1 //===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements semantic analysis for statements. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/ASTContext.h" 14 #include "clang/AST/ASTDiagnostic.h" 15 #include "clang/AST/ASTLambda.h" 16 #include "clang/AST/CXXInheritance.h" 17 #include "clang/AST/CharUnits.h" 18 #include "clang/AST/DeclObjC.h" 19 #include "clang/AST/EvaluatedExprVisitor.h" 20 #include "clang/AST/ExprCXX.h" 21 #include "clang/AST/ExprObjC.h" 22 #include "clang/AST/IgnoreExpr.h" 23 #include "clang/AST/RecursiveASTVisitor.h" 24 #include "clang/AST/StmtCXX.h" 25 #include "clang/AST/StmtObjC.h" 26 #include "clang/AST/TypeLoc.h" 27 #include "clang/AST/TypeOrdering.h" 28 #include "clang/Basic/TargetInfo.h" 29 #include "clang/Lex/Preprocessor.h" 30 #include "clang/Sema/Initialization.h" 31 #include "clang/Sema/Lookup.h" 32 #include "clang/Sema/Ownership.h" 33 #include "clang/Sema/Scope.h" 34 #include "clang/Sema/ScopeInfo.h" 35 #include "clang/Sema/SemaInternal.h" 36 #include "llvm/ADT/ArrayRef.h" 37 #include "llvm/ADT/DenseMap.h" 38 #include "llvm/ADT/STLExtras.h" 39 #include "llvm/ADT/SmallPtrSet.h" 40 #include "llvm/ADT/SmallString.h" 41 #include "llvm/ADT/SmallVector.h" 42 43 using namespace clang; 44 using namespace sema; 45 46 StmtResult Sema::ActOnExprStmt(ExprResult FE, bool DiscardedValue) { 47 if (FE.isInvalid()) 48 return StmtError(); 49 50 FE = ActOnFinishFullExpr(FE.get(), FE.get()->getExprLoc(), DiscardedValue); 51 if (FE.isInvalid()) 52 return StmtError(); 53 54 // C99 6.8.3p2: The expression in an expression statement is evaluated as a 55 // void expression for its side effects. Conversion to void allows any 56 // operand, even incomplete types. 57 58 // Same thing in for stmt first clause (when expr) and third clause. 59 return StmtResult(FE.getAs<Stmt>()); 60 } 61 62 63 StmtResult Sema::ActOnExprStmtError() { 64 DiscardCleanupsInEvaluationContext(); 65 return StmtError(); 66 } 67 68 StmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc, 69 bool HasLeadingEmptyMacro) { 70 return new (Context) NullStmt(SemiLoc, HasLeadingEmptyMacro); 71 } 72 73 StmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg, SourceLocation StartLoc, 74 SourceLocation EndLoc) { 75 DeclGroupRef DG = dg.get(); 76 77 // If we have an invalid decl, just return an error. 78 if (DG.isNull()) return StmtError(); 79 80 return new (Context) DeclStmt(DG, StartLoc, EndLoc); 81 } 82 83 void Sema::ActOnForEachDeclStmt(DeclGroupPtrTy dg) { 84 DeclGroupRef DG = dg.get(); 85 86 // If we don't have a declaration, or we have an invalid declaration, 87 // just return. 88 if (DG.isNull() || !DG.isSingleDecl()) 89 return; 90 91 Decl *decl = DG.getSingleDecl(); 92 if (!decl || decl->isInvalidDecl()) 93 return; 94 95 // Only variable declarations are permitted. 96 VarDecl *var = dyn_cast<VarDecl>(decl); 97 if (!var) { 98 Diag(decl->getLocation(), diag::err_non_variable_decl_in_for); 99 decl->setInvalidDecl(); 100 return; 101 } 102 103 // foreach variables are never actually initialized in the way that 104 // the parser came up with. 105 var->setInit(nullptr); 106 107 // In ARC, we don't need to retain the iteration variable of a fast 108 // enumeration loop. Rather than actually trying to catch that 109 // during declaration processing, we remove the consequences here. 110 if (getLangOpts().ObjCAutoRefCount) { 111 QualType type = var->getType(); 112 113 // Only do this if we inferred the lifetime. Inferred lifetime 114 // will show up as a local qualifier because explicit lifetime 115 // should have shown up as an AttributedType instead. 116 if (type.getLocalQualifiers().getObjCLifetime() == Qualifiers::OCL_Strong) { 117 // Add 'const' and mark the variable as pseudo-strong. 118 var->setType(type.withConst()); 119 var->setARCPseudoStrong(true); 120 } 121 } 122 } 123 124 /// Diagnose unused comparisons, both builtin and overloaded operators. 125 /// For '==' and '!=', suggest fixits for '=' or '|='. 126 /// 127 /// Adding a cast to void (or other expression wrappers) will prevent the 128 /// warning from firing. 129 static bool DiagnoseUnusedComparison(Sema &S, const Expr *E) { 130 SourceLocation Loc; 131 bool CanAssign; 132 enum { Equality, Inequality, Relational, ThreeWay } Kind; 133 134 if (const BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) { 135 if (!Op->isComparisonOp()) 136 return false; 137 138 if (Op->getOpcode() == BO_EQ) 139 Kind = Equality; 140 else if (Op->getOpcode() == BO_NE) 141 Kind = Inequality; 142 else if (Op->getOpcode() == BO_Cmp) 143 Kind = ThreeWay; 144 else { 145 assert(Op->isRelationalOp()); 146 Kind = Relational; 147 } 148 Loc = Op->getOperatorLoc(); 149 CanAssign = Op->getLHS()->IgnoreParenImpCasts()->isLValue(); 150 } else if (const CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) { 151 switch (Op->getOperator()) { 152 case OO_EqualEqual: 153 Kind = Equality; 154 break; 155 case OO_ExclaimEqual: 156 Kind = Inequality; 157 break; 158 case OO_Less: 159 case OO_Greater: 160 case OO_GreaterEqual: 161 case OO_LessEqual: 162 Kind = Relational; 163 break; 164 case OO_Spaceship: 165 Kind = ThreeWay; 166 break; 167 default: 168 return false; 169 } 170 171 Loc = Op->getOperatorLoc(); 172 CanAssign = Op->getArg(0)->IgnoreParenImpCasts()->isLValue(); 173 } else { 174 // Not a typo-prone comparison. 175 return false; 176 } 177 178 // Suppress warnings when the operator, suspicious as it may be, comes from 179 // a macro expansion. 180 if (S.SourceMgr.isMacroBodyExpansion(Loc)) 181 return false; 182 183 S.Diag(Loc, diag::warn_unused_comparison) 184 << (unsigned)Kind << E->getSourceRange(); 185 186 // If the LHS is a plausible entity to assign to, provide a fixit hint to 187 // correct common typos. 188 if (CanAssign) { 189 if (Kind == Inequality) 190 S.Diag(Loc, diag::note_inequality_comparison_to_or_assign) 191 << FixItHint::CreateReplacement(Loc, "|="); 192 else if (Kind == Equality) 193 S.Diag(Loc, diag::note_equality_comparison_to_assign) 194 << FixItHint::CreateReplacement(Loc, "="); 195 } 196 197 return true; 198 } 199 200 static bool DiagnoseNoDiscard(Sema &S, const WarnUnusedResultAttr *A, 201 SourceLocation Loc, SourceRange R1, 202 SourceRange R2, bool IsCtor) { 203 if (!A) 204 return false; 205 StringRef Msg = A->getMessage(); 206 207 if (Msg.empty()) { 208 if (IsCtor) 209 return S.Diag(Loc, diag::warn_unused_constructor) << A << R1 << R2; 210 return S.Diag(Loc, diag::warn_unused_result) << A << R1 << R2; 211 } 212 213 if (IsCtor) 214 return S.Diag(Loc, diag::warn_unused_constructor_msg) << A << Msg << R1 215 << R2; 216 return S.Diag(Loc, diag::warn_unused_result_msg) << A << Msg << R1 << R2; 217 } 218 219 void Sema::DiagnoseUnusedExprResult(const Stmt *S) { 220 if (const LabelStmt *Label = dyn_cast_or_null<LabelStmt>(S)) 221 return DiagnoseUnusedExprResult(Label->getSubStmt()); 222 223 const Expr *E = dyn_cast_or_null<Expr>(S); 224 if (!E) 225 return; 226 227 // If we are in an unevaluated expression context, then there can be no unused 228 // results because the results aren't expected to be used in the first place. 229 if (isUnevaluatedContext()) 230 return; 231 232 SourceLocation ExprLoc = E->IgnoreParenImpCasts()->getExprLoc(); 233 // In most cases, we don't want to warn if the expression is written in a 234 // macro body, or if the macro comes from a system header. If the offending 235 // expression is a call to a function with the warn_unused_result attribute, 236 // we warn no matter the location. Because of the order in which the various 237 // checks need to happen, we factor out the macro-related test here. 238 bool ShouldSuppress = 239 SourceMgr.isMacroBodyExpansion(ExprLoc) || 240 SourceMgr.isInSystemMacro(ExprLoc); 241 242 const Expr *WarnExpr; 243 SourceLocation Loc; 244 SourceRange R1, R2; 245 if (!E->isUnusedResultAWarning(WarnExpr, Loc, R1, R2, Context)) 246 return; 247 248 // If this is a GNU statement expression expanded from a macro, it is probably 249 // unused because it is a function-like macro that can be used as either an 250 // expression or statement. Don't warn, because it is almost certainly a 251 // false positive. 252 if (isa<StmtExpr>(E) && Loc.isMacroID()) 253 return; 254 255 // Check if this is the UNREFERENCED_PARAMETER from the Microsoft headers. 256 // That macro is frequently used to suppress "unused parameter" warnings, 257 // but its implementation makes clang's -Wunused-value fire. Prevent this. 258 if (isa<ParenExpr>(E->IgnoreImpCasts()) && Loc.isMacroID()) { 259 SourceLocation SpellLoc = Loc; 260 if (findMacroSpelling(SpellLoc, "UNREFERENCED_PARAMETER")) 261 return; 262 } 263 264 // Okay, we have an unused result. Depending on what the base expression is, 265 // we might want to make a more specific diagnostic. Check for one of these 266 // cases now. 267 unsigned DiagID = diag::warn_unused_expr; 268 if (const FullExpr *Temps = dyn_cast<FullExpr>(E)) 269 E = Temps->getSubExpr(); 270 if (const CXXBindTemporaryExpr *TempExpr = dyn_cast<CXXBindTemporaryExpr>(E)) 271 E = TempExpr->getSubExpr(); 272 273 if (DiagnoseUnusedComparison(*this, E)) 274 return; 275 276 E = WarnExpr; 277 if (const auto *Cast = dyn_cast<CastExpr>(E)) 278 if (Cast->getCastKind() == CK_NoOp || 279 Cast->getCastKind() == CK_ConstructorConversion) 280 E = Cast->getSubExpr()->IgnoreImpCasts(); 281 282 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { 283 if (E->getType()->isVoidType()) 284 return; 285 286 if (DiagnoseNoDiscard(*this, cast_or_null<WarnUnusedResultAttr>( 287 CE->getUnusedResultAttr(Context)), 288 Loc, R1, R2, /*isCtor=*/false)) 289 return; 290 291 // If the callee has attribute pure, const, or warn_unused_result, warn with 292 // a more specific message to make it clear what is happening. If the call 293 // is written in a macro body, only warn if it has the warn_unused_result 294 // attribute. 295 if (const Decl *FD = CE->getCalleeDecl()) { 296 if (ShouldSuppress) 297 return; 298 if (FD->hasAttr<PureAttr>()) { 299 Diag(Loc, diag::warn_unused_call) << R1 << R2 << "pure"; 300 return; 301 } 302 if (FD->hasAttr<ConstAttr>()) { 303 Diag(Loc, diag::warn_unused_call) << R1 << R2 << "const"; 304 return; 305 } 306 } 307 } else if (const auto *CE = dyn_cast<CXXConstructExpr>(E)) { 308 if (const CXXConstructorDecl *Ctor = CE->getConstructor()) { 309 const auto *A = Ctor->getAttr<WarnUnusedResultAttr>(); 310 A = A ? A : Ctor->getParent()->getAttr<WarnUnusedResultAttr>(); 311 if (DiagnoseNoDiscard(*this, A, Loc, R1, R2, /*isCtor=*/true)) 312 return; 313 } 314 } else if (const auto *ILE = dyn_cast<InitListExpr>(E)) { 315 if (const TagDecl *TD = ILE->getType()->getAsTagDecl()) { 316 317 if (DiagnoseNoDiscard(*this, TD->getAttr<WarnUnusedResultAttr>(), Loc, R1, 318 R2, /*isCtor=*/false)) 319 return; 320 } 321 } else if (ShouldSuppress) 322 return; 323 324 E = WarnExpr; 325 if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E)) { 326 if (getLangOpts().ObjCAutoRefCount && ME->isDelegateInitCall()) { 327 Diag(Loc, diag::err_arc_unused_init_message) << R1; 328 return; 329 } 330 const ObjCMethodDecl *MD = ME->getMethodDecl(); 331 if (MD) { 332 if (DiagnoseNoDiscard(*this, MD->getAttr<WarnUnusedResultAttr>(), Loc, R1, 333 R2, /*isCtor=*/false)) 334 return; 335 } 336 } else if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) { 337 const Expr *Source = POE->getSyntacticForm(); 338 // Handle the actually selected call of an OpenMP specialized call. 339 if (LangOpts.OpenMP && isa<CallExpr>(Source) && 340 POE->getNumSemanticExprs() == 1 && 341 isa<CallExpr>(POE->getSemanticExpr(0))) 342 return DiagnoseUnusedExprResult(POE->getSemanticExpr(0)); 343 if (isa<ObjCSubscriptRefExpr>(Source)) 344 DiagID = diag::warn_unused_container_subscript_expr; 345 else 346 DiagID = diag::warn_unused_property_expr; 347 } else if (const CXXFunctionalCastExpr *FC 348 = dyn_cast<CXXFunctionalCastExpr>(E)) { 349 const Expr *E = FC->getSubExpr(); 350 if (const CXXBindTemporaryExpr *TE = dyn_cast<CXXBindTemporaryExpr>(E)) 351 E = TE->getSubExpr(); 352 if (isa<CXXTemporaryObjectExpr>(E)) 353 return; 354 if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(E)) 355 if (const CXXRecordDecl *RD = CE->getType()->getAsCXXRecordDecl()) 356 if (!RD->getAttr<WarnUnusedAttr>()) 357 return; 358 } 359 // Diagnose "(void*) blah" as a typo for "(void) blah". 360 else if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(E)) { 361 TypeSourceInfo *TI = CE->getTypeInfoAsWritten(); 362 QualType T = TI->getType(); 363 364 // We really do want to use the non-canonical type here. 365 if (T == Context.VoidPtrTy) { 366 PointerTypeLoc TL = TI->getTypeLoc().castAs<PointerTypeLoc>(); 367 368 Diag(Loc, diag::warn_unused_voidptr) 369 << FixItHint::CreateRemoval(TL.getStarLoc()); 370 return; 371 } 372 } 373 374 // Tell the user to assign it into a variable to force a volatile load if this 375 // isn't an array. 376 if (E->isGLValue() && E->getType().isVolatileQualified() && 377 !E->getType()->isArrayType()) { 378 Diag(Loc, diag::warn_unused_volatile) << R1 << R2; 379 return; 380 } 381 382 DiagRuntimeBehavior(Loc, nullptr, PDiag(DiagID) << R1 << R2); 383 } 384 385 void Sema::ActOnStartOfCompoundStmt(bool IsStmtExpr) { 386 PushCompoundScope(IsStmtExpr); 387 } 388 389 void Sema::ActOnAfterCompoundStatementLeadingPragmas() { 390 if (getCurFPFeatures().isFPConstrained()) { 391 FunctionScopeInfo *FSI = getCurFunction(); 392 assert(FSI); 393 FSI->setUsesFPIntrin(); 394 } 395 } 396 397 void Sema::ActOnFinishOfCompoundStmt() { 398 PopCompoundScope(); 399 } 400 401 sema::CompoundScopeInfo &Sema::getCurCompoundScope() const { 402 return getCurFunction()->CompoundScopes.back(); 403 } 404 405 StmtResult Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R, 406 ArrayRef<Stmt *> Elts, bool isStmtExpr) { 407 const unsigned NumElts = Elts.size(); 408 409 // If we're in C89 mode, check that we don't have any decls after stmts. If 410 // so, emit an extension diagnostic. 411 if (!getLangOpts().C99 && !getLangOpts().CPlusPlus) { 412 // Note that __extension__ can be around a decl. 413 unsigned i = 0; 414 // Skip over all declarations. 415 for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i) 416 /*empty*/; 417 418 // We found the end of the list or a statement. Scan for another declstmt. 419 for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i) 420 /*empty*/; 421 422 if (i != NumElts) { 423 Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin(); 424 Diag(D->getLocation(), diag::ext_mixed_decls_code); 425 } 426 } 427 428 // Check for suspicious empty body (null statement) in `for' and `while' 429 // statements. Don't do anything for template instantiations, this just adds 430 // noise. 431 if (NumElts != 0 && !CurrentInstantiationScope && 432 getCurCompoundScope().HasEmptyLoopBodies) { 433 for (unsigned i = 0; i != NumElts - 1; ++i) 434 DiagnoseEmptyLoopBody(Elts[i], Elts[i + 1]); 435 } 436 437 return CompoundStmt::Create(Context, Elts, L, R); 438 } 439 440 ExprResult 441 Sema::ActOnCaseExpr(SourceLocation CaseLoc, ExprResult Val) { 442 if (!Val.get()) 443 return Val; 444 445 if (DiagnoseUnexpandedParameterPack(Val.get())) 446 return ExprError(); 447 448 // If we're not inside a switch, let the 'case' statement handling diagnose 449 // this. Just clean up after the expression as best we can. 450 if (getCurFunction()->SwitchStack.empty()) 451 return ActOnFinishFullExpr(Val.get(), Val.get()->getExprLoc(), false, 452 getLangOpts().CPlusPlus11); 453 454 Expr *CondExpr = 455 getCurFunction()->SwitchStack.back().getPointer()->getCond(); 456 if (!CondExpr) 457 return ExprError(); 458 QualType CondType = CondExpr->getType(); 459 460 auto CheckAndFinish = [&](Expr *E) { 461 if (CondType->isDependentType() || E->isTypeDependent()) 462 return ExprResult(E); 463 464 if (getLangOpts().CPlusPlus11) { 465 // C++11 [stmt.switch]p2: the constant-expression shall be a converted 466 // constant expression of the promoted type of the switch condition. 467 llvm::APSInt TempVal; 468 return CheckConvertedConstantExpression(E, CondType, TempVal, 469 CCEK_CaseValue); 470 } 471 472 ExprResult ER = E; 473 if (!E->isValueDependent()) 474 ER = VerifyIntegerConstantExpression(E, AllowFold); 475 if (!ER.isInvalid()) 476 ER = DefaultLvalueConversion(ER.get()); 477 if (!ER.isInvalid()) 478 ER = ImpCastExprToType(ER.get(), CondType, CK_IntegralCast); 479 if (!ER.isInvalid()) 480 ER = ActOnFinishFullExpr(ER.get(), ER.get()->getExprLoc(), false); 481 return ER; 482 }; 483 484 ExprResult Converted = CorrectDelayedTyposInExpr( 485 Val, /*InitDecl=*/nullptr, /*RecoverUncorrectedTypos=*/false, 486 CheckAndFinish); 487 if (Converted.get() == Val.get()) 488 Converted = CheckAndFinish(Val.get()); 489 return Converted; 490 } 491 492 StmtResult 493 Sema::ActOnCaseStmt(SourceLocation CaseLoc, ExprResult LHSVal, 494 SourceLocation DotDotDotLoc, ExprResult RHSVal, 495 SourceLocation ColonLoc) { 496 assert((LHSVal.isInvalid() || LHSVal.get()) && "missing LHS value"); 497 assert((DotDotDotLoc.isInvalid() ? RHSVal.isUnset() 498 : RHSVal.isInvalid() || RHSVal.get()) && 499 "missing RHS value"); 500 501 if (getCurFunction()->SwitchStack.empty()) { 502 Diag(CaseLoc, diag::err_case_not_in_switch); 503 return StmtError(); 504 } 505 506 if (LHSVal.isInvalid() || RHSVal.isInvalid()) { 507 getCurFunction()->SwitchStack.back().setInt(true); 508 return StmtError(); 509 } 510 511 auto *CS = CaseStmt::Create(Context, LHSVal.get(), RHSVal.get(), 512 CaseLoc, DotDotDotLoc, ColonLoc); 513 getCurFunction()->SwitchStack.back().getPointer()->addSwitchCase(CS); 514 return CS; 515 } 516 517 /// ActOnCaseStmtBody - This installs a statement as the body of a case. 518 void Sema::ActOnCaseStmtBody(Stmt *S, Stmt *SubStmt) { 519 cast<CaseStmt>(S)->setSubStmt(SubStmt); 520 } 521 522 StmtResult 523 Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc, 524 Stmt *SubStmt, Scope *CurScope) { 525 if (getCurFunction()->SwitchStack.empty()) { 526 Diag(DefaultLoc, diag::err_default_not_in_switch); 527 return SubStmt; 528 } 529 530 DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt); 531 getCurFunction()->SwitchStack.back().getPointer()->addSwitchCase(DS); 532 return DS; 533 } 534 535 StmtResult 536 Sema::ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl, 537 SourceLocation ColonLoc, Stmt *SubStmt) { 538 // If the label was multiply defined, reject it now. 539 if (TheDecl->getStmt()) { 540 Diag(IdentLoc, diag::err_redefinition_of_label) << TheDecl->getDeclName(); 541 Diag(TheDecl->getLocation(), diag::note_previous_definition); 542 return SubStmt; 543 } 544 545 ReservedIdentifierStatus Status = TheDecl->isReserved(getLangOpts()); 546 if (Status != ReservedIdentifierStatus::NotReserved && 547 !Context.getSourceManager().isInSystemHeader(IdentLoc)) 548 Diag(IdentLoc, diag::warn_reserved_extern_symbol) 549 << TheDecl << static_cast<int>(Status); 550 551 // Otherwise, things are good. Fill in the declaration and return it. 552 LabelStmt *LS = new (Context) LabelStmt(IdentLoc, TheDecl, SubStmt); 553 TheDecl->setStmt(LS); 554 if (!TheDecl->isGnuLocal()) { 555 TheDecl->setLocStart(IdentLoc); 556 if (!TheDecl->isMSAsmLabel()) { 557 // Don't update the location of MS ASM labels. These will result in 558 // a diagnostic, and changing the location here will mess that up. 559 TheDecl->setLocation(IdentLoc); 560 } 561 } 562 return LS; 563 } 564 565 StmtResult Sema::BuildAttributedStmt(SourceLocation AttrsLoc, 566 ArrayRef<const Attr *> Attrs, 567 Stmt *SubStmt) { 568 // FIXME: this code should move when a planned refactoring around statement 569 // attributes lands. 570 for (const auto *A : Attrs) { 571 if (A->getKind() == attr::MustTail) { 572 if (!checkAndRewriteMustTailAttr(SubStmt, *A)) { 573 return SubStmt; 574 } 575 setFunctionHasMustTail(); 576 } 577 } 578 579 return AttributedStmt::Create(Context, AttrsLoc, Attrs, SubStmt); 580 } 581 582 StmtResult Sema::ActOnAttributedStmt(const ParsedAttributesWithRange &Attrs, 583 Stmt *SubStmt) { 584 SmallVector<const Attr *, 1> SemanticAttrs; 585 ProcessStmtAttributes(SubStmt, Attrs, SemanticAttrs); 586 if (!SemanticAttrs.empty()) 587 return BuildAttributedStmt(Attrs.Range.getBegin(), SemanticAttrs, SubStmt); 588 // If none of the attributes applied, that's fine, we can recover by 589 // returning the substatement directly instead of making an AttributedStmt 590 // with no attributes on it. 591 return SubStmt; 592 } 593 594 bool Sema::checkAndRewriteMustTailAttr(Stmt *St, const Attr &MTA) { 595 ReturnStmt *R = cast<ReturnStmt>(St); 596 Expr *E = R->getRetValue(); 597 598 if (CurContext->isDependentContext() || (E && E->isInstantiationDependent())) 599 // We have to suspend our check until template instantiation time. 600 return true; 601 602 if (!checkMustTailAttr(St, MTA)) 603 return false; 604 605 // FIXME: Replace Expr::IgnoreImplicitAsWritten() with this function. 606 // Currently it does not skip implicit constructors in an initialization 607 // context. 608 auto IgnoreImplicitAsWritten = [](Expr *E) -> Expr * { 609 return IgnoreExprNodes(E, IgnoreImplicitAsWrittenSingleStep, 610 IgnoreElidableImplicitConstructorSingleStep); 611 }; 612 613 // Now that we have verified that 'musttail' is valid here, rewrite the 614 // return value to remove all implicit nodes, but retain parentheses. 615 R->setRetValue(IgnoreImplicitAsWritten(E)); 616 return true; 617 } 618 619 bool Sema::checkMustTailAttr(const Stmt *St, const Attr &MTA) { 620 assert(!CurContext->isDependentContext() && 621 "musttail cannot be checked from a dependent context"); 622 623 // FIXME: Add Expr::IgnoreParenImplicitAsWritten() with this definition. 624 auto IgnoreParenImplicitAsWritten = [](const Expr *E) -> const Expr * { 625 return IgnoreExprNodes(const_cast<Expr *>(E), IgnoreParensSingleStep, 626 IgnoreImplicitAsWrittenSingleStep, 627 IgnoreElidableImplicitConstructorSingleStep); 628 }; 629 630 const Expr *E = cast<ReturnStmt>(St)->getRetValue(); 631 const auto *CE = dyn_cast_or_null<CallExpr>(IgnoreParenImplicitAsWritten(E)); 632 633 if (!CE) { 634 Diag(St->getBeginLoc(), diag::err_musttail_needs_call) << &MTA; 635 return false; 636 } 637 638 if (const auto *EWC = dyn_cast<ExprWithCleanups>(E)) { 639 if (EWC->cleanupsHaveSideEffects()) { 640 Diag(St->getBeginLoc(), diag::err_musttail_needs_trivial_args) << &MTA; 641 return false; 642 } 643 } 644 645 // We need to determine the full function type (including "this" type, if any) 646 // for both caller and callee. 647 struct FuncType { 648 enum { 649 ft_non_member, 650 ft_static_member, 651 ft_non_static_member, 652 ft_pointer_to_member, 653 } MemberType = ft_non_member; 654 655 QualType This; 656 const FunctionProtoType *Func; 657 const CXXMethodDecl *Method = nullptr; 658 } CallerType, CalleeType; 659 660 auto GetMethodType = [this, St, MTA](const CXXMethodDecl *CMD, FuncType &Type, 661 bool IsCallee) -> bool { 662 if (isa<CXXConstructorDecl, CXXDestructorDecl>(CMD)) { 663 Diag(St->getBeginLoc(), diag::err_musttail_structors_forbidden) 664 << IsCallee << isa<CXXDestructorDecl>(CMD); 665 if (IsCallee) 666 Diag(CMD->getBeginLoc(), diag::note_musttail_structors_forbidden) 667 << isa<CXXDestructorDecl>(CMD); 668 Diag(MTA.getLocation(), diag::note_tail_call_required) << &MTA; 669 return false; 670 } 671 if (CMD->isStatic()) 672 Type.MemberType = FuncType::ft_static_member; 673 else { 674 Type.This = CMD->getThisType()->getPointeeType(); 675 Type.MemberType = FuncType::ft_non_static_member; 676 } 677 Type.Func = CMD->getType()->castAs<FunctionProtoType>(); 678 return true; 679 }; 680 681 const auto *CallerDecl = dyn_cast<FunctionDecl>(CurContext); 682 683 // Find caller function signature. 684 if (!CallerDecl) { 685 int ContextType; 686 if (isa<BlockDecl>(CurContext)) 687 ContextType = 0; 688 else if (isa<ObjCMethodDecl>(CurContext)) 689 ContextType = 1; 690 else 691 ContextType = 2; 692 Diag(St->getBeginLoc(), diag::err_musttail_forbidden_from_this_context) 693 << &MTA << ContextType; 694 return false; 695 } else if (const auto *CMD = dyn_cast<CXXMethodDecl>(CurContext)) { 696 // Caller is a class/struct method. 697 if (!GetMethodType(CMD, CallerType, false)) 698 return false; 699 } else { 700 // Caller is a non-method function. 701 CallerType.Func = CallerDecl->getType()->getAs<FunctionProtoType>(); 702 } 703 704 const Expr *CalleeExpr = CE->getCallee()->IgnoreParens(); 705 const auto *CalleeBinOp = dyn_cast<BinaryOperator>(CalleeExpr); 706 SourceLocation CalleeLoc = CE->getCalleeDecl() 707 ? CE->getCalleeDecl()->getBeginLoc() 708 : St->getBeginLoc(); 709 710 // Find callee function signature. 711 if (const CXXMethodDecl *CMD = 712 dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl())) { 713 // Call is: obj.method(), obj->method(), functor(), etc. 714 if (!GetMethodType(CMD, CalleeType, true)) 715 return false; 716 } else if (CalleeBinOp && CalleeBinOp->isPtrMemOp()) { 717 // Call is: obj->*method_ptr or obj.*method_ptr 718 const auto *MPT = 719 CalleeBinOp->getRHS()->getType()->castAs<MemberPointerType>(); 720 CalleeType.This = QualType(MPT->getClass(), 0); 721 CalleeType.Func = MPT->getPointeeType()->castAs<FunctionProtoType>(); 722 CalleeType.MemberType = FuncType::ft_pointer_to_member; 723 } else if (isa<CXXPseudoDestructorExpr>(CalleeExpr)) { 724 Diag(St->getBeginLoc(), diag::err_musttail_structors_forbidden) 725 << /* IsCallee = */ 1 << /* IsDestructor = */ 1; 726 Diag(MTA.getLocation(), diag::note_tail_call_required) << &MTA; 727 return false; 728 } else { 729 // Non-method function. 730 CalleeType.Func = 731 CalleeExpr->getType()->getPointeeType()->getAs<FunctionProtoType>(); 732 } 733 734 // Both caller and callee must have a prototype (no K&R declarations). 735 if (!CalleeType.Func || !CallerType.Func) { 736 Diag(St->getBeginLoc(), diag::err_musttail_needs_prototype) << &MTA; 737 if (!CalleeType.Func && CE->getDirectCallee()) { 738 Diag(CE->getDirectCallee()->getBeginLoc(), 739 diag::note_musttail_fix_non_prototype); 740 } 741 if (!CallerType.Func) 742 Diag(CallerDecl->getBeginLoc(), diag::note_musttail_fix_non_prototype); 743 return false; 744 } 745 746 // Caller and callee must have matching calling conventions. 747 // 748 // Some calling conventions are physically capable of supporting tail calls 749 // even if the function types don't perfectly match. LLVM is currently too 750 // strict to allow this, but if LLVM added support for this in the future, we 751 // could exit early here and skip the remaining checks if the functions are 752 // using such a calling convention. 753 if (CallerType.Func->getCallConv() != CalleeType.Func->getCallConv()) { 754 if (const auto *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) 755 Diag(St->getBeginLoc(), diag::err_musttail_callconv_mismatch) 756 << true << ND->getDeclName(); 757 else 758 Diag(St->getBeginLoc(), diag::err_musttail_callconv_mismatch) << false; 759 Diag(CalleeLoc, diag::note_musttail_callconv_mismatch) 760 << FunctionType::getNameForCallConv(CallerType.Func->getCallConv()) 761 << FunctionType::getNameForCallConv(CalleeType.Func->getCallConv()); 762 Diag(MTA.getLocation(), diag::note_tail_call_required) << &MTA; 763 return false; 764 } 765 766 if (CalleeType.Func->isVariadic() || CallerType.Func->isVariadic()) { 767 Diag(St->getBeginLoc(), diag::err_musttail_no_variadic) << &MTA; 768 return false; 769 } 770 771 // Caller and callee must match in whether they have a "this" parameter. 772 if (CallerType.This.isNull() != CalleeType.This.isNull()) { 773 if (const auto *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) { 774 Diag(St->getBeginLoc(), diag::err_musttail_member_mismatch) 775 << CallerType.MemberType << CalleeType.MemberType << true 776 << ND->getDeclName(); 777 Diag(CalleeLoc, diag::note_musttail_callee_defined_here) 778 << ND->getDeclName(); 779 } else 780 Diag(St->getBeginLoc(), diag::err_musttail_member_mismatch) 781 << CallerType.MemberType << CalleeType.MemberType << false; 782 Diag(MTA.getLocation(), diag::note_tail_call_required) << &MTA; 783 return false; 784 } 785 786 auto CheckTypesMatch = [this](FuncType CallerType, FuncType CalleeType, 787 PartialDiagnostic &PD) -> bool { 788 enum { 789 ft_different_class, 790 ft_parameter_arity, 791 ft_parameter_mismatch, 792 ft_return_type, 793 }; 794 795 auto DoTypesMatch = [this, &PD](QualType A, QualType B, 796 unsigned Select) -> bool { 797 if (!Context.hasSimilarType(A, B)) { 798 PD << Select << A.getUnqualifiedType() << B.getUnqualifiedType(); 799 return false; 800 } 801 return true; 802 }; 803 804 if (!CallerType.This.isNull() && 805 !DoTypesMatch(CallerType.This, CalleeType.This, ft_different_class)) 806 return false; 807 808 if (!DoTypesMatch(CallerType.Func->getReturnType(), 809 CalleeType.Func->getReturnType(), ft_return_type)) 810 return false; 811 812 if (CallerType.Func->getNumParams() != CalleeType.Func->getNumParams()) { 813 PD << ft_parameter_arity << CallerType.Func->getNumParams() 814 << CalleeType.Func->getNumParams(); 815 return false; 816 } 817 818 ArrayRef<QualType> CalleeParams = CalleeType.Func->getParamTypes(); 819 ArrayRef<QualType> CallerParams = CallerType.Func->getParamTypes(); 820 size_t N = CallerType.Func->getNumParams(); 821 for (size_t I = 0; I < N; I++) { 822 if (!DoTypesMatch(CalleeParams[I], CallerParams[I], 823 ft_parameter_mismatch)) { 824 PD << static_cast<int>(I) + 1; 825 return false; 826 } 827 } 828 829 return true; 830 }; 831 832 PartialDiagnostic PD = PDiag(diag::note_musttail_mismatch); 833 if (!CheckTypesMatch(CallerType, CalleeType, PD)) { 834 if (const auto *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) 835 Diag(St->getBeginLoc(), diag::err_musttail_mismatch) 836 << true << ND->getDeclName(); 837 else 838 Diag(St->getBeginLoc(), diag::err_musttail_mismatch) << false; 839 Diag(CalleeLoc, PD); 840 Diag(MTA.getLocation(), diag::note_tail_call_required) << &MTA; 841 return false; 842 } 843 844 return true; 845 } 846 847 namespace { 848 class CommaVisitor : public EvaluatedExprVisitor<CommaVisitor> { 849 typedef EvaluatedExprVisitor<CommaVisitor> Inherited; 850 Sema &SemaRef; 851 public: 852 CommaVisitor(Sema &SemaRef) : Inherited(SemaRef.Context), SemaRef(SemaRef) {} 853 void VisitBinaryOperator(BinaryOperator *E) { 854 if (E->getOpcode() == BO_Comma) 855 SemaRef.DiagnoseCommaOperator(E->getLHS(), E->getExprLoc()); 856 EvaluatedExprVisitor<CommaVisitor>::VisitBinaryOperator(E); 857 } 858 }; 859 } 860 861 StmtResult Sema::ActOnIfStmt(SourceLocation IfLoc, bool IsConstexpr, 862 SourceLocation LParenLoc, Stmt *InitStmt, 863 ConditionResult Cond, SourceLocation RParenLoc, 864 Stmt *thenStmt, SourceLocation ElseLoc, 865 Stmt *elseStmt) { 866 if (Cond.isInvalid()) 867 Cond = ConditionResult( 868 *this, nullptr, 869 MakeFullExpr(new (Context) OpaqueValueExpr(SourceLocation(), 870 Context.BoolTy, VK_RValue), 871 IfLoc), 872 false); 873 874 Expr *CondExpr = Cond.get().second; 875 // Only call the CommaVisitor when not C89 due to differences in scope flags. 876 if ((getLangOpts().C99 || getLangOpts().CPlusPlus) && 877 !Diags.isIgnored(diag::warn_comma_operator, CondExpr->getExprLoc())) 878 CommaVisitor(*this).Visit(CondExpr); 879 880 if (!elseStmt) 881 DiagnoseEmptyStmtBody(CondExpr->getEndLoc(), thenStmt, 882 diag::warn_empty_if_body); 883 884 if (IsConstexpr) { 885 auto DiagnoseLikelihood = [&](const Stmt *S) { 886 if (const Attr *A = Stmt::getLikelihoodAttr(S)) { 887 Diags.Report(A->getLocation(), 888 diag::warn_attribute_has_no_effect_on_if_constexpr) 889 << A << A->getRange(); 890 Diags.Report(IfLoc, 891 diag::note_attribute_has_no_effect_on_if_constexpr_here) 892 << SourceRange(IfLoc, LParenLoc.getLocWithOffset(-1)); 893 } 894 }; 895 DiagnoseLikelihood(thenStmt); 896 DiagnoseLikelihood(elseStmt); 897 } else { 898 std::tuple<bool, const Attr *, const Attr *> LHC = 899 Stmt::determineLikelihoodConflict(thenStmt, elseStmt); 900 if (std::get<0>(LHC)) { 901 const Attr *ThenAttr = std::get<1>(LHC); 902 const Attr *ElseAttr = std::get<2>(LHC); 903 Diags.Report(ThenAttr->getLocation(), 904 diag::warn_attributes_likelihood_ifstmt_conflict) 905 << ThenAttr << ThenAttr->getRange(); 906 Diags.Report(ElseAttr->getLocation(), diag::note_conflicting_attribute) 907 << ElseAttr << ElseAttr->getRange(); 908 } 909 } 910 911 return BuildIfStmt(IfLoc, IsConstexpr, LParenLoc, InitStmt, Cond, RParenLoc, 912 thenStmt, ElseLoc, elseStmt); 913 } 914 915 StmtResult Sema::BuildIfStmt(SourceLocation IfLoc, bool IsConstexpr, 916 SourceLocation LParenLoc, Stmt *InitStmt, 917 ConditionResult Cond, SourceLocation RParenLoc, 918 Stmt *thenStmt, SourceLocation ElseLoc, 919 Stmt *elseStmt) { 920 if (Cond.isInvalid()) 921 return StmtError(); 922 923 if (IsConstexpr || isa<ObjCAvailabilityCheckExpr>(Cond.get().second)) 924 setFunctionHasBranchProtectedScope(); 925 926 return IfStmt::Create(Context, IfLoc, IsConstexpr, InitStmt, Cond.get().first, 927 Cond.get().second, LParenLoc, RParenLoc, thenStmt, 928 ElseLoc, elseStmt); 929 } 930 931 namespace { 932 struct CaseCompareFunctor { 933 bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS, 934 const llvm::APSInt &RHS) { 935 return LHS.first < RHS; 936 } 937 bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS, 938 const std::pair<llvm::APSInt, CaseStmt*> &RHS) { 939 return LHS.first < RHS.first; 940 } 941 bool operator()(const llvm::APSInt &LHS, 942 const std::pair<llvm::APSInt, CaseStmt*> &RHS) { 943 return LHS < RHS.first; 944 } 945 }; 946 } 947 948 /// CmpCaseVals - Comparison predicate for sorting case values. 949 /// 950 static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs, 951 const std::pair<llvm::APSInt, CaseStmt*>& rhs) { 952 if (lhs.first < rhs.first) 953 return true; 954 955 if (lhs.first == rhs.first && 956 lhs.second->getCaseLoc() < rhs.second->getCaseLoc()) 957 return true; 958 return false; 959 } 960 961 /// CmpEnumVals - Comparison predicate for sorting enumeration values. 962 /// 963 static bool CmpEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs, 964 const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs) 965 { 966 return lhs.first < rhs.first; 967 } 968 969 /// EqEnumVals - Comparison preficate for uniqing enumeration values. 970 /// 971 static bool EqEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs, 972 const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs) 973 { 974 return lhs.first == rhs.first; 975 } 976 977 /// GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of 978 /// potentially integral-promoted expression @p expr. 979 static QualType GetTypeBeforeIntegralPromotion(const Expr *&E) { 980 if (const auto *FE = dyn_cast<FullExpr>(E)) 981 E = FE->getSubExpr(); 982 while (const auto *ImpCast = dyn_cast<ImplicitCastExpr>(E)) { 983 if (ImpCast->getCastKind() != CK_IntegralCast) break; 984 E = ImpCast->getSubExpr(); 985 } 986 return E->getType(); 987 } 988 989 ExprResult Sema::CheckSwitchCondition(SourceLocation SwitchLoc, Expr *Cond) { 990 class SwitchConvertDiagnoser : public ICEConvertDiagnoser { 991 Expr *Cond; 992 993 public: 994 SwitchConvertDiagnoser(Expr *Cond) 995 : ICEConvertDiagnoser(/*AllowScopedEnumerations*/true, false, true), 996 Cond(Cond) {} 997 998 SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc, 999 QualType T) override { 1000 return S.Diag(Loc, diag::err_typecheck_statement_requires_integer) << T; 1001 } 1002 1003 SemaDiagnosticBuilder diagnoseIncomplete( 1004 Sema &S, SourceLocation Loc, QualType T) override { 1005 return S.Diag(Loc, diag::err_switch_incomplete_class_type) 1006 << T << Cond->getSourceRange(); 1007 } 1008 1009 SemaDiagnosticBuilder diagnoseExplicitConv( 1010 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override { 1011 return S.Diag(Loc, diag::err_switch_explicit_conversion) << T << ConvTy; 1012 } 1013 1014 SemaDiagnosticBuilder noteExplicitConv( 1015 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override { 1016 return S.Diag(Conv->getLocation(), diag::note_switch_conversion) 1017 << ConvTy->isEnumeralType() << ConvTy; 1018 } 1019 1020 SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc, 1021 QualType T) override { 1022 return S.Diag(Loc, diag::err_switch_multiple_conversions) << T; 1023 } 1024 1025 SemaDiagnosticBuilder noteAmbiguous( 1026 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override { 1027 return S.Diag(Conv->getLocation(), diag::note_switch_conversion) 1028 << ConvTy->isEnumeralType() << ConvTy; 1029 } 1030 1031 SemaDiagnosticBuilder diagnoseConversion( 1032 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override { 1033 llvm_unreachable("conversion functions are permitted"); 1034 } 1035 } SwitchDiagnoser(Cond); 1036 1037 ExprResult CondResult = 1038 PerformContextualImplicitConversion(SwitchLoc, Cond, SwitchDiagnoser); 1039 if (CondResult.isInvalid()) 1040 return ExprError(); 1041 1042 // FIXME: PerformContextualImplicitConversion doesn't always tell us if it 1043 // failed and produced a diagnostic. 1044 Cond = CondResult.get(); 1045 if (!Cond->isTypeDependent() && 1046 !Cond->getType()->isIntegralOrEnumerationType()) 1047 return ExprError(); 1048 1049 // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr. 1050 return UsualUnaryConversions(Cond); 1051 } 1052 1053 StmtResult Sema::ActOnStartOfSwitchStmt(SourceLocation SwitchLoc, 1054 SourceLocation LParenLoc, 1055 Stmt *InitStmt, ConditionResult Cond, 1056 SourceLocation RParenLoc) { 1057 Expr *CondExpr = Cond.get().second; 1058 assert((Cond.isInvalid() || CondExpr) && "switch with no condition"); 1059 1060 if (CondExpr && !CondExpr->isTypeDependent()) { 1061 // We have already converted the expression to an integral or enumeration 1062 // type, when we parsed the switch condition. There are cases where we don't 1063 // have an appropriate type, e.g. a typo-expr Cond was corrected to an 1064 // inappropriate-type expr, we just return an error. 1065 if (!CondExpr->getType()->isIntegralOrEnumerationType()) 1066 return StmtError(); 1067 if (CondExpr->isKnownToHaveBooleanValue()) { 1068 // switch(bool_expr) {...} is often a programmer error, e.g. 1069 // switch(n && mask) { ... } // Doh - should be "n & mask". 1070 // One can always use an if statement instead of switch(bool_expr). 1071 Diag(SwitchLoc, diag::warn_bool_switch_condition) 1072 << CondExpr->getSourceRange(); 1073 } 1074 } 1075 1076 setFunctionHasBranchIntoScope(); 1077 1078 auto *SS = SwitchStmt::Create(Context, InitStmt, Cond.get().first, CondExpr, 1079 LParenLoc, RParenLoc); 1080 getCurFunction()->SwitchStack.push_back( 1081 FunctionScopeInfo::SwitchInfo(SS, false)); 1082 return SS; 1083 } 1084 1085 static void AdjustAPSInt(llvm::APSInt &Val, unsigned BitWidth, bool IsSigned) { 1086 Val = Val.extOrTrunc(BitWidth); 1087 Val.setIsSigned(IsSigned); 1088 } 1089 1090 /// Check the specified case value is in range for the given unpromoted switch 1091 /// type. 1092 static void checkCaseValue(Sema &S, SourceLocation Loc, const llvm::APSInt &Val, 1093 unsigned UnpromotedWidth, bool UnpromotedSign) { 1094 // In C++11 onwards, this is checked by the language rules. 1095 if (S.getLangOpts().CPlusPlus11) 1096 return; 1097 1098 // If the case value was signed and negative and the switch expression is 1099 // unsigned, don't bother to warn: this is implementation-defined behavior. 1100 // FIXME: Introduce a second, default-ignored warning for this case? 1101 if (UnpromotedWidth < Val.getBitWidth()) { 1102 llvm::APSInt ConvVal(Val); 1103 AdjustAPSInt(ConvVal, UnpromotedWidth, UnpromotedSign); 1104 AdjustAPSInt(ConvVal, Val.getBitWidth(), Val.isSigned()); 1105 // FIXME: Use different diagnostics for overflow in conversion to promoted 1106 // type versus "switch expression cannot have this value". Use proper 1107 // IntRange checking rather than just looking at the unpromoted type here. 1108 if (ConvVal != Val) 1109 S.Diag(Loc, diag::warn_case_value_overflow) << Val.toString(10) 1110 << ConvVal.toString(10); 1111 } 1112 } 1113 1114 typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl*>, 64> EnumValsTy; 1115 1116 /// Returns true if we should emit a diagnostic about this case expression not 1117 /// being a part of the enum used in the switch controlling expression. 1118 static bool ShouldDiagnoseSwitchCaseNotInEnum(const Sema &S, 1119 const EnumDecl *ED, 1120 const Expr *CaseExpr, 1121 EnumValsTy::iterator &EI, 1122 EnumValsTy::iterator &EIEnd, 1123 const llvm::APSInt &Val) { 1124 if (!ED->isClosed()) 1125 return false; 1126 1127 if (const DeclRefExpr *DRE = 1128 dyn_cast<DeclRefExpr>(CaseExpr->IgnoreParenImpCasts())) { 1129 if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) { 1130 QualType VarType = VD->getType(); 1131 QualType EnumType = S.Context.getTypeDeclType(ED); 1132 if (VD->hasGlobalStorage() && VarType.isConstQualified() && 1133 S.Context.hasSameUnqualifiedType(EnumType, VarType)) 1134 return false; 1135 } 1136 } 1137 1138 if (ED->hasAttr<FlagEnumAttr>()) 1139 return !S.IsValueInFlagEnum(ED, Val, false); 1140 1141 while (EI != EIEnd && EI->first < Val) 1142 EI++; 1143 1144 if (EI != EIEnd && EI->first == Val) 1145 return false; 1146 1147 return true; 1148 } 1149 1150 static void checkEnumTypesInSwitchStmt(Sema &S, const Expr *Cond, 1151 const Expr *Case) { 1152 QualType CondType = Cond->getType(); 1153 QualType CaseType = Case->getType(); 1154 1155 const EnumType *CondEnumType = CondType->getAs<EnumType>(); 1156 const EnumType *CaseEnumType = CaseType->getAs<EnumType>(); 1157 if (!CondEnumType || !CaseEnumType) 1158 return; 1159 1160 // Ignore anonymous enums. 1161 if (!CondEnumType->getDecl()->getIdentifier() && 1162 !CondEnumType->getDecl()->getTypedefNameForAnonDecl()) 1163 return; 1164 if (!CaseEnumType->getDecl()->getIdentifier() && 1165 !CaseEnumType->getDecl()->getTypedefNameForAnonDecl()) 1166 return; 1167 1168 if (S.Context.hasSameUnqualifiedType(CondType, CaseType)) 1169 return; 1170 1171 S.Diag(Case->getExprLoc(), diag::warn_comparison_of_mixed_enum_types_switch) 1172 << CondType << CaseType << Cond->getSourceRange() 1173 << Case->getSourceRange(); 1174 } 1175 1176 StmtResult 1177 Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, Stmt *Switch, 1178 Stmt *BodyStmt) { 1179 SwitchStmt *SS = cast<SwitchStmt>(Switch); 1180 bool CaseListIsIncomplete = getCurFunction()->SwitchStack.back().getInt(); 1181 assert(SS == getCurFunction()->SwitchStack.back().getPointer() && 1182 "switch stack missing push/pop!"); 1183 1184 getCurFunction()->SwitchStack.pop_back(); 1185 1186 if (!BodyStmt) return StmtError(); 1187 SS->setBody(BodyStmt, SwitchLoc); 1188 1189 Expr *CondExpr = SS->getCond(); 1190 if (!CondExpr) return StmtError(); 1191 1192 QualType CondType = CondExpr->getType(); 1193 1194 // C++ 6.4.2.p2: 1195 // Integral promotions are performed (on the switch condition). 1196 // 1197 // A case value unrepresentable by the original switch condition 1198 // type (before the promotion) doesn't make sense, even when it can 1199 // be represented by the promoted type. Therefore we need to find 1200 // the pre-promotion type of the switch condition. 1201 const Expr *CondExprBeforePromotion = CondExpr; 1202 QualType CondTypeBeforePromotion = 1203 GetTypeBeforeIntegralPromotion(CondExprBeforePromotion); 1204 1205 // Get the bitwidth of the switched-on value after promotions. We must 1206 // convert the integer case values to this width before comparison. 1207 bool HasDependentValue 1208 = CondExpr->isTypeDependent() || CondExpr->isValueDependent(); 1209 unsigned CondWidth = HasDependentValue ? 0 : Context.getIntWidth(CondType); 1210 bool CondIsSigned = CondType->isSignedIntegerOrEnumerationType(); 1211 1212 // Get the width and signedness that the condition might actually have, for 1213 // warning purposes. 1214 // FIXME: Grab an IntRange for the condition rather than using the unpromoted 1215 // type. 1216 unsigned CondWidthBeforePromotion 1217 = HasDependentValue ? 0 : Context.getIntWidth(CondTypeBeforePromotion); 1218 bool CondIsSignedBeforePromotion 1219 = CondTypeBeforePromotion->isSignedIntegerOrEnumerationType(); 1220 1221 // Accumulate all of the case values in a vector so that we can sort them 1222 // and detect duplicates. This vector contains the APInt for the case after 1223 // it has been converted to the condition type. 1224 typedef SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy; 1225 CaseValsTy CaseVals; 1226 1227 // Keep track of any GNU case ranges we see. The APSInt is the low value. 1228 typedef std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRangesTy; 1229 CaseRangesTy CaseRanges; 1230 1231 DefaultStmt *TheDefaultStmt = nullptr; 1232 1233 bool CaseListIsErroneous = false; 1234 1235 for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue; 1236 SC = SC->getNextSwitchCase()) { 1237 1238 if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) { 1239 if (TheDefaultStmt) { 1240 Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined); 1241 Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev); 1242 1243 // FIXME: Remove the default statement from the switch block so that 1244 // we'll return a valid AST. This requires recursing down the AST and 1245 // finding it, not something we are set up to do right now. For now, 1246 // just lop the entire switch stmt out of the AST. 1247 CaseListIsErroneous = true; 1248 } 1249 TheDefaultStmt = DS; 1250 1251 } else { 1252 CaseStmt *CS = cast<CaseStmt>(SC); 1253 1254 Expr *Lo = CS->getLHS(); 1255 1256 if (Lo->isValueDependent()) { 1257 HasDependentValue = true; 1258 break; 1259 } 1260 1261 // We already verified that the expression has a constant value; 1262 // get that value (prior to conversions). 1263 const Expr *LoBeforePromotion = Lo; 1264 GetTypeBeforeIntegralPromotion(LoBeforePromotion); 1265 llvm::APSInt LoVal = LoBeforePromotion->EvaluateKnownConstInt(Context); 1266 1267 // Check the unconverted value is within the range of possible values of 1268 // the switch expression. 1269 checkCaseValue(*this, Lo->getBeginLoc(), LoVal, CondWidthBeforePromotion, 1270 CondIsSignedBeforePromotion); 1271 1272 // FIXME: This duplicates the check performed for warn_not_in_enum below. 1273 checkEnumTypesInSwitchStmt(*this, CondExprBeforePromotion, 1274 LoBeforePromotion); 1275 1276 // Convert the value to the same width/sign as the condition. 1277 AdjustAPSInt(LoVal, CondWidth, CondIsSigned); 1278 1279 // If this is a case range, remember it in CaseRanges, otherwise CaseVals. 1280 if (CS->getRHS()) { 1281 if (CS->getRHS()->isValueDependent()) { 1282 HasDependentValue = true; 1283 break; 1284 } 1285 CaseRanges.push_back(std::make_pair(LoVal, CS)); 1286 } else 1287 CaseVals.push_back(std::make_pair(LoVal, CS)); 1288 } 1289 } 1290 1291 if (!HasDependentValue) { 1292 // If we don't have a default statement, check whether the 1293 // condition is constant. 1294 llvm::APSInt ConstantCondValue; 1295 bool HasConstantCond = false; 1296 if (!TheDefaultStmt) { 1297 Expr::EvalResult Result; 1298 HasConstantCond = CondExpr->EvaluateAsInt(Result, Context, 1299 Expr::SE_AllowSideEffects); 1300 if (Result.Val.isInt()) 1301 ConstantCondValue = Result.Val.getInt(); 1302 assert(!HasConstantCond || 1303 (ConstantCondValue.getBitWidth() == CondWidth && 1304 ConstantCondValue.isSigned() == CondIsSigned)); 1305 } 1306 bool ShouldCheckConstantCond = HasConstantCond; 1307 1308 // Sort all the scalar case values so we can easily detect duplicates. 1309 llvm::stable_sort(CaseVals, CmpCaseVals); 1310 1311 if (!CaseVals.empty()) { 1312 for (unsigned i = 0, e = CaseVals.size(); i != e; ++i) { 1313 if (ShouldCheckConstantCond && 1314 CaseVals[i].first == ConstantCondValue) 1315 ShouldCheckConstantCond = false; 1316 1317 if (i != 0 && CaseVals[i].first == CaseVals[i-1].first) { 1318 // If we have a duplicate, report it. 1319 // First, determine if either case value has a name 1320 StringRef PrevString, CurrString; 1321 Expr *PrevCase = CaseVals[i-1].second->getLHS()->IgnoreParenCasts(); 1322 Expr *CurrCase = CaseVals[i].second->getLHS()->IgnoreParenCasts(); 1323 if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(PrevCase)) { 1324 PrevString = DeclRef->getDecl()->getName(); 1325 } 1326 if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(CurrCase)) { 1327 CurrString = DeclRef->getDecl()->getName(); 1328 } 1329 SmallString<16> CaseValStr; 1330 CaseVals[i-1].first.toString(CaseValStr); 1331 1332 if (PrevString == CurrString) 1333 Diag(CaseVals[i].second->getLHS()->getBeginLoc(), 1334 diag::err_duplicate_case) 1335 << (PrevString.empty() ? StringRef(CaseValStr) : PrevString); 1336 else 1337 Diag(CaseVals[i].second->getLHS()->getBeginLoc(), 1338 diag::err_duplicate_case_differing_expr) 1339 << (PrevString.empty() ? StringRef(CaseValStr) : PrevString) 1340 << (CurrString.empty() ? StringRef(CaseValStr) : CurrString) 1341 << CaseValStr; 1342 1343 Diag(CaseVals[i - 1].second->getLHS()->getBeginLoc(), 1344 diag::note_duplicate_case_prev); 1345 // FIXME: We really want to remove the bogus case stmt from the 1346 // substmt, but we have no way to do this right now. 1347 CaseListIsErroneous = true; 1348 } 1349 } 1350 } 1351 1352 // Detect duplicate case ranges, which usually don't exist at all in 1353 // the first place. 1354 if (!CaseRanges.empty()) { 1355 // Sort all the case ranges by their low value so we can easily detect 1356 // overlaps between ranges. 1357 llvm::stable_sort(CaseRanges); 1358 1359 // Scan the ranges, computing the high values and removing empty ranges. 1360 std::vector<llvm::APSInt> HiVals; 1361 for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) { 1362 llvm::APSInt &LoVal = CaseRanges[i].first; 1363 CaseStmt *CR = CaseRanges[i].second; 1364 Expr *Hi = CR->getRHS(); 1365 1366 const Expr *HiBeforePromotion = Hi; 1367 GetTypeBeforeIntegralPromotion(HiBeforePromotion); 1368 llvm::APSInt HiVal = HiBeforePromotion->EvaluateKnownConstInt(Context); 1369 1370 // Check the unconverted value is within the range of possible values of 1371 // the switch expression. 1372 checkCaseValue(*this, Hi->getBeginLoc(), HiVal, 1373 CondWidthBeforePromotion, CondIsSignedBeforePromotion); 1374 1375 // Convert the value to the same width/sign as the condition. 1376 AdjustAPSInt(HiVal, CondWidth, CondIsSigned); 1377 1378 // If the low value is bigger than the high value, the case is empty. 1379 if (LoVal > HiVal) { 1380 Diag(CR->getLHS()->getBeginLoc(), diag::warn_case_empty_range) 1381 << SourceRange(CR->getLHS()->getBeginLoc(), Hi->getEndLoc()); 1382 CaseRanges.erase(CaseRanges.begin()+i); 1383 --i; 1384 --e; 1385 continue; 1386 } 1387 1388 if (ShouldCheckConstantCond && 1389 LoVal <= ConstantCondValue && 1390 ConstantCondValue <= HiVal) 1391 ShouldCheckConstantCond = false; 1392 1393 HiVals.push_back(HiVal); 1394 } 1395 1396 // Rescan the ranges, looking for overlap with singleton values and other 1397 // ranges. Since the range list is sorted, we only need to compare case 1398 // ranges with their neighbors. 1399 for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) { 1400 llvm::APSInt &CRLo = CaseRanges[i].first; 1401 llvm::APSInt &CRHi = HiVals[i]; 1402 CaseStmt *CR = CaseRanges[i].second; 1403 1404 // Check to see whether the case range overlaps with any 1405 // singleton cases. 1406 CaseStmt *OverlapStmt = nullptr; 1407 llvm::APSInt OverlapVal(32); 1408 1409 // Find the smallest value >= the lower bound. If I is in the 1410 // case range, then we have overlap. 1411 CaseValsTy::iterator I = 1412 llvm::lower_bound(CaseVals, CRLo, CaseCompareFunctor()); 1413 if (I != CaseVals.end() && I->first < CRHi) { 1414 OverlapVal = I->first; // Found overlap with scalar. 1415 OverlapStmt = I->second; 1416 } 1417 1418 // Find the smallest value bigger than the upper bound. 1419 I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor()); 1420 if (I != CaseVals.begin() && (I-1)->first >= CRLo) { 1421 OverlapVal = (I-1)->first; // Found overlap with scalar. 1422 OverlapStmt = (I-1)->second; 1423 } 1424 1425 // Check to see if this case stmt overlaps with the subsequent 1426 // case range. 1427 if (i && CRLo <= HiVals[i-1]) { 1428 OverlapVal = HiVals[i-1]; // Found overlap with range. 1429 OverlapStmt = CaseRanges[i-1].second; 1430 } 1431 1432 if (OverlapStmt) { 1433 // If we have a duplicate, report it. 1434 Diag(CR->getLHS()->getBeginLoc(), diag::err_duplicate_case) 1435 << OverlapVal.toString(10); 1436 Diag(OverlapStmt->getLHS()->getBeginLoc(), 1437 diag::note_duplicate_case_prev); 1438 // FIXME: We really want to remove the bogus case stmt from the 1439 // substmt, but we have no way to do this right now. 1440 CaseListIsErroneous = true; 1441 } 1442 } 1443 } 1444 1445 // Complain if we have a constant condition and we didn't find a match. 1446 if (!CaseListIsErroneous && !CaseListIsIncomplete && 1447 ShouldCheckConstantCond) { 1448 // TODO: it would be nice if we printed enums as enums, chars as 1449 // chars, etc. 1450 Diag(CondExpr->getExprLoc(), diag::warn_missing_case_for_condition) 1451 << ConstantCondValue.toString(10) 1452 << CondExpr->getSourceRange(); 1453 } 1454 1455 // Check to see if switch is over an Enum and handles all of its 1456 // values. We only issue a warning if there is not 'default:', but 1457 // we still do the analysis to preserve this information in the AST 1458 // (which can be used by flow-based analyes). 1459 // 1460 const EnumType *ET = CondTypeBeforePromotion->getAs<EnumType>(); 1461 1462 // If switch has default case, then ignore it. 1463 if (!CaseListIsErroneous && !CaseListIsIncomplete && !HasConstantCond && 1464 ET && ET->getDecl()->isCompleteDefinition()) { 1465 const EnumDecl *ED = ET->getDecl(); 1466 EnumValsTy EnumVals; 1467 1468 // Gather all enum values, set their type and sort them, 1469 // allowing easier comparison with CaseVals. 1470 for (auto *EDI : ED->enumerators()) { 1471 llvm::APSInt Val = EDI->getInitVal(); 1472 AdjustAPSInt(Val, CondWidth, CondIsSigned); 1473 EnumVals.push_back(std::make_pair(Val, EDI)); 1474 } 1475 llvm::stable_sort(EnumVals, CmpEnumVals); 1476 auto EI = EnumVals.begin(), EIEnd = 1477 std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals); 1478 1479 // See which case values aren't in enum. 1480 for (CaseValsTy::const_iterator CI = CaseVals.begin(); 1481 CI != CaseVals.end(); CI++) { 1482 Expr *CaseExpr = CI->second->getLHS(); 1483 if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd, 1484 CI->first)) 1485 Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum) 1486 << CondTypeBeforePromotion; 1487 } 1488 1489 // See which of case ranges aren't in enum 1490 EI = EnumVals.begin(); 1491 for (CaseRangesTy::const_iterator RI = CaseRanges.begin(); 1492 RI != CaseRanges.end(); RI++) { 1493 Expr *CaseExpr = RI->second->getLHS(); 1494 if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd, 1495 RI->first)) 1496 Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum) 1497 << CondTypeBeforePromotion; 1498 1499 llvm::APSInt Hi = 1500 RI->second->getRHS()->EvaluateKnownConstInt(Context); 1501 AdjustAPSInt(Hi, CondWidth, CondIsSigned); 1502 1503 CaseExpr = RI->second->getRHS(); 1504 if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd, 1505 Hi)) 1506 Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum) 1507 << CondTypeBeforePromotion; 1508 } 1509 1510 // Check which enum vals aren't in switch 1511 auto CI = CaseVals.begin(); 1512 auto RI = CaseRanges.begin(); 1513 bool hasCasesNotInSwitch = false; 1514 1515 SmallVector<DeclarationName,8> UnhandledNames; 1516 1517 for (EI = EnumVals.begin(); EI != EIEnd; EI++) { 1518 // Don't warn about omitted unavailable EnumConstantDecls. 1519 switch (EI->second->getAvailability()) { 1520 case AR_Deprecated: 1521 // Omitting a deprecated constant is ok; it should never materialize. 1522 case AR_Unavailable: 1523 continue; 1524 1525 case AR_NotYetIntroduced: 1526 // Partially available enum constants should be present. Note that we 1527 // suppress -Wunguarded-availability diagnostics for such uses. 1528 case AR_Available: 1529 break; 1530 } 1531 1532 if (EI->second->hasAttr<UnusedAttr>()) 1533 continue; 1534 1535 // Drop unneeded case values 1536 while (CI != CaseVals.end() && CI->first < EI->first) 1537 CI++; 1538 1539 if (CI != CaseVals.end() && CI->first == EI->first) 1540 continue; 1541 1542 // Drop unneeded case ranges 1543 for (; RI != CaseRanges.end(); RI++) { 1544 llvm::APSInt Hi = 1545 RI->second->getRHS()->EvaluateKnownConstInt(Context); 1546 AdjustAPSInt(Hi, CondWidth, CondIsSigned); 1547 if (EI->first <= Hi) 1548 break; 1549 } 1550 1551 if (RI == CaseRanges.end() || EI->first < RI->first) { 1552 hasCasesNotInSwitch = true; 1553 UnhandledNames.push_back(EI->second->getDeclName()); 1554 } 1555 } 1556 1557 if (TheDefaultStmt && UnhandledNames.empty() && ED->isClosedNonFlag()) 1558 Diag(TheDefaultStmt->getDefaultLoc(), diag::warn_unreachable_default); 1559 1560 // Produce a nice diagnostic if multiple values aren't handled. 1561 if (!UnhandledNames.empty()) { 1562 auto DB = Diag(CondExpr->getExprLoc(), TheDefaultStmt 1563 ? diag::warn_def_missing_case 1564 : diag::warn_missing_case) 1565 << (int)UnhandledNames.size(); 1566 1567 for (size_t I = 0, E = std::min(UnhandledNames.size(), (size_t)3); 1568 I != E; ++I) 1569 DB << UnhandledNames[I]; 1570 } 1571 1572 if (!hasCasesNotInSwitch) 1573 SS->setAllEnumCasesCovered(); 1574 } 1575 } 1576 1577 if (BodyStmt) 1578 DiagnoseEmptyStmtBody(CondExpr->getEndLoc(), BodyStmt, 1579 diag::warn_empty_switch_body); 1580 1581 // FIXME: If the case list was broken is some way, we don't have a good system 1582 // to patch it up. Instead, just return the whole substmt as broken. 1583 if (CaseListIsErroneous) 1584 return StmtError(); 1585 1586 return SS; 1587 } 1588 1589 void 1590 Sema::DiagnoseAssignmentEnum(QualType DstType, QualType SrcType, 1591 Expr *SrcExpr) { 1592 if (Diags.isIgnored(diag::warn_not_in_enum_assignment, SrcExpr->getExprLoc())) 1593 return; 1594 1595 if (const EnumType *ET = DstType->getAs<EnumType>()) 1596 if (!Context.hasSameUnqualifiedType(SrcType, DstType) && 1597 SrcType->isIntegerType()) { 1598 if (!SrcExpr->isTypeDependent() && !SrcExpr->isValueDependent() && 1599 SrcExpr->isIntegerConstantExpr(Context)) { 1600 // Get the bitwidth of the enum value before promotions. 1601 unsigned DstWidth = Context.getIntWidth(DstType); 1602 bool DstIsSigned = DstType->isSignedIntegerOrEnumerationType(); 1603 1604 llvm::APSInt RhsVal = SrcExpr->EvaluateKnownConstInt(Context); 1605 AdjustAPSInt(RhsVal, DstWidth, DstIsSigned); 1606 const EnumDecl *ED = ET->getDecl(); 1607 1608 if (!ED->isClosed()) 1609 return; 1610 1611 if (ED->hasAttr<FlagEnumAttr>()) { 1612 if (!IsValueInFlagEnum(ED, RhsVal, true)) 1613 Diag(SrcExpr->getExprLoc(), diag::warn_not_in_enum_assignment) 1614 << DstType.getUnqualifiedType(); 1615 } else { 1616 typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl *>, 64> 1617 EnumValsTy; 1618 EnumValsTy EnumVals; 1619 1620 // Gather all enum values, set their type and sort them, 1621 // allowing easier comparison with rhs constant. 1622 for (auto *EDI : ED->enumerators()) { 1623 llvm::APSInt Val = EDI->getInitVal(); 1624 AdjustAPSInt(Val, DstWidth, DstIsSigned); 1625 EnumVals.push_back(std::make_pair(Val, EDI)); 1626 } 1627 if (EnumVals.empty()) 1628 return; 1629 llvm::stable_sort(EnumVals, CmpEnumVals); 1630 EnumValsTy::iterator EIend = 1631 std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals); 1632 1633 // See which values aren't in the enum. 1634 EnumValsTy::const_iterator EI = EnumVals.begin(); 1635 while (EI != EIend && EI->first < RhsVal) 1636 EI++; 1637 if (EI == EIend || EI->first != RhsVal) { 1638 Diag(SrcExpr->getExprLoc(), diag::warn_not_in_enum_assignment) 1639 << DstType.getUnqualifiedType(); 1640 } 1641 } 1642 } 1643 } 1644 } 1645 1646 StmtResult Sema::ActOnWhileStmt(SourceLocation WhileLoc, 1647 SourceLocation LParenLoc, ConditionResult Cond, 1648 SourceLocation RParenLoc, Stmt *Body) { 1649 if (Cond.isInvalid()) 1650 return StmtError(); 1651 1652 auto CondVal = Cond.get(); 1653 CheckBreakContinueBinding(CondVal.second); 1654 1655 if (CondVal.second && 1656 !Diags.isIgnored(diag::warn_comma_operator, CondVal.second->getExprLoc())) 1657 CommaVisitor(*this).Visit(CondVal.second); 1658 1659 if (isa<NullStmt>(Body)) 1660 getCurCompoundScope().setHasEmptyLoopBodies(); 1661 1662 return WhileStmt::Create(Context, CondVal.first, CondVal.second, Body, 1663 WhileLoc, LParenLoc, RParenLoc); 1664 } 1665 1666 StmtResult 1667 Sema::ActOnDoStmt(SourceLocation DoLoc, Stmt *Body, 1668 SourceLocation WhileLoc, SourceLocation CondLParen, 1669 Expr *Cond, SourceLocation CondRParen) { 1670 assert(Cond && "ActOnDoStmt(): missing expression"); 1671 1672 CheckBreakContinueBinding(Cond); 1673 ExprResult CondResult = CheckBooleanCondition(DoLoc, Cond); 1674 if (CondResult.isInvalid()) 1675 return StmtError(); 1676 Cond = CondResult.get(); 1677 1678 CondResult = ActOnFinishFullExpr(Cond, DoLoc, /*DiscardedValue*/ false); 1679 if (CondResult.isInvalid()) 1680 return StmtError(); 1681 Cond = CondResult.get(); 1682 1683 // Only call the CommaVisitor for C89 due to differences in scope flags. 1684 if (Cond && !getLangOpts().C99 && !getLangOpts().CPlusPlus && 1685 !Diags.isIgnored(diag::warn_comma_operator, Cond->getExprLoc())) 1686 CommaVisitor(*this).Visit(Cond); 1687 1688 return new (Context) DoStmt(Body, Cond, DoLoc, WhileLoc, CondRParen); 1689 } 1690 1691 namespace { 1692 // Use SetVector since the diagnostic cares about the ordering of the Decl's. 1693 using DeclSetVector = 1694 llvm::SetVector<VarDecl *, llvm::SmallVector<VarDecl *, 8>, 1695 llvm::SmallPtrSet<VarDecl *, 8>>; 1696 1697 // This visitor will traverse a conditional statement and store all 1698 // the evaluated decls into a vector. Simple is set to true if none 1699 // of the excluded constructs are used. 1700 class DeclExtractor : public EvaluatedExprVisitor<DeclExtractor> { 1701 DeclSetVector &Decls; 1702 SmallVectorImpl<SourceRange> &Ranges; 1703 bool Simple; 1704 public: 1705 typedef EvaluatedExprVisitor<DeclExtractor> Inherited; 1706 1707 DeclExtractor(Sema &S, DeclSetVector &Decls, 1708 SmallVectorImpl<SourceRange> &Ranges) : 1709 Inherited(S.Context), 1710 Decls(Decls), 1711 Ranges(Ranges), 1712 Simple(true) {} 1713 1714 bool isSimple() { return Simple; } 1715 1716 // Replaces the method in EvaluatedExprVisitor. 1717 void VisitMemberExpr(MemberExpr* E) { 1718 Simple = false; 1719 } 1720 1721 // Any Stmt not explicitly listed will cause the condition to be marked 1722 // complex. 1723 void VisitStmt(Stmt *S) { Simple = false; } 1724 1725 void VisitBinaryOperator(BinaryOperator *E) { 1726 Visit(E->getLHS()); 1727 Visit(E->getRHS()); 1728 } 1729 1730 void VisitCastExpr(CastExpr *E) { 1731 Visit(E->getSubExpr()); 1732 } 1733 1734 void VisitUnaryOperator(UnaryOperator *E) { 1735 // Skip checking conditionals with derefernces. 1736 if (E->getOpcode() == UO_Deref) 1737 Simple = false; 1738 else 1739 Visit(E->getSubExpr()); 1740 } 1741 1742 void VisitConditionalOperator(ConditionalOperator *E) { 1743 Visit(E->getCond()); 1744 Visit(E->getTrueExpr()); 1745 Visit(E->getFalseExpr()); 1746 } 1747 1748 void VisitParenExpr(ParenExpr *E) { 1749 Visit(E->getSubExpr()); 1750 } 1751 1752 void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) { 1753 Visit(E->getOpaqueValue()->getSourceExpr()); 1754 Visit(E->getFalseExpr()); 1755 } 1756 1757 void VisitIntegerLiteral(IntegerLiteral *E) { } 1758 void VisitFloatingLiteral(FloatingLiteral *E) { } 1759 void VisitCXXBoolLiteralExpr(CXXBoolLiteralExpr *E) { } 1760 void VisitCharacterLiteral(CharacterLiteral *E) { } 1761 void VisitGNUNullExpr(GNUNullExpr *E) { } 1762 void VisitImaginaryLiteral(ImaginaryLiteral *E) { } 1763 1764 void VisitDeclRefExpr(DeclRefExpr *E) { 1765 VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()); 1766 if (!VD) { 1767 // Don't allow unhandled Decl types. 1768 Simple = false; 1769 return; 1770 } 1771 1772 Ranges.push_back(E->getSourceRange()); 1773 1774 Decls.insert(VD); 1775 } 1776 1777 }; // end class DeclExtractor 1778 1779 // DeclMatcher checks to see if the decls are used in a non-evaluated 1780 // context. 1781 class DeclMatcher : public EvaluatedExprVisitor<DeclMatcher> { 1782 DeclSetVector &Decls; 1783 bool FoundDecl; 1784 1785 public: 1786 typedef EvaluatedExprVisitor<DeclMatcher> Inherited; 1787 1788 DeclMatcher(Sema &S, DeclSetVector &Decls, Stmt *Statement) : 1789 Inherited(S.Context), Decls(Decls), FoundDecl(false) { 1790 if (!Statement) return; 1791 1792 Visit(Statement); 1793 } 1794 1795 void VisitReturnStmt(ReturnStmt *S) { 1796 FoundDecl = true; 1797 } 1798 1799 void VisitBreakStmt(BreakStmt *S) { 1800 FoundDecl = true; 1801 } 1802 1803 void VisitGotoStmt(GotoStmt *S) { 1804 FoundDecl = true; 1805 } 1806 1807 void VisitCastExpr(CastExpr *E) { 1808 if (E->getCastKind() == CK_LValueToRValue) 1809 CheckLValueToRValueCast(E->getSubExpr()); 1810 else 1811 Visit(E->getSubExpr()); 1812 } 1813 1814 void CheckLValueToRValueCast(Expr *E) { 1815 E = E->IgnoreParenImpCasts(); 1816 1817 if (isa<DeclRefExpr>(E)) { 1818 return; 1819 } 1820 1821 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) { 1822 Visit(CO->getCond()); 1823 CheckLValueToRValueCast(CO->getTrueExpr()); 1824 CheckLValueToRValueCast(CO->getFalseExpr()); 1825 return; 1826 } 1827 1828 if (BinaryConditionalOperator *BCO = 1829 dyn_cast<BinaryConditionalOperator>(E)) { 1830 CheckLValueToRValueCast(BCO->getOpaqueValue()->getSourceExpr()); 1831 CheckLValueToRValueCast(BCO->getFalseExpr()); 1832 return; 1833 } 1834 1835 Visit(E); 1836 } 1837 1838 void VisitDeclRefExpr(DeclRefExpr *E) { 1839 if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl())) 1840 if (Decls.count(VD)) 1841 FoundDecl = true; 1842 } 1843 1844 void VisitPseudoObjectExpr(PseudoObjectExpr *POE) { 1845 // Only need to visit the semantics for POE. 1846 // SyntaticForm doesn't really use the Decal. 1847 for (auto *S : POE->semantics()) { 1848 if (auto *OVE = dyn_cast<OpaqueValueExpr>(S)) 1849 // Look past the OVE into the expression it binds. 1850 Visit(OVE->getSourceExpr()); 1851 else 1852 Visit(S); 1853 } 1854 } 1855 1856 bool FoundDeclInUse() { return FoundDecl; } 1857 1858 }; // end class DeclMatcher 1859 1860 void CheckForLoopConditionalStatement(Sema &S, Expr *Second, 1861 Expr *Third, Stmt *Body) { 1862 // Condition is empty 1863 if (!Second) return; 1864 1865 if (S.Diags.isIgnored(diag::warn_variables_not_in_loop_body, 1866 Second->getBeginLoc())) 1867 return; 1868 1869 PartialDiagnostic PDiag = S.PDiag(diag::warn_variables_not_in_loop_body); 1870 DeclSetVector Decls; 1871 SmallVector<SourceRange, 10> Ranges; 1872 DeclExtractor DE(S, Decls, Ranges); 1873 DE.Visit(Second); 1874 1875 // Don't analyze complex conditionals. 1876 if (!DE.isSimple()) return; 1877 1878 // No decls found. 1879 if (Decls.size() == 0) return; 1880 1881 // Don't warn on volatile, static, or global variables. 1882 for (auto *VD : Decls) 1883 if (VD->getType().isVolatileQualified() || VD->hasGlobalStorage()) 1884 return; 1885 1886 if (DeclMatcher(S, Decls, Second).FoundDeclInUse() || 1887 DeclMatcher(S, Decls, Third).FoundDeclInUse() || 1888 DeclMatcher(S, Decls, Body).FoundDeclInUse()) 1889 return; 1890 1891 // Load decl names into diagnostic. 1892 if (Decls.size() > 4) { 1893 PDiag << 0; 1894 } else { 1895 PDiag << (unsigned)Decls.size(); 1896 for (auto *VD : Decls) 1897 PDiag << VD->getDeclName(); 1898 } 1899 1900 for (auto Range : Ranges) 1901 PDiag << Range; 1902 1903 S.Diag(Ranges.begin()->getBegin(), PDiag); 1904 } 1905 1906 // If Statement is an incemement or decrement, return true and sets the 1907 // variables Increment and DRE. 1908 bool ProcessIterationStmt(Sema &S, Stmt* Statement, bool &Increment, 1909 DeclRefExpr *&DRE) { 1910 if (auto Cleanups = dyn_cast<ExprWithCleanups>(Statement)) 1911 if (!Cleanups->cleanupsHaveSideEffects()) 1912 Statement = Cleanups->getSubExpr(); 1913 1914 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(Statement)) { 1915 switch (UO->getOpcode()) { 1916 default: return false; 1917 case UO_PostInc: 1918 case UO_PreInc: 1919 Increment = true; 1920 break; 1921 case UO_PostDec: 1922 case UO_PreDec: 1923 Increment = false; 1924 break; 1925 } 1926 DRE = dyn_cast<DeclRefExpr>(UO->getSubExpr()); 1927 return DRE; 1928 } 1929 1930 if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(Statement)) { 1931 FunctionDecl *FD = Call->getDirectCallee(); 1932 if (!FD || !FD->isOverloadedOperator()) return false; 1933 switch (FD->getOverloadedOperator()) { 1934 default: return false; 1935 case OO_PlusPlus: 1936 Increment = true; 1937 break; 1938 case OO_MinusMinus: 1939 Increment = false; 1940 break; 1941 } 1942 DRE = dyn_cast<DeclRefExpr>(Call->getArg(0)); 1943 return DRE; 1944 } 1945 1946 return false; 1947 } 1948 1949 // A visitor to determine if a continue or break statement is a 1950 // subexpression. 1951 class BreakContinueFinder : public ConstEvaluatedExprVisitor<BreakContinueFinder> { 1952 SourceLocation BreakLoc; 1953 SourceLocation ContinueLoc; 1954 bool InSwitch = false; 1955 1956 public: 1957 BreakContinueFinder(Sema &S, const Stmt* Body) : 1958 Inherited(S.Context) { 1959 Visit(Body); 1960 } 1961 1962 typedef ConstEvaluatedExprVisitor<BreakContinueFinder> Inherited; 1963 1964 void VisitContinueStmt(const ContinueStmt* E) { 1965 ContinueLoc = E->getContinueLoc(); 1966 } 1967 1968 void VisitBreakStmt(const BreakStmt* E) { 1969 if (!InSwitch) 1970 BreakLoc = E->getBreakLoc(); 1971 } 1972 1973 void VisitSwitchStmt(const SwitchStmt* S) { 1974 if (const Stmt *Init = S->getInit()) 1975 Visit(Init); 1976 if (const Stmt *CondVar = S->getConditionVariableDeclStmt()) 1977 Visit(CondVar); 1978 if (const Stmt *Cond = S->getCond()) 1979 Visit(Cond); 1980 1981 // Don't return break statements from the body of a switch. 1982 InSwitch = true; 1983 if (const Stmt *Body = S->getBody()) 1984 Visit(Body); 1985 InSwitch = false; 1986 } 1987 1988 void VisitForStmt(const ForStmt *S) { 1989 // Only visit the init statement of a for loop; the body 1990 // has a different break/continue scope. 1991 if (const Stmt *Init = S->getInit()) 1992 Visit(Init); 1993 } 1994 1995 void VisitWhileStmt(const WhileStmt *) { 1996 // Do nothing; the children of a while loop have a different 1997 // break/continue scope. 1998 } 1999 2000 void VisitDoStmt(const DoStmt *) { 2001 // Do nothing; the children of a while loop have a different 2002 // break/continue scope. 2003 } 2004 2005 void VisitCXXForRangeStmt(const CXXForRangeStmt *S) { 2006 // Only visit the initialization of a for loop; the body 2007 // has a different break/continue scope. 2008 if (const Stmt *Init = S->getInit()) 2009 Visit(Init); 2010 if (const Stmt *Range = S->getRangeStmt()) 2011 Visit(Range); 2012 if (const Stmt *Begin = S->getBeginStmt()) 2013 Visit(Begin); 2014 if (const Stmt *End = S->getEndStmt()) 2015 Visit(End); 2016 } 2017 2018 void VisitObjCForCollectionStmt(const ObjCForCollectionStmt *S) { 2019 // Only visit the initialization of a for loop; the body 2020 // has a different break/continue scope. 2021 if (const Stmt *Element = S->getElement()) 2022 Visit(Element); 2023 if (const Stmt *Collection = S->getCollection()) 2024 Visit(Collection); 2025 } 2026 2027 bool ContinueFound() { return ContinueLoc.isValid(); } 2028 bool BreakFound() { return BreakLoc.isValid(); } 2029 SourceLocation GetContinueLoc() { return ContinueLoc; } 2030 SourceLocation GetBreakLoc() { return BreakLoc; } 2031 2032 }; // end class BreakContinueFinder 2033 2034 // Emit a warning when a loop increment/decrement appears twice per loop 2035 // iteration. The conditions which trigger this warning are: 2036 // 1) The last statement in the loop body and the third expression in the 2037 // for loop are both increment or both decrement of the same variable 2038 // 2) No continue statements in the loop body. 2039 void CheckForRedundantIteration(Sema &S, Expr *Third, Stmt *Body) { 2040 // Return when there is nothing to check. 2041 if (!Body || !Third) return; 2042 2043 if (S.Diags.isIgnored(diag::warn_redundant_loop_iteration, 2044 Third->getBeginLoc())) 2045 return; 2046 2047 // Get the last statement from the loop body. 2048 CompoundStmt *CS = dyn_cast<CompoundStmt>(Body); 2049 if (!CS || CS->body_empty()) return; 2050 Stmt *LastStmt = CS->body_back(); 2051 if (!LastStmt) return; 2052 2053 bool LoopIncrement, LastIncrement; 2054 DeclRefExpr *LoopDRE, *LastDRE; 2055 2056 if (!ProcessIterationStmt(S, Third, LoopIncrement, LoopDRE)) return; 2057 if (!ProcessIterationStmt(S, LastStmt, LastIncrement, LastDRE)) return; 2058 2059 // Check that the two statements are both increments or both decrements 2060 // on the same variable. 2061 if (LoopIncrement != LastIncrement || 2062 LoopDRE->getDecl() != LastDRE->getDecl()) return; 2063 2064 if (BreakContinueFinder(S, Body).ContinueFound()) return; 2065 2066 S.Diag(LastDRE->getLocation(), diag::warn_redundant_loop_iteration) 2067 << LastDRE->getDecl() << LastIncrement; 2068 S.Diag(LoopDRE->getLocation(), diag::note_loop_iteration_here) 2069 << LoopIncrement; 2070 } 2071 2072 } // end namespace 2073 2074 2075 void Sema::CheckBreakContinueBinding(Expr *E) { 2076 if (!E || getLangOpts().CPlusPlus) 2077 return; 2078 BreakContinueFinder BCFinder(*this, E); 2079 Scope *BreakParent = CurScope->getBreakParent(); 2080 if (BCFinder.BreakFound() && BreakParent) { 2081 if (BreakParent->getFlags() & Scope::SwitchScope) { 2082 Diag(BCFinder.GetBreakLoc(), diag::warn_break_binds_to_switch); 2083 } else { 2084 Diag(BCFinder.GetBreakLoc(), diag::warn_loop_ctrl_binds_to_inner) 2085 << "break"; 2086 } 2087 } else if (BCFinder.ContinueFound() && CurScope->getContinueParent()) { 2088 Diag(BCFinder.GetContinueLoc(), diag::warn_loop_ctrl_binds_to_inner) 2089 << "continue"; 2090 } 2091 } 2092 2093 StmtResult Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc, 2094 Stmt *First, ConditionResult Second, 2095 FullExprArg third, SourceLocation RParenLoc, 2096 Stmt *Body) { 2097 if (Second.isInvalid()) 2098 return StmtError(); 2099 2100 if (!getLangOpts().CPlusPlus) { 2101 if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) { 2102 // C99 6.8.5p3: The declaration part of a 'for' statement shall only 2103 // declare identifiers for objects having storage class 'auto' or 2104 // 'register'. 2105 const Decl *NonVarSeen = nullptr; 2106 bool VarDeclSeen = false; 2107 for (auto *DI : DS->decls()) { 2108 if (VarDecl *VD = dyn_cast<VarDecl>(DI)) { 2109 VarDeclSeen = true; 2110 if (VD->isLocalVarDecl() && !VD->hasLocalStorage()) { 2111 Diag(DI->getLocation(), diag::err_non_local_variable_decl_in_for); 2112 DI->setInvalidDecl(); 2113 } 2114 } else if (!NonVarSeen) { 2115 // Keep track of the first non-variable declaration we saw so that 2116 // we can diagnose if we don't see any variable declarations. This 2117 // covers a case like declaring a typedef, function, or structure 2118 // type rather than a variable. 2119 NonVarSeen = DI; 2120 } 2121 } 2122 // Diagnose if we saw a non-variable declaration but no variable 2123 // declarations. 2124 if (NonVarSeen && !VarDeclSeen) 2125 Diag(NonVarSeen->getLocation(), diag::err_non_variable_decl_in_for); 2126 } 2127 } 2128 2129 CheckBreakContinueBinding(Second.get().second); 2130 CheckBreakContinueBinding(third.get()); 2131 2132 if (!Second.get().first) 2133 CheckForLoopConditionalStatement(*this, Second.get().second, third.get(), 2134 Body); 2135 CheckForRedundantIteration(*this, third.get(), Body); 2136 2137 if (Second.get().second && 2138 !Diags.isIgnored(diag::warn_comma_operator, 2139 Second.get().second->getExprLoc())) 2140 CommaVisitor(*this).Visit(Second.get().second); 2141 2142 Expr *Third = third.release().getAs<Expr>(); 2143 if (isa<NullStmt>(Body)) 2144 getCurCompoundScope().setHasEmptyLoopBodies(); 2145 2146 return new (Context) 2147 ForStmt(Context, First, Second.get().second, Second.get().first, Third, 2148 Body, ForLoc, LParenLoc, RParenLoc); 2149 } 2150 2151 /// In an Objective C collection iteration statement: 2152 /// for (x in y) 2153 /// x can be an arbitrary l-value expression. Bind it up as a 2154 /// full-expression. 2155 StmtResult Sema::ActOnForEachLValueExpr(Expr *E) { 2156 // Reduce placeholder expressions here. Note that this rejects the 2157 // use of pseudo-object l-values in this position. 2158 ExprResult result = CheckPlaceholderExpr(E); 2159 if (result.isInvalid()) return StmtError(); 2160 E = result.get(); 2161 2162 ExprResult FullExpr = ActOnFinishFullExpr(E, /*DiscardedValue*/ false); 2163 if (FullExpr.isInvalid()) 2164 return StmtError(); 2165 return StmtResult(static_cast<Stmt*>(FullExpr.get())); 2166 } 2167 2168 ExprResult 2169 Sema::CheckObjCForCollectionOperand(SourceLocation forLoc, Expr *collection) { 2170 if (!collection) 2171 return ExprError(); 2172 2173 ExprResult result = CorrectDelayedTyposInExpr(collection); 2174 if (!result.isUsable()) 2175 return ExprError(); 2176 collection = result.get(); 2177 2178 // Bail out early if we've got a type-dependent expression. 2179 if (collection->isTypeDependent()) return collection; 2180 2181 // Perform normal l-value conversion. 2182 result = DefaultFunctionArrayLvalueConversion(collection); 2183 if (result.isInvalid()) 2184 return ExprError(); 2185 collection = result.get(); 2186 2187 // The operand needs to have object-pointer type. 2188 // TODO: should we do a contextual conversion? 2189 const ObjCObjectPointerType *pointerType = 2190 collection->getType()->getAs<ObjCObjectPointerType>(); 2191 if (!pointerType) 2192 return Diag(forLoc, diag::err_collection_expr_type) 2193 << collection->getType() << collection->getSourceRange(); 2194 2195 // Check that the operand provides 2196 // - countByEnumeratingWithState:objects:count: 2197 const ObjCObjectType *objectType = pointerType->getObjectType(); 2198 ObjCInterfaceDecl *iface = objectType->getInterface(); 2199 2200 // If we have a forward-declared type, we can't do this check. 2201 // Under ARC, it is an error not to have a forward-declared class. 2202 if (iface && 2203 (getLangOpts().ObjCAutoRefCount 2204 ? RequireCompleteType(forLoc, QualType(objectType, 0), 2205 diag::err_arc_collection_forward, collection) 2206 : !isCompleteType(forLoc, QualType(objectType, 0)))) { 2207 // Otherwise, if we have any useful type information, check that 2208 // the type declares the appropriate method. 2209 } else if (iface || !objectType->qual_empty()) { 2210 IdentifierInfo *selectorIdents[] = { 2211 &Context.Idents.get("countByEnumeratingWithState"), 2212 &Context.Idents.get("objects"), 2213 &Context.Idents.get("count") 2214 }; 2215 Selector selector = Context.Selectors.getSelector(3, &selectorIdents[0]); 2216 2217 ObjCMethodDecl *method = nullptr; 2218 2219 // If there's an interface, look in both the public and private APIs. 2220 if (iface) { 2221 method = iface->lookupInstanceMethod(selector); 2222 if (!method) method = iface->lookupPrivateMethod(selector); 2223 } 2224 2225 // Also check protocol qualifiers. 2226 if (!method) 2227 method = LookupMethodInQualifiedType(selector, pointerType, 2228 /*instance*/ true); 2229 2230 // If we didn't find it anywhere, give up. 2231 if (!method) { 2232 Diag(forLoc, diag::warn_collection_expr_type) 2233 << collection->getType() << selector << collection->getSourceRange(); 2234 } 2235 2236 // TODO: check for an incompatible signature? 2237 } 2238 2239 // Wrap up any cleanups in the expression. 2240 return collection; 2241 } 2242 2243 StmtResult 2244 Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc, 2245 Stmt *First, Expr *collection, 2246 SourceLocation RParenLoc) { 2247 setFunctionHasBranchProtectedScope(); 2248 2249 ExprResult CollectionExprResult = 2250 CheckObjCForCollectionOperand(ForLoc, collection); 2251 2252 if (First) { 2253 QualType FirstType; 2254 if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) { 2255 if (!DS->isSingleDecl()) 2256 return StmtError(Diag((*DS->decl_begin())->getLocation(), 2257 diag::err_toomany_element_decls)); 2258 2259 VarDecl *D = dyn_cast<VarDecl>(DS->getSingleDecl()); 2260 if (!D || D->isInvalidDecl()) 2261 return StmtError(); 2262 2263 FirstType = D->getType(); 2264 // C99 6.8.5p3: The declaration part of a 'for' statement shall only 2265 // declare identifiers for objects having storage class 'auto' or 2266 // 'register'. 2267 if (!D->hasLocalStorage()) 2268 return StmtError(Diag(D->getLocation(), 2269 diag::err_non_local_variable_decl_in_for)); 2270 2271 // If the type contained 'auto', deduce the 'auto' to 'id'. 2272 if (FirstType->getContainedAutoType()) { 2273 OpaqueValueExpr OpaqueId(D->getLocation(), Context.getObjCIdType(), 2274 VK_RValue); 2275 Expr *DeducedInit = &OpaqueId; 2276 if (DeduceAutoType(D->getTypeSourceInfo(), DeducedInit, FirstType) == 2277 DAR_Failed) 2278 DiagnoseAutoDeductionFailure(D, DeducedInit); 2279 if (FirstType.isNull()) { 2280 D->setInvalidDecl(); 2281 return StmtError(); 2282 } 2283 2284 D->setType(FirstType); 2285 2286 if (!inTemplateInstantiation()) { 2287 SourceLocation Loc = 2288 D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(); 2289 Diag(Loc, diag::warn_auto_var_is_id) 2290 << D->getDeclName(); 2291 } 2292 } 2293 2294 } else { 2295 Expr *FirstE = cast<Expr>(First); 2296 if (!FirstE->isTypeDependent() && !FirstE->isLValue()) 2297 return StmtError( 2298 Diag(First->getBeginLoc(), diag::err_selector_element_not_lvalue) 2299 << First->getSourceRange()); 2300 2301 FirstType = static_cast<Expr*>(First)->getType(); 2302 if (FirstType.isConstQualified()) 2303 Diag(ForLoc, diag::err_selector_element_const_type) 2304 << FirstType << First->getSourceRange(); 2305 } 2306 if (!FirstType->isDependentType() && 2307 !FirstType->isObjCObjectPointerType() && 2308 !FirstType->isBlockPointerType()) 2309 return StmtError(Diag(ForLoc, diag::err_selector_element_type) 2310 << FirstType << First->getSourceRange()); 2311 } 2312 2313 if (CollectionExprResult.isInvalid()) 2314 return StmtError(); 2315 2316 CollectionExprResult = 2317 ActOnFinishFullExpr(CollectionExprResult.get(), /*DiscardedValue*/ false); 2318 if (CollectionExprResult.isInvalid()) 2319 return StmtError(); 2320 2321 return new (Context) ObjCForCollectionStmt(First, CollectionExprResult.get(), 2322 nullptr, ForLoc, RParenLoc); 2323 } 2324 2325 /// Finish building a variable declaration for a for-range statement. 2326 /// \return true if an error occurs. 2327 static bool FinishForRangeVarDecl(Sema &SemaRef, VarDecl *Decl, Expr *Init, 2328 SourceLocation Loc, int DiagID) { 2329 if (Decl->getType()->isUndeducedType()) { 2330 ExprResult Res = SemaRef.CorrectDelayedTyposInExpr(Init); 2331 if (!Res.isUsable()) { 2332 Decl->setInvalidDecl(); 2333 return true; 2334 } 2335 Init = Res.get(); 2336 } 2337 2338 // Deduce the type for the iterator variable now rather than leaving it to 2339 // AddInitializerToDecl, so we can produce a more suitable diagnostic. 2340 QualType InitType; 2341 if ((!isa<InitListExpr>(Init) && Init->getType()->isVoidType()) || 2342 SemaRef.DeduceAutoType(Decl->getTypeSourceInfo(), Init, InitType) == 2343 Sema::DAR_Failed) 2344 SemaRef.Diag(Loc, DiagID) << Init->getType(); 2345 if (InitType.isNull()) { 2346 Decl->setInvalidDecl(); 2347 return true; 2348 } 2349 Decl->setType(InitType); 2350 2351 // In ARC, infer lifetime. 2352 // FIXME: ARC may want to turn this into 'const __unsafe_unretained' if 2353 // we're doing the equivalent of fast iteration. 2354 if (SemaRef.getLangOpts().ObjCAutoRefCount && 2355 SemaRef.inferObjCARCLifetime(Decl)) 2356 Decl->setInvalidDecl(); 2357 2358 SemaRef.AddInitializerToDecl(Decl, Init, /*DirectInit=*/false); 2359 SemaRef.FinalizeDeclaration(Decl); 2360 SemaRef.CurContext->addHiddenDecl(Decl); 2361 return false; 2362 } 2363 2364 namespace { 2365 // An enum to represent whether something is dealing with a call to begin() 2366 // or a call to end() in a range-based for loop. 2367 enum BeginEndFunction { 2368 BEF_begin, 2369 BEF_end 2370 }; 2371 2372 /// Produce a note indicating which begin/end function was implicitly called 2373 /// by a C++11 for-range statement. This is often not obvious from the code, 2374 /// nor from the diagnostics produced when analysing the implicit expressions 2375 /// required in a for-range statement. 2376 void NoteForRangeBeginEndFunction(Sema &SemaRef, Expr *E, 2377 BeginEndFunction BEF) { 2378 CallExpr *CE = dyn_cast<CallExpr>(E); 2379 if (!CE) 2380 return; 2381 FunctionDecl *D = dyn_cast<FunctionDecl>(CE->getCalleeDecl()); 2382 if (!D) 2383 return; 2384 SourceLocation Loc = D->getLocation(); 2385 2386 std::string Description; 2387 bool IsTemplate = false; 2388 if (FunctionTemplateDecl *FunTmpl = D->getPrimaryTemplate()) { 2389 Description = SemaRef.getTemplateArgumentBindingsText( 2390 FunTmpl->getTemplateParameters(), *D->getTemplateSpecializationArgs()); 2391 IsTemplate = true; 2392 } 2393 2394 SemaRef.Diag(Loc, diag::note_for_range_begin_end) 2395 << BEF << IsTemplate << Description << E->getType(); 2396 } 2397 2398 /// Build a variable declaration for a for-range statement. 2399 VarDecl *BuildForRangeVarDecl(Sema &SemaRef, SourceLocation Loc, 2400 QualType Type, StringRef Name) { 2401 DeclContext *DC = SemaRef.CurContext; 2402 IdentifierInfo *II = &SemaRef.PP.getIdentifierTable().get(Name); 2403 TypeSourceInfo *TInfo = SemaRef.Context.getTrivialTypeSourceInfo(Type, Loc); 2404 VarDecl *Decl = VarDecl::Create(SemaRef.Context, DC, Loc, Loc, II, Type, 2405 TInfo, SC_None); 2406 Decl->setImplicit(); 2407 return Decl; 2408 } 2409 2410 } 2411 2412 static bool ObjCEnumerationCollection(Expr *Collection) { 2413 return !Collection->isTypeDependent() 2414 && Collection->getType()->getAs<ObjCObjectPointerType>() != nullptr; 2415 } 2416 2417 /// ActOnCXXForRangeStmt - Check and build a C++11 for-range statement. 2418 /// 2419 /// C++11 [stmt.ranged]: 2420 /// A range-based for statement is equivalent to 2421 /// 2422 /// { 2423 /// auto && __range = range-init; 2424 /// for ( auto __begin = begin-expr, 2425 /// __end = end-expr; 2426 /// __begin != __end; 2427 /// ++__begin ) { 2428 /// for-range-declaration = *__begin; 2429 /// statement 2430 /// } 2431 /// } 2432 /// 2433 /// The body of the loop is not available yet, since it cannot be analysed until 2434 /// we have determined the type of the for-range-declaration. 2435 StmtResult Sema::ActOnCXXForRangeStmt(Scope *S, SourceLocation ForLoc, 2436 SourceLocation CoawaitLoc, Stmt *InitStmt, 2437 Stmt *First, SourceLocation ColonLoc, 2438 Expr *Range, SourceLocation RParenLoc, 2439 BuildForRangeKind Kind) { 2440 if (!First) 2441 return StmtError(); 2442 2443 if (Range && ObjCEnumerationCollection(Range)) { 2444 // FIXME: Support init-statements in Objective-C++20 ranged for statement. 2445 if (InitStmt) 2446 return Diag(InitStmt->getBeginLoc(), diag::err_objc_for_range_init_stmt) 2447 << InitStmt->getSourceRange(); 2448 return ActOnObjCForCollectionStmt(ForLoc, First, Range, RParenLoc); 2449 } 2450 2451 DeclStmt *DS = dyn_cast<DeclStmt>(First); 2452 assert(DS && "first part of for range not a decl stmt"); 2453 2454 if (!DS->isSingleDecl()) { 2455 Diag(DS->getBeginLoc(), diag::err_type_defined_in_for_range); 2456 return StmtError(); 2457 } 2458 2459 // This function is responsible for attaching an initializer to LoopVar. We 2460 // must call ActOnInitializerError if we fail to do so. 2461 Decl *LoopVar = DS->getSingleDecl(); 2462 if (LoopVar->isInvalidDecl() || !Range || 2463 DiagnoseUnexpandedParameterPack(Range, UPPC_Expression)) { 2464 ActOnInitializerError(LoopVar); 2465 return StmtError(); 2466 } 2467 2468 // Build the coroutine state immediately and not later during template 2469 // instantiation 2470 if (!CoawaitLoc.isInvalid()) { 2471 if (!ActOnCoroutineBodyStart(S, CoawaitLoc, "co_await")) { 2472 ActOnInitializerError(LoopVar); 2473 return StmtError(); 2474 } 2475 } 2476 2477 // Build auto && __range = range-init 2478 // Divide by 2, since the variables are in the inner scope (loop body). 2479 const auto DepthStr = std::to_string(S->getDepth() / 2); 2480 SourceLocation RangeLoc = Range->getBeginLoc(); 2481 VarDecl *RangeVar = BuildForRangeVarDecl(*this, RangeLoc, 2482 Context.getAutoRRefDeductType(), 2483 std::string("__range") + DepthStr); 2484 if (FinishForRangeVarDecl(*this, RangeVar, Range, RangeLoc, 2485 diag::err_for_range_deduction_failure)) { 2486 ActOnInitializerError(LoopVar); 2487 return StmtError(); 2488 } 2489 2490 // Claim the type doesn't contain auto: we've already done the checking. 2491 DeclGroupPtrTy RangeGroup = 2492 BuildDeclaratorGroup(MutableArrayRef<Decl *>((Decl **)&RangeVar, 1)); 2493 StmtResult RangeDecl = ActOnDeclStmt(RangeGroup, RangeLoc, RangeLoc); 2494 if (RangeDecl.isInvalid()) { 2495 ActOnInitializerError(LoopVar); 2496 return StmtError(); 2497 } 2498 2499 StmtResult R = BuildCXXForRangeStmt( 2500 ForLoc, CoawaitLoc, InitStmt, ColonLoc, RangeDecl.get(), 2501 /*BeginStmt=*/nullptr, /*EndStmt=*/nullptr, 2502 /*Cond=*/nullptr, /*Inc=*/nullptr, DS, RParenLoc, Kind); 2503 if (R.isInvalid()) { 2504 ActOnInitializerError(LoopVar); 2505 return StmtError(); 2506 } 2507 2508 return R; 2509 } 2510 2511 /// Create the initialization, compare, and increment steps for 2512 /// the range-based for loop expression. 2513 /// This function does not handle array-based for loops, 2514 /// which are created in Sema::BuildCXXForRangeStmt. 2515 /// 2516 /// \returns a ForRangeStatus indicating success or what kind of error occurred. 2517 /// BeginExpr and EndExpr are set and FRS_Success is returned on success; 2518 /// CandidateSet and BEF are set and some non-success value is returned on 2519 /// failure. 2520 static Sema::ForRangeStatus 2521 BuildNonArrayForRange(Sema &SemaRef, Expr *BeginRange, Expr *EndRange, 2522 QualType RangeType, VarDecl *BeginVar, VarDecl *EndVar, 2523 SourceLocation ColonLoc, SourceLocation CoawaitLoc, 2524 OverloadCandidateSet *CandidateSet, ExprResult *BeginExpr, 2525 ExprResult *EndExpr, BeginEndFunction *BEF) { 2526 DeclarationNameInfo BeginNameInfo( 2527 &SemaRef.PP.getIdentifierTable().get("begin"), ColonLoc); 2528 DeclarationNameInfo EndNameInfo(&SemaRef.PP.getIdentifierTable().get("end"), 2529 ColonLoc); 2530 2531 LookupResult BeginMemberLookup(SemaRef, BeginNameInfo, 2532 Sema::LookupMemberName); 2533 LookupResult EndMemberLookup(SemaRef, EndNameInfo, Sema::LookupMemberName); 2534 2535 auto BuildBegin = [&] { 2536 *BEF = BEF_begin; 2537 Sema::ForRangeStatus RangeStatus = 2538 SemaRef.BuildForRangeBeginEndCall(ColonLoc, ColonLoc, BeginNameInfo, 2539 BeginMemberLookup, CandidateSet, 2540 BeginRange, BeginExpr); 2541 2542 if (RangeStatus != Sema::FRS_Success) { 2543 if (RangeStatus == Sema::FRS_DiagnosticIssued) 2544 SemaRef.Diag(BeginRange->getBeginLoc(), diag::note_in_for_range) 2545 << ColonLoc << BEF_begin << BeginRange->getType(); 2546 return RangeStatus; 2547 } 2548 if (!CoawaitLoc.isInvalid()) { 2549 // FIXME: getCurScope() should not be used during template instantiation. 2550 // We should pick up the set of unqualified lookup results for operator 2551 // co_await during the initial parse. 2552 *BeginExpr = SemaRef.ActOnCoawaitExpr(SemaRef.getCurScope(), ColonLoc, 2553 BeginExpr->get()); 2554 if (BeginExpr->isInvalid()) 2555 return Sema::FRS_DiagnosticIssued; 2556 } 2557 if (FinishForRangeVarDecl(SemaRef, BeginVar, BeginExpr->get(), ColonLoc, 2558 diag::err_for_range_iter_deduction_failure)) { 2559 NoteForRangeBeginEndFunction(SemaRef, BeginExpr->get(), *BEF); 2560 return Sema::FRS_DiagnosticIssued; 2561 } 2562 return Sema::FRS_Success; 2563 }; 2564 2565 auto BuildEnd = [&] { 2566 *BEF = BEF_end; 2567 Sema::ForRangeStatus RangeStatus = 2568 SemaRef.BuildForRangeBeginEndCall(ColonLoc, ColonLoc, EndNameInfo, 2569 EndMemberLookup, CandidateSet, 2570 EndRange, EndExpr); 2571 if (RangeStatus != Sema::FRS_Success) { 2572 if (RangeStatus == Sema::FRS_DiagnosticIssued) 2573 SemaRef.Diag(EndRange->getBeginLoc(), diag::note_in_for_range) 2574 << ColonLoc << BEF_end << EndRange->getType(); 2575 return RangeStatus; 2576 } 2577 if (FinishForRangeVarDecl(SemaRef, EndVar, EndExpr->get(), ColonLoc, 2578 diag::err_for_range_iter_deduction_failure)) { 2579 NoteForRangeBeginEndFunction(SemaRef, EndExpr->get(), *BEF); 2580 return Sema::FRS_DiagnosticIssued; 2581 } 2582 return Sema::FRS_Success; 2583 }; 2584 2585 if (CXXRecordDecl *D = RangeType->getAsCXXRecordDecl()) { 2586 // - if _RangeT is a class type, the unqualified-ids begin and end are 2587 // looked up in the scope of class _RangeT as if by class member access 2588 // lookup (3.4.5), and if either (or both) finds at least one 2589 // declaration, begin-expr and end-expr are __range.begin() and 2590 // __range.end(), respectively; 2591 SemaRef.LookupQualifiedName(BeginMemberLookup, D); 2592 if (BeginMemberLookup.isAmbiguous()) 2593 return Sema::FRS_DiagnosticIssued; 2594 2595 SemaRef.LookupQualifiedName(EndMemberLookup, D); 2596 if (EndMemberLookup.isAmbiguous()) 2597 return Sema::FRS_DiagnosticIssued; 2598 2599 if (BeginMemberLookup.empty() != EndMemberLookup.empty()) { 2600 // Look up the non-member form of the member we didn't find, first. 2601 // This way we prefer a "no viable 'end'" diagnostic over a "i found 2602 // a 'begin' but ignored it because there was no member 'end'" 2603 // diagnostic. 2604 auto BuildNonmember = [&]( 2605 BeginEndFunction BEFFound, LookupResult &Found, 2606 llvm::function_ref<Sema::ForRangeStatus()> BuildFound, 2607 llvm::function_ref<Sema::ForRangeStatus()> BuildNotFound) { 2608 LookupResult OldFound = std::move(Found); 2609 Found.clear(); 2610 2611 if (Sema::ForRangeStatus Result = BuildNotFound()) 2612 return Result; 2613 2614 switch (BuildFound()) { 2615 case Sema::FRS_Success: 2616 return Sema::FRS_Success; 2617 2618 case Sema::FRS_NoViableFunction: 2619 CandidateSet->NoteCandidates( 2620 PartialDiagnosticAt(BeginRange->getBeginLoc(), 2621 SemaRef.PDiag(diag::err_for_range_invalid) 2622 << BeginRange->getType() << BEFFound), 2623 SemaRef, OCD_AllCandidates, BeginRange); 2624 LLVM_FALLTHROUGH; 2625 2626 case Sema::FRS_DiagnosticIssued: 2627 for (NamedDecl *D : OldFound) { 2628 SemaRef.Diag(D->getLocation(), 2629 diag::note_for_range_member_begin_end_ignored) 2630 << BeginRange->getType() << BEFFound; 2631 } 2632 return Sema::FRS_DiagnosticIssued; 2633 } 2634 llvm_unreachable("unexpected ForRangeStatus"); 2635 }; 2636 if (BeginMemberLookup.empty()) 2637 return BuildNonmember(BEF_end, EndMemberLookup, BuildEnd, BuildBegin); 2638 return BuildNonmember(BEF_begin, BeginMemberLookup, BuildBegin, BuildEnd); 2639 } 2640 } else { 2641 // - otherwise, begin-expr and end-expr are begin(__range) and 2642 // end(__range), respectively, where begin and end are looked up with 2643 // argument-dependent lookup (3.4.2). For the purposes of this name 2644 // lookup, namespace std is an associated namespace. 2645 } 2646 2647 if (Sema::ForRangeStatus Result = BuildBegin()) 2648 return Result; 2649 return BuildEnd(); 2650 } 2651 2652 /// Speculatively attempt to dereference an invalid range expression. 2653 /// If the attempt fails, this function will return a valid, null StmtResult 2654 /// and emit no diagnostics. 2655 static StmtResult RebuildForRangeWithDereference(Sema &SemaRef, Scope *S, 2656 SourceLocation ForLoc, 2657 SourceLocation CoawaitLoc, 2658 Stmt *InitStmt, 2659 Stmt *LoopVarDecl, 2660 SourceLocation ColonLoc, 2661 Expr *Range, 2662 SourceLocation RangeLoc, 2663 SourceLocation RParenLoc) { 2664 // Determine whether we can rebuild the for-range statement with a 2665 // dereferenced range expression. 2666 ExprResult AdjustedRange; 2667 { 2668 Sema::SFINAETrap Trap(SemaRef); 2669 2670 AdjustedRange = SemaRef.BuildUnaryOp(S, RangeLoc, UO_Deref, Range); 2671 if (AdjustedRange.isInvalid()) 2672 return StmtResult(); 2673 2674 StmtResult SR = SemaRef.ActOnCXXForRangeStmt( 2675 S, ForLoc, CoawaitLoc, InitStmt, LoopVarDecl, ColonLoc, 2676 AdjustedRange.get(), RParenLoc, Sema::BFRK_Check); 2677 if (SR.isInvalid()) 2678 return StmtResult(); 2679 } 2680 2681 // The attempt to dereference worked well enough that it could produce a valid 2682 // loop. Produce a fixit, and rebuild the loop with diagnostics enabled, in 2683 // case there are any other (non-fatal) problems with it. 2684 SemaRef.Diag(RangeLoc, diag::err_for_range_dereference) 2685 << Range->getType() << FixItHint::CreateInsertion(RangeLoc, "*"); 2686 return SemaRef.ActOnCXXForRangeStmt( 2687 S, ForLoc, CoawaitLoc, InitStmt, LoopVarDecl, ColonLoc, 2688 AdjustedRange.get(), RParenLoc, Sema::BFRK_Rebuild); 2689 } 2690 2691 /// BuildCXXForRangeStmt - Build or instantiate a C++11 for-range statement. 2692 StmtResult Sema::BuildCXXForRangeStmt(SourceLocation ForLoc, 2693 SourceLocation CoawaitLoc, Stmt *InitStmt, 2694 SourceLocation ColonLoc, Stmt *RangeDecl, 2695 Stmt *Begin, Stmt *End, Expr *Cond, 2696 Expr *Inc, Stmt *LoopVarDecl, 2697 SourceLocation RParenLoc, 2698 BuildForRangeKind Kind) { 2699 // FIXME: This should not be used during template instantiation. We should 2700 // pick up the set of unqualified lookup results for the != and + operators 2701 // in the initial parse. 2702 // 2703 // Testcase (accepts-invalid): 2704 // template<typename T> void f() { for (auto x : T()) {} } 2705 // namespace N { struct X { X begin(); X end(); int operator*(); }; } 2706 // bool operator!=(N::X, N::X); void operator++(N::X); 2707 // void g() { f<N::X>(); } 2708 Scope *S = getCurScope(); 2709 2710 DeclStmt *RangeDS = cast<DeclStmt>(RangeDecl); 2711 VarDecl *RangeVar = cast<VarDecl>(RangeDS->getSingleDecl()); 2712 QualType RangeVarType = RangeVar->getType(); 2713 2714 DeclStmt *LoopVarDS = cast<DeclStmt>(LoopVarDecl); 2715 VarDecl *LoopVar = cast<VarDecl>(LoopVarDS->getSingleDecl()); 2716 2717 StmtResult BeginDeclStmt = Begin; 2718 StmtResult EndDeclStmt = End; 2719 ExprResult NotEqExpr = Cond, IncrExpr = Inc; 2720 2721 if (RangeVarType->isDependentType()) { 2722 // The range is implicitly used as a placeholder when it is dependent. 2723 RangeVar->markUsed(Context); 2724 2725 // Deduce any 'auto's in the loop variable as 'DependentTy'. We'll fill 2726 // them in properly when we instantiate the loop. 2727 if (!LoopVar->isInvalidDecl() && Kind != BFRK_Check) { 2728 if (auto *DD = dyn_cast<DecompositionDecl>(LoopVar)) 2729 for (auto *Binding : DD->bindings()) 2730 Binding->setType(Context.DependentTy); 2731 LoopVar->setType(SubstAutoType(LoopVar->getType(), Context.DependentTy)); 2732 } 2733 } else if (!BeginDeclStmt.get()) { 2734 SourceLocation RangeLoc = RangeVar->getLocation(); 2735 2736 const QualType RangeVarNonRefType = RangeVarType.getNonReferenceType(); 2737 2738 ExprResult BeginRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType, 2739 VK_LValue, ColonLoc); 2740 if (BeginRangeRef.isInvalid()) 2741 return StmtError(); 2742 2743 ExprResult EndRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType, 2744 VK_LValue, ColonLoc); 2745 if (EndRangeRef.isInvalid()) 2746 return StmtError(); 2747 2748 QualType AutoType = Context.getAutoDeductType(); 2749 Expr *Range = RangeVar->getInit(); 2750 if (!Range) 2751 return StmtError(); 2752 QualType RangeType = Range->getType(); 2753 2754 if (RequireCompleteType(RangeLoc, RangeType, 2755 diag::err_for_range_incomplete_type)) 2756 return StmtError(); 2757 2758 // Build auto __begin = begin-expr, __end = end-expr. 2759 // Divide by 2, since the variables are in the inner scope (loop body). 2760 const auto DepthStr = std::to_string(S->getDepth() / 2); 2761 VarDecl *BeginVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType, 2762 std::string("__begin") + DepthStr); 2763 VarDecl *EndVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType, 2764 std::string("__end") + DepthStr); 2765 2766 // Build begin-expr and end-expr and attach to __begin and __end variables. 2767 ExprResult BeginExpr, EndExpr; 2768 if (const ArrayType *UnqAT = RangeType->getAsArrayTypeUnsafe()) { 2769 // - if _RangeT is an array type, begin-expr and end-expr are __range and 2770 // __range + __bound, respectively, where __bound is the array bound. If 2771 // _RangeT is an array of unknown size or an array of incomplete type, 2772 // the program is ill-formed; 2773 2774 // begin-expr is __range. 2775 BeginExpr = BeginRangeRef; 2776 if (!CoawaitLoc.isInvalid()) { 2777 BeginExpr = ActOnCoawaitExpr(S, ColonLoc, BeginExpr.get()); 2778 if (BeginExpr.isInvalid()) 2779 return StmtError(); 2780 } 2781 if (FinishForRangeVarDecl(*this, BeginVar, BeginRangeRef.get(), ColonLoc, 2782 diag::err_for_range_iter_deduction_failure)) { 2783 NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin); 2784 return StmtError(); 2785 } 2786 2787 // Find the array bound. 2788 ExprResult BoundExpr; 2789 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(UnqAT)) 2790 BoundExpr = IntegerLiteral::Create( 2791 Context, CAT->getSize(), Context.getPointerDiffType(), RangeLoc); 2792 else if (const VariableArrayType *VAT = 2793 dyn_cast<VariableArrayType>(UnqAT)) { 2794 // For a variably modified type we can't just use the expression within 2795 // the array bounds, since we don't want that to be re-evaluated here. 2796 // Rather, we need to determine what it was when the array was first 2797 // created - so we resort to using sizeof(vla)/sizeof(element). 2798 // For e.g. 2799 // void f(int b) { 2800 // int vla[b]; 2801 // b = -1; <-- This should not affect the num of iterations below 2802 // for (int &c : vla) { .. } 2803 // } 2804 2805 // FIXME: This results in codegen generating IR that recalculates the 2806 // run-time number of elements (as opposed to just using the IR Value 2807 // that corresponds to the run-time value of each bound that was 2808 // generated when the array was created.) If this proves too embarrassing 2809 // even for unoptimized IR, consider passing a magic-value/cookie to 2810 // codegen that then knows to simply use that initial llvm::Value (that 2811 // corresponds to the bound at time of array creation) within 2812 // getelementptr. But be prepared to pay the price of increasing a 2813 // customized form of coupling between the two components - which could 2814 // be hard to maintain as the codebase evolves. 2815 2816 ExprResult SizeOfVLAExprR = ActOnUnaryExprOrTypeTraitExpr( 2817 EndVar->getLocation(), UETT_SizeOf, 2818 /*IsType=*/true, 2819 CreateParsedType(VAT->desugar(), Context.getTrivialTypeSourceInfo( 2820 VAT->desugar(), RangeLoc)) 2821 .getAsOpaquePtr(), 2822 EndVar->getSourceRange()); 2823 if (SizeOfVLAExprR.isInvalid()) 2824 return StmtError(); 2825 2826 ExprResult SizeOfEachElementExprR = ActOnUnaryExprOrTypeTraitExpr( 2827 EndVar->getLocation(), UETT_SizeOf, 2828 /*IsType=*/true, 2829 CreateParsedType(VAT->desugar(), 2830 Context.getTrivialTypeSourceInfo( 2831 VAT->getElementType(), RangeLoc)) 2832 .getAsOpaquePtr(), 2833 EndVar->getSourceRange()); 2834 if (SizeOfEachElementExprR.isInvalid()) 2835 return StmtError(); 2836 2837 BoundExpr = 2838 ActOnBinOp(S, EndVar->getLocation(), tok::slash, 2839 SizeOfVLAExprR.get(), SizeOfEachElementExprR.get()); 2840 if (BoundExpr.isInvalid()) 2841 return StmtError(); 2842 2843 } else { 2844 // Can't be a DependentSizedArrayType or an IncompleteArrayType since 2845 // UnqAT is not incomplete and Range is not type-dependent. 2846 llvm_unreachable("Unexpected array type in for-range"); 2847 } 2848 2849 // end-expr is __range + __bound. 2850 EndExpr = ActOnBinOp(S, ColonLoc, tok::plus, EndRangeRef.get(), 2851 BoundExpr.get()); 2852 if (EndExpr.isInvalid()) 2853 return StmtError(); 2854 if (FinishForRangeVarDecl(*this, EndVar, EndExpr.get(), ColonLoc, 2855 diag::err_for_range_iter_deduction_failure)) { 2856 NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end); 2857 return StmtError(); 2858 } 2859 } else { 2860 OverloadCandidateSet CandidateSet(RangeLoc, 2861 OverloadCandidateSet::CSK_Normal); 2862 BeginEndFunction BEFFailure; 2863 ForRangeStatus RangeStatus = BuildNonArrayForRange( 2864 *this, BeginRangeRef.get(), EndRangeRef.get(), RangeType, BeginVar, 2865 EndVar, ColonLoc, CoawaitLoc, &CandidateSet, &BeginExpr, &EndExpr, 2866 &BEFFailure); 2867 2868 if (Kind == BFRK_Build && RangeStatus == FRS_NoViableFunction && 2869 BEFFailure == BEF_begin) { 2870 // If the range is being built from an array parameter, emit a 2871 // a diagnostic that it is being treated as a pointer. 2872 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Range)) { 2873 if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) { 2874 QualType ArrayTy = PVD->getOriginalType(); 2875 QualType PointerTy = PVD->getType(); 2876 if (PointerTy->isPointerType() && ArrayTy->isArrayType()) { 2877 Diag(Range->getBeginLoc(), diag::err_range_on_array_parameter) 2878 << RangeLoc << PVD << ArrayTy << PointerTy; 2879 Diag(PVD->getLocation(), diag::note_declared_at); 2880 return StmtError(); 2881 } 2882 } 2883 } 2884 2885 // If building the range failed, try dereferencing the range expression 2886 // unless a diagnostic was issued or the end function is problematic. 2887 StmtResult SR = RebuildForRangeWithDereference(*this, S, ForLoc, 2888 CoawaitLoc, InitStmt, 2889 LoopVarDecl, ColonLoc, 2890 Range, RangeLoc, 2891 RParenLoc); 2892 if (SR.isInvalid() || SR.isUsable()) 2893 return SR; 2894 } 2895 2896 // Otherwise, emit diagnostics if we haven't already. 2897 if (RangeStatus == FRS_NoViableFunction) { 2898 Expr *Range = BEFFailure ? EndRangeRef.get() : BeginRangeRef.get(); 2899 CandidateSet.NoteCandidates( 2900 PartialDiagnosticAt(Range->getBeginLoc(), 2901 PDiag(diag::err_for_range_invalid) 2902 << RangeLoc << Range->getType() 2903 << BEFFailure), 2904 *this, OCD_AllCandidates, Range); 2905 } 2906 // Return an error if no fix was discovered. 2907 if (RangeStatus != FRS_Success) 2908 return StmtError(); 2909 } 2910 2911 assert(!BeginExpr.isInvalid() && !EndExpr.isInvalid() && 2912 "invalid range expression in for loop"); 2913 2914 // C++11 [dcl.spec.auto]p7: BeginType and EndType must be the same. 2915 // C++1z removes this restriction. 2916 QualType BeginType = BeginVar->getType(), EndType = EndVar->getType(); 2917 if (!Context.hasSameType(BeginType, EndType)) { 2918 Diag(RangeLoc, getLangOpts().CPlusPlus17 2919 ? diag::warn_for_range_begin_end_types_differ 2920 : diag::ext_for_range_begin_end_types_differ) 2921 << BeginType << EndType; 2922 NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin); 2923 NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end); 2924 } 2925 2926 BeginDeclStmt = 2927 ActOnDeclStmt(ConvertDeclToDeclGroup(BeginVar), ColonLoc, ColonLoc); 2928 EndDeclStmt = 2929 ActOnDeclStmt(ConvertDeclToDeclGroup(EndVar), ColonLoc, ColonLoc); 2930 2931 const QualType BeginRefNonRefType = BeginType.getNonReferenceType(); 2932 ExprResult BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType, 2933 VK_LValue, ColonLoc); 2934 if (BeginRef.isInvalid()) 2935 return StmtError(); 2936 2937 ExprResult EndRef = BuildDeclRefExpr(EndVar, EndType.getNonReferenceType(), 2938 VK_LValue, ColonLoc); 2939 if (EndRef.isInvalid()) 2940 return StmtError(); 2941 2942 // Build and check __begin != __end expression. 2943 NotEqExpr = ActOnBinOp(S, ColonLoc, tok::exclaimequal, 2944 BeginRef.get(), EndRef.get()); 2945 if (!NotEqExpr.isInvalid()) 2946 NotEqExpr = CheckBooleanCondition(ColonLoc, NotEqExpr.get()); 2947 if (!NotEqExpr.isInvalid()) 2948 NotEqExpr = 2949 ActOnFinishFullExpr(NotEqExpr.get(), /*DiscardedValue*/ false); 2950 if (NotEqExpr.isInvalid()) { 2951 Diag(RangeLoc, diag::note_for_range_invalid_iterator) 2952 << RangeLoc << 0 << BeginRangeRef.get()->getType(); 2953 NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin); 2954 if (!Context.hasSameType(BeginType, EndType)) 2955 NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end); 2956 return StmtError(); 2957 } 2958 2959 // Build and check ++__begin expression. 2960 BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType, 2961 VK_LValue, ColonLoc); 2962 if (BeginRef.isInvalid()) 2963 return StmtError(); 2964 2965 IncrExpr = ActOnUnaryOp(S, ColonLoc, tok::plusplus, BeginRef.get()); 2966 if (!IncrExpr.isInvalid() && CoawaitLoc.isValid()) 2967 // FIXME: getCurScope() should not be used during template instantiation. 2968 // We should pick up the set of unqualified lookup results for operator 2969 // co_await during the initial parse. 2970 IncrExpr = ActOnCoawaitExpr(S, CoawaitLoc, IncrExpr.get()); 2971 if (!IncrExpr.isInvalid()) 2972 IncrExpr = ActOnFinishFullExpr(IncrExpr.get(), /*DiscardedValue*/ false); 2973 if (IncrExpr.isInvalid()) { 2974 Diag(RangeLoc, diag::note_for_range_invalid_iterator) 2975 << RangeLoc << 2 << BeginRangeRef.get()->getType() ; 2976 NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin); 2977 return StmtError(); 2978 } 2979 2980 // Build and check *__begin expression. 2981 BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType, 2982 VK_LValue, ColonLoc); 2983 if (BeginRef.isInvalid()) 2984 return StmtError(); 2985 2986 ExprResult DerefExpr = ActOnUnaryOp(S, ColonLoc, tok::star, BeginRef.get()); 2987 if (DerefExpr.isInvalid()) { 2988 Diag(RangeLoc, diag::note_for_range_invalid_iterator) 2989 << RangeLoc << 1 << BeginRangeRef.get()->getType(); 2990 NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin); 2991 return StmtError(); 2992 } 2993 2994 // Attach *__begin as initializer for VD. Don't touch it if we're just 2995 // trying to determine whether this would be a valid range. 2996 if (!LoopVar->isInvalidDecl() && Kind != BFRK_Check) { 2997 AddInitializerToDecl(LoopVar, DerefExpr.get(), /*DirectInit=*/false); 2998 if (LoopVar->isInvalidDecl() || 2999 (LoopVar->getInit() && LoopVar->getInit()->containsErrors())) 3000 NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin); 3001 } 3002 } 3003 3004 // Don't bother to actually allocate the result if we're just trying to 3005 // determine whether it would be valid. 3006 if (Kind == BFRK_Check) 3007 return StmtResult(); 3008 3009 // In OpenMP loop region loop control variable must be private. Perform 3010 // analysis of first part (if any). 3011 if (getLangOpts().OpenMP >= 50 && BeginDeclStmt.isUsable()) 3012 ActOnOpenMPLoopInitialization(ForLoc, BeginDeclStmt.get()); 3013 3014 return new (Context) CXXForRangeStmt( 3015 InitStmt, RangeDS, cast_or_null<DeclStmt>(BeginDeclStmt.get()), 3016 cast_or_null<DeclStmt>(EndDeclStmt.get()), NotEqExpr.get(), 3017 IncrExpr.get(), LoopVarDS, /*Body=*/nullptr, ForLoc, CoawaitLoc, 3018 ColonLoc, RParenLoc); 3019 } 3020 3021 /// FinishObjCForCollectionStmt - Attach the body to a objective-C foreach 3022 /// statement. 3023 StmtResult Sema::FinishObjCForCollectionStmt(Stmt *S, Stmt *B) { 3024 if (!S || !B) 3025 return StmtError(); 3026 ObjCForCollectionStmt * ForStmt = cast<ObjCForCollectionStmt>(S); 3027 3028 ForStmt->setBody(B); 3029 return S; 3030 } 3031 3032 // Warn when the loop variable is a const reference that creates a copy. 3033 // Suggest using the non-reference type for copies. If a copy can be prevented 3034 // suggest the const reference type that would do so. 3035 // For instance, given "for (const &Foo : Range)", suggest 3036 // "for (const Foo : Range)" to denote a copy is made for the loop. If 3037 // possible, also suggest "for (const &Bar : Range)" if this type prevents 3038 // the copy altogether. 3039 static void DiagnoseForRangeReferenceVariableCopies(Sema &SemaRef, 3040 const VarDecl *VD, 3041 QualType RangeInitType) { 3042 const Expr *InitExpr = VD->getInit(); 3043 if (!InitExpr) 3044 return; 3045 3046 QualType VariableType = VD->getType(); 3047 3048 if (auto Cleanups = dyn_cast<ExprWithCleanups>(InitExpr)) 3049 if (!Cleanups->cleanupsHaveSideEffects()) 3050 InitExpr = Cleanups->getSubExpr(); 3051 3052 const MaterializeTemporaryExpr *MTE = 3053 dyn_cast<MaterializeTemporaryExpr>(InitExpr); 3054 3055 // No copy made. 3056 if (!MTE) 3057 return; 3058 3059 const Expr *E = MTE->getSubExpr()->IgnoreImpCasts(); 3060 3061 // Searching for either UnaryOperator for dereference of a pointer or 3062 // CXXOperatorCallExpr for handling iterators. 3063 while (!isa<CXXOperatorCallExpr>(E) && !isa<UnaryOperator>(E)) { 3064 if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(E)) { 3065 E = CCE->getArg(0); 3066 } else if (const CXXMemberCallExpr *Call = dyn_cast<CXXMemberCallExpr>(E)) { 3067 const MemberExpr *ME = cast<MemberExpr>(Call->getCallee()); 3068 E = ME->getBase(); 3069 } else { 3070 const MaterializeTemporaryExpr *MTE = cast<MaterializeTemporaryExpr>(E); 3071 E = MTE->getSubExpr(); 3072 } 3073 E = E->IgnoreImpCasts(); 3074 } 3075 3076 QualType ReferenceReturnType; 3077 if (isa<UnaryOperator>(E)) { 3078 ReferenceReturnType = SemaRef.Context.getLValueReferenceType(E->getType()); 3079 } else { 3080 const CXXOperatorCallExpr *Call = cast<CXXOperatorCallExpr>(E); 3081 const FunctionDecl *FD = Call->getDirectCallee(); 3082 QualType ReturnType = FD->getReturnType(); 3083 if (ReturnType->isReferenceType()) 3084 ReferenceReturnType = ReturnType; 3085 } 3086 3087 if (!ReferenceReturnType.isNull()) { 3088 // Loop variable creates a temporary. Suggest either to go with 3089 // non-reference loop variable to indicate a copy is made, or 3090 // the correct type to bind a const reference. 3091 SemaRef.Diag(VD->getLocation(), 3092 diag::warn_for_range_const_ref_binds_temp_built_from_ref) 3093 << VD << VariableType << ReferenceReturnType; 3094 QualType NonReferenceType = VariableType.getNonReferenceType(); 3095 NonReferenceType.removeLocalConst(); 3096 QualType NewReferenceType = 3097 SemaRef.Context.getLValueReferenceType(E->getType().withConst()); 3098 SemaRef.Diag(VD->getBeginLoc(), diag::note_use_type_or_non_reference) 3099 << NonReferenceType << NewReferenceType << VD->getSourceRange() 3100 << FixItHint::CreateRemoval(VD->getTypeSpecEndLoc()); 3101 } else if (!VariableType->isRValueReferenceType()) { 3102 // The range always returns a copy, so a temporary is always created. 3103 // Suggest removing the reference from the loop variable. 3104 // If the type is a rvalue reference do not warn since that changes the 3105 // semantic of the code. 3106 SemaRef.Diag(VD->getLocation(), diag::warn_for_range_ref_binds_ret_temp) 3107 << VD << RangeInitType; 3108 QualType NonReferenceType = VariableType.getNonReferenceType(); 3109 NonReferenceType.removeLocalConst(); 3110 SemaRef.Diag(VD->getBeginLoc(), diag::note_use_non_reference_type) 3111 << NonReferenceType << VD->getSourceRange() 3112 << FixItHint::CreateRemoval(VD->getTypeSpecEndLoc()); 3113 } 3114 } 3115 3116 /// Determines whether the @p VariableType's declaration is a record with the 3117 /// clang::trivial_abi attribute. 3118 static bool hasTrivialABIAttr(QualType VariableType) { 3119 if (CXXRecordDecl *RD = VariableType->getAsCXXRecordDecl()) 3120 return RD->hasAttr<TrivialABIAttr>(); 3121 3122 return false; 3123 } 3124 3125 // Warns when the loop variable can be changed to a reference type to 3126 // prevent a copy. For instance, if given "for (const Foo x : Range)" suggest 3127 // "for (const Foo &x : Range)" if this form does not make a copy. 3128 static void DiagnoseForRangeConstVariableCopies(Sema &SemaRef, 3129 const VarDecl *VD) { 3130 const Expr *InitExpr = VD->getInit(); 3131 if (!InitExpr) 3132 return; 3133 3134 QualType VariableType = VD->getType(); 3135 3136 if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(InitExpr)) { 3137 if (!CE->getConstructor()->isCopyConstructor()) 3138 return; 3139 } else if (const CastExpr *CE = dyn_cast<CastExpr>(InitExpr)) { 3140 if (CE->getCastKind() != CK_LValueToRValue) 3141 return; 3142 } else { 3143 return; 3144 } 3145 3146 // Small trivially copyable types are cheap to copy. Do not emit the 3147 // diagnostic for these instances. 64 bytes is a common size of a cache line. 3148 // (The function `getTypeSize` returns the size in bits.) 3149 ASTContext &Ctx = SemaRef.Context; 3150 if (Ctx.getTypeSize(VariableType) <= 64 * 8 && 3151 (VariableType.isTriviallyCopyableType(Ctx) || 3152 hasTrivialABIAttr(VariableType))) 3153 return; 3154 3155 // Suggest changing from a const variable to a const reference variable 3156 // if doing so will prevent a copy. 3157 SemaRef.Diag(VD->getLocation(), diag::warn_for_range_copy) 3158 << VD << VariableType; 3159 SemaRef.Diag(VD->getBeginLoc(), diag::note_use_reference_type) 3160 << SemaRef.Context.getLValueReferenceType(VariableType) 3161 << VD->getSourceRange() 3162 << FixItHint::CreateInsertion(VD->getLocation(), "&"); 3163 } 3164 3165 /// DiagnoseForRangeVariableCopies - Diagnose three cases and fixes for them. 3166 /// 1) for (const foo &x : foos) where foos only returns a copy. Suggest 3167 /// using "const foo x" to show that a copy is made 3168 /// 2) for (const bar &x : foos) where bar is a temporary initialized by bar. 3169 /// Suggest either "const bar x" to keep the copying or "const foo& x" to 3170 /// prevent the copy. 3171 /// 3) for (const foo x : foos) where x is constructed from a reference foo. 3172 /// Suggest "const foo &x" to prevent the copy. 3173 static void DiagnoseForRangeVariableCopies(Sema &SemaRef, 3174 const CXXForRangeStmt *ForStmt) { 3175 if (SemaRef.inTemplateInstantiation()) 3176 return; 3177 3178 if (SemaRef.Diags.isIgnored( 3179 diag::warn_for_range_const_ref_binds_temp_built_from_ref, 3180 ForStmt->getBeginLoc()) && 3181 SemaRef.Diags.isIgnored(diag::warn_for_range_ref_binds_ret_temp, 3182 ForStmt->getBeginLoc()) && 3183 SemaRef.Diags.isIgnored(diag::warn_for_range_copy, 3184 ForStmt->getBeginLoc())) { 3185 return; 3186 } 3187 3188 const VarDecl *VD = ForStmt->getLoopVariable(); 3189 if (!VD) 3190 return; 3191 3192 QualType VariableType = VD->getType(); 3193 3194 if (VariableType->isIncompleteType()) 3195 return; 3196 3197 const Expr *InitExpr = VD->getInit(); 3198 if (!InitExpr) 3199 return; 3200 3201 if (InitExpr->getExprLoc().isMacroID()) 3202 return; 3203 3204 if (VariableType->isReferenceType()) { 3205 DiagnoseForRangeReferenceVariableCopies(SemaRef, VD, 3206 ForStmt->getRangeInit()->getType()); 3207 } else if (VariableType.isConstQualified()) { 3208 DiagnoseForRangeConstVariableCopies(SemaRef, VD); 3209 } 3210 } 3211 3212 /// FinishCXXForRangeStmt - Attach the body to a C++0x for-range statement. 3213 /// This is a separate step from ActOnCXXForRangeStmt because analysis of the 3214 /// body cannot be performed until after the type of the range variable is 3215 /// determined. 3216 StmtResult Sema::FinishCXXForRangeStmt(Stmt *S, Stmt *B) { 3217 if (!S || !B) 3218 return StmtError(); 3219 3220 if (isa<ObjCForCollectionStmt>(S)) 3221 return FinishObjCForCollectionStmt(S, B); 3222 3223 CXXForRangeStmt *ForStmt = cast<CXXForRangeStmt>(S); 3224 ForStmt->setBody(B); 3225 3226 DiagnoseEmptyStmtBody(ForStmt->getRParenLoc(), B, 3227 diag::warn_empty_range_based_for_body); 3228 3229 DiagnoseForRangeVariableCopies(*this, ForStmt); 3230 3231 return S; 3232 } 3233 3234 StmtResult Sema::ActOnGotoStmt(SourceLocation GotoLoc, 3235 SourceLocation LabelLoc, 3236 LabelDecl *TheDecl) { 3237 setFunctionHasBranchIntoScope(); 3238 TheDecl->markUsed(Context); 3239 return new (Context) GotoStmt(TheDecl, GotoLoc, LabelLoc); 3240 } 3241 3242 StmtResult 3243 Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc, 3244 Expr *E) { 3245 // Convert operand to void* 3246 if (!E->isTypeDependent()) { 3247 QualType ETy = E->getType(); 3248 QualType DestTy = Context.getPointerType(Context.VoidTy.withConst()); 3249 ExprResult ExprRes = E; 3250 AssignConvertType ConvTy = 3251 CheckSingleAssignmentConstraints(DestTy, ExprRes); 3252 if (ExprRes.isInvalid()) 3253 return StmtError(); 3254 E = ExprRes.get(); 3255 if (DiagnoseAssignmentResult(ConvTy, StarLoc, DestTy, ETy, E, AA_Passing)) 3256 return StmtError(); 3257 } 3258 3259 ExprResult ExprRes = ActOnFinishFullExpr(E, /*DiscardedValue*/ false); 3260 if (ExprRes.isInvalid()) 3261 return StmtError(); 3262 E = ExprRes.get(); 3263 3264 setFunctionHasIndirectGoto(); 3265 3266 return new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E); 3267 } 3268 3269 static void CheckJumpOutOfSEHFinally(Sema &S, SourceLocation Loc, 3270 const Scope &DestScope) { 3271 if (!S.CurrentSEHFinally.empty() && 3272 DestScope.Contains(*S.CurrentSEHFinally.back())) { 3273 S.Diag(Loc, diag::warn_jump_out_of_seh_finally); 3274 } 3275 } 3276 3277 StmtResult 3278 Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) { 3279 Scope *S = CurScope->getContinueParent(); 3280 if (!S) { 3281 // C99 6.8.6.2p1: A break shall appear only in or as a loop body. 3282 return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop)); 3283 } 3284 if (S->getFlags() & Scope::ConditionVarScope) { 3285 // We cannot 'continue;' from within a statement expression in the 3286 // initializer of a condition variable because we would jump past the 3287 // initialization of that variable. 3288 return StmtError(Diag(ContinueLoc, diag::err_continue_from_cond_var_init)); 3289 } 3290 CheckJumpOutOfSEHFinally(*this, ContinueLoc, *S); 3291 3292 return new (Context) ContinueStmt(ContinueLoc); 3293 } 3294 3295 StmtResult 3296 Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) { 3297 Scope *S = CurScope->getBreakParent(); 3298 if (!S) { 3299 // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body. 3300 return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch)); 3301 } 3302 if (S->isOpenMPLoopScope()) 3303 return StmtError(Diag(BreakLoc, diag::err_omp_loop_cannot_use_stmt) 3304 << "break"); 3305 CheckJumpOutOfSEHFinally(*this, BreakLoc, *S); 3306 3307 return new (Context) BreakStmt(BreakLoc); 3308 } 3309 3310 /// Determine whether the given expression is a candidate for 3311 /// copy elision in either a return statement or a throw expression. 3312 /// 3313 /// \param ReturnType If we're determining the copy elision candidate for 3314 /// a return statement, this is the return type of the function. If we're 3315 /// determining the copy elision candidate for a throw expression, this will 3316 /// be a NULL type. 3317 /// 3318 /// \param E The expression being returned from the function or block, or 3319 /// being thrown. 3320 /// 3321 /// \param CESK Whether we allow function parameters or 3322 /// id-expressions that could be moved out of the function to be considered NRVO 3323 /// candidates. C++ prohibits these for NRVO itself, but we re-use this logic to 3324 /// determine whether we should try to move as part of a return or throw (which 3325 /// does allow function parameters). 3326 /// 3327 /// \returns The NRVO candidate variable, if the return statement may use the 3328 /// NRVO, or NULL if there is no such candidate. 3329 VarDecl *Sema::getCopyElisionCandidate(QualType ReturnType, Expr *E, 3330 CopyElisionSemanticsKind CESK) { 3331 // - in a return statement in a function [where] ... 3332 // ... the expression is the name of a non-volatile automatic object ... 3333 DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E->IgnoreParens()); 3334 if (!DR || DR->refersToEnclosingVariableOrCapture()) 3335 return nullptr; 3336 VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl()); 3337 if (!VD) 3338 return nullptr; 3339 3340 if (isCopyElisionCandidate(ReturnType, VD, CESK)) 3341 return VD; 3342 return nullptr; 3343 } 3344 3345 bool Sema::isCopyElisionCandidate(QualType ReturnType, const VarDecl *VD, 3346 CopyElisionSemanticsKind CESK) { 3347 QualType VDType = VD->getType(); 3348 // - in a return statement in a function with ... 3349 // ... a class return type ... 3350 if (!ReturnType.isNull() && !ReturnType->isDependentType()) { 3351 if (!ReturnType->isRecordType()) 3352 return false; 3353 // ... the same cv-unqualified type as the function return type ... 3354 // When considering moving this expression out, allow dissimilar types. 3355 if (!(CESK & CES_AllowDifferentTypes) && !VDType->isDependentType() && 3356 !Context.hasSameUnqualifiedType(ReturnType, VDType)) 3357 return false; 3358 } 3359 3360 // ...object (other than a function or catch-clause parameter)... 3361 if (VD->getKind() != Decl::Var && 3362 !((CESK & CES_AllowParameters) && VD->getKind() == Decl::ParmVar)) 3363 return false; 3364 if (!(CESK & CES_AllowExceptionVariables) && VD->isExceptionVariable()) 3365 return false; 3366 3367 // ...automatic... 3368 if (!VD->hasLocalStorage()) return false; 3369 3370 // Return false if VD is a __block variable. We don't want to implicitly move 3371 // out of a __block variable during a return because we cannot assume the 3372 // variable will no longer be used. 3373 if (VD->hasAttr<BlocksAttr>()) 3374 return false; 3375 3376 if (VDType->isObjectType()) { 3377 // C++17 [class.copy.elision]p3: 3378 // ...non-volatile automatic object... 3379 if (VDType.isVolatileQualified()) 3380 return false; 3381 } else if (VDType->isRValueReferenceType()) { 3382 // C++20 [class.copy.elision]p3: 3383 // ...either a non-volatile object or an rvalue reference to a non-volatile object type... 3384 if (!(CESK & CES_AllowRValueReferenceType)) 3385 return false; 3386 QualType VDReferencedType = VDType.getNonReferenceType(); 3387 if (VDReferencedType.isVolatileQualified() || !VDReferencedType->isObjectType()) 3388 return false; 3389 } else { 3390 return false; 3391 } 3392 3393 if (CESK & CES_AllowDifferentTypes) 3394 return true; 3395 3396 // Variables with higher required alignment than their type's ABI 3397 // alignment cannot use NRVO. 3398 if (!VDType->isDependentType() && VD->hasAttr<AlignedAttr>() && 3399 Context.getDeclAlign(VD) > Context.getTypeAlignInChars(VDType)) 3400 return false; 3401 3402 return true; 3403 } 3404 3405 /// Try to perform the initialization of a potentially-movable value, 3406 /// which is the operand to a return or throw statement. 3407 /// 3408 /// This routine implements C++20 [class.copy.elision]p3, which attempts to 3409 /// treat returned lvalues as rvalues in certain cases (to prefer move 3410 /// construction), then falls back to treating them as lvalues if that failed. 3411 /// 3412 /// \param ConvertingConstructorsOnly If true, follow [class.copy.elision]p3 and 3413 /// reject resolutions that find non-constructors, such as derived-to-base 3414 /// conversions or `operator T()&&` member functions. If false, do consider such 3415 /// conversion sequences. 3416 /// 3417 /// \param Res We will fill this in if move-initialization was possible. 3418 /// If move-initialization is not possible, such that we must fall back to 3419 /// treating the operand as an lvalue, we will leave Res in its original 3420 /// invalid state. 3421 /// 3422 /// \returns Whether we need to do the second overload resolution. If the first 3423 /// overload resolution fails, or if the first overload resolution succeeds but 3424 /// the selected constructor/operator doesn't match the additional criteria, we 3425 /// need to do the second overload resolution. 3426 static bool TryMoveInitialization(Sema &S, const InitializedEntity &Entity, 3427 const VarDecl *NRVOCandidate, 3428 QualType ResultType, Expr *&Value, 3429 bool ConvertingConstructorsOnly, 3430 bool IsDiagnosticsCheck, ExprResult &Res) { 3431 ImplicitCastExpr AsRvalue(ImplicitCastExpr::OnStack, Value->getType(), 3432 CK_NoOp, Value, VK_XValue, FPOptionsOverride()); 3433 3434 Expr *InitExpr = &AsRvalue; 3435 3436 InitializationKind Kind = InitializationKind::CreateCopy( 3437 Value->getBeginLoc(), Value->getBeginLoc()); 3438 3439 InitializationSequence Seq(S, Entity, Kind, InitExpr); 3440 3441 bool NeedSecondOverloadResolution = true; 3442 if (!Seq && 3443 (IsDiagnosticsCheck || Seq.getFailedOverloadResult() != OR_Deleted)) { 3444 return NeedSecondOverloadResolution; 3445 } 3446 3447 for (const InitializationSequence::Step &Step : Seq.steps()) { 3448 if (Step.Kind != InitializationSequence::SK_ConstructorInitialization && 3449 Step.Kind != InitializationSequence::SK_UserConversion) 3450 continue; 3451 3452 FunctionDecl *FD = Step.Function.Function; 3453 if (ConvertingConstructorsOnly) { 3454 if (isa<CXXConstructorDecl>(FD)) { 3455 // C++11 [class.copy]p32: 3456 // C++14 [class.copy]p32: 3457 // C++17 [class.copy.elision]p3: 3458 // [...] if the type of the first parameter of the selected constructor 3459 // is not an rvalue reference to the object's type (possibly 3460 // cv-qualified), overload resolution is performed again, considering 3461 // the object as an lvalue. 3462 const RValueReferenceType *RRefType = 3463 FD->getParamDecl(0)->getType()->getAs<RValueReferenceType>(); 3464 if (!RRefType) 3465 break; 3466 if (!S.Context.hasSameUnqualifiedType(RRefType->getPointeeType(), 3467 NRVOCandidate->getType())) 3468 break; 3469 } else { 3470 continue; 3471 } 3472 } else { 3473 if (isa<CXXConstructorDecl>(FD)) { 3474 // Check that overload resolution selected a constructor taking an 3475 // rvalue reference. If it selected an lvalue reference, then we 3476 // didn't need to cast this thing to an rvalue in the first place. 3477 if (IsDiagnosticsCheck && 3478 !isa<RValueReferenceType>(FD->getParamDecl(0)->getType())) 3479 break; 3480 } else if (isa<CXXMethodDecl>(FD)) { 3481 // Check that overload resolution selected a conversion operator 3482 // taking an rvalue reference. 3483 if (cast<CXXMethodDecl>(FD)->getRefQualifier() != RQ_RValue) 3484 break; 3485 } else { 3486 continue; 3487 } 3488 } 3489 3490 NeedSecondOverloadResolution = false; 3491 // Promote "AsRvalue" to the heap, since we now need this 3492 // expression node to persist. 3493 Value = 3494 ImplicitCastExpr::Create(S.Context, Value->getType(), CK_NoOp, Value, 3495 nullptr, VK_XValue, FPOptionsOverride()); 3496 3497 // Complete type-checking the initialization of the return type 3498 // using the constructor we found. 3499 Res = Seq.Perform(S, Entity, Kind, Value); 3500 } 3501 3502 return NeedSecondOverloadResolution; 3503 } 3504 3505 /// Perform the initialization of a potentially-movable value, which 3506 /// is the result of return value. 3507 /// 3508 /// This routine implements C++20 [class.copy.elision]p3, which attempts to 3509 /// treat returned lvalues as rvalues in certain cases (to prefer move 3510 /// construction), then falls back to treating them as lvalues if that failed. 3511 ExprResult Sema::PerformMoveOrCopyInitialization( 3512 const InitializedEntity &Entity, const VarDecl *NRVOCandidate, 3513 QualType ResultType, Expr *Value, bool AllowNRVO) { 3514 ExprResult Res = ExprError(); 3515 bool NeedSecondOverloadResolution = true; 3516 3517 if (AllowNRVO) { 3518 CopyElisionSemanticsKind CESK = CES_Strict; 3519 if (getLangOpts().CPlusPlus20) { 3520 CESK = CES_ImplicitlyMovableCXX20; 3521 } else if (getLangOpts().CPlusPlus11) { 3522 CESK = CES_ImplicitlyMovableCXX11CXX14CXX17; 3523 } 3524 3525 if (!NRVOCandidate) { 3526 NRVOCandidate = getCopyElisionCandidate(ResultType, Value, CESK); 3527 } 3528 3529 if (NRVOCandidate) { 3530 NeedSecondOverloadResolution = 3531 TryMoveInitialization(*this, Entity, NRVOCandidate, ResultType, Value, 3532 !getLangOpts().CPlusPlus20, false, Res); 3533 } 3534 3535 if (!getLangOpts().CPlusPlus20 && NeedSecondOverloadResolution && 3536 !getDiagnostics().isIgnored(diag::warn_return_std_move, 3537 Value->getExprLoc())) { 3538 const VarDecl *FakeNRVOCandidate = getCopyElisionCandidate( 3539 QualType(), Value, CES_ImplicitlyMovableCXX20); 3540 if (FakeNRVOCandidate) { 3541 QualType QT = FakeNRVOCandidate->getType(); 3542 if (QT->isLValueReferenceType()) { 3543 // Adding 'std::move' around an lvalue reference variable's name is 3544 // dangerous. Don't suggest it. 3545 } else if (QT.getNonReferenceType() 3546 .getUnqualifiedType() 3547 .isTriviallyCopyableType(Context)) { 3548 // Adding 'std::move' around a trivially copyable variable is probably 3549 // pointless. Don't suggest it. 3550 } else { 3551 ExprResult FakeRes = ExprError(); 3552 Expr *FakeValue = Value; 3553 TryMoveInitialization(*this, Entity, FakeNRVOCandidate, ResultType, 3554 FakeValue, false, true, FakeRes); 3555 if (!FakeRes.isInvalid()) { 3556 bool IsThrow = 3557 (Entity.getKind() == InitializedEntity::EK_Exception); 3558 SmallString<32> Str; 3559 Str += "std::move("; 3560 Str += FakeNRVOCandidate->getDeclName().getAsString(); 3561 Str += ")"; 3562 Diag(Value->getExprLoc(), diag::warn_return_std_move) 3563 << Value->getSourceRange() 3564 << FakeNRVOCandidate->getDeclName() << IsThrow; 3565 Diag(Value->getExprLoc(), diag::note_add_std_move) 3566 << FixItHint::CreateReplacement(Value->getSourceRange(), Str); 3567 } 3568 } 3569 } 3570 } 3571 } 3572 3573 // Either we didn't meet the criteria for treating an lvalue as an rvalue, 3574 // above, or overload resolution failed. Either way, we need to try 3575 // (again) now with the return value expression as written. 3576 if (NeedSecondOverloadResolution) 3577 Res = PerformCopyInitialization(Entity, SourceLocation(), Value); 3578 3579 return Res; 3580 } 3581 3582 /// Determine whether the declared return type of the specified function 3583 /// contains 'auto'. 3584 static bool hasDeducedReturnType(FunctionDecl *FD) { 3585 const FunctionProtoType *FPT = 3586 FD->getTypeSourceInfo()->getType()->castAs<FunctionProtoType>(); 3587 return FPT->getReturnType()->isUndeducedType(); 3588 } 3589 3590 /// ActOnCapScopeReturnStmt - Utility routine to type-check return statements 3591 /// for capturing scopes. 3592 /// 3593 StmtResult 3594 Sema::ActOnCapScopeReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) { 3595 // If this is the first return we've seen, infer the return type. 3596 // [expr.prim.lambda]p4 in C++11; block literals follow the same rules. 3597 CapturingScopeInfo *CurCap = cast<CapturingScopeInfo>(getCurFunction()); 3598 QualType FnRetType = CurCap->ReturnType; 3599 LambdaScopeInfo *CurLambda = dyn_cast<LambdaScopeInfo>(CurCap); 3600 bool HasDeducedReturnType = 3601 CurLambda && hasDeducedReturnType(CurLambda->CallOperator); 3602 3603 if (ExprEvalContexts.back().Context == 3604 ExpressionEvaluationContext::DiscardedStatement && 3605 (HasDeducedReturnType || CurCap->HasImplicitReturnType)) { 3606 if (RetValExp) { 3607 ExprResult ER = 3608 ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false); 3609 if (ER.isInvalid()) 3610 return StmtError(); 3611 RetValExp = ER.get(); 3612 } 3613 return ReturnStmt::Create(Context, ReturnLoc, RetValExp, 3614 /* NRVOCandidate=*/nullptr); 3615 } 3616 3617 if (HasDeducedReturnType) { 3618 FunctionDecl *FD = CurLambda->CallOperator; 3619 // If we've already decided this lambda is invalid, e.g. because 3620 // we saw a `return` whose expression had an error, don't keep 3621 // trying to deduce its return type. 3622 if (FD->isInvalidDecl()) 3623 return StmtError(); 3624 // In C++1y, the return type may involve 'auto'. 3625 // FIXME: Blocks might have a return type of 'auto' explicitly specified. 3626 if (CurCap->ReturnType.isNull()) 3627 CurCap->ReturnType = FD->getReturnType(); 3628 3629 AutoType *AT = CurCap->ReturnType->getContainedAutoType(); 3630 assert(AT && "lost auto type from lambda return type"); 3631 if (DeduceFunctionTypeFromReturnExpr(FD, ReturnLoc, RetValExp, AT)) { 3632 FD->setInvalidDecl(); 3633 // FIXME: preserve the ill-formed return expression. 3634 return StmtError(); 3635 } 3636 CurCap->ReturnType = FnRetType = FD->getReturnType(); 3637 } else if (CurCap->HasImplicitReturnType) { 3638 // For blocks/lambdas with implicit return types, we check each return 3639 // statement individually, and deduce the common return type when the block 3640 // or lambda is completed. 3641 // FIXME: Fold this into the 'auto' codepath above. 3642 if (RetValExp && !isa<InitListExpr>(RetValExp)) { 3643 ExprResult Result = DefaultFunctionArrayLvalueConversion(RetValExp); 3644 if (Result.isInvalid()) 3645 return StmtError(); 3646 RetValExp = Result.get(); 3647 3648 // DR1048: even prior to C++14, we should use the 'auto' deduction rules 3649 // when deducing a return type for a lambda-expression (or by extension 3650 // for a block). These rules differ from the stated C++11 rules only in 3651 // that they remove top-level cv-qualifiers. 3652 if (!CurContext->isDependentContext()) 3653 FnRetType = RetValExp->getType().getUnqualifiedType(); 3654 else 3655 FnRetType = CurCap->ReturnType = Context.DependentTy; 3656 } else { 3657 if (RetValExp) { 3658 // C++11 [expr.lambda.prim]p4 bans inferring the result from an 3659 // initializer list, because it is not an expression (even 3660 // though we represent it as one). We still deduce 'void'. 3661 Diag(ReturnLoc, diag::err_lambda_return_init_list) 3662 << RetValExp->getSourceRange(); 3663 } 3664 3665 FnRetType = Context.VoidTy; 3666 } 3667 3668 // Although we'll properly infer the type of the block once it's completed, 3669 // make sure we provide a return type now for better error recovery. 3670 if (CurCap->ReturnType.isNull()) 3671 CurCap->ReturnType = FnRetType; 3672 } 3673 assert(!FnRetType.isNull()); 3674 3675 if (auto *CurBlock = dyn_cast<BlockScopeInfo>(CurCap)) { 3676 if (CurBlock->FunctionType->castAs<FunctionType>()->getNoReturnAttr()) { 3677 Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr); 3678 return StmtError(); 3679 } 3680 } else if (auto *CurRegion = dyn_cast<CapturedRegionScopeInfo>(CurCap)) { 3681 Diag(ReturnLoc, diag::err_return_in_captured_stmt) << CurRegion->getRegionName(); 3682 return StmtError(); 3683 } else { 3684 assert(CurLambda && "unknown kind of captured scope"); 3685 if (CurLambda->CallOperator->getType() 3686 ->castAs<FunctionType>() 3687 ->getNoReturnAttr()) { 3688 Diag(ReturnLoc, diag::err_noreturn_lambda_has_return_expr); 3689 return StmtError(); 3690 } 3691 } 3692 3693 // Otherwise, verify that this result type matches the previous one. We are 3694 // pickier with blocks than for normal functions because we don't have GCC 3695 // compatibility to worry about here. 3696 const VarDecl *NRVOCandidate = nullptr; 3697 if (FnRetType->isDependentType()) { 3698 // Delay processing for now. TODO: there are lots of dependent 3699 // types we can conclusively prove aren't void. 3700 } else if (FnRetType->isVoidType()) { 3701 if (RetValExp && !isa<InitListExpr>(RetValExp) && 3702 !(getLangOpts().CPlusPlus && 3703 (RetValExp->isTypeDependent() || 3704 RetValExp->getType()->isVoidType()))) { 3705 if (!getLangOpts().CPlusPlus && 3706 RetValExp->getType()->isVoidType()) 3707 Diag(ReturnLoc, diag::ext_return_has_void_expr) << "literal" << 2; 3708 else { 3709 Diag(ReturnLoc, diag::err_return_block_has_expr); 3710 RetValExp = nullptr; 3711 } 3712 } 3713 } else if (!RetValExp) { 3714 return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr)); 3715 } else if (!RetValExp->isTypeDependent()) { 3716 // we have a non-void block with an expression, continue checking 3717 3718 // C99 6.8.6.4p3(136): The return statement is not an assignment. The 3719 // overlap restriction of subclause 6.5.16.1 does not apply to the case of 3720 // function return. 3721 3722 // In C++ the return statement is handled via a copy initialization. 3723 // the C version of which boils down to CheckSingleAssignmentConstraints. 3724 NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, CES_Strict); 3725 InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc, 3726 FnRetType, 3727 NRVOCandidate != nullptr); 3728 ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate, 3729 FnRetType, RetValExp); 3730 if (Res.isInvalid()) { 3731 // FIXME: Cleanup temporaries here, anyway? 3732 return StmtError(); 3733 } 3734 RetValExp = Res.get(); 3735 CheckReturnValExpr(RetValExp, FnRetType, ReturnLoc); 3736 } else { 3737 NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, CES_Strict); 3738 } 3739 3740 if (RetValExp) { 3741 ExprResult ER = 3742 ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false); 3743 if (ER.isInvalid()) 3744 return StmtError(); 3745 RetValExp = ER.get(); 3746 } 3747 auto *Result = 3748 ReturnStmt::Create(Context, ReturnLoc, RetValExp, NRVOCandidate); 3749 3750 // If we need to check for the named return value optimization, 3751 // or if we need to infer the return type, 3752 // save the return statement in our scope for later processing. 3753 if (CurCap->HasImplicitReturnType || NRVOCandidate) 3754 FunctionScopes.back()->Returns.push_back(Result); 3755 3756 if (FunctionScopes.back()->FirstReturnLoc.isInvalid()) 3757 FunctionScopes.back()->FirstReturnLoc = ReturnLoc; 3758 3759 return Result; 3760 } 3761 3762 namespace { 3763 /// Marks all typedefs in all local classes in a type referenced. 3764 /// 3765 /// In a function like 3766 /// auto f() { 3767 /// struct S { typedef int a; }; 3768 /// return S(); 3769 /// } 3770 /// 3771 /// the local type escapes and could be referenced in some TUs but not in 3772 /// others. Pretend that all local typedefs are always referenced, to not warn 3773 /// on this. This isn't necessary if f has internal linkage, or the typedef 3774 /// is private. 3775 class LocalTypedefNameReferencer 3776 : public RecursiveASTVisitor<LocalTypedefNameReferencer> { 3777 public: 3778 LocalTypedefNameReferencer(Sema &S) : S(S) {} 3779 bool VisitRecordType(const RecordType *RT); 3780 private: 3781 Sema &S; 3782 }; 3783 bool LocalTypedefNameReferencer::VisitRecordType(const RecordType *RT) { 3784 auto *R = dyn_cast<CXXRecordDecl>(RT->getDecl()); 3785 if (!R || !R->isLocalClass() || !R->isLocalClass()->isExternallyVisible() || 3786 R->isDependentType()) 3787 return true; 3788 for (auto *TmpD : R->decls()) 3789 if (auto *T = dyn_cast<TypedefNameDecl>(TmpD)) 3790 if (T->getAccess() != AS_private || R->hasFriends()) 3791 S.MarkAnyDeclReferenced(T->getLocation(), T, /*OdrUse=*/false); 3792 return true; 3793 } 3794 } 3795 3796 TypeLoc Sema::getReturnTypeLoc(FunctionDecl *FD) const { 3797 return FD->getTypeSourceInfo() 3798 ->getTypeLoc() 3799 .getAsAdjusted<FunctionProtoTypeLoc>() 3800 .getReturnLoc(); 3801 } 3802 3803 /// Deduce the return type for a function from a returned expression, per 3804 /// C++1y [dcl.spec.auto]p6. 3805 bool Sema::DeduceFunctionTypeFromReturnExpr(FunctionDecl *FD, 3806 SourceLocation ReturnLoc, 3807 Expr *&RetExpr, 3808 AutoType *AT) { 3809 // If this is the conversion function for a lambda, we choose to deduce it 3810 // type from the corresponding call operator, not from the synthesized return 3811 // statement within it. See Sema::DeduceReturnType. 3812 if (isLambdaConversionOperator(FD)) 3813 return false; 3814 3815 TypeLoc OrigResultType = getReturnTypeLoc(FD); 3816 QualType Deduced; 3817 3818 if (RetExpr && isa<InitListExpr>(RetExpr)) { 3819 // If the deduction is for a return statement and the initializer is 3820 // a braced-init-list, the program is ill-formed. 3821 Diag(RetExpr->getExprLoc(), 3822 getCurLambda() ? diag::err_lambda_return_init_list 3823 : diag::err_auto_fn_return_init_list) 3824 << RetExpr->getSourceRange(); 3825 return true; 3826 } 3827 3828 if (FD->isDependentContext()) { 3829 // C++1y [dcl.spec.auto]p12: 3830 // Return type deduction [...] occurs when the definition is 3831 // instantiated even if the function body contains a return 3832 // statement with a non-type-dependent operand. 3833 assert(AT->isDeduced() && "should have deduced to dependent type"); 3834 return false; 3835 } 3836 3837 if (RetExpr) { 3838 // Otherwise, [...] deduce a value for U using the rules of template 3839 // argument deduction. 3840 DeduceAutoResult DAR = DeduceAutoType(OrigResultType, RetExpr, Deduced); 3841 3842 if (DAR == DAR_Failed && !FD->isInvalidDecl()) 3843 Diag(RetExpr->getExprLoc(), diag::err_auto_fn_deduction_failure) 3844 << OrigResultType.getType() << RetExpr->getType(); 3845 3846 if (DAR != DAR_Succeeded) 3847 return true; 3848 3849 // If a local type is part of the returned type, mark its fields as 3850 // referenced. 3851 LocalTypedefNameReferencer Referencer(*this); 3852 Referencer.TraverseType(RetExpr->getType()); 3853 } else { 3854 // In the case of a return with no operand, the initializer is considered 3855 // to be void(). 3856 // 3857 // Deduction here can only succeed if the return type is exactly 'cv auto' 3858 // or 'decltype(auto)', so just check for that case directly. 3859 if (!OrigResultType.getType()->getAs<AutoType>()) { 3860 Diag(ReturnLoc, diag::err_auto_fn_return_void_but_not_auto) 3861 << OrigResultType.getType(); 3862 return true; 3863 } 3864 // We always deduce U = void in this case. 3865 Deduced = SubstAutoType(OrigResultType.getType(), Context.VoidTy); 3866 if (Deduced.isNull()) 3867 return true; 3868 } 3869 3870 // CUDA: Kernel function must have 'void' return type. 3871 if (getLangOpts().CUDA) 3872 if (FD->hasAttr<CUDAGlobalAttr>() && !Deduced->isVoidType()) { 3873 Diag(FD->getLocation(), diag::err_kern_type_not_void_return) 3874 << FD->getType() << FD->getSourceRange(); 3875 return true; 3876 } 3877 3878 // If a function with a declared return type that contains a placeholder type 3879 // has multiple return statements, the return type is deduced for each return 3880 // statement. [...] if the type deduced is not the same in each deduction, 3881 // the program is ill-formed. 3882 QualType DeducedT = AT->getDeducedType(); 3883 if (!DeducedT.isNull() && !FD->isInvalidDecl()) { 3884 AutoType *NewAT = Deduced->getContainedAutoType(); 3885 // It is possible that NewAT->getDeducedType() is null. When that happens, 3886 // we should not crash, instead we ignore this deduction. 3887 if (NewAT->getDeducedType().isNull()) 3888 return false; 3889 3890 CanQualType OldDeducedType = Context.getCanonicalFunctionResultType( 3891 DeducedT); 3892 CanQualType NewDeducedType = Context.getCanonicalFunctionResultType( 3893 NewAT->getDeducedType()); 3894 if (!FD->isDependentContext() && OldDeducedType != NewDeducedType) { 3895 const LambdaScopeInfo *LambdaSI = getCurLambda(); 3896 if (LambdaSI && LambdaSI->HasImplicitReturnType) { 3897 Diag(ReturnLoc, diag::err_typecheck_missing_return_type_incompatible) 3898 << NewAT->getDeducedType() << DeducedT 3899 << true /*IsLambda*/; 3900 } else { 3901 Diag(ReturnLoc, diag::err_auto_fn_different_deductions) 3902 << (AT->isDecltypeAuto() ? 1 : 0) 3903 << NewAT->getDeducedType() << DeducedT; 3904 } 3905 return true; 3906 } 3907 } else if (!FD->isInvalidDecl()) { 3908 // Update all declarations of the function to have the deduced return type. 3909 Context.adjustDeducedFunctionResultType(FD, Deduced); 3910 } 3911 3912 return false; 3913 } 3914 3915 StmtResult 3916 Sema::ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp, 3917 Scope *CurScope) { 3918 // Correct typos, in case the containing function returns 'auto' and 3919 // RetValExp should determine the deduced type. 3920 ExprResult RetVal = CorrectDelayedTyposInExpr( 3921 RetValExp, nullptr, /*RecoverUncorrectedTypos=*/true); 3922 if (RetVal.isInvalid()) 3923 return StmtError(); 3924 StmtResult R = BuildReturnStmt(ReturnLoc, RetVal.get()); 3925 if (R.isInvalid() || ExprEvalContexts.back().Context == 3926 ExpressionEvaluationContext::DiscardedStatement) 3927 return R; 3928 3929 if (VarDecl *VD = 3930 const_cast<VarDecl*>(cast<ReturnStmt>(R.get())->getNRVOCandidate())) { 3931 CurScope->addNRVOCandidate(VD); 3932 } else { 3933 CurScope->setNoNRVO(); 3934 } 3935 3936 CheckJumpOutOfSEHFinally(*this, ReturnLoc, *CurScope->getFnParent()); 3937 3938 return R; 3939 } 3940 3941 StmtResult Sema::BuildReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) { 3942 // Check for unexpanded parameter packs. 3943 if (RetValExp && DiagnoseUnexpandedParameterPack(RetValExp)) 3944 return StmtError(); 3945 3946 if (isa<CapturingScopeInfo>(getCurFunction())) 3947 return ActOnCapScopeReturnStmt(ReturnLoc, RetValExp); 3948 3949 QualType FnRetType; 3950 QualType RelatedRetType; 3951 const AttrVec *Attrs = nullptr; 3952 bool isObjCMethod = false; 3953 3954 if (const FunctionDecl *FD = getCurFunctionDecl()) { 3955 FnRetType = FD->getReturnType(); 3956 if (FD->hasAttrs()) 3957 Attrs = &FD->getAttrs(); 3958 if (FD->isNoReturn()) 3959 Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr) << FD; 3960 if (FD->isMain() && RetValExp) 3961 if (isa<CXXBoolLiteralExpr>(RetValExp)) 3962 Diag(ReturnLoc, diag::warn_main_returns_bool_literal) 3963 << RetValExp->getSourceRange(); 3964 if (FD->hasAttr<CmseNSEntryAttr>() && RetValExp) { 3965 if (const auto *RT = dyn_cast<RecordType>(FnRetType.getCanonicalType())) { 3966 if (RT->getDecl()->isOrContainsUnion()) 3967 Diag(RetValExp->getBeginLoc(), diag::warn_cmse_nonsecure_union) << 1; 3968 } 3969 } 3970 } else if (ObjCMethodDecl *MD = getCurMethodDecl()) { 3971 FnRetType = MD->getReturnType(); 3972 isObjCMethod = true; 3973 if (MD->hasAttrs()) 3974 Attrs = &MD->getAttrs(); 3975 if (MD->hasRelatedResultType() && MD->getClassInterface()) { 3976 // In the implementation of a method with a related return type, the 3977 // type used to type-check the validity of return statements within the 3978 // method body is a pointer to the type of the class being implemented. 3979 RelatedRetType = Context.getObjCInterfaceType(MD->getClassInterface()); 3980 RelatedRetType = Context.getObjCObjectPointerType(RelatedRetType); 3981 } 3982 } else // If we don't have a function/method context, bail. 3983 return StmtError(); 3984 3985 // C++1z: discarded return statements are not considered when deducing a 3986 // return type. 3987 if (ExprEvalContexts.back().Context == 3988 ExpressionEvaluationContext::DiscardedStatement && 3989 FnRetType->getContainedAutoType()) { 3990 if (RetValExp) { 3991 ExprResult ER = 3992 ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false); 3993 if (ER.isInvalid()) 3994 return StmtError(); 3995 RetValExp = ER.get(); 3996 } 3997 return ReturnStmt::Create(Context, ReturnLoc, RetValExp, 3998 /* NRVOCandidate=*/nullptr); 3999 } 4000 4001 // FIXME: Add a flag to the ScopeInfo to indicate whether we're performing 4002 // deduction. 4003 if (getLangOpts().CPlusPlus14) { 4004 if (AutoType *AT = FnRetType->getContainedAutoType()) { 4005 FunctionDecl *FD = cast<FunctionDecl>(CurContext); 4006 // If we've already decided this function is invalid, e.g. because 4007 // we saw a `return` whose expression had an error, don't keep 4008 // trying to deduce its return type. 4009 if (FD->isInvalidDecl()) 4010 return StmtError(); 4011 if (DeduceFunctionTypeFromReturnExpr(FD, ReturnLoc, RetValExp, AT)) { 4012 FD->setInvalidDecl(); 4013 return StmtError(); 4014 } else { 4015 FnRetType = FD->getReturnType(); 4016 } 4017 } 4018 } 4019 4020 bool HasDependentReturnType = FnRetType->isDependentType(); 4021 4022 ReturnStmt *Result = nullptr; 4023 if (FnRetType->isVoidType()) { 4024 if (RetValExp) { 4025 if (isa<InitListExpr>(RetValExp)) { 4026 // We simply never allow init lists as the return value of void 4027 // functions. This is compatible because this was never allowed before, 4028 // so there's no legacy code to deal with. 4029 NamedDecl *CurDecl = getCurFunctionOrMethodDecl(); 4030 int FunctionKind = 0; 4031 if (isa<ObjCMethodDecl>(CurDecl)) 4032 FunctionKind = 1; 4033 else if (isa<CXXConstructorDecl>(CurDecl)) 4034 FunctionKind = 2; 4035 else if (isa<CXXDestructorDecl>(CurDecl)) 4036 FunctionKind = 3; 4037 4038 Diag(ReturnLoc, diag::err_return_init_list) 4039 << CurDecl << FunctionKind << RetValExp->getSourceRange(); 4040 4041 // Drop the expression. 4042 RetValExp = nullptr; 4043 } else if (!RetValExp->isTypeDependent()) { 4044 // C99 6.8.6.4p1 (ext_ since GCC warns) 4045 unsigned D = diag::ext_return_has_expr; 4046 if (RetValExp->getType()->isVoidType()) { 4047 NamedDecl *CurDecl = getCurFunctionOrMethodDecl(); 4048 if (isa<CXXConstructorDecl>(CurDecl) || 4049 isa<CXXDestructorDecl>(CurDecl)) 4050 D = diag::err_ctor_dtor_returns_void; 4051 else 4052 D = diag::ext_return_has_void_expr; 4053 } 4054 else { 4055 ExprResult Result = RetValExp; 4056 Result = IgnoredValueConversions(Result.get()); 4057 if (Result.isInvalid()) 4058 return StmtError(); 4059 RetValExp = Result.get(); 4060 RetValExp = ImpCastExprToType(RetValExp, 4061 Context.VoidTy, CK_ToVoid).get(); 4062 } 4063 // return of void in constructor/destructor is illegal in C++. 4064 if (D == diag::err_ctor_dtor_returns_void) { 4065 NamedDecl *CurDecl = getCurFunctionOrMethodDecl(); 4066 Diag(ReturnLoc, D) << CurDecl << isa<CXXDestructorDecl>(CurDecl) 4067 << RetValExp->getSourceRange(); 4068 } 4069 // return (some void expression); is legal in C++. 4070 else if (D != diag::ext_return_has_void_expr || 4071 !getLangOpts().CPlusPlus) { 4072 NamedDecl *CurDecl = getCurFunctionOrMethodDecl(); 4073 4074 int FunctionKind = 0; 4075 if (isa<ObjCMethodDecl>(CurDecl)) 4076 FunctionKind = 1; 4077 else if (isa<CXXConstructorDecl>(CurDecl)) 4078 FunctionKind = 2; 4079 else if (isa<CXXDestructorDecl>(CurDecl)) 4080 FunctionKind = 3; 4081 4082 Diag(ReturnLoc, D) 4083 << CurDecl << FunctionKind << RetValExp->getSourceRange(); 4084 } 4085 } 4086 4087 if (RetValExp) { 4088 ExprResult ER = 4089 ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false); 4090 if (ER.isInvalid()) 4091 return StmtError(); 4092 RetValExp = ER.get(); 4093 } 4094 } 4095 4096 Result = ReturnStmt::Create(Context, ReturnLoc, RetValExp, 4097 /* NRVOCandidate=*/nullptr); 4098 } else if (!RetValExp && !HasDependentReturnType) { 4099 FunctionDecl *FD = getCurFunctionDecl(); 4100 4101 if (getLangOpts().CPlusPlus11 && FD && FD->isConstexpr()) { 4102 // C++11 [stmt.return]p2 4103 Diag(ReturnLoc, diag::err_constexpr_return_missing_expr) 4104 << FD << FD->isConsteval(); 4105 FD->setInvalidDecl(); 4106 } else { 4107 // C99 6.8.6.4p1 (ext_ since GCC warns) 4108 // C90 6.6.6.4p4 4109 unsigned DiagID = getLangOpts().C99 ? diag::ext_return_missing_expr 4110 : diag::warn_return_missing_expr; 4111 // Note that at this point one of getCurFunctionDecl() or 4112 // getCurMethodDecl() must be non-null (see above). 4113 assert((getCurFunctionDecl() || getCurMethodDecl()) && 4114 "Not in a FunctionDecl or ObjCMethodDecl?"); 4115 bool IsMethod = FD == nullptr; 4116 const NamedDecl *ND = 4117 IsMethod ? cast<NamedDecl>(getCurMethodDecl()) : cast<NamedDecl>(FD); 4118 Diag(ReturnLoc, DiagID) << ND << IsMethod; 4119 } 4120 4121 Result = ReturnStmt::Create(Context, ReturnLoc, /* RetExpr=*/nullptr, 4122 /* NRVOCandidate=*/nullptr); 4123 } else { 4124 assert(RetValExp || HasDependentReturnType); 4125 const VarDecl *NRVOCandidate = nullptr; 4126 4127 QualType RetType = RelatedRetType.isNull() ? FnRetType : RelatedRetType; 4128 4129 // C99 6.8.6.4p3(136): The return statement is not an assignment. The 4130 // overlap restriction of subclause 6.5.16.1 does not apply to the case of 4131 // function return. 4132 4133 // In C++ the return statement is handled via a copy initialization, 4134 // the C version of which boils down to CheckSingleAssignmentConstraints. 4135 if (RetValExp) 4136 NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, CES_Strict); 4137 if (!HasDependentReturnType && !RetValExp->isTypeDependent()) { 4138 // we have a non-void function with an expression, continue checking 4139 InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc, 4140 RetType, 4141 NRVOCandidate != nullptr); 4142 ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate, 4143 RetType, RetValExp); 4144 if (Res.isInvalid()) { 4145 // FIXME: Clean up temporaries here anyway? 4146 return StmtError(); 4147 } 4148 RetValExp = Res.getAs<Expr>(); 4149 4150 // If we have a related result type, we need to implicitly 4151 // convert back to the formal result type. We can't pretend to 4152 // initialize the result again --- we might end double-retaining 4153 // --- so instead we initialize a notional temporary. 4154 if (!RelatedRetType.isNull()) { 4155 Entity = InitializedEntity::InitializeRelatedResult(getCurMethodDecl(), 4156 FnRetType); 4157 Res = PerformCopyInitialization(Entity, ReturnLoc, RetValExp); 4158 if (Res.isInvalid()) { 4159 // FIXME: Clean up temporaries here anyway? 4160 return StmtError(); 4161 } 4162 RetValExp = Res.getAs<Expr>(); 4163 } 4164 4165 CheckReturnValExpr(RetValExp, FnRetType, ReturnLoc, isObjCMethod, Attrs, 4166 getCurFunctionDecl()); 4167 } 4168 4169 if (RetValExp) { 4170 ExprResult ER = 4171 ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false); 4172 if (ER.isInvalid()) 4173 return StmtError(); 4174 RetValExp = ER.get(); 4175 } 4176 Result = ReturnStmt::Create(Context, ReturnLoc, RetValExp, NRVOCandidate); 4177 } 4178 4179 // If we need to check for the named return value optimization, save the 4180 // return statement in our scope for later processing. 4181 if (Result->getNRVOCandidate()) 4182 FunctionScopes.back()->Returns.push_back(Result); 4183 4184 if (FunctionScopes.back()->FirstReturnLoc.isInvalid()) 4185 FunctionScopes.back()->FirstReturnLoc = ReturnLoc; 4186 4187 return Result; 4188 } 4189 4190 StmtResult 4191 Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc, 4192 SourceLocation RParen, Decl *Parm, 4193 Stmt *Body) { 4194 VarDecl *Var = cast_or_null<VarDecl>(Parm); 4195 if (Var && Var->isInvalidDecl()) 4196 return StmtError(); 4197 4198 return new (Context) ObjCAtCatchStmt(AtLoc, RParen, Var, Body); 4199 } 4200 4201 StmtResult 4202 Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body) { 4203 return new (Context) ObjCAtFinallyStmt(AtLoc, Body); 4204 } 4205 4206 StmtResult 4207 Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc, Stmt *Try, 4208 MultiStmtArg CatchStmts, Stmt *Finally) { 4209 if (!getLangOpts().ObjCExceptions) 4210 Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@try"; 4211 4212 setFunctionHasBranchProtectedScope(); 4213 unsigned NumCatchStmts = CatchStmts.size(); 4214 return ObjCAtTryStmt::Create(Context, AtLoc, Try, CatchStmts.data(), 4215 NumCatchStmts, Finally); 4216 } 4217 4218 StmtResult Sema::BuildObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw) { 4219 if (Throw) { 4220 ExprResult Result = DefaultLvalueConversion(Throw); 4221 if (Result.isInvalid()) 4222 return StmtError(); 4223 4224 Result = ActOnFinishFullExpr(Result.get(), /*DiscardedValue*/ false); 4225 if (Result.isInvalid()) 4226 return StmtError(); 4227 Throw = Result.get(); 4228 4229 QualType ThrowType = Throw->getType(); 4230 // Make sure the expression type is an ObjC pointer or "void *". 4231 if (!ThrowType->isDependentType() && 4232 !ThrowType->isObjCObjectPointerType()) { 4233 const PointerType *PT = ThrowType->getAs<PointerType>(); 4234 if (!PT || !PT->getPointeeType()->isVoidType()) 4235 return StmtError(Diag(AtLoc, diag::err_objc_throw_expects_object) 4236 << Throw->getType() << Throw->getSourceRange()); 4237 } 4238 } 4239 4240 return new (Context) ObjCAtThrowStmt(AtLoc, Throw); 4241 } 4242 4243 StmtResult 4244 Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw, 4245 Scope *CurScope) { 4246 if (!getLangOpts().ObjCExceptions) 4247 Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@throw"; 4248 4249 if (!Throw) { 4250 // @throw without an expression designates a rethrow (which must occur 4251 // in the context of an @catch clause). 4252 Scope *AtCatchParent = CurScope; 4253 while (AtCatchParent && !AtCatchParent->isAtCatchScope()) 4254 AtCatchParent = AtCatchParent->getParent(); 4255 if (!AtCatchParent) 4256 return StmtError(Diag(AtLoc, diag::err_rethrow_used_outside_catch)); 4257 } 4258 return BuildObjCAtThrowStmt(AtLoc, Throw); 4259 } 4260 4261 ExprResult 4262 Sema::ActOnObjCAtSynchronizedOperand(SourceLocation atLoc, Expr *operand) { 4263 ExprResult result = DefaultLvalueConversion(operand); 4264 if (result.isInvalid()) 4265 return ExprError(); 4266 operand = result.get(); 4267 4268 // Make sure the expression type is an ObjC pointer or "void *". 4269 QualType type = operand->getType(); 4270 if (!type->isDependentType() && 4271 !type->isObjCObjectPointerType()) { 4272 const PointerType *pointerType = type->getAs<PointerType>(); 4273 if (!pointerType || !pointerType->getPointeeType()->isVoidType()) { 4274 if (getLangOpts().CPlusPlus) { 4275 if (RequireCompleteType(atLoc, type, 4276 diag::err_incomplete_receiver_type)) 4277 return Diag(atLoc, diag::err_objc_synchronized_expects_object) 4278 << type << operand->getSourceRange(); 4279 4280 ExprResult result = PerformContextuallyConvertToObjCPointer(operand); 4281 if (result.isInvalid()) 4282 return ExprError(); 4283 if (!result.isUsable()) 4284 return Diag(atLoc, diag::err_objc_synchronized_expects_object) 4285 << type << operand->getSourceRange(); 4286 4287 operand = result.get(); 4288 } else { 4289 return Diag(atLoc, diag::err_objc_synchronized_expects_object) 4290 << type << operand->getSourceRange(); 4291 } 4292 } 4293 } 4294 4295 // The operand to @synchronized is a full-expression. 4296 return ActOnFinishFullExpr(operand, /*DiscardedValue*/ false); 4297 } 4298 4299 StmtResult 4300 Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, Expr *SyncExpr, 4301 Stmt *SyncBody) { 4302 // We can't jump into or indirect-jump out of a @synchronized block. 4303 setFunctionHasBranchProtectedScope(); 4304 return new (Context) ObjCAtSynchronizedStmt(AtLoc, SyncExpr, SyncBody); 4305 } 4306 4307 /// ActOnCXXCatchBlock - Takes an exception declaration and a handler block 4308 /// and creates a proper catch handler from them. 4309 StmtResult 4310 Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, Decl *ExDecl, 4311 Stmt *HandlerBlock) { 4312 // There's nothing to test that ActOnExceptionDecl didn't already test. 4313 return new (Context) 4314 CXXCatchStmt(CatchLoc, cast_or_null<VarDecl>(ExDecl), HandlerBlock); 4315 } 4316 4317 StmtResult 4318 Sema::ActOnObjCAutoreleasePoolStmt(SourceLocation AtLoc, Stmt *Body) { 4319 setFunctionHasBranchProtectedScope(); 4320 return new (Context) ObjCAutoreleasePoolStmt(AtLoc, Body); 4321 } 4322 4323 namespace { 4324 class CatchHandlerType { 4325 QualType QT; 4326 unsigned IsPointer : 1; 4327 4328 // This is a special constructor to be used only with DenseMapInfo's 4329 // getEmptyKey() and getTombstoneKey() functions. 4330 friend struct llvm::DenseMapInfo<CatchHandlerType>; 4331 enum Unique { ForDenseMap }; 4332 CatchHandlerType(QualType QT, Unique) : QT(QT), IsPointer(false) {} 4333 4334 public: 4335 /// Used when creating a CatchHandlerType from a handler type; will determine 4336 /// whether the type is a pointer or reference and will strip off the top 4337 /// level pointer and cv-qualifiers. 4338 CatchHandlerType(QualType Q) : QT(Q), IsPointer(false) { 4339 if (QT->isPointerType()) 4340 IsPointer = true; 4341 4342 if (IsPointer || QT->isReferenceType()) 4343 QT = QT->getPointeeType(); 4344 QT = QT.getUnqualifiedType(); 4345 } 4346 4347 /// Used when creating a CatchHandlerType from a base class type; pretends the 4348 /// type passed in had the pointer qualifier, does not need to get an 4349 /// unqualified type. 4350 CatchHandlerType(QualType QT, bool IsPointer) 4351 : QT(QT), IsPointer(IsPointer) {} 4352 4353 QualType underlying() const { return QT; } 4354 bool isPointer() const { return IsPointer; } 4355 4356 friend bool operator==(const CatchHandlerType &LHS, 4357 const CatchHandlerType &RHS) { 4358 // If the pointer qualification does not match, we can return early. 4359 if (LHS.IsPointer != RHS.IsPointer) 4360 return false; 4361 // Otherwise, check the underlying type without cv-qualifiers. 4362 return LHS.QT == RHS.QT; 4363 } 4364 }; 4365 } // namespace 4366 4367 namespace llvm { 4368 template <> struct DenseMapInfo<CatchHandlerType> { 4369 static CatchHandlerType getEmptyKey() { 4370 return CatchHandlerType(DenseMapInfo<QualType>::getEmptyKey(), 4371 CatchHandlerType::ForDenseMap); 4372 } 4373 4374 static CatchHandlerType getTombstoneKey() { 4375 return CatchHandlerType(DenseMapInfo<QualType>::getTombstoneKey(), 4376 CatchHandlerType::ForDenseMap); 4377 } 4378 4379 static unsigned getHashValue(const CatchHandlerType &Base) { 4380 return DenseMapInfo<QualType>::getHashValue(Base.underlying()); 4381 } 4382 4383 static bool isEqual(const CatchHandlerType &LHS, 4384 const CatchHandlerType &RHS) { 4385 return LHS == RHS; 4386 } 4387 }; 4388 } 4389 4390 namespace { 4391 class CatchTypePublicBases { 4392 ASTContext &Ctx; 4393 const llvm::DenseMap<CatchHandlerType, CXXCatchStmt *> &TypesToCheck; 4394 const bool CheckAgainstPointer; 4395 4396 CXXCatchStmt *FoundHandler; 4397 CanQualType FoundHandlerType; 4398 4399 public: 4400 CatchTypePublicBases( 4401 ASTContext &Ctx, 4402 const llvm::DenseMap<CatchHandlerType, CXXCatchStmt *> &T, bool C) 4403 : Ctx(Ctx), TypesToCheck(T), CheckAgainstPointer(C), 4404 FoundHandler(nullptr) {} 4405 4406 CXXCatchStmt *getFoundHandler() const { return FoundHandler; } 4407 CanQualType getFoundHandlerType() const { return FoundHandlerType; } 4408 4409 bool operator()(const CXXBaseSpecifier *S, CXXBasePath &) { 4410 if (S->getAccessSpecifier() == AccessSpecifier::AS_public) { 4411 CatchHandlerType Check(S->getType(), CheckAgainstPointer); 4412 const auto &M = TypesToCheck; 4413 auto I = M.find(Check); 4414 if (I != M.end()) { 4415 FoundHandler = I->second; 4416 FoundHandlerType = Ctx.getCanonicalType(S->getType()); 4417 return true; 4418 } 4419 } 4420 return false; 4421 } 4422 }; 4423 } 4424 4425 /// ActOnCXXTryBlock - Takes a try compound-statement and a number of 4426 /// handlers and creates a try statement from them. 4427 StmtResult Sema::ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock, 4428 ArrayRef<Stmt *> Handlers) { 4429 // Don't report an error if 'try' is used in system headers. 4430 if (!getLangOpts().CXXExceptions && 4431 !getSourceManager().isInSystemHeader(TryLoc) && !getLangOpts().CUDA) { 4432 // Delay error emission for the OpenMP device code. 4433 targetDiag(TryLoc, diag::err_exceptions_disabled) << "try"; 4434 } 4435 4436 // Exceptions aren't allowed in CUDA device code. 4437 if (getLangOpts().CUDA) 4438 CUDADiagIfDeviceCode(TryLoc, diag::err_cuda_device_exceptions) 4439 << "try" << CurrentCUDATarget(); 4440 4441 if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope()) 4442 Diag(TryLoc, diag::err_omp_simd_region_cannot_use_stmt) << "try"; 4443 4444 sema::FunctionScopeInfo *FSI = getCurFunction(); 4445 4446 // C++ try is incompatible with SEH __try. 4447 if (!getLangOpts().Borland && FSI->FirstSEHTryLoc.isValid()) { 4448 Diag(TryLoc, diag::err_mixing_cxx_try_seh_try); 4449 Diag(FSI->FirstSEHTryLoc, diag::note_conflicting_try_here) << "'__try'"; 4450 } 4451 4452 const unsigned NumHandlers = Handlers.size(); 4453 assert(!Handlers.empty() && 4454 "The parser shouldn't call this if there are no handlers."); 4455 4456 llvm::DenseMap<CatchHandlerType, CXXCatchStmt *> HandledTypes; 4457 for (unsigned i = 0; i < NumHandlers; ++i) { 4458 CXXCatchStmt *H = cast<CXXCatchStmt>(Handlers[i]); 4459 4460 // Diagnose when the handler is a catch-all handler, but it isn't the last 4461 // handler for the try block. [except.handle]p5. Also, skip exception 4462 // declarations that are invalid, since we can't usefully report on them. 4463 if (!H->getExceptionDecl()) { 4464 if (i < NumHandlers - 1) 4465 return StmtError(Diag(H->getBeginLoc(), diag::err_early_catch_all)); 4466 continue; 4467 } else if (H->getExceptionDecl()->isInvalidDecl()) 4468 continue; 4469 4470 // Walk the type hierarchy to diagnose when this type has already been 4471 // handled (duplication), or cannot be handled (derivation inversion). We 4472 // ignore top-level cv-qualifiers, per [except.handle]p3 4473 CatchHandlerType HandlerCHT = 4474 (QualType)Context.getCanonicalType(H->getCaughtType()); 4475 4476 // We can ignore whether the type is a reference or a pointer; we need the 4477 // underlying declaration type in order to get at the underlying record 4478 // decl, if there is one. 4479 QualType Underlying = HandlerCHT.underlying(); 4480 if (auto *RD = Underlying->getAsCXXRecordDecl()) { 4481 if (!RD->hasDefinition()) 4482 continue; 4483 // Check that none of the public, unambiguous base classes are in the 4484 // map ([except.handle]p1). Give the base classes the same pointer 4485 // qualification as the original type we are basing off of. This allows 4486 // comparison against the handler type using the same top-level pointer 4487 // as the original type. 4488 CXXBasePaths Paths; 4489 Paths.setOrigin(RD); 4490 CatchTypePublicBases CTPB(Context, HandledTypes, HandlerCHT.isPointer()); 4491 if (RD->lookupInBases(CTPB, Paths)) { 4492 const CXXCatchStmt *Problem = CTPB.getFoundHandler(); 4493 if (!Paths.isAmbiguous(CTPB.getFoundHandlerType())) { 4494 Diag(H->getExceptionDecl()->getTypeSpecStartLoc(), 4495 diag::warn_exception_caught_by_earlier_handler) 4496 << H->getCaughtType(); 4497 Diag(Problem->getExceptionDecl()->getTypeSpecStartLoc(), 4498 diag::note_previous_exception_handler) 4499 << Problem->getCaughtType(); 4500 } 4501 } 4502 } 4503 4504 // Add the type the list of ones we have handled; diagnose if we've already 4505 // handled it. 4506 auto R = HandledTypes.insert(std::make_pair(H->getCaughtType(), H)); 4507 if (!R.second) { 4508 const CXXCatchStmt *Problem = R.first->second; 4509 Diag(H->getExceptionDecl()->getTypeSpecStartLoc(), 4510 diag::warn_exception_caught_by_earlier_handler) 4511 << H->getCaughtType(); 4512 Diag(Problem->getExceptionDecl()->getTypeSpecStartLoc(), 4513 diag::note_previous_exception_handler) 4514 << Problem->getCaughtType(); 4515 } 4516 } 4517 4518 FSI->setHasCXXTry(TryLoc); 4519 4520 return CXXTryStmt::Create(Context, TryLoc, TryBlock, Handlers); 4521 } 4522 4523 StmtResult Sema::ActOnSEHTryBlock(bool IsCXXTry, SourceLocation TryLoc, 4524 Stmt *TryBlock, Stmt *Handler) { 4525 assert(TryBlock && Handler); 4526 4527 sema::FunctionScopeInfo *FSI = getCurFunction(); 4528 4529 // SEH __try is incompatible with C++ try. Borland appears to support this, 4530 // however. 4531 if (!getLangOpts().Borland) { 4532 if (FSI->FirstCXXTryLoc.isValid()) { 4533 Diag(TryLoc, diag::err_mixing_cxx_try_seh_try); 4534 Diag(FSI->FirstCXXTryLoc, diag::note_conflicting_try_here) << "'try'"; 4535 } 4536 } 4537 4538 FSI->setHasSEHTry(TryLoc); 4539 4540 // Reject __try in Obj-C methods, blocks, and captured decls, since we don't 4541 // track if they use SEH. 4542 DeclContext *DC = CurContext; 4543 while (DC && !DC->isFunctionOrMethod()) 4544 DC = DC->getParent(); 4545 FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(DC); 4546 if (FD) 4547 FD->setUsesSEHTry(true); 4548 else 4549 Diag(TryLoc, diag::err_seh_try_outside_functions); 4550 4551 // Reject __try on unsupported targets. 4552 if (!Context.getTargetInfo().isSEHTrySupported()) 4553 Diag(TryLoc, diag::err_seh_try_unsupported); 4554 4555 return SEHTryStmt::Create(Context, IsCXXTry, TryLoc, TryBlock, Handler); 4556 } 4557 4558 StmtResult Sema::ActOnSEHExceptBlock(SourceLocation Loc, Expr *FilterExpr, 4559 Stmt *Block) { 4560 assert(FilterExpr && Block); 4561 QualType FTy = FilterExpr->getType(); 4562 if (!FTy->isIntegerType() && !FTy->isDependentType()) { 4563 return StmtError( 4564 Diag(FilterExpr->getExprLoc(), diag::err_filter_expression_integral) 4565 << FTy); 4566 } 4567 return SEHExceptStmt::Create(Context, Loc, FilterExpr, Block); 4568 } 4569 4570 void Sema::ActOnStartSEHFinallyBlock() { 4571 CurrentSEHFinally.push_back(CurScope); 4572 } 4573 4574 void Sema::ActOnAbortSEHFinallyBlock() { 4575 CurrentSEHFinally.pop_back(); 4576 } 4577 4578 StmtResult Sema::ActOnFinishSEHFinallyBlock(SourceLocation Loc, Stmt *Block) { 4579 assert(Block); 4580 CurrentSEHFinally.pop_back(); 4581 return SEHFinallyStmt::Create(Context, Loc, Block); 4582 } 4583 4584 StmtResult 4585 Sema::ActOnSEHLeaveStmt(SourceLocation Loc, Scope *CurScope) { 4586 Scope *SEHTryParent = CurScope; 4587 while (SEHTryParent && !SEHTryParent->isSEHTryScope()) 4588 SEHTryParent = SEHTryParent->getParent(); 4589 if (!SEHTryParent) 4590 return StmtError(Diag(Loc, diag::err_ms___leave_not_in___try)); 4591 CheckJumpOutOfSEHFinally(*this, Loc, *SEHTryParent); 4592 4593 return new (Context) SEHLeaveStmt(Loc); 4594 } 4595 4596 StmtResult Sema::BuildMSDependentExistsStmt(SourceLocation KeywordLoc, 4597 bool IsIfExists, 4598 NestedNameSpecifierLoc QualifierLoc, 4599 DeclarationNameInfo NameInfo, 4600 Stmt *Nested) 4601 { 4602 return new (Context) MSDependentExistsStmt(KeywordLoc, IsIfExists, 4603 QualifierLoc, NameInfo, 4604 cast<CompoundStmt>(Nested)); 4605 } 4606 4607 4608 StmtResult Sema::ActOnMSDependentExistsStmt(SourceLocation KeywordLoc, 4609 bool IsIfExists, 4610 CXXScopeSpec &SS, 4611 UnqualifiedId &Name, 4612 Stmt *Nested) { 4613 return BuildMSDependentExistsStmt(KeywordLoc, IsIfExists, 4614 SS.getWithLocInContext(Context), 4615 GetNameFromUnqualifiedId(Name), 4616 Nested); 4617 } 4618 4619 RecordDecl* 4620 Sema::CreateCapturedStmtRecordDecl(CapturedDecl *&CD, SourceLocation Loc, 4621 unsigned NumParams) { 4622 DeclContext *DC = CurContext; 4623 while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext())) 4624 DC = DC->getParent(); 4625 4626 RecordDecl *RD = nullptr; 4627 if (getLangOpts().CPlusPlus) 4628 RD = CXXRecordDecl::Create(Context, TTK_Struct, DC, Loc, Loc, 4629 /*Id=*/nullptr); 4630 else 4631 RD = RecordDecl::Create(Context, TTK_Struct, DC, Loc, Loc, /*Id=*/nullptr); 4632 4633 RD->setCapturedRecord(); 4634 DC->addDecl(RD); 4635 RD->setImplicit(); 4636 RD->startDefinition(); 4637 4638 assert(NumParams > 0 && "CapturedStmt requires context parameter"); 4639 CD = CapturedDecl::Create(Context, CurContext, NumParams); 4640 DC->addDecl(CD); 4641 return RD; 4642 } 4643 4644 static bool 4645 buildCapturedStmtCaptureList(Sema &S, CapturedRegionScopeInfo *RSI, 4646 SmallVectorImpl<CapturedStmt::Capture> &Captures, 4647 SmallVectorImpl<Expr *> &CaptureInits) { 4648 for (const sema::Capture &Cap : RSI->Captures) { 4649 if (Cap.isInvalid()) 4650 continue; 4651 4652 // Form the initializer for the capture. 4653 ExprResult Init = S.BuildCaptureInit(Cap, Cap.getLocation(), 4654 RSI->CapRegionKind == CR_OpenMP); 4655 4656 // FIXME: Bail out now if the capture is not used and the initializer has 4657 // no side-effects. 4658 4659 // Create a field for this capture. 4660 FieldDecl *Field = S.BuildCaptureField(RSI->TheRecordDecl, Cap); 4661 4662 // Add the capture to our list of captures. 4663 if (Cap.isThisCapture()) { 4664 Captures.push_back(CapturedStmt::Capture(Cap.getLocation(), 4665 CapturedStmt::VCK_This)); 4666 } else if (Cap.isVLATypeCapture()) { 4667 Captures.push_back( 4668 CapturedStmt::Capture(Cap.getLocation(), CapturedStmt::VCK_VLAType)); 4669 } else { 4670 assert(Cap.isVariableCapture() && "unknown kind of capture"); 4671 4672 if (S.getLangOpts().OpenMP && RSI->CapRegionKind == CR_OpenMP) 4673 S.setOpenMPCaptureKind(Field, Cap.getVariable(), RSI->OpenMPLevel); 4674 4675 Captures.push_back(CapturedStmt::Capture(Cap.getLocation(), 4676 Cap.isReferenceCapture() 4677 ? CapturedStmt::VCK_ByRef 4678 : CapturedStmt::VCK_ByCopy, 4679 Cap.getVariable())); 4680 } 4681 CaptureInits.push_back(Init.get()); 4682 } 4683 return false; 4684 } 4685 4686 void Sema::ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope, 4687 CapturedRegionKind Kind, 4688 unsigned NumParams) { 4689 CapturedDecl *CD = nullptr; 4690 RecordDecl *RD = CreateCapturedStmtRecordDecl(CD, Loc, NumParams); 4691 4692 // Build the context parameter 4693 DeclContext *DC = CapturedDecl::castToDeclContext(CD); 4694 IdentifierInfo *ParamName = &Context.Idents.get("__context"); 4695 QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD)); 4696 auto *Param = 4697 ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType, 4698 ImplicitParamDecl::CapturedContext); 4699 DC->addDecl(Param); 4700 4701 CD->setContextParam(0, Param); 4702 4703 // Enter the capturing scope for this captured region. 4704 PushCapturedRegionScope(CurScope, CD, RD, Kind); 4705 4706 if (CurScope) 4707 PushDeclContext(CurScope, CD); 4708 else 4709 CurContext = CD; 4710 4711 PushExpressionEvaluationContext( 4712 ExpressionEvaluationContext::PotentiallyEvaluated); 4713 } 4714 4715 void Sema::ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope, 4716 CapturedRegionKind Kind, 4717 ArrayRef<CapturedParamNameType> Params, 4718 unsigned OpenMPCaptureLevel) { 4719 CapturedDecl *CD = nullptr; 4720 RecordDecl *RD = CreateCapturedStmtRecordDecl(CD, Loc, Params.size()); 4721 4722 // Build the context parameter 4723 DeclContext *DC = CapturedDecl::castToDeclContext(CD); 4724 bool ContextIsFound = false; 4725 unsigned ParamNum = 0; 4726 for (ArrayRef<CapturedParamNameType>::iterator I = Params.begin(), 4727 E = Params.end(); 4728 I != E; ++I, ++ParamNum) { 4729 if (I->second.isNull()) { 4730 assert(!ContextIsFound && 4731 "null type has been found already for '__context' parameter"); 4732 IdentifierInfo *ParamName = &Context.Idents.get("__context"); 4733 QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD)) 4734 .withConst() 4735 .withRestrict(); 4736 auto *Param = 4737 ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType, 4738 ImplicitParamDecl::CapturedContext); 4739 DC->addDecl(Param); 4740 CD->setContextParam(ParamNum, Param); 4741 ContextIsFound = true; 4742 } else { 4743 IdentifierInfo *ParamName = &Context.Idents.get(I->first); 4744 auto *Param = 4745 ImplicitParamDecl::Create(Context, DC, Loc, ParamName, I->second, 4746 ImplicitParamDecl::CapturedContext); 4747 DC->addDecl(Param); 4748 CD->setParam(ParamNum, Param); 4749 } 4750 } 4751 assert(ContextIsFound && "no null type for '__context' parameter"); 4752 if (!ContextIsFound) { 4753 // Add __context implicitly if it is not specified. 4754 IdentifierInfo *ParamName = &Context.Idents.get("__context"); 4755 QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD)); 4756 auto *Param = 4757 ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType, 4758 ImplicitParamDecl::CapturedContext); 4759 DC->addDecl(Param); 4760 CD->setContextParam(ParamNum, Param); 4761 } 4762 // Enter the capturing scope for this captured region. 4763 PushCapturedRegionScope(CurScope, CD, RD, Kind, OpenMPCaptureLevel); 4764 4765 if (CurScope) 4766 PushDeclContext(CurScope, CD); 4767 else 4768 CurContext = CD; 4769 4770 PushExpressionEvaluationContext( 4771 ExpressionEvaluationContext::PotentiallyEvaluated); 4772 } 4773 4774 void Sema::ActOnCapturedRegionError() { 4775 DiscardCleanupsInEvaluationContext(); 4776 PopExpressionEvaluationContext(); 4777 PopDeclContext(); 4778 PoppedFunctionScopePtr ScopeRAII = PopFunctionScopeInfo(); 4779 CapturedRegionScopeInfo *RSI = cast<CapturedRegionScopeInfo>(ScopeRAII.get()); 4780 4781 RecordDecl *Record = RSI->TheRecordDecl; 4782 Record->setInvalidDecl(); 4783 4784 SmallVector<Decl*, 4> Fields(Record->fields()); 4785 ActOnFields(/*Scope=*/nullptr, Record->getLocation(), Record, Fields, 4786 SourceLocation(), SourceLocation(), ParsedAttributesView()); 4787 } 4788 4789 StmtResult Sema::ActOnCapturedRegionEnd(Stmt *S) { 4790 // Leave the captured scope before we start creating captures in the 4791 // enclosing scope. 4792 DiscardCleanupsInEvaluationContext(); 4793 PopExpressionEvaluationContext(); 4794 PopDeclContext(); 4795 PoppedFunctionScopePtr ScopeRAII = PopFunctionScopeInfo(); 4796 CapturedRegionScopeInfo *RSI = cast<CapturedRegionScopeInfo>(ScopeRAII.get()); 4797 4798 SmallVector<CapturedStmt::Capture, 4> Captures; 4799 SmallVector<Expr *, 4> CaptureInits; 4800 if (buildCapturedStmtCaptureList(*this, RSI, Captures, CaptureInits)) 4801 return StmtError(); 4802 4803 CapturedDecl *CD = RSI->TheCapturedDecl; 4804 RecordDecl *RD = RSI->TheRecordDecl; 4805 4806 CapturedStmt *Res = CapturedStmt::Create( 4807 getASTContext(), S, static_cast<CapturedRegionKind>(RSI->CapRegionKind), 4808 Captures, CaptureInits, CD, RD); 4809 4810 CD->setBody(Res->getCapturedStmt()); 4811 RD->completeDefinition(); 4812 4813 return Res; 4814 } 4815