParsedTemplates(LateParsedTemplateMap); 4277 4278 auto LPTIter = LateParsedTemplateMap.find(PatternDecl); 4279 assert(LPTIter != LateParsedTemplateMap.end() && 4280 "missing LateParsedTemplate"); 4281 LateTemplateParser(OpaqueParser, *LPTIter->second); 4282 Pattern = PatternDecl->getBody(PatternDecl); 4283 } 4284 4285 // Note, we should never try to instantiate a deleted function template. 4286 assert((Pattern || PatternDecl->isDefaulted() || 4287 PatternDecl->hasSkippedBody()) && 4288 "unexpected kind of function template definition"); 4289 4290 // C++1y [temp.explicit]p10: 4291 // Except for inline functions, declarations with types deduced from their 4292 // initializer or return value, and class template specializations, other 4293 // explicit instantiation declarations have the effect of suppressing the 4294 // implicit instantiation of the entity to which they refer. 4295 if (TSK == TSK_ExplicitInstantiationDeclaration && 4296 !PatternDecl->isInlined() && 4297 !PatternDecl->getReturnType()->getContainedAutoType()) 4298 return; 4299 4300 if (PatternDecl->isInlined()) { 4301 // Function, and all later redeclarations of it (from imported modules, 4302 // for instance), are now implicitly inline. 4303 for (auto *D = Function->getMostRecentDecl(); /**/; 4304 D = D->getPreviousDecl()) { 4305 D->setImplicitlyInline(); 4306 if (D == Function) 4307 break; 4308 } 4309 } 4310 4311 InstantiatingTemplate Inst(*this, PointOfInstantiation, Function); 4312 if (Inst.isInvalid() || Inst.isAlreadyInstantiating()) 4313 return; 4314 PrettyDeclStackTraceEntry CrashInfo(Context, Function, SourceLocation(), 4315 "instantiating function definition"); 4316 4317 // The instantiation is visible here, even if it was first declared in an 4318 // unimported module. 4319 Function->setVisibleDespiteOwningModule(); 4320 4321 // Copy the inner loc start from the pattern. 4322 Function->setInnerLocStart(PatternDecl->getInnerLocStart()); 4323 4324 EnterExpressionEvaluationContext EvalContext( 4325 *this, Sema::ExpressionEvaluationContext::PotentiallyEvaluated); 4326 4327 // Introduce a new scope where local variable instantiations will be 4328 // recorded, unless we're actually a member function within a local 4329 // class, in which case we need to merge our results with the parent 4330 // scope (of the enclosing function). 4331 bool MergeWithParentScope = false; 4332 if (CXXRecordDecl *Rec = dyn_cast<CXXRecordDecl>(Function->getDeclContext())) 4333 MergeWithParentScope = Rec->isLocalClass(); 4334 4335 LocalInstantiationScope Scope(*this, MergeWithParentScope); 4336 4337 if (PatternDecl->isDefaulted()) 4338 SetDeclDefaulted(Function, PatternDecl->getLocation()); 4339 else { 4340 MultiLevelTemplateArgumentList TemplateArgs = 4341 getTemplateInstantiationArgs(Function, nullptr, false, PatternDecl); 4342 4343 // Substitute into the qualifier; we can get a substitution failure here 4344 // through evil use of alias templates. 4345 // FIXME: Is CurContext correct for this? Should we go to the (instantiation 4346 // of the) lexical context of the pattern? 4347 SubstQualifier(*this, PatternDecl, Function, TemplateArgs); 4348 4349 ActOnStartOfFunctionDef(nullptr, Function); 4350 4351 // Enter the scope of this instantiation. We don't use 4352 // PushDeclContext because we don't have a scope. 4353 Sema::ContextRAII savedContext(*this, Function); 4354 4355 if (addInstantiatedParametersToScope(*this, Function, PatternDecl, Scope, 4356 TemplateArgs)) 4357 return; 4358 4359 StmtResult Body; 4360 if (PatternDecl->hasSkippedBody()) { 4361 ActOnSkippedFunctionBody(Function); 4362 Body = nullptr; 4363 } else { 4364 if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Function)) { 4365 // If this is a constructor, instantiate the member initializers. 4366 InstantiateMemInitializers(Ctor, cast<CXXConstructorDecl>(PatternDecl), 4367 TemplateArgs); 4368 4369 // If this is an MS ABI dllexport default constructor, instantiate any 4370 // default arguments. 4371 if (Context.getTargetInfo().getCXXABI().isMicrosoft() && 4372 Ctor->isDefaultConstructor()) { 4373 InstantiateDefaultCtorDefaultArgs(*this, Ctor); 4374 } 4375 } 4376 4377 // Instantiate the function body. 4378 Body = SubstStmt(Pattern, TemplateArgs); 4379 4380 if (Body.isInvalid()) 4381 Function->setInvalidDecl(); 4382 } 4383 // FIXME: finishing the function body while in an expression evaluation 4384 // context seems wrong. Investigate more. 4385 ActOnFinishFunctionBody(Function, Body.get(), /*IsInstantiation=*/true); 4386 4387 PerformDependentDiagnostics(PatternDecl, TemplateArgs); 4388 4389 if (auto *Listener = getASTMutationListener()) 4390 Listener->FunctionDefinitionInstantiated(Function); 4391 4392 savedContext.pop(); 4393 } 4394 4395 DeclGroupRef DG(Function); 4396 Consumer.HandleTopLevelDecl(DG); 4397 4398 // This class may have local implicit instantiations that need to be 4399 // instantiation within this scope. 4400 LocalInstantiations.perform(); 4401 Scope.Exit(); 4402 GlobalInstantiations.perform(); 4403 } 4404 4405 VarTemplateSpecializationDecl *Sema::BuildVarTemplateInstantiation( 4406 VarTemplateDecl *VarTemplate, VarDecl *FromVar, 4407 const TemplateArgumentList &TemplateArgList, 4408 const TemplateArgumentListInfo &TemplateArgsInfo, 4409 SmallVectorImpl<TemplateArgument> &Converted, 4410 SourceLocation PointOfInstantiation, void *InsertPos, 4411 LateInstantiatedAttrVec *LateAttrs, 4412 LocalInstantiationScope *StartingScope) { 4413 if (FromVar->isInvalidDecl()) 4414 return nullptr; 4415 4416 InstantiatingTemplate Inst(*this, PointOfInstantiation, FromVar); 4417 if (Inst.isInvalid()) 4418 return nullptr; 4419 4420 MultiLevelTemplateArgumentList TemplateArgLists; 4421 TemplateArgLists.addOuterTemplateArguments(&TemplateArgList); 4422 4423 // Instantiate the first declaration of the variable template: for a partial 4424 // specialization of a static data member template, the first declaration may 4425 // or may not be the declaration in the class; if it's in the class, we want 4426 // to instantiate a member in the class (a declaration), and if it's outside, 4427 // we want to instantiate a definition. 4428 // 4429 // If we're instantiating an explicitly-specialized member template or member 4430 // partial specialization, don't do this. The member specialization completely 4431 // replaces the original declaration in this case. 4432 bool IsMemberSpec = false; 4433 if (VarTemplatePartialSpecializationDecl *PartialSpec = 4434 dyn_cast<VarTemplatePartialSpecializationDecl>(FromVar)) 4435 IsMemberSpec = PartialSpec->isMemberSpecialization(); 4436 else if (VarTemplateDecl *FromTemplate = FromVar->getDescribedVarTemplate()) 4437 IsMemberSpec = FromTemplate->isMemberSpecialization(); 4438 if (!IsMemberSpec) 4439 FromVar = FromVar->getFirstDecl(); 4440 4441 MultiLevelTemplateArgumentList MultiLevelList(TemplateArgList); 4442 TemplateDeclInstantiator Instantiator(*this, FromVar->getDeclContext(), 4443 MultiLevelList); 4444 4445 // TODO: Set LateAttrs and StartingScope ... 4446 4447 return cast_or_null<VarTemplateSpecializationDecl>( 4448 Instantiator.VisitVarTemplateSpecializationDecl( 4449 VarTemplate, FromVar, InsertPos, TemplateArgsInfo, Converted)); 4450 } 4451 4452 /// Instantiates a variable template specialization by completing it 4453 /// with appropriate type information and initializer. 4454 VarTemplateSpecializationDecl *Sema::CompleteVarTemplateSpecializationDecl( 4455 VarTemplateSpecializationDecl *VarSpec, VarDecl *PatternDecl, 4456 const MultiLevelTemplateArgumentList &TemplateArgs) { 4457 assert(PatternDecl->isThisDeclarationADefinition() && 4458 "don't have a definition to instantiate from"); 4459 4460 // Do substitution on the type of the declaration 4461 TypeSourceInfo *DI = 4462 SubstType(PatternDecl->getTypeSourceInfo(), TemplateArgs, 4463 PatternDecl->getTypeSpecStartLoc(), PatternDecl->getDeclName()); 4464 if (!DI) 4465 return nullptr; 4466 4467 // Update the type of this variable template specialization. 4468 VarSpec->setType(DI->getType()); 4469 4470 // Convert the declaration into a definition now. 4471 VarSpec->setCompleteDefinition(); 4472 4473 // Instantiate the initializer. 4474 InstantiateVariableInitializer(VarSpec, PatternDecl, TemplateArgs); 4475 4476 return VarSpec; 4477 } 4478 4479 /// BuildVariableInstantiation - Used after a new variable has been created. 4480 /// Sets basic variable data and decides whether to postpone the 4481 /// variable instantiation. 4482 void Sema::BuildVariableInstantiation( 4483 VarDecl *NewVar, VarDecl *OldVar, 4484 const MultiLevelTemplateArgumentList &TemplateArgs, 4485 LateInstantiatedAttrVec *LateAttrs, DeclContext *Owner, 4486 LocalInstantiationScope *StartingScope, 4487 bool InstantiatingVarTemplate, 4488 VarTemplateSpecializationDecl *PrevDeclForVarTemplateSpecialization) { 4489 // Instantiating a partial specialization to produce a partial 4490 // specialization. 4491 bool InstantiatingVarTemplatePartialSpec = 4492 isa<VarTemplatePartialSpecializationDecl>(OldVar) && 4493 isa<VarTemplatePartialSpecializationDecl>(NewVar); 4494 // Instantiating from a variable template (or partial specialization) to 4495 // produce a variable template specialization. 4496 bool InstantiatingSpecFromTemplate = 4497 isa<VarTemplateSpecializationDecl>(NewVar) && 4498 (OldVar->getDescribedVarTemplate() || 4499 isa<VarTemplatePartialSpecializationDecl>(OldVar)); 4500 4501 // If we are instantiating a local extern declaration, the 4502 // instantiation belongs lexically to the containing function. 4503 // If we are instantiating a static data member defined 4504 // out-of-line, the instantiation will have the same lexical 4505 // context (which will be a namespace scope) as the template. 4506 if (OldVar->isLocalExternDecl()) { 4507 NewVar->setLocalExternDecl(); 4508 NewVar->setLexicalDeclContext(Owner); 4509 } else if (OldVar->isOutOfLine()) 4510 NewVar->setLexicalDeclContext(OldVar->getLexicalDeclContext()); 4511 NewVar->setTSCSpec(OldVar->getTSCSpec()); 4512 NewVar->setInitStyle(OldVar->getInitStyle()); 4513 NewVar->setCXXForRangeDecl(OldVar->isCXXForRangeDecl()); 4514 NewVar->setObjCForDecl(OldVar->isObjCForDecl()); 4515 NewVar->setConstexpr(OldVar->isConstexpr()); 4516 NewVar->setInitCapture(OldVar->isInitCapture()); 4517 NewVar->setPreviousDeclInSameBlockScope( 4518 OldVar->isPreviousDeclInSameBlockScope()); 4519 NewVar->setAccess(OldVar->getAccess()); 4520 4521 if (!OldVar->isStaticDataMember()) { 4522 if (OldVar->isUsed(false)) 4523 NewVar->setIsUsed(); 4524 NewVar->setReferenced(OldVar->isReferenced()); 4525 } 4526 4527 InstantiateAttrs(TemplateArgs, OldVar, NewVar, LateAttrs, StartingScope); 4528 4529 LookupResult Previous( 4530 *this, NewVar->getDeclName(), NewVar->getLocation(), 4531 NewVar->isLocalExternDecl() ? Sema::LookupRedeclarationWithLinkage 4532 : Sema::LookupOrdinaryName, 4533 NewVar->isLocalExternDecl() ? Sema::ForExternalRedeclaration 4534 : forRedeclarationInCurContext()); 4535 4536 if (NewVar->isLocalExternDecl() && OldVar->getPreviousDecl() && 4537 (!OldVar->getPreviousDecl()->getDeclContext()->isDependentContext() || 4538 OldVar->getPreviousDecl()->getDeclContext()==OldVar->getDeclContext())) { 4539 // We have a previous declaration. Use that one, so we merge with the 4540 // right type. 4541 if (NamedDecl *NewPrev = FindInstantiatedDecl( 4542 NewVar->getLocation(), OldVar->getPreviousDecl(), TemplateArgs)) 4543 Previous.addDecl(NewPrev); 4544 } else if (!isa<VarTemplateSpecializationDecl>(NewVar) && 4545 OldVar->hasLinkage()) { 4546 LookupQualifiedName(Previous, NewVar->getDeclContext(), false); 4547 } else if (PrevDeclForVarTemplateSpecialization) { 4548 Previous.addDecl(PrevDeclForVarTemplateSpecialization); 4549 } 4550 CheckVariableDeclaration(NewVar, Previous); 4551 4552 if (!InstantiatingVarTemplate) { 4553 NewVar->getLexicalDeclContext()->addHiddenDecl(NewVar); 4554 if (!NewVar->isLocalExternDecl() || !NewVar->getPreviousDecl()) 4555 NewVar->getDeclContext()->makeDeclVisibleInContext(NewVar); 4556 } 4557 4558 if (!OldVar->isOutOfLine()) { 4559 if (NewVar->getDeclContext()->isFunctionOrMethod()) 4560 CurrentInstantiationScope->InstantiatedLocal(OldVar, NewVar); 4561 } 4562 4563 // Link instantiations of static data members back to the template from 4564 // which they were instantiated. 4565 // 4566 // Don't do this when instantiating a template (we link the template itself 4567 // back in that case) nor when instantiating a static data member template 4568 // (that's not a member specialization). 4569 if (NewVar->isStaticDataMember() && !InstantiatingVarTemplate && 4570 !InstantiatingSpecFromTemplate) 4571 NewVar->setInstantiationOfStaticDataMember(OldVar, 4572 TSK_ImplicitInstantiation); 4573 4574 // If the pattern is an (in-class) explicit specialization, then the result 4575 // is also an explicit specialization. 4576 if (VarTemplateSpecializationDecl *OldVTSD = 4577 dyn_cast<VarTemplateSpecializationDecl>(OldVar)) { 4578 if (OldVTSD->getSpecializationKind() == TSK_ExplicitSpecialization && 4579 !isa<VarTemplatePartialSpecializationDecl>(OldVTSD)) 4580 cast<VarTemplateSpecializationDecl>(NewVar)->setSpecializationKind( 4581 TSK_ExplicitSpecialization); 4582 } 4583 4584 // Forward the mangling number from the template to the instantiated decl. 4585 Context.setManglingNumber(NewVar, Context.getManglingNumber(OldVar)); 4586 Context.setStaticLocalNumber(NewVar, Context.getStaticLocalNumber(OldVar)); 4587 4588 // Figure out whether to eagerly instantiate the initializer. 4589 if (InstantiatingVarTemplate || InstantiatingVarTemplatePartialSpec) { 4590 // We're producing a template. Don't instantiate the initializer yet. 4591 } else if (NewVar->getType()->isUndeducedType()) { 4592 // We need the type to complete the declaration of the variable. 4593 InstantiateVariableInitializer(NewVar, OldVar, TemplateArgs); 4594 } else if (InstantiatingSpecFromTemplate || 4595 (OldVar->isInline() && OldVar->isThisDeclarationADefinition() && 4596 !NewVar->isThisDeclarationADefinition())) { 4597 // Delay instantiation of the initializer for variable template 4598 // specializations or inline static data members until a definition of the 4599 // variable is needed. 4600 } else { 4601 InstantiateVariableInitializer(NewVar, OldVar, TemplateArgs); 4602 } 4603 4604 // Diagnose unused local variables with dependent types, where the diagnostic 4605 // will have been deferred. 4606 if (!NewVar->isInvalidDecl() && 4607 NewVar->getDeclContext()->isFunctionOrMethod() && 4608 OldVar->getType()->isDependentType()) 4609 DiagnoseUnusedDecl(NewVar); 4610 } 4611 4612 /// Instantiate the initializer of a variable. 4613 void Sema::InstantiateVariableInitializer( 4614 VarDecl *Var, VarDecl *OldVar, 4615 const MultiLevelTemplateArgumentList &TemplateArgs) { 4616 if (ASTMutationListener *L = getASTContext().getASTMutationListener()) 4617 L->VariableDefinitionInstantiated(Var); 4618 4619 // We propagate the 'inline' flag with the initializer, because it 4620 // would otherwise imply that the variable is a definition for a 4621 // non-static data member. 4622 if (OldVar->isInlineSpecified()) 4623 Var->setInlineSpecified(); 4624 else if (OldVar->isInline()) 4625 Var->setImplicitlyInline(); 4626 4627 if (OldVar->getInit()) { 4628 EnterExpressionEvaluationContext Evaluated( 4629 *this, Sema::ExpressionEvaluationContext::PotentiallyEvaluated, Var); 4630 4631 // Instantiate the initializer. 4632 ExprResult Init; 4633 4634 { 4635 ContextRAII SwitchContext(*this, Var->getDeclContext()); 4636 Init = SubstInitializer(OldVar->getInit(), TemplateArgs, 4637 OldVar->getInitStyle() == VarDecl::CallInit); 4638 } 4639 4640 if (!Init.isInvalid()) { 4641 Expr *InitExpr = Init.get(); 4642 4643 if (Var->hasAttr<DLLImportAttr>() && 4644 (!InitExpr || 4645 !InitExpr->isConstantInitializer(getASTContext(), false))) { 4646 // Do not dynamically initialize dllimport variables. 4647 } else if (InitExpr) { 4648 bool DirectInit = OldVar->isDirectInit(); 4649 AddInitializerToDecl(Var, InitExpr, DirectInit); 4650 } else 4651 ActOnUninitializedDecl(Var); 4652 } else { 4653 // FIXME: Not too happy about invalidating the declaration 4654 // because of a bogus initializer. 4655 Var->setInvalidDecl(); 4656 } 4657 } else { 4658 // `inline` variables are a definition and declaration all in one; we won't 4659 // pick up an initializer from anywhere else. 4660 if (Var->isStaticDataMember() && !Var->isInline()) { 4661 if (!Var->isOutOfLine()) 4662 return; 4663 4664 // If the declaration inside the class had an initializer, don't add 4665 // another one to the out-of-line definition. 4666 if (OldVar->getFirstDecl()->hasInit()) 4667 return; 4668 } 4669 4670 // We'll add an initializer to a for-range declaration later. 4671 if (Var->isCXXForRangeDecl() || Var->isObjCForDecl()) 4672 return; 4673 4674 ActOnUninitializedDecl(Var); 4675 } 4676 4677 if (getLangOpts().CUDA) 4678 checkAllowedCUDAInitializer(Var); 4679 } 4680 4681 /// Instantiate the definition of the given variable from its 4682 /// template. 4683 /// 4684 /// \param PointOfInstantiation the point at which the instantiation was 4685 /// required. Note that this is not precisely a "point of instantiation" 4686 /// for the variable, but it's close. 4687 /// 4688 /// \param Var the already-instantiated declaration of a templated variable. 4689 /// 4690 /// \param Recursive if true, recursively instantiates any functions that 4691 /// are required by this instantiation. 4692 /// 4693 /// \param DefinitionRequired if true, then we are performing an explicit 4694 /// instantiation where a definition of the variable is required. Complain 4695 /// if there is no such definition. 4696 void Sema::InstantiateVariableDefinition(SourceLocation PointOfInstantiation, 4697 VarDecl *Var, bool Recursive, 4698 bool DefinitionRequired, bool AtEndOfTU) { 4699 if (Var->isInvalidDecl()) 4700 return; 4701 4702 // Never instantiate an explicitly-specialized entity. 4703 TemplateSpecializationKind TSK = 4704 Var->getTemplateSpecializationKindForInstantiation(); 4705 if (TSK == TSK_ExplicitSpecialization) 4706 return; 4707 4708 // Find the pattern and the arguments to substitute into it. 4709 VarDecl *PatternDecl = Var->getTemplateInstantiationPattern(); 4710 assert(PatternDecl && "no pattern for templated variable"); 4711 MultiLevelTemplateArgumentList TemplateArgs = 4712 getTemplateInstantiationArgs(Var); 4713 4714 VarTemplateSpecializationDecl *VarSpec = 4715 dyn_cast<VarTemplateSpecializationDecl>(Var); 4716 if (VarSpec) { 4717 // If this is a variable template specialization, make sure that it is 4718 // non-dependent. 4719 bool InstantiationDependent = false; 4720 assert(!TemplateSpecializationType::anyDependentTemplateArguments( 4721 VarSpec->getTemplateArgsInfo(), InstantiationDependent) && 4722 "Only instantiate variable template specializations that are " 4723 "not type-dependent"); 4724 (void)InstantiationDependent; 4725 4726 // If this is a static data member template, there might be an 4727 // uninstantiated initializer on the declaration. If so, instantiate 4728 // it now. 4729 // 4730 // FIXME: This largely duplicates what we would do below. The difference 4731 // is that along this path we may instantiate an initializer from an 4732 // in-class declaration of the template and instantiate the definition 4733 // from a separate out-of-class definition. 4734 if (PatternDecl->isStaticDataMember() && 4735 (PatternDecl = PatternDecl->getFirstDecl())->hasInit() && 4736 !Var->hasInit()) { 4737 // FIXME: Factor out the duplicated instantiation context setup/tear down 4738 // code here. 4739 InstantiatingTemplate Inst(*this, PointOfInstantiation, Var); 4740 if (Inst.isInvalid() || Inst.isAlreadyInstantiating()) 4741 return; 4742 PrettyDeclStackTraceEntry CrashInfo(Context, Var, SourceLocation(), 4743 "instantiating variable initializer"); 4744 4745 // The instantiation is visible here, even if it was first declared in an 4746 // unimported module. 4747 Var->setVisibleDespiteOwningModule(); 4748 4749 // If we're performing recursive template instantiation, create our own 4750 // queue of pending implicit instantiations that we will instantiate 4751 // later, while we're still within our own instantiation context. 4752 GlobalEagerInstantiationScope GlobalInstantiations(*this, 4753 /*Enabled=*/Recursive); 4754 LocalInstantiationScope Local(*this); 4755 LocalEagerInstantiationScope LocalInstantiations(*this); 4756 4757 // Enter the scope of this instantiation. We don't use 4758 // PushDeclContext because we don't have a scope. 4759 ContextRAII PreviousContext(*this, Var->getDeclContext()); 4760 InstantiateVariableInitializer(Var, PatternDecl, TemplateArgs); 4761 PreviousContext.pop(); 4762 4763 // This variable may have local implicit instantiations that need to be 4764 // instantiated within this scope. 4765 LocalInstantiations.perform(); 4766 Local.Exit(); 4767 GlobalInstantiations.perform(); 4768 } 4769 } else { 4770 assert(Var->isStaticDataMember() && PatternDecl->isStaticDataMember() && 4771 "not a static data member?"); 4772 } 4773 4774 VarDecl *Def = PatternDecl->getDefinition(getASTContext()); 4775 4776 // If we don't have a definition of the variable template, we won't perform 4777 // any instantiation. Rather, we rely on the user to instantiate this 4778 // definition (or provide a specialization for it) in another translation 4779 // unit. 4780 if (!Def && !DefinitionRequired) { 4781 if (TSK == TSK_ExplicitInstantiationDefinition) { 4782 PendingInstantiations.push_back( 4783 std::make_pair(Var, PointOfInstantiation)); 4784 } else if (TSK == TSK_ImplicitInstantiation) { 4785 // Warn about missing definition at the end of translation unit. 4786 if (AtEndOfTU && !getDiagnostics().hasErrorOccurred() && 4787 !getSourceManager().isInSystemHeader(PatternDecl->getBeginLoc())) { 4788 Diag(PointOfInstantiation, diag::warn_var_template_missing) 4789 << Var; 4790 Diag(PatternDecl->getLocation(), diag::note_forward_template_decl); 4791 if (getLangOpts().CPlusPlus11) 4792 Diag(PointOfInstantiation, diag::note_inst_declaration_hint) << Var; 4793 } 4794 return; 4795 } 4796 } 4797 4798 // FIXME: We need to track the instantiation stack in order to know which 4799 // definitions should be visible within this instantiation. 4800 // FIXME: Produce diagnostics when Var->getInstantiatedFromStaticDataMember(). 4801 if (DiagnoseUninstantiableTemplate(PointOfInstantiation, Var, 4802 /*InstantiatedFromMember*/false, 4803 PatternDecl, Def, TSK, 4804 /*Complain*/DefinitionRequired)) 4805 return; 4806 4807 // C++11 [temp.explicit]p10: 4808 // Except for inline functions, const variables of literal types, variables 4809 // of reference types, [...] explicit instantiation declarations 4810 // have the effect of suppressing the implicit instantiation of the entity 4811 // to which they refer. 4812 // 4813 // FIXME: That's not exactly the same as "might be usable in constant 4814 // expressions", which only allows constexpr variables and const integral 4815 // types, not arbitrary const literal types. 4816 if (TSK == TSK_ExplicitInstantiationDeclaration && 4817 !Var->mightBeUsableInConstantExpressions(getASTContext())) 4818 return; 4819 4820 // Make sure to pass the instantiated variable to the consumer at the end. 4821 struct PassToConsumerRAII { 4822 ASTConsumer &Consumer; 4823 VarDecl *Var; 4824 4825 PassToConsumerRAII(ASTConsumer &Consumer, VarDecl *Var) 4826 : Consumer(Consumer), Var(Var) { } 4827 4828 ~PassToConsumerRAII() { 4829 Consumer.HandleCXXStaticMemberVarInstantiation(Var); 4830 } 4831 } PassToConsumerRAII(Consumer, Var); 4832 4833 // If we already have a definition, we're done. 4834 if (VarDecl *Def = Var->getDefinition()) { 4835 // We may be explicitly instantiating something we've already implicitly 4836 // instantiated. 4837 Def->setTemplateSpecializationKind(Var->getTemplateSpecializationKind(), 4838 PointOfInstantiation); 4839 return; 4840 } 4841 4842 InstantiatingTemplate Inst(*this, PointOfInstantiation, Var); 4843 if (Inst.isInvalid() || Inst.isAlreadyInstantiating()) 4844 return; 4845 PrettyDeclStackTraceEntry CrashInfo(Context, Var, SourceLocation(), 4846 "instantiating variable definition"); 4847 4848 // If we're performing recursive template instantiation, create our own 4849 // queue of pending implicit instantiations that we will instantiate later, 4850 // while we're still within our own instantiation context. 4851 GlobalEagerInstantiationScope GlobalInstantiations(*this, 4852 /*Enabled=*/Recursive); 4853 4854 // Enter the scope of this instantiation. We don't use 4855 // PushDeclContext because we don't have a scope. 4856 ContextRAII PreviousContext(*this, Var->getDeclContext()); 4857 LocalInstantiationScope Local(*this); 4858 4859 LocalEagerInstantiationScope LocalInstantiations(*this); 4860 4861 VarDecl *OldVar = Var; 4862 if (Def->isStaticDataMember() && !Def->isOutOfLine()) { 4863 // We're instantiating an inline static data member whose definition was 4864 // provided inside the class. 4865 InstantiateVariableInitializer(Var, Def, TemplateArgs); 4866 } else if (!VarSpec) { 4867 Var = cast_or_null<VarDecl>(SubstDecl(Def, Var->getDeclContext(), 4868 TemplateArgs)); 4869 } else if (Var->isStaticDataMember() && 4870 Var->getLexicalDeclContext()->isRecord()) { 4871 // We need to instantiate the definition of a static data member template, 4872 // and all we have is the in-class declaration of it. Instantiate a separate 4873 // declaration of the definition. 4874 TemplateDeclInstantiator Instantiator(*this, Var->getDeclContext(), 4875 TemplateArgs); 4876 Var = cast_or_null<VarDecl>(Instantiator.VisitVarTemplateSpecializationDecl( 4877 VarSpec->getSpecializedTemplate(), Def, nullptr, 4878 VarSpec->getTemplateArgsInfo(), VarSpec->getTemplateArgs().asArray())); 4879 if (Var) { 4880 llvm::PointerUnion<VarTemplateDecl *, 4881 VarTemplatePartialSpecializationDecl *> PatternPtr = 4882 VarSpec->getSpecializedTemplateOrPartial(); 4883 if (VarTemplatePartialSpecializationDecl *Partial = 4884 PatternPtr.dyn_cast<VarTemplatePartialSpecializationDecl *>()) 4885 cast<VarTemplateSpecializationDecl>(Var)->setInstantiationOf( 4886 Partial, &VarSpec->getTemplateInstantiationArgs()); 4887 4888 // Merge the definition with the declaration. 4889 LookupResult R(*this, Var->getDeclName(), Var->getLocation(), 4890 LookupOrdinaryName, forRedeclarationInCurContext()); 4891 R.addDecl(OldVar); 4892 MergeVarDecl(Var, R); 4893 4894 // Attach the initializer. 4895 InstantiateVariableInitializer(Var, Def, TemplateArgs); 4896 } 4897 } else 4898 // Complete the existing variable's definition with an appropriately 4899 // substituted type and initializer. 4900 Var = CompleteVarTemplateSpecializationDecl(VarSpec, Def, TemplateArgs); 4901 4902 PreviousContext.pop(); 4903 4904 if (Var) { 4905 PassToConsumerRAII.Var = Var; 4906 Var->setTemplateSpecializationKind(OldVar->getTemplateSpecializationKind(), 4907 OldVar->getPointOfInstantiation()); 4908 } 4909 4910 // This variable may have local implicit instantiations that need to be 4911 // instantiated within this scope. 4912 LocalInstantiations.perform(); 4913 Local.Exit(); 4914 GlobalInstantiations.perform(); 4915 } 4916 4917 void 4918 Sema::InstantiateMemInitializers(CXXConstructorDecl *New, 4919 const CXXConstructorDecl *Tmpl, 4920 const MultiLevelTemplateArgumentList &TemplateArgs) { 4921 4922 SmallVector<CXXCtorInitializer*, 4> NewInits; 4923 bool AnyErrors = Tmpl->isInvalidDecl(); 4924 4925 // Instantiate all the initializers. 4926 for (const auto *Init : Tmpl->inits()) { 4927 // Only instantiate written initializers, let Sema re-construct implicit 4928 // ones. 4929 if (!Init->isWritten()) 4930 continue; 4931 4932 SourceLocation EllipsisLoc; 4933 4934 if (Init->isPackExpansion()) { 4935 // This is a pack expansion. We should expand it now. 4936 TypeLoc BaseTL = Init->getTypeSourceInfo()->getTypeLoc(); 4937 SmallVector<UnexpandedParameterPack, 4> Unexpanded; 4938 collectUnexpandedParameterPacks(BaseTL, Unexpanded); 4939 collectUnexpandedParameterPacks(Init->getInit(), Unexpanded); 4940 bool ShouldExpand = false; 4941 bool RetainExpansion = false; 4942 Optional<unsigned> NumExpansions; 4943 if (CheckParameterPacksForExpansion(Init->getEllipsisLoc(), 4944 BaseTL.getSourceRange(), 4945 Unexpanded, 4946 TemplateArgs, ShouldExpand, 4947 RetainExpansion, 4948 NumExpansions)) { 4949 AnyErrors = true; 4950 New->setInvalidDecl(); 4951 continue; 4952 } 4953 assert(ShouldExpand && "Partial instantiation of base initializer?"); 4954 4955 // Loop over all of the arguments in the argument pack(s), 4956 for (unsigned I = 0; I != *NumExpansions; ++I) { 4957 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(*this, I); 4958 4959 // Instantiate the initializer. 4960 ExprResult TempInit = SubstInitializer(Init->getInit(), TemplateArgs, 4961 /*CXXDirectInit=*/true); 4962 if (TempInit.isInvalid()) { 4963 AnyErrors = true; 4964 break; 4965 } 4966 4967 // Instantiate the base type. 4968 TypeSourceInfo *BaseTInfo = SubstType(Init->getTypeSourceInfo(), 4969 TemplateArgs, 4970 Init->getSourceLocation(), 4971 New->getDeclName()); 4972 if (!BaseTInfo) { 4973 AnyErrors = true; 4974 break; 4975 } 4976 4977 // Build the initializer. 4978 MemInitResult NewInit = BuildBaseInitializer(BaseTInfo->getType(), 4979 BaseTInfo, TempInit.get(), 4980 New->getParent(), 4981 SourceLocation()); 4982 if (NewInit.isInvalid()) { 4983 AnyErrors = true; 4984 break; 4985 } 4986 4987 NewInits.push_back(NewInit.get()); 4988 } 4989 4990 continue; 4991 } 4992 4993 // Instantiate the initializer. 4994 ExprResult TempInit = SubstInitializer(Init->getInit(), TemplateArgs, 4995 /*CXXDirectInit=*/true); 4996 if (TempInit.isInvalid()) { 4997 AnyErrors = true; 4998 continue; 4999 } 5000 5001 MemInitResult NewInit; 5002 if (Init->isDelegatingInitializer() || Init->isBaseInitializer()) { 5003 TypeSourceInfo *TInfo = SubstType(Init->getTypeSourceInfo(), 5004 TemplateArgs, 5005 Init->getSourceLocation(), 5006 New->getDeclName()); 5007 if (!TInfo) { 5008 AnyErrors = true; 5009 New->setInvalidDecl(); 5010 continue; 5011 } 5012 5013 if (Init->isBaseInitializer()) 5014 NewInit = BuildBaseInitializer(TInfo->getType(), TInfo, TempInit.get(), 5015 New->getParent(), EllipsisLoc); 5016 else 5017 NewInit = BuildDelegatingInitializer(TInfo, TempInit.get(), 5018 cast<CXXRecordDecl>(CurContext->getParent())); 5019 } else if (Init->isMemberInitializer()) { 5020 FieldDecl *Member = cast_or_null<FieldDecl>(FindInstantiatedDecl( 5021 Init->getMemberLocation(), 5022 Init->getMember(), 5023 TemplateArgs)); 5024 if (!Member) { 5025 AnyErrors = true; 5026 New->setInvalidDecl(); 5027 continue; 5028 } 5029 5030 NewInit = BuildMemberInitializer(Member, TempInit.get(), 5031 Init->getSourceLocation()); 5032 } else if (Init->isIndirectMemberInitializer()) { 5033 IndirectFieldDecl *IndirectMember = 5034 cast_or_null<IndirectFieldDecl>(FindInstantiatedDecl( 5035 Init->getMemberLocation(), 5036 Init->getIndirectMember(), TemplateArgs)); 5037 5038 if (!IndirectMember) { 5039 AnyErrors = true; 5040 New->setInvalidDecl(); 5041 continue; 5042 } 5043 5044 NewInit = BuildMemberInitializer(IndirectMember, TempInit.get(), 5045 Init->getSourceLocation()); 5046 } 5047 5048 if (NewInit.isInvalid()) { 5049 AnyErrors = true; 5050 New->setInvalidDecl(); 5051 } else { 5052 NewInits.push_back(NewInit.get()); 5053 } 5054 } 5055 5056 // Assign all the initializers to the new constructor. 5057 ActOnMemInitializers(New, 5058 /*FIXME: ColonLoc */ 5059 SourceLocation(), 5060 NewInits, 5061 AnyErrors); 5062 } 5063 5064 // TODO: this could be templated if the various decl types used the 5065 // same method name. 5066 static bool isInstantiationOf(ClassTemplateDecl *Pattern, 5067 ClassTemplateDecl *Instance) { 5068 Pattern = Pattern->getCanonicalDecl(); 5069 5070 do { 5071 Instance = Instance->getCanonicalDecl(); 5072 if (Pattern == Instance) return true; 5073 Instance = Instance->getInstantiatedFromMemberTemplate(); 5074 } while (Instance); 5075 5076 return false; 5077 } 5078 5079 static bool isInstantiationOf(FunctionTemplateDecl *Pattern, 5080 FunctionTemplateDecl *Instance) { 5081 Pattern = Pattern->getCanonicalDecl(); 5082 5083 do { 5084 Instance = Instance->getCanonicalDecl(); 5085 if (Pattern == Instance) return true; 5086 Instance = Instance->getInstantiatedFromMemberTemplate(); 5087 } while (Instance); 5088 5089 return false; 5090 } 5091 5092 static bool 5093 isInstantiationOf(ClassTemplatePartialSpecializationDecl *Pattern, 5094 ClassTemplatePartialSpecializationDecl *Instance) { 5095 Pattern 5096 = cast<ClassTemplatePartialSpecializationDecl>(Pattern->getCanonicalDecl()); 5097 do { 5098 Instance = cast<ClassTemplatePartialSpecializationDecl>( 5099 Instance->getCanonicalDecl()); 5100 if (Pattern == Instance) 5101 return true; 5102 Instance = Instance->getInstantiatedFromMember(); 5103 } while (Instance); 5104 5105 return false; 5106 } 5107 5108 static bool isInstantiationOf(CXXRecordDecl *Pattern, 5109 CXXRecordDecl *Instance) { 5110 Pattern = Pattern->getCanonicalDecl(); 5111 5112 do { 5113 Instance = Instance->getCanonicalDecl(); 5114 if (Pattern == Instance) return true; 5115 Instance = Instance->getInstantiatedFromMemberClass(); 5116 } while (Instance); 5117 5118 return false; 5119 } 5120 5121 static bool isInstantiationOf(FunctionDecl *Pattern, 5122 FunctionDecl *Instance) { 5123 Pattern = Pattern->getCanonicalDecl(); 5124 5125 do { 5126 Instance = Instance->getCanonicalDecl(); 5127 if (Pattern == Instance) return true; 5128 Instance = Instance->getInstantiatedFromMemberFunction(); 5129 } while (Instance); 5130 5131 return false; 5132 } 5133 5134 static bool isInstantiationOf(EnumDecl *Pattern, 5135 EnumDecl *Instance) { 5136 Pattern = Pattern->getCanonicalDecl(); 5137 5138 do { 5139 Instance = Instance->getCanonicalDecl(); 5140 if (Pattern == Instance) return true; 5141 Instance = Instance->getInstantiatedFromMemberEnum(); 5142 } while (Instance); 5143 5144 return false; 5145 } 5146 5147 static bool isInstantiationOf(UsingShadowDecl *Pattern, 5148 UsingShadowDecl *Instance, 5149 ASTContext &C) { 5150 return declaresSameEntity(C.getInstantiatedFromUsingShadowDecl(Instance), 5151 Pattern); 5152 } 5153 5154 static bool isInstantiationOf(UsingDecl *Pattern, UsingDecl *Instance, 5155 ASTContext &C) { 5156 return declaresSameEntity(C.getInstantiatedFromUsingDecl(Instance), Pattern); 5157 } 5158 5159 template<typename T> 5160 static bool isInstantiationOfUnresolvedUsingDecl(T *Pattern, Decl *Other, 5161 ASTContext &Ctx) { 5162 // An unresolved using declaration can instantiate to an unresolved using 5163 // declaration, or to a using declaration or a using declaration pack. 5164 // 5165 // Multiple declarations can claim to be instantiated from an unresolved 5166 // using declaration if it's a pack expansion. We want the UsingPackDecl 5167 // in that case, not the individual UsingDecls within the pack. 5168 bool OtherIsPackExpansion; 5169 NamedDecl *OtherFrom; 5170 if (auto *OtherUUD = dyn_cast<T>(Other)) { 5171 OtherIsPackExpansion = OtherUUD->isPackExpansion(); 5172 OtherFrom = Ctx.getInstantiatedFromUsingDecl(OtherUUD); 5173 } else if (auto *OtherUPD = dyn_cast<UsingPackDecl>(Other)) { 5174 OtherIsPackExpansion = true; 5175 OtherFrom = OtherUPD->getInstantiatedFromUsingDecl(); 5176 } else if (auto *OtherUD = dyn_cast<UsingDecl>(Other)) { 5177 OtherIsPackExpansion = false; 5178 OtherFrom = Ctx.getInstantiatedFromUsingDecl(OtherUD); 5179 } else { 5180 return false; 5181 } 5182 return Pattern->isPackExpansion() == OtherIsPackExpansion && 5183 declaresSameEntity(OtherFrom, Pattern); 5184 } 5185 5186 static bool isInstantiationOfStaticDataMember(VarDecl *Pattern, 5187 VarDecl *Instance) { 5188 assert(Instance->isStaticDataMember()); 5189 5190 Pattern = Pattern->getCanonicalDecl(); 5191 5192 do { 5193 Instance = Instance->getCanonicalDecl(); 5194 if (Pattern == Instance) return true; 5195 Instance = Instance->getInstantiatedFromStaticDataMember(); 5196 } while (Instance); 5197 5198 return false; 5199 } 5200 5201 // Other is the prospective instantiation 5202 // D is the prospective pattern 5203 static bool isInstantiationOf(ASTContext &Ctx, NamedDecl *D, Decl *Other) { 5204 if (auto *UUD = dyn_cast<UnresolvedUsingTypenameDecl>(D)) 5205 return isInstantiationOfUnresolvedUsingDecl(UUD, Other, Ctx); 5206 5207 if (auto *UUD = dyn_cast<UnresolvedUsingValueDecl>(D)) 5208 return isInstantiationOfUnresolvedUsingDecl(UUD, Other, Ctx); 5209 5210 if (D->getKind() != Other->getKind()) 5211 return false; 5212 5213 if (auto *Record = dyn_cast<CXXRecordDecl>(Other)) 5214 return isInstantiationOf(cast<CXXRecordDecl>(D), Record); 5215 5216 if (auto *Function = dyn_cast<FunctionDecl>(Other)) 5217 return isInstantiationOf(cast<FunctionDecl>(D), Function); 5218 5219 if (auto *Enum = dyn_cast<EnumDecl>(Other)) 5220 return isInstantiationOf(cast<EnumDecl>(D), Enum); 5221 5222 if (auto *Var = dyn_cast<VarDecl>(Other)) 5223 if (Var->isStaticDataMember()) 5224 return isInstantiationOfStaticDataMember(cast<VarDecl>(D), Var); 5225 5226 if (auto *Temp = dyn_cast<ClassTemplateDecl>(Other)) 5227 return isInstantiationOf(cast<ClassTemplateDecl>(D), Temp); 5228 5229 if (auto *Temp = dyn_cast<FunctionTemplateDecl>(Other)) 5230 return isInstantiationOf(cast<FunctionTemplateDecl>(D), Temp); 5231 5232 if (auto *PartialSpec = 5233 dyn_cast<ClassTemplatePartialSpecializationDecl>(Other)) 5234 return isInstantiationOf(cast<ClassTemplatePartialSpecializationDecl>(D), 5235 PartialSpec); 5236 5237 if (auto *Field = dyn_cast<FieldDecl>(Other)) { 5238 if (!Field->getDeclName()) { 5239 // This is an unnamed field. 5240 return declaresSameEntity(Ctx.getInstantiatedFromUnnamedFieldDecl(Field), 5241 cast<FieldDecl>(D)); 5242 } 5243 } 5244 5245 if (auto *Using = dyn_cast<UsingDecl>(Other)) 5246 return isInstantiationOf(cast<UsingDecl>(D), Using, Ctx); 5247 5248 if (auto *Shadow = dyn_cast<UsingShadowDecl>(Other)) 5249 return isInstantiationOf(cast<UsingShadowDecl>(D), Shadow, Ctx); 5250 5251 return D->getDeclName() && 5252 D->getDeclName() == cast<NamedDecl>(Other)->getDeclName(); 5253 } 5254 5255 template<typename ForwardIterator> 5256 static NamedDecl *findInstantiationOf(ASTContext &Ctx, 5257 NamedDecl *D, 5258 ForwardIterator first, 5259 ForwardIterator last) { 5260 for (; first != last; ++first) 5261 if (isInstantiationOf(Ctx, D, *first)) 5262 return cast<NamedDecl>(*first); 5263 5264 return nullptr; 5265 } 5266 5267 /// Finds the instantiation of the given declaration context 5268 /// within the current instantiation. 5269 /// 5270 /// \returns NULL if there was an error 5271 DeclContext *Sema::FindInstantiatedContext(SourceLocation Loc, DeclContext* DC, 5272 const MultiLevelTemplateArgumentList &TemplateArgs) { 5273 if (NamedDecl *D = dyn_cast<NamedDecl>(DC)) { 5274 Decl* ID = FindInstantiatedDecl(Loc, D, TemplateArgs, true); 5275 return cast_or_null<DeclContext>(ID); 5276 } else return DC; 5277 } 5278 5279 /// Find the instantiation of the given declaration within the 5280 /// current instantiation. 5281 /// 5282 /// This routine is intended to be used when \p D is a declaration 5283 /// referenced from within a template, that needs to mapped into the 5284 /// corresponding declaration within an instantiation. For example, 5285 /// given: 5286 /// 5287 /// \code 5288 /// template<typename T> 5289 /// struct X { 5290 /// enum Kind { 5291 /// KnownValue = sizeof(T) 5292 /// }; 5293 /// 5294 /// bool getKind() const { return KnownValue; } 5295 /// }; 5296 /// 5297 /// template struct X<int>; 5298 /// \endcode 5299 /// 5300 /// In the instantiation of X<int>::getKind(), we need to map the \p 5301 /// EnumConstantDecl for \p KnownValue (which refers to 5302 /// X<T>::<Kind>::KnownValue) to its instantiation (X<int>::<Kind>::KnownValue). 5303 /// \p FindInstantiatedDecl performs this mapping from within the instantiation 5304 /// of X<int>. 5305 NamedDecl *Sema::FindInstantiatedDecl(SourceLocation Loc, NamedDecl *D, 5306 const MultiLevelTemplateArgumentList &TemplateArgs, 5307 bool FindingInstantiatedContext) { 5308 DeclContext *ParentDC = D->getDeclContext(); 5309 // FIXME: Parmeters of pointer to functions (y below) that are themselves 5310 // parameters (p below) can have their ParentDC set to the translation-unit 5311 // - thus we can not consistently check if the ParentDC of such a parameter 5312 // is Dependent or/and a FunctionOrMethod. 5313 // For e.g. this code, during Template argument deduction tries to 5314 // find an instantiated decl for (T y) when the ParentDC for y is 5315 // the translation unit. 5316 // e.g. template <class T> void Foo(auto (*p)(T y) -> decltype(y())) {} 5317 // float baz(float(*)()) { return 0.0; } 5318 // Foo(baz); 5319 // The better fix here is perhaps to ensure that a ParmVarDecl, by the time 5320 // it gets here, always has a FunctionOrMethod as its ParentDC?? 5321 // For now: 5322 // - as long as we have a ParmVarDecl whose parent is non-dependent and 5323 // whose type is not instantiation dependent, do nothing to the decl 5324 // - otherwise find its instantiated decl. 5325 if (isa<ParmVarDecl>(D) && !ParentDC->isDependentContext() && 5326 !cast<ParmVarDecl>(D)->getType()->isInstantiationDependentType()) 5327 return D; 5328 if (isa<ParmVarDecl>(D) || isa<NonTypeTemplateParmDecl>(D) || 5329 isa<TemplateTypeParmDecl>(D) || isa<TemplateTemplateParmDecl>(D) || 5330 ((ParentDC->isFunctionOrMethod() || 5331 isa<OMPDeclareReductionDecl>(ParentDC) || 5332 isa<OMPDeclareMapperDecl>(ParentDC)) && 5333 ParentDC->isDependentContext()) || 5334 (isa<CXXRecordDecl>(D) && cast<CXXRecordDecl>(D)->isLambda())) { 5335 // D is a local of some kind. Look into the map of local 5336 // declarations to their instantiations. 5337 if (CurrentInstantiationScope) { 5338 if (auto Found = CurrentInstantiationScope->findInstantiationOf(D)) { 5339 if (Decl *FD = Found->dyn_cast<Decl *>()) 5340 return cast<NamedDecl>(FD); 5341 5342 int PackIdx = ArgumentPackSubstitutionIndex; 5343 assert(PackIdx != -1 && 5344 "found declaration pack but not pack expanding"); 5345 typedef LocalInstantiationScope::DeclArgumentPack DeclArgumentPack; 5346 return cast<NamedDecl>((*Found->get<DeclArgumentPack *>())[PackIdx]); 5347 } 5348 } 5349 5350 // If we're performing a partial substitution during template argument 5351 // deduction, we may not have values for template parameters yet. They 5352 // just map to themselves. 5353 if (isa<NonTypeTemplateParmDecl>(D) || isa<TemplateTypeParmDecl>(D) || 5354 isa<TemplateTemplateParmDecl>(D)) 5355 return D; 5356 5357 if (D->isInvalidDecl()) 5358 return nullptr; 5359 5360 // Normally this function only searches for already instantiated declaration 5361 // however we have to make an exclusion for local types used before 5362 // definition as in the code: 5363 // 5364 // template<typename T> void f1() { 5365 // void g1(struct x1); 5366 // struct x1 {}; 5367 // } 5368 // 5369 // In this case instantiation of the type of 'g1' requires definition of 5370 // 'x1', which is defined later. Error recovery may produce an enum used 5371 // before definition. In these cases we need to instantiate relevant 5372 // declarations here. 5373 bool NeedInstantiate = false; 5374 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) 5375 NeedInstantiate = RD->isLocalClass(); 5376 else 5377 NeedInstantiate = isa<EnumDecl>(D); 5378 if (NeedInstantiate) { 5379 Decl *Inst = SubstDecl(D, CurContext, TemplateArgs); 5380 CurrentInstantiationScope->InstantiatedLocal(D, Inst); 5381 return cast<TypeDecl>(Inst); 5382 } 5383 5384 // If we didn't find the decl, then we must have a label decl that hasn't 5385 // been found yet. Lazily instantiate it and return it now. 5386 assert(isa<LabelDecl>(D)); 5387 5388 Decl *Inst = SubstDecl(D, CurContext, TemplateArgs); 5389 assert(Inst && "Failed to instantiate label??"); 5390 5391 CurrentInstantiationScope->InstantiatedLocal(D, Inst); 5392 return cast<LabelDecl>(Inst); 5393 } 5394 5395 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) { 5396 if (!Record->isDependentContext()) 5397 return D; 5398 5399 // Determine whether this record is the "templated" declaration describing 5400 // a class template or class template partial specialization. 5401 ClassTemplateDecl *ClassTemplate = Record->getDescribedClassTemplate(); 5402 if (ClassTemplate) 5403 ClassTemplate = ClassTemplate->getCanonicalDecl(); 5404 else if (ClassTemplatePartialSpecializationDecl *PartialSpec 5405 = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) 5406 ClassTemplate = PartialSpec->getSpecializedTemplate()->getCanonicalDecl(); 5407 5408 // Walk the current context to find either the record or an instantiation of 5409 // it. 5410 DeclContext *DC = CurContext; 5411 while (!DC->isFileContext()) { 5412 // If we're performing substitution while we're inside the template 5413 // definition, we'll find our own context. We're done. 5414 if (DC->Equals(Record)) 5415 return Record; 5416 5417 if (CXXRecordDecl *InstRecord = dyn_cast<CXXRecordDecl>(DC)) { 5418 // Check whether we're in the process of instantiating a class template 5419 // specialization of the template we're mapping. 5420 if (ClassTemplateSpecializationDecl *InstSpec 5421 = dyn_cast<ClassTemplateSpecializationDecl>(InstRecord)){ 5422 ClassTemplateDecl *SpecTemplate = InstSpec->getSpecializedTemplate(); 5423 if (ClassTemplate && isInstantiationOf(ClassTemplate, SpecTemplate)) 5424 return InstRecord; 5425 } 5426 5427 // Check whether we're in the process of instantiating a member class. 5428 if (isInstantiationOf(Record, InstRecord)) 5429 return InstRecord; 5430 } 5431 5432 // Move to the outer template scope. 5433 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DC)) { 5434 if (FD->getFriendObjectKind() && FD->getDeclContext()->isFileContext()){ 5435 DC = FD->getLexicalDeclContext(); 5436 continue; 5437 } 5438 // An implicit deduction guide acts as if it's within the class template 5439 // specialization described by its name and first N template params. 5440 auto *Guide = dyn_cast<CXXDeductionGuideDecl>(FD); 5441 if (Guide && Guide->isImplicit()) { 5442 TemplateDecl *TD = Guide->getDeducedTemplate(); 5443 // Convert the arguments to an "as-written" list. 5444 TemplateArgumentListInfo Args(Loc, Loc); 5445 for (TemplateArgument Arg : TemplateArgs.getInnermost().take_front( 5446 TD->getTemplateParameters()->size())) { 5447 ArrayRef<TemplateArgument> Unpacked(Arg); 5448 if (Arg.getKind() == TemplateArgument::Pack) 5449 Unpacked = Arg.pack_elements(); 5450 for (TemplateArgument UnpackedArg : Unpacked) 5451 Args.addArgument( 5452 getTrivialTemplateArgumentLoc(UnpackedArg, QualType(), Loc)); 5453 } 5454 QualType T = CheckTemplateIdType(TemplateName(TD), Loc, Args); 5455 if (T.isNull()) 5456 return nullptr; 5457 auto *SubstRecord = T->getAsCXXRecordDecl(); 5458 assert(SubstRecord && "class template id not a class type?"); 5459 // Check that this template-id names the primary template and not a 5460 // partial or explicit specialization. (In the latter cases, it's 5461 // meaningless to attempt to find an instantiation of D within the 5462 // specialization.) 5463 // FIXME: The standard doesn't say what should happen here. 5464 if (FindingInstantiatedContext && 5465 usesPartialOrExplicitSpecialization( 5466 Loc, cast<ClassTemplateSpecializationDecl>(SubstRecord))) { 5467 Diag(Loc, diag::err_specialization_not_primary_template) 5468 << T << (SubstRecord->getTemplateSpecializationKind() == 5469 TSK_ExplicitSpecialization); 5470 return nullptr; 5471 } 5472 DC = SubstRecord; 5473 continue; 5474 } 5475 } 5476 5477 DC = DC->getParent(); 5478 } 5479 5480 // Fall through to deal with other dependent record types (e.g., 5481 // anonymous unions in class templates). 5482 } 5483 5484 if (!ParentDC->isDependentContext()) 5485 return D; 5486 5487 ParentDC = FindInstantiatedContext(Loc, ParentDC, TemplateArgs); 5488 if (!ParentDC) 5489 return nullptr; 5490 5491 if (ParentDC != D->getDeclContext()) { 5492 // We performed some kind of instantiation in the parent context, 5493 // so now we need to look into the instantiated parent context to 5494 // find the instantiation of the declaration D. 5495 5496 // If our context used to be dependent, we may need to instantiate 5497 // it before performing lookup into that context. 5498 bool IsBeingInstantiated = false; 5499 if (CXXRecordDecl *Spec = dyn_cast<CXXRecordDecl>(ParentDC)) { 5500 if (!Spec->isDependentContext()) { 5501 QualType T = Context.getTypeDeclType(Spec); 5502 const RecordType *Tag = T->getAs<RecordType>(); 5503 assert(Tag && "type of non-dependent record is not a RecordType"); 5504 if (Tag->isBeingDefined()) 5505 IsBeingInstantiated = true; 5506 if (!Tag->isBeingDefined() && 5507 RequireCompleteType(Loc, T, diag::err_incomplete_type)) 5508 return nullptr; 5509 5510 ParentDC = Tag->getDecl(); 5511 } 5512 } 5513 5514 NamedDecl *Result = nullptr; 5515 // FIXME: If the name is a dependent name, this lookup won't necessarily 5516 // find it. Does that ever matter? 5517 if (auto Name = D->getDeclName()) { 5518 DeclarationNameInfo NameInfo(Name, D->getLocation()); 5519 DeclarationNameInfo NewNameInfo = 5520 SubstDeclarationNameInfo(NameInfo, TemplateArgs); 5521 Name = NewNameInfo.getName(); 5522 if (!Name) 5523 return nullptr; 5524 DeclContext::lookup_result Found = ParentDC->lookup(Name); 5525 5526 if (auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(D)) { 5527 VarTemplateDecl *Templ = cast_or_null<VarTemplateDecl>( 5528 findInstantiationOf(Context, VTSD->getSpecializedTemplate(), 5529 Found.begin(), Found.end())); 5530 if (!Templ) 5531 return nullptr; 5532 Result = getVarTemplateSpecialization( 5533 Templ, &VTSD->getTemplateArgsInfo(), NewNameInfo, SourceLocation()); 5534 } else 5535 Result = findInstantiationOf(Context, D, Found.begin(), Found.end()); 5536 } else { 5537 // Since we don't have a name for the entity we're looking for, 5538 // our only option is to walk through all of the declarations to 5539 // find that name. This will occur in a few cases: 5540 // 5541 // - anonymous struct/union within a template 5542 // - unnamed class/struct/union/enum within a template 5543 // 5544 // FIXME: Find a better way to find these instantiations! 5545 Result = findInstantiationOf(Context, D, 5546 ParentDC->decls_begin(), 5547 ParentDC->decls_end()); 5548 } 5549 5550 if (!Result) { 5551 if (isa<UsingShadowDecl>(D)) { 5552 // UsingShadowDecls can instantiate to nothing because of using hiding. 5553 } else if (Diags.hasErrorOccurred()) { 5554 // We've already complained about something, so most likely this 5555 // declaration failed to instantiate. There's no point in complaining 5556 // further, since this is normal in invalid code. 5557 } else if (IsBeingInstantiated) { 5558 // The class in which this member exists is currently being 5559 // instantiated, and we haven't gotten around to instantiating this 5560 // member yet. This can happen when the code uses forward declarations 5561 // of member classes, and introduces ordering dependencies via 5562 // template instantiation. 5563 Diag(Loc, diag::err_member_not_yet_instantiated) 5564 << D->getDeclName() 5565 << Context.getTypeDeclType(cast<CXXRecordDecl>(ParentDC)); 5566 Diag(D->getLocation(), diag::note_non_instantiated_member_here); 5567 } else if (EnumConstantDecl *ED = dyn_cast<EnumConstantDecl>(D)) { 5568 // This enumeration constant was found when the template was defined, 5569 // but can't be found in the instantiation. This can happen if an 5570 // unscoped enumeration member is explicitly specialized. 5571 EnumDecl *Enum = cast<EnumDecl>(ED->getLexicalDeclContext()); 5572 EnumDecl *Spec = cast<EnumDecl>(FindInstantiatedDecl(Loc, Enum, 5573 TemplateArgs)); 5574 assert(Spec->getTemplateSpecializationKind() == 5575 TSK_ExplicitSpecialization); 5576 Diag(Loc, diag::err_enumerator_does_not_exist) 5577 << D->getDeclName() 5578 << Context.getTypeDeclType(cast<TypeDecl>(Spec->getDeclContext())); 5579 Diag(Spec->getLocation(), diag::note_enum_specialized_here) 5580 << Context.getTypeDeclType(Spec); 5581 } else { 5582 // We should have found something, but didn't. 5583 llvm_unreachable("Unable to find instantiation of declaration!"); 5584 } 5585 } 5586 5587 D = Result; 5588 } 5589 5590 return D; 5591 } 5592 5593 /// Performs template instantiation for all implicit template 5594 /// instantiations we have seen until this point. 5595 void Sema::PerformPendingInstantiations(bool LocalOnly) { 5596 while (!PendingLocalImplicitInstantiations.empty() || 5597 (!LocalOnly && !PendingInstantiations.empty())) { 5598 PendingImplicitInstantiation Inst; 5599 5600 if (PendingLocalImplicitInstantiations.empty()) { 5601 Inst = PendingInstantiations.front(); 5602 PendingInstantiations.pop_front(); 5603 } else { 5604 Inst = PendingLocalImplicitInstantiations.front(); 5605 PendingLocalImplicitInstantiations.pop_front(); 5606 } 5607 5608 // Instantiate function definitions 5609 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Inst.first)) { 5610 bool DefinitionRequired = Function->getTemplateSpecializationKind() == 5611 TSK_ExplicitInstantiationDefinition; 5612 if (Function->isMultiVersion()) { 5613 getASTContext().forEachMultiversionedFunctionVersion( 5614 Function, [this, Inst, DefinitionRequired](FunctionDecl *CurFD) { 5615 InstantiateFunctionDefinition(/*FIXME:*/ Inst.second, CurFD, true, 5616 DefinitionRequired, true); 5617 if (CurFD->isDefined()) 5618 CurFD->setInstantiationIsPending(false); 5619 }); 5620 } else { 5621 InstantiateFunctionDefinition(/*FIXME:*/ Inst.second, Function, true, 5622 DefinitionRequired, true); 5623 if (Function->isDefined()) 5624 Function->setInstantiationIsPending(false); 5625 } 5626 continue; 5627 } 5628 5629 // Instantiate variable definitions 5630 VarDecl *Var = cast<VarDecl>(Inst.first); 5631 5632 assert((Var->isStaticDataMember() || 5633 isa<VarTemplateSpecializationDecl>(Var)) && 5634 "Not a static data member, nor a variable template" 5635 " specialization?"); 5636 5637 // Don't try to instantiate declarations if the most recent redeclaration 5638 // is invalid. 5639 if (Var->getMostRecentDecl()->isInvalidDecl()) 5640 continue; 5641 5642 // Check if the most recent declaration has changed the specialization kind 5643 // and removed the need for implicit instantiation. 5644 switch (Var->getMostRecentDecl() 5645 ->getTemplateSpecializationKindForInstantiation()) { 5646 case TSK_Undeclared: 5647 llvm_unreachable("Cannot instantitiate an undeclared specialization."); 5648 case TSK_ExplicitInstantiationDeclaration: 5649 case TSK_ExplicitSpecialization: 5650 continue; // No longer need to instantiate this type. 5651 case TSK_ExplicitInstantiationDefinition: 5652 // We only need an instantiation if the pending instantiation *is* the 5653 // explicit instantiation. 5654 if (Var != Var->getMostRecentDecl()) 5655 continue; 5656 break; 5657 case TSK_ImplicitInstantiation: 5658 break; 5659 } 5660 5661 PrettyDeclStackTraceEntry CrashInfo(Context, Var, SourceLocation(), 5662 "instantiating variable definition"); 5663 bool DefinitionRequired = Var->getTemplateSpecializationKind() == 5664 TSK_ExplicitInstantiationDefinition; 5665 5666 // Instantiate static data member definitions or variable template 5667 // specializations. 5668 InstantiateVariableDefinition(/*FIXME:*/ Inst.second, Var, true, 5669 DefinitionRequired, true); 5670 } 5671 } 5672 5673 void Sema::PerformDependentDiagnostics(const DeclContext *Pattern, 5674 const MultiLevelTemplateArgumentList &TemplateArgs) { 5675 for (auto DD : Pattern->ddiags()) { 5676 switch (DD->getKind()) { 5677 case DependentDiagnostic::Access: 5678 HandleDependentAccessCheck(*DD, TemplateArgs); 5679 break; 5680 } 5681 } 5682 } 5683