xref: /netbsd-src/external/apache2/llvm/dist/clang/lib/Sema/SemaOverload.cpp (revision 404ee5b9334f618040b6cdef96a0ff35a6fc4636)
1 //===--- SemaOverload.cpp - C++ Overloading -------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file provides Sema routines for C++ overloading.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/Sema/Overload.h"
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/CXXInheritance.h"
16 #include "clang/AST/DeclObjC.h"
17 #include "clang/AST/Expr.h"
18 #include "clang/AST/ExprCXX.h"
19 #include "clang/AST/ExprObjC.h"
20 #include "clang/AST/TypeOrdering.h"
21 #include "clang/Basic/Diagnostic.h"
22 #include "clang/Basic/DiagnosticOptions.h"
23 #include "clang/Basic/PartialDiagnostic.h"
24 #include "clang/Basic/TargetInfo.h"
25 #include "clang/Sema/Initialization.h"
26 #include "clang/Sema/Lookup.h"
27 #include "clang/Sema/SemaInternal.h"
28 #include "clang/Sema/Template.h"
29 #include "clang/Sema/TemplateDeduction.h"
30 #include "llvm/ADT/DenseSet.h"
31 #include "llvm/ADT/Optional.h"
32 #include "llvm/ADT/STLExtras.h"
33 #include "llvm/ADT/SmallPtrSet.h"
34 #include "llvm/ADT/SmallString.h"
35 #include <algorithm>
36 #include <cstdlib>
37 
38 using namespace clang;
39 using namespace sema;
40 
41 static bool functionHasPassObjectSizeParams(const FunctionDecl *FD) {
42   return llvm::any_of(FD->parameters(), [](const ParmVarDecl *P) {
43     return P->hasAttr<PassObjectSizeAttr>();
44   });
45 }
46 
47 /// A convenience routine for creating a decayed reference to a function.
48 static ExprResult
49 CreateFunctionRefExpr(Sema &S, FunctionDecl *Fn, NamedDecl *FoundDecl,
50                       const Expr *Base, bool HadMultipleCandidates,
51                       SourceLocation Loc = SourceLocation(),
52                       const DeclarationNameLoc &LocInfo = DeclarationNameLoc()){
53   if (S.DiagnoseUseOfDecl(FoundDecl, Loc))
54     return ExprError();
55   // If FoundDecl is different from Fn (such as if one is a template
56   // and the other a specialization), make sure DiagnoseUseOfDecl is
57   // called on both.
58   // FIXME: This would be more comprehensively addressed by modifying
59   // DiagnoseUseOfDecl to accept both the FoundDecl and the decl
60   // being used.
61   if (FoundDecl != Fn && S.DiagnoseUseOfDecl(Fn, Loc))
62     return ExprError();
63   if (auto *FPT = Fn->getType()->getAs<FunctionProtoType>())
64     S.ResolveExceptionSpec(Loc, FPT);
65   DeclRefExpr *DRE = new (S.Context)
66       DeclRefExpr(S.Context, Fn, false, Fn->getType(), VK_LValue, Loc, LocInfo);
67   if (HadMultipleCandidates)
68     DRE->setHadMultipleCandidates(true);
69 
70   S.MarkDeclRefReferenced(DRE, Base);
71   return S.ImpCastExprToType(DRE, S.Context.getPointerType(DRE->getType()),
72                              CK_FunctionToPointerDecay);
73 }
74 
75 static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
76                                  bool InOverloadResolution,
77                                  StandardConversionSequence &SCS,
78                                  bool CStyle,
79                                  bool AllowObjCWritebackConversion);
80 
81 static bool IsTransparentUnionStandardConversion(Sema &S, Expr* From,
82                                                  QualType &ToType,
83                                                  bool InOverloadResolution,
84                                                  StandardConversionSequence &SCS,
85                                                  bool CStyle);
86 static OverloadingResult
87 IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
88                         UserDefinedConversionSequence& User,
89                         OverloadCandidateSet& Conversions,
90                         bool AllowExplicit,
91                         bool AllowObjCConversionOnExplicit);
92 
93 
94 static ImplicitConversionSequence::CompareKind
95 CompareStandardConversionSequences(Sema &S, SourceLocation Loc,
96                                    const StandardConversionSequence& SCS1,
97                                    const StandardConversionSequence& SCS2);
98 
99 static ImplicitConversionSequence::CompareKind
100 CompareQualificationConversions(Sema &S,
101                                 const StandardConversionSequence& SCS1,
102                                 const StandardConversionSequence& SCS2);
103 
104 static ImplicitConversionSequence::CompareKind
105 CompareDerivedToBaseConversions(Sema &S, SourceLocation Loc,
106                                 const StandardConversionSequence& SCS1,
107                                 const StandardConversionSequence& SCS2);
108 
109 /// GetConversionRank - Retrieve the implicit conversion rank
110 /// corresponding to the given implicit conversion kind.
111 ImplicitConversionRank clang::GetConversionRank(ImplicitConversionKind Kind) {
112   static const ImplicitConversionRank
113     Rank[(int)ICK_Num_Conversion_Kinds] = {
114     ICR_Exact_Match,
115     ICR_Exact_Match,
116     ICR_Exact_Match,
117     ICR_Exact_Match,
118     ICR_Exact_Match,
119     ICR_Exact_Match,
120     ICR_Promotion,
121     ICR_Promotion,
122     ICR_Promotion,
123     ICR_Conversion,
124     ICR_Conversion,
125     ICR_Conversion,
126     ICR_Conversion,
127     ICR_Conversion,
128     ICR_Conversion,
129     ICR_Conversion,
130     ICR_Conversion,
131     ICR_Conversion,
132     ICR_Conversion,
133     ICR_OCL_Scalar_Widening,
134     ICR_Complex_Real_Conversion,
135     ICR_Conversion,
136     ICR_Conversion,
137     ICR_Writeback_Conversion,
138     ICR_Exact_Match, // NOTE(gbiv): This may not be completely right --
139                      // it was omitted by the patch that added
140                      // ICK_Zero_Event_Conversion
141     ICR_C_Conversion,
142     ICR_C_Conversion_Extension
143   };
144   return Rank[(int)Kind];
145 }
146 
147 /// GetImplicitConversionName - Return the name of this kind of
148 /// implicit conversion.
149 static const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
150   static const char* const Name[(int)ICK_Num_Conversion_Kinds] = {
151     "No conversion",
152     "Lvalue-to-rvalue",
153     "Array-to-pointer",
154     "Function-to-pointer",
155     "Function pointer conversion",
156     "Qualification",
157     "Integral promotion",
158     "Floating point promotion",
159     "Complex promotion",
160     "Integral conversion",
161     "Floating conversion",
162     "Complex conversion",
163     "Floating-integral conversion",
164     "Pointer conversion",
165     "Pointer-to-member conversion",
166     "Boolean conversion",
167     "Compatible-types conversion",
168     "Derived-to-base conversion",
169     "Vector conversion",
170     "Vector splat",
171     "Complex-real conversion",
172     "Block Pointer conversion",
173     "Transparent Union Conversion",
174     "Writeback conversion",
175     "OpenCL Zero Event Conversion",
176     "C specific type conversion",
177     "Incompatible pointer conversion"
178   };
179   return Name[Kind];
180 }
181 
182 /// StandardConversionSequence - Set the standard conversion
183 /// sequence to the identity conversion.
184 void StandardConversionSequence::setAsIdentityConversion() {
185   First = ICK_Identity;
186   Second = ICK_Identity;
187   Third = ICK_Identity;
188   DeprecatedStringLiteralToCharPtr = false;
189   QualificationIncludesObjCLifetime = false;
190   ReferenceBinding = false;
191   DirectBinding = false;
192   IsLvalueReference = true;
193   BindsToFunctionLvalue = false;
194   BindsToRvalue = false;
195   BindsImplicitObjectArgumentWithoutRefQualifier = false;
196   ObjCLifetimeConversionBinding = false;
197   CopyConstructor = nullptr;
198 }
199 
200 /// getRank - Retrieve the rank of this standard conversion sequence
201 /// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
202 /// implicit conversions.
203 ImplicitConversionRank StandardConversionSequence::getRank() const {
204   ImplicitConversionRank Rank = ICR_Exact_Match;
205   if  (GetConversionRank(First) > Rank)
206     Rank = GetConversionRank(First);
207   if  (GetConversionRank(Second) > Rank)
208     Rank = GetConversionRank(Second);
209   if  (GetConversionRank(Third) > Rank)
210     Rank = GetConversionRank(Third);
211   return Rank;
212 }
213 
214 /// isPointerConversionToBool - Determines whether this conversion is
215 /// a conversion of a pointer or pointer-to-member to bool. This is
216 /// used as part of the ranking of standard conversion sequences
217 /// (C++ 13.3.3.2p4).
218 bool StandardConversionSequence::isPointerConversionToBool() const {
219   // Note that FromType has not necessarily been transformed by the
220   // array-to-pointer or function-to-pointer implicit conversions, so
221   // check for their presence as well as checking whether FromType is
222   // a pointer.
223   if (getToType(1)->isBooleanType() &&
224       (getFromType()->isPointerType() ||
225        getFromType()->isMemberPointerType() ||
226        getFromType()->isObjCObjectPointerType() ||
227        getFromType()->isBlockPointerType() ||
228        getFromType()->isNullPtrType() ||
229        First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
230     return true;
231 
232   return false;
233 }
234 
235 /// isPointerConversionToVoidPointer - Determines whether this
236 /// conversion is a conversion of a pointer to a void pointer. This is
237 /// used as part of the ranking of standard conversion sequences (C++
238 /// 13.3.3.2p4).
239 bool
240 StandardConversionSequence::
241 isPointerConversionToVoidPointer(ASTContext& Context) const {
242   QualType FromType = getFromType();
243   QualType ToType = getToType(1);
244 
245   // Note that FromType has not necessarily been transformed by the
246   // array-to-pointer implicit conversion, so check for its presence
247   // and redo the conversion to get a pointer.
248   if (First == ICK_Array_To_Pointer)
249     FromType = Context.getArrayDecayedType(FromType);
250 
251   if (Second == ICK_Pointer_Conversion && FromType->isAnyPointerType())
252     if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
253       return ToPtrType->getPointeeType()->isVoidType();
254 
255   return false;
256 }
257 
258 /// Skip any implicit casts which could be either part of a narrowing conversion
259 /// or after one in an implicit conversion.
260 static const Expr *IgnoreNarrowingConversion(ASTContext &Ctx,
261                                              const Expr *Converted) {
262   // We can have cleanups wrapping the converted expression; these need to be
263   // preserved so that destructors run if necessary.
264   if (auto *EWC = dyn_cast<ExprWithCleanups>(Converted)) {
265     Expr *Inner =
266         const_cast<Expr *>(IgnoreNarrowingConversion(Ctx, EWC->getSubExpr()));
267     return ExprWithCleanups::Create(Ctx, Inner, EWC->cleanupsHaveSideEffects(),
268                                     EWC->getObjects());
269   }
270 
271   while (auto *ICE = dyn_cast<ImplicitCastExpr>(Converted)) {
272     switch (ICE->getCastKind()) {
273     case CK_NoOp:
274     case CK_IntegralCast:
275     case CK_IntegralToBoolean:
276     case CK_IntegralToFloating:
277     case CK_BooleanToSignedIntegral:
278     case CK_FloatingToIntegral:
279     case CK_FloatingToBoolean:
280     case CK_FloatingCast:
281       Converted = ICE->getSubExpr();
282       continue;
283 
284     default:
285       return Converted;
286     }
287   }
288 
289   return Converted;
290 }
291 
292 /// Check if this standard conversion sequence represents a narrowing
293 /// conversion, according to C++11 [dcl.init.list]p7.
294 ///
295 /// \param Ctx  The AST context.
296 /// \param Converted  The result of applying this standard conversion sequence.
297 /// \param ConstantValue  If this is an NK_Constant_Narrowing conversion, the
298 ///        value of the expression prior to the narrowing conversion.
299 /// \param ConstantType  If this is an NK_Constant_Narrowing conversion, the
300 ///        type of the expression prior to the narrowing conversion.
301 /// \param IgnoreFloatToIntegralConversion If true type-narrowing conversions
302 ///        from floating point types to integral types should be ignored.
303 NarrowingKind StandardConversionSequence::getNarrowingKind(
304     ASTContext &Ctx, const Expr *Converted, APValue &ConstantValue,
305     QualType &ConstantType, bool IgnoreFloatToIntegralConversion) const {
306   assert(Ctx.getLangOpts().CPlusPlus && "narrowing check outside C++");
307 
308   // C++11 [dcl.init.list]p7:
309   //   A narrowing conversion is an implicit conversion ...
310   QualType FromType = getToType(0);
311   QualType ToType = getToType(1);
312 
313   // A conversion to an enumeration type is narrowing if the conversion to
314   // the underlying type is narrowing. This only arises for expressions of
315   // the form 'Enum{init}'.
316   if (auto *ET = ToType->getAs<EnumType>())
317     ToType = ET->getDecl()->getIntegerType();
318 
319   switch (Second) {
320   // 'bool' is an integral type; dispatch to the right place to handle it.
321   case ICK_Boolean_Conversion:
322     if (FromType->isRealFloatingType())
323       goto FloatingIntegralConversion;
324     if (FromType->isIntegralOrUnscopedEnumerationType())
325       goto IntegralConversion;
326     // Boolean conversions can be from pointers and pointers to members
327     // [conv.bool], and those aren't considered narrowing conversions.
328     return NK_Not_Narrowing;
329 
330   // -- from a floating-point type to an integer type, or
331   //
332   // -- from an integer type or unscoped enumeration type to a floating-point
333   //    type, except where the source is a constant expression and the actual
334   //    value after conversion will fit into the target type and will produce
335   //    the original value when converted back to the original type, or
336   case ICK_Floating_Integral:
337   FloatingIntegralConversion:
338     if (FromType->isRealFloatingType() && ToType->isIntegralType(Ctx)) {
339       return NK_Type_Narrowing;
340     } else if (FromType->isIntegralOrUnscopedEnumerationType() &&
341                ToType->isRealFloatingType()) {
342       if (IgnoreFloatToIntegralConversion)
343         return NK_Not_Narrowing;
344       llvm::APSInt IntConstantValue;
345       const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted);
346       assert(Initializer && "Unknown conversion expression");
347 
348       // If it's value-dependent, we can't tell whether it's narrowing.
349       if (Initializer->isValueDependent())
350         return NK_Dependent_Narrowing;
351 
352       if (Initializer->isIntegerConstantExpr(IntConstantValue, Ctx)) {
353         // Convert the integer to the floating type.
354         llvm::APFloat Result(Ctx.getFloatTypeSemantics(ToType));
355         Result.convertFromAPInt(IntConstantValue, IntConstantValue.isSigned(),
356                                 llvm::APFloat::rmNearestTiesToEven);
357         // And back.
358         llvm::APSInt ConvertedValue = IntConstantValue;
359         bool ignored;
360         Result.convertToInteger(ConvertedValue,
361                                 llvm::APFloat::rmTowardZero, &ignored);
362         // If the resulting value is different, this was a narrowing conversion.
363         if (IntConstantValue != ConvertedValue) {
364           ConstantValue = APValue(IntConstantValue);
365           ConstantType = Initializer->getType();
366           return NK_Constant_Narrowing;
367         }
368       } else {
369         // Variables are always narrowings.
370         return NK_Variable_Narrowing;
371       }
372     }
373     return NK_Not_Narrowing;
374 
375   // -- from long double to double or float, or from double to float, except
376   //    where the source is a constant expression and the actual value after
377   //    conversion is within the range of values that can be represented (even
378   //    if it cannot be represented exactly), or
379   case ICK_Floating_Conversion:
380     if (FromType->isRealFloatingType() && ToType->isRealFloatingType() &&
381         Ctx.getFloatingTypeOrder(FromType, ToType) == 1) {
382       // FromType is larger than ToType.
383       const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted);
384 
385       // If it's value-dependent, we can't tell whether it's narrowing.
386       if (Initializer->isValueDependent())
387         return NK_Dependent_Narrowing;
388 
389       if (Initializer->isCXX11ConstantExpr(Ctx, &ConstantValue)) {
390         // Constant!
391         assert(ConstantValue.isFloat());
392         llvm::APFloat FloatVal = ConstantValue.getFloat();
393         // Convert the source value into the target type.
394         bool ignored;
395         llvm::APFloat::opStatus ConvertStatus = FloatVal.convert(
396           Ctx.getFloatTypeSemantics(ToType),
397           llvm::APFloat::rmNearestTiesToEven, &ignored);
398         // If there was no overflow, the source value is within the range of
399         // values that can be represented.
400         if (ConvertStatus & llvm::APFloat::opOverflow) {
401           ConstantType = Initializer->getType();
402           return NK_Constant_Narrowing;
403         }
404       } else {
405         return NK_Variable_Narrowing;
406       }
407     }
408     return NK_Not_Narrowing;
409 
410   // -- from an integer type or unscoped enumeration type to an integer type
411   //    that cannot represent all the values of the original type, except where
412   //    the source is a constant expression and the actual value after
413   //    conversion will fit into the target type and will produce the original
414   //    value when converted back to the original type.
415   case ICK_Integral_Conversion:
416   IntegralConversion: {
417     assert(FromType->isIntegralOrUnscopedEnumerationType());
418     assert(ToType->isIntegralOrUnscopedEnumerationType());
419     const bool FromSigned = FromType->isSignedIntegerOrEnumerationType();
420     const unsigned FromWidth = Ctx.getIntWidth(FromType);
421     const bool ToSigned = ToType->isSignedIntegerOrEnumerationType();
422     const unsigned ToWidth = Ctx.getIntWidth(ToType);
423 
424     if (FromWidth > ToWidth ||
425         (FromWidth == ToWidth && FromSigned != ToSigned) ||
426         (FromSigned && !ToSigned)) {
427       // Not all values of FromType can be represented in ToType.
428       llvm::APSInt InitializerValue;
429       const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted);
430 
431       // If it's value-dependent, we can't tell whether it's narrowing.
432       if (Initializer->isValueDependent())
433         return NK_Dependent_Narrowing;
434 
435       if (!Initializer->isIntegerConstantExpr(InitializerValue, Ctx)) {
436         // Such conversions on variables are always narrowing.
437         return NK_Variable_Narrowing;
438       }
439       bool Narrowing = false;
440       if (FromWidth < ToWidth) {
441         // Negative -> unsigned is narrowing. Otherwise, more bits is never
442         // narrowing.
443         if (InitializerValue.isSigned() && InitializerValue.isNegative())
444           Narrowing = true;
445       } else {
446         // Add a bit to the InitializerValue so we don't have to worry about
447         // signed vs. unsigned comparisons.
448         InitializerValue = InitializerValue.extend(
449           InitializerValue.getBitWidth() + 1);
450         // Convert the initializer to and from the target width and signed-ness.
451         llvm::APSInt ConvertedValue = InitializerValue;
452         ConvertedValue = ConvertedValue.trunc(ToWidth);
453         ConvertedValue.setIsSigned(ToSigned);
454         ConvertedValue = ConvertedValue.extend(InitializerValue.getBitWidth());
455         ConvertedValue.setIsSigned(InitializerValue.isSigned());
456         // If the result is different, this was a narrowing conversion.
457         if (ConvertedValue != InitializerValue)
458           Narrowing = true;
459       }
460       if (Narrowing) {
461         ConstantType = Initializer->getType();
462         ConstantValue = APValue(InitializerValue);
463         return NK_Constant_Narrowing;
464       }
465     }
466     return NK_Not_Narrowing;
467   }
468 
469   default:
470     // Other kinds of conversions are not narrowings.
471     return NK_Not_Narrowing;
472   }
473 }
474 
475 /// dump - Print this standard conversion sequence to standard
476 /// error. Useful for debugging overloading issues.
477 LLVM_DUMP_METHOD void StandardConversionSequence::dump() const {
478   raw_ostream &OS = llvm::errs();
479   bool PrintedSomething = false;
480   if (First != ICK_Identity) {
481     OS << GetImplicitConversionName(First);
482     PrintedSomething = true;
483   }
484 
485   if (Second != ICK_Identity) {
486     if (PrintedSomething) {
487       OS << " -> ";
488     }
489     OS << GetImplicitConversionName(Second);
490 
491     if (CopyConstructor) {
492       OS << " (by copy constructor)";
493     } else if (DirectBinding) {
494       OS << " (direct reference binding)";
495     } else if (ReferenceBinding) {
496       OS << " (reference binding)";
497     }
498     PrintedSomething = true;
499   }
500 
501   if (Third != ICK_Identity) {
502     if (PrintedSomething) {
503       OS << " -> ";
504     }
505     OS << GetImplicitConversionName(Third);
506     PrintedSomething = true;
507   }
508 
509   if (!PrintedSomething) {
510     OS << "No conversions required";
511   }
512 }
513 
514 /// dump - Print this user-defined conversion sequence to standard
515 /// error. Useful for debugging overloading issues.
516 void UserDefinedConversionSequence::dump() const {
517   raw_ostream &OS = llvm::errs();
518   if (Before.First || Before.Second || Before.Third) {
519     Before.dump();
520     OS << " -> ";
521   }
522   if (ConversionFunction)
523     OS << '\'' << *ConversionFunction << '\'';
524   else
525     OS << "aggregate initialization";
526   if (After.First || After.Second || After.Third) {
527     OS << " -> ";
528     After.dump();
529   }
530 }
531 
532 /// dump - Print this implicit conversion sequence to standard
533 /// error. Useful for debugging overloading issues.
534 void ImplicitConversionSequence::dump() const {
535   raw_ostream &OS = llvm::errs();
536   if (isStdInitializerListElement())
537     OS << "Worst std::initializer_list element conversion: ";
538   switch (ConversionKind) {
539   case StandardConversion:
540     OS << "Standard conversion: ";
541     Standard.dump();
542     break;
543   case UserDefinedConversion:
544     OS << "User-defined conversion: ";
545     UserDefined.dump();
546     break;
547   case EllipsisConversion:
548     OS << "Ellipsis conversion";
549     break;
550   case AmbiguousConversion:
551     OS << "Ambiguous conversion";
552     break;
553   case BadConversion:
554     OS << "Bad conversion";
555     break;
556   }
557 
558   OS << "\n";
559 }
560 
561 void AmbiguousConversionSequence::construct() {
562   new (&conversions()) ConversionSet();
563 }
564 
565 void AmbiguousConversionSequence::destruct() {
566   conversions().~ConversionSet();
567 }
568 
569 void
570 AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) {
571   FromTypePtr = O.FromTypePtr;
572   ToTypePtr = O.ToTypePtr;
573   new (&conversions()) ConversionSet(O.conversions());
574 }
575 
576 namespace {
577   // Structure used by DeductionFailureInfo to store
578   // template argument information.
579   struct DFIArguments {
580     TemplateArgument FirstArg;
581     TemplateArgument SecondArg;
582   };
583   // Structure used by DeductionFailureInfo to store
584   // template parameter and template argument information.
585   struct DFIParamWithArguments : DFIArguments {
586     TemplateParameter Param;
587   };
588   // Structure used by DeductionFailureInfo to store template argument
589   // information and the index of the problematic call argument.
590   struct DFIDeducedMismatchArgs : DFIArguments {
591     TemplateArgumentList *TemplateArgs;
592     unsigned CallArgIndex;
593   };
594 }
595 
596 /// Convert from Sema's representation of template deduction information
597 /// to the form used in overload-candidate information.
598 DeductionFailureInfo
599 clang::MakeDeductionFailureInfo(ASTContext &Context,
600                                 Sema::TemplateDeductionResult TDK,
601                                 TemplateDeductionInfo &Info) {
602   DeductionFailureInfo Result;
603   Result.Result = static_cast<unsigned>(TDK);
604   Result.HasDiagnostic = false;
605   switch (TDK) {
606   case Sema::TDK_Invalid:
607   case Sema::TDK_InstantiationDepth:
608   case Sema::TDK_TooManyArguments:
609   case Sema::TDK_TooFewArguments:
610   case Sema::TDK_MiscellaneousDeductionFailure:
611   case Sema::TDK_CUDATargetMismatch:
612     Result.Data = nullptr;
613     break;
614 
615   case Sema::TDK_Incomplete:
616   case Sema::TDK_InvalidExplicitArguments:
617     Result.Data = Info.Param.getOpaqueValue();
618     break;
619 
620   case Sema::TDK_DeducedMismatch:
621   case Sema::TDK_DeducedMismatchNested: {
622     // FIXME: Should allocate from normal heap so that we can free this later.
623     auto *Saved = new (Context) DFIDeducedMismatchArgs;
624     Saved->FirstArg = Info.FirstArg;
625     Saved->SecondArg = Info.SecondArg;
626     Saved->TemplateArgs = Info.take();
627     Saved->CallArgIndex = Info.CallArgIndex;
628     Result.Data = Saved;
629     break;
630   }
631 
632   case Sema::TDK_NonDeducedMismatch: {
633     // FIXME: Should allocate from normal heap so that we can free this later.
634     DFIArguments *Saved = new (Context) DFIArguments;
635     Saved->FirstArg = Info.FirstArg;
636     Saved->SecondArg = Info.SecondArg;
637     Result.Data = Saved;
638     break;
639   }
640 
641   case Sema::TDK_IncompletePack:
642     // FIXME: It's slightly wasteful to allocate two TemplateArguments for this.
643   case Sema::TDK_Inconsistent:
644   case Sema::TDK_Underqualified: {
645     // FIXME: Should allocate from normal heap so that we can free this later.
646     DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments;
647     Saved->Param = Info.Param;
648     Saved->FirstArg = Info.FirstArg;
649     Saved->SecondArg = Info.SecondArg;
650     Result.Data = Saved;
651     break;
652   }
653 
654   case Sema::TDK_SubstitutionFailure:
655     Result.Data = Info.take();
656     if (Info.hasSFINAEDiagnostic()) {
657       PartialDiagnosticAt *Diag = new (Result.Diagnostic) PartialDiagnosticAt(
658           SourceLocation(), PartialDiagnostic::NullDiagnostic());
659       Info.takeSFINAEDiagnostic(*Diag);
660       Result.HasDiagnostic = true;
661     }
662     break;
663 
664   case Sema::TDK_Success:
665   case Sema::TDK_NonDependentConversionFailure:
666     llvm_unreachable("not a deduction failure");
667   }
668 
669   return Result;
670 }
671 
672 void DeductionFailureInfo::Destroy() {
673   switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
674   case Sema::TDK_Success:
675   case Sema::TDK_Invalid:
676   case Sema::TDK_InstantiationDepth:
677   case Sema::TDK_Incomplete:
678   case Sema::TDK_TooManyArguments:
679   case Sema::TDK_TooFewArguments:
680   case Sema::TDK_InvalidExplicitArguments:
681   case Sema::TDK_CUDATargetMismatch:
682   case Sema::TDK_NonDependentConversionFailure:
683     break;
684 
685   case Sema::TDK_IncompletePack:
686   case Sema::TDK_Inconsistent:
687   case Sema::TDK_Underqualified:
688   case Sema::TDK_DeducedMismatch:
689   case Sema::TDK_DeducedMismatchNested:
690   case Sema::TDK_NonDeducedMismatch:
691     // FIXME: Destroy the data?
692     Data = nullptr;
693     break;
694 
695   case Sema::TDK_SubstitutionFailure:
696     // FIXME: Destroy the template argument list?
697     Data = nullptr;
698     if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) {
699       Diag->~PartialDiagnosticAt();
700       HasDiagnostic = false;
701     }
702     break;
703 
704   // Unhandled
705   case Sema::TDK_MiscellaneousDeductionFailure:
706     break;
707   }
708 }
709 
710 PartialDiagnosticAt *DeductionFailureInfo::getSFINAEDiagnostic() {
711   if (HasDiagnostic)
712     return static_cast<PartialDiagnosticAt*>(static_cast<void*>(Diagnostic));
713   return nullptr;
714 }
715 
716 TemplateParameter DeductionFailureInfo::getTemplateParameter() {
717   switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
718   case Sema::TDK_Success:
719   case Sema::TDK_Invalid:
720   case Sema::TDK_InstantiationDepth:
721   case Sema::TDK_TooManyArguments:
722   case Sema::TDK_TooFewArguments:
723   case Sema::TDK_SubstitutionFailure:
724   case Sema::TDK_DeducedMismatch:
725   case Sema::TDK_DeducedMismatchNested:
726   case Sema::TDK_NonDeducedMismatch:
727   case Sema::TDK_CUDATargetMismatch:
728   case Sema::TDK_NonDependentConversionFailure:
729     return TemplateParameter();
730 
731   case Sema::TDK_Incomplete:
732   case Sema::TDK_InvalidExplicitArguments:
733     return TemplateParameter::getFromOpaqueValue(Data);
734 
735   case Sema::TDK_IncompletePack:
736   case Sema::TDK_Inconsistent:
737   case Sema::TDK_Underqualified:
738     return static_cast<DFIParamWithArguments*>(Data)->Param;
739 
740   // Unhandled
741   case Sema::TDK_MiscellaneousDeductionFailure:
742     break;
743   }
744 
745   return TemplateParameter();
746 }
747 
748 TemplateArgumentList *DeductionFailureInfo::getTemplateArgumentList() {
749   switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
750   case Sema::TDK_Success:
751   case Sema::TDK_Invalid:
752   case Sema::TDK_InstantiationDepth:
753   case Sema::TDK_TooManyArguments:
754   case Sema::TDK_TooFewArguments:
755   case Sema::TDK_Incomplete:
756   case Sema::TDK_IncompletePack:
757   case Sema::TDK_InvalidExplicitArguments:
758   case Sema::TDK_Inconsistent:
759   case Sema::TDK_Underqualified:
760   case Sema::TDK_NonDeducedMismatch:
761   case Sema::TDK_CUDATargetMismatch:
762   case Sema::TDK_NonDependentConversionFailure:
763     return nullptr;
764 
765   case Sema::TDK_DeducedMismatch:
766   case Sema::TDK_DeducedMismatchNested:
767     return static_cast<DFIDeducedMismatchArgs*>(Data)->TemplateArgs;
768 
769   case Sema::TDK_SubstitutionFailure:
770     return static_cast<TemplateArgumentList*>(Data);
771 
772   // Unhandled
773   case Sema::TDK_MiscellaneousDeductionFailure:
774     break;
775   }
776 
777   return nullptr;
778 }
779 
780 const TemplateArgument *DeductionFailureInfo::getFirstArg() {
781   switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
782   case Sema::TDK_Success:
783   case Sema::TDK_Invalid:
784   case Sema::TDK_InstantiationDepth:
785   case Sema::TDK_Incomplete:
786   case Sema::TDK_TooManyArguments:
787   case Sema::TDK_TooFewArguments:
788   case Sema::TDK_InvalidExplicitArguments:
789   case Sema::TDK_SubstitutionFailure:
790   case Sema::TDK_CUDATargetMismatch:
791   case Sema::TDK_NonDependentConversionFailure:
792     return nullptr;
793 
794   case Sema::TDK_IncompletePack:
795   case Sema::TDK_Inconsistent:
796   case Sema::TDK_Underqualified:
797   case Sema::TDK_DeducedMismatch:
798   case Sema::TDK_DeducedMismatchNested:
799   case Sema::TDK_NonDeducedMismatch:
800     return &static_cast<DFIArguments*>(Data)->FirstArg;
801 
802   // Unhandled
803   case Sema::TDK_MiscellaneousDeductionFailure:
804     break;
805   }
806 
807   return nullptr;
808 }
809 
810 const TemplateArgument *DeductionFailureInfo::getSecondArg() {
811   switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
812   case Sema::TDK_Success:
813   case Sema::TDK_Invalid:
814   case Sema::TDK_InstantiationDepth:
815   case Sema::TDK_Incomplete:
816   case Sema::TDK_IncompletePack:
817   case Sema::TDK_TooManyArguments:
818   case Sema::TDK_TooFewArguments:
819   case Sema::TDK_InvalidExplicitArguments:
820   case Sema::TDK_SubstitutionFailure:
821   case Sema::TDK_CUDATargetMismatch:
822   case Sema::TDK_NonDependentConversionFailure:
823     return nullptr;
824 
825   case Sema::TDK_Inconsistent:
826   case Sema::TDK_Underqualified:
827   case Sema::TDK_DeducedMismatch:
828   case Sema::TDK_DeducedMismatchNested:
829   case Sema::TDK_NonDeducedMismatch:
830     return &static_cast<DFIArguments*>(Data)->SecondArg;
831 
832   // Unhandled
833   case Sema::TDK_MiscellaneousDeductionFailure:
834     break;
835   }
836 
837   return nullptr;
838 }
839 
840 llvm::Optional<unsigned> DeductionFailureInfo::getCallArgIndex() {
841   switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
842   case Sema::TDK_DeducedMismatch:
843   case Sema::TDK_DeducedMismatchNested:
844     return static_cast<DFIDeducedMismatchArgs*>(Data)->CallArgIndex;
845 
846   default:
847     return llvm::None;
848   }
849 }
850 
851 bool OverloadCandidateSet::OperatorRewriteInfo::shouldAddReversed(
852     OverloadedOperatorKind Op) {
853   if (!AllowRewrittenCandidates)
854     return false;
855   return Op == OO_EqualEqual || Op == OO_Spaceship;
856 }
857 
858 bool OverloadCandidateSet::OperatorRewriteInfo::shouldAddReversed(
859     ASTContext &Ctx, const FunctionDecl *FD) {
860   if (!shouldAddReversed(FD->getDeclName().getCXXOverloadedOperator()))
861     return false;
862   // Don't bother adding a reversed candidate that can never be a better
863   // match than the non-reversed version.
864   return FD->getNumParams() != 2 ||
865          !Ctx.hasSameUnqualifiedType(FD->getParamDecl(0)->getType(),
866                                      FD->getParamDecl(1)->getType()) ||
867          FD->hasAttr<EnableIfAttr>();
868 }
869 
870 void OverloadCandidateSet::destroyCandidates() {
871   for (iterator i = begin(), e = end(); i != e; ++i) {
872     for (auto &C : i->Conversions)
873       C.~ImplicitConversionSequence();
874     if (!i->Viable && i->FailureKind == ovl_fail_bad_deduction)
875       i->DeductionFailure.Destroy();
876   }
877 }
878 
879 void OverloadCandidateSet::clear(CandidateSetKind CSK) {
880   destroyCandidates();
881   SlabAllocator.Reset();
882   NumInlineBytesUsed = 0;
883   Candidates.clear();
884   Functions.clear();
885   Kind = CSK;
886 }
887 
888 namespace {
889   class UnbridgedCastsSet {
890     struct Entry {
891       Expr **Addr;
892       Expr *Saved;
893     };
894     SmallVector<Entry, 2> Entries;
895 
896   public:
897     void save(Sema &S, Expr *&E) {
898       assert(E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast));
899       Entry entry = { &E, E };
900       Entries.push_back(entry);
901       E = S.stripARCUnbridgedCast(E);
902     }
903 
904     void restore() {
905       for (SmallVectorImpl<Entry>::iterator
906              i = Entries.begin(), e = Entries.end(); i != e; ++i)
907         *i->Addr = i->Saved;
908     }
909   };
910 }
911 
912 /// checkPlaceholderForOverload - Do any interesting placeholder-like
913 /// preprocessing on the given expression.
914 ///
915 /// \param unbridgedCasts a collection to which to add unbridged casts;
916 ///   without this, they will be immediately diagnosed as errors
917 ///
918 /// Return true on unrecoverable error.
919 static bool
920 checkPlaceholderForOverload(Sema &S, Expr *&E,
921                             UnbridgedCastsSet *unbridgedCasts = nullptr) {
922   if (const BuiltinType *placeholder =  E->getType()->getAsPlaceholderType()) {
923     // We can't handle overloaded expressions here because overload
924     // resolution might reasonably tweak them.
925     if (placeholder->getKind() == BuiltinType::Overload) return false;
926 
927     // If the context potentially accepts unbridged ARC casts, strip
928     // the unbridged cast and add it to the collection for later restoration.
929     if (placeholder->getKind() == BuiltinType::ARCUnbridgedCast &&
930         unbridgedCasts) {
931       unbridgedCasts->save(S, E);
932       return false;
933     }
934 
935     // Go ahead and check everything else.
936     ExprResult result = S.CheckPlaceholderExpr(E);
937     if (result.isInvalid())
938       return true;
939 
940     E = result.get();
941     return false;
942   }
943 
944   // Nothing to do.
945   return false;
946 }
947 
948 /// checkArgPlaceholdersForOverload - Check a set of call operands for
949 /// placeholders.
950 static bool checkArgPlaceholdersForOverload(Sema &S,
951                                             MultiExprArg Args,
952                                             UnbridgedCastsSet &unbridged) {
953   for (unsigned i = 0, e = Args.size(); i != e; ++i)
954     if (checkPlaceholderForOverload(S, Args[i], &unbridged))
955       return true;
956 
957   return false;
958 }
959 
960 /// Determine whether the given New declaration is an overload of the
961 /// declarations in Old. This routine returns Ovl_Match or Ovl_NonFunction if
962 /// New and Old cannot be overloaded, e.g., if New has the same signature as
963 /// some function in Old (C++ 1.3.10) or if the Old declarations aren't
964 /// functions (or function templates) at all. When it does return Ovl_Match or
965 /// Ovl_NonFunction, MatchedDecl will point to the decl that New cannot be
966 /// overloaded with. This decl may be a UsingShadowDecl on top of the underlying
967 /// declaration.
968 ///
969 /// Example: Given the following input:
970 ///
971 ///   void f(int, float); // #1
972 ///   void f(int, int); // #2
973 ///   int f(int, int); // #3
974 ///
975 /// When we process #1, there is no previous declaration of "f", so IsOverload
976 /// will not be used.
977 ///
978 /// When we process #2, Old contains only the FunctionDecl for #1. By comparing
979 /// the parameter types, we see that #1 and #2 are overloaded (since they have
980 /// different signatures), so this routine returns Ovl_Overload; MatchedDecl is
981 /// unchanged.
982 ///
983 /// When we process #3, Old is an overload set containing #1 and #2. We compare
984 /// the signatures of #3 to #1 (they're overloaded, so we do nothing) and then
985 /// #3 to #2. Since the signatures of #3 and #2 are identical (return types of
986 /// functions are not part of the signature), IsOverload returns Ovl_Match and
987 /// MatchedDecl will be set to point to the FunctionDecl for #2.
988 ///
989 /// 'NewIsUsingShadowDecl' indicates that 'New' is being introduced into a class
990 /// by a using declaration. The rules for whether to hide shadow declarations
991 /// ignore some properties which otherwise figure into a function template's
992 /// signature.
993 Sema::OverloadKind
994 Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old,
995                     NamedDecl *&Match, bool NewIsUsingDecl) {
996   for (LookupResult::iterator I = Old.begin(), E = Old.end();
997          I != E; ++I) {
998     NamedDecl *OldD = *I;
999 
1000     bool OldIsUsingDecl = false;
1001     if (isa<UsingShadowDecl>(OldD)) {
1002       OldIsUsingDecl = true;
1003 
1004       // We can always introduce two using declarations into the same
1005       // context, even if they have identical signatures.
1006       if (NewIsUsingDecl) continue;
1007 
1008       OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl();
1009     }
1010 
1011     // A using-declaration does not conflict with another declaration
1012     // if one of them is hidden.
1013     if ((OldIsUsingDecl || NewIsUsingDecl) && !isVisible(*I))
1014       continue;
1015 
1016     // If either declaration was introduced by a using declaration,
1017     // we'll need to use slightly different rules for matching.
1018     // Essentially, these rules are the normal rules, except that
1019     // function templates hide function templates with different
1020     // return types or template parameter lists.
1021     bool UseMemberUsingDeclRules =
1022       (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord() &&
1023       !New->getFriendObjectKind();
1024 
1025     if (FunctionDecl *OldF = OldD->getAsFunction()) {
1026       if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) {
1027         if (UseMemberUsingDeclRules && OldIsUsingDecl) {
1028           HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
1029           continue;
1030         }
1031 
1032         if (!isa<FunctionTemplateDecl>(OldD) &&
1033             !shouldLinkPossiblyHiddenDecl(*I, New))
1034           continue;
1035 
1036         Match = *I;
1037         return Ovl_Match;
1038       }
1039 
1040       // Builtins that have custom typechecking or have a reference should
1041       // not be overloadable or redeclarable.
1042       if (!getASTContext().canBuiltinBeRedeclared(OldF)) {
1043         Match = *I;
1044         return Ovl_NonFunction;
1045       }
1046     } else if (isa<UsingDecl>(OldD) || isa<UsingPackDecl>(OldD)) {
1047       // We can overload with these, which can show up when doing
1048       // redeclaration checks for UsingDecls.
1049       assert(Old.getLookupKind() == LookupUsingDeclName);
1050     } else if (isa<TagDecl>(OldD)) {
1051       // We can always overload with tags by hiding them.
1052     } else if (auto *UUD = dyn_cast<UnresolvedUsingValueDecl>(OldD)) {
1053       // Optimistically assume that an unresolved using decl will
1054       // overload; if it doesn't, we'll have to diagnose during
1055       // template instantiation.
1056       //
1057       // Exception: if the scope is dependent and this is not a class
1058       // member, the using declaration can only introduce an enumerator.
1059       if (UUD->getQualifier()->isDependent() && !UUD->isCXXClassMember()) {
1060         Match = *I;
1061         return Ovl_NonFunction;
1062       }
1063     } else {
1064       // (C++ 13p1):
1065       //   Only function declarations can be overloaded; object and type
1066       //   declarations cannot be overloaded.
1067       Match = *I;
1068       return Ovl_NonFunction;
1069     }
1070   }
1071 
1072   // C++ [temp.friend]p1:
1073   //   For a friend function declaration that is not a template declaration:
1074   //    -- if the name of the friend is a qualified or unqualified template-id,
1075   //       [...], otherwise
1076   //    -- if the name of the friend is a qualified-id and a matching
1077   //       non-template function is found in the specified class or namespace,
1078   //       the friend declaration refers to that function, otherwise,
1079   //    -- if the name of the friend is a qualified-id and a matching function
1080   //       template is found in the specified class or namespace, the friend
1081   //       declaration refers to the deduced specialization of that function
1082   //       template, otherwise
1083   //    -- the name shall be an unqualified-id [...]
1084   // If we get here for a qualified friend declaration, we've just reached the
1085   // third bullet. If the type of the friend is dependent, skip this lookup
1086   // until instantiation.
1087   if (New->getFriendObjectKind() && New->getQualifier() &&
1088       !New->getDescribedFunctionTemplate() &&
1089       !New->getDependentSpecializationInfo() &&
1090       !New->getType()->isDependentType()) {
1091     LookupResult TemplateSpecResult(LookupResult::Temporary, Old);
1092     TemplateSpecResult.addAllDecls(Old);
1093     if (CheckFunctionTemplateSpecialization(New, nullptr, TemplateSpecResult,
1094                                             /*QualifiedFriend*/true)) {
1095       New->setInvalidDecl();
1096       return Ovl_Overload;
1097     }
1098 
1099     Match = TemplateSpecResult.getAsSingle<FunctionDecl>();
1100     return Ovl_Match;
1101   }
1102 
1103   return Ovl_Overload;
1104 }
1105 
1106 bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old,
1107                       bool UseMemberUsingDeclRules, bool ConsiderCudaAttrs) {
1108   // C++ [basic.start.main]p2: This function shall not be overloaded.
1109   if (New->isMain())
1110     return false;
1111 
1112   // MSVCRT user defined entry points cannot be overloaded.
1113   if (New->isMSVCRTEntryPoint())
1114     return false;
1115 
1116   FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
1117   FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
1118 
1119   // C++ [temp.fct]p2:
1120   //   A function template can be overloaded with other function templates
1121   //   and with normal (non-template) functions.
1122   if ((OldTemplate == nullptr) != (NewTemplate == nullptr))
1123     return true;
1124 
1125   // Is the function New an overload of the function Old?
1126   QualType OldQType = Context.getCanonicalType(Old->getType());
1127   QualType NewQType = Context.getCanonicalType(New->getType());
1128 
1129   // Compare the signatures (C++ 1.3.10) of the two functions to
1130   // determine whether they are overloads. If we find any mismatch
1131   // in the signature, they are overloads.
1132 
1133   // If either of these functions is a K&R-style function (no
1134   // prototype), then we consider them to have matching signatures.
1135   if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
1136       isa<FunctionNoProtoType>(NewQType.getTypePtr()))
1137     return false;
1138 
1139   const FunctionProtoType *OldType = cast<FunctionProtoType>(OldQType);
1140   const FunctionProtoType *NewType = cast<FunctionProtoType>(NewQType);
1141 
1142   // The signature of a function includes the types of its
1143   // parameters (C++ 1.3.10), which includes the presence or absence
1144   // of the ellipsis; see C++ DR 357).
1145   if (OldQType != NewQType &&
1146       (OldType->getNumParams() != NewType->getNumParams() ||
1147        OldType->isVariadic() != NewType->isVariadic() ||
1148        !FunctionParamTypesAreEqual(OldType, NewType)))
1149     return true;
1150 
1151   // C++ [temp.over.link]p4:
1152   //   The signature of a function template consists of its function
1153   //   signature, its return type and its template parameter list. The names
1154   //   of the template parameters are significant only for establishing the
1155   //   relationship between the template parameters and the rest of the
1156   //   signature.
1157   //
1158   // We check the return type and template parameter lists for function
1159   // templates first; the remaining checks follow.
1160   //
1161   // However, we don't consider either of these when deciding whether
1162   // a member introduced by a shadow declaration is hidden.
1163   if (!UseMemberUsingDeclRules && NewTemplate &&
1164       (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
1165                                        OldTemplate->getTemplateParameters(),
1166                                        false, TPL_TemplateMatch) ||
1167        !Context.hasSameType(Old->getDeclaredReturnType(),
1168                             New->getDeclaredReturnType())))
1169     return true;
1170 
1171   // If the function is a class member, its signature includes the
1172   // cv-qualifiers (if any) and ref-qualifier (if any) on the function itself.
1173   //
1174   // As part of this, also check whether one of the member functions
1175   // is static, in which case they are not overloads (C++
1176   // 13.1p2). While not part of the definition of the signature,
1177   // this check is important to determine whether these functions
1178   // can be overloaded.
1179   CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
1180   CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
1181   if (OldMethod && NewMethod &&
1182       !OldMethod->isStatic() && !NewMethod->isStatic()) {
1183     if (OldMethod->getRefQualifier() != NewMethod->getRefQualifier()) {
1184       if (!UseMemberUsingDeclRules &&
1185           (OldMethod->getRefQualifier() == RQ_None ||
1186            NewMethod->getRefQualifier() == RQ_None)) {
1187         // C++0x [over.load]p2:
1188         //   - Member function declarations with the same name and the same
1189         //     parameter-type-list as well as member function template
1190         //     declarations with the same name, the same parameter-type-list, and
1191         //     the same template parameter lists cannot be overloaded if any of
1192         //     them, but not all, have a ref-qualifier (8.3.5).
1193         Diag(NewMethod->getLocation(), diag::err_ref_qualifier_overload)
1194           << NewMethod->getRefQualifier() << OldMethod->getRefQualifier();
1195         Diag(OldMethod->getLocation(), diag::note_previous_declaration);
1196       }
1197       return true;
1198     }
1199 
1200     // We may not have applied the implicit const for a constexpr member
1201     // function yet (because we haven't yet resolved whether this is a static
1202     // or non-static member function). Add it now, on the assumption that this
1203     // is a redeclaration of OldMethod.
1204     auto OldQuals = OldMethod->getMethodQualifiers();
1205     auto NewQuals = NewMethod->getMethodQualifiers();
1206     if (!getLangOpts().CPlusPlus14 && NewMethod->isConstexpr() &&
1207         !isa<CXXConstructorDecl>(NewMethod))
1208       NewQuals.addConst();
1209     // We do not allow overloading based off of '__restrict'.
1210     OldQuals.removeRestrict();
1211     NewQuals.removeRestrict();
1212     if (OldQuals != NewQuals)
1213       return true;
1214   }
1215 
1216   // Though pass_object_size is placed on parameters and takes an argument, we
1217   // consider it to be a function-level modifier for the sake of function
1218   // identity. Either the function has one or more parameters with
1219   // pass_object_size or it doesn't.
1220   if (functionHasPassObjectSizeParams(New) !=
1221       functionHasPassObjectSizeParams(Old))
1222     return true;
1223 
1224   // enable_if attributes are an order-sensitive part of the signature.
1225   for (specific_attr_iterator<EnableIfAttr>
1226          NewI = New->specific_attr_begin<EnableIfAttr>(),
1227          NewE = New->specific_attr_end<EnableIfAttr>(),
1228          OldI = Old->specific_attr_begin<EnableIfAttr>(),
1229          OldE = Old->specific_attr_end<EnableIfAttr>();
1230        NewI != NewE || OldI != OldE; ++NewI, ++OldI) {
1231     if (NewI == NewE || OldI == OldE)
1232       return true;
1233     llvm::FoldingSetNodeID NewID, OldID;
1234     NewI->getCond()->Profile(NewID, Context, true);
1235     OldI->getCond()->Profile(OldID, Context, true);
1236     if (NewID != OldID)
1237       return true;
1238   }
1239 
1240   if (getLangOpts().CUDA && ConsiderCudaAttrs) {
1241     // Don't allow overloading of destructors.  (In theory we could, but it
1242     // would be a giant change to clang.)
1243     if (isa<CXXDestructorDecl>(New))
1244       return false;
1245 
1246     CUDAFunctionTarget NewTarget = IdentifyCUDATarget(New),
1247                        OldTarget = IdentifyCUDATarget(Old);
1248     if (NewTarget == CFT_InvalidTarget)
1249       return false;
1250 
1251     assert((OldTarget != CFT_InvalidTarget) && "Unexpected invalid target.");
1252 
1253     // Allow overloading of functions with same signature and different CUDA
1254     // target attributes.
1255     return NewTarget != OldTarget;
1256   }
1257 
1258   // The signatures match; this is not an overload.
1259   return false;
1260 }
1261 
1262 /// Tries a user-defined conversion from From to ToType.
1263 ///
1264 /// Produces an implicit conversion sequence for when a standard conversion
1265 /// is not an option. See TryImplicitConversion for more information.
1266 static ImplicitConversionSequence
1267 TryUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
1268                          bool SuppressUserConversions,
1269                          bool AllowExplicit,
1270                          bool InOverloadResolution,
1271                          bool CStyle,
1272                          bool AllowObjCWritebackConversion,
1273                          bool AllowObjCConversionOnExplicit) {
1274   ImplicitConversionSequence ICS;
1275 
1276   if (SuppressUserConversions) {
1277     // We're not in the case above, so there is no conversion that
1278     // we can perform.
1279     ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1280     return ICS;
1281   }
1282 
1283   // Attempt user-defined conversion.
1284   OverloadCandidateSet Conversions(From->getExprLoc(),
1285                                    OverloadCandidateSet::CSK_Normal);
1286   switch (IsUserDefinedConversion(S, From, ToType, ICS.UserDefined,
1287                                   Conversions, AllowExplicit,
1288                                   AllowObjCConversionOnExplicit)) {
1289   case OR_Success:
1290   case OR_Deleted:
1291     ICS.setUserDefined();
1292     // C++ [over.ics.user]p4:
1293     //   A conversion of an expression of class type to the same class
1294     //   type is given Exact Match rank, and a conversion of an
1295     //   expression of class type to a base class of that type is
1296     //   given Conversion rank, in spite of the fact that a copy
1297     //   constructor (i.e., a user-defined conversion function) is
1298     //   called for those cases.
1299     if (CXXConstructorDecl *Constructor
1300           = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
1301       QualType FromCanon
1302         = S.Context.getCanonicalType(From->getType().getUnqualifiedType());
1303       QualType ToCanon
1304         = S.Context.getCanonicalType(ToType).getUnqualifiedType();
1305       if (Constructor->isCopyConstructor() &&
1306           (FromCanon == ToCanon ||
1307            S.IsDerivedFrom(From->getBeginLoc(), FromCanon, ToCanon))) {
1308         // Turn this into a "standard" conversion sequence, so that it
1309         // gets ranked with standard conversion sequences.
1310         DeclAccessPair Found = ICS.UserDefined.FoundConversionFunction;
1311         ICS.setStandard();
1312         ICS.Standard.setAsIdentityConversion();
1313         ICS.Standard.setFromType(From->getType());
1314         ICS.Standard.setAllToTypes(ToType);
1315         ICS.Standard.CopyConstructor = Constructor;
1316         ICS.Standard.FoundCopyConstructor = Found;
1317         if (ToCanon != FromCanon)
1318           ICS.Standard.Second = ICK_Derived_To_Base;
1319       }
1320     }
1321     break;
1322 
1323   case OR_Ambiguous:
1324     ICS.setAmbiguous();
1325     ICS.Ambiguous.setFromType(From->getType());
1326     ICS.Ambiguous.setToType(ToType);
1327     for (OverloadCandidateSet::iterator Cand = Conversions.begin();
1328          Cand != Conversions.end(); ++Cand)
1329       if (Cand->Best)
1330         ICS.Ambiguous.addConversion(Cand->FoundDecl, Cand->Function);
1331     break;
1332 
1333     // Fall through.
1334   case OR_No_Viable_Function:
1335     ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1336     break;
1337   }
1338 
1339   return ICS;
1340 }
1341 
1342 /// TryImplicitConversion - Attempt to perform an implicit conversion
1343 /// from the given expression (Expr) to the given type (ToType). This
1344 /// function returns an implicit conversion sequence that can be used
1345 /// to perform the initialization. Given
1346 ///
1347 ///   void f(float f);
1348 ///   void g(int i) { f(i); }
1349 ///
1350 /// this routine would produce an implicit conversion sequence to
1351 /// describe the initialization of f from i, which will be a standard
1352 /// conversion sequence containing an lvalue-to-rvalue conversion (C++
1353 /// 4.1) followed by a floating-integral conversion (C++ 4.9).
1354 //
1355 /// Note that this routine only determines how the conversion can be
1356 /// performed; it does not actually perform the conversion. As such,
1357 /// it will not produce any diagnostics if no conversion is available,
1358 /// but will instead return an implicit conversion sequence of kind
1359 /// "BadConversion".
1360 ///
1361 /// If @p SuppressUserConversions, then user-defined conversions are
1362 /// not permitted.
1363 /// If @p AllowExplicit, then explicit user-defined conversions are
1364 /// permitted.
1365 ///
1366 /// \param AllowObjCWritebackConversion Whether we allow the Objective-C
1367 /// writeback conversion, which allows __autoreleasing id* parameters to
1368 /// be initialized with __strong id* or __weak id* arguments.
1369 static ImplicitConversionSequence
1370 TryImplicitConversion(Sema &S, Expr *From, QualType ToType,
1371                       bool SuppressUserConversions,
1372                       bool AllowExplicit,
1373                       bool InOverloadResolution,
1374                       bool CStyle,
1375                       bool AllowObjCWritebackConversion,
1376                       bool AllowObjCConversionOnExplicit) {
1377   ImplicitConversionSequence ICS;
1378   if (IsStandardConversion(S, From, ToType, InOverloadResolution,
1379                            ICS.Standard, CStyle, AllowObjCWritebackConversion)){
1380     ICS.setStandard();
1381     return ICS;
1382   }
1383 
1384   if (!S.getLangOpts().CPlusPlus) {
1385     ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1386     return ICS;
1387   }
1388 
1389   // C++ [over.ics.user]p4:
1390   //   A conversion of an expression of class type to the same class
1391   //   type is given Exact Match rank, and a conversion of an
1392   //   expression of class type to a base class of that type is
1393   //   given Conversion rank, in spite of the fact that a copy/move
1394   //   constructor (i.e., a user-defined conversion function) is
1395   //   called for those cases.
1396   QualType FromType = From->getType();
1397   if (ToType->getAs<RecordType>() && FromType->getAs<RecordType>() &&
1398       (S.Context.hasSameUnqualifiedType(FromType, ToType) ||
1399        S.IsDerivedFrom(From->getBeginLoc(), FromType, ToType))) {
1400     ICS.setStandard();
1401     ICS.Standard.setAsIdentityConversion();
1402     ICS.Standard.setFromType(FromType);
1403     ICS.Standard.setAllToTypes(ToType);
1404 
1405     // We don't actually check at this point whether there is a valid
1406     // copy/move constructor, since overloading just assumes that it
1407     // exists. When we actually perform initialization, we'll find the
1408     // appropriate constructor to copy the returned object, if needed.
1409     ICS.Standard.CopyConstructor = nullptr;
1410 
1411     // Determine whether this is considered a derived-to-base conversion.
1412     if (!S.Context.hasSameUnqualifiedType(FromType, ToType))
1413       ICS.Standard.Second = ICK_Derived_To_Base;
1414 
1415     return ICS;
1416   }
1417 
1418   return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
1419                                   AllowExplicit, InOverloadResolution, CStyle,
1420                                   AllowObjCWritebackConversion,
1421                                   AllowObjCConversionOnExplicit);
1422 }
1423 
1424 ImplicitConversionSequence
1425 Sema::TryImplicitConversion(Expr *From, QualType ToType,
1426                             bool SuppressUserConversions,
1427                             bool AllowExplicit,
1428                             bool InOverloadResolution,
1429                             bool CStyle,
1430                             bool AllowObjCWritebackConversion) {
1431   return ::TryImplicitConversion(*this, From, ToType,
1432                                  SuppressUserConversions, AllowExplicit,
1433                                  InOverloadResolution, CStyle,
1434                                  AllowObjCWritebackConversion,
1435                                  /*AllowObjCConversionOnExplicit=*/false);
1436 }
1437 
1438 /// PerformImplicitConversion - Perform an implicit conversion of the
1439 /// expression From to the type ToType. Returns the
1440 /// converted expression. Flavor is the kind of conversion we're
1441 /// performing, used in the error message. If @p AllowExplicit,
1442 /// explicit user-defined conversions are permitted.
1443 ExprResult
1444 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
1445                                 AssignmentAction Action, bool AllowExplicit) {
1446   ImplicitConversionSequence ICS;
1447   return PerformImplicitConversion(From, ToType, Action, AllowExplicit, ICS);
1448 }
1449 
1450 ExprResult
1451 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
1452                                 AssignmentAction Action, bool AllowExplicit,
1453                                 ImplicitConversionSequence& ICS) {
1454   if (checkPlaceholderForOverload(*this, From))
1455     return ExprError();
1456 
1457   // Objective-C ARC: Determine whether we will allow the writeback conversion.
1458   bool AllowObjCWritebackConversion
1459     = getLangOpts().ObjCAutoRefCount &&
1460       (Action == AA_Passing || Action == AA_Sending);
1461   if (getLangOpts().ObjC)
1462     CheckObjCBridgeRelatedConversions(From->getBeginLoc(), ToType,
1463                                       From->getType(), From);
1464   ICS = ::TryImplicitConversion(*this, From, ToType,
1465                                 /*SuppressUserConversions=*/false,
1466                                 AllowExplicit,
1467                                 /*InOverloadResolution=*/false,
1468                                 /*CStyle=*/false,
1469                                 AllowObjCWritebackConversion,
1470                                 /*AllowObjCConversionOnExplicit=*/false);
1471   return PerformImplicitConversion(From, ToType, ICS, Action);
1472 }
1473 
1474 /// Determine whether the conversion from FromType to ToType is a valid
1475 /// conversion that strips "noexcept" or "noreturn" off the nested function
1476 /// type.
1477 bool Sema::IsFunctionConversion(QualType FromType, QualType ToType,
1478                                 QualType &ResultTy) {
1479   if (Context.hasSameUnqualifiedType(FromType, ToType))
1480     return false;
1481 
1482   // Permit the conversion F(t __attribute__((noreturn))) -> F(t)
1483   //                    or F(t noexcept) -> F(t)
1484   // where F adds one of the following at most once:
1485   //   - a pointer
1486   //   - a member pointer
1487   //   - a block pointer
1488   // Changes here need matching changes in FindCompositePointerType.
1489   CanQualType CanTo = Context.getCanonicalType(ToType);
1490   CanQualType CanFrom = Context.getCanonicalType(FromType);
1491   Type::TypeClass TyClass = CanTo->getTypeClass();
1492   if (TyClass != CanFrom->getTypeClass()) return false;
1493   if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) {
1494     if (TyClass == Type::Pointer) {
1495       CanTo = CanTo.castAs<PointerType>()->getPointeeType();
1496       CanFrom = CanFrom.castAs<PointerType>()->getPointeeType();
1497     } else if (TyClass == Type::BlockPointer) {
1498       CanTo = CanTo.castAs<BlockPointerType>()->getPointeeType();
1499       CanFrom = CanFrom.castAs<BlockPointerType>()->getPointeeType();
1500     } else if (TyClass == Type::MemberPointer) {
1501       auto ToMPT = CanTo.castAs<MemberPointerType>();
1502       auto FromMPT = CanFrom.castAs<MemberPointerType>();
1503       // A function pointer conversion cannot change the class of the function.
1504       if (ToMPT->getClass() != FromMPT->getClass())
1505         return false;
1506       CanTo = ToMPT->getPointeeType();
1507       CanFrom = FromMPT->getPointeeType();
1508     } else {
1509       return false;
1510     }
1511 
1512     TyClass = CanTo->getTypeClass();
1513     if (TyClass != CanFrom->getTypeClass()) return false;
1514     if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto)
1515       return false;
1516   }
1517 
1518   const auto *FromFn = cast<FunctionType>(CanFrom);
1519   FunctionType::ExtInfo FromEInfo = FromFn->getExtInfo();
1520 
1521   const auto *ToFn = cast<FunctionType>(CanTo);
1522   FunctionType::ExtInfo ToEInfo = ToFn->getExtInfo();
1523 
1524   bool Changed = false;
1525 
1526   // Drop 'noreturn' if not present in target type.
1527   if (FromEInfo.getNoReturn() && !ToEInfo.getNoReturn()) {
1528     FromFn = Context.adjustFunctionType(FromFn, FromEInfo.withNoReturn(false));
1529     Changed = true;
1530   }
1531 
1532   // Drop 'noexcept' if not present in target type.
1533   if (const auto *FromFPT = dyn_cast<FunctionProtoType>(FromFn)) {
1534     const auto *ToFPT = cast<FunctionProtoType>(ToFn);
1535     if (FromFPT->isNothrow() && !ToFPT->isNothrow()) {
1536       FromFn = cast<FunctionType>(
1537           Context.getFunctionTypeWithExceptionSpec(QualType(FromFPT, 0),
1538                                                    EST_None)
1539                  .getTypePtr());
1540       Changed = true;
1541     }
1542 
1543     // Convert FromFPT's ExtParameterInfo if necessary. The conversion is valid
1544     // only if the ExtParameterInfo lists of the two function prototypes can be
1545     // merged and the merged list is identical to ToFPT's ExtParameterInfo list.
1546     SmallVector<FunctionProtoType::ExtParameterInfo, 4> NewParamInfos;
1547     bool CanUseToFPT, CanUseFromFPT;
1548     if (Context.mergeExtParameterInfo(ToFPT, FromFPT, CanUseToFPT,
1549                                       CanUseFromFPT, NewParamInfos) &&
1550         CanUseToFPT && !CanUseFromFPT) {
1551       FunctionProtoType::ExtProtoInfo ExtInfo = FromFPT->getExtProtoInfo();
1552       ExtInfo.ExtParameterInfos =
1553           NewParamInfos.empty() ? nullptr : NewParamInfos.data();
1554       QualType QT = Context.getFunctionType(FromFPT->getReturnType(),
1555                                             FromFPT->getParamTypes(), ExtInfo);
1556       FromFn = QT->getAs<FunctionType>();
1557       Changed = true;
1558     }
1559   }
1560 
1561   if (!Changed)
1562     return false;
1563 
1564   assert(QualType(FromFn, 0).isCanonical());
1565   if (QualType(FromFn, 0) != CanTo) return false;
1566 
1567   ResultTy = ToType;
1568   return true;
1569 }
1570 
1571 /// Determine whether the conversion from FromType to ToType is a valid
1572 /// vector conversion.
1573 ///
1574 /// \param ICK Will be set to the vector conversion kind, if this is a vector
1575 /// conversion.
1576 static bool IsVectorConversion(Sema &S, QualType FromType,
1577                                QualType ToType, ImplicitConversionKind &ICK) {
1578   // We need at least one of these types to be a vector type to have a vector
1579   // conversion.
1580   if (!ToType->isVectorType() && !FromType->isVectorType())
1581     return false;
1582 
1583   // Identical types require no conversions.
1584   if (S.Context.hasSameUnqualifiedType(FromType, ToType))
1585     return false;
1586 
1587   // There are no conversions between extended vector types, only identity.
1588   if (ToType->isExtVectorType()) {
1589     // There are no conversions between extended vector types other than the
1590     // identity conversion.
1591     if (FromType->isExtVectorType())
1592       return false;
1593 
1594     // Vector splat from any arithmetic type to a vector.
1595     if (FromType->isArithmeticType()) {
1596       ICK = ICK_Vector_Splat;
1597       return true;
1598     }
1599   }
1600 
1601   // We can perform the conversion between vector types in the following cases:
1602   // 1)vector types are equivalent AltiVec and GCC vector types
1603   // 2)lax vector conversions are permitted and the vector types are of the
1604   //   same size
1605   if (ToType->isVectorType() && FromType->isVectorType()) {
1606     if (S.Context.areCompatibleVectorTypes(FromType, ToType) ||
1607         S.isLaxVectorConversion(FromType, ToType)) {
1608       ICK = ICK_Vector_Conversion;
1609       return true;
1610     }
1611   }
1612 
1613   return false;
1614 }
1615 
1616 static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
1617                                 bool InOverloadResolution,
1618                                 StandardConversionSequence &SCS,
1619                                 bool CStyle);
1620 
1621 /// IsStandardConversion - Determines whether there is a standard
1622 /// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
1623 /// expression From to the type ToType. Standard conversion sequences
1624 /// only consider non-class types; for conversions that involve class
1625 /// types, use TryImplicitConversion. If a conversion exists, SCS will
1626 /// contain the standard conversion sequence required to perform this
1627 /// conversion and this routine will return true. Otherwise, this
1628 /// routine will return false and the value of SCS is unspecified.
1629 static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
1630                                  bool InOverloadResolution,
1631                                  StandardConversionSequence &SCS,
1632                                  bool CStyle,
1633                                  bool AllowObjCWritebackConversion) {
1634   QualType FromType = From->getType();
1635 
1636   // Standard conversions (C++ [conv])
1637   SCS.setAsIdentityConversion();
1638   SCS.IncompatibleObjC = false;
1639   SCS.setFromType(FromType);
1640   SCS.CopyConstructor = nullptr;
1641 
1642   // There are no standard conversions for class types in C++, so
1643   // abort early. When overloading in C, however, we do permit them.
1644   if (S.getLangOpts().CPlusPlus &&
1645       (FromType->isRecordType() || ToType->isRecordType()))
1646     return false;
1647 
1648   // The first conversion can be an lvalue-to-rvalue conversion,
1649   // array-to-pointer conversion, or function-to-pointer conversion
1650   // (C++ 4p1).
1651 
1652   if (FromType == S.Context.OverloadTy) {
1653     DeclAccessPair AccessPair;
1654     if (FunctionDecl *Fn
1655           = S.ResolveAddressOfOverloadedFunction(From, ToType, false,
1656                                                  AccessPair)) {
1657       // We were able to resolve the address of the overloaded function,
1658       // so we can convert to the type of that function.
1659       FromType = Fn->getType();
1660       SCS.setFromType(FromType);
1661 
1662       // we can sometimes resolve &foo<int> regardless of ToType, so check
1663       // if the type matches (identity) or we are converting to bool
1664       if (!S.Context.hasSameUnqualifiedType(
1665                       S.ExtractUnqualifiedFunctionType(ToType), FromType)) {
1666         QualType resultTy;
1667         // if the function type matches except for [[noreturn]], it's ok
1668         if (!S.IsFunctionConversion(FromType,
1669               S.ExtractUnqualifiedFunctionType(ToType), resultTy))
1670           // otherwise, only a boolean conversion is standard
1671           if (!ToType->isBooleanType())
1672             return false;
1673       }
1674 
1675       // Check if the "from" expression is taking the address of an overloaded
1676       // function and recompute the FromType accordingly. Take advantage of the
1677       // fact that non-static member functions *must* have such an address-of
1678       // expression.
1679       CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn);
1680       if (Method && !Method->isStatic()) {
1681         assert(isa<UnaryOperator>(From->IgnoreParens()) &&
1682                "Non-unary operator on non-static member address");
1683         assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode()
1684                == UO_AddrOf &&
1685                "Non-address-of operator on non-static member address");
1686         const Type *ClassType
1687           = S.Context.getTypeDeclType(Method->getParent()).getTypePtr();
1688         FromType = S.Context.getMemberPointerType(FromType, ClassType);
1689       } else if (isa<UnaryOperator>(From->IgnoreParens())) {
1690         assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() ==
1691                UO_AddrOf &&
1692                "Non-address-of operator for overloaded function expression");
1693         FromType = S.Context.getPointerType(FromType);
1694       }
1695 
1696       // Check that we've computed the proper type after overload resolution.
1697       // FIXME: FixOverloadedFunctionReference has side-effects; we shouldn't
1698       // be calling it from within an NDEBUG block.
1699       assert(S.Context.hasSameType(
1700         FromType,
1701         S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType()));
1702     } else {
1703       return false;
1704     }
1705   }
1706   // Lvalue-to-rvalue conversion (C++11 4.1):
1707   //   A glvalue (3.10) of a non-function, non-array type T can
1708   //   be converted to a prvalue.
1709   bool argIsLValue = From->isGLValue();
1710   if (argIsLValue &&
1711       !FromType->isFunctionType() && !FromType->isArrayType() &&
1712       S.Context.getCanonicalType(FromType) != S.Context.OverloadTy) {
1713     SCS.First = ICK_Lvalue_To_Rvalue;
1714 
1715     // C11 6.3.2.1p2:
1716     //   ... if the lvalue has atomic type, the value has the non-atomic version
1717     //   of the type of the lvalue ...
1718     if (const AtomicType *Atomic = FromType->getAs<AtomicType>())
1719       FromType = Atomic->getValueType();
1720 
1721     // If T is a non-class type, the type of the rvalue is the
1722     // cv-unqualified version of T. Otherwise, the type of the rvalue
1723     // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
1724     // just strip the qualifiers because they don't matter.
1725     FromType = FromType.getUnqualifiedType();
1726   } else if (FromType->isArrayType()) {
1727     // Array-to-pointer conversion (C++ 4.2)
1728     SCS.First = ICK_Array_To_Pointer;
1729 
1730     // An lvalue or rvalue of type "array of N T" or "array of unknown
1731     // bound of T" can be converted to an rvalue of type "pointer to
1732     // T" (C++ 4.2p1).
1733     FromType = S.Context.getArrayDecayedType(FromType);
1734 
1735     if (S.IsStringLiteralToNonConstPointerConversion(From, ToType)) {
1736       // This conversion is deprecated in C++03 (D.4)
1737       SCS.DeprecatedStringLiteralToCharPtr = true;
1738 
1739       // For the purpose of ranking in overload resolution
1740       // (13.3.3.1.1), this conversion is considered an
1741       // array-to-pointer conversion followed by a qualification
1742       // conversion (4.4). (C++ 4.2p2)
1743       SCS.Second = ICK_Identity;
1744       SCS.Third = ICK_Qualification;
1745       SCS.QualificationIncludesObjCLifetime = false;
1746       SCS.setAllToTypes(FromType);
1747       return true;
1748     }
1749   } else if (FromType->isFunctionType() && argIsLValue) {
1750     // Function-to-pointer conversion (C++ 4.3).
1751     SCS.First = ICK_Function_To_Pointer;
1752 
1753     if (auto *DRE = dyn_cast<DeclRefExpr>(From->IgnoreParenCasts()))
1754       if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl()))
1755         if (!S.checkAddressOfFunctionIsAvailable(FD))
1756           return false;
1757 
1758     // An lvalue of function type T can be converted to an rvalue of
1759     // type "pointer to T." The result is a pointer to the
1760     // function. (C++ 4.3p1).
1761     FromType = S.Context.getPointerType(FromType);
1762   } else {
1763     // We don't require any conversions for the first step.
1764     SCS.First = ICK_Identity;
1765   }
1766   SCS.setToType(0, FromType);
1767 
1768   // The second conversion can be an integral promotion, floating
1769   // point promotion, integral conversion, floating point conversion,
1770   // floating-integral conversion, pointer conversion,
1771   // pointer-to-member conversion, or boolean conversion (C++ 4p1).
1772   // For overloading in C, this can also be a "compatible-type"
1773   // conversion.
1774   bool IncompatibleObjC = false;
1775   ImplicitConversionKind SecondICK = ICK_Identity;
1776   if (S.Context.hasSameUnqualifiedType(FromType, ToType)) {
1777     // The unqualified versions of the types are the same: there's no
1778     // conversion to do.
1779     SCS.Second = ICK_Identity;
1780   } else if (S.IsIntegralPromotion(From, FromType, ToType)) {
1781     // Integral promotion (C++ 4.5).
1782     SCS.Second = ICK_Integral_Promotion;
1783     FromType = ToType.getUnqualifiedType();
1784   } else if (S.IsFloatingPointPromotion(FromType, ToType)) {
1785     // Floating point promotion (C++ 4.6).
1786     SCS.Second = ICK_Floating_Promotion;
1787     FromType = ToType.getUnqualifiedType();
1788   } else if (S.IsComplexPromotion(FromType, ToType)) {
1789     // Complex promotion (Clang extension)
1790     SCS.Second = ICK_Complex_Promotion;
1791     FromType = ToType.getUnqualifiedType();
1792   } else if (ToType->isBooleanType() &&
1793              (FromType->isArithmeticType() ||
1794               FromType->isAnyPointerType() ||
1795               FromType->isBlockPointerType() ||
1796               FromType->isMemberPointerType() ||
1797               FromType->isNullPtrType())) {
1798     // Boolean conversions (C++ 4.12).
1799     SCS.Second = ICK_Boolean_Conversion;
1800     FromType = S.Context.BoolTy;
1801   } else if (FromType->isIntegralOrUnscopedEnumerationType() &&
1802              ToType->isIntegralType(S.Context)) {
1803     // Integral conversions (C++ 4.7).
1804     SCS.Second = ICK_Integral_Conversion;
1805     FromType = ToType.getUnqualifiedType();
1806   } else if (FromType->isAnyComplexType() && ToType->isAnyComplexType()) {
1807     // Complex conversions (C99 6.3.1.6)
1808     SCS.Second = ICK_Complex_Conversion;
1809     FromType = ToType.getUnqualifiedType();
1810   } else if ((FromType->isAnyComplexType() && ToType->isArithmeticType()) ||
1811              (ToType->isAnyComplexType() && FromType->isArithmeticType())) {
1812     // Complex-real conversions (C99 6.3.1.7)
1813     SCS.Second = ICK_Complex_Real;
1814     FromType = ToType.getUnqualifiedType();
1815   } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) {
1816     // FIXME: disable conversions between long double and __float128 if
1817     // their representation is different until there is back end support
1818     // We of course allow this conversion if long double is really double.
1819     if (&S.Context.getFloatTypeSemantics(FromType) !=
1820         &S.Context.getFloatTypeSemantics(ToType)) {
1821       bool Float128AndLongDouble = ((FromType == S.Context.Float128Ty &&
1822                                     ToType == S.Context.LongDoubleTy) ||
1823                                    (FromType == S.Context.LongDoubleTy &&
1824                                     ToType == S.Context.Float128Ty));
1825       if (Float128AndLongDouble &&
1826           (&S.Context.getFloatTypeSemantics(S.Context.LongDoubleTy) ==
1827            &llvm::APFloat::PPCDoubleDouble()))
1828         return false;
1829     }
1830     // Floating point conversions (C++ 4.8).
1831     SCS.Second = ICK_Floating_Conversion;
1832     FromType = ToType.getUnqualifiedType();
1833   } else if ((FromType->isRealFloatingType() &&
1834               ToType->isIntegralType(S.Context)) ||
1835              (FromType->isIntegralOrUnscopedEnumerationType() &&
1836               ToType->isRealFloatingType())) {
1837     // Floating-integral conversions (C++ 4.9).
1838     SCS.Second = ICK_Floating_Integral;
1839     FromType = ToType.getUnqualifiedType();
1840   } else if (S.IsBlockPointerConversion(FromType, ToType, FromType)) {
1841     SCS.Second = ICK_Block_Pointer_Conversion;
1842   } else if (AllowObjCWritebackConversion &&
1843              S.isObjCWritebackConversion(FromType, ToType, FromType)) {
1844     SCS.Second = ICK_Writeback_Conversion;
1845   } else if (S.IsPointerConversion(From, FromType, ToType, InOverloadResolution,
1846                                    FromType, IncompatibleObjC)) {
1847     // Pointer conversions (C++ 4.10).
1848     SCS.Second = ICK_Pointer_Conversion;
1849     SCS.IncompatibleObjC = IncompatibleObjC;
1850     FromType = FromType.getUnqualifiedType();
1851   } else if (S.IsMemberPointerConversion(From, FromType, ToType,
1852                                          InOverloadResolution, FromType)) {
1853     // Pointer to member conversions (4.11).
1854     SCS.Second = ICK_Pointer_Member;
1855   } else if (IsVectorConversion(S, FromType, ToType, SecondICK)) {
1856     SCS.Second = SecondICK;
1857     FromType = ToType.getUnqualifiedType();
1858   } else if (!S.getLangOpts().CPlusPlus &&
1859              S.Context.typesAreCompatible(ToType, FromType)) {
1860     // Compatible conversions (Clang extension for C function overloading)
1861     SCS.Second = ICK_Compatible_Conversion;
1862     FromType = ToType.getUnqualifiedType();
1863   } else if (IsTransparentUnionStandardConversion(S, From, ToType,
1864                                              InOverloadResolution,
1865                                              SCS, CStyle)) {
1866     SCS.Second = ICK_TransparentUnionConversion;
1867     FromType = ToType;
1868   } else if (tryAtomicConversion(S, From, ToType, InOverloadResolution, SCS,
1869                                  CStyle)) {
1870     // tryAtomicConversion has updated the standard conversion sequence
1871     // appropriately.
1872     return true;
1873   } else if (ToType->isEventT() &&
1874              From->isIntegerConstantExpr(S.getASTContext()) &&
1875              From->EvaluateKnownConstInt(S.getASTContext()) == 0) {
1876     SCS.Second = ICK_Zero_Event_Conversion;
1877     FromType = ToType;
1878   } else if (ToType->isQueueT() &&
1879              From->isIntegerConstantExpr(S.getASTContext()) &&
1880              (From->EvaluateKnownConstInt(S.getASTContext()) == 0)) {
1881     SCS.Second = ICK_Zero_Queue_Conversion;
1882     FromType = ToType;
1883   } else if (ToType->isSamplerT() &&
1884              From->isIntegerConstantExpr(S.getASTContext())) {
1885     SCS.Second = ICK_Compatible_Conversion;
1886     FromType = ToType;
1887   } else {
1888     // No second conversion required.
1889     SCS.Second = ICK_Identity;
1890   }
1891   SCS.setToType(1, FromType);
1892 
1893   // The third conversion can be a function pointer conversion or a
1894   // qualification conversion (C++ [conv.fctptr], [conv.qual]).
1895   bool ObjCLifetimeConversion;
1896   if (S.IsFunctionConversion(FromType, ToType, FromType)) {
1897     // Function pointer conversions (removing 'noexcept') including removal of
1898     // 'noreturn' (Clang extension).
1899     SCS.Third = ICK_Function_Conversion;
1900   } else if (S.IsQualificationConversion(FromType, ToType, CStyle,
1901                                          ObjCLifetimeConversion)) {
1902     SCS.Third = ICK_Qualification;
1903     SCS.QualificationIncludesObjCLifetime = ObjCLifetimeConversion;
1904     FromType = ToType;
1905   } else {
1906     // No conversion required
1907     SCS.Third = ICK_Identity;
1908   }
1909 
1910   // C++ [over.best.ics]p6:
1911   //   [...] Any difference in top-level cv-qualification is
1912   //   subsumed by the initialization itself and does not constitute
1913   //   a conversion. [...]
1914   QualType CanonFrom = S.Context.getCanonicalType(FromType);
1915   QualType CanonTo = S.Context.getCanonicalType(ToType);
1916   if (CanonFrom.getLocalUnqualifiedType()
1917                                      == CanonTo.getLocalUnqualifiedType() &&
1918       CanonFrom.getLocalQualifiers() != CanonTo.getLocalQualifiers()) {
1919     FromType = ToType;
1920     CanonFrom = CanonTo;
1921   }
1922 
1923   SCS.setToType(2, FromType);
1924 
1925   if (CanonFrom == CanonTo)
1926     return true;
1927 
1928   // If we have not converted the argument type to the parameter type,
1929   // this is a bad conversion sequence, unless we're resolving an overload in C.
1930   if (S.getLangOpts().CPlusPlus || !InOverloadResolution)
1931     return false;
1932 
1933   ExprResult ER = ExprResult{From};
1934   Sema::AssignConvertType Conv =
1935       S.CheckSingleAssignmentConstraints(ToType, ER,
1936                                          /*Diagnose=*/false,
1937                                          /*DiagnoseCFAudited=*/false,
1938                                          /*ConvertRHS=*/false);
1939   ImplicitConversionKind SecondConv;
1940   switch (Conv) {
1941   case Sema::Compatible:
1942     SecondConv = ICK_C_Only_Conversion;
1943     break;
1944   // For our purposes, discarding qualifiers is just as bad as using an
1945   // incompatible pointer. Note that an IncompatiblePointer conversion can drop
1946   // qualifiers, as well.
1947   case Sema::CompatiblePointerDiscardsQualifiers:
1948   case Sema::IncompatiblePointer:
1949   case Sema::IncompatiblePointerSign:
1950     SecondConv = ICK_Incompatible_Pointer_Conversion;
1951     break;
1952   default:
1953     return false;
1954   }
1955 
1956   // First can only be an lvalue conversion, so we pretend that this was the
1957   // second conversion. First should already be valid from earlier in the
1958   // function.
1959   SCS.Second = SecondConv;
1960   SCS.setToType(1, ToType);
1961 
1962   // Third is Identity, because Second should rank us worse than any other
1963   // conversion. This could also be ICK_Qualification, but it's simpler to just
1964   // lump everything in with the second conversion, and we don't gain anything
1965   // from making this ICK_Qualification.
1966   SCS.Third = ICK_Identity;
1967   SCS.setToType(2, ToType);
1968   return true;
1969 }
1970 
1971 static bool
1972 IsTransparentUnionStandardConversion(Sema &S, Expr* From,
1973                                      QualType &ToType,
1974                                      bool InOverloadResolution,
1975                                      StandardConversionSequence &SCS,
1976                                      bool CStyle) {
1977 
1978   const RecordType *UT = ToType->getAsUnionType();
1979   if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
1980     return false;
1981   // The field to initialize within the transparent union.
1982   RecordDecl *UD = UT->getDecl();
1983   // It's compatible if the expression matches any of the fields.
1984   for (const auto *it : UD->fields()) {
1985     if (IsStandardConversion(S, From, it->getType(), InOverloadResolution, SCS,
1986                              CStyle, /*AllowObjCWritebackConversion=*/false)) {
1987       ToType = it->getType();
1988       return true;
1989     }
1990   }
1991   return false;
1992 }
1993 
1994 /// IsIntegralPromotion - Determines whether the conversion from the
1995 /// expression From (whose potentially-adjusted type is FromType) to
1996 /// ToType is an integral promotion (C++ 4.5). If so, returns true and
1997 /// sets PromotedType to the promoted type.
1998 bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
1999   const BuiltinType *To = ToType->getAs<BuiltinType>();
2000   // All integers are built-in.
2001   if (!To) {
2002     return false;
2003   }
2004 
2005   // An rvalue of type char, signed char, unsigned char, short int, or
2006   // unsigned short int can be converted to an rvalue of type int if
2007   // int can represent all the values of the source type; otherwise,
2008   // the source rvalue can be converted to an rvalue of type unsigned
2009   // int (C++ 4.5p1).
2010   if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() &&
2011       !FromType->isEnumeralType()) {
2012     if (// We can promote any signed, promotable integer type to an int
2013         (FromType->isSignedIntegerType() ||
2014          // We can promote any unsigned integer type whose size is
2015          // less than int to an int.
2016          Context.getTypeSize(FromType) < Context.getTypeSize(ToType))) {
2017       return To->getKind() == BuiltinType::Int;
2018     }
2019 
2020     return To->getKind() == BuiltinType::UInt;
2021   }
2022 
2023   // C++11 [conv.prom]p3:
2024   //   A prvalue of an unscoped enumeration type whose underlying type is not
2025   //   fixed (7.2) can be converted to an rvalue a prvalue of the first of the
2026   //   following types that can represent all the values of the enumeration
2027   //   (i.e., the values in the range bmin to bmax as described in 7.2): int,
2028   //   unsigned int, long int, unsigned long int, long long int, or unsigned
2029   //   long long int. If none of the types in that list can represent all the
2030   //   values of the enumeration, an rvalue a prvalue of an unscoped enumeration
2031   //   type can be converted to an rvalue a prvalue of the extended integer type
2032   //   with lowest integer conversion rank (4.13) greater than the rank of long
2033   //   long in which all the values of the enumeration can be represented. If
2034   //   there are two such extended types, the signed one is chosen.
2035   // C++11 [conv.prom]p4:
2036   //   A prvalue of an unscoped enumeration type whose underlying type is fixed
2037   //   can be converted to a prvalue of its underlying type. Moreover, if
2038   //   integral promotion can be applied to its underlying type, a prvalue of an
2039   //   unscoped enumeration type whose underlying type is fixed can also be
2040   //   converted to a prvalue of the promoted underlying type.
2041   if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) {
2042     // C++0x 7.2p9: Note that this implicit enum to int conversion is not
2043     // provided for a scoped enumeration.
2044     if (FromEnumType->getDecl()->isScoped())
2045       return false;
2046 
2047     // We can perform an integral promotion to the underlying type of the enum,
2048     // even if that's not the promoted type. Note that the check for promoting
2049     // the underlying type is based on the type alone, and does not consider
2050     // the bitfield-ness of the actual source expression.
2051     if (FromEnumType->getDecl()->isFixed()) {
2052       QualType Underlying = FromEnumType->getDecl()->getIntegerType();
2053       return Context.hasSameUnqualifiedType(Underlying, ToType) ||
2054              IsIntegralPromotion(nullptr, Underlying, ToType);
2055     }
2056 
2057     // We have already pre-calculated the promotion type, so this is trivial.
2058     if (ToType->isIntegerType() &&
2059         isCompleteType(From->getBeginLoc(), FromType))
2060       return Context.hasSameUnqualifiedType(
2061           ToType, FromEnumType->getDecl()->getPromotionType());
2062 
2063     // C++ [conv.prom]p5:
2064     //   If the bit-field has an enumerated type, it is treated as any other
2065     //   value of that type for promotion purposes.
2066     //
2067     // ... so do not fall through into the bit-field checks below in C++.
2068     if (getLangOpts().CPlusPlus)
2069       return false;
2070   }
2071 
2072   // C++0x [conv.prom]p2:
2073   //   A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted
2074   //   to an rvalue a prvalue of the first of the following types that can
2075   //   represent all the values of its underlying type: int, unsigned int,
2076   //   long int, unsigned long int, long long int, or unsigned long long int.
2077   //   If none of the types in that list can represent all the values of its
2078   //   underlying type, an rvalue a prvalue of type char16_t, char32_t,
2079   //   or wchar_t can be converted to an rvalue a prvalue of its underlying
2080   //   type.
2081   if (FromType->isAnyCharacterType() && !FromType->isCharType() &&
2082       ToType->isIntegerType()) {
2083     // Determine whether the type we're converting from is signed or
2084     // unsigned.
2085     bool FromIsSigned = FromType->isSignedIntegerType();
2086     uint64_t FromSize = Context.getTypeSize(FromType);
2087 
2088     // The types we'll try to promote to, in the appropriate
2089     // order. Try each of these types.
2090     QualType PromoteTypes[6] = {
2091       Context.IntTy, Context.UnsignedIntTy,
2092       Context.LongTy, Context.UnsignedLongTy ,
2093       Context.LongLongTy, Context.UnsignedLongLongTy
2094     };
2095     for (int Idx = 0; Idx < 6; ++Idx) {
2096       uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
2097       if (FromSize < ToSize ||
2098           (FromSize == ToSize &&
2099            FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
2100         // We found the type that we can promote to. If this is the
2101         // type we wanted, we have a promotion. Otherwise, no
2102         // promotion.
2103         return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
2104       }
2105     }
2106   }
2107 
2108   // An rvalue for an integral bit-field (9.6) can be converted to an
2109   // rvalue of type int if int can represent all the values of the
2110   // bit-field; otherwise, it can be converted to unsigned int if
2111   // unsigned int can represent all the values of the bit-field. If
2112   // the bit-field is larger yet, no integral promotion applies to
2113   // it. If the bit-field has an enumerated type, it is treated as any
2114   // other value of that type for promotion purposes (C++ 4.5p3).
2115   // FIXME: We should delay checking of bit-fields until we actually perform the
2116   // conversion.
2117   //
2118   // FIXME: In C, only bit-fields of types _Bool, int, or unsigned int may be
2119   // promoted, per C11 6.3.1.1/2. We promote all bit-fields (including enum
2120   // bit-fields and those whose underlying type is larger than int) for GCC
2121   // compatibility.
2122   if (From) {
2123     if (FieldDecl *MemberDecl = From->getSourceBitField()) {
2124       llvm::APSInt BitWidth;
2125       if (FromType->isIntegralType(Context) &&
2126           MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
2127         llvm::APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
2128         ToSize = Context.getTypeSize(ToType);
2129 
2130         // Are we promoting to an int from a bitfield that fits in an int?
2131         if (BitWidth < ToSize ||
2132             (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
2133           return To->getKind() == BuiltinType::Int;
2134         }
2135 
2136         // Are we promoting to an unsigned int from an unsigned bitfield
2137         // that fits into an unsigned int?
2138         if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
2139           return To->getKind() == BuiltinType::UInt;
2140         }
2141 
2142         return false;
2143       }
2144     }
2145   }
2146 
2147   // An rvalue of type bool can be converted to an rvalue of type int,
2148   // with false becoming zero and true becoming one (C++ 4.5p4).
2149   if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
2150     return true;
2151   }
2152 
2153   return false;
2154 }
2155 
2156 /// IsFloatingPointPromotion - Determines whether the conversion from
2157 /// FromType to ToType is a floating point promotion (C++ 4.6). If so,
2158 /// returns true and sets PromotedType to the promoted type.
2159 bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
2160   if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
2161     if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
2162       /// An rvalue of type float can be converted to an rvalue of type
2163       /// double. (C++ 4.6p1).
2164       if (FromBuiltin->getKind() == BuiltinType::Float &&
2165           ToBuiltin->getKind() == BuiltinType::Double)
2166         return true;
2167 
2168       // C99 6.3.1.5p1:
2169       //   When a float is promoted to double or long double, or a
2170       //   double is promoted to long double [...].
2171       if (!getLangOpts().CPlusPlus &&
2172           (FromBuiltin->getKind() == BuiltinType::Float ||
2173            FromBuiltin->getKind() == BuiltinType::Double) &&
2174           (ToBuiltin->getKind() == BuiltinType::LongDouble ||
2175            ToBuiltin->getKind() == BuiltinType::Float128))
2176         return true;
2177 
2178       // Half can be promoted to float.
2179       if (!getLangOpts().NativeHalfType &&
2180            FromBuiltin->getKind() == BuiltinType::Half &&
2181           ToBuiltin->getKind() == BuiltinType::Float)
2182         return true;
2183     }
2184 
2185   return false;
2186 }
2187 
2188 /// Determine if a conversion is a complex promotion.
2189 ///
2190 /// A complex promotion is defined as a complex -> complex conversion
2191 /// where the conversion between the underlying real types is a
2192 /// floating-point or integral promotion.
2193 bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
2194   const ComplexType *FromComplex = FromType->getAs<ComplexType>();
2195   if (!FromComplex)
2196     return false;
2197 
2198   const ComplexType *ToComplex = ToType->getAs<ComplexType>();
2199   if (!ToComplex)
2200     return false;
2201 
2202   return IsFloatingPointPromotion(FromComplex->getElementType(),
2203                                   ToComplex->getElementType()) ||
2204     IsIntegralPromotion(nullptr, FromComplex->getElementType(),
2205                         ToComplex->getElementType());
2206 }
2207 
2208 /// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
2209 /// the pointer type FromPtr to a pointer to type ToPointee, with the
2210 /// same type qualifiers as FromPtr has on its pointee type. ToType,
2211 /// if non-empty, will be a pointer to ToType that may or may not have
2212 /// the right set of qualifiers on its pointee.
2213 ///
2214 static QualType
2215 BuildSimilarlyQualifiedPointerType(const Type *FromPtr,
2216                                    QualType ToPointee, QualType ToType,
2217                                    ASTContext &Context,
2218                                    bool StripObjCLifetime = false) {
2219   assert((FromPtr->getTypeClass() == Type::Pointer ||
2220           FromPtr->getTypeClass() == Type::ObjCObjectPointer) &&
2221          "Invalid similarly-qualified pointer type");
2222 
2223   /// Conversions to 'id' subsume cv-qualifier conversions.
2224   if (ToType->isObjCIdType() || ToType->isObjCQualifiedIdType())
2225     return ToType.getUnqualifiedType();
2226 
2227   QualType CanonFromPointee
2228     = Context.getCanonicalType(FromPtr->getPointeeType());
2229   QualType CanonToPointee = Context.getCanonicalType(ToPointee);
2230   Qualifiers Quals = CanonFromPointee.getQualifiers();
2231 
2232   if (StripObjCLifetime)
2233     Quals.removeObjCLifetime();
2234 
2235   // Exact qualifier match -> return the pointer type we're converting to.
2236   if (CanonToPointee.getLocalQualifiers() == Quals) {
2237     // ToType is exactly what we need. Return it.
2238     if (!ToType.isNull())
2239       return ToType.getUnqualifiedType();
2240 
2241     // Build a pointer to ToPointee. It has the right qualifiers
2242     // already.
2243     if (isa<ObjCObjectPointerType>(ToType))
2244       return Context.getObjCObjectPointerType(ToPointee);
2245     return Context.getPointerType(ToPointee);
2246   }
2247 
2248   // Just build a canonical type that has the right qualifiers.
2249   QualType QualifiedCanonToPointee
2250     = Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), Quals);
2251 
2252   if (isa<ObjCObjectPointerType>(ToType))
2253     return Context.getObjCObjectPointerType(QualifiedCanonToPointee);
2254   return Context.getPointerType(QualifiedCanonToPointee);
2255 }
2256 
2257 static bool isNullPointerConstantForConversion(Expr *Expr,
2258                                                bool InOverloadResolution,
2259                                                ASTContext &Context) {
2260   // Handle value-dependent integral null pointer constants correctly.
2261   // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
2262   if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
2263       Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType())
2264     return !InOverloadResolution;
2265 
2266   return Expr->isNullPointerConstant(Context,
2267                     InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
2268                                         : Expr::NPC_ValueDependentIsNull);
2269 }
2270 
2271 /// IsPointerConversion - Determines whether the conversion of the
2272 /// expression From, which has the (possibly adjusted) type FromType,
2273 /// can be converted to the type ToType via a pointer conversion (C++
2274 /// 4.10). If so, returns true and places the converted type (that
2275 /// might differ from ToType in its cv-qualifiers at some level) into
2276 /// ConvertedType.
2277 ///
2278 /// This routine also supports conversions to and from block pointers
2279 /// and conversions with Objective-C's 'id', 'id<protocols...>', and
2280 /// pointers to interfaces. FIXME: Once we've determined the
2281 /// appropriate overloading rules for Objective-C, we may want to
2282 /// split the Objective-C checks into a different routine; however,
2283 /// GCC seems to consider all of these conversions to be pointer
2284 /// conversions, so for now they live here. IncompatibleObjC will be
2285 /// set if the conversion is an allowed Objective-C conversion that
2286 /// should result in a warning.
2287 bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
2288                                bool InOverloadResolution,
2289                                QualType& ConvertedType,
2290                                bool &IncompatibleObjC) {
2291   IncompatibleObjC = false;
2292   if (isObjCPointerConversion(FromType, ToType, ConvertedType,
2293                               IncompatibleObjC))
2294     return true;
2295 
2296   // Conversion from a null pointer constant to any Objective-C pointer type.
2297   if (ToType->isObjCObjectPointerType() &&
2298       isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2299     ConvertedType = ToType;
2300     return true;
2301   }
2302 
2303   // Blocks: Block pointers can be converted to void*.
2304   if (FromType->isBlockPointerType() && ToType->isPointerType() &&
2305       ToType->castAs<PointerType>()->getPointeeType()->isVoidType()) {
2306     ConvertedType = ToType;
2307     return true;
2308   }
2309   // Blocks: A null pointer constant can be converted to a block
2310   // pointer type.
2311   if (ToType->isBlockPointerType() &&
2312       isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2313     ConvertedType = ToType;
2314     return true;
2315   }
2316 
2317   // If the left-hand-side is nullptr_t, the right side can be a null
2318   // pointer constant.
2319   if (ToType->isNullPtrType() &&
2320       isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2321     ConvertedType = ToType;
2322     return true;
2323   }
2324 
2325   const PointerType* ToTypePtr = ToType->getAs<PointerType>();
2326   if (!ToTypePtr)
2327     return false;
2328 
2329   // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
2330   if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2331     ConvertedType = ToType;
2332     return true;
2333   }
2334 
2335   // Beyond this point, both types need to be pointers
2336   // , including objective-c pointers.
2337   QualType ToPointeeType = ToTypePtr->getPointeeType();
2338   if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType() &&
2339       !getLangOpts().ObjCAutoRefCount) {
2340     ConvertedType = BuildSimilarlyQualifiedPointerType(
2341                                       FromType->getAs<ObjCObjectPointerType>(),
2342                                                        ToPointeeType,
2343                                                        ToType, Context);
2344     return true;
2345   }
2346   const PointerType *FromTypePtr = FromType->getAs<PointerType>();
2347   if (!FromTypePtr)
2348     return false;
2349 
2350   QualType FromPointeeType = FromTypePtr->getPointeeType();
2351 
2352   // If the unqualified pointee types are the same, this can't be a
2353   // pointer conversion, so don't do all of the work below.
2354   if (Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType))
2355     return false;
2356 
2357   // An rvalue of type "pointer to cv T," where T is an object type,
2358   // can be converted to an rvalue of type "pointer to cv void" (C++
2359   // 4.10p2).
2360   if (FromPointeeType->isIncompleteOrObjectType() &&
2361       ToPointeeType->isVoidType()) {
2362     ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2363                                                        ToPointeeType,
2364                                                        ToType, Context,
2365                                                    /*StripObjCLifetime=*/true);
2366     return true;
2367   }
2368 
2369   // MSVC allows implicit function to void* type conversion.
2370   if (getLangOpts().MSVCCompat && FromPointeeType->isFunctionType() &&
2371       ToPointeeType->isVoidType()) {
2372     ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2373                                                        ToPointeeType,
2374                                                        ToType, Context);
2375     return true;
2376   }
2377 
2378   // When we're overloading in C, we allow a special kind of pointer
2379   // conversion for compatible-but-not-identical pointee types.
2380   if (!getLangOpts().CPlusPlus &&
2381       Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
2382     ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2383                                                        ToPointeeType,
2384                                                        ToType, Context);
2385     return true;
2386   }
2387 
2388   // C++ [conv.ptr]p3:
2389   //
2390   //   An rvalue of type "pointer to cv D," where D is a class type,
2391   //   can be converted to an rvalue of type "pointer to cv B," where
2392   //   B is a base class (clause 10) of D. If B is an inaccessible
2393   //   (clause 11) or ambiguous (10.2) base class of D, a program that
2394   //   necessitates this conversion is ill-formed. The result of the
2395   //   conversion is a pointer to the base class sub-object of the
2396   //   derived class object. The null pointer value is converted to
2397   //   the null pointer value of the destination type.
2398   //
2399   // Note that we do not check for ambiguity or inaccessibility
2400   // here. That is handled by CheckPointerConversion.
2401   if (getLangOpts().CPlusPlus && FromPointeeType->isRecordType() &&
2402       ToPointeeType->isRecordType() &&
2403       !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) &&
2404       IsDerivedFrom(From->getBeginLoc(), FromPointeeType, ToPointeeType)) {
2405     ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2406                                                        ToPointeeType,
2407                                                        ToType, Context);
2408     return true;
2409   }
2410 
2411   if (FromPointeeType->isVectorType() && ToPointeeType->isVectorType() &&
2412       Context.areCompatibleVectorTypes(FromPointeeType, ToPointeeType)) {
2413     ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2414                                                        ToPointeeType,
2415                                                        ToType, Context);
2416     return true;
2417   }
2418 
2419   return false;
2420 }
2421 
2422 /// Adopt the given qualifiers for the given type.
2423 static QualType AdoptQualifiers(ASTContext &Context, QualType T, Qualifiers Qs){
2424   Qualifiers TQs = T.getQualifiers();
2425 
2426   // Check whether qualifiers already match.
2427   if (TQs == Qs)
2428     return T;
2429 
2430   if (Qs.compatiblyIncludes(TQs))
2431     return Context.getQualifiedType(T, Qs);
2432 
2433   return Context.getQualifiedType(T.getUnqualifiedType(), Qs);
2434 }
2435 
2436 /// isObjCPointerConversion - Determines whether this is an
2437 /// Objective-C pointer conversion. Subroutine of IsPointerConversion,
2438 /// with the same arguments and return values.
2439 bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
2440                                    QualType& ConvertedType,
2441                                    bool &IncompatibleObjC) {
2442   if (!getLangOpts().ObjC)
2443     return false;
2444 
2445   // The set of qualifiers on the type we're converting from.
2446   Qualifiers FromQualifiers = FromType.getQualifiers();
2447 
2448   // First, we handle all conversions on ObjC object pointer types.
2449   const ObjCObjectPointerType* ToObjCPtr =
2450     ToType->getAs<ObjCObjectPointerType>();
2451   const ObjCObjectPointerType *FromObjCPtr =
2452     FromType->getAs<ObjCObjectPointerType>();
2453 
2454   if (ToObjCPtr && FromObjCPtr) {
2455     // If the pointee types are the same (ignoring qualifications),
2456     // then this is not a pointer conversion.
2457     if (Context.hasSameUnqualifiedType(ToObjCPtr->getPointeeType(),
2458                                        FromObjCPtr->getPointeeType()))
2459       return false;
2460 
2461     // Conversion between Objective-C pointers.
2462     if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
2463       const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType();
2464       const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType();
2465       if (getLangOpts().CPlusPlus && LHS && RHS &&
2466           !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs(
2467                                                 FromObjCPtr->getPointeeType()))
2468         return false;
2469       ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
2470                                                    ToObjCPtr->getPointeeType(),
2471                                                          ToType, Context);
2472       ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2473       return true;
2474     }
2475 
2476     if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
2477       // Okay: this is some kind of implicit downcast of Objective-C
2478       // interfaces, which is permitted. However, we're going to
2479       // complain about it.
2480       IncompatibleObjC = true;
2481       ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
2482                                                    ToObjCPtr->getPointeeType(),
2483                                                          ToType, Context);
2484       ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2485       return true;
2486     }
2487   }
2488   // Beyond this point, both types need to be C pointers or block pointers.
2489   QualType ToPointeeType;
2490   if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
2491     ToPointeeType = ToCPtr->getPointeeType();
2492   else if (const BlockPointerType *ToBlockPtr =
2493             ToType->getAs<BlockPointerType>()) {
2494     // Objective C++: We're able to convert from a pointer to any object
2495     // to a block pointer type.
2496     if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) {
2497       ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2498       return true;
2499     }
2500     ToPointeeType = ToBlockPtr->getPointeeType();
2501   }
2502   else if (FromType->getAs<BlockPointerType>() &&
2503            ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) {
2504     // Objective C++: We're able to convert from a block pointer type to a
2505     // pointer to any object.
2506     ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2507     return true;
2508   }
2509   else
2510     return false;
2511 
2512   QualType FromPointeeType;
2513   if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
2514     FromPointeeType = FromCPtr->getPointeeType();
2515   else if (const BlockPointerType *FromBlockPtr =
2516            FromType->getAs<BlockPointerType>())
2517     FromPointeeType = FromBlockPtr->getPointeeType();
2518   else
2519     return false;
2520 
2521   // If we have pointers to pointers, recursively check whether this
2522   // is an Objective-C conversion.
2523   if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
2524       isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
2525                               IncompatibleObjC)) {
2526     // We always complain about this conversion.
2527     IncompatibleObjC = true;
2528     ConvertedType = Context.getPointerType(ConvertedType);
2529     ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2530     return true;
2531   }
2532   // Allow conversion of pointee being objective-c pointer to another one;
2533   // as in I* to id.
2534   if (FromPointeeType->getAs<ObjCObjectPointerType>() &&
2535       ToPointeeType->getAs<ObjCObjectPointerType>() &&
2536       isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
2537                               IncompatibleObjC)) {
2538 
2539     ConvertedType = Context.getPointerType(ConvertedType);
2540     ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2541     return true;
2542   }
2543 
2544   // If we have pointers to functions or blocks, check whether the only
2545   // differences in the argument and result types are in Objective-C
2546   // pointer conversions. If so, we permit the conversion (but
2547   // complain about it).
2548   const FunctionProtoType *FromFunctionType
2549     = FromPointeeType->getAs<FunctionProtoType>();
2550   const FunctionProtoType *ToFunctionType
2551     = ToPointeeType->getAs<FunctionProtoType>();
2552   if (FromFunctionType && ToFunctionType) {
2553     // If the function types are exactly the same, this isn't an
2554     // Objective-C pointer conversion.
2555     if (Context.getCanonicalType(FromPointeeType)
2556           == Context.getCanonicalType(ToPointeeType))
2557       return false;
2558 
2559     // Perform the quick checks that will tell us whether these
2560     // function types are obviously different.
2561     if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() ||
2562         FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
2563         FromFunctionType->getMethodQuals() != ToFunctionType->getMethodQuals())
2564       return false;
2565 
2566     bool HasObjCConversion = false;
2567     if (Context.getCanonicalType(FromFunctionType->getReturnType()) ==
2568         Context.getCanonicalType(ToFunctionType->getReturnType())) {
2569       // Okay, the types match exactly. Nothing to do.
2570     } else if (isObjCPointerConversion(FromFunctionType->getReturnType(),
2571                                        ToFunctionType->getReturnType(),
2572                                        ConvertedType, IncompatibleObjC)) {
2573       // Okay, we have an Objective-C pointer conversion.
2574       HasObjCConversion = true;
2575     } else {
2576       // Function types are too different. Abort.
2577       return false;
2578     }
2579 
2580     // Check argument types.
2581     for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams();
2582          ArgIdx != NumArgs; ++ArgIdx) {
2583       QualType FromArgType = FromFunctionType->getParamType(ArgIdx);
2584       QualType ToArgType = ToFunctionType->getParamType(ArgIdx);
2585       if (Context.getCanonicalType(FromArgType)
2586             == Context.getCanonicalType(ToArgType)) {
2587         // Okay, the types match exactly. Nothing to do.
2588       } else if (isObjCPointerConversion(FromArgType, ToArgType,
2589                                          ConvertedType, IncompatibleObjC)) {
2590         // Okay, we have an Objective-C pointer conversion.
2591         HasObjCConversion = true;
2592       } else {
2593         // Argument types are too different. Abort.
2594         return false;
2595       }
2596     }
2597 
2598     if (HasObjCConversion) {
2599       // We had an Objective-C conversion. Allow this pointer
2600       // conversion, but complain about it.
2601       ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2602       IncompatibleObjC = true;
2603       return true;
2604     }
2605   }
2606 
2607   return false;
2608 }
2609 
2610 /// Determine whether this is an Objective-C writeback conversion,
2611 /// used for parameter passing when performing automatic reference counting.
2612 ///
2613 /// \param FromType The type we're converting form.
2614 ///
2615 /// \param ToType The type we're converting to.
2616 ///
2617 /// \param ConvertedType The type that will be produced after applying
2618 /// this conversion.
2619 bool Sema::isObjCWritebackConversion(QualType FromType, QualType ToType,
2620                                      QualType &ConvertedType) {
2621   if (!getLangOpts().ObjCAutoRefCount ||
2622       Context.hasSameUnqualifiedType(FromType, ToType))
2623     return false;
2624 
2625   // Parameter must be a pointer to __autoreleasing (with no other qualifiers).
2626   QualType ToPointee;
2627   if (const PointerType *ToPointer = ToType->getAs<PointerType>())
2628     ToPointee = ToPointer->getPointeeType();
2629   else
2630     return false;
2631 
2632   Qualifiers ToQuals = ToPointee.getQualifiers();
2633   if (!ToPointee->isObjCLifetimeType() ||
2634       ToQuals.getObjCLifetime() != Qualifiers::OCL_Autoreleasing ||
2635       !ToQuals.withoutObjCLifetime().empty())
2636     return false;
2637 
2638   // Argument must be a pointer to __strong to __weak.
2639   QualType FromPointee;
2640   if (const PointerType *FromPointer = FromType->getAs<PointerType>())
2641     FromPointee = FromPointer->getPointeeType();
2642   else
2643     return false;
2644 
2645   Qualifiers FromQuals = FromPointee.getQualifiers();
2646   if (!FromPointee->isObjCLifetimeType() ||
2647       (FromQuals.getObjCLifetime() != Qualifiers::OCL_Strong &&
2648        FromQuals.getObjCLifetime() != Qualifiers::OCL_Weak))
2649     return false;
2650 
2651   // Make sure that we have compatible qualifiers.
2652   FromQuals.setObjCLifetime(Qualifiers::OCL_Autoreleasing);
2653   if (!ToQuals.compatiblyIncludes(FromQuals))
2654     return false;
2655 
2656   // Remove qualifiers from the pointee type we're converting from; they
2657   // aren't used in the compatibility check belong, and we'll be adding back
2658   // qualifiers (with __autoreleasing) if the compatibility check succeeds.
2659   FromPointee = FromPointee.getUnqualifiedType();
2660 
2661   // The unqualified form of the pointee types must be compatible.
2662   ToPointee = ToPointee.getUnqualifiedType();
2663   bool IncompatibleObjC;
2664   if (Context.typesAreCompatible(FromPointee, ToPointee))
2665     FromPointee = ToPointee;
2666   else if (!isObjCPointerConversion(FromPointee, ToPointee, FromPointee,
2667                                     IncompatibleObjC))
2668     return false;
2669 
2670   /// Construct the type we're converting to, which is a pointer to
2671   /// __autoreleasing pointee.
2672   FromPointee = Context.getQualifiedType(FromPointee, FromQuals);
2673   ConvertedType = Context.getPointerType(FromPointee);
2674   return true;
2675 }
2676 
2677 bool Sema::IsBlockPointerConversion(QualType FromType, QualType ToType,
2678                                     QualType& ConvertedType) {
2679   QualType ToPointeeType;
2680   if (const BlockPointerType *ToBlockPtr =
2681         ToType->getAs<BlockPointerType>())
2682     ToPointeeType = ToBlockPtr->getPointeeType();
2683   else
2684     return false;
2685 
2686   QualType FromPointeeType;
2687   if (const BlockPointerType *FromBlockPtr =
2688       FromType->getAs<BlockPointerType>())
2689     FromPointeeType = FromBlockPtr->getPointeeType();
2690   else
2691     return false;
2692   // We have pointer to blocks, check whether the only
2693   // differences in the argument and result types are in Objective-C
2694   // pointer conversions. If so, we permit the conversion.
2695 
2696   const FunctionProtoType *FromFunctionType
2697     = FromPointeeType->getAs<FunctionProtoType>();
2698   const FunctionProtoType *ToFunctionType
2699     = ToPointeeType->getAs<FunctionProtoType>();
2700 
2701   if (!FromFunctionType || !ToFunctionType)
2702     return false;
2703 
2704   if (Context.hasSameType(FromPointeeType, ToPointeeType))
2705     return true;
2706 
2707   // Perform the quick checks that will tell us whether these
2708   // function types are obviously different.
2709   if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() ||
2710       FromFunctionType->isVariadic() != ToFunctionType->isVariadic())
2711     return false;
2712 
2713   FunctionType::ExtInfo FromEInfo = FromFunctionType->getExtInfo();
2714   FunctionType::ExtInfo ToEInfo = ToFunctionType->getExtInfo();
2715   if (FromEInfo != ToEInfo)
2716     return false;
2717 
2718   bool IncompatibleObjC = false;
2719   if (Context.hasSameType(FromFunctionType->getReturnType(),
2720                           ToFunctionType->getReturnType())) {
2721     // Okay, the types match exactly. Nothing to do.
2722   } else {
2723     QualType RHS = FromFunctionType->getReturnType();
2724     QualType LHS = ToFunctionType->getReturnType();
2725     if ((!getLangOpts().CPlusPlus || !RHS->isRecordType()) &&
2726         !RHS.hasQualifiers() && LHS.hasQualifiers())
2727        LHS = LHS.getUnqualifiedType();
2728 
2729      if (Context.hasSameType(RHS,LHS)) {
2730        // OK exact match.
2731      } else if (isObjCPointerConversion(RHS, LHS,
2732                                         ConvertedType, IncompatibleObjC)) {
2733      if (IncompatibleObjC)
2734        return false;
2735      // Okay, we have an Objective-C pointer conversion.
2736      }
2737      else
2738        return false;
2739    }
2740 
2741    // Check argument types.
2742    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams();
2743         ArgIdx != NumArgs; ++ArgIdx) {
2744      IncompatibleObjC = false;
2745      QualType FromArgType = FromFunctionType->getParamType(ArgIdx);
2746      QualType ToArgType = ToFunctionType->getParamType(ArgIdx);
2747      if (Context.hasSameType(FromArgType, ToArgType)) {
2748        // Okay, the types match exactly. Nothing to do.
2749      } else if (isObjCPointerConversion(ToArgType, FromArgType,
2750                                         ConvertedType, IncompatibleObjC)) {
2751        if (IncompatibleObjC)
2752          return false;
2753        // Okay, we have an Objective-C pointer conversion.
2754      } else
2755        // Argument types are too different. Abort.
2756        return false;
2757    }
2758 
2759    SmallVector<FunctionProtoType::ExtParameterInfo, 4> NewParamInfos;
2760    bool CanUseToFPT, CanUseFromFPT;
2761    if (!Context.mergeExtParameterInfo(ToFunctionType, FromFunctionType,
2762                                       CanUseToFPT, CanUseFromFPT,
2763                                       NewParamInfos))
2764      return false;
2765 
2766    ConvertedType = ToType;
2767    return true;
2768 }
2769 
2770 enum {
2771   ft_default,
2772   ft_different_class,
2773   ft_parameter_arity,
2774   ft_parameter_mismatch,
2775   ft_return_type,
2776   ft_qualifer_mismatch,
2777   ft_noexcept
2778 };
2779 
2780 /// Attempts to get the FunctionProtoType from a Type. Handles
2781 /// MemberFunctionPointers properly.
2782 static const FunctionProtoType *tryGetFunctionProtoType(QualType FromType) {
2783   if (auto *FPT = FromType->getAs<FunctionProtoType>())
2784     return FPT;
2785 
2786   if (auto *MPT = FromType->getAs<MemberPointerType>())
2787     return MPT->getPointeeType()->getAs<FunctionProtoType>();
2788 
2789   return nullptr;
2790 }
2791 
2792 /// HandleFunctionTypeMismatch - Gives diagnostic information for differeing
2793 /// function types.  Catches different number of parameter, mismatch in
2794 /// parameter types, and different return types.
2795 void Sema::HandleFunctionTypeMismatch(PartialDiagnostic &PDiag,
2796                                       QualType FromType, QualType ToType) {
2797   // If either type is not valid, include no extra info.
2798   if (FromType.isNull() || ToType.isNull()) {
2799     PDiag << ft_default;
2800     return;
2801   }
2802 
2803   // Get the function type from the pointers.
2804   if (FromType->isMemberPointerType() && ToType->isMemberPointerType()) {
2805     const MemberPointerType *FromMember = FromType->getAs<MemberPointerType>(),
2806                             *ToMember = ToType->getAs<MemberPointerType>();
2807     if (!Context.hasSameType(FromMember->getClass(), ToMember->getClass())) {
2808       PDiag << ft_different_class << QualType(ToMember->getClass(), 0)
2809             << QualType(FromMember->getClass(), 0);
2810       return;
2811     }
2812     FromType = FromMember->getPointeeType();
2813     ToType = ToMember->getPointeeType();
2814   }
2815 
2816   if (FromType->isPointerType())
2817     FromType = FromType->getPointeeType();
2818   if (ToType->isPointerType())
2819     ToType = ToType->getPointeeType();
2820 
2821   // Remove references.
2822   FromType = FromType.getNonReferenceType();
2823   ToType = ToType.getNonReferenceType();
2824 
2825   // Don't print extra info for non-specialized template functions.
2826   if (FromType->isInstantiationDependentType() &&
2827       !FromType->getAs<TemplateSpecializationType>()) {
2828     PDiag << ft_default;
2829     return;
2830   }
2831 
2832   // No extra info for same types.
2833   if (Context.hasSameType(FromType, ToType)) {
2834     PDiag << ft_default;
2835     return;
2836   }
2837 
2838   const FunctionProtoType *FromFunction = tryGetFunctionProtoType(FromType),
2839                           *ToFunction = tryGetFunctionProtoType(ToType);
2840 
2841   // Both types need to be function types.
2842   if (!FromFunction || !ToFunction) {
2843     PDiag << ft_default;
2844     return;
2845   }
2846 
2847   if (FromFunction->getNumParams() != ToFunction->getNumParams()) {
2848     PDiag << ft_parameter_arity << ToFunction->getNumParams()
2849           << FromFunction->getNumParams();
2850     return;
2851   }
2852 
2853   // Handle different parameter types.
2854   unsigned ArgPos;
2855   if (!FunctionParamTypesAreEqual(FromFunction, ToFunction, &ArgPos)) {
2856     PDiag << ft_parameter_mismatch << ArgPos + 1
2857           << ToFunction->getParamType(ArgPos)
2858           << FromFunction->getParamType(ArgPos);
2859     return;
2860   }
2861 
2862   // Handle different return type.
2863   if (!Context.hasSameType(FromFunction->getReturnType(),
2864                            ToFunction->getReturnType())) {
2865     PDiag << ft_return_type << ToFunction->getReturnType()
2866           << FromFunction->getReturnType();
2867     return;
2868   }
2869 
2870   if (FromFunction->getMethodQuals() != ToFunction->getMethodQuals()) {
2871     PDiag << ft_qualifer_mismatch << ToFunction->getMethodQuals()
2872           << FromFunction->getMethodQuals();
2873     return;
2874   }
2875 
2876   // Handle exception specification differences on canonical type (in C++17
2877   // onwards).
2878   if (cast<FunctionProtoType>(FromFunction->getCanonicalTypeUnqualified())
2879           ->isNothrow() !=
2880       cast<FunctionProtoType>(ToFunction->getCanonicalTypeUnqualified())
2881           ->isNothrow()) {
2882     PDiag << ft_noexcept;
2883     return;
2884   }
2885 
2886   // Unable to find a difference, so add no extra info.
2887   PDiag << ft_default;
2888 }
2889 
2890 /// FunctionParamTypesAreEqual - This routine checks two function proto types
2891 /// for equality of their argument types. Caller has already checked that
2892 /// they have same number of arguments.  If the parameters are different,
2893 /// ArgPos will have the parameter index of the first different parameter.
2894 bool Sema::FunctionParamTypesAreEqual(const FunctionProtoType *OldType,
2895                                       const FunctionProtoType *NewType,
2896                                       unsigned *ArgPos) {
2897   for (FunctionProtoType::param_type_iterator O = OldType->param_type_begin(),
2898                                               N = NewType->param_type_begin(),
2899                                               E = OldType->param_type_end();
2900        O && (O != E); ++O, ++N) {
2901     if (!Context.hasSameType(O->getUnqualifiedType(),
2902                              N->getUnqualifiedType())) {
2903       if (ArgPos)
2904         *ArgPos = O - OldType->param_type_begin();
2905       return false;
2906     }
2907   }
2908   return true;
2909 }
2910 
2911 /// CheckPointerConversion - Check the pointer conversion from the
2912 /// expression From to the type ToType. This routine checks for
2913 /// ambiguous or inaccessible derived-to-base pointer
2914 /// conversions for which IsPointerConversion has already returned
2915 /// true. It returns true and produces a diagnostic if there was an
2916 /// error, or returns false otherwise.
2917 bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
2918                                   CastKind &Kind,
2919                                   CXXCastPath& BasePath,
2920                                   bool IgnoreBaseAccess,
2921                                   bool Diagnose) {
2922   QualType FromType = From->getType();
2923   bool IsCStyleOrFunctionalCast = IgnoreBaseAccess;
2924 
2925   Kind = CK_BitCast;
2926 
2927   if (Diagnose && !IsCStyleOrFunctionalCast && !FromType->isAnyPointerType() &&
2928       From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull) ==
2929           Expr::NPCK_ZeroExpression) {
2930     if (Context.hasSameUnqualifiedType(From->getType(), Context.BoolTy))
2931       DiagRuntimeBehavior(From->getExprLoc(), From,
2932                           PDiag(diag::warn_impcast_bool_to_null_pointer)
2933                             << ToType << From->getSourceRange());
2934     else if (!isUnevaluatedContext())
2935       Diag(From->getExprLoc(), diag::warn_non_literal_null_pointer)
2936         << ToType << From->getSourceRange();
2937   }
2938   if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
2939     if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) {
2940       QualType FromPointeeType = FromPtrType->getPointeeType(),
2941                ToPointeeType   = ToPtrType->getPointeeType();
2942 
2943       if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
2944           !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) {
2945         // We must have a derived-to-base conversion. Check an
2946         // ambiguous or inaccessible conversion.
2947         unsigned InaccessibleID = 0;
2948         unsigned AmbigiousID = 0;
2949         if (Diagnose) {
2950           InaccessibleID = diag::err_upcast_to_inaccessible_base;
2951           AmbigiousID = diag::err_ambiguous_derived_to_base_conv;
2952         }
2953         if (CheckDerivedToBaseConversion(
2954                 FromPointeeType, ToPointeeType, InaccessibleID, AmbigiousID,
2955                 From->getExprLoc(), From->getSourceRange(), DeclarationName(),
2956                 &BasePath, IgnoreBaseAccess))
2957           return true;
2958 
2959         // The conversion was successful.
2960         Kind = CK_DerivedToBase;
2961       }
2962 
2963       if (Diagnose && !IsCStyleOrFunctionalCast &&
2964           FromPointeeType->isFunctionType() && ToPointeeType->isVoidType()) {
2965         assert(getLangOpts().MSVCCompat &&
2966                "this should only be possible with MSVCCompat!");
2967         Diag(From->getExprLoc(), diag::ext_ms_impcast_fn_obj)
2968             << From->getSourceRange();
2969       }
2970     }
2971   } else if (const ObjCObjectPointerType *ToPtrType =
2972                ToType->getAs<ObjCObjectPointerType>()) {
2973     if (const ObjCObjectPointerType *FromPtrType =
2974           FromType->getAs<ObjCObjectPointerType>()) {
2975       // Objective-C++ conversions are always okay.
2976       // FIXME: We should have a different class of conversions for the
2977       // Objective-C++ implicit conversions.
2978       if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
2979         return false;
2980     } else if (FromType->isBlockPointerType()) {
2981       Kind = CK_BlockPointerToObjCPointerCast;
2982     } else {
2983       Kind = CK_CPointerToObjCPointerCast;
2984     }
2985   } else if (ToType->isBlockPointerType()) {
2986     if (!FromType->isBlockPointerType())
2987       Kind = CK_AnyPointerToBlockPointerCast;
2988   }
2989 
2990   // We shouldn't fall into this case unless it's valid for other
2991   // reasons.
2992   if (From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
2993     Kind = CK_NullToPointer;
2994 
2995   return false;
2996 }
2997 
2998 /// IsMemberPointerConversion - Determines whether the conversion of the
2999 /// expression From, which has the (possibly adjusted) type FromType, can be
3000 /// converted to the type ToType via a member pointer conversion (C++ 4.11).
3001 /// If so, returns true and places the converted type (that might differ from
3002 /// ToType in its cv-qualifiers at some level) into ConvertedType.
3003 bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
3004                                      QualType ToType,
3005                                      bool InOverloadResolution,
3006                                      QualType &ConvertedType) {
3007   const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
3008   if (!ToTypePtr)
3009     return false;
3010 
3011   // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
3012   if (From->isNullPointerConstant(Context,
3013                     InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
3014                                         : Expr::NPC_ValueDependentIsNull)) {
3015     ConvertedType = ToType;
3016     return true;
3017   }
3018 
3019   // Otherwise, both types have to be member pointers.
3020   const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
3021   if (!FromTypePtr)
3022     return false;
3023 
3024   // A pointer to member of B can be converted to a pointer to member of D,
3025   // where D is derived from B (C++ 4.11p2).
3026   QualType FromClass(FromTypePtr->getClass(), 0);
3027   QualType ToClass(ToTypePtr->getClass(), 0);
3028 
3029   if (!Context.hasSameUnqualifiedType(FromClass, ToClass) &&
3030       IsDerivedFrom(From->getBeginLoc(), ToClass, FromClass)) {
3031     ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
3032                                                  ToClass.getTypePtr());
3033     return true;
3034   }
3035 
3036   return false;
3037 }
3038 
3039 /// CheckMemberPointerConversion - Check the member pointer conversion from the
3040 /// expression From to the type ToType. This routine checks for ambiguous or
3041 /// virtual or inaccessible base-to-derived member pointer conversions
3042 /// for which IsMemberPointerConversion has already returned true. It returns
3043 /// true and produces a diagnostic if there was an error, or returns false
3044 /// otherwise.
3045 bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
3046                                         CastKind &Kind,
3047                                         CXXCastPath &BasePath,
3048                                         bool IgnoreBaseAccess) {
3049   QualType FromType = From->getType();
3050   const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
3051   if (!FromPtrType) {
3052     // This must be a null pointer to member pointer conversion
3053     assert(From->isNullPointerConstant(Context,
3054                                        Expr::NPC_ValueDependentIsNull) &&
3055            "Expr must be null pointer constant!");
3056     Kind = CK_NullToMemberPointer;
3057     return false;
3058   }
3059 
3060   const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
3061   assert(ToPtrType && "No member pointer cast has a target type "
3062                       "that is not a member pointer.");
3063 
3064   QualType FromClass = QualType(FromPtrType->getClass(), 0);
3065   QualType ToClass   = QualType(ToPtrType->getClass(), 0);
3066 
3067   // FIXME: What about dependent types?
3068   assert(FromClass->isRecordType() && "Pointer into non-class.");
3069   assert(ToClass->isRecordType() && "Pointer into non-class.");
3070 
3071   CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
3072                      /*DetectVirtual=*/true);
3073   bool DerivationOkay =
3074       IsDerivedFrom(From->getBeginLoc(), ToClass, FromClass, Paths);
3075   assert(DerivationOkay &&
3076          "Should not have been called if derivation isn't OK.");
3077   (void)DerivationOkay;
3078 
3079   if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
3080                                   getUnqualifiedType())) {
3081     std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
3082     Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
3083       << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
3084     return true;
3085   }
3086 
3087   if (const RecordType *VBase = Paths.getDetectedVirtual()) {
3088     Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
3089       << FromClass << ToClass << QualType(VBase, 0)
3090       << From->getSourceRange();
3091     return true;
3092   }
3093 
3094   if (!IgnoreBaseAccess)
3095     CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass,
3096                          Paths.front(),
3097                          diag::err_downcast_from_inaccessible_base);
3098 
3099   // Must be a base to derived member conversion.
3100   BuildBasePathArray(Paths, BasePath);
3101   Kind = CK_BaseToDerivedMemberPointer;
3102   return false;
3103 }
3104 
3105 /// Determine whether the lifetime conversion between the two given
3106 /// qualifiers sets is nontrivial.
3107 static bool isNonTrivialObjCLifetimeConversion(Qualifiers FromQuals,
3108                                                Qualifiers ToQuals) {
3109   // Converting anything to const __unsafe_unretained is trivial.
3110   if (ToQuals.hasConst() &&
3111       ToQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone)
3112     return false;
3113 
3114   return true;
3115 }
3116 
3117 /// IsQualificationConversion - Determines whether the conversion from
3118 /// an rvalue of type FromType to ToType is a qualification conversion
3119 /// (C++ 4.4).
3120 ///
3121 /// \param ObjCLifetimeConversion Output parameter that will be set to indicate
3122 /// when the qualification conversion involves a change in the Objective-C
3123 /// object lifetime.
3124 bool
3125 Sema::IsQualificationConversion(QualType FromType, QualType ToType,
3126                                 bool CStyle, bool &ObjCLifetimeConversion) {
3127   FromType = Context.getCanonicalType(FromType);
3128   ToType = Context.getCanonicalType(ToType);
3129   ObjCLifetimeConversion = false;
3130 
3131   // If FromType and ToType are the same type, this is not a
3132   // qualification conversion.
3133   if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType())
3134     return false;
3135 
3136   // (C++ 4.4p4):
3137   //   A conversion can add cv-qualifiers at levels other than the first
3138   //   in multi-level pointers, subject to the following rules: [...]
3139   bool PreviousToQualsIncludeConst = true;
3140   bool UnwrappedAnyPointer = false;
3141   while (Context.UnwrapSimilarTypes(FromType, ToType)) {
3142     // Within each iteration of the loop, we check the qualifiers to
3143     // determine if this still looks like a qualification
3144     // conversion. Then, if all is well, we unwrap one more level of
3145     // pointers or pointers-to-members and do it all again
3146     // until there are no more pointers or pointers-to-members left to
3147     // unwrap.
3148     UnwrappedAnyPointer = true;
3149 
3150     Qualifiers FromQuals = FromType.getQualifiers();
3151     Qualifiers ToQuals = ToType.getQualifiers();
3152 
3153     // Ignore __unaligned qualifier if this type is void.
3154     if (ToType.getUnqualifiedType()->isVoidType())
3155       FromQuals.removeUnaligned();
3156 
3157     // Objective-C ARC:
3158     //   Check Objective-C lifetime conversions.
3159     if (FromQuals.getObjCLifetime() != ToQuals.getObjCLifetime() &&
3160         UnwrappedAnyPointer) {
3161       if (ToQuals.compatiblyIncludesObjCLifetime(FromQuals)) {
3162         if (isNonTrivialObjCLifetimeConversion(FromQuals, ToQuals))
3163           ObjCLifetimeConversion = true;
3164         FromQuals.removeObjCLifetime();
3165         ToQuals.removeObjCLifetime();
3166       } else {
3167         // Qualification conversions cannot cast between different
3168         // Objective-C lifetime qualifiers.
3169         return false;
3170       }
3171     }
3172 
3173     // Allow addition/removal of GC attributes but not changing GC attributes.
3174     if (FromQuals.getObjCGCAttr() != ToQuals.getObjCGCAttr() &&
3175         (!FromQuals.hasObjCGCAttr() || !ToQuals.hasObjCGCAttr())) {
3176       FromQuals.removeObjCGCAttr();
3177       ToQuals.removeObjCGCAttr();
3178     }
3179 
3180     //   -- for every j > 0, if const is in cv 1,j then const is in cv
3181     //      2,j, and similarly for volatile.
3182     if (!CStyle && !ToQuals.compatiblyIncludes(FromQuals))
3183       return false;
3184 
3185     //   -- if the cv 1,j and cv 2,j are different, then const is in
3186     //      every cv for 0 < k < j.
3187     if (!CStyle && FromQuals.getCVRQualifiers() != ToQuals.getCVRQualifiers()
3188         && !PreviousToQualsIncludeConst)
3189       return false;
3190 
3191     // Keep track of whether all prior cv-qualifiers in the "to" type
3192     // include const.
3193     PreviousToQualsIncludeConst
3194       = PreviousToQualsIncludeConst && ToQuals.hasConst();
3195   }
3196 
3197   // Allows address space promotion by language rules implemented in
3198   // Type::Qualifiers::isAddressSpaceSupersetOf.
3199   Qualifiers FromQuals = FromType.getQualifiers();
3200   Qualifiers ToQuals = ToType.getQualifiers();
3201   if (!ToQuals.isAddressSpaceSupersetOf(FromQuals) &&
3202       !FromQuals.isAddressSpaceSupersetOf(ToQuals)) {
3203     return false;
3204   }
3205 
3206   // We are left with FromType and ToType being the pointee types
3207   // after unwrapping the original FromType and ToType the same number
3208   // of types. If we unwrapped any pointers, and if FromType and
3209   // ToType have the same unqualified type (since we checked
3210   // qualifiers above), then this is a qualification conversion.
3211   return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
3212 }
3213 
3214 /// - Determine whether this is a conversion from a scalar type to an
3215 /// atomic type.
3216 ///
3217 /// If successful, updates \c SCS's second and third steps in the conversion
3218 /// sequence to finish the conversion.
3219 static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
3220                                 bool InOverloadResolution,
3221                                 StandardConversionSequence &SCS,
3222                                 bool CStyle) {
3223   const AtomicType *ToAtomic = ToType->getAs<AtomicType>();
3224   if (!ToAtomic)
3225     return false;
3226 
3227   StandardConversionSequence InnerSCS;
3228   if (!IsStandardConversion(S, From, ToAtomic->getValueType(),
3229                             InOverloadResolution, InnerSCS,
3230                             CStyle, /*AllowObjCWritebackConversion=*/false))
3231     return false;
3232 
3233   SCS.Second = InnerSCS.Second;
3234   SCS.setToType(1, InnerSCS.getToType(1));
3235   SCS.Third = InnerSCS.Third;
3236   SCS.QualificationIncludesObjCLifetime
3237     = InnerSCS.QualificationIncludesObjCLifetime;
3238   SCS.setToType(2, InnerSCS.getToType(2));
3239   return true;
3240 }
3241 
3242 static bool isFirstArgumentCompatibleWithType(ASTContext &Context,
3243                                               CXXConstructorDecl *Constructor,
3244                                               QualType Type) {
3245   const FunctionProtoType *CtorType =
3246       Constructor->getType()->getAs<FunctionProtoType>();
3247   if (CtorType->getNumParams() > 0) {
3248     QualType FirstArg = CtorType->getParamType(0);
3249     if (Context.hasSameUnqualifiedType(Type, FirstArg.getNonReferenceType()))
3250       return true;
3251   }
3252   return false;
3253 }
3254 
3255 static OverloadingResult
3256 IsInitializerListConstructorConversion(Sema &S, Expr *From, QualType ToType,
3257                                        CXXRecordDecl *To,
3258                                        UserDefinedConversionSequence &User,
3259                                        OverloadCandidateSet &CandidateSet,
3260                                        bool AllowExplicit) {
3261   CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
3262   for (auto *D : S.LookupConstructors(To)) {
3263     auto Info = getConstructorInfo(D);
3264     if (!Info)
3265       continue;
3266 
3267     bool Usable = !Info.Constructor->isInvalidDecl() &&
3268                   S.isInitListConstructor(Info.Constructor) &&
3269                   (AllowExplicit || !Info.Constructor->isExplicit());
3270     if (Usable) {
3271       // If the first argument is (a reference to) the target type,
3272       // suppress conversions.
3273       bool SuppressUserConversions = isFirstArgumentCompatibleWithType(
3274           S.Context, Info.Constructor, ToType);
3275       if (Info.ConstructorTmpl)
3276         S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl,
3277                                        /*ExplicitArgs*/ nullptr, From,
3278                                        CandidateSet, SuppressUserConversions,
3279                                        /*PartialOverloading*/ false,
3280                                        AllowExplicit);
3281       else
3282         S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, From,
3283                                CandidateSet, SuppressUserConversions,
3284                                /*PartialOverloading*/ false, AllowExplicit);
3285     }
3286   }
3287 
3288   bool HadMultipleCandidates = (CandidateSet.size() > 1);
3289 
3290   OverloadCandidateSet::iterator Best;
3291   switch (auto Result =
3292               CandidateSet.BestViableFunction(S, From->getBeginLoc(), Best)) {
3293   case OR_Deleted:
3294   case OR_Success: {
3295     // Record the standard conversion we used and the conversion function.
3296     CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
3297     QualType ThisType = Constructor->getThisType();
3298     // Initializer lists don't have conversions as such.
3299     User.Before.setAsIdentityConversion();
3300     User.HadMultipleCandidates = HadMultipleCandidates;
3301     User.ConversionFunction = Constructor;
3302     User.FoundConversionFunction = Best->FoundDecl;
3303     User.After.setAsIdentityConversion();
3304     User.After.setFromType(ThisType->castAs<PointerType>()->getPointeeType());
3305     User.After.setAllToTypes(ToType);
3306     return Result;
3307   }
3308 
3309   case OR_No_Viable_Function:
3310     return OR_No_Viable_Function;
3311   case OR_Ambiguous:
3312     return OR_Ambiguous;
3313   }
3314 
3315   llvm_unreachable("Invalid OverloadResult!");
3316 }
3317 
3318 /// Determines whether there is a user-defined conversion sequence
3319 /// (C++ [over.ics.user]) that converts expression From to the type
3320 /// ToType. If such a conversion exists, User will contain the
3321 /// user-defined conversion sequence that performs such a conversion
3322 /// and this routine will return true. Otherwise, this routine returns
3323 /// false and User is unspecified.
3324 ///
3325 /// \param AllowExplicit  true if the conversion should consider C++0x
3326 /// "explicit" conversion functions as well as non-explicit conversion
3327 /// functions (C++0x [class.conv.fct]p2).
3328 ///
3329 /// \param AllowObjCConversionOnExplicit true if the conversion should
3330 /// allow an extra Objective-C pointer conversion on uses of explicit
3331 /// constructors. Requires \c AllowExplicit to also be set.
3332 static OverloadingResult
3333 IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
3334                         UserDefinedConversionSequence &User,
3335                         OverloadCandidateSet &CandidateSet,
3336                         bool AllowExplicit,
3337                         bool AllowObjCConversionOnExplicit) {
3338   assert(AllowExplicit || !AllowObjCConversionOnExplicit);
3339   CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
3340 
3341   // Whether we will only visit constructors.
3342   bool ConstructorsOnly = false;
3343 
3344   // If the type we are conversion to is a class type, enumerate its
3345   // constructors.
3346   if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
3347     // C++ [over.match.ctor]p1:
3348     //   When objects of class type are direct-initialized (8.5), or
3349     //   copy-initialized from an expression of the same or a
3350     //   derived class type (8.5), overload resolution selects the
3351     //   constructor. [...] For copy-initialization, the candidate
3352     //   functions are all the converting constructors (12.3.1) of
3353     //   that class. The argument list is the expression-list within
3354     //   the parentheses of the initializer.
3355     if (S.Context.hasSameUnqualifiedType(ToType, From->getType()) ||
3356         (From->getType()->getAs<RecordType>() &&
3357          S.IsDerivedFrom(From->getBeginLoc(), From->getType(), ToType)))
3358       ConstructorsOnly = true;
3359 
3360     if (!S.isCompleteType(From->getExprLoc(), ToType)) {
3361       // We're not going to find any constructors.
3362     } else if (CXXRecordDecl *ToRecordDecl
3363                  = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
3364 
3365       Expr **Args = &From;
3366       unsigned NumArgs = 1;
3367       bool ListInitializing = false;
3368       if (InitListExpr *InitList = dyn_cast<InitListExpr>(From)) {
3369         // But first, see if there is an init-list-constructor that will work.
3370         OverloadingResult Result = IsInitializerListConstructorConversion(
3371             S, From, ToType, ToRecordDecl, User, CandidateSet, AllowExplicit);
3372         if (Result != OR_No_Viable_Function)
3373           return Result;
3374         // Never mind.
3375         CandidateSet.clear(
3376             OverloadCandidateSet::CSK_InitByUserDefinedConversion);
3377 
3378         // If we're list-initializing, we pass the individual elements as
3379         // arguments, not the entire list.
3380         Args = InitList->getInits();
3381         NumArgs = InitList->getNumInits();
3382         ListInitializing = true;
3383       }
3384 
3385       for (auto *D : S.LookupConstructors(ToRecordDecl)) {
3386         auto Info = getConstructorInfo(D);
3387         if (!Info)
3388           continue;
3389 
3390         bool Usable = !Info.Constructor->isInvalidDecl();
3391         if (ListInitializing)
3392           Usable = Usable && (AllowExplicit || !Info.Constructor->isExplicit());
3393         else
3394           Usable = Usable &&
3395                    Info.Constructor->isConvertingConstructor(AllowExplicit);
3396         if (Usable) {
3397           bool SuppressUserConversions = !ConstructorsOnly;
3398           if (SuppressUserConversions && ListInitializing) {
3399             SuppressUserConversions = false;
3400             if (NumArgs == 1) {
3401               // If the first argument is (a reference to) the target type,
3402               // suppress conversions.
3403               SuppressUserConversions = isFirstArgumentCompatibleWithType(
3404                   S.Context, Info.Constructor, ToType);
3405             }
3406           }
3407           if (Info.ConstructorTmpl)
3408             S.AddTemplateOverloadCandidate(
3409                 Info.ConstructorTmpl, Info.FoundDecl,
3410                 /*ExplicitArgs*/ nullptr, llvm::makeArrayRef(Args, NumArgs),
3411                 CandidateSet, SuppressUserConversions,
3412                 /*PartialOverloading*/ false, AllowExplicit);
3413           else
3414             // Allow one user-defined conversion when user specifies a
3415             // From->ToType conversion via an static cast (c-style, etc).
3416             S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl,
3417                                    llvm::makeArrayRef(Args, NumArgs),
3418                                    CandidateSet, SuppressUserConversions,
3419                                    /*PartialOverloading*/ false, AllowExplicit);
3420         }
3421       }
3422     }
3423   }
3424 
3425   // Enumerate conversion functions, if we're allowed to.
3426   if (ConstructorsOnly || isa<InitListExpr>(From)) {
3427   } else if (!S.isCompleteType(From->getBeginLoc(), From->getType())) {
3428     // No conversion functions from incomplete types.
3429   } else if (const RecordType *FromRecordType =
3430                  From->getType()->getAs<RecordType>()) {
3431     if (CXXRecordDecl *FromRecordDecl
3432          = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
3433       // Add all of the conversion functions as candidates.
3434       const auto &Conversions = FromRecordDecl->getVisibleConversionFunctions();
3435       for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
3436         DeclAccessPair FoundDecl = I.getPair();
3437         NamedDecl *D = FoundDecl.getDecl();
3438         CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
3439         if (isa<UsingShadowDecl>(D))
3440           D = cast<UsingShadowDecl>(D)->getTargetDecl();
3441 
3442         CXXConversionDecl *Conv;
3443         FunctionTemplateDecl *ConvTemplate;
3444         if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
3445           Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3446         else
3447           Conv = cast<CXXConversionDecl>(D);
3448 
3449         if (AllowExplicit || !Conv->isExplicit()) {
3450           if (ConvTemplate)
3451             S.AddTemplateConversionCandidate(
3452                 ConvTemplate, FoundDecl, ActingContext, From, ToType,
3453                 CandidateSet, AllowObjCConversionOnExplicit, AllowExplicit);
3454           else
3455             S.AddConversionCandidate(
3456                 Conv, FoundDecl, ActingContext, From, ToType, CandidateSet,
3457                 AllowObjCConversionOnExplicit, AllowExplicit);
3458         }
3459       }
3460     }
3461   }
3462 
3463   bool HadMultipleCandidates = (CandidateSet.size() > 1);
3464 
3465   OverloadCandidateSet::iterator Best;
3466   switch (auto Result =
3467               CandidateSet.BestViableFunction(S, From->getBeginLoc(), Best)) {
3468   case OR_Success:
3469   case OR_Deleted:
3470     // Record the standard conversion we used and the conversion function.
3471     if (CXXConstructorDecl *Constructor
3472           = dyn_cast<CXXConstructorDecl>(Best->Function)) {
3473       // C++ [over.ics.user]p1:
3474       //   If the user-defined conversion is specified by a
3475       //   constructor (12.3.1), the initial standard conversion
3476       //   sequence converts the source type to the type required by
3477       //   the argument of the constructor.
3478       //
3479       QualType ThisType = Constructor->getThisType();
3480       if (isa<InitListExpr>(From)) {
3481         // Initializer lists don't have conversions as such.
3482         User.Before.setAsIdentityConversion();
3483       } else {
3484         if (Best->Conversions[0].isEllipsis())
3485           User.EllipsisConversion = true;
3486         else {
3487           User.Before = Best->Conversions[0].Standard;
3488           User.EllipsisConversion = false;
3489         }
3490       }
3491       User.HadMultipleCandidates = HadMultipleCandidates;
3492       User.ConversionFunction = Constructor;
3493       User.FoundConversionFunction = Best->FoundDecl;
3494       User.After.setAsIdentityConversion();
3495       User.After.setFromType(ThisType->castAs<PointerType>()->getPointeeType());
3496       User.After.setAllToTypes(ToType);
3497       return Result;
3498     }
3499     if (CXXConversionDecl *Conversion
3500                  = dyn_cast<CXXConversionDecl>(Best->Function)) {
3501       // C++ [over.ics.user]p1:
3502       //
3503       //   [...] If the user-defined conversion is specified by a
3504       //   conversion function (12.3.2), the initial standard
3505       //   conversion sequence converts the source type to the
3506       //   implicit object parameter of the conversion function.
3507       User.Before = Best->Conversions[0].Standard;
3508       User.HadMultipleCandidates = HadMultipleCandidates;
3509       User.ConversionFunction = Conversion;
3510       User.FoundConversionFunction = Best->FoundDecl;
3511       User.EllipsisConversion = false;
3512 
3513       // C++ [over.ics.user]p2:
3514       //   The second standard conversion sequence converts the
3515       //   result of the user-defined conversion to the target type
3516       //   for the sequence. Since an implicit conversion sequence
3517       //   is an initialization, the special rules for
3518       //   initialization by user-defined conversion apply when
3519       //   selecting the best user-defined conversion for a
3520       //   user-defined conversion sequence (see 13.3.3 and
3521       //   13.3.3.1).
3522       User.After = Best->FinalConversion;
3523       return Result;
3524     }
3525     llvm_unreachable("Not a constructor or conversion function?");
3526 
3527   case OR_No_Viable_Function:
3528     return OR_No_Viable_Function;
3529 
3530   case OR_Ambiguous:
3531     return OR_Ambiguous;
3532   }
3533 
3534   llvm_unreachable("Invalid OverloadResult!");
3535 }
3536 
3537 bool
3538 Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
3539   ImplicitConversionSequence ICS;
3540   OverloadCandidateSet CandidateSet(From->getExprLoc(),
3541                                     OverloadCandidateSet::CSK_Normal);
3542   OverloadingResult OvResult =
3543     IsUserDefinedConversion(*this, From, ToType, ICS.UserDefined,
3544                             CandidateSet, false, false);
3545 
3546   if (!(OvResult == OR_Ambiguous ||
3547         (OvResult == OR_No_Viable_Function && !CandidateSet.empty())))
3548     return false;
3549 
3550   auto Cands = CandidateSet.CompleteCandidates(
3551       *this,
3552       OvResult == OR_Ambiguous ? OCD_AmbiguousCandidates : OCD_AllCandidates,
3553       From);
3554   if (OvResult == OR_Ambiguous)
3555     Diag(From->getBeginLoc(), diag::err_typecheck_ambiguous_condition)
3556         << From->getType() << ToType << From->getSourceRange();
3557   else { // OR_No_Viable_Function && !CandidateSet.empty()
3558     if (!RequireCompleteType(From->getBeginLoc(), ToType,
3559                              diag::err_typecheck_nonviable_condition_incomplete,
3560                              From->getType(), From->getSourceRange()))
3561       Diag(From->getBeginLoc(), diag::err_typecheck_nonviable_condition)
3562           << false << From->getType() << From->getSourceRange() << ToType;
3563   }
3564 
3565   CandidateSet.NoteCandidates(
3566                               *this, From, Cands);
3567   return true;
3568 }
3569 
3570 /// Compare the user-defined conversion functions or constructors
3571 /// of two user-defined conversion sequences to determine whether any ordering
3572 /// is possible.
3573 static ImplicitConversionSequence::CompareKind
3574 compareConversionFunctions(Sema &S, FunctionDecl *Function1,
3575                            FunctionDecl *Function2) {
3576   if (!S.getLangOpts().ObjC || !S.getLangOpts().CPlusPlus11)
3577     return ImplicitConversionSequence::Indistinguishable;
3578 
3579   // Objective-C++:
3580   //   If both conversion functions are implicitly-declared conversions from
3581   //   a lambda closure type to a function pointer and a block pointer,
3582   //   respectively, always prefer the conversion to a function pointer,
3583   //   because the function pointer is more lightweight and is more likely
3584   //   to keep code working.
3585   CXXConversionDecl *Conv1 = dyn_cast_or_null<CXXConversionDecl>(Function1);
3586   if (!Conv1)
3587     return ImplicitConversionSequence::Indistinguishable;
3588 
3589   CXXConversionDecl *Conv2 = dyn_cast<CXXConversionDecl>(Function2);
3590   if (!Conv2)
3591     return ImplicitConversionSequence::Indistinguishable;
3592 
3593   if (Conv1->getParent()->isLambda() && Conv2->getParent()->isLambda()) {
3594     bool Block1 = Conv1->getConversionType()->isBlockPointerType();
3595     bool Block2 = Conv2->getConversionType()->isBlockPointerType();
3596     if (Block1 != Block2)
3597       return Block1 ? ImplicitConversionSequence::Worse
3598                     : ImplicitConversionSequence::Better;
3599   }
3600 
3601   return ImplicitConversionSequence::Indistinguishable;
3602 }
3603 
3604 static bool hasDeprecatedStringLiteralToCharPtrConversion(
3605     const ImplicitConversionSequence &ICS) {
3606   return (ICS.isStandard() && ICS.Standard.DeprecatedStringLiteralToCharPtr) ||
3607          (ICS.isUserDefined() &&
3608           ICS.UserDefined.Before.DeprecatedStringLiteralToCharPtr);
3609 }
3610 
3611 /// CompareImplicitConversionSequences - Compare two implicit
3612 /// conversion sequences to determine whether one is better than the
3613 /// other or if they are indistinguishable (C++ 13.3.3.2).
3614 static ImplicitConversionSequence::CompareKind
3615 CompareImplicitConversionSequences(Sema &S, SourceLocation Loc,
3616                                    const ImplicitConversionSequence& ICS1,
3617                                    const ImplicitConversionSequence& ICS2)
3618 {
3619   // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
3620   // conversion sequences (as defined in 13.3.3.1)
3621   //   -- a standard conversion sequence (13.3.3.1.1) is a better
3622   //      conversion sequence than a user-defined conversion sequence or
3623   //      an ellipsis conversion sequence, and
3624   //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
3625   //      conversion sequence than an ellipsis conversion sequence
3626   //      (13.3.3.1.3).
3627   //
3628   // C++0x [over.best.ics]p10:
3629   //   For the purpose of ranking implicit conversion sequences as
3630   //   described in 13.3.3.2, the ambiguous conversion sequence is
3631   //   treated as a user-defined sequence that is indistinguishable
3632   //   from any other user-defined conversion sequence.
3633 
3634   // String literal to 'char *' conversion has been deprecated in C++03. It has
3635   // been removed from C++11. We still accept this conversion, if it happens at
3636   // the best viable function. Otherwise, this conversion is considered worse
3637   // than ellipsis conversion. Consider this as an extension; this is not in the
3638   // standard. For example:
3639   //
3640   // int &f(...);    // #1
3641   // void f(char*);  // #2
3642   // void g() { int &r = f("foo"); }
3643   //
3644   // In C++03, we pick #2 as the best viable function.
3645   // In C++11, we pick #1 as the best viable function, because ellipsis
3646   // conversion is better than string-literal to char* conversion (since there
3647   // is no such conversion in C++11). If there was no #1 at all or #1 couldn't
3648   // convert arguments, #2 would be the best viable function in C++11.
3649   // If the best viable function has this conversion, a warning will be issued
3650   // in C++03, or an ExtWarn (+SFINAE failure) will be issued in C++11.
3651 
3652   if (S.getLangOpts().CPlusPlus11 && !S.getLangOpts().WritableStrings &&
3653       hasDeprecatedStringLiteralToCharPtrConversion(ICS1) !=
3654       hasDeprecatedStringLiteralToCharPtrConversion(ICS2))
3655     return hasDeprecatedStringLiteralToCharPtrConversion(ICS1)
3656                ? ImplicitConversionSequence::Worse
3657                : ImplicitConversionSequence::Better;
3658 
3659   if (ICS1.getKindRank() < ICS2.getKindRank())
3660     return ImplicitConversionSequence::Better;
3661   if (ICS2.getKindRank() < ICS1.getKindRank())
3662     return ImplicitConversionSequence::Worse;
3663 
3664   // The following checks require both conversion sequences to be of
3665   // the same kind.
3666   if (ICS1.getKind() != ICS2.getKind())
3667     return ImplicitConversionSequence::Indistinguishable;
3668 
3669   ImplicitConversionSequence::CompareKind Result =
3670       ImplicitConversionSequence::Indistinguishable;
3671 
3672   // Two implicit conversion sequences of the same form are
3673   // indistinguishable conversion sequences unless one of the
3674   // following rules apply: (C++ 13.3.3.2p3):
3675 
3676   // List-initialization sequence L1 is a better conversion sequence than
3677   // list-initialization sequence L2 if:
3678   // - L1 converts to std::initializer_list<X> for some X and L2 does not, or,
3679   //   if not that,
3680   // - L1 converts to type "array of N1 T", L2 converts to type "array of N2 T",
3681   //   and N1 is smaller than N2.,
3682   // even if one of the other rules in this paragraph would otherwise apply.
3683   if (!ICS1.isBad()) {
3684     if (ICS1.isStdInitializerListElement() &&
3685         !ICS2.isStdInitializerListElement())
3686       return ImplicitConversionSequence::Better;
3687     if (!ICS1.isStdInitializerListElement() &&
3688         ICS2.isStdInitializerListElement())
3689       return ImplicitConversionSequence::Worse;
3690   }
3691 
3692   if (ICS1.isStandard())
3693     // Standard conversion sequence S1 is a better conversion sequence than
3694     // standard conversion sequence S2 if [...]
3695     Result = CompareStandardConversionSequences(S, Loc,
3696                                                 ICS1.Standard, ICS2.Standard);
3697   else if (ICS1.isUserDefined()) {
3698     // User-defined conversion sequence U1 is a better conversion
3699     // sequence than another user-defined conversion sequence U2 if
3700     // they contain the same user-defined conversion function or
3701     // constructor and if the second standard conversion sequence of
3702     // U1 is better than the second standard conversion sequence of
3703     // U2 (C++ 13.3.3.2p3).
3704     if (ICS1.UserDefined.ConversionFunction ==
3705           ICS2.UserDefined.ConversionFunction)
3706       Result = CompareStandardConversionSequences(S, Loc,
3707                                                   ICS1.UserDefined.After,
3708                                                   ICS2.UserDefined.After);
3709     else
3710       Result = compareConversionFunctions(S,
3711                                           ICS1.UserDefined.ConversionFunction,
3712                                           ICS2.UserDefined.ConversionFunction);
3713   }
3714 
3715   return Result;
3716 }
3717 
3718 // Per 13.3.3.2p3, compare the given standard conversion sequences to
3719 // determine if one is a proper subset of the other.
3720 static ImplicitConversionSequence::CompareKind
3721 compareStandardConversionSubsets(ASTContext &Context,
3722                                  const StandardConversionSequence& SCS1,
3723                                  const StandardConversionSequence& SCS2) {
3724   ImplicitConversionSequence::CompareKind Result
3725     = ImplicitConversionSequence::Indistinguishable;
3726 
3727   // the identity conversion sequence is considered to be a subsequence of
3728   // any non-identity conversion sequence
3729   if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion())
3730     return ImplicitConversionSequence::Better;
3731   else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion())
3732     return ImplicitConversionSequence::Worse;
3733 
3734   if (SCS1.Second != SCS2.Second) {
3735     if (SCS1.Second == ICK_Identity)
3736       Result = ImplicitConversionSequence::Better;
3737     else if (SCS2.Second == ICK_Identity)
3738       Result = ImplicitConversionSequence::Worse;
3739     else
3740       return ImplicitConversionSequence::Indistinguishable;
3741   } else if (!Context.hasSimilarType(SCS1.getToType(1), SCS2.getToType(1)))
3742     return ImplicitConversionSequence::Indistinguishable;
3743 
3744   if (SCS1.Third == SCS2.Third) {
3745     return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result
3746                              : ImplicitConversionSequence::Indistinguishable;
3747   }
3748 
3749   if (SCS1.Third == ICK_Identity)
3750     return Result == ImplicitConversionSequence::Worse
3751              ? ImplicitConversionSequence::Indistinguishable
3752              : ImplicitConversionSequence::Better;
3753 
3754   if (SCS2.Third == ICK_Identity)
3755     return Result == ImplicitConversionSequence::Better
3756              ? ImplicitConversionSequence::Indistinguishable
3757              : ImplicitConversionSequence::Worse;
3758 
3759   return ImplicitConversionSequence::Indistinguishable;
3760 }
3761 
3762 /// Determine whether one of the given reference bindings is better
3763 /// than the other based on what kind of bindings they are.
3764 static bool
3765 isBetterReferenceBindingKind(const StandardConversionSequence &SCS1,
3766                              const StandardConversionSequence &SCS2) {
3767   // C++0x [over.ics.rank]p3b4:
3768   //   -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
3769   //      implicit object parameter of a non-static member function declared
3770   //      without a ref-qualifier, and *either* S1 binds an rvalue reference
3771   //      to an rvalue and S2 binds an lvalue reference *or S1 binds an
3772   //      lvalue reference to a function lvalue and S2 binds an rvalue
3773   //      reference*.
3774   //
3775   // FIXME: Rvalue references. We're going rogue with the above edits,
3776   // because the semantics in the current C++0x working paper (N3225 at the
3777   // time of this writing) break the standard definition of std::forward
3778   // and std::reference_wrapper when dealing with references to functions.
3779   // Proposed wording changes submitted to CWG for consideration.
3780   if (SCS1.BindsImplicitObjectArgumentWithoutRefQualifier ||
3781       SCS2.BindsImplicitObjectArgumentWithoutRefQualifier)
3782     return false;
3783 
3784   return (!SCS1.IsLvalueReference && SCS1.BindsToRvalue &&
3785           SCS2.IsLvalueReference) ||
3786          (SCS1.IsLvalueReference && SCS1.BindsToFunctionLvalue &&
3787           !SCS2.IsLvalueReference && SCS2.BindsToFunctionLvalue);
3788 }
3789 
3790 enum class FixedEnumPromotion {
3791   None,
3792   ToUnderlyingType,
3793   ToPromotedUnderlyingType
3794 };
3795 
3796 /// Returns kind of fixed enum promotion the \a SCS uses.
3797 static FixedEnumPromotion
3798 getFixedEnumPromtion(Sema &S, const StandardConversionSequence &SCS) {
3799 
3800   if (SCS.Second != ICK_Integral_Promotion)
3801     return FixedEnumPromotion::None;
3802 
3803   QualType FromType = SCS.getFromType();
3804   if (!FromType->isEnumeralType())
3805     return FixedEnumPromotion::None;
3806 
3807   EnumDecl *Enum = FromType->getAs<EnumType>()->getDecl();
3808   if (!Enum->isFixed())
3809     return FixedEnumPromotion::None;
3810 
3811   QualType UnderlyingType = Enum->getIntegerType();
3812   if (S.Context.hasSameType(SCS.getToType(1), UnderlyingType))
3813     return FixedEnumPromotion::ToUnderlyingType;
3814 
3815   return FixedEnumPromotion::ToPromotedUnderlyingType;
3816 }
3817 
3818 /// CompareStandardConversionSequences - Compare two standard
3819 /// conversion sequences to determine whether one is better than the
3820 /// other or if they are indistinguishable (C++ 13.3.3.2p3).
3821 static ImplicitConversionSequence::CompareKind
3822 CompareStandardConversionSequences(Sema &S, SourceLocation Loc,
3823                                    const StandardConversionSequence& SCS1,
3824                                    const StandardConversionSequence& SCS2)
3825 {
3826   // Standard conversion sequence S1 is a better conversion sequence
3827   // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
3828 
3829   //  -- S1 is a proper subsequence of S2 (comparing the conversion
3830   //     sequences in the canonical form defined by 13.3.3.1.1,
3831   //     excluding any Lvalue Transformation; the identity conversion
3832   //     sequence is considered to be a subsequence of any
3833   //     non-identity conversion sequence) or, if not that,
3834   if (ImplicitConversionSequence::CompareKind CK
3835         = compareStandardConversionSubsets(S.Context, SCS1, SCS2))
3836     return CK;
3837 
3838   //  -- the rank of S1 is better than the rank of S2 (by the rules
3839   //     defined below), or, if not that,
3840   ImplicitConversionRank Rank1 = SCS1.getRank();
3841   ImplicitConversionRank Rank2 = SCS2.getRank();
3842   if (Rank1 < Rank2)
3843     return ImplicitConversionSequence::Better;
3844   else if (Rank2 < Rank1)
3845     return ImplicitConversionSequence::Worse;
3846 
3847   // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
3848   // are indistinguishable unless one of the following rules
3849   // applies:
3850 
3851   //   A conversion that is not a conversion of a pointer, or
3852   //   pointer to member, to bool is better than another conversion
3853   //   that is such a conversion.
3854   if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
3855     return SCS2.isPointerConversionToBool()
3856              ? ImplicitConversionSequence::Better
3857              : ImplicitConversionSequence::Worse;
3858 
3859   // C++14 [over.ics.rank]p4b2:
3860   // This is retroactively applied to C++11 by CWG 1601.
3861   //
3862   //   A conversion that promotes an enumeration whose underlying type is fixed
3863   //   to its underlying type is better than one that promotes to the promoted
3864   //   underlying type, if the two are different.
3865   FixedEnumPromotion FEP1 = getFixedEnumPromtion(S, SCS1);
3866   FixedEnumPromotion FEP2 = getFixedEnumPromtion(S, SCS2);
3867   if (FEP1 != FixedEnumPromotion::None && FEP2 != FixedEnumPromotion::None &&
3868       FEP1 != FEP2)
3869     return FEP1 == FixedEnumPromotion::ToUnderlyingType
3870                ? ImplicitConversionSequence::Better
3871                : ImplicitConversionSequence::Worse;
3872 
3873   // C++ [over.ics.rank]p4b2:
3874   //
3875   //   If class B is derived directly or indirectly from class A,
3876   //   conversion of B* to A* is better than conversion of B* to
3877   //   void*, and conversion of A* to void* is better than conversion
3878   //   of B* to void*.
3879   bool SCS1ConvertsToVoid
3880     = SCS1.isPointerConversionToVoidPointer(S.Context);
3881   bool SCS2ConvertsToVoid
3882     = SCS2.isPointerConversionToVoidPointer(S.Context);
3883   if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
3884     // Exactly one of the conversion sequences is a conversion to
3885     // a void pointer; it's the worse conversion.
3886     return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
3887                               : ImplicitConversionSequence::Worse;
3888   } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
3889     // Neither conversion sequence converts to a void pointer; compare
3890     // their derived-to-base conversions.
3891     if (ImplicitConversionSequence::CompareKind DerivedCK
3892           = CompareDerivedToBaseConversions(S, Loc, SCS1, SCS2))
3893       return DerivedCK;
3894   } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid &&
3895              !S.Context.hasSameType(SCS1.getFromType(), SCS2.getFromType())) {
3896     // Both conversion sequences are conversions to void
3897     // pointers. Compare the source types to determine if there's an
3898     // inheritance relationship in their sources.
3899     QualType FromType1 = SCS1.getFromType();
3900     QualType FromType2 = SCS2.getFromType();
3901 
3902     // Adjust the types we're converting from via the array-to-pointer
3903     // conversion, if we need to.
3904     if (SCS1.First == ICK_Array_To_Pointer)
3905       FromType1 = S.Context.getArrayDecayedType(FromType1);
3906     if (SCS2.First == ICK_Array_To_Pointer)
3907       FromType2 = S.Context.getArrayDecayedType(FromType2);
3908 
3909     QualType FromPointee1 = FromType1->getPointeeType().getUnqualifiedType();
3910     QualType FromPointee2 = FromType2->getPointeeType().getUnqualifiedType();
3911 
3912     if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1))
3913       return ImplicitConversionSequence::Better;
3914     else if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2))
3915       return ImplicitConversionSequence::Worse;
3916 
3917     // Objective-C++: If one interface is more specific than the
3918     // other, it is the better one.
3919     const ObjCObjectPointerType* FromObjCPtr1
3920       = FromType1->getAs<ObjCObjectPointerType>();
3921     const ObjCObjectPointerType* FromObjCPtr2
3922       = FromType2->getAs<ObjCObjectPointerType>();
3923     if (FromObjCPtr1 && FromObjCPtr2) {
3924       bool AssignLeft = S.Context.canAssignObjCInterfaces(FromObjCPtr1,
3925                                                           FromObjCPtr2);
3926       bool AssignRight = S.Context.canAssignObjCInterfaces(FromObjCPtr2,
3927                                                            FromObjCPtr1);
3928       if (AssignLeft != AssignRight) {
3929         return AssignLeft? ImplicitConversionSequence::Better
3930                          : ImplicitConversionSequence::Worse;
3931       }
3932     }
3933   }
3934 
3935   // Compare based on qualification conversions (C++ 13.3.3.2p3,
3936   // bullet 3).
3937   if (ImplicitConversionSequence::CompareKind QualCK
3938         = CompareQualificationConversions(S, SCS1, SCS2))
3939     return QualCK;
3940 
3941   if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
3942     // Check for a better reference binding based on the kind of bindings.
3943     if (isBetterReferenceBindingKind(SCS1, SCS2))
3944       return ImplicitConversionSequence::Better;
3945     else if (isBetterReferenceBindingKind(SCS2, SCS1))
3946       return ImplicitConversionSequence::Worse;
3947 
3948     // C++ [over.ics.rank]p3b4:
3949     //   -- S1 and S2 are reference bindings (8.5.3), and the types to
3950     //      which the references refer are the same type except for
3951     //      top-level cv-qualifiers, and the type to which the reference
3952     //      initialized by S2 refers is more cv-qualified than the type
3953     //      to which the reference initialized by S1 refers.
3954     QualType T1 = SCS1.getToType(2);
3955     QualType T2 = SCS2.getToType(2);
3956     T1 = S.Context.getCanonicalType(T1);
3957     T2 = S.Context.getCanonicalType(T2);
3958     Qualifiers T1Quals, T2Quals;
3959     QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
3960     QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
3961     if (UnqualT1 == UnqualT2) {
3962       // Objective-C++ ARC: If the references refer to objects with different
3963       // lifetimes, prefer bindings that don't change lifetime.
3964       if (SCS1.ObjCLifetimeConversionBinding !=
3965                                           SCS2.ObjCLifetimeConversionBinding) {
3966         return SCS1.ObjCLifetimeConversionBinding
3967                                            ? ImplicitConversionSequence::Worse
3968                                            : ImplicitConversionSequence::Better;
3969       }
3970 
3971       // If the type is an array type, promote the element qualifiers to the
3972       // type for comparison.
3973       if (isa<ArrayType>(T1) && T1Quals)
3974         T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
3975       if (isa<ArrayType>(T2) && T2Quals)
3976         T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
3977       if (T2.isMoreQualifiedThan(T1))
3978         return ImplicitConversionSequence::Better;
3979       else if (T1.isMoreQualifiedThan(T2))
3980         return ImplicitConversionSequence::Worse;
3981     }
3982   }
3983 
3984   // In Microsoft mode, prefer an integral conversion to a
3985   // floating-to-integral conversion if the integral conversion
3986   // is between types of the same size.
3987   // For example:
3988   // void f(float);
3989   // void f(int);
3990   // int main {
3991   //    long a;
3992   //    f(a);
3993   // }
3994   // Here, MSVC will call f(int) instead of generating a compile error
3995   // as clang will do in standard mode.
3996   if (S.getLangOpts().MSVCCompat && SCS1.Second == ICK_Integral_Conversion &&
3997       SCS2.Second == ICK_Floating_Integral &&
3998       S.Context.getTypeSize(SCS1.getFromType()) ==
3999           S.Context.getTypeSize(SCS1.getToType(2)))
4000     return ImplicitConversionSequence::Better;
4001 
4002   // Prefer a compatible vector conversion over a lax vector conversion
4003   // For example:
4004   //
4005   // typedef float __v4sf __attribute__((__vector_size__(16)));
4006   // void f(vector float);
4007   // void f(vector signed int);
4008   // int main() {
4009   //   __v4sf a;
4010   //   f(a);
4011   // }
4012   // Here, we'd like to choose f(vector float) and not
4013   // report an ambiguous call error
4014   if (SCS1.Second == ICK_Vector_Conversion &&
4015       SCS2.Second == ICK_Vector_Conversion) {
4016     bool SCS1IsCompatibleVectorConversion = S.Context.areCompatibleVectorTypes(
4017         SCS1.getFromType(), SCS1.getToType(2));
4018     bool SCS2IsCompatibleVectorConversion = S.Context.areCompatibleVectorTypes(
4019         SCS2.getFromType(), SCS2.getToType(2));
4020 
4021     if (SCS1IsCompatibleVectorConversion != SCS2IsCompatibleVectorConversion)
4022       return SCS1IsCompatibleVectorConversion
4023                  ? ImplicitConversionSequence::Better
4024                  : ImplicitConversionSequence::Worse;
4025   }
4026 
4027   return ImplicitConversionSequence::Indistinguishable;
4028 }
4029 
4030 /// CompareQualificationConversions - Compares two standard conversion
4031 /// sequences to determine whether they can be ranked based on their
4032 /// qualification conversions (C++ 13.3.3.2p3 bullet 3).
4033 static ImplicitConversionSequence::CompareKind
4034 CompareQualificationConversions(Sema &S,
4035                                 const StandardConversionSequence& SCS1,
4036                                 const StandardConversionSequence& SCS2) {
4037   // C++ 13.3.3.2p3:
4038   //  -- S1 and S2 differ only in their qualification conversion and
4039   //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
4040   //     cv-qualification signature of type T1 is a proper subset of
4041   //     the cv-qualification signature of type T2, and S1 is not the
4042   //     deprecated string literal array-to-pointer conversion (4.2).
4043   if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
4044       SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
4045     return ImplicitConversionSequence::Indistinguishable;
4046 
4047   // FIXME: the example in the standard doesn't use a qualification
4048   // conversion (!)
4049   QualType T1 = SCS1.getToType(2);
4050   QualType T2 = SCS2.getToType(2);
4051   T1 = S.Context.getCanonicalType(T1);
4052   T2 = S.Context.getCanonicalType(T2);
4053   Qualifiers T1Quals, T2Quals;
4054   QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
4055   QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
4056 
4057   // If the types are the same, we won't learn anything by unwrapped
4058   // them.
4059   if (UnqualT1 == UnqualT2)
4060     return ImplicitConversionSequence::Indistinguishable;
4061 
4062   // If the type is an array type, promote the element qualifiers to the type
4063   // for comparison.
4064   if (isa<ArrayType>(T1) && T1Quals)
4065     T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
4066   if (isa<ArrayType>(T2) && T2Quals)
4067     T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
4068 
4069   ImplicitConversionSequence::CompareKind Result
4070     = ImplicitConversionSequence::Indistinguishable;
4071 
4072   // Objective-C++ ARC:
4073   //   Prefer qualification conversions not involving a change in lifetime
4074   //   to qualification conversions that do not change lifetime.
4075   if (SCS1.QualificationIncludesObjCLifetime !=
4076                                       SCS2.QualificationIncludesObjCLifetime) {
4077     Result = SCS1.QualificationIncludesObjCLifetime
4078                ? ImplicitConversionSequence::Worse
4079                : ImplicitConversionSequence::Better;
4080   }
4081 
4082   while (S.Context.UnwrapSimilarTypes(T1, T2)) {
4083     // Within each iteration of the loop, we check the qualifiers to
4084     // determine if this still looks like a qualification
4085     // conversion. Then, if all is well, we unwrap one more level of
4086     // pointers or pointers-to-members and do it all again
4087     // until there are no more pointers or pointers-to-members left
4088     // to unwrap. This essentially mimics what
4089     // IsQualificationConversion does, but here we're checking for a
4090     // strict subset of qualifiers.
4091     if (T1.getQualifiers().withoutObjCLifetime() ==
4092         T2.getQualifiers().withoutObjCLifetime())
4093       // The qualifiers are the same, so this doesn't tell us anything
4094       // about how the sequences rank.
4095       // ObjC ownership quals are omitted above as they interfere with
4096       // the ARC overload rule.
4097       ;
4098     else if (T2.isMoreQualifiedThan(T1)) {
4099       // T1 has fewer qualifiers, so it could be the better sequence.
4100       if (Result == ImplicitConversionSequence::Worse)
4101         // Neither has qualifiers that are a subset of the other's
4102         // qualifiers.
4103         return ImplicitConversionSequence::Indistinguishable;
4104 
4105       Result = ImplicitConversionSequence::Better;
4106     } else if (T1.isMoreQualifiedThan(T2)) {
4107       // T2 has fewer qualifiers, so it could be the better sequence.
4108       if (Result == ImplicitConversionSequence::Better)
4109         // Neither has qualifiers that are a subset of the other's
4110         // qualifiers.
4111         return ImplicitConversionSequence::Indistinguishable;
4112 
4113       Result = ImplicitConversionSequence::Worse;
4114     } else {
4115       // Qualifiers are disjoint.
4116       return ImplicitConversionSequence::Indistinguishable;
4117     }
4118 
4119     // If the types after this point are equivalent, we're done.
4120     if (S.Context.hasSameUnqualifiedType(T1, T2))
4121       break;
4122   }
4123 
4124   // Check that the winning standard conversion sequence isn't using
4125   // the deprecated string literal array to pointer conversion.
4126   switch (Result) {
4127   case ImplicitConversionSequence::Better:
4128     if (SCS1.DeprecatedStringLiteralToCharPtr)
4129       Result = ImplicitConversionSequence::Indistinguishable;
4130     break;
4131 
4132   case ImplicitConversionSequence::Indistinguishable:
4133     break;
4134 
4135   case ImplicitConversionSequence::Worse:
4136     if (SCS2.DeprecatedStringLiteralToCharPtr)
4137       Result = ImplicitConversionSequence::Indistinguishable;
4138     break;
4139   }
4140 
4141   return Result;
4142 }
4143 
4144 /// CompareDerivedToBaseConversions - Compares two standard conversion
4145 /// sequences to determine whether they can be ranked based on their
4146 /// various kinds of derived-to-base conversions (C++
4147 /// [over.ics.rank]p4b3).  As part of these checks, we also look at
4148 /// conversions between Objective-C interface types.
4149 static ImplicitConversionSequence::CompareKind
4150 CompareDerivedToBaseConversions(Sema &S, SourceLocation Loc,
4151                                 const StandardConversionSequence& SCS1,
4152                                 const StandardConversionSequence& SCS2) {
4153   QualType FromType1 = SCS1.getFromType();
4154   QualType ToType1 = SCS1.getToType(1);
4155   QualType FromType2 = SCS2.getFromType();
4156   QualType ToType2 = SCS2.getToType(1);
4157 
4158   // Adjust the types we're converting from via the array-to-pointer
4159   // conversion, if we need to.
4160   if (SCS1.First == ICK_Array_To_Pointer)
4161     FromType1 = S.Context.getArrayDecayedType(FromType1);
4162   if (SCS2.First == ICK_Array_To_Pointer)
4163     FromType2 = S.Context.getArrayDecayedType(FromType2);
4164 
4165   // Canonicalize all of the types.
4166   FromType1 = S.Context.getCanonicalType(FromType1);
4167   ToType1 = S.Context.getCanonicalType(ToType1);
4168   FromType2 = S.Context.getCanonicalType(FromType2);
4169   ToType2 = S.Context.getCanonicalType(ToType2);
4170 
4171   // C++ [over.ics.rank]p4b3:
4172   //
4173   //   If class B is derived directly or indirectly from class A and
4174   //   class C is derived directly or indirectly from B,
4175   //
4176   // Compare based on pointer conversions.
4177   if (SCS1.Second == ICK_Pointer_Conversion &&
4178       SCS2.Second == ICK_Pointer_Conversion &&
4179       /*FIXME: Remove if Objective-C id conversions get their own rank*/
4180       FromType1->isPointerType() && FromType2->isPointerType() &&
4181       ToType1->isPointerType() && ToType2->isPointerType()) {
4182     QualType FromPointee1 =
4183         FromType1->castAs<PointerType>()->getPointeeType().getUnqualifiedType();
4184     QualType ToPointee1 =
4185         ToType1->castAs<PointerType>()->getPointeeType().getUnqualifiedType();
4186     QualType FromPointee2 =
4187         FromType2->castAs<PointerType>()->getPointeeType().getUnqualifiedType();
4188     QualType ToPointee2 =
4189         ToType2->castAs<PointerType>()->getPointeeType().getUnqualifiedType();
4190 
4191     //   -- conversion of C* to B* is better than conversion of C* to A*,
4192     if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
4193       if (S.IsDerivedFrom(Loc, ToPointee1, ToPointee2))
4194         return ImplicitConversionSequence::Better;
4195       else if (S.IsDerivedFrom(Loc, ToPointee2, ToPointee1))
4196         return ImplicitConversionSequence::Worse;
4197     }
4198 
4199     //   -- conversion of B* to A* is better than conversion of C* to A*,
4200     if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
4201       if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1))
4202         return ImplicitConversionSequence::Better;
4203       else if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2))
4204         return ImplicitConversionSequence::Worse;
4205     }
4206   } else if (SCS1.Second == ICK_Pointer_Conversion &&
4207              SCS2.Second == ICK_Pointer_Conversion) {
4208     const ObjCObjectPointerType *FromPtr1
4209       = FromType1->getAs<ObjCObjectPointerType>();
4210     const ObjCObjectPointerType *FromPtr2
4211       = FromType2->getAs<ObjCObjectPointerType>();
4212     const ObjCObjectPointerType *ToPtr1
4213       = ToType1->getAs<ObjCObjectPointerType>();
4214     const ObjCObjectPointerType *ToPtr2
4215       = ToType2->getAs<ObjCObjectPointerType>();
4216 
4217     if (FromPtr1 && FromPtr2 && ToPtr1 && ToPtr2) {
4218       // Apply the same conversion ranking rules for Objective-C pointer types
4219       // that we do for C++ pointers to class types. However, we employ the
4220       // Objective-C pseudo-subtyping relationship used for assignment of
4221       // Objective-C pointer types.
4222       bool FromAssignLeft
4223         = S.Context.canAssignObjCInterfaces(FromPtr1, FromPtr2);
4224       bool FromAssignRight
4225         = S.Context.canAssignObjCInterfaces(FromPtr2, FromPtr1);
4226       bool ToAssignLeft
4227         = S.Context.canAssignObjCInterfaces(ToPtr1, ToPtr2);
4228       bool ToAssignRight
4229         = S.Context.canAssignObjCInterfaces(ToPtr2, ToPtr1);
4230 
4231       // A conversion to an a non-id object pointer type or qualified 'id'
4232       // type is better than a conversion to 'id'.
4233       if (ToPtr1->isObjCIdType() &&
4234           (ToPtr2->isObjCQualifiedIdType() || ToPtr2->getInterfaceDecl()))
4235         return ImplicitConversionSequence::Worse;
4236       if (ToPtr2->isObjCIdType() &&
4237           (ToPtr1->isObjCQualifiedIdType() || ToPtr1->getInterfaceDecl()))
4238         return ImplicitConversionSequence::Better;
4239 
4240       // A conversion to a non-id object pointer type is better than a
4241       // conversion to a qualified 'id' type
4242       if (ToPtr1->isObjCQualifiedIdType() && ToPtr2->getInterfaceDecl())
4243         return ImplicitConversionSequence::Worse;
4244       if (ToPtr2->isObjCQualifiedIdType() && ToPtr1->getInterfaceDecl())
4245         return ImplicitConversionSequence::Better;
4246 
4247       // A conversion to an a non-Class object pointer type or qualified 'Class'
4248       // type is better than a conversion to 'Class'.
4249       if (ToPtr1->isObjCClassType() &&
4250           (ToPtr2->isObjCQualifiedClassType() || ToPtr2->getInterfaceDecl()))
4251         return ImplicitConversionSequence::Worse;
4252       if (ToPtr2->isObjCClassType() &&
4253           (ToPtr1->isObjCQualifiedClassType() || ToPtr1->getInterfaceDecl()))
4254         return ImplicitConversionSequence::Better;
4255 
4256       // A conversion to a non-Class object pointer type is better than a
4257       // conversion to a qualified 'Class' type.
4258       if (ToPtr1->isObjCQualifiedClassType() && ToPtr2->getInterfaceDecl())
4259         return ImplicitConversionSequence::Worse;
4260       if (ToPtr2->isObjCQualifiedClassType() && ToPtr1->getInterfaceDecl())
4261         return ImplicitConversionSequence::Better;
4262 
4263       //   -- "conversion of C* to B* is better than conversion of C* to A*,"
4264       if (S.Context.hasSameType(FromType1, FromType2) &&
4265           !FromPtr1->isObjCIdType() && !FromPtr1->isObjCClassType() &&
4266           (ToAssignLeft != ToAssignRight)) {
4267         if (FromPtr1->isSpecialized()) {
4268           // "conversion of B<A> * to B * is better than conversion of B * to
4269           // C *.
4270           bool IsFirstSame =
4271               FromPtr1->getInterfaceDecl() == ToPtr1->getInterfaceDecl();
4272           bool IsSecondSame =
4273               FromPtr1->getInterfaceDecl() == ToPtr2->getInterfaceDecl();
4274           if (IsFirstSame) {
4275             if (!IsSecondSame)
4276               return ImplicitConversionSequence::Better;
4277           } else if (IsSecondSame)
4278             return ImplicitConversionSequence::Worse;
4279         }
4280         return ToAssignLeft? ImplicitConversionSequence::Worse
4281                            : ImplicitConversionSequence::Better;
4282       }
4283 
4284       //   -- "conversion of B* to A* is better than conversion of C* to A*,"
4285       if (S.Context.hasSameUnqualifiedType(ToType1, ToType2) &&
4286           (FromAssignLeft != FromAssignRight))
4287         return FromAssignLeft? ImplicitConversionSequence::Better
4288         : ImplicitConversionSequence::Worse;
4289     }
4290   }
4291 
4292   // Ranking of member-pointer types.
4293   if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
4294       FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
4295       ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
4296     const MemberPointerType * FromMemPointer1 =
4297                                         FromType1->getAs<MemberPointerType>();
4298     const MemberPointerType * ToMemPointer1 =
4299                                           ToType1->getAs<MemberPointerType>();
4300     const MemberPointerType * FromMemPointer2 =
4301                                           FromType2->getAs<MemberPointerType>();
4302     const MemberPointerType * ToMemPointer2 =
4303                                           ToType2->getAs<MemberPointerType>();
4304     const Type *FromPointeeType1 = FromMemPointer1->getClass();
4305     const Type *ToPointeeType1 = ToMemPointer1->getClass();
4306     const Type *FromPointeeType2 = FromMemPointer2->getClass();
4307     const Type *ToPointeeType2 = ToMemPointer2->getClass();
4308     QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
4309     QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
4310     QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
4311     QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
4312     // conversion of A::* to B::* is better than conversion of A::* to C::*,
4313     if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
4314       if (S.IsDerivedFrom(Loc, ToPointee1, ToPointee2))
4315         return ImplicitConversionSequence::Worse;
4316       else if (S.IsDerivedFrom(Loc, ToPointee2, ToPointee1))
4317         return ImplicitConversionSequence::Better;
4318     }
4319     // conversion of B::* to C::* is better than conversion of A::* to C::*
4320     if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
4321       if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2))
4322         return ImplicitConversionSequence::Better;
4323       else if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1))
4324         return ImplicitConversionSequence::Worse;
4325     }
4326   }
4327 
4328   if (SCS1.Second == ICK_Derived_To_Base) {
4329     //   -- conversion of C to B is better than conversion of C to A,
4330     //   -- binding of an expression of type C to a reference of type
4331     //      B& is better than binding an expression of type C to a
4332     //      reference of type A&,
4333     if (S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
4334         !S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
4335       if (S.IsDerivedFrom(Loc, ToType1, ToType2))
4336         return ImplicitConversionSequence::Better;
4337       else if (S.IsDerivedFrom(Loc, ToType2, ToType1))
4338         return ImplicitConversionSequence::Worse;
4339     }
4340 
4341     //   -- conversion of B to A is better than conversion of C to A.
4342     //   -- binding of an expression of type B to a reference of type
4343     //      A& is better than binding an expression of type C to a
4344     //      reference of type A&,
4345     if (!S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
4346         S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
4347       if (S.IsDerivedFrom(Loc, FromType2, FromType1))
4348         return ImplicitConversionSequence::Better;
4349       else if (S.IsDerivedFrom(Loc, FromType1, FromType2))
4350         return ImplicitConversionSequence::Worse;
4351     }
4352   }
4353 
4354   return ImplicitConversionSequence::Indistinguishable;
4355 }
4356 
4357 /// Determine whether the given type is valid, e.g., it is not an invalid
4358 /// C++ class.
4359 static bool isTypeValid(QualType T) {
4360   if (CXXRecordDecl *Record = T->getAsCXXRecordDecl())
4361     return !Record->isInvalidDecl();
4362 
4363   return true;
4364 }
4365 
4366 /// CompareReferenceRelationship - Compare the two types T1 and T2 to
4367 /// determine whether they are reference-related,
4368 /// reference-compatible, reference-compatible with added
4369 /// qualification, or incompatible, for use in C++ initialization by
4370 /// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
4371 /// type, and the first type (T1) is the pointee type of the reference
4372 /// type being initialized.
4373 Sema::ReferenceCompareResult
4374 Sema::CompareReferenceRelationship(SourceLocation Loc,
4375                                    QualType OrigT1, QualType OrigT2,
4376                                    bool &DerivedToBase,
4377                                    bool &ObjCConversion,
4378                                    bool &ObjCLifetimeConversion,
4379                                    bool &FunctionConversion) {
4380   assert(!OrigT1->isReferenceType() &&
4381     "T1 must be the pointee type of the reference type");
4382   assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
4383 
4384   QualType T1 = Context.getCanonicalType(OrigT1);
4385   QualType T2 = Context.getCanonicalType(OrigT2);
4386   Qualifiers T1Quals, T2Quals;
4387   QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
4388   QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
4389 
4390   // C++ [dcl.init.ref]p4:
4391   //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
4392   //   reference-related to "cv2 T2" if T1 is the same type as T2, or
4393   //   T1 is a base class of T2.
4394   DerivedToBase = false;
4395   ObjCConversion = false;
4396   ObjCLifetimeConversion = false;
4397   QualType ConvertedT2;
4398   if (UnqualT1 == UnqualT2) {
4399     // Nothing to do.
4400   } else if (isCompleteType(Loc, OrigT2) &&
4401              isTypeValid(UnqualT1) && isTypeValid(UnqualT2) &&
4402              IsDerivedFrom(Loc, UnqualT2, UnqualT1))
4403     DerivedToBase = true;
4404   else if (UnqualT1->isObjCObjectOrInterfaceType() &&
4405            UnqualT2->isObjCObjectOrInterfaceType() &&
4406            Context.canBindObjCObjectType(UnqualT1, UnqualT2))
4407     ObjCConversion = true;
4408   else if (UnqualT2->isFunctionType() &&
4409            IsFunctionConversion(UnqualT2, UnqualT1, ConvertedT2)) {
4410     // C++1z [dcl.init.ref]p4:
4411     //   cv1 T1" is reference-compatible with "cv2 T2" if [...] T2 is "noexcept
4412     //   function" and T1 is "function"
4413     //
4414     // We extend this to also apply to 'noreturn', so allow any function
4415     // conversion between function types.
4416     FunctionConversion = true;
4417     return Ref_Compatible;
4418   } else
4419     return Ref_Incompatible;
4420 
4421   // At this point, we know that T1 and T2 are reference-related (at
4422   // least).
4423 
4424   // If the type is an array type, promote the element qualifiers to the type
4425   // for comparison.
4426   if (isa<ArrayType>(T1) && T1Quals)
4427     T1 = Context.getQualifiedType(UnqualT1, T1Quals);
4428   if (isa<ArrayType>(T2) && T2Quals)
4429     T2 = Context.getQualifiedType(UnqualT2, T2Quals);
4430 
4431   // C++ [dcl.init.ref]p4:
4432   //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
4433   //   reference-related to T2 and cv1 is the same cv-qualification
4434   //   as, or greater cv-qualification than, cv2. For purposes of
4435   //   overload resolution, cases for which cv1 is greater
4436   //   cv-qualification than cv2 are identified as
4437   //   reference-compatible with added qualification (see 13.3.3.2).
4438   //
4439   // Note that we also require equivalence of Objective-C GC and address-space
4440   // qualifiers when performing these computations, so that e.g., an int in
4441   // address space 1 is not reference-compatible with an int in address
4442   // space 2.
4443   if (T1Quals.getObjCLifetime() != T2Quals.getObjCLifetime() &&
4444       T1Quals.compatiblyIncludesObjCLifetime(T2Quals)) {
4445     if (isNonTrivialObjCLifetimeConversion(T2Quals, T1Quals))
4446       ObjCLifetimeConversion = true;
4447 
4448     T1Quals.removeObjCLifetime();
4449     T2Quals.removeObjCLifetime();
4450   }
4451 
4452   // MS compiler ignores __unaligned qualifier for references; do the same.
4453   T1Quals.removeUnaligned();
4454   T2Quals.removeUnaligned();
4455 
4456   if (T1Quals.compatiblyIncludes(T2Quals))
4457     return Ref_Compatible;
4458   else
4459     return Ref_Related;
4460 }
4461 
4462 /// Look for a user-defined conversion to a value reference-compatible
4463 ///        with DeclType. Return true if something definite is found.
4464 static bool
4465 FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS,
4466                          QualType DeclType, SourceLocation DeclLoc,
4467                          Expr *Init, QualType T2, bool AllowRvalues,
4468                          bool AllowExplicit) {
4469   assert(T2->isRecordType() && "Can only find conversions of record types.");
4470   CXXRecordDecl *T2RecordDecl
4471     = dyn_cast<CXXRecordDecl>(T2->castAs<RecordType>()->getDecl());
4472 
4473   OverloadCandidateSet CandidateSet(
4474       DeclLoc, OverloadCandidateSet::CSK_InitByUserDefinedConversion);
4475   const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions();
4476   for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
4477     NamedDecl *D = *I;
4478     CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4479     if (isa<UsingShadowDecl>(D))
4480       D = cast<UsingShadowDecl>(D)->getTargetDecl();
4481 
4482     FunctionTemplateDecl *ConvTemplate
4483       = dyn_cast<FunctionTemplateDecl>(D);
4484     CXXConversionDecl *Conv;
4485     if (ConvTemplate)
4486       Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4487     else
4488       Conv = cast<CXXConversionDecl>(D);
4489 
4490     // If this is an explicit conversion, and we're not allowed to consider
4491     // explicit conversions, skip it.
4492     if (!AllowExplicit && Conv->isExplicit())
4493       continue;
4494 
4495     if (AllowRvalues) {
4496       bool DerivedToBase = false;
4497       bool ObjCConversion = false;
4498       bool ObjCLifetimeConversion = false;
4499       bool FunctionConversion = false;
4500 
4501       // If we are initializing an rvalue reference, don't permit conversion
4502       // functions that return lvalues.
4503       if (!ConvTemplate && DeclType->isRValueReferenceType()) {
4504         const ReferenceType *RefType
4505           = Conv->getConversionType()->getAs<LValueReferenceType>();
4506         if (RefType && !RefType->getPointeeType()->isFunctionType())
4507           continue;
4508       }
4509 
4510       if (!ConvTemplate &&
4511           S.CompareReferenceRelationship(
4512               DeclLoc,
4513               Conv->getConversionType()
4514                   .getNonReferenceType()
4515                   .getUnqualifiedType(),
4516               DeclType.getNonReferenceType().getUnqualifiedType(),
4517               DerivedToBase, ObjCConversion, ObjCLifetimeConversion,
4518               FunctionConversion) == Sema::Ref_Incompatible)
4519         continue;
4520     } else {
4521       // If the conversion function doesn't return a reference type,
4522       // it can't be considered for this conversion. An rvalue reference
4523       // is only acceptable if its referencee is a function type.
4524 
4525       const ReferenceType *RefType =
4526         Conv->getConversionType()->getAs<ReferenceType>();
4527       if (!RefType ||
4528           (!RefType->isLValueReferenceType() &&
4529            !RefType->getPointeeType()->isFunctionType()))
4530         continue;
4531     }
4532 
4533     if (ConvTemplate)
4534       S.AddTemplateConversionCandidate(
4535           ConvTemplate, I.getPair(), ActingDC, Init, DeclType, CandidateSet,
4536           /*AllowObjCConversionOnExplicit=*/false, AllowExplicit);
4537     else
4538       S.AddConversionCandidate(
4539           Conv, I.getPair(), ActingDC, Init, DeclType, CandidateSet,
4540           /*AllowObjCConversionOnExplicit=*/false, AllowExplicit);
4541   }
4542 
4543   bool HadMultipleCandidates = (CandidateSet.size() > 1);
4544 
4545   OverloadCandidateSet::iterator Best;
4546   switch (CandidateSet.BestViableFunction(S, DeclLoc, Best)) {
4547   case OR_Success:
4548     // C++ [over.ics.ref]p1:
4549     //
4550     //   [...] If the parameter binds directly to the result of
4551     //   applying a conversion function to the argument
4552     //   expression, the implicit conversion sequence is a
4553     //   user-defined conversion sequence (13.3.3.1.2), with the
4554     //   second standard conversion sequence either an identity
4555     //   conversion or, if the conversion function returns an
4556     //   entity of a type that is a derived class of the parameter
4557     //   type, a derived-to-base Conversion.
4558     if (!Best->FinalConversion.DirectBinding)
4559       return false;
4560 
4561     ICS.setUserDefined();
4562     ICS.UserDefined.Before = Best->Conversions[0].Standard;
4563     ICS.UserDefined.After = Best->FinalConversion;
4564     ICS.UserDefined.HadMultipleCandidates = HadMultipleCandidates;
4565     ICS.UserDefined.ConversionFunction = Best->Function;
4566     ICS.UserDefined.FoundConversionFunction = Best->FoundDecl;
4567     ICS.UserDefined.EllipsisConversion = false;
4568     assert(ICS.UserDefined.After.ReferenceBinding &&
4569            ICS.UserDefined.After.DirectBinding &&
4570            "Expected a direct reference binding!");
4571     return true;
4572 
4573   case OR_Ambiguous:
4574     ICS.setAmbiguous();
4575     for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4576          Cand != CandidateSet.end(); ++Cand)
4577       if (Cand->Best)
4578         ICS.Ambiguous.addConversion(Cand->FoundDecl, Cand->Function);
4579     return true;
4580 
4581   case OR_No_Viable_Function:
4582   case OR_Deleted:
4583     // There was no suitable conversion, or we found a deleted
4584     // conversion; continue with other checks.
4585     return false;
4586   }
4587 
4588   llvm_unreachable("Invalid OverloadResult!");
4589 }
4590 
4591 /// Compute an implicit conversion sequence for reference
4592 /// initialization.
4593 static ImplicitConversionSequence
4594 TryReferenceInit(Sema &S, Expr *Init, QualType DeclType,
4595                  SourceLocation DeclLoc,
4596                  bool SuppressUserConversions,
4597                  bool AllowExplicit) {
4598   assert(DeclType->isReferenceType() && "Reference init needs a reference");
4599 
4600   // Most paths end in a failed conversion.
4601   ImplicitConversionSequence ICS;
4602   ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
4603 
4604   QualType T1 = DeclType->castAs<ReferenceType>()->getPointeeType();
4605   QualType T2 = Init->getType();
4606 
4607   // If the initializer is the address of an overloaded function, try
4608   // to resolve the overloaded function. If all goes well, T2 is the
4609   // type of the resulting function.
4610   if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
4611     DeclAccessPair Found;
4612     if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType,
4613                                                                 false, Found))
4614       T2 = Fn->getType();
4615   }
4616 
4617   // Compute some basic properties of the types and the initializer.
4618   bool isRValRef = DeclType->isRValueReferenceType();
4619   bool DerivedToBase = false;
4620   bool ObjCConversion = false;
4621   bool ObjCLifetimeConversion = false;
4622   bool FunctionConversion = false;
4623   Expr::Classification InitCategory = Init->Classify(S.Context);
4624   Sema::ReferenceCompareResult RefRelationship = S.CompareReferenceRelationship(
4625       DeclLoc, T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion,
4626       FunctionConversion);
4627 
4628   // C++0x [dcl.init.ref]p5:
4629   //   A reference to type "cv1 T1" is initialized by an expression
4630   //   of type "cv2 T2" as follows:
4631 
4632   //     -- If reference is an lvalue reference and the initializer expression
4633   if (!isRValRef) {
4634     //     -- is an lvalue (but is not a bit-field), and "cv1 T1" is
4635     //        reference-compatible with "cv2 T2," or
4636     //
4637     // Per C++ [over.ics.ref]p4, we don't check the bit-field property here.
4638     if (InitCategory.isLValue() && RefRelationship == Sema::Ref_Compatible) {
4639       // C++ [over.ics.ref]p1:
4640       //   When a parameter of reference type binds directly (8.5.3)
4641       //   to an argument expression, the implicit conversion sequence
4642       //   is the identity conversion, unless the argument expression
4643       //   has a type that is a derived class of the parameter type,
4644       //   in which case the implicit conversion sequence is a
4645       //   derived-to-base Conversion (13.3.3.1).
4646       ICS.setStandard();
4647       ICS.Standard.First = ICK_Identity;
4648       ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
4649                          : ObjCConversion? ICK_Compatible_Conversion
4650                          : ICK_Identity;
4651       ICS.Standard.Third = ICK_Identity;
4652       ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
4653       ICS.Standard.setToType(0, T2);
4654       ICS.Standard.setToType(1, T1);
4655       ICS.Standard.setToType(2, T1);
4656       ICS.Standard.ReferenceBinding = true;
4657       ICS.Standard.DirectBinding = true;
4658       ICS.Standard.IsLvalueReference = !isRValRef;
4659       ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
4660       ICS.Standard.BindsToRvalue = false;
4661       ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4662       ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion;
4663       ICS.Standard.CopyConstructor = nullptr;
4664       ICS.Standard.DeprecatedStringLiteralToCharPtr = false;
4665 
4666       // Nothing more to do: the inaccessibility/ambiguity check for
4667       // derived-to-base conversions is suppressed when we're
4668       // computing the implicit conversion sequence (C++
4669       // [over.best.ics]p2).
4670       return ICS;
4671     }
4672 
4673     //       -- has a class type (i.e., T2 is a class type), where T1 is
4674     //          not reference-related to T2, and can be implicitly
4675     //          converted to an lvalue of type "cv3 T3," where "cv1 T1"
4676     //          is reference-compatible with "cv3 T3" 92) (this
4677     //          conversion is selected by enumerating the applicable
4678     //          conversion functions (13.3.1.6) and choosing the best
4679     //          one through overload resolution (13.3)),
4680     if (!SuppressUserConversions && T2->isRecordType() &&
4681         S.isCompleteType(DeclLoc, T2) &&
4682         RefRelationship == Sema::Ref_Incompatible) {
4683       if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
4684                                    Init, T2, /*AllowRvalues=*/false,
4685                                    AllowExplicit))
4686         return ICS;
4687     }
4688   }
4689 
4690   //     -- Otherwise, the reference shall be an lvalue reference to a
4691   //        non-volatile const type (i.e., cv1 shall be const), or the reference
4692   //        shall be an rvalue reference.
4693   if (!isRValRef && (!T1.isConstQualified() || T1.isVolatileQualified()))
4694     return ICS;
4695 
4696   //       -- If the initializer expression
4697   //
4698   //            -- is an xvalue, class prvalue, array prvalue or function
4699   //               lvalue and "cv1 T1" is reference-compatible with "cv2 T2", or
4700   if (RefRelationship == Sema::Ref_Compatible &&
4701       (InitCategory.isXValue() ||
4702        (InitCategory.isPRValue() && (T2->isRecordType() || T2->isArrayType())) ||
4703        (InitCategory.isLValue() && T2->isFunctionType()))) {
4704     ICS.setStandard();
4705     ICS.Standard.First = ICK_Identity;
4706     ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
4707                       : ObjCConversion? ICK_Compatible_Conversion
4708                       : ICK_Identity;
4709     ICS.Standard.Third = ICK_Identity;
4710     ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
4711     ICS.Standard.setToType(0, T2);
4712     ICS.Standard.setToType(1, T1);
4713     ICS.Standard.setToType(2, T1);
4714     ICS.Standard.ReferenceBinding = true;
4715     // In C++0x, this is always a direct binding. In C++98/03, it's a direct
4716     // binding unless we're binding to a class prvalue.
4717     // Note: Although xvalues wouldn't normally show up in C++98/03 code, we
4718     // allow the use of rvalue references in C++98/03 for the benefit of
4719     // standard library implementors; therefore, we need the xvalue check here.
4720     ICS.Standard.DirectBinding =
4721       S.getLangOpts().CPlusPlus11 ||
4722       !(InitCategory.isPRValue() || T2->isRecordType());
4723     ICS.Standard.IsLvalueReference = !isRValRef;
4724     ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
4725     ICS.Standard.BindsToRvalue = InitCategory.isRValue();
4726     ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4727     ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion;
4728     ICS.Standard.CopyConstructor = nullptr;
4729     ICS.Standard.DeprecatedStringLiteralToCharPtr = false;
4730     return ICS;
4731   }
4732 
4733   //            -- has a class type (i.e., T2 is a class type), where T1 is not
4734   //               reference-related to T2, and can be implicitly converted to
4735   //               an xvalue, class prvalue, or function lvalue of type
4736   //               "cv3 T3", where "cv1 T1" is reference-compatible with
4737   //               "cv3 T3",
4738   //
4739   //          then the reference is bound to the value of the initializer
4740   //          expression in the first case and to the result of the conversion
4741   //          in the second case (or, in either case, to an appropriate base
4742   //          class subobject).
4743   if (!SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
4744       T2->isRecordType() && S.isCompleteType(DeclLoc, T2) &&
4745       FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
4746                                Init, T2, /*AllowRvalues=*/true,
4747                                AllowExplicit)) {
4748     // In the second case, if the reference is an rvalue reference
4749     // and the second standard conversion sequence of the
4750     // user-defined conversion sequence includes an lvalue-to-rvalue
4751     // conversion, the program is ill-formed.
4752     if (ICS.isUserDefined() && isRValRef &&
4753         ICS.UserDefined.After.First == ICK_Lvalue_To_Rvalue)
4754       ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
4755 
4756     return ICS;
4757   }
4758 
4759   // A temporary of function type cannot be created; don't even try.
4760   if (T1->isFunctionType())
4761     return ICS;
4762 
4763   //       -- Otherwise, a temporary of type "cv1 T1" is created and
4764   //          initialized from the initializer expression using the
4765   //          rules for a non-reference copy initialization (8.5). The
4766   //          reference is then bound to the temporary. If T1 is
4767   //          reference-related to T2, cv1 must be the same
4768   //          cv-qualification as, or greater cv-qualification than,
4769   //          cv2; otherwise, the program is ill-formed.
4770   if (RefRelationship == Sema::Ref_Related) {
4771     // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
4772     // we would be reference-compatible or reference-compatible with
4773     // added qualification. But that wasn't the case, so the reference
4774     // initialization fails.
4775     //
4776     // Note that we only want to check address spaces and cvr-qualifiers here.
4777     // ObjC GC, lifetime and unaligned qualifiers aren't important.
4778     Qualifiers T1Quals = T1.getQualifiers();
4779     Qualifiers T2Quals = T2.getQualifiers();
4780     T1Quals.removeObjCGCAttr();
4781     T1Quals.removeObjCLifetime();
4782     T2Quals.removeObjCGCAttr();
4783     T2Quals.removeObjCLifetime();
4784     // MS compiler ignores __unaligned qualifier for references; do the same.
4785     T1Quals.removeUnaligned();
4786     T2Quals.removeUnaligned();
4787     if (!T1Quals.compatiblyIncludes(T2Quals))
4788       return ICS;
4789   }
4790 
4791   // If at least one of the types is a class type, the types are not
4792   // related, and we aren't allowed any user conversions, the
4793   // reference binding fails. This case is important for breaking
4794   // recursion, since TryImplicitConversion below will attempt to
4795   // create a temporary through the use of a copy constructor.
4796   if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
4797       (T1->isRecordType() || T2->isRecordType()))
4798     return ICS;
4799 
4800   // If T1 is reference-related to T2 and the reference is an rvalue
4801   // reference, the initializer expression shall not be an lvalue.
4802   if (RefRelationship >= Sema::Ref_Related &&
4803       isRValRef && Init->Classify(S.Context).isLValue())
4804     return ICS;
4805 
4806   // C++ [over.ics.ref]p2:
4807   //   When a parameter of reference type is not bound directly to
4808   //   an argument expression, the conversion sequence is the one
4809   //   required to convert the argument expression to the
4810   //   underlying type of the reference according to
4811   //   13.3.3.1. Conceptually, this conversion sequence corresponds
4812   //   to copy-initializing a temporary of the underlying type with
4813   //   the argument expression. Any difference in top-level
4814   //   cv-qualification is subsumed by the initialization itself
4815   //   and does not constitute a conversion.
4816   ICS = TryImplicitConversion(S, Init, T1, SuppressUserConversions,
4817                               /*AllowExplicit=*/false,
4818                               /*InOverloadResolution=*/false,
4819                               /*CStyle=*/false,
4820                               /*AllowObjCWritebackConversion=*/false,
4821                               /*AllowObjCConversionOnExplicit=*/false);
4822 
4823   // Of course, that's still a reference binding.
4824   if (ICS.isStandard()) {
4825     ICS.Standard.ReferenceBinding = true;
4826     ICS.Standard.IsLvalueReference = !isRValRef;
4827     ICS.Standard.BindsToFunctionLvalue = false;
4828     ICS.Standard.BindsToRvalue = true;
4829     ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4830     ICS.Standard.ObjCLifetimeConversionBinding = false;
4831   } else if (ICS.isUserDefined()) {
4832     const ReferenceType *LValRefType =
4833         ICS.UserDefined.ConversionFunction->getReturnType()
4834             ->getAs<LValueReferenceType>();
4835 
4836     // C++ [over.ics.ref]p3:
4837     //   Except for an implicit object parameter, for which see 13.3.1, a
4838     //   standard conversion sequence cannot be formed if it requires [...]
4839     //   binding an rvalue reference to an lvalue other than a function
4840     //   lvalue.
4841     // Note that the function case is not possible here.
4842     if (DeclType->isRValueReferenceType() && LValRefType) {
4843       // FIXME: This is the wrong BadConversionSequence. The problem is binding
4844       // an rvalue reference to a (non-function) lvalue, not binding an lvalue
4845       // reference to an rvalue!
4846       ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, Init, DeclType);
4847       return ICS;
4848     }
4849 
4850     ICS.UserDefined.After.ReferenceBinding = true;
4851     ICS.UserDefined.After.IsLvalueReference = !isRValRef;
4852     ICS.UserDefined.After.BindsToFunctionLvalue = false;
4853     ICS.UserDefined.After.BindsToRvalue = !LValRefType;
4854     ICS.UserDefined.After.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4855     ICS.UserDefined.After.ObjCLifetimeConversionBinding = false;
4856   }
4857 
4858   return ICS;
4859 }
4860 
4861 static ImplicitConversionSequence
4862 TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
4863                       bool SuppressUserConversions,
4864                       bool InOverloadResolution,
4865                       bool AllowObjCWritebackConversion,
4866                       bool AllowExplicit = false);
4867 
4868 /// TryListConversion - Try to copy-initialize a value of type ToType from the
4869 /// initializer list From.
4870 static ImplicitConversionSequence
4871 TryListConversion(Sema &S, InitListExpr *From, QualType ToType,
4872                   bool SuppressUserConversions,
4873                   bool InOverloadResolution,
4874                   bool AllowObjCWritebackConversion) {
4875   // C++11 [over.ics.list]p1:
4876   //   When an argument is an initializer list, it is not an expression and
4877   //   special rules apply for converting it to a parameter type.
4878 
4879   ImplicitConversionSequence Result;
4880   Result.setBad(BadConversionSequence::no_conversion, From, ToType);
4881 
4882   // We need a complete type for what follows. Incomplete types can never be
4883   // initialized from init lists.
4884   if (!S.isCompleteType(From->getBeginLoc(), ToType))
4885     return Result;
4886 
4887   // Per DR1467:
4888   //   If the parameter type is a class X and the initializer list has a single
4889   //   element of type cv U, where U is X or a class derived from X, the
4890   //   implicit conversion sequence is the one required to convert the element
4891   //   to the parameter type.
4892   //
4893   //   Otherwise, if the parameter type is a character array [... ]
4894   //   and the initializer list has a single element that is an
4895   //   appropriately-typed string literal (8.5.2 [dcl.init.string]), the
4896   //   implicit conversion sequence is the identity conversion.
4897   if (From->getNumInits() == 1) {
4898     if (ToType->isRecordType()) {
4899       QualType InitType = From->getInit(0)->getType();
4900       if (S.Context.hasSameUnqualifiedType(InitType, ToType) ||
4901           S.IsDerivedFrom(From->getBeginLoc(), InitType, ToType))
4902         return TryCopyInitialization(S, From->getInit(0), ToType,
4903                                      SuppressUserConversions,
4904                                      InOverloadResolution,
4905                                      AllowObjCWritebackConversion);
4906     }
4907     // FIXME: Check the other conditions here: array of character type,
4908     // initializer is a string literal.
4909     if (ToType->isArrayType()) {
4910       InitializedEntity Entity =
4911         InitializedEntity::InitializeParameter(S.Context, ToType,
4912                                                /*Consumed=*/false);
4913       if (S.CanPerformCopyInitialization(Entity, From)) {
4914         Result.setStandard();
4915         Result.Standard.setAsIdentityConversion();
4916         Result.Standard.setFromType(ToType);
4917         Result.Standard.setAllToTypes(ToType);
4918         return Result;
4919       }
4920     }
4921   }
4922 
4923   // C++14 [over.ics.list]p2: Otherwise, if the parameter type [...] (below).
4924   // C++11 [over.ics.list]p2:
4925   //   If the parameter type is std::initializer_list<X> or "array of X" and
4926   //   all the elements can be implicitly converted to X, the implicit
4927   //   conversion sequence is the worst conversion necessary to convert an
4928   //   element of the list to X.
4929   //
4930   // C++14 [over.ics.list]p3:
4931   //   Otherwise, if the parameter type is "array of N X", if the initializer
4932   //   list has exactly N elements or if it has fewer than N elements and X is
4933   //   default-constructible, and if all the elements of the initializer list
4934   //   can be implicitly converted to X, the implicit conversion sequence is
4935   //   the worst conversion necessary to convert an element of the list to X.
4936   //
4937   // FIXME: We're missing a lot of these checks.
4938   bool toStdInitializerList = false;
4939   QualType X;
4940   if (ToType->isArrayType())
4941     X = S.Context.getAsArrayType(ToType)->getElementType();
4942   else
4943     toStdInitializerList = S.isStdInitializerList(ToType, &X);
4944   if (!X.isNull()) {
4945     for (unsigned i = 0, e = From->getNumInits(); i < e; ++i) {
4946       Expr *Init = From->getInit(i);
4947       ImplicitConversionSequence ICS =
4948           TryCopyInitialization(S, Init, X, SuppressUserConversions,
4949                                 InOverloadResolution,
4950                                 AllowObjCWritebackConversion);
4951       // If a single element isn't convertible, fail.
4952       if (ICS.isBad()) {
4953         Result = ICS;
4954         break;
4955       }
4956       // Otherwise, look for the worst conversion.
4957       if (Result.isBad() || CompareImplicitConversionSequences(
4958                                 S, From->getBeginLoc(), ICS, Result) ==
4959                                 ImplicitConversionSequence::Worse)
4960         Result = ICS;
4961     }
4962 
4963     // For an empty list, we won't have computed any conversion sequence.
4964     // Introduce the identity conversion sequence.
4965     if (From->getNumInits() == 0) {
4966       Result.setStandard();
4967       Result.Standard.setAsIdentityConversion();
4968       Result.Standard.setFromType(ToType);
4969       Result.Standard.setAllToTypes(ToType);
4970     }
4971 
4972     Result.setStdInitializerListElement(toStdInitializerList);
4973     return Result;
4974   }
4975 
4976   // C++14 [over.ics.list]p4:
4977   // C++11 [over.ics.list]p3:
4978   //   Otherwise, if the parameter is a non-aggregate class X and overload
4979   //   resolution chooses a single best constructor [...] the implicit
4980   //   conversion sequence is a user-defined conversion sequence. If multiple
4981   //   constructors are viable but none is better than the others, the
4982   //   implicit conversion sequence is a user-defined conversion sequence.
4983   if (ToType->isRecordType() && !ToType->isAggregateType()) {
4984     // This function can deal with initializer lists.
4985     return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
4986                                     /*AllowExplicit=*/false,
4987                                     InOverloadResolution, /*CStyle=*/false,
4988                                     AllowObjCWritebackConversion,
4989                                     /*AllowObjCConversionOnExplicit=*/false);
4990   }
4991 
4992   // C++14 [over.ics.list]p5:
4993   // C++11 [over.ics.list]p4:
4994   //   Otherwise, if the parameter has an aggregate type which can be
4995   //   initialized from the initializer list [...] the implicit conversion
4996   //   sequence is a user-defined conversion sequence.
4997   if (ToType->isAggregateType()) {
4998     // Type is an aggregate, argument is an init list. At this point it comes
4999     // down to checking whether the initialization works.
5000     // FIXME: Find out whether this parameter is consumed or not.
5001     InitializedEntity Entity =
5002         InitializedEntity::InitializeParameter(S.Context, ToType,
5003                                                /*Consumed=*/false);
5004     if (S.CanPerformAggregateInitializationForOverloadResolution(Entity,
5005                                                                  From)) {
5006       Result.setUserDefined();
5007       Result.UserDefined.Before.setAsIdentityConversion();
5008       // Initializer lists don't have a type.
5009       Result.UserDefined.Before.setFromType(QualType());
5010       Result.UserDefined.Before.setAllToTypes(QualType());
5011 
5012       Result.UserDefined.After.setAsIdentityConversion();
5013       Result.UserDefined.After.setFromType(ToType);
5014       Result.UserDefined.After.setAllToTypes(ToType);
5015       Result.UserDefined.ConversionFunction = nullptr;
5016     }
5017     return Result;
5018   }
5019 
5020   // C++14 [over.ics.list]p6:
5021   // C++11 [over.ics.list]p5:
5022   //   Otherwise, if the parameter is a reference, see 13.3.3.1.4.
5023   if (ToType->isReferenceType()) {
5024     // The standard is notoriously unclear here, since 13.3.3.1.4 doesn't
5025     // mention initializer lists in any way. So we go by what list-
5026     // initialization would do and try to extrapolate from that.
5027 
5028     QualType T1 = ToType->castAs<ReferenceType>()->getPointeeType();
5029 
5030     // If the initializer list has a single element that is reference-related
5031     // to the parameter type, we initialize the reference from that.
5032     if (From->getNumInits() == 1) {
5033       Expr *Init = From->getInit(0);
5034 
5035       QualType T2 = Init->getType();
5036 
5037       // If the initializer is the address of an overloaded function, try
5038       // to resolve the overloaded function. If all goes well, T2 is the
5039       // type of the resulting function.
5040       if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
5041         DeclAccessPair Found;
5042         if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(
5043                                    Init, ToType, false, Found))
5044           T2 = Fn->getType();
5045       }
5046 
5047       // Compute some basic properties of the types and the initializer.
5048       bool dummy1 = false;
5049       bool dummy2 = false;
5050       bool dummy3 = false;
5051       bool dummy4 = false;
5052       Sema::ReferenceCompareResult RefRelationship =
5053           S.CompareReferenceRelationship(From->getBeginLoc(), T1, T2, dummy1,
5054                                          dummy2, dummy3, dummy4);
5055 
5056       if (RefRelationship >= Sema::Ref_Related) {
5057         return TryReferenceInit(S, Init, ToType, /*FIXME*/ From->getBeginLoc(),
5058                                 SuppressUserConversions,
5059                                 /*AllowExplicit=*/false);
5060       }
5061     }
5062 
5063     // Otherwise, we bind the reference to a temporary created from the
5064     // initializer list.
5065     Result = TryListConversion(S, From, T1, SuppressUserConversions,
5066                                InOverloadResolution,
5067                                AllowObjCWritebackConversion);
5068     if (Result.isFailure())
5069       return Result;
5070     assert(!Result.isEllipsis() &&
5071            "Sub-initialization cannot result in ellipsis conversion.");
5072 
5073     // Can we even bind to a temporary?
5074     if (ToType->isRValueReferenceType() ||
5075         (T1.isConstQualified() && !T1.isVolatileQualified())) {
5076       StandardConversionSequence &SCS = Result.isStandard() ? Result.Standard :
5077                                             Result.UserDefined.After;
5078       SCS.ReferenceBinding = true;
5079       SCS.IsLvalueReference = ToType->isLValueReferenceType();
5080       SCS.BindsToRvalue = true;
5081       SCS.BindsToFunctionLvalue = false;
5082       SCS.BindsImplicitObjectArgumentWithoutRefQualifier = false;
5083       SCS.ObjCLifetimeConversionBinding = false;
5084     } else
5085       Result.setBad(BadConversionSequence::lvalue_ref_to_rvalue,
5086                     From, ToType);
5087     return Result;
5088   }
5089 
5090   // C++14 [over.ics.list]p7:
5091   // C++11 [over.ics.list]p6:
5092   //   Otherwise, if the parameter type is not a class:
5093   if (!ToType->isRecordType()) {
5094     //    - if the initializer list has one element that is not itself an
5095     //      initializer list, the implicit conversion sequence is the one
5096     //      required to convert the element to the parameter type.
5097     unsigned NumInits = From->getNumInits();
5098     if (NumInits == 1 && !isa<InitListExpr>(From->getInit(0)))
5099       Result = TryCopyInitialization(S, From->getInit(0), ToType,
5100                                      SuppressUserConversions,
5101                                      InOverloadResolution,
5102                                      AllowObjCWritebackConversion);
5103     //    - if the initializer list has no elements, the implicit conversion
5104     //      sequence is the identity conversion.
5105     else if (NumInits == 0) {
5106       Result.setStandard();
5107       Result.Standard.setAsIdentityConversion();
5108       Result.Standard.setFromType(ToType);
5109       Result.Standard.setAllToTypes(ToType);
5110     }
5111     return Result;
5112   }
5113 
5114   // C++14 [over.ics.list]p8:
5115   // C++11 [over.ics.list]p7:
5116   //   In all cases other than those enumerated above, no conversion is possible
5117   return Result;
5118 }
5119 
5120 /// TryCopyInitialization - Try to copy-initialize a value of type
5121 /// ToType from the expression From. Return the implicit conversion
5122 /// sequence required to pass this argument, which may be a bad
5123 /// conversion sequence (meaning that the argument cannot be passed to
5124 /// a parameter of this type). If @p SuppressUserConversions, then we
5125 /// do not permit any user-defined conversion sequences.
5126 static ImplicitConversionSequence
5127 TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
5128                       bool SuppressUserConversions,
5129                       bool InOverloadResolution,
5130                       bool AllowObjCWritebackConversion,
5131                       bool AllowExplicit) {
5132   if (InitListExpr *FromInitList = dyn_cast<InitListExpr>(From))
5133     return TryListConversion(S, FromInitList, ToType, SuppressUserConversions,
5134                              InOverloadResolution,AllowObjCWritebackConversion);
5135 
5136   if (ToType->isReferenceType())
5137     return TryReferenceInit(S, From, ToType,
5138                             /*FIXME:*/ From->getBeginLoc(),
5139                             SuppressUserConversions, AllowExplicit);
5140 
5141   return TryImplicitConversion(S, From, ToType,
5142                                SuppressUserConversions,
5143                                /*AllowExplicit=*/false,
5144                                InOverloadResolution,
5145                                /*CStyle=*/false,
5146                                AllowObjCWritebackConversion,
5147                                /*AllowObjCConversionOnExplicit=*/false);
5148 }
5149 
5150 static bool TryCopyInitialization(const CanQualType FromQTy,
5151                                   const CanQualType ToQTy,
5152                                   Sema &S,
5153                                   SourceLocation Loc,
5154                                   ExprValueKind FromVK) {
5155   OpaqueValueExpr TmpExpr(Loc, FromQTy, FromVK);
5156   ImplicitConversionSequence ICS =
5157     TryCopyInitialization(S, &TmpExpr, ToQTy, true, true, false);
5158 
5159   return !ICS.isBad();
5160 }
5161 
5162 /// TryObjectArgumentInitialization - Try to initialize the object
5163 /// parameter of the given member function (@c Method) from the
5164 /// expression @p From.
5165 static ImplicitConversionSequence
5166 TryObjectArgumentInitialization(Sema &S, SourceLocation Loc, QualType FromType,
5167                                 Expr::Classification FromClassification,
5168                                 CXXMethodDecl *Method,
5169                                 CXXRecordDecl *ActingContext) {
5170   QualType ClassType = S.Context.getTypeDeclType(ActingContext);
5171   // [class.dtor]p2: A destructor can be invoked for a const, volatile or
5172   //                 const volatile object.
5173   Qualifiers Quals = Method->getMethodQualifiers();
5174   if (isa<CXXDestructorDecl>(Method)) {
5175     Quals.addConst();
5176     Quals.addVolatile();
5177   }
5178 
5179   QualType ImplicitParamType = S.Context.getQualifiedType(ClassType, Quals);
5180 
5181   // Set up the conversion sequence as a "bad" conversion, to allow us
5182   // to exit early.
5183   ImplicitConversionSequence ICS;
5184 
5185   // We need to have an object of class type.
5186   if (const PointerType *PT = FromType->getAs<PointerType>()) {
5187     FromType = PT->getPointeeType();
5188 
5189     // When we had a pointer, it's implicitly dereferenced, so we
5190     // better have an lvalue.
5191     assert(FromClassification.isLValue());
5192   }
5193 
5194   assert(FromType->isRecordType());
5195 
5196   // C++0x [over.match.funcs]p4:
5197   //   For non-static member functions, the type of the implicit object
5198   //   parameter is
5199   //
5200   //     - "lvalue reference to cv X" for functions declared without a
5201   //        ref-qualifier or with the & ref-qualifier
5202   //     - "rvalue reference to cv X" for functions declared with the &&
5203   //        ref-qualifier
5204   //
5205   // where X is the class of which the function is a member and cv is the
5206   // cv-qualification on the member function declaration.
5207   //
5208   // However, when finding an implicit conversion sequence for the argument, we
5209   // are not allowed to perform user-defined conversions
5210   // (C++ [over.match.funcs]p5). We perform a simplified version of
5211   // reference binding here, that allows class rvalues to bind to
5212   // non-constant references.
5213 
5214   // First check the qualifiers.
5215   QualType FromTypeCanon = S.Context.getCanonicalType(FromType);
5216   if (ImplicitParamType.getCVRQualifiers()
5217                                     != FromTypeCanon.getLocalCVRQualifiers() &&
5218       !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) {
5219     ICS.setBad(BadConversionSequence::bad_qualifiers,
5220                FromType, ImplicitParamType);
5221     return ICS;
5222   }
5223 
5224   if (FromTypeCanon.getQualifiers().hasAddressSpace()) {
5225     Qualifiers QualsImplicitParamType = ImplicitParamType.getQualifiers();
5226     Qualifiers QualsFromType = FromTypeCanon.getQualifiers();
5227     if (!QualsImplicitParamType.isAddressSpaceSupersetOf(QualsFromType)) {
5228       ICS.setBad(BadConversionSequence::bad_qualifiers,
5229                  FromType, ImplicitParamType);
5230       return ICS;
5231     }
5232   }
5233 
5234   // Check that we have either the same type or a derived type. It
5235   // affects the conversion rank.
5236   QualType ClassTypeCanon = S.Context.getCanonicalType(ClassType);
5237   ImplicitConversionKind SecondKind;
5238   if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) {
5239     SecondKind = ICK_Identity;
5240   } else if (S.IsDerivedFrom(Loc, FromType, ClassType))
5241     SecondKind = ICK_Derived_To_Base;
5242   else {
5243     ICS.setBad(BadConversionSequence::unrelated_class,
5244                FromType, ImplicitParamType);
5245     return ICS;
5246   }
5247 
5248   // Check the ref-qualifier.
5249   switch (Method->getRefQualifier()) {
5250   case RQ_None:
5251     // Do nothing; we don't care about lvalueness or rvalueness.
5252     break;
5253 
5254   case RQ_LValue:
5255     if (!FromClassification.isLValue() && !Quals.hasOnlyConst()) {
5256       // non-const lvalue reference cannot bind to an rvalue
5257       ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, FromType,
5258                  ImplicitParamType);
5259       return ICS;
5260     }
5261     break;
5262 
5263   case RQ_RValue:
5264     if (!FromClassification.isRValue()) {
5265       // rvalue reference cannot bind to an lvalue
5266       ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, FromType,
5267                  ImplicitParamType);
5268       return ICS;
5269     }
5270     break;
5271   }
5272 
5273   // Success. Mark this as a reference binding.
5274   ICS.setStandard();
5275   ICS.Standard.setAsIdentityConversion();
5276   ICS.Standard.Second = SecondKind;
5277   ICS.Standard.setFromType(FromType);
5278   ICS.Standard.setAllToTypes(ImplicitParamType);
5279   ICS.Standard.ReferenceBinding = true;
5280   ICS.Standard.DirectBinding = true;
5281   ICS.Standard.IsLvalueReference = Method->getRefQualifier() != RQ_RValue;
5282   ICS.Standard.BindsToFunctionLvalue = false;
5283   ICS.Standard.BindsToRvalue = FromClassification.isRValue();
5284   ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier
5285     = (Method->getRefQualifier() == RQ_None);
5286   return ICS;
5287 }
5288 
5289 /// PerformObjectArgumentInitialization - Perform initialization of
5290 /// the implicit object parameter for the given Method with the given
5291 /// expression.
5292 ExprResult
5293 Sema::PerformObjectArgumentInitialization(Expr *From,
5294                                           NestedNameSpecifier *Qualifier,
5295                                           NamedDecl *FoundDecl,
5296                                           CXXMethodDecl *Method) {
5297   QualType FromRecordType, DestType;
5298   QualType ImplicitParamRecordType  =
5299     Method->getThisType()->castAs<PointerType>()->getPointeeType();
5300 
5301   Expr::Classification FromClassification;
5302   if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
5303     FromRecordType = PT->getPointeeType();
5304     DestType = Method->getThisType();
5305     FromClassification = Expr::Classification::makeSimpleLValue();
5306   } else {
5307     FromRecordType = From->getType();
5308     DestType = ImplicitParamRecordType;
5309     FromClassification = From->Classify(Context);
5310 
5311     // When performing member access on an rvalue, materialize a temporary.
5312     if (From->isRValue()) {
5313       From = CreateMaterializeTemporaryExpr(FromRecordType, From,
5314                                             Method->getRefQualifier() !=
5315                                                 RefQualifierKind::RQ_RValue);
5316     }
5317   }
5318 
5319   // Note that we always use the true parent context when performing
5320   // the actual argument initialization.
5321   ImplicitConversionSequence ICS = TryObjectArgumentInitialization(
5322       *this, From->getBeginLoc(), From->getType(), FromClassification, Method,
5323       Method->getParent());
5324   if (ICS.isBad()) {
5325     switch (ICS.Bad.Kind) {
5326     case BadConversionSequence::bad_qualifiers: {
5327       Qualifiers FromQs = FromRecordType.getQualifiers();
5328       Qualifiers ToQs = DestType.getQualifiers();
5329       unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
5330       if (CVR) {
5331         Diag(From->getBeginLoc(), diag::err_member_function_call_bad_cvr)
5332             << Method->getDeclName() << FromRecordType << (CVR - 1)
5333             << From->getSourceRange();
5334         Diag(Method->getLocation(), diag::note_previous_decl)
5335           << Method->getDeclName();
5336         return ExprError();
5337       }
5338       break;
5339     }
5340 
5341     case BadConversionSequence::lvalue_ref_to_rvalue:
5342     case BadConversionSequence::rvalue_ref_to_lvalue: {
5343       bool IsRValueQualified =
5344         Method->getRefQualifier() == RefQualifierKind::RQ_RValue;
5345       Diag(From->getBeginLoc(), diag::err_member_function_call_bad_ref)
5346           << Method->getDeclName() << FromClassification.isRValue()
5347           << IsRValueQualified;
5348       Diag(Method->getLocation(), diag::note_previous_decl)
5349         << Method->getDeclName();
5350       return ExprError();
5351     }
5352 
5353     case BadConversionSequence::no_conversion:
5354     case BadConversionSequence::unrelated_class:
5355       break;
5356     }
5357 
5358     return Diag(From->getBeginLoc(), diag::err_member_function_call_bad_type)
5359            << ImplicitParamRecordType << FromRecordType
5360            << From->getSourceRange();
5361   }
5362 
5363   if (ICS.Standard.Second == ICK_Derived_To_Base) {
5364     ExprResult FromRes =
5365       PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method);
5366     if (FromRes.isInvalid())
5367       return ExprError();
5368     From = FromRes.get();
5369   }
5370 
5371   if (!Context.hasSameType(From->getType(), DestType)) {
5372     CastKind CK;
5373     if (FromRecordType.getAddressSpace() != DestType.getAddressSpace())
5374       CK = CK_AddressSpaceConversion;
5375     else
5376       CK = CK_NoOp;
5377     From = ImpCastExprToType(From, DestType, CK, From->getValueKind()).get();
5378   }
5379   return From;
5380 }
5381 
5382 /// TryContextuallyConvertToBool - Attempt to contextually convert the
5383 /// expression From to bool (C++0x [conv]p3).
5384 static ImplicitConversionSequence
5385 TryContextuallyConvertToBool(Sema &S, Expr *From) {
5386   return TryImplicitConversion(S, From, S.Context.BoolTy,
5387                                /*SuppressUserConversions=*/false,
5388                                /*AllowExplicit=*/true,
5389                                /*InOverloadResolution=*/false,
5390                                /*CStyle=*/false,
5391                                /*AllowObjCWritebackConversion=*/false,
5392                                /*AllowObjCConversionOnExplicit=*/false);
5393 }
5394 
5395 /// PerformContextuallyConvertToBool - Perform a contextual conversion
5396 /// of the expression From to bool (C++0x [conv]p3).
5397 ExprResult Sema::PerformContextuallyConvertToBool(Expr *From) {
5398   if (checkPlaceholderForOverload(*this, From))
5399     return ExprError();
5400 
5401   ImplicitConversionSequence ICS = TryContextuallyConvertToBool(*this, From);
5402   if (!ICS.isBad())
5403     return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting);
5404 
5405   if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
5406     return Diag(From->getBeginLoc(), diag::err_typecheck_bool_condition)
5407            << From->getType() << From->getSourceRange();
5408   return ExprError();
5409 }
5410 
5411 /// Check that the specified conversion is permitted in a converted constant
5412 /// expression, according to C++11 [expr.const]p3. Return true if the conversion
5413 /// is acceptable.
5414 static bool CheckConvertedConstantConversions(Sema &S,
5415                                               StandardConversionSequence &SCS) {
5416   // Since we know that the target type is an integral or unscoped enumeration
5417   // type, most conversion kinds are impossible. All possible First and Third
5418   // conversions are fine.
5419   switch (SCS.Second) {
5420   case ICK_Identity:
5421   case ICK_Function_Conversion:
5422   case ICK_Integral_Promotion:
5423   case ICK_Integral_Conversion: // Narrowing conversions are checked elsewhere.
5424   case ICK_Zero_Queue_Conversion:
5425     return true;
5426 
5427   case ICK_Boolean_Conversion:
5428     // Conversion from an integral or unscoped enumeration type to bool is
5429     // classified as ICK_Boolean_Conversion, but it's also arguably an integral
5430     // conversion, so we allow it in a converted constant expression.
5431     //
5432     // FIXME: Per core issue 1407, we should not allow this, but that breaks
5433     // a lot of popular code. We should at least add a warning for this
5434     // (non-conforming) extension.
5435     return SCS.getFromType()->isIntegralOrUnscopedEnumerationType() &&
5436            SCS.getToType(2)->isBooleanType();
5437 
5438   case ICK_Pointer_Conversion:
5439   case ICK_Pointer_Member:
5440     // C++1z: null pointer conversions and null member pointer conversions are
5441     // only permitted if the source type is std::nullptr_t.
5442     return SCS.getFromType()->isNullPtrType();
5443 
5444   case ICK_Floating_Promotion:
5445   case ICK_Complex_Promotion:
5446   case ICK_Floating_Conversion:
5447   case ICK_Complex_Conversion:
5448   case ICK_Floating_Integral:
5449   case ICK_Compatible_Conversion:
5450   case ICK_Derived_To_Base:
5451   case ICK_Vector_Conversion:
5452   case ICK_Vector_Splat:
5453   case ICK_Complex_Real:
5454   case ICK_Block_Pointer_Conversion:
5455   case ICK_TransparentUnionConversion:
5456   case ICK_Writeback_Conversion:
5457   case ICK_Zero_Event_Conversion:
5458   case ICK_C_Only_Conversion:
5459   case ICK_Incompatible_Pointer_Conversion:
5460     return false;
5461 
5462   case ICK_Lvalue_To_Rvalue:
5463   case ICK_Array_To_Pointer:
5464   case ICK_Function_To_Pointer:
5465     llvm_unreachable("found a first conversion kind in Second");
5466 
5467   case ICK_Qualification:
5468     llvm_unreachable("found a third conversion kind in Second");
5469 
5470   case ICK_Num_Conversion_Kinds:
5471     break;
5472   }
5473 
5474   llvm_unreachable("unknown conversion kind");
5475 }
5476 
5477 /// CheckConvertedConstantExpression - Check that the expression From is a
5478 /// converted constant expression of type T, perform the conversion and produce
5479 /// the converted expression, per C++11 [expr.const]p3.
5480 static ExprResult CheckConvertedConstantExpression(Sema &S, Expr *From,
5481                                                    QualType T, APValue &Value,
5482                                                    Sema::CCEKind CCE,
5483                                                    bool RequireInt) {
5484   assert(S.getLangOpts().CPlusPlus11 &&
5485          "converted constant expression outside C++11");
5486 
5487   if (checkPlaceholderForOverload(S, From))
5488     return ExprError();
5489 
5490   // C++1z [expr.const]p3:
5491   //  A converted constant expression of type T is an expression,
5492   //  implicitly converted to type T, where the converted
5493   //  expression is a constant expression and the implicit conversion
5494   //  sequence contains only [... list of conversions ...].
5495   // C++1z [stmt.if]p2:
5496   //  If the if statement is of the form if constexpr, the value of the
5497   //  condition shall be a contextually converted constant expression of type
5498   //  bool.
5499   ImplicitConversionSequence ICS =
5500       CCE == Sema::CCEK_ConstexprIf || CCE == Sema::CCEK_ExplicitBool
5501           ? TryContextuallyConvertToBool(S, From)
5502           : TryCopyInitialization(S, From, T,
5503                                   /*SuppressUserConversions=*/false,
5504                                   /*InOverloadResolution=*/false,
5505                                   /*AllowObjCWritebackConversion=*/false,
5506                                   /*AllowExplicit=*/false);
5507   StandardConversionSequence *SCS = nullptr;
5508   switch (ICS.getKind()) {
5509   case ImplicitConversionSequence::StandardConversion:
5510     SCS = &ICS.Standard;
5511     break;
5512   case ImplicitConversionSequence::UserDefinedConversion:
5513     // We are converting to a non-class type, so the Before sequence
5514     // must be trivial.
5515     SCS = &ICS.UserDefined.After;
5516     break;
5517   case ImplicitConversionSequence::AmbiguousConversion:
5518   case ImplicitConversionSequence::BadConversion:
5519     if (!S.DiagnoseMultipleUserDefinedConversion(From, T))
5520       return S.Diag(From->getBeginLoc(),
5521                     diag::err_typecheck_converted_constant_expression)
5522              << From->getType() << From->getSourceRange() << T;
5523     return ExprError();
5524 
5525   case ImplicitConversionSequence::EllipsisConversion:
5526     llvm_unreachable("ellipsis conversion in converted constant expression");
5527   }
5528 
5529   // Check that we would only use permitted conversions.
5530   if (!CheckConvertedConstantConversions(S, *SCS)) {
5531     return S.Diag(From->getBeginLoc(),
5532                   diag::err_typecheck_converted_constant_expression_disallowed)
5533            << From->getType() << From->getSourceRange() << T;
5534   }
5535   // [...] and where the reference binding (if any) binds directly.
5536   if (SCS->ReferenceBinding && !SCS->DirectBinding) {
5537     return S.Diag(From->getBeginLoc(),
5538                   diag::err_typecheck_converted_constant_expression_indirect)
5539            << From->getType() << From->getSourceRange() << T;
5540   }
5541 
5542   ExprResult Result =
5543       S.PerformImplicitConversion(From, T, ICS, Sema::AA_Converting);
5544   if (Result.isInvalid())
5545     return Result;
5546 
5547   // C++2a [intro.execution]p5:
5548   //   A full-expression is [...] a constant-expression [...]
5549   Result =
5550       S.ActOnFinishFullExpr(Result.get(), From->getExprLoc(),
5551                             /*DiscardedValue=*/false, /*IsConstexpr=*/true);
5552   if (Result.isInvalid())
5553     return Result;
5554 
5555   // Check for a narrowing implicit conversion.
5556   APValue PreNarrowingValue;
5557   QualType PreNarrowingType;
5558   switch (SCS->getNarrowingKind(S.Context, Result.get(), PreNarrowingValue,
5559                                 PreNarrowingType)) {
5560   case NK_Dependent_Narrowing:
5561     // Implicit conversion to a narrower type, but the expression is
5562     // value-dependent so we can't tell whether it's actually narrowing.
5563   case NK_Variable_Narrowing:
5564     // Implicit conversion to a narrower type, and the value is not a constant
5565     // expression. We'll diagnose this in a moment.
5566   case NK_Not_Narrowing:
5567     break;
5568 
5569   case NK_Constant_Narrowing:
5570     S.Diag(From->getBeginLoc(), diag::ext_cce_narrowing)
5571         << CCE << /*Constant*/ 1
5572         << PreNarrowingValue.getAsString(S.Context, PreNarrowingType) << T;
5573     break;
5574 
5575   case NK_Type_Narrowing:
5576     S.Diag(From->getBeginLoc(), diag::ext_cce_narrowing)
5577         << CCE << /*Constant*/ 0 << From->getType() << T;
5578     break;
5579   }
5580 
5581   if (Result.get()->isValueDependent()) {
5582     Value = APValue();
5583     return Result;
5584   }
5585 
5586   // Check the expression is a constant expression.
5587   SmallVector<PartialDiagnosticAt, 8> Notes;
5588   Expr::EvalResult Eval;
5589   Eval.Diag = &Notes;
5590   Expr::ConstExprUsage Usage = CCE == Sema::CCEK_TemplateArg
5591                                    ? Expr::EvaluateForMangling
5592                                    : Expr::EvaluateForCodeGen;
5593 
5594   if (!Result.get()->EvaluateAsConstantExpr(Eval, Usage, S.Context) ||
5595       (RequireInt && !Eval.Val.isInt())) {
5596     // The expression can't be folded, so we can't keep it at this position in
5597     // the AST.
5598     Result = ExprError();
5599   } else {
5600     Value = Eval.Val;
5601 
5602     if (Notes.empty()) {
5603       // It's a constant expression.
5604       return ConstantExpr::Create(S.Context, Result.get(), Value);
5605     }
5606   }
5607 
5608   // It's not a constant expression. Produce an appropriate diagnostic.
5609   if (Notes.size() == 1 &&
5610       Notes[0].second.getDiagID() == diag::note_invalid_subexpr_in_const_expr)
5611     S.Diag(Notes[0].first, diag::err_expr_not_cce) << CCE;
5612   else {
5613     S.Diag(From->getBeginLoc(), diag::err_expr_not_cce)
5614         << CCE << From->getSourceRange();
5615     for (unsigned I = 0; I < Notes.size(); ++I)
5616       S.Diag(Notes[I].first, Notes[I].second);
5617   }
5618   return ExprError();
5619 }
5620 
5621 ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T,
5622                                                   APValue &Value, CCEKind CCE) {
5623   return ::CheckConvertedConstantExpression(*this, From, T, Value, CCE, false);
5624 }
5625 
5626 ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T,
5627                                                   llvm::APSInt &Value,
5628                                                   CCEKind CCE) {
5629   assert(T->isIntegralOrEnumerationType() && "unexpected converted const type");
5630 
5631   APValue V;
5632   auto R = ::CheckConvertedConstantExpression(*this, From, T, V, CCE, true);
5633   if (!R.isInvalid() && !R.get()->isValueDependent())
5634     Value = V.getInt();
5635   return R;
5636 }
5637 
5638 
5639 /// dropPointerConversions - If the given standard conversion sequence
5640 /// involves any pointer conversions, remove them.  This may change
5641 /// the result type of the conversion sequence.
5642 static void dropPointerConversion(StandardConversionSequence &SCS) {
5643   if (SCS.Second == ICK_Pointer_Conversion) {
5644     SCS.Second = ICK_Identity;
5645     SCS.Third = ICK_Identity;
5646     SCS.ToTypePtrs[2] = SCS.ToTypePtrs[1] = SCS.ToTypePtrs[0];
5647   }
5648 }
5649 
5650 /// TryContextuallyConvertToObjCPointer - Attempt to contextually
5651 /// convert the expression From to an Objective-C pointer type.
5652 static ImplicitConversionSequence
5653 TryContextuallyConvertToObjCPointer(Sema &S, Expr *From) {
5654   // Do an implicit conversion to 'id'.
5655   QualType Ty = S.Context.getObjCIdType();
5656   ImplicitConversionSequence ICS
5657     = TryImplicitConversion(S, From, Ty,
5658                             // FIXME: Are these flags correct?
5659                             /*SuppressUserConversions=*/false,
5660                             /*AllowExplicit=*/true,
5661                             /*InOverloadResolution=*/false,
5662                             /*CStyle=*/false,
5663                             /*AllowObjCWritebackConversion=*/false,
5664                             /*AllowObjCConversionOnExplicit=*/true);
5665 
5666   // Strip off any final conversions to 'id'.
5667   switch (ICS.getKind()) {
5668   case ImplicitConversionSequence::BadConversion:
5669   case ImplicitConversionSequence::AmbiguousConversion:
5670   case ImplicitConversionSequence::EllipsisConversion:
5671     break;
5672 
5673   case ImplicitConversionSequence::UserDefinedConversion:
5674     dropPointerConversion(ICS.UserDefined.After);
5675     break;
5676 
5677   case ImplicitConversionSequence::StandardConversion:
5678     dropPointerConversion(ICS.Standard);
5679     break;
5680   }
5681 
5682   return ICS;
5683 }
5684 
5685 /// PerformContextuallyConvertToObjCPointer - Perform a contextual
5686 /// conversion of the expression From to an Objective-C pointer type.
5687 /// Returns a valid but null ExprResult if no conversion sequence exists.
5688 ExprResult Sema::PerformContextuallyConvertToObjCPointer(Expr *From) {
5689   if (checkPlaceholderForOverload(*this, From))
5690     return ExprError();
5691 
5692   QualType Ty = Context.getObjCIdType();
5693   ImplicitConversionSequence ICS =
5694     TryContextuallyConvertToObjCPointer(*this, From);
5695   if (!ICS.isBad())
5696     return PerformImplicitConversion(From, Ty, ICS, AA_Converting);
5697   return ExprResult();
5698 }
5699 
5700 /// Determine whether the provided type is an integral type, or an enumeration
5701 /// type of a permitted flavor.
5702 bool Sema::ICEConvertDiagnoser::match(QualType T) {
5703   return AllowScopedEnumerations ? T->isIntegralOrEnumerationType()
5704                                  : T->isIntegralOrUnscopedEnumerationType();
5705 }
5706 
5707 static ExprResult
5708 diagnoseAmbiguousConversion(Sema &SemaRef, SourceLocation Loc, Expr *From,
5709                             Sema::ContextualImplicitConverter &Converter,
5710                             QualType T, UnresolvedSetImpl &ViableConversions) {
5711 
5712   if (Converter.Suppress)
5713     return ExprError();
5714 
5715   Converter.diagnoseAmbiguous(SemaRef, Loc, T) << From->getSourceRange();
5716   for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
5717     CXXConversionDecl *Conv =
5718         cast<CXXConversionDecl>(ViableConversions[I]->getUnderlyingDecl());
5719     QualType ConvTy = Conv->getConversionType().getNonReferenceType();
5720     Converter.noteAmbiguous(SemaRef, Conv, ConvTy);
5721   }
5722   return From;
5723 }
5724 
5725 static bool
5726 diagnoseNoViableConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From,
5727                            Sema::ContextualImplicitConverter &Converter,
5728                            QualType T, bool HadMultipleCandidates,
5729                            UnresolvedSetImpl &ExplicitConversions) {
5730   if (ExplicitConversions.size() == 1 && !Converter.Suppress) {
5731     DeclAccessPair Found = ExplicitConversions[0];
5732     CXXConversionDecl *Conversion =
5733         cast<CXXConversionDecl>(Found->getUnderlyingDecl());
5734 
5735     // The user probably meant to invoke the given explicit
5736     // conversion; use it.
5737     QualType ConvTy = Conversion->getConversionType().getNonReferenceType();
5738     std::string TypeStr;
5739     ConvTy.getAsStringInternal(TypeStr, SemaRef.getPrintingPolicy());
5740 
5741     Converter.diagnoseExplicitConv(SemaRef, Loc, T, ConvTy)
5742         << FixItHint::CreateInsertion(From->getBeginLoc(),
5743                                       "static_cast<" + TypeStr + ">(")
5744         << FixItHint::CreateInsertion(
5745                SemaRef.getLocForEndOfToken(From->getEndLoc()), ")");
5746     Converter.noteExplicitConv(SemaRef, Conversion, ConvTy);
5747 
5748     // If we aren't in a SFINAE context, build a call to the
5749     // explicit conversion function.
5750     if (SemaRef.isSFINAEContext())
5751       return true;
5752 
5753     SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found);
5754     ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion,
5755                                                        HadMultipleCandidates);
5756     if (Result.isInvalid())
5757       return true;
5758     // Record usage of conversion in an implicit cast.
5759     From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(),
5760                                     CK_UserDefinedConversion, Result.get(),
5761                                     nullptr, Result.get()->getValueKind());
5762   }
5763   return false;
5764 }
5765 
5766 static bool recordConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From,
5767                              Sema::ContextualImplicitConverter &Converter,
5768                              QualType T, bool HadMultipleCandidates,
5769                              DeclAccessPair &Found) {
5770   CXXConversionDecl *Conversion =
5771       cast<CXXConversionDecl>(Found->getUnderlyingDecl());
5772   SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found);
5773 
5774   QualType ToType = Conversion->getConversionType().getNonReferenceType();
5775   if (!Converter.SuppressConversion) {
5776     if (SemaRef.isSFINAEContext())
5777       return true;
5778 
5779     Converter.diagnoseConversion(SemaRef, Loc, T, ToType)
5780         << From->getSourceRange();
5781   }
5782 
5783   ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion,
5784                                                      HadMultipleCandidates);
5785   if (Result.isInvalid())
5786     return true;
5787   // Record usage of conversion in an implicit cast.
5788   From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(),
5789                                   CK_UserDefinedConversion, Result.get(),
5790                                   nullptr, Result.get()->getValueKind());
5791   return false;
5792 }
5793 
5794 static ExprResult finishContextualImplicitConversion(
5795     Sema &SemaRef, SourceLocation Loc, Expr *From,
5796     Sema::ContextualImplicitConverter &Converter) {
5797   if (!Converter.match(From->getType()) && !Converter.Suppress)
5798     Converter.diagnoseNoMatch(SemaRef, Loc, From->getType())
5799         << From->getSourceRange();
5800 
5801   return SemaRef.DefaultLvalueConversion(From);
5802 }
5803 
5804 static void
5805 collectViableConversionCandidates(Sema &SemaRef, Expr *From, QualType ToType,
5806                                   UnresolvedSetImpl &ViableConversions,
5807                                   OverloadCandidateSet &CandidateSet) {
5808   for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
5809     DeclAccessPair FoundDecl = ViableConversions[I];
5810     NamedDecl *D = FoundDecl.getDecl();
5811     CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
5812     if (isa<UsingShadowDecl>(D))
5813       D = cast<UsingShadowDecl>(D)->getTargetDecl();
5814 
5815     CXXConversionDecl *Conv;
5816     FunctionTemplateDecl *ConvTemplate;
5817     if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
5818       Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
5819     else
5820       Conv = cast<CXXConversionDecl>(D);
5821 
5822     if (ConvTemplate)
5823       SemaRef.AddTemplateConversionCandidate(
5824           ConvTemplate, FoundDecl, ActingContext, From, ToType, CandidateSet,
5825           /*AllowObjCConversionOnExplicit=*/false, /*AllowExplicit*/ true);
5826     else
5827       SemaRef.AddConversionCandidate(Conv, FoundDecl, ActingContext, From,
5828                                      ToType, CandidateSet,
5829                                      /*AllowObjCConversionOnExplicit=*/false,
5830                                      /*AllowExplicit*/ true);
5831   }
5832 }
5833 
5834 /// Attempt to convert the given expression to a type which is accepted
5835 /// by the given converter.
5836 ///
5837 /// This routine will attempt to convert an expression of class type to a
5838 /// type accepted by the specified converter. In C++11 and before, the class
5839 /// must have a single non-explicit conversion function converting to a matching
5840 /// type. In C++1y, there can be multiple such conversion functions, but only
5841 /// one target type.
5842 ///
5843 /// \param Loc The source location of the construct that requires the
5844 /// conversion.
5845 ///
5846 /// \param From The expression we're converting from.
5847 ///
5848 /// \param Converter Used to control and diagnose the conversion process.
5849 ///
5850 /// \returns The expression, converted to an integral or enumeration type if
5851 /// successful.
5852 ExprResult Sema::PerformContextualImplicitConversion(
5853     SourceLocation Loc, Expr *From, ContextualImplicitConverter &Converter) {
5854   // We can't perform any more checking for type-dependent expressions.
5855   if (From->isTypeDependent())
5856     return From;
5857 
5858   // Process placeholders immediately.
5859   if (From->hasPlaceholderType()) {
5860     ExprResult result = CheckPlaceholderExpr(From);
5861     if (result.isInvalid())
5862       return result;
5863     From = result.get();
5864   }
5865 
5866   // If the expression already has a matching type, we're golden.
5867   QualType T = From->getType();
5868   if (Converter.match(T))
5869     return DefaultLvalueConversion(From);
5870 
5871   // FIXME: Check for missing '()' if T is a function type?
5872 
5873   // We can only perform contextual implicit conversions on objects of class
5874   // type.
5875   const RecordType *RecordTy = T->getAs<RecordType>();
5876   if (!RecordTy || !getLangOpts().CPlusPlus) {
5877     if (!Converter.Suppress)
5878       Converter.diagnoseNoMatch(*this, Loc, T) << From->getSourceRange();
5879     return From;
5880   }
5881 
5882   // We must have a complete class type.
5883   struct TypeDiagnoserPartialDiag : TypeDiagnoser {
5884     ContextualImplicitConverter &Converter;
5885     Expr *From;
5886 
5887     TypeDiagnoserPartialDiag(ContextualImplicitConverter &Converter, Expr *From)
5888         : Converter(Converter), From(From) {}
5889 
5890     void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
5891       Converter.diagnoseIncomplete(S, Loc, T) << From->getSourceRange();
5892     }
5893   } IncompleteDiagnoser(Converter, From);
5894 
5895   if (Converter.Suppress ? !isCompleteType(Loc, T)
5896                          : RequireCompleteType(Loc, T, IncompleteDiagnoser))
5897     return From;
5898 
5899   // Look for a conversion to an integral or enumeration type.
5900   UnresolvedSet<4>
5901       ViableConversions; // These are *potentially* viable in C++1y.
5902   UnresolvedSet<4> ExplicitConversions;
5903   const auto &Conversions =
5904       cast<CXXRecordDecl>(RecordTy->getDecl())->getVisibleConversionFunctions();
5905 
5906   bool HadMultipleCandidates =
5907       (std::distance(Conversions.begin(), Conversions.end()) > 1);
5908 
5909   // To check that there is only one target type, in C++1y:
5910   QualType ToType;
5911   bool HasUniqueTargetType = true;
5912 
5913   // Collect explicit or viable (potentially in C++1y) conversions.
5914   for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
5915     NamedDecl *D = (*I)->getUnderlyingDecl();
5916     CXXConversionDecl *Conversion;
5917     FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
5918     if (ConvTemplate) {
5919       if (getLangOpts().CPlusPlus14)
5920         Conversion = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
5921       else
5922         continue; // C++11 does not consider conversion operator templates(?).
5923     } else
5924       Conversion = cast<CXXConversionDecl>(D);
5925 
5926     assert((!ConvTemplate || getLangOpts().CPlusPlus14) &&
5927            "Conversion operator templates are considered potentially "
5928            "viable in C++1y");
5929 
5930     QualType CurToType = Conversion->getConversionType().getNonReferenceType();
5931     if (Converter.match(CurToType) || ConvTemplate) {
5932 
5933       if (Conversion->isExplicit()) {
5934         // FIXME: For C++1y, do we need this restriction?
5935         // cf. diagnoseNoViableConversion()
5936         if (!ConvTemplate)
5937           ExplicitConversions.addDecl(I.getDecl(), I.getAccess());
5938       } else {
5939         if (!ConvTemplate && getLangOpts().CPlusPlus14) {
5940           if (ToType.isNull())
5941             ToType = CurToType.getUnqualifiedType();
5942           else if (HasUniqueTargetType &&
5943                    (CurToType.getUnqualifiedType() != ToType))
5944             HasUniqueTargetType = false;
5945         }
5946         ViableConversions.addDecl(I.getDecl(), I.getAccess());
5947       }
5948     }
5949   }
5950 
5951   if (getLangOpts().CPlusPlus14) {
5952     // C++1y [conv]p6:
5953     // ... An expression e of class type E appearing in such a context
5954     // is said to be contextually implicitly converted to a specified
5955     // type T and is well-formed if and only if e can be implicitly
5956     // converted to a type T that is determined as follows: E is searched
5957     // for conversion functions whose return type is cv T or reference to
5958     // cv T such that T is allowed by the context. There shall be
5959     // exactly one such T.
5960 
5961     // If no unique T is found:
5962     if (ToType.isNull()) {
5963       if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
5964                                      HadMultipleCandidates,
5965                                      ExplicitConversions))
5966         return ExprError();
5967       return finishContextualImplicitConversion(*this, Loc, From, Converter);
5968     }
5969 
5970     // If more than one unique Ts are found:
5971     if (!HasUniqueTargetType)
5972       return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
5973                                          ViableConversions);
5974 
5975     // If one unique T is found:
5976     // First, build a candidate set from the previously recorded
5977     // potentially viable conversions.
5978     OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
5979     collectViableConversionCandidates(*this, From, ToType, ViableConversions,
5980                                       CandidateSet);
5981 
5982     // Then, perform overload resolution over the candidate set.
5983     OverloadCandidateSet::iterator Best;
5984     switch (CandidateSet.BestViableFunction(*this, Loc, Best)) {
5985     case OR_Success: {
5986       // Apply this conversion.
5987       DeclAccessPair Found =
5988           DeclAccessPair::make(Best->Function, Best->FoundDecl.getAccess());
5989       if (recordConversion(*this, Loc, From, Converter, T,
5990                            HadMultipleCandidates, Found))
5991         return ExprError();
5992       break;
5993     }
5994     case OR_Ambiguous:
5995       return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
5996                                          ViableConversions);
5997     case OR_No_Viable_Function:
5998       if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
5999                                      HadMultipleCandidates,
6000                                      ExplicitConversions))
6001         return ExprError();
6002       LLVM_FALLTHROUGH;
6003     case OR_Deleted:
6004       // We'll complain below about a non-integral condition type.
6005       break;
6006     }
6007   } else {
6008     switch (ViableConversions.size()) {
6009     case 0: {
6010       if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
6011                                      HadMultipleCandidates,
6012                                      ExplicitConversions))
6013         return ExprError();
6014 
6015       // We'll complain below about a non-integral condition type.
6016       break;
6017     }
6018     case 1: {
6019       // Apply this conversion.
6020       DeclAccessPair Found = ViableConversions[0];
6021       if (recordConversion(*this, Loc, From, Converter, T,
6022                            HadMultipleCandidates, Found))
6023         return ExprError();
6024       break;
6025     }
6026     default:
6027       return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
6028                                          ViableConversions);
6029     }
6030   }
6031 
6032   return finishContextualImplicitConversion(*this, Loc, From, Converter);
6033 }
6034 
6035 /// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is
6036 /// an acceptable non-member overloaded operator for a call whose
6037 /// arguments have types T1 (and, if non-empty, T2). This routine
6038 /// implements the check in C++ [over.match.oper]p3b2 concerning
6039 /// enumeration types.
6040 static bool IsAcceptableNonMemberOperatorCandidate(ASTContext &Context,
6041                                                    FunctionDecl *Fn,
6042                                                    ArrayRef<Expr *> Args) {
6043   QualType T1 = Args[0]->getType();
6044   QualType T2 = Args.size() > 1 ? Args[1]->getType() : QualType();
6045 
6046   if (T1->isDependentType() || (!T2.isNull() && T2->isDependentType()))
6047     return true;
6048 
6049   if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType()))
6050     return true;
6051 
6052   const FunctionProtoType *Proto = Fn->getType()->getAs<FunctionProtoType>();
6053   if (Proto->getNumParams() < 1)
6054     return false;
6055 
6056   if (T1->isEnumeralType()) {
6057     QualType ArgType = Proto->getParamType(0).getNonReferenceType();
6058     if (Context.hasSameUnqualifiedType(T1, ArgType))
6059       return true;
6060   }
6061 
6062   if (Proto->getNumParams() < 2)
6063     return false;
6064 
6065   if (!T2.isNull() && T2->isEnumeralType()) {
6066     QualType ArgType = Proto->getParamType(1).getNonReferenceType();
6067     if (Context.hasSameUnqualifiedType(T2, ArgType))
6068       return true;
6069   }
6070 
6071   return false;
6072 }
6073 
6074 /// AddOverloadCandidate - Adds the given function to the set of
6075 /// candidate functions, using the given function call arguments.  If
6076 /// @p SuppressUserConversions, then don't allow user-defined
6077 /// conversions via constructors or conversion operators.
6078 ///
6079 /// \param PartialOverloading true if we are performing "partial" overloading
6080 /// based on an incomplete set of function arguments. This feature is used by
6081 /// code completion.
6082 void Sema::AddOverloadCandidate(
6083     FunctionDecl *Function, DeclAccessPair FoundDecl, ArrayRef<Expr *> Args,
6084     OverloadCandidateSet &CandidateSet, bool SuppressUserConversions,
6085     bool PartialOverloading, bool AllowExplicit, bool AllowExplicitConversions,
6086     ADLCallKind IsADLCandidate, ConversionSequenceList EarlyConversions,
6087     OverloadCandidateParamOrder PO) {
6088   const FunctionProtoType *Proto
6089     = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
6090   assert(Proto && "Functions without a prototype cannot be overloaded");
6091   assert(!Function->getDescribedFunctionTemplate() &&
6092          "Use AddTemplateOverloadCandidate for function templates");
6093 
6094   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
6095     if (!isa<CXXConstructorDecl>(Method)) {
6096       // If we get here, it's because we're calling a member function
6097       // that is named without a member access expression (e.g.,
6098       // "this->f") that was either written explicitly or created
6099       // implicitly. This can happen with a qualified call to a member
6100       // function, e.g., X::f(). We use an empty type for the implied
6101       // object argument (C++ [over.call.func]p3), and the acting context
6102       // is irrelevant.
6103       AddMethodCandidate(Method, FoundDecl, Method->getParent(), QualType(),
6104                          Expr::Classification::makeSimpleLValue(), Args,
6105                          CandidateSet, SuppressUserConversions,
6106                          PartialOverloading, EarlyConversions, PO);
6107       return;
6108     }
6109     // We treat a constructor like a non-member function, since its object
6110     // argument doesn't participate in overload resolution.
6111   }
6112 
6113   if (!CandidateSet.isNewCandidate(Function, PO))
6114     return;
6115 
6116   // C++11 [class.copy]p11: [DR1402]
6117   //   A defaulted move constructor that is defined as deleted is ignored by
6118   //   overload resolution.
6119   CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function);
6120   if (Constructor && Constructor->isDefaulted() && Constructor->isDeleted() &&
6121       Constructor->isMoveConstructor())
6122     return;
6123 
6124   // Overload resolution is always an unevaluated context.
6125   EnterExpressionEvaluationContext Unevaluated(
6126       *this, Sema::ExpressionEvaluationContext::Unevaluated);
6127 
6128   // C++ [over.match.oper]p3:
6129   //   if no operand has a class type, only those non-member functions in the
6130   //   lookup set that have a first parameter of type T1 or "reference to
6131   //   (possibly cv-qualified) T1", when T1 is an enumeration type, or (if there
6132   //   is a right operand) a second parameter of type T2 or "reference to
6133   //   (possibly cv-qualified) T2", when T2 is an enumeration type, are
6134   //   candidate functions.
6135   if (CandidateSet.getKind() == OverloadCandidateSet::CSK_Operator &&
6136       !IsAcceptableNonMemberOperatorCandidate(Context, Function, Args))
6137     return;
6138 
6139   // Add this candidate
6140   OverloadCandidate &Candidate =
6141       CandidateSet.addCandidate(Args.size(), EarlyConversions);
6142   Candidate.FoundDecl = FoundDecl;
6143   Candidate.Function = Function;
6144   Candidate.Viable = true;
6145   Candidate.RewriteKind =
6146       CandidateSet.getRewriteInfo().getRewriteKind(Function, PO);
6147   Candidate.IsSurrogate = false;
6148   Candidate.IsADLCandidate = IsADLCandidate;
6149   Candidate.IgnoreObjectArgument = false;
6150   Candidate.ExplicitCallArguments = Args.size();
6151 
6152   if (Function->isMultiVersion() && Function->hasAttr<TargetAttr>() &&
6153       !Function->getAttr<TargetAttr>()->isDefaultVersion()) {
6154     Candidate.Viable = false;
6155     Candidate.FailureKind = ovl_non_default_multiversion_function;
6156     return;
6157   }
6158 
6159   if (Constructor) {
6160     // C++ [class.copy]p3:
6161     //   A member function template is never instantiated to perform the copy
6162     //   of a class object to an object of its class type.
6163     QualType ClassType = Context.getTypeDeclType(Constructor->getParent());
6164     if (Args.size() == 1 && Constructor->isSpecializationCopyingObject() &&
6165         (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) ||
6166          IsDerivedFrom(Args[0]->getBeginLoc(), Args[0]->getType(),
6167                        ClassType))) {
6168       Candidate.Viable = false;
6169       Candidate.FailureKind = ovl_fail_illegal_constructor;
6170       return;
6171     }
6172 
6173     // C++ [over.match.funcs]p8: (proposed DR resolution)
6174     //   A constructor inherited from class type C that has a first parameter
6175     //   of type "reference to P" (including such a constructor instantiated
6176     //   from a template) is excluded from the set of candidate functions when
6177     //   constructing an object of type cv D if the argument list has exactly
6178     //   one argument and D is reference-related to P and P is reference-related
6179     //   to C.
6180     auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(FoundDecl.getDecl());
6181     if (Shadow && Args.size() == 1 && Constructor->getNumParams() >= 1 &&
6182         Constructor->getParamDecl(0)->getType()->isReferenceType()) {
6183       QualType P = Constructor->getParamDecl(0)->getType()->getPointeeType();
6184       QualType C = Context.getRecordType(Constructor->getParent());
6185       QualType D = Context.getRecordType(Shadow->getParent());
6186       SourceLocation Loc = Args.front()->getExprLoc();
6187       if ((Context.hasSameUnqualifiedType(P, C) || IsDerivedFrom(Loc, P, C)) &&
6188           (Context.hasSameUnqualifiedType(D, P) || IsDerivedFrom(Loc, D, P))) {
6189         Candidate.Viable = false;
6190         Candidate.FailureKind = ovl_fail_inhctor_slice;
6191         return;
6192       }
6193     }
6194 
6195     // Check that the constructor is capable of constructing an object in the
6196     // destination address space.
6197     if (!Qualifiers::isAddressSpaceSupersetOf(
6198             Constructor->getMethodQualifiers().getAddressSpace(),
6199             CandidateSet.getDestAS())) {
6200       Candidate.Viable = false;
6201       Candidate.FailureKind = ovl_fail_object_addrspace_mismatch;
6202     }
6203   }
6204 
6205   unsigned NumParams = Proto->getNumParams();
6206 
6207   // (C++ 13.3.2p2): A candidate function having fewer than m
6208   // parameters is viable only if it has an ellipsis in its parameter
6209   // list (8.3.5).
6210   if (TooManyArguments(NumParams, Args.size(), PartialOverloading) &&
6211       !Proto->isVariadic()) {
6212     Candidate.Viable = false;
6213     Candidate.FailureKind = ovl_fail_too_many_arguments;
6214     return;
6215   }
6216 
6217   // (C++ 13.3.2p2): A candidate function having more than m parameters
6218   // is viable only if the (m+1)st parameter has a default argument
6219   // (8.3.6). For the purposes of overload resolution, the
6220   // parameter list is truncated on the right, so that there are
6221   // exactly m parameters.
6222   unsigned MinRequiredArgs = Function->getMinRequiredArguments();
6223   if (Args.size() < MinRequiredArgs && !PartialOverloading) {
6224     // Not enough arguments.
6225     Candidate.Viable = false;
6226     Candidate.FailureKind = ovl_fail_too_few_arguments;
6227     return;
6228   }
6229 
6230   // (CUDA B.1): Check for invalid calls between targets.
6231   if (getLangOpts().CUDA)
6232     if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
6233       // Skip the check for callers that are implicit members, because in this
6234       // case we may not yet know what the member's target is; the target is
6235       // inferred for the member automatically, based on the bases and fields of
6236       // the class.
6237       if (!Caller->isImplicit() && !IsAllowedCUDACall(Caller, Function)) {
6238         Candidate.Viable = false;
6239         Candidate.FailureKind = ovl_fail_bad_target;
6240         return;
6241       }
6242 
6243   // Determine the implicit conversion sequences for each of the
6244   // arguments.
6245   for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
6246     unsigned ConvIdx =
6247         PO == OverloadCandidateParamOrder::Reversed ? 1 - ArgIdx : ArgIdx;
6248     if (Candidate.Conversions[ConvIdx].isInitialized()) {
6249       // We already formed a conversion sequence for this parameter during
6250       // template argument deduction.
6251     } else if (ArgIdx < NumParams) {
6252       // (C++ 13.3.2p3): for F to be a viable function, there shall
6253       // exist for each argument an implicit conversion sequence
6254       // (13.3.3.1) that converts that argument to the corresponding
6255       // parameter of F.
6256       QualType ParamType = Proto->getParamType(ArgIdx);
6257       Candidate.Conversions[ConvIdx] = TryCopyInitialization(
6258           *this, Args[ArgIdx], ParamType, SuppressUserConversions,
6259           /*InOverloadResolution=*/true,
6260           /*AllowObjCWritebackConversion=*/
6261           getLangOpts().ObjCAutoRefCount, AllowExplicitConversions);
6262       if (Candidate.Conversions[ConvIdx].isBad()) {
6263         Candidate.Viable = false;
6264         Candidate.FailureKind = ovl_fail_bad_conversion;
6265         return;
6266       }
6267     } else {
6268       // (C++ 13.3.2p2): For the purposes of overload resolution, any
6269       // argument for which there is no corresponding parameter is
6270       // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
6271       Candidate.Conversions[ConvIdx].setEllipsis();
6272     }
6273   }
6274 
6275   if (!AllowExplicit) {
6276     ExplicitSpecifier ES = ExplicitSpecifier::getFromDecl(Function);
6277     if (ES.getKind() != ExplicitSpecKind::ResolvedFalse) {
6278       Candidate.Viable = false;
6279       Candidate.FailureKind = ovl_fail_explicit_resolved;
6280       return;
6281     }
6282   }
6283 
6284   if (EnableIfAttr *FailedAttr = CheckEnableIf(Function, Args)) {
6285     Candidate.Viable = false;
6286     Candidate.FailureKind = ovl_fail_enable_if;
6287     Candidate.DeductionFailure.Data = FailedAttr;
6288     return;
6289   }
6290 
6291   if (LangOpts.OpenCL && isOpenCLDisabledDecl(Function)) {
6292     Candidate.Viable = false;
6293     Candidate.FailureKind = ovl_fail_ext_disabled;
6294     return;
6295   }
6296 }
6297 
6298 ObjCMethodDecl *
6299 Sema::SelectBestMethod(Selector Sel, MultiExprArg Args, bool IsInstance,
6300                        SmallVectorImpl<ObjCMethodDecl *> &Methods) {
6301   if (Methods.size() <= 1)
6302     return nullptr;
6303 
6304   for (unsigned b = 0, e = Methods.size(); b < e; b++) {
6305     bool Match = true;
6306     ObjCMethodDecl *Method = Methods[b];
6307     unsigned NumNamedArgs = Sel.getNumArgs();
6308     // Method might have more arguments than selector indicates. This is due
6309     // to addition of c-style arguments in method.
6310     if (Method->param_size() > NumNamedArgs)
6311       NumNamedArgs = Method->param_size();
6312     if (Args.size() < NumNamedArgs)
6313       continue;
6314 
6315     for (unsigned i = 0; i < NumNamedArgs; i++) {
6316       // We can't do any type-checking on a type-dependent argument.
6317       if (Args[i]->isTypeDependent()) {
6318         Match = false;
6319         break;
6320       }
6321 
6322       ParmVarDecl *param = Method->parameters()[i];
6323       Expr *argExpr = Args[i];
6324       assert(argExpr && "SelectBestMethod(): missing expression");
6325 
6326       // Strip the unbridged-cast placeholder expression off unless it's
6327       // a consumed argument.
6328       if (argExpr->hasPlaceholderType(BuiltinType::ARCUnbridgedCast) &&
6329           !param->hasAttr<CFConsumedAttr>())
6330         argExpr = stripARCUnbridgedCast(argExpr);
6331 
6332       // If the parameter is __unknown_anytype, move on to the next method.
6333       if (param->getType() == Context.UnknownAnyTy) {
6334         Match = false;
6335         break;
6336       }
6337 
6338       ImplicitConversionSequence ConversionState
6339         = TryCopyInitialization(*this, argExpr, param->getType(),
6340                                 /*SuppressUserConversions*/false,
6341                                 /*InOverloadResolution=*/true,
6342                                 /*AllowObjCWritebackConversion=*/
6343                                 getLangOpts().ObjCAutoRefCount,
6344                                 /*AllowExplicit*/false);
6345       // This function looks for a reasonably-exact match, so we consider
6346       // incompatible pointer conversions to be a failure here.
6347       if (ConversionState.isBad() ||
6348           (ConversionState.isStandard() &&
6349            ConversionState.Standard.Second ==
6350                ICK_Incompatible_Pointer_Conversion)) {
6351         Match = false;
6352         break;
6353       }
6354     }
6355     // Promote additional arguments to variadic methods.
6356     if (Match && Method->isVariadic()) {
6357       for (unsigned i = NumNamedArgs, e = Args.size(); i < e; ++i) {
6358         if (Args[i]->isTypeDependent()) {
6359           Match = false;
6360           break;
6361         }
6362         ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod,
6363                                                           nullptr);
6364         if (Arg.isInvalid()) {
6365           Match = false;
6366           break;
6367         }
6368       }
6369     } else {
6370       // Check for extra arguments to non-variadic methods.
6371       if (Args.size() != NumNamedArgs)
6372         Match = false;
6373       else if (Match && NumNamedArgs == 0 && Methods.size() > 1) {
6374         // Special case when selectors have no argument. In this case, select
6375         // one with the most general result type of 'id'.
6376         for (unsigned b = 0, e = Methods.size(); b < e; b++) {
6377           QualType ReturnT = Methods[b]->getReturnType();
6378           if (ReturnT->isObjCIdType())
6379             return Methods[b];
6380         }
6381       }
6382     }
6383 
6384     if (Match)
6385       return Method;
6386   }
6387   return nullptr;
6388 }
6389 
6390 static bool
6391 convertArgsForAvailabilityChecks(Sema &S, FunctionDecl *Function, Expr *ThisArg,
6392                                  ArrayRef<Expr *> Args, Sema::SFINAETrap &Trap,
6393                                  bool MissingImplicitThis, Expr *&ConvertedThis,
6394                                  SmallVectorImpl<Expr *> &ConvertedArgs) {
6395   if (ThisArg) {
6396     CXXMethodDecl *Method = cast<CXXMethodDecl>(Function);
6397     assert(!isa<CXXConstructorDecl>(Method) &&
6398            "Shouldn't have `this` for ctors!");
6399     assert(!Method->isStatic() && "Shouldn't have `this` for static methods!");
6400     ExprResult R = S.PerformObjectArgumentInitialization(
6401         ThisArg, /*Qualifier=*/nullptr, Method, Method);
6402     if (R.isInvalid())
6403       return false;
6404     ConvertedThis = R.get();
6405   } else {
6406     if (auto *MD = dyn_cast<CXXMethodDecl>(Function)) {
6407       (void)MD;
6408       assert((MissingImplicitThis || MD->isStatic() ||
6409               isa<CXXConstructorDecl>(MD)) &&
6410              "Expected `this` for non-ctor instance methods");
6411     }
6412     ConvertedThis = nullptr;
6413   }
6414 
6415   // Ignore any variadic arguments. Converting them is pointless, since the
6416   // user can't refer to them in the function condition.
6417   unsigned ArgSizeNoVarargs = std::min(Function->param_size(), Args.size());
6418 
6419   // Convert the arguments.
6420   for (unsigned I = 0; I != ArgSizeNoVarargs; ++I) {
6421     ExprResult R;
6422     R = S.PerformCopyInitialization(InitializedEntity::InitializeParameter(
6423                                         S.Context, Function->getParamDecl(I)),
6424                                     SourceLocation(), Args[I]);
6425 
6426     if (R.isInvalid())
6427       return false;
6428 
6429     ConvertedArgs.push_back(R.get());
6430   }
6431 
6432   if (Trap.hasErrorOccurred())
6433     return false;
6434 
6435   // Push default arguments if needed.
6436   if (!Function->isVariadic() && Args.size() < Function->getNumParams()) {
6437     for (unsigned i = Args.size(), e = Function->getNumParams(); i != e; ++i) {
6438       ParmVarDecl *P = Function->getParamDecl(i);
6439       Expr *DefArg = P->hasUninstantiatedDefaultArg()
6440                          ? P->getUninstantiatedDefaultArg()
6441                          : P->getDefaultArg();
6442       // This can only happen in code completion, i.e. when PartialOverloading
6443       // is true.
6444       if (!DefArg)
6445         return false;
6446       ExprResult R =
6447           S.PerformCopyInitialization(InitializedEntity::InitializeParameter(
6448                                           S.Context, Function->getParamDecl(i)),
6449                                       SourceLocation(), DefArg);
6450       if (R.isInvalid())
6451         return false;
6452       ConvertedArgs.push_back(R.get());
6453     }
6454 
6455     if (Trap.hasErrorOccurred())
6456       return false;
6457   }
6458   return true;
6459 }
6460 
6461 EnableIfAttr *Sema::CheckEnableIf(FunctionDecl *Function, ArrayRef<Expr *> Args,
6462                                   bool MissingImplicitThis) {
6463   auto EnableIfAttrs = Function->specific_attrs<EnableIfAttr>();
6464   if (EnableIfAttrs.begin() == EnableIfAttrs.end())
6465     return nullptr;
6466 
6467   SFINAETrap Trap(*this);
6468   SmallVector<Expr *, 16> ConvertedArgs;
6469   // FIXME: We should look into making enable_if late-parsed.
6470   Expr *DiscardedThis;
6471   if (!convertArgsForAvailabilityChecks(
6472           *this, Function, /*ThisArg=*/nullptr, Args, Trap,
6473           /*MissingImplicitThis=*/true, DiscardedThis, ConvertedArgs))
6474     return *EnableIfAttrs.begin();
6475 
6476   for (auto *EIA : EnableIfAttrs) {
6477     APValue Result;
6478     // FIXME: This doesn't consider value-dependent cases, because doing so is
6479     // very difficult. Ideally, we should handle them more gracefully.
6480     if (EIA->getCond()->isValueDependent() ||
6481         !EIA->getCond()->EvaluateWithSubstitution(
6482             Result, Context, Function, llvm::makeArrayRef(ConvertedArgs)))
6483       return EIA;
6484 
6485     if (!Result.isInt() || !Result.getInt().getBoolValue())
6486       return EIA;
6487   }
6488   return nullptr;
6489 }
6490 
6491 template <typename CheckFn>
6492 static bool diagnoseDiagnoseIfAttrsWith(Sema &S, const NamedDecl *ND,
6493                                         bool ArgDependent, SourceLocation Loc,
6494                                         CheckFn &&IsSuccessful) {
6495   SmallVector<const DiagnoseIfAttr *, 8> Attrs;
6496   for (const auto *DIA : ND->specific_attrs<DiagnoseIfAttr>()) {
6497     if (ArgDependent == DIA->getArgDependent())
6498       Attrs.push_back(DIA);
6499   }
6500 
6501   // Common case: No diagnose_if attributes, so we can quit early.
6502   if (Attrs.empty())
6503     return false;
6504 
6505   auto WarningBegin = std::stable_partition(
6506       Attrs.begin(), Attrs.end(),
6507       [](const DiagnoseIfAttr *DIA) { return DIA->isError(); });
6508 
6509   // Note that diagnose_if attributes are late-parsed, so they appear in the
6510   // correct order (unlike enable_if attributes).
6511   auto ErrAttr = llvm::find_if(llvm::make_range(Attrs.begin(), WarningBegin),
6512                                IsSuccessful);
6513   if (ErrAttr != WarningBegin) {
6514     const DiagnoseIfAttr *DIA = *ErrAttr;
6515     S.Diag(Loc, diag::err_diagnose_if_succeeded) << DIA->getMessage();
6516     S.Diag(DIA->getLocation(), diag::note_from_diagnose_if)
6517         << DIA->getParent() << DIA->getCond()->getSourceRange();
6518     return true;
6519   }
6520 
6521   for (const auto *DIA : llvm::make_range(WarningBegin, Attrs.end()))
6522     if (IsSuccessful(DIA)) {
6523       S.Diag(Loc, diag::warn_diagnose_if_succeeded) << DIA->getMessage();
6524       S.Diag(DIA->getLocation(), diag::note_from_diagnose_if)
6525           << DIA->getParent() << DIA->getCond()->getSourceRange();
6526     }
6527 
6528   return false;
6529 }
6530 
6531 bool Sema::diagnoseArgDependentDiagnoseIfAttrs(const FunctionDecl *Function,
6532                                                const Expr *ThisArg,
6533                                                ArrayRef<const Expr *> Args,
6534                                                SourceLocation Loc) {
6535   return diagnoseDiagnoseIfAttrsWith(
6536       *this, Function, /*ArgDependent=*/true, Loc,
6537       [&](const DiagnoseIfAttr *DIA) {
6538         APValue Result;
6539         // It's sane to use the same Args for any redecl of this function, since
6540         // EvaluateWithSubstitution only cares about the position of each
6541         // argument in the arg list, not the ParmVarDecl* it maps to.
6542         if (!DIA->getCond()->EvaluateWithSubstitution(
6543                 Result, Context, cast<FunctionDecl>(DIA->getParent()), Args, ThisArg))
6544           return false;
6545         return Result.isInt() && Result.getInt().getBoolValue();
6546       });
6547 }
6548 
6549 bool Sema::diagnoseArgIndependentDiagnoseIfAttrs(const NamedDecl *ND,
6550                                                  SourceLocation Loc) {
6551   return diagnoseDiagnoseIfAttrsWith(
6552       *this, ND, /*ArgDependent=*/false, Loc,
6553       [&](const DiagnoseIfAttr *DIA) {
6554         bool Result;
6555         return DIA->getCond()->EvaluateAsBooleanCondition(Result, Context) &&
6556                Result;
6557       });
6558 }
6559 
6560 /// Add all of the function declarations in the given function set to
6561 /// the overload candidate set.
6562 void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns,
6563                                  ArrayRef<Expr *> Args,
6564                                  OverloadCandidateSet &CandidateSet,
6565                                  TemplateArgumentListInfo *ExplicitTemplateArgs,
6566                                  bool SuppressUserConversions,
6567                                  bool PartialOverloading,
6568                                  bool FirstArgumentIsBase) {
6569   for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
6570     NamedDecl *D = F.getDecl()->getUnderlyingDecl();
6571     ArrayRef<Expr *> FunctionArgs = Args;
6572 
6573     FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D);
6574     FunctionDecl *FD =
6575         FunTmpl ? FunTmpl->getTemplatedDecl() : cast<FunctionDecl>(D);
6576 
6577     if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) {
6578       QualType ObjectType;
6579       Expr::Classification ObjectClassification;
6580       if (Args.size() > 0) {
6581         if (Expr *E = Args[0]) {
6582           // Use the explicit base to restrict the lookup:
6583           ObjectType = E->getType();
6584           // Pointers in the object arguments are implicitly dereferenced, so we
6585           // always classify them as l-values.
6586           if (!ObjectType.isNull() && ObjectType->isPointerType())
6587             ObjectClassification = Expr::Classification::makeSimpleLValue();
6588           else
6589             ObjectClassification = E->Classify(Context);
6590         } // .. else there is an implicit base.
6591         FunctionArgs = Args.slice(1);
6592       }
6593       if (FunTmpl) {
6594         AddMethodTemplateCandidate(
6595             FunTmpl, F.getPair(),
6596             cast<CXXRecordDecl>(FunTmpl->getDeclContext()),
6597             ExplicitTemplateArgs, ObjectType, ObjectClassification,
6598             FunctionArgs, CandidateSet, SuppressUserConversions,
6599             PartialOverloading);
6600       } else {
6601         AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(),
6602                            cast<CXXMethodDecl>(FD)->getParent(), ObjectType,
6603                            ObjectClassification, FunctionArgs, CandidateSet,
6604                            SuppressUserConversions, PartialOverloading);
6605       }
6606     } else {
6607       // This branch handles both standalone functions and static methods.
6608 
6609       // Slice the first argument (which is the base) when we access
6610       // static method as non-static.
6611       if (Args.size() > 0 &&
6612           (!Args[0] || (FirstArgumentIsBase && isa<CXXMethodDecl>(FD) &&
6613                         !isa<CXXConstructorDecl>(FD)))) {
6614         assert(cast<CXXMethodDecl>(FD)->isStatic());
6615         FunctionArgs = Args.slice(1);
6616       }
6617       if (FunTmpl) {
6618         AddTemplateOverloadCandidate(FunTmpl, F.getPair(),
6619                                      ExplicitTemplateArgs, FunctionArgs,
6620                                      CandidateSet, SuppressUserConversions,
6621                                      PartialOverloading);
6622       } else {
6623         AddOverloadCandidate(FD, F.getPair(), FunctionArgs, CandidateSet,
6624                              SuppressUserConversions, PartialOverloading);
6625       }
6626     }
6627   }
6628 }
6629 
6630 /// AddMethodCandidate - Adds a named decl (which is some kind of
6631 /// method) as a method candidate to the given overload set.
6632 void Sema::AddMethodCandidate(DeclAccessPair FoundDecl, QualType ObjectType,
6633                               Expr::Classification ObjectClassification,
6634                               ArrayRef<Expr *> Args,
6635                               OverloadCandidateSet &CandidateSet,
6636                               bool SuppressUserConversions,
6637                               OverloadCandidateParamOrder PO) {
6638   NamedDecl *Decl = FoundDecl.getDecl();
6639   CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext());
6640 
6641   if (isa<UsingShadowDecl>(Decl))
6642     Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl();
6643 
6644   if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) {
6645     assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&
6646            "Expected a member function template");
6647     AddMethodTemplateCandidate(TD, FoundDecl, ActingContext,
6648                                /*ExplicitArgs*/ nullptr, ObjectType,
6649                                ObjectClassification, Args, CandidateSet,
6650                                SuppressUserConversions, false, PO);
6651   } else {
6652     AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext,
6653                        ObjectType, ObjectClassification, Args, CandidateSet,
6654                        SuppressUserConversions, false, None, PO);
6655   }
6656 }
6657 
6658 /// AddMethodCandidate - Adds the given C++ member function to the set
6659 /// of candidate functions, using the given function call arguments
6660 /// and the object argument (@c Object). For example, in a call
6661 /// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
6662 /// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
6663 /// allow user-defined conversions via constructors or conversion
6664 /// operators.
6665 void
6666 Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl,
6667                          CXXRecordDecl *ActingContext, QualType ObjectType,
6668                          Expr::Classification ObjectClassification,
6669                          ArrayRef<Expr *> Args,
6670                          OverloadCandidateSet &CandidateSet,
6671                          bool SuppressUserConversions,
6672                          bool PartialOverloading,
6673                          ConversionSequenceList EarlyConversions,
6674                          OverloadCandidateParamOrder PO) {
6675   const FunctionProtoType *Proto
6676     = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
6677   assert(Proto && "Methods without a prototype cannot be overloaded");
6678   assert(!isa<CXXConstructorDecl>(Method) &&
6679          "Use AddOverloadCandidate for constructors");
6680 
6681   if (!CandidateSet.isNewCandidate(Method, PO))
6682     return;
6683 
6684   // C++11 [class.copy]p23: [DR1402]
6685   //   A defaulted move assignment operator that is defined as deleted is
6686   //   ignored by overload resolution.
6687   if (Method->isDefaulted() && Method->isDeleted() &&
6688       Method->isMoveAssignmentOperator())
6689     return;
6690 
6691   // Overload resolution is always an unevaluated context.
6692   EnterExpressionEvaluationContext Unevaluated(
6693       *this, Sema::ExpressionEvaluationContext::Unevaluated);
6694 
6695   // Add this candidate
6696   OverloadCandidate &Candidate =
6697       CandidateSet.addCandidate(Args.size() + 1, EarlyConversions);
6698   Candidate.FoundDecl = FoundDecl;
6699   Candidate.Function = Method;
6700   Candidate.RewriteKind =
6701       CandidateSet.getRewriteInfo().getRewriteKind(Method, PO);
6702   Candidate.IsSurrogate = false;
6703   Candidate.IgnoreObjectArgument = false;
6704   Candidate.ExplicitCallArguments = Args.size();
6705 
6706   unsigned NumParams = Proto->getNumParams();
6707 
6708   // (C++ 13.3.2p2): A candidate function having fewer than m
6709   // parameters is viable only if it has an ellipsis in its parameter
6710   // list (8.3.5).
6711   if (TooManyArguments(NumParams, Args.size(), PartialOverloading) &&
6712       !Proto->isVariadic()) {
6713     Candidate.Viable = false;
6714     Candidate.FailureKind = ovl_fail_too_many_arguments;
6715     return;
6716   }
6717 
6718   // (C++ 13.3.2p2): A candidate function having more than m parameters
6719   // is viable only if the (m+1)st parameter has a default argument
6720   // (8.3.6). For the purposes of overload resolution, the
6721   // parameter list is truncated on the right, so that there are
6722   // exactly m parameters.
6723   unsigned MinRequiredArgs = Method->getMinRequiredArguments();
6724   if (Args.size() < MinRequiredArgs && !PartialOverloading) {
6725     // Not enough arguments.
6726     Candidate.Viable = false;
6727     Candidate.FailureKind = ovl_fail_too_few_arguments;
6728     return;
6729   }
6730 
6731   Candidate.Viable = true;
6732 
6733   if (Method->isStatic() || ObjectType.isNull())
6734     // The implicit object argument is ignored.
6735     Candidate.IgnoreObjectArgument = true;
6736   else {
6737     unsigned ConvIdx = PO == OverloadCandidateParamOrder::Reversed ? 1 : 0;
6738     // Determine the implicit conversion sequence for the object
6739     // parameter.
6740     Candidate.Conversions[ConvIdx] = TryObjectArgumentInitialization(
6741         *this, CandidateSet.getLocation(), ObjectType, ObjectClassification,
6742         Method, ActingContext);
6743     if (Candidate.Conversions[ConvIdx].isBad()) {
6744       Candidate.Viable = false;
6745       Candidate.FailureKind = ovl_fail_bad_conversion;
6746       return;
6747     }
6748   }
6749 
6750   // (CUDA B.1): Check for invalid calls between targets.
6751   if (getLangOpts().CUDA)
6752     if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
6753       if (!IsAllowedCUDACall(Caller, Method)) {
6754         Candidate.Viable = false;
6755         Candidate.FailureKind = ovl_fail_bad_target;
6756         return;
6757       }
6758 
6759   // Determine the implicit conversion sequences for each of the
6760   // arguments.
6761   for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
6762     unsigned ConvIdx =
6763         PO == OverloadCandidateParamOrder::Reversed ? 0 : (ArgIdx + 1);
6764     if (Candidate.Conversions[ConvIdx].isInitialized()) {
6765       // We already formed a conversion sequence for this parameter during
6766       // template argument deduction.
6767     } else if (ArgIdx < NumParams) {
6768       // (C++ 13.3.2p3): for F to be a viable function, there shall
6769       // exist for each argument an implicit conversion sequence
6770       // (13.3.3.1) that converts that argument to the corresponding
6771       // parameter of F.
6772       QualType ParamType = Proto->getParamType(ArgIdx);
6773       Candidate.Conversions[ConvIdx]
6774         = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
6775                                 SuppressUserConversions,
6776                                 /*InOverloadResolution=*/true,
6777                                 /*AllowObjCWritebackConversion=*/
6778                                   getLangOpts().ObjCAutoRefCount);
6779       if (Candidate.Conversions[ConvIdx].isBad()) {
6780         Candidate.Viable = false;
6781         Candidate.FailureKind = ovl_fail_bad_conversion;
6782         return;
6783       }
6784     } else {
6785       // (C++ 13.3.2p2): For the purposes of overload resolution, any
6786       // argument for which there is no corresponding parameter is
6787       // considered to "match the ellipsis" (C+ 13.3.3.1.3).
6788       Candidate.Conversions[ConvIdx].setEllipsis();
6789     }
6790   }
6791 
6792   if (EnableIfAttr *FailedAttr = CheckEnableIf(Method, Args, true)) {
6793     Candidate.Viable = false;
6794     Candidate.FailureKind = ovl_fail_enable_if;
6795     Candidate.DeductionFailure.Data = FailedAttr;
6796     return;
6797   }
6798 
6799   if (Method->isMultiVersion() && Method->hasAttr<TargetAttr>() &&
6800       !Method->getAttr<TargetAttr>()->isDefaultVersion()) {
6801     Candidate.Viable = false;
6802     Candidate.FailureKind = ovl_non_default_multiversion_function;
6803   }
6804 }
6805 
6806 /// Add a C++ member function template as a candidate to the candidate
6807 /// set, using template argument deduction to produce an appropriate member
6808 /// function template specialization.
6809 void Sema::AddMethodTemplateCandidate(
6810     FunctionTemplateDecl *MethodTmpl, DeclAccessPair FoundDecl,
6811     CXXRecordDecl *ActingContext,
6812     TemplateArgumentListInfo *ExplicitTemplateArgs, QualType ObjectType,
6813     Expr::Classification ObjectClassification, ArrayRef<Expr *> Args,
6814     OverloadCandidateSet &CandidateSet, bool SuppressUserConversions,
6815     bool PartialOverloading, OverloadCandidateParamOrder PO) {
6816   if (!CandidateSet.isNewCandidate(MethodTmpl, PO))
6817     return;
6818 
6819   // C++ [over.match.funcs]p7:
6820   //   In each case where a candidate is a function template, candidate
6821   //   function template specializations are generated using template argument
6822   //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
6823   //   candidate functions in the usual way.113) A given name can refer to one
6824   //   or more function templates and also to a set of overloaded non-template
6825   //   functions. In such a case, the candidate functions generated from each
6826   //   function template are combined with the set of non-template candidate
6827   //   functions.
6828   TemplateDeductionInfo Info(CandidateSet.getLocation());
6829   FunctionDecl *Specialization = nullptr;
6830   ConversionSequenceList Conversions;
6831   if (TemplateDeductionResult Result = DeduceTemplateArguments(
6832           MethodTmpl, ExplicitTemplateArgs, Args, Specialization, Info,
6833           PartialOverloading, [&](ArrayRef<QualType> ParamTypes) {
6834             return CheckNonDependentConversions(
6835                 MethodTmpl, ParamTypes, Args, CandidateSet, Conversions,
6836                 SuppressUserConversions, ActingContext, ObjectType,
6837                 ObjectClassification, PO);
6838           })) {
6839     OverloadCandidate &Candidate =
6840         CandidateSet.addCandidate(Conversions.size(), Conversions);
6841     Candidate.FoundDecl = FoundDecl;
6842     Candidate.Function = MethodTmpl->getTemplatedDecl();
6843     Candidate.Viable = false;
6844     Candidate.RewriteKind =
6845       CandidateSet.getRewriteInfo().getRewriteKind(Candidate.Function, PO);
6846     Candidate.IsSurrogate = false;
6847     Candidate.IgnoreObjectArgument =
6848         cast<CXXMethodDecl>(Candidate.Function)->isStatic() ||
6849         ObjectType.isNull();
6850     Candidate.ExplicitCallArguments = Args.size();
6851     if (Result == TDK_NonDependentConversionFailure)
6852       Candidate.FailureKind = ovl_fail_bad_conversion;
6853     else {
6854       Candidate.FailureKind = ovl_fail_bad_deduction;
6855       Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
6856                                                             Info);
6857     }
6858     return;
6859   }
6860 
6861   // Add the function template specialization produced by template argument
6862   // deduction as a candidate.
6863   assert(Specialization && "Missing member function template specialization?");
6864   assert(isa<CXXMethodDecl>(Specialization) &&
6865          "Specialization is not a member function?");
6866   AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl,
6867                      ActingContext, ObjectType, ObjectClassification, Args,
6868                      CandidateSet, SuppressUserConversions, PartialOverloading,
6869                      Conversions, PO);
6870 }
6871 
6872 /// Add a C++ function template specialization as a candidate
6873 /// in the candidate set, using template argument deduction to produce
6874 /// an appropriate function template specialization.
6875 void Sema::AddTemplateOverloadCandidate(
6876     FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl,
6877     TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args,
6878     OverloadCandidateSet &CandidateSet, bool SuppressUserConversions,
6879     bool PartialOverloading, bool AllowExplicit, ADLCallKind IsADLCandidate,
6880     OverloadCandidateParamOrder PO) {
6881   if (!CandidateSet.isNewCandidate(FunctionTemplate, PO))
6882     return;
6883 
6884   // C++ [over.match.funcs]p7:
6885   //   In each case where a candidate is a function template, candidate
6886   //   function template specializations are generated using template argument
6887   //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
6888   //   candidate functions in the usual way.113) A given name can refer to one
6889   //   or more function templates and also to a set of overloaded non-template
6890   //   functions. In such a case, the candidate functions generated from each
6891   //   function template are combined with the set of non-template candidate
6892   //   functions.
6893   TemplateDeductionInfo Info(CandidateSet.getLocation());
6894   FunctionDecl *Specialization = nullptr;
6895   ConversionSequenceList Conversions;
6896   if (TemplateDeductionResult Result = DeduceTemplateArguments(
6897           FunctionTemplate, ExplicitTemplateArgs, Args, Specialization, Info,
6898           PartialOverloading, [&](ArrayRef<QualType> ParamTypes) {
6899             return CheckNonDependentConversions(
6900                 FunctionTemplate, ParamTypes, Args, CandidateSet, Conversions,
6901                 SuppressUserConversions, nullptr, QualType(), {}, PO);
6902           })) {
6903     OverloadCandidate &Candidate =
6904         CandidateSet.addCandidate(Conversions.size(), Conversions);
6905     Candidate.FoundDecl = FoundDecl;
6906     Candidate.Function = FunctionTemplate->getTemplatedDecl();
6907     Candidate.Viable = false;
6908     Candidate.RewriteKind =
6909       CandidateSet.getRewriteInfo().getRewriteKind(Candidate.Function, PO);
6910     Candidate.IsSurrogate = false;
6911     Candidate.IsADLCandidate = IsADLCandidate;
6912     // Ignore the object argument if there is one, since we don't have an object
6913     // type.
6914     Candidate.IgnoreObjectArgument =
6915         isa<CXXMethodDecl>(Candidate.Function) &&
6916         !isa<CXXConstructorDecl>(Candidate.Function);
6917     Candidate.ExplicitCallArguments = Args.size();
6918     if (Result == TDK_NonDependentConversionFailure)
6919       Candidate.FailureKind = ovl_fail_bad_conversion;
6920     else {
6921       Candidate.FailureKind = ovl_fail_bad_deduction;
6922       Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
6923                                                             Info);
6924     }
6925     return;
6926   }
6927 
6928   // Add the function template specialization produced by template argument
6929   // deduction as a candidate.
6930   assert(Specialization && "Missing function template specialization?");
6931   AddOverloadCandidate(
6932       Specialization, FoundDecl, Args, CandidateSet, SuppressUserConversions,
6933       PartialOverloading, AllowExplicit,
6934       /*AllowExplicitConversions*/ false, IsADLCandidate, Conversions, PO);
6935 }
6936 
6937 /// Check that implicit conversion sequences can be formed for each argument
6938 /// whose corresponding parameter has a non-dependent type, per DR1391's
6939 /// [temp.deduct.call]p10.
6940 bool Sema::CheckNonDependentConversions(
6941     FunctionTemplateDecl *FunctionTemplate, ArrayRef<QualType> ParamTypes,
6942     ArrayRef<Expr *> Args, OverloadCandidateSet &CandidateSet,
6943     ConversionSequenceList &Conversions, bool SuppressUserConversions,
6944     CXXRecordDecl *ActingContext, QualType ObjectType,
6945     Expr::Classification ObjectClassification, OverloadCandidateParamOrder PO) {
6946   // FIXME: The cases in which we allow explicit conversions for constructor
6947   // arguments never consider calling a constructor template. It's not clear
6948   // that is correct.
6949   const bool AllowExplicit = false;
6950 
6951   auto *FD = FunctionTemplate->getTemplatedDecl();
6952   auto *Method = dyn_cast<CXXMethodDecl>(FD);
6953   bool HasThisConversion = Method && !isa<CXXConstructorDecl>(Method);
6954   unsigned ThisConversions = HasThisConversion ? 1 : 0;
6955 
6956   Conversions =
6957       CandidateSet.allocateConversionSequences(ThisConversions + Args.size());
6958 
6959   // Overload resolution is always an unevaluated context.
6960   EnterExpressionEvaluationContext Unevaluated(
6961       *this, Sema::ExpressionEvaluationContext::Unevaluated);
6962 
6963   // For a method call, check the 'this' conversion here too. DR1391 doesn't
6964   // require that, but this check should never result in a hard error, and
6965   // overload resolution is permitted to sidestep instantiations.
6966   if (HasThisConversion && !cast<CXXMethodDecl>(FD)->isStatic() &&
6967       !ObjectType.isNull()) {
6968     unsigned ConvIdx = PO == OverloadCandidateParamOrder::Reversed ? 1 : 0;
6969     Conversions[ConvIdx] = TryObjectArgumentInitialization(
6970         *this, CandidateSet.getLocation(), ObjectType, ObjectClassification,
6971         Method, ActingContext);
6972     if (Conversions[ConvIdx].isBad())
6973       return true;
6974   }
6975 
6976   for (unsigned I = 0, N = std::min(ParamTypes.size(), Args.size()); I != N;
6977        ++I) {
6978     QualType ParamType = ParamTypes[I];
6979     if (!ParamType->isDependentType()) {
6980       unsigned ConvIdx = PO == OverloadCandidateParamOrder::Reversed
6981                              ? 0
6982                              : (ThisConversions + I);
6983       Conversions[ConvIdx]
6984         = TryCopyInitialization(*this, Args[I], ParamType,
6985                                 SuppressUserConversions,
6986                                 /*InOverloadResolution=*/true,
6987                                 /*AllowObjCWritebackConversion=*/
6988                                   getLangOpts().ObjCAutoRefCount,
6989                                 AllowExplicit);
6990       if (Conversions[ConvIdx].isBad())
6991         return true;
6992     }
6993   }
6994 
6995   return false;
6996 }
6997 
6998 /// Determine whether this is an allowable conversion from the result
6999 /// of an explicit conversion operator to the expected type, per C++
7000 /// [over.match.conv]p1 and [over.match.ref]p1.
7001 ///
7002 /// \param ConvType The return type of the conversion function.
7003 ///
7004 /// \param ToType The type we are converting to.
7005 ///
7006 /// \param AllowObjCPointerConversion Allow a conversion from one
7007 /// Objective-C pointer to another.
7008 ///
7009 /// \returns true if the conversion is allowable, false otherwise.
7010 static bool isAllowableExplicitConversion(Sema &S,
7011                                           QualType ConvType, QualType ToType,
7012                                           bool AllowObjCPointerConversion) {
7013   QualType ToNonRefType = ToType.getNonReferenceType();
7014 
7015   // Easy case: the types are the same.
7016   if (S.Context.hasSameUnqualifiedType(ConvType, ToNonRefType))
7017     return true;
7018 
7019   // Allow qualification conversions.
7020   bool ObjCLifetimeConversion;
7021   if (S.IsQualificationConversion(ConvType, ToNonRefType, /*CStyle*/false,
7022                                   ObjCLifetimeConversion))
7023     return true;
7024 
7025   // If we're not allowed to consider Objective-C pointer conversions,
7026   // we're done.
7027   if (!AllowObjCPointerConversion)
7028     return false;
7029 
7030   // Is this an Objective-C pointer conversion?
7031   bool IncompatibleObjC = false;
7032   QualType ConvertedType;
7033   return S.isObjCPointerConversion(ConvType, ToNonRefType, ConvertedType,
7034                                    IncompatibleObjC);
7035 }
7036 
7037 /// AddConversionCandidate - Add a C++ conversion function as a
7038 /// candidate in the candidate set (C++ [over.match.conv],
7039 /// C++ [over.match.copy]). From is the expression we're converting from,
7040 /// and ToType is the type that we're eventually trying to convert to
7041 /// (which may or may not be the same type as the type that the
7042 /// conversion function produces).
7043 void Sema::AddConversionCandidate(
7044     CXXConversionDecl *Conversion, DeclAccessPair FoundDecl,
7045     CXXRecordDecl *ActingContext, Expr *From, QualType ToType,
7046     OverloadCandidateSet &CandidateSet, bool AllowObjCConversionOnExplicit,
7047     bool AllowExplicit, bool AllowResultConversion) {
7048   assert(!Conversion->getDescribedFunctionTemplate() &&
7049          "Conversion function templates use AddTemplateConversionCandidate");
7050   QualType ConvType = Conversion->getConversionType().getNonReferenceType();
7051   if (!CandidateSet.isNewCandidate(Conversion))
7052     return;
7053 
7054   // If the conversion function has an undeduced return type, trigger its
7055   // deduction now.
7056   if (getLangOpts().CPlusPlus14 && ConvType->isUndeducedType()) {
7057     if (DeduceReturnType(Conversion, From->getExprLoc()))
7058       return;
7059     ConvType = Conversion->getConversionType().getNonReferenceType();
7060   }
7061 
7062   // If we don't allow any conversion of the result type, ignore conversion
7063   // functions that don't convert to exactly (possibly cv-qualified) T.
7064   if (!AllowResultConversion &&
7065       !Context.hasSameUnqualifiedType(Conversion->getConversionType(), ToType))
7066     return;
7067 
7068   // Per C++ [over.match.conv]p1, [over.match.ref]p1, an explicit conversion
7069   // operator is only a candidate if its return type is the target type or
7070   // can be converted to the target type with a qualification conversion.
7071   if (Conversion->isExplicit() &&
7072       !isAllowableExplicitConversion(*this, ConvType, ToType,
7073                                      AllowObjCConversionOnExplicit))
7074     return;
7075 
7076   // Overload resolution is always an unevaluated context.
7077   EnterExpressionEvaluationContext Unevaluated(
7078       *this, Sema::ExpressionEvaluationContext::Unevaluated);
7079 
7080   // Add this candidate
7081   OverloadCandidate &Candidate = CandidateSet.addCandidate(1);
7082   Candidate.FoundDecl = FoundDecl;
7083   Candidate.Function = Conversion;
7084   Candidate.IsSurrogate = false;
7085   Candidate.IgnoreObjectArgument = false;
7086   Candidate.FinalConversion.setAsIdentityConversion();
7087   Candidate.FinalConversion.setFromType(ConvType);
7088   Candidate.FinalConversion.setAllToTypes(ToType);
7089   Candidate.Viable = true;
7090   Candidate.ExplicitCallArguments = 1;
7091 
7092   // C++ [over.match.funcs]p4:
7093   //   For conversion functions, the function is considered to be a member of
7094   //   the class of the implicit implied object argument for the purpose of
7095   //   defining the type of the implicit object parameter.
7096   //
7097   // Determine the implicit conversion sequence for the implicit
7098   // object parameter.
7099   QualType ImplicitParamType = From->getType();
7100   if (const PointerType *FromPtrType = ImplicitParamType->getAs<PointerType>())
7101     ImplicitParamType = FromPtrType->getPointeeType();
7102   CXXRecordDecl *ConversionContext
7103     = cast<CXXRecordDecl>(ImplicitParamType->castAs<RecordType>()->getDecl());
7104 
7105   Candidate.Conversions[0] = TryObjectArgumentInitialization(
7106       *this, CandidateSet.getLocation(), From->getType(),
7107       From->Classify(Context), Conversion, ConversionContext);
7108 
7109   if (Candidate.Conversions[0].isBad()) {
7110     Candidate.Viable = false;
7111     Candidate.FailureKind = ovl_fail_bad_conversion;
7112     return;
7113   }
7114 
7115   // We won't go through a user-defined type conversion function to convert a
7116   // derived to base as such conversions are given Conversion Rank. They only
7117   // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
7118   QualType FromCanon
7119     = Context.getCanonicalType(From->getType().getUnqualifiedType());
7120   QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
7121   if (FromCanon == ToCanon ||
7122       IsDerivedFrom(CandidateSet.getLocation(), FromCanon, ToCanon)) {
7123     Candidate.Viable = false;
7124     Candidate.FailureKind = ovl_fail_trivial_conversion;
7125     return;
7126   }
7127 
7128   // To determine what the conversion from the result of calling the
7129   // conversion function to the type we're eventually trying to
7130   // convert to (ToType), we need to synthesize a call to the
7131   // conversion function and attempt copy initialization from it. This
7132   // makes sure that we get the right semantics with respect to
7133   // lvalues/rvalues and the type. Fortunately, we can allocate this
7134   // call on the stack and we don't need its arguments to be
7135   // well-formed.
7136   DeclRefExpr ConversionRef(Context, Conversion, false, Conversion->getType(),
7137                             VK_LValue, From->getBeginLoc());
7138   ImplicitCastExpr ConversionFn(ImplicitCastExpr::OnStack,
7139                                 Context.getPointerType(Conversion->getType()),
7140                                 CK_FunctionToPointerDecay,
7141                                 &ConversionRef, VK_RValue);
7142 
7143   QualType ConversionType = Conversion->getConversionType();
7144   if (!isCompleteType(From->getBeginLoc(), ConversionType)) {
7145     Candidate.Viable = false;
7146     Candidate.FailureKind = ovl_fail_bad_final_conversion;
7147     return;
7148   }
7149 
7150   ExprValueKind VK = Expr::getValueKindForType(ConversionType);
7151 
7152   // Note that it is safe to allocate CallExpr on the stack here because
7153   // there are 0 arguments (i.e., nothing is allocated using ASTContext's
7154   // allocator).
7155   QualType CallResultType = ConversionType.getNonLValueExprType(Context);
7156 
7157   alignas(CallExpr) char Buffer[sizeof(CallExpr) + sizeof(Stmt *)];
7158   CallExpr *TheTemporaryCall = CallExpr::CreateTemporary(
7159       Buffer, &ConversionFn, CallResultType, VK, From->getBeginLoc());
7160 
7161   ImplicitConversionSequence ICS =
7162       TryCopyInitialization(*this, TheTemporaryCall, ToType,
7163                             /*SuppressUserConversions=*/true,
7164                             /*InOverloadResolution=*/false,
7165                             /*AllowObjCWritebackConversion=*/false);
7166 
7167   switch (ICS.getKind()) {
7168   case ImplicitConversionSequence::StandardConversion:
7169     Candidate.FinalConversion = ICS.Standard;
7170 
7171     // C++ [over.ics.user]p3:
7172     //   If the user-defined conversion is specified by a specialization of a
7173     //   conversion function template, the second standard conversion sequence
7174     //   shall have exact match rank.
7175     if (Conversion->getPrimaryTemplate() &&
7176         GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) {
7177       Candidate.Viable = false;
7178       Candidate.FailureKind = ovl_fail_final_conversion_not_exact;
7179       return;
7180     }
7181 
7182     // C++0x [dcl.init.ref]p5:
7183     //    In the second case, if the reference is an rvalue reference and
7184     //    the second standard conversion sequence of the user-defined
7185     //    conversion sequence includes an lvalue-to-rvalue conversion, the
7186     //    program is ill-formed.
7187     if (ToType->isRValueReferenceType() &&
7188         ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
7189       Candidate.Viable = false;
7190       Candidate.FailureKind = ovl_fail_bad_final_conversion;
7191       return;
7192     }
7193     break;
7194 
7195   case ImplicitConversionSequence::BadConversion:
7196     Candidate.Viable = false;
7197     Candidate.FailureKind = ovl_fail_bad_final_conversion;
7198     return;
7199 
7200   default:
7201     llvm_unreachable(
7202            "Can only end up with a standard conversion sequence or failure");
7203   }
7204 
7205   if (!AllowExplicit && Conversion->getExplicitSpecifier().getKind() !=
7206                             ExplicitSpecKind::ResolvedFalse) {
7207     Candidate.Viable = false;
7208     Candidate.FailureKind = ovl_fail_explicit_resolved;
7209     return;
7210   }
7211 
7212   if (EnableIfAttr *FailedAttr = CheckEnableIf(Conversion, None)) {
7213     Candidate.Viable = false;
7214     Candidate.FailureKind = ovl_fail_enable_if;
7215     Candidate.DeductionFailure.Data = FailedAttr;
7216     return;
7217   }
7218 
7219   if (Conversion->isMultiVersion() && Conversion->hasAttr<TargetAttr>() &&
7220       !Conversion->getAttr<TargetAttr>()->isDefaultVersion()) {
7221     Candidate.Viable = false;
7222     Candidate.FailureKind = ovl_non_default_multiversion_function;
7223   }
7224 }
7225 
7226 /// Adds a conversion function template specialization
7227 /// candidate to the overload set, using template argument deduction
7228 /// to deduce the template arguments of the conversion function
7229 /// template from the type that we are converting to (C++
7230 /// [temp.deduct.conv]).
7231 void Sema::AddTemplateConversionCandidate(
7232     FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl,
7233     CXXRecordDecl *ActingDC, Expr *From, QualType ToType,
7234     OverloadCandidateSet &CandidateSet, bool AllowObjCConversionOnExplicit,
7235     bool AllowExplicit, bool AllowResultConversion) {
7236   assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
7237          "Only conversion function templates permitted here");
7238 
7239   if (!CandidateSet.isNewCandidate(FunctionTemplate))
7240     return;
7241 
7242   TemplateDeductionInfo Info(CandidateSet.getLocation());
7243   CXXConversionDecl *Specialization = nullptr;
7244   if (TemplateDeductionResult Result
7245         = DeduceTemplateArguments(FunctionTemplate, ToType,
7246                                   Specialization, Info)) {
7247     OverloadCandidate &Candidate = CandidateSet.addCandidate();
7248     Candidate.FoundDecl = FoundDecl;
7249     Candidate.Function = FunctionTemplate->getTemplatedDecl();
7250     Candidate.Viable = false;
7251     Candidate.FailureKind = ovl_fail_bad_deduction;
7252     Candidate.IsSurrogate = false;
7253     Candidate.IgnoreObjectArgument = false;
7254     Candidate.ExplicitCallArguments = 1;
7255     Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
7256                                                           Info);
7257     return;
7258   }
7259 
7260   // Add the conversion function template specialization produced by
7261   // template argument deduction as a candidate.
7262   assert(Specialization && "Missing function template specialization?");
7263   AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType,
7264                          CandidateSet, AllowObjCConversionOnExplicit,
7265                          AllowExplicit, AllowResultConversion);
7266 }
7267 
7268 /// AddSurrogateCandidate - Adds a "surrogate" candidate function that
7269 /// converts the given @c Object to a function pointer via the
7270 /// conversion function @c Conversion, and then attempts to call it
7271 /// with the given arguments (C++ [over.call.object]p2-4). Proto is
7272 /// the type of function that we'll eventually be calling.
7273 void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
7274                                  DeclAccessPair FoundDecl,
7275                                  CXXRecordDecl *ActingContext,
7276                                  const FunctionProtoType *Proto,
7277                                  Expr *Object,
7278                                  ArrayRef<Expr *> Args,
7279                                  OverloadCandidateSet& CandidateSet) {
7280   if (!CandidateSet.isNewCandidate(Conversion))
7281     return;
7282 
7283   // Overload resolution is always an unevaluated context.
7284   EnterExpressionEvaluationContext Unevaluated(
7285       *this, Sema::ExpressionEvaluationContext::Unevaluated);
7286 
7287   OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size() + 1);
7288   Candidate.FoundDecl = FoundDecl;
7289   Candidate.Function = nullptr;
7290   Candidate.Surrogate = Conversion;
7291   Candidate.Viable = true;
7292   Candidate.IsSurrogate = true;
7293   Candidate.IgnoreObjectArgument = false;
7294   Candidate.ExplicitCallArguments = Args.size();
7295 
7296   // Determine the implicit conversion sequence for the implicit
7297   // object parameter.
7298   ImplicitConversionSequence ObjectInit = TryObjectArgumentInitialization(
7299       *this, CandidateSet.getLocation(), Object->getType(),
7300       Object->Classify(Context), Conversion, ActingContext);
7301   if (ObjectInit.isBad()) {
7302     Candidate.Viable = false;
7303     Candidate.FailureKind = ovl_fail_bad_conversion;
7304     Candidate.Conversions[0] = ObjectInit;
7305     return;
7306   }
7307 
7308   // The first conversion is actually a user-defined conversion whose
7309   // first conversion is ObjectInit's standard conversion (which is
7310   // effectively a reference binding). Record it as such.
7311   Candidate.Conversions[0].setUserDefined();
7312   Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
7313   Candidate.Conversions[0].UserDefined.EllipsisConversion = false;
7314   Candidate.Conversions[0].UserDefined.HadMultipleCandidates = false;
7315   Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
7316   Candidate.Conversions[0].UserDefined.FoundConversionFunction = FoundDecl;
7317   Candidate.Conversions[0].UserDefined.After
7318     = Candidate.Conversions[0].UserDefined.Before;
7319   Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
7320 
7321   // Find the
7322   unsigned NumParams = Proto->getNumParams();
7323 
7324   // (C++ 13.3.2p2): A candidate function having fewer than m
7325   // parameters is viable only if it has an ellipsis in its parameter
7326   // list (8.3.5).
7327   if (Args.size() > NumParams && !Proto->isVariadic()) {
7328     Candidate.Viable = false;
7329     Candidate.FailureKind = ovl_fail_too_many_arguments;
7330     return;
7331   }
7332 
7333   // Function types don't have any default arguments, so just check if
7334   // we have enough arguments.
7335   if (Args.size() < NumParams) {
7336     // Not enough arguments.
7337     Candidate.Viable = false;
7338     Candidate.FailureKind = ovl_fail_too_few_arguments;
7339     return;
7340   }
7341 
7342   // Determine the implicit conversion sequences for each of the
7343   // arguments.
7344   for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
7345     if (ArgIdx < NumParams) {
7346       // (C++ 13.3.2p3): for F to be a viable function, there shall
7347       // exist for each argument an implicit conversion sequence
7348       // (13.3.3.1) that converts that argument to the corresponding
7349       // parameter of F.
7350       QualType ParamType = Proto->getParamType(ArgIdx);
7351       Candidate.Conversions[ArgIdx + 1]
7352         = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
7353                                 /*SuppressUserConversions=*/false,
7354                                 /*InOverloadResolution=*/false,
7355                                 /*AllowObjCWritebackConversion=*/
7356                                   getLangOpts().ObjCAutoRefCount);
7357       if (Candidate.Conversions[ArgIdx + 1].isBad()) {
7358         Candidate.Viable = false;
7359         Candidate.FailureKind = ovl_fail_bad_conversion;
7360         return;
7361       }
7362     } else {
7363       // (C++ 13.3.2p2): For the purposes of overload resolution, any
7364       // argument for which there is no corresponding parameter is
7365       // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
7366       Candidate.Conversions[ArgIdx + 1].setEllipsis();
7367     }
7368   }
7369 
7370   if (EnableIfAttr *FailedAttr = CheckEnableIf(Conversion, None)) {
7371     Candidate.Viable = false;
7372     Candidate.FailureKind = ovl_fail_enable_if;
7373     Candidate.DeductionFailure.Data = FailedAttr;
7374     return;
7375   }
7376 }
7377 
7378 /// Add all of the non-member operator function declarations in the given
7379 /// function set to the overload candidate set.
7380 void Sema::AddNonMemberOperatorCandidates(
7381     const UnresolvedSetImpl &Fns, ArrayRef<Expr *> Args,
7382     OverloadCandidateSet &CandidateSet,
7383     TemplateArgumentListInfo *ExplicitTemplateArgs) {
7384   for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
7385     NamedDecl *D = F.getDecl()->getUnderlyingDecl();
7386     ArrayRef<Expr *> FunctionArgs = Args;
7387 
7388     FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D);
7389     FunctionDecl *FD =
7390         FunTmpl ? FunTmpl->getTemplatedDecl() : cast<FunctionDecl>(D);
7391 
7392     // Don't consider rewritten functions if we're not rewriting.
7393     if (!CandidateSet.getRewriteInfo().isAcceptableCandidate(FD))
7394       continue;
7395 
7396     assert(!isa<CXXMethodDecl>(FD) &&
7397            "unqualified operator lookup found a member function");
7398 
7399     if (FunTmpl) {
7400       AddTemplateOverloadCandidate(FunTmpl, F.getPair(), ExplicitTemplateArgs,
7401                                    FunctionArgs, CandidateSet);
7402       if (CandidateSet.getRewriteInfo().shouldAddReversed(Context, FD))
7403         AddTemplateOverloadCandidate(
7404             FunTmpl, F.getPair(), ExplicitTemplateArgs,
7405             {FunctionArgs[1], FunctionArgs[0]}, CandidateSet, false, false,
7406             true, ADLCallKind::NotADL, OverloadCandidateParamOrder::Reversed);
7407     } else {
7408       if (ExplicitTemplateArgs)
7409         continue;
7410       AddOverloadCandidate(FD, F.getPair(), FunctionArgs, CandidateSet);
7411       if (CandidateSet.getRewriteInfo().shouldAddReversed(Context, FD))
7412         AddOverloadCandidate(FD, F.getPair(),
7413                              {FunctionArgs[1], FunctionArgs[0]}, CandidateSet,
7414                              false, false, true, false, ADLCallKind::NotADL,
7415                              None, OverloadCandidateParamOrder::Reversed);
7416     }
7417   }
7418 }
7419 
7420 /// Add overload candidates for overloaded operators that are
7421 /// member functions.
7422 ///
7423 /// Add the overloaded operator candidates that are member functions
7424 /// for the operator Op that was used in an operator expression such
7425 /// as "x Op y". , Args/NumArgs provides the operator arguments, and
7426 /// CandidateSet will store the added overload candidates. (C++
7427 /// [over.match.oper]).
7428 void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
7429                                        SourceLocation OpLoc,
7430                                        ArrayRef<Expr *> Args,
7431                                        OverloadCandidateSet &CandidateSet,
7432                                        OverloadCandidateParamOrder PO) {
7433   DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
7434 
7435   // C++ [over.match.oper]p3:
7436   //   For a unary operator @ with an operand of a type whose
7437   //   cv-unqualified version is T1, and for a binary operator @ with
7438   //   a left operand of a type whose cv-unqualified version is T1 and
7439   //   a right operand of a type whose cv-unqualified version is T2,
7440   //   three sets of candidate functions, designated member
7441   //   candidates, non-member candidates and built-in candidates, are
7442   //   constructed as follows:
7443   QualType T1 = Args[0]->getType();
7444 
7445   //     -- If T1 is a complete class type or a class currently being
7446   //        defined, the set of member candidates is the result of the
7447   //        qualified lookup of T1::operator@ (13.3.1.1.1); otherwise,
7448   //        the set of member candidates is empty.
7449   if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
7450     // Complete the type if it can be completed.
7451     if (!isCompleteType(OpLoc, T1) && !T1Rec->isBeingDefined())
7452       return;
7453     // If the type is neither complete nor being defined, bail out now.
7454     if (!T1Rec->getDecl()->getDefinition())
7455       return;
7456 
7457     LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName);
7458     LookupQualifiedName(Operators, T1Rec->getDecl());
7459     Operators.suppressDiagnostics();
7460 
7461     for (LookupResult::iterator Oper = Operators.begin(),
7462                              OperEnd = Operators.end();
7463          Oper != OperEnd;
7464          ++Oper)
7465       AddMethodCandidate(Oper.getPair(), Args[0]->getType(),
7466                          Args[0]->Classify(Context), Args.slice(1),
7467                          CandidateSet, /*SuppressUserConversion=*/false, PO);
7468   }
7469 }
7470 
7471 /// AddBuiltinCandidate - Add a candidate for a built-in
7472 /// operator. ResultTy and ParamTys are the result and parameter types
7473 /// of the built-in candidate, respectively. Args and NumArgs are the
7474 /// arguments being passed to the candidate. IsAssignmentOperator
7475 /// should be true when this built-in candidate is an assignment
7476 /// operator. NumContextualBoolArguments is the number of arguments
7477 /// (at the beginning of the argument list) that will be contextually
7478 /// converted to bool.
7479 void Sema::AddBuiltinCandidate(QualType *ParamTys, ArrayRef<Expr *> Args,
7480                                OverloadCandidateSet& CandidateSet,
7481                                bool IsAssignmentOperator,
7482                                unsigned NumContextualBoolArguments) {
7483   // Overload resolution is always an unevaluated context.
7484   EnterExpressionEvaluationContext Unevaluated(
7485       *this, Sema::ExpressionEvaluationContext::Unevaluated);
7486 
7487   // Add this candidate
7488   OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size());
7489   Candidate.FoundDecl = DeclAccessPair::make(nullptr, AS_none);
7490   Candidate.Function = nullptr;
7491   Candidate.IsSurrogate = false;
7492   Candidate.IgnoreObjectArgument = false;
7493   std::copy(ParamTys, ParamTys + Args.size(), Candidate.BuiltinParamTypes);
7494 
7495   // Determine the implicit conversion sequences for each of the
7496   // arguments.
7497   Candidate.Viable = true;
7498   Candidate.ExplicitCallArguments = Args.size();
7499   for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
7500     // C++ [over.match.oper]p4:
7501     //   For the built-in assignment operators, conversions of the
7502     //   left operand are restricted as follows:
7503     //     -- no temporaries are introduced to hold the left operand, and
7504     //     -- no user-defined conversions are applied to the left
7505     //        operand to achieve a type match with the left-most
7506     //        parameter of a built-in candidate.
7507     //
7508     // We block these conversions by turning off user-defined
7509     // conversions, since that is the only way that initialization of
7510     // a reference to a non-class type can occur from something that
7511     // is not of the same type.
7512     if (ArgIdx < NumContextualBoolArguments) {
7513       assert(ParamTys[ArgIdx] == Context.BoolTy &&
7514              "Contextual conversion to bool requires bool type");
7515       Candidate.Conversions[ArgIdx]
7516         = TryContextuallyConvertToBool(*this, Args[ArgIdx]);
7517     } else {
7518       Candidate.Conversions[ArgIdx]
7519         = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx],
7520                                 ArgIdx == 0 && IsAssignmentOperator,
7521                                 /*InOverloadResolution=*/false,
7522                                 /*AllowObjCWritebackConversion=*/
7523                                   getLangOpts().ObjCAutoRefCount);
7524     }
7525     if (Candidate.Conversions[ArgIdx].isBad()) {
7526       Candidate.Viable = false;
7527       Candidate.FailureKind = ovl_fail_bad_conversion;
7528       break;
7529     }
7530   }
7531 }
7532 
7533 namespace {
7534 
7535 /// BuiltinCandidateTypeSet - A set of types that will be used for the
7536 /// candidate operator functions for built-in operators (C++
7537 /// [over.built]). The types are separated into pointer types and
7538 /// enumeration types.
7539 class BuiltinCandidateTypeSet  {
7540   /// TypeSet - A set of types.
7541   typedef llvm::SetVector<QualType, SmallVector<QualType, 8>,
7542                           llvm::SmallPtrSet<QualType, 8>> TypeSet;
7543 
7544   /// PointerTypes - The set of pointer types that will be used in the
7545   /// built-in candidates.
7546   TypeSet PointerTypes;
7547 
7548   /// MemberPointerTypes - The set of member pointer types that will be
7549   /// used in the built-in candidates.
7550   TypeSet MemberPointerTypes;
7551 
7552   /// EnumerationTypes - The set of enumeration types that will be
7553   /// used in the built-in candidates.
7554   TypeSet EnumerationTypes;
7555 
7556   /// The set of vector types that will be used in the built-in
7557   /// candidates.
7558   TypeSet VectorTypes;
7559 
7560   /// A flag indicating non-record types are viable candidates
7561   bool HasNonRecordTypes;
7562 
7563   /// A flag indicating whether either arithmetic or enumeration types
7564   /// were present in the candidate set.
7565   bool HasArithmeticOrEnumeralTypes;
7566 
7567   /// A flag indicating whether the nullptr type was present in the
7568   /// candidate set.
7569   bool HasNullPtrType;
7570 
7571   /// Sema - The semantic analysis instance where we are building the
7572   /// candidate type set.
7573   Sema &SemaRef;
7574 
7575   /// Context - The AST context in which we will build the type sets.
7576   ASTContext &Context;
7577 
7578   bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
7579                                                const Qualifiers &VisibleQuals);
7580   bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
7581 
7582 public:
7583   /// iterator - Iterates through the types that are part of the set.
7584   typedef TypeSet::iterator iterator;
7585 
7586   BuiltinCandidateTypeSet(Sema &SemaRef)
7587     : HasNonRecordTypes(false),
7588       HasArithmeticOrEnumeralTypes(false),
7589       HasNullPtrType(false),
7590       SemaRef(SemaRef),
7591       Context(SemaRef.Context) { }
7592 
7593   void AddTypesConvertedFrom(QualType Ty,
7594                              SourceLocation Loc,
7595                              bool AllowUserConversions,
7596                              bool AllowExplicitConversions,
7597                              const Qualifiers &VisibleTypeConversionsQuals);
7598 
7599   /// pointer_begin - First pointer type found;
7600   iterator pointer_begin() { return PointerTypes.begin(); }
7601 
7602   /// pointer_end - Past the last pointer type found;
7603   iterator pointer_end() { return PointerTypes.end(); }
7604 
7605   /// member_pointer_begin - First member pointer type found;
7606   iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
7607 
7608   /// member_pointer_end - Past the last member pointer type found;
7609   iterator member_pointer_end() { return MemberPointerTypes.end(); }
7610 
7611   /// enumeration_begin - First enumeration type found;
7612   iterator enumeration_begin() { return EnumerationTypes.begin(); }
7613 
7614   /// enumeration_end - Past the last enumeration type found;
7615   iterator enumeration_end() { return EnumerationTypes.end(); }
7616 
7617   iterator vector_begin() { return VectorTypes.begin(); }
7618   iterator vector_end() { return VectorTypes.end(); }
7619 
7620   bool hasNonRecordTypes() { return HasNonRecordTypes; }
7621   bool hasArithmeticOrEnumeralTypes() { return HasArithmeticOrEnumeralTypes; }
7622   bool hasNullPtrType() const { return HasNullPtrType; }
7623 };
7624 
7625 } // end anonymous namespace
7626 
7627 /// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
7628 /// the set of pointer types along with any more-qualified variants of
7629 /// that type. For example, if @p Ty is "int const *", this routine
7630 /// will add "int const *", "int const volatile *", "int const
7631 /// restrict *", and "int const volatile restrict *" to the set of
7632 /// pointer types. Returns true if the add of @p Ty itself succeeded,
7633 /// false otherwise.
7634 ///
7635 /// FIXME: what to do about extended qualifiers?
7636 bool
7637 BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
7638                                              const Qualifiers &VisibleQuals) {
7639 
7640   // Insert this type.
7641   if (!PointerTypes.insert(Ty))
7642     return false;
7643 
7644   QualType PointeeTy;
7645   const PointerType *PointerTy = Ty->getAs<PointerType>();
7646   bool buildObjCPtr = false;
7647   if (!PointerTy) {
7648     const ObjCObjectPointerType *PTy = Ty->castAs<ObjCObjectPointerType>();
7649     PointeeTy = PTy->getPointeeType();
7650     buildObjCPtr = true;
7651   } else {
7652     PointeeTy = PointerTy->getPointeeType();
7653   }
7654 
7655   // Don't add qualified variants of arrays. For one, they're not allowed
7656   // (the qualifier would sink to the element type), and for another, the
7657   // only overload situation where it matters is subscript or pointer +- int,
7658   // and those shouldn't have qualifier variants anyway.
7659   if (PointeeTy->isArrayType())
7660     return true;
7661 
7662   unsigned BaseCVR = PointeeTy.getCVRQualifiers();
7663   bool hasVolatile = VisibleQuals.hasVolatile();
7664   bool hasRestrict = VisibleQuals.hasRestrict();
7665 
7666   // Iterate through all strict supersets of BaseCVR.
7667   for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
7668     if ((CVR | BaseCVR) != CVR) continue;
7669     // Skip over volatile if no volatile found anywhere in the types.
7670     if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
7671 
7672     // Skip over restrict if no restrict found anywhere in the types, or if
7673     // the type cannot be restrict-qualified.
7674     if ((CVR & Qualifiers::Restrict) &&
7675         (!hasRestrict ||
7676          (!(PointeeTy->isAnyPointerType() || PointeeTy->isReferenceType()))))
7677       continue;
7678 
7679     // Build qualified pointee type.
7680     QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
7681 
7682     // Build qualified pointer type.
7683     QualType QPointerTy;
7684     if (!buildObjCPtr)
7685       QPointerTy = Context.getPointerType(QPointeeTy);
7686     else
7687       QPointerTy = Context.getObjCObjectPointerType(QPointeeTy);
7688 
7689     // Insert qualified pointer type.
7690     PointerTypes.insert(QPointerTy);
7691   }
7692 
7693   return true;
7694 }
7695 
7696 /// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
7697 /// to the set of pointer types along with any more-qualified variants of
7698 /// that type. For example, if @p Ty is "int const *", this routine
7699 /// will add "int const *", "int const volatile *", "int const
7700 /// restrict *", and "int const volatile restrict *" to the set of
7701 /// pointer types. Returns true if the add of @p Ty itself succeeded,
7702 /// false otherwise.
7703 ///
7704 /// FIXME: what to do about extended qualifiers?
7705 bool
7706 BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
7707     QualType Ty) {
7708   // Insert this type.
7709   if (!MemberPointerTypes.insert(Ty))
7710     return false;
7711 
7712   const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
7713   assert(PointerTy && "type was not a member pointer type!");
7714 
7715   QualType PointeeTy = PointerTy->getPointeeType();
7716   // Don't add qualified variants of arrays. For one, they're not allowed
7717   // (the qualifier would sink to the element type), and for another, the
7718   // only overload situation where it matters is subscript or pointer +- int,
7719   // and those shouldn't have qualifier variants anyway.
7720   if (PointeeTy->isArrayType())
7721     return true;
7722   const Type *ClassTy = PointerTy->getClass();
7723 
7724   // Iterate through all strict supersets of the pointee type's CVR
7725   // qualifiers.
7726   unsigned BaseCVR = PointeeTy.getCVRQualifiers();
7727   for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
7728     if ((CVR | BaseCVR) != CVR) continue;
7729 
7730     QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
7731     MemberPointerTypes.insert(
7732       Context.getMemberPointerType(QPointeeTy, ClassTy));
7733   }
7734 
7735   return true;
7736 }
7737 
7738 /// AddTypesConvertedFrom - Add each of the types to which the type @p
7739 /// Ty can be implicit converted to the given set of @p Types. We're
7740 /// primarily interested in pointer types and enumeration types. We also
7741 /// take member pointer types, for the conditional operator.
7742 /// AllowUserConversions is true if we should look at the conversion
7743 /// functions of a class type, and AllowExplicitConversions if we
7744 /// should also include the explicit conversion functions of a class
7745 /// type.
7746 void
7747 BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
7748                                                SourceLocation Loc,
7749                                                bool AllowUserConversions,
7750                                                bool AllowExplicitConversions,
7751                                                const Qualifiers &VisibleQuals) {
7752   // Only deal with canonical types.
7753   Ty = Context.getCanonicalType(Ty);
7754 
7755   // Look through reference types; they aren't part of the type of an
7756   // expression for the purposes of conversions.
7757   if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
7758     Ty = RefTy->getPointeeType();
7759 
7760   // If we're dealing with an array type, decay to the pointer.
7761   if (Ty->isArrayType())
7762     Ty = SemaRef.Context.getArrayDecayedType(Ty);
7763 
7764   // Otherwise, we don't care about qualifiers on the type.
7765   Ty = Ty.getLocalUnqualifiedType();
7766 
7767   // Flag if we ever add a non-record type.
7768   const RecordType *TyRec = Ty->getAs<RecordType>();
7769   HasNonRecordTypes = HasNonRecordTypes || !TyRec;
7770 
7771   // Flag if we encounter an arithmetic type.
7772   HasArithmeticOrEnumeralTypes =
7773     HasArithmeticOrEnumeralTypes || Ty->isArithmeticType();
7774 
7775   if (Ty->isObjCIdType() || Ty->isObjCClassType())
7776     PointerTypes.insert(Ty);
7777   else if (Ty->getAs<PointerType>() || Ty->getAs<ObjCObjectPointerType>()) {
7778     // Insert our type, and its more-qualified variants, into the set
7779     // of types.
7780     if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
7781       return;
7782   } else if (Ty->isMemberPointerType()) {
7783     // Member pointers are far easier, since the pointee can't be converted.
7784     if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
7785       return;
7786   } else if (Ty->isEnumeralType()) {
7787     HasArithmeticOrEnumeralTypes = true;
7788     EnumerationTypes.insert(Ty);
7789   } else if (Ty->isVectorType()) {
7790     // We treat vector types as arithmetic types in many contexts as an
7791     // extension.
7792     HasArithmeticOrEnumeralTypes = true;
7793     VectorTypes.insert(Ty);
7794   } else if (Ty->isNullPtrType()) {
7795     HasNullPtrType = true;
7796   } else if (AllowUserConversions && TyRec) {
7797     // No conversion functions in incomplete types.
7798     if (!SemaRef.isCompleteType(Loc, Ty))
7799       return;
7800 
7801     CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
7802     for (NamedDecl *D : ClassDecl->getVisibleConversionFunctions()) {
7803       if (isa<UsingShadowDecl>(D))
7804         D = cast<UsingShadowDecl>(D)->getTargetDecl();
7805 
7806       // Skip conversion function templates; they don't tell us anything
7807       // about which builtin types we can convert to.
7808       if (isa<FunctionTemplateDecl>(D))
7809         continue;
7810 
7811       CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
7812       if (AllowExplicitConversions || !Conv->isExplicit()) {
7813         AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false,
7814                               VisibleQuals);
7815       }
7816     }
7817   }
7818 }
7819 /// Helper function for adjusting address spaces for the pointer or reference
7820 /// operands of builtin operators depending on the argument.
7821 static QualType AdjustAddressSpaceForBuiltinOperandType(Sema &S, QualType T,
7822                                                         Expr *Arg) {
7823   return S.Context.getAddrSpaceQualType(T, Arg->getType().getAddressSpace());
7824 }
7825 
7826 /// Helper function for AddBuiltinOperatorCandidates() that adds
7827 /// the volatile- and non-volatile-qualified assignment operators for the
7828 /// given type to the candidate set.
7829 static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
7830                                                    QualType T,
7831                                                    ArrayRef<Expr *> Args,
7832                                     OverloadCandidateSet &CandidateSet) {
7833   QualType ParamTypes[2];
7834 
7835   // T& operator=(T&, T)
7836   ParamTypes[0] = S.Context.getLValueReferenceType(
7837       AdjustAddressSpaceForBuiltinOperandType(S, T, Args[0]));
7838   ParamTypes[1] = T;
7839   S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
7840                         /*IsAssignmentOperator=*/true);
7841 
7842   if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
7843     // volatile T& operator=(volatile T&, T)
7844     ParamTypes[0] = S.Context.getLValueReferenceType(
7845         AdjustAddressSpaceForBuiltinOperandType(S, S.Context.getVolatileType(T),
7846                                                 Args[0]));
7847     ParamTypes[1] = T;
7848     S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
7849                           /*IsAssignmentOperator=*/true);
7850   }
7851 }
7852 
7853 /// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers,
7854 /// if any, found in visible type conversion functions found in ArgExpr's type.
7855 static  Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
7856     Qualifiers VRQuals;
7857     const RecordType *TyRec;
7858     if (const MemberPointerType *RHSMPType =
7859         ArgExpr->getType()->getAs<MemberPointerType>())
7860       TyRec = RHSMPType->getClass()->getAs<RecordType>();
7861     else
7862       TyRec = ArgExpr->getType()->getAs<RecordType>();
7863     if (!TyRec) {
7864       // Just to be safe, assume the worst case.
7865       VRQuals.addVolatile();
7866       VRQuals.addRestrict();
7867       return VRQuals;
7868     }
7869 
7870     CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
7871     if (!ClassDecl->hasDefinition())
7872       return VRQuals;
7873 
7874     for (NamedDecl *D : ClassDecl->getVisibleConversionFunctions()) {
7875       if (isa<UsingShadowDecl>(D))
7876         D = cast<UsingShadowDecl>(D)->getTargetDecl();
7877       if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) {
7878         QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
7879         if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
7880           CanTy = ResTypeRef->getPointeeType();
7881         // Need to go down the pointer/mempointer chain and add qualifiers
7882         // as see them.
7883         bool done = false;
7884         while (!done) {
7885           if (CanTy.isRestrictQualified())
7886             VRQuals.addRestrict();
7887           if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
7888             CanTy = ResTypePtr->getPointeeType();
7889           else if (const MemberPointerType *ResTypeMPtr =
7890                 CanTy->getAs<MemberPointerType>())
7891             CanTy = ResTypeMPtr->getPointeeType();
7892           else
7893             done = true;
7894           if (CanTy.isVolatileQualified())
7895             VRQuals.addVolatile();
7896           if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
7897             return VRQuals;
7898         }
7899       }
7900     }
7901     return VRQuals;
7902 }
7903 
7904 namespace {
7905 
7906 /// Helper class to manage the addition of builtin operator overload
7907 /// candidates. It provides shared state and utility methods used throughout
7908 /// the process, as well as a helper method to add each group of builtin
7909 /// operator overloads from the standard to a candidate set.
7910 class BuiltinOperatorOverloadBuilder {
7911   // Common instance state available to all overload candidate addition methods.
7912   Sema &S;
7913   ArrayRef<Expr *> Args;
7914   Qualifiers VisibleTypeConversionsQuals;
7915   bool HasArithmeticOrEnumeralCandidateType;
7916   SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes;
7917   OverloadCandidateSet &CandidateSet;
7918 
7919   static constexpr int ArithmeticTypesCap = 24;
7920   SmallVector<CanQualType, ArithmeticTypesCap> ArithmeticTypes;
7921 
7922   // Define some indices used to iterate over the arithmetic types in
7923   // ArithmeticTypes.  The "promoted arithmetic types" are the arithmetic
7924   // types are that preserved by promotion (C++ [over.built]p2).
7925   unsigned FirstIntegralType,
7926            LastIntegralType;
7927   unsigned FirstPromotedIntegralType,
7928            LastPromotedIntegralType;
7929   unsigned FirstPromotedArithmeticType,
7930            LastPromotedArithmeticType;
7931   unsigned NumArithmeticTypes;
7932 
7933   void InitArithmeticTypes() {
7934     // Start of promoted types.
7935     FirstPromotedArithmeticType = 0;
7936     ArithmeticTypes.push_back(S.Context.FloatTy);
7937     ArithmeticTypes.push_back(S.Context.DoubleTy);
7938     ArithmeticTypes.push_back(S.Context.LongDoubleTy);
7939     if (S.Context.getTargetInfo().hasFloat128Type())
7940       ArithmeticTypes.push_back(S.Context.Float128Ty);
7941 
7942     // Start of integral types.
7943     FirstIntegralType = ArithmeticTypes.size();
7944     FirstPromotedIntegralType = ArithmeticTypes.size();
7945     ArithmeticTypes.push_back(S.Context.IntTy);
7946     ArithmeticTypes.push_back(S.Context.LongTy);
7947     ArithmeticTypes.push_back(S.Context.LongLongTy);
7948     if (S.Context.getTargetInfo().hasInt128Type())
7949       ArithmeticTypes.push_back(S.Context.Int128Ty);
7950     ArithmeticTypes.push_back(S.Context.UnsignedIntTy);
7951     ArithmeticTypes.push_back(S.Context.UnsignedLongTy);
7952     ArithmeticTypes.push_back(S.Context.UnsignedLongLongTy);
7953     if (S.Context.getTargetInfo().hasInt128Type())
7954       ArithmeticTypes.push_back(S.Context.UnsignedInt128Ty);
7955     LastPromotedIntegralType = ArithmeticTypes.size();
7956     LastPromotedArithmeticType = ArithmeticTypes.size();
7957     // End of promoted types.
7958 
7959     ArithmeticTypes.push_back(S.Context.BoolTy);
7960     ArithmeticTypes.push_back(S.Context.CharTy);
7961     ArithmeticTypes.push_back(S.Context.WCharTy);
7962     if (S.Context.getLangOpts().Char8)
7963       ArithmeticTypes.push_back(S.Context.Char8Ty);
7964     ArithmeticTypes.push_back(S.Context.Char16Ty);
7965     ArithmeticTypes.push_back(S.Context.Char32Ty);
7966     ArithmeticTypes.push_back(S.Context.SignedCharTy);
7967     ArithmeticTypes.push_back(S.Context.ShortTy);
7968     ArithmeticTypes.push_back(S.Context.UnsignedCharTy);
7969     ArithmeticTypes.push_back(S.Context.UnsignedShortTy);
7970     LastIntegralType = ArithmeticTypes.size();
7971     NumArithmeticTypes = ArithmeticTypes.size();
7972     // End of integral types.
7973     // FIXME: What about complex? What about half?
7974 
7975     assert(ArithmeticTypes.size() <= ArithmeticTypesCap &&
7976            "Enough inline storage for all arithmetic types.");
7977   }
7978 
7979   /// Helper method to factor out the common pattern of adding overloads
7980   /// for '++' and '--' builtin operators.
7981   void addPlusPlusMinusMinusStyleOverloads(QualType CandidateTy,
7982                                            bool HasVolatile,
7983                                            bool HasRestrict) {
7984     QualType ParamTypes[2] = {
7985       S.Context.getLValueReferenceType(CandidateTy),
7986       S.Context.IntTy
7987     };
7988 
7989     // Non-volatile version.
7990     S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
7991 
7992     // Use a heuristic to reduce number of builtin candidates in the set:
7993     // add volatile version only if there are conversions to a volatile type.
7994     if (HasVolatile) {
7995       ParamTypes[0] =
7996         S.Context.getLValueReferenceType(
7997           S.Context.getVolatileType(CandidateTy));
7998       S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
7999     }
8000 
8001     // Add restrict version only if there are conversions to a restrict type
8002     // and our candidate type is a non-restrict-qualified pointer.
8003     if (HasRestrict && CandidateTy->isAnyPointerType() &&
8004         !CandidateTy.isRestrictQualified()) {
8005       ParamTypes[0]
8006         = S.Context.getLValueReferenceType(
8007             S.Context.getCVRQualifiedType(CandidateTy, Qualifiers::Restrict));
8008       S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8009 
8010       if (HasVolatile) {
8011         ParamTypes[0]
8012           = S.Context.getLValueReferenceType(
8013               S.Context.getCVRQualifiedType(CandidateTy,
8014                                             (Qualifiers::Volatile |
8015                                              Qualifiers::Restrict)));
8016         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8017       }
8018     }
8019 
8020   }
8021 
8022 public:
8023   BuiltinOperatorOverloadBuilder(
8024     Sema &S, ArrayRef<Expr *> Args,
8025     Qualifiers VisibleTypeConversionsQuals,
8026     bool HasArithmeticOrEnumeralCandidateType,
8027     SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes,
8028     OverloadCandidateSet &CandidateSet)
8029     : S(S), Args(Args),
8030       VisibleTypeConversionsQuals(VisibleTypeConversionsQuals),
8031       HasArithmeticOrEnumeralCandidateType(
8032         HasArithmeticOrEnumeralCandidateType),
8033       CandidateTypes(CandidateTypes),
8034       CandidateSet(CandidateSet) {
8035 
8036     InitArithmeticTypes();
8037   }
8038 
8039   // Increment is deprecated for bool since C++17.
8040   //
8041   // C++ [over.built]p3:
8042   //
8043   //   For every pair (T, VQ), where T is an arithmetic type other
8044   //   than bool, and VQ is either volatile or empty, there exist
8045   //   candidate operator functions of the form
8046   //
8047   //       VQ T&      operator++(VQ T&);
8048   //       T          operator++(VQ T&, int);
8049   //
8050   // C++ [over.built]p4:
8051   //
8052   //   For every pair (T, VQ), where T is an arithmetic type other
8053   //   than bool, and VQ is either volatile or empty, there exist
8054   //   candidate operator functions of the form
8055   //
8056   //       VQ T&      operator--(VQ T&);
8057   //       T          operator--(VQ T&, int);
8058   void addPlusPlusMinusMinusArithmeticOverloads(OverloadedOperatorKind Op) {
8059     if (!HasArithmeticOrEnumeralCandidateType)
8060       return;
8061 
8062     for (unsigned Arith = 0; Arith < NumArithmeticTypes; ++Arith) {
8063       const auto TypeOfT = ArithmeticTypes[Arith];
8064       if (TypeOfT == S.Context.BoolTy) {
8065         if (Op == OO_MinusMinus)
8066           continue;
8067         if (Op == OO_PlusPlus && S.getLangOpts().CPlusPlus17)
8068           continue;
8069       }
8070       addPlusPlusMinusMinusStyleOverloads(
8071         TypeOfT,
8072         VisibleTypeConversionsQuals.hasVolatile(),
8073         VisibleTypeConversionsQuals.hasRestrict());
8074     }
8075   }
8076 
8077   // C++ [over.built]p5:
8078   //
8079   //   For every pair (T, VQ), where T is a cv-qualified or
8080   //   cv-unqualified object type, and VQ is either volatile or
8081   //   empty, there exist candidate operator functions of the form
8082   //
8083   //       T*VQ&      operator++(T*VQ&);
8084   //       T*VQ&      operator--(T*VQ&);
8085   //       T*         operator++(T*VQ&, int);
8086   //       T*         operator--(T*VQ&, int);
8087   void addPlusPlusMinusMinusPointerOverloads() {
8088     for (BuiltinCandidateTypeSet::iterator
8089               Ptr = CandidateTypes[0].pointer_begin(),
8090            PtrEnd = CandidateTypes[0].pointer_end();
8091          Ptr != PtrEnd; ++Ptr) {
8092       // Skip pointer types that aren't pointers to object types.
8093       if (!(*Ptr)->getPointeeType()->isObjectType())
8094         continue;
8095 
8096       addPlusPlusMinusMinusStyleOverloads(*Ptr,
8097         (!(*Ptr).isVolatileQualified() &&
8098          VisibleTypeConversionsQuals.hasVolatile()),
8099         (!(*Ptr).isRestrictQualified() &&
8100          VisibleTypeConversionsQuals.hasRestrict()));
8101     }
8102   }
8103 
8104   // C++ [over.built]p6:
8105   //   For every cv-qualified or cv-unqualified object type T, there
8106   //   exist candidate operator functions of the form
8107   //
8108   //       T&         operator*(T*);
8109   //
8110   // C++ [over.built]p7:
8111   //   For every function type T that does not have cv-qualifiers or a
8112   //   ref-qualifier, there exist candidate operator functions of the form
8113   //       T&         operator*(T*);
8114   void addUnaryStarPointerOverloads() {
8115     for (BuiltinCandidateTypeSet::iterator
8116               Ptr = CandidateTypes[0].pointer_begin(),
8117            PtrEnd = CandidateTypes[0].pointer_end();
8118          Ptr != PtrEnd; ++Ptr) {
8119       QualType ParamTy = *Ptr;
8120       QualType PointeeTy = ParamTy->getPointeeType();
8121       if (!PointeeTy->isObjectType() && !PointeeTy->isFunctionType())
8122         continue;
8123 
8124       if (const FunctionProtoType *Proto =PointeeTy->getAs<FunctionProtoType>())
8125         if (Proto->getMethodQuals() || Proto->getRefQualifier())
8126           continue;
8127 
8128       S.AddBuiltinCandidate(&ParamTy, Args, CandidateSet);
8129     }
8130   }
8131 
8132   // C++ [over.built]p9:
8133   //  For every promoted arithmetic type T, there exist candidate
8134   //  operator functions of the form
8135   //
8136   //       T         operator+(T);
8137   //       T         operator-(T);
8138   void addUnaryPlusOrMinusArithmeticOverloads() {
8139     if (!HasArithmeticOrEnumeralCandidateType)
8140       return;
8141 
8142     for (unsigned Arith = FirstPromotedArithmeticType;
8143          Arith < LastPromotedArithmeticType; ++Arith) {
8144       QualType ArithTy = ArithmeticTypes[Arith];
8145       S.AddBuiltinCandidate(&ArithTy, Args, CandidateSet);
8146     }
8147 
8148     // Extension: We also add these operators for vector types.
8149     for (BuiltinCandidateTypeSet::iterator
8150               Vec = CandidateTypes[0].vector_begin(),
8151            VecEnd = CandidateTypes[0].vector_end();
8152          Vec != VecEnd; ++Vec) {
8153       QualType VecTy = *Vec;
8154       S.AddBuiltinCandidate(&VecTy, Args, CandidateSet);
8155     }
8156   }
8157 
8158   // C++ [over.built]p8:
8159   //   For every type T, there exist candidate operator functions of
8160   //   the form
8161   //
8162   //       T*         operator+(T*);
8163   void addUnaryPlusPointerOverloads() {
8164     for (BuiltinCandidateTypeSet::iterator
8165               Ptr = CandidateTypes[0].pointer_begin(),
8166            PtrEnd = CandidateTypes[0].pointer_end();
8167          Ptr != PtrEnd; ++Ptr) {
8168       QualType ParamTy = *Ptr;
8169       S.AddBuiltinCandidate(&ParamTy, Args, CandidateSet);
8170     }
8171   }
8172 
8173   // C++ [over.built]p10:
8174   //   For every promoted integral type T, there exist candidate
8175   //   operator functions of the form
8176   //
8177   //        T         operator~(T);
8178   void addUnaryTildePromotedIntegralOverloads() {
8179     if (!HasArithmeticOrEnumeralCandidateType)
8180       return;
8181 
8182     for (unsigned Int = FirstPromotedIntegralType;
8183          Int < LastPromotedIntegralType; ++Int) {
8184       QualType IntTy = ArithmeticTypes[Int];
8185       S.AddBuiltinCandidate(&IntTy, Args, CandidateSet);
8186     }
8187 
8188     // Extension: We also add this operator for vector types.
8189     for (BuiltinCandidateTypeSet::iterator
8190               Vec = CandidateTypes[0].vector_begin(),
8191            VecEnd = CandidateTypes[0].vector_end();
8192          Vec != VecEnd; ++Vec) {
8193       QualType VecTy = *Vec;
8194       S.AddBuiltinCandidate(&VecTy, Args, CandidateSet);
8195     }
8196   }
8197 
8198   // C++ [over.match.oper]p16:
8199   //   For every pointer to member type T or type std::nullptr_t, there
8200   //   exist candidate operator functions of the form
8201   //
8202   //        bool operator==(T,T);
8203   //        bool operator!=(T,T);
8204   void addEqualEqualOrNotEqualMemberPointerOrNullptrOverloads() {
8205     /// Set of (canonical) types that we've already handled.
8206     llvm::SmallPtrSet<QualType, 8> AddedTypes;
8207 
8208     for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
8209       for (BuiltinCandidateTypeSet::iterator
8210                 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
8211              MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
8212            MemPtr != MemPtrEnd;
8213            ++MemPtr) {
8214         // Don't add the same builtin candidate twice.
8215         if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)).second)
8216           continue;
8217 
8218         QualType ParamTypes[2] = { *MemPtr, *MemPtr };
8219         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8220       }
8221 
8222       if (CandidateTypes[ArgIdx].hasNullPtrType()) {
8223         CanQualType NullPtrTy = S.Context.getCanonicalType(S.Context.NullPtrTy);
8224         if (AddedTypes.insert(NullPtrTy).second) {
8225           QualType ParamTypes[2] = { NullPtrTy, NullPtrTy };
8226           S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8227         }
8228       }
8229     }
8230   }
8231 
8232   // C++ [over.built]p15:
8233   //
8234   //   For every T, where T is an enumeration type or a pointer type,
8235   //   there exist candidate operator functions of the form
8236   //
8237   //        bool       operator<(T, T);
8238   //        bool       operator>(T, T);
8239   //        bool       operator<=(T, T);
8240   //        bool       operator>=(T, T);
8241   //        bool       operator==(T, T);
8242   //        bool       operator!=(T, T);
8243   //           R       operator<=>(T, T)
8244   void addGenericBinaryPointerOrEnumeralOverloads() {
8245     // C++ [over.match.oper]p3:
8246     //   [...]the built-in candidates include all of the candidate operator
8247     //   functions defined in 13.6 that, compared to the given operator, [...]
8248     //   do not have the same parameter-type-list as any non-template non-member
8249     //   candidate.
8250     //
8251     // Note that in practice, this only affects enumeration types because there
8252     // aren't any built-in candidates of record type, and a user-defined operator
8253     // must have an operand of record or enumeration type. Also, the only other
8254     // overloaded operator with enumeration arguments, operator=,
8255     // cannot be overloaded for enumeration types, so this is the only place
8256     // where we must suppress candidates like this.
8257     llvm::DenseSet<std::pair<CanQualType, CanQualType> >
8258       UserDefinedBinaryOperators;
8259 
8260     for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
8261       if (CandidateTypes[ArgIdx].enumeration_begin() !=
8262           CandidateTypes[ArgIdx].enumeration_end()) {
8263         for (OverloadCandidateSet::iterator C = CandidateSet.begin(),
8264                                          CEnd = CandidateSet.end();
8265              C != CEnd; ++C) {
8266           if (!C->Viable || !C->Function || C->Function->getNumParams() != 2)
8267             continue;
8268 
8269           if (C->Function->isFunctionTemplateSpecialization())
8270             continue;
8271 
8272           // We interpret "same parameter-type-list" as applying to the
8273           // "synthesized candidate, with the order of the two parameters
8274           // reversed", not to the original function.
8275           bool Reversed = C->RewriteKind & CRK_Reversed;
8276           QualType FirstParamType = C->Function->getParamDecl(Reversed ? 1 : 0)
8277                                         ->getType()
8278                                         .getUnqualifiedType();
8279           QualType SecondParamType = C->Function->getParamDecl(Reversed ? 0 : 1)
8280                                          ->getType()
8281                                          .getUnqualifiedType();
8282 
8283           // Skip if either parameter isn't of enumeral type.
8284           if (!FirstParamType->isEnumeralType() ||
8285               !SecondParamType->isEnumeralType())
8286             continue;
8287 
8288           // Add this operator to the set of known user-defined operators.
8289           UserDefinedBinaryOperators.insert(
8290             std::make_pair(S.Context.getCanonicalType(FirstParamType),
8291                            S.Context.getCanonicalType(SecondParamType)));
8292         }
8293       }
8294     }
8295 
8296     /// Set of (canonical) types that we've already handled.
8297     llvm::SmallPtrSet<QualType, 8> AddedTypes;
8298 
8299     for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
8300       for (BuiltinCandidateTypeSet::iterator
8301                 Ptr = CandidateTypes[ArgIdx].pointer_begin(),
8302              PtrEnd = CandidateTypes[ArgIdx].pointer_end();
8303            Ptr != PtrEnd; ++Ptr) {
8304         // Don't add the same builtin candidate twice.
8305         if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)).second)
8306           continue;
8307 
8308         QualType ParamTypes[2] = { *Ptr, *Ptr };
8309         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8310       }
8311       for (BuiltinCandidateTypeSet::iterator
8312                 Enum = CandidateTypes[ArgIdx].enumeration_begin(),
8313              EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
8314            Enum != EnumEnd; ++Enum) {
8315         CanQualType CanonType = S.Context.getCanonicalType(*Enum);
8316 
8317         // Don't add the same builtin candidate twice, or if a user defined
8318         // candidate exists.
8319         if (!AddedTypes.insert(CanonType).second ||
8320             UserDefinedBinaryOperators.count(std::make_pair(CanonType,
8321                                                             CanonType)))
8322           continue;
8323         QualType ParamTypes[2] = { *Enum, *Enum };
8324         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8325       }
8326     }
8327   }
8328 
8329   // C++ [over.built]p13:
8330   //
8331   //   For every cv-qualified or cv-unqualified object type T
8332   //   there exist candidate operator functions of the form
8333   //
8334   //      T*         operator+(T*, ptrdiff_t);
8335   //      T&         operator[](T*, ptrdiff_t);    [BELOW]
8336   //      T*         operator-(T*, ptrdiff_t);
8337   //      T*         operator+(ptrdiff_t, T*);
8338   //      T&         operator[](ptrdiff_t, T*);    [BELOW]
8339   //
8340   // C++ [over.built]p14:
8341   //
8342   //   For every T, where T is a pointer to object type, there
8343   //   exist candidate operator functions of the form
8344   //
8345   //      ptrdiff_t  operator-(T, T);
8346   void addBinaryPlusOrMinusPointerOverloads(OverloadedOperatorKind Op) {
8347     /// Set of (canonical) types that we've already handled.
8348     llvm::SmallPtrSet<QualType, 8> AddedTypes;
8349 
8350     for (int Arg = 0; Arg < 2; ++Arg) {
8351       QualType AsymmetricParamTypes[2] = {
8352         S.Context.getPointerDiffType(),
8353         S.Context.getPointerDiffType(),
8354       };
8355       for (BuiltinCandidateTypeSet::iterator
8356                 Ptr = CandidateTypes[Arg].pointer_begin(),
8357              PtrEnd = CandidateTypes[Arg].pointer_end();
8358            Ptr != PtrEnd; ++Ptr) {
8359         QualType PointeeTy = (*Ptr)->getPointeeType();
8360         if (!PointeeTy->isObjectType())
8361           continue;
8362 
8363         AsymmetricParamTypes[Arg] = *Ptr;
8364         if (Arg == 0 || Op == OO_Plus) {
8365           // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
8366           // T* operator+(ptrdiff_t, T*);
8367           S.AddBuiltinCandidate(AsymmetricParamTypes, Args, CandidateSet);
8368         }
8369         if (Op == OO_Minus) {
8370           // ptrdiff_t operator-(T, T);
8371           if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)).second)
8372             continue;
8373 
8374           QualType ParamTypes[2] = { *Ptr, *Ptr };
8375           S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8376         }
8377       }
8378     }
8379   }
8380 
8381   // C++ [over.built]p12:
8382   //
8383   //   For every pair of promoted arithmetic types L and R, there
8384   //   exist candidate operator functions of the form
8385   //
8386   //        LR         operator*(L, R);
8387   //        LR         operator/(L, R);
8388   //        LR         operator+(L, R);
8389   //        LR         operator-(L, R);
8390   //        bool       operator<(L, R);
8391   //        bool       operator>(L, R);
8392   //        bool       operator<=(L, R);
8393   //        bool       operator>=(L, R);
8394   //        bool       operator==(L, R);
8395   //        bool       operator!=(L, R);
8396   //
8397   //   where LR is the result of the usual arithmetic conversions
8398   //   between types L and R.
8399   //
8400   // C++ [over.built]p24:
8401   //
8402   //   For every pair of promoted arithmetic types L and R, there exist
8403   //   candidate operator functions of the form
8404   //
8405   //        LR       operator?(bool, L, R);
8406   //
8407   //   where LR is the result of the usual arithmetic conversions
8408   //   between types L and R.
8409   // Our candidates ignore the first parameter.
8410   void addGenericBinaryArithmeticOverloads() {
8411     if (!HasArithmeticOrEnumeralCandidateType)
8412       return;
8413 
8414     for (unsigned Left = FirstPromotedArithmeticType;
8415          Left < LastPromotedArithmeticType; ++Left) {
8416       for (unsigned Right = FirstPromotedArithmeticType;
8417            Right < LastPromotedArithmeticType; ++Right) {
8418         QualType LandR[2] = { ArithmeticTypes[Left],
8419                               ArithmeticTypes[Right] };
8420         S.AddBuiltinCandidate(LandR, Args, CandidateSet);
8421       }
8422     }
8423 
8424     // Extension: Add the binary operators ==, !=, <, <=, >=, >, *, /, and the
8425     // conditional operator for vector types.
8426     for (BuiltinCandidateTypeSet::iterator
8427               Vec1 = CandidateTypes[0].vector_begin(),
8428            Vec1End = CandidateTypes[0].vector_end();
8429          Vec1 != Vec1End; ++Vec1) {
8430       for (BuiltinCandidateTypeSet::iterator
8431                 Vec2 = CandidateTypes[1].vector_begin(),
8432              Vec2End = CandidateTypes[1].vector_end();
8433            Vec2 != Vec2End; ++Vec2) {
8434         QualType LandR[2] = { *Vec1, *Vec2 };
8435         S.AddBuiltinCandidate(LandR, Args, CandidateSet);
8436       }
8437     }
8438   }
8439 
8440   // C++2a [over.built]p14:
8441   //
8442   //   For every integral type T there exists a candidate operator function
8443   //   of the form
8444   //
8445   //        std::strong_ordering operator<=>(T, T)
8446   //
8447   // C++2a [over.built]p15:
8448   //
8449   //   For every pair of floating-point types L and R, there exists a candidate
8450   //   operator function of the form
8451   //
8452   //       std::partial_ordering operator<=>(L, R);
8453   //
8454   // FIXME: The current specification for integral types doesn't play nice with
8455   // the direction of p0946r0, which allows mixed integral and unscoped-enum
8456   // comparisons. Under the current spec this can lead to ambiguity during
8457   // overload resolution. For example:
8458   //
8459   //   enum A : int {a};
8460   //   auto x = (a <=> (long)42);
8461   //
8462   //   error: call is ambiguous for arguments 'A' and 'long'.
8463   //   note: candidate operator<=>(int, int)
8464   //   note: candidate operator<=>(long, long)
8465   //
8466   // To avoid this error, this function deviates from the specification and adds
8467   // the mixed overloads `operator<=>(L, R)` where L and R are promoted
8468   // arithmetic types (the same as the generic relational overloads).
8469   //
8470   // For now this function acts as a placeholder.
8471   void addThreeWayArithmeticOverloads() {
8472     addGenericBinaryArithmeticOverloads();
8473   }
8474 
8475   // C++ [over.built]p17:
8476   //
8477   //   For every pair of promoted integral types L and R, there
8478   //   exist candidate operator functions of the form
8479   //
8480   //      LR         operator%(L, R);
8481   //      LR         operator&(L, R);
8482   //      LR         operator^(L, R);
8483   //      LR         operator|(L, R);
8484   //      L          operator<<(L, R);
8485   //      L          operator>>(L, R);
8486   //
8487   //   where LR is the result of the usual arithmetic conversions
8488   //   between types L and R.
8489   void addBinaryBitwiseArithmeticOverloads(OverloadedOperatorKind Op) {
8490     if (!HasArithmeticOrEnumeralCandidateType)
8491       return;
8492 
8493     for (unsigned Left = FirstPromotedIntegralType;
8494          Left < LastPromotedIntegralType; ++Left) {
8495       for (unsigned Right = FirstPromotedIntegralType;
8496            Right < LastPromotedIntegralType; ++Right) {
8497         QualType LandR[2] = { ArithmeticTypes[Left],
8498                               ArithmeticTypes[Right] };
8499         S.AddBuiltinCandidate(LandR, Args, CandidateSet);
8500       }
8501     }
8502   }
8503 
8504   // C++ [over.built]p20:
8505   //
8506   //   For every pair (T, VQ), where T is an enumeration or
8507   //   pointer to member type and VQ is either volatile or
8508   //   empty, there exist candidate operator functions of the form
8509   //
8510   //        VQ T&      operator=(VQ T&, T);
8511   void addAssignmentMemberPointerOrEnumeralOverloads() {
8512     /// Set of (canonical) types that we've already handled.
8513     llvm::SmallPtrSet<QualType, 8> AddedTypes;
8514 
8515     for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
8516       for (BuiltinCandidateTypeSet::iterator
8517                 Enum = CandidateTypes[ArgIdx].enumeration_begin(),
8518              EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
8519            Enum != EnumEnd; ++Enum) {
8520         if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)).second)
8521           continue;
8522 
8523         AddBuiltinAssignmentOperatorCandidates(S, *Enum, Args, CandidateSet);
8524       }
8525 
8526       for (BuiltinCandidateTypeSet::iterator
8527                 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
8528              MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
8529            MemPtr != MemPtrEnd; ++MemPtr) {
8530         if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)).second)
8531           continue;
8532 
8533         AddBuiltinAssignmentOperatorCandidates(S, *MemPtr, Args, CandidateSet);
8534       }
8535     }
8536   }
8537 
8538   // C++ [over.built]p19:
8539   //
8540   //   For every pair (T, VQ), where T is any type and VQ is either
8541   //   volatile or empty, there exist candidate operator functions
8542   //   of the form
8543   //
8544   //        T*VQ&      operator=(T*VQ&, T*);
8545   //
8546   // C++ [over.built]p21:
8547   //
8548   //   For every pair (T, VQ), where T is a cv-qualified or
8549   //   cv-unqualified object type and VQ is either volatile or
8550   //   empty, there exist candidate operator functions of the form
8551   //
8552   //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
8553   //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
8554   void addAssignmentPointerOverloads(bool isEqualOp) {
8555     /// Set of (canonical) types that we've already handled.
8556     llvm::SmallPtrSet<QualType, 8> AddedTypes;
8557 
8558     for (BuiltinCandidateTypeSet::iterator
8559               Ptr = CandidateTypes[0].pointer_begin(),
8560            PtrEnd = CandidateTypes[0].pointer_end();
8561          Ptr != PtrEnd; ++Ptr) {
8562       // If this is operator=, keep track of the builtin candidates we added.
8563       if (isEqualOp)
8564         AddedTypes.insert(S.Context.getCanonicalType(*Ptr));
8565       else if (!(*Ptr)->getPointeeType()->isObjectType())
8566         continue;
8567 
8568       // non-volatile version
8569       QualType ParamTypes[2] = {
8570         S.Context.getLValueReferenceType(*Ptr),
8571         isEqualOp ? *Ptr : S.Context.getPointerDiffType(),
8572       };
8573       S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8574                             /*IsAssignmentOperator=*/ isEqualOp);
8575 
8576       bool NeedVolatile = !(*Ptr).isVolatileQualified() &&
8577                           VisibleTypeConversionsQuals.hasVolatile();
8578       if (NeedVolatile) {
8579         // volatile version
8580         ParamTypes[0] =
8581           S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
8582         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8583                               /*IsAssignmentOperator=*/isEqualOp);
8584       }
8585 
8586       if (!(*Ptr).isRestrictQualified() &&
8587           VisibleTypeConversionsQuals.hasRestrict()) {
8588         // restrict version
8589         ParamTypes[0]
8590           = S.Context.getLValueReferenceType(S.Context.getRestrictType(*Ptr));
8591         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8592                               /*IsAssignmentOperator=*/isEqualOp);
8593 
8594         if (NeedVolatile) {
8595           // volatile restrict version
8596           ParamTypes[0]
8597             = S.Context.getLValueReferenceType(
8598                 S.Context.getCVRQualifiedType(*Ptr,
8599                                               (Qualifiers::Volatile |
8600                                                Qualifiers::Restrict)));
8601           S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8602                                 /*IsAssignmentOperator=*/isEqualOp);
8603         }
8604       }
8605     }
8606 
8607     if (isEqualOp) {
8608       for (BuiltinCandidateTypeSet::iterator
8609                 Ptr = CandidateTypes[1].pointer_begin(),
8610              PtrEnd = CandidateTypes[1].pointer_end();
8611            Ptr != PtrEnd; ++Ptr) {
8612         // Make sure we don't add the same candidate twice.
8613         if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)).second)
8614           continue;
8615 
8616         QualType ParamTypes[2] = {
8617           S.Context.getLValueReferenceType(*Ptr),
8618           *Ptr,
8619         };
8620 
8621         // non-volatile version
8622         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8623                               /*IsAssignmentOperator=*/true);
8624 
8625         bool NeedVolatile = !(*Ptr).isVolatileQualified() &&
8626                            VisibleTypeConversionsQuals.hasVolatile();
8627         if (NeedVolatile) {
8628           // volatile version
8629           ParamTypes[0] =
8630             S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
8631           S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8632                                 /*IsAssignmentOperator=*/true);
8633         }
8634 
8635         if (!(*Ptr).isRestrictQualified() &&
8636             VisibleTypeConversionsQuals.hasRestrict()) {
8637           // restrict version
8638           ParamTypes[0]
8639             = S.Context.getLValueReferenceType(S.Context.getRestrictType(*Ptr));
8640           S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8641                                 /*IsAssignmentOperator=*/true);
8642 
8643           if (NeedVolatile) {
8644             // volatile restrict version
8645             ParamTypes[0]
8646               = S.Context.getLValueReferenceType(
8647                   S.Context.getCVRQualifiedType(*Ptr,
8648                                                 (Qualifiers::Volatile |
8649                                                  Qualifiers::Restrict)));
8650             S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8651                                   /*IsAssignmentOperator=*/true);
8652           }
8653         }
8654       }
8655     }
8656   }
8657 
8658   // C++ [over.built]p18:
8659   //
8660   //   For every triple (L, VQ, R), where L is an arithmetic type,
8661   //   VQ is either volatile or empty, and R is a promoted
8662   //   arithmetic type, there exist candidate operator functions of
8663   //   the form
8664   //
8665   //        VQ L&      operator=(VQ L&, R);
8666   //        VQ L&      operator*=(VQ L&, R);
8667   //        VQ L&      operator/=(VQ L&, R);
8668   //        VQ L&      operator+=(VQ L&, R);
8669   //        VQ L&      operator-=(VQ L&, R);
8670   void addAssignmentArithmeticOverloads(bool isEqualOp) {
8671     if (!HasArithmeticOrEnumeralCandidateType)
8672       return;
8673 
8674     for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
8675       for (unsigned Right = FirstPromotedArithmeticType;
8676            Right < LastPromotedArithmeticType; ++Right) {
8677         QualType ParamTypes[2];
8678         ParamTypes[1] = ArithmeticTypes[Right];
8679         auto LeftBaseTy = AdjustAddressSpaceForBuiltinOperandType(
8680             S, ArithmeticTypes[Left], Args[0]);
8681         // Add this built-in operator as a candidate (VQ is empty).
8682         ParamTypes[0] = S.Context.getLValueReferenceType(LeftBaseTy);
8683         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8684                               /*IsAssignmentOperator=*/isEqualOp);
8685 
8686         // Add this built-in operator as a candidate (VQ is 'volatile').
8687         if (VisibleTypeConversionsQuals.hasVolatile()) {
8688           ParamTypes[0] = S.Context.getVolatileType(LeftBaseTy);
8689           ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
8690           S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8691                                 /*IsAssignmentOperator=*/isEqualOp);
8692         }
8693       }
8694     }
8695 
8696     // Extension: Add the binary operators =, +=, -=, *=, /= for vector types.
8697     for (BuiltinCandidateTypeSet::iterator
8698               Vec1 = CandidateTypes[0].vector_begin(),
8699            Vec1End = CandidateTypes[0].vector_end();
8700          Vec1 != Vec1End; ++Vec1) {
8701       for (BuiltinCandidateTypeSet::iterator
8702                 Vec2 = CandidateTypes[1].vector_begin(),
8703              Vec2End = CandidateTypes[1].vector_end();
8704            Vec2 != Vec2End; ++Vec2) {
8705         QualType ParamTypes[2];
8706         ParamTypes[1] = *Vec2;
8707         // Add this built-in operator as a candidate (VQ is empty).
8708         ParamTypes[0] = S.Context.getLValueReferenceType(*Vec1);
8709         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8710                               /*IsAssignmentOperator=*/isEqualOp);
8711 
8712         // Add this built-in operator as a candidate (VQ is 'volatile').
8713         if (VisibleTypeConversionsQuals.hasVolatile()) {
8714           ParamTypes[0] = S.Context.getVolatileType(*Vec1);
8715           ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
8716           S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8717                                 /*IsAssignmentOperator=*/isEqualOp);
8718         }
8719       }
8720     }
8721   }
8722 
8723   // C++ [over.built]p22:
8724   //
8725   //   For every triple (L, VQ, R), where L is an integral type, VQ
8726   //   is either volatile or empty, and R is a promoted integral
8727   //   type, there exist candidate operator functions of the form
8728   //
8729   //        VQ L&       operator%=(VQ L&, R);
8730   //        VQ L&       operator<<=(VQ L&, R);
8731   //        VQ L&       operator>>=(VQ L&, R);
8732   //        VQ L&       operator&=(VQ L&, R);
8733   //        VQ L&       operator^=(VQ L&, R);
8734   //        VQ L&       operator|=(VQ L&, R);
8735   void addAssignmentIntegralOverloads() {
8736     if (!HasArithmeticOrEnumeralCandidateType)
8737       return;
8738 
8739     for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
8740       for (unsigned Right = FirstPromotedIntegralType;
8741            Right < LastPromotedIntegralType; ++Right) {
8742         QualType ParamTypes[2];
8743         ParamTypes[1] = ArithmeticTypes[Right];
8744         auto LeftBaseTy = AdjustAddressSpaceForBuiltinOperandType(
8745             S, ArithmeticTypes[Left], Args[0]);
8746         // Add this built-in operator as a candidate (VQ is empty).
8747         ParamTypes[0] = S.Context.getLValueReferenceType(LeftBaseTy);
8748         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8749         if (VisibleTypeConversionsQuals.hasVolatile()) {
8750           // Add this built-in operator as a candidate (VQ is 'volatile').
8751           ParamTypes[0] = LeftBaseTy;
8752           ParamTypes[0] = S.Context.getVolatileType(ParamTypes[0]);
8753           ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
8754           S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8755         }
8756       }
8757     }
8758   }
8759 
8760   // C++ [over.operator]p23:
8761   //
8762   //   There also exist candidate operator functions of the form
8763   //
8764   //        bool        operator!(bool);
8765   //        bool        operator&&(bool, bool);
8766   //        bool        operator||(bool, bool);
8767   void addExclaimOverload() {
8768     QualType ParamTy = S.Context.BoolTy;
8769     S.AddBuiltinCandidate(&ParamTy, Args, CandidateSet,
8770                           /*IsAssignmentOperator=*/false,
8771                           /*NumContextualBoolArguments=*/1);
8772   }
8773   void addAmpAmpOrPipePipeOverload() {
8774     QualType ParamTypes[2] = { S.Context.BoolTy, S.Context.BoolTy };
8775     S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8776                           /*IsAssignmentOperator=*/false,
8777                           /*NumContextualBoolArguments=*/2);
8778   }
8779 
8780   // C++ [over.built]p13:
8781   //
8782   //   For every cv-qualified or cv-unqualified object type T there
8783   //   exist candidate operator functions of the form
8784   //
8785   //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
8786   //        T&         operator[](T*, ptrdiff_t);
8787   //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
8788   //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
8789   //        T&         operator[](ptrdiff_t, T*);
8790   void addSubscriptOverloads() {
8791     for (BuiltinCandidateTypeSet::iterator
8792               Ptr = CandidateTypes[0].pointer_begin(),
8793            PtrEnd = CandidateTypes[0].pointer_end();
8794          Ptr != PtrEnd; ++Ptr) {
8795       QualType ParamTypes[2] = { *Ptr, S.Context.getPointerDiffType() };
8796       QualType PointeeType = (*Ptr)->getPointeeType();
8797       if (!PointeeType->isObjectType())
8798         continue;
8799 
8800       // T& operator[](T*, ptrdiff_t)
8801       S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8802     }
8803 
8804     for (BuiltinCandidateTypeSet::iterator
8805               Ptr = CandidateTypes[1].pointer_begin(),
8806            PtrEnd = CandidateTypes[1].pointer_end();
8807          Ptr != PtrEnd; ++Ptr) {
8808       QualType ParamTypes[2] = { S.Context.getPointerDiffType(), *Ptr };
8809       QualType PointeeType = (*Ptr)->getPointeeType();
8810       if (!PointeeType->isObjectType())
8811         continue;
8812 
8813       // T& operator[](ptrdiff_t, T*)
8814       S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8815     }
8816   }
8817 
8818   // C++ [over.built]p11:
8819   //    For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
8820   //    C1 is the same type as C2 or is a derived class of C2, T is an object
8821   //    type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
8822   //    there exist candidate operator functions of the form
8823   //
8824   //      CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
8825   //
8826   //    where CV12 is the union of CV1 and CV2.
8827   void addArrowStarOverloads() {
8828     for (BuiltinCandidateTypeSet::iterator
8829              Ptr = CandidateTypes[0].pointer_begin(),
8830            PtrEnd = CandidateTypes[0].pointer_end();
8831          Ptr != PtrEnd; ++Ptr) {
8832       QualType C1Ty = (*Ptr);
8833       QualType C1;
8834       QualifierCollector Q1;
8835       C1 = QualType(Q1.strip(C1Ty->getPointeeType()), 0);
8836       if (!isa<RecordType>(C1))
8837         continue;
8838       // heuristic to reduce number of builtin candidates in the set.
8839       // Add volatile/restrict version only if there are conversions to a
8840       // volatile/restrict type.
8841       if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
8842         continue;
8843       if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
8844         continue;
8845       for (BuiltinCandidateTypeSet::iterator
8846                 MemPtr = CandidateTypes[1].member_pointer_begin(),
8847              MemPtrEnd = CandidateTypes[1].member_pointer_end();
8848            MemPtr != MemPtrEnd; ++MemPtr) {
8849         const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr);
8850         QualType C2 = QualType(mptr->getClass(), 0);
8851         C2 = C2.getUnqualifiedType();
8852         if (C1 != C2 && !S.IsDerivedFrom(CandidateSet.getLocation(), C1, C2))
8853           break;
8854         QualType ParamTypes[2] = { *Ptr, *MemPtr };
8855         // build CV12 T&
8856         QualType T = mptr->getPointeeType();
8857         if (!VisibleTypeConversionsQuals.hasVolatile() &&
8858             T.isVolatileQualified())
8859           continue;
8860         if (!VisibleTypeConversionsQuals.hasRestrict() &&
8861             T.isRestrictQualified())
8862           continue;
8863         T = Q1.apply(S.Context, T);
8864         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8865       }
8866     }
8867   }
8868 
8869   // Note that we don't consider the first argument, since it has been
8870   // contextually converted to bool long ago. The candidates below are
8871   // therefore added as binary.
8872   //
8873   // C++ [over.built]p25:
8874   //   For every type T, where T is a pointer, pointer-to-member, or scoped
8875   //   enumeration type, there exist candidate operator functions of the form
8876   //
8877   //        T        operator?(bool, T, T);
8878   //
8879   void addConditionalOperatorOverloads() {
8880     /// Set of (canonical) types that we've already handled.
8881     llvm::SmallPtrSet<QualType, 8> AddedTypes;
8882 
8883     for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
8884       for (BuiltinCandidateTypeSet::iterator
8885                 Ptr = CandidateTypes[ArgIdx].pointer_begin(),
8886              PtrEnd = CandidateTypes[ArgIdx].pointer_end();
8887            Ptr != PtrEnd; ++Ptr) {
8888         if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)).second)
8889           continue;
8890 
8891         QualType ParamTypes[2] = { *Ptr, *Ptr };
8892         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8893       }
8894 
8895       for (BuiltinCandidateTypeSet::iterator
8896                 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
8897              MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
8898            MemPtr != MemPtrEnd; ++MemPtr) {
8899         if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)).second)
8900           continue;
8901 
8902         QualType ParamTypes[2] = { *MemPtr, *MemPtr };
8903         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8904       }
8905 
8906       if (S.getLangOpts().CPlusPlus11) {
8907         for (BuiltinCandidateTypeSet::iterator
8908                   Enum = CandidateTypes[ArgIdx].enumeration_begin(),
8909                EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
8910              Enum != EnumEnd; ++Enum) {
8911           if (!(*Enum)->castAs<EnumType>()->getDecl()->isScoped())
8912             continue;
8913 
8914           if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)).second)
8915             continue;
8916 
8917           QualType ParamTypes[2] = { *Enum, *Enum };
8918           S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8919         }
8920       }
8921     }
8922   }
8923 };
8924 
8925 } // end anonymous namespace
8926 
8927 /// AddBuiltinOperatorCandidates - Add the appropriate built-in
8928 /// operator overloads to the candidate set (C++ [over.built]), based
8929 /// on the operator @p Op and the arguments given. For example, if the
8930 /// operator is a binary '+', this routine might add "int
8931 /// operator+(int, int)" to cover integer addition.
8932 void Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
8933                                         SourceLocation OpLoc,
8934                                         ArrayRef<Expr *> Args,
8935                                         OverloadCandidateSet &CandidateSet) {
8936   // Find all of the types that the arguments can convert to, but only
8937   // if the operator we're looking at has built-in operator candidates
8938   // that make use of these types. Also record whether we encounter non-record
8939   // candidate types or either arithmetic or enumeral candidate types.
8940   Qualifiers VisibleTypeConversionsQuals;
8941   VisibleTypeConversionsQuals.addConst();
8942   for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx)
8943     VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
8944 
8945   bool HasNonRecordCandidateType = false;
8946   bool HasArithmeticOrEnumeralCandidateType = false;
8947   SmallVector<BuiltinCandidateTypeSet, 2> CandidateTypes;
8948   for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
8949     CandidateTypes.emplace_back(*this);
8950     CandidateTypes[ArgIdx].AddTypesConvertedFrom(Args[ArgIdx]->getType(),
8951                                                  OpLoc,
8952                                                  true,
8953                                                  (Op == OO_Exclaim ||
8954                                                   Op == OO_AmpAmp ||
8955                                                   Op == OO_PipePipe),
8956                                                  VisibleTypeConversionsQuals);
8957     HasNonRecordCandidateType = HasNonRecordCandidateType ||
8958         CandidateTypes[ArgIdx].hasNonRecordTypes();
8959     HasArithmeticOrEnumeralCandidateType =
8960         HasArithmeticOrEnumeralCandidateType ||
8961         CandidateTypes[ArgIdx].hasArithmeticOrEnumeralTypes();
8962   }
8963 
8964   // Exit early when no non-record types have been added to the candidate set
8965   // for any of the arguments to the operator.
8966   //
8967   // We can't exit early for !, ||, or &&, since there we have always have
8968   // 'bool' overloads.
8969   if (!HasNonRecordCandidateType &&
8970       !(Op == OO_Exclaim || Op == OO_AmpAmp || Op == OO_PipePipe))
8971     return;
8972 
8973   // Setup an object to manage the common state for building overloads.
8974   BuiltinOperatorOverloadBuilder OpBuilder(*this, Args,
8975                                            VisibleTypeConversionsQuals,
8976                                            HasArithmeticOrEnumeralCandidateType,
8977                                            CandidateTypes, CandidateSet);
8978 
8979   // Dispatch over the operation to add in only those overloads which apply.
8980   switch (Op) {
8981   case OO_None:
8982   case NUM_OVERLOADED_OPERATORS:
8983     llvm_unreachable("Expected an overloaded operator");
8984 
8985   case OO_New:
8986   case OO_Delete:
8987   case OO_Array_New:
8988   case OO_Array_Delete:
8989   case OO_Call:
8990     llvm_unreachable(
8991                     "Special operators don't use AddBuiltinOperatorCandidates");
8992 
8993   case OO_Comma:
8994   case OO_Arrow:
8995   case OO_Coawait:
8996     // C++ [over.match.oper]p3:
8997     //   -- For the operator ',', the unary operator '&', the
8998     //      operator '->', or the operator 'co_await', the
8999     //      built-in candidates set is empty.
9000     break;
9001 
9002   case OO_Plus: // '+' is either unary or binary
9003     if (Args.size() == 1)
9004       OpBuilder.addUnaryPlusPointerOverloads();
9005     LLVM_FALLTHROUGH;
9006 
9007   case OO_Minus: // '-' is either unary or binary
9008     if (Args.size() == 1) {
9009       OpBuilder.addUnaryPlusOrMinusArithmeticOverloads();
9010     } else {
9011       OpBuilder.addBinaryPlusOrMinusPointerOverloads(Op);
9012       OpBuilder.addGenericBinaryArithmeticOverloads();
9013     }
9014     break;
9015 
9016   case OO_Star: // '*' is either unary or binary
9017     if (Args.size() == 1)
9018       OpBuilder.addUnaryStarPointerOverloads();
9019     else
9020       OpBuilder.addGenericBinaryArithmeticOverloads();
9021     break;
9022 
9023   case OO_Slash:
9024     OpBuilder.addGenericBinaryArithmeticOverloads();
9025     break;
9026 
9027   case OO_PlusPlus:
9028   case OO_MinusMinus:
9029     OpBuilder.addPlusPlusMinusMinusArithmeticOverloads(Op);
9030     OpBuilder.addPlusPlusMinusMinusPointerOverloads();
9031     break;
9032 
9033   case OO_EqualEqual:
9034   case OO_ExclaimEqual:
9035     OpBuilder.addEqualEqualOrNotEqualMemberPointerOrNullptrOverloads();
9036     LLVM_FALLTHROUGH;
9037 
9038   case OO_Less:
9039   case OO_Greater:
9040   case OO_LessEqual:
9041   case OO_GreaterEqual:
9042     OpBuilder.addGenericBinaryPointerOrEnumeralOverloads();
9043     OpBuilder.addGenericBinaryArithmeticOverloads();
9044     break;
9045 
9046   case OO_Spaceship:
9047     OpBuilder.addGenericBinaryPointerOrEnumeralOverloads();
9048     OpBuilder.addThreeWayArithmeticOverloads();
9049     break;
9050 
9051   case OO_Percent:
9052   case OO_Caret:
9053   case OO_Pipe:
9054   case OO_LessLess:
9055   case OO_GreaterGreater:
9056     OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
9057     break;
9058 
9059   case OO_Amp: // '&' is either unary or binary
9060     if (Args.size() == 1)
9061       // C++ [over.match.oper]p3:
9062       //   -- For the operator ',', the unary operator '&', or the
9063       //      operator '->', the built-in candidates set is empty.
9064       break;
9065 
9066     OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
9067     break;
9068 
9069   case OO_Tilde:
9070     OpBuilder.addUnaryTildePromotedIntegralOverloads();
9071     break;
9072 
9073   case OO_Equal:
9074     OpBuilder.addAssignmentMemberPointerOrEnumeralOverloads();
9075     LLVM_FALLTHROUGH;
9076 
9077   case OO_PlusEqual:
9078   case OO_MinusEqual:
9079     OpBuilder.addAssignmentPointerOverloads(Op == OO_Equal);
9080     LLVM_FALLTHROUGH;
9081 
9082   case OO_StarEqual:
9083   case OO_SlashEqual:
9084     OpBuilder.addAssignmentArithmeticOverloads(Op == OO_Equal);
9085     break;
9086 
9087   case OO_PercentEqual:
9088   case OO_LessLessEqual:
9089   case OO_GreaterGreaterEqual:
9090   case OO_AmpEqual:
9091   case OO_CaretEqual:
9092   case OO_PipeEqual:
9093     OpBuilder.addAssignmentIntegralOverloads();
9094     break;
9095 
9096   case OO_Exclaim:
9097     OpBuilder.addExclaimOverload();
9098     break;
9099 
9100   case OO_AmpAmp:
9101   case OO_PipePipe:
9102     OpBuilder.addAmpAmpOrPipePipeOverload();
9103     break;
9104 
9105   case OO_Subscript:
9106     OpBuilder.addSubscriptOverloads();
9107     break;
9108 
9109   case OO_ArrowStar:
9110     OpBuilder.addArrowStarOverloads();
9111     break;
9112 
9113   case OO_Conditional:
9114     OpBuilder.addConditionalOperatorOverloads();
9115     OpBuilder.addGenericBinaryArithmeticOverloads();
9116     break;
9117   }
9118 }
9119 
9120 /// Add function candidates found via argument-dependent lookup
9121 /// to the set of overloading candidates.
9122 ///
9123 /// This routine performs argument-dependent name lookup based on the
9124 /// given function name (which may also be an operator name) and adds
9125 /// all of the overload candidates found by ADL to the overload
9126 /// candidate set (C++ [basic.lookup.argdep]).
9127 void
9128 Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
9129                                            SourceLocation Loc,
9130                                            ArrayRef<Expr *> Args,
9131                                  TemplateArgumentListInfo *ExplicitTemplateArgs,
9132                                            OverloadCandidateSet& CandidateSet,
9133                                            bool PartialOverloading) {
9134   ADLResult Fns;
9135 
9136   // FIXME: This approach for uniquing ADL results (and removing
9137   // redundant candidates from the set) relies on pointer-equality,
9138   // which means we need to key off the canonical decl.  However,
9139   // always going back to the canonical decl might not get us the
9140   // right set of default arguments.  What default arguments are
9141   // we supposed to consider on ADL candidates, anyway?
9142 
9143   // FIXME: Pass in the explicit template arguments?
9144   ArgumentDependentLookup(Name, Loc, Args, Fns);
9145 
9146   // Erase all of the candidates we already knew about.
9147   for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
9148                                    CandEnd = CandidateSet.end();
9149        Cand != CandEnd; ++Cand)
9150     if (Cand->Function) {
9151       Fns.erase(Cand->Function);
9152       if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
9153         Fns.erase(FunTmpl);
9154     }
9155 
9156   // For each of the ADL candidates we found, add it to the overload
9157   // set.
9158   for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
9159     DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none);
9160 
9161     if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
9162       if (ExplicitTemplateArgs)
9163         continue;
9164 
9165       AddOverloadCandidate(FD, FoundDecl, Args, CandidateSet,
9166                            /*SuppressUserConversions=*/false, PartialOverloading,
9167                            /*AllowExplicit*/ true,
9168                            /*AllowExplicitConversions*/ false,
9169                            ADLCallKind::UsesADL);
9170     } else {
9171       AddTemplateOverloadCandidate(
9172           cast<FunctionTemplateDecl>(*I), FoundDecl, ExplicitTemplateArgs, Args,
9173           CandidateSet,
9174           /*SuppressUserConversions=*/false, PartialOverloading,
9175           /*AllowExplicit*/true, ADLCallKind::UsesADL);
9176     }
9177   }
9178 }
9179 
9180 namespace {
9181 enum class Comparison { Equal, Better, Worse };
9182 }
9183 
9184 /// Compares the enable_if attributes of two FunctionDecls, for the purposes of
9185 /// overload resolution.
9186 ///
9187 /// Cand1's set of enable_if attributes are said to be "better" than Cand2's iff
9188 /// Cand1's first N enable_if attributes have precisely the same conditions as
9189 /// Cand2's first N enable_if attributes (where N = the number of enable_if
9190 /// attributes on Cand2), and Cand1 has more than N enable_if attributes.
9191 ///
9192 /// Note that you can have a pair of candidates such that Cand1's enable_if
9193 /// attributes are worse than Cand2's, and Cand2's enable_if attributes are
9194 /// worse than Cand1's.
9195 static Comparison compareEnableIfAttrs(const Sema &S, const FunctionDecl *Cand1,
9196                                        const FunctionDecl *Cand2) {
9197   // Common case: One (or both) decls don't have enable_if attrs.
9198   bool Cand1Attr = Cand1->hasAttr<EnableIfAttr>();
9199   bool Cand2Attr = Cand2->hasAttr<EnableIfAttr>();
9200   if (!Cand1Attr || !Cand2Attr) {
9201     if (Cand1Attr == Cand2Attr)
9202       return Comparison::Equal;
9203     return Cand1Attr ? Comparison::Better : Comparison::Worse;
9204   }
9205 
9206   auto Cand1Attrs = Cand1->specific_attrs<EnableIfAttr>();
9207   auto Cand2Attrs = Cand2->specific_attrs<EnableIfAttr>();
9208 
9209   llvm::FoldingSetNodeID Cand1ID, Cand2ID;
9210   for (auto Pair : zip_longest(Cand1Attrs, Cand2Attrs)) {
9211     Optional<EnableIfAttr *> Cand1A = std::get<0>(Pair);
9212     Optional<EnableIfAttr *> Cand2A = std::get<1>(Pair);
9213 
9214     // It's impossible for Cand1 to be better than (or equal to) Cand2 if Cand1
9215     // has fewer enable_if attributes than Cand2, and vice versa.
9216     if (!Cand1A)
9217       return Comparison::Worse;
9218     if (!Cand2A)
9219       return Comparison::Better;
9220 
9221     Cand1ID.clear();
9222     Cand2ID.clear();
9223 
9224     (*Cand1A)->getCond()->Profile(Cand1ID, S.getASTContext(), true);
9225     (*Cand2A)->getCond()->Profile(Cand2ID, S.getASTContext(), true);
9226     if (Cand1ID != Cand2ID)
9227       return Comparison::Worse;
9228   }
9229 
9230   return Comparison::Equal;
9231 }
9232 
9233 static bool isBetterMultiversionCandidate(const OverloadCandidate &Cand1,
9234                                           const OverloadCandidate &Cand2) {
9235   if (!Cand1.Function || !Cand1.Function->isMultiVersion() || !Cand2.Function ||
9236       !Cand2.Function->isMultiVersion())
9237     return false;
9238 
9239   // If Cand1 is invalid, it cannot be a better match, if Cand2 is invalid, this
9240   // is obviously better.
9241   if (Cand1.Function->isInvalidDecl()) return false;
9242   if (Cand2.Function->isInvalidDecl()) return true;
9243 
9244   // If this is a cpu_dispatch/cpu_specific multiversion situation, prefer
9245   // cpu_dispatch, else arbitrarily based on the identifiers.
9246   bool Cand1CPUDisp = Cand1.Function->hasAttr<CPUDispatchAttr>();
9247   bool Cand2CPUDisp = Cand2.Function->hasAttr<CPUDispatchAttr>();
9248   const auto *Cand1CPUSpec = Cand1.Function->getAttr<CPUSpecificAttr>();
9249   const auto *Cand2CPUSpec = Cand2.Function->getAttr<CPUSpecificAttr>();
9250 
9251   if (!Cand1CPUDisp && !Cand2CPUDisp && !Cand1CPUSpec && !Cand2CPUSpec)
9252     return false;
9253 
9254   if (Cand1CPUDisp && !Cand2CPUDisp)
9255     return true;
9256   if (Cand2CPUDisp && !Cand1CPUDisp)
9257     return false;
9258 
9259   if (Cand1CPUSpec && Cand2CPUSpec) {
9260     if (Cand1CPUSpec->cpus_size() != Cand2CPUSpec->cpus_size())
9261       return Cand1CPUSpec->cpus_size() < Cand2CPUSpec->cpus_size();
9262 
9263     std::pair<CPUSpecificAttr::cpus_iterator, CPUSpecificAttr::cpus_iterator>
9264         FirstDiff = std::mismatch(
9265             Cand1CPUSpec->cpus_begin(), Cand1CPUSpec->cpus_end(),
9266             Cand2CPUSpec->cpus_begin(),
9267             [](const IdentifierInfo *LHS, const IdentifierInfo *RHS) {
9268               return LHS->getName() == RHS->getName();
9269             });
9270 
9271     assert(FirstDiff.first != Cand1CPUSpec->cpus_end() &&
9272            "Two different cpu-specific versions should not have the same "
9273            "identifier list, otherwise they'd be the same decl!");
9274     return (*FirstDiff.first)->getName() < (*FirstDiff.second)->getName();
9275   }
9276   llvm_unreachable("No way to get here unless both had cpu_dispatch");
9277 }
9278 
9279 /// isBetterOverloadCandidate - Determines whether the first overload
9280 /// candidate is a better candidate than the second (C++ 13.3.3p1).
9281 bool clang::isBetterOverloadCandidate(
9282     Sema &S, const OverloadCandidate &Cand1, const OverloadCandidate &Cand2,
9283     SourceLocation Loc, OverloadCandidateSet::CandidateSetKind Kind) {
9284   // Define viable functions to be better candidates than non-viable
9285   // functions.
9286   if (!Cand2.Viable)
9287     return Cand1.Viable;
9288   else if (!Cand1.Viable)
9289     return false;
9290 
9291   // C++ [over.match.best]p1:
9292   //
9293   //   -- if F is a static member function, ICS1(F) is defined such
9294   //      that ICS1(F) is neither better nor worse than ICS1(G) for
9295   //      any function G, and, symmetrically, ICS1(G) is neither
9296   //      better nor worse than ICS1(F).
9297   unsigned StartArg = 0;
9298   if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
9299     StartArg = 1;
9300 
9301   auto IsIllFormedConversion = [&](const ImplicitConversionSequence &ICS) {
9302     // We don't allow incompatible pointer conversions in C++.
9303     if (!S.getLangOpts().CPlusPlus)
9304       return ICS.isStandard() &&
9305              ICS.Standard.Second == ICK_Incompatible_Pointer_Conversion;
9306 
9307     // The only ill-formed conversion we allow in C++ is the string literal to
9308     // char* conversion, which is only considered ill-formed after C++11.
9309     return S.getLangOpts().CPlusPlus11 && !S.getLangOpts().WritableStrings &&
9310            hasDeprecatedStringLiteralToCharPtrConversion(ICS);
9311   };
9312 
9313   // Define functions that don't require ill-formed conversions for a given
9314   // argument to be better candidates than functions that do.
9315   unsigned NumArgs = Cand1.Conversions.size();
9316   assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
9317   bool HasBetterConversion = false;
9318   for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
9319     bool Cand1Bad = IsIllFormedConversion(Cand1.Conversions[ArgIdx]);
9320     bool Cand2Bad = IsIllFormedConversion(Cand2.Conversions[ArgIdx]);
9321     if (Cand1Bad != Cand2Bad) {
9322       if (Cand1Bad)
9323         return false;
9324       HasBetterConversion = true;
9325     }
9326   }
9327 
9328   if (HasBetterConversion)
9329     return true;
9330 
9331   // C++ [over.match.best]p1:
9332   //   A viable function F1 is defined to be a better function than another
9333   //   viable function F2 if for all arguments i, ICSi(F1) is not a worse
9334   //   conversion sequence than ICSi(F2), and then...
9335   bool HasWorseConversion = false;
9336   for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
9337     switch (CompareImplicitConversionSequences(S, Loc,
9338                                                Cand1.Conversions[ArgIdx],
9339                                                Cand2.Conversions[ArgIdx])) {
9340     case ImplicitConversionSequence::Better:
9341       // Cand1 has a better conversion sequence.
9342       HasBetterConversion = true;
9343       break;
9344 
9345     case ImplicitConversionSequence::Worse:
9346       if (Cand1.Function && Cand1.Function == Cand2.Function &&
9347           (Cand2.RewriteKind & CRK_Reversed) != 0) {
9348         // Work around large-scale breakage caused by considering reversed
9349         // forms of operator== in C++20:
9350         //
9351         // When comparing a function against its reversed form, if we have a
9352         // better conversion for one argument and a worse conversion for the
9353         // other, we prefer the non-reversed form.
9354         //
9355         // This prevents a conversion function from being considered ambiguous
9356         // with its own reversed form in various where it's only incidentally
9357         // heterogeneous.
9358         //
9359         // We diagnose this as an extension from CreateOverloadedBinOp.
9360         HasWorseConversion = true;
9361         break;
9362       }
9363 
9364       // Cand1 can't be better than Cand2.
9365       return false;
9366 
9367     case ImplicitConversionSequence::Indistinguishable:
9368       // Do nothing.
9369       break;
9370     }
9371   }
9372 
9373   //    -- for some argument j, ICSj(F1) is a better conversion sequence than
9374   //       ICSj(F2), or, if not that,
9375   if (HasBetterConversion)
9376     return true;
9377   if (HasWorseConversion)
9378     return false;
9379 
9380   //   -- the context is an initialization by user-defined conversion
9381   //      (see 8.5, 13.3.1.5) and the standard conversion sequence
9382   //      from the return type of F1 to the destination type (i.e.,
9383   //      the type of the entity being initialized) is a better
9384   //      conversion sequence than the standard conversion sequence
9385   //      from the return type of F2 to the destination type.
9386   if (Kind == OverloadCandidateSet::CSK_InitByUserDefinedConversion &&
9387       Cand1.Function && Cand2.Function &&
9388       isa<CXXConversionDecl>(Cand1.Function) &&
9389       isa<CXXConversionDecl>(Cand2.Function)) {
9390     // First check whether we prefer one of the conversion functions over the
9391     // other. This only distinguishes the results in non-standard, extension
9392     // cases such as the conversion from a lambda closure type to a function
9393     // pointer or block.
9394     ImplicitConversionSequence::CompareKind Result =
9395         compareConversionFunctions(S, Cand1.Function, Cand2.Function);
9396     if (Result == ImplicitConversionSequence::Indistinguishable)
9397       Result = CompareStandardConversionSequences(S, Loc,
9398                                                   Cand1.FinalConversion,
9399                                                   Cand2.FinalConversion);
9400 
9401     if (Result != ImplicitConversionSequence::Indistinguishable)
9402       return Result == ImplicitConversionSequence::Better;
9403 
9404     // FIXME: Compare kind of reference binding if conversion functions
9405     // convert to a reference type used in direct reference binding, per
9406     // C++14 [over.match.best]p1 section 2 bullet 3.
9407   }
9408 
9409   // FIXME: Work around a defect in the C++17 guaranteed copy elision wording,
9410   // as combined with the resolution to CWG issue 243.
9411   //
9412   // When the context is initialization by constructor ([over.match.ctor] or
9413   // either phase of [over.match.list]), a constructor is preferred over
9414   // a conversion function.
9415   if (Kind == OverloadCandidateSet::CSK_InitByConstructor && NumArgs == 1 &&
9416       Cand1.Function && Cand2.Function &&
9417       isa<CXXConstructorDecl>(Cand1.Function) !=
9418           isa<CXXConstructorDecl>(Cand2.Function))
9419     return isa<CXXConstructorDecl>(Cand1.Function);
9420 
9421   //    -- F1 is a non-template function and F2 is a function template
9422   //       specialization, or, if not that,
9423   bool Cand1IsSpecialization = Cand1.Function &&
9424                                Cand1.Function->getPrimaryTemplate();
9425   bool Cand2IsSpecialization = Cand2.Function &&
9426                                Cand2.Function->getPrimaryTemplate();
9427   if (Cand1IsSpecialization != Cand2IsSpecialization)
9428     return Cand2IsSpecialization;
9429 
9430   //   -- F1 and F2 are function template specializations, and the function
9431   //      template for F1 is more specialized than the template for F2
9432   //      according to the partial ordering rules described in 14.5.5.2, or,
9433   //      if not that,
9434   if (Cand1IsSpecialization && Cand2IsSpecialization) {
9435     if (FunctionTemplateDecl *BetterTemplate
9436           = S.getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(),
9437                                          Cand2.Function->getPrimaryTemplate(),
9438                                          Loc,
9439                        isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion
9440                                                              : TPOC_Call,
9441                                          Cand1.ExplicitCallArguments,
9442                                          Cand2.ExplicitCallArguments))
9443       return BetterTemplate == Cand1.Function->getPrimaryTemplate();
9444   }
9445 
9446   //   -- F1 is a constructor for a class D, F2 is a constructor for a base
9447   //      class B of D, and for all arguments the corresponding parameters of
9448   //      F1 and F2 have the same type.
9449   // FIXME: Implement the "all parameters have the same type" check.
9450   bool Cand1IsInherited =
9451       dyn_cast_or_null<ConstructorUsingShadowDecl>(Cand1.FoundDecl.getDecl());
9452   bool Cand2IsInherited =
9453       dyn_cast_or_null<ConstructorUsingShadowDecl>(Cand2.FoundDecl.getDecl());
9454   if (Cand1IsInherited != Cand2IsInherited)
9455     return Cand2IsInherited;
9456   else if (Cand1IsInherited) {
9457     assert(Cand2IsInherited);
9458     auto *Cand1Class = cast<CXXRecordDecl>(Cand1.Function->getDeclContext());
9459     auto *Cand2Class = cast<CXXRecordDecl>(Cand2.Function->getDeclContext());
9460     if (Cand1Class->isDerivedFrom(Cand2Class))
9461       return true;
9462     if (Cand2Class->isDerivedFrom(Cand1Class))
9463       return false;
9464     // Inherited from sibling base classes: still ambiguous.
9465   }
9466 
9467   //   -- F2 is a rewritten candidate (12.4.1.2) and F1 is not
9468   //   -- F1 and F2 are rewritten candidates, and F2 is a synthesized candidate
9469   //      with reversed order of parameters and F1 is not
9470   //
9471   // We rank reversed + different operator as worse than just reversed, but
9472   // that comparison can never happen, because we only consider reversing for
9473   // the maximally-rewritten operator (== or <=>).
9474   if (Cand1.RewriteKind != Cand2.RewriteKind)
9475     return Cand1.RewriteKind < Cand2.RewriteKind;
9476 
9477   // Check C++17 tie-breakers for deduction guides.
9478   {
9479     auto *Guide1 = dyn_cast_or_null<CXXDeductionGuideDecl>(Cand1.Function);
9480     auto *Guide2 = dyn_cast_or_null<CXXDeductionGuideDecl>(Cand2.Function);
9481     if (Guide1 && Guide2) {
9482       //  -- F1 is generated from a deduction-guide and F2 is not
9483       if (Guide1->isImplicit() != Guide2->isImplicit())
9484         return Guide2->isImplicit();
9485 
9486       //  -- F1 is the copy deduction candidate(16.3.1.8) and F2 is not
9487       if (Guide1->isCopyDeductionCandidate())
9488         return true;
9489     }
9490   }
9491 
9492   // Check for enable_if value-based overload resolution.
9493   if (Cand1.Function && Cand2.Function) {
9494     Comparison Cmp = compareEnableIfAttrs(S, Cand1.Function, Cand2.Function);
9495     if (Cmp != Comparison::Equal)
9496       return Cmp == Comparison::Better;
9497   }
9498 
9499   if (S.getLangOpts().CUDA && Cand1.Function && Cand2.Function) {
9500     FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext);
9501     return S.IdentifyCUDAPreference(Caller, Cand1.Function) >
9502            S.IdentifyCUDAPreference(Caller, Cand2.Function);
9503   }
9504 
9505   bool HasPS1 = Cand1.Function != nullptr &&
9506                 functionHasPassObjectSizeParams(Cand1.Function);
9507   bool HasPS2 = Cand2.Function != nullptr &&
9508                 functionHasPassObjectSizeParams(Cand2.Function);
9509   if (HasPS1 != HasPS2 && HasPS1)
9510     return true;
9511 
9512   return isBetterMultiversionCandidate(Cand1, Cand2);
9513 }
9514 
9515 /// Determine whether two declarations are "equivalent" for the purposes of
9516 /// name lookup and overload resolution. This applies when the same internal/no
9517 /// linkage entity is defined by two modules (probably by textually including
9518 /// the same header). In such a case, we don't consider the declarations to
9519 /// declare the same entity, but we also don't want lookups with both
9520 /// declarations visible to be ambiguous in some cases (this happens when using
9521 /// a modularized libstdc++).
9522 bool Sema::isEquivalentInternalLinkageDeclaration(const NamedDecl *A,
9523                                                   const NamedDecl *B) {
9524   auto *VA = dyn_cast_or_null<ValueDecl>(A);
9525   auto *VB = dyn_cast_or_null<ValueDecl>(B);
9526   if (!VA || !VB)
9527     return false;
9528 
9529   // The declarations must be declaring the same name as an internal linkage
9530   // entity in different modules.
9531   if (!VA->getDeclContext()->getRedeclContext()->Equals(
9532           VB->getDeclContext()->getRedeclContext()) ||
9533       getOwningModule(const_cast<ValueDecl *>(VA)) ==
9534           getOwningModule(const_cast<ValueDecl *>(VB)) ||
9535       VA->isExternallyVisible() || VB->isExternallyVisible())
9536     return false;
9537 
9538   // Check that the declarations appear to be equivalent.
9539   //
9540   // FIXME: Checking the type isn't really enough to resolve the ambiguity.
9541   // For constants and functions, we should check the initializer or body is
9542   // the same. For non-constant variables, we shouldn't allow it at all.
9543   if (Context.hasSameType(VA->getType(), VB->getType()))
9544     return true;
9545 
9546   // Enum constants within unnamed enumerations will have different types, but
9547   // may still be similar enough to be interchangeable for our purposes.
9548   if (auto *EA = dyn_cast<EnumConstantDecl>(VA)) {
9549     if (auto *EB = dyn_cast<EnumConstantDecl>(VB)) {
9550       // Only handle anonymous enums. If the enumerations were named and
9551       // equivalent, they would have been merged to the same type.
9552       auto *EnumA = cast<EnumDecl>(EA->getDeclContext());
9553       auto *EnumB = cast<EnumDecl>(EB->getDeclContext());
9554       if (EnumA->hasNameForLinkage() || EnumB->hasNameForLinkage() ||
9555           !Context.hasSameType(EnumA->getIntegerType(),
9556                                EnumB->getIntegerType()))
9557         return false;
9558       // Allow this only if the value is the same for both enumerators.
9559       return llvm::APSInt::isSameValue(EA->getInitVal(), EB->getInitVal());
9560     }
9561   }
9562 
9563   // Nothing else is sufficiently similar.
9564   return false;
9565 }
9566 
9567 void Sema::diagnoseEquivalentInternalLinkageDeclarations(
9568     SourceLocation Loc, const NamedDecl *D, ArrayRef<const NamedDecl *> Equiv) {
9569   Diag(Loc, diag::ext_equivalent_internal_linkage_decl_in_modules) << D;
9570 
9571   Module *M = getOwningModule(const_cast<NamedDecl*>(D));
9572   Diag(D->getLocation(), diag::note_equivalent_internal_linkage_decl)
9573       << !M << (M ? M->getFullModuleName() : "");
9574 
9575   for (auto *E : Equiv) {
9576     Module *M = getOwningModule(const_cast<NamedDecl*>(E));
9577     Diag(E->getLocation(), diag::note_equivalent_internal_linkage_decl)
9578         << !M << (M ? M->getFullModuleName() : "");
9579   }
9580 }
9581 
9582 /// Computes the best viable function (C++ 13.3.3)
9583 /// within an overload candidate set.
9584 ///
9585 /// \param Loc The location of the function name (or operator symbol) for
9586 /// which overload resolution occurs.
9587 ///
9588 /// \param Best If overload resolution was successful or found a deleted
9589 /// function, \p Best points to the candidate function found.
9590 ///
9591 /// \returns The result of overload resolution.
9592 OverloadingResult
9593 OverloadCandidateSet::BestViableFunction(Sema &S, SourceLocation Loc,
9594                                          iterator &Best) {
9595   llvm::SmallVector<OverloadCandidate *, 16> Candidates;
9596   std::transform(begin(), end(), std::back_inserter(Candidates),
9597                  [](OverloadCandidate &Cand) { return &Cand; });
9598 
9599   // [CUDA] HD->H or HD->D calls are technically not allowed by CUDA but
9600   // are accepted by both clang and NVCC. However, during a particular
9601   // compilation mode only one call variant is viable. We need to
9602   // exclude non-viable overload candidates from consideration based
9603   // only on their host/device attributes. Specifically, if one
9604   // candidate call is WrongSide and the other is SameSide, we ignore
9605   // the WrongSide candidate.
9606   if (S.getLangOpts().CUDA) {
9607     const FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext);
9608     bool ContainsSameSideCandidate =
9609         llvm::any_of(Candidates, [&](OverloadCandidate *Cand) {
9610           // Check viable function only.
9611           return Cand->Viable && Cand->Function &&
9612                  S.IdentifyCUDAPreference(Caller, Cand->Function) ==
9613                      Sema::CFP_SameSide;
9614         });
9615     if (ContainsSameSideCandidate) {
9616       auto IsWrongSideCandidate = [&](OverloadCandidate *Cand) {
9617         // Check viable function only to avoid unnecessary data copying/moving.
9618         return Cand->Viable && Cand->Function &&
9619                S.IdentifyCUDAPreference(Caller, Cand->Function) ==
9620                    Sema::CFP_WrongSide;
9621       };
9622       llvm::erase_if(Candidates, IsWrongSideCandidate);
9623     }
9624   }
9625 
9626   // Find the best viable function.
9627   Best = end();
9628   for (auto *Cand : Candidates) {
9629     Cand->Best = false;
9630     if (Cand->Viable)
9631       if (Best == end() ||
9632           isBetterOverloadCandidate(S, *Cand, *Best, Loc, Kind))
9633         Best = Cand;
9634   }
9635 
9636   // If we didn't find any viable functions, abort.
9637   if (Best == end())
9638     return OR_No_Viable_Function;
9639 
9640   llvm::SmallVector<const NamedDecl *, 4> EquivalentCands;
9641 
9642   llvm::SmallVector<OverloadCandidate*, 4> PendingBest;
9643   PendingBest.push_back(&*Best);
9644   Best->Best = true;
9645 
9646   // Make sure that this function is better than every other viable
9647   // function. If not, we have an ambiguity.
9648   while (!PendingBest.empty()) {
9649     auto *Curr = PendingBest.pop_back_val();
9650     for (auto *Cand : Candidates) {
9651       if (Cand->Viable && !Cand->Best &&
9652           !isBetterOverloadCandidate(S, *Curr, *Cand, Loc, Kind)) {
9653         PendingBest.push_back(Cand);
9654         Cand->Best = true;
9655 
9656         if (S.isEquivalentInternalLinkageDeclaration(Cand->Function,
9657                                                      Curr->Function))
9658           EquivalentCands.push_back(Cand->Function);
9659         else
9660           Best = end();
9661       }
9662     }
9663   }
9664 
9665   // If we found more than one best candidate, this is ambiguous.
9666   if (Best == end())
9667     return OR_Ambiguous;
9668 
9669   // Best is the best viable function.
9670   if (Best->Function && Best->Function->isDeleted())
9671     return OR_Deleted;
9672 
9673   if (!EquivalentCands.empty())
9674     S.diagnoseEquivalentInternalLinkageDeclarations(Loc, Best->Function,
9675                                                     EquivalentCands);
9676 
9677   return OR_Success;
9678 }
9679 
9680 namespace {
9681 
9682 enum OverloadCandidateKind {
9683   oc_function,
9684   oc_method,
9685   oc_reversed_binary_operator,
9686   oc_constructor,
9687   oc_implicit_default_constructor,
9688   oc_implicit_copy_constructor,
9689   oc_implicit_move_constructor,
9690   oc_implicit_copy_assignment,
9691   oc_implicit_move_assignment,
9692   oc_inherited_constructor
9693 };
9694 
9695 enum OverloadCandidateSelect {
9696   ocs_non_template,
9697   ocs_template,
9698   ocs_described_template,
9699 };
9700 
9701 static std::pair<OverloadCandidateKind, OverloadCandidateSelect>
9702 ClassifyOverloadCandidate(Sema &S, NamedDecl *Found, FunctionDecl *Fn,
9703                           OverloadCandidateRewriteKind CRK,
9704                           std::string &Description) {
9705 
9706   bool isTemplate = Fn->isTemplateDecl() || Found->isTemplateDecl();
9707   if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) {
9708     isTemplate = true;
9709     Description = S.getTemplateArgumentBindingsText(
9710         FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs());
9711   }
9712 
9713   OverloadCandidateSelect Select = [&]() {
9714     if (!Description.empty())
9715       return ocs_described_template;
9716     return isTemplate ? ocs_template : ocs_non_template;
9717   }();
9718 
9719   OverloadCandidateKind Kind = [&]() {
9720     if (CRK & CRK_Reversed)
9721       return oc_reversed_binary_operator;
9722 
9723     if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) {
9724       if (!Ctor->isImplicit()) {
9725         if (isa<ConstructorUsingShadowDecl>(Found))
9726           return oc_inherited_constructor;
9727         else
9728           return oc_constructor;
9729       }
9730 
9731       if (Ctor->isDefaultConstructor())
9732         return oc_implicit_default_constructor;
9733 
9734       if (Ctor->isMoveConstructor())
9735         return oc_implicit_move_constructor;
9736 
9737       assert(Ctor->isCopyConstructor() &&
9738              "unexpected sort of implicit constructor");
9739       return oc_implicit_copy_constructor;
9740     }
9741 
9742     if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) {
9743       // This actually gets spelled 'candidate function' for now, but
9744       // it doesn't hurt to split it out.
9745       if (!Meth->isImplicit())
9746         return oc_method;
9747 
9748       if (Meth->isMoveAssignmentOperator())
9749         return oc_implicit_move_assignment;
9750 
9751       if (Meth->isCopyAssignmentOperator())
9752         return oc_implicit_copy_assignment;
9753 
9754       assert(isa<CXXConversionDecl>(Meth) && "expected conversion");
9755       return oc_method;
9756     }
9757 
9758     return oc_function;
9759   }();
9760 
9761   return std::make_pair(Kind, Select);
9762 }
9763 
9764 void MaybeEmitInheritedConstructorNote(Sema &S, Decl *FoundDecl) {
9765   // FIXME: It'd be nice to only emit a note once per using-decl per overload
9766   // set.
9767   if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(FoundDecl))
9768     S.Diag(FoundDecl->getLocation(),
9769            diag::note_ovl_candidate_inherited_constructor)
9770       << Shadow->getNominatedBaseClass();
9771 }
9772 
9773 } // end anonymous namespace
9774 
9775 static bool isFunctionAlwaysEnabled(const ASTContext &Ctx,
9776                                     const FunctionDecl *FD) {
9777   for (auto *EnableIf : FD->specific_attrs<EnableIfAttr>()) {
9778     bool AlwaysTrue;
9779     if (EnableIf->getCond()->isValueDependent() ||
9780         !EnableIf->getCond()->EvaluateAsBooleanCondition(AlwaysTrue, Ctx))
9781       return false;
9782     if (!AlwaysTrue)
9783       return false;
9784   }
9785   return true;
9786 }
9787 
9788 /// Returns true if we can take the address of the function.
9789 ///
9790 /// \param Complain - If true, we'll emit a diagnostic
9791 /// \param InOverloadResolution - For the purposes of emitting a diagnostic, are
9792 ///   we in overload resolution?
9793 /// \param Loc - The location of the statement we're complaining about. Ignored
9794 ///   if we're not complaining, or if we're in overload resolution.
9795 static bool checkAddressOfFunctionIsAvailable(Sema &S, const FunctionDecl *FD,
9796                                               bool Complain,
9797                                               bool InOverloadResolution,
9798                                               SourceLocation Loc) {
9799   if (!isFunctionAlwaysEnabled(S.Context, FD)) {
9800     if (Complain) {
9801       if (InOverloadResolution)
9802         S.Diag(FD->getBeginLoc(),
9803                diag::note_addrof_ovl_candidate_disabled_by_enable_if_attr);
9804       else
9805         S.Diag(Loc, diag::err_addrof_function_disabled_by_enable_if_attr) << FD;
9806     }
9807     return false;
9808   }
9809 
9810   auto I = llvm::find_if(FD->parameters(), [](const ParmVarDecl *P) {
9811     return P->hasAttr<PassObjectSizeAttr>();
9812   });
9813   if (I == FD->param_end())
9814     return true;
9815 
9816   if (Complain) {
9817     // Add one to ParamNo because it's user-facing
9818     unsigned ParamNo = std::distance(FD->param_begin(), I) + 1;
9819     if (InOverloadResolution)
9820       S.Diag(FD->getLocation(),
9821              diag::note_ovl_candidate_has_pass_object_size_params)
9822           << ParamNo;
9823     else
9824       S.Diag(Loc, diag::err_address_of_function_with_pass_object_size_params)
9825           << FD << ParamNo;
9826   }
9827   return false;
9828 }
9829 
9830 static bool checkAddressOfCandidateIsAvailable(Sema &S,
9831                                                const FunctionDecl *FD) {
9832   return checkAddressOfFunctionIsAvailable(S, FD, /*Complain=*/true,
9833                                            /*InOverloadResolution=*/true,
9834                                            /*Loc=*/SourceLocation());
9835 }
9836 
9837 bool Sema::checkAddressOfFunctionIsAvailable(const FunctionDecl *Function,
9838                                              bool Complain,
9839                                              SourceLocation Loc) {
9840   return ::checkAddressOfFunctionIsAvailable(*this, Function, Complain,
9841                                              /*InOverloadResolution=*/false,
9842                                              Loc);
9843 }
9844 
9845 // Notes the location of an overload candidate.
9846 void Sema::NoteOverloadCandidate(NamedDecl *Found, FunctionDecl *Fn,
9847                                  OverloadCandidateRewriteKind RewriteKind,
9848                                  QualType DestType, bool TakingAddress) {
9849   if (TakingAddress && !checkAddressOfCandidateIsAvailable(*this, Fn))
9850     return;
9851   if (Fn->isMultiVersion() && Fn->hasAttr<TargetAttr>() &&
9852       !Fn->getAttr<TargetAttr>()->isDefaultVersion())
9853     return;
9854 
9855   std::string FnDesc;
9856   std::pair<OverloadCandidateKind, OverloadCandidateSelect> KSPair =
9857       ClassifyOverloadCandidate(*this, Found, Fn, RewriteKind, FnDesc);
9858   PartialDiagnostic PD = PDiag(diag::note_ovl_candidate)
9859                          << (unsigned)KSPair.first << (unsigned)KSPair.second
9860                          << Fn << FnDesc;
9861 
9862   HandleFunctionTypeMismatch(PD, Fn->getType(), DestType);
9863   Diag(Fn->getLocation(), PD);
9864   MaybeEmitInheritedConstructorNote(*this, Found);
9865 }
9866 
9867 // Notes the location of all overload candidates designated through
9868 // OverloadedExpr
9869 void Sema::NoteAllOverloadCandidates(Expr *OverloadedExpr, QualType DestType,
9870                                      bool TakingAddress) {
9871   assert(OverloadedExpr->getType() == Context.OverloadTy);
9872 
9873   OverloadExpr::FindResult Ovl = OverloadExpr::find(OverloadedExpr);
9874   OverloadExpr *OvlExpr = Ovl.Expression;
9875 
9876   for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
9877                             IEnd = OvlExpr->decls_end();
9878        I != IEnd; ++I) {
9879     if (FunctionTemplateDecl *FunTmpl =
9880                 dyn_cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()) ) {
9881       NoteOverloadCandidate(*I, FunTmpl->getTemplatedDecl(), CRK_None, DestType,
9882                             TakingAddress);
9883     } else if (FunctionDecl *Fun
9884                       = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()) ) {
9885       NoteOverloadCandidate(*I, Fun, CRK_None, DestType, TakingAddress);
9886     }
9887   }
9888 }
9889 
9890 /// Diagnoses an ambiguous conversion.  The partial diagnostic is the
9891 /// "lead" diagnostic; it will be given two arguments, the source and
9892 /// target types of the conversion.
9893 void ImplicitConversionSequence::DiagnoseAmbiguousConversion(
9894                                  Sema &S,
9895                                  SourceLocation CaretLoc,
9896                                  const PartialDiagnostic &PDiag) const {
9897   S.Diag(CaretLoc, PDiag)
9898     << Ambiguous.getFromType() << Ambiguous.getToType();
9899   // FIXME: The note limiting machinery is borrowed from
9900   // OverloadCandidateSet::NoteCandidates; there's an opportunity for
9901   // refactoring here.
9902   const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
9903   unsigned CandsShown = 0;
9904   AmbiguousConversionSequence::const_iterator I, E;
9905   for (I = Ambiguous.begin(), E = Ambiguous.end(); I != E; ++I) {
9906     if (CandsShown >= 4 && ShowOverloads == Ovl_Best)
9907       break;
9908     ++CandsShown;
9909     S.NoteOverloadCandidate(I->first, I->second);
9910   }
9911   if (I != E)
9912     S.Diag(SourceLocation(), diag::note_ovl_too_many_candidates) << int(E - I);
9913 }
9914 
9915 static void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand,
9916                                   unsigned I, bool TakingCandidateAddress) {
9917   const ImplicitConversionSequence &Conv = Cand->Conversions[I];
9918   assert(Conv.isBad());
9919   assert(Cand->Function && "for now, candidate must be a function");
9920   FunctionDecl *Fn = Cand->Function;
9921 
9922   // There's a conversion slot for the object argument if this is a
9923   // non-constructor method.  Note that 'I' corresponds the
9924   // conversion-slot index.
9925   bool isObjectArgument = false;
9926   if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) {
9927     if (I == 0)
9928       isObjectArgument = true;
9929     else
9930       I--;
9931   }
9932 
9933   std::string FnDesc;
9934   std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair =
9935       ClassifyOverloadCandidate(S, Cand->FoundDecl, Fn, Cand->RewriteKind,
9936                                 FnDesc);
9937 
9938   Expr *FromExpr = Conv.Bad.FromExpr;
9939   QualType FromTy = Conv.Bad.getFromType();
9940   QualType ToTy = Conv.Bad.getToType();
9941 
9942   if (FromTy == S.Context.OverloadTy) {
9943     assert(FromExpr && "overload set argument came from implicit argument?");
9944     Expr *E = FromExpr->IgnoreParens();
9945     if (isa<UnaryOperator>(E))
9946       E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
9947     DeclarationName Name = cast<OverloadExpr>(E)->getName();
9948 
9949     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload)
9950         << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
9951         << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << ToTy
9952         << Name << I + 1;
9953     MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9954     return;
9955   }
9956 
9957   // Do some hand-waving analysis to see if the non-viability is due
9958   // to a qualifier mismatch.
9959   CanQualType CFromTy = S.Context.getCanonicalType(FromTy);
9960   CanQualType CToTy = S.Context.getCanonicalType(ToTy);
9961   if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>())
9962     CToTy = RT->getPointeeType();
9963   else {
9964     // TODO: detect and diagnose the full richness of const mismatches.
9965     if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>())
9966       if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>()) {
9967         CFromTy = FromPT->getPointeeType();
9968         CToTy = ToPT->getPointeeType();
9969       }
9970   }
9971 
9972   if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() &&
9973       !CToTy.isAtLeastAsQualifiedAs(CFromTy)) {
9974     Qualifiers FromQs = CFromTy.getQualifiers();
9975     Qualifiers ToQs = CToTy.getQualifiers();
9976 
9977     if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) {
9978       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace)
9979           << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
9980           << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
9981           << ToTy << (unsigned)isObjectArgument << I + 1;
9982       MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9983       return;
9984     }
9985 
9986     if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
9987       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_ownership)
9988           << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
9989           << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
9990           << FromQs.getObjCLifetime() << ToQs.getObjCLifetime()
9991           << (unsigned)isObjectArgument << I + 1;
9992       MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9993       return;
9994     }
9995 
9996     if (FromQs.getObjCGCAttr() != ToQs.getObjCGCAttr()) {
9997       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_gc)
9998           << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
9999           << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
10000           << FromQs.getObjCGCAttr() << ToQs.getObjCGCAttr()
10001           << (unsigned)isObjectArgument << I + 1;
10002       MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10003       return;
10004     }
10005 
10006     if (FromQs.hasUnaligned() != ToQs.hasUnaligned()) {
10007       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_unaligned)
10008           << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10009           << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
10010           << FromQs.hasUnaligned() << I + 1;
10011       MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10012       return;
10013     }
10014 
10015     unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
10016     assert(CVR && "unexpected qualifiers mismatch");
10017 
10018     if (isObjectArgument) {
10019       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this)
10020           << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10021           << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
10022           << (CVR - 1);
10023     } else {
10024       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr)
10025           << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10026           << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
10027           << (CVR - 1) << I + 1;
10028     }
10029     MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10030     return;
10031   }
10032 
10033   // Special diagnostic for failure to convert an initializer list, since
10034   // telling the user that it has type void is not useful.
10035   if (FromExpr && isa<InitListExpr>(FromExpr)) {
10036     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_list_argument)
10037         << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10038         << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
10039         << ToTy << (unsigned)isObjectArgument << I + 1;
10040     MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10041     return;
10042   }
10043 
10044   // Diagnose references or pointers to incomplete types differently,
10045   // since it's far from impossible that the incompleteness triggered
10046   // the failure.
10047   QualType TempFromTy = FromTy.getNonReferenceType();
10048   if (const PointerType *PTy = TempFromTy->getAs<PointerType>())
10049     TempFromTy = PTy->getPointeeType();
10050   if (TempFromTy->isIncompleteType()) {
10051     // Emit the generic diagnostic and, optionally, add the hints to it.
10052     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete)
10053         << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10054         << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
10055         << ToTy << (unsigned)isObjectArgument << I + 1
10056         << (unsigned)(Cand->Fix.Kind);
10057 
10058     MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10059     return;
10060   }
10061 
10062   // Diagnose base -> derived pointer conversions.
10063   unsigned BaseToDerivedConversion = 0;
10064   if (const PointerType *FromPtrTy = FromTy->getAs<PointerType>()) {
10065     if (const PointerType *ToPtrTy = ToTy->getAs<PointerType>()) {
10066       if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
10067                                                FromPtrTy->getPointeeType()) &&
10068           !FromPtrTy->getPointeeType()->isIncompleteType() &&
10069           !ToPtrTy->getPointeeType()->isIncompleteType() &&
10070           S.IsDerivedFrom(SourceLocation(), ToPtrTy->getPointeeType(),
10071                           FromPtrTy->getPointeeType()))
10072         BaseToDerivedConversion = 1;
10073     }
10074   } else if (const ObjCObjectPointerType *FromPtrTy
10075                                     = FromTy->getAs<ObjCObjectPointerType>()) {
10076     if (const ObjCObjectPointerType *ToPtrTy
10077                                         = ToTy->getAs<ObjCObjectPointerType>())
10078       if (const ObjCInterfaceDecl *FromIface = FromPtrTy->getInterfaceDecl())
10079         if (const ObjCInterfaceDecl *ToIface = ToPtrTy->getInterfaceDecl())
10080           if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
10081                                                 FromPtrTy->getPointeeType()) &&
10082               FromIface->isSuperClassOf(ToIface))
10083             BaseToDerivedConversion = 2;
10084   } else if (const ReferenceType *ToRefTy = ToTy->getAs<ReferenceType>()) {
10085     if (ToRefTy->getPointeeType().isAtLeastAsQualifiedAs(FromTy) &&
10086         !FromTy->isIncompleteType() &&
10087         !ToRefTy->getPointeeType()->isIncompleteType() &&
10088         S.IsDerivedFrom(SourceLocation(), ToRefTy->getPointeeType(), FromTy)) {
10089       BaseToDerivedConversion = 3;
10090     } else if (ToTy->isLValueReferenceType() && !FromExpr->isLValue() &&
10091                ToTy.getNonReferenceType().getCanonicalType() ==
10092                FromTy.getNonReferenceType().getCanonicalType()) {
10093       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_lvalue)
10094           << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10095           << (unsigned)isObjectArgument << I + 1
10096           << (FromExpr ? FromExpr->getSourceRange() : SourceRange());
10097       MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10098       return;
10099     }
10100   }
10101 
10102   if (BaseToDerivedConversion) {
10103     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_base_to_derived_conv)
10104         << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10105         << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
10106         << (BaseToDerivedConversion - 1) << FromTy << ToTy << I + 1;
10107     MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10108     return;
10109   }
10110 
10111   if (isa<ObjCObjectPointerType>(CFromTy) &&
10112       isa<PointerType>(CToTy)) {
10113       Qualifiers FromQs = CFromTy.getQualifiers();
10114       Qualifiers ToQs = CToTy.getQualifiers();
10115       if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
10116         S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_arc_conv)
10117             << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second
10118             << FnDesc << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
10119             << FromTy << ToTy << (unsigned)isObjectArgument << I + 1;
10120         MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10121         return;
10122       }
10123   }
10124 
10125   if (TakingCandidateAddress &&
10126       !checkAddressOfCandidateIsAvailable(S, Cand->Function))
10127     return;
10128 
10129   // Emit the generic diagnostic and, optionally, add the hints to it.
10130   PartialDiagnostic FDiag = S.PDiag(diag::note_ovl_candidate_bad_conv);
10131   FDiag << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10132         << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
10133         << ToTy << (unsigned)isObjectArgument << I + 1
10134         << (unsigned)(Cand->Fix.Kind);
10135 
10136   // If we can fix the conversion, suggest the FixIts.
10137   for (std::vector<FixItHint>::iterator HI = Cand->Fix.Hints.begin(),
10138        HE = Cand->Fix.Hints.end(); HI != HE; ++HI)
10139     FDiag << *HI;
10140   S.Diag(Fn->getLocation(), FDiag);
10141 
10142   MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10143 }
10144 
10145 /// Additional arity mismatch diagnosis specific to a function overload
10146 /// candidates. This is not covered by the more general DiagnoseArityMismatch()
10147 /// over a candidate in any candidate set.
10148 static bool CheckArityMismatch(Sema &S, OverloadCandidate *Cand,
10149                                unsigned NumArgs) {
10150   FunctionDecl *Fn = Cand->Function;
10151   unsigned MinParams = Fn->getMinRequiredArguments();
10152 
10153   // With invalid overloaded operators, it's possible that we think we
10154   // have an arity mismatch when in fact it looks like we have the
10155   // right number of arguments, because only overloaded operators have
10156   // the weird behavior of overloading member and non-member functions.
10157   // Just don't report anything.
10158   if (Fn->isInvalidDecl() &&
10159       Fn->getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
10160     return true;
10161 
10162   if (NumArgs < MinParams) {
10163     assert((Cand->FailureKind == ovl_fail_too_few_arguments) ||
10164            (Cand->FailureKind == ovl_fail_bad_deduction &&
10165             Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments));
10166   } else {
10167     assert((Cand->FailureKind == ovl_fail_too_many_arguments) ||
10168            (Cand->FailureKind == ovl_fail_bad_deduction &&
10169             Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments));
10170   }
10171 
10172   return false;
10173 }
10174 
10175 /// General arity mismatch diagnosis over a candidate in a candidate set.
10176 static void DiagnoseArityMismatch(Sema &S, NamedDecl *Found, Decl *D,
10177                                   unsigned NumFormalArgs) {
10178   assert(isa<FunctionDecl>(D) &&
10179       "The templated declaration should at least be a function"
10180       " when diagnosing bad template argument deduction due to too many"
10181       " or too few arguments");
10182 
10183   FunctionDecl *Fn = cast<FunctionDecl>(D);
10184 
10185   // TODO: treat calls to a missing default constructor as a special case
10186   const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>();
10187   unsigned MinParams = Fn->getMinRequiredArguments();
10188 
10189   // at least / at most / exactly
10190   unsigned mode, modeCount;
10191   if (NumFormalArgs < MinParams) {
10192     if (MinParams != FnTy->getNumParams() || FnTy->isVariadic() ||
10193         FnTy->isTemplateVariadic())
10194       mode = 0; // "at least"
10195     else
10196       mode = 2; // "exactly"
10197     modeCount = MinParams;
10198   } else {
10199     if (MinParams != FnTy->getNumParams())
10200       mode = 1; // "at most"
10201     else
10202       mode = 2; // "exactly"
10203     modeCount = FnTy->getNumParams();
10204   }
10205 
10206   std::string Description;
10207   std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair =
10208       ClassifyOverloadCandidate(S, Found, Fn, CRK_None, Description);
10209 
10210   if (modeCount == 1 && Fn->getParamDecl(0)->getDeclName())
10211     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity_one)
10212         << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second
10213         << Description << mode << Fn->getParamDecl(0) << NumFormalArgs;
10214   else
10215     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity)
10216         << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second
10217         << Description << mode << modeCount << NumFormalArgs;
10218 
10219   MaybeEmitInheritedConstructorNote(S, Found);
10220 }
10221 
10222 /// Arity mismatch diagnosis specific to a function overload candidate.
10223 static void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand,
10224                                   unsigned NumFormalArgs) {
10225   if (!CheckArityMismatch(S, Cand, NumFormalArgs))
10226     DiagnoseArityMismatch(S, Cand->FoundDecl, Cand->Function, NumFormalArgs);
10227 }
10228 
10229 static TemplateDecl *getDescribedTemplate(Decl *Templated) {
10230   if (TemplateDecl *TD = Templated->getDescribedTemplate())
10231     return TD;
10232   llvm_unreachable("Unsupported: Getting the described template declaration"
10233                    " for bad deduction diagnosis");
10234 }
10235 
10236 /// Diagnose a failed template-argument deduction.
10237 static void DiagnoseBadDeduction(Sema &S, NamedDecl *Found, Decl *Templated,
10238                                  DeductionFailureInfo &DeductionFailure,
10239                                  unsigned NumArgs,
10240                                  bool TakingCandidateAddress) {
10241   TemplateParameter Param = DeductionFailure.getTemplateParameter();
10242   NamedDecl *ParamD;
10243   (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) ||
10244   (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) ||
10245   (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>());
10246   switch (DeductionFailure.Result) {
10247   case Sema::TDK_Success:
10248     llvm_unreachable("TDK_success while diagnosing bad deduction");
10249 
10250   case Sema::TDK_Incomplete: {
10251     assert(ParamD && "no parameter found for incomplete deduction result");
10252     S.Diag(Templated->getLocation(),
10253            diag::note_ovl_candidate_incomplete_deduction)
10254         << ParamD->getDeclName();
10255     MaybeEmitInheritedConstructorNote(S, Found);
10256     return;
10257   }
10258 
10259   case Sema::TDK_IncompletePack: {
10260     assert(ParamD && "no parameter found for incomplete deduction result");
10261     S.Diag(Templated->getLocation(),
10262            diag::note_ovl_candidate_incomplete_deduction_pack)
10263         << ParamD->getDeclName()
10264         << (DeductionFailure.getFirstArg()->pack_size() + 1)
10265         << *DeductionFailure.getFirstArg();
10266     MaybeEmitInheritedConstructorNote(S, Found);
10267     return;
10268   }
10269 
10270   case Sema::TDK_Underqualified: {
10271     assert(ParamD && "no parameter found for bad qualifiers deduction result");
10272     TemplateTypeParmDecl *TParam = cast<TemplateTypeParmDecl>(ParamD);
10273 
10274     QualType Param = DeductionFailure.getFirstArg()->getAsType();
10275 
10276     // Param will have been canonicalized, but it should just be a
10277     // qualified version of ParamD, so move the qualifiers to that.
10278     QualifierCollector Qs;
10279     Qs.strip(Param);
10280     QualType NonCanonParam = Qs.apply(S.Context, TParam->getTypeForDecl());
10281     assert(S.Context.hasSameType(Param, NonCanonParam));
10282 
10283     // Arg has also been canonicalized, but there's nothing we can do
10284     // about that.  It also doesn't matter as much, because it won't
10285     // have any template parameters in it (because deduction isn't
10286     // done on dependent types).
10287     QualType Arg = DeductionFailure.getSecondArg()->getAsType();
10288 
10289     S.Diag(Templated->getLocation(), diag::note_ovl_candidate_underqualified)
10290         << ParamD->getDeclName() << Arg << NonCanonParam;
10291     MaybeEmitInheritedConstructorNote(S, Found);
10292     return;
10293   }
10294 
10295   case Sema::TDK_Inconsistent: {
10296     assert(ParamD && "no parameter found for inconsistent deduction result");
10297     int which = 0;
10298     if (isa<TemplateTypeParmDecl>(ParamD))
10299       which = 0;
10300     else if (isa<NonTypeTemplateParmDecl>(ParamD)) {
10301       // Deduction might have failed because we deduced arguments of two
10302       // different types for a non-type template parameter.
10303       // FIXME: Use a different TDK value for this.
10304       QualType T1 =
10305           DeductionFailure.getFirstArg()->getNonTypeTemplateArgumentType();
10306       QualType T2 =
10307           DeductionFailure.getSecondArg()->getNonTypeTemplateArgumentType();
10308       if (!T1.isNull() && !T2.isNull() && !S.Context.hasSameType(T1, T2)) {
10309         S.Diag(Templated->getLocation(),
10310                diag::note_ovl_candidate_inconsistent_deduction_types)
10311           << ParamD->getDeclName() << *DeductionFailure.getFirstArg() << T1
10312           << *DeductionFailure.getSecondArg() << T2;
10313         MaybeEmitInheritedConstructorNote(S, Found);
10314         return;
10315       }
10316 
10317       which = 1;
10318     } else {
10319       which = 2;
10320     }
10321 
10322     S.Diag(Templated->getLocation(),
10323            diag::note_ovl_candidate_inconsistent_deduction)
10324         << which << ParamD->getDeclName() << *DeductionFailure.getFirstArg()
10325         << *DeductionFailure.getSecondArg();
10326     MaybeEmitInheritedConstructorNote(S, Found);
10327     return;
10328   }
10329 
10330   case Sema::TDK_InvalidExplicitArguments:
10331     assert(ParamD && "no parameter found for invalid explicit arguments");
10332     if (ParamD->getDeclName())
10333       S.Diag(Templated->getLocation(),
10334              diag::note_ovl_candidate_explicit_arg_mismatch_named)
10335           << ParamD->getDeclName();
10336     else {
10337       int index = 0;
10338       if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD))
10339         index = TTP->getIndex();
10340       else if (NonTypeTemplateParmDecl *NTTP
10341                                   = dyn_cast<NonTypeTemplateParmDecl>(ParamD))
10342         index = NTTP->getIndex();
10343       else
10344         index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex();
10345       S.Diag(Templated->getLocation(),
10346              diag::note_ovl_candidate_explicit_arg_mismatch_unnamed)
10347           << (index + 1);
10348     }
10349     MaybeEmitInheritedConstructorNote(S, Found);
10350     return;
10351 
10352   case Sema::TDK_TooManyArguments:
10353   case Sema::TDK_TooFewArguments:
10354     DiagnoseArityMismatch(S, Found, Templated, NumArgs);
10355     return;
10356 
10357   case Sema::TDK_InstantiationDepth:
10358     S.Diag(Templated->getLocation(),
10359            diag::note_ovl_candidate_instantiation_depth);
10360     MaybeEmitInheritedConstructorNote(S, Found);
10361     return;
10362 
10363   case Sema::TDK_SubstitutionFailure: {
10364     // Format the template argument list into the argument string.
10365     SmallString<128> TemplateArgString;
10366     if (TemplateArgumentList *Args =
10367             DeductionFailure.getTemplateArgumentList()) {
10368       TemplateArgString = " ";
10369       TemplateArgString += S.getTemplateArgumentBindingsText(
10370           getDescribedTemplate(Templated)->getTemplateParameters(), *Args);
10371     }
10372 
10373     // If this candidate was disabled by enable_if, say so.
10374     PartialDiagnosticAt *PDiag = DeductionFailure.getSFINAEDiagnostic();
10375     if (PDiag && PDiag->second.getDiagID() ==
10376           diag::err_typename_nested_not_found_enable_if) {
10377       // FIXME: Use the source range of the condition, and the fully-qualified
10378       //        name of the enable_if template. These are both present in PDiag.
10379       S.Diag(PDiag->first, diag::note_ovl_candidate_disabled_by_enable_if)
10380         << "'enable_if'" << TemplateArgString;
10381       return;
10382     }
10383 
10384     // We found a specific requirement that disabled the enable_if.
10385     if (PDiag && PDiag->second.getDiagID() ==
10386         diag::err_typename_nested_not_found_requirement) {
10387       S.Diag(Templated->getLocation(),
10388              diag::note_ovl_candidate_disabled_by_requirement)
10389         << PDiag->second.getStringArg(0) << TemplateArgString;
10390       return;
10391     }
10392 
10393     // Format the SFINAE diagnostic into the argument string.
10394     // FIXME: Add a general mechanism to include a PartialDiagnostic *'s
10395     //        formatted message in another diagnostic.
10396     SmallString<128> SFINAEArgString;
10397     SourceRange R;
10398     if (PDiag) {
10399       SFINAEArgString = ": ";
10400       R = SourceRange(PDiag->first, PDiag->first);
10401       PDiag->second.EmitToString(S.getDiagnostics(), SFINAEArgString);
10402     }
10403 
10404     S.Diag(Templated->getLocation(),
10405            diag::note_ovl_candidate_substitution_failure)
10406         << TemplateArgString << SFINAEArgString << R;
10407     MaybeEmitInheritedConstructorNote(S, Found);
10408     return;
10409   }
10410 
10411   case Sema::TDK_DeducedMismatch:
10412   case Sema::TDK_DeducedMismatchNested: {
10413     // Format the template argument list into the argument string.
10414     SmallString<128> TemplateArgString;
10415     if (TemplateArgumentList *Args =
10416             DeductionFailure.getTemplateArgumentList()) {
10417       TemplateArgString = " ";
10418       TemplateArgString += S.getTemplateArgumentBindingsText(
10419           getDescribedTemplate(Templated)->getTemplateParameters(), *Args);
10420     }
10421 
10422     S.Diag(Templated->getLocation(), diag::note_ovl_candidate_deduced_mismatch)
10423         << (*DeductionFailure.getCallArgIndex() + 1)
10424         << *DeductionFailure.getFirstArg() << *DeductionFailure.getSecondArg()
10425         << TemplateArgString
10426         << (DeductionFailure.Result == Sema::TDK_DeducedMismatchNested);
10427     break;
10428   }
10429 
10430   case Sema::TDK_NonDeducedMismatch: {
10431     // FIXME: Provide a source location to indicate what we couldn't match.
10432     TemplateArgument FirstTA = *DeductionFailure.getFirstArg();
10433     TemplateArgument SecondTA = *DeductionFailure.getSecondArg();
10434     if (FirstTA.getKind() == TemplateArgument::Template &&
10435         SecondTA.getKind() == TemplateArgument::Template) {
10436       TemplateName FirstTN = FirstTA.getAsTemplate();
10437       TemplateName SecondTN = SecondTA.getAsTemplate();
10438       if (FirstTN.getKind() == TemplateName::Template &&
10439           SecondTN.getKind() == TemplateName::Template) {
10440         if (FirstTN.getAsTemplateDecl()->getName() ==
10441             SecondTN.getAsTemplateDecl()->getName()) {
10442           // FIXME: This fixes a bad diagnostic where both templates are named
10443           // the same.  This particular case is a bit difficult since:
10444           // 1) It is passed as a string to the diagnostic printer.
10445           // 2) The diagnostic printer only attempts to find a better
10446           //    name for types, not decls.
10447           // Ideally, this should folded into the diagnostic printer.
10448           S.Diag(Templated->getLocation(),
10449                  diag::note_ovl_candidate_non_deduced_mismatch_qualified)
10450               << FirstTN.getAsTemplateDecl() << SecondTN.getAsTemplateDecl();
10451           return;
10452         }
10453       }
10454     }
10455 
10456     if (TakingCandidateAddress && isa<FunctionDecl>(Templated) &&
10457         !checkAddressOfCandidateIsAvailable(S, cast<FunctionDecl>(Templated)))
10458       return;
10459 
10460     // FIXME: For generic lambda parameters, check if the function is a lambda
10461     // call operator, and if so, emit a prettier and more informative
10462     // diagnostic that mentions 'auto' and lambda in addition to
10463     // (or instead of?) the canonical template type parameters.
10464     S.Diag(Templated->getLocation(),
10465            diag::note_ovl_candidate_non_deduced_mismatch)
10466         << FirstTA << SecondTA;
10467     return;
10468   }
10469   // TODO: diagnose these individually, then kill off
10470   // note_ovl_candidate_bad_deduction, which is uselessly vague.
10471   case Sema::TDK_MiscellaneousDeductionFailure:
10472     S.Diag(Templated->getLocation(), diag::note_ovl_candidate_bad_deduction);
10473     MaybeEmitInheritedConstructorNote(S, Found);
10474     return;
10475   case Sema::TDK_CUDATargetMismatch:
10476     S.Diag(Templated->getLocation(),
10477            diag::note_cuda_ovl_candidate_target_mismatch);
10478     return;
10479   }
10480 }
10481 
10482 /// Diagnose a failed template-argument deduction, for function calls.
10483 static void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand,
10484                                  unsigned NumArgs,
10485                                  bool TakingCandidateAddress) {
10486   unsigned TDK = Cand->DeductionFailure.Result;
10487   if (TDK == Sema::TDK_TooFewArguments || TDK == Sema::TDK_TooManyArguments) {
10488     if (CheckArityMismatch(S, Cand, NumArgs))
10489       return;
10490   }
10491   DiagnoseBadDeduction(S, Cand->FoundDecl, Cand->Function, // pattern
10492                        Cand->DeductionFailure, NumArgs, TakingCandidateAddress);
10493 }
10494 
10495 /// CUDA: diagnose an invalid call across targets.
10496 static void DiagnoseBadTarget(Sema &S, OverloadCandidate *Cand) {
10497   FunctionDecl *Caller = cast<FunctionDecl>(S.CurContext);
10498   FunctionDecl *Callee = Cand->Function;
10499 
10500   Sema::CUDAFunctionTarget CallerTarget = S.IdentifyCUDATarget(Caller),
10501                            CalleeTarget = S.IdentifyCUDATarget(Callee);
10502 
10503   std::string FnDesc;
10504   std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair =
10505       ClassifyOverloadCandidate(S, Cand->FoundDecl, Callee, Cand->RewriteKind,
10506                                 FnDesc);
10507 
10508   S.Diag(Callee->getLocation(), diag::note_ovl_candidate_bad_target)
10509       << (unsigned)FnKindPair.first << (unsigned)ocs_non_template
10510       << FnDesc /* Ignored */
10511       << CalleeTarget << CallerTarget;
10512 
10513   // This could be an implicit constructor for which we could not infer the
10514   // target due to a collsion. Diagnose that case.
10515   CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Callee);
10516   if (Meth != nullptr && Meth->isImplicit()) {
10517     CXXRecordDecl *ParentClass = Meth->getParent();
10518     Sema::CXXSpecialMember CSM;
10519 
10520     switch (FnKindPair.first) {
10521     default:
10522       return;
10523     case oc_implicit_default_constructor:
10524       CSM = Sema::CXXDefaultConstructor;
10525       break;
10526     case oc_implicit_copy_constructor:
10527       CSM = Sema::CXXCopyConstructor;
10528       break;
10529     case oc_implicit_move_constructor:
10530       CSM = Sema::CXXMoveConstructor;
10531       break;
10532     case oc_implicit_copy_assignment:
10533       CSM = Sema::CXXCopyAssignment;
10534       break;
10535     case oc_implicit_move_assignment:
10536       CSM = Sema::CXXMoveAssignment;
10537       break;
10538     };
10539 
10540     bool ConstRHS = false;
10541     if (Meth->getNumParams()) {
10542       if (const ReferenceType *RT =
10543               Meth->getParamDecl(0)->getType()->getAs<ReferenceType>()) {
10544         ConstRHS = RT->getPointeeType().isConstQualified();
10545       }
10546     }
10547 
10548     S.inferCUDATargetForImplicitSpecialMember(ParentClass, CSM, Meth,
10549                                               /* ConstRHS */ ConstRHS,
10550                                               /* Diagnose */ true);
10551   }
10552 }
10553 
10554 static void DiagnoseFailedEnableIfAttr(Sema &S, OverloadCandidate *Cand) {
10555   FunctionDecl *Callee = Cand->Function;
10556   EnableIfAttr *Attr = static_cast<EnableIfAttr*>(Cand->DeductionFailure.Data);
10557 
10558   S.Diag(Callee->getLocation(),
10559          diag::note_ovl_candidate_disabled_by_function_cond_attr)
10560       << Attr->getCond()->getSourceRange() << Attr->getMessage();
10561 }
10562 
10563 static void DiagnoseFailedExplicitSpec(Sema &S, OverloadCandidate *Cand) {
10564   ExplicitSpecifier ES;
10565   const char *DeclName;
10566   switch (Cand->Function->getDeclKind()) {
10567   case Decl::Kind::CXXConstructor:
10568     ES = cast<CXXConstructorDecl>(Cand->Function)->getExplicitSpecifier();
10569     DeclName = "constructor";
10570     break;
10571   case Decl::Kind::CXXConversion:
10572     ES = cast<CXXConversionDecl>(Cand->Function)->getExplicitSpecifier();
10573     DeclName = "conversion operator";
10574     break;
10575   case Decl::Kind::CXXDeductionGuide:
10576     ES = cast<CXXDeductionGuideDecl>(Cand->Function)->getExplicitSpecifier();
10577     DeclName = "deductiong guide";
10578     break;
10579   default:
10580     llvm_unreachable("invalid Decl");
10581   }
10582   assert(ES.getExpr() && "null expression should be handled before");
10583   S.Diag(Cand->Function->getLocation(),
10584          diag::note_ovl_candidate_explicit_forbidden)
10585       << DeclName;
10586   S.Diag(ES.getExpr()->getBeginLoc(),
10587          diag::note_explicit_bool_resolved_to_true);
10588 }
10589 
10590 static void DiagnoseOpenCLExtensionDisabled(Sema &S, OverloadCandidate *Cand) {
10591   FunctionDecl *Callee = Cand->Function;
10592 
10593   S.Diag(Callee->getLocation(),
10594          diag::note_ovl_candidate_disabled_by_extension)
10595     << S.getOpenCLExtensionsFromDeclExtMap(Callee);
10596 }
10597 
10598 /// Generates a 'note' diagnostic for an overload candidate.  We've
10599 /// already generated a primary error at the call site.
10600 ///
10601 /// It really does need to be a single diagnostic with its caret
10602 /// pointed at the candidate declaration.  Yes, this creates some
10603 /// major challenges of technical writing.  Yes, this makes pointing
10604 /// out problems with specific arguments quite awkward.  It's still
10605 /// better than generating twenty screens of text for every failed
10606 /// overload.
10607 ///
10608 /// It would be great to be able to express per-candidate problems
10609 /// more richly for those diagnostic clients that cared, but we'd
10610 /// still have to be just as careful with the default diagnostics.
10611 /// \param CtorDestAS Addr space of object being constructed (for ctor
10612 /// candidates only).
10613 static void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand,
10614                                   unsigned NumArgs,
10615                                   bool TakingCandidateAddress,
10616                                   LangAS CtorDestAS = LangAS::Default) {
10617   FunctionDecl *Fn = Cand->Function;
10618 
10619   // Note deleted candidates, but only if they're viable.
10620   if (Cand->Viable) {
10621     if (Fn->isDeleted()) {
10622       std::string FnDesc;
10623       std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair =
10624           ClassifyOverloadCandidate(S, Cand->FoundDecl, Fn, Cand->RewriteKind,
10625                                     FnDesc);
10626 
10627       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted)
10628           << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10629           << (Fn->isDeleted() ? (Fn->isDeletedAsWritten() ? 1 : 2) : 0);
10630       MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10631       return;
10632     }
10633 
10634     // We don't really have anything else to say about viable candidates.
10635     S.NoteOverloadCandidate(Cand->FoundDecl, Fn, Cand->RewriteKind);
10636     return;
10637   }
10638 
10639   switch (Cand->FailureKind) {
10640   case ovl_fail_too_many_arguments:
10641   case ovl_fail_too_few_arguments:
10642     return DiagnoseArityMismatch(S, Cand, NumArgs);
10643 
10644   case ovl_fail_bad_deduction:
10645     return DiagnoseBadDeduction(S, Cand, NumArgs,
10646                                 TakingCandidateAddress);
10647 
10648   case ovl_fail_illegal_constructor: {
10649     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_illegal_constructor)
10650       << (Fn->getPrimaryTemplate() ? 1 : 0);
10651     MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10652     return;
10653   }
10654 
10655   case ovl_fail_object_addrspace_mismatch: {
10656     Qualifiers QualsForPrinting;
10657     QualsForPrinting.setAddressSpace(CtorDestAS);
10658     S.Diag(Fn->getLocation(),
10659            diag::note_ovl_candidate_illegal_constructor_adrspace_mismatch)
10660         << QualsForPrinting;
10661     MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10662     return;
10663   }
10664 
10665   case ovl_fail_trivial_conversion:
10666   case ovl_fail_bad_final_conversion:
10667   case ovl_fail_final_conversion_not_exact:
10668     return S.NoteOverloadCandidate(Cand->FoundDecl, Fn, Cand->RewriteKind);
10669 
10670   case ovl_fail_bad_conversion: {
10671     unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0);
10672     for (unsigned N = Cand->Conversions.size(); I != N; ++I)
10673       if (Cand->Conversions[I].isBad())
10674         return DiagnoseBadConversion(S, Cand, I, TakingCandidateAddress);
10675 
10676     // FIXME: this currently happens when we're called from SemaInit
10677     // when user-conversion overload fails.  Figure out how to handle
10678     // those conditions and diagnose them well.
10679     return S.NoteOverloadCandidate(Cand->FoundDecl, Fn, Cand->RewriteKind);
10680   }
10681 
10682   case ovl_fail_bad_target:
10683     return DiagnoseBadTarget(S, Cand);
10684 
10685   case ovl_fail_enable_if:
10686     return DiagnoseFailedEnableIfAttr(S, Cand);
10687 
10688   case ovl_fail_explicit_resolved:
10689     return DiagnoseFailedExplicitSpec(S, Cand);
10690 
10691   case ovl_fail_ext_disabled:
10692     return DiagnoseOpenCLExtensionDisabled(S, Cand);
10693 
10694   case ovl_fail_inhctor_slice:
10695     // It's generally not interesting to note copy/move constructors here.
10696     if (cast<CXXConstructorDecl>(Fn)->isCopyOrMoveConstructor())
10697       return;
10698     S.Diag(Fn->getLocation(),
10699            diag::note_ovl_candidate_inherited_constructor_slice)
10700       << (Fn->getPrimaryTemplate() ? 1 : 0)
10701       << Fn->getParamDecl(0)->getType()->isRValueReferenceType();
10702     MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10703     return;
10704 
10705   case ovl_fail_addr_not_available: {
10706     bool Available = checkAddressOfCandidateIsAvailable(S, Cand->Function);
10707     (void)Available;
10708     assert(!Available);
10709     break;
10710   }
10711   case ovl_non_default_multiversion_function:
10712     // Do nothing, these should simply be ignored.
10713     break;
10714   }
10715 }
10716 
10717 static void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) {
10718   // Desugar the type of the surrogate down to a function type,
10719   // retaining as many typedefs as possible while still showing
10720   // the function type (and, therefore, its parameter types).
10721   QualType FnType = Cand->Surrogate->getConversionType();
10722   bool isLValueReference = false;
10723   bool isRValueReference = false;
10724   bool isPointer = false;
10725   if (const LValueReferenceType *FnTypeRef =
10726         FnType->getAs<LValueReferenceType>()) {
10727     FnType = FnTypeRef->getPointeeType();
10728     isLValueReference = true;
10729   } else if (const RValueReferenceType *FnTypeRef =
10730                FnType->getAs<RValueReferenceType>()) {
10731     FnType = FnTypeRef->getPointeeType();
10732     isRValueReference = true;
10733   }
10734   if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
10735     FnType = FnTypePtr->getPointeeType();
10736     isPointer = true;
10737   }
10738   // Desugar down to a function type.
10739   FnType = QualType(FnType->getAs<FunctionType>(), 0);
10740   // Reconstruct the pointer/reference as appropriate.
10741   if (isPointer) FnType = S.Context.getPointerType(FnType);
10742   if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType);
10743   if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType);
10744 
10745   S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand)
10746     << FnType;
10747 }
10748 
10749 static void NoteBuiltinOperatorCandidate(Sema &S, StringRef Opc,
10750                                          SourceLocation OpLoc,
10751                                          OverloadCandidate *Cand) {
10752   assert(Cand->Conversions.size() <= 2 && "builtin operator is not binary");
10753   std::string TypeStr("operator");
10754   TypeStr += Opc;
10755   TypeStr += "(";
10756   TypeStr += Cand->BuiltinParamTypes[0].getAsString();
10757   if (Cand->Conversions.size() == 1) {
10758     TypeStr += ")";
10759     S.Diag(OpLoc, diag::note_ovl_builtin_candidate) << TypeStr;
10760   } else {
10761     TypeStr += ", ";
10762     TypeStr += Cand->BuiltinParamTypes[1].getAsString();
10763     TypeStr += ")";
10764     S.Diag(OpLoc, diag::note_ovl_builtin_candidate) << TypeStr;
10765   }
10766 }
10767 
10768 static void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc,
10769                                          OverloadCandidate *Cand) {
10770   for (const ImplicitConversionSequence &ICS : Cand->Conversions) {
10771     if (ICS.isBad()) break; // all meaningless after first invalid
10772     if (!ICS.isAmbiguous()) continue;
10773 
10774     ICS.DiagnoseAmbiguousConversion(
10775         S, OpLoc, S.PDiag(diag::note_ambiguous_type_conversion));
10776   }
10777 }
10778 
10779 static SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) {
10780   if (Cand->Function)
10781     return Cand->Function->getLocation();
10782   if (Cand->IsSurrogate)
10783     return Cand->Surrogate->getLocation();
10784   return SourceLocation();
10785 }
10786 
10787 static unsigned RankDeductionFailure(const DeductionFailureInfo &DFI) {
10788   switch ((Sema::TemplateDeductionResult)DFI.Result) {
10789   case Sema::TDK_Success:
10790   case Sema::TDK_NonDependentConversionFailure:
10791     llvm_unreachable("non-deduction failure while diagnosing bad deduction");
10792 
10793   case Sema::TDK_Invalid:
10794   case Sema::TDK_Incomplete:
10795   case Sema::TDK_IncompletePack:
10796     return 1;
10797 
10798   case Sema::TDK_Underqualified:
10799   case Sema::TDK_Inconsistent:
10800     return 2;
10801 
10802   case Sema::TDK_SubstitutionFailure:
10803   case Sema::TDK_DeducedMismatch:
10804   case Sema::TDK_DeducedMismatchNested:
10805   case Sema::TDK_NonDeducedMismatch:
10806   case Sema::TDK_MiscellaneousDeductionFailure:
10807   case Sema::TDK_CUDATargetMismatch:
10808     return 3;
10809 
10810   case Sema::TDK_InstantiationDepth:
10811     return 4;
10812 
10813   case Sema::TDK_InvalidExplicitArguments:
10814     return 5;
10815 
10816   case Sema::TDK_TooManyArguments:
10817   case Sema::TDK_TooFewArguments:
10818     return 6;
10819   }
10820   llvm_unreachable("Unhandled deduction result");
10821 }
10822 
10823 namespace {
10824 struct CompareOverloadCandidatesForDisplay {
10825   Sema &S;
10826   SourceLocation Loc;
10827   size_t NumArgs;
10828   OverloadCandidateSet::CandidateSetKind CSK;
10829 
10830   CompareOverloadCandidatesForDisplay(
10831       Sema &S, SourceLocation Loc, size_t NArgs,
10832       OverloadCandidateSet::CandidateSetKind CSK)
10833       : S(S), NumArgs(NArgs), CSK(CSK) {}
10834 
10835   bool operator()(const OverloadCandidate *L,
10836                   const OverloadCandidate *R) {
10837     // Fast-path this check.
10838     if (L == R) return false;
10839 
10840     // Order first by viability.
10841     if (L->Viable) {
10842       if (!R->Viable) return true;
10843 
10844       // TODO: introduce a tri-valued comparison for overload
10845       // candidates.  Would be more worthwhile if we had a sort
10846       // that could exploit it.
10847       if (isBetterOverloadCandidate(S, *L, *R, SourceLocation(), CSK))
10848         return true;
10849       if (isBetterOverloadCandidate(S, *R, *L, SourceLocation(), CSK))
10850         return false;
10851     } else if (R->Viable)
10852       return false;
10853 
10854     assert(L->Viable == R->Viable);
10855 
10856     // Criteria by which we can sort non-viable candidates:
10857     if (!L->Viable) {
10858       // 1. Arity mismatches come after other candidates.
10859       if (L->FailureKind == ovl_fail_too_many_arguments ||
10860           L->FailureKind == ovl_fail_too_few_arguments) {
10861         if (R->FailureKind == ovl_fail_too_many_arguments ||
10862             R->FailureKind == ovl_fail_too_few_arguments) {
10863           int LDist = std::abs((int)L->getNumParams() - (int)NumArgs);
10864           int RDist = std::abs((int)R->getNumParams() - (int)NumArgs);
10865           if (LDist == RDist) {
10866             if (L->FailureKind == R->FailureKind)
10867               // Sort non-surrogates before surrogates.
10868               return !L->IsSurrogate && R->IsSurrogate;
10869             // Sort candidates requiring fewer parameters than there were
10870             // arguments given after candidates requiring more parameters
10871             // than there were arguments given.
10872             return L->FailureKind == ovl_fail_too_many_arguments;
10873           }
10874           return LDist < RDist;
10875         }
10876         return false;
10877       }
10878       if (R->FailureKind == ovl_fail_too_many_arguments ||
10879           R->FailureKind == ovl_fail_too_few_arguments)
10880         return true;
10881 
10882       // 2. Bad conversions come first and are ordered by the number
10883       // of bad conversions and quality of good conversions.
10884       if (L->FailureKind == ovl_fail_bad_conversion) {
10885         if (R->FailureKind != ovl_fail_bad_conversion)
10886           return true;
10887 
10888         // The conversion that can be fixed with a smaller number of changes,
10889         // comes first.
10890         unsigned numLFixes = L->Fix.NumConversionsFixed;
10891         unsigned numRFixes = R->Fix.NumConversionsFixed;
10892         numLFixes = (numLFixes == 0) ? UINT_MAX : numLFixes;
10893         numRFixes = (numRFixes == 0) ? UINT_MAX : numRFixes;
10894         if (numLFixes != numRFixes) {
10895           return numLFixes < numRFixes;
10896         }
10897 
10898         // If there's any ordering between the defined conversions...
10899         // FIXME: this might not be transitive.
10900         assert(L->Conversions.size() == R->Conversions.size());
10901 
10902         int leftBetter = 0;
10903         unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument);
10904         for (unsigned E = L->Conversions.size(); I != E; ++I) {
10905           switch (CompareImplicitConversionSequences(S, Loc,
10906                                                      L->Conversions[I],
10907                                                      R->Conversions[I])) {
10908           case ImplicitConversionSequence::Better:
10909             leftBetter++;
10910             break;
10911 
10912           case ImplicitConversionSequence::Worse:
10913             leftBetter--;
10914             break;
10915 
10916           case ImplicitConversionSequence::Indistinguishable:
10917             break;
10918           }
10919         }
10920         if (leftBetter > 0) return true;
10921         if (leftBetter < 0) return false;
10922 
10923       } else if (R->FailureKind == ovl_fail_bad_conversion)
10924         return false;
10925 
10926       if (L->FailureKind == ovl_fail_bad_deduction) {
10927         if (R->FailureKind != ovl_fail_bad_deduction)
10928           return true;
10929 
10930         if (L->DeductionFailure.Result != R->DeductionFailure.Result)
10931           return RankDeductionFailure(L->DeductionFailure)
10932                < RankDeductionFailure(R->DeductionFailure);
10933       } else if (R->FailureKind == ovl_fail_bad_deduction)
10934         return false;
10935 
10936       // TODO: others?
10937     }
10938 
10939     // Sort everything else by location.
10940     SourceLocation LLoc = GetLocationForCandidate(L);
10941     SourceLocation RLoc = GetLocationForCandidate(R);
10942 
10943     // Put candidates without locations (e.g. builtins) at the end.
10944     if (LLoc.isInvalid()) return false;
10945     if (RLoc.isInvalid()) return true;
10946 
10947     return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
10948   }
10949 };
10950 }
10951 
10952 /// CompleteNonViableCandidate - Normally, overload resolution only
10953 /// computes up to the first bad conversion. Produces the FixIt set if
10954 /// possible.
10955 static void
10956 CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand,
10957                            ArrayRef<Expr *> Args,
10958                            OverloadCandidateSet::CandidateSetKind CSK) {
10959   assert(!Cand->Viable);
10960 
10961   // Don't do anything on failures other than bad conversion.
10962   if (Cand->FailureKind != ovl_fail_bad_conversion) return;
10963 
10964   // We only want the FixIts if all the arguments can be corrected.
10965   bool Unfixable = false;
10966   // Use a implicit copy initialization to check conversion fixes.
10967   Cand->Fix.setConversionChecker(TryCopyInitialization);
10968 
10969   // Attempt to fix the bad conversion.
10970   unsigned ConvCount = Cand->Conversions.size();
10971   for (unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0); /**/;
10972        ++ConvIdx) {
10973     assert(ConvIdx != ConvCount && "no bad conversion in candidate");
10974     if (Cand->Conversions[ConvIdx].isInitialized() &&
10975         Cand->Conversions[ConvIdx].isBad()) {
10976       Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S);
10977       break;
10978     }
10979   }
10980 
10981   // FIXME: this should probably be preserved from the overload
10982   // operation somehow.
10983   bool SuppressUserConversions = false;
10984 
10985   unsigned ConvIdx = 0;
10986   unsigned ArgIdx = 0;
10987   ArrayRef<QualType> ParamTypes;
10988 
10989   if (Cand->IsSurrogate) {
10990     QualType ConvType
10991       = Cand->Surrogate->getConversionType().getNonReferenceType();
10992     if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
10993       ConvType = ConvPtrType->getPointeeType();
10994     ParamTypes = ConvType->castAs<FunctionProtoType>()->getParamTypes();
10995     // Conversion 0 is 'this', which doesn't have a corresponding parameter.
10996     ConvIdx = 1;
10997   } else if (Cand->Function) {
10998     ParamTypes =
10999         Cand->Function->getType()->castAs<FunctionProtoType>()->getParamTypes();
11000     if (isa<CXXMethodDecl>(Cand->Function) &&
11001         !isa<CXXConstructorDecl>(Cand->Function)) {
11002       // Conversion 0 is 'this', which doesn't have a corresponding parameter.
11003       ConvIdx = 1;
11004       if (CSK == OverloadCandidateSet::CSK_Operator)
11005         // Argument 0 is 'this', which doesn't have a corresponding parameter.
11006         ArgIdx = 1;
11007     }
11008   } else {
11009     // Builtin operator.
11010     assert(ConvCount <= 3);
11011     ParamTypes = Cand->BuiltinParamTypes;
11012   }
11013 
11014   // Fill in the rest of the conversions.
11015   bool Reversed = Cand->RewriteKind & CRK_Reversed;
11016   for (unsigned ParamIdx = Reversed ? ParamTypes.size() - 1 : 0;
11017        ConvIdx != ConvCount;
11018        ++ConvIdx, ++ArgIdx, ParamIdx += (Reversed ? -1 : 1)) {
11019     if (Cand->Conversions[ConvIdx].isInitialized()) {
11020       // We've already checked this conversion.
11021     } else if (ArgIdx < ParamTypes.size()) {
11022       if (ParamTypes[ParamIdx]->isDependentType())
11023         Cand->Conversions[ConvIdx].setAsIdentityConversion(
11024             Args[ArgIdx]->getType());
11025       else {
11026         Cand->Conversions[ConvIdx] =
11027             TryCopyInitialization(S, Args[ArgIdx], ParamTypes[ParamIdx],
11028                                   SuppressUserConversions,
11029                                   /*InOverloadResolution=*/true,
11030                                   /*AllowObjCWritebackConversion=*/
11031                                   S.getLangOpts().ObjCAutoRefCount);
11032         // Store the FixIt in the candidate if it exists.
11033         if (!Unfixable && Cand->Conversions[ConvIdx].isBad())
11034           Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S);
11035       }
11036     } else
11037       Cand->Conversions[ConvIdx].setEllipsis();
11038   }
11039 }
11040 
11041 SmallVector<OverloadCandidate *, 32> OverloadCandidateSet::CompleteCandidates(
11042     Sema &S, OverloadCandidateDisplayKind OCD, ArrayRef<Expr *> Args,
11043     SourceLocation OpLoc,
11044     llvm::function_ref<bool(OverloadCandidate &)> Filter) {
11045   // Sort the candidates by viability and position.  Sorting directly would
11046   // be prohibitive, so we make a set of pointers and sort those.
11047   SmallVector<OverloadCandidate*, 32> Cands;
11048   if (OCD == OCD_AllCandidates) Cands.reserve(size());
11049   for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) {
11050     if (!Filter(*Cand))
11051       continue;
11052     switch (OCD) {
11053     case OCD_AllCandidates:
11054       if (!Cand->Viable) {
11055         if (!Cand->Function && !Cand->IsSurrogate) {
11056           // This a non-viable builtin candidate.  We do not, in general,
11057           // want to list every possible builtin candidate.
11058           continue;
11059         }
11060         CompleteNonViableCandidate(S, Cand, Args, Kind);
11061       }
11062       break;
11063 
11064     case OCD_ViableCandidates:
11065       if (!Cand->Viable)
11066         continue;
11067       break;
11068 
11069     case OCD_AmbiguousCandidates:
11070       if (!Cand->Best)
11071         continue;
11072       break;
11073     }
11074 
11075     Cands.push_back(Cand);
11076   }
11077 
11078   llvm::stable_sort(
11079       Cands, CompareOverloadCandidatesForDisplay(S, OpLoc, Args.size(), Kind));
11080 
11081   return Cands;
11082 }
11083 
11084 /// When overload resolution fails, prints diagnostic messages containing the
11085 /// candidates in the candidate set.
11086 void OverloadCandidateSet::NoteCandidates(PartialDiagnosticAt PD,
11087     Sema &S, OverloadCandidateDisplayKind OCD, ArrayRef<Expr *> Args,
11088     StringRef Opc, SourceLocation OpLoc,
11089     llvm::function_ref<bool(OverloadCandidate &)> Filter) {
11090 
11091   auto Cands = CompleteCandidates(S, OCD, Args, OpLoc, Filter);
11092 
11093   S.Diag(PD.first, PD.second);
11094 
11095   NoteCandidates(S, Args, Cands, Opc, OpLoc);
11096 }
11097 
11098 void OverloadCandidateSet::NoteCandidates(Sema &S, ArrayRef<Expr *> Args,
11099                                           ArrayRef<OverloadCandidate *> Cands,
11100                                           StringRef Opc, SourceLocation OpLoc) {
11101   bool ReportedAmbiguousConversions = false;
11102 
11103   const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
11104   unsigned CandsShown = 0;
11105   auto I = Cands.begin(), E = Cands.end();
11106   for (; I != E; ++I) {
11107     OverloadCandidate *Cand = *I;
11108 
11109     // Set an arbitrary limit on the number of candidate functions we'll spam
11110     // the user with.  FIXME: This limit should depend on details of the
11111     // candidate list.
11112     if (CandsShown >= 4 && ShowOverloads == Ovl_Best) {
11113       break;
11114     }
11115     ++CandsShown;
11116 
11117     if (Cand->Function)
11118       NoteFunctionCandidate(S, Cand, Args.size(),
11119                             /*TakingCandidateAddress=*/false, DestAS);
11120     else if (Cand->IsSurrogate)
11121       NoteSurrogateCandidate(S, Cand);
11122     else {
11123       assert(Cand->Viable &&
11124              "Non-viable built-in candidates are not added to Cands.");
11125       // Generally we only see ambiguities including viable builtin
11126       // operators if overload resolution got screwed up by an
11127       // ambiguous user-defined conversion.
11128       //
11129       // FIXME: It's quite possible for different conversions to see
11130       // different ambiguities, though.
11131       if (!ReportedAmbiguousConversions) {
11132         NoteAmbiguousUserConversions(S, OpLoc, Cand);
11133         ReportedAmbiguousConversions = true;
11134       }
11135 
11136       // If this is a viable builtin, print it.
11137       NoteBuiltinOperatorCandidate(S, Opc, OpLoc, Cand);
11138     }
11139   }
11140 
11141   if (I != E)
11142     S.Diag(OpLoc, diag::note_ovl_too_many_candidates) << int(E - I);
11143 }
11144 
11145 static SourceLocation
11146 GetLocationForCandidate(const TemplateSpecCandidate *Cand) {
11147   return Cand->Specialization ? Cand->Specialization->getLocation()
11148                               : SourceLocation();
11149 }
11150 
11151 namespace {
11152 struct CompareTemplateSpecCandidatesForDisplay {
11153   Sema &S;
11154   CompareTemplateSpecCandidatesForDisplay(Sema &S) : S(S) {}
11155 
11156   bool operator()(const TemplateSpecCandidate *L,
11157                   const TemplateSpecCandidate *R) {
11158     // Fast-path this check.
11159     if (L == R)
11160       return false;
11161 
11162     // Assuming that both candidates are not matches...
11163 
11164     // Sort by the ranking of deduction failures.
11165     if (L->DeductionFailure.Result != R->DeductionFailure.Result)
11166       return RankDeductionFailure(L->DeductionFailure) <
11167              RankDeductionFailure(R->DeductionFailure);
11168 
11169     // Sort everything else by location.
11170     SourceLocation LLoc = GetLocationForCandidate(L);
11171     SourceLocation RLoc = GetLocationForCandidate(R);
11172 
11173     // Put candidates without locations (e.g. builtins) at the end.
11174     if (LLoc.isInvalid())
11175       return false;
11176     if (RLoc.isInvalid())
11177       return true;
11178 
11179     return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
11180   }
11181 };
11182 }
11183 
11184 /// Diagnose a template argument deduction failure.
11185 /// We are treating these failures as overload failures due to bad
11186 /// deductions.
11187 void TemplateSpecCandidate::NoteDeductionFailure(Sema &S,
11188                                                  bool ForTakingAddress) {
11189   DiagnoseBadDeduction(S, FoundDecl, Specialization, // pattern
11190                        DeductionFailure, /*NumArgs=*/0, ForTakingAddress);
11191 }
11192 
11193 void TemplateSpecCandidateSet::destroyCandidates() {
11194   for (iterator i = begin(), e = end(); i != e; ++i) {
11195     i->DeductionFailure.Destroy();
11196   }
11197 }
11198 
11199 void TemplateSpecCandidateSet::clear() {
11200   destroyCandidates();
11201   Candidates.clear();
11202 }
11203 
11204 /// NoteCandidates - When no template specialization match is found, prints
11205 /// diagnostic messages containing the non-matching specializations that form
11206 /// the candidate set.
11207 /// This is analoguous to OverloadCandidateSet::NoteCandidates() with
11208 /// OCD == OCD_AllCandidates and Cand->Viable == false.
11209 void TemplateSpecCandidateSet::NoteCandidates(Sema &S, SourceLocation Loc) {
11210   // Sort the candidates by position (assuming no candidate is a match).
11211   // Sorting directly would be prohibitive, so we make a set of pointers
11212   // and sort those.
11213   SmallVector<TemplateSpecCandidate *, 32> Cands;
11214   Cands.reserve(size());
11215   for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) {
11216     if (Cand->Specialization)
11217       Cands.push_back(Cand);
11218     // Otherwise, this is a non-matching builtin candidate.  We do not,
11219     // in general, want to list every possible builtin candidate.
11220   }
11221 
11222   llvm::sort(Cands, CompareTemplateSpecCandidatesForDisplay(S));
11223 
11224   // FIXME: Perhaps rename OverloadsShown and getShowOverloads()
11225   // for generalization purposes (?).
11226   const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
11227 
11228   SmallVectorImpl<TemplateSpecCandidate *>::iterator I, E;
11229   unsigned CandsShown = 0;
11230   for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
11231     TemplateSpecCandidate *Cand = *I;
11232 
11233     // Set an arbitrary limit on the number of candidates we'll spam
11234     // the user with.  FIXME: This limit should depend on details of the
11235     // candidate list.
11236     if (CandsShown >= 4 && ShowOverloads == Ovl_Best)
11237       break;
11238     ++CandsShown;
11239 
11240     assert(Cand->Specialization &&
11241            "Non-matching built-in candidates are not added to Cands.");
11242     Cand->NoteDeductionFailure(S, ForTakingAddress);
11243   }
11244 
11245   if (I != E)
11246     S.Diag(Loc, diag::note_ovl_too_many_candidates) << int(E - I);
11247 }
11248 
11249 // [PossiblyAFunctionType]  -->   [Return]
11250 // NonFunctionType --> NonFunctionType
11251 // R (A) --> R(A)
11252 // R (*)(A) --> R (A)
11253 // R (&)(A) --> R (A)
11254 // R (S::*)(A) --> R (A)
11255 QualType Sema::ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType) {
11256   QualType Ret = PossiblyAFunctionType;
11257   if (const PointerType *ToTypePtr =
11258     PossiblyAFunctionType->getAs<PointerType>())
11259     Ret = ToTypePtr->getPointeeType();
11260   else if (const ReferenceType *ToTypeRef =
11261     PossiblyAFunctionType->getAs<ReferenceType>())
11262     Ret = ToTypeRef->getPointeeType();
11263   else if (const MemberPointerType *MemTypePtr =
11264     PossiblyAFunctionType->getAs<MemberPointerType>())
11265     Ret = MemTypePtr->getPointeeType();
11266   Ret =
11267     Context.getCanonicalType(Ret).getUnqualifiedType();
11268   return Ret;
11269 }
11270 
11271 static bool completeFunctionType(Sema &S, FunctionDecl *FD, SourceLocation Loc,
11272                                  bool Complain = true) {
11273   if (S.getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
11274       S.DeduceReturnType(FD, Loc, Complain))
11275     return true;
11276 
11277   auto *FPT = FD->getType()->castAs<FunctionProtoType>();
11278   if (S.getLangOpts().CPlusPlus17 &&
11279       isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) &&
11280       !S.ResolveExceptionSpec(Loc, FPT))
11281     return true;
11282 
11283   return false;
11284 }
11285 
11286 namespace {
11287 // A helper class to help with address of function resolution
11288 // - allows us to avoid passing around all those ugly parameters
11289 class AddressOfFunctionResolver {
11290   Sema& S;
11291   Expr* SourceExpr;
11292   const QualType& TargetType;
11293   QualType TargetFunctionType; // Extracted function type from target type
11294 
11295   bool Complain;
11296   //DeclAccessPair& ResultFunctionAccessPair;
11297   ASTContext& Context;
11298 
11299   bool TargetTypeIsNonStaticMemberFunction;
11300   bool FoundNonTemplateFunction;
11301   bool StaticMemberFunctionFromBoundPointer;
11302   bool HasComplained;
11303 
11304   OverloadExpr::FindResult OvlExprInfo;
11305   OverloadExpr *OvlExpr;
11306   TemplateArgumentListInfo OvlExplicitTemplateArgs;
11307   SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches;
11308   TemplateSpecCandidateSet FailedCandidates;
11309 
11310 public:
11311   AddressOfFunctionResolver(Sema &S, Expr *SourceExpr,
11312                             const QualType &TargetType, bool Complain)
11313       : S(S), SourceExpr(SourceExpr), TargetType(TargetType),
11314         Complain(Complain), Context(S.getASTContext()),
11315         TargetTypeIsNonStaticMemberFunction(
11316             !!TargetType->getAs<MemberPointerType>()),
11317         FoundNonTemplateFunction(false),
11318         StaticMemberFunctionFromBoundPointer(false),
11319         HasComplained(false),
11320         OvlExprInfo(OverloadExpr::find(SourceExpr)),
11321         OvlExpr(OvlExprInfo.Expression),
11322         FailedCandidates(OvlExpr->getNameLoc(), /*ForTakingAddress=*/true) {
11323     ExtractUnqualifiedFunctionTypeFromTargetType();
11324 
11325     if (TargetFunctionType->isFunctionType()) {
11326       if (UnresolvedMemberExpr *UME = dyn_cast<UnresolvedMemberExpr>(OvlExpr))
11327         if (!UME->isImplicitAccess() &&
11328             !S.ResolveSingleFunctionTemplateSpecialization(UME))
11329           StaticMemberFunctionFromBoundPointer = true;
11330     } else if (OvlExpr->hasExplicitTemplateArgs()) {
11331       DeclAccessPair dap;
11332       if (FunctionDecl *Fn = S.ResolveSingleFunctionTemplateSpecialization(
11333               OvlExpr, false, &dap)) {
11334         if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn))
11335           if (!Method->isStatic()) {
11336             // If the target type is a non-function type and the function found
11337             // is a non-static member function, pretend as if that was the
11338             // target, it's the only possible type to end up with.
11339             TargetTypeIsNonStaticMemberFunction = true;
11340 
11341             // And skip adding the function if its not in the proper form.
11342             // We'll diagnose this due to an empty set of functions.
11343             if (!OvlExprInfo.HasFormOfMemberPointer)
11344               return;
11345           }
11346 
11347         Matches.push_back(std::make_pair(dap, Fn));
11348       }
11349       return;
11350     }
11351 
11352     if (OvlExpr->hasExplicitTemplateArgs())
11353       OvlExpr->copyTemplateArgumentsInto(OvlExplicitTemplateArgs);
11354 
11355     if (FindAllFunctionsThatMatchTargetTypeExactly()) {
11356       // C++ [over.over]p4:
11357       //   If more than one function is selected, [...]
11358       if (Matches.size() > 1 && !eliminiateSuboptimalOverloadCandidates()) {
11359         if (FoundNonTemplateFunction)
11360           EliminateAllTemplateMatches();
11361         else
11362           EliminateAllExceptMostSpecializedTemplate();
11363       }
11364     }
11365 
11366     if (S.getLangOpts().CUDA && Matches.size() > 1)
11367       EliminateSuboptimalCudaMatches();
11368   }
11369 
11370   bool hasComplained() const { return HasComplained; }
11371 
11372 private:
11373   bool candidateHasExactlyCorrectType(const FunctionDecl *FD) {
11374     QualType Discard;
11375     return Context.hasSameUnqualifiedType(TargetFunctionType, FD->getType()) ||
11376            S.IsFunctionConversion(FD->getType(), TargetFunctionType, Discard);
11377   }
11378 
11379   /// \return true if A is considered a better overload candidate for the
11380   /// desired type than B.
11381   bool isBetterCandidate(const FunctionDecl *A, const FunctionDecl *B) {
11382     // If A doesn't have exactly the correct type, we don't want to classify it
11383     // as "better" than anything else. This way, the user is required to
11384     // disambiguate for us if there are multiple candidates and no exact match.
11385     return candidateHasExactlyCorrectType(A) &&
11386            (!candidateHasExactlyCorrectType(B) ||
11387             compareEnableIfAttrs(S, A, B) == Comparison::Better);
11388   }
11389 
11390   /// \return true if we were able to eliminate all but one overload candidate,
11391   /// false otherwise.
11392   bool eliminiateSuboptimalOverloadCandidates() {
11393     // Same algorithm as overload resolution -- one pass to pick the "best",
11394     // another pass to be sure that nothing is better than the best.
11395     auto Best = Matches.begin();
11396     for (auto I = Matches.begin()+1, E = Matches.end(); I != E; ++I)
11397       if (isBetterCandidate(I->second, Best->second))
11398         Best = I;
11399 
11400     const FunctionDecl *BestFn = Best->second;
11401     auto IsBestOrInferiorToBest = [this, BestFn](
11402         const std::pair<DeclAccessPair, FunctionDecl *> &Pair) {
11403       return BestFn == Pair.second || isBetterCandidate(BestFn, Pair.second);
11404     };
11405 
11406     // Note: We explicitly leave Matches unmodified if there isn't a clear best
11407     // option, so we can potentially give the user a better error
11408     if (!llvm::all_of(Matches, IsBestOrInferiorToBest))
11409       return false;
11410     Matches[0] = *Best;
11411     Matches.resize(1);
11412     return true;
11413   }
11414 
11415   bool isTargetTypeAFunction() const {
11416     return TargetFunctionType->isFunctionType();
11417   }
11418 
11419   // [ToType]     [Return]
11420 
11421   // R (*)(A) --> R (A), IsNonStaticMemberFunction = false
11422   // R (&)(A) --> R (A), IsNonStaticMemberFunction = false
11423   // R (S::*)(A) --> R (A), IsNonStaticMemberFunction = true
11424   void inline ExtractUnqualifiedFunctionTypeFromTargetType() {
11425     TargetFunctionType = S.ExtractUnqualifiedFunctionType(TargetType);
11426   }
11427 
11428   // return true if any matching specializations were found
11429   bool AddMatchingTemplateFunction(FunctionTemplateDecl* FunctionTemplate,
11430                                    const DeclAccessPair& CurAccessFunPair) {
11431     if (CXXMethodDecl *Method
11432               = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
11433       // Skip non-static function templates when converting to pointer, and
11434       // static when converting to member pointer.
11435       if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
11436         return false;
11437     }
11438     else if (TargetTypeIsNonStaticMemberFunction)
11439       return false;
11440 
11441     // C++ [over.over]p2:
11442     //   If the name is a function template, template argument deduction is
11443     //   done (14.8.2.2), and if the argument deduction succeeds, the
11444     //   resulting template argument list is used to generate a single
11445     //   function template specialization, which is added to the set of
11446     //   overloaded functions considered.
11447     FunctionDecl *Specialization = nullptr;
11448     TemplateDeductionInfo Info(FailedCandidates.getLocation());
11449     if (Sema::TemplateDeductionResult Result
11450           = S.DeduceTemplateArguments(FunctionTemplate,
11451                                       &OvlExplicitTemplateArgs,
11452                                       TargetFunctionType, Specialization,
11453                                       Info, /*IsAddressOfFunction*/true)) {
11454       // Make a note of the failed deduction for diagnostics.
11455       FailedCandidates.addCandidate()
11456           .set(CurAccessFunPair, FunctionTemplate->getTemplatedDecl(),
11457                MakeDeductionFailureInfo(Context, Result, Info));
11458       return false;
11459     }
11460 
11461     // Template argument deduction ensures that we have an exact match or
11462     // compatible pointer-to-function arguments that would be adjusted by ICS.
11463     // This function template specicalization works.
11464     assert(S.isSameOrCompatibleFunctionType(
11465               Context.getCanonicalType(Specialization->getType()),
11466               Context.getCanonicalType(TargetFunctionType)));
11467 
11468     if (!S.checkAddressOfFunctionIsAvailable(Specialization))
11469       return false;
11470 
11471     Matches.push_back(std::make_pair(CurAccessFunPair, Specialization));
11472     return true;
11473   }
11474 
11475   bool AddMatchingNonTemplateFunction(NamedDecl* Fn,
11476                                       const DeclAccessPair& CurAccessFunPair) {
11477     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
11478       // Skip non-static functions when converting to pointer, and static
11479       // when converting to member pointer.
11480       if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
11481         return false;
11482     }
11483     else if (TargetTypeIsNonStaticMemberFunction)
11484       return false;
11485 
11486     if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) {
11487       if (S.getLangOpts().CUDA)
11488         if (FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext))
11489           if (!Caller->isImplicit() && !S.IsAllowedCUDACall(Caller, FunDecl))
11490             return false;
11491       if (FunDecl->isMultiVersion()) {
11492         const auto *TA = FunDecl->getAttr<TargetAttr>();
11493         if (TA && !TA->isDefaultVersion())
11494           return false;
11495       }
11496 
11497       // If any candidate has a placeholder return type, trigger its deduction
11498       // now.
11499       if (completeFunctionType(S, FunDecl, SourceExpr->getBeginLoc(),
11500                                Complain)) {
11501         HasComplained |= Complain;
11502         return false;
11503       }
11504 
11505       if (!S.checkAddressOfFunctionIsAvailable(FunDecl))
11506         return false;
11507 
11508       // If we're in C, we need to support types that aren't exactly identical.
11509       if (!S.getLangOpts().CPlusPlus ||
11510           candidateHasExactlyCorrectType(FunDecl)) {
11511         Matches.push_back(std::make_pair(
11512             CurAccessFunPair, cast<FunctionDecl>(FunDecl->getCanonicalDecl())));
11513         FoundNonTemplateFunction = true;
11514         return true;
11515       }
11516     }
11517 
11518     return false;
11519   }
11520 
11521   bool FindAllFunctionsThatMatchTargetTypeExactly() {
11522     bool Ret = false;
11523 
11524     // If the overload expression doesn't have the form of a pointer to
11525     // member, don't try to convert it to a pointer-to-member type.
11526     if (IsInvalidFormOfPointerToMemberFunction())
11527       return false;
11528 
11529     for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
11530                                E = OvlExpr->decls_end();
11531          I != E; ++I) {
11532       // Look through any using declarations to find the underlying function.
11533       NamedDecl *Fn = (*I)->getUnderlyingDecl();
11534 
11535       // C++ [over.over]p3:
11536       //   Non-member functions and static member functions match
11537       //   targets of type "pointer-to-function" or "reference-to-function."
11538       //   Nonstatic member functions match targets of
11539       //   type "pointer-to-member-function."
11540       // Note that according to DR 247, the containing class does not matter.
11541       if (FunctionTemplateDecl *FunctionTemplate
11542                                         = dyn_cast<FunctionTemplateDecl>(Fn)) {
11543         if (AddMatchingTemplateFunction(FunctionTemplate, I.getPair()))
11544           Ret = true;
11545       }
11546       // If we have explicit template arguments supplied, skip non-templates.
11547       else if (!OvlExpr->hasExplicitTemplateArgs() &&
11548                AddMatchingNonTemplateFunction(Fn, I.getPair()))
11549         Ret = true;
11550     }
11551     assert(Ret || Matches.empty());
11552     return Ret;
11553   }
11554 
11555   void EliminateAllExceptMostSpecializedTemplate() {
11556     //   [...] and any given function template specialization F1 is
11557     //   eliminated if the set contains a second function template
11558     //   specialization whose function template is more specialized
11559     //   than the function template of F1 according to the partial
11560     //   ordering rules of 14.5.5.2.
11561 
11562     // The algorithm specified above is quadratic. We instead use a
11563     // two-pass algorithm (similar to the one used to identify the
11564     // best viable function in an overload set) that identifies the
11565     // best function template (if it exists).
11566 
11567     UnresolvedSet<4> MatchesCopy; // TODO: avoid!
11568     for (unsigned I = 0, E = Matches.size(); I != E; ++I)
11569       MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess());
11570 
11571     // TODO: It looks like FailedCandidates does not serve much purpose
11572     // here, since the no_viable diagnostic has index 0.
11573     UnresolvedSetIterator Result = S.getMostSpecialized(
11574         MatchesCopy.begin(), MatchesCopy.end(), FailedCandidates,
11575         SourceExpr->getBeginLoc(), S.PDiag(),
11576         S.PDiag(diag::err_addr_ovl_ambiguous)
11577             << Matches[0].second->getDeclName(),
11578         S.PDiag(diag::note_ovl_candidate)
11579             << (unsigned)oc_function << (unsigned)ocs_described_template,
11580         Complain, TargetFunctionType);
11581 
11582     if (Result != MatchesCopy.end()) {
11583       // Make it the first and only element
11584       Matches[0].first = Matches[Result - MatchesCopy.begin()].first;
11585       Matches[0].second = cast<FunctionDecl>(*Result);
11586       Matches.resize(1);
11587     } else
11588       HasComplained |= Complain;
11589   }
11590 
11591   void EliminateAllTemplateMatches() {
11592     //   [...] any function template specializations in the set are
11593     //   eliminated if the set also contains a non-template function, [...]
11594     for (unsigned I = 0, N = Matches.size(); I != N; ) {
11595       if (Matches[I].second->getPrimaryTemplate() == nullptr)
11596         ++I;
11597       else {
11598         Matches[I] = Matches[--N];
11599         Matches.resize(N);
11600       }
11601     }
11602   }
11603 
11604   void EliminateSuboptimalCudaMatches() {
11605     S.EraseUnwantedCUDAMatches(dyn_cast<FunctionDecl>(S.CurContext), Matches);
11606   }
11607 
11608 public:
11609   void ComplainNoMatchesFound() const {
11610     assert(Matches.empty());
11611     S.Diag(OvlExpr->getBeginLoc(), diag::err_addr_ovl_no_viable)
11612         << OvlExpr->getName() << TargetFunctionType
11613         << OvlExpr->getSourceRange();
11614     if (FailedCandidates.empty())
11615       S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType,
11616                                   /*TakingAddress=*/true);
11617     else {
11618       // We have some deduction failure messages. Use them to diagnose
11619       // the function templates, and diagnose the non-template candidates
11620       // normally.
11621       for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
11622                                  IEnd = OvlExpr->decls_end();
11623            I != IEnd; ++I)
11624         if (FunctionDecl *Fun =
11625                 dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()))
11626           if (!functionHasPassObjectSizeParams(Fun))
11627             S.NoteOverloadCandidate(*I, Fun, CRK_None, TargetFunctionType,
11628                                     /*TakingAddress=*/true);
11629       FailedCandidates.NoteCandidates(S, OvlExpr->getBeginLoc());
11630     }
11631   }
11632 
11633   bool IsInvalidFormOfPointerToMemberFunction() const {
11634     return TargetTypeIsNonStaticMemberFunction &&
11635       !OvlExprInfo.HasFormOfMemberPointer;
11636   }
11637 
11638   void ComplainIsInvalidFormOfPointerToMemberFunction() const {
11639       // TODO: Should we condition this on whether any functions might
11640       // have matched, or is it more appropriate to do that in callers?
11641       // TODO: a fixit wouldn't hurt.
11642       S.Diag(OvlExpr->getNameLoc(), diag::err_addr_ovl_no_qualifier)
11643         << TargetType << OvlExpr->getSourceRange();
11644   }
11645 
11646   bool IsStaticMemberFunctionFromBoundPointer() const {
11647     return StaticMemberFunctionFromBoundPointer;
11648   }
11649 
11650   void ComplainIsStaticMemberFunctionFromBoundPointer() const {
11651     S.Diag(OvlExpr->getBeginLoc(),
11652            diag::err_invalid_form_pointer_member_function)
11653         << OvlExpr->getSourceRange();
11654   }
11655 
11656   void ComplainOfInvalidConversion() const {
11657     S.Diag(OvlExpr->getBeginLoc(), diag::err_addr_ovl_not_func_ptrref)
11658         << OvlExpr->getName() << TargetType;
11659   }
11660 
11661   void ComplainMultipleMatchesFound() const {
11662     assert(Matches.size() > 1);
11663     S.Diag(OvlExpr->getBeginLoc(), diag::err_addr_ovl_ambiguous)
11664         << OvlExpr->getName() << OvlExpr->getSourceRange();
11665     S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType,
11666                                 /*TakingAddress=*/true);
11667   }
11668 
11669   bool hadMultipleCandidates() const { return (OvlExpr->getNumDecls() > 1); }
11670 
11671   int getNumMatches() const { return Matches.size(); }
11672 
11673   FunctionDecl* getMatchingFunctionDecl() const {
11674     if (Matches.size() != 1) return nullptr;
11675     return Matches[0].second;
11676   }
11677 
11678   const DeclAccessPair* getMatchingFunctionAccessPair() const {
11679     if (Matches.size() != 1) return nullptr;
11680     return &Matches[0].first;
11681   }
11682 };
11683 }
11684 
11685 /// ResolveAddressOfOverloadedFunction - Try to resolve the address of
11686 /// an overloaded function (C++ [over.over]), where @p From is an
11687 /// expression with overloaded function type and @p ToType is the type
11688 /// we're trying to resolve to. For example:
11689 ///
11690 /// @code
11691 /// int f(double);
11692 /// int f(int);
11693 ///
11694 /// int (*pfd)(double) = f; // selects f(double)
11695 /// @endcode
11696 ///
11697 /// This routine returns the resulting FunctionDecl if it could be
11698 /// resolved, and NULL otherwise. When @p Complain is true, this
11699 /// routine will emit diagnostics if there is an error.
11700 FunctionDecl *
11701 Sema::ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr,
11702                                          QualType TargetType,
11703                                          bool Complain,
11704                                          DeclAccessPair &FoundResult,
11705                                          bool *pHadMultipleCandidates) {
11706   assert(AddressOfExpr->getType() == Context.OverloadTy);
11707 
11708   AddressOfFunctionResolver Resolver(*this, AddressOfExpr, TargetType,
11709                                      Complain);
11710   int NumMatches = Resolver.getNumMatches();
11711   FunctionDecl *Fn = nullptr;
11712   bool ShouldComplain = Complain && !Resolver.hasComplained();
11713   if (NumMatches == 0 && ShouldComplain) {
11714     if (Resolver.IsInvalidFormOfPointerToMemberFunction())
11715       Resolver.ComplainIsInvalidFormOfPointerToMemberFunction();
11716     else
11717       Resolver.ComplainNoMatchesFound();
11718   }
11719   else if (NumMatches > 1 && ShouldComplain)
11720     Resolver.ComplainMultipleMatchesFound();
11721   else if (NumMatches == 1) {
11722     Fn = Resolver.getMatchingFunctionDecl();
11723     assert(Fn);
11724     if (auto *FPT = Fn->getType()->getAs<FunctionProtoType>())
11725       ResolveExceptionSpec(AddressOfExpr->getExprLoc(), FPT);
11726     FoundResult = *Resolver.getMatchingFunctionAccessPair();
11727     if (Complain) {
11728       if (Resolver.IsStaticMemberFunctionFromBoundPointer())
11729         Resolver.ComplainIsStaticMemberFunctionFromBoundPointer();
11730       else
11731         CheckAddressOfMemberAccess(AddressOfExpr, FoundResult);
11732     }
11733   }
11734 
11735   if (pHadMultipleCandidates)
11736     *pHadMultipleCandidates = Resolver.hadMultipleCandidates();
11737   return Fn;
11738 }
11739 
11740 /// Given an expression that refers to an overloaded function, try to
11741 /// resolve that function to a single function that can have its address taken.
11742 /// This will modify `Pair` iff it returns non-null.
11743 ///
11744 /// This routine can only realistically succeed if all but one candidates in the
11745 /// overload set for SrcExpr cannot have their addresses taken.
11746 FunctionDecl *
11747 Sema::resolveAddressOfOnlyViableOverloadCandidate(Expr *E,
11748                                                   DeclAccessPair &Pair) {
11749   OverloadExpr::FindResult R = OverloadExpr::find(E);
11750   OverloadExpr *Ovl = R.Expression;
11751   FunctionDecl *Result = nullptr;
11752   DeclAccessPair DAP;
11753   // Don't use the AddressOfResolver because we're specifically looking for
11754   // cases where we have one overload candidate that lacks
11755   // enable_if/pass_object_size/...
11756   for (auto I = Ovl->decls_begin(), E = Ovl->decls_end(); I != E; ++I) {
11757     auto *FD = dyn_cast<FunctionDecl>(I->getUnderlyingDecl());
11758     if (!FD)
11759       return nullptr;
11760 
11761     if (!checkAddressOfFunctionIsAvailable(FD))
11762       continue;
11763 
11764     // We have more than one result; quit.
11765     if (Result)
11766       return nullptr;
11767     DAP = I.getPair();
11768     Result = FD;
11769   }
11770 
11771   if (Result)
11772     Pair = DAP;
11773   return Result;
11774 }
11775 
11776 /// Given an overloaded function, tries to turn it into a non-overloaded
11777 /// function reference using resolveAddressOfOnlyViableOverloadCandidate. This
11778 /// will perform access checks, diagnose the use of the resultant decl, and, if
11779 /// requested, potentially perform a function-to-pointer decay.
11780 ///
11781 /// Returns false if resolveAddressOfOnlyViableOverloadCandidate fails.
11782 /// Otherwise, returns true. This may emit diagnostics and return true.
11783 bool Sema::resolveAndFixAddressOfOnlyViableOverloadCandidate(
11784     ExprResult &SrcExpr, bool DoFunctionPointerConverion) {
11785   Expr *E = SrcExpr.get();
11786   assert(E->getType() == Context.OverloadTy && "SrcExpr must be an overload");
11787 
11788   DeclAccessPair DAP;
11789   FunctionDecl *Found = resolveAddressOfOnlyViableOverloadCandidate(E, DAP);
11790   if (!Found || Found->isCPUDispatchMultiVersion() ||
11791       Found->isCPUSpecificMultiVersion())
11792     return false;
11793 
11794   // Emitting multiple diagnostics for a function that is both inaccessible and
11795   // unavailable is consistent with our behavior elsewhere. So, always check
11796   // for both.
11797   DiagnoseUseOfDecl(Found, E->getExprLoc());
11798   CheckAddressOfMemberAccess(E, DAP);
11799   Expr *Fixed = FixOverloadedFunctionReference(E, DAP, Found);
11800   if (DoFunctionPointerConverion && Fixed->getType()->isFunctionType())
11801     SrcExpr = DefaultFunctionArrayConversion(Fixed, /*Diagnose=*/false);
11802   else
11803     SrcExpr = Fixed;
11804   return true;
11805 }
11806 
11807 /// Given an expression that refers to an overloaded function, try to
11808 /// resolve that overloaded function expression down to a single function.
11809 ///
11810 /// This routine can only resolve template-ids that refer to a single function
11811 /// template, where that template-id refers to a single template whose template
11812 /// arguments are either provided by the template-id or have defaults,
11813 /// as described in C++0x [temp.arg.explicit]p3.
11814 ///
11815 /// If no template-ids are found, no diagnostics are emitted and NULL is
11816 /// returned.
11817 FunctionDecl *
11818 Sema::ResolveSingleFunctionTemplateSpecialization(OverloadExpr *ovl,
11819                                                   bool Complain,
11820                                                   DeclAccessPair *FoundResult) {
11821   // C++ [over.over]p1:
11822   //   [...] [Note: any redundant set of parentheses surrounding the
11823   //   overloaded function name is ignored (5.1). ]
11824   // C++ [over.over]p1:
11825   //   [...] The overloaded function name can be preceded by the &
11826   //   operator.
11827 
11828   // If we didn't actually find any template-ids, we're done.
11829   if (!ovl->hasExplicitTemplateArgs())
11830     return nullptr;
11831 
11832   TemplateArgumentListInfo ExplicitTemplateArgs;
11833   ovl->copyTemplateArgumentsInto(ExplicitTemplateArgs);
11834   TemplateSpecCandidateSet FailedCandidates(ovl->getNameLoc());
11835 
11836   // Look through all of the overloaded functions, searching for one
11837   // whose type matches exactly.
11838   FunctionDecl *Matched = nullptr;
11839   for (UnresolvedSetIterator I = ovl->decls_begin(),
11840          E = ovl->decls_end(); I != E; ++I) {
11841     // C++0x [temp.arg.explicit]p3:
11842     //   [...] In contexts where deduction is done and fails, or in contexts
11843     //   where deduction is not done, if a template argument list is
11844     //   specified and it, along with any default template arguments,
11845     //   identifies a single function template specialization, then the
11846     //   template-id is an lvalue for the function template specialization.
11847     FunctionTemplateDecl *FunctionTemplate
11848       = cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl());
11849 
11850     // C++ [over.over]p2:
11851     //   If the name is a function template, template argument deduction is
11852     //   done (14.8.2.2), and if the argument deduction succeeds, the
11853     //   resulting template argument list is used to generate a single
11854     //   function template specialization, which is added to the set of
11855     //   overloaded functions considered.
11856     FunctionDecl *Specialization = nullptr;
11857     TemplateDeductionInfo Info(FailedCandidates.getLocation());
11858     if (TemplateDeductionResult Result
11859           = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs,
11860                                     Specialization, Info,
11861                                     /*IsAddressOfFunction*/true)) {
11862       // Make a note of the failed deduction for diagnostics.
11863       // TODO: Actually use the failed-deduction info?
11864       FailedCandidates.addCandidate()
11865           .set(I.getPair(), FunctionTemplate->getTemplatedDecl(),
11866                MakeDeductionFailureInfo(Context, Result, Info));
11867       continue;
11868     }
11869 
11870     assert(Specialization && "no specialization and no error?");
11871 
11872     // Multiple matches; we can't resolve to a single declaration.
11873     if (Matched) {
11874       if (Complain) {
11875         Diag(ovl->getExprLoc(), diag::err_addr_ovl_ambiguous)
11876           << ovl->getName();
11877         NoteAllOverloadCandidates(ovl);
11878       }
11879       return nullptr;
11880     }
11881 
11882     Matched = Specialization;
11883     if (FoundResult) *FoundResult = I.getPair();
11884   }
11885 
11886   if (Matched &&
11887       completeFunctionType(*this, Matched, ovl->getExprLoc(), Complain))
11888     return nullptr;
11889 
11890   return Matched;
11891 }
11892 
11893 // Resolve and fix an overloaded expression that can be resolved
11894 // because it identifies a single function template specialization.
11895 //
11896 // Last three arguments should only be supplied if Complain = true
11897 //
11898 // Return true if it was logically possible to so resolve the
11899 // expression, regardless of whether or not it succeeded.  Always
11900 // returns true if 'complain' is set.
11901 bool Sema::ResolveAndFixSingleFunctionTemplateSpecialization(
11902                       ExprResult &SrcExpr, bool doFunctionPointerConverion,
11903                       bool complain, SourceRange OpRangeForComplaining,
11904                                            QualType DestTypeForComplaining,
11905                                             unsigned DiagIDForComplaining) {
11906   assert(SrcExpr.get()->getType() == Context.OverloadTy);
11907 
11908   OverloadExpr::FindResult ovl = OverloadExpr::find(SrcExpr.get());
11909 
11910   DeclAccessPair found;
11911   ExprResult SingleFunctionExpression;
11912   if (FunctionDecl *fn = ResolveSingleFunctionTemplateSpecialization(
11913                            ovl.Expression, /*complain*/ false, &found)) {
11914     if (DiagnoseUseOfDecl(fn, SrcExpr.get()->getBeginLoc())) {
11915       SrcExpr = ExprError();
11916       return true;
11917     }
11918 
11919     // It is only correct to resolve to an instance method if we're
11920     // resolving a form that's permitted to be a pointer to member.
11921     // Otherwise we'll end up making a bound member expression, which
11922     // is illegal in all the contexts we resolve like this.
11923     if (!ovl.HasFormOfMemberPointer &&
11924         isa<CXXMethodDecl>(fn) &&
11925         cast<CXXMethodDecl>(fn)->isInstance()) {
11926       if (!complain) return false;
11927 
11928       Diag(ovl.Expression->getExprLoc(),
11929            diag::err_bound_member_function)
11930         << 0 << ovl.Expression->getSourceRange();
11931 
11932       // TODO: I believe we only end up here if there's a mix of
11933       // static and non-static candidates (otherwise the expression
11934       // would have 'bound member' type, not 'overload' type).
11935       // Ideally we would note which candidate was chosen and why
11936       // the static candidates were rejected.
11937       SrcExpr = ExprError();
11938       return true;
11939     }
11940 
11941     // Fix the expression to refer to 'fn'.
11942     SingleFunctionExpression =
11943         FixOverloadedFunctionReference(SrcExpr.get(), found, fn);
11944 
11945     // If desired, do function-to-pointer decay.
11946     if (doFunctionPointerConverion) {
11947       SingleFunctionExpression =
11948         DefaultFunctionArrayLvalueConversion(SingleFunctionExpression.get());
11949       if (SingleFunctionExpression.isInvalid()) {
11950         SrcExpr = ExprError();
11951         return true;
11952       }
11953     }
11954   }
11955 
11956   if (!SingleFunctionExpression.isUsable()) {
11957     if (complain) {
11958       Diag(OpRangeForComplaining.getBegin(), DiagIDForComplaining)
11959         << ovl.Expression->getName()
11960         << DestTypeForComplaining
11961         << OpRangeForComplaining
11962         << ovl.Expression->getQualifierLoc().getSourceRange();
11963       NoteAllOverloadCandidates(SrcExpr.get());
11964 
11965       SrcExpr = ExprError();
11966       return true;
11967     }
11968 
11969     return false;
11970   }
11971 
11972   SrcExpr = SingleFunctionExpression;
11973   return true;
11974 }
11975 
11976 /// Add a single candidate to the overload set.
11977 static void AddOverloadedCallCandidate(Sema &S,
11978                                        DeclAccessPair FoundDecl,
11979                                  TemplateArgumentListInfo *ExplicitTemplateArgs,
11980                                        ArrayRef<Expr *> Args,
11981                                        OverloadCandidateSet &CandidateSet,
11982                                        bool PartialOverloading,
11983                                        bool KnownValid) {
11984   NamedDecl *Callee = FoundDecl.getDecl();
11985   if (isa<UsingShadowDecl>(Callee))
11986     Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl();
11987 
11988   if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
11989     if (ExplicitTemplateArgs) {
11990       assert(!KnownValid && "Explicit template arguments?");
11991       return;
11992     }
11993     // Prevent ill-formed function decls to be added as overload candidates.
11994     if (!dyn_cast<FunctionProtoType>(Func->getType()->getAs<FunctionType>()))
11995       return;
11996 
11997     S.AddOverloadCandidate(Func, FoundDecl, Args, CandidateSet,
11998                            /*SuppressUserConversions=*/false,
11999                            PartialOverloading);
12000     return;
12001   }
12002 
12003   if (FunctionTemplateDecl *FuncTemplate
12004       = dyn_cast<FunctionTemplateDecl>(Callee)) {
12005     S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl,
12006                                    ExplicitTemplateArgs, Args, CandidateSet,
12007                                    /*SuppressUserConversions=*/false,
12008                                    PartialOverloading);
12009     return;
12010   }
12011 
12012   assert(!KnownValid && "unhandled case in overloaded call candidate");
12013 }
12014 
12015 /// Add the overload candidates named by callee and/or found by argument
12016 /// dependent lookup to the given overload set.
12017 void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
12018                                        ArrayRef<Expr *> Args,
12019                                        OverloadCandidateSet &CandidateSet,
12020                                        bool PartialOverloading) {
12021 
12022 #ifndef NDEBUG
12023   // Verify that ArgumentDependentLookup is consistent with the rules
12024   // in C++0x [basic.lookup.argdep]p3:
12025   //
12026   //   Let X be the lookup set produced by unqualified lookup (3.4.1)
12027   //   and let Y be the lookup set produced by argument dependent
12028   //   lookup (defined as follows). If X contains
12029   //
12030   //     -- a declaration of a class member, or
12031   //
12032   //     -- a block-scope function declaration that is not a
12033   //        using-declaration, or
12034   //
12035   //     -- a declaration that is neither a function or a function
12036   //        template
12037   //
12038   //   then Y is empty.
12039 
12040   if (ULE->requiresADL()) {
12041     for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
12042            E = ULE->decls_end(); I != E; ++I) {
12043       assert(!(*I)->getDeclContext()->isRecord());
12044       assert(isa<UsingShadowDecl>(*I) ||
12045              !(*I)->getDeclContext()->isFunctionOrMethod());
12046       assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate());
12047     }
12048   }
12049 #endif
12050 
12051   // It would be nice to avoid this copy.
12052   TemplateArgumentListInfo TABuffer;
12053   TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr;
12054   if (ULE->hasExplicitTemplateArgs()) {
12055     ULE->copyTemplateArgumentsInto(TABuffer);
12056     ExplicitTemplateArgs = &TABuffer;
12057   }
12058 
12059   for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
12060          E = ULE->decls_end(); I != E; ++I)
12061     AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, Args,
12062                                CandidateSet, PartialOverloading,
12063                                /*KnownValid*/ true);
12064 
12065   if (ULE->requiresADL())
12066     AddArgumentDependentLookupCandidates(ULE->getName(), ULE->getExprLoc(),
12067                                          Args, ExplicitTemplateArgs,
12068                                          CandidateSet, PartialOverloading);
12069 }
12070 
12071 /// Determine whether a declaration with the specified name could be moved into
12072 /// a different namespace.
12073 static bool canBeDeclaredInNamespace(const DeclarationName &Name) {
12074   switch (Name.getCXXOverloadedOperator()) {
12075   case OO_New: case OO_Array_New:
12076   case OO_Delete: case OO_Array_Delete:
12077     return false;
12078 
12079   default:
12080     return true;
12081   }
12082 }
12083 
12084 /// Attempt to recover from an ill-formed use of a non-dependent name in a
12085 /// template, where the non-dependent name was declared after the template
12086 /// was defined. This is common in code written for a compilers which do not
12087 /// correctly implement two-stage name lookup.
12088 ///
12089 /// Returns true if a viable candidate was found and a diagnostic was issued.
12090 static bool
12091 DiagnoseTwoPhaseLookup(Sema &SemaRef, SourceLocation FnLoc,
12092                        const CXXScopeSpec &SS, LookupResult &R,
12093                        OverloadCandidateSet::CandidateSetKind CSK,
12094                        TemplateArgumentListInfo *ExplicitTemplateArgs,
12095                        ArrayRef<Expr *> Args,
12096                        bool *DoDiagnoseEmptyLookup = nullptr) {
12097   if (!SemaRef.inTemplateInstantiation() || !SS.isEmpty())
12098     return false;
12099 
12100   for (DeclContext *DC = SemaRef.CurContext; DC; DC = DC->getParent()) {
12101     if (DC->isTransparentContext())
12102       continue;
12103 
12104     SemaRef.LookupQualifiedName(R, DC);
12105 
12106     if (!R.empty()) {
12107       R.suppressDiagnostics();
12108 
12109       if (isa<CXXRecordDecl>(DC)) {
12110         // Don't diagnose names we find in classes; we get much better
12111         // diagnostics for these from DiagnoseEmptyLookup.
12112         R.clear();
12113         if (DoDiagnoseEmptyLookup)
12114           *DoDiagnoseEmptyLookup = true;
12115         return false;
12116       }
12117 
12118       OverloadCandidateSet Candidates(FnLoc, CSK);
12119       for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
12120         AddOverloadedCallCandidate(SemaRef, I.getPair(),
12121                                    ExplicitTemplateArgs, Args,
12122                                    Candidates, false, /*KnownValid*/ false);
12123 
12124       OverloadCandidateSet::iterator Best;
12125       if (Candidates.BestViableFunction(SemaRef, FnLoc, Best) != OR_Success) {
12126         // No viable functions. Don't bother the user with notes for functions
12127         // which don't work and shouldn't be found anyway.
12128         R.clear();
12129         return false;
12130       }
12131 
12132       // Find the namespaces where ADL would have looked, and suggest
12133       // declaring the function there instead.
12134       Sema::AssociatedNamespaceSet AssociatedNamespaces;
12135       Sema::AssociatedClassSet AssociatedClasses;
12136       SemaRef.FindAssociatedClassesAndNamespaces(FnLoc, Args,
12137                                                  AssociatedNamespaces,
12138                                                  AssociatedClasses);
12139       Sema::AssociatedNamespaceSet SuggestedNamespaces;
12140       if (canBeDeclaredInNamespace(R.getLookupName())) {
12141         DeclContext *Std = SemaRef.getStdNamespace();
12142         for (Sema::AssociatedNamespaceSet::iterator
12143                it = AssociatedNamespaces.begin(),
12144                end = AssociatedNamespaces.end(); it != end; ++it) {
12145           // Never suggest declaring a function within namespace 'std'.
12146           if (Std && Std->Encloses(*it))
12147             continue;
12148 
12149           // Never suggest declaring a function within a namespace with a
12150           // reserved name, like __gnu_cxx.
12151           NamespaceDecl *NS = dyn_cast<NamespaceDecl>(*it);
12152           if (NS &&
12153               NS->getQualifiedNameAsString().find("__") != std::string::npos)
12154             continue;
12155 
12156           SuggestedNamespaces.insert(*it);
12157         }
12158       }
12159 
12160       SemaRef.Diag(R.getNameLoc(), diag::err_not_found_by_two_phase_lookup)
12161         << R.getLookupName();
12162       if (SuggestedNamespaces.empty()) {
12163         SemaRef.Diag(Best->Function->getLocation(),
12164                      diag::note_not_found_by_two_phase_lookup)
12165           << R.getLookupName() << 0;
12166       } else if (SuggestedNamespaces.size() == 1) {
12167         SemaRef.Diag(Best->Function->getLocation(),
12168                      diag::note_not_found_by_two_phase_lookup)
12169           << R.getLookupName() << 1 << *SuggestedNamespaces.begin();
12170       } else {
12171         // FIXME: It would be useful to list the associated namespaces here,
12172         // but the diagnostics infrastructure doesn't provide a way to produce
12173         // a localized representation of a list of items.
12174         SemaRef.Diag(Best->Function->getLocation(),
12175                      diag::note_not_found_by_two_phase_lookup)
12176           << R.getLookupName() << 2;
12177       }
12178 
12179       // Try to recover by calling this function.
12180       return true;
12181     }
12182 
12183     R.clear();
12184   }
12185 
12186   return false;
12187 }
12188 
12189 /// Attempt to recover from ill-formed use of a non-dependent operator in a
12190 /// template, where the non-dependent operator was declared after the template
12191 /// was defined.
12192 ///
12193 /// Returns true if a viable candidate was found and a diagnostic was issued.
12194 static bool
12195 DiagnoseTwoPhaseOperatorLookup(Sema &SemaRef, OverloadedOperatorKind Op,
12196                                SourceLocation OpLoc,
12197                                ArrayRef<Expr *> Args) {
12198   DeclarationName OpName =
12199     SemaRef.Context.DeclarationNames.getCXXOperatorName(Op);
12200   LookupResult R(SemaRef, OpName, OpLoc, Sema::LookupOperatorName);
12201   return DiagnoseTwoPhaseLookup(SemaRef, OpLoc, CXXScopeSpec(), R,
12202                                 OverloadCandidateSet::CSK_Operator,
12203                                 /*ExplicitTemplateArgs=*/nullptr, Args);
12204 }
12205 
12206 namespace {
12207 class BuildRecoveryCallExprRAII {
12208   Sema &SemaRef;
12209 public:
12210   BuildRecoveryCallExprRAII(Sema &S) : SemaRef(S) {
12211     assert(SemaRef.IsBuildingRecoveryCallExpr == false);
12212     SemaRef.IsBuildingRecoveryCallExpr = true;
12213   }
12214 
12215   ~BuildRecoveryCallExprRAII() {
12216     SemaRef.IsBuildingRecoveryCallExpr = false;
12217   }
12218 };
12219 
12220 }
12221 
12222 /// Attempts to recover from a call where no functions were found.
12223 ///
12224 /// Returns true if new candidates were found.
12225 static ExprResult
12226 BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
12227                       UnresolvedLookupExpr *ULE,
12228                       SourceLocation LParenLoc,
12229                       MutableArrayRef<Expr *> Args,
12230                       SourceLocation RParenLoc,
12231                       bool EmptyLookup, bool AllowTypoCorrection) {
12232   // Do not try to recover if it is already building a recovery call.
12233   // This stops infinite loops for template instantiations like
12234   //
12235   // template <typename T> auto foo(T t) -> decltype(foo(t)) {}
12236   // template <typename T> auto foo(T t) -> decltype(foo(&t)) {}
12237   //
12238   if (SemaRef.IsBuildingRecoveryCallExpr)
12239     return ExprError();
12240   BuildRecoveryCallExprRAII RCE(SemaRef);
12241 
12242   CXXScopeSpec SS;
12243   SS.Adopt(ULE->getQualifierLoc());
12244   SourceLocation TemplateKWLoc = ULE->getTemplateKeywordLoc();
12245 
12246   TemplateArgumentListInfo TABuffer;
12247   TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr;
12248   if (ULE->hasExplicitTemplateArgs()) {
12249     ULE->copyTemplateArgumentsInto(TABuffer);
12250     ExplicitTemplateArgs = &TABuffer;
12251   }
12252 
12253   LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(),
12254                  Sema::LookupOrdinaryName);
12255   bool DoDiagnoseEmptyLookup = EmptyLookup;
12256   if (!DiagnoseTwoPhaseLookup(
12257           SemaRef, Fn->getExprLoc(), SS, R, OverloadCandidateSet::CSK_Normal,
12258           ExplicitTemplateArgs, Args, &DoDiagnoseEmptyLookup)) {
12259     NoTypoCorrectionCCC NoTypoValidator{};
12260     FunctionCallFilterCCC FunctionCallValidator(SemaRef, Args.size(),
12261                                                 ExplicitTemplateArgs != nullptr,
12262                                                 dyn_cast<MemberExpr>(Fn));
12263     CorrectionCandidateCallback &Validator =
12264         AllowTypoCorrection
12265             ? static_cast<CorrectionCandidateCallback &>(FunctionCallValidator)
12266             : static_cast<CorrectionCandidateCallback &>(NoTypoValidator);
12267     if (!DoDiagnoseEmptyLookup ||
12268         SemaRef.DiagnoseEmptyLookup(S, SS, R, Validator, ExplicitTemplateArgs,
12269                                     Args))
12270       return ExprError();
12271   }
12272 
12273   assert(!R.empty() && "lookup results empty despite recovery");
12274 
12275   // If recovery created an ambiguity, just bail out.
12276   if (R.isAmbiguous()) {
12277     R.suppressDiagnostics();
12278     return ExprError();
12279   }
12280 
12281   // Build an implicit member call if appropriate.  Just drop the
12282   // casts and such from the call, we don't really care.
12283   ExprResult NewFn = ExprError();
12284   if ((*R.begin())->isCXXClassMember())
12285     NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc, R,
12286                                                     ExplicitTemplateArgs, S);
12287   else if (ExplicitTemplateArgs || TemplateKWLoc.isValid())
12288     NewFn = SemaRef.BuildTemplateIdExpr(SS, TemplateKWLoc, R, false,
12289                                         ExplicitTemplateArgs);
12290   else
12291     NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false);
12292 
12293   if (NewFn.isInvalid())
12294     return ExprError();
12295 
12296   // This shouldn't cause an infinite loop because we're giving it
12297   // an expression with viable lookup results, which should never
12298   // end up here.
12299   return SemaRef.BuildCallExpr(/*Scope*/ nullptr, NewFn.get(), LParenLoc,
12300                                MultiExprArg(Args.data(), Args.size()),
12301                                RParenLoc);
12302 }
12303 
12304 /// Constructs and populates an OverloadedCandidateSet from
12305 /// the given function.
12306 /// \returns true when an the ExprResult output parameter has been set.
12307 bool Sema::buildOverloadedCallSet(Scope *S, Expr *Fn,
12308                                   UnresolvedLookupExpr *ULE,
12309                                   MultiExprArg Args,
12310                                   SourceLocation RParenLoc,
12311                                   OverloadCandidateSet *CandidateSet,
12312                                   ExprResult *Result) {
12313 #ifndef NDEBUG
12314   if (ULE->requiresADL()) {
12315     // To do ADL, we must have found an unqualified name.
12316     assert(!ULE->getQualifier() && "qualified name with ADL");
12317 
12318     // We don't perform ADL for implicit declarations of builtins.
12319     // Verify that this was correctly set up.
12320     FunctionDecl *F;
12321     if (ULE->decls_begin() != ULE->decls_end() &&
12322         ULE->decls_begin() + 1 == ULE->decls_end() &&
12323         (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) &&
12324         F->getBuiltinID() && F->isImplicit())
12325       llvm_unreachable("performing ADL for builtin");
12326 
12327     // We don't perform ADL in C.
12328     assert(getLangOpts().CPlusPlus && "ADL enabled in C");
12329   }
12330 #endif
12331 
12332   UnbridgedCastsSet UnbridgedCasts;
12333   if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts)) {
12334     *Result = ExprError();
12335     return true;
12336   }
12337 
12338   // Add the functions denoted by the callee to the set of candidate
12339   // functions, including those from argument-dependent lookup.
12340   AddOverloadedCallCandidates(ULE, Args, *CandidateSet);
12341 
12342   if (getLangOpts().MSVCCompat &&
12343       CurContext->isDependentContext() && !isSFINAEContext() &&
12344       (isa<FunctionDecl>(CurContext) || isa<CXXRecordDecl>(CurContext))) {
12345 
12346     OverloadCandidateSet::iterator Best;
12347     if (CandidateSet->empty() ||
12348         CandidateSet->BestViableFunction(*this, Fn->getBeginLoc(), Best) ==
12349             OR_No_Viable_Function) {
12350       // In Microsoft mode, if we are inside a template class member function
12351       // then create a type dependent CallExpr. The goal is to postpone name
12352       // lookup to instantiation time to be able to search into type dependent
12353       // base classes.
12354       CallExpr *CE = CallExpr::Create(Context, Fn, Args, Context.DependentTy,
12355                                       VK_RValue, RParenLoc);
12356       CE->setTypeDependent(true);
12357       CE->setValueDependent(true);
12358       CE->setInstantiationDependent(true);
12359       *Result = CE;
12360       return true;
12361     }
12362   }
12363 
12364   if (CandidateSet->empty())
12365     return false;
12366 
12367   UnbridgedCasts.restore();
12368   return false;
12369 }
12370 
12371 /// FinishOverloadedCallExpr - given an OverloadCandidateSet, builds and returns
12372 /// the completed call expression. If overload resolution fails, emits
12373 /// diagnostics and returns ExprError()
12374 static ExprResult FinishOverloadedCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
12375                                            UnresolvedLookupExpr *ULE,
12376                                            SourceLocation LParenLoc,
12377                                            MultiExprArg Args,
12378                                            SourceLocation RParenLoc,
12379                                            Expr *ExecConfig,
12380                                            OverloadCandidateSet *CandidateSet,
12381                                            OverloadCandidateSet::iterator *Best,
12382                                            OverloadingResult OverloadResult,
12383                                            bool AllowTypoCorrection) {
12384   if (CandidateSet->empty())
12385     return BuildRecoveryCallExpr(SemaRef, S, Fn, ULE, LParenLoc, Args,
12386                                  RParenLoc, /*EmptyLookup=*/true,
12387                                  AllowTypoCorrection);
12388 
12389   switch (OverloadResult) {
12390   case OR_Success: {
12391     FunctionDecl *FDecl = (*Best)->Function;
12392     SemaRef.CheckUnresolvedLookupAccess(ULE, (*Best)->FoundDecl);
12393     if (SemaRef.DiagnoseUseOfDecl(FDecl, ULE->getNameLoc()))
12394       return ExprError();
12395     Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl);
12396     return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, RParenLoc,
12397                                          ExecConfig, /*IsExecConfig=*/false,
12398                                          (*Best)->IsADLCandidate);
12399   }
12400 
12401   case OR_No_Viable_Function: {
12402     // Try to recover by looking for viable functions which the user might
12403     // have meant to call.
12404     ExprResult Recovery = BuildRecoveryCallExpr(SemaRef, S, Fn, ULE, LParenLoc,
12405                                                 Args, RParenLoc,
12406                                                 /*EmptyLookup=*/false,
12407                                                 AllowTypoCorrection);
12408     if (!Recovery.isInvalid())
12409       return Recovery;
12410 
12411     // If the user passes in a function that we can't take the address of, we
12412     // generally end up emitting really bad error messages. Here, we attempt to
12413     // emit better ones.
12414     for (const Expr *Arg : Args) {
12415       if (!Arg->getType()->isFunctionType())
12416         continue;
12417       if (auto *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts())) {
12418         auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl());
12419         if (FD &&
12420             !SemaRef.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
12421                                                        Arg->getExprLoc()))
12422           return ExprError();
12423       }
12424     }
12425 
12426     CandidateSet->NoteCandidates(
12427         PartialDiagnosticAt(
12428             Fn->getBeginLoc(),
12429             SemaRef.PDiag(diag::err_ovl_no_viable_function_in_call)
12430                 << ULE->getName() << Fn->getSourceRange()),
12431         SemaRef, OCD_AllCandidates, Args);
12432     break;
12433   }
12434 
12435   case OR_Ambiguous:
12436     CandidateSet->NoteCandidates(
12437         PartialDiagnosticAt(Fn->getBeginLoc(),
12438                             SemaRef.PDiag(diag::err_ovl_ambiguous_call)
12439                                 << ULE->getName() << Fn->getSourceRange()),
12440         SemaRef, OCD_AmbiguousCandidates, Args);
12441     break;
12442 
12443   case OR_Deleted: {
12444     CandidateSet->NoteCandidates(
12445         PartialDiagnosticAt(Fn->getBeginLoc(),
12446                             SemaRef.PDiag(diag::err_ovl_deleted_call)
12447                                 << ULE->getName() << Fn->getSourceRange()),
12448         SemaRef, OCD_AllCandidates, Args);
12449 
12450     // We emitted an error for the unavailable/deleted function call but keep
12451     // the call in the AST.
12452     FunctionDecl *FDecl = (*Best)->Function;
12453     Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl);
12454     return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, RParenLoc,
12455                                          ExecConfig, /*IsExecConfig=*/false,
12456                                          (*Best)->IsADLCandidate);
12457   }
12458   }
12459 
12460   // Overload resolution failed.
12461   return ExprError();
12462 }
12463 
12464 static void markUnaddressableCandidatesUnviable(Sema &S,
12465                                                 OverloadCandidateSet &CS) {
12466   for (auto I = CS.begin(), E = CS.end(); I != E; ++I) {
12467     if (I->Viable &&
12468         !S.checkAddressOfFunctionIsAvailable(I->Function, /*Complain=*/false)) {
12469       I->Viable = false;
12470       I->FailureKind = ovl_fail_addr_not_available;
12471     }
12472   }
12473 }
12474 
12475 /// BuildOverloadedCallExpr - Given the call expression that calls Fn
12476 /// (which eventually refers to the declaration Func) and the call
12477 /// arguments Args/NumArgs, attempt to resolve the function call down
12478 /// to a specific function. If overload resolution succeeds, returns
12479 /// the call expression produced by overload resolution.
12480 /// Otherwise, emits diagnostics and returns ExprError.
12481 ExprResult Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn,
12482                                          UnresolvedLookupExpr *ULE,
12483                                          SourceLocation LParenLoc,
12484                                          MultiExprArg Args,
12485                                          SourceLocation RParenLoc,
12486                                          Expr *ExecConfig,
12487                                          bool AllowTypoCorrection,
12488                                          bool CalleesAddressIsTaken) {
12489   OverloadCandidateSet CandidateSet(Fn->getExprLoc(),
12490                                     OverloadCandidateSet::CSK_Normal);
12491   ExprResult result;
12492 
12493   if (buildOverloadedCallSet(S, Fn, ULE, Args, LParenLoc, &CandidateSet,
12494                              &result))
12495     return result;
12496 
12497   // If the user handed us something like `(&Foo)(Bar)`, we need to ensure that
12498   // functions that aren't addressible are considered unviable.
12499   if (CalleesAddressIsTaken)
12500     markUnaddressableCandidatesUnviable(*this, CandidateSet);
12501 
12502   OverloadCandidateSet::iterator Best;
12503   OverloadingResult OverloadResult =
12504       CandidateSet.BestViableFunction(*this, Fn->getBeginLoc(), Best);
12505 
12506   return FinishOverloadedCallExpr(*this, S, Fn, ULE, LParenLoc, Args, RParenLoc,
12507                                   ExecConfig, &CandidateSet, &Best,
12508                                   OverloadResult, AllowTypoCorrection);
12509 }
12510 
12511 static bool IsOverloaded(const UnresolvedSetImpl &Functions) {
12512   return Functions.size() > 1 ||
12513     (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin()));
12514 }
12515 
12516 /// Create a unary operation that may resolve to an overloaded
12517 /// operator.
12518 ///
12519 /// \param OpLoc The location of the operator itself (e.g., '*').
12520 ///
12521 /// \param Opc The UnaryOperatorKind that describes this operator.
12522 ///
12523 /// \param Fns The set of non-member functions that will be
12524 /// considered by overload resolution. The caller needs to build this
12525 /// set based on the context using, e.g.,
12526 /// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
12527 /// set should not contain any member functions; those will be added
12528 /// by CreateOverloadedUnaryOp().
12529 ///
12530 /// \param Input The input argument.
12531 ExprResult
12532 Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, UnaryOperatorKind Opc,
12533                               const UnresolvedSetImpl &Fns,
12534                               Expr *Input, bool PerformADL) {
12535   OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
12536   assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
12537   DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
12538   // TODO: provide better source location info.
12539   DeclarationNameInfo OpNameInfo(OpName, OpLoc);
12540 
12541   if (checkPlaceholderForOverload(*this, Input))
12542     return ExprError();
12543 
12544   Expr *Args[2] = { Input, nullptr };
12545   unsigned NumArgs = 1;
12546 
12547   // For post-increment and post-decrement, add the implicit '0' as
12548   // the second argument, so that we know this is a post-increment or
12549   // post-decrement.
12550   if (Opc == UO_PostInc || Opc == UO_PostDec) {
12551     llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
12552     Args[1] = IntegerLiteral::Create(Context, Zero, Context.IntTy,
12553                                      SourceLocation());
12554     NumArgs = 2;
12555   }
12556 
12557   ArrayRef<Expr *> ArgsArray(Args, NumArgs);
12558 
12559   if (Input->isTypeDependent()) {
12560     if (Fns.empty())
12561       return new (Context) UnaryOperator(Input, Opc, Context.DependentTy,
12562                                          VK_RValue, OK_Ordinary, OpLoc, false);
12563 
12564     CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators
12565     UnresolvedLookupExpr *Fn = UnresolvedLookupExpr::Create(
12566         Context, NamingClass, NestedNameSpecifierLoc(), OpNameInfo,
12567         /*ADL*/ true, IsOverloaded(Fns), Fns.begin(), Fns.end());
12568     return CXXOperatorCallExpr::Create(Context, Op, Fn, ArgsArray,
12569                                        Context.DependentTy, VK_RValue, OpLoc,
12570                                        FPOptions());
12571   }
12572 
12573   // Build an empty overload set.
12574   OverloadCandidateSet CandidateSet(OpLoc, OverloadCandidateSet::CSK_Operator);
12575 
12576   // Add the candidates from the given function set.
12577   AddNonMemberOperatorCandidates(Fns, ArgsArray, CandidateSet);
12578 
12579   // Add operator candidates that are member functions.
12580   AddMemberOperatorCandidates(Op, OpLoc, ArgsArray, CandidateSet);
12581 
12582   // Add candidates from ADL.
12583   if (PerformADL) {
12584     AddArgumentDependentLookupCandidates(OpName, OpLoc, ArgsArray,
12585                                          /*ExplicitTemplateArgs*/nullptr,
12586                                          CandidateSet);
12587   }
12588 
12589   // Add builtin operator candidates.
12590   AddBuiltinOperatorCandidates(Op, OpLoc, ArgsArray, CandidateSet);
12591 
12592   bool HadMultipleCandidates = (CandidateSet.size() > 1);
12593 
12594   // Perform overload resolution.
12595   OverloadCandidateSet::iterator Best;
12596   switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
12597   case OR_Success: {
12598     // We found a built-in operator or an overloaded operator.
12599     FunctionDecl *FnDecl = Best->Function;
12600 
12601     if (FnDecl) {
12602       Expr *Base = nullptr;
12603       // We matched an overloaded operator. Build a call to that
12604       // operator.
12605 
12606       // Convert the arguments.
12607       if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
12608         CheckMemberOperatorAccess(OpLoc, Args[0], nullptr, Best->FoundDecl);
12609 
12610         ExprResult InputRes =
12611           PerformObjectArgumentInitialization(Input, /*Qualifier=*/nullptr,
12612                                               Best->FoundDecl, Method);
12613         if (InputRes.isInvalid())
12614           return ExprError();
12615         Base = Input = InputRes.get();
12616       } else {
12617         // Convert the arguments.
12618         ExprResult InputInit
12619           = PerformCopyInitialization(InitializedEntity::InitializeParameter(
12620                                                       Context,
12621                                                       FnDecl->getParamDecl(0)),
12622                                       SourceLocation(),
12623                                       Input);
12624         if (InputInit.isInvalid())
12625           return ExprError();
12626         Input = InputInit.get();
12627       }
12628 
12629       // Build the actual expression node.
12630       ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, Best->FoundDecl,
12631                                                 Base, HadMultipleCandidates,
12632                                                 OpLoc);
12633       if (FnExpr.isInvalid())
12634         return ExprError();
12635 
12636       // Determine the result type.
12637       QualType ResultTy = FnDecl->getReturnType();
12638       ExprValueKind VK = Expr::getValueKindForType(ResultTy);
12639       ResultTy = ResultTy.getNonLValueExprType(Context);
12640 
12641       Args[0] = Input;
12642       CallExpr *TheCall = CXXOperatorCallExpr::Create(
12643           Context, Op, FnExpr.get(), ArgsArray, ResultTy, VK, OpLoc,
12644           FPOptions(), Best->IsADLCandidate);
12645 
12646       if (CheckCallReturnType(FnDecl->getReturnType(), OpLoc, TheCall, FnDecl))
12647         return ExprError();
12648 
12649       if (CheckFunctionCall(FnDecl, TheCall,
12650                             FnDecl->getType()->castAs<FunctionProtoType>()))
12651         return ExprError();
12652 
12653       return MaybeBindToTemporary(TheCall);
12654     } else {
12655       // We matched a built-in operator. Convert the arguments, then
12656       // break out so that we will build the appropriate built-in
12657       // operator node.
12658       ExprResult InputRes = PerformImplicitConversion(
12659           Input, Best->BuiltinParamTypes[0], Best->Conversions[0], AA_Passing,
12660           CCK_ForBuiltinOverloadedOp);
12661       if (InputRes.isInvalid())
12662         return ExprError();
12663       Input = InputRes.get();
12664       break;
12665     }
12666   }
12667 
12668   case OR_No_Viable_Function:
12669     // This is an erroneous use of an operator which can be overloaded by
12670     // a non-member function. Check for non-member operators which were
12671     // defined too late to be candidates.
12672     if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, ArgsArray))
12673       // FIXME: Recover by calling the found function.
12674       return ExprError();
12675 
12676     // No viable function; fall through to handling this as a
12677     // built-in operator, which will produce an error message for us.
12678     break;
12679 
12680   case OR_Ambiguous:
12681     CandidateSet.NoteCandidates(
12682         PartialDiagnosticAt(OpLoc,
12683                             PDiag(diag::err_ovl_ambiguous_oper_unary)
12684                                 << UnaryOperator::getOpcodeStr(Opc)
12685                                 << Input->getType() << Input->getSourceRange()),
12686         *this, OCD_AmbiguousCandidates, ArgsArray,
12687         UnaryOperator::getOpcodeStr(Opc), OpLoc);
12688     return ExprError();
12689 
12690   case OR_Deleted:
12691     CandidateSet.NoteCandidates(
12692         PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_deleted_oper)
12693                                        << UnaryOperator::getOpcodeStr(Opc)
12694                                        << Input->getSourceRange()),
12695         *this, OCD_AllCandidates, ArgsArray, UnaryOperator::getOpcodeStr(Opc),
12696         OpLoc);
12697     return ExprError();
12698   }
12699 
12700   // Either we found no viable overloaded operator or we matched a
12701   // built-in operator. In either case, fall through to trying to
12702   // build a built-in operation.
12703   return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
12704 }
12705 
12706 /// Create a binary operation that may resolve to an overloaded
12707 /// operator.
12708 ///
12709 /// \param OpLoc The location of the operator itself (e.g., '+').
12710 ///
12711 /// \param Opc The BinaryOperatorKind that describes this operator.
12712 ///
12713 /// \param Fns The set of non-member functions that will be
12714 /// considered by overload resolution. The caller needs to build this
12715 /// set based on the context using, e.g.,
12716 /// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
12717 /// set should not contain any member functions; those will be added
12718 /// by CreateOverloadedBinOp().
12719 ///
12720 /// \param LHS Left-hand argument.
12721 /// \param RHS Right-hand argument.
12722 ExprResult Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
12723                                        BinaryOperatorKind Opc,
12724                                        const UnresolvedSetImpl &Fns, Expr *LHS,
12725                                        Expr *RHS, bool PerformADL,
12726                                        bool AllowRewrittenCandidates) {
12727   Expr *Args[2] = { LHS, RHS };
12728   LHS=RHS=nullptr; // Please use only Args instead of LHS/RHS couple
12729 
12730   if (!getLangOpts().CPlusPlus2a)
12731     AllowRewrittenCandidates = false;
12732 
12733   OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
12734   DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
12735 
12736   // If either side is type-dependent, create an appropriate dependent
12737   // expression.
12738   if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
12739     if (Fns.empty()) {
12740       // If there are no functions to store, just build a dependent
12741       // BinaryOperator or CompoundAssignment.
12742       if (Opc <= BO_Assign || Opc > BO_OrAssign)
12743         return new (Context) BinaryOperator(
12744             Args[0], Args[1], Opc, Context.DependentTy, VK_RValue, OK_Ordinary,
12745             OpLoc, FPFeatures);
12746 
12747       return new (Context) CompoundAssignOperator(
12748           Args[0], Args[1], Opc, Context.DependentTy, VK_LValue, OK_Ordinary,
12749           Context.DependentTy, Context.DependentTy, OpLoc,
12750           FPFeatures);
12751     }
12752 
12753     // FIXME: save results of ADL from here?
12754     CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators
12755     // TODO: provide better source location info in DNLoc component.
12756     DeclarationNameInfo OpNameInfo(OpName, OpLoc);
12757     UnresolvedLookupExpr *Fn = UnresolvedLookupExpr::Create(
12758         Context, NamingClass, NestedNameSpecifierLoc(), OpNameInfo,
12759         /*ADL*/ PerformADL, IsOverloaded(Fns), Fns.begin(), Fns.end());
12760     return CXXOperatorCallExpr::Create(Context, Op, Fn, Args,
12761                                        Context.DependentTy, VK_RValue, OpLoc,
12762                                        FPFeatures);
12763   }
12764 
12765   // Always do placeholder-like conversions on the RHS.
12766   if (checkPlaceholderForOverload(*this, Args[1]))
12767     return ExprError();
12768 
12769   // Do placeholder-like conversion on the LHS; note that we should
12770   // not get here with a PseudoObject LHS.
12771   assert(Args[0]->getObjectKind() != OK_ObjCProperty);
12772   if (checkPlaceholderForOverload(*this, Args[0]))
12773     return ExprError();
12774 
12775   // If this is the assignment operator, we only perform overload resolution
12776   // if the left-hand side is a class or enumeration type. This is actually
12777   // a hack. The standard requires that we do overload resolution between the
12778   // various built-in candidates, but as DR507 points out, this can lead to
12779   // problems. So we do it this way, which pretty much follows what GCC does.
12780   // Note that we go the traditional code path for compound assignment forms.
12781   if (Opc == BO_Assign && !Args[0]->getType()->isOverloadableType())
12782     return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
12783 
12784   // If this is the .* operator, which is not overloadable, just
12785   // create a built-in binary operator.
12786   if (Opc == BO_PtrMemD)
12787     return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
12788 
12789   // Build an empty overload set.
12790   OverloadCandidateSet CandidateSet(
12791       OpLoc, OverloadCandidateSet::CSK_Operator,
12792       OverloadCandidateSet::OperatorRewriteInfo(Op, AllowRewrittenCandidates));
12793 
12794   OverloadedOperatorKind ExtraOp =
12795       AllowRewrittenCandidates ? getRewrittenOverloadedOperator(Op) : OO_None;
12796 
12797   // Add the candidates from the given function set. This also adds the
12798   // rewritten candidates using these functions if necessary.
12799   AddNonMemberOperatorCandidates(Fns, Args, CandidateSet);
12800 
12801   // Add operator candidates that are member functions.
12802   AddMemberOperatorCandidates(Op, OpLoc, Args, CandidateSet);
12803   if (CandidateSet.getRewriteInfo().shouldAddReversed(Op))
12804     AddMemberOperatorCandidates(Op, OpLoc, {Args[1], Args[0]}, CandidateSet,
12805                                 OverloadCandidateParamOrder::Reversed);
12806 
12807   // In C++20, also add any rewritten member candidates.
12808   if (ExtraOp) {
12809     AddMemberOperatorCandidates(ExtraOp, OpLoc, Args, CandidateSet);
12810     if (CandidateSet.getRewriteInfo().shouldAddReversed(ExtraOp))
12811       AddMemberOperatorCandidates(ExtraOp, OpLoc, {Args[1], Args[0]},
12812                                   CandidateSet,
12813                                   OverloadCandidateParamOrder::Reversed);
12814   }
12815 
12816   // Add candidates from ADL. Per [over.match.oper]p2, this lookup is not
12817   // performed for an assignment operator (nor for operator[] nor operator->,
12818   // which don't get here).
12819   if (Opc != BO_Assign && PerformADL) {
12820     AddArgumentDependentLookupCandidates(OpName, OpLoc, Args,
12821                                          /*ExplicitTemplateArgs*/ nullptr,
12822                                          CandidateSet);
12823     if (ExtraOp) {
12824       DeclarationName ExtraOpName =
12825           Context.DeclarationNames.getCXXOperatorName(ExtraOp);
12826       AddArgumentDependentLookupCandidates(ExtraOpName, OpLoc, Args,
12827                                            /*ExplicitTemplateArgs*/ nullptr,
12828                                            CandidateSet);
12829     }
12830   }
12831 
12832   // Add builtin operator candidates.
12833   //
12834   // FIXME: We don't add any rewritten candidates here. This is strictly
12835   // incorrect; a builtin candidate could be hidden by a non-viable candidate,
12836   // resulting in our selecting a rewritten builtin candidate. For example:
12837   //
12838   //   enum class E { e };
12839   //   bool operator!=(E, E) requires false;
12840   //   bool k = E::e != E::e;
12841   //
12842   // ... should select the rewritten builtin candidate 'operator==(E, E)'. But
12843   // it seems unreasonable to consider rewritten builtin candidates. A core
12844   // issue has been filed proposing to removed this requirement.
12845   AddBuiltinOperatorCandidates(Op, OpLoc, Args, CandidateSet);
12846 
12847   bool HadMultipleCandidates = (CandidateSet.size() > 1);
12848 
12849   // Perform overload resolution.
12850   OverloadCandidateSet::iterator Best;
12851   switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
12852     case OR_Success: {
12853       // We found a built-in operator or an overloaded operator.
12854       FunctionDecl *FnDecl = Best->Function;
12855 
12856       bool IsReversed = (Best->RewriteKind & CRK_Reversed);
12857       if (IsReversed)
12858         std::swap(Args[0], Args[1]);
12859 
12860       if (FnDecl) {
12861         Expr *Base = nullptr;
12862         // We matched an overloaded operator. Build a call to that
12863         // operator.
12864 
12865         OverloadedOperatorKind ChosenOp =
12866             FnDecl->getDeclName().getCXXOverloadedOperator();
12867 
12868         // C++2a [over.match.oper]p9:
12869         //   If a rewritten operator== candidate is selected by overload
12870         //   resolution for an operator@, its return type shall be cv bool
12871         if (Best->RewriteKind && ChosenOp == OO_EqualEqual &&
12872             !FnDecl->getReturnType()->isBooleanType()) {
12873           Diag(OpLoc, diag::err_ovl_rewrite_equalequal_not_bool)
12874               << FnDecl->getReturnType() << BinaryOperator::getOpcodeStr(Opc)
12875               << Args[0]->getSourceRange() << Args[1]->getSourceRange();
12876           Diag(FnDecl->getLocation(), diag::note_declared_at);
12877           return ExprError();
12878         }
12879 
12880         if (AllowRewrittenCandidates && !IsReversed &&
12881             CandidateSet.getRewriteInfo().shouldAddReversed(ChosenOp)) {
12882           // We could have reversed this operator, but didn't. Check if the
12883           // reversed form was a viable candidate, and if so, if it had a
12884           // better conversion for either parameter. If so, this call is
12885           // formally ambiguous, and allowing it is an extension.
12886           for (OverloadCandidate &Cand : CandidateSet) {
12887             if (Cand.Viable && Cand.Function == FnDecl &&
12888                 Cand.RewriteKind & CRK_Reversed) {
12889               for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
12890                 if (CompareImplicitConversionSequences(
12891                         *this, OpLoc, Cand.Conversions[ArgIdx],
12892                         Best->Conversions[ArgIdx]) ==
12893                     ImplicitConversionSequence::Better) {
12894                   Diag(OpLoc, diag::ext_ovl_ambiguous_oper_binary_reversed)
12895                       << BinaryOperator::getOpcodeStr(Opc)
12896                       << Args[0]->getType() << Args[1]->getType()
12897                       << Args[0]->getSourceRange() << Args[1]->getSourceRange();
12898                   Diag(FnDecl->getLocation(),
12899                        diag::note_ovl_ambiguous_oper_binary_reversed_candidate);
12900                 }
12901               }
12902               break;
12903             }
12904           }
12905         }
12906 
12907         // Convert the arguments.
12908         if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
12909           // Best->Access is only meaningful for class members.
12910           CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl);
12911 
12912           ExprResult Arg1 =
12913             PerformCopyInitialization(
12914               InitializedEntity::InitializeParameter(Context,
12915                                                      FnDecl->getParamDecl(0)),
12916               SourceLocation(), Args[1]);
12917           if (Arg1.isInvalid())
12918             return ExprError();
12919 
12920           ExprResult Arg0 =
12921             PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/nullptr,
12922                                                 Best->FoundDecl, Method);
12923           if (Arg0.isInvalid())
12924             return ExprError();
12925           Base = Args[0] = Arg0.getAs<Expr>();
12926           Args[1] = RHS = Arg1.getAs<Expr>();
12927         } else {
12928           // Convert the arguments.
12929           ExprResult Arg0 = PerformCopyInitialization(
12930             InitializedEntity::InitializeParameter(Context,
12931                                                    FnDecl->getParamDecl(0)),
12932             SourceLocation(), Args[0]);
12933           if (Arg0.isInvalid())
12934             return ExprError();
12935 
12936           ExprResult Arg1 =
12937             PerformCopyInitialization(
12938               InitializedEntity::InitializeParameter(Context,
12939                                                      FnDecl->getParamDecl(1)),
12940               SourceLocation(), Args[1]);
12941           if (Arg1.isInvalid())
12942             return ExprError();
12943           Args[0] = LHS = Arg0.getAs<Expr>();
12944           Args[1] = RHS = Arg1.getAs<Expr>();
12945         }
12946 
12947         // Build the actual expression node.
12948         ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
12949                                                   Best->FoundDecl, Base,
12950                                                   HadMultipleCandidates, OpLoc);
12951         if (FnExpr.isInvalid())
12952           return ExprError();
12953 
12954         // Determine the result type.
12955         QualType ResultTy = FnDecl->getReturnType();
12956         ExprValueKind VK = Expr::getValueKindForType(ResultTy);
12957         ResultTy = ResultTy.getNonLValueExprType(Context);
12958 
12959         CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create(
12960             Context, ChosenOp, FnExpr.get(), Args, ResultTy, VK, OpLoc,
12961             FPFeatures, Best->IsADLCandidate);
12962 
12963         if (CheckCallReturnType(FnDecl->getReturnType(), OpLoc, TheCall,
12964                                 FnDecl))
12965           return ExprError();
12966 
12967         ArrayRef<const Expr *> ArgsArray(Args, 2);
12968         const Expr *ImplicitThis = nullptr;
12969         // Cut off the implicit 'this'.
12970         if (isa<CXXMethodDecl>(FnDecl)) {
12971           ImplicitThis = ArgsArray[0];
12972           ArgsArray = ArgsArray.slice(1);
12973         }
12974 
12975         // Check for a self move.
12976         if (Op == OO_Equal)
12977           DiagnoseSelfMove(Args[0], Args[1], OpLoc);
12978 
12979         checkCall(FnDecl, nullptr, ImplicitThis, ArgsArray,
12980                   isa<CXXMethodDecl>(FnDecl), OpLoc, TheCall->getSourceRange(),
12981                   VariadicDoesNotApply);
12982 
12983         ExprResult R = MaybeBindToTemporary(TheCall);
12984         if (R.isInvalid())
12985           return ExprError();
12986 
12987         // For a rewritten candidate, we've already reversed the arguments
12988         // if needed. Perform the rest of the rewrite now.
12989         if ((Best->RewriteKind & CRK_DifferentOperator) ||
12990             (Op == OO_Spaceship && IsReversed)) {
12991           if (Op == OO_ExclaimEqual) {
12992             assert(ChosenOp == OO_EqualEqual && "unexpected operator name");
12993             R = CreateBuiltinUnaryOp(OpLoc, UO_LNot, R.get());
12994           } else {
12995             assert(ChosenOp == OO_Spaceship && "unexpected operator name");
12996             llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
12997             Expr *ZeroLiteral =
12998                 IntegerLiteral::Create(Context, Zero, Context.IntTy, OpLoc);
12999 
13000             Sema::CodeSynthesisContext Ctx;
13001             Ctx.Kind = Sema::CodeSynthesisContext::RewritingOperatorAsSpaceship;
13002             Ctx.Entity = FnDecl;
13003             pushCodeSynthesisContext(Ctx);
13004 
13005             R = CreateOverloadedBinOp(
13006                 OpLoc, Opc, Fns, IsReversed ? ZeroLiteral : R.get(),
13007                 IsReversed ? R.get() : ZeroLiteral, PerformADL,
13008                 /*AllowRewrittenCandidates=*/false);
13009 
13010             popCodeSynthesisContext();
13011           }
13012           if (R.isInvalid())
13013             return ExprError();
13014         } else {
13015           assert(ChosenOp == Op && "unexpected operator name");
13016         }
13017 
13018         // Make a note in the AST if we did any rewriting.
13019         if (Best->RewriteKind != CRK_None)
13020           R = new (Context) CXXRewrittenBinaryOperator(R.get(), IsReversed);
13021 
13022         return R;
13023       } else {
13024         // We matched a built-in operator. Convert the arguments, then
13025         // break out so that we will build the appropriate built-in
13026         // operator node.
13027         ExprResult ArgsRes0 = PerformImplicitConversion(
13028             Args[0], Best->BuiltinParamTypes[0], Best->Conversions[0],
13029             AA_Passing, CCK_ForBuiltinOverloadedOp);
13030         if (ArgsRes0.isInvalid())
13031           return ExprError();
13032         Args[0] = ArgsRes0.get();
13033 
13034         ExprResult ArgsRes1 = PerformImplicitConversion(
13035             Args[1], Best->BuiltinParamTypes[1], Best->Conversions[1],
13036             AA_Passing, CCK_ForBuiltinOverloadedOp);
13037         if (ArgsRes1.isInvalid())
13038           return ExprError();
13039         Args[1] = ArgsRes1.get();
13040         break;
13041       }
13042     }
13043 
13044     case OR_No_Viable_Function: {
13045       // C++ [over.match.oper]p9:
13046       //   If the operator is the operator , [...] and there are no
13047       //   viable functions, then the operator is assumed to be the
13048       //   built-in operator and interpreted according to clause 5.
13049       if (Opc == BO_Comma)
13050         break;
13051 
13052       // For class as left operand for assignment or compound assignment
13053       // operator do not fall through to handling in built-in, but report that
13054       // no overloaded assignment operator found
13055       ExprResult Result = ExprError();
13056       StringRef OpcStr = BinaryOperator::getOpcodeStr(Opc);
13057       auto Cands = CandidateSet.CompleteCandidates(*this, OCD_AllCandidates,
13058                                                    Args, OpLoc);
13059       if (Args[0]->getType()->isRecordType() &&
13060           Opc >= BO_Assign && Opc <= BO_OrAssign) {
13061         Diag(OpLoc,  diag::err_ovl_no_viable_oper)
13062              << BinaryOperator::getOpcodeStr(Opc)
13063              << Args[0]->getSourceRange() << Args[1]->getSourceRange();
13064         if (Args[0]->getType()->isIncompleteType()) {
13065           Diag(OpLoc, diag::note_assign_lhs_incomplete)
13066             << Args[0]->getType()
13067             << Args[0]->getSourceRange() << Args[1]->getSourceRange();
13068         }
13069       } else {
13070         // This is an erroneous use of an operator which can be overloaded by
13071         // a non-member function. Check for non-member operators which were
13072         // defined too late to be candidates.
13073         if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, Args))
13074           // FIXME: Recover by calling the found function.
13075           return ExprError();
13076 
13077         // No viable function; try to create a built-in operation, which will
13078         // produce an error. Then, show the non-viable candidates.
13079         Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
13080       }
13081       assert(Result.isInvalid() &&
13082              "C++ binary operator overloading is missing candidates!");
13083       CandidateSet.NoteCandidates(*this, Args, Cands, OpcStr, OpLoc);
13084       return Result;
13085     }
13086 
13087     case OR_Ambiguous:
13088       CandidateSet.NoteCandidates(
13089           PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_ambiguous_oper_binary)
13090                                          << BinaryOperator::getOpcodeStr(Opc)
13091                                          << Args[0]->getType()
13092                                          << Args[1]->getType()
13093                                          << Args[0]->getSourceRange()
13094                                          << Args[1]->getSourceRange()),
13095           *this, OCD_AmbiguousCandidates, Args, BinaryOperator::getOpcodeStr(Opc),
13096           OpLoc);
13097       return ExprError();
13098 
13099     case OR_Deleted:
13100       if (isImplicitlyDeleted(Best->Function)) {
13101         CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
13102         Diag(OpLoc, diag::err_ovl_deleted_special_oper)
13103           << Context.getRecordType(Method->getParent())
13104           << getSpecialMember(Method);
13105 
13106         // The user probably meant to call this special member. Just
13107         // explain why it's deleted.
13108         NoteDeletedFunction(Method);
13109         return ExprError();
13110       }
13111       CandidateSet.NoteCandidates(
13112           PartialDiagnosticAt(
13113               OpLoc, PDiag(diag::err_ovl_deleted_oper)
13114                          << getOperatorSpelling(Best->Function->getDeclName()
13115                                                     .getCXXOverloadedOperator())
13116                          << Args[0]->getSourceRange()
13117                          << Args[1]->getSourceRange()),
13118           *this, OCD_AllCandidates, Args, BinaryOperator::getOpcodeStr(Opc),
13119           OpLoc);
13120       return ExprError();
13121   }
13122 
13123   // We matched a built-in operator; build it.
13124   return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
13125 }
13126 
13127 ExprResult
13128 Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
13129                                          SourceLocation RLoc,
13130                                          Expr *Base, Expr *Idx) {
13131   Expr *Args[2] = { Base, Idx };
13132   DeclarationName OpName =
13133       Context.DeclarationNames.getCXXOperatorName(OO_Subscript);
13134 
13135   // If either side is type-dependent, create an appropriate dependent
13136   // expression.
13137   if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
13138 
13139     CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators
13140     // CHECKME: no 'operator' keyword?
13141     DeclarationNameInfo OpNameInfo(OpName, LLoc);
13142     OpNameInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
13143     UnresolvedLookupExpr *Fn
13144       = UnresolvedLookupExpr::Create(Context, NamingClass,
13145                                      NestedNameSpecifierLoc(), OpNameInfo,
13146                                      /*ADL*/ true, /*Overloaded*/ false,
13147                                      UnresolvedSetIterator(),
13148                                      UnresolvedSetIterator());
13149     // Can't add any actual overloads yet
13150 
13151     return CXXOperatorCallExpr::Create(Context, OO_Subscript, Fn, Args,
13152                                        Context.DependentTy, VK_RValue, RLoc,
13153                                        FPOptions());
13154   }
13155 
13156   // Handle placeholders on both operands.
13157   if (checkPlaceholderForOverload(*this, Args[0]))
13158     return ExprError();
13159   if (checkPlaceholderForOverload(*this, Args[1]))
13160     return ExprError();
13161 
13162   // Build an empty overload set.
13163   OverloadCandidateSet CandidateSet(LLoc, OverloadCandidateSet::CSK_Operator);
13164 
13165   // Subscript can only be overloaded as a member function.
13166 
13167   // Add operator candidates that are member functions.
13168   AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, CandidateSet);
13169 
13170   // Add builtin operator candidates.
13171   AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, CandidateSet);
13172 
13173   bool HadMultipleCandidates = (CandidateSet.size() > 1);
13174 
13175   // Perform overload resolution.
13176   OverloadCandidateSet::iterator Best;
13177   switch (CandidateSet.BestViableFunction(*this, LLoc, Best)) {
13178     case OR_Success: {
13179       // We found a built-in operator or an overloaded operator.
13180       FunctionDecl *FnDecl = Best->Function;
13181 
13182       if (FnDecl) {
13183         // We matched an overloaded operator. Build a call to that
13184         // operator.
13185 
13186         CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl);
13187 
13188         // Convert the arguments.
13189         CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
13190         ExprResult Arg0 =
13191           PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/nullptr,
13192                                               Best->FoundDecl, Method);
13193         if (Arg0.isInvalid())
13194           return ExprError();
13195         Args[0] = Arg0.get();
13196 
13197         // Convert the arguments.
13198         ExprResult InputInit
13199           = PerformCopyInitialization(InitializedEntity::InitializeParameter(
13200                                                       Context,
13201                                                       FnDecl->getParamDecl(0)),
13202                                       SourceLocation(),
13203                                       Args[1]);
13204         if (InputInit.isInvalid())
13205           return ExprError();
13206 
13207         Args[1] = InputInit.getAs<Expr>();
13208 
13209         // Build the actual expression node.
13210         DeclarationNameInfo OpLocInfo(OpName, LLoc);
13211         OpLocInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
13212         ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
13213                                                   Best->FoundDecl,
13214                                                   Base,
13215                                                   HadMultipleCandidates,
13216                                                   OpLocInfo.getLoc(),
13217                                                   OpLocInfo.getInfo());
13218         if (FnExpr.isInvalid())
13219           return ExprError();
13220 
13221         // Determine the result type
13222         QualType ResultTy = FnDecl->getReturnType();
13223         ExprValueKind VK = Expr::getValueKindForType(ResultTy);
13224         ResultTy = ResultTy.getNonLValueExprType(Context);
13225 
13226         CXXOperatorCallExpr *TheCall =
13227             CXXOperatorCallExpr::Create(Context, OO_Subscript, FnExpr.get(),
13228                                         Args, ResultTy, VK, RLoc, FPOptions());
13229 
13230         if (CheckCallReturnType(FnDecl->getReturnType(), LLoc, TheCall, FnDecl))
13231           return ExprError();
13232 
13233         if (CheckFunctionCall(Method, TheCall,
13234                               Method->getType()->castAs<FunctionProtoType>()))
13235           return ExprError();
13236 
13237         return MaybeBindToTemporary(TheCall);
13238       } else {
13239         // We matched a built-in operator. Convert the arguments, then
13240         // break out so that we will build the appropriate built-in
13241         // operator node.
13242         ExprResult ArgsRes0 = PerformImplicitConversion(
13243             Args[0], Best->BuiltinParamTypes[0], Best->Conversions[0],
13244             AA_Passing, CCK_ForBuiltinOverloadedOp);
13245         if (ArgsRes0.isInvalid())
13246           return ExprError();
13247         Args[0] = ArgsRes0.get();
13248 
13249         ExprResult ArgsRes1 = PerformImplicitConversion(
13250             Args[1], Best->BuiltinParamTypes[1], Best->Conversions[1],
13251             AA_Passing, CCK_ForBuiltinOverloadedOp);
13252         if (ArgsRes1.isInvalid())
13253           return ExprError();
13254         Args[1] = ArgsRes1.get();
13255 
13256         break;
13257       }
13258     }
13259 
13260     case OR_No_Viable_Function: {
13261       PartialDiagnostic PD = CandidateSet.empty()
13262           ? (PDiag(diag::err_ovl_no_oper)
13263              << Args[0]->getType() << /*subscript*/ 0
13264              << Args[0]->getSourceRange() << Args[1]->getSourceRange())
13265           : (PDiag(diag::err_ovl_no_viable_subscript)
13266              << Args[0]->getType() << Args[0]->getSourceRange()
13267              << Args[1]->getSourceRange());
13268       CandidateSet.NoteCandidates(PartialDiagnosticAt(LLoc, PD), *this,
13269                                   OCD_AllCandidates, Args, "[]", LLoc);
13270       return ExprError();
13271     }
13272 
13273     case OR_Ambiguous:
13274       CandidateSet.NoteCandidates(
13275           PartialDiagnosticAt(LLoc, PDiag(diag::err_ovl_ambiguous_oper_binary)
13276                                         << "[]" << Args[0]->getType()
13277                                         << Args[1]->getType()
13278                                         << Args[0]->getSourceRange()
13279                                         << Args[1]->getSourceRange()),
13280           *this, OCD_AmbiguousCandidates, Args, "[]", LLoc);
13281       return ExprError();
13282 
13283     case OR_Deleted:
13284       CandidateSet.NoteCandidates(
13285           PartialDiagnosticAt(LLoc, PDiag(diag::err_ovl_deleted_oper)
13286                                         << "[]" << Args[0]->getSourceRange()
13287                                         << Args[1]->getSourceRange()),
13288           *this, OCD_AllCandidates, Args, "[]", LLoc);
13289       return ExprError();
13290     }
13291 
13292   // We matched a built-in operator; build it.
13293   return CreateBuiltinArraySubscriptExpr(Args[0], LLoc, Args[1], RLoc);
13294 }
13295 
13296 /// BuildCallToMemberFunction - Build a call to a member
13297 /// function. MemExpr is the expression that refers to the member
13298 /// function (and includes the object parameter), Args/NumArgs are the
13299 /// arguments to the function call (not including the object
13300 /// parameter). The caller needs to validate that the member
13301 /// expression refers to a non-static member function or an overloaded
13302 /// member function.
13303 ExprResult
13304 Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
13305                                 SourceLocation LParenLoc,
13306                                 MultiExprArg Args,
13307                                 SourceLocation RParenLoc) {
13308   assert(MemExprE->getType() == Context.BoundMemberTy ||
13309          MemExprE->getType() == Context.OverloadTy);
13310 
13311   // Dig out the member expression. This holds both the object
13312   // argument and the member function we're referring to.
13313   Expr *NakedMemExpr = MemExprE->IgnoreParens();
13314 
13315   // Determine whether this is a call to a pointer-to-member function.
13316   if (BinaryOperator *op = dyn_cast<BinaryOperator>(NakedMemExpr)) {
13317     assert(op->getType() == Context.BoundMemberTy);
13318     assert(op->getOpcode() == BO_PtrMemD || op->getOpcode() == BO_PtrMemI);
13319 
13320     QualType fnType =
13321       op->getRHS()->getType()->castAs<MemberPointerType>()->getPointeeType();
13322 
13323     const FunctionProtoType *proto = fnType->castAs<FunctionProtoType>();
13324     QualType resultType = proto->getCallResultType(Context);
13325     ExprValueKind valueKind = Expr::getValueKindForType(proto->getReturnType());
13326 
13327     // Check that the object type isn't more qualified than the
13328     // member function we're calling.
13329     Qualifiers funcQuals = proto->getMethodQuals();
13330 
13331     QualType objectType = op->getLHS()->getType();
13332     if (op->getOpcode() == BO_PtrMemI)
13333       objectType = objectType->castAs<PointerType>()->getPointeeType();
13334     Qualifiers objectQuals = objectType.getQualifiers();
13335 
13336     Qualifiers difference = objectQuals - funcQuals;
13337     difference.removeObjCGCAttr();
13338     difference.removeAddressSpace();
13339     if (difference) {
13340       std::string qualsString = difference.getAsString();
13341       Diag(LParenLoc, diag::err_pointer_to_member_call_drops_quals)
13342         << fnType.getUnqualifiedType()
13343         << qualsString
13344         << (qualsString.find(' ') == std::string::npos ? 1 : 2);
13345     }
13346 
13347     CXXMemberCallExpr *call =
13348         CXXMemberCallExpr::Create(Context, MemExprE, Args, resultType,
13349                                   valueKind, RParenLoc, proto->getNumParams());
13350 
13351     if (CheckCallReturnType(proto->getReturnType(), op->getRHS()->getBeginLoc(),
13352                             call, nullptr))
13353       return ExprError();
13354 
13355     if (ConvertArgumentsForCall(call, op, nullptr, proto, Args, RParenLoc))
13356       return ExprError();
13357 
13358     if (CheckOtherCall(call, proto))
13359       return ExprError();
13360 
13361     return MaybeBindToTemporary(call);
13362   }
13363 
13364   if (isa<CXXPseudoDestructorExpr>(NakedMemExpr))
13365     return CallExpr::Create(Context, MemExprE, Args, Context.VoidTy, VK_RValue,
13366                             RParenLoc);
13367 
13368   UnbridgedCastsSet UnbridgedCasts;
13369   if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts))
13370     return ExprError();
13371 
13372   MemberExpr *MemExpr;
13373   CXXMethodDecl *Method = nullptr;
13374   DeclAccessPair FoundDecl = DeclAccessPair::make(nullptr, AS_public);
13375   NestedNameSpecifier *Qualifier = nullptr;
13376   if (isa<MemberExpr>(NakedMemExpr)) {
13377     MemExpr = cast<MemberExpr>(NakedMemExpr);
13378     Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl());
13379     FoundDecl = MemExpr->getFoundDecl();
13380     Qualifier = MemExpr->getQualifier();
13381     UnbridgedCasts.restore();
13382   } else {
13383     UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr);
13384     Qualifier = UnresExpr->getQualifier();
13385 
13386     QualType ObjectType = UnresExpr->getBaseType();
13387     Expr::Classification ObjectClassification
13388       = UnresExpr->isArrow()? Expr::Classification::makeSimpleLValue()
13389                             : UnresExpr->getBase()->Classify(Context);
13390 
13391     // Add overload candidates
13392     OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc(),
13393                                       OverloadCandidateSet::CSK_Normal);
13394 
13395     // FIXME: avoid copy.
13396     TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr;
13397     if (UnresExpr->hasExplicitTemplateArgs()) {
13398       UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
13399       TemplateArgs = &TemplateArgsBuffer;
13400     }
13401 
13402     for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(),
13403            E = UnresExpr->decls_end(); I != E; ++I) {
13404 
13405       NamedDecl *Func = *I;
13406       CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext());
13407       if (isa<UsingShadowDecl>(Func))
13408         Func = cast<UsingShadowDecl>(Func)->getTargetDecl();
13409 
13410 
13411       // Microsoft supports direct constructor calls.
13412       if (getLangOpts().MicrosoftExt && isa<CXXConstructorDecl>(Func)) {
13413         AddOverloadCandidate(cast<CXXConstructorDecl>(Func), I.getPair(), Args,
13414                              CandidateSet,
13415                              /*SuppressUserConversions*/ false);
13416       } else if ((Method = dyn_cast<CXXMethodDecl>(Func))) {
13417         // If explicit template arguments were provided, we can't call a
13418         // non-template member function.
13419         if (TemplateArgs)
13420           continue;
13421 
13422         AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType,
13423                            ObjectClassification, Args, CandidateSet,
13424                            /*SuppressUserConversions=*/false);
13425       } else {
13426         AddMethodTemplateCandidate(
13427             cast<FunctionTemplateDecl>(Func), I.getPair(), ActingDC,
13428             TemplateArgs, ObjectType, ObjectClassification, Args, CandidateSet,
13429             /*SuppressUserConversions=*/false);
13430       }
13431     }
13432 
13433     DeclarationName DeclName = UnresExpr->getMemberName();
13434 
13435     UnbridgedCasts.restore();
13436 
13437     OverloadCandidateSet::iterator Best;
13438     switch (CandidateSet.BestViableFunction(*this, UnresExpr->getBeginLoc(),
13439                                             Best)) {
13440     case OR_Success:
13441       Method = cast<CXXMethodDecl>(Best->Function);
13442       FoundDecl = Best->FoundDecl;
13443       CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl);
13444       if (DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc()))
13445         return ExprError();
13446       // If FoundDecl is different from Method (such as if one is a template
13447       // and the other a specialization), make sure DiagnoseUseOfDecl is
13448       // called on both.
13449       // FIXME: This would be more comprehensively addressed by modifying
13450       // DiagnoseUseOfDecl to accept both the FoundDecl and the decl
13451       // being used.
13452       if (Method != FoundDecl.getDecl() &&
13453                       DiagnoseUseOfDecl(Method, UnresExpr->getNameLoc()))
13454         return ExprError();
13455       break;
13456 
13457     case OR_No_Viable_Function:
13458       CandidateSet.NoteCandidates(
13459           PartialDiagnosticAt(
13460               UnresExpr->getMemberLoc(),
13461               PDiag(diag::err_ovl_no_viable_member_function_in_call)
13462                   << DeclName << MemExprE->getSourceRange()),
13463           *this, OCD_AllCandidates, Args);
13464       // FIXME: Leaking incoming expressions!
13465       return ExprError();
13466 
13467     case OR_Ambiguous:
13468       CandidateSet.NoteCandidates(
13469           PartialDiagnosticAt(UnresExpr->getMemberLoc(),
13470                               PDiag(diag::err_ovl_ambiguous_member_call)
13471                                   << DeclName << MemExprE->getSourceRange()),
13472           *this, OCD_AmbiguousCandidates, Args);
13473       // FIXME: Leaking incoming expressions!
13474       return ExprError();
13475 
13476     case OR_Deleted:
13477       CandidateSet.NoteCandidates(
13478           PartialDiagnosticAt(UnresExpr->getMemberLoc(),
13479                               PDiag(diag::err_ovl_deleted_member_call)
13480                                   << DeclName << MemExprE->getSourceRange()),
13481           *this, OCD_AllCandidates, Args);
13482       // FIXME: Leaking incoming expressions!
13483       return ExprError();
13484     }
13485 
13486     MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method);
13487 
13488     // If overload resolution picked a static member, build a
13489     // non-member call based on that function.
13490     if (Method->isStatic()) {
13491       return BuildResolvedCallExpr(MemExprE, Method, LParenLoc, Args,
13492                                    RParenLoc);
13493     }
13494 
13495     MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens());
13496   }
13497 
13498   QualType ResultType = Method->getReturnType();
13499   ExprValueKind VK = Expr::getValueKindForType(ResultType);
13500   ResultType = ResultType.getNonLValueExprType(Context);
13501 
13502   assert(Method && "Member call to something that isn't a method?");
13503   const auto *Proto = Method->getType()->getAs<FunctionProtoType>();
13504   CXXMemberCallExpr *TheCall =
13505       CXXMemberCallExpr::Create(Context, MemExprE, Args, ResultType, VK,
13506                                 RParenLoc, Proto->getNumParams());
13507 
13508   // Check for a valid return type.
13509   if (CheckCallReturnType(Method->getReturnType(), MemExpr->getMemberLoc(),
13510                           TheCall, Method))
13511     return ExprError();
13512 
13513   // Convert the object argument (for a non-static member function call).
13514   // We only need to do this if there was actually an overload; otherwise
13515   // it was done at lookup.
13516   if (!Method->isStatic()) {
13517     ExprResult ObjectArg =
13518       PerformObjectArgumentInitialization(MemExpr->getBase(), Qualifier,
13519                                           FoundDecl, Method);
13520     if (ObjectArg.isInvalid())
13521       return ExprError();
13522     MemExpr->setBase(ObjectArg.get());
13523   }
13524 
13525   // Convert the rest of the arguments
13526   if (ConvertArgumentsForCall(TheCall, MemExpr, Method, Proto, Args,
13527                               RParenLoc))
13528     return ExprError();
13529 
13530   DiagnoseSentinelCalls(Method, LParenLoc, Args);
13531 
13532   if (CheckFunctionCall(Method, TheCall, Proto))
13533     return ExprError();
13534 
13535   // In the case the method to call was not selected by the overloading
13536   // resolution process, we still need to handle the enable_if attribute. Do
13537   // that here, so it will not hide previous -- and more relevant -- errors.
13538   if (auto *MemE = dyn_cast<MemberExpr>(NakedMemExpr)) {
13539     if (const EnableIfAttr *Attr = CheckEnableIf(Method, Args, true)) {
13540       Diag(MemE->getMemberLoc(),
13541            diag::err_ovl_no_viable_member_function_in_call)
13542           << Method << Method->getSourceRange();
13543       Diag(Method->getLocation(),
13544            diag::note_ovl_candidate_disabled_by_function_cond_attr)
13545           << Attr->getCond()->getSourceRange() << Attr->getMessage();
13546       return ExprError();
13547     }
13548   }
13549 
13550   if ((isa<CXXConstructorDecl>(CurContext) ||
13551        isa<CXXDestructorDecl>(CurContext)) &&
13552       TheCall->getMethodDecl()->isPure()) {
13553     const CXXMethodDecl *MD = TheCall->getMethodDecl();
13554 
13555     if (isa<CXXThisExpr>(MemExpr->getBase()->IgnoreParenCasts()) &&
13556         MemExpr->performsVirtualDispatch(getLangOpts())) {
13557       Diag(MemExpr->getBeginLoc(),
13558            diag::warn_call_to_pure_virtual_member_function_from_ctor_dtor)
13559           << MD->getDeclName() << isa<CXXDestructorDecl>(CurContext)
13560           << MD->getParent()->getDeclName();
13561 
13562       Diag(MD->getBeginLoc(), diag::note_previous_decl) << MD->getDeclName();
13563       if (getLangOpts().AppleKext)
13564         Diag(MemExpr->getBeginLoc(), diag::note_pure_qualified_call_kext)
13565             << MD->getParent()->getDeclName() << MD->getDeclName();
13566     }
13567   }
13568 
13569   if (CXXDestructorDecl *DD =
13570           dyn_cast<CXXDestructorDecl>(TheCall->getMethodDecl())) {
13571     // a->A::f() doesn't go through the vtable, except in AppleKext mode.
13572     bool CallCanBeVirtual = !MemExpr->hasQualifier() || getLangOpts().AppleKext;
13573     CheckVirtualDtorCall(DD, MemExpr->getBeginLoc(), /*IsDelete=*/false,
13574                          CallCanBeVirtual, /*WarnOnNonAbstractTypes=*/true,
13575                          MemExpr->getMemberLoc());
13576   }
13577 
13578   return MaybeBindToTemporary(TheCall);
13579 }
13580 
13581 /// BuildCallToObjectOfClassType - Build a call to an object of class
13582 /// type (C++ [over.call.object]), which can end up invoking an
13583 /// overloaded function call operator (@c operator()) or performing a
13584 /// user-defined conversion on the object argument.
13585 ExprResult
13586 Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Obj,
13587                                    SourceLocation LParenLoc,
13588                                    MultiExprArg Args,
13589                                    SourceLocation RParenLoc) {
13590   if (checkPlaceholderForOverload(*this, Obj))
13591     return ExprError();
13592   ExprResult Object = Obj;
13593 
13594   UnbridgedCastsSet UnbridgedCasts;
13595   if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts))
13596     return ExprError();
13597 
13598   assert(Object.get()->getType()->isRecordType() &&
13599          "Requires object type argument");
13600   const RecordType *Record = Object.get()->getType()->getAs<RecordType>();
13601 
13602   // C++ [over.call.object]p1:
13603   //  If the primary-expression E in the function call syntax
13604   //  evaluates to a class object of type "cv T", then the set of
13605   //  candidate functions includes at least the function call
13606   //  operators of T. The function call operators of T are obtained by
13607   //  ordinary lookup of the name operator() in the context of
13608   //  (E).operator().
13609   OverloadCandidateSet CandidateSet(LParenLoc,
13610                                     OverloadCandidateSet::CSK_Operator);
13611   DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
13612 
13613   if (RequireCompleteType(LParenLoc, Object.get()->getType(),
13614                           diag::err_incomplete_object_call, Object.get()))
13615     return true;
13616 
13617   LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName);
13618   LookupQualifiedName(R, Record->getDecl());
13619   R.suppressDiagnostics();
13620 
13621   for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
13622        Oper != OperEnd; ++Oper) {
13623     AddMethodCandidate(Oper.getPair(), Object.get()->getType(),
13624                        Object.get()->Classify(Context), Args, CandidateSet,
13625                        /*SuppressUserConversion=*/false);
13626   }
13627 
13628   // C++ [over.call.object]p2:
13629   //   In addition, for each (non-explicit in C++0x) conversion function
13630   //   declared in T of the form
13631   //
13632   //        operator conversion-type-id () cv-qualifier;
13633   //
13634   //   where cv-qualifier is the same cv-qualification as, or a
13635   //   greater cv-qualification than, cv, and where conversion-type-id
13636   //   denotes the type "pointer to function of (P1,...,Pn) returning
13637   //   R", or the type "reference to pointer to function of
13638   //   (P1,...,Pn) returning R", or the type "reference to function
13639   //   of (P1,...,Pn) returning R", a surrogate call function [...]
13640   //   is also considered as a candidate function. Similarly,
13641   //   surrogate call functions are added to the set of candidate
13642   //   functions for each conversion function declared in an
13643   //   accessible base class provided the function is not hidden
13644   //   within T by another intervening declaration.
13645   const auto &Conversions =
13646       cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions();
13647   for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
13648     NamedDecl *D = *I;
13649     CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
13650     if (isa<UsingShadowDecl>(D))
13651       D = cast<UsingShadowDecl>(D)->getTargetDecl();
13652 
13653     // Skip over templated conversion functions; they aren't
13654     // surrogates.
13655     if (isa<FunctionTemplateDecl>(D))
13656       continue;
13657 
13658     CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
13659     if (!Conv->isExplicit()) {
13660       // Strip the reference type (if any) and then the pointer type (if
13661       // any) to get down to what might be a function type.
13662       QualType ConvType = Conv->getConversionType().getNonReferenceType();
13663       if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
13664         ConvType = ConvPtrType->getPointeeType();
13665 
13666       if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
13667       {
13668         AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto,
13669                               Object.get(), Args, CandidateSet);
13670       }
13671     }
13672   }
13673 
13674   bool HadMultipleCandidates = (CandidateSet.size() > 1);
13675 
13676   // Perform overload resolution.
13677   OverloadCandidateSet::iterator Best;
13678   switch (CandidateSet.BestViableFunction(*this, Object.get()->getBeginLoc(),
13679                                           Best)) {
13680   case OR_Success:
13681     // Overload resolution succeeded; we'll build the appropriate call
13682     // below.
13683     break;
13684 
13685   case OR_No_Viable_Function: {
13686     PartialDiagnostic PD =
13687         CandidateSet.empty()
13688             ? (PDiag(diag::err_ovl_no_oper)
13689                << Object.get()->getType() << /*call*/ 1
13690                << Object.get()->getSourceRange())
13691             : (PDiag(diag::err_ovl_no_viable_object_call)
13692                << Object.get()->getType() << Object.get()->getSourceRange());
13693     CandidateSet.NoteCandidates(
13694         PartialDiagnosticAt(Object.get()->getBeginLoc(), PD), *this,
13695         OCD_AllCandidates, Args);
13696     break;
13697   }
13698   case OR_Ambiguous:
13699     CandidateSet.NoteCandidates(
13700         PartialDiagnosticAt(Object.get()->getBeginLoc(),
13701                             PDiag(diag::err_ovl_ambiguous_object_call)
13702                                 << Object.get()->getType()
13703                                 << Object.get()->getSourceRange()),
13704         *this, OCD_AmbiguousCandidates, Args);
13705     break;
13706 
13707   case OR_Deleted:
13708     CandidateSet.NoteCandidates(
13709         PartialDiagnosticAt(Object.get()->getBeginLoc(),
13710                             PDiag(diag::err_ovl_deleted_object_call)
13711                                 << Object.get()->getType()
13712                                 << Object.get()->getSourceRange()),
13713         *this, OCD_AllCandidates, Args);
13714     break;
13715   }
13716 
13717   if (Best == CandidateSet.end())
13718     return true;
13719 
13720   UnbridgedCasts.restore();
13721 
13722   if (Best->Function == nullptr) {
13723     // Since there is no function declaration, this is one of the
13724     // surrogate candidates. Dig out the conversion function.
13725     CXXConversionDecl *Conv
13726       = cast<CXXConversionDecl>(
13727                          Best->Conversions[0].UserDefined.ConversionFunction);
13728 
13729     CheckMemberOperatorAccess(LParenLoc, Object.get(), nullptr,
13730                               Best->FoundDecl);
13731     if (DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc))
13732       return ExprError();
13733     assert(Conv == Best->FoundDecl.getDecl() &&
13734              "Found Decl & conversion-to-functionptr should be same, right?!");
13735     // We selected one of the surrogate functions that converts the
13736     // object parameter to a function pointer. Perform the conversion
13737     // on the object argument, then let BuildCallExpr finish the job.
13738 
13739     // Create an implicit member expr to refer to the conversion operator.
13740     // and then call it.
13741     ExprResult Call = BuildCXXMemberCallExpr(Object.get(), Best->FoundDecl,
13742                                              Conv, HadMultipleCandidates);
13743     if (Call.isInvalid())
13744       return ExprError();
13745     // Record usage of conversion in an implicit cast.
13746     Call = ImplicitCastExpr::Create(Context, Call.get()->getType(),
13747                                     CK_UserDefinedConversion, Call.get(),
13748                                     nullptr, VK_RValue);
13749 
13750     return BuildCallExpr(S, Call.get(), LParenLoc, Args, RParenLoc);
13751   }
13752 
13753   CheckMemberOperatorAccess(LParenLoc, Object.get(), nullptr, Best->FoundDecl);
13754 
13755   // We found an overloaded operator(). Build a CXXOperatorCallExpr
13756   // that calls this method, using Object for the implicit object
13757   // parameter and passing along the remaining arguments.
13758   CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
13759 
13760   // An error diagnostic has already been printed when parsing the declaration.
13761   if (Method->isInvalidDecl())
13762     return ExprError();
13763 
13764   const FunctionProtoType *Proto =
13765     Method->getType()->getAs<FunctionProtoType>();
13766 
13767   unsigned NumParams = Proto->getNumParams();
13768 
13769   DeclarationNameInfo OpLocInfo(
13770                Context.DeclarationNames.getCXXOperatorName(OO_Call), LParenLoc);
13771   OpLocInfo.setCXXOperatorNameRange(SourceRange(LParenLoc, RParenLoc));
13772   ExprResult NewFn = CreateFunctionRefExpr(*this, Method, Best->FoundDecl,
13773                                            Obj, HadMultipleCandidates,
13774                                            OpLocInfo.getLoc(),
13775                                            OpLocInfo.getInfo());
13776   if (NewFn.isInvalid())
13777     return true;
13778 
13779   // The number of argument slots to allocate in the call. If we have default
13780   // arguments we need to allocate space for them as well. We additionally
13781   // need one more slot for the object parameter.
13782   unsigned NumArgsSlots = 1 + std::max<unsigned>(Args.size(), NumParams);
13783 
13784   // Build the full argument list for the method call (the implicit object
13785   // parameter is placed at the beginning of the list).
13786   SmallVector<Expr *, 8> MethodArgs(NumArgsSlots);
13787 
13788   bool IsError = false;
13789 
13790   // Initialize the implicit object parameter.
13791   ExprResult ObjRes =
13792     PerformObjectArgumentInitialization(Object.get(), /*Qualifier=*/nullptr,
13793                                         Best->FoundDecl, Method);
13794   if (ObjRes.isInvalid())
13795     IsError = true;
13796   else
13797     Object = ObjRes;
13798   MethodArgs[0] = Object.get();
13799 
13800   // Check the argument types.
13801   for (unsigned i = 0; i != NumParams; i++) {
13802     Expr *Arg;
13803     if (i < Args.size()) {
13804       Arg = Args[i];
13805 
13806       // Pass the argument.
13807 
13808       ExprResult InputInit
13809         = PerformCopyInitialization(InitializedEntity::InitializeParameter(
13810                                                     Context,
13811                                                     Method->getParamDecl(i)),
13812                                     SourceLocation(), Arg);
13813 
13814       IsError |= InputInit.isInvalid();
13815       Arg = InputInit.getAs<Expr>();
13816     } else {
13817       ExprResult DefArg
13818         = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i));
13819       if (DefArg.isInvalid()) {
13820         IsError = true;
13821         break;
13822       }
13823 
13824       Arg = DefArg.getAs<Expr>();
13825     }
13826 
13827     MethodArgs[i + 1] = Arg;
13828   }
13829 
13830   // If this is a variadic call, handle args passed through "...".
13831   if (Proto->isVariadic()) {
13832     // Promote the arguments (C99 6.5.2.2p7).
13833     for (unsigned i = NumParams, e = Args.size(); i < e; i++) {
13834       ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod,
13835                                                         nullptr);
13836       IsError |= Arg.isInvalid();
13837       MethodArgs[i + 1] = Arg.get();
13838     }
13839   }
13840 
13841   if (IsError)
13842     return true;
13843 
13844   DiagnoseSentinelCalls(Method, LParenLoc, Args);
13845 
13846   // Once we've built TheCall, all of the expressions are properly owned.
13847   QualType ResultTy = Method->getReturnType();
13848   ExprValueKind VK = Expr::getValueKindForType(ResultTy);
13849   ResultTy = ResultTy.getNonLValueExprType(Context);
13850 
13851   CXXOperatorCallExpr *TheCall =
13852       CXXOperatorCallExpr::Create(Context, OO_Call, NewFn.get(), MethodArgs,
13853                                   ResultTy, VK, RParenLoc, FPOptions());
13854 
13855   if (CheckCallReturnType(Method->getReturnType(), LParenLoc, TheCall, Method))
13856     return true;
13857 
13858   if (CheckFunctionCall(Method, TheCall, Proto))
13859     return true;
13860 
13861   return MaybeBindToTemporary(TheCall);
13862 }
13863 
13864 /// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
13865 ///  (if one exists), where @c Base is an expression of class type and
13866 /// @c Member is the name of the member we're trying to find.
13867 ExprResult
13868 Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc,
13869                                bool *NoArrowOperatorFound) {
13870   assert(Base->getType()->isRecordType() &&
13871          "left-hand side must have class type");
13872 
13873   if (checkPlaceholderForOverload(*this, Base))
13874     return ExprError();
13875 
13876   SourceLocation Loc = Base->getExprLoc();
13877 
13878   // C++ [over.ref]p1:
13879   //
13880   //   [...] An expression x->m is interpreted as (x.operator->())->m
13881   //   for a class object x of type T if T::operator->() exists and if
13882   //   the operator is selected as the best match function by the
13883   //   overload resolution mechanism (13.3).
13884   DeclarationName OpName =
13885     Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
13886   OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Operator);
13887   const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
13888 
13889   if (RequireCompleteType(Loc, Base->getType(),
13890                           diag::err_typecheck_incomplete_tag, Base))
13891     return ExprError();
13892 
13893   LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName);
13894   LookupQualifiedName(R, BaseRecord->getDecl());
13895   R.suppressDiagnostics();
13896 
13897   for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
13898        Oper != OperEnd; ++Oper) {
13899     AddMethodCandidate(Oper.getPair(), Base->getType(), Base->Classify(Context),
13900                        None, CandidateSet, /*SuppressUserConversion=*/false);
13901   }
13902 
13903   bool HadMultipleCandidates = (CandidateSet.size() > 1);
13904 
13905   // Perform overload resolution.
13906   OverloadCandidateSet::iterator Best;
13907   switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
13908   case OR_Success:
13909     // Overload resolution succeeded; we'll build the call below.
13910     break;
13911 
13912   case OR_No_Viable_Function: {
13913     auto Cands = CandidateSet.CompleteCandidates(*this, OCD_AllCandidates, Base);
13914     if (CandidateSet.empty()) {
13915       QualType BaseType = Base->getType();
13916       if (NoArrowOperatorFound) {
13917         // Report this specific error to the caller instead of emitting a
13918         // diagnostic, as requested.
13919         *NoArrowOperatorFound = true;
13920         return ExprError();
13921       }
13922       Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
13923         << BaseType << Base->getSourceRange();
13924       if (BaseType->isRecordType() && !BaseType->isPointerType()) {
13925         Diag(OpLoc, diag::note_typecheck_member_reference_suggestion)
13926           << FixItHint::CreateReplacement(OpLoc, ".");
13927       }
13928     } else
13929       Diag(OpLoc, diag::err_ovl_no_viable_oper)
13930         << "operator->" << Base->getSourceRange();
13931     CandidateSet.NoteCandidates(*this, Base, Cands);
13932     return ExprError();
13933   }
13934   case OR_Ambiguous:
13935     CandidateSet.NoteCandidates(
13936         PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_ambiguous_oper_unary)
13937                                        << "->" << Base->getType()
13938                                        << Base->getSourceRange()),
13939         *this, OCD_AmbiguousCandidates, Base);
13940     return ExprError();
13941 
13942   case OR_Deleted:
13943     CandidateSet.NoteCandidates(
13944         PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_deleted_oper)
13945                                        << "->" << Base->getSourceRange()),
13946         *this, OCD_AllCandidates, Base);
13947     return ExprError();
13948   }
13949 
13950   CheckMemberOperatorAccess(OpLoc, Base, nullptr, Best->FoundDecl);
13951 
13952   // Convert the object parameter.
13953   CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
13954   ExprResult BaseResult =
13955     PerformObjectArgumentInitialization(Base, /*Qualifier=*/nullptr,
13956                                         Best->FoundDecl, Method);
13957   if (BaseResult.isInvalid())
13958     return ExprError();
13959   Base = BaseResult.get();
13960 
13961   // Build the operator call.
13962   ExprResult FnExpr = CreateFunctionRefExpr(*this, Method, Best->FoundDecl,
13963                                             Base, HadMultipleCandidates, OpLoc);
13964   if (FnExpr.isInvalid())
13965     return ExprError();
13966 
13967   QualType ResultTy = Method->getReturnType();
13968   ExprValueKind VK = Expr::getValueKindForType(ResultTy);
13969   ResultTy = ResultTy.getNonLValueExprType(Context);
13970   CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create(
13971       Context, OO_Arrow, FnExpr.get(), Base, ResultTy, VK, OpLoc, FPOptions());
13972 
13973   if (CheckCallReturnType(Method->getReturnType(), OpLoc, TheCall, Method))
13974     return ExprError();
13975 
13976   if (CheckFunctionCall(Method, TheCall,
13977                         Method->getType()->castAs<FunctionProtoType>()))
13978     return ExprError();
13979 
13980   return MaybeBindToTemporary(TheCall);
13981 }
13982 
13983 /// BuildLiteralOperatorCall - Build a UserDefinedLiteral by creating a call to
13984 /// a literal operator described by the provided lookup results.
13985 ExprResult Sema::BuildLiteralOperatorCall(LookupResult &R,
13986                                           DeclarationNameInfo &SuffixInfo,
13987                                           ArrayRef<Expr*> Args,
13988                                           SourceLocation LitEndLoc,
13989                                        TemplateArgumentListInfo *TemplateArgs) {
13990   SourceLocation UDSuffixLoc = SuffixInfo.getCXXLiteralOperatorNameLoc();
13991 
13992   OverloadCandidateSet CandidateSet(UDSuffixLoc,
13993                                     OverloadCandidateSet::CSK_Normal);
13994   AddNonMemberOperatorCandidates(R.asUnresolvedSet(), Args, CandidateSet,
13995                                  TemplateArgs);
13996 
13997   bool HadMultipleCandidates = (CandidateSet.size() > 1);
13998 
13999   // Perform overload resolution. This will usually be trivial, but might need
14000   // to perform substitutions for a literal operator template.
14001   OverloadCandidateSet::iterator Best;
14002   switch (CandidateSet.BestViableFunction(*this, UDSuffixLoc, Best)) {
14003   case OR_Success:
14004   case OR_Deleted:
14005     break;
14006 
14007   case OR_No_Viable_Function:
14008     CandidateSet.NoteCandidates(
14009         PartialDiagnosticAt(UDSuffixLoc,
14010                             PDiag(diag::err_ovl_no_viable_function_in_call)
14011                                 << R.getLookupName()),
14012         *this, OCD_AllCandidates, Args);
14013     return ExprError();
14014 
14015   case OR_Ambiguous:
14016     CandidateSet.NoteCandidates(
14017         PartialDiagnosticAt(R.getNameLoc(), PDiag(diag::err_ovl_ambiguous_call)
14018                                                 << R.getLookupName()),
14019         *this, OCD_AmbiguousCandidates, Args);
14020     return ExprError();
14021   }
14022 
14023   FunctionDecl *FD = Best->Function;
14024   ExprResult Fn = CreateFunctionRefExpr(*this, FD, Best->FoundDecl,
14025                                         nullptr, HadMultipleCandidates,
14026                                         SuffixInfo.getLoc(),
14027                                         SuffixInfo.getInfo());
14028   if (Fn.isInvalid())
14029     return true;
14030 
14031   // Check the argument types. This should almost always be a no-op, except
14032   // that array-to-pointer decay is applied to string literals.
14033   Expr *ConvArgs[2];
14034   for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
14035     ExprResult InputInit = PerformCopyInitialization(
14036       InitializedEntity::InitializeParameter(Context, FD->getParamDecl(ArgIdx)),
14037       SourceLocation(), Args[ArgIdx]);
14038     if (InputInit.isInvalid())
14039       return true;
14040     ConvArgs[ArgIdx] = InputInit.get();
14041   }
14042 
14043   QualType ResultTy = FD->getReturnType();
14044   ExprValueKind VK = Expr::getValueKindForType(ResultTy);
14045   ResultTy = ResultTy.getNonLValueExprType(Context);
14046 
14047   UserDefinedLiteral *UDL = UserDefinedLiteral::Create(
14048       Context, Fn.get(), llvm::makeArrayRef(ConvArgs, Args.size()), ResultTy,
14049       VK, LitEndLoc, UDSuffixLoc);
14050 
14051   if (CheckCallReturnType(FD->getReturnType(), UDSuffixLoc, UDL, FD))
14052     return ExprError();
14053 
14054   if (CheckFunctionCall(FD, UDL, nullptr))
14055     return ExprError();
14056 
14057   return MaybeBindToTemporary(UDL);
14058 }
14059 
14060 /// Build a call to 'begin' or 'end' for a C++11 for-range statement. If the
14061 /// given LookupResult is non-empty, it is assumed to describe a member which
14062 /// will be invoked. Otherwise, the function will be found via argument
14063 /// dependent lookup.
14064 /// CallExpr is set to a valid expression and FRS_Success returned on success,
14065 /// otherwise CallExpr is set to ExprError() and some non-success value
14066 /// is returned.
14067 Sema::ForRangeStatus
14068 Sema::BuildForRangeBeginEndCall(SourceLocation Loc,
14069                                 SourceLocation RangeLoc,
14070                                 const DeclarationNameInfo &NameInfo,
14071                                 LookupResult &MemberLookup,
14072                                 OverloadCandidateSet *CandidateSet,
14073                                 Expr *Range, ExprResult *CallExpr) {
14074   Scope *S = nullptr;
14075 
14076   CandidateSet->clear(OverloadCandidateSet::CSK_Normal);
14077   if (!MemberLookup.empty()) {
14078     ExprResult MemberRef =
14079         BuildMemberReferenceExpr(Range, Range->getType(), Loc,
14080                                  /*IsPtr=*/false, CXXScopeSpec(),
14081                                  /*TemplateKWLoc=*/SourceLocation(),
14082                                  /*FirstQualifierInScope=*/nullptr,
14083                                  MemberLookup,
14084                                  /*TemplateArgs=*/nullptr, S);
14085     if (MemberRef.isInvalid()) {
14086       *CallExpr = ExprError();
14087       return FRS_DiagnosticIssued;
14088     }
14089     *CallExpr = BuildCallExpr(S, MemberRef.get(), Loc, None, Loc, nullptr);
14090     if (CallExpr->isInvalid()) {
14091       *CallExpr = ExprError();
14092       return FRS_DiagnosticIssued;
14093     }
14094   } else {
14095     UnresolvedSet<0> FoundNames;
14096     UnresolvedLookupExpr *Fn =
14097       UnresolvedLookupExpr::Create(Context, /*NamingClass=*/nullptr,
14098                                    NestedNameSpecifierLoc(), NameInfo,
14099                                    /*NeedsADL=*/true, /*Overloaded=*/false,
14100                                    FoundNames.begin(), FoundNames.end());
14101 
14102     bool CandidateSetError = buildOverloadedCallSet(S, Fn, Fn, Range, Loc,
14103                                                     CandidateSet, CallExpr);
14104     if (CandidateSet->empty() || CandidateSetError) {
14105       *CallExpr = ExprError();
14106       return FRS_NoViableFunction;
14107     }
14108     OverloadCandidateSet::iterator Best;
14109     OverloadingResult OverloadResult =
14110         CandidateSet->BestViableFunction(*this, Fn->getBeginLoc(), Best);
14111 
14112     if (OverloadResult == OR_No_Viable_Function) {
14113       *CallExpr = ExprError();
14114       return FRS_NoViableFunction;
14115     }
14116     *CallExpr = FinishOverloadedCallExpr(*this, S, Fn, Fn, Loc, Range,
14117                                          Loc, nullptr, CandidateSet, &Best,
14118                                          OverloadResult,
14119                                          /*AllowTypoCorrection=*/false);
14120     if (CallExpr->isInvalid() || OverloadResult != OR_Success) {
14121       *CallExpr = ExprError();
14122       return FRS_DiagnosticIssued;
14123     }
14124   }
14125   return FRS_Success;
14126 }
14127 
14128 
14129 /// FixOverloadedFunctionReference - E is an expression that refers to
14130 /// a C++ overloaded function (possibly with some parentheses and
14131 /// perhaps a '&' around it). We have resolved the overloaded function
14132 /// to the function declaration Fn, so patch up the expression E to
14133 /// refer (possibly indirectly) to Fn. Returns the new expr.
14134 Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found,
14135                                            FunctionDecl *Fn) {
14136   if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
14137     Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(),
14138                                                    Found, Fn);
14139     if (SubExpr == PE->getSubExpr())
14140       return PE;
14141 
14142     return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr);
14143   }
14144 
14145   if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
14146     Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(),
14147                                                    Found, Fn);
14148     assert(Context.hasSameType(ICE->getSubExpr()->getType(),
14149                                SubExpr->getType()) &&
14150            "Implicit cast type cannot be determined from overload");
14151     assert(ICE->path_empty() && "fixing up hierarchy conversion?");
14152     if (SubExpr == ICE->getSubExpr())
14153       return ICE;
14154 
14155     return ImplicitCastExpr::Create(Context, ICE->getType(),
14156                                     ICE->getCastKind(),
14157                                     SubExpr, nullptr,
14158                                     ICE->getValueKind());
14159   }
14160 
14161   if (auto *GSE = dyn_cast<GenericSelectionExpr>(E)) {
14162     if (!GSE->isResultDependent()) {
14163       Expr *SubExpr =
14164           FixOverloadedFunctionReference(GSE->getResultExpr(), Found, Fn);
14165       if (SubExpr == GSE->getResultExpr())
14166         return GSE;
14167 
14168       // Replace the resulting type information before rebuilding the generic
14169       // selection expression.
14170       ArrayRef<Expr *> A = GSE->getAssocExprs();
14171       SmallVector<Expr *, 4> AssocExprs(A.begin(), A.end());
14172       unsigned ResultIdx = GSE->getResultIndex();
14173       AssocExprs[ResultIdx] = SubExpr;
14174 
14175       return GenericSelectionExpr::Create(
14176           Context, GSE->getGenericLoc(), GSE->getControllingExpr(),
14177           GSE->getAssocTypeSourceInfos(), AssocExprs, GSE->getDefaultLoc(),
14178           GSE->getRParenLoc(), GSE->containsUnexpandedParameterPack(),
14179           ResultIdx);
14180     }
14181     // Rather than fall through to the unreachable, return the original generic
14182     // selection expression.
14183     return GSE;
14184   }
14185 
14186   if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
14187     assert(UnOp->getOpcode() == UO_AddrOf &&
14188            "Can only take the address of an overloaded function");
14189     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
14190       if (Method->isStatic()) {
14191         // Do nothing: static member functions aren't any different
14192         // from non-member functions.
14193       } else {
14194         // Fix the subexpression, which really has to be an
14195         // UnresolvedLookupExpr holding an overloaded member function
14196         // or template.
14197         Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
14198                                                        Found, Fn);
14199         if (SubExpr == UnOp->getSubExpr())
14200           return UnOp;
14201 
14202         assert(isa<DeclRefExpr>(SubExpr)
14203                && "fixed to something other than a decl ref");
14204         assert(cast<DeclRefExpr>(SubExpr)->getQualifier()
14205                && "fixed to a member ref with no nested name qualifier");
14206 
14207         // We have taken the address of a pointer to member
14208         // function. Perform the computation here so that we get the
14209         // appropriate pointer to member type.
14210         QualType ClassType
14211           = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
14212         QualType MemPtrType
14213           = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr());
14214         // Under the MS ABI, lock down the inheritance model now.
14215         if (Context.getTargetInfo().getCXXABI().isMicrosoft())
14216           (void)isCompleteType(UnOp->getOperatorLoc(), MemPtrType);
14217 
14218         return new (Context) UnaryOperator(SubExpr, UO_AddrOf, MemPtrType,
14219                                            VK_RValue, OK_Ordinary,
14220                                            UnOp->getOperatorLoc(), false);
14221       }
14222     }
14223     Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
14224                                                    Found, Fn);
14225     if (SubExpr == UnOp->getSubExpr())
14226       return UnOp;
14227 
14228     return new (Context) UnaryOperator(SubExpr, UO_AddrOf,
14229                                      Context.getPointerType(SubExpr->getType()),
14230                                        VK_RValue, OK_Ordinary,
14231                                        UnOp->getOperatorLoc(), false);
14232   }
14233 
14234   // C++ [except.spec]p17:
14235   //   An exception-specification is considered to be needed when:
14236   //   - in an expression the function is the unique lookup result or the
14237   //     selected member of a set of overloaded functions
14238   if (auto *FPT = Fn->getType()->getAs<FunctionProtoType>())
14239     ResolveExceptionSpec(E->getExprLoc(), FPT);
14240 
14241   if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
14242     // FIXME: avoid copy.
14243     TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr;
14244     if (ULE->hasExplicitTemplateArgs()) {
14245       ULE->copyTemplateArgumentsInto(TemplateArgsBuffer);
14246       TemplateArgs = &TemplateArgsBuffer;
14247     }
14248 
14249     DeclRefExpr *DRE =
14250         BuildDeclRefExpr(Fn, Fn->getType(), VK_LValue, ULE->getNameInfo(),
14251                          ULE->getQualifierLoc(), Found.getDecl(),
14252                          ULE->getTemplateKeywordLoc(), TemplateArgs);
14253     DRE->setHadMultipleCandidates(ULE->getNumDecls() > 1);
14254     return DRE;
14255   }
14256 
14257   if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) {
14258     // FIXME: avoid copy.
14259     TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr;
14260     if (MemExpr->hasExplicitTemplateArgs()) {
14261       MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
14262       TemplateArgs = &TemplateArgsBuffer;
14263     }
14264 
14265     Expr *Base;
14266 
14267     // If we're filling in a static method where we used to have an
14268     // implicit member access, rewrite to a simple decl ref.
14269     if (MemExpr->isImplicitAccess()) {
14270       if (cast<CXXMethodDecl>(Fn)->isStatic()) {
14271         DeclRefExpr *DRE = BuildDeclRefExpr(
14272             Fn, Fn->getType(), VK_LValue, MemExpr->getNameInfo(),
14273             MemExpr->getQualifierLoc(), Found.getDecl(),
14274             MemExpr->getTemplateKeywordLoc(), TemplateArgs);
14275         DRE->setHadMultipleCandidates(MemExpr->getNumDecls() > 1);
14276         return DRE;
14277       } else {
14278         SourceLocation Loc = MemExpr->getMemberLoc();
14279         if (MemExpr->getQualifier())
14280           Loc = MemExpr->getQualifierLoc().getBeginLoc();
14281         Base =
14282             BuildCXXThisExpr(Loc, MemExpr->getBaseType(), /*IsImplicit=*/true);
14283       }
14284     } else
14285       Base = MemExpr->getBase();
14286 
14287     ExprValueKind valueKind;
14288     QualType type;
14289     if (cast<CXXMethodDecl>(Fn)->isStatic()) {
14290       valueKind = VK_LValue;
14291       type = Fn->getType();
14292     } else {
14293       valueKind = VK_RValue;
14294       type = Context.BoundMemberTy;
14295     }
14296 
14297     return BuildMemberExpr(
14298         Base, MemExpr->isArrow(), MemExpr->getOperatorLoc(),
14299         MemExpr->getQualifierLoc(), MemExpr->getTemplateKeywordLoc(), Fn, Found,
14300         /*HadMultipleCandidates=*/true, MemExpr->getMemberNameInfo(),
14301         type, valueKind, OK_Ordinary, TemplateArgs);
14302   }
14303 
14304   llvm_unreachable("Invalid reference to overloaded function");
14305 }
14306 
14307 ExprResult Sema::FixOverloadedFunctionReference(ExprResult E,
14308                                                 DeclAccessPair Found,
14309                                                 FunctionDecl *Fn) {
14310   return FixOverloadedFunctionReference(E.get(), Found, Fn);
14311 }
14312