1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Stmt nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGDebugInfo.h" 14 #include "CGOpenMPRuntime.h" 15 #include "CodeGenFunction.h" 16 #include "CodeGenModule.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/Attr.h" 19 #include "clang/AST/Expr.h" 20 #include "clang/AST/Stmt.h" 21 #include "clang/AST/StmtVisitor.h" 22 #include "clang/Basic/Builtins.h" 23 #include "clang/Basic/DiagnosticSema.h" 24 #include "clang/Basic/PrettyStackTrace.h" 25 #include "clang/Basic/SourceManager.h" 26 #include "clang/Basic/TargetInfo.h" 27 #include "llvm/ADT/SmallSet.h" 28 #include "llvm/ADT/StringExtras.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/InlineAsm.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/IR/MDBuilder.h" 33 #include "llvm/Support/SaveAndRestore.h" 34 35 using namespace clang; 36 using namespace CodeGen; 37 38 //===----------------------------------------------------------------------===// 39 // Statement Emission 40 //===----------------------------------------------------------------------===// 41 42 void CodeGenFunction::EmitStopPoint(const Stmt *S) { 43 if (CGDebugInfo *DI = getDebugInfo()) { 44 SourceLocation Loc; 45 Loc = S->getBeginLoc(); 46 DI->EmitLocation(Builder, Loc); 47 48 LastStopPoint = Loc; 49 } 50 } 51 52 void CodeGenFunction::EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs) { 53 assert(S && "Null statement?"); 54 PGO.setCurrentStmt(S); 55 56 // These statements have their own debug info handling. 57 if (EmitSimpleStmt(S, Attrs)) 58 return; 59 60 // Check if we are generating unreachable code. 61 if (!HaveInsertPoint()) { 62 // If so, and the statement doesn't contain a label, then we do not need to 63 // generate actual code. This is safe because (1) the current point is 64 // unreachable, so we don't need to execute the code, and (2) we've already 65 // handled the statements which update internal data structures (like the 66 // local variable map) which could be used by subsequent statements. 67 if (!ContainsLabel(S)) { 68 // Verify that any decl statements were handled as simple, they may be in 69 // scope of subsequent reachable statements. 70 assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!"); 71 return; 72 } 73 74 // Otherwise, make a new block to hold the code. 75 EnsureInsertPoint(); 76 } 77 78 // Generate a stoppoint if we are emitting debug info. 79 EmitStopPoint(S); 80 81 // Ignore all OpenMP directives except for simd if OpenMP with Simd is 82 // enabled. 83 if (getLangOpts().OpenMP && getLangOpts().OpenMPSimd) { 84 if (const auto *D = dyn_cast<OMPExecutableDirective>(S)) { 85 EmitSimpleOMPExecutableDirective(*D); 86 return; 87 } 88 } 89 90 switch (S->getStmtClass()) { 91 case Stmt::NoStmtClass: 92 case Stmt::CXXCatchStmtClass: 93 case Stmt::SEHExceptStmtClass: 94 case Stmt::SEHFinallyStmtClass: 95 case Stmt::MSDependentExistsStmtClass: 96 llvm_unreachable("invalid statement class to emit generically"); 97 case Stmt::NullStmtClass: 98 case Stmt::CompoundStmtClass: 99 case Stmt::DeclStmtClass: 100 case Stmt::LabelStmtClass: 101 case Stmt::AttributedStmtClass: 102 case Stmt::GotoStmtClass: 103 case Stmt::BreakStmtClass: 104 case Stmt::ContinueStmtClass: 105 case Stmt::DefaultStmtClass: 106 case Stmt::CaseStmtClass: 107 case Stmt::SEHLeaveStmtClass: 108 llvm_unreachable("should have emitted these statements as simple"); 109 110 #define STMT(Type, Base) 111 #define ABSTRACT_STMT(Op) 112 #define EXPR(Type, Base) \ 113 case Stmt::Type##Class: 114 #include "clang/AST/StmtNodes.inc" 115 { 116 // Remember the block we came in on. 117 llvm::BasicBlock *incoming = Builder.GetInsertBlock(); 118 assert(incoming && "expression emission must have an insertion point"); 119 120 EmitIgnoredExpr(cast<Expr>(S)); 121 122 llvm::BasicBlock *outgoing = Builder.GetInsertBlock(); 123 assert(outgoing && "expression emission cleared block!"); 124 125 // The expression emitters assume (reasonably!) that the insertion 126 // point is always set. To maintain that, the call-emission code 127 // for noreturn functions has to enter a new block with no 128 // predecessors. We want to kill that block and mark the current 129 // insertion point unreachable in the common case of a call like 130 // "exit();". Since expression emission doesn't otherwise create 131 // blocks with no predecessors, we can just test for that. 132 // However, we must be careful not to do this to our incoming 133 // block, because *statement* emission does sometimes create 134 // reachable blocks which will have no predecessors until later in 135 // the function. This occurs with, e.g., labels that are not 136 // reachable by fallthrough. 137 if (incoming != outgoing && outgoing->use_empty()) { 138 outgoing->eraseFromParent(); 139 Builder.ClearInsertionPoint(); 140 } 141 break; 142 } 143 144 case Stmt::IndirectGotoStmtClass: 145 EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break; 146 147 case Stmt::IfStmtClass: EmitIfStmt(cast<IfStmt>(*S)); break; 148 case Stmt::WhileStmtClass: EmitWhileStmt(cast<WhileStmt>(*S), Attrs); break; 149 case Stmt::DoStmtClass: EmitDoStmt(cast<DoStmt>(*S), Attrs); break; 150 case Stmt::ForStmtClass: EmitForStmt(cast<ForStmt>(*S), Attrs); break; 151 152 case Stmt::ReturnStmtClass: EmitReturnStmt(cast<ReturnStmt>(*S)); break; 153 154 case Stmt::SwitchStmtClass: EmitSwitchStmt(cast<SwitchStmt>(*S)); break; 155 case Stmt::GCCAsmStmtClass: // Intentional fall-through. 156 case Stmt::MSAsmStmtClass: EmitAsmStmt(cast<AsmStmt>(*S)); break; 157 case Stmt::CoroutineBodyStmtClass: 158 EmitCoroutineBody(cast<CoroutineBodyStmt>(*S)); 159 break; 160 case Stmt::CoreturnStmtClass: 161 EmitCoreturnStmt(cast<CoreturnStmt>(*S)); 162 break; 163 case Stmt::CapturedStmtClass: { 164 const CapturedStmt *CS = cast<CapturedStmt>(S); 165 EmitCapturedStmt(*CS, CS->getCapturedRegionKind()); 166 } 167 break; 168 case Stmt::ObjCAtTryStmtClass: 169 EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S)); 170 break; 171 case Stmt::ObjCAtCatchStmtClass: 172 llvm_unreachable( 173 "@catch statements should be handled by EmitObjCAtTryStmt"); 174 case Stmt::ObjCAtFinallyStmtClass: 175 llvm_unreachable( 176 "@finally statements should be handled by EmitObjCAtTryStmt"); 177 case Stmt::ObjCAtThrowStmtClass: 178 EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S)); 179 break; 180 case Stmt::ObjCAtSynchronizedStmtClass: 181 EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S)); 182 break; 183 case Stmt::ObjCForCollectionStmtClass: 184 EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S)); 185 break; 186 case Stmt::ObjCAutoreleasePoolStmtClass: 187 EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S)); 188 break; 189 190 case Stmt::CXXTryStmtClass: 191 EmitCXXTryStmt(cast<CXXTryStmt>(*S)); 192 break; 193 case Stmt::CXXForRangeStmtClass: 194 EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S), Attrs); 195 break; 196 case Stmt::SEHTryStmtClass: 197 EmitSEHTryStmt(cast<SEHTryStmt>(*S)); 198 break; 199 case Stmt::OMPCanonicalLoopClass: 200 EmitOMPCanonicalLoop(cast<OMPCanonicalLoop>(S)); 201 break; 202 case Stmt::OMPParallelDirectiveClass: 203 EmitOMPParallelDirective(cast<OMPParallelDirective>(*S)); 204 break; 205 case Stmt::OMPSimdDirectiveClass: 206 EmitOMPSimdDirective(cast<OMPSimdDirective>(*S)); 207 break; 208 case Stmt::OMPTileDirectiveClass: 209 EmitOMPTileDirective(cast<OMPTileDirective>(*S)); 210 break; 211 case Stmt::OMPForDirectiveClass: 212 EmitOMPForDirective(cast<OMPForDirective>(*S)); 213 break; 214 case Stmt::OMPForSimdDirectiveClass: 215 EmitOMPForSimdDirective(cast<OMPForSimdDirective>(*S)); 216 break; 217 case Stmt::OMPSectionsDirectiveClass: 218 EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S)); 219 break; 220 case Stmt::OMPSectionDirectiveClass: 221 EmitOMPSectionDirective(cast<OMPSectionDirective>(*S)); 222 break; 223 case Stmt::OMPSingleDirectiveClass: 224 EmitOMPSingleDirective(cast<OMPSingleDirective>(*S)); 225 break; 226 case Stmt::OMPMasterDirectiveClass: 227 EmitOMPMasterDirective(cast<OMPMasterDirective>(*S)); 228 break; 229 case Stmt::OMPCriticalDirectiveClass: 230 EmitOMPCriticalDirective(cast<OMPCriticalDirective>(*S)); 231 break; 232 case Stmt::OMPParallelForDirectiveClass: 233 EmitOMPParallelForDirective(cast<OMPParallelForDirective>(*S)); 234 break; 235 case Stmt::OMPParallelForSimdDirectiveClass: 236 EmitOMPParallelForSimdDirective(cast<OMPParallelForSimdDirective>(*S)); 237 break; 238 case Stmt::OMPParallelMasterDirectiveClass: 239 EmitOMPParallelMasterDirective(cast<OMPParallelMasterDirective>(*S)); 240 break; 241 case Stmt::OMPParallelSectionsDirectiveClass: 242 EmitOMPParallelSectionsDirective(cast<OMPParallelSectionsDirective>(*S)); 243 break; 244 case Stmt::OMPTaskDirectiveClass: 245 EmitOMPTaskDirective(cast<OMPTaskDirective>(*S)); 246 break; 247 case Stmt::OMPTaskyieldDirectiveClass: 248 EmitOMPTaskyieldDirective(cast<OMPTaskyieldDirective>(*S)); 249 break; 250 case Stmt::OMPBarrierDirectiveClass: 251 EmitOMPBarrierDirective(cast<OMPBarrierDirective>(*S)); 252 break; 253 case Stmt::OMPTaskwaitDirectiveClass: 254 EmitOMPTaskwaitDirective(cast<OMPTaskwaitDirective>(*S)); 255 break; 256 case Stmt::OMPTaskgroupDirectiveClass: 257 EmitOMPTaskgroupDirective(cast<OMPTaskgroupDirective>(*S)); 258 break; 259 case Stmt::OMPFlushDirectiveClass: 260 EmitOMPFlushDirective(cast<OMPFlushDirective>(*S)); 261 break; 262 case Stmt::OMPDepobjDirectiveClass: 263 EmitOMPDepobjDirective(cast<OMPDepobjDirective>(*S)); 264 break; 265 case Stmt::OMPScanDirectiveClass: 266 EmitOMPScanDirective(cast<OMPScanDirective>(*S)); 267 break; 268 case Stmt::OMPOrderedDirectiveClass: 269 EmitOMPOrderedDirective(cast<OMPOrderedDirective>(*S)); 270 break; 271 case Stmt::OMPAtomicDirectiveClass: 272 EmitOMPAtomicDirective(cast<OMPAtomicDirective>(*S)); 273 break; 274 case Stmt::OMPTargetDirectiveClass: 275 EmitOMPTargetDirective(cast<OMPTargetDirective>(*S)); 276 break; 277 case Stmt::OMPTeamsDirectiveClass: 278 EmitOMPTeamsDirective(cast<OMPTeamsDirective>(*S)); 279 break; 280 case Stmt::OMPCancellationPointDirectiveClass: 281 EmitOMPCancellationPointDirective(cast<OMPCancellationPointDirective>(*S)); 282 break; 283 case Stmt::OMPCancelDirectiveClass: 284 EmitOMPCancelDirective(cast<OMPCancelDirective>(*S)); 285 break; 286 case Stmt::OMPTargetDataDirectiveClass: 287 EmitOMPTargetDataDirective(cast<OMPTargetDataDirective>(*S)); 288 break; 289 case Stmt::OMPTargetEnterDataDirectiveClass: 290 EmitOMPTargetEnterDataDirective(cast<OMPTargetEnterDataDirective>(*S)); 291 break; 292 case Stmt::OMPTargetExitDataDirectiveClass: 293 EmitOMPTargetExitDataDirective(cast<OMPTargetExitDataDirective>(*S)); 294 break; 295 case Stmt::OMPTargetParallelDirectiveClass: 296 EmitOMPTargetParallelDirective(cast<OMPTargetParallelDirective>(*S)); 297 break; 298 case Stmt::OMPTargetParallelForDirectiveClass: 299 EmitOMPTargetParallelForDirective(cast<OMPTargetParallelForDirective>(*S)); 300 break; 301 case Stmt::OMPTaskLoopDirectiveClass: 302 EmitOMPTaskLoopDirective(cast<OMPTaskLoopDirective>(*S)); 303 break; 304 case Stmt::OMPTaskLoopSimdDirectiveClass: 305 EmitOMPTaskLoopSimdDirective(cast<OMPTaskLoopSimdDirective>(*S)); 306 break; 307 case Stmt::OMPMasterTaskLoopDirectiveClass: 308 EmitOMPMasterTaskLoopDirective(cast<OMPMasterTaskLoopDirective>(*S)); 309 break; 310 case Stmt::OMPMasterTaskLoopSimdDirectiveClass: 311 EmitOMPMasterTaskLoopSimdDirective( 312 cast<OMPMasterTaskLoopSimdDirective>(*S)); 313 break; 314 case Stmt::OMPParallelMasterTaskLoopDirectiveClass: 315 EmitOMPParallelMasterTaskLoopDirective( 316 cast<OMPParallelMasterTaskLoopDirective>(*S)); 317 break; 318 case Stmt::OMPParallelMasterTaskLoopSimdDirectiveClass: 319 EmitOMPParallelMasterTaskLoopSimdDirective( 320 cast<OMPParallelMasterTaskLoopSimdDirective>(*S)); 321 break; 322 case Stmt::OMPDistributeDirectiveClass: 323 EmitOMPDistributeDirective(cast<OMPDistributeDirective>(*S)); 324 break; 325 case Stmt::OMPTargetUpdateDirectiveClass: 326 EmitOMPTargetUpdateDirective(cast<OMPTargetUpdateDirective>(*S)); 327 break; 328 case Stmt::OMPDistributeParallelForDirectiveClass: 329 EmitOMPDistributeParallelForDirective( 330 cast<OMPDistributeParallelForDirective>(*S)); 331 break; 332 case Stmt::OMPDistributeParallelForSimdDirectiveClass: 333 EmitOMPDistributeParallelForSimdDirective( 334 cast<OMPDistributeParallelForSimdDirective>(*S)); 335 break; 336 case Stmt::OMPDistributeSimdDirectiveClass: 337 EmitOMPDistributeSimdDirective(cast<OMPDistributeSimdDirective>(*S)); 338 break; 339 case Stmt::OMPTargetParallelForSimdDirectiveClass: 340 EmitOMPTargetParallelForSimdDirective( 341 cast<OMPTargetParallelForSimdDirective>(*S)); 342 break; 343 case Stmt::OMPTargetSimdDirectiveClass: 344 EmitOMPTargetSimdDirective(cast<OMPTargetSimdDirective>(*S)); 345 break; 346 case Stmt::OMPTeamsDistributeDirectiveClass: 347 EmitOMPTeamsDistributeDirective(cast<OMPTeamsDistributeDirective>(*S)); 348 break; 349 case Stmt::OMPTeamsDistributeSimdDirectiveClass: 350 EmitOMPTeamsDistributeSimdDirective( 351 cast<OMPTeamsDistributeSimdDirective>(*S)); 352 break; 353 case Stmt::OMPTeamsDistributeParallelForSimdDirectiveClass: 354 EmitOMPTeamsDistributeParallelForSimdDirective( 355 cast<OMPTeamsDistributeParallelForSimdDirective>(*S)); 356 break; 357 case Stmt::OMPTeamsDistributeParallelForDirectiveClass: 358 EmitOMPTeamsDistributeParallelForDirective( 359 cast<OMPTeamsDistributeParallelForDirective>(*S)); 360 break; 361 case Stmt::OMPTargetTeamsDirectiveClass: 362 EmitOMPTargetTeamsDirective(cast<OMPTargetTeamsDirective>(*S)); 363 break; 364 case Stmt::OMPTargetTeamsDistributeDirectiveClass: 365 EmitOMPTargetTeamsDistributeDirective( 366 cast<OMPTargetTeamsDistributeDirective>(*S)); 367 break; 368 case Stmt::OMPTargetTeamsDistributeParallelForDirectiveClass: 369 EmitOMPTargetTeamsDistributeParallelForDirective( 370 cast<OMPTargetTeamsDistributeParallelForDirective>(*S)); 371 break; 372 case Stmt::OMPTargetTeamsDistributeParallelForSimdDirectiveClass: 373 EmitOMPTargetTeamsDistributeParallelForSimdDirective( 374 cast<OMPTargetTeamsDistributeParallelForSimdDirective>(*S)); 375 break; 376 case Stmt::OMPTargetTeamsDistributeSimdDirectiveClass: 377 EmitOMPTargetTeamsDistributeSimdDirective( 378 cast<OMPTargetTeamsDistributeSimdDirective>(*S)); 379 break; 380 case Stmt::OMPInteropDirectiveClass: 381 llvm_unreachable("Interop directive not supported yet."); 382 break; 383 case Stmt::OMPDispatchDirectiveClass: 384 llvm_unreachable("Dispatch directive not supported yet."); 385 break; 386 case Stmt::OMPMaskedDirectiveClass: 387 EmitOMPMaskedDirective(cast<OMPMaskedDirective>(*S)); 388 break; 389 } 390 } 391 392 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S, 393 ArrayRef<const Attr *> Attrs) { 394 switch (S->getStmtClass()) { 395 default: 396 return false; 397 case Stmt::NullStmtClass: 398 break; 399 case Stmt::CompoundStmtClass: 400 EmitCompoundStmt(cast<CompoundStmt>(*S)); 401 break; 402 case Stmt::DeclStmtClass: 403 EmitDeclStmt(cast<DeclStmt>(*S)); 404 break; 405 case Stmt::LabelStmtClass: 406 EmitLabelStmt(cast<LabelStmt>(*S)); 407 break; 408 case Stmt::AttributedStmtClass: 409 EmitAttributedStmt(cast<AttributedStmt>(*S)); 410 break; 411 case Stmt::GotoStmtClass: 412 EmitGotoStmt(cast<GotoStmt>(*S)); 413 break; 414 case Stmt::BreakStmtClass: 415 EmitBreakStmt(cast<BreakStmt>(*S)); 416 break; 417 case Stmt::ContinueStmtClass: 418 EmitContinueStmt(cast<ContinueStmt>(*S)); 419 break; 420 case Stmt::DefaultStmtClass: 421 EmitDefaultStmt(cast<DefaultStmt>(*S), Attrs); 422 break; 423 case Stmt::CaseStmtClass: 424 EmitCaseStmt(cast<CaseStmt>(*S), Attrs); 425 break; 426 case Stmt::SEHLeaveStmtClass: 427 EmitSEHLeaveStmt(cast<SEHLeaveStmt>(*S)); 428 break; 429 } 430 return true; 431 } 432 433 /// EmitCompoundStmt - Emit a compound statement {..} node. If GetLast is true, 434 /// this captures the expression result of the last sub-statement and returns it 435 /// (for use by the statement expression extension). 436 Address CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast, 437 AggValueSlot AggSlot) { 438 PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(), 439 "LLVM IR generation of compound statement ('{}')"); 440 441 // Keep track of the current cleanup stack depth, including debug scopes. 442 LexicalScope Scope(*this, S.getSourceRange()); 443 444 return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot); 445 } 446 447 Address 448 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S, 449 bool GetLast, 450 AggValueSlot AggSlot) { 451 452 const Stmt *ExprResult = S.getStmtExprResult(); 453 assert((!GetLast || (GetLast && ExprResult)) && 454 "If GetLast is true then the CompoundStmt must have a StmtExprResult"); 455 456 Address RetAlloca = Address::invalid(); 457 458 for (auto *CurStmt : S.body()) { 459 if (GetLast && ExprResult == CurStmt) { 460 // We have to special case labels here. They are statements, but when put 461 // at the end of a statement expression, they yield the value of their 462 // subexpression. Handle this by walking through all labels we encounter, 463 // emitting them before we evaluate the subexpr. 464 // Similar issues arise for attributed statements. 465 while (!isa<Expr>(ExprResult)) { 466 if (const auto *LS = dyn_cast<LabelStmt>(ExprResult)) { 467 EmitLabel(LS->getDecl()); 468 ExprResult = LS->getSubStmt(); 469 } else if (const auto *AS = dyn_cast<AttributedStmt>(ExprResult)) { 470 // FIXME: Update this if we ever have attributes that affect the 471 // semantics of an expression. 472 ExprResult = AS->getSubStmt(); 473 } else { 474 llvm_unreachable("unknown value statement"); 475 } 476 } 477 478 EnsureInsertPoint(); 479 480 const Expr *E = cast<Expr>(ExprResult); 481 QualType ExprTy = E->getType(); 482 if (hasAggregateEvaluationKind(ExprTy)) { 483 EmitAggExpr(E, AggSlot); 484 } else { 485 // We can't return an RValue here because there might be cleanups at 486 // the end of the StmtExpr. Because of that, we have to emit the result 487 // here into a temporary alloca. 488 RetAlloca = CreateMemTemp(ExprTy); 489 EmitAnyExprToMem(E, RetAlloca, Qualifiers(), 490 /*IsInit*/ false); 491 } 492 } else { 493 EmitStmt(CurStmt); 494 } 495 } 496 497 return RetAlloca; 498 } 499 500 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) { 501 llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator()); 502 503 // If there is a cleanup stack, then we it isn't worth trying to 504 // simplify this block (we would need to remove it from the scope map 505 // and cleanup entry). 506 if (!EHStack.empty()) 507 return; 508 509 // Can only simplify direct branches. 510 if (!BI || !BI->isUnconditional()) 511 return; 512 513 // Can only simplify empty blocks. 514 if (BI->getIterator() != BB->begin()) 515 return; 516 517 BB->replaceAllUsesWith(BI->getSuccessor(0)); 518 BI->eraseFromParent(); 519 BB->eraseFromParent(); 520 } 521 522 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) { 523 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 524 525 // Fall out of the current block (if necessary). 526 EmitBranch(BB); 527 528 if (IsFinished && BB->use_empty()) { 529 delete BB; 530 return; 531 } 532 533 // Place the block after the current block, if possible, or else at 534 // the end of the function. 535 if (CurBB && CurBB->getParent()) 536 CurFn->getBasicBlockList().insertAfter(CurBB->getIterator(), BB); 537 else 538 CurFn->getBasicBlockList().push_back(BB); 539 Builder.SetInsertPoint(BB); 540 } 541 542 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) { 543 // Emit a branch from the current block to the target one if this 544 // was a real block. If this was just a fall-through block after a 545 // terminator, don't emit it. 546 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 547 548 if (!CurBB || CurBB->getTerminator()) { 549 // If there is no insert point or the previous block is already 550 // terminated, don't touch it. 551 } else { 552 // Otherwise, create a fall-through branch. 553 Builder.CreateBr(Target); 554 } 555 556 Builder.ClearInsertionPoint(); 557 } 558 559 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) { 560 bool inserted = false; 561 for (llvm::User *u : block->users()) { 562 if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) { 563 CurFn->getBasicBlockList().insertAfter(insn->getParent()->getIterator(), 564 block); 565 inserted = true; 566 break; 567 } 568 } 569 570 if (!inserted) 571 CurFn->getBasicBlockList().push_back(block); 572 573 Builder.SetInsertPoint(block); 574 } 575 576 CodeGenFunction::JumpDest 577 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) { 578 JumpDest &Dest = LabelMap[D]; 579 if (Dest.isValid()) return Dest; 580 581 // Create, but don't insert, the new block. 582 Dest = JumpDest(createBasicBlock(D->getName()), 583 EHScopeStack::stable_iterator::invalid(), 584 NextCleanupDestIndex++); 585 return Dest; 586 } 587 588 void CodeGenFunction::EmitLabel(const LabelDecl *D) { 589 // Add this label to the current lexical scope if we're within any 590 // normal cleanups. Jumps "in" to this label --- when permitted by 591 // the language --- may need to be routed around such cleanups. 592 if (EHStack.hasNormalCleanups() && CurLexicalScope) 593 CurLexicalScope->addLabel(D); 594 595 JumpDest &Dest = LabelMap[D]; 596 597 // If we didn't need a forward reference to this label, just go 598 // ahead and create a destination at the current scope. 599 if (!Dest.isValid()) { 600 Dest = getJumpDestInCurrentScope(D->getName()); 601 602 // Otherwise, we need to give this label a target depth and remove 603 // it from the branch-fixups list. 604 } else { 605 assert(!Dest.getScopeDepth().isValid() && "already emitted label!"); 606 Dest.setScopeDepth(EHStack.stable_begin()); 607 ResolveBranchFixups(Dest.getBlock()); 608 } 609 610 EmitBlock(Dest.getBlock()); 611 612 // Emit debug info for labels. 613 if (CGDebugInfo *DI = getDebugInfo()) { 614 if (CGM.getCodeGenOpts().hasReducedDebugInfo()) { 615 DI->setLocation(D->getLocation()); 616 DI->EmitLabel(D, Builder); 617 } 618 } 619 620 incrementProfileCounter(D->getStmt()); 621 } 622 623 /// Change the cleanup scope of the labels in this lexical scope to 624 /// match the scope of the enclosing context. 625 void CodeGenFunction::LexicalScope::rescopeLabels() { 626 assert(!Labels.empty()); 627 EHScopeStack::stable_iterator innermostScope 628 = CGF.EHStack.getInnermostNormalCleanup(); 629 630 // Change the scope depth of all the labels. 631 for (SmallVectorImpl<const LabelDecl*>::const_iterator 632 i = Labels.begin(), e = Labels.end(); i != e; ++i) { 633 assert(CGF.LabelMap.count(*i)); 634 JumpDest &dest = CGF.LabelMap.find(*i)->second; 635 assert(dest.getScopeDepth().isValid()); 636 assert(innermostScope.encloses(dest.getScopeDepth())); 637 dest.setScopeDepth(innermostScope); 638 } 639 640 // Reparent the labels if the new scope also has cleanups. 641 if (innermostScope != EHScopeStack::stable_end() && ParentScope) { 642 ParentScope->Labels.append(Labels.begin(), Labels.end()); 643 } 644 } 645 646 647 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) { 648 EmitLabel(S.getDecl()); 649 650 // IsEHa - emit eha.scope.begin if it's a side entry of a scope 651 if (getLangOpts().EHAsynch && S.isSideEntry()) 652 EmitSehCppScopeBegin(); 653 654 EmitStmt(S.getSubStmt()); 655 } 656 657 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) { 658 bool nomerge = false; 659 const CallExpr *musttail = nullptr; 660 661 for (const auto *A : S.getAttrs()) { 662 if (A->getKind() == attr::NoMerge) { 663 nomerge = true; 664 } 665 if (A->getKind() == attr::MustTail) { 666 const Stmt *Sub = S.getSubStmt(); 667 const ReturnStmt *R = cast<ReturnStmt>(Sub); 668 musttail = cast<CallExpr>(R->getRetValue()->IgnoreParens()); 669 } 670 } 671 SaveAndRestore<bool> save_nomerge(InNoMergeAttributedStmt, nomerge); 672 SaveAndRestore<const CallExpr *> save_musttail(MustTailCall, musttail); 673 EmitStmt(S.getSubStmt(), S.getAttrs()); 674 } 675 676 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) { 677 // If this code is reachable then emit a stop point (if generating 678 // debug info). We have to do this ourselves because we are on the 679 // "simple" statement path. 680 if (HaveInsertPoint()) 681 EmitStopPoint(&S); 682 683 EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel())); 684 } 685 686 687 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) { 688 if (const LabelDecl *Target = S.getConstantTarget()) { 689 EmitBranchThroughCleanup(getJumpDestForLabel(Target)); 690 return; 691 } 692 693 // Ensure that we have an i8* for our PHI node. 694 llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()), 695 Int8PtrTy, "addr"); 696 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 697 698 // Get the basic block for the indirect goto. 699 llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock(); 700 701 // The first instruction in the block has to be the PHI for the switch dest, 702 // add an entry for this branch. 703 cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB); 704 705 EmitBranch(IndGotoBB); 706 } 707 708 void CodeGenFunction::EmitIfStmt(const IfStmt &S) { 709 // C99 6.8.4.1: The first substatement is executed if the expression compares 710 // unequal to 0. The condition must be a scalar type. 711 LexicalScope ConditionScope(*this, S.getCond()->getSourceRange()); 712 713 if (S.getInit()) 714 EmitStmt(S.getInit()); 715 716 if (S.getConditionVariable()) 717 EmitDecl(*S.getConditionVariable()); 718 719 // If the condition constant folds and can be elided, try to avoid emitting 720 // the condition and the dead arm of the if/else. 721 bool CondConstant; 722 if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant, 723 S.isConstexpr())) { 724 // Figure out which block (then or else) is executed. 725 const Stmt *Executed = S.getThen(); 726 const Stmt *Skipped = S.getElse(); 727 if (!CondConstant) // Condition false? 728 std::swap(Executed, Skipped); 729 730 // If the skipped block has no labels in it, just emit the executed block. 731 // This avoids emitting dead code and simplifies the CFG substantially. 732 if (S.isConstexpr() || !ContainsLabel(Skipped)) { 733 if (CondConstant) 734 incrementProfileCounter(&S); 735 if (Executed) { 736 RunCleanupsScope ExecutedScope(*this); 737 EmitStmt(Executed); 738 } 739 return; 740 } 741 } 742 743 // Otherwise, the condition did not fold, or we couldn't elide it. Just emit 744 // the conditional branch. 745 llvm::BasicBlock *ThenBlock = createBasicBlock("if.then"); 746 llvm::BasicBlock *ContBlock = createBasicBlock("if.end"); 747 llvm::BasicBlock *ElseBlock = ContBlock; 748 if (S.getElse()) 749 ElseBlock = createBasicBlock("if.else"); 750 751 // Prefer the PGO based weights over the likelihood attribute. 752 // When the build isn't optimized the metadata isn't used, so don't generate 753 // it. 754 Stmt::Likelihood LH = Stmt::LH_None; 755 uint64_t Count = getProfileCount(S.getThen()); 756 if (!Count && CGM.getCodeGenOpts().OptimizationLevel) 757 LH = Stmt::getLikelihood(S.getThen(), S.getElse()); 758 EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock, Count, LH); 759 760 // Emit the 'then' code. 761 EmitBlock(ThenBlock); 762 incrementProfileCounter(&S); 763 { 764 RunCleanupsScope ThenScope(*this); 765 EmitStmt(S.getThen()); 766 } 767 EmitBranch(ContBlock); 768 769 // Emit the 'else' code if present. 770 if (const Stmt *Else = S.getElse()) { 771 { 772 // There is no need to emit line number for an unconditional branch. 773 auto NL = ApplyDebugLocation::CreateEmpty(*this); 774 EmitBlock(ElseBlock); 775 } 776 { 777 RunCleanupsScope ElseScope(*this); 778 EmitStmt(Else); 779 } 780 { 781 // There is no need to emit line number for an unconditional branch. 782 auto NL = ApplyDebugLocation::CreateEmpty(*this); 783 EmitBranch(ContBlock); 784 } 785 } 786 787 // Emit the continuation block for code after the if. 788 EmitBlock(ContBlock, true); 789 } 790 791 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S, 792 ArrayRef<const Attr *> WhileAttrs) { 793 // Emit the header for the loop, which will also become 794 // the continue target. 795 JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond"); 796 EmitBlock(LoopHeader.getBlock()); 797 798 // Create an exit block for when the condition fails, which will 799 // also become the break target. 800 JumpDest LoopExit = getJumpDestInCurrentScope("while.end"); 801 802 // Store the blocks to use for break and continue. 803 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader)); 804 805 // C++ [stmt.while]p2: 806 // When the condition of a while statement is a declaration, the 807 // scope of the variable that is declared extends from its point 808 // of declaration (3.3.2) to the end of the while statement. 809 // [...] 810 // The object created in a condition is destroyed and created 811 // with each iteration of the loop. 812 RunCleanupsScope ConditionScope(*this); 813 814 if (S.getConditionVariable()) 815 EmitDecl(*S.getConditionVariable()); 816 817 // Evaluate the conditional in the while header. C99 6.8.5.1: The 818 // evaluation of the controlling expression takes place before each 819 // execution of the loop body. 820 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 821 822 // while(1) is common, avoid extra exit blocks. Be sure 823 // to correctly handle break/continue though. 824 llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal); 825 bool CondIsConstInt = C != nullptr; 826 bool EmitBoolCondBranch = !CondIsConstInt || !C->isOne(); 827 const SourceRange &R = S.getSourceRange(); 828 LoopStack.push(LoopHeader.getBlock(), CGM.getContext(), CGM.getCodeGenOpts(), 829 WhileAttrs, SourceLocToDebugLoc(R.getBegin()), 830 SourceLocToDebugLoc(R.getEnd()), 831 checkIfLoopMustProgress(CondIsConstInt)); 832 833 // As long as the condition is true, go to the loop body. 834 llvm::BasicBlock *LoopBody = createBasicBlock("while.body"); 835 if (EmitBoolCondBranch) { 836 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 837 if (ConditionScope.requiresCleanups()) 838 ExitBlock = createBasicBlock("while.exit"); 839 llvm::MDNode *Weights = 840 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())); 841 if (!Weights && CGM.getCodeGenOpts().OptimizationLevel) 842 BoolCondVal = emitCondLikelihoodViaExpectIntrinsic( 843 BoolCondVal, Stmt::getLikelihood(S.getBody())); 844 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock, Weights); 845 846 if (ExitBlock != LoopExit.getBlock()) { 847 EmitBlock(ExitBlock); 848 EmitBranchThroughCleanup(LoopExit); 849 } 850 } else if (const Attr *A = Stmt::getLikelihoodAttr(S.getBody())) { 851 CGM.getDiags().Report(A->getLocation(), 852 diag::warn_attribute_has_no_effect_on_infinite_loop) 853 << A << A->getRange(); 854 CGM.getDiags().Report( 855 S.getWhileLoc(), 856 diag::note_attribute_has_no_effect_on_infinite_loop_here) 857 << SourceRange(S.getWhileLoc(), S.getRParenLoc()); 858 } 859 860 // Emit the loop body. We have to emit this in a cleanup scope 861 // because it might be a singleton DeclStmt. 862 { 863 RunCleanupsScope BodyScope(*this); 864 EmitBlock(LoopBody); 865 incrementProfileCounter(&S); 866 EmitStmt(S.getBody()); 867 } 868 869 BreakContinueStack.pop_back(); 870 871 // Immediately force cleanup. 872 ConditionScope.ForceCleanup(); 873 874 EmitStopPoint(&S); 875 // Branch to the loop header again. 876 EmitBranch(LoopHeader.getBlock()); 877 878 LoopStack.pop(); 879 880 // Emit the exit block. 881 EmitBlock(LoopExit.getBlock(), true); 882 883 // The LoopHeader typically is just a branch if we skipped emitting 884 // a branch, try to erase it. 885 if (!EmitBoolCondBranch) 886 SimplifyForwardingBlocks(LoopHeader.getBlock()); 887 } 888 889 void CodeGenFunction::EmitDoStmt(const DoStmt &S, 890 ArrayRef<const Attr *> DoAttrs) { 891 JumpDest LoopExit = getJumpDestInCurrentScope("do.end"); 892 JumpDest LoopCond = getJumpDestInCurrentScope("do.cond"); 893 894 uint64_t ParentCount = getCurrentProfileCount(); 895 896 // Store the blocks to use for break and continue. 897 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond)); 898 899 // Emit the body of the loop. 900 llvm::BasicBlock *LoopBody = createBasicBlock("do.body"); 901 902 EmitBlockWithFallThrough(LoopBody, &S); 903 { 904 RunCleanupsScope BodyScope(*this); 905 EmitStmt(S.getBody()); 906 } 907 908 EmitBlock(LoopCond.getBlock()); 909 910 // C99 6.8.5.2: "The evaluation of the controlling expression takes place 911 // after each execution of the loop body." 912 913 // Evaluate the conditional in the while header. 914 // C99 6.8.5p2/p4: The first substatement is executed if the expression 915 // compares unequal to 0. The condition must be a scalar type. 916 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 917 918 BreakContinueStack.pop_back(); 919 920 // "do {} while (0)" is common in macros, avoid extra blocks. Be sure 921 // to correctly handle break/continue though. 922 llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal); 923 bool CondIsConstInt = C; 924 bool EmitBoolCondBranch = !C || !C->isZero(); 925 926 const SourceRange &R = S.getSourceRange(); 927 LoopStack.push(LoopBody, CGM.getContext(), CGM.getCodeGenOpts(), DoAttrs, 928 SourceLocToDebugLoc(R.getBegin()), 929 SourceLocToDebugLoc(R.getEnd()), 930 checkIfLoopMustProgress(CondIsConstInt)); 931 932 // As long as the condition is true, iterate the loop. 933 if (EmitBoolCondBranch) { 934 uint64_t BackedgeCount = getProfileCount(S.getBody()) - ParentCount; 935 Builder.CreateCondBr( 936 BoolCondVal, LoopBody, LoopExit.getBlock(), 937 createProfileWeightsForLoop(S.getCond(), BackedgeCount)); 938 } 939 940 LoopStack.pop(); 941 942 // Emit the exit block. 943 EmitBlock(LoopExit.getBlock()); 944 945 // The DoCond block typically is just a branch if we skipped 946 // emitting a branch, try to erase it. 947 if (!EmitBoolCondBranch) 948 SimplifyForwardingBlocks(LoopCond.getBlock()); 949 } 950 951 void CodeGenFunction::EmitForStmt(const ForStmt &S, 952 ArrayRef<const Attr *> ForAttrs) { 953 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 954 955 LexicalScope ForScope(*this, S.getSourceRange()); 956 957 // Evaluate the first part before the loop. 958 if (S.getInit()) 959 EmitStmt(S.getInit()); 960 961 // Start the loop with a block that tests the condition. 962 // If there's an increment, the continue scope will be overwritten 963 // later. 964 JumpDest CondDest = getJumpDestInCurrentScope("for.cond"); 965 llvm::BasicBlock *CondBlock = CondDest.getBlock(); 966 EmitBlock(CondBlock); 967 968 Expr::EvalResult Result; 969 bool CondIsConstInt = 970 !S.getCond() || S.getCond()->EvaluateAsInt(Result, getContext()); 971 972 const SourceRange &R = S.getSourceRange(); 973 LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), ForAttrs, 974 SourceLocToDebugLoc(R.getBegin()), 975 SourceLocToDebugLoc(R.getEnd()), 976 checkIfLoopMustProgress(CondIsConstInt)); 977 978 // Create a cleanup scope for the condition variable cleanups. 979 LexicalScope ConditionScope(*this, S.getSourceRange()); 980 981 // If the for loop doesn't have an increment we can just use the condition as 982 // the continue block. Otherwise, if there is no condition variable, we can 983 // form the continue block now. If there is a condition variable, we can't 984 // form the continue block until after we've emitted the condition, because 985 // the condition is in scope in the increment, but Sema's jump diagnostics 986 // ensure that there are no continues from the condition variable that jump 987 // to the loop increment. 988 JumpDest Continue; 989 if (!S.getInc()) 990 Continue = CondDest; 991 else if (!S.getConditionVariable()) 992 Continue = getJumpDestInCurrentScope("for.inc"); 993 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 994 995 if (S.getCond()) { 996 // If the for statement has a condition scope, emit the local variable 997 // declaration. 998 if (S.getConditionVariable()) { 999 EmitDecl(*S.getConditionVariable()); 1000 1001 // We have entered the condition variable's scope, so we're now able to 1002 // jump to the continue block. 1003 Continue = S.getInc() ? getJumpDestInCurrentScope("for.inc") : CondDest; 1004 BreakContinueStack.back().ContinueBlock = Continue; 1005 } 1006 1007 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 1008 // If there are any cleanups between here and the loop-exit scope, 1009 // create a block to stage a loop exit along. 1010 if (ForScope.requiresCleanups()) 1011 ExitBlock = createBasicBlock("for.cond.cleanup"); 1012 1013 // As long as the condition is true, iterate the loop. 1014 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 1015 1016 // C99 6.8.5p2/p4: The first substatement is executed if the expression 1017 // compares unequal to 0. The condition must be a scalar type. 1018 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 1019 llvm::MDNode *Weights = 1020 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())); 1021 if (!Weights && CGM.getCodeGenOpts().OptimizationLevel) 1022 BoolCondVal = emitCondLikelihoodViaExpectIntrinsic( 1023 BoolCondVal, Stmt::getLikelihood(S.getBody())); 1024 1025 Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock, Weights); 1026 1027 if (ExitBlock != LoopExit.getBlock()) { 1028 EmitBlock(ExitBlock); 1029 EmitBranchThroughCleanup(LoopExit); 1030 } 1031 1032 EmitBlock(ForBody); 1033 } else { 1034 // Treat it as a non-zero constant. Don't even create a new block for the 1035 // body, just fall into it. 1036 } 1037 incrementProfileCounter(&S); 1038 1039 { 1040 // Create a separate cleanup scope for the body, in case it is not 1041 // a compound statement. 1042 RunCleanupsScope BodyScope(*this); 1043 EmitStmt(S.getBody()); 1044 } 1045 1046 // If there is an increment, emit it next. 1047 if (S.getInc()) { 1048 EmitBlock(Continue.getBlock()); 1049 EmitStmt(S.getInc()); 1050 } 1051 1052 BreakContinueStack.pop_back(); 1053 1054 ConditionScope.ForceCleanup(); 1055 1056 EmitStopPoint(&S); 1057 EmitBranch(CondBlock); 1058 1059 ForScope.ForceCleanup(); 1060 1061 LoopStack.pop(); 1062 1063 // Emit the fall-through block. 1064 EmitBlock(LoopExit.getBlock(), true); 1065 } 1066 1067 void 1068 CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S, 1069 ArrayRef<const Attr *> ForAttrs) { 1070 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 1071 1072 LexicalScope ForScope(*this, S.getSourceRange()); 1073 1074 // Evaluate the first pieces before the loop. 1075 if (S.getInit()) 1076 EmitStmt(S.getInit()); 1077 EmitStmt(S.getRangeStmt()); 1078 EmitStmt(S.getBeginStmt()); 1079 EmitStmt(S.getEndStmt()); 1080 1081 // Start the loop with a block that tests the condition. 1082 // If there's an increment, the continue scope will be overwritten 1083 // later. 1084 llvm::BasicBlock *CondBlock = createBasicBlock("for.cond"); 1085 EmitBlock(CondBlock); 1086 1087 const SourceRange &R = S.getSourceRange(); 1088 LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), ForAttrs, 1089 SourceLocToDebugLoc(R.getBegin()), 1090 SourceLocToDebugLoc(R.getEnd())); 1091 1092 // If there are any cleanups between here and the loop-exit scope, 1093 // create a block to stage a loop exit along. 1094 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 1095 if (ForScope.requiresCleanups()) 1096 ExitBlock = createBasicBlock("for.cond.cleanup"); 1097 1098 // The loop body, consisting of the specified body and the loop variable. 1099 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 1100 1101 // The body is executed if the expression, contextually converted 1102 // to bool, is true. 1103 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 1104 llvm::MDNode *Weights = 1105 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())); 1106 if (!Weights && CGM.getCodeGenOpts().OptimizationLevel) 1107 BoolCondVal = emitCondLikelihoodViaExpectIntrinsic( 1108 BoolCondVal, Stmt::getLikelihood(S.getBody())); 1109 Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock, Weights); 1110 1111 if (ExitBlock != LoopExit.getBlock()) { 1112 EmitBlock(ExitBlock); 1113 EmitBranchThroughCleanup(LoopExit); 1114 } 1115 1116 EmitBlock(ForBody); 1117 incrementProfileCounter(&S); 1118 1119 // Create a block for the increment. In case of a 'continue', we jump there. 1120 JumpDest Continue = getJumpDestInCurrentScope("for.inc"); 1121 1122 // Store the blocks to use for break and continue. 1123 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1124 1125 { 1126 // Create a separate cleanup scope for the loop variable and body. 1127 LexicalScope BodyScope(*this, S.getSourceRange()); 1128 EmitStmt(S.getLoopVarStmt()); 1129 EmitStmt(S.getBody()); 1130 } 1131 1132 EmitStopPoint(&S); 1133 // If there is an increment, emit it next. 1134 EmitBlock(Continue.getBlock()); 1135 EmitStmt(S.getInc()); 1136 1137 BreakContinueStack.pop_back(); 1138 1139 EmitBranch(CondBlock); 1140 1141 ForScope.ForceCleanup(); 1142 1143 LoopStack.pop(); 1144 1145 // Emit the fall-through block. 1146 EmitBlock(LoopExit.getBlock(), true); 1147 } 1148 1149 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) { 1150 if (RV.isScalar()) { 1151 Builder.CreateStore(RV.getScalarVal(), ReturnValue); 1152 } else if (RV.isAggregate()) { 1153 LValue Dest = MakeAddrLValue(ReturnValue, Ty); 1154 LValue Src = MakeAddrLValue(RV.getAggregateAddress(), Ty); 1155 EmitAggregateCopy(Dest, Src, Ty, getOverlapForReturnValue()); 1156 } else { 1157 EmitStoreOfComplex(RV.getComplexVal(), MakeAddrLValue(ReturnValue, Ty), 1158 /*init*/ true); 1159 } 1160 EmitBranchThroughCleanup(ReturnBlock); 1161 } 1162 1163 namespace { 1164 // RAII struct used to save and restore a return statment's result expression. 1165 struct SaveRetExprRAII { 1166 SaveRetExprRAII(const Expr *RetExpr, CodeGenFunction &CGF) 1167 : OldRetExpr(CGF.RetExpr), CGF(CGF) { 1168 CGF.RetExpr = RetExpr; 1169 } 1170 ~SaveRetExprRAII() { CGF.RetExpr = OldRetExpr; } 1171 const Expr *OldRetExpr; 1172 CodeGenFunction &CGF; 1173 }; 1174 } // namespace 1175 1176 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand 1177 /// if the function returns void, or may be missing one if the function returns 1178 /// non-void. Fun stuff :). 1179 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) { 1180 if (requiresReturnValueCheck()) { 1181 llvm::Constant *SLoc = EmitCheckSourceLocation(S.getBeginLoc()); 1182 auto *SLocPtr = 1183 new llvm::GlobalVariable(CGM.getModule(), SLoc->getType(), false, 1184 llvm::GlobalVariable::PrivateLinkage, SLoc); 1185 SLocPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1186 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(SLocPtr); 1187 assert(ReturnLocation.isValid() && "No valid return location"); 1188 Builder.CreateStore(Builder.CreateBitCast(SLocPtr, Int8PtrTy), 1189 ReturnLocation); 1190 } 1191 1192 // Returning from an outlined SEH helper is UB, and we already warn on it. 1193 if (IsOutlinedSEHHelper) { 1194 Builder.CreateUnreachable(); 1195 Builder.ClearInsertionPoint(); 1196 } 1197 1198 // Emit the result value, even if unused, to evaluate the side effects. 1199 const Expr *RV = S.getRetValue(); 1200 1201 // Record the result expression of the return statement. The recorded 1202 // expression is used to determine whether a block capture's lifetime should 1203 // end at the end of the full expression as opposed to the end of the scope 1204 // enclosing the block expression. 1205 // 1206 // This permits a small, easily-implemented exception to our over-conservative 1207 // rules about not jumping to statements following block literals with 1208 // non-trivial cleanups. 1209 SaveRetExprRAII SaveRetExpr(RV, *this); 1210 1211 RunCleanupsScope cleanupScope(*this); 1212 if (const auto *EWC = dyn_cast_or_null<ExprWithCleanups>(RV)) 1213 RV = EWC->getSubExpr(); 1214 // FIXME: Clean this up by using an LValue for ReturnTemp, 1215 // EmitStoreThroughLValue, and EmitAnyExpr. 1216 // Check if the NRVO candidate was not globalized in OpenMP mode. 1217 if (getLangOpts().ElideConstructors && S.getNRVOCandidate() && 1218 S.getNRVOCandidate()->isNRVOVariable() && 1219 (!getLangOpts().OpenMP || 1220 !CGM.getOpenMPRuntime() 1221 .getAddressOfLocalVariable(*this, S.getNRVOCandidate()) 1222 .isValid())) { 1223 // Apply the named return value optimization for this return statement, 1224 // which means doing nothing: the appropriate result has already been 1225 // constructed into the NRVO variable. 1226 1227 // If there is an NRVO flag for this variable, set it to 1 into indicate 1228 // that the cleanup code should not destroy the variable. 1229 if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()]) 1230 Builder.CreateFlagStore(Builder.getTrue(), NRVOFlag); 1231 } else if (!ReturnValue.isValid() || (RV && RV->getType()->isVoidType())) { 1232 // Make sure not to return anything, but evaluate the expression 1233 // for side effects. 1234 if (RV) 1235 EmitAnyExpr(RV); 1236 } else if (!RV) { 1237 // Do nothing (return value is left uninitialized) 1238 } else if (FnRetTy->isReferenceType()) { 1239 // If this function returns a reference, take the address of the expression 1240 // rather than the value. 1241 RValue Result = EmitReferenceBindingToExpr(RV); 1242 Builder.CreateStore(Result.getScalarVal(), ReturnValue); 1243 } else { 1244 switch (getEvaluationKind(RV->getType())) { 1245 case TEK_Scalar: 1246 Builder.CreateStore(EmitScalarExpr(RV), ReturnValue); 1247 break; 1248 case TEK_Complex: 1249 EmitComplexExprIntoLValue(RV, MakeAddrLValue(ReturnValue, RV->getType()), 1250 /*isInit*/ true); 1251 break; 1252 case TEK_Aggregate: 1253 EmitAggExpr(RV, AggValueSlot::forAddr( 1254 ReturnValue, Qualifiers(), 1255 AggValueSlot::IsDestructed, 1256 AggValueSlot::DoesNotNeedGCBarriers, 1257 AggValueSlot::IsNotAliased, 1258 getOverlapForReturnValue())); 1259 break; 1260 } 1261 } 1262 1263 ++NumReturnExprs; 1264 if (!RV || RV->isEvaluatable(getContext())) 1265 ++NumSimpleReturnExprs; 1266 1267 cleanupScope.ForceCleanup(); 1268 EmitBranchThroughCleanup(ReturnBlock); 1269 } 1270 1271 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) { 1272 // As long as debug info is modeled with instructions, we have to ensure we 1273 // have a place to insert here and write the stop point here. 1274 if (HaveInsertPoint()) 1275 EmitStopPoint(&S); 1276 1277 for (const auto *I : S.decls()) 1278 EmitDecl(*I); 1279 } 1280 1281 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) { 1282 assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!"); 1283 1284 // If this code is reachable then emit a stop point (if generating 1285 // debug info). We have to do this ourselves because we are on the 1286 // "simple" statement path. 1287 if (HaveInsertPoint()) 1288 EmitStopPoint(&S); 1289 1290 EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock); 1291 } 1292 1293 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) { 1294 assert(!BreakContinueStack.empty() && "continue stmt not in a loop!"); 1295 1296 // If this code is reachable then emit a stop point (if generating 1297 // debug info). We have to do this ourselves because we are on the 1298 // "simple" statement path. 1299 if (HaveInsertPoint()) 1300 EmitStopPoint(&S); 1301 1302 EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock); 1303 } 1304 1305 /// EmitCaseStmtRange - If case statement range is not too big then 1306 /// add multiple cases to switch instruction, one for each value within 1307 /// the range. If range is too big then emit "if" condition check. 1308 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S, 1309 ArrayRef<const Attr *> Attrs) { 1310 assert(S.getRHS() && "Expected RHS value in CaseStmt"); 1311 1312 llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext()); 1313 llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext()); 1314 1315 // Emit the code for this case. We do this first to make sure it is 1316 // properly chained from our predecessor before generating the 1317 // switch machinery to enter this block. 1318 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); 1319 EmitBlockWithFallThrough(CaseDest, &S); 1320 EmitStmt(S.getSubStmt()); 1321 1322 // If range is empty, do nothing. 1323 if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS)) 1324 return; 1325 1326 Stmt::Likelihood LH = Stmt::getLikelihood(Attrs); 1327 llvm::APInt Range = RHS - LHS; 1328 // FIXME: parameters such as this should not be hardcoded. 1329 if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) { 1330 // Range is small enough to add multiple switch instruction cases. 1331 uint64_t Total = getProfileCount(&S); 1332 unsigned NCases = Range.getZExtValue() + 1; 1333 // We only have one region counter for the entire set of cases here, so we 1334 // need to divide the weights evenly between the generated cases, ensuring 1335 // that the total weight is preserved. E.g., a weight of 5 over three cases 1336 // will be distributed as weights of 2, 2, and 1. 1337 uint64_t Weight = Total / NCases, Rem = Total % NCases; 1338 for (unsigned I = 0; I != NCases; ++I) { 1339 if (SwitchWeights) 1340 SwitchWeights->push_back(Weight + (Rem ? 1 : 0)); 1341 else if (SwitchLikelihood) 1342 SwitchLikelihood->push_back(LH); 1343 1344 if (Rem) 1345 Rem--; 1346 SwitchInsn->addCase(Builder.getInt(LHS), CaseDest); 1347 ++LHS; 1348 } 1349 return; 1350 } 1351 1352 // The range is too big. Emit "if" condition into a new block, 1353 // making sure to save and restore the current insertion point. 1354 llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock(); 1355 1356 // Push this test onto the chain of range checks (which terminates 1357 // in the default basic block). The switch's default will be changed 1358 // to the top of this chain after switch emission is complete. 1359 llvm::BasicBlock *FalseDest = CaseRangeBlock; 1360 CaseRangeBlock = createBasicBlock("sw.caserange"); 1361 1362 CurFn->getBasicBlockList().push_back(CaseRangeBlock); 1363 Builder.SetInsertPoint(CaseRangeBlock); 1364 1365 // Emit range check. 1366 llvm::Value *Diff = 1367 Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS)); 1368 llvm::Value *Cond = 1369 Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds"); 1370 1371 llvm::MDNode *Weights = nullptr; 1372 if (SwitchWeights) { 1373 uint64_t ThisCount = getProfileCount(&S); 1374 uint64_t DefaultCount = (*SwitchWeights)[0]; 1375 Weights = createProfileWeights(ThisCount, DefaultCount); 1376 1377 // Since we're chaining the switch default through each large case range, we 1378 // need to update the weight for the default, ie, the first case, to include 1379 // this case. 1380 (*SwitchWeights)[0] += ThisCount; 1381 } else if (SwitchLikelihood) 1382 Cond = emitCondLikelihoodViaExpectIntrinsic(Cond, LH); 1383 1384 Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights); 1385 1386 // Restore the appropriate insertion point. 1387 if (RestoreBB) 1388 Builder.SetInsertPoint(RestoreBB); 1389 else 1390 Builder.ClearInsertionPoint(); 1391 } 1392 1393 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S, 1394 ArrayRef<const Attr *> Attrs) { 1395 // If there is no enclosing switch instance that we're aware of, then this 1396 // case statement and its block can be elided. This situation only happens 1397 // when we've constant-folded the switch, are emitting the constant case, 1398 // and part of the constant case includes another case statement. For 1399 // instance: switch (4) { case 4: do { case 5: } while (1); } 1400 if (!SwitchInsn) { 1401 EmitStmt(S.getSubStmt()); 1402 return; 1403 } 1404 1405 // Handle case ranges. 1406 if (S.getRHS()) { 1407 EmitCaseStmtRange(S, Attrs); 1408 return; 1409 } 1410 1411 llvm::ConstantInt *CaseVal = 1412 Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext())); 1413 if (SwitchLikelihood) 1414 SwitchLikelihood->push_back(Stmt::getLikelihood(Attrs)); 1415 1416 // If the body of the case is just a 'break', try to not emit an empty block. 1417 // If we're profiling or we're not optimizing, leave the block in for better 1418 // debug and coverage analysis. 1419 if (!CGM.getCodeGenOpts().hasProfileClangInstr() && 1420 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1421 isa<BreakStmt>(S.getSubStmt())) { 1422 JumpDest Block = BreakContinueStack.back().BreakBlock; 1423 1424 // Only do this optimization if there are no cleanups that need emitting. 1425 if (isObviouslyBranchWithoutCleanups(Block)) { 1426 if (SwitchWeights) 1427 SwitchWeights->push_back(getProfileCount(&S)); 1428 SwitchInsn->addCase(CaseVal, Block.getBlock()); 1429 1430 // If there was a fallthrough into this case, make sure to redirect it to 1431 // the end of the switch as well. 1432 if (Builder.GetInsertBlock()) { 1433 Builder.CreateBr(Block.getBlock()); 1434 Builder.ClearInsertionPoint(); 1435 } 1436 return; 1437 } 1438 } 1439 1440 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); 1441 EmitBlockWithFallThrough(CaseDest, &S); 1442 if (SwitchWeights) 1443 SwitchWeights->push_back(getProfileCount(&S)); 1444 SwitchInsn->addCase(CaseVal, CaseDest); 1445 1446 // Recursively emitting the statement is acceptable, but is not wonderful for 1447 // code where we have many case statements nested together, i.e.: 1448 // case 1: 1449 // case 2: 1450 // case 3: etc. 1451 // Handling this recursively will create a new block for each case statement 1452 // that falls through to the next case which is IR intensive. It also causes 1453 // deep recursion which can run into stack depth limitations. Handle 1454 // sequential non-range case statements specially. 1455 // 1456 // TODO When the next case has a likelihood attribute the code returns to the 1457 // recursive algorithm. Maybe improve this case if it becomes common practice 1458 // to use a lot of attributes. 1459 const CaseStmt *CurCase = &S; 1460 const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt()); 1461 1462 // Otherwise, iteratively add consecutive cases to this switch stmt. 1463 while (NextCase && NextCase->getRHS() == nullptr) { 1464 CurCase = NextCase; 1465 llvm::ConstantInt *CaseVal = 1466 Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext())); 1467 1468 if (SwitchWeights) 1469 SwitchWeights->push_back(getProfileCount(NextCase)); 1470 if (CGM.getCodeGenOpts().hasProfileClangInstr()) { 1471 CaseDest = createBasicBlock("sw.bb"); 1472 EmitBlockWithFallThrough(CaseDest, CurCase); 1473 } 1474 // Since this loop is only executed when the CaseStmt has no attributes 1475 // use a hard-coded value. 1476 if (SwitchLikelihood) 1477 SwitchLikelihood->push_back(Stmt::LH_None); 1478 1479 SwitchInsn->addCase(CaseVal, CaseDest); 1480 NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt()); 1481 } 1482 1483 // Normal default recursion for non-cases. 1484 EmitStmt(CurCase->getSubStmt()); 1485 } 1486 1487 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S, 1488 ArrayRef<const Attr *> Attrs) { 1489 // If there is no enclosing switch instance that we're aware of, then this 1490 // default statement can be elided. This situation only happens when we've 1491 // constant-folded the switch. 1492 if (!SwitchInsn) { 1493 EmitStmt(S.getSubStmt()); 1494 return; 1495 } 1496 1497 llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest(); 1498 assert(DefaultBlock->empty() && 1499 "EmitDefaultStmt: Default block already defined?"); 1500 1501 if (SwitchLikelihood) 1502 SwitchLikelihood->front() = Stmt::getLikelihood(Attrs); 1503 1504 EmitBlockWithFallThrough(DefaultBlock, &S); 1505 1506 EmitStmt(S.getSubStmt()); 1507 } 1508 1509 /// CollectStatementsForCase - Given the body of a 'switch' statement and a 1510 /// constant value that is being switched on, see if we can dead code eliminate 1511 /// the body of the switch to a simple series of statements to emit. Basically, 1512 /// on a switch (5) we want to find these statements: 1513 /// case 5: 1514 /// printf(...); <-- 1515 /// ++i; <-- 1516 /// break; 1517 /// 1518 /// and add them to the ResultStmts vector. If it is unsafe to do this 1519 /// transformation (for example, one of the elided statements contains a label 1520 /// that might be jumped to), return CSFC_Failure. If we handled it and 'S' 1521 /// should include statements after it (e.g. the printf() line is a substmt of 1522 /// the case) then return CSFC_FallThrough. If we handled it and found a break 1523 /// statement, then return CSFC_Success. 1524 /// 1525 /// If Case is non-null, then we are looking for the specified case, checking 1526 /// that nothing we jump over contains labels. If Case is null, then we found 1527 /// the case and are looking for the break. 1528 /// 1529 /// If the recursive walk actually finds our Case, then we set FoundCase to 1530 /// true. 1531 /// 1532 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success }; 1533 static CSFC_Result CollectStatementsForCase(const Stmt *S, 1534 const SwitchCase *Case, 1535 bool &FoundCase, 1536 SmallVectorImpl<const Stmt*> &ResultStmts) { 1537 // If this is a null statement, just succeed. 1538 if (!S) 1539 return Case ? CSFC_Success : CSFC_FallThrough; 1540 1541 // If this is the switchcase (case 4: or default) that we're looking for, then 1542 // we're in business. Just add the substatement. 1543 if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) { 1544 if (S == Case) { 1545 FoundCase = true; 1546 return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase, 1547 ResultStmts); 1548 } 1549 1550 // Otherwise, this is some other case or default statement, just ignore it. 1551 return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase, 1552 ResultStmts); 1553 } 1554 1555 // If we are in the live part of the code and we found our break statement, 1556 // return a success! 1557 if (!Case && isa<BreakStmt>(S)) 1558 return CSFC_Success; 1559 1560 // If this is a switch statement, then it might contain the SwitchCase, the 1561 // break, or neither. 1562 if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) { 1563 // Handle this as two cases: we might be looking for the SwitchCase (if so 1564 // the skipped statements must be skippable) or we might already have it. 1565 CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end(); 1566 bool StartedInLiveCode = FoundCase; 1567 unsigned StartSize = ResultStmts.size(); 1568 1569 // If we've not found the case yet, scan through looking for it. 1570 if (Case) { 1571 // Keep track of whether we see a skipped declaration. The code could be 1572 // using the declaration even if it is skipped, so we can't optimize out 1573 // the decl if the kept statements might refer to it. 1574 bool HadSkippedDecl = false; 1575 1576 // If we're looking for the case, just see if we can skip each of the 1577 // substatements. 1578 for (; Case && I != E; ++I) { 1579 HadSkippedDecl |= CodeGenFunction::mightAddDeclToScope(*I); 1580 1581 switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) { 1582 case CSFC_Failure: return CSFC_Failure; 1583 case CSFC_Success: 1584 // A successful result means that either 1) that the statement doesn't 1585 // have the case and is skippable, or 2) does contain the case value 1586 // and also contains the break to exit the switch. In the later case, 1587 // we just verify the rest of the statements are elidable. 1588 if (FoundCase) { 1589 // If we found the case and skipped declarations, we can't do the 1590 // optimization. 1591 if (HadSkippedDecl) 1592 return CSFC_Failure; 1593 1594 for (++I; I != E; ++I) 1595 if (CodeGenFunction::ContainsLabel(*I, true)) 1596 return CSFC_Failure; 1597 return CSFC_Success; 1598 } 1599 break; 1600 case CSFC_FallThrough: 1601 // If we have a fallthrough condition, then we must have found the 1602 // case started to include statements. Consider the rest of the 1603 // statements in the compound statement as candidates for inclusion. 1604 assert(FoundCase && "Didn't find case but returned fallthrough?"); 1605 // We recursively found Case, so we're not looking for it anymore. 1606 Case = nullptr; 1607 1608 // If we found the case and skipped declarations, we can't do the 1609 // optimization. 1610 if (HadSkippedDecl) 1611 return CSFC_Failure; 1612 break; 1613 } 1614 } 1615 1616 if (!FoundCase) 1617 return CSFC_Success; 1618 1619 assert(!HadSkippedDecl && "fallthrough after skipping decl"); 1620 } 1621 1622 // If we have statements in our range, then we know that the statements are 1623 // live and need to be added to the set of statements we're tracking. 1624 bool AnyDecls = false; 1625 for (; I != E; ++I) { 1626 AnyDecls |= CodeGenFunction::mightAddDeclToScope(*I); 1627 1628 switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) { 1629 case CSFC_Failure: return CSFC_Failure; 1630 case CSFC_FallThrough: 1631 // A fallthrough result means that the statement was simple and just 1632 // included in ResultStmt, keep adding them afterwards. 1633 break; 1634 case CSFC_Success: 1635 // A successful result means that we found the break statement and 1636 // stopped statement inclusion. We just ensure that any leftover stmts 1637 // are skippable and return success ourselves. 1638 for (++I; I != E; ++I) 1639 if (CodeGenFunction::ContainsLabel(*I, true)) 1640 return CSFC_Failure; 1641 return CSFC_Success; 1642 } 1643 } 1644 1645 // If we're about to fall out of a scope without hitting a 'break;', we 1646 // can't perform the optimization if there were any decls in that scope 1647 // (we'd lose their end-of-lifetime). 1648 if (AnyDecls) { 1649 // If the entire compound statement was live, there's one more thing we 1650 // can try before giving up: emit the whole thing as a single statement. 1651 // We can do that unless the statement contains a 'break;'. 1652 // FIXME: Such a break must be at the end of a construct within this one. 1653 // We could emit this by just ignoring the BreakStmts entirely. 1654 if (StartedInLiveCode && !CodeGenFunction::containsBreak(S)) { 1655 ResultStmts.resize(StartSize); 1656 ResultStmts.push_back(S); 1657 } else { 1658 return CSFC_Failure; 1659 } 1660 } 1661 1662 return CSFC_FallThrough; 1663 } 1664 1665 // Okay, this is some other statement that we don't handle explicitly, like a 1666 // for statement or increment etc. If we are skipping over this statement, 1667 // just verify it doesn't have labels, which would make it invalid to elide. 1668 if (Case) { 1669 if (CodeGenFunction::ContainsLabel(S, true)) 1670 return CSFC_Failure; 1671 return CSFC_Success; 1672 } 1673 1674 // Otherwise, we want to include this statement. Everything is cool with that 1675 // so long as it doesn't contain a break out of the switch we're in. 1676 if (CodeGenFunction::containsBreak(S)) return CSFC_Failure; 1677 1678 // Otherwise, everything is great. Include the statement and tell the caller 1679 // that we fall through and include the next statement as well. 1680 ResultStmts.push_back(S); 1681 return CSFC_FallThrough; 1682 } 1683 1684 /// FindCaseStatementsForValue - Find the case statement being jumped to and 1685 /// then invoke CollectStatementsForCase to find the list of statements to emit 1686 /// for a switch on constant. See the comment above CollectStatementsForCase 1687 /// for more details. 1688 static bool FindCaseStatementsForValue(const SwitchStmt &S, 1689 const llvm::APSInt &ConstantCondValue, 1690 SmallVectorImpl<const Stmt*> &ResultStmts, 1691 ASTContext &C, 1692 const SwitchCase *&ResultCase) { 1693 // First step, find the switch case that is being branched to. We can do this 1694 // efficiently by scanning the SwitchCase list. 1695 const SwitchCase *Case = S.getSwitchCaseList(); 1696 const DefaultStmt *DefaultCase = nullptr; 1697 1698 for (; Case; Case = Case->getNextSwitchCase()) { 1699 // It's either a default or case. Just remember the default statement in 1700 // case we're not jumping to any numbered cases. 1701 if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) { 1702 DefaultCase = DS; 1703 continue; 1704 } 1705 1706 // Check to see if this case is the one we're looking for. 1707 const CaseStmt *CS = cast<CaseStmt>(Case); 1708 // Don't handle case ranges yet. 1709 if (CS->getRHS()) return false; 1710 1711 // If we found our case, remember it as 'case'. 1712 if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue) 1713 break; 1714 } 1715 1716 // If we didn't find a matching case, we use a default if it exists, or we 1717 // elide the whole switch body! 1718 if (!Case) { 1719 // It is safe to elide the body of the switch if it doesn't contain labels 1720 // etc. If it is safe, return successfully with an empty ResultStmts list. 1721 if (!DefaultCase) 1722 return !CodeGenFunction::ContainsLabel(&S); 1723 Case = DefaultCase; 1724 } 1725 1726 // Ok, we know which case is being jumped to, try to collect all the 1727 // statements that follow it. This can fail for a variety of reasons. Also, 1728 // check to see that the recursive walk actually found our case statement. 1729 // Insane cases like this can fail to find it in the recursive walk since we 1730 // don't handle every stmt kind: 1731 // switch (4) { 1732 // while (1) { 1733 // case 4: ... 1734 bool FoundCase = false; 1735 ResultCase = Case; 1736 return CollectStatementsForCase(S.getBody(), Case, FoundCase, 1737 ResultStmts) != CSFC_Failure && 1738 FoundCase; 1739 } 1740 1741 static Optional<SmallVector<uint64_t, 16>> 1742 getLikelihoodWeights(ArrayRef<Stmt::Likelihood> Likelihoods) { 1743 // Are there enough branches to weight them? 1744 if (Likelihoods.size() <= 1) 1745 return None; 1746 1747 uint64_t NumUnlikely = 0; 1748 uint64_t NumNone = 0; 1749 uint64_t NumLikely = 0; 1750 for (const auto LH : Likelihoods) { 1751 switch (LH) { 1752 case Stmt::LH_Unlikely: 1753 ++NumUnlikely; 1754 break; 1755 case Stmt::LH_None: 1756 ++NumNone; 1757 break; 1758 case Stmt::LH_Likely: 1759 ++NumLikely; 1760 break; 1761 } 1762 } 1763 1764 // Is there a likelihood attribute used? 1765 if (NumUnlikely == 0 && NumLikely == 0) 1766 return None; 1767 1768 // When multiple cases share the same code they can be combined during 1769 // optimization. In that case the weights of the branch will be the sum of 1770 // the individual weights. Make sure the combined sum of all neutral cases 1771 // doesn't exceed the value of a single likely attribute. 1772 // The additions both avoid divisions by 0 and make sure the weights of None 1773 // don't exceed the weight of Likely. 1774 const uint64_t Likely = INT32_MAX / (NumLikely + 2); 1775 const uint64_t None = Likely / (NumNone + 1); 1776 const uint64_t Unlikely = 0; 1777 1778 SmallVector<uint64_t, 16> Result; 1779 Result.reserve(Likelihoods.size()); 1780 for (const auto LH : Likelihoods) { 1781 switch (LH) { 1782 case Stmt::LH_Unlikely: 1783 Result.push_back(Unlikely); 1784 break; 1785 case Stmt::LH_None: 1786 Result.push_back(None); 1787 break; 1788 case Stmt::LH_Likely: 1789 Result.push_back(Likely); 1790 break; 1791 } 1792 } 1793 1794 return Result; 1795 } 1796 1797 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) { 1798 // Handle nested switch statements. 1799 llvm::SwitchInst *SavedSwitchInsn = SwitchInsn; 1800 SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights; 1801 SmallVector<Stmt::Likelihood, 16> *SavedSwitchLikelihood = SwitchLikelihood; 1802 llvm::BasicBlock *SavedCRBlock = CaseRangeBlock; 1803 1804 // See if we can constant fold the condition of the switch and therefore only 1805 // emit the live case statement (if any) of the switch. 1806 llvm::APSInt ConstantCondValue; 1807 if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) { 1808 SmallVector<const Stmt*, 4> CaseStmts; 1809 const SwitchCase *Case = nullptr; 1810 if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts, 1811 getContext(), Case)) { 1812 if (Case) 1813 incrementProfileCounter(Case); 1814 RunCleanupsScope ExecutedScope(*this); 1815 1816 if (S.getInit()) 1817 EmitStmt(S.getInit()); 1818 1819 // Emit the condition variable if needed inside the entire cleanup scope 1820 // used by this special case for constant folded switches. 1821 if (S.getConditionVariable()) 1822 EmitDecl(*S.getConditionVariable()); 1823 1824 // At this point, we are no longer "within" a switch instance, so 1825 // we can temporarily enforce this to ensure that any embedded case 1826 // statements are not emitted. 1827 SwitchInsn = nullptr; 1828 1829 // Okay, we can dead code eliminate everything except this case. Emit the 1830 // specified series of statements and we're good. 1831 for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i) 1832 EmitStmt(CaseStmts[i]); 1833 incrementProfileCounter(&S); 1834 1835 // Now we want to restore the saved switch instance so that nested 1836 // switches continue to function properly 1837 SwitchInsn = SavedSwitchInsn; 1838 1839 return; 1840 } 1841 } 1842 1843 JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog"); 1844 1845 RunCleanupsScope ConditionScope(*this); 1846 1847 if (S.getInit()) 1848 EmitStmt(S.getInit()); 1849 1850 if (S.getConditionVariable()) 1851 EmitDecl(*S.getConditionVariable()); 1852 llvm::Value *CondV = EmitScalarExpr(S.getCond()); 1853 1854 // Create basic block to hold stuff that comes after switch 1855 // statement. We also need to create a default block now so that 1856 // explicit case ranges tests can have a place to jump to on 1857 // failure. 1858 llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default"); 1859 SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock); 1860 if (PGO.haveRegionCounts()) { 1861 // Walk the SwitchCase list to find how many there are. 1862 uint64_t DefaultCount = 0; 1863 unsigned NumCases = 0; 1864 for (const SwitchCase *Case = S.getSwitchCaseList(); 1865 Case; 1866 Case = Case->getNextSwitchCase()) { 1867 if (isa<DefaultStmt>(Case)) 1868 DefaultCount = getProfileCount(Case); 1869 NumCases += 1; 1870 } 1871 SwitchWeights = new SmallVector<uint64_t, 16>(); 1872 SwitchWeights->reserve(NumCases); 1873 // The default needs to be first. We store the edge count, so we already 1874 // know the right weight. 1875 SwitchWeights->push_back(DefaultCount); 1876 } else if (CGM.getCodeGenOpts().OptimizationLevel) { 1877 SwitchLikelihood = new SmallVector<Stmt::Likelihood, 16>(); 1878 // Initialize the default case. 1879 SwitchLikelihood->push_back(Stmt::LH_None); 1880 } 1881 1882 CaseRangeBlock = DefaultBlock; 1883 1884 // Clear the insertion point to indicate we are in unreachable code. 1885 Builder.ClearInsertionPoint(); 1886 1887 // All break statements jump to NextBlock. If BreakContinueStack is non-empty 1888 // then reuse last ContinueBlock. 1889 JumpDest OuterContinue; 1890 if (!BreakContinueStack.empty()) 1891 OuterContinue = BreakContinueStack.back().ContinueBlock; 1892 1893 BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue)); 1894 1895 // Emit switch body. 1896 EmitStmt(S.getBody()); 1897 1898 BreakContinueStack.pop_back(); 1899 1900 // Update the default block in case explicit case range tests have 1901 // been chained on top. 1902 SwitchInsn->setDefaultDest(CaseRangeBlock); 1903 1904 // If a default was never emitted: 1905 if (!DefaultBlock->getParent()) { 1906 // If we have cleanups, emit the default block so that there's a 1907 // place to jump through the cleanups from. 1908 if (ConditionScope.requiresCleanups()) { 1909 EmitBlock(DefaultBlock); 1910 1911 // Otherwise, just forward the default block to the switch end. 1912 } else { 1913 DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock()); 1914 delete DefaultBlock; 1915 } 1916 } 1917 1918 ConditionScope.ForceCleanup(); 1919 1920 // Emit continuation. 1921 EmitBlock(SwitchExit.getBlock(), true); 1922 incrementProfileCounter(&S); 1923 1924 // If the switch has a condition wrapped by __builtin_unpredictable, 1925 // create metadata that specifies that the switch is unpredictable. 1926 // Don't bother if not optimizing because that metadata would not be used. 1927 auto *Call = dyn_cast<CallExpr>(S.getCond()); 1928 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1929 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1930 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1931 llvm::MDBuilder MDHelper(getLLVMContext()); 1932 SwitchInsn->setMetadata(llvm::LLVMContext::MD_unpredictable, 1933 MDHelper.createUnpredictable()); 1934 } 1935 } 1936 1937 if (SwitchWeights) { 1938 assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() && 1939 "switch weights do not match switch cases"); 1940 // If there's only one jump destination there's no sense weighting it. 1941 if (SwitchWeights->size() > 1) 1942 SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof, 1943 createProfileWeights(*SwitchWeights)); 1944 delete SwitchWeights; 1945 } else if (SwitchLikelihood) { 1946 assert(SwitchLikelihood->size() == 1 + SwitchInsn->getNumCases() && 1947 "switch likelihoods do not match switch cases"); 1948 Optional<SmallVector<uint64_t, 16>> LHW = 1949 getLikelihoodWeights(*SwitchLikelihood); 1950 if (LHW) { 1951 llvm::MDBuilder MDHelper(CGM.getLLVMContext()); 1952 SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof, 1953 createProfileWeights(*LHW)); 1954 } 1955 delete SwitchLikelihood; 1956 } 1957 SwitchInsn = SavedSwitchInsn; 1958 SwitchWeights = SavedSwitchWeights; 1959 SwitchLikelihood = SavedSwitchLikelihood; 1960 CaseRangeBlock = SavedCRBlock; 1961 } 1962 1963 static std::string 1964 SimplifyConstraint(const char *Constraint, const TargetInfo &Target, 1965 SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) { 1966 std::string Result; 1967 1968 while (*Constraint) { 1969 switch (*Constraint) { 1970 default: 1971 Result += Target.convertConstraint(Constraint); 1972 break; 1973 // Ignore these 1974 case '*': 1975 case '?': 1976 case '!': 1977 case '=': // Will see this and the following in mult-alt constraints. 1978 case '+': 1979 break; 1980 case '#': // Ignore the rest of the constraint alternative. 1981 while (Constraint[1] && Constraint[1] != ',') 1982 Constraint++; 1983 break; 1984 case '&': 1985 case '%': 1986 Result += *Constraint; 1987 while (Constraint[1] && Constraint[1] == *Constraint) 1988 Constraint++; 1989 break; 1990 case ',': 1991 Result += "|"; 1992 break; 1993 case 'g': 1994 Result += "imr"; 1995 break; 1996 case '[': { 1997 assert(OutCons && 1998 "Must pass output names to constraints with a symbolic name"); 1999 unsigned Index; 2000 bool result = Target.resolveSymbolicName(Constraint, *OutCons, Index); 2001 assert(result && "Could not resolve symbolic name"); (void)result; 2002 Result += llvm::utostr(Index); 2003 break; 2004 } 2005 } 2006 2007 Constraint++; 2008 } 2009 2010 return Result; 2011 } 2012 2013 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared 2014 /// as using a particular register add that as a constraint that will be used 2015 /// in this asm stmt. 2016 static std::string 2017 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr, 2018 const TargetInfo &Target, CodeGenModule &CGM, 2019 const AsmStmt &Stmt, const bool EarlyClobber, 2020 std::string *GCCReg = nullptr) { 2021 const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr); 2022 if (!AsmDeclRef) 2023 return Constraint; 2024 const ValueDecl &Value = *AsmDeclRef->getDecl(); 2025 const VarDecl *Variable = dyn_cast<VarDecl>(&Value); 2026 if (!Variable) 2027 return Constraint; 2028 if (Variable->getStorageClass() != SC_Register) 2029 return Constraint; 2030 AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>(); 2031 if (!Attr) 2032 return Constraint; 2033 StringRef Register = Attr->getLabel(); 2034 assert(Target.isValidGCCRegisterName(Register)); 2035 // We're using validateOutputConstraint here because we only care if 2036 // this is a register constraint. 2037 TargetInfo::ConstraintInfo Info(Constraint, ""); 2038 if (Target.validateOutputConstraint(Info) && 2039 !Info.allowsRegister()) { 2040 CGM.ErrorUnsupported(&Stmt, "__asm__"); 2041 return Constraint; 2042 } 2043 // Canonicalize the register here before returning it. 2044 Register = Target.getNormalizedGCCRegisterName(Register); 2045 if (GCCReg != nullptr) 2046 *GCCReg = Register.str(); 2047 return (EarlyClobber ? "&{" : "{") + Register.str() + "}"; 2048 } 2049 2050 llvm::Value* 2051 CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 2052 LValue InputValue, QualType InputType, 2053 std::string &ConstraintStr, 2054 SourceLocation Loc) { 2055 llvm::Value *Arg; 2056 if (Info.allowsRegister() || !Info.allowsMemory()) { 2057 if (CodeGenFunction::hasScalarEvaluationKind(InputType)) { 2058 Arg = EmitLoadOfLValue(InputValue, Loc).getScalarVal(); 2059 } else { 2060 llvm::Type *Ty = ConvertType(InputType); 2061 uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty); 2062 if (Size <= 64 && llvm::isPowerOf2_64(Size)) { 2063 Ty = llvm::IntegerType::get(getLLVMContext(), Size); 2064 Ty = llvm::PointerType::getUnqual(Ty); 2065 2066 Arg = Builder.CreateLoad( 2067 Builder.CreateBitCast(InputValue.getAddress(*this), Ty)); 2068 } else { 2069 Arg = InputValue.getPointer(*this); 2070 ConstraintStr += '*'; 2071 } 2072 } 2073 } else { 2074 Arg = InputValue.getPointer(*this); 2075 ConstraintStr += '*'; 2076 } 2077 2078 return Arg; 2079 } 2080 2081 llvm::Value* CodeGenFunction::EmitAsmInput( 2082 const TargetInfo::ConstraintInfo &Info, 2083 const Expr *InputExpr, 2084 std::string &ConstraintStr) { 2085 // If this can't be a register or memory, i.e., has to be a constant 2086 // (immediate or symbolic), try to emit it as such. 2087 if (!Info.allowsRegister() && !Info.allowsMemory()) { 2088 if (Info.requiresImmediateConstant()) { 2089 Expr::EvalResult EVResult; 2090 InputExpr->EvaluateAsRValue(EVResult, getContext(), true); 2091 2092 llvm::APSInt IntResult; 2093 if (EVResult.Val.toIntegralConstant(IntResult, InputExpr->getType(), 2094 getContext())) 2095 return llvm::ConstantInt::get(getLLVMContext(), IntResult); 2096 } 2097 2098 Expr::EvalResult Result; 2099 if (InputExpr->EvaluateAsInt(Result, getContext())) 2100 return llvm::ConstantInt::get(getLLVMContext(), Result.Val.getInt()); 2101 } 2102 2103 if (Info.allowsRegister() || !Info.allowsMemory()) 2104 if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType())) 2105 return EmitScalarExpr(InputExpr); 2106 if (InputExpr->getStmtClass() == Expr::CXXThisExprClass) 2107 return EmitScalarExpr(InputExpr); 2108 InputExpr = InputExpr->IgnoreParenNoopCasts(getContext()); 2109 LValue Dest = EmitLValue(InputExpr); 2110 return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr, 2111 InputExpr->getExprLoc()); 2112 } 2113 2114 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline 2115 /// asm call instruction. The !srcloc MDNode contains a list of constant 2116 /// integers which are the source locations of the start of each line in the 2117 /// asm. 2118 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str, 2119 CodeGenFunction &CGF) { 2120 SmallVector<llvm::Metadata *, 8> Locs; 2121 // Add the location of the first line to the MDNode. 2122 Locs.push_back(llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 2123 CGF.Int32Ty, Str->getBeginLoc().getRawEncoding()))); 2124 StringRef StrVal = Str->getString(); 2125 if (!StrVal.empty()) { 2126 const SourceManager &SM = CGF.CGM.getContext().getSourceManager(); 2127 const LangOptions &LangOpts = CGF.CGM.getLangOpts(); 2128 unsigned StartToken = 0; 2129 unsigned ByteOffset = 0; 2130 2131 // Add the location of the start of each subsequent line of the asm to the 2132 // MDNode. 2133 for (unsigned i = 0, e = StrVal.size() - 1; i != e; ++i) { 2134 if (StrVal[i] != '\n') continue; 2135 SourceLocation LineLoc = Str->getLocationOfByte( 2136 i + 1, SM, LangOpts, CGF.getTarget(), &StartToken, &ByteOffset); 2137 Locs.push_back(llvm::ConstantAsMetadata::get( 2138 llvm::ConstantInt::get(CGF.Int32Ty, LineLoc.getRawEncoding()))); 2139 } 2140 } 2141 2142 return llvm::MDNode::get(CGF.getLLVMContext(), Locs); 2143 } 2144 2145 static void UpdateAsmCallInst(llvm::CallBase &Result, bool HasSideEffect, 2146 bool HasUnwindClobber, bool ReadOnly, 2147 bool ReadNone, bool NoMerge, const AsmStmt &S, 2148 const std::vector<llvm::Type *> &ResultRegTypes, 2149 CodeGenFunction &CGF, 2150 std::vector<llvm::Value *> &RegResults) { 2151 if (!HasUnwindClobber) 2152 Result.addAttribute(llvm::AttributeList::FunctionIndex, 2153 llvm::Attribute::NoUnwind); 2154 2155 if (NoMerge) 2156 Result.addAttribute(llvm::AttributeList::FunctionIndex, 2157 llvm::Attribute::NoMerge); 2158 // Attach readnone and readonly attributes. 2159 if (!HasSideEffect) { 2160 if (ReadNone) 2161 Result.addAttribute(llvm::AttributeList::FunctionIndex, 2162 llvm::Attribute::ReadNone); 2163 else if (ReadOnly) 2164 Result.addAttribute(llvm::AttributeList::FunctionIndex, 2165 llvm::Attribute::ReadOnly); 2166 } 2167 2168 // Slap the source location of the inline asm into a !srcloc metadata on the 2169 // call. 2170 if (const auto *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S)) 2171 Result.setMetadata("srcloc", 2172 getAsmSrcLocInfo(gccAsmStmt->getAsmString(), CGF)); 2173 else { 2174 // At least put the line number on MS inline asm blobs. 2175 llvm::Constant *Loc = llvm::ConstantInt::get(CGF.Int32Ty, 2176 S.getAsmLoc().getRawEncoding()); 2177 Result.setMetadata("srcloc", 2178 llvm::MDNode::get(CGF.getLLVMContext(), 2179 llvm::ConstantAsMetadata::get(Loc))); 2180 } 2181 2182 if (CGF.getLangOpts().assumeFunctionsAreConvergent()) 2183 // Conservatively, mark all inline asm blocks in CUDA or OpenCL as 2184 // convergent (meaning, they may call an intrinsically convergent op, such 2185 // as bar.sync, and so can't have certain optimizations applied around 2186 // them). 2187 Result.addAttribute(llvm::AttributeList::FunctionIndex, 2188 llvm::Attribute::Convergent); 2189 // Extract all of the register value results from the asm. 2190 if (ResultRegTypes.size() == 1) { 2191 RegResults.push_back(&Result); 2192 } else { 2193 for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) { 2194 llvm::Value *Tmp = CGF.Builder.CreateExtractValue(&Result, i, "asmresult"); 2195 RegResults.push_back(Tmp); 2196 } 2197 } 2198 } 2199 2200 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) { 2201 // Assemble the final asm string. 2202 std::string AsmString = S.generateAsmString(getContext()); 2203 2204 // Get all the output and input constraints together. 2205 SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos; 2206 SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos; 2207 2208 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 2209 StringRef Name; 2210 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 2211 Name = GAS->getOutputName(i); 2212 TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name); 2213 bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid; 2214 assert(IsValid && "Failed to parse output constraint"); 2215 OutputConstraintInfos.push_back(Info); 2216 } 2217 2218 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 2219 StringRef Name; 2220 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 2221 Name = GAS->getInputName(i); 2222 TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name); 2223 bool IsValid = 2224 getTarget().validateInputConstraint(OutputConstraintInfos, Info); 2225 assert(IsValid && "Failed to parse input constraint"); (void)IsValid; 2226 InputConstraintInfos.push_back(Info); 2227 } 2228 2229 std::string Constraints; 2230 2231 std::vector<LValue> ResultRegDests; 2232 std::vector<QualType> ResultRegQualTys; 2233 std::vector<llvm::Type *> ResultRegTypes; 2234 std::vector<llvm::Type *> ResultTruncRegTypes; 2235 std::vector<llvm::Type *> ArgTypes; 2236 std::vector<llvm::Value*> Args; 2237 llvm::BitVector ResultTypeRequiresCast; 2238 2239 // Keep track of inout constraints. 2240 std::string InOutConstraints; 2241 std::vector<llvm::Value*> InOutArgs; 2242 std::vector<llvm::Type*> InOutArgTypes; 2243 2244 // Keep track of out constraints for tied input operand. 2245 std::vector<std::string> OutputConstraints; 2246 2247 // Keep track of defined physregs. 2248 llvm::SmallSet<std::string, 8> PhysRegOutputs; 2249 2250 // An inline asm can be marked readonly if it meets the following conditions: 2251 // - it doesn't have any sideeffects 2252 // - it doesn't clobber memory 2253 // - it doesn't return a value by-reference 2254 // It can be marked readnone if it doesn't have any input memory constraints 2255 // in addition to meeting the conditions listed above. 2256 bool ReadOnly = true, ReadNone = true; 2257 2258 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 2259 TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i]; 2260 2261 // Simplify the output constraint. 2262 std::string OutputConstraint(S.getOutputConstraint(i)); 2263 OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1, 2264 getTarget(), &OutputConstraintInfos); 2265 2266 const Expr *OutExpr = S.getOutputExpr(i); 2267 OutExpr = OutExpr->IgnoreParenNoopCasts(getContext()); 2268 2269 std::string GCCReg; 2270 OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr, 2271 getTarget(), CGM, S, 2272 Info.earlyClobber(), 2273 &GCCReg); 2274 // Give an error on multiple outputs to same physreg. 2275 if (!GCCReg.empty() && !PhysRegOutputs.insert(GCCReg).second) 2276 CGM.Error(S.getAsmLoc(), "multiple outputs to hard register: " + GCCReg); 2277 2278 OutputConstraints.push_back(OutputConstraint); 2279 LValue Dest = EmitLValue(OutExpr); 2280 if (!Constraints.empty()) 2281 Constraints += ','; 2282 2283 // If this is a register output, then make the inline asm return it 2284 // by-value. If this is a memory result, return the value by-reference. 2285 bool isScalarizableAggregate = 2286 hasAggregateEvaluationKind(OutExpr->getType()); 2287 if (!Info.allowsMemory() && (hasScalarEvaluationKind(OutExpr->getType()) || 2288 isScalarizableAggregate)) { 2289 Constraints += "=" + OutputConstraint; 2290 ResultRegQualTys.push_back(OutExpr->getType()); 2291 ResultRegDests.push_back(Dest); 2292 ResultTruncRegTypes.push_back(ConvertTypeForMem(OutExpr->getType())); 2293 if (Info.allowsRegister() && isScalarizableAggregate) { 2294 ResultTypeRequiresCast.push_back(true); 2295 unsigned Size = getContext().getTypeSize(OutExpr->getType()); 2296 llvm::Type *ConvTy = llvm::IntegerType::get(getLLVMContext(), Size); 2297 ResultRegTypes.push_back(ConvTy); 2298 } else { 2299 ResultTypeRequiresCast.push_back(false); 2300 ResultRegTypes.push_back(ResultTruncRegTypes.back()); 2301 } 2302 // If this output is tied to an input, and if the input is larger, then 2303 // we need to set the actual result type of the inline asm node to be the 2304 // same as the input type. 2305 if (Info.hasMatchingInput()) { 2306 unsigned InputNo; 2307 for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) { 2308 TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo]; 2309 if (Input.hasTiedOperand() && Input.getTiedOperand() == i) 2310 break; 2311 } 2312 assert(InputNo != S.getNumInputs() && "Didn't find matching input!"); 2313 2314 QualType InputTy = S.getInputExpr(InputNo)->getType(); 2315 QualType OutputType = OutExpr->getType(); 2316 2317 uint64_t InputSize = getContext().getTypeSize(InputTy); 2318 if (getContext().getTypeSize(OutputType) < InputSize) { 2319 // Form the asm to return the value as a larger integer or fp type. 2320 ResultRegTypes.back() = ConvertType(InputTy); 2321 } 2322 } 2323 if (llvm::Type* AdjTy = 2324 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 2325 ResultRegTypes.back())) 2326 ResultRegTypes.back() = AdjTy; 2327 else { 2328 CGM.getDiags().Report(S.getAsmLoc(), 2329 diag::err_asm_invalid_type_in_input) 2330 << OutExpr->getType() << OutputConstraint; 2331 } 2332 2333 // Update largest vector width for any vector types. 2334 if (auto *VT = dyn_cast<llvm::VectorType>(ResultRegTypes.back())) 2335 LargestVectorWidth = 2336 std::max((uint64_t)LargestVectorWidth, 2337 VT->getPrimitiveSizeInBits().getKnownMinSize()); 2338 } else { 2339 llvm::Type *DestAddrTy = Dest.getAddress(*this).getType(); 2340 llvm::Value *DestPtr = Dest.getPointer(*this); 2341 // Matrix types in memory are represented by arrays, but accessed through 2342 // vector pointers, with the alignment specified on the access operation. 2343 // For inline assembly, update pointer arguments to use vector pointers. 2344 // Otherwise there will be a mis-match if the matrix is also an 2345 // input-argument which is represented as vector. 2346 if (isa<MatrixType>(OutExpr->getType().getCanonicalType())) { 2347 DestAddrTy = llvm::PointerType::get( 2348 ConvertType(OutExpr->getType()), 2349 cast<llvm::PointerType>(DestAddrTy)->getAddressSpace()); 2350 DestPtr = Builder.CreateBitCast(DestPtr, DestAddrTy); 2351 } 2352 ArgTypes.push_back(DestAddrTy); 2353 Args.push_back(DestPtr); 2354 Constraints += "=*"; 2355 Constraints += OutputConstraint; 2356 ReadOnly = ReadNone = false; 2357 } 2358 2359 if (Info.isReadWrite()) { 2360 InOutConstraints += ','; 2361 2362 const Expr *InputExpr = S.getOutputExpr(i); 2363 llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(), 2364 InOutConstraints, 2365 InputExpr->getExprLoc()); 2366 2367 if (llvm::Type* AdjTy = 2368 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 2369 Arg->getType())) 2370 Arg = Builder.CreateBitCast(Arg, AdjTy); 2371 2372 // Update largest vector width for any vector types. 2373 if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType())) 2374 LargestVectorWidth = 2375 std::max((uint64_t)LargestVectorWidth, 2376 VT->getPrimitiveSizeInBits().getKnownMinSize()); 2377 // Only tie earlyclobber physregs. 2378 if (Info.allowsRegister() && (GCCReg.empty() || Info.earlyClobber())) 2379 InOutConstraints += llvm::utostr(i); 2380 else 2381 InOutConstraints += OutputConstraint; 2382 2383 InOutArgTypes.push_back(Arg->getType()); 2384 InOutArgs.push_back(Arg); 2385 } 2386 } 2387 2388 // If this is a Microsoft-style asm blob, store the return registers (EAX:EDX) 2389 // to the return value slot. Only do this when returning in registers. 2390 if (isa<MSAsmStmt>(&S)) { 2391 const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo(); 2392 if (RetAI.isDirect() || RetAI.isExtend()) { 2393 // Make a fake lvalue for the return value slot. 2394 LValue ReturnSlot = MakeAddrLValue(ReturnValue, FnRetTy); 2395 CGM.getTargetCodeGenInfo().addReturnRegisterOutputs( 2396 *this, ReturnSlot, Constraints, ResultRegTypes, ResultTruncRegTypes, 2397 ResultRegDests, AsmString, S.getNumOutputs()); 2398 SawAsmBlock = true; 2399 } 2400 } 2401 2402 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 2403 const Expr *InputExpr = S.getInputExpr(i); 2404 2405 TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i]; 2406 2407 if (Info.allowsMemory()) 2408 ReadNone = false; 2409 2410 if (!Constraints.empty()) 2411 Constraints += ','; 2412 2413 // Simplify the input constraint. 2414 std::string InputConstraint(S.getInputConstraint(i)); 2415 InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(), 2416 &OutputConstraintInfos); 2417 2418 InputConstraint = AddVariableConstraints( 2419 InputConstraint, *InputExpr->IgnoreParenNoopCasts(getContext()), 2420 getTarget(), CGM, S, false /* No EarlyClobber */); 2421 2422 std::string ReplaceConstraint (InputConstraint); 2423 llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints); 2424 2425 // If this input argument is tied to a larger output result, extend the 2426 // input to be the same size as the output. The LLVM backend wants to see 2427 // the input and output of a matching constraint be the same size. Note 2428 // that GCC does not define what the top bits are here. We use zext because 2429 // that is usually cheaper, but LLVM IR should really get an anyext someday. 2430 if (Info.hasTiedOperand()) { 2431 unsigned Output = Info.getTiedOperand(); 2432 QualType OutputType = S.getOutputExpr(Output)->getType(); 2433 QualType InputTy = InputExpr->getType(); 2434 2435 if (getContext().getTypeSize(OutputType) > 2436 getContext().getTypeSize(InputTy)) { 2437 // Use ptrtoint as appropriate so that we can do our extension. 2438 if (isa<llvm::PointerType>(Arg->getType())) 2439 Arg = Builder.CreatePtrToInt(Arg, IntPtrTy); 2440 llvm::Type *OutputTy = ConvertType(OutputType); 2441 if (isa<llvm::IntegerType>(OutputTy)) 2442 Arg = Builder.CreateZExt(Arg, OutputTy); 2443 else if (isa<llvm::PointerType>(OutputTy)) 2444 Arg = Builder.CreateZExt(Arg, IntPtrTy); 2445 else { 2446 assert(OutputTy->isFloatingPointTy() && "Unexpected output type"); 2447 Arg = Builder.CreateFPExt(Arg, OutputTy); 2448 } 2449 } 2450 // Deal with the tied operands' constraint code in adjustInlineAsmType. 2451 ReplaceConstraint = OutputConstraints[Output]; 2452 } 2453 if (llvm::Type* AdjTy = 2454 getTargetHooks().adjustInlineAsmType(*this, ReplaceConstraint, 2455 Arg->getType())) 2456 Arg = Builder.CreateBitCast(Arg, AdjTy); 2457 else 2458 CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input) 2459 << InputExpr->getType() << InputConstraint; 2460 2461 // Update largest vector width for any vector types. 2462 if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType())) 2463 LargestVectorWidth = 2464 std::max((uint64_t)LargestVectorWidth, 2465 VT->getPrimitiveSizeInBits().getKnownMinSize()); 2466 2467 ArgTypes.push_back(Arg->getType()); 2468 Args.push_back(Arg); 2469 Constraints += InputConstraint; 2470 } 2471 2472 // Labels 2473 SmallVector<llvm::BasicBlock *, 16> Transfer; 2474 llvm::BasicBlock *Fallthrough = nullptr; 2475 bool IsGCCAsmGoto = false; 2476 if (const auto *GS = dyn_cast<GCCAsmStmt>(&S)) { 2477 IsGCCAsmGoto = GS->isAsmGoto(); 2478 if (IsGCCAsmGoto) { 2479 for (const auto *E : GS->labels()) { 2480 JumpDest Dest = getJumpDestForLabel(E->getLabel()); 2481 Transfer.push_back(Dest.getBlock()); 2482 llvm::BlockAddress *BA = 2483 llvm::BlockAddress::get(CurFn, Dest.getBlock()); 2484 Args.push_back(BA); 2485 ArgTypes.push_back(BA->getType()); 2486 if (!Constraints.empty()) 2487 Constraints += ','; 2488 Constraints += 'X'; 2489 } 2490 Fallthrough = createBasicBlock("asm.fallthrough"); 2491 } 2492 } 2493 2494 // Append the "input" part of inout constraints last. 2495 for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) { 2496 ArgTypes.push_back(InOutArgTypes[i]); 2497 Args.push_back(InOutArgs[i]); 2498 } 2499 Constraints += InOutConstraints; 2500 2501 bool HasUnwindClobber = false; 2502 2503 // Clobbers 2504 for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) { 2505 StringRef Clobber = S.getClobber(i); 2506 2507 if (Clobber == "memory") 2508 ReadOnly = ReadNone = false; 2509 else if (Clobber == "unwind") { 2510 HasUnwindClobber = true; 2511 continue; 2512 } else if (Clobber != "cc") { 2513 Clobber = getTarget().getNormalizedGCCRegisterName(Clobber); 2514 if (CGM.getCodeGenOpts().StackClashProtector && 2515 getTarget().isSPRegName(Clobber)) { 2516 CGM.getDiags().Report(S.getAsmLoc(), 2517 diag::warn_stack_clash_protection_inline_asm); 2518 } 2519 } 2520 2521 if (isa<MSAsmStmt>(&S)) { 2522 if (Clobber == "eax" || Clobber == "edx") { 2523 if (Constraints.find("=&A") != std::string::npos) 2524 continue; 2525 std::string::size_type position1 = 2526 Constraints.find("={" + Clobber.str() + "}"); 2527 if (position1 != std::string::npos) { 2528 Constraints.insert(position1 + 1, "&"); 2529 continue; 2530 } 2531 std::string::size_type position2 = Constraints.find("=A"); 2532 if (position2 != std::string::npos) { 2533 Constraints.insert(position2 + 1, "&"); 2534 continue; 2535 } 2536 } 2537 } 2538 if (!Constraints.empty()) 2539 Constraints += ','; 2540 2541 Constraints += "~{"; 2542 Constraints += Clobber; 2543 Constraints += '}'; 2544 } 2545 2546 assert(!(HasUnwindClobber && IsGCCAsmGoto) && 2547 "unwind clobber can't be used with asm goto"); 2548 2549 // Add machine specific clobbers 2550 std::string MachineClobbers = getTarget().getClobbers(); 2551 if (!MachineClobbers.empty()) { 2552 if (!Constraints.empty()) 2553 Constraints += ','; 2554 Constraints += MachineClobbers; 2555 } 2556 2557 llvm::Type *ResultType; 2558 if (ResultRegTypes.empty()) 2559 ResultType = VoidTy; 2560 else if (ResultRegTypes.size() == 1) 2561 ResultType = ResultRegTypes[0]; 2562 else 2563 ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes); 2564 2565 llvm::FunctionType *FTy = 2566 llvm::FunctionType::get(ResultType, ArgTypes, false); 2567 2568 bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0; 2569 llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ? 2570 llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT; 2571 llvm::InlineAsm *IA = llvm::InlineAsm::get( 2572 FTy, AsmString, Constraints, HasSideEffect, 2573 /* IsAlignStack */ false, AsmDialect, HasUnwindClobber); 2574 std::vector<llvm::Value*> RegResults; 2575 if (IsGCCAsmGoto) { 2576 llvm::CallBrInst *Result = 2577 Builder.CreateCallBr(IA, Fallthrough, Transfer, Args); 2578 EmitBlock(Fallthrough); 2579 UpdateAsmCallInst(cast<llvm::CallBase>(*Result), HasSideEffect, false, 2580 ReadOnly, ReadNone, InNoMergeAttributedStmt, S, 2581 ResultRegTypes, *this, RegResults); 2582 } else if (HasUnwindClobber) { 2583 llvm::CallBase *Result = EmitCallOrInvoke(IA, Args, ""); 2584 UpdateAsmCallInst(*Result, HasSideEffect, true, ReadOnly, ReadNone, 2585 InNoMergeAttributedStmt, S, ResultRegTypes, *this, 2586 RegResults); 2587 } else { 2588 llvm::CallInst *Result = 2589 Builder.CreateCall(IA, Args, getBundlesForFunclet(IA)); 2590 UpdateAsmCallInst(cast<llvm::CallBase>(*Result), HasSideEffect, false, 2591 ReadOnly, ReadNone, InNoMergeAttributedStmt, S, 2592 ResultRegTypes, *this, RegResults); 2593 } 2594 2595 assert(RegResults.size() == ResultRegTypes.size()); 2596 assert(RegResults.size() == ResultTruncRegTypes.size()); 2597 assert(RegResults.size() == ResultRegDests.size()); 2598 // ResultRegDests can be also populated by addReturnRegisterOutputs() above, 2599 // in which case its size may grow. 2600 assert(ResultTypeRequiresCast.size() <= ResultRegDests.size()); 2601 for (unsigned i = 0, e = RegResults.size(); i != e; ++i) { 2602 llvm::Value *Tmp = RegResults[i]; 2603 2604 // If the result type of the LLVM IR asm doesn't match the result type of 2605 // the expression, do the conversion. 2606 if (ResultRegTypes[i] != ResultTruncRegTypes[i]) { 2607 llvm::Type *TruncTy = ResultTruncRegTypes[i]; 2608 2609 // Truncate the integer result to the right size, note that TruncTy can be 2610 // a pointer. 2611 if (TruncTy->isFloatingPointTy()) 2612 Tmp = Builder.CreateFPTrunc(Tmp, TruncTy); 2613 else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) { 2614 uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy); 2615 Tmp = Builder.CreateTrunc(Tmp, 2616 llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize)); 2617 Tmp = Builder.CreateIntToPtr(Tmp, TruncTy); 2618 } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) { 2619 uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType()); 2620 Tmp = Builder.CreatePtrToInt(Tmp, 2621 llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize)); 2622 Tmp = Builder.CreateTrunc(Tmp, TruncTy); 2623 } else if (TruncTy->isIntegerTy()) { 2624 Tmp = Builder.CreateZExtOrTrunc(Tmp, TruncTy); 2625 } else if (TruncTy->isVectorTy()) { 2626 Tmp = Builder.CreateBitCast(Tmp, TruncTy); 2627 } 2628 } 2629 2630 LValue Dest = ResultRegDests[i]; 2631 // ResultTypeRequiresCast elements correspond to the first 2632 // ResultTypeRequiresCast.size() elements of RegResults. 2633 if ((i < ResultTypeRequiresCast.size()) && ResultTypeRequiresCast[i]) { 2634 unsigned Size = getContext().getTypeSize(ResultRegQualTys[i]); 2635 Address A = Builder.CreateBitCast(Dest.getAddress(*this), 2636 ResultRegTypes[i]->getPointerTo()); 2637 QualType Ty = getContext().getIntTypeForBitwidth(Size, /*Signed*/ false); 2638 if (Ty.isNull()) { 2639 const Expr *OutExpr = S.getOutputExpr(i); 2640 CGM.Error( 2641 OutExpr->getExprLoc(), 2642 "impossible constraint in asm: can't store value into a register"); 2643 return; 2644 } 2645 Dest = MakeAddrLValue(A, Ty); 2646 } 2647 EmitStoreThroughLValue(RValue::get(Tmp), Dest); 2648 } 2649 } 2650 2651 LValue CodeGenFunction::InitCapturedStruct(const CapturedStmt &S) { 2652 const RecordDecl *RD = S.getCapturedRecordDecl(); 2653 QualType RecordTy = getContext().getRecordType(RD); 2654 2655 // Initialize the captured struct. 2656 LValue SlotLV = 2657 MakeAddrLValue(CreateMemTemp(RecordTy, "agg.captured"), RecordTy); 2658 2659 RecordDecl::field_iterator CurField = RD->field_begin(); 2660 for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(), 2661 E = S.capture_init_end(); 2662 I != E; ++I, ++CurField) { 2663 LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField); 2664 if (CurField->hasCapturedVLAType()) { 2665 EmitLambdaVLACapture(CurField->getCapturedVLAType(), LV); 2666 } else { 2667 EmitInitializerForField(*CurField, LV, *I); 2668 } 2669 } 2670 2671 return SlotLV; 2672 } 2673 2674 /// Generate an outlined function for the body of a CapturedStmt, store any 2675 /// captured variables into the captured struct, and call the outlined function. 2676 llvm::Function * 2677 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) { 2678 LValue CapStruct = InitCapturedStruct(S); 2679 2680 // Emit the CapturedDecl 2681 CodeGenFunction CGF(CGM, true); 2682 CGCapturedStmtRAII CapInfoRAII(CGF, new CGCapturedStmtInfo(S, K)); 2683 llvm::Function *F = CGF.GenerateCapturedStmtFunction(S); 2684 delete CGF.CapturedStmtInfo; 2685 2686 // Emit call to the helper function. 2687 EmitCallOrInvoke(F, CapStruct.getPointer(*this)); 2688 2689 return F; 2690 } 2691 2692 Address CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) { 2693 LValue CapStruct = InitCapturedStruct(S); 2694 return CapStruct.getAddress(*this); 2695 } 2696 2697 /// Creates the outlined function for a CapturedStmt. 2698 llvm::Function * 2699 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedStmt &S) { 2700 assert(CapturedStmtInfo && 2701 "CapturedStmtInfo should be set when generating the captured function"); 2702 const CapturedDecl *CD = S.getCapturedDecl(); 2703 const RecordDecl *RD = S.getCapturedRecordDecl(); 2704 SourceLocation Loc = S.getBeginLoc(); 2705 assert(CD->hasBody() && "missing CapturedDecl body"); 2706 2707 // Build the argument list. 2708 ASTContext &Ctx = CGM.getContext(); 2709 FunctionArgList Args; 2710 Args.append(CD->param_begin(), CD->param_end()); 2711 2712 // Create the function declaration. 2713 const CGFunctionInfo &FuncInfo = 2714 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Args); 2715 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 2716 2717 llvm::Function *F = 2718 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 2719 CapturedStmtInfo->getHelperName(), &CGM.getModule()); 2720 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 2721 if (CD->isNothrow()) 2722 F->addFnAttr(llvm::Attribute::NoUnwind); 2723 2724 // Generate the function. 2725 StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, CD->getLocation(), 2726 CD->getBody()->getBeginLoc()); 2727 // Set the context parameter in CapturedStmtInfo. 2728 Address DeclPtr = GetAddrOfLocalVar(CD->getContextParam()); 2729 CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr)); 2730 2731 // Initialize variable-length arrays. 2732 LValue Base = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(), 2733 Ctx.getTagDeclType(RD)); 2734 for (auto *FD : RD->fields()) { 2735 if (FD->hasCapturedVLAType()) { 2736 auto *ExprArg = 2737 EmitLoadOfLValue(EmitLValueForField(Base, FD), S.getBeginLoc()) 2738 .getScalarVal(); 2739 auto VAT = FD->getCapturedVLAType(); 2740 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 2741 } 2742 } 2743 2744 // If 'this' is captured, load it into CXXThisValue. 2745 if (CapturedStmtInfo->isCXXThisExprCaptured()) { 2746 FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl(); 2747 LValue ThisLValue = EmitLValueForField(Base, FD); 2748 CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal(); 2749 } 2750 2751 PGO.assignRegionCounters(GlobalDecl(CD), F); 2752 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 2753 FinishFunction(CD->getBodyRBrace()); 2754 2755 return F; 2756 } 2757