xref: /netbsd-src/external/apache2/llvm/dist/clang/lib/CodeGen/MicrosoftCXXABI.cpp (revision 76c7fc5f6b13ed0b1508e6b313e88e59977ed78e)
1 //===--- MicrosoftCXXABI.cpp - Emit LLVM Code from ASTs for a Module ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This provides C++ code generation targeting the Microsoft Visual C++ ABI.
10 // The class in this file generates structures that follow the Microsoft
11 // Visual C++ ABI, which is actually not very well documented at all outside
12 // of Microsoft.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "CGCXXABI.h"
17 #include "CGCleanup.h"
18 #include "CGVTables.h"
19 #include "CodeGenModule.h"
20 #include "CodeGenTypes.h"
21 #include "TargetInfo.h"
22 #include "clang/CodeGen/ConstantInitBuilder.h"
23 #include "clang/AST/Decl.h"
24 #include "clang/AST/DeclCXX.h"
25 #include "clang/AST/StmtCXX.h"
26 #include "clang/AST/VTableBuilder.h"
27 #include "llvm/ADT/StringExtras.h"
28 #include "llvm/ADT/StringSet.h"
29 #include "llvm/IR/Intrinsics.h"
30 
31 using namespace clang;
32 using namespace CodeGen;
33 
34 namespace {
35 
36 /// Holds all the vbtable globals for a given class.
37 struct VBTableGlobals {
38   const VPtrInfoVector *VBTables;
39   SmallVector<llvm::GlobalVariable *, 2> Globals;
40 };
41 
42 class MicrosoftCXXABI : public CGCXXABI {
43 public:
44   MicrosoftCXXABI(CodeGenModule &CGM)
45       : CGCXXABI(CGM), BaseClassDescriptorType(nullptr),
46         ClassHierarchyDescriptorType(nullptr),
47         CompleteObjectLocatorType(nullptr), CatchableTypeType(nullptr),
48         ThrowInfoType(nullptr) {}
49 
50   bool HasThisReturn(GlobalDecl GD) const override;
51   bool hasMostDerivedReturn(GlobalDecl GD) const override;
52 
53   bool classifyReturnType(CGFunctionInfo &FI) const override;
54 
55   RecordArgABI getRecordArgABI(const CXXRecordDecl *RD) const override;
56 
57   bool isSRetParameterAfterThis() const override { return true; }
58 
59   bool isThisCompleteObject(GlobalDecl GD) const override {
60     // The Microsoft ABI doesn't use separate complete-object vs.
61     // base-object variants of constructors, but it does of destructors.
62     if (isa<CXXDestructorDecl>(GD.getDecl())) {
63       switch (GD.getDtorType()) {
64       case Dtor_Complete:
65       case Dtor_Deleting:
66         return true;
67 
68       case Dtor_Base:
69         return false;
70 
71       case Dtor_Comdat: llvm_unreachable("emitting dtor comdat as function?");
72       }
73       llvm_unreachable("bad dtor kind");
74     }
75 
76     // No other kinds.
77     return false;
78   }
79 
80   size_t getSrcArgforCopyCtor(const CXXConstructorDecl *CD,
81                               FunctionArgList &Args) const override {
82     assert(Args.size() >= 2 &&
83            "expected the arglist to have at least two args!");
84     // The 'most_derived' parameter goes second if the ctor is variadic and
85     // has v-bases.
86     if (CD->getParent()->getNumVBases() > 0 &&
87         CD->getType()->castAs<FunctionProtoType>()->isVariadic())
88       return 2;
89     return 1;
90   }
91 
92   std::vector<CharUnits> getVBPtrOffsets(const CXXRecordDecl *RD) override {
93     std::vector<CharUnits> VBPtrOffsets;
94     const ASTContext &Context = getContext();
95     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
96 
97     const VBTableGlobals &VBGlobals = enumerateVBTables(RD);
98     for (const std::unique_ptr<VPtrInfo> &VBT : *VBGlobals.VBTables) {
99       const ASTRecordLayout &SubobjectLayout =
100           Context.getASTRecordLayout(VBT->IntroducingObject);
101       CharUnits Offs = VBT->NonVirtualOffset;
102       Offs += SubobjectLayout.getVBPtrOffset();
103       if (VBT->getVBaseWithVPtr())
104         Offs += Layout.getVBaseClassOffset(VBT->getVBaseWithVPtr());
105       VBPtrOffsets.push_back(Offs);
106     }
107     llvm::array_pod_sort(VBPtrOffsets.begin(), VBPtrOffsets.end());
108     return VBPtrOffsets;
109   }
110 
111   StringRef GetPureVirtualCallName() override { return "_purecall"; }
112   StringRef GetDeletedVirtualCallName() override { return "_purecall"; }
113 
114   void emitVirtualObjectDelete(CodeGenFunction &CGF, const CXXDeleteExpr *DE,
115                                Address Ptr, QualType ElementType,
116                                const CXXDestructorDecl *Dtor) override;
117 
118   void emitRethrow(CodeGenFunction &CGF, bool isNoReturn) override;
119   void emitThrow(CodeGenFunction &CGF, const CXXThrowExpr *E) override;
120 
121   void emitBeginCatch(CodeGenFunction &CGF, const CXXCatchStmt *C) override;
122 
123   llvm::GlobalVariable *getMSCompleteObjectLocator(const CXXRecordDecl *RD,
124                                                    const VPtrInfo &Info);
125 
126   llvm::Constant *getAddrOfRTTIDescriptor(QualType Ty) override;
127   CatchTypeInfo
128   getAddrOfCXXCatchHandlerType(QualType Ty, QualType CatchHandlerType) override;
129 
130   /// MSVC needs an extra flag to indicate a catchall.
131   CatchTypeInfo getCatchAllTypeInfo() override {
132     return CatchTypeInfo{nullptr, 0x40};
133   }
134 
135   bool shouldTypeidBeNullChecked(bool IsDeref, QualType SrcRecordTy) override;
136   void EmitBadTypeidCall(CodeGenFunction &CGF) override;
137   llvm::Value *EmitTypeid(CodeGenFunction &CGF, QualType SrcRecordTy,
138                           Address ThisPtr,
139                           llvm::Type *StdTypeInfoPtrTy) override;
140 
141   bool shouldDynamicCastCallBeNullChecked(bool SrcIsPtr,
142                                           QualType SrcRecordTy) override;
143 
144   llvm::Value *EmitDynamicCastCall(CodeGenFunction &CGF, Address Value,
145                                    QualType SrcRecordTy, QualType DestTy,
146                                    QualType DestRecordTy,
147                                    llvm::BasicBlock *CastEnd) override;
148 
149   llvm::Value *EmitDynamicCastToVoid(CodeGenFunction &CGF, Address Value,
150                                      QualType SrcRecordTy,
151                                      QualType DestTy) override;
152 
153   bool EmitBadCastCall(CodeGenFunction &CGF) override;
154   bool canSpeculativelyEmitVTable(const CXXRecordDecl *RD) const override {
155     return false;
156   }
157 
158   llvm::Value *
159   GetVirtualBaseClassOffset(CodeGenFunction &CGF, Address This,
160                             const CXXRecordDecl *ClassDecl,
161                             const CXXRecordDecl *BaseClassDecl) override;
162 
163   llvm::BasicBlock *
164   EmitCtorCompleteObjectHandler(CodeGenFunction &CGF,
165                                 const CXXRecordDecl *RD) override;
166 
167   llvm::BasicBlock *
168   EmitDtorCompleteObjectHandler(CodeGenFunction &CGF);
169 
170   void initializeHiddenVirtualInheritanceMembers(CodeGenFunction &CGF,
171                                               const CXXRecordDecl *RD) override;
172 
173   void EmitCXXConstructors(const CXXConstructorDecl *D) override;
174 
175   // Background on MSVC destructors
176   // ==============================
177   //
178   // Both Itanium and MSVC ABIs have destructor variants.  The variant names
179   // roughly correspond in the following way:
180   //   Itanium       Microsoft
181   //   Base       -> no name, just ~Class
182   //   Complete   -> vbase destructor
183   //   Deleting   -> scalar deleting destructor
184   //                 vector deleting destructor
185   //
186   // The base and complete destructors are the same as in Itanium, although the
187   // complete destructor does not accept a VTT parameter when there are virtual
188   // bases.  A separate mechanism involving vtordisps is used to ensure that
189   // virtual methods of destroyed subobjects are not called.
190   //
191   // The deleting destructors accept an i32 bitfield as a second parameter.  Bit
192   // 1 indicates if the memory should be deleted.  Bit 2 indicates if the this
193   // pointer points to an array.  The scalar deleting destructor assumes that
194   // bit 2 is zero, and therefore does not contain a loop.
195   //
196   // For virtual destructors, only one entry is reserved in the vftable, and it
197   // always points to the vector deleting destructor.  The vector deleting
198   // destructor is the most general, so it can be used to destroy objects in
199   // place, delete single heap objects, or delete arrays.
200   //
201   // A TU defining a non-inline destructor is only guaranteed to emit a base
202   // destructor, and all of the other variants are emitted on an as-needed basis
203   // in COMDATs.  Because a non-base destructor can be emitted in a TU that
204   // lacks a definition for the destructor, non-base destructors must always
205   // delegate to or alias the base destructor.
206 
207   AddedStructorArgs
208   buildStructorSignature(GlobalDecl GD,
209                          SmallVectorImpl<CanQualType> &ArgTys) override;
210 
211   /// Non-base dtors should be emitted as delegating thunks in this ABI.
212   bool useThunkForDtorVariant(const CXXDestructorDecl *Dtor,
213                               CXXDtorType DT) const override {
214     return DT != Dtor_Base;
215   }
216 
217   void setCXXDestructorDLLStorage(llvm::GlobalValue *GV,
218                                   const CXXDestructorDecl *Dtor,
219                                   CXXDtorType DT) const override;
220 
221   llvm::GlobalValue::LinkageTypes
222   getCXXDestructorLinkage(GVALinkage Linkage, const CXXDestructorDecl *Dtor,
223                           CXXDtorType DT) const override;
224 
225   void EmitCXXDestructors(const CXXDestructorDecl *D) override;
226 
227   const CXXRecordDecl *
228   getThisArgumentTypeForMethod(const CXXMethodDecl *MD) override {
229     if (MD->isVirtual() && !isa<CXXDestructorDecl>(MD)) {
230       MethodVFTableLocation ML =
231           CGM.getMicrosoftVTableContext().getMethodVFTableLocation(MD);
232       // The vbases might be ordered differently in the final overrider object
233       // and the complete object, so the "this" argument may sometimes point to
234       // memory that has no particular type (e.g. past the complete object).
235       // In this case, we just use a generic pointer type.
236       // FIXME: might want to have a more precise type in the non-virtual
237       // multiple inheritance case.
238       if (ML.VBase || !ML.VFPtrOffset.isZero())
239         return nullptr;
240     }
241     return MD->getParent();
242   }
243 
244   Address
245   adjustThisArgumentForVirtualFunctionCall(CodeGenFunction &CGF, GlobalDecl GD,
246                                            Address This,
247                                            bool VirtualCall) override;
248 
249   void addImplicitStructorParams(CodeGenFunction &CGF, QualType &ResTy,
250                                  FunctionArgList &Params) override;
251 
252   void EmitInstanceFunctionProlog(CodeGenFunction &CGF) override;
253 
254   AddedStructorArgs
255   addImplicitConstructorArgs(CodeGenFunction &CGF, const CXXConstructorDecl *D,
256                              CXXCtorType Type, bool ForVirtualBase,
257                              bool Delegating, CallArgList &Args) override;
258 
259   void EmitDestructorCall(CodeGenFunction &CGF, const CXXDestructorDecl *DD,
260                           CXXDtorType Type, bool ForVirtualBase,
261                           bool Delegating, Address This,
262                           QualType ThisTy) override;
263 
264   void emitVTableTypeMetadata(const VPtrInfo &Info, const CXXRecordDecl *RD,
265                               llvm::GlobalVariable *VTable);
266 
267   void emitVTableDefinitions(CodeGenVTables &CGVT,
268                              const CXXRecordDecl *RD) override;
269 
270   bool isVirtualOffsetNeededForVTableField(CodeGenFunction &CGF,
271                                            CodeGenFunction::VPtr Vptr) override;
272 
273   /// Don't initialize vptrs if dynamic class
274   /// is marked with with the 'novtable' attribute.
275   bool doStructorsInitializeVPtrs(const CXXRecordDecl *VTableClass) override {
276     return !VTableClass->hasAttr<MSNoVTableAttr>();
277   }
278 
279   llvm::Constant *
280   getVTableAddressPoint(BaseSubobject Base,
281                         const CXXRecordDecl *VTableClass) override;
282 
283   llvm::Value *getVTableAddressPointInStructor(
284       CodeGenFunction &CGF, const CXXRecordDecl *VTableClass,
285       BaseSubobject Base, const CXXRecordDecl *NearestVBase) override;
286 
287   llvm::Constant *
288   getVTableAddressPointForConstExpr(BaseSubobject Base,
289                                     const CXXRecordDecl *VTableClass) override;
290 
291   llvm::GlobalVariable *getAddrOfVTable(const CXXRecordDecl *RD,
292                                         CharUnits VPtrOffset) override;
293 
294   CGCallee getVirtualFunctionPointer(CodeGenFunction &CGF, GlobalDecl GD,
295                                      Address This, llvm::Type *Ty,
296                                      SourceLocation Loc) override;
297 
298   llvm::Value *EmitVirtualDestructorCall(CodeGenFunction &CGF,
299                                          const CXXDestructorDecl *Dtor,
300                                          CXXDtorType DtorType, Address This,
301                                          DeleteOrMemberCallExpr E) override;
302 
303   void adjustCallArgsForDestructorThunk(CodeGenFunction &CGF, GlobalDecl GD,
304                                         CallArgList &CallArgs) override {
305     assert(GD.getDtorType() == Dtor_Deleting &&
306            "Only deleting destructor thunks are available in this ABI");
307     CallArgs.add(RValue::get(getStructorImplicitParamValue(CGF)),
308                  getContext().IntTy);
309   }
310 
311   void emitVirtualInheritanceTables(const CXXRecordDecl *RD) override;
312 
313   llvm::GlobalVariable *
314   getAddrOfVBTable(const VPtrInfo &VBT, const CXXRecordDecl *RD,
315                    llvm::GlobalVariable::LinkageTypes Linkage);
316 
317   llvm::GlobalVariable *
318   getAddrOfVirtualDisplacementMap(const CXXRecordDecl *SrcRD,
319                                   const CXXRecordDecl *DstRD) {
320     SmallString<256> OutName;
321     llvm::raw_svector_ostream Out(OutName);
322     getMangleContext().mangleCXXVirtualDisplacementMap(SrcRD, DstRD, Out);
323     StringRef MangledName = OutName.str();
324 
325     if (auto *VDispMap = CGM.getModule().getNamedGlobal(MangledName))
326       return VDispMap;
327 
328     MicrosoftVTableContext &VTContext = CGM.getMicrosoftVTableContext();
329     unsigned NumEntries = 1 + SrcRD->getNumVBases();
330     SmallVector<llvm::Constant *, 4> Map(NumEntries,
331                                          llvm::UndefValue::get(CGM.IntTy));
332     Map[0] = llvm::ConstantInt::get(CGM.IntTy, 0);
333     bool AnyDifferent = false;
334     for (const auto &I : SrcRD->vbases()) {
335       const CXXRecordDecl *VBase = I.getType()->getAsCXXRecordDecl();
336       if (!DstRD->isVirtuallyDerivedFrom(VBase))
337         continue;
338 
339       unsigned SrcVBIndex = VTContext.getVBTableIndex(SrcRD, VBase);
340       unsigned DstVBIndex = VTContext.getVBTableIndex(DstRD, VBase);
341       Map[SrcVBIndex] = llvm::ConstantInt::get(CGM.IntTy, DstVBIndex * 4);
342       AnyDifferent |= SrcVBIndex != DstVBIndex;
343     }
344     // This map would be useless, don't use it.
345     if (!AnyDifferent)
346       return nullptr;
347 
348     llvm::ArrayType *VDispMapTy = llvm::ArrayType::get(CGM.IntTy, Map.size());
349     llvm::Constant *Init = llvm::ConstantArray::get(VDispMapTy, Map);
350     llvm::GlobalValue::LinkageTypes Linkage =
351         SrcRD->isExternallyVisible() && DstRD->isExternallyVisible()
352             ? llvm::GlobalValue::LinkOnceODRLinkage
353             : llvm::GlobalValue::InternalLinkage;
354     auto *VDispMap = new llvm::GlobalVariable(
355         CGM.getModule(), VDispMapTy, /*isConstant=*/true, Linkage,
356         /*Initializer=*/Init, MangledName);
357     return VDispMap;
358   }
359 
360   void emitVBTableDefinition(const VPtrInfo &VBT, const CXXRecordDecl *RD,
361                              llvm::GlobalVariable *GV) const;
362 
363   void setThunkLinkage(llvm::Function *Thunk, bool ForVTable,
364                        GlobalDecl GD, bool ReturnAdjustment) override {
365     GVALinkage Linkage =
366         getContext().GetGVALinkageForFunction(cast<FunctionDecl>(GD.getDecl()));
367 
368     if (Linkage == GVA_Internal)
369       Thunk->setLinkage(llvm::GlobalValue::InternalLinkage);
370     else if (ReturnAdjustment)
371       Thunk->setLinkage(llvm::GlobalValue::WeakODRLinkage);
372     else
373       Thunk->setLinkage(llvm::GlobalValue::LinkOnceODRLinkage);
374   }
375 
376   bool exportThunk() override { return false; }
377 
378   llvm::Value *performThisAdjustment(CodeGenFunction &CGF, Address This,
379                                      const ThisAdjustment &TA) override;
380 
381   llvm::Value *performReturnAdjustment(CodeGenFunction &CGF, Address Ret,
382                                        const ReturnAdjustment &RA) override;
383 
384   void EmitThreadLocalInitFuncs(
385       CodeGenModule &CGM, ArrayRef<const VarDecl *> CXXThreadLocals,
386       ArrayRef<llvm::Function *> CXXThreadLocalInits,
387       ArrayRef<const VarDecl *> CXXThreadLocalInitVars) override;
388 
389   bool usesThreadWrapperFunction(const VarDecl *VD) const override {
390     return false;
391   }
392   LValue EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF, const VarDecl *VD,
393                                       QualType LValType) override;
394 
395   void EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D,
396                        llvm::GlobalVariable *DeclPtr,
397                        bool PerformInit) override;
398   void registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D,
399                           llvm::FunctionCallee Dtor,
400                           llvm::Constant *Addr) override;
401 
402   // ==== Notes on array cookies =========
403   //
404   // MSVC seems to only use cookies when the class has a destructor; a
405   // two-argument usual array deallocation function isn't sufficient.
406   //
407   // For example, this code prints "100" and "1":
408   //   struct A {
409   //     char x;
410   //     void *operator new[](size_t sz) {
411   //       printf("%u\n", sz);
412   //       return malloc(sz);
413   //     }
414   //     void operator delete[](void *p, size_t sz) {
415   //       printf("%u\n", sz);
416   //       free(p);
417   //     }
418   //   };
419   //   int main() {
420   //     A *p = new A[100];
421   //     delete[] p;
422   //   }
423   // Whereas it prints "104" and "104" if you give A a destructor.
424 
425   bool requiresArrayCookie(const CXXDeleteExpr *expr,
426                            QualType elementType) override;
427   bool requiresArrayCookie(const CXXNewExpr *expr) override;
428   CharUnits getArrayCookieSizeImpl(QualType type) override;
429   Address InitializeArrayCookie(CodeGenFunction &CGF,
430                                 Address NewPtr,
431                                 llvm::Value *NumElements,
432                                 const CXXNewExpr *expr,
433                                 QualType ElementType) override;
434   llvm::Value *readArrayCookieImpl(CodeGenFunction &CGF,
435                                    Address allocPtr,
436                                    CharUnits cookieSize) override;
437 
438   friend struct MSRTTIBuilder;
439 
440   bool isImageRelative() const {
441     return CGM.getTarget().getPointerWidth(/*AddrSpace=*/0) == 64;
442   }
443 
444   // 5 routines for constructing the llvm types for MS RTTI structs.
445   llvm::StructType *getTypeDescriptorType(StringRef TypeInfoString) {
446     llvm::SmallString<32> TDTypeName("rtti.TypeDescriptor");
447     TDTypeName += llvm::utostr(TypeInfoString.size());
448     llvm::StructType *&TypeDescriptorType =
449         TypeDescriptorTypeMap[TypeInfoString.size()];
450     if (TypeDescriptorType)
451       return TypeDescriptorType;
452     llvm::Type *FieldTypes[] = {
453         CGM.Int8PtrPtrTy,
454         CGM.Int8PtrTy,
455         llvm::ArrayType::get(CGM.Int8Ty, TypeInfoString.size() + 1)};
456     TypeDescriptorType =
457         llvm::StructType::create(CGM.getLLVMContext(), FieldTypes, TDTypeName);
458     return TypeDescriptorType;
459   }
460 
461   llvm::Type *getImageRelativeType(llvm::Type *PtrType) {
462     if (!isImageRelative())
463       return PtrType;
464     return CGM.IntTy;
465   }
466 
467   llvm::StructType *getBaseClassDescriptorType() {
468     if (BaseClassDescriptorType)
469       return BaseClassDescriptorType;
470     llvm::Type *FieldTypes[] = {
471         getImageRelativeType(CGM.Int8PtrTy),
472         CGM.IntTy,
473         CGM.IntTy,
474         CGM.IntTy,
475         CGM.IntTy,
476         CGM.IntTy,
477         getImageRelativeType(getClassHierarchyDescriptorType()->getPointerTo()),
478     };
479     BaseClassDescriptorType = llvm::StructType::create(
480         CGM.getLLVMContext(), FieldTypes, "rtti.BaseClassDescriptor");
481     return BaseClassDescriptorType;
482   }
483 
484   llvm::StructType *getClassHierarchyDescriptorType() {
485     if (ClassHierarchyDescriptorType)
486       return ClassHierarchyDescriptorType;
487     // Forward-declare RTTIClassHierarchyDescriptor to break a cycle.
488     ClassHierarchyDescriptorType = llvm::StructType::create(
489         CGM.getLLVMContext(), "rtti.ClassHierarchyDescriptor");
490     llvm::Type *FieldTypes[] = {
491         CGM.IntTy,
492         CGM.IntTy,
493         CGM.IntTy,
494         getImageRelativeType(
495             getBaseClassDescriptorType()->getPointerTo()->getPointerTo()),
496     };
497     ClassHierarchyDescriptorType->setBody(FieldTypes);
498     return ClassHierarchyDescriptorType;
499   }
500 
501   llvm::StructType *getCompleteObjectLocatorType() {
502     if (CompleteObjectLocatorType)
503       return CompleteObjectLocatorType;
504     CompleteObjectLocatorType = llvm::StructType::create(
505         CGM.getLLVMContext(), "rtti.CompleteObjectLocator");
506     llvm::Type *FieldTypes[] = {
507         CGM.IntTy,
508         CGM.IntTy,
509         CGM.IntTy,
510         getImageRelativeType(CGM.Int8PtrTy),
511         getImageRelativeType(getClassHierarchyDescriptorType()->getPointerTo()),
512         getImageRelativeType(CompleteObjectLocatorType),
513     };
514     llvm::ArrayRef<llvm::Type *> FieldTypesRef(FieldTypes);
515     if (!isImageRelative())
516       FieldTypesRef = FieldTypesRef.drop_back();
517     CompleteObjectLocatorType->setBody(FieldTypesRef);
518     return CompleteObjectLocatorType;
519   }
520 
521   llvm::GlobalVariable *getImageBase() {
522     StringRef Name = "__ImageBase";
523     if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(Name))
524       return GV;
525 
526     auto *GV = new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty,
527                                         /*isConstant=*/true,
528                                         llvm::GlobalValue::ExternalLinkage,
529                                         /*Initializer=*/nullptr, Name);
530     CGM.setDSOLocal(GV);
531     return GV;
532   }
533 
534   llvm::Constant *getImageRelativeConstant(llvm::Constant *PtrVal) {
535     if (!isImageRelative())
536       return PtrVal;
537 
538     if (PtrVal->isNullValue())
539       return llvm::Constant::getNullValue(CGM.IntTy);
540 
541     llvm::Constant *ImageBaseAsInt =
542         llvm::ConstantExpr::getPtrToInt(getImageBase(), CGM.IntPtrTy);
543     llvm::Constant *PtrValAsInt =
544         llvm::ConstantExpr::getPtrToInt(PtrVal, CGM.IntPtrTy);
545     llvm::Constant *Diff =
546         llvm::ConstantExpr::getSub(PtrValAsInt, ImageBaseAsInt,
547                                    /*HasNUW=*/true, /*HasNSW=*/true);
548     return llvm::ConstantExpr::getTrunc(Diff, CGM.IntTy);
549   }
550 
551 private:
552   MicrosoftMangleContext &getMangleContext() {
553     return cast<MicrosoftMangleContext>(CodeGen::CGCXXABI::getMangleContext());
554   }
555 
556   llvm::Constant *getZeroInt() {
557     return llvm::ConstantInt::get(CGM.IntTy, 0);
558   }
559 
560   llvm::Constant *getAllOnesInt() {
561     return  llvm::Constant::getAllOnesValue(CGM.IntTy);
562   }
563 
564   CharUnits getVirtualFunctionPrologueThisAdjustment(GlobalDecl GD) override;
565 
566   void
567   GetNullMemberPointerFields(const MemberPointerType *MPT,
568                              llvm::SmallVectorImpl<llvm::Constant *> &fields);
569 
570   /// Shared code for virtual base adjustment.  Returns the offset from
571   /// the vbptr to the virtual base.  Optionally returns the address of the
572   /// vbptr itself.
573   llvm::Value *GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF,
574                                        Address Base,
575                                        llvm::Value *VBPtrOffset,
576                                        llvm::Value *VBTableOffset,
577                                        llvm::Value **VBPtr = nullptr);
578 
579   llvm::Value *GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF,
580                                        Address Base,
581                                        int32_t VBPtrOffset,
582                                        int32_t VBTableOffset,
583                                        llvm::Value **VBPtr = nullptr) {
584     assert(VBTableOffset % 4 == 0 && "should be byte offset into table of i32s");
585     llvm::Value *VBPOffset = llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset),
586                 *VBTOffset = llvm::ConstantInt::get(CGM.IntTy, VBTableOffset);
587     return GetVBaseOffsetFromVBPtr(CGF, Base, VBPOffset, VBTOffset, VBPtr);
588   }
589 
590   std::tuple<Address, llvm::Value *, const CXXRecordDecl *>
591   performBaseAdjustment(CodeGenFunction &CGF, Address Value,
592                         QualType SrcRecordTy);
593 
594   /// Performs a full virtual base adjustment.  Used to dereference
595   /// pointers to members of virtual bases.
596   llvm::Value *AdjustVirtualBase(CodeGenFunction &CGF, const Expr *E,
597                                  const CXXRecordDecl *RD, Address Base,
598                                  llvm::Value *VirtualBaseAdjustmentOffset,
599                                  llvm::Value *VBPtrOffset /* optional */);
600 
601   /// Emits a full member pointer with the fields common to data and
602   /// function member pointers.
603   llvm::Constant *EmitFullMemberPointer(llvm::Constant *FirstField,
604                                         bool IsMemberFunction,
605                                         const CXXRecordDecl *RD,
606                                         CharUnits NonVirtualBaseAdjustment,
607                                         unsigned VBTableIndex);
608 
609   bool MemberPointerConstantIsNull(const MemberPointerType *MPT,
610                                    llvm::Constant *MP);
611 
612   /// - Initialize all vbptrs of 'this' with RD as the complete type.
613   void EmitVBPtrStores(CodeGenFunction &CGF, const CXXRecordDecl *RD);
614 
615   /// Caching wrapper around VBTableBuilder::enumerateVBTables().
616   const VBTableGlobals &enumerateVBTables(const CXXRecordDecl *RD);
617 
618   /// Generate a thunk for calling a virtual member function MD.
619   llvm::Function *EmitVirtualMemPtrThunk(const CXXMethodDecl *MD,
620                                          const MethodVFTableLocation &ML);
621 
622 public:
623   llvm::Type *ConvertMemberPointerType(const MemberPointerType *MPT) override;
624 
625   bool isZeroInitializable(const MemberPointerType *MPT) override;
626 
627   bool isMemberPointerConvertible(const MemberPointerType *MPT) const override {
628     const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
629     return RD->hasAttr<MSInheritanceAttr>();
630   }
631 
632   llvm::Constant *EmitNullMemberPointer(const MemberPointerType *MPT) override;
633 
634   llvm::Constant *EmitMemberDataPointer(const MemberPointerType *MPT,
635                                         CharUnits offset) override;
636   llvm::Constant *EmitMemberFunctionPointer(const CXXMethodDecl *MD) override;
637   llvm::Constant *EmitMemberPointer(const APValue &MP, QualType MPT) override;
638 
639   llvm::Value *EmitMemberPointerComparison(CodeGenFunction &CGF,
640                                            llvm::Value *L,
641                                            llvm::Value *R,
642                                            const MemberPointerType *MPT,
643                                            bool Inequality) override;
644 
645   llvm::Value *EmitMemberPointerIsNotNull(CodeGenFunction &CGF,
646                                           llvm::Value *MemPtr,
647                                           const MemberPointerType *MPT) override;
648 
649   llvm::Value *
650   EmitMemberDataPointerAddress(CodeGenFunction &CGF, const Expr *E,
651                                Address Base, llvm::Value *MemPtr,
652                                const MemberPointerType *MPT) override;
653 
654   llvm::Value *EmitNonNullMemberPointerConversion(
655       const MemberPointerType *SrcTy, const MemberPointerType *DstTy,
656       CastKind CK, CastExpr::path_const_iterator PathBegin,
657       CastExpr::path_const_iterator PathEnd, llvm::Value *Src,
658       CGBuilderTy &Builder);
659 
660   llvm::Value *EmitMemberPointerConversion(CodeGenFunction &CGF,
661                                            const CastExpr *E,
662                                            llvm::Value *Src) override;
663 
664   llvm::Constant *EmitMemberPointerConversion(const CastExpr *E,
665                                               llvm::Constant *Src) override;
666 
667   llvm::Constant *EmitMemberPointerConversion(
668       const MemberPointerType *SrcTy, const MemberPointerType *DstTy,
669       CastKind CK, CastExpr::path_const_iterator PathBegin,
670       CastExpr::path_const_iterator PathEnd, llvm::Constant *Src);
671 
672   CGCallee
673   EmitLoadOfMemberFunctionPointer(CodeGenFunction &CGF, const Expr *E,
674                                   Address This, llvm::Value *&ThisPtrForCall,
675                                   llvm::Value *MemPtr,
676                                   const MemberPointerType *MPT) override;
677 
678   void emitCXXStructor(GlobalDecl GD) override;
679 
680   llvm::StructType *getCatchableTypeType() {
681     if (CatchableTypeType)
682       return CatchableTypeType;
683     llvm::Type *FieldTypes[] = {
684         CGM.IntTy,                           // Flags
685         getImageRelativeType(CGM.Int8PtrTy), // TypeDescriptor
686         CGM.IntTy,                           // NonVirtualAdjustment
687         CGM.IntTy,                           // OffsetToVBPtr
688         CGM.IntTy,                           // VBTableIndex
689         CGM.IntTy,                           // Size
690         getImageRelativeType(CGM.Int8PtrTy)  // CopyCtor
691     };
692     CatchableTypeType = llvm::StructType::create(
693         CGM.getLLVMContext(), FieldTypes, "eh.CatchableType");
694     return CatchableTypeType;
695   }
696 
697   llvm::StructType *getCatchableTypeArrayType(uint32_t NumEntries) {
698     llvm::StructType *&CatchableTypeArrayType =
699         CatchableTypeArrayTypeMap[NumEntries];
700     if (CatchableTypeArrayType)
701       return CatchableTypeArrayType;
702 
703     llvm::SmallString<23> CTATypeName("eh.CatchableTypeArray.");
704     CTATypeName += llvm::utostr(NumEntries);
705     llvm::Type *CTType =
706         getImageRelativeType(getCatchableTypeType()->getPointerTo());
707     llvm::Type *FieldTypes[] = {
708         CGM.IntTy,                               // NumEntries
709         llvm::ArrayType::get(CTType, NumEntries) // CatchableTypes
710     };
711     CatchableTypeArrayType =
712         llvm::StructType::create(CGM.getLLVMContext(), FieldTypes, CTATypeName);
713     return CatchableTypeArrayType;
714   }
715 
716   llvm::StructType *getThrowInfoType() {
717     if (ThrowInfoType)
718       return ThrowInfoType;
719     llvm::Type *FieldTypes[] = {
720         CGM.IntTy,                           // Flags
721         getImageRelativeType(CGM.Int8PtrTy), // CleanupFn
722         getImageRelativeType(CGM.Int8PtrTy), // ForwardCompat
723         getImageRelativeType(CGM.Int8PtrTy)  // CatchableTypeArray
724     };
725     ThrowInfoType = llvm::StructType::create(CGM.getLLVMContext(), FieldTypes,
726                                              "eh.ThrowInfo");
727     return ThrowInfoType;
728   }
729 
730   llvm::FunctionCallee getThrowFn() {
731     // _CxxThrowException is passed an exception object and a ThrowInfo object
732     // which describes the exception.
733     llvm::Type *Args[] = {CGM.Int8PtrTy, getThrowInfoType()->getPointerTo()};
734     llvm::FunctionType *FTy =
735         llvm::FunctionType::get(CGM.VoidTy, Args, /*isVarArg=*/false);
736     llvm::FunctionCallee Throw =
737         CGM.CreateRuntimeFunction(FTy, "_CxxThrowException");
738     // _CxxThrowException is stdcall on 32-bit x86 platforms.
739     if (CGM.getTarget().getTriple().getArch() == llvm::Triple::x86) {
740       if (auto *Fn = dyn_cast<llvm::Function>(Throw.getCallee()))
741         Fn->setCallingConv(llvm::CallingConv::X86_StdCall);
742     }
743     return Throw;
744   }
745 
746   llvm::Function *getAddrOfCXXCtorClosure(const CXXConstructorDecl *CD,
747                                           CXXCtorType CT);
748 
749   llvm::Constant *getCatchableType(QualType T,
750                                    uint32_t NVOffset = 0,
751                                    int32_t VBPtrOffset = -1,
752                                    uint32_t VBIndex = 0);
753 
754   llvm::GlobalVariable *getCatchableTypeArray(QualType T);
755 
756   llvm::GlobalVariable *getThrowInfo(QualType T) override;
757 
758   std::pair<llvm::Value *, const CXXRecordDecl *>
759   LoadVTablePtr(CodeGenFunction &CGF, Address This,
760                 const CXXRecordDecl *RD) override;
761 
762 private:
763   typedef std::pair<const CXXRecordDecl *, CharUnits> VFTableIdTy;
764   typedef llvm::DenseMap<VFTableIdTy, llvm::GlobalVariable *> VTablesMapTy;
765   typedef llvm::DenseMap<VFTableIdTy, llvm::GlobalValue *> VFTablesMapTy;
766   /// All the vftables that have been referenced.
767   VFTablesMapTy VFTablesMap;
768   VTablesMapTy VTablesMap;
769 
770   /// This set holds the record decls we've deferred vtable emission for.
771   llvm::SmallPtrSet<const CXXRecordDecl *, 4> DeferredVFTables;
772 
773 
774   /// All the vbtables which have been referenced.
775   llvm::DenseMap<const CXXRecordDecl *, VBTableGlobals> VBTablesMap;
776 
777   /// Info on the global variable used to guard initialization of static locals.
778   /// The BitIndex field is only used for externally invisible declarations.
779   struct GuardInfo {
780     GuardInfo() : Guard(nullptr), BitIndex(0) {}
781     llvm::GlobalVariable *Guard;
782     unsigned BitIndex;
783   };
784 
785   /// Map from DeclContext to the current guard variable.  We assume that the
786   /// AST is visited in source code order.
787   llvm::DenseMap<const DeclContext *, GuardInfo> GuardVariableMap;
788   llvm::DenseMap<const DeclContext *, GuardInfo> ThreadLocalGuardVariableMap;
789   llvm::DenseMap<const DeclContext *, unsigned> ThreadSafeGuardNumMap;
790 
791   llvm::DenseMap<size_t, llvm::StructType *> TypeDescriptorTypeMap;
792   llvm::StructType *BaseClassDescriptorType;
793   llvm::StructType *ClassHierarchyDescriptorType;
794   llvm::StructType *CompleteObjectLocatorType;
795 
796   llvm::DenseMap<QualType, llvm::GlobalVariable *> CatchableTypeArrays;
797 
798   llvm::StructType *CatchableTypeType;
799   llvm::DenseMap<uint32_t, llvm::StructType *> CatchableTypeArrayTypeMap;
800   llvm::StructType *ThrowInfoType;
801 };
802 
803 }
804 
805 CGCXXABI::RecordArgABI
806 MicrosoftCXXABI::getRecordArgABI(const CXXRecordDecl *RD) const {
807   switch (CGM.getTarget().getTriple().getArch()) {
808   default:
809     // FIXME: Implement for other architectures.
810     return RAA_Default;
811 
812   case llvm::Triple::thumb:
813     // Use the simple Itanium rules for now.
814     // FIXME: This is incompatible with MSVC for arguments with a dtor and no
815     // copy ctor.
816     return !RD->canPassInRegisters() ? RAA_Indirect : RAA_Default;
817 
818   case llvm::Triple::x86:
819     // All record arguments are passed in memory on x86.  Decide whether to
820     // construct the object directly in argument memory, or to construct the
821     // argument elsewhere and copy the bytes during the call.
822 
823     // If C++ prohibits us from making a copy, construct the arguments directly
824     // into argument memory.
825     if (!RD->canPassInRegisters())
826       return RAA_DirectInMemory;
827 
828     // Otherwise, construct the argument into a temporary and copy the bytes
829     // into the outgoing argument memory.
830     return RAA_Default;
831 
832   case llvm::Triple::x86_64:
833   case llvm::Triple::aarch64:
834     return !RD->canPassInRegisters() ? RAA_Indirect : RAA_Default;
835   }
836 
837   llvm_unreachable("invalid enum");
838 }
839 
840 void MicrosoftCXXABI::emitVirtualObjectDelete(CodeGenFunction &CGF,
841                                               const CXXDeleteExpr *DE,
842                                               Address Ptr,
843                                               QualType ElementType,
844                                               const CXXDestructorDecl *Dtor) {
845   // FIXME: Provide a source location here even though there's no
846   // CXXMemberCallExpr for dtor call.
847   bool UseGlobalDelete = DE->isGlobalDelete();
848   CXXDtorType DtorType = UseGlobalDelete ? Dtor_Complete : Dtor_Deleting;
849   llvm::Value *MDThis = EmitVirtualDestructorCall(CGF, Dtor, DtorType, Ptr, DE);
850   if (UseGlobalDelete)
851     CGF.EmitDeleteCall(DE->getOperatorDelete(), MDThis, ElementType);
852 }
853 
854 void MicrosoftCXXABI::emitRethrow(CodeGenFunction &CGF, bool isNoReturn) {
855   llvm::Value *Args[] = {
856       llvm::ConstantPointerNull::get(CGM.Int8PtrTy),
857       llvm::ConstantPointerNull::get(getThrowInfoType()->getPointerTo())};
858   llvm::FunctionCallee Fn = getThrowFn();
859   if (isNoReturn)
860     CGF.EmitNoreturnRuntimeCallOrInvoke(Fn, Args);
861   else
862     CGF.EmitRuntimeCallOrInvoke(Fn, Args);
863 }
864 
865 void MicrosoftCXXABI::emitBeginCatch(CodeGenFunction &CGF,
866                                      const CXXCatchStmt *S) {
867   // In the MS ABI, the runtime handles the copy, and the catch handler is
868   // responsible for destruction.
869   VarDecl *CatchParam = S->getExceptionDecl();
870   llvm::BasicBlock *CatchPadBB = CGF.Builder.GetInsertBlock();
871   llvm::CatchPadInst *CPI =
872       cast<llvm::CatchPadInst>(CatchPadBB->getFirstNonPHI());
873   CGF.CurrentFuncletPad = CPI;
874 
875   // If this is a catch-all or the catch parameter is unnamed, we don't need to
876   // emit an alloca to the object.
877   if (!CatchParam || !CatchParam->getDeclName()) {
878     CGF.EHStack.pushCleanup<CatchRetScope>(NormalCleanup, CPI);
879     return;
880   }
881 
882   CodeGenFunction::AutoVarEmission var = CGF.EmitAutoVarAlloca(*CatchParam);
883   CPI->setArgOperand(2, var.getObjectAddress(CGF).getPointer());
884   CGF.EHStack.pushCleanup<CatchRetScope>(NormalCleanup, CPI);
885   CGF.EmitAutoVarCleanups(var);
886 }
887 
888 /// We need to perform a generic polymorphic operation (like a typeid
889 /// or a cast), which requires an object with a vfptr.  Adjust the
890 /// address to point to an object with a vfptr.
891 std::tuple<Address, llvm::Value *, const CXXRecordDecl *>
892 MicrosoftCXXABI::performBaseAdjustment(CodeGenFunction &CGF, Address Value,
893                                        QualType SrcRecordTy) {
894   Value = CGF.Builder.CreateBitCast(Value, CGF.Int8PtrTy);
895   const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl();
896   const ASTContext &Context = getContext();
897 
898   // If the class itself has a vfptr, great.  This check implicitly
899   // covers non-virtual base subobjects: a class with its own virtual
900   // functions would be a candidate to be a primary base.
901   if (Context.getASTRecordLayout(SrcDecl).hasExtendableVFPtr())
902     return std::make_tuple(Value, llvm::ConstantInt::get(CGF.Int32Ty, 0),
903                            SrcDecl);
904 
905   // Okay, one of the vbases must have a vfptr, or else this isn't
906   // actually a polymorphic class.
907   const CXXRecordDecl *PolymorphicBase = nullptr;
908   for (auto &Base : SrcDecl->vbases()) {
909     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
910     if (Context.getASTRecordLayout(BaseDecl).hasExtendableVFPtr()) {
911       PolymorphicBase = BaseDecl;
912       break;
913     }
914   }
915   assert(PolymorphicBase && "polymorphic class has no apparent vfptr?");
916 
917   llvm::Value *Offset =
918     GetVirtualBaseClassOffset(CGF, Value, SrcDecl, PolymorphicBase);
919   llvm::Value *Ptr = CGF.Builder.CreateInBoundsGEP(Value.getPointer(), Offset);
920   CharUnits VBaseAlign =
921     CGF.CGM.getVBaseAlignment(Value.getAlignment(), SrcDecl, PolymorphicBase);
922   return std::make_tuple(Address(Ptr, VBaseAlign), Offset, PolymorphicBase);
923 }
924 
925 bool MicrosoftCXXABI::shouldTypeidBeNullChecked(bool IsDeref,
926                                                 QualType SrcRecordTy) {
927   const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl();
928   return IsDeref &&
929          !getContext().getASTRecordLayout(SrcDecl).hasExtendableVFPtr();
930 }
931 
932 static llvm::CallBase *emitRTtypeidCall(CodeGenFunction &CGF,
933                                         llvm::Value *Argument) {
934   llvm::Type *ArgTypes[] = {CGF.Int8PtrTy};
935   llvm::FunctionType *FTy =
936       llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false);
937   llvm::Value *Args[] = {Argument};
938   llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction(FTy, "__RTtypeid");
939   return CGF.EmitRuntimeCallOrInvoke(Fn, Args);
940 }
941 
942 void MicrosoftCXXABI::EmitBadTypeidCall(CodeGenFunction &CGF) {
943   llvm::CallBase *Call =
944       emitRTtypeidCall(CGF, llvm::Constant::getNullValue(CGM.VoidPtrTy));
945   Call->setDoesNotReturn();
946   CGF.Builder.CreateUnreachable();
947 }
948 
949 llvm::Value *MicrosoftCXXABI::EmitTypeid(CodeGenFunction &CGF,
950                                          QualType SrcRecordTy,
951                                          Address ThisPtr,
952                                          llvm::Type *StdTypeInfoPtrTy) {
953   std::tie(ThisPtr, std::ignore, std::ignore) =
954       performBaseAdjustment(CGF, ThisPtr, SrcRecordTy);
955   llvm::CallBase *Typeid = emitRTtypeidCall(CGF, ThisPtr.getPointer());
956   return CGF.Builder.CreateBitCast(Typeid, StdTypeInfoPtrTy);
957 }
958 
959 bool MicrosoftCXXABI::shouldDynamicCastCallBeNullChecked(bool SrcIsPtr,
960                                                          QualType SrcRecordTy) {
961   const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl();
962   return SrcIsPtr &&
963          !getContext().getASTRecordLayout(SrcDecl).hasExtendableVFPtr();
964 }
965 
966 llvm::Value *MicrosoftCXXABI::EmitDynamicCastCall(
967     CodeGenFunction &CGF, Address This, QualType SrcRecordTy,
968     QualType DestTy, QualType DestRecordTy, llvm::BasicBlock *CastEnd) {
969   llvm::Type *DestLTy = CGF.ConvertType(DestTy);
970 
971   llvm::Value *SrcRTTI =
972       CGF.CGM.GetAddrOfRTTIDescriptor(SrcRecordTy.getUnqualifiedType());
973   llvm::Value *DestRTTI =
974       CGF.CGM.GetAddrOfRTTIDescriptor(DestRecordTy.getUnqualifiedType());
975 
976   llvm::Value *Offset;
977   std::tie(This, Offset, std::ignore) =
978       performBaseAdjustment(CGF, This, SrcRecordTy);
979   llvm::Value *ThisPtr = This.getPointer();
980   Offset = CGF.Builder.CreateTrunc(Offset, CGF.Int32Ty);
981 
982   // PVOID __RTDynamicCast(
983   //   PVOID inptr,
984   //   LONG VfDelta,
985   //   PVOID SrcType,
986   //   PVOID TargetType,
987   //   BOOL isReference)
988   llvm::Type *ArgTypes[] = {CGF.Int8PtrTy, CGF.Int32Ty, CGF.Int8PtrTy,
989                             CGF.Int8PtrTy, CGF.Int32Ty};
990   llvm::FunctionCallee Function = CGF.CGM.CreateRuntimeFunction(
991       llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false),
992       "__RTDynamicCast");
993   llvm::Value *Args[] = {
994       ThisPtr, Offset, SrcRTTI, DestRTTI,
995       llvm::ConstantInt::get(CGF.Int32Ty, DestTy->isReferenceType())};
996   ThisPtr = CGF.EmitRuntimeCallOrInvoke(Function, Args);
997   return CGF.Builder.CreateBitCast(ThisPtr, DestLTy);
998 }
999 
1000 llvm::Value *
1001 MicrosoftCXXABI::EmitDynamicCastToVoid(CodeGenFunction &CGF, Address Value,
1002                                        QualType SrcRecordTy,
1003                                        QualType DestTy) {
1004   std::tie(Value, std::ignore, std::ignore) =
1005       performBaseAdjustment(CGF, Value, SrcRecordTy);
1006 
1007   // PVOID __RTCastToVoid(
1008   //   PVOID inptr)
1009   llvm::Type *ArgTypes[] = {CGF.Int8PtrTy};
1010   llvm::FunctionCallee Function = CGF.CGM.CreateRuntimeFunction(
1011       llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false),
1012       "__RTCastToVoid");
1013   llvm::Value *Args[] = {Value.getPointer()};
1014   return CGF.EmitRuntimeCall(Function, Args);
1015 }
1016 
1017 bool MicrosoftCXXABI::EmitBadCastCall(CodeGenFunction &CGF) {
1018   return false;
1019 }
1020 
1021 llvm::Value *MicrosoftCXXABI::GetVirtualBaseClassOffset(
1022     CodeGenFunction &CGF, Address This, const CXXRecordDecl *ClassDecl,
1023     const CXXRecordDecl *BaseClassDecl) {
1024   const ASTContext &Context = getContext();
1025   int64_t VBPtrChars =
1026       Context.getASTRecordLayout(ClassDecl).getVBPtrOffset().getQuantity();
1027   llvm::Value *VBPtrOffset = llvm::ConstantInt::get(CGM.PtrDiffTy, VBPtrChars);
1028   CharUnits IntSize = Context.getTypeSizeInChars(Context.IntTy);
1029   CharUnits VBTableChars =
1030       IntSize *
1031       CGM.getMicrosoftVTableContext().getVBTableIndex(ClassDecl, BaseClassDecl);
1032   llvm::Value *VBTableOffset =
1033       llvm::ConstantInt::get(CGM.IntTy, VBTableChars.getQuantity());
1034 
1035   llvm::Value *VBPtrToNewBase =
1036       GetVBaseOffsetFromVBPtr(CGF, This, VBPtrOffset, VBTableOffset);
1037   VBPtrToNewBase =
1038       CGF.Builder.CreateSExtOrBitCast(VBPtrToNewBase, CGM.PtrDiffTy);
1039   return CGF.Builder.CreateNSWAdd(VBPtrOffset, VBPtrToNewBase);
1040 }
1041 
1042 bool MicrosoftCXXABI::HasThisReturn(GlobalDecl GD) const {
1043   return isa<CXXConstructorDecl>(GD.getDecl());
1044 }
1045 
1046 static bool isDeletingDtor(GlobalDecl GD) {
1047   return isa<CXXDestructorDecl>(GD.getDecl()) &&
1048          GD.getDtorType() == Dtor_Deleting;
1049 }
1050 
1051 bool MicrosoftCXXABI::hasMostDerivedReturn(GlobalDecl GD) const {
1052   return isDeletingDtor(GD);
1053 }
1054 
1055 static bool IsSizeGreaterThan128(const CXXRecordDecl *RD) {
1056   return RD->getASTContext().getTypeSize(RD->getTypeForDecl()) > 128;
1057 }
1058 
1059 static bool hasMicrosoftABIRestrictions(const CXXRecordDecl *RD) {
1060   // For AArch64, we use the C++14 definition of an aggregate, so we also
1061   // check for:
1062   //   No private or protected non static data members.
1063   //   No base classes
1064   //   No virtual functions
1065   // Additionally, we need to ensure that there is a trivial copy assignment
1066   // operator, a trivial destructor and no user-provided constructors.
1067   if (RD->hasProtectedFields() || RD->hasPrivateFields())
1068     return true;
1069   if (RD->getNumBases() > 0)
1070     return true;
1071   if (RD->isPolymorphic())
1072     return true;
1073   if (RD->hasNonTrivialCopyAssignment())
1074     return true;
1075   for (const CXXConstructorDecl *Ctor : RD->ctors())
1076     if (Ctor->isUserProvided())
1077       return true;
1078   if (RD->hasNonTrivialDestructor())
1079     return true;
1080   return false;
1081 }
1082 
1083 bool MicrosoftCXXABI::classifyReturnType(CGFunctionInfo &FI) const {
1084   const CXXRecordDecl *RD = FI.getReturnType()->getAsCXXRecordDecl();
1085   if (!RD)
1086     return false;
1087 
1088   bool isAArch64 = CGM.getTarget().getTriple().isAArch64();
1089   bool isSimple = !isAArch64 || !hasMicrosoftABIRestrictions(RD);
1090   bool isIndirectReturn =
1091       isAArch64 ? (!RD->canPassInRegisters() ||
1092                    IsSizeGreaterThan128(RD))
1093                 : !RD->isPOD();
1094   bool isInstanceMethod = FI.isInstanceMethod();
1095 
1096   if (isIndirectReturn || !isSimple || isInstanceMethod) {
1097     CharUnits Align = CGM.getContext().getTypeAlignInChars(FI.getReturnType());
1098     FI.getReturnInfo() = ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
1099     FI.getReturnInfo().setSRetAfterThis(isInstanceMethod);
1100 
1101     FI.getReturnInfo().setInReg(isAArch64 &&
1102                                 !(isSimple && IsSizeGreaterThan128(RD)));
1103 
1104     return true;
1105   }
1106 
1107   // Otherwise, use the C ABI rules.
1108   return false;
1109 }
1110 
1111 llvm::BasicBlock *
1112 MicrosoftCXXABI::EmitCtorCompleteObjectHandler(CodeGenFunction &CGF,
1113                                                const CXXRecordDecl *RD) {
1114   llvm::Value *IsMostDerivedClass = getStructorImplicitParamValue(CGF);
1115   assert(IsMostDerivedClass &&
1116          "ctor for a class with virtual bases must have an implicit parameter");
1117   llvm::Value *IsCompleteObject =
1118     CGF.Builder.CreateIsNotNull(IsMostDerivedClass, "is_complete_object");
1119 
1120   llvm::BasicBlock *CallVbaseCtorsBB = CGF.createBasicBlock("ctor.init_vbases");
1121   llvm::BasicBlock *SkipVbaseCtorsBB = CGF.createBasicBlock("ctor.skip_vbases");
1122   CGF.Builder.CreateCondBr(IsCompleteObject,
1123                            CallVbaseCtorsBB, SkipVbaseCtorsBB);
1124 
1125   CGF.EmitBlock(CallVbaseCtorsBB);
1126 
1127   // Fill in the vbtable pointers here.
1128   EmitVBPtrStores(CGF, RD);
1129 
1130   // CGF will put the base ctor calls in this basic block for us later.
1131 
1132   return SkipVbaseCtorsBB;
1133 }
1134 
1135 llvm::BasicBlock *
1136 MicrosoftCXXABI::EmitDtorCompleteObjectHandler(CodeGenFunction &CGF) {
1137   llvm::Value *IsMostDerivedClass = getStructorImplicitParamValue(CGF);
1138   assert(IsMostDerivedClass &&
1139          "ctor for a class with virtual bases must have an implicit parameter");
1140   llvm::Value *IsCompleteObject =
1141       CGF.Builder.CreateIsNotNull(IsMostDerivedClass, "is_complete_object");
1142 
1143   llvm::BasicBlock *CallVbaseDtorsBB = CGF.createBasicBlock("Dtor.dtor_vbases");
1144   llvm::BasicBlock *SkipVbaseDtorsBB = CGF.createBasicBlock("Dtor.skip_vbases");
1145   CGF.Builder.CreateCondBr(IsCompleteObject,
1146                            CallVbaseDtorsBB, SkipVbaseDtorsBB);
1147 
1148   CGF.EmitBlock(CallVbaseDtorsBB);
1149   // CGF will put the base dtor calls in this basic block for us later.
1150 
1151   return SkipVbaseDtorsBB;
1152 }
1153 
1154 void MicrosoftCXXABI::initializeHiddenVirtualInheritanceMembers(
1155     CodeGenFunction &CGF, const CXXRecordDecl *RD) {
1156   // In most cases, an override for a vbase virtual method can adjust
1157   // the "this" parameter by applying a constant offset.
1158   // However, this is not enough while a constructor or a destructor of some
1159   // class X is being executed if all the following conditions are met:
1160   //  - X has virtual bases, (1)
1161   //  - X overrides a virtual method M of a vbase Y, (2)
1162   //  - X itself is a vbase of the most derived class.
1163   //
1164   // If (1) and (2) are true, the vtorDisp for vbase Y is a hidden member of X
1165   // which holds the extra amount of "this" adjustment we must do when we use
1166   // the X vftables (i.e. during X ctor or dtor).
1167   // Outside the ctors and dtors, the values of vtorDisps are zero.
1168 
1169   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
1170   typedef ASTRecordLayout::VBaseOffsetsMapTy VBOffsets;
1171   const VBOffsets &VBaseMap = Layout.getVBaseOffsetsMap();
1172   CGBuilderTy &Builder = CGF.Builder;
1173 
1174   unsigned AS = getThisAddress(CGF).getAddressSpace();
1175   llvm::Value *Int8This = nullptr;  // Initialize lazily.
1176 
1177   for (const CXXBaseSpecifier &S : RD->vbases()) {
1178     const CXXRecordDecl *VBase = S.getType()->getAsCXXRecordDecl();
1179     auto I = VBaseMap.find(VBase);
1180     assert(I != VBaseMap.end());
1181     if (!I->second.hasVtorDisp())
1182       continue;
1183 
1184     llvm::Value *VBaseOffset =
1185         GetVirtualBaseClassOffset(CGF, getThisAddress(CGF), RD, VBase);
1186     uint64_t ConstantVBaseOffset = I->second.VBaseOffset.getQuantity();
1187 
1188     // vtorDisp_for_vbase = vbptr[vbase_idx] - offsetof(RD, vbase).
1189     llvm::Value *VtorDispValue = Builder.CreateSub(
1190         VBaseOffset, llvm::ConstantInt::get(CGM.PtrDiffTy, ConstantVBaseOffset),
1191         "vtordisp.value");
1192     VtorDispValue = Builder.CreateTruncOrBitCast(VtorDispValue, CGF.Int32Ty);
1193 
1194     if (!Int8This)
1195       Int8This = Builder.CreateBitCast(getThisValue(CGF),
1196                                        CGF.Int8Ty->getPointerTo(AS));
1197     llvm::Value *VtorDispPtr = Builder.CreateInBoundsGEP(Int8This, VBaseOffset);
1198     // vtorDisp is always the 32-bits before the vbase in the class layout.
1199     VtorDispPtr = Builder.CreateConstGEP1_32(VtorDispPtr, -4);
1200     VtorDispPtr = Builder.CreateBitCast(
1201         VtorDispPtr, CGF.Int32Ty->getPointerTo(AS), "vtordisp.ptr");
1202 
1203     Builder.CreateAlignedStore(VtorDispValue, VtorDispPtr,
1204                                CharUnits::fromQuantity(4));
1205   }
1206 }
1207 
1208 static bool hasDefaultCXXMethodCC(ASTContext &Context,
1209                                   const CXXMethodDecl *MD) {
1210   CallingConv ExpectedCallingConv = Context.getDefaultCallingConvention(
1211       /*IsVariadic=*/false, /*IsCXXMethod=*/true);
1212   CallingConv ActualCallingConv =
1213       MD->getType()->castAs<FunctionProtoType>()->getCallConv();
1214   return ExpectedCallingConv == ActualCallingConv;
1215 }
1216 
1217 void MicrosoftCXXABI::EmitCXXConstructors(const CXXConstructorDecl *D) {
1218   // There's only one constructor type in this ABI.
1219   CGM.EmitGlobal(GlobalDecl(D, Ctor_Complete));
1220 
1221   // Exported default constructors either have a simple call-site where they use
1222   // the typical calling convention and have a single 'this' pointer for an
1223   // argument -or- they get a wrapper function which appropriately thunks to the
1224   // real default constructor.  This thunk is the default constructor closure.
1225   if (D->hasAttr<DLLExportAttr>() && D->isDefaultConstructor())
1226     if (!hasDefaultCXXMethodCC(getContext(), D) || D->getNumParams() != 0) {
1227       llvm::Function *Fn = getAddrOfCXXCtorClosure(D, Ctor_DefaultClosure);
1228       Fn->setLinkage(llvm::GlobalValue::WeakODRLinkage);
1229       CGM.setGVProperties(Fn, D);
1230     }
1231 }
1232 
1233 void MicrosoftCXXABI::EmitVBPtrStores(CodeGenFunction &CGF,
1234                                       const CXXRecordDecl *RD) {
1235   Address This = getThisAddress(CGF);
1236   This = CGF.Builder.CreateElementBitCast(This, CGM.Int8Ty, "this.int8");
1237   const ASTContext &Context = getContext();
1238   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1239 
1240   const VBTableGlobals &VBGlobals = enumerateVBTables(RD);
1241   for (unsigned I = 0, E = VBGlobals.VBTables->size(); I != E; ++I) {
1242     const std::unique_ptr<VPtrInfo> &VBT = (*VBGlobals.VBTables)[I];
1243     llvm::GlobalVariable *GV = VBGlobals.Globals[I];
1244     const ASTRecordLayout &SubobjectLayout =
1245         Context.getASTRecordLayout(VBT->IntroducingObject);
1246     CharUnits Offs = VBT->NonVirtualOffset;
1247     Offs += SubobjectLayout.getVBPtrOffset();
1248     if (VBT->getVBaseWithVPtr())
1249       Offs += Layout.getVBaseClassOffset(VBT->getVBaseWithVPtr());
1250     Address VBPtr = CGF.Builder.CreateConstInBoundsByteGEP(This, Offs);
1251     llvm::Value *GVPtr =
1252         CGF.Builder.CreateConstInBoundsGEP2_32(GV->getValueType(), GV, 0, 0);
1253     VBPtr = CGF.Builder.CreateElementBitCast(VBPtr, GVPtr->getType(),
1254                                       "vbptr." + VBT->ObjectWithVPtr->getName());
1255     CGF.Builder.CreateStore(GVPtr, VBPtr);
1256   }
1257 }
1258 
1259 CGCXXABI::AddedStructorArgs
1260 MicrosoftCXXABI::buildStructorSignature(GlobalDecl GD,
1261                                         SmallVectorImpl<CanQualType> &ArgTys) {
1262   AddedStructorArgs Added;
1263   // TODO: 'for base' flag
1264   if (isa<CXXDestructorDecl>(GD.getDecl()) &&
1265       GD.getDtorType() == Dtor_Deleting) {
1266     // The scalar deleting destructor takes an implicit int parameter.
1267     ArgTys.push_back(getContext().IntTy);
1268     ++Added.Suffix;
1269   }
1270   auto *CD = dyn_cast<CXXConstructorDecl>(GD.getDecl());
1271   if (!CD)
1272     return Added;
1273 
1274   // All parameters are already in place except is_most_derived, which goes
1275   // after 'this' if it's variadic and last if it's not.
1276 
1277   const CXXRecordDecl *Class = CD->getParent();
1278   const FunctionProtoType *FPT = CD->getType()->castAs<FunctionProtoType>();
1279   if (Class->getNumVBases()) {
1280     if (FPT->isVariadic()) {
1281       ArgTys.insert(ArgTys.begin() + 1, getContext().IntTy);
1282       ++Added.Prefix;
1283     } else {
1284       ArgTys.push_back(getContext().IntTy);
1285       ++Added.Suffix;
1286     }
1287   }
1288 
1289   return Added;
1290 }
1291 
1292 void MicrosoftCXXABI::setCXXDestructorDLLStorage(llvm::GlobalValue *GV,
1293                                                  const CXXDestructorDecl *Dtor,
1294                                                  CXXDtorType DT) const {
1295   // Deleting destructor variants are never imported or exported. Give them the
1296   // default storage class.
1297   if (DT == Dtor_Deleting) {
1298     GV->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
1299   } else {
1300     const NamedDecl *ND = Dtor;
1301     CGM.setDLLImportDLLExport(GV, ND);
1302   }
1303 }
1304 
1305 llvm::GlobalValue::LinkageTypes MicrosoftCXXABI::getCXXDestructorLinkage(
1306     GVALinkage Linkage, const CXXDestructorDecl *Dtor, CXXDtorType DT) const {
1307   // Internal things are always internal, regardless of attributes. After this,
1308   // we know the thunk is externally visible.
1309   if (Linkage == GVA_Internal)
1310     return llvm::GlobalValue::InternalLinkage;
1311 
1312   switch (DT) {
1313   case Dtor_Base:
1314     // The base destructor most closely tracks the user-declared constructor, so
1315     // we delegate back to the normal declarator case.
1316     return CGM.getLLVMLinkageForDeclarator(Dtor, Linkage,
1317                                            /*IsConstantVariable=*/false);
1318   case Dtor_Complete:
1319     // The complete destructor is like an inline function, but it may be
1320     // imported and therefore must be exported as well. This requires changing
1321     // the linkage if a DLL attribute is present.
1322     if (Dtor->hasAttr<DLLExportAttr>())
1323       return llvm::GlobalValue::WeakODRLinkage;
1324     if (Dtor->hasAttr<DLLImportAttr>())
1325       return llvm::GlobalValue::AvailableExternallyLinkage;
1326     return llvm::GlobalValue::LinkOnceODRLinkage;
1327   case Dtor_Deleting:
1328     // Deleting destructors are like inline functions. They have vague linkage
1329     // and are emitted everywhere they are used. They are internal if the class
1330     // is internal.
1331     return llvm::GlobalValue::LinkOnceODRLinkage;
1332   case Dtor_Comdat:
1333     llvm_unreachable("MS C++ ABI does not support comdat dtors");
1334   }
1335   llvm_unreachable("invalid dtor type");
1336 }
1337 
1338 void MicrosoftCXXABI::EmitCXXDestructors(const CXXDestructorDecl *D) {
1339   // The TU defining a dtor is only guaranteed to emit a base destructor.  All
1340   // other destructor variants are delegating thunks.
1341   CGM.EmitGlobal(GlobalDecl(D, Dtor_Base));
1342 }
1343 
1344 CharUnits
1345 MicrosoftCXXABI::getVirtualFunctionPrologueThisAdjustment(GlobalDecl GD) {
1346   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1347 
1348   if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
1349     // Complete destructors take a pointer to the complete object as a
1350     // parameter, thus don't need this adjustment.
1351     if (GD.getDtorType() == Dtor_Complete)
1352       return CharUnits();
1353 
1354     // There's no Dtor_Base in vftable but it shares the this adjustment with
1355     // the deleting one, so look it up instead.
1356     GD = GlobalDecl(DD, Dtor_Deleting);
1357   }
1358 
1359   MethodVFTableLocation ML =
1360       CGM.getMicrosoftVTableContext().getMethodVFTableLocation(GD);
1361   CharUnits Adjustment = ML.VFPtrOffset;
1362 
1363   // Normal virtual instance methods need to adjust from the vfptr that first
1364   // defined the virtual method to the virtual base subobject, but destructors
1365   // do not.  The vector deleting destructor thunk applies this adjustment for
1366   // us if necessary.
1367   if (isa<CXXDestructorDecl>(MD))
1368     Adjustment = CharUnits::Zero();
1369 
1370   if (ML.VBase) {
1371     const ASTRecordLayout &DerivedLayout =
1372         getContext().getASTRecordLayout(MD->getParent());
1373     Adjustment += DerivedLayout.getVBaseClassOffset(ML.VBase);
1374   }
1375 
1376   return Adjustment;
1377 }
1378 
1379 Address MicrosoftCXXABI::adjustThisArgumentForVirtualFunctionCall(
1380     CodeGenFunction &CGF, GlobalDecl GD, Address This,
1381     bool VirtualCall) {
1382   if (!VirtualCall) {
1383     // If the call of a virtual function is not virtual, we just have to
1384     // compensate for the adjustment the virtual function does in its prologue.
1385     CharUnits Adjustment = getVirtualFunctionPrologueThisAdjustment(GD);
1386     if (Adjustment.isZero())
1387       return This;
1388 
1389     This = CGF.Builder.CreateElementBitCast(This, CGF.Int8Ty);
1390     assert(Adjustment.isPositive());
1391     return CGF.Builder.CreateConstByteGEP(This, Adjustment);
1392   }
1393 
1394   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1395 
1396   GlobalDecl LookupGD = GD;
1397   if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
1398     // Complete dtors take a pointer to the complete object,
1399     // thus don't need adjustment.
1400     if (GD.getDtorType() == Dtor_Complete)
1401       return This;
1402 
1403     // There's only Dtor_Deleting in vftable but it shares the this adjustment
1404     // with the base one, so look up the deleting one instead.
1405     LookupGD = GlobalDecl(DD, Dtor_Deleting);
1406   }
1407   MethodVFTableLocation ML =
1408       CGM.getMicrosoftVTableContext().getMethodVFTableLocation(LookupGD);
1409 
1410   CharUnits StaticOffset = ML.VFPtrOffset;
1411 
1412   // Base destructors expect 'this' to point to the beginning of the base
1413   // subobject, not the first vfptr that happens to contain the virtual dtor.
1414   // However, we still need to apply the virtual base adjustment.
1415   if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base)
1416     StaticOffset = CharUnits::Zero();
1417 
1418   Address Result = This;
1419   if (ML.VBase) {
1420     Result = CGF.Builder.CreateElementBitCast(Result, CGF.Int8Ty);
1421 
1422     const CXXRecordDecl *Derived = MD->getParent();
1423     const CXXRecordDecl *VBase = ML.VBase;
1424     llvm::Value *VBaseOffset =
1425       GetVirtualBaseClassOffset(CGF, Result, Derived, VBase);
1426     llvm::Value *VBasePtr =
1427       CGF.Builder.CreateInBoundsGEP(Result.getPointer(), VBaseOffset);
1428     CharUnits VBaseAlign =
1429       CGF.CGM.getVBaseAlignment(Result.getAlignment(), Derived, VBase);
1430     Result = Address(VBasePtr, VBaseAlign);
1431   }
1432   if (!StaticOffset.isZero()) {
1433     assert(StaticOffset.isPositive());
1434     Result = CGF.Builder.CreateElementBitCast(Result, CGF.Int8Ty);
1435     if (ML.VBase) {
1436       // Non-virtual adjustment might result in a pointer outside the allocated
1437       // object, e.g. if the final overrider class is laid out after the virtual
1438       // base that declares a method in the most derived class.
1439       // FIXME: Update the code that emits this adjustment in thunks prologues.
1440       Result = CGF.Builder.CreateConstByteGEP(Result, StaticOffset);
1441     } else {
1442       Result = CGF.Builder.CreateConstInBoundsByteGEP(Result, StaticOffset);
1443     }
1444   }
1445   return Result;
1446 }
1447 
1448 void MicrosoftCXXABI::addImplicitStructorParams(CodeGenFunction &CGF,
1449                                                 QualType &ResTy,
1450                                                 FunctionArgList &Params) {
1451   ASTContext &Context = getContext();
1452   const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl());
1453   assert(isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD));
1454   if (isa<CXXConstructorDecl>(MD) && MD->getParent()->getNumVBases()) {
1455     auto *IsMostDerived = ImplicitParamDecl::Create(
1456         Context, /*DC=*/nullptr, CGF.CurGD.getDecl()->getLocation(),
1457         &Context.Idents.get("is_most_derived"), Context.IntTy,
1458         ImplicitParamDecl::Other);
1459     // The 'most_derived' parameter goes second if the ctor is variadic and last
1460     // if it's not.  Dtors can't be variadic.
1461     const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
1462     if (FPT->isVariadic())
1463       Params.insert(Params.begin() + 1, IsMostDerived);
1464     else
1465       Params.push_back(IsMostDerived);
1466     getStructorImplicitParamDecl(CGF) = IsMostDerived;
1467   } else if (isDeletingDtor(CGF.CurGD)) {
1468     auto *ShouldDelete = ImplicitParamDecl::Create(
1469         Context, /*DC=*/nullptr, CGF.CurGD.getDecl()->getLocation(),
1470         &Context.Idents.get("should_call_delete"), Context.IntTy,
1471         ImplicitParamDecl::Other);
1472     Params.push_back(ShouldDelete);
1473     getStructorImplicitParamDecl(CGF) = ShouldDelete;
1474   }
1475 }
1476 
1477 void MicrosoftCXXABI::EmitInstanceFunctionProlog(CodeGenFunction &CGF) {
1478   // Naked functions have no prolog.
1479   if (CGF.CurFuncDecl && CGF.CurFuncDecl->hasAttr<NakedAttr>())
1480     return;
1481 
1482   // Overridden virtual methods of non-primary bases need to adjust the incoming
1483   // 'this' pointer in the prologue. In this hierarchy, C::b will subtract
1484   // sizeof(void*) to adjust from B* to C*:
1485   //   struct A { virtual void a(); };
1486   //   struct B { virtual void b(); };
1487   //   struct C : A, B { virtual void b(); };
1488   //
1489   // Leave the value stored in the 'this' alloca unadjusted, so that the
1490   // debugger sees the unadjusted value. Microsoft debuggers require this, and
1491   // will apply the ThisAdjustment in the method type information.
1492   // FIXME: Do something better for DWARF debuggers, which won't expect this,
1493   // without making our codegen depend on debug info settings.
1494   llvm::Value *This = loadIncomingCXXThis(CGF);
1495   const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl());
1496   if (!CGF.CurFuncIsThunk && MD->isVirtual()) {
1497     CharUnits Adjustment = getVirtualFunctionPrologueThisAdjustment(CGF.CurGD);
1498     if (!Adjustment.isZero()) {
1499       unsigned AS = cast<llvm::PointerType>(This->getType())->getAddressSpace();
1500       llvm::Type *charPtrTy = CGF.Int8Ty->getPointerTo(AS),
1501                  *thisTy = This->getType();
1502       This = CGF.Builder.CreateBitCast(This, charPtrTy);
1503       assert(Adjustment.isPositive());
1504       This = CGF.Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, This,
1505                                                     -Adjustment.getQuantity());
1506       This = CGF.Builder.CreateBitCast(This, thisTy, "this.adjusted");
1507     }
1508   }
1509   setCXXABIThisValue(CGF, This);
1510 
1511   // If this is a function that the ABI specifies returns 'this', initialize
1512   // the return slot to 'this' at the start of the function.
1513   //
1514   // Unlike the setting of return types, this is done within the ABI
1515   // implementation instead of by clients of CGCXXABI because:
1516   // 1) getThisValue is currently protected
1517   // 2) in theory, an ABI could implement 'this' returns some other way;
1518   //    HasThisReturn only specifies a contract, not the implementation
1519   if (HasThisReturn(CGF.CurGD))
1520     CGF.Builder.CreateStore(getThisValue(CGF), CGF.ReturnValue);
1521   else if (hasMostDerivedReturn(CGF.CurGD))
1522     CGF.Builder.CreateStore(CGF.EmitCastToVoidPtr(getThisValue(CGF)),
1523                             CGF.ReturnValue);
1524 
1525   if (isa<CXXConstructorDecl>(MD) && MD->getParent()->getNumVBases()) {
1526     assert(getStructorImplicitParamDecl(CGF) &&
1527            "no implicit parameter for a constructor with virtual bases?");
1528     getStructorImplicitParamValue(CGF)
1529       = CGF.Builder.CreateLoad(
1530           CGF.GetAddrOfLocalVar(getStructorImplicitParamDecl(CGF)),
1531           "is_most_derived");
1532   }
1533 
1534   if (isDeletingDtor(CGF.CurGD)) {
1535     assert(getStructorImplicitParamDecl(CGF) &&
1536            "no implicit parameter for a deleting destructor?");
1537     getStructorImplicitParamValue(CGF)
1538       = CGF.Builder.CreateLoad(
1539           CGF.GetAddrOfLocalVar(getStructorImplicitParamDecl(CGF)),
1540           "should_call_delete");
1541   }
1542 }
1543 
1544 CGCXXABI::AddedStructorArgs MicrosoftCXXABI::addImplicitConstructorArgs(
1545     CodeGenFunction &CGF, const CXXConstructorDecl *D, CXXCtorType Type,
1546     bool ForVirtualBase, bool Delegating, CallArgList &Args) {
1547   assert(Type == Ctor_Complete || Type == Ctor_Base);
1548 
1549   // Check if we need a 'most_derived' parameter.
1550   if (!D->getParent()->getNumVBases())
1551     return AddedStructorArgs{};
1552 
1553   // Add the 'most_derived' argument second if we are variadic or last if not.
1554   const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
1555   llvm::Value *MostDerivedArg;
1556   if (Delegating) {
1557     MostDerivedArg = getStructorImplicitParamValue(CGF);
1558   } else {
1559     MostDerivedArg = llvm::ConstantInt::get(CGM.Int32Ty, Type == Ctor_Complete);
1560   }
1561   RValue RV = RValue::get(MostDerivedArg);
1562   if (FPT->isVariadic()) {
1563     Args.insert(Args.begin() + 1, CallArg(RV, getContext().IntTy));
1564     return AddedStructorArgs::prefix(1);
1565   }
1566   Args.add(RV, getContext().IntTy);
1567   return AddedStructorArgs::suffix(1);
1568 }
1569 
1570 void MicrosoftCXXABI::EmitDestructorCall(CodeGenFunction &CGF,
1571                                          const CXXDestructorDecl *DD,
1572                                          CXXDtorType Type, bool ForVirtualBase,
1573                                          bool Delegating, Address This,
1574                                          QualType ThisTy) {
1575   // Use the base destructor variant in place of the complete destructor variant
1576   // if the class has no virtual bases. This effectively implements some of the
1577   // -mconstructor-aliases optimization, but as part of the MS C++ ABI.
1578   if (Type == Dtor_Complete && DD->getParent()->getNumVBases() == 0)
1579     Type = Dtor_Base;
1580 
1581   GlobalDecl GD(DD, Type);
1582   CGCallee Callee = CGCallee::forDirect(CGM.getAddrOfCXXStructor(GD), GD);
1583 
1584   if (DD->isVirtual()) {
1585     assert(Type != CXXDtorType::Dtor_Deleting &&
1586            "The deleting destructor should only be called via a virtual call");
1587     This = adjustThisArgumentForVirtualFunctionCall(CGF, GlobalDecl(DD, Type),
1588                                                     This, false);
1589   }
1590 
1591   llvm::BasicBlock *BaseDtorEndBB = nullptr;
1592   if (ForVirtualBase && isa<CXXConstructorDecl>(CGF.CurCodeDecl)) {
1593     BaseDtorEndBB = EmitDtorCompleteObjectHandler(CGF);
1594   }
1595 
1596   CGF.EmitCXXDestructorCall(GD, Callee, This.getPointer(), ThisTy,
1597                             /*ImplicitParam=*/nullptr,
1598                             /*ImplicitParamTy=*/QualType(), nullptr);
1599   if (BaseDtorEndBB) {
1600     // Complete object handler should continue to be the remaining
1601     CGF.Builder.CreateBr(BaseDtorEndBB);
1602     CGF.EmitBlock(BaseDtorEndBB);
1603   }
1604 }
1605 
1606 void MicrosoftCXXABI::emitVTableTypeMetadata(const VPtrInfo &Info,
1607                                              const CXXRecordDecl *RD,
1608                                              llvm::GlobalVariable *VTable) {
1609   if (!CGM.getCodeGenOpts().LTOUnit)
1610     return;
1611 
1612   // The location of the first virtual function pointer in the virtual table,
1613   // aka the "address point" on Itanium. This is at offset 0 if RTTI is
1614   // disabled, or sizeof(void*) if RTTI is enabled.
1615   CharUnits AddressPoint =
1616       getContext().getLangOpts().RTTIData
1617           ? getContext().toCharUnitsFromBits(
1618                 getContext().getTargetInfo().getPointerWidth(0))
1619           : CharUnits::Zero();
1620 
1621   if (Info.PathToIntroducingObject.empty()) {
1622     CGM.AddVTableTypeMetadata(VTable, AddressPoint, RD);
1623     return;
1624   }
1625 
1626   // Add a bitset entry for the least derived base belonging to this vftable.
1627   CGM.AddVTableTypeMetadata(VTable, AddressPoint,
1628                             Info.PathToIntroducingObject.back());
1629 
1630   // Add a bitset entry for each derived class that is laid out at the same
1631   // offset as the least derived base.
1632   for (unsigned I = Info.PathToIntroducingObject.size() - 1; I != 0; --I) {
1633     const CXXRecordDecl *DerivedRD = Info.PathToIntroducingObject[I - 1];
1634     const CXXRecordDecl *BaseRD = Info.PathToIntroducingObject[I];
1635 
1636     const ASTRecordLayout &Layout =
1637         getContext().getASTRecordLayout(DerivedRD);
1638     CharUnits Offset;
1639     auto VBI = Layout.getVBaseOffsetsMap().find(BaseRD);
1640     if (VBI == Layout.getVBaseOffsetsMap().end())
1641       Offset = Layout.getBaseClassOffset(BaseRD);
1642     else
1643       Offset = VBI->second.VBaseOffset;
1644     if (!Offset.isZero())
1645       return;
1646     CGM.AddVTableTypeMetadata(VTable, AddressPoint, DerivedRD);
1647   }
1648 
1649   // Finally do the same for the most derived class.
1650   if (Info.FullOffsetInMDC.isZero())
1651     CGM.AddVTableTypeMetadata(VTable, AddressPoint, RD);
1652 }
1653 
1654 void MicrosoftCXXABI::emitVTableDefinitions(CodeGenVTables &CGVT,
1655                                             const CXXRecordDecl *RD) {
1656   MicrosoftVTableContext &VFTContext = CGM.getMicrosoftVTableContext();
1657   const VPtrInfoVector &VFPtrs = VFTContext.getVFPtrOffsets(RD);
1658 
1659   for (const std::unique_ptr<VPtrInfo>& Info : VFPtrs) {
1660     llvm::GlobalVariable *VTable = getAddrOfVTable(RD, Info->FullOffsetInMDC);
1661     if (VTable->hasInitializer())
1662       continue;
1663 
1664     const VTableLayout &VTLayout =
1665       VFTContext.getVFTableLayout(RD, Info->FullOffsetInMDC);
1666 
1667     llvm::Constant *RTTI = nullptr;
1668     if (any_of(VTLayout.vtable_components(),
1669                [](const VTableComponent &VTC) { return VTC.isRTTIKind(); }))
1670       RTTI = getMSCompleteObjectLocator(RD, *Info);
1671 
1672     ConstantInitBuilder Builder(CGM);
1673     auto Components = Builder.beginStruct();
1674     CGVT.createVTableInitializer(Components, VTLayout, RTTI);
1675     Components.finishAndSetAsInitializer(VTable);
1676 
1677     emitVTableTypeMetadata(*Info, RD, VTable);
1678   }
1679 }
1680 
1681 bool MicrosoftCXXABI::isVirtualOffsetNeededForVTableField(
1682     CodeGenFunction &CGF, CodeGenFunction::VPtr Vptr) {
1683   return Vptr.NearestVBase != nullptr;
1684 }
1685 
1686 llvm::Value *MicrosoftCXXABI::getVTableAddressPointInStructor(
1687     CodeGenFunction &CGF, const CXXRecordDecl *VTableClass, BaseSubobject Base,
1688     const CXXRecordDecl *NearestVBase) {
1689   llvm::Constant *VTableAddressPoint = getVTableAddressPoint(Base, VTableClass);
1690   if (!VTableAddressPoint) {
1691     assert(Base.getBase()->getNumVBases() &&
1692            !getContext().getASTRecordLayout(Base.getBase()).hasOwnVFPtr());
1693   }
1694   return VTableAddressPoint;
1695 }
1696 
1697 static void mangleVFTableName(MicrosoftMangleContext &MangleContext,
1698                               const CXXRecordDecl *RD, const VPtrInfo &VFPtr,
1699                               SmallString<256> &Name) {
1700   llvm::raw_svector_ostream Out(Name);
1701   MangleContext.mangleCXXVFTable(RD, VFPtr.MangledPath, Out);
1702 }
1703 
1704 llvm::Constant *
1705 MicrosoftCXXABI::getVTableAddressPoint(BaseSubobject Base,
1706                                        const CXXRecordDecl *VTableClass) {
1707   (void)getAddrOfVTable(VTableClass, Base.getBaseOffset());
1708   VFTableIdTy ID(VTableClass, Base.getBaseOffset());
1709   return VFTablesMap[ID];
1710 }
1711 
1712 llvm::Constant *MicrosoftCXXABI::getVTableAddressPointForConstExpr(
1713     BaseSubobject Base, const CXXRecordDecl *VTableClass) {
1714   llvm::Constant *VFTable = getVTableAddressPoint(Base, VTableClass);
1715   assert(VFTable && "Couldn't find a vftable for the given base?");
1716   return VFTable;
1717 }
1718 
1719 llvm::GlobalVariable *MicrosoftCXXABI::getAddrOfVTable(const CXXRecordDecl *RD,
1720                                                        CharUnits VPtrOffset) {
1721   // getAddrOfVTable may return 0 if asked to get an address of a vtable which
1722   // shouldn't be used in the given record type. We want to cache this result in
1723   // VFTablesMap, thus a simple zero check is not sufficient.
1724 
1725   VFTableIdTy ID(RD, VPtrOffset);
1726   VTablesMapTy::iterator I;
1727   bool Inserted;
1728   std::tie(I, Inserted) = VTablesMap.insert(std::make_pair(ID, nullptr));
1729   if (!Inserted)
1730     return I->second;
1731 
1732   llvm::GlobalVariable *&VTable = I->second;
1733 
1734   MicrosoftVTableContext &VTContext = CGM.getMicrosoftVTableContext();
1735   const VPtrInfoVector &VFPtrs = VTContext.getVFPtrOffsets(RD);
1736 
1737   if (DeferredVFTables.insert(RD).second) {
1738     // We haven't processed this record type before.
1739     // Queue up this vtable for possible deferred emission.
1740     CGM.addDeferredVTable(RD);
1741 
1742 #ifndef NDEBUG
1743     // Create all the vftables at once in order to make sure each vftable has
1744     // a unique mangled name.
1745     llvm::StringSet<> ObservedMangledNames;
1746     for (size_t J = 0, F = VFPtrs.size(); J != F; ++J) {
1747       SmallString<256> Name;
1748       mangleVFTableName(getMangleContext(), RD, *VFPtrs[J], Name);
1749       if (!ObservedMangledNames.insert(Name.str()).second)
1750         llvm_unreachable("Already saw this mangling before?");
1751     }
1752 #endif
1753   }
1754 
1755   const std::unique_ptr<VPtrInfo> *VFPtrI = std::find_if(
1756       VFPtrs.begin(), VFPtrs.end(), [&](const std::unique_ptr<VPtrInfo>& VPI) {
1757         return VPI->FullOffsetInMDC == VPtrOffset;
1758       });
1759   if (VFPtrI == VFPtrs.end()) {
1760     VFTablesMap[ID] = nullptr;
1761     return nullptr;
1762   }
1763   const std::unique_ptr<VPtrInfo> &VFPtr = *VFPtrI;
1764 
1765   SmallString<256> VFTableName;
1766   mangleVFTableName(getMangleContext(), RD, *VFPtr, VFTableName);
1767 
1768   // Classes marked __declspec(dllimport) need vftables generated on the
1769   // import-side in order to support features like constexpr.  No other
1770   // translation unit relies on the emission of the local vftable, translation
1771   // units are expected to generate them as needed.
1772   //
1773   // Because of this unique behavior, we maintain this logic here instead of
1774   // getVTableLinkage.
1775   llvm::GlobalValue::LinkageTypes VFTableLinkage =
1776       RD->hasAttr<DLLImportAttr>() ? llvm::GlobalValue::LinkOnceODRLinkage
1777                                    : CGM.getVTableLinkage(RD);
1778   bool VFTableComesFromAnotherTU =
1779       llvm::GlobalValue::isAvailableExternallyLinkage(VFTableLinkage) ||
1780       llvm::GlobalValue::isExternalLinkage(VFTableLinkage);
1781   bool VTableAliasIsRequred =
1782       !VFTableComesFromAnotherTU && getContext().getLangOpts().RTTIData;
1783 
1784   if (llvm::GlobalValue *VFTable =
1785           CGM.getModule().getNamedGlobal(VFTableName)) {
1786     VFTablesMap[ID] = VFTable;
1787     VTable = VTableAliasIsRequred
1788                  ? cast<llvm::GlobalVariable>(
1789                        cast<llvm::GlobalAlias>(VFTable)->getBaseObject())
1790                  : cast<llvm::GlobalVariable>(VFTable);
1791     return VTable;
1792   }
1793 
1794   const VTableLayout &VTLayout =
1795       VTContext.getVFTableLayout(RD, VFPtr->FullOffsetInMDC);
1796   llvm::GlobalValue::LinkageTypes VTableLinkage =
1797       VTableAliasIsRequred ? llvm::GlobalValue::PrivateLinkage : VFTableLinkage;
1798 
1799   StringRef VTableName = VTableAliasIsRequred ? StringRef() : VFTableName.str();
1800 
1801   llvm::Type *VTableType = CGM.getVTables().getVTableType(VTLayout);
1802 
1803   // Create a backing variable for the contents of VTable.  The VTable may
1804   // or may not include space for a pointer to RTTI data.
1805   llvm::GlobalValue *VFTable;
1806   VTable = new llvm::GlobalVariable(CGM.getModule(), VTableType,
1807                                     /*isConstant=*/true, VTableLinkage,
1808                                     /*Initializer=*/nullptr, VTableName);
1809   VTable->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1810 
1811   llvm::Comdat *C = nullptr;
1812   if (!VFTableComesFromAnotherTU &&
1813       (llvm::GlobalValue::isWeakForLinker(VFTableLinkage) ||
1814        (llvm::GlobalValue::isLocalLinkage(VFTableLinkage) &&
1815         VTableAliasIsRequred)))
1816     C = CGM.getModule().getOrInsertComdat(VFTableName.str());
1817 
1818   // Only insert a pointer into the VFTable for RTTI data if we are not
1819   // importing it.  We never reference the RTTI data directly so there is no
1820   // need to make room for it.
1821   if (VTableAliasIsRequred) {
1822     llvm::Value *GEPIndices[] = {llvm::ConstantInt::get(CGM.Int32Ty, 0),
1823                                  llvm::ConstantInt::get(CGM.Int32Ty, 0),
1824                                  llvm::ConstantInt::get(CGM.Int32Ty, 1)};
1825     // Create a GEP which points just after the first entry in the VFTable,
1826     // this should be the location of the first virtual method.
1827     llvm::Constant *VTableGEP = llvm::ConstantExpr::getInBoundsGetElementPtr(
1828         VTable->getValueType(), VTable, GEPIndices);
1829     if (llvm::GlobalValue::isWeakForLinker(VFTableLinkage)) {
1830       VFTableLinkage = llvm::GlobalValue::ExternalLinkage;
1831       if (C)
1832         C->setSelectionKind(llvm::Comdat::Largest);
1833     }
1834     VFTable = llvm::GlobalAlias::create(CGM.Int8PtrTy,
1835                                         /*AddressSpace=*/0, VFTableLinkage,
1836                                         VFTableName.str(), VTableGEP,
1837                                         &CGM.getModule());
1838     VFTable->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1839   } else {
1840     // We don't need a GlobalAlias to be a symbol for the VTable if we won't
1841     // be referencing any RTTI data.
1842     // The GlobalVariable will end up being an appropriate definition of the
1843     // VFTable.
1844     VFTable = VTable;
1845   }
1846   if (C)
1847     VTable->setComdat(C);
1848 
1849   if (RD->hasAttr<DLLExportAttr>())
1850     VFTable->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
1851 
1852   VFTablesMap[ID] = VFTable;
1853   return VTable;
1854 }
1855 
1856 CGCallee MicrosoftCXXABI::getVirtualFunctionPointer(CodeGenFunction &CGF,
1857                                                     GlobalDecl GD,
1858                                                     Address This,
1859                                                     llvm::Type *Ty,
1860                                                     SourceLocation Loc) {
1861   CGBuilderTy &Builder = CGF.Builder;
1862 
1863   Ty = Ty->getPointerTo()->getPointerTo();
1864   Address VPtr =
1865       adjustThisArgumentForVirtualFunctionCall(CGF, GD, This, true);
1866 
1867   auto *MethodDecl = cast<CXXMethodDecl>(GD.getDecl());
1868   llvm::Value *VTable = CGF.GetVTablePtr(VPtr, Ty, MethodDecl->getParent());
1869 
1870   MicrosoftVTableContext &VFTContext = CGM.getMicrosoftVTableContext();
1871   MethodVFTableLocation ML = VFTContext.getMethodVFTableLocation(GD);
1872 
1873   // Compute the identity of the most derived class whose virtual table is
1874   // located at the MethodVFTableLocation ML.
1875   auto getObjectWithVPtr = [&] {
1876     return llvm::find_if(VFTContext.getVFPtrOffsets(
1877                              ML.VBase ? ML.VBase : MethodDecl->getParent()),
1878                          [&](const std::unique_ptr<VPtrInfo> &Info) {
1879                            return Info->FullOffsetInMDC == ML.VFPtrOffset;
1880                          })
1881         ->get()
1882         ->ObjectWithVPtr;
1883   };
1884 
1885   llvm::Value *VFunc;
1886   if (CGF.ShouldEmitVTableTypeCheckedLoad(MethodDecl->getParent())) {
1887     VFunc = CGF.EmitVTableTypeCheckedLoad(
1888         getObjectWithVPtr(), VTable,
1889         ML.Index * CGM.getContext().getTargetInfo().getPointerWidth(0) / 8);
1890   } else {
1891     if (CGM.getCodeGenOpts().PrepareForLTO)
1892       CGF.EmitTypeMetadataCodeForVCall(getObjectWithVPtr(), VTable, Loc);
1893 
1894     llvm::Value *VFuncPtr =
1895         Builder.CreateConstInBoundsGEP1_64(VTable, ML.Index, "vfn");
1896     VFunc = Builder.CreateAlignedLoad(VFuncPtr, CGF.getPointerAlign());
1897   }
1898 
1899   CGCallee Callee(GD, VFunc);
1900   return Callee;
1901 }
1902 
1903 llvm::Value *MicrosoftCXXABI::EmitVirtualDestructorCall(
1904     CodeGenFunction &CGF, const CXXDestructorDecl *Dtor, CXXDtorType DtorType,
1905     Address This, DeleteOrMemberCallExpr E) {
1906   auto *CE = E.dyn_cast<const CXXMemberCallExpr *>();
1907   auto *D = E.dyn_cast<const CXXDeleteExpr *>();
1908   assert((CE != nullptr) ^ (D != nullptr));
1909   assert(CE == nullptr || CE->arg_begin() == CE->arg_end());
1910   assert(DtorType == Dtor_Deleting || DtorType == Dtor_Complete);
1911 
1912   // We have only one destructor in the vftable but can get both behaviors
1913   // by passing an implicit int parameter.
1914   GlobalDecl GD(Dtor, Dtor_Deleting);
1915   const CGFunctionInfo *FInfo =
1916       &CGM.getTypes().arrangeCXXStructorDeclaration(GD);
1917   llvm::FunctionType *Ty = CGF.CGM.getTypes().GetFunctionType(*FInfo);
1918   CGCallee Callee = CGCallee::forVirtual(CE, GD, This, Ty);
1919 
1920   ASTContext &Context = getContext();
1921   llvm::Value *ImplicitParam = llvm::ConstantInt::get(
1922       llvm::IntegerType::getInt32Ty(CGF.getLLVMContext()),
1923       DtorType == Dtor_Deleting);
1924 
1925   QualType ThisTy;
1926   if (CE) {
1927     ThisTy = CE->getObjectType();
1928   } else {
1929     ThisTy = D->getDestroyedType();
1930   }
1931 
1932   This = adjustThisArgumentForVirtualFunctionCall(CGF, GD, This, true);
1933   RValue RV = CGF.EmitCXXDestructorCall(GD, Callee, This.getPointer(), ThisTy,
1934                                         ImplicitParam, Context.IntTy, CE);
1935   return RV.getScalarVal();
1936 }
1937 
1938 const VBTableGlobals &
1939 MicrosoftCXXABI::enumerateVBTables(const CXXRecordDecl *RD) {
1940   // At this layer, we can key the cache off of a single class, which is much
1941   // easier than caching each vbtable individually.
1942   llvm::DenseMap<const CXXRecordDecl*, VBTableGlobals>::iterator Entry;
1943   bool Added;
1944   std::tie(Entry, Added) =
1945       VBTablesMap.insert(std::make_pair(RD, VBTableGlobals()));
1946   VBTableGlobals &VBGlobals = Entry->second;
1947   if (!Added)
1948     return VBGlobals;
1949 
1950   MicrosoftVTableContext &Context = CGM.getMicrosoftVTableContext();
1951   VBGlobals.VBTables = &Context.enumerateVBTables(RD);
1952 
1953   // Cache the globals for all vbtables so we don't have to recompute the
1954   // mangled names.
1955   llvm::GlobalVariable::LinkageTypes Linkage = CGM.getVTableLinkage(RD);
1956   for (VPtrInfoVector::const_iterator I = VBGlobals.VBTables->begin(),
1957                                       E = VBGlobals.VBTables->end();
1958        I != E; ++I) {
1959     VBGlobals.Globals.push_back(getAddrOfVBTable(**I, RD, Linkage));
1960   }
1961 
1962   return VBGlobals;
1963 }
1964 
1965 llvm::Function *
1966 MicrosoftCXXABI::EmitVirtualMemPtrThunk(const CXXMethodDecl *MD,
1967                                         const MethodVFTableLocation &ML) {
1968   assert(!isa<CXXConstructorDecl>(MD) && !isa<CXXDestructorDecl>(MD) &&
1969          "can't form pointers to ctors or virtual dtors");
1970 
1971   // Calculate the mangled name.
1972   SmallString<256> ThunkName;
1973   llvm::raw_svector_ostream Out(ThunkName);
1974   getMangleContext().mangleVirtualMemPtrThunk(MD, ML, Out);
1975 
1976   // If the thunk has been generated previously, just return it.
1977   if (llvm::GlobalValue *GV = CGM.getModule().getNamedValue(ThunkName))
1978     return cast<llvm::Function>(GV);
1979 
1980   // Create the llvm::Function.
1981   const CGFunctionInfo &FnInfo =
1982       CGM.getTypes().arrangeUnprototypedMustTailThunk(MD);
1983   llvm::FunctionType *ThunkTy = CGM.getTypes().GetFunctionType(FnInfo);
1984   llvm::Function *ThunkFn =
1985       llvm::Function::Create(ThunkTy, llvm::Function::ExternalLinkage,
1986                              ThunkName.str(), &CGM.getModule());
1987   assert(ThunkFn->getName() == ThunkName && "name was uniqued!");
1988 
1989   ThunkFn->setLinkage(MD->isExternallyVisible()
1990                           ? llvm::GlobalValue::LinkOnceODRLinkage
1991                           : llvm::GlobalValue::InternalLinkage);
1992   if (MD->isExternallyVisible())
1993     ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName()));
1994 
1995   CGM.SetLLVMFunctionAttributes(MD, FnInfo, ThunkFn);
1996   CGM.SetLLVMFunctionAttributesForDefinition(MD, ThunkFn);
1997 
1998   // Add the "thunk" attribute so that LLVM knows that the return type is
1999   // meaningless. These thunks can be used to call functions with differing
2000   // return types, and the caller is required to cast the prototype
2001   // appropriately to extract the correct value.
2002   ThunkFn->addFnAttr("thunk");
2003 
2004   // These thunks can be compared, so they are not unnamed.
2005   ThunkFn->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::None);
2006 
2007   // Start codegen.
2008   CodeGenFunction CGF(CGM);
2009   CGF.CurGD = GlobalDecl(MD);
2010   CGF.CurFuncIsThunk = true;
2011 
2012   // Build FunctionArgs, but only include the implicit 'this' parameter
2013   // declaration.
2014   FunctionArgList FunctionArgs;
2015   buildThisParam(CGF, FunctionArgs);
2016 
2017   // Start defining the function.
2018   CGF.StartFunction(GlobalDecl(), FnInfo.getReturnType(), ThunkFn, FnInfo,
2019                     FunctionArgs, MD->getLocation(), SourceLocation());
2020   setCXXABIThisValue(CGF, loadIncomingCXXThis(CGF));
2021 
2022   // Load the vfptr and then callee from the vftable.  The callee should have
2023   // adjusted 'this' so that the vfptr is at offset zero.
2024   llvm::Value *VTable = CGF.GetVTablePtr(
2025       getThisAddress(CGF), ThunkTy->getPointerTo()->getPointerTo(), MD->getParent());
2026 
2027   llvm::Value *VFuncPtr =
2028       CGF.Builder.CreateConstInBoundsGEP1_64(VTable, ML.Index, "vfn");
2029   llvm::Value *Callee =
2030     CGF.Builder.CreateAlignedLoad(VFuncPtr, CGF.getPointerAlign());
2031 
2032   CGF.EmitMustTailThunk(MD, getThisValue(CGF), {ThunkTy, Callee});
2033 
2034   return ThunkFn;
2035 }
2036 
2037 void MicrosoftCXXABI::emitVirtualInheritanceTables(const CXXRecordDecl *RD) {
2038   const VBTableGlobals &VBGlobals = enumerateVBTables(RD);
2039   for (unsigned I = 0, E = VBGlobals.VBTables->size(); I != E; ++I) {
2040     const std::unique_ptr<VPtrInfo>& VBT = (*VBGlobals.VBTables)[I];
2041     llvm::GlobalVariable *GV = VBGlobals.Globals[I];
2042     if (GV->isDeclaration())
2043       emitVBTableDefinition(*VBT, RD, GV);
2044   }
2045 }
2046 
2047 llvm::GlobalVariable *
2048 MicrosoftCXXABI::getAddrOfVBTable(const VPtrInfo &VBT, const CXXRecordDecl *RD,
2049                                   llvm::GlobalVariable::LinkageTypes Linkage) {
2050   SmallString<256> OutName;
2051   llvm::raw_svector_ostream Out(OutName);
2052   getMangleContext().mangleCXXVBTable(RD, VBT.MangledPath, Out);
2053   StringRef Name = OutName.str();
2054 
2055   llvm::ArrayType *VBTableType =
2056       llvm::ArrayType::get(CGM.IntTy, 1 + VBT.ObjectWithVPtr->getNumVBases());
2057 
2058   assert(!CGM.getModule().getNamedGlobal(Name) &&
2059          "vbtable with this name already exists: mangling bug?");
2060   CharUnits Alignment =
2061       CGM.getContext().getTypeAlignInChars(CGM.getContext().IntTy);
2062   llvm::GlobalVariable *GV = CGM.CreateOrReplaceCXXRuntimeVariable(
2063       Name, VBTableType, Linkage, Alignment.getQuantity());
2064   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2065 
2066   if (RD->hasAttr<DLLImportAttr>())
2067     GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
2068   else if (RD->hasAttr<DLLExportAttr>())
2069     GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
2070 
2071   if (!GV->hasExternalLinkage())
2072     emitVBTableDefinition(VBT, RD, GV);
2073 
2074   return GV;
2075 }
2076 
2077 void MicrosoftCXXABI::emitVBTableDefinition(const VPtrInfo &VBT,
2078                                             const CXXRecordDecl *RD,
2079                                             llvm::GlobalVariable *GV) const {
2080   const CXXRecordDecl *ObjectWithVPtr = VBT.ObjectWithVPtr;
2081 
2082   assert(RD->getNumVBases() && ObjectWithVPtr->getNumVBases() &&
2083          "should only emit vbtables for classes with vbtables");
2084 
2085   const ASTRecordLayout &BaseLayout =
2086       getContext().getASTRecordLayout(VBT.IntroducingObject);
2087   const ASTRecordLayout &DerivedLayout = getContext().getASTRecordLayout(RD);
2088 
2089   SmallVector<llvm::Constant *, 4> Offsets(1 + ObjectWithVPtr->getNumVBases(),
2090                                            nullptr);
2091 
2092   // The offset from ObjectWithVPtr's vbptr to itself always leads.
2093   CharUnits VBPtrOffset = BaseLayout.getVBPtrOffset();
2094   Offsets[0] = llvm::ConstantInt::get(CGM.IntTy, -VBPtrOffset.getQuantity());
2095 
2096   MicrosoftVTableContext &Context = CGM.getMicrosoftVTableContext();
2097   for (const auto &I : ObjectWithVPtr->vbases()) {
2098     const CXXRecordDecl *VBase = I.getType()->getAsCXXRecordDecl();
2099     CharUnits Offset = DerivedLayout.getVBaseClassOffset(VBase);
2100     assert(!Offset.isNegative());
2101 
2102     // Make it relative to the subobject vbptr.
2103     CharUnits CompleteVBPtrOffset = VBT.NonVirtualOffset + VBPtrOffset;
2104     if (VBT.getVBaseWithVPtr())
2105       CompleteVBPtrOffset +=
2106           DerivedLayout.getVBaseClassOffset(VBT.getVBaseWithVPtr());
2107     Offset -= CompleteVBPtrOffset;
2108 
2109     unsigned VBIndex = Context.getVBTableIndex(ObjectWithVPtr, VBase);
2110     assert(Offsets[VBIndex] == nullptr && "The same vbindex seen twice?");
2111     Offsets[VBIndex] = llvm::ConstantInt::get(CGM.IntTy, Offset.getQuantity());
2112   }
2113 
2114   assert(Offsets.size() ==
2115          cast<llvm::ArrayType>(cast<llvm::PointerType>(GV->getType())
2116                                ->getElementType())->getNumElements());
2117   llvm::ArrayType *VBTableType =
2118     llvm::ArrayType::get(CGM.IntTy, Offsets.size());
2119   llvm::Constant *Init = llvm::ConstantArray::get(VBTableType, Offsets);
2120   GV->setInitializer(Init);
2121 
2122   if (RD->hasAttr<DLLImportAttr>())
2123     GV->setLinkage(llvm::GlobalVariable::AvailableExternallyLinkage);
2124 }
2125 
2126 llvm::Value *MicrosoftCXXABI::performThisAdjustment(CodeGenFunction &CGF,
2127                                                     Address This,
2128                                                     const ThisAdjustment &TA) {
2129   if (TA.isEmpty())
2130     return This.getPointer();
2131 
2132   This = CGF.Builder.CreateElementBitCast(This, CGF.Int8Ty);
2133 
2134   llvm::Value *V;
2135   if (TA.Virtual.isEmpty()) {
2136     V = This.getPointer();
2137   } else {
2138     assert(TA.Virtual.Microsoft.VtordispOffset < 0);
2139     // Adjust the this argument based on the vtordisp value.
2140     Address VtorDispPtr =
2141         CGF.Builder.CreateConstInBoundsByteGEP(This,
2142                  CharUnits::fromQuantity(TA.Virtual.Microsoft.VtordispOffset));
2143     VtorDispPtr = CGF.Builder.CreateElementBitCast(VtorDispPtr, CGF.Int32Ty);
2144     llvm::Value *VtorDisp = CGF.Builder.CreateLoad(VtorDispPtr, "vtordisp");
2145     V = CGF.Builder.CreateGEP(This.getPointer(),
2146                               CGF.Builder.CreateNeg(VtorDisp));
2147 
2148     // Unfortunately, having applied the vtordisp means that we no
2149     // longer really have a known alignment for the vbptr step.
2150     // We'll assume the vbptr is pointer-aligned.
2151 
2152     if (TA.Virtual.Microsoft.VBPtrOffset) {
2153       // If the final overrider is defined in a virtual base other than the one
2154       // that holds the vfptr, we have to use a vtordispex thunk which looks up
2155       // the vbtable of the derived class.
2156       assert(TA.Virtual.Microsoft.VBPtrOffset > 0);
2157       assert(TA.Virtual.Microsoft.VBOffsetOffset >= 0);
2158       llvm::Value *VBPtr;
2159       llvm::Value *VBaseOffset =
2160           GetVBaseOffsetFromVBPtr(CGF, Address(V, CGF.getPointerAlign()),
2161                                   -TA.Virtual.Microsoft.VBPtrOffset,
2162                                   TA.Virtual.Microsoft.VBOffsetOffset, &VBPtr);
2163       V = CGF.Builder.CreateInBoundsGEP(VBPtr, VBaseOffset);
2164     }
2165   }
2166 
2167   if (TA.NonVirtual) {
2168     // Non-virtual adjustment might result in a pointer outside the allocated
2169     // object, e.g. if the final overrider class is laid out after the virtual
2170     // base that declares a method in the most derived class.
2171     V = CGF.Builder.CreateConstGEP1_32(V, TA.NonVirtual);
2172   }
2173 
2174   // Don't need to bitcast back, the call CodeGen will handle this.
2175   return V;
2176 }
2177 
2178 llvm::Value *
2179 MicrosoftCXXABI::performReturnAdjustment(CodeGenFunction &CGF, Address Ret,
2180                                          const ReturnAdjustment &RA) {
2181   if (RA.isEmpty())
2182     return Ret.getPointer();
2183 
2184   auto OrigTy = Ret.getType();
2185   Ret = CGF.Builder.CreateElementBitCast(Ret, CGF.Int8Ty);
2186 
2187   llvm::Value *V = Ret.getPointer();
2188   if (RA.Virtual.Microsoft.VBIndex) {
2189     assert(RA.Virtual.Microsoft.VBIndex > 0);
2190     int32_t IntSize = CGF.getIntSize().getQuantity();
2191     llvm::Value *VBPtr;
2192     llvm::Value *VBaseOffset =
2193         GetVBaseOffsetFromVBPtr(CGF, Ret, RA.Virtual.Microsoft.VBPtrOffset,
2194                                 IntSize * RA.Virtual.Microsoft.VBIndex, &VBPtr);
2195     V = CGF.Builder.CreateInBoundsGEP(VBPtr, VBaseOffset);
2196   }
2197 
2198   if (RA.NonVirtual)
2199     V = CGF.Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, V, RA.NonVirtual);
2200 
2201   // Cast back to the original type.
2202   return CGF.Builder.CreateBitCast(V, OrigTy);
2203 }
2204 
2205 bool MicrosoftCXXABI::requiresArrayCookie(const CXXDeleteExpr *expr,
2206                                    QualType elementType) {
2207   // Microsoft seems to completely ignore the possibility of a
2208   // two-argument usual deallocation function.
2209   return elementType.isDestructedType();
2210 }
2211 
2212 bool MicrosoftCXXABI::requiresArrayCookie(const CXXNewExpr *expr) {
2213   // Microsoft seems to completely ignore the possibility of a
2214   // two-argument usual deallocation function.
2215   return expr->getAllocatedType().isDestructedType();
2216 }
2217 
2218 CharUnits MicrosoftCXXABI::getArrayCookieSizeImpl(QualType type) {
2219   // The array cookie is always a size_t; we then pad that out to the
2220   // alignment of the element type.
2221   ASTContext &Ctx = getContext();
2222   return std::max(Ctx.getTypeSizeInChars(Ctx.getSizeType()),
2223                   Ctx.getTypeAlignInChars(type));
2224 }
2225 
2226 llvm::Value *MicrosoftCXXABI::readArrayCookieImpl(CodeGenFunction &CGF,
2227                                                   Address allocPtr,
2228                                                   CharUnits cookieSize) {
2229   Address numElementsPtr =
2230     CGF.Builder.CreateElementBitCast(allocPtr, CGF.SizeTy);
2231   return CGF.Builder.CreateLoad(numElementsPtr);
2232 }
2233 
2234 Address MicrosoftCXXABI::InitializeArrayCookie(CodeGenFunction &CGF,
2235                                                Address newPtr,
2236                                                llvm::Value *numElements,
2237                                                const CXXNewExpr *expr,
2238                                                QualType elementType) {
2239   assert(requiresArrayCookie(expr));
2240 
2241   // The size of the cookie.
2242   CharUnits cookieSize = getArrayCookieSizeImpl(elementType);
2243 
2244   // Compute an offset to the cookie.
2245   Address cookiePtr = newPtr;
2246 
2247   // Write the number of elements into the appropriate slot.
2248   Address numElementsPtr
2249     = CGF.Builder.CreateElementBitCast(cookiePtr, CGF.SizeTy);
2250   CGF.Builder.CreateStore(numElements, numElementsPtr);
2251 
2252   // Finally, compute a pointer to the actual data buffer by skipping
2253   // over the cookie completely.
2254   return CGF.Builder.CreateConstInBoundsByteGEP(newPtr, cookieSize);
2255 }
2256 
2257 static void emitGlobalDtorWithTLRegDtor(CodeGenFunction &CGF, const VarDecl &VD,
2258                                         llvm::FunctionCallee Dtor,
2259                                         llvm::Constant *Addr) {
2260   // Create a function which calls the destructor.
2261   llvm::Constant *DtorStub = CGF.createAtExitStub(VD, Dtor, Addr);
2262 
2263   // extern "C" int __tlregdtor(void (*f)(void));
2264   llvm::FunctionType *TLRegDtorTy = llvm::FunctionType::get(
2265       CGF.IntTy, DtorStub->getType(), /*isVarArg=*/false);
2266 
2267   llvm::FunctionCallee TLRegDtor = CGF.CGM.CreateRuntimeFunction(
2268       TLRegDtorTy, "__tlregdtor", llvm::AttributeList(), /*Local=*/true);
2269   if (llvm::Function *TLRegDtorFn =
2270           dyn_cast<llvm::Function>(TLRegDtor.getCallee()))
2271     TLRegDtorFn->setDoesNotThrow();
2272 
2273   CGF.EmitNounwindRuntimeCall(TLRegDtor, DtorStub);
2274 }
2275 
2276 void MicrosoftCXXABI::registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D,
2277                                          llvm::FunctionCallee Dtor,
2278                                          llvm::Constant *Addr) {
2279   if (D.isNoDestroy(CGM.getContext()))
2280     return;
2281 
2282   if (D.getTLSKind())
2283     return emitGlobalDtorWithTLRegDtor(CGF, D, Dtor, Addr);
2284 
2285   // The default behavior is to use atexit.
2286   CGF.registerGlobalDtorWithAtExit(D, Dtor, Addr);
2287 }
2288 
2289 void MicrosoftCXXABI::EmitThreadLocalInitFuncs(
2290     CodeGenModule &CGM, ArrayRef<const VarDecl *> CXXThreadLocals,
2291     ArrayRef<llvm::Function *> CXXThreadLocalInits,
2292     ArrayRef<const VarDecl *> CXXThreadLocalInitVars) {
2293   if (CXXThreadLocalInits.empty())
2294     return;
2295 
2296   CGM.AppendLinkerOptions(CGM.getTarget().getTriple().getArch() ==
2297                                   llvm::Triple::x86
2298                               ? "/include:___dyn_tls_init@12"
2299                               : "/include:__dyn_tls_init");
2300 
2301   // This will create a GV in the .CRT$XDU section.  It will point to our
2302   // initialization function.  The CRT will call all of these function
2303   // pointers at start-up time and, eventually, at thread-creation time.
2304   auto AddToXDU = [&CGM](llvm::Function *InitFunc) {
2305     llvm::GlobalVariable *InitFuncPtr = new llvm::GlobalVariable(
2306         CGM.getModule(), InitFunc->getType(), /*isConstant=*/true,
2307         llvm::GlobalVariable::InternalLinkage, InitFunc,
2308         Twine(InitFunc->getName(), "$initializer$"));
2309     InitFuncPtr->setSection(".CRT$XDU");
2310     // This variable has discardable linkage, we have to add it to @llvm.used to
2311     // ensure it won't get discarded.
2312     CGM.addUsedGlobal(InitFuncPtr);
2313     return InitFuncPtr;
2314   };
2315 
2316   std::vector<llvm::Function *> NonComdatInits;
2317   for (size_t I = 0, E = CXXThreadLocalInitVars.size(); I != E; ++I) {
2318     llvm::GlobalVariable *GV = cast<llvm::GlobalVariable>(
2319         CGM.GetGlobalValue(CGM.getMangledName(CXXThreadLocalInitVars[I])));
2320     llvm::Function *F = CXXThreadLocalInits[I];
2321 
2322     // If the GV is already in a comdat group, then we have to join it.
2323     if (llvm::Comdat *C = GV->getComdat())
2324       AddToXDU(F)->setComdat(C);
2325     else
2326       NonComdatInits.push_back(F);
2327   }
2328 
2329   if (!NonComdatInits.empty()) {
2330     llvm::FunctionType *FTy =
2331         llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
2332     llvm::Function *InitFunc = CGM.CreateGlobalInitOrDestructFunction(
2333         FTy, "__tls_init", CGM.getTypes().arrangeNullaryFunction(),
2334         SourceLocation(), /*TLS=*/true);
2335     CodeGenFunction(CGM).GenerateCXXGlobalInitFunc(InitFunc, NonComdatInits);
2336 
2337     AddToXDU(InitFunc);
2338   }
2339 }
2340 
2341 LValue MicrosoftCXXABI::EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF,
2342                                                      const VarDecl *VD,
2343                                                      QualType LValType) {
2344   CGF.CGM.ErrorUnsupported(VD, "thread wrappers");
2345   return LValue();
2346 }
2347 
2348 static ConstantAddress getInitThreadEpochPtr(CodeGenModule &CGM) {
2349   StringRef VarName("_Init_thread_epoch");
2350   CharUnits Align = CGM.getIntAlign();
2351   if (auto *GV = CGM.getModule().getNamedGlobal(VarName))
2352     return ConstantAddress(GV, Align);
2353   auto *GV = new llvm::GlobalVariable(
2354       CGM.getModule(), CGM.IntTy,
2355       /*isConstant=*/false, llvm::GlobalVariable::ExternalLinkage,
2356       /*Initializer=*/nullptr, VarName,
2357       /*InsertBefore=*/nullptr, llvm::GlobalVariable::GeneralDynamicTLSModel);
2358   GV->setAlignment(Align.getAsAlign());
2359   return ConstantAddress(GV, Align);
2360 }
2361 
2362 static llvm::FunctionCallee getInitThreadHeaderFn(CodeGenModule &CGM) {
2363   llvm::FunctionType *FTy =
2364       llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()),
2365                               CGM.IntTy->getPointerTo(), /*isVarArg=*/false);
2366   return CGM.CreateRuntimeFunction(
2367       FTy, "_Init_thread_header",
2368       llvm::AttributeList::get(CGM.getLLVMContext(),
2369                                llvm::AttributeList::FunctionIndex,
2370                                llvm::Attribute::NoUnwind),
2371       /*Local=*/true);
2372 }
2373 
2374 static llvm::FunctionCallee getInitThreadFooterFn(CodeGenModule &CGM) {
2375   llvm::FunctionType *FTy =
2376       llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()),
2377                               CGM.IntTy->getPointerTo(), /*isVarArg=*/false);
2378   return CGM.CreateRuntimeFunction(
2379       FTy, "_Init_thread_footer",
2380       llvm::AttributeList::get(CGM.getLLVMContext(),
2381                                llvm::AttributeList::FunctionIndex,
2382                                llvm::Attribute::NoUnwind),
2383       /*Local=*/true);
2384 }
2385 
2386 static llvm::FunctionCallee getInitThreadAbortFn(CodeGenModule &CGM) {
2387   llvm::FunctionType *FTy =
2388       llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()),
2389                               CGM.IntTy->getPointerTo(), /*isVarArg=*/false);
2390   return CGM.CreateRuntimeFunction(
2391       FTy, "_Init_thread_abort",
2392       llvm::AttributeList::get(CGM.getLLVMContext(),
2393                                llvm::AttributeList::FunctionIndex,
2394                                llvm::Attribute::NoUnwind),
2395       /*Local=*/true);
2396 }
2397 
2398 namespace {
2399 struct ResetGuardBit final : EHScopeStack::Cleanup {
2400   Address Guard;
2401   unsigned GuardNum;
2402   ResetGuardBit(Address Guard, unsigned GuardNum)
2403       : Guard(Guard), GuardNum(GuardNum) {}
2404 
2405   void Emit(CodeGenFunction &CGF, Flags flags) override {
2406     // Reset the bit in the mask so that the static variable may be
2407     // reinitialized.
2408     CGBuilderTy &Builder = CGF.Builder;
2409     llvm::LoadInst *LI = Builder.CreateLoad(Guard);
2410     llvm::ConstantInt *Mask =
2411         llvm::ConstantInt::get(CGF.IntTy, ~(1ULL << GuardNum));
2412     Builder.CreateStore(Builder.CreateAnd(LI, Mask), Guard);
2413   }
2414 };
2415 
2416 struct CallInitThreadAbort final : EHScopeStack::Cleanup {
2417   llvm::Value *Guard;
2418   CallInitThreadAbort(Address Guard) : Guard(Guard.getPointer()) {}
2419 
2420   void Emit(CodeGenFunction &CGF, Flags flags) override {
2421     // Calling _Init_thread_abort will reset the guard's state.
2422     CGF.EmitNounwindRuntimeCall(getInitThreadAbortFn(CGF.CGM), Guard);
2423   }
2424 };
2425 }
2426 
2427 void MicrosoftCXXABI::EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D,
2428                                       llvm::GlobalVariable *GV,
2429                                       bool PerformInit) {
2430   // MSVC only uses guards for static locals.
2431   if (!D.isStaticLocal()) {
2432     assert(GV->hasWeakLinkage() || GV->hasLinkOnceLinkage());
2433     // GlobalOpt is allowed to discard the initializer, so use linkonce_odr.
2434     llvm::Function *F = CGF.CurFn;
2435     F->setLinkage(llvm::GlobalValue::LinkOnceODRLinkage);
2436     F->setComdat(CGM.getModule().getOrInsertComdat(F->getName()));
2437     CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit);
2438     return;
2439   }
2440 
2441   bool ThreadlocalStatic = D.getTLSKind();
2442   bool ThreadsafeStatic = getContext().getLangOpts().ThreadsafeStatics;
2443 
2444   // Thread-safe static variables which aren't thread-specific have a
2445   // per-variable guard.
2446   bool HasPerVariableGuard = ThreadsafeStatic && !ThreadlocalStatic;
2447 
2448   CGBuilderTy &Builder = CGF.Builder;
2449   llvm::IntegerType *GuardTy = CGF.Int32Ty;
2450   llvm::ConstantInt *Zero = llvm::ConstantInt::get(GuardTy, 0);
2451   CharUnits GuardAlign = CharUnits::fromQuantity(4);
2452 
2453   // Get the guard variable for this function if we have one already.
2454   GuardInfo *GI = nullptr;
2455   if (ThreadlocalStatic)
2456     GI = &ThreadLocalGuardVariableMap[D.getDeclContext()];
2457   else if (!ThreadsafeStatic)
2458     GI = &GuardVariableMap[D.getDeclContext()];
2459 
2460   llvm::GlobalVariable *GuardVar = GI ? GI->Guard : nullptr;
2461   unsigned GuardNum;
2462   if (D.isExternallyVisible()) {
2463     // Externally visible variables have to be numbered in Sema to properly
2464     // handle unreachable VarDecls.
2465     GuardNum = getContext().getStaticLocalNumber(&D);
2466     assert(GuardNum > 0);
2467     GuardNum--;
2468   } else if (HasPerVariableGuard) {
2469     GuardNum = ThreadSafeGuardNumMap[D.getDeclContext()]++;
2470   } else {
2471     // Non-externally visible variables are numbered here in CodeGen.
2472     GuardNum = GI->BitIndex++;
2473   }
2474 
2475   if (!HasPerVariableGuard && GuardNum >= 32) {
2476     if (D.isExternallyVisible())
2477       ErrorUnsupportedABI(CGF, "more than 32 guarded initializations");
2478     GuardNum %= 32;
2479     GuardVar = nullptr;
2480   }
2481 
2482   if (!GuardVar) {
2483     // Mangle the name for the guard.
2484     SmallString<256> GuardName;
2485     {
2486       llvm::raw_svector_ostream Out(GuardName);
2487       if (HasPerVariableGuard)
2488         getMangleContext().mangleThreadSafeStaticGuardVariable(&D, GuardNum,
2489                                                                Out);
2490       else
2491         getMangleContext().mangleStaticGuardVariable(&D, Out);
2492     }
2493 
2494     // Create the guard variable with a zero-initializer. Just absorb linkage,
2495     // visibility and dll storage class from the guarded variable.
2496     GuardVar =
2497         new llvm::GlobalVariable(CGM.getModule(), GuardTy, /*isConstant=*/false,
2498                                  GV->getLinkage(), Zero, GuardName.str());
2499     GuardVar->setVisibility(GV->getVisibility());
2500     GuardVar->setDLLStorageClass(GV->getDLLStorageClass());
2501     GuardVar->setAlignment(GuardAlign.getAsAlign());
2502     if (GuardVar->isWeakForLinker())
2503       GuardVar->setComdat(
2504           CGM.getModule().getOrInsertComdat(GuardVar->getName()));
2505     if (D.getTLSKind())
2506       GuardVar->setThreadLocal(true);
2507     if (GI && !HasPerVariableGuard)
2508       GI->Guard = GuardVar;
2509   }
2510 
2511   ConstantAddress GuardAddr(GuardVar, GuardAlign);
2512 
2513   assert(GuardVar->getLinkage() == GV->getLinkage() &&
2514          "static local from the same function had different linkage");
2515 
2516   if (!HasPerVariableGuard) {
2517     // Pseudo code for the test:
2518     // if (!(GuardVar & MyGuardBit)) {
2519     //   GuardVar |= MyGuardBit;
2520     //   ... initialize the object ...;
2521     // }
2522 
2523     // Test our bit from the guard variable.
2524     llvm::ConstantInt *Bit = llvm::ConstantInt::get(GuardTy, 1ULL << GuardNum);
2525     llvm::LoadInst *LI = Builder.CreateLoad(GuardAddr);
2526     llvm::Value *NeedsInit =
2527         Builder.CreateICmpEQ(Builder.CreateAnd(LI, Bit), Zero);
2528     llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init");
2529     llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end");
2530     CGF.EmitCXXGuardedInitBranch(NeedsInit, InitBlock, EndBlock,
2531                                  CodeGenFunction::GuardKind::VariableGuard, &D);
2532 
2533     // Set our bit in the guard variable and emit the initializer and add a global
2534     // destructor if appropriate.
2535     CGF.EmitBlock(InitBlock);
2536     Builder.CreateStore(Builder.CreateOr(LI, Bit), GuardAddr);
2537     CGF.EHStack.pushCleanup<ResetGuardBit>(EHCleanup, GuardAddr, GuardNum);
2538     CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit);
2539     CGF.PopCleanupBlock();
2540     Builder.CreateBr(EndBlock);
2541 
2542     // Continue.
2543     CGF.EmitBlock(EndBlock);
2544   } else {
2545     // Pseudo code for the test:
2546     // if (TSS > _Init_thread_epoch) {
2547     //   _Init_thread_header(&TSS);
2548     //   if (TSS == -1) {
2549     //     ... initialize the object ...;
2550     //     _Init_thread_footer(&TSS);
2551     //   }
2552     // }
2553     //
2554     // The algorithm is almost identical to what can be found in the appendix
2555     // found in N2325.
2556 
2557     // This BasicBLock determines whether or not we have any work to do.
2558     llvm::LoadInst *FirstGuardLoad = Builder.CreateLoad(GuardAddr);
2559     FirstGuardLoad->setOrdering(llvm::AtomicOrdering::Unordered);
2560     llvm::LoadInst *InitThreadEpoch =
2561         Builder.CreateLoad(getInitThreadEpochPtr(CGM));
2562     llvm::Value *IsUninitialized =
2563         Builder.CreateICmpSGT(FirstGuardLoad, InitThreadEpoch);
2564     llvm::BasicBlock *AttemptInitBlock = CGF.createBasicBlock("init.attempt");
2565     llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end");
2566     CGF.EmitCXXGuardedInitBranch(IsUninitialized, AttemptInitBlock, EndBlock,
2567                                  CodeGenFunction::GuardKind::VariableGuard, &D);
2568 
2569     // This BasicBlock attempts to determine whether or not this thread is
2570     // responsible for doing the initialization.
2571     CGF.EmitBlock(AttemptInitBlock);
2572     CGF.EmitNounwindRuntimeCall(getInitThreadHeaderFn(CGM),
2573                                 GuardAddr.getPointer());
2574     llvm::LoadInst *SecondGuardLoad = Builder.CreateLoad(GuardAddr);
2575     SecondGuardLoad->setOrdering(llvm::AtomicOrdering::Unordered);
2576     llvm::Value *ShouldDoInit =
2577         Builder.CreateICmpEQ(SecondGuardLoad, getAllOnesInt());
2578     llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init");
2579     Builder.CreateCondBr(ShouldDoInit, InitBlock, EndBlock);
2580 
2581     // Ok, we ended up getting selected as the initializing thread.
2582     CGF.EmitBlock(InitBlock);
2583     CGF.EHStack.pushCleanup<CallInitThreadAbort>(EHCleanup, GuardAddr);
2584     CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit);
2585     CGF.PopCleanupBlock();
2586     CGF.EmitNounwindRuntimeCall(getInitThreadFooterFn(CGM),
2587                                 GuardAddr.getPointer());
2588     Builder.CreateBr(EndBlock);
2589 
2590     CGF.EmitBlock(EndBlock);
2591   }
2592 }
2593 
2594 bool MicrosoftCXXABI::isZeroInitializable(const MemberPointerType *MPT) {
2595   // Null-ness for function memptrs only depends on the first field, which is
2596   // the function pointer.  The rest don't matter, so we can zero initialize.
2597   if (MPT->isMemberFunctionPointer())
2598     return true;
2599 
2600   // The virtual base adjustment field is always -1 for null, so if we have one
2601   // we can't zero initialize.  The field offset is sometimes also -1 if 0 is a
2602   // valid field offset.
2603   const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
2604   MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
2605   return (!MSInheritanceAttr::hasVBTableOffsetField(Inheritance) &&
2606           RD->nullFieldOffsetIsZero());
2607 }
2608 
2609 llvm::Type *
2610 MicrosoftCXXABI::ConvertMemberPointerType(const MemberPointerType *MPT) {
2611   const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
2612   MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
2613   llvm::SmallVector<llvm::Type *, 4> fields;
2614   if (MPT->isMemberFunctionPointer())
2615     fields.push_back(CGM.VoidPtrTy);  // FunctionPointerOrVirtualThunk
2616   else
2617     fields.push_back(CGM.IntTy);  // FieldOffset
2618 
2619   if (MSInheritanceAttr::hasNVOffsetField(MPT->isMemberFunctionPointer(),
2620                                           Inheritance))
2621     fields.push_back(CGM.IntTy);
2622   if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance))
2623     fields.push_back(CGM.IntTy);
2624   if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance))
2625     fields.push_back(CGM.IntTy);  // VirtualBaseAdjustmentOffset
2626 
2627   if (fields.size() == 1)
2628     return fields[0];
2629   return llvm::StructType::get(CGM.getLLVMContext(), fields);
2630 }
2631 
2632 void MicrosoftCXXABI::
2633 GetNullMemberPointerFields(const MemberPointerType *MPT,
2634                            llvm::SmallVectorImpl<llvm::Constant *> &fields) {
2635   assert(fields.empty());
2636   const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
2637   MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
2638   if (MPT->isMemberFunctionPointer()) {
2639     // FunctionPointerOrVirtualThunk
2640     fields.push_back(llvm::Constant::getNullValue(CGM.VoidPtrTy));
2641   } else {
2642     if (RD->nullFieldOffsetIsZero())
2643       fields.push_back(getZeroInt());  // FieldOffset
2644     else
2645       fields.push_back(getAllOnesInt());  // FieldOffset
2646   }
2647 
2648   if (MSInheritanceAttr::hasNVOffsetField(MPT->isMemberFunctionPointer(),
2649                                           Inheritance))
2650     fields.push_back(getZeroInt());
2651   if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance))
2652     fields.push_back(getZeroInt());
2653   if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance))
2654     fields.push_back(getAllOnesInt());
2655 }
2656 
2657 llvm::Constant *
2658 MicrosoftCXXABI::EmitNullMemberPointer(const MemberPointerType *MPT) {
2659   llvm::SmallVector<llvm::Constant *, 4> fields;
2660   GetNullMemberPointerFields(MPT, fields);
2661   if (fields.size() == 1)
2662     return fields[0];
2663   llvm::Constant *Res = llvm::ConstantStruct::getAnon(fields);
2664   assert(Res->getType() == ConvertMemberPointerType(MPT));
2665   return Res;
2666 }
2667 
2668 llvm::Constant *
2669 MicrosoftCXXABI::EmitFullMemberPointer(llvm::Constant *FirstField,
2670                                        bool IsMemberFunction,
2671                                        const CXXRecordDecl *RD,
2672                                        CharUnits NonVirtualBaseAdjustment,
2673                                        unsigned VBTableIndex) {
2674   MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
2675 
2676   // Single inheritance class member pointer are represented as scalars instead
2677   // of aggregates.
2678   if (MSInheritanceAttr::hasOnlyOneField(IsMemberFunction, Inheritance))
2679     return FirstField;
2680 
2681   llvm::SmallVector<llvm::Constant *, 4> fields;
2682   fields.push_back(FirstField);
2683 
2684   if (MSInheritanceAttr::hasNVOffsetField(IsMemberFunction, Inheritance))
2685     fields.push_back(llvm::ConstantInt::get(
2686       CGM.IntTy, NonVirtualBaseAdjustment.getQuantity()));
2687 
2688   if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance)) {
2689     CharUnits Offs = CharUnits::Zero();
2690     if (VBTableIndex)
2691       Offs = getContext().getASTRecordLayout(RD).getVBPtrOffset();
2692     fields.push_back(llvm::ConstantInt::get(CGM.IntTy, Offs.getQuantity()));
2693   }
2694 
2695   // The rest of the fields are adjusted by conversions to a more derived class.
2696   if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance))
2697     fields.push_back(llvm::ConstantInt::get(CGM.IntTy, VBTableIndex));
2698 
2699   return llvm::ConstantStruct::getAnon(fields);
2700 }
2701 
2702 llvm::Constant *
2703 MicrosoftCXXABI::EmitMemberDataPointer(const MemberPointerType *MPT,
2704                                        CharUnits offset) {
2705   const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
2706   if (RD->getMSInheritanceModel() ==
2707       MSInheritanceAttr::Keyword_virtual_inheritance)
2708     offset -= getContext().getOffsetOfBaseWithVBPtr(RD);
2709   llvm::Constant *FirstField =
2710     llvm::ConstantInt::get(CGM.IntTy, offset.getQuantity());
2711   return EmitFullMemberPointer(FirstField, /*IsMemberFunction=*/false, RD,
2712                                CharUnits::Zero(), /*VBTableIndex=*/0);
2713 }
2714 
2715 llvm::Constant *MicrosoftCXXABI::EmitMemberPointer(const APValue &MP,
2716                                                    QualType MPType) {
2717   const MemberPointerType *DstTy = MPType->castAs<MemberPointerType>();
2718   const ValueDecl *MPD = MP.getMemberPointerDecl();
2719   if (!MPD)
2720     return EmitNullMemberPointer(DstTy);
2721 
2722   ASTContext &Ctx = getContext();
2723   ArrayRef<const CXXRecordDecl *> MemberPointerPath = MP.getMemberPointerPath();
2724 
2725   llvm::Constant *C;
2726   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MPD)) {
2727     C = EmitMemberFunctionPointer(MD);
2728   } else {
2729     CharUnits FieldOffset = Ctx.toCharUnitsFromBits(Ctx.getFieldOffset(MPD));
2730     C = EmitMemberDataPointer(DstTy, FieldOffset);
2731   }
2732 
2733   if (!MemberPointerPath.empty()) {
2734     const CXXRecordDecl *SrcRD = cast<CXXRecordDecl>(MPD->getDeclContext());
2735     const Type *SrcRecTy = Ctx.getTypeDeclType(SrcRD).getTypePtr();
2736     const MemberPointerType *SrcTy =
2737         Ctx.getMemberPointerType(DstTy->getPointeeType(), SrcRecTy)
2738             ->castAs<MemberPointerType>();
2739 
2740     bool DerivedMember = MP.isMemberPointerToDerivedMember();
2741     SmallVector<const CXXBaseSpecifier *, 4> DerivedToBasePath;
2742     const CXXRecordDecl *PrevRD = SrcRD;
2743     for (const CXXRecordDecl *PathElem : MemberPointerPath) {
2744       const CXXRecordDecl *Base = nullptr;
2745       const CXXRecordDecl *Derived = nullptr;
2746       if (DerivedMember) {
2747         Base = PathElem;
2748         Derived = PrevRD;
2749       } else {
2750         Base = PrevRD;
2751         Derived = PathElem;
2752       }
2753       for (const CXXBaseSpecifier &BS : Derived->bases())
2754         if (BS.getType()->getAsCXXRecordDecl()->getCanonicalDecl() ==
2755             Base->getCanonicalDecl())
2756           DerivedToBasePath.push_back(&BS);
2757       PrevRD = PathElem;
2758     }
2759     assert(DerivedToBasePath.size() == MemberPointerPath.size());
2760 
2761     CastKind CK = DerivedMember ? CK_DerivedToBaseMemberPointer
2762                                 : CK_BaseToDerivedMemberPointer;
2763     C = EmitMemberPointerConversion(SrcTy, DstTy, CK, DerivedToBasePath.begin(),
2764                                     DerivedToBasePath.end(), C);
2765   }
2766   return C;
2767 }
2768 
2769 llvm::Constant *
2770 MicrosoftCXXABI::EmitMemberFunctionPointer(const CXXMethodDecl *MD) {
2771   assert(MD->isInstance() && "Member function must not be static!");
2772 
2773   CharUnits NonVirtualBaseAdjustment = CharUnits::Zero();
2774   const CXXRecordDecl *RD = MD->getParent()->getMostRecentNonInjectedDecl();
2775   CodeGenTypes &Types = CGM.getTypes();
2776 
2777   unsigned VBTableIndex = 0;
2778   llvm::Constant *FirstField;
2779   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
2780   if (!MD->isVirtual()) {
2781     llvm::Type *Ty;
2782     // Check whether the function has a computable LLVM signature.
2783     if (Types.isFuncTypeConvertible(FPT)) {
2784       // The function has a computable LLVM signature; use the correct type.
2785       Ty = Types.GetFunctionType(Types.arrangeCXXMethodDeclaration(MD));
2786     } else {
2787       // Use an arbitrary non-function type to tell GetAddrOfFunction that the
2788       // function type is incomplete.
2789       Ty = CGM.PtrDiffTy;
2790     }
2791     FirstField = CGM.GetAddrOfFunction(MD, Ty);
2792   } else {
2793     auto &VTableContext = CGM.getMicrosoftVTableContext();
2794     MethodVFTableLocation ML = VTableContext.getMethodVFTableLocation(MD);
2795     FirstField = EmitVirtualMemPtrThunk(MD, ML);
2796     // Include the vfptr adjustment if the method is in a non-primary vftable.
2797     NonVirtualBaseAdjustment += ML.VFPtrOffset;
2798     if (ML.VBase)
2799       VBTableIndex = VTableContext.getVBTableIndex(RD, ML.VBase) * 4;
2800   }
2801 
2802   if (VBTableIndex == 0 &&
2803       RD->getMSInheritanceModel() ==
2804           MSInheritanceAttr::Keyword_virtual_inheritance)
2805     NonVirtualBaseAdjustment -= getContext().getOffsetOfBaseWithVBPtr(RD);
2806 
2807   // The rest of the fields are common with data member pointers.
2808   FirstField = llvm::ConstantExpr::getBitCast(FirstField, CGM.VoidPtrTy);
2809   return EmitFullMemberPointer(FirstField, /*IsMemberFunction=*/true, RD,
2810                                NonVirtualBaseAdjustment, VBTableIndex);
2811 }
2812 
2813 /// Member pointers are the same if they're either bitwise identical *or* both
2814 /// null.  Null-ness for function members is determined by the first field,
2815 /// while for data member pointers we must compare all fields.
2816 llvm::Value *
2817 MicrosoftCXXABI::EmitMemberPointerComparison(CodeGenFunction &CGF,
2818                                              llvm::Value *L,
2819                                              llvm::Value *R,
2820                                              const MemberPointerType *MPT,
2821                                              bool Inequality) {
2822   CGBuilderTy &Builder = CGF.Builder;
2823 
2824   // Handle != comparisons by switching the sense of all boolean operations.
2825   llvm::ICmpInst::Predicate Eq;
2826   llvm::Instruction::BinaryOps And, Or;
2827   if (Inequality) {
2828     Eq = llvm::ICmpInst::ICMP_NE;
2829     And = llvm::Instruction::Or;
2830     Or = llvm::Instruction::And;
2831   } else {
2832     Eq = llvm::ICmpInst::ICMP_EQ;
2833     And = llvm::Instruction::And;
2834     Or = llvm::Instruction::Or;
2835   }
2836 
2837   // If this is a single field member pointer (single inheritance), this is a
2838   // single icmp.
2839   const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
2840   MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
2841   if (MSInheritanceAttr::hasOnlyOneField(MPT->isMemberFunctionPointer(),
2842                                          Inheritance))
2843     return Builder.CreateICmp(Eq, L, R);
2844 
2845   // Compare the first field.
2846   llvm::Value *L0 = Builder.CreateExtractValue(L, 0, "lhs.0");
2847   llvm::Value *R0 = Builder.CreateExtractValue(R, 0, "rhs.0");
2848   llvm::Value *Cmp0 = Builder.CreateICmp(Eq, L0, R0, "memptr.cmp.first");
2849 
2850   // Compare everything other than the first field.
2851   llvm::Value *Res = nullptr;
2852   llvm::StructType *LType = cast<llvm::StructType>(L->getType());
2853   for (unsigned I = 1, E = LType->getNumElements(); I != E; ++I) {
2854     llvm::Value *LF = Builder.CreateExtractValue(L, I);
2855     llvm::Value *RF = Builder.CreateExtractValue(R, I);
2856     llvm::Value *Cmp = Builder.CreateICmp(Eq, LF, RF, "memptr.cmp.rest");
2857     if (Res)
2858       Res = Builder.CreateBinOp(And, Res, Cmp);
2859     else
2860       Res = Cmp;
2861   }
2862 
2863   // Check if the first field is 0 if this is a function pointer.
2864   if (MPT->isMemberFunctionPointer()) {
2865     // (l1 == r1 && ...) || l0 == 0
2866     llvm::Value *Zero = llvm::Constant::getNullValue(L0->getType());
2867     llvm::Value *IsZero = Builder.CreateICmp(Eq, L0, Zero, "memptr.cmp.iszero");
2868     Res = Builder.CreateBinOp(Or, Res, IsZero);
2869   }
2870 
2871   // Combine the comparison of the first field, which must always be true for
2872   // this comparison to succeeed.
2873   return Builder.CreateBinOp(And, Res, Cmp0, "memptr.cmp");
2874 }
2875 
2876 llvm::Value *
2877 MicrosoftCXXABI::EmitMemberPointerIsNotNull(CodeGenFunction &CGF,
2878                                             llvm::Value *MemPtr,
2879                                             const MemberPointerType *MPT) {
2880   CGBuilderTy &Builder = CGF.Builder;
2881   llvm::SmallVector<llvm::Constant *, 4> fields;
2882   // We only need one field for member functions.
2883   if (MPT->isMemberFunctionPointer())
2884     fields.push_back(llvm::Constant::getNullValue(CGM.VoidPtrTy));
2885   else
2886     GetNullMemberPointerFields(MPT, fields);
2887   assert(!fields.empty());
2888   llvm::Value *FirstField = MemPtr;
2889   if (MemPtr->getType()->isStructTy())
2890     FirstField = Builder.CreateExtractValue(MemPtr, 0);
2891   llvm::Value *Res = Builder.CreateICmpNE(FirstField, fields[0], "memptr.cmp0");
2892 
2893   // For function member pointers, we only need to test the function pointer
2894   // field.  The other fields if any can be garbage.
2895   if (MPT->isMemberFunctionPointer())
2896     return Res;
2897 
2898   // Otherwise, emit a series of compares and combine the results.
2899   for (int I = 1, E = fields.size(); I < E; ++I) {
2900     llvm::Value *Field = Builder.CreateExtractValue(MemPtr, I);
2901     llvm::Value *Next = Builder.CreateICmpNE(Field, fields[I], "memptr.cmp");
2902     Res = Builder.CreateOr(Res, Next, "memptr.tobool");
2903   }
2904   return Res;
2905 }
2906 
2907 bool MicrosoftCXXABI::MemberPointerConstantIsNull(const MemberPointerType *MPT,
2908                                                   llvm::Constant *Val) {
2909   // Function pointers are null if the pointer in the first field is null.
2910   if (MPT->isMemberFunctionPointer()) {
2911     llvm::Constant *FirstField = Val->getType()->isStructTy() ?
2912       Val->getAggregateElement(0U) : Val;
2913     return FirstField->isNullValue();
2914   }
2915 
2916   // If it's not a function pointer and it's zero initializable, we can easily
2917   // check zero.
2918   if (isZeroInitializable(MPT) && Val->isNullValue())
2919     return true;
2920 
2921   // Otherwise, break down all the fields for comparison.  Hopefully these
2922   // little Constants are reused, while a big null struct might not be.
2923   llvm::SmallVector<llvm::Constant *, 4> Fields;
2924   GetNullMemberPointerFields(MPT, Fields);
2925   if (Fields.size() == 1) {
2926     assert(Val->getType()->isIntegerTy());
2927     return Val == Fields[0];
2928   }
2929 
2930   unsigned I, E;
2931   for (I = 0, E = Fields.size(); I != E; ++I) {
2932     if (Val->getAggregateElement(I) != Fields[I])
2933       break;
2934   }
2935   return I == E;
2936 }
2937 
2938 llvm::Value *
2939 MicrosoftCXXABI::GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF,
2940                                          Address This,
2941                                          llvm::Value *VBPtrOffset,
2942                                          llvm::Value *VBTableOffset,
2943                                          llvm::Value **VBPtrOut) {
2944   CGBuilderTy &Builder = CGF.Builder;
2945   // Load the vbtable pointer from the vbptr in the instance.
2946   This = Builder.CreateElementBitCast(This, CGM.Int8Ty);
2947   llvm::Value *VBPtr =
2948     Builder.CreateInBoundsGEP(This.getPointer(), VBPtrOffset, "vbptr");
2949   if (VBPtrOut) *VBPtrOut = VBPtr;
2950   VBPtr = Builder.CreateBitCast(VBPtr,
2951             CGM.Int32Ty->getPointerTo(0)->getPointerTo(This.getAddressSpace()));
2952 
2953   CharUnits VBPtrAlign;
2954   if (auto CI = dyn_cast<llvm::ConstantInt>(VBPtrOffset)) {
2955     VBPtrAlign = This.getAlignment().alignmentAtOffset(
2956                                    CharUnits::fromQuantity(CI->getSExtValue()));
2957   } else {
2958     VBPtrAlign = CGF.getPointerAlign();
2959   }
2960 
2961   llvm::Value *VBTable = Builder.CreateAlignedLoad(VBPtr, VBPtrAlign, "vbtable");
2962 
2963   // Translate from byte offset to table index. It improves analyzability.
2964   llvm::Value *VBTableIndex = Builder.CreateAShr(
2965       VBTableOffset, llvm::ConstantInt::get(VBTableOffset->getType(), 2),
2966       "vbtindex", /*isExact=*/true);
2967 
2968   // Load an i32 offset from the vb-table.
2969   llvm::Value *VBaseOffs = Builder.CreateInBoundsGEP(VBTable, VBTableIndex);
2970   VBaseOffs = Builder.CreateBitCast(VBaseOffs, CGM.Int32Ty->getPointerTo(0));
2971   return Builder.CreateAlignedLoad(VBaseOffs, CharUnits::fromQuantity(4),
2972                                    "vbase_offs");
2973 }
2974 
2975 // Returns an adjusted base cast to i8*, since we do more address arithmetic on
2976 // it.
2977 llvm::Value *MicrosoftCXXABI::AdjustVirtualBase(
2978     CodeGenFunction &CGF, const Expr *E, const CXXRecordDecl *RD,
2979     Address Base, llvm::Value *VBTableOffset, llvm::Value *VBPtrOffset) {
2980   CGBuilderTy &Builder = CGF.Builder;
2981   Base = Builder.CreateElementBitCast(Base, CGM.Int8Ty);
2982   llvm::BasicBlock *OriginalBB = nullptr;
2983   llvm::BasicBlock *SkipAdjustBB = nullptr;
2984   llvm::BasicBlock *VBaseAdjustBB = nullptr;
2985 
2986   // In the unspecified inheritance model, there might not be a vbtable at all,
2987   // in which case we need to skip the virtual base lookup.  If there is a
2988   // vbtable, the first entry is a no-op entry that gives back the original
2989   // base, so look for a virtual base adjustment offset of zero.
2990   if (VBPtrOffset) {
2991     OriginalBB = Builder.GetInsertBlock();
2992     VBaseAdjustBB = CGF.createBasicBlock("memptr.vadjust");
2993     SkipAdjustBB = CGF.createBasicBlock("memptr.skip_vadjust");
2994     llvm::Value *IsVirtual =
2995       Builder.CreateICmpNE(VBTableOffset, getZeroInt(),
2996                            "memptr.is_vbase");
2997     Builder.CreateCondBr(IsVirtual, VBaseAdjustBB, SkipAdjustBB);
2998     CGF.EmitBlock(VBaseAdjustBB);
2999   }
3000 
3001   // If we weren't given a dynamic vbptr offset, RD should be complete and we'll
3002   // know the vbptr offset.
3003   if (!VBPtrOffset) {
3004     CharUnits offs = CharUnits::Zero();
3005     if (!RD->hasDefinition()) {
3006       DiagnosticsEngine &Diags = CGF.CGM.getDiags();
3007       unsigned DiagID = Diags.getCustomDiagID(
3008           DiagnosticsEngine::Error,
3009           "member pointer representation requires a "
3010           "complete class type for %0 to perform this expression");
3011       Diags.Report(E->getExprLoc(), DiagID) << RD << E->getSourceRange();
3012     } else if (RD->getNumVBases())
3013       offs = getContext().getASTRecordLayout(RD).getVBPtrOffset();
3014     VBPtrOffset = llvm::ConstantInt::get(CGM.IntTy, offs.getQuantity());
3015   }
3016   llvm::Value *VBPtr = nullptr;
3017   llvm::Value *VBaseOffs =
3018     GetVBaseOffsetFromVBPtr(CGF, Base, VBPtrOffset, VBTableOffset, &VBPtr);
3019   llvm::Value *AdjustedBase = Builder.CreateInBoundsGEP(VBPtr, VBaseOffs);
3020 
3021   // Merge control flow with the case where we didn't have to adjust.
3022   if (VBaseAdjustBB) {
3023     Builder.CreateBr(SkipAdjustBB);
3024     CGF.EmitBlock(SkipAdjustBB);
3025     llvm::PHINode *Phi = Builder.CreatePHI(CGM.Int8PtrTy, 2, "memptr.base");
3026     Phi->addIncoming(Base.getPointer(), OriginalBB);
3027     Phi->addIncoming(AdjustedBase, VBaseAdjustBB);
3028     return Phi;
3029   }
3030   return AdjustedBase;
3031 }
3032 
3033 llvm::Value *MicrosoftCXXABI::EmitMemberDataPointerAddress(
3034     CodeGenFunction &CGF, const Expr *E, Address Base, llvm::Value *MemPtr,
3035     const MemberPointerType *MPT) {
3036   assert(MPT->isMemberDataPointer());
3037   unsigned AS = Base.getAddressSpace();
3038   llvm::Type *PType =
3039       CGF.ConvertTypeForMem(MPT->getPointeeType())->getPointerTo(AS);
3040   CGBuilderTy &Builder = CGF.Builder;
3041   const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
3042   MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
3043 
3044   // Extract the fields we need, regardless of model.  We'll apply them if we
3045   // have them.
3046   llvm::Value *FieldOffset = MemPtr;
3047   llvm::Value *VirtualBaseAdjustmentOffset = nullptr;
3048   llvm::Value *VBPtrOffset = nullptr;
3049   if (MemPtr->getType()->isStructTy()) {
3050     // We need to extract values.
3051     unsigned I = 0;
3052     FieldOffset = Builder.CreateExtractValue(MemPtr, I++);
3053     if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance))
3054       VBPtrOffset = Builder.CreateExtractValue(MemPtr, I++);
3055     if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance))
3056       VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(MemPtr, I++);
3057   }
3058 
3059   llvm::Value *Addr;
3060   if (VirtualBaseAdjustmentOffset) {
3061     Addr = AdjustVirtualBase(CGF, E, RD, Base, VirtualBaseAdjustmentOffset,
3062                              VBPtrOffset);
3063   } else {
3064     Addr = Base.getPointer();
3065   }
3066 
3067   // Cast to char*.
3068   Addr = Builder.CreateBitCast(Addr, CGF.Int8Ty->getPointerTo(AS));
3069 
3070   // Apply the offset, which we assume is non-null.
3071   Addr = Builder.CreateInBoundsGEP(Addr, FieldOffset, "memptr.offset");
3072 
3073   // Cast the address to the appropriate pointer type, adopting the address
3074   // space of the base pointer.
3075   return Builder.CreateBitCast(Addr, PType);
3076 }
3077 
3078 llvm::Value *
3079 MicrosoftCXXABI::EmitMemberPointerConversion(CodeGenFunction &CGF,
3080                                              const CastExpr *E,
3081                                              llvm::Value *Src) {
3082   assert(E->getCastKind() == CK_DerivedToBaseMemberPointer ||
3083          E->getCastKind() == CK_BaseToDerivedMemberPointer ||
3084          E->getCastKind() == CK_ReinterpretMemberPointer);
3085 
3086   // Use constant emission if we can.
3087   if (isa<llvm::Constant>(Src))
3088     return EmitMemberPointerConversion(E, cast<llvm::Constant>(Src));
3089 
3090   // We may be adding or dropping fields from the member pointer, so we need
3091   // both types and the inheritance models of both records.
3092   const MemberPointerType *SrcTy =
3093     E->getSubExpr()->getType()->castAs<MemberPointerType>();
3094   const MemberPointerType *DstTy = E->getType()->castAs<MemberPointerType>();
3095   bool IsFunc = SrcTy->isMemberFunctionPointer();
3096 
3097   // If the classes use the same null representation, reinterpret_cast is a nop.
3098   bool IsReinterpret = E->getCastKind() == CK_ReinterpretMemberPointer;
3099   if (IsReinterpret && IsFunc)
3100     return Src;
3101 
3102   CXXRecordDecl *SrcRD = SrcTy->getMostRecentCXXRecordDecl();
3103   CXXRecordDecl *DstRD = DstTy->getMostRecentCXXRecordDecl();
3104   if (IsReinterpret &&
3105       SrcRD->nullFieldOffsetIsZero() == DstRD->nullFieldOffsetIsZero())
3106     return Src;
3107 
3108   CGBuilderTy &Builder = CGF.Builder;
3109 
3110   // Branch past the conversion if Src is null.
3111   llvm::Value *IsNotNull = EmitMemberPointerIsNotNull(CGF, Src, SrcTy);
3112   llvm::Constant *DstNull = EmitNullMemberPointer(DstTy);
3113 
3114   // C++ 5.2.10p9: The null member pointer value is converted to the null member
3115   //   pointer value of the destination type.
3116   if (IsReinterpret) {
3117     // For reinterpret casts, sema ensures that src and dst are both functions
3118     // or data and have the same size, which means the LLVM types should match.
3119     assert(Src->getType() == DstNull->getType());
3120     return Builder.CreateSelect(IsNotNull, Src, DstNull);
3121   }
3122 
3123   llvm::BasicBlock *OriginalBB = Builder.GetInsertBlock();
3124   llvm::BasicBlock *ConvertBB = CGF.createBasicBlock("memptr.convert");
3125   llvm::BasicBlock *ContinueBB = CGF.createBasicBlock("memptr.converted");
3126   Builder.CreateCondBr(IsNotNull, ConvertBB, ContinueBB);
3127   CGF.EmitBlock(ConvertBB);
3128 
3129   llvm::Value *Dst = EmitNonNullMemberPointerConversion(
3130       SrcTy, DstTy, E->getCastKind(), E->path_begin(), E->path_end(), Src,
3131       Builder);
3132 
3133   Builder.CreateBr(ContinueBB);
3134 
3135   // In the continuation, choose between DstNull and Dst.
3136   CGF.EmitBlock(ContinueBB);
3137   llvm::PHINode *Phi = Builder.CreatePHI(DstNull->getType(), 2, "memptr.converted");
3138   Phi->addIncoming(DstNull, OriginalBB);
3139   Phi->addIncoming(Dst, ConvertBB);
3140   return Phi;
3141 }
3142 
3143 llvm::Value *MicrosoftCXXABI::EmitNonNullMemberPointerConversion(
3144     const MemberPointerType *SrcTy, const MemberPointerType *DstTy, CastKind CK,
3145     CastExpr::path_const_iterator PathBegin,
3146     CastExpr::path_const_iterator PathEnd, llvm::Value *Src,
3147     CGBuilderTy &Builder) {
3148   const CXXRecordDecl *SrcRD = SrcTy->getMostRecentCXXRecordDecl();
3149   const CXXRecordDecl *DstRD = DstTy->getMostRecentCXXRecordDecl();
3150   MSInheritanceAttr::Spelling SrcInheritance = SrcRD->getMSInheritanceModel();
3151   MSInheritanceAttr::Spelling DstInheritance = DstRD->getMSInheritanceModel();
3152   bool IsFunc = SrcTy->isMemberFunctionPointer();
3153   bool IsConstant = isa<llvm::Constant>(Src);
3154 
3155   // Decompose src.
3156   llvm::Value *FirstField = Src;
3157   llvm::Value *NonVirtualBaseAdjustment = getZeroInt();
3158   llvm::Value *VirtualBaseAdjustmentOffset = getZeroInt();
3159   llvm::Value *VBPtrOffset = getZeroInt();
3160   if (!MSInheritanceAttr::hasOnlyOneField(IsFunc, SrcInheritance)) {
3161     // We need to extract values.
3162     unsigned I = 0;
3163     FirstField = Builder.CreateExtractValue(Src, I++);
3164     if (MSInheritanceAttr::hasNVOffsetField(IsFunc, SrcInheritance))
3165       NonVirtualBaseAdjustment = Builder.CreateExtractValue(Src, I++);
3166     if (MSInheritanceAttr::hasVBPtrOffsetField(SrcInheritance))
3167       VBPtrOffset = Builder.CreateExtractValue(Src, I++);
3168     if (MSInheritanceAttr::hasVBTableOffsetField(SrcInheritance))
3169       VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(Src, I++);
3170   }
3171 
3172   bool IsDerivedToBase = (CK == CK_DerivedToBaseMemberPointer);
3173   const MemberPointerType *DerivedTy = IsDerivedToBase ? SrcTy : DstTy;
3174   const CXXRecordDecl *DerivedClass = DerivedTy->getMostRecentCXXRecordDecl();
3175 
3176   // For data pointers, we adjust the field offset directly.  For functions, we
3177   // have a separate field.
3178   llvm::Value *&NVAdjustField = IsFunc ? NonVirtualBaseAdjustment : FirstField;
3179 
3180   // The virtual inheritance model has a quirk: the virtual base table is always
3181   // referenced when dereferencing a member pointer even if the member pointer
3182   // is non-virtual.  This is accounted for by adjusting the non-virtual offset
3183   // to point backwards to the top of the MDC from the first VBase.  Undo this
3184   // adjustment to normalize the member pointer.
3185   llvm::Value *SrcVBIndexEqZero =
3186       Builder.CreateICmpEQ(VirtualBaseAdjustmentOffset, getZeroInt());
3187   if (SrcInheritance == MSInheritanceAttr::Keyword_virtual_inheritance) {
3188     if (int64_t SrcOffsetToFirstVBase =
3189             getContext().getOffsetOfBaseWithVBPtr(SrcRD).getQuantity()) {
3190       llvm::Value *UndoSrcAdjustment = Builder.CreateSelect(
3191           SrcVBIndexEqZero,
3192           llvm::ConstantInt::get(CGM.IntTy, SrcOffsetToFirstVBase),
3193           getZeroInt());
3194       NVAdjustField = Builder.CreateNSWAdd(NVAdjustField, UndoSrcAdjustment);
3195     }
3196   }
3197 
3198   // A non-zero vbindex implies that we are dealing with a source member in a
3199   // floating virtual base in addition to some non-virtual offset.  If the
3200   // vbindex is zero, we are dealing with a source that exists in a non-virtual,
3201   // fixed, base.  The difference between these two cases is that the vbindex +
3202   // nvoffset *always* point to the member regardless of what context they are
3203   // evaluated in so long as the vbindex is adjusted.  A member inside a fixed
3204   // base requires explicit nv adjustment.
3205   llvm::Constant *BaseClassOffset = llvm::ConstantInt::get(
3206       CGM.IntTy,
3207       CGM.computeNonVirtualBaseClassOffset(DerivedClass, PathBegin, PathEnd)
3208           .getQuantity());
3209 
3210   llvm::Value *NVDisp;
3211   if (IsDerivedToBase)
3212     NVDisp = Builder.CreateNSWSub(NVAdjustField, BaseClassOffset, "adj");
3213   else
3214     NVDisp = Builder.CreateNSWAdd(NVAdjustField, BaseClassOffset, "adj");
3215 
3216   NVAdjustField = Builder.CreateSelect(SrcVBIndexEqZero, NVDisp, getZeroInt());
3217 
3218   // Update the vbindex to an appropriate value in the destination because
3219   // SrcRD's vbtable might not be a strict prefix of the one in DstRD.
3220   llvm::Value *DstVBIndexEqZero = SrcVBIndexEqZero;
3221   if (MSInheritanceAttr::hasVBTableOffsetField(DstInheritance) &&
3222       MSInheritanceAttr::hasVBTableOffsetField(SrcInheritance)) {
3223     if (llvm::GlobalVariable *VDispMap =
3224             getAddrOfVirtualDisplacementMap(SrcRD, DstRD)) {
3225       llvm::Value *VBIndex = Builder.CreateExactUDiv(
3226           VirtualBaseAdjustmentOffset, llvm::ConstantInt::get(CGM.IntTy, 4));
3227       if (IsConstant) {
3228         llvm::Constant *Mapping = VDispMap->getInitializer();
3229         VirtualBaseAdjustmentOffset =
3230             Mapping->getAggregateElement(cast<llvm::Constant>(VBIndex));
3231       } else {
3232         llvm::Value *Idxs[] = {getZeroInt(), VBIndex};
3233         VirtualBaseAdjustmentOffset =
3234             Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(VDispMap, Idxs),
3235                                       CharUnits::fromQuantity(4));
3236       }
3237 
3238       DstVBIndexEqZero =
3239           Builder.CreateICmpEQ(VirtualBaseAdjustmentOffset, getZeroInt());
3240     }
3241   }
3242 
3243   // Set the VBPtrOffset to zero if the vbindex is zero.  Otherwise, initialize
3244   // it to the offset of the vbptr.
3245   if (MSInheritanceAttr::hasVBPtrOffsetField(DstInheritance)) {
3246     llvm::Value *DstVBPtrOffset = llvm::ConstantInt::get(
3247         CGM.IntTy,
3248         getContext().getASTRecordLayout(DstRD).getVBPtrOffset().getQuantity());
3249     VBPtrOffset =
3250         Builder.CreateSelect(DstVBIndexEqZero, getZeroInt(), DstVBPtrOffset);
3251   }
3252 
3253   // Likewise, apply a similar adjustment so that dereferencing the member
3254   // pointer correctly accounts for the distance between the start of the first
3255   // virtual base and the top of the MDC.
3256   if (DstInheritance == MSInheritanceAttr::Keyword_virtual_inheritance) {
3257     if (int64_t DstOffsetToFirstVBase =
3258             getContext().getOffsetOfBaseWithVBPtr(DstRD).getQuantity()) {
3259       llvm::Value *DoDstAdjustment = Builder.CreateSelect(
3260           DstVBIndexEqZero,
3261           llvm::ConstantInt::get(CGM.IntTy, DstOffsetToFirstVBase),
3262           getZeroInt());
3263       NVAdjustField = Builder.CreateNSWSub(NVAdjustField, DoDstAdjustment);
3264     }
3265   }
3266 
3267   // Recompose dst from the null struct and the adjusted fields from src.
3268   llvm::Value *Dst;
3269   if (MSInheritanceAttr::hasOnlyOneField(IsFunc, DstInheritance)) {
3270     Dst = FirstField;
3271   } else {
3272     Dst = llvm::UndefValue::get(ConvertMemberPointerType(DstTy));
3273     unsigned Idx = 0;
3274     Dst = Builder.CreateInsertValue(Dst, FirstField, Idx++);
3275     if (MSInheritanceAttr::hasNVOffsetField(IsFunc, DstInheritance))
3276       Dst = Builder.CreateInsertValue(Dst, NonVirtualBaseAdjustment, Idx++);
3277     if (MSInheritanceAttr::hasVBPtrOffsetField(DstInheritance))
3278       Dst = Builder.CreateInsertValue(Dst, VBPtrOffset, Idx++);
3279     if (MSInheritanceAttr::hasVBTableOffsetField(DstInheritance))
3280       Dst = Builder.CreateInsertValue(Dst, VirtualBaseAdjustmentOffset, Idx++);
3281   }
3282   return Dst;
3283 }
3284 
3285 llvm::Constant *
3286 MicrosoftCXXABI::EmitMemberPointerConversion(const CastExpr *E,
3287                                              llvm::Constant *Src) {
3288   const MemberPointerType *SrcTy =
3289       E->getSubExpr()->getType()->castAs<MemberPointerType>();
3290   const MemberPointerType *DstTy = E->getType()->castAs<MemberPointerType>();
3291 
3292   CastKind CK = E->getCastKind();
3293 
3294   return EmitMemberPointerConversion(SrcTy, DstTy, CK, E->path_begin(),
3295                                      E->path_end(), Src);
3296 }
3297 
3298 llvm::Constant *MicrosoftCXXABI::EmitMemberPointerConversion(
3299     const MemberPointerType *SrcTy, const MemberPointerType *DstTy, CastKind CK,
3300     CastExpr::path_const_iterator PathBegin,
3301     CastExpr::path_const_iterator PathEnd, llvm::Constant *Src) {
3302   assert(CK == CK_DerivedToBaseMemberPointer ||
3303          CK == CK_BaseToDerivedMemberPointer ||
3304          CK == CK_ReinterpretMemberPointer);
3305   // If src is null, emit a new null for dst.  We can't return src because dst
3306   // might have a new representation.
3307   if (MemberPointerConstantIsNull(SrcTy, Src))
3308     return EmitNullMemberPointer(DstTy);
3309 
3310   // We don't need to do anything for reinterpret_casts of non-null member
3311   // pointers.  We should only get here when the two type representations have
3312   // the same size.
3313   if (CK == CK_ReinterpretMemberPointer)
3314     return Src;
3315 
3316   CGBuilderTy Builder(CGM, CGM.getLLVMContext());
3317   auto *Dst = cast<llvm::Constant>(EmitNonNullMemberPointerConversion(
3318       SrcTy, DstTy, CK, PathBegin, PathEnd, Src, Builder));
3319 
3320   return Dst;
3321 }
3322 
3323 CGCallee MicrosoftCXXABI::EmitLoadOfMemberFunctionPointer(
3324     CodeGenFunction &CGF, const Expr *E, Address This,
3325     llvm::Value *&ThisPtrForCall, llvm::Value *MemPtr,
3326     const MemberPointerType *MPT) {
3327   assert(MPT->isMemberFunctionPointer());
3328   const FunctionProtoType *FPT =
3329     MPT->getPointeeType()->castAs<FunctionProtoType>();
3330   const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
3331   llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(
3332       CGM.getTypes().arrangeCXXMethodType(RD, FPT, /*FD=*/nullptr));
3333   CGBuilderTy &Builder = CGF.Builder;
3334 
3335   MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
3336 
3337   // Extract the fields we need, regardless of model.  We'll apply them if we
3338   // have them.
3339   llvm::Value *FunctionPointer = MemPtr;
3340   llvm::Value *NonVirtualBaseAdjustment = nullptr;
3341   llvm::Value *VirtualBaseAdjustmentOffset = nullptr;
3342   llvm::Value *VBPtrOffset = nullptr;
3343   if (MemPtr->getType()->isStructTy()) {
3344     // We need to extract values.
3345     unsigned I = 0;
3346     FunctionPointer = Builder.CreateExtractValue(MemPtr, I++);
3347     if (MSInheritanceAttr::hasNVOffsetField(MPT, Inheritance))
3348       NonVirtualBaseAdjustment = Builder.CreateExtractValue(MemPtr, I++);
3349     if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance))
3350       VBPtrOffset = Builder.CreateExtractValue(MemPtr, I++);
3351     if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance))
3352       VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(MemPtr, I++);
3353   }
3354 
3355   if (VirtualBaseAdjustmentOffset) {
3356     ThisPtrForCall = AdjustVirtualBase(CGF, E, RD, This,
3357                                    VirtualBaseAdjustmentOffset, VBPtrOffset);
3358   } else {
3359     ThisPtrForCall = This.getPointer();
3360   }
3361 
3362   if (NonVirtualBaseAdjustment) {
3363     // Apply the adjustment and cast back to the original struct type.
3364     llvm::Value *Ptr = Builder.CreateBitCast(ThisPtrForCall, CGF.Int8PtrTy);
3365     Ptr = Builder.CreateInBoundsGEP(Ptr, NonVirtualBaseAdjustment);
3366     ThisPtrForCall = Builder.CreateBitCast(Ptr, ThisPtrForCall->getType(),
3367                                            "this.adjusted");
3368   }
3369 
3370   FunctionPointer =
3371     Builder.CreateBitCast(FunctionPointer, FTy->getPointerTo());
3372   CGCallee Callee(FPT, FunctionPointer);
3373   return Callee;
3374 }
3375 
3376 CGCXXABI *clang::CodeGen::CreateMicrosoftCXXABI(CodeGenModule &CGM) {
3377   return new MicrosoftCXXABI(CGM);
3378 }
3379 
3380 // MS RTTI Overview:
3381 // The run time type information emitted by cl.exe contains 5 distinct types of
3382 // structures.  Many of them reference each other.
3383 //
3384 // TypeInfo:  Static classes that are returned by typeid.
3385 //
3386 // CompleteObjectLocator:  Referenced by vftables.  They contain information
3387 //   required for dynamic casting, including OffsetFromTop.  They also contain
3388 //   a reference to the TypeInfo for the type and a reference to the
3389 //   CompleteHierarchyDescriptor for the type.
3390 //
3391 // ClassHierarchyDescriptor: Contains information about a class hierarchy.
3392 //   Used during dynamic_cast to walk a class hierarchy.  References a base
3393 //   class array and the size of said array.
3394 //
3395 // BaseClassArray: Contains a list of classes in a hierarchy.  BaseClassArray is
3396 //   somewhat of a misnomer because the most derived class is also in the list
3397 //   as well as multiple copies of virtual bases (if they occur multiple times
3398 //   in the hierarchy.)  The BaseClassArray contains one BaseClassDescriptor for
3399 //   every path in the hierarchy, in pre-order depth first order.  Note, we do
3400 //   not declare a specific llvm type for BaseClassArray, it's merely an array
3401 //   of BaseClassDescriptor pointers.
3402 //
3403 // BaseClassDescriptor: Contains information about a class in a class hierarchy.
3404 //   BaseClassDescriptor is also somewhat of a misnomer for the same reason that
3405 //   BaseClassArray is.  It contains information about a class within a
3406 //   hierarchy such as: is this base is ambiguous and what is its offset in the
3407 //   vbtable.  The names of the BaseClassDescriptors have all of their fields
3408 //   mangled into them so they can be aggressively deduplicated by the linker.
3409 
3410 static llvm::GlobalVariable *getTypeInfoVTable(CodeGenModule &CGM) {
3411   StringRef MangledName("??_7type_info@@6B@");
3412   if (auto VTable = CGM.getModule().getNamedGlobal(MangledName))
3413     return VTable;
3414   return new llvm::GlobalVariable(CGM.getModule(), CGM.Int8PtrTy,
3415                                   /*isConstant=*/true,
3416                                   llvm::GlobalVariable::ExternalLinkage,
3417                                   /*Initializer=*/nullptr, MangledName);
3418 }
3419 
3420 namespace {
3421 
3422 /// A Helper struct that stores information about a class in a class
3423 /// hierarchy.  The information stored in these structs struct is used during
3424 /// the generation of ClassHierarchyDescriptors and BaseClassDescriptors.
3425 // During RTTI creation, MSRTTIClasses are stored in a contiguous array with
3426 // implicit depth first pre-order tree connectivity.  getFirstChild and
3427 // getNextSibling allow us to walk the tree efficiently.
3428 struct MSRTTIClass {
3429   enum {
3430     IsPrivateOnPath = 1 | 8,
3431     IsAmbiguous = 2,
3432     IsPrivate = 4,
3433     IsVirtual = 16,
3434     HasHierarchyDescriptor = 64
3435   };
3436   MSRTTIClass(const CXXRecordDecl *RD) : RD(RD) {}
3437   uint32_t initialize(const MSRTTIClass *Parent,
3438                       const CXXBaseSpecifier *Specifier);
3439 
3440   MSRTTIClass *getFirstChild() { return this + 1; }
3441   static MSRTTIClass *getNextChild(MSRTTIClass *Child) {
3442     return Child + 1 + Child->NumBases;
3443   }
3444 
3445   const CXXRecordDecl *RD, *VirtualRoot;
3446   uint32_t Flags, NumBases, OffsetInVBase;
3447 };
3448 
3449 /// Recursively initialize the base class array.
3450 uint32_t MSRTTIClass::initialize(const MSRTTIClass *Parent,
3451                                  const CXXBaseSpecifier *Specifier) {
3452   Flags = HasHierarchyDescriptor;
3453   if (!Parent) {
3454     VirtualRoot = nullptr;
3455     OffsetInVBase = 0;
3456   } else {
3457     if (Specifier->getAccessSpecifier() != AS_public)
3458       Flags |= IsPrivate | IsPrivateOnPath;
3459     if (Specifier->isVirtual()) {
3460       Flags |= IsVirtual;
3461       VirtualRoot = RD;
3462       OffsetInVBase = 0;
3463     } else {
3464       if (Parent->Flags & IsPrivateOnPath)
3465         Flags |= IsPrivateOnPath;
3466       VirtualRoot = Parent->VirtualRoot;
3467       OffsetInVBase = Parent->OffsetInVBase + RD->getASTContext()
3468           .getASTRecordLayout(Parent->RD).getBaseClassOffset(RD).getQuantity();
3469     }
3470   }
3471   NumBases = 0;
3472   MSRTTIClass *Child = getFirstChild();
3473   for (const CXXBaseSpecifier &Base : RD->bases()) {
3474     NumBases += Child->initialize(this, &Base) + 1;
3475     Child = getNextChild(Child);
3476   }
3477   return NumBases;
3478 }
3479 
3480 static llvm::GlobalValue::LinkageTypes getLinkageForRTTI(QualType Ty) {
3481   switch (Ty->getLinkage()) {
3482   case NoLinkage:
3483   case InternalLinkage:
3484   case UniqueExternalLinkage:
3485     return llvm::GlobalValue::InternalLinkage;
3486 
3487   case VisibleNoLinkage:
3488   case ModuleInternalLinkage:
3489   case ModuleLinkage:
3490   case ExternalLinkage:
3491     return llvm::GlobalValue::LinkOnceODRLinkage;
3492   }
3493   llvm_unreachable("Invalid linkage!");
3494 }
3495 
3496 /// An ephemeral helper class for building MS RTTI types.  It caches some
3497 /// calls to the module and information about the most derived class in a
3498 /// hierarchy.
3499 struct MSRTTIBuilder {
3500   enum {
3501     HasBranchingHierarchy = 1,
3502     HasVirtualBranchingHierarchy = 2,
3503     HasAmbiguousBases = 4
3504   };
3505 
3506   MSRTTIBuilder(MicrosoftCXXABI &ABI, const CXXRecordDecl *RD)
3507       : CGM(ABI.CGM), Context(CGM.getContext()),
3508         VMContext(CGM.getLLVMContext()), Module(CGM.getModule()), RD(RD),
3509         Linkage(getLinkageForRTTI(CGM.getContext().getTagDeclType(RD))),
3510         ABI(ABI) {}
3511 
3512   llvm::GlobalVariable *getBaseClassDescriptor(const MSRTTIClass &Classes);
3513   llvm::GlobalVariable *
3514   getBaseClassArray(SmallVectorImpl<MSRTTIClass> &Classes);
3515   llvm::GlobalVariable *getClassHierarchyDescriptor();
3516   llvm::GlobalVariable *getCompleteObjectLocator(const VPtrInfo &Info);
3517 
3518   CodeGenModule &CGM;
3519   ASTContext &Context;
3520   llvm::LLVMContext &VMContext;
3521   llvm::Module &Module;
3522   const CXXRecordDecl *RD;
3523   llvm::GlobalVariable::LinkageTypes Linkage;
3524   MicrosoftCXXABI &ABI;
3525 };
3526 
3527 } // namespace
3528 
3529 /// Recursively serializes a class hierarchy in pre-order depth first
3530 /// order.
3531 static void serializeClassHierarchy(SmallVectorImpl<MSRTTIClass> &Classes,
3532                                     const CXXRecordDecl *RD) {
3533   Classes.push_back(MSRTTIClass(RD));
3534   for (const CXXBaseSpecifier &Base : RD->bases())
3535     serializeClassHierarchy(Classes, Base.getType()->getAsCXXRecordDecl());
3536 }
3537 
3538 /// Find ambiguity among base classes.
3539 static void
3540 detectAmbiguousBases(SmallVectorImpl<MSRTTIClass> &Classes) {
3541   llvm::SmallPtrSet<const CXXRecordDecl *, 8> VirtualBases;
3542   llvm::SmallPtrSet<const CXXRecordDecl *, 8> UniqueBases;
3543   llvm::SmallPtrSet<const CXXRecordDecl *, 8> AmbiguousBases;
3544   for (MSRTTIClass *Class = &Classes.front(); Class <= &Classes.back();) {
3545     if ((Class->Flags & MSRTTIClass::IsVirtual) &&
3546         !VirtualBases.insert(Class->RD).second) {
3547       Class = MSRTTIClass::getNextChild(Class);
3548       continue;
3549     }
3550     if (!UniqueBases.insert(Class->RD).second)
3551       AmbiguousBases.insert(Class->RD);
3552     Class++;
3553   }
3554   if (AmbiguousBases.empty())
3555     return;
3556   for (MSRTTIClass &Class : Classes)
3557     if (AmbiguousBases.count(Class.RD))
3558       Class.Flags |= MSRTTIClass::IsAmbiguous;
3559 }
3560 
3561 llvm::GlobalVariable *MSRTTIBuilder::getClassHierarchyDescriptor() {
3562   SmallString<256> MangledName;
3563   {
3564     llvm::raw_svector_ostream Out(MangledName);
3565     ABI.getMangleContext().mangleCXXRTTIClassHierarchyDescriptor(RD, Out);
3566   }
3567 
3568   // Check to see if we've already declared this ClassHierarchyDescriptor.
3569   if (auto CHD = Module.getNamedGlobal(MangledName))
3570     return CHD;
3571 
3572   // Serialize the class hierarchy and initialize the CHD Fields.
3573   SmallVector<MSRTTIClass, 8> Classes;
3574   serializeClassHierarchy(Classes, RD);
3575   Classes.front().initialize(/*Parent=*/nullptr, /*Specifier=*/nullptr);
3576   detectAmbiguousBases(Classes);
3577   int Flags = 0;
3578   for (auto Class : Classes) {
3579     if (Class.RD->getNumBases() > 1)
3580       Flags |= HasBranchingHierarchy;
3581     // Note: cl.exe does not calculate "HasAmbiguousBases" correctly.  We
3582     // believe the field isn't actually used.
3583     if (Class.Flags & MSRTTIClass::IsAmbiguous)
3584       Flags |= HasAmbiguousBases;
3585   }
3586   if ((Flags & HasBranchingHierarchy) && RD->getNumVBases() != 0)
3587     Flags |= HasVirtualBranchingHierarchy;
3588   // These gep indices are used to get the address of the first element of the
3589   // base class array.
3590   llvm::Value *GEPIndices[] = {llvm::ConstantInt::get(CGM.IntTy, 0),
3591                                llvm::ConstantInt::get(CGM.IntTy, 0)};
3592 
3593   // Forward-declare the class hierarchy descriptor
3594   auto Type = ABI.getClassHierarchyDescriptorType();
3595   auto CHD = new llvm::GlobalVariable(Module, Type, /*isConstant=*/true, Linkage,
3596                                       /*Initializer=*/nullptr,
3597                                       MangledName);
3598   if (CHD->isWeakForLinker())
3599     CHD->setComdat(CGM.getModule().getOrInsertComdat(CHD->getName()));
3600 
3601   auto *Bases = getBaseClassArray(Classes);
3602 
3603   // Initialize the base class ClassHierarchyDescriptor.
3604   llvm::Constant *Fields[] = {
3605       llvm::ConstantInt::get(CGM.IntTy, 0), // reserved by the runtime
3606       llvm::ConstantInt::get(CGM.IntTy, Flags),
3607       llvm::ConstantInt::get(CGM.IntTy, Classes.size()),
3608       ABI.getImageRelativeConstant(llvm::ConstantExpr::getInBoundsGetElementPtr(
3609           Bases->getValueType(), Bases,
3610           llvm::ArrayRef<llvm::Value *>(GEPIndices))),
3611   };
3612   CHD->setInitializer(llvm::ConstantStruct::get(Type, Fields));
3613   return CHD;
3614 }
3615 
3616 llvm::GlobalVariable *
3617 MSRTTIBuilder::getBaseClassArray(SmallVectorImpl<MSRTTIClass> &Classes) {
3618   SmallString<256> MangledName;
3619   {
3620     llvm::raw_svector_ostream Out(MangledName);
3621     ABI.getMangleContext().mangleCXXRTTIBaseClassArray(RD, Out);
3622   }
3623 
3624   // Forward-declare the base class array.
3625   // cl.exe pads the base class array with 1 (in 32 bit mode) or 4 (in 64 bit
3626   // mode) bytes of padding.  We provide a pointer sized amount of padding by
3627   // adding +1 to Classes.size().  The sections have pointer alignment and are
3628   // marked pick-any so it shouldn't matter.
3629   llvm::Type *PtrType = ABI.getImageRelativeType(
3630       ABI.getBaseClassDescriptorType()->getPointerTo());
3631   auto *ArrType = llvm::ArrayType::get(PtrType, Classes.size() + 1);
3632   auto *BCA =
3633       new llvm::GlobalVariable(Module, ArrType,
3634                                /*isConstant=*/true, Linkage,
3635                                /*Initializer=*/nullptr, MangledName);
3636   if (BCA->isWeakForLinker())
3637     BCA->setComdat(CGM.getModule().getOrInsertComdat(BCA->getName()));
3638 
3639   // Initialize the BaseClassArray.
3640   SmallVector<llvm::Constant *, 8> BaseClassArrayData;
3641   for (MSRTTIClass &Class : Classes)
3642     BaseClassArrayData.push_back(
3643         ABI.getImageRelativeConstant(getBaseClassDescriptor(Class)));
3644   BaseClassArrayData.push_back(llvm::Constant::getNullValue(PtrType));
3645   BCA->setInitializer(llvm::ConstantArray::get(ArrType, BaseClassArrayData));
3646   return BCA;
3647 }
3648 
3649 llvm::GlobalVariable *
3650 MSRTTIBuilder::getBaseClassDescriptor(const MSRTTIClass &Class) {
3651   // Compute the fields for the BaseClassDescriptor.  They are computed up front
3652   // because they are mangled into the name of the object.
3653   uint32_t OffsetInVBTable = 0;
3654   int32_t VBPtrOffset = -1;
3655   if (Class.VirtualRoot) {
3656     auto &VTableContext = CGM.getMicrosoftVTableContext();
3657     OffsetInVBTable = VTableContext.getVBTableIndex(RD, Class.VirtualRoot) * 4;
3658     VBPtrOffset = Context.getASTRecordLayout(RD).getVBPtrOffset().getQuantity();
3659   }
3660 
3661   SmallString<256> MangledName;
3662   {
3663     llvm::raw_svector_ostream Out(MangledName);
3664     ABI.getMangleContext().mangleCXXRTTIBaseClassDescriptor(
3665         Class.RD, Class.OffsetInVBase, VBPtrOffset, OffsetInVBTable,
3666         Class.Flags, Out);
3667   }
3668 
3669   // Check to see if we've already declared this object.
3670   if (auto BCD = Module.getNamedGlobal(MangledName))
3671     return BCD;
3672 
3673   // Forward-declare the base class descriptor.
3674   auto Type = ABI.getBaseClassDescriptorType();
3675   auto BCD =
3676       new llvm::GlobalVariable(Module, Type, /*isConstant=*/true, Linkage,
3677                                /*Initializer=*/nullptr, MangledName);
3678   if (BCD->isWeakForLinker())
3679     BCD->setComdat(CGM.getModule().getOrInsertComdat(BCD->getName()));
3680 
3681   // Initialize the BaseClassDescriptor.
3682   llvm::Constant *Fields[] = {
3683       ABI.getImageRelativeConstant(
3684           ABI.getAddrOfRTTIDescriptor(Context.getTypeDeclType(Class.RD))),
3685       llvm::ConstantInt::get(CGM.IntTy, Class.NumBases),
3686       llvm::ConstantInt::get(CGM.IntTy, Class.OffsetInVBase),
3687       llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset),
3688       llvm::ConstantInt::get(CGM.IntTy, OffsetInVBTable),
3689       llvm::ConstantInt::get(CGM.IntTy, Class.Flags),
3690       ABI.getImageRelativeConstant(
3691           MSRTTIBuilder(ABI, Class.RD).getClassHierarchyDescriptor()),
3692   };
3693   BCD->setInitializer(llvm::ConstantStruct::get(Type, Fields));
3694   return BCD;
3695 }
3696 
3697 llvm::GlobalVariable *
3698 MSRTTIBuilder::getCompleteObjectLocator(const VPtrInfo &Info) {
3699   SmallString<256> MangledName;
3700   {
3701     llvm::raw_svector_ostream Out(MangledName);
3702     ABI.getMangleContext().mangleCXXRTTICompleteObjectLocator(RD, Info.MangledPath, Out);
3703   }
3704 
3705   // Check to see if we've already computed this complete object locator.
3706   if (auto COL = Module.getNamedGlobal(MangledName))
3707     return COL;
3708 
3709   // Compute the fields of the complete object locator.
3710   int OffsetToTop = Info.FullOffsetInMDC.getQuantity();
3711   int VFPtrOffset = 0;
3712   // The offset includes the vtordisp if one exists.
3713   if (const CXXRecordDecl *VBase = Info.getVBaseWithVPtr())
3714     if (Context.getASTRecordLayout(RD)
3715       .getVBaseOffsetsMap()
3716       .find(VBase)
3717       ->second.hasVtorDisp())
3718       VFPtrOffset = Info.NonVirtualOffset.getQuantity() + 4;
3719 
3720   // Forward-declare the complete object locator.
3721   llvm::StructType *Type = ABI.getCompleteObjectLocatorType();
3722   auto COL = new llvm::GlobalVariable(Module, Type, /*isConstant=*/true, Linkage,
3723     /*Initializer=*/nullptr, MangledName);
3724 
3725   // Initialize the CompleteObjectLocator.
3726   llvm::Constant *Fields[] = {
3727       llvm::ConstantInt::get(CGM.IntTy, ABI.isImageRelative()),
3728       llvm::ConstantInt::get(CGM.IntTy, OffsetToTop),
3729       llvm::ConstantInt::get(CGM.IntTy, VFPtrOffset),
3730       ABI.getImageRelativeConstant(
3731           CGM.GetAddrOfRTTIDescriptor(Context.getTypeDeclType(RD))),
3732       ABI.getImageRelativeConstant(getClassHierarchyDescriptor()),
3733       ABI.getImageRelativeConstant(COL),
3734   };
3735   llvm::ArrayRef<llvm::Constant *> FieldsRef(Fields);
3736   if (!ABI.isImageRelative())
3737     FieldsRef = FieldsRef.drop_back();
3738   COL->setInitializer(llvm::ConstantStruct::get(Type, FieldsRef));
3739   if (COL->isWeakForLinker())
3740     COL->setComdat(CGM.getModule().getOrInsertComdat(COL->getName()));
3741   return COL;
3742 }
3743 
3744 static QualType decomposeTypeForEH(ASTContext &Context, QualType T,
3745                                    bool &IsConst, bool &IsVolatile,
3746                                    bool &IsUnaligned) {
3747   T = Context.getExceptionObjectType(T);
3748 
3749   // C++14 [except.handle]p3:
3750   //   A handler is a match for an exception object of type E if [...]
3751   //     - the handler is of type cv T or const T& where T is a pointer type and
3752   //       E is a pointer type that can be converted to T by [...]
3753   //         - a qualification conversion
3754   IsConst = false;
3755   IsVolatile = false;
3756   IsUnaligned = false;
3757   QualType PointeeType = T->getPointeeType();
3758   if (!PointeeType.isNull()) {
3759     IsConst = PointeeType.isConstQualified();
3760     IsVolatile = PointeeType.isVolatileQualified();
3761     IsUnaligned = PointeeType.getQualifiers().hasUnaligned();
3762   }
3763 
3764   // Member pointer types like "const int A::*" are represented by having RTTI
3765   // for "int A::*" and separately storing the const qualifier.
3766   if (const auto *MPTy = T->getAs<MemberPointerType>())
3767     T = Context.getMemberPointerType(PointeeType.getUnqualifiedType(),
3768                                      MPTy->getClass());
3769 
3770   // Pointer types like "const int * const *" are represented by having RTTI
3771   // for "const int **" and separately storing the const qualifier.
3772   if (T->isPointerType())
3773     T = Context.getPointerType(PointeeType.getUnqualifiedType());
3774 
3775   return T;
3776 }
3777 
3778 CatchTypeInfo
3779 MicrosoftCXXABI::getAddrOfCXXCatchHandlerType(QualType Type,
3780                                               QualType CatchHandlerType) {
3781   // TypeDescriptors for exceptions never have qualified pointer types,
3782   // qualifiers are stored separately in order to support qualification
3783   // conversions.
3784   bool IsConst, IsVolatile, IsUnaligned;
3785   Type =
3786       decomposeTypeForEH(getContext(), Type, IsConst, IsVolatile, IsUnaligned);
3787 
3788   bool IsReference = CatchHandlerType->isReferenceType();
3789 
3790   uint32_t Flags = 0;
3791   if (IsConst)
3792     Flags |= 1;
3793   if (IsVolatile)
3794     Flags |= 2;
3795   if (IsUnaligned)
3796     Flags |= 4;
3797   if (IsReference)
3798     Flags |= 8;
3799 
3800   return CatchTypeInfo{getAddrOfRTTIDescriptor(Type)->stripPointerCasts(),
3801                        Flags};
3802 }
3803 
3804 /// Gets a TypeDescriptor.  Returns a llvm::Constant * rather than a
3805 /// llvm::GlobalVariable * because different type descriptors have different
3806 /// types, and need to be abstracted.  They are abstracting by casting the
3807 /// address to an Int8PtrTy.
3808 llvm::Constant *MicrosoftCXXABI::getAddrOfRTTIDescriptor(QualType Type) {
3809   SmallString<256> MangledName;
3810   {
3811     llvm::raw_svector_ostream Out(MangledName);
3812     getMangleContext().mangleCXXRTTI(Type, Out);
3813   }
3814 
3815   // Check to see if we've already declared this TypeDescriptor.
3816   if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName))
3817     return llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy);
3818 
3819   // Note for the future: If we would ever like to do deferred emission of
3820   // RTTI, check if emitting vtables opportunistically need any adjustment.
3821 
3822   // Compute the fields for the TypeDescriptor.
3823   SmallString<256> TypeInfoString;
3824   {
3825     llvm::raw_svector_ostream Out(TypeInfoString);
3826     getMangleContext().mangleCXXRTTIName(Type, Out);
3827   }
3828 
3829   // Declare and initialize the TypeDescriptor.
3830   llvm::Constant *Fields[] = {
3831     getTypeInfoVTable(CGM),                        // VFPtr
3832     llvm::ConstantPointerNull::get(CGM.Int8PtrTy), // Runtime data
3833     llvm::ConstantDataArray::getString(CGM.getLLVMContext(), TypeInfoString)};
3834   llvm::StructType *TypeDescriptorType =
3835       getTypeDescriptorType(TypeInfoString);
3836   auto *Var = new llvm::GlobalVariable(
3837       CGM.getModule(), TypeDescriptorType, /*isConstant=*/false,
3838       getLinkageForRTTI(Type),
3839       llvm::ConstantStruct::get(TypeDescriptorType, Fields),
3840       MangledName);
3841   if (Var->isWeakForLinker())
3842     Var->setComdat(CGM.getModule().getOrInsertComdat(Var->getName()));
3843   return llvm::ConstantExpr::getBitCast(Var, CGM.Int8PtrTy);
3844 }
3845 
3846 /// Gets or a creates a Microsoft CompleteObjectLocator.
3847 llvm::GlobalVariable *
3848 MicrosoftCXXABI::getMSCompleteObjectLocator(const CXXRecordDecl *RD,
3849                                             const VPtrInfo &Info) {
3850   return MSRTTIBuilder(*this, RD).getCompleteObjectLocator(Info);
3851 }
3852 
3853 void MicrosoftCXXABI::emitCXXStructor(GlobalDecl GD) {
3854   if (auto *ctor = dyn_cast<CXXConstructorDecl>(GD.getDecl())) {
3855     // There are no constructor variants, always emit the complete destructor.
3856     llvm::Function *Fn =
3857         CGM.codegenCXXStructor(GD.getWithCtorType(Ctor_Complete));
3858     CGM.maybeSetTrivialComdat(*ctor, *Fn);
3859     return;
3860   }
3861 
3862   auto *dtor = cast<CXXDestructorDecl>(GD.getDecl());
3863 
3864   // Emit the base destructor if the base and complete (vbase) destructors are
3865   // equivalent. This effectively implements -mconstructor-aliases as part of
3866   // the ABI.
3867   if (GD.getDtorType() == Dtor_Complete &&
3868       dtor->getParent()->getNumVBases() == 0)
3869     GD = GD.getWithDtorType(Dtor_Base);
3870 
3871   // The base destructor is equivalent to the base destructor of its
3872   // base class if there is exactly one non-virtual base class with a
3873   // non-trivial destructor, there are no fields with a non-trivial
3874   // destructor, and the body of the destructor is trivial.
3875   if (GD.getDtorType() == Dtor_Base && !CGM.TryEmitBaseDestructorAsAlias(dtor))
3876     return;
3877 
3878   llvm::Function *Fn = CGM.codegenCXXStructor(GD);
3879   if (Fn->isWeakForLinker())
3880     Fn->setComdat(CGM.getModule().getOrInsertComdat(Fn->getName()));
3881 }
3882 
3883 llvm::Function *
3884 MicrosoftCXXABI::getAddrOfCXXCtorClosure(const CXXConstructorDecl *CD,
3885                                          CXXCtorType CT) {
3886   assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure);
3887 
3888   // Calculate the mangled name.
3889   SmallString<256> ThunkName;
3890   llvm::raw_svector_ostream Out(ThunkName);
3891   getMangleContext().mangleCXXCtor(CD, CT, Out);
3892 
3893   // If the thunk has been generated previously, just return it.
3894   if (llvm::GlobalValue *GV = CGM.getModule().getNamedValue(ThunkName))
3895     return cast<llvm::Function>(GV);
3896 
3897   // Create the llvm::Function.
3898   const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeMSCtorClosure(CD, CT);
3899   llvm::FunctionType *ThunkTy = CGM.getTypes().GetFunctionType(FnInfo);
3900   const CXXRecordDecl *RD = CD->getParent();
3901   QualType RecordTy = getContext().getRecordType(RD);
3902   llvm::Function *ThunkFn = llvm::Function::Create(
3903       ThunkTy, getLinkageForRTTI(RecordTy), ThunkName.str(), &CGM.getModule());
3904   ThunkFn->setCallingConv(static_cast<llvm::CallingConv::ID>(
3905       FnInfo.getEffectiveCallingConvention()));
3906   if (ThunkFn->isWeakForLinker())
3907     ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName()));
3908   bool IsCopy = CT == Ctor_CopyingClosure;
3909 
3910   // Start codegen.
3911   CodeGenFunction CGF(CGM);
3912   CGF.CurGD = GlobalDecl(CD, Ctor_Complete);
3913 
3914   // Build FunctionArgs.
3915   FunctionArgList FunctionArgs;
3916 
3917   // A constructor always starts with a 'this' pointer as its first argument.
3918   buildThisParam(CGF, FunctionArgs);
3919 
3920   // Following the 'this' pointer is a reference to the source object that we
3921   // are copying from.
3922   ImplicitParamDecl SrcParam(
3923       getContext(), /*DC=*/nullptr, SourceLocation(),
3924       &getContext().Idents.get("src"),
3925       getContext().getLValueReferenceType(RecordTy,
3926                                           /*SpelledAsLValue=*/true),
3927       ImplicitParamDecl::Other);
3928   if (IsCopy)
3929     FunctionArgs.push_back(&SrcParam);
3930 
3931   // Constructors for classes which utilize virtual bases have an additional
3932   // parameter which indicates whether or not it is being delegated to by a more
3933   // derived constructor.
3934   ImplicitParamDecl IsMostDerived(getContext(), /*DC=*/nullptr,
3935                                   SourceLocation(),
3936                                   &getContext().Idents.get("is_most_derived"),
3937                                   getContext().IntTy, ImplicitParamDecl::Other);
3938   // Only add the parameter to the list if the class has virtual bases.
3939   if (RD->getNumVBases() > 0)
3940     FunctionArgs.push_back(&IsMostDerived);
3941 
3942   // Start defining the function.
3943   auto NL = ApplyDebugLocation::CreateEmpty(CGF);
3944   CGF.StartFunction(GlobalDecl(), FnInfo.getReturnType(), ThunkFn, FnInfo,
3945                     FunctionArgs, CD->getLocation(), SourceLocation());
3946   // Create a scope with an artificial location for the body of this function.
3947   auto AL = ApplyDebugLocation::CreateArtificial(CGF);
3948   setCXXABIThisValue(CGF, loadIncomingCXXThis(CGF));
3949   llvm::Value *This = getThisValue(CGF);
3950 
3951   llvm::Value *SrcVal =
3952       IsCopy ? CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&SrcParam), "src")
3953              : nullptr;
3954 
3955   CallArgList Args;
3956 
3957   // Push the this ptr.
3958   Args.add(RValue::get(This), CD->getThisType());
3959 
3960   // Push the src ptr.
3961   if (SrcVal)
3962     Args.add(RValue::get(SrcVal), SrcParam.getType());
3963 
3964   // Add the rest of the default arguments.
3965   SmallVector<const Stmt *, 4> ArgVec;
3966   ArrayRef<ParmVarDecl *> params = CD->parameters().drop_front(IsCopy ? 1 : 0);
3967   for (const ParmVarDecl *PD : params) {
3968     assert(PD->hasDefaultArg() && "ctor closure lacks default args");
3969     ArgVec.push_back(PD->getDefaultArg());
3970   }
3971 
3972   CodeGenFunction::RunCleanupsScope Cleanups(CGF);
3973 
3974   const auto *FPT = CD->getType()->castAs<FunctionProtoType>();
3975   CGF.EmitCallArgs(Args, FPT, llvm::makeArrayRef(ArgVec), CD, IsCopy ? 1 : 0);
3976 
3977   // Insert any ABI-specific implicit constructor arguments.
3978   AddedStructorArgs ExtraArgs =
3979       addImplicitConstructorArgs(CGF, CD, Ctor_Complete,
3980                                  /*ForVirtualBase=*/false,
3981                                  /*Delegating=*/false, Args);
3982   // Call the destructor with our arguments.
3983   llvm::Constant *CalleePtr =
3984       CGM.getAddrOfCXXStructor(GlobalDecl(CD, Ctor_Complete));
3985   CGCallee Callee =
3986       CGCallee::forDirect(CalleePtr, GlobalDecl(CD, Ctor_Complete));
3987   const CGFunctionInfo &CalleeInfo = CGM.getTypes().arrangeCXXConstructorCall(
3988       Args, CD, Ctor_Complete, ExtraArgs.Prefix, ExtraArgs.Suffix);
3989   CGF.EmitCall(CalleeInfo, Callee, ReturnValueSlot(), Args);
3990 
3991   Cleanups.ForceCleanup();
3992 
3993   // Emit the ret instruction, remove any temporary instructions created for the
3994   // aid of CodeGen.
3995   CGF.FinishFunction(SourceLocation());
3996 
3997   return ThunkFn;
3998 }
3999 
4000 llvm::Constant *MicrosoftCXXABI::getCatchableType(QualType T,
4001                                                   uint32_t NVOffset,
4002                                                   int32_t VBPtrOffset,
4003                                                   uint32_t VBIndex) {
4004   assert(!T->isReferenceType());
4005 
4006   CXXRecordDecl *RD = T->getAsCXXRecordDecl();
4007   const CXXConstructorDecl *CD =
4008       RD ? CGM.getContext().getCopyConstructorForExceptionObject(RD) : nullptr;
4009   CXXCtorType CT = Ctor_Complete;
4010   if (CD)
4011     if (!hasDefaultCXXMethodCC(getContext(), CD) || CD->getNumParams() != 1)
4012       CT = Ctor_CopyingClosure;
4013 
4014   uint32_t Size = getContext().getTypeSizeInChars(T).getQuantity();
4015   SmallString<256> MangledName;
4016   {
4017     llvm::raw_svector_ostream Out(MangledName);
4018     getMangleContext().mangleCXXCatchableType(T, CD, CT, Size, NVOffset,
4019                                               VBPtrOffset, VBIndex, Out);
4020   }
4021   if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName))
4022     return getImageRelativeConstant(GV);
4023 
4024   // The TypeDescriptor is used by the runtime to determine if a catch handler
4025   // is appropriate for the exception object.
4026   llvm::Constant *TD = getImageRelativeConstant(getAddrOfRTTIDescriptor(T));
4027 
4028   // The runtime is responsible for calling the copy constructor if the
4029   // exception is caught by value.
4030   llvm::Constant *CopyCtor;
4031   if (CD) {
4032     if (CT == Ctor_CopyingClosure)
4033       CopyCtor = getAddrOfCXXCtorClosure(CD, Ctor_CopyingClosure);
4034     else
4035       CopyCtor = CGM.getAddrOfCXXStructor(GlobalDecl(CD, Ctor_Complete));
4036 
4037     CopyCtor = llvm::ConstantExpr::getBitCast(CopyCtor, CGM.Int8PtrTy);
4038   } else {
4039     CopyCtor = llvm::Constant::getNullValue(CGM.Int8PtrTy);
4040   }
4041   CopyCtor = getImageRelativeConstant(CopyCtor);
4042 
4043   bool IsScalar = !RD;
4044   bool HasVirtualBases = false;
4045   bool IsStdBadAlloc = false; // std::bad_alloc is special for some reason.
4046   QualType PointeeType = T;
4047   if (T->isPointerType())
4048     PointeeType = T->getPointeeType();
4049   if (const CXXRecordDecl *RD = PointeeType->getAsCXXRecordDecl()) {
4050     HasVirtualBases = RD->getNumVBases() > 0;
4051     if (IdentifierInfo *II = RD->getIdentifier())
4052       IsStdBadAlloc = II->isStr("bad_alloc") && RD->isInStdNamespace();
4053   }
4054 
4055   // Encode the relevant CatchableType properties into the Flags bitfield.
4056   // FIXME: Figure out how bits 2 or 8 can get set.
4057   uint32_t Flags = 0;
4058   if (IsScalar)
4059     Flags |= 1;
4060   if (HasVirtualBases)
4061     Flags |= 4;
4062   if (IsStdBadAlloc)
4063     Flags |= 16;
4064 
4065   llvm::Constant *Fields[] = {
4066       llvm::ConstantInt::get(CGM.IntTy, Flags),       // Flags
4067       TD,                                             // TypeDescriptor
4068       llvm::ConstantInt::get(CGM.IntTy, NVOffset),    // NonVirtualAdjustment
4069       llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset), // OffsetToVBPtr
4070       llvm::ConstantInt::get(CGM.IntTy, VBIndex),     // VBTableIndex
4071       llvm::ConstantInt::get(CGM.IntTy, Size),        // Size
4072       CopyCtor                                        // CopyCtor
4073   };
4074   llvm::StructType *CTType = getCatchableTypeType();
4075   auto *GV = new llvm::GlobalVariable(
4076       CGM.getModule(), CTType, /*isConstant=*/true, getLinkageForRTTI(T),
4077       llvm::ConstantStruct::get(CTType, Fields), MangledName);
4078   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4079   GV->setSection(".xdata");
4080   if (GV->isWeakForLinker())
4081     GV->setComdat(CGM.getModule().getOrInsertComdat(GV->getName()));
4082   return getImageRelativeConstant(GV);
4083 }
4084 
4085 llvm::GlobalVariable *MicrosoftCXXABI::getCatchableTypeArray(QualType T) {
4086   assert(!T->isReferenceType());
4087 
4088   // See if we've already generated a CatchableTypeArray for this type before.
4089   llvm::GlobalVariable *&CTA = CatchableTypeArrays[T];
4090   if (CTA)
4091     return CTA;
4092 
4093   // Ensure that we don't have duplicate entries in our CatchableTypeArray by
4094   // using a SmallSetVector.  Duplicates may arise due to virtual bases
4095   // occurring more than once in the hierarchy.
4096   llvm::SmallSetVector<llvm::Constant *, 2> CatchableTypes;
4097 
4098   // C++14 [except.handle]p3:
4099   //   A handler is a match for an exception object of type E if [...]
4100   //     - the handler is of type cv T or cv T& and T is an unambiguous public
4101   //       base class of E, or
4102   //     - the handler is of type cv T or const T& where T is a pointer type and
4103   //       E is a pointer type that can be converted to T by [...]
4104   //         - a standard pointer conversion (4.10) not involving conversions to
4105   //           pointers to private or protected or ambiguous classes
4106   const CXXRecordDecl *MostDerivedClass = nullptr;
4107   bool IsPointer = T->isPointerType();
4108   if (IsPointer)
4109     MostDerivedClass = T->getPointeeType()->getAsCXXRecordDecl();
4110   else
4111     MostDerivedClass = T->getAsCXXRecordDecl();
4112 
4113   // Collect all the unambiguous public bases of the MostDerivedClass.
4114   if (MostDerivedClass) {
4115     const ASTContext &Context = getContext();
4116     const ASTRecordLayout &MostDerivedLayout =
4117         Context.getASTRecordLayout(MostDerivedClass);
4118     MicrosoftVTableContext &VTableContext = CGM.getMicrosoftVTableContext();
4119     SmallVector<MSRTTIClass, 8> Classes;
4120     serializeClassHierarchy(Classes, MostDerivedClass);
4121     Classes.front().initialize(/*Parent=*/nullptr, /*Specifier=*/nullptr);
4122     detectAmbiguousBases(Classes);
4123     for (const MSRTTIClass &Class : Classes) {
4124       // Skip any ambiguous or private bases.
4125       if (Class.Flags &
4126           (MSRTTIClass::IsPrivateOnPath | MSRTTIClass::IsAmbiguous))
4127         continue;
4128       // Write down how to convert from a derived pointer to a base pointer.
4129       uint32_t OffsetInVBTable = 0;
4130       int32_t VBPtrOffset = -1;
4131       if (Class.VirtualRoot) {
4132         OffsetInVBTable =
4133           VTableContext.getVBTableIndex(MostDerivedClass, Class.VirtualRoot)*4;
4134         VBPtrOffset = MostDerivedLayout.getVBPtrOffset().getQuantity();
4135       }
4136 
4137       // Turn our record back into a pointer if the exception object is a
4138       // pointer.
4139       QualType RTTITy = QualType(Class.RD->getTypeForDecl(), 0);
4140       if (IsPointer)
4141         RTTITy = Context.getPointerType(RTTITy);
4142       CatchableTypes.insert(getCatchableType(RTTITy, Class.OffsetInVBase,
4143                                              VBPtrOffset, OffsetInVBTable));
4144     }
4145   }
4146 
4147   // C++14 [except.handle]p3:
4148   //   A handler is a match for an exception object of type E if
4149   //     - The handler is of type cv T or cv T& and E and T are the same type
4150   //       (ignoring the top-level cv-qualifiers)
4151   CatchableTypes.insert(getCatchableType(T));
4152 
4153   // C++14 [except.handle]p3:
4154   //   A handler is a match for an exception object of type E if
4155   //     - the handler is of type cv T or const T& where T is a pointer type and
4156   //       E is a pointer type that can be converted to T by [...]
4157   //         - a standard pointer conversion (4.10) not involving conversions to
4158   //           pointers to private or protected or ambiguous classes
4159   //
4160   // C++14 [conv.ptr]p2:
4161   //   A prvalue of type "pointer to cv T," where T is an object type, can be
4162   //   converted to a prvalue of type "pointer to cv void".
4163   if (IsPointer && T->getPointeeType()->isObjectType())
4164     CatchableTypes.insert(getCatchableType(getContext().VoidPtrTy));
4165 
4166   // C++14 [except.handle]p3:
4167   //   A handler is a match for an exception object of type E if [...]
4168   //     - the handler is of type cv T or const T& where T is a pointer or
4169   //       pointer to member type and E is std::nullptr_t.
4170   //
4171   // We cannot possibly list all possible pointer types here, making this
4172   // implementation incompatible with the standard.  However, MSVC includes an
4173   // entry for pointer-to-void in this case.  Let's do the same.
4174   if (T->isNullPtrType())
4175     CatchableTypes.insert(getCatchableType(getContext().VoidPtrTy));
4176 
4177   uint32_t NumEntries = CatchableTypes.size();
4178   llvm::Type *CTType =
4179       getImageRelativeType(getCatchableTypeType()->getPointerTo());
4180   llvm::ArrayType *AT = llvm::ArrayType::get(CTType, NumEntries);
4181   llvm::StructType *CTAType = getCatchableTypeArrayType(NumEntries);
4182   llvm::Constant *Fields[] = {
4183       llvm::ConstantInt::get(CGM.IntTy, NumEntries),    // NumEntries
4184       llvm::ConstantArray::get(
4185           AT, llvm::makeArrayRef(CatchableTypes.begin(),
4186                                  CatchableTypes.end())) // CatchableTypes
4187   };
4188   SmallString<256> MangledName;
4189   {
4190     llvm::raw_svector_ostream Out(MangledName);
4191     getMangleContext().mangleCXXCatchableTypeArray(T, NumEntries, Out);
4192   }
4193   CTA = new llvm::GlobalVariable(
4194       CGM.getModule(), CTAType, /*isConstant=*/true, getLinkageForRTTI(T),
4195       llvm::ConstantStruct::get(CTAType, Fields), MangledName);
4196   CTA->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4197   CTA->setSection(".xdata");
4198   if (CTA->isWeakForLinker())
4199     CTA->setComdat(CGM.getModule().getOrInsertComdat(CTA->getName()));
4200   return CTA;
4201 }
4202 
4203 llvm::GlobalVariable *MicrosoftCXXABI::getThrowInfo(QualType T) {
4204   bool IsConst, IsVolatile, IsUnaligned;
4205   T = decomposeTypeForEH(getContext(), T, IsConst, IsVolatile, IsUnaligned);
4206 
4207   // The CatchableTypeArray enumerates the various (CV-unqualified) types that
4208   // the exception object may be caught as.
4209   llvm::GlobalVariable *CTA = getCatchableTypeArray(T);
4210   // The first field in a CatchableTypeArray is the number of CatchableTypes.
4211   // This is used as a component of the mangled name which means that we need to
4212   // know what it is in order to see if we have previously generated the
4213   // ThrowInfo.
4214   uint32_t NumEntries =
4215       cast<llvm::ConstantInt>(CTA->getInitializer()->getAggregateElement(0U))
4216           ->getLimitedValue();
4217 
4218   SmallString<256> MangledName;
4219   {
4220     llvm::raw_svector_ostream Out(MangledName);
4221     getMangleContext().mangleCXXThrowInfo(T, IsConst, IsVolatile, IsUnaligned,
4222                                           NumEntries, Out);
4223   }
4224 
4225   // Reuse a previously generated ThrowInfo if we have generated an appropriate
4226   // one before.
4227   if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName))
4228     return GV;
4229 
4230   // The RTTI TypeDescriptor uses an unqualified type but catch clauses must
4231   // be at least as CV qualified.  Encode this requirement into the Flags
4232   // bitfield.
4233   uint32_t Flags = 0;
4234   if (IsConst)
4235     Flags |= 1;
4236   if (IsVolatile)
4237     Flags |= 2;
4238   if (IsUnaligned)
4239     Flags |= 4;
4240 
4241   // The cleanup-function (a destructor) must be called when the exception
4242   // object's lifetime ends.
4243   llvm::Constant *CleanupFn = llvm::Constant::getNullValue(CGM.Int8PtrTy);
4244   if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4245     if (CXXDestructorDecl *DtorD = RD->getDestructor())
4246       if (!DtorD->isTrivial())
4247         CleanupFn = llvm::ConstantExpr::getBitCast(
4248             CGM.getAddrOfCXXStructor(GlobalDecl(DtorD, Dtor_Complete)),
4249             CGM.Int8PtrTy);
4250   // This is unused as far as we can tell, initialize it to null.
4251   llvm::Constant *ForwardCompat =
4252       getImageRelativeConstant(llvm::Constant::getNullValue(CGM.Int8PtrTy));
4253   llvm::Constant *PointerToCatchableTypes = getImageRelativeConstant(
4254       llvm::ConstantExpr::getBitCast(CTA, CGM.Int8PtrTy));
4255   llvm::StructType *TIType = getThrowInfoType();
4256   llvm::Constant *Fields[] = {
4257       llvm::ConstantInt::get(CGM.IntTy, Flags), // Flags
4258       getImageRelativeConstant(CleanupFn),      // CleanupFn
4259       ForwardCompat,                            // ForwardCompat
4260       PointerToCatchableTypes                   // CatchableTypeArray
4261   };
4262   auto *GV = new llvm::GlobalVariable(
4263       CGM.getModule(), TIType, /*isConstant=*/true, getLinkageForRTTI(T),
4264       llvm::ConstantStruct::get(TIType, Fields), StringRef(MangledName));
4265   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4266   GV->setSection(".xdata");
4267   if (GV->isWeakForLinker())
4268     GV->setComdat(CGM.getModule().getOrInsertComdat(GV->getName()));
4269   return GV;
4270 }
4271 
4272 void MicrosoftCXXABI::emitThrow(CodeGenFunction &CGF, const CXXThrowExpr *E) {
4273   const Expr *SubExpr = E->getSubExpr();
4274   QualType ThrowType = SubExpr->getType();
4275   // The exception object lives on the stack and it's address is passed to the
4276   // runtime function.
4277   Address AI = CGF.CreateMemTemp(ThrowType);
4278   CGF.EmitAnyExprToMem(SubExpr, AI, ThrowType.getQualifiers(),
4279                        /*IsInit=*/true);
4280 
4281   // The so-called ThrowInfo is used to describe how the exception object may be
4282   // caught.
4283   llvm::GlobalVariable *TI = getThrowInfo(ThrowType);
4284 
4285   // Call into the runtime to throw the exception.
4286   llvm::Value *Args[] = {
4287     CGF.Builder.CreateBitCast(AI.getPointer(), CGM.Int8PtrTy),
4288     TI
4289   };
4290   CGF.EmitNoreturnRuntimeCallOrInvoke(getThrowFn(), Args);
4291 }
4292 
4293 std::pair<llvm::Value *, const CXXRecordDecl *>
4294 MicrosoftCXXABI::LoadVTablePtr(CodeGenFunction &CGF, Address This,
4295                                const CXXRecordDecl *RD) {
4296   std::tie(This, std::ignore, RD) =
4297       performBaseAdjustment(CGF, This, QualType(RD->getTypeForDecl(), 0));
4298   return {CGF.GetVTablePtr(This, CGM.Int8PtrTy, RD), RD};
4299 }
4300