1 //===--- Driver.cpp - Clang GCC Compatible Driver -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/Driver/Driver.h" 10 #include "InputInfo.h" 11 #include "ToolChains/AIX.h" 12 #include "ToolChains/AMDGPU.h" 13 #include "ToolChains/AVR.h" 14 #include "ToolChains/Ananas.h" 15 #include "ToolChains/BareMetal.h" 16 #include "ToolChains/Clang.h" 17 #include "ToolChains/CloudABI.h" 18 #include "ToolChains/Contiki.h" 19 #include "ToolChains/CrossWindows.h" 20 #include "ToolChains/Cuda.h" 21 #include "ToolChains/Darwin.h" 22 #include "ToolChains/DragonFly.h" 23 #include "ToolChains/FreeBSD.h" 24 #include "ToolChains/Fuchsia.h" 25 #include "ToolChains/Gnu.h" 26 #include "ToolChains/HIP.h" 27 #include "ToolChains/Haiku.h" 28 #include "ToolChains/Hexagon.h" 29 #include "ToolChains/Hurd.h" 30 #include "ToolChains/Lanai.h" 31 #include "ToolChains/Linux.h" 32 #include "ToolChains/MSP430.h" 33 #include "ToolChains/MSVC.h" 34 #include "ToolChains/MinGW.h" 35 #include "ToolChains/Minix.h" 36 #include "ToolChains/MipsLinux.h" 37 #include "ToolChains/Myriad.h" 38 #include "ToolChains/NaCl.h" 39 #include "ToolChains/NetBSD.h" 40 #include "ToolChains/OpenBSD.h" 41 #include "ToolChains/PS4CPU.h" 42 #include "ToolChains/PPCLinux.h" 43 #include "ToolChains/RISCVToolchain.h" 44 #include "ToolChains/Solaris.h" 45 #include "ToolChains/TCE.h" 46 #include "ToolChains/WebAssembly.h" 47 #include "ToolChains/XCore.h" 48 #include "clang/Basic/Version.h" 49 #include "clang/Config/config.h" 50 #include "clang/Driver/Action.h" 51 #include "clang/Driver/Compilation.h" 52 #include "clang/Driver/DriverDiagnostic.h" 53 #include "clang/Driver/Job.h" 54 #include "clang/Driver/Options.h" 55 #include "clang/Driver/SanitizerArgs.h" 56 #include "clang/Driver/Tool.h" 57 #include "clang/Driver/ToolChain.h" 58 #include "llvm/ADT/ArrayRef.h" 59 #include "llvm/ADT/STLExtras.h" 60 #include "llvm/ADT/SmallSet.h" 61 #include "llvm/ADT/StringExtras.h" 62 #include "llvm/ADT/StringSet.h" 63 #include "llvm/ADT/StringSwitch.h" 64 #include "llvm/Config/llvm-config.h" 65 #include "llvm/Option/Arg.h" 66 #include "llvm/Option/ArgList.h" 67 #include "llvm/Option/OptSpecifier.h" 68 #include "llvm/Option/OptTable.h" 69 #include "llvm/Option/Option.h" 70 #include "llvm/Support/CommandLine.h" 71 #include "llvm/Support/ErrorHandling.h" 72 #include "llvm/Support/FileSystem.h" 73 #include "llvm/Support/FormatVariadic.h" 74 #include "llvm/Support/Path.h" 75 #include "llvm/Support/PrettyStackTrace.h" 76 #include "llvm/Support/Process.h" 77 #include "llvm/Support/Program.h" 78 #include "llvm/Support/StringSaver.h" 79 #include "llvm/Support/TargetRegistry.h" 80 #include "llvm/Support/VirtualFileSystem.h" 81 #include "llvm/Support/raw_ostream.h" 82 #include <map> 83 #include <memory> 84 #include <utility> 85 #if LLVM_ON_UNIX 86 #include <unistd.h> // getpid 87 #include <sysexits.h> // EX_IOERR 88 #endif 89 90 using namespace clang::driver; 91 using namespace clang; 92 using namespace llvm::opt; 93 94 // static 95 std::string Driver::GetResourcesPath(StringRef BinaryPath, 96 StringRef CustomResourceDir) { 97 // Since the resource directory is embedded in the module hash, it's important 98 // that all places that need it call this function, so that they get the 99 // exact same string ("a/../b/" and "b/" get different hashes, for example). 100 101 // Dir is bin/ or lib/, depending on where BinaryPath is. 102 std::string Dir = llvm::sys::path::parent_path(BinaryPath); 103 104 SmallString<128> P(Dir); 105 if (CustomResourceDir != "") { 106 llvm::sys::path::append(P, CustomResourceDir); 107 } else { 108 // On Windows, libclang.dll is in bin/. 109 // On non-Windows, libclang.so/.dylib is in lib/. 110 // With a static-library build of libclang, LibClangPath will contain the 111 // path of the embedding binary, which for LLVM binaries will be in bin/. 112 // ../lib gets us to lib/ in both cases. 113 P = llvm::sys::path::parent_path(Dir); 114 llvm::sys::path::append(P, Twine("lib") + CLANG_LIBDIR_SUFFIX, "clang", 115 CLANG_VERSION_STRING); 116 } 117 118 return P.str(); 119 } 120 121 Driver::Driver(StringRef ClangExecutable, StringRef TargetTriple, 122 DiagnosticsEngine &Diags, 123 IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS) 124 : Diags(Diags), VFS(std::move(VFS)), Mode(GCCMode), 125 SaveTemps(SaveTempsNone), BitcodeEmbed(EmbedNone), LTOMode(LTOK_None), 126 ClangExecutable(ClangExecutable), SysRoot(DEFAULT_SYSROOT), 127 DriverTitle("clang LLVM compiler"), CCPrintOptionsFilename(nullptr), 128 CCPrintHeadersFilename(nullptr), CCLogDiagnosticsFilename(nullptr), 129 CCCPrintBindings(false), CCPrintOptions(false), CCPrintHeaders(false), 130 CCLogDiagnostics(false), CCGenDiagnostics(false), 131 TargetTriple(TargetTriple), CCCGenericGCCName(""), Saver(Alloc), 132 CheckInputsExist(true), GenReproducer(false), 133 SuppressMissingInputWarning(false) { 134 135 // Provide a sane fallback if no VFS is specified. 136 if (!this->VFS) 137 this->VFS = llvm::vfs::getRealFileSystem(); 138 139 Name = llvm::sys::path::filename(ClangExecutable); 140 Dir = llvm::sys::path::parent_path(ClangExecutable); 141 InstalledDir = Dir; // Provide a sensible default installed dir. 142 143 #if defined(CLANG_CONFIG_FILE_SYSTEM_DIR) 144 SystemConfigDir = CLANG_CONFIG_FILE_SYSTEM_DIR; 145 #endif 146 #if defined(CLANG_CONFIG_FILE_USER_DIR) 147 UserConfigDir = CLANG_CONFIG_FILE_USER_DIR; 148 #endif 149 150 // Compute the path to the resource directory. 151 ResourceDir = GetResourcesPath(ClangExecutable, CLANG_RESOURCE_DIR); 152 } 153 154 void Driver::ParseDriverMode(StringRef ProgramName, 155 ArrayRef<const char *> Args) { 156 if (ClangNameParts.isEmpty()) 157 ClangNameParts = ToolChain::getTargetAndModeFromProgramName(ProgramName); 158 setDriverModeFromOption(ClangNameParts.DriverMode); 159 160 for (const char *ArgPtr : Args) { 161 // Ignore nullptrs, they are the response file's EOL markers. 162 if (ArgPtr == nullptr) 163 continue; 164 const StringRef Arg = ArgPtr; 165 setDriverModeFromOption(Arg); 166 } 167 } 168 169 void Driver::setDriverModeFromOption(StringRef Opt) { 170 const std::string OptName = 171 getOpts().getOption(options::OPT_driver_mode).getPrefixedName(); 172 if (!Opt.startswith(OptName)) 173 return; 174 StringRef Value = Opt.drop_front(OptName.size()); 175 176 if (auto M = llvm::StringSwitch<llvm::Optional<DriverMode>>(Value) 177 .Case("gcc", GCCMode) 178 .Case("g++", GXXMode) 179 .Case("cpp", CPPMode) 180 .Case("cl", CLMode) 181 .Default(None)) 182 Mode = *M; 183 else 184 Diag(diag::err_drv_unsupported_option_argument) << OptName << Value; 185 } 186 187 InputArgList Driver::ParseArgStrings(ArrayRef<const char *> ArgStrings, 188 bool IsClCompatMode, 189 bool &ContainsError) { 190 llvm::PrettyStackTraceString CrashInfo("Command line argument parsing"); 191 ContainsError = false; 192 193 unsigned IncludedFlagsBitmask; 194 unsigned ExcludedFlagsBitmask; 195 std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) = 196 getIncludeExcludeOptionFlagMasks(IsClCompatMode); 197 198 unsigned MissingArgIndex, MissingArgCount; 199 InputArgList Args = 200 getOpts().ParseArgs(ArgStrings, MissingArgIndex, MissingArgCount, 201 IncludedFlagsBitmask, ExcludedFlagsBitmask); 202 203 // Check for missing argument error. 204 if (MissingArgCount) { 205 Diag(diag::err_drv_missing_argument) 206 << Args.getArgString(MissingArgIndex) << MissingArgCount; 207 ContainsError |= 208 Diags.getDiagnosticLevel(diag::err_drv_missing_argument, 209 SourceLocation()) > DiagnosticsEngine::Warning; 210 } 211 212 // Check for unsupported options. 213 for (const Arg *A : Args) { 214 if (A->getOption().hasFlag(options::Unsupported)) { 215 unsigned DiagID; 216 auto ArgString = A->getAsString(Args); 217 std::string Nearest; 218 if (getOpts().findNearest( 219 ArgString, Nearest, IncludedFlagsBitmask, 220 ExcludedFlagsBitmask | options::Unsupported) > 1) { 221 DiagID = diag::err_drv_unsupported_opt; 222 Diag(DiagID) << ArgString; 223 } else { 224 DiagID = diag::err_drv_unsupported_opt_with_suggestion; 225 Diag(DiagID) << ArgString << Nearest; 226 } 227 ContainsError |= Diags.getDiagnosticLevel(DiagID, SourceLocation()) > 228 DiagnosticsEngine::Warning; 229 continue; 230 } 231 232 // Warn about -mcpu= without an argument. 233 if (A->getOption().matches(options::OPT_mcpu_EQ) && A->containsValue("")) { 234 Diag(diag::warn_drv_empty_joined_argument) << A->getAsString(Args); 235 ContainsError |= Diags.getDiagnosticLevel( 236 diag::warn_drv_empty_joined_argument, 237 SourceLocation()) > DiagnosticsEngine::Warning; 238 } 239 } 240 241 for (const Arg *A : Args.filtered(options::OPT_UNKNOWN)) { 242 unsigned DiagID; 243 auto ArgString = A->getAsString(Args); 244 std::string Nearest; 245 if (getOpts().findNearest( 246 ArgString, Nearest, IncludedFlagsBitmask, ExcludedFlagsBitmask) > 1) { 247 DiagID = IsCLMode() ? diag::warn_drv_unknown_argument_clang_cl 248 : diag::err_drv_unknown_argument; 249 Diags.Report(DiagID) << ArgString; 250 } else { 251 DiagID = IsCLMode() 252 ? diag::warn_drv_unknown_argument_clang_cl_with_suggestion 253 : diag::err_drv_unknown_argument_with_suggestion; 254 Diags.Report(DiagID) << ArgString << Nearest; 255 } 256 ContainsError |= Diags.getDiagnosticLevel(DiagID, SourceLocation()) > 257 DiagnosticsEngine::Warning; 258 } 259 260 return Args; 261 } 262 263 // Determine which compilation mode we are in. We look for options which 264 // affect the phase, starting with the earliest phases, and record which 265 // option we used to determine the final phase. 266 phases::ID Driver::getFinalPhase(const DerivedArgList &DAL, 267 Arg **FinalPhaseArg) const { 268 Arg *PhaseArg = nullptr; 269 phases::ID FinalPhase; 270 271 // -{E,EP,P,M,MM} only run the preprocessor. 272 if (CCCIsCPP() || (PhaseArg = DAL.getLastArg(options::OPT_E)) || 273 (PhaseArg = DAL.getLastArg(options::OPT__SLASH_EP)) || 274 (PhaseArg = DAL.getLastArg(options::OPT_M, options::OPT_MM)) || 275 (PhaseArg = DAL.getLastArg(options::OPT__SLASH_P))) { 276 FinalPhase = phases::Preprocess; 277 278 // --precompile only runs up to precompilation. 279 } else if ((PhaseArg = DAL.getLastArg(options::OPT__precompile))) { 280 FinalPhase = phases::Precompile; 281 282 // -{fsyntax-only,-analyze,emit-ast} only run up to the compiler. 283 } else if ((PhaseArg = DAL.getLastArg(options::OPT_fsyntax_only)) || 284 (PhaseArg = DAL.getLastArg(options::OPT_print_supported_cpus)) || 285 (PhaseArg = DAL.getLastArg(options::OPT_module_file_info)) || 286 (PhaseArg = DAL.getLastArg(options::OPT_verify_pch)) || 287 (PhaseArg = DAL.getLastArg(options::OPT_rewrite_objc)) || 288 (PhaseArg = DAL.getLastArg(options::OPT_rewrite_legacy_objc)) || 289 (PhaseArg = DAL.getLastArg(options::OPT__migrate)) || 290 (PhaseArg = DAL.getLastArg(options::OPT__analyze)) || 291 (PhaseArg = DAL.getLastArg(options::OPT_emit_ast))) { 292 FinalPhase = phases::Compile; 293 294 // clang interface stubs 295 } else if ((PhaseArg = DAL.getLastArg(options::OPT_emit_interface_stubs))) { 296 FinalPhase = phases::IfsMerge; 297 298 // -S only runs up to the backend. 299 } else if ((PhaseArg = DAL.getLastArg(options::OPT_S))) { 300 FinalPhase = phases::Backend; 301 302 // -c compilation only runs up to the assembler. 303 } else if ((PhaseArg = DAL.getLastArg(options::OPT_c))) { 304 FinalPhase = phases::Assemble; 305 306 // Otherwise do everything. 307 } else 308 FinalPhase = phases::Link; 309 310 if (FinalPhaseArg) 311 *FinalPhaseArg = PhaseArg; 312 313 return FinalPhase; 314 } 315 316 static Arg *MakeInputArg(DerivedArgList &Args, const OptTable &Opts, 317 StringRef Value, bool Claim = true) { 318 Arg *A = new Arg(Opts.getOption(options::OPT_INPUT), Value, 319 Args.getBaseArgs().MakeIndex(Value), Value.data()); 320 Args.AddSynthesizedArg(A); 321 if (Claim) 322 A->claim(); 323 return A; 324 } 325 326 DerivedArgList *Driver::TranslateInputArgs(const InputArgList &Args) const { 327 const llvm::opt::OptTable &Opts = getOpts(); 328 DerivedArgList *DAL = new DerivedArgList(Args); 329 330 bool HasNostdlib = Args.hasArg(options::OPT_nostdlib); 331 bool HasNostdlibxx = Args.hasArg(options::OPT_nostdlibxx); 332 bool HasNodefaultlib = Args.hasArg(options::OPT_nodefaultlibs); 333 for (Arg *A : Args) { 334 // Unfortunately, we have to parse some forwarding options (-Xassembler, 335 // -Xlinker, -Xpreprocessor) because we either integrate their functionality 336 // (assembler and preprocessor), or bypass a previous driver ('collect2'). 337 338 // Rewrite linker options, to replace --no-demangle with a custom internal 339 // option. 340 if ((A->getOption().matches(options::OPT_Wl_COMMA) || 341 A->getOption().matches(options::OPT_Xlinker)) && 342 A->containsValue("--no-demangle")) { 343 // Add the rewritten no-demangle argument. 344 DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_Xlinker__no_demangle)); 345 346 // Add the remaining values as Xlinker arguments. 347 for (StringRef Val : A->getValues()) 348 if (Val != "--no-demangle") 349 DAL->AddSeparateArg(A, Opts.getOption(options::OPT_Xlinker), Val); 350 351 continue; 352 } 353 354 // Rewrite preprocessor options, to replace -Wp,-MD,FOO which is used by 355 // some build systems. We don't try to be complete here because we don't 356 // care to encourage this usage model. 357 if (A->getOption().matches(options::OPT_Wp_COMMA) && 358 (A->getValue(0) == StringRef("-MD") || 359 A->getValue(0) == StringRef("-MMD"))) { 360 // Rewrite to -MD/-MMD along with -MF. 361 if (A->getValue(0) == StringRef("-MD")) 362 DAL->AddFlagArg(A, Opts.getOption(options::OPT_MD)); 363 else 364 DAL->AddFlagArg(A, Opts.getOption(options::OPT_MMD)); 365 if (A->getNumValues() == 2) 366 DAL->AddSeparateArg(A, Opts.getOption(options::OPT_MF), A->getValue(1)); 367 continue; 368 } 369 370 // Rewrite reserved library names. 371 if (A->getOption().matches(options::OPT_l)) { 372 StringRef Value = A->getValue(); 373 374 // Rewrite unless -nostdlib is present. 375 if (!HasNostdlib && !HasNodefaultlib && !HasNostdlibxx && 376 Value == "stdc++") { 377 DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_reserved_lib_stdcxx)); 378 continue; 379 } 380 381 // Rewrite unconditionally. 382 if (Value == "cc_kext") { 383 DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_reserved_lib_cckext)); 384 continue; 385 } 386 } 387 388 // Pick up inputs via the -- option. 389 if (A->getOption().matches(options::OPT__DASH_DASH)) { 390 A->claim(); 391 for (StringRef Val : A->getValues()) 392 DAL->append(MakeInputArg(*DAL, Opts, Val, false)); 393 continue; 394 } 395 396 DAL->append(A); 397 } 398 399 // Enforce -static if -miamcu is present. 400 if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false)) 401 DAL->AddFlagArg(0, Opts.getOption(options::OPT_static)); 402 403 // Add a default value of -mlinker-version=, if one was given and the user 404 // didn't specify one. 405 #if defined(HOST_LINK_VERSION) 406 if (!Args.hasArg(options::OPT_mlinker_version_EQ) && 407 strlen(HOST_LINK_VERSION) > 0) { 408 DAL->AddJoinedArg(0, Opts.getOption(options::OPT_mlinker_version_EQ), 409 HOST_LINK_VERSION); 410 DAL->getLastArg(options::OPT_mlinker_version_EQ)->claim(); 411 } 412 #endif 413 414 return DAL; 415 } 416 417 /// Compute target triple from args. 418 /// 419 /// This routine provides the logic to compute a target triple from various 420 /// args passed to the driver and the default triple string. 421 static llvm::Triple computeTargetTriple(const Driver &D, 422 StringRef TargetTriple, 423 const ArgList &Args, 424 StringRef DarwinArchName = "") { 425 // FIXME: Already done in Compilation *Driver::BuildCompilation 426 if (const Arg *A = Args.getLastArg(options::OPT_target)) 427 TargetTriple = A->getValue(); 428 429 llvm::Triple Target(llvm::Triple::normalize(TargetTriple)); 430 431 // GNU/Hurd's triples should have been -hurd-gnu*, but were historically made 432 // -gnu* only, and we can not change this, so we have to detect that case as 433 // being the Hurd OS. 434 if (TargetTriple.find("-unknown-gnu") != StringRef::npos || 435 TargetTriple.find("-pc-gnu") != StringRef::npos) 436 Target.setOSName("hurd"); 437 438 // Handle Apple-specific options available here. 439 if (Target.isOSBinFormatMachO()) { 440 // If an explicit Darwin arch name is given, that trumps all. 441 if (!DarwinArchName.empty()) { 442 tools::darwin::setTripleTypeForMachOArchName(Target, DarwinArchName); 443 return Target; 444 } 445 446 // Handle the Darwin '-arch' flag. 447 if (Arg *A = Args.getLastArg(options::OPT_arch)) { 448 StringRef ArchName = A->getValue(); 449 tools::darwin::setTripleTypeForMachOArchName(Target, ArchName); 450 } 451 } 452 453 // Handle pseudo-target flags '-mlittle-endian'/'-EL' and 454 // '-mbig-endian'/'-EB'. 455 if (Arg *A = Args.getLastArg(options::OPT_mlittle_endian, 456 options::OPT_mbig_endian)) { 457 if (A->getOption().matches(options::OPT_mlittle_endian)) { 458 llvm::Triple LE = Target.getLittleEndianArchVariant(); 459 if (LE.getArch() != llvm::Triple::UnknownArch) 460 Target = std::move(LE); 461 } else { 462 llvm::Triple BE = Target.getBigEndianArchVariant(); 463 if (BE.getArch() != llvm::Triple::UnknownArch) 464 Target = std::move(BE); 465 } 466 } 467 468 // Skip further flag support on OSes which don't support '-m32' or '-m64'. 469 if (Target.getArch() == llvm::Triple::tce || 470 Target.getOS() == llvm::Triple::Minix) 471 return Target; 472 473 // Handle pseudo-target flags '-m64', '-mx32', '-m32' and '-m16'. 474 Arg *A = Args.getLastArg(options::OPT_m64, options::OPT_mx32, 475 options::OPT_m32, options::OPT_m16); 476 if (A) { 477 llvm::Triple::ArchType AT = llvm::Triple::UnknownArch; 478 479 if (A->getOption().matches(options::OPT_m64)) { 480 AT = Target.get64BitArchVariant().getArch(); 481 if (Target.getEnvironment() == llvm::Triple::GNUX32) 482 Target.setEnvironment(llvm::Triple::GNU); 483 } else if (A->getOption().matches(options::OPT_mx32) && 484 Target.get64BitArchVariant().getArch() == llvm::Triple::x86_64) { 485 AT = llvm::Triple::x86_64; 486 Target.setEnvironment(llvm::Triple::GNUX32); 487 } else if (A->getOption().matches(options::OPT_m32)) { 488 AT = Target.get32BitArchVariant().getArch(); 489 if (Target.getEnvironment() == llvm::Triple::GNUX32) 490 Target.setEnvironment(llvm::Triple::GNU); 491 } else if (A->getOption().matches(options::OPT_m16) && 492 Target.get32BitArchVariant().getArch() == llvm::Triple::x86) { 493 AT = llvm::Triple::x86; 494 Target.setEnvironment(llvm::Triple::CODE16); 495 } 496 497 if (AT != llvm::Triple::UnknownArch && AT != Target.getArch()) 498 Target.setArch(AT); 499 } 500 501 // Handle -miamcu flag. 502 if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false)) { 503 if (Target.get32BitArchVariant().getArch() != llvm::Triple::x86) 504 D.Diag(diag::err_drv_unsupported_opt_for_target) << "-miamcu" 505 << Target.str(); 506 507 if (A && !A->getOption().matches(options::OPT_m32)) 508 D.Diag(diag::err_drv_argument_not_allowed_with) 509 << "-miamcu" << A->getBaseArg().getAsString(Args); 510 511 Target.setArch(llvm::Triple::x86); 512 Target.setArchName("i586"); 513 Target.setEnvironment(llvm::Triple::UnknownEnvironment); 514 Target.setEnvironmentName(""); 515 Target.setOS(llvm::Triple::ELFIAMCU); 516 Target.setVendor(llvm::Triple::UnknownVendor); 517 Target.setVendorName("intel"); 518 } 519 520 // If target is MIPS adjust the target triple 521 // accordingly to provided ABI name. 522 A = Args.getLastArg(options::OPT_mabi_EQ); 523 if (A && Target.isMIPS()) { 524 StringRef ABIName = A->getValue(); 525 if (ABIName == "32") { 526 Target = Target.get32BitArchVariant(); 527 if (Target.getEnvironment() == llvm::Triple::GNUABI64 || 528 Target.getEnvironment() == llvm::Triple::GNUABIN32) 529 Target.setEnvironment(llvm::Triple::GNU); 530 } else if (ABIName == "n32") { 531 Target = Target.get64BitArchVariant(); 532 if (Target.getEnvironment() == llvm::Triple::GNU || 533 Target.getEnvironment() == llvm::Triple::GNUABI64) 534 Target.setEnvironment(llvm::Triple::GNUABIN32); 535 } else if (ABIName == "64") { 536 Target = Target.get64BitArchVariant(); 537 if (Target.getEnvironment() == llvm::Triple::GNU || 538 Target.getEnvironment() == llvm::Triple::GNUABIN32) 539 Target.setEnvironment(llvm::Triple::GNUABI64); 540 } 541 } 542 543 return Target; 544 } 545 546 // Parse the LTO options and record the type of LTO compilation 547 // based on which -f(no-)?lto(=.*)? option occurs last. 548 void Driver::setLTOMode(const llvm::opt::ArgList &Args) { 549 LTOMode = LTOK_None; 550 if (!Args.hasFlag(options::OPT_flto, options::OPT_flto_EQ, 551 options::OPT_fno_lto, false)) 552 return; 553 554 StringRef LTOName("full"); 555 556 const Arg *A = Args.getLastArg(options::OPT_flto_EQ); 557 if (A) 558 LTOName = A->getValue(); 559 560 LTOMode = llvm::StringSwitch<LTOKind>(LTOName) 561 .Case("full", LTOK_Full) 562 .Case("thin", LTOK_Thin) 563 .Default(LTOK_Unknown); 564 565 if (LTOMode == LTOK_Unknown) { 566 assert(A); 567 Diag(diag::err_drv_unsupported_option_argument) << A->getOption().getName() 568 << A->getValue(); 569 } 570 } 571 572 /// Compute the desired OpenMP runtime from the flags provided. 573 Driver::OpenMPRuntimeKind Driver::getOpenMPRuntime(const ArgList &Args) const { 574 StringRef RuntimeName(CLANG_DEFAULT_OPENMP_RUNTIME); 575 576 const Arg *A = Args.getLastArg(options::OPT_fopenmp_EQ); 577 if (A) 578 RuntimeName = A->getValue(); 579 580 auto RT = llvm::StringSwitch<OpenMPRuntimeKind>(RuntimeName) 581 .Case("libomp", OMPRT_OMP) 582 .Case("libgomp", OMPRT_GOMP) 583 .Case("libiomp5", OMPRT_IOMP5) 584 .Default(OMPRT_Unknown); 585 586 if (RT == OMPRT_Unknown) { 587 if (A) 588 Diag(diag::err_drv_unsupported_option_argument) 589 << A->getOption().getName() << A->getValue(); 590 else 591 // FIXME: We could use a nicer diagnostic here. 592 Diag(diag::err_drv_unsupported_opt) << "-fopenmp"; 593 } 594 595 return RT; 596 } 597 598 void Driver::CreateOffloadingDeviceToolChains(Compilation &C, 599 InputList &Inputs) { 600 601 // 602 // CUDA/HIP 603 // 604 // We need to generate a CUDA/HIP toolchain if any of the inputs has a CUDA 605 // or HIP type. However, mixed CUDA/HIP compilation is not supported. 606 bool IsCuda = 607 llvm::any_of(Inputs, [](std::pair<types::ID, const llvm::opt::Arg *> &I) { 608 return types::isCuda(I.first); 609 }); 610 bool IsHIP = 611 llvm::any_of(Inputs, 612 [](std::pair<types::ID, const llvm::opt::Arg *> &I) { 613 return types::isHIP(I.first); 614 }) || 615 C.getInputArgs().hasArg(options::OPT_hip_link); 616 if (IsCuda && IsHIP) { 617 Diag(clang::diag::err_drv_mix_cuda_hip); 618 return; 619 } 620 if (IsCuda) { 621 const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>(); 622 const llvm::Triple &HostTriple = HostTC->getTriple(); 623 StringRef DeviceTripleStr; 624 auto OFK = Action::OFK_Cuda; 625 DeviceTripleStr = 626 HostTriple.isArch64Bit() ? "nvptx64-nvidia-cuda" : "nvptx-nvidia-cuda"; 627 llvm::Triple CudaTriple(DeviceTripleStr); 628 // Use the CUDA and host triples as the key into the ToolChains map, 629 // because the device toolchain we create depends on both. 630 auto &CudaTC = ToolChains[CudaTriple.str() + "/" + HostTriple.str()]; 631 if (!CudaTC) { 632 CudaTC = std::make_unique<toolchains::CudaToolChain>( 633 *this, CudaTriple, *HostTC, C.getInputArgs(), OFK); 634 } 635 C.addOffloadDeviceToolChain(CudaTC.get(), OFK); 636 } else if (IsHIP) { 637 const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>(); 638 const llvm::Triple &HostTriple = HostTC->getTriple(); 639 StringRef DeviceTripleStr; 640 auto OFK = Action::OFK_HIP; 641 DeviceTripleStr = "amdgcn-amd-amdhsa"; 642 llvm::Triple HIPTriple(DeviceTripleStr); 643 // Use the HIP and host triples as the key into the ToolChains map, 644 // because the device toolchain we create depends on both. 645 auto &HIPTC = ToolChains[HIPTriple.str() + "/" + HostTriple.str()]; 646 if (!HIPTC) { 647 HIPTC = std::make_unique<toolchains::HIPToolChain>( 648 *this, HIPTriple, *HostTC, C.getInputArgs()); 649 } 650 C.addOffloadDeviceToolChain(HIPTC.get(), OFK); 651 } 652 653 // 654 // OpenMP 655 // 656 // We need to generate an OpenMP toolchain if the user specified targets with 657 // the -fopenmp-targets option. 658 if (Arg *OpenMPTargets = 659 C.getInputArgs().getLastArg(options::OPT_fopenmp_targets_EQ)) { 660 if (OpenMPTargets->getNumValues()) { 661 // We expect that -fopenmp-targets is always used in conjunction with the 662 // option -fopenmp specifying a valid runtime with offloading support, 663 // i.e. libomp or libiomp. 664 bool HasValidOpenMPRuntime = C.getInputArgs().hasFlag( 665 options::OPT_fopenmp, options::OPT_fopenmp_EQ, 666 options::OPT_fno_openmp, false); 667 if (HasValidOpenMPRuntime) { 668 OpenMPRuntimeKind OpenMPKind = getOpenMPRuntime(C.getInputArgs()); 669 HasValidOpenMPRuntime = 670 OpenMPKind == OMPRT_OMP || OpenMPKind == OMPRT_IOMP5; 671 } 672 673 if (HasValidOpenMPRuntime) { 674 llvm::StringMap<const char *> FoundNormalizedTriples; 675 for (const char *Val : OpenMPTargets->getValues()) { 676 llvm::Triple TT(Val); 677 std::string NormalizedName = TT.normalize(); 678 679 // Make sure we don't have a duplicate triple. 680 auto Duplicate = FoundNormalizedTriples.find(NormalizedName); 681 if (Duplicate != FoundNormalizedTriples.end()) { 682 Diag(clang::diag::warn_drv_omp_offload_target_duplicate) 683 << Val << Duplicate->second; 684 continue; 685 } 686 687 // Store the current triple so that we can check for duplicates in the 688 // following iterations. 689 FoundNormalizedTriples[NormalizedName] = Val; 690 691 // If the specified target is invalid, emit a diagnostic. 692 if (TT.getArch() == llvm::Triple::UnknownArch) 693 Diag(clang::diag::err_drv_invalid_omp_target) << Val; 694 else { 695 const ToolChain *TC; 696 // CUDA toolchains have to be selected differently. They pair host 697 // and device in their implementation. 698 if (TT.isNVPTX()) { 699 const ToolChain *HostTC = 700 C.getSingleOffloadToolChain<Action::OFK_Host>(); 701 assert(HostTC && "Host toolchain should be always defined."); 702 auto &CudaTC = 703 ToolChains[TT.str() + "/" + HostTC->getTriple().normalize()]; 704 if (!CudaTC) 705 CudaTC = std::make_unique<toolchains::CudaToolChain>( 706 *this, TT, *HostTC, C.getInputArgs(), Action::OFK_OpenMP); 707 TC = CudaTC.get(); 708 } else 709 TC = &getToolChain(C.getInputArgs(), TT); 710 C.addOffloadDeviceToolChain(TC, Action::OFK_OpenMP); 711 } 712 } 713 } else 714 Diag(clang::diag::err_drv_expecting_fopenmp_with_fopenmp_targets); 715 } else 716 Diag(clang::diag::warn_drv_empty_joined_argument) 717 << OpenMPTargets->getAsString(C.getInputArgs()); 718 } 719 720 // 721 // TODO: Add support for other offloading programming models here. 722 // 723 } 724 725 /// Looks the given directories for the specified file. 726 /// 727 /// \param[out] FilePath File path, if the file was found. 728 /// \param[in] Dirs Directories used for the search. 729 /// \param[in] FileName Name of the file to search for. 730 /// \return True if file was found. 731 /// 732 /// Looks for file specified by FileName sequentially in directories specified 733 /// by Dirs. 734 /// 735 static bool searchForFile(SmallVectorImpl<char> &FilePath, 736 ArrayRef<std::string> Dirs, 737 StringRef FileName) { 738 SmallString<128> WPath; 739 for (const StringRef &Dir : Dirs) { 740 if (Dir.empty()) 741 continue; 742 WPath.clear(); 743 llvm::sys::path::append(WPath, Dir, FileName); 744 llvm::sys::path::native(WPath); 745 if (llvm::sys::fs::is_regular_file(WPath)) { 746 FilePath = std::move(WPath); 747 return true; 748 } 749 } 750 return false; 751 } 752 753 bool Driver::readConfigFile(StringRef FileName) { 754 // Try reading the given file. 755 SmallVector<const char *, 32> NewCfgArgs; 756 if (!llvm::cl::readConfigFile(FileName, Saver, NewCfgArgs)) { 757 Diag(diag::err_drv_cannot_read_config_file) << FileName; 758 return true; 759 } 760 761 // Read options from config file. 762 llvm::SmallString<128> CfgFileName(FileName); 763 llvm::sys::path::native(CfgFileName); 764 ConfigFile = CfgFileName.str(); 765 bool ContainErrors; 766 CfgOptions = std::make_unique<InputArgList>( 767 ParseArgStrings(NewCfgArgs, IsCLMode(), ContainErrors)); 768 if (ContainErrors) { 769 CfgOptions.reset(); 770 return true; 771 } 772 773 if (CfgOptions->hasArg(options::OPT_config)) { 774 CfgOptions.reset(); 775 Diag(diag::err_drv_nested_config_file); 776 return true; 777 } 778 779 // Claim all arguments that come from a configuration file so that the driver 780 // does not warn on any that is unused. 781 for (Arg *A : *CfgOptions) 782 A->claim(); 783 return false; 784 } 785 786 bool Driver::loadConfigFile() { 787 std::string CfgFileName; 788 bool FileSpecifiedExplicitly = false; 789 790 // Process options that change search path for config files. 791 if (CLOptions) { 792 if (CLOptions->hasArg(options::OPT_config_system_dir_EQ)) { 793 SmallString<128> CfgDir; 794 CfgDir.append( 795 CLOptions->getLastArgValue(options::OPT_config_system_dir_EQ)); 796 if (!CfgDir.empty()) { 797 if (llvm::sys::fs::make_absolute(CfgDir).value() != 0) 798 SystemConfigDir.clear(); 799 else 800 SystemConfigDir = std::string(CfgDir.begin(), CfgDir.end()); 801 } 802 } 803 if (CLOptions->hasArg(options::OPT_config_user_dir_EQ)) { 804 SmallString<128> CfgDir; 805 CfgDir.append( 806 CLOptions->getLastArgValue(options::OPT_config_user_dir_EQ)); 807 if (!CfgDir.empty()) { 808 if (llvm::sys::fs::make_absolute(CfgDir).value() != 0) 809 UserConfigDir.clear(); 810 else 811 UserConfigDir = std::string(CfgDir.begin(), CfgDir.end()); 812 } 813 } 814 } 815 816 // First try to find config file specified in command line. 817 if (CLOptions) { 818 std::vector<std::string> ConfigFiles = 819 CLOptions->getAllArgValues(options::OPT_config); 820 if (ConfigFiles.size() > 1) { 821 Diag(diag::err_drv_duplicate_config); 822 return true; 823 } 824 825 if (!ConfigFiles.empty()) { 826 CfgFileName = ConfigFiles.front(); 827 assert(!CfgFileName.empty()); 828 829 // If argument contains directory separator, treat it as a path to 830 // configuration file. 831 if (llvm::sys::path::has_parent_path(CfgFileName)) { 832 SmallString<128> CfgFilePath; 833 if (llvm::sys::path::is_relative(CfgFileName)) 834 llvm::sys::fs::current_path(CfgFilePath); 835 llvm::sys::path::append(CfgFilePath, CfgFileName); 836 if (!llvm::sys::fs::is_regular_file(CfgFilePath)) { 837 Diag(diag::err_drv_config_file_not_exist) << CfgFilePath; 838 return true; 839 } 840 return readConfigFile(CfgFilePath); 841 } 842 843 FileSpecifiedExplicitly = true; 844 } 845 } 846 847 // If config file is not specified explicitly, try to deduce configuration 848 // from executable name. For instance, an executable 'armv7l-clang' will 849 // search for config file 'armv7l-clang.cfg'. 850 if (CfgFileName.empty() && !ClangNameParts.TargetPrefix.empty()) 851 CfgFileName = ClangNameParts.TargetPrefix + '-' + ClangNameParts.ModeSuffix; 852 853 if (CfgFileName.empty()) 854 return false; 855 856 // Determine architecture part of the file name, if it is present. 857 StringRef CfgFileArch = CfgFileName; 858 size_t ArchPrefixLen = CfgFileArch.find('-'); 859 if (ArchPrefixLen == StringRef::npos) 860 ArchPrefixLen = CfgFileArch.size(); 861 llvm::Triple CfgTriple; 862 CfgFileArch = CfgFileArch.take_front(ArchPrefixLen); 863 CfgTriple = llvm::Triple(llvm::Triple::normalize(CfgFileArch)); 864 if (CfgTriple.getArch() == llvm::Triple::ArchType::UnknownArch) 865 ArchPrefixLen = 0; 866 867 if (!StringRef(CfgFileName).endswith(".cfg")) 868 CfgFileName += ".cfg"; 869 870 // If config file starts with architecture name and command line options 871 // redefine architecture (with options like -m32 -LE etc), try finding new 872 // config file with that architecture. 873 SmallString<128> FixedConfigFile; 874 size_t FixedArchPrefixLen = 0; 875 if (ArchPrefixLen) { 876 // Get architecture name from config file name like 'i386.cfg' or 877 // 'armv7l-clang.cfg'. 878 // Check if command line options changes effective triple. 879 llvm::Triple EffectiveTriple = computeTargetTriple(*this, 880 CfgTriple.getTriple(), *CLOptions); 881 if (CfgTriple.getArch() != EffectiveTriple.getArch()) { 882 FixedConfigFile = EffectiveTriple.getArchName(); 883 FixedArchPrefixLen = FixedConfigFile.size(); 884 // Append the rest of original file name so that file name transforms 885 // like: i386-clang.cfg -> x86_64-clang.cfg. 886 if (ArchPrefixLen < CfgFileName.size()) 887 FixedConfigFile += CfgFileName.substr(ArchPrefixLen); 888 } 889 } 890 891 // Prepare list of directories where config file is searched for. 892 SmallVector<std::string, 3> CfgFileSearchDirs; 893 CfgFileSearchDirs.push_back(UserConfigDir); 894 CfgFileSearchDirs.push_back(SystemConfigDir); 895 CfgFileSearchDirs.push_back(Dir); 896 897 // Try to find config file. First try file with corrected architecture. 898 llvm::SmallString<128> CfgFilePath; 899 if (!FixedConfigFile.empty()) { 900 if (searchForFile(CfgFilePath, CfgFileSearchDirs, FixedConfigFile)) 901 return readConfigFile(CfgFilePath); 902 // If 'x86_64-clang.cfg' was not found, try 'x86_64.cfg'. 903 FixedConfigFile.resize(FixedArchPrefixLen); 904 FixedConfigFile.append(".cfg"); 905 if (searchForFile(CfgFilePath, CfgFileSearchDirs, FixedConfigFile)) 906 return readConfigFile(CfgFilePath); 907 } 908 909 // Then try original file name. 910 if (searchForFile(CfgFilePath, CfgFileSearchDirs, CfgFileName)) 911 return readConfigFile(CfgFilePath); 912 913 // Finally try removing driver mode part: 'x86_64-clang.cfg' -> 'x86_64.cfg'. 914 if (!ClangNameParts.ModeSuffix.empty() && 915 !ClangNameParts.TargetPrefix.empty()) { 916 CfgFileName.assign(ClangNameParts.TargetPrefix); 917 CfgFileName.append(".cfg"); 918 if (searchForFile(CfgFilePath, CfgFileSearchDirs, CfgFileName)) 919 return readConfigFile(CfgFilePath); 920 } 921 922 // Report error but only if config file was specified explicitly, by option 923 // --config. If it was deduced from executable name, it is not an error. 924 if (FileSpecifiedExplicitly) { 925 Diag(diag::err_drv_config_file_not_found) << CfgFileName; 926 for (const std::string &SearchDir : CfgFileSearchDirs) 927 if (!SearchDir.empty()) 928 Diag(diag::note_drv_config_file_searched_in) << SearchDir; 929 return true; 930 } 931 932 return false; 933 } 934 935 Compilation *Driver::BuildCompilation(ArrayRef<const char *> ArgList) { 936 llvm::PrettyStackTraceString CrashInfo("Compilation construction"); 937 938 // FIXME: Handle environment options which affect driver behavior, somewhere 939 // (client?). GCC_EXEC_PREFIX, LPATH, CC_PRINT_OPTIONS. 940 941 if (Optional<std::string> CompilerPathValue = 942 llvm::sys::Process::GetEnv("COMPILER_PATH")) { 943 StringRef CompilerPath = *CompilerPathValue; 944 while (!CompilerPath.empty()) { 945 std::pair<StringRef, StringRef> Split = 946 CompilerPath.split(llvm::sys::EnvPathSeparator); 947 PrefixDirs.push_back(Split.first); 948 CompilerPath = Split.second; 949 } 950 } 951 952 // We look for the driver mode option early, because the mode can affect 953 // how other options are parsed. 954 ParseDriverMode(ClangExecutable, ArgList.slice(1)); 955 956 // FIXME: What are we going to do with -V and -b? 957 958 // Arguments specified in command line. 959 bool ContainsError; 960 CLOptions = std::make_unique<InputArgList>( 961 ParseArgStrings(ArgList.slice(1), IsCLMode(), ContainsError)); 962 963 // Try parsing configuration file. 964 if (!ContainsError) 965 ContainsError = loadConfigFile(); 966 bool HasConfigFile = !ContainsError && (CfgOptions.get() != nullptr); 967 968 // All arguments, from both config file and command line. 969 InputArgList Args = std::move(HasConfigFile ? std::move(*CfgOptions) 970 : std::move(*CLOptions)); 971 972 // The args for config files or /clang: flags belong to different InputArgList 973 // objects than Args. This copies an Arg from one of those other InputArgLists 974 // to the ownership of Args. 975 auto appendOneArg = [&Args](const Arg *Opt, const Arg *BaseArg) { 976 unsigned Index = Args.MakeIndex(Opt->getSpelling()); 977 Arg *Copy = new llvm::opt::Arg(Opt->getOption(), Opt->getSpelling(), 978 Index, BaseArg); 979 Copy->getValues() = Opt->getValues(); 980 if (Opt->isClaimed()) 981 Copy->claim(); 982 Args.append(Copy); 983 }; 984 985 if (HasConfigFile) 986 for (auto *Opt : *CLOptions) { 987 if (Opt->getOption().matches(options::OPT_config)) 988 continue; 989 const Arg *BaseArg = &Opt->getBaseArg(); 990 if (BaseArg == Opt) 991 BaseArg = nullptr; 992 appendOneArg(Opt, BaseArg); 993 } 994 995 // In CL mode, look for any pass-through arguments 996 if (IsCLMode() && !ContainsError) { 997 SmallVector<const char *, 16> CLModePassThroughArgList; 998 for (const auto *A : Args.filtered(options::OPT__SLASH_clang)) { 999 A->claim(); 1000 CLModePassThroughArgList.push_back(A->getValue()); 1001 } 1002 1003 if (!CLModePassThroughArgList.empty()) { 1004 // Parse any pass through args using default clang processing rather 1005 // than clang-cl processing. 1006 auto CLModePassThroughOptions = std::make_unique<InputArgList>( 1007 ParseArgStrings(CLModePassThroughArgList, false, ContainsError)); 1008 1009 if (!ContainsError) 1010 for (auto *Opt : *CLModePassThroughOptions) { 1011 appendOneArg(Opt, nullptr); 1012 } 1013 } 1014 } 1015 1016 // Check for working directory option before accessing any files 1017 if (Arg *WD = Args.getLastArg(options::OPT_working_directory)) 1018 if (VFS->setCurrentWorkingDirectory(WD->getValue())) 1019 Diag(diag::err_drv_unable_to_set_working_directory) << WD->getValue(); 1020 1021 // FIXME: This stuff needs to go into the Compilation, not the driver. 1022 bool CCCPrintPhases; 1023 1024 // Silence driver warnings if requested 1025 Diags.setIgnoreAllWarnings(Args.hasArg(options::OPT_w)); 1026 1027 // -no-canonical-prefixes is used very early in main. 1028 Args.ClaimAllArgs(options::OPT_no_canonical_prefixes); 1029 1030 // Ignore -pipe. 1031 Args.ClaimAllArgs(options::OPT_pipe); 1032 1033 // Extract -ccc args. 1034 // 1035 // FIXME: We need to figure out where this behavior should live. Most of it 1036 // should be outside in the client; the parts that aren't should have proper 1037 // options, either by introducing new ones or by overloading gcc ones like -V 1038 // or -b. 1039 CCCPrintPhases = Args.hasArg(options::OPT_ccc_print_phases); 1040 CCCPrintBindings = Args.hasArg(options::OPT_ccc_print_bindings); 1041 if (const Arg *A = Args.getLastArg(options::OPT_ccc_gcc_name)) 1042 CCCGenericGCCName = A->getValue(); 1043 GenReproducer = Args.hasFlag(options::OPT_gen_reproducer, 1044 options::OPT_fno_crash_diagnostics, 1045 !!::getenv("FORCE_CLANG_DIAGNOSTICS_CRASH")); 1046 // FIXME: TargetTriple is used by the target-prefixed calls to as/ld 1047 // and getToolChain is const. 1048 if (IsCLMode()) { 1049 // clang-cl targets MSVC-style Win32. 1050 llvm::Triple T(TargetTriple); 1051 T.setOS(llvm::Triple::Win32); 1052 T.setVendor(llvm::Triple::PC); 1053 T.setEnvironment(llvm::Triple::MSVC); 1054 T.setObjectFormat(llvm::Triple::COFF); 1055 TargetTriple = T.str(); 1056 } 1057 if (const Arg *A = Args.getLastArg(options::OPT_target)) 1058 TargetTriple = A->getValue(); 1059 if (const Arg *A = Args.getLastArg(options::OPT_ccc_install_dir)) 1060 Dir = InstalledDir = A->getValue(); 1061 for (const Arg *A : Args.filtered(options::OPT_B)) { 1062 A->claim(); 1063 PrefixDirs.push_back(A->getValue(0)); 1064 } 1065 if (const Arg *A = Args.getLastArg(options::OPT__sysroot_EQ)) 1066 SysRoot = A->getValue(); 1067 if (const Arg *A = Args.getLastArg(options::OPT__dyld_prefix_EQ)) 1068 DyldPrefix = A->getValue(); 1069 1070 if (const Arg *A = Args.getLastArg(options::OPT_resource_dir)) 1071 ResourceDir = A->getValue(); 1072 1073 if (const Arg *A = Args.getLastArg(options::OPT_save_temps_EQ)) { 1074 SaveTemps = llvm::StringSwitch<SaveTempsMode>(A->getValue()) 1075 .Case("cwd", SaveTempsCwd) 1076 .Case("obj", SaveTempsObj) 1077 .Default(SaveTempsCwd); 1078 } 1079 1080 setLTOMode(Args); 1081 1082 // Process -fembed-bitcode= flags. 1083 if (Arg *A = Args.getLastArg(options::OPT_fembed_bitcode_EQ)) { 1084 StringRef Name = A->getValue(); 1085 unsigned Model = llvm::StringSwitch<unsigned>(Name) 1086 .Case("off", EmbedNone) 1087 .Case("all", EmbedBitcode) 1088 .Case("bitcode", EmbedBitcode) 1089 .Case("marker", EmbedMarker) 1090 .Default(~0U); 1091 if (Model == ~0U) { 1092 Diags.Report(diag::err_drv_invalid_value) << A->getAsString(Args) 1093 << Name; 1094 } else 1095 BitcodeEmbed = static_cast<BitcodeEmbedMode>(Model); 1096 } 1097 1098 std::unique_ptr<llvm::opt::InputArgList> UArgs = 1099 std::make_unique<InputArgList>(std::move(Args)); 1100 1101 // Perform the default argument translations. 1102 DerivedArgList *TranslatedArgs = TranslateInputArgs(*UArgs); 1103 1104 // Owned by the host. 1105 const ToolChain &TC = getToolChain( 1106 *UArgs, computeTargetTriple(*this, TargetTriple, *UArgs)); 1107 1108 // The compilation takes ownership of Args. 1109 Compilation *C = new Compilation(*this, TC, UArgs.release(), TranslatedArgs, 1110 ContainsError); 1111 1112 if (!HandleImmediateArgs(*C)) 1113 return C; 1114 1115 // Construct the list of inputs. 1116 InputList Inputs; 1117 BuildInputs(C->getDefaultToolChain(), *TranslatedArgs, Inputs); 1118 1119 // Populate the tool chains for the offloading devices, if any. 1120 CreateOffloadingDeviceToolChains(*C, Inputs); 1121 1122 // Construct the list of abstract actions to perform for this compilation. On 1123 // MachO targets this uses the driver-driver and universal actions. 1124 if (TC.getTriple().isOSBinFormatMachO()) 1125 BuildUniversalActions(*C, C->getDefaultToolChain(), Inputs); 1126 else 1127 BuildActions(*C, C->getArgs(), Inputs, C->getActions()); 1128 1129 if (CCCPrintPhases) { 1130 PrintActions(*C); 1131 return C; 1132 } 1133 1134 BuildJobs(*C); 1135 1136 return C; 1137 } 1138 1139 static void printArgList(raw_ostream &OS, const llvm::opt::ArgList &Args) { 1140 llvm::opt::ArgStringList ASL; 1141 for (const auto *A : Args) 1142 A->render(Args, ASL); 1143 1144 for (auto I = ASL.begin(), E = ASL.end(); I != E; ++I) { 1145 if (I != ASL.begin()) 1146 OS << ' '; 1147 Command::printArg(OS, *I, true); 1148 } 1149 OS << '\n'; 1150 } 1151 1152 bool Driver::getCrashDiagnosticFile(StringRef ReproCrashFilename, 1153 SmallString<128> &CrashDiagDir) { 1154 using namespace llvm::sys; 1155 assert(llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin() && 1156 "Only knows about .crash files on Darwin"); 1157 1158 // The .crash file can be found on at ~/Library/Logs/DiagnosticReports/ 1159 // (or /Library/Logs/DiagnosticReports for root) and has the filename pattern 1160 // clang-<VERSION>_<YYYY-MM-DD-HHMMSS>_<hostname>.crash. 1161 path::home_directory(CrashDiagDir); 1162 if (CrashDiagDir.startswith("/var/root")) 1163 CrashDiagDir = "/"; 1164 path::append(CrashDiagDir, "Library/Logs/DiagnosticReports"); 1165 int PID = 1166 #if LLVM_ON_UNIX 1167 getpid(); 1168 #else 1169 0; 1170 #endif 1171 std::error_code EC; 1172 fs::file_status FileStatus; 1173 TimePoint<> LastAccessTime; 1174 SmallString<128> CrashFilePath; 1175 // Lookup the .crash files and get the one generated by a subprocess spawned 1176 // by this driver invocation. 1177 for (fs::directory_iterator File(CrashDiagDir, EC), FileEnd; 1178 File != FileEnd && !EC; File.increment(EC)) { 1179 StringRef FileName = path::filename(File->path()); 1180 if (!FileName.startswith(Name)) 1181 continue; 1182 if (fs::status(File->path(), FileStatus)) 1183 continue; 1184 llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> CrashFile = 1185 llvm::MemoryBuffer::getFile(File->path()); 1186 if (!CrashFile) 1187 continue; 1188 // The first line should start with "Process:", otherwise this isn't a real 1189 // .crash file. 1190 StringRef Data = CrashFile.get()->getBuffer(); 1191 if (!Data.startswith("Process:")) 1192 continue; 1193 // Parse parent process pid line, e.g: "Parent Process: clang-4.0 [79141]" 1194 size_t ParentProcPos = Data.find("Parent Process:"); 1195 if (ParentProcPos == StringRef::npos) 1196 continue; 1197 size_t LineEnd = Data.find_first_of("\n", ParentProcPos); 1198 if (LineEnd == StringRef::npos) 1199 continue; 1200 StringRef ParentProcess = Data.slice(ParentProcPos+15, LineEnd).trim(); 1201 int OpenBracket = -1, CloseBracket = -1; 1202 for (size_t i = 0, e = ParentProcess.size(); i < e; ++i) { 1203 if (ParentProcess[i] == '[') 1204 OpenBracket = i; 1205 if (ParentProcess[i] == ']') 1206 CloseBracket = i; 1207 } 1208 // Extract the parent process PID from the .crash file and check whether 1209 // it matches this driver invocation pid. 1210 int CrashPID; 1211 if (OpenBracket < 0 || CloseBracket < 0 || 1212 ParentProcess.slice(OpenBracket + 1, CloseBracket) 1213 .getAsInteger(10, CrashPID) || CrashPID != PID) { 1214 continue; 1215 } 1216 1217 // Found a .crash file matching the driver pid. To avoid getting an older 1218 // and misleading crash file, continue looking for the most recent. 1219 // FIXME: the driver can dispatch multiple cc1 invocations, leading to 1220 // multiple crashes poiting to the same parent process. Since the driver 1221 // does not collect pid information for the dispatched invocation there's 1222 // currently no way to distinguish among them. 1223 const auto FileAccessTime = FileStatus.getLastModificationTime(); 1224 if (FileAccessTime > LastAccessTime) { 1225 CrashFilePath.assign(File->path()); 1226 LastAccessTime = FileAccessTime; 1227 } 1228 } 1229 1230 // If found, copy it over to the location of other reproducer files. 1231 if (!CrashFilePath.empty()) { 1232 EC = fs::copy_file(CrashFilePath, ReproCrashFilename); 1233 if (EC) 1234 return false; 1235 return true; 1236 } 1237 1238 return false; 1239 } 1240 1241 // When clang crashes, produce diagnostic information including the fully 1242 // preprocessed source file(s). Request that the developer attach the 1243 // diagnostic information to a bug report. 1244 void Driver::generateCompilationDiagnostics( 1245 Compilation &C, const Command &FailingCommand, 1246 StringRef AdditionalInformation, CompilationDiagnosticReport *Report) { 1247 if (C.getArgs().hasArg(options::OPT_fno_crash_diagnostics)) 1248 return; 1249 1250 // Don't try to generate diagnostics for link or dsymutil jobs. 1251 if (FailingCommand.getCreator().isLinkJob() || 1252 FailingCommand.getCreator().isDsymutilJob()) 1253 return; 1254 1255 // Print the version of the compiler. 1256 PrintVersion(C, llvm::errs()); 1257 1258 Diag(clang::diag::note_drv_command_failed_diag_msg) 1259 << "PLEASE submit a bug report to " BUG_REPORT_URL " and include the " 1260 "crash backtrace, preprocessed source, and associated run script."; 1261 1262 // Suppress driver output and emit preprocessor output to temp file. 1263 Mode = CPPMode; 1264 CCGenDiagnostics = true; 1265 1266 // Save the original job command(s). 1267 Command Cmd = FailingCommand; 1268 1269 // Keep track of whether we produce any errors while trying to produce 1270 // preprocessed sources. 1271 DiagnosticErrorTrap Trap(Diags); 1272 1273 // Suppress tool output. 1274 C.initCompilationForDiagnostics(); 1275 1276 // Construct the list of inputs. 1277 InputList Inputs; 1278 BuildInputs(C.getDefaultToolChain(), C.getArgs(), Inputs); 1279 1280 for (InputList::iterator it = Inputs.begin(), ie = Inputs.end(); it != ie;) { 1281 bool IgnoreInput = false; 1282 1283 // Ignore input from stdin or any inputs that cannot be preprocessed. 1284 // Check type first as not all linker inputs have a value. 1285 if (types::getPreprocessedType(it->first) == types::TY_INVALID) { 1286 IgnoreInput = true; 1287 } else if (!strcmp(it->second->getValue(), "-")) { 1288 Diag(clang::diag::note_drv_command_failed_diag_msg) 1289 << "Error generating preprocessed source(s) - " 1290 "ignoring input from stdin."; 1291 IgnoreInput = true; 1292 } 1293 1294 if (IgnoreInput) { 1295 it = Inputs.erase(it); 1296 ie = Inputs.end(); 1297 } else { 1298 ++it; 1299 } 1300 } 1301 1302 if (Inputs.empty()) { 1303 Diag(clang::diag::note_drv_command_failed_diag_msg) 1304 << "Error generating preprocessed source(s) - " 1305 "no preprocessable inputs."; 1306 return; 1307 } 1308 1309 // Don't attempt to generate preprocessed files if multiple -arch options are 1310 // used, unless they're all duplicates. 1311 llvm::StringSet<> ArchNames; 1312 for (const Arg *A : C.getArgs()) { 1313 if (A->getOption().matches(options::OPT_arch)) { 1314 StringRef ArchName = A->getValue(); 1315 ArchNames.insert(ArchName); 1316 } 1317 } 1318 if (ArchNames.size() > 1) { 1319 Diag(clang::diag::note_drv_command_failed_diag_msg) 1320 << "Error generating preprocessed source(s) - cannot generate " 1321 "preprocessed source with multiple -arch options."; 1322 return; 1323 } 1324 1325 // Construct the list of abstract actions to perform for this compilation. On 1326 // Darwin OSes this uses the driver-driver and builds universal actions. 1327 const ToolChain &TC = C.getDefaultToolChain(); 1328 if (TC.getTriple().isOSBinFormatMachO()) 1329 BuildUniversalActions(C, TC, Inputs); 1330 else 1331 BuildActions(C, C.getArgs(), Inputs, C.getActions()); 1332 1333 BuildJobs(C); 1334 1335 // If there were errors building the compilation, quit now. 1336 if (Trap.hasErrorOccurred()) { 1337 Diag(clang::diag::note_drv_command_failed_diag_msg) 1338 << "Error generating preprocessed source(s)."; 1339 return; 1340 } 1341 1342 // Generate preprocessed output. 1343 SmallVector<std::pair<int, const Command *>, 4> FailingCommands; 1344 C.ExecuteJobs(C.getJobs(), FailingCommands); 1345 1346 // If any of the preprocessing commands failed, clean up and exit. 1347 if (!FailingCommands.empty()) { 1348 Diag(clang::diag::note_drv_command_failed_diag_msg) 1349 << "Error generating preprocessed source(s)."; 1350 return; 1351 } 1352 1353 const ArgStringList &TempFiles = C.getTempFiles(); 1354 if (TempFiles.empty()) { 1355 Diag(clang::diag::note_drv_command_failed_diag_msg) 1356 << "Error generating preprocessed source(s)."; 1357 return; 1358 } 1359 1360 Diag(clang::diag::note_drv_command_failed_diag_msg) 1361 << "\n********************\n\n" 1362 "PLEASE ATTACH THE FOLLOWING FILES TO THE BUG REPORT:\n" 1363 "Preprocessed source(s) and associated run script(s) are located at:"; 1364 1365 SmallString<128> VFS; 1366 SmallString<128> ReproCrashFilename; 1367 for (const char *TempFile : TempFiles) { 1368 Diag(clang::diag::note_drv_command_failed_diag_msg) << TempFile; 1369 if (Report) 1370 Report->TemporaryFiles.push_back(TempFile); 1371 if (ReproCrashFilename.empty()) { 1372 ReproCrashFilename = TempFile; 1373 llvm::sys::path::replace_extension(ReproCrashFilename, ".crash"); 1374 } 1375 if (StringRef(TempFile).endswith(".cache")) { 1376 // In some cases (modules) we'll dump extra data to help with reproducing 1377 // the crash into a directory next to the output. 1378 VFS = llvm::sys::path::filename(TempFile); 1379 llvm::sys::path::append(VFS, "vfs", "vfs.yaml"); 1380 } 1381 } 1382 1383 // Assume associated files are based off of the first temporary file. 1384 CrashReportInfo CrashInfo(TempFiles[0], VFS); 1385 1386 llvm::SmallString<128> Script(CrashInfo.Filename); 1387 llvm::sys::path::replace_extension(Script, "sh"); 1388 std::error_code EC; 1389 llvm::raw_fd_ostream ScriptOS(Script, EC, llvm::sys::fs::CD_CreateNew); 1390 if (EC) { 1391 Diag(clang::diag::note_drv_command_failed_diag_msg) 1392 << "Error generating run script: " << Script << " " << EC.message(); 1393 } else { 1394 ScriptOS << "# Crash reproducer for " << getClangFullVersion() << "\n" 1395 << "# Driver args: "; 1396 printArgList(ScriptOS, C.getInputArgs()); 1397 ScriptOS << "# Original command: "; 1398 Cmd.Print(ScriptOS, "\n", /*Quote=*/true); 1399 Cmd.Print(ScriptOS, "\n", /*Quote=*/true, &CrashInfo); 1400 if (!AdditionalInformation.empty()) 1401 ScriptOS << "\n# Additional information: " << AdditionalInformation 1402 << "\n"; 1403 if (Report) 1404 Report->TemporaryFiles.push_back(Script.str()); 1405 Diag(clang::diag::note_drv_command_failed_diag_msg) << Script; 1406 } 1407 1408 // On darwin, provide information about the .crash diagnostic report. 1409 if (llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin()) { 1410 SmallString<128> CrashDiagDir; 1411 if (getCrashDiagnosticFile(ReproCrashFilename, CrashDiagDir)) { 1412 Diag(clang::diag::note_drv_command_failed_diag_msg) 1413 << ReproCrashFilename.str(); 1414 } else { // Suggest a directory for the user to look for .crash files. 1415 llvm::sys::path::append(CrashDiagDir, Name); 1416 CrashDiagDir += "_<YYYY-MM-DD-HHMMSS>_<hostname>.crash"; 1417 Diag(clang::diag::note_drv_command_failed_diag_msg) 1418 << "Crash backtrace is located in"; 1419 Diag(clang::diag::note_drv_command_failed_diag_msg) 1420 << CrashDiagDir.str(); 1421 Diag(clang::diag::note_drv_command_failed_diag_msg) 1422 << "(choose the .crash file that corresponds to your crash)"; 1423 } 1424 } 1425 1426 for (const auto &A : C.getArgs().filtered(options::OPT_frewrite_map_file, 1427 options::OPT_frewrite_map_file_EQ)) 1428 Diag(clang::diag::note_drv_command_failed_diag_msg) << A->getValue(); 1429 1430 Diag(clang::diag::note_drv_command_failed_diag_msg) 1431 << "\n\n********************"; 1432 } 1433 1434 void Driver::setUpResponseFiles(Compilation &C, Command &Cmd) { 1435 // Since commandLineFitsWithinSystemLimits() may underestimate system's 1436 // capacity if the tool does not support response files, there is a chance/ 1437 // that things will just work without a response file, so we silently just 1438 // skip it. 1439 if (Cmd.getCreator().getResponseFilesSupport() == Tool::RF_None || 1440 llvm::sys::commandLineFitsWithinSystemLimits(Cmd.getExecutable(), 1441 Cmd.getArguments())) 1442 return; 1443 1444 std::string TmpName = GetTemporaryPath("response", "txt"); 1445 Cmd.setResponseFile(C.addTempFile(C.getArgs().MakeArgString(TmpName))); 1446 } 1447 1448 int Driver::ExecuteCompilation( 1449 Compilation &C, 1450 SmallVectorImpl<std::pair<int, const Command *>> &FailingCommands) { 1451 // Just print if -### was present. 1452 if (C.getArgs().hasArg(options::OPT__HASH_HASH_HASH)) { 1453 C.getJobs().Print(llvm::errs(), "\n", true); 1454 return 0; 1455 } 1456 1457 // If there were errors building the compilation, quit now. 1458 if (Diags.hasErrorOccurred()) 1459 return 1; 1460 1461 // Set up response file names for each command, if necessary 1462 for (auto &Job : C.getJobs()) 1463 setUpResponseFiles(C, Job); 1464 1465 C.ExecuteJobs(C.getJobs(), FailingCommands); 1466 1467 // If the command succeeded, we are done. 1468 if (FailingCommands.empty()) 1469 return 0; 1470 1471 // Otherwise, remove result files and print extra information about abnormal 1472 // failures. 1473 int Res = 0; 1474 for (const auto &CmdPair : FailingCommands) { 1475 int CommandRes = CmdPair.first; 1476 const Command *FailingCommand = CmdPair.second; 1477 1478 // Remove result files if we're not saving temps. 1479 if (!isSaveTempsEnabled()) { 1480 const JobAction *JA = cast<JobAction>(&FailingCommand->getSource()); 1481 C.CleanupFileMap(C.getResultFiles(), JA, true); 1482 1483 // Failure result files are valid unless we crashed. 1484 if (CommandRes < 0) 1485 C.CleanupFileMap(C.getFailureResultFiles(), JA, true); 1486 } 1487 1488 #if LLVM_ON_UNIX 1489 // llvm/lib/Support/Unix/Signals.inc will exit with a special return code 1490 // for SIGPIPE. Do not print diagnostics for this case. 1491 if (CommandRes == EX_IOERR) { 1492 Res = CommandRes; 1493 continue; 1494 } 1495 #endif 1496 1497 // Print extra information about abnormal failures, if possible. 1498 // 1499 // This is ad-hoc, but we don't want to be excessively noisy. If the result 1500 // status was 1, assume the command failed normally. In particular, if it 1501 // was the compiler then assume it gave a reasonable error code. Failures 1502 // in other tools are less common, and they generally have worse 1503 // diagnostics, so always print the diagnostic there. 1504 const Tool &FailingTool = FailingCommand->getCreator(); 1505 1506 if (!FailingCommand->getCreator().hasGoodDiagnostics() || CommandRes != 1) { 1507 // FIXME: See FIXME above regarding result code interpretation. 1508 if (CommandRes < 0) 1509 Diag(clang::diag::err_drv_command_signalled) 1510 << FailingTool.getShortName(); 1511 else 1512 Diag(clang::diag::err_drv_command_failed) 1513 << FailingTool.getShortName() << CommandRes; 1514 } 1515 } 1516 return Res; 1517 } 1518 1519 void Driver::PrintHelp(bool ShowHidden) const { 1520 unsigned IncludedFlagsBitmask; 1521 unsigned ExcludedFlagsBitmask; 1522 std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) = 1523 getIncludeExcludeOptionFlagMasks(IsCLMode()); 1524 1525 ExcludedFlagsBitmask |= options::NoDriverOption; 1526 if (!ShowHidden) 1527 ExcludedFlagsBitmask |= HelpHidden; 1528 1529 std::string Usage = llvm::formatv("{0} [options] file...", Name).str(); 1530 getOpts().PrintHelp(llvm::outs(), Usage.c_str(), DriverTitle.c_str(), 1531 IncludedFlagsBitmask, ExcludedFlagsBitmask, 1532 /*ShowAllAliases=*/false); 1533 } 1534 1535 void Driver::PrintVersion(const Compilation &C, raw_ostream &OS) const { 1536 // FIXME: The following handlers should use a callback mechanism, we don't 1537 // know what the client would like to do. 1538 OS << getClangFullVersion() << '\n'; 1539 const ToolChain &TC = C.getDefaultToolChain(); 1540 OS << "Target: " << TC.getTripleString() << '\n'; 1541 1542 // Print the threading model. 1543 if (Arg *A = C.getArgs().getLastArg(options::OPT_mthread_model)) { 1544 // Don't print if the ToolChain would have barfed on it already 1545 if (TC.isThreadModelSupported(A->getValue())) 1546 OS << "Thread model: " << A->getValue(); 1547 } else 1548 OS << "Thread model: " << TC.getThreadModel(); 1549 OS << '\n'; 1550 1551 // Print out the install directory. 1552 OS << "InstalledDir: " << InstalledDir << '\n'; 1553 1554 // If configuration file was used, print its path. 1555 if (!ConfigFile.empty()) 1556 OS << "Configuration file: " << ConfigFile << '\n'; 1557 } 1558 1559 /// PrintDiagnosticCategories - Implement the --print-diagnostic-categories 1560 /// option. 1561 static void PrintDiagnosticCategories(raw_ostream &OS) { 1562 // Skip the empty category. 1563 for (unsigned i = 1, max = DiagnosticIDs::getNumberOfCategories(); i != max; 1564 ++i) 1565 OS << i << ',' << DiagnosticIDs::getCategoryNameFromID(i) << '\n'; 1566 } 1567 1568 void Driver::HandleAutocompletions(StringRef PassedFlags) const { 1569 if (PassedFlags == "") 1570 return; 1571 // Print out all options that start with a given argument. This is used for 1572 // shell autocompletion. 1573 std::vector<std::string> SuggestedCompletions; 1574 std::vector<std::string> Flags; 1575 1576 unsigned short DisableFlags = 1577 options::NoDriverOption | options::Unsupported | options::Ignored; 1578 1579 // Distinguish "--autocomplete=-someflag" and "--autocomplete=-someflag," 1580 // because the latter indicates that the user put space before pushing tab 1581 // which should end up in a file completion. 1582 const bool HasSpace = PassedFlags.endswith(","); 1583 1584 // Parse PassedFlags by "," as all the command-line flags are passed to this 1585 // function separated by "," 1586 StringRef TargetFlags = PassedFlags; 1587 while (TargetFlags != "") { 1588 StringRef CurFlag; 1589 std::tie(CurFlag, TargetFlags) = TargetFlags.split(","); 1590 Flags.push_back(std::string(CurFlag)); 1591 } 1592 1593 // We want to show cc1-only options only when clang is invoked with -cc1 or 1594 // -Xclang. 1595 if (llvm::is_contained(Flags, "-Xclang") || llvm::is_contained(Flags, "-cc1")) 1596 DisableFlags &= ~options::NoDriverOption; 1597 1598 const llvm::opt::OptTable &Opts = getOpts(); 1599 StringRef Cur; 1600 Cur = Flags.at(Flags.size() - 1); 1601 StringRef Prev; 1602 if (Flags.size() >= 2) { 1603 Prev = Flags.at(Flags.size() - 2); 1604 SuggestedCompletions = Opts.suggestValueCompletions(Prev, Cur); 1605 } 1606 1607 if (SuggestedCompletions.empty()) 1608 SuggestedCompletions = Opts.suggestValueCompletions(Cur, ""); 1609 1610 // If Flags were empty, it means the user typed `clang [tab]` where we should 1611 // list all possible flags. If there was no value completion and the user 1612 // pressed tab after a space, we should fall back to a file completion. 1613 // We're printing a newline to be consistent with what we print at the end of 1614 // this function. 1615 if (SuggestedCompletions.empty() && HasSpace && !Flags.empty()) { 1616 llvm::outs() << '\n'; 1617 return; 1618 } 1619 1620 // When flag ends with '=' and there was no value completion, return empty 1621 // string and fall back to the file autocompletion. 1622 if (SuggestedCompletions.empty() && !Cur.endswith("=")) { 1623 // If the flag is in the form of "--autocomplete=-foo", 1624 // we were requested to print out all option names that start with "-foo". 1625 // For example, "--autocomplete=-fsyn" is expanded to "-fsyntax-only". 1626 SuggestedCompletions = Opts.findByPrefix(Cur, DisableFlags); 1627 1628 // We have to query the -W flags manually as they're not in the OptTable. 1629 // TODO: Find a good way to add them to OptTable instead and them remove 1630 // this code. 1631 for (StringRef S : DiagnosticIDs::getDiagnosticFlags()) 1632 if (S.startswith(Cur)) 1633 SuggestedCompletions.push_back(S); 1634 } 1635 1636 // Sort the autocomplete candidates so that shells print them out in a 1637 // deterministic order. We could sort in any way, but we chose 1638 // case-insensitive sorting for consistency with the -help option 1639 // which prints out options in the case-insensitive alphabetical order. 1640 llvm::sort(SuggestedCompletions, [](StringRef A, StringRef B) { 1641 if (int X = A.compare_lower(B)) 1642 return X < 0; 1643 return A.compare(B) > 0; 1644 }); 1645 1646 llvm::outs() << llvm::join(SuggestedCompletions, "\n") << '\n'; 1647 } 1648 1649 bool Driver::HandleImmediateArgs(const Compilation &C) { 1650 // The order these options are handled in gcc is all over the place, but we 1651 // don't expect inconsistencies w.r.t. that to matter in practice. 1652 1653 if (C.getArgs().hasArg(options::OPT_dumpmachine)) { 1654 llvm::outs() << C.getDefaultToolChain().getTripleString() << '\n'; 1655 return false; 1656 } 1657 1658 if (C.getArgs().hasArg(options::OPT_dumpversion)) { 1659 // Since -dumpversion is only implemented for pedantic GCC compatibility, we 1660 // return an answer which matches our definition of __VERSION__. 1661 llvm::outs() << CLANG_VERSION_STRING << "\n"; 1662 return false; 1663 } 1664 1665 if (C.getArgs().hasArg(options::OPT__print_diagnostic_categories)) { 1666 PrintDiagnosticCategories(llvm::outs()); 1667 return false; 1668 } 1669 1670 if (C.getArgs().hasArg(options::OPT_help) || 1671 C.getArgs().hasArg(options::OPT__help_hidden)) { 1672 PrintHelp(C.getArgs().hasArg(options::OPT__help_hidden)); 1673 return false; 1674 } 1675 1676 if (C.getArgs().hasArg(options::OPT__version)) { 1677 // Follow gcc behavior and use stdout for --version and stderr for -v. 1678 PrintVersion(C, llvm::outs()); 1679 return false; 1680 } 1681 1682 if (C.getArgs().hasArg(options::OPT_v) || 1683 C.getArgs().hasArg(options::OPT__HASH_HASH_HASH) || 1684 C.getArgs().hasArg(options::OPT_print_supported_cpus)) { 1685 PrintVersion(C, llvm::errs()); 1686 SuppressMissingInputWarning = true; 1687 } 1688 1689 if (C.getArgs().hasArg(options::OPT_v)) { 1690 if (!SystemConfigDir.empty()) 1691 llvm::errs() << "System configuration file directory: " 1692 << SystemConfigDir << "\n"; 1693 if (!UserConfigDir.empty()) 1694 llvm::errs() << "User configuration file directory: " 1695 << UserConfigDir << "\n"; 1696 } 1697 1698 const ToolChain &TC = C.getDefaultToolChain(); 1699 1700 if (C.getArgs().hasArg(options::OPT_v)) 1701 TC.printVerboseInfo(llvm::errs()); 1702 1703 if (C.getArgs().hasArg(options::OPT_print_resource_dir)) { 1704 llvm::outs() << ResourceDir << '\n'; 1705 return false; 1706 } 1707 1708 if (C.getArgs().hasArg(options::OPT_print_search_dirs)) { 1709 llvm::outs() << "programs: ="; 1710 bool separator = false; 1711 for (const std::string &Path : TC.getProgramPaths()) { 1712 if (separator) 1713 llvm::outs() << llvm::sys::EnvPathSeparator; 1714 llvm::outs() << Path; 1715 separator = true; 1716 } 1717 llvm::outs() << "\n"; 1718 llvm::outs() << "libraries: =" << ResourceDir; 1719 1720 StringRef sysroot = C.getSysRoot(); 1721 1722 for (const std::string &Path : TC.getFilePaths()) { 1723 // Always print a separator. ResourceDir was the first item shown. 1724 llvm::outs() << llvm::sys::EnvPathSeparator; 1725 // Interpretation of leading '=' is needed only for NetBSD. 1726 if (Path[0] == '=') 1727 llvm::outs() << sysroot << Path.substr(1); 1728 else 1729 llvm::outs() << Path; 1730 } 1731 llvm::outs() << "\n"; 1732 return false; 1733 } 1734 1735 // FIXME: The following handlers should use a callback mechanism, we don't 1736 // know what the client would like to do. 1737 if (Arg *A = C.getArgs().getLastArg(options::OPT_print_file_name_EQ)) { 1738 llvm::outs() << GetFilePath(A->getValue(), TC) << "\n"; 1739 return false; 1740 } 1741 1742 if (Arg *A = C.getArgs().getLastArg(options::OPT_print_prog_name_EQ)) { 1743 StringRef ProgName = A->getValue(); 1744 1745 // Null program name cannot have a path. 1746 if (! ProgName.empty()) 1747 llvm::outs() << GetProgramPath(ProgName, TC); 1748 1749 llvm::outs() << "\n"; 1750 return false; 1751 } 1752 1753 if (Arg *A = C.getArgs().getLastArg(options::OPT_autocomplete)) { 1754 StringRef PassedFlags = A->getValue(); 1755 HandleAutocompletions(PassedFlags); 1756 return false; 1757 } 1758 1759 if (C.getArgs().hasArg(options::OPT_print_libgcc_file_name)) { 1760 ToolChain::RuntimeLibType RLT = TC.GetRuntimeLibType(C.getArgs()); 1761 const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs())); 1762 RegisterEffectiveTriple TripleRAII(TC, Triple); 1763 switch (RLT) { 1764 case ToolChain::RLT_CompilerRT: 1765 llvm::outs() << TC.getCompilerRT(C.getArgs(), "builtins") << "\n"; 1766 break; 1767 case ToolChain::RLT_Libgcc: 1768 llvm::outs() << GetFilePath("libgcc.a", TC) << "\n"; 1769 break; 1770 } 1771 return false; 1772 } 1773 1774 if (C.getArgs().hasArg(options::OPT_print_multi_lib)) { 1775 for (const Multilib &Multilib : TC.getMultilibs()) 1776 llvm::outs() << Multilib << "\n"; 1777 return false; 1778 } 1779 1780 if (C.getArgs().hasArg(options::OPT_print_multi_directory)) { 1781 const Multilib &Multilib = TC.getMultilib(); 1782 if (Multilib.gccSuffix().empty()) 1783 llvm::outs() << ".\n"; 1784 else { 1785 StringRef Suffix(Multilib.gccSuffix()); 1786 assert(Suffix.front() == '/'); 1787 llvm::outs() << Suffix.substr(1) << "\n"; 1788 } 1789 return false; 1790 } 1791 1792 if (C.getArgs().hasArg(options::OPT_print_target_triple)) { 1793 llvm::outs() << TC.getTripleString() << "\n"; 1794 return false; 1795 } 1796 1797 if (C.getArgs().hasArg(options::OPT_print_effective_triple)) { 1798 const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs())); 1799 llvm::outs() << Triple.getTriple() << "\n"; 1800 return false; 1801 } 1802 1803 return true; 1804 } 1805 1806 enum { 1807 TopLevelAction = 0, 1808 HeadSibAction = 1, 1809 OtherSibAction = 2, 1810 }; 1811 1812 // Display an action graph human-readably. Action A is the "sink" node 1813 // and latest-occuring action. Traversal is in pre-order, visiting the 1814 // inputs to each action before printing the action itself. 1815 static unsigned PrintActions1(const Compilation &C, Action *A, 1816 std::map<Action *, unsigned> &Ids, 1817 Twine Indent = {}, int Kind = TopLevelAction) { 1818 if (Ids.count(A)) // A was already visited. 1819 return Ids[A]; 1820 1821 std::string str; 1822 llvm::raw_string_ostream os(str); 1823 1824 auto getSibIndent = [](int K) -> Twine { 1825 return (K == HeadSibAction) ? " " : (K == OtherSibAction) ? "| " : ""; 1826 }; 1827 1828 Twine SibIndent = Indent + getSibIndent(Kind); 1829 int SibKind = HeadSibAction; 1830 os << Action::getClassName(A->getKind()) << ", "; 1831 if (InputAction *IA = dyn_cast<InputAction>(A)) { 1832 os << "\"" << IA->getInputArg().getValue() << "\""; 1833 } else if (BindArchAction *BIA = dyn_cast<BindArchAction>(A)) { 1834 os << '"' << BIA->getArchName() << '"' << ", {" 1835 << PrintActions1(C, *BIA->input_begin(), Ids, SibIndent, SibKind) << "}"; 1836 } else if (OffloadAction *OA = dyn_cast<OffloadAction>(A)) { 1837 bool IsFirst = true; 1838 OA->doOnEachDependence( 1839 [&](Action *A, const ToolChain *TC, const char *BoundArch) { 1840 // E.g. for two CUDA device dependences whose bound arch is sm_20 and 1841 // sm_35 this will generate: 1842 // "cuda-device" (nvptx64-nvidia-cuda:sm_20) {#ID}, "cuda-device" 1843 // (nvptx64-nvidia-cuda:sm_35) {#ID} 1844 if (!IsFirst) 1845 os << ", "; 1846 os << '"'; 1847 if (TC) 1848 os << A->getOffloadingKindPrefix(); 1849 else 1850 os << "host"; 1851 os << " ("; 1852 os << TC->getTriple().normalize(); 1853 1854 if (BoundArch) 1855 os << ":" << BoundArch; 1856 os << ")"; 1857 os << '"'; 1858 os << " {" << PrintActions1(C, A, Ids, SibIndent, SibKind) << "}"; 1859 IsFirst = false; 1860 SibKind = OtherSibAction; 1861 }); 1862 } else { 1863 const ActionList *AL = &A->getInputs(); 1864 1865 if (AL->size()) { 1866 const char *Prefix = "{"; 1867 for (Action *PreRequisite : *AL) { 1868 os << Prefix << PrintActions1(C, PreRequisite, Ids, SibIndent, SibKind); 1869 Prefix = ", "; 1870 SibKind = OtherSibAction; 1871 } 1872 os << "}"; 1873 } else 1874 os << "{}"; 1875 } 1876 1877 // Append offload info for all options other than the offloading action 1878 // itself (e.g. (cuda-device, sm_20) or (cuda-host)). 1879 std::string offload_str; 1880 llvm::raw_string_ostream offload_os(offload_str); 1881 if (!isa<OffloadAction>(A)) { 1882 auto S = A->getOffloadingKindPrefix(); 1883 if (!S.empty()) { 1884 offload_os << ", (" << S; 1885 if (A->getOffloadingArch()) 1886 offload_os << ", " << A->getOffloadingArch(); 1887 offload_os << ")"; 1888 } 1889 } 1890 1891 auto getSelfIndent = [](int K) -> Twine { 1892 return (K == HeadSibAction) ? "+- " : (K == OtherSibAction) ? "|- " : ""; 1893 }; 1894 1895 unsigned Id = Ids.size(); 1896 Ids[A] = Id; 1897 llvm::errs() << Indent + getSelfIndent(Kind) << Id << ": " << os.str() << ", " 1898 << types::getTypeName(A->getType()) << offload_os.str() << "\n"; 1899 1900 return Id; 1901 } 1902 1903 // Print the action graphs in a compilation C. 1904 // For example "clang -c file1.c file2.c" is composed of two subgraphs. 1905 void Driver::PrintActions(const Compilation &C) const { 1906 std::map<Action *, unsigned> Ids; 1907 for (Action *A : C.getActions()) 1908 PrintActions1(C, A, Ids); 1909 } 1910 1911 /// Check whether the given input tree contains any compilation or 1912 /// assembly actions. 1913 static bool ContainsCompileOrAssembleAction(const Action *A) { 1914 if (isa<CompileJobAction>(A) || isa<BackendJobAction>(A) || 1915 isa<AssembleJobAction>(A)) 1916 return true; 1917 1918 for (const Action *Input : A->inputs()) 1919 if (ContainsCompileOrAssembleAction(Input)) 1920 return true; 1921 1922 return false; 1923 } 1924 1925 void Driver::BuildUniversalActions(Compilation &C, const ToolChain &TC, 1926 const InputList &BAInputs) const { 1927 DerivedArgList &Args = C.getArgs(); 1928 ActionList &Actions = C.getActions(); 1929 llvm::PrettyStackTraceString CrashInfo("Building universal build actions"); 1930 // Collect the list of architectures. Duplicates are allowed, but should only 1931 // be handled once (in the order seen). 1932 llvm::StringSet<> ArchNames; 1933 SmallVector<const char *, 4> Archs; 1934 for (Arg *A : Args) { 1935 if (A->getOption().matches(options::OPT_arch)) { 1936 // Validate the option here; we don't save the type here because its 1937 // particular spelling may participate in other driver choices. 1938 llvm::Triple::ArchType Arch = 1939 tools::darwin::getArchTypeForMachOArchName(A->getValue()); 1940 if (Arch == llvm::Triple::UnknownArch) { 1941 Diag(clang::diag::err_drv_invalid_arch_name) << A->getAsString(Args); 1942 continue; 1943 } 1944 1945 A->claim(); 1946 if (ArchNames.insert(A->getValue()).second) 1947 Archs.push_back(A->getValue()); 1948 } 1949 } 1950 1951 // When there is no explicit arch for this platform, make sure we still bind 1952 // the architecture (to the default) so that -Xarch_ is handled correctly. 1953 if (!Archs.size()) 1954 Archs.push_back(Args.MakeArgString(TC.getDefaultUniversalArchName())); 1955 1956 ActionList SingleActions; 1957 BuildActions(C, Args, BAInputs, SingleActions); 1958 1959 // Add in arch bindings for every top level action, as well as lipo and 1960 // dsymutil steps if needed. 1961 for (Action* Act : SingleActions) { 1962 // Make sure we can lipo this kind of output. If not (and it is an actual 1963 // output) then we disallow, since we can't create an output file with the 1964 // right name without overwriting it. We could remove this oddity by just 1965 // changing the output names to include the arch, which would also fix 1966 // -save-temps. Compatibility wins for now. 1967 1968 if (Archs.size() > 1 && !types::canLipoType(Act->getType())) 1969 Diag(clang::diag::err_drv_invalid_output_with_multiple_archs) 1970 << types::getTypeName(Act->getType()); 1971 1972 ActionList Inputs; 1973 for (unsigned i = 0, e = Archs.size(); i != e; ++i) 1974 Inputs.push_back(C.MakeAction<BindArchAction>(Act, Archs[i])); 1975 1976 // Lipo if necessary, we do it this way because we need to set the arch flag 1977 // so that -Xarch_ gets overwritten. 1978 if (Inputs.size() == 1 || Act->getType() == types::TY_Nothing) 1979 Actions.append(Inputs.begin(), Inputs.end()); 1980 else 1981 Actions.push_back(C.MakeAction<LipoJobAction>(Inputs, Act->getType())); 1982 1983 // Handle debug info queries. 1984 Arg *A = Args.getLastArg(options::OPT_g_Group); 1985 if (A && !A->getOption().matches(options::OPT_g0) && 1986 !A->getOption().matches(options::OPT_gstabs) && 1987 ContainsCompileOrAssembleAction(Actions.back())) { 1988 1989 // Add a 'dsymutil' step if necessary, when debug info is enabled and we 1990 // have a compile input. We need to run 'dsymutil' ourselves in such cases 1991 // because the debug info will refer to a temporary object file which 1992 // will be removed at the end of the compilation process. 1993 if (Act->getType() == types::TY_Image) { 1994 ActionList Inputs; 1995 Inputs.push_back(Actions.back()); 1996 Actions.pop_back(); 1997 Actions.push_back( 1998 C.MakeAction<DsymutilJobAction>(Inputs, types::TY_dSYM)); 1999 } 2000 2001 // Verify the debug info output. 2002 if (Args.hasArg(options::OPT_verify_debug_info)) { 2003 Action* LastAction = Actions.back(); 2004 Actions.pop_back(); 2005 Actions.push_back(C.MakeAction<VerifyDebugInfoJobAction>( 2006 LastAction, types::TY_Nothing)); 2007 } 2008 } 2009 } 2010 } 2011 2012 bool Driver::DiagnoseInputExistence(const DerivedArgList &Args, StringRef Value, 2013 types::ID Ty, bool TypoCorrect) const { 2014 if (!getCheckInputsExist()) 2015 return true; 2016 2017 // stdin always exists. 2018 if (Value == "-") 2019 return true; 2020 2021 if (getVFS().exists(Value)) 2022 return true; 2023 2024 if (IsCLMode()) { 2025 if (!llvm::sys::path::is_absolute(Twine(Value)) && 2026 llvm::sys::Process::FindInEnvPath("LIB", Value)) 2027 return true; 2028 2029 if (Args.hasArg(options::OPT__SLASH_link) && Ty == types::TY_Object) { 2030 // Arguments to the /link flag might cause the linker to search for object 2031 // and library files in paths we don't know about. Don't error in such 2032 // cases. 2033 return true; 2034 } 2035 } 2036 2037 if (TypoCorrect) { 2038 // Check if the filename is a typo for an option flag. OptTable thinks 2039 // that all args that are not known options and that start with / are 2040 // filenames, but e.g. `/diagnostic:caret` is more likely a typo for 2041 // the option `/diagnostics:caret` than a reference to a file in the root 2042 // directory. 2043 unsigned IncludedFlagsBitmask; 2044 unsigned ExcludedFlagsBitmask; 2045 std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) = 2046 getIncludeExcludeOptionFlagMasks(IsCLMode()); 2047 std::string Nearest; 2048 if (getOpts().findNearest(Value, Nearest, IncludedFlagsBitmask, 2049 ExcludedFlagsBitmask) <= 1) { 2050 Diag(clang::diag::err_drv_no_such_file_with_suggestion) 2051 << Value << Nearest; 2052 return false; 2053 } 2054 } 2055 2056 Diag(clang::diag::err_drv_no_such_file) << Value; 2057 return false; 2058 } 2059 2060 // Construct a the list of inputs and their types. 2061 void Driver::BuildInputs(const ToolChain &TC, DerivedArgList &Args, 2062 InputList &Inputs) const { 2063 const llvm::opt::OptTable &Opts = getOpts(); 2064 // Track the current user specified (-x) input. We also explicitly track the 2065 // argument used to set the type; we only want to claim the type when we 2066 // actually use it, so we warn about unused -x arguments. 2067 types::ID InputType = types::TY_Nothing; 2068 Arg *InputTypeArg = nullptr; 2069 2070 // The last /TC or /TP option sets the input type to C or C++ globally. 2071 if (Arg *TCTP = Args.getLastArgNoClaim(options::OPT__SLASH_TC, 2072 options::OPT__SLASH_TP)) { 2073 InputTypeArg = TCTP; 2074 InputType = TCTP->getOption().matches(options::OPT__SLASH_TC) 2075 ? types::TY_C 2076 : types::TY_CXX; 2077 2078 Arg *Previous = nullptr; 2079 bool ShowNote = false; 2080 for (Arg *A : 2081 Args.filtered(options::OPT__SLASH_TC, options::OPT__SLASH_TP)) { 2082 if (Previous) { 2083 Diag(clang::diag::warn_drv_overriding_flag_option) 2084 << Previous->getSpelling() << A->getSpelling(); 2085 ShowNote = true; 2086 } 2087 Previous = A; 2088 } 2089 if (ShowNote) 2090 Diag(clang::diag::note_drv_t_option_is_global); 2091 2092 // No driver mode exposes -x and /TC or /TP; we don't support mixing them. 2093 assert(!Args.hasArg(options::OPT_x) && "-x and /TC or /TP is not allowed"); 2094 } 2095 2096 for (Arg *A : Args) { 2097 if (A->getOption().getKind() == Option::InputClass) { 2098 const char *Value = A->getValue(); 2099 types::ID Ty = types::TY_INVALID; 2100 2101 // Infer the input type if necessary. 2102 if (InputType == types::TY_Nothing) { 2103 // If there was an explicit arg for this, claim it. 2104 if (InputTypeArg) 2105 InputTypeArg->claim(); 2106 2107 // stdin must be handled specially. 2108 if (memcmp(Value, "-", 2) == 0) { 2109 // If running with -E, treat as a C input (this changes the builtin 2110 // macros, for example). This may be overridden by -ObjC below. 2111 // 2112 // Otherwise emit an error but still use a valid type to avoid 2113 // spurious errors (e.g., no inputs). 2114 if (!Args.hasArgNoClaim(options::OPT_E) && !CCCIsCPP()) 2115 Diag(IsCLMode() ? clang::diag::err_drv_unknown_stdin_type_clang_cl 2116 : clang::diag::err_drv_unknown_stdin_type); 2117 Ty = types::TY_C; 2118 } else { 2119 // Otherwise lookup by extension. 2120 // Fallback is C if invoked as C preprocessor, C++ if invoked with 2121 // clang-cl /E, or Object otherwise. 2122 // We use a host hook here because Darwin at least has its own 2123 // idea of what .s is. 2124 if (const char *Ext = strrchr(Value, '.')) 2125 Ty = TC.LookupTypeForExtension(Ext + 1); 2126 2127 if (Ty == types::TY_INVALID) { 2128 if (CCCIsCPP()) 2129 Ty = types::TY_C; 2130 else if (IsCLMode() && Args.hasArgNoClaim(options::OPT_E)) 2131 Ty = types::TY_CXX; 2132 else 2133 Ty = types::TY_Object; 2134 } 2135 2136 // If the driver is invoked as C++ compiler (like clang++ or c++) it 2137 // should autodetect some input files as C++ for g++ compatibility. 2138 if (CCCIsCXX()) { 2139 types::ID OldTy = Ty; 2140 Ty = types::lookupCXXTypeForCType(Ty); 2141 2142 if (Ty != OldTy) 2143 Diag(clang::diag::warn_drv_treating_input_as_cxx) 2144 << getTypeName(OldTy) << getTypeName(Ty); 2145 } 2146 2147 // If running with -fthinlto-index=, extensions that normally identify 2148 // native object files actually identify LLVM bitcode files. 2149 if (Args.hasArgNoClaim(options::OPT_fthinlto_index_EQ) && 2150 Ty == types::TY_Object) 2151 Ty = types::TY_LLVM_BC; 2152 } 2153 2154 // -ObjC and -ObjC++ override the default language, but only for "source 2155 // files". We just treat everything that isn't a linker input as a 2156 // source file. 2157 // 2158 // FIXME: Clean this up if we move the phase sequence into the type. 2159 if (Ty != types::TY_Object) { 2160 if (Args.hasArg(options::OPT_ObjC)) 2161 Ty = types::TY_ObjC; 2162 else if (Args.hasArg(options::OPT_ObjCXX)) 2163 Ty = types::TY_ObjCXX; 2164 } 2165 } else { 2166 assert(InputTypeArg && "InputType set w/o InputTypeArg"); 2167 if (!InputTypeArg->getOption().matches(options::OPT_x)) { 2168 // If emulating cl.exe, make sure that /TC and /TP don't affect input 2169 // object files. 2170 const char *Ext = strrchr(Value, '.'); 2171 if (Ext && TC.LookupTypeForExtension(Ext + 1) == types::TY_Object) 2172 Ty = types::TY_Object; 2173 } 2174 if (Ty == types::TY_INVALID) { 2175 Ty = InputType; 2176 InputTypeArg->claim(); 2177 } 2178 } 2179 2180 if (DiagnoseInputExistence(Args, Value, Ty, /*TypoCorrect=*/true)) 2181 Inputs.push_back(std::make_pair(Ty, A)); 2182 2183 } else if (A->getOption().matches(options::OPT__SLASH_Tc)) { 2184 StringRef Value = A->getValue(); 2185 if (DiagnoseInputExistence(Args, Value, types::TY_C, 2186 /*TypoCorrect=*/false)) { 2187 Arg *InputArg = MakeInputArg(Args, Opts, A->getValue()); 2188 Inputs.push_back(std::make_pair(types::TY_C, InputArg)); 2189 } 2190 A->claim(); 2191 } else if (A->getOption().matches(options::OPT__SLASH_Tp)) { 2192 StringRef Value = A->getValue(); 2193 if (DiagnoseInputExistence(Args, Value, types::TY_CXX, 2194 /*TypoCorrect=*/false)) { 2195 Arg *InputArg = MakeInputArg(Args, Opts, A->getValue()); 2196 Inputs.push_back(std::make_pair(types::TY_CXX, InputArg)); 2197 } 2198 A->claim(); 2199 } else if (A->getOption().hasFlag(options::LinkerInput)) { 2200 // Just treat as object type, we could make a special type for this if 2201 // necessary. 2202 Inputs.push_back(std::make_pair(types::TY_Object, A)); 2203 2204 } else if (A->getOption().matches(options::OPT_x)) { 2205 InputTypeArg = A; 2206 InputType = types::lookupTypeForTypeSpecifier(A->getValue()); 2207 A->claim(); 2208 2209 // Follow gcc behavior and treat as linker input for invalid -x 2210 // options. Its not clear why we shouldn't just revert to unknown; but 2211 // this isn't very important, we might as well be bug compatible. 2212 if (!InputType) { 2213 Diag(clang::diag::err_drv_unknown_language) << A->getValue(); 2214 InputType = types::TY_Object; 2215 } 2216 } else if (A->getOption().getID() == options::OPT_U) { 2217 assert(A->getNumValues() == 1 && "The /U option has one value."); 2218 StringRef Val = A->getValue(0); 2219 if (Val.find_first_of("/\\") != StringRef::npos) { 2220 // Warn about e.g. "/Users/me/myfile.c". 2221 Diag(diag::warn_slash_u_filename) << Val; 2222 Diag(diag::note_use_dashdash); 2223 } 2224 } 2225 } 2226 if (CCCIsCPP() && Inputs.empty()) { 2227 // If called as standalone preprocessor, stdin is processed 2228 // if no other input is present. 2229 Arg *A = MakeInputArg(Args, Opts, "-"); 2230 Inputs.push_back(std::make_pair(types::TY_C, A)); 2231 } 2232 } 2233 2234 namespace { 2235 /// Provides a convenient interface for different programming models to generate 2236 /// the required device actions. 2237 class OffloadingActionBuilder final { 2238 /// Flag used to trace errors in the builder. 2239 bool IsValid = false; 2240 2241 /// The compilation that is using this builder. 2242 Compilation &C; 2243 2244 /// Map between an input argument and the offload kinds used to process it. 2245 std::map<const Arg *, unsigned> InputArgToOffloadKindMap; 2246 2247 /// Builder interface. It doesn't build anything or keep any state. 2248 class DeviceActionBuilder { 2249 public: 2250 typedef const llvm::SmallVectorImpl<phases::ID> PhasesTy; 2251 2252 enum ActionBuilderReturnCode { 2253 // The builder acted successfully on the current action. 2254 ABRT_Success, 2255 // The builder didn't have to act on the current action. 2256 ABRT_Inactive, 2257 // The builder was successful and requested the host action to not be 2258 // generated. 2259 ABRT_Ignore_Host, 2260 }; 2261 2262 protected: 2263 /// Compilation associated with this builder. 2264 Compilation &C; 2265 2266 /// Tool chains associated with this builder. The same programming 2267 /// model may have associated one or more tool chains. 2268 SmallVector<const ToolChain *, 2> ToolChains; 2269 2270 /// The derived arguments associated with this builder. 2271 DerivedArgList &Args; 2272 2273 /// The inputs associated with this builder. 2274 const Driver::InputList &Inputs; 2275 2276 /// The associated offload kind. 2277 Action::OffloadKind AssociatedOffloadKind = Action::OFK_None; 2278 2279 public: 2280 DeviceActionBuilder(Compilation &C, DerivedArgList &Args, 2281 const Driver::InputList &Inputs, 2282 Action::OffloadKind AssociatedOffloadKind) 2283 : C(C), Args(Args), Inputs(Inputs), 2284 AssociatedOffloadKind(AssociatedOffloadKind) {} 2285 virtual ~DeviceActionBuilder() {} 2286 2287 /// Fill up the array \a DA with all the device dependences that should be 2288 /// added to the provided host action \a HostAction. By default it is 2289 /// inactive. 2290 virtual ActionBuilderReturnCode 2291 getDeviceDependences(OffloadAction::DeviceDependences &DA, 2292 phases::ID CurPhase, phases::ID FinalPhase, 2293 PhasesTy &Phases) { 2294 return ABRT_Inactive; 2295 } 2296 2297 /// Update the state to include the provided host action \a HostAction as a 2298 /// dependency of the current device action. By default it is inactive. 2299 virtual ActionBuilderReturnCode addDeviceDepences(Action *HostAction) { 2300 return ABRT_Inactive; 2301 } 2302 2303 /// Append top level actions generated by the builder. 2304 virtual void appendTopLevelActions(ActionList &AL) {} 2305 2306 /// Append linker actions generated by the builder. 2307 virtual void appendLinkActions(ActionList &AL) {} 2308 2309 /// Append linker actions generated by the builder. 2310 virtual void appendLinkDependences(OffloadAction::DeviceDependences &DA) {} 2311 2312 /// Initialize the builder. Return true if any initialization errors are 2313 /// found. 2314 virtual bool initialize() { return false; } 2315 2316 /// Return true if the builder can use bundling/unbundling. 2317 virtual bool canUseBundlerUnbundler() const { return false; } 2318 2319 /// Return true if this builder is valid. We have a valid builder if we have 2320 /// associated device tool chains. 2321 bool isValid() { return !ToolChains.empty(); } 2322 2323 /// Return the associated offload kind. 2324 Action::OffloadKind getAssociatedOffloadKind() { 2325 return AssociatedOffloadKind; 2326 } 2327 }; 2328 2329 /// Base class for CUDA/HIP action builder. It injects device code in 2330 /// the host backend action. 2331 class CudaActionBuilderBase : public DeviceActionBuilder { 2332 protected: 2333 /// Flags to signal if the user requested host-only or device-only 2334 /// compilation. 2335 bool CompileHostOnly = false; 2336 bool CompileDeviceOnly = false; 2337 bool EmitLLVM = false; 2338 bool EmitAsm = false; 2339 2340 /// List of GPU architectures to use in this compilation. 2341 SmallVector<CudaArch, 4> GpuArchList; 2342 2343 /// The CUDA actions for the current input. 2344 ActionList CudaDeviceActions; 2345 2346 /// The CUDA fat binary if it was generated for the current input. 2347 Action *CudaFatBinary = nullptr; 2348 2349 /// Flag that is set to true if this builder acted on the current input. 2350 bool IsActive = false; 2351 2352 /// Flag for -fgpu-rdc. 2353 bool Relocatable = false; 2354 2355 /// Default GPU architecture if there's no one specified. 2356 CudaArch DefaultCudaArch = CudaArch::UNKNOWN; 2357 2358 public: 2359 CudaActionBuilderBase(Compilation &C, DerivedArgList &Args, 2360 const Driver::InputList &Inputs, 2361 Action::OffloadKind OFKind) 2362 : DeviceActionBuilder(C, Args, Inputs, OFKind) {} 2363 2364 ActionBuilderReturnCode addDeviceDepences(Action *HostAction) override { 2365 // While generating code for CUDA, we only depend on the host input action 2366 // to trigger the creation of all the CUDA device actions. 2367 2368 // If we are dealing with an input action, replicate it for each GPU 2369 // architecture. If we are in host-only mode we return 'success' so that 2370 // the host uses the CUDA offload kind. 2371 if (auto *IA = dyn_cast<InputAction>(HostAction)) { 2372 assert(!GpuArchList.empty() && 2373 "We should have at least one GPU architecture."); 2374 2375 // If the host input is not CUDA or HIP, we don't need to bother about 2376 // this input. 2377 if (IA->getType() != types::TY_CUDA && 2378 IA->getType() != types::TY_HIP) { 2379 // The builder will ignore this input. 2380 IsActive = false; 2381 return ABRT_Inactive; 2382 } 2383 2384 // Set the flag to true, so that the builder acts on the current input. 2385 IsActive = true; 2386 2387 if (CompileHostOnly) 2388 return ABRT_Success; 2389 2390 // Replicate inputs for each GPU architecture. 2391 auto Ty = IA->getType() == types::TY_HIP ? types::TY_HIP_DEVICE 2392 : types::TY_CUDA_DEVICE; 2393 for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) { 2394 CudaDeviceActions.push_back( 2395 C.MakeAction<InputAction>(IA->getInputArg(), Ty)); 2396 } 2397 2398 return ABRT_Success; 2399 } 2400 2401 // If this is an unbundling action use it as is for each CUDA toolchain. 2402 if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) { 2403 2404 // If -fgpu-rdc is disabled, should not unbundle since there is no 2405 // device code to link. 2406 if (!Relocatable) 2407 return ABRT_Inactive; 2408 2409 CudaDeviceActions.clear(); 2410 auto *IA = cast<InputAction>(UA->getInputs().back()); 2411 std::string FileName = IA->getInputArg().getAsString(Args); 2412 // Check if the type of the file is the same as the action. Do not 2413 // unbundle it if it is not. Do not unbundle .so files, for example, 2414 // which are not object files. 2415 if (IA->getType() == types::TY_Object && 2416 (!llvm::sys::path::has_extension(FileName) || 2417 types::lookupTypeForExtension( 2418 llvm::sys::path::extension(FileName).drop_front()) != 2419 types::TY_Object)) 2420 return ABRT_Inactive; 2421 2422 for (auto Arch : GpuArchList) { 2423 CudaDeviceActions.push_back(UA); 2424 UA->registerDependentActionInfo(ToolChains[0], CudaArchToString(Arch), 2425 AssociatedOffloadKind); 2426 } 2427 return ABRT_Success; 2428 } 2429 2430 return IsActive ? ABRT_Success : ABRT_Inactive; 2431 } 2432 2433 void appendTopLevelActions(ActionList &AL) override { 2434 // Utility to append actions to the top level list. 2435 auto AddTopLevel = [&](Action *A, CudaArch BoundArch) { 2436 OffloadAction::DeviceDependences Dep; 2437 Dep.add(*A, *ToolChains.front(), CudaArchToString(BoundArch), 2438 AssociatedOffloadKind); 2439 AL.push_back(C.MakeAction<OffloadAction>(Dep, A->getType())); 2440 }; 2441 2442 // If we have a fat binary, add it to the list. 2443 if (CudaFatBinary) { 2444 AddTopLevel(CudaFatBinary, CudaArch::UNKNOWN); 2445 CudaDeviceActions.clear(); 2446 CudaFatBinary = nullptr; 2447 return; 2448 } 2449 2450 if (CudaDeviceActions.empty()) 2451 return; 2452 2453 // If we have CUDA actions at this point, that's because we have a have 2454 // partial compilation, so we should have an action for each GPU 2455 // architecture. 2456 assert(CudaDeviceActions.size() == GpuArchList.size() && 2457 "Expecting one action per GPU architecture."); 2458 assert(ToolChains.size() == 1 && 2459 "Expecting to have a sing CUDA toolchain."); 2460 for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) 2461 AddTopLevel(CudaDeviceActions[I], GpuArchList[I]); 2462 2463 CudaDeviceActions.clear(); 2464 } 2465 2466 bool initialize() override { 2467 assert(AssociatedOffloadKind == Action::OFK_Cuda || 2468 AssociatedOffloadKind == Action::OFK_HIP); 2469 2470 // We don't need to support CUDA. 2471 if (AssociatedOffloadKind == Action::OFK_Cuda && 2472 !C.hasOffloadToolChain<Action::OFK_Cuda>()) 2473 return false; 2474 2475 // We don't need to support HIP. 2476 if (AssociatedOffloadKind == Action::OFK_HIP && 2477 !C.hasOffloadToolChain<Action::OFK_HIP>()) 2478 return false; 2479 2480 Relocatable = Args.hasFlag(options::OPT_fgpu_rdc, 2481 options::OPT_fno_gpu_rdc, /*Default=*/false); 2482 2483 const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>(); 2484 assert(HostTC && "No toolchain for host compilation."); 2485 if (HostTC->getTriple().isNVPTX() || 2486 HostTC->getTriple().getArch() == llvm::Triple::amdgcn) { 2487 // We do not support targeting NVPTX/AMDGCN for host compilation. Throw 2488 // an error and abort pipeline construction early so we don't trip 2489 // asserts that assume device-side compilation. 2490 C.getDriver().Diag(diag::err_drv_cuda_host_arch) 2491 << HostTC->getTriple().getArchName(); 2492 return true; 2493 } 2494 2495 ToolChains.push_back( 2496 AssociatedOffloadKind == Action::OFK_Cuda 2497 ? C.getSingleOffloadToolChain<Action::OFK_Cuda>() 2498 : C.getSingleOffloadToolChain<Action::OFK_HIP>()); 2499 2500 Arg *PartialCompilationArg = Args.getLastArg( 2501 options::OPT_cuda_host_only, options::OPT_cuda_device_only, 2502 options::OPT_cuda_compile_host_device); 2503 CompileHostOnly = PartialCompilationArg && 2504 PartialCompilationArg->getOption().matches( 2505 options::OPT_cuda_host_only); 2506 CompileDeviceOnly = PartialCompilationArg && 2507 PartialCompilationArg->getOption().matches( 2508 options::OPT_cuda_device_only); 2509 EmitLLVM = Args.getLastArg(options::OPT_emit_llvm); 2510 EmitAsm = Args.getLastArg(options::OPT_S); 2511 2512 // Collect all cuda_gpu_arch parameters, removing duplicates. 2513 std::set<CudaArch> GpuArchs; 2514 bool Error = false; 2515 for (Arg *A : Args) { 2516 if (!(A->getOption().matches(options::OPT_cuda_gpu_arch_EQ) || 2517 A->getOption().matches(options::OPT_no_cuda_gpu_arch_EQ))) 2518 continue; 2519 A->claim(); 2520 2521 const StringRef ArchStr = A->getValue(); 2522 if (A->getOption().matches(options::OPT_no_cuda_gpu_arch_EQ) && 2523 ArchStr == "all") { 2524 GpuArchs.clear(); 2525 continue; 2526 } 2527 CudaArch Arch = StringToCudaArch(ArchStr); 2528 if (Arch == CudaArch::UNKNOWN) { 2529 C.getDriver().Diag(clang::diag::err_drv_cuda_bad_gpu_arch) << ArchStr; 2530 Error = true; 2531 } else if (A->getOption().matches(options::OPT_cuda_gpu_arch_EQ)) 2532 GpuArchs.insert(Arch); 2533 else if (A->getOption().matches(options::OPT_no_cuda_gpu_arch_EQ)) 2534 GpuArchs.erase(Arch); 2535 else 2536 llvm_unreachable("Unexpected option."); 2537 } 2538 2539 // Collect list of GPUs remaining in the set. 2540 for (CudaArch Arch : GpuArchs) 2541 GpuArchList.push_back(Arch); 2542 2543 // Default to sm_20 which is the lowest common denominator for 2544 // supported GPUs. sm_20 code should work correctly, if 2545 // suboptimally, on all newer GPUs. 2546 if (GpuArchList.empty()) 2547 GpuArchList.push_back(DefaultCudaArch); 2548 2549 return Error; 2550 } 2551 }; 2552 2553 /// \brief CUDA action builder. It injects device code in the host backend 2554 /// action. 2555 class CudaActionBuilder final : public CudaActionBuilderBase { 2556 public: 2557 CudaActionBuilder(Compilation &C, DerivedArgList &Args, 2558 const Driver::InputList &Inputs) 2559 : CudaActionBuilderBase(C, Args, Inputs, Action::OFK_Cuda) { 2560 DefaultCudaArch = CudaArch::SM_20; 2561 } 2562 2563 ActionBuilderReturnCode 2564 getDeviceDependences(OffloadAction::DeviceDependences &DA, 2565 phases::ID CurPhase, phases::ID FinalPhase, 2566 PhasesTy &Phases) override { 2567 if (!IsActive) 2568 return ABRT_Inactive; 2569 2570 // If we don't have more CUDA actions, we don't have any dependences to 2571 // create for the host. 2572 if (CudaDeviceActions.empty()) 2573 return ABRT_Success; 2574 2575 assert(CudaDeviceActions.size() == GpuArchList.size() && 2576 "Expecting one action per GPU architecture."); 2577 assert(!CompileHostOnly && 2578 "Not expecting CUDA actions in host-only compilation."); 2579 2580 // If we are generating code for the device or we are in a backend phase, 2581 // we attempt to generate the fat binary. We compile each arch to ptx and 2582 // assemble to cubin, then feed the cubin *and* the ptx into a device 2583 // "link" action, which uses fatbinary to combine these cubins into one 2584 // fatbin. The fatbin is then an input to the host action if not in 2585 // device-only mode. 2586 if (CompileDeviceOnly || CurPhase == phases::Backend) { 2587 ActionList DeviceActions; 2588 for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) { 2589 // Produce the device action from the current phase up to the assemble 2590 // phase. 2591 for (auto Ph : Phases) { 2592 // Skip the phases that were already dealt with. 2593 if (Ph < CurPhase) 2594 continue; 2595 // We have to be consistent with the host final phase. 2596 if (Ph > FinalPhase) 2597 break; 2598 2599 CudaDeviceActions[I] = C.getDriver().ConstructPhaseAction( 2600 C, Args, Ph, CudaDeviceActions[I], Action::OFK_Cuda); 2601 2602 if (Ph == phases::Assemble) 2603 break; 2604 } 2605 2606 // If we didn't reach the assemble phase, we can't generate the fat 2607 // binary. We don't need to generate the fat binary if we are not in 2608 // device-only mode. 2609 if (!isa<AssembleJobAction>(CudaDeviceActions[I]) || 2610 CompileDeviceOnly) 2611 continue; 2612 2613 Action *AssembleAction = CudaDeviceActions[I]; 2614 assert(AssembleAction->getType() == types::TY_Object); 2615 assert(AssembleAction->getInputs().size() == 1); 2616 2617 Action *BackendAction = AssembleAction->getInputs()[0]; 2618 assert(BackendAction->getType() == types::TY_PP_Asm); 2619 2620 for (auto &A : {AssembleAction, BackendAction}) { 2621 OffloadAction::DeviceDependences DDep; 2622 DDep.add(*A, *ToolChains.front(), CudaArchToString(GpuArchList[I]), 2623 Action::OFK_Cuda); 2624 DeviceActions.push_back( 2625 C.MakeAction<OffloadAction>(DDep, A->getType())); 2626 } 2627 } 2628 2629 // We generate the fat binary if we have device input actions. 2630 if (!DeviceActions.empty()) { 2631 CudaFatBinary = 2632 C.MakeAction<LinkJobAction>(DeviceActions, types::TY_CUDA_FATBIN); 2633 2634 if (!CompileDeviceOnly) { 2635 DA.add(*CudaFatBinary, *ToolChains.front(), /*BoundArch=*/nullptr, 2636 Action::OFK_Cuda); 2637 // Clear the fat binary, it is already a dependence to an host 2638 // action. 2639 CudaFatBinary = nullptr; 2640 } 2641 2642 // Remove the CUDA actions as they are already connected to an host 2643 // action or fat binary. 2644 CudaDeviceActions.clear(); 2645 } 2646 2647 // We avoid creating host action in device-only mode. 2648 return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success; 2649 } else if (CurPhase > phases::Backend) { 2650 // If we are past the backend phase and still have a device action, we 2651 // don't have to do anything as this action is already a device 2652 // top-level action. 2653 return ABRT_Success; 2654 } 2655 2656 assert(CurPhase < phases::Backend && "Generating single CUDA " 2657 "instructions should only occur " 2658 "before the backend phase!"); 2659 2660 // By default, we produce an action for each device arch. 2661 for (Action *&A : CudaDeviceActions) 2662 A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A); 2663 2664 return ABRT_Success; 2665 } 2666 }; 2667 /// \brief HIP action builder. It injects device code in the host backend 2668 /// action. 2669 class HIPActionBuilder final : public CudaActionBuilderBase { 2670 /// The linker inputs obtained for each device arch. 2671 SmallVector<ActionList, 8> DeviceLinkerInputs; 2672 2673 public: 2674 HIPActionBuilder(Compilation &C, DerivedArgList &Args, 2675 const Driver::InputList &Inputs) 2676 : CudaActionBuilderBase(C, Args, Inputs, Action::OFK_HIP) { 2677 DefaultCudaArch = CudaArch::GFX803; 2678 } 2679 2680 bool canUseBundlerUnbundler() const override { return true; } 2681 2682 ActionBuilderReturnCode 2683 getDeviceDependences(OffloadAction::DeviceDependences &DA, 2684 phases::ID CurPhase, phases::ID FinalPhase, 2685 PhasesTy &Phases) override { 2686 // amdgcn does not support linking of object files, therefore we skip 2687 // backend and assemble phases to output LLVM IR. Except for generating 2688 // non-relocatable device coee, where we generate fat binary for device 2689 // code and pass to host in Backend phase. 2690 if (CudaDeviceActions.empty() || 2691 (CurPhase == phases::Backend && Relocatable) || 2692 CurPhase == phases::Assemble) 2693 return ABRT_Success; 2694 2695 assert(((CurPhase == phases::Link && Relocatable) || 2696 CudaDeviceActions.size() == GpuArchList.size()) && 2697 "Expecting one action per GPU architecture."); 2698 assert(!CompileHostOnly && 2699 "Not expecting CUDA actions in host-only compilation."); 2700 2701 if (!Relocatable && CurPhase == phases::Backend && !EmitLLVM && 2702 !EmitAsm) { 2703 // If we are in backend phase, we attempt to generate the fat binary. 2704 // We compile each arch to IR and use a link action to generate code 2705 // object containing ISA. Then we use a special "link" action to create 2706 // a fat binary containing all the code objects for different GPU's. 2707 // The fat binary is then an input to the host action. 2708 for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) { 2709 // Create a link action to link device IR with device library 2710 // and generate ISA. 2711 ActionList AL; 2712 AL.push_back(CudaDeviceActions[I]); 2713 CudaDeviceActions[I] = 2714 C.MakeAction<LinkJobAction>(AL, types::TY_Image); 2715 2716 // OffloadingActionBuilder propagates device arch until an offload 2717 // action. Since the next action for creating fatbin does 2718 // not have device arch, whereas the above link action and its input 2719 // have device arch, an offload action is needed to stop the null 2720 // device arch of the next action being propagated to the above link 2721 // action. 2722 OffloadAction::DeviceDependences DDep; 2723 DDep.add(*CudaDeviceActions[I], *ToolChains.front(), 2724 CudaArchToString(GpuArchList[I]), AssociatedOffloadKind); 2725 CudaDeviceActions[I] = C.MakeAction<OffloadAction>( 2726 DDep, CudaDeviceActions[I]->getType()); 2727 } 2728 // Create HIP fat binary with a special "link" action. 2729 CudaFatBinary = 2730 C.MakeAction<LinkJobAction>(CudaDeviceActions, 2731 types::TY_HIP_FATBIN); 2732 2733 if (!CompileDeviceOnly) { 2734 DA.add(*CudaFatBinary, *ToolChains.front(), /*BoundArch=*/nullptr, 2735 AssociatedOffloadKind); 2736 // Clear the fat binary, it is already a dependence to an host 2737 // action. 2738 CudaFatBinary = nullptr; 2739 } 2740 2741 // Remove the CUDA actions as they are already connected to an host 2742 // action or fat binary. 2743 CudaDeviceActions.clear(); 2744 2745 return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success; 2746 } else if (CurPhase == phases::Link) { 2747 // Save CudaDeviceActions to DeviceLinkerInputs for each GPU subarch. 2748 // This happens to each device action originated from each input file. 2749 // Later on, device actions in DeviceLinkerInputs are used to create 2750 // device link actions in appendLinkDependences and the created device 2751 // link actions are passed to the offload action as device dependence. 2752 DeviceLinkerInputs.resize(CudaDeviceActions.size()); 2753 auto LI = DeviceLinkerInputs.begin(); 2754 for (auto *A : CudaDeviceActions) { 2755 LI->push_back(A); 2756 ++LI; 2757 } 2758 2759 // We will pass the device action as a host dependence, so we don't 2760 // need to do anything else with them. 2761 CudaDeviceActions.clear(); 2762 return ABRT_Success; 2763 } 2764 2765 // By default, we produce an action for each device arch. 2766 for (Action *&A : CudaDeviceActions) 2767 A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A, 2768 AssociatedOffloadKind); 2769 2770 return (CompileDeviceOnly && CurPhase == FinalPhase) ? ABRT_Ignore_Host 2771 : ABRT_Success; 2772 } 2773 2774 void appendLinkDependences(OffloadAction::DeviceDependences &DA) override { 2775 // Append a new link action for each device. 2776 unsigned I = 0; 2777 for (auto &LI : DeviceLinkerInputs) { 2778 auto *DeviceLinkAction = 2779 C.MakeAction<LinkJobAction>(LI, types::TY_Image); 2780 DA.add(*DeviceLinkAction, *ToolChains[0], 2781 CudaArchToString(GpuArchList[I]), AssociatedOffloadKind); 2782 ++I; 2783 } 2784 } 2785 }; 2786 2787 /// OpenMP action builder. The host bitcode is passed to the device frontend 2788 /// and all the device linked images are passed to the host link phase. 2789 class OpenMPActionBuilder final : public DeviceActionBuilder { 2790 /// The OpenMP actions for the current input. 2791 ActionList OpenMPDeviceActions; 2792 2793 /// The linker inputs obtained for each toolchain. 2794 SmallVector<ActionList, 8> DeviceLinkerInputs; 2795 2796 public: 2797 OpenMPActionBuilder(Compilation &C, DerivedArgList &Args, 2798 const Driver::InputList &Inputs) 2799 : DeviceActionBuilder(C, Args, Inputs, Action::OFK_OpenMP) {} 2800 2801 ActionBuilderReturnCode 2802 getDeviceDependences(OffloadAction::DeviceDependences &DA, 2803 phases::ID CurPhase, phases::ID FinalPhase, 2804 PhasesTy &Phases) override { 2805 if (OpenMPDeviceActions.empty()) 2806 return ABRT_Inactive; 2807 2808 // We should always have an action for each input. 2809 assert(OpenMPDeviceActions.size() == ToolChains.size() && 2810 "Number of OpenMP actions and toolchains do not match."); 2811 2812 // The host only depends on device action in the linking phase, when all 2813 // the device images have to be embedded in the host image. 2814 if (CurPhase == phases::Link) { 2815 assert(ToolChains.size() == DeviceLinkerInputs.size() && 2816 "Toolchains and linker inputs sizes do not match."); 2817 auto LI = DeviceLinkerInputs.begin(); 2818 for (auto *A : OpenMPDeviceActions) { 2819 LI->push_back(A); 2820 ++LI; 2821 } 2822 2823 // We passed the device action as a host dependence, so we don't need to 2824 // do anything else with them. 2825 OpenMPDeviceActions.clear(); 2826 return ABRT_Success; 2827 } 2828 2829 // By default, we produce an action for each device arch. 2830 for (Action *&A : OpenMPDeviceActions) 2831 A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A); 2832 2833 return ABRT_Success; 2834 } 2835 2836 ActionBuilderReturnCode addDeviceDepences(Action *HostAction) override { 2837 2838 // If this is an input action replicate it for each OpenMP toolchain. 2839 if (auto *IA = dyn_cast<InputAction>(HostAction)) { 2840 OpenMPDeviceActions.clear(); 2841 for (unsigned I = 0; I < ToolChains.size(); ++I) 2842 OpenMPDeviceActions.push_back( 2843 C.MakeAction<InputAction>(IA->getInputArg(), IA->getType())); 2844 return ABRT_Success; 2845 } 2846 2847 // If this is an unbundling action use it as is for each OpenMP toolchain. 2848 if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) { 2849 OpenMPDeviceActions.clear(); 2850 auto *IA = cast<InputAction>(UA->getInputs().back()); 2851 std::string FileName = IA->getInputArg().getAsString(Args); 2852 // Check if the type of the file is the same as the action. Do not 2853 // unbundle it if it is not. Do not unbundle .so files, for example, 2854 // which are not object files. 2855 if (IA->getType() == types::TY_Object && 2856 (!llvm::sys::path::has_extension(FileName) || 2857 types::lookupTypeForExtension( 2858 llvm::sys::path::extension(FileName).drop_front()) != 2859 types::TY_Object)) 2860 return ABRT_Inactive; 2861 for (unsigned I = 0; I < ToolChains.size(); ++I) { 2862 OpenMPDeviceActions.push_back(UA); 2863 UA->registerDependentActionInfo( 2864 ToolChains[I], /*BoundArch=*/StringRef(), Action::OFK_OpenMP); 2865 } 2866 return ABRT_Success; 2867 } 2868 2869 // When generating code for OpenMP we use the host compile phase result as 2870 // a dependence to the device compile phase so that it can learn what 2871 // declarations should be emitted. However, this is not the only use for 2872 // the host action, so we prevent it from being collapsed. 2873 if (isa<CompileJobAction>(HostAction)) { 2874 HostAction->setCannotBeCollapsedWithNextDependentAction(); 2875 assert(ToolChains.size() == OpenMPDeviceActions.size() && 2876 "Toolchains and device action sizes do not match."); 2877 OffloadAction::HostDependence HDep( 2878 *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(), 2879 /*BoundArch=*/nullptr, Action::OFK_OpenMP); 2880 auto TC = ToolChains.begin(); 2881 for (Action *&A : OpenMPDeviceActions) { 2882 assert(isa<CompileJobAction>(A)); 2883 OffloadAction::DeviceDependences DDep; 2884 DDep.add(*A, **TC, /*BoundArch=*/nullptr, Action::OFK_OpenMP); 2885 A = C.MakeAction<OffloadAction>(HDep, DDep); 2886 ++TC; 2887 } 2888 } 2889 return ABRT_Success; 2890 } 2891 2892 void appendTopLevelActions(ActionList &AL) override { 2893 if (OpenMPDeviceActions.empty()) 2894 return; 2895 2896 // We should always have an action for each input. 2897 assert(OpenMPDeviceActions.size() == ToolChains.size() && 2898 "Number of OpenMP actions and toolchains do not match."); 2899 2900 // Append all device actions followed by the proper offload action. 2901 auto TI = ToolChains.begin(); 2902 for (auto *A : OpenMPDeviceActions) { 2903 OffloadAction::DeviceDependences Dep; 2904 Dep.add(*A, **TI, /*BoundArch=*/nullptr, Action::OFK_OpenMP); 2905 AL.push_back(C.MakeAction<OffloadAction>(Dep, A->getType())); 2906 ++TI; 2907 } 2908 // We no longer need the action stored in this builder. 2909 OpenMPDeviceActions.clear(); 2910 } 2911 2912 void appendLinkActions(ActionList &AL) override { 2913 assert(ToolChains.size() == DeviceLinkerInputs.size() && 2914 "Toolchains and linker inputs sizes do not match."); 2915 2916 // Append a new link action for each device. 2917 auto TC = ToolChains.begin(); 2918 for (auto &LI : DeviceLinkerInputs) { 2919 auto *DeviceLinkAction = 2920 C.MakeAction<LinkJobAction>(LI, types::TY_Image); 2921 OffloadAction::DeviceDependences DeviceLinkDeps; 2922 DeviceLinkDeps.add(*DeviceLinkAction, **TC, /*BoundArch=*/nullptr, 2923 Action::OFK_OpenMP); 2924 AL.push_back(C.MakeAction<OffloadAction>(DeviceLinkDeps, 2925 DeviceLinkAction->getType())); 2926 ++TC; 2927 } 2928 DeviceLinkerInputs.clear(); 2929 } 2930 2931 void appendLinkDependences(OffloadAction::DeviceDependences &DA) override {} 2932 2933 bool initialize() override { 2934 // Get the OpenMP toolchains. If we don't get any, the action builder will 2935 // know there is nothing to do related to OpenMP offloading. 2936 auto OpenMPTCRange = C.getOffloadToolChains<Action::OFK_OpenMP>(); 2937 for (auto TI = OpenMPTCRange.first, TE = OpenMPTCRange.second; TI != TE; 2938 ++TI) 2939 ToolChains.push_back(TI->second); 2940 2941 DeviceLinkerInputs.resize(ToolChains.size()); 2942 return false; 2943 } 2944 2945 bool canUseBundlerUnbundler() const override { 2946 // OpenMP should use bundled files whenever possible. 2947 return true; 2948 } 2949 }; 2950 2951 /// 2952 /// TODO: Add the implementation for other specialized builders here. 2953 /// 2954 2955 /// Specialized builders being used by this offloading action builder. 2956 SmallVector<DeviceActionBuilder *, 4> SpecializedBuilders; 2957 2958 /// Flag set to true if all valid builders allow file bundling/unbundling. 2959 bool CanUseBundler; 2960 2961 public: 2962 OffloadingActionBuilder(Compilation &C, DerivedArgList &Args, 2963 const Driver::InputList &Inputs) 2964 : C(C) { 2965 // Create a specialized builder for each device toolchain. 2966 2967 IsValid = true; 2968 2969 // Create a specialized builder for CUDA. 2970 SpecializedBuilders.push_back(new CudaActionBuilder(C, Args, Inputs)); 2971 2972 // Create a specialized builder for HIP. 2973 SpecializedBuilders.push_back(new HIPActionBuilder(C, Args, Inputs)); 2974 2975 // Create a specialized builder for OpenMP. 2976 SpecializedBuilders.push_back(new OpenMPActionBuilder(C, Args, Inputs)); 2977 2978 // 2979 // TODO: Build other specialized builders here. 2980 // 2981 2982 // Initialize all the builders, keeping track of errors. If all valid 2983 // builders agree that we can use bundling, set the flag to true. 2984 unsigned ValidBuilders = 0u; 2985 unsigned ValidBuildersSupportingBundling = 0u; 2986 for (auto *SB : SpecializedBuilders) { 2987 IsValid = IsValid && !SB->initialize(); 2988 2989 // Update the counters if the builder is valid. 2990 if (SB->isValid()) { 2991 ++ValidBuilders; 2992 if (SB->canUseBundlerUnbundler()) 2993 ++ValidBuildersSupportingBundling; 2994 } 2995 } 2996 CanUseBundler = 2997 ValidBuilders && ValidBuilders == ValidBuildersSupportingBundling; 2998 } 2999 3000 ~OffloadingActionBuilder() { 3001 for (auto *SB : SpecializedBuilders) 3002 delete SB; 3003 } 3004 3005 /// Generate an action that adds device dependences (if any) to a host action. 3006 /// If no device dependence actions exist, just return the host action \a 3007 /// HostAction. If an error is found or if no builder requires the host action 3008 /// to be generated, return nullptr. 3009 Action * 3010 addDeviceDependencesToHostAction(Action *HostAction, const Arg *InputArg, 3011 phases::ID CurPhase, phases::ID FinalPhase, 3012 DeviceActionBuilder::PhasesTy &Phases) { 3013 if (!IsValid) 3014 return nullptr; 3015 3016 if (SpecializedBuilders.empty()) 3017 return HostAction; 3018 3019 assert(HostAction && "Invalid host action!"); 3020 3021 OffloadAction::DeviceDependences DDeps; 3022 // Check if all the programming models agree we should not emit the host 3023 // action. Also, keep track of the offloading kinds employed. 3024 auto &OffloadKind = InputArgToOffloadKindMap[InputArg]; 3025 unsigned InactiveBuilders = 0u; 3026 unsigned IgnoringBuilders = 0u; 3027 for (auto *SB : SpecializedBuilders) { 3028 if (!SB->isValid()) { 3029 ++InactiveBuilders; 3030 continue; 3031 } 3032 3033 auto RetCode = 3034 SB->getDeviceDependences(DDeps, CurPhase, FinalPhase, Phases); 3035 3036 // If the builder explicitly says the host action should be ignored, 3037 // we need to increment the variable that tracks the builders that request 3038 // the host object to be ignored. 3039 if (RetCode == DeviceActionBuilder::ABRT_Ignore_Host) 3040 ++IgnoringBuilders; 3041 3042 // Unless the builder was inactive for this action, we have to record the 3043 // offload kind because the host will have to use it. 3044 if (RetCode != DeviceActionBuilder::ABRT_Inactive) 3045 OffloadKind |= SB->getAssociatedOffloadKind(); 3046 } 3047 3048 // If all builders agree that the host object should be ignored, just return 3049 // nullptr. 3050 if (IgnoringBuilders && 3051 SpecializedBuilders.size() == (InactiveBuilders + IgnoringBuilders)) 3052 return nullptr; 3053 3054 if (DDeps.getActions().empty()) 3055 return HostAction; 3056 3057 // We have dependences we need to bundle together. We use an offload action 3058 // for that. 3059 OffloadAction::HostDependence HDep( 3060 *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(), 3061 /*BoundArch=*/nullptr, DDeps); 3062 return C.MakeAction<OffloadAction>(HDep, DDeps); 3063 } 3064 3065 /// Generate an action that adds a host dependence to a device action. The 3066 /// results will be kept in this action builder. Return true if an error was 3067 /// found. 3068 bool addHostDependenceToDeviceActions(Action *&HostAction, 3069 const Arg *InputArg) { 3070 if (!IsValid) 3071 return true; 3072 3073 // If we are supporting bundling/unbundling and the current action is an 3074 // input action of non-source file, we replace the host action by the 3075 // unbundling action. The bundler tool has the logic to detect if an input 3076 // is a bundle or not and if the input is not a bundle it assumes it is a 3077 // host file. Therefore it is safe to create an unbundling action even if 3078 // the input is not a bundle. 3079 if (CanUseBundler && isa<InputAction>(HostAction) && 3080 InputArg->getOption().getKind() == llvm::opt::Option::InputClass && 3081 !types::isSrcFile(HostAction->getType())) { 3082 auto UnbundlingHostAction = 3083 C.MakeAction<OffloadUnbundlingJobAction>(HostAction); 3084 UnbundlingHostAction->registerDependentActionInfo( 3085 C.getSingleOffloadToolChain<Action::OFK_Host>(), 3086 /*BoundArch=*/StringRef(), Action::OFK_Host); 3087 HostAction = UnbundlingHostAction; 3088 } 3089 3090 assert(HostAction && "Invalid host action!"); 3091 3092 // Register the offload kinds that are used. 3093 auto &OffloadKind = InputArgToOffloadKindMap[InputArg]; 3094 for (auto *SB : SpecializedBuilders) { 3095 if (!SB->isValid()) 3096 continue; 3097 3098 auto RetCode = SB->addDeviceDepences(HostAction); 3099 3100 // Host dependences for device actions are not compatible with that same 3101 // action being ignored. 3102 assert(RetCode != DeviceActionBuilder::ABRT_Ignore_Host && 3103 "Host dependence not expected to be ignored.!"); 3104 3105 // Unless the builder was inactive for this action, we have to record the 3106 // offload kind because the host will have to use it. 3107 if (RetCode != DeviceActionBuilder::ABRT_Inactive) 3108 OffloadKind |= SB->getAssociatedOffloadKind(); 3109 } 3110 3111 // Do not use unbundler if the Host does not depend on device action. 3112 if (OffloadKind == Action::OFK_None && CanUseBundler) 3113 if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) 3114 HostAction = UA->getInputs().back(); 3115 3116 return false; 3117 } 3118 3119 /// Add the offloading top level actions to the provided action list. This 3120 /// function can replace the host action by a bundling action if the 3121 /// programming models allow it. 3122 bool appendTopLevelActions(ActionList &AL, Action *HostAction, 3123 const Arg *InputArg) { 3124 // Get the device actions to be appended. 3125 ActionList OffloadAL; 3126 for (auto *SB : SpecializedBuilders) { 3127 if (!SB->isValid()) 3128 continue; 3129 SB->appendTopLevelActions(OffloadAL); 3130 } 3131 3132 // If we can use the bundler, replace the host action by the bundling one in 3133 // the resulting list. Otherwise, just append the device actions. For 3134 // device only compilation, HostAction is a null pointer, therefore only do 3135 // this when HostAction is not a null pointer. 3136 if (CanUseBundler && HostAction && 3137 HostAction->getType() != types::TY_Nothing && !OffloadAL.empty()) { 3138 // Add the host action to the list in order to create the bundling action. 3139 OffloadAL.push_back(HostAction); 3140 3141 // We expect that the host action was just appended to the action list 3142 // before this method was called. 3143 assert(HostAction == AL.back() && "Host action not in the list??"); 3144 HostAction = C.MakeAction<OffloadBundlingJobAction>(OffloadAL); 3145 AL.back() = HostAction; 3146 } else 3147 AL.append(OffloadAL.begin(), OffloadAL.end()); 3148 3149 // Propagate to the current host action (if any) the offload information 3150 // associated with the current input. 3151 if (HostAction) 3152 HostAction->propagateHostOffloadInfo(InputArgToOffloadKindMap[InputArg], 3153 /*BoundArch=*/nullptr); 3154 return false; 3155 } 3156 3157 Action* makeHostLinkAction() { 3158 // Build a list of device linking actions. 3159 ActionList DeviceAL; 3160 for (DeviceActionBuilder *SB : SpecializedBuilders) { 3161 if (!SB->isValid()) 3162 continue; 3163 SB->appendLinkActions(DeviceAL); 3164 } 3165 3166 if (DeviceAL.empty()) 3167 return nullptr; 3168 3169 // Create wrapper bitcode from the result of device link actions and compile 3170 // it to an object which will be added to the host link command. 3171 auto *BC = C.MakeAction<OffloadWrapperJobAction>(DeviceAL, types::TY_LLVM_BC); 3172 auto *ASM = C.MakeAction<BackendJobAction>(BC, types::TY_PP_Asm); 3173 return C.MakeAction<AssembleJobAction>(ASM, types::TY_Object); 3174 } 3175 3176 /// Processes the host linker action. This currently consists of replacing it 3177 /// with an offload action if there are device link objects and propagate to 3178 /// the host action all the offload kinds used in the current compilation. The 3179 /// resulting action is returned. 3180 Action *processHostLinkAction(Action *HostAction) { 3181 // Add all the dependences from the device linking actions. 3182 OffloadAction::DeviceDependences DDeps; 3183 for (auto *SB : SpecializedBuilders) { 3184 if (!SB->isValid()) 3185 continue; 3186 3187 SB->appendLinkDependences(DDeps); 3188 } 3189 3190 // Calculate all the offload kinds used in the current compilation. 3191 unsigned ActiveOffloadKinds = 0u; 3192 for (auto &I : InputArgToOffloadKindMap) 3193 ActiveOffloadKinds |= I.second; 3194 3195 // If we don't have device dependencies, we don't have to create an offload 3196 // action. 3197 if (DDeps.getActions().empty()) { 3198 // Propagate all the active kinds to host action. Given that it is a link 3199 // action it is assumed to depend on all actions generated so far. 3200 HostAction->propagateHostOffloadInfo(ActiveOffloadKinds, 3201 /*BoundArch=*/nullptr); 3202 return HostAction; 3203 } 3204 3205 // Create the offload action with all dependences. When an offload action 3206 // is created the kinds are propagated to the host action, so we don't have 3207 // to do that explicitly here. 3208 OffloadAction::HostDependence HDep( 3209 *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(), 3210 /*BoundArch*/ nullptr, ActiveOffloadKinds); 3211 return C.MakeAction<OffloadAction>(HDep, DDeps); 3212 } 3213 }; 3214 } // anonymous namespace. 3215 3216 void Driver::handleArguments(Compilation &C, DerivedArgList &Args, 3217 const InputList &Inputs, 3218 ActionList &Actions) const { 3219 3220 // Ignore /Yc/Yu if both /Yc and /Yu passed but with different filenames. 3221 Arg *YcArg = Args.getLastArg(options::OPT__SLASH_Yc); 3222 Arg *YuArg = Args.getLastArg(options::OPT__SLASH_Yu); 3223 if (YcArg && YuArg && strcmp(YcArg->getValue(), YuArg->getValue()) != 0) { 3224 Diag(clang::diag::warn_drv_ycyu_different_arg_clang_cl); 3225 Args.eraseArg(options::OPT__SLASH_Yc); 3226 Args.eraseArg(options::OPT__SLASH_Yu); 3227 YcArg = YuArg = nullptr; 3228 } 3229 if (YcArg && Inputs.size() > 1) { 3230 Diag(clang::diag::warn_drv_yc_multiple_inputs_clang_cl); 3231 Args.eraseArg(options::OPT__SLASH_Yc); 3232 YcArg = nullptr; 3233 } 3234 3235 Arg *FinalPhaseArg; 3236 phases::ID FinalPhase = getFinalPhase(Args, &FinalPhaseArg); 3237 3238 if (FinalPhase == phases::Link) { 3239 if (Args.hasArg(options::OPT_emit_llvm)) 3240 Diag(clang::diag::err_drv_emit_llvm_link); 3241 if (IsCLMode() && LTOMode != LTOK_None && 3242 !Args.getLastArgValue(options::OPT_fuse_ld_EQ).equals_lower("lld")) 3243 Diag(clang::diag::err_drv_lto_without_lld); 3244 } 3245 3246 if (FinalPhase == phases::Preprocess || Args.hasArg(options::OPT__SLASH_Y_)) { 3247 // If only preprocessing or /Y- is used, all pch handling is disabled. 3248 // Rather than check for it everywhere, just remove clang-cl pch-related 3249 // flags here. 3250 Args.eraseArg(options::OPT__SLASH_Fp); 3251 Args.eraseArg(options::OPT__SLASH_Yc); 3252 Args.eraseArg(options::OPT__SLASH_Yu); 3253 YcArg = YuArg = nullptr; 3254 } 3255 3256 unsigned LastPLSize = 0; 3257 for (auto &I : Inputs) { 3258 types::ID InputType = I.first; 3259 const Arg *InputArg = I.second; 3260 3261 llvm::SmallVector<phases::ID, phases::MaxNumberOfPhases> PL; 3262 types::getCompilationPhases(InputType, PL); 3263 LastPLSize = PL.size(); 3264 3265 // If the first step comes after the final phase we are doing as part of 3266 // this compilation, warn the user about it. 3267 phases::ID InitialPhase = PL[0]; 3268 if (InitialPhase > FinalPhase) { 3269 if (InputArg->isClaimed()) 3270 continue; 3271 3272 // Claim here to avoid the more general unused warning. 3273 InputArg->claim(); 3274 3275 // Suppress all unused style warnings with -Qunused-arguments 3276 if (Args.hasArg(options::OPT_Qunused_arguments)) 3277 continue; 3278 3279 // Special case when final phase determined by binary name, rather than 3280 // by a command-line argument with a corresponding Arg. 3281 if (CCCIsCPP()) 3282 Diag(clang::diag::warn_drv_input_file_unused_by_cpp) 3283 << InputArg->getAsString(Args) << getPhaseName(InitialPhase); 3284 // Special case '-E' warning on a previously preprocessed file to make 3285 // more sense. 3286 else if (InitialPhase == phases::Compile && 3287 (Args.getLastArg(options::OPT__SLASH_EP, 3288 options::OPT__SLASH_P) || 3289 Args.getLastArg(options::OPT_E) || 3290 Args.getLastArg(options::OPT_M, options::OPT_MM)) && 3291 getPreprocessedType(InputType) == types::TY_INVALID) 3292 Diag(clang::diag::warn_drv_preprocessed_input_file_unused) 3293 << InputArg->getAsString(Args) << !!FinalPhaseArg 3294 << (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : ""); 3295 else 3296 Diag(clang::diag::warn_drv_input_file_unused) 3297 << InputArg->getAsString(Args) << getPhaseName(InitialPhase) 3298 << !!FinalPhaseArg 3299 << (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : ""); 3300 continue; 3301 } 3302 3303 if (YcArg) { 3304 // Add a separate precompile phase for the compile phase. 3305 if (FinalPhase >= phases::Compile) { 3306 const types::ID HeaderType = lookupHeaderTypeForSourceType(InputType); 3307 llvm::SmallVector<phases::ID, phases::MaxNumberOfPhases> PCHPL; 3308 types::getCompilationPhases(HeaderType, PCHPL); 3309 // Build the pipeline for the pch file. 3310 Action *ClangClPch = C.MakeAction<InputAction>(*InputArg, HeaderType); 3311 for (phases::ID Phase : PCHPL) 3312 ClangClPch = ConstructPhaseAction(C, Args, Phase, ClangClPch); 3313 assert(ClangClPch); 3314 Actions.push_back(ClangClPch); 3315 // The driver currently exits after the first failed command. This 3316 // relies on that behavior, to make sure if the pch generation fails, 3317 // the main compilation won't run. 3318 // FIXME: If the main compilation fails, the PCH generation should 3319 // probably not be considered successful either. 3320 } 3321 } 3322 } 3323 3324 // If we are linking, claim any options which are obviously only used for 3325 // compilation. 3326 // FIXME: Understand why the last Phase List length is used here. 3327 if (FinalPhase == phases::Link && LastPLSize == 1) { 3328 Args.ClaimAllArgs(options::OPT_CompileOnly_Group); 3329 Args.ClaimAllArgs(options::OPT_cl_compile_Group); 3330 } 3331 } 3332 3333 void Driver::BuildActions(Compilation &C, DerivedArgList &Args, 3334 const InputList &Inputs, ActionList &Actions) const { 3335 llvm::PrettyStackTraceString CrashInfo("Building compilation actions"); 3336 3337 if (!SuppressMissingInputWarning && Inputs.empty()) { 3338 Diag(clang::diag::err_drv_no_input_files); 3339 return; 3340 } 3341 3342 // Reject -Z* at the top level, these options should never have been exposed 3343 // by gcc. 3344 if (Arg *A = Args.getLastArg(options::OPT_Z_Joined)) 3345 Diag(clang::diag::err_drv_use_of_Z_option) << A->getAsString(Args); 3346 3347 // Diagnose misuse of /Fo. 3348 if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fo)) { 3349 StringRef V = A->getValue(); 3350 if (Inputs.size() > 1 && !V.empty() && 3351 !llvm::sys::path::is_separator(V.back())) { 3352 // Check whether /Fo tries to name an output file for multiple inputs. 3353 Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources) 3354 << A->getSpelling() << V; 3355 Args.eraseArg(options::OPT__SLASH_Fo); 3356 } 3357 } 3358 3359 // Diagnose misuse of /Fa. 3360 if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fa)) { 3361 StringRef V = A->getValue(); 3362 if (Inputs.size() > 1 && !V.empty() && 3363 !llvm::sys::path::is_separator(V.back())) { 3364 // Check whether /Fa tries to name an asm file for multiple inputs. 3365 Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources) 3366 << A->getSpelling() << V; 3367 Args.eraseArg(options::OPT__SLASH_Fa); 3368 } 3369 } 3370 3371 // Diagnose misuse of /o. 3372 if (Arg *A = Args.getLastArg(options::OPT__SLASH_o)) { 3373 if (A->getValue()[0] == '\0') { 3374 // It has to have a value. 3375 Diag(clang::diag::err_drv_missing_argument) << A->getSpelling() << 1; 3376 Args.eraseArg(options::OPT__SLASH_o); 3377 } 3378 } 3379 3380 handleArguments(C, Args, Inputs, Actions); 3381 3382 // Builder to be used to build offloading actions. 3383 OffloadingActionBuilder OffloadBuilder(C, Args, Inputs); 3384 3385 // Construct the actions to perform. 3386 HeaderModulePrecompileJobAction *HeaderModuleAction = nullptr; 3387 ActionList LinkerInputs; 3388 ActionList MergerInputs; 3389 3390 for (auto &I : Inputs) { 3391 types::ID InputType = I.first; 3392 const Arg *InputArg = I.second; 3393 3394 llvm::SmallVector<phases::ID, phases::MaxNumberOfPhases> PL; 3395 types::getCompilationPhases(*this, Args, InputType, PL); 3396 if (PL.empty()) 3397 continue; 3398 3399 llvm::SmallVector<phases::ID, phases::MaxNumberOfPhases> FullPL; 3400 types::getCompilationPhases(InputType, FullPL); 3401 3402 // Build the pipeline for this file. 3403 Action *Current = C.MakeAction<InputAction>(*InputArg, InputType); 3404 3405 // Use the current host action in any of the offloading actions, if 3406 // required. 3407 if (OffloadBuilder.addHostDependenceToDeviceActions(Current, InputArg)) 3408 break; 3409 3410 for (phases::ID Phase : PL) { 3411 3412 // Add any offload action the host action depends on. 3413 Current = OffloadBuilder.addDeviceDependencesToHostAction( 3414 Current, InputArg, Phase, PL.back(), FullPL); 3415 if (!Current) 3416 break; 3417 3418 // Queue linker inputs. 3419 if (Phase == phases::Link) { 3420 assert(Phase == PL.back() && "linking must be final compilation step."); 3421 LinkerInputs.push_back(Current); 3422 Current = nullptr; 3423 break; 3424 } 3425 3426 // TODO: Consider removing this because the merged may not end up being 3427 // the final Phase in the pipeline. Perhaps the merged could just merge 3428 // and then pass an artifact of some sort to the Link Phase. 3429 // Queue merger inputs. 3430 if (Phase == phases::IfsMerge) { 3431 assert(Phase == PL.back() && "merging must be final compilation step."); 3432 MergerInputs.push_back(Current); 3433 Current = nullptr; 3434 break; 3435 } 3436 3437 // Each precompiled header file after a module file action is a module 3438 // header of that same module file, rather than being compiled to a 3439 // separate PCH. 3440 if (Phase == phases::Precompile && HeaderModuleAction && 3441 getPrecompiledType(InputType) == types::TY_PCH) { 3442 HeaderModuleAction->addModuleHeaderInput(Current); 3443 Current = nullptr; 3444 break; 3445 } 3446 3447 // FIXME: Should we include any prior module file outputs as inputs of 3448 // later actions in the same command line? 3449 3450 // Otherwise construct the appropriate action. 3451 Action *NewCurrent = ConstructPhaseAction(C, Args, Phase, Current); 3452 3453 // We didn't create a new action, so we will just move to the next phase. 3454 if (NewCurrent == Current) 3455 continue; 3456 3457 if (auto *HMA = dyn_cast<HeaderModulePrecompileJobAction>(NewCurrent)) 3458 HeaderModuleAction = HMA; 3459 3460 Current = NewCurrent; 3461 3462 // Use the current host action in any of the offloading actions, if 3463 // required. 3464 if (OffloadBuilder.addHostDependenceToDeviceActions(Current, InputArg)) 3465 break; 3466 3467 if (Current->getType() == types::TY_Nothing) 3468 break; 3469 } 3470 3471 // If we ended with something, add to the output list. 3472 if (Current) 3473 Actions.push_back(Current); 3474 3475 // Add any top level actions generated for offloading. 3476 OffloadBuilder.appendTopLevelActions(Actions, Current, InputArg); 3477 } 3478 3479 // Add a link action if necessary. 3480 if (!LinkerInputs.empty()) { 3481 if (Action *Wrapper = OffloadBuilder.makeHostLinkAction()) 3482 LinkerInputs.push_back(Wrapper); 3483 Action *LA = C.MakeAction<LinkJobAction>(LinkerInputs, types::TY_Image); 3484 LA = OffloadBuilder.processHostLinkAction(LA); 3485 Actions.push_back(LA); 3486 } 3487 3488 // Add an interface stubs merge action if necessary. 3489 if (!MergerInputs.empty()) 3490 Actions.push_back( 3491 C.MakeAction<IfsMergeJobAction>(MergerInputs, types::TY_Image)); 3492 3493 // If --print-supported-cpus, -mcpu=? or -mtune=? is specified, build a custom 3494 // Compile phase that prints out supported cpu models and quits. 3495 if (Arg *A = Args.getLastArg(options::OPT_print_supported_cpus)) { 3496 // Use the -mcpu=? flag as the dummy input to cc1. 3497 Actions.clear(); 3498 Action *InputAc = C.MakeAction<InputAction>(*A, types::TY_C); 3499 Actions.push_back( 3500 C.MakeAction<PrecompileJobAction>(InputAc, types::TY_Nothing)); 3501 for (auto &I : Inputs) 3502 I.second->claim(); 3503 } 3504 3505 // Claim ignored clang-cl options. 3506 Args.ClaimAllArgs(options::OPT_cl_ignored_Group); 3507 3508 // Claim --cuda-host-only and --cuda-compile-host-device, which may be passed 3509 // to non-CUDA compilations and should not trigger warnings there. 3510 Args.ClaimAllArgs(options::OPT_cuda_host_only); 3511 Args.ClaimAllArgs(options::OPT_cuda_compile_host_device); 3512 } 3513 3514 Action *Driver::ConstructPhaseAction( 3515 Compilation &C, const ArgList &Args, phases::ID Phase, Action *Input, 3516 Action::OffloadKind TargetDeviceOffloadKind) const { 3517 llvm::PrettyStackTraceString CrashInfo("Constructing phase actions"); 3518 3519 // Some types skip the assembler phase (e.g., llvm-bc), but we can't 3520 // encode this in the steps because the intermediate type depends on 3521 // arguments. Just special case here. 3522 if (Phase == phases::Assemble && Input->getType() != types::TY_PP_Asm) 3523 return Input; 3524 3525 // Build the appropriate action. 3526 switch (Phase) { 3527 case phases::Link: 3528 llvm_unreachable("link action invalid here."); 3529 case phases::IfsMerge: 3530 llvm_unreachable("ifsmerge action invalid here."); 3531 case phases::Preprocess: { 3532 types::ID OutputTy; 3533 // -M and -MM specify the dependency file name by altering the output type, 3534 // -if -MD and -MMD are not specified. 3535 if (Args.hasArg(options::OPT_M, options::OPT_MM) && 3536 !Args.hasArg(options::OPT_MD, options::OPT_MMD)) { 3537 OutputTy = types::TY_Dependencies; 3538 } else { 3539 OutputTy = Input->getType(); 3540 if (!Args.hasFlag(options::OPT_frewrite_includes, 3541 options::OPT_fno_rewrite_includes, false) && 3542 !Args.hasFlag(options::OPT_frewrite_imports, 3543 options::OPT_fno_rewrite_imports, false) && 3544 !CCGenDiagnostics) 3545 OutputTy = types::getPreprocessedType(OutputTy); 3546 assert(OutputTy != types::TY_INVALID && 3547 "Cannot preprocess this input type!"); 3548 } 3549 return C.MakeAction<PreprocessJobAction>(Input, OutputTy); 3550 } 3551 case phases::Precompile: { 3552 types::ID OutputTy = getPrecompiledType(Input->getType()); 3553 assert(OutputTy != types::TY_INVALID && 3554 "Cannot precompile this input type!"); 3555 3556 // If we're given a module name, precompile header file inputs as a 3557 // module, not as a precompiled header. 3558 const char *ModName = nullptr; 3559 if (OutputTy == types::TY_PCH) { 3560 if (Arg *A = Args.getLastArg(options::OPT_fmodule_name_EQ)) 3561 ModName = A->getValue(); 3562 if (ModName) 3563 OutputTy = types::TY_ModuleFile; 3564 } 3565 3566 if (Args.hasArg(options::OPT_fsyntax_only)) { 3567 // Syntax checks should not emit a PCH file 3568 OutputTy = types::TY_Nothing; 3569 } 3570 3571 if (ModName) 3572 return C.MakeAction<HeaderModulePrecompileJobAction>(Input, OutputTy, 3573 ModName); 3574 return C.MakeAction<PrecompileJobAction>(Input, OutputTy); 3575 } 3576 case phases::Compile: { 3577 if (Args.hasArg(options::OPT_fsyntax_only)) 3578 return C.MakeAction<CompileJobAction>(Input, types::TY_Nothing); 3579 if (Args.hasArg(options::OPT_rewrite_objc)) 3580 return C.MakeAction<CompileJobAction>(Input, types::TY_RewrittenObjC); 3581 if (Args.hasArg(options::OPT_rewrite_legacy_objc)) 3582 return C.MakeAction<CompileJobAction>(Input, 3583 types::TY_RewrittenLegacyObjC); 3584 if (Args.hasArg(options::OPT__analyze)) 3585 return C.MakeAction<AnalyzeJobAction>(Input, types::TY_Plist); 3586 if (Args.hasArg(options::OPT__migrate)) 3587 return C.MakeAction<MigrateJobAction>(Input, types::TY_Remap); 3588 if (Args.hasArg(options::OPT_emit_ast)) 3589 return C.MakeAction<CompileJobAction>(Input, types::TY_AST); 3590 if (Args.hasArg(options::OPT_module_file_info)) 3591 return C.MakeAction<CompileJobAction>(Input, types::TY_ModuleFile); 3592 if (Args.hasArg(options::OPT_verify_pch)) 3593 return C.MakeAction<VerifyPCHJobAction>(Input, types::TY_Nothing); 3594 if (Args.hasArg(options::OPT_emit_interface_stubs)) 3595 return C.MakeAction<CompileJobAction>(Input, types::TY_IFS_CPP); 3596 return C.MakeAction<CompileJobAction>(Input, types::TY_LLVM_BC); 3597 } 3598 case phases::Backend: { 3599 if (isUsingLTO() && TargetDeviceOffloadKind == Action::OFK_None) { 3600 types::ID Output = 3601 Args.hasArg(options::OPT_S) ? types::TY_LTO_IR : types::TY_LTO_BC; 3602 return C.MakeAction<BackendJobAction>(Input, Output); 3603 } 3604 if (Args.hasArg(options::OPT_emit_llvm)) { 3605 types::ID Output = 3606 Args.hasArg(options::OPT_S) ? types::TY_LLVM_IR : types::TY_LLVM_BC; 3607 return C.MakeAction<BackendJobAction>(Input, Output); 3608 } 3609 return C.MakeAction<BackendJobAction>(Input, types::TY_PP_Asm); 3610 } 3611 case phases::Assemble: 3612 return C.MakeAction<AssembleJobAction>(std::move(Input), types::TY_Object); 3613 } 3614 3615 llvm_unreachable("invalid phase in ConstructPhaseAction"); 3616 } 3617 3618 void Driver::BuildJobs(Compilation &C) const { 3619 llvm::PrettyStackTraceString CrashInfo("Building compilation jobs"); 3620 3621 Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o); 3622 3623 // It is an error to provide a -o option if we are making multiple output 3624 // files. 3625 if (FinalOutput) { 3626 unsigned NumOutputs = 0; 3627 for (const Action *A : C.getActions()) 3628 if (A->getType() != types::TY_Nothing) 3629 ++NumOutputs; 3630 3631 if (NumOutputs > 1) { 3632 Diag(clang::diag::err_drv_output_argument_with_multiple_files); 3633 FinalOutput = nullptr; 3634 } 3635 } 3636 3637 // Collect the list of architectures. 3638 llvm::StringSet<> ArchNames; 3639 if (C.getDefaultToolChain().getTriple().isOSBinFormatMachO()) 3640 for (const Arg *A : C.getArgs()) 3641 if (A->getOption().matches(options::OPT_arch)) 3642 ArchNames.insert(A->getValue()); 3643 3644 // Set of (Action, canonical ToolChain triple) pairs we've built jobs for. 3645 std::map<std::pair<const Action *, std::string>, InputInfo> CachedResults; 3646 for (Action *A : C.getActions()) { 3647 // If we are linking an image for multiple archs then the linker wants 3648 // -arch_multiple and -final_output <final image name>. Unfortunately, this 3649 // doesn't fit in cleanly because we have to pass this information down. 3650 // 3651 // FIXME: This is a hack; find a cleaner way to integrate this into the 3652 // process. 3653 const char *LinkingOutput = nullptr; 3654 if (isa<LipoJobAction>(A)) { 3655 if (FinalOutput) 3656 LinkingOutput = FinalOutput->getValue(); 3657 else 3658 LinkingOutput = getDefaultImageName(); 3659 } 3660 3661 BuildJobsForAction(C, A, &C.getDefaultToolChain(), 3662 /*BoundArch*/ StringRef(), 3663 /*AtTopLevel*/ true, 3664 /*MultipleArchs*/ ArchNames.size() > 1, 3665 /*LinkingOutput*/ LinkingOutput, CachedResults, 3666 /*TargetDeviceOffloadKind*/ Action::OFK_None); 3667 } 3668 3669 // If the user passed -Qunused-arguments or there were errors, don't warn 3670 // about any unused arguments. 3671 if (Diags.hasErrorOccurred() || 3672 C.getArgs().hasArg(options::OPT_Qunused_arguments)) 3673 return; 3674 3675 // Claim -### here. 3676 (void)C.getArgs().hasArg(options::OPT__HASH_HASH_HASH); 3677 3678 // Claim --driver-mode, --rsp-quoting, it was handled earlier. 3679 (void)C.getArgs().hasArg(options::OPT_driver_mode); 3680 (void)C.getArgs().hasArg(options::OPT_rsp_quoting); 3681 3682 for (Arg *A : C.getArgs()) { 3683 // FIXME: It would be nice to be able to send the argument to the 3684 // DiagnosticsEngine, so that extra values, position, and so on could be 3685 // printed. 3686 if (!A->isClaimed()) { 3687 if (A->getOption().hasFlag(options::NoArgumentUnused)) 3688 continue; 3689 3690 // Suppress the warning automatically if this is just a flag, and it is an 3691 // instance of an argument we already claimed. 3692 const Option &Opt = A->getOption(); 3693 if (Opt.getKind() == Option::FlagClass) { 3694 bool DuplicateClaimed = false; 3695 3696 for (const Arg *AA : C.getArgs().filtered(&Opt)) { 3697 if (AA->isClaimed()) { 3698 DuplicateClaimed = true; 3699 break; 3700 } 3701 } 3702 3703 if (DuplicateClaimed) 3704 continue; 3705 } 3706 3707 // In clang-cl, don't mention unknown arguments here since they have 3708 // already been warned about. 3709 if (!IsCLMode() || !A->getOption().matches(options::OPT_UNKNOWN)) 3710 Diag(clang::diag::warn_drv_unused_argument) 3711 << A->getAsString(C.getArgs()); 3712 } 3713 } 3714 } 3715 3716 namespace { 3717 /// Utility class to control the collapse of dependent actions and select the 3718 /// tools accordingly. 3719 class ToolSelector final { 3720 /// The tool chain this selector refers to. 3721 const ToolChain &TC; 3722 3723 /// The compilation this selector refers to. 3724 const Compilation &C; 3725 3726 /// The base action this selector refers to. 3727 const JobAction *BaseAction; 3728 3729 /// Set to true if the current toolchain refers to host actions. 3730 bool IsHostSelector; 3731 3732 /// Set to true if save-temps and embed-bitcode functionalities are active. 3733 bool SaveTemps; 3734 bool EmbedBitcode; 3735 3736 /// Get previous dependent action or null if that does not exist. If 3737 /// \a CanBeCollapsed is false, that action must be legal to collapse or 3738 /// null will be returned. 3739 const JobAction *getPrevDependentAction(const ActionList &Inputs, 3740 ActionList &SavedOffloadAction, 3741 bool CanBeCollapsed = true) { 3742 // An option can be collapsed only if it has a single input. 3743 if (Inputs.size() != 1) 3744 return nullptr; 3745 3746 Action *CurAction = *Inputs.begin(); 3747 if (CanBeCollapsed && 3748 !CurAction->isCollapsingWithNextDependentActionLegal()) 3749 return nullptr; 3750 3751 // If the input action is an offload action. Look through it and save any 3752 // offload action that can be dropped in the event of a collapse. 3753 if (auto *OA = dyn_cast<OffloadAction>(CurAction)) { 3754 // If the dependent action is a device action, we will attempt to collapse 3755 // only with other device actions. Otherwise, we would do the same but 3756 // with host actions only. 3757 if (!IsHostSelector) { 3758 if (OA->hasSingleDeviceDependence(/*DoNotConsiderHostActions=*/true)) { 3759 CurAction = 3760 OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true); 3761 if (CanBeCollapsed && 3762 !CurAction->isCollapsingWithNextDependentActionLegal()) 3763 return nullptr; 3764 SavedOffloadAction.push_back(OA); 3765 return dyn_cast<JobAction>(CurAction); 3766 } 3767 } else if (OA->hasHostDependence()) { 3768 CurAction = OA->getHostDependence(); 3769 if (CanBeCollapsed && 3770 !CurAction->isCollapsingWithNextDependentActionLegal()) 3771 return nullptr; 3772 SavedOffloadAction.push_back(OA); 3773 return dyn_cast<JobAction>(CurAction); 3774 } 3775 return nullptr; 3776 } 3777 3778 return dyn_cast<JobAction>(CurAction); 3779 } 3780 3781 /// Return true if an assemble action can be collapsed. 3782 bool canCollapseAssembleAction() const { 3783 return TC.useIntegratedAs() && !SaveTemps && 3784 !C.getArgs().hasArg(options::OPT_via_file_asm) && 3785 !C.getArgs().hasArg(options::OPT__SLASH_FA) && 3786 !C.getArgs().hasArg(options::OPT__SLASH_Fa); 3787 } 3788 3789 /// Return true if a preprocessor action can be collapsed. 3790 bool canCollapsePreprocessorAction() const { 3791 return !C.getArgs().hasArg(options::OPT_no_integrated_cpp) && 3792 !C.getArgs().hasArg(options::OPT_traditional_cpp) && !SaveTemps && 3793 !C.getArgs().hasArg(options::OPT_rewrite_objc); 3794 } 3795 3796 /// Struct that relates an action with the offload actions that would be 3797 /// collapsed with it. 3798 struct JobActionInfo final { 3799 /// The action this info refers to. 3800 const JobAction *JA = nullptr; 3801 /// The offload actions we need to take care off if this action is 3802 /// collapsed. 3803 ActionList SavedOffloadAction; 3804 }; 3805 3806 /// Append collapsed offload actions from the give nnumber of elements in the 3807 /// action info array. 3808 static void AppendCollapsedOffloadAction(ActionList &CollapsedOffloadAction, 3809 ArrayRef<JobActionInfo> &ActionInfo, 3810 unsigned ElementNum) { 3811 assert(ElementNum <= ActionInfo.size() && "Invalid number of elements."); 3812 for (unsigned I = 0; I < ElementNum; ++I) 3813 CollapsedOffloadAction.append(ActionInfo[I].SavedOffloadAction.begin(), 3814 ActionInfo[I].SavedOffloadAction.end()); 3815 } 3816 3817 /// Functions that attempt to perform the combining. They detect if that is 3818 /// legal, and if so they update the inputs \a Inputs and the offload action 3819 /// that were collapsed in \a CollapsedOffloadAction. A tool that deals with 3820 /// the combined action is returned. If the combining is not legal or if the 3821 /// tool does not exist, null is returned. 3822 /// Currently three kinds of collapsing are supported: 3823 /// - Assemble + Backend + Compile; 3824 /// - Assemble + Backend ; 3825 /// - Backend + Compile. 3826 const Tool * 3827 combineAssembleBackendCompile(ArrayRef<JobActionInfo> ActionInfo, 3828 ActionList &Inputs, 3829 ActionList &CollapsedOffloadAction) { 3830 if (ActionInfo.size() < 3 || !canCollapseAssembleAction()) 3831 return nullptr; 3832 auto *AJ = dyn_cast<AssembleJobAction>(ActionInfo[0].JA); 3833 auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[1].JA); 3834 auto *CJ = dyn_cast<CompileJobAction>(ActionInfo[2].JA); 3835 if (!AJ || !BJ || !CJ) 3836 return nullptr; 3837 3838 // Get compiler tool. 3839 const Tool *T = TC.SelectTool(*CJ); 3840 if (!T) 3841 return nullptr; 3842 3843 // When using -fembed-bitcode, it is required to have the same tool (clang) 3844 // for both CompilerJA and BackendJA. Otherwise, combine two stages. 3845 if (EmbedBitcode) { 3846 const Tool *BT = TC.SelectTool(*BJ); 3847 if (BT == T) 3848 return nullptr; 3849 } 3850 3851 if (!T->hasIntegratedAssembler()) 3852 return nullptr; 3853 3854 Inputs = CJ->getInputs(); 3855 AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo, 3856 /*NumElements=*/3); 3857 return T; 3858 } 3859 const Tool *combineAssembleBackend(ArrayRef<JobActionInfo> ActionInfo, 3860 ActionList &Inputs, 3861 ActionList &CollapsedOffloadAction) { 3862 if (ActionInfo.size() < 2 || !canCollapseAssembleAction()) 3863 return nullptr; 3864 auto *AJ = dyn_cast<AssembleJobAction>(ActionInfo[0].JA); 3865 auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[1].JA); 3866 if (!AJ || !BJ) 3867 return nullptr; 3868 3869 // Get backend tool. 3870 const Tool *T = TC.SelectTool(*BJ); 3871 if (!T) 3872 return nullptr; 3873 3874 if (!T->hasIntegratedAssembler()) 3875 return nullptr; 3876 3877 Inputs = BJ->getInputs(); 3878 AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo, 3879 /*NumElements=*/2); 3880 return T; 3881 } 3882 const Tool *combineBackendCompile(ArrayRef<JobActionInfo> ActionInfo, 3883 ActionList &Inputs, 3884 ActionList &CollapsedOffloadAction) { 3885 if (ActionInfo.size() < 2) 3886 return nullptr; 3887 auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[0].JA); 3888 auto *CJ = dyn_cast<CompileJobAction>(ActionInfo[1].JA); 3889 if (!BJ || !CJ) 3890 return nullptr; 3891 3892 // Check if the initial input (to the compile job or its predessor if one 3893 // exists) is LLVM bitcode. In that case, no preprocessor step is required 3894 // and we can still collapse the compile and backend jobs when we have 3895 // -save-temps. I.e. there is no need for a separate compile job just to 3896 // emit unoptimized bitcode. 3897 bool InputIsBitcode = true; 3898 for (size_t i = 1; i < ActionInfo.size(); i++) 3899 if (ActionInfo[i].JA->getType() != types::TY_LLVM_BC && 3900 ActionInfo[i].JA->getType() != types::TY_LTO_BC) { 3901 InputIsBitcode = false; 3902 break; 3903 } 3904 if (!InputIsBitcode && !canCollapsePreprocessorAction()) 3905 return nullptr; 3906 3907 // Get compiler tool. 3908 const Tool *T = TC.SelectTool(*CJ); 3909 if (!T) 3910 return nullptr; 3911 3912 if (T->canEmitIR() && ((SaveTemps && !InputIsBitcode) || EmbedBitcode)) 3913 return nullptr; 3914 3915 Inputs = CJ->getInputs(); 3916 AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo, 3917 /*NumElements=*/2); 3918 return T; 3919 } 3920 3921 /// Updates the inputs if the obtained tool supports combining with 3922 /// preprocessor action, and the current input is indeed a preprocessor 3923 /// action. If combining results in the collapse of offloading actions, those 3924 /// are appended to \a CollapsedOffloadAction. 3925 void combineWithPreprocessor(const Tool *T, ActionList &Inputs, 3926 ActionList &CollapsedOffloadAction) { 3927 if (!T || !canCollapsePreprocessorAction() || !T->hasIntegratedCPP()) 3928 return; 3929 3930 // Attempt to get a preprocessor action dependence. 3931 ActionList PreprocessJobOffloadActions; 3932 ActionList NewInputs; 3933 for (Action *A : Inputs) { 3934 auto *PJ = getPrevDependentAction({A}, PreprocessJobOffloadActions); 3935 if (!PJ || !isa<PreprocessJobAction>(PJ)) { 3936 NewInputs.push_back(A); 3937 continue; 3938 } 3939 3940 // This is legal to combine. Append any offload action we found and add the 3941 // current input to preprocessor inputs. 3942 CollapsedOffloadAction.append(PreprocessJobOffloadActions.begin(), 3943 PreprocessJobOffloadActions.end()); 3944 NewInputs.append(PJ->input_begin(), PJ->input_end()); 3945 } 3946 Inputs = NewInputs; 3947 } 3948 3949 public: 3950 ToolSelector(const JobAction *BaseAction, const ToolChain &TC, 3951 const Compilation &C, bool SaveTemps, bool EmbedBitcode) 3952 : TC(TC), C(C), BaseAction(BaseAction), SaveTemps(SaveTemps), 3953 EmbedBitcode(EmbedBitcode) { 3954 assert(BaseAction && "Invalid base action."); 3955 IsHostSelector = BaseAction->getOffloadingDeviceKind() == Action::OFK_None; 3956 } 3957 3958 /// Check if a chain of actions can be combined and return the tool that can 3959 /// handle the combination of actions. The pointer to the current inputs \a 3960 /// Inputs and the list of offload actions \a CollapsedOffloadActions 3961 /// connected to collapsed actions are updated accordingly. The latter enables 3962 /// the caller of the selector to process them afterwards instead of just 3963 /// dropping them. If no suitable tool is found, null will be returned. 3964 const Tool *getTool(ActionList &Inputs, 3965 ActionList &CollapsedOffloadAction) { 3966 // 3967 // Get the largest chain of actions that we could combine. 3968 // 3969 3970 SmallVector<JobActionInfo, 5> ActionChain(1); 3971 ActionChain.back().JA = BaseAction; 3972 while (ActionChain.back().JA) { 3973 const Action *CurAction = ActionChain.back().JA; 3974 3975 // Grow the chain by one element. 3976 ActionChain.resize(ActionChain.size() + 1); 3977 JobActionInfo &AI = ActionChain.back(); 3978 3979 // Attempt to fill it with the 3980 AI.JA = 3981 getPrevDependentAction(CurAction->getInputs(), AI.SavedOffloadAction); 3982 } 3983 3984 // Pop the last action info as it could not be filled. 3985 ActionChain.pop_back(); 3986 3987 // 3988 // Attempt to combine actions. If all combining attempts failed, just return 3989 // the tool of the provided action. At the end we attempt to combine the 3990 // action with any preprocessor action it may depend on. 3991 // 3992 3993 const Tool *T = combineAssembleBackendCompile(ActionChain, Inputs, 3994 CollapsedOffloadAction); 3995 if (!T) 3996 T = combineAssembleBackend(ActionChain, Inputs, CollapsedOffloadAction); 3997 if (!T) 3998 T = combineBackendCompile(ActionChain, Inputs, CollapsedOffloadAction); 3999 if (!T) { 4000 Inputs = BaseAction->getInputs(); 4001 T = TC.SelectTool(*BaseAction); 4002 } 4003 4004 combineWithPreprocessor(T, Inputs, CollapsedOffloadAction); 4005 return T; 4006 } 4007 }; 4008 } 4009 4010 /// Return a string that uniquely identifies the result of a job. The bound arch 4011 /// is not necessarily represented in the toolchain's triple -- for example, 4012 /// armv7 and armv7s both map to the same triple -- so we need both in our map. 4013 /// Also, we need to add the offloading device kind, as the same tool chain can 4014 /// be used for host and device for some programming models, e.g. OpenMP. 4015 static std::string GetTriplePlusArchString(const ToolChain *TC, 4016 StringRef BoundArch, 4017 Action::OffloadKind OffloadKind) { 4018 std::string TriplePlusArch = TC->getTriple().normalize(); 4019 if (!BoundArch.empty()) { 4020 TriplePlusArch += "-"; 4021 TriplePlusArch += BoundArch; 4022 } 4023 TriplePlusArch += "-"; 4024 TriplePlusArch += Action::GetOffloadKindName(OffloadKind); 4025 return TriplePlusArch; 4026 } 4027 4028 InputInfo Driver::BuildJobsForAction( 4029 Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch, 4030 bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput, 4031 std::map<std::pair<const Action *, std::string>, InputInfo> &CachedResults, 4032 Action::OffloadKind TargetDeviceOffloadKind) const { 4033 std::pair<const Action *, std::string> ActionTC = { 4034 A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)}; 4035 auto CachedResult = CachedResults.find(ActionTC); 4036 if (CachedResult != CachedResults.end()) { 4037 return CachedResult->second; 4038 } 4039 InputInfo Result = BuildJobsForActionNoCache( 4040 C, A, TC, BoundArch, AtTopLevel, MultipleArchs, LinkingOutput, 4041 CachedResults, TargetDeviceOffloadKind); 4042 CachedResults[ActionTC] = Result; 4043 return Result; 4044 } 4045 4046 InputInfo Driver::BuildJobsForActionNoCache( 4047 Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch, 4048 bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput, 4049 std::map<std::pair<const Action *, std::string>, InputInfo> &CachedResults, 4050 Action::OffloadKind TargetDeviceOffloadKind) const { 4051 llvm::PrettyStackTraceString CrashInfo("Building compilation jobs"); 4052 4053 InputInfoList OffloadDependencesInputInfo; 4054 bool BuildingForOffloadDevice = TargetDeviceOffloadKind != Action::OFK_None; 4055 if (const OffloadAction *OA = dyn_cast<OffloadAction>(A)) { 4056 // The 'Darwin' toolchain is initialized only when its arguments are 4057 // computed. Get the default arguments for OFK_None to ensure that 4058 // initialization is performed before processing the offload action. 4059 // FIXME: Remove when darwin's toolchain is initialized during construction. 4060 C.getArgsForToolChain(TC, BoundArch, Action::OFK_None); 4061 4062 // The offload action is expected to be used in four different situations. 4063 // 4064 // a) Set a toolchain/architecture/kind for a host action: 4065 // Host Action 1 -> OffloadAction -> Host Action 2 4066 // 4067 // b) Set a toolchain/architecture/kind for a device action; 4068 // Device Action 1 -> OffloadAction -> Device Action 2 4069 // 4070 // c) Specify a device dependence to a host action; 4071 // Device Action 1 _ 4072 // \ 4073 // Host Action 1 ---> OffloadAction -> Host Action 2 4074 // 4075 // d) Specify a host dependence to a device action. 4076 // Host Action 1 _ 4077 // \ 4078 // Device Action 1 ---> OffloadAction -> Device Action 2 4079 // 4080 // For a) and b), we just return the job generated for the dependence. For 4081 // c) and d) we override the current action with the host/device dependence 4082 // if the current toolchain is host/device and set the offload dependences 4083 // info with the jobs obtained from the device/host dependence(s). 4084 4085 // If there is a single device option, just generate the job for it. 4086 if (OA->hasSingleDeviceDependence()) { 4087 InputInfo DevA; 4088 OA->doOnEachDeviceDependence([&](Action *DepA, const ToolChain *DepTC, 4089 const char *DepBoundArch) { 4090 DevA = 4091 BuildJobsForAction(C, DepA, DepTC, DepBoundArch, AtTopLevel, 4092 /*MultipleArchs*/ !!DepBoundArch, LinkingOutput, 4093 CachedResults, DepA->getOffloadingDeviceKind()); 4094 }); 4095 return DevA; 4096 } 4097 4098 // If 'Action 2' is host, we generate jobs for the device dependences and 4099 // override the current action with the host dependence. Otherwise, we 4100 // generate the host dependences and override the action with the device 4101 // dependence. The dependences can't therefore be a top-level action. 4102 OA->doOnEachDependence( 4103 /*IsHostDependence=*/BuildingForOffloadDevice, 4104 [&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) { 4105 OffloadDependencesInputInfo.push_back(BuildJobsForAction( 4106 C, DepA, DepTC, DepBoundArch, /*AtTopLevel=*/false, 4107 /*MultipleArchs*/ !!DepBoundArch, LinkingOutput, CachedResults, 4108 DepA->getOffloadingDeviceKind())); 4109 }); 4110 4111 A = BuildingForOffloadDevice 4112 ? OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true) 4113 : OA->getHostDependence(); 4114 } 4115 4116 if (const InputAction *IA = dyn_cast<InputAction>(A)) { 4117 // FIXME: It would be nice to not claim this here; maybe the old scheme of 4118 // just using Args was better? 4119 const Arg &Input = IA->getInputArg(); 4120 Input.claim(); 4121 if (Input.getOption().matches(options::OPT_INPUT)) { 4122 const char *Name = Input.getValue(); 4123 return InputInfo(A, Name, /* _BaseInput = */ Name); 4124 } 4125 return InputInfo(A, &Input, /* _BaseInput = */ ""); 4126 } 4127 4128 if (const BindArchAction *BAA = dyn_cast<BindArchAction>(A)) { 4129 const ToolChain *TC; 4130 StringRef ArchName = BAA->getArchName(); 4131 4132 if (!ArchName.empty()) 4133 TC = &getToolChain(C.getArgs(), 4134 computeTargetTriple(*this, TargetTriple, 4135 C.getArgs(), ArchName)); 4136 else 4137 TC = &C.getDefaultToolChain(); 4138 4139 return BuildJobsForAction(C, *BAA->input_begin(), TC, ArchName, AtTopLevel, 4140 MultipleArchs, LinkingOutput, CachedResults, 4141 TargetDeviceOffloadKind); 4142 } 4143 4144 4145 ActionList Inputs = A->getInputs(); 4146 4147 const JobAction *JA = cast<JobAction>(A); 4148 ActionList CollapsedOffloadActions; 4149 4150 ToolSelector TS(JA, *TC, C, isSaveTempsEnabled(), 4151 embedBitcodeInObject() && !isUsingLTO()); 4152 const Tool *T = TS.getTool(Inputs, CollapsedOffloadActions); 4153 4154 if (!T) 4155 return InputInfo(); 4156 4157 // If we've collapsed action list that contained OffloadAction we 4158 // need to build jobs for host/device-side inputs it may have held. 4159 for (const auto *OA : CollapsedOffloadActions) 4160 cast<OffloadAction>(OA)->doOnEachDependence( 4161 /*IsHostDependence=*/BuildingForOffloadDevice, 4162 [&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) { 4163 OffloadDependencesInputInfo.push_back(BuildJobsForAction( 4164 C, DepA, DepTC, DepBoundArch, /* AtTopLevel */ false, 4165 /*MultipleArchs=*/!!DepBoundArch, LinkingOutput, CachedResults, 4166 DepA->getOffloadingDeviceKind())); 4167 }); 4168 4169 // Only use pipes when there is exactly one input. 4170 InputInfoList InputInfos; 4171 for (const Action *Input : Inputs) { 4172 // Treat dsymutil and verify sub-jobs as being at the top-level too, they 4173 // shouldn't get temporary output names. 4174 // FIXME: Clean this up. 4175 bool SubJobAtTopLevel = 4176 AtTopLevel && (isa<DsymutilJobAction>(A) || isa<VerifyJobAction>(A)); 4177 InputInfos.push_back(BuildJobsForAction( 4178 C, Input, TC, BoundArch, SubJobAtTopLevel, MultipleArchs, LinkingOutput, 4179 CachedResults, A->getOffloadingDeviceKind())); 4180 } 4181 4182 // Always use the first input as the base input. 4183 const char *BaseInput = InputInfos[0].getBaseInput(); 4184 4185 // ... except dsymutil actions, which use their actual input as the base 4186 // input. 4187 if (JA->getType() == types::TY_dSYM) 4188 BaseInput = InputInfos[0].getFilename(); 4189 4190 // ... and in header module compilations, which use the module name. 4191 if (auto *ModuleJA = dyn_cast<HeaderModulePrecompileJobAction>(JA)) 4192 BaseInput = ModuleJA->getModuleName(); 4193 4194 // Append outputs of offload device jobs to the input list 4195 if (!OffloadDependencesInputInfo.empty()) 4196 InputInfos.append(OffloadDependencesInputInfo.begin(), 4197 OffloadDependencesInputInfo.end()); 4198 4199 // Set the effective triple of the toolchain for the duration of this job. 4200 llvm::Triple EffectiveTriple; 4201 const ToolChain &ToolTC = T->getToolChain(); 4202 const ArgList &Args = 4203 C.getArgsForToolChain(TC, BoundArch, A->getOffloadingDeviceKind()); 4204 if (InputInfos.size() != 1) { 4205 EffectiveTriple = llvm::Triple(ToolTC.ComputeEffectiveClangTriple(Args)); 4206 } else { 4207 // Pass along the input type if it can be unambiguously determined. 4208 EffectiveTriple = llvm::Triple( 4209 ToolTC.ComputeEffectiveClangTriple(Args, InputInfos[0].getType())); 4210 } 4211 RegisterEffectiveTriple TripleRAII(ToolTC, EffectiveTriple); 4212 4213 // Determine the place to write output to, if any. 4214 InputInfo Result; 4215 InputInfoList UnbundlingResults; 4216 if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(JA)) { 4217 // If we have an unbundling job, we need to create results for all the 4218 // outputs. We also update the results cache so that other actions using 4219 // this unbundling action can get the right results. 4220 for (auto &UI : UA->getDependentActionsInfo()) { 4221 assert(UI.DependentOffloadKind != Action::OFK_None && 4222 "Unbundling with no offloading??"); 4223 4224 // Unbundling actions are never at the top level. When we generate the 4225 // offloading prefix, we also do that for the host file because the 4226 // unbundling action does not change the type of the output which can 4227 // cause a overwrite. 4228 std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix( 4229 UI.DependentOffloadKind, 4230 UI.DependentToolChain->getTriple().normalize(), 4231 /*CreatePrefixForHost=*/true); 4232 auto CurI = InputInfo( 4233 UA, 4234 GetNamedOutputPath(C, *UA, BaseInput, UI.DependentBoundArch, 4235 /*AtTopLevel=*/false, 4236 MultipleArchs || 4237 UI.DependentOffloadKind == Action::OFK_HIP, 4238 OffloadingPrefix), 4239 BaseInput); 4240 // Save the unbundling result. 4241 UnbundlingResults.push_back(CurI); 4242 4243 // Get the unique string identifier for this dependence and cache the 4244 // result. 4245 StringRef Arch; 4246 if (TargetDeviceOffloadKind == Action::OFK_HIP) { 4247 if (UI.DependentOffloadKind == Action::OFK_Host) 4248 Arch = StringRef(); 4249 else 4250 Arch = UI.DependentBoundArch; 4251 } else 4252 Arch = BoundArch; 4253 4254 CachedResults[{A, GetTriplePlusArchString(UI.DependentToolChain, Arch, 4255 UI.DependentOffloadKind)}] = 4256 CurI; 4257 } 4258 4259 // Now that we have all the results generated, select the one that should be 4260 // returned for the current depending action. 4261 std::pair<const Action *, std::string> ActionTC = { 4262 A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)}; 4263 assert(CachedResults.find(ActionTC) != CachedResults.end() && 4264 "Result does not exist??"); 4265 Result = CachedResults[ActionTC]; 4266 } else if (JA->getType() == types::TY_Nothing) 4267 Result = InputInfo(A, BaseInput); 4268 else { 4269 // We only have to generate a prefix for the host if this is not a top-level 4270 // action. 4271 std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix( 4272 A->getOffloadingDeviceKind(), TC->getTriple().normalize(), 4273 /*CreatePrefixForHost=*/!!A->getOffloadingHostActiveKinds() && 4274 !AtTopLevel); 4275 if (isa<OffloadWrapperJobAction>(JA)) { 4276 OffloadingPrefix += "-wrapper"; 4277 if (Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o)) 4278 BaseInput = FinalOutput->getValue(); 4279 else 4280 BaseInput = getDefaultImageName(); 4281 } 4282 Result = InputInfo(A, GetNamedOutputPath(C, *JA, BaseInput, BoundArch, 4283 AtTopLevel, MultipleArchs, 4284 OffloadingPrefix), 4285 BaseInput); 4286 } 4287 4288 if (CCCPrintBindings && !CCGenDiagnostics) { 4289 llvm::errs() << "# \"" << T->getToolChain().getTripleString() << '"' 4290 << " - \"" << T->getName() << "\", inputs: ["; 4291 for (unsigned i = 0, e = InputInfos.size(); i != e; ++i) { 4292 llvm::errs() << InputInfos[i].getAsString(); 4293 if (i + 1 != e) 4294 llvm::errs() << ", "; 4295 } 4296 if (UnbundlingResults.empty()) 4297 llvm::errs() << "], output: " << Result.getAsString() << "\n"; 4298 else { 4299 llvm::errs() << "], outputs: ["; 4300 for (unsigned i = 0, e = UnbundlingResults.size(); i != e; ++i) { 4301 llvm::errs() << UnbundlingResults[i].getAsString(); 4302 if (i + 1 != e) 4303 llvm::errs() << ", "; 4304 } 4305 llvm::errs() << "] \n"; 4306 } 4307 } else { 4308 if (UnbundlingResults.empty()) 4309 T->ConstructJob( 4310 C, *JA, Result, InputInfos, 4311 C.getArgsForToolChain(TC, BoundArch, JA->getOffloadingDeviceKind()), 4312 LinkingOutput); 4313 else 4314 T->ConstructJobMultipleOutputs( 4315 C, *JA, UnbundlingResults, InputInfos, 4316 C.getArgsForToolChain(TC, BoundArch, JA->getOffloadingDeviceKind()), 4317 LinkingOutput); 4318 } 4319 return Result; 4320 } 4321 4322 const char *Driver::getDefaultImageName() const { 4323 llvm::Triple Target(llvm::Triple::normalize(TargetTriple)); 4324 return Target.isOSWindows() ? "a.exe" : "a.out"; 4325 } 4326 4327 /// Create output filename based on ArgValue, which could either be a 4328 /// full filename, filename without extension, or a directory. If ArgValue 4329 /// does not provide a filename, then use BaseName, and use the extension 4330 /// suitable for FileType. 4331 static const char *MakeCLOutputFilename(const ArgList &Args, StringRef ArgValue, 4332 StringRef BaseName, 4333 types::ID FileType) { 4334 SmallString<128> Filename = ArgValue; 4335 4336 if (ArgValue.empty()) { 4337 // If the argument is empty, output to BaseName in the current dir. 4338 Filename = BaseName; 4339 } else if (llvm::sys::path::is_separator(Filename.back())) { 4340 // If the argument is a directory, output to BaseName in that dir. 4341 llvm::sys::path::append(Filename, BaseName); 4342 } 4343 4344 if (!llvm::sys::path::has_extension(ArgValue)) { 4345 // If the argument didn't provide an extension, then set it. 4346 const char *Extension = types::getTypeTempSuffix(FileType, true); 4347 4348 if (FileType == types::TY_Image && 4349 Args.hasArg(options::OPT__SLASH_LD, options::OPT__SLASH_LDd)) { 4350 // The output file is a dll. 4351 Extension = "dll"; 4352 } 4353 4354 llvm::sys::path::replace_extension(Filename, Extension); 4355 } 4356 4357 return Args.MakeArgString(Filename.c_str()); 4358 } 4359 4360 const char *Driver::GetNamedOutputPath(Compilation &C, const JobAction &JA, 4361 const char *BaseInput, 4362 StringRef BoundArch, bool AtTopLevel, 4363 bool MultipleArchs, 4364 StringRef OffloadingPrefix) const { 4365 llvm::PrettyStackTraceString CrashInfo("Computing output path"); 4366 // Output to a user requested destination? 4367 if (AtTopLevel && !isa<DsymutilJobAction>(JA) && !isa<VerifyJobAction>(JA)) { 4368 if (Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o)) 4369 return C.addResultFile(FinalOutput->getValue(), &JA); 4370 } 4371 4372 // For /P, preprocess to file named after BaseInput. 4373 if (C.getArgs().hasArg(options::OPT__SLASH_P)) { 4374 assert(AtTopLevel && isa<PreprocessJobAction>(JA)); 4375 StringRef BaseName = llvm::sys::path::filename(BaseInput); 4376 StringRef NameArg; 4377 if (Arg *A = C.getArgs().getLastArg(options::OPT__SLASH_Fi)) 4378 NameArg = A->getValue(); 4379 return C.addResultFile( 4380 MakeCLOutputFilename(C.getArgs(), NameArg, BaseName, types::TY_PP_C), 4381 &JA); 4382 } 4383 4384 // Default to writing to stdout? 4385 if (AtTopLevel && !CCGenDiagnostics && isa<PreprocessJobAction>(JA)) 4386 return "-"; 4387 4388 // Is this the assembly listing for /FA? 4389 if (JA.getType() == types::TY_PP_Asm && 4390 (C.getArgs().hasArg(options::OPT__SLASH_FA) || 4391 C.getArgs().hasArg(options::OPT__SLASH_Fa))) { 4392 // Use /Fa and the input filename to determine the asm file name. 4393 StringRef BaseName = llvm::sys::path::filename(BaseInput); 4394 StringRef FaValue = C.getArgs().getLastArgValue(options::OPT__SLASH_Fa); 4395 return C.addResultFile( 4396 MakeCLOutputFilename(C.getArgs(), FaValue, BaseName, JA.getType()), 4397 &JA); 4398 } 4399 4400 // Output to a temporary file? 4401 if ((!AtTopLevel && !isSaveTempsEnabled() && 4402 !C.getArgs().hasArg(options::OPT__SLASH_Fo)) || 4403 CCGenDiagnostics) { 4404 StringRef Name = llvm::sys::path::filename(BaseInput); 4405 std::pair<StringRef, StringRef> Split = Name.split('.'); 4406 SmallString<128> TmpName; 4407 const char *Suffix = types::getTypeTempSuffix(JA.getType(), IsCLMode()); 4408 Arg *A = C.getArgs().getLastArg(options::OPT_fcrash_diagnostics_dir); 4409 if (CCGenDiagnostics && A) { 4410 SmallString<128> CrashDirectory(A->getValue()); 4411 if (!getVFS().exists(CrashDirectory)) 4412 llvm::sys::fs::create_directories(CrashDirectory); 4413 llvm::sys::path::append(CrashDirectory, Split.first); 4414 const char *Middle = Suffix ? "-%%%%%%." : "-%%%%%%"; 4415 std::error_code EC = llvm::sys::fs::createUniqueFile( 4416 CrashDirectory + Middle + Suffix, TmpName); 4417 if (EC) { 4418 Diag(clang::diag::err_unable_to_make_temp) << EC.message(); 4419 return ""; 4420 } 4421 } else { 4422 TmpName = GetTemporaryPath(Split.first, Suffix); 4423 } 4424 return C.addTempFile(C.getArgs().MakeArgString(TmpName)); 4425 } 4426 4427 SmallString<128> BasePath(BaseInput); 4428 StringRef BaseName; 4429 4430 // Dsymutil actions should use the full path. 4431 if (isa<DsymutilJobAction>(JA) || isa<VerifyJobAction>(JA)) 4432 BaseName = BasePath; 4433 else 4434 BaseName = llvm::sys::path::filename(BasePath); 4435 4436 // Determine what the derived output name should be. 4437 const char *NamedOutput; 4438 4439 if ((JA.getType() == types::TY_Object || JA.getType() == types::TY_LTO_BC) && 4440 C.getArgs().hasArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o)) { 4441 // The /Fo or /o flag decides the object filename. 4442 StringRef Val = 4443 C.getArgs() 4444 .getLastArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o) 4445 ->getValue(); 4446 NamedOutput = 4447 MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Object); 4448 } else if (JA.getType() == types::TY_Image && 4449 C.getArgs().hasArg(options::OPT__SLASH_Fe, 4450 options::OPT__SLASH_o)) { 4451 // The /Fe or /o flag names the linked file. 4452 StringRef Val = 4453 C.getArgs() 4454 .getLastArg(options::OPT__SLASH_Fe, options::OPT__SLASH_o) 4455 ->getValue(); 4456 NamedOutput = 4457 MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Image); 4458 } else if (JA.getType() == types::TY_Image) { 4459 if (IsCLMode()) { 4460 // clang-cl uses BaseName for the executable name. 4461 NamedOutput = 4462 MakeCLOutputFilename(C.getArgs(), "", BaseName, types::TY_Image); 4463 } else { 4464 SmallString<128> Output(getDefaultImageName()); 4465 // HIP image for device compilation with -fno-gpu-rdc is per compilation 4466 // unit. 4467 bool IsHIPNoRDC = JA.getOffloadingDeviceKind() == Action::OFK_HIP && 4468 !C.getArgs().hasFlag(options::OPT_fgpu_rdc, 4469 options::OPT_fno_gpu_rdc, false); 4470 if (IsHIPNoRDC) { 4471 Output = BaseName; 4472 llvm::sys::path::replace_extension(Output, ""); 4473 } 4474 Output += OffloadingPrefix; 4475 if (MultipleArchs && !BoundArch.empty()) { 4476 Output += "-"; 4477 Output.append(BoundArch); 4478 } 4479 if (IsHIPNoRDC) 4480 Output += ".out"; 4481 NamedOutput = C.getArgs().MakeArgString(Output.c_str()); 4482 } 4483 } else if (JA.getType() == types::TY_PCH && IsCLMode()) { 4484 NamedOutput = C.getArgs().MakeArgString(GetClPchPath(C, BaseName)); 4485 } else { 4486 const char *Suffix = types::getTypeTempSuffix(JA.getType(), IsCLMode()); 4487 assert(Suffix && "All types used for output should have a suffix."); 4488 4489 std::string::size_type End = std::string::npos; 4490 if (!types::appendSuffixForType(JA.getType())) 4491 End = BaseName.rfind('.'); 4492 SmallString<128> Suffixed(BaseName.substr(0, End)); 4493 Suffixed += OffloadingPrefix; 4494 if (MultipleArchs && !BoundArch.empty()) { 4495 Suffixed += "-"; 4496 Suffixed.append(BoundArch); 4497 } 4498 // When using both -save-temps and -emit-llvm, use a ".tmp.bc" suffix for 4499 // the unoptimized bitcode so that it does not get overwritten by the ".bc" 4500 // optimized bitcode output. 4501 if (!AtTopLevel && C.getArgs().hasArg(options::OPT_emit_llvm) && 4502 JA.getType() == types::TY_LLVM_BC) 4503 Suffixed += ".tmp"; 4504 Suffixed += '.'; 4505 Suffixed += Suffix; 4506 NamedOutput = C.getArgs().MakeArgString(Suffixed.c_str()); 4507 } 4508 4509 // Prepend object file path if -save-temps=obj 4510 if (!AtTopLevel && isSaveTempsObj() && C.getArgs().hasArg(options::OPT_o) && 4511 JA.getType() != types::TY_PCH) { 4512 Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o); 4513 SmallString<128> TempPath(FinalOutput->getValue()); 4514 llvm::sys::path::remove_filename(TempPath); 4515 StringRef OutputFileName = llvm::sys::path::filename(NamedOutput); 4516 llvm::sys::path::append(TempPath, OutputFileName); 4517 NamedOutput = C.getArgs().MakeArgString(TempPath.c_str()); 4518 } 4519 4520 // If we're saving temps and the temp file conflicts with the input file, 4521 // then avoid overwriting input file. 4522 if (!AtTopLevel && isSaveTempsEnabled() && NamedOutput == BaseName) { 4523 bool SameFile = false; 4524 SmallString<256> Result; 4525 llvm::sys::fs::current_path(Result); 4526 llvm::sys::path::append(Result, BaseName); 4527 llvm::sys::fs::equivalent(BaseInput, Result.c_str(), SameFile); 4528 // Must share the same path to conflict. 4529 if (SameFile) { 4530 StringRef Name = llvm::sys::path::filename(BaseInput); 4531 std::pair<StringRef, StringRef> Split = Name.split('.'); 4532 std::string TmpName = GetTemporaryPath( 4533 Split.first, types::getTypeTempSuffix(JA.getType(), IsCLMode())); 4534 return C.addTempFile(C.getArgs().MakeArgString(TmpName)); 4535 } 4536 } 4537 4538 // As an annoying special case, PCH generation doesn't strip the pathname. 4539 if (JA.getType() == types::TY_PCH && !IsCLMode()) { 4540 llvm::sys::path::remove_filename(BasePath); 4541 if (BasePath.empty()) 4542 BasePath = NamedOutput; 4543 else 4544 llvm::sys::path::append(BasePath, NamedOutput); 4545 return C.addResultFile(C.getArgs().MakeArgString(BasePath.c_str()), &JA); 4546 } else { 4547 return C.addResultFile(NamedOutput, &JA); 4548 } 4549 } 4550 4551 std::string Driver::GetFilePath(StringRef Name, const ToolChain &TC) const { 4552 // Search for Name in a list of paths. 4553 auto SearchPaths = [&](const llvm::SmallVectorImpl<std::string> &P) 4554 -> llvm::Optional<std::string> { 4555 // Respect a limited subset of the '-Bprefix' functionality in GCC by 4556 // attempting to use this prefix when looking for file paths. 4557 for (const auto &Dir : P) { 4558 if (Dir.empty()) 4559 continue; 4560 SmallString<128> P(Dir[0] == '=' ? SysRoot + Dir.substr(1) : Dir); 4561 llvm::sys::path::append(P, Name); 4562 if (llvm::sys::fs::exists(Twine(P))) 4563 return P.str().str(); 4564 } 4565 return None; 4566 }; 4567 4568 if (auto P = SearchPaths(PrefixDirs)) 4569 return *P; 4570 4571 SmallString<128> R(ResourceDir); 4572 llvm::sys::path::append(R, Name); 4573 if (llvm::sys::fs::exists(Twine(R))) 4574 return R.str(); 4575 4576 SmallString<128> P(TC.getCompilerRTPath()); 4577 llvm::sys::path::append(P, Name); 4578 if (llvm::sys::fs::exists(Twine(P))) 4579 return P.str(); 4580 4581 SmallString<128> D(Dir); 4582 llvm::sys::path::append(D, "..", Name); 4583 if (llvm::sys::fs::exists(Twine(D))) 4584 return D.str(); 4585 4586 if (auto P = SearchPaths(TC.getLibraryPaths())) 4587 return *P; 4588 4589 if (auto P = SearchPaths(TC.getFilePaths())) 4590 return *P; 4591 4592 return Name; 4593 } 4594 4595 void Driver::generatePrefixedToolNames( 4596 StringRef Tool, const ToolChain &TC, 4597 SmallVectorImpl<std::string> &Names) const { 4598 // FIXME: Needs a better variable than TargetTriple 4599 Names.emplace_back((TargetTriple + "-" + Tool).str()); 4600 Names.emplace_back(Tool); 4601 4602 // Allow the discovery of tools prefixed with LLVM's default target triple. 4603 std::string DefaultTargetTriple = llvm::sys::getDefaultTargetTriple(); 4604 if (DefaultTargetTriple != TargetTriple) 4605 Names.emplace_back((DefaultTargetTriple + "-" + Tool).str()); 4606 } 4607 4608 static bool ScanDirForExecutable(SmallString<128> &Dir, 4609 ArrayRef<std::string> Names) { 4610 for (const auto &Name : Names) { 4611 llvm::sys::path::append(Dir, Name); 4612 if (llvm::sys::fs::can_execute(Twine(Dir))) 4613 return true; 4614 llvm::sys::path::remove_filename(Dir); 4615 } 4616 return false; 4617 } 4618 4619 std::string Driver::GetProgramPath(StringRef Name, const ToolChain &TC) const { 4620 SmallVector<std::string, 2> TargetSpecificExecutables; 4621 generatePrefixedToolNames(Name, TC, TargetSpecificExecutables); 4622 4623 // Respect a limited subset of the '-Bprefix' functionality in GCC by 4624 // attempting to use this prefix when looking for program paths. 4625 for (const auto &PrefixDir : PrefixDirs) { 4626 if (llvm::sys::fs::is_directory(PrefixDir)) { 4627 SmallString<128> P(PrefixDir); 4628 if (ScanDirForExecutable(P, TargetSpecificExecutables)) 4629 return P.str(); 4630 } else { 4631 SmallString<128> P((PrefixDir + Name).str()); 4632 if (llvm::sys::fs::can_execute(Twine(P))) 4633 return P.str(); 4634 } 4635 } 4636 4637 const ToolChain::path_list &List = TC.getProgramPaths(); 4638 for (const auto &Path : List) { 4639 SmallString<128> P(Path); 4640 if (ScanDirForExecutable(P, TargetSpecificExecutables)) 4641 return P.str(); 4642 } 4643 4644 // If all else failed, search the path. 4645 for (const auto &TargetSpecificExecutable : TargetSpecificExecutables) 4646 if (llvm::ErrorOr<std::string> P = 4647 llvm::sys::findProgramByName(TargetSpecificExecutable)) 4648 return *P; 4649 4650 return Name; 4651 } 4652 4653 std::string Driver::GetTemporaryPath(StringRef Prefix, StringRef Suffix) const { 4654 SmallString<128> Path; 4655 std::error_code EC = llvm::sys::fs::createTemporaryFile(Prefix, Suffix, Path); 4656 if (EC) { 4657 Diag(clang::diag::err_unable_to_make_temp) << EC.message(); 4658 return ""; 4659 } 4660 4661 return Path.str(); 4662 } 4663 4664 std::string Driver::GetTemporaryDirectory(StringRef Prefix) const { 4665 SmallString<128> Path; 4666 std::error_code EC = llvm::sys::fs::createUniqueDirectory(Prefix, Path); 4667 if (EC) { 4668 Diag(clang::diag::err_unable_to_make_temp) << EC.message(); 4669 return ""; 4670 } 4671 4672 return Path.str(); 4673 } 4674 4675 std::string Driver::GetClPchPath(Compilation &C, StringRef BaseName) const { 4676 SmallString<128> Output; 4677 if (Arg *FpArg = C.getArgs().getLastArg(options::OPT__SLASH_Fp)) { 4678 // FIXME: If anybody needs it, implement this obscure rule: 4679 // "If you specify a directory without a file name, the default file name 4680 // is VCx0.pch., where x is the major version of Visual C++ in use." 4681 Output = FpArg->getValue(); 4682 4683 // "If you do not specify an extension as part of the path name, an 4684 // extension of .pch is assumed. " 4685 if (!llvm::sys::path::has_extension(Output)) 4686 Output += ".pch"; 4687 } else { 4688 if (Arg *YcArg = C.getArgs().getLastArg(options::OPT__SLASH_Yc)) 4689 Output = YcArg->getValue(); 4690 if (Output.empty()) 4691 Output = BaseName; 4692 llvm::sys::path::replace_extension(Output, ".pch"); 4693 } 4694 return Output.str(); 4695 } 4696 4697 const ToolChain &Driver::getToolChain(const ArgList &Args, 4698 const llvm::Triple &Target) const { 4699 4700 auto &TC = ToolChains[Target.str()]; 4701 if (!TC) { 4702 switch (Target.getOS()) { 4703 case llvm::Triple::AIX: 4704 TC = std::make_unique<toolchains::AIX>(*this, Target, Args); 4705 break; 4706 case llvm::Triple::Haiku: 4707 TC = std::make_unique<toolchains::Haiku>(*this, Target, Args); 4708 break; 4709 case llvm::Triple::Ananas: 4710 TC = std::make_unique<toolchains::Ananas>(*this, Target, Args); 4711 break; 4712 case llvm::Triple::CloudABI: 4713 TC = std::make_unique<toolchains::CloudABI>(*this, Target, Args); 4714 break; 4715 case llvm::Triple::Darwin: 4716 case llvm::Triple::MacOSX: 4717 case llvm::Triple::IOS: 4718 case llvm::Triple::TvOS: 4719 case llvm::Triple::WatchOS: 4720 TC = std::make_unique<toolchains::DarwinClang>(*this, Target, Args); 4721 break; 4722 case llvm::Triple::DragonFly: 4723 TC = std::make_unique<toolchains::DragonFly>(*this, Target, Args); 4724 break; 4725 case llvm::Triple::OpenBSD: 4726 TC = std::make_unique<toolchains::OpenBSD>(*this, Target, Args); 4727 break; 4728 case llvm::Triple::NetBSD: 4729 TC = std::make_unique<toolchains::NetBSD>(*this, Target, Args); 4730 break; 4731 case llvm::Triple::FreeBSD: 4732 TC = std::make_unique<toolchains::FreeBSD>(*this, Target, Args); 4733 break; 4734 case llvm::Triple::Minix: 4735 TC = std::make_unique<toolchains::Minix>(*this, Target, Args); 4736 break; 4737 case llvm::Triple::Linux: 4738 case llvm::Triple::ELFIAMCU: 4739 if (Target.getArch() == llvm::Triple::hexagon) 4740 TC = std::make_unique<toolchains::HexagonToolChain>(*this, Target, 4741 Args); 4742 else if ((Target.getVendor() == llvm::Triple::MipsTechnologies) && 4743 !Target.hasEnvironment()) 4744 TC = std::make_unique<toolchains::MipsLLVMToolChain>(*this, Target, 4745 Args); 4746 else if (Target.getArch() == llvm::Triple::ppc || 4747 Target.getArch() == llvm::Triple::ppc64 || 4748 Target.getArch() == llvm::Triple::ppc64le) 4749 TC = std::make_unique<toolchains::PPCLinuxToolChain>(*this, Target, 4750 Args); 4751 else 4752 TC = std::make_unique<toolchains::Linux>(*this, Target, Args); 4753 break; 4754 case llvm::Triple::NaCl: 4755 TC = std::make_unique<toolchains::NaClToolChain>(*this, Target, Args); 4756 break; 4757 case llvm::Triple::Fuchsia: 4758 TC = std::make_unique<toolchains::Fuchsia>(*this, Target, Args); 4759 break; 4760 case llvm::Triple::Solaris: 4761 TC = std::make_unique<toolchains::Solaris>(*this, Target, Args); 4762 break; 4763 case llvm::Triple::AMDHSA: 4764 case llvm::Triple::AMDPAL: 4765 case llvm::Triple::Mesa3D: 4766 TC = std::make_unique<toolchains::AMDGPUToolChain>(*this, Target, Args); 4767 break; 4768 case llvm::Triple::Win32: 4769 switch (Target.getEnvironment()) { 4770 default: 4771 if (Target.isOSBinFormatELF()) 4772 TC = std::make_unique<toolchains::Generic_ELF>(*this, Target, Args); 4773 else if (Target.isOSBinFormatMachO()) 4774 TC = std::make_unique<toolchains::MachO>(*this, Target, Args); 4775 else 4776 TC = std::make_unique<toolchains::Generic_GCC>(*this, Target, Args); 4777 break; 4778 case llvm::Triple::GNU: 4779 TC = std::make_unique<toolchains::MinGW>(*this, Target, Args); 4780 break; 4781 case llvm::Triple::Itanium: 4782 TC = std::make_unique<toolchains::CrossWindowsToolChain>(*this, Target, 4783 Args); 4784 break; 4785 case llvm::Triple::MSVC: 4786 case llvm::Triple::UnknownEnvironment: 4787 if (Args.getLastArgValue(options::OPT_fuse_ld_EQ) 4788 .startswith_lower("bfd")) 4789 TC = std::make_unique<toolchains::CrossWindowsToolChain>( 4790 *this, Target, Args); 4791 else 4792 TC = 4793 std::make_unique<toolchains::MSVCToolChain>(*this, Target, Args); 4794 break; 4795 } 4796 break; 4797 case llvm::Triple::PS4: 4798 TC = std::make_unique<toolchains::PS4CPU>(*this, Target, Args); 4799 break; 4800 case llvm::Triple::Contiki: 4801 TC = std::make_unique<toolchains::Contiki>(*this, Target, Args); 4802 break; 4803 case llvm::Triple::Hurd: 4804 TC = std::make_unique<toolchains::Hurd>(*this, Target, Args); 4805 break; 4806 default: 4807 // Of these targets, Hexagon is the only one that might have 4808 // an OS of Linux, in which case it got handled above already. 4809 switch (Target.getArch()) { 4810 case llvm::Triple::tce: 4811 TC = std::make_unique<toolchains::TCEToolChain>(*this, Target, Args); 4812 break; 4813 case llvm::Triple::tcele: 4814 TC = std::make_unique<toolchains::TCELEToolChain>(*this, Target, Args); 4815 break; 4816 case llvm::Triple::hexagon: 4817 TC = std::make_unique<toolchains::HexagonToolChain>(*this, Target, 4818 Args); 4819 break; 4820 case llvm::Triple::lanai: 4821 TC = std::make_unique<toolchains::LanaiToolChain>(*this, Target, Args); 4822 break; 4823 case llvm::Triple::xcore: 4824 TC = std::make_unique<toolchains::XCoreToolChain>(*this, Target, Args); 4825 break; 4826 case llvm::Triple::wasm32: 4827 case llvm::Triple::wasm64: 4828 TC = std::make_unique<toolchains::WebAssembly>(*this, Target, Args); 4829 break; 4830 case llvm::Triple::avr: 4831 TC = std::make_unique<toolchains::AVRToolChain>(*this, Target, Args); 4832 break; 4833 case llvm::Triple::msp430: 4834 TC = 4835 std::make_unique<toolchains::MSP430ToolChain>(*this, Target, Args); 4836 break; 4837 case llvm::Triple::riscv32: 4838 case llvm::Triple::riscv64: 4839 TC = std::make_unique<toolchains::RISCVToolChain>(*this, Target, Args); 4840 break; 4841 default: 4842 if (Target.getVendor() == llvm::Triple::Myriad) 4843 TC = std::make_unique<toolchains::MyriadToolChain>(*this, Target, 4844 Args); 4845 else if (toolchains::BareMetal::handlesTarget(Target)) 4846 TC = std::make_unique<toolchains::BareMetal>(*this, Target, Args); 4847 else if (Target.isOSBinFormatELF()) 4848 TC = std::make_unique<toolchains::Generic_ELF>(*this, Target, Args); 4849 else if (Target.isOSBinFormatMachO()) 4850 TC = std::make_unique<toolchains::MachO>(*this, Target, Args); 4851 else 4852 TC = std::make_unique<toolchains::Generic_GCC>(*this, Target, Args); 4853 } 4854 } 4855 } 4856 4857 // Intentionally omitted from the switch above: llvm::Triple::CUDA. CUDA 4858 // compiles always need two toolchains, the CUDA toolchain and the host 4859 // toolchain. So the only valid way to create a CUDA toolchain is via 4860 // CreateOffloadingDeviceToolChains. 4861 4862 return *TC; 4863 } 4864 4865 bool Driver::ShouldUseClangCompiler(const JobAction &JA) const { 4866 // Say "no" if there is not exactly one input of a type clang understands. 4867 if (JA.size() != 1 || 4868 !types::isAcceptedByClang((*JA.input_begin())->getType())) 4869 return false; 4870 4871 // And say "no" if this is not a kind of action clang understands. 4872 if (!isa<PreprocessJobAction>(JA) && !isa<PrecompileJobAction>(JA) && 4873 !isa<CompileJobAction>(JA) && !isa<BackendJobAction>(JA)) 4874 return false; 4875 4876 return true; 4877 } 4878 4879 /// GetReleaseVersion - Parse (([0-9]+)(.([0-9]+)(.([0-9]+)?))?)? and return the 4880 /// grouped values as integers. Numbers which are not provided are set to 0. 4881 /// 4882 /// \return True if the entire string was parsed (9.2), or all groups were 4883 /// parsed (10.3.5extrastuff). 4884 bool Driver::GetReleaseVersion(StringRef Str, unsigned &Major, unsigned &Minor, 4885 unsigned &Micro, bool &HadExtra) { 4886 HadExtra = false; 4887 4888 Major = Minor = Micro = 0; 4889 if (Str.empty()) 4890 return false; 4891 4892 if (Str.consumeInteger(10, Major)) 4893 return false; 4894 if (Str.empty()) 4895 return true; 4896 if (Str[0] != '.') 4897 return false; 4898 4899 Str = Str.drop_front(1); 4900 4901 if (Str.consumeInteger(10, Minor)) 4902 return false; 4903 if (Str.empty()) 4904 return true; 4905 if (Str[0] != '.') 4906 return false; 4907 Str = Str.drop_front(1); 4908 4909 if (Str.consumeInteger(10, Micro)) 4910 return false; 4911 if (!Str.empty()) 4912 HadExtra = true; 4913 return true; 4914 } 4915 4916 /// Parse digits from a string \p Str and fulfill \p Digits with 4917 /// the parsed numbers. This method assumes that the max number of 4918 /// digits to look for is equal to Digits.size(). 4919 /// 4920 /// \return True if the entire string was parsed and there are 4921 /// no extra characters remaining at the end. 4922 bool Driver::GetReleaseVersion(StringRef Str, 4923 MutableArrayRef<unsigned> Digits) { 4924 if (Str.empty()) 4925 return false; 4926 4927 unsigned CurDigit = 0; 4928 while (CurDigit < Digits.size()) { 4929 unsigned Digit; 4930 if (Str.consumeInteger(10, Digit)) 4931 return false; 4932 Digits[CurDigit] = Digit; 4933 if (Str.empty()) 4934 return true; 4935 if (Str[0] != '.') 4936 return false; 4937 Str = Str.drop_front(1); 4938 CurDigit++; 4939 } 4940 4941 // More digits than requested, bail out... 4942 return false; 4943 } 4944 4945 std::pair<unsigned, unsigned> 4946 Driver::getIncludeExcludeOptionFlagMasks(bool IsClCompatMode) const { 4947 unsigned IncludedFlagsBitmask = 0; 4948 unsigned ExcludedFlagsBitmask = options::NoDriverOption; 4949 4950 if (IsClCompatMode) { 4951 // Include CL and Core options. 4952 IncludedFlagsBitmask |= options::CLOption; 4953 IncludedFlagsBitmask |= options::CoreOption; 4954 } else { 4955 ExcludedFlagsBitmask |= options::CLOption; 4956 } 4957 4958 return std::make_pair(IncludedFlagsBitmask, ExcludedFlagsBitmask); 4959 } 4960 4961 bool clang::driver::isOptimizationLevelFast(const ArgList &Args) { 4962 return Args.hasFlag(options::OPT_Ofast, options::OPT_O_Group, false); 4963 } 4964