1 //===---- CGObjC.cpp - Emit LLVM Code for Objective-C ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Objective-C code as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGDebugInfo.h" 14 #include "CGObjCRuntime.h" 15 #include "CodeGenFunction.h" 16 #include "CodeGenModule.h" 17 #include "ConstantEmitter.h" 18 #include "TargetInfo.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/Attr.h" 21 #include "clang/AST/DeclObjC.h" 22 #include "clang/AST/StmtObjC.h" 23 #include "clang/Basic/Diagnostic.h" 24 #include "clang/CodeGen/CGFunctionInfo.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/Analysis/ObjCARCUtil.h" 27 #include "llvm/BinaryFormat/MachO.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/InlineAsm.h" 30 using namespace clang; 31 using namespace CodeGen; 32 33 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult; 34 static TryEmitResult 35 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e); 36 static RValue AdjustObjCObjectType(CodeGenFunction &CGF, 37 QualType ET, 38 RValue Result); 39 40 /// Given the address of a variable of pointer type, find the correct 41 /// null to store into it. 42 static llvm::Constant *getNullForVariable(Address addr) { 43 llvm::Type *type = addr.getElementType(); 44 return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type)); 45 } 46 47 /// Emits an instance of NSConstantString representing the object. 48 llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E) 49 { 50 llvm::Constant *C = 51 CGM.getObjCRuntime().GenerateConstantString(E->getString()).getPointer(); 52 // FIXME: This bitcast should just be made an invariant on the Runtime. 53 return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType())); 54 } 55 56 /// EmitObjCBoxedExpr - This routine generates code to call 57 /// the appropriate expression boxing method. This will either be 58 /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:], 59 /// or [NSValue valueWithBytes:objCType:]. 60 /// 61 llvm::Value * 62 CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) { 63 // Generate the correct selector for this literal's concrete type. 64 // Get the method. 65 const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod(); 66 const Expr *SubExpr = E->getSubExpr(); 67 68 if (E->isExpressibleAsConstantInitializer()) { 69 ConstantEmitter ConstEmitter(CGM); 70 return ConstEmitter.tryEmitAbstract(E, E->getType()); 71 } 72 73 assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method"); 74 Selector Sel = BoxingMethod->getSelector(); 75 76 // Generate a reference to the class pointer, which will be the receiver. 77 // Assumes that the method was introduced in the class that should be 78 // messaged (avoids pulling it out of the result type). 79 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 80 const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface(); 81 llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl); 82 83 CallArgList Args; 84 const ParmVarDecl *ArgDecl = *BoxingMethod->param_begin(); 85 QualType ArgQT = ArgDecl->getType().getUnqualifiedType(); 86 87 // ObjCBoxedExpr supports boxing of structs and unions 88 // via [NSValue valueWithBytes:objCType:] 89 const QualType ValueType(SubExpr->getType().getCanonicalType()); 90 if (ValueType->isObjCBoxableRecordType()) { 91 // Emit CodeGen for first parameter 92 // and cast value to correct type 93 Address Temporary = CreateMemTemp(SubExpr->getType()); 94 EmitAnyExprToMem(SubExpr, Temporary, Qualifiers(), /*isInit*/ true); 95 Address BitCast = Builder.CreateBitCast(Temporary, ConvertType(ArgQT)); 96 Args.add(RValue::get(BitCast.getPointer()), ArgQT); 97 98 // Create char array to store type encoding 99 std::string Str; 100 getContext().getObjCEncodingForType(ValueType, Str); 101 llvm::Constant *GV = CGM.GetAddrOfConstantCString(Str).getPointer(); 102 103 // Cast type encoding to correct type 104 const ParmVarDecl *EncodingDecl = BoxingMethod->parameters()[1]; 105 QualType EncodingQT = EncodingDecl->getType().getUnqualifiedType(); 106 llvm::Value *Cast = Builder.CreateBitCast(GV, ConvertType(EncodingQT)); 107 108 Args.add(RValue::get(Cast), EncodingQT); 109 } else { 110 Args.add(EmitAnyExpr(SubExpr), ArgQT); 111 } 112 113 RValue result = Runtime.GenerateMessageSend( 114 *this, ReturnValueSlot(), BoxingMethod->getReturnType(), Sel, Receiver, 115 Args, ClassDecl, BoxingMethod); 116 return Builder.CreateBitCast(result.getScalarVal(), 117 ConvertType(E->getType())); 118 } 119 120 llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E, 121 const ObjCMethodDecl *MethodWithObjects) { 122 ASTContext &Context = CGM.getContext(); 123 const ObjCDictionaryLiteral *DLE = nullptr; 124 const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E); 125 if (!ALE) 126 DLE = cast<ObjCDictionaryLiteral>(E); 127 128 // Optimize empty collections by referencing constants, when available. 129 uint64_t NumElements = 130 ALE ? ALE->getNumElements() : DLE->getNumElements(); 131 if (NumElements == 0 && CGM.getLangOpts().ObjCRuntime.hasEmptyCollections()) { 132 StringRef ConstantName = ALE ? "__NSArray0__" : "__NSDictionary0__"; 133 QualType IdTy(CGM.getContext().getObjCIdType()); 134 llvm::Constant *Constant = 135 CGM.CreateRuntimeVariable(ConvertType(IdTy), ConstantName); 136 LValue LV = MakeNaturalAlignAddrLValue(Constant, IdTy); 137 llvm::Value *Ptr = EmitLoadOfScalar(LV, E->getBeginLoc()); 138 cast<llvm::LoadInst>(Ptr)->setMetadata( 139 CGM.getModule().getMDKindID("invariant.load"), 140 llvm::MDNode::get(getLLVMContext(), None)); 141 return Builder.CreateBitCast(Ptr, ConvertType(E->getType())); 142 } 143 144 // Compute the type of the array we're initializing. 145 llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()), 146 NumElements); 147 QualType ElementType = Context.getObjCIdType().withConst(); 148 QualType ElementArrayType 149 = Context.getConstantArrayType(ElementType, APNumElements, nullptr, 150 ArrayType::Normal, /*IndexTypeQuals=*/0); 151 152 // Allocate the temporary array(s). 153 Address Objects = CreateMemTemp(ElementArrayType, "objects"); 154 Address Keys = Address::invalid(); 155 if (DLE) 156 Keys = CreateMemTemp(ElementArrayType, "keys"); 157 158 // In ARC, we may need to do extra work to keep all the keys and 159 // values alive until after the call. 160 SmallVector<llvm::Value *, 16> NeededObjects; 161 bool TrackNeededObjects = 162 (getLangOpts().ObjCAutoRefCount && 163 CGM.getCodeGenOpts().OptimizationLevel != 0); 164 165 // Perform the actual initialialization of the array(s). 166 for (uint64_t i = 0; i < NumElements; i++) { 167 if (ALE) { 168 // Emit the element and store it to the appropriate array slot. 169 const Expr *Rhs = ALE->getElement(i); 170 LValue LV = MakeAddrLValue(Builder.CreateConstArrayGEP(Objects, i), 171 ElementType, AlignmentSource::Decl); 172 173 llvm::Value *value = EmitScalarExpr(Rhs); 174 EmitStoreThroughLValue(RValue::get(value), LV, true); 175 if (TrackNeededObjects) { 176 NeededObjects.push_back(value); 177 } 178 } else { 179 // Emit the key and store it to the appropriate array slot. 180 const Expr *Key = DLE->getKeyValueElement(i).Key; 181 LValue KeyLV = MakeAddrLValue(Builder.CreateConstArrayGEP(Keys, i), 182 ElementType, AlignmentSource::Decl); 183 llvm::Value *keyValue = EmitScalarExpr(Key); 184 EmitStoreThroughLValue(RValue::get(keyValue), KeyLV, /*isInit=*/true); 185 186 // Emit the value and store it to the appropriate array slot. 187 const Expr *Value = DLE->getKeyValueElement(i).Value; 188 LValue ValueLV = MakeAddrLValue(Builder.CreateConstArrayGEP(Objects, i), 189 ElementType, AlignmentSource::Decl); 190 llvm::Value *valueValue = EmitScalarExpr(Value); 191 EmitStoreThroughLValue(RValue::get(valueValue), ValueLV, /*isInit=*/true); 192 if (TrackNeededObjects) { 193 NeededObjects.push_back(keyValue); 194 NeededObjects.push_back(valueValue); 195 } 196 } 197 } 198 199 // Generate the argument list. 200 CallArgList Args; 201 ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin(); 202 const ParmVarDecl *argDecl = *PI++; 203 QualType ArgQT = argDecl->getType().getUnqualifiedType(); 204 Args.add(RValue::get(Objects.getPointer()), ArgQT); 205 if (DLE) { 206 argDecl = *PI++; 207 ArgQT = argDecl->getType().getUnqualifiedType(); 208 Args.add(RValue::get(Keys.getPointer()), ArgQT); 209 } 210 argDecl = *PI; 211 ArgQT = argDecl->getType().getUnqualifiedType(); 212 llvm::Value *Count = 213 llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements); 214 Args.add(RValue::get(Count), ArgQT); 215 216 // Generate a reference to the class pointer, which will be the receiver. 217 Selector Sel = MethodWithObjects->getSelector(); 218 QualType ResultType = E->getType(); 219 const ObjCObjectPointerType *InterfacePointerType 220 = ResultType->getAsObjCInterfacePointerType(); 221 ObjCInterfaceDecl *Class 222 = InterfacePointerType->getObjectType()->getInterface(); 223 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 224 llvm::Value *Receiver = Runtime.GetClass(*this, Class); 225 226 // Generate the message send. 227 RValue result = Runtime.GenerateMessageSend( 228 *this, ReturnValueSlot(), MethodWithObjects->getReturnType(), Sel, 229 Receiver, Args, Class, MethodWithObjects); 230 231 // The above message send needs these objects, but in ARC they are 232 // passed in a buffer that is essentially __unsafe_unretained. 233 // Therefore we must prevent the optimizer from releasing them until 234 // after the call. 235 if (TrackNeededObjects) { 236 EmitARCIntrinsicUse(NeededObjects); 237 } 238 239 return Builder.CreateBitCast(result.getScalarVal(), 240 ConvertType(E->getType())); 241 } 242 243 llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) { 244 return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod()); 245 } 246 247 llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral( 248 const ObjCDictionaryLiteral *E) { 249 return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod()); 250 } 251 252 /// Emit a selector. 253 llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) { 254 // Untyped selector. 255 // Note that this implementation allows for non-constant strings to be passed 256 // as arguments to @selector(). Currently, the only thing preventing this 257 // behaviour is the type checking in the front end. 258 return CGM.getObjCRuntime().GetSelector(*this, E->getSelector()); 259 } 260 261 llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) { 262 // FIXME: This should pass the Decl not the name. 263 return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol()); 264 } 265 266 /// Adjust the type of an Objective-C object that doesn't match up due 267 /// to type erasure at various points, e.g., related result types or the use 268 /// of parameterized classes. 269 static RValue AdjustObjCObjectType(CodeGenFunction &CGF, QualType ExpT, 270 RValue Result) { 271 if (!ExpT->isObjCRetainableType()) 272 return Result; 273 274 // If the converted types are the same, we're done. 275 llvm::Type *ExpLLVMTy = CGF.ConvertType(ExpT); 276 if (ExpLLVMTy == Result.getScalarVal()->getType()) 277 return Result; 278 279 // We have applied a substitution. Cast the rvalue appropriately. 280 return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(), 281 ExpLLVMTy)); 282 } 283 284 /// Decide whether to extend the lifetime of the receiver of a 285 /// returns-inner-pointer message. 286 static bool 287 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) { 288 switch (message->getReceiverKind()) { 289 290 // For a normal instance message, we should extend unless the 291 // receiver is loaded from a variable with precise lifetime. 292 case ObjCMessageExpr::Instance: { 293 const Expr *receiver = message->getInstanceReceiver(); 294 295 // Look through OVEs. 296 if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) { 297 if (opaque->getSourceExpr()) 298 receiver = opaque->getSourceExpr()->IgnoreParens(); 299 } 300 301 const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver); 302 if (!ice || ice->getCastKind() != CK_LValueToRValue) return true; 303 receiver = ice->getSubExpr()->IgnoreParens(); 304 305 // Look through OVEs. 306 if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) { 307 if (opaque->getSourceExpr()) 308 receiver = opaque->getSourceExpr()->IgnoreParens(); 309 } 310 311 // Only __strong variables. 312 if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong) 313 return true; 314 315 // All ivars and fields have precise lifetime. 316 if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver)) 317 return false; 318 319 // Otherwise, check for variables. 320 const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr()); 321 if (!declRef) return true; 322 const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl()); 323 if (!var) return true; 324 325 // All variables have precise lifetime except local variables with 326 // automatic storage duration that aren't specially marked. 327 return (var->hasLocalStorage() && 328 !var->hasAttr<ObjCPreciseLifetimeAttr>()); 329 } 330 331 case ObjCMessageExpr::Class: 332 case ObjCMessageExpr::SuperClass: 333 // It's never necessary for class objects. 334 return false; 335 336 case ObjCMessageExpr::SuperInstance: 337 // We generally assume that 'self' lives throughout a method call. 338 return false; 339 } 340 341 llvm_unreachable("invalid receiver kind"); 342 } 343 344 /// Given an expression of ObjC pointer type, check whether it was 345 /// immediately loaded from an ARC __weak l-value. 346 static const Expr *findWeakLValue(const Expr *E) { 347 assert(E->getType()->isObjCRetainableType()); 348 E = E->IgnoreParens(); 349 if (auto CE = dyn_cast<CastExpr>(E)) { 350 if (CE->getCastKind() == CK_LValueToRValue) { 351 if (CE->getSubExpr()->getType().getObjCLifetime() == Qualifiers::OCL_Weak) 352 return CE->getSubExpr(); 353 } 354 } 355 356 return nullptr; 357 } 358 359 /// The ObjC runtime may provide entrypoints that are likely to be faster 360 /// than an ordinary message send of the appropriate selector. 361 /// 362 /// The entrypoints are guaranteed to be equivalent to just sending the 363 /// corresponding message. If the entrypoint is implemented naively as just a 364 /// message send, using it is a trade-off: it sacrifices a few cycles of 365 /// overhead to save a small amount of code. However, it's possible for 366 /// runtimes to detect and special-case classes that use "standard" 367 /// behavior; if that's dynamically a large proportion of all objects, using 368 /// the entrypoint will also be faster than using a message send. 369 /// 370 /// If the runtime does support a required entrypoint, then this method will 371 /// generate a call and return the resulting value. Otherwise it will return 372 /// None and the caller can generate a msgSend instead. 373 static Optional<llvm::Value *> 374 tryGenerateSpecializedMessageSend(CodeGenFunction &CGF, QualType ResultType, 375 llvm::Value *Receiver, 376 const CallArgList& Args, Selector Sel, 377 const ObjCMethodDecl *method, 378 bool isClassMessage) { 379 auto &CGM = CGF.CGM; 380 if (!CGM.getCodeGenOpts().ObjCConvertMessagesToRuntimeCalls) 381 return None; 382 383 auto &Runtime = CGM.getLangOpts().ObjCRuntime; 384 switch (Sel.getMethodFamily()) { 385 case OMF_alloc: 386 if (isClassMessage && 387 Runtime.shouldUseRuntimeFunctionsForAlloc() && 388 ResultType->isObjCObjectPointerType()) { 389 // [Foo alloc] -> objc_alloc(Foo) or 390 // [self alloc] -> objc_alloc(self) 391 if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "alloc") 392 return CGF.EmitObjCAlloc(Receiver, CGF.ConvertType(ResultType)); 393 // [Foo allocWithZone:nil] -> objc_allocWithZone(Foo) or 394 // [self allocWithZone:nil] -> objc_allocWithZone(self) 395 if (Sel.isKeywordSelector() && Sel.getNumArgs() == 1 && 396 Args.size() == 1 && Args.front().getType()->isPointerType() && 397 Sel.getNameForSlot(0) == "allocWithZone") { 398 const llvm::Value* arg = Args.front().getKnownRValue().getScalarVal(); 399 if (isa<llvm::ConstantPointerNull>(arg)) 400 return CGF.EmitObjCAllocWithZone(Receiver, 401 CGF.ConvertType(ResultType)); 402 return None; 403 } 404 } 405 break; 406 407 case OMF_autorelease: 408 if (ResultType->isObjCObjectPointerType() && 409 CGM.getLangOpts().getGC() == LangOptions::NonGC && 410 Runtime.shouldUseARCFunctionsForRetainRelease()) 411 return CGF.EmitObjCAutorelease(Receiver, CGF.ConvertType(ResultType)); 412 break; 413 414 case OMF_retain: 415 if (ResultType->isObjCObjectPointerType() && 416 CGM.getLangOpts().getGC() == LangOptions::NonGC && 417 Runtime.shouldUseARCFunctionsForRetainRelease()) 418 return CGF.EmitObjCRetainNonBlock(Receiver, CGF.ConvertType(ResultType)); 419 break; 420 421 case OMF_release: 422 if (ResultType->isVoidType() && 423 CGM.getLangOpts().getGC() == LangOptions::NonGC && 424 Runtime.shouldUseARCFunctionsForRetainRelease()) { 425 CGF.EmitObjCRelease(Receiver, ARCPreciseLifetime); 426 return nullptr; 427 } 428 break; 429 430 default: 431 break; 432 } 433 return None; 434 } 435 436 CodeGen::RValue CGObjCRuntime::GeneratePossiblySpecializedMessageSend( 437 CodeGenFunction &CGF, ReturnValueSlot Return, QualType ResultType, 438 Selector Sel, llvm::Value *Receiver, const CallArgList &Args, 439 const ObjCInterfaceDecl *OID, const ObjCMethodDecl *Method, 440 bool isClassMessage) { 441 if (Optional<llvm::Value *> SpecializedResult = 442 tryGenerateSpecializedMessageSend(CGF, ResultType, Receiver, Args, 443 Sel, Method, isClassMessage)) { 444 return RValue::get(SpecializedResult.getValue()); 445 } 446 return GenerateMessageSend(CGF, Return, ResultType, Sel, Receiver, Args, OID, 447 Method); 448 } 449 450 static void AppendFirstImpliedRuntimeProtocols( 451 const ObjCProtocolDecl *PD, 452 llvm::UniqueVector<const ObjCProtocolDecl *> &PDs) { 453 if (!PD->isNonRuntimeProtocol()) { 454 const auto *Can = PD->getCanonicalDecl(); 455 PDs.insert(Can); 456 return; 457 } 458 459 for (const auto *ParentPD : PD->protocols()) 460 AppendFirstImpliedRuntimeProtocols(ParentPD, PDs); 461 } 462 463 std::vector<const ObjCProtocolDecl *> 464 CGObjCRuntime::GetRuntimeProtocolList(ObjCProtocolDecl::protocol_iterator begin, 465 ObjCProtocolDecl::protocol_iterator end) { 466 std::vector<const ObjCProtocolDecl *> RuntimePds; 467 llvm::DenseSet<const ObjCProtocolDecl *> NonRuntimePDs; 468 469 for (; begin != end; ++begin) { 470 const auto *It = *begin; 471 const auto *Can = It->getCanonicalDecl(); 472 if (Can->isNonRuntimeProtocol()) 473 NonRuntimePDs.insert(Can); 474 else 475 RuntimePds.push_back(Can); 476 } 477 478 // If there are no non-runtime protocols then we can just stop now. 479 if (NonRuntimePDs.empty()) 480 return RuntimePds; 481 482 // Else we have to search through the non-runtime protocol's inheritancy 483 // hierarchy DAG stopping whenever a branch either finds a runtime protocol or 484 // a non-runtime protocol without any parents. These are the "first-implied" 485 // protocols from a non-runtime protocol. 486 llvm::UniqueVector<const ObjCProtocolDecl *> FirstImpliedProtos; 487 for (const auto *PD : NonRuntimePDs) 488 AppendFirstImpliedRuntimeProtocols(PD, FirstImpliedProtos); 489 490 // Walk the Runtime list to get all protocols implied via the inclusion of 491 // this protocol, e.g. all protocols it inherits from including itself. 492 llvm::DenseSet<const ObjCProtocolDecl *> AllImpliedProtocols; 493 for (const auto *PD : RuntimePds) { 494 const auto *Can = PD->getCanonicalDecl(); 495 AllImpliedProtocols.insert(Can); 496 Can->getImpliedProtocols(AllImpliedProtocols); 497 } 498 499 // Similar to above, walk the list of first-implied protocols to find the set 500 // all the protocols implied excluding the listed protocols themselves since 501 // they are not yet a part of the `RuntimePds` list. 502 for (const auto *PD : FirstImpliedProtos) { 503 PD->getImpliedProtocols(AllImpliedProtocols); 504 } 505 506 // From the first-implied list we have to finish building the final protocol 507 // list. If a protocol in the first-implied list was already implied via some 508 // inheritance path through some other protocols then it would be redundant to 509 // add it here and so we skip over it. 510 for (const auto *PD : FirstImpliedProtos) { 511 if (!AllImpliedProtocols.contains(PD)) { 512 RuntimePds.push_back(PD); 513 } 514 } 515 516 return RuntimePds; 517 } 518 519 /// Instead of '[[MyClass alloc] init]', try to generate 520 /// 'objc_alloc_init(MyClass)'. This provides a code size improvement on the 521 /// caller side, as well as the optimized objc_alloc. 522 static Optional<llvm::Value *> 523 tryEmitSpecializedAllocInit(CodeGenFunction &CGF, const ObjCMessageExpr *OME) { 524 auto &Runtime = CGF.getLangOpts().ObjCRuntime; 525 if (!Runtime.shouldUseRuntimeFunctionForCombinedAllocInit()) 526 return None; 527 528 // Match the exact pattern '[[MyClass alloc] init]'. 529 Selector Sel = OME->getSelector(); 530 if (OME->getReceiverKind() != ObjCMessageExpr::Instance || 531 !OME->getType()->isObjCObjectPointerType() || !Sel.isUnarySelector() || 532 Sel.getNameForSlot(0) != "init") 533 return None; 534 535 // Okay, this is '[receiver init]', check if 'receiver' is '[cls alloc]' 536 // with 'cls' a Class. 537 auto *SubOME = 538 dyn_cast<ObjCMessageExpr>(OME->getInstanceReceiver()->IgnoreParenCasts()); 539 if (!SubOME) 540 return None; 541 Selector SubSel = SubOME->getSelector(); 542 543 if (!SubOME->getType()->isObjCObjectPointerType() || 544 !SubSel.isUnarySelector() || SubSel.getNameForSlot(0) != "alloc") 545 return None; 546 547 llvm::Value *Receiver = nullptr; 548 switch (SubOME->getReceiverKind()) { 549 case ObjCMessageExpr::Instance: 550 if (!SubOME->getInstanceReceiver()->getType()->isObjCClassType()) 551 return None; 552 Receiver = CGF.EmitScalarExpr(SubOME->getInstanceReceiver()); 553 break; 554 555 case ObjCMessageExpr::Class: { 556 QualType ReceiverType = SubOME->getClassReceiver(); 557 const ObjCObjectType *ObjTy = ReceiverType->castAs<ObjCObjectType>(); 558 const ObjCInterfaceDecl *ID = ObjTy->getInterface(); 559 assert(ID && "null interface should be impossible here"); 560 Receiver = CGF.CGM.getObjCRuntime().GetClass(CGF, ID); 561 break; 562 } 563 case ObjCMessageExpr::SuperInstance: 564 case ObjCMessageExpr::SuperClass: 565 return None; 566 } 567 568 return CGF.EmitObjCAllocInit(Receiver, CGF.ConvertType(OME->getType())); 569 } 570 571 RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E, 572 ReturnValueSlot Return) { 573 // Only the lookup mechanism and first two arguments of the method 574 // implementation vary between runtimes. We can get the receiver and 575 // arguments in generic code. 576 577 bool isDelegateInit = E->isDelegateInitCall(); 578 579 const ObjCMethodDecl *method = E->getMethodDecl(); 580 581 // If the method is -retain, and the receiver's being loaded from 582 // a __weak variable, peephole the entire operation to objc_loadWeakRetained. 583 if (method && E->getReceiverKind() == ObjCMessageExpr::Instance && 584 method->getMethodFamily() == OMF_retain) { 585 if (auto lvalueExpr = findWeakLValue(E->getInstanceReceiver())) { 586 LValue lvalue = EmitLValue(lvalueExpr); 587 llvm::Value *result = EmitARCLoadWeakRetained(lvalue.getAddress(*this)); 588 return AdjustObjCObjectType(*this, E->getType(), RValue::get(result)); 589 } 590 } 591 592 if (Optional<llvm::Value *> Val = tryEmitSpecializedAllocInit(*this, E)) 593 return AdjustObjCObjectType(*this, E->getType(), RValue::get(*Val)); 594 595 // We don't retain the receiver in delegate init calls, and this is 596 // safe because the receiver value is always loaded from 'self', 597 // which we zero out. We don't want to Block_copy block receivers, 598 // though. 599 bool retainSelf = 600 (!isDelegateInit && 601 CGM.getLangOpts().ObjCAutoRefCount && 602 method && 603 method->hasAttr<NSConsumesSelfAttr>()); 604 605 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 606 bool isSuperMessage = false; 607 bool isClassMessage = false; 608 ObjCInterfaceDecl *OID = nullptr; 609 // Find the receiver 610 QualType ReceiverType; 611 llvm::Value *Receiver = nullptr; 612 switch (E->getReceiverKind()) { 613 case ObjCMessageExpr::Instance: 614 ReceiverType = E->getInstanceReceiver()->getType(); 615 isClassMessage = ReceiverType->isObjCClassType(); 616 if (retainSelf) { 617 TryEmitResult ter = tryEmitARCRetainScalarExpr(*this, 618 E->getInstanceReceiver()); 619 Receiver = ter.getPointer(); 620 if (ter.getInt()) retainSelf = false; 621 } else 622 Receiver = EmitScalarExpr(E->getInstanceReceiver()); 623 break; 624 625 case ObjCMessageExpr::Class: { 626 ReceiverType = E->getClassReceiver(); 627 OID = ReceiverType->castAs<ObjCObjectType>()->getInterface(); 628 assert(OID && "Invalid Objective-C class message send"); 629 Receiver = Runtime.GetClass(*this, OID); 630 isClassMessage = true; 631 break; 632 } 633 634 case ObjCMessageExpr::SuperInstance: 635 ReceiverType = E->getSuperType(); 636 Receiver = LoadObjCSelf(); 637 isSuperMessage = true; 638 break; 639 640 case ObjCMessageExpr::SuperClass: 641 ReceiverType = E->getSuperType(); 642 Receiver = LoadObjCSelf(); 643 isSuperMessage = true; 644 isClassMessage = true; 645 break; 646 } 647 648 if (retainSelf) 649 Receiver = EmitARCRetainNonBlock(Receiver); 650 651 // In ARC, we sometimes want to "extend the lifetime" 652 // (i.e. retain+autorelease) of receivers of returns-inner-pointer 653 // messages. 654 if (getLangOpts().ObjCAutoRefCount && method && 655 method->hasAttr<ObjCReturnsInnerPointerAttr>() && 656 shouldExtendReceiverForInnerPointerMessage(E)) 657 Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver); 658 659 QualType ResultType = method ? method->getReturnType() : E->getType(); 660 661 CallArgList Args; 662 EmitCallArgs(Args, method, E->arguments(), /*AC*/AbstractCallee(method)); 663 664 // For delegate init calls in ARC, do an unsafe store of null into 665 // self. This represents the call taking direct ownership of that 666 // value. We have to do this after emitting the other call 667 // arguments because they might also reference self, but we don't 668 // have to worry about any of them modifying self because that would 669 // be an undefined read and write of an object in unordered 670 // expressions. 671 if (isDelegateInit) { 672 assert(getLangOpts().ObjCAutoRefCount && 673 "delegate init calls should only be marked in ARC"); 674 675 // Do an unsafe store of null into self. 676 Address selfAddr = 677 GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()); 678 Builder.CreateStore(getNullForVariable(selfAddr), selfAddr); 679 } 680 681 RValue result; 682 if (isSuperMessage) { 683 // super is only valid in an Objective-C method 684 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl); 685 bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext()); 686 result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType, 687 E->getSelector(), 688 OMD->getClassInterface(), 689 isCategoryImpl, 690 Receiver, 691 isClassMessage, 692 Args, 693 method); 694 } else { 695 // Call runtime methods directly if we can. 696 result = Runtime.GeneratePossiblySpecializedMessageSend( 697 *this, Return, ResultType, E->getSelector(), Receiver, Args, OID, 698 method, isClassMessage); 699 } 700 701 // For delegate init calls in ARC, implicitly store the result of 702 // the call back into self. This takes ownership of the value. 703 if (isDelegateInit) { 704 Address selfAddr = 705 GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()); 706 llvm::Value *newSelf = result.getScalarVal(); 707 708 // The delegate return type isn't necessarily a matching type; in 709 // fact, it's quite likely to be 'id'. 710 llvm::Type *selfTy = selfAddr.getElementType(); 711 newSelf = Builder.CreateBitCast(newSelf, selfTy); 712 713 Builder.CreateStore(newSelf, selfAddr); 714 } 715 716 return AdjustObjCObjectType(*this, E->getType(), result); 717 } 718 719 namespace { 720 struct FinishARCDealloc final : EHScopeStack::Cleanup { 721 void Emit(CodeGenFunction &CGF, Flags flags) override { 722 const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl); 723 724 const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext()); 725 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 726 if (!iface->getSuperClass()) return; 727 728 bool isCategory = isa<ObjCCategoryImplDecl>(impl); 729 730 // Call [super dealloc] if we have a superclass. 731 llvm::Value *self = CGF.LoadObjCSelf(); 732 733 CallArgList args; 734 CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(), 735 CGF.getContext().VoidTy, 736 method->getSelector(), 737 iface, 738 isCategory, 739 self, 740 /*is class msg*/ false, 741 args, 742 method); 743 } 744 }; 745 } 746 747 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates 748 /// the LLVM function and sets the other context used by 749 /// CodeGenFunction. 750 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD, 751 const ObjCContainerDecl *CD) { 752 SourceLocation StartLoc = OMD->getBeginLoc(); 753 FunctionArgList args; 754 // Check if we should generate debug info for this method. 755 if (OMD->hasAttr<NoDebugAttr>()) 756 DebugInfo = nullptr; // disable debug info indefinitely for this function 757 758 llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD); 759 760 const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD); 761 if (OMD->isDirectMethod()) { 762 Fn->setVisibility(llvm::Function::HiddenVisibility); 763 CGM.SetLLVMFunctionAttributes(OMD, FI, Fn, /*IsThunk=*/false); 764 CGM.SetLLVMFunctionAttributesForDefinition(OMD, Fn); 765 } else { 766 CGM.SetInternalFunctionAttributes(OMD, Fn, FI); 767 } 768 769 args.push_back(OMD->getSelfDecl()); 770 args.push_back(OMD->getCmdDecl()); 771 772 args.append(OMD->param_begin(), OMD->param_end()); 773 774 CurGD = OMD; 775 CurEHLocation = OMD->getEndLoc(); 776 777 StartFunction(OMD, OMD->getReturnType(), Fn, FI, args, 778 OMD->getLocation(), StartLoc); 779 780 if (OMD->isDirectMethod()) { 781 // This function is a direct call, it has to implement a nil check 782 // on entry. 783 // 784 // TODO: possibly have several entry points to elide the check 785 CGM.getObjCRuntime().GenerateDirectMethodPrologue(*this, Fn, OMD, CD); 786 } 787 788 // In ARC, certain methods get an extra cleanup. 789 if (CGM.getLangOpts().ObjCAutoRefCount && 790 OMD->isInstanceMethod() && 791 OMD->getSelector().isUnarySelector()) { 792 const IdentifierInfo *ident = 793 OMD->getSelector().getIdentifierInfoForSlot(0); 794 if (ident->isStr("dealloc")) 795 EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind()); 796 } 797 } 798 799 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF, 800 LValue lvalue, QualType type); 801 802 /// Generate an Objective-C method. An Objective-C method is a C function with 803 /// its pointer, name, and types registered in the class structure. 804 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) { 805 StartObjCMethod(OMD, OMD->getClassInterface()); 806 PGO.assignRegionCounters(GlobalDecl(OMD), CurFn); 807 assert(isa<CompoundStmt>(OMD->getBody())); 808 incrementProfileCounter(OMD->getBody()); 809 EmitCompoundStmtWithoutScope(*cast<CompoundStmt>(OMD->getBody())); 810 FinishFunction(OMD->getBodyRBrace()); 811 } 812 813 /// emitStructGetterCall - Call the runtime function to load a property 814 /// into the return value slot. 815 static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar, 816 bool isAtomic, bool hasStrong) { 817 ASTContext &Context = CGF.getContext(); 818 819 Address src = 820 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0) 821 .getAddress(CGF); 822 823 // objc_copyStruct (ReturnValue, &structIvar, 824 // sizeof (Type of Ivar), isAtomic, false); 825 CallArgList args; 826 827 Address dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy); 828 args.add(RValue::get(dest.getPointer()), Context.VoidPtrTy); 829 830 src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy); 831 args.add(RValue::get(src.getPointer()), Context.VoidPtrTy); 832 833 CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType()); 834 args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType()); 835 args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy); 836 args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy); 837 838 llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetGetStructFunction(); 839 CGCallee callee = CGCallee::forDirect(fn); 840 CGF.EmitCall(CGF.getTypes().arrangeBuiltinFunctionCall(Context.VoidTy, args), 841 callee, ReturnValueSlot(), args); 842 } 843 844 /// Determine whether the given architecture supports unaligned atomic 845 /// accesses. They don't have to be fast, just faster than a function 846 /// call and a mutex. 847 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) { 848 // FIXME: Allow unaligned atomic load/store on x86. (It is not 849 // currently supported by the backend.) 850 return 0; 851 } 852 853 /// Return the maximum size that permits atomic accesses for the given 854 /// architecture. 855 static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM, 856 llvm::Triple::ArchType arch) { 857 // ARM has 8-byte atomic accesses, but it's not clear whether we 858 // want to rely on them here. 859 860 // In the default case, just assume that any size up to a pointer is 861 // fine given adequate alignment. 862 return CharUnits::fromQuantity(CGM.PointerSizeInBytes); 863 } 864 865 namespace { 866 class PropertyImplStrategy { 867 public: 868 enum StrategyKind { 869 /// The 'native' strategy is to use the architecture's provided 870 /// reads and writes. 871 Native, 872 873 /// Use objc_setProperty and objc_getProperty. 874 GetSetProperty, 875 876 /// Use objc_setProperty for the setter, but use expression 877 /// evaluation for the getter. 878 SetPropertyAndExpressionGet, 879 880 /// Use objc_copyStruct. 881 CopyStruct, 882 883 /// The 'expression' strategy is to emit normal assignment or 884 /// lvalue-to-rvalue expressions. 885 Expression 886 }; 887 888 StrategyKind getKind() const { return StrategyKind(Kind); } 889 890 bool hasStrongMember() const { return HasStrong; } 891 bool isAtomic() const { return IsAtomic; } 892 bool isCopy() const { return IsCopy; } 893 894 CharUnits getIvarSize() const { return IvarSize; } 895 CharUnits getIvarAlignment() const { return IvarAlignment; } 896 897 PropertyImplStrategy(CodeGenModule &CGM, 898 const ObjCPropertyImplDecl *propImpl); 899 900 private: 901 unsigned Kind : 8; 902 unsigned IsAtomic : 1; 903 unsigned IsCopy : 1; 904 unsigned HasStrong : 1; 905 906 CharUnits IvarSize; 907 CharUnits IvarAlignment; 908 }; 909 } 910 911 /// Pick an implementation strategy for the given property synthesis. 912 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM, 913 const ObjCPropertyImplDecl *propImpl) { 914 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 915 ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind(); 916 917 IsCopy = (setterKind == ObjCPropertyDecl::Copy); 918 IsAtomic = prop->isAtomic(); 919 HasStrong = false; // doesn't matter here. 920 921 // Evaluate the ivar's size and alignment. 922 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 923 QualType ivarType = ivar->getType(); 924 auto TInfo = CGM.getContext().getTypeInfoInChars(ivarType); 925 IvarSize = TInfo.Width; 926 IvarAlignment = TInfo.Align; 927 928 // If we have a copy property, we always have to use getProperty/setProperty. 929 // TODO: we could actually use setProperty and an expression for non-atomics. 930 if (IsCopy) { 931 Kind = GetSetProperty; 932 return; 933 } 934 935 // Handle retain. 936 if (setterKind == ObjCPropertyDecl::Retain) { 937 // In GC-only, there's nothing special that needs to be done. 938 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) { 939 // fallthrough 940 941 // In ARC, if the property is non-atomic, use expression emission, 942 // which translates to objc_storeStrong. This isn't required, but 943 // it's slightly nicer. 944 } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) { 945 // Using standard expression emission for the setter is only 946 // acceptable if the ivar is __strong, which won't be true if 947 // the property is annotated with __attribute__((NSObject)). 948 // TODO: falling all the way back to objc_setProperty here is 949 // just laziness, though; we could still use objc_storeStrong 950 // if we hacked it right. 951 if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong) 952 Kind = Expression; 953 else 954 Kind = SetPropertyAndExpressionGet; 955 return; 956 957 // Otherwise, we need to at least use setProperty. However, if 958 // the property isn't atomic, we can use normal expression 959 // emission for the getter. 960 } else if (!IsAtomic) { 961 Kind = SetPropertyAndExpressionGet; 962 return; 963 964 // Otherwise, we have to use both setProperty and getProperty. 965 } else { 966 Kind = GetSetProperty; 967 return; 968 } 969 } 970 971 // If we're not atomic, just use expression accesses. 972 if (!IsAtomic) { 973 Kind = Expression; 974 return; 975 } 976 977 // Properties on bitfield ivars need to be emitted using expression 978 // accesses even if they're nominally atomic. 979 if (ivar->isBitField()) { 980 Kind = Expression; 981 return; 982 } 983 984 // GC-qualified or ARC-qualified ivars need to be emitted as 985 // expressions. This actually works out to being atomic anyway, 986 // except for ARC __strong, but that should trigger the above code. 987 if (ivarType.hasNonTrivialObjCLifetime() || 988 (CGM.getLangOpts().getGC() && 989 CGM.getContext().getObjCGCAttrKind(ivarType))) { 990 Kind = Expression; 991 return; 992 } 993 994 // Compute whether the ivar has strong members. 995 if (CGM.getLangOpts().getGC()) 996 if (const RecordType *recordType = ivarType->getAs<RecordType>()) 997 HasStrong = recordType->getDecl()->hasObjectMember(); 998 999 // We can never access structs with object members with a native 1000 // access, because we need to use write barriers. This is what 1001 // objc_copyStruct is for. 1002 if (HasStrong) { 1003 Kind = CopyStruct; 1004 return; 1005 } 1006 1007 // Otherwise, this is target-dependent and based on the size and 1008 // alignment of the ivar. 1009 1010 // If the size of the ivar is not a power of two, give up. We don't 1011 // want to get into the business of doing compare-and-swaps. 1012 if (!IvarSize.isPowerOfTwo()) { 1013 Kind = CopyStruct; 1014 return; 1015 } 1016 1017 llvm::Triple::ArchType arch = 1018 CGM.getTarget().getTriple().getArch(); 1019 1020 // Most architectures require memory to fit within a single cache 1021 // line, so the alignment has to be at least the size of the access. 1022 // Otherwise we have to grab a lock. 1023 if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) { 1024 Kind = CopyStruct; 1025 return; 1026 } 1027 1028 // If the ivar's size exceeds the architecture's maximum atomic 1029 // access size, we have to use CopyStruct. 1030 if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) { 1031 Kind = CopyStruct; 1032 return; 1033 } 1034 1035 // Otherwise, we can use native loads and stores. 1036 Kind = Native; 1037 } 1038 1039 /// Generate an Objective-C property getter function. 1040 /// 1041 /// The given Decl must be an ObjCImplementationDecl. \@synthesize 1042 /// is illegal within a category. 1043 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP, 1044 const ObjCPropertyImplDecl *PID) { 1045 llvm::Constant *AtomicHelperFn = 1046 CodeGenFunction(CGM).GenerateObjCAtomicGetterCopyHelperFunction(PID); 1047 ObjCMethodDecl *OMD = PID->getGetterMethodDecl(); 1048 assert(OMD && "Invalid call to generate getter (empty method)"); 1049 StartObjCMethod(OMD, IMP->getClassInterface()); 1050 1051 generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn); 1052 1053 FinishFunction(OMD->getEndLoc()); 1054 } 1055 1056 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) { 1057 const Expr *getter = propImpl->getGetterCXXConstructor(); 1058 if (!getter) return true; 1059 1060 // Sema only makes only of these when the ivar has a C++ class type, 1061 // so the form is pretty constrained. 1062 1063 // If the property has a reference type, we might just be binding a 1064 // reference, in which case the result will be a gl-value. We should 1065 // treat this as a non-trivial operation. 1066 if (getter->isGLValue()) 1067 return false; 1068 1069 // If we selected a trivial copy-constructor, we're okay. 1070 if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter)) 1071 return (construct->getConstructor()->isTrivial()); 1072 1073 // The constructor might require cleanups (in which case it's never 1074 // trivial). 1075 assert(isa<ExprWithCleanups>(getter)); 1076 return false; 1077 } 1078 1079 /// emitCPPObjectAtomicGetterCall - Call the runtime function to 1080 /// copy the ivar into the resturn slot. 1081 static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF, 1082 llvm::Value *returnAddr, 1083 ObjCIvarDecl *ivar, 1084 llvm::Constant *AtomicHelperFn) { 1085 // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar, 1086 // AtomicHelperFn); 1087 CallArgList args; 1088 1089 // The 1st argument is the return Slot. 1090 args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy); 1091 1092 // The 2nd argument is the address of the ivar. 1093 llvm::Value *ivarAddr = 1094 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0) 1095 .getPointer(CGF); 1096 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 1097 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 1098 1099 // Third argument is the helper function. 1100 args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy); 1101 1102 llvm::FunctionCallee copyCppAtomicObjectFn = 1103 CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction(); 1104 CGCallee callee = CGCallee::forDirect(copyCppAtomicObjectFn); 1105 CGF.EmitCall( 1106 CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args), 1107 callee, ReturnValueSlot(), args); 1108 } 1109 1110 void 1111 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 1112 const ObjCPropertyImplDecl *propImpl, 1113 const ObjCMethodDecl *GetterMethodDecl, 1114 llvm::Constant *AtomicHelperFn) { 1115 // If there's a non-trivial 'get' expression, we just have to emit that. 1116 if (!hasTrivialGetExpr(propImpl)) { 1117 if (!AtomicHelperFn) { 1118 auto *ret = ReturnStmt::Create(getContext(), SourceLocation(), 1119 propImpl->getGetterCXXConstructor(), 1120 /* NRVOCandidate=*/nullptr); 1121 EmitReturnStmt(*ret); 1122 } 1123 else { 1124 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 1125 emitCPPObjectAtomicGetterCall(*this, ReturnValue.getPointer(), 1126 ivar, AtomicHelperFn); 1127 } 1128 return; 1129 } 1130 1131 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 1132 QualType propType = prop->getType(); 1133 ObjCMethodDecl *getterMethod = propImpl->getGetterMethodDecl(); 1134 1135 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 1136 1137 // Pick an implementation strategy. 1138 PropertyImplStrategy strategy(CGM, propImpl); 1139 switch (strategy.getKind()) { 1140 case PropertyImplStrategy::Native: { 1141 // We don't need to do anything for a zero-size struct. 1142 if (strategy.getIvarSize().isZero()) 1143 return; 1144 1145 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0); 1146 1147 // Currently, all atomic accesses have to be through integer 1148 // types, so there's no point in trying to pick a prettier type. 1149 uint64_t ivarSize = getContext().toBits(strategy.getIvarSize()); 1150 llvm::Type *bitcastType = llvm::Type::getIntNTy(getLLVMContext(), ivarSize); 1151 bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay 1152 1153 // Perform an atomic load. This does not impose ordering constraints. 1154 Address ivarAddr = LV.getAddress(*this); 1155 ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType); 1156 llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load"); 1157 load->setAtomic(llvm::AtomicOrdering::Unordered); 1158 1159 // Store that value into the return address. Doing this with a 1160 // bitcast is likely to produce some pretty ugly IR, but it's not 1161 // the *most* terrible thing in the world. 1162 llvm::Type *retTy = ConvertType(getterMethod->getReturnType()); 1163 uint64_t retTySize = CGM.getDataLayout().getTypeSizeInBits(retTy); 1164 llvm::Value *ivarVal = load; 1165 if (ivarSize > retTySize) { 1166 llvm::Type *newTy = llvm::Type::getIntNTy(getLLVMContext(), retTySize); 1167 ivarVal = Builder.CreateTrunc(load, newTy); 1168 bitcastType = newTy->getPointerTo(); 1169 } 1170 Builder.CreateStore(ivarVal, 1171 Builder.CreateBitCast(ReturnValue, bitcastType)); 1172 1173 // Make sure we don't do an autorelease. 1174 AutoreleaseResult = false; 1175 return; 1176 } 1177 1178 case PropertyImplStrategy::GetSetProperty: { 1179 llvm::FunctionCallee getPropertyFn = 1180 CGM.getObjCRuntime().GetPropertyGetFunction(); 1181 if (!getPropertyFn) { 1182 CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy"); 1183 return; 1184 } 1185 CGCallee callee = CGCallee::forDirect(getPropertyFn); 1186 1187 // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true). 1188 // FIXME: Can't this be simpler? This might even be worse than the 1189 // corresponding gcc code. 1190 llvm::Value *cmd = 1191 Builder.CreateLoad(GetAddrOfLocalVar(getterMethod->getCmdDecl()), "cmd"); 1192 llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy); 1193 llvm::Value *ivarOffset = 1194 EmitIvarOffset(classImpl->getClassInterface(), ivar); 1195 1196 CallArgList args; 1197 args.add(RValue::get(self), getContext().getObjCIdType()); 1198 args.add(RValue::get(cmd), getContext().getObjCSelType()); 1199 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 1200 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())), 1201 getContext().BoolTy); 1202 1203 // FIXME: We shouldn't need to get the function info here, the 1204 // runtime already should have computed it to build the function. 1205 llvm::CallBase *CallInstruction; 1206 RValue RV = EmitCall(getTypes().arrangeBuiltinFunctionCall( 1207 getContext().getObjCIdType(), args), 1208 callee, ReturnValueSlot(), args, &CallInstruction); 1209 if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(CallInstruction)) 1210 call->setTailCall(); 1211 1212 // We need to fix the type here. Ivars with copy & retain are 1213 // always objects so we don't need to worry about complex or 1214 // aggregates. 1215 RV = RValue::get(Builder.CreateBitCast( 1216 RV.getScalarVal(), 1217 getTypes().ConvertType(getterMethod->getReturnType()))); 1218 1219 EmitReturnOfRValue(RV, propType); 1220 1221 // objc_getProperty does an autorelease, so we should suppress ours. 1222 AutoreleaseResult = false; 1223 1224 return; 1225 } 1226 1227 case PropertyImplStrategy::CopyStruct: 1228 emitStructGetterCall(*this, ivar, strategy.isAtomic(), 1229 strategy.hasStrongMember()); 1230 return; 1231 1232 case PropertyImplStrategy::Expression: 1233 case PropertyImplStrategy::SetPropertyAndExpressionGet: { 1234 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0); 1235 1236 QualType ivarType = ivar->getType(); 1237 switch (getEvaluationKind(ivarType)) { 1238 case TEK_Complex: { 1239 ComplexPairTy pair = EmitLoadOfComplex(LV, SourceLocation()); 1240 EmitStoreOfComplex(pair, MakeAddrLValue(ReturnValue, ivarType), 1241 /*init*/ true); 1242 return; 1243 } 1244 case TEK_Aggregate: { 1245 // The return value slot is guaranteed to not be aliased, but 1246 // that's not necessarily the same as "on the stack", so 1247 // we still potentially need objc_memmove_collectable. 1248 EmitAggregateCopy(/* Dest= */ MakeAddrLValue(ReturnValue, ivarType), 1249 /* Src= */ LV, ivarType, getOverlapForReturnValue()); 1250 return; 1251 } 1252 case TEK_Scalar: { 1253 llvm::Value *value; 1254 if (propType->isReferenceType()) { 1255 value = LV.getAddress(*this).getPointer(); 1256 } else { 1257 // We want to load and autoreleaseReturnValue ARC __weak ivars. 1258 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1259 if (getLangOpts().ObjCAutoRefCount) { 1260 value = emitARCRetainLoadOfScalar(*this, LV, ivarType); 1261 } else { 1262 value = EmitARCLoadWeak(LV.getAddress(*this)); 1263 } 1264 1265 // Otherwise we want to do a simple load, suppressing the 1266 // final autorelease. 1267 } else { 1268 value = EmitLoadOfLValue(LV, SourceLocation()).getScalarVal(); 1269 AutoreleaseResult = false; 1270 } 1271 1272 value = Builder.CreateBitCast( 1273 value, ConvertType(GetterMethodDecl->getReturnType())); 1274 } 1275 1276 EmitReturnOfRValue(RValue::get(value), propType); 1277 return; 1278 } 1279 } 1280 llvm_unreachable("bad evaluation kind"); 1281 } 1282 1283 } 1284 llvm_unreachable("bad @property implementation strategy!"); 1285 } 1286 1287 /// emitStructSetterCall - Call the runtime function to store the value 1288 /// from the first formal parameter into the given ivar. 1289 static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD, 1290 ObjCIvarDecl *ivar) { 1291 // objc_copyStruct (&structIvar, &Arg, 1292 // sizeof (struct something), true, false); 1293 CallArgList args; 1294 1295 // The first argument is the address of the ivar. 1296 llvm::Value *ivarAddr = 1297 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0) 1298 .getPointer(CGF); 1299 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 1300 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 1301 1302 // The second argument is the address of the parameter variable. 1303 ParmVarDecl *argVar = *OMD->param_begin(); 1304 DeclRefExpr argRef(CGF.getContext(), argVar, false, 1305 argVar->getType().getNonReferenceType(), VK_LValue, 1306 SourceLocation()); 1307 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(CGF); 1308 argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy); 1309 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy); 1310 1311 // The third argument is the sizeof the type. 1312 llvm::Value *size = 1313 CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType())); 1314 args.add(RValue::get(size), CGF.getContext().getSizeType()); 1315 1316 // The fourth argument is the 'isAtomic' flag. 1317 args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy); 1318 1319 // The fifth argument is the 'hasStrong' flag. 1320 // FIXME: should this really always be false? 1321 args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy); 1322 1323 llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetSetStructFunction(); 1324 CGCallee callee = CGCallee::forDirect(fn); 1325 CGF.EmitCall( 1326 CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args), 1327 callee, ReturnValueSlot(), args); 1328 } 1329 1330 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store 1331 /// the value from the first formal parameter into the given ivar, using 1332 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment. 1333 static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF, 1334 ObjCMethodDecl *OMD, 1335 ObjCIvarDecl *ivar, 1336 llvm::Constant *AtomicHelperFn) { 1337 // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg, 1338 // AtomicHelperFn); 1339 CallArgList args; 1340 1341 // The first argument is the address of the ivar. 1342 llvm::Value *ivarAddr = 1343 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0) 1344 .getPointer(CGF); 1345 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 1346 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 1347 1348 // The second argument is the address of the parameter variable. 1349 ParmVarDecl *argVar = *OMD->param_begin(); 1350 DeclRefExpr argRef(CGF.getContext(), argVar, false, 1351 argVar->getType().getNonReferenceType(), VK_LValue, 1352 SourceLocation()); 1353 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(CGF); 1354 argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy); 1355 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy); 1356 1357 // Third argument is the helper function. 1358 args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy); 1359 1360 llvm::FunctionCallee fn = 1361 CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction(); 1362 CGCallee callee = CGCallee::forDirect(fn); 1363 CGF.EmitCall( 1364 CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args), 1365 callee, ReturnValueSlot(), args); 1366 } 1367 1368 1369 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) { 1370 Expr *setter = PID->getSetterCXXAssignment(); 1371 if (!setter) return true; 1372 1373 // Sema only makes only of these when the ivar has a C++ class type, 1374 // so the form is pretty constrained. 1375 1376 // An operator call is trivial if the function it calls is trivial. 1377 // This also implies that there's nothing non-trivial going on with 1378 // the arguments, because operator= can only be trivial if it's a 1379 // synthesized assignment operator and therefore both parameters are 1380 // references. 1381 if (CallExpr *call = dyn_cast<CallExpr>(setter)) { 1382 if (const FunctionDecl *callee 1383 = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl())) 1384 if (callee->isTrivial()) 1385 return true; 1386 return false; 1387 } 1388 1389 assert(isa<ExprWithCleanups>(setter)); 1390 return false; 1391 } 1392 1393 static bool UseOptimizedSetter(CodeGenModule &CGM) { 1394 if (CGM.getLangOpts().getGC() != LangOptions::NonGC) 1395 return false; 1396 return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter(); 1397 } 1398 1399 void 1400 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 1401 const ObjCPropertyImplDecl *propImpl, 1402 llvm::Constant *AtomicHelperFn) { 1403 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 1404 ObjCMethodDecl *setterMethod = propImpl->getSetterMethodDecl(); 1405 1406 // Just use the setter expression if Sema gave us one and it's 1407 // non-trivial. 1408 if (!hasTrivialSetExpr(propImpl)) { 1409 if (!AtomicHelperFn) 1410 // If non-atomic, assignment is called directly. 1411 EmitStmt(propImpl->getSetterCXXAssignment()); 1412 else 1413 // If atomic, assignment is called via a locking api. 1414 emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar, 1415 AtomicHelperFn); 1416 return; 1417 } 1418 1419 PropertyImplStrategy strategy(CGM, propImpl); 1420 switch (strategy.getKind()) { 1421 case PropertyImplStrategy::Native: { 1422 // We don't need to do anything for a zero-size struct. 1423 if (strategy.getIvarSize().isZero()) 1424 return; 1425 1426 Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin()); 1427 1428 LValue ivarLValue = 1429 EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0); 1430 Address ivarAddr = ivarLValue.getAddress(*this); 1431 1432 // Currently, all atomic accesses have to be through integer 1433 // types, so there's no point in trying to pick a prettier type. 1434 llvm::Type *bitcastType = 1435 llvm::Type::getIntNTy(getLLVMContext(), 1436 getContext().toBits(strategy.getIvarSize())); 1437 1438 // Cast both arguments to the chosen operation type. 1439 argAddr = Builder.CreateElementBitCast(argAddr, bitcastType); 1440 ivarAddr = Builder.CreateElementBitCast(ivarAddr, bitcastType); 1441 1442 // This bitcast load is likely to cause some nasty IR. 1443 llvm::Value *load = Builder.CreateLoad(argAddr); 1444 1445 // Perform an atomic store. There are no memory ordering requirements. 1446 llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr); 1447 store->setAtomic(llvm::AtomicOrdering::Unordered); 1448 return; 1449 } 1450 1451 case PropertyImplStrategy::GetSetProperty: 1452 case PropertyImplStrategy::SetPropertyAndExpressionGet: { 1453 1454 llvm::FunctionCallee setOptimizedPropertyFn = nullptr; 1455 llvm::FunctionCallee setPropertyFn = nullptr; 1456 if (UseOptimizedSetter(CGM)) { 1457 // 10.8 and iOS 6.0 code and GC is off 1458 setOptimizedPropertyFn = 1459 CGM.getObjCRuntime().GetOptimizedPropertySetFunction( 1460 strategy.isAtomic(), strategy.isCopy()); 1461 if (!setOptimizedPropertyFn) { 1462 CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI"); 1463 return; 1464 } 1465 } 1466 else { 1467 setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction(); 1468 if (!setPropertyFn) { 1469 CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy"); 1470 return; 1471 } 1472 } 1473 1474 // Emit objc_setProperty((id) self, _cmd, offset, arg, 1475 // <is-atomic>, <is-copy>). 1476 llvm::Value *cmd = 1477 Builder.CreateLoad(GetAddrOfLocalVar(setterMethod->getCmdDecl())); 1478 llvm::Value *self = 1479 Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy); 1480 llvm::Value *ivarOffset = 1481 EmitIvarOffset(classImpl->getClassInterface(), ivar); 1482 Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin()); 1483 llvm::Value *arg = Builder.CreateLoad(argAddr, "arg"); 1484 arg = Builder.CreateBitCast(arg, VoidPtrTy); 1485 1486 CallArgList args; 1487 args.add(RValue::get(self), getContext().getObjCIdType()); 1488 args.add(RValue::get(cmd), getContext().getObjCSelType()); 1489 if (setOptimizedPropertyFn) { 1490 args.add(RValue::get(arg), getContext().getObjCIdType()); 1491 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 1492 CGCallee callee = CGCallee::forDirect(setOptimizedPropertyFn); 1493 EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args), 1494 callee, ReturnValueSlot(), args); 1495 } else { 1496 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 1497 args.add(RValue::get(arg), getContext().getObjCIdType()); 1498 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())), 1499 getContext().BoolTy); 1500 args.add(RValue::get(Builder.getInt1(strategy.isCopy())), 1501 getContext().BoolTy); 1502 // FIXME: We shouldn't need to get the function info here, the runtime 1503 // already should have computed it to build the function. 1504 CGCallee callee = CGCallee::forDirect(setPropertyFn); 1505 EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args), 1506 callee, ReturnValueSlot(), args); 1507 } 1508 1509 return; 1510 } 1511 1512 case PropertyImplStrategy::CopyStruct: 1513 emitStructSetterCall(*this, setterMethod, ivar); 1514 return; 1515 1516 case PropertyImplStrategy::Expression: 1517 break; 1518 } 1519 1520 // Otherwise, fake up some ASTs and emit a normal assignment. 1521 ValueDecl *selfDecl = setterMethod->getSelfDecl(); 1522 DeclRefExpr self(getContext(), selfDecl, false, selfDecl->getType(), 1523 VK_LValue, SourceLocation()); 1524 ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack, selfDecl->getType(), 1525 CK_LValueToRValue, &self, VK_RValue, 1526 FPOptionsOverride()); 1527 ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(), 1528 SourceLocation(), SourceLocation(), 1529 &selfLoad, true, true); 1530 1531 ParmVarDecl *argDecl = *setterMethod->param_begin(); 1532 QualType argType = argDecl->getType().getNonReferenceType(); 1533 DeclRefExpr arg(getContext(), argDecl, false, argType, VK_LValue, 1534 SourceLocation()); 1535 ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack, 1536 argType.getUnqualifiedType(), CK_LValueToRValue, 1537 &arg, VK_RValue, FPOptionsOverride()); 1538 1539 // The property type can differ from the ivar type in some situations with 1540 // Objective-C pointer types, we can always bit cast the RHS in these cases. 1541 // The following absurdity is just to ensure well-formed IR. 1542 CastKind argCK = CK_NoOp; 1543 if (ivarRef.getType()->isObjCObjectPointerType()) { 1544 if (argLoad.getType()->isObjCObjectPointerType()) 1545 argCK = CK_BitCast; 1546 else if (argLoad.getType()->isBlockPointerType()) 1547 argCK = CK_BlockPointerToObjCPointerCast; 1548 else 1549 argCK = CK_CPointerToObjCPointerCast; 1550 } else if (ivarRef.getType()->isBlockPointerType()) { 1551 if (argLoad.getType()->isBlockPointerType()) 1552 argCK = CK_BitCast; 1553 else 1554 argCK = CK_AnyPointerToBlockPointerCast; 1555 } else if (ivarRef.getType()->isPointerType()) { 1556 argCK = CK_BitCast; 1557 } 1558 ImplicitCastExpr argCast(ImplicitCastExpr::OnStack, ivarRef.getType(), argCK, 1559 &argLoad, VK_RValue, FPOptionsOverride()); 1560 Expr *finalArg = &argLoad; 1561 if (!getContext().hasSameUnqualifiedType(ivarRef.getType(), 1562 argLoad.getType())) 1563 finalArg = &argCast; 1564 1565 BinaryOperator *assign = BinaryOperator::Create( 1566 getContext(), &ivarRef, finalArg, BO_Assign, ivarRef.getType(), VK_RValue, 1567 OK_Ordinary, SourceLocation(), FPOptionsOverride()); 1568 EmitStmt(assign); 1569 } 1570 1571 /// Generate an Objective-C property setter function. 1572 /// 1573 /// The given Decl must be an ObjCImplementationDecl. \@synthesize 1574 /// is illegal within a category. 1575 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP, 1576 const ObjCPropertyImplDecl *PID) { 1577 llvm::Constant *AtomicHelperFn = 1578 CodeGenFunction(CGM).GenerateObjCAtomicSetterCopyHelperFunction(PID); 1579 ObjCMethodDecl *OMD = PID->getSetterMethodDecl(); 1580 assert(OMD && "Invalid call to generate setter (empty method)"); 1581 StartObjCMethod(OMD, IMP->getClassInterface()); 1582 1583 generateObjCSetterBody(IMP, PID, AtomicHelperFn); 1584 1585 FinishFunction(OMD->getEndLoc()); 1586 } 1587 1588 namespace { 1589 struct DestroyIvar final : EHScopeStack::Cleanup { 1590 private: 1591 llvm::Value *addr; 1592 const ObjCIvarDecl *ivar; 1593 CodeGenFunction::Destroyer *destroyer; 1594 bool useEHCleanupForArray; 1595 public: 1596 DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar, 1597 CodeGenFunction::Destroyer *destroyer, 1598 bool useEHCleanupForArray) 1599 : addr(addr), ivar(ivar), destroyer(destroyer), 1600 useEHCleanupForArray(useEHCleanupForArray) {} 1601 1602 void Emit(CodeGenFunction &CGF, Flags flags) override { 1603 LValue lvalue 1604 = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0); 1605 CGF.emitDestroy(lvalue.getAddress(CGF), ivar->getType(), destroyer, 1606 flags.isForNormalCleanup() && useEHCleanupForArray); 1607 } 1608 }; 1609 } 1610 1611 /// Like CodeGenFunction::destroyARCStrong, but do it with a call. 1612 static void destroyARCStrongWithStore(CodeGenFunction &CGF, 1613 Address addr, 1614 QualType type) { 1615 llvm::Value *null = getNullForVariable(addr); 1616 CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true); 1617 } 1618 1619 static void emitCXXDestructMethod(CodeGenFunction &CGF, 1620 ObjCImplementationDecl *impl) { 1621 CodeGenFunction::RunCleanupsScope scope(CGF); 1622 1623 llvm::Value *self = CGF.LoadObjCSelf(); 1624 1625 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 1626 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 1627 ivar; ivar = ivar->getNextIvar()) { 1628 QualType type = ivar->getType(); 1629 1630 // Check whether the ivar is a destructible type. 1631 QualType::DestructionKind dtorKind = type.isDestructedType(); 1632 if (!dtorKind) continue; 1633 1634 CodeGenFunction::Destroyer *destroyer = nullptr; 1635 1636 // Use a call to objc_storeStrong to destroy strong ivars, for the 1637 // general benefit of the tools. 1638 if (dtorKind == QualType::DK_objc_strong_lifetime) { 1639 destroyer = destroyARCStrongWithStore; 1640 1641 // Otherwise use the default for the destruction kind. 1642 } else { 1643 destroyer = CGF.getDestroyer(dtorKind); 1644 } 1645 1646 CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind); 1647 1648 CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer, 1649 cleanupKind & EHCleanup); 1650 } 1651 1652 assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?"); 1653 } 1654 1655 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1656 ObjCMethodDecl *MD, 1657 bool ctor) { 1658 MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface()); 1659 StartObjCMethod(MD, IMP->getClassInterface()); 1660 1661 // Emit .cxx_construct. 1662 if (ctor) { 1663 // Suppress the final autorelease in ARC. 1664 AutoreleaseResult = false; 1665 1666 for (const auto *IvarInit : IMP->inits()) { 1667 FieldDecl *Field = IvarInit->getAnyMember(); 1668 ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field); 1669 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), 1670 LoadObjCSelf(), Ivar, 0); 1671 EmitAggExpr(IvarInit->getInit(), 1672 AggValueSlot::forLValue(LV, *this, AggValueSlot::IsDestructed, 1673 AggValueSlot::DoesNotNeedGCBarriers, 1674 AggValueSlot::IsNotAliased, 1675 AggValueSlot::DoesNotOverlap)); 1676 } 1677 // constructor returns 'self'. 1678 CodeGenTypes &Types = CGM.getTypes(); 1679 QualType IdTy(CGM.getContext().getObjCIdType()); 1680 llvm::Value *SelfAsId = 1681 Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy)); 1682 EmitReturnOfRValue(RValue::get(SelfAsId), IdTy); 1683 1684 // Emit .cxx_destruct. 1685 } else { 1686 emitCXXDestructMethod(*this, IMP); 1687 } 1688 FinishFunction(); 1689 } 1690 1691 llvm::Value *CodeGenFunction::LoadObjCSelf() { 1692 VarDecl *Self = cast<ObjCMethodDecl>(CurFuncDecl)->getSelfDecl(); 1693 DeclRefExpr DRE(getContext(), Self, 1694 /*is enclosing local*/ (CurFuncDecl != CurCodeDecl), 1695 Self->getType(), VK_LValue, SourceLocation()); 1696 return EmitLoadOfScalar(EmitDeclRefLValue(&DRE), SourceLocation()); 1697 } 1698 1699 QualType CodeGenFunction::TypeOfSelfObject() { 1700 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl); 1701 ImplicitParamDecl *selfDecl = OMD->getSelfDecl(); 1702 const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>( 1703 getContext().getCanonicalType(selfDecl->getType())); 1704 return PTy->getPointeeType(); 1705 } 1706 1707 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){ 1708 llvm::FunctionCallee EnumerationMutationFnPtr = 1709 CGM.getObjCRuntime().EnumerationMutationFunction(); 1710 if (!EnumerationMutationFnPtr) { 1711 CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime"); 1712 return; 1713 } 1714 CGCallee EnumerationMutationFn = 1715 CGCallee::forDirect(EnumerationMutationFnPtr); 1716 1717 CGDebugInfo *DI = getDebugInfo(); 1718 if (DI) 1719 DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin()); 1720 1721 RunCleanupsScope ForScope(*this); 1722 1723 // The local variable comes into scope immediately. 1724 AutoVarEmission variable = AutoVarEmission::invalid(); 1725 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) 1726 variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl())); 1727 1728 JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end"); 1729 1730 // Fast enumeration state. 1731 QualType StateTy = CGM.getObjCFastEnumerationStateType(); 1732 Address StatePtr = CreateMemTemp(StateTy, "state.ptr"); 1733 EmitNullInitialization(StatePtr, StateTy); 1734 1735 // Number of elements in the items array. 1736 static const unsigned NumItems = 16; 1737 1738 // Fetch the countByEnumeratingWithState:objects:count: selector. 1739 IdentifierInfo *II[] = { 1740 &CGM.getContext().Idents.get("countByEnumeratingWithState"), 1741 &CGM.getContext().Idents.get("objects"), 1742 &CGM.getContext().Idents.get("count") 1743 }; 1744 Selector FastEnumSel = 1745 CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]); 1746 1747 QualType ItemsTy = 1748 getContext().getConstantArrayType(getContext().getObjCIdType(), 1749 llvm::APInt(32, NumItems), nullptr, 1750 ArrayType::Normal, 0); 1751 Address ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr"); 1752 1753 // Emit the collection pointer. In ARC, we do a retain. 1754 llvm::Value *Collection; 1755 if (getLangOpts().ObjCAutoRefCount) { 1756 Collection = EmitARCRetainScalarExpr(S.getCollection()); 1757 1758 // Enter a cleanup to do the release. 1759 EmitObjCConsumeObject(S.getCollection()->getType(), Collection); 1760 } else { 1761 Collection = EmitScalarExpr(S.getCollection()); 1762 } 1763 1764 // The 'continue' label needs to appear within the cleanup for the 1765 // collection object. 1766 JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next"); 1767 1768 // Send it our message: 1769 CallArgList Args; 1770 1771 // The first argument is a temporary of the enumeration-state type. 1772 Args.add(RValue::get(StatePtr.getPointer()), 1773 getContext().getPointerType(StateTy)); 1774 1775 // The second argument is a temporary array with space for NumItems 1776 // pointers. We'll actually be loading elements from the array 1777 // pointer written into the control state; this buffer is so that 1778 // collections that *aren't* backed by arrays can still queue up 1779 // batches of elements. 1780 Args.add(RValue::get(ItemsPtr.getPointer()), 1781 getContext().getPointerType(ItemsTy)); 1782 1783 // The third argument is the capacity of that temporary array. 1784 llvm::Type *NSUIntegerTy = ConvertType(getContext().getNSUIntegerType()); 1785 llvm::Constant *Count = llvm::ConstantInt::get(NSUIntegerTy, NumItems); 1786 Args.add(RValue::get(Count), getContext().getNSUIntegerType()); 1787 1788 // Start the enumeration. 1789 RValue CountRV = 1790 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 1791 getContext().getNSUIntegerType(), 1792 FastEnumSel, Collection, Args); 1793 1794 // The initial number of objects that were returned in the buffer. 1795 llvm::Value *initialBufferLimit = CountRV.getScalarVal(); 1796 1797 llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty"); 1798 llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit"); 1799 1800 llvm::Value *zero = llvm::Constant::getNullValue(NSUIntegerTy); 1801 1802 // If the limit pointer was zero to begin with, the collection is 1803 // empty; skip all this. Set the branch weight assuming this has the same 1804 // probability of exiting the loop as any other loop exit. 1805 uint64_t EntryCount = getCurrentProfileCount(); 1806 Builder.CreateCondBr( 1807 Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"), EmptyBB, 1808 LoopInitBB, 1809 createProfileWeights(EntryCount, getProfileCount(S.getBody()))); 1810 1811 // Otherwise, initialize the loop. 1812 EmitBlock(LoopInitBB); 1813 1814 // Save the initial mutations value. This is the value at an 1815 // address that was written into the state object by 1816 // countByEnumeratingWithState:objects:count:. 1817 Address StateMutationsPtrPtr = 1818 Builder.CreateStructGEP(StatePtr, 2, "mutationsptr.ptr"); 1819 llvm::Value *StateMutationsPtr 1820 = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr"); 1821 1822 llvm::Type *UnsignedLongTy = ConvertType(getContext().UnsignedLongTy); 1823 llvm::Value *initialMutations = 1824 Builder.CreateAlignedLoad(UnsignedLongTy, StateMutationsPtr, 1825 getPointerAlign(), "forcoll.initial-mutations"); 1826 1827 // Start looping. This is the point we return to whenever we have a 1828 // fresh, non-empty batch of objects. 1829 llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody"); 1830 EmitBlock(LoopBodyBB); 1831 1832 // The current index into the buffer. 1833 llvm::PHINode *index = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.index"); 1834 index->addIncoming(zero, LoopInitBB); 1835 1836 // The current buffer size. 1837 llvm::PHINode *count = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.count"); 1838 count->addIncoming(initialBufferLimit, LoopInitBB); 1839 1840 incrementProfileCounter(&S); 1841 1842 // Check whether the mutations value has changed from where it was 1843 // at start. StateMutationsPtr should actually be invariant between 1844 // refreshes. 1845 StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr"); 1846 llvm::Value *currentMutations 1847 = Builder.CreateAlignedLoad(UnsignedLongTy, StateMutationsPtr, 1848 getPointerAlign(), "statemutations"); 1849 1850 llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated"); 1851 llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated"); 1852 1853 Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations), 1854 WasNotMutatedBB, WasMutatedBB); 1855 1856 // If so, call the enumeration-mutation function. 1857 EmitBlock(WasMutatedBB); 1858 llvm::Type *ObjCIdType = ConvertType(getContext().getObjCIdType()); 1859 llvm::Value *V = 1860 Builder.CreateBitCast(Collection, ObjCIdType); 1861 CallArgList Args2; 1862 Args2.add(RValue::get(V), getContext().getObjCIdType()); 1863 // FIXME: We shouldn't need to get the function info here, the runtime already 1864 // should have computed it to build the function. 1865 EmitCall( 1866 CGM.getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, Args2), 1867 EnumerationMutationFn, ReturnValueSlot(), Args2); 1868 1869 // Otherwise, or if the mutation function returns, just continue. 1870 EmitBlock(WasNotMutatedBB); 1871 1872 // Initialize the element variable. 1873 RunCleanupsScope elementVariableScope(*this); 1874 bool elementIsVariable; 1875 LValue elementLValue; 1876 QualType elementType; 1877 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) { 1878 // Initialize the variable, in case it's a __block variable or something. 1879 EmitAutoVarInit(variable); 1880 1881 const VarDecl *D = cast<VarDecl>(SD->getSingleDecl()); 1882 DeclRefExpr tempDRE(getContext(), const_cast<VarDecl *>(D), false, 1883 D->getType(), VK_LValue, SourceLocation()); 1884 elementLValue = EmitLValue(&tempDRE); 1885 elementType = D->getType(); 1886 elementIsVariable = true; 1887 1888 if (D->isARCPseudoStrong()) 1889 elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone); 1890 } else { 1891 elementLValue = LValue(); // suppress warning 1892 elementType = cast<Expr>(S.getElement())->getType(); 1893 elementIsVariable = false; 1894 } 1895 llvm::Type *convertedElementType = ConvertType(elementType); 1896 1897 // Fetch the buffer out of the enumeration state. 1898 // TODO: this pointer should actually be invariant between 1899 // refreshes, which would help us do certain loop optimizations. 1900 Address StateItemsPtr = 1901 Builder.CreateStructGEP(StatePtr, 1, "stateitems.ptr"); 1902 llvm::Value *EnumStateItems = 1903 Builder.CreateLoad(StateItemsPtr, "stateitems"); 1904 1905 // Fetch the value at the current index from the buffer. 1906 llvm::Value *CurrentItemPtr = 1907 Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr"); 1908 llvm::Value *CurrentItem = 1909 Builder.CreateAlignedLoad(ObjCIdType, CurrentItemPtr, getPointerAlign()); 1910 1911 if (SanOpts.has(SanitizerKind::ObjCCast)) { 1912 // Before using an item from the collection, check that the implicit cast 1913 // from id to the element type is valid. This is done with instrumentation 1914 // roughly corresponding to: 1915 // 1916 // if (![item isKindOfClass:expectedCls]) { /* emit diagnostic */ } 1917 const ObjCObjectPointerType *ObjPtrTy = 1918 elementType->getAsObjCInterfacePointerType(); 1919 const ObjCInterfaceType *InterfaceTy = 1920 ObjPtrTy ? ObjPtrTy->getInterfaceType() : nullptr; 1921 if (InterfaceTy) { 1922 SanitizerScope SanScope(this); 1923 auto &C = CGM.getContext(); 1924 assert(InterfaceTy->getDecl() && "No decl for ObjC interface type"); 1925 Selector IsKindOfClassSel = GetUnarySelector("isKindOfClass", C); 1926 CallArgList IsKindOfClassArgs; 1927 llvm::Value *Cls = 1928 CGM.getObjCRuntime().GetClass(*this, InterfaceTy->getDecl()); 1929 IsKindOfClassArgs.add(RValue::get(Cls), C.getObjCClassType()); 1930 llvm::Value *IsClass = 1931 CGM.getObjCRuntime() 1932 .GenerateMessageSend(*this, ReturnValueSlot(), C.BoolTy, 1933 IsKindOfClassSel, CurrentItem, 1934 IsKindOfClassArgs) 1935 .getScalarVal(); 1936 llvm::Constant *StaticData[] = { 1937 EmitCheckSourceLocation(S.getBeginLoc()), 1938 EmitCheckTypeDescriptor(QualType(InterfaceTy, 0))}; 1939 EmitCheck({{IsClass, SanitizerKind::ObjCCast}}, 1940 SanitizerHandler::InvalidObjCCast, 1941 ArrayRef<llvm::Constant *>(StaticData), CurrentItem); 1942 } 1943 } 1944 1945 // Cast that value to the right type. 1946 CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType, 1947 "currentitem"); 1948 1949 // Make sure we have an l-value. Yes, this gets evaluated every 1950 // time through the loop. 1951 if (!elementIsVariable) { 1952 elementLValue = EmitLValue(cast<Expr>(S.getElement())); 1953 EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue); 1954 } else { 1955 EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue, 1956 /*isInit*/ true); 1957 } 1958 1959 // If we do have an element variable, this assignment is the end of 1960 // its initialization. 1961 if (elementIsVariable) 1962 EmitAutoVarCleanups(variable); 1963 1964 // Perform the loop body, setting up break and continue labels. 1965 BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody)); 1966 { 1967 RunCleanupsScope Scope(*this); 1968 EmitStmt(S.getBody()); 1969 } 1970 BreakContinueStack.pop_back(); 1971 1972 // Destroy the element variable now. 1973 elementVariableScope.ForceCleanup(); 1974 1975 // Check whether there are more elements. 1976 EmitBlock(AfterBody.getBlock()); 1977 1978 llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch"); 1979 1980 // First we check in the local buffer. 1981 llvm::Value *indexPlusOne = 1982 Builder.CreateAdd(index, llvm::ConstantInt::get(NSUIntegerTy, 1)); 1983 1984 // If we haven't overrun the buffer yet, we can continue. 1985 // Set the branch weights based on the simplifying assumption that this is 1986 // like a while-loop, i.e., ignoring that the false branch fetches more 1987 // elements and then returns to the loop. 1988 Builder.CreateCondBr( 1989 Builder.CreateICmpULT(indexPlusOne, count), LoopBodyBB, FetchMoreBB, 1990 createProfileWeights(getProfileCount(S.getBody()), EntryCount)); 1991 1992 index->addIncoming(indexPlusOne, AfterBody.getBlock()); 1993 count->addIncoming(count, AfterBody.getBlock()); 1994 1995 // Otherwise, we have to fetch more elements. 1996 EmitBlock(FetchMoreBB); 1997 1998 CountRV = 1999 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 2000 getContext().getNSUIntegerType(), 2001 FastEnumSel, Collection, Args); 2002 2003 // If we got a zero count, we're done. 2004 llvm::Value *refetchCount = CountRV.getScalarVal(); 2005 2006 // (note that the message send might split FetchMoreBB) 2007 index->addIncoming(zero, Builder.GetInsertBlock()); 2008 count->addIncoming(refetchCount, Builder.GetInsertBlock()); 2009 2010 Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero), 2011 EmptyBB, LoopBodyBB); 2012 2013 // No more elements. 2014 EmitBlock(EmptyBB); 2015 2016 if (!elementIsVariable) { 2017 // If the element was not a declaration, set it to be null. 2018 2019 llvm::Value *null = llvm::Constant::getNullValue(convertedElementType); 2020 elementLValue = EmitLValue(cast<Expr>(S.getElement())); 2021 EmitStoreThroughLValue(RValue::get(null), elementLValue); 2022 } 2023 2024 if (DI) 2025 DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd()); 2026 2027 ForScope.ForceCleanup(); 2028 EmitBlock(LoopEnd.getBlock()); 2029 } 2030 2031 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) { 2032 CGM.getObjCRuntime().EmitTryStmt(*this, S); 2033 } 2034 2035 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) { 2036 CGM.getObjCRuntime().EmitThrowStmt(*this, S); 2037 } 2038 2039 void CodeGenFunction::EmitObjCAtSynchronizedStmt( 2040 const ObjCAtSynchronizedStmt &S) { 2041 CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S); 2042 } 2043 2044 namespace { 2045 struct CallObjCRelease final : EHScopeStack::Cleanup { 2046 CallObjCRelease(llvm::Value *object) : object(object) {} 2047 llvm::Value *object; 2048 2049 void Emit(CodeGenFunction &CGF, Flags flags) override { 2050 // Releases at the end of the full-expression are imprecise. 2051 CGF.EmitARCRelease(object, ARCImpreciseLifetime); 2052 } 2053 }; 2054 } 2055 2056 /// Produce the code for a CK_ARCConsumeObject. Does a primitive 2057 /// release at the end of the full-expression. 2058 llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type, 2059 llvm::Value *object) { 2060 // If we're in a conditional branch, we need to make the cleanup 2061 // conditional. 2062 pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object); 2063 return object; 2064 } 2065 2066 llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type, 2067 llvm::Value *value) { 2068 return EmitARCRetainAutorelease(type, value); 2069 } 2070 2071 /// Given a number of pointers, inform the optimizer that they're 2072 /// being intrinsically used up until this point in the program. 2073 void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values) { 2074 llvm::Function *&fn = CGM.getObjCEntrypoints().clang_arc_use; 2075 if (!fn) 2076 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_clang_arc_use); 2077 2078 // This isn't really a "runtime" function, but as an intrinsic it 2079 // doesn't really matter as long as we align things up. 2080 EmitNounwindRuntimeCall(fn, values); 2081 } 2082 2083 /// Emit a call to "clang.arc.noop.use", which consumes the result of a call 2084 /// that has operand bundle "clang.arc.attachedcall". 2085 void CodeGenFunction::EmitARCNoopIntrinsicUse(ArrayRef<llvm::Value *> values) { 2086 llvm::Function *&fn = CGM.getObjCEntrypoints().clang_arc_noop_use; 2087 if (!fn) 2088 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_clang_arc_noop_use); 2089 EmitNounwindRuntimeCall(fn, values); 2090 } 2091 2092 static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM, llvm::Value *RTF) { 2093 if (auto *F = dyn_cast<llvm::Function>(RTF)) { 2094 // If the target runtime doesn't naturally support ARC, emit weak 2095 // references to the runtime support library. We don't really 2096 // permit this to fail, but we need a particular relocation style. 2097 if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC() && 2098 !CGM.getTriple().isOSBinFormatCOFF()) { 2099 F->setLinkage(llvm::Function::ExternalWeakLinkage); 2100 } 2101 } 2102 } 2103 2104 static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM, 2105 llvm::FunctionCallee RTF) { 2106 setARCRuntimeFunctionLinkage(CGM, RTF.getCallee()); 2107 } 2108 2109 /// Perform an operation having the signature 2110 /// i8* (i8*) 2111 /// where a null input causes a no-op and returns null. 2112 static llvm::Value *emitARCValueOperation( 2113 CodeGenFunction &CGF, llvm::Value *value, llvm::Type *returnType, 2114 llvm::Function *&fn, llvm::Intrinsic::ID IntID, 2115 llvm::CallInst::TailCallKind tailKind = llvm::CallInst::TCK_None) { 2116 if (isa<llvm::ConstantPointerNull>(value)) 2117 return value; 2118 2119 if (!fn) { 2120 fn = CGF.CGM.getIntrinsic(IntID); 2121 setARCRuntimeFunctionLinkage(CGF.CGM, fn); 2122 } 2123 2124 // Cast the argument to 'id'. 2125 llvm::Type *origType = returnType ? returnType : value->getType(); 2126 value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy); 2127 2128 // Call the function. 2129 llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value); 2130 call->setTailCallKind(tailKind); 2131 2132 // Cast the result back to the original type. 2133 return CGF.Builder.CreateBitCast(call, origType); 2134 } 2135 2136 /// Perform an operation having the following signature: 2137 /// i8* (i8**) 2138 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF, Address addr, 2139 llvm::Function *&fn, 2140 llvm::Intrinsic::ID IntID) { 2141 if (!fn) { 2142 fn = CGF.CGM.getIntrinsic(IntID); 2143 setARCRuntimeFunctionLinkage(CGF.CGM, fn); 2144 } 2145 2146 // Cast the argument to 'id*'. 2147 llvm::Type *origType = addr.getElementType(); 2148 addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy); 2149 2150 // Call the function. 2151 llvm::Value *result = CGF.EmitNounwindRuntimeCall(fn, addr.getPointer()); 2152 2153 // Cast the result back to a dereference of the original type. 2154 if (origType != CGF.Int8PtrTy) 2155 result = CGF.Builder.CreateBitCast(result, origType); 2156 2157 return result; 2158 } 2159 2160 /// Perform an operation having the following signature: 2161 /// i8* (i8**, i8*) 2162 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF, Address addr, 2163 llvm::Value *value, 2164 llvm::Function *&fn, 2165 llvm::Intrinsic::ID IntID, 2166 bool ignored) { 2167 assert(addr.getElementType() == value->getType()); 2168 2169 if (!fn) { 2170 fn = CGF.CGM.getIntrinsic(IntID); 2171 setARCRuntimeFunctionLinkage(CGF.CGM, fn); 2172 } 2173 2174 llvm::Type *origType = value->getType(); 2175 2176 llvm::Value *args[] = { 2177 CGF.Builder.CreateBitCast(addr.getPointer(), CGF.Int8PtrPtrTy), 2178 CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy) 2179 }; 2180 llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args); 2181 2182 if (ignored) return nullptr; 2183 2184 return CGF.Builder.CreateBitCast(result, origType); 2185 } 2186 2187 /// Perform an operation having the following signature: 2188 /// void (i8**, i8**) 2189 static void emitARCCopyOperation(CodeGenFunction &CGF, Address dst, Address src, 2190 llvm::Function *&fn, 2191 llvm::Intrinsic::ID IntID) { 2192 assert(dst.getType() == src.getType()); 2193 2194 if (!fn) { 2195 fn = CGF.CGM.getIntrinsic(IntID); 2196 setARCRuntimeFunctionLinkage(CGF.CGM, fn); 2197 } 2198 2199 llvm::Value *args[] = { 2200 CGF.Builder.CreateBitCast(dst.getPointer(), CGF.Int8PtrPtrTy), 2201 CGF.Builder.CreateBitCast(src.getPointer(), CGF.Int8PtrPtrTy) 2202 }; 2203 CGF.EmitNounwindRuntimeCall(fn, args); 2204 } 2205 2206 /// Perform an operation having the signature 2207 /// i8* (i8*) 2208 /// where a null input causes a no-op and returns null. 2209 static llvm::Value *emitObjCValueOperation(CodeGenFunction &CGF, 2210 llvm::Value *value, 2211 llvm::Type *returnType, 2212 llvm::FunctionCallee &fn, 2213 StringRef fnName) { 2214 if (isa<llvm::ConstantPointerNull>(value)) 2215 return value; 2216 2217 if (!fn) { 2218 llvm::FunctionType *fnType = 2219 llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false); 2220 fn = CGF.CGM.CreateRuntimeFunction(fnType, fnName); 2221 2222 // We have Native ARC, so set nonlazybind attribute for performance 2223 if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee())) 2224 if (fnName == "objc_retain") 2225 f->addFnAttr(llvm::Attribute::NonLazyBind); 2226 } 2227 2228 // Cast the argument to 'id'. 2229 llvm::Type *origType = returnType ? returnType : value->getType(); 2230 value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy); 2231 2232 // Call the function. 2233 llvm::CallBase *Inst = CGF.EmitCallOrInvoke(fn, value); 2234 2235 // Mark calls to objc_autorelease as tail on the assumption that methods 2236 // overriding autorelease do not touch anything on the stack. 2237 if (fnName == "objc_autorelease") 2238 if (auto *Call = dyn_cast<llvm::CallInst>(Inst)) 2239 Call->setTailCall(); 2240 2241 // Cast the result back to the original type. 2242 return CGF.Builder.CreateBitCast(Inst, origType); 2243 } 2244 2245 /// Produce the code to do a retain. Based on the type, calls one of: 2246 /// call i8* \@objc_retain(i8* %value) 2247 /// call i8* \@objc_retainBlock(i8* %value) 2248 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) { 2249 if (type->isBlockPointerType()) 2250 return EmitARCRetainBlock(value, /*mandatory*/ false); 2251 else 2252 return EmitARCRetainNonBlock(value); 2253 } 2254 2255 /// Retain the given object, with normal retain semantics. 2256 /// call i8* \@objc_retain(i8* %value) 2257 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) { 2258 return emitARCValueOperation(*this, value, nullptr, 2259 CGM.getObjCEntrypoints().objc_retain, 2260 llvm::Intrinsic::objc_retain); 2261 } 2262 2263 /// Retain the given block, with _Block_copy semantics. 2264 /// call i8* \@objc_retainBlock(i8* %value) 2265 /// 2266 /// \param mandatory - If false, emit the call with metadata 2267 /// indicating that it's okay for the optimizer to eliminate this call 2268 /// if it can prove that the block never escapes except down the stack. 2269 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value, 2270 bool mandatory) { 2271 llvm::Value *result 2272 = emitARCValueOperation(*this, value, nullptr, 2273 CGM.getObjCEntrypoints().objc_retainBlock, 2274 llvm::Intrinsic::objc_retainBlock); 2275 2276 // If the copy isn't mandatory, add !clang.arc.copy_on_escape to 2277 // tell the optimizer that it doesn't need to do this copy if the 2278 // block doesn't escape, where being passed as an argument doesn't 2279 // count as escaping. 2280 if (!mandatory && isa<llvm::Instruction>(result)) { 2281 llvm::CallInst *call 2282 = cast<llvm::CallInst>(result->stripPointerCasts()); 2283 assert(call->getCalledOperand() == 2284 CGM.getObjCEntrypoints().objc_retainBlock); 2285 2286 call->setMetadata("clang.arc.copy_on_escape", 2287 llvm::MDNode::get(Builder.getContext(), None)); 2288 } 2289 2290 return result; 2291 } 2292 2293 static void emitAutoreleasedReturnValueMarker(CodeGenFunction &CGF) { 2294 // Fetch the void(void) inline asm which marks that we're going to 2295 // do something with the autoreleased return value. 2296 llvm::InlineAsm *&marker 2297 = CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker; 2298 if (!marker) { 2299 StringRef assembly 2300 = CGF.CGM.getTargetCodeGenInfo() 2301 .getARCRetainAutoreleasedReturnValueMarker(); 2302 2303 // If we have an empty assembly string, there's nothing to do. 2304 if (assembly.empty()) { 2305 2306 // Otherwise, at -O0, build an inline asm that we're going to call 2307 // in a moment. 2308 } else if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0) { 2309 llvm::FunctionType *type = 2310 llvm::FunctionType::get(CGF.VoidTy, /*variadic*/false); 2311 2312 marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true); 2313 2314 // If we're at -O1 and above, we don't want to litter the code 2315 // with this marker yet, so leave a breadcrumb for the ARC 2316 // optimizer to pick up. 2317 } else { 2318 const char *retainRVMarkerKey = llvm::objcarc::getRVMarkerModuleFlagStr(); 2319 if (!CGF.CGM.getModule().getModuleFlag(retainRVMarkerKey)) { 2320 auto *str = llvm::MDString::get(CGF.getLLVMContext(), assembly); 2321 CGF.CGM.getModule().addModuleFlag(llvm::Module::Error, 2322 retainRVMarkerKey, str); 2323 } 2324 } 2325 } 2326 2327 // Call the marker asm if we made one, which we do only at -O0. 2328 if (marker) 2329 CGF.Builder.CreateCall(marker, None, CGF.getBundlesForFunclet(marker)); 2330 } 2331 2332 static llvm::Value *emitOptimizedARCReturnCall(llvm::Value *value, 2333 bool IsRetainRV, 2334 CodeGenFunction &CGF) { 2335 emitAutoreleasedReturnValueMarker(CGF); 2336 2337 // Add operand bundle "clang.arc.attachedcall" to the call instead of emitting 2338 // retainRV or claimRV calls in the IR. We currently do this only when the 2339 // optimization level isn't -O0 since global-isel, which is currently run at 2340 // -O0, doesn't know about the operand bundle. 2341 2342 // FIXME: Do this when the target isn't aarch64. 2343 if (CGF.CGM.getCodeGenOpts().OptimizationLevel > 0 && 2344 CGF.CGM.getTarget().getTriple().isAArch64()) { 2345 llvm::Value *bundleArgs[] = {llvm::ConstantInt::get( 2346 CGF.Int64Ty, 2347 llvm::objcarc::getAttachedCallOperandBundleEnum(IsRetainRV))}; 2348 llvm::OperandBundleDef OB("clang.arc.attachedcall", bundleArgs); 2349 auto *oldCall = cast<llvm::CallBase>(value); 2350 llvm::CallBase *newCall = llvm::CallBase::addOperandBundle( 2351 oldCall, llvm::LLVMContext::OB_clang_arc_attachedcall, OB, oldCall); 2352 newCall->copyMetadata(*oldCall); 2353 oldCall->replaceAllUsesWith(newCall); 2354 oldCall->eraseFromParent(); 2355 CGF.EmitARCNoopIntrinsicUse(newCall); 2356 return newCall; 2357 } 2358 2359 bool isNoTail = 2360 CGF.CGM.getTargetCodeGenInfo().markARCOptimizedReturnCallsAsNoTail(); 2361 llvm::CallInst::TailCallKind tailKind = 2362 isNoTail ? llvm::CallInst::TCK_NoTail : llvm::CallInst::TCK_None; 2363 ObjCEntrypoints &EPs = CGF.CGM.getObjCEntrypoints(); 2364 llvm::Function *&EP = IsRetainRV 2365 ? EPs.objc_retainAutoreleasedReturnValue 2366 : EPs.objc_unsafeClaimAutoreleasedReturnValue; 2367 llvm::Intrinsic::ID IID = 2368 IsRetainRV ? llvm::Intrinsic::objc_retainAutoreleasedReturnValue 2369 : llvm::Intrinsic::objc_unsafeClaimAutoreleasedReturnValue; 2370 return emitARCValueOperation(CGF, value, nullptr, EP, IID, tailKind); 2371 } 2372 2373 /// Retain the given object which is the result of a function call. 2374 /// call i8* \@objc_retainAutoreleasedReturnValue(i8* %value) 2375 /// 2376 /// Yes, this function name is one character away from a different 2377 /// call with completely different semantics. 2378 llvm::Value * 2379 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) { 2380 return emitOptimizedARCReturnCall(value, true, *this); 2381 } 2382 2383 /// Claim a possibly-autoreleased return value at +0. This is only 2384 /// valid to do in contexts which do not rely on the retain to keep 2385 /// the object valid for all of its uses; for example, when 2386 /// the value is ignored, or when it is being assigned to an 2387 /// __unsafe_unretained variable. 2388 /// 2389 /// call i8* \@objc_unsafeClaimAutoreleasedReturnValue(i8* %value) 2390 llvm::Value * 2391 CodeGenFunction::EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value) { 2392 return emitOptimizedARCReturnCall(value, false, *this); 2393 } 2394 2395 /// Release the given object. 2396 /// call void \@objc_release(i8* %value) 2397 void CodeGenFunction::EmitARCRelease(llvm::Value *value, 2398 ARCPreciseLifetime_t precise) { 2399 if (isa<llvm::ConstantPointerNull>(value)) return; 2400 2401 llvm::Function *&fn = CGM.getObjCEntrypoints().objc_release; 2402 if (!fn) { 2403 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_release); 2404 setARCRuntimeFunctionLinkage(CGM, fn); 2405 } 2406 2407 // Cast the argument to 'id'. 2408 value = Builder.CreateBitCast(value, Int8PtrTy); 2409 2410 // Call objc_release. 2411 llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value); 2412 2413 if (precise == ARCImpreciseLifetime) { 2414 call->setMetadata("clang.imprecise_release", 2415 llvm::MDNode::get(Builder.getContext(), None)); 2416 } 2417 } 2418 2419 /// Destroy a __strong variable. 2420 /// 2421 /// At -O0, emit a call to store 'null' into the address; 2422 /// instrumenting tools prefer this because the address is exposed, 2423 /// but it's relatively cumbersome to optimize. 2424 /// 2425 /// At -O1 and above, just load and call objc_release. 2426 /// 2427 /// call void \@objc_storeStrong(i8** %addr, i8* null) 2428 void CodeGenFunction::EmitARCDestroyStrong(Address addr, 2429 ARCPreciseLifetime_t precise) { 2430 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 2431 llvm::Value *null = getNullForVariable(addr); 2432 EmitARCStoreStrongCall(addr, null, /*ignored*/ true); 2433 return; 2434 } 2435 2436 llvm::Value *value = Builder.CreateLoad(addr); 2437 EmitARCRelease(value, precise); 2438 } 2439 2440 /// Store into a strong object. Always calls this: 2441 /// call void \@objc_storeStrong(i8** %addr, i8* %value) 2442 llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(Address addr, 2443 llvm::Value *value, 2444 bool ignored) { 2445 assert(addr.getElementType() == value->getType()); 2446 2447 llvm::Function *&fn = CGM.getObjCEntrypoints().objc_storeStrong; 2448 if (!fn) { 2449 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_storeStrong); 2450 setARCRuntimeFunctionLinkage(CGM, fn); 2451 } 2452 2453 llvm::Value *args[] = { 2454 Builder.CreateBitCast(addr.getPointer(), Int8PtrPtrTy), 2455 Builder.CreateBitCast(value, Int8PtrTy) 2456 }; 2457 EmitNounwindRuntimeCall(fn, args); 2458 2459 if (ignored) return nullptr; 2460 return value; 2461 } 2462 2463 /// Store into a strong object. Sometimes calls this: 2464 /// call void \@objc_storeStrong(i8** %addr, i8* %value) 2465 /// Other times, breaks it down into components. 2466 llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst, 2467 llvm::Value *newValue, 2468 bool ignored) { 2469 QualType type = dst.getType(); 2470 bool isBlock = type->isBlockPointerType(); 2471 2472 // Use a store barrier at -O0 unless this is a block type or the 2473 // lvalue is inadequately aligned. 2474 if (shouldUseFusedARCCalls() && 2475 !isBlock && 2476 (dst.getAlignment().isZero() || 2477 dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) { 2478 return EmitARCStoreStrongCall(dst.getAddress(*this), newValue, ignored); 2479 } 2480 2481 // Otherwise, split it out. 2482 2483 // Retain the new value. 2484 newValue = EmitARCRetain(type, newValue); 2485 2486 // Read the old value. 2487 llvm::Value *oldValue = EmitLoadOfScalar(dst, SourceLocation()); 2488 2489 // Store. We do this before the release so that any deallocs won't 2490 // see the old value. 2491 EmitStoreOfScalar(newValue, dst); 2492 2493 // Finally, release the old value. 2494 EmitARCRelease(oldValue, dst.isARCPreciseLifetime()); 2495 2496 return newValue; 2497 } 2498 2499 /// Autorelease the given object. 2500 /// call i8* \@objc_autorelease(i8* %value) 2501 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) { 2502 return emitARCValueOperation(*this, value, nullptr, 2503 CGM.getObjCEntrypoints().objc_autorelease, 2504 llvm::Intrinsic::objc_autorelease); 2505 } 2506 2507 /// Autorelease the given object. 2508 /// call i8* \@objc_autoreleaseReturnValue(i8* %value) 2509 llvm::Value * 2510 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) { 2511 return emitARCValueOperation(*this, value, nullptr, 2512 CGM.getObjCEntrypoints().objc_autoreleaseReturnValue, 2513 llvm::Intrinsic::objc_autoreleaseReturnValue, 2514 llvm::CallInst::TCK_Tail); 2515 } 2516 2517 /// Do a fused retain/autorelease of the given object. 2518 /// call i8* \@objc_retainAutoreleaseReturnValue(i8* %value) 2519 llvm::Value * 2520 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) { 2521 return emitARCValueOperation(*this, value, nullptr, 2522 CGM.getObjCEntrypoints().objc_retainAutoreleaseReturnValue, 2523 llvm::Intrinsic::objc_retainAutoreleaseReturnValue, 2524 llvm::CallInst::TCK_Tail); 2525 } 2526 2527 /// Do a fused retain/autorelease of the given object. 2528 /// call i8* \@objc_retainAutorelease(i8* %value) 2529 /// or 2530 /// %retain = call i8* \@objc_retainBlock(i8* %value) 2531 /// call i8* \@objc_autorelease(i8* %retain) 2532 llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type, 2533 llvm::Value *value) { 2534 if (!type->isBlockPointerType()) 2535 return EmitARCRetainAutoreleaseNonBlock(value); 2536 2537 if (isa<llvm::ConstantPointerNull>(value)) return value; 2538 2539 llvm::Type *origType = value->getType(); 2540 value = Builder.CreateBitCast(value, Int8PtrTy); 2541 value = EmitARCRetainBlock(value, /*mandatory*/ true); 2542 value = EmitARCAutorelease(value); 2543 return Builder.CreateBitCast(value, origType); 2544 } 2545 2546 /// Do a fused retain/autorelease of the given object. 2547 /// call i8* \@objc_retainAutorelease(i8* %value) 2548 llvm::Value * 2549 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) { 2550 return emitARCValueOperation(*this, value, nullptr, 2551 CGM.getObjCEntrypoints().objc_retainAutorelease, 2552 llvm::Intrinsic::objc_retainAutorelease); 2553 } 2554 2555 /// i8* \@objc_loadWeak(i8** %addr) 2556 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)). 2557 llvm::Value *CodeGenFunction::EmitARCLoadWeak(Address addr) { 2558 return emitARCLoadOperation(*this, addr, 2559 CGM.getObjCEntrypoints().objc_loadWeak, 2560 llvm::Intrinsic::objc_loadWeak); 2561 } 2562 2563 /// i8* \@objc_loadWeakRetained(i8** %addr) 2564 llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(Address addr) { 2565 return emitARCLoadOperation(*this, addr, 2566 CGM.getObjCEntrypoints().objc_loadWeakRetained, 2567 llvm::Intrinsic::objc_loadWeakRetained); 2568 } 2569 2570 /// i8* \@objc_storeWeak(i8** %addr, i8* %value) 2571 /// Returns %value. 2572 llvm::Value *CodeGenFunction::EmitARCStoreWeak(Address addr, 2573 llvm::Value *value, 2574 bool ignored) { 2575 return emitARCStoreOperation(*this, addr, value, 2576 CGM.getObjCEntrypoints().objc_storeWeak, 2577 llvm::Intrinsic::objc_storeWeak, ignored); 2578 } 2579 2580 /// i8* \@objc_initWeak(i8** %addr, i8* %value) 2581 /// Returns %value. %addr is known to not have a current weak entry. 2582 /// Essentially equivalent to: 2583 /// *addr = nil; objc_storeWeak(addr, value); 2584 void CodeGenFunction::EmitARCInitWeak(Address addr, llvm::Value *value) { 2585 // If we're initializing to null, just write null to memory; no need 2586 // to get the runtime involved. But don't do this if optimization 2587 // is enabled, because accounting for this would make the optimizer 2588 // much more complicated. 2589 if (isa<llvm::ConstantPointerNull>(value) && 2590 CGM.getCodeGenOpts().OptimizationLevel == 0) { 2591 Builder.CreateStore(value, addr); 2592 return; 2593 } 2594 2595 emitARCStoreOperation(*this, addr, value, 2596 CGM.getObjCEntrypoints().objc_initWeak, 2597 llvm::Intrinsic::objc_initWeak, /*ignored*/ true); 2598 } 2599 2600 /// void \@objc_destroyWeak(i8** %addr) 2601 /// Essentially objc_storeWeak(addr, nil). 2602 void CodeGenFunction::EmitARCDestroyWeak(Address addr) { 2603 llvm::Function *&fn = CGM.getObjCEntrypoints().objc_destroyWeak; 2604 if (!fn) { 2605 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_destroyWeak); 2606 setARCRuntimeFunctionLinkage(CGM, fn); 2607 } 2608 2609 // Cast the argument to 'id*'. 2610 addr = Builder.CreateBitCast(addr, Int8PtrPtrTy); 2611 2612 EmitNounwindRuntimeCall(fn, addr.getPointer()); 2613 } 2614 2615 /// void \@objc_moveWeak(i8** %dest, i8** %src) 2616 /// Disregards the current value in %dest. Leaves %src pointing to nothing. 2617 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)). 2618 void CodeGenFunction::EmitARCMoveWeak(Address dst, Address src) { 2619 emitARCCopyOperation(*this, dst, src, 2620 CGM.getObjCEntrypoints().objc_moveWeak, 2621 llvm::Intrinsic::objc_moveWeak); 2622 } 2623 2624 /// void \@objc_copyWeak(i8** %dest, i8** %src) 2625 /// Disregards the current value in %dest. Essentially 2626 /// objc_release(objc_initWeak(dest, objc_readWeakRetained(src))) 2627 void CodeGenFunction::EmitARCCopyWeak(Address dst, Address src) { 2628 emitARCCopyOperation(*this, dst, src, 2629 CGM.getObjCEntrypoints().objc_copyWeak, 2630 llvm::Intrinsic::objc_copyWeak); 2631 } 2632 2633 void CodeGenFunction::emitARCCopyAssignWeak(QualType Ty, Address DstAddr, 2634 Address SrcAddr) { 2635 llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr); 2636 Object = EmitObjCConsumeObject(Ty, Object); 2637 EmitARCStoreWeak(DstAddr, Object, false); 2638 } 2639 2640 void CodeGenFunction::emitARCMoveAssignWeak(QualType Ty, Address DstAddr, 2641 Address SrcAddr) { 2642 llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr); 2643 Object = EmitObjCConsumeObject(Ty, Object); 2644 EmitARCStoreWeak(DstAddr, Object, false); 2645 EmitARCDestroyWeak(SrcAddr); 2646 } 2647 2648 /// Produce the code to do a objc_autoreleasepool_push. 2649 /// call i8* \@objc_autoreleasePoolPush(void) 2650 llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() { 2651 llvm::Function *&fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPush; 2652 if (!fn) { 2653 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPush); 2654 setARCRuntimeFunctionLinkage(CGM, fn); 2655 } 2656 2657 return EmitNounwindRuntimeCall(fn); 2658 } 2659 2660 /// Produce the code to do a primitive release. 2661 /// call void \@objc_autoreleasePoolPop(i8* %ptr) 2662 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) { 2663 assert(value->getType() == Int8PtrTy); 2664 2665 if (getInvokeDest()) { 2666 // Call the runtime method not the intrinsic if we are handling exceptions 2667 llvm::FunctionCallee &fn = 2668 CGM.getObjCEntrypoints().objc_autoreleasePoolPopInvoke; 2669 if (!fn) { 2670 llvm::FunctionType *fnType = 2671 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false); 2672 fn = CGM.CreateRuntimeFunction(fnType, "objc_autoreleasePoolPop"); 2673 setARCRuntimeFunctionLinkage(CGM, fn); 2674 } 2675 2676 // objc_autoreleasePoolPop can throw. 2677 EmitRuntimeCallOrInvoke(fn, value); 2678 } else { 2679 llvm::FunctionCallee &fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPop; 2680 if (!fn) { 2681 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPop); 2682 setARCRuntimeFunctionLinkage(CGM, fn); 2683 } 2684 2685 EmitRuntimeCall(fn, value); 2686 } 2687 } 2688 2689 /// Produce the code to do an MRR version objc_autoreleasepool_push. 2690 /// Which is: [[NSAutoreleasePool alloc] init]; 2691 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class. 2692 /// init is declared as: - (id) init; in its NSObject super class. 2693 /// 2694 llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() { 2695 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 2696 llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this); 2697 // [NSAutoreleasePool alloc] 2698 IdentifierInfo *II = &CGM.getContext().Idents.get("alloc"); 2699 Selector AllocSel = getContext().Selectors.getSelector(0, &II); 2700 CallArgList Args; 2701 RValue AllocRV = 2702 Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 2703 getContext().getObjCIdType(), 2704 AllocSel, Receiver, Args); 2705 2706 // [Receiver init] 2707 Receiver = AllocRV.getScalarVal(); 2708 II = &CGM.getContext().Idents.get("init"); 2709 Selector InitSel = getContext().Selectors.getSelector(0, &II); 2710 RValue InitRV = 2711 Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 2712 getContext().getObjCIdType(), 2713 InitSel, Receiver, Args); 2714 return InitRV.getScalarVal(); 2715 } 2716 2717 /// Allocate the given objc object. 2718 /// call i8* \@objc_alloc(i8* %value) 2719 llvm::Value *CodeGenFunction::EmitObjCAlloc(llvm::Value *value, 2720 llvm::Type *resultType) { 2721 return emitObjCValueOperation(*this, value, resultType, 2722 CGM.getObjCEntrypoints().objc_alloc, 2723 "objc_alloc"); 2724 } 2725 2726 /// Allocate the given objc object. 2727 /// call i8* \@objc_allocWithZone(i8* %value) 2728 llvm::Value *CodeGenFunction::EmitObjCAllocWithZone(llvm::Value *value, 2729 llvm::Type *resultType) { 2730 return emitObjCValueOperation(*this, value, resultType, 2731 CGM.getObjCEntrypoints().objc_allocWithZone, 2732 "objc_allocWithZone"); 2733 } 2734 2735 llvm::Value *CodeGenFunction::EmitObjCAllocInit(llvm::Value *value, 2736 llvm::Type *resultType) { 2737 return emitObjCValueOperation(*this, value, resultType, 2738 CGM.getObjCEntrypoints().objc_alloc_init, 2739 "objc_alloc_init"); 2740 } 2741 2742 /// Produce the code to do a primitive release. 2743 /// [tmp drain]; 2744 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) { 2745 IdentifierInfo *II = &CGM.getContext().Idents.get("drain"); 2746 Selector DrainSel = getContext().Selectors.getSelector(0, &II); 2747 CallArgList Args; 2748 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 2749 getContext().VoidTy, DrainSel, Arg, Args); 2750 } 2751 2752 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF, 2753 Address addr, 2754 QualType type) { 2755 CGF.EmitARCDestroyStrong(addr, ARCPreciseLifetime); 2756 } 2757 2758 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF, 2759 Address addr, 2760 QualType type) { 2761 CGF.EmitARCDestroyStrong(addr, ARCImpreciseLifetime); 2762 } 2763 2764 void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF, 2765 Address addr, 2766 QualType type) { 2767 CGF.EmitARCDestroyWeak(addr); 2768 } 2769 2770 void CodeGenFunction::emitARCIntrinsicUse(CodeGenFunction &CGF, Address addr, 2771 QualType type) { 2772 llvm::Value *value = CGF.Builder.CreateLoad(addr); 2773 CGF.EmitARCIntrinsicUse(value); 2774 } 2775 2776 /// Autorelease the given object. 2777 /// call i8* \@objc_autorelease(i8* %value) 2778 llvm::Value *CodeGenFunction::EmitObjCAutorelease(llvm::Value *value, 2779 llvm::Type *returnType) { 2780 return emitObjCValueOperation( 2781 *this, value, returnType, 2782 CGM.getObjCEntrypoints().objc_autoreleaseRuntimeFunction, 2783 "objc_autorelease"); 2784 } 2785 2786 /// Retain the given object, with normal retain semantics. 2787 /// call i8* \@objc_retain(i8* %value) 2788 llvm::Value *CodeGenFunction::EmitObjCRetainNonBlock(llvm::Value *value, 2789 llvm::Type *returnType) { 2790 return emitObjCValueOperation( 2791 *this, value, returnType, 2792 CGM.getObjCEntrypoints().objc_retainRuntimeFunction, "objc_retain"); 2793 } 2794 2795 /// Release the given object. 2796 /// call void \@objc_release(i8* %value) 2797 void CodeGenFunction::EmitObjCRelease(llvm::Value *value, 2798 ARCPreciseLifetime_t precise) { 2799 if (isa<llvm::ConstantPointerNull>(value)) return; 2800 2801 llvm::FunctionCallee &fn = 2802 CGM.getObjCEntrypoints().objc_releaseRuntimeFunction; 2803 if (!fn) { 2804 llvm::FunctionType *fnType = 2805 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false); 2806 fn = CGM.CreateRuntimeFunction(fnType, "objc_release"); 2807 setARCRuntimeFunctionLinkage(CGM, fn); 2808 // We have Native ARC, so set nonlazybind attribute for performance 2809 if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee())) 2810 f->addFnAttr(llvm::Attribute::NonLazyBind); 2811 } 2812 2813 // Cast the argument to 'id'. 2814 value = Builder.CreateBitCast(value, Int8PtrTy); 2815 2816 // Call objc_release. 2817 llvm::CallBase *call = EmitCallOrInvoke(fn, value); 2818 2819 if (precise == ARCImpreciseLifetime) { 2820 call->setMetadata("clang.imprecise_release", 2821 llvm::MDNode::get(Builder.getContext(), None)); 2822 } 2823 } 2824 2825 namespace { 2826 struct CallObjCAutoreleasePoolObject final : EHScopeStack::Cleanup { 2827 llvm::Value *Token; 2828 2829 CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {} 2830 2831 void Emit(CodeGenFunction &CGF, Flags flags) override { 2832 CGF.EmitObjCAutoreleasePoolPop(Token); 2833 } 2834 }; 2835 struct CallObjCMRRAutoreleasePoolObject final : EHScopeStack::Cleanup { 2836 llvm::Value *Token; 2837 2838 CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {} 2839 2840 void Emit(CodeGenFunction &CGF, Flags flags) override { 2841 CGF.EmitObjCMRRAutoreleasePoolPop(Token); 2842 } 2843 }; 2844 } 2845 2846 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) { 2847 if (CGM.getLangOpts().ObjCAutoRefCount) 2848 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr); 2849 else 2850 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr); 2851 } 2852 2853 static bool shouldRetainObjCLifetime(Qualifiers::ObjCLifetime lifetime) { 2854 switch (lifetime) { 2855 case Qualifiers::OCL_None: 2856 case Qualifiers::OCL_ExplicitNone: 2857 case Qualifiers::OCL_Strong: 2858 case Qualifiers::OCL_Autoreleasing: 2859 return true; 2860 2861 case Qualifiers::OCL_Weak: 2862 return false; 2863 } 2864 2865 llvm_unreachable("impossible lifetime!"); 2866 } 2867 2868 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2869 LValue lvalue, 2870 QualType type) { 2871 llvm::Value *result; 2872 bool shouldRetain = shouldRetainObjCLifetime(type.getObjCLifetime()); 2873 if (shouldRetain) { 2874 result = CGF.EmitLoadOfLValue(lvalue, SourceLocation()).getScalarVal(); 2875 } else { 2876 assert(type.getObjCLifetime() == Qualifiers::OCL_Weak); 2877 result = CGF.EmitARCLoadWeakRetained(lvalue.getAddress(CGF)); 2878 } 2879 return TryEmitResult(result, !shouldRetain); 2880 } 2881 2882 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2883 const Expr *e) { 2884 e = e->IgnoreParens(); 2885 QualType type = e->getType(); 2886 2887 // If we're loading retained from a __strong xvalue, we can avoid 2888 // an extra retain/release pair by zeroing out the source of this 2889 // "move" operation. 2890 if (e->isXValue() && 2891 !type.isConstQualified() && 2892 type.getObjCLifetime() == Qualifiers::OCL_Strong) { 2893 // Emit the lvalue. 2894 LValue lv = CGF.EmitLValue(e); 2895 2896 // Load the object pointer. 2897 llvm::Value *result = CGF.EmitLoadOfLValue(lv, 2898 SourceLocation()).getScalarVal(); 2899 2900 // Set the source pointer to NULL. 2901 CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress(CGF)), lv); 2902 2903 return TryEmitResult(result, true); 2904 } 2905 2906 // As a very special optimization, in ARC++, if the l-value is the 2907 // result of a non-volatile assignment, do a simple retain of the 2908 // result of the call to objc_storeWeak instead of reloading. 2909 if (CGF.getLangOpts().CPlusPlus && 2910 !type.isVolatileQualified() && 2911 type.getObjCLifetime() == Qualifiers::OCL_Weak && 2912 isa<BinaryOperator>(e) && 2913 cast<BinaryOperator>(e)->getOpcode() == BO_Assign) 2914 return TryEmitResult(CGF.EmitScalarExpr(e), false); 2915 2916 // Try to emit code for scalar constant instead of emitting LValue and 2917 // loading it because we are not guaranteed to have an l-value. One of such 2918 // cases is DeclRefExpr referencing non-odr-used constant-evaluated variable. 2919 if (const auto *decl_expr = dyn_cast<DeclRefExpr>(e)) { 2920 auto *DRE = const_cast<DeclRefExpr *>(decl_expr); 2921 if (CodeGenFunction::ConstantEmission constant = CGF.tryEmitAsConstant(DRE)) 2922 return TryEmitResult(CGF.emitScalarConstant(constant, DRE), 2923 !shouldRetainObjCLifetime(type.getObjCLifetime())); 2924 } 2925 2926 return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type); 2927 } 2928 2929 typedef llvm::function_ref<llvm::Value *(CodeGenFunction &CGF, 2930 llvm::Value *value)> 2931 ValueTransform; 2932 2933 /// Insert code immediately after a call. 2934 2935 // FIXME: We should find a way to emit the runtime call immediately 2936 // after the call is emitted to eliminate the need for this function. 2937 static llvm::Value *emitARCOperationAfterCall(CodeGenFunction &CGF, 2938 llvm::Value *value, 2939 ValueTransform doAfterCall, 2940 ValueTransform doFallback) { 2941 CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP(); 2942 2943 if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) { 2944 // Place the retain immediately following the call. 2945 CGF.Builder.SetInsertPoint(call->getParent(), 2946 ++llvm::BasicBlock::iterator(call)); 2947 value = doAfterCall(CGF, value); 2948 } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) { 2949 // Place the retain at the beginning of the normal destination block. 2950 llvm::BasicBlock *BB = invoke->getNormalDest(); 2951 CGF.Builder.SetInsertPoint(BB, BB->begin()); 2952 value = doAfterCall(CGF, value); 2953 2954 // Bitcasts can arise because of related-result returns. Rewrite 2955 // the operand. 2956 } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) { 2957 // Change the insert point to avoid emitting the fall-back call after the 2958 // bitcast. 2959 CGF.Builder.SetInsertPoint(bitcast->getParent(), bitcast->getIterator()); 2960 llvm::Value *operand = bitcast->getOperand(0); 2961 operand = emitARCOperationAfterCall(CGF, operand, doAfterCall, doFallback); 2962 bitcast->setOperand(0, operand); 2963 value = bitcast; 2964 } else { 2965 auto *phi = dyn_cast<llvm::PHINode>(value); 2966 if (phi && phi->getNumIncomingValues() == 2 && 2967 isa<llvm::ConstantPointerNull>(phi->getIncomingValue(1)) && 2968 isa<llvm::CallBase>(phi->getIncomingValue(0))) { 2969 // Handle phi instructions that are generated when it's necessary to check 2970 // whether the receiver of a message is null. 2971 llvm::Value *inVal = phi->getIncomingValue(0); 2972 inVal = emitARCOperationAfterCall(CGF, inVal, doAfterCall, doFallback); 2973 phi->setIncomingValue(0, inVal); 2974 value = phi; 2975 } else { 2976 // Generic fall-back case. 2977 // Retain using the non-block variant: we never need to do a copy 2978 // of a block that's been returned to us. 2979 value = doFallback(CGF, value); 2980 } 2981 } 2982 2983 CGF.Builder.restoreIP(ip); 2984 return value; 2985 } 2986 2987 /// Given that the given expression is some sort of call (which does 2988 /// not return retained), emit a retain following it. 2989 static llvm::Value *emitARCRetainCallResult(CodeGenFunction &CGF, 2990 const Expr *e) { 2991 llvm::Value *value = CGF.EmitScalarExpr(e); 2992 return emitARCOperationAfterCall(CGF, value, 2993 [](CodeGenFunction &CGF, llvm::Value *value) { 2994 return CGF.EmitARCRetainAutoreleasedReturnValue(value); 2995 }, 2996 [](CodeGenFunction &CGF, llvm::Value *value) { 2997 return CGF.EmitARCRetainNonBlock(value); 2998 }); 2999 } 3000 3001 /// Given that the given expression is some sort of call (which does 3002 /// not return retained), perform an unsafeClaim following it. 3003 static llvm::Value *emitARCUnsafeClaimCallResult(CodeGenFunction &CGF, 3004 const Expr *e) { 3005 llvm::Value *value = CGF.EmitScalarExpr(e); 3006 return emitARCOperationAfterCall(CGF, value, 3007 [](CodeGenFunction &CGF, llvm::Value *value) { 3008 return CGF.EmitARCUnsafeClaimAutoreleasedReturnValue(value); 3009 }, 3010 [](CodeGenFunction &CGF, llvm::Value *value) { 3011 return value; 3012 }); 3013 } 3014 3015 llvm::Value *CodeGenFunction::EmitARCReclaimReturnedObject(const Expr *E, 3016 bool allowUnsafeClaim) { 3017 if (allowUnsafeClaim && 3018 CGM.getLangOpts().ObjCRuntime.hasARCUnsafeClaimAutoreleasedReturnValue()) { 3019 return emitARCUnsafeClaimCallResult(*this, E); 3020 } else { 3021 llvm::Value *value = emitARCRetainCallResult(*this, E); 3022 return EmitObjCConsumeObject(E->getType(), value); 3023 } 3024 } 3025 3026 /// Determine whether it might be important to emit a separate 3027 /// objc_retain_block on the result of the given expression, or 3028 /// whether it's okay to just emit it in a +1 context. 3029 static bool shouldEmitSeparateBlockRetain(const Expr *e) { 3030 assert(e->getType()->isBlockPointerType()); 3031 e = e->IgnoreParens(); 3032 3033 // For future goodness, emit block expressions directly in +1 3034 // contexts if we can. 3035 if (isa<BlockExpr>(e)) 3036 return false; 3037 3038 if (const CastExpr *cast = dyn_cast<CastExpr>(e)) { 3039 switch (cast->getCastKind()) { 3040 // Emitting these operations in +1 contexts is goodness. 3041 case CK_LValueToRValue: 3042 case CK_ARCReclaimReturnedObject: 3043 case CK_ARCConsumeObject: 3044 case CK_ARCProduceObject: 3045 return false; 3046 3047 // These operations preserve a block type. 3048 case CK_NoOp: 3049 case CK_BitCast: 3050 return shouldEmitSeparateBlockRetain(cast->getSubExpr()); 3051 3052 // These operations are known to be bad (or haven't been considered). 3053 case CK_AnyPointerToBlockPointerCast: 3054 default: 3055 return true; 3056 } 3057 } 3058 3059 return true; 3060 } 3061 3062 namespace { 3063 /// A CRTP base class for emitting expressions of retainable object 3064 /// pointer type in ARC. 3065 template <typename Impl, typename Result> class ARCExprEmitter { 3066 protected: 3067 CodeGenFunction &CGF; 3068 Impl &asImpl() { return *static_cast<Impl*>(this); } 3069 3070 ARCExprEmitter(CodeGenFunction &CGF) : CGF(CGF) {} 3071 3072 public: 3073 Result visit(const Expr *e); 3074 Result visitCastExpr(const CastExpr *e); 3075 Result visitPseudoObjectExpr(const PseudoObjectExpr *e); 3076 Result visitBlockExpr(const BlockExpr *e); 3077 Result visitBinaryOperator(const BinaryOperator *e); 3078 Result visitBinAssign(const BinaryOperator *e); 3079 Result visitBinAssignUnsafeUnretained(const BinaryOperator *e); 3080 Result visitBinAssignAutoreleasing(const BinaryOperator *e); 3081 Result visitBinAssignWeak(const BinaryOperator *e); 3082 Result visitBinAssignStrong(const BinaryOperator *e); 3083 3084 // Minimal implementation: 3085 // Result visitLValueToRValue(const Expr *e) 3086 // Result visitConsumeObject(const Expr *e) 3087 // Result visitExtendBlockObject(const Expr *e) 3088 // Result visitReclaimReturnedObject(const Expr *e) 3089 // Result visitCall(const Expr *e) 3090 // Result visitExpr(const Expr *e) 3091 // 3092 // Result emitBitCast(Result result, llvm::Type *resultType) 3093 // llvm::Value *getValueOfResult(Result result) 3094 }; 3095 } 3096 3097 /// Try to emit a PseudoObjectExpr under special ARC rules. 3098 /// 3099 /// This massively duplicates emitPseudoObjectRValue. 3100 template <typename Impl, typename Result> 3101 Result 3102 ARCExprEmitter<Impl,Result>::visitPseudoObjectExpr(const PseudoObjectExpr *E) { 3103 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 3104 3105 // Find the result expression. 3106 const Expr *resultExpr = E->getResultExpr(); 3107 assert(resultExpr); 3108 Result result; 3109 3110 for (PseudoObjectExpr::const_semantics_iterator 3111 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 3112 const Expr *semantic = *i; 3113 3114 // If this semantic expression is an opaque value, bind it 3115 // to the result of its source expression. 3116 if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 3117 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 3118 OVMA opaqueData; 3119 3120 // If this semantic is the result of the pseudo-object 3121 // expression, try to evaluate the source as +1. 3122 if (ov == resultExpr) { 3123 assert(!OVMA::shouldBindAsLValue(ov)); 3124 result = asImpl().visit(ov->getSourceExpr()); 3125 opaqueData = OVMA::bind(CGF, ov, 3126 RValue::get(asImpl().getValueOfResult(result))); 3127 3128 // Otherwise, just bind it. 3129 } else { 3130 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 3131 } 3132 opaques.push_back(opaqueData); 3133 3134 // Otherwise, if the expression is the result, evaluate it 3135 // and remember the result. 3136 } else if (semantic == resultExpr) { 3137 result = asImpl().visit(semantic); 3138 3139 // Otherwise, evaluate the expression in an ignored context. 3140 } else { 3141 CGF.EmitIgnoredExpr(semantic); 3142 } 3143 } 3144 3145 // Unbind all the opaques now. 3146 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 3147 opaques[i].unbind(CGF); 3148 3149 return result; 3150 } 3151 3152 template <typename Impl, typename Result> 3153 Result ARCExprEmitter<Impl, Result>::visitBlockExpr(const BlockExpr *e) { 3154 // The default implementation just forwards the expression to visitExpr. 3155 return asImpl().visitExpr(e); 3156 } 3157 3158 template <typename Impl, typename Result> 3159 Result ARCExprEmitter<Impl,Result>::visitCastExpr(const CastExpr *e) { 3160 switch (e->getCastKind()) { 3161 3162 // No-op casts don't change the type, so we just ignore them. 3163 case CK_NoOp: 3164 return asImpl().visit(e->getSubExpr()); 3165 3166 // These casts can change the type. 3167 case CK_CPointerToObjCPointerCast: 3168 case CK_BlockPointerToObjCPointerCast: 3169 case CK_AnyPointerToBlockPointerCast: 3170 case CK_BitCast: { 3171 llvm::Type *resultType = CGF.ConvertType(e->getType()); 3172 assert(e->getSubExpr()->getType()->hasPointerRepresentation()); 3173 Result result = asImpl().visit(e->getSubExpr()); 3174 return asImpl().emitBitCast(result, resultType); 3175 } 3176 3177 // Handle some casts specially. 3178 case CK_LValueToRValue: 3179 return asImpl().visitLValueToRValue(e->getSubExpr()); 3180 case CK_ARCConsumeObject: 3181 return asImpl().visitConsumeObject(e->getSubExpr()); 3182 case CK_ARCExtendBlockObject: 3183 return asImpl().visitExtendBlockObject(e->getSubExpr()); 3184 case CK_ARCReclaimReturnedObject: 3185 return asImpl().visitReclaimReturnedObject(e->getSubExpr()); 3186 3187 // Otherwise, use the default logic. 3188 default: 3189 return asImpl().visitExpr(e); 3190 } 3191 } 3192 3193 template <typename Impl, typename Result> 3194 Result 3195 ARCExprEmitter<Impl,Result>::visitBinaryOperator(const BinaryOperator *e) { 3196 switch (e->getOpcode()) { 3197 case BO_Comma: 3198 CGF.EmitIgnoredExpr(e->getLHS()); 3199 CGF.EnsureInsertPoint(); 3200 return asImpl().visit(e->getRHS()); 3201 3202 case BO_Assign: 3203 return asImpl().visitBinAssign(e); 3204 3205 default: 3206 return asImpl().visitExpr(e); 3207 } 3208 } 3209 3210 template <typename Impl, typename Result> 3211 Result ARCExprEmitter<Impl,Result>::visitBinAssign(const BinaryOperator *e) { 3212 switch (e->getLHS()->getType().getObjCLifetime()) { 3213 case Qualifiers::OCL_ExplicitNone: 3214 return asImpl().visitBinAssignUnsafeUnretained(e); 3215 3216 case Qualifiers::OCL_Weak: 3217 return asImpl().visitBinAssignWeak(e); 3218 3219 case Qualifiers::OCL_Autoreleasing: 3220 return asImpl().visitBinAssignAutoreleasing(e); 3221 3222 case Qualifiers::OCL_Strong: 3223 return asImpl().visitBinAssignStrong(e); 3224 3225 case Qualifiers::OCL_None: 3226 return asImpl().visitExpr(e); 3227 } 3228 llvm_unreachable("bad ObjC ownership qualifier"); 3229 } 3230 3231 /// The default rule for __unsafe_unretained emits the RHS recursively, 3232 /// stores into the unsafe variable, and propagates the result outward. 3233 template <typename Impl, typename Result> 3234 Result ARCExprEmitter<Impl,Result>:: 3235 visitBinAssignUnsafeUnretained(const BinaryOperator *e) { 3236 // Recursively emit the RHS. 3237 // For __block safety, do this before emitting the LHS. 3238 Result result = asImpl().visit(e->getRHS()); 3239 3240 // Perform the store. 3241 LValue lvalue = 3242 CGF.EmitCheckedLValue(e->getLHS(), CodeGenFunction::TCK_Store); 3243 CGF.EmitStoreThroughLValue(RValue::get(asImpl().getValueOfResult(result)), 3244 lvalue); 3245 3246 return result; 3247 } 3248 3249 template <typename Impl, typename Result> 3250 Result 3251 ARCExprEmitter<Impl,Result>::visitBinAssignAutoreleasing(const BinaryOperator *e) { 3252 return asImpl().visitExpr(e); 3253 } 3254 3255 template <typename Impl, typename Result> 3256 Result 3257 ARCExprEmitter<Impl,Result>::visitBinAssignWeak(const BinaryOperator *e) { 3258 return asImpl().visitExpr(e); 3259 } 3260 3261 template <typename Impl, typename Result> 3262 Result 3263 ARCExprEmitter<Impl,Result>::visitBinAssignStrong(const BinaryOperator *e) { 3264 return asImpl().visitExpr(e); 3265 } 3266 3267 /// The general expression-emission logic. 3268 template <typename Impl, typename Result> 3269 Result ARCExprEmitter<Impl,Result>::visit(const Expr *e) { 3270 // We should *never* see a nested full-expression here, because if 3271 // we fail to emit at +1, our caller must not retain after we close 3272 // out the full-expression. This isn't as important in the unsafe 3273 // emitter. 3274 assert(!isa<ExprWithCleanups>(e)); 3275 3276 // Look through parens, __extension__, generic selection, etc. 3277 e = e->IgnoreParens(); 3278 3279 // Handle certain kinds of casts. 3280 if (const CastExpr *ce = dyn_cast<CastExpr>(e)) { 3281 return asImpl().visitCastExpr(ce); 3282 3283 // Handle the comma operator. 3284 } else if (auto op = dyn_cast<BinaryOperator>(e)) { 3285 return asImpl().visitBinaryOperator(op); 3286 3287 // TODO: handle conditional operators here 3288 3289 // For calls and message sends, use the retained-call logic. 3290 // Delegate inits are a special case in that they're the only 3291 // returns-retained expression that *isn't* surrounded by 3292 // a consume. 3293 } else if (isa<CallExpr>(e) || 3294 (isa<ObjCMessageExpr>(e) && 3295 !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) { 3296 return asImpl().visitCall(e); 3297 3298 // Look through pseudo-object expressions. 3299 } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) { 3300 return asImpl().visitPseudoObjectExpr(pseudo); 3301 } else if (auto *be = dyn_cast<BlockExpr>(e)) 3302 return asImpl().visitBlockExpr(be); 3303 3304 return asImpl().visitExpr(e); 3305 } 3306 3307 namespace { 3308 3309 /// An emitter for +1 results. 3310 struct ARCRetainExprEmitter : 3311 public ARCExprEmitter<ARCRetainExprEmitter, TryEmitResult> { 3312 3313 ARCRetainExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {} 3314 3315 llvm::Value *getValueOfResult(TryEmitResult result) { 3316 return result.getPointer(); 3317 } 3318 3319 TryEmitResult emitBitCast(TryEmitResult result, llvm::Type *resultType) { 3320 llvm::Value *value = result.getPointer(); 3321 value = CGF.Builder.CreateBitCast(value, resultType); 3322 result.setPointer(value); 3323 return result; 3324 } 3325 3326 TryEmitResult visitLValueToRValue(const Expr *e) { 3327 return tryEmitARCRetainLoadOfScalar(CGF, e); 3328 } 3329 3330 /// For consumptions, just emit the subexpression and thus elide 3331 /// the retain/release pair. 3332 TryEmitResult visitConsumeObject(const Expr *e) { 3333 llvm::Value *result = CGF.EmitScalarExpr(e); 3334 return TryEmitResult(result, true); 3335 } 3336 3337 TryEmitResult visitBlockExpr(const BlockExpr *e) { 3338 TryEmitResult result = visitExpr(e); 3339 // Avoid the block-retain if this is a block literal that doesn't need to be 3340 // copied to the heap. 3341 if (e->getBlockDecl()->canAvoidCopyToHeap()) 3342 result.setInt(true); 3343 return result; 3344 } 3345 3346 /// Block extends are net +0. Naively, we could just recurse on 3347 /// the subexpression, but actually we need to ensure that the 3348 /// value is copied as a block, so there's a little filter here. 3349 TryEmitResult visitExtendBlockObject(const Expr *e) { 3350 llvm::Value *result; // will be a +0 value 3351 3352 // If we can't safely assume the sub-expression will produce a 3353 // block-copied value, emit the sub-expression at +0. 3354 if (shouldEmitSeparateBlockRetain(e)) { 3355 result = CGF.EmitScalarExpr(e); 3356 3357 // Otherwise, try to emit the sub-expression at +1 recursively. 3358 } else { 3359 TryEmitResult subresult = asImpl().visit(e); 3360 3361 // If that produced a retained value, just use that. 3362 if (subresult.getInt()) { 3363 return subresult; 3364 } 3365 3366 // Otherwise it's +0. 3367 result = subresult.getPointer(); 3368 } 3369 3370 // Retain the object as a block. 3371 result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true); 3372 return TryEmitResult(result, true); 3373 } 3374 3375 /// For reclaims, emit the subexpression as a retained call and 3376 /// skip the consumption. 3377 TryEmitResult visitReclaimReturnedObject(const Expr *e) { 3378 llvm::Value *result = emitARCRetainCallResult(CGF, e); 3379 return TryEmitResult(result, true); 3380 } 3381 3382 /// When we have an undecorated call, retroactively do a claim. 3383 TryEmitResult visitCall(const Expr *e) { 3384 llvm::Value *result = emitARCRetainCallResult(CGF, e); 3385 return TryEmitResult(result, true); 3386 } 3387 3388 // TODO: maybe special-case visitBinAssignWeak? 3389 3390 TryEmitResult visitExpr(const Expr *e) { 3391 // We didn't find an obvious production, so emit what we've got and 3392 // tell the caller that we didn't manage to retain. 3393 llvm::Value *result = CGF.EmitScalarExpr(e); 3394 return TryEmitResult(result, false); 3395 } 3396 }; 3397 } 3398 3399 static TryEmitResult 3400 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) { 3401 return ARCRetainExprEmitter(CGF).visit(e); 3402 } 3403 3404 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF, 3405 LValue lvalue, 3406 QualType type) { 3407 TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type); 3408 llvm::Value *value = result.getPointer(); 3409 if (!result.getInt()) 3410 value = CGF.EmitARCRetain(type, value); 3411 return value; 3412 } 3413 3414 /// EmitARCRetainScalarExpr - Semantically equivalent to 3415 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a 3416 /// best-effort attempt to peephole expressions that naturally produce 3417 /// retained objects. 3418 llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) { 3419 // The retain needs to happen within the full-expression. 3420 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { 3421 RunCleanupsScope scope(*this); 3422 return EmitARCRetainScalarExpr(cleanups->getSubExpr()); 3423 } 3424 3425 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e); 3426 llvm::Value *value = result.getPointer(); 3427 if (!result.getInt()) 3428 value = EmitARCRetain(e->getType(), value); 3429 return value; 3430 } 3431 3432 llvm::Value * 3433 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) { 3434 // The retain needs to happen within the full-expression. 3435 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { 3436 RunCleanupsScope scope(*this); 3437 return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr()); 3438 } 3439 3440 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e); 3441 llvm::Value *value = result.getPointer(); 3442 if (result.getInt()) 3443 value = EmitARCAutorelease(value); 3444 else 3445 value = EmitARCRetainAutorelease(e->getType(), value); 3446 return value; 3447 } 3448 3449 llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) { 3450 llvm::Value *result; 3451 bool doRetain; 3452 3453 if (shouldEmitSeparateBlockRetain(e)) { 3454 result = EmitScalarExpr(e); 3455 doRetain = true; 3456 } else { 3457 TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e); 3458 result = subresult.getPointer(); 3459 doRetain = !subresult.getInt(); 3460 } 3461 3462 if (doRetain) 3463 result = EmitARCRetainBlock(result, /*mandatory*/ true); 3464 return EmitObjCConsumeObject(e->getType(), result); 3465 } 3466 3467 llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) { 3468 // In ARC, retain and autorelease the expression. 3469 if (getLangOpts().ObjCAutoRefCount) { 3470 // Do so before running any cleanups for the full-expression. 3471 // EmitARCRetainAutoreleaseScalarExpr does this for us. 3472 return EmitARCRetainAutoreleaseScalarExpr(expr); 3473 } 3474 3475 // Otherwise, use the normal scalar-expression emission. The 3476 // exception machinery doesn't do anything special with the 3477 // exception like retaining it, so there's no safety associated with 3478 // only running cleanups after the throw has started, and when it 3479 // matters it tends to be substantially inferior code. 3480 return EmitScalarExpr(expr); 3481 } 3482 3483 namespace { 3484 3485 /// An emitter for assigning into an __unsafe_unretained context. 3486 struct ARCUnsafeUnretainedExprEmitter : 3487 public ARCExprEmitter<ARCUnsafeUnretainedExprEmitter, llvm::Value*> { 3488 3489 ARCUnsafeUnretainedExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {} 3490 3491 llvm::Value *getValueOfResult(llvm::Value *value) { 3492 return value; 3493 } 3494 3495 llvm::Value *emitBitCast(llvm::Value *value, llvm::Type *resultType) { 3496 return CGF.Builder.CreateBitCast(value, resultType); 3497 } 3498 3499 llvm::Value *visitLValueToRValue(const Expr *e) { 3500 return CGF.EmitScalarExpr(e); 3501 } 3502 3503 /// For consumptions, just emit the subexpression and perform the 3504 /// consumption like normal. 3505 llvm::Value *visitConsumeObject(const Expr *e) { 3506 llvm::Value *value = CGF.EmitScalarExpr(e); 3507 return CGF.EmitObjCConsumeObject(e->getType(), value); 3508 } 3509 3510 /// No special logic for block extensions. (This probably can't 3511 /// actually happen in this emitter, though.) 3512 llvm::Value *visitExtendBlockObject(const Expr *e) { 3513 return CGF.EmitARCExtendBlockObject(e); 3514 } 3515 3516 /// For reclaims, perform an unsafeClaim if that's enabled. 3517 llvm::Value *visitReclaimReturnedObject(const Expr *e) { 3518 return CGF.EmitARCReclaimReturnedObject(e, /*unsafe*/ true); 3519 } 3520 3521 /// When we have an undecorated call, just emit it without adding 3522 /// the unsafeClaim. 3523 llvm::Value *visitCall(const Expr *e) { 3524 return CGF.EmitScalarExpr(e); 3525 } 3526 3527 /// Just do normal scalar emission in the default case. 3528 llvm::Value *visitExpr(const Expr *e) { 3529 return CGF.EmitScalarExpr(e); 3530 } 3531 }; 3532 } 3533 3534 static llvm::Value *emitARCUnsafeUnretainedScalarExpr(CodeGenFunction &CGF, 3535 const Expr *e) { 3536 return ARCUnsafeUnretainedExprEmitter(CGF).visit(e); 3537 } 3538 3539 /// EmitARCUnsafeUnretainedScalarExpr - Semantically equivalent to 3540 /// immediately releasing the resut of EmitARCRetainScalarExpr, but 3541 /// avoiding any spurious retains, including by performing reclaims 3542 /// with objc_unsafeClaimAutoreleasedReturnValue. 3543 llvm::Value *CodeGenFunction::EmitARCUnsafeUnretainedScalarExpr(const Expr *e) { 3544 // Look through full-expressions. 3545 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { 3546 RunCleanupsScope scope(*this); 3547 return emitARCUnsafeUnretainedScalarExpr(*this, cleanups->getSubExpr()); 3548 } 3549 3550 return emitARCUnsafeUnretainedScalarExpr(*this, e); 3551 } 3552 3553 std::pair<LValue,llvm::Value*> 3554 CodeGenFunction::EmitARCStoreUnsafeUnretained(const BinaryOperator *e, 3555 bool ignored) { 3556 // Evaluate the RHS first. If we're ignoring the result, assume 3557 // that we can emit at an unsafe +0. 3558 llvm::Value *value; 3559 if (ignored) { 3560 value = EmitARCUnsafeUnretainedScalarExpr(e->getRHS()); 3561 } else { 3562 value = EmitScalarExpr(e->getRHS()); 3563 } 3564 3565 // Emit the LHS and perform the store. 3566 LValue lvalue = EmitLValue(e->getLHS()); 3567 EmitStoreOfScalar(value, lvalue); 3568 3569 return std::pair<LValue,llvm::Value*>(std::move(lvalue), value); 3570 } 3571 3572 std::pair<LValue,llvm::Value*> 3573 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e, 3574 bool ignored) { 3575 // Evaluate the RHS first. 3576 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS()); 3577 llvm::Value *value = result.getPointer(); 3578 3579 bool hasImmediateRetain = result.getInt(); 3580 3581 // If we didn't emit a retained object, and the l-value is of block 3582 // type, then we need to emit the block-retain immediately in case 3583 // it invalidates the l-value. 3584 if (!hasImmediateRetain && e->getType()->isBlockPointerType()) { 3585 value = EmitARCRetainBlock(value, /*mandatory*/ false); 3586 hasImmediateRetain = true; 3587 } 3588 3589 LValue lvalue = EmitLValue(e->getLHS()); 3590 3591 // If the RHS was emitted retained, expand this. 3592 if (hasImmediateRetain) { 3593 llvm::Value *oldValue = EmitLoadOfScalar(lvalue, SourceLocation()); 3594 EmitStoreOfScalar(value, lvalue); 3595 EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime()); 3596 } else { 3597 value = EmitARCStoreStrong(lvalue, value, ignored); 3598 } 3599 3600 return std::pair<LValue,llvm::Value*>(lvalue, value); 3601 } 3602 3603 std::pair<LValue,llvm::Value*> 3604 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) { 3605 llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS()); 3606 LValue lvalue = EmitLValue(e->getLHS()); 3607 3608 EmitStoreOfScalar(value, lvalue); 3609 3610 return std::pair<LValue,llvm::Value*>(lvalue, value); 3611 } 3612 3613 void CodeGenFunction::EmitObjCAutoreleasePoolStmt( 3614 const ObjCAutoreleasePoolStmt &ARPS) { 3615 const Stmt *subStmt = ARPS.getSubStmt(); 3616 const CompoundStmt &S = cast<CompoundStmt>(*subStmt); 3617 3618 CGDebugInfo *DI = getDebugInfo(); 3619 if (DI) 3620 DI->EmitLexicalBlockStart(Builder, S.getLBracLoc()); 3621 3622 // Keep track of the current cleanup stack depth. 3623 RunCleanupsScope Scope(*this); 3624 if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) { 3625 llvm::Value *token = EmitObjCAutoreleasePoolPush(); 3626 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token); 3627 } else { 3628 llvm::Value *token = EmitObjCMRRAutoreleasePoolPush(); 3629 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token); 3630 } 3631 3632 for (const auto *I : S.body()) 3633 EmitStmt(I); 3634 3635 if (DI) 3636 DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc()); 3637 } 3638 3639 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 3640 /// make sure it survives garbage collection until this point. 3641 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) { 3642 // We just use an inline assembly. 3643 llvm::FunctionType *extenderType 3644 = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All); 3645 llvm::InlineAsm *extender = llvm::InlineAsm::get(extenderType, 3646 /* assembly */ "", 3647 /* constraints */ "r", 3648 /* side effects */ true); 3649 3650 object = Builder.CreateBitCast(object, VoidPtrTy); 3651 EmitNounwindRuntimeCall(extender, object); 3652 } 3653 3654 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with 3655 /// non-trivial copy assignment function, produce following helper function. 3656 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; } 3657 /// 3658 llvm::Constant * 3659 CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction( 3660 const ObjCPropertyImplDecl *PID) { 3661 if (!getLangOpts().CPlusPlus || 3662 !getLangOpts().ObjCRuntime.hasAtomicCopyHelper()) 3663 return nullptr; 3664 QualType Ty = PID->getPropertyIvarDecl()->getType(); 3665 if (!Ty->isRecordType()) 3666 return nullptr; 3667 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3668 if ((!(PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_atomic))) 3669 return nullptr; 3670 llvm::Constant *HelperFn = nullptr; 3671 if (hasTrivialSetExpr(PID)) 3672 return nullptr; 3673 assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null"); 3674 if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty))) 3675 return HelperFn; 3676 3677 ASTContext &C = getContext(); 3678 IdentifierInfo *II 3679 = &CGM.getContext().Idents.get("__assign_helper_atomic_property_"); 3680 3681 QualType ReturnTy = C.VoidTy; 3682 QualType DestTy = C.getPointerType(Ty); 3683 QualType SrcTy = Ty; 3684 SrcTy.addConst(); 3685 SrcTy = C.getPointerType(SrcTy); 3686 3687 SmallVector<QualType, 2> ArgTys; 3688 ArgTys.push_back(DestTy); 3689 ArgTys.push_back(SrcTy); 3690 QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {}); 3691 3692 FunctionDecl *FD = FunctionDecl::Create( 3693 C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II, 3694 FunctionTy, nullptr, SC_Static, false, false); 3695 3696 FunctionArgList args; 3697 ImplicitParamDecl DstDecl(C, FD, SourceLocation(), /*Id=*/nullptr, DestTy, 3698 ImplicitParamDecl::Other); 3699 args.push_back(&DstDecl); 3700 ImplicitParamDecl SrcDecl(C, FD, SourceLocation(), /*Id=*/nullptr, SrcTy, 3701 ImplicitParamDecl::Other); 3702 args.push_back(&SrcDecl); 3703 3704 const CGFunctionInfo &FI = 3705 CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args); 3706 3707 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI); 3708 3709 llvm::Function *Fn = 3710 llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage, 3711 "__assign_helper_atomic_property_", 3712 &CGM.getModule()); 3713 3714 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI); 3715 3716 StartFunction(FD, ReturnTy, Fn, FI, args); 3717 3718 DeclRefExpr DstExpr(C, &DstDecl, false, DestTy, VK_RValue, SourceLocation()); 3719 UnaryOperator *DST = UnaryOperator::Create( 3720 C, &DstExpr, UO_Deref, DestTy->getPointeeType(), VK_LValue, OK_Ordinary, 3721 SourceLocation(), false, FPOptionsOverride()); 3722 3723 DeclRefExpr SrcExpr(C, &SrcDecl, false, SrcTy, VK_RValue, SourceLocation()); 3724 UnaryOperator *SRC = UnaryOperator::Create( 3725 C, &SrcExpr, UO_Deref, SrcTy->getPointeeType(), VK_LValue, OK_Ordinary, 3726 SourceLocation(), false, FPOptionsOverride()); 3727 3728 Expr *Args[2] = {DST, SRC}; 3729 CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment()); 3730 CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create( 3731 C, OO_Equal, CalleeExp->getCallee(), Args, DestTy->getPointeeType(), 3732 VK_LValue, SourceLocation(), FPOptionsOverride()); 3733 3734 EmitStmt(TheCall); 3735 3736 FinishFunction(); 3737 HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy); 3738 CGM.setAtomicSetterHelperFnMap(Ty, HelperFn); 3739 return HelperFn; 3740 } 3741 3742 llvm::Constant * 3743 CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction( 3744 const ObjCPropertyImplDecl *PID) { 3745 if (!getLangOpts().CPlusPlus || 3746 !getLangOpts().ObjCRuntime.hasAtomicCopyHelper()) 3747 return nullptr; 3748 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3749 QualType Ty = PD->getType(); 3750 if (!Ty->isRecordType()) 3751 return nullptr; 3752 if ((!(PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_atomic))) 3753 return nullptr; 3754 llvm::Constant *HelperFn = nullptr; 3755 if (hasTrivialGetExpr(PID)) 3756 return nullptr; 3757 assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null"); 3758 if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty))) 3759 return HelperFn; 3760 3761 ASTContext &C = getContext(); 3762 IdentifierInfo *II = 3763 &CGM.getContext().Idents.get("__copy_helper_atomic_property_"); 3764 3765 QualType ReturnTy = C.VoidTy; 3766 QualType DestTy = C.getPointerType(Ty); 3767 QualType SrcTy = Ty; 3768 SrcTy.addConst(); 3769 SrcTy = C.getPointerType(SrcTy); 3770 3771 SmallVector<QualType, 2> ArgTys; 3772 ArgTys.push_back(DestTy); 3773 ArgTys.push_back(SrcTy); 3774 QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {}); 3775 3776 FunctionDecl *FD = FunctionDecl::Create( 3777 C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II, 3778 FunctionTy, nullptr, SC_Static, false, false); 3779 3780 FunctionArgList args; 3781 ImplicitParamDecl DstDecl(C, FD, SourceLocation(), /*Id=*/nullptr, DestTy, 3782 ImplicitParamDecl::Other); 3783 args.push_back(&DstDecl); 3784 ImplicitParamDecl SrcDecl(C, FD, SourceLocation(), /*Id=*/nullptr, SrcTy, 3785 ImplicitParamDecl::Other); 3786 args.push_back(&SrcDecl); 3787 3788 const CGFunctionInfo &FI = 3789 CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args); 3790 3791 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI); 3792 3793 llvm::Function *Fn = llvm::Function::Create( 3794 LTy, llvm::GlobalValue::InternalLinkage, "__copy_helper_atomic_property_", 3795 &CGM.getModule()); 3796 3797 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI); 3798 3799 StartFunction(FD, ReturnTy, Fn, FI, args); 3800 3801 DeclRefExpr SrcExpr(getContext(), &SrcDecl, false, SrcTy, VK_RValue, 3802 SourceLocation()); 3803 3804 UnaryOperator *SRC = UnaryOperator::Create( 3805 C, &SrcExpr, UO_Deref, SrcTy->getPointeeType(), VK_LValue, OK_Ordinary, 3806 SourceLocation(), false, FPOptionsOverride()); 3807 3808 CXXConstructExpr *CXXConstExpr = 3809 cast<CXXConstructExpr>(PID->getGetterCXXConstructor()); 3810 3811 SmallVector<Expr*, 4> ConstructorArgs; 3812 ConstructorArgs.push_back(SRC); 3813 ConstructorArgs.append(std::next(CXXConstExpr->arg_begin()), 3814 CXXConstExpr->arg_end()); 3815 3816 CXXConstructExpr *TheCXXConstructExpr = 3817 CXXConstructExpr::Create(C, Ty, SourceLocation(), 3818 CXXConstExpr->getConstructor(), 3819 CXXConstExpr->isElidable(), 3820 ConstructorArgs, 3821 CXXConstExpr->hadMultipleCandidates(), 3822 CXXConstExpr->isListInitialization(), 3823 CXXConstExpr->isStdInitListInitialization(), 3824 CXXConstExpr->requiresZeroInitialization(), 3825 CXXConstExpr->getConstructionKind(), 3826 SourceRange()); 3827 3828 DeclRefExpr DstExpr(getContext(), &DstDecl, false, DestTy, VK_RValue, 3829 SourceLocation()); 3830 3831 RValue DV = EmitAnyExpr(&DstExpr); 3832 CharUnits Alignment 3833 = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType()); 3834 EmitAggExpr(TheCXXConstructExpr, 3835 AggValueSlot::forAddr(Address(DV.getScalarVal(), Alignment), 3836 Qualifiers(), 3837 AggValueSlot::IsDestructed, 3838 AggValueSlot::DoesNotNeedGCBarriers, 3839 AggValueSlot::IsNotAliased, 3840 AggValueSlot::DoesNotOverlap)); 3841 3842 FinishFunction(); 3843 HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy); 3844 CGM.setAtomicGetterHelperFnMap(Ty, HelperFn); 3845 return HelperFn; 3846 } 3847 3848 llvm::Value * 3849 CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) { 3850 // Get selectors for retain/autorelease. 3851 IdentifierInfo *CopyID = &getContext().Idents.get("copy"); 3852 Selector CopySelector = 3853 getContext().Selectors.getNullarySelector(CopyID); 3854 IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease"); 3855 Selector AutoreleaseSelector = 3856 getContext().Selectors.getNullarySelector(AutoreleaseID); 3857 3858 // Emit calls to retain/autorelease. 3859 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 3860 llvm::Value *Val = Block; 3861 RValue Result; 3862 Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 3863 Ty, CopySelector, 3864 Val, CallArgList(), nullptr, nullptr); 3865 Val = Result.getScalarVal(); 3866 Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 3867 Ty, AutoreleaseSelector, 3868 Val, CallArgList(), nullptr, nullptr); 3869 Val = Result.getScalarVal(); 3870 return Val; 3871 } 3872 3873 static unsigned getBaseMachOPlatformID(const llvm::Triple &TT) { 3874 switch (TT.getOS()) { 3875 case llvm::Triple::Darwin: 3876 case llvm::Triple::MacOSX: 3877 return llvm::MachO::PLATFORM_MACOS; 3878 case llvm::Triple::IOS: 3879 return llvm::MachO::PLATFORM_IOS; 3880 case llvm::Triple::TvOS: 3881 return llvm::MachO::PLATFORM_TVOS; 3882 case llvm::Triple::WatchOS: 3883 return llvm::MachO::PLATFORM_WATCHOS; 3884 default: 3885 return /*Unknown platform*/ 0; 3886 } 3887 } 3888 3889 static llvm::Value *emitIsPlatformVersionAtLeast(CodeGenFunction &CGF, 3890 const VersionTuple &Version) { 3891 CodeGenModule &CGM = CGF.CGM; 3892 // Note: we intend to support multi-platform version checks, so reserve 3893 // the room for a dual platform checking invocation that will be 3894 // implemented in the future. 3895 llvm::SmallVector<llvm::Value *, 8> Args; 3896 3897 auto EmitArgs = [&](const VersionTuple &Version, const llvm::Triple &TT) { 3898 Optional<unsigned> Min = Version.getMinor(), SMin = Version.getSubminor(); 3899 Args.push_back( 3900 llvm::ConstantInt::get(CGM.Int32Ty, getBaseMachOPlatformID(TT))); 3901 Args.push_back(llvm::ConstantInt::get(CGM.Int32Ty, Version.getMajor())); 3902 Args.push_back(llvm::ConstantInt::get(CGM.Int32Ty, Min ? *Min : 0)); 3903 Args.push_back(llvm::ConstantInt::get(CGM.Int32Ty, SMin ? *SMin : 0)); 3904 }; 3905 3906 assert(!Version.empty() && "unexpected empty version"); 3907 EmitArgs(Version, CGM.getTarget().getTriple()); 3908 3909 if (!CGM.IsPlatformVersionAtLeastFn) { 3910 llvm::FunctionType *FTy = llvm::FunctionType::get( 3911 CGM.Int32Ty, {CGM.Int32Ty, CGM.Int32Ty, CGM.Int32Ty, CGM.Int32Ty}, 3912 false); 3913 CGM.IsPlatformVersionAtLeastFn = 3914 CGM.CreateRuntimeFunction(FTy, "__isPlatformVersionAtLeast"); 3915 } 3916 3917 llvm::Value *Check = 3918 CGF.EmitNounwindRuntimeCall(CGM.IsPlatformVersionAtLeastFn, Args); 3919 return CGF.Builder.CreateICmpNE(Check, 3920 llvm::Constant::getNullValue(CGM.Int32Ty)); 3921 } 3922 3923 llvm::Value * 3924 CodeGenFunction::EmitBuiltinAvailable(const VersionTuple &Version) { 3925 // Darwin uses the new __isPlatformVersionAtLeast family of routines. 3926 if (CGM.getTarget().getTriple().isOSDarwin()) 3927 return emitIsPlatformVersionAtLeast(*this, Version); 3928 3929 if (!CGM.IsOSVersionAtLeastFn) { 3930 llvm::FunctionType *FTy = 3931 llvm::FunctionType::get(Int32Ty, {Int32Ty, Int32Ty, Int32Ty}, false); 3932 CGM.IsOSVersionAtLeastFn = 3933 CGM.CreateRuntimeFunction(FTy, "__isOSVersionAtLeast"); 3934 } 3935 3936 Optional<unsigned> Min = Version.getMinor(), SMin = Version.getSubminor(); 3937 llvm::Value *Args[] = { 3938 llvm::ConstantInt::get(CGM.Int32Ty, Version.getMajor()), 3939 llvm::ConstantInt::get(CGM.Int32Ty, Min ? *Min : 0), 3940 llvm::ConstantInt::get(CGM.Int32Ty, SMin ? *SMin : 0), 3941 }; 3942 3943 llvm::Value *CallRes = 3944 EmitNounwindRuntimeCall(CGM.IsOSVersionAtLeastFn, Args); 3945 3946 return Builder.CreateICmpNE(CallRes, llvm::Constant::getNullValue(Int32Ty)); 3947 } 3948 3949 static bool isFoundationNeededForDarwinAvailabilityCheck( 3950 const llvm::Triple &TT, const VersionTuple &TargetVersion) { 3951 VersionTuple FoundationDroppedInVersion; 3952 switch (TT.getOS()) { 3953 case llvm::Triple::IOS: 3954 case llvm::Triple::TvOS: 3955 FoundationDroppedInVersion = VersionTuple(/*Major=*/13); 3956 break; 3957 case llvm::Triple::WatchOS: 3958 FoundationDroppedInVersion = VersionTuple(/*Major=*/6); 3959 break; 3960 case llvm::Triple::Darwin: 3961 case llvm::Triple::MacOSX: 3962 FoundationDroppedInVersion = VersionTuple(/*Major=*/10, /*Minor=*/15); 3963 break; 3964 default: 3965 llvm_unreachable("Unexpected OS"); 3966 } 3967 return TargetVersion < FoundationDroppedInVersion; 3968 } 3969 3970 void CodeGenModule::emitAtAvailableLinkGuard() { 3971 if (!IsPlatformVersionAtLeastFn) 3972 return; 3973 // @available requires CoreFoundation only on Darwin. 3974 if (!Target.getTriple().isOSDarwin()) 3975 return; 3976 // @available doesn't need Foundation on macOS 10.15+, iOS/tvOS 13+, or 3977 // watchOS 6+. 3978 if (!isFoundationNeededForDarwinAvailabilityCheck( 3979 Target.getTriple(), Target.getPlatformMinVersion())) 3980 return; 3981 // Add -framework CoreFoundation to the linker commands. We still want to 3982 // emit the core foundation reference down below because otherwise if 3983 // CoreFoundation is not used in the code, the linker won't link the 3984 // framework. 3985 auto &Context = getLLVMContext(); 3986 llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"), 3987 llvm::MDString::get(Context, "CoreFoundation")}; 3988 LinkerOptionsMetadata.push_back(llvm::MDNode::get(Context, Args)); 3989 // Emit a reference to a symbol from CoreFoundation to ensure that 3990 // CoreFoundation is linked into the final binary. 3991 llvm::FunctionType *FTy = 3992 llvm::FunctionType::get(Int32Ty, {VoidPtrTy}, false); 3993 llvm::FunctionCallee CFFunc = 3994 CreateRuntimeFunction(FTy, "CFBundleGetVersionNumber"); 3995 3996 llvm::FunctionType *CheckFTy = llvm::FunctionType::get(VoidTy, {}, false); 3997 llvm::FunctionCallee CFLinkCheckFuncRef = CreateRuntimeFunction( 3998 CheckFTy, "__clang_at_available_requires_core_foundation_framework", 3999 llvm::AttributeList(), /*Local=*/true); 4000 llvm::Function *CFLinkCheckFunc = 4001 cast<llvm::Function>(CFLinkCheckFuncRef.getCallee()->stripPointerCasts()); 4002 if (CFLinkCheckFunc->empty()) { 4003 CFLinkCheckFunc->setLinkage(llvm::GlobalValue::LinkOnceAnyLinkage); 4004 CFLinkCheckFunc->setVisibility(llvm::GlobalValue::HiddenVisibility); 4005 CodeGenFunction CGF(*this); 4006 CGF.Builder.SetInsertPoint(CGF.createBasicBlock("", CFLinkCheckFunc)); 4007 CGF.EmitNounwindRuntimeCall(CFFunc, 4008 llvm::Constant::getNullValue(VoidPtrTy)); 4009 CGF.Builder.CreateUnreachable(); 4010 addCompilerUsedGlobal(CFLinkCheckFunc); 4011 } 4012 } 4013 4014 CGObjCRuntime::~CGObjCRuntime() {} 4015