1 //===--- ParseDecl.cpp - Declaration Parsing --------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Declaration portions of the Parser interfaces. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/Parse/Parser.h" 14 #include "clang/Parse/RAIIObjectsForParser.h" 15 #include "clang/AST/ASTContext.h" 16 #include "clang/AST/DeclTemplate.h" 17 #include "clang/AST/PrettyDeclStackTrace.h" 18 #include "clang/Basic/AddressSpaces.h" 19 #include "clang/Basic/Attributes.h" 20 #include "clang/Basic/CharInfo.h" 21 #include "clang/Basic/TargetInfo.h" 22 #include "clang/Parse/ParseDiagnostic.h" 23 #include "clang/Sema/Lookup.h" 24 #include "clang/Sema/ParsedTemplate.h" 25 #include "clang/Sema/Scope.h" 26 #include "llvm/ADT/Optional.h" 27 #include "llvm/ADT/SmallSet.h" 28 #include "llvm/ADT/SmallString.h" 29 #include "llvm/ADT/StringSwitch.h" 30 31 using namespace clang; 32 33 //===----------------------------------------------------------------------===// 34 // C99 6.7: Declarations. 35 //===----------------------------------------------------------------------===// 36 37 /// ParseTypeName 38 /// type-name: [C99 6.7.6] 39 /// specifier-qualifier-list abstract-declarator[opt] 40 /// 41 /// Called type-id in C++. 42 TypeResult Parser::ParseTypeName(SourceRange *Range, 43 DeclaratorContext Context, 44 AccessSpecifier AS, 45 Decl **OwnedType, 46 ParsedAttributes *Attrs) { 47 DeclSpecContext DSC = getDeclSpecContextFromDeclaratorContext(Context); 48 if (DSC == DeclSpecContext::DSC_normal) 49 DSC = DeclSpecContext::DSC_type_specifier; 50 51 // Parse the common declaration-specifiers piece. 52 DeclSpec DS(AttrFactory); 53 if (Attrs) 54 DS.addAttributes(*Attrs); 55 ParseSpecifierQualifierList(DS, AS, DSC); 56 if (OwnedType) 57 *OwnedType = DS.isTypeSpecOwned() ? DS.getRepAsDecl() : nullptr; 58 59 // Parse the abstract-declarator, if present. 60 Declarator DeclaratorInfo(DS, Context); 61 ParseDeclarator(DeclaratorInfo); 62 if (Range) 63 *Range = DeclaratorInfo.getSourceRange(); 64 65 if (DeclaratorInfo.isInvalidType()) 66 return true; 67 68 return Actions.ActOnTypeName(getCurScope(), DeclaratorInfo); 69 } 70 71 /// Normalizes an attribute name by dropping prefixed and suffixed __. 72 static StringRef normalizeAttrName(StringRef Name) { 73 if (Name.size() >= 4 && Name.startswith("__") && Name.endswith("__")) 74 return Name.drop_front(2).drop_back(2); 75 return Name; 76 } 77 78 /// isAttributeLateParsed - Return true if the attribute has arguments that 79 /// require late parsing. 80 static bool isAttributeLateParsed(const IdentifierInfo &II) { 81 #define CLANG_ATTR_LATE_PARSED_LIST 82 return llvm::StringSwitch<bool>(normalizeAttrName(II.getName())) 83 #include "clang/Parse/AttrParserStringSwitches.inc" 84 .Default(false); 85 #undef CLANG_ATTR_LATE_PARSED_LIST 86 } 87 88 /// Check if the a start and end source location expand to the same macro. 89 static bool FindLocsWithCommonFileID(Preprocessor &PP, SourceLocation StartLoc, 90 SourceLocation EndLoc) { 91 if (!StartLoc.isMacroID() || !EndLoc.isMacroID()) 92 return false; 93 94 SourceManager &SM = PP.getSourceManager(); 95 if (SM.getFileID(StartLoc) != SM.getFileID(EndLoc)) 96 return false; 97 98 bool AttrStartIsInMacro = 99 Lexer::isAtStartOfMacroExpansion(StartLoc, SM, PP.getLangOpts()); 100 bool AttrEndIsInMacro = 101 Lexer::isAtEndOfMacroExpansion(EndLoc, SM, PP.getLangOpts()); 102 return AttrStartIsInMacro && AttrEndIsInMacro; 103 } 104 105 /// ParseGNUAttributes - Parse a non-empty attributes list. 106 /// 107 /// [GNU] attributes: 108 /// attribute 109 /// attributes attribute 110 /// 111 /// [GNU] attribute: 112 /// '__attribute__' '(' '(' attribute-list ')' ')' 113 /// 114 /// [GNU] attribute-list: 115 /// attrib 116 /// attribute_list ',' attrib 117 /// 118 /// [GNU] attrib: 119 /// empty 120 /// attrib-name 121 /// attrib-name '(' identifier ')' 122 /// attrib-name '(' identifier ',' nonempty-expr-list ')' 123 /// attrib-name '(' argument-expression-list [C99 6.5.2] ')' 124 /// 125 /// [GNU] attrib-name: 126 /// identifier 127 /// typespec 128 /// typequal 129 /// storageclass 130 /// 131 /// Whether an attribute takes an 'identifier' is determined by the 132 /// attrib-name. GCC's behavior here is not worth imitating: 133 /// 134 /// * In C mode, if the attribute argument list starts with an identifier 135 /// followed by a ',' or an ')', and the identifier doesn't resolve to 136 /// a type, it is parsed as an identifier. If the attribute actually 137 /// wanted an expression, it's out of luck (but it turns out that no 138 /// attributes work that way, because C constant expressions are very 139 /// limited). 140 /// * In C++ mode, if the attribute argument list starts with an identifier, 141 /// and the attribute *wants* an identifier, it is parsed as an identifier. 142 /// At block scope, any additional tokens between the identifier and the 143 /// ',' or ')' are ignored, otherwise they produce a parse error. 144 /// 145 /// We follow the C++ model, but don't allow junk after the identifier. 146 void Parser::ParseGNUAttributes(ParsedAttributes &attrs, 147 SourceLocation *endLoc, 148 LateParsedAttrList *LateAttrs, 149 Declarator *D) { 150 assert(Tok.is(tok::kw___attribute) && "Not a GNU attribute list!"); 151 152 while (Tok.is(tok::kw___attribute)) { 153 SourceLocation AttrTokLoc = ConsumeToken(); 154 unsigned OldNumAttrs = attrs.size(); 155 unsigned OldNumLateAttrs = LateAttrs ? LateAttrs->size() : 0; 156 157 if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, 158 "attribute")) { 159 SkipUntil(tok::r_paren, StopAtSemi); // skip until ) or ; 160 return; 161 } 162 if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, "(")) { 163 SkipUntil(tok::r_paren, StopAtSemi); // skip until ) or ; 164 return; 165 } 166 // Parse the attribute-list. e.g. __attribute__(( weak, alias("__f") )) 167 do { 168 // Eat preceeding commas to allow __attribute__((,,,foo)) 169 while (TryConsumeToken(tok::comma)) 170 ; 171 172 // Expect an identifier or declaration specifier (const, int, etc.) 173 if (Tok.isAnnotation()) 174 break; 175 IdentifierInfo *AttrName = Tok.getIdentifierInfo(); 176 if (!AttrName) 177 break; 178 179 SourceLocation AttrNameLoc = ConsumeToken(); 180 181 if (Tok.isNot(tok::l_paren)) { 182 attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0, 183 ParsedAttr::AS_GNU); 184 continue; 185 } 186 187 // Handle "parameterized" attributes 188 if (!LateAttrs || !isAttributeLateParsed(*AttrName)) { 189 ParseGNUAttributeArgs(AttrName, AttrNameLoc, attrs, endLoc, nullptr, 190 SourceLocation(), ParsedAttr::AS_GNU, D); 191 continue; 192 } 193 194 // Handle attributes with arguments that require late parsing. 195 LateParsedAttribute *LA = 196 new LateParsedAttribute(this, *AttrName, AttrNameLoc); 197 LateAttrs->push_back(LA); 198 199 // Attributes in a class are parsed at the end of the class, along 200 // with other late-parsed declarations. 201 if (!ClassStack.empty() && !LateAttrs->parseSoon()) 202 getCurrentClass().LateParsedDeclarations.push_back(LA); 203 204 // Be sure ConsumeAndStoreUntil doesn't see the start l_paren, since it 205 // recursively consumes balanced parens. 206 LA->Toks.push_back(Tok); 207 ConsumeParen(); 208 // Consume everything up to and including the matching right parens. 209 ConsumeAndStoreUntil(tok::r_paren, LA->Toks, /*StopAtSemi=*/true); 210 211 Token Eof; 212 Eof.startToken(); 213 Eof.setLocation(Tok.getLocation()); 214 LA->Toks.push_back(Eof); 215 } while (Tok.is(tok::comma)); 216 217 if (ExpectAndConsume(tok::r_paren)) 218 SkipUntil(tok::r_paren, StopAtSemi); 219 SourceLocation Loc = Tok.getLocation(); 220 if (ExpectAndConsume(tok::r_paren)) 221 SkipUntil(tok::r_paren, StopAtSemi); 222 if (endLoc) 223 *endLoc = Loc; 224 225 // If this was declared in a macro, attach the macro IdentifierInfo to the 226 // parsed attribute. 227 auto &SM = PP.getSourceManager(); 228 if (!SM.isWrittenInBuiltinFile(SM.getSpellingLoc(AttrTokLoc)) && 229 FindLocsWithCommonFileID(PP, AttrTokLoc, Loc)) { 230 CharSourceRange ExpansionRange = SM.getExpansionRange(AttrTokLoc); 231 StringRef FoundName = 232 Lexer::getSourceText(ExpansionRange, SM, PP.getLangOpts()); 233 IdentifierInfo *MacroII = PP.getIdentifierInfo(FoundName); 234 235 for (unsigned i = OldNumAttrs; i < attrs.size(); ++i) 236 attrs[i].setMacroIdentifier(MacroII, ExpansionRange.getBegin()); 237 238 if (LateAttrs) { 239 for (unsigned i = OldNumLateAttrs; i < LateAttrs->size(); ++i) 240 (*LateAttrs)[i]->MacroII = MacroII; 241 } 242 } 243 } 244 } 245 246 /// Determine whether the given attribute has an identifier argument. 247 static bool attributeHasIdentifierArg(const IdentifierInfo &II) { 248 #define CLANG_ATTR_IDENTIFIER_ARG_LIST 249 return llvm::StringSwitch<bool>(normalizeAttrName(II.getName())) 250 #include "clang/Parse/AttrParserStringSwitches.inc" 251 .Default(false); 252 #undef CLANG_ATTR_IDENTIFIER_ARG_LIST 253 } 254 255 /// Determine whether the given attribute has a variadic identifier argument. 256 static bool attributeHasVariadicIdentifierArg(const IdentifierInfo &II) { 257 #define CLANG_ATTR_VARIADIC_IDENTIFIER_ARG_LIST 258 return llvm::StringSwitch<bool>(normalizeAttrName(II.getName())) 259 #include "clang/Parse/AttrParserStringSwitches.inc" 260 .Default(false); 261 #undef CLANG_ATTR_VARIADIC_IDENTIFIER_ARG_LIST 262 } 263 264 /// Determine whether the given attribute treats kw_this as an identifier. 265 static bool attributeTreatsKeywordThisAsIdentifier(const IdentifierInfo &II) { 266 #define CLANG_ATTR_THIS_ISA_IDENTIFIER_ARG_LIST 267 return llvm::StringSwitch<bool>(normalizeAttrName(II.getName())) 268 #include "clang/Parse/AttrParserStringSwitches.inc" 269 .Default(false); 270 #undef CLANG_ATTR_THIS_ISA_IDENTIFIER_ARG_LIST 271 } 272 273 /// Determine whether the given attribute parses a type argument. 274 static bool attributeIsTypeArgAttr(const IdentifierInfo &II) { 275 #define CLANG_ATTR_TYPE_ARG_LIST 276 return llvm::StringSwitch<bool>(normalizeAttrName(II.getName())) 277 #include "clang/Parse/AttrParserStringSwitches.inc" 278 .Default(false); 279 #undef CLANG_ATTR_TYPE_ARG_LIST 280 } 281 282 /// Determine whether the given attribute requires parsing its arguments 283 /// in an unevaluated context or not. 284 static bool attributeParsedArgsUnevaluated(const IdentifierInfo &II) { 285 #define CLANG_ATTR_ARG_CONTEXT_LIST 286 return llvm::StringSwitch<bool>(normalizeAttrName(II.getName())) 287 #include "clang/Parse/AttrParserStringSwitches.inc" 288 .Default(false); 289 #undef CLANG_ATTR_ARG_CONTEXT_LIST 290 } 291 292 IdentifierLoc *Parser::ParseIdentifierLoc() { 293 assert(Tok.is(tok::identifier) && "expected an identifier"); 294 IdentifierLoc *IL = IdentifierLoc::create(Actions.Context, 295 Tok.getLocation(), 296 Tok.getIdentifierInfo()); 297 ConsumeToken(); 298 return IL; 299 } 300 301 void Parser::ParseAttributeWithTypeArg(IdentifierInfo &AttrName, 302 SourceLocation AttrNameLoc, 303 ParsedAttributes &Attrs, 304 SourceLocation *EndLoc, 305 IdentifierInfo *ScopeName, 306 SourceLocation ScopeLoc, 307 ParsedAttr::Syntax Syntax) { 308 BalancedDelimiterTracker Parens(*this, tok::l_paren); 309 Parens.consumeOpen(); 310 311 TypeResult T; 312 if (Tok.isNot(tok::r_paren)) 313 T = ParseTypeName(); 314 315 if (Parens.consumeClose()) 316 return; 317 318 if (T.isInvalid()) 319 return; 320 321 if (T.isUsable()) 322 Attrs.addNewTypeAttr(&AttrName, 323 SourceRange(AttrNameLoc, Parens.getCloseLocation()), 324 ScopeName, ScopeLoc, T.get(), Syntax); 325 else 326 Attrs.addNew(&AttrName, SourceRange(AttrNameLoc, Parens.getCloseLocation()), 327 ScopeName, ScopeLoc, nullptr, 0, Syntax); 328 } 329 330 unsigned Parser::ParseAttributeArgsCommon( 331 IdentifierInfo *AttrName, SourceLocation AttrNameLoc, 332 ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName, 333 SourceLocation ScopeLoc, ParsedAttr::Syntax Syntax) { 334 // Ignore the left paren location for now. 335 ConsumeParen(); 336 337 bool ChangeKWThisToIdent = attributeTreatsKeywordThisAsIdentifier(*AttrName); 338 bool AttributeIsTypeArgAttr = attributeIsTypeArgAttr(*AttrName); 339 340 // Interpret "kw_this" as an identifier if the attributed requests it. 341 if (ChangeKWThisToIdent && Tok.is(tok::kw_this)) 342 Tok.setKind(tok::identifier); 343 344 ArgsVector ArgExprs; 345 if (Tok.is(tok::identifier)) { 346 // If this attribute wants an 'identifier' argument, make it so. 347 bool IsIdentifierArg = attributeHasIdentifierArg(*AttrName) || 348 attributeHasVariadicIdentifierArg(*AttrName); 349 ParsedAttr::Kind AttrKind = 350 ParsedAttr::getParsedKind(AttrName, ScopeName, Syntax); 351 352 // If we don't know how to parse this attribute, but this is the only 353 // token in this argument, assume it's meant to be an identifier. 354 if (AttrKind == ParsedAttr::UnknownAttribute || 355 AttrKind == ParsedAttr::IgnoredAttribute) { 356 const Token &Next = NextToken(); 357 IsIdentifierArg = Next.isOneOf(tok::r_paren, tok::comma); 358 } 359 360 if (IsIdentifierArg) 361 ArgExprs.push_back(ParseIdentifierLoc()); 362 } 363 364 ParsedType TheParsedType; 365 if (!ArgExprs.empty() ? Tok.is(tok::comma) : Tok.isNot(tok::r_paren)) { 366 // Eat the comma. 367 if (!ArgExprs.empty()) 368 ConsumeToken(); 369 370 // Parse the non-empty comma-separated list of expressions. 371 do { 372 // Interpret "kw_this" as an identifier if the attributed requests it. 373 if (ChangeKWThisToIdent && Tok.is(tok::kw_this)) 374 Tok.setKind(tok::identifier); 375 376 ExprResult ArgExpr; 377 if (AttributeIsTypeArgAttr) { 378 TypeResult T = ParseTypeName(); 379 if (T.isInvalid()) { 380 SkipUntil(tok::r_paren, StopAtSemi); 381 return 0; 382 } 383 if (T.isUsable()) 384 TheParsedType = T.get(); 385 break; // FIXME: Multiple type arguments are not implemented. 386 } else if (Tok.is(tok::identifier) && 387 attributeHasVariadicIdentifierArg(*AttrName)) { 388 ArgExprs.push_back(ParseIdentifierLoc()); 389 } else { 390 bool Uneval = attributeParsedArgsUnevaluated(*AttrName); 391 EnterExpressionEvaluationContext Unevaluated( 392 Actions, 393 Uneval ? Sema::ExpressionEvaluationContext::Unevaluated 394 : Sema::ExpressionEvaluationContext::ConstantEvaluated); 395 396 ExprResult ArgExpr( 397 Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression())); 398 if (ArgExpr.isInvalid()) { 399 SkipUntil(tok::r_paren, StopAtSemi); 400 return 0; 401 } 402 ArgExprs.push_back(ArgExpr.get()); 403 } 404 // Eat the comma, move to the next argument 405 } while (TryConsumeToken(tok::comma)); 406 } 407 408 SourceLocation RParen = Tok.getLocation(); 409 if (!ExpectAndConsume(tok::r_paren)) { 410 SourceLocation AttrLoc = ScopeLoc.isValid() ? ScopeLoc : AttrNameLoc; 411 412 if (AttributeIsTypeArgAttr && !TheParsedType.get().isNull()) { 413 Attrs.addNewTypeAttr(AttrName, SourceRange(AttrNameLoc, RParen), 414 ScopeName, ScopeLoc, TheParsedType, Syntax); 415 } else { 416 Attrs.addNew(AttrName, SourceRange(AttrLoc, RParen), ScopeName, ScopeLoc, 417 ArgExprs.data(), ArgExprs.size(), Syntax); 418 } 419 } 420 421 if (EndLoc) 422 *EndLoc = RParen; 423 424 return static_cast<unsigned>(ArgExprs.size() + !TheParsedType.get().isNull()); 425 } 426 427 /// Parse the arguments to a parameterized GNU attribute or 428 /// a C++11 attribute in "gnu" namespace. 429 void Parser::ParseGNUAttributeArgs(IdentifierInfo *AttrName, 430 SourceLocation AttrNameLoc, 431 ParsedAttributes &Attrs, 432 SourceLocation *EndLoc, 433 IdentifierInfo *ScopeName, 434 SourceLocation ScopeLoc, 435 ParsedAttr::Syntax Syntax, 436 Declarator *D) { 437 438 assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('"); 439 440 ParsedAttr::Kind AttrKind = 441 ParsedAttr::getParsedKind(AttrName, ScopeName, Syntax); 442 443 if (AttrKind == ParsedAttr::AT_Availability) { 444 ParseAvailabilityAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName, 445 ScopeLoc, Syntax); 446 return; 447 } else if (AttrKind == ParsedAttr::AT_ExternalSourceSymbol) { 448 ParseExternalSourceSymbolAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc, 449 ScopeName, ScopeLoc, Syntax); 450 return; 451 } else if (AttrKind == ParsedAttr::AT_ObjCBridgeRelated) { 452 ParseObjCBridgeRelatedAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc, 453 ScopeName, ScopeLoc, Syntax); 454 return; 455 } else if (AttrKind == ParsedAttr::AT_TypeTagForDatatype) { 456 ParseTypeTagForDatatypeAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc, 457 ScopeName, ScopeLoc, Syntax); 458 return; 459 } else if (attributeIsTypeArgAttr(*AttrName)) { 460 ParseAttributeWithTypeArg(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName, 461 ScopeLoc, Syntax); 462 return; 463 } 464 465 // These may refer to the function arguments, but need to be parsed early to 466 // participate in determining whether it's a redeclaration. 467 llvm::Optional<ParseScope> PrototypeScope; 468 if (normalizeAttrName(AttrName->getName()) == "enable_if" && 469 D && D->isFunctionDeclarator()) { 470 DeclaratorChunk::FunctionTypeInfo FTI = D->getFunctionTypeInfo(); 471 PrototypeScope.emplace(this, Scope::FunctionPrototypeScope | 472 Scope::FunctionDeclarationScope | 473 Scope::DeclScope); 474 for (unsigned i = 0; i != FTI.NumParams; ++i) { 475 ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param); 476 Actions.ActOnReenterCXXMethodParameter(getCurScope(), Param); 477 } 478 } 479 480 ParseAttributeArgsCommon(AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName, 481 ScopeLoc, Syntax); 482 } 483 484 unsigned Parser::ParseClangAttributeArgs( 485 IdentifierInfo *AttrName, SourceLocation AttrNameLoc, 486 ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName, 487 SourceLocation ScopeLoc, ParsedAttr::Syntax Syntax) { 488 assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('"); 489 490 ParsedAttr::Kind AttrKind = 491 ParsedAttr::getParsedKind(AttrName, ScopeName, Syntax); 492 493 switch (AttrKind) { 494 default: 495 return ParseAttributeArgsCommon(AttrName, AttrNameLoc, Attrs, EndLoc, 496 ScopeName, ScopeLoc, Syntax); 497 case ParsedAttr::AT_ExternalSourceSymbol: 498 ParseExternalSourceSymbolAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc, 499 ScopeName, ScopeLoc, Syntax); 500 break; 501 case ParsedAttr::AT_Availability: 502 ParseAvailabilityAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName, 503 ScopeLoc, Syntax); 504 break; 505 case ParsedAttr::AT_ObjCBridgeRelated: 506 ParseObjCBridgeRelatedAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc, 507 ScopeName, ScopeLoc, Syntax); 508 break; 509 case ParsedAttr::AT_TypeTagForDatatype: 510 ParseTypeTagForDatatypeAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc, 511 ScopeName, ScopeLoc, Syntax); 512 break; 513 } 514 return !Attrs.empty() ? Attrs.begin()->getNumArgs() : 0; 515 } 516 517 bool Parser::ParseMicrosoftDeclSpecArgs(IdentifierInfo *AttrName, 518 SourceLocation AttrNameLoc, 519 ParsedAttributes &Attrs) { 520 // If the attribute isn't known, we will not attempt to parse any 521 // arguments. 522 if (!hasAttribute(AttrSyntax::Declspec, nullptr, AttrName, 523 getTargetInfo(), getLangOpts())) { 524 // Eat the left paren, then skip to the ending right paren. 525 ConsumeParen(); 526 SkipUntil(tok::r_paren); 527 return false; 528 } 529 530 SourceLocation OpenParenLoc = Tok.getLocation(); 531 532 if (AttrName->getName() == "property") { 533 // The property declspec is more complex in that it can take one or two 534 // assignment expressions as a parameter, but the lhs of the assignment 535 // must be named get or put. 536 537 BalancedDelimiterTracker T(*this, tok::l_paren); 538 T.expectAndConsume(diag::err_expected_lparen_after, 539 AttrName->getNameStart(), tok::r_paren); 540 541 enum AccessorKind { 542 AK_Invalid = -1, 543 AK_Put = 0, 544 AK_Get = 1 // indices into AccessorNames 545 }; 546 IdentifierInfo *AccessorNames[] = {nullptr, nullptr}; 547 bool HasInvalidAccessor = false; 548 549 // Parse the accessor specifications. 550 while (true) { 551 // Stop if this doesn't look like an accessor spec. 552 if (!Tok.is(tok::identifier)) { 553 // If the user wrote a completely empty list, use a special diagnostic. 554 if (Tok.is(tok::r_paren) && !HasInvalidAccessor && 555 AccessorNames[AK_Put] == nullptr && 556 AccessorNames[AK_Get] == nullptr) { 557 Diag(AttrNameLoc, diag::err_ms_property_no_getter_or_putter); 558 break; 559 } 560 561 Diag(Tok.getLocation(), diag::err_ms_property_unknown_accessor); 562 break; 563 } 564 565 AccessorKind Kind; 566 SourceLocation KindLoc = Tok.getLocation(); 567 StringRef KindStr = Tok.getIdentifierInfo()->getName(); 568 if (KindStr == "get") { 569 Kind = AK_Get; 570 } else if (KindStr == "put") { 571 Kind = AK_Put; 572 573 // Recover from the common mistake of using 'set' instead of 'put'. 574 } else if (KindStr == "set") { 575 Diag(KindLoc, diag::err_ms_property_has_set_accessor) 576 << FixItHint::CreateReplacement(KindLoc, "put"); 577 Kind = AK_Put; 578 579 // Handle the mistake of forgetting the accessor kind by skipping 580 // this accessor. 581 } else if (NextToken().is(tok::comma) || NextToken().is(tok::r_paren)) { 582 Diag(KindLoc, diag::err_ms_property_missing_accessor_kind); 583 ConsumeToken(); 584 HasInvalidAccessor = true; 585 goto next_property_accessor; 586 587 // Otherwise, complain about the unknown accessor kind. 588 } else { 589 Diag(KindLoc, diag::err_ms_property_unknown_accessor); 590 HasInvalidAccessor = true; 591 Kind = AK_Invalid; 592 593 // Try to keep parsing unless it doesn't look like an accessor spec. 594 if (!NextToken().is(tok::equal)) 595 break; 596 } 597 598 // Consume the identifier. 599 ConsumeToken(); 600 601 // Consume the '='. 602 if (!TryConsumeToken(tok::equal)) { 603 Diag(Tok.getLocation(), diag::err_ms_property_expected_equal) 604 << KindStr; 605 break; 606 } 607 608 // Expect the method name. 609 if (!Tok.is(tok::identifier)) { 610 Diag(Tok.getLocation(), diag::err_ms_property_expected_accessor_name); 611 break; 612 } 613 614 if (Kind == AK_Invalid) { 615 // Just drop invalid accessors. 616 } else if (AccessorNames[Kind] != nullptr) { 617 // Complain about the repeated accessor, ignore it, and keep parsing. 618 Diag(KindLoc, diag::err_ms_property_duplicate_accessor) << KindStr; 619 } else { 620 AccessorNames[Kind] = Tok.getIdentifierInfo(); 621 } 622 ConsumeToken(); 623 624 next_property_accessor: 625 // Keep processing accessors until we run out. 626 if (TryConsumeToken(tok::comma)) 627 continue; 628 629 // If we run into the ')', stop without consuming it. 630 if (Tok.is(tok::r_paren)) 631 break; 632 633 Diag(Tok.getLocation(), diag::err_ms_property_expected_comma_or_rparen); 634 break; 635 } 636 637 // Only add the property attribute if it was well-formed. 638 if (!HasInvalidAccessor) 639 Attrs.addNewPropertyAttr(AttrName, AttrNameLoc, nullptr, SourceLocation(), 640 AccessorNames[AK_Get], AccessorNames[AK_Put], 641 ParsedAttr::AS_Declspec); 642 T.skipToEnd(); 643 return !HasInvalidAccessor; 644 } 645 646 unsigned NumArgs = 647 ParseAttributeArgsCommon(AttrName, AttrNameLoc, Attrs, nullptr, nullptr, 648 SourceLocation(), ParsedAttr::AS_Declspec); 649 650 // If this attribute's args were parsed, and it was expected to have 651 // arguments but none were provided, emit a diagnostic. 652 if (!Attrs.empty() && Attrs.begin()->getMaxArgs() && !NumArgs) { 653 Diag(OpenParenLoc, diag::err_attribute_requires_arguments) << AttrName; 654 return false; 655 } 656 return true; 657 } 658 659 /// [MS] decl-specifier: 660 /// __declspec ( extended-decl-modifier-seq ) 661 /// 662 /// [MS] extended-decl-modifier-seq: 663 /// extended-decl-modifier[opt] 664 /// extended-decl-modifier extended-decl-modifier-seq 665 void Parser::ParseMicrosoftDeclSpecs(ParsedAttributes &Attrs, 666 SourceLocation *End) { 667 assert(getLangOpts().DeclSpecKeyword && "__declspec keyword is not enabled"); 668 assert(Tok.is(tok::kw___declspec) && "Not a declspec!"); 669 670 while (Tok.is(tok::kw___declspec)) { 671 ConsumeToken(); 672 BalancedDelimiterTracker T(*this, tok::l_paren); 673 if (T.expectAndConsume(diag::err_expected_lparen_after, "__declspec", 674 tok::r_paren)) 675 return; 676 677 // An empty declspec is perfectly legal and should not warn. Additionally, 678 // you can specify multiple attributes per declspec. 679 while (Tok.isNot(tok::r_paren)) { 680 // Attribute not present. 681 if (TryConsumeToken(tok::comma)) 682 continue; 683 684 // We expect either a well-known identifier or a generic string. Anything 685 // else is a malformed declspec. 686 bool IsString = Tok.getKind() == tok::string_literal; 687 if (!IsString && Tok.getKind() != tok::identifier && 688 Tok.getKind() != tok::kw_restrict) { 689 Diag(Tok, diag::err_ms_declspec_type); 690 T.skipToEnd(); 691 return; 692 } 693 694 IdentifierInfo *AttrName; 695 SourceLocation AttrNameLoc; 696 if (IsString) { 697 SmallString<8> StrBuffer; 698 bool Invalid = false; 699 StringRef Str = PP.getSpelling(Tok, StrBuffer, &Invalid); 700 if (Invalid) { 701 T.skipToEnd(); 702 return; 703 } 704 AttrName = PP.getIdentifierInfo(Str); 705 AttrNameLoc = ConsumeStringToken(); 706 } else { 707 AttrName = Tok.getIdentifierInfo(); 708 AttrNameLoc = ConsumeToken(); 709 } 710 711 bool AttrHandled = false; 712 713 // Parse attribute arguments. 714 if (Tok.is(tok::l_paren)) 715 AttrHandled = ParseMicrosoftDeclSpecArgs(AttrName, AttrNameLoc, Attrs); 716 else if (AttrName->getName() == "property") 717 // The property attribute must have an argument list. 718 Diag(Tok.getLocation(), diag::err_expected_lparen_after) 719 << AttrName->getName(); 720 721 if (!AttrHandled) 722 Attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0, 723 ParsedAttr::AS_Declspec); 724 } 725 T.consumeClose(); 726 if (End) 727 *End = T.getCloseLocation(); 728 } 729 } 730 731 void Parser::ParseMicrosoftTypeAttributes(ParsedAttributes &attrs) { 732 // Treat these like attributes 733 while (true) { 734 switch (Tok.getKind()) { 735 case tok::kw___fastcall: 736 case tok::kw___stdcall: 737 case tok::kw___thiscall: 738 case tok::kw___regcall: 739 case tok::kw___cdecl: 740 case tok::kw___vectorcall: 741 case tok::kw___ptr64: 742 case tok::kw___w64: 743 case tok::kw___ptr32: 744 case tok::kw___sptr: 745 case tok::kw___uptr: { 746 IdentifierInfo *AttrName = Tok.getIdentifierInfo(); 747 SourceLocation AttrNameLoc = ConsumeToken(); 748 attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0, 749 ParsedAttr::AS_Keyword); 750 break; 751 } 752 default: 753 return; 754 } 755 } 756 } 757 758 void Parser::DiagnoseAndSkipExtendedMicrosoftTypeAttributes() { 759 SourceLocation StartLoc = Tok.getLocation(); 760 SourceLocation EndLoc = SkipExtendedMicrosoftTypeAttributes(); 761 762 if (EndLoc.isValid()) { 763 SourceRange Range(StartLoc, EndLoc); 764 Diag(StartLoc, diag::warn_microsoft_qualifiers_ignored) << Range; 765 } 766 } 767 768 SourceLocation Parser::SkipExtendedMicrosoftTypeAttributes() { 769 SourceLocation EndLoc; 770 771 while (true) { 772 switch (Tok.getKind()) { 773 case tok::kw_const: 774 case tok::kw_volatile: 775 case tok::kw___fastcall: 776 case tok::kw___stdcall: 777 case tok::kw___thiscall: 778 case tok::kw___cdecl: 779 case tok::kw___vectorcall: 780 case tok::kw___ptr32: 781 case tok::kw___ptr64: 782 case tok::kw___w64: 783 case tok::kw___unaligned: 784 case tok::kw___sptr: 785 case tok::kw___uptr: 786 EndLoc = ConsumeToken(); 787 break; 788 default: 789 return EndLoc; 790 } 791 } 792 } 793 794 void Parser::ParseBorlandTypeAttributes(ParsedAttributes &attrs) { 795 // Treat these like attributes 796 while (Tok.is(tok::kw___pascal)) { 797 IdentifierInfo *AttrName = Tok.getIdentifierInfo(); 798 SourceLocation AttrNameLoc = ConsumeToken(); 799 attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0, 800 ParsedAttr::AS_Keyword); 801 } 802 } 803 804 void Parser::ParseOpenCLKernelAttributes(ParsedAttributes &attrs) { 805 // Treat these like attributes 806 while (Tok.is(tok::kw___kernel)) { 807 IdentifierInfo *AttrName = Tok.getIdentifierInfo(); 808 SourceLocation AttrNameLoc = ConsumeToken(); 809 attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0, 810 ParsedAttr::AS_Keyword); 811 } 812 } 813 814 void Parser::ParseOpenCLQualifiers(ParsedAttributes &Attrs) { 815 IdentifierInfo *AttrName = Tok.getIdentifierInfo(); 816 SourceLocation AttrNameLoc = Tok.getLocation(); 817 Attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0, 818 ParsedAttr::AS_Keyword); 819 } 820 821 void Parser::ParseNullabilityTypeSpecifiers(ParsedAttributes &attrs) { 822 // Treat these like attributes, even though they're type specifiers. 823 while (true) { 824 switch (Tok.getKind()) { 825 case tok::kw__Nonnull: 826 case tok::kw__Nullable: 827 case tok::kw__Null_unspecified: { 828 IdentifierInfo *AttrName = Tok.getIdentifierInfo(); 829 SourceLocation AttrNameLoc = ConsumeToken(); 830 if (!getLangOpts().ObjC) 831 Diag(AttrNameLoc, diag::ext_nullability) 832 << AttrName; 833 attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0, 834 ParsedAttr::AS_Keyword); 835 break; 836 } 837 default: 838 return; 839 } 840 } 841 } 842 843 static bool VersionNumberSeparator(const char Separator) { 844 return (Separator == '.' || Separator == '_'); 845 } 846 847 /// Parse a version number. 848 /// 849 /// version: 850 /// simple-integer 851 /// simple-integer '.' simple-integer 852 /// simple-integer '_' simple-integer 853 /// simple-integer '.' simple-integer '.' simple-integer 854 /// simple-integer '_' simple-integer '_' simple-integer 855 VersionTuple Parser::ParseVersionTuple(SourceRange &Range) { 856 Range = SourceRange(Tok.getLocation(), Tok.getEndLoc()); 857 858 if (!Tok.is(tok::numeric_constant)) { 859 Diag(Tok, diag::err_expected_version); 860 SkipUntil(tok::comma, tok::r_paren, 861 StopAtSemi | StopBeforeMatch | StopAtCodeCompletion); 862 return VersionTuple(); 863 } 864 865 // Parse the major (and possibly minor and subminor) versions, which 866 // are stored in the numeric constant. We utilize a quirk of the 867 // lexer, which is that it handles something like 1.2.3 as a single 868 // numeric constant, rather than two separate tokens. 869 SmallString<512> Buffer; 870 Buffer.resize(Tok.getLength()+1); 871 const char *ThisTokBegin = &Buffer[0]; 872 873 // Get the spelling of the token, which eliminates trigraphs, etc. 874 bool Invalid = false; 875 unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin, &Invalid); 876 if (Invalid) 877 return VersionTuple(); 878 879 // Parse the major version. 880 unsigned AfterMajor = 0; 881 unsigned Major = 0; 882 while (AfterMajor < ActualLength && isDigit(ThisTokBegin[AfterMajor])) { 883 Major = Major * 10 + ThisTokBegin[AfterMajor] - '0'; 884 ++AfterMajor; 885 } 886 887 if (AfterMajor == 0) { 888 Diag(Tok, diag::err_expected_version); 889 SkipUntil(tok::comma, tok::r_paren, 890 StopAtSemi | StopBeforeMatch | StopAtCodeCompletion); 891 return VersionTuple(); 892 } 893 894 if (AfterMajor == ActualLength) { 895 ConsumeToken(); 896 897 // We only had a single version component. 898 if (Major == 0) { 899 Diag(Tok, diag::err_zero_version); 900 return VersionTuple(); 901 } 902 903 return VersionTuple(Major); 904 } 905 906 const char AfterMajorSeparator = ThisTokBegin[AfterMajor]; 907 if (!VersionNumberSeparator(AfterMajorSeparator) 908 || (AfterMajor + 1 == ActualLength)) { 909 Diag(Tok, diag::err_expected_version); 910 SkipUntil(tok::comma, tok::r_paren, 911 StopAtSemi | StopBeforeMatch | StopAtCodeCompletion); 912 return VersionTuple(); 913 } 914 915 // Parse the minor version. 916 unsigned AfterMinor = AfterMajor + 1; 917 unsigned Minor = 0; 918 while (AfterMinor < ActualLength && isDigit(ThisTokBegin[AfterMinor])) { 919 Minor = Minor * 10 + ThisTokBegin[AfterMinor] - '0'; 920 ++AfterMinor; 921 } 922 923 if (AfterMinor == ActualLength) { 924 ConsumeToken(); 925 926 // We had major.minor. 927 if (Major == 0 && Minor == 0) { 928 Diag(Tok, diag::err_zero_version); 929 return VersionTuple(); 930 } 931 932 return VersionTuple(Major, Minor); 933 } 934 935 const char AfterMinorSeparator = ThisTokBegin[AfterMinor]; 936 // If what follows is not a '.' or '_', we have a problem. 937 if (!VersionNumberSeparator(AfterMinorSeparator)) { 938 Diag(Tok, diag::err_expected_version); 939 SkipUntil(tok::comma, tok::r_paren, 940 StopAtSemi | StopBeforeMatch | StopAtCodeCompletion); 941 return VersionTuple(); 942 } 943 944 // Warn if separators, be it '.' or '_', do not match. 945 if (AfterMajorSeparator != AfterMinorSeparator) 946 Diag(Tok, diag::warn_expected_consistent_version_separator); 947 948 // Parse the subminor version. 949 unsigned AfterSubminor = AfterMinor + 1; 950 unsigned Subminor = 0; 951 while (AfterSubminor < ActualLength && isDigit(ThisTokBegin[AfterSubminor])) { 952 Subminor = Subminor * 10 + ThisTokBegin[AfterSubminor] - '0'; 953 ++AfterSubminor; 954 } 955 956 if (AfterSubminor != ActualLength) { 957 Diag(Tok, diag::err_expected_version); 958 SkipUntil(tok::comma, tok::r_paren, 959 StopAtSemi | StopBeforeMatch | StopAtCodeCompletion); 960 return VersionTuple(); 961 } 962 ConsumeToken(); 963 return VersionTuple(Major, Minor, Subminor); 964 } 965 966 /// Parse the contents of the "availability" attribute. 967 /// 968 /// availability-attribute: 969 /// 'availability' '(' platform ',' opt-strict version-arg-list, 970 /// opt-replacement, opt-message')' 971 /// 972 /// platform: 973 /// identifier 974 /// 975 /// opt-strict: 976 /// 'strict' ',' 977 /// 978 /// version-arg-list: 979 /// version-arg 980 /// version-arg ',' version-arg-list 981 /// 982 /// version-arg: 983 /// 'introduced' '=' version 984 /// 'deprecated' '=' version 985 /// 'obsoleted' = version 986 /// 'unavailable' 987 /// opt-replacement: 988 /// 'replacement' '=' <string> 989 /// opt-message: 990 /// 'message' '=' <string> 991 void Parser::ParseAvailabilityAttribute(IdentifierInfo &Availability, 992 SourceLocation AvailabilityLoc, 993 ParsedAttributes &attrs, 994 SourceLocation *endLoc, 995 IdentifierInfo *ScopeName, 996 SourceLocation ScopeLoc, 997 ParsedAttr::Syntax Syntax) { 998 enum { Introduced, Deprecated, Obsoleted, Unknown }; 999 AvailabilityChange Changes[Unknown]; 1000 ExprResult MessageExpr, ReplacementExpr; 1001 1002 // Opening '('. 1003 BalancedDelimiterTracker T(*this, tok::l_paren); 1004 if (T.consumeOpen()) { 1005 Diag(Tok, diag::err_expected) << tok::l_paren; 1006 return; 1007 } 1008 1009 // Parse the platform name. 1010 if (Tok.isNot(tok::identifier)) { 1011 Diag(Tok, diag::err_availability_expected_platform); 1012 SkipUntil(tok::r_paren, StopAtSemi); 1013 return; 1014 } 1015 IdentifierLoc *Platform = ParseIdentifierLoc(); 1016 if (const IdentifierInfo *const Ident = Platform->Ident) { 1017 // Canonicalize platform name from "macosx" to "macos". 1018 if (Ident->getName() == "macosx") 1019 Platform->Ident = PP.getIdentifierInfo("macos"); 1020 // Canonicalize platform name from "macosx_app_extension" to 1021 // "macos_app_extension". 1022 else if (Ident->getName() == "macosx_app_extension") 1023 Platform->Ident = PP.getIdentifierInfo("macos_app_extension"); 1024 else 1025 Platform->Ident = PP.getIdentifierInfo( 1026 AvailabilityAttr::canonicalizePlatformName(Ident->getName())); 1027 } 1028 1029 // Parse the ',' following the platform name. 1030 if (ExpectAndConsume(tok::comma)) { 1031 SkipUntil(tok::r_paren, StopAtSemi); 1032 return; 1033 } 1034 1035 // If we haven't grabbed the pointers for the identifiers 1036 // "introduced", "deprecated", and "obsoleted", do so now. 1037 if (!Ident_introduced) { 1038 Ident_introduced = PP.getIdentifierInfo("introduced"); 1039 Ident_deprecated = PP.getIdentifierInfo("deprecated"); 1040 Ident_obsoleted = PP.getIdentifierInfo("obsoleted"); 1041 Ident_unavailable = PP.getIdentifierInfo("unavailable"); 1042 Ident_message = PP.getIdentifierInfo("message"); 1043 Ident_strict = PP.getIdentifierInfo("strict"); 1044 Ident_replacement = PP.getIdentifierInfo("replacement"); 1045 } 1046 1047 // Parse the optional "strict", the optional "replacement" and the set of 1048 // introductions/deprecations/removals. 1049 SourceLocation UnavailableLoc, StrictLoc; 1050 do { 1051 if (Tok.isNot(tok::identifier)) { 1052 Diag(Tok, diag::err_availability_expected_change); 1053 SkipUntil(tok::r_paren, StopAtSemi); 1054 return; 1055 } 1056 IdentifierInfo *Keyword = Tok.getIdentifierInfo(); 1057 SourceLocation KeywordLoc = ConsumeToken(); 1058 1059 if (Keyword == Ident_strict) { 1060 if (StrictLoc.isValid()) { 1061 Diag(KeywordLoc, diag::err_availability_redundant) 1062 << Keyword << SourceRange(StrictLoc); 1063 } 1064 StrictLoc = KeywordLoc; 1065 continue; 1066 } 1067 1068 if (Keyword == Ident_unavailable) { 1069 if (UnavailableLoc.isValid()) { 1070 Diag(KeywordLoc, diag::err_availability_redundant) 1071 << Keyword << SourceRange(UnavailableLoc); 1072 } 1073 UnavailableLoc = KeywordLoc; 1074 continue; 1075 } 1076 1077 if (Keyword == Ident_deprecated && Platform->Ident && 1078 Platform->Ident->isStr("swift")) { 1079 // For swift, we deprecate for all versions. 1080 if (Changes[Deprecated].KeywordLoc.isValid()) { 1081 Diag(KeywordLoc, diag::err_availability_redundant) 1082 << Keyword 1083 << SourceRange(Changes[Deprecated].KeywordLoc); 1084 } 1085 1086 Changes[Deprecated].KeywordLoc = KeywordLoc; 1087 // Use a fake version here. 1088 Changes[Deprecated].Version = VersionTuple(1); 1089 continue; 1090 } 1091 1092 if (Tok.isNot(tok::equal)) { 1093 Diag(Tok, diag::err_expected_after) << Keyword << tok::equal; 1094 SkipUntil(tok::r_paren, StopAtSemi); 1095 return; 1096 } 1097 ConsumeToken(); 1098 if (Keyword == Ident_message || Keyword == Ident_replacement) { 1099 if (Tok.isNot(tok::string_literal)) { 1100 Diag(Tok, diag::err_expected_string_literal) 1101 << /*Source='availability attribute'*/2; 1102 SkipUntil(tok::r_paren, StopAtSemi); 1103 return; 1104 } 1105 if (Keyword == Ident_message) 1106 MessageExpr = ParseStringLiteralExpression(); 1107 else 1108 ReplacementExpr = ParseStringLiteralExpression(); 1109 // Also reject wide string literals. 1110 if (StringLiteral *MessageStringLiteral = 1111 cast_or_null<StringLiteral>(MessageExpr.get())) { 1112 if (MessageStringLiteral->getCharByteWidth() != 1) { 1113 Diag(MessageStringLiteral->getSourceRange().getBegin(), 1114 diag::err_expected_string_literal) 1115 << /*Source='availability attribute'*/ 2; 1116 SkipUntil(tok::r_paren, StopAtSemi); 1117 return; 1118 } 1119 } 1120 if (Keyword == Ident_message) 1121 break; 1122 else 1123 continue; 1124 } 1125 1126 // Special handling of 'NA' only when applied to introduced or 1127 // deprecated. 1128 if ((Keyword == Ident_introduced || Keyword == Ident_deprecated) && 1129 Tok.is(tok::identifier)) { 1130 IdentifierInfo *NA = Tok.getIdentifierInfo(); 1131 if (NA->getName() == "NA") { 1132 ConsumeToken(); 1133 if (Keyword == Ident_introduced) 1134 UnavailableLoc = KeywordLoc; 1135 continue; 1136 } 1137 } 1138 1139 SourceRange VersionRange; 1140 VersionTuple Version = ParseVersionTuple(VersionRange); 1141 1142 if (Version.empty()) { 1143 SkipUntil(tok::r_paren, StopAtSemi); 1144 return; 1145 } 1146 1147 unsigned Index; 1148 if (Keyword == Ident_introduced) 1149 Index = Introduced; 1150 else if (Keyword == Ident_deprecated) 1151 Index = Deprecated; 1152 else if (Keyword == Ident_obsoleted) 1153 Index = Obsoleted; 1154 else 1155 Index = Unknown; 1156 1157 if (Index < Unknown) { 1158 if (!Changes[Index].KeywordLoc.isInvalid()) { 1159 Diag(KeywordLoc, diag::err_availability_redundant) 1160 << Keyword 1161 << SourceRange(Changes[Index].KeywordLoc, 1162 Changes[Index].VersionRange.getEnd()); 1163 } 1164 1165 Changes[Index].KeywordLoc = KeywordLoc; 1166 Changes[Index].Version = Version; 1167 Changes[Index].VersionRange = VersionRange; 1168 } else { 1169 Diag(KeywordLoc, diag::err_availability_unknown_change) 1170 << Keyword << VersionRange; 1171 } 1172 1173 } while (TryConsumeToken(tok::comma)); 1174 1175 // Closing ')'. 1176 if (T.consumeClose()) 1177 return; 1178 1179 if (endLoc) 1180 *endLoc = T.getCloseLocation(); 1181 1182 // The 'unavailable' availability cannot be combined with any other 1183 // availability changes. Make sure that hasn't happened. 1184 if (UnavailableLoc.isValid()) { 1185 bool Complained = false; 1186 for (unsigned Index = Introduced; Index != Unknown; ++Index) { 1187 if (Changes[Index].KeywordLoc.isValid()) { 1188 if (!Complained) { 1189 Diag(UnavailableLoc, diag::warn_availability_and_unavailable) 1190 << SourceRange(Changes[Index].KeywordLoc, 1191 Changes[Index].VersionRange.getEnd()); 1192 Complained = true; 1193 } 1194 1195 // Clear out the availability. 1196 Changes[Index] = AvailabilityChange(); 1197 } 1198 } 1199 } 1200 1201 // Record this attribute 1202 attrs.addNew(&Availability, 1203 SourceRange(AvailabilityLoc, T.getCloseLocation()), 1204 ScopeName, ScopeLoc, 1205 Platform, 1206 Changes[Introduced], 1207 Changes[Deprecated], 1208 Changes[Obsoleted], 1209 UnavailableLoc, MessageExpr.get(), 1210 Syntax, StrictLoc, ReplacementExpr.get()); 1211 } 1212 1213 /// Parse the contents of the "external_source_symbol" attribute. 1214 /// 1215 /// external-source-symbol-attribute: 1216 /// 'external_source_symbol' '(' keyword-arg-list ')' 1217 /// 1218 /// keyword-arg-list: 1219 /// keyword-arg 1220 /// keyword-arg ',' keyword-arg-list 1221 /// 1222 /// keyword-arg: 1223 /// 'language' '=' <string> 1224 /// 'defined_in' '=' <string> 1225 /// 'generated_declaration' 1226 void Parser::ParseExternalSourceSymbolAttribute( 1227 IdentifierInfo &ExternalSourceSymbol, SourceLocation Loc, 1228 ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName, 1229 SourceLocation ScopeLoc, ParsedAttr::Syntax Syntax) { 1230 // Opening '('. 1231 BalancedDelimiterTracker T(*this, tok::l_paren); 1232 if (T.expectAndConsume()) 1233 return; 1234 1235 // Initialize the pointers for the keyword identifiers when required. 1236 if (!Ident_language) { 1237 Ident_language = PP.getIdentifierInfo("language"); 1238 Ident_defined_in = PP.getIdentifierInfo("defined_in"); 1239 Ident_generated_declaration = PP.getIdentifierInfo("generated_declaration"); 1240 } 1241 1242 ExprResult Language; 1243 bool HasLanguage = false; 1244 ExprResult DefinedInExpr; 1245 bool HasDefinedIn = false; 1246 IdentifierLoc *GeneratedDeclaration = nullptr; 1247 1248 // Parse the language/defined_in/generated_declaration keywords 1249 do { 1250 if (Tok.isNot(tok::identifier)) { 1251 Diag(Tok, diag::err_external_source_symbol_expected_keyword); 1252 SkipUntil(tok::r_paren, StopAtSemi); 1253 return; 1254 } 1255 1256 SourceLocation KeywordLoc = Tok.getLocation(); 1257 IdentifierInfo *Keyword = Tok.getIdentifierInfo(); 1258 if (Keyword == Ident_generated_declaration) { 1259 if (GeneratedDeclaration) { 1260 Diag(Tok, diag::err_external_source_symbol_duplicate_clause) << Keyword; 1261 SkipUntil(tok::r_paren, StopAtSemi); 1262 return; 1263 } 1264 GeneratedDeclaration = ParseIdentifierLoc(); 1265 continue; 1266 } 1267 1268 if (Keyword != Ident_language && Keyword != Ident_defined_in) { 1269 Diag(Tok, diag::err_external_source_symbol_expected_keyword); 1270 SkipUntil(tok::r_paren, StopAtSemi); 1271 return; 1272 } 1273 1274 ConsumeToken(); 1275 if (ExpectAndConsume(tok::equal, diag::err_expected_after, 1276 Keyword->getName())) { 1277 SkipUntil(tok::r_paren, StopAtSemi); 1278 return; 1279 } 1280 1281 bool HadLanguage = HasLanguage, HadDefinedIn = HasDefinedIn; 1282 if (Keyword == Ident_language) 1283 HasLanguage = true; 1284 else 1285 HasDefinedIn = true; 1286 1287 if (Tok.isNot(tok::string_literal)) { 1288 Diag(Tok, diag::err_expected_string_literal) 1289 << /*Source='external_source_symbol attribute'*/ 3 1290 << /*language | source container*/ (Keyword != Ident_language); 1291 SkipUntil(tok::comma, tok::r_paren, StopAtSemi | StopBeforeMatch); 1292 continue; 1293 } 1294 if (Keyword == Ident_language) { 1295 if (HadLanguage) { 1296 Diag(KeywordLoc, diag::err_external_source_symbol_duplicate_clause) 1297 << Keyword; 1298 ParseStringLiteralExpression(); 1299 continue; 1300 } 1301 Language = ParseStringLiteralExpression(); 1302 } else { 1303 assert(Keyword == Ident_defined_in && "Invalid clause keyword!"); 1304 if (HadDefinedIn) { 1305 Diag(KeywordLoc, diag::err_external_source_symbol_duplicate_clause) 1306 << Keyword; 1307 ParseStringLiteralExpression(); 1308 continue; 1309 } 1310 DefinedInExpr = ParseStringLiteralExpression(); 1311 } 1312 } while (TryConsumeToken(tok::comma)); 1313 1314 // Closing ')'. 1315 if (T.consumeClose()) 1316 return; 1317 if (EndLoc) 1318 *EndLoc = T.getCloseLocation(); 1319 1320 ArgsUnion Args[] = {Language.get(), DefinedInExpr.get(), 1321 GeneratedDeclaration}; 1322 Attrs.addNew(&ExternalSourceSymbol, SourceRange(Loc, T.getCloseLocation()), 1323 ScopeName, ScopeLoc, Args, llvm::array_lengthof(Args), Syntax); 1324 } 1325 1326 /// Parse the contents of the "objc_bridge_related" attribute. 1327 /// objc_bridge_related '(' related_class ',' opt-class_method ',' opt-instance_method ')' 1328 /// related_class: 1329 /// Identifier 1330 /// 1331 /// opt-class_method: 1332 /// Identifier: | <empty> 1333 /// 1334 /// opt-instance_method: 1335 /// Identifier | <empty> 1336 /// 1337 void Parser::ParseObjCBridgeRelatedAttribute(IdentifierInfo &ObjCBridgeRelated, 1338 SourceLocation ObjCBridgeRelatedLoc, 1339 ParsedAttributes &attrs, 1340 SourceLocation *endLoc, 1341 IdentifierInfo *ScopeName, 1342 SourceLocation ScopeLoc, 1343 ParsedAttr::Syntax Syntax) { 1344 // Opening '('. 1345 BalancedDelimiterTracker T(*this, tok::l_paren); 1346 if (T.consumeOpen()) { 1347 Diag(Tok, diag::err_expected) << tok::l_paren; 1348 return; 1349 } 1350 1351 // Parse the related class name. 1352 if (Tok.isNot(tok::identifier)) { 1353 Diag(Tok, diag::err_objcbridge_related_expected_related_class); 1354 SkipUntil(tok::r_paren, StopAtSemi); 1355 return; 1356 } 1357 IdentifierLoc *RelatedClass = ParseIdentifierLoc(); 1358 if (ExpectAndConsume(tok::comma)) { 1359 SkipUntil(tok::r_paren, StopAtSemi); 1360 return; 1361 } 1362 1363 // Parse class method name. It's non-optional in the sense that a trailing 1364 // comma is required, but it can be the empty string, and then we record a 1365 // nullptr. 1366 IdentifierLoc *ClassMethod = nullptr; 1367 if (Tok.is(tok::identifier)) { 1368 ClassMethod = ParseIdentifierLoc(); 1369 if (!TryConsumeToken(tok::colon)) { 1370 Diag(Tok, diag::err_objcbridge_related_selector_name); 1371 SkipUntil(tok::r_paren, StopAtSemi); 1372 return; 1373 } 1374 } 1375 if (!TryConsumeToken(tok::comma)) { 1376 if (Tok.is(tok::colon)) 1377 Diag(Tok, diag::err_objcbridge_related_selector_name); 1378 else 1379 Diag(Tok, diag::err_expected) << tok::comma; 1380 SkipUntil(tok::r_paren, StopAtSemi); 1381 return; 1382 } 1383 1384 // Parse instance method name. Also non-optional but empty string is 1385 // permitted. 1386 IdentifierLoc *InstanceMethod = nullptr; 1387 if (Tok.is(tok::identifier)) 1388 InstanceMethod = ParseIdentifierLoc(); 1389 else if (Tok.isNot(tok::r_paren)) { 1390 Diag(Tok, diag::err_expected) << tok::r_paren; 1391 SkipUntil(tok::r_paren, StopAtSemi); 1392 return; 1393 } 1394 1395 // Closing ')'. 1396 if (T.consumeClose()) 1397 return; 1398 1399 if (endLoc) 1400 *endLoc = T.getCloseLocation(); 1401 1402 // Record this attribute 1403 attrs.addNew(&ObjCBridgeRelated, 1404 SourceRange(ObjCBridgeRelatedLoc, T.getCloseLocation()), 1405 ScopeName, ScopeLoc, 1406 RelatedClass, 1407 ClassMethod, 1408 InstanceMethod, 1409 Syntax); 1410 } 1411 1412 // Late Parsed Attributes: 1413 // See other examples of late parsing in lib/Parse/ParseCXXInlineMethods 1414 1415 void Parser::LateParsedDeclaration::ParseLexedAttributes() {} 1416 1417 void Parser::LateParsedClass::ParseLexedAttributes() { 1418 Self->ParseLexedAttributes(*Class); 1419 } 1420 1421 void Parser::LateParsedAttribute::ParseLexedAttributes() { 1422 Self->ParseLexedAttribute(*this, true, false); 1423 } 1424 1425 /// Wrapper class which calls ParseLexedAttribute, after setting up the 1426 /// scope appropriately. 1427 void Parser::ParseLexedAttributes(ParsingClass &Class) { 1428 // Deal with templates 1429 // FIXME: Test cases to make sure this does the right thing for templates. 1430 bool HasTemplateScope = !Class.TopLevelClass && Class.TemplateScope; 1431 ParseScope ClassTemplateScope(this, Scope::TemplateParamScope, 1432 HasTemplateScope); 1433 if (HasTemplateScope) 1434 Actions.ActOnReenterTemplateScope(getCurScope(), Class.TagOrTemplate); 1435 1436 // Set or update the scope flags. 1437 bool AlreadyHasClassScope = Class.TopLevelClass; 1438 unsigned ScopeFlags = Scope::ClassScope|Scope::DeclScope; 1439 ParseScope ClassScope(this, ScopeFlags, !AlreadyHasClassScope); 1440 ParseScopeFlags ClassScopeFlags(this, ScopeFlags, AlreadyHasClassScope); 1441 1442 // Enter the scope of nested classes 1443 if (!AlreadyHasClassScope) 1444 Actions.ActOnStartDelayedMemberDeclarations(getCurScope(), 1445 Class.TagOrTemplate); 1446 if (!Class.LateParsedDeclarations.empty()) { 1447 for (unsigned i = 0, ni = Class.LateParsedDeclarations.size(); i < ni; ++i){ 1448 Class.LateParsedDeclarations[i]->ParseLexedAttributes(); 1449 } 1450 } 1451 1452 if (!AlreadyHasClassScope) 1453 Actions.ActOnFinishDelayedMemberDeclarations(getCurScope(), 1454 Class.TagOrTemplate); 1455 } 1456 1457 /// Parse all attributes in LAs, and attach them to Decl D. 1458 void Parser::ParseLexedAttributeList(LateParsedAttrList &LAs, Decl *D, 1459 bool EnterScope, bool OnDefinition) { 1460 assert(LAs.parseSoon() && 1461 "Attribute list should be marked for immediate parsing."); 1462 for (unsigned i = 0, ni = LAs.size(); i < ni; ++i) { 1463 if (D) 1464 LAs[i]->addDecl(D); 1465 ParseLexedAttribute(*LAs[i], EnterScope, OnDefinition); 1466 delete LAs[i]; 1467 } 1468 LAs.clear(); 1469 } 1470 1471 /// Finish parsing an attribute for which parsing was delayed. 1472 /// This will be called at the end of parsing a class declaration 1473 /// for each LateParsedAttribute. We consume the saved tokens and 1474 /// create an attribute with the arguments filled in. We add this 1475 /// to the Attribute list for the decl. 1476 void Parser::ParseLexedAttribute(LateParsedAttribute &LA, 1477 bool EnterScope, bool OnDefinition) { 1478 // Create a fake EOF so that attribute parsing won't go off the end of the 1479 // attribute. 1480 Token AttrEnd; 1481 AttrEnd.startToken(); 1482 AttrEnd.setKind(tok::eof); 1483 AttrEnd.setLocation(Tok.getLocation()); 1484 AttrEnd.setEofData(LA.Toks.data()); 1485 LA.Toks.push_back(AttrEnd); 1486 1487 // Append the current token at the end of the new token stream so that it 1488 // doesn't get lost. 1489 LA.Toks.push_back(Tok); 1490 PP.EnterTokenStream(LA.Toks, true, /*IsReinject=*/true); 1491 // Consume the previously pushed token. 1492 ConsumeAnyToken(/*ConsumeCodeCompletionTok=*/true); 1493 1494 ParsedAttributes Attrs(AttrFactory); 1495 SourceLocation endLoc; 1496 1497 if (LA.Decls.size() > 0) { 1498 Decl *D = LA.Decls[0]; 1499 NamedDecl *ND = dyn_cast<NamedDecl>(D); 1500 RecordDecl *RD = dyn_cast_or_null<RecordDecl>(D->getDeclContext()); 1501 1502 // Allow 'this' within late-parsed attributes. 1503 Sema::CXXThisScopeRAII ThisScope(Actions, RD, Qualifiers(), 1504 ND && ND->isCXXInstanceMember()); 1505 1506 if (LA.Decls.size() == 1) { 1507 // If the Decl is templatized, add template parameters to scope. 1508 bool HasTemplateScope = EnterScope && D->isTemplateDecl(); 1509 ParseScope TempScope(this, Scope::TemplateParamScope, HasTemplateScope); 1510 if (HasTemplateScope) 1511 Actions.ActOnReenterTemplateScope(Actions.CurScope, D); 1512 1513 // If the Decl is on a function, add function parameters to the scope. 1514 bool HasFunScope = EnterScope && D->isFunctionOrFunctionTemplate(); 1515 ParseScope FnScope( 1516 this, Scope::FnScope | Scope::DeclScope | Scope::CompoundStmtScope, 1517 HasFunScope); 1518 if (HasFunScope) 1519 Actions.ActOnReenterFunctionContext(Actions.CurScope, D); 1520 1521 ParseGNUAttributeArgs(&LA.AttrName, LA.AttrNameLoc, Attrs, &endLoc, 1522 nullptr, SourceLocation(), ParsedAttr::AS_GNU, 1523 nullptr); 1524 1525 if (HasFunScope) { 1526 Actions.ActOnExitFunctionContext(); 1527 FnScope.Exit(); // Pop scope, and remove Decls from IdResolver 1528 } 1529 if (HasTemplateScope) { 1530 TempScope.Exit(); 1531 } 1532 } else { 1533 // If there are multiple decls, then the decl cannot be within the 1534 // function scope. 1535 ParseGNUAttributeArgs(&LA.AttrName, LA.AttrNameLoc, Attrs, &endLoc, 1536 nullptr, SourceLocation(), ParsedAttr::AS_GNU, 1537 nullptr); 1538 } 1539 } else { 1540 Diag(Tok, diag::warn_attribute_no_decl) << LA.AttrName.getName(); 1541 } 1542 1543 if (OnDefinition && !Attrs.empty() && !Attrs.begin()->isCXX11Attribute() && 1544 Attrs.begin()->isKnownToGCC()) 1545 Diag(Tok, diag::warn_attribute_on_function_definition) 1546 << &LA.AttrName; 1547 1548 for (unsigned i = 0, ni = LA.Decls.size(); i < ni; ++i) 1549 Actions.ActOnFinishDelayedAttribute(getCurScope(), LA.Decls[i], Attrs); 1550 1551 // Due to a parsing error, we either went over the cached tokens or 1552 // there are still cached tokens left, so we skip the leftover tokens. 1553 while (Tok.isNot(tok::eof)) 1554 ConsumeAnyToken(); 1555 1556 if (Tok.is(tok::eof) && Tok.getEofData() == AttrEnd.getEofData()) 1557 ConsumeAnyToken(); 1558 } 1559 1560 void Parser::ParseTypeTagForDatatypeAttribute(IdentifierInfo &AttrName, 1561 SourceLocation AttrNameLoc, 1562 ParsedAttributes &Attrs, 1563 SourceLocation *EndLoc, 1564 IdentifierInfo *ScopeName, 1565 SourceLocation ScopeLoc, 1566 ParsedAttr::Syntax Syntax) { 1567 assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('"); 1568 1569 BalancedDelimiterTracker T(*this, tok::l_paren); 1570 T.consumeOpen(); 1571 1572 if (Tok.isNot(tok::identifier)) { 1573 Diag(Tok, diag::err_expected) << tok::identifier; 1574 T.skipToEnd(); 1575 return; 1576 } 1577 IdentifierLoc *ArgumentKind = ParseIdentifierLoc(); 1578 1579 if (ExpectAndConsume(tok::comma)) { 1580 T.skipToEnd(); 1581 return; 1582 } 1583 1584 SourceRange MatchingCTypeRange; 1585 TypeResult MatchingCType = ParseTypeName(&MatchingCTypeRange); 1586 if (MatchingCType.isInvalid()) { 1587 T.skipToEnd(); 1588 return; 1589 } 1590 1591 bool LayoutCompatible = false; 1592 bool MustBeNull = false; 1593 while (TryConsumeToken(tok::comma)) { 1594 if (Tok.isNot(tok::identifier)) { 1595 Diag(Tok, diag::err_expected) << tok::identifier; 1596 T.skipToEnd(); 1597 return; 1598 } 1599 IdentifierInfo *Flag = Tok.getIdentifierInfo(); 1600 if (Flag->isStr("layout_compatible")) 1601 LayoutCompatible = true; 1602 else if (Flag->isStr("must_be_null")) 1603 MustBeNull = true; 1604 else { 1605 Diag(Tok, diag::err_type_safety_unknown_flag) << Flag; 1606 T.skipToEnd(); 1607 return; 1608 } 1609 ConsumeToken(); // consume flag 1610 } 1611 1612 if (!T.consumeClose()) { 1613 Attrs.addNewTypeTagForDatatype(&AttrName, AttrNameLoc, ScopeName, ScopeLoc, 1614 ArgumentKind, MatchingCType.get(), 1615 LayoutCompatible, MustBeNull, Syntax); 1616 } 1617 1618 if (EndLoc) 1619 *EndLoc = T.getCloseLocation(); 1620 } 1621 1622 /// DiagnoseProhibitedCXX11Attribute - We have found the opening square brackets 1623 /// of a C++11 attribute-specifier in a location where an attribute is not 1624 /// permitted. By C++11 [dcl.attr.grammar]p6, this is ill-formed. Diagnose this 1625 /// situation. 1626 /// 1627 /// \return \c true if we skipped an attribute-like chunk of tokens, \c false if 1628 /// this doesn't appear to actually be an attribute-specifier, and the caller 1629 /// should try to parse it. 1630 bool Parser::DiagnoseProhibitedCXX11Attribute() { 1631 assert(Tok.is(tok::l_square) && NextToken().is(tok::l_square)); 1632 1633 switch (isCXX11AttributeSpecifier(/*Disambiguate*/true)) { 1634 case CAK_NotAttributeSpecifier: 1635 // No diagnostic: we're in Obj-C++11 and this is not actually an attribute. 1636 return false; 1637 1638 case CAK_InvalidAttributeSpecifier: 1639 Diag(Tok.getLocation(), diag::err_l_square_l_square_not_attribute); 1640 return false; 1641 1642 case CAK_AttributeSpecifier: 1643 // Parse and discard the attributes. 1644 SourceLocation BeginLoc = ConsumeBracket(); 1645 ConsumeBracket(); 1646 SkipUntil(tok::r_square); 1647 assert(Tok.is(tok::r_square) && "isCXX11AttributeSpecifier lied"); 1648 SourceLocation EndLoc = ConsumeBracket(); 1649 Diag(BeginLoc, diag::err_attributes_not_allowed) 1650 << SourceRange(BeginLoc, EndLoc); 1651 return true; 1652 } 1653 llvm_unreachable("All cases handled above."); 1654 } 1655 1656 /// We have found the opening square brackets of a C++11 1657 /// attribute-specifier in a location where an attribute is not permitted, but 1658 /// we know where the attributes ought to be written. Parse them anyway, and 1659 /// provide a fixit moving them to the right place. 1660 void Parser::DiagnoseMisplacedCXX11Attribute(ParsedAttributesWithRange &Attrs, 1661 SourceLocation CorrectLocation) { 1662 assert((Tok.is(tok::l_square) && NextToken().is(tok::l_square)) || 1663 Tok.is(tok::kw_alignas)); 1664 1665 // Consume the attributes. 1666 SourceLocation Loc = Tok.getLocation(); 1667 ParseCXX11Attributes(Attrs); 1668 CharSourceRange AttrRange(SourceRange(Loc, Attrs.Range.getEnd()), true); 1669 // FIXME: use err_attributes_misplaced 1670 Diag(Loc, diag::err_attributes_not_allowed) 1671 << FixItHint::CreateInsertionFromRange(CorrectLocation, AttrRange) 1672 << FixItHint::CreateRemoval(AttrRange); 1673 } 1674 1675 void Parser::DiagnoseProhibitedAttributes( 1676 const SourceRange &Range, const SourceLocation CorrectLocation) { 1677 if (CorrectLocation.isValid()) { 1678 CharSourceRange AttrRange(Range, true); 1679 Diag(CorrectLocation, diag::err_attributes_misplaced) 1680 << FixItHint::CreateInsertionFromRange(CorrectLocation, AttrRange) 1681 << FixItHint::CreateRemoval(AttrRange); 1682 } else 1683 Diag(Range.getBegin(), diag::err_attributes_not_allowed) << Range; 1684 } 1685 1686 void Parser::ProhibitCXX11Attributes(ParsedAttributesWithRange &Attrs, 1687 unsigned DiagID) { 1688 for (const ParsedAttr &AL : Attrs) { 1689 if (!AL.isCXX11Attribute() && !AL.isC2xAttribute()) 1690 continue; 1691 if (AL.getKind() == ParsedAttr::UnknownAttribute) 1692 Diag(AL.getLoc(), diag::warn_unknown_attribute_ignored) << AL; 1693 else { 1694 Diag(AL.getLoc(), DiagID) << AL; 1695 AL.setInvalid(); 1696 } 1697 } 1698 } 1699 1700 // Usually, `__attribute__((attrib)) class Foo {} var` means that attribute 1701 // applies to var, not the type Foo. 1702 // As an exception to the rule, __declspec(align(...)) before the 1703 // class-key affects the type instead of the variable. 1704 // Also, Microsoft-style [attributes] seem to affect the type instead of the 1705 // variable. 1706 // This function moves attributes that should apply to the type off DS to Attrs. 1707 void Parser::stripTypeAttributesOffDeclSpec(ParsedAttributesWithRange &Attrs, 1708 DeclSpec &DS, 1709 Sema::TagUseKind TUK) { 1710 if (TUK == Sema::TUK_Reference) 1711 return; 1712 1713 llvm::SmallVector<ParsedAttr *, 1> ToBeMoved; 1714 1715 for (ParsedAttr &AL : DS.getAttributes()) { 1716 if ((AL.getKind() == ParsedAttr::AT_Aligned && 1717 AL.isDeclspecAttribute()) || 1718 AL.isMicrosoftAttribute()) 1719 ToBeMoved.push_back(&AL); 1720 } 1721 1722 for (ParsedAttr *AL : ToBeMoved) { 1723 DS.getAttributes().remove(AL); 1724 Attrs.addAtEnd(AL); 1725 } 1726 } 1727 1728 /// ParseDeclaration - Parse a full 'declaration', which consists of 1729 /// declaration-specifiers, some number of declarators, and a semicolon. 1730 /// 'Context' should be a DeclaratorContext value. This returns the 1731 /// location of the semicolon in DeclEnd. 1732 /// 1733 /// declaration: [C99 6.7] 1734 /// block-declaration -> 1735 /// simple-declaration 1736 /// others [FIXME] 1737 /// [C++] template-declaration 1738 /// [C++] namespace-definition 1739 /// [C++] using-directive 1740 /// [C++] using-declaration 1741 /// [C++11/C11] static_assert-declaration 1742 /// others... [FIXME] 1743 /// 1744 Parser::DeclGroupPtrTy 1745 Parser::ParseDeclaration(DeclaratorContext Context, SourceLocation &DeclEnd, 1746 ParsedAttributesWithRange &attrs, 1747 SourceLocation *DeclSpecStart) { 1748 ParenBraceBracketBalancer BalancerRAIIObj(*this); 1749 // Must temporarily exit the objective-c container scope for 1750 // parsing c none objective-c decls. 1751 ObjCDeclContextSwitch ObjCDC(*this); 1752 1753 Decl *SingleDecl = nullptr; 1754 switch (Tok.getKind()) { 1755 case tok::kw_template: 1756 case tok::kw_export: 1757 ProhibitAttributes(attrs); 1758 SingleDecl = ParseDeclarationStartingWithTemplate(Context, DeclEnd, attrs); 1759 break; 1760 case tok::kw_inline: 1761 // Could be the start of an inline namespace. Allowed as an ext in C++03. 1762 if (getLangOpts().CPlusPlus && NextToken().is(tok::kw_namespace)) { 1763 ProhibitAttributes(attrs); 1764 SourceLocation InlineLoc = ConsumeToken(); 1765 return ParseNamespace(Context, DeclEnd, InlineLoc); 1766 } 1767 return ParseSimpleDeclaration(Context, DeclEnd, attrs, true, nullptr, 1768 DeclSpecStart); 1769 case tok::kw_namespace: 1770 ProhibitAttributes(attrs); 1771 return ParseNamespace(Context, DeclEnd); 1772 case tok::kw_using: 1773 return ParseUsingDirectiveOrDeclaration(Context, ParsedTemplateInfo(), 1774 DeclEnd, attrs); 1775 case tok::kw_static_assert: 1776 case tok::kw__Static_assert: 1777 ProhibitAttributes(attrs); 1778 SingleDecl = ParseStaticAssertDeclaration(DeclEnd); 1779 break; 1780 default: 1781 return ParseSimpleDeclaration(Context, DeclEnd, attrs, true, nullptr, 1782 DeclSpecStart); 1783 } 1784 1785 // This routine returns a DeclGroup, if the thing we parsed only contains a 1786 // single decl, convert it now. 1787 return Actions.ConvertDeclToDeclGroup(SingleDecl); 1788 } 1789 1790 /// simple-declaration: [C99 6.7: declaration] [C++ 7p1: dcl.dcl] 1791 /// declaration-specifiers init-declarator-list[opt] ';' 1792 /// [C++11] attribute-specifier-seq decl-specifier-seq[opt] 1793 /// init-declarator-list ';' 1794 ///[C90/C++]init-declarator-list ';' [TODO] 1795 /// [OMP] threadprivate-directive 1796 /// [OMP] allocate-directive [TODO] 1797 /// 1798 /// for-range-declaration: [C++11 6.5p1: stmt.ranged] 1799 /// attribute-specifier-seq[opt] type-specifier-seq declarator 1800 /// 1801 /// If RequireSemi is false, this does not check for a ';' at the end of the 1802 /// declaration. If it is true, it checks for and eats it. 1803 /// 1804 /// If FRI is non-null, we might be parsing a for-range-declaration instead 1805 /// of a simple-declaration. If we find that we are, we also parse the 1806 /// for-range-initializer, and place it here. 1807 /// 1808 /// DeclSpecStart is used when decl-specifiers are parsed before parsing 1809 /// the Declaration. The SourceLocation for this Decl is set to 1810 /// DeclSpecStart if DeclSpecStart is non-null. 1811 Parser::DeclGroupPtrTy Parser::ParseSimpleDeclaration( 1812 DeclaratorContext Context, SourceLocation &DeclEnd, 1813 ParsedAttributesWithRange &Attrs, bool RequireSemi, ForRangeInit *FRI, 1814 SourceLocation *DeclSpecStart) { 1815 // Parse the common declaration-specifiers piece. 1816 ParsingDeclSpec DS(*this); 1817 1818 DeclSpecContext DSContext = getDeclSpecContextFromDeclaratorContext(Context); 1819 ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS_none, DSContext); 1820 1821 // If we had a free-standing type definition with a missing semicolon, we 1822 // may get this far before the problem becomes obvious. 1823 if (DS.hasTagDefinition() && 1824 DiagnoseMissingSemiAfterTagDefinition(DS, AS_none, DSContext)) 1825 return nullptr; 1826 1827 // C99 6.7.2.3p6: Handle "struct-or-union identifier;", "enum { X };" 1828 // declaration-specifiers init-declarator-list[opt] ';' 1829 if (Tok.is(tok::semi)) { 1830 ProhibitAttributes(Attrs); 1831 DeclEnd = Tok.getLocation(); 1832 if (RequireSemi) ConsumeToken(); 1833 RecordDecl *AnonRecord = nullptr; 1834 Decl *TheDecl = Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS_none, 1835 DS, AnonRecord); 1836 DS.complete(TheDecl); 1837 if (AnonRecord) { 1838 Decl* decls[] = {AnonRecord, TheDecl}; 1839 return Actions.BuildDeclaratorGroup(decls); 1840 } 1841 return Actions.ConvertDeclToDeclGroup(TheDecl); 1842 } 1843 1844 if (DeclSpecStart) 1845 DS.SetRangeStart(*DeclSpecStart); 1846 1847 DS.takeAttributesFrom(Attrs); 1848 return ParseDeclGroup(DS, Context, &DeclEnd, FRI); 1849 } 1850 1851 /// Returns true if this might be the start of a declarator, or a common typo 1852 /// for a declarator. 1853 bool Parser::MightBeDeclarator(DeclaratorContext Context) { 1854 switch (Tok.getKind()) { 1855 case tok::annot_cxxscope: 1856 case tok::annot_template_id: 1857 case tok::caret: 1858 case tok::code_completion: 1859 case tok::coloncolon: 1860 case tok::ellipsis: 1861 case tok::kw___attribute: 1862 case tok::kw_operator: 1863 case tok::l_paren: 1864 case tok::star: 1865 return true; 1866 1867 case tok::amp: 1868 case tok::ampamp: 1869 return getLangOpts().CPlusPlus; 1870 1871 case tok::l_square: // Might be an attribute on an unnamed bit-field. 1872 return Context == DeclaratorContext::MemberContext && 1873 getLangOpts().CPlusPlus11 && NextToken().is(tok::l_square); 1874 1875 case tok::colon: // Might be a typo for '::' or an unnamed bit-field. 1876 return Context == DeclaratorContext::MemberContext || 1877 getLangOpts().CPlusPlus; 1878 1879 case tok::identifier: 1880 switch (NextToken().getKind()) { 1881 case tok::code_completion: 1882 case tok::coloncolon: 1883 case tok::comma: 1884 case tok::equal: 1885 case tok::equalequal: // Might be a typo for '='. 1886 case tok::kw_alignas: 1887 case tok::kw_asm: 1888 case tok::kw___attribute: 1889 case tok::l_brace: 1890 case tok::l_paren: 1891 case tok::l_square: 1892 case tok::less: 1893 case tok::r_brace: 1894 case tok::r_paren: 1895 case tok::r_square: 1896 case tok::semi: 1897 return true; 1898 1899 case tok::colon: 1900 // At namespace scope, 'identifier:' is probably a typo for 'identifier::' 1901 // and in block scope it's probably a label. Inside a class definition, 1902 // this is a bit-field. 1903 return Context == DeclaratorContext::MemberContext || 1904 (getLangOpts().CPlusPlus && 1905 Context == DeclaratorContext::FileContext); 1906 1907 case tok::identifier: // Possible virt-specifier. 1908 return getLangOpts().CPlusPlus11 && isCXX11VirtSpecifier(NextToken()); 1909 1910 default: 1911 return false; 1912 } 1913 1914 default: 1915 return false; 1916 } 1917 } 1918 1919 /// Skip until we reach something which seems like a sensible place to pick 1920 /// up parsing after a malformed declaration. This will sometimes stop sooner 1921 /// than SkipUntil(tok::r_brace) would, but will never stop later. 1922 void Parser::SkipMalformedDecl() { 1923 while (true) { 1924 switch (Tok.getKind()) { 1925 case tok::l_brace: 1926 // Skip until matching }, then stop. We've probably skipped over 1927 // a malformed class or function definition or similar. 1928 ConsumeBrace(); 1929 SkipUntil(tok::r_brace); 1930 if (Tok.isOneOf(tok::comma, tok::l_brace, tok::kw_try)) { 1931 // This declaration isn't over yet. Keep skipping. 1932 continue; 1933 } 1934 TryConsumeToken(tok::semi); 1935 return; 1936 1937 case tok::l_square: 1938 ConsumeBracket(); 1939 SkipUntil(tok::r_square); 1940 continue; 1941 1942 case tok::l_paren: 1943 ConsumeParen(); 1944 SkipUntil(tok::r_paren); 1945 continue; 1946 1947 case tok::r_brace: 1948 return; 1949 1950 case tok::semi: 1951 ConsumeToken(); 1952 return; 1953 1954 case tok::kw_inline: 1955 // 'inline namespace' at the start of a line is almost certainly 1956 // a good place to pick back up parsing, except in an Objective-C 1957 // @interface context. 1958 if (Tok.isAtStartOfLine() && NextToken().is(tok::kw_namespace) && 1959 (!ParsingInObjCContainer || CurParsedObjCImpl)) 1960 return; 1961 break; 1962 1963 case tok::kw_namespace: 1964 // 'namespace' at the start of a line is almost certainly a good 1965 // place to pick back up parsing, except in an Objective-C 1966 // @interface context. 1967 if (Tok.isAtStartOfLine() && 1968 (!ParsingInObjCContainer || CurParsedObjCImpl)) 1969 return; 1970 break; 1971 1972 case tok::at: 1973 // @end is very much like } in Objective-C contexts. 1974 if (NextToken().isObjCAtKeyword(tok::objc_end) && 1975 ParsingInObjCContainer) 1976 return; 1977 break; 1978 1979 case tok::minus: 1980 case tok::plus: 1981 // - and + probably start new method declarations in Objective-C contexts. 1982 if (Tok.isAtStartOfLine() && ParsingInObjCContainer) 1983 return; 1984 break; 1985 1986 case tok::eof: 1987 case tok::annot_module_begin: 1988 case tok::annot_module_end: 1989 case tok::annot_module_include: 1990 return; 1991 1992 default: 1993 break; 1994 } 1995 1996 ConsumeAnyToken(); 1997 } 1998 } 1999 2000 /// ParseDeclGroup - Having concluded that this is either a function 2001 /// definition or a group of object declarations, actually parse the 2002 /// result. 2003 Parser::DeclGroupPtrTy Parser::ParseDeclGroup(ParsingDeclSpec &DS, 2004 DeclaratorContext Context, 2005 SourceLocation *DeclEnd, 2006 ForRangeInit *FRI) { 2007 // Parse the first declarator. 2008 ParsingDeclarator D(*this, DS, Context); 2009 ParseDeclarator(D); 2010 2011 // Bail out if the first declarator didn't seem well-formed. 2012 if (!D.hasName() && !D.mayOmitIdentifier()) { 2013 SkipMalformedDecl(); 2014 return nullptr; 2015 } 2016 2017 // Save late-parsed attributes for now; they need to be parsed in the 2018 // appropriate function scope after the function Decl has been constructed. 2019 // These will be parsed in ParseFunctionDefinition or ParseLexedAttrList. 2020 LateParsedAttrList LateParsedAttrs(true); 2021 if (D.isFunctionDeclarator()) { 2022 MaybeParseGNUAttributes(D, &LateParsedAttrs); 2023 2024 // The _Noreturn keyword can't appear here, unlike the GNU noreturn 2025 // attribute. If we find the keyword here, tell the user to put it 2026 // at the start instead. 2027 if (Tok.is(tok::kw__Noreturn)) { 2028 SourceLocation Loc = ConsumeToken(); 2029 const char *PrevSpec; 2030 unsigned DiagID; 2031 2032 // We can offer a fixit if it's valid to mark this function as _Noreturn 2033 // and we don't have any other declarators in this declaration. 2034 bool Fixit = !DS.setFunctionSpecNoreturn(Loc, PrevSpec, DiagID); 2035 MaybeParseGNUAttributes(D, &LateParsedAttrs); 2036 Fixit &= Tok.isOneOf(tok::semi, tok::l_brace, tok::kw_try); 2037 2038 Diag(Loc, diag::err_c11_noreturn_misplaced) 2039 << (Fixit ? FixItHint::CreateRemoval(Loc) : FixItHint()) 2040 << (Fixit ? FixItHint::CreateInsertion(D.getBeginLoc(), "_Noreturn ") 2041 : FixItHint()); 2042 } 2043 } 2044 2045 // Check to see if we have a function *definition* which must have a body. 2046 if (D.isFunctionDeclarator() && 2047 // Look at the next token to make sure that this isn't a function 2048 // declaration. We have to check this because __attribute__ might be the 2049 // start of a function definition in GCC-extended K&R C. 2050 !isDeclarationAfterDeclarator()) { 2051 2052 // Function definitions are only allowed at file scope and in C++ classes. 2053 // The C++ inline method definition case is handled elsewhere, so we only 2054 // need to handle the file scope definition case. 2055 if (Context == DeclaratorContext::FileContext) { 2056 if (isStartOfFunctionDefinition(D)) { 2057 if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) { 2058 Diag(Tok, diag::err_function_declared_typedef); 2059 2060 // Recover by treating the 'typedef' as spurious. 2061 DS.ClearStorageClassSpecs(); 2062 } 2063 2064 Decl *TheDecl = 2065 ParseFunctionDefinition(D, ParsedTemplateInfo(), &LateParsedAttrs); 2066 return Actions.ConvertDeclToDeclGroup(TheDecl); 2067 } 2068 2069 if (isDeclarationSpecifier()) { 2070 // If there is an invalid declaration specifier right after the 2071 // function prototype, then we must be in a missing semicolon case 2072 // where this isn't actually a body. Just fall through into the code 2073 // that handles it as a prototype, and let the top-level code handle 2074 // the erroneous declspec where it would otherwise expect a comma or 2075 // semicolon. 2076 } else { 2077 Diag(Tok, diag::err_expected_fn_body); 2078 SkipUntil(tok::semi); 2079 return nullptr; 2080 } 2081 } else { 2082 if (Tok.is(tok::l_brace)) { 2083 Diag(Tok, diag::err_function_definition_not_allowed); 2084 SkipMalformedDecl(); 2085 return nullptr; 2086 } 2087 } 2088 } 2089 2090 if (ParseAsmAttributesAfterDeclarator(D)) 2091 return nullptr; 2092 2093 // C++0x [stmt.iter]p1: Check if we have a for-range-declarator. If so, we 2094 // must parse and analyze the for-range-initializer before the declaration is 2095 // analyzed. 2096 // 2097 // Handle the Objective-C for-in loop variable similarly, although we 2098 // don't need to parse the container in advance. 2099 if (FRI && (Tok.is(tok::colon) || isTokIdentifier_in())) { 2100 bool IsForRangeLoop = false; 2101 if (TryConsumeToken(tok::colon, FRI->ColonLoc)) { 2102 IsForRangeLoop = true; 2103 if (getLangOpts().OpenMP) 2104 Actions.startOpenMPCXXRangeFor(); 2105 if (Tok.is(tok::l_brace)) 2106 FRI->RangeExpr = ParseBraceInitializer(); 2107 else 2108 FRI->RangeExpr = ParseExpression(); 2109 } 2110 2111 Decl *ThisDecl = Actions.ActOnDeclarator(getCurScope(), D); 2112 if (IsForRangeLoop) { 2113 Actions.ActOnCXXForRangeDecl(ThisDecl); 2114 } else { 2115 // Obj-C for loop 2116 if (auto *VD = dyn_cast_or_null<VarDecl>(ThisDecl)) 2117 VD->setObjCForDecl(true); 2118 } 2119 Actions.FinalizeDeclaration(ThisDecl); 2120 D.complete(ThisDecl); 2121 return Actions.FinalizeDeclaratorGroup(getCurScope(), DS, ThisDecl); 2122 } 2123 2124 SmallVector<Decl *, 8> DeclsInGroup; 2125 Decl *FirstDecl = ParseDeclarationAfterDeclaratorAndAttributes( 2126 D, ParsedTemplateInfo(), FRI); 2127 if (LateParsedAttrs.size() > 0) 2128 ParseLexedAttributeList(LateParsedAttrs, FirstDecl, true, false); 2129 D.complete(FirstDecl); 2130 if (FirstDecl) 2131 DeclsInGroup.push_back(FirstDecl); 2132 2133 bool ExpectSemi = Context != DeclaratorContext::ForContext; 2134 2135 // If we don't have a comma, it is either the end of the list (a ';') or an 2136 // error, bail out. 2137 SourceLocation CommaLoc; 2138 while (TryConsumeToken(tok::comma, CommaLoc)) { 2139 if (Tok.isAtStartOfLine() && ExpectSemi && !MightBeDeclarator(Context)) { 2140 // This comma was followed by a line-break and something which can't be 2141 // the start of a declarator. The comma was probably a typo for a 2142 // semicolon. 2143 Diag(CommaLoc, diag::err_expected_semi_declaration) 2144 << FixItHint::CreateReplacement(CommaLoc, ";"); 2145 ExpectSemi = false; 2146 break; 2147 } 2148 2149 // Parse the next declarator. 2150 D.clear(); 2151 D.setCommaLoc(CommaLoc); 2152 2153 // Accept attributes in an init-declarator. In the first declarator in a 2154 // declaration, these would be part of the declspec. In subsequent 2155 // declarators, they become part of the declarator itself, so that they 2156 // don't apply to declarators after *this* one. Examples: 2157 // short __attribute__((common)) var; -> declspec 2158 // short var __attribute__((common)); -> declarator 2159 // short x, __attribute__((common)) var; -> declarator 2160 MaybeParseGNUAttributes(D); 2161 2162 // MSVC parses but ignores qualifiers after the comma as an extension. 2163 if (getLangOpts().MicrosoftExt) 2164 DiagnoseAndSkipExtendedMicrosoftTypeAttributes(); 2165 2166 ParseDeclarator(D); 2167 if (!D.isInvalidType()) { 2168 Decl *ThisDecl = ParseDeclarationAfterDeclarator(D); 2169 D.complete(ThisDecl); 2170 if (ThisDecl) 2171 DeclsInGroup.push_back(ThisDecl); 2172 } 2173 } 2174 2175 if (DeclEnd) 2176 *DeclEnd = Tok.getLocation(); 2177 2178 if (ExpectSemi && 2179 ExpectAndConsumeSemi(Context == DeclaratorContext::FileContext 2180 ? diag::err_invalid_token_after_toplevel_declarator 2181 : diag::err_expected_semi_declaration)) { 2182 // Okay, there was no semicolon and one was expected. If we see a 2183 // declaration specifier, just assume it was missing and continue parsing. 2184 // Otherwise things are very confused and we skip to recover. 2185 if (!isDeclarationSpecifier()) { 2186 SkipUntil(tok::r_brace, StopAtSemi | StopBeforeMatch); 2187 TryConsumeToken(tok::semi); 2188 } 2189 } 2190 2191 return Actions.FinalizeDeclaratorGroup(getCurScope(), DS, DeclsInGroup); 2192 } 2193 2194 /// Parse an optional simple-asm-expr and attributes, and attach them to a 2195 /// declarator. Returns true on an error. 2196 bool Parser::ParseAsmAttributesAfterDeclarator(Declarator &D) { 2197 // If a simple-asm-expr is present, parse it. 2198 if (Tok.is(tok::kw_asm)) { 2199 SourceLocation Loc; 2200 ExprResult AsmLabel(ParseSimpleAsm(&Loc)); 2201 if (AsmLabel.isInvalid()) { 2202 SkipUntil(tok::semi, StopBeforeMatch); 2203 return true; 2204 } 2205 2206 D.setAsmLabel(AsmLabel.get()); 2207 D.SetRangeEnd(Loc); 2208 } 2209 2210 MaybeParseGNUAttributes(D); 2211 return false; 2212 } 2213 2214 /// Parse 'declaration' after parsing 'declaration-specifiers 2215 /// declarator'. This method parses the remainder of the declaration 2216 /// (including any attributes or initializer, among other things) and 2217 /// finalizes the declaration. 2218 /// 2219 /// init-declarator: [C99 6.7] 2220 /// declarator 2221 /// declarator '=' initializer 2222 /// [GNU] declarator simple-asm-expr[opt] attributes[opt] 2223 /// [GNU] declarator simple-asm-expr[opt] attributes[opt] '=' initializer 2224 /// [C++] declarator initializer[opt] 2225 /// 2226 /// [C++] initializer: 2227 /// [C++] '=' initializer-clause 2228 /// [C++] '(' expression-list ')' 2229 /// [C++0x] '=' 'default' [TODO] 2230 /// [C++0x] '=' 'delete' 2231 /// [C++0x] braced-init-list 2232 /// 2233 /// According to the standard grammar, =default and =delete are function 2234 /// definitions, but that definitely doesn't fit with the parser here. 2235 /// 2236 Decl *Parser::ParseDeclarationAfterDeclarator( 2237 Declarator &D, const ParsedTemplateInfo &TemplateInfo) { 2238 if (ParseAsmAttributesAfterDeclarator(D)) 2239 return nullptr; 2240 2241 return ParseDeclarationAfterDeclaratorAndAttributes(D, TemplateInfo); 2242 } 2243 2244 Decl *Parser::ParseDeclarationAfterDeclaratorAndAttributes( 2245 Declarator &D, const ParsedTemplateInfo &TemplateInfo, ForRangeInit *FRI) { 2246 // RAII type used to track whether we're inside an initializer. 2247 struct InitializerScopeRAII { 2248 Parser &P; 2249 Declarator &D; 2250 Decl *ThisDecl; 2251 2252 InitializerScopeRAII(Parser &P, Declarator &D, Decl *ThisDecl) 2253 : P(P), D(D), ThisDecl(ThisDecl) { 2254 if (ThisDecl && P.getLangOpts().CPlusPlus) { 2255 Scope *S = nullptr; 2256 if (D.getCXXScopeSpec().isSet()) { 2257 P.EnterScope(0); 2258 S = P.getCurScope(); 2259 } 2260 P.Actions.ActOnCXXEnterDeclInitializer(S, ThisDecl); 2261 } 2262 } 2263 ~InitializerScopeRAII() { pop(); } 2264 void pop() { 2265 if (ThisDecl && P.getLangOpts().CPlusPlus) { 2266 Scope *S = nullptr; 2267 if (D.getCXXScopeSpec().isSet()) 2268 S = P.getCurScope(); 2269 P.Actions.ActOnCXXExitDeclInitializer(S, ThisDecl); 2270 if (S) 2271 P.ExitScope(); 2272 } 2273 ThisDecl = nullptr; 2274 } 2275 }; 2276 2277 // Inform the current actions module that we just parsed this declarator. 2278 Decl *ThisDecl = nullptr; 2279 switch (TemplateInfo.Kind) { 2280 case ParsedTemplateInfo::NonTemplate: 2281 ThisDecl = Actions.ActOnDeclarator(getCurScope(), D); 2282 break; 2283 2284 case ParsedTemplateInfo::Template: 2285 case ParsedTemplateInfo::ExplicitSpecialization: { 2286 ThisDecl = Actions.ActOnTemplateDeclarator(getCurScope(), 2287 *TemplateInfo.TemplateParams, 2288 D); 2289 if (VarTemplateDecl *VT = dyn_cast_or_null<VarTemplateDecl>(ThisDecl)) 2290 // Re-direct this decl to refer to the templated decl so that we can 2291 // initialize it. 2292 ThisDecl = VT->getTemplatedDecl(); 2293 break; 2294 } 2295 case ParsedTemplateInfo::ExplicitInstantiation: { 2296 if (Tok.is(tok::semi)) { 2297 DeclResult ThisRes = Actions.ActOnExplicitInstantiation( 2298 getCurScope(), TemplateInfo.ExternLoc, TemplateInfo.TemplateLoc, D); 2299 if (ThisRes.isInvalid()) { 2300 SkipUntil(tok::semi, StopBeforeMatch); 2301 return nullptr; 2302 } 2303 ThisDecl = ThisRes.get(); 2304 } else { 2305 // FIXME: This check should be for a variable template instantiation only. 2306 2307 // Check that this is a valid instantiation 2308 if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) { 2309 // If the declarator-id is not a template-id, issue a diagnostic and 2310 // recover by ignoring the 'template' keyword. 2311 Diag(Tok, diag::err_template_defn_explicit_instantiation) 2312 << 2 << FixItHint::CreateRemoval(TemplateInfo.TemplateLoc); 2313 ThisDecl = Actions.ActOnDeclarator(getCurScope(), D); 2314 } else { 2315 SourceLocation LAngleLoc = 2316 PP.getLocForEndOfToken(TemplateInfo.TemplateLoc); 2317 Diag(D.getIdentifierLoc(), 2318 diag::err_explicit_instantiation_with_definition) 2319 << SourceRange(TemplateInfo.TemplateLoc) 2320 << FixItHint::CreateInsertion(LAngleLoc, "<>"); 2321 2322 // Recover as if it were an explicit specialization. 2323 TemplateParameterLists FakedParamLists; 2324 FakedParamLists.push_back(Actions.ActOnTemplateParameterList( 2325 0, SourceLocation(), TemplateInfo.TemplateLoc, LAngleLoc, None, 2326 LAngleLoc, nullptr)); 2327 2328 ThisDecl = 2329 Actions.ActOnTemplateDeclarator(getCurScope(), FakedParamLists, D); 2330 } 2331 } 2332 break; 2333 } 2334 } 2335 2336 // Parse declarator '=' initializer. 2337 // If a '==' or '+=' is found, suggest a fixit to '='. 2338 if (isTokenEqualOrEqualTypo()) { 2339 SourceLocation EqualLoc = ConsumeToken(); 2340 2341 if (Tok.is(tok::kw_delete)) { 2342 if (D.isFunctionDeclarator()) 2343 Diag(ConsumeToken(), diag::err_default_delete_in_multiple_declaration) 2344 << 1 /* delete */; 2345 else 2346 Diag(ConsumeToken(), diag::err_deleted_non_function); 2347 } else if (Tok.is(tok::kw_default)) { 2348 if (D.isFunctionDeclarator()) 2349 Diag(ConsumeToken(), diag::err_default_delete_in_multiple_declaration) 2350 << 0 /* default */; 2351 else 2352 Diag(ConsumeToken(), diag::err_default_special_members) 2353 << getLangOpts().CPlusPlus2a; 2354 } else { 2355 InitializerScopeRAII InitScope(*this, D, ThisDecl); 2356 2357 if (Tok.is(tok::code_completion)) { 2358 Actions.CodeCompleteInitializer(getCurScope(), ThisDecl); 2359 Actions.FinalizeDeclaration(ThisDecl); 2360 cutOffParsing(); 2361 return nullptr; 2362 } 2363 2364 PreferredType.enterVariableInit(Tok.getLocation(), ThisDecl); 2365 ExprResult Init = ParseInitializer(); 2366 2367 // If this is the only decl in (possibly) range based for statement, 2368 // our best guess is that the user meant ':' instead of '='. 2369 if (Tok.is(tok::r_paren) && FRI && D.isFirstDeclarator()) { 2370 Diag(EqualLoc, diag::err_single_decl_assign_in_for_range) 2371 << FixItHint::CreateReplacement(EqualLoc, ":"); 2372 // We are trying to stop parser from looking for ';' in this for 2373 // statement, therefore preventing spurious errors to be issued. 2374 FRI->ColonLoc = EqualLoc; 2375 Init = ExprError(); 2376 FRI->RangeExpr = Init; 2377 } 2378 2379 InitScope.pop(); 2380 2381 if (Init.isInvalid()) { 2382 SmallVector<tok::TokenKind, 2> StopTokens; 2383 StopTokens.push_back(tok::comma); 2384 if (D.getContext() == DeclaratorContext::ForContext || 2385 D.getContext() == DeclaratorContext::InitStmtContext) 2386 StopTokens.push_back(tok::r_paren); 2387 SkipUntil(StopTokens, StopAtSemi | StopBeforeMatch); 2388 Actions.ActOnInitializerError(ThisDecl); 2389 } else 2390 Actions.AddInitializerToDecl(ThisDecl, Init.get(), 2391 /*DirectInit=*/false); 2392 } 2393 } else if (Tok.is(tok::l_paren)) { 2394 // Parse C++ direct initializer: '(' expression-list ')' 2395 BalancedDelimiterTracker T(*this, tok::l_paren); 2396 T.consumeOpen(); 2397 2398 ExprVector Exprs; 2399 CommaLocsTy CommaLocs; 2400 2401 InitializerScopeRAII InitScope(*this, D, ThisDecl); 2402 2403 auto ThisVarDecl = dyn_cast_or_null<VarDecl>(ThisDecl); 2404 auto RunSignatureHelp = [&]() { 2405 QualType PreferredType = Actions.ProduceConstructorSignatureHelp( 2406 getCurScope(), ThisVarDecl->getType()->getCanonicalTypeInternal(), 2407 ThisDecl->getLocation(), Exprs, T.getOpenLocation()); 2408 CalledSignatureHelp = true; 2409 return PreferredType; 2410 }; 2411 auto SetPreferredType = [&] { 2412 PreferredType.enterFunctionArgument(Tok.getLocation(), RunSignatureHelp); 2413 }; 2414 2415 llvm::function_ref<void()> ExpressionStarts; 2416 if (ThisVarDecl) { 2417 // ParseExpressionList can sometimes succeed even when ThisDecl is not 2418 // VarDecl. This is an error and it is reported in a call to 2419 // Actions.ActOnInitializerError(). However, we call 2420 // ProduceConstructorSignatureHelp only on VarDecls. 2421 ExpressionStarts = SetPreferredType; 2422 } 2423 if (ParseExpressionList(Exprs, CommaLocs, ExpressionStarts)) { 2424 if (ThisVarDecl && PP.isCodeCompletionReached() && !CalledSignatureHelp) { 2425 Actions.ProduceConstructorSignatureHelp( 2426 getCurScope(), ThisVarDecl->getType()->getCanonicalTypeInternal(), 2427 ThisDecl->getLocation(), Exprs, T.getOpenLocation()); 2428 CalledSignatureHelp = true; 2429 } 2430 Actions.ActOnInitializerError(ThisDecl); 2431 SkipUntil(tok::r_paren, StopAtSemi); 2432 } else { 2433 // Match the ')'. 2434 T.consumeClose(); 2435 2436 assert(!Exprs.empty() && Exprs.size()-1 == CommaLocs.size() && 2437 "Unexpected number of commas!"); 2438 2439 InitScope.pop(); 2440 2441 ExprResult Initializer = Actions.ActOnParenListExpr(T.getOpenLocation(), 2442 T.getCloseLocation(), 2443 Exprs); 2444 Actions.AddInitializerToDecl(ThisDecl, Initializer.get(), 2445 /*DirectInit=*/true); 2446 } 2447 } else if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace) && 2448 (!CurParsedObjCImpl || !D.isFunctionDeclarator())) { 2449 // Parse C++0x braced-init-list. 2450 Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists); 2451 2452 InitializerScopeRAII InitScope(*this, D, ThisDecl); 2453 2454 ExprResult Init(ParseBraceInitializer()); 2455 2456 InitScope.pop(); 2457 2458 if (Init.isInvalid()) { 2459 Actions.ActOnInitializerError(ThisDecl); 2460 } else 2461 Actions.AddInitializerToDecl(ThisDecl, Init.get(), /*DirectInit=*/true); 2462 2463 } else { 2464 Actions.ActOnUninitializedDecl(ThisDecl); 2465 } 2466 2467 Actions.FinalizeDeclaration(ThisDecl); 2468 2469 return ThisDecl; 2470 } 2471 2472 /// ParseSpecifierQualifierList 2473 /// specifier-qualifier-list: 2474 /// type-specifier specifier-qualifier-list[opt] 2475 /// type-qualifier specifier-qualifier-list[opt] 2476 /// [GNU] attributes specifier-qualifier-list[opt] 2477 /// 2478 void Parser::ParseSpecifierQualifierList(DeclSpec &DS, AccessSpecifier AS, 2479 DeclSpecContext DSC) { 2480 /// specifier-qualifier-list is a subset of declaration-specifiers. Just 2481 /// parse declaration-specifiers and complain about extra stuff. 2482 /// TODO: diagnose attribute-specifiers and alignment-specifiers. 2483 ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS, DSC); 2484 2485 // Validate declspec for type-name. 2486 unsigned Specs = DS.getParsedSpecifiers(); 2487 if (isTypeSpecifier(DSC) && !DS.hasTypeSpecifier()) { 2488 Diag(Tok, diag::err_expected_type); 2489 DS.SetTypeSpecError(); 2490 } else if (Specs == DeclSpec::PQ_None && !DS.hasAttributes()) { 2491 Diag(Tok, diag::err_typename_requires_specqual); 2492 if (!DS.hasTypeSpecifier()) 2493 DS.SetTypeSpecError(); 2494 } 2495 2496 // Issue diagnostic and remove storage class if present. 2497 if (Specs & DeclSpec::PQ_StorageClassSpecifier) { 2498 if (DS.getStorageClassSpecLoc().isValid()) 2499 Diag(DS.getStorageClassSpecLoc(),diag::err_typename_invalid_storageclass); 2500 else 2501 Diag(DS.getThreadStorageClassSpecLoc(), 2502 diag::err_typename_invalid_storageclass); 2503 DS.ClearStorageClassSpecs(); 2504 } 2505 2506 // Issue diagnostic and remove function specifier if present. 2507 if (Specs & DeclSpec::PQ_FunctionSpecifier) { 2508 if (DS.isInlineSpecified()) 2509 Diag(DS.getInlineSpecLoc(), diag::err_typename_invalid_functionspec); 2510 if (DS.isVirtualSpecified()) 2511 Diag(DS.getVirtualSpecLoc(), diag::err_typename_invalid_functionspec); 2512 if (DS.hasExplicitSpecifier()) 2513 Diag(DS.getExplicitSpecLoc(), diag::err_typename_invalid_functionspec); 2514 DS.ClearFunctionSpecs(); 2515 } 2516 2517 // Issue diagnostic and remove constexpr specifier if present. 2518 if (DS.hasConstexprSpecifier() && DSC != DeclSpecContext::DSC_condition) { 2519 Diag(DS.getConstexprSpecLoc(), diag::err_typename_invalid_constexpr) 2520 << DS.getConstexprSpecifier(); 2521 DS.ClearConstexprSpec(); 2522 } 2523 } 2524 2525 /// isValidAfterIdentifierInDeclaratorAfterDeclSpec - Return true if the 2526 /// specified token is valid after the identifier in a declarator which 2527 /// immediately follows the declspec. For example, these things are valid: 2528 /// 2529 /// int x [ 4]; // direct-declarator 2530 /// int x ( int y); // direct-declarator 2531 /// int(int x ) // direct-declarator 2532 /// int x ; // simple-declaration 2533 /// int x = 17; // init-declarator-list 2534 /// int x , y; // init-declarator-list 2535 /// int x __asm__ ("foo"); // init-declarator-list 2536 /// int x : 4; // struct-declarator 2537 /// int x { 5}; // C++'0x unified initializers 2538 /// 2539 /// This is not, because 'x' does not immediately follow the declspec (though 2540 /// ')' happens to be valid anyway). 2541 /// int (x) 2542 /// 2543 static bool isValidAfterIdentifierInDeclarator(const Token &T) { 2544 return T.isOneOf(tok::l_square, tok::l_paren, tok::r_paren, tok::semi, 2545 tok::comma, tok::equal, tok::kw_asm, tok::l_brace, 2546 tok::colon); 2547 } 2548 2549 /// ParseImplicitInt - This method is called when we have an non-typename 2550 /// identifier in a declspec (which normally terminates the decl spec) when 2551 /// the declspec has no type specifier. In this case, the declspec is either 2552 /// malformed or is "implicit int" (in K&R and C89). 2553 /// 2554 /// This method handles diagnosing this prettily and returns false if the 2555 /// declspec is done being processed. If it recovers and thinks there may be 2556 /// other pieces of declspec after it, it returns true. 2557 /// 2558 bool Parser::ParseImplicitInt(DeclSpec &DS, CXXScopeSpec *SS, 2559 const ParsedTemplateInfo &TemplateInfo, 2560 AccessSpecifier AS, DeclSpecContext DSC, 2561 ParsedAttributesWithRange &Attrs) { 2562 assert(Tok.is(tok::identifier) && "should have identifier"); 2563 2564 SourceLocation Loc = Tok.getLocation(); 2565 // If we see an identifier that is not a type name, we normally would 2566 // parse it as the identifier being declared. However, when a typename 2567 // is typo'd or the definition is not included, this will incorrectly 2568 // parse the typename as the identifier name and fall over misparsing 2569 // later parts of the diagnostic. 2570 // 2571 // As such, we try to do some look-ahead in cases where this would 2572 // otherwise be an "implicit-int" case to see if this is invalid. For 2573 // example: "static foo_t x = 4;" In this case, if we parsed foo_t as 2574 // an identifier with implicit int, we'd get a parse error because the 2575 // next token is obviously invalid for a type. Parse these as a case 2576 // with an invalid type specifier. 2577 assert(!DS.hasTypeSpecifier() && "Type specifier checked above"); 2578 2579 // Since we know that this either implicit int (which is rare) or an 2580 // error, do lookahead to try to do better recovery. This never applies 2581 // within a type specifier. Outside of C++, we allow this even if the 2582 // language doesn't "officially" support implicit int -- we support 2583 // implicit int as an extension in C99 and C11. 2584 if (!isTypeSpecifier(DSC) && !getLangOpts().CPlusPlus && 2585 isValidAfterIdentifierInDeclarator(NextToken())) { 2586 // If this token is valid for implicit int, e.g. "static x = 4", then 2587 // we just avoid eating the identifier, so it will be parsed as the 2588 // identifier in the declarator. 2589 return false; 2590 } 2591 2592 // Early exit as Sema has a dedicated missing_actual_pipe_type diagnostic 2593 // for incomplete declarations such as `pipe p`. 2594 if (getLangOpts().OpenCLCPlusPlus && DS.isTypeSpecPipe()) 2595 return false; 2596 2597 if (getLangOpts().CPlusPlus && 2598 DS.getStorageClassSpec() == DeclSpec::SCS_auto) { 2599 // Don't require a type specifier if we have the 'auto' storage class 2600 // specifier in C++98 -- we'll promote it to a type specifier. 2601 if (SS) 2602 AnnotateScopeToken(*SS, /*IsNewAnnotation*/false); 2603 return false; 2604 } 2605 2606 if (getLangOpts().CPlusPlus && (!SS || SS->isEmpty()) && 2607 getLangOpts().MSVCCompat) { 2608 // Lookup of an unqualified type name has failed in MSVC compatibility mode. 2609 // Give Sema a chance to recover if we are in a template with dependent base 2610 // classes. 2611 if (ParsedType T = Actions.ActOnMSVCUnknownTypeName( 2612 *Tok.getIdentifierInfo(), Tok.getLocation(), 2613 DSC == DeclSpecContext::DSC_template_type_arg)) { 2614 const char *PrevSpec; 2615 unsigned DiagID; 2616 DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, T, 2617 Actions.getASTContext().getPrintingPolicy()); 2618 DS.SetRangeEnd(Tok.getLocation()); 2619 ConsumeToken(); 2620 return false; 2621 } 2622 } 2623 2624 // Otherwise, if we don't consume this token, we are going to emit an 2625 // error anyway. Try to recover from various common problems. Check 2626 // to see if this was a reference to a tag name without a tag specified. 2627 // This is a common problem in C (saying 'foo' instead of 'struct foo'). 2628 // 2629 // C++ doesn't need this, and isTagName doesn't take SS. 2630 if (SS == nullptr) { 2631 const char *TagName = nullptr, *FixitTagName = nullptr; 2632 tok::TokenKind TagKind = tok::unknown; 2633 2634 switch (Actions.isTagName(*Tok.getIdentifierInfo(), getCurScope())) { 2635 default: break; 2636 case DeclSpec::TST_enum: 2637 TagName="enum" ; FixitTagName = "enum " ; TagKind=tok::kw_enum ;break; 2638 case DeclSpec::TST_union: 2639 TagName="union" ; FixitTagName = "union " ;TagKind=tok::kw_union ;break; 2640 case DeclSpec::TST_struct: 2641 TagName="struct"; FixitTagName = "struct ";TagKind=tok::kw_struct;break; 2642 case DeclSpec::TST_interface: 2643 TagName="__interface"; FixitTagName = "__interface "; 2644 TagKind=tok::kw___interface;break; 2645 case DeclSpec::TST_class: 2646 TagName="class" ; FixitTagName = "class " ;TagKind=tok::kw_class ;break; 2647 } 2648 2649 if (TagName) { 2650 IdentifierInfo *TokenName = Tok.getIdentifierInfo(); 2651 LookupResult R(Actions, TokenName, SourceLocation(), 2652 Sema::LookupOrdinaryName); 2653 2654 Diag(Loc, diag::err_use_of_tag_name_without_tag) 2655 << TokenName << TagName << getLangOpts().CPlusPlus 2656 << FixItHint::CreateInsertion(Tok.getLocation(), FixitTagName); 2657 2658 if (Actions.LookupParsedName(R, getCurScope(), SS)) { 2659 for (LookupResult::iterator I = R.begin(), IEnd = R.end(); 2660 I != IEnd; ++I) 2661 Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type) 2662 << TokenName << TagName; 2663 } 2664 2665 // Parse this as a tag as if the missing tag were present. 2666 if (TagKind == tok::kw_enum) 2667 ParseEnumSpecifier(Loc, DS, TemplateInfo, AS, 2668 DeclSpecContext::DSC_normal); 2669 else 2670 ParseClassSpecifier(TagKind, Loc, DS, TemplateInfo, AS, 2671 /*EnteringContext*/ false, 2672 DeclSpecContext::DSC_normal, Attrs); 2673 return true; 2674 } 2675 } 2676 2677 // Determine whether this identifier could plausibly be the name of something 2678 // being declared (with a missing type). 2679 if (!isTypeSpecifier(DSC) && (!SS || DSC == DeclSpecContext::DSC_top_level || 2680 DSC == DeclSpecContext::DSC_class)) { 2681 // Look ahead to the next token to try to figure out what this declaration 2682 // was supposed to be. 2683 switch (NextToken().getKind()) { 2684 case tok::l_paren: { 2685 // static x(4); // 'x' is not a type 2686 // x(int n); // 'x' is not a type 2687 // x (*p)[]; // 'x' is a type 2688 // 2689 // Since we're in an error case, we can afford to perform a tentative 2690 // parse to determine which case we're in. 2691 TentativeParsingAction PA(*this); 2692 ConsumeToken(); 2693 TPResult TPR = TryParseDeclarator(/*mayBeAbstract*/false); 2694 PA.Revert(); 2695 2696 if (TPR != TPResult::False) { 2697 // The identifier is followed by a parenthesized declarator. 2698 // It's supposed to be a type. 2699 break; 2700 } 2701 2702 // If we're in a context where we could be declaring a constructor, 2703 // check whether this is a constructor declaration with a bogus name. 2704 if (DSC == DeclSpecContext::DSC_class || 2705 (DSC == DeclSpecContext::DSC_top_level && SS)) { 2706 IdentifierInfo *II = Tok.getIdentifierInfo(); 2707 if (Actions.isCurrentClassNameTypo(II, SS)) { 2708 Diag(Loc, diag::err_constructor_bad_name) 2709 << Tok.getIdentifierInfo() << II 2710 << FixItHint::CreateReplacement(Tok.getLocation(), II->getName()); 2711 Tok.setIdentifierInfo(II); 2712 } 2713 } 2714 // Fall through. 2715 LLVM_FALLTHROUGH; 2716 } 2717 case tok::comma: 2718 case tok::equal: 2719 case tok::kw_asm: 2720 case tok::l_brace: 2721 case tok::l_square: 2722 case tok::semi: 2723 // This looks like a variable or function declaration. The type is 2724 // probably missing. We're done parsing decl-specifiers. 2725 // But only if we are not in a function prototype scope. 2726 if (getCurScope()->isFunctionPrototypeScope()) 2727 break; 2728 if (SS) 2729 AnnotateScopeToken(*SS, /*IsNewAnnotation*/false); 2730 return false; 2731 2732 default: 2733 // This is probably supposed to be a type. This includes cases like: 2734 // int f(itn); 2735 // struct S { unsinged : 4; }; 2736 break; 2737 } 2738 } 2739 2740 // This is almost certainly an invalid type name. Let Sema emit a diagnostic 2741 // and attempt to recover. 2742 ParsedType T; 2743 IdentifierInfo *II = Tok.getIdentifierInfo(); 2744 bool IsTemplateName = getLangOpts().CPlusPlus && NextToken().is(tok::less); 2745 Actions.DiagnoseUnknownTypeName(II, Loc, getCurScope(), SS, T, 2746 IsTemplateName); 2747 if (T) { 2748 // The action has suggested that the type T could be used. Set that as 2749 // the type in the declaration specifiers, consume the would-be type 2750 // name token, and we're done. 2751 const char *PrevSpec; 2752 unsigned DiagID; 2753 DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, T, 2754 Actions.getASTContext().getPrintingPolicy()); 2755 DS.SetRangeEnd(Tok.getLocation()); 2756 ConsumeToken(); 2757 // There may be other declaration specifiers after this. 2758 return true; 2759 } else if (II != Tok.getIdentifierInfo()) { 2760 // If no type was suggested, the correction is to a keyword 2761 Tok.setKind(II->getTokenID()); 2762 // There may be other declaration specifiers after this. 2763 return true; 2764 } 2765 2766 // Otherwise, the action had no suggestion for us. Mark this as an error. 2767 DS.SetTypeSpecError(); 2768 DS.SetRangeEnd(Tok.getLocation()); 2769 ConsumeToken(); 2770 2771 // Eat any following template arguments. 2772 if (IsTemplateName) { 2773 SourceLocation LAngle, RAngle; 2774 TemplateArgList Args; 2775 ParseTemplateIdAfterTemplateName(true, LAngle, Args, RAngle); 2776 } 2777 2778 // TODO: Could inject an invalid typedef decl in an enclosing scope to 2779 // avoid rippling error messages on subsequent uses of the same type, 2780 // could be useful if #include was forgotten. 2781 return true; 2782 } 2783 2784 /// Determine the declaration specifier context from the declarator 2785 /// context. 2786 /// 2787 /// \param Context the declarator context, which is one of the 2788 /// DeclaratorContext enumerator values. 2789 Parser::DeclSpecContext 2790 Parser::getDeclSpecContextFromDeclaratorContext(DeclaratorContext Context) { 2791 if (Context == DeclaratorContext::MemberContext) 2792 return DeclSpecContext::DSC_class; 2793 if (Context == DeclaratorContext::FileContext) 2794 return DeclSpecContext::DSC_top_level; 2795 if (Context == DeclaratorContext::TemplateParamContext) 2796 return DeclSpecContext::DSC_template_param; 2797 if (Context == DeclaratorContext::TemplateArgContext || 2798 Context == DeclaratorContext::TemplateTypeArgContext) 2799 return DeclSpecContext::DSC_template_type_arg; 2800 if (Context == DeclaratorContext::TrailingReturnContext || 2801 Context == DeclaratorContext::TrailingReturnVarContext) 2802 return DeclSpecContext::DSC_trailing; 2803 if (Context == DeclaratorContext::AliasDeclContext || 2804 Context == DeclaratorContext::AliasTemplateContext) 2805 return DeclSpecContext::DSC_alias_declaration; 2806 return DeclSpecContext::DSC_normal; 2807 } 2808 2809 /// ParseAlignArgument - Parse the argument to an alignment-specifier. 2810 /// 2811 /// FIXME: Simply returns an alignof() expression if the argument is a 2812 /// type. Ideally, the type should be propagated directly into Sema. 2813 /// 2814 /// [C11] type-id 2815 /// [C11] constant-expression 2816 /// [C++0x] type-id ...[opt] 2817 /// [C++0x] assignment-expression ...[opt] 2818 ExprResult Parser::ParseAlignArgument(SourceLocation Start, 2819 SourceLocation &EllipsisLoc) { 2820 ExprResult ER; 2821 if (isTypeIdInParens()) { 2822 SourceLocation TypeLoc = Tok.getLocation(); 2823 ParsedType Ty = ParseTypeName().get(); 2824 SourceRange TypeRange(Start, Tok.getLocation()); 2825 ER = Actions.ActOnUnaryExprOrTypeTraitExpr(TypeLoc, UETT_AlignOf, true, 2826 Ty.getAsOpaquePtr(), TypeRange); 2827 } else 2828 ER = ParseConstantExpression(); 2829 2830 if (getLangOpts().CPlusPlus11) 2831 TryConsumeToken(tok::ellipsis, EllipsisLoc); 2832 2833 return ER; 2834 } 2835 2836 /// ParseAlignmentSpecifier - Parse an alignment-specifier, and add the 2837 /// attribute to Attrs. 2838 /// 2839 /// alignment-specifier: 2840 /// [C11] '_Alignas' '(' type-id ')' 2841 /// [C11] '_Alignas' '(' constant-expression ')' 2842 /// [C++11] 'alignas' '(' type-id ...[opt] ')' 2843 /// [C++11] 'alignas' '(' assignment-expression ...[opt] ')' 2844 void Parser::ParseAlignmentSpecifier(ParsedAttributes &Attrs, 2845 SourceLocation *EndLoc) { 2846 assert(Tok.isOneOf(tok::kw_alignas, tok::kw__Alignas) && 2847 "Not an alignment-specifier!"); 2848 2849 IdentifierInfo *KWName = Tok.getIdentifierInfo(); 2850 SourceLocation KWLoc = ConsumeToken(); 2851 2852 BalancedDelimiterTracker T(*this, tok::l_paren); 2853 if (T.expectAndConsume()) 2854 return; 2855 2856 SourceLocation EllipsisLoc; 2857 ExprResult ArgExpr = ParseAlignArgument(T.getOpenLocation(), EllipsisLoc); 2858 if (ArgExpr.isInvalid()) { 2859 T.skipToEnd(); 2860 return; 2861 } 2862 2863 T.consumeClose(); 2864 if (EndLoc) 2865 *EndLoc = T.getCloseLocation(); 2866 2867 ArgsVector ArgExprs; 2868 ArgExprs.push_back(ArgExpr.get()); 2869 Attrs.addNew(KWName, KWLoc, nullptr, KWLoc, ArgExprs.data(), 1, 2870 ParsedAttr::AS_Keyword, EllipsisLoc); 2871 } 2872 2873 /// Determine whether we're looking at something that might be a declarator 2874 /// in a simple-declaration. If it can't possibly be a declarator, maybe 2875 /// diagnose a missing semicolon after a prior tag definition in the decl 2876 /// specifier. 2877 /// 2878 /// \return \c true if an error occurred and this can't be any kind of 2879 /// declaration. 2880 bool 2881 Parser::DiagnoseMissingSemiAfterTagDefinition(DeclSpec &DS, AccessSpecifier AS, 2882 DeclSpecContext DSContext, 2883 LateParsedAttrList *LateAttrs) { 2884 assert(DS.hasTagDefinition() && "shouldn't call this"); 2885 2886 bool EnteringContext = (DSContext == DeclSpecContext::DSC_class || 2887 DSContext == DeclSpecContext::DSC_top_level); 2888 2889 if (getLangOpts().CPlusPlus && 2890 Tok.isOneOf(tok::identifier, tok::coloncolon, tok::kw_decltype, 2891 tok::annot_template_id) && 2892 TryAnnotateCXXScopeToken(EnteringContext)) { 2893 SkipMalformedDecl(); 2894 return true; 2895 } 2896 2897 bool HasScope = Tok.is(tok::annot_cxxscope); 2898 // Make a copy in case GetLookAheadToken invalidates the result of NextToken. 2899 Token AfterScope = HasScope ? NextToken() : Tok; 2900 2901 // Determine whether the following tokens could possibly be a 2902 // declarator. 2903 bool MightBeDeclarator = true; 2904 if (Tok.isOneOf(tok::kw_typename, tok::annot_typename)) { 2905 // A declarator-id can't start with 'typename'. 2906 MightBeDeclarator = false; 2907 } else if (AfterScope.is(tok::annot_template_id)) { 2908 // If we have a type expressed as a template-id, this cannot be a 2909 // declarator-id (such a type cannot be redeclared in a simple-declaration). 2910 TemplateIdAnnotation *Annot = 2911 static_cast<TemplateIdAnnotation *>(AfterScope.getAnnotationValue()); 2912 if (Annot->Kind == TNK_Type_template) 2913 MightBeDeclarator = false; 2914 } else if (AfterScope.is(tok::identifier)) { 2915 const Token &Next = HasScope ? GetLookAheadToken(2) : NextToken(); 2916 2917 // These tokens cannot come after the declarator-id in a 2918 // simple-declaration, and are likely to come after a type-specifier. 2919 if (Next.isOneOf(tok::star, tok::amp, tok::ampamp, tok::identifier, 2920 tok::annot_cxxscope, tok::coloncolon)) { 2921 // Missing a semicolon. 2922 MightBeDeclarator = false; 2923 } else if (HasScope) { 2924 // If the declarator-id has a scope specifier, it must redeclare a 2925 // previously-declared entity. If that's a type (and this is not a 2926 // typedef), that's an error. 2927 CXXScopeSpec SS; 2928 Actions.RestoreNestedNameSpecifierAnnotation( 2929 Tok.getAnnotationValue(), Tok.getAnnotationRange(), SS); 2930 IdentifierInfo *Name = AfterScope.getIdentifierInfo(); 2931 Sema::NameClassification Classification = Actions.ClassifyName( 2932 getCurScope(), SS, Name, AfterScope.getLocation(), Next, 2933 /*CCC=*/nullptr); 2934 switch (Classification.getKind()) { 2935 case Sema::NC_Error: 2936 SkipMalformedDecl(); 2937 return true; 2938 2939 case Sema::NC_Keyword: 2940 llvm_unreachable("typo correction is not possible here"); 2941 2942 case Sema::NC_Type: 2943 case Sema::NC_TypeTemplate: 2944 case Sema::NC_UndeclaredNonType: 2945 case Sema::NC_UndeclaredTemplate: 2946 // Not a previously-declared non-type entity. 2947 MightBeDeclarator = false; 2948 break; 2949 2950 case Sema::NC_Unknown: 2951 case Sema::NC_NonType: 2952 case Sema::NC_DependentNonType: 2953 case Sema::NC_ContextIndependentExpr: 2954 case Sema::NC_VarTemplate: 2955 case Sema::NC_FunctionTemplate: 2956 // Might be a redeclaration of a prior entity. 2957 break; 2958 } 2959 } 2960 } 2961 2962 if (MightBeDeclarator) 2963 return false; 2964 2965 const PrintingPolicy &PPol = Actions.getASTContext().getPrintingPolicy(); 2966 Diag(PP.getLocForEndOfToken(DS.getRepAsDecl()->getEndLoc()), 2967 diag::err_expected_after) 2968 << DeclSpec::getSpecifierName(DS.getTypeSpecType(), PPol) << tok::semi; 2969 2970 // Try to recover from the typo, by dropping the tag definition and parsing 2971 // the problematic tokens as a type. 2972 // 2973 // FIXME: Split the DeclSpec into pieces for the standalone 2974 // declaration and pieces for the following declaration, instead 2975 // of assuming that all the other pieces attach to new declaration, 2976 // and call ParsedFreeStandingDeclSpec as appropriate. 2977 DS.ClearTypeSpecType(); 2978 ParsedTemplateInfo NotATemplate; 2979 ParseDeclarationSpecifiers(DS, NotATemplate, AS, DSContext, LateAttrs); 2980 return false; 2981 } 2982 2983 // Choose the apprpriate diagnostic error for why fixed point types are 2984 // disabled, set the previous specifier, and mark as invalid. 2985 static void SetupFixedPointError(const LangOptions &LangOpts, 2986 const char *&PrevSpec, unsigned &DiagID, 2987 bool &isInvalid) { 2988 assert(!LangOpts.FixedPoint); 2989 DiagID = diag::err_fixed_point_not_enabled; 2990 PrevSpec = ""; // Not used by diagnostic 2991 isInvalid = true; 2992 } 2993 2994 /// ParseDeclarationSpecifiers 2995 /// declaration-specifiers: [C99 6.7] 2996 /// storage-class-specifier declaration-specifiers[opt] 2997 /// type-specifier declaration-specifiers[opt] 2998 /// [C99] function-specifier declaration-specifiers[opt] 2999 /// [C11] alignment-specifier declaration-specifiers[opt] 3000 /// [GNU] attributes declaration-specifiers[opt] 3001 /// [Clang] '__module_private__' declaration-specifiers[opt] 3002 /// [ObjC1] '__kindof' declaration-specifiers[opt] 3003 /// 3004 /// storage-class-specifier: [C99 6.7.1] 3005 /// 'typedef' 3006 /// 'extern' 3007 /// 'static' 3008 /// 'auto' 3009 /// 'register' 3010 /// [C++] 'mutable' 3011 /// [C++11] 'thread_local' 3012 /// [C11] '_Thread_local' 3013 /// [GNU] '__thread' 3014 /// function-specifier: [C99 6.7.4] 3015 /// [C99] 'inline' 3016 /// [C++] 'virtual' 3017 /// [C++] 'explicit' 3018 /// [OpenCL] '__kernel' 3019 /// 'friend': [C++ dcl.friend] 3020 /// 'constexpr': [C++0x dcl.constexpr] 3021 void Parser::ParseDeclarationSpecifiers(DeclSpec &DS, 3022 const ParsedTemplateInfo &TemplateInfo, 3023 AccessSpecifier AS, 3024 DeclSpecContext DSContext, 3025 LateParsedAttrList *LateAttrs) { 3026 if (DS.getSourceRange().isInvalid()) { 3027 // Start the range at the current token but make the end of the range 3028 // invalid. This will make the entire range invalid unless we successfully 3029 // consume a token. 3030 DS.SetRangeStart(Tok.getLocation()); 3031 DS.SetRangeEnd(SourceLocation()); 3032 } 3033 3034 bool EnteringContext = (DSContext == DeclSpecContext::DSC_class || 3035 DSContext == DeclSpecContext::DSC_top_level); 3036 bool AttrsLastTime = false; 3037 ParsedAttributesWithRange attrs(AttrFactory); 3038 // We use Sema's policy to get bool macros right. 3039 PrintingPolicy Policy = Actions.getPrintingPolicy(); 3040 while (1) { 3041 bool isInvalid = false; 3042 bool isStorageClass = false; 3043 const char *PrevSpec = nullptr; 3044 unsigned DiagID = 0; 3045 3046 // This value needs to be set to the location of the last token if the last 3047 // token of the specifier is already consumed. 3048 SourceLocation ConsumedEnd; 3049 3050 // HACK: MSVC doesn't consider _Atomic to be a keyword and its STL 3051 // implementation for VS2013 uses _Atomic as an identifier for one of the 3052 // classes in <atomic>. 3053 // 3054 // A typedef declaration containing _Atomic<...> is among the places where 3055 // the class is used. If we are currently parsing such a declaration, treat 3056 // the token as an identifier. 3057 if (getLangOpts().MSVCCompat && Tok.is(tok::kw__Atomic) && 3058 DS.getStorageClassSpec() == clang::DeclSpec::SCS_typedef && 3059 !DS.hasTypeSpecifier() && GetLookAheadToken(1).is(tok::less)) 3060 Tok.setKind(tok::identifier); 3061 3062 SourceLocation Loc = Tok.getLocation(); 3063 3064 switch (Tok.getKind()) { 3065 default: 3066 DoneWithDeclSpec: 3067 if (!AttrsLastTime) 3068 ProhibitAttributes(attrs); 3069 else { 3070 // Reject C++11 attributes that appertain to decl specifiers as 3071 // we don't support any C++11 attributes that appertain to decl 3072 // specifiers. This also conforms to what g++ 4.8 is doing. 3073 ProhibitCXX11Attributes(attrs, diag::err_attribute_not_type_attr); 3074 3075 DS.takeAttributesFrom(attrs); 3076 } 3077 3078 // If this is not a declaration specifier token, we're done reading decl 3079 // specifiers. First verify that DeclSpec's are consistent. 3080 DS.Finish(Actions, Policy); 3081 return; 3082 3083 case tok::l_square: 3084 case tok::kw_alignas: 3085 if (!standardAttributesAllowed() || !isCXX11AttributeSpecifier()) 3086 goto DoneWithDeclSpec; 3087 3088 ProhibitAttributes(attrs); 3089 // FIXME: It would be good to recover by accepting the attributes, 3090 // but attempting to do that now would cause serious 3091 // madness in terms of diagnostics. 3092 attrs.clear(); 3093 attrs.Range = SourceRange(); 3094 3095 ParseCXX11Attributes(attrs); 3096 AttrsLastTime = true; 3097 continue; 3098 3099 case tok::code_completion: { 3100 Sema::ParserCompletionContext CCC = Sema::PCC_Namespace; 3101 if (DS.hasTypeSpecifier()) { 3102 bool AllowNonIdentifiers 3103 = (getCurScope()->getFlags() & (Scope::ControlScope | 3104 Scope::BlockScope | 3105 Scope::TemplateParamScope | 3106 Scope::FunctionPrototypeScope | 3107 Scope::AtCatchScope)) == 0; 3108 bool AllowNestedNameSpecifiers 3109 = DSContext == DeclSpecContext::DSC_top_level || 3110 (DSContext == DeclSpecContext::DSC_class && DS.isFriendSpecified()); 3111 3112 Actions.CodeCompleteDeclSpec(getCurScope(), DS, 3113 AllowNonIdentifiers, 3114 AllowNestedNameSpecifiers); 3115 return cutOffParsing(); 3116 } 3117 3118 if (getCurScope()->getFnParent() || getCurScope()->getBlockParent()) 3119 CCC = Sema::PCC_LocalDeclarationSpecifiers; 3120 else if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate) 3121 CCC = DSContext == DeclSpecContext::DSC_class ? Sema::PCC_MemberTemplate 3122 : Sema::PCC_Template; 3123 else if (DSContext == DeclSpecContext::DSC_class) 3124 CCC = Sema::PCC_Class; 3125 else if (CurParsedObjCImpl) 3126 CCC = Sema::PCC_ObjCImplementation; 3127 3128 Actions.CodeCompleteOrdinaryName(getCurScope(), CCC); 3129 return cutOffParsing(); 3130 } 3131 3132 case tok::coloncolon: // ::foo::bar 3133 // C++ scope specifier. Annotate and loop, or bail out on error. 3134 if (TryAnnotateCXXScopeToken(EnteringContext)) { 3135 if (!DS.hasTypeSpecifier()) 3136 DS.SetTypeSpecError(); 3137 goto DoneWithDeclSpec; 3138 } 3139 if (Tok.is(tok::coloncolon)) // ::new or ::delete 3140 goto DoneWithDeclSpec; 3141 continue; 3142 3143 case tok::annot_cxxscope: { 3144 if (DS.hasTypeSpecifier() || DS.isTypeAltiVecVector()) 3145 goto DoneWithDeclSpec; 3146 3147 CXXScopeSpec SS; 3148 Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(), 3149 Tok.getAnnotationRange(), 3150 SS); 3151 3152 // We are looking for a qualified typename. 3153 Token Next = NextToken(); 3154 if (Next.is(tok::annot_template_id) && 3155 static_cast<TemplateIdAnnotation *>(Next.getAnnotationValue()) 3156 ->Kind == TNK_Type_template) { 3157 // We have a qualified template-id, e.g., N::A<int> 3158 3159 // If this would be a valid constructor declaration with template 3160 // arguments, we will reject the attempt to form an invalid type-id 3161 // referring to the injected-class-name when we annotate the token, 3162 // per C++ [class.qual]p2. 3163 // 3164 // To improve diagnostics for this case, parse the declaration as a 3165 // constructor (and reject the extra template arguments later). 3166 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Next); 3167 if ((DSContext == DeclSpecContext::DSC_top_level || 3168 DSContext == DeclSpecContext::DSC_class) && 3169 TemplateId->Name && 3170 Actions.isCurrentClassName(*TemplateId->Name, getCurScope(), &SS) && 3171 isConstructorDeclarator(/*Unqualified*/ false)) { 3172 // The user meant this to be an out-of-line constructor 3173 // definition, but template arguments are not allowed 3174 // there. Just allow this as a constructor; we'll 3175 // complain about it later. 3176 goto DoneWithDeclSpec; 3177 } 3178 3179 DS.getTypeSpecScope() = SS; 3180 ConsumeAnnotationToken(); // The C++ scope. 3181 assert(Tok.is(tok::annot_template_id) && 3182 "ParseOptionalCXXScopeSpecifier not working"); 3183 AnnotateTemplateIdTokenAsType(); 3184 continue; 3185 } 3186 3187 if (Next.is(tok::annot_typename)) { 3188 DS.getTypeSpecScope() = SS; 3189 ConsumeAnnotationToken(); // The C++ scope. 3190 if (Tok.getAnnotationValue()) { 3191 ParsedType T = getTypeAnnotation(Tok); 3192 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, 3193 Tok.getAnnotationEndLoc(), 3194 PrevSpec, DiagID, T, Policy); 3195 if (isInvalid) 3196 break; 3197 } 3198 else 3199 DS.SetTypeSpecError(); 3200 DS.SetRangeEnd(Tok.getAnnotationEndLoc()); 3201 ConsumeAnnotationToken(); // The typename 3202 } 3203 3204 if (Next.isNot(tok::identifier)) 3205 goto DoneWithDeclSpec; 3206 3207 // Check whether this is a constructor declaration. If we're in a 3208 // context where the identifier could be a class name, and it has the 3209 // shape of a constructor declaration, process it as one. 3210 if ((DSContext == DeclSpecContext::DSC_top_level || 3211 DSContext == DeclSpecContext::DSC_class) && 3212 Actions.isCurrentClassName(*Next.getIdentifierInfo(), getCurScope(), 3213 &SS) && 3214 isConstructorDeclarator(/*Unqualified*/ false)) 3215 goto DoneWithDeclSpec; 3216 3217 ParsedType TypeRep = 3218 Actions.getTypeName(*Next.getIdentifierInfo(), Next.getLocation(), 3219 getCurScope(), &SS, false, false, nullptr, 3220 /*IsCtorOrDtorName=*/false, 3221 /*WantNontrivialTypeSourceInfo=*/true, 3222 isClassTemplateDeductionContext(DSContext)); 3223 3224 // If the referenced identifier is not a type, then this declspec is 3225 // erroneous: We already checked about that it has no type specifier, and 3226 // C++ doesn't have implicit int. Diagnose it as a typo w.r.t. to the 3227 // typename. 3228 if (!TypeRep) { 3229 // Eat the scope spec so the identifier is current. 3230 ConsumeAnnotationToken(); 3231 ParsedAttributesWithRange Attrs(AttrFactory); 3232 if (ParseImplicitInt(DS, &SS, TemplateInfo, AS, DSContext, Attrs)) { 3233 if (!Attrs.empty()) { 3234 AttrsLastTime = true; 3235 attrs.takeAllFrom(Attrs); 3236 } 3237 continue; 3238 } 3239 goto DoneWithDeclSpec; 3240 } 3241 3242 DS.getTypeSpecScope() = SS; 3243 ConsumeAnnotationToken(); // The C++ scope. 3244 3245 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, 3246 DiagID, TypeRep, Policy); 3247 if (isInvalid) 3248 break; 3249 3250 DS.SetRangeEnd(Tok.getLocation()); 3251 ConsumeToken(); // The typename. 3252 3253 continue; 3254 } 3255 3256 case tok::annot_typename: { 3257 // If we've previously seen a tag definition, we were almost surely 3258 // missing a semicolon after it. 3259 if (DS.hasTypeSpecifier() && DS.hasTagDefinition()) 3260 goto DoneWithDeclSpec; 3261 3262 if (Tok.getAnnotationValue()) { 3263 ParsedType T = getTypeAnnotation(Tok); 3264 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, 3265 DiagID, T, Policy); 3266 } else 3267 DS.SetTypeSpecError(); 3268 3269 if (isInvalid) 3270 break; 3271 3272 DS.SetRangeEnd(Tok.getAnnotationEndLoc()); 3273 ConsumeAnnotationToken(); // The typename 3274 3275 continue; 3276 } 3277 3278 case tok::kw___is_signed: 3279 // GNU libstdc++ 4.4 uses __is_signed as an identifier, but Clang 3280 // typically treats it as a trait. If we see __is_signed as it appears 3281 // in libstdc++, e.g., 3282 // 3283 // static const bool __is_signed; 3284 // 3285 // then treat __is_signed as an identifier rather than as a keyword. 3286 if (DS.getTypeSpecType() == TST_bool && 3287 DS.getTypeQualifiers() == DeclSpec::TQ_const && 3288 DS.getStorageClassSpec() == DeclSpec::SCS_static) 3289 TryKeywordIdentFallback(true); 3290 3291 // We're done with the declaration-specifiers. 3292 goto DoneWithDeclSpec; 3293 3294 // typedef-name 3295 case tok::kw___super: 3296 case tok::kw_decltype: 3297 case tok::identifier: { 3298 // This identifier can only be a typedef name if we haven't already seen 3299 // a type-specifier. Without this check we misparse: 3300 // typedef int X; struct Y { short X; }; as 'short int'. 3301 if (DS.hasTypeSpecifier()) 3302 goto DoneWithDeclSpec; 3303 3304 // If the token is an identifier named "__declspec" and Microsoft 3305 // extensions are not enabled, it is likely that there will be cascading 3306 // parse errors if this really is a __declspec attribute. Attempt to 3307 // recognize that scenario and recover gracefully. 3308 if (!getLangOpts().DeclSpecKeyword && Tok.is(tok::identifier) && 3309 Tok.getIdentifierInfo()->getName().equals("__declspec")) { 3310 Diag(Loc, diag::err_ms_attributes_not_enabled); 3311 3312 // The next token should be an open paren. If it is, eat the entire 3313 // attribute declaration and continue. 3314 if (NextToken().is(tok::l_paren)) { 3315 // Consume the __declspec identifier. 3316 ConsumeToken(); 3317 3318 // Eat the parens and everything between them. 3319 BalancedDelimiterTracker T(*this, tok::l_paren); 3320 if (T.consumeOpen()) { 3321 assert(false && "Not a left paren?"); 3322 return; 3323 } 3324 T.skipToEnd(); 3325 continue; 3326 } 3327 } 3328 3329 // In C++, check to see if this is a scope specifier like foo::bar::, if 3330 // so handle it as such. This is important for ctor parsing. 3331 if (getLangOpts().CPlusPlus) { 3332 if (TryAnnotateCXXScopeToken(EnteringContext)) { 3333 DS.SetTypeSpecError(); 3334 goto DoneWithDeclSpec; 3335 } 3336 if (!Tok.is(tok::identifier)) 3337 continue; 3338 } 3339 3340 // Check for need to substitute AltiVec keyword tokens. 3341 if (TryAltiVecToken(DS, Loc, PrevSpec, DiagID, isInvalid)) 3342 break; 3343 3344 // [AltiVec] 2.2: [If the 'vector' specifier is used] The syntax does not 3345 // allow the use of a typedef name as a type specifier. 3346 if (DS.isTypeAltiVecVector()) 3347 goto DoneWithDeclSpec; 3348 3349 if (DSContext == DeclSpecContext::DSC_objc_method_result && 3350 isObjCInstancetype()) { 3351 ParsedType TypeRep = Actions.ActOnObjCInstanceType(Loc); 3352 assert(TypeRep); 3353 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, 3354 DiagID, TypeRep, Policy); 3355 if (isInvalid) 3356 break; 3357 3358 DS.SetRangeEnd(Loc); 3359 ConsumeToken(); 3360 continue; 3361 } 3362 3363 // If we're in a context where the identifier could be a class name, 3364 // check whether this is a constructor declaration. 3365 if (getLangOpts().CPlusPlus && DSContext == DeclSpecContext::DSC_class && 3366 Actions.isCurrentClassName(*Tok.getIdentifierInfo(), getCurScope()) && 3367 isConstructorDeclarator(/*Unqualified*/true)) 3368 goto DoneWithDeclSpec; 3369 3370 ParsedType TypeRep = Actions.getTypeName( 3371 *Tok.getIdentifierInfo(), Tok.getLocation(), getCurScope(), nullptr, 3372 false, false, nullptr, false, false, 3373 isClassTemplateDeductionContext(DSContext)); 3374 3375 // If this is not a typedef name, don't parse it as part of the declspec, 3376 // it must be an implicit int or an error. 3377 if (!TypeRep) { 3378 ParsedAttributesWithRange Attrs(AttrFactory); 3379 if (ParseImplicitInt(DS, nullptr, TemplateInfo, AS, DSContext, Attrs)) { 3380 if (!Attrs.empty()) { 3381 AttrsLastTime = true; 3382 attrs.takeAllFrom(Attrs); 3383 } 3384 continue; 3385 } 3386 goto DoneWithDeclSpec; 3387 } 3388 3389 // Likewise, if this is a context where the identifier could be a template 3390 // name, check whether this is a deduction guide declaration. 3391 if (getLangOpts().CPlusPlus17 && 3392 (DSContext == DeclSpecContext::DSC_class || 3393 DSContext == DeclSpecContext::DSC_top_level) && 3394 Actions.isDeductionGuideName(getCurScope(), *Tok.getIdentifierInfo(), 3395 Tok.getLocation()) && 3396 isConstructorDeclarator(/*Unqualified*/ true, 3397 /*DeductionGuide*/ true)) 3398 goto DoneWithDeclSpec; 3399 3400 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, 3401 DiagID, TypeRep, Policy); 3402 if (isInvalid) 3403 break; 3404 3405 DS.SetRangeEnd(Tok.getLocation()); 3406 ConsumeToken(); // The identifier 3407 3408 // Objective-C supports type arguments and protocol references 3409 // following an Objective-C object or object pointer 3410 // type. Handle either one of them. 3411 if (Tok.is(tok::less) && getLangOpts().ObjC) { 3412 SourceLocation NewEndLoc; 3413 TypeResult NewTypeRep = parseObjCTypeArgsAndProtocolQualifiers( 3414 Loc, TypeRep, /*consumeLastToken=*/true, 3415 NewEndLoc); 3416 if (NewTypeRep.isUsable()) { 3417 DS.UpdateTypeRep(NewTypeRep.get()); 3418 DS.SetRangeEnd(NewEndLoc); 3419 } 3420 } 3421 3422 // Need to support trailing type qualifiers (e.g. "id<p> const"). 3423 // If a type specifier follows, it will be diagnosed elsewhere. 3424 continue; 3425 } 3426 3427 // type-name 3428 case tok::annot_template_id: { 3429 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok); 3430 if (TemplateId->Kind != TNK_Type_template && 3431 TemplateId->Kind != TNK_Undeclared_template) { 3432 // This template-id does not refer to a type name, so we're 3433 // done with the type-specifiers. 3434 goto DoneWithDeclSpec; 3435 } 3436 3437 // If we're in a context where the template-id could be a 3438 // constructor name or specialization, check whether this is a 3439 // constructor declaration. 3440 if (getLangOpts().CPlusPlus && DSContext == DeclSpecContext::DSC_class && 3441 Actions.isCurrentClassName(*TemplateId->Name, getCurScope()) && 3442 isConstructorDeclarator(TemplateId->SS.isEmpty())) 3443 goto DoneWithDeclSpec; 3444 3445 // Turn the template-id annotation token into a type annotation 3446 // token, then try again to parse it as a type-specifier. 3447 AnnotateTemplateIdTokenAsType(); 3448 continue; 3449 } 3450 3451 // GNU attributes support. 3452 case tok::kw___attribute: 3453 ParseGNUAttributes(DS.getAttributes(), nullptr, LateAttrs); 3454 continue; 3455 3456 // Microsoft declspec support. 3457 case tok::kw___declspec: 3458 ParseMicrosoftDeclSpecs(DS.getAttributes()); 3459 continue; 3460 3461 // Microsoft single token adornments. 3462 case tok::kw___forceinline: { 3463 isInvalid = DS.setFunctionSpecForceInline(Loc, PrevSpec, DiagID); 3464 IdentifierInfo *AttrName = Tok.getIdentifierInfo(); 3465 SourceLocation AttrNameLoc = Tok.getLocation(); 3466 DS.getAttributes().addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, 3467 nullptr, 0, ParsedAttr::AS_Keyword); 3468 break; 3469 } 3470 3471 case tok::kw___unaligned: 3472 isInvalid = DS.SetTypeQual(DeclSpec::TQ_unaligned, Loc, PrevSpec, DiagID, 3473 getLangOpts()); 3474 break; 3475 3476 case tok::kw___sptr: 3477 case tok::kw___uptr: 3478 case tok::kw___ptr64: 3479 case tok::kw___ptr32: 3480 case tok::kw___w64: 3481 case tok::kw___cdecl: 3482 case tok::kw___stdcall: 3483 case tok::kw___fastcall: 3484 case tok::kw___thiscall: 3485 case tok::kw___regcall: 3486 case tok::kw___vectorcall: 3487 ParseMicrosoftTypeAttributes(DS.getAttributes()); 3488 continue; 3489 3490 // Borland single token adornments. 3491 case tok::kw___pascal: 3492 ParseBorlandTypeAttributes(DS.getAttributes()); 3493 continue; 3494 3495 // OpenCL single token adornments. 3496 case tok::kw___kernel: 3497 ParseOpenCLKernelAttributes(DS.getAttributes()); 3498 continue; 3499 3500 // Nullability type specifiers. 3501 case tok::kw__Nonnull: 3502 case tok::kw__Nullable: 3503 case tok::kw__Null_unspecified: 3504 ParseNullabilityTypeSpecifiers(DS.getAttributes()); 3505 continue; 3506 3507 // Objective-C 'kindof' types. 3508 case tok::kw___kindof: 3509 DS.getAttributes().addNew(Tok.getIdentifierInfo(), Loc, nullptr, Loc, 3510 nullptr, 0, ParsedAttr::AS_Keyword); 3511 (void)ConsumeToken(); 3512 continue; 3513 3514 // storage-class-specifier 3515 case tok::kw_typedef: 3516 isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_typedef, Loc, 3517 PrevSpec, DiagID, Policy); 3518 isStorageClass = true; 3519 break; 3520 case tok::kw_extern: 3521 if (DS.getThreadStorageClassSpec() == DeclSpec::TSCS___thread) 3522 Diag(Tok, diag::ext_thread_before) << "extern"; 3523 isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_extern, Loc, 3524 PrevSpec, DiagID, Policy); 3525 isStorageClass = true; 3526 break; 3527 case tok::kw___private_extern__: 3528 isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_private_extern, 3529 Loc, PrevSpec, DiagID, Policy); 3530 isStorageClass = true; 3531 break; 3532 case tok::kw_static: 3533 if (DS.getThreadStorageClassSpec() == DeclSpec::TSCS___thread) 3534 Diag(Tok, diag::ext_thread_before) << "static"; 3535 isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_static, Loc, 3536 PrevSpec, DiagID, Policy); 3537 isStorageClass = true; 3538 break; 3539 case tok::kw_auto: 3540 if (getLangOpts().CPlusPlus11) { 3541 if (isKnownToBeTypeSpecifier(GetLookAheadToken(1))) { 3542 isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_auto, Loc, 3543 PrevSpec, DiagID, Policy); 3544 if (!isInvalid) 3545 Diag(Tok, diag::ext_auto_storage_class) 3546 << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc()); 3547 } else 3548 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto, Loc, PrevSpec, 3549 DiagID, Policy); 3550 } else 3551 isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_auto, Loc, 3552 PrevSpec, DiagID, Policy); 3553 isStorageClass = true; 3554 break; 3555 case tok::kw___auto_type: 3556 Diag(Tok, diag::ext_auto_type); 3557 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto_type, Loc, PrevSpec, 3558 DiagID, Policy); 3559 break; 3560 case tok::kw_register: 3561 isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_register, Loc, 3562 PrevSpec, DiagID, Policy); 3563 isStorageClass = true; 3564 break; 3565 case tok::kw_mutable: 3566 isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_mutable, Loc, 3567 PrevSpec, DiagID, Policy); 3568 isStorageClass = true; 3569 break; 3570 case tok::kw___thread: 3571 isInvalid = DS.SetStorageClassSpecThread(DeclSpec::TSCS___thread, Loc, 3572 PrevSpec, DiagID); 3573 isStorageClass = true; 3574 break; 3575 case tok::kw_thread_local: 3576 isInvalid = DS.SetStorageClassSpecThread(DeclSpec::TSCS_thread_local, Loc, 3577 PrevSpec, DiagID); 3578 isStorageClass = true; 3579 break; 3580 case tok::kw__Thread_local: 3581 if (!getLangOpts().C11) 3582 Diag(Tok, diag::ext_c11_feature) << Tok.getName(); 3583 isInvalid = DS.SetStorageClassSpecThread(DeclSpec::TSCS__Thread_local, 3584 Loc, PrevSpec, DiagID); 3585 isStorageClass = true; 3586 break; 3587 3588 // function-specifier 3589 case tok::kw_inline: 3590 isInvalid = DS.setFunctionSpecInline(Loc, PrevSpec, DiagID); 3591 break; 3592 case tok::kw_virtual: 3593 // C++ for OpenCL does not allow virtual function qualifier, to avoid 3594 // function pointers restricted in OpenCL v2.0 s6.9.a. 3595 if (getLangOpts().OpenCLCPlusPlus) { 3596 DiagID = diag::err_openclcxx_virtual_function; 3597 PrevSpec = Tok.getIdentifierInfo()->getNameStart(); 3598 isInvalid = true; 3599 } 3600 else { 3601 isInvalid = DS.setFunctionSpecVirtual(Loc, PrevSpec, DiagID); 3602 } 3603 break; 3604 case tok::kw_explicit: { 3605 SourceLocation ExplicitLoc = Loc; 3606 SourceLocation CloseParenLoc; 3607 ExplicitSpecifier ExplicitSpec(nullptr, ExplicitSpecKind::ResolvedTrue); 3608 ConsumedEnd = ExplicitLoc; 3609 ConsumeToken(); // kw_explicit 3610 if (Tok.is(tok::l_paren)) { 3611 if (getLangOpts().CPlusPlus2a) { 3612 ExprResult ExplicitExpr(static_cast<Expr *>(nullptr)); 3613 BalancedDelimiterTracker Tracker(*this, tok::l_paren); 3614 Tracker.consumeOpen(); 3615 ExplicitExpr = ParseConstantExpression(); 3616 ConsumedEnd = Tok.getLocation(); 3617 if (ExplicitExpr.isUsable()) { 3618 CloseParenLoc = Tok.getLocation(); 3619 Tracker.consumeClose(); 3620 ExplicitSpec = 3621 Actions.ActOnExplicitBoolSpecifier(ExplicitExpr.get()); 3622 } else 3623 Tracker.skipToEnd(); 3624 } else 3625 Diag(Tok.getLocation(), diag::warn_cxx2a_compat_explicit_bool); 3626 } 3627 isInvalid = DS.setFunctionSpecExplicit(ExplicitLoc, PrevSpec, DiagID, 3628 ExplicitSpec, CloseParenLoc); 3629 break; 3630 } 3631 case tok::kw__Noreturn: 3632 if (!getLangOpts().C11) 3633 Diag(Tok, diag::ext_c11_feature) << Tok.getName(); 3634 isInvalid = DS.setFunctionSpecNoreturn(Loc, PrevSpec, DiagID); 3635 break; 3636 3637 // alignment-specifier 3638 case tok::kw__Alignas: 3639 if (!getLangOpts().C11) 3640 Diag(Tok, diag::ext_c11_feature) << Tok.getName(); 3641 ParseAlignmentSpecifier(DS.getAttributes()); 3642 continue; 3643 3644 // friend 3645 case tok::kw_friend: 3646 if (DSContext == DeclSpecContext::DSC_class) 3647 isInvalid = DS.SetFriendSpec(Loc, PrevSpec, DiagID); 3648 else { 3649 PrevSpec = ""; // not actually used by the diagnostic 3650 DiagID = diag::err_friend_invalid_in_context; 3651 isInvalid = true; 3652 } 3653 break; 3654 3655 // Modules 3656 case tok::kw___module_private__: 3657 isInvalid = DS.setModulePrivateSpec(Loc, PrevSpec, DiagID); 3658 break; 3659 3660 // constexpr, consteval, constinit specifiers 3661 case tok::kw_constexpr: 3662 isInvalid = DS.SetConstexprSpec(CSK_constexpr, Loc, PrevSpec, DiagID); 3663 break; 3664 case tok::kw_consteval: 3665 isInvalid = DS.SetConstexprSpec(CSK_consteval, Loc, PrevSpec, DiagID); 3666 break; 3667 case tok::kw_constinit: 3668 isInvalid = DS.SetConstexprSpec(CSK_constinit, Loc, PrevSpec, DiagID); 3669 break; 3670 3671 // type-specifier 3672 case tok::kw_short: 3673 isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec, 3674 DiagID, Policy); 3675 break; 3676 case tok::kw_long: 3677 if (DS.getTypeSpecWidth() != DeclSpec::TSW_long) 3678 isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec, 3679 DiagID, Policy); 3680 else 3681 isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec, 3682 DiagID, Policy); 3683 break; 3684 case tok::kw___int64: 3685 isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec, 3686 DiagID, Policy); 3687 break; 3688 case tok::kw_signed: 3689 isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec, 3690 DiagID); 3691 break; 3692 case tok::kw_unsigned: 3693 isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec, 3694 DiagID); 3695 break; 3696 case tok::kw__Complex: 3697 if (!getLangOpts().C99) 3698 Diag(Tok, diag::ext_c99_feature) << Tok.getName(); 3699 isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec, 3700 DiagID); 3701 break; 3702 case tok::kw__Imaginary: 3703 if (!getLangOpts().C99) 3704 Diag(Tok, diag::ext_c99_feature) << Tok.getName(); 3705 isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec, 3706 DiagID); 3707 break; 3708 case tok::kw_void: 3709 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec, 3710 DiagID, Policy); 3711 break; 3712 case tok::kw_char: 3713 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec, 3714 DiagID, Policy); 3715 break; 3716 case tok::kw_int: 3717 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec, 3718 DiagID, Policy); 3719 break; 3720 case tok::kw___int128: 3721 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int128, Loc, PrevSpec, 3722 DiagID, Policy); 3723 break; 3724 case tok::kw_half: 3725 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_half, Loc, PrevSpec, 3726 DiagID, Policy); 3727 break; 3728 case tok::kw_float: 3729 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec, 3730 DiagID, Policy); 3731 break; 3732 case tok::kw_double: 3733 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec, 3734 DiagID, Policy); 3735 break; 3736 case tok::kw__Float16: 3737 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float16, Loc, PrevSpec, 3738 DiagID, Policy); 3739 break; 3740 case tok::kw__Accum: 3741 if (!getLangOpts().FixedPoint) { 3742 SetupFixedPointError(getLangOpts(), PrevSpec, DiagID, isInvalid); 3743 } else { 3744 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_accum, Loc, PrevSpec, 3745 DiagID, Policy); 3746 } 3747 break; 3748 case tok::kw__Fract: 3749 if (!getLangOpts().FixedPoint) { 3750 SetupFixedPointError(getLangOpts(), PrevSpec, DiagID, isInvalid); 3751 } else { 3752 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_fract, Loc, PrevSpec, 3753 DiagID, Policy); 3754 } 3755 break; 3756 case tok::kw__Sat: 3757 if (!getLangOpts().FixedPoint) { 3758 SetupFixedPointError(getLangOpts(), PrevSpec, DiagID, isInvalid); 3759 } else { 3760 isInvalid = DS.SetTypeSpecSat(Loc, PrevSpec, DiagID); 3761 } 3762 break; 3763 case tok::kw___float128: 3764 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float128, Loc, PrevSpec, 3765 DiagID, Policy); 3766 break; 3767 case tok::kw_wchar_t: 3768 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec, 3769 DiagID, Policy); 3770 break; 3771 case tok::kw_char8_t: 3772 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char8, Loc, PrevSpec, 3773 DiagID, Policy); 3774 break; 3775 case tok::kw_char16_t: 3776 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec, 3777 DiagID, Policy); 3778 break; 3779 case tok::kw_char32_t: 3780 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec, 3781 DiagID, Policy); 3782 break; 3783 case tok::kw_bool: 3784 case tok::kw__Bool: 3785 if (Tok.is(tok::kw__Bool) && !getLangOpts().C99) 3786 Diag(Tok, diag::ext_c99_feature) << Tok.getName(); 3787 3788 if (Tok.is(tok::kw_bool) && 3789 DS.getTypeSpecType() != DeclSpec::TST_unspecified && 3790 DS.getStorageClassSpec() == DeclSpec::SCS_typedef) { 3791 PrevSpec = ""; // Not used by the diagnostic. 3792 DiagID = diag::err_bool_redeclaration; 3793 // For better error recovery. 3794 Tok.setKind(tok::identifier); 3795 isInvalid = true; 3796 } else { 3797 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec, 3798 DiagID, Policy); 3799 } 3800 break; 3801 case tok::kw__Decimal32: 3802 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec, 3803 DiagID, Policy); 3804 break; 3805 case tok::kw__Decimal64: 3806 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec, 3807 DiagID, Policy); 3808 break; 3809 case tok::kw__Decimal128: 3810 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec, 3811 DiagID, Policy); 3812 break; 3813 case tok::kw___vector: 3814 isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID, Policy); 3815 break; 3816 case tok::kw___pixel: 3817 isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID, Policy); 3818 break; 3819 case tok::kw___bool: 3820 isInvalid = DS.SetTypeAltiVecBool(true, Loc, PrevSpec, DiagID, Policy); 3821 break; 3822 case tok::kw_pipe: 3823 if (!getLangOpts().OpenCL || (getLangOpts().OpenCLVersion < 200 && 3824 !getLangOpts().OpenCLCPlusPlus)) { 3825 // OpenCL 2.0 defined this keyword. OpenCL 1.2 and earlier should 3826 // support the "pipe" word as identifier. 3827 Tok.getIdentifierInfo()->revertTokenIDToIdentifier(); 3828 goto DoneWithDeclSpec; 3829 } 3830 isInvalid = DS.SetTypePipe(true, Loc, PrevSpec, DiagID, Policy); 3831 break; 3832 #define GENERIC_IMAGE_TYPE(ImgType, Id) \ 3833 case tok::kw_##ImgType##_t: \ 3834 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_##ImgType##_t, Loc, PrevSpec, \ 3835 DiagID, Policy); \ 3836 break; 3837 #include "clang/Basic/OpenCLImageTypes.def" 3838 case tok::kw___unknown_anytype: 3839 isInvalid = DS.SetTypeSpecType(TST_unknown_anytype, Loc, 3840 PrevSpec, DiagID, Policy); 3841 break; 3842 3843 // class-specifier: 3844 case tok::kw_class: 3845 case tok::kw_struct: 3846 case tok::kw___interface: 3847 case tok::kw_union: { 3848 tok::TokenKind Kind = Tok.getKind(); 3849 ConsumeToken(); 3850 3851 // These are attributes following class specifiers. 3852 // To produce better diagnostic, we parse them when 3853 // parsing class specifier. 3854 ParsedAttributesWithRange Attributes(AttrFactory); 3855 ParseClassSpecifier(Kind, Loc, DS, TemplateInfo, AS, 3856 EnteringContext, DSContext, Attributes); 3857 3858 // If there are attributes following class specifier, 3859 // take them over and handle them here. 3860 if (!Attributes.empty()) { 3861 AttrsLastTime = true; 3862 attrs.takeAllFrom(Attributes); 3863 } 3864 continue; 3865 } 3866 3867 // enum-specifier: 3868 case tok::kw_enum: 3869 ConsumeToken(); 3870 ParseEnumSpecifier(Loc, DS, TemplateInfo, AS, DSContext); 3871 continue; 3872 3873 // cv-qualifier: 3874 case tok::kw_const: 3875 isInvalid = DS.SetTypeQual(DeclSpec::TQ_const, Loc, PrevSpec, DiagID, 3876 getLangOpts()); 3877 break; 3878 case tok::kw_volatile: 3879 isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID, 3880 getLangOpts()); 3881 break; 3882 case tok::kw_restrict: 3883 isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID, 3884 getLangOpts()); 3885 break; 3886 3887 // C++ typename-specifier: 3888 case tok::kw_typename: 3889 if (TryAnnotateTypeOrScopeToken()) { 3890 DS.SetTypeSpecError(); 3891 goto DoneWithDeclSpec; 3892 } 3893 if (!Tok.is(tok::kw_typename)) 3894 continue; 3895 break; 3896 3897 // GNU typeof support. 3898 case tok::kw_typeof: 3899 ParseTypeofSpecifier(DS); 3900 continue; 3901 3902 case tok::annot_decltype: 3903 ParseDecltypeSpecifier(DS); 3904 continue; 3905 3906 case tok::annot_pragma_pack: 3907 HandlePragmaPack(); 3908 continue; 3909 3910 case tok::annot_pragma_ms_pragma: 3911 HandlePragmaMSPragma(); 3912 continue; 3913 3914 case tok::annot_pragma_ms_vtordisp: 3915 HandlePragmaMSVtorDisp(); 3916 continue; 3917 3918 case tok::annot_pragma_ms_pointers_to_members: 3919 HandlePragmaMSPointersToMembers(); 3920 continue; 3921 3922 case tok::kw___underlying_type: 3923 ParseUnderlyingTypeSpecifier(DS); 3924 continue; 3925 3926 case tok::kw__Atomic: 3927 // C11 6.7.2.4/4: 3928 // If the _Atomic keyword is immediately followed by a left parenthesis, 3929 // it is interpreted as a type specifier (with a type name), not as a 3930 // type qualifier. 3931 if (!getLangOpts().C11) 3932 Diag(Tok, diag::ext_c11_feature) << Tok.getName(); 3933 3934 if (NextToken().is(tok::l_paren)) { 3935 ParseAtomicSpecifier(DS); 3936 continue; 3937 } 3938 isInvalid = DS.SetTypeQual(DeclSpec::TQ_atomic, Loc, PrevSpec, DiagID, 3939 getLangOpts()); 3940 break; 3941 3942 // OpenCL address space qualifiers: 3943 case tok::kw___generic: 3944 // generic address space is introduced only in OpenCL v2.0 3945 // see OpenCL C Spec v2.0 s6.5.5 3946 if (Actions.getLangOpts().OpenCLVersion < 200 && 3947 !Actions.getLangOpts().OpenCLCPlusPlus) { 3948 DiagID = diag::err_opencl_unknown_type_specifier; 3949 PrevSpec = Tok.getIdentifierInfo()->getNameStart(); 3950 isInvalid = true; 3951 break; 3952 }; 3953 LLVM_FALLTHROUGH; 3954 case tok::kw_private: 3955 case tok::kw___private: 3956 case tok::kw___global: 3957 case tok::kw___local: 3958 case tok::kw___constant: 3959 // OpenCL access qualifiers: 3960 case tok::kw___read_only: 3961 case tok::kw___write_only: 3962 case tok::kw___read_write: 3963 ParseOpenCLQualifiers(DS.getAttributes()); 3964 break; 3965 3966 case tok::less: 3967 // GCC ObjC supports types like "<SomeProtocol>" as a synonym for 3968 // "id<SomeProtocol>". This is hopelessly old fashioned and dangerous, 3969 // but we support it. 3970 if (DS.hasTypeSpecifier() || !getLangOpts().ObjC) 3971 goto DoneWithDeclSpec; 3972 3973 SourceLocation StartLoc = Tok.getLocation(); 3974 SourceLocation EndLoc; 3975 TypeResult Type = parseObjCProtocolQualifierType(EndLoc); 3976 if (Type.isUsable()) { 3977 if (DS.SetTypeSpecType(DeclSpec::TST_typename, StartLoc, StartLoc, 3978 PrevSpec, DiagID, Type.get(), 3979 Actions.getASTContext().getPrintingPolicy())) 3980 Diag(StartLoc, DiagID) << PrevSpec; 3981 3982 DS.SetRangeEnd(EndLoc); 3983 } else { 3984 DS.SetTypeSpecError(); 3985 } 3986 3987 // Need to support trailing type qualifiers (e.g. "id<p> const"). 3988 // If a type specifier follows, it will be diagnosed elsewhere. 3989 continue; 3990 } 3991 3992 DS.SetRangeEnd(ConsumedEnd.isValid() ? ConsumedEnd : Tok.getLocation()); 3993 3994 // If the specifier wasn't legal, issue a diagnostic. 3995 if (isInvalid) { 3996 assert(PrevSpec && "Method did not return previous specifier!"); 3997 assert(DiagID); 3998 3999 if (DiagID == diag::ext_duplicate_declspec || 4000 DiagID == diag::ext_warn_duplicate_declspec || 4001 DiagID == diag::err_duplicate_declspec) 4002 Diag(Loc, DiagID) << PrevSpec 4003 << FixItHint::CreateRemoval( 4004 SourceRange(Loc, DS.getEndLoc())); 4005 else if (DiagID == diag::err_opencl_unknown_type_specifier) { 4006 Diag(Loc, DiagID) << getLangOpts().OpenCLCPlusPlus 4007 << getLangOpts().getOpenCLVersionTuple().getAsString() 4008 << PrevSpec << isStorageClass; 4009 } else 4010 Diag(Loc, DiagID) << PrevSpec; 4011 } 4012 4013 if (DiagID != diag::err_bool_redeclaration && ConsumedEnd.isInvalid()) 4014 // After an error the next token can be an annotation token. 4015 ConsumeAnyToken(); 4016 4017 AttrsLastTime = false; 4018 } 4019 } 4020 4021 /// ParseStructDeclaration - Parse a struct declaration without the terminating 4022 /// semicolon. 4023 /// 4024 /// Note that a struct declaration refers to a declaration in a struct, 4025 /// not to the declaration of a struct. 4026 /// 4027 /// struct-declaration: 4028 /// [C2x] attributes-specifier-seq[opt] 4029 /// specifier-qualifier-list struct-declarator-list 4030 /// [GNU] __extension__ struct-declaration 4031 /// [GNU] specifier-qualifier-list 4032 /// struct-declarator-list: 4033 /// struct-declarator 4034 /// struct-declarator-list ',' struct-declarator 4035 /// [GNU] struct-declarator-list ',' attributes[opt] struct-declarator 4036 /// struct-declarator: 4037 /// declarator 4038 /// [GNU] declarator attributes[opt] 4039 /// declarator[opt] ':' constant-expression 4040 /// [GNU] declarator[opt] ':' constant-expression attributes[opt] 4041 /// 4042 void Parser::ParseStructDeclaration( 4043 ParsingDeclSpec &DS, 4044 llvm::function_ref<void(ParsingFieldDeclarator &)> FieldsCallback) { 4045 4046 if (Tok.is(tok::kw___extension__)) { 4047 // __extension__ silences extension warnings in the subexpression. 4048 ExtensionRAIIObject O(Diags); // Use RAII to do this. 4049 ConsumeToken(); 4050 return ParseStructDeclaration(DS, FieldsCallback); 4051 } 4052 4053 // Parse leading attributes. 4054 ParsedAttributesWithRange Attrs(AttrFactory); 4055 MaybeParseCXX11Attributes(Attrs); 4056 DS.takeAttributesFrom(Attrs); 4057 4058 // Parse the common specifier-qualifiers-list piece. 4059 ParseSpecifierQualifierList(DS); 4060 4061 // If there are no declarators, this is a free-standing declaration 4062 // specifier. Let the actions module cope with it. 4063 if (Tok.is(tok::semi)) { 4064 RecordDecl *AnonRecord = nullptr; 4065 Decl *TheDecl = Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS_none, 4066 DS, AnonRecord); 4067 assert(!AnonRecord && "Did not expect anonymous struct or union here"); 4068 DS.complete(TheDecl); 4069 return; 4070 } 4071 4072 // Read struct-declarators until we find the semicolon. 4073 bool FirstDeclarator = true; 4074 SourceLocation CommaLoc; 4075 while (1) { 4076 ParsingFieldDeclarator DeclaratorInfo(*this, DS); 4077 DeclaratorInfo.D.setCommaLoc(CommaLoc); 4078 4079 // Attributes are only allowed here on successive declarators. 4080 if (!FirstDeclarator) 4081 MaybeParseGNUAttributes(DeclaratorInfo.D); 4082 4083 /// struct-declarator: declarator 4084 /// struct-declarator: declarator[opt] ':' constant-expression 4085 if (Tok.isNot(tok::colon)) { 4086 // Don't parse FOO:BAR as if it were a typo for FOO::BAR. 4087 ColonProtectionRAIIObject X(*this); 4088 ParseDeclarator(DeclaratorInfo.D); 4089 } else 4090 DeclaratorInfo.D.SetIdentifier(nullptr, Tok.getLocation()); 4091 4092 if (TryConsumeToken(tok::colon)) { 4093 ExprResult Res(ParseConstantExpression()); 4094 if (Res.isInvalid()) 4095 SkipUntil(tok::semi, StopBeforeMatch); 4096 else 4097 DeclaratorInfo.BitfieldSize = Res.get(); 4098 } 4099 4100 // If attributes exist after the declarator, parse them. 4101 MaybeParseGNUAttributes(DeclaratorInfo.D); 4102 4103 // We're done with this declarator; invoke the callback. 4104 FieldsCallback(DeclaratorInfo); 4105 4106 // If we don't have a comma, it is either the end of the list (a ';') 4107 // or an error, bail out. 4108 if (!TryConsumeToken(tok::comma, CommaLoc)) 4109 return; 4110 4111 FirstDeclarator = false; 4112 } 4113 } 4114 4115 /// ParseStructUnionBody 4116 /// struct-contents: 4117 /// struct-declaration-list 4118 /// [EXT] empty 4119 /// [GNU] "struct-declaration-list" without terminatoring ';' 4120 /// struct-declaration-list: 4121 /// struct-declaration 4122 /// struct-declaration-list struct-declaration 4123 /// [OBC] '@' 'defs' '(' class-name ')' 4124 /// 4125 void Parser::ParseStructUnionBody(SourceLocation RecordLoc, 4126 DeclSpec::TST TagType, Decl *TagDecl) { 4127 PrettyDeclStackTraceEntry CrashInfo(Actions.Context, TagDecl, RecordLoc, 4128 "parsing struct/union body"); 4129 assert(!getLangOpts().CPlusPlus && "C++ declarations not supported"); 4130 4131 BalancedDelimiterTracker T(*this, tok::l_brace); 4132 if (T.consumeOpen()) 4133 return; 4134 4135 ParseScope StructScope(this, Scope::ClassScope|Scope::DeclScope); 4136 Actions.ActOnTagStartDefinition(getCurScope(), TagDecl); 4137 4138 SmallVector<Decl *, 32> FieldDecls; 4139 4140 // While we still have something to read, read the declarations in the struct. 4141 while (!tryParseMisplacedModuleImport() && Tok.isNot(tok::r_brace) && 4142 Tok.isNot(tok::eof)) { 4143 // Each iteration of this loop reads one struct-declaration. 4144 4145 // Check for extraneous top-level semicolon. 4146 if (Tok.is(tok::semi)) { 4147 ConsumeExtraSemi(InsideStruct, TagType); 4148 continue; 4149 } 4150 4151 // Parse _Static_assert declaration. 4152 if (Tok.is(tok::kw__Static_assert)) { 4153 SourceLocation DeclEnd; 4154 ParseStaticAssertDeclaration(DeclEnd); 4155 continue; 4156 } 4157 4158 if (Tok.is(tok::annot_pragma_pack)) { 4159 HandlePragmaPack(); 4160 continue; 4161 } 4162 4163 if (Tok.is(tok::annot_pragma_align)) { 4164 HandlePragmaAlign(); 4165 continue; 4166 } 4167 4168 if (Tok.is(tok::annot_pragma_openmp)) { 4169 // Result can be ignored, because it must be always empty. 4170 AccessSpecifier AS = AS_none; 4171 ParsedAttributesWithRange Attrs(AttrFactory); 4172 (void)ParseOpenMPDeclarativeDirectiveWithExtDecl(AS, Attrs); 4173 continue; 4174 } 4175 4176 if (tok::isPragmaAnnotation(Tok.getKind())) { 4177 Diag(Tok.getLocation(), diag::err_pragma_misplaced_in_decl) 4178 << DeclSpec::getSpecifierName( 4179 TagType, Actions.getASTContext().getPrintingPolicy()); 4180 ConsumeAnnotationToken(); 4181 continue; 4182 } 4183 4184 if (!Tok.is(tok::at)) { 4185 auto CFieldCallback = [&](ParsingFieldDeclarator &FD) { 4186 // Install the declarator into the current TagDecl. 4187 Decl *Field = 4188 Actions.ActOnField(getCurScope(), TagDecl, 4189 FD.D.getDeclSpec().getSourceRange().getBegin(), 4190 FD.D, FD.BitfieldSize); 4191 FieldDecls.push_back(Field); 4192 FD.complete(Field); 4193 }; 4194 4195 // Parse all the comma separated declarators. 4196 ParsingDeclSpec DS(*this); 4197 ParseStructDeclaration(DS, CFieldCallback); 4198 } else { // Handle @defs 4199 ConsumeToken(); 4200 if (!Tok.isObjCAtKeyword(tok::objc_defs)) { 4201 Diag(Tok, diag::err_unexpected_at); 4202 SkipUntil(tok::semi); 4203 continue; 4204 } 4205 ConsumeToken(); 4206 ExpectAndConsume(tok::l_paren); 4207 if (!Tok.is(tok::identifier)) { 4208 Diag(Tok, diag::err_expected) << tok::identifier; 4209 SkipUntil(tok::semi); 4210 continue; 4211 } 4212 SmallVector<Decl *, 16> Fields; 4213 Actions.ActOnDefs(getCurScope(), TagDecl, Tok.getLocation(), 4214 Tok.getIdentifierInfo(), Fields); 4215 FieldDecls.insert(FieldDecls.end(), Fields.begin(), Fields.end()); 4216 ConsumeToken(); 4217 ExpectAndConsume(tok::r_paren); 4218 } 4219 4220 if (TryConsumeToken(tok::semi)) 4221 continue; 4222 4223 if (Tok.is(tok::r_brace)) { 4224 ExpectAndConsume(tok::semi, diag::ext_expected_semi_decl_list); 4225 break; 4226 } 4227 4228 ExpectAndConsume(tok::semi, diag::err_expected_semi_decl_list); 4229 // Skip to end of block or statement to avoid ext-warning on extra ';'. 4230 SkipUntil(tok::r_brace, StopAtSemi | StopBeforeMatch); 4231 // If we stopped at a ';', eat it. 4232 TryConsumeToken(tok::semi); 4233 } 4234 4235 T.consumeClose(); 4236 4237 ParsedAttributes attrs(AttrFactory); 4238 // If attributes exist after struct contents, parse them. 4239 MaybeParseGNUAttributes(attrs); 4240 4241 Actions.ActOnFields(getCurScope(), RecordLoc, TagDecl, FieldDecls, 4242 T.getOpenLocation(), T.getCloseLocation(), attrs); 4243 StructScope.Exit(); 4244 Actions.ActOnTagFinishDefinition(getCurScope(), TagDecl, T.getRange()); 4245 } 4246 4247 /// ParseEnumSpecifier 4248 /// enum-specifier: [C99 6.7.2.2] 4249 /// 'enum' identifier[opt] '{' enumerator-list '}' 4250 ///[C99/C++]'enum' identifier[opt] '{' enumerator-list ',' '}' 4251 /// [GNU] 'enum' attributes[opt] identifier[opt] '{' enumerator-list ',' [opt] 4252 /// '}' attributes[opt] 4253 /// [MS] 'enum' __declspec[opt] identifier[opt] '{' enumerator-list ',' [opt] 4254 /// '}' 4255 /// 'enum' identifier 4256 /// [GNU] 'enum' attributes[opt] identifier 4257 /// 4258 /// [C++11] enum-head '{' enumerator-list[opt] '}' 4259 /// [C++11] enum-head '{' enumerator-list ',' '}' 4260 /// 4261 /// enum-head: [C++11] 4262 /// enum-key attribute-specifier-seq[opt] identifier[opt] enum-base[opt] 4263 /// enum-key attribute-specifier-seq[opt] nested-name-specifier 4264 /// identifier enum-base[opt] 4265 /// 4266 /// enum-key: [C++11] 4267 /// 'enum' 4268 /// 'enum' 'class' 4269 /// 'enum' 'struct' 4270 /// 4271 /// enum-base: [C++11] 4272 /// ':' type-specifier-seq 4273 /// 4274 /// [C++] elaborated-type-specifier: 4275 /// [C++] 'enum' '::'[opt] nested-name-specifier[opt] identifier 4276 /// 4277 void Parser::ParseEnumSpecifier(SourceLocation StartLoc, DeclSpec &DS, 4278 const ParsedTemplateInfo &TemplateInfo, 4279 AccessSpecifier AS, DeclSpecContext DSC) { 4280 // Parse the tag portion of this. 4281 if (Tok.is(tok::code_completion)) { 4282 // Code completion for an enum name. 4283 Actions.CodeCompleteTag(getCurScope(), DeclSpec::TST_enum); 4284 return cutOffParsing(); 4285 } 4286 4287 // If attributes exist after tag, parse them. 4288 ParsedAttributesWithRange attrs(AttrFactory); 4289 MaybeParseGNUAttributes(attrs); 4290 MaybeParseCXX11Attributes(attrs); 4291 MaybeParseMicrosoftDeclSpecs(attrs); 4292 4293 SourceLocation ScopedEnumKWLoc; 4294 bool IsScopedUsingClassTag = false; 4295 4296 // In C++11, recognize 'enum class' and 'enum struct'. 4297 if (Tok.isOneOf(tok::kw_class, tok::kw_struct)) { 4298 Diag(Tok, getLangOpts().CPlusPlus11 ? diag::warn_cxx98_compat_scoped_enum 4299 : diag::ext_scoped_enum); 4300 IsScopedUsingClassTag = Tok.is(tok::kw_class); 4301 ScopedEnumKWLoc = ConsumeToken(); 4302 4303 // Attributes are not allowed between these keywords. Diagnose, 4304 // but then just treat them like they appeared in the right place. 4305 ProhibitAttributes(attrs); 4306 4307 // They are allowed afterwards, though. 4308 MaybeParseGNUAttributes(attrs); 4309 MaybeParseCXX11Attributes(attrs); 4310 MaybeParseMicrosoftDeclSpecs(attrs); 4311 } 4312 4313 // C++11 [temp.explicit]p12: 4314 // The usual access controls do not apply to names used to specify 4315 // explicit instantiations. 4316 // We extend this to also cover explicit specializations. Note that 4317 // we don't suppress if this turns out to be an elaborated type 4318 // specifier. 4319 bool shouldDelayDiagsInTag = 4320 (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation || 4321 TemplateInfo.Kind == ParsedTemplateInfo::ExplicitSpecialization); 4322 SuppressAccessChecks diagsFromTag(*this, shouldDelayDiagsInTag); 4323 4324 // Enum definitions should not be parsed in a trailing-return-type. 4325 bool AllowDeclaration = DSC != DeclSpecContext::DSC_trailing; 4326 4327 CXXScopeSpec &SS = DS.getTypeSpecScope(); 4328 if (getLangOpts().CPlusPlus) { 4329 // "enum foo : bar;" is not a potential typo for "enum foo::bar;" 4330 // if a fixed underlying type is allowed. 4331 ColonProtectionRAIIObject X(*this, AllowDeclaration); 4332 4333 CXXScopeSpec Spec; 4334 if (ParseOptionalCXXScopeSpecifier(Spec, nullptr, 4335 /*EnteringContext=*/true)) 4336 return; 4337 4338 if (Spec.isSet() && Tok.isNot(tok::identifier)) { 4339 Diag(Tok, diag::err_expected) << tok::identifier; 4340 if (Tok.isNot(tok::l_brace)) { 4341 // Has no name and is not a definition. 4342 // Skip the rest of this declarator, up until the comma or semicolon. 4343 SkipUntil(tok::comma, StopAtSemi); 4344 return; 4345 } 4346 } 4347 4348 SS = Spec; 4349 } 4350 4351 // Must have either 'enum name' or 'enum {...}'. 4352 if (Tok.isNot(tok::identifier) && Tok.isNot(tok::l_brace) && 4353 !(AllowDeclaration && Tok.is(tok::colon))) { 4354 Diag(Tok, diag::err_expected_either) << tok::identifier << tok::l_brace; 4355 4356 // Skip the rest of this declarator, up until the comma or semicolon. 4357 SkipUntil(tok::comma, StopAtSemi); 4358 return; 4359 } 4360 4361 // If an identifier is present, consume and remember it. 4362 IdentifierInfo *Name = nullptr; 4363 SourceLocation NameLoc; 4364 if (Tok.is(tok::identifier)) { 4365 Name = Tok.getIdentifierInfo(); 4366 NameLoc = ConsumeToken(); 4367 } 4368 4369 if (!Name && ScopedEnumKWLoc.isValid()) { 4370 // C++0x 7.2p2: The optional identifier shall not be omitted in the 4371 // declaration of a scoped enumeration. 4372 Diag(Tok, diag::err_scoped_enum_missing_identifier); 4373 ScopedEnumKWLoc = SourceLocation(); 4374 IsScopedUsingClassTag = false; 4375 } 4376 4377 // Okay, end the suppression area. We'll decide whether to emit the 4378 // diagnostics in a second. 4379 if (shouldDelayDiagsInTag) 4380 diagsFromTag.done(); 4381 4382 TypeResult BaseType; 4383 4384 // Parse the fixed underlying type. 4385 bool CanBeBitfield = getCurScope()->getFlags() & Scope::ClassScope; 4386 if (AllowDeclaration && Tok.is(tok::colon)) { 4387 bool PossibleBitfield = false; 4388 if (CanBeBitfield) { 4389 // If we're in class scope, this can either be an enum declaration with 4390 // an underlying type, or a declaration of a bitfield member. We try to 4391 // use a simple disambiguation scheme first to catch the common cases 4392 // (integer literal, sizeof); if it's still ambiguous, we then consider 4393 // anything that's a simple-type-specifier followed by '(' as an 4394 // expression. This suffices because function types are not valid 4395 // underlying types anyway. 4396 EnterExpressionEvaluationContext Unevaluated( 4397 Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated); 4398 TPResult TPR = isExpressionOrTypeSpecifierSimple(NextToken().getKind()); 4399 // If the next token starts an expression, we know we're parsing a 4400 // bit-field. This is the common case. 4401 if (TPR == TPResult::True) 4402 PossibleBitfield = true; 4403 // If the next token starts a type-specifier-seq, it may be either a 4404 // a fixed underlying type or the start of a function-style cast in C++; 4405 // lookahead one more token to see if it's obvious that we have a 4406 // fixed underlying type. 4407 else if (TPR == TPResult::False && 4408 GetLookAheadToken(2).getKind() == tok::semi) { 4409 // Consume the ':'. 4410 ConsumeToken(); 4411 } else { 4412 // We have the start of a type-specifier-seq, so we have to perform 4413 // tentative parsing to determine whether we have an expression or a 4414 // type. 4415 TentativeParsingAction TPA(*this); 4416 4417 // Consume the ':'. 4418 ConsumeToken(); 4419 4420 // If we see a type specifier followed by an open-brace, we have an 4421 // ambiguity between an underlying type and a C++11 braced 4422 // function-style cast. Resolve this by always treating it as an 4423 // underlying type. 4424 // FIXME: The standard is not entirely clear on how to disambiguate in 4425 // this case. 4426 if ((getLangOpts().CPlusPlus && 4427 isCXXDeclarationSpecifier(TPResult::True) != TPResult::True) || 4428 (!getLangOpts().CPlusPlus && !isDeclarationSpecifier(true))) { 4429 // We'll parse this as a bitfield later. 4430 PossibleBitfield = true; 4431 TPA.Revert(); 4432 } else { 4433 // We have a type-specifier-seq. 4434 TPA.Commit(); 4435 } 4436 } 4437 } else { 4438 // Consume the ':'. 4439 ConsumeToken(); 4440 } 4441 4442 if (!PossibleBitfield) { 4443 SourceRange Range; 4444 BaseType = ParseTypeName(&Range); 4445 4446 if (!getLangOpts().ObjC) { 4447 if (getLangOpts().CPlusPlus11) 4448 Diag(StartLoc, diag::warn_cxx98_compat_enum_fixed_underlying_type); 4449 else if (getLangOpts().CPlusPlus) 4450 Diag(StartLoc, diag::ext_cxx11_enum_fixed_underlying_type); 4451 else if (getLangOpts().MicrosoftExt) 4452 Diag(StartLoc, diag::ext_ms_c_enum_fixed_underlying_type); 4453 else 4454 Diag(StartLoc, diag::ext_clang_c_enum_fixed_underlying_type); 4455 } 4456 } 4457 } 4458 4459 // There are four options here. If we have 'friend enum foo;' then this is a 4460 // friend declaration, and cannot have an accompanying definition. If we have 4461 // 'enum foo;', then this is a forward declaration. If we have 4462 // 'enum foo {...' then this is a definition. Otherwise we have something 4463 // like 'enum foo xyz', a reference. 4464 // 4465 // This is needed to handle stuff like this right (C99 6.7.2.3p11): 4466 // enum foo {..}; void bar() { enum foo; } <- new foo in bar. 4467 // enum foo {..}; void bar() { enum foo x; } <- use of old foo. 4468 // 4469 Sema::TagUseKind TUK; 4470 if (!AllowDeclaration) { 4471 TUK = Sema::TUK_Reference; 4472 } else if (Tok.is(tok::l_brace)) { 4473 if (DS.isFriendSpecified()) { 4474 Diag(Tok.getLocation(), diag::err_friend_decl_defines_type) 4475 << SourceRange(DS.getFriendSpecLoc()); 4476 ConsumeBrace(); 4477 SkipUntil(tok::r_brace, StopAtSemi); 4478 TUK = Sema::TUK_Friend; 4479 } else { 4480 TUK = Sema::TUK_Definition; 4481 } 4482 } else if (!isTypeSpecifier(DSC) && 4483 (Tok.is(tok::semi) || 4484 (Tok.isAtStartOfLine() && 4485 !isValidAfterTypeSpecifier(CanBeBitfield)))) { 4486 TUK = DS.isFriendSpecified() ? Sema::TUK_Friend : Sema::TUK_Declaration; 4487 if (Tok.isNot(tok::semi)) { 4488 // A semicolon was missing after this declaration. Diagnose and recover. 4489 ExpectAndConsume(tok::semi, diag::err_expected_after, "enum"); 4490 PP.EnterToken(Tok, /*IsReinject=*/true); 4491 Tok.setKind(tok::semi); 4492 } 4493 } else { 4494 TUK = Sema::TUK_Reference; 4495 } 4496 4497 // If this is an elaborated type specifier, and we delayed 4498 // diagnostics before, just merge them into the current pool. 4499 if (TUK == Sema::TUK_Reference && shouldDelayDiagsInTag) { 4500 diagsFromTag.redelay(); 4501 } 4502 4503 MultiTemplateParamsArg TParams; 4504 if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate && 4505 TUK != Sema::TUK_Reference) { 4506 if (!getLangOpts().CPlusPlus11 || !SS.isSet()) { 4507 // Skip the rest of this declarator, up until the comma or semicolon. 4508 Diag(Tok, diag::err_enum_template); 4509 SkipUntil(tok::comma, StopAtSemi); 4510 return; 4511 } 4512 4513 if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation) { 4514 // Enumerations can't be explicitly instantiated. 4515 DS.SetTypeSpecError(); 4516 Diag(StartLoc, diag::err_explicit_instantiation_enum); 4517 return; 4518 } 4519 4520 assert(TemplateInfo.TemplateParams && "no template parameters"); 4521 TParams = MultiTemplateParamsArg(TemplateInfo.TemplateParams->data(), 4522 TemplateInfo.TemplateParams->size()); 4523 } 4524 4525 if (TUK == Sema::TUK_Reference) 4526 ProhibitAttributes(attrs); 4527 4528 if (!Name && TUK != Sema::TUK_Definition) { 4529 Diag(Tok, diag::err_enumerator_unnamed_no_def); 4530 4531 // Skip the rest of this declarator, up until the comma or semicolon. 4532 SkipUntil(tok::comma, StopAtSemi); 4533 return; 4534 } 4535 4536 stripTypeAttributesOffDeclSpec(attrs, DS, TUK); 4537 4538 Sema::SkipBodyInfo SkipBody; 4539 if (!Name && TUK == Sema::TUK_Definition && Tok.is(tok::l_brace) && 4540 NextToken().is(tok::identifier)) 4541 SkipBody = Actions.shouldSkipAnonEnumBody(getCurScope(), 4542 NextToken().getIdentifierInfo(), 4543 NextToken().getLocation()); 4544 4545 bool Owned = false; 4546 bool IsDependent = false; 4547 const char *PrevSpec = nullptr; 4548 unsigned DiagID; 4549 Decl *TagDecl = Actions.ActOnTag( 4550 getCurScope(), DeclSpec::TST_enum, TUK, StartLoc, SS, Name, NameLoc, 4551 attrs, AS, DS.getModulePrivateSpecLoc(), TParams, Owned, IsDependent, 4552 ScopedEnumKWLoc, IsScopedUsingClassTag, BaseType, 4553 DSC == DeclSpecContext::DSC_type_specifier, 4554 DSC == DeclSpecContext::DSC_template_param || 4555 DSC == DeclSpecContext::DSC_template_type_arg, 4556 &SkipBody); 4557 4558 if (SkipBody.ShouldSkip) { 4559 assert(TUK == Sema::TUK_Definition && "can only skip a definition"); 4560 4561 BalancedDelimiterTracker T(*this, tok::l_brace); 4562 T.consumeOpen(); 4563 T.skipToEnd(); 4564 4565 if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc, 4566 NameLoc.isValid() ? NameLoc : StartLoc, 4567 PrevSpec, DiagID, TagDecl, Owned, 4568 Actions.getASTContext().getPrintingPolicy())) 4569 Diag(StartLoc, DiagID) << PrevSpec; 4570 return; 4571 } 4572 4573 if (IsDependent) { 4574 // This enum has a dependent nested-name-specifier. Handle it as a 4575 // dependent tag. 4576 if (!Name) { 4577 DS.SetTypeSpecError(); 4578 Diag(Tok, diag::err_expected_type_name_after_typename); 4579 return; 4580 } 4581 4582 TypeResult Type = Actions.ActOnDependentTag( 4583 getCurScope(), DeclSpec::TST_enum, TUK, SS, Name, StartLoc, NameLoc); 4584 if (Type.isInvalid()) { 4585 DS.SetTypeSpecError(); 4586 return; 4587 } 4588 4589 if (DS.SetTypeSpecType(DeclSpec::TST_typename, StartLoc, 4590 NameLoc.isValid() ? NameLoc : StartLoc, 4591 PrevSpec, DiagID, Type.get(), 4592 Actions.getASTContext().getPrintingPolicy())) 4593 Diag(StartLoc, DiagID) << PrevSpec; 4594 4595 return; 4596 } 4597 4598 if (!TagDecl) { 4599 // The action failed to produce an enumeration tag. If this is a 4600 // definition, consume the entire definition. 4601 if (Tok.is(tok::l_brace) && TUK != Sema::TUK_Reference) { 4602 ConsumeBrace(); 4603 SkipUntil(tok::r_brace, StopAtSemi); 4604 } 4605 4606 DS.SetTypeSpecError(); 4607 return; 4608 } 4609 4610 if (Tok.is(tok::l_brace) && TUK != Sema::TUK_Reference) { 4611 Decl *D = SkipBody.CheckSameAsPrevious ? SkipBody.New : TagDecl; 4612 ParseEnumBody(StartLoc, D); 4613 if (SkipBody.CheckSameAsPrevious && 4614 !Actions.ActOnDuplicateDefinition(DS, TagDecl, SkipBody)) { 4615 DS.SetTypeSpecError(); 4616 return; 4617 } 4618 } 4619 4620 if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc, 4621 NameLoc.isValid() ? NameLoc : StartLoc, 4622 PrevSpec, DiagID, TagDecl, Owned, 4623 Actions.getASTContext().getPrintingPolicy())) 4624 Diag(StartLoc, DiagID) << PrevSpec; 4625 } 4626 4627 /// ParseEnumBody - Parse a {} enclosed enumerator-list. 4628 /// enumerator-list: 4629 /// enumerator 4630 /// enumerator-list ',' enumerator 4631 /// enumerator: 4632 /// enumeration-constant attributes[opt] 4633 /// enumeration-constant attributes[opt] '=' constant-expression 4634 /// enumeration-constant: 4635 /// identifier 4636 /// 4637 void Parser::ParseEnumBody(SourceLocation StartLoc, Decl *EnumDecl) { 4638 // Enter the scope of the enum body and start the definition. 4639 ParseScope EnumScope(this, Scope::DeclScope | Scope::EnumScope); 4640 Actions.ActOnTagStartDefinition(getCurScope(), EnumDecl); 4641 4642 BalancedDelimiterTracker T(*this, tok::l_brace); 4643 T.consumeOpen(); 4644 4645 // C does not allow an empty enumerator-list, C++ does [dcl.enum]. 4646 if (Tok.is(tok::r_brace) && !getLangOpts().CPlusPlus) 4647 Diag(Tok, diag::err_empty_enum); 4648 4649 SmallVector<Decl *, 32> EnumConstantDecls; 4650 SmallVector<SuppressAccessChecks, 32> EnumAvailabilityDiags; 4651 4652 Decl *LastEnumConstDecl = nullptr; 4653 4654 // Parse the enumerator-list. 4655 while (Tok.isNot(tok::r_brace)) { 4656 // Parse enumerator. If failed, try skipping till the start of the next 4657 // enumerator definition. 4658 if (Tok.isNot(tok::identifier)) { 4659 Diag(Tok.getLocation(), diag::err_expected) << tok::identifier; 4660 if (SkipUntil(tok::comma, tok::r_brace, StopBeforeMatch) && 4661 TryConsumeToken(tok::comma)) 4662 continue; 4663 break; 4664 } 4665 IdentifierInfo *Ident = Tok.getIdentifierInfo(); 4666 SourceLocation IdentLoc = ConsumeToken(); 4667 4668 // If attributes exist after the enumerator, parse them. 4669 ParsedAttributesWithRange attrs(AttrFactory); 4670 MaybeParseGNUAttributes(attrs); 4671 ProhibitAttributes(attrs); // GNU-style attributes are prohibited. 4672 if (standardAttributesAllowed() && isCXX11AttributeSpecifier()) { 4673 if (getLangOpts().CPlusPlus) 4674 Diag(Tok.getLocation(), getLangOpts().CPlusPlus17 4675 ? diag::warn_cxx14_compat_ns_enum_attribute 4676 : diag::ext_ns_enum_attribute) 4677 << 1 /*enumerator*/; 4678 ParseCXX11Attributes(attrs); 4679 } 4680 4681 SourceLocation EqualLoc; 4682 ExprResult AssignedVal; 4683 EnumAvailabilityDiags.emplace_back(*this); 4684 4685 EnterExpressionEvaluationContext ConstantEvaluated( 4686 Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated); 4687 if (TryConsumeToken(tok::equal, EqualLoc)) { 4688 AssignedVal = ParseConstantExpressionInExprEvalContext(); 4689 if (AssignedVal.isInvalid()) 4690 SkipUntil(tok::comma, tok::r_brace, StopBeforeMatch); 4691 } 4692 4693 // Install the enumerator constant into EnumDecl. 4694 Decl *EnumConstDecl = Actions.ActOnEnumConstant( 4695 getCurScope(), EnumDecl, LastEnumConstDecl, IdentLoc, Ident, attrs, 4696 EqualLoc, AssignedVal.get()); 4697 EnumAvailabilityDiags.back().done(); 4698 4699 EnumConstantDecls.push_back(EnumConstDecl); 4700 LastEnumConstDecl = EnumConstDecl; 4701 4702 if (Tok.is(tok::identifier)) { 4703 // We're missing a comma between enumerators. 4704 SourceLocation Loc = getEndOfPreviousToken(); 4705 Diag(Loc, diag::err_enumerator_list_missing_comma) 4706 << FixItHint::CreateInsertion(Loc, ", "); 4707 continue; 4708 } 4709 4710 // Emumerator definition must be finished, only comma or r_brace are 4711 // allowed here. 4712 SourceLocation CommaLoc; 4713 if (Tok.isNot(tok::r_brace) && !TryConsumeToken(tok::comma, CommaLoc)) { 4714 if (EqualLoc.isValid()) 4715 Diag(Tok.getLocation(), diag::err_expected_either) << tok::r_brace 4716 << tok::comma; 4717 else 4718 Diag(Tok.getLocation(), diag::err_expected_end_of_enumerator); 4719 if (SkipUntil(tok::comma, tok::r_brace, StopBeforeMatch)) { 4720 if (TryConsumeToken(tok::comma, CommaLoc)) 4721 continue; 4722 } else { 4723 break; 4724 } 4725 } 4726 4727 // If comma is followed by r_brace, emit appropriate warning. 4728 if (Tok.is(tok::r_brace) && CommaLoc.isValid()) { 4729 if (!getLangOpts().C99 && !getLangOpts().CPlusPlus11) 4730 Diag(CommaLoc, getLangOpts().CPlusPlus ? 4731 diag::ext_enumerator_list_comma_cxx : 4732 diag::ext_enumerator_list_comma_c) 4733 << FixItHint::CreateRemoval(CommaLoc); 4734 else if (getLangOpts().CPlusPlus11) 4735 Diag(CommaLoc, diag::warn_cxx98_compat_enumerator_list_comma) 4736 << FixItHint::CreateRemoval(CommaLoc); 4737 break; 4738 } 4739 } 4740 4741 // Eat the }. 4742 T.consumeClose(); 4743 4744 // If attributes exist after the identifier list, parse them. 4745 ParsedAttributes attrs(AttrFactory); 4746 MaybeParseGNUAttributes(attrs); 4747 4748 Actions.ActOnEnumBody(StartLoc, T.getRange(), EnumDecl, EnumConstantDecls, 4749 getCurScope(), attrs); 4750 4751 // Now handle enum constant availability diagnostics. 4752 assert(EnumConstantDecls.size() == EnumAvailabilityDiags.size()); 4753 for (size_t i = 0, e = EnumConstantDecls.size(); i != e; ++i) { 4754 ParsingDeclRAIIObject PD(*this, ParsingDeclRAIIObject::NoParent); 4755 EnumAvailabilityDiags[i].redelay(); 4756 PD.complete(EnumConstantDecls[i]); 4757 } 4758 4759 EnumScope.Exit(); 4760 Actions.ActOnTagFinishDefinition(getCurScope(), EnumDecl, T.getRange()); 4761 4762 // The next token must be valid after an enum definition. If not, a ';' 4763 // was probably forgotten. 4764 bool CanBeBitfield = getCurScope()->getFlags() & Scope::ClassScope; 4765 if (!isValidAfterTypeSpecifier(CanBeBitfield)) { 4766 ExpectAndConsume(tok::semi, diag::err_expected_after, "enum"); 4767 // Push this token back into the preprocessor and change our current token 4768 // to ';' so that the rest of the code recovers as though there were an 4769 // ';' after the definition. 4770 PP.EnterToken(Tok, /*IsReinject=*/true); 4771 Tok.setKind(tok::semi); 4772 } 4773 } 4774 4775 /// isKnownToBeTypeSpecifier - Return true if we know that the specified token 4776 /// is definitely a type-specifier. Return false if it isn't part of a type 4777 /// specifier or if we're not sure. 4778 bool Parser::isKnownToBeTypeSpecifier(const Token &Tok) const { 4779 switch (Tok.getKind()) { 4780 default: return false; 4781 // type-specifiers 4782 case tok::kw_short: 4783 case tok::kw_long: 4784 case tok::kw___int64: 4785 case tok::kw___int128: 4786 case tok::kw_signed: 4787 case tok::kw_unsigned: 4788 case tok::kw__Complex: 4789 case tok::kw__Imaginary: 4790 case tok::kw_void: 4791 case tok::kw_char: 4792 case tok::kw_wchar_t: 4793 case tok::kw_char8_t: 4794 case tok::kw_char16_t: 4795 case tok::kw_char32_t: 4796 case tok::kw_int: 4797 case tok::kw_half: 4798 case tok::kw_float: 4799 case tok::kw_double: 4800 case tok::kw__Accum: 4801 case tok::kw__Fract: 4802 case tok::kw__Float16: 4803 case tok::kw___float128: 4804 case tok::kw_bool: 4805 case tok::kw__Bool: 4806 case tok::kw__Decimal32: 4807 case tok::kw__Decimal64: 4808 case tok::kw__Decimal128: 4809 case tok::kw___vector: 4810 #define GENERIC_IMAGE_TYPE(ImgType, Id) case tok::kw_##ImgType##_t: 4811 #include "clang/Basic/OpenCLImageTypes.def" 4812 4813 // struct-or-union-specifier (C99) or class-specifier (C++) 4814 case tok::kw_class: 4815 case tok::kw_struct: 4816 case tok::kw___interface: 4817 case tok::kw_union: 4818 // enum-specifier 4819 case tok::kw_enum: 4820 4821 // typedef-name 4822 case tok::annot_typename: 4823 return true; 4824 } 4825 } 4826 4827 /// isTypeSpecifierQualifier - Return true if the current token could be the 4828 /// start of a specifier-qualifier-list. 4829 bool Parser::isTypeSpecifierQualifier() { 4830 switch (Tok.getKind()) { 4831 default: return false; 4832 4833 case tok::identifier: // foo::bar 4834 if (TryAltiVecVectorToken()) 4835 return true; 4836 LLVM_FALLTHROUGH; 4837 case tok::kw_typename: // typename T::type 4838 // Annotate typenames and C++ scope specifiers. If we get one, just 4839 // recurse to handle whatever we get. 4840 if (TryAnnotateTypeOrScopeToken()) 4841 return true; 4842 if (Tok.is(tok::identifier)) 4843 return false; 4844 return isTypeSpecifierQualifier(); 4845 4846 case tok::coloncolon: // ::foo::bar 4847 if (NextToken().is(tok::kw_new) || // ::new 4848 NextToken().is(tok::kw_delete)) // ::delete 4849 return false; 4850 4851 if (TryAnnotateTypeOrScopeToken()) 4852 return true; 4853 return isTypeSpecifierQualifier(); 4854 4855 // GNU attributes support. 4856 case tok::kw___attribute: 4857 // GNU typeof support. 4858 case tok::kw_typeof: 4859 4860 // type-specifiers 4861 case tok::kw_short: 4862 case tok::kw_long: 4863 case tok::kw___int64: 4864 case tok::kw___int128: 4865 case tok::kw_signed: 4866 case tok::kw_unsigned: 4867 case tok::kw__Complex: 4868 case tok::kw__Imaginary: 4869 case tok::kw_void: 4870 case tok::kw_char: 4871 case tok::kw_wchar_t: 4872 case tok::kw_char8_t: 4873 case tok::kw_char16_t: 4874 case tok::kw_char32_t: 4875 case tok::kw_int: 4876 case tok::kw_half: 4877 case tok::kw_float: 4878 case tok::kw_double: 4879 case tok::kw__Accum: 4880 case tok::kw__Fract: 4881 case tok::kw__Float16: 4882 case tok::kw___float128: 4883 case tok::kw_bool: 4884 case tok::kw__Bool: 4885 case tok::kw__Decimal32: 4886 case tok::kw__Decimal64: 4887 case tok::kw__Decimal128: 4888 case tok::kw___vector: 4889 #define GENERIC_IMAGE_TYPE(ImgType, Id) case tok::kw_##ImgType##_t: 4890 #include "clang/Basic/OpenCLImageTypes.def" 4891 4892 // struct-or-union-specifier (C99) or class-specifier (C++) 4893 case tok::kw_class: 4894 case tok::kw_struct: 4895 case tok::kw___interface: 4896 case tok::kw_union: 4897 // enum-specifier 4898 case tok::kw_enum: 4899 4900 // type-qualifier 4901 case tok::kw_const: 4902 case tok::kw_volatile: 4903 case tok::kw_restrict: 4904 case tok::kw__Sat: 4905 4906 // Debugger support. 4907 case tok::kw___unknown_anytype: 4908 4909 // typedef-name 4910 case tok::annot_typename: 4911 return true; 4912 4913 // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'. 4914 case tok::less: 4915 return getLangOpts().ObjC; 4916 4917 case tok::kw___cdecl: 4918 case tok::kw___stdcall: 4919 case tok::kw___fastcall: 4920 case tok::kw___thiscall: 4921 case tok::kw___regcall: 4922 case tok::kw___vectorcall: 4923 case tok::kw___w64: 4924 case tok::kw___ptr64: 4925 case tok::kw___ptr32: 4926 case tok::kw___pascal: 4927 case tok::kw___unaligned: 4928 4929 case tok::kw__Nonnull: 4930 case tok::kw__Nullable: 4931 case tok::kw__Null_unspecified: 4932 4933 case tok::kw___kindof: 4934 4935 case tok::kw___private: 4936 case tok::kw___local: 4937 case tok::kw___global: 4938 case tok::kw___constant: 4939 case tok::kw___generic: 4940 case tok::kw___read_only: 4941 case tok::kw___read_write: 4942 case tok::kw___write_only: 4943 return true; 4944 4945 case tok::kw_private: 4946 return getLangOpts().OpenCL; 4947 4948 // C11 _Atomic 4949 case tok::kw__Atomic: 4950 return true; 4951 } 4952 } 4953 4954 /// isDeclarationSpecifier() - Return true if the current token is part of a 4955 /// declaration specifier. 4956 /// 4957 /// \param DisambiguatingWithExpression True to indicate that the purpose of 4958 /// this check is to disambiguate between an expression and a declaration. 4959 bool Parser::isDeclarationSpecifier(bool DisambiguatingWithExpression) { 4960 switch (Tok.getKind()) { 4961 default: return false; 4962 4963 case tok::kw_pipe: 4964 return (getLangOpts().OpenCL && getLangOpts().OpenCLVersion >= 200) || 4965 getLangOpts().OpenCLCPlusPlus; 4966 4967 case tok::identifier: // foo::bar 4968 // Unfortunate hack to support "Class.factoryMethod" notation. 4969 if (getLangOpts().ObjC && NextToken().is(tok::period)) 4970 return false; 4971 if (TryAltiVecVectorToken()) 4972 return true; 4973 LLVM_FALLTHROUGH; 4974 case tok::kw_decltype: // decltype(T())::type 4975 case tok::kw_typename: // typename T::type 4976 // Annotate typenames and C++ scope specifiers. If we get one, just 4977 // recurse to handle whatever we get. 4978 if (TryAnnotateTypeOrScopeToken()) 4979 return true; 4980 if (Tok.is(tok::identifier)) 4981 return false; 4982 4983 // If we're in Objective-C and we have an Objective-C class type followed 4984 // by an identifier and then either ':' or ']', in a place where an 4985 // expression is permitted, then this is probably a class message send 4986 // missing the initial '['. In this case, we won't consider this to be 4987 // the start of a declaration. 4988 if (DisambiguatingWithExpression && 4989 isStartOfObjCClassMessageMissingOpenBracket()) 4990 return false; 4991 4992 return isDeclarationSpecifier(); 4993 4994 case tok::coloncolon: // ::foo::bar 4995 if (NextToken().is(tok::kw_new) || // ::new 4996 NextToken().is(tok::kw_delete)) // ::delete 4997 return false; 4998 4999 // Annotate typenames and C++ scope specifiers. If we get one, just 5000 // recurse to handle whatever we get. 5001 if (TryAnnotateTypeOrScopeToken()) 5002 return true; 5003 return isDeclarationSpecifier(); 5004 5005 // storage-class-specifier 5006 case tok::kw_typedef: 5007 case tok::kw_extern: 5008 case tok::kw___private_extern__: 5009 case tok::kw_static: 5010 case tok::kw_auto: 5011 case tok::kw___auto_type: 5012 case tok::kw_register: 5013 case tok::kw___thread: 5014 case tok::kw_thread_local: 5015 case tok::kw__Thread_local: 5016 5017 // Modules 5018 case tok::kw___module_private__: 5019 5020 // Debugger support 5021 case tok::kw___unknown_anytype: 5022 5023 // type-specifiers 5024 case tok::kw_short: 5025 case tok::kw_long: 5026 case tok::kw___int64: 5027 case tok::kw___int128: 5028 case tok::kw_signed: 5029 case tok::kw_unsigned: 5030 case tok::kw__Complex: 5031 case tok::kw__Imaginary: 5032 case tok::kw_void: 5033 case tok::kw_char: 5034 case tok::kw_wchar_t: 5035 case tok::kw_char8_t: 5036 case tok::kw_char16_t: 5037 case tok::kw_char32_t: 5038 5039 case tok::kw_int: 5040 case tok::kw_half: 5041 case tok::kw_float: 5042 case tok::kw_double: 5043 case tok::kw__Accum: 5044 case tok::kw__Fract: 5045 case tok::kw__Float16: 5046 case tok::kw___float128: 5047 case tok::kw_bool: 5048 case tok::kw__Bool: 5049 case tok::kw__Decimal32: 5050 case tok::kw__Decimal64: 5051 case tok::kw__Decimal128: 5052 case tok::kw___vector: 5053 5054 // struct-or-union-specifier (C99) or class-specifier (C++) 5055 case tok::kw_class: 5056 case tok::kw_struct: 5057 case tok::kw_union: 5058 case tok::kw___interface: 5059 // enum-specifier 5060 case tok::kw_enum: 5061 5062 // type-qualifier 5063 case tok::kw_const: 5064 case tok::kw_volatile: 5065 case tok::kw_restrict: 5066 case tok::kw__Sat: 5067 5068 // function-specifier 5069 case tok::kw_inline: 5070 case tok::kw_virtual: 5071 case tok::kw_explicit: 5072 case tok::kw__Noreturn: 5073 5074 // alignment-specifier 5075 case tok::kw__Alignas: 5076 5077 // friend keyword. 5078 case tok::kw_friend: 5079 5080 // static_assert-declaration 5081 case tok::kw__Static_assert: 5082 5083 // GNU typeof support. 5084 case tok::kw_typeof: 5085 5086 // GNU attributes. 5087 case tok::kw___attribute: 5088 5089 // C++11 decltype and constexpr. 5090 case tok::annot_decltype: 5091 case tok::kw_constexpr: 5092 5093 // C++20 consteval and constinit. 5094 case tok::kw_consteval: 5095 case tok::kw_constinit: 5096 5097 // C11 _Atomic 5098 case tok::kw__Atomic: 5099 return true; 5100 5101 // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'. 5102 case tok::less: 5103 return getLangOpts().ObjC; 5104 5105 // typedef-name 5106 case tok::annot_typename: 5107 return !DisambiguatingWithExpression || 5108 !isStartOfObjCClassMessageMissingOpenBracket(); 5109 5110 case tok::kw___declspec: 5111 case tok::kw___cdecl: 5112 case tok::kw___stdcall: 5113 case tok::kw___fastcall: 5114 case tok::kw___thiscall: 5115 case tok::kw___regcall: 5116 case tok::kw___vectorcall: 5117 case tok::kw___w64: 5118 case tok::kw___sptr: 5119 case tok::kw___uptr: 5120 case tok::kw___ptr64: 5121 case tok::kw___ptr32: 5122 case tok::kw___forceinline: 5123 case tok::kw___pascal: 5124 case tok::kw___unaligned: 5125 5126 case tok::kw__Nonnull: 5127 case tok::kw__Nullable: 5128 case tok::kw__Null_unspecified: 5129 5130 case tok::kw___kindof: 5131 5132 case tok::kw___private: 5133 case tok::kw___local: 5134 case tok::kw___global: 5135 case tok::kw___constant: 5136 case tok::kw___generic: 5137 case tok::kw___read_only: 5138 case tok::kw___read_write: 5139 case tok::kw___write_only: 5140 #define GENERIC_IMAGE_TYPE(ImgType, Id) case tok::kw_##ImgType##_t: 5141 #include "clang/Basic/OpenCLImageTypes.def" 5142 5143 return true; 5144 5145 case tok::kw_private: 5146 return getLangOpts().OpenCL; 5147 } 5148 } 5149 5150 bool Parser::isConstructorDeclarator(bool IsUnqualified, bool DeductionGuide) { 5151 TentativeParsingAction TPA(*this); 5152 5153 // Parse the C++ scope specifier. 5154 CXXScopeSpec SS; 5155 if (ParseOptionalCXXScopeSpecifier(SS, nullptr, 5156 /*EnteringContext=*/true)) { 5157 TPA.Revert(); 5158 return false; 5159 } 5160 5161 // Parse the constructor name. 5162 if (Tok.is(tok::identifier)) { 5163 // We already know that we have a constructor name; just consume 5164 // the token. 5165 ConsumeToken(); 5166 } else if (Tok.is(tok::annot_template_id)) { 5167 ConsumeAnnotationToken(); 5168 } else { 5169 TPA.Revert(); 5170 return false; 5171 } 5172 5173 // There may be attributes here, appertaining to the constructor name or type 5174 // we just stepped past. 5175 SkipCXX11Attributes(); 5176 5177 // Current class name must be followed by a left parenthesis. 5178 if (Tok.isNot(tok::l_paren)) { 5179 TPA.Revert(); 5180 return false; 5181 } 5182 ConsumeParen(); 5183 5184 // A right parenthesis, or ellipsis followed by a right parenthesis signals 5185 // that we have a constructor. 5186 if (Tok.is(tok::r_paren) || 5187 (Tok.is(tok::ellipsis) && NextToken().is(tok::r_paren))) { 5188 TPA.Revert(); 5189 return true; 5190 } 5191 5192 // A C++11 attribute here signals that we have a constructor, and is an 5193 // attribute on the first constructor parameter. 5194 if (getLangOpts().CPlusPlus11 && 5195 isCXX11AttributeSpecifier(/*Disambiguate*/ false, 5196 /*OuterMightBeMessageSend*/ true)) { 5197 TPA.Revert(); 5198 return true; 5199 } 5200 5201 // If we need to, enter the specified scope. 5202 DeclaratorScopeObj DeclScopeObj(*this, SS); 5203 if (SS.isSet() && Actions.ShouldEnterDeclaratorScope(getCurScope(), SS)) 5204 DeclScopeObj.EnterDeclaratorScope(); 5205 5206 // Optionally skip Microsoft attributes. 5207 ParsedAttributes Attrs(AttrFactory); 5208 MaybeParseMicrosoftAttributes(Attrs); 5209 5210 // Check whether the next token(s) are part of a declaration 5211 // specifier, in which case we have the start of a parameter and, 5212 // therefore, we know that this is a constructor. 5213 bool IsConstructor = false; 5214 if (isDeclarationSpecifier()) 5215 IsConstructor = true; 5216 else if (Tok.is(tok::identifier) || 5217 (Tok.is(tok::annot_cxxscope) && NextToken().is(tok::identifier))) { 5218 // We've seen "C ( X" or "C ( X::Y", but "X" / "X::Y" is not a type. 5219 // This might be a parenthesized member name, but is more likely to 5220 // be a constructor declaration with an invalid argument type. Keep 5221 // looking. 5222 if (Tok.is(tok::annot_cxxscope)) 5223 ConsumeAnnotationToken(); 5224 ConsumeToken(); 5225 5226 // If this is not a constructor, we must be parsing a declarator, 5227 // which must have one of the following syntactic forms (see the 5228 // grammar extract at the start of ParseDirectDeclarator): 5229 switch (Tok.getKind()) { 5230 case tok::l_paren: 5231 // C(X ( int)); 5232 case tok::l_square: 5233 // C(X [ 5]); 5234 // C(X [ [attribute]]); 5235 case tok::coloncolon: 5236 // C(X :: Y); 5237 // C(X :: *p); 5238 // Assume this isn't a constructor, rather than assuming it's a 5239 // constructor with an unnamed parameter of an ill-formed type. 5240 break; 5241 5242 case tok::r_paren: 5243 // C(X ) 5244 5245 // Skip past the right-paren and any following attributes to get to 5246 // the function body or trailing-return-type. 5247 ConsumeParen(); 5248 SkipCXX11Attributes(); 5249 5250 if (DeductionGuide) { 5251 // C(X) -> ... is a deduction guide. 5252 IsConstructor = Tok.is(tok::arrow); 5253 break; 5254 } 5255 if (Tok.is(tok::colon) || Tok.is(tok::kw_try)) { 5256 // Assume these were meant to be constructors: 5257 // C(X) : (the name of a bit-field cannot be parenthesized). 5258 // C(X) try (this is otherwise ill-formed). 5259 IsConstructor = true; 5260 } 5261 if (Tok.is(tok::semi) || Tok.is(tok::l_brace)) { 5262 // If we have a constructor name within the class definition, 5263 // assume these were meant to be constructors: 5264 // C(X) { 5265 // C(X) ; 5266 // ... because otherwise we would be declaring a non-static data 5267 // member that is ill-formed because it's of the same type as its 5268 // surrounding class. 5269 // 5270 // FIXME: We can actually do this whether or not the name is qualified, 5271 // because if it is qualified in this context it must be being used as 5272 // a constructor name. 5273 // currently, so we're somewhat conservative here. 5274 IsConstructor = IsUnqualified; 5275 } 5276 break; 5277 5278 default: 5279 IsConstructor = true; 5280 break; 5281 } 5282 } 5283 5284 TPA.Revert(); 5285 return IsConstructor; 5286 } 5287 5288 /// ParseTypeQualifierListOpt 5289 /// type-qualifier-list: [C99 6.7.5] 5290 /// type-qualifier 5291 /// [vendor] attributes 5292 /// [ only if AttrReqs & AR_VendorAttributesParsed ] 5293 /// type-qualifier-list type-qualifier 5294 /// [vendor] type-qualifier-list attributes 5295 /// [ only if AttrReqs & AR_VendorAttributesParsed ] 5296 /// [C++0x] attribute-specifier[opt] is allowed before cv-qualifier-seq 5297 /// [ only if AttReqs & AR_CXX11AttributesParsed ] 5298 /// Note: vendor can be GNU, MS, etc and can be explicitly controlled via 5299 /// AttrRequirements bitmask values. 5300 void Parser::ParseTypeQualifierListOpt( 5301 DeclSpec &DS, unsigned AttrReqs, bool AtomicAllowed, 5302 bool IdentifierRequired, 5303 Optional<llvm::function_ref<void()>> CodeCompletionHandler) { 5304 if (standardAttributesAllowed() && (AttrReqs & AR_CXX11AttributesParsed) && 5305 isCXX11AttributeSpecifier()) { 5306 ParsedAttributesWithRange attrs(AttrFactory); 5307 ParseCXX11Attributes(attrs); 5308 DS.takeAttributesFrom(attrs); 5309 } 5310 5311 SourceLocation EndLoc; 5312 5313 while (1) { 5314 bool isInvalid = false; 5315 const char *PrevSpec = nullptr; 5316 unsigned DiagID = 0; 5317 SourceLocation Loc = Tok.getLocation(); 5318 5319 switch (Tok.getKind()) { 5320 case tok::code_completion: 5321 if (CodeCompletionHandler) 5322 (*CodeCompletionHandler)(); 5323 else 5324 Actions.CodeCompleteTypeQualifiers(DS); 5325 return cutOffParsing(); 5326 5327 case tok::kw_const: 5328 isInvalid = DS.SetTypeQual(DeclSpec::TQ_const , Loc, PrevSpec, DiagID, 5329 getLangOpts()); 5330 break; 5331 case tok::kw_volatile: 5332 isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID, 5333 getLangOpts()); 5334 break; 5335 case tok::kw_restrict: 5336 isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID, 5337 getLangOpts()); 5338 break; 5339 case tok::kw__Atomic: 5340 if (!AtomicAllowed) 5341 goto DoneWithTypeQuals; 5342 if (!getLangOpts().C11) 5343 Diag(Tok, diag::ext_c11_feature) << Tok.getName(); 5344 isInvalid = DS.SetTypeQual(DeclSpec::TQ_atomic, Loc, PrevSpec, DiagID, 5345 getLangOpts()); 5346 break; 5347 5348 // OpenCL qualifiers: 5349 case tok::kw_private: 5350 if (!getLangOpts().OpenCL) 5351 goto DoneWithTypeQuals; 5352 LLVM_FALLTHROUGH; 5353 case tok::kw___private: 5354 case tok::kw___global: 5355 case tok::kw___local: 5356 case tok::kw___constant: 5357 case tok::kw___generic: 5358 case tok::kw___read_only: 5359 case tok::kw___write_only: 5360 case tok::kw___read_write: 5361 ParseOpenCLQualifiers(DS.getAttributes()); 5362 break; 5363 5364 case tok::kw___unaligned: 5365 isInvalid = DS.SetTypeQual(DeclSpec::TQ_unaligned, Loc, PrevSpec, DiagID, 5366 getLangOpts()); 5367 break; 5368 case tok::kw___uptr: 5369 // GNU libc headers in C mode use '__uptr' as an identifier which conflicts 5370 // with the MS modifier keyword. 5371 if ((AttrReqs & AR_DeclspecAttributesParsed) && !getLangOpts().CPlusPlus && 5372 IdentifierRequired && DS.isEmpty() && NextToken().is(tok::semi)) { 5373 if (TryKeywordIdentFallback(false)) 5374 continue; 5375 } 5376 LLVM_FALLTHROUGH; 5377 case tok::kw___sptr: 5378 case tok::kw___w64: 5379 case tok::kw___ptr64: 5380 case tok::kw___ptr32: 5381 case tok::kw___cdecl: 5382 case tok::kw___stdcall: 5383 case tok::kw___fastcall: 5384 case tok::kw___thiscall: 5385 case tok::kw___regcall: 5386 case tok::kw___vectorcall: 5387 if (AttrReqs & AR_DeclspecAttributesParsed) { 5388 ParseMicrosoftTypeAttributes(DS.getAttributes()); 5389 continue; 5390 } 5391 goto DoneWithTypeQuals; 5392 case tok::kw___pascal: 5393 if (AttrReqs & AR_VendorAttributesParsed) { 5394 ParseBorlandTypeAttributes(DS.getAttributes()); 5395 continue; 5396 } 5397 goto DoneWithTypeQuals; 5398 5399 // Nullability type specifiers. 5400 case tok::kw__Nonnull: 5401 case tok::kw__Nullable: 5402 case tok::kw__Null_unspecified: 5403 ParseNullabilityTypeSpecifiers(DS.getAttributes()); 5404 continue; 5405 5406 // Objective-C 'kindof' types. 5407 case tok::kw___kindof: 5408 DS.getAttributes().addNew(Tok.getIdentifierInfo(), Loc, nullptr, Loc, 5409 nullptr, 0, ParsedAttr::AS_Keyword); 5410 (void)ConsumeToken(); 5411 continue; 5412 5413 case tok::kw___attribute: 5414 if (AttrReqs & AR_GNUAttributesParsedAndRejected) 5415 // When GNU attributes are expressly forbidden, diagnose their usage. 5416 Diag(Tok, diag::err_attributes_not_allowed); 5417 5418 // Parse the attributes even if they are rejected to ensure that error 5419 // recovery is graceful. 5420 if (AttrReqs & AR_GNUAttributesParsed || 5421 AttrReqs & AR_GNUAttributesParsedAndRejected) { 5422 ParseGNUAttributes(DS.getAttributes()); 5423 continue; // do *not* consume the next token! 5424 } 5425 // otherwise, FALL THROUGH! 5426 LLVM_FALLTHROUGH; 5427 default: 5428 DoneWithTypeQuals: 5429 // If this is not a type-qualifier token, we're done reading type 5430 // qualifiers. First verify that DeclSpec's are consistent. 5431 DS.Finish(Actions, Actions.getASTContext().getPrintingPolicy()); 5432 if (EndLoc.isValid()) 5433 DS.SetRangeEnd(EndLoc); 5434 return; 5435 } 5436 5437 // If the specifier combination wasn't legal, issue a diagnostic. 5438 if (isInvalid) { 5439 assert(PrevSpec && "Method did not return previous specifier!"); 5440 Diag(Tok, DiagID) << PrevSpec; 5441 } 5442 EndLoc = ConsumeToken(); 5443 } 5444 } 5445 5446 /// ParseDeclarator - Parse and verify a newly-initialized declarator. 5447 /// 5448 void Parser::ParseDeclarator(Declarator &D) { 5449 /// This implements the 'declarator' production in the C grammar, then checks 5450 /// for well-formedness and issues diagnostics. 5451 ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator); 5452 } 5453 5454 static bool isPtrOperatorToken(tok::TokenKind Kind, const LangOptions &Lang, 5455 DeclaratorContext TheContext) { 5456 if (Kind == tok::star || Kind == tok::caret) 5457 return true; 5458 5459 if (Kind == tok::kw_pipe && 5460 ((Lang.OpenCL && Lang.OpenCLVersion >= 200) || Lang.OpenCLCPlusPlus)) 5461 return true; 5462 5463 if (!Lang.CPlusPlus) 5464 return false; 5465 5466 if (Kind == tok::amp) 5467 return true; 5468 5469 // We parse rvalue refs in C++03, because otherwise the errors are scary. 5470 // But we must not parse them in conversion-type-ids and new-type-ids, since 5471 // those can be legitimately followed by a && operator. 5472 // (The same thing can in theory happen after a trailing-return-type, but 5473 // since those are a C++11 feature, there is no rejects-valid issue there.) 5474 if (Kind == tok::ampamp) 5475 return Lang.CPlusPlus11 || 5476 (TheContext != DeclaratorContext::ConversionIdContext && 5477 TheContext != DeclaratorContext::CXXNewContext); 5478 5479 return false; 5480 } 5481 5482 // Indicates whether the given declarator is a pipe declarator. 5483 static bool isPipeDeclerator(const Declarator &D) { 5484 const unsigned NumTypes = D.getNumTypeObjects(); 5485 5486 for (unsigned Idx = 0; Idx != NumTypes; ++Idx) 5487 if (DeclaratorChunk::Pipe == D.getTypeObject(Idx).Kind) 5488 return true; 5489 5490 return false; 5491 } 5492 5493 /// ParseDeclaratorInternal - Parse a C or C++ declarator. The direct-declarator 5494 /// is parsed by the function passed to it. Pass null, and the direct-declarator 5495 /// isn't parsed at all, making this function effectively parse the C++ 5496 /// ptr-operator production. 5497 /// 5498 /// If the grammar of this construct is extended, matching changes must also be 5499 /// made to TryParseDeclarator and MightBeDeclarator, and possibly to 5500 /// isConstructorDeclarator. 5501 /// 5502 /// declarator: [C99 6.7.5] [C++ 8p4, dcl.decl] 5503 /// [C] pointer[opt] direct-declarator 5504 /// [C++] direct-declarator 5505 /// [C++] ptr-operator declarator 5506 /// 5507 /// pointer: [C99 6.7.5] 5508 /// '*' type-qualifier-list[opt] 5509 /// '*' type-qualifier-list[opt] pointer 5510 /// 5511 /// ptr-operator: 5512 /// '*' cv-qualifier-seq[opt] 5513 /// '&' 5514 /// [C++0x] '&&' 5515 /// [GNU] '&' restrict[opt] attributes[opt] 5516 /// [GNU?] '&&' restrict[opt] attributes[opt] 5517 /// '::'[opt] nested-name-specifier '*' cv-qualifier-seq[opt] 5518 void Parser::ParseDeclaratorInternal(Declarator &D, 5519 DirectDeclParseFunction DirectDeclParser) { 5520 if (Diags.hasAllExtensionsSilenced()) 5521 D.setExtension(); 5522 5523 // C++ member pointers start with a '::' or a nested-name. 5524 // Member pointers get special handling, since there's no place for the 5525 // scope spec in the generic path below. 5526 if (getLangOpts().CPlusPlus && 5527 (Tok.is(tok::coloncolon) || Tok.is(tok::kw_decltype) || 5528 (Tok.is(tok::identifier) && 5529 (NextToken().is(tok::coloncolon) || NextToken().is(tok::less))) || 5530 Tok.is(tok::annot_cxxscope))) { 5531 bool EnteringContext = 5532 D.getContext() == DeclaratorContext::FileContext || 5533 D.getContext() == DeclaratorContext::MemberContext; 5534 CXXScopeSpec SS; 5535 ParseOptionalCXXScopeSpecifier(SS, nullptr, EnteringContext); 5536 5537 if (SS.isNotEmpty()) { 5538 if (Tok.isNot(tok::star)) { 5539 // The scope spec really belongs to the direct-declarator. 5540 if (D.mayHaveIdentifier()) 5541 D.getCXXScopeSpec() = SS; 5542 else 5543 AnnotateScopeToken(SS, true); 5544 5545 if (DirectDeclParser) 5546 (this->*DirectDeclParser)(D); 5547 return; 5548 } 5549 5550 SourceLocation Loc = ConsumeToken(); 5551 D.SetRangeEnd(Loc); 5552 DeclSpec DS(AttrFactory); 5553 ParseTypeQualifierListOpt(DS); 5554 D.ExtendWithDeclSpec(DS); 5555 5556 // Recurse to parse whatever is left. 5557 ParseDeclaratorInternal(D, DirectDeclParser); 5558 5559 // Sema will have to catch (syntactically invalid) pointers into global 5560 // scope. It has to catch pointers into namespace scope anyway. 5561 D.AddTypeInfo(DeclaratorChunk::getMemberPointer( 5562 SS, DS.getTypeQualifiers(), DS.getEndLoc()), 5563 std::move(DS.getAttributes()), 5564 /* Don't replace range end. */ SourceLocation()); 5565 return; 5566 } 5567 } 5568 5569 tok::TokenKind Kind = Tok.getKind(); 5570 5571 if (D.getDeclSpec().isTypeSpecPipe() && !isPipeDeclerator(D)) { 5572 DeclSpec DS(AttrFactory); 5573 ParseTypeQualifierListOpt(DS); 5574 5575 D.AddTypeInfo( 5576 DeclaratorChunk::getPipe(DS.getTypeQualifiers(), DS.getPipeLoc()), 5577 std::move(DS.getAttributes()), SourceLocation()); 5578 } 5579 5580 // Not a pointer, C++ reference, or block. 5581 if (!isPtrOperatorToken(Kind, getLangOpts(), D.getContext())) { 5582 if (DirectDeclParser) 5583 (this->*DirectDeclParser)(D); 5584 return; 5585 } 5586 5587 // Otherwise, '*' -> pointer, '^' -> block, '&' -> lvalue reference, 5588 // '&&' -> rvalue reference 5589 SourceLocation Loc = ConsumeToken(); // Eat the *, ^, & or &&. 5590 D.SetRangeEnd(Loc); 5591 5592 if (Kind == tok::star || Kind == tok::caret) { 5593 // Is a pointer. 5594 DeclSpec DS(AttrFactory); 5595 5596 // GNU attributes are not allowed here in a new-type-id, but Declspec and 5597 // C++11 attributes are allowed. 5598 unsigned Reqs = AR_CXX11AttributesParsed | AR_DeclspecAttributesParsed | 5599 ((D.getContext() != DeclaratorContext::CXXNewContext) 5600 ? AR_GNUAttributesParsed 5601 : AR_GNUAttributesParsedAndRejected); 5602 ParseTypeQualifierListOpt(DS, Reqs, true, !D.mayOmitIdentifier()); 5603 D.ExtendWithDeclSpec(DS); 5604 5605 // Recursively parse the declarator. 5606 ParseDeclaratorInternal(D, DirectDeclParser); 5607 if (Kind == tok::star) 5608 // Remember that we parsed a pointer type, and remember the type-quals. 5609 D.AddTypeInfo(DeclaratorChunk::getPointer( 5610 DS.getTypeQualifiers(), Loc, DS.getConstSpecLoc(), 5611 DS.getVolatileSpecLoc(), DS.getRestrictSpecLoc(), 5612 DS.getAtomicSpecLoc(), DS.getUnalignedSpecLoc()), 5613 std::move(DS.getAttributes()), SourceLocation()); 5614 else 5615 // Remember that we parsed a Block type, and remember the type-quals. 5616 D.AddTypeInfo( 5617 DeclaratorChunk::getBlockPointer(DS.getTypeQualifiers(), Loc), 5618 std::move(DS.getAttributes()), SourceLocation()); 5619 } else { 5620 // Is a reference 5621 DeclSpec DS(AttrFactory); 5622 5623 // Complain about rvalue references in C++03, but then go on and build 5624 // the declarator. 5625 if (Kind == tok::ampamp) 5626 Diag(Loc, getLangOpts().CPlusPlus11 ? 5627 diag::warn_cxx98_compat_rvalue_reference : 5628 diag::ext_rvalue_reference); 5629 5630 // GNU-style and C++11 attributes are allowed here, as is restrict. 5631 ParseTypeQualifierListOpt(DS); 5632 D.ExtendWithDeclSpec(DS); 5633 5634 // C++ 8.3.2p1: cv-qualified references are ill-formed except when the 5635 // cv-qualifiers are introduced through the use of a typedef or of a 5636 // template type argument, in which case the cv-qualifiers are ignored. 5637 if (DS.getTypeQualifiers() != DeclSpec::TQ_unspecified) { 5638 if (DS.getTypeQualifiers() & DeclSpec::TQ_const) 5639 Diag(DS.getConstSpecLoc(), 5640 diag::err_invalid_reference_qualifier_application) << "const"; 5641 if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile) 5642 Diag(DS.getVolatileSpecLoc(), 5643 diag::err_invalid_reference_qualifier_application) << "volatile"; 5644 // 'restrict' is permitted as an extension. 5645 if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic) 5646 Diag(DS.getAtomicSpecLoc(), 5647 diag::err_invalid_reference_qualifier_application) << "_Atomic"; 5648 } 5649 5650 // Recursively parse the declarator. 5651 ParseDeclaratorInternal(D, DirectDeclParser); 5652 5653 if (D.getNumTypeObjects() > 0) { 5654 // C++ [dcl.ref]p4: There shall be no references to references. 5655 DeclaratorChunk& InnerChunk = D.getTypeObject(D.getNumTypeObjects() - 1); 5656 if (InnerChunk.Kind == DeclaratorChunk::Reference) { 5657 if (const IdentifierInfo *II = D.getIdentifier()) 5658 Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference) 5659 << II; 5660 else 5661 Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference) 5662 << "type name"; 5663 5664 // Once we've complained about the reference-to-reference, we 5665 // can go ahead and build the (technically ill-formed) 5666 // declarator: reference collapsing will take care of it. 5667 } 5668 } 5669 5670 // Remember that we parsed a reference type. 5671 D.AddTypeInfo(DeclaratorChunk::getReference(DS.getTypeQualifiers(), Loc, 5672 Kind == tok::amp), 5673 std::move(DS.getAttributes()), SourceLocation()); 5674 } 5675 } 5676 5677 // When correcting from misplaced brackets before the identifier, the location 5678 // is saved inside the declarator so that other diagnostic messages can use 5679 // them. This extracts and returns that location, or returns the provided 5680 // location if a stored location does not exist. 5681 static SourceLocation getMissingDeclaratorIdLoc(Declarator &D, 5682 SourceLocation Loc) { 5683 if (D.getName().StartLocation.isInvalid() && 5684 D.getName().EndLocation.isValid()) 5685 return D.getName().EndLocation; 5686 5687 return Loc; 5688 } 5689 5690 /// ParseDirectDeclarator 5691 /// direct-declarator: [C99 6.7.5] 5692 /// [C99] identifier 5693 /// '(' declarator ')' 5694 /// [GNU] '(' attributes declarator ')' 5695 /// [C90] direct-declarator '[' constant-expression[opt] ']' 5696 /// [C99] direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']' 5697 /// [C99] direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']' 5698 /// [C99] direct-declarator '[' type-qual-list 'static' assignment-expr ']' 5699 /// [C99] direct-declarator '[' type-qual-list[opt] '*' ']' 5700 /// [C++11] direct-declarator '[' constant-expression[opt] ']' 5701 /// attribute-specifier-seq[opt] 5702 /// direct-declarator '(' parameter-type-list ')' 5703 /// direct-declarator '(' identifier-list[opt] ')' 5704 /// [GNU] direct-declarator '(' parameter-forward-declarations 5705 /// parameter-type-list[opt] ')' 5706 /// [C++] direct-declarator '(' parameter-declaration-clause ')' 5707 /// cv-qualifier-seq[opt] exception-specification[opt] 5708 /// [C++11] direct-declarator '(' parameter-declaration-clause ')' 5709 /// attribute-specifier-seq[opt] cv-qualifier-seq[opt] 5710 /// ref-qualifier[opt] exception-specification[opt] 5711 /// [C++] declarator-id 5712 /// [C++11] declarator-id attribute-specifier-seq[opt] 5713 /// 5714 /// declarator-id: [C++ 8] 5715 /// '...'[opt] id-expression 5716 /// '::'[opt] nested-name-specifier[opt] type-name 5717 /// 5718 /// id-expression: [C++ 5.1] 5719 /// unqualified-id 5720 /// qualified-id 5721 /// 5722 /// unqualified-id: [C++ 5.1] 5723 /// identifier 5724 /// operator-function-id 5725 /// conversion-function-id 5726 /// '~' class-name 5727 /// template-id 5728 /// 5729 /// C++17 adds the following, which we also handle here: 5730 /// 5731 /// simple-declaration: 5732 /// <decl-spec> '[' identifier-list ']' brace-or-equal-initializer ';' 5733 /// 5734 /// Note, any additional constructs added here may need corresponding changes 5735 /// in isConstructorDeclarator. 5736 void Parser::ParseDirectDeclarator(Declarator &D) { 5737 DeclaratorScopeObj DeclScopeObj(*this, D.getCXXScopeSpec()); 5738 5739 if (getLangOpts().CPlusPlus && D.mayHaveIdentifier()) { 5740 // This might be a C++17 structured binding. 5741 if (Tok.is(tok::l_square) && !D.mayOmitIdentifier() && 5742 D.getCXXScopeSpec().isEmpty()) 5743 return ParseDecompositionDeclarator(D); 5744 5745 // Don't parse FOO:BAR as if it were a typo for FOO::BAR inside a class, in 5746 // this context it is a bitfield. Also in range-based for statement colon 5747 // may delimit for-range-declaration. 5748 ColonProtectionRAIIObject X( 5749 *this, D.getContext() == DeclaratorContext::MemberContext || 5750 (D.getContext() == DeclaratorContext::ForContext && 5751 getLangOpts().CPlusPlus11)); 5752 5753 // ParseDeclaratorInternal might already have parsed the scope. 5754 if (D.getCXXScopeSpec().isEmpty()) { 5755 bool EnteringContext = 5756 D.getContext() == DeclaratorContext::FileContext || 5757 D.getContext() == DeclaratorContext::MemberContext; 5758 ParseOptionalCXXScopeSpecifier(D.getCXXScopeSpec(), nullptr, 5759 EnteringContext); 5760 } 5761 5762 if (D.getCXXScopeSpec().isValid()) { 5763 if (Actions.ShouldEnterDeclaratorScope(getCurScope(), 5764 D.getCXXScopeSpec())) 5765 // Change the declaration context for name lookup, until this function 5766 // is exited (and the declarator has been parsed). 5767 DeclScopeObj.EnterDeclaratorScope(); 5768 else if (getObjCDeclContext()) { 5769 // Ensure that we don't interpret the next token as an identifier when 5770 // dealing with declarations in an Objective-C container. 5771 D.SetIdentifier(nullptr, Tok.getLocation()); 5772 D.setInvalidType(true); 5773 ConsumeToken(); 5774 goto PastIdentifier; 5775 } 5776 } 5777 5778 // C++0x [dcl.fct]p14: 5779 // There is a syntactic ambiguity when an ellipsis occurs at the end of a 5780 // parameter-declaration-clause without a preceding comma. In this case, 5781 // the ellipsis is parsed as part of the abstract-declarator if the type 5782 // of the parameter either names a template parameter pack that has not 5783 // been expanded or contains auto; otherwise, it is parsed as part of the 5784 // parameter-declaration-clause. 5785 if (Tok.is(tok::ellipsis) && D.getCXXScopeSpec().isEmpty() && 5786 !((D.getContext() == DeclaratorContext::PrototypeContext || 5787 D.getContext() == DeclaratorContext::LambdaExprParameterContext || 5788 D.getContext() == DeclaratorContext::BlockLiteralContext) && 5789 NextToken().is(tok::r_paren) && 5790 !D.hasGroupingParens() && 5791 !Actions.containsUnexpandedParameterPacks(D) && 5792 D.getDeclSpec().getTypeSpecType() != TST_auto)) { 5793 SourceLocation EllipsisLoc = ConsumeToken(); 5794 if (isPtrOperatorToken(Tok.getKind(), getLangOpts(), D.getContext())) { 5795 // The ellipsis was put in the wrong place. Recover, and explain to 5796 // the user what they should have done. 5797 ParseDeclarator(D); 5798 if (EllipsisLoc.isValid()) 5799 DiagnoseMisplacedEllipsisInDeclarator(EllipsisLoc, D); 5800 return; 5801 } else 5802 D.setEllipsisLoc(EllipsisLoc); 5803 5804 // The ellipsis can't be followed by a parenthesized declarator. We 5805 // check for that in ParseParenDeclarator, after we have disambiguated 5806 // the l_paren token. 5807 } 5808 5809 if (Tok.isOneOf(tok::identifier, tok::kw_operator, tok::annot_template_id, 5810 tok::tilde)) { 5811 // We found something that indicates the start of an unqualified-id. 5812 // Parse that unqualified-id. 5813 bool AllowConstructorName; 5814 bool AllowDeductionGuide; 5815 if (D.getDeclSpec().hasTypeSpecifier()) { 5816 AllowConstructorName = false; 5817 AllowDeductionGuide = false; 5818 } else if (D.getCXXScopeSpec().isSet()) { 5819 AllowConstructorName = 5820 (D.getContext() == DeclaratorContext::FileContext || 5821 D.getContext() == DeclaratorContext::MemberContext); 5822 AllowDeductionGuide = false; 5823 } else { 5824 AllowConstructorName = 5825 (D.getContext() == DeclaratorContext::MemberContext); 5826 AllowDeductionGuide = 5827 (D.getContext() == DeclaratorContext::FileContext || 5828 D.getContext() == DeclaratorContext::MemberContext); 5829 } 5830 5831 bool HadScope = D.getCXXScopeSpec().isValid(); 5832 if (ParseUnqualifiedId(D.getCXXScopeSpec(), 5833 /*EnteringContext=*/true, 5834 /*AllowDestructorName=*/true, AllowConstructorName, 5835 AllowDeductionGuide, nullptr, nullptr, 5836 D.getName()) || 5837 // Once we're past the identifier, if the scope was bad, mark the 5838 // whole declarator bad. 5839 D.getCXXScopeSpec().isInvalid()) { 5840 D.SetIdentifier(nullptr, Tok.getLocation()); 5841 D.setInvalidType(true); 5842 } else { 5843 // ParseUnqualifiedId might have parsed a scope specifier during error 5844 // recovery. If it did so, enter that scope. 5845 if (!HadScope && D.getCXXScopeSpec().isValid() && 5846 Actions.ShouldEnterDeclaratorScope(getCurScope(), 5847 D.getCXXScopeSpec())) 5848 DeclScopeObj.EnterDeclaratorScope(); 5849 5850 // Parsed the unqualified-id; update range information and move along. 5851 if (D.getSourceRange().getBegin().isInvalid()) 5852 D.SetRangeBegin(D.getName().getSourceRange().getBegin()); 5853 D.SetRangeEnd(D.getName().getSourceRange().getEnd()); 5854 } 5855 goto PastIdentifier; 5856 } 5857 5858 if (D.getCXXScopeSpec().isNotEmpty()) { 5859 // We have a scope specifier but no following unqualified-id. 5860 Diag(PP.getLocForEndOfToken(D.getCXXScopeSpec().getEndLoc()), 5861 diag::err_expected_unqualified_id) 5862 << /*C++*/1; 5863 D.SetIdentifier(nullptr, Tok.getLocation()); 5864 goto PastIdentifier; 5865 } 5866 } else if (Tok.is(tok::identifier) && D.mayHaveIdentifier()) { 5867 assert(!getLangOpts().CPlusPlus && 5868 "There's a C++-specific check for tok::identifier above"); 5869 assert(Tok.getIdentifierInfo() && "Not an identifier?"); 5870 D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation()); 5871 D.SetRangeEnd(Tok.getLocation()); 5872 ConsumeToken(); 5873 goto PastIdentifier; 5874 } else if (Tok.is(tok::identifier) && !D.mayHaveIdentifier()) { 5875 // We're not allowed an identifier here, but we got one. Try to figure out 5876 // if the user was trying to attach a name to the type, or whether the name 5877 // is some unrelated trailing syntax. 5878 bool DiagnoseIdentifier = false; 5879 if (D.hasGroupingParens()) 5880 // An identifier within parens is unlikely to be intended to be anything 5881 // other than a name being "declared". 5882 DiagnoseIdentifier = true; 5883 else if (D.getContext() == DeclaratorContext::TemplateArgContext) 5884 // T<int N> is an accidental identifier; T<int N indicates a missing '>'. 5885 DiagnoseIdentifier = 5886 NextToken().isOneOf(tok::comma, tok::greater, tok::greatergreater); 5887 else if (D.getContext() == DeclaratorContext::AliasDeclContext || 5888 D.getContext() == DeclaratorContext::AliasTemplateContext) 5889 // The most likely error is that the ';' was forgotten. 5890 DiagnoseIdentifier = NextToken().isOneOf(tok::comma, tok::semi); 5891 else if ((D.getContext() == DeclaratorContext::TrailingReturnContext || 5892 D.getContext() == DeclaratorContext::TrailingReturnVarContext) && 5893 !isCXX11VirtSpecifier(Tok)) 5894 DiagnoseIdentifier = NextToken().isOneOf( 5895 tok::comma, tok::semi, tok::equal, tok::l_brace, tok::kw_try); 5896 if (DiagnoseIdentifier) { 5897 Diag(Tok.getLocation(), diag::err_unexpected_unqualified_id) 5898 << FixItHint::CreateRemoval(Tok.getLocation()); 5899 D.SetIdentifier(nullptr, Tok.getLocation()); 5900 ConsumeToken(); 5901 goto PastIdentifier; 5902 } 5903 } 5904 5905 if (Tok.is(tok::l_paren)) { 5906 // If this might be an abstract-declarator followed by a direct-initializer, 5907 // check whether this is a valid declarator chunk. If it can't be, assume 5908 // that it's an initializer instead. 5909 if (D.mayOmitIdentifier() && D.mayBeFollowedByCXXDirectInit()) { 5910 RevertingTentativeParsingAction PA(*this); 5911 if (TryParseDeclarator(true, D.mayHaveIdentifier(), true) == 5912 TPResult::False) { 5913 D.SetIdentifier(nullptr, Tok.getLocation()); 5914 goto PastIdentifier; 5915 } 5916 } 5917 5918 // direct-declarator: '(' declarator ')' 5919 // direct-declarator: '(' attributes declarator ')' 5920 // Example: 'char (*X)' or 'int (*XX)(void)' 5921 ParseParenDeclarator(D); 5922 5923 // If the declarator was parenthesized, we entered the declarator 5924 // scope when parsing the parenthesized declarator, then exited 5925 // the scope already. Re-enter the scope, if we need to. 5926 if (D.getCXXScopeSpec().isSet()) { 5927 // If there was an error parsing parenthesized declarator, declarator 5928 // scope may have been entered before. Don't do it again. 5929 if (!D.isInvalidType() && 5930 Actions.ShouldEnterDeclaratorScope(getCurScope(), 5931 D.getCXXScopeSpec())) 5932 // Change the declaration context for name lookup, until this function 5933 // is exited (and the declarator has been parsed). 5934 DeclScopeObj.EnterDeclaratorScope(); 5935 } 5936 } else if (D.mayOmitIdentifier()) { 5937 // This could be something simple like "int" (in which case the declarator 5938 // portion is empty), if an abstract-declarator is allowed. 5939 D.SetIdentifier(nullptr, Tok.getLocation()); 5940 5941 // The grammar for abstract-pack-declarator does not allow grouping parens. 5942 // FIXME: Revisit this once core issue 1488 is resolved. 5943 if (D.hasEllipsis() && D.hasGroupingParens()) 5944 Diag(PP.getLocForEndOfToken(D.getEllipsisLoc()), 5945 diag::ext_abstract_pack_declarator_parens); 5946 } else { 5947 if (Tok.getKind() == tok::annot_pragma_parser_crash) 5948 LLVM_BUILTIN_TRAP; 5949 if (Tok.is(tok::l_square)) 5950 return ParseMisplacedBracketDeclarator(D); 5951 if (D.getContext() == DeclaratorContext::MemberContext) { 5952 // Objective-C++: Detect C++ keywords and try to prevent further errors by 5953 // treating these keyword as valid member names. 5954 if (getLangOpts().ObjC && getLangOpts().CPlusPlus && 5955 Tok.getIdentifierInfo() && 5956 Tok.getIdentifierInfo()->isCPlusPlusKeyword(getLangOpts())) { 5957 Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()), 5958 diag::err_expected_member_name_or_semi_objcxx_keyword) 5959 << Tok.getIdentifierInfo() 5960 << (D.getDeclSpec().isEmpty() ? SourceRange() 5961 : D.getDeclSpec().getSourceRange()); 5962 D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation()); 5963 D.SetRangeEnd(Tok.getLocation()); 5964 ConsumeToken(); 5965 goto PastIdentifier; 5966 } 5967 Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()), 5968 diag::err_expected_member_name_or_semi) 5969 << (D.getDeclSpec().isEmpty() ? SourceRange() 5970 : D.getDeclSpec().getSourceRange()); 5971 } else if (getLangOpts().CPlusPlus) { 5972 if (Tok.isOneOf(tok::period, tok::arrow)) 5973 Diag(Tok, diag::err_invalid_operator_on_type) << Tok.is(tok::arrow); 5974 else { 5975 SourceLocation Loc = D.getCXXScopeSpec().getEndLoc(); 5976 if (Tok.isAtStartOfLine() && Loc.isValid()) 5977 Diag(PP.getLocForEndOfToken(Loc), diag::err_expected_unqualified_id) 5978 << getLangOpts().CPlusPlus; 5979 else 5980 Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()), 5981 diag::err_expected_unqualified_id) 5982 << getLangOpts().CPlusPlus; 5983 } 5984 } else { 5985 Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()), 5986 diag::err_expected_either) 5987 << tok::identifier << tok::l_paren; 5988 } 5989 D.SetIdentifier(nullptr, Tok.getLocation()); 5990 D.setInvalidType(true); 5991 } 5992 5993 PastIdentifier: 5994 assert(D.isPastIdentifier() && 5995 "Haven't past the location of the identifier yet?"); 5996 5997 // Don't parse attributes unless we have parsed an unparenthesized name. 5998 if (D.hasName() && !D.getNumTypeObjects()) 5999 MaybeParseCXX11Attributes(D); 6000 6001 while (1) { 6002 if (Tok.is(tok::l_paren)) { 6003 // Enter function-declaration scope, limiting any declarators to the 6004 // function prototype scope, including parameter declarators. 6005 ParseScope PrototypeScope(this, 6006 Scope::FunctionPrototypeScope|Scope::DeclScope| 6007 (D.isFunctionDeclaratorAFunctionDeclaration() 6008 ? Scope::FunctionDeclarationScope : 0)); 6009 6010 // The paren may be part of a C++ direct initializer, eg. "int x(1);". 6011 // In such a case, check if we actually have a function declarator; if it 6012 // is not, the declarator has been fully parsed. 6013 bool IsAmbiguous = false; 6014 if (getLangOpts().CPlusPlus && D.mayBeFollowedByCXXDirectInit()) { 6015 // The name of the declarator, if any, is tentatively declared within 6016 // a possible direct initializer. 6017 TentativelyDeclaredIdentifiers.push_back(D.getIdentifier()); 6018 bool IsFunctionDecl = isCXXFunctionDeclarator(&IsAmbiguous); 6019 TentativelyDeclaredIdentifiers.pop_back(); 6020 if (!IsFunctionDecl) 6021 break; 6022 } 6023 ParsedAttributes attrs(AttrFactory); 6024 BalancedDelimiterTracker T(*this, tok::l_paren); 6025 T.consumeOpen(); 6026 ParseFunctionDeclarator(D, attrs, T, IsAmbiguous); 6027 PrototypeScope.Exit(); 6028 } else if (Tok.is(tok::l_square)) { 6029 ParseBracketDeclarator(D); 6030 } else { 6031 break; 6032 } 6033 } 6034 } 6035 6036 void Parser::ParseDecompositionDeclarator(Declarator &D) { 6037 assert(Tok.is(tok::l_square)); 6038 6039 // If this doesn't look like a structured binding, maybe it's a misplaced 6040 // array declarator. 6041 // FIXME: Consume the l_square first so we don't need extra lookahead for 6042 // this. 6043 if (!(NextToken().is(tok::identifier) && 6044 GetLookAheadToken(2).isOneOf(tok::comma, tok::r_square)) && 6045 !(NextToken().is(tok::r_square) && 6046 GetLookAheadToken(2).isOneOf(tok::equal, tok::l_brace))) 6047 return ParseMisplacedBracketDeclarator(D); 6048 6049 BalancedDelimiterTracker T(*this, tok::l_square); 6050 T.consumeOpen(); 6051 6052 SmallVector<DecompositionDeclarator::Binding, 32> Bindings; 6053 while (Tok.isNot(tok::r_square)) { 6054 if (!Bindings.empty()) { 6055 if (Tok.is(tok::comma)) 6056 ConsumeToken(); 6057 else { 6058 if (Tok.is(tok::identifier)) { 6059 SourceLocation EndLoc = getEndOfPreviousToken(); 6060 Diag(EndLoc, diag::err_expected) 6061 << tok::comma << FixItHint::CreateInsertion(EndLoc, ","); 6062 } else { 6063 Diag(Tok, diag::err_expected_comma_or_rsquare); 6064 } 6065 6066 SkipUntil(tok::r_square, tok::comma, tok::identifier, 6067 StopAtSemi | StopBeforeMatch); 6068 if (Tok.is(tok::comma)) 6069 ConsumeToken(); 6070 else if (Tok.isNot(tok::identifier)) 6071 break; 6072 } 6073 } 6074 6075 if (Tok.isNot(tok::identifier)) { 6076 Diag(Tok, diag::err_expected) << tok::identifier; 6077 break; 6078 } 6079 6080 Bindings.push_back({Tok.getIdentifierInfo(), Tok.getLocation()}); 6081 ConsumeToken(); 6082 } 6083 6084 if (Tok.isNot(tok::r_square)) 6085 // We've already diagnosed a problem here. 6086 T.skipToEnd(); 6087 else { 6088 // C++17 does not allow the identifier-list in a structured binding 6089 // to be empty. 6090 if (Bindings.empty()) 6091 Diag(Tok.getLocation(), diag::ext_decomp_decl_empty); 6092 6093 T.consumeClose(); 6094 } 6095 6096 return D.setDecompositionBindings(T.getOpenLocation(), Bindings, 6097 T.getCloseLocation()); 6098 } 6099 6100 /// ParseParenDeclarator - We parsed the declarator D up to a paren. This is 6101 /// only called before the identifier, so these are most likely just grouping 6102 /// parens for precedence. If we find that these are actually function 6103 /// parameter parens in an abstract-declarator, we call ParseFunctionDeclarator. 6104 /// 6105 /// direct-declarator: 6106 /// '(' declarator ')' 6107 /// [GNU] '(' attributes declarator ')' 6108 /// direct-declarator '(' parameter-type-list ')' 6109 /// direct-declarator '(' identifier-list[opt] ')' 6110 /// [GNU] direct-declarator '(' parameter-forward-declarations 6111 /// parameter-type-list[opt] ')' 6112 /// 6113 void Parser::ParseParenDeclarator(Declarator &D) { 6114 BalancedDelimiterTracker T(*this, tok::l_paren); 6115 T.consumeOpen(); 6116 6117 assert(!D.isPastIdentifier() && "Should be called before passing identifier"); 6118 6119 // Eat any attributes before we look at whether this is a grouping or function 6120 // declarator paren. If this is a grouping paren, the attribute applies to 6121 // the type being built up, for example: 6122 // int (__attribute__(()) *x)(long y) 6123 // If this ends up not being a grouping paren, the attribute applies to the 6124 // first argument, for example: 6125 // int (__attribute__(()) int x) 6126 // In either case, we need to eat any attributes to be able to determine what 6127 // sort of paren this is. 6128 // 6129 ParsedAttributes attrs(AttrFactory); 6130 bool RequiresArg = false; 6131 if (Tok.is(tok::kw___attribute)) { 6132 ParseGNUAttributes(attrs); 6133 6134 // We require that the argument list (if this is a non-grouping paren) be 6135 // present even if the attribute list was empty. 6136 RequiresArg = true; 6137 } 6138 6139 // Eat any Microsoft extensions. 6140 ParseMicrosoftTypeAttributes(attrs); 6141 6142 // Eat any Borland extensions. 6143 if (Tok.is(tok::kw___pascal)) 6144 ParseBorlandTypeAttributes(attrs); 6145 6146 // If we haven't past the identifier yet (or where the identifier would be 6147 // stored, if this is an abstract declarator), then this is probably just 6148 // grouping parens. However, if this could be an abstract-declarator, then 6149 // this could also be the start of function arguments (consider 'void()'). 6150 bool isGrouping; 6151 6152 if (!D.mayOmitIdentifier()) { 6153 // If this can't be an abstract-declarator, this *must* be a grouping 6154 // paren, because we haven't seen the identifier yet. 6155 isGrouping = true; 6156 } else if (Tok.is(tok::r_paren) || // 'int()' is a function. 6157 (getLangOpts().CPlusPlus && Tok.is(tok::ellipsis) && 6158 NextToken().is(tok::r_paren)) || // C++ int(...) 6159 isDeclarationSpecifier() || // 'int(int)' is a function. 6160 isCXX11AttributeSpecifier()) { // 'int([[]]int)' is a function. 6161 // This handles C99 6.7.5.3p11: in "typedef int X; void foo(X)", X is 6162 // considered to be a type, not a K&R identifier-list. 6163 isGrouping = false; 6164 } else { 6165 // Otherwise, this is a grouping paren, e.g. 'int (*X)' or 'int(X)'. 6166 isGrouping = true; 6167 } 6168 6169 // If this is a grouping paren, handle: 6170 // direct-declarator: '(' declarator ')' 6171 // direct-declarator: '(' attributes declarator ')' 6172 if (isGrouping) { 6173 SourceLocation EllipsisLoc = D.getEllipsisLoc(); 6174 D.setEllipsisLoc(SourceLocation()); 6175 6176 bool hadGroupingParens = D.hasGroupingParens(); 6177 D.setGroupingParens(true); 6178 ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator); 6179 // Match the ')'. 6180 T.consumeClose(); 6181 D.AddTypeInfo( 6182 DeclaratorChunk::getParen(T.getOpenLocation(), T.getCloseLocation()), 6183 std::move(attrs), T.getCloseLocation()); 6184 6185 D.setGroupingParens(hadGroupingParens); 6186 6187 // An ellipsis cannot be placed outside parentheses. 6188 if (EllipsisLoc.isValid()) 6189 DiagnoseMisplacedEllipsisInDeclarator(EllipsisLoc, D); 6190 6191 return; 6192 } 6193 6194 // Okay, if this wasn't a grouping paren, it must be the start of a function 6195 // argument list. Recognize that this declarator will never have an 6196 // identifier (and remember where it would have been), then call into 6197 // ParseFunctionDeclarator to handle of argument list. 6198 D.SetIdentifier(nullptr, Tok.getLocation()); 6199 6200 // Enter function-declaration scope, limiting any declarators to the 6201 // function prototype scope, including parameter declarators. 6202 ParseScope PrototypeScope(this, 6203 Scope::FunctionPrototypeScope | Scope::DeclScope | 6204 (D.isFunctionDeclaratorAFunctionDeclaration() 6205 ? Scope::FunctionDeclarationScope : 0)); 6206 ParseFunctionDeclarator(D, attrs, T, false, RequiresArg); 6207 PrototypeScope.Exit(); 6208 } 6209 6210 /// ParseFunctionDeclarator - We are after the identifier and have parsed the 6211 /// declarator D up to a paren, which indicates that we are parsing function 6212 /// arguments. 6213 /// 6214 /// If FirstArgAttrs is non-null, then the caller parsed those arguments 6215 /// immediately after the open paren - they should be considered to be the 6216 /// first argument of a parameter. 6217 /// 6218 /// If RequiresArg is true, then the first argument of the function is required 6219 /// to be present and required to not be an identifier list. 6220 /// 6221 /// For C++, after the parameter-list, it also parses the cv-qualifier-seq[opt], 6222 /// (C++11) ref-qualifier[opt], exception-specification[opt], 6223 /// (C++11) attribute-specifier-seq[opt], and (C++11) trailing-return-type[opt]. 6224 /// 6225 /// [C++11] exception-specification: 6226 /// dynamic-exception-specification 6227 /// noexcept-specification 6228 /// 6229 void Parser::ParseFunctionDeclarator(Declarator &D, 6230 ParsedAttributes &FirstArgAttrs, 6231 BalancedDelimiterTracker &Tracker, 6232 bool IsAmbiguous, 6233 bool RequiresArg) { 6234 assert(getCurScope()->isFunctionPrototypeScope() && 6235 "Should call from a Function scope"); 6236 // lparen is already consumed! 6237 assert(D.isPastIdentifier() && "Should not call before identifier!"); 6238 6239 // This should be true when the function has typed arguments. 6240 // Otherwise, it is treated as a K&R-style function. 6241 bool HasProto = false; 6242 // Build up an array of information about the parsed arguments. 6243 SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo; 6244 // Remember where we see an ellipsis, if any. 6245 SourceLocation EllipsisLoc; 6246 6247 DeclSpec DS(AttrFactory); 6248 bool RefQualifierIsLValueRef = true; 6249 SourceLocation RefQualifierLoc; 6250 ExceptionSpecificationType ESpecType = EST_None; 6251 SourceRange ESpecRange; 6252 SmallVector<ParsedType, 2> DynamicExceptions; 6253 SmallVector<SourceRange, 2> DynamicExceptionRanges; 6254 ExprResult NoexceptExpr; 6255 CachedTokens *ExceptionSpecTokens = nullptr; 6256 ParsedAttributesWithRange FnAttrs(AttrFactory); 6257 TypeResult TrailingReturnType; 6258 6259 /* LocalEndLoc is the end location for the local FunctionTypeLoc. 6260 EndLoc is the end location for the function declarator. 6261 They differ for trailing return types. */ 6262 SourceLocation StartLoc, LocalEndLoc, EndLoc; 6263 SourceLocation LParenLoc, RParenLoc; 6264 LParenLoc = Tracker.getOpenLocation(); 6265 StartLoc = LParenLoc; 6266 6267 if (isFunctionDeclaratorIdentifierList()) { 6268 if (RequiresArg) 6269 Diag(Tok, diag::err_argument_required_after_attribute); 6270 6271 ParseFunctionDeclaratorIdentifierList(D, ParamInfo); 6272 6273 Tracker.consumeClose(); 6274 RParenLoc = Tracker.getCloseLocation(); 6275 LocalEndLoc = RParenLoc; 6276 EndLoc = RParenLoc; 6277 6278 // If there are attributes following the identifier list, parse them and 6279 // prohibit them. 6280 MaybeParseCXX11Attributes(FnAttrs); 6281 ProhibitAttributes(FnAttrs); 6282 } else { 6283 if (Tok.isNot(tok::r_paren)) 6284 ParseParameterDeclarationClause(D, FirstArgAttrs, ParamInfo, 6285 EllipsisLoc); 6286 else if (RequiresArg) 6287 Diag(Tok, diag::err_argument_required_after_attribute); 6288 6289 HasProto = ParamInfo.size() || getLangOpts().CPlusPlus 6290 || getLangOpts().OpenCL; 6291 6292 // If we have the closing ')', eat it. 6293 Tracker.consumeClose(); 6294 RParenLoc = Tracker.getCloseLocation(); 6295 LocalEndLoc = RParenLoc; 6296 EndLoc = RParenLoc; 6297 6298 if (getLangOpts().CPlusPlus) { 6299 // FIXME: Accept these components in any order, and produce fixits to 6300 // correct the order if the user gets it wrong. Ideally we should deal 6301 // with the pure-specifier in the same way. 6302 6303 // Parse cv-qualifier-seq[opt]. 6304 ParseTypeQualifierListOpt(DS, AR_NoAttributesParsed, 6305 /*AtomicAllowed*/ false, 6306 /*IdentifierRequired=*/false, 6307 llvm::function_ref<void()>([&]() { 6308 Actions.CodeCompleteFunctionQualifiers(DS, D); 6309 })); 6310 if (!DS.getSourceRange().getEnd().isInvalid()) { 6311 EndLoc = DS.getSourceRange().getEnd(); 6312 } 6313 6314 // Parse ref-qualifier[opt]. 6315 if (ParseRefQualifier(RefQualifierIsLValueRef, RefQualifierLoc)) 6316 EndLoc = RefQualifierLoc; 6317 6318 // C++11 [expr.prim.general]p3: 6319 // If a declaration declares a member function or member function 6320 // template of a class X, the expression this is a prvalue of type 6321 // "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq 6322 // and the end of the function-definition, member-declarator, or 6323 // declarator. 6324 // FIXME: currently, "static" case isn't handled correctly. 6325 bool IsCXX11MemberFunction = 6326 getLangOpts().CPlusPlus11 && 6327 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef && 6328 (D.getContext() == DeclaratorContext::MemberContext 6329 ? !D.getDeclSpec().isFriendSpecified() 6330 : D.getContext() == DeclaratorContext::FileContext && 6331 D.getCXXScopeSpec().isValid() && 6332 Actions.CurContext->isRecord()); 6333 6334 Qualifiers Q = Qualifiers::fromCVRUMask(DS.getTypeQualifiers()); 6335 if (D.getDeclSpec().hasConstexprSpecifier() && !getLangOpts().CPlusPlus14) 6336 Q.addConst(); 6337 // FIXME: Collect C++ address spaces. 6338 // If there are multiple different address spaces, the source is invalid. 6339 // Carry on using the first addr space for the qualifiers of 'this'. 6340 // The diagnostic will be given later while creating the function 6341 // prototype for the method. 6342 if (getLangOpts().OpenCLCPlusPlus) { 6343 for (ParsedAttr &attr : DS.getAttributes()) { 6344 LangAS ASIdx = attr.asOpenCLLangAS(); 6345 if (ASIdx != LangAS::Default) { 6346 Q.addAddressSpace(ASIdx); 6347 break; 6348 } 6349 } 6350 } 6351 6352 Sema::CXXThisScopeRAII ThisScope( 6353 Actions, dyn_cast<CXXRecordDecl>(Actions.CurContext), Q, 6354 IsCXX11MemberFunction); 6355 6356 // Parse exception-specification[opt]. 6357 bool Delayed = D.isFirstDeclarationOfMember() && 6358 D.isFunctionDeclaratorAFunctionDeclaration(); 6359 if (Delayed && Actions.isLibstdcxxEagerExceptionSpecHack(D) && 6360 GetLookAheadToken(0).is(tok::kw_noexcept) && 6361 GetLookAheadToken(1).is(tok::l_paren) && 6362 GetLookAheadToken(2).is(tok::kw_noexcept) && 6363 GetLookAheadToken(3).is(tok::l_paren) && 6364 GetLookAheadToken(4).is(tok::identifier) && 6365 GetLookAheadToken(4).getIdentifierInfo()->isStr("swap")) { 6366 // HACK: We've got an exception-specification 6367 // noexcept(noexcept(swap(...))) 6368 // or 6369 // noexcept(noexcept(swap(...)) && noexcept(swap(...))) 6370 // on a 'swap' member function. This is a libstdc++ bug; the lookup 6371 // for 'swap' will only find the function we're currently declaring, 6372 // whereas it expects to find a non-member swap through ADL. Turn off 6373 // delayed parsing to give it a chance to find what it expects. 6374 Delayed = false; 6375 } 6376 ESpecType = tryParseExceptionSpecification(Delayed, 6377 ESpecRange, 6378 DynamicExceptions, 6379 DynamicExceptionRanges, 6380 NoexceptExpr, 6381 ExceptionSpecTokens); 6382 if (ESpecType != EST_None) 6383 EndLoc = ESpecRange.getEnd(); 6384 6385 // Parse attribute-specifier-seq[opt]. Per DR 979 and DR 1297, this goes 6386 // after the exception-specification. 6387 MaybeParseCXX11Attributes(FnAttrs); 6388 6389 // Parse trailing-return-type[opt]. 6390 LocalEndLoc = EndLoc; 6391 if (getLangOpts().CPlusPlus11 && Tok.is(tok::arrow)) { 6392 Diag(Tok, diag::warn_cxx98_compat_trailing_return_type); 6393 if (D.getDeclSpec().getTypeSpecType() == TST_auto) 6394 StartLoc = D.getDeclSpec().getTypeSpecTypeLoc(); 6395 LocalEndLoc = Tok.getLocation(); 6396 SourceRange Range; 6397 TrailingReturnType = 6398 ParseTrailingReturnType(Range, D.mayBeFollowedByCXXDirectInit()); 6399 EndLoc = Range.getEnd(); 6400 } 6401 } else if (standardAttributesAllowed()) { 6402 MaybeParseCXX11Attributes(FnAttrs); 6403 } 6404 } 6405 6406 // Collect non-parameter declarations from the prototype if this is a function 6407 // declaration. They will be moved into the scope of the function. Only do 6408 // this in C and not C++, where the decls will continue to live in the 6409 // surrounding context. 6410 SmallVector<NamedDecl *, 0> DeclsInPrototype; 6411 if (getCurScope()->getFlags() & Scope::FunctionDeclarationScope && 6412 !getLangOpts().CPlusPlus) { 6413 for (Decl *D : getCurScope()->decls()) { 6414 NamedDecl *ND = dyn_cast<NamedDecl>(D); 6415 if (!ND || isa<ParmVarDecl>(ND)) 6416 continue; 6417 DeclsInPrototype.push_back(ND); 6418 } 6419 } 6420 6421 // Remember that we parsed a function type, and remember the attributes. 6422 D.AddTypeInfo(DeclaratorChunk::getFunction( 6423 HasProto, IsAmbiguous, LParenLoc, ParamInfo.data(), 6424 ParamInfo.size(), EllipsisLoc, RParenLoc, 6425 RefQualifierIsLValueRef, RefQualifierLoc, 6426 /*MutableLoc=*/SourceLocation(), 6427 ESpecType, ESpecRange, DynamicExceptions.data(), 6428 DynamicExceptionRanges.data(), DynamicExceptions.size(), 6429 NoexceptExpr.isUsable() ? NoexceptExpr.get() : nullptr, 6430 ExceptionSpecTokens, DeclsInPrototype, StartLoc, 6431 LocalEndLoc, D, TrailingReturnType, &DS), 6432 std::move(FnAttrs), EndLoc); 6433 } 6434 6435 /// ParseRefQualifier - Parses a member function ref-qualifier. Returns 6436 /// true if a ref-qualifier is found. 6437 bool Parser::ParseRefQualifier(bool &RefQualifierIsLValueRef, 6438 SourceLocation &RefQualifierLoc) { 6439 if (Tok.isOneOf(tok::amp, tok::ampamp)) { 6440 Diag(Tok, getLangOpts().CPlusPlus11 ? 6441 diag::warn_cxx98_compat_ref_qualifier : 6442 diag::ext_ref_qualifier); 6443 6444 RefQualifierIsLValueRef = Tok.is(tok::amp); 6445 RefQualifierLoc = ConsumeToken(); 6446 return true; 6447 } 6448 return false; 6449 } 6450 6451 /// isFunctionDeclaratorIdentifierList - This parameter list may have an 6452 /// identifier list form for a K&R-style function: void foo(a,b,c) 6453 /// 6454 /// Note that identifier-lists are only allowed for normal declarators, not for 6455 /// abstract-declarators. 6456 bool Parser::isFunctionDeclaratorIdentifierList() { 6457 return !getLangOpts().CPlusPlus 6458 && Tok.is(tok::identifier) 6459 && !TryAltiVecVectorToken() 6460 // K&R identifier lists can't have typedefs as identifiers, per C99 6461 // 6.7.5.3p11. 6462 && (TryAnnotateTypeOrScopeToken() || !Tok.is(tok::annot_typename)) 6463 // Identifier lists follow a really simple grammar: the identifiers can 6464 // be followed *only* by a ", identifier" or ")". However, K&R 6465 // identifier lists are really rare in the brave new modern world, and 6466 // it is very common for someone to typo a type in a non-K&R style 6467 // list. If we are presented with something like: "void foo(intptr x, 6468 // float y)", we don't want to start parsing the function declarator as 6469 // though it is a K&R style declarator just because intptr is an 6470 // invalid type. 6471 // 6472 // To handle this, we check to see if the token after the first 6473 // identifier is a "," or ")". Only then do we parse it as an 6474 // identifier list. 6475 && (!Tok.is(tok::eof) && 6476 (NextToken().is(tok::comma) || NextToken().is(tok::r_paren))); 6477 } 6478 6479 /// ParseFunctionDeclaratorIdentifierList - While parsing a function declarator 6480 /// we found a K&R-style identifier list instead of a typed parameter list. 6481 /// 6482 /// After returning, ParamInfo will hold the parsed parameters. 6483 /// 6484 /// identifier-list: [C99 6.7.5] 6485 /// identifier 6486 /// identifier-list ',' identifier 6487 /// 6488 void Parser::ParseFunctionDeclaratorIdentifierList( 6489 Declarator &D, 6490 SmallVectorImpl<DeclaratorChunk::ParamInfo> &ParamInfo) { 6491 // If there was no identifier specified for the declarator, either we are in 6492 // an abstract-declarator, or we are in a parameter declarator which was found 6493 // to be abstract. In abstract-declarators, identifier lists are not valid: 6494 // diagnose this. 6495 if (!D.getIdentifier()) 6496 Diag(Tok, diag::ext_ident_list_in_param); 6497 6498 // Maintain an efficient lookup of params we have seen so far. 6499 llvm::SmallSet<const IdentifierInfo*, 16> ParamsSoFar; 6500 6501 do { 6502 // If this isn't an identifier, report the error and skip until ')'. 6503 if (Tok.isNot(tok::identifier)) { 6504 Diag(Tok, diag::err_expected) << tok::identifier; 6505 SkipUntil(tok::r_paren, StopAtSemi | StopBeforeMatch); 6506 // Forget we parsed anything. 6507 ParamInfo.clear(); 6508 return; 6509 } 6510 6511 IdentifierInfo *ParmII = Tok.getIdentifierInfo(); 6512 6513 // Reject 'typedef int y; int test(x, y)', but continue parsing. 6514 if (Actions.getTypeName(*ParmII, Tok.getLocation(), getCurScope())) 6515 Diag(Tok, diag::err_unexpected_typedef_ident) << ParmII; 6516 6517 // Verify that the argument identifier has not already been mentioned. 6518 if (!ParamsSoFar.insert(ParmII).second) { 6519 Diag(Tok, diag::err_param_redefinition) << ParmII; 6520 } else { 6521 // Remember this identifier in ParamInfo. 6522 ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII, 6523 Tok.getLocation(), 6524 nullptr)); 6525 } 6526 6527 // Eat the identifier. 6528 ConsumeToken(); 6529 // The list continues if we see a comma. 6530 } while (TryConsumeToken(tok::comma)); 6531 } 6532 6533 /// ParseParameterDeclarationClause - Parse a (possibly empty) parameter-list 6534 /// after the opening parenthesis. This function will not parse a K&R-style 6535 /// identifier list. 6536 /// 6537 /// D is the declarator being parsed. If FirstArgAttrs is non-null, then the 6538 /// caller parsed those arguments immediately after the open paren - they should 6539 /// be considered to be part of the first parameter. 6540 /// 6541 /// After returning, ParamInfo will hold the parsed parameters. EllipsisLoc will 6542 /// be the location of the ellipsis, if any was parsed. 6543 /// 6544 /// parameter-type-list: [C99 6.7.5] 6545 /// parameter-list 6546 /// parameter-list ',' '...' 6547 /// [C++] parameter-list '...' 6548 /// 6549 /// parameter-list: [C99 6.7.5] 6550 /// parameter-declaration 6551 /// parameter-list ',' parameter-declaration 6552 /// 6553 /// parameter-declaration: [C99 6.7.5] 6554 /// declaration-specifiers declarator 6555 /// [C++] declaration-specifiers declarator '=' assignment-expression 6556 /// [C++11] initializer-clause 6557 /// [GNU] declaration-specifiers declarator attributes 6558 /// declaration-specifiers abstract-declarator[opt] 6559 /// [C++] declaration-specifiers abstract-declarator[opt] 6560 /// '=' assignment-expression 6561 /// [GNU] declaration-specifiers abstract-declarator[opt] attributes 6562 /// [C++11] attribute-specifier-seq parameter-declaration 6563 /// 6564 void Parser::ParseParameterDeclarationClause( 6565 Declarator &D, 6566 ParsedAttributes &FirstArgAttrs, 6567 SmallVectorImpl<DeclaratorChunk::ParamInfo> &ParamInfo, 6568 SourceLocation &EllipsisLoc) { 6569 do { 6570 // FIXME: Issue a diagnostic if we parsed an attribute-specifier-seq 6571 // before deciding this was a parameter-declaration-clause. 6572 if (TryConsumeToken(tok::ellipsis, EllipsisLoc)) 6573 break; 6574 6575 // Parse the declaration-specifiers. 6576 // Just use the ParsingDeclaration "scope" of the declarator. 6577 DeclSpec DS(AttrFactory); 6578 6579 // Parse any C++11 attributes. 6580 MaybeParseCXX11Attributes(DS.getAttributes()); 6581 6582 // Skip any Microsoft attributes before a param. 6583 MaybeParseMicrosoftAttributes(DS.getAttributes()); 6584 6585 SourceLocation DSStart = Tok.getLocation(); 6586 6587 // If the caller parsed attributes for the first argument, add them now. 6588 // Take them so that we only apply the attributes to the first parameter. 6589 // FIXME: If we can leave the attributes in the token stream somehow, we can 6590 // get rid of a parameter (FirstArgAttrs) and this statement. It might be 6591 // too much hassle. 6592 DS.takeAttributesFrom(FirstArgAttrs); 6593 6594 ParseDeclarationSpecifiers(DS); 6595 6596 6597 // Parse the declarator. This is "PrototypeContext" or 6598 // "LambdaExprParameterContext", because we must accept either 6599 // 'declarator' or 'abstract-declarator' here. 6600 Declarator ParmDeclarator( 6601 DS, D.getContext() == DeclaratorContext::LambdaExprContext 6602 ? DeclaratorContext::LambdaExprParameterContext 6603 : DeclaratorContext::PrototypeContext); 6604 ParseDeclarator(ParmDeclarator); 6605 6606 // Parse GNU attributes, if present. 6607 MaybeParseGNUAttributes(ParmDeclarator); 6608 6609 // Remember this parsed parameter in ParamInfo. 6610 IdentifierInfo *ParmII = ParmDeclarator.getIdentifier(); 6611 6612 // DefArgToks is used when the parsing of default arguments needs 6613 // to be delayed. 6614 std::unique_ptr<CachedTokens> DefArgToks; 6615 6616 // If no parameter was specified, verify that *something* was specified, 6617 // otherwise we have a missing type and identifier. 6618 if (DS.isEmpty() && ParmDeclarator.getIdentifier() == nullptr && 6619 ParmDeclarator.getNumTypeObjects() == 0) { 6620 // Completely missing, emit error. 6621 Diag(DSStart, diag::err_missing_param); 6622 } else { 6623 // Otherwise, we have something. Add it and let semantic analysis try 6624 // to grok it and add the result to the ParamInfo we are building. 6625 6626 // Last chance to recover from a misplaced ellipsis in an attempted 6627 // parameter pack declaration. 6628 if (Tok.is(tok::ellipsis) && 6629 (NextToken().isNot(tok::r_paren) || 6630 (!ParmDeclarator.getEllipsisLoc().isValid() && 6631 !Actions.isUnexpandedParameterPackPermitted())) && 6632 Actions.containsUnexpandedParameterPacks(ParmDeclarator)) 6633 DiagnoseMisplacedEllipsisInDeclarator(ConsumeToken(), ParmDeclarator); 6634 6635 // Inform the actions module about the parameter declarator, so it gets 6636 // added to the current scope. 6637 Decl *Param = Actions.ActOnParamDeclarator(getCurScope(), ParmDeclarator); 6638 // Parse the default argument, if any. We parse the default 6639 // arguments in all dialects; the semantic analysis in 6640 // ActOnParamDefaultArgument will reject the default argument in 6641 // C. 6642 if (Tok.is(tok::equal)) { 6643 SourceLocation EqualLoc = Tok.getLocation(); 6644 6645 // Parse the default argument 6646 if (D.getContext() == DeclaratorContext::MemberContext) { 6647 // If we're inside a class definition, cache the tokens 6648 // corresponding to the default argument. We'll actually parse 6649 // them when we see the end of the class definition. 6650 DefArgToks.reset(new CachedTokens); 6651 6652 SourceLocation ArgStartLoc = NextToken().getLocation(); 6653 if (!ConsumeAndStoreInitializer(*DefArgToks, CIK_DefaultArgument)) { 6654 DefArgToks.reset(); 6655 Actions.ActOnParamDefaultArgumentError(Param, EqualLoc); 6656 } else { 6657 Actions.ActOnParamUnparsedDefaultArgument(Param, EqualLoc, 6658 ArgStartLoc); 6659 } 6660 } else { 6661 // Consume the '='. 6662 ConsumeToken(); 6663 6664 // The argument isn't actually potentially evaluated unless it is 6665 // used. 6666 EnterExpressionEvaluationContext Eval( 6667 Actions, 6668 Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed, 6669 Param); 6670 6671 ExprResult DefArgResult; 6672 if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) { 6673 Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists); 6674 DefArgResult = ParseBraceInitializer(); 6675 } else 6676 DefArgResult = ParseAssignmentExpression(); 6677 DefArgResult = Actions.CorrectDelayedTyposInExpr(DefArgResult); 6678 if (DefArgResult.isInvalid()) { 6679 Actions.ActOnParamDefaultArgumentError(Param, EqualLoc); 6680 SkipUntil(tok::comma, tok::r_paren, StopAtSemi | StopBeforeMatch); 6681 } else { 6682 // Inform the actions module about the default argument 6683 Actions.ActOnParamDefaultArgument(Param, EqualLoc, 6684 DefArgResult.get()); 6685 } 6686 } 6687 } 6688 6689 ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII, 6690 ParmDeclarator.getIdentifierLoc(), 6691 Param, std::move(DefArgToks))); 6692 } 6693 6694 if (TryConsumeToken(tok::ellipsis, EllipsisLoc)) { 6695 if (!getLangOpts().CPlusPlus) { 6696 // We have ellipsis without a preceding ',', which is ill-formed 6697 // in C. Complain and provide the fix. 6698 Diag(EllipsisLoc, diag::err_missing_comma_before_ellipsis) 6699 << FixItHint::CreateInsertion(EllipsisLoc, ", "); 6700 } else if (ParmDeclarator.getEllipsisLoc().isValid() || 6701 Actions.containsUnexpandedParameterPacks(ParmDeclarator)) { 6702 // It looks like this was supposed to be a parameter pack. Warn and 6703 // point out where the ellipsis should have gone. 6704 SourceLocation ParmEllipsis = ParmDeclarator.getEllipsisLoc(); 6705 Diag(EllipsisLoc, diag::warn_misplaced_ellipsis_vararg) 6706 << ParmEllipsis.isValid() << ParmEllipsis; 6707 if (ParmEllipsis.isValid()) { 6708 Diag(ParmEllipsis, 6709 diag::note_misplaced_ellipsis_vararg_existing_ellipsis); 6710 } else { 6711 Diag(ParmDeclarator.getIdentifierLoc(), 6712 diag::note_misplaced_ellipsis_vararg_add_ellipsis) 6713 << FixItHint::CreateInsertion(ParmDeclarator.getIdentifierLoc(), 6714 "...") 6715 << !ParmDeclarator.hasName(); 6716 } 6717 Diag(EllipsisLoc, diag::note_misplaced_ellipsis_vararg_add_comma) 6718 << FixItHint::CreateInsertion(EllipsisLoc, ", "); 6719 } 6720 6721 // We can't have any more parameters after an ellipsis. 6722 break; 6723 } 6724 6725 // If the next token is a comma, consume it and keep reading arguments. 6726 } while (TryConsumeToken(tok::comma)); 6727 } 6728 6729 /// [C90] direct-declarator '[' constant-expression[opt] ']' 6730 /// [C99] direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']' 6731 /// [C99] direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']' 6732 /// [C99] direct-declarator '[' type-qual-list 'static' assignment-expr ']' 6733 /// [C99] direct-declarator '[' type-qual-list[opt] '*' ']' 6734 /// [C++11] direct-declarator '[' constant-expression[opt] ']' 6735 /// attribute-specifier-seq[opt] 6736 void Parser::ParseBracketDeclarator(Declarator &D) { 6737 if (CheckProhibitedCXX11Attribute()) 6738 return; 6739 6740 BalancedDelimiterTracker T(*this, tok::l_square); 6741 T.consumeOpen(); 6742 6743 // C array syntax has many features, but by-far the most common is [] and [4]. 6744 // This code does a fast path to handle some of the most obvious cases. 6745 if (Tok.getKind() == tok::r_square) { 6746 T.consumeClose(); 6747 ParsedAttributes attrs(AttrFactory); 6748 MaybeParseCXX11Attributes(attrs); 6749 6750 // Remember that we parsed the empty array type. 6751 D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false, nullptr, 6752 T.getOpenLocation(), 6753 T.getCloseLocation()), 6754 std::move(attrs), T.getCloseLocation()); 6755 return; 6756 } else if (Tok.getKind() == tok::numeric_constant && 6757 GetLookAheadToken(1).is(tok::r_square)) { 6758 // [4] is very common. Parse the numeric constant expression. 6759 ExprResult ExprRes(Actions.ActOnNumericConstant(Tok, getCurScope())); 6760 ConsumeToken(); 6761 6762 T.consumeClose(); 6763 ParsedAttributes attrs(AttrFactory); 6764 MaybeParseCXX11Attributes(attrs); 6765 6766 // Remember that we parsed a array type, and remember its features. 6767 D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false, ExprRes.get(), 6768 T.getOpenLocation(), 6769 T.getCloseLocation()), 6770 std::move(attrs), T.getCloseLocation()); 6771 return; 6772 } else if (Tok.getKind() == tok::code_completion) { 6773 Actions.CodeCompleteBracketDeclarator(getCurScope()); 6774 return cutOffParsing(); 6775 } 6776 6777 // If valid, this location is the position where we read the 'static' keyword. 6778 SourceLocation StaticLoc; 6779 TryConsumeToken(tok::kw_static, StaticLoc); 6780 6781 // If there is a type-qualifier-list, read it now. 6782 // Type qualifiers in an array subscript are a C99 feature. 6783 DeclSpec DS(AttrFactory); 6784 ParseTypeQualifierListOpt(DS, AR_CXX11AttributesParsed); 6785 6786 // If we haven't already read 'static', check to see if there is one after the 6787 // type-qualifier-list. 6788 if (!StaticLoc.isValid()) 6789 TryConsumeToken(tok::kw_static, StaticLoc); 6790 6791 // Handle "direct-declarator [ type-qual-list[opt] * ]". 6792 bool isStar = false; 6793 ExprResult NumElements; 6794 6795 // Handle the case where we have '[*]' as the array size. However, a leading 6796 // star could be the start of an expression, for example 'X[*p + 4]'. Verify 6797 // the token after the star is a ']'. Since stars in arrays are 6798 // infrequent, use of lookahead is not costly here. 6799 if (Tok.is(tok::star) && GetLookAheadToken(1).is(tok::r_square)) { 6800 ConsumeToken(); // Eat the '*'. 6801 6802 if (StaticLoc.isValid()) { 6803 Diag(StaticLoc, diag::err_unspecified_vla_size_with_static); 6804 StaticLoc = SourceLocation(); // Drop the static. 6805 } 6806 isStar = true; 6807 } else if (Tok.isNot(tok::r_square)) { 6808 // Note, in C89, this production uses the constant-expr production instead 6809 // of assignment-expr. The only difference is that assignment-expr allows 6810 // things like '=' and '*='. Sema rejects these in C89 mode because they 6811 // are not i-c-e's, so we don't need to distinguish between the two here. 6812 6813 // Parse the constant-expression or assignment-expression now (depending 6814 // on dialect). 6815 if (getLangOpts().CPlusPlus) { 6816 NumElements = ParseConstantExpression(); 6817 } else { 6818 EnterExpressionEvaluationContext Unevaluated( 6819 Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated); 6820 NumElements = 6821 Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression()); 6822 } 6823 } else { 6824 if (StaticLoc.isValid()) { 6825 Diag(StaticLoc, diag::err_unspecified_size_with_static); 6826 StaticLoc = SourceLocation(); // Drop the static. 6827 } 6828 } 6829 6830 // If there was an error parsing the assignment-expression, recover. 6831 if (NumElements.isInvalid()) { 6832 D.setInvalidType(true); 6833 // If the expression was invalid, skip it. 6834 SkipUntil(tok::r_square, StopAtSemi); 6835 return; 6836 } 6837 6838 T.consumeClose(); 6839 6840 MaybeParseCXX11Attributes(DS.getAttributes()); 6841 6842 // Remember that we parsed a array type, and remember its features. 6843 D.AddTypeInfo( 6844 DeclaratorChunk::getArray(DS.getTypeQualifiers(), StaticLoc.isValid(), 6845 isStar, NumElements.get(), T.getOpenLocation(), 6846 T.getCloseLocation()), 6847 std::move(DS.getAttributes()), T.getCloseLocation()); 6848 } 6849 6850 /// Diagnose brackets before an identifier. 6851 void Parser::ParseMisplacedBracketDeclarator(Declarator &D) { 6852 assert(Tok.is(tok::l_square) && "Missing opening bracket"); 6853 assert(!D.mayOmitIdentifier() && "Declarator cannot omit identifier"); 6854 6855 SourceLocation StartBracketLoc = Tok.getLocation(); 6856 Declarator TempDeclarator(D.getDeclSpec(), D.getContext()); 6857 6858 while (Tok.is(tok::l_square)) { 6859 ParseBracketDeclarator(TempDeclarator); 6860 } 6861 6862 // Stuff the location of the start of the brackets into the Declarator. 6863 // The diagnostics from ParseDirectDeclarator will make more sense if 6864 // they use this location instead. 6865 if (Tok.is(tok::semi)) 6866 D.getName().EndLocation = StartBracketLoc; 6867 6868 SourceLocation SuggestParenLoc = Tok.getLocation(); 6869 6870 // Now that the brackets are removed, try parsing the declarator again. 6871 ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator); 6872 6873 // Something went wrong parsing the brackets, in which case, 6874 // ParseBracketDeclarator has emitted an error, and we don't need to emit 6875 // one here. 6876 if (TempDeclarator.getNumTypeObjects() == 0) 6877 return; 6878 6879 // Determine if parens will need to be suggested in the diagnostic. 6880 bool NeedParens = false; 6881 if (D.getNumTypeObjects() != 0) { 6882 switch (D.getTypeObject(D.getNumTypeObjects() - 1).Kind) { 6883 case DeclaratorChunk::Pointer: 6884 case DeclaratorChunk::Reference: 6885 case DeclaratorChunk::BlockPointer: 6886 case DeclaratorChunk::MemberPointer: 6887 case DeclaratorChunk::Pipe: 6888 NeedParens = true; 6889 break; 6890 case DeclaratorChunk::Array: 6891 case DeclaratorChunk::Function: 6892 case DeclaratorChunk::Paren: 6893 break; 6894 } 6895 } 6896 6897 if (NeedParens) { 6898 // Create a DeclaratorChunk for the inserted parens. 6899 SourceLocation EndLoc = PP.getLocForEndOfToken(D.getEndLoc()); 6900 D.AddTypeInfo(DeclaratorChunk::getParen(SuggestParenLoc, EndLoc), 6901 SourceLocation()); 6902 } 6903 6904 // Adding back the bracket info to the end of the Declarator. 6905 for (unsigned i = 0, e = TempDeclarator.getNumTypeObjects(); i < e; ++i) { 6906 const DeclaratorChunk &Chunk = TempDeclarator.getTypeObject(i); 6907 D.AddTypeInfo(Chunk, SourceLocation()); 6908 } 6909 6910 // The missing identifier would have been diagnosed in ParseDirectDeclarator. 6911 // If parentheses are required, always suggest them. 6912 if (!D.getIdentifier() && !NeedParens) 6913 return; 6914 6915 SourceLocation EndBracketLoc = TempDeclarator.getEndLoc(); 6916 6917 // Generate the move bracket error message. 6918 SourceRange BracketRange(StartBracketLoc, EndBracketLoc); 6919 SourceLocation EndLoc = PP.getLocForEndOfToken(D.getEndLoc()); 6920 6921 if (NeedParens) { 6922 Diag(EndLoc, diag::err_brackets_go_after_unqualified_id) 6923 << getLangOpts().CPlusPlus 6924 << FixItHint::CreateInsertion(SuggestParenLoc, "(") 6925 << FixItHint::CreateInsertion(EndLoc, ")") 6926 << FixItHint::CreateInsertionFromRange( 6927 EndLoc, CharSourceRange(BracketRange, true)) 6928 << FixItHint::CreateRemoval(BracketRange); 6929 } else { 6930 Diag(EndLoc, diag::err_brackets_go_after_unqualified_id) 6931 << getLangOpts().CPlusPlus 6932 << FixItHint::CreateInsertionFromRange( 6933 EndLoc, CharSourceRange(BracketRange, true)) 6934 << FixItHint::CreateRemoval(BracketRange); 6935 } 6936 } 6937 6938 /// [GNU] typeof-specifier: 6939 /// typeof ( expressions ) 6940 /// typeof ( type-name ) 6941 /// [GNU/C++] typeof unary-expression 6942 /// 6943 void Parser::ParseTypeofSpecifier(DeclSpec &DS) { 6944 assert(Tok.is(tok::kw_typeof) && "Not a typeof specifier"); 6945 Token OpTok = Tok; 6946 SourceLocation StartLoc = ConsumeToken(); 6947 6948 const bool hasParens = Tok.is(tok::l_paren); 6949 6950 EnterExpressionEvaluationContext Unevaluated( 6951 Actions, Sema::ExpressionEvaluationContext::Unevaluated, 6952 Sema::ReuseLambdaContextDecl); 6953 6954 bool isCastExpr; 6955 ParsedType CastTy; 6956 SourceRange CastRange; 6957 ExprResult Operand = Actions.CorrectDelayedTyposInExpr( 6958 ParseExprAfterUnaryExprOrTypeTrait(OpTok, isCastExpr, CastTy, CastRange)); 6959 if (hasParens) 6960 DS.setTypeofParensRange(CastRange); 6961 6962 if (CastRange.getEnd().isInvalid()) 6963 // FIXME: Not accurate, the range gets one token more than it should. 6964 DS.SetRangeEnd(Tok.getLocation()); 6965 else 6966 DS.SetRangeEnd(CastRange.getEnd()); 6967 6968 if (isCastExpr) { 6969 if (!CastTy) { 6970 DS.SetTypeSpecError(); 6971 return; 6972 } 6973 6974 const char *PrevSpec = nullptr; 6975 unsigned DiagID; 6976 // Check for duplicate type specifiers (e.g. "int typeof(int)"). 6977 if (DS.SetTypeSpecType(DeclSpec::TST_typeofType, StartLoc, PrevSpec, 6978 DiagID, CastTy, 6979 Actions.getASTContext().getPrintingPolicy())) 6980 Diag(StartLoc, DiagID) << PrevSpec; 6981 return; 6982 } 6983 6984 // If we get here, the operand to the typeof was an expression. 6985 if (Operand.isInvalid()) { 6986 DS.SetTypeSpecError(); 6987 return; 6988 } 6989 6990 // We might need to transform the operand if it is potentially evaluated. 6991 Operand = Actions.HandleExprEvaluationContextForTypeof(Operand.get()); 6992 if (Operand.isInvalid()) { 6993 DS.SetTypeSpecError(); 6994 return; 6995 } 6996 6997 const char *PrevSpec = nullptr; 6998 unsigned DiagID; 6999 // Check for duplicate type specifiers (e.g. "int typeof(int)"). 7000 if (DS.SetTypeSpecType(DeclSpec::TST_typeofExpr, StartLoc, PrevSpec, 7001 DiagID, Operand.get(), 7002 Actions.getASTContext().getPrintingPolicy())) 7003 Diag(StartLoc, DiagID) << PrevSpec; 7004 } 7005 7006 /// [C11] atomic-specifier: 7007 /// _Atomic ( type-name ) 7008 /// 7009 void Parser::ParseAtomicSpecifier(DeclSpec &DS) { 7010 assert(Tok.is(tok::kw__Atomic) && NextToken().is(tok::l_paren) && 7011 "Not an atomic specifier"); 7012 7013 SourceLocation StartLoc = ConsumeToken(); 7014 BalancedDelimiterTracker T(*this, tok::l_paren); 7015 if (T.consumeOpen()) 7016 return; 7017 7018 TypeResult Result = ParseTypeName(); 7019 if (Result.isInvalid()) { 7020 SkipUntil(tok::r_paren, StopAtSemi); 7021 return; 7022 } 7023 7024 // Match the ')' 7025 T.consumeClose(); 7026 7027 if (T.getCloseLocation().isInvalid()) 7028 return; 7029 7030 DS.setTypeofParensRange(T.getRange()); 7031 DS.SetRangeEnd(T.getCloseLocation()); 7032 7033 const char *PrevSpec = nullptr; 7034 unsigned DiagID; 7035 if (DS.SetTypeSpecType(DeclSpec::TST_atomic, StartLoc, PrevSpec, 7036 DiagID, Result.get(), 7037 Actions.getASTContext().getPrintingPolicy())) 7038 Diag(StartLoc, DiagID) << PrevSpec; 7039 } 7040 7041 /// TryAltiVecVectorTokenOutOfLine - Out of line body that should only be called 7042 /// from TryAltiVecVectorToken. 7043 bool Parser::TryAltiVecVectorTokenOutOfLine() { 7044 Token Next = NextToken(); 7045 switch (Next.getKind()) { 7046 default: return false; 7047 case tok::kw_short: 7048 case tok::kw_long: 7049 case tok::kw_signed: 7050 case tok::kw_unsigned: 7051 case tok::kw_void: 7052 case tok::kw_char: 7053 case tok::kw_int: 7054 case tok::kw_float: 7055 case tok::kw_double: 7056 case tok::kw_bool: 7057 case tok::kw___bool: 7058 case tok::kw___pixel: 7059 Tok.setKind(tok::kw___vector); 7060 return true; 7061 case tok::identifier: 7062 if (Next.getIdentifierInfo() == Ident_pixel) { 7063 Tok.setKind(tok::kw___vector); 7064 return true; 7065 } 7066 if (Next.getIdentifierInfo() == Ident_bool) { 7067 Tok.setKind(tok::kw___vector); 7068 return true; 7069 } 7070 return false; 7071 } 7072 } 7073 7074 bool Parser::TryAltiVecTokenOutOfLine(DeclSpec &DS, SourceLocation Loc, 7075 const char *&PrevSpec, unsigned &DiagID, 7076 bool &isInvalid) { 7077 const PrintingPolicy &Policy = Actions.getASTContext().getPrintingPolicy(); 7078 if (Tok.getIdentifierInfo() == Ident_vector) { 7079 Token Next = NextToken(); 7080 switch (Next.getKind()) { 7081 case tok::kw_short: 7082 case tok::kw_long: 7083 case tok::kw_signed: 7084 case tok::kw_unsigned: 7085 case tok::kw_void: 7086 case tok::kw_char: 7087 case tok::kw_int: 7088 case tok::kw_float: 7089 case tok::kw_double: 7090 case tok::kw_bool: 7091 case tok::kw___bool: 7092 case tok::kw___pixel: 7093 isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID, Policy); 7094 return true; 7095 case tok::identifier: 7096 if (Next.getIdentifierInfo() == Ident_pixel) { 7097 isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID,Policy); 7098 return true; 7099 } 7100 if (Next.getIdentifierInfo() == Ident_bool) { 7101 isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID,Policy); 7102 return true; 7103 } 7104 break; 7105 default: 7106 break; 7107 } 7108 } else if ((Tok.getIdentifierInfo() == Ident_pixel) && 7109 DS.isTypeAltiVecVector()) { 7110 isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID, Policy); 7111 return true; 7112 } else if ((Tok.getIdentifierInfo() == Ident_bool) && 7113 DS.isTypeAltiVecVector()) { 7114 isInvalid = DS.SetTypeAltiVecBool(true, Loc, PrevSpec, DiagID, Policy); 7115 return true; 7116 } 7117 return false; 7118 } 7119