1 //===--- SemaExprMember.cpp - Semantic Analysis for Expressions -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements semantic analysis member access expressions. 10 // 11 //===----------------------------------------------------------------------===// 12 #include "clang/Sema/Overload.h" 13 #include "clang/AST/ASTLambda.h" 14 #include "clang/AST/DeclCXX.h" 15 #include "clang/AST/DeclObjC.h" 16 #include "clang/AST/DeclTemplate.h" 17 #include "clang/AST/ExprCXX.h" 18 #include "clang/AST/ExprObjC.h" 19 #include "clang/Lex/Preprocessor.h" 20 #include "clang/Sema/Lookup.h" 21 #include "clang/Sema/Scope.h" 22 #include "clang/Sema/ScopeInfo.h" 23 #include "clang/Sema/SemaInternal.h" 24 25 using namespace clang; 26 using namespace sema; 27 28 typedef llvm::SmallPtrSet<const CXXRecordDecl*, 4> BaseSet; 29 30 /// Determines if the given class is provably not derived from all of 31 /// the prospective base classes. 32 static bool isProvablyNotDerivedFrom(Sema &SemaRef, CXXRecordDecl *Record, 33 const BaseSet &Bases) { 34 auto BaseIsNotInSet = [&Bases](const CXXRecordDecl *Base) { 35 return !Bases.count(Base->getCanonicalDecl()); 36 }; 37 return BaseIsNotInSet(Record) && Record->forallBases(BaseIsNotInSet); 38 } 39 40 enum IMAKind { 41 /// The reference is definitely not an instance member access. 42 IMA_Static, 43 44 /// The reference may be an implicit instance member access. 45 IMA_Mixed, 46 47 /// The reference may be to an instance member, but it might be invalid if 48 /// so, because the context is not an instance method. 49 IMA_Mixed_StaticContext, 50 51 /// The reference may be to an instance member, but it is invalid if 52 /// so, because the context is from an unrelated class. 53 IMA_Mixed_Unrelated, 54 55 /// The reference is definitely an implicit instance member access. 56 IMA_Instance, 57 58 /// The reference may be to an unresolved using declaration. 59 IMA_Unresolved, 60 61 /// The reference is a contextually-permitted abstract member reference. 62 IMA_Abstract, 63 64 /// The reference may be to an unresolved using declaration and the 65 /// context is not an instance method. 66 IMA_Unresolved_StaticContext, 67 68 // The reference refers to a field which is not a member of the containing 69 // class, which is allowed because we're in C++11 mode and the context is 70 // unevaluated. 71 IMA_Field_Uneval_Context, 72 73 /// All possible referrents are instance members and the current 74 /// context is not an instance method. 75 IMA_Error_StaticContext, 76 77 /// All possible referrents are instance members of an unrelated 78 /// class. 79 IMA_Error_Unrelated 80 }; 81 82 /// The given lookup names class member(s) and is not being used for 83 /// an address-of-member expression. Classify the type of access 84 /// according to whether it's possible that this reference names an 85 /// instance member. This is best-effort in dependent contexts; it is okay to 86 /// conservatively answer "yes", in which case some errors will simply 87 /// not be caught until template-instantiation. 88 static IMAKind ClassifyImplicitMemberAccess(Sema &SemaRef, 89 const LookupResult &R) { 90 assert(!R.empty() && (*R.begin())->isCXXClassMember()); 91 92 DeclContext *DC = SemaRef.getFunctionLevelDeclContext(); 93 94 bool isStaticContext = SemaRef.CXXThisTypeOverride.isNull() && 95 (!isa<CXXMethodDecl>(DC) || cast<CXXMethodDecl>(DC)->isStatic()); 96 97 if (R.isUnresolvableResult()) 98 return isStaticContext ? IMA_Unresolved_StaticContext : IMA_Unresolved; 99 100 // Collect all the declaring classes of instance members we find. 101 bool hasNonInstance = false; 102 bool isField = false; 103 BaseSet Classes; 104 for (NamedDecl *D : R) { 105 // Look through any using decls. 106 D = D->getUnderlyingDecl(); 107 108 if (D->isCXXInstanceMember()) { 109 isField |= isa<FieldDecl>(D) || isa<MSPropertyDecl>(D) || 110 isa<IndirectFieldDecl>(D); 111 112 CXXRecordDecl *R = cast<CXXRecordDecl>(D->getDeclContext()); 113 Classes.insert(R->getCanonicalDecl()); 114 } else 115 hasNonInstance = true; 116 } 117 118 // If we didn't find any instance members, it can't be an implicit 119 // member reference. 120 if (Classes.empty()) 121 return IMA_Static; 122 123 // C++11 [expr.prim.general]p12: 124 // An id-expression that denotes a non-static data member or non-static 125 // member function of a class can only be used: 126 // (...) 127 // - if that id-expression denotes a non-static data member and it 128 // appears in an unevaluated operand. 129 // 130 // This rule is specific to C++11. However, we also permit this form 131 // in unevaluated inline assembly operands, like the operand to a SIZE. 132 IMAKind AbstractInstanceResult = IMA_Static; // happens to be 'false' 133 assert(!AbstractInstanceResult); 134 switch (SemaRef.ExprEvalContexts.back().Context) { 135 case Sema::ExpressionEvaluationContext::Unevaluated: 136 case Sema::ExpressionEvaluationContext::UnevaluatedList: 137 if (isField && SemaRef.getLangOpts().CPlusPlus11) 138 AbstractInstanceResult = IMA_Field_Uneval_Context; 139 break; 140 141 case Sema::ExpressionEvaluationContext::UnevaluatedAbstract: 142 AbstractInstanceResult = IMA_Abstract; 143 break; 144 145 case Sema::ExpressionEvaluationContext::DiscardedStatement: 146 case Sema::ExpressionEvaluationContext::ConstantEvaluated: 147 case Sema::ExpressionEvaluationContext::PotentiallyEvaluated: 148 case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed: 149 break; 150 } 151 152 // If the current context is not an instance method, it can't be 153 // an implicit member reference. 154 if (isStaticContext) { 155 if (hasNonInstance) 156 return IMA_Mixed_StaticContext; 157 158 return AbstractInstanceResult ? AbstractInstanceResult 159 : IMA_Error_StaticContext; 160 } 161 162 CXXRecordDecl *contextClass; 163 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) 164 contextClass = MD->getParent()->getCanonicalDecl(); 165 else 166 contextClass = cast<CXXRecordDecl>(DC); 167 168 // [class.mfct.non-static]p3: 169 // ...is used in the body of a non-static member function of class X, 170 // if name lookup (3.4.1) resolves the name in the id-expression to a 171 // non-static non-type member of some class C [...] 172 // ...if C is not X or a base class of X, the class member access expression 173 // is ill-formed. 174 if (R.getNamingClass() && 175 contextClass->getCanonicalDecl() != 176 R.getNamingClass()->getCanonicalDecl()) { 177 // If the naming class is not the current context, this was a qualified 178 // member name lookup, and it's sufficient to check that we have the naming 179 // class as a base class. 180 Classes.clear(); 181 Classes.insert(R.getNamingClass()->getCanonicalDecl()); 182 } 183 184 // If we can prove that the current context is unrelated to all the 185 // declaring classes, it can't be an implicit member reference (in 186 // which case it's an error if any of those members are selected). 187 if (isProvablyNotDerivedFrom(SemaRef, contextClass, Classes)) 188 return hasNonInstance ? IMA_Mixed_Unrelated : 189 AbstractInstanceResult ? AbstractInstanceResult : 190 IMA_Error_Unrelated; 191 192 return (hasNonInstance ? IMA_Mixed : IMA_Instance); 193 } 194 195 /// Diagnose a reference to a field with no object available. 196 static void diagnoseInstanceReference(Sema &SemaRef, 197 const CXXScopeSpec &SS, 198 NamedDecl *Rep, 199 const DeclarationNameInfo &nameInfo) { 200 SourceLocation Loc = nameInfo.getLoc(); 201 SourceRange Range(Loc); 202 if (SS.isSet()) Range.setBegin(SS.getRange().getBegin()); 203 204 // Look through using shadow decls and aliases. 205 Rep = Rep->getUnderlyingDecl(); 206 207 DeclContext *FunctionLevelDC = SemaRef.getFunctionLevelDeclContext(); 208 CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FunctionLevelDC); 209 CXXRecordDecl *ContextClass = Method ? Method->getParent() : nullptr; 210 CXXRecordDecl *RepClass = dyn_cast<CXXRecordDecl>(Rep->getDeclContext()); 211 212 bool InStaticMethod = Method && Method->isStatic(); 213 bool IsField = isa<FieldDecl>(Rep) || isa<IndirectFieldDecl>(Rep); 214 215 if (IsField && InStaticMethod) 216 // "invalid use of member 'x' in static member function" 217 SemaRef.Diag(Loc, diag::err_invalid_member_use_in_static_method) 218 << Range << nameInfo.getName(); 219 else if (ContextClass && RepClass && SS.isEmpty() && !InStaticMethod && 220 !RepClass->Equals(ContextClass) && RepClass->Encloses(ContextClass)) 221 // Unqualified lookup in a non-static member function found a member of an 222 // enclosing class. 223 SemaRef.Diag(Loc, diag::err_nested_non_static_member_use) 224 << IsField << RepClass << nameInfo.getName() << ContextClass << Range; 225 else if (IsField) 226 SemaRef.Diag(Loc, diag::err_invalid_non_static_member_use) 227 << nameInfo.getName() << Range; 228 else 229 SemaRef.Diag(Loc, diag::err_member_call_without_object) 230 << Range; 231 } 232 233 /// Builds an expression which might be an implicit member expression. 234 ExprResult Sema::BuildPossibleImplicitMemberExpr( 235 const CXXScopeSpec &SS, SourceLocation TemplateKWLoc, LookupResult &R, 236 const TemplateArgumentListInfo *TemplateArgs, const Scope *S, 237 UnresolvedLookupExpr *AsULE) { 238 switch (ClassifyImplicitMemberAccess(*this, R)) { 239 case IMA_Instance: 240 return BuildImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs, true, S); 241 242 case IMA_Mixed: 243 case IMA_Mixed_Unrelated: 244 case IMA_Unresolved: 245 return BuildImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs, false, 246 S); 247 248 case IMA_Field_Uneval_Context: 249 Diag(R.getNameLoc(), diag::warn_cxx98_compat_non_static_member_use) 250 << R.getLookupNameInfo().getName(); 251 LLVM_FALLTHROUGH; 252 case IMA_Static: 253 case IMA_Abstract: 254 case IMA_Mixed_StaticContext: 255 case IMA_Unresolved_StaticContext: 256 if (TemplateArgs || TemplateKWLoc.isValid()) 257 return BuildTemplateIdExpr(SS, TemplateKWLoc, R, false, TemplateArgs); 258 return AsULE ? AsULE : BuildDeclarationNameExpr(SS, R, false); 259 260 case IMA_Error_StaticContext: 261 case IMA_Error_Unrelated: 262 diagnoseInstanceReference(*this, SS, R.getRepresentativeDecl(), 263 R.getLookupNameInfo()); 264 return ExprError(); 265 } 266 267 llvm_unreachable("unexpected instance member access kind"); 268 } 269 270 /// Determine whether input char is from rgba component set. 271 static bool 272 IsRGBA(char c) { 273 switch (c) { 274 case 'r': 275 case 'g': 276 case 'b': 277 case 'a': 278 return true; 279 default: 280 return false; 281 } 282 } 283 284 // OpenCL v1.1, s6.1.7 285 // The component swizzle length must be in accordance with the acceptable 286 // vector sizes. 287 static bool IsValidOpenCLComponentSwizzleLength(unsigned len) 288 { 289 return (len >= 1 && len <= 4) || len == 8 || len == 16; 290 } 291 292 /// Check an ext-vector component access expression. 293 /// 294 /// VK should be set in advance to the value kind of the base 295 /// expression. 296 static QualType 297 CheckExtVectorComponent(Sema &S, QualType baseType, ExprValueKind &VK, 298 SourceLocation OpLoc, const IdentifierInfo *CompName, 299 SourceLocation CompLoc) { 300 // FIXME: Share logic with ExtVectorElementExpr::containsDuplicateElements, 301 // see FIXME there. 302 // 303 // FIXME: This logic can be greatly simplified by splitting it along 304 // halving/not halving and reworking the component checking. 305 const ExtVectorType *vecType = baseType->getAs<ExtVectorType>(); 306 307 // The vector accessor can't exceed the number of elements. 308 const char *compStr = CompName->getNameStart(); 309 310 // This flag determines whether or not the component is one of the four 311 // special names that indicate a subset of exactly half the elements are 312 // to be selected. 313 bool HalvingSwizzle = false; 314 315 // This flag determines whether or not CompName has an 's' char prefix, 316 // indicating that it is a string of hex values to be used as vector indices. 317 bool HexSwizzle = (*compStr == 's' || *compStr == 'S') && compStr[1]; 318 319 bool HasRepeated = false; 320 bool HasIndex[16] = {}; 321 322 int Idx; 323 324 // Check that we've found one of the special components, or that the component 325 // names must come from the same set. 326 if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") || 327 !strcmp(compStr, "even") || !strcmp(compStr, "odd")) { 328 HalvingSwizzle = true; 329 } else if (!HexSwizzle && 330 (Idx = vecType->getPointAccessorIdx(*compStr)) != -1) { 331 bool HasRGBA = IsRGBA(*compStr); 332 do { 333 // Ensure that xyzw and rgba components don't intermingle. 334 if (HasRGBA != IsRGBA(*compStr)) 335 break; 336 if (HasIndex[Idx]) HasRepeated = true; 337 HasIndex[Idx] = true; 338 compStr++; 339 } while (*compStr && (Idx = vecType->getPointAccessorIdx(*compStr)) != -1); 340 341 // Emit a warning if an rgba selector is used earlier than OpenCL C 3.0. 342 if (HasRGBA || (*compStr && IsRGBA(*compStr))) { 343 if (S.getLangOpts().OpenCL && S.getLangOpts().OpenCLVersion < 300) { 344 const char *DiagBegin = HasRGBA ? CompName->getNameStart() : compStr; 345 S.Diag(OpLoc, diag::ext_opencl_ext_vector_type_rgba_selector) 346 << StringRef(DiagBegin, 1) << SourceRange(CompLoc); 347 } 348 } 349 } else { 350 if (HexSwizzle) compStr++; 351 while ((Idx = vecType->getNumericAccessorIdx(*compStr)) != -1) { 352 if (HasIndex[Idx]) HasRepeated = true; 353 HasIndex[Idx] = true; 354 compStr++; 355 } 356 } 357 358 if (!HalvingSwizzle && *compStr) { 359 // We didn't get to the end of the string. This means the component names 360 // didn't come from the same set *or* we encountered an illegal name. 361 S.Diag(OpLoc, diag::err_ext_vector_component_name_illegal) 362 << StringRef(compStr, 1) << SourceRange(CompLoc); 363 return QualType(); 364 } 365 366 // Ensure no component accessor exceeds the width of the vector type it 367 // operates on. 368 if (!HalvingSwizzle) { 369 compStr = CompName->getNameStart(); 370 371 if (HexSwizzle) 372 compStr++; 373 374 while (*compStr) { 375 if (!vecType->isAccessorWithinNumElements(*compStr++, HexSwizzle)) { 376 S.Diag(OpLoc, diag::err_ext_vector_component_exceeds_length) 377 << baseType << SourceRange(CompLoc); 378 return QualType(); 379 } 380 } 381 } 382 383 // OpenCL mode requires swizzle length to be in accordance with accepted 384 // sizes. Clang however supports arbitrary lengths for other languages. 385 if (S.getLangOpts().OpenCL && !HalvingSwizzle) { 386 unsigned SwizzleLength = CompName->getLength(); 387 388 if (HexSwizzle) 389 SwizzleLength--; 390 391 if (IsValidOpenCLComponentSwizzleLength(SwizzleLength) == false) { 392 S.Diag(OpLoc, diag::err_opencl_ext_vector_component_invalid_length) 393 << SwizzleLength << SourceRange(CompLoc); 394 return QualType(); 395 } 396 } 397 398 // The component accessor looks fine - now we need to compute the actual type. 399 // The vector type is implied by the component accessor. For example, 400 // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc. 401 // vec4.s0 is a float, vec4.s23 is a vec3, etc. 402 // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2. 403 unsigned CompSize = HalvingSwizzle ? (vecType->getNumElements() + 1) / 2 404 : CompName->getLength(); 405 if (HexSwizzle) 406 CompSize--; 407 408 if (CompSize == 1) 409 return vecType->getElementType(); 410 411 if (HasRepeated) VK = VK_RValue; 412 413 QualType VT = S.Context.getExtVectorType(vecType->getElementType(), CompSize); 414 // Now look up the TypeDefDecl from the vector type. Without this, 415 // diagostics look bad. We want extended vector types to appear built-in. 416 for (Sema::ExtVectorDeclsType::iterator 417 I = S.ExtVectorDecls.begin(S.getExternalSource()), 418 E = S.ExtVectorDecls.end(); 419 I != E; ++I) { 420 if ((*I)->getUnderlyingType() == VT) 421 return S.Context.getTypedefType(*I); 422 } 423 424 return VT; // should never get here (a typedef type should always be found). 425 } 426 427 static Decl *FindGetterSetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl, 428 IdentifierInfo *Member, 429 const Selector &Sel, 430 ASTContext &Context) { 431 if (Member) 432 if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration( 433 Member, ObjCPropertyQueryKind::OBJC_PR_query_instance)) 434 return PD; 435 if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel)) 436 return OMD; 437 438 for (const auto *I : PDecl->protocols()) { 439 if (Decl *D = FindGetterSetterNameDeclFromProtocolList(I, Member, Sel, 440 Context)) 441 return D; 442 } 443 return nullptr; 444 } 445 446 static Decl *FindGetterSetterNameDecl(const ObjCObjectPointerType *QIdTy, 447 IdentifierInfo *Member, 448 const Selector &Sel, 449 ASTContext &Context) { 450 // Check protocols on qualified interfaces. 451 Decl *GDecl = nullptr; 452 for (const auto *I : QIdTy->quals()) { 453 if (Member) 454 if (ObjCPropertyDecl *PD = I->FindPropertyDeclaration( 455 Member, ObjCPropertyQueryKind::OBJC_PR_query_instance)) { 456 GDecl = PD; 457 break; 458 } 459 // Also must look for a getter or setter name which uses property syntax. 460 if (ObjCMethodDecl *OMD = I->getInstanceMethod(Sel)) { 461 GDecl = OMD; 462 break; 463 } 464 } 465 if (!GDecl) { 466 for (const auto *I : QIdTy->quals()) { 467 // Search in the protocol-qualifier list of current protocol. 468 GDecl = FindGetterSetterNameDeclFromProtocolList(I, Member, Sel, Context); 469 if (GDecl) 470 return GDecl; 471 } 472 } 473 return GDecl; 474 } 475 476 ExprResult 477 Sema::ActOnDependentMemberExpr(Expr *BaseExpr, QualType BaseType, 478 bool IsArrow, SourceLocation OpLoc, 479 const CXXScopeSpec &SS, 480 SourceLocation TemplateKWLoc, 481 NamedDecl *FirstQualifierInScope, 482 const DeclarationNameInfo &NameInfo, 483 const TemplateArgumentListInfo *TemplateArgs) { 484 // Even in dependent contexts, try to diagnose base expressions with 485 // obviously wrong types, e.g.: 486 // 487 // T* t; 488 // t.f; 489 // 490 // In Obj-C++, however, the above expression is valid, since it could be 491 // accessing the 'f' property if T is an Obj-C interface. The extra check 492 // allows this, while still reporting an error if T is a struct pointer. 493 if (!IsArrow) { 494 const PointerType *PT = BaseType->getAs<PointerType>(); 495 if (PT && (!getLangOpts().ObjC || 496 PT->getPointeeType()->isRecordType())) { 497 assert(BaseExpr && "cannot happen with implicit member accesses"); 498 Diag(OpLoc, diag::err_typecheck_member_reference_struct_union) 499 << BaseType << BaseExpr->getSourceRange() << NameInfo.getSourceRange(); 500 return ExprError(); 501 } 502 } 503 504 assert(BaseType->isDependentType() || 505 NameInfo.getName().isDependentName() || 506 isDependentScopeSpecifier(SS)); 507 508 // Get the type being accessed in BaseType. If this is an arrow, the BaseExpr 509 // must have pointer type, and the accessed type is the pointee. 510 return CXXDependentScopeMemberExpr::Create( 511 Context, BaseExpr, BaseType, IsArrow, OpLoc, 512 SS.getWithLocInContext(Context), TemplateKWLoc, FirstQualifierInScope, 513 NameInfo, TemplateArgs); 514 } 515 516 /// We know that the given qualified member reference points only to 517 /// declarations which do not belong to the static type of the base 518 /// expression. Diagnose the problem. 519 static void DiagnoseQualifiedMemberReference(Sema &SemaRef, 520 Expr *BaseExpr, 521 QualType BaseType, 522 const CXXScopeSpec &SS, 523 NamedDecl *rep, 524 const DeclarationNameInfo &nameInfo) { 525 // If this is an implicit member access, use a different set of 526 // diagnostics. 527 if (!BaseExpr) 528 return diagnoseInstanceReference(SemaRef, SS, rep, nameInfo); 529 530 SemaRef.Diag(nameInfo.getLoc(), diag::err_qualified_member_of_unrelated) 531 << SS.getRange() << rep << BaseType; 532 } 533 534 // Check whether the declarations we found through a nested-name 535 // specifier in a member expression are actually members of the base 536 // type. The restriction here is: 537 // 538 // C++ [expr.ref]p2: 539 // ... In these cases, the id-expression shall name a 540 // member of the class or of one of its base classes. 541 // 542 // So it's perfectly legitimate for the nested-name specifier to name 543 // an unrelated class, and for us to find an overload set including 544 // decls from classes which are not superclasses, as long as the decl 545 // we actually pick through overload resolution is from a superclass. 546 bool Sema::CheckQualifiedMemberReference(Expr *BaseExpr, 547 QualType BaseType, 548 const CXXScopeSpec &SS, 549 const LookupResult &R) { 550 CXXRecordDecl *BaseRecord = 551 cast_or_null<CXXRecordDecl>(computeDeclContext(BaseType)); 552 if (!BaseRecord) { 553 // We can't check this yet because the base type is still 554 // dependent. 555 assert(BaseType->isDependentType()); 556 return false; 557 } 558 559 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) { 560 // If this is an implicit member reference and we find a 561 // non-instance member, it's not an error. 562 if (!BaseExpr && !(*I)->isCXXInstanceMember()) 563 return false; 564 565 // Note that we use the DC of the decl, not the underlying decl. 566 DeclContext *DC = (*I)->getDeclContext(); 567 while (DC->isTransparentContext()) 568 DC = DC->getParent(); 569 570 if (!DC->isRecord()) 571 continue; 572 573 CXXRecordDecl *MemberRecord = cast<CXXRecordDecl>(DC)->getCanonicalDecl(); 574 if (BaseRecord->getCanonicalDecl() == MemberRecord || 575 !BaseRecord->isProvablyNotDerivedFrom(MemberRecord)) 576 return false; 577 } 578 579 DiagnoseQualifiedMemberReference(*this, BaseExpr, BaseType, SS, 580 R.getRepresentativeDecl(), 581 R.getLookupNameInfo()); 582 return true; 583 } 584 585 namespace { 586 587 // Callback to only accept typo corrections that are either a ValueDecl or a 588 // FunctionTemplateDecl and are declared in the current record or, for a C++ 589 // classes, one of its base classes. 590 class RecordMemberExprValidatorCCC final : public CorrectionCandidateCallback { 591 public: 592 explicit RecordMemberExprValidatorCCC(const RecordType *RTy) 593 : Record(RTy->getDecl()) { 594 // Don't add bare keywords to the consumer since they will always fail 595 // validation by virtue of not being associated with any decls. 596 WantTypeSpecifiers = false; 597 WantExpressionKeywords = false; 598 WantCXXNamedCasts = false; 599 WantFunctionLikeCasts = false; 600 WantRemainingKeywords = false; 601 } 602 603 bool ValidateCandidate(const TypoCorrection &candidate) override { 604 NamedDecl *ND = candidate.getCorrectionDecl(); 605 // Don't accept candidates that cannot be member functions, constants, 606 // variables, or templates. 607 if (!ND || !(isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND))) 608 return false; 609 610 // Accept candidates that occur in the current record. 611 if (Record->containsDecl(ND)) 612 return true; 613 614 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Record)) { 615 // Accept candidates that occur in any of the current class' base classes. 616 for (const auto &BS : RD->bases()) { 617 if (const RecordType *BSTy = 618 dyn_cast_or_null<RecordType>(BS.getType().getTypePtrOrNull())) { 619 if (BSTy->getDecl()->containsDecl(ND)) 620 return true; 621 } 622 } 623 } 624 625 return false; 626 } 627 628 std::unique_ptr<CorrectionCandidateCallback> clone() override { 629 return std::make_unique<RecordMemberExprValidatorCCC>(*this); 630 } 631 632 private: 633 const RecordDecl *const Record; 634 }; 635 636 } 637 638 static bool LookupMemberExprInRecord(Sema &SemaRef, LookupResult &R, 639 Expr *BaseExpr, 640 const RecordType *RTy, 641 SourceLocation OpLoc, bool IsArrow, 642 CXXScopeSpec &SS, bool HasTemplateArgs, 643 SourceLocation TemplateKWLoc, 644 TypoExpr *&TE) { 645 SourceRange BaseRange = BaseExpr ? BaseExpr->getSourceRange() : SourceRange(); 646 RecordDecl *RDecl = RTy->getDecl(); 647 if (!SemaRef.isThisOutsideMemberFunctionBody(QualType(RTy, 0)) && 648 SemaRef.RequireCompleteType(OpLoc, QualType(RTy, 0), 649 diag::err_typecheck_incomplete_tag, 650 BaseRange)) 651 return true; 652 653 if (HasTemplateArgs || TemplateKWLoc.isValid()) { 654 // LookupTemplateName doesn't expect these both to exist simultaneously. 655 QualType ObjectType = SS.isSet() ? QualType() : QualType(RTy, 0); 656 657 bool MOUS; 658 return SemaRef.LookupTemplateName(R, nullptr, SS, ObjectType, false, MOUS, 659 TemplateKWLoc); 660 } 661 662 DeclContext *DC = RDecl; 663 if (SS.isSet()) { 664 // If the member name was a qualified-id, look into the 665 // nested-name-specifier. 666 DC = SemaRef.computeDeclContext(SS, false); 667 668 if (SemaRef.RequireCompleteDeclContext(SS, DC)) { 669 SemaRef.Diag(SS.getRange().getEnd(), diag::err_typecheck_incomplete_tag) 670 << SS.getRange() << DC; 671 return true; 672 } 673 674 assert(DC && "Cannot handle non-computable dependent contexts in lookup"); 675 676 if (!isa<TypeDecl>(DC)) { 677 SemaRef.Diag(R.getNameLoc(), diag::err_qualified_member_nonclass) 678 << DC << SS.getRange(); 679 return true; 680 } 681 } 682 683 // The record definition is complete, now look up the member. 684 SemaRef.LookupQualifiedName(R, DC, SS); 685 686 if (!R.empty()) 687 return false; 688 689 DeclarationName Typo = R.getLookupName(); 690 SourceLocation TypoLoc = R.getNameLoc(); 691 692 struct QueryState { 693 Sema &SemaRef; 694 DeclarationNameInfo NameInfo; 695 Sema::LookupNameKind LookupKind; 696 Sema::RedeclarationKind Redecl; 697 }; 698 QueryState Q = {R.getSema(), R.getLookupNameInfo(), R.getLookupKind(), 699 R.redeclarationKind()}; 700 RecordMemberExprValidatorCCC CCC(RTy); 701 TE = SemaRef.CorrectTypoDelayed( 702 R.getLookupNameInfo(), R.getLookupKind(), nullptr, &SS, CCC, 703 [=, &SemaRef](const TypoCorrection &TC) { 704 if (TC) { 705 assert(!TC.isKeyword() && 706 "Got a keyword as a correction for a member!"); 707 bool DroppedSpecifier = 708 TC.WillReplaceSpecifier() && 709 Typo.getAsString() == TC.getAsString(SemaRef.getLangOpts()); 710 SemaRef.diagnoseTypo(TC, SemaRef.PDiag(diag::err_no_member_suggest) 711 << Typo << DC << DroppedSpecifier 712 << SS.getRange()); 713 } else { 714 SemaRef.Diag(TypoLoc, diag::err_no_member) << Typo << DC << BaseRange; 715 } 716 }, 717 [=](Sema &SemaRef, TypoExpr *TE, TypoCorrection TC) mutable { 718 LookupResult R(Q.SemaRef, Q.NameInfo, Q.LookupKind, Q.Redecl); 719 R.clear(); // Ensure there's no decls lingering in the shared state. 720 R.suppressDiagnostics(); 721 R.setLookupName(TC.getCorrection()); 722 for (NamedDecl *ND : TC) 723 R.addDecl(ND); 724 R.resolveKind(); 725 return SemaRef.BuildMemberReferenceExpr( 726 BaseExpr, BaseExpr->getType(), OpLoc, IsArrow, SS, SourceLocation(), 727 nullptr, R, nullptr, nullptr); 728 }, 729 Sema::CTK_ErrorRecovery, DC); 730 731 return false; 732 } 733 734 static ExprResult LookupMemberExpr(Sema &S, LookupResult &R, 735 ExprResult &BaseExpr, bool &IsArrow, 736 SourceLocation OpLoc, CXXScopeSpec &SS, 737 Decl *ObjCImpDecl, bool HasTemplateArgs, 738 SourceLocation TemplateKWLoc); 739 740 ExprResult 741 Sema::BuildMemberReferenceExpr(Expr *Base, QualType BaseType, 742 SourceLocation OpLoc, bool IsArrow, 743 CXXScopeSpec &SS, 744 SourceLocation TemplateKWLoc, 745 NamedDecl *FirstQualifierInScope, 746 const DeclarationNameInfo &NameInfo, 747 const TemplateArgumentListInfo *TemplateArgs, 748 const Scope *S, 749 ActOnMemberAccessExtraArgs *ExtraArgs) { 750 if (BaseType->isDependentType() || 751 (SS.isSet() && isDependentScopeSpecifier(SS))) 752 return ActOnDependentMemberExpr(Base, BaseType, 753 IsArrow, OpLoc, 754 SS, TemplateKWLoc, FirstQualifierInScope, 755 NameInfo, TemplateArgs); 756 757 LookupResult R(*this, NameInfo, LookupMemberName); 758 759 // Implicit member accesses. 760 if (!Base) { 761 TypoExpr *TE = nullptr; 762 QualType RecordTy = BaseType; 763 if (IsArrow) RecordTy = RecordTy->castAs<PointerType>()->getPointeeType(); 764 if (LookupMemberExprInRecord( 765 *this, R, nullptr, RecordTy->getAs<RecordType>(), OpLoc, IsArrow, 766 SS, TemplateArgs != nullptr, TemplateKWLoc, TE)) 767 return ExprError(); 768 if (TE) 769 return TE; 770 771 // Explicit member accesses. 772 } else { 773 ExprResult BaseResult = Base; 774 ExprResult Result = 775 LookupMemberExpr(*this, R, BaseResult, IsArrow, OpLoc, SS, 776 ExtraArgs ? ExtraArgs->ObjCImpDecl : nullptr, 777 TemplateArgs != nullptr, TemplateKWLoc); 778 779 if (BaseResult.isInvalid()) 780 return ExprError(); 781 Base = BaseResult.get(); 782 783 if (Result.isInvalid()) 784 return ExprError(); 785 786 if (Result.get()) 787 return Result; 788 789 // LookupMemberExpr can modify Base, and thus change BaseType 790 BaseType = Base->getType(); 791 } 792 793 return BuildMemberReferenceExpr(Base, BaseType, 794 OpLoc, IsArrow, SS, TemplateKWLoc, 795 FirstQualifierInScope, R, TemplateArgs, S, 796 false, ExtraArgs); 797 } 798 799 ExprResult 800 Sema::BuildAnonymousStructUnionMemberReference(const CXXScopeSpec &SS, 801 SourceLocation loc, 802 IndirectFieldDecl *indirectField, 803 DeclAccessPair foundDecl, 804 Expr *baseObjectExpr, 805 SourceLocation opLoc) { 806 // First, build the expression that refers to the base object. 807 808 // Case 1: the base of the indirect field is not a field. 809 VarDecl *baseVariable = indirectField->getVarDecl(); 810 CXXScopeSpec EmptySS; 811 if (baseVariable) { 812 assert(baseVariable->getType()->isRecordType()); 813 814 // In principle we could have a member access expression that 815 // accesses an anonymous struct/union that's a static member of 816 // the base object's class. However, under the current standard, 817 // static data members cannot be anonymous structs or unions. 818 // Supporting this is as easy as building a MemberExpr here. 819 assert(!baseObjectExpr && "anonymous struct/union is static data member?"); 820 821 DeclarationNameInfo baseNameInfo(DeclarationName(), loc); 822 823 ExprResult result 824 = BuildDeclarationNameExpr(EmptySS, baseNameInfo, baseVariable); 825 if (result.isInvalid()) return ExprError(); 826 827 baseObjectExpr = result.get(); 828 } 829 830 assert((baseVariable || baseObjectExpr) && 831 "referencing anonymous struct/union without a base variable or " 832 "expression"); 833 834 // Build the implicit member references to the field of the 835 // anonymous struct/union. 836 Expr *result = baseObjectExpr; 837 IndirectFieldDecl::chain_iterator 838 FI = indirectField->chain_begin(), FEnd = indirectField->chain_end(); 839 840 // Case 2: the base of the indirect field is a field and the user 841 // wrote a member expression. 842 if (!baseVariable) { 843 FieldDecl *field = cast<FieldDecl>(*FI); 844 845 bool baseObjectIsPointer = baseObjectExpr->getType()->isPointerType(); 846 847 // Make a nameInfo that properly uses the anonymous name. 848 DeclarationNameInfo memberNameInfo(field->getDeclName(), loc); 849 850 // Build the first member access in the chain with full information. 851 result = 852 BuildFieldReferenceExpr(result, baseObjectIsPointer, SourceLocation(), 853 SS, field, foundDecl, memberNameInfo) 854 .get(); 855 if (!result) 856 return ExprError(); 857 } 858 859 // In all cases, we should now skip the first declaration in the chain. 860 ++FI; 861 862 while (FI != FEnd) { 863 FieldDecl *field = cast<FieldDecl>(*FI++); 864 865 // FIXME: these are somewhat meaningless 866 DeclarationNameInfo memberNameInfo(field->getDeclName(), loc); 867 DeclAccessPair fakeFoundDecl = 868 DeclAccessPair::make(field, field->getAccess()); 869 870 result = 871 BuildFieldReferenceExpr(result, /*isarrow*/ false, SourceLocation(), 872 (FI == FEnd ? SS : EmptySS), field, 873 fakeFoundDecl, memberNameInfo) 874 .get(); 875 } 876 877 return result; 878 } 879 880 static ExprResult 881 BuildMSPropertyRefExpr(Sema &S, Expr *BaseExpr, bool IsArrow, 882 const CXXScopeSpec &SS, 883 MSPropertyDecl *PD, 884 const DeclarationNameInfo &NameInfo) { 885 // Property names are always simple identifiers and therefore never 886 // require any interesting additional storage. 887 return new (S.Context) MSPropertyRefExpr(BaseExpr, PD, IsArrow, 888 S.Context.PseudoObjectTy, VK_LValue, 889 SS.getWithLocInContext(S.Context), 890 NameInfo.getLoc()); 891 } 892 893 MemberExpr *Sema::BuildMemberExpr( 894 Expr *Base, bool IsArrow, SourceLocation OpLoc, const CXXScopeSpec *SS, 895 SourceLocation TemplateKWLoc, ValueDecl *Member, DeclAccessPair FoundDecl, 896 bool HadMultipleCandidates, const DeclarationNameInfo &MemberNameInfo, 897 QualType Ty, ExprValueKind VK, ExprObjectKind OK, 898 const TemplateArgumentListInfo *TemplateArgs) { 899 NestedNameSpecifierLoc NNS = 900 SS ? SS->getWithLocInContext(Context) : NestedNameSpecifierLoc(); 901 return BuildMemberExpr(Base, IsArrow, OpLoc, NNS, TemplateKWLoc, Member, 902 FoundDecl, HadMultipleCandidates, MemberNameInfo, Ty, 903 VK, OK, TemplateArgs); 904 } 905 906 MemberExpr *Sema::BuildMemberExpr( 907 Expr *Base, bool IsArrow, SourceLocation OpLoc, NestedNameSpecifierLoc NNS, 908 SourceLocation TemplateKWLoc, ValueDecl *Member, DeclAccessPair FoundDecl, 909 bool HadMultipleCandidates, const DeclarationNameInfo &MemberNameInfo, 910 QualType Ty, ExprValueKind VK, ExprObjectKind OK, 911 const TemplateArgumentListInfo *TemplateArgs) { 912 assert((!IsArrow || Base->isRValue()) && "-> base must be a pointer rvalue"); 913 MemberExpr *E = 914 MemberExpr::Create(Context, Base, IsArrow, OpLoc, NNS, TemplateKWLoc, 915 Member, FoundDecl, MemberNameInfo, TemplateArgs, Ty, 916 VK, OK, getNonOdrUseReasonInCurrentContext(Member)); 917 E->setHadMultipleCandidates(HadMultipleCandidates); 918 MarkMemberReferenced(E); 919 920 // C++ [except.spec]p17: 921 // An exception-specification is considered to be needed when: 922 // - in an expression the function is the unique lookup result or the 923 // selected member of a set of overloaded functions 924 if (auto *FPT = Ty->getAs<FunctionProtoType>()) { 925 if (isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) { 926 if (auto *NewFPT = ResolveExceptionSpec(MemberNameInfo.getLoc(), FPT)) 927 E->setType(Context.getQualifiedType(NewFPT, Ty.getQualifiers())); 928 } 929 } 930 931 return E; 932 } 933 934 /// Determine if the given scope is within a function-try-block handler. 935 static bool IsInFnTryBlockHandler(const Scope *S) { 936 // Walk the scope stack until finding a FnTryCatchScope, or leave the 937 // function scope. If a FnTryCatchScope is found, check whether the TryScope 938 // flag is set. If it is not, it's a function-try-block handler. 939 for (; S != S->getFnParent(); S = S->getParent()) { 940 if (S->getFlags() & Scope::FnTryCatchScope) 941 return (S->getFlags() & Scope::TryScope) != Scope::TryScope; 942 } 943 return false; 944 } 945 946 ExprResult 947 Sema::BuildMemberReferenceExpr(Expr *BaseExpr, QualType BaseExprType, 948 SourceLocation OpLoc, bool IsArrow, 949 const CXXScopeSpec &SS, 950 SourceLocation TemplateKWLoc, 951 NamedDecl *FirstQualifierInScope, 952 LookupResult &R, 953 const TemplateArgumentListInfo *TemplateArgs, 954 const Scope *S, 955 bool SuppressQualifierCheck, 956 ActOnMemberAccessExtraArgs *ExtraArgs) { 957 QualType BaseType = BaseExprType; 958 if (IsArrow) { 959 assert(BaseType->isPointerType()); 960 BaseType = BaseType->castAs<PointerType>()->getPointeeType(); 961 } 962 R.setBaseObjectType(BaseType); 963 964 // C++1z [expr.ref]p2: 965 // For the first option (dot) the first expression shall be a glvalue [...] 966 if (!IsArrow && BaseExpr && BaseExpr->isRValue()) { 967 ExprResult Converted = TemporaryMaterializationConversion(BaseExpr); 968 if (Converted.isInvalid()) 969 return ExprError(); 970 BaseExpr = Converted.get(); 971 } 972 973 974 const DeclarationNameInfo &MemberNameInfo = R.getLookupNameInfo(); 975 DeclarationName MemberName = MemberNameInfo.getName(); 976 SourceLocation MemberLoc = MemberNameInfo.getLoc(); 977 978 if (R.isAmbiguous()) 979 return ExprError(); 980 981 // [except.handle]p10: Referring to any non-static member or base class of an 982 // object in the handler for a function-try-block of a constructor or 983 // destructor for that object results in undefined behavior. 984 const auto *FD = getCurFunctionDecl(); 985 if (S && BaseExpr && FD && 986 (isa<CXXDestructorDecl>(FD) || isa<CXXConstructorDecl>(FD)) && 987 isa<CXXThisExpr>(BaseExpr->IgnoreImpCasts()) && 988 IsInFnTryBlockHandler(S)) 989 Diag(MemberLoc, diag::warn_cdtor_function_try_handler_mem_expr) 990 << isa<CXXDestructorDecl>(FD); 991 992 if (R.empty()) { 993 // Rederive where we looked up. 994 DeclContext *DC = (SS.isSet() 995 ? computeDeclContext(SS, false) 996 : BaseType->castAs<RecordType>()->getDecl()); 997 998 if (ExtraArgs) { 999 ExprResult RetryExpr; 1000 if (!IsArrow && BaseExpr) { 1001 SFINAETrap Trap(*this, true); 1002 ParsedType ObjectType; 1003 bool MayBePseudoDestructor = false; 1004 RetryExpr = ActOnStartCXXMemberReference(getCurScope(), BaseExpr, 1005 OpLoc, tok::arrow, ObjectType, 1006 MayBePseudoDestructor); 1007 if (RetryExpr.isUsable() && !Trap.hasErrorOccurred()) { 1008 CXXScopeSpec TempSS(SS); 1009 RetryExpr = ActOnMemberAccessExpr( 1010 ExtraArgs->S, RetryExpr.get(), OpLoc, tok::arrow, TempSS, 1011 TemplateKWLoc, ExtraArgs->Id, ExtraArgs->ObjCImpDecl); 1012 } 1013 if (Trap.hasErrorOccurred()) 1014 RetryExpr = ExprError(); 1015 } 1016 if (RetryExpr.isUsable()) { 1017 Diag(OpLoc, diag::err_no_member_overloaded_arrow) 1018 << MemberName << DC << FixItHint::CreateReplacement(OpLoc, "->"); 1019 return RetryExpr; 1020 } 1021 } 1022 1023 Diag(R.getNameLoc(), diag::err_no_member) 1024 << MemberName << DC 1025 << (BaseExpr ? BaseExpr->getSourceRange() : SourceRange()); 1026 return ExprError(); 1027 } 1028 1029 // Diagnose lookups that find only declarations from a non-base 1030 // type. This is possible for either qualified lookups (which may 1031 // have been qualified with an unrelated type) or implicit member 1032 // expressions (which were found with unqualified lookup and thus 1033 // may have come from an enclosing scope). Note that it's okay for 1034 // lookup to find declarations from a non-base type as long as those 1035 // aren't the ones picked by overload resolution. 1036 if ((SS.isSet() || !BaseExpr || 1037 (isa<CXXThisExpr>(BaseExpr) && 1038 cast<CXXThisExpr>(BaseExpr)->isImplicit())) && 1039 !SuppressQualifierCheck && 1040 CheckQualifiedMemberReference(BaseExpr, BaseType, SS, R)) 1041 return ExprError(); 1042 1043 // Construct an unresolved result if we in fact got an unresolved 1044 // result. 1045 if (R.isOverloadedResult() || R.isUnresolvableResult()) { 1046 // Suppress any lookup-related diagnostics; we'll do these when we 1047 // pick a member. 1048 R.suppressDiagnostics(); 1049 1050 UnresolvedMemberExpr *MemExpr 1051 = UnresolvedMemberExpr::Create(Context, R.isUnresolvableResult(), 1052 BaseExpr, BaseExprType, 1053 IsArrow, OpLoc, 1054 SS.getWithLocInContext(Context), 1055 TemplateKWLoc, MemberNameInfo, 1056 TemplateArgs, R.begin(), R.end()); 1057 1058 return MemExpr; 1059 } 1060 1061 assert(R.isSingleResult()); 1062 DeclAccessPair FoundDecl = R.begin().getPair(); 1063 NamedDecl *MemberDecl = R.getFoundDecl(); 1064 1065 // FIXME: diagnose the presence of template arguments now. 1066 1067 // If the decl being referenced had an error, return an error for this 1068 // sub-expr without emitting another error, in order to avoid cascading 1069 // error cases. 1070 if (MemberDecl->isInvalidDecl()) 1071 return ExprError(); 1072 1073 // Handle the implicit-member-access case. 1074 if (!BaseExpr) { 1075 // If this is not an instance member, convert to a non-member access. 1076 if (!MemberDecl->isCXXInstanceMember()) { 1077 // We might have a variable template specialization (or maybe one day a 1078 // member concept-id). 1079 if (TemplateArgs || TemplateKWLoc.isValid()) 1080 return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/false, TemplateArgs); 1081 1082 return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), MemberDecl, 1083 FoundDecl, TemplateArgs); 1084 } 1085 SourceLocation Loc = R.getNameLoc(); 1086 if (SS.getRange().isValid()) 1087 Loc = SS.getRange().getBegin(); 1088 BaseExpr = BuildCXXThisExpr(Loc, BaseExprType, /*IsImplicit=*/true); 1089 } 1090 1091 // Check the use of this member. 1092 if (DiagnoseUseOfDecl(MemberDecl, MemberLoc)) 1093 return ExprError(); 1094 1095 if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl)) 1096 return BuildFieldReferenceExpr(BaseExpr, IsArrow, OpLoc, SS, FD, FoundDecl, 1097 MemberNameInfo); 1098 1099 if (MSPropertyDecl *PD = dyn_cast<MSPropertyDecl>(MemberDecl)) 1100 return BuildMSPropertyRefExpr(*this, BaseExpr, IsArrow, SS, PD, 1101 MemberNameInfo); 1102 1103 if (IndirectFieldDecl *FD = dyn_cast<IndirectFieldDecl>(MemberDecl)) 1104 // We may have found a field within an anonymous union or struct 1105 // (C++ [class.union]). 1106 return BuildAnonymousStructUnionMemberReference(SS, MemberLoc, FD, 1107 FoundDecl, BaseExpr, 1108 OpLoc); 1109 1110 if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl)) { 1111 return BuildMemberExpr(BaseExpr, IsArrow, OpLoc, &SS, TemplateKWLoc, Var, 1112 FoundDecl, /*HadMultipleCandidates=*/false, 1113 MemberNameInfo, Var->getType().getNonReferenceType(), 1114 VK_LValue, OK_Ordinary); 1115 } 1116 1117 if (CXXMethodDecl *MemberFn = dyn_cast<CXXMethodDecl>(MemberDecl)) { 1118 ExprValueKind valueKind; 1119 QualType type; 1120 if (MemberFn->isInstance()) { 1121 valueKind = VK_RValue; 1122 type = Context.BoundMemberTy; 1123 } else { 1124 valueKind = VK_LValue; 1125 type = MemberFn->getType(); 1126 } 1127 1128 return BuildMemberExpr(BaseExpr, IsArrow, OpLoc, &SS, TemplateKWLoc, 1129 MemberFn, FoundDecl, /*HadMultipleCandidates=*/false, 1130 MemberNameInfo, type, valueKind, OK_Ordinary); 1131 } 1132 assert(!isa<FunctionDecl>(MemberDecl) && "member function not C++ method?"); 1133 1134 if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl)) { 1135 return BuildMemberExpr(BaseExpr, IsArrow, OpLoc, &SS, TemplateKWLoc, Enum, 1136 FoundDecl, /*HadMultipleCandidates=*/false, 1137 MemberNameInfo, Enum->getType(), VK_RValue, 1138 OK_Ordinary); 1139 } 1140 1141 if (VarTemplateDecl *VarTempl = dyn_cast<VarTemplateDecl>(MemberDecl)) { 1142 if (!TemplateArgs) { 1143 diagnoseMissingTemplateArguments(TemplateName(VarTempl), MemberLoc); 1144 return ExprError(); 1145 } 1146 1147 DeclResult VDecl = CheckVarTemplateId(VarTempl, TemplateKWLoc, 1148 MemberNameInfo.getLoc(), *TemplateArgs); 1149 if (VDecl.isInvalid()) 1150 return ExprError(); 1151 1152 // Non-dependent member, but dependent template arguments. 1153 if (!VDecl.get()) 1154 return ActOnDependentMemberExpr( 1155 BaseExpr, BaseExpr->getType(), IsArrow, OpLoc, SS, TemplateKWLoc, 1156 FirstQualifierInScope, MemberNameInfo, TemplateArgs); 1157 1158 VarDecl *Var = cast<VarDecl>(VDecl.get()); 1159 if (!Var->getTemplateSpecializationKind()) 1160 Var->setTemplateSpecializationKind(TSK_ImplicitInstantiation, MemberLoc); 1161 1162 return BuildMemberExpr( 1163 BaseExpr, IsArrow, OpLoc, &SS, TemplateKWLoc, Var, FoundDecl, 1164 /*HadMultipleCandidates=*/false, MemberNameInfo, 1165 Var->getType().getNonReferenceType(), VK_LValue, OK_Ordinary); 1166 } 1167 1168 // We found something that we didn't expect. Complain. 1169 if (isa<TypeDecl>(MemberDecl)) 1170 Diag(MemberLoc, diag::err_typecheck_member_reference_type) 1171 << MemberName << BaseType << int(IsArrow); 1172 else 1173 Diag(MemberLoc, diag::err_typecheck_member_reference_unknown) 1174 << MemberName << BaseType << int(IsArrow); 1175 1176 Diag(MemberDecl->getLocation(), diag::note_member_declared_here) 1177 << MemberName; 1178 R.suppressDiagnostics(); 1179 return ExprError(); 1180 } 1181 1182 /// Given that normal member access failed on the given expression, 1183 /// and given that the expression's type involves builtin-id or 1184 /// builtin-Class, decide whether substituting in the redefinition 1185 /// types would be profitable. The redefinition type is whatever 1186 /// this translation unit tried to typedef to id/Class; we store 1187 /// it to the side and then re-use it in places like this. 1188 static bool ShouldTryAgainWithRedefinitionType(Sema &S, ExprResult &base) { 1189 const ObjCObjectPointerType *opty 1190 = base.get()->getType()->getAs<ObjCObjectPointerType>(); 1191 if (!opty) return false; 1192 1193 const ObjCObjectType *ty = opty->getObjectType(); 1194 1195 QualType redef; 1196 if (ty->isObjCId()) { 1197 redef = S.Context.getObjCIdRedefinitionType(); 1198 } else if (ty->isObjCClass()) { 1199 redef = S.Context.getObjCClassRedefinitionType(); 1200 } else { 1201 return false; 1202 } 1203 1204 // Do the substitution as long as the redefinition type isn't just a 1205 // possibly-qualified pointer to builtin-id or builtin-Class again. 1206 opty = redef->getAs<ObjCObjectPointerType>(); 1207 if (opty && !opty->getObjectType()->getInterface()) 1208 return false; 1209 1210 base = S.ImpCastExprToType(base.get(), redef, CK_BitCast); 1211 return true; 1212 } 1213 1214 static bool isRecordType(QualType T) { 1215 return T->isRecordType(); 1216 } 1217 static bool isPointerToRecordType(QualType T) { 1218 if (const PointerType *PT = T->getAs<PointerType>()) 1219 return PT->getPointeeType()->isRecordType(); 1220 return false; 1221 } 1222 1223 /// Perform conversions on the LHS of a member access expression. 1224 ExprResult 1225 Sema::PerformMemberExprBaseConversion(Expr *Base, bool IsArrow) { 1226 if (IsArrow && !Base->getType()->isFunctionType()) 1227 return DefaultFunctionArrayLvalueConversion(Base); 1228 1229 return CheckPlaceholderExpr(Base); 1230 } 1231 1232 /// Look up the given member of the given non-type-dependent 1233 /// expression. This can return in one of two ways: 1234 /// * If it returns a sentinel null-but-valid result, the caller will 1235 /// assume that lookup was performed and the results written into 1236 /// the provided structure. It will take over from there. 1237 /// * Otherwise, the returned expression will be produced in place of 1238 /// an ordinary member expression. 1239 /// 1240 /// The ObjCImpDecl bit is a gross hack that will need to be properly 1241 /// fixed for ObjC++. 1242 static ExprResult LookupMemberExpr(Sema &S, LookupResult &R, 1243 ExprResult &BaseExpr, bool &IsArrow, 1244 SourceLocation OpLoc, CXXScopeSpec &SS, 1245 Decl *ObjCImpDecl, bool HasTemplateArgs, 1246 SourceLocation TemplateKWLoc) { 1247 assert(BaseExpr.get() && "no base expression"); 1248 1249 // Perform default conversions. 1250 BaseExpr = S.PerformMemberExprBaseConversion(BaseExpr.get(), IsArrow); 1251 if (BaseExpr.isInvalid()) 1252 return ExprError(); 1253 1254 QualType BaseType = BaseExpr.get()->getType(); 1255 assert(!BaseType->isDependentType()); 1256 1257 DeclarationName MemberName = R.getLookupName(); 1258 SourceLocation MemberLoc = R.getNameLoc(); 1259 1260 // For later type-checking purposes, turn arrow accesses into dot 1261 // accesses. The only access type we support that doesn't follow 1262 // the C equivalence "a->b === (*a).b" is ObjC property accesses, 1263 // and those never use arrows, so this is unaffected. 1264 if (IsArrow) { 1265 if (const PointerType *Ptr = BaseType->getAs<PointerType>()) 1266 BaseType = Ptr->getPointeeType(); 1267 else if (const ObjCObjectPointerType *Ptr 1268 = BaseType->getAs<ObjCObjectPointerType>()) 1269 BaseType = Ptr->getPointeeType(); 1270 else if (BaseType->isRecordType()) { 1271 // Recover from arrow accesses to records, e.g.: 1272 // struct MyRecord foo; 1273 // foo->bar 1274 // This is actually well-formed in C++ if MyRecord has an 1275 // overloaded operator->, but that should have been dealt with 1276 // by now--or a diagnostic message already issued if a problem 1277 // was encountered while looking for the overloaded operator->. 1278 if (!S.getLangOpts().CPlusPlus) { 1279 S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) 1280 << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange() 1281 << FixItHint::CreateReplacement(OpLoc, "."); 1282 } 1283 IsArrow = false; 1284 } else if (BaseType->isFunctionType()) { 1285 goto fail; 1286 } else { 1287 S.Diag(MemberLoc, diag::err_typecheck_member_reference_arrow) 1288 << BaseType << BaseExpr.get()->getSourceRange(); 1289 return ExprError(); 1290 } 1291 } 1292 1293 // Handle field access to simple records. 1294 if (const RecordType *RTy = BaseType->getAs<RecordType>()) { 1295 TypoExpr *TE = nullptr; 1296 if (LookupMemberExprInRecord(S, R, BaseExpr.get(), RTy, OpLoc, IsArrow, SS, 1297 HasTemplateArgs, TemplateKWLoc, TE)) 1298 return ExprError(); 1299 1300 // Returning valid-but-null is how we indicate to the caller that 1301 // the lookup result was filled in. If typo correction was attempted and 1302 // failed, the lookup result will have been cleared--that combined with the 1303 // valid-but-null ExprResult will trigger the appropriate diagnostics. 1304 return ExprResult(TE); 1305 } 1306 1307 // Handle ivar access to Objective-C objects. 1308 if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>()) { 1309 if (!SS.isEmpty() && !SS.isInvalid()) { 1310 S.Diag(SS.getRange().getBegin(), diag::err_qualified_objc_access) 1311 << 1 << SS.getScopeRep() 1312 << FixItHint::CreateRemoval(SS.getRange()); 1313 SS.clear(); 1314 } 1315 1316 IdentifierInfo *Member = MemberName.getAsIdentifierInfo(); 1317 1318 // There are three cases for the base type: 1319 // - builtin id (qualified or unqualified) 1320 // - builtin Class (qualified or unqualified) 1321 // - an interface 1322 ObjCInterfaceDecl *IDecl = OTy->getInterface(); 1323 if (!IDecl) { 1324 if (S.getLangOpts().ObjCAutoRefCount && 1325 (OTy->isObjCId() || OTy->isObjCClass())) 1326 goto fail; 1327 // There's an implicit 'isa' ivar on all objects. 1328 // But we only actually find it this way on objects of type 'id', 1329 // apparently. 1330 if (OTy->isObjCId() && Member->isStr("isa")) 1331 return new (S.Context) ObjCIsaExpr(BaseExpr.get(), IsArrow, MemberLoc, 1332 OpLoc, S.Context.getObjCClassType()); 1333 if (ShouldTryAgainWithRedefinitionType(S, BaseExpr)) 1334 return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS, 1335 ObjCImpDecl, HasTemplateArgs, TemplateKWLoc); 1336 goto fail; 1337 } 1338 1339 if (S.RequireCompleteType(OpLoc, BaseType, 1340 diag::err_typecheck_incomplete_tag, 1341 BaseExpr.get())) 1342 return ExprError(); 1343 1344 ObjCInterfaceDecl *ClassDeclared = nullptr; 1345 ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared); 1346 1347 if (!IV) { 1348 // Attempt to correct for typos in ivar names. 1349 DeclFilterCCC<ObjCIvarDecl> Validator{}; 1350 Validator.IsObjCIvarLookup = IsArrow; 1351 if (TypoCorrection Corrected = S.CorrectTypo( 1352 R.getLookupNameInfo(), Sema::LookupMemberName, nullptr, nullptr, 1353 Validator, Sema::CTK_ErrorRecovery, IDecl)) { 1354 IV = Corrected.getCorrectionDeclAs<ObjCIvarDecl>(); 1355 S.diagnoseTypo( 1356 Corrected, 1357 S.PDiag(diag::err_typecheck_member_reference_ivar_suggest) 1358 << IDecl->getDeclName() << MemberName); 1359 1360 // Figure out the class that declares the ivar. 1361 assert(!ClassDeclared); 1362 1363 Decl *D = cast<Decl>(IV->getDeclContext()); 1364 if (auto *Category = dyn_cast<ObjCCategoryDecl>(D)) 1365 D = Category->getClassInterface(); 1366 1367 if (auto *Implementation = dyn_cast<ObjCImplementationDecl>(D)) 1368 ClassDeclared = Implementation->getClassInterface(); 1369 else if (auto *Interface = dyn_cast<ObjCInterfaceDecl>(D)) 1370 ClassDeclared = Interface; 1371 1372 assert(ClassDeclared && "cannot query interface"); 1373 } else { 1374 if (IsArrow && 1375 IDecl->FindPropertyDeclaration( 1376 Member, ObjCPropertyQueryKind::OBJC_PR_query_instance)) { 1377 S.Diag(MemberLoc, diag::err_property_found_suggest) 1378 << Member << BaseExpr.get()->getType() 1379 << FixItHint::CreateReplacement(OpLoc, "."); 1380 return ExprError(); 1381 } 1382 1383 S.Diag(MemberLoc, diag::err_typecheck_member_reference_ivar) 1384 << IDecl->getDeclName() << MemberName 1385 << BaseExpr.get()->getSourceRange(); 1386 return ExprError(); 1387 } 1388 } 1389 1390 assert(ClassDeclared); 1391 1392 // If the decl being referenced had an error, return an error for this 1393 // sub-expr without emitting another error, in order to avoid cascading 1394 // error cases. 1395 if (IV->isInvalidDecl()) 1396 return ExprError(); 1397 1398 // Check whether we can reference this field. 1399 if (S.DiagnoseUseOfDecl(IV, MemberLoc)) 1400 return ExprError(); 1401 if (IV->getAccessControl() != ObjCIvarDecl::Public && 1402 IV->getAccessControl() != ObjCIvarDecl::Package) { 1403 ObjCInterfaceDecl *ClassOfMethodDecl = nullptr; 1404 if (ObjCMethodDecl *MD = S.getCurMethodDecl()) 1405 ClassOfMethodDecl = MD->getClassInterface(); 1406 else if (ObjCImpDecl && S.getCurFunctionDecl()) { 1407 // Case of a c-function declared inside an objc implementation. 1408 // FIXME: For a c-style function nested inside an objc implementation 1409 // class, there is no implementation context available, so we pass 1410 // down the context as argument to this routine. Ideally, this context 1411 // need be passed down in the AST node and somehow calculated from the 1412 // AST for a function decl. 1413 if (ObjCImplementationDecl *IMPD = 1414 dyn_cast<ObjCImplementationDecl>(ObjCImpDecl)) 1415 ClassOfMethodDecl = IMPD->getClassInterface(); 1416 else if (ObjCCategoryImplDecl* CatImplClass = 1417 dyn_cast<ObjCCategoryImplDecl>(ObjCImpDecl)) 1418 ClassOfMethodDecl = CatImplClass->getClassInterface(); 1419 } 1420 if (!S.getLangOpts().DebuggerSupport) { 1421 if (IV->getAccessControl() == ObjCIvarDecl::Private) { 1422 if (!declaresSameEntity(ClassDeclared, IDecl) || 1423 !declaresSameEntity(ClassOfMethodDecl, ClassDeclared)) 1424 S.Diag(MemberLoc, diag::err_private_ivar_access) 1425 << IV->getDeclName(); 1426 } else if (!IDecl->isSuperClassOf(ClassOfMethodDecl)) 1427 // @protected 1428 S.Diag(MemberLoc, diag::err_protected_ivar_access) 1429 << IV->getDeclName(); 1430 } 1431 } 1432 bool warn = true; 1433 if (S.getLangOpts().ObjCWeak) { 1434 Expr *BaseExp = BaseExpr.get()->IgnoreParenImpCasts(); 1435 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(BaseExp)) 1436 if (UO->getOpcode() == UO_Deref) 1437 BaseExp = UO->getSubExpr()->IgnoreParenCasts(); 1438 1439 if (DeclRefExpr *DE = dyn_cast<DeclRefExpr>(BaseExp)) 1440 if (DE->getType().getObjCLifetime() == Qualifiers::OCL_Weak) { 1441 S.Diag(DE->getLocation(), diag::err_arc_weak_ivar_access); 1442 warn = false; 1443 } 1444 } 1445 if (warn) { 1446 if (ObjCMethodDecl *MD = S.getCurMethodDecl()) { 1447 ObjCMethodFamily MF = MD->getMethodFamily(); 1448 warn = (MF != OMF_init && MF != OMF_dealloc && 1449 MF != OMF_finalize && 1450 !S.IvarBacksCurrentMethodAccessor(IDecl, MD, IV)); 1451 } 1452 if (warn) 1453 S.Diag(MemberLoc, diag::warn_direct_ivar_access) << IV->getDeclName(); 1454 } 1455 1456 ObjCIvarRefExpr *Result = new (S.Context) ObjCIvarRefExpr( 1457 IV, IV->getUsageType(BaseType), MemberLoc, OpLoc, BaseExpr.get(), 1458 IsArrow); 1459 1460 if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) { 1461 if (!S.isUnevaluatedContext() && 1462 !S.Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, MemberLoc)) 1463 S.getCurFunction()->recordUseOfWeak(Result); 1464 } 1465 1466 return Result; 1467 } 1468 1469 // Objective-C property access. 1470 const ObjCObjectPointerType *OPT; 1471 if (!IsArrow && (OPT = BaseType->getAs<ObjCObjectPointerType>())) { 1472 if (!SS.isEmpty() && !SS.isInvalid()) { 1473 S.Diag(SS.getRange().getBegin(), diag::err_qualified_objc_access) 1474 << 0 << SS.getScopeRep() << FixItHint::CreateRemoval(SS.getRange()); 1475 SS.clear(); 1476 } 1477 1478 // This actually uses the base as an r-value. 1479 BaseExpr = S.DefaultLvalueConversion(BaseExpr.get()); 1480 if (BaseExpr.isInvalid()) 1481 return ExprError(); 1482 1483 assert(S.Context.hasSameUnqualifiedType(BaseType, 1484 BaseExpr.get()->getType())); 1485 1486 IdentifierInfo *Member = MemberName.getAsIdentifierInfo(); 1487 1488 const ObjCObjectType *OT = OPT->getObjectType(); 1489 1490 // id, with and without qualifiers. 1491 if (OT->isObjCId()) { 1492 // Check protocols on qualified interfaces. 1493 Selector Sel = S.PP.getSelectorTable().getNullarySelector(Member); 1494 if (Decl *PMDecl = 1495 FindGetterSetterNameDecl(OPT, Member, Sel, S.Context)) { 1496 if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) { 1497 // Check the use of this declaration 1498 if (S.DiagnoseUseOfDecl(PD, MemberLoc)) 1499 return ExprError(); 1500 1501 return new (S.Context) 1502 ObjCPropertyRefExpr(PD, S.Context.PseudoObjectTy, VK_LValue, 1503 OK_ObjCProperty, MemberLoc, BaseExpr.get()); 1504 } 1505 1506 if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) { 1507 Selector SetterSel = 1508 SelectorTable::constructSetterSelector(S.PP.getIdentifierTable(), 1509 S.PP.getSelectorTable(), 1510 Member); 1511 ObjCMethodDecl *SMD = nullptr; 1512 if (Decl *SDecl = FindGetterSetterNameDecl(OPT, 1513 /*Property id*/ nullptr, 1514 SetterSel, S.Context)) 1515 SMD = dyn_cast<ObjCMethodDecl>(SDecl); 1516 1517 return new (S.Context) 1518 ObjCPropertyRefExpr(OMD, SMD, S.Context.PseudoObjectTy, VK_LValue, 1519 OK_ObjCProperty, MemberLoc, BaseExpr.get()); 1520 } 1521 } 1522 // Use of id.member can only be for a property reference. Do not 1523 // use the 'id' redefinition in this case. 1524 if (IsArrow && ShouldTryAgainWithRedefinitionType(S, BaseExpr)) 1525 return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS, 1526 ObjCImpDecl, HasTemplateArgs, TemplateKWLoc); 1527 1528 return ExprError(S.Diag(MemberLoc, diag::err_property_not_found) 1529 << MemberName << BaseType); 1530 } 1531 1532 // 'Class', unqualified only. 1533 if (OT->isObjCClass()) { 1534 // Only works in a method declaration (??!). 1535 ObjCMethodDecl *MD = S.getCurMethodDecl(); 1536 if (!MD) { 1537 if (ShouldTryAgainWithRedefinitionType(S, BaseExpr)) 1538 return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS, 1539 ObjCImpDecl, HasTemplateArgs, TemplateKWLoc); 1540 1541 goto fail; 1542 } 1543 1544 // Also must look for a getter name which uses property syntax. 1545 Selector Sel = S.PP.getSelectorTable().getNullarySelector(Member); 1546 ObjCInterfaceDecl *IFace = MD->getClassInterface(); 1547 if (!IFace) 1548 goto fail; 1549 1550 ObjCMethodDecl *Getter; 1551 if ((Getter = IFace->lookupClassMethod(Sel))) { 1552 // Check the use of this method. 1553 if (S.DiagnoseUseOfDecl(Getter, MemberLoc)) 1554 return ExprError(); 1555 } else 1556 Getter = IFace->lookupPrivateMethod(Sel, false); 1557 // If we found a getter then this may be a valid dot-reference, we 1558 // will look for the matching setter, in case it is needed. 1559 Selector SetterSel = 1560 SelectorTable::constructSetterSelector(S.PP.getIdentifierTable(), 1561 S.PP.getSelectorTable(), 1562 Member); 1563 ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel); 1564 if (!Setter) { 1565 // If this reference is in an @implementation, also check for 'private' 1566 // methods. 1567 Setter = IFace->lookupPrivateMethod(SetterSel, false); 1568 } 1569 1570 if (Setter && S.DiagnoseUseOfDecl(Setter, MemberLoc)) 1571 return ExprError(); 1572 1573 if (Getter || Setter) { 1574 return new (S.Context) ObjCPropertyRefExpr( 1575 Getter, Setter, S.Context.PseudoObjectTy, VK_LValue, 1576 OK_ObjCProperty, MemberLoc, BaseExpr.get()); 1577 } 1578 1579 if (ShouldTryAgainWithRedefinitionType(S, BaseExpr)) 1580 return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS, 1581 ObjCImpDecl, HasTemplateArgs, TemplateKWLoc); 1582 1583 return ExprError(S.Diag(MemberLoc, diag::err_property_not_found) 1584 << MemberName << BaseType); 1585 } 1586 1587 // Normal property access. 1588 return S.HandleExprPropertyRefExpr(OPT, BaseExpr.get(), OpLoc, MemberName, 1589 MemberLoc, SourceLocation(), QualType(), 1590 false); 1591 } 1592 1593 // Handle 'field access' to vectors, such as 'V.xx'. 1594 if (BaseType->isExtVectorType()) { 1595 // FIXME: this expr should store IsArrow. 1596 IdentifierInfo *Member = MemberName.getAsIdentifierInfo(); 1597 ExprValueKind VK; 1598 if (IsArrow) 1599 VK = VK_LValue; 1600 else { 1601 if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(BaseExpr.get())) 1602 VK = POE->getSyntacticForm()->getValueKind(); 1603 else 1604 VK = BaseExpr.get()->getValueKind(); 1605 } 1606 1607 QualType ret = CheckExtVectorComponent(S, BaseType, VK, OpLoc, 1608 Member, MemberLoc); 1609 if (ret.isNull()) 1610 return ExprError(); 1611 Qualifiers BaseQ = 1612 S.Context.getCanonicalType(BaseExpr.get()->getType()).getQualifiers(); 1613 ret = S.Context.getQualifiedType(ret, BaseQ); 1614 1615 return new (S.Context) 1616 ExtVectorElementExpr(ret, VK, BaseExpr.get(), *Member, MemberLoc); 1617 } 1618 1619 // Adjust builtin-sel to the appropriate redefinition type if that's 1620 // not just a pointer to builtin-sel again. 1621 if (IsArrow && BaseType->isSpecificBuiltinType(BuiltinType::ObjCSel) && 1622 !S.Context.getObjCSelRedefinitionType()->isObjCSelType()) { 1623 BaseExpr = S.ImpCastExprToType( 1624 BaseExpr.get(), S.Context.getObjCSelRedefinitionType(), CK_BitCast); 1625 return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS, 1626 ObjCImpDecl, HasTemplateArgs, TemplateKWLoc); 1627 } 1628 1629 // Failure cases. 1630 fail: 1631 1632 // Recover from dot accesses to pointers, e.g.: 1633 // type *foo; 1634 // foo.bar 1635 // This is actually well-formed in two cases: 1636 // - 'type' is an Objective C type 1637 // - 'bar' is a pseudo-destructor name which happens to refer to 1638 // the appropriate pointer type 1639 if (const PointerType *Ptr = BaseType->getAs<PointerType>()) { 1640 if (!IsArrow && Ptr->getPointeeType()->isRecordType() && 1641 MemberName.getNameKind() != DeclarationName::CXXDestructorName) { 1642 S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) 1643 << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange() 1644 << FixItHint::CreateReplacement(OpLoc, "->"); 1645 1646 // Recurse as an -> access. 1647 IsArrow = true; 1648 return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS, 1649 ObjCImpDecl, HasTemplateArgs, TemplateKWLoc); 1650 } 1651 } 1652 1653 // If the user is trying to apply -> or . to a function name, it's probably 1654 // because they forgot parentheses to call that function. 1655 if (S.tryToRecoverWithCall( 1656 BaseExpr, S.PDiag(diag::err_member_reference_needs_call), 1657 /*complain*/ false, 1658 IsArrow ? &isPointerToRecordType : &isRecordType)) { 1659 if (BaseExpr.isInvalid()) 1660 return ExprError(); 1661 BaseExpr = S.DefaultFunctionArrayConversion(BaseExpr.get()); 1662 return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS, 1663 ObjCImpDecl, HasTemplateArgs, TemplateKWLoc); 1664 } 1665 1666 S.Diag(OpLoc, diag::err_typecheck_member_reference_struct_union) 1667 << BaseType << BaseExpr.get()->getSourceRange() << MemberLoc; 1668 1669 return ExprError(); 1670 } 1671 1672 /// The main callback when the parser finds something like 1673 /// expression . [nested-name-specifier] identifier 1674 /// expression -> [nested-name-specifier] identifier 1675 /// where 'identifier' encompasses a fairly broad spectrum of 1676 /// possibilities, including destructor and operator references. 1677 /// 1678 /// \param OpKind either tok::arrow or tok::period 1679 /// \param ObjCImpDecl the current Objective-C \@implementation 1680 /// decl; this is an ugly hack around the fact that Objective-C 1681 /// \@implementations aren't properly put in the context chain 1682 ExprResult Sema::ActOnMemberAccessExpr(Scope *S, Expr *Base, 1683 SourceLocation OpLoc, 1684 tok::TokenKind OpKind, 1685 CXXScopeSpec &SS, 1686 SourceLocation TemplateKWLoc, 1687 UnqualifiedId &Id, 1688 Decl *ObjCImpDecl) { 1689 if (SS.isSet() && SS.isInvalid()) 1690 return ExprError(); 1691 1692 // Warn about the explicit constructor calls Microsoft extension. 1693 if (getLangOpts().MicrosoftExt && 1694 Id.getKind() == UnqualifiedIdKind::IK_ConstructorName) 1695 Diag(Id.getSourceRange().getBegin(), 1696 diag::ext_ms_explicit_constructor_call); 1697 1698 TemplateArgumentListInfo TemplateArgsBuffer; 1699 1700 // Decompose the name into its component parts. 1701 DeclarationNameInfo NameInfo; 1702 const TemplateArgumentListInfo *TemplateArgs; 1703 DecomposeUnqualifiedId(Id, TemplateArgsBuffer, 1704 NameInfo, TemplateArgs); 1705 1706 DeclarationName Name = NameInfo.getName(); 1707 bool IsArrow = (OpKind == tok::arrow); 1708 1709 NamedDecl *FirstQualifierInScope 1710 = (!SS.isSet() ? nullptr : FindFirstQualifierInScope(S, SS.getScopeRep())); 1711 1712 // This is a postfix expression, so get rid of ParenListExprs. 1713 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base); 1714 if (Result.isInvalid()) return ExprError(); 1715 Base = Result.get(); 1716 1717 if (Base->getType()->isDependentType() || Name.isDependentName() || 1718 isDependentScopeSpecifier(SS)) { 1719 return ActOnDependentMemberExpr(Base, Base->getType(), IsArrow, OpLoc, SS, 1720 TemplateKWLoc, FirstQualifierInScope, 1721 NameInfo, TemplateArgs); 1722 } 1723 1724 ActOnMemberAccessExtraArgs ExtraArgs = {S, Id, ObjCImpDecl}; 1725 ExprResult Res = BuildMemberReferenceExpr( 1726 Base, Base->getType(), OpLoc, IsArrow, SS, TemplateKWLoc, 1727 FirstQualifierInScope, NameInfo, TemplateArgs, S, &ExtraArgs); 1728 1729 if (!Res.isInvalid() && isa<MemberExpr>(Res.get())) 1730 CheckMemberAccessOfNoDeref(cast<MemberExpr>(Res.get())); 1731 1732 return Res; 1733 } 1734 1735 void Sema::CheckMemberAccessOfNoDeref(const MemberExpr *E) { 1736 if (isUnevaluatedContext()) 1737 return; 1738 1739 QualType ResultTy = E->getType(); 1740 1741 // Member accesses have four cases: 1742 // 1: non-array member via "->": dereferences 1743 // 2: non-array member via ".": nothing interesting happens 1744 // 3: array member access via "->": nothing interesting happens 1745 // (this returns an array lvalue and does not actually dereference memory) 1746 // 4: array member access via ".": *adds* a layer of indirection 1747 if (ResultTy->isArrayType()) { 1748 if (!E->isArrow()) { 1749 // This might be something like: 1750 // (*structPtr).arrayMember 1751 // which behaves roughly like: 1752 // &(*structPtr).pointerMember 1753 // in that the apparent dereference in the base expression does not 1754 // actually happen. 1755 CheckAddressOfNoDeref(E->getBase()); 1756 } 1757 } else if (E->isArrow()) { 1758 if (const auto *Ptr = dyn_cast<PointerType>( 1759 E->getBase()->getType().getDesugaredType(Context))) { 1760 if (Ptr->getPointeeType()->hasAttr(attr::NoDeref)) 1761 ExprEvalContexts.back().PossibleDerefs.insert(E); 1762 } 1763 } 1764 } 1765 1766 ExprResult 1767 Sema::BuildFieldReferenceExpr(Expr *BaseExpr, bool IsArrow, 1768 SourceLocation OpLoc, const CXXScopeSpec &SS, 1769 FieldDecl *Field, DeclAccessPair FoundDecl, 1770 const DeclarationNameInfo &MemberNameInfo) { 1771 // x.a is an l-value if 'a' has a reference type. Otherwise: 1772 // x.a is an l-value/x-value/pr-value if the base is (and note 1773 // that *x is always an l-value), except that if the base isn't 1774 // an ordinary object then we must have an rvalue. 1775 ExprValueKind VK = VK_LValue; 1776 ExprObjectKind OK = OK_Ordinary; 1777 if (!IsArrow) { 1778 if (BaseExpr->getObjectKind() == OK_Ordinary) 1779 VK = BaseExpr->getValueKind(); 1780 else 1781 VK = VK_RValue; 1782 } 1783 if (VK != VK_RValue && Field->isBitField()) 1784 OK = OK_BitField; 1785 1786 // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref] 1787 QualType MemberType = Field->getType(); 1788 if (const ReferenceType *Ref = MemberType->getAs<ReferenceType>()) { 1789 MemberType = Ref->getPointeeType(); 1790 VK = VK_LValue; 1791 } else { 1792 QualType BaseType = BaseExpr->getType(); 1793 if (IsArrow) BaseType = BaseType->castAs<PointerType>()->getPointeeType(); 1794 1795 Qualifiers BaseQuals = BaseType.getQualifiers(); 1796 1797 // GC attributes are never picked up by members. 1798 BaseQuals.removeObjCGCAttr(); 1799 1800 // CVR attributes from the base are picked up by members, 1801 // except that 'mutable' members don't pick up 'const'. 1802 if (Field->isMutable()) BaseQuals.removeConst(); 1803 1804 Qualifiers MemberQuals = 1805 Context.getCanonicalType(MemberType).getQualifiers(); 1806 1807 assert(!MemberQuals.hasAddressSpace()); 1808 1809 Qualifiers Combined = BaseQuals + MemberQuals; 1810 if (Combined != MemberQuals) 1811 MemberType = Context.getQualifiedType(MemberType, Combined); 1812 1813 // Pick up NoDeref from the base in case we end up using AddrOf on the 1814 // result. E.g. the expression 1815 // &someNoDerefPtr->pointerMember 1816 // should be a noderef pointer again. 1817 if (BaseType->hasAttr(attr::NoDeref)) 1818 MemberType = 1819 Context.getAttributedType(attr::NoDeref, MemberType, MemberType); 1820 } 1821 1822 auto *CurMethod = dyn_cast<CXXMethodDecl>(CurContext); 1823 if (!(CurMethod && CurMethod->isDefaulted())) 1824 UnusedPrivateFields.remove(Field); 1825 1826 ExprResult Base = PerformObjectMemberConversion(BaseExpr, SS.getScopeRep(), 1827 FoundDecl, Field); 1828 if (Base.isInvalid()) 1829 return ExprError(); 1830 1831 // Build a reference to a private copy for non-static data members in 1832 // non-static member functions, privatized by OpenMP constructs. 1833 if (getLangOpts().OpenMP && IsArrow && 1834 !CurContext->isDependentContext() && 1835 isa<CXXThisExpr>(Base.get()->IgnoreParenImpCasts())) { 1836 if (auto *PrivateCopy = isOpenMPCapturedDecl(Field)) { 1837 return getOpenMPCapturedExpr(PrivateCopy, VK, OK, 1838 MemberNameInfo.getLoc()); 1839 } 1840 } 1841 1842 return BuildMemberExpr(Base.get(), IsArrow, OpLoc, &SS, 1843 /*TemplateKWLoc=*/SourceLocation(), Field, FoundDecl, 1844 /*HadMultipleCandidates=*/false, MemberNameInfo, 1845 MemberType, VK, OK); 1846 } 1847 1848 /// Builds an implicit member access expression. The current context 1849 /// is known to be an instance method, and the given unqualified lookup 1850 /// set is known to contain only instance members, at least one of which 1851 /// is from an appropriate type. 1852 ExprResult 1853 Sema::BuildImplicitMemberExpr(const CXXScopeSpec &SS, 1854 SourceLocation TemplateKWLoc, 1855 LookupResult &R, 1856 const TemplateArgumentListInfo *TemplateArgs, 1857 bool IsKnownInstance, const Scope *S) { 1858 assert(!R.empty() && !R.isAmbiguous()); 1859 1860 SourceLocation loc = R.getNameLoc(); 1861 1862 // If this is known to be an instance access, go ahead and build an 1863 // implicit 'this' expression now. 1864 QualType ThisTy = getCurrentThisType(); 1865 assert(!ThisTy.isNull() && "didn't correctly pre-flight capture of 'this'"); 1866 1867 Expr *baseExpr = nullptr; // null signifies implicit access 1868 if (IsKnownInstance) { 1869 SourceLocation Loc = R.getNameLoc(); 1870 if (SS.getRange().isValid()) 1871 Loc = SS.getRange().getBegin(); 1872 baseExpr = BuildCXXThisExpr(loc, ThisTy, /*IsImplicit=*/true); 1873 } 1874 1875 return BuildMemberReferenceExpr(baseExpr, ThisTy, 1876 /*OpLoc*/ SourceLocation(), 1877 /*IsArrow*/ true, 1878 SS, TemplateKWLoc, 1879 /*FirstQualifierInScope*/ nullptr, 1880 R, TemplateArgs, S); 1881 } 1882