1 //===--- SemaLambda.cpp - Semantic Analysis for C++11 Lambdas -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements semantic analysis for C++ lambda expressions. 10 // 11 //===----------------------------------------------------------------------===// 12 #include "clang/Sema/DeclSpec.h" 13 #include "TypeLocBuilder.h" 14 #include "clang/AST/ASTLambda.h" 15 #include "clang/AST/ExprCXX.h" 16 #include "clang/Basic/TargetInfo.h" 17 #include "clang/Sema/Initialization.h" 18 #include "clang/Sema/Lookup.h" 19 #include "clang/Sema/Scope.h" 20 #include "clang/Sema/ScopeInfo.h" 21 #include "clang/Sema/SemaInternal.h" 22 #include "clang/Sema/SemaLambda.h" 23 #include "llvm/ADT/STLExtras.h" 24 using namespace clang; 25 using namespace sema; 26 27 /// Examines the FunctionScopeInfo stack to determine the nearest 28 /// enclosing lambda (to the current lambda) that is 'capture-ready' for 29 /// the variable referenced in the current lambda (i.e. \p VarToCapture). 30 /// If successful, returns the index into Sema's FunctionScopeInfo stack 31 /// of the capture-ready lambda's LambdaScopeInfo. 32 /// 33 /// Climbs down the stack of lambdas (deepest nested lambda - i.e. current 34 /// lambda - is on top) to determine the index of the nearest enclosing/outer 35 /// lambda that is ready to capture the \p VarToCapture being referenced in 36 /// the current lambda. 37 /// As we climb down the stack, we want the index of the first such lambda - 38 /// that is the lambda with the highest index that is 'capture-ready'. 39 /// 40 /// A lambda 'L' is capture-ready for 'V' (var or this) if: 41 /// - its enclosing context is non-dependent 42 /// - and if the chain of lambdas between L and the lambda in which 43 /// V is potentially used (i.e. the lambda at the top of the scope info 44 /// stack), can all capture or have already captured V. 45 /// If \p VarToCapture is 'null' then we are trying to capture 'this'. 46 /// 47 /// Note that a lambda that is deemed 'capture-ready' still needs to be checked 48 /// for whether it is 'capture-capable' (see 49 /// getStackIndexOfNearestEnclosingCaptureCapableLambda), before it can truly 50 /// capture. 51 /// 52 /// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a 53 /// LambdaScopeInfo inherits from). The current/deepest/innermost lambda 54 /// is at the top of the stack and has the highest index. 55 /// \param VarToCapture - the variable to capture. If NULL, capture 'this'. 56 /// 57 /// \returns An Optional<unsigned> Index that if evaluates to 'true' contains 58 /// the index (into Sema's FunctionScopeInfo stack) of the innermost lambda 59 /// which is capture-ready. If the return value evaluates to 'false' then 60 /// no lambda is capture-ready for \p VarToCapture. 61 62 static inline Optional<unsigned> 63 getStackIndexOfNearestEnclosingCaptureReadyLambda( 64 ArrayRef<const clang::sema::FunctionScopeInfo *> FunctionScopes, 65 VarDecl *VarToCapture) { 66 // Label failure to capture. 67 const Optional<unsigned> NoLambdaIsCaptureReady; 68 69 // Ignore all inner captured regions. 70 unsigned CurScopeIndex = FunctionScopes.size() - 1; 71 while (CurScopeIndex > 0 && isa<clang::sema::CapturedRegionScopeInfo>( 72 FunctionScopes[CurScopeIndex])) 73 --CurScopeIndex; 74 assert( 75 isa<clang::sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex]) && 76 "The function on the top of sema's function-info stack must be a lambda"); 77 78 // If VarToCapture is null, we are attempting to capture 'this'. 79 const bool IsCapturingThis = !VarToCapture; 80 const bool IsCapturingVariable = !IsCapturingThis; 81 82 // Start with the current lambda at the top of the stack (highest index). 83 DeclContext *EnclosingDC = 84 cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex])->CallOperator; 85 86 do { 87 const clang::sema::LambdaScopeInfo *LSI = 88 cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex]); 89 // IF we have climbed down to an intervening enclosing lambda that contains 90 // the variable declaration - it obviously can/must not capture the 91 // variable. 92 // Since its enclosing DC is dependent, all the lambdas between it and the 93 // innermost nested lambda are dependent (otherwise we wouldn't have 94 // arrived here) - so we don't yet have a lambda that can capture the 95 // variable. 96 if (IsCapturingVariable && 97 VarToCapture->getDeclContext()->Equals(EnclosingDC)) 98 return NoLambdaIsCaptureReady; 99 100 // For an enclosing lambda to be capture ready for an entity, all 101 // intervening lambda's have to be able to capture that entity. If even 102 // one of the intervening lambda's is not capable of capturing the entity 103 // then no enclosing lambda can ever capture that entity. 104 // For e.g. 105 // const int x = 10; 106 // [=](auto a) { #1 107 // [](auto b) { #2 <-- an intervening lambda that can never capture 'x' 108 // [=](auto c) { #3 109 // f(x, c); <-- can not lead to x's speculative capture by #1 or #2 110 // }; }; }; 111 // If they do not have a default implicit capture, check to see 112 // if the entity has already been explicitly captured. 113 // If even a single dependent enclosing lambda lacks the capability 114 // to ever capture this variable, there is no further enclosing 115 // non-dependent lambda that can capture this variable. 116 if (LSI->ImpCaptureStyle == sema::LambdaScopeInfo::ImpCap_None) { 117 if (IsCapturingVariable && !LSI->isCaptured(VarToCapture)) 118 return NoLambdaIsCaptureReady; 119 if (IsCapturingThis && !LSI->isCXXThisCaptured()) 120 return NoLambdaIsCaptureReady; 121 } 122 EnclosingDC = getLambdaAwareParentOfDeclContext(EnclosingDC); 123 124 assert(CurScopeIndex); 125 --CurScopeIndex; 126 } while (!EnclosingDC->isTranslationUnit() && 127 EnclosingDC->isDependentContext() && 128 isLambdaCallOperator(EnclosingDC)); 129 130 assert(CurScopeIndex < (FunctionScopes.size() - 1)); 131 // If the enclosingDC is not dependent, then the immediately nested lambda 132 // (one index above) is capture-ready. 133 if (!EnclosingDC->isDependentContext()) 134 return CurScopeIndex + 1; 135 return NoLambdaIsCaptureReady; 136 } 137 138 /// Examines the FunctionScopeInfo stack to determine the nearest 139 /// enclosing lambda (to the current lambda) that is 'capture-capable' for 140 /// the variable referenced in the current lambda (i.e. \p VarToCapture). 141 /// If successful, returns the index into Sema's FunctionScopeInfo stack 142 /// of the capture-capable lambda's LambdaScopeInfo. 143 /// 144 /// Given the current stack of lambdas being processed by Sema and 145 /// the variable of interest, to identify the nearest enclosing lambda (to the 146 /// current lambda at the top of the stack) that can truly capture 147 /// a variable, it has to have the following two properties: 148 /// a) 'capture-ready' - be the innermost lambda that is 'capture-ready': 149 /// - climb down the stack (i.e. starting from the innermost and examining 150 /// each outer lambda step by step) checking if each enclosing 151 /// lambda can either implicitly or explicitly capture the variable. 152 /// Record the first such lambda that is enclosed in a non-dependent 153 /// context. If no such lambda currently exists return failure. 154 /// b) 'capture-capable' - make sure the 'capture-ready' lambda can truly 155 /// capture the variable by checking all its enclosing lambdas: 156 /// - check if all outer lambdas enclosing the 'capture-ready' lambda 157 /// identified above in 'a' can also capture the variable (this is done 158 /// via tryCaptureVariable for variables and CheckCXXThisCapture for 159 /// 'this' by passing in the index of the Lambda identified in step 'a') 160 /// 161 /// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a 162 /// LambdaScopeInfo inherits from). The current/deepest/innermost lambda 163 /// is at the top of the stack. 164 /// 165 /// \param VarToCapture - the variable to capture. If NULL, capture 'this'. 166 /// 167 /// 168 /// \returns An Optional<unsigned> Index that if evaluates to 'true' contains 169 /// the index (into Sema's FunctionScopeInfo stack) of the innermost lambda 170 /// which is capture-capable. If the return value evaluates to 'false' then 171 /// no lambda is capture-capable for \p VarToCapture. 172 173 Optional<unsigned> clang::getStackIndexOfNearestEnclosingCaptureCapableLambda( 174 ArrayRef<const sema::FunctionScopeInfo *> FunctionScopes, 175 VarDecl *VarToCapture, Sema &S) { 176 177 const Optional<unsigned> NoLambdaIsCaptureCapable; 178 179 const Optional<unsigned> OptionalStackIndex = 180 getStackIndexOfNearestEnclosingCaptureReadyLambda(FunctionScopes, 181 VarToCapture); 182 if (!OptionalStackIndex) 183 return NoLambdaIsCaptureCapable; 184 185 const unsigned IndexOfCaptureReadyLambda = OptionalStackIndex.getValue(); 186 assert(((IndexOfCaptureReadyLambda != (FunctionScopes.size() - 1)) || 187 S.getCurGenericLambda()) && 188 "The capture ready lambda for a potential capture can only be the " 189 "current lambda if it is a generic lambda"); 190 191 const sema::LambdaScopeInfo *const CaptureReadyLambdaLSI = 192 cast<sema::LambdaScopeInfo>(FunctionScopes[IndexOfCaptureReadyLambda]); 193 194 // If VarToCapture is null, we are attempting to capture 'this' 195 const bool IsCapturingThis = !VarToCapture; 196 const bool IsCapturingVariable = !IsCapturingThis; 197 198 if (IsCapturingVariable) { 199 // Check if the capture-ready lambda can truly capture the variable, by 200 // checking whether all enclosing lambdas of the capture-ready lambda allow 201 // the capture - i.e. make sure it is capture-capable. 202 QualType CaptureType, DeclRefType; 203 const bool CanCaptureVariable = 204 !S.tryCaptureVariable(VarToCapture, 205 /*ExprVarIsUsedInLoc*/ SourceLocation(), 206 clang::Sema::TryCapture_Implicit, 207 /*EllipsisLoc*/ SourceLocation(), 208 /*BuildAndDiagnose*/ false, CaptureType, 209 DeclRefType, &IndexOfCaptureReadyLambda); 210 if (!CanCaptureVariable) 211 return NoLambdaIsCaptureCapable; 212 } else { 213 // Check if the capture-ready lambda can truly capture 'this' by checking 214 // whether all enclosing lambdas of the capture-ready lambda can capture 215 // 'this'. 216 const bool CanCaptureThis = 217 !S.CheckCXXThisCapture( 218 CaptureReadyLambdaLSI->PotentialThisCaptureLocation, 219 /*Explicit*/ false, /*BuildAndDiagnose*/ false, 220 &IndexOfCaptureReadyLambda); 221 if (!CanCaptureThis) 222 return NoLambdaIsCaptureCapable; 223 } 224 return IndexOfCaptureReadyLambda; 225 } 226 227 static inline TemplateParameterList * 228 getGenericLambdaTemplateParameterList(LambdaScopeInfo *LSI, Sema &SemaRef) { 229 if (!LSI->GLTemplateParameterList && !LSI->TemplateParams.empty()) { 230 LSI->GLTemplateParameterList = TemplateParameterList::Create( 231 SemaRef.Context, 232 /*Template kw loc*/ SourceLocation(), 233 /*L angle loc*/ LSI->ExplicitTemplateParamsRange.getBegin(), 234 LSI->TemplateParams, 235 /*R angle loc*/LSI->ExplicitTemplateParamsRange.getEnd(), 236 LSI->RequiresClause.get()); 237 } 238 return LSI->GLTemplateParameterList; 239 } 240 241 CXXRecordDecl *Sema::createLambdaClosureType(SourceRange IntroducerRange, 242 TypeSourceInfo *Info, 243 bool KnownDependent, 244 LambdaCaptureDefault CaptureDefault) { 245 DeclContext *DC = CurContext; 246 while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext())) 247 DC = DC->getParent(); 248 bool IsGenericLambda = getGenericLambdaTemplateParameterList(getCurLambda(), 249 *this); 250 // Start constructing the lambda class. 251 CXXRecordDecl *Class = CXXRecordDecl::CreateLambda(Context, DC, Info, 252 IntroducerRange.getBegin(), 253 KnownDependent, 254 IsGenericLambda, 255 CaptureDefault); 256 DC->addDecl(Class); 257 258 return Class; 259 } 260 261 /// Determine whether the given context is or is enclosed in an inline 262 /// function. 263 static bool isInInlineFunction(const DeclContext *DC) { 264 while (!DC->isFileContext()) { 265 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DC)) 266 if (FD->isInlined()) 267 return true; 268 269 DC = DC->getLexicalParent(); 270 } 271 272 return false; 273 } 274 275 std::tuple<MangleNumberingContext *, Decl *> 276 Sema::getCurrentMangleNumberContext(const DeclContext *DC) { 277 // Compute the context for allocating mangling numbers in the current 278 // expression, if the ABI requires them. 279 Decl *ManglingContextDecl = ExprEvalContexts.back().ManglingContextDecl; 280 281 enum ContextKind { 282 Normal, 283 DefaultArgument, 284 DataMember, 285 StaticDataMember, 286 InlineVariable, 287 VariableTemplate 288 } Kind = Normal; 289 290 // Default arguments of member function parameters that appear in a class 291 // definition, as well as the initializers of data members, receive special 292 // treatment. Identify them. 293 if (ManglingContextDecl) { 294 if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(ManglingContextDecl)) { 295 if (const DeclContext *LexicalDC 296 = Param->getDeclContext()->getLexicalParent()) 297 if (LexicalDC->isRecord()) 298 Kind = DefaultArgument; 299 } else if (VarDecl *Var = dyn_cast<VarDecl>(ManglingContextDecl)) { 300 if (Var->getDeclContext()->isRecord()) 301 Kind = StaticDataMember; 302 else if (Var->getMostRecentDecl()->isInline()) 303 Kind = InlineVariable; 304 else if (Var->getDescribedVarTemplate()) 305 Kind = VariableTemplate; 306 else if (auto *VTS = dyn_cast<VarTemplateSpecializationDecl>(Var)) { 307 if (!VTS->isExplicitSpecialization()) 308 Kind = VariableTemplate; 309 } 310 } else if (isa<FieldDecl>(ManglingContextDecl)) { 311 Kind = DataMember; 312 } 313 } 314 315 // Itanium ABI [5.1.7]: 316 // In the following contexts [...] the one-definition rule requires closure 317 // types in different translation units to "correspond": 318 bool IsInNonspecializedTemplate = 319 inTemplateInstantiation() || CurContext->isDependentContext(); 320 switch (Kind) { 321 case Normal: { 322 // -- the bodies of non-exported nonspecialized template functions 323 // -- the bodies of inline functions 324 if ((IsInNonspecializedTemplate && 325 !(ManglingContextDecl && isa<ParmVarDecl>(ManglingContextDecl))) || 326 isInInlineFunction(CurContext)) { 327 while (auto *CD = dyn_cast<CapturedDecl>(DC)) 328 DC = CD->getParent(); 329 return std::make_tuple(&Context.getManglingNumberContext(DC), nullptr); 330 } 331 332 return std::make_tuple(nullptr, nullptr); 333 } 334 335 case StaticDataMember: 336 // -- the initializers of nonspecialized static members of template classes 337 if (!IsInNonspecializedTemplate) 338 return std::make_tuple(nullptr, ManglingContextDecl); 339 // Fall through to get the current context. 340 LLVM_FALLTHROUGH; 341 342 case DataMember: 343 // -- the in-class initializers of class members 344 case DefaultArgument: 345 // -- default arguments appearing in class definitions 346 case InlineVariable: 347 // -- the initializers of inline variables 348 case VariableTemplate: 349 // -- the initializers of templated variables 350 return std::make_tuple( 351 &Context.getManglingNumberContext(ASTContext::NeedExtraManglingDecl, 352 ManglingContextDecl), 353 ManglingContextDecl); 354 } 355 356 llvm_unreachable("unexpected context"); 357 } 358 359 CXXMethodDecl *Sema::startLambdaDefinition(CXXRecordDecl *Class, 360 SourceRange IntroducerRange, 361 TypeSourceInfo *MethodTypeInfo, 362 SourceLocation EndLoc, 363 ArrayRef<ParmVarDecl *> Params, 364 ConstexprSpecKind ConstexprKind, 365 Expr *TrailingRequiresClause) { 366 QualType MethodType = MethodTypeInfo->getType(); 367 TemplateParameterList *TemplateParams = 368 getGenericLambdaTemplateParameterList(getCurLambda(), *this); 369 // If a lambda appears in a dependent context or is a generic lambda (has 370 // template parameters) and has an 'auto' return type, deduce it to a 371 // dependent type. 372 if (Class->isDependentContext() || TemplateParams) { 373 const FunctionProtoType *FPT = MethodType->castAs<FunctionProtoType>(); 374 QualType Result = FPT->getReturnType(); 375 if (Result->isUndeducedType()) { 376 Result = SubstAutoType(Result, Context.DependentTy); 377 MethodType = Context.getFunctionType(Result, FPT->getParamTypes(), 378 FPT->getExtProtoInfo()); 379 } 380 } 381 382 // C++11 [expr.prim.lambda]p5: 383 // The closure type for a lambda-expression has a public inline function 384 // call operator (13.5.4) whose parameters and return type are described by 385 // the lambda-expression's parameter-declaration-clause and 386 // trailing-return-type respectively. 387 DeclarationName MethodName 388 = Context.DeclarationNames.getCXXOperatorName(OO_Call); 389 DeclarationNameLoc MethodNameLoc = 390 DeclarationNameLoc::makeCXXOperatorNameLoc(IntroducerRange); 391 CXXMethodDecl *Method = CXXMethodDecl::Create( 392 Context, Class, EndLoc, 393 DeclarationNameInfo(MethodName, IntroducerRange.getBegin(), 394 MethodNameLoc), 395 MethodType, MethodTypeInfo, SC_None, 396 /*isInline=*/true, ConstexprKind, EndLoc, TrailingRequiresClause); 397 Method->setAccess(AS_public); 398 if (!TemplateParams) 399 Class->addDecl(Method); 400 401 // Temporarily set the lexical declaration context to the current 402 // context, so that the Scope stack matches the lexical nesting. 403 Method->setLexicalDeclContext(CurContext); 404 // Create a function template if we have a template parameter list 405 FunctionTemplateDecl *const TemplateMethod = TemplateParams ? 406 FunctionTemplateDecl::Create(Context, Class, 407 Method->getLocation(), MethodName, 408 TemplateParams, 409 Method) : nullptr; 410 if (TemplateMethod) { 411 TemplateMethod->setAccess(AS_public); 412 Method->setDescribedFunctionTemplate(TemplateMethod); 413 Class->addDecl(TemplateMethod); 414 TemplateMethod->setLexicalDeclContext(CurContext); 415 } 416 417 // Add parameters. 418 if (!Params.empty()) { 419 Method->setParams(Params); 420 CheckParmsForFunctionDef(Params, 421 /*CheckParameterNames=*/false); 422 423 for (auto P : Method->parameters()) 424 P->setOwningFunction(Method); 425 } 426 427 return Method; 428 } 429 430 void Sema::handleLambdaNumbering( 431 CXXRecordDecl *Class, CXXMethodDecl *Method, 432 Optional<std::tuple<bool, unsigned, unsigned, Decl *>> Mangling) { 433 if (Mangling) { 434 bool HasKnownInternalLinkage; 435 unsigned ManglingNumber, DeviceManglingNumber; 436 Decl *ManglingContextDecl; 437 std::tie(HasKnownInternalLinkage, ManglingNumber, DeviceManglingNumber, 438 ManglingContextDecl) = Mangling.getValue(); 439 Class->setLambdaMangling(ManglingNumber, ManglingContextDecl, 440 HasKnownInternalLinkage); 441 Class->setDeviceLambdaManglingNumber(DeviceManglingNumber); 442 return; 443 } 444 445 auto getMangleNumberingContext = 446 [this](CXXRecordDecl *Class, 447 Decl *ManglingContextDecl) -> MangleNumberingContext * { 448 // Get mangle numbering context if there's any extra decl context. 449 if (ManglingContextDecl) 450 return &Context.getManglingNumberContext( 451 ASTContext::NeedExtraManglingDecl, ManglingContextDecl); 452 // Otherwise, from that lambda's decl context. 453 auto DC = Class->getDeclContext(); 454 while (auto *CD = dyn_cast<CapturedDecl>(DC)) 455 DC = CD->getParent(); 456 return &Context.getManglingNumberContext(DC); 457 }; 458 459 MangleNumberingContext *MCtx; 460 Decl *ManglingContextDecl; 461 std::tie(MCtx, ManglingContextDecl) = 462 getCurrentMangleNumberContext(Class->getDeclContext()); 463 bool HasKnownInternalLinkage = false; 464 if (!MCtx && getLangOpts().CUDA) { 465 // Force lambda numbering in CUDA/HIP as we need to name lambdas following 466 // ODR. Both device- and host-compilation need to have a consistent naming 467 // on kernel functions. As lambdas are potential part of these `__global__` 468 // function names, they needs numbering following ODR. 469 MCtx = getMangleNumberingContext(Class, ManglingContextDecl); 470 assert(MCtx && "Retrieving mangle numbering context failed!"); 471 HasKnownInternalLinkage = true; 472 } 473 if (MCtx) { 474 unsigned ManglingNumber = MCtx->getManglingNumber(Method); 475 Class->setLambdaMangling(ManglingNumber, ManglingContextDecl, 476 HasKnownInternalLinkage); 477 Class->setDeviceLambdaManglingNumber(MCtx->getDeviceManglingNumber(Method)); 478 } 479 } 480 481 void Sema::buildLambdaScope(LambdaScopeInfo *LSI, 482 CXXMethodDecl *CallOperator, 483 SourceRange IntroducerRange, 484 LambdaCaptureDefault CaptureDefault, 485 SourceLocation CaptureDefaultLoc, 486 bool ExplicitParams, 487 bool ExplicitResultType, 488 bool Mutable) { 489 LSI->CallOperator = CallOperator; 490 CXXRecordDecl *LambdaClass = CallOperator->getParent(); 491 LSI->Lambda = LambdaClass; 492 if (CaptureDefault == LCD_ByCopy) 493 LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByval; 494 else if (CaptureDefault == LCD_ByRef) 495 LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByref; 496 LSI->CaptureDefaultLoc = CaptureDefaultLoc; 497 LSI->IntroducerRange = IntroducerRange; 498 LSI->ExplicitParams = ExplicitParams; 499 LSI->Mutable = Mutable; 500 501 if (ExplicitResultType) { 502 LSI->ReturnType = CallOperator->getReturnType(); 503 504 if (!LSI->ReturnType->isDependentType() && 505 !LSI->ReturnType->isVoidType()) { 506 if (RequireCompleteType(CallOperator->getBeginLoc(), LSI->ReturnType, 507 diag::err_lambda_incomplete_result)) { 508 // Do nothing. 509 } 510 } 511 } else { 512 LSI->HasImplicitReturnType = true; 513 } 514 } 515 516 void Sema::finishLambdaExplicitCaptures(LambdaScopeInfo *LSI) { 517 LSI->finishedExplicitCaptures(); 518 } 519 520 void Sema::ActOnLambdaExplicitTemplateParameterList(SourceLocation LAngleLoc, 521 ArrayRef<NamedDecl *> TParams, 522 SourceLocation RAngleLoc, 523 ExprResult RequiresClause) { 524 LambdaScopeInfo *LSI = getCurLambda(); 525 assert(LSI && "Expected a lambda scope"); 526 assert(LSI->NumExplicitTemplateParams == 0 && 527 "Already acted on explicit template parameters"); 528 assert(LSI->TemplateParams.empty() && 529 "Explicit template parameters should come " 530 "before invented (auto) ones"); 531 assert(!TParams.empty() && 532 "No template parameters to act on"); 533 LSI->TemplateParams.append(TParams.begin(), TParams.end()); 534 LSI->NumExplicitTemplateParams = TParams.size(); 535 LSI->ExplicitTemplateParamsRange = {LAngleLoc, RAngleLoc}; 536 LSI->RequiresClause = RequiresClause; 537 } 538 539 void Sema::addLambdaParameters( 540 ArrayRef<LambdaIntroducer::LambdaCapture> Captures, 541 CXXMethodDecl *CallOperator, Scope *CurScope) { 542 // Introduce our parameters into the function scope 543 for (unsigned p = 0, NumParams = CallOperator->getNumParams(); 544 p < NumParams; ++p) { 545 ParmVarDecl *Param = CallOperator->getParamDecl(p); 546 547 // If this has an identifier, add it to the scope stack. 548 if (CurScope && Param->getIdentifier()) { 549 bool Error = false; 550 // Resolution of CWG 2211 in C++17 renders shadowing ill-formed, but we 551 // retroactively apply it. 552 for (const auto &Capture : Captures) { 553 if (Capture.Id == Param->getIdentifier()) { 554 Error = true; 555 Diag(Param->getLocation(), diag::err_parameter_shadow_capture); 556 Diag(Capture.Loc, diag::note_var_explicitly_captured_here) 557 << Capture.Id << true; 558 } 559 } 560 if (!Error) 561 CheckShadow(CurScope, Param); 562 563 PushOnScopeChains(Param, CurScope); 564 } 565 } 566 } 567 568 /// If this expression is an enumerator-like expression of some type 569 /// T, return the type T; otherwise, return null. 570 /// 571 /// Pointer comparisons on the result here should always work because 572 /// it's derived from either the parent of an EnumConstantDecl 573 /// (i.e. the definition) or the declaration returned by 574 /// EnumType::getDecl() (i.e. the definition). 575 static EnumDecl *findEnumForBlockReturn(Expr *E) { 576 // An expression is an enumerator-like expression of type T if, 577 // ignoring parens and parens-like expressions: 578 E = E->IgnoreParens(); 579 580 // - it is an enumerator whose enum type is T or 581 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { 582 if (EnumConstantDecl *D 583 = dyn_cast<EnumConstantDecl>(DRE->getDecl())) { 584 return cast<EnumDecl>(D->getDeclContext()); 585 } 586 return nullptr; 587 } 588 589 // - it is a comma expression whose RHS is an enumerator-like 590 // expression of type T or 591 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 592 if (BO->getOpcode() == BO_Comma) 593 return findEnumForBlockReturn(BO->getRHS()); 594 return nullptr; 595 } 596 597 // - it is a statement-expression whose value expression is an 598 // enumerator-like expression of type T or 599 if (StmtExpr *SE = dyn_cast<StmtExpr>(E)) { 600 if (Expr *last = dyn_cast_or_null<Expr>(SE->getSubStmt()->body_back())) 601 return findEnumForBlockReturn(last); 602 return nullptr; 603 } 604 605 // - it is a ternary conditional operator (not the GNU ?: 606 // extension) whose second and third operands are 607 // enumerator-like expressions of type T or 608 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) { 609 if (EnumDecl *ED = findEnumForBlockReturn(CO->getTrueExpr())) 610 if (ED == findEnumForBlockReturn(CO->getFalseExpr())) 611 return ED; 612 return nullptr; 613 } 614 615 // (implicitly:) 616 // - it is an implicit integral conversion applied to an 617 // enumerator-like expression of type T or 618 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 619 // We can sometimes see integral conversions in valid 620 // enumerator-like expressions. 621 if (ICE->getCastKind() == CK_IntegralCast) 622 return findEnumForBlockReturn(ICE->getSubExpr()); 623 624 // Otherwise, just rely on the type. 625 } 626 627 // - it is an expression of that formal enum type. 628 if (const EnumType *ET = E->getType()->getAs<EnumType>()) { 629 return ET->getDecl(); 630 } 631 632 // Otherwise, nope. 633 return nullptr; 634 } 635 636 /// Attempt to find a type T for which the returned expression of the 637 /// given statement is an enumerator-like expression of that type. 638 static EnumDecl *findEnumForBlockReturn(ReturnStmt *ret) { 639 if (Expr *retValue = ret->getRetValue()) 640 return findEnumForBlockReturn(retValue); 641 return nullptr; 642 } 643 644 /// Attempt to find a common type T for which all of the returned 645 /// expressions in a block are enumerator-like expressions of that 646 /// type. 647 static EnumDecl *findCommonEnumForBlockReturns(ArrayRef<ReturnStmt*> returns) { 648 ArrayRef<ReturnStmt*>::iterator i = returns.begin(), e = returns.end(); 649 650 // Try to find one for the first return. 651 EnumDecl *ED = findEnumForBlockReturn(*i); 652 if (!ED) return nullptr; 653 654 // Check that the rest of the returns have the same enum. 655 for (++i; i != e; ++i) { 656 if (findEnumForBlockReturn(*i) != ED) 657 return nullptr; 658 } 659 660 // Never infer an anonymous enum type. 661 if (!ED->hasNameForLinkage()) return nullptr; 662 663 return ED; 664 } 665 666 /// Adjust the given return statements so that they formally return 667 /// the given type. It should require, at most, an IntegralCast. 668 static void adjustBlockReturnsToEnum(Sema &S, ArrayRef<ReturnStmt*> returns, 669 QualType returnType) { 670 for (ArrayRef<ReturnStmt*>::iterator 671 i = returns.begin(), e = returns.end(); i != e; ++i) { 672 ReturnStmt *ret = *i; 673 Expr *retValue = ret->getRetValue(); 674 if (S.Context.hasSameType(retValue->getType(), returnType)) 675 continue; 676 677 // Right now we only support integral fixup casts. 678 assert(returnType->isIntegralOrUnscopedEnumerationType()); 679 assert(retValue->getType()->isIntegralOrUnscopedEnumerationType()); 680 681 ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(retValue); 682 683 Expr *E = (cleanups ? cleanups->getSubExpr() : retValue); 684 E = ImplicitCastExpr::Create(S.Context, returnType, CK_IntegralCast, E, 685 /*base path*/ nullptr, VK_RValue, 686 FPOptionsOverride()); 687 if (cleanups) { 688 cleanups->setSubExpr(E); 689 } else { 690 ret->setRetValue(E); 691 } 692 } 693 } 694 695 void Sema::deduceClosureReturnType(CapturingScopeInfo &CSI) { 696 assert(CSI.HasImplicitReturnType); 697 // If it was ever a placeholder, it had to been deduced to DependentTy. 698 assert(CSI.ReturnType.isNull() || !CSI.ReturnType->isUndeducedType()); 699 assert((!isa<LambdaScopeInfo>(CSI) || !getLangOpts().CPlusPlus14) && 700 "lambda expressions use auto deduction in C++14 onwards"); 701 702 // C++ core issue 975: 703 // If a lambda-expression does not include a trailing-return-type, 704 // it is as if the trailing-return-type denotes the following type: 705 // - if there are no return statements in the compound-statement, 706 // or all return statements return either an expression of type 707 // void or no expression or braced-init-list, the type void; 708 // - otherwise, if all return statements return an expression 709 // and the types of the returned expressions after 710 // lvalue-to-rvalue conversion (4.1 [conv.lval]), 711 // array-to-pointer conversion (4.2 [conv.array]), and 712 // function-to-pointer conversion (4.3 [conv.func]) are the 713 // same, that common type; 714 // - otherwise, the program is ill-formed. 715 // 716 // C++ core issue 1048 additionally removes top-level cv-qualifiers 717 // from the types of returned expressions to match the C++14 auto 718 // deduction rules. 719 // 720 // In addition, in blocks in non-C++ modes, if all of the return 721 // statements are enumerator-like expressions of some type T, where 722 // T has a name for linkage, then we infer the return type of the 723 // block to be that type. 724 725 // First case: no return statements, implicit void return type. 726 ASTContext &Ctx = getASTContext(); 727 if (CSI.Returns.empty()) { 728 // It's possible there were simply no /valid/ return statements. 729 // In this case, the first one we found may have at least given us a type. 730 if (CSI.ReturnType.isNull()) 731 CSI.ReturnType = Ctx.VoidTy; 732 return; 733 } 734 735 // Second case: at least one return statement has dependent type. 736 // Delay type checking until instantiation. 737 assert(!CSI.ReturnType.isNull() && "We should have a tentative return type."); 738 if (CSI.ReturnType->isDependentType()) 739 return; 740 741 // Try to apply the enum-fuzz rule. 742 if (!getLangOpts().CPlusPlus) { 743 assert(isa<BlockScopeInfo>(CSI)); 744 const EnumDecl *ED = findCommonEnumForBlockReturns(CSI.Returns); 745 if (ED) { 746 CSI.ReturnType = Context.getTypeDeclType(ED); 747 adjustBlockReturnsToEnum(*this, CSI.Returns, CSI.ReturnType); 748 return; 749 } 750 } 751 752 // Third case: only one return statement. Don't bother doing extra work! 753 if (CSI.Returns.size() == 1) 754 return; 755 756 // General case: many return statements. 757 // Check that they all have compatible return types. 758 759 // We require the return types to strictly match here. 760 // Note that we've already done the required promotions as part of 761 // processing the return statement. 762 for (const ReturnStmt *RS : CSI.Returns) { 763 const Expr *RetE = RS->getRetValue(); 764 765 QualType ReturnType = 766 (RetE ? RetE->getType() : Context.VoidTy).getUnqualifiedType(); 767 if (Context.getCanonicalFunctionResultType(ReturnType) == 768 Context.getCanonicalFunctionResultType(CSI.ReturnType)) { 769 // Use the return type with the strictest possible nullability annotation. 770 auto RetTyNullability = ReturnType->getNullability(Ctx); 771 auto BlockNullability = CSI.ReturnType->getNullability(Ctx); 772 if (BlockNullability && 773 (!RetTyNullability || 774 hasWeakerNullability(*RetTyNullability, *BlockNullability))) 775 CSI.ReturnType = ReturnType; 776 continue; 777 } 778 779 // FIXME: This is a poor diagnostic for ReturnStmts without expressions. 780 // TODO: It's possible that the *first* return is the divergent one. 781 Diag(RS->getBeginLoc(), 782 diag::err_typecheck_missing_return_type_incompatible) 783 << ReturnType << CSI.ReturnType << isa<LambdaScopeInfo>(CSI); 784 // Continue iterating so that we keep emitting diagnostics. 785 } 786 } 787 788 QualType Sema::buildLambdaInitCaptureInitialization( 789 SourceLocation Loc, bool ByRef, SourceLocation EllipsisLoc, 790 Optional<unsigned> NumExpansions, IdentifierInfo *Id, bool IsDirectInit, 791 Expr *&Init) { 792 // Create an 'auto' or 'auto&' TypeSourceInfo that we can use to 793 // deduce against. 794 QualType DeductType = Context.getAutoDeductType(); 795 TypeLocBuilder TLB; 796 AutoTypeLoc TL = TLB.push<AutoTypeLoc>(DeductType); 797 TL.setNameLoc(Loc); 798 if (ByRef) { 799 DeductType = BuildReferenceType(DeductType, true, Loc, Id); 800 assert(!DeductType.isNull() && "can't build reference to auto"); 801 TLB.push<ReferenceTypeLoc>(DeductType).setSigilLoc(Loc); 802 } 803 if (EllipsisLoc.isValid()) { 804 if (Init->containsUnexpandedParameterPack()) { 805 Diag(EllipsisLoc, getLangOpts().CPlusPlus20 806 ? diag::warn_cxx17_compat_init_capture_pack 807 : diag::ext_init_capture_pack); 808 DeductType = Context.getPackExpansionType(DeductType, NumExpansions, 809 /*ExpectPackInType=*/false); 810 TLB.push<PackExpansionTypeLoc>(DeductType).setEllipsisLoc(EllipsisLoc); 811 } else { 812 // Just ignore the ellipsis for now and form a non-pack variable. We'll 813 // diagnose this later when we try to capture it. 814 } 815 } 816 TypeSourceInfo *TSI = TLB.getTypeSourceInfo(Context, DeductType); 817 818 // Deduce the type of the init capture. 819 QualType DeducedType = deduceVarTypeFromInitializer( 820 /*VarDecl*/nullptr, DeclarationName(Id), DeductType, TSI, 821 SourceRange(Loc, Loc), IsDirectInit, Init); 822 if (DeducedType.isNull()) 823 return QualType(); 824 825 // Are we a non-list direct initialization? 826 ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init); 827 828 // Perform initialization analysis and ensure any implicit conversions 829 // (such as lvalue-to-rvalue) are enforced. 830 InitializedEntity Entity = 831 InitializedEntity::InitializeLambdaCapture(Id, DeducedType, Loc); 832 InitializationKind Kind = 833 IsDirectInit 834 ? (CXXDirectInit ? InitializationKind::CreateDirect( 835 Loc, Init->getBeginLoc(), Init->getEndLoc()) 836 : InitializationKind::CreateDirectList(Loc)) 837 : InitializationKind::CreateCopy(Loc, Init->getBeginLoc()); 838 839 MultiExprArg Args = Init; 840 if (CXXDirectInit) 841 Args = 842 MultiExprArg(CXXDirectInit->getExprs(), CXXDirectInit->getNumExprs()); 843 QualType DclT; 844 InitializationSequence InitSeq(*this, Entity, Kind, Args); 845 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT); 846 847 if (Result.isInvalid()) 848 return QualType(); 849 850 Init = Result.getAs<Expr>(); 851 return DeducedType; 852 } 853 854 VarDecl *Sema::createLambdaInitCaptureVarDecl(SourceLocation Loc, 855 QualType InitCaptureType, 856 SourceLocation EllipsisLoc, 857 IdentifierInfo *Id, 858 unsigned InitStyle, Expr *Init) { 859 // FIXME: Retain the TypeSourceInfo from buildLambdaInitCaptureInitialization 860 // rather than reconstructing it here. 861 TypeSourceInfo *TSI = Context.getTrivialTypeSourceInfo(InitCaptureType, Loc); 862 if (auto PETL = TSI->getTypeLoc().getAs<PackExpansionTypeLoc>()) 863 PETL.setEllipsisLoc(EllipsisLoc); 864 865 // Create a dummy variable representing the init-capture. This is not actually 866 // used as a variable, and only exists as a way to name and refer to the 867 // init-capture. 868 // FIXME: Pass in separate source locations for '&' and identifier. 869 VarDecl *NewVD = VarDecl::Create(Context, CurContext, Loc, 870 Loc, Id, InitCaptureType, TSI, SC_Auto); 871 NewVD->setInitCapture(true); 872 NewVD->setReferenced(true); 873 // FIXME: Pass in a VarDecl::InitializationStyle. 874 NewVD->setInitStyle(static_cast<VarDecl::InitializationStyle>(InitStyle)); 875 NewVD->markUsed(Context); 876 NewVD->setInit(Init); 877 if (NewVD->isParameterPack()) 878 getCurLambda()->LocalPacks.push_back(NewVD); 879 return NewVD; 880 } 881 882 void Sema::addInitCapture(LambdaScopeInfo *LSI, VarDecl *Var) { 883 assert(Var->isInitCapture() && "init capture flag should be set"); 884 LSI->addCapture(Var, /*isBlock*/false, Var->getType()->isReferenceType(), 885 /*isNested*/false, Var->getLocation(), SourceLocation(), 886 Var->getType(), /*Invalid*/false); 887 } 888 889 void Sema::ActOnStartOfLambdaDefinition(LambdaIntroducer &Intro, 890 Declarator &ParamInfo, 891 Scope *CurScope) { 892 LambdaScopeInfo *const LSI = getCurLambda(); 893 assert(LSI && "LambdaScopeInfo should be on stack!"); 894 895 // Determine if we're within a context where we know that the lambda will 896 // be dependent, because there are template parameters in scope. 897 bool KnownDependent; 898 if (LSI->NumExplicitTemplateParams > 0) { 899 auto *TemplateParamScope = CurScope->getTemplateParamParent(); 900 assert(TemplateParamScope && 901 "Lambda with explicit template param list should establish a " 902 "template param scope"); 903 assert(TemplateParamScope->getParent()); 904 KnownDependent = TemplateParamScope->getParent() 905 ->getTemplateParamParent() != nullptr; 906 } else { 907 KnownDependent = CurScope->getTemplateParamParent() != nullptr; 908 } 909 910 // Determine the signature of the call operator. 911 TypeSourceInfo *MethodTyInfo; 912 bool ExplicitParams = true; 913 bool ExplicitResultType = true; 914 bool ContainsUnexpandedParameterPack = false; 915 SourceLocation EndLoc; 916 SmallVector<ParmVarDecl *, 8> Params; 917 if (ParamInfo.getNumTypeObjects() == 0) { 918 // C++11 [expr.prim.lambda]p4: 919 // If a lambda-expression does not include a lambda-declarator, it is as 920 // if the lambda-declarator were (). 921 FunctionProtoType::ExtProtoInfo EPI(Context.getDefaultCallingConvention( 922 /*IsVariadic=*/false, /*IsCXXMethod=*/true)); 923 EPI.HasTrailingReturn = true; 924 EPI.TypeQuals.addConst(); 925 LangAS AS = getDefaultCXXMethodAddrSpace(); 926 if (AS != LangAS::Default) 927 EPI.TypeQuals.addAddressSpace(AS); 928 929 // C++1y [expr.prim.lambda]: 930 // The lambda return type is 'auto', which is replaced by the 931 // trailing-return type if provided and/or deduced from 'return' 932 // statements 933 // We don't do this before C++1y, because we don't support deduced return 934 // types there. 935 QualType DefaultTypeForNoTrailingReturn = 936 getLangOpts().CPlusPlus14 ? Context.getAutoDeductType() 937 : Context.DependentTy; 938 QualType MethodTy = 939 Context.getFunctionType(DefaultTypeForNoTrailingReturn, None, EPI); 940 MethodTyInfo = Context.getTrivialTypeSourceInfo(MethodTy); 941 ExplicitParams = false; 942 ExplicitResultType = false; 943 EndLoc = Intro.Range.getEnd(); 944 } else { 945 assert(ParamInfo.isFunctionDeclarator() && 946 "lambda-declarator is a function"); 947 DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getFunctionTypeInfo(); 948 949 // C++11 [expr.prim.lambda]p5: 950 // This function call operator is declared const (9.3.1) if and only if 951 // the lambda-expression's parameter-declaration-clause is not followed 952 // by mutable. It is neither virtual nor declared volatile. [...] 953 if (!FTI.hasMutableQualifier()) { 954 FTI.getOrCreateMethodQualifiers().SetTypeQual(DeclSpec::TQ_const, 955 SourceLocation()); 956 } 957 958 MethodTyInfo = GetTypeForDeclarator(ParamInfo, CurScope); 959 assert(MethodTyInfo && "no type from lambda-declarator"); 960 EndLoc = ParamInfo.getSourceRange().getEnd(); 961 962 ExplicitResultType = FTI.hasTrailingReturnType(); 963 964 if (FTIHasNonVoidParameters(FTI)) { 965 Params.reserve(FTI.NumParams); 966 for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) 967 Params.push_back(cast<ParmVarDecl>(FTI.Params[i].Param)); 968 } 969 970 // Check for unexpanded parameter packs in the method type. 971 if (MethodTyInfo->getType()->containsUnexpandedParameterPack()) 972 DiagnoseUnexpandedParameterPack(Intro.Range.getBegin(), MethodTyInfo, 973 UPPC_DeclarationType); 974 } 975 976 CXXRecordDecl *Class = createLambdaClosureType(Intro.Range, MethodTyInfo, 977 KnownDependent, Intro.Default); 978 CXXMethodDecl *Method = 979 startLambdaDefinition(Class, Intro.Range, MethodTyInfo, EndLoc, Params, 980 ParamInfo.getDeclSpec().getConstexprSpecifier(), 981 ParamInfo.getTrailingRequiresClause()); 982 if (ExplicitParams) 983 CheckCXXDefaultArguments(Method); 984 985 // This represents the function body for the lambda function, check if we 986 // have to apply optnone due to a pragma. 987 AddRangeBasedOptnone(Method); 988 989 // code_seg attribute on lambda apply to the method. 990 if (Attr *A = getImplicitCodeSegOrSectionAttrForFunction(Method, /*IsDefinition=*/true)) 991 Method->addAttr(A); 992 993 // Attributes on the lambda apply to the method. 994 ProcessDeclAttributes(CurScope, Method, ParamInfo); 995 996 // CUDA lambdas get implicit host and device attributes. 997 if (getLangOpts().CUDA) 998 CUDASetLambdaAttrs(Method); 999 1000 // OpenMP lambdas might get assumumption attributes. 1001 if (LangOpts.OpenMP) 1002 ActOnFinishedFunctionDefinitionInOpenMPAssumeScope(Method); 1003 1004 // Number the lambda for linkage purposes if necessary. 1005 handleLambdaNumbering(Class, Method); 1006 1007 // Introduce the function call operator as the current declaration context. 1008 PushDeclContext(CurScope, Method); 1009 1010 // Build the lambda scope. 1011 buildLambdaScope(LSI, Method, Intro.Range, Intro.Default, Intro.DefaultLoc, 1012 ExplicitParams, ExplicitResultType, !Method->isConst()); 1013 1014 // C++11 [expr.prim.lambda]p9: 1015 // A lambda-expression whose smallest enclosing scope is a block scope is a 1016 // local lambda expression; any other lambda expression shall not have a 1017 // capture-default or simple-capture in its lambda-introducer. 1018 // 1019 // For simple-captures, this is covered by the check below that any named 1020 // entity is a variable that can be captured. 1021 // 1022 // For DR1632, we also allow a capture-default in any context where we can 1023 // odr-use 'this' (in particular, in a default initializer for a non-static 1024 // data member). 1025 if (Intro.Default != LCD_None && !Class->getParent()->isFunctionOrMethod() && 1026 (getCurrentThisType().isNull() || 1027 CheckCXXThisCapture(SourceLocation(), /*Explicit*/true, 1028 /*BuildAndDiagnose*/false))) 1029 Diag(Intro.DefaultLoc, diag::err_capture_default_non_local); 1030 1031 // Distinct capture names, for diagnostics. 1032 llvm::SmallSet<IdentifierInfo*, 8> CaptureNames; 1033 1034 // Handle explicit captures. 1035 SourceLocation PrevCaptureLoc 1036 = Intro.Default == LCD_None? Intro.Range.getBegin() : Intro.DefaultLoc; 1037 for (auto C = Intro.Captures.begin(), E = Intro.Captures.end(); C != E; 1038 PrevCaptureLoc = C->Loc, ++C) { 1039 if (C->Kind == LCK_This || C->Kind == LCK_StarThis) { 1040 if (C->Kind == LCK_StarThis) 1041 Diag(C->Loc, !getLangOpts().CPlusPlus17 1042 ? diag::ext_star_this_lambda_capture_cxx17 1043 : diag::warn_cxx14_compat_star_this_lambda_capture); 1044 1045 // C++11 [expr.prim.lambda]p8: 1046 // An identifier or this shall not appear more than once in a 1047 // lambda-capture. 1048 if (LSI->isCXXThisCaptured()) { 1049 Diag(C->Loc, diag::err_capture_more_than_once) 1050 << "'this'" << SourceRange(LSI->getCXXThisCapture().getLocation()) 1051 << FixItHint::CreateRemoval( 1052 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc)); 1053 continue; 1054 } 1055 1056 // C++2a [expr.prim.lambda]p8: 1057 // If a lambda-capture includes a capture-default that is =, 1058 // each simple-capture of that lambda-capture shall be of the form 1059 // "&identifier", "this", or "* this". [ Note: The form [&,this] is 1060 // redundant but accepted for compatibility with ISO C++14. --end note ] 1061 if (Intro.Default == LCD_ByCopy && C->Kind != LCK_StarThis) 1062 Diag(C->Loc, !getLangOpts().CPlusPlus20 1063 ? diag::ext_equals_this_lambda_capture_cxx20 1064 : diag::warn_cxx17_compat_equals_this_lambda_capture); 1065 1066 // C++11 [expr.prim.lambda]p12: 1067 // If this is captured by a local lambda expression, its nearest 1068 // enclosing function shall be a non-static member function. 1069 QualType ThisCaptureType = getCurrentThisType(); 1070 if (ThisCaptureType.isNull()) { 1071 Diag(C->Loc, diag::err_this_capture) << true; 1072 continue; 1073 } 1074 1075 CheckCXXThisCapture(C->Loc, /*Explicit=*/true, /*BuildAndDiagnose*/ true, 1076 /*FunctionScopeIndexToStopAtPtr*/ nullptr, 1077 C->Kind == LCK_StarThis); 1078 if (!LSI->Captures.empty()) 1079 LSI->ExplicitCaptureRanges[LSI->Captures.size() - 1] = C->ExplicitRange; 1080 continue; 1081 } 1082 1083 assert(C->Id && "missing identifier for capture"); 1084 1085 if (C->Init.isInvalid()) 1086 continue; 1087 1088 VarDecl *Var = nullptr; 1089 if (C->Init.isUsable()) { 1090 Diag(C->Loc, getLangOpts().CPlusPlus14 1091 ? diag::warn_cxx11_compat_init_capture 1092 : diag::ext_init_capture); 1093 1094 // If the initializer expression is usable, but the InitCaptureType 1095 // is not, then an error has occurred - so ignore the capture for now. 1096 // for e.g., [n{0}] { }; <-- if no <initializer_list> is included. 1097 // FIXME: we should create the init capture variable and mark it invalid 1098 // in this case. 1099 if (C->InitCaptureType.get().isNull()) 1100 continue; 1101 1102 if (C->Init.get()->containsUnexpandedParameterPack() && 1103 !C->InitCaptureType.get()->getAs<PackExpansionType>()) 1104 DiagnoseUnexpandedParameterPack(C->Init.get(), UPPC_Initializer); 1105 1106 unsigned InitStyle; 1107 switch (C->InitKind) { 1108 case LambdaCaptureInitKind::NoInit: 1109 llvm_unreachable("not an init-capture?"); 1110 case LambdaCaptureInitKind::CopyInit: 1111 InitStyle = VarDecl::CInit; 1112 break; 1113 case LambdaCaptureInitKind::DirectInit: 1114 InitStyle = VarDecl::CallInit; 1115 break; 1116 case LambdaCaptureInitKind::ListInit: 1117 InitStyle = VarDecl::ListInit; 1118 break; 1119 } 1120 Var = createLambdaInitCaptureVarDecl(C->Loc, C->InitCaptureType.get(), 1121 C->EllipsisLoc, C->Id, InitStyle, 1122 C->Init.get()); 1123 // C++1y [expr.prim.lambda]p11: 1124 // An init-capture behaves as if it declares and explicitly 1125 // captures a variable [...] whose declarative region is the 1126 // lambda-expression's compound-statement 1127 if (Var) 1128 PushOnScopeChains(Var, CurScope, false); 1129 } else { 1130 assert(C->InitKind == LambdaCaptureInitKind::NoInit && 1131 "init capture has valid but null init?"); 1132 1133 // C++11 [expr.prim.lambda]p8: 1134 // If a lambda-capture includes a capture-default that is &, the 1135 // identifiers in the lambda-capture shall not be preceded by &. 1136 // If a lambda-capture includes a capture-default that is =, [...] 1137 // each identifier it contains shall be preceded by &. 1138 if (C->Kind == LCK_ByRef && Intro.Default == LCD_ByRef) { 1139 Diag(C->Loc, diag::err_reference_capture_with_reference_default) 1140 << FixItHint::CreateRemoval( 1141 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc)); 1142 continue; 1143 } else if (C->Kind == LCK_ByCopy && Intro.Default == LCD_ByCopy) { 1144 Diag(C->Loc, diag::err_copy_capture_with_copy_default) 1145 << FixItHint::CreateRemoval( 1146 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc)); 1147 continue; 1148 } 1149 1150 // C++11 [expr.prim.lambda]p10: 1151 // The identifiers in a capture-list are looked up using the usual 1152 // rules for unqualified name lookup (3.4.1) 1153 DeclarationNameInfo Name(C->Id, C->Loc); 1154 LookupResult R(*this, Name, LookupOrdinaryName); 1155 LookupName(R, CurScope); 1156 if (R.isAmbiguous()) 1157 continue; 1158 if (R.empty()) { 1159 // FIXME: Disable corrections that would add qualification? 1160 CXXScopeSpec ScopeSpec; 1161 DeclFilterCCC<VarDecl> Validator{}; 1162 if (DiagnoseEmptyLookup(CurScope, ScopeSpec, R, Validator)) 1163 continue; 1164 } 1165 1166 Var = R.getAsSingle<VarDecl>(); 1167 if (Var && DiagnoseUseOfDecl(Var, C->Loc)) 1168 continue; 1169 } 1170 1171 // C++11 [expr.prim.lambda]p8: 1172 // An identifier or this shall not appear more than once in a 1173 // lambda-capture. 1174 if (!CaptureNames.insert(C->Id).second) { 1175 if (Var && LSI->isCaptured(Var)) { 1176 Diag(C->Loc, diag::err_capture_more_than_once) 1177 << C->Id << SourceRange(LSI->getCapture(Var).getLocation()) 1178 << FixItHint::CreateRemoval( 1179 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc)); 1180 } else 1181 // Previous capture captured something different (one or both was 1182 // an init-cpature): no fixit. 1183 Diag(C->Loc, diag::err_capture_more_than_once) << C->Id; 1184 continue; 1185 } 1186 1187 // C++11 [expr.prim.lambda]p10: 1188 // [...] each such lookup shall find a variable with automatic storage 1189 // duration declared in the reaching scope of the local lambda expression. 1190 // Note that the 'reaching scope' check happens in tryCaptureVariable(). 1191 if (!Var) { 1192 Diag(C->Loc, diag::err_capture_does_not_name_variable) << C->Id; 1193 continue; 1194 } 1195 1196 // Ignore invalid decls; they'll just confuse the code later. 1197 if (Var->isInvalidDecl()) 1198 continue; 1199 1200 if (!Var->hasLocalStorage()) { 1201 Diag(C->Loc, diag::err_capture_non_automatic_variable) << C->Id; 1202 Diag(Var->getLocation(), diag::note_previous_decl) << C->Id; 1203 continue; 1204 } 1205 1206 // C++11 [expr.prim.lambda]p23: 1207 // A capture followed by an ellipsis is a pack expansion (14.5.3). 1208 SourceLocation EllipsisLoc; 1209 if (C->EllipsisLoc.isValid()) { 1210 if (Var->isParameterPack()) { 1211 EllipsisLoc = C->EllipsisLoc; 1212 } else { 1213 Diag(C->EllipsisLoc, diag::err_pack_expansion_without_parameter_packs) 1214 << (C->Init.isUsable() ? C->Init.get()->getSourceRange() 1215 : SourceRange(C->Loc)); 1216 1217 // Just ignore the ellipsis. 1218 } 1219 } else if (Var->isParameterPack()) { 1220 ContainsUnexpandedParameterPack = true; 1221 } 1222 1223 if (C->Init.isUsable()) { 1224 addInitCapture(LSI, Var); 1225 } else { 1226 TryCaptureKind Kind = C->Kind == LCK_ByRef ? TryCapture_ExplicitByRef : 1227 TryCapture_ExplicitByVal; 1228 tryCaptureVariable(Var, C->Loc, Kind, EllipsisLoc); 1229 } 1230 if (!LSI->Captures.empty()) 1231 LSI->ExplicitCaptureRanges[LSI->Captures.size() - 1] = C->ExplicitRange; 1232 } 1233 finishLambdaExplicitCaptures(LSI); 1234 1235 LSI->ContainsUnexpandedParameterPack |= ContainsUnexpandedParameterPack; 1236 1237 // Add lambda parameters into scope. 1238 addLambdaParameters(Intro.Captures, Method, CurScope); 1239 1240 // Enter a new evaluation context to insulate the lambda from any 1241 // cleanups from the enclosing full-expression. 1242 PushExpressionEvaluationContext( 1243 LSI->CallOperator->isConsteval() 1244 ? ExpressionEvaluationContext::ConstantEvaluated 1245 : ExpressionEvaluationContext::PotentiallyEvaluated); 1246 } 1247 1248 void Sema::ActOnLambdaError(SourceLocation StartLoc, Scope *CurScope, 1249 bool IsInstantiation) { 1250 LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(FunctionScopes.back()); 1251 1252 // Leave the expression-evaluation context. 1253 DiscardCleanupsInEvaluationContext(); 1254 PopExpressionEvaluationContext(); 1255 1256 // Leave the context of the lambda. 1257 if (!IsInstantiation) 1258 PopDeclContext(); 1259 1260 // Finalize the lambda. 1261 CXXRecordDecl *Class = LSI->Lambda; 1262 Class->setInvalidDecl(); 1263 SmallVector<Decl*, 4> Fields(Class->fields()); 1264 ActOnFields(nullptr, Class->getLocation(), Class, Fields, SourceLocation(), 1265 SourceLocation(), ParsedAttributesView()); 1266 CheckCompletedCXXClass(nullptr, Class); 1267 1268 PopFunctionScopeInfo(); 1269 } 1270 1271 template <typename Func> 1272 static void repeatForLambdaConversionFunctionCallingConvs( 1273 Sema &S, const FunctionProtoType &CallOpProto, Func F) { 1274 CallingConv DefaultFree = S.Context.getDefaultCallingConvention( 1275 CallOpProto.isVariadic(), /*IsCXXMethod=*/false); 1276 CallingConv DefaultMember = S.Context.getDefaultCallingConvention( 1277 CallOpProto.isVariadic(), /*IsCXXMethod=*/true); 1278 CallingConv CallOpCC = CallOpProto.getCallConv(); 1279 1280 /// Implement emitting a version of the operator for many of the calling 1281 /// conventions for MSVC, as described here: 1282 /// https://devblogs.microsoft.com/oldnewthing/20150220-00/?p=44623. 1283 /// Experimentally, we determined that cdecl, stdcall, fastcall, and 1284 /// vectorcall are generated by MSVC when it is supported by the target. 1285 /// Additionally, we are ensuring that the default-free/default-member and 1286 /// call-operator calling convention are generated as well. 1287 /// NOTE: We intentionally generate a 'thiscall' on Win32 implicitly from the 1288 /// 'member default', despite MSVC not doing so. We do this in order to ensure 1289 /// that someone who intentionally places 'thiscall' on the lambda call 1290 /// operator will still get that overload, since we don't have the a way of 1291 /// detecting the attribute by the time we get here. 1292 if (S.getLangOpts().MSVCCompat) { 1293 CallingConv Convs[] = { 1294 CC_C, CC_X86StdCall, CC_X86FastCall, CC_X86VectorCall, 1295 DefaultFree, DefaultMember, CallOpCC}; 1296 llvm::sort(Convs); 1297 llvm::iterator_range<CallingConv *> Range( 1298 std::begin(Convs), std::unique(std::begin(Convs), std::end(Convs))); 1299 const TargetInfo &TI = S.getASTContext().getTargetInfo(); 1300 1301 for (CallingConv C : Range) { 1302 if (TI.checkCallingConvention(C) == TargetInfo::CCCR_OK) 1303 F(C); 1304 } 1305 return; 1306 } 1307 1308 if (CallOpCC == DefaultMember && DefaultMember != DefaultFree) { 1309 F(DefaultFree); 1310 F(DefaultMember); 1311 } else { 1312 F(CallOpCC); 1313 } 1314 } 1315 1316 // Returns the 'standard' calling convention to be used for the lambda 1317 // conversion function, that is, the 'free' function calling convention unless 1318 // it is overridden by a non-default calling convention attribute. 1319 static CallingConv 1320 getLambdaConversionFunctionCallConv(Sema &S, 1321 const FunctionProtoType *CallOpProto) { 1322 CallingConv DefaultFree = S.Context.getDefaultCallingConvention( 1323 CallOpProto->isVariadic(), /*IsCXXMethod=*/false); 1324 CallingConv DefaultMember = S.Context.getDefaultCallingConvention( 1325 CallOpProto->isVariadic(), /*IsCXXMethod=*/true); 1326 CallingConv CallOpCC = CallOpProto->getCallConv(); 1327 1328 // If the call-operator hasn't been changed, return both the 'free' and 1329 // 'member' function calling convention. 1330 if (CallOpCC == DefaultMember && DefaultMember != DefaultFree) 1331 return DefaultFree; 1332 return CallOpCC; 1333 } 1334 1335 QualType Sema::getLambdaConversionFunctionResultType( 1336 const FunctionProtoType *CallOpProto, CallingConv CC) { 1337 const FunctionProtoType::ExtProtoInfo CallOpExtInfo = 1338 CallOpProto->getExtProtoInfo(); 1339 FunctionProtoType::ExtProtoInfo InvokerExtInfo = CallOpExtInfo; 1340 InvokerExtInfo.ExtInfo = InvokerExtInfo.ExtInfo.withCallingConv(CC); 1341 InvokerExtInfo.TypeQuals = Qualifiers(); 1342 assert(InvokerExtInfo.RefQualifier == RQ_None && 1343 "Lambda's call operator should not have a reference qualifier"); 1344 return Context.getFunctionType(CallOpProto->getReturnType(), 1345 CallOpProto->getParamTypes(), InvokerExtInfo); 1346 } 1347 1348 /// Add a lambda's conversion to function pointer, as described in 1349 /// C++11 [expr.prim.lambda]p6. 1350 static void addFunctionPointerConversion(Sema &S, SourceRange IntroducerRange, 1351 CXXRecordDecl *Class, 1352 CXXMethodDecl *CallOperator, 1353 QualType InvokerFunctionTy) { 1354 // This conversion is explicitly disabled if the lambda's function has 1355 // pass_object_size attributes on any of its parameters. 1356 auto HasPassObjectSizeAttr = [](const ParmVarDecl *P) { 1357 return P->hasAttr<PassObjectSizeAttr>(); 1358 }; 1359 if (llvm::any_of(CallOperator->parameters(), HasPassObjectSizeAttr)) 1360 return; 1361 1362 // Add the conversion to function pointer. 1363 QualType PtrToFunctionTy = S.Context.getPointerType(InvokerFunctionTy); 1364 1365 // Create the type of the conversion function. 1366 FunctionProtoType::ExtProtoInfo ConvExtInfo( 1367 S.Context.getDefaultCallingConvention( 1368 /*IsVariadic=*/false, /*IsCXXMethod=*/true)); 1369 // The conversion function is always const and noexcept. 1370 ConvExtInfo.TypeQuals = Qualifiers(); 1371 ConvExtInfo.TypeQuals.addConst(); 1372 ConvExtInfo.ExceptionSpec.Type = EST_BasicNoexcept; 1373 QualType ConvTy = 1374 S.Context.getFunctionType(PtrToFunctionTy, None, ConvExtInfo); 1375 1376 SourceLocation Loc = IntroducerRange.getBegin(); 1377 DeclarationName ConversionName 1378 = S.Context.DeclarationNames.getCXXConversionFunctionName( 1379 S.Context.getCanonicalType(PtrToFunctionTy)); 1380 // Construct a TypeSourceInfo for the conversion function, and wire 1381 // all the parameters appropriately for the FunctionProtoTypeLoc 1382 // so that everything works during transformation/instantiation of 1383 // generic lambdas. 1384 // The main reason for wiring up the parameters of the conversion 1385 // function with that of the call operator is so that constructs 1386 // like the following work: 1387 // auto L = [](auto b) { <-- 1 1388 // return [](auto a) -> decltype(a) { <-- 2 1389 // return a; 1390 // }; 1391 // }; 1392 // int (*fp)(int) = L(5); 1393 // Because the trailing return type can contain DeclRefExprs that refer 1394 // to the original call operator's variables, we hijack the call 1395 // operators ParmVarDecls below. 1396 TypeSourceInfo *ConvNamePtrToFunctionTSI = 1397 S.Context.getTrivialTypeSourceInfo(PtrToFunctionTy, Loc); 1398 DeclarationNameLoc ConvNameLoc = 1399 DeclarationNameLoc::makeNamedTypeLoc(ConvNamePtrToFunctionTSI); 1400 1401 // The conversion function is a conversion to a pointer-to-function. 1402 TypeSourceInfo *ConvTSI = S.Context.getTrivialTypeSourceInfo(ConvTy, Loc); 1403 FunctionProtoTypeLoc ConvTL = 1404 ConvTSI->getTypeLoc().getAs<FunctionProtoTypeLoc>(); 1405 // Get the result of the conversion function which is a pointer-to-function. 1406 PointerTypeLoc PtrToFunctionTL = 1407 ConvTL.getReturnLoc().getAs<PointerTypeLoc>(); 1408 // Do the same for the TypeSourceInfo that is used to name the conversion 1409 // operator. 1410 PointerTypeLoc ConvNamePtrToFunctionTL = 1411 ConvNamePtrToFunctionTSI->getTypeLoc().getAs<PointerTypeLoc>(); 1412 1413 // Get the underlying function types that the conversion function will 1414 // be converting to (should match the type of the call operator). 1415 FunctionProtoTypeLoc CallOpConvTL = 1416 PtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>(); 1417 FunctionProtoTypeLoc CallOpConvNameTL = 1418 ConvNamePtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>(); 1419 1420 // Wire up the FunctionProtoTypeLocs with the call operator's parameters. 1421 // These parameter's are essentially used to transform the name and 1422 // the type of the conversion operator. By using the same parameters 1423 // as the call operator's we don't have to fix any back references that 1424 // the trailing return type of the call operator's uses (such as 1425 // decltype(some_type<decltype(a)>::type{} + decltype(a){}) etc.) 1426 // - we can simply use the return type of the call operator, and 1427 // everything should work. 1428 SmallVector<ParmVarDecl *, 4> InvokerParams; 1429 for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) { 1430 ParmVarDecl *From = CallOperator->getParamDecl(I); 1431 1432 InvokerParams.push_back(ParmVarDecl::Create( 1433 S.Context, 1434 // Temporarily add to the TU. This is set to the invoker below. 1435 S.Context.getTranslationUnitDecl(), From->getBeginLoc(), 1436 From->getLocation(), From->getIdentifier(), From->getType(), 1437 From->getTypeSourceInfo(), From->getStorageClass(), 1438 /*DefArg=*/nullptr)); 1439 CallOpConvTL.setParam(I, From); 1440 CallOpConvNameTL.setParam(I, From); 1441 } 1442 1443 CXXConversionDecl *Conversion = CXXConversionDecl::Create( 1444 S.Context, Class, Loc, 1445 DeclarationNameInfo(ConversionName, Loc, ConvNameLoc), ConvTy, ConvTSI, 1446 /*isInline=*/true, ExplicitSpecifier(), 1447 S.getLangOpts().CPlusPlus17 ? ConstexprSpecKind::Constexpr 1448 : ConstexprSpecKind::Unspecified, 1449 CallOperator->getBody()->getEndLoc()); 1450 Conversion->setAccess(AS_public); 1451 Conversion->setImplicit(true); 1452 1453 if (Class->isGenericLambda()) { 1454 // Create a template version of the conversion operator, using the template 1455 // parameter list of the function call operator. 1456 FunctionTemplateDecl *TemplateCallOperator = 1457 CallOperator->getDescribedFunctionTemplate(); 1458 FunctionTemplateDecl *ConversionTemplate = 1459 FunctionTemplateDecl::Create(S.Context, Class, 1460 Loc, ConversionName, 1461 TemplateCallOperator->getTemplateParameters(), 1462 Conversion); 1463 ConversionTemplate->setAccess(AS_public); 1464 ConversionTemplate->setImplicit(true); 1465 Conversion->setDescribedFunctionTemplate(ConversionTemplate); 1466 Class->addDecl(ConversionTemplate); 1467 } else 1468 Class->addDecl(Conversion); 1469 // Add a non-static member function that will be the result of 1470 // the conversion with a certain unique ID. 1471 DeclarationName InvokerName = &S.Context.Idents.get( 1472 getLambdaStaticInvokerName()); 1473 // FIXME: Instead of passing in the CallOperator->getTypeSourceInfo() 1474 // we should get a prebuilt TrivialTypeSourceInfo from Context 1475 // using FunctionTy & Loc and get its TypeLoc as a FunctionProtoTypeLoc 1476 // then rewire the parameters accordingly, by hoisting up the InvokeParams 1477 // loop below and then use its Params to set Invoke->setParams(...) below. 1478 // This would avoid the 'const' qualifier of the calloperator from 1479 // contaminating the type of the invoker, which is currently adjusted 1480 // in SemaTemplateDeduction.cpp:DeduceTemplateArguments. Fixing the 1481 // trailing return type of the invoker would require a visitor to rebuild 1482 // the trailing return type and adjusting all back DeclRefExpr's to refer 1483 // to the new static invoker parameters - not the call operator's. 1484 CXXMethodDecl *Invoke = CXXMethodDecl::Create( 1485 S.Context, Class, Loc, DeclarationNameInfo(InvokerName, Loc), 1486 InvokerFunctionTy, CallOperator->getTypeSourceInfo(), SC_Static, 1487 /*isInline=*/true, ConstexprSpecKind::Unspecified, 1488 CallOperator->getBody()->getEndLoc()); 1489 for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) 1490 InvokerParams[I]->setOwningFunction(Invoke); 1491 Invoke->setParams(InvokerParams); 1492 Invoke->setAccess(AS_private); 1493 Invoke->setImplicit(true); 1494 if (Class->isGenericLambda()) { 1495 FunctionTemplateDecl *TemplateCallOperator = 1496 CallOperator->getDescribedFunctionTemplate(); 1497 FunctionTemplateDecl *StaticInvokerTemplate = FunctionTemplateDecl::Create( 1498 S.Context, Class, Loc, InvokerName, 1499 TemplateCallOperator->getTemplateParameters(), 1500 Invoke); 1501 StaticInvokerTemplate->setAccess(AS_private); 1502 StaticInvokerTemplate->setImplicit(true); 1503 Invoke->setDescribedFunctionTemplate(StaticInvokerTemplate); 1504 Class->addDecl(StaticInvokerTemplate); 1505 } else 1506 Class->addDecl(Invoke); 1507 } 1508 1509 /// Add a lambda's conversion to function pointers, as described in 1510 /// C++11 [expr.prim.lambda]p6. Note that in most cases, this should emit only a 1511 /// single pointer conversion. In the event that the default calling convention 1512 /// for free and member functions is different, it will emit both conventions. 1513 static void addFunctionPointerConversions(Sema &S, SourceRange IntroducerRange, 1514 CXXRecordDecl *Class, 1515 CXXMethodDecl *CallOperator) { 1516 const FunctionProtoType *CallOpProto = 1517 CallOperator->getType()->castAs<FunctionProtoType>(); 1518 1519 repeatForLambdaConversionFunctionCallingConvs( 1520 S, *CallOpProto, [&](CallingConv CC) { 1521 QualType InvokerFunctionTy = 1522 S.getLambdaConversionFunctionResultType(CallOpProto, CC); 1523 addFunctionPointerConversion(S, IntroducerRange, Class, CallOperator, 1524 InvokerFunctionTy); 1525 }); 1526 } 1527 1528 /// Add a lambda's conversion to block pointer. 1529 static void addBlockPointerConversion(Sema &S, 1530 SourceRange IntroducerRange, 1531 CXXRecordDecl *Class, 1532 CXXMethodDecl *CallOperator) { 1533 const FunctionProtoType *CallOpProto = 1534 CallOperator->getType()->castAs<FunctionProtoType>(); 1535 QualType FunctionTy = S.getLambdaConversionFunctionResultType( 1536 CallOpProto, getLambdaConversionFunctionCallConv(S, CallOpProto)); 1537 QualType BlockPtrTy = S.Context.getBlockPointerType(FunctionTy); 1538 1539 FunctionProtoType::ExtProtoInfo ConversionEPI( 1540 S.Context.getDefaultCallingConvention( 1541 /*IsVariadic=*/false, /*IsCXXMethod=*/true)); 1542 ConversionEPI.TypeQuals = Qualifiers(); 1543 ConversionEPI.TypeQuals.addConst(); 1544 QualType ConvTy = S.Context.getFunctionType(BlockPtrTy, None, ConversionEPI); 1545 1546 SourceLocation Loc = IntroducerRange.getBegin(); 1547 DeclarationName Name 1548 = S.Context.DeclarationNames.getCXXConversionFunctionName( 1549 S.Context.getCanonicalType(BlockPtrTy)); 1550 DeclarationNameLoc NameLoc = DeclarationNameLoc::makeNamedTypeLoc( 1551 S.Context.getTrivialTypeSourceInfo(BlockPtrTy, Loc)); 1552 CXXConversionDecl *Conversion = CXXConversionDecl::Create( 1553 S.Context, Class, Loc, DeclarationNameInfo(Name, Loc, NameLoc), ConvTy, 1554 S.Context.getTrivialTypeSourceInfo(ConvTy, Loc), 1555 /*isInline=*/true, ExplicitSpecifier(), ConstexprSpecKind::Unspecified, 1556 CallOperator->getBody()->getEndLoc()); 1557 Conversion->setAccess(AS_public); 1558 Conversion->setImplicit(true); 1559 Class->addDecl(Conversion); 1560 } 1561 1562 ExprResult Sema::BuildCaptureInit(const Capture &Cap, 1563 SourceLocation ImplicitCaptureLoc, 1564 bool IsOpenMPMapping) { 1565 // VLA captures don't have a stored initialization expression. 1566 if (Cap.isVLATypeCapture()) 1567 return ExprResult(); 1568 1569 // An init-capture is initialized directly from its stored initializer. 1570 if (Cap.isInitCapture()) 1571 return Cap.getVariable()->getInit(); 1572 1573 // For anything else, build an initialization expression. For an implicit 1574 // capture, the capture notionally happens at the capture-default, so use 1575 // that location here. 1576 SourceLocation Loc = 1577 ImplicitCaptureLoc.isValid() ? ImplicitCaptureLoc : Cap.getLocation(); 1578 1579 // C++11 [expr.prim.lambda]p21: 1580 // When the lambda-expression is evaluated, the entities that 1581 // are captured by copy are used to direct-initialize each 1582 // corresponding non-static data member of the resulting closure 1583 // object. (For array members, the array elements are 1584 // direct-initialized in increasing subscript order.) These 1585 // initializations are performed in the (unspecified) order in 1586 // which the non-static data members are declared. 1587 1588 // C++ [expr.prim.lambda]p12: 1589 // An entity captured by a lambda-expression is odr-used (3.2) in 1590 // the scope containing the lambda-expression. 1591 ExprResult Init; 1592 IdentifierInfo *Name = nullptr; 1593 if (Cap.isThisCapture()) { 1594 QualType ThisTy = getCurrentThisType(); 1595 Expr *This = BuildCXXThisExpr(Loc, ThisTy, ImplicitCaptureLoc.isValid()); 1596 if (Cap.isCopyCapture()) 1597 Init = CreateBuiltinUnaryOp(Loc, UO_Deref, This); 1598 else 1599 Init = This; 1600 } else { 1601 assert(Cap.isVariableCapture() && "unknown kind of capture"); 1602 VarDecl *Var = Cap.getVariable(); 1603 Name = Var->getIdentifier(); 1604 Init = BuildDeclarationNameExpr( 1605 CXXScopeSpec(), DeclarationNameInfo(Var->getDeclName(), Loc), Var); 1606 } 1607 1608 // In OpenMP, the capture kind doesn't actually describe how to capture: 1609 // variables are "mapped" onto the device in a process that does not formally 1610 // make a copy, even for a "copy capture". 1611 if (IsOpenMPMapping) 1612 return Init; 1613 1614 if (Init.isInvalid()) 1615 return ExprError(); 1616 1617 Expr *InitExpr = Init.get(); 1618 InitializedEntity Entity = InitializedEntity::InitializeLambdaCapture( 1619 Name, Cap.getCaptureType(), Loc); 1620 InitializationKind InitKind = 1621 InitializationKind::CreateDirect(Loc, Loc, Loc); 1622 InitializationSequence InitSeq(*this, Entity, InitKind, InitExpr); 1623 return InitSeq.Perform(*this, Entity, InitKind, InitExpr); 1624 } 1625 1626 ExprResult Sema::ActOnLambdaExpr(SourceLocation StartLoc, Stmt *Body, 1627 Scope *CurScope) { 1628 LambdaScopeInfo LSI = *cast<LambdaScopeInfo>(FunctionScopes.back()); 1629 ActOnFinishFunctionBody(LSI.CallOperator, Body); 1630 return BuildLambdaExpr(StartLoc, Body->getEndLoc(), &LSI); 1631 } 1632 1633 static LambdaCaptureDefault 1634 mapImplicitCaptureStyle(CapturingScopeInfo::ImplicitCaptureStyle ICS) { 1635 switch (ICS) { 1636 case CapturingScopeInfo::ImpCap_None: 1637 return LCD_None; 1638 case CapturingScopeInfo::ImpCap_LambdaByval: 1639 return LCD_ByCopy; 1640 case CapturingScopeInfo::ImpCap_CapturedRegion: 1641 case CapturingScopeInfo::ImpCap_LambdaByref: 1642 return LCD_ByRef; 1643 case CapturingScopeInfo::ImpCap_Block: 1644 llvm_unreachable("block capture in lambda"); 1645 } 1646 llvm_unreachable("Unknown implicit capture style"); 1647 } 1648 1649 bool Sema::CaptureHasSideEffects(const Capture &From) { 1650 if (From.isInitCapture()) { 1651 Expr *Init = From.getVariable()->getInit(); 1652 if (Init && Init->HasSideEffects(Context)) 1653 return true; 1654 } 1655 1656 if (!From.isCopyCapture()) 1657 return false; 1658 1659 const QualType T = From.isThisCapture() 1660 ? getCurrentThisType()->getPointeeType() 1661 : From.getCaptureType(); 1662 1663 if (T.isVolatileQualified()) 1664 return true; 1665 1666 const Type *BaseT = T->getBaseElementTypeUnsafe(); 1667 if (const CXXRecordDecl *RD = BaseT->getAsCXXRecordDecl()) 1668 return !RD->isCompleteDefinition() || !RD->hasTrivialCopyConstructor() || 1669 !RD->hasTrivialDestructor(); 1670 1671 return false; 1672 } 1673 1674 bool Sema::DiagnoseUnusedLambdaCapture(SourceRange CaptureRange, 1675 const Capture &From) { 1676 if (CaptureHasSideEffects(From)) 1677 return false; 1678 1679 if (From.isVLATypeCapture()) 1680 return false; 1681 1682 auto diag = Diag(From.getLocation(), diag::warn_unused_lambda_capture); 1683 if (From.isThisCapture()) 1684 diag << "'this'"; 1685 else 1686 diag << From.getVariable(); 1687 diag << From.isNonODRUsed(); 1688 diag << FixItHint::CreateRemoval(CaptureRange); 1689 return true; 1690 } 1691 1692 /// Create a field within the lambda class or captured statement record for the 1693 /// given capture. 1694 FieldDecl *Sema::BuildCaptureField(RecordDecl *RD, 1695 const sema::Capture &Capture) { 1696 SourceLocation Loc = Capture.getLocation(); 1697 QualType FieldType = Capture.getCaptureType(); 1698 1699 TypeSourceInfo *TSI = nullptr; 1700 if (Capture.isVariableCapture()) { 1701 auto *Var = Capture.getVariable(); 1702 if (Var->isInitCapture()) 1703 TSI = Capture.getVariable()->getTypeSourceInfo(); 1704 } 1705 1706 // FIXME: Should we really be doing this? A null TypeSourceInfo seems more 1707 // appropriate, at least for an implicit capture. 1708 if (!TSI) 1709 TSI = Context.getTrivialTypeSourceInfo(FieldType, Loc); 1710 1711 // Build the non-static data member. 1712 FieldDecl *Field = 1713 FieldDecl::Create(Context, RD, /*StartLoc=*/Loc, /*IdLoc=*/Loc, 1714 /*Id=*/nullptr, FieldType, TSI, /*BW=*/nullptr, 1715 /*Mutable=*/false, ICIS_NoInit); 1716 // If the variable being captured has an invalid type, mark the class as 1717 // invalid as well. 1718 if (!FieldType->isDependentType()) { 1719 if (RequireCompleteSizedType(Loc, FieldType, 1720 diag::err_field_incomplete_or_sizeless)) { 1721 RD->setInvalidDecl(); 1722 Field->setInvalidDecl(); 1723 } else { 1724 NamedDecl *Def; 1725 FieldType->isIncompleteType(&Def); 1726 if (Def && Def->isInvalidDecl()) { 1727 RD->setInvalidDecl(); 1728 Field->setInvalidDecl(); 1729 } 1730 } 1731 } 1732 Field->setImplicit(true); 1733 Field->setAccess(AS_private); 1734 RD->addDecl(Field); 1735 1736 if (Capture.isVLATypeCapture()) 1737 Field->setCapturedVLAType(Capture.getCapturedVLAType()); 1738 1739 return Field; 1740 } 1741 1742 ExprResult Sema::BuildLambdaExpr(SourceLocation StartLoc, SourceLocation EndLoc, 1743 LambdaScopeInfo *LSI) { 1744 // Collect information from the lambda scope. 1745 SmallVector<LambdaCapture, 4> Captures; 1746 SmallVector<Expr *, 4> CaptureInits; 1747 SourceLocation CaptureDefaultLoc = LSI->CaptureDefaultLoc; 1748 LambdaCaptureDefault CaptureDefault = 1749 mapImplicitCaptureStyle(LSI->ImpCaptureStyle); 1750 CXXRecordDecl *Class; 1751 CXXMethodDecl *CallOperator; 1752 SourceRange IntroducerRange; 1753 bool ExplicitParams; 1754 bool ExplicitResultType; 1755 CleanupInfo LambdaCleanup; 1756 bool ContainsUnexpandedParameterPack; 1757 bool IsGenericLambda; 1758 { 1759 CallOperator = LSI->CallOperator; 1760 Class = LSI->Lambda; 1761 IntroducerRange = LSI->IntroducerRange; 1762 ExplicitParams = LSI->ExplicitParams; 1763 ExplicitResultType = !LSI->HasImplicitReturnType; 1764 LambdaCleanup = LSI->Cleanup; 1765 ContainsUnexpandedParameterPack = LSI->ContainsUnexpandedParameterPack; 1766 IsGenericLambda = Class->isGenericLambda(); 1767 1768 CallOperator->setLexicalDeclContext(Class); 1769 Decl *TemplateOrNonTemplateCallOperatorDecl = 1770 CallOperator->getDescribedFunctionTemplate() 1771 ? CallOperator->getDescribedFunctionTemplate() 1772 : cast<Decl>(CallOperator); 1773 1774 // FIXME: Is this really the best choice? Keeping the lexical decl context 1775 // set as CurContext seems more faithful to the source. 1776 TemplateOrNonTemplateCallOperatorDecl->setLexicalDeclContext(Class); 1777 1778 PopExpressionEvaluationContext(); 1779 1780 // True if the current capture has a used capture or default before it. 1781 bool CurHasPreviousCapture = CaptureDefault != LCD_None; 1782 SourceLocation PrevCaptureLoc = CurHasPreviousCapture ? 1783 CaptureDefaultLoc : IntroducerRange.getBegin(); 1784 1785 for (unsigned I = 0, N = LSI->Captures.size(); I != N; ++I) { 1786 const Capture &From = LSI->Captures[I]; 1787 1788 if (From.isInvalid()) 1789 return ExprError(); 1790 1791 assert(!From.isBlockCapture() && "Cannot capture __block variables"); 1792 bool IsImplicit = I >= LSI->NumExplicitCaptures; 1793 SourceLocation ImplicitCaptureLoc = 1794 IsImplicit ? CaptureDefaultLoc : SourceLocation(); 1795 1796 // Use source ranges of explicit captures for fixits where available. 1797 SourceRange CaptureRange = LSI->ExplicitCaptureRanges[I]; 1798 1799 // Warn about unused explicit captures. 1800 bool IsCaptureUsed = true; 1801 if (!CurContext->isDependentContext() && !IsImplicit && 1802 !From.isODRUsed()) { 1803 // Initialized captures that are non-ODR used may not be eliminated. 1804 // FIXME: Where did the IsGenericLambda here come from? 1805 bool NonODRUsedInitCapture = 1806 IsGenericLambda && From.isNonODRUsed() && From.isInitCapture(); 1807 if (!NonODRUsedInitCapture) { 1808 bool IsLast = (I + 1) == LSI->NumExplicitCaptures; 1809 SourceRange FixItRange; 1810 if (CaptureRange.isValid()) { 1811 if (!CurHasPreviousCapture && !IsLast) { 1812 // If there are no captures preceding this capture, remove the 1813 // following comma. 1814 FixItRange = SourceRange(CaptureRange.getBegin(), 1815 getLocForEndOfToken(CaptureRange.getEnd())); 1816 } else { 1817 // Otherwise, remove the comma since the last used capture. 1818 FixItRange = SourceRange(getLocForEndOfToken(PrevCaptureLoc), 1819 CaptureRange.getEnd()); 1820 } 1821 } 1822 1823 IsCaptureUsed = !DiagnoseUnusedLambdaCapture(FixItRange, From); 1824 } 1825 } 1826 1827 if (CaptureRange.isValid()) { 1828 CurHasPreviousCapture |= IsCaptureUsed; 1829 PrevCaptureLoc = CaptureRange.getEnd(); 1830 } 1831 1832 // Map the capture to our AST representation. 1833 LambdaCapture Capture = [&] { 1834 if (From.isThisCapture()) { 1835 // Capturing 'this' implicitly with a default of '[=]' is deprecated, 1836 // because it results in a reference capture. Don't warn prior to 1837 // C++2a; there's nothing that can be done about it before then. 1838 if (getLangOpts().CPlusPlus20 && IsImplicit && 1839 CaptureDefault == LCD_ByCopy) { 1840 Diag(From.getLocation(), diag::warn_deprecated_this_capture); 1841 Diag(CaptureDefaultLoc, diag::note_deprecated_this_capture) 1842 << FixItHint::CreateInsertion( 1843 getLocForEndOfToken(CaptureDefaultLoc), ", this"); 1844 } 1845 return LambdaCapture(From.getLocation(), IsImplicit, 1846 From.isCopyCapture() ? LCK_StarThis : LCK_This); 1847 } else if (From.isVLATypeCapture()) { 1848 return LambdaCapture(From.getLocation(), IsImplicit, LCK_VLAType); 1849 } else { 1850 assert(From.isVariableCapture() && "unknown kind of capture"); 1851 VarDecl *Var = From.getVariable(); 1852 LambdaCaptureKind Kind = 1853 From.isCopyCapture() ? LCK_ByCopy : LCK_ByRef; 1854 return LambdaCapture(From.getLocation(), IsImplicit, Kind, Var, 1855 From.getEllipsisLoc()); 1856 } 1857 }(); 1858 1859 // Form the initializer for the capture field. 1860 ExprResult Init = BuildCaptureInit(From, ImplicitCaptureLoc); 1861 1862 // FIXME: Skip this capture if the capture is not used, the initializer 1863 // has no side-effects, the type of the capture is trivial, and the 1864 // lambda is not externally visible. 1865 1866 // Add a FieldDecl for the capture and form its initializer. 1867 BuildCaptureField(Class, From); 1868 Captures.push_back(Capture); 1869 CaptureInits.push_back(Init.get()); 1870 1871 if (LangOpts.CUDA) 1872 CUDACheckLambdaCapture(CallOperator, From); 1873 } 1874 1875 Class->setCaptures(Context, Captures); 1876 1877 // C++11 [expr.prim.lambda]p6: 1878 // The closure type for a lambda-expression with no lambda-capture 1879 // has a public non-virtual non-explicit const conversion function 1880 // to pointer to function having the same parameter and return 1881 // types as the closure type's function call operator. 1882 if (Captures.empty() && CaptureDefault == LCD_None) 1883 addFunctionPointerConversions(*this, IntroducerRange, Class, 1884 CallOperator); 1885 1886 // Objective-C++: 1887 // The closure type for a lambda-expression has a public non-virtual 1888 // non-explicit const conversion function to a block pointer having the 1889 // same parameter and return types as the closure type's function call 1890 // operator. 1891 // FIXME: Fix generic lambda to block conversions. 1892 if (getLangOpts().Blocks && getLangOpts().ObjC && !IsGenericLambda) 1893 addBlockPointerConversion(*this, IntroducerRange, Class, CallOperator); 1894 1895 // Finalize the lambda class. 1896 SmallVector<Decl*, 4> Fields(Class->fields()); 1897 ActOnFields(nullptr, Class->getLocation(), Class, Fields, SourceLocation(), 1898 SourceLocation(), ParsedAttributesView()); 1899 CheckCompletedCXXClass(nullptr, Class); 1900 } 1901 1902 Cleanup.mergeFrom(LambdaCleanup); 1903 1904 LambdaExpr *Lambda = LambdaExpr::Create(Context, Class, IntroducerRange, 1905 CaptureDefault, CaptureDefaultLoc, 1906 ExplicitParams, ExplicitResultType, 1907 CaptureInits, EndLoc, 1908 ContainsUnexpandedParameterPack); 1909 // If the lambda expression's call operator is not explicitly marked constexpr 1910 // and we are not in a dependent context, analyze the call operator to infer 1911 // its constexpr-ness, suppressing diagnostics while doing so. 1912 if (getLangOpts().CPlusPlus17 && !CallOperator->isInvalidDecl() && 1913 !CallOperator->isConstexpr() && 1914 !isa<CoroutineBodyStmt>(CallOperator->getBody()) && 1915 !Class->getDeclContext()->isDependentContext()) { 1916 CallOperator->setConstexprKind( 1917 CheckConstexprFunctionDefinition(CallOperator, 1918 CheckConstexprKind::CheckValid) 1919 ? ConstexprSpecKind::Constexpr 1920 : ConstexprSpecKind::Unspecified); 1921 } 1922 1923 // Emit delayed shadowing warnings now that the full capture list is known. 1924 DiagnoseShadowingLambdaDecls(LSI); 1925 1926 if (!CurContext->isDependentContext()) { 1927 switch (ExprEvalContexts.back().Context) { 1928 // C++11 [expr.prim.lambda]p2: 1929 // A lambda-expression shall not appear in an unevaluated operand 1930 // (Clause 5). 1931 case ExpressionEvaluationContext::Unevaluated: 1932 case ExpressionEvaluationContext::UnevaluatedList: 1933 case ExpressionEvaluationContext::UnevaluatedAbstract: 1934 // C++1y [expr.const]p2: 1935 // A conditional-expression e is a core constant expression unless the 1936 // evaluation of e, following the rules of the abstract machine, would 1937 // evaluate [...] a lambda-expression. 1938 // 1939 // This is technically incorrect, there are some constant evaluated contexts 1940 // where this should be allowed. We should probably fix this when DR1607 is 1941 // ratified, it lays out the exact set of conditions where we shouldn't 1942 // allow a lambda-expression. 1943 case ExpressionEvaluationContext::ConstantEvaluated: 1944 // We don't actually diagnose this case immediately, because we 1945 // could be within a context where we might find out later that 1946 // the expression is potentially evaluated (e.g., for typeid). 1947 ExprEvalContexts.back().Lambdas.push_back(Lambda); 1948 break; 1949 1950 case ExpressionEvaluationContext::DiscardedStatement: 1951 case ExpressionEvaluationContext::PotentiallyEvaluated: 1952 case ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed: 1953 break; 1954 } 1955 } 1956 1957 return MaybeBindToTemporary(Lambda); 1958 } 1959 1960 ExprResult Sema::BuildBlockForLambdaConversion(SourceLocation CurrentLocation, 1961 SourceLocation ConvLocation, 1962 CXXConversionDecl *Conv, 1963 Expr *Src) { 1964 // Make sure that the lambda call operator is marked used. 1965 CXXRecordDecl *Lambda = Conv->getParent(); 1966 CXXMethodDecl *CallOperator 1967 = cast<CXXMethodDecl>( 1968 Lambda->lookup( 1969 Context.DeclarationNames.getCXXOperatorName(OO_Call)).front()); 1970 CallOperator->setReferenced(); 1971 CallOperator->markUsed(Context); 1972 1973 ExprResult Init = PerformCopyInitialization( 1974 InitializedEntity::InitializeLambdaToBlock(ConvLocation, Src->getType(), 1975 /*NRVO=*/false), 1976 CurrentLocation, Src); 1977 if (!Init.isInvalid()) 1978 Init = ActOnFinishFullExpr(Init.get(), /*DiscardedValue*/ false); 1979 1980 if (Init.isInvalid()) 1981 return ExprError(); 1982 1983 // Create the new block to be returned. 1984 BlockDecl *Block = BlockDecl::Create(Context, CurContext, ConvLocation); 1985 1986 // Set the type information. 1987 Block->setSignatureAsWritten(CallOperator->getTypeSourceInfo()); 1988 Block->setIsVariadic(CallOperator->isVariadic()); 1989 Block->setBlockMissingReturnType(false); 1990 1991 // Add parameters. 1992 SmallVector<ParmVarDecl *, 4> BlockParams; 1993 for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) { 1994 ParmVarDecl *From = CallOperator->getParamDecl(I); 1995 BlockParams.push_back(ParmVarDecl::Create( 1996 Context, Block, From->getBeginLoc(), From->getLocation(), 1997 From->getIdentifier(), From->getType(), From->getTypeSourceInfo(), 1998 From->getStorageClass(), 1999 /*DefArg=*/nullptr)); 2000 } 2001 Block->setParams(BlockParams); 2002 2003 Block->setIsConversionFromLambda(true); 2004 2005 // Add capture. The capture uses a fake variable, which doesn't correspond 2006 // to any actual memory location. However, the initializer copy-initializes 2007 // the lambda object. 2008 TypeSourceInfo *CapVarTSI = 2009 Context.getTrivialTypeSourceInfo(Src->getType()); 2010 VarDecl *CapVar = VarDecl::Create(Context, Block, ConvLocation, 2011 ConvLocation, nullptr, 2012 Src->getType(), CapVarTSI, 2013 SC_None); 2014 BlockDecl::Capture Capture(/*variable=*/CapVar, /*byRef=*/false, 2015 /*nested=*/false, /*copy=*/Init.get()); 2016 Block->setCaptures(Context, Capture, /*CapturesCXXThis=*/false); 2017 2018 // Add a fake function body to the block. IR generation is responsible 2019 // for filling in the actual body, which cannot be expressed as an AST. 2020 Block->setBody(new (Context) CompoundStmt(ConvLocation)); 2021 2022 // Create the block literal expression. 2023 Expr *BuildBlock = new (Context) BlockExpr(Block, Conv->getConversionType()); 2024 ExprCleanupObjects.push_back(Block); 2025 Cleanup.setExprNeedsCleanups(true); 2026 2027 return BuildBlock; 2028 } 2029