1 //===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// Implements semantic analysis for C++ expressions. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Sema/Template.h" 15 #include "clang/Sema/SemaInternal.h" 16 #include "TreeTransform.h" 17 #include "TypeLocBuilder.h" 18 #include "clang/AST/ASTContext.h" 19 #include "clang/AST/ASTLambda.h" 20 #include "clang/AST/CXXInheritance.h" 21 #include "clang/AST/CharUnits.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/ExprCXX.h" 24 #include "clang/AST/ExprObjC.h" 25 #include "clang/AST/RecursiveASTVisitor.h" 26 #include "clang/AST/TypeLoc.h" 27 #include "clang/Basic/AlignedAllocation.h" 28 #include "clang/Basic/PartialDiagnostic.h" 29 #include "clang/Basic/TargetInfo.h" 30 #include "clang/Lex/Preprocessor.h" 31 #include "clang/Sema/DeclSpec.h" 32 #include "clang/Sema/Initialization.h" 33 #include "clang/Sema/Lookup.h" 34 #include "clang/Sema/ParsedTemplate.h" 35 #include "clang/Sema/Scope.h" 36 #include "clang/Sema/ScopeInfo.h" 37 #include "clang/Sema/SemaLambda.h" 38 #include "clang/Sema/TemplateDeduction.h" 39 #include "llvm/ADT/APInt.h" 40 #include "llvm/ADT/STLExtras.h" 41 #include "llvm/Support/ErrorHandling.h" 42 using namespace clang; 43 using namespace sema; 44 45 /// Handle the result of the special case name lookup for inheriting 46 /// constructor declarations. 'NS::X::X' and 'NS::X<...>::X' are treated as 47 /// constructor names in member using declarations, even if 'X' is not the 48 /// name of the corresponding type. 49 ParsedType Sema::getInheritingConstructorName(CXXScopeSpec &SS, 50 SourceLocation NameLoc, 51 IdentifierInfo &Name) { 52 NestedNameSpecifier *NNS = SS.getScopeRep(); 53 54 // Convert the nested-name-specifier into a type. 55 QualType Type; 56 switch (NNS->getKind()) { 57 case NestedNameSpecifier::TypeSpec: 58 case NestedNameSpecifier::TypeSpecWithTemplate: 59 Type = QualType(NNS->getAsType(), 0); 60 break; 61 62 case NestedNameSpecifier::Identifier: 63 // Strip off the last layer of the nested-name-specifier and build a 64 // typename type for it. 65 assert(NNS->getAsIdentifier() == &Name && "not a constructor name"); 66 Type = Context.getDependentNameType(ETK_None, NNS->getPrefix(), 67 NNS->getAsIdentifier()); 68 break; 69 70 case NestedNameSpecifier::Global: 71 case NestedNameSpecifier::Super: 72 case NestedNameSpecifier::Namespace: 73 case NestedNameSpecifier::NamespaceAlias: 74 llvm_unreachable("Nested name specifier is not a type for inheriting ctor"); 75 } 76 77 // This reference to the type is located entirely at the location of the 78 // final identifier in the qualified-id. 79 return CreateParsedType(Type, 80 Context.getTrivialTypeSourceInfo(Type, NameLoc)); 81 } 82 83 ParsedType Sema::getConstructorName(IdentifierInfo &II, 84 SourceLocation NameLoc, 85 Scope *S, CXXScopeSpec &SS, 86 bool EnteringContext) { 87 CXXRecordDecl *CurClass = getCurrentClass(S, &SS); 88 assert(CurClass && &II == CurClass->getIdentifier() && 89 "not a constructor name"); 90 91 // When naming a constructor as a member of a dependent context (eg, in a 92 // friend declaration or an inherited constructor declaration), form an 93 // unresolved "typename" type. 94 if (CurClass->isDependentContext() && !EnteringContext && SS.getScopeRep()) { 95 QualType T = Context.getDependentNameType(ETK_None, SS.getScopeRep(), &II); 96 return ParsedType::make(T); 97 } 98 99 if (SS.isNotEmpty() && RequireCompleteDeclContext(SS, CurClass)) 100 return ParsedType(); 101 102 // Find the injected-class-name declaration. Note that we make no attempt to 103 // diagnose cases where the injected-class-name is shadowed: the only 104 // declaration that can validly shadow the injected-class-name is a 105 // non-static data member, and if the class contains both a non-static data 106 // member and a constructor then it is ill-formed (we check that in 107 // CheckCompletedCXXClass). 108 CXXRecordDecl *InjectedClassName = nullptr; 109 for (NamedDecl *ND : CurClass->lookup(&II)) { 110 auto *RD = dyn_cast<CXXRecordDecl>(ND); 111 if (RD && RD->isInjectedClassName()) { 112 InjectedClassName = RD; 113 break; 114 } 115 } 116 if (!InjectedClassName) { 117 if (!CurClass->isInvalidDecl()) { 118 // FIXME: RequireCompleteDeclContext doesn't check dependent contexts 119 // properly. Work around it here for now. 120 Diag(SS.getLastQualifierNameLoc(), 121 diag::err_incomplete_nested_name_spec) << CurClass << SS.getRange(); 122 } 123 return ParsedType(); 124 } 125 126 QualType T = Context.getTypeDeclType(InjectedClassName); 127 DiagnoseUseOfDecl(InjectedClassName, NameLoc); 128 MarkAnyDeclReferenced(NameLoc, InjectedClassName, /*OdrUse=*/false); 129 130 return ParsedType::make(T); 131 } 132 133 ParsedType Sema::getDestructorName(SourceLocation TildeLoc, 134 IdentifierInfo &II, 135 SourceLocation NameLoc, 136 Scope *S, CXXScopeSpec &SS, 137 ParsedType ObjectTypePtr, 138 bool EnteringContext) { 139 // Determine where to perform name lookup. 140 141 // FIXME: This area of the standard is very messy, and the current 142 // wording is rather unclear about which scopes we search for the 143 // destructor name; see core issues 399 and 555. Issue 399 in 144 // particular shows where the current description of destructor name 145 // lookup is completely out of line with existing practice, e.g., 146 // this appears to be ill-formed: 147 // 148 // namespace N { 149 // template <typename T> struct S { 150 // ~S(); 151 // }; 152 // } 153 // 154 // void f(N::S<int>* s) { 155 // s->N::S<int>::~S(); 156 // } 157 // 158 // See also PR6358 and PR6359. 159 // 160 // For now, we accept all the cases in which the name given could plausibly 161 // be interpreted as a correct destructor name, issuing off-by-default 162 // extension diagnostics on the cases that don't strictly conform to the 163 // C++20 rules. This basically means we always consider looking in the 164 // nested-name-specifier prefix, the complete nested-name-specifier, and 165 // the scope, and accept if we find the expected type in any of the three 166 // places. 167 168 if (SS.isInvalid()) 169 return nullptr; 170 171 // Whether we've failed with a diagnostic already. 172 bool Failed = false; 173 174 llvm::SmallVector<NamedDecl*, 8> FoundDecls; 175 llvm::SmallPtrSet<CanonicalDeclPtr<Decl>, 8> FoundDeclSet; 176 177 // If we have an object type, it's because we are in a 178 // pseudo-destructor-expression or a member access expression, and 179 // we know what type we're looking for. 180 QualType SearchType = 181 ObjectTypePtr ? GetTypeFromParser(ObjectTypePtr) : QualType(); 182 183 auto CheckLookupResult = [&](LookupResult &Found) -> ParsedType { 184 auto IsAcceptableResult = [&](NamedDecl *D) -> bool { 185 auto *Type = dyn_cast<TypeDecl>(D->getUnderlyingDecl()); 186 if (!Type) 187 return false; 188 189 if (SearchType.isNull() || SearchType->isDependentType()) 190 return true; 191 192 QualType T = Context.getTypeDeclType(Type); 193 return Context.hasSameUnqualifiedType(T, SearchType); 194 }; 195 196 unsigned NumAcceptableResults = 0; 197 for (NamedDecl *D : Found) { 198 if (IsAcceptableResult(D)) 199 ++NumAcceptableResults; 200 201 // Don't list a class twice in the lookup failure diagnostic if it's 202 // found by both its injected-class-name and by the name in the enclosing 203 // scope. 204 if (auto *RD = dyn_cast<CXXRecordDecl>(D)) 205 if (RD->isInjectedClassName()) 206 D = cast<NamedDecl>(RD->getParent()); 207 208 if (FoundDeclSet.insert(D).second) 209 FoundDecls.push_back(D); 210 } 211 212 // As an extension, attempt to "fix" an ambiguity by erasing all non-type 213 // results, and all non-matching results if we have a search type. It's not 214 // clear what the right behavior is if destructor lookup hits an ambiguity, 215 // but other compilers do generally accept at least some kinds of 216 // ambiguity. 217 if (Found.isAmbiguous() && NumAcceptableResults == 1) { 218 Diag(NameLoc, diag::ext_dtor_name_ambiguous); 219 LookupResult::Filter F = Found.makeFilter(); 220 while (F.hasNext()) { 221 NamedDecl *D = F.next(); 222 if (auto *TD = dyn_cast<TypeDecl>(D->getUnderlyingDecl())) 223 Diag(D->getLocation(), diag::note_destructor_type_here) 224 << Context.getTypeDeclType(TD); 225 else 226 Diag(D->getLocation(), diag::note_destructor_nontype_here); 227 228 if (!IsAcceptableResult(D)) 229 F.erase(); 230 } 231 F.done(); 232 } 233 234 if (Found.isAmbiguous()) 235 Failed = true; 236 237 if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) { 238 if (IsAcceptableResult(Type)) { 239 QualType T = Context.getTypeDeclType(Type); 240 MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false); 241 return CreateParsedType(T, 242 Context.getTrivialTypeSourceInfo(T, NameLoc)); 243 } 244 } 245 246 return nullptr; 247 }; 248 249 bool IsDependent = false; 250 251 auto LookupInObjectType = [&]() -> ParsedType { 252 if (Failed || SearchType.isNull()) 253 return nullptr; 254 255 IsDependent |= SearchType->isDependentType(); 256 257 LookupResult Found(*this, &II, NameLoc, LookupDestructorName); 258 DeclContext *LookupCtx = computeDeclContext(SearchType); 259 if (!LookupCtx) 260 return nullptr; 261 LookupQualifiedName(Found, LookupCtx); 262 return CheckLookupResult(Found); 263 }; 264 265 auto LookupInNestedNameSpec = [&](CXXScopeSpec &LookupSS) -> ParsedType { 266 if (Failed) 267 return nullptr; 268 269 IsDependent |= isDependentScopeSpecifier(LookupSS); 270 DeclContext *LookupCtx = computeDeclContext(LookupSS, EnteringContext); 271 if (!LookupCtx) 272 return nullptr; 273 274 LookupResult Found(*this, &II, NameLoc, LookupDestructorName); 275 if (RequireCompleteDeclContext(LookupSS, LookupCtx)) { 276 Failed = true; 277 return nullptr; 278 } 279 LookupQualifiedName(Found, LookupCtx); 280 return CheckLookupResult(Found); 281 }; 282 283 auto LookupInScope = [&]() -> ParsedType { 284 if (Failed || !S) 285 return nullptr; 286 287 LookupResult Found(*this, &II, NameLoc, LookupDestructorName); 288 LookupName(Found, S); 289 return CheckLookupResult(Found); 290 }; 291 292 // C++2a [basic.lookup.qual]p6: 293 // In a qualified-id of the form 294 // 295 // nested-name-specifier[opt] type-name :: ~ type-name 296 // 297 // the second type-name is looked up in the same scope as the first. 298 // 299 // We interpret this as meaning that if you do a dual-scope lookup for the 300 // first name, you also do a dual-scope lookup for the second name, per 301 // C++ [basic.lookup.classref]p4: 302 // 303 // If the id-expression in a class member access is a qualified-id of the 304 // form 305 // 306 // class-name-or-namespace-name :: ... 307 // 308 // the class-name-or-namespace-name following the . or -> is first looked 309 // up in the class of the object expression and the name, if found, is used. 310 // Otherwise, it is looked up in the context of the entire 311 // postfix-expression. 312 // 313 // This looks in the same scopes as for an unqualified destructor name: 314 // 315 // C++ [basic.lookup.classref]p3: 316 // If the unqualified-id is ~ type-name, the type-name is looked up 317 // in the context of the entire postfix-expression. If the type T 318 // of the object expression is of a class type C, the type-name is 319 // also looked up in the scope of class C. At least one of the 320 // lookups shall find a name that refers to cv T. 321 // 322 // FIXME: The intent is unclear here. Should type-name::~type-name look in 323 // the scope anyway if it finds a non-matching name declared in the class? 324 // If both lookups succeed and find a dependent result, which result should 325 // we retain? (Same question for p->~type-name().) 326 327 if (NestedNameSpecifier *Prefix = 328 SS.isSet() ? SS.getScopeRep()->getPrefix() : nullptr) { 329 // This is 330 // 331 // nested-name-specifier type-name :: ~ type-name 332 // 333 // Look for the second type-name in the nested-name-specifier. 334 CXXScopeSpec PrefixSS; 335 PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data())); 336 if (ParsedType T = LookupInNestedNameSpec(PrefixSS)) 337 return T; 338 } else { 339 // This is one of 340 // 341 // type-name :: ~ type-name 342 // ~ type-name 343 // 344 // Look in the scope and (if any) the object type. 345 if (ParsedType T = LookupInScope()) 346 return T; 347 if (ParsedType T = LookupInObjectType()) 348 return T; 349 } 350 351 if (Failed) 352 return nullptr; 353 354 if (IsDependent) { 355 // We didn't find our type, but that's OK: it's dependent anyway. 356 357 // FIXME: What if we have no nested-name-specifier? 358 QualType T = CheckTypenameType(ETK_None, SourceLocation(), 359 SS.getWithLocInContext(Context), 360 II, NameLoc); 361 return ParsedType::make(T); 362 } 363 364 // The remaining cases are all non-standard extensions imitating the behavior 365 // of various other compilers. 366 unsigned NumNonExtensionDecls = FoundDecls.size(); 367 368 if (SS.isSet()) { 369 // For compatibility with older broken C++ rules and existing code, 370 // 371 // nested-name-specifier :: ~ type-name 372 // 373 // also looks for type-name within the nested-name-specifier. 374 if (ParsedType T = LookupInNestedNameSpec(SS)) { 375 Diag(SS.getEndLoc(), diag::ext_dtor_named_in_wrong_scope) 376 << SS.getRange() 377 << FixItHint::CreateInsertion(SS.getEndLoc(), 378 ("::" + II.getName()).str()); 379 return T; 380 } 381 382 // For compatibility with other compilers and older versions of Clang, 383 // 384 // nested-name-specifier type-name :: ~ type-name 385 // 386 // also looks for type-name in the scope. Unfortunately, we can't 387 // reasonably apply this fallback for dependent nested-name-specifiers. 388 if (SS.getScopeRep()->getPrefix()) { 389 if (ParsedType T = LookupInScope()) { 390 Diag(SS.getEndLoc(), diag::ext_qualified_dtor_named_in_lexical_scope) 391 << FixItHint::CreateRemoval(SS.getRange()); 392 Diag(FoundDecls.back()->getLocation(), diag::note_destructor_type_here) 393 << GetTypeFromParser(T); 394 return T; 395 } 396 } 397 } 398 399 // We didn't find anything matching; tell the user what we did find (if 400 // anything). 401 402 // Don't tell the user about declarations we shouldn't have found. 403 FoundDecls.resize(NumNonExtensionDecls); 404 405 // List types before non-types. 406 std::stable_sort(FoundDecls.begin(), FoundDecls.end(), 407 [](NamedDecl *A, NamedDecl *B) { 408 return isa<TypeDecl>(A->getUnderlyingDecl()) > 409 isa<TypeDecl>(B->getUnderlyingDecl()); 410 }); 411 412 // Suggest a fixit to properly name the destroyed type. 413 auto MakeFixItHint = [&]{ 414 const CXXRecordDecl *Destroyed = nullptr; 415 // FIXME: If we have a scope specifier, suggest its last component? 416 if (!SearchType.isNull()) 417 Destroyed = SearchType->getAsCXXRecordDecl(); 418 else if (S) 419 Destroyed = dyn_cast_or_null<CXXRecordDecl>(S->getEntity()); 420 if (Destroyed) 421 return FixItHint::CreateReplacement(SourceRange(NameLoc), 422 Destroyed->getNameAsString()); 423 return FixItHint(); 424 }; 425 426 if (FoundDecls.empty()) { 427 // FIXME: Attempt typo-correction? 428 Diag(NameLoc, diag::err_undeclared_destructor_name) 429 << &II << MakeFixItHint(); 430 } else if (!SearchType.isNull() && FoundDecls.size() == 1) { 431 if (auto *TD = dyn_cast<TypeDecl>(FoundDecls[0]->getUnderlyingDecl())) { 432 assert(!SearchType.isNull() && 433 "should only reject a type result if we have a search type"); 434 QualType T = Context.getTypeDeclType(TD); 435 Diag(NameLoc, diag::err_destructor_expr_type_mismatch) 436 << T << SearchType << MakeFixItHint(); 437 } else { 438 Diag(NameLoc, diag::err_destructor_expr_nontype) 439 << &II << MakeFixItHint(); 440 } 441 } else { 442 Diag(NameLoc, SearchType.isNull() ? diag::err_destructor_name_nontype 443 : diag::err_destructor_expr_mismatch) 444 << &II << SearchType << MakeFixItHint(); 445 } 446 447 for (NamedDecl *FoundD : FoundDecls) { 448 if (auto *TD = dyn_cast<TypeDecl>(FoundD->getUnderlyingDecl())) 449 Diag(FoundD->getLocation(), diag::note_destructor_type_here) 450 << Context.getTypeDeclType(TD); 451 else 452 Diag(FoundD->getLocation(), diag::note_destructor_nontype_here) 453 << FoundD; 454 } 455 456 return nullptr; 457 } 458 459 ParsedType Sema::getDestructorTypeForDecltype(const DeclSpec &DS, 460 ParsedType ObjectType) { 461 if (DS.getTypeSpecType() == DeclSpec::TST_error) 462 return nullptr; 463 464 if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto) { 465 Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid); 466 return nullptr; 467 } 468 469 assert(DS.getTypeSpecType() == DeclSpec::TST_decltype && 470 "unexpected type in getDestructorType"); 471 QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc()); 472 473 // If we know the type of the object, check that the correct destructor 474 // type was named now; we can give better diagnostics this way. 475 QualType SearchType = GetTypeFromParser(ObjectType); 476 if (!SearchType.isNull() && !SearchType->isDependentType() && 477 !Context.hasSameUnqualifiedType(T, SearchType)) { 478 Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch) 479 << T << SearchType; 480 return nullptr; 481 } 482 483 return ParsedType::make(T); 484 } 485 486 bool Sema::checkLiteralOperatorId(const CXXScopeSpec &SS, 487 const UnqualifiedId &Name) { 488 assert(Name.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId); 489 490 if (!SS.isValid()) 491 return false; 492 493 switch (SS.getScopeRep()->getKind()) { 494 case NestedNameSpecifier::Identifier: 495 case NestedNameSpecifier::TypeSpec: 496 case NestedNameSpecifier::TypeSpecWithTemplate: 497 // Per C++11 [over.literal]p2, literal operators can only be declared at 498 // namespace scope. Therefore, this unqualified-id cannot name anything. 499 // Reject it early, because we have no AST representation for this in the 500 // case where the scope is dependent. 501 Diag(Name.getBeginLoc(), diag::err_literal_operator_id_outside_namespace) 502 << SS.getScopeRep(); 503 return true; 504 505 case NestedNameSpecifier::Global: 506 case NestedNameSpecifier::Super: 507 case NestedNameSpecifier::Namespace: 508 case NestedNameSpecifier::NamespaceAlias: 509 return false; 510 } 511 512 llvm_unreachable("unknown nested name specifier kind"); 513 } 514 515 /// Build a C++ typeid expression with a type operand. 516 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType, 517 SourceLocation TypeidLoc, 518 TypeSourceInfo *Operand, 519 SourceLocation RParenLoc) { 520 // C++ [expr.typeid]p4: 521 // The top-level cv-qualifiers of the lvalue expression or the type-id 522 // that is the operand of typeid are always ignored. 523 // If the type of the type-id is a class type or a reference to a class 524 // type, the class shall be completely-defined. 525 Qualifiers Quals; 526 QualType T 527 = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(), 528 Quals); 529 if (T->getAs<RecordType>() && 530 RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid)) 531 return ExprError(); 532 533 if (T->isVariablyModifiedType()) 534 return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid) << T); 535 536 if (CheckQualifiedFunctionForTypeId(T, TypeidLoc)) 537 return ExprError(); 538 539 return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), Operand, 540 SourceRange(TypeidLoc, RParenLoc)); 541 } 542 543 /// Build a C++ typeid expression with an expression operand. 544 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType, 545 SourceLocation TypeidLoc, 546 Expr *E, 547 SourceLocation RParenLoc) { 548 bool WasEvaluated = false; 549 if (E && !E->isTypeDependent()) { 550 if (E->getType()->isPlaceholderType()) { 551 ExprResult result = CheckPlaceholderExpr(E); 552 if (result.isInvalid()) return ExprError(); 553 E = result.get(); 554 } 555 556 QualType T = E->getType(); 557 if (const RecordType *RecordT = T->getAs<RecordType>()) { 558 CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl()); 559 // C++ [expr.typeid]p3: 560 // [...] If the type of the expression is a class type, the class 561 // shall be completely-defined. 562 if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid)) 563 return ExprError(); 564 565 // C++ [expr.typeid]p3: 566 // When typeid is applied to an expression other than an glvalue of a 567 // polymorphic class type [...] [the] expression is an unevaluated 568 // operand. [...] 569 if (RecordD->isPolymorphic() && E->isGLValue()) { 570 // The subexpression is potentially evaluated; switch the context 571 // and recheck the subexpression. 572 ExprResult Result = TransformToPotentiallyEvaluated(E); 573 if (Result.isInvalid()) return ExprError(); 574 E = Result.get(); 575 576 // We require a vtable to query the type at run time. 577 MarkVTableUsed(TypeidLoc, RecordD); 578 WasEvaluated = true; 579 } 580 } 581 582 ExprResult Result = CheckUnevaluatedOperand(E); 583 if (Result.isInvalid()) 584 return ExprError(); 585 E = Result.get(); 586 587 // C++ [expr.typeid]p4: 588 // [...] If the type of the type-id is a reference to a possibly 589 // cv-qualified type, the result of the typeid expression refers to a 590 // std::type_info object representing the cv-unqualified referenced 591 // type. 592 Qualifiers Quals; 593 QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals); 594 if (!Context.hasSameType(T, UnqualT)) { 595 T = UnqualT; 596 E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).get(); 597 } 598 } 599 600 if (E->getType()->isVariablyModifiedType()) 601 return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid) 602 << E->getType()); 603 else if (!inTemplateInstantiation() && 604 E->HasSideEffects(Context, WasEvaluated)) { 605 // The expression operand for typeid is in an unevaluated expression 606 // context, so side effects could result in unintended consequences. 607 Diag(E->getExprLoc(), WasEvaluated 608 ? diag::warn_side_effects_typeid 609 : diag::warn_side_effects_unevaluated_context); 610 } 611 612 return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), E, 613 SourceRange(TypeidLoc, RParenLoc)); 614 } 615 616 /// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression); 617 ExprResult 618 Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc, 619 bool isType, void *TyOrExpr, SourceLocation RParenLoc) { 620 // typeid is not supported in OpenCL. 621 if (getLangOpts().OpenCLCPlusPlus) { 622 return ExprError(Diag(OpLoc, diag::err_openclcxx_not_supported) 623 << "typeid"); 624 } 625 626 // Find the std::type_info type. 627 if (!getStdNamespace()) 628 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid)); 629 630 if (!CXXTypeInfoDecl) { 631 IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info"); 632 LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName); 633 LookupQualifiedName(R, getStdNamespace()); 634 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>(); 635 // Microsoft's typeinfo doesn't have type_info in std but in the global 636 // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153. 637 if (!CXXTypeInfoDecl && LangOpts.MSVCCompat) { 638 LookupQualifiedName(R, Context.getTranslationUnitDecl()); 639 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>(); 640 } 641 if (!CXXTypeInfoDecl) 642 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid)); 643 } 644 645 if (!getLangOpts().RTTI) { 646 return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti)); 647 } 648 649 QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl); 650 651 if (isType) { 652 // The operand is a type; handle it as such. 653 TypeSourceInfo *TInfo = nullptr; 654 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr), 655 &TInfo); 656 if (T.isNull()) 657 return ExprError(); 658 659 if (!TInfo) 660 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc); 661 662 return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc); 663 } 664 665 // The operand is an expression. 666 ExprResult Result = 667 BuildCXXTypeId(TypeInfoType, OpLoc, (Expr *)TyOrExpr, RParenLoc); 668 669 if (!getLangOpts().RTTIData && !Result.isInvalid()) 670 if (auto *CTE = dyn_cast<CXXTypeidExpr>(Result.get())) 671 if (CTE->isPotentiallyEvaluated() && !CTE->isMostDerived(Context)) 672 Diag(OpLoc, diag::warn_no_typeid_with_rtti_disabled) 673 << (getDiagnostics().getDiagnosticOptions().getFormat() == 674 DiagnosticOptions::MSVC); 675 return Result; 676 } 677 678 /// Grabs __declspec(uuid()) off a type, or returns 0 if we cannot resolve to 679 /// a single GUID. 680 static void 681 getUuidAttrOfType(Sema &SemaRef, QualType QT, 682 llvm::SmallSetVector<const UuidAttr *, 1> &UuidAttrs) { 683 // Optionally remove one level of pointer, reference or array indirection. 684 const Type *Ty = QT.getTypePtr(); 685 if (QT->isPointerType() || QT->isReferenceType()) 686 Ty = QT->getPointeeType().getTypePtr(); 687 else if (QT->isArrayType()) 688 Ty = Ty->getBaseElementTypeUnsafe(); 689 690 const auto *TD = Ty->getAsTagDecl(); 691 if (!TD) 692 return; 693 694 if (const auto *Uuid = TD->getMostRecentDecl()->getAttr<UuidAttr>()) { 695 UuidAttrs.insert(Uuid); 696 return; 697 } 698 699 // __uuidof can grab UUIDs from template arguments. 700 if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(TD)) { 701 const TemplateArgumentList &TAL = CTSD->getTemplateArgs(); 702 for (const TemplateArgument &TA : TAL.asArray()) { 703 const UuidAttr *UuidForTA = nullptr; 704 if (TA.getKind() == TemplateArgument::Type) 705 getUuidAttrOfType(SemaRef, TA.getAsType(), UuidAttrs); 706 else if (TA.getKind() == TemplateArgument::Declaration) 707 getUuidAttrOfType(SemaRef, TA.getAsDecl()->getType(), UuidAttrs); 708 709 if (UuidForTA) 710 UuidAttrs.insert(UuidForTA); 711 } 712 } 713 } 714 715 /// Build a Microsoft __uuidof expression with a type operand. 716 ExprResult Sema::BuildCXXUuidof(QualType Type, 717 SourceLocation TypeidLoc, 718 TypeSourceInfo *Operand, 719 SourceLocation RParenLoc) { 720 MSGuidDecl *Guid = nullptr; 721 if (!Operand->getType()->isDependentType()) { 722 llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs; 723 getUuidAttrOfType(*this, Operand->getType(), UuidAttrs); 724 if (UuidAttrs.empty()) 725 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid)); 726 if (UuidAttrs.size() > 1) 727 return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids)); 728 Guid = UuidAttrs.back()->getGuidDecl(); 729 } 730 731 return new (Context) 732 CXXUuidofExpr(Type, Operand, Guid, SourceRange(TypeidLoc, RParenLoc)); 733 } 734 735 /// Build a Microsoft __uuidof expression with an expression operand. 736 ExprResult Sema::BuildCXXUuidof(QualType Type, SourceLocation TypeidLoc, 737 Expr *E, SourceLocation RParenLoc) { 738 MSGuidDecl *Guid = nullptr; 739 if (!E->getType()->isDependentType()) { 740 if (E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { 741 // A null pointer results in {00000000-0000-0000-0000-000000000000}. 742 Guid = Context.getMSGuidDecl(MSGuidDecl::Parts{}); 743 } else { 744 llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs; 745 getUuidAttrOfType(*this, E->getType(), UuidAttrs); 746 if (UuidAttrs.empty()) 747 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid)); 748 if (UuidAttrs.size() > 1) 749 return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids)); 750 Guid = UuidAttrs.back()->getGuidDecl(); 751 } 752 } 753 754 return new (Context) 755 CXXUuidofExpr(Type, E, Guid, SourceRange(TypeidLoc, RParenLoc)); 756 } 757 758 /// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression); 759 ExprResult 760 Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc, 761 bool isType, void *TyOrExpr, SourceLocation RParenLoc) { 762 QualType GuidType = Context.getMSGuidType(); 763 GuidType.addConst(); 764 765 if (isType) { 766 // The operand is a type; handle it as such. 767 TypeSourceInfo *TInfo = nullptr; 768 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr), 769 &TInfo); 770 if (T.isNull()) 771 return ExprError(); 772 773 if (!TInfo) 774 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc); 775 776 return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc); 777 } 778 779 // The operand is an expression. 780 return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc); 781 } 782 783 /// ActOnCXXBoolLiteral - Parse {true,false} literals. 784 ExprResult 785 Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) { 786 assert((Kind == tok::kw_true || Kind == tok::kw_false) && 787 "Unknown C++ Boolean value!"); 788 return new (Context) 789 CXXBoolLiteralExpr(Kind == tok::kw_true, Context.BoolTy, OpLoc); 790 } 791 792 /// ActOnCXXNullPtrLiteral - Parse 'nullptr'. 793 ExprResult 794 Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) { 795 return new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc); 796 } 797 798 /// ActOnCXXThrow - Parse throw expressions. 799 ExprResult 800 Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) { 801 bool IsThrownVarInScope = false; 802 if (Ex) { 803 // C++0x [class.copymove]p31: 804 // When certain criteria are met, an implementation is allowed to omit the 805 // copy/move construction of a class object [...] 806 // 807 // - in a throw-expression, when the operand is the name of a 808 // non-volatile automatic object (other than a function or catch- 809 // clause parameter) whose scope does not extend beyond the end of the 810 // innermost enclosing try-block (if there is one), the copy/move 811 // operation from the operand to the exception object (15.1) can be 812 // omitted by constructing the automatic object directly into the 813 // exception object 814 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens())) 815 if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) { 816 if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) { 817 for( ; S; S = S->getParent()) { 818 if (S->isDeclScope(Var)) { 819 IsThrownVarInScope = true; 820 break; 821 } 822 823 if (S->getFlags() & 824 (Scope::FnScope | Scope::ClassScope | Scope::BlockScope | 825 Scope::FunctionPrototypeScope | Scope::ObjCMethodScope | 826 Scope::TryScope)) 827 break; 828 } 829 } 830 } 831 } 832 833 return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope); 834 } 835 836 ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex, 837 bool IsThrownVarInScope) { 838 // Don't report an error if 'throw' is used in system headers. 839 if (!getLangOpts().CXXExceptions && 840 !getSourceManager().isInSystemHeader(OpLoc) && !getLangOpts().CUDA) { 841 // Delay error emission for the OpenMP device code. 842 targetDiag(OpLoc, diag::err_exceptions_disabled) << "throw"; 843 } 844 845 // Exceptions aren't allowed in CUDA device code. 846 if (getLangOpts().CUDA) 847 CUDADiagIfDeviceCode(OpLoc, diag::err_cuda_device_exceptions) 848 << "throw" << CurrentCUDATarget(); 849 850 if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope()) 851 Diag(OpLoc, diag::err_omp_simd_region_cannot_use_stmt) << "throw"; 852 853 if (Ex && !Ex->isTypeDependent()) { 854 QualType ExceptionObjectTy = Context.getExceptionObjectType(Ex->getType()); 855 if (CheckCXXThrowOperand(OpLoc, ExceptionObjectTy, Ex)) 856 return ExprError(); 857 858 // Initialize the exception result. This implicitly weeds out 859 // abstract types or types with inaccessible copy constructors. 860 861 // C++0x [class.copymove]p31: 862 // When certain criteria are met, an implementation is allowed to omit the 863 // copy/move construction of a class object [...] 864 // 865 // - in a throw-expression, when the operand is the name of a 866 // non-volatile automatic object (other than a function or 867 // catch-clause 868 // parameter) whose scope does not extend beyond the end of the 869 // innermost enclosing try-block (if there is one), the copy/move 870 // operation from the operand to the exception object (15.1) can be 871 // omitted by constructing the automatic object directly into the 872 // exception object 873 const VarDecl *NRVOVariable = nullptr; 874 if (IsThrownVarInScope) 875 NRVOVariable = getCopyElisionCandidate(QualType(), Ex, CES_Strict); 876 877 InitializedEntity Entity = InitializedEntity::InitializeException( 878 OpLoc, ExceptionObjectTy, 879 /*NRVO=*/NRVOVariable != nullptr); 880 ExprResult Res = PerformMoveOrCopyInitialization( 881 Entity, NRVOVariable, QualType(), Ex, IsThrownVarInScope); 882 if (Res.isInvalid()) 883 return ExprError(); 884 Ex = Res.get(); 885 } 886 887 // PPC MMA non-pointer types are not allowed as throw expr types. 888 if (Ex && Context.getTargetInfo().getTriple().isPPC64()) 889 CheckPPCMMAType(Ex->getType(), Ex->getBeginLoc()); 890 891 return new (Context) 892 CXXThrowExpr(Ex, Context.VoidTy, OpLoc, IsThrownVarInScope); 893 } 894 895 static void 896 collectPublicBases(CXXRecordDecl *RD, 897 llvm::DenseMap<CXXRecordDecl *, unsigned> &SubobjectsSeen, 898 llvm::SmallPtrSetImpl<CXXRecordDecl *> &VBases, 899 llvm::SetVector<CXXRecordDecl *> &PublicSubobjectsSeen, 900 bool ParentIsPublic) { 901 for (const CXXBaseSpecifier &BS : RD->bases()) { 902 CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl(); 903 bool NewSubobject; 904 // Virtual bases constitute the same subobject. Non-virtual bases are 905 // always distinct subobjects. 906 if (BS.isVirtual()) 907 NewSubobject = VBases.insert(BaseDecl).second; 908 else 909 NewSubobject = true; 910 911 if (NewSubobject) 912 ++SubobjectsSeen[BaseDecl]; 913 914 // Only add subobjects which have public access throughout the entire chain. 915 bool PublicPath = ParentIsPublic && BS.getAccessSpecifier() == AS_public; 916 if (PublicPath) 917 PublicSubobjectsSeen.insert(BaseDecl); 918 919 // Recurse on to each base subobject. 920 collectPublicBases(BaseDecl, SubobjectsSeen, VBases, PublicSubobjectsSeen, 921 PublicPath); 922 } 923 } 924 925 static void getUnambiguousPublicSubobjects( 926 CXXRecordDecl *RD, llvm::SmallVectorImpl<CXXRecordDecl *> &Objects) { 927 llvm::DenseMap<CXXRecordDecl *, unsigned> SubobjectsSeen; 928 llvm::SmallSet<CXXRecordDecl *, 2> VBases; 929 llvm::SetVector<CXXRecordDecl *> PublicSubobjectsSeen; 930 SubobjectsSeen[RD] = 1; 931 PublicSubobjectsSeen.insert(RD); 932 collectPublicBases(RD, SubobjectsSeen, VBases, PublicSubobjectsSeen, 933 /*ParentIsPublic=*/true); 934 935 for (CXXRecordDecl *PublicSubobject : PublicSubobjectsSeen) { 936 // Skip ambiguous objects. 937 if (SubobjectsSeen[PublicSubobject] > 1) 938 continue; 939 940 Objects.push_back(PublicSubobject); 941 } 942 } 943 944 /// CheckCXXThrowOperand - Validate the operand of a throw. 945 bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc, 946 QualType ExceptionObjectTy, Expr *E) { 947 // If the type of the exception would be an incomplete type or a pointer 948 // to an incomplete type other than (cv) void the program is ill-formed. 949 QualType Ty = ExceptionObjectTy; 950 bool isPointer = false; 951 if (const PointerType* Ptr = Ty->getAs<PointerType>()) { 952 Ty = Ptr->getPointeeType(); 953 isPointer = true; 954 } 955 if (!isPointer || !Ty->isVoidType()) { 956 if (RequireCompleteType(ThrowLoc, Ty, 957 isPointer ? diag::err_throw_incomplete_ptr 958 : diag::err_throw_incomplete, 959 E->getSourceRange())) 960 return true; 961 962 if (!isPointer && Ty->isSizelessType()) { 963 Diag(ThrowLoc, diag::err_throw_sizeless) << Ty << E->getSourceRange(); 964 return true; 965 } 966 967 if (RequireNonAbstractType(ThrowLoc, ExceptionObjectTy, 968 diag::err_throw_abstract_type, E)) 969 return true; 970 } 971 972 // If the exception has class type, we need additional handling. 973 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 974 if (!RD) 975 return false; 976 977 // If we are throwing a polymorphic class type or pointer thereof, 978 // exception handling will make use of the vtable. 979 MarkVTableUsed(ThrowLoc, RD); 980 981 // If a pointer is thrown, the referenced object will not be destroyed. 982 if (isPointer) 983 return false; 984 985 // If the class has a destructor, we must be able to call it. 986 if (!RD->hasIrrelevantDestructor()) { 987 if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) { 988 MarkFunctionReferenced(E->getExprLoc(), Destructor); 989 CheckDestructorAccess(E->getExprLoc(), Destructor, 990 PDiag(diag::err_access_dtor_exception) << Ty); 991 if (DiagnoseUseOfDecl(Destructor, E->getExprLoc())) 992 return true; 993 } 994 } 995 996 // The MSVC ABI creates a list of all types which can catch the exception 997 // object. This list also references the appropriate copy constructor to call 998 // if the object is caught by value and has a non-trivial copy constructor. 999 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1000 // We are only interested in the public, unambiguous bases contained within 1001 // the exception object. Bases which are ambiguous or otherwise 1002 // inaccessible are not catchable types. 1003 llvm::SmallVector<CXXRecordDecl *, 2> UnambiguousPublicSubobjects; 1004 getUnambiguousPublicSubobjects(RD, UnambiguousPublicSubobjects); 1005 1006 for (CXXRecordDecl *Subobject : UnambiguousPublicSubobjects) { 1007 // Attempt to lookup the copy constructor. Various pieces of machinery 1008 // will spring into action, like template instantiation, which means this 1009 // cannot be a simple walk of the class's decls. Instead, we must perform 1010 // lookup and overload resolution. 1011 CXXConstructorDecl *CD = LookupCopyingConstructor(Subobject, 0); 1012 if (!CD || CD->isDeleted()) 1013 continue; 1014 1015 // Mark the constructor referenced as it is used by this throw expression. 1016 MarkFunctionReferenced(E->getExprLoc(), CD); 1017 1018 // Skip this copy constructor if it is trivial, we don't need to record it 1019 // in the catchable type data. 1020 if (CD->isTrivial()) 1021 continue; 1022 1023 // The copy constructor is non-trivial, create a mapping from this class 1024 // type to this constructor. 1025 // N.B. The selection of copy constructor is not sensitive to this 1026 // particular throw-site. Lookup will be performed at the catch-site to 1027 // ensure that the copy constructor is, in fact, accessible (via 1028 // friendship or any other means). 1029 Context.addCopyConstructorForExceptionObject(Subobject, CD); 1030 1031 // We don't keep the instantiated default argument expressions around so 1032 // we must rebuild them here. 1033 for (unsigned I = 1, E = CD->getNumParams(); I != E; ++I) { 1034 if (CheckCXXDefaultArgExpr(ThrowLoc, CD, CD->getParamDecl(I))) 1035 return true; 1036 } 1037 } 1038 } 1039 1040 // Under the Itanium C++ ABI, memory for the exception object is allocated by 1041 // the runtime with no ability for the compiler to request additional 1042 // alignment. Warn if the exception type requires alignment beyond the minimum 1043 // guaranteed by the target C++ runtime. 1044 if (Context.getTargetInfo().getCXXABI().isItaniumFamily()) { 1045 CharUnits TypeAlign = Context.getTypeAlignInChars(Ty); 1046 CharUnits ExnObjAlign = Context.getExnObjectAlignment(); 1047 if (ExnObjAlign < TypeAlign) { 1048 Diag(ThrowLoc, diag::warn_throw_underaligned_obj); 1049 Diag(ThrowLoc, diag::note_throw_underaligned_obj) 1050 << Ty << (unsigned)TypeAlign.getQuantity() 1051 << (unsigned)ExnObjAlign.getQuantity(); 1052 } 1053 } 1054 1055 return false; 1056 } 1057 1058 static QualType adjustCVQualifiersForCXXThisWithinLambda( 1059 ArrayRef<FunctionScopeInfo *> FunctionScopes, QualType ThisTy, 1060 DeclContext *CurSemaContext, ASTContext &ASTCtx) { 1061 1062 QualType ClassType = ThisTy->getPointeeType(); 1063 LambdaScopeInfo *CurLSI = nullptr; 1064 DeclContext *CurDC = CurSemaContext; 1065 1066 // Iterate through the stack of lambdas starting from the innermost lambda to 1067 // the outermost lambda, checking if '*this' is ever captured by copy - since 1068 // that could change the cv-qualifiers of the '*this' object. 1069 // The object referred to by '*this' starts out with the cv-qualifiers of its 1070 // member function. We then start with the innermost lambda and iterate 1071 // outward checking to see if any lambda performs a by-copy capture of '*this' 1072 // - and if so, any nested lambda must respect the 'constness' of that 1073 // capturing lamdbda's call operator. 1074 // 1075 1076 // Since the FunctionScopeInfo stack is representative of the lexical 1077 // nesting of the lambda expressions during initial parsing (and is the best 1078 // place for querying information about captures about lambdas that are 1079 // partially processed) and perhaps during instantiation of function templates 1080 // that contain lambda expressions that need to be transformed BUT not 1081 // necessarily during instantiation of a nested generic lambda's function call 1082 // operator (which might even be instantiated at the end of the TU) - at which 1083 // time the DeclContext tree is mature enough to query capture information 1084 // reliably - we use a two pronged approach to walk through all the lexically 1085 // enclosing lambda expressions: 1086 // 1087 // 1) Climb down the FunctionScopeInfo stack as long as each item represents 1088 // a Lambda (i.e. LambdaScopeInfo) AND each LSI's 'closure-type' is lexically 1089 // enclosed by the call-operator of the LSI below it on the stack (while 1090 // tracking the enclosing DC for step 2 if needed). Note the topmost LSI on 1091 // the stack represents the innermost lambda. 1092 // 1093 // 2) If we run out of enclosing LSI's, check if the enclosing DeclContext 1094 // represents a lambda's call operator. If it does, we must be instantiating 1095 // a generic lambda's call operator (represented by the Current LSI, and 1096 // should be the only scenario where an inconsistency between the LSI and the 1097 // DeclContext should occur), so climb out the DeclContexts if they 1098 // represent lambdas, while querying the corresponding closure types 1099 // regarding capture information. 1100 1101 // 1) Climb down the function scope info stack. 1102 for (int I = FunctionScopes.size(); 1103 I-- && isa<LambdaScopeInfo>(FunctionScopes[I]) && 1104 (!CurLSI || !CurLSI->Lambda || CurLSI->Lambda->getDeclContext() == 1105 cast<LambdaScopeInfo>(FunctionScopes[I])->CallOperator); 1106 CurDC = getLambdaAwareParentOfDeclContext(CurDC)) { 1107 CurLSI = cast<LambdaScopeInfo>(FunctionScopes[I]); 1108 1109 if (!CurLSI->isCXXThisCaptured()) 1110 continue; 1111 1112 auto C = CurLSI->getCXXThisCapture(); 1113 1114 if (C.isCopyCapture()) { 1115 ClassType.removeLocalCVRQualifiers(Qualifiers::CVRMask); 1116 if (CurLSI->CallOperator->isConst()) 1117 ClassType.addConst(); 1118 return ASTCtx.getPointerType(ClassType); 1119 } 1120 } 1121 1122 // 2) We've run out of ScopeInfos but check if CurDC is a lambda (which can 1123 // happen during instantiation of its nested generic lambda call operator) 1124 if (isLambdaCallOperator(CurDC)) { 1125 assert(CurLSI && "While computing 'this' capture-type for a generic " 1126 "lambda, we must have a corresponding LambdaScopeInfo"); 1127 assert(isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && 1128 "While computing 'this' capture-type for a generic lambda, when we " 1129 "run out of enclosing LSI's, yet the enclosing DC is a " 1130 "lambda-call-operator we must be (i.e. Current LSI) in a generic " 1131 "lambda call oeprator"); 1132 assert(CurDC == getLambdaAwareParentOfDeclContext(CurLSI->CallOperator)); 1133 1134 auto IsThisCaptured = 1135 [](CXXRecordDecl *Closure, bool &IsByCopy, bool &IsConst) { 1136 IsConst = false; 1137 IsByCopy = false; 1138 for (auto &&C : Closure->captures()) { 1139 if (C.capturesThis()) { 1140 if (C.getCaptureKind() == LCK_StarThis) 1141 IsByCopy = true; 1142 if (Closure->getLambdaCallOperator()->isConst()) 1143 IsConst = true; 1144 return true; 1145 } 1146 } 1147 return false; 1148 }; 1149 1150 bool IsByCopyCapture = false; 1151 bool IsConstCapture = false; 1152 CXXRecordDecl *Closure = cast<CXXRecordDecl>(CurDC->getParent()); 1153 while (Closure && 1154 IsThisCaptured(Closure, IsByCopyCapture, IsConstCapture)) { 1155 if (IsByCopyCapture) { 1156 ClassType.removeLocalCVRQualifiers(Qualifiers::CVRMask); 1157 if (IsConstCapture) 1158 ClassType.addConst(); 1159 return ASTCtx.getPointerType(ClassType); 1160 } 1161 Closure = isLambdaCallOperator(Closure->getParent()) 1162 ? cast<CXXRecordDecl>(Closure->getParent()->getParent()) 1163 : nullptr; 1164 } 1165 } 1166 return ASTCtx.getPointerType(ClassType); 1167 } 1168 1169 QualType Sema::getCurrentThisType() { 1170 DeclContext *DC = getFunctionLevelDeclContext(); 1171 QualType ThisTy = CXXThisTypeOverride; 1172 1173 if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) { 1174 if (method && method->isInstance()) 1175 ThisTy = method->getThisType(); 1176 } 1177 1178 if (ThisTy.isNull() && isLambdaCallOperator(CurContext) && 1179 inTemplateInstantiation() && isa<CXXRecordDecl>(DC)) { 1180 1181 // This is a lambda call operator that is being instantiated as a default 1182 // initializer. DC must point to the enclosing class type, so we can recover 1183 // the 'this' type from it. 1184 QualType ClassTy = Context.getTypeDeclType(cast<CXXRecordDecl>(DC)); 1185 // There are no cv-qualifiers for 'this' within default initializers, 1186 // per [expr.prim.general]p4. 1187 ThisTy = Context.getPointerType(ClassTy); 1188 } 1189 1190 // If we are within a lambda's call operator, the cv-qualifiers of 'this' 1191 // might need to be adjusted if the lambda or any of its enclosing lambda's 1192 // captures '*this' by copy. 1193 if (!ThisTy.isNull() && isLambdaCallOperator(CurContext)) 1194 return adjustCVQualifiersForCXXThisWithinLambda(FunctionScopes, ThisTy, 1195 CurContext, Context); 1196 return ThisTy; 1197 } 1198 1199 Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S, 1200 Decl *ContextDecl, 1201 Qualifiers CXXThisTypeQuals, 1202 bool Enabled) 1203 : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false) 1204 { 1205 if (!Enabled || !ContextDecl) 1206 return; 1207 1208 CXXRecordDecl *Record = nullptr; 1209 if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl)) 1210 Record = Template->getTemplatedDecl(); 1211 else 1212 Record = cast<CXXRecordDecl>(ContextDecl); 1213 1214 QualType T = S.Context.getRecordType(Record); 1215 T = S.getASTContext().getQualifiedType(T, CXXThisTypeQuals); 1216 1217 S.CXXThisTypeOverride = S.Context.getPointerType(T); 1218 1219 this->Enabled = true; 1220 } 1221 1222 1223 Sema::CXXThisScopeRAII::~CXXThisScopeRAII() { 1224 if (Enabled) { 1225 S.CXXThisTypeOverride = OldCXXThisTypeOverride; 1226 } 1227 } 1228 1229 static void buildLambdaThisCaptureFixit(Sema &Sema, LambdaScopeInfo *LSI) { 1230 SourceLocation DiagLoc = LSI->IntroducerRange.getEnd(); 1231 assert(!LSI->isCXXThisCaptured()); 1232 // [=, this] {}; // until C++20: Error: this when = is the default 1233 if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval && 1234 !Sema.getLangOpts().CPlusPlus20) 1235 return; 1236 Sema.Diag(DiagLoc, diag::note_lambda_this_capture_fixit) 1237 << FixItHint::CreateInsertion( 1238 DiagLoc, LSI->NumExplicitCaptures > 0 ? ", this" : "this"); 1239 } 1240 1241 bool Sema::CheckCXXThisCapture(SourceLocation Loc, const bool Explicit, 1242 bool BuildAndDiagnose, const unsigned *const FunctionScopeIndexToStopAt, 1243 const bool ByCopy) { 1244 // We don't need to capture this in an unevaluated context. 1245 if (isUnevaluatedContext() && !Explicit) 1246 return true; 1247 1248 assert((!ByCopy || Explicit) && "cannot implicitly capture *this by value"); 1249 1250 const int MaxFunctionScopesIndex = FunctionScopeIndexToStopAt 1251 ? *FunctionScopeIndexToStopAt 1252 : FunctionScopes.size() - 1; 1253 1254 // Check that we can capture the *enclosing object* (referred to by '*this') 1255 // by the capturing-entity/closure (lambda/block/etc) at 1256 // MaxFunctionScopesIndex-deep on the FunctionScopes stack. 1257 1258 // Note: The *enclosing object* can only be captured by-value by a 1259 // closure that is a lambda, using the explicit notation: 1260 // [*this] { ... }. 1261 // Every other capture of the *enclosing object* results in its by-reference 1262 // capture. 1263 1264 // For a closure 'L' (at MaxFunctionScopesIndex in the FunctionScopes 1265 // stack), we can capture the *enclosing object* only if: 1266 // - 'L' has an explicit byref or byval capture of the *enclosing object* 1267 // - or, 'L' has an implicit capture. 1268 // AND 1269 // -- there is no enclosing closure 1270 // -- or, there is some enclosing closure 'E' that has already captured the 1271 // *enclosing object*, and every intervening closure (if any) between 'E' 1272 // and 'L' can implicitly capture the *enclosing object*. 1273 // -- or, every enclosing closure can implicitly capture the 1274 // *enclosing object* 1275 1276 1277 unsigned NumCapturingClosures = 0; 1278 for (int idx = MaxFunctionScopesIndex; idx >= 0; idx--) { 1279 if (CapturingScopeInfo *CSI = 1280 dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) { 1281 if (CSI->CXXThisCaptureIndex != 0) { 1282 // 'this' is already being captured; there isn't anything more to do. 1283 CSI->Captures[CSI->CXXThisCaptureIndex - 1].markUsed(BuildAndDiagnose); 1284 break; 1285 } 1286 LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI); 1287 if (LSI && isGenericLambdaCallOperatorSpecialization(LSI->CallOperator)) { 1288 // This context can't implicitly capture 'this'; fail out. 1289 if (BuildAndDiagnose) { 1290 Diag(Loc, diag::err_this_capture) 1291 << (Explicit && idx == MaxFunctionScopesIndex); 1292 if (!Explicit) 1293 buildLambdaThisCaptureFixit(*this, LSI); 1294 } 1295 return true; 1296 } 1297 if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref || 1298 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval || 1299 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block || 1300 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_CapturedRegion || 1301 (Explicit && idx == MaxFunctionScopesIndex)) { 1302 // Regarding (Explicit && idx == MaxFunctionScopesIndex): only the first 1303 // iteration through can be an explicit capture, all enclosing closures, 1304 // if any, must perform implicit captures. 1305 1306 // This closure can capture 'this'; continue looking upwards. 1307 NumCapturingClosures++; 1308 continue; 1309 } 1310 // This context can't implicitly capture 'this'; fail out. 1311 if (BuildAndDiagnose) 1312 Diag(Loc, diag::err_this_capture) 1313 << (Explicit && idx == MaxFunctionScopesIndex); 1314 1315 if (!Explicit) 1316 buildLambdaThisCaptureFixit(*this, LSI); 1317 return true; 1318 } 1319 break; 1320 } 1321 if (!BuildAndDiagnose) return false; 1322 1323 // If we got here, then the closure at MaxFunctionScopesIndex on the 1324 // FunctionScopes stack, can capture the *enclosing object*, so capture it 1325 // (including implicit by-reference captures in any enclosing closures). 1326 1327 // In the loop below, respect the ByCopy flag only for the closure requesting 1328 // the capture (i.e. first iteration through the loop below). Ignore it for 1329 // all enclosing closure's up to NumCapturingClosures (since they must be 1330 // implicitly capturing the *enclosing object* by reference (see loop 1331 // above)). 1332 assert((!ByCopy || 1333 dyn_cast<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) && 1334 "Only a lambda can capture the enclosing object (referred to by " 1335 "*this) by copy"); 1336 QualType ThisTy = getCurrentThisType(); 1337 for (int idx = MaxFunctionScopesIndex; NumCapturingClosures; 1338 --idx, --NumCapturingClosures) { 1339 CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]); 1340 1341 // The type of the corresponding data member (not a 'this' pointer if 'by 1342 // copy'). 1343 QualType CaptureType = ThisTy; 1344 if (ByCopy) { 1345 // If we are capturing the object referred to by '*this' by copy, ignore 1346 // any cv qualifiers inherited from the type of the member function for 1347 // the type of the closure-type's corresponding data member and any use 1348 // of 'this'. 1349 CaptureType = ThisTy->getPointeeType(); 1350 CaptureType.removeLocalCVRQualifiers(Qualifiers::CVRMask); 1351 } 1352 1353 bool isNested = NumCapturingClosures > 1; 1354 CSI->addThisCapture(isNested, Loc, CaptureType, ByCopy); 1355 } 1356 return false; 1357 } 1358 1359 ExprResult Sema::ActOnCXXThis(SourceLocation Loc) { 1360 /// C++ 9.3.2: In the body of a non-static member function, the keyword this 1361 /// is a non-lvalue expression whose value is the address of the object for 1362 /// which the function is called. 1363 1364 QualType ThisTy = getCurrentThisType(); 1365 if (ThisTy.isNull()) 1366 return Diag(Loc, diag::err_invalid_this_use); 1367 return BuildCXXThisExpr(Loc, ThisTy, /*IsImplicit=*/false); 1368 } 1369 1370 Expr *Sema::BuildCXXThisExpr(SourceLocation Loc, QualType Type, 1371 bool IsImplicit) { 1372 auto *This = new (Context) CXXThisExpr(Loc, Type, IsImplicit); 1373 MarkThisReferenced(This); 1374 return This; 1375 } 1376 1377 void Sema::MarkThisReferenced(CXXThisExpr *This) { 1378 CheckCXXThisCapture(This->getExprLoc()); 1379 } 1380 1381 bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) { 1382 // If we're outside the body of a member function, then we'll have a specified 1383 // type for 'this'. 1384 if (CXXThisTypeOverride.isNull()) 1385 return false; 1386 1387 // Determine whether we're looking into a class that's currently being 1388 // defined. 1389 CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl(); 1390 return Class && Class->isBeingDefined(); 1391 } 1392 1393 /// Parse construction of a specified type. 1394 /// Can be interpreted either as function-style casting ("int(x)") 1395 /// or class type construction ("ClassType(x,y,z)") 1396 /// or creation of a value-initialized type ("int()"). 1397 ExprResult 1398 Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep, 1399 SourceLocation LParenOrBraceLoc, 1400 MultiExprArg exprs, 1401 SourceLocation RParenOrBraceLoc, 1402 bool ListInitialization) { 1403 if (!TypeRep) 1404 return ExprError(); 1405 1406 TypeSourceInfo *TInfo; 1407 QualType Ty = GetTypeFromParser(TypeRep, &TInfo); 1408 if (!TInfo) 1409 TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation()); 1410 1411 auto Result = BuildCXXTypeConstructExpr(TInfo, LParenOrBraceLoc, exprs, 1412 RParenOrBraceLoc, ListInitialization); 1413 // Avoid creating a non-type-dependent expression that contains typos. 1414 // Non-type-dependent expressions are liable to be discarded without 1415 // checking for embedded typos. 1416 if (!Result.isInvalid() && Result.get()->isInstantiationDependent() && 1417 !Result.get()->isTypeDependent()) 1418 Result = CorrectDelayedTyposInExpr(Result.get()); 1419 else if (Result.isInvalid()) 1420 Result = CreateRecoveryExpr(TInfo->getTypeLoc().getBeginLoc(), 1421 RParenOrBraceLoc, exprs, Ty); 1422 return Result; 1423 } 1424 1425 ExprResult 1426 Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo, 1427 SourceLocation LParenOrBraceLoc, 1428 MultiExprArg Exprs, 1429 SourceLocation RParenOrBraceLoc, 1430 bool ListInitialization) { 1431 QualType Ty = TInfo->getType(); 1432 SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc(); 1433 1434 assert((!ListInitialization || 1435 (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0]))) && 1436 "List initialization must have initializer list as expression."); 1437 SourceRange FullRange = SourceRange(TyBeginLoc, RParenOrBraceLoc); 1438 1439 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo); 1440 InitializationKind Kind = 1441 Exprs.size() 1442 ? ListInitialization 1443 ? InitializationKind::CreateDirectList( 1444 TyBeginLoc, LParenOrBraceLoc, RParenOrBraceLoc) 1445 : InitializationKind::CreateDirect(TyBeginLoc, LParenOrBraceLoc, 1446 RParenOrBraceLoc) 1447 : InitializationKind::CreateValue(TyBeginLoc, LParenOrBraceLoc, 1448 RParenOrBraceLoc); 1449 1450 // C++1z [expr.type.conv]p1: 1451 // If the type is a placeholder for a deduced class type, [...perform class 1452 // template argument deduction...] 1453 DeducedType *Deduced = Ty->getContainedDeducedType(); 1454 if (Deduced && isa<DeducedTemplateSpecializationType>(Deduced)) { 1455 Ty = DeduceTemplateSpecializationFromInitializer(TInfo, Entity, 1456 Kind, Exprs); 1457 if (Ty.isNull()) 1458 return ExprError(); 1459 Entity = InitializedEntity::InitializeTemporary(TInfo, Ty); 1460 } 1461 1462 if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(Exprs)) { 1463 // FIXME: CXXUnresolvedConstructExpr does not model list-initialization 1464 // directly. We work around this by dropping the locations of the braces. 1465 SourceRange Locs = ListInitialization 1466 ? SourceRange() 1467 : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc); 1468 return CXXUnresolvedConstructExpr::Create(Context, Ty.getNonReferenceType(), 1469 TInfo, Locs.getBegin(), Exprs, 1470 Locs.getEnd()); 1471 } 1472 1473 // C++ [expr.type.conv]p1: 1474 // If the expression list is a parenthesized single expression, the type 1475 // conversion expression is equivalent (in definedness, and if defined in 1476 // meaning) to the corresponding cast expression. 1477 if (Exprs.size() == 1 && !ListInitialization && 1478 !isa<InitListExpr>(Exprs[0])) { 1479 Expr *Arg = Exprs[0]; 1480 return BuildCXXFunctionalCastExpr(TInfo, Ty, LParenOrBraceLoc, Arg, 1481 RParenOrBraceLoc); 1482 } 1483 1484 // For an expression of the form T(), T shall not be an array type. 1485 QualType ElemTy = Ty; 1486 if (Ty->isArrayType()) { 1487 if (!ListInitialization) 1488 return ExprError(Diag(TyBeginLoc, diag::err_value_init_for_array_type) 1489 << FullRange); 1490 ElemTy = Context.getBaseElementType(Ty); 1491 } 1492 1493 // There doesn't seem to be an explicit rule against this but sanity demands 1494 // we only construct objects with object types. 1495 if (Ty->isFunctionType()) 1496 return ExprError(Diag(TyBeginLoc, diag::err_init_for_function_type) 1497 << Ty << FullRange); 1498 1499 // C++17 [expr.type.conv]p2: 1500 // If the type is cv void and the initializer is (), the expression is a 1501 // prvalue of the specified type that performs no initialization. 1502 if (!Ty->isVoidType() && 1503 RequireCompleteType(TyBeginLoc, ElemTy, 1504 diag::err_invalid_incomplete_type_use, FullRange)) 1505 return ExprError(); 1506 1507 // Otherwise, the expression is a prvalue of the specified type whose 1508 // result object is direct-initialized (11.6) with the initializer. 1509 InitializationSequence InitSeq(*this, Entity, Kind, Exprs); 1510 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Exprs); 1511 1512 if (Result.isInvalid()) 1513 return Result; 1514 1515 Expr *Inner = Result.get(); 1516 if (CXXBindTemporaryExpr *BTE = dyn_cast_or_null<CXXBindTemporaryExpr>(Inner)) 1517 Inner = BTE->getSubExpr(); 1518 if (!isa<CXXTemporaryObjectExpr>(Inner) && 1519 !isa<CXXScalarValueInitExpr>(Inner)) { 1520 // If we created a CXXTemporaryObjectExpr, that node also represents the 1521 // functional cast. Otherwise, create an explicit cast to represent 1522 // the syntactic form of a functional-style cast that was used here. 1523 // 1524 // FIXME: Creating a CXXFunctionalCastExpr around a CXXConstructExpr 1525 // would give a more consistent AST representation than using a 1526 // CXXTemporaryObjectExpr. It's also weird that the functional cast 1527 // is sometimes handled by initialization and sometimes not. 1528 QualType ResultType = Result.get()->getType(); 1529 SourceRange Locs = ListInitialization 1530 ? SourceRange() 1531 : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc); 1532 Result = CXXFunctionalCastExpr::Create( 1533 Context, ResultType, Expr::getValueKindForType(Ty), TInfo, CK_NoOp, 1534 Result.get(), /*Path=*/nullptr, CurFPFeatureOverrides(), 1535 Locs.getBegin(), Locs.getEnd()); 1536 } 1537 1538 return Result; 1539 } 1540 1541 bool Sema::isUsualDeallocationFunction(const CXXMethodDecl *Method) { 1542 // [CUDA] Ignore this function, if we can't call it. 1543 const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext); 1544 if (getLangOpts().CUDA) { 1545 auto CallPreference = IdentifyCUDAPreference(Caller, Method); 1546 // If it's not callable at all, it's not the right function. 1547 if (CallPreference < CFP_WrongSide) 1548 return false; 1549 if (CallPreference == CFP_WrongSide) { 1550 // Maybe. We have to check if there are better alternatives. 1551 DeclContext::lookup_result R = 1552 Method->getDeclContext()->lookup(Method->getDeclName()); 1553 for (const auto *D : R) { 1554 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 1555 if (IdentifyCUDAPreference(Caller, FD) > CFP_WrongSide) 1556 return false; 1557 } 1558 } 1559 // We've found no better variants. 1560 } 1561 } 1562 1563 SmallVector<const FunctionDecl*, 4> PreventedBy; 1564 bool Result = Method->isUsualDeallocationFunction(PreventedBy); 1565 1566 if (Result || !getLangOpts().CUDA || PreventedBy.empty()) 1567 return Result; 1568 1569 // In case of CUDA, return true if none of the 1-argument deallocator 1570 // functions are actually callable. 1571 return llvm::none_of(PreventedBy, [&](const FunctionDecl *FD) { 1572 assert(FD->getNumParams() == 1 && 1573 "Only single-operand functions should be in PreventedBy"); 1574 return IdentifyCUDAPreference(Caller, FD) >= CFP_HostDevice; 1575 }); 1576 } 1577 1578 /// Determine whether the given function is a non-placement 1579 /// deallocation function. 1580 static bool isNonPlacementDeallocationFunction(Sema &S, FunctionDecl *FD) { 1581 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD)) 1582 return S.isUsualDeallocationFunction(Method); 1583 1584 if (FD->getOverloadedOperator() != OO_Delete && 1585 FD->getOverloadedOperator() != OO_Array_Delete) 1586 return false; 1587 1588 unsigned UsualParams = 1; 1589 1590 if (S.getLangOpts().SizedDeallocation && UsualParams < FD->getNumParams() && 1591 S.Context.hasSameUnqualifiedType( 1592 FD->getParamDecl(UsualParams)->getType(), 1593 S.Context.getSizeType())) 1594 ++UsualParams; 1595 1596 if (S.getLangOpts().AlignedAllocation && UsualParams < FD->getNumParams() && 1597 S.Context.hasSameUnqualifiedType( 1598 FD->getParamDecl(UsualParams)->getType(), 1599 S.Context.getTypeDeclType(S.getStdAlignValT()))) 1600 ++UsualParams; 1601 1602 return UsualParams == FD->getNumParams(); 1603 } 1604 1605 namespace { 1606 struct UsualDeallocFnInfo { 1607 UsualDeallocFnInfo() : Found(), FD(nullptr) {} 1608 UsualDeallocFnInfo(Sema &S, DeclAccessPair Found) 1609 : Found(Found), FD(dyn_cast<FunctionDecl>(Found->getUnderlyingDecl())), 1610 Destroying(false), HasSizeT(false), HasAlignValT(false), 1611 CUDAPref(Sema::CFP_Native) { 1612 // A function template declaration is never a usual deallocation function. 1613 if (!FD) 1614 return; 1615 unsigned NumBaseParams = 1; 1616 if (FD->isDestroyingOperatorDelete()) { 1617 Destroying = true; 1618 ++NumBaseParams; 1619 } 1620 1621 if (NumBaseParams < FD->getNumParams() && 1622 S.Context.hasSameUnqualifiedType( 1623 FD->getParamDecl(NumBaseParams)->getType(), 1624 S.Context.getSizeType())) { 1625 ++NumBaseParams; 1626 HasSizeT = true; 1627 } 1628 1629 if (NumBaseParams < FD->getNumParams() && 1630 FD->getParamDecl(NumBaseParams)->getType()->isAlignValT()) { 1631 ++NumBaseParams; 1632 HasAlignValT = true; 1633 } 1634 1635 // In CUDA, determine how much we'd like / dislike to call this. 1636 if (S.getLangOpts().CUDA) 1637 if (auto *Caller = dyn_cast<FunctionDecl>(S.CurContext)) 1638 CUDAPref = S.IdentifyCUDAPreference(Caller, FD); 1639 } 1640 1641 explicit operator bool() const { return FD; } 1642 1643 bool isBetterThan(const UsualDeallocFnInfo &Other, bool WantSize, 1644 bool WantAlign) const { 1645 // C++ P0722: 1646 // A destroying operator delete is preferred over a non-destroying 1647 // operator delete. 1648 if (Destroying != Other.Destroying) 1649 return Destroying; 1650 1651 // C++17 [expr.delete]p10: 1652 // If the type has new-extended alignment, a function with a parameter 1653 // of type std::align_val_t is preferred; otherwise a function without 1654 // such a parameter is preferred 1655 if (HasAlignValT != Other.HasAlignValT) 1656 return HasAlignValT == WantAlign; 1657 1658 if (HasSizeT != Other.HasSizeT) 1659 return HasSizeT == WantSize; 1660 1661 // Use CUDA call preference as a tiebreaker. 1662 return CUDAPref > Other.CUDAPref; 1663 } 1664 1665 DeclAccessPair Found; 1666 FunctionDecl *FD; 1667 bool Destroying, HasSizeT, HasAlignValT; 1668 Sema::CUDAFunctionPreference CUDAPref; 1669 }; 1670 } 1671 1672 /// Determine whether a type has new-extended alignment. This may be called when 1673 /// the type is incomplete (for a delete-expression with an incomplete pointee 1674 /// type), in which case it will conservatively return false if the alignment is 1675 /// not known. 1676 static bool hasNewExtendedAlignment(Sema &S, QualType AllocType) { 1677 return S.getLangOpts().AlignedAllocation && 1678 S.getASTContext().getTypeAlignIfKnown(AllocType) > 1679 S.getASTContext().getTargetInfo().getNewAlign(); 1680 } 1681 1682 /// Select the correct "usual" deallocation function to use from a selection of 1683 /// deallocation functions (either global or class-scope). 1684 static UsualDeallocFnInfo resolveDeallocationOverload( 1685 Sema &S, LookupResult &R, bool WantSize, bool WantAlign, 1686 llvm::SmallVectorImpl<UsualDeallocFnInfo> *BestFns = nullptr) { 1687 UsualDeallocFnInfo Best; 1688 1689 for (auto I = R.begin(), E = R.end(); I != E; ++I) { 1690 UsualDeallocFnInfo Info(S, I.getPair()); 1691 if (!Info || !isNonPlacementDeallocationFunction(S, Info.FD) || 1692 Info.CUDAPref == Sema::CFP_Never) 1693 continue; 1694 1695 if (!Best) { 1696 Best = Info; 1697 if (BestFns) 1698 BestFns->push_back(Info); 1699 continue; 1700 } 1701 1702 if (Best.isBetterThan(Info, WantSize, WantAlign)) 1703 continue; 1704 1705 // If more than one preferred function is found, all non-preferred 1706 // functions are eliminated from further consideration. 1707 if (BestFns && Info.isBetterThan(Best, WantSize, WantAlign)) 1708 BestFns->clear(); 1709 1710 Best = Info; 1711 if (BestFns) 1712 BestFns->push_back(Info); 1713 } 1714 1715 return Best; 1716 } 1717 1718 /// Determine whether a given type is a class for which 'delete[]' would call 1719 /// a member 'operator delete[]' with a 'size_t' parameter. This implies that 1720 /// we need to store the array size (even if the type is 1721 /// trivially-destructible). 1722 static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc, 1723 QualType allocType) { 1724 const RecordType *record = 1725 allocType->getBaseElementTypeUnsafe()->getAs<RecordType>(); 1726 if (!record) return false; 1727 1728 // Try to find an operator delete[] in class scope. 1729 1730 DeclarationName deleteName = 1731 S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete); 1732 LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName); 1733 S.LookupQualifiedName(ops, record->getDecl()); 1734 1735 // We're just doing this for information. 1736 ops.suppressDiagnostics(); 1737 1738 // Very likely: there's no operator delete[]. 1739 if (ops.empty()) return false; 1740 1741 // If it's ambiguous, it should be illegal to call operator delete[] 1742 // on this thing, so it doesn't matter if we allocate extra space or not. 1743 if (ops.isAmbiguous()) return false; 1744 1745 // C++17 [expr.delete]p10: 1746 // If the deallocation functions have class scope, the one without a 1747 // parameter of type std::size_t is selected. 1748 auto Best = resolveDeallocationOverload( 1749 S, ops, /*WantSize*/false, 1750 /*WantAlign*/hasNewExtendedAlignment(S, allocType)); 1751 return Best && Best.HasSizeT; 1752 } 1753 1754 /// Parsed a C++ 'new' expression (C++ 5.3.4). 1755 /// 1756 /// E.g.: 1757 /// @code new (memory) int[size][4] @endcode 1758 /// or 1759 /// @code ::new Foo(23, "hello") @endcode 1760 /// 1761 /// \param StartLoc The first location of the expression. 1762 /// \param UseGlobal True if 'new' was prefixed with '::'. 1763 /// \param PlacementLParen Opening paren of the placement arguments. 1764 /// \param PlacementArgs Placement new arguments. 1765 /// \param PlacementRParen Closing paren of the placement arguments. 1766 /// \param TypeIdParens If the type is in parens, the source range. 1767 /// \param D The type to be allocated, as well as array dimensions. 1768 /// \param Initializer The initializing expression or initializer-list, or null 1769 /// if there is none. 1770 ExprResult 1771 Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal, 1772 SourceLocation PlacementLParen, MultiExprArg PlacementArgs, 1773 SourceLocation PlacementRParen, SourceRange TypeIdParens, 1774 Declarator &D, Expr *Initializer) { 1775 Optional<Expr *> ArraySize; 1776 // If the specified type is an array, unwrap it and save the expression. 1777 if (D.getNumTypeObjects() > 0 && 1778 D.getTypeObject(0).Kind == DeclaratorChunk::Array) { 1779 DeclaratorChunk &Chunk = D.getTypeObject(0); 1780 if (D.getDeclSpec().hasAutoTypeSpec()) 1781 return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto) 1782 << D.getSourceRange()); 1783 if (Chunk.Arr.hasStatic) 1784 return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new) 1785 << D.getSourceRange()); 1786 if (!Chunk.Arr.NumElts && !Initializer) 1787 return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size) 1788 << D.getSourceRange()); 1789 1790 ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts); 1791 D.DropFirstTypeObject(); 1792 } 1793 1794 // Every dimension shall be of constant size. 1795 if (ArraySize) { 1796 for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) { 1797 if (D.getTypeObject(I).Kind != DeclaratorChunk::Array) 1798 break; 1799 1800 DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr; 1801 if (Expr *NumElts = (Expr *)Array.NumElts) { 1802 if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) { 1803 // FIXME: GCC permits constant folding here. We should either do so consistently 1804 // or not do so at all, rather than changing behavior in C++14 onwards. 1805 if (getLangOpts().CPlusPlus14) { 1806 // C++1y [expr.new]p6: Every constant-expression in a noptr-new-declarator 1807 // shall be a converted constant expression (5.19) of type std::size_t 1808 // and shall evaluate to a strictly positive value. 1809 llvm::APSInt Value(Context.getIntWidth(Context.getSizeType())); 1810 Array.NumElts 1811 = CheckConvertedConstantExpression(NumElts, Context.getSizeType(), Value, 1812 CCEK_ArrayBound) 1813 .get(); 1814 } else { 1815 Array.NumElts = 1816 VerifyIntegerConstantExpression( 1817 NumElts, nullptr, diag::err_new_array_nonconst, AllowFold) 1818 .get(); 1819 } 1820 if (!Array.NumElts) 1821 return ExprError(); 1822 } 1823 } 1824 } 1825 } 1826 1827 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/nullptr); 1828 QualType AllocType = TInfo->getType(); 1829 if (D.isInvalidType()) 1830 return ExprError(); 1831 1832 SourceRange DirectInitRange; 1833 if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) 1834 DirectInitRange = List->getSourceRange(); 1835 1836 return BuildCXXNew(SourceRange(StartLoc, D.getEndLoc()), UseGlobal, 1837 PlacementLParen, PlacementArgs, PlacementRParen, 1838 TypeIdParens, AllocType, TInfo, ArraySize, DirectInitRange, 1839 Initializer); 1840 } 1841 1842 static bool isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style, 1843 Expr *Init) { 1844 if (!Init) 1845 return true; 1846 if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) 1847 return PLE->getNumExprs() == 0; 1848 if (isa<ImplicitValueInitExpr>(Init)) 1849 return true; 1850 else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) 1851 return !CCE->isListInitialization() && 1852 CCE->getConstructor()->isDefaultConstructor(); 1853 else if (Style == CXXNewExpr::ListInit) { 1854 assert(isa<InitListExpr>(Init) && 1855 "Shouldn't create list CXXConstructExprs for arrays."); 1856 return true; 1857 } 1858 return false; 1859 } 1860 1861 bool 1862 Sema::isUnavailableAlignedAllocationFunction(const FunctionDecl &FD) const { 1863 if (!getLangOpts().AlignedAllocationUnavailable) 1864 return false; 1865 if (FD.isDefined()) 1866 return false; 1867 Optional<unsigned> AlignmentParam; 1868 if (FD.isReplaceableGlobalAllocationFunction(&AlignmentParam) && 1869 AlignmentParam.hasValue()) 1870 return true; 1871 return false; 1872 } 1873 1874 // Emit a diagnostic if an aligned allocation/deallocation function that is not 1875 // implemented in the standard library is selected. 1876 void Sema::diagnoseUnavailableAlignedAllocation(const FunctionDecl &FD, 1877 SourceLocation Loc) { 1878 if (isUnavailableAlignedAllocationFunction(FD)) { 1879 const llvm::Triple &T = getASTContext().getTargetInfo().getTriple(); 1880 StringRef OSName = AvailabilityAttr::getPlatformNameSourceSpelling( 1881 getASTContext().getTargetInfo().getPlatformName()); 1882 VersionTuple OSVersion = alignedAllocMinVersion(T.getOS()); 1883 1884 OverloadedOperatorKind Kind = FD.getDeclName().getCXXOverloadedOperator(); 1885 bool IsDelete = Kind == OO_Delete || Kind == OO_Array_Delete; 1886 Diag(Loc, diag::err_aligned_allocation_unavailable) 1887 << IsDelete << FD.getType().getAsString() << OSName 1888 << OSVersion.getAsString() << OSVersion.empty(); 1889 Diag(Loc, diag::note_silence_aligned_allocation_unavailable); 1890 } 1891 } 1892 1893 ExprResult 1894 Sema::BuildCXXNew(SourceRange Range, bool UseGlobal, 1895 SourceLocation PlacementLParen, 1896 MultiExprArg PlacementArgs, 1897 SourceLocation PlacementRParen, 1898 SourceRange TypeIdParens, 1899 QualType AllocType, 1900 TypeSourceInfo *AllocTypeInfo, 1901 Optional<Expr *> ArraySize, 1902 SourceRange DirectInitRange, 1903 Expr *Initializer) { 1904 SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange(); 1905 SourceLocation StartLoc = Range.getBegin(); 1906 1907 CXXNewExpr::InitializationStyle initStyle; 1908 if (DirectInitRange.isValid()) { 1909 assert(Initializer && "Have parens but no initializer."); 1910 initStyle = CXXNewExpr::CallInit; 1911 } else if (Initializer && isa<InitListExpr>(Initializer)) 1912 initStyle = CXXNewExpr::ListInit; 1913 else { 1914 assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) || 1915 isa<CXXConstructExpr>(Initializer)) && 1916 "Initializer expression that cannot have been implicitly created."); 1917 initStyle = CXXNewExpr::NoInit; 1918 } 1919 1920 Expr **Inits = &Initializer; 1921 unsigned NumInits = Initializer ? 1 : 0; 1922 if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) { 1923 assert(initStyle == CXXNewExpr::CallInit && "paren init for non-call init"); 1924 Inits = List->getExprs(); 1925 NumInits = List->getNumExprs(); 1926 } 1927 1928 // C++11 [expr.new]p15: 1929 // A new-expression that creates an object of type T initializes that 1930 // object as follows: 1931 InitializationKind Kind 1932 // - If the new-initializer is omitted, the object is default- 1933 // initialized (8.5); if no initialization is performed, 1934 // the object has indeterminate value 1935 = initStyle == CXXNewExpr::NoInit 1936 ? InitializationKind::CreateDefault(TypeRange.getBegin()) 1937 // - Otherwise, the new-initializer is interpreted according to 1938 // the 1939 // initialization rules of 8.5 for direct-initialization. 1940 : initStyle == CXXNewExpr::ListInit 1941 ? InitializationKind::CreateDirectList( 1942 TypeRange.getBegin(), Initializer->getBeginLoc(), 1943 Initializer->getEndLoc()) 1944 : InitializationKind::CreateDirect(TypeRange.getBegin(), 1945 DirectInitRange.getBegin(), 1946 DirectInitRange.getEnd()); 1947 1948 // C++11 [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for. 1949 auto *Deduced = AllocType->getContainedDeducedType(); 1950 if (Deduced && isa<DeducedTemplateSpecializationType>(Deduced)) { 1951 if (ArraySize) 1952 return ExprError( 1953 Diag(ArraySize ? (*ArraySize)->getExprLoc() : TypeRange.getBegin(), 1954 diag::err_deduced_class_template_compound_type) 1955 << /*array*/ 2 1956 << (ArraySize ? (*ArraySize)->getSourceRange() : TypeRange)); 1957 1958 InitializedEntity Entity 1959 = InitializedEntity::InitializeNew(StartLoc, AllocType); 1960 AllocType = DeduceTemplateSpecializationFromInitializer( 1961 AllocTypeInfo, Entity, Kind, MultiExprArg(Inits, NumInits)); 1962 if (AllocType.isNull()) 1963 return ExprError(); 1964 } else if (Deduced) { 1965 bool Braced = (initStyle == CXXNewExpr::ListInit); 1966 if (NumInits == 1) { 1967 if (auto p = dyn_cast_or_null<InitListExpr>(Inits[0])) { 1968 Inits = p->getInits(); 1969 NumInits = p->getNumInits(); 1970 Braced = true; 1971 } 1972 } 1973 1974 if (initStyle == CXXNewExpr::NoInit || NumInits == 0) 1975 return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg) 1976 << AllocType << TypeRange); 1977 if (NumInits > 1) { 1978 Expr *FirstBad = Inits[1]; 1979 return ExprError(Diag(FirstBad->getBeginLoc(), 1980 diag::err_auto_new_ctor_multiple_expressions) 1981 << AllocType << TypeRange); 1982 } 1983 if (Braced && !getLangOpts().CPlusPlus17) 1984 Diag(Initializer->getBeginLoc(), diag::ext_auto_new_list_init) 1985 << AllocType << TypeRange; 1986 Expr *Deduce = Inits[0]; 1987 QualType DeducedType; 1988 if (DeduceAutoType(AllocTypeInfo, Deduce, DeducedType) == DAR_Failed) 1989 return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure) 1990 << AllocType << Deduce->getType() 1991 << TypeRange << Deduce->getSourceRange()); 1992 if (DeducedType.isNull()) 1993 return ExprError(); 1994 AllocType = DeducedType; 1995 } 1996 1997 // Per C++0x [expr.new]p5, the type being constructed may be a 1998 // typedef of an array type. 1999 if (!ArraySize) { 2000 if (const ConstantArrayType *Array 2001 = Context.getAsConstantArrayType(AllocType)) { 2002 ArraySize = IntegerLiteral::Create(Context, Array->getSize(), 2003 Context.getSizeType(), 2004 TypeRange.getEnd()); 2005 AllocType = Array->getElementType(); 2006 } 2007 } 2008 2009 if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange)) 2010 return ExprError(); 2011 2012 // In ARC, infer 'retaining' for the allocated 2013 if (getLangOpts().ObjCAutoRefCount && 2014 AllocType.getObjCLifetime() == Qualifiers::OCL_None && 2015 AllocType->isObjCLifetimeType()) { 2016 AllocType = Context.getLifetimeQualifiedType(AllocType, 2017 AllocType->getObjCARCImplicitLifetime()); 2018 } 2019 2020 QualType ResultType = Context.getPointerType(AllocType); 2021 2022 if (ArraySize && *ArraySize && 2023 (*ArraySize)->getType()->isNonOverloadPlaceholderType()) { 2024 ExprResult result = CheckPlaceholderExpr(*ArraySize); 2025 if (result.isInvalid()) return ExprError(); 2026 ArraySize = result.get(); 2027 } 2028 // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have 2029 // integral or enumeration type with a non-negative value." 2030 // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped 2031 // enumeration type, or a class type for which a single non-explicit 2032 // conversion function to integral or unscoped enumeration type exists. 2033 // C++1y [expr.new]p6: The expression [...] is implicitly converted to 2034 // std::size_t. 2035 llvm::Optional<uint64_t> KnownArraySize; 2036 if (ArraySize && *ArraySize && !(*ArraySize)->isTypeDependent()) { 2037 ExprResult ConvertedSize; 2038 if (getLangOpts().CPlusPlus14) { 2039 assert(Context.getTargetInfo().getIntWidth() && "Builtin type of size 0?"); 2040 2041 ConvertedSize = PerformImplicitConversion(*ArraySize, Context.getSizeType(), 2042 AA_Converting); 2043 2044 if (!ConvertedSize.isInvalid() && 2045 (*ArraySize)->getType()->getAs<RecordType>()) 2046 // Diagnose the compatibility of this conversion. 2047 Diag(StartLoc, diag::warn_cxx98_compat_array_size_conversion) 2048 << (*ArraySize)->getType() << 0 << "'size_t'"; 2049 } else { 2050 class SizeConvertDiagnoser : public ICEConvertDiagnoser { 2051 protected: 2052 Expr *ArraySize; 2053 2054 public: 2055 SizeConvertDiagnoser(Expr *ArraySize) 2056 : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false, false, false), 2057 ArraySize(ArraySize) {} 2058 2059 SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc, 2060 QualType T) override { 2061 return S.Diag(Loc, diag::err_array_size_not_integral) 2062 << S.getLangOpts().CPlusPlus11 << T; 2063 } 2064 2065 SemaDiagnosticBuilder diagnoseIncomplete( 2066 Sema &S, SourceLocation Loc, QualType T) override { 2067 return S.Diag(Loc, diag::err_array_size_incomplete_type) 2068 << T << ArraySize->getSourceRange(); 2069 } 2070 2071 SemaDiagnosticBuilder diagnoseExplicitConv( 2072 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override { 2073 return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy; 2074 } 2075 2076 SemaDiagnosticBuilder noteExplicitConv( 2077 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override { 2078 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion) 2079 << ConvTy->isEnumeralType() << ConvTy; 2080 } 2081 2082 SemaDiagnosticBuilder diagnoseAmbiguous( 2083 Sema &S, SourceLocation Loc, QualType T) override { 2084 return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T; 2085 } 2086 2087 SemaDiagnosticBuilder noteAmbiguous( 2088 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override { 2089 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion) 2090 << ConvTy->isEnumeralType() << ConvTy; 2091 } 2092 2093 SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc, 2094 QualType T, 2095 QualType ConvTy) override { 2096 return S.Diag(Loc, 2097 S.getLangOpts().CPlusPlus11 2098 ? diag::warn_cxx98_compat_array_size_conversion 2099 : diag::ext_array_size_conversion) 2100 << T << ConvTy->isEnumeralType() << ConvTy; 2101 } 2102 } SizeDiagnoser(*ArraySize); 2103 2104 ConvertedSize = PerformContextualImplicitConversion(StartLoc, *ArraySize, 2105 SizeDiagnoser); 2106 } 2107 if (ConvertedSize.isInvalid()) 2108 return ExprError(); 2109 2110 ArraySize = ConvertedSize.get(); 2111 QualType SizeType = (*ArraySize)->getType(); 2112 2113 if (!SizeType->isIntegralOrUnscopedEnumerationType()) 2114 return ExprError(); 2115 2116 // C++98 [expr.new]p7: 2117 // The expression in a direct-new-declarator shall have integral type 2118 // with a non-negative value. 2119 // 2120 // Let's see if this is a constant < 0. If so, we reject it out of hand, 2121 // per CWG1464. Otherwise, if it's not a constant, we must have an 2122 // unparenthesized array type. 2123 if (!(*ArraySize)->isValueDependent()) { 2124 // We've already performed any required implicit conversion to integer or 2125 // unscoped enumeration type. 2126 // FIXME: Per CWG1464, we are required to check the value prior to 2127 // converting to size_t. This will never find a negative array size in 2128 // C++14 onwards, because Value is always unsigned here! 2129 if (Optional<llvm::APSInt> Value = 2130 (*ArraySize)->getIntegerConstantExpr(Context)) { 2131 if (Value->isSigned() && Value->isNegative()) { 2132 return ExprError(Diag((*ArraySize)->getBeginLoc(), 2133 diag::err_typecheck_negative_array_size) 2134 << (*ArraySize)->getSourceRange()); 2135 } 2136 2137 if (!AllocType->isDependentType()) { 2138 unsigned ActiveSizeBits = ConstantArrayType::getNumAddressingBits( 2139 Context, AllocType, *Value); 2140 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) 2141 return ExprError( 2142 Diag((*ArraySize)->getBeginLoc(), diag::err_array_too_large) 2143 << Value->toString(10) << (*ArraySize)->getSourceRange()); 2144 } 2145 2146 KnownArraySize = Value->getZExtValue(); 2147 } else if (TypeIdParens.isValid()) { 2148 // Can't have dynamic array size when the type-id is in parentheses. 2149 Diag((*ArraySize)->getBeginLoc(), diag::ext_new_paren_array_nonconst) 2150 << (*ArraySize)->getSourceRange() 2151 << FixItHint::CreateRemoval(TypeIdParens.getBegin()) 2152 << FixItHint::CreateRemoval(TypeIdParens.getEnd()); 2153 2154 TypeIdParens = SourceRange(); 2155 } 2156 } 2157 2158 // Note that we do *not* convert the argument in any way. It can 2159 // be signed, larger than size_t, whatever. 2160 } 2161 2162 FunctionDecl *OperatorNew = nullptr; 2163 FunctionDecl *OperatorDelete = nullptr; 2164 unsigned Alignment = 2165 AllocType->isDependentType() ? 0 : Context.getTypeAlign(AllocType); 2166 unsigned NewAlignment = Context.getTargetInfo().getNewAlign(); 2167 bool PassAlignment = getLangOpts().AlignedAllocation && 2168 Alignment > NewAlignment; 2169 2170 AllocationFunctionScope Scope = UseGlobal ? AFS_Global : AFS_Both; 2171 if (!AllocType->isDependentType() && 2172 !Expr::hasAnyTypeDependentArguments(PlacementArgs) && 2173 FindAllocationFunctions( 2174 StartLoc, SourceRange(PlacementLParen, PlacementRParen), Scope, Scope, 2175 AllocType, ArraySize.hasValue(), PassAlignment, PlacementArgs, 2176 OperatorNew, OperatorDelete)) 2177 return ExprError(); 2178 2179 // If this is an array allocation, compute whether the usual array 2180 // deallocation function for the type has a size_t parameter. 2181 bool UsualArrayDeleteWantsSize = false; 2182 if (ArraySize && !AllocType->isDependentType()) 2183 UsualArrayDeleteWantsSize = 2184 doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType); 2185 2186 SmallVector<Expr *, 8> AllPlaceArgs; 2187 if (OperatorNew) { 2188 auto *Proto = OperatorNew->getType()->castAs<FunctionProtoType>(); 2189 VariadicCallType CallType = Proto->isVariadic() ? VariadicFunction 2190 : VariadicDoesNotApply; 2191 2192 // We've already converted the placement args, just fill in any default 2193 // arguments. Skip the first parameter because we don't have a corresponding 2194 // argument. Skip the second parameter too if we're passing in the 2195 // alignment; we've already filled it in. 2196 unsigned NumImplicitArgs = PassAlignment ? 2 : 1; 2197 if (GatherArgumentsForCall(PlacementLParen, OperatorNew, Proto, 2198 NumImplicitArgs, PlacementArgs, AllPlaceArgs, 2199 CallType)) 2200 return ExprError(); 2201 2202 if (!AllPlaceArgs.empty()) 2203 PlacementArgs = AllPlaceArgs; 2204 2205 // We would like to perform some checking on the given `operator new` call, 2206 // but the PlacementArgs does not contain the implicit arguments, 2207 // namely allocation size and maybe allocation alignment, 2208 // so we need to conjure them. 2209 2210 QualType SizeTy = Context.getSizeType(); 2211 unsigned SizeTyWidth = Context.getTypeSize(SizeTy); 2212 2213 llvm::APInt SingleEltSize( 2214 SizeTyWidth, Context.getTypeSizeInChars(AllocType).getQuantity()); 2215 2216 // How many bytes do we want to allocate here? 2217 llvm::Optional<llvm::APInt> AllocationSize; 2218 if (!ArraySize.hasValue() && !AllocType->isDependentType()) { 2219 // For non-array operator new, we only want to allocate one element. 2220 AllocationSize = SingleEltSize; 2221 } else if (KnownArraySize.hasValue() && !AllocType->isDependentType()) { 2222 // For array operator new, only deal with static array size case. 2223 bool Overflow; 2224 AllocationSize = llvm::APInt(SizeTyWidth, *KnownArraySize) 2225 .umul_ov(SingleEltSize, Overflow); 2226 (void)Overflow; 2227 assert( 2228 !Overflow && 2229 "Expected that all the overflows would have been handled already."); 2230 } 2231 2232 IntegerLiteral AllocationSizeLiteral( 2233 Context, 2234 AllocationSize.getValueOr(llvm::APInt::getNullValue(SizeTyWidth)), 2235 SizeTy, SourceLocation()); 2236 // Otherwise, if we failed to constant-fold the allocation size, we'll 2237 // just give up and pass-in something opaque, that isn't a null pointer. 2238 OpaqueValueExpr OpaqueAllocationSize(SourceLocation(), SizeTy, VK_RValue, 2239 OK_Ordinary, /*SourceExpr=*/nullptr); 2240 2241 // Let's synthesize the alignment argument in case we will need it. 2242 // Since we *really* want to allocate these on stack, this is slightly ugly 2243 // because there might not be a `std::align_val_t` type. 2244 EnumDecl *StdAlignValT = getStdAlignValT(); 2245 QualType AlignValT = 2246 StdAlignValT ? Context.getTypeDeclType(StdAlignValT) : SizeTy; 2247 IntegerLiteral AlignmentLiteral( 2248 Context, 2249 llvm::APInt(Context.getTypeSize(SizeTy), 2250 Alignment / Context.getCharWidth()), 2251 SizeTy, SourceLocation()); 2252 ImplicitCastExpr DesiredAlignment(ImplicitCastExpr::OnStack, AlignValT, 2253 CK_IntegralCast, &AlignmentLiteral, 2254 VK_RValue, FPOptionsOverride()); 2255 2256 // Adjust placement args by prepending conjured size and alignment exprs. 2257 llvm::SmallVector<Expr *, 8> CallArgs; 2258 CallArgs.reserve(NumImplicitArgs + PlacementArgs.size()); 2259 CallArgs.emplace_back(AllocationSize.hasValue() 2260 ? static_cast<Expr *>(&AllocationSizeLiteral) 2261 : &OpaqueAllocationSize); 2262 if (PassAlignment) 2263 CallArgs.emplace_back(&DesiredAlignment); 2264 CallArgs.insert(CallArgs.end(), PlacementArgs.begin(), PlacementArgs.end()); 2265 2266 DiagnoseSentinelCalls(OperatorNew, PlacementLParen, CallArgs); 2267 2268 checkCall(OperatorNew, Proto, /*ThisArg=*/nullptr, CallArgs, 2269 /*IsMemberFunction=*/false, StartLoc, Range, CallType); 2270 2271 // Warn if the type is over-aligned and is being allocated by (unaligned) 2272 // global operator new. 2273 if (PlacementArgs.empty() && !PassAlignment && 2274 (OperatorNew->isImplicit() || 2275 (OperatorNew->getBeginLoc().isValid() && 2276 getSourceManager().isInSystemHeader(OperatorNew->getBeginLoc())))) { 2277 if (Alignment > NewAlignment) 2278 Diag(StartLoc, diag::warn_overaligned_type) 2279 << AllocType 2280 << unsigned(Alignment / Context.getCharWidth()) 2281 << unsigned(NewAlignment / Context.getCharWidth()); 2282 } 2283 } 2284 2285 // Array 'new' can't have any initializers except empty parentheses. 2286 // Initializer lists are also allowed, in C++11. Rely on the parser for the 2287 // dialect distinction. 2288 if (ArraySize && !isLegalArrayNewInitializer(initStyle, Initializer)) { 2289 SourceRange InitRange(Inits[0]->getBeginLoc(), 2290 Inits[NumInits - 1]->getEndLoc()); 2291 Diag(StartLoc, diag::err_new_array_init_args) << InitRange; 2292 return ExprError(); 2293 } 2294 2295 // If we can perform the initialization, and we've not already done so, 2296 // do it now. 2297 if (!AllocType->isDependentType() && 2298 !Expr::hasAnyTypeDependentArguments( 2299 llvm::makeArrayRef(Inits, NumInits))) { 2300 // The type we initialize is the complete type, including the array bound. 2301 QualType InitType; 2302 if (KnownArraySize) 2303 InitType = Context.getConstantArrayType( 2304 AllocType, 2305 llvm::APInt(Context.getTypeSize(Context.getSizeType()), 2306 *KnownArraySize), 2307 *ArraySize, ArrayType::Normal, 0); 2308 else if (ArraySize) 2309 InitType = 2310 Context.getIncompleteArrayType(AllocType, ArrayType::Normal, 0); 2311 else 2312 InitType = AllocType; 2313 2314 InitializedEntity Entity 2315 = InitializedEntity::InitializeNew(StartLoc, InitType); 2316 InitializationSequence InitSeq(*this, Entity, Kind, 2317 MultiExprArg(Inits, NumInits)); 2318 ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind, 2319 MultiExprArg(Inits, NumInits)); 2320 if (FullInit.isInvalid()) 2321 return ExprError(); 2322 2323 // FullInit is our initializer; strip off CXXBindTemporaryExprs, because 2324 // we don't want the initialized object to be destructed. 2325 // FIXME: We should not create these in the first place. 2326 if (CXXBindTemporaryExpr *Binder = 2327 dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get())) 2328 FullInit = Binder->getSubExpr(); 2329 2330 Initializer = FullInit.get(); 2331 2332 // FIXME: If we have a KnownArraySize, check that the array bound of the 2333 // initializer is no greater than that constant value. 2334 2335 if (ArraySize && !*ArraySize) { 2336 auto *CAT = Context.getAsConstantArrayType(Initializer->getType()); 2337 if (CAT) { 2338 // FIXME: Track that the array size was inferred rather than explicitly 2339 // specified. 2340 ArraySize = IntegerLiteral::Create( 2341 Context, CAT->getSize(), Context.getSizeType(), TypeRange.getEnd()); 2342 } else { 2343 Diag(TypeRange.getEnd(), diag::err_new_array_size_unknown_from_init) 2344 << Initializer->getSourceRange(); 2345 } 2346 } 2347 } 2348 2349 // Mark the new and delete operators as referenced. 2350 if (OperatorNew) { 2351 if (DiagnoseUseOfDecl(OperatorNew, StartLoc)) 2352 return ExprError(); 2353 MarkFunctionReferenced(StartLoc, OperatorNew); 2354 } 2355 if (OperatorDelete) { 2356 if (DiagnoseUseOfDecl(OperatorDelete, StartLoc)) 2357 return ExprError(); 2358 MarkFunctionReferenced(StartLoc, OperatorDelete); 2359 } 2360 2361 return CXXNewExpr::Create(Context, UseGlobal, OperatorNew, OperatorDelete, 2362 PassAlignment, UsualArrayDeleteWantsSize, 2363 PlacementArgs, TypeIdParens, ArraySize, initStyle, 2364 Initializer, ResultType, AllocTypeInfo, Range, 2365 DirectInitRange); 2366 } 2367 2368 /// Checks that a type is suitable as the allocated type 2369 /// in a new-expression. 2370 bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc, 2371 SourceRange R) { 2372 // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an 2373 // abstract class type or array thereof. 2374 if (AllocType->isFunctionType()) 2375 return Diag(Loc, diag::err_bad_new_type) 2376 << AllocType << 0 << R; 2377 else if (AllocType->isReferenceType()) 2378 return Diag(Loc, diag::err_bad_new_type) 2379 << AllocType << 1 << R; 2380 else if (!AllocType->isDependentType() && 2381 RequireCompleteSizedType( 2382 Loc, AllocType, diag::err_new_incomplete_or_sizeless_type, R)) 2383 return true; 2384 else if (RequireNonAbstractType(Loc, AllocType, 2385 diag::err_allocation_of_abstract_type)) 2386 return true; 2387 else if (AllocType->isVariablyModifiedType()) 2388 return Diag(Loc, diag::err_variably_modified_new_type) 2389 << AllocType; 2390 else if (AllocType.getAddressSpace() != LangAS::Default && 2391 !getLangOpts().OpenCLCPlusPlus) 2392 return Diag(Loc, diag::err_address_space_qualified_new) 2393 << AllocType.getUnqualifiedType() 2394 << AllocType.getQualifiers().getAddressSpaceAttributePrintValue(); 2395 else if (getLangOpts().ObjCAutoRefCount) { 2396 if (const ArrayType *AT = Context.getAsArrayType(AllocType)) { 2397 QualType BaseAllocType = Context.getBaseElementType(AT); 2398 if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None && 2399 BaseAllocType->isObjCLifetimeType()) 2400 return Diag(Loc, diag::err_arc_new_array_without_ownership) 2401 << BaseAllocType; 2402 } 2403 } 2404 2405 return false; 2406 } 2407 2408 static bool resolveAllocationOverload( 2409 Sema &S, LookupResult &R, SourceRange Range, SmallVectorImpl<Expr *> &Args, 2410 bool &PassAlignment, FunctionDecl *&Operator, 2411 OverloadCandidateSet *AlignedCandidates, Expr *AlignArg, bool Diagnose) { 2412 OverloadCandidateSet Candidates(R.getNameLoc(), 2413 OverloadCandidateSet::CSK_Normal); 2414 for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end(); 2415 Alloc != AllocEnd; ++Alloc) { 2416 // Even member operator new/delete are implicitly treated as 2417 // static, so don't use AddMemberCandidate. 2418 NamedDecl *D = (*Alloc)->getUnderlyingDecl(); 2419 2420 if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) { 2421 S.AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(), 2422 /*ExplicitTemplateArgs=*/nullptr, Args, 2423 Candidates, 2424 /*SuppressUserConversions=*/false); 2425 continue; 2426 } 2427 2428 FunctionDecl *Fn = cast<FunctionDecl>(D); 2429 S.AddOverloadCandidate(Fn, Alloc.getPair(), Args, Candidates, 2430 /*SuppressUserConversions=*/false); 2431 } 2432 2433 // Do the resolution. 2434 OverloadCandidateSet::iterator Best; 2435 switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) { 2436 case OR_Success: { 2437 // Got one! 2438 FunctionDecl *FnDecl = Best->Function; 2439 if (S.CheckAllocationAccess(R.getNameLoc(), Range, R.getNamingClass(), 2440 Best->FoundDecl) == Sema::AR_inaccessible) 2441 return true; 2442 2443 Operator = FnDecl; 2444 return false; 2445 } 2446 2447 case OR_No_Viable_Function: 2448 // C++17 [expr.new]p13: 2449 // If no matching function is found and the allocated object type has 2450 // new-extended alignment, the alignment argument is removed from the 2451 // argument list, and overload resolution is performed again. 2452 if (PassAlignment) { 2453 PassAlignment = false; 2454 AlignArg = Args[1]; 2455 Args.erase(Args.begin() + 1); 2456 return resolveAllocationOverload(S, R, Range, Args, PassAlignment, 2457 Operator, &Candidates, AlignArg, 2458 Diagnose); 2459 } 2460 2461 // MSVC will fall back on trying to find a matching global operator new 2462 // if operator new[] cannot be found. Also, MSVC will leak by not 2463 // generating a call to operator delete or operator delete[], but we 2464 // will not replicate that bug. 2465 // FIXME: Find out how this interacts with the std::align_val_t fallback 2466 // once MSVC implements it. 2467 if (R.getLookupName().getCXXOverloadedOperator() == OO_Array_New && 2468 S.Context.getLangOpts().MSVCCompat) { 2469 R.clear(); 2470 R.setLookupName(S.Context.DeclarationNames.getCXXOperatorName(OO_New)); 2471 S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl()); 2472 // FIXME: This will give bad diagnostics pointing at the wrong functions. 2473 return resolveAllocationOverload(S, R, Range, Args, PassAlignment, 2474 Operator, /*Candidates=*/nullptr, 2475 /*AlignArg=*/nullptr, Diagnose); 2476 } 2477 2478 if (Diagnose) { 2479 // If this is an allocation of the form 'new (p) X' for some object 2480 // pointer p (or an expression that will decay to such a pointer), 2481 // diagnose the missing inclusion of <new>. 2482 if (!R.isClassLookup() && Args.size() == 2 && 2483 (Args[1]->getType()->isObjectPointerType() || 2484 Args[1]->getType()->isArrayType())) { 2485 S.Diag(R.getNameLoc(), diag::err_need_header_before_placement_new) 2486 << R.getLookupName() << Range; 2487 // Listing the candidates is unlikely to be useful; skip it. 2488 return true; 2489 } 2490 2491 // Finish checking all candidates before we note any. This checking can 2492 // produce additional diagnostics so can't be interleaved with our 2493 // emission of notes. 2494 // 2495 // For an aligned allocation, separately check the aligned and unaligned 2496 // candidates with their respective argument lists. 2497 SmallVector<OverloadCandidate*, 32> Cands; 2498 SmallVector<OverloadCandidate*, 32> AlignedCands; 2499 llvm::SmallVector<Expr*, 4> AlignedArgs; 2500 if (AlignedCandidates) { 2501 auto IsAligned = [](OverloadCandidate &C) { 2502 return C.Function->getNumParams() > 1 && 2503 C.Function->getParamDecl(1)->getType()->isAlignValT(); 2504 }; 2505 auto IsUnaligned = [&](OverloadCandidate &C) { return !IsAligned(C); }; 2506 2507 AlignedArgs.reserve(Args.size() + 1); 2508 AlignedArgs.push_back(Args[0]); 2509 AlignedArgs.push_back(AlignArg); 2510 AlignedArgs.append(Args.begin() + 1, Args.end()); 2511 AlignedCands = AlignedCandidates->CompleteCandidates( 2512 S, OCD_AllCandidates, AlignedArgs, R.getNameLoc(), IsAligned); 2513 2514 Cands = Candidates.CompleteCandidates(S, OCD_AllCandidates, Args, 2515 R.getNameLoc(), IsUnaligned); 2516 } else { 2517 Cands = Candidates.CompleteCandidates(S, OCD_AllCandidates, Args, 2518 R.getNameLoc()); 2519 } 2520 2521 S.Diag(R.getNameLoc(), diag::err_ovl_no_viable_function_in_call) 2522 << R.getLookupName() << Range; 2523 if (AlignedCandidates) 2524 AlignedCandidates->NoteCandidates(S, AlignedArgs, AlignedCands, "", 2525 R.getNameLoc()); 2526 Candidates.NoteCandidates(S, Args, Cands, "", R.getNameLoc()); 2527 } 2528 return true; 2529 2530 case OR_Ambiguous: 2531 if (Diagnose) { 2532 Candidates.NoteCandidates( 2533 PartialDiagnosticAt(R.getNameLoc(), 2534 S.PDiag(diag::err_ovl_ambiguous_call) 2535 << R.getLookupName() << Range), 2536 S, OCD_AmbiguousCandidates, Args); 2537 } 2538 return true; 2539 2540 case OR_Deleted: { 2541 if (Diagnose) { 2542 Candidates.NoteCandidates( 2543 PartialDiagnosticAt(R.getNameLoc(), 2544 S.PDiag(diag::err_ovl_deleted_call) 2545 << R.getLookupName() << Range), 2546 S, OCD_AllCandidates, Args); 2547 } 2548 return true; 2549 } 2550 } 2551 llvm_unreachable("Unreachable, bad result from BestViableFunction"); 2552 } 2553 2554 bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range, 2555 AllocationFunctionScope NewScope, 2556 AllocationFunctionScope DeleteScope, 2557 QualType AllocType, bool IsArray, 2558 bool &PassAlignment, MultiExprArg PlaceArgs, 2559 FunctionDecl *&OperatorNew, 2560 FunctionDecl *&OperatorDelete, 2561 bool Diagnose) { 2562 // --- Choosing an allocation function --- 2563 // C++ 5.3.4p8 - 14 & 18 2564 // 1) If looking in AFS_Global scope for allocation functions, only look in 2565 // the global scope. Else, if AFS_Class, only look in the scope of the 2566 // allocated class. If AFS_Both, look in both. 2567 // 2) If an array size is given, look for operator new[], else look for 2568 // operator new. 2569 // 3) The first argument is always size_t. Append the arguments from the 2570 // placement form. 2571 2572 SmallVector<Expr*, 8> AllocArgs; 2573 AllocArgs.reserve((PassAlignment ? 2 : 1) + PlaceArgs.size()); 2574 2575 // We don't care about the actual value of these arguments. 2576 // FIXME: Should the Sema create the expression and embed it in the syntax 2577 // tree? Or should the consumer just recalculate the value? 2578 // FIXME: Using a dummy value will interact poorly with attribute enable_if. 2579 IntegerLiteral Size(Context, llvm::APInt::getNullValue( 2580 Context.getTargetInfo().getPointerWidth(0)), 2581 Context.getSizeType(), 2582 SourceLocation()); 2583 AllocArgs.push_back(&Size); 2584 2585 QualType AlignValT = Context.VoidTy; 2586 if (PassAlignment) { 2587 DeclareGlobalNewDelete(); 2588 AlignValT = Context.getTypeDeclType(getStdAlignValT()); 2589 } 2590 CXXScalarValueInitExpr Align(AlignValT, nullptr, SourceLocation()); 2591 if (PassAlignment) 2592 AllocArgs.push_back(&Align); 2593 2594 AllocArgs.insert(AllocArgs.end(), PlaceArgs.begin(), PlaceArgs.end()); 2595 2596 // C++ [expr.new]p8: 2597 // If the allocated type is a non-array type, the allocation 2598 // function's name is operator new and the deallocation function's 2599 // name is operator delete. If the allocated type is an array 2600 // type, the allocation function's name is operator new[] and the 2601 // deallocation function's name is operator delete[]. 2602 DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName( 2603 IsArray ? OO_Array_New : OO_New); 2604 2605 QualType AllocElemType = Context.getBaseElementType(AllocType); 2606 2607 // Find the allocation function. 2608 { 2609 LookupResult R(*this, NewName, StartLoc, LookupOrdinaryName); 2610 2611 // C++1z [expr.new]p9: 2612 // If the new-expression begins with a unary :: operator, the allocation 2613 // function's name is looked up in the global scope. Otherwise, if the 2614 // allocated type is a class type T or array thereof, the allocation 2615 // function's name is looked up in the scope of T. 2616 if (AllocElemType->isRecordType() && NewScope != AFS_Global) 2617 LookupQualifiedName(R, AllocElemType->getAsCXXRecordDecl()); 2618 2619 // We can see ambiguity here if the allocation function is found in 2620 // multiple base classes. 2621 if (R.isAmbiguous()) 2622 return true; 2623 2624 // If this lookup fails to find the name, or if the allocated type is not 2625 // a class type, the allocation function's name is looked up in the 2626 // global scope. 2627 if (R.empty()) { 2628 if (NewScope == AFS_Class) 2629 return true; 2630 2631 LookupQualifiedName(R, Context.getTranslationUnitDecl()); 2632 } 2633 2634 if (getLangOpts().OpenCLCPlusPlus && R.empty()) { 2635 if (PlaceArgs.empty()) { 2636 Diag(StartLoc, diag::err_openclcxx_not_supported) << "default new"; 2637 } else { 2638 Diag(StartLoc, diag::err_openclcxx_placement_new); 2639 } 2640 return true; 2641 } 2642 2643 assert(!R.empty() && "implicitly declared allocation functions not found"); 2644 assert(!R.isAmbiguous() && "global allocation functions are ambiguous"); 2645 2646 // We do our own custom access checks below. 2647 R.suppressDiagnostics(); 2648 2649 if (resolveAllocationOverload(*this, R, Range, AllocArgs, PassAlignment, 2650 OperatorNew, /*Candidates=*/nullptr, 2651 /*AlignArg=*/nullptr, Diagnose)) 2652 return true; 2653 } 2654 2655 // We don't need an operator delete if we're running under -fno-exceptions. 2656 if (!getLangOpts().Exceptions) { 2657 OperatorDelete = nullptr; 2658 return false; 2659 } 2660 2661 // Note, the name of OperatorNew might have been changed from array to 2662 // non-array by resolveAllocationOverload. 2663 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName( 2664 OperatorNew->getDeclName().getCXXOverloadedOperator() == OO_Array_New 2665 ? OO_Array_Delete 2666 : OO_Delete); 2667 2668 // C++ [expr.new]p19: 2669 // 2670 // If the new-expression begins with a unary :: operator, the 2671 // deallocation function's name is looked up in the global 2672 // scope. Otherwise, if the allocated type is a class type T or an 2673 // array thereof, the deallocation function's name is looked up in 2674 // the scope of T. If this lookup fails to find the name, or if 2675 // the allocated type is not a class type or array thereof, the 2676 // deallocation function's name is looked up in the global scope. 2677 LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName); 2678 if (AllocElemType->isRecordType() && DeleteScope != AFS_Global) { 2679 auto *RD = 2680 cast<CXXRecordDecl>(AllocElemType->castAs<RecordType>()->getDecl()); 2681 LookupQualifiedName(FoundDelete, RD); 2682 } 2683 if (FoundDelete.isAmbiguous()) 2684 return true; // FIXME: clean up expressions? 2685 2686 // Filter out any destroying operator deletes. We can't possibly call such a 2687 // function in this context, because we're handling the case where the object 2688 // was not successfully constructed. 2689 // FIXME: This is not covered by the language rules yet. 2690 { 2691 LookupResult::Filter Filter = FoundDelete.makeFilter(); 2692 while (Filter.hasNext()) { 2693 auto *FD = dyn_cast<FunctionDecl>(Filter.next()->getUnderlyingDecl()); 2694 if (FD && FD->isDestroyingOperatorDelete()) 2695 Filter.erase(); 2696 } 2697 Filter.done(); 2698 } 2699 2700 bool FoundGlobalDelete = FoundDelete.empty(); 2701 if (FoundDelete.empty()) { 2702 FoundDelete.clear(LookupOrdinaryName); 2703 2704 if (DeleteScope == AFS_Class) 2705 return true; 2706 2707 DeclareGlobalNewDelete(); 2708 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl()); 2709 } 2710 2711 FoundDelete.suppressDiagnostics(); 2712 2713 SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches; 2714 2715 // Whether we're looking for a placement operator delete is dictated 2716 // by whether we selected a placement operator new, not by whether 2717 // we had explicit placement arguments. This matters for things like 2718 // struct A { void *operator new(size_t, int = 0); ... }; 2719 // A *a = new A() 2720 // 2721 // We don't have any definition for what a "placement allocation function" 2722 // is, but we assume it's any allocation function whose 2723 // parameter-declaration-clause is anything other than (size_t). 2724 // 2725 // FIXME: Should (size_t, std::align_val_t) also be considered non-placement? 2726 // This affects whether an exception from the constructor of an overaligned 2727 // type uses the sized or non-sized form of aligned operator delete. 2728 bool isPlacementNew = !PlaceArgs.empty() || OperatorNew->param_size() != 1 || 2729 OperatorNew->isVariadic(); 2730 2731 if (isPlacementNew) { 2732 // C++ [expr.new]p20: 2733 // A declaration of a placement deallocation function matches the 2734 // declaration of a placement allocation function if it has the 2735 // same number of parameters and, after parameter transformations 2736 // (8.3.5), all parameter types except the first are 2737 // identical. [...] 2738 // 2739 // To perform this comparison, we compute the function type that 2740 // the deallocation function should have, and use that type both 2741 // for template argument deduction and for comparison purposes. 2742 QualType ExpectedFunctionType; 2743 { 2744 auto *Proto = OperatorNew->getType()->castAs<FunctionProtoType>(); 2745 2746 SmallVector<QualType, 4> ArgTypes; 2747 ArgTypes.push_back(Context.VoidPtrTy); 2748 for (unsigned I = 1, N = Proto->getNumParams(); I < N; ++I) 2749 ArgTypes.push_back(Proto->getParamType(I)); 2750 2751 FunctionProtoType::ExtProtoInfo EPI; 2752 // FIXME: This is not part of the standard's rule. 2753 EPI.Variadic = Proto->isVariadic(); 2754 2755 ExpectedFunctionType 2756 = Context.getFunctionType(Context.VoidTy, ArgTypes, EPI); 2757 } 2758 2759 for (LookupResult::iterator D = FoundDelete.begin(), 2760 DEnd = FoundDelete.end(); 2761 D != DEnd; ++D) { 2762 FunctionDecl *Fn = nullptr; 2763 if (FunctionTemplateDecl *FnTmpl = 2764 dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) { 2765 // Perform template argument deduction to try to match the 2766 // expected function type. 2767 TemplateDeductionInfo Info(StartLoc); 2768 if (DeduceTemplateArguments(FnTmpl, nullptr, ExpectedFunctionType, Fn, 2769 Info)) 2770 continue; 2771 } else 2772 Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl()); 2773 2774 if (Context.hasSameType(adjustCCAndNoReturn(Fn->getType(), 2775 ExpectedFunctionType, 2776 /*AdjustExcpetionSpec*/true), 2777 ExpectedFunctionType)) 2778 Matches.push_back(std::make_pair(D.getPair(), Fn)); 2779 } 2780 2781 if (getLangOpts().CUDA) 2782 EraseUnwantedCUDAMatches(dyn_cast<FunctionDecl>(CurContext), Matches); 2783 } else { 2784 // C++1y [expr.new]p22: 2785 // For a non-placement allocation function, the normal deallocation 2786 // function lookup is used 2787 // 2788 // Per [expr.delete]p10, this lookup prefers a member operator delete 2789 // without a size_t argument, but prefers a non-member operator delete 2790 // with a size_t where possible (which it always is in this case). 2791 llvm::SmallVector<UsualDeallocFnInfo, 4> BestDeallocFns; 2792 UsualDeallocFnInfo Selected = resolveDeallocationOverload( 2793 *this, FoundDelete, /*WantSize*/ FoundGlobalDelete, 2794 /*WantAlign*/ hasNewExtendedAlignment(*this, AllocElemType), 2795 &BestDeallocFns); 2796 if (Selected) 2797 Matches.push_back(std::make_pair(Selected.Found, Selected.FD)); 2798 else { 2799 // If we failed to select an operator, all remaining functions are viable 2800 // but ambiguous. 2801 for (auto Fn : BestDeallocFns) 2802 Matches.push_back(std::make_pair(Fn.Found, Fn.FD)); 2803 } 2804 } 2805 2806 // C++ [expr.new]p20: 2807 // [...] If the lookup finds a single matching deallocation 2808 // function, that function will be called; otherwise, no 2809 // deallocation function will be called. 2810 if (Matches.size() == 1) { 2811 OperatorDelete = Matches[0].second; 2812 2813 // C++1z [expr.new]p23: 2814 // If the lookup finds a usual deallocation function (3.7.4.2) 2815 // with a parameter of type std::size_t and that function, considered 2816 // as a placement deallocation function, would have been 2817 // selected as a match for the allocation function, the program 2818 // is ill-formed. 2819 if (getLangOpts().CPlusPlus11 && isPlacementNew && 2820 isNonPlacementDeallocationFunction(*this, OperatorDelete)) { 2821 UsualDeallocFnInfo Info(*this, 2822 DeclAccessPair::make(OperatorDelete, AS_public)); 2823 // Core issue, per mail to core reflector, 2016-10-09: 2824 // If this is a member operator delete, and there is a corresponding 2825 // non-sized member operator delete, this isn't /really/ a sized 2826 // deallocation function, it just happens to have a size_t parameter. 2827 bool IsSizedDelete = Info.HasSizeT; 2828 if (IsSizedDelete && !FoundGlobalDelete) { 2829 auto NonSizedDelete = 2830 resolveDeallocationOverload(*this, FoundDelete, /*WantSize*/false, 2831 /*WantAlign*/Info.HasAlignValT); 2832 if (NonSizedDelete && !NonSizedDelete.HasSizeT && 2833 NonSizedDelete.HasAlignValT == Info.HasAlignValT) 2834 IsSizedDelete = false; 2835 } 2836 2837 if (IsSizedDelete) { 2838 SourceRange R = PlaceArgs.empty() 2839 ? SourceRange() 2840 : SourceRange(PlaceArgs.front()->getBeginLoc(), 2841 PlaceArgs.back()->getEndLoc()); 2842 Diag(StartLoc, diag::err_placement_new_non_placement_delete) << R; 2843 if (!OperatorDelete->isImplicit()) 2844 Diag(OperatorDelete->getLocation(), diag::note_previous_decl) 2845 << DeleteName; 2846 } 2847 } 2848 2849 CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(), 2850 Matches[0].first); 2851 } else if (!Matches.empty()) { 2852 // We found multiple suitable operators. Per [expr.new]p20, that means we 2853 // call no 'operator delete' function, but we should at least warn the user. 2854 // FIXME: Suppress this warning if the construction cannot throw. 2855 Diag(StartLoc, diag::warn_ambiguous_suitable_delete_function_found) 2856 << DeleteName << AllocElemType; 2857 2858 for (auto &Match : Matches) 2859 Diag(Match.second->getLocation(), 2860 diag::note_member_declared_here) << DeleteName; 2861 } 2862 2863 return false; 2864 } 2865 2866 /// DeclareGlobalNewDelete - Declare the global forms of operator new and 2867 /// delete. These are: 2868 /// @code 2869 /// // C++03: 2870 /// void* operator new(std::size_t) throw(std::bad_alloc); 2871 /// void* operator new[](std::size_t) throw(std::bad_alloc); 2872 /// void operator delete(void *) throw(); 2873 /// void operator delete[](void *) throw(); 2874 /// // C++11: 2875 /// void* operator new(std::size_t); 2876 /// void* operator new[](std::size_t); 2877 /// void operator delete(void *) noexcept; 2878 /// void operator delete[](void *) noexcept; 2879 /// // C++1y: 2880 /// void* operator new(std::size_t); 2881 /// void* operator new[](std::size_t); 2882 /// void operator delete(void *) noexcept; 2883 /// void operator delete[](void *) noexcept; 2884 /// void operator delete(void *, std::size_t) noexcept; 2885 /// void operator delete[](void *, std::size_t) noexcept; 2886 /// @endcode 2887 /// Note that the placement and nothrow forms of new are *not* implicitly 2888 /// declared. Their use requires including \<new\>. 2889 void Sema::DeclareGlobalNewDelete() { 2890 if (GlobalNewDeleteDeclared) 2891 return; 2892 2893 // The implicitly declared new and delete operators 2894 // are not supported in OpenCL. 2895 if (getLangOpts().OpenCLCPlusPlus) 2896 return; 2897 2898 // C++ [basic.std.dynamic]p2: 2899 // [...] The following allocation and deallocation functions (18.4) are 2900 // implicitly declared in global scope in each translation unit of a 2901 // program 2902 // 2903 // C++03: 2904 // void* operator new(std::size_t) throw(std::bad_alloc); 2905 // void* operator new[](std::size_t) throw(std::bad_alloc); 2906 // void operator delete(void*) throw(); 2907 // void operator delete[](void*) throw(); 2908 // C++11: 2909 // void* operator new(std::size_t); 2910 // void* operator new[](std::size_t); 2911 // void operator delete(void*) noexcept; 2912 // void operator delete[](void*) noexcept; 2913 // C++1y: 2914 // void* operator new(std::size_t); 2915 // void* operator new[](std::size_t); 2916 // void operator delete(void*) noexcept; 2917 // void operator delete[](void*) noexcept; 2918 // void operator delete(void*, std::size_t) noexcept; 2919 // void operator delete[](void*, std::size_t) noexcept; 2920 // 2921 // These implicit declarations introduce only the function names operator 2922 // new, operator new[], operator delete, operator delete[]. 2923 // 2924 // Here, we need to refer to std::bad_alloc, so we will implicitly declare 2925 // "std" or "bad_alloc" as necessary to form the exception specification. 2926 // However, we do not make these implicit declarations visible to name 2927 // lookup. 2928 if (!StdBadAlloc && !getLangOpts().CPlusPlus11) { 2929 // The "std::bad_alloc" class has not yet been declared, so build it 2930 // implicitly. 2931 StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class, 2932 getOrCreateStdNamespace(), 2933 SourceLocation(), SourceLocation(), 2934 &PP.getIdentifierTable().get("bad_alloc"), 2935 nullptr); 2936 getStdBadAlloc()->setImplicit(true); 2937 } 2938 if (!StdAlignValT && getLangOpts().AlignedAllocation) { 2939 // The "std::align_val_t" enum class has not yet been declared, so build it 2940 // implicitly. 2941 auto *AlignValT = EnumDecl::Create( 2942 Context, getOrCreateStdNamespace(), SourceLocation(), SourceLocation(), 2943 &PP.getIdentifierTable().get("align_val_t"), nullptr, true, true, true); 2944 AlignValT->setIntegerType(Context.getSizeType()); 2945 AlignValT->setPromotionType(Context.getSizeType()); 2946 AlignValT->setImplicit(true); 2947 StdAlignValT = AlignValT; 2948 } 2949 2950 GlobalNewDeleteDeclared = true; 2951 2952 QualType VoidPtr = Context.getPointerType(Context.VoidTy); 2953 QualType SizeT = Context.getSizeType(); 2954 2955 auto DeclareGlobalAllocationFunctions = [&](OverloadedOperatorKind Kind, 2956 QualType Return, QualType Param) { 2957 llvm::SmallVector<QualType, 3> Params; 2958 Params.push_back(Param); 2959 2960 // Create up to four variants of the function (sized/aligned). 2961 bool HasSizedVariant = getLangOpts().SizedDeallocation && 2962 (Kind == OO_Delete || Kind == OO_Array_Delete); 2963 bool HasAlignedVariant = getLangOpts().AlignedAllocation; 2964 2965 int NumSizeVariants = (HasSizedVariant ? 2 : 1); 2966 int NumAlignVariants = (HasAlignedVariant ? 2 : 1); 2967 for (int Sized = 0; Sized < NumSizeVariants; ++Sized) { 2968 if (Sized) 2969 Params.push_back(SizeT); 2970 2971 for (int Aligned = 0; Aligned < NumAlignVariants; ++Aligned) { 2972 if (Aligned) 2973 Params.push_back(Context.getTypeDeclType(getStdAlignValT())); 2974 2975 DeclareGlobalAllocationFunction( 2976 Context.DeclarationNames.getCXXOperatorName(Kind), Return, Params); 2977 2978 if (Aligned) 2979 Params.pop_back(); 2980 } 2981 } 2982 }; 2983 2984 DeclareGlobalAllocationFunctions(OO_New, VoidPtr, SizeT); 2985 DeclareGlobalAllocationFunctions(OO_Array_New, VoidPtr, SizeT); 2986 DeclareGlobalAllocationFunctions(OO_Delete, Context.VoidTy, VoidPtr); 2987 DeclareGlobalAllocationFunctions(OO_Array_Delete, Context.VoidTy, VoidPtr); 2988 } 2989 2990 /// DeclareGlobalAllocationFunction - Declares a single implicit global 2991 /// allocation function if it doesn't already exist. 2992 void Sema::DeclareGlobalAllocationFunction(DeclarationName Name, 2993 QualType Return, 2994 ArrayRef<QualType> Params) { 2995 DeclContext *GlobalCtx = Context.getTranslationUnitDecl(); 2996 2997 // Check if this function is already declared. 2998 DeclContext::lookup_result R = GlobalCtx->lookup(Name); 2999 for (DeclContext::lookup_iterator Alloc = R.begin(), AllocEnd = R.end(); 3000 Alloc != AllocEnd; ++Alloc) { 3001 // Only look at non-template functions, as it is the predefined, 3002 // non-templated allocation function we are trying to declare here. 3003 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) { 3004 if (Func->getNumParams() == Params.size()) { 3005 llvm::SmallVector<QualType, 3> FuncParams; 3006 for (auto *P : Func->parameters()) 3007 FuncParams.push_back( 3008 Context.getCanonicalType(P->getType().getUnqualifiedType())); 3009 if (llvm::makeArrayRef(FuncParams) == Params) { 3010 // Make the function visible to name lookup, even if we found it in 3011 // an unimported module. It either is an implicitly-declared global 3012 // allocation function, or is suppressing that function. 3013 Func->setVisibleDespiteOwningModule(); 3014 return; 3015 } 3016 } 3017 } 3018 } 3019 3020 FunctionProtoType::ExtProtoInfo EPI(Context.getDefaultCallingConvention( 3021 /*IsVariadic=*/false, /*IsCXXMethod=*/false, /*IsBuiltin=*/true)); 3022 3023 QualType BadAllocType; 3024 bool HasBadAllocExceptionSpec 3025 = (Name.getCXXOverloadedOperator() == OO_New || 3026 Name.getCXXOverloadedOperator() == OO_Array_New); 3027 if (HasBadAllocExceptionSpec) { 3028 if (!getLangOpts().CPlusPlus11) { 3029 BadAllocType = Context.getTypeDeclType(getStdBadAlloc()); 3030 assert(StdBadAlloc && "Must have std::bad_alloc declared"); 3031 EPI.ExceptionSpec.Type = EST_Dynamic; 3032 EPI.ExceptionSpec.Exceptions = llvm::makeArrayRef(BadAllocType); 3033 } 3034 } else { 3035 EPI.ExceptionSpec = 3036 getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone; 3037 } 3038 3039 auto CreateAllocationFunctionDecl = [&](Attr *ExtraAttr) { 3040 QualType FnType = Context.getFunctionType(Return, Params, EPI); 3041 FunctionDecl *Alloc = FunctionDecl::Create( 3042 Context, GlobalCtx, SourceLocation(), SourceLocation(), Name, 3043 FnType, /*TInfo=*/nullptr, SC_None, false, true); 3044 Alloc->setImplicit(); 3045 // Global allocation functions should always be visible. 3046 Alloc->setVisibleDespiteOwningModule(); 3047 3048 Alloc->addAttr(VisibilityAttr::CreateImplicit( 3049 Context, LangOpts.GlobalAllocationFunctionVisibilityHidden 3050 ? VisibilityAttr::Hidden 3051 : VisibilityAttr::Default)); 3052 3053 llvm::SmallVector<ParmVarDecl *, 3> ParamDecls; 3054 for (QualType T : Params) { 3055 ParamDecls.push_back(ParmVarDecl::Create( 3056 Context, Alloc, SourceLocation(), SourceLocation(), nullptr, T, 3057 /*TInfo=*/nullptr, SC_None, nullptr)); 3058 ParamDecls.back()->setImplicit(); 3059 } 3060 Alloc->setParams(ParamDecls); 3061 if (ExtraAttr) 3062 Alloc->addAttr(ExtraAttr); 3063 AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(Alloc); 3064 Context.getTranslationUnitDecl()->addDecl(Alloc); 3065 IdResolver.tryAddTopLevelDecl(Alloc, Name); 3066 }; 3067 3068 if (!LangOpts.CUDA) 3069 CreateAllocationFunctionDecl(nullptr); 3070 else { 3071 // Host and device get their own declaration so each can be 3072 // defined or re-declared independently. 3073 CreateAllocationFunctionDecl(CUDAHostAttr::CreateImplicit(Context)); 3074 CreateAllocationFunctionDecl(CUDADeviceAttr::CreateImplicit(Context)); 3075 } 3076 } 3077 3078 FunctionDecl *Sema::FindUsualDeallocationFunction(SourceLocation StartLoc, 3079 bool CanProvideSize, 3080 bool Overaligned, 3081 DeclarationName Name) { 3082 DeclareGlobalNewDelete(); 3083 3084 LookupResult FoundDelete(*this, Name, StartLoc, LookupOrdinaryName); 3085 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl()); 3086 3087 // FIXME: It's possible for this to result in ambiguity, through a 3088 // user-declared variadic operator delete or the enable_if attribute. We 3089 // should probably not consider those cases to be usual deallocation 3090 // functions. But for now we just make an arbitrary choice in that case. 3091 auto Result = resolveDeallocationOverload(*this, FoundDelete, CanProvideSize, 3092 Overaligned); 3093 assert(Result.FD && "operator delete missing from global scope?"); 3094 return Result.FD; 3095 } 3096 3097 FunctionDecl *Sema::FindDeallocationFunctionForDestructor(SourceLocation Loc, 3098 CXXRecordDecl *RD) { 3099 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Delete); 3100 3101 FunctionDecl *OperatorDelete = nullptr; 3102 if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete)) 3103 return nullptr; 3104 if (OperatorDelete) 3105 return OperatorDelete; 3106 3107 // If there's no class-specific operator delete, look up the global 3108 // non-array delete. 3109 return FindUsualDeallocationFunction( 3110 Loc, true, hasNewExtendedAlignment(*this, Context.getRecordType(RD)), 3111 Name); 3112 } 3113 3114 bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD, 3115 DeclarationName Name, 3116 FunctionDecl *&Operator, bool Diagnose) { 3117 LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName); 3118 // Try to find operator delete/operator delete[] in class scope. 3119 LookupQualifiedName(Found, RD); 3120 3121 if (Found.isAmbiguous()) 3122 return true; 3123 3124 Found.suppressDiagnostics(); 3125 3126 bool Overaligned = hasNewExtendedAlignment(*this, Context.getRecordType(RD)); 3127 3128 // C++17 [expr.delete]p10: 3129 // If the deallocation functions have class scope, the one without a 3130 // parameter of type std::size_t is selected. 3131 llvm::SmallVector<UsualDeallocFnInfo, 4> Matches; 3132 resolveDeallocationOverload(*this, Found, /*WantSize*/ false, 3133 /*WantAlign*/ Overaligned, &Matches); 3134 3135 // If we could find an overload, use it. 3136 if (Matches.size() == 1) { 3137 Operator = cast<CXXMethodDecl>(Matches[0].FD); 3138 3139 // FIXME: DiagnoseUseOfDecl? 3140 if (Operator->isDeleted()) { 3141 if (Diagnose) { 3142 Diag(StartLoc, diag::err_deleted_function_use); 3143 NoteDeletedFunction(Operator); 3144 } 3145 return true; 3146 } 3147 3148 if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(), 3149 Matches[0].Found, Diagnose) == AR_inaccessible) 3150 return true; 3151 3152 return false; 3153 } 3154 3155 // We found multiple suitable operators; complain about the ambiguity. 3156 // FIXME: The standard doesn't say to do this; it appears that the intent 3157 // is that this should never happen. 3158 if (!Matches.empty()) { 3159 if (Diagnose) { 3160 Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found) 3161 << Name << RD; 3162 for (auto &Match : Matches) 3163 Diag(Match.FD->getLocation(), diag::note_member_declared_here) << Name; 3164 } 3165 return true; 3166 } 3167 3168 // We did find operator delete/operator delete[] declarations, but 3169 // none of them were suitable. 3170 if (!Found.empty()) { 3171 if (Diagnose) { 3172 Diag(StartLoc, diag::err_no_suitable_delete_member_function_found) 3173 << Name << RD; 3174 3175 for (NamedDecl *D : Found) 3176 Diag(D->getUnderlyingDecl()->getLocation(), 3177 diag::note_member_declared_here) << Name; 3178 } 3179 return true; 3180 } 3181 3182 Operator = nullptr; 3183 return false; 3184 } 3185 3186 namespace { 3187 /// Checks whether delete-expression, and new-expression used for 3188 /// initializing deletee have the same array form. 3189 class MismatchingNewDeleteDetector { 3190 public: 3191 enum MismatchResult { 3192 /// Indicates that there is no mismatch or a mismatch cannot be proven. 3193 NoMismatch, 3194 /// Indicates that variable is initialized with mismatching form of \a new. 3195 VarInitMismatches, 3196 /// Indicates that member is initialized with mismatching form of \a new. 3197 MemberInitMismatches, 3198 /// Indicates that 1 or more constructors' definitions could not been 3199 /// analyzed, and they will be checked again at the end of translation unit. 3200 AnalyzeLater 3201 }; 3202 3203 /// \param EndOfTU True, if this is the final analysis at the end of 3204 /// translation unit. False, if this is the initial analysis at the point 3205 /// delete-expression was encountered. 3206 explicit MismatchingNewDeleteDetector(bool EndOfTU) 3207 : Field(nullptr), IsArrayForm(false), EndOfTU(EndOfTU), 3208 HasUndefinedConstructors(false) {} 3209 3210 /// Checks whether pointee of a delete-expression is initialized with 3211 /// matching form of new-expression. 3212 /// 3213 /// If return value is \c VarInitMismatches or \c MemberInitMismatches at the 3214 /// point where delete-expression is encountered, then a warning will be 3215 /// issued immediately. If return value is \c AnalyzeLater at the point where 3216 /// delete-expression is seen, then member will be analyzed at the end of 3217 /// translation unit. \c AnalyzeLater is returned iff at least one constructor 3218 /// couldn't be analyzed. If at least one constructor initializes the member 3219 /// with matching type of new, the return value is \c NoMismatch. 3220 MismatchResult analyzeDeleteExpr(const CXXDeleteExpr *DE); 3221 /// Analyzes a class member. 3222 /// \param Field Class member to analyze. 3223 /// \param DeleteWasArrayForm Array form-ness of the delete-expression used 3224 /// for deleting the \p Field. 3225 MismatchResult analyzeField(FieldDecl *Field, bool DeleteWasArrayForm); 3226 FieldDecl *Field; 3227 /// List of mismatching new-expressions used for initialization of the pointee 3228 llvm::SmallVector<const CXXNewExpr *, 4> NewExprs; 3229 /// Indicates whether delete-expression was in array form. 3230 bool IsArrayForm; 3231 3232 private: 3233 const bool EndOfTU; 3234 /// Indicates that there is at least one constructor without body. 3235 bool HasUndefinedConstructors; 3236 /// Returns \c CXXNewExpr from given initialization expression. 3237 /// \param E Expression used for initializing pointee in delete-expression. 3238 /// E can be a single-element \c InitListExpr consisting of new-expression. 3239 const CXXNewExpr *getNewExprFromInitListOrExpr(const Expr *E); 3240 /// Returns whether member is initialized with mismatching form of 3241 /// \c new either by the member initializer or in-class initialization. 3242 /// 3243 /// If bodies of all constructors are not visible at the end of translation 3244 /// unit or at least one constructor initializes member with the matching 3245 /// form of \c new, mismatch cannot be proven, and this function will return 3246 /// \c NoMismatch. 3247 MismatchResult analyzeMemberExpr(const MemberExpr *ME); 3248 /// Returns whether variable is initialized with mismatching form of 3249 /// \c new. 3250 /// 3251 /// If variable is initialized with matching form of \c new or variable is not 3252 /// initialized with a \c new expression, this function will return true. 3253 /// If variable is initialized with mismatching form of \c new, returns false. 3254 /// \param D Variable to analyze. 3255 bool hasMatchingVarInit(const DeclRefExpr *D); 3256 /// Checks whether the constructor initializes pointee with mismatching 3257 /// form of \c new. 3258 /// 3259 /// Returns true, if member is initialized with matching form of \c new in 3260 /// member initializer list. Returns false, if member is initialized with the 3261 /// matching form of \c new in this constructor's initializer or given 3262 /// constructor isn't defined at the point where delete-expression is seen, or 3263 /// member isn't initialized by the constructor. 3264 bool hasMatchingNewInCtor(const CXXConstructorDecl *CD); 3265 /// Checks whether member is initialized with matching form of 3266 /// \c new in member initializer list. 3267 bool hasMatchingNewInCtorInit(const CXXCtorInitializer *CI); 3268 /// Checks whether member is initialized with mismatching form of \c new by 3269 /// in-class initializer. 3270 MismatchResult analyzeInClassInitializer(); 3271 }; 3272 } 3273 3274 MismatchingNewDeleteDetector::MismatchResult 3275 MismatchingNewDeleteDetector::analyzeDeleteExpr(const CXXDeleteExpr *DE) { 3276 NewExprs.clear(); 3277 assert(DE && "Expected delete-expression"); 3278 IsArrayForm = DE->isArrayForm(); 3279 const Expr *E = DE->getArgument()->IgnoreParenImpCasts(); 3280 if (const MemberExpr *ME = dyn_cast<const MemberExpr>(E)) { 3281 return analyzeMemberExpr(ME); 3282 } else if (const DeclRefExpr *D = dyn_cast<const DeclRefExpr>(E)) { 3283 if (!hasMatchingVarInit(D)) 3284 return VarInitMismatches; 3285 } 3286 return NoMismatch; 3287 } 3288 3289 const CXXNewExpr * 3290 MismatchingNewDeleteDetector::getNewExprFromInitListOrExpr(const Expr *E) { 3291 assert(E != nullptr && "Expected a valid initializer expression"); 3292 E = E->IgnoreParenImpCasts(); 3293 if (const InitListExpr *ILE = dyn_cast<const InitListExpr>(E)) { 3294 if (ILE->getNumInits() == 1) 3295 E = dyn_cast<const CXXNewExpr>(ILE->getInit(0)->IgnoreParenImpCasts()); 3296 } 3297 3298 return dyn_cast_or_null<const CXXNewExpr>(E); 3299 } 3300 3301 bool MismatchingNewDeleteDetector::hasMatchingNewInCtorInit( 3302 const CXXCtorInitializer *CI) { 3303 const CXXNewExpr *NE = nullptr; 3304 if (Field == CI->getMember() && 3305 (NE = getNewExprFromInitListOrExpr(CI->getInit()))) { 3306 if (NE->isArray() == IsArrayForm) 3307 return true; 3308 else 3309 NewExprs.push_back(NE); 3310 } 3311 return false; 3312 } 3313 3314 bool MismatchingNewDeleteDetector::hasMatchingNewInCtor( 3315 const CXXConstructorDecl *CD) { 3316 if (CD->isImplicit()) 3317 return false; 3318 const FunctionDecl *Definition = CD; 3319 if (!CD->isThisDeclarationADefinition() && !CD->isDefined(Definition)) { 3320 HasUndefinedConstructors = true; 3321 return EndOfTU; 3322 } 3323 for (const auto *CI : cast<const CXXConstructorDecl>(Definition)->inits()) { 3324 if (hasMatchingNewInCtorInit(CI)) 3325 return true; 3326 } 3327 return false; 3328 } 3329 3330 MismatchingNewDeleteDetector::MismatchResult 3331 MismatchingNewDeleteDetector::analyzeInClassInitializer() { 3332 assert(Field != nullptr && "This should be called only for members"); 3333 const Expr *InitExpr = Field->getInClassInitializer(); 3334 if (!InitExpr) 3335 return EndOfTU ? NoMismatch : AnalyzeLater; 3336 if (const CXXNewExpr *NE = getNewExprFromInitListOrExpr(InitExpr)) { 3337 if (NE->isArray() != IsArrayForm) { 3338 NewExprs.push_back(NE); 3339 return MemberInitMismatches; 3340 } 3341 } 3342 return NoMismatch; 3343 } 3344 3345 MismatchingNewDeleteDetector::MismatchResult 3346 MismatchingNewDeleteDetector::analyzeField(FieldDecl *Field, 3347 bool DeleteWasArrayForm) { 3348 assert(Field != nullptr && "Analysis requires a valid class member."); 3349 this->Field = Field; 3350 IsArrayForm = DeleteWasArrayForm; 3351 const CXXRecordDecl *RD = cast<const CXXRecordDecl>(Field->getParent()); 3352 for (const auto *CD : RD->ctors()) { 3353 if (hasMatchingNewInCtor(CD)) 3354 return NoMismatch; 3355 } 3356 if (HasUndefinedConstructors) 3357 return EndOfTU ? NoMismatch : AnalyzeLater; 3358 if (!NewExprs.empty()) 3359 return MemberInitMismatches; 3360 return Field->hasInClassInitializer() ? analyzeInClassInitializer() 3361 : NoMismatch; 3362 } 3363 3364 MismatchingNewDeleteDetector::MismatchResult 3365 MismatchingNewDeleteDetector::analyzeMemberExpr(const MemberExpr *ME) { 3366 assert(ME != nullptr && "Expected a member expression"); 3367 if (FieldDecl *F = dyn_cast<FieldDecl>(ME->getMemberDecl())) 3368 return analyzeField(F, IsArrayForm); 3369 return NoMismatch; 3370 } 3371 3372 bool MismatchingNewDeleteDetector::hasMatchingVarInit(const DeclRefExpr *D) { 3373 const CXXNewExpr *NE = nullptr; 3374 if (const VarDecl *VD = dyn_cast<const VarDecl>(D->getDecl())) { 3375 if (VD->hasInit() && (NE = getNewExprFromInitListOrExpr(VD->getInit())) && 3376 NE->isArray() != IsArrayForm) { 3377 NewExprs.push_back(NE); 3378 } 3379 } 3380 return NewExprs.empty(); 3381 } 3382 3383 static void 3384 DiagnoseMismatchedNewDelete(Sema &SemaRef, SourceLocation DeleteLoc, 3385 const MismatchingNewDeleteDetector &Detector) { 3386 SourceLocation EndOfDelete = SemaRef.getLocForEndOfToken(DeleteLoc); 3387 FixItHint H; 3388 if (!Detector.IsArrayForm) 3389 H = FixItHint::CreateInsertion(EndOfDelete, "[]"); 3390 else { 3391 SourceLocation RSquare = Lexer::findLocationAfterToken( 3392 DeleteLoc, tok::l_square, SemaRef.getSourceManager(), 3393 SemaRef.getLangOpts(), true); 3394 if (RSquare.isValid()) 3395 H = FixItHint::CreateRemoval(SourceRange(EndOfDelete, RSquare)); 3396 } 3397 SemaRef.Diag(DeleteLoc, diag::warn_mismatched_delete_new) 3398 << Detector.IsArrayForm << H; 3399 3400 for (const auto *NE : Detector.NewExprs) 3401 SemaRef.Diag(NE->getExprLoc(), diag::note_allocated_here) 3402 << Detector.IsArrayForm; 3403 } 3404 3405 void Sema::AnalyzeDeleteExprMismatch(const CXXDeleteExpr *DE) { 3406 if (Diags.isIgnored(diag::warn_mismatched_delete_new, SourceLocation())) 3407 return; 3408 MismatchingNewDeleteDetector Detector(/*EndOfTU=*/false); 3409 switch (Detector.analyzeDeleteExpr(DE)) { 3410 case MismatchingNewDeleteDetector::VarInitMismatches: 3411 case MismatchingNewDeleteDetector::MemberInitMismatches: { 3412 DiagnoseMismatchedNewDelete(*this, DE->getBeginLoc(), Detector); 3413 break; 3414 } 3415 case MismatchingNewDeleteDetector::AnalyzeLater: { 3416 DeleteExprs[Detector.Field].push_back( 3417 std::make_pair(DE->getBeginLoc(), DE->isArrayForm())); 3418 break; 3419 } 3420 case MismatchingNewDeleteDetector::NoMismatch: 3421 break; 3422 } 3423 } 3424 3425 void Sema::AnalyzeDeleteExprMismatch(FieldDecl *Field, SourceLocation DeleteLoc, 3426 bool DeleteWasArrayForm) { 3427 MismatchingNewDeleteDetector Detector(/*EndOfTU=*/true); 3428 switch (Detector.analyzeField(Field, DeleteWasArrayForm)) { 3429 case MismatchingNewDeleteDetector::VarInitMismatches: 3430 llvm_unreachable("This analysis should have been done for class members."); 3431 case MismatchingNewDeleteDetector::AnalyzeLater: 3432 llvm_unreachable("Analysis cannot be postponed any point beyond end of " 3433 "translation unit."); 3434 case MismatchingNewDeleteDetector::MemberInitMismatches: 3435 DiagnoseMismatchedNewDelete(*this, DeleteLoc, Detector); 3436 break; 3437 case MismatchingNewDeleteDetector::NoMismatch: 3438 break; 3439 } 3440 } 3441 3442 /// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in: 3443 /// @code ::delete ptr; @endcode 3444 /// or 3445 /// @code delete [] ptr; @endcode 3446 ExprResult 3447 Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal, 3448 bool ArrayForm, Expr *ExE) { 3449 // C++ [expr.delete]p1: 3450 // The operand shall have a pointer type, or a class type having a single 3451 // non-explicit conversion function to a pointer type. The result has type 3452 // void. 3453 // 3454 // DR599 amends "pointer type" to "pointer to object type" in both cases. 3455 3456 ExprResult Ex = ExE; 3457 FunctionDecl *OperatorDelete = nullptr; 3458 bool ArrayFormAsWritten = ArrayForm; 3459 bool UsualArrayDeleteWantsSize = false; 3460 3461 if (!Ex.get()->isTypeDependent()) { 3462 // Perform lvalue-to-rvalue cast, if needed. 3463 Ex = DefaultLvalueConversion(Ex.get()); 3464 if (Ex.isInvalid()) 3465 return ExprError(); 3466 3467 QualType Type = Ex.get()->getType(); 3468 3469 class DeleteConverter : public ContextualImplicitConverter { 3470 public: 3471 DeleteConverter() : ContextualImplicitConverter(false, true) {} 3472 3473 bool match(QualType ConvType) override { 3474 // FIXME: If we have an operator T* and an operator void*, we must pick 3475 // the operator T*. 3476 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) 3477 if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType()) 3478 return true; 3479 return false; 3480 } 3481 3482 SemaDiagnosticBuilder diagnoseNoMatch(Sema &S, SourceLocation Loc, 3483 QualType T) override { 3484 return S.Diag(Loc, diag::err_delete_operand) << T; 3485 } 3486 3487 SemaDiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc, 3488 QualType T) override { 3489 return S.Diag(Loc, diag::err_delete_incomplete_class_type) << T; 3490 } 3491 3492 SemaDiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc, 3493 QualType T, 3494 QualType ConvTy) override { 3495 return S.Diag(Loc, diag::err_delete_explicit_conversion) << T << ConvTy; 3496 } 3497 3498 SemaDiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv, 3499 QualType ConvTy) override { 3500 return S.Diag(Conv->getLocation(), diag::note_delete_conversion) 3501 << ConvTy; 3502 } 3503 3504 SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc, 3505 QualType T) override { 3506 return S.Diag(Loc, diag::err_ambiguous_delete_operand) << T; 3507 } 3508 3509 SemaDiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv, 3510 QualType ConvTy) override { 3511 return S.Diag(Conv->getLocation(), diag::note_delete_conversion) 3512 << ConvTy; 3513 } 3514 3515 SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc, 3516 QualType T, 3517 QualType ConvTy) override { 3518 llvm_unreachable("conversion functions are permitted"); 3519 } 3520 } Converter; 3521 3522 Ex = PerformContextualImplicitConversion(StartLoc, Ex.get(), Converter); 3523 if (Ex.isInvalid()) 3524 return ExprError(); 3525 Type = Ex.get()->getType(); 3526 if (!Converter.match(Type)) 3527 // FIXME: PerformContextualImplicitConversion should return ExprError 3528 // itself in this case. 3529 return ExprError(); 3530 3531 QualType Pointee = Type->castAs<PointerType>()->getPointeeType(); 3532 QualType PointeeElem = Context.getBaseElementType(Pointee); 3533 3534 if (Pointee.getAddressSpace() != LangAS::Default && 3535 !getLangOpts().OpenCLCPlusPlus) 3536 return Diag(Ex.get()->getBeginLoc(), 3537 diag::err_address_space_qualified_delete) 3538 << Pointee.getUnqualifiedType() 3539 << Pointee.getQualifiers().getAddressSpaceAttributePrintValue(); 3540 3541 CXXRecordDecl *PointeeRD = nullptr; 3542 if (Pointee->isVoidType() && !isSFINAEContext()) { 3543 // The C++ standard bans deleting a pointer to a non-object type, which 3544 // effectively bans deletion of "void*". However, most compilers support 3545 // this, so we treat it as a warning unless we're in a SFINAE context. 3546 Diag(StartLoc, diag::ext_delete_void_ptr_operand) 3547 << Type << Ex.get()->getSourceRange(); 3548 } else if (Pointee->isFunctionType() || Pointee->isVoidType() || 3549 Pointee->isSizelessType()) { 3550 return ExprError(Diag(StartLoc, diag::err_delete_operand) 3551 << Type << Ex.get()->getSourceRange()); 3552 } else if (!Pointee->isDependentType()) { 3553 // FIXME: This can result in errors if the definition was imported from a 3554 // module but is hidden. 3555 if (!RequireCompleteType(StartLoc, Pointee, 3556 diag::warn_delete_incomplete, Ex.get())) { 3557 if (const RecordType *RT = PointeeElem->getAs<RecordType>()) 3558 PointeeRD = cast<CXXRecordDecl>(RT->getDecl()); 3559 } 3560 } 3561 3562 if (Pointee->isArrayType() && !ArrayForm) { 3563 Diag(StartLoc, diag::warn_delete_array_type) 3564 << Type << Ex.get()->getSourceRange() 3565 << FixItHint::CreateInsertion(getLocForEndOfToken(StartLoc), "[]"); 3566 ArrayForm = true; 3567 } 3568 3569 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName( 3570 ArrayForm ? OO_Array_Delete : OO_Delete); 3571 3572 if (PointeeRD) { 3573 if (!UseGlobal && 3574 FindDeallocationFunction(StartLoc, PointeeRD, DeleteName, 3575 OperatorDelete)) 3576 return ExprError(); 3577 3578 // If we're allocating an array of records, check whether the 3579 // usual operator delete[] has a size_t parameter. 3580 if (ArrayForm) { 3581 // If the user specifically asked to use the global allocator, 3582 // we'll need to do the lookup into the class. 3583 if (UseGlobal) 3584 UsualArrayDeleteWantsSize = 3585 doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem); 3586 3587 // Otherwise, the usual operator delete[] should be the 3588 // function we just found. 3589 else if (OperatorDelete && isa<CXXMethodDecl>(OperatorDelete)) 3590 UsualArrayDeleteWantsSize = 3591 UsualDeallocFnInfo(*this, 3592 DeclAccessPair::make(OperatorDelete, AS_public)) 3593 .HasSizeT; 3594 } 3595 3596 if (!PointeeRD->hasIrrelevantDestructor()) 3597 if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) { 3598 MarkFunctionReferenced(StartLoc, 3599 const_cast<CXXDestructorDecl*>(Dtor)); 3600 if (DiagnoseUseOfDecl(Dtor, StartLoc)) 3601 return ExprError(); 3602 } 3603 3604 CheckVirtualDtorCall(PointeeRD->getDestructor(), StartLoc, 3605 /*IsDelete=*/true, /*CallCanBeVirtual=*/true, 3606 /*WarnOnNonAbstractTypes=*/!ArrayForm, 3607 SourceLocation()); 3608 } 3609 3610 if (!OperatorDelete) { 3611 if (getLangOpts().OpenCLCPlusPlus) { 3612 Diag(StartLoc, diag::err_openclcxx_not_supported) << "default delete"; 3613 return ExprError(); 3614 } 3615 3616 bool IsComplete = isCompleteType(StartLoc, Pointee); 3617 bool CanProvideSize = 3618 IsComplete && (!ArrayForm || UsualArrayDeleteWantsSize || 3619 Pointee.isDestructedType()); 3620 bool Overaligned = hasNewExtendedAlignment(*this, Pointee); 3621 3622 // Look for a global declaration. 3623 OperatorDelete = FindUsualDeallocationFunction(StartLoc, CanProvideSize, 3624 Overaligned, DeleteName); 3625 } 3626 3627 MarkFunctionReferenced(StartLoc, OperatorDelete); 3628 3629 // Check access and ambiguity of destructor if we're going to call it. 3630 // Note that this is required even for a virtual delete. 3631 bool IsVirtualDelete = false; 3632 if (PointeeRD) { 3633 if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) { 3634 CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor, 3635 PDiag(diag::err_access_dtor) << PointeeElem); 3636 IsVirtualDelete = Dtor->isVirtual(); 3637 } 3638 } 3639 3640 DiagnoseUseOfDecl(OperatorDelete, StartLoc); 3641 3642 // Convert the operand to the type of the first parameter of operator 3643 // delete. This is only necessary if we selected a destroying operator 3644 // delete that we are going to call (non-virtually); converting to void* 3645 // is trivial and left to AST consumers to handle. 3646 QualType ParamType = OperatorDelete->getParamDecl(0)->getType(); 3647 if (!IsVirtualDelete && !ParamType->getPointeeType()->isVoidType()) { 3648 Qualifiers Qs = Pointee.getQualifiers(); 3649 if (Qs.hasCVRQualifiers()) { 3650 // Qualifiers are irrelevant to this conversion; we're only looking 3651 // for access and ambiguity. 3652 Qs.removeCVRQualifiers(); 3653 QualType Unqual = Context.getPointerType( 3654 Context.getQualifiedType(Pointee.getUnqualifiedType(), Qs)); 3655 Ex = ImpCastExprToType(Ex.get(), Unqual, CK_NoOp); 3656 } 3657 Ex = PerformImplicitConversion(Ex.get(), ParamType, AA_Passing); 3658 if (Ex.isInvalid()) 3659 return ExprError(); 3660 } 3661 } 3662 3663 CXXDeleteExpr *Result = new (Context) CXXDeleteExpr( 3664 Context.VoidTy, UseGlobal, ArrayForm, ArrayFormAsWritten, 3665 UsualArrayDeleteWantsSize, OperatorDelete, Ex.get(), StartLoc); 3666 AnalyzeDeleteExprMismatch(Result); 3667 return Result; 3668 } 3669 3670 static bool resolveBuiltinNewDeleteOverload(Sema &S, CallExpr *TheCall, 3671 bool IsDelete, 3672 FunctionDecl *&Operator) { 3673 3674 DeclarationName NewName = S.Context.DeclarationNames.getCXXOperatorName( 3675 IsDelete ? OO_Delete : OO_New); 3676 3677 LookupResult R(S, NewName, TheCall->getBeginLoc(), Sema::LookupOrdinaryName); 3678 S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl()); 3679 assert(!R.empty() && "implicitly declared allocation functions not found"); 3680 assert(!R.isAmbiguous() && "global allocation functions are ambiguous"); 3681 3682 // We do our own custom access checks below. 3683 R.suppressDiagnostics(); 3684 3685 SmallVector<Expr *, 8> Args(TheCall->arg_begin(), TheCall->arg_end()); 3686 OverloadCandidateSet Candidates(R.getNameLoc(), 3687 OverloadCandidateSet::CSK_Normal); 3688 for (LookupResult::iterator FnOvl = R.begin(), FnOvlEnd = R.end(); 3689 FnOvl != FnOvlEnd; ++FnOvl) { 3690 // Even member operator new/delete are implicitly treated as 3691 // static, so don't use AddMemberCandidate. 3692 NamedDecl *D = (*FnOvl)->getUnderlyingDecl(); 3693 3694 if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) { 3695 S.AddTemplateOverloadCandidate(FnTemplate, FnOvl.getPair(), 3696 /*ExplicitTemplateArgs=*/nullptr, Args, 3697 Candidates, 3698 /*SuppressUserConversions=*/false); 3699 continue; 3700 } 3701 3702 FunctionDecl *Fn = cast<FunctionDecl>(D); 3703 S.AddOverloadCandidate(Fn, FnOvl.getPair(), Args, Candidates, 3704 /*SuppressUserConversions=*/false); 3705 } 3706 3707 SourceRange Range = TheCall->getSourceRange(); 3708 3709 // Do the resolution. 3710 OverloadCandidateSet::iterator Best; 3711 switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) { 3712 case OR_Success: { 3713 // Got one! 3714 FunctionDecl *FnDecl = Best->Function; 3715 assert(R.getNamingClass() == nullptr && 3716 "class members should not be considered"); 3717 3718 if (!FnDecl->isReplaceableGlobalAllocationFunction()) { 3719 S.Diag(R.getNameLoc(), diag::err_builtin_operator_new_delete_not_usual) 3720 << (IsDelete ? 1 : 0) << Range; 3721 S.Diag(FnDecl->getLocation(), diag::note_non_usual_function_declared_here) 3722 << R.getLookupName() << FnDecl->getSourceRange(); 3723 return true; 3724 } 3725 3726 Operator = FnDecl; 3727 return false; 3728 } 3729 3730 case OR_No_Viable_Function: 3731 Candidates.NoteCandidates( 3732 PartialDiagnosticAt(R.getNameLoc(), 3733 S.PDiag(diag::err_ovl_no_viable_function_in_call) 3734 << R.getLookupName() << Range), 3735 S, OCD_AllCandidates, Args); 3736 return true; 3737 3738 case OR_Ambiguous: 3739 Candidates.NoteCandidates( 3740 PartialDiagnosticAt(R.getNameLoc(), 3741 S.PDiag(diag::err_ovl_ambiguous_call) 3742 << R.getLookupName() << Range), 3743 S, OCD_AmbiguousCandidates, Args); 3744 return true; 3745 3746 case OR_Deleted: { 3747 Candidates.NoteCandidates( 3748 PartialDiagnosticAt(R.getNameLoc(), S.PDiag(diag::err_ovl_deleted_call) 3749 << R.getLookupName() << Range), 3750 S, OCD_AllCandidates, Args); 3751 return true; 3752 } 3753 } 3754 llvm_unreachable("Unreachable, bad result from BestViableFunction"); 3755 } 3756 3757 ExprResult 3758 Sema::SemaBuiltinOperatorNewDeleteOverloaded(ExprResult TheCallResult, 3759 bool IsDelete) { 3760 CallExpr *TheCall = cast<CallExpr>(TheCallResult.get()); 3761 if (!getLangOpts().CPlusPlus) { 3762 Diag(TheCall->getExprLoc(), diag::err_builtin_requires_language) 3763 << (IsDelete ? "__builtin_operator_delete" : "__builtin_operator_new") 3764 << "C++"; 3765 return ExprError(); 3766 } 3767 // CodeGen assumes it can find the global new and delete to call, 3768 // so ensure that they are declared. 3769 DeclareGlobalNewDelete(); 3770 3771 FunctionDecl *OperatorNewOrDelete = nullptr; 3772 if (resolveBuiltinNewDeleteOverload(*this, TheCall, IsDelete, 3773 OperatorNewOrDelete)) 3774 return ExprError(); 3775 assert(OperatorNewOrDelete && "should be found"); 3776 3777 DiagnoseUseOfDecl(OperatorNewOrDelete, TheCall->getExprLoc()); 3778 MarkFunctionReferenced(TheCall->getExprLoc(), OperatorNewOrDelete); 3779 3780 TheCall->setType(OperatorNewOrDelete->getReturnType()); 3781 for (unsigned i = 0; i != TheCall->getNumArgs(); ++i) { 3782 QualType ParamTy = OperatorNewOrDelete->getParamDecl(i)->getType(); 3783 InitializedEntity Entity = 3784 InitializedEntity::InitializeParameter(Context, ParamTy, false); 3785 ExprResult Arg = PerformCopyInitialization( 3786 Entity, TheCall->getArg(i)->getBeginLoc(), TheCall->getArg(i)); 3787 if (Arg.isInvalid()) 3788 return ExprError(); 3789 TheCall->setArg(i, Arg.get()); 3790 } 3791 auto Callee = dyn_cast<ImplicitCastExpr>(TheCall->getCallee()); 3792 assert(Callee && Callee->getCastKind() == CK_BuiltinFnToFnPtr && 3793 "Callee expected to be implicit cast to a builtin function pointer"); 3794 Callee->setType(OperatorNewOrDelete->getType()); 3795 3796 return TheCallResult; 3797 } 3798 3799 void Sema::CheckVirtualDtorCall(CXXDestructorDecl *dtor, SourceLocation Loc, 3800 bool IsDelete, bool CallCanBeVirtual, 3801 bool WarnOnNonAbstractTypes, 3802 SourceLocation DtorLoc) { 3803 if (!dtor || dtor->isVirtual() || !CallCanBeVirtual || isUnevaluatedContext()) 3804 return; 3805 3806 // C++ [expr.delete]p3: 3807 // In the first alternative (delete object), if the static type of the 3808 // object to be deleted is different from its dynamic type, the static 3809 // type shall be a base class of the dynamic type of the object to be 3810 // deleted and the static type shall have a virtual destructor or the 3811 // behavior is undefined. 3812 // 3813 const CXXRecordDecl *PointeeRD = dtor->getParent(); 3814 // Note: a final class cannot be derived from, no issue there 3815 if (!PointeeRD->isPolymorphic() || PointeeRD->hasAttr<FinalAttr>()) 3816 return; 3817 3818 // If the superclass is in a system header, there's nothing that can be done. 3819 // The `delete` (where we emit the warning) can be in a system header, 3820 // what matters for this warning is where the deleted type is defined. 3821 if (getSourceManager().isInSystemHeader(PointeeRD->getLocation())) 3822 return; 3823 3824 QualType ClassType = dtor->getThisType()->getPointeeType(); 3825 if (PointeeRD->isAbstract()) { 3826 // If the class is abstract, we warn by default, because we're 3827 // sure the code has undefined behavior. 3828 Diag(Loc, diag::warn_delete_abstract_non_virtual_dtor) << (IsDelete ? 0 : 1) 3829 << ClassType; 3830 } else if (WarnOnNonAbstractTypes) { 3831 // Otherwise, if this is not an array delete, it's a bit suspect, 3832 // but not necessarily wrong. 3833 Diag(Loc, diag::warn_delete_non_virtual_dtor) << (IsDelete ? 0 : 1) 3834 << ClassType; 3835 } 3836 if (!IsDelete) { 3837 std::string TypeStr; 3838 ClassType.getAsStringInternal(TypeStr, getPrintingPolicy()); 3839 Diag(DtorLoc, diag::note_delete_non_virtual) 3840 << FixItHint::CreateInsertion(DtorLoc, TypeStr + "::"); 3841 } 3842 } 3843 3844 Sema::ConditionResult Sema::ActOnConditionVariable(Decl *ConditionVar, 3845 SourceLocation StmtLoc, 3846 ConditionKind CK) { 3847 ExprResult E = 3848 CheckConditionVariable(cast<VarDecl>(ConditionVar), StmtLoc, CK); 3849 if (E.isInvalid()) 3850 return ConditionError(); 3851 return ConditionResult(*this, ConditionVar, MakeFullExpr(E.get(), StmtLoc), 3852 CK == ConditionKind::ConstexprIf); 3853 } 3854 3855 /// Check the use of the given variable as a C++ condition in an if, 3856 /// while, do-while, or switch statement. 3857 ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar, 3858 SourceLocation StmtLoc, 3859 ConditionKind CK) { 3860 if (ConditionVar->isInvalidDecl()) 3861 return ExprError(); 3862 3863 QualType T = ConditionVar->getType(); 3864 3865 // C++ [stmt.select]p2: 3866 // The declarator shall not specify a function or an array. 3867 if (T->isFunctionType()) 3868 return ExprError(Diag(ConditionVar->getLocation(), 3869 diag::err_invalid_use_of_function_type) 3870 << ConditionVar->getSourceRange()); 3871 else if (T->isArrayType()) 3872 return ExprError(Diag(ConditionVar->getLocation(), 3873 diag::err_invalid_use_of_array_type) 3874 << ConditionVar->getSourceRange()); 3875 3876 ExprResult Condition = BuildDeclRefExpr( 3877 ConditionVar, ConditionVar->getType().getNonReferenceType(), VK_LValue, 3878 ConditionVar->getLocation()); 3879 3880 switch (CK) { 3881 case ConditionKind::Boolean: 3882 return CheckBooleanCondition(StmtLoc, Condition.get()); 3883 3884 case ConditionKind::ConstexprIf: 3885 return CheckBooleanCondition(StmtLoc, Condition.get(), true); 3886 3887 case ConditionKind::Switch: 3888 return CheckSwitchCondition(StmtLoc, Condition.get()); 3889 } 3890 3891 llvm_unreachable("unexpected condition kind"); 3892 } 3893 3894 /// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid. 3895 ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr, bool IsConstexpr) { 3896 // C++ 6.4p4: 3897 // The value of a condition that is an initialized declaration in a statement 3898 // other than a switch statement is the value of the declared variable 3899 // implicitly converted to type bool. If that conversion is ill-formed, the 3900 // program is ill-formed. 3901 // The value of a condition that is an expression is the value of the 3902 // expression, implicitly converted to bool. 3903 // 3904 // FIXME: Return this value to the caller so they don't need to recompute it. 3905 llvm::APSInt Value(/*BitWidth*/1); 3906 return (IsConstexpr && !CondExpr->isValueDependent()) 3907 ? CheckConvertedConstantExpression(CondExpr, Context.BoolTy, Value, 3908 CCEK_ConstexprIf) 3909 : PerformContextuallyConvertToBool(CondExpr); 3910 } 3911 3912 /// Helper function to determine whether this is the (deprecated) C++ 3913 /// conversion from a string literal to a pointer to non-const char or 3914 /// non-const wchar_t (for narrow and wide string literals, 3915 /// respectively). 3916 bool 3917 Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) { 3918 // Look inside the implicit cast, if it exists. 3919 if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From)) 3920 From = Cast->getSubExpr(); 3921 3922 // A string literal (2.13.4) that is not a wide string literal can 3923 // be converted to an rvalue of type "pointer to char"; a wide 3924 // string literal can be converted to an rvalue of type "pointer 3925 // to wchar_t" (C++ 4.2p2). 3926 if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens())) 3927 if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) 3928 if (const BuiltinType *ToPointeeType 3929 = ToPtrType->getPointeeType()->getAs<BuiltinType>()) { 3930 // This conversion is considered only when there is an 3931 // explicit appropriate pointer target type (C++ 4.2p2). 3932 if (!ToPtrType->getPointeeType().hasQualifiers()) { 3933 switch (StrLit->getKind()) { 3934 case StringLiteral::UTF8: 3935 case StringLiteral::UTF16: 3936 case StringLiteral::UTF32: 3937 // We don't allow UTF literals to be implicitly converted 3938 break; 3939 case StringLiteral::Ascii: 3940 return (ToPointeeType->getKind() == BuiltinType::Char_U || 3941 ToPointeeType->getKind() == BuiltinType::Char_S); 3942 case StringLiteral::Wide: 3943 return Context.typesAreCompatible(Context.getWideCharType(), 3944 QualType(ToPointeeType, 0)); 3945 } 3946 } 3947 } 3948 3949 return false; 3950 } 3951 3952 static ExprResult BuildCXXCastArgument(Sema &S, 3953 SourceLocation CastLoc, 3954 QualType Ty, 3955 CastKind Kind, 3956 CXXMethodDecl *Method, 3957 DeclAccessPair FoundDecl, 3958 bool HadMultipleCandidates, 3959 Expr *From) { 3960 switch (Kind) { 3961 default: llvm_unreachable("Unhandled cast kind!"); 3962 case CK_ConstructorConversion: { 3963 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method); 3964 SmallVector<Expr*, 8> ConstructorArgs; 3965 3966 if (S.RequireNonAbstractType(CastLoc, Ty, 3967 diag::err_allocation_of_abstract_type)) 3968 return ExprError(); 3969 3970 if (S.CompleteConstructorCall(Constructor, Ty, From, CastLoc, 3971 ConstructorArgs)) 3972 return ExprError(); 3973 3974 S.CheckConstructorAccess(CastLoc, Constructor, FoundDecl, 3975 InitializedEntity::InitializeTemporary(Ty)); 3976 if (S.DiagnoseUseOfDecl(Method, CastLoc)) 3977 return ExprError(); 3978 3979 ExprResult Result = S.BuildCXXConstructExpr( 3980 CastLoc, Ty, FoundDecl, cast<CXXConstructorDecl>(Method), 3981 ConstructorArgs, HadMultipleCandidates, 3982 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false, 3983 CXXConstructExpr::CK_Complete, SourceRange()); 3984 if (Result.isInvalid()) 3985 return ExprError(); 3986 3987 return S.MaybeBindToTemporary(Result.getAs<Expr>()); 3988 } 3989 3990 case CK_UserDefinedConversion: { 3991 assert(!From->getType()->isPointerType() && "Arg can't have pointer type!"); 3992 3993 S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ nullptr, FoundDecl); 3994 if (S.DiagnoseUseOfDecl(Method, CastLoc)) 3995 return ExprError(); 3996 3997 // Create an implicit call expr that calls it. 3998 CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method); 3999 ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv, 4000 HadMultipleCandidates); 4001 if (Result.isInvalid()) 4002 return ExprError(); 4003 // Record usage of conversion in an implicit cast. 4004 Result = ImplicitCastExpr::Create(S.Context, Result.get()->getType(), 4005 CK_UserDefinedConversion, Result.get(), 4006 nullptr, Result.get()->getValueKind(), 4007 S.CurFPFeatureOverrides()); 4008 4009 return S.MaybeBindToTemporary(Result.get()); 4010 } 4011 } 4012 } 4013 4014 /// PerformImplicitConversion - Perform an implicit conversion of the 4015 /// expression From to the type ToType using the pre-computed implicit 4016 /// conversion sequence ICS. Returns the converted 4017 /// expression. Action is the kind of conversion we're performing, 4018 /// used in the error message. 4019 ExprResult 4020 Sema::PerformImplicitConversion(Expr *From, QualType ToType, 4021 const ImplicitConversionSequence &ICS, 4022 AssignmentAction Action, 4023 CheckedConversionKind CCK) { 4024 // C++ [over.match.oper]p7: [...] operands of class type are converted [...] 4025 if (CCK == CCK_ForBuiltinOverloadedOp && !From->getType()->isRecordType()) 4026 return From; 4027 4028 switch (ICS.getKind()) { 4029 case ImplicitConversionSequence::StandardConversion: { 4030 ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard, 4031 Action, CCK); 4032 if (Res.isInvalid()) 4033 return ExprError(); 4034 From = Res.get(); 4035 break; 4036 } 4037 4038 case ImplicitConversionSequence::UserDefinedConversion: { 4039 4040 FunctionDecl *FD = ICS.UserDefined.ConversionFunction; 4041 CastKind CastKind; 4042 QualType BeforeToType; 4043 assert(FD && "no conversion function for user-defined conversion seq"); 4044 if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) { 4045 CastKind = CK_UserDefinedConversion; 4046 4047 // If the user-defined conversion is specified by a conversion function, 4048 // the initial standard conversion sequence converts the source type to 4049 // the implicit object parameter of the conversion function. 4050 BeforeToType = Context.getTagDeclType(Conv->getParent()); 4051 } else { 4052 const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD); 4053 CastKind = CK_ConstructorConversion; 4054 // Do no conversion if dealing with ... for the first conversion. 4055 if (!ICS.UserDefined.EllipsisConversion) { 4056 // If the user-defined conversion is specified by a constructor, the 4057 // initial standard conversion sequence converts the source type to 4058 // the type required by the argument of the constructor 4059 BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType(); 4060 } 4061 } 4062 // Watch out for ellipsis conversion. 4063 if (!ICS.UserDefined.EllipsisConversion) { 4064 ExprResult Res = 4065 PerformImplicitConversion(From, BeforeToType, 4066 ICS.UserDefined.Before, AA_Converting, 4067 CCK); 4068 if (Res.isInvalid()) 4069 return ExprError(); 4070 From = Res.get(); 4071 } 4072 4073 ExprResult CastArg = BuildCXXCastArgument( 4074 *this, From->getBeginLoc(), ToType.getNonReferenceType(), CastKind, 4075 cast<CXXMethodDecl>(FD), ICS.UserDefined.FoundConversionFunction, 4076 ICS.UserDefined.HadMultipleCandidates, From); 4077 4078 if (CastArg.isInvalid()) 4079 return ExprError(); 4080 4081 From = CastArg.get(); 4082 4083 // C++ [over.match.oper]p7: 4084 // [...] the second standard conversion sequence of a user-defined 4085 // conversion sequence is not applied. 4086 if (CCK == CCK_ForBuiltinOverloadedOp) 4087 return From; 4088 4089 return PerformImplicitConversion(From, ToType, ICS.UserDefined.After, 4090 AA_Converting, CCK); 4091 } 4092 4093 case ImplicitConversionSequence::AmbiguousConversion: 4094 ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(), 4095 PDiag(diag::err_typecheck_ambiguous_condition) 4096 << From->getSourceRange()); 4097 return ExprError(); 4098 4099 case ImplicitConversionSequence::EllipsisConversion: 4100 llvm_unreachable("Cannot perform an ellipsis conversion"); 4101 4102 case ImplicitConversionSequence::BadConversion: 4103 Sema::AssignConvertType ConvTy = 4104 CheckAssignmentConstraints(From->getExprLoc(), ToType, From->getType()); 4105 bool Diagnosed = DiagnoseAssignmentResult( 4106 ConvTy == Compatible ? Incompatible : ConvTy, From->getExprLoc(), 4107 ToType, From->getType(), From, Action); 4108 assert(Diagnosed && "failed to diagnose bad conversion"); (void)Diagnosed; 4109 return ExprError(); 4110 } 4111 4112 // Everything went well. 4113 return From; 4114 } 4115 4116 /// PerformImplicitConversion - Perform an implicit conversion of the 4117 /// expression From to the type ToType by following the standard 4118 /// conversion sequence SCS. Returns the converted 4119 /// expression. Flavor is the context in which we're performing this 4120 /// conversion, for use in error messages. 4121 ExprResult 4122 Sema::PerformImplicitConversion(Expr *From, QualType ToType, 4123 const StandardConversionSequence& SCS, 4124 AssignmentAction Action, 4125 CheckedConversionKind CCK) { 4126 bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast); 4127 4128 // Overall FIXME: we are recomputing too many types here and doing far too 4129 // much extra work. What this means is that we need to keep track of more 4130 // information that is computed when we try the implicit conversion initially, 4131 // so that we don't need to recompute anything here. 4132 QualType FromType = From->getType(); 4133 4134 if (SCS.CopyConstructor) { 4135 // FIXME: When can ToType be a reference type? 4136 assert(!ToType->isReferenceType()); 4137 if (SCS.Second == ICK_Derived_To_Base) { 4138 SmallVector<Expr*, 8> ConstructorArgs; 4139 if (CompleteConstructorCall( 4140 cast<CXXConstructorDecl>(SCS.CopyConstructor), ToType, From, 4141 /*FIXME:ConstructLoc*/ SourceLocation(), ConstructorArgs)) 4142 return ExprError(); 4143 return BuildCXXConstructExpr( 4144 /*FIXME:ConstructLoc*/ SourceLocation(), ToType, 4145 SCS.FoundCopyConstructor, SCS.CopyConstructor, 4146 ConstructorArgs, /*HadMultipleCandidates*/ false, 4147 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false, 4148 CXXConstructExpr::CK_Complete, SourceRange()); 4149 } 4150 return BuildCXXConstructExpr( 4151 /*FIXME:ConstructLoc*/ SourceLocation(), ToType, 4152 SCS.FoundCopyConstructor, SCS.CopyConstructor, 4153 From, /*HadMultipleCandidates*/ false, 4154 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false, 4155 CXXConstructExpr::CK_Complete, SourceRange()); 4156 } 4157 4158 // Resolve overloaded function references. 4159 if (Context.hasSameType(FromType, Context.OverloadTy)) { 4160 DeclAccessPair Found; 4161 FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType, 4162 true, Found); 4163 if (!Fn) 4164 return ExprError(); 4165 4166 if (DiagnoseUseOfDecl(Fn, From->getBeginLoc())) 4167 return ExprError(); 4168 4169 From = FixOverloadedFunctionReference(From, Found, Fn); 4170 FromType = From->getType(); 4171 } 4172 4173 // If we're converting to an atomic type, first convert to the corresponding 4174 // non-atomic type. 4175 QualType ToAtomicType; 4176 if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>()) { 4177 ToAtomicType = ToType; 4178 ToType = ToAtomic->getValueType(); 4179 } 4180 4181 QualType InitialFromType = FromType; 4182 // Perform the first implicit conversion. 4183 switch (SCS.First) { 4184 case ICK_Identity: 4185 if (const AtomicType *FromAtomic = FromType->getAs<AtomicType>()) { 4186 FromType = FromAtomic->getValueType().getUnqualifiedType(); 4187 From = ImplicitCastExpr::Create(Context, FromType, CK_AtomicToNonAtomic, 4188 From, /*BasePath=*/nullptr, VK_RValue, 4189 FPOptionsOverride()); 4190 } 4191 break; 4192 4193 case ICK_Lvalue_To_Rvalue: { 4194 assert(From->getObjectKind() != OK_ObjCProperty); 4195 ExprResult FromRes = DefaultLvalueConversion(From); 4196 assert(!FromRes.isInvalid() && "Can't perform deduced conversion?!"); 4197 From = FromRes.get(); 4198 FromType = From->getType(); 4199 break; 4200 } 4201 4202 case ICK_Array_To_Pointer: 4203 FromType = Context.getArrayDecayedType(FromType); 4204 From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay, 4205 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 4206 break; 4207 4208 case ICK_Function_To_Pointer: 4209 FromType = Context.getPointerType(FromType); 4210 From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay, 4211 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 4212 break; 4213 4214 default: 4215 llvm_unreachable("Improper first standard conversion"); 4216 } 4217 4218 // Perform the second implicit conversion 4219 switch (SCS.Second) { 4220 case ICK_Identity: 4221 // C++ [except.spec]p5: 4222 // [For] assignment to and initialization of pointers to functions, 4223 // pointers to member functions, and references to functions: the 4224 // target entity shall allow at least the exceptions allowed by the 4225 // source value in the assignment or initialization. 4226 switch (Action) { 4227 case AA_Assigning: 4228 case AA_Initializing: 4229 // Note, function argument passing and returning are initialization. 4230 case AA_Passing: 4231 case AA_Returning: 4232 case AA_Sending: 4233 case AA_Passing_CFAudited: 4234 if (CheckExceptionSpecCompatibility(From, ToType)) 4235 return ExprError(); 4236 break; 4237 4238 case AA_Casting: 4239 case AA_Converting: 4240 // Casts and implicit conversions are not initialization, so are not 4241 // checked for exception specification mismatches. 4242 break; 4243 } 4244 // Nothing else to do. 4245 break; 4246 4247 case ICK_Integral_Promotion: 4248 case ICK_Integral_Conversion: 4249 if (ToType->isBooleanType()) { 4250 assert(FromType->castAs<EnumType>()->getDecl()->isFixed() && 4251 SCS.Second == ICK_Integral_Promotion && 4252 "only enums with fixed underlying type can promote to bool"); 4253 From = ImpCastExprToType(From, ToType, CK_IntegralToBoolean, 4254 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 4255 } else { 4256 From = ImpCastExprToType(From, ToType, CK_IntegralCast, 4257 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 4258 } 4259 break; 4260 4261 case ICK_Floating_Promotion: 4262 case ICK_Floating_Conversion: 4263 From = ImpCastExprToType(From, ToType, CK_FloatingCast, 4264 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 4265 break; 4266 4267 case ICK_Complex_Promotion: 4268 case ICK_Complex_Conversion: { 4269 QualType FromEl = From->getType()->castAs<ComplexType>()->getElementType(); 4270 QualType ToEl = ToType->castAs<ComplexType>()->getElementType(); 4271 CastKind CK; 4272 if (FromEl->isRealFloatingType()) { 4273 if (ToEl->isRealFloatingType()) 4274 CK = CK_FloatingComplexCast; 4275 else 4276 CK = CK_FloatingComplexToIntegralComplex; 4277 } else if (ToEl->isRealFloatingType()) { 4278 CK = CK_IntegralComplexToFloatingComplex; 4279 } else { 4280 CK = CK_IntegralComplexCast; 4281 } 4282 From = ImpCastExprToType(From, ToType, CK, 4283 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 4284 break; 4285 } 4286 4287 case ICK_Floating_Integral: 4288 if (ToType->isRealFloatingType()) 4289 From = ImpCastExprToType(From, ToType, CK_IntegralToFloating, 4290 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 4291 else 4292 From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral, 4293 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 4294 break; 4295 4296 case ICK_Compatible_Conversion: 4297 From = ImpCastExprToType(From, ToType, CK_NoOp, From->getValueKind(), 4298 /*BasePath=*/nullptr, CCK).get(); 4299 break; 4300 4301 case ICK_Writeback_Conversion: 4302 case ICK_Pointer_Conversion: { 4303 if (SCS.IncompatibleObjC && Action != AA_Casting) { 4304 // Diagnose incompatible Objective-C conversions 4305 if (Action == AA_Initializing || Action == AA_Assigning) 4306 Diag(From->getBeginLoc(), 4307 diag::ext_typecheck_convert_incompatible_pointer) 4308 << ToType << From->getType() << Action << From->getSourceRange() 4309 << 0; 4310 else 4311 Diag(From->getBeginLoc(), 4312 diag::ext_typecheck_convert_incompatible_pointer) 4313 << From->getType() << ToType << Action << From->getSourceRange() 4314 << 0; 4315 4316 if (From->getType()->isObjCObjectPointerType() && 4317 ToType->isObjCObjectPointerType()) 4318 EmitRelatedResultTypeNote(From); 4319 } else if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() && 4320 !CheckObjCARCUnavailableWeakConversion(ToType, 4321 From->getType())) { 4322 if (Action == AA_Initializing) 4323 Diag(From->getBeginLoc(), diag::err_arc_weak_unavailable_assign); 4324 else 4325 Diag(From->getBeginLoc(), diag::err_arc_convesion_of_weak_unavailable) 4326 << (Action == AA_Casting) << From->getType() << ToType 4327 << From->getSourceRange(); 4328 } 4329 4330 // Defer address space conversion to the third conversion. 4331 QualType FromPteeType = From->getType()->getPointeeType(); 4332 QualType ToPteeType = ToType->getPointeeType(); 4333 QualType NewToType = ToType; 4334 if (!FromPteeType.isNull() && !ToPteeType.isNull() && 4335 FromPteeType.getAddressSpace() != ToPteeType.getAddressSpace()) { 4336 NewToType = Context.removeAddrSpaceQualType(ToPteeType); 4337 NewToType = Context.getAddrSpaceQualType(NewToType, 4338 FromPteeType.getAddressSpace()); 4339 if (ToType->isObjCObjectPointerType()) 4340 NewToType = Context.getObjCObjectPointerType(NewToType); 4341 else if (ToType->isBlockPointerType()) 4342 NewToType = Context.getBlockPointerType(NewToType); 4343 else 4344 NewToType = Context.getPointerType(NewToType); 4345 } 4346 4347 CastKind Kind; 4348 CXXCastPath BasePath; 4349 if (CheckPointerConversion(From, NewToType, Kind, BasePath, CStyle)) 4350 return ExprError(); 4351 4352 // Make sure we extend blocks if necessary. 4353 // FIXME: doing this here is really ugly. 4354 if (Kind == CK_BlockPointerToObjCPointerCast) { 4355 ExprResult E = From; 4356 (void) PrepareCastToObjCObjectPointer(E); 4357 From = E.get(); 4358 } 4359 if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers()) 4360 CheckObjCConversion(SourceRange(), NewToType, From, CCK); 4361 From = ImpCastExprToType(From, NewToType, Kind, VK_RValue, &BasePath, CCK) 4362 .get(); 4363 break; 4364 } 4365 4366 case ICK_Pointer_Member: { 4367 CastKind Kind; 4368 CXXCastPath BasePath; 4369 if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle)) 4370 return ExprError(); 4371 if (CheckExceptionSpecCompatibility(From, ToType)) 4372 return ExprError(); 4373 4374 // We may not have been able to figure out what this member pointer resolved 4375 // to up until this exact point. Attempt to lock-in it's inheritance model. 4376 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 4377 (void)isCompleteType(From->getExprLoc(), From->getType()); 4378 (void)isCompleteType(From->getExprLoc(), ToType); 4379 } 4380 4381 From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK) 4382 .get(); 4383 break; 4384 } 4385 4386 case ICK_Boolean_Conversion: 4387 // Perform half-to-boolean conversion via float. 4388 if (From->getType()->isHalfType()) { 4389 From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).get(); 4390 FromType = Context.FloatTy; 4391 } 4392 4393 From = ImpCastExprToType(From, Context.BoolTy, 4394 ScalarTypeToBooleanCastKind(FromType), 4395 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 4396 break; 4397 4398 case ICK_Derived_To_Base: { 4399 CXXCastPath BasePath; 4400 if (CheckDerivedToBaseConversion( 4401 From->getType(), ToType.getNonReferenceType(), From->getBeginLoc(), 4402 From->getSourceRange(), &BasePath, CStyle)) 4403 return ExprError(); 4404 4405 From = ImpCastExprToType(From, ToType.getNonReferenceType(), 4406 CK_DerivedToBase, From->getValueKind(), 4407 &BasePath, CCK).get(); 4408 break; 4409 } 4410 4411 case ICK_Vector_Conversion: 4412 From = ImpCastExprToType(From, ToType, CK_BitCast, 4413 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 4414 break; 4415 4416 case ICK_SVE_Vector_Conversion: 4417 From = ImpCastExprToType(From, ToType, CK_BitCast, VK_RValue, 4418 /*BasePath=*/nullptr, CCK) 4419 .get(); 4420 break; 4421 4422 case ICK_Vector_Splat: { 4423 // Vector splat from any arithmetic type to a vector. 4424 Expr *Elem = prepareVectorSplat(ToType, From).get(); 4425 From = ImpCastExprToType(Elem, ToType, CK_VectorSplat, VK_RValue, 4426 /*BasePath=*/nullptr, CCK).get(); 4427 break; 4428 } 4429 4430 case ICK_Complex_Real: 4431 // Case 1. x -> _Complex y 4432 if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) { 4433 QualType ElType = ToComplex->getElementType(); 4434 bool isFloatingComplex = ElType->isRealFloatingType(); 4435 4436 // x -> y 4437 if (Context.hasSameUnqualifiedType(ElType, From->getType())) { 4438 // do nothing 4439 } else if (From->getType()->isRealFloatingType()) { 4440 From = ImpCastExprToType(From, ElType, 4441 isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).get(); 4442 } else { 4443 assert(From->getType()->isIntegerType()); 4444 From = ImpCastExprToType(From, ElType, 4445 isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).get(); 4446 } 4447 // y -> _Complex y 4448 From = ImpCastExprToType(From, ToType, 4449 isFloatingComplex ? CK_FloatingRealToComplex 4450 : CK_IntegralRealToComplex).get(); 4451 4452 // Case 2. _Complex x -> y 4453 } else { 4454 auto *FromComplex = From->getType()->castAs<ComplexType>(); 4455 QualType ElType = FromComplex->getElementType(); 4456 bool isFloatingComplex = ElType->isRealFloatingType(); 4457 4458 // _Complex x -> x 4459 From = ImpCastExprToType(From, ElType, 4460 isFloatingComplex ? CK_FloatingComplexToReal 4461 : CK_IntegralComplexToReal, 4462 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 4463 4464 // x -> y 4465 if (Context.hasSameUnqualifiedType(ElType, ToType)) { 4466 // do nothing 4467 } else if (ToType->isRealFloatingType()) { 4468 From = ImpCastExprToType(From, ToType, 4469 isFloatingComplex ? CK_FloatingCast : CK_IntegralToFloating, 4470 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 4471 } else { 4472 assert(ToType->isIntegerType()); 4473 From = ImpCastExprToType(From, ToType, 4474 isFloatingComplex ? CK_FloatingToIntegral : CK_IntegralCast, 4475 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 4476 } 4477 } 4478 break; 4479 4480 case ICK_Block_Pointer_Conversion: { 4481 LangAS AddrSpaceL = 4482 ToType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace(); 4483 LangAS AddrSpaceR = 4484 FromType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace(); 4485 assert(Qualifiers::isAddressSpaceSupersetOf(AddrSpaceL, AddrSpaceR) && 4486 "Invalid cast"); 4487 CastKind Kind = 4488 AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast; 4489 From = ImpCastExprToType(From, ToType.getUnqualifiedType(), Kind, 4490 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 4491 break; 4492 } 4493 4494 case ICK_TransparentUnionConversion: { 4495 ExprResult FromRes = From; 4496 Sema::AssignConvertType ConvTy = 4497 CheckTransparentUnionArgumentConstraints(ToType, FromRes); 4498 if (FromRes.isInvalid()) 4499 return ExprError(); 4500 From = FromRes.get(); 4501 assert ((ConvTy == Sema::Compatible) && 4502 "Improper transparent union conversion"); 4503 (void)ConvTy; 4504 break; 4505 } 4506 4507 case ICK_Zero_Event_Conversion: 4508 case ICK_Zero_Queue_Conversion: 4509 From = ImpCastExprToType(From, ToType, 4510 CK_ZeroToOCLOpaqueType, 4511 From->getValueKind()).get(); 4512 break; 4513 4514 case ICK_Lvalue_To_Rvalue: 4515 case ICK_Array_To_Pointer: 4516 case ICK_Function_To_Pointer: 4517 case ICK_Function_Conversion: 4518 case ICK_Qualification: 4519 case ICK_Num_Conversion_Kinds: 4520 case ICK_C_Only_Conversion: 4521 case ICK_Incompatible_Pointer_Conversion: 4522 llvm_unreachable("Improper second standard conversion"); 4523 } 4524 4525 switch (SCS.Third) { 4526 case ICK_Identity: 4527 // Nothing to do. 4528 break; 4529 4530 case ICK_Function_Conversion: 4531 // If both sides are functions (or pointers/references to them), there could 4532 // be incompatible exception declarations. 4533 if (CheckExceptionSpecCompatibility(From, ToType)) 4534 return ExprError(); 4535 4536 From = ImpCastExprToType(From, ToType, CK_NoOp, 4537 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 4538 break; 4539 4540 case ICK_Qualification: { 4541 ExprValueKind VK = From->getValueKind(); 4542 CastKind CK = CK_NoOp; 4543 4544 if (ToType->isReferenceType() && 4545 ToType->getPointeeType().getAddressSpace() != 4546 From->getType().getAddressSpace()) 4547 CK = CK_AddressSpaceConversion; 4548 4549 if (ToType->isPointerType() && 4550 ToType->getPointeeType().getAddressSpace() != 4551 From->getType()->getPointeeType().getAddressSpace()) 4552 CK = CK_AddressSpaceConversion; 4553 4554 From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context), CK, VK, 4555 /*BasePath=*/nullptr, CCK) 4556 .get(); 4557 4558 if (SCS.DeprecatedStringLiteralToCharPtr && 4559 !getLangOpts().WritableStrings) { 4560 Diag(From->getBeginLoc(), 4561 getLangOpts().CPlusPlus11 4562 ? diag::ext_deprecated_string_literal_conversion 4563 : diag::warn_deprecated_string_literal_conversion) 4564 << ToType.getNonReferenceType(); 4565 } 4566 4567 break; 4568 } 4569 4570 default: 4571 llvm_unreachable("Improper third standard conversion"); 4572 } 4573 4574 // If this conversion sequence involved a scalar -> atomic conversion, perform 4575 // that conversion now. 4576 if (!ToAtomicType.isNull()) { 4577 assert(Context.hasSameType( 4578 ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType())); 4579 From = ImpCastExprToType(From, ToAtomicType, CK_NonAtomicToAtomic, 4580 VK_RValue, nullptr, CCK).get(); 4581 } 4582 4583 // Materialize a temporary if we're implicitly converting to a reference 4584 // type. This is not required by the C++ rules but is necessary to maintain 4585 // AST invariants. 4586 if (ToType->isReferenceType() && From->isRValue()) { 4587 ExprResult Res = TemporaryMaterializationConversion(From); 4588 if (Res.isInvalid()) 4589 return ExprError(); 4590 From = Res.get(); 4591 } 4592 4593 // If this conversion sequence succeeded and involved implicitly converting a 4594 // _Nullable type to a _Nonnull one, complain. 4595 if (!isCast(CCK)) 4596 diagnoseNullableToNonnullConversion(ToType, InitialFromType, 4597 From->getBeginLoc()); 4598 4599 return From; 4600 } 4601 4602 /// Check the completeness of a type in a unary type trait. 4603 /// 4604 /// If the particular type trait requires a complete type, tries to complete 4605 /// it. If completing the type fails, a diagnostic is emitted and false 4606 /// returned. If completing the type succeeds or no completion was required, 4607 /// returns true. 4608 static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S, TypeTrait UTT, 4609 SourceLocation Loc, 4610 QualType ArgTy) { 4611 // C++0x [meta.unary.prop]p3: 4612 // For all of the class templates X declared in this Clause, instantiating 4613 // that template with a template argument that is a class template 4614 // specialization may result in the implicit instantiation of the template 4615 // argument if and only if the semantics of X require that the argument 4616 // must be a complete type. 4617 // We apply this rule to all the type trait expressions used to implement 4618 // these class templates. We also try to follow any GCC documented behavior 4619 // in these expressions to ensure portability of standard libraries. 4620 switch (UTT) { 4621 default: llvm_unreachable("not a UTT"); 4622 // is_complete_type somewhat obviously cannot require a complete type. 4623 case UTT_IsCompleteType: 4624 // Fall-through 4625 4626 // These traits are modeled on the type predicates in C++0x 4627 // [meta.unary.cat] and [meta.unary.comp]. They are not specified as 4628 // requiring a complete type, as whether or not they return true cannot be 4629 // impacted by the completeness of the type. 4630 case UTT_IsVoid: 4631 case UTT_IsIntegral: 4632 case UTT_IsFloatingPoint: 4633 case UTT_IsArray: 4634 case UTT_IsPointer: 4635 case UTT_IsLvalueReference: 4636 case UTT_IsRvalueReference: 4637 case UTT_IsMemberFunctionPointer: 4638 case UTT_IsMemberObjectPointer: 4639 case UTT_IsEnum: 4640 case UTT_IsUnion: 4641 case UTT_IsClass: 4642 case UTT_IsFunction: 4643 case UTT_IsReference: 4644 case UTT_IsArithmetic: 4645 case UTT_IsFundamental: 4646 case UTT_IsObject: 4647 case UTT_IsScalar: 4648 case UTT_IsCompound: 4649 case UTT_IsMemberPointer: 4650 // Fall-through 4651 4652 // These traits are modeled on type predicates in C++0x [meta.unary.prop] 4653 // which requires some of its traits to have the complete type. However, 4654 // the completeness of the type cannot impact these traits' semantics, and 4655 // so they don't require it. This matches the comments on these traits in 4656 // Table 49. 4657 case UTT_IsConst: 4658 case UTT_IsVolatile: 4659 case UTT_IsSigned: 4660 case UTT_IsUnsigned: 4661 4662 // This type trait always returns false, checking the type is moot. 4663 case UTT_IsInterfaceClass: 4664 return true; 4665 4666 // C++14 [meta.unary.prop]: 4667 // If T is a non-union class type, T shall be a complete type. 4668 case UTT_IsEmpty: 4669 case UTT_IsPolymorphic: 4670 case UTT_IsAbstract: 4671 if (const auto *RD = ArgTy->getAsCXXRecordDecl()) 4672 if (!RD->isUnion()) 4673 return !S.RequireCompleteType( 4674 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr); 4675 return true; 4676 4677 // C++14 [meta.unary.prop]: 4678 // If T is a class type, T shall be a complete type. 4679 case UTT_IsFinal: 4680 case UTT_IsSealed: 4681 if (ArgTy->getAsCXXRecordDecl()) 4682 return !S.RequireCompleteType( 4683 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr); 4684 return true; 4685 4686 // C++1z [meta.unary.prop]: 4687 // remove_all_extents_t<T> shall be a complete type or cv void. 4688 case UTT_IsAggregate: 4689 case UTT_IsTrivial: 4690 case UTT_IsTriviallyCopyable: 4691 case UTT_IsStandardLayout: 4692 case UTT_IsPOD: 4693 case UTT_IsLiteral: 4694 // Per the GCC type traits documentation, T shall be a complete type, cv void, 4695 // or an array of unknown bound. But GCC actually imposes the same constraints 4696 // as above. 4697 case UTT_HasNothrowAssign: 4698 case UTT_HasNothrowMoveAssign: 4699 case UTT_HasNothrowConstructor: 4700 case UTT_HasNothrowCopy: 4701 case UTT_HasTrivialAssign: 4702 case UTT_HasTrivialMoveAssign: 4703 case UTT_HasTrivialDefaultConstructor: 4704 case UTT_HasTrivialMoveConstructor: 4705 case UTT_HasTrivialCopy: 4706 case UTT_HasTrivialDestructor: 4707 case UTT_HasVirtualDestructor: 4708 ArgTy = QualType(ArgTy->getBaseElementTypeUnsafe(), 0); 4709 LLVM_FALLTHROUGH; 4710 4711 // C++1z [meta.unary.prop]: 4712 // T shall be a complete type, cv void, or an array of unknown bound. 4713 case UTT_IsDestructible: 4714 case UTT_IsNothrowDestructible: 4715 case UTT_IsTriviallyDestructible: 4716 case UTT_HasUniqueObjectRepresentations: 4717 if (ArgTy->isIncompleteArrayType() || ArgTy->isVoidType()) 4718 return true; 4719 4720 return !S.RequireCompleteType( 4721 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr); 4722 } 4723 } 4724 4725 static bool HasNoThrowOperator(const RecordType *RT, OverloadedOperatorKind Op, 4726 Sema &Self, SourceLocation KeyLoc, ASTContext &C, 4727 bool (CXXRecordDecl::*HasTrivial)() const, 4728 bool (CXXRecordDecl::*HasNonTrivial)() const, 4729 bool (CXXMethodDecl::*IsDesiredOp)() const) 4730 { 4731 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 4732 if ((RD->*HasTrivial)() && !(RD->*HasNonTrivial)()) 4733 return true; 4734 4735 DeclarationName Name = C.DeclarationNames.getCXXOperatorName(Op); 4736 DeclarationNameInfo NameInfo(Name, KeyLoc); 4737 LookupResult Res(Self, NameInfo, Sema::LookupOrdinaryName); 4738 if (Self.LookupQualifiedName(Res, RD)) { 4739 bool FoundOperator = false; 4740 Res.suppressDiagnostics(); 4741 for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end(); 4742 Op != OpEnd; ++Op) { 4743 if (isa<FunctionTemplateDecl>(*Op)) 4744 continue; 4745 4746 CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op); 4747 if((Operator->*IsDesiredOp)()) { 4748 FoundOperator = true; 4749 auto *CPT = Operator->getType()->castAs<FunctionProtoType>(); 4750 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); 4751 if (!CPT || !CPT->isNothrow()) 4752 return false; 4753 } 4754 } 4755 return FoundOperator; 4756 } 4757 return false; 4758 } 4759 4760 static bool EvaluateUnaryTypeTrait(Sema &Self, TypeTrait UTT, 4761 SourceLocation KeyLoc, QualType T) { 4762 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type"); 4763 4764 ASTContext &C = Self.Context; 4765 switch(UTT) { 4766 default: llvm_unreachable("not a UTT"); 4767 // Type trait expressions corresponding to the primary type category 4768 // predicates in C++0x [meta.unary.cat]. 4769 case UTT_IsVoid: 4770 return T->isVoidType(); 4771 case UTT_IsIntegral: 4772 return T->isIntegralType(C); 4773 case UTT_IsFloatingPoint: 4774 return T->isFloatingType(); 4775 case UTT_IsArray: 4776 return T->isArrayType(); 4777 case UTT_IsPointer: 4778 return T->isAnyPointerType(); 4779 case UTT_IsLvalueReference: 4780 return T->isLValueReferenceType(); 4781 case UTT_IsRvalueReference: 4782 return T->isRValueReferenceType(); 4783 case UTT_IsMemberFunctionPointer: 4784 return T->isMemberFunctionPointerType(); 4785 case UTT_IsMemberObjectPointer: 4786 return T->isMemberDataPointerType(); 4787 case UTT_IsEnum: 4788 return T->isEnumeralType(); 4789 case UTT_IsUnion: 4790 return T->isUnionType(); 4791 case UTT_IsClass: 4792 return T->isClassType() || T->isStructureType() || T->isInterfaceType(); 4793 case UTT_IsFunction: 4794 return T->isFunctionType(); 4795 4796 // Type trait expressions which correspond to the convenient composition 4797 // predicates in C++0x [meta.unary.comp]. 4798 case UTT_IsReference: 4799 return T->isReferenceType(); 4800 case UTT_IsArithmetic: 4801 return T->isArithmeticType() && !T->isEnumeralType(); 4802 case UTT_IsFundamental: 4803 return T->isFundamentalType(); 4804 case UTT_IsObject: 4805 return T->isObjectType(); 4806 case UTT_IsScalar: 4807 // Note: semantic analysis depends on Objective-C lifetime types to be 4808 // considered scalar types. However, such types do not actually behave 4809 // like scalar types at run time (since they may require retain/release 4810 // operations), so we report them as non-scalar. 4811 if (T->isObjCLifetimeType()) { 4812 switch (T.getObjCLifetime()) { 4813 case Qualifiers::OCL_None: 4814 case Qualifiers::OCL_ExplicitNone: 4815 return true; 4816 4817 case Qualifiers::OCL_Strong: 4818 case Qualifiers::OCL_Weak: 4819 case Qualifiers::OCL_Autoreleasing: 4820 return false; 4821 } 4822 } 4823 4824 return T->isScalarType(); 4825 case UTT_IsCompound: 4826 return T->isCompoundType(); 4827 case UTT_IsMemberPointer: 4828 return T->isMemberPointerType(); 4829 4830 // Type trait expressions which correspond to the type property predicates 4831 // in C++0x [meta.unary.prop]. 4832 case UTT_IsConst: 4833 return T.isConstQualified(); 4834 case UTT_IsVolatile: 4835 return T.isVolatileQualified(); 4836 case UTT_IsTrivial: 4837 return T.isTrivialType(C); 4838 case UTT_IsTriviallyCopyable: 4839 return T.isTriviallyCopyableType(C); 4840 case UTT_IsStandardLayout: 4841 return T->isStandardLayoutType(); 4842 case UTT_IsPOD: 4843 return T.isPODType(C); 4844 case UTT_IsLiteral: 4845 return T->isLiteralType(C); 4846 case UTT_IsEmpty: 4847 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 4848 return !RD->isUnion() && RD->isEmpty(); 4849 return false; 4850 case UTT_IsPolymorphic: 4851 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 4852 return !RD->isUnion() && RD->isPolymorphic(); 4853 return false; 4854 case UTT_IsAbstract: 4855 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 4856 return !RD->isUnion() && RD->isAbstract(); 4857 return false; 4858 case UTT_IsAggregate: 4859 // Report vector extensions and complex types as aggregates because they 4860 // support aggregate initialization. GCC mirrors this behavior for vectors 4861 // but not _Complex. 4862 return T->isAggregateType() || T->isVectorType() || T->isExtVectorType() || 4863 T->isAnyComplexType(); 4864 // __is_interface_class only returns true when CL is invoked in /CLR mode and 4865 // even then only when it is used with the 'interface struct ...' syntax 4866 // Clang doesn't support /CLR which makes this type trait moot. 4867 case UTT_IsInterfaceClass: 4868 return false; 4869 case UTT_IsFinal: 4870 case UTT_IsSealed: 4871 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 4872 return RD->hasAttr<FinalAttr>(); 4873 return false; 4874 case UTT_IsSigned: 4875 // Enum types should always return false. 4876 // Floating points should always return true. 4877 return T->isFloatingType() || 4878 (T->isSignedIntegerType() && !T->isEnumeralType()); 4879 case UTT_IsUnsigned: 4880 // Enum types should always return false. 4881 return T->isUnsignedIntegerType() && !T->isEnumeralType(); 4882 4883 // Type trait expressions which query classes regarding their construction, 4884 // destruction, and copying. Rather than being based directly on the 4885 // related type predicates in the standard, they are specified by both 4886 // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those 4887 // specifications. 4888 // 4889 // 1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html 4890 // 2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index 4891 // 4892 // Note that these builtins do not behave as documented in g++: if a class 4893 // has both a trivial and a non-trivial special member of a particular kind, 4894 // they return false! For now, we emulate this behavior. 4895 // FIXME: This appears to be a g++ bug: more complex cases reveal that it 4896 // does not correctly compute triviality in the presence of multiple special 4897 // members of the same kind. Revisit this once the g++ bug is fixed. 4898 case UTT_HasTrivialDefaultConstructor: 4899 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 4900 // If __is_pod (type) is true then the trait is true, else if type is 4901 // a cv class or union type (or array thereof) with a trivial default 4902 // constructor ([class.ctor]) then the trait is true, else it is false. 4903 if (T.isPODType(C)) 4904 return true; 4905 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) 4906 return RD->hasTrivialDefaultConstructor() && 4907 !RD->hasNonTrivialDefaultConstructor(); 4908 return false; 4909 case UTT_HasTrivialMoveConstructor: 4910 // This trait is implemented by MSVC 2012 and needed to parse the 4911 // standard library headers. Specifically this is used as the logic 4912 // behind std::is_trivially_move_constructible (20.9.4.3). 4913 if (T.isPODType(C)) 4914 return true; 4915 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) 4916 return RD->hasTrivialMoveConstructor() && !RD->hasNonTrivialMoveConstructor(); 4917 return false; 4918 case UTT_HasTrivialCopy: 4919 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 4920 // If __is_pod (type) is true or type is a reference type then 4921 // the trait is true, else if type is a cv class or union type 4922 // with a trivial copy constructor ([class.copy]) then the trait 4923 // is true, else it is false. 4924 if (T.isPODType(C) || T->isReferenceType()) 4925 return true; 4926 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 4927 return RD->hasTrivialCopyConstructor() && 4928 !RD->hasNonTrivialCopyConstructor(); 4929 return false; 4930 case UTT_HasTrivialMoveAssign: 4931 // This trait is implemented by MSVC 2012 and needed to parse the 4932 // standard library headers. Specifically it is used as the logic 4933 // behind std::is_trivially_move_assignable (20.9.4.3) 4934 if (T.isPODType(C)) 4935 return true; 4936 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) 4937 return RD->hasTrivialMoveAssignment() && !RD->hasNonTrivialMoveAssignment(); 4938 return false; 4939 case UTT_HasTrivialAssign: 4940 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 4941 // If type is const qualified or is a reference type then the 4942 // trait is false. Otherwise if __is_pod (type) is true then the 4943 // trait is true, else if type is a cv class or union type with 4944 // a trivial copy assignment ([class.copy]) then the trait is 4945 // true, else it is false. 4946 // Note: the const and reference restrictions are interesting, 4947 // given that const and reference members don't prevent a class 4948 // from having a trivial copy assignment operator (but do cause 4949 // errors if the copy assignment operator is actually used, q.v. 4950 // [class.copy]p12). 4951 4952 if (T.isConstQualified()) 4953 return false; 4954 if (T.isPODType(C)) 4955 return true; 4956 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 4957 return RD->hasTrivialCopyAssignment() && 4958 !RD->hasNonTrivialCopyAssignment(); 4959 return false; 4960 case UTT_IsDestructible: 4961 case UTT_IsTriviallyDestructible: 4962 case UTT_IsNothrowDestructible: 4963 // C++14 [meta.unary.prop]: 4964 // For reference types, is_destructible<T>::value is true. 4965 if (T->isReferenceType()) 4966 return true; 4967 4968 // Objective-C++ ARC: autorelease types don't require destruction. 4969 if (T->isObjCLifetimeType() && 4970 T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) 4971 return true; 4972 4973 // C++14 [meta.unary.prop]: 4974 // For incomplete types and function types, is_destructible<T>::value is 4975 // false. 4976 if (T->isIncompleteType() || T->isFunctionType()) 4977 return false; 4978 4979 // A type that requires destruction (via a non-trivial destructor or ARC 4980 // lifetime semantics) is not trivially-destructible. 4981 if (UTT == UTT_IsTriviallyDestructible && T.isDestructedType()) 4982 return false; 4983 4984 // C++14 [meta.unary.prop]: 4985 // For object types and given U equal to remove_all_extents_t<T>, if the 4986 // expression std::declval<U&>().~U() is well-formed when treated as an 4987 // unevaluated operand (Clause 5), then is_destructible<T>::value is true 4988 if (auto *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) { 4989 CXXDestructorDecl *Destructor = Self.LookupDestructor(RD); 4990 if (!Destructor) 4991 return false; 4992 // C++14 [dcl.fct.def.delete]p2: 4993 // A program that refers to a deleted function implicitly or 4994 // explicitly, other than to declare it, is ill-formed. 4995 if (Destructor->isDeleted()) 4996 return false; 4997 if (C.getLangOpts().AccessControl && Destructor->getAccess() != AS_public) 4998 return false; 4999 if (UTT == UTT_IsNothrowDestructible) { 5000 auto *CPT = Destructor->getType()->castAs<FunctionProtoType>(); 5001 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); 5002 if (!CPT || !CPT->isNothrow()) 5003 return false; 5004 } 5005 } 5006 return true; 5007 5008 case UTT_HasTrivialDestructor: 5009 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html 5010 // If __is_pod (type) is true or type is a reference type 5011 // then the trait is true, else if type is a cv class or union 5012 // type (or array thereof) with a trivial destructor 5013 // ([class.dtor]) then the trait is true, else it is 5014 // false. 5015 if (T.isPODType(C) || T->isReferenceType()) 5016 return true; 5017 5018 // Objective-C++ ARC: autorelease types don't require destruction. 5019 if (T->isObjCLifetimeType() && 5020 T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) 5021 return true; 5022 5023 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) 5024 return RD->hasTrivialDestructor(); 5025 return false; 5026 // TODO: Propagate nothrowness for implicitly declared special members. 5027 case UTT_HasNothrowAssign: 5028 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 5029 // If type is const qualified or is a reference type then the 5030 // trait is false. Otherwise if __has_trivial_assign (type) 5031 // is true then the trait is true, else if type is a cv class 5032 // or union type with copy assignment operators that are known 5033 // not to throw an exception then the trait is true, else it is 5034 // false. 5035 if (C.getBaseElementType(T).isConstQualified()) 5036 return false; 5037 if (T->isReferenceType()) 5038 return false; 5039 if (T.isPODType(C) || T->isObjCLifetimeType()) 5040 return true; 5041 5042 if (const RecordType *RT = T->getAs<RecordType>()) 5043 return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C, 5044 &CXXRecordDecl::hasTrivialCopyAssignment, 5045 &CXXRecordDecl::hasNonTrivialCopyAssignment, 5046 &CXXMethodDecl::isCopyAssignmentOperator); 5047 return false; 5048 case UTT_HasNothrowMoveAssign: 5049 // This trait is implemented by MSVC 2012 and needed to parse the 5050 // standard library headers. Specifically this is used as the logic 5051 // behind std::is_nothrow_move_assignable (20.9.4.3). 5052 if (T.isPODType(C)) 5053 return true; 5054 5055 if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>()) 5056 return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C, 5057 &CXXRecordDecl::hasTrivialMoveAssignment, 5058 &CXXRecordDecl::hasNonTrivialMoveAssignment, 5059 &CXXMethodDecl::isMoveAssignmentOperator); 5060 return false; 5061 case UTT_HasNothrowCopy: 5062 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 5063 // If __has_trivial_copy (type) is true then the trait is true, else 5064 // if type is a cv class or union type with copy constructors that are 5065 // known not to throw an exception then the trait is true, else it is 5066 // false. 5067 if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType()) 5068 return true; 5069 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) { 5070 if (RD->hasTrivialCopyConstructor() && 5071 !RD->hasNonTrivialCopyConstructor()) 5072 return true; 5073 5074 bool FoundConstructor = false; 5075 unsigned FoundTQs; 5076 for (const auto *ND : Self.LookupConstructors(RD)) { 5077 // A template constructor is never a copy constructor. 5078 // FIXME: However, it may actually be selected at the actual overload 5079 // resolution point. 5080 if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl())) 5081 continue; 5082 // UsingDecl itself is not a constructor 5083 if (isa<UsingDecl>(ND)) 5084 continue; 5085 auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl()); 5086 if (Constructor->isCopyConstructor(FoundTQs)) { 5087 FoundConstructor = true; 5088 auto *CPT = Constructor->getType()->castAs<FunctionProtoType>(); 5089 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); 5090 if (!CPT) 5091 return false; 5092 // TODO: check whether evaluating default arguments can throw. 5093 // For now, we'll be conservative and assume that they can throw. 5094 if (!CPT->isNothrow() || CPT->getNumParams() > 1) 5095 return false; 5096 } 5097 } 5098 5099 return FoundConstructor; 5100 } 5101 return false; 5102 case UTT_HasNothrowConstructor: 5103 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html 5104 // If __has_trivial_constructor (type) is true then the trait is 5105 // true, else if type is a cv class or union type (or array 5106 // thereof) with a default constructor that is known not to 5107 // throw an exception then the trait is true, else it is false. 5108 if (T.isPODType(C) || T->isObjCLifetimeType()) 5109 return true; 5110 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) { 5111 if (RD->hasTrivialDefaultConstructor() && 5112 !RD->hasNonTrivialDefaultConstructor()) 5113 return true; 5114 5115 bool FoundConstructor = false; 5116 for (const auto *ND : Self.LookupConstructors(RD)) { 5117 // FIXME: In C++0x, a constructor template can be a default constructor. 5118 if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl())) 5119 continue; 5120 // UsingDecl itself is not a constructor 5121 if (isa<UsingDecl>(ND)) 5122 continue; 5123 auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl()); 5124 if (Constructor->isDefaultConstructor()) { 5125 FoundConstructor = true; 5126 auto *CPT = Constructor->getType()->castAs<FunctionProtoType>(); 5127 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); 5128 if (!CPT) 5129 return false; 5130 // FIXME: check whether evaluating default arguments can throw. 5131 // For now, we'll be conservative and assume that they can throw. 5132 if (!CPT->isNothrow() || CPT->getNumParams() > 0) 5133 return false; 5134 } 5135 } 5136 return FoundConstructor; 5137 } 5138 return false; 5139 case UTT_HasVirtualDestructor: 5140 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 5141 // If type is a class type with a virtual destructor ([class.dtor]) 5142 // then the trait is true, else it is false. 5143 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 5144 if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD)) 5145 return Destructor->isVirtual(); 5146 return false; 5147 5148 // These type trait expressions are modeled on the specifications for the 5149 // Embarcadero C++0x type trait functions: 5150 // http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index 5151 case UTT_IsCompleteType: 5152 // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_): 5153 // Returns True if and only if T is a complete type at the point of the 5154 // function call. 5155 return !T->isIncompleteType(); 5156 case UTT_HasUniqueObjectRepresentations: 5157 return C.hasUniqueObjectRepresentations(T); 5158 } 5159 } 5160 5161 static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT, 5162 QualType RhsT, SourceLocation KeyLoc); 5163 5164 static bool evaluateTypeTrait(Sema &S, TypeTrait Kind, SourceLocation KWLoc, 5165 ArrayRef<TypeSourceInfo *> Args, 5166 SourceLocation RParenLoc) { 5167 if (Kind <= UTT_Last) 5168 return EvaluateUnaryTypeTrait(S, Kind, KWLoc, Args[0]->getType()); 5169 5170 // Evaluate BTT_ReferenceBindsToTemporary alongside the IsConstructible 5171 // traits to avoid duplication. 5172 if (Kind <= BTT_Last && Kind != BTT_ReferenceBindsToTemporary) 5173 return EvaluateBinaryTypeTrait(S, Kind, Args[0]->getType(), 5174 Args[1]->getType(), RParenLoc); 5175 5176 switch (Kind) { 5177 case clang::BTT_ReferenceBindsToTemporary: 5178 case clang::TT_IsConstructible: 5179 case clang::TT_IsNothrowConstructible: 5180 case clang::TT_IsTriviallyConstructible: { 5181 // C++11 [meta.unary.prop]: 5182 // is_trivially_constructible is defined as: 5183 // 5184 // is_constructible<T, Args...>::value is true and the variable 5185 // definition for is_constructible, as defined below, is known to call 5186 // no operation that is not trivial. 5187 // 5188 // The predicate condition for a template specialization 5189 // is_constructible<T, Args...> shall be satisfied if and only if the 5190 // following variable definition would be well-formed for some invented 5191 // variable t: 5192 // 5193 // T t(create<Args>()...); 5194 assert(!Args.empty()); 5195 5196 // Precondition: T and all types in the parameter pack Args shall be 5197 // complete types, (possibly cv-qualified) void, or arrays of 5198 // unknown bound. 5199 for (const auto *TSI : Args) { 5200 QualType ArgTy = TSI->getType(); 5201 if (ArgTy->isVoidType() || ArgTy->isIncompleteArrayType()) 5202 continue; 5203 5204 if (S.RequireCompleteType(KWLoc, ArgTy, 5205 diag::err_incomplete_type_used_in_type_trait_expr)) 5206 return false; 5207 } 5208 5209 // Make sure the first argument is not incomplete nor a function type. 5210 QualType T = Args[0]->getType(); 5211 if (T->isIncompleteType() || T->isFunctionType()) 5212 return false; 5213 5214 // Make sure the first argument is not an abstract type. 5215 CXXRecordDecl *RD = T->getAsCXXRecordDecl(); 5216 if (RD && RD->isAbstract()) 5217 return false; 5218 5219 llvm::BumpPtrAllocator OpaqueExprAllocator; 5220 SmallVector<Expr *, 2> ArgExprs; 5221 ArgExprs.reserve(Args.size() - 1); 5222 for (unsigned I = 1, N = Args.size(); I != N; ++I) { 5223 QualType ArgTy = Args[I]->getType(); 5224 if (ArgTy->isObjectType() || ArgTy->isFunctionType()) 5225 ArgTy = S.Context.getRValueReferenceType(ArgTy); 5226 ArgExprs.push_back( 5227 new (OpaqueExprAllocator.Allocate<OpaqueValueExpr>()) 5228 OpaqueValueExpr(Args[I]->getTypeLoc().getBeginLoc(), 5229 ArgTy.getNonLValueExprType(S.Context), 5230 Expr::getValueKindForType(ArgTy))); 5231 } 5232 5233 // Perform the initialization in an unevaluated context within a SFINAE 5234 // trap at translation unit scope. 5235 EnterExpressionEvaluationContext Unevaluated( 5236 S, Sema::ExpressionEvaluationContext::Unevaluated); 5237 Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true); 5238 Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl()); 5239 InitializedEntity To(InitializedEntity::InitializeTemporary(Args[0])); 5240 InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc, 5241 RParenLoc)); 5242 InitializationSequence Init(S, To, InitKind, ArgExprs); 5243 if (Init.Failed()) 5244 return false; 5245 5246 ExprResult Result = Init.Perform(S, To, InitKind, ArgExprs); 5247 if (Result.isInvalid() || SFINAE.hasErrorOccurred()) 5248 return false; 5249 5250 if (Kind == clang::TT_IsConstructible) 5251 return true; 5252 5253 if (Kind == clang::BTT_ReferenceBindsToTemporary) { 5254 if (!T->isReferenceType()) 5255 return false; 5256 5257 return !Init.isDirectReferenceBinding(); 5258 } 5259 5260 if (Kind == clang::TT_IsNothrowConstructible) 5261 return S.canThrow(Result.get()) == CT_Cannot; 5262 5263 if (Kind == clang::TT_IsTriviallyConstructible) { 5264 // Under Objective-C ARC and Weak, if the destination has non-trivial 5265 // Objective-C lifetime, this is a non-trivial construction. 5266 if (T.getNonReferenceType().hasNonTrivialObjCLifetime()) 5267 return false; 5268 5269 // The initialization succeeded; now make sure there are no non-trivial 5270 // calls. 5271 return !Result.get()->hasNonTrivialCall(S.Context); 5272 } 5273 5274 llvm_unreachable("unhandled type trait"); 5275 return false; 5276 } 5277 default: llvm_unreachable("not a TT"); 5278 } 5279 5280 return false; 5281 } 5282 5283 ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc, 5284 ArrayRef<TypeSourceInfo *> Args, 5285 SourceLocation RParenLoc) { 5286 QualType ResultType = Context.getLogicalOperationType(); 5287 5288 if (Kind <= UTT_Last && !CheckUnaryTypeTraitTypeCompleteness( 5289 *this, Kind, KWLoc, Args[0]->getType())) 5290 return ExprError(); 5291 5292 bool Dependent = false; 5293 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 5294 if (Args[I]->getType()->isDependentType()) { 5295 Dependent = true; 5296 break; 5297 } 5298 } 5299 5300 bool Result = false; 5301 if (!Dependent) 5302 Result = evaluateTypeTrait(*this, Kind, KWLoc, Args, RParenLoc); 5303 5304 return TypeTraitExpr::Create(Context, ResultType, KWLoc, Kind, Args, 5305 RParenLoc, Result); 5306 } 5307 5308 ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc, 5309 ArrayRef<ParsedType> Args, 5310 SourceLocation RParenLoc) { 5311 SmallVector<TypeSourceInfo *, 4> ConvertedArgs; 5312 ConvertedArgs.reserve(Args.size()); 5313 5314 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 5315 TypeSourceInfo *TInfo; 5316 QualType T = GetTypeFromParser(Args[I], &TInfo); 5317 if (!TInfo) 5318 TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc); 5319 5320 ConvertedArgs.push_back(TInfo); 5321 } 5322 5323 return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc); 5324 } 5325 5326 static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT, 5327 QualType RhsT, SourceLocation KeyLoc) { 5328 assert(!LhsT->isDependentType() && !RhsT->isDependentType() && 5329 "Cannot evaluate traits of dependent types"); 5330 5331 switch(BTT) { 5332 case BTT_IsBaseOf: { 5333 // C++0x [meta.rel]p2 5334 // Base is a base class of Derived without regard to cv-qualifiers or 5335 // Base and Derived are not unions and name the same class type without 5336 // regard to cv-qualifiers. 5337 5338 const RecordType *lhsRecord = LhsT->getAs<RecordType>(); 5339 const RecordType *rhsRecord = RhsT->getAs<RecordType>(); 5340 if (!rhsRecord || !lhsRecord) { 5341 const ObjCObjectType *LHSObjTy = LhsT->getAs<ObjCObjectType>(); 5342 const ObjCObjectType *RHSObjTy = RhsT->getAs<ObjCObjectType>(); 5343 if (!LHSObjTy || !RHSObjTy) 5344 return false; 5345 5346 ObjCInterfaceDecl *BaseInterface = LHSObjTy->getInterface(); 5347 ObjCInterfaceDecl *DerivedInterface = RHSObjTy->getInterface(); 5348 if (!BaseInterface || !DerivedInterface) 5349 return false; 5350 5351 if (Self.RequireCompleteType( 5352 KeyLoc, RhsT, diag::err_incomplete_type_used_in_type_trait_expr)) 5353 return false; 5354 5355 return BaseInterface->isSuperClassOf(DerivedInterface); 5356 } 5357 5358 assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT) 5359 == (lhsRecord == rhsRecord)); 5360 5361 // Unions are never base classes, and never have base classes. 5362 // It doesn't matter if they are complete or not. See PR#41843 5363 if (lhsRecord && lhsRecord->getDecl()->isUnion()) 5364 return false; 5365 if (rhsRecord && rhsRecord->getDecl()->isUnion()) 5366 return false; 5367 5368 if (lhsRecord == rhsRecord) 5369 return true; 5370 5371 // C++0x [meta.rel]p2: 5372 // If Base and Derived are class types and are different types 5373 // (ignoring possible cv-qualifiers) then Derived shall be a 5374 // complete type. 5375 if (Self.RequireCompleteType(KeyLoc, RhsT, 5376 diag::err_incomplete_type_used_in_type_trait_expr)) 5377 return false; 5378 5379 return cast<CXXRecordDecl>(rhsRecord->getDecl()) 5380 ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl())); 5381 } 5382 case BTT_IsSame: 5383 return Self.Context.hasSameType(LhsT, RhsT); 5384 case BTT_TypeCompatible: { 5385 // GCC ignores cv-qualifiers on arrays for this builtin. 5386 Qualifiers LhsQuals, RhsQuals; 5387 QualType Lhs = Self.getASTContext().getUnqualifiedArrayType(LhsT, LhsQuals); 5388 QualType Rhs = Self.getASTContext().getUnqualifiedArrayType(RhsT, RhsQuals); 5389 return Self.Context.typesAreCompatible(Lhs, Rhs); 5390 } 5391 case BTT_IsConvertible: 5392 case BTT_IsConvertibleTo: { 5393 // C++0x [meta.rel]p4: 5394 // Given the following function prototype: 5395 // 5396 // template <class T> 5397 // typename add_rvalue_reference<T>::type create(); 5398 // 5399 // the predicate condition for a template specialization 5400 // is_convertible<From, To> shall be satisfied if and only if 5401 // the return expression in the following code would be 5402 // well-formed, including any implicit conversions to the return 5403 // type of the function: 5404 // 5405 // To test() { 5406 // return create<From>(); 5407 // } 5408 // 5409 // Access checking is performed as if in a context unrelated to To and 5410 // From. Only the validity of the immediate context of the expression 5411 // of the return-statement (including conversions to the return type) 5412 // is considered. 5413 // 5414 // We model the initialization as a copy-initialization of a temporary 5415 // of the appropriate type, which for this expression is identical to the 5416 // return statement (since NRVO doesn't apply). 5417 5418 // Functions aren't allowed to return function or array types. 5419 if (RhsT->isFunctionType() || RhsT->isArrayType()) 5420 return false; 5421 5422 // A return statement in a void function must have void type. 5423 if (RhsT->isVoidType()) 5424 return LhsT->isVoidType(); 5425 5426 // A function definition requires a complete, non-abstract return type. 5427 if (!Self.isCompleteType(KeyLoc, RhsT) || Self.isAbstractType(KeyLoc, RhsT)) 5428 return false; 5429 5430 // Compute the result of add_rvalue_reference. 5431 if (LhsT->isObjectType() || LhsT->isFunctionType()) 5432 LhsT = Self.Context.getRValueReferenceType(LhsT); 5433 5434 // Build a fake source and destination for initialization. 5435 InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT)); 5436 OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context), 5437 Expr::getValueKindForType(LhsT)); 5438 Expr *FromPtr = &From; 5439 InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc, 5440 SourceLocation())); 5441 5442 // Perform the initialization in an unevaluated context within a SFINAE 5443 // trap at translation unit scope. 5444 EnterExpressionEvaluationContext Unevaluated( 5445 Self, Sema::ExpressionEvaluationContext::Unevaluated); 5446 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true); 5447 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl()); 5448 InitializationSequence Init(Self, To, Kind, FromPtr); 5449 if (Init.Failed()) 5450 return false; 5451 5452 ExprResult Result = Init.Perform(Self, To, Kind, FromPtr); 5453 return !Result.isInvalid() && !SFINAE.hasErrorOccurred(); 5454 } 5455 5456 case BTT_IsAssignable: 5457 case BTT_IsNothrowAssignable: 5458 case BTT_IsTriviallyAssignable: { 5459 // C++11 [meta.unary.prop]p3: 5460 // is_trivially_assignable is defined as: 5461 // is_assignable<T, U>::value is true and the assignment, as defined by 5462 // is_assignable, is known to call no operation that is not trivial 5463 // 5464 // is_assignable is defined as: 5465 // The expression declval<T>() = declval<U>() is well-formed when 5466 // treated as an unevaluated operand (Clause 5). 5467 // 5468 // For both, T and U shall be complete types, (possibly cv-qualified) 5469 // void, or arrays of unknown bound. 5470 if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() && 5471 Self.RequireCompleteType(KeyLoc, LhsT, 5472 diag::err_incomplete_type_used_in_type_trait_expr)) 5473 return false; 5474 if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() && 5475 Self.RequireCompleteType(KeyLoc, RhsT, 5476 diag::err_incomplete_type_used_in_type_trait_expr)) 5477 return false; 5478 5479 // cv void is never assignable. 5480 if (LhsT->isVoidType() || RhsT->isVoidType()) 5481 return false; 5482 5483 // Build expressions that emulate the effect of declval<T>() and 5484 // declval<U>(). 5485 if (LhsT->isObjectType() || LhsT->isFunctionType()) 5486 LhsT = Self.Context.getRValueReferenceType(LhsT); 5487 if (RhsT->isObjectType() || RhsT->isFunctionType()) 5488 RhsT = Self.Context.getRValueReferenceType(RhsT); 5489 OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context), 5490 Expr::getValueKindForType(LhsT)); 5491 OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context), 5492 Expr::getValueKindForType(RhsT)); 5493 5494 // Attempt the assignment in an unevaluated context within a SFINAE 5495 // trap at translation unit scope. 5496 EnterExpressionEvaluationContext Unevaluated( 5497 Self, Sema::ExpressionEvaluationContext::Unevaluated); 5498 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true); 5499 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl()); 5500 ExprResult Result = Self.BuildBinOp(/*S=*/nullptr, KeyLoc, BO_Assign, &Lhs, 5501 &Rhs); 5502 if (Result.isInvalid()) 5503 return false; 5504 5505 // Treat the assignment as unused for the purpose of -Wdeprecated-volatile. 5506 Self.CheckUnusedVolatileAssignment(Result.get()); 5507 5508 if (SFINAE.hasErrorOccurred()) 5509 return false; 5510 5511 if (BTT == BTT_IsAssignable) 5512 return true; 5513 5514 if (BTT == BTT_IsNothrowAssignable) 5515 return Self.canThrow(Result.get()) == CT_Cannot; 5516 5517 if (BTT == BTT_IsTriviallyAssignable) { 5518 // Under Objective-C ARC and Weak, if the destination has non-trivial 5519 // Objective-C lifetime, this is a non-trivial assignment. 5520 if (LhsT.getNonReferenceType().hasNonTrivialObjCLifetime()) 5521 return false; 5522 5523 return !Result.get()->hasNonTrivialCall(Self.Context); 5524 } 5525 5526 llvm_unreachable("unhandled type trait"); 5527 return false; 5528 } 5529 default: llvm_unreachable("not a BTT"); 5530 } 5531 llvm_unreachable("Unknown type trait or not implemented"); 5532 } 5533 5534 ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT, 5535 SourceLocation KWLoc, 5536 ParsedType Ty, 5537 Expr* DimExpr, 5538 SourceLocation RParen) { 5539 TypeSourceInfo *TSInfo; 5540 QualType T = GetTypeFromParser(Ty, &TSInfo); 5541 if (!TSInfo) 5542 TSInfo = Context.getTrivialTypeSourceInfo(T); 5543 5544 return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen); 5545 } 5546 5547 static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT, 5548 QualType T, Expr *DimExpr, 5549 SourceLocation KeyLoc) { 5550 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type"); 5551 5552 switch(ATT) { 5553 case ATT_ArrayRank: 5554 if (T->isArrayType()) { 5555 unsigned Dim = 0; 5556 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) { 5557 ++Dim; 5558 T = AT->getElementType(); 5559 } 5560 return Dim; 5561 } 5562 return 0; 5563 5564 case ATT_ArrayExtent: { 5565 llvm::APSInt Value; 5566 uint64_t Dim; 5567 if (Self.VerifyIntegerConstantExpression( 5568 DimExpr, &Value, diag::err_dimension_expr_not_constant_integer) 5569 .isInvalid()) 5570 return 0; 5571 if (Value.isSigned() && Value.isNegative()) { 5572 Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer) 5573 << DimExpr->getSourceRange(); 5574 return 0; 5575 } 5576 Dim = Value.getLimitedValue(); 5577 5578 if (T->isArrayType()) { 5579 unsigned D = 0; 5580 bool Matched = false; 5581 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) { 5582 if (Dim == D) { 5583 Matched = true; 5584 break; 5585 } 5586 ++D; 5587 T = AT->getElementType(); 5588 } 5589 5590 if (Matched && T->isArrayType()) { 5591 if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T)) 5592 return CAT->getSize().getLimitedValue(); 5593 } 5594 } 5595 return 0; 5596 } 5597 } 5598 llvm_unreachable("Unknown type trait or not implemented"); 5599 } 5600 5601 ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT, 5602 SourceLocation KWLoc, 5603 TypeSourceInfo *TSInfo, 5604 Expr* DimExpr, 5605 SourceLocation RParen) { 5606 QualType T = TSInfo->getType(); 5607 5608 // FIXME: This should likely be tracked as an APInt to remove any host 5609 // assumptions about the width of size_t on the target. 5610 uint64_t Value = 0; 5611 if (!T->isDependentType()) 5612 Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc); 5613 5614 // While the specification for these traits from the Embarcadero C++ 5615 // compiler's documentation says the return type is 'unsigned int', Clang 5616 // returns 'size_t'. On Windows, the primary platform for the Embarcadero 5617 // compiler, there is no difference. On several other platforms this is an 5618 // important distinction. 5619 return new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value, DimExpr, 5620 RParen, Context.getSizeType()); 5621 } 5622 5623 ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET, 5624 SourceLocation KWLoc, 5625 Expr *Queried, 5626 SourceLocation RParen) { 5627 // If error parsing the expression, ignore. 5628 if (!Queried) 5629 return ExprError(); 5630 5631 ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen); 5632 5633 return Result; 5634 } 5635 5636 static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) { 5637 switch (ET) { 5638 case ET_IsLValueExpr: return E->isLValue(); 5639 case ET_IsRValueExpr: return E->isRValue(); 5640 } 5641 llvm_unreachable("Expression trait not covered by switch"); 5642 } 5643 5644 ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET, 5645 SourceLocation KWLoc, 5646 Expr *Queried, 5647 SourceLocation RParen) { 5648 if (Queried->isTypeDependent()) { 5649 // Delay type-checking for type-dependent expressions. 5650 } else if (Queried->getType()->isPlaceholderType()) { 5651 ExprResult PE = CheckPlaceholderExpr(Queried); 5652 if (PE.isInvalid()) return ExprError(); 5653 return BuildExpressionTrait(ET, KWLoc, PE.get(), RParen); 5654 } 5655 5656 bool Value = EvaluateExpressionTrait(ET, Queried); 5657 5658 return new (Context) 5659 ExpressionTraitExpr(KWLoc, ET, Queried, Value, RParen, Context.BoolTy); 5660 } 5661 5662 QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS, 5663 ExprValueKind &VK, 5664 SourceLocation Loc, 5665 bool isIndirect) { 5666 assert(!LHS.get()->getType()->isPlaceholderType() && 5667 !RHS.get()->getType()->isPlaceholderType() && 5668 "placeholders should have been weeded out by now"); 5669 5670 // The LHS undergoes lvalue conversions if this is ->*, and undergoes the 5671 // temporary materialization conversion otherwise. 5672 if (isIndirect) 5673 LHS = DefaultLvalueConversion(LHS.get()); 5674 else if (LHS.get()->isRValue()) 5675 LHS = TemporaryMaterializationConversion(LHS.get()); 5676 if (LHS.isInvalid()) 5677 return QualType(); 5678 5679 // The RHS always undergoes lvalue conversions. 5680 RHS = DefaultLvalueConversion(RHS.get()); 5681 if (RHS.isInvalid()) return QualType(); 5682 5683 const char *OpSpelling = isIndirect ? "->*" : ".*"; 5684 // C++ 5.5p2 5685 // The binary operator .* [p3: ->*] binds its second operand, which shall 5686 // be of type "pointer to member of T" (where T is a completely-defined 5687 // class type) [...] 5688 QualType RHSType = RHS.get()->getType(); 5689 const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>(); 5690 if (!MemPtr) { 5691 Diag(Loc, diag::err_bad_memptr_rhs) 5692 << OpSpelling << RHSType << RHS.get()->getSourceRange(); 5693 return QualType(); 5694 } 5695 5696 QualType Class(MemPtr->getClass(), 0); 5697 5698 // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the 5699 // member pointer points must be completely-defined. However, there is no 5700 // reason for this semantic distinction, and the rule is not enforced by 5701 // other compilers. Therefore, we do not check this property, as it is 5702 // likely to be considered a defect. 5703 5704 // C++ 5.5p2 5705 // [...] to its first operand, which shall be of class T or of a class of 5706 // which T is an unambiguous and accessible base class. [p3: a pointer to 5707 // such a class] 5708 QualType LHSType = LHS.get()->getType(); 5709 if (isIndirect) { 5710 if (const PointerType *Ptr = LHSType->getAs<PointerType>()) 5711 LHSType = Ptr->getPointeeType(); 5712 else { 5713 Diag(Loc, diag::err_bad_memptr_lhs) 5714 << OpSpelling << 1 << LHSType 5715 << FixItHint::CreateReplacement(SourceRange(Loc), ".*"); 5716 return QualType(); 5717 } 5718 } 5719 5720 if (!Context.hasSameUnqualifiedType(Class, LHSType)) { 5721 // If we want to check the hierarchy, we need a complete type. 5722 if (RequireCompleteType(Loc, LHSType, diag::err_bad_memptr_lhs, 5723 OpSpelling, (int)isIndirect)) { 5724 return QualType(); 5725 } 5726 5727 if (!IsDerivedFrom(Loc, LHSType, Class)) { 5728 Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling 5729 << (int)isIndirect << LHS.get()->getType(); 5730 return QualType(); 5731 } 5732 5733 CXXCastPath BasePath; 5734 if (CheckDerivedToBaseConversion( 5735 LHSType, Class, Loc, 5736 SourceRange(LHS.get()->getBeginLoc(), RHS.get()->getEndLoc()), 5737 &BasePath)) 5738 return QualType(); 5739 5740 // Cast LHS to type of use. 5741 QualType UseType = Context.getQualifiedType(Class, LHSType.getQualifiers()); 5742 if (isIndirect) 5743 UseType = Context.getPointerType(UseType); 5744 ExprValueKind VK = isIndirect ? VK_RValue : LHS.get()->getValueKind(); 5745 LHS = ImpCastExprToType(LHS.get(), UseType, CK_DerivedToBase, VK, 5746 &BasePath); 5747 } 5748 5749 if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) { 5750 // Diagnose use of pointer-to-member type which when used as 5751 // the functional cast in a pointer-to-member expression. 5752 Diag(Loc, diag::err_pointer_to_member_type) << isIndirect; 5753 return QualType(); 5754 } 5755 5756 // C++ 5.5p2 5757 // The result is an object or a function of the type specified by the 5758 // second operand. 5759 // The cv qualifiers are the union of those in the pointer and the left side, 5760 // in accordance with 5.5p5 and 5.2.5. 5761 QualType Result = MemPtr->getPointeeType(); 5762 Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers()); 5763 5764 // C++0x [expr.mptr.oper]p6: 5765 // In a .* expression whose object expression is an rvalue, the program is 5766 // ill-formed if the second operand is a pointer to member function with 5767 // ref-qualifier &. In a ->* expression or in a .* expression whose object 5768 // expression is an lvalue, the program is ill-formed if the second operand 5769 // is a pointer to member function with ref-qualifier &&. 5770 if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) { 5771 switch (Proto->getRefQualifier()) { 5772 case RQ_None: 5773 // Do nothing 5774 break; 5775 5776 case RQ_LValue: 5777 if (!isIndirect && !LHS.get()->Classify(Context).isLValue()) { 5778 // C++2a allows functions with ref-qualifier & if their cv-qualifier-seq 5779 // is (exactly) 'const'. 5780 if (Proto->isConst() && !Proto->isVolatile()) 5781 Diag(Loc, getLangOpts().CPlusPlus20 5782 ? diag::warn_cxx17_compat_pointer_to_const_ref_member_on_rvalue 5783 : diag::ext_pointer_to_const_ref_member_on_rvalue); 5784 else 5785 Diag(Loc, diag::err_pointer_to_member_oper_value_classify) 5786 << RHSType << 1 << LHS.get()->getSourceRange(); 5787 } 5788 break; 5789 5790 case RQ_RValue: 5791 if (isIndirect || !LHS.get()->Classify(Context).isRValue()) 5792 Diag(Loc, diag::err_pointer_to_member_oper_value_classify) 5793 << RHSType << 0 << LHS.get()->getSourceRange(); 5794 break; 5795 } 5796 } 5797 5798 // C++ [expr.mptr.oper]p6: 5799 // The result of a .* expression whose second operand is a pointer 5800 // to a data member is of the same value category as its 5801 // first operand. The result of a .* expression whose second 5802 // operand is a pointer to a member function is a prvalue. The 5803 // result of an ->* expression is an lvalue if its second operand 5804 // is a pointer to data member and a prvalue otherwise. 5805 if (Result->isFunctionType()) { 5806 VK = VK_RValue; 5807 return Context.BoundMemberTy; 5808 } else if (isIndirect) { 5809 VK = VK_LValue; 5810 } else { 5811 VK = LHS.get()->getValueKind(); 5812 } 5813 5814 return Result; 5815 } 5816 5817 /// Try to convert a type to another according to C++11 5.16p3. 5818 /// 5819 /// This is part of the parameter validation for the ? operator. If either 5820 /// value operand is a class type, the two operands are attempted to be 5821 /// converted to each other. This function does the conversion in one direction. 5822 /// It returns true if the program is ill-formed and has already been diagnosed 5823 /// as such. 5824 static bool TryClassUnification(Sema &Self, Expr *From, Expr *To, 5825 SourceLocation QuestionLoc, 5826 bool &HaveConversion, 5827 QualType &ToType) { 5828 HaveConversion = false; 5829 ToType = To->getType(); 5830 5831 InitializationKind Kind = 5832 InitializationKind::CreateCopy(To->getBeginLoc(), SourceLocation()); 5833 // C++11 5.16p3 5834 // The process for determining whether an operand expression E1 of type T1 5835 // can be converted to match an operand expression E2 of type T2 is defined 5836 // as follows: 5837 // -- If E2 is an lvalue: E1 can be converted to match E2 if E1 can be 5838 // implicitly converted to type "lvalue reference to T2", subject to the 5839 // constraint that in the conversion the reference must bind directly to 5840 // an lvalue. 5841 // -- If E2 is an xvalue: E1 can be converted to match E2 if E1 can be 5842 // implicitly converted to the type "rvalue reference to R2", subject to 5843 // the constraint that the reference must bind directly. 5844 if (To->isLValue() || To->isXValue()) { 5845 QualType T = To->isLValue() ? Self.Context.getLValueReferenceType(ToType) 5846 : Self.Context.getRValueReferenceType(ToType); 5847 5848 InitializedEntity Entity = InitializedEntity::InitializeTemporary(T); 5849 5850 InitializationSequence InitSeq(Self, Entity, Kind, From); 5851 if (InitSeq.isDirectReferenceBinding()) { 5852 ToType = T; 5853 HaveConversion = true; 5854 return false; 5855 } 5856 5857 if (InitSeq.isAmbiguous()) 5858 return InitSeq.Diagnose(Self, Entity, Kind, From); 5859 } 5860 5861 // -- If E2 is an rvalue, or if the conversion above cannot be done: 5862 // -- if E1 and E2 have class type, and the underlying class types are 5863 // the same or one is a base class of the other: 5864 QualType FTy = From->getType(); 5865 QualType TTy = To->getType(); 5866 const RecordType *FRec = FTy->getAs<RecordType>(); 5867 const RecordType *TRec = TTy->getAs<RecordType>(); 5868 bool FDerivedFromT = FRec && TRec && FRec != TRec && 5869 Self.IsDerivedFrom(QuestionLoc, FTy, TTy); 5870 if (FRec && TRec && (FRec == TRec || FDerivedFromT || 5871 Self.IsDerivedFrom(QuestionLoc, TTy, FTy))) { 5872 // E1 can be converted to match E2 if the class of T2 is the 5873 // same type as, or a base class of, the class of T1, and 5874 // [cv2 > cv1]. 5875 if (FRec == TRec || FDerivedFromT) { 5876 if (TTy.isAtLeastAsQualifiedAs(FTy)) { 5877 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy); 5878 InitializationSequence InitSeq(Self, Entity, Kind, From); 5879 if (InitSeq) { 5880 HaveConversion = true; 5881 return false; 5882 } 5883 5884 if (InitSeq.isAmbiguous()) 5885 return InitSeq.Diagnose(Self, Entity, Kind, From); 5886 } 5887 } 5888 5889 return false; 5890 } 5891 5892 // -- Otherwise: E1 can be converted to match E2 if E1 can be 5893 // implicitly converted to the type that expression E2 would have 5894 // if E2 were converted to an rvalue (or the type it has, if E2 is 5895 // an rvalue). 5896 // 5897 // This actually refers very narrowly to the lvalue-to-rvalue conversion, not 5898 // to the array-to-pointer or function-to-pointer conversions. 5899 TTy = TTy.getNonLValueExprType(Self.Context); 5900 5901 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy); 5902 InitializationSequence InitSeq(Self, Entity, Kind, From); 5903 HaveConversion = !InitSeq.Failed(); 5904 ToType = TTy; 5905 if (InitSeq.isAmbiguous()) 5906 return InitSeq.Diagnose(Self, Entity, Kind, From); 5907 5908 return false; 5909 } 5910 5911 /// Try to find a common type for two according to C++0x 5.16p5. 5912 /// 5913 /// This is part of the parameter validation for the ? operator. If either 5914 /// value operand is a class type, overload resolution is used to find a 5915 /// conversion to a common type. 5916 static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS, 5917 SourceLocation QuestionLoc) { 5918 Expr *Args[2] = { LHS.get(), RHS.get() }; 5919 OverloadCandidateSet CandidateSet(QuestionLoc, 5920 OverloadCandidateSet::CSK_Operator); 5921 Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args, 5922 CandidateSet); 5923 5924 OverloadCandidateSet::iterator Best; 5925 switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) { 5926 case OR_Success: { 5927 // We found a match. Perform the conversions on the arguments and move on. 5928 ExprResult LHSRes = Self.PerformImplicitConversion( 5929 LHS.get(), Best->BuiltinParamTypes[0], Best->Conversions[0], 5930 Sema::AA_Converting); 5931 if (LHSRes.isInvalid()) 5932 break; 5933 LHS = LHSRes; 5934 5935 ExprResult RHSRes = Self.PerformImplicitConversion( 5936 RHS.get(), Best->BuiltinParamTypes[1], Best->Conversions[1], 5937 Sema::AA_Converting); 5938 if (RHSRes.isInvalid()) 5939 break; 5940 RHS = RHSRes; 5941 if (Best->Function) 5942 Self.MarkFunctionReferenced(QuestionLoc, Best->Function); 5943 return false; 5944 } 5945 5946 case OR_No_Viable_Function: 5947 5948 // Emit a better diagnostic if one of the expressions is a null pointer 5949 // constant and the other is a pointer type. In this case, the user most 5950 // likely forgot to take the address of the other expression. 5951 if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc)) 5952 return true; 5953 5954 Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands) 5955 << LHS.get()->getType() << RHS.get()->getType() 5956 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 5957 return true; 5958 5959 case OR_Ambiguous: 5960 Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl) 5961 << LHS.get()->getType() << RHS.get()->getType() 5962 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 5963 // FIXME: Print the possible common types by printing the return types of 5964 // the viable candidates. 5965 break; 5966 5967 case OR_Deleted: 5968 llvm_unreachable("Conditional operator has only built-in overloads"); 5969 } 5970 return true; 5971 } 5972 5973 /// Perform an "extended" implicit conversion as returned by 5974 /// TryClassUnification. 5975 static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) { 5976 InitializedEntity Entity = InitializedEntity::InitializeTemporary(T); 5977 InitializationKind Kind = 5978 InitializationKind::CreateCopy(E.get()->getBeginLoc(), SourceLocation()); 5979 Expr *Arg = E.get(); 5980 InitializationSequence InitSeq(Self, Entity, Kind, Arg); 5981 ExprResult Result = InitSeq.Perform(Self, Entity, Kind, Arg); 5982 if (Result.isInvalid()) 5983 return true; 5984 5985 E = Result; 5986 return false; 5987 } 5988 5989 // Check the condition operand of ?: to see if it is valid for the GCC 5990 // extension. 5991 static bool isValidVectorForConditionalCondition(ASTContext &Ctx, 5992 QualType CondTy) { 5993 if (!CondTy->isVectorType() && !CondTy->isExtVectorType()) 5994 return false; 5995 const QualType EltTy = 5996 cast<VectorType>(CondTy.getCanonicalType())->getElementType(); 5997 assert(!EltTy->isBooleanType() && !EltTy->isEnumeralType() && 5998 "Vectors cant be boolean or enum types"); 5999 return EltTy->isIntegralType(Ctx); 6000 } 6001 6002 QualType Sema::CheckVectorConditionalTypes(ExprResult &Cond, ExprResult &LHS, 6003 ExprResult &RHS, 6004 SourceLocation QuestionLoc) { 6005 LHS = DefaultFunctionArrayLvalueConversion(LHS.get()); 6006 RHS = DefaultFunctionArrayLvalueConversion(RHS.get()); 6007 6008 QualType CondType = Cond.get()->getType(); 6009 const auto *CondVT = CondType->castAs<VectorType>(); 6010 QualType CondElementTy = CondVT->getElementType(); 6011 unsigned CondElementCount = CondVT->getNumElements(); 6012 QualType LHSType = LHS.get()->getType(); 6013 const auto *LHSVT = LHSType->getAs<VectorType>(); 6014 QualType RHSType = RHS.get()->getType(); 6015 const auto *RHSVT = RHSType->getAs<VectorType>(); 6016 6017 QualType ResultType; 6018 6019 6020 if (LHSVT && RHSVT) { 6021 if (isa<ExtVectorType>(CondVT) != isa<ExtVectorType>(LHSVT)) { 6022 Diag(QuestionLoc, diag::err_conditional_vector_cond_result_mismatch) 6023 << /*isExtVector*/ isa<ExtVectorType>(CondVT); 6024 return {}; 6025 } 6026 6027 // If both are vector types, they must be the same type. 6028 if (!Context.hasSameType(LHSType, RHSType)) { 6029 Diag(QuestionLoc, diag::err_conditional_vector_mismatched) 6030 << LHSType << RHSType; 6031 return {}; 6032 } 6033 ResultType = LHSType; 6034 } else if (LHSVT || RHSVT) { 6035 ResultType = CheckVectorOperands( 6036 LHS, RHS, QuestionLoc, /*isCompAssign*/ false, /*AllowBothBool*/ true, 6037 /*AllowBoolConversions*/ false); 6038 if (ResultType.isNull()) 6039 return {}; 6040 } else { 6041 // Both are scalar. 6042 QualType ResultElementTy; 6043 LHSType = LHSType.getCanonicalType().getUnqualifiedType(); 6044 RHSType = RHSType.getCanonicalType().getUnqualifiedType(); 6045 6046 if (Context.hasSameType(LHSType, RHSType)) 6047 ResultElementTy = LHSType; 6048 else 6049 ResultElementTy = 6050 UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional); 6051 6052 if (ResultElementTy->isEnumeralType()) { 6053 Diag(QuestionLoc, diag::err_conditional_vector_operand_type) 6054 << ResultElementTy; 6055 return {}; 6056 } 6057 if (CondType->isExtVectorType()) 6058 ResultType = 6059 Context.getExtVectorType(ResultElementTy, CondVT->getNumElements()); 6060 else 6061 ResultType = Context.getVectorType( 6062 ResultElementTy, CondVT->getNumElements(), VectorType::GenericVector); 6063 6064 LHS = ImpCastExprToType(LHS.get(), ResultType, CK_VectorSplat); 6065 RHS = ImpCastExprToType(RHS.get(), ResultType, CK_VectorSplat); 6066 } 6067 6068 assert(!ResultType.isNull() && ResultType->isVectorType() && 6069 (!CondType->isExtVectorType() || ResultType->isExtVectorType()) && 6070 "Result should have been a vector type"); 6071 auto *ResultVectorTy = ResultType->castAs<VectorType>(); 6072 QualType ResultElementTy = ResultVectorTy->getElementType(); 6073 unsigned ResultElementCount = ResultVectorTy->getNumElements(); 6074 6075 if (ResultElementCount != CondElementCount) { 6076 Diag(QuestionLoc, diag::err_conditional_vector_size) << CondType 6077 << ResultType; 6078 return {}; 6079 } 6080 6081 if (Context.getTypeSize(ResultElementTy) != 6082 Context.getTypeSize(CondElementTy)) { 6083 Diag(QuestionLoc, diag::err_conditional_vector_element_size) << CondType 6084 << ResultType; 6085 return {}; 6086 } 6087 6088 return ResultType; 6089 } 6090 6091 /// Check the operands of ?: under C++ semantics. 6092 /// 6093 /// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y 6094 /// extension. In this case, LHS == Cond. (But they're not aliases.) 6095 /// 6096 /// This function also implements GCC's vector extension and the 6097 /// OpenCL/ext_vector_type extension for conditionals. The vector extensions 6098 /// permit the use of a?b:c where the type of a is that of a integer vector with 6099 /// the same number of elements and size as the vectors of b and c. If one of 6100 /// either b or c is a scalar it is implicitly converted to match the type of 6101 /// the vector. Otherwise the expression is ill-formed. If both b and c are 6102 /// scalars, then b and c are checked and converted to the type of a if 6103 /// possible. 6104 /// 6105 /// The expressions are evaluated differently for GCC's and OpenCL's extensions. 6106 /// For the GCC extension, the ?: operator is evaluated as 6107 /// (a[0] != 0 ? b[0] : c[0], .. , a[n] != 0 ? b[n] : c[n]). 6108 /// For the OpenCL extensions, the ?: operator is evaluated as 6109 /// (most-significant-bit-set(a[0]) ? b[0] : c[0], .. , 6110 /// most-significant-bit-set(a[n]) ? b[n] : c[n]). 6111 QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS, 6112 ExprResult &RHS, ExprValueKind &VK, 6113 ExprObjectKind &OK, 6114 SourceLocation QuestionLoc) { 6115 // FIXME: Handle C99's complex types, block pointers and Obj-C++ interface 6116 // pointers. 6117 6118 // Assume r-value. 6119 VK = VK_RValue; 6120 OK = OK_Ordinary; 6121 bool IsVectorConditional = 6122 isValidVectorForConditionalCondition(Context, Cond.get()->getType()); 6123 6124 // C++11 [expr.cond]p1 6125 // The first expression is contextually converted to bool. 6126 if (!Cond.get()->isTypeDependent()) { 6127 ExprResult CondRes = IsVectorConditional 6128 ? DefaultFunctionArrayLvalueConversion(Cond.get()) 6129 : CheckCXXBooleanCondition(Cond.get()); 6130 if (CondRes.isInvalid()) 6131 return QualType(); 6132 Cond = CondRes; 6133 } else { 6134 // To implement C++, the first expression typically doesn't alter the result 6135 // type of the conditional, however the GCC compatible vector extension 6136 // changes the result type to be that of the conditional. Since we cannot 6137 // know if this is a vector extension here, delay the conversion of the 6138 // LHS/RHS below until later. 6139 return Context.DependentTy; 6140 } 6141 6142 6143 // Either of the arguments dependent? 6144 if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent()) 6145 return Context.DependentTy; 6146 6147 // C++11 [expr.cond]p2 6148 // If either the second or the third operand has type (cv) void, ... 6149 QualType LTy = LHS.get()->getType(); 6150 QualType RTy = RHS.get()->getType(); 6151 bool LVoid = LTy->isVoidType(); 6152 bool RVoid = RTy->isVoidType(); 6153 if (LVoid || RVoid) { 6154 // ... one of the following shall hold: 6155 // -- The second or the third operand (but not both) is a (possibly 6156 // parenthesized) throw-expression; the result is of the type 6157 // and value category of the other. 6158 bool LThrow = isa<CXXThrowExpr>(LHS.get()->IgnoreParenImpCasts()); 6159 bool RThrow = isa<CXXThrowExpr>(RHS.get()->IgnoreParenImpCasts()); 6160 6161 // Void expressions aren't legal in the vector-conditional expressions. 6162 if (IsVectorConditional) { 6163 SourceRange DiagLoc = 6164 LVoid ? LHS.get()->getSourceRange() : RHS.get()->getSourceRange(); 6165 bool IsThrow = LVoid ? LThrow : RThrow; 6166 Diag(DiagLoc.getBegin(), diag::err_conditional_vector_has_void) 6167 << DiagLoc << IsThrow; 6168 return QualType(); 6169 } 6170 6171 if (LThrow != RThrow) { 6172 Expr *NonThrow = LThrow ? RHS.get() : LHS.get(); 6173 VK = NonThrow->getValueKind(); 6174 // DR (no number yet): the result is a bit-field if the 6175 // non-throw-expression operand is a bit-field. 6176 OK = NonThrow->getObjectKind(); 6177 return NonThrow->getType(); 6178 } 6179 6180 // -- Both the second and third operands have type void; the result is of 6181 // type void and is a prvalue. 6182 if (LVoid && RVoid) 6183 return Context.VoidTy; 6184 6185 // Neither holds, error. 6186 Diag(QuestionLoc, diag::err_conditional_void_nonvoid) 6187 << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1) 6188 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 6189 return QualType(); 6190 } 6191 6192 // Neither is void. 6193 if (IsVectorConditional) 6194 return CheckVectorConditionalTypes(Cond, LHS, RHS, QuestionLoc); 6195 6196 // C++11 [expr.cond]p3 6197 // Otherwise, if the second and third operand have different types, and 6198 // either has (cv) class type [...] an attempt is made to convert each of 6199 // those operands to the type of the other. 6200 if (!Context.hasSameType(LTy, RTy) && 6201 (LTy->isRecordType() || RTy->isRecordType())) { 6202 // These return true if a single direction is already ambiguous. 6203 QualType L2RType, R2LType; 6204 bool HaveL2R, HaveR2L; 6205 if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType)) 6206 return QualType(); 6207 if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType)) 6208 return QualType(); 6209 6210 // If both can be converted, [...] the program is ill-formed. 6211 if (HaveL2R && HaveR2L) { 6212 Diag(QuestionLoc, diag::err_conditional_ambiguous) 6213 << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 6214 return QualType(); 6215 } 6216 6217 // If exactly one conversion is possible, that conversion is applied to 6218 // the chosen operand and the converted operands are used in place of the 6219 // original operands for the remainder of this section. 6220 if (HaveL2R) { 6221 if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid()) 6222 return QualType(); 6223 LTy = LHS.get()->getType(); 6224 } else if (HaveR2L) { 6225 if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid()) 6226 return QualType(); 6227 RTy = RHS.get()->getType(); 6228 } 6229 } 6230 6231 // C++11 [expr.cond]p3 6232 // if both are glvalues of the same value category and the same type except 6233 // for cv-qualification, an attempt is made to convert each of those 6234 // operands to the type of the other. 6235 // FIXME: 6236 // Resolving a defect in P0012R1: we extend this to cover all cases where 6237 // one of the operands is reference-compatible with the other, in order 6238 // to support conditionals between functions differing in noexcept. This 6239 // will similarly cover difference in array bounds after P0388R4. 6240 // FIXME: If LTy and RTy have a composite pointer type, should we convert to 6241 // that instead? 6242 ExprValueKind LVK = LHS.get()->getValueKind(); 6243 ExprValueKind RVK = RHS.get()->getValueKind(); 6244 if (!Context.hasSameType(LTy, RTy) && 6245 LVK == RVK && LVK != VK_RValue) { 6246 // DerivedToBase was already handled by the class-specific case above. 6247 // FIXME: Should we allow ObjC conversions here? 6248 const ReferenceConversions AllowedConversions = 6249 ReferenceConversions::Qualification | 6250 ReferenceConversions::NestedQualification | 6251 ReferenceConversions::Function; 6252 6253 ReferenceConversions RefConv; 6254 if (CompareReferenceRelationship(QuestionLoc, LTy, RTy, &RefConv) == 6255 Ref_Compatible && 6256 !(RefConv & ~AllowedConversions) && 6257 // [...] subject to the constraint that the reference must bind 6258 // directly [...] 6259 !RHS.get()->refersToBitField() && !RHS.get()->refersToVectorElement()) { 6260 RHS = ImpCastExprToType(RHS.get(), LTy, CK_NoOp, RVK); 6261 RTy = RHS.get()->getType(); 6262 } else if (CompareReferenceRelationship(QuestionLoc, RTy, LTy, &RefConv) == 6263 Ref_Compatible && 6264 !(RefConv & ~AllowedConversions) && 6265 !LHS.get()->refersToBitField() && 6266 !LHS.get()->refersToVectorElement()) { 6267 LHS = ImpCastExprToType(LHS.get(), RTy, CK_NoOp, LVK); 6268 LTy = LHS.get()->getType(); 6269 } 6270 } 6271 6272 // C++11 [expr.cond]p4 6273 // If the second and third operands are glvalues of the same value 6274 // category and have the same type, the result is of that type and 6275 // value category and it is a bit-field if the second or the third 6276 // operand is a bit-field, or if both are bit-fields. 6277 // We only extend this to bitfields, not to the crazy other kinds of 6278 // l-values. 6279 bool Same = Context.hasSameType(LTy, RTy); 6280 if (Same && LVK == RVK && LVK != VK_RValue && 6281 LHS.get()->isOrdinaryOrBitFieldObject() && 6282 RHS.get()->isOrdinaryOrBitFieldObject()) { 6283 VK = LHS.get()->getValueKind(); 6284 if (LHS.get()->getObjectKind() == OK_BitField || 6285 RHS.get()->getObjectKind() == OK_BitField) 6286 OK = OK_BitField; 6287 6288 // If we have function pointer types, unify them anyway to unify their 6289 // exception specifications, if any. 6290 if (LTy->isFunctionPointerType() || LTy->isMemberFunctionPointerType()) { 6291 Qualifiers Qs = LTy.getQualifiers(); 6292 LTy = FindCompositePointerType(QuestionLoc, LHS, RHS, 6293 /*ConvertArgs*/false); 6294 LTy = Context.getQualifiedType(LTy, Qs); 6295 6296 assert(!LTy.isNull() && "failed to find composite pointer type for " 6297 "canonically equivalent function ptr types"); 6298 assert(Context.hasSameType(LTy, RTy) && "bad composite pointer type"); 6299 } 6300 6301 return LTy; 6302 } 6303 6304 // C++11 [expr.cond]p5 6305 // Otherwise, the result is a prvalue. If the second and third operands 6306 // do not have the same type, and either has (cv) class type, ... 6307 if (!Same && (LTy->isRecordType() || RTy->isRecordType())) { 6308 // ... overload resolution is used to determine the conversions (if any) 6309 // to be applied to the operands. If the overload resolution fails, the 6310 // program is ill-formed. 6311 if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc)) 6312 return QualType(); 6313 } 6314 6315 // C++11 [expr.cond]p6 6316 // Lvalue-to-rvalue, array-to-pointer, and function-to-pointer standard 6317 // conversions are performed on the second and third operands. 6318 LHS = DefaultFunctionArrayLvalueConversion(LHS.get()); 6319 RHS = DefaultFunctionArrayLvalueConversion(RHS.get()); 6320 if (LHS.isInvalid() || RHS.isInvalid()) 6321 return QualType(); 6322 LTy = LHS.get()->getType(); 6323 RTy = RHS.get()->getType(); 6324 6325 // After those conversions, one of the following shall hold: 6326 // -- The second and third operands have the same type; the result 6327 // is of that type. If the operands have class type, the result 6328 // is a prvalue temporary of the result type, which is 6329 // copy-initialized from either the second operand or the third 6330 // operand depending on the value of the first operand. 6331 if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) { 6332 if (LTy->isRecordType()) { 6333 // The operands have class type. Make a temporary copy. 6334 InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy); 6335 6336 ExprResult LHSCopy = PerformCopyInitialization(Entity, 6337 SourceLocation(), 6338 LHS); 6339 if (LHSCopy.isInvalid()) 6340 return QualType(); 6341 6342 ExprResult RHSCopy = PerformCopyInitialization(Entity, 6343 SourceLocation(), 6344 RHS); 6345 if (RHSCopy.isInvalid()) 6346 return QualType(); 6347 6348 LHS = LHSCopy; 6349 RHS = RHSCopy; 6350 } 6351 6352 // If we have function pointer types, unify them anyway to unify their 6353 // exception specifications, if any. 6354 if (LTy->isFunctionPointerType() || LTy->isMemberFunctionPointerType()) { 6355 LTy = FindCompositePointerType(QuestionLoc, LHS, RHS); 6356 assert(!LTy.isNull() && "failed to find composite pointer type for " 6357 "canonically equivalent function ptr types"); 6358 } 6359 6360 return LTy; 6361 } 6362 6363 // Extension: conditional operator involving vector types. 6364 if (LTy->isVectorType() || RTy->isVectorType()) 6365 return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false, 6366 /*AllowBothBool*/true, 6367 /*AllowBoolConversions*/false); 6368 6369 // -- The second and third operands have arithmetic or enumeration type; 6370 // the usual arithmetic conversions are performed to bring them to a 6371 // common type, and the result is of that type. 6372 if (LTy->isArithmeticType() && RTy->isArithmeticType()) { 6373 QualType ResTy = 6374 UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional); 6375 if (LHS.isInvalid() || RHS.isInvalid()) 6376 return QualType(); 6377 if (ResTy.isNull()) { 6378 Diag(QuestionLoc, 6379 diag::err_typecheck_cond_incompatible_operands) << LTy << RTy 6380 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 6381 return QualType(); 6382 } 6383 6384 LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy)); 6385 RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy)); 6386 6387 return ResTy; 6388 } 6389 6390 // -- The second and third operands have pointer type, or one has pointer 6391 // type and the other is a null pointer constant, or both are null 6392 // pointer constants, at least one of which is non-integral; pointer 6393 // conversions and qualification conversions are performed to bring them 6394 // to their composite pointer type. The result is of the composite 6395 // pointer type. 6396 // -- The second and third operands have pointer to member type, or one has 6397 // pointer to member type and the other is a null pointer constant; 6398 // pointer to member conversions and qualification conversions are 6399 // performed to bring them to a common type, whose cv-qualification 6400 // shall match the cv-qualification of either the second or the third 6401 // operand. The result is of the common type. 6402 QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS); 6403 if (!Composite.isNull()) 6404 return Composite; 6405 6406 // Similarly, attempt to find composite type of two objective-c pointers. 6407 Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc); 6408 if (LHS.isInvalid() || RHS.isInvalid()) 6409 return QualType(); 6410 if (!Composite.isNull()) 6411 return Composite; 6412 6413 // Check if we are using a null with a non-pointer type. 6414 if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc)) 6415 return QualType(); 6416 6417 Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands) 6418 << LHS.get()->getType() << RHS.get()->getType() 6419 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 6420 return QualType(); 6421 } 6422 6423 static FunctionProtoType::ExceptionSpecInfo 6424 mergeExceptionSpecs(Sema &S, FunctionProtoType::ExceptionSpecInfo ESI1, 6425 FunctionProtoType::ExceptionSpecInfo ESI2, 6426 SmallVectorImpl<QualType> &ExceptionTypeStorage) { 6427 ExceptionSpecificationType EST1 = ESI1.Type; 6428 ExceptionSpecificationType EST2 = ESI2.Type; 6429 6430 // If either of them can throw anything, that is the result. 6431 if (EST1 == EST_None) return ESI1; 6432 if (EST2 == EST_None) return ESI2; 6433 if (EST1 == EST_MSAny) return ESI1; 6434 if (EST2 == EST_MSAny) return ESI2; 6435 if (EST1 == EST_NoexceptFalse) return ESI1; 6436 if (EST2 == EST_NoexceptFalse) return ESI2; 6437 6438 // If either of them is non-throwing, the result is the other. 6439 if (EST1 == EST_NoThrow) return ESI2; 6440 if (EST2 == EST_NoThrow) return ESI1; 6441 if (EST1 == EST_DynamicNone) return ESI2; 6442 if (EST2 == EST_DynamicNone) return ESI1; 6443 if (EST1 == EST_BasicNoexcept) return ESI2; 6444 if (EST2 == EST_BasicNoexcept) return ESI1; 6445 if (EST1 == EST_NoexceptTrue) return ESI2; 6446 if (EST2 == EST_NoexceptTrue) return ESI1; 6447 6448 // If we're left with value-dependent computed noexcept expressions, we're 6449 // stuck. Before C++17, we can just drop the exception specification entirely, 6450 // since it's not actually part of the canonical type. And this should never 6451 // happen in C++17, because it would mean we were computing the composite 6452 // pointer type of dependent types, which should never happen. 6453 if (EST1 == EST_DependentNoexcept || EST2 == EST_DependentNoexcept) { 6454 assert(!S.getLangOpts().CPlusPlus17 && 6455 "computing composite pointer type of dependent types"); 6456 return FunctionProtoType::ExceptionSpecInfo(); 6457 } 6458 6459 // Switch over the possibilities so that people adding new values know to 6460 // update this function. 6461 switch (EST1) { 6462 case EST_None: 6463 case EST_DynamicNone: 6464 case EST_MSAny: 6465 case EST_BasicNoexcept: 6466 case EST_DependentNoexcept: 6467 case EST_NoexceptFalse: 6468 case EST_NoexceptTrue: 6469 case EST_NoThrow: 6470 llvm_unreachable("handled above"); 6471 6472 case EST_Dynamic: { 6473 // This is the fun case: both exception specifications are dynamic. Form 6474 // the union of the two lists. 6475 assert(EST2 == EST_Dynamic && "other cases should already be handled"); 6476 llvm::SmallPtrSet<QualType, 8> Found; 6477 for (auto &Exceptions : {ESI1.Exceptions, ESI2.Exceptions}) 6478 for (QualType E : Exceptions) 6479 if (Found.insert(S.Context.getCanonicalType(E)).second) 6480 ExceptionTypeStorage.push_back(E); 6481 6482 FunctionProtoType::ExceptionSpecInfo Result(EST_Dynamic); 6483 Result.Exceptions = ExceptionTypeStorage; 6484 return Result; 6485 } 6486 6487 case EST_Unevaluated: 6488 case EST_Uninstantiated: 6489 case EST_Unparsed: 6490 llvm_unreachable("shouldn't see unresolved exception specifications here"); 6491 } 6492 6493 llvm_unreachable("invalid ExceptionSpecificationType"); 6494 } 6495 6496 /// Find a merged pointer type and convert the two expressions to it. 6497 /// 6498 /// This finds the composite pointer type for \p E1 and \p E2 according to 6499 /// C++2a [expr.type]p3. It converts both expressions to this type and returns 6500 /// it. It does not emit diagnostics (FIXME: that's not true if \p ConvertArgs 6501 /// is \c true). 6502 /// 6503 /// \param Loc The location of the operator requiring these two expressions to 6504 /// be converted to the composite pointer type. 6505 /// 6506 /// \param ConvertArgs If \c false, do not convert E1 and E2 to the target type. 6507 QualType Sema::FindCompositePointerType(SourceLocation Loc, 6508 Expr *&E1, Expr *&E2, 6509 bool ConvertArgs) { 6510 assert(getLangOpts().CPlusPlus && "This function assumes C++"); 6511 6512 // C++1z [expr]p14: 6513 // The composite pointer type of two operands p1 and p2 having types T1 6514 // and T2 6515 QualType T1 = E1->getType(), T2 = E2->getType(); 6516 6517 // where at least one is a pointer or pointer to member type or 6518 // std::nullptr_t is: 6519 bool T1IsPointerLike = T1->isAnyPointerType() || T1->isMemberPointerType() || 6520 T1->isNullPtrType(); 6521 bool T2IsPointerLike = T2->isAnyPointerType() || T2->isMemberPointerType() || 6522 T2->isNullPtrType(); 6523 if (!T1IsPointerLike && !T2IsPointerLike) 6524 return QualType(); 6525 6526 // - if both p1 and p2 are null pointer constants, std::nullptr_t; 6527 // This can't actually happen, following the standard, but we also use this 6528 // to implement the end of [expr.conv], which hits this case. 6529 // 6530 // - if either p1 or p2 is a null pointer constant, T2 or T1, respectively; 6531 if (T1IsPointerLike && 6532 E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { 6533 if (ConvertArgs) 6534 E2 = ImpCastExprToType(E2, T1, T1->isMemberPointerType() 6535 ? CK_NullToMemberPointer 6536 : CK_NullToPointer).get(); 6537 return T1; 6538 } 6539 if (T2IsPointerLike && 6540 E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { 6541 if (ConvertArgs) 6542 E1 = ImpCastExprToType(E1, T2, T2->isMemberPointerType() 6543 ? CK_NullToMemberPointer 6544 : CK_NullToPointer).get(); 6545 return T2; 6546 } 6547 6548 // Now both have to be pointers or member pointers. 6549 if (!T1IsPointerLike || !T2IsPointerLike) 6550 return QualType(); 6551 assert(!T1->isNullPtrType() && !T2->isNullPtrType() && 6552 "nullptr_t should be a null pointer constant"); 6553 6554 struct Step { 6555 enum Kind { Pointer, ObjCPointer, MemberPointer, Array } K; 6556 // Qualifiers to apply under the step kind. 6557 Qualifiers Quals; 6558 /// The class for a pointer-to-member; a constant array type with a bound 6559 /// (if any) for an array. 6560 const Type *ClassOrBound; 6561 6562 Step(Kind K, const Type *ClassOrBound = nullptr) 6563 : K(K), Quals(), ClassOrBound(ClassOrBound) {} 6564 QualType rebuild(ASTContext &Ctx, QualType T) const { 6565 T = Ctx.getQualifiedType(T, Quals); 6566 switch (K) { 6567 case Pointer: 6568 return Ctx.getPointerType(T); 6569 case MemberPointer: 6570 return Ctx.getMemberPointerType(T, ClassOrBound); 6571 case ObjCPointer: 6572 return Ctx.getObjCObjectPointerType(T); 6573 case Array: 6574 if (auto *CAT = cast_or_null<ConstantArrayType>(ClassOrBound)) 6575 return Ctx.getConstantArrayType(T, CAT->getSize(), nullptr, 6576 ArrayType::Normal, 0); 6577 else 6578 return Ctx.getIncompleteArrayType(T, ArrayType::Normal, 0); 6579 } 6580 llvm_unreachable("unknown step kind"); 6581 } 6582 }; 6583 6584 SmallVector<Step, 8> Steps; 6585 6586 // - if T1 is "pointer to cv1 C1" and T2 is "pointer to cv2 C2", where C1 6587 // is reference-related to C2 or C2 is reference-related to C1 (8.6.3), 6588 // the cv-combined type of T1 and T2 or the cv-combined type of T2 and T1, 6589 // respectively; 6590 // - if T1 is "pointer to member of C1 of type cv1 U1" and T2 is "pointer 6591 // to member of C2 of type cv2 U2" for some non-function type U, where 6592 // C1 is reference-related to C2 or C2 is reference-related to C1, the 6593 // cv-combined type of T2 and T1 or the cv-combined type of T1 and T2, 6594 // respectively; 6595 // - if T1 and T2 are similar types (4.5), the cv-combined type of T1 and 6596 // T2; 6597 // 6598 // Dismantle T1 and T2 to simultaneously determine whether they are similar 6599 // and to prepare to form the cv-combined type if so. 6600 QualType Composite1 = T1; 6601 QualType Composite2 = T2; 6602 unsigned NeedConstBefore = 0; 6603 while (true) { 6604 assert(!Composite1.isNull() && !Composite2.isNull()); 6605 6606 Qualifiers Q1, Q2; 6607 Composite1 = Context.getUnqualifiedArrayType(Composite1, Q1); 6608 Composite2 = Context.getUnqualifiedArrayType(Composite2, Q2); 6609 6610 // Top-level qualifiers are ignored. Merge at all lower levels. 6611 if (!Steps.empty()) { 6612 // Find the qualifier union: (approximately) the unique minimal set of 6613 // qualifiers that is compatible with both types. 6614 Qualifiers Quals = Qualifiers::fromCVRUMask(Q1.getCVRUQualifiers() | 6615 Q2.getCVRUQualifiers()); 6616 6617 // Under one level of pointer or pointer-to-member, we can change to an 6618 // unambiguous compatible address space. 6619 if (Q1.getAddressSpace() == Q2.getAddressSpace()) { 6620 Quals.setAddressSpace(Q1.getAddressSpace()); 6621 } else if (Steps.size() == 1) { 6622 bool MaybeQ1 = Q1.isAddressSpaceSupersetOf(Q2); 6623 bool MaybeQ2 = Q2.isAddressSpaceSupersetOf(Q1); 6624 if (MaybeQ1 == MaybeQ2) 6625 return QualType(); // No unique best address space. 6626 Quals.setAddressSpace(MaybeQ1 ? Q1.getAddressSpace() 6627 : Q2.getAddressSpace()); 6628 } else { 6629 return QualType(); 6630 } 6631 6632 // FIXME: In C, we merge __strong and none to __strong at the top level. 6633 if (Q1.getObjCGCAttr() == Q2.getObjCGCAttr()) 6634 Quals.setObjCGCAttr(Q1.getObjCGCAttr()); 6635 else if (T1->isVoidPointerType() || T2->isVoidPointerType()) 6636 assert(Steps.size() == 1); 6637 else 6638 return QualType(); 6639 6640 // Mismatched lifetime qualifiers never compatibly include each other. 6641 if (Q1.getObjCLifetime() == Q2.getObjCLifetime()) 6642 Quals.setObjCLifetime(Q1.getObjCLifetime()); 6643 else if (T1->isVoidPointerType() || T2->isVoidPointerType()) 6644 assert(Steps.size() == 1); 6645 else 6646 return QualType(); 6647 6648 Steps.back().Quals = Quals; 6649 if (Q1 != Quals || Q2 != Quals) 6650 NeedConstBefore = Steps.size() - 1; 6651 } 6652 6653 // FIXME: Can we unify the following with UnwrapSimilarTypes? 6654 const PointerType *Ptr1, *Ptr2; 6655 if ((Ptr1 = Composite1->getAs<PointerType>()) && 6656 (Ptr2 = Composite2->getAs<PointerType>())) { 6657 Composite1 = Ptr1->getPointeeType(); 6658 Composite2 = Ptr2->getPointeeType(); 6659 Steps.emplace_back(Step::Pointer); 6660 continue; 6661 } 6662 6663 const ObjCObjectPointerType *ObjPtr1, *ObjPtr2; 6664 if ((ObjPtr1 = Composite1->getAs<ObjCObjectPointerType>()) && 6665 (ObjPtr2 = Composite2->getAs<ObjCObjectPointerType>())) { 6666 Composite1 = ObjPtr1->getPointeeType(); 6667 Composite2 = ObjPtr2->getPointeeType(); 6668 Steps.emplace_back(Step::ObjCPointer); 6669 continue; 6670 } 6671 6672 const MemberPointerType *MemPtr1, *MemPtr2; 6673 if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) && 6674 (MemPtr2 = Composite2->getAs<MemberPointerType>())) { 6675 Composite1 = MemPtr1->getPointeeType(); 6676 Composite2 = MemPtr2->getPointeeType(); 6677 6678 // At the top level, we can perform a base-to-derived pointer-to-member 6679 // conversion: 6680 // 6681 // - [...] where C1 is reference-related to C2 or C2 is 6682 // reference-related to C1 6683 // 6684 // (Note that the only kinds of reference-relatedness in scope here are 6685 // "same type or derived from".) At any other level, the class must 6686 // exactly match. 6687 const Type *Class = nullptr; 6688 QualType Cls1(MemPtr1->getClass(), 0); 6689 QualType Cls2(MemPtr2->getClass(), 0); 6690 if (Context.hasSameType(Cls1, Cls2)) 6691 Class = MemPtr1->getClass(); 6692 else if (Steps.empty()) 6693 Class = IsDerivedFrom(Loc, Cls1, Cls2) ? MemPtr1->getClass() : 6694 IsDerivedFrom(Loc, Cls2, Cls1) ? MemPtr2->getClass() : nullptr; 6695 if (!Class) 6696 return QualType(); 6697 6698 Steps.emplace_back(Step::MemberPointer, Class); 6699 continue; 6700 } 6701 6702 // Special case: at the top level, we can decompose an Objective-C pointer 6703 // and a 'cv void *'. Unify the qualifiers. 6704 if (Steps.empty() && ((Composite1->isVoidPointerType() && 6705 Composite2->isObjCObjectPointerType()) || 6706 (Composite1->isObjCObjectPointerType() && 6707 Composite2->isVoidPointerType()))) { 6708 Composite1 = Composite1->getPointeeType(); 6709 Composite2 = Composite2->getPointeeType(); 6710 Steps.emplace_back(Step::Pointer); 6711 continue; 6712 } 6713 6714 // FIXME: arrays 6715 6716 // FIXME: block pointer types? 6717 6718 // Cannot unwrap any more types. 6719 break; 6720 } 6721 6722 // - if T1 or T2 is "pointer to noexcept function" and the other type is 6723 // "pointer to function", where the function types are otherwise the same, 6724 // "pointer to function"; 6725 // - if T1 or T2 is "pointer to member of C1 of type function", the other 6726 // type is "pointer to member of C2 of type noexcept function", and C1 6727 // is reference-related to C2 or C2 is reference-related to C1, where 6728 // the function types are otherwise the same, "pointer to member of C2 of 6729 // type function" or "pointer to member of C1 of type function", 6730 // respectively; 6731 // 6732 // We also support 'noreturn' here, so as a Clang extension we generalize the 6733 // above to: 6734 // 6735 // - [Clang] If T1 and T2 are both of type "pointer to function" or 6736 // "pointer to member function" and the pointee types can be unified 6737 // by a function pointer conversion, that conversion is applied 6738 // before checking the following rules. 6739 // 6740 // We've already unwrapped down to the function types, and we want to merge 6741 // rather than just convert, so do this ourselves rather than calling 6742 // IsFunctionConversion. 6743 // 6744 // FIXME: In order to match the standard wording as closely as possible, we 6745 // currently only do this under a single level of pointers. Ideally, we would 6746 // allow this in general, and set NeedConstBefore to the relevant depth on 6747 // the side(s) where we changed anything. If we permit that, we should also 6748 // consider this conversion when determining type similarity and model it as 6749 // a qualification conversion. 6750 if (Steps.size() == 1) { 6751 if (auto *FPT1 = Composite1->getAs<FunctionProtoType>()) { 6752 if (auto *FPT2 = Composite2->getAs<FunctionProtoType>()) { 6753 FunctionProtoType::ExtProtoInfo EPI1 = FPT1->getExtProtoInfo(); 6754 FunctionProtoType::ExtProtoInfo EPI2 = FPT2->getExtProtoInfo(); 6755 6756 // The result is noreturn if both operands are. 6757 bool Noreturn = 6758 EPI1.ExtInfo.getNoReturn() && EPI2.ExtInfo.getNoReturn(); 6759 EPI1.ExtInfo = EPI1.ExtInfo.withNoReturn(Noreturn); 6760 EPI2.ExtInfo = EPI2.ExtInfo.withNoReturn(Noreturn); 6761 6762 // The result is nothrow if both operands are. 6763 SmallVector<QualType, 8> ExceptionTypeStorage; 6764 EPI1.ExceptionSpec = EPI2.ExceptionSpec = 6765 mergeExceptionSpecs(*this, EPI1.ExceptionSpec, EPI2.ExceptionSpec, 6766 ExceptionTypeStorage); 6767 6768 Composite1 = Context.getFunctionType(FPT1->getReturnType(), 6769 FPT1->getParamTypes(), EPI1); 6770 Composite2 = Context.getFunctionType(FPT2->getReturnType(), 6771 FPT2->getParamTypes(), EPI2); 6772 } 6773 } 6774 } 6775 6776 // There are some more conversions we can perform under exactly one pointer. 6777 if (Steps.size() == 1 && Steps.front().K == Step::Pointer && 6778 !Context.hasSameType(Composite1, Composite2)) { 6779 // - if T1 or T2 is "pointer to cv1 void" and the other type is 6780 // "pointer to cv2 T", where T is an object type or void, 6781 // "pointer to cv12 void", where cv12 is the union of cv1 and cv2; 6782 if (Composite1->isVoidType() && Composite2->isObjectType()) 6783 Composite2 = Composite1; 6784 else if (Composite2->isVoidType() && Composite1->isObjectType()) 6785 Composite1 = Composite2; 6786 // - if T1 is "pointer to cv1 C1" and T2 is "pointer to cv2 C2", where C1 6787 // is reference-related to C2 or C2 is reference-related to C1 (8.6.3), 6788 // the cv-combined type of T1 and T2 or the cv-combined type of T2 and 6789 // T1, respectively; 6790 // 6791 // The "similar type" handling covers all of this except for the "T1 is a 6792 // base class of T2" case in the definition of reference-related. 6793 else if (IsDerivedFrom(Loc, Composite1, Composite2)) 6794 Composite1 = Composite2; 6795 else if (IsDerivedFrom(Loc, Composite2, Composite1)) 6796 Composite2 = Composite1; 6797 } 6798 6799 // At this point, either the inner types are the same or we have failed to 6800 // find a composite pointer type. 6801 if (!Context.hasSameType(Composite1, Composite2)) 6802 return QualType(); 6803 6804 // Per C++ [conv.qual]p3, add 'const' to every level before the last 6805 // differing qualifier. 6806 for (unsigned I = 0; I != NeedConstBefore; ++I) 6807 Steps[I].Quals.addConst(); 6808 6809 // Rebuild the composite type. 6810 QualType Composite = Composite1; 6811 for (auto &S : llvm::reverse(Steps)) 6812 Composite = S.rebuild(Context, Composite); 6813 6814 if (ConvertArgs) { 6815 // Convert the expressions to the composite pointer type. 6816 InitializedEntity Entity = 6817 InitializedEntity::InitializeTemporary(Composite); 6818 InitializationKind Kind = 6819 InitializationKind::CreateCopy(Loc, SourceLocation()); 6820 6821 InitializationSequence E1ToC(*this, Entity, Kind, E1); 6822 if (!E1ToC) 6823 return QualType(); 6824 6825 InitializationSequence E2ToC(*this, Entity, Kind, E2); 6826 if (!E2ToC) 6827 return QualType(); 6828 6829 // FIXME: Let the caller know if these fail to avoid duplicate diagnostics. 6830 ExprResult E1Result = E1ToC.Perform(*this, Entity, Kind, E1); 6831 if (E1Result.isInvalid()) 6832 return QualType(); 6833 E1 = E1Result.get(); 6834 6835 ExprResult E2Result = E2ToC.Perform(*this, Entity, Kind, E2); 6836 if (E2Result.isInvalid()) 6837 return QualType(); 6838 E2 = E2Result.get(); 6839 } 6840 6841 return Composite; 6842 } 6843 6844 ExprResult Sema::MaybeBindToTemporary(Expr *E) { 6845 if (!E) 6846 return ExprError(); 6847 6848 assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?"); 6849 6850 // If the result is a glvalue, we shouldn't bind it. 6851 if (!E->isRValue()) 6852 return E; 6853 6854 // In ARC, calls that return a retainable type can return retained, 6855 // in which case we have to insert a consuming cast. 6856 if (getLangOpts().ObjCAutoRefCount && 6857 E->getType()->isObjCRetainableType()) { 6858 6859 bool ReturnsRetained; 6860 6861 // For actual calls, we compute this by examining the type of the 6862 // called value. 6863 if (CallExpr *Call = dyn_cast<CallExpr>(E)) { 6864 Expr *Callee = Call->getCallee()->IgnoreParens(); 6865 QualType T = Callee->getType(); 6866 6867 if (T == Context.BoundMemberTy) { 6868 // Handle pointer-to-members. 6869 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee)) 6870 T = BinOp->getRHS()->getType(); 6871 else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee)) 6872 T = Mem->getMemberDecl()->getType(); 6873 } 6874 6875 if (const PointerType *Ptr = T->getAs<PointerType>()) 6876 T = Ptr->getPointeeType(); 6877 else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>()) 6878 T = Ptr->getPointeeType(); 6879 else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>()) 6880 T = MemPtr->getPointeeType(); 6881 6882 auto *FTy = T->castAs<FunctionType>(); 6883 ReturnsRetained = FTy->getExtInfo().getProducesResult(); 6884 6885 // ActOnStmtExpr arranges things so that StmtExprs of retainable 6886 // type always produce a +1 object. 6887 } else if (isa<StmtExpr>(E)) { 6888 ReturnsRetained = true; 6889 6890 // We hit this case with the lambda conversion-to-block optimization; 6891 // we don't want any extra casts here. 6892 } else if (isa<CastExpr>(E) && 6893 isa<BlockExpr>(cast<CastExpr>(E)->getSubExpr())) { 6894 return E; 6895 6896 // For message sends and property references, we try to find an 6897 // actual method. FIXME: we should infer retention by selector in 6898 // cases where we don't have an actual method. 6899 } else { 6900 ObjCMethodDecl *D = nullptr; 6901 if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) { 6902 D = Send->getMethodDecl(); 6903 } else if (ObjCBoxedExpr *BoxedExpr = dyn_cast<ObjCBoxedExpr>(E)) { 6904 D = BoxedExpr->getBoxingMethod(); 6905 } else if (ObjCArrayLiteral *ArrayLit = dyn_cast<ObjCArrayLiteral>(E)) { 6906 // Don't do reclaims if we're using the zero-element array 6907 // constant. 6908 if (ArrayLit->getNumElements() == 0 && 6909 Context.getLangOpts().ObjCRuntime.hasEmptyCollections()) 6910 return E; 6911 6912 D = ArrayLit->getArrayWithObjectsMethod(); 6913 } else if (ObjCDictionaryLiteral *DictLit 6914 = dyn_cast<ObjCDictionaryLiteral>(E)) { 6915 // Don't do reclaims if we're using the zero-element dictionary 6916 // constant. 6917 if (DictLit->getNumElements() == 0 && 6918 Context.getLangOpts().ObjCRuntime.hasEmptyCollections()) 6919 return E; 6920 6921 D = DictLit->getDictWithObjectsMethod(); 6922 } 6923 6924 ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>()); 6925 6926 // Don't do reclaims on performSelector calls; despite their 6927 // return type, the invoked method doesn't necessarily actually 6928 // return an object. 6929 if (!ReturnsRetained && 6930 D && D->getMethodFamily() == OMF_performSelector) 6931 return E; 6932 } 6933 6934 // Don't reclaim an object of Class type. 6935 if (!ReturnsRetained && E->getType()->isObjCARCImplicitlyUnretainedType()) 6936 return E; 6937 6938 Cleanup.setExprNeedsCleanups(true); 6939 6940 CastKind ck = (ReturnsRetained ? CK_ARCConsumeObject 6941 : CK_ARCReclaimReturnedObject); 6942 return ImplicitCastExpr::Create(Context, E->getType(), ck, E, nullptr, 6943 VK_RValue, FPOptionsOverride()); 6944 } 6945 6946 if (E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct) 6947 Cleanup.setExprNeedsCleanups(true); 6948 6949 if (!getLangOpts().CPlusPlus) 6950 return E; 6951 6952 // Search for the base element type (cf. ASTContext::getBaseElementType) with 6953 // a fast path for the common case that the type is directly a RecordType. 6954 const Type *T = Context.getCanonicalType(E->getType().getTypePtr()); 6955 const RecordType *RT = nullptr; 6956 while (!RT) { 6957 switch (T->getTypeClass()) { 6958 case Type::Record: 6959 RT = cast<RecordType>(T); 6960 break; 6961 case Type::ConstantArray: 6962 case Type::IncompleteArray: 6963 case Type::VariableArray: 6964 case Type::DependentSizedArray: 6965 T = cast<ArrayType>(T)->getElementType().getTypePtr(); 6966 break; 6967 default: 6968 return E; 6969 } 6970 } 6971 6972 // That should be enough to guarantee that this type is complete, if we're 6973 // not processing a decltype expression. 6974 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 6975 if (RD->isInvalidDecl() || RD->isDependentContext()) 6976 return E; 6977 6978 bool IsDecltype = ExprEvalContexts.back().ExprContext == 6979 ExpressionEvaluationContextRecord::EK_Decltype; 6980 CXXDestructorDecl *Destructor = IsDecltype ? nullptr : LookupDestructor(RD); 6981 6982 if (Destructor) { 6983 MarkFunctionReferenced(E->getExprLoc(), Destructor); 6984 CheckDestructorAccess(E->getExprLoc(), Destructor, 6985 PDiag(diag::err_access_dtor_temp) 6986 << E->getType()); 6987 if (DiagnoseUseOfDecl(Destructor, E->getExprLoc())) 6988 return ExprError(); 6989 6990 // If destructor is trivial, we can avoid the extra copy. 6991 if (Destructor->isTrivial()) 6992 return E; 6993 6994 // We need a cleanup, but we don't need to remember the temporary. 6995 Cleanup.setExprNeedsCleanups(true); 6996 } 6997 6998 CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor); 6999 CXXBindTemporaryExpr *Bind = CXXBindTemporaryExpr::Create(Context, Temp, E); 7000 7001 if (IsDecltype) 7002 ExprEvalContexts.back().DelayedDecltypeBinds.push_back(Bind); 7003 7004 return Bind; 7005 } 7006 7007 ExprResult 7008 Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) { 7009 if (SubExpr.isInvalid()) 7010 return ExprError(); 7011 7012 return MaybeCreateExprWithCleanups(SubExpr.get()); 7013 } 7014 7015 Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) { 7016 assert(SubExpr && "subexpression can't be null!"); 7017 7018 CleanupVarDeclMarking(); 7019 7020 unsigned FirstCleanup = ExprEvalContexts.back().NumCleanupObjects; 7021 assert(ExprCleanupObjects.size() >= FirstCleanup); 7022 assert(Cleanup.exprNeedsCleanups() || 7023 ExprCleanupObjects.size() == FirstCleanup); 7024 if (!Cleanup.exprNeedsCleanups()) 7025 return SubExpr; 7026 7027 auto Cleanups = llvm::makeArrayRef(ExprCleanupObjects.begin() + FirstCleanup, 7028 ExprCleanupObjects.size() - FirstCleanup); 7029 7030 auto *E = ExprWithCleanups::Create( 7031 Context, SubExpr, Cleanup.cleanupsHaveSideEffects(), Cleanups); 7032 DiscardCleanupsInEvaluationContext(); 7033 7034 return E; 7035 } 7036 7037 Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) { 7038 assert(SubStmt && "sub-statement can't be null!"); 7039 7040 CleanupVarDeclMarking(); 7041 7042 if (!Cleanup.exprNeedsCleanups()) 7043 return SubStmt; 7044 7045 // FIXME: In order to attach the temporaries, wrap the statement into 7046 // a StmtExpr; currently this is only used for asm statements. 7047 // This is hacky, either create a new CXXStmtWithTemporaries statement or 7048 // a new AsmStmtWithTemporaries. 7049 CompoundStmt *CompStmt = CompoundStmt::Create( 7050 Context, SubStmt, SourceLocation(), SourceLocation()); 7051 Expr *E = new (Context) 7052 StmtExpr(CompStmt, Context.VoidTy, SourceLocation(), SourceLocation(), 7053 /*FIXME TemplateDepth=*/0); 7054 return MaybeCreateExprWithCleanups(E); 7055 } 7056 7057 /// Process the expression contained within a decltype. For such expressions, 7058 /// certain semantic checks on temporaries are delayed until this point, and 7059 /// are omitted for the 'topmost' call in the decltype expression. If the 7060 /// topmost call bound a temporary, strip that temporary off the expression. 7061 ExprResult Sema::ActOnDecltypeExpression(Expr *E) { 7062 assert(ExprEvalContexts.back().ExprContext == 7063 ExpressionEvaluationContextRecord::EK_Decltype && 7064 "not in a decltype expression"); 7065 7066 ExprResult Result = CheckPlaceholderExpr(E); 7067 if (Result.isInvalid()) 7068 return ExprError(); 7069 E = Result.get(); 7070 7071 // C++11 [expr.call]p11: 7072 // If a function call is a prvalue of object type, 7073 // -- if the function call is either 7074 // -- the operand of a decltype-specifier, or 7075 // -- the right operand of a comma operator that is the operand of a 7076 // decltype-specifier, 7077 // a temporary object is not introduced for the prvalue. 7078 7079 // Recursively rebuild ParenExprs and comma expressions to strip out the 7080 // outermost CXXBindTemporaryExpr, if any. 7081 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 7082 ExprResult SubExpr = ActOnDecltypeExpression(PE->getSubExpr()); 7083 if (SubExpr.isInvalid()) 7084 return ExprError(); 7085 if (SubExpr.get() == PE->getSubExpr()) 7086 return E; 7087 return ActOnParenExpr(PE->getLParen(), PE->getRParen(), SubExpr.get()); 7088 } 7089 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 7090 if (BO->getOpcode() == BO_Comma) { 7091 ExprResult RHS = ActOnDecltypeExpression(BO->getRHS()); 7092 if (RHS.isInvalid()) 7093 return ExprError(); 7094 if (RHS.get() == BO->getRHS()) 7095 return E; 7096 return BinaryOperator::Create(Context, BO->getLHS(), RHS.get(), BO_Comma, 7097 BO->getType(), BO->getValueKind(), 7098 BO->getObjectKind(), BO->getOperatorLoc(), 7099 BO->getFPFeatures(getLangOpts())); 7100 } 7101 } 7102 7103 CXXBindTemporaryExpr *TopBind = dyn_cast<CXXBindTemporaryExpr>(E); 7104 CallExpr *TopCall = TopBind ? dyn_cast<CallExpr>(TopBind->getSubExpr()) 7105 : nullptr; 7106 if (TopCall) 7107 E = TopCall; 7108 else 7109 TopBind = nullptr; 7110 7111 // Disable the special decltype handling now. 7112 ExprEvalContexts.back().ExprContext = 7113 ExpressionEvaluationContextRecord::EK_Other; 7114 7115 Result = CheckUnevaluatedOperand(E); 7116 if (Result.isInvalid()) 7117 return ExprError(); 7118 E = Result.get(); 7119 7120 // In MS mode, don't perform any extra checking of call return types within a 7121 // decltype expression. 7122 if (getLangOpts().MSVCCompat) 7123 return E; 7124 7125 // Perform the semantic checks we delayed until this point. 7126 for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeCalls.size(); 7127 I != N; ++I) { 7128 CallExpr *Call = ExprEvalContexts.back().DelayedDecltypeCalls[I]; 7129 if (Call == TopCall) 7130 continue; 7131 7132 if (CheckCallReturnType(Call->getCallReturnType(Context), 7133 Call->getBeginLoc(), Call, Call->getDirectCallee())) 7134 return ExprError(); 7135 } 7136 7137 // Now all relevant types are complete, check the destructors are accessible 7138 // and non-deleted, and annotate them on the temporaries. 7139 for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeBinds.size(); 7140 I != N; ++I) { 7141 CXXBindTemporaryExpr *Bind = 7142 ExprEvalContexts.back().DelayedDecltypeBinds[I]; 7143 if (Bind == TopBind) 7144 continue; 7145 7146 CXXTemporary *Temp = Bind->getTemporary(); 7147 7148 CXXRecordDecl *RD = 7149 Bind->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 7150 CXXDestructorDecl *Destructor = LookupDestructor(RD); 7151 Temp->setDestructor(Destructor); 7152 7153 MarkFunctionReferenced(Bind->getExprLoc(), Destructor); 7154 CheckDestructorAccess(Bind->getExprLoc(), Destructor, 7155 PDiag(diag::err_access_dtor_temp) 7156 << Bind->getType()); 7157 if (DiagnoseUseOfDecl(Destructor, Bind->getExprLoc())) 7158 return ExprError(); 7159 7160 // We need a cleanup, but we don't need to remember the temporary. 7161 Cleanup.setExprNeedsCleanups(true); 7162 } 7163 7164 // Possibly strip off the top CXXBindTemporaryExpr. 7165 return E; 7166 } 7167 7168 /// Note a set of 'operator->' functions that were used for a member access. 7169 static void noteOperatorArrows(Sema &S, 7170 ArrayRef<FunctionDecl *> OperatorArrows) { 7171 unsigned SkipStart = OperatorArrows.size(), SkipCount = 0; 7172 // FIXME: Make this configurable? 7173 unsigned Limit = 9; 7174 if (OperatorArrows.size() > Limit) { 7175 // Produce Limit-1 normal notes and one 'skipping' note. 7176 SkipStart = (Limit - 1) / 2 + (Limit - 1) % 2; 7177 SkipCount = OperatorArrows.size() - (Limit - 1); 7178 } 7179 7180 for (unsigned I = 0; I < OperatorArrows.size(); /**/) { 7181 if (I == SkipStart) { 7182 S.Diag(OperatorArrows[I]->getLocation(), 7183 diag::note_operator_arrows_suppressed) 7184 << SkipCount; 7185 I += SkipCount; 7186 } else { 7187 S.Diag(OperatorArrows[I]->getLocation(), diag::note_operator_arrow_here) 7188 << OperatorArrows[I]->getCallResultType(); 7189 ++I; 7190 } 7191 } 7192 } 7193 7194 ExprResult Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base, 7195 SourceLocation OpLoc, 7196 tok::TokenKind OpKind, 7197 ParsedType &ObjectType, 7198 bool &MayBePseudoDestructor) { 7199 // Since this might be a postfix expression, get rid of ParenListExprs. 7200 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base); 7201 if (Result.isInvalid()) return ExprError(); 7202 Base = Result.get(); 7203 7204 Result = CheckPlaceholderExpr(Base); 7205 if (Result.isInvalid()) return ExprError(); 7206 Base = Result.get(); 7207 7208 QualType BaseType = Base->getType(); 7209 MayBePseudoDestructor = false; 7210 if (BaseType->isDependentType()) { 7211 // If we have a pointer to a dependent type and are using the -> operator, 7212 // the object type is the type that the pointer points to. We might still 7213 // have enough information about that type to do something useful. 7214 if (OpKind == tok::arrow) 7215 if (const PointerType *Ptr = BaseType->getAs<PointerType>()) 7216 BaseType = Ptr->getPointeeType(); 7217 7218 ObjectType = ParsedType::make(BaseType); 7219 MayBePseudoDestructor = true; 7220 return Base; 7221 } 7222 7223 // C++ [over.match.oper]p8: 7224 // [...] When operator->returns, the operator-> is applied to the value 7225 // returned, with the original second operand. 7226 if (OpKind == tok::arrow) { 7227 QualType StartingType = BaseType; 7228 bool NoArrowOperatorFound = false; 7229 bool FirstIteration = true; 7230 FunctionDecl *CurFD = dyn_cast<FunctionDecl>(CurContext); 7231 // The set of types we've considered so far. 7232 llvm::SmallPtrSet<CanQualType,8> CTypes; 7233 SmallVector<FunctionDecl*, 8> OperatorArrows; 7234 CTypes.insert(Context.getCanonicalType(BaseType)); 7235 7236 while (BaseType->isRecordType()) { 7237 if (OperatorArrows.size() >= getLangOpts().ArrowDepth) { 7238 Diag(OpLoc, diag::err_operator_arrow_depth_exceeded) 7239 << StartingType << getLangOpts().ArrowDepth << Base->getSourceRange(); 7240 noteOperatorArrows(*this, OperatorArrows); 7241 Diag(OpLoc, diag::note_operator_arrow_depth) 7242 << getLangOpts().ArrowDepth; 7243 return ExprError(); 7244 } 7245 7246 Result = BuildOverloadedArrowExpr( 7247 S, Base, OpLoc, 7248 // When in a template specialization and on the first loop iteration, 7249 // potentially give the default diagnostic (with the fixit in a 7250 // separate note) instead of having the error reported back to here 7251 // and giving a diagnostic with a fixit attached to the error itself. 7252 (FirstIteration && CurFD && CurFD->isFunctionTemplateSpecialization()) 7253 ? nullptr 7254 : &NoArrowOperatorFound); 7255 if (Result.isInvalid()) { 7256 if (NoArrowOperatorFound) { 7257 if (FirstIteration) { 7258 Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) 7259 << BaseType << 1 << Base->getSourceRange() 7260 << FixItHint::CreateReplacement(OpLoc, "."); 7261 OpKind = tok::period; 7262 break; 7263 } 7264 Diag(OpLoc, diag::err_typecheck_member_reference_arrow) 7265 << BaseType << Base->getSourceRange(); 7266 CallExpr *CE = dyn_cast<CallExpr>(Base); 7267 if (Decl *CD = (CE ? CE->getCalleeDecl() : nullptr)) { 7268 Diag(CD->getBeginLoc(), 7269 diag::note_member_reference_arrow_from_operator_arrow); 7270 } 7271 } 7272 return ExprError(); 7273 } 7274 Base = Result.get(); 7275 if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base)) 7276 OperatorArrows.push_back(OpCall->getDirectCallee()); 7277 BaseType = Base->getType(); 7278 CanQualType CBaseType = Context.getCanonicalType(BaseType); 7279 if (!CTypes.insert(CBaseType).second) { 7280 Diag(OpLoc, diag::err_operator_arrow_circular) << StartingType; 7281 noteOperatorArrows(*this, OperatorArrows); 7282 return ExprError(); 7283 } 7284 FirstIteration = false; 7285 } 7286 7287 if (OpKind == tok::arrow) { 7288 if (BaseType->isPointerType()) 7289 BaseType = BaseType->getPointeeType(); 7290 else if (auto *AT = Context.getAsArrayType(BaseType)) 7291 BaseType = AT->getElementType(); 7292 } 7293 } 7294 7295 // Objective-C properties allow "." access on Objective-C pointer types, 7296 // so adjust the base type to the object type itself. 7297 if (BaseType->isObjCObjectPointerType()) 7298 BaseType = BaseType->getPointeeType(); 7299 7300 // C++ [basic.lookup.classref]p2: 7301 // [...] If the type of the object expression is of pointer to scalar 7302 // type, the unqualified-id is looked up in the context of the complete 7303 // postfix-expression. 7304 // 7305 // This also indicates that we could be parsing a pseudo-destructor-name. 7306 // Note that Objective-C class and object types can be pseudo-destructor 7307 // expressions or normal member (ivar or property) access expressions, and 7308 // it's legal for the type to be incomplete if this is a pseudo-destructor 7309 // call. We'll do more incomplete-type checks later in the lookup process, 7310 // so just skip this check for ObjC types. 7311 if (!BaseType->isRecordType()) { 7312 ObjectType = ParsedType::make(BaseType); 7313 MayBePseudoDestructor = true; 7314 return Base; 7315 } 7316 7317 // The object type must be complete (or dependent), or 7318 // C++11 [expr.prim.general]p3: 7319 // Unlike the object expression in other contexts, *this is not required to 7320 // be of complete type for purposes of class member access (5.2.5) outside 7321 // the member function body. 7322 if (!BaseType->isDependentType() && 7323 !isThisOutsideMemberFunctionBody(BaseType) && 7324 RequireCompleteType(OpLoc, BaseType, diag::err_incomplete_member_access)) 7325 return ExprError(); 7326 7327 // C++ [basic.lookup.classref]p2: 7328 // If the id-expression in a class member access (5.2.5) is an 7329 // unqualified-id, and the type of the object expression is of a class 7330 // type C (or of pointer to a class type C), the unqualified-id is looked 7331 // up in the scope of class C. [...] 7332 ObjectType = ParsedType::make(BaseType); 7333 return Base; 7334 } 7335 7336 static bool CheckArrow(Sema &S, QualType &ObjectType, Expr *&Base, 7337 tok::TokenKind &OpKind, SourceLocation OpLoc) { 7338 if (Base->hasPlaceholderType()) { 7339 ExprResult result = S.CheckPlaceholderExpr(Base); 7340 if (result.isInvalid()) return true; 7341 Base = result.get(); 7342 } 7343 ObjectType = Base->getType(); 7344 7345 // C++ [expr.pseudo]p2: 7346 // The left-hand side of the dot operator shall be of scalar type. The 7347 // left-hand side of the arrow operator shall be of pointer to scalar type. 7348 // This scalar type is the object type. 7349 // Note that this is rather different from the normal handling for the 7350 // arrow operator. 7351 if (OpKind == tok::arrow) { 7352 // The operator requires a prvalue, so perform lvalue conversions. 7353 // Only do this if we might plausibly end with a pointer, as otherwise 7354 // this was likely to be intended to be a '.'. 7355 if (ObjectType->isPointerType() || ObjectType->isArrayType() || 7356 ObjectType->isFunctionType()) { 7357 ExprResult BaseResult = S.DefaultFunctionArrayLvalueConversion(Base); 7358 if (BaseResult.isInvalid()) 7359 return true; 7360 Base = BaseResult.get(); 7361 ObjectType = Base->getType(); 7362 } 7363 7364 if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) { 7365 ObjectType = Ptr->getPointeeType(); 7366 } else if (!Base->isTypeDependent()) { 7367 // The user wrote "p->" when they probably meant "p."; fix it. 7368 S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) 7369 << ObjectType << true 7370 << FixItHint::CreateReplacement(OpLoc, "."); 7371 if (S.isSFINAEContext()) 7372 return true; 7373 7374 OpKind = tok::period; 7375 } 7376 } 7377 7378 return false; 7379 } 7380 7381 /// Check if it's ok to try and recover dot pseudo destructor calls on 7382 /// pointer objects. 7383 static bool 7384 canRecoverDotPseudoDestructorCallsOnPointerObjects(Sema &SemaRef, 7385 QualType DestructedType) { 7386 // If this is a record type, check if its destructor is callable. 7387 if (auto *RD = DestructedType->getAsCXXRecordDecl()) { 7388 if (RD->hasDefinition()) 7389 if (CXXDestructorDecl *D = SemaRef.LookupDestructor(RD)) 7390 return SemaRef.CanUseDecl(D, /*TreatUnavailableAsInvalid=*/false); 7391 return false; 7392 } 7393 7394 // Otherwise, check if it's a type for which it's valid to use a pseudo-dtor. 7395 return DestructedType->isDependentType() || DestructedType->isScalarType() || 7396 DestructedType->isVectorType(); 7397 } 7398 7399 ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base, 7400 SourceLocation OpLoc, 7401 tok::TokenKind OpKind, 7402 const CXXScopeSpec &SS, 7403 TypeSourceInfo *ScopeTypeInfo, 7404 SourceLocation CCLoc, 7405 SourceLocation TildeLoc, 7406 PseudoDestructorTypeStorage Destructed) { 7407 TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo(); 7408 7409 QualType ObjectType; 7410 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc)) 7411 return ExprError(); 7412 7413 if (!ObjectType->isDependentType() && !ObjectType->isScalarType() && 7414 !ObjectType->isVectorType()) { 7415 if (getLangOpts().MSVCCompat && ObjectType->isVoidType()) 7416 Diag(OpLoc, diag::ext_pseudo_dtor_on_void) << Base->getSourceRange(); 7417 else { 7418 Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar) 7419 << ObjectType << Base->getSourceRange(); 7420 return ExprError(); 7421 } 7422 } 7423 7424 // C++ [expr.pseudo]p2: 7425 // [...] The cv-unqualified versions of the object type and of the type 7426 // designated by the pseudo-destructor-name shall be the same type. 7427 if (DestructedTypeInfo) { 7428 QualType DestructedType = DestructedTypeInfo->getType(); 7429 SourceLocation DestructedTypeStart 7430 = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(); 7431 if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) { 7432 if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) { 7433 // Detect dot pseudo destructor calls on pointer objects, e.g.: 7434 // Foo *foo; 7435 // foo.~Foo(); 7436 if (OpKind == tok::period && ObjectType->isPointerType() && 7437 Context.hasSameUnqualifiedType(DestructedType, 7438 ObjectType->getPointeeType())) { 7439 auto Diagnostic = 7440 Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) 7441 << ObjectType << /*IsArrow=*/0 << Base->getSourceRange(); 7442 7443 // Issue a fixit only when the destructor is valid. 7444 if (canRecoverDotPseudoDestructorCallsOnPointerObjects( 7445 *this, DestructedType)) 7446 Diagnostic << FixItHint::CreateReplacement(OpLoc, "->"); 7447 7448 // Recover by setting the object type to the destructed type and the 7449 // operator to '->'. 7450 ObjectType = DestructedType; 7451 OpKind = tok::arrow; 7452 } else { 7453 Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch) 7454 << ObjectType << DestructedType << Base->getSourceRange() 7455 << DestructedTypeInfo->getTypeLoc().getLocalSourceRange(); 7456 7457 // Recover by setting the destructed type to the object type. 7458 DestructedType = ObjectType; 7459 DestructedTypeInfo = 7460 Context.getTrivialTypeSourceInfo(ObjectType, DestructedTypeStart); 7461 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo); 7462 } 7463 } else if (DestructedType.getObjCLifetime() != 7464 ObjectType.getObjCLifetime()) { 7465 7466 if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) { 7467 // Okay: just pretend that the user provided the correctly-qualified 7468 // type. 7469 } else { 7470 Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals) 7471 << ObjectType << DestructedType << Base->getSourceRange() 7472 << DestructedTypeInfo->getTypeLoc().getLocalSourceRange(); 7473 } 7474 7475 // Recover by setting the destructed type to the object type. 7476 DestructedType = ObjectType; 7477 DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType, 7478 DestructedTypeStart); 7479 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo); 7480 } 7481 } 7482 } 7483 7484 // C++ [expr.pseudo]p2: 7485 // [...] Furthermore, the two type-names in a pseudo-destructor-name of the 7486 // form 7487 // 7488 // ::[opt] nested-name-specifier[opt] type-name :: ~ type-name 7489 // 7490 // shall designate the same scalar type. 7491 if (ScopeTypeInfo) { 7492 QualType ScopeType = ScopeTypeInfo->getType(); 7493 if (!ScopeType->isDependentType() && !ObjectType->isDependentType() && 7494 !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) { 7495 7496 Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(), 7497 diag::err_pseudo_dtor_type_mismatch) 7498 << ObjectType << ScopeType << Base->getSourceRange() 7499 << ScopeTypeInfo->getTypeLoc().getLocalSourceRange(); 7500 7501 ScopeType = QualType(); 7502 ScopeTypeInfo = nullptr; 7503 } 7504 } 7505 7506 Expr *Result 7507 = new (Context) CXXPseudoDestructorExpr(Context, Base, 7508 OpKind == tok::arrow, OpLoc, 7509 SS.getWithLocInContext(Context), 7510 ScopeTypeInfo, 7511 CCLoc, 7512 TildeLoc, 7513 Destructed); 7514 7515 return Result; 7516 } 7517 7518 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base, 7519 SourceLocation OpLoc, 7520 tok::TokenKind OpKind, 7521 CXXScopeSpec &SS, 7522 UnqualifiedId &FirstTypeName, 7523 SourceLocation CCLoc, 7524 SourceLocation TildeLoc, 7525 UnqualifiedId &SecondTypeName) { 7526 assert((FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId || 7527 FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) && 7528 "Invalid first type name in pseudo-destructor"); 7529 assert((SecondTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId || 7530 SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) && 7531 "Invalid second type name in pseudo-destructor"); 7532 7533 QualType ObjectType; 7534 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc)) 7535 return ExprError(); 7536 7537 // Compute the object type that we should use for name lookup purposes. Only 7538 // record types and dependent types matter. 7539 ParsedType ObjectTypePtrForLookup; 7540 if (!SS.isSet()) { 7541 if (ObjectType->isRecordType()) 7542 ObjectTypePtrForLookup = ParsedType::make(ObjectType); 7543 else if (ObjectType->isDependentType()) 7544 ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy); 7545 } 7546 7547 // Convert the name of the type being destructed (following the ~) into a 7548 // type (with source-location information). 7549 QualType DestructedType; 7550 TypeSourceInfo *DestructedTypeInfo = nullptr; 7551 PseudoDestructorTypeStorage Destructed; 7552 if (SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) { 7553 ParsedType T = getTypeName(*SecondTypeName.Identifier, 7554 SecondTypeName.StartLocation, 7555 S, &SS, true, false, ObjectTypePtrForLookup, 7556 /*IsCtorOrDtorName*/true); 7557 if (!T && 7558 ((SS.isSet() && !computeDeclContext(SS, false)) || 7559 (!SS.isSet() && ObjectType->isDependentType()))) { 7560 // The name of the type being destroyed is a dependent name, and we 7561 // couldn't find anything useful in scope. Just store the identifier and 7562 // it's location, and we'll perform (qualified) name lookup again at 7563 // template instantiation time. 7564 Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier, 7565 SecondTypeName.StartLocation); 7566 } else if (!T) { 7567 Diag(SecondTypeName.StartLocation, 7568 diag::err_pseudo_dtor_destructor_non_type) 7569 << SecondTypeName.Identifier << ObjectType; 7570 if (isSFINAEContext()) 7571 return ExprError(); 7572 7573 // Recover by assuming we had the right type all along. 7574 DestructedType = ObjectType; 7575 } else 7576 DestructedType = GetTypeFromParser(T, &DestructedTypeInfo); 7577 } else { 7578 // Resolve the template-id to a type. 7579 TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId; 7580 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), 7581 TemplateId->NumArgs); 7582 TypeResult T = ActOnTemplateIdType(S, 7583 SS, 7584 TemplateId->TemplateKWLoc, 7585 TemplateId->Template, 7586 TemplateId->Name, 7587 TemplateId->TemplateNameLoc, 7588 TemplateId->LAngleLoc, 7589 TemplateArgsPtr, 7590 TemplateId->RAngleLoc, 7591 /*IsCtorOrDtorName*/true); 7592 if (T.isInvalid() || !T.get()) { 7593 // Recover by assuming we had the right type all along. 7594 DestructedType = ObjectType; 7595 } else 7596 DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo); 7597 } 7598 7599 // If we've performed some kind of recovery, (re-)build the type source 7600 // information. 7601 if (!DestructedType.isNull()) { 7602 if (!DestructedTypeInfo) 7603 DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType, 7604 SecondTypeName.StartLocation); 7605 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo); 7606 } 7607 7608 // Convert the name of the scope type (the type prior to '::') into a type. 7609 TypeSourceInfo *ScopeTypeInfo = nullptr; 7610 QualType ScopeType; 7611 if (FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId || 7612 FirstTypeName.Identifier) { 7613 if (FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) { 7614 ParsedType T = getTypeName(*FirstTypeName.Identifier, 7615 FirstTypeName.StartLocation, 7616 S, &SS, true, false, ObjectTypePtrForLookup, 7617 /*IsCtorOrDtorName*/true); 7618 if (!T) { 7619 Diag(FirstTypeName.StartLocation, 7620 diag::err_pseudo_dtor_destructor_non_type) 7621 << FirstTypeName.Identifier << ObjectType; 7622 7623 if (isSFINAEContext()) 7624 return ExprError(); 7625 7626 // Just drop this type. It's unnecessary anyway. 7627 ScopeType = QualType(); 7628 } else 7629 ScopeType = GetTypeFromParser(T, &ScopeTypeInfo); 7630 } else { 7631 // Resolve the template-id to a type. 7632 TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId; 7633 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), 7634 TemplateId->NumArgs); 7635 TypeResult T = ActOnTemplateIdType(S, 7636 SS, 7637 TemplateId->TemplateKWLoc, 7638 TemplateId->Template, 7639 TemplateId->Name, 7640 TemplateId->TemplateNameLoc, 7641 TemplateId->LAngleLoc, 7642 TemplateArgsPtr, 7643 TemplateId->RAngleLoc, 7644 /*IsCtorOrDtorName*/true); 7645 if (T.isInvalid() || !T.get()) { 7646 // Recover by dropping this type. 7647 ScopeType = QualType(); 7648 } else 7649 ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo); 7650 } 7651 } 7652 7653 if (!ScopeType.isNull() && !ScopeTypeInfo) 7654 ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType, 7655 FirstTypeName.StartLocation); 7656 7657 7658 return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS, 7659 ScopeTypeInfo, CCLoc, TildeLoc, 7660 Destructed); 7661 } 7662 7663 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base, 7664 SourceLocation OpLoc, 7665 tok::TokenKind OpKind, 7666 SourceLocation TildeLoc, 7667 const DeclSpec& DS) { 7668 QualType ObjectType; 7669 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc)) 7670 return ExprError(); 7671 7672 if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto) { 7673 Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid); 7674 return true; 7675 } 7676 7677 QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc(), 7678 false); 7679 7680 TypeLocBuilder TLB; 7681 DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T); 7682 DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc()); 7683 TypeSourceInfo *DestructedTypeInfo = TLB.getTypeSourceInfo(Context, T); 7684 PseudoDestructorTypeStorage Destructed(DestructedTypeInfo); 7685 7686 return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, CXXScopeSpec(), 7687 nullptr, SourceLocation(), TildeLoc, 7688 Destructed); 7689 } 7690 7691 ExprResult Sema::BuildCXXMemberCallExpr(Expr *E, NamedDecl *FoundDecl, 7692 CXXConversionDecl *Method, 7693 bool HadMultipleCandidates) { 7694 // Convert the expression to match the conversion function's implicit object 7695 // parameter. 7696 ExprResult Exp = PerformObjectArgumentInitialization(E, /*Qualifier=*/nullptr, 7697 FoundDecl, Method); 7698 if (Exp.isInvalid()) 7699 return true; 7700 7701 if (Method->getParent()->isLambda() && 7702 Method->getConversionType()->isBlockPointerType()) { 7703 // This is a lambda conversion to block pointer; check if the argument 7704 // was a LambdaExpr. 7705 Expr *SubE = E; 7706 CastExpr *CE = dyn_cast<CastExpr>(SubE); 7707 if (CE && CE->getCastKind() == CK_NoOp) 7708 SubE = CE->getSubExpr(); 7709 SubE = SubE->IgnoreParens(); 7710 if (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(SubE)) 7711 SubE = BE->getSubExpr(); 7712 if (isa<LambdaExpr>(SubE)) { 7713 // For the conversion to block pointer on a lambda expression, we 7714 // construct a special BlockLiteral instead; this doesn't really make 7715 // a difference in ARC, but outside of ARC the resulting block literal 7716 // follows the normal lifetime rules for block literals instead of being 7717 // autoreleased. 7718 PushExpressionEvaluationContext( 7719 ExpressionEvaluationContext::PotentiallyEvaluated); 7720 ExprResult BlockExp = BuildBlockForLambdaConversion( 7721 Exp.get()->getExprLoc(), Exp.get()->getExprLoc(), Method, Exp.get()); 7722 PopExpressionEvaluationContext(); 7723 7724 // FIXME: This note should be produced by a CodeSynthesisContext. 7725 if (BlockExp.isInvalid()) 7726 Diag(Exp.get()->getExprLoc(), diag::note_lambda_to_block_conv); 7727 return BlockExp; 7728 } 7729 } 7730 7731 MemberExpr *ME = 7732 BuildMemberExpr(Exp.get(), /*IsArrow=*/false, SourceLocation(), 7733 NestedNameSpecifierLoc(), SourceLocation(), Method, 7734 DeclAccessPair::make(FoundDecl, FoundDecl->getAccess()), 7735 HadMultipleCandidates, DeclarationNameInfo(), 7736 Context.BoundMemberTy, VK_RValue, OK_Ordinary); 7737 7738 QualType ResultType = Method->getReturnType(); 7739 ExprValueKind VK = Expr::getValueKindForType(ResultType); 7740 ResultType = ResultType.getNonLValueExprType(Context); 7741 7742 CXXMemberCallExpr *CE = CXXMemberCallExpr::Create( 7743 Context, ME, /*Args=*/{}, ResultType, VK, Exp.get()->getEndLoc(), 7744 CurFPFeatureOverrides()); 7745 7746 if (CheckFunctionCall(Method, CE, 7747 Method->getType()->castAs<FunctionProtoType>())) 7748 return ExprError(); 7749 7750 return CE; 7751 } 7752 7753 ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand, 7754 SourceLocation RParen) { 7755 // If the operand is an unresolved lookup expression, the expression is ill- 7756 // formed per [over.over]p1, because overloaded function names cannot be used 7757 // without arguments except in explicit contexts. 7758 ExprResult R = CheckPlaceholderExpr(Operand); 7759 if (R.isInvalid()) 7760 return R; 7761 7762 R = CheckUnevaluatedOperand(R.get()); 7763 if (R.isInvalid()) 7764 return ExprError(); 7765 7766 Operand = R.get(); 7767 7768 if (!inTemplateInstantiation() && !Operand->isInstantiationDependent() && 7769 Operand->HasSideEffects(Context, false)) { 7770 // The expression operand for noexcept is in an unevaluated expression 7771 // context, so side effects could result in unintended consequences. 7772 Diag(Operand->getExprLoc(), diag::warn_side_effects_unevaluated_context); 7773 } 7774 7775 CanThrowResult CanThrow = canThrow(Operand); 7776 return new (Context) 7777 CXXNoexceptExpr(Context.BoolTy, Operand, CanThrow, KeyLoc, RParen); 7778 } 7779 7780 ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation, 7781 Expr *Operand, SourceLocation RParen) { 7782 return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen); 7783 } 7784 7785 /// Perform the conversions required for an expression used in a 7786 /// context that ignores the result. 7787 ExprResult Sema::IgnoredValueConversions(Expr *E) { 7788 if (E->hasPlaceholderType()) { 7789 ExprResult result = CheckPlaceholderExpr(E); 7790 if (result.isInvalid()) return E; 7791 E = result.get(); 7792 } 7793 7794 // C99 6.3.2.1: 7795 // [Except in specific positions,] an lvalue that does not have 7796 // array type is converted to the value stored in the 7797 // designated object (and is no longer an lvalue). 7798 if (E->isRValue()) { 7799 // In C, function designators (i.e. expressions of function type) 7800 // are r-values, but we still want to do function-to-pointer decay 7801 // on them. This is both technically correct and convenient for 7802 // some clients. 7803 if (!getLangOpts().CPlusPlus && E->getType()->isFunctionType()) 7804 return DefaultFunctionArrayConversion(E); 7805 7806 return E; 7807 } 7808 7809 if (getLangOpts().CPlusPlus) { 7810 // The C++11 standard defines the notion of a discarded-value expression; 7811 // normally, we don't need to do anything to handle it, but if it is a 7812 // volatile lvalue with a special form, we perform an lvalue-to-rvalue 7813 // conversion. 7814 if (getLangOpts().CPlusPlus11 && E->isReadIfDiscardedInCPlusPlus11()) { 7815 ExprResult Res = DefaultLvalueConversion(E); 7816 if (Res.isInvalid()) 7817 return E; 7818 E = Res.get(); 7819 } else { 7820 // Per C++2a [expr.ass]p5, a volatile assignment is not deprecated if 7821 // it occurs as a discarded-value expression. 7822 CheckUnusedVolatileAssignment(E); 7823 } 7824 7825 // C++1z: 7826 // If the expression is a prvalue after this optional conversion, the 7827 // temporary materialization conversion is applied. 7828 // 7829 // We skip this step: IR generation is able to synthesize the storage for 7830 // itself in the aggregate case, and adding the extra node to the AST is 7831 // just clutter. 7832 // FIXME: We don't emit lifetime markers for the temporaries due to this. 7833 // FIXME: Do any other AST consumers care about this? 7834 return E; 7835 } 7836 7837 // GCC seems to also exclude expressions of incomplete enum type. 7838 if (const EnumType *T = E->getType()->getAs<EnumType>()) { 7839 if (!T->getDecl()->isComplete()) { 7840 // FIXME: stupid workaround for a codegen bug! 7841 E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).get(); 7842 return E; 7843 } 7844 } 7845 7846 ExprResult Res = DefaultFunctionArrayLvalueConversion(E); 7847 if (Res.isInvalid()) 7848 return E; 7849 E = Res.get(); 7850 7851 if (!E->getType()->isVoidType()) 7852 RequireCompleteType(E->getExprLoc(), E->getType(), 7853 diag::err_incomplete_type); 7854 return E; 7855 } 7856 7857 ExprResult Sema::CheckUnevaluatedOperand(Expr *E) { 7858 // Per C++2a [expr.ass]p5, a volatile assignment is not deprecated if 7859 // it occurs as an unevaluated operand. 7860 CheckUnusedVolatileAssignment(E); 7861 7862 return E; 7863 } 7864 7865 // If we can unambiguously determine whether Var can never be used 7866 // in a constant expression, return true. 7867 // - if the variable and its initializer are non-dependent, then 7868 // we can unambiguously check if the variable is a constant expression. 7869 // - if the initializer is not value dependent - we can determine whether 7870 // it can be used to initialize a constant expression. If Init can not 7871 // be used to initialize a constant expression we conclude that Var can 7872 // never be a constant expression. 7873 // - FXIME: if the initializer is dependent, we can still do some analysis and 7874 // identify certain cases unambiguously as non-const by using a Visitor: 7875 // - such as those that involve odr-use of a ParmVarDecl, involve a new 7876 // delete, lambda-expr, dynamic-cast, reinterpret-cast etc... 7877 static inline bool VariableCanNeverBeAConstantExpression(VarDecl *Var, 7878 ASTContext &Context) { 7879 if (isa<ParmVarDecl>(Var)) return true; 7880 const VarDecl *DefVD = nullptr; 7881 7882 // If there is no initializer - this can not be a constant expression. 7883 if (!Var->getAnyInitializer(DefVD)) return true; 7884 assert(DefVD); 7885 if (DefVD->isWeak()) return false; 7886 EvaluatedStmt *Eval = DefVD->ensureEvaluatedStmt(); 7887 7888 Expr *Init = cast<Expr>(Eval->Value); 7889 7890 if (Var->getType()->isDependentType() || Init->isValueDependent()) { 7891 // FIXME: Teach the constant evaluator to deal with the non-dependent parts 7892 // of value-dependent expressions, and use it here to determine whether the 7893 // initializer is a potential constant expression. 7894 return false; 7895 } 7896 7897 return !Var->isUsableInConstantExpressions(Context); 7898 } 7899 7900 /// Check if the current lambda has any potential captures 7901 /// that must be captured by any of its enclosing lambdas that are ready to 7902 /// capture. If there is a lambda that can capture a nested 7903 /// potential-capture, go ahead and do so. Also, check to see if any 7904 /// variables are uncaptureable or do not involve an odr-use so do not 7905 /// need to be captured. 7906 7907 static void CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures( 7908 Expr *const FE, LambdaScopeInfo *const CurrentLSI, Sema &S) { 7909 7910 assert(!S.isUnevaluatedContext()); 7911 assert(S.CurContext->isDependentContext()); 7912 #ifndef NDEBUG 7913 DeclContext *DC = S.CurContext; 7914 while (DC && isa<CapturedDecl>(DC)) 7915 DC = DC->getParent(); 7916 assert( 7917 CurrentLSI->CallOperator == DC && 7918 "The current call operator must be synchronized with Sema's CurContext"); 7919 #endif // NDEBUG 7920 7921 const bool IsFullExprInstantiationDependent = FE->isInstantiationDependent(); 7922 7923 // All the potentially captureable variables in the current nested 7924 // lambda (within a generic outer lambda), must be captured by an 7925 // outer lambda that is enclosed within a non-dependent context. 7926 CurrentLSI->visitPotentialCaptures([&] (VarDecl *Var, Expr *VarExpr) { 7927 // If the variable is clearly identified as non-odr-used and the full 7928 // expression is not instantiation dependent, only then do we not 7929 // need to check enclosing lambda's for speculative captures. 7930 // For e.g.: 7931 // Even though 'x' is not odr-used, it should be captured. 7932 // int test() { 7933 // const int x = 10; 7934 // auto L = [=](auto a) { 7935 // (void) +x + a; 7936 // }; 7937 // } 7938 if (CurrentLSI->isVariableExprMarkedAsNonODRUsed(VarExpr) && 7939 !IsFullExprInstantiationDependent) 7940 return; 7941 7942 // If we have a capture-capable lambda for the variable, go ahead and 7943 // capture the variable in that lambda (and all its enclosing lambdas). 7944 if (const Optional<unsigned> Index = 7945 getStackIndexOfNearestEnclosingCaptureCapableLambda( 7946 S.FunctionScopes, Var, S)) 7947 S.MarkCaptureUsedInEnclosingContext(Var, VarExpr->getExprLoc(), 7948 Index.getValue()); 7949 const bool IsVarNeverAConstantExpression = 7950 VariableCanNeverBeAConstantExpression(Var, S.Context); 7951 if (!IsFullExprInstantiationDependent || IsVarNeverAConstantExpression) { 7952 // This full expression is not instantiation dependent or the variable 7953 // can not be used in a constant expression - which means 7954 // this variable must be odr-used here, so diagnose a 7955 // capture violation early, if the variable is un-captureable. 7956 // This is purely for diagnosing errors early. Otherwise, this 7957 // error would get diagnosed when the lambda becomes capture ready. 7958 QualType CaptureType, DeclRefType; 7959 SourceLocation ExprLoc = VarExpr->getExprLoc(); 7960 if (S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit, 7961 /*EllipsisLoc*/ SourceLocation(), 7962 /*BuildAndDiagnose*/false, CaptureType, 7963 DeclRefType, nullptr)) { 7964 // We will never be able to capture this variable, and we need 7965 // to be able to in any and all instantiations, so diagnose it. 7966 S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit, 7967 /*EllipsisLoc*/ SourceLocation(), 7968 /*BuildAndDiagnose*/true, CaptureType, 7969 DeclRefType, nullptr); 7970 } 7971 } 7972 }); 7973 7974 // Check if 'this' needs to be captured. 7975 if (CurrentLSI->hasPotentialThisCapture()) { 7976 // If we have a capture-capable lambda for 'this', go ahead and capture 7977 // 'this' in that lambda (and all its enclosing lambdas). 7978 if (const Optional<unsigned> Index = 7979 getStackIndexOfNearestEnclosingCaptureCapableLambda( 7980 S.FunctionScopes, /*0 is 'this'*/ nullptr, S)) { 7981 const unsigned FunctionScopeIndexOfCapturableLambda = Index.getValue(); 7982 S.CheckCXXThisCapture(CurrentLSI->PotentialThisCaptureLocation, 7983 /*Explicit*/ false, /*BuildAndDiagnose*/ true, 7984 &FunctionScopeIndexOfCapturableLambda); 7985 } 7986 } 7987 7988 // Reset all the potential captures at the end of each full-expression. 7989 CurrentLSI->clearPotentialCaptures(); 7990 } 7991 7992 static ExprResult attemptRecovery(Sema &SemaRef, 7993 const TypoCorrectionConsumer &Consumer, 7994 const TypoCorrection &TC) { 7995 LookupResult R(SemaRef, Consumer.getLookupResult().getLookupNameInfo(), 7996 Consumer.getLookupResult().getLookupKind()); 7997 const CXXScopeSpec *SS = Consumer.getSS(); 7998 CXXScopeSpec NewSS; 7999 8000 // Use an approprate CXXScopeSpec for building the expr. 8001 if (auto *NNS = TC.getCorrectionSpecifier()) 8002 NewSS.MakeTrivial(SemaRef.Context, NNS, TC.getCorrectionRange()); 8003 else if (SS && !TC.WillReplaceSpecifier()) 8004 NewSS = *SS; 8005 8006 if (auto *ND = TC.getFoundDecl()) { 8007 R.setLookupName(ND->getDeclName()); 8008 R.addDecl(ND); 8009 if (ND->isCXXClassMember()) { 8010 // Figure out the correct naming class to add to the LookupResult. 8011 CXXRecordDecl *Record = nullptr; 8012 if (auto *NNS = TC.getCorrectionSpecifier()) 8013 Record = NNS->getAsType()->getAsCXXRecordDecl(); 8014 if (!Record) 8015 Record = 8016 dyn_cast<CXXRecordDecl>(ND->getDeclContext()->getRedeclContext()); 8017 if (Record) 8018 R.setNamingClass(Record); 8019 8020 // Detect and handle the case where the decl might be an implicit 8021 // member. 8022 bool MightBeImplicitMember; 8023 if (!Consumer.isAddressOfOperand()) 8024 MightBeImplicitMember = true; 8025 else if (!NewSS.isEmpty()) 8026 MightBeImplicitMember = false; 8027 else if (R.isOverloadedResult()) 8028 MightBeImplicitMember = false; 8029 else if (R.isUnresolvableResult()) 8030 MightBeImplicitMember = true; 8031 else 8032 MightBeImplicitMember = isa<FieldDecl>(ND) || 8033 isa<IndirectFieldDecl>(ND) || 8034 isa<MSPropertyDecl>(ND); 8035 8036 if (MightBeImplicitMember) 8037 return SemaRef.BuildPossibleImplicitMemberExpr( 8038 NewSS, /*TemplateKWLoc*/ SourceLocation(), R, 8039 /*TemplateArgs*/ nullptr, /*S*/ nullptr); 8040 } else if (auto *Ivar = dyn_cast<ObjCIvarDecl>(ND)) { 8041 return SemaRef.LookupInObjCMethod(R, Consumer.getScope(), 8042 Ivar->getIdentifier()); 8043 } 8044 } 8045 8046 return SemaRef.BuildDeclarationNameExpr(NewSS, R, /*NeedsADL*/ false, 8047 /*AcceptInvalidDecl*/ true); 8048 } 8049 8050 namespace { 8051 class FindTypoExprs : public RecursiveASTVisitor<FindTypoExprs> { 8052 llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs; 8053 8054 public: 8055 explicit FindTypoExprs(llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs) 8056 : TypoExprs(TypoExprs) {} 8057 bool VisitTypoExpr(TypoExpr *TE) { 8058 TypoExprs.insert(TE); 8059 return true; 8060 } 8061 }; 8062 8063 class TransformTypos : public TreeTransform<TransformTypos> { 8064 typedef TreeTransform<TransformTypos> BaseTransform; 8065 8066 VarDecl *InitDecl; // A decl to avoid as a correction because it is in the 8067 // process of being initialized. 8068 llvm::function_ref<ExprResult(Expr *)> ExprFilter; 8069 llvm::SmallSetVector<TypoExpr *, 2> TypoExprs, AmbiguousTypoExprs; 8070 llvm::SmallDenseMap<TypoExpr *, ExprResult, 2> TransformCache; 8071 llvm::SmallDenseMap<OverloadExpr *, Expr *, 4> OverloadResolution; 8072 8073 /// Emit diagnostics for all of the TypoExprs encountered. 8074 /// 8075 /// If the TypoExprs were successfully corrected, then the diagnostics should 8076 /// suggest the corrections. Otherwise the diagnostics will not suggest 8077 /// anything (having been passed an empty TypoCorrection). 8078 /// 8079 /// If we've failed to correct due to ambiguous corrections, we need to 8080 /// be sure to pass empty corrections and replacements. Otherwise it's 8081 /// possible that the Consumer has a TypoCorrection that failed to ambiguity 8082 /// and we don't want to report those diagnostics. 8083 void EmitAllDiagnostics(bool IsAmbiguous) { 8084 for (TypoExpr *TE : TypoExprs) { 8085 auto &State = SemaRef.getTypoExprState(TE); 8086 if (State.DiagHandler) { 8087 TypoCorrection TC = IsAmbiguous 8088 ? TypoCorrection() : State.Consumer->getCurrentCorrection(); 8089 ExprResult Replacement = IsAmbiguous ? ExprError() : TransformCache[TE]; 8090 8091 // Extract the NamedDecl from the transformed TypoExpr and add it to the 8092 // TypoCorrection, replacing the existing decls. This ensures the right 8093 // NamedDecl is used in diagnostics e.g. in the case where overload 8094 // resolution was used to select one from several possible decls that 8095 // had been stored in the TypoCorrection. 8096 if (auto *ND = getDeclFromExpr( 8097 Replacement.isInvalid() ? nullptr : Replacement.get())) 8098 TC.setCorrectionDecl(ND); 8099 8100 State.DiagHandler(TC); 8101 } 8102 SemaRef.clearDelayedTypo(TE); 8103 } 8104 } 8105 8106 /// Try to advance the typo correction state of the first unfinished TypoExpr. 8107 /// We allow advancement of the correction stream by removing it from the 8108 /// TransformCache which allows `TransformTypoExpr` to advance during the 8109 /// next transformation attempt. 8110 /// 8111 /// Any substitution attempts for the previous TypoExprs (which must have been 8112 /// finished) will need to be retried since it's possible that they will now 8113 /// be invalid given the latest advancement. 8114 /// 8115 /// We need to be sure that we're making progress - it's possible that the 8116 /// tree is so malformed that the transform never makes it to the 8117 /// `TransformTypoExpr`. 8118 /// 8119 /// Returns true if there are any untried correction combinations. 8120 bool CheckAndAdvanceTypoExprCorrectionStreams() { 8121 for (auto TE : TypoExprs) { 8122 auto &State = SemaRef.getTypoExprState(TE); 8123 TransformCache.erase(TE); 8124 if (!State.Consumer->hasMadeAnyCorrectionProgress()) 8125 return false; 8126 if (!State.Consumer->finished()) 8127 return true; 8128 State.Consumer->resetCorrectionStream(); 8129 } 8130 return false; 8131 } 8132 8133 NamedDecl *getDeclFromExpr(Expr *E) { 8134 if (auto *OE = dyn_cast_or_null<OverloadExpr>(E)) 8135 E = OverloadResolution[OE]; 8136 8137 if (!E) 8138 return nullptr; 8139 if (auto *DRE = dyn_cast<DeclRefExpr>(E)) 8140 return DRE->getFoundDecl(); 8141 if (auto *ME = dyn_cast<MemberExpr>(E)) 8142 return ME->getFoundDecl(); 8143 // FIXME: Add any other expr types that could be be seen by the delayed typo 8144 // correction TreeTransform for which the corresponding TypoCorrection could 8145 // contain multiple decls. 8146 return nullptr; 8147 } 8148 8149 ExprResult TryTransform(Expr *E) { 8150 Sema::SFINAETrap Trap(SemaRef); 8151 ExprResult Res = TransformExpr(E); 8152 if (Trap.hasErrorOccurred() || Res.isInvalid()) 8153 return ExprError(); 8154 8155 return ExprFilter(Res.get()); 8156 } 8157 8158 // Since correcting typos may intoduce new TypoExprs, this function 8159 // checks for new TypoExprs and recurses if it finds any. Note that it will 8160 // only succeed if it is able to correct all typos in the given expression. 8161 ExprResult CheckForRecursiveTypos(ExprResult Res, bool &IsAmbiguous) { 8162 if (Res.isInvalid()) { 8163 return Res; 8164 } 8165 // Check to see if any new TypoExprs were created. If so, we need to recurse 8166 // to check their validity. 8167 Expr *FixedExpr = Res.get(); 8168 8169 auto SavedTypoExprs = std::move(TypoExprs); 8170 auto SavedAmbiguousTypoExprs = std::move(AmbiguousTypoExprs); 8171 TypoExprs.clear(); 8172 AmbiguousTypoExprs.clear(); 8173 8174 FindTypoExprs(TypoExprs).TraverseStmt(FixedExpr); 8175 if (!TypoExprs.empty()) { 8176 // Recurse to handle newly created TypoExprs. If we're not able to 8177 // handle them, discard these TypoExprs. 8178 ExprResult RecurResult = 8179 RecursiveTransformLoop(FixedExpr, IsAmbiguous); 8180 if (RecurResult.isInvalid()) { 8181 Res = ExprError(); 8182 // Recursive corrections didn't work, wipe them away and don't add 8183 // them to the TypoExprs set. Remove them from Sema's TypoExpr list 8184 // since we don't want to clear them twice. Note: it's possible the 8185 // TypoExprs were created recursively and thus won't be in our 8186 // Sema's TypoExprs - they were created in our `RecursiveTransformLoop`. 8187 auto &SemaTypoExprs = SemaRef.TypoExprs; 8188 for (auto TE : TypoExprs) { 8189 TransformCache.erase(TE); 8190 SemaRef.clearDelayedTypo(TE); 8191 8192 auto SI = find(SemaTypoExprs, TE); 8193 if (SI != SemaTypoExprs.end()) { 8194 SemaTypoExprs.erase(SI); 8195 } 8196 } 8197 } else { 8198 // TypoExpr is valid: add newly created TypoExprs since we were 8199 // able to correct them. 8200 Res = RecurResult; 8201 SavedTypoExprs.set_union(TypoExprs); 8202 } 8203 } 8204 8205 TypoExprs = std::move(SavedTypoExprs); 8206 AmbiguousTypoExprs = std::move(SavedAmbiguousTypoExprs); 8207 8208 return Res; 8209 } 8210 8211 // Try to transform the given expression, looping through the correction 8212 // candidates with `CheckAndAdvanceTypoExprCorrectionStreams`. 8213 // 8214 // If valid ambiguous typo corrections are seen, `IsAmbiguous` is set to 8215 // true and this method immediately will return an `ExprError`. 8216 ExprResult RecursiveTransformLoop(Expr *E, bool &IsAmbiguous) { 8217 ExprResult Res; 8218 auto SavedTypoExprs = std::move(SemaRef.TypoExprs); 8219 SemaRef.TypoExprs.clear(); 8220 8221 while (true) { 8222 Res = CheckForRecursiveTypos(TryTransform(E), IsAmbiguous); 8223 8224 // Recursion encountered an ambiguous correction. This means that our 8225 // correction itself is ambiguous, so stop now. 8226 if (IsAmbiguous) 8227 break; 8228 8229 // If the transform is still valid after checking for any new typos, 8230 // it's good to go. 8231 if (!Res.isInvalid()) 8232 break; 8233 8234 // The transform was invalid, see if we have any TypoExprs with untried 8235 // correction candidates. 8236 if (!CheckAndAdvanceTypoExprCorrectionStreams()) 8237 break; 8238 } 8239 8240 // If we found a valid result, double check to make sure it's not ambiguous. 8241 if (!IsAmbiguous && !Res.isInvalid() && !AmbiguousTypoExprs.empty()) { 8242 auto SavedTransformCache = 8243 llvm::SmallDenseMap<TypoExpr *, ExprResult, 2>(TransformCache); 8244 8245 // Ensure none of the TypoExprs have multiple typo correction candidates 8246 // with the same edit length that pass all the checks and filters. 8247 while (!AmbiguousTypoExprs.empty()) { 8248 auto TE = AmbiguousTypoExprs.back(); 8249 8250 // TryTransform itself can create new Typos, adding them to the TypoExpr map 8251 // and invalidating our TypoExprState, so always fetch it instead of storing. 8252 SemaRef.getTypoExprState(TE).Consumer->saveCurrentPosition(); 8253 8254 TypoCorrection TC = SemaRef.getTypoExprState(TE).Consumer->peekNextCorrection(); 8255 TypoCorrection Next; 8256 do { 8257 // Fetch the next correction by erasing the typo from the cache and calling 8258 // `TryTransform` which will iterate through corrections in 8259 // `TransformTypoExpr`. 8260 TransformCache.erase(TE); 8261 ExprResult AmbigRes = CheckForRecursiveTypos(TryTransform(E), IsAmbiguous); 8262 8263 if (!AmbigRes.isInvalid() || IsAmbiguous) { 8264 SemaRef.getTypoExprState(TE).Consumer->resetCorrectionStream(); 8265 SavedTransformCache.erase(TE); 8266 Res = ExprError(); 8267 IsAmbiguous = true; 8268 break; 8269 } 8270 } while ((Next = SemaRef.getTypoExprState(TE).Consumer->peekNextCorrection()) && 8271 Next.getEditDistance(false) == TC.getEditDistance(false)); 8272 8273 if (IsAmbiguous) 8274 break; 8275 8276 AmbiguousTypoExprs.remove(TE); 8277 SemaRef.getTypoExprState(TE).Consumer->restoreSavedPosition(); 8278 } 8279 TransformCache = std::move(SavedTransformCache); 8280 } 8281 8282 // Wipe away any newly created TypoExprs that we don't know about. Since we 8283 // clear any invalid TypoExprs in `CheckForRecursiveTypos`, this is only 8284 // possible if a `TypoExpr` is created during a transformation but then 8285 // fails before we can discover it. 8286 auto &SemaTypoExprs = SemaRef.TypoExprs; 8287 for (auto Iterator = SemaTypoExprs.begin(); Iterator != SemaTypoExprs.end();) { 8288 auto TE = *Iterator; 8289 auto FI = find(TypoExprs, TE); 8290 if (FI != TypoExprs.end()) { 8291 Iterator++; 8292 continue; 8293 } 8294 SemaRef.clearDelayedTypo(TE); 8295 Iterator = SemaTypoExprs.erase(Iterator); 8296 } 8297 SemaRef.TypoExprs = std::move(SavedTypoExprs); 8298 8299 return Res; 8300 } 8301 8302 public: 8303 TransformTypos(Sema &SemaRef, VarDecl *InitDecl, llvm::function_ref<ExprResult(Expr *)> Filter) 8304 : BaseTransform(SemaRef), InitDecl(InitDecl), ExprFilter(Filter) {} 8305 8306 ExprResult RebuildCallExpr(Expr *Callee, SourceLocation LParenLoc, 8307 MultiExprArg Args, 8308 SourceLocation RParenLoc, 8309 Expr *ExecConfig = nullptr) { 8310 auto Result = BaseTransform::RebuildCallExpr(Callee, LParenLoc, Args, 8311 RParenLoc, ExecConfig); 8312 if (auto *OE = dyn_cast<OverloadExpr>(Callee)) { 8313 if (Result.isUsable()) { 8314 Expr *ResultCall = Result.get(); 8315 if (auto *BE = dyn_cast<CXXBindTemporaryExpr>(ResultCall)) 8316 ResultCall = BE->getSubExpr(); 8317 if (auto *CE = dyn_cast<CallExpr>(ResultCall)) 8318 OverloadResolution[OE] = CE->getCallee(); 8319 } 8320 } 8321 return Result; 8322 } 8323 8324 ExprResult TransformLambdaExpr(LambdaExpr *E) { return Owned(E); } 8325 8326 ExprResult TransformBlockExpr(BlockExpr *E) { return Owned(E); } 8327 8328 ExprResult Transform(Expr *E) { 8329 bool IsAmbiguous = false; 8330 ExprResult Res = RecursiveTransformLoop(E, IsAmbiguous); 8331 8332 if (!Res.isUsable()) 8333 FindTypoExprs(TypoExprs).TraverseStmt(E); 8334 8335 EmitAllDiagnostics(IsAmbiguous); 8336 8337 return Res; 8338 } 8339 8340 ExprResult TransformTypoExpr(TypoExpr *E) { 8341 // If the TypoExpr hasn't been seen before, record it. Otherwise, return the 8342 // cached transformation result if there is one and the TypoExpr isn't the 8343 // first one that was encountered. 8344 auto &CacheEntry = TransformCache[E]; 8345 if (!TypoExprs.insert(E) && !CacheEntry.isUnset()) { 8346 return CacheEntry; 8347 } 8348 8349 auto &State = SemaRef.getTypoExprState(E); 8350 assert(State.Consumer && "Cannot transform a cleared TypoExpr"); 8351 8352 // For the first TypoExpr and an uncached TypoExpr, find the next likely 8353 // typo correction and return it. 8354 while (TypoCorrection TC = State.Consumer->getNextCorrection()) { 8355 if (InitDecl && TC.getFoundDecl() == InitDecl) 8356 continue; 8357 // FIXME: If we would typo-correct to an invalid declaration, it's 8358 // probably best to just suppress all errors from this typo correction. 8359 ExprResult NE = State.RecoveryHandler ? 8360 State.RecoveryHandler(SemaRef, E, TC) : 8361 attemptRecovery(SemaRef, *State.Consumer, TC); 8362 if (!NE.isInvalid()) { 8363 // Check whether there may be a second viable correction with the same 8364 // edit distance; if so, remember this TypoExpr may have an ambiguous 8365 // correction so it can be more thoroughly vetted later. 8366 TypoCorrection Next; 8367 if ((Next = State.Consumer->peekNextCorrection()) && 8368 Next.getEditDistance(false) == TC.getEditDistance(false)) { 8369 AmbiguousTypoExprs.insert(E); 8370 } else { 8371 AmbiguousTypoExprs.remove(E); 8372 } 8373 assert(!NE.isUnset() && 8374 "Typo was transformed into a valid-but-null ExprResult"); 8375 return CacheEntry = NE; 8376 } 8377 } 8378 return CacheEntry = ExprError(); 8379 } 8380 }; 8381 } 8382 8383 ExprResult 8384 Sema::CorrectDelayedTyposInExpr(Expr *E, VarDecl *InitDecl, 8385 bool RecoverUncorrectedTypos, 8386 llvm::function_ref<ExprResult(Expr *)> Filter) { 8387 // If the current evaluation context indicates there are uncorrected typos 8388 // and the current expression isn't guaranteed to not have typos, try to 8389 // resolve any TypoExpr nodes that might be in the expression. 8390 if (E && !ExprEvalContexts.empty() && ExprEvalContexts.back().NumTypos && 8391 (E->isTypeDependent() || E->isValueDependent() || 8392 E->isInstantiationDependent())) { 8393 auto TyposResolved = DelayedTypos.size(); 8394 auto Result = TransformTypos(*this, InitDecl, Filter).Transform(E); 8395 TyposResolved -= DelayedTypos.size(); 8396 if (Result.isInvalid() || Result.get() != E) { 8397 ExprEvalContexts.back().NumTypos -= TyposResolved; 8398 if (Result.isInvalid() && RecoverUncorrectedTypos) { 8399 struct TyposReplace : TreeTransform<TyposReplace> { 8400 TyposReplace(Sema &SemaRef) : TreeTransform(SemaRef) {} 8401 ExprResult TransformTypoExpr(clang::TypoExpr *E) { 8402 return this->SemaRef.CreateRecoveryExpr(E->getBeginLoc(), 8403 E->getEndLoc(), {}); 8404 } 8405 } TT(*this); 8406 return TT.TransformExpr(E); 8407 } 8408 return Result; 8409 } 8410 assert(TyposResolved == 0 && "Corrected typo but got same Expr back?"); 8411 } 8412 return E; 8413 } 8414 8415 ExprResult Sema::ActOnFinishFullExpr(Expr *FE, SourceLocation CC, 8416 bool DiscardedValue, 8417 bool IsConstexpr) { 8418 ExprResult FullExpr = FE; 8419 8420 if (!FullExpr.get()) 8421 return ExprError(); 8422 8423 if (DiagnoseUnexpandedParameterPack(FullExpr.get())) 8424 return ExprError(); 8425 8426 if (DiscardedValue) { 8427 // Top-level expressions default to 'id' when we're in a debugger. 8428 if (getLangOpts().DebuggerCastResultToId && 8429 FullExpr.get()->getType() == Context.UnknownAnyTy) { 8430 FullExpr = forceUnknownAnyToType(FullExpr.get(), Context.getObjCIdType()); 8431 if (FullExpr.isInvalid()) 8432 return ExprError(); 8433 } 8434 8435 FullExpr = CheckPlaceholderExpr(FullExpr.get()); 8436 if (FullExpr.isInvalid()) 8437 return ExprError(); 8438 8439 FullExpr = IgnoredValueConversions(FullExpr.get()); 8440 if (FullExpr.isInvalid()) 8441 return ExprError(); 8442 8443 DiagnoseUnusedExprResult(FullExpr.get()); 8444 } 8445 8446 FullExpr = CorrectDelayedTyposInExpr(FullExpr.get(), /*InitDecl=*/nullptr, 8447 /*RecoverUncorrectedTypos=*/true); 8448 if (FullExpr.isInvalid()) 8449 return ExprError(); 8450 8451 CheckCompletedExpr(FullExpr.get(), CC, IsConstexpr); 8452 8453 // At the end of this full expression (which could be a deeply nested 8454 // lambda), if there is a potential capture within the nested lambda, 8455 // have the outer capture-able lambda try and capture it. 8456 // Consider the following code: 8457 // void f(int, int); 8458 // void f(const int&, double); 8459 // void foo() { 8460 // const int x = 10, y = 20; 8461 // auto L = [=](auto a) { 8462 // auto M = [=](auto b) { 8463 // f(x, b); <-- requires x to be captured by L and M 8464 // f(y, a); <-- requires y to be captured by L, but not all Ms 8465 // }; 8466 // }; 8467 // } 8468 8469 // FIXME: Also consider what happens for something like this that involves 8470 // the gnu-extension statement-expressions or even lambda-init-captures: 8471 // void f() { 8472 // const int n = 0; 8473 // auto L = [&](auto a) { 8474 // +n + ({ 0; a; }); 8475 // }; 8476 // } 8477 // 8478 // Here, we see +n, and then the full-expression 0; ends, so we don't 8479 // capture n (and instead remove it from our list of potential captures), 8480 // and then the full-expression +n + ({ 0; }); ends, but it's too late 8481 // for us to see that we need to capture n after all. 8482 8483 LambdaScopeInfo *const CurrentLSI = 8484 getCurLambda(/*IgnoreCapturedRegions=*/true); 8485 // FIXME: PR 17877 showed that getCurLambda() can return a valid pointer 8486 // even if CurContext is not a lambda call operator. Refer to that Bug Report 8487 // for an example of the code that might cause this asynchrony. 8488 // By ensuring we are in the context of a lambda's call operator 8489 // we can fix the bug (we only need to check whether we need to capture 8490 // if we are within a lambda's body); but per the comments in that 8491 // PR, a proper fix would entail : 8492 // "Alternative suggestion: 8493 // - Add to Sema an integer holding the smallest (outermost) scope 8494 // index that we are *lexically* within, and save/restore/set to 8495 // FunctionScopes.size() in InstantiatingTemplate's 8496 // constructor/destructor. 8497 // - Teach the handful of places that iterate over FunctionScopes to 8498 // stop at the outermost enclosing lexical scope." 8499 DeclContext *DC = CurContext; 8500 while (DC && isa<CapturedDecl>(DC)) 8501 DC = DC->getParent(); 8502 const bool IsInLambdaDeclContext = isLambdaCallOperator(DC); 8503 if (IsInLambdaDeclContext && CurrentLSI && 8504 CurrentLSI->hasPotentialCaptures() && !FullExpr.isInvalid()) 8505 CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(FE, CurrentLSI, 8506 *this); 8507 return MaybeCreateExprWithCleanups(FullExpr); 8508 } 8509 8510 StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) { 8511 if (!FullStmt) return StmtError(); 8512 8513 return MaybeCreateStmtWithCleanups(FullStmt); 8514 } 8515 8516 Sema::IfExistsResult 8517 Sema::CheckMicrosoftIfExistsSymbol(Scope *S, 8518 CXXScopeSpec &SS, 8519 const DeclarationNameInfo &TargetNameInfo) { 8520 DeclarationName TargetName = TargetNameInfo.getName(); 8521 if (!TargetName) 8522 return IER_DoesNotExist; 8523 8524 // If the name itself is dependent, then the result is dependent. 8525 if (TargetName.isDependentName()) 8526 return IER_Dependent; 8527 8528 // Do the redeclaration lookup in the current scope. 8529 LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName, 8530 Sema::NotForRedeclaration); 8531 LookupParsedName(R, S, &SS); 8532 R.suppressDiagnostics(); 8533 8534 switch (R.getResultKind()) { 8535 case LookupResult::Found: 8536 case LookupResult::FoundOverloaded: 8537 case LookupResult::FoundUnresolvedValue: 8538 case LookupResult::Ambiguous: 8539 return IER_Exists; 8540 8541 case LookupResult::NotFound: 8542 return IER_DoesNotExist; 8543 8544 case LookupResult::NotFoundInCurrentInstantiation: 8545 return IER_Dependent; 8546 } 8547 8548 llvm_unreachable("Invalid LookupResult Kind!"); 8549 } 8550 8551 Sema::IfExistsResult 8552 Sema::CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc, 8553 bool IsIfExists, CXXScopeSpec &SS, 8554 UnqualifiedId &Name) { 8555 DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name); 8556 8557 // Check for an unexpanded parameter pack. 8558 auto UPPC = IsIfExists ? UPPC_IfExists : UPPC_IfNotExists; 8559 if (DiagnoseUnexpandedParameterPack(SS, UPPC) || 8560 DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC)) 8561 return IER_Error; 8562 8563 return CheckMicrosoftIfExistsSymbol(S, SS, TargetNameInfo); 8564 } 8565 8566 concepts::Requirement *Sema::ActOnSimpleRequirement(Expr *E) { 8567 return BuildExprRequirement(E, /*IsSimple=*/true, 8568 /*NoexceptLoc=*/SourceLocation(), 8569 /*ReturnTypeRequirement=*/{}); 8570 } 8571 8572 concepts::Requirement * 8573 Sema::ActOnTypeRequirement(SourceLocation TypenameKWLoc, CXXScopeSpec &SS, 8574 SourceLocation NameLoc, IdentifierInfo *TypeName, 8575 TemplateIdAnnotation *TemplateId) { 8576 assert(((!TypeName && TemplateId) || (TypeName && !TemplateId)) && 8577 "Exactly one of TypeName and TemplateId must be specified."); 8578 TypeSourceInfo *TSI = nullptr; 8579 if (TypeName) { 8580 QualType T = CheckTypenameType(ETK_Typename, TypenameKWLoc, 8581 SS.getWithLocInContext(Context), *TypeName, 8582 NameLoc, &TSI, /*DeducedTypeContext=*/false); 8583 if (T.isNull()) 8584 return nullptr; 8585 } else { 8586 ASTTemplateArgsPtr ArgsPtr(TemplateId->getTemplateArgs(), 8587 TemplateId->NumArgs); 8588 TypeResult T = ActOnTypenameType(CurScope, TypenameKWLoc, SS, 8589 TemplateId->TemplateKWLoc, 8590 TemplateId->Template, TemplateId->Name, 8591 TemplateId->TemplateNameLoc, 8592 TemplateId->LAngleLoc, ArgsPtr, 8593 TemplateId->RAngleLoc); 8594 if (T.isInvalid()) 8595 return nullptr; 8596 if (GetTypeFromParser(T.get(), &TSI).isNull()) 8597 return nullptr; 8598 } 8599 return BuildTypeRequirement(TSI); 8600 } 8601 8602 concepts::Requirement * 8603 Sema::ActOnCompoundRequirement(Expr *E, SourceLocation NoexceptLoc) { 8604 return BuildExprRequirement(E, /*IsSimple=*/false, NoexceptLoc, 8605 /*ReturnTypeRequirement=*/{}); 8606 } 8607 8608 concepts::Requirement * 8609 Sema::ActOnCompoundRequirement( 8610 Expr *E, SourceLocation NoexceptLoc, CXXScopeSpec &SS, 8611 TemplateIdAnnotation *TypeConstraint, unsigned Depth) { 8612 // C++2a [expr.prim.req.compound] p1.3.3 8613 // [..] the expression is deduced against an invented function template 8614 // F [...] F is a void function template with a single type template 8615 // parameter T declared with the constrained-parameter. Form a new 8616 // cv-qualifier-seq cv by taking the union of const and volatile specifiers 8617 // around the constrained-parameter. F has a single parameter whose 8618 // type-specifier is cv T followed by the abstract-declarator. [...] 8619 // 8620 // The cv part is done in the calling function - we get the concept with 8621 // arguments and the abstract declarator with the correct CV qualification and 8622 // have to synthesize T and the single parameter of F. 8623 auto &II = Context.Idents.get("expr-type"); 8624 auto *TParam = TemplateTypeParmDecl::Create(Context, CurContext, 8625 SourceLocation(), 8626 SourceLocation(), Depth, 8627 /*Index=*/0, &II, 8628 /*Typename=*/true, 8629 /*ParameterPack=*/false, 8630 /*HasTypeConstraint=*/true); 8631 8632 if (BuildTypeConstraint(SS, TypeConstraint, TParam, 8633 /*EllpsisLoc=*/SourceLocation(), 8634 /*AllowUnexpandedPack=*/true)) 8635 // Just produce a requirement with no type requirements. 8636 return BuildExprRequirement(E, /*IsSimple=*/false, NoexceptLoc, {}); 8637 8638 auto *TPL = TemplateParameterList::Create(Context, SourceLocation(), 8639 SourceLocation(), 8640 ArrayRef<NamedDecl *>(TParam), 8641 SourceLocation(), 8642 /*RequiresClause=*/nullptr); 8643 return BuildExprRequirement( 8644 E, /*IsSimple=*/false, NoexceptLoc, 8645 concepts::ExprRequirement::ReturnTypeRequirement(TPL)); 8646 } 8647 8648 concepts::ExprRequirement * 8649 Sema::BuildExprRequirement( 8650 Expr *E, bool IsSimple, SourceLocation NoexceptLoc, 8651 concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement) { 8652 auto Status = concepts::ExprRequirement::SS_Satisfied; 8653 ConceptSpecializationExpr *SubstitutedConstraintExpr = nullptr; 8654 if (E->isInstantiationDependent() || ReturnTypeRequirement.isDependent()) 8655 Status = concepts::ExprRequirement::SS_Dependent; 8656 else if (NoexceptLoc.isValid() && canThrow(E) == CanThrowResult::CT_Can) 8657 Status = concepts::ExprRequirement::SS_NoexceptNotMet; 8658 else if (ReturnTypeRequirement.isSubstitutionFailure()) 8659 Status = concepts::ExprRequirement::SS_TypeRequirementSubstitutionFailure; 8660 else if (ReturnTypeRequirement.isTypeConstraint()) { 8661 // C++2a [expr.prim.req]p1.3.3 8662 // The immediately-declared constraint ([temp]) of decltype((E)) shall 8663 // be satisfied. 8664 TemplateParameterList *TPL = 8665 ReturnTypeRequirement.getTypeConstraintTemplateParameterList(); 8666 QualType MatchedType = 8667 getDecltypeForParenthesizedExpr(E).getCanonicalType(); 8668 llvm::SmallVector<TemplateArgument, 1> Args; 8669 Args.push_back(TemplateArgument(MatchedType)); 8670 TemplateArgumentList TAL(TemplateArgumentList::OnStack, Args); 8671 MultiLevelTemplateArgumentList MLTAL(TAL); 8672 for (unsigned I = 0; I < TPL->getDepth(); ++I) 8673 MLTAL.addOuterRetainedLevel(); 8674 Expr *IDC = 8675 cast<TemplateTypeParmDecl>(TPL->getParam(0))->getTypeConstraint() 8676 ->getImmediatelyDeclaredConstraint(); 8677 ExprResult Constraint = SubstExpr(IDC, MLTAL); 8678 assert(!Constraint.isInvalid() && 8679 "Substitution cannot fail as it is simply putting a type template " 8680 "argument into a concept specialization expression's parameter."); 8681 8682 SubstitutedConstraintExpr = 8683 cast<ConceptSpecializationExpr>(Constraint.get()); 8684 if (!SubstitutedConstraintExpr->isSatisfied()) 8685 Status = concepts::ExprRequirement::SS_ConstraintsNotSatisfied; 8686 } 8687 return new (Context) concepts::ExprRequirement(E, IsSimple, NoexceptLoc, 8688 ReturnTypeRequirement, Status, 8689 SubstitutedConstraintExpr); 8690 } 8691 8692 concepts::ExprRequirement * 8693 Sema::BuildExprRequirement( 8694 concepts::Requirement::SubstitutionDiagnostic *ExprSubstitutionDiagnostic, 8695 bool IsSimple, SourceLocation NoexceptLoc, 8696 concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement) { 8697 return new (Context) concepts::ExprRequirement(ExprSubstitutionDiagnostic, 8698 IsSimple, NoexceptLoc, 8699 ReturnTypeRequirement); 8700 } 8701 8702 concepts::TypeRequirement * 8703 Sema::BuildTypeRequirement(TypeSourceInfo *Type) { 8704 return new (Context) concepts::TypeRequirement(Type); 8705 } 8706 8707 concepts::TypeRequirement * 8708 Sema::BuildTypeRequirement( 8709 concepts::Requirement::SubstitutionDiagnostic *SubstDiag) { 8710 return new (Context) concepts::TypeRequirement(SubstDiag); 8711 } 8712 8713 concepts::Requirement *Sema::ActOnNestedRequirement(Expr *Constraint) { 8714 return BuildNestedRequirement(Constraint); 8715 } 8716 8717 concepts::NestedRequirement * 8718 Sema::BuildNestedRequirement(Expr *Constraint) { 8719 ConstraintSatisfaction Satisfaction; 8720 if (!Constraint->isInstantiationDependent() && 8721 CheckConstraintSatisfaction(nullptr, {Constraint}, /*TemplateArgs=*/{}, 8722 Constraint->getSourceRange(), Satisfaction)) 8723 return nullptr; 8724 return new (Context) concepts::NestedRequirement(Context, Constraint, 8725 Satisfaction); 8726 } 8727 8728 concepts::NestedRequirement * 8729 Sema::BuildNestedRequirement( 8730 concepts::Requirement::SubstitutionDiagnostic *SubstDiag) { 8731 return new (Context) concepts::NestedRequirement(SubstDiag); 8732 } 8733 8734 RequiresExprBodyDecl * 8735 Sema::ActOnStartRequiresExpr(SourceLocation RequiresKWLoc, 8736 ArrayRef<ParmVarDecl *> LocalParameters, 8737 Scope *BodyScope) { 8738 assert(BodyScope); 8739 8740 RequiresExprBodyDecl *Body = RequiresExprBodyDecl::Create(Context, CurContext, 8741 RequiresKWLoc); 8742 8743 PushDeclContext(BodyScope, Body); 8744 8745 for (ParmVarDecl *Param : LocalParameters) { 8746 if (Param->hasDefaultArg()) 8747 // C++2a [expr.prim.req] p4 8748 // [...] A local parameter of a requires-expression shall not have a 8749 // default argument. [...] 8750 Diag(Param->getDefaultArgRange().getBegin(), 8751 diag::err_requires_expr_local_parameter_default_argument); 8752 // Ignore default argument and move on 8753 8754 Param->setDeclContext(Body); 8755 // If this has an identifier, add it to the scope stack. 8756 if (Param->getIdentifier()) { 8757 CheckShadow(BodyScope, Param); 8758 PushOnScopeChains(Param, BodyScope); 8759 } 8760 } 8761 return Body; 8762 } 8763 8764 void Sema::ActOnFinishRequiresExpr() { 8765 assert(CurContext && "DeclContext imbalance!"); 8766 CurContext = CurContext->getLexicalParent(); 8767 assert(CurContext && "Popped translation unit!"); 8768 } 8769 8770 ExprResult 8771 Sema::ActOnRequiresExpr(SourceLocation RequiresKWLoc, 8772 RequiresExprBodyDecl *Body, 8773 ArrayRef<ParmVarDecl *> LocalParameters, 8774 ArrayRef<concepts::Requirement *> Requirements, 8775 SourceLocation ClosingBraceLoc) { 8776 auto *RE = RequiresExpr::Create(Context, RequiresKWLoc, Body, LocalParameters, 8777 Requirements, ClosingBraceLoc); 8778 if (DiagnoseUnexpandedParameterPackInRequiresExpr(RE)) 8779 return ExprError(); 8780 return RE; 8781 } 8782