1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCXXABI.h" 14 #include "CGCleanup.h" 15 #include "CGDebugInfo.h" 16 #include "CGObjCRuntime.h" 17 #include "CGOpenMPRuntime.h" 18 #include "CodeGenFunction.h" 19 #include "CodeGenModule.h" 20 #include "ConstantEmitter.h" 21 #include "TargetInfo.h" 22 #include "clang/AST/ASTContext.h" 23 #include "clang/AST/Attr.h" 24 #include "clang/AST/DeclObjC.h" 25 #include "clang/AST/Expr.h" 26 #include "clang/AST/RecordLayout.h" 27 #include "clang/AST/StmtVisitor.h" 28 #include "clang/Basic/CodeGenOptions.h" 29 #include "clang/Basic/TargetInfo.h" 30 #include "llvm/ADT/APFixedPoint.h" 31 #include "llvm/ADT/Optional.h" 32 #include "llvm/IR/CFG.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/FixedPointBuilder.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/GetElementPtrTypeIterator.h" 38 #include "llvm/IR/GlobalVariable.h" 39 #include "llvm/IR/Intrinsics.h" 40 #include "llvm/IR/IntrinsicsPowerPC.h" 41 #include "llvm/IR/MatrixBuilder.h" 42 #include "llvm/IR/Module.h" 43 #include <cstdarg> 44 45 using namespace clang; 46 using namespace CodeGen; 47 using llvm::Value; 48 49 //===----------------------------------------------------------------------===// 50 // Scalar Expression Emitter 51 //===----------------------------------------------------------------------===// 52 53 namespace { 54 55 /// Determine whether the given binary operation may overflow. 56 /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul, 57 /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem}, 58 /// the returned overflow check is precise. The returned value is 'true' for 59 /// all other opcodes, to be conservative. 60 bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS, 61 BinaryOperator::Opcode Opcode, bool Signed, 62 llvm::APInt &Result) { 63 // Assume overflow is possible, unless we can prove otherwise. 64 bool Overflow = true; 65 const auto &LHSAP = LHS->getValue(); 66 const auto &RHSAP = RHS->getValue(); 67 if (Opcode == BO_Add) { 68 if (Signed) 69 Result = LHSAP.sadd_ov(RHSAP, Overflow); 70 else 71 Result = LHSAP.uadd_ov(RHSAP, Overflow); 72 } else if (Opcode == BO_Sub) { 73 if (Signed) 74 Result = LHSAP.ssub_ov(RHSAP, Overflow); 75 else 76 Result = LHSAP.usub_ov(RHSAP, Overflow); 77 } else if (Opcode == BO_Mul) { 78 if (Signed) 79 Result = LHSAP.smul_ov(RHSAP, Overflow); 80 else 81 Result = LHSAP.umul_ov(RHSAP, Overflow); 82 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 83 if (Signed && !RHS->isZero()) 84 Result = LHSAP.sdiv_ov(RHSAP, Overflow); 85 else 86 return false; 87 } 88 return Overflow; 89 } 90 91 struct BinOpInfo { 92 Value *LHS; 93 Value *RHS; 94 QualType Ty; // Computation Type. 95 BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform 96 FPOptions FPFeatures; 97 const Expr *E; // Entire expr, for error unsupported. May not be binop. 98 99 /// Check if the binop can result in integer overflow. 100 bool mayHaveIntegerOverflow() const { 101 // Without constant input, we can't rule out overflow. 102 auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS); 103 auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS); 104 if (!LHSCI || !RHSCI) 105 return true; 106 107 llvm::APInt Result; 108 return ::mayHaveIntegerOverflow( 109 LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result); 110 } 111 112 /// Check if the binop computes a division or a remainder. 113 bool isDivremOp() const { 114 return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign || 115 Opcode == BO_RemAssign; 116 } 117 118 /// Check if the binop can result in an integer division by zero. 119 bool mayHaveIntegerDivisionByZero() const { 120 if (isDivremOp()) 121 if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS)) 122 return CI->isZero(); 123 return true; 124 } 125 126 /// Check if the binop can result in a float division by zero. 127 bool mayHaveFloatDivisionByZero() const { 128 if (isDivremOp()) 129 if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS)) 130 return CFP->isZero(); 131 return true; 132 } 133 134 /// Check if at least one operand is a fixed point type. In such cases, this 135 /// operation did not follow usual arithmetic conversion and both operands 136 /// might not be of the same type. 137 bool isFixedPointOp() const { 138 // We cannot simply check the result type since comparison operations return 139 // an int. 140 if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) { 141 QualType LHSType = BinOp->getLHS()->getType(); 142 QualType RHSType = BinOp->getRHS()->getType(); 143 return LHSType->isFixedPointType() || RHSType->isFixedPointType(); 144 } 145 if (const auto *UnOp = dyn_cast<UnaryOperator>(E)) 146 return UnOp->getSubExpr()->getType()->isFixedPointType(); 147 return false; 148 } 149 }; 150 151 static bool MustVisitNullValue(const Expr *E) { 152 // If a null pointer expression's type is the C++0x nullptr_t, then 153 // it's not necessarily a simple constant and it must be evaluated 154 // for its potential side effects. 155 return E->getType()->isNullPtrType(); 156 } 157 158 /// If \p E is a widened promoted integer, get its base (unpromoted) type. 159 static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx, 160 const Expr *E) { 161 const Expr *Base = E->IgnoreImpCasts(); 162 if (E == Base) 163 return llvm::None; 164 165 QualType BaseTy = Base->getType(); 166 if (!BaseTy->isPromotableIntegerType() || 167 Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType())) 168 return llvm::None; 169 170 return BaseTy; 171 } 172 173 /// Check if \p E is a widened promoted integer. 174 static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) { 175 return getUnwidenedIntegerType(Ctx, E).hasValue(); 176 } 177 178 /// Check if we can skip the overflow check for \p Op. 179 static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) { 180 assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) && 181 "Expected a unary or binary operator"); 182 183 // If the binop has constant inputs and we can prove there is no overflow, 184 // we can elide the overflow check. 185 if (!Op.mayHaveIntegerOverflow()) 186 return true; 187 188 // If a unary op has a widened operand, the op cannot overflow. 189 if (const auto *UO = dyn_cast<UnaryOperator>(Op.E)) 190 return !UO->canOverflow(); 191 192 // We usually don't need overflow checks for binops with widened operands. 193 // Multiplication with promoted unsigned operands is a special case. 194 const auto *BO = cast<BinaryOperator>(Op.E); 195 auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS()); 196 if (!OptionalLHSTy) 197 return false; 198 199 auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS()); 200 if (!OptionalRHSTy) 201 return false; 202 203 QualType LHSTy = *OptionalLHSTy; 204 QualType RHSTy = *OptionalRHSTy; 205 206 // This is the simple case: binops without unsigned multiplication, and with 207 // widened operands. No overflow check is needed here. 208 if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) || 209 !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType()) 210 return true; 211 212 // For unsigned multiplication the overflow check can be elided if either one 213 // of the unpromoted types are less than half the size of the promoted type. 214 unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType()); 215 return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize || 216 (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize; 217 } 218 219 class ScalarExprEmitter 220 : public StmtVisitor<ScalarExprEmitter, Value*> { 221 CodeGenFunction &CGF; 222 CGBuilderTy &Builder; 223 bool IgnoreResultAssign; 224 llvm::LLVMContext &VMContext; 225 public: 226 227 ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false) 228 : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira), 229 VMContext(cgf.getLLVMContext()) { 230 } 231 232 //===--------------------------------------------------------------------===// 233 // Utilities 234 //===--------------------------------------------------------------------===// 235 236 bool TestAndClearIgnoreResultAssign() { 237 bool I = IgnoreResultAssign; 238 IgnoreResultAssign = false; 239 return I; 240 } 241 242 llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); } 243 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); } 244 LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) { 245 return CGF.EmitCheckedLValue(E, TCK); 246 } 247 248 void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks, 249 const BinOpInfo &Info); 250 251 Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 252 return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal(); 253 } 254 255 void EmitLValueAlignmentAssumption(const Expr *E, Value *V) { 256 const AlignValueAttr *AVAttr = nullptr; 257 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) { 258 const ValueDecl *VD = DRE->getDecl(); 259 260 if (VD->getType()->isReferenceType()) { 261 if (const auto *TTy = 262 dyn_cast<TypedefType>(VD->getType().getNonReferenceType())) 263 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 264 } else { 265 // Assumptions for function parameters are emitted at the start of the 266 // function, so there is no need to repeat that here, 267 // unless the alignment-assumption sanitizer is enabled, 268 // then we prefer the assumption over alignment attribute 269 // on IR function param. 270 if (isa<ParmVarDecl>(VD) && !CGF.SanOpts.has(SanitizerKind::Alignment)) 271 return; 272 273 AVAttr = VD->getAttr<AlignValueAttr>(); 274 } 275 } 276 277 if (!AVAttr) 278 if (const auto *TTy = 279 dyn_cast<TypedefType>(E->getType())) 280 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 281 282 if (!AVAttr) 283 return; 284 285 Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment()); 286 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue); 287 CGF.emitAlignmentAssumption(V, E, AVAttr->getLocation(), AlignmentCI); 288 } 289 290 /// EmitLoadOfLValue - Given an expression with complex type that represents a 291 /// value l-value, this method emits the address of the l-value, then loads 292 /// and returns the result. 293 Value *EmitLoadOfLValue(const Expr *E) { 294 Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load), 295 E->getExprLoc()); 296 297 EmitLValueAlignmentAssumption(E, V); 298 return V; 299 } 300 301 /// EmitConversionToBool - Convert the specified expression value to a 302 /// boolean (i1) truth value. This is equivalent to "Val != 0". 303 Value *EmitConversionToBool(Value *Src, QualType DstTy); 304 305 /// Emit a check that a conversion from a floating-point type does not 306 /// overflow. 307 void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType, 308 Value *Src, QualType SrcType, QualType DstType, 309 llvm::Type *DstTy, SourceLocation Loc); 310 311 /// Known implicit conversion check kinds. 312 /// Keep in sync with the enum of the same name in ubsan_handlers.h 313 enum ImplicitConversionCheckKind : unsigned char { 314 ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7. 315 ICCK_UnsignedIntegerTruncation = 1, 316 ICCK_SignedIntegerTruncation = 2, 317 ICCK_IntegerSignChange = 3, 318 ICCK_SignedIntegerTruncationOrSignChange = 4, 319 }; 320 321 /// Emit a check that an [implicit] truncation of an integer does not 322 /// discard any bits. It is not UB, so we use the value after truncation. 323 void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst, 324 QualType DstType, SourceLocation Loc); 325 326 /// Emit a check that an [implicit] conversion of an integer does not change 327 /// the sign of the value. It is not UB, so we use the value after conversion. 328 /// NOTE: Src and Dst may be the exact same value! (point to the same thing) 329 void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst, 330 QualType DstType, SourceLocation Loc); 331 332 /// Emit a conversion from the specified type to the specified destination 333 /// type, both of which are LLVM scalar types. 334 struct ScalarConversionOpts { 335 bool TreatBooleanAsSigned; 336 bool EmitImplicitIntegerTruncationChecks; 337 bool EmitImplicitIntegerSignChangeChecks; 338 339 ScalarConversionOpts() 340 : TreatBooleanAsSigned(false), 341 EmitImplicitIntegerTruncationChecks(false), 342 EmitImplicitIntegerSignChangeChecks(false) {} 343 344 ScalarConversionOpts(clang::SanitizerSet SanOpts) 345 : TreatBooleanAsSigned(false), 346 EmitImplicitIntegerTruncationChecks( 347 SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)), 348 EmitImplicitIntegerSignChangeChecks( 349 SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) {} 350 }; 351 Value *EmitScalarCast(Value *Src, QualType SrcType, QualType DstType, 352 llvm::Type *SrcTy, llvm::Type *DstTy, 353 ScalarConversionOpts Opts); 354 Value * 355 EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy, 356 SourceLocation Loc, 357 ScalarConversionOpts Opts = ScalarConversionOpts()); 358 359 /// Convert between either a fixed point and other fixed point or fixed point 360 /// and an integer. 361 Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy, 362 SourceLocation Loc); 363 364 /// Emit a conversion from the specified complex type to the specified 365 /// destination type, where the destination type is an LLVM scalar type. 366 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, 367 QualType SrcTy, QualType DstTy, 368 SourceLocation Loc); 369 370 /// EmitNullValue - Emit a value that corresponds to null for the given type. 371 Value *EmitNullValue(QualType Ty); 372 373 /// EmitFloatToBoolConversion - Perform an FP to boolean conversion. 374 Value *EmitFloatToBoolConversion(Value *V) { 375 // Compare against 0.0 for fp scalars. 376 llvm::Value *Zero = llvm::Constant::getNullValue(V->getType()); 377 return Builder.CreateFCmpUNE(V, Zero, "tobool"); 378 } 379 380 /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion. 381 Value *EmitPointerToBoolConversion(Value *V, QualType QT) { 382 Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT); 383 384 return Builder.CreateICmpNE(V, Zero, "tobool"); 385 } 386 387 Value *EmitIntToBoolConversion(Value *V) { 388 // Because of the type rules of C, we often end up computing a 389 // logical value, then zero extending it to int, then wanting it 390 // as a logical value again. Optimize this common case. 391 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) { 392 if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) { 393 Value *Result = ZI->getOperand(0); 394 // If there aren't any more uses, zap the instruction to save space. 395 // Note that there can be more uses, for example if this 396 // is the result of an assignment. 397 if (ZI->use_empty()) 398 ZI->eraseFromParent(); 399 return Result; 400 } 401 } 402 403 return Builder.CreateIsNotNull(V, "tobool"); 404 } 405 406 //===--------------------------------------------------------------------===// 407 // Visitor Methods 408 //===--------------------------------------------------------------------===// 409 410 Value *Visit(Expr *E) { 411 ApplyDebugLocation DL(CGF, E); 412 return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E); 413 } 414 415 Value *VisitStmt(Stmt *S) { 416 S->dump(llvm::errs(), CGF.getContext()); 417 llvm_unreachable("Stmt can't have complex result type!"); 418 } 419 Value *VisitExpr(Expr *S); 420 421 Value *VisitConstantExpr(ConstantExpr *E) { 422 if (Value *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E)) { 423 if (E->isGLValue()) 424 return CGF.Builder.CreateLoad(Address( 425 Result, CGF.getContext().getTypeAlignInChars(E->getType()))); 426 return Result; 427 } 428 return Visit(E->getSubExpr()); 429 } 430 Value *VisitParenExpr(ParenExpr *PE) { 431 return Visit(PE->getSubExpr()); 432 } 433 Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 434 return Visit(E->getReplacement()); 435 } 436 Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 437 return Visit(GE->getResultExpr()); 438 } 439 Value *VisitCoawaitExpr(CoawaitExpr *S) { 440 return CGF.EmitCoawaitExpr(*S).getScalarVal(); 441 } 442 Value *VisitCoyieldExpr(CoyieldExpr *S) { 443 return CGF.EmitCoyieldExpr(*S).getScalarVal(); 444 } 445 Value *VisitUnaryCoawait(const UnaryOperator *E) { 446 return Visit(E->getSubExpr()); 447 } 448 449 // Leaves. 450 Value *VisitIntegerLiteral(const IntegerLiteral *E) { 451 return Builder.getInt(E->getValue()); 452 } 453 Value *VisitFixedPointLiteral(const FixedPointLiteral *E) { 454 return Builder.getInt(E->getValue()); 455 } 456 Value *VisitFloatingLiteral(const FloatingLiteral *E) { 457 return llvm::ConstantFP::get(VMContext, E->getValue()); 458 } 459 Value *VisitCharacterLiteral(const CharacterLiteral *E) { 460 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 461 } 462 Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { 463 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 464 } 465 Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { 466 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 467 } 468 Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) { 469 return EmitNullValue(E->getType()); 470 } 471 Value *VisitGNUNullExpr(const GNUNullExpr *E) { 472 return EmitNullValue(E->getType()); 473 } 474 Value *VisitOffsetOfExpr(OffsetOfExpr *E); 475 Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E); 476 Value *VisitAddrLabelExpr(const AddrLabelExpr *E) { 477 llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel()); 478 return Builder.CreateBitCast(V, ConvertType(E->getType())); 479 } 480 481 Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) { 482 return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength()); 483 } 484 485 Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) { 486 return CGF.EmitPseudoObjectRValue(E).getScalarVal(); 487 } 488 489 Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) { 490 if (E->isGLValue()) 491 return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E), 492 E->getExprLoc()); 493 494 // Otherwise, assume the mapping is the scalar directly. 495 return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal(); 496 } 497 498 // l-values. 499 Value *VisitDeclRefExpr(DeclRefExpr *E) { 500 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) 501 return CGF.emitScalarConstant(Constant, E); 502 return EmitLoadOfLValue(E); 503 } 504 505 Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) { 506 return CGF.EmitObjCSelectorExpr(E); 507 } 508 Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) { 509 return CGF.EmitObjCProtocolExpr(E); 510 } 511 Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 512 return EmitLoadOfLValue(E); 513 } 514 Value *VisitObjCMessageExpr(ObjCMessageExpr *E) { 515 if (E->getMethodDecl() && 516 E->getMethodDecl()->getReturnType()->isReferenceType()) 517 return EmitLoadOfLValue(E); 518 return CGF.EmitObjCMessageExpr(E).getScalarVal(); 519 } 520 521 Value *VisitObjCIsaExpr(ObjCIsaExpr *E) { 522 LValue LV = CGF.EmitObjCIsaExpr(E); 523 Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal(); 524 return V; 525 } 526 527 Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) { 528 VersionTuple Version = E->getVersion(); 529 530 // If we're checking for a platform older than our minimum deployment 531 // target, we can fold the check away. 532 if (Version <= CGF.CGM.getTarget().getPlatformMinVersion()) 533 return llvm::ConstantInt::get(Builder.getInt1Ty(), 1); 534 535 return CGF.EmitBuiltinAvailable(Version); 536 } 537 538 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E); 539 Value *VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E); 540 Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E); 541 Value *VisitConvertVectorExpr(ConvertVectorExpr *E); 542 Value *VisitMemberExpr(MemberExpr *E); 543 Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); } 544 Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 545 // Strictly speaking, we shouldn't be calling EmitLoadOfLValue, which 546 // transitively calls EmitCompoundLiteralLValue, here in C++ since compound 547 // literals aren't l-values in C++. We do so simply because that's the 548 // cleanest way to handle compound literals in C++. 549 // See the discussion here: https://reviews.llvm.org/D64464 550 return EmitLoadOfLValue(E); 551 } 552 553 Value *VisitInitListExpr(InitListExpr *E); 554 555 Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) { 556 assert(CGF.getArrayInitIndex() && 557 "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?"); 558 return CGF.getArrayInitIndex(); 559 } 560 561 Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { 562 return EmitNullValue(E->getType()); 563 } 564 Value *VisitExplicitCastExpr(ExplicitCastExpr *E) { 565 CGF.CGM.EmitExplicitCastExprType(E, &CGF); 566 return VisitCastExpr(E); 567 } 568 Value *VisitCastExpr(CastExpr *E); 569 570 Value *VisitCallExpr(const CallExpr *E) { 571 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) 572 return EmitLoadOfLValue(E); 573 574 Value *V = CGF.EmitCallExpr(E).getScalarVal(); 575 576 EmitLValueAlignmentAssumption(E, V); 577 return V; 578 } 579 580 Value *VisitStmtExpr(const StmtExpr *E); 581 582 // Unary Operators. 583 Value *VisitUnaryPostDec(const UnaryOperator *E) { 584 LValue LV = EmitLValue(E->getSubExpr()); 585 return EmitScalarPrePostIncDec(E, LV, false, false); 586 } 587 Value *VisitUnaryPostInc(const UnaryOperator *E) { 588 LValue LV = EmitLValue(E->getSubExpr()); 589 return EmitScalarPrePostIncDec(E, LV, true, false); 590 } 591 Value *VisitUnaryPreDec(const UnaryOperator *E) { 592 LValue LV = EmitLValue(E->getSubExpr()); 593 return EmitScalarPrePostIncDec(E, LV, false, true); 594 } 595 Value *VisitUnaryPreInc(const UnaryOperator *E) { 596 LValue LV = EmitLValue(E->getSubExpr()); 597 return EmitScalarPrePostIncDec(E, LV, true, true); 598 } 599 600 llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E, 601 llvm::Value *InVal, 602 bool IsInc); 603 604 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 605 bool isInc, bool isPre); 606 607 608 Value *VisitUnaryAddrOf(const UnaryOperator *E) { 609 if (isa<MemberPointerType>(E->getType())) // never sugared 610 return CGF.CGM.getMemberPointerConstant(E); 611 612 return EmitLValue(E->getSubExpr()).getPointer(CGF); 613 } 614 Value *VisitUnaryDeref(const UnaryOperator *E) { 615 if (E->getType()->isVoidType()) 616 return Visit(E->getSubExpr()); // the actual value should be unused 617 return EmitLoadOfLValue(E); 618 } 619 Value *VisitUnaryPlus(const UnaryOperator *E) { 620 // This differs from gcc, though, most likely due to a bug in gcc. 621 TestAndClearIgnoreResultAssign(); 622 return Visit(E->getSubExpr()); 623 } 624 Value *VisitUnaryMinus (const UnaryOperator *E); 625 Value *VisitUnaryNot (const UnaryOperator *E); 626 Value *VisitUnaryLNot (const UnaryOperator *E); 627 Value *VisitUnaryReal (const UnaryOperator *E); 628 Value *VisitUnaryImag (const UnaryOperator *E); 629 Value *VisitUnaryExtension(const UnaryOperator *E) { 630 return Visit(E->getSubExpr()); 631 } 632 633 // C++ 634 Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) { 635 return EmitLoadOfLValue(E); 636 } 637 Value *VisitSourceLocExpr(SourceLocExpr *SLE) { 638 auto &Ctx = CGF.getContext(); 639 APValue Evaluated = 640 SLE->EvaluateInContext(Ctx, CGF.CurSourceLocExprScope.getDefaultExpr()); 641 return ConstantEmitter(CGF).emitAbstract(SLE->getLocation(), Evaluated, 642 SLE->getType()); 643 } 644 645 Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 646 CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE); 647 return Visit(DAE->getExpr()); 648 } 649 Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 650 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE); 651 return Visit(DIE->getExpr()); 652 } 653 Value *VisitCXXThisExpr(CXXThisExpr *TE) { 654 return CGF.LoadCXXThis(); 655 } 656 657 Value *VisitExprWithCleanups(ExprWithCleanups *E); 658 Value *VisitCXXNewExpr(const CXXNewExpr *E) { 659 return CGF.EmitCXXNewExpr(E); 660 } 661 Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) { 662 CGF.EmitCXXDeleteExpr(E); 663 return nullptr; 664 } 665 666 Value *VisitTypeTraitExpr(const TypeTraitExpr *E) { 667 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 668 } 669 670 Value *VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) { 671 return Builder.getInt1(E->isSatisfied()); 672 } 673 674 Value *VisitRequiresExpr(const RequiresExpr *E) { 675 return Builder.getInt1(E->isSatisfied()); 676 } 677 678 Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { 679 return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue()); 680 } 681 682 Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { 683 return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue()); 684 } 685 686 Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) { 687 // C++ [expr.pseudo]p1: 688 // The result shall only be used as the operand for the function call 689 // operator (), and the result of such a call has type void. The only 690 // effect is the evaluation of the postfix-expression before the dot or 691 // arrow. 692 CGF.EmitScalarExpr(E->getBase()); 693 return nullptr; 694 } 695 696 Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) { 697 return EmitNullValue(E->getType()); 698 } 699 700 Value *VisitCXXThrowExpr(const CXXThrowExpr *E) { 701 CGF.EmitCXXThrowExpr(E); 702 return nullptr; 703 } 704 705 Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { 706 return Builder.getInt1(E->getValue()); 707 } 708 709 // Binary Operators. 710 Value *EmitMul(const BinOpInfo &Ops) { 711 if (Ops.Ty->isSignedIntegerOrEnumerationType()) { 712 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 713 case LangOptions::SOB_Defined: 714 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 715 case LangOptions::SOB_Undefined: 716 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 717 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 718 LLVM_FALLTHROUGH; 719 case LangOptions::SOB_Trapping: 720 if (CanElideOverflowCheck(CGF.getContext(), Ops)) 721 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 722 return EmitOverflowCheckedBinOp(Ops); 723 } 724 } 725 726 if (Ops.Ty->isConstantMatrixType()) { 727 llvm::MatrixBuilder<CGBuilderTy> MB(Builder); 728 // We need to check the types of the operands of the operator to get the 729 // correct matrix dimensions. 730 auto *BO = cast<BinaryOperator>(Ops.E); 731 auto *LHSMatTy = dyn_cast<ConstantMatrixType>( 732 BO->getLHS()->getType().getCanonicalType()); 733 auto *RHSMatTy = dyn_cast<ConstantMatrixType>( 734 BO->getRHS()->getType().getCanonicalType()); 735 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures); 736 if (LHSMatTy && RHSMatTy) 737 return MB.CreateMatrixMultiply(Ops.LHS, Ops.RHS, LHSMatTy->getNumRows(), 738 LHSMatTy->getNumColumns(), 739 RHSMatTy->getNumColumns()); 740 return MB.CreateScalarMultiply(Ops.LHS, Ops.RHS); 741 } 742 743 if (Ops.Ty->isUnsignedIntegerType() && 744 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 745 !CanElideOverflowCheck(CGF.getContext(), Ops)) 746 return EmitOverflowCheckedBinOp(Ops); 747 748 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 749 // Preserve the old values 750 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures); 751 return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul"); 752 } 753 if (Ops.isFixedPointOp()) 754 return EmitFixedPointBinOp(Ops); 755 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 756 } 757 /// Create a binary op that checks for overflow. 758 /// Currently only supports +, - and *. 759 Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops); 760 761 // Check for undefined division and modulus behaviors. 762 void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops, 763 llvm::Value *Zero,bool isDiv); 764 // Common helper for getting how wide LHS of shift is. 765 static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS); 766 767 // Used for shifting constraints for OpenCL, do mask for powers of 2, URem for 768 // non powers of two. 769 Value *ConstrainShiftValue(Value *LHS, Value *RHS, const Twine &Name); 770 771 Value *EmitDiv(const BinOpInfo &Ops); 772 Value *EmitRem(const BinOpInfo &Ops); 773 Value *EmitAdd(const BinOpInfo &Ops); 774 Value *EmitSub(const BinOpInfo &Ops); 775 Value *EmitShl(const BinOpInfo &Ops); 776 Value *EmitShr(const BinOpInfo &Ops); 777 Value *EmitAnd(const BinOpInfo &Ops) { 778 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and"); 779 } 780 Value *EmitXor(const BinOpInfo &Ops) { 781 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor"); 782 } 783 Value *EmitOr (const BinOpInfo &Ops) { 784 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or"); 785 } 786 787 // Helper functions for fixed point binary operations. 788 Value *EmitFixedPointBinOp(const BinOpInfo &Ops); 789 790 BinOpInfo EmitBinOps(const BinaryOperator *E); 791 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 792 Value *(ScalarExprEmitter::*F)(const BinOpInfo &), 793 Value *&Result); 794 795 Value *EmitCompoundAssign(const CompoundAssignOperator *E, 796 Value *(ScalarExprEmitter::*F)(const BinOpInfo &)); 797 798 // Binary operators and binary compound assignment operators. 799 #define HANDLEBINOP(OP) \ 800 Value *VisitBin ## OP(const BinaryOperator *E) { \ 801 return Emit ## OP(EmitBinOps(E)); \ 802 } \ 803 Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \ 804 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \ 805 } 806 HANDLEBINOP(Mul) 807 HANDLEBINOP(Div) 808 HANDLEBINOP(Rem) 809 HANDLEBINOP(Add) 810 HANDLEBINOP(Sub) 811 HANDLEBINOP(Shl) 812 HANDLEBINOP(Shr) 813 HANDLEBINOP(And) 814 HANDLEBINOP(Xor) 815 HANDLEBINOP(Or) 816 #undef HANDLEBINOP 817 818 // Comparisons. 819 Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc, 820 llvm::CmpInst::Predicate SICmpOpc, 821 llvm::CmpInst::Predicate FCmpOpc, bool IsSignaling); 822 #define VISITCOMP(CODE, UI, SI, FP, SIG) \ 823 Value *VisitBin##CODE(const BinaryOperator *E) { \ 824 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \ 825 llvm::FCmpInst::FP, SIG); } 826 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT, true) 827 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT, true) 828 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE, true) 829 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE, true) 830 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ, false) 831 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE, false) 832 #undef VISITCOMP 833 834 Value *VisitBinAssign (const BinaryOperator *E); 835 836 Value *VisitBinLAnd (const BinaryOperator *E); 837 Value *VisitBinLOr (const BinaryOperator *E); 838 Value *VisitBinComma (const BinaryOperator *E); 839 840 Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); } 841 Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); } 842 843 Value *VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) { 844 return Visit(E->getSemanticForm()); 845 } 846 847 // Other Operators. 848 Value *VisitBlockExpr(const BlockExpr *BE); 849 Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *); 850 Value *VisitChooseExpr(ChooseExpr *CE); 851 Value *VisitVAArgExpr(VAArgExpr *VE); 852 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) { 853 return CGF.EmitObjCStringLiteral(E); 854 } 855 Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) { 856 return CGF.EmitObjCBoxedExpr(E); 857 } 858 Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) { 859 return CGF.EmitObjCArrayLiteral(E); 860 } 861 Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) { 862 return CGF.EmitObjCDictionaryLiteral(E); 863 } 864 Value *VisitAsTypeExpr(AsTypeExpr *CE); 865 Value *VisitAtomicExpr(AtomicExpr *AE); 866 }; 867 } // end anonymous namespace. 868 869 //===----------------------------------------------------------------------===// 870 // Utilities 871 //===----------------------------------------------------------------------===// 872 873 /// EmitConversionToBool - Convert the specified expression value to a 874 /// boolean (i1) truth value. This is equivalent to "Val != 0". 875 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) { 876 assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs"); 877 878 if (SrcType->isRealFloatingType()) 879 return EmitFloatToBoolConversion(Src); 880 881 if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType)) 882 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT); 883 884 assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) && 885 "Unknown scalar type to convert"); 886 887 if (isa<llvm::IntegerType>(Src->getType())) 888 return EmitIntToBoolConversion(Src); 889 890 assert(isa<llvm::PointerType>(Src->getType())); 891 return EmitPointerToBoolConversion(Src, SrcType); 892 } 893 894 void ScalarExprEmitter::EmitFloatConversionCheck( 895 Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType, 896 QualType DstType, llvm::Type *DstTy, SourceLocation Loc) { 897 assert(SrcType->isFloatingType() && "not a conversion from floating point"); 898 if (!isa<llvm::IntegerType>(DstTy)) 899 return; 900 901 CodeGenFunction::SanitizerScope SanScope(&CGF); 902 using llvm::APFloat; 903 using llvm::APSInt; 904 905 llvm::Value *Check = nullptr; 906 const llvm::fltSemantics &SrcSema = 907 CGF.getContext().getFloatTypeSemantics(OrigSrcType); 908 909 // Floating-point to integer. This has undefined behavior if the source is 910 // +-Inf, NaN, or doesn't fit into the destination type (after truncation 911 // to an integer). 912 unsigned Width = CGF.getContext().getIntWidth(DstType); 913 bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType(); 914 915 APSInt Min = APSInt::getMinValue(Width, Unsigned); 916 APFloat MinSrc(SrcSema, APFloat::uninitialized); 917 if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) & 918 APFloat::opOverflow) 919 // Don't need an overflow check for lower bound. Just check for 920 // -Inf/NaN. 921 MinSrc = APFloat::getInf(SrcSema, true); 922 else 923 // Find the largest value which is too small to represent (before 924 // truncation toward zero). 925 MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative); 926 927 APSInt Max = APSInt::getMaxValue(Width, Unsigned); 928 APFloat MaxSrc(SrcSema, APFloat::uninitialized); 929 if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) & 930 APFloat::opOverflow) 931 // Don't need an overflow check for upper bound. Just check for 932 // +Inf/NaN. 933 MaxSrc = APFloat::getInf(SrcSema, false); 934 else 935 // Find the smallest value which is too large to represent (before 936 // truncation toward zero). 937 MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive); 938 939 // If we're converting from __half, convert the range to float to match 940 // the type of src. 941 if (OrigSrcType->isHalfType()) { 942 const llvm::fltSemantics &Sema = 943 CGF.getContext().getFloatTypeSemantics(SrcType); 944 bool IsInexact; 945 MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 946 MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 947 } 948 949 llvm::Value *GE = 950 Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc)); 951 llvm::Value *LE = 952 Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc)); 953 Check = Builder.CreateAnd(GE, LE); 954 955 llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc), 956 CGF.EmitCheckTypeDescriptor(OrigSrcType), 957 CGF.EmitCheckTypeDescriptor(DstType)}; 958 CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow), 959 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc); 960 } 961 962 // Should be called within CodeGenFunction::SanitizerScope RAII scope. 963 // Returns 'i1 false' when the truncation Src -> Dst was lossy. 964 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 965 std::pair<llvm::Value *, SanitizerMask>> 966 EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst, 967 QualType DstType, CGBuilderTy &Builder) { 968 llvm::Type *SrcTy = Src->getType(); 969 llvm::Type *DstTy = Dst->getType(); 970 (void)DstTy; // Only used in assert() 971 972 // This should be truncation of integral types. 973 assert(Src != Dst); 974 assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits()); 975 assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) && 976 "non-integer llvm type"); 977 978 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 979 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 980 981 // If both (src and dst) types are unsigned, then it's an unsigned truncation. 982 // Else, it is a signed truncation. 983 ScalarExprEmitter::ImplicitConversionCheckKind Kind; 984 SanitizerMask Mask; 985 if (!SrcSigned && !DstSigned) { 986 Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation; 987 Mask = SanitizerKind::ImplicitUnsignedIntegerTruncation; 988 } else { 989 Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation; 990 Mask = SanitizerKind::ImplicitSignedIntegerTruncation; 991 } 992 993 llvm::Value *Check = nullptr; 994 // 1. Extend the truncated value back to the same width as the Src. 995 Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext"); 996 // 2. Equality-compare with the original source value 997 Check = Builder.CreateICmpEQ(Check, Src, "truncheck"); 998 // If the comparison result is 'i1 false', then the truncation was lossy. 999 return std::make_pair(Kind, std::make_pair(Check, Mask)); 1000 } 1001 1002 static bool PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck( 1003 QualType SrcType, QualType DstType) { 1004 return SrcType->isIntegerType() && DstType->isIntegerType(); 1005 } 1006 1007 void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType, 1008 Value *Dst, QualType DstType, 1009 SourceLocation Loc) { 1010 if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)) 1011 return; 1012 1013 // We only care about int->int conversions here. 1014 // We ignore conversions to/from pointer and/or bool. 1015 if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType, 1016 DstType)) 1017 return; 1018 1019 unsigned SrcBits = Src->getType()->getScalarSizeInBits(); 1020 unsigned DstBits = Dst->getType()->getScalarSizeInBits(); 1021 // This must be truncation. Else we do not care. 1022 if (SrcBits <= DstBits) 1023 return; 1024 1025 assert(!DstType->isBooleanType() && "we should not get here with booleans."); 1026 1027 // If the integer sign change sanitizer is enabled, 1028 // and we are truncating from larger unsigned type to smaller signed type, 1029 // let that next sanitizer deal with it. 1030 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 1031 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 1032 if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) && 1033 (!SrcSigned && DstSigned)) 1034 return; 1035 1036 CodeGenFunction::SanitizerScope SanScope(&CGF); 1037 1038 std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 1039 std::pair<llvm::Value *, SanitizerMask>> 1040 Check = 1041 EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder); 1042 // If the comparison result is 'i1 false', then the truncation was lossy. 1043 1044 // Do we care about this type of truncation? 1045 if (!CGF.SanOpts.has(Check.second.second)) 1046 return; 1047 1048 llvm::Constant *StaticArgs[] = { 1049 CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType), 1050 CGF.EmitCheckTypeDescriptor(DstType), 1051 llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first)}; 1052 CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs, 1053 {Src, Dst}); 1054 } 1055 1056 // Should be called within CodeGenFunction::SanitizerScope RAII scope. 1057 // Returns 'i1 false' when the conversion Src -> Dst changed the sign. 1058 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 1059 std::pair<llvm::Value *, SanitizerMask>> 1060 EmitIntegerSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst, 1061 QualType DstType, CGBuilderTy &Builder) { 1062 llvm::Type *SrcTy = Src->getType(); 1063 llvm::Type *DstTy = Dst->getType(); 1064 1065 assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) && 1066 "non-integer llvm type"); 1067 1068 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 1069 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 1070 (void)SrcSigned; // Only used in assert() 1071 (void)DstSigned; // Only used in assert() 1072 unsigned SrcBits = SrcTy->getScalarSizeInBits(); 1073 unsigned DstBits = DstTy->getScalarSizeInBits(); 1074 (void)SrcBits; // Only used in assert() 1075 (void)DstBits; // Only used in assert() 1076 1077 assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) && 1078 "either the widths should be different, or the signednesses."); 1079 1080 // NOTE: zero value is considered to be non-negative. 1081 auto EmitIsNegativeTest = [&Builder](Value *V, QualType VType, 1082 const char *Name) -> Value * { 1083 // Is this value a signed type? 1084 bool VSigned = VType->isSignedIntegerOrEnumerationType(); 1085 llvm::Type *VTy = V->getType(); 1086 if (!VSigned) { 1087 // If the value is unsigned, then it is never negative. 1088 // FIXME: can we encounter non-scalar VTy here? 1089 return llvm::ConstantInt::getFalse(VTy->getContext()); 1090 } 1091 // Get the zero of the same type with which we will be comparing. 1092 llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0); 1093 // %V.isnegative = icmp slt %V, 0 1094 // I.e is %V *strictly* less than zero, does it have negative value? 1095 return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero, 1096 llvm::Twine(Name) + "." + V->getName() + 1097 ".negativitycheck"); 1098 }; 1099 1100 // 1. Was the old Value negative? 1101 llvm::Value *SrcIsNegative = EmitIsNegativeTest(Src, SrcType, "src"); 1102 // 2. Is the new Value negative? 1103 llvm::Value *DstIsNegative = EmitIsNegativeTest(Dst, DstType, "dst"); 1104 // 3. Now, was the 'negativity status' preserved during the conversion? 1105 // NOTE: conversion from negative to zero is considered to change the sign. 1106 // (We want to get 'false' when the conversion changed the sign) 1107 // So we should just equality-compare the negativity statuses. 1108 llvm::Value *Check = nullptr; 1109 Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck"); 1110 // If the comparison result is 'false', then the conversion changed the sign. 1111 return std::make_pair( 1112 ScalarExprEmitter::ICCK_IntegerSignChange, 1113 std::make_pair(Check, SanitizerKind::ImplicitIntegerSignChange)); 1114 } 1115 1116 void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, 1117 Value *Dst, QualType DstType, 1118 SourceLocation Loc) { 1119 if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) 1120 return; 1121 1122 llvm::Type *SrcTy = Src->getType(); 1123 llvm::Type *DstTy = Dst->getType(); 1124 1125 // We only care about int->int conversions here. 1126 // We ignore conversions to/from pointer and/or bool. 1127 if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType, 1128 DstType)) 1129 return; 1130 1131 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 1132 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 1133 unsigned SrcBits = SrcTy->getScalarSizeInBits(); 1134 unsigned DstBits = DstTy->getScalarSizeInBits(); 1135 1136 // Now, we do not need to emit the check in *all* of the cases. 1137 // We can avoid emitting it in some obvious cases where it would have been 1138 // dropped by the opt passes (instcombine) always anyways. 1139 // If it's a cast between effectively the same type, no check. 1140 // NOTE: this is *not* equivalent to checking the canonical types. 1141 if (SrcSigned == DstSigned && SrcBits == DstBits) 1142 return; 1143 // At least one of the values needs to have signed type. 1144 // If both are unsigned, then obviously, neither of them can be negative. 1145 if (!SrcSigned && !DstSigned) 1146 return; 1147 // If the conversion is to *larger* *signed* type, then no check is needed. 1148 // Because either sign-extension happens (so the sign will remain), 1149 // or zero-extension will happen (the sign bit will be zero.) 1150 if ((DstBits > SrcBits) && DstSigned) 1151 return; 1152 if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) && 1153 (SrcBits > DstBits) && SrcSigned) { 1154 // If the signed integer truncation sanitizer is enabled, 1155 // and this is a truncation from signed type, then no check is needed. 1156 // Because here sign change check is interchangeable with truncation check. 1157 return; 1158 } 1159 // That's it. We can't rule out any more cases with the data we have. 1160 1161 CodeGenFunction::SanitizerScope SanScope(&CGF); 1162 1163 std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 1164 std::pair<llvm::Value *, SanitizerMask>> 1165 Check; 1166 1167 // Each of these checks needs to return 'false' when an issue was detected. 1168 ImplicitConversionCheckKind CheckKind; 1169 llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 1170 // So we can 'and' all the checks together, and still get 'false', 1171 // if at least one of the checks detected an issue. 1172 1173 Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder); 1174 CheckKind = Check.first; 1175 Checks.emplace_back(Check.second); 1176 1177 if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) && 1178 (SrcBits > DstBits) && !SrcSigned && DstSigned) { 1179 // If the signed integer truncation sanitizer was enabled, 1180 // and we are truncating from larger unsigned type to smaller signed type, 1181 // let's handle the case we skipped in that check. 1182 Check = 1183 EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder); 1184 CheckKind = ICCK_SignedIntegerTruncationOrSignChange; 1185 Checks.emplace_back(Check.second); 1186 // If the comparison result is 'i1 false', then the truncation was lossy. 1187 } 1188 1189 llvm::Constant *StaticArgs[] = { 1190 CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType), 1191 CGF.EmitCheckTypeDescriptor(DstType), 1192 llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind)}; 1193 // EmitCheck() will 'and' all the checks together. 1194 CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs, 1195 {Src, Dst}); 1196 } 1197 1198 Value *ScalarExprEmitter::EmitScalarCast(Value *Src, QualType SrcType, 1199 QualType DstType, llvm::Type *SrcTy, 1200 llvm::Type *DstTy, 1201 ScalarConversionOpts Opts) { 1202 // The Element types determine the type of cast to perform. 1203 llvm::Type *SrcElementTy; 1204 llvm::Type *DstElementTy; 1205 QualType SrcElementType; 1206 QualType DstElementType; 1207 if (SrcType->isMatrixType() && DstType->isMatrixType()) { 1208 SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType(); 1209 DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType(); 1210 SrcElementType = SrcType->castAs<MatrixType>()->getElementType(); 1211 DstElementType = DstType->castAs<MatrixType>()->getElementType(); 1212 } else { 1213 assert(!SrcType->isMatrixType() && !DstType->isMatrixType() && 1214 "cannot cast between matrix and non-matrix types"); 1215 SrcElementTy = SrcTy; 1216 DstElementTy = DstTy; 1217 SrcElementType = SrcType; 1218 DstElementType = DstType; 1219 } 1220 1221 if (isa<llvm::IntegerType>(SrcElementTy)) { 1222 bool InputSigned = SrcElementType->isSignedIntegerOrEnumerationType(); 1223 if (SrcElementType->isBooleanType() && Opts.TreatBooleanAsSigned) { 1224 InputSigned = true; 1225 } 1226 1227 if (isa<llvm::IntegerType>(DstElementTy)) 1228 return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1229 if (InputSigned) 1230 return Builder.CreateSIToFP(Src, DstTy, "conv"); 1231 return Builder.CreateUIToFP(Src, DstTy, "conv"); 1232 } 1233 1234 if (isa<llvm::IntegerType>(DstElementTy)) { 1235 assert(SrcElementTy->isFloatingPointTy() && "Unknown real conversion"); 1236 if (DstElementType->isSignedIntegerOrEnumerationType()) 1237 return Builder.CreateFPToSI(Src, DstTy, "conv"); 1238 return Builder.CreateFPToUI(Src, DstTy, "conv"); 1239 } 1240 1241 if (DstElementTy->getTypeID() < SrcElementTy->getTypeID()) 1242 return Builder.CreateFPTrunc(Src, DstTy, "conv"); 1243 return Builder.CreateFPExt(Src, DstTy, "conv"); 1244 } 1245 1246 /// Emit a conversion from the specified type to the specified destination type, 1247 /// both of which are LLVM scalar types. 1248 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, 1249 QualType DstType, 1250 SourceLocation Loc, 1251 ScalarConversionOpts Opts) { 1252 // All conversions involving fixed point types should be handled by the 1253 // EmitFixedPoint family functions. This is done to prevent bloating up this 1254 // function more, and although fixed point numbers are represented by 1255 // integers, we do not want to follow any logic that assumes they should be 1256 // treated as integers. 1257 // TODO(leonardchan): When necessary, add another if statement checking for 1258 // conversions to fixed point types from other types. 1259 if (SrcType->isFixedPointType()) { 1260 if (DstType->isBooleanType()) 1261 // It is important that we check this before checking if the dest type is 1262 // an integer because booleans are technically integer types. 1263 // We do not need to check the padding bit on unsigned types if unsigned 1264 // padding is enabled because overflow into this bit is undefined 1265 // behavior. 1266 return Builder.CreateIsNotNull(Src, "tobool"); 1267 if (DstType->isFixedPointType() || DstType->isIntegerType() || 1268 DstType->isRealFloatingType()) 1269 return EmitFixedPointConversion(Src, SrcType, DstType, Loc); 1270 1271 llvm_unreachable( 1272 "Unhandled scalar conversion from a fixed point type to another type."); 1273 } else if (DstType->isFixedPointType()) { 1274 if (SrcType->isIntegerType() || SrcType->isRealFloatingType()) 1275 // This also includes converting booleans and enums to fixed point types. 1276 return EmitFixedPointConversion(Src, SrcType, DstType, Loc); 1277 1278 llvm_unreachable( 1279 "Unhandled scalar conversion to a fixed point type from another type."); 1280 } 1281 1282 QualType NoncanonicalSrcType = SrcType; 1283 QualType NoncanonicalDstType = DstType; 1284 1285 SrcType = CGF.getContext().getCanonicalType(SrcType); 1286 DstType = CGF.getContext().getCanonicalType(DstType); 1287 if (SrcType == DstType) return Src; 1288 1289 if (DstType->isVoidType()) return nullptr; 1290 1291 llvm::Value *OrigSrc = Src; 1292 QualType OrigSrcType = SrcType; 1293 llvm::Type *SrcTy = Src->getType(); 1294 1295 // Handle conversions to bool first, they are special: comparisons against 0. 1296 if (DstType->isBooleanType()) 1297 return EmitConversionToBool(Src, SrcType); 1298 1299 llvm::Type *DstTy = ConvertType(DstType); 1300 1301 // Cast from half through float if half isn't a native type. 1302 if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1303 // Cast to FP using the intrinsic if the half type itself isn't supported. 1304 if (DstTy->isFloatingPointTy()) { 1305 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) 1306 return Builder.CreateCall( 1307 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy), 1308 Src); 1309 } else { 1310 // Cast to other types through float, using either the intrinsic or FPExt, 1311 // depending on whether the half type itself is supported 1312 // (as opposed to operations on half, available with NativeHalfType). 1313 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 1314 Src = Builder.CreateCall( 1315 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 1316 CGF.CGM.FloatTy), 1317 Src); 1318 } else { 1319 Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv"); 1320 } 1321 SrcType = CGF.getContext().FloatTy; 1322 SrcTy = CGF.FloatTy; 1323 } 1324 } 1325 1326 // Ignore conversions like int -> uint. 1327 if (SrcTy == DstTy) { 1328 if (Opts.EmitImplicitIntegerSignChangeChecks) 1329 EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src, 1330 NoncanonicalDstType, Loc); 1331 1332 return Src; 1333 } 1334 1335 // Handle pointer conversions next: pointers can only be converted to/from 1336 // other pointers and integers. Check for pointer types in terms of LLVM, as 1337 // some native types (like Obj-C id) may map to a pointer type. 1338 if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) { 1339 // The source value may be an integer, or a pointer. 1340 if (isa<llvm::PointerType>(SrcTy)) 1341 return Builder.CreateBitCast(Src, DstTy, "conv"); 1342 1343 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?"); 1344 // First, convert to the correct width so that we control the kind of 1345 // extension. 1346 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT); 1347 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 1348 llvm::Value* IntResult = 1349 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 1350 // Then, cast to pointer. 1351 return Builder.CreateIntToPtr(IntResult, DstTy, "conv"); 1352 } 1353 1354 if (isa<llvm::PointerType>(SrcTy)) { 1355 // Must be an ptr to int cast. 1356 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?"); 1357 return Builder.CreatePtrToInt(Src, DstTy, "conv"); 1358 } 1359 1360 // A scalar can be splatted to an extended vector of the same element type 1361 if (DstType->isExtVectorType() && !SrcType->isVectorType()) { 1362 // Sema should add casts to make sure that the source expression's type is 1363 // the same as the vector's element type (sans qualifiers) 1364 assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() == 1365 SrcType.getTypePtr() && 1366 "Splatted expr doesn't match with vector element type?"); 1367 1368 // Splat the element across to all elements 1369 unsigned NumElements = cast<llvm::FixedVectorType>(DstTy)->getNumElements(); 1370 return Builder.CreateVectorSplat(NumElements, Src, "splat"); 1371 } 1372 1373 if (SrcType->isMatrixType() && DstType->isMatrixType()) 1374 return EmitScalarCast(Src, SrcType, DstType, SrcTy, DstTy, Opts); 1375 1376 if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) { 1377 // Allow bitcast from vector to integer/fp of the same size. 1378 unsigned SrcSize = SrcTy->getPrimitiveSizeInBits(); 1379 unsigned DstSize = DstTy->getPrimitiveSizeInBits(); 1380 if (SrcSize == DstSize) 1381 return Builder.CreateBitCast(Src, DstTy, "conv"); 1382 1383 // Conversions between vectors of different sizes are not allowed except 1384 // when vectors of half are involved. Operations on storage-only half 1385 // vectors require promoting half vector operands to float vectors and 1386 // truncating the result, which is either an int or float vector, to a 1387 // short or half vector. 1388 1389 // Source and destination are both expected to be vectors. 1390 llvm::Type *SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType(); 1391 llvm::Type *DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType(); 1392 (void)DstElementTy; 1393 1394 assert(((SrcElementTy->isIntegerTy() && 1395 DstElementTy->isIntegerTy()) || 1396 (SrcElementTy->isFloatingPointTy() && 1397 DstElementTy->isFloatingPointTy())) && 1398 "unexpected conversion between a floating-point vector and an " 1399 "integer vector"); 1400 1401 // Truncate an i32 vector to an i16 vector. 1402 if (SrcElementTy->isIntegerTy()) 1403 return Builder.CreateIntCast(Src, DstTy, false, "conv"); 1404 1405 // Truncate a float vector to a half vector. 1406 if (SrcSize > DstSize) 1407 return Builder.CreateFPTrunc(Src, DstTy, "conv"); 1408 1409 // Promote a half vector to a float vector. 1410 return Builder.CreateFPExt(Src, DstTy, "conv"); 1411 } 1412 1413 // Finally, we have the arithmetic types: real int/float. 1414 Value *Res = nullptr; 1415 llvm::Type *ResTy = DstTy; 1416 1417 // An overflowing conversion has undefined behavior if either the source type 1418 // or the destination type is a floating-point type. However, we consider the 1419 // range of representable values for all floating-point types to be 1420 // [-inf,+inf], so no overflow can ever happen when the destination type is a 1421 // floating-point type. 1422 if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) && 1423 OrigSrcType->isFloatingType()) 1424 EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy, 1425 Loc); 1426 1427 // Cast to half through float if half isn't a native type. 1428 if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1429 // Make sure we cast in a single step if from another FP type. 1430 if (SrcTy->isFloatingPointTy()) { 1431 // Use the intrinsic if the half type itself isn't supported 1432 // (as opposed to operations on half, available with NativeHalfType). 1433 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) 1434 return Builder.CreateCall( 1435 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src); 1436 // If the half type is supported, just use an fptrunc. 1437 return Builder.CreateFPTrunc(Src, DstTy); 1438 } 1439 DstTy = CGF.FloatTy; 1440 } 1441 1442 Res = EmitScalarCast(Src, SrcType, DstType, SrcTy, DstTy, Opts); 1443 1444 if (DstTy != ResTy) { 1445 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 1446 assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion"); 1447 Res = Builder.CreateCall( 1448 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy), 1449 Res); 1450 } else { 1451 Res = Builder.CreateFPTrunc(Res, ResTy, "conv"); 1452 } 1453 } 1454 1455 if (Opts.EmitImplicitIntegerTruncationChecks) 1456 EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res, 1457 NoncanonicalDstType, Loc); 1458 1459 if (Opts.EmitImplicitIntegerSignChangeChecks) 1460 EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res, 1461 NoncanonicalDstType, Loc); 1462 1463 return Res; 1464 } 1465 1466 Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy, 1467 QualType DstTy, 1468 SourceLocation Loc) { 1469 llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder); 1470 llvm::Value *Result; 1471 if (SrcTy->isRealFloatingType()) 1472 Result = FPBuilder.CreateFloatingToFixed(Src, 1473 CGF.getContext().getFixedPointSemantics(DstTy)); 1474 else if (DstTy->isRealFloatingType()) 1475 Result = FPBuilder.CreateFixedToFloating(Src, 1476 CGF.getContext().getFixedPointSemantics(SrcTy), 1477 ConvertType(DstTy)); 1478 else { 1479 auto SrcFPSema = CGF.getContext().getFixedPointSemantics(SrcTy); 1480 auto DstFPSema = CGF.getContext().getFixedPointSemantics(DstTy); 1481 1482 if (DstTy->isIntegerType()) 1483 Result = FPBuilder.CreateFixedToInteger(Src, SrcFPSema, 1484 DstFPSema.getWidth(), 1485 DstFPSema.isSigned()); 1486 else if (SrcTy->isIntegerType()) 1487 Result = FPBuilder.CreateIntegerToFixed(Src, SrcFPSema.isSigned(), 1488 DstFPSema); 1489 else 1490 Result = FPBuilder.CreateFixedToFixed(Src, SrcFPSema, DstFPSema); 1491 } 1492 return Result; 1493 } 1494 1495 /// Emit a conversion from the specified complex type to the specified 1496 /// destination type, where the destination type is an LLVM scalar type. 1497 Value *ScalarExprEmitter::EmitComplexToScalarConversion( 1498 CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy, 1499 SourceLocation Loc) { 1500 // Get the source element type. 1501 SrcTy = SrcTy->castAs<ComplexType>()->getElementType(); 1502 1503 // Handle conversions to bool first, they are special: comparisons against 0. 1504 if (DstTy->isBooleanType()) { 1505 // Complex != 0 -> (Real != 0) | (Imag != 0) 1506 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 1507 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc); 1508 return Builder.CreateOr(Src.first, Src.second, "tobool"); 1509 } 1510 1511 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type, 1512 // the imaginary part of the complex value is discarded and the value of the 1513 // real part is converted according to the conversion rules for the 1514 // corresponding real type. 1515 return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 1516 } 1517 1518 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) { 1519 return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty); 1520 } 1521 1522 /// Emit a sanitization check for the given "binary" operation (which 1523 /// might actually be a unary increment which has been lowered to a binary 1524 /// operation). The check passes if all values in \p Checks (which are \c i1), 1525 /// are \c true. 1526 void ScalarExprEmitter::EmitBinOpCheck( 1527 ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) { 1528 assert(CGF.IsSanitizerScope); 1529 SanitizerHandler Check; 1530 SmallVector<llvm::Constant *, 4> StaticData; 1531 SmallVector<llvm::Value *, 2> DynamicData; 1532 1533 BinaryOperatorKind Opcode = Info.Opcode; 1534 if (BinaryOperator::isCompoundAssignmentOp(Opcode)) 1535 Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode); 1536 1537 StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc())); 1538 const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E); 1539 if (UO && UO->getOpcode() == UO_Minus) { 1540 Check = SanitizerHandler::NegateOverflow; 1541 StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType())); 1542 DynamicData.push_back(Info.RHS); 1543 } else { 1544 if (BinaryOperator::isShiftOp(Opcode)) { 1545 // Shift LHS negative or too large, or RHS out of bounds. 1546 Check = SanitizerHandler::ShiftOutOfBounds; 1547 const BinaryOperator *BO = cast<BinaryOperator>(Info.E); 1548 StaticData.push_back( 1549 CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType())); 1550 StaticData.push_back( 1551 CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType())); 1552 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 1553 // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1). 1554 Check = SanitizerHandler::DivremOverflow; 1555 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 1556 } else { 1557 // Arithmetic overflow (+, -, *). 1558 switch (Opcode) { 1559 case BO_Add: Check = SanitizerHandler::AddOverflow; break; 1560 case BO_Sub: Check = SanitizerHandler::SubOverflow; break; 1561 case BO_Mul: Check = SanitizerHandler::MulOverflow; break; 1562 default: llvm_unreachable("unexpected opcode for bin op check"); 1563 } 1564 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 1565 } 1566 DynamicData.push_back(Info.LHS); 1567 DynamicData.push_back(Info.RHS); 1568 } 1569 1570 CGF.EmitCheck(Checks, Check, StaticData, DynamicData); 1571 } 1572 1573 //===----------------------------------------------------------------------===// 1574 // Visitor Methods 1575 //===----------------------------------------------------------------------===// 1576 1577 Value *ScalarExprEmitter::VisitExpr(Expr *E) { 1578 CGF.ErrorUnsupported(E, "scalar expression"); 1579 if (E->getType()->isVoidType()) 1580 return nullptr; 1581 return llvm::UndefValue::get(CGF.ConvertType(E->getType())); 1582 } 1583 1584 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) { 1585 // Vector Mask Case 1586 if (E->getNumSubExprs() == 2) { 1587 Value *LHS = CGF.EmitScalarExpr(E->getExpr(0)); 1588 Value *RHS = CGF.EmitScalarExpr(E->getExpr(1)); 1589 Value *Mask; 1590 1591 auto *LTy = cast<llvm::FixedVectorType>(LHS->getType()); 1592 unsigned LHSElts = LTy->getNumElements(); 1593 1594 Mask = RHS; 1595 1596 auto *MTy = cast<llvm::FixedVectorType>(Mask->getType()); 1597 1598 // Mask off the high bits of each shuffle index. 1599 Value *MaskBits = 1600 llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1); 1601 Mask = Builder.CreateAnd(Mask, MaskBits, "mask"); 1602 1603 // newv = undef 1604 // mask = mask & maskbits 1605 // for each elt 1606 // n = extract mask i 1607 // x = extract val n 1608 // newv = insert newv, x, i 1609 auto *RTy = llvm::FixedVectorType::get(LTy->getElementType(), 1610 MTy->getNumElements()); 1611 Value* NewV = llvm::UndefValue::get(RTy); 1612 for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) { 1613 Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i); 1614 Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx"); 1615 1616 Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt"); 1617 NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins"); 1618 } 1619 return NewV; 1620 } 1621 1622 Value* V1 = CGF.EmitScalarExpr(E->getExpr(0)); 1623 Value* V2 = CGF.EmitScalarExpr(E->getExpr(1)); 1624 1625 SmallVector<int, 32> Indices; 1626 for (unsigned i = 2; i < E->getNumSubExprs(); ++i) { 1627 llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2); 1628 // Check for -1 and output it as undef in the IR. 1629 if (Idx.isSigned() && Idx.isAllOnesValue()) 1630 Indices.push_back(-1); 1631 else 1632 Indices.push_back(Idx.getZExtValue()); 1633 } 1634 1635 return Builder.CreateShuffleVector(V1, V2, Indices, "shuffle"); 1636 } 1637 1638 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) { 1639 QualType SrcType = E->getSrcExpr()->getType(), 1640 DstType = E->getType(); 1641 1642 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 1643 1644 SrcType = CGF.getContext().getCanonicalType(SrcType); 1645 DstType = CGF.getContext().getCanonicalType(DstType); 1646 if (SrcType == DstType) return Src; 1647 1648 assert(SrcType->isVectorType() && 1649 "ConvertVector source type must be a vector"); 1650 assert(DstType->isVectorType() && 1651 "ConvertVector destination type must be a vector"); 1652 1653 llvm::Type *SrcTy = Src->getType(); 1654 llvm::Type *DstTy = ConvertType(DstType); 1655 1656 // Ignore conversions like int -> uint. 1657 if (SrcTy == DstTy) 1658 return Src; 1659 1660 QualType SrcEltType = SrcType->castAs<VectorType>()->getElementType(), 1661 DstEltType = DstType->castAs<VectorType>()->getElementType(); 1662 1663 assert(SrcTy->isVectorTy() && 1664 "ConvertVector source IR type must be a vector"); 1665 assert(DstTy->isVectorTy() && 1666 "ConvertVector destination IR type must be a vector"); 1667 1668 llvm::Type *SrcEltTy = cast<llvm::VectorType>(SrcTy)->getElementType(), 1669 *DstEltTy = cast<llvm::VectorType>(DstTy)->getElementType(); 1670 1671 if (DstEltType->isBooleanType()) { 1672 assert((SrcEltTy->isFloatingPointTy() || 1673 isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion"); 1674 1675 llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy); 1676 if (SrcEltTy->isFloatingPointTy()) { 1677 return Builder.CreateFCmpUNE(Src, Zero, "tobool"); 1678 } else { 1679 return Builder.CreateICmpNE(Src, Zero, "tobool"); 1680 } 1681 } 1682 1683 // We have the arithmetic types: real int/float. 1684 Value *Res = nullptr; 1685 1686 if (isa<llvm::IntegerType>(SrcEltTy)) { 1687 bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType(); 1688 if (isa<llvm::IntegerType>(DstEltTy)) 1689 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1690 else if (InputSigned) 1691 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 1692 else 1693 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 1694 } else if (isa<llvm::IntegerType>(DstEltTy)) { 1695 assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion"); 1696 if (DstEltType->isSignedIntegerOrEnumerationType()) 1697 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 1698 else 1699 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 1700 } else { 1701 assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() && 1702 "Unknown real conversion"); 1703 if (DstEltTy->getTypeID() < SrcEltTy->getTypeID()) 1704 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 1705 else 1706 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 1707 } 1708 1709 return Res; 1710 } 1711 1712 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) { 1713 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) { 1714 CGF.EmitIgnoredExpr(E->getBase()); 1715 return CGF.emitScalarConstant(Constant, E); 1716 } else { 1717 Expr::EvalResult Result; 1718 if (E->EvaluateAsInt(Result, CGF.getContext(), Expr::SE_AllowSideEffects)) { 1719 llvm::APSInt Value = Result.Val.getInt(); 1720 CGF.EmitIgnoredExpr(E->getBase()); 1721 return Builder.getInt(Value); 1722 } 1723 } 1724 1725 return EmitLoadOfLValue(E); 1726 } 1727 1728 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 1729 TestAndClearIgnoreResultAssign(); 1730 1731 // Emit subscript expressions in rvalue context's. For most cases, this just 1732 // loads the lvalue formed by the subscript expr. However, we have to be 1733 // careful, because the base of a vector subscript is occasionally an rvalue, 1734 // so we can't get it as an lvalue. 1735 if (!E->getBase()->getType()->isVectorType()) 1736 return EmitLoadOfLValue(E); 1737 1738 // Handle the vector case. The base must be a vector, the index must be an 1739 // integer value. 1740 Value *Base = Visit(E->getBase()); 1741 Value *Idx = Visit(E->getIdx()); 1742 QualType IdxTy = E->getIdx()->getType(); 1743 1744 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 1745 CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true); 1746 1747 return Builder.CreateExtractElement(Base, Idx, "vecext"); 1748 } 1749 1750 Value *ScalarExprEmitter::VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E) { 1751 TestAndClearIgnoreResultAssign(); 1752 1753 // Handle the vector case. The base must be a vector, the index must be an 1754 // integer value. 1755 Value *RowIdx = Visit(E->getRowIdx()); 1756 Value *ColumnIdx = Visit(E->getColumnIdx()); 1757 Value *Matrix = Visit(E->getBase()); 1758 1759 // TODO: Should we emit bounds checks with SanitizerKind::ArrayBounds? 1760 llvm::MatrixBuilder<CGBuilderTy> MB(Builder); 1761 return MB.CreateExtractElement( 1762 Matrix, RowIdx, ColumnIdx, 1763 E->getBase()->getType()->castAs<ConstantMatrixType>()->getNumRows()); 1764 } 1765 1766 static int getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx, 1767 unsigned Off) { 1768 int MV = SVI->getMaskValue(Idx); 1769 if (MV == -1) 1770 return -1; 1771 return Off + MV; 1772 } 1773 1774 static int getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) { 1775 assert(llvm::ConstantInt::isValueValidForType(I32Ty, C->getZExtValue()) && 1776 "Index operand too large for shufflevector mask!"); 1777 return C->getZExtValue(); 1778 } 1779 1780 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) { 1781 bool Ignore = TestAndClearIgnoreResultAssign(); 1782 (void)Ignore; 1783 assert (Ignore == false && "init list ignored"); 1784 unsigned NumInitElements = E->getNumInits(); 1785 1786 if (E->hadArrayRangeDesignator()) 1787 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1788 1789 llvm::VectorType *VType = 1790 dyn_cast<llvm::VectorType>(ConvertType(E->getType())); 1791 1792 if (!VType) { 1793 if (NumInitElements == 0) { 1794 // C++11 value-initialization for the scalar. 1795 return EmitNullValue(E->getType()); 1796 } 1797 // We have a scalar in braces. Just use the first element. 1798 return Visit(E->getInit(0)); 1799 } 1800 1801 unsigned ResElts = cast<llvm::FixedVectorType>(VType)->getNumElements(); 1802 1803 // Loop over initializers collecting the Value for each, and remembering 1804 // whether the source was swizzle (ExtVectorElementExpr). This will allow 1805 // us to fold the shuffle for the swizzle into the shuffle for the vector 1806 // initializer, since LLVM optimizers generally do not want to touch 1807 // shuffles. 1808 unsigned CurIdx = 0; 1809 bool VIsUndefShuffle = false; 1810 llvm::Value *V = llvm::UndefValue::get(VType); 1811 for (unsigned i = 0; i != NumInitElements; ++i) { 1812 Expr *IE = E->getInit(i); 1813 Value *Init = Visit(IE); 1814 SmallVector<int, 16> Args; 1815 1816 llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType()); 1817 1818 // Handle scalar elements. If the scalar initializer is actually one 1819 // element of a different vector of the same width, use shuffle instead of 1820 // extract+insert. 1821 if (!VVT) { 1822 if (isa<ExtVectorElementExpr>(IE)) { 1823 llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init); 1824 1825 if (cast<llvm::FixedVectorType>(EI->getVectorOperandType()) 1826 ->getNumElements() == ResElts) { 1827 llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand()); 1828 Value *LHS = nullptr, *RHS = nullptr; 1829 if (CurIdx == 0) { 1830 // insert into undef -> shuffle (src, undef) 1831 // shufflemask must use an i32 1832 Args.push_back(getAsInt32(C, CGF.Int32Ty)); 1833 Args.resize(ResElts, -1); 1834 1835 LHS = EI->getVectorOperand(); 1836 RHS = V; 1837 VIsUndefShuffle = true; 1838 } else if (VIsUndefShuffle) { 1839 // insert into undefshuffle && size match -> shuffle (v, src) 1840 llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V); 1841 for (unsigned j = 0; j != CurIdx; ++j) 1842 Args.push_back(getMaskElt(SVV, j, 0)); 1843 Args.push_back(ResElts + C->getZExtValue()); 1844 Args.resize(ResElts, -1); 1845 1846 LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1847 RHS = EI->getVectorOperand(); 1848 VIsUndefShuffle = false; 1849 } 1850 if (!Args.empty()) { 1851 V = Builder.CreateShuffleVector(LHS, RHS, Args); 1852 ++CurIdx; 1853 continue; 1854 } 1855 } 1856 } 1857 V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx), 1858 "vecinit"); 1859 VIsUndefShuffle = false; 1860 ++CurIdx; 1861 continue; 1862 } 1863 1864 unsigned InitElts = cast<llvm::FixedVectorType>(VVT)->getNumElements(); 1865 1866 // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's 1867 // input is the same width as the vector being constructed, generate an 1868 // optimized shuffle of the swizzle input into the result. 1869 unsigned Offset = (CurIdx == 0) ? 0 : ResElts; 1870 if (isa<ExtVectorElementExpr>(IE)) { 1871 llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init); 1872 Value *SVOp = SVI->getOperand(0); 1873 auto *OpTy = cast<llvm::FixedVectorType>(SVOp->getType()); 1874 1875 if (OpTy->getNumElements() == ResElts) { 1876 for (unsigned j = 0; j != CurIdx; ++j) { 1877 // If the current vector initializer is a shuffle with undef, merge 1878 // this shuffle directly into it. 1879 if (VIsUndefShuffle) { 1880 Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0)); 1881 } else { 1882 Args.push_back(j); 1883 } 1884 } 1885 for (unsigned j = 0, je = InitElts; j != je; ++j) 1886 Args.push_back(getMaskElt(SVI, j, Offset)); 1887 Args.resize(ResElts, -1); 1888 1889 if (VIsUndefShuffle) 1890 V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1891 1892 Init = SVOp; 1893 } 1894 } 1895 1896 // Extend init to result vector length, and then shuffle its contribution 1897 // to the vector initializer into V. 1898 if (Args.empty()) { 1899 for (unsigned j = 0; j != InitElts; ++j) 1900 Args.push_back(j); 1901 Args.resize(ResElts, -1); 1902 Init = Builder.CreateShuffleVector(Init, Args, "vext"); 1903 1904 Args.clear(); 1905 for (unsigned j = 0; j != CurIdx; ++j) 1906 Args.push_back(j); 1907 for (unsigned j = 0; j != InitElts; ++j) 1908 Args.push_back(j + Offset); 1909 Args.resize(ResElts, -1); 1910 } 1911 1912 // If V is undef, make sure it ends up on the RHS of the shuffle to aid 1913 // merging subsequent shuffles into this one. 1914 if (CurIdx == 0) 1915 std::swap(V, Init); 1916 V = Builder.CreateShuffleVector(V, Init, Args, "vecinit"); 1917 VIsUndefShuffle = isa<llvm::UndefValue>(Init); 1918 CurIdx += InitElts; 1919 } 1920 1921 // FIXME: evaluate codegen vs. shuffling against constant null vector. 1922 // Emit remaining default initializers. 1923 llvm::Type *EltTy = VType->getElementType(); 1924 1925 // Emit remaining default initializers 1926 for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) { 1927 Value *Idx = Builder.getInt32(CurIdx); 1928 llvm::Value *Init = llvm::Constant::getNullValue(EltTy); 1929 V = Builder.CreateInsertElement(V, Init, Idx, "vecinit"); 1930 } 1931 return V; 1932 } 1933 1934 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) { 1935 const Expr *E = CE->getSubExpr(); 1936 1937 if (CE->getCastKind() == CK_UncheckedDerivedToBase) 1938 return false; 1939 1940 if (isa<CXXThisExpr>(E->IgnoreParens())) { 1941 // We always assume that 'this' is never null. 1942 return false; 1943 } 1944 1945 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 1946 // And that glvalue casts are never null. 1947 if (ICE->getValueKind() != VK_RValue) 1948 return false; 1949 } 1950 1951 return true; 1952 } 1953 1954 // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts 1955 // have to handle a more broad range of conversions than explicit casts, as they 1956 // handle things like function to ptr-to-function decay etc. 1957 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) { 1958 Expr *E = CE->getSubExpr(); 1959 QualType DestTy = CE->getType(); 1960 CastKind Kind = CE->getCastKind(); 1961 1962 // These cases are generally not written to ignore the result of 1963 // evaluating their sub-expressions, so we clear this now. 1964 bool Ignored = TestAndClearIgnoreResultAssign(); 1965 1966 // Since almost all cast kinds apply to scalars, this switch doesn't have 1967 // a default case, so the compiler will warn on a missing case. The cases 1968 // are in the same order as in the CastKind enum. 1969 switch (Kind) { 1970 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 1971 case CK_BuiltinFnToFnPtr: 1972 llvm_unreachable("builtin functions are handled elsewhere"); 1973 1974 case CK_LValueBitCast: 1975 case CK_ObjCObjectLValueCast: { 1976 Address Addr = EmitLValue(E).getAddress(CGF); 1977 Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy)); 1978 LValue LV = CGF.MakeAddrLValue(Addr, DestTy); 1979 return EmitLoadOfLValue(LV, CE->getExprLoc()); 1980 } 1981 1982 case CK_LValueToRValueBitCast: { 1983 LValue SourceLVal = CGF.EmitLValue(E); 1984 Address Addr = Builder.CreateElementBitCast(SourceLVal.getAddress(CGF), 1985 CGF.ConvertTypeForMem(DestTy)); 1986 LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy); 1987 DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo()); 1988 return EmitLoadOfLValue(DestLV, CE->getExprLoc()); 1989 } 1990 1991 case CK_CPointerToObjCPointerCast: 1992 case CK_BlockPointerToObjCPointerCast: 1993 case CK_AnyPointerToBlockPointerCast: 1994 case CK_BitCast: { 1995 Value *Src = Visit(const_cast<Expr*>(E)); 1996 llvm::Type *SrcTy = Src->getType(); 1997 llvm::Type *DstTy = ConvertType(DestTy); 1998 if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() && 1999 SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) { 2000 llvm_unreachable("wrong cast for pointers in different address spaces" 2001 "(must be an address space cast)!"); 2002 } 2003 2004 if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 2005 if (auto PT = DestTy->getAs<PointerType>()) 2006 CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src, 2007 /*MayBeNull=*/true, 2008 CodeGenFunction::CFITCK_UnrelatedCast, 2009 CE->getBeginLoc()); 2010 } 2011 2012 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 2013 const QualType SrcType = E->getType(); 2014 2015 if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) { 2016 // Casting to pointer that could carry dynamic information (provided by 2017 // invariant.group) requires launder. 2018 Src = Builder.CreateLaunderInvariantGroup(Src); 2019 } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) { 2020 // Casting to pointer that does not carry dynamic information (provided 2021 // by invariant.group) requires stripping it. Note that we don't do it 2022 // if the source could not be dynamic type and destination could be 2023 // dynamic because dynamic information is already laundered. It is 2024 // because launder(strip(src)) == launder(src), so there is no need to 2025 // add extra strip before launder. 2026 Src = Builder.CreateStripInvariantGroup(Src); 2027 } 2028 } 2029 2030 // Update heapallocsite metadata when there is an explicit pointer cast. 2031 if (auto *CI = dyn_cast<llvm::CallBase>(Src)) { 2032 if (CI->getMetadata("heapallocsite") && isa<ExplicitCastExpr>(CE)) { 2033 QualType PointeeType = DestTy->getPointeeType(); 2034 if (!PointeeType.isNull()) 2035 CGF.getDebugInfo()->addHeapAllocSiteMetadata(CI, PointeeType, 2036 CE->getExprLoc()); 2037 } 2038 } 2039 2040 // If Src is a fixed vector and Dst is a scalable vector, and both have the 2041 // same element type, use the llvm.experimental.vector.insert intrinsic to 2042 // perform the bitcast. 2043 if (const auto *FixedSrc = dyn_cast<llvm::FixedVectorType>(SrcTy)) { 2044 if (const auto *ScalableDst = dyn_cast<llvm::ScalableVectorType>(DstTy)) { 2045 if (FixedSrc->getElementType() == ScalableDst->getElementType()) { 2046 llvm::Value *UndefVec = llvm::UndefValue::get(DstTy); 2047 llvm::Value *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty); 2048 return Builder.CreateInsertVector(DstTy, UndefVec, Src, Zero, 2049 "castScalableSve"); 2050 } 2051 } 2052 } 2053 2054 // If Src is a scalable vector and Dst is a fixed vector, and both have the 2055 // same element type, use the llvm.experimental.vector.extract intrinsic to 2056 // perform the bitcast. 2057 if (const auto *ScalableSrc = dyn_cast<llvm::ScalableVectorType>(SrcTy)) { 2058 if (const auto *FixedDst = dyn_cast<llvm::FixedVectorType>(DstTy)) { 2059 if (ScalableSrc->getElementType() == FixedDst->getElementType()) { 2060 llvm::Value *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty); 2061 return Builder.CreateExtractVector(DstTy, Src, Zero, "castFixedSve"); 2062 } 2063 } 2064 } 2065 2066 // Perform VLAT <-> VLST bitcast through memory. 2067 // TODO: since the llvm.experimental.vector.{insert,extract} intrinsics 2068 // require the element types of the vectors to be the same, we 2069 // need to keep this around for casting between predicates, or more 2070 // generally for bitcasts between VLAT <-> VLST where the element 2071 // types of the vectors are not the same, until we figure out a better 2072 // way of doing these casts. 2073 if ((isa<llvm::FixedVectorType>(SrcTy) && 2074 isa<llvm::ScalableVectorType>(DstTy)) || 2075 (isa<llvm::ScalableVectorType>(SrcTy) && 2076 isa<llvm::FixedVectorType>(DstTy))) { 2077 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { 2078 // Call expressions can't have a scalar return unless the return type 2079 // is a reference type so an lvalue can't be emitted. Create a temp 2080 // alloca to store the call, bitcast the address then load. 2081 QualType RetTy = CE->getCallReturnType(CGF.getContext()); 2082 Address Addr = 2083 CGF.CreateDefaultAlignTempAlloca(SrcTy, "saved-call-rvalue"); 2084 LValue LV = CGF.MakeAddrLValue(Addr, RetTy); 2085 CGF.EmitStoreOfScalar(Src, LV); 2086 Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy), 2087 "castFixedSve"); 2088 LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy); 2089 DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo()); 2090 return EmitLoadOfLValue(DestLV, CE->getExprLoc()); 2091 } 2092 2093 Address Addr = EmitLValue(E).getAddress(CGF); 2094 Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy)); 2095 LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy); 2096 DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo()); 2097 return EmitLoadOfLValue(DestLV, CE->getExprLoc()); 2098 } 2099 2100 return Builder.CreateBitCast(Src, DstTy); 2101 } 2102 case CK_AddressSpaceConversion: { 2103 Expr::EvalResult Result; 2104 if (E->EvaluateAsRValue(Result, CGF.getContext()) && 2105 Result.Val.isNullPointer()) { 2106 // If E has side effect, it is emitted even if its final result is a 2107 // null pointer. In that case, a DCE pass should be able to 2108 // eliminate the useless instructions emitted during translating E. 2109 if (Result.HasSideEffects) 2110 Visit(E); 2111 return CGF.CGM.getNullPointer(cast<llvm::PointerType>( 2112 ConvertType(DestTy)), DestTy); 2113 } 2114 // Since target may map different address spaces in AST to the same address 2115 // space, an address space conversion may end up as a bitcast. 2116 return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast( 2117 CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(), 2118 DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy)); 2119 } 2120 case CK_AtomicToNonAtomic: 2121 case CK_NonAtomicToAtomic: 2122 case CK_NoOp: 2123 case CK_UserDefinedConversion: 2124 return Visit(const_cast<Expr*>(E)); 2125 2126 case CK_BaseToDerived: { 2127 const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl(); 2128 assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!"); 2129 2130 Address Base = CGF.EmitPointerWithAlignment(E); 2131 Address Derived = 2132 CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl, 2133 CE->path_begin(), CE->path_end(), 2134 CGF.ShouldNullCheckClassCastValue(CE)); 2135 2136 // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is 2137 // performed and the object is not of the derived type. 2138 if (CGF.sanitizePerformTypeCheck()) 2139 CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(), 2140 Derived.getPointer(), DestTy->getPointeeType()); 2141 2142 if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast)) 2143 CGF.EmitVTablePtrCheckForCast( 2144 DestTy->getPointeeType(), Derived.getPointer(), 2145 /*MayBeNull=*/true, CodeGenFunction::CFITCK_DerivedCast, 2146 CE->getBeginLoc()); 2147 2148 return Derived.getPointer(); 2149 } 2150 case CK_UncheckedDerivedToBase: 2151 case CK_DerivedToBase: { 2152 // The EmitPointerWithAlignment path does this fine; just discard 2153 // the alignment. 2154 return CGF.EmitPointerWithAlignment(CE).getPointer(); 2155 } 2156 2157 case CK_Dynamic: { 2158 Address V = CGF.EmitPointerWithAlignment(E); 2159 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE); 2160 return CGF.EmitDynamicCast(V, DCE); 2161 } 2162 2163 case CK_ArrayToPointerDecay: 2164 return CGF.EmitArrayToPointerDecay(E).getPointer(); 2165 case CK_FunctionToPointerDecay: 2166 return EmitLValue(E).getPointer(CGF); 2167 2168 case CK_NullToPointer: 2169 if (MustVisitNullValue(E)) 2170 CGF.EmitIgnoredExpr(E); 2171 2172 return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)), 2173 DestTy); 2174 2175 case CK_NullToMemberPointer: { 2176 if (MustVisitNullValue(E)) 2177 CGF.EmitIgnoredExpr(E); 2178 2179 const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>(); 2180 return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT); 2181 } 2182 2183 case CK_ReinterpretMemberPointer: 2184 case CK_BaseToDerivedMemberPointer: 2185 case CK_DerivedToBaseMemberPointer: { 2186 Value *Src = Visit(E); 2187 2188 // Note that the AST doesn't distinguish between checked and 2189 // unchecked member pointer conversions, so we always have to 2190 // implement checked conversions here. This is inefficient when 2191 // actual control flow may be required in order to perform the 2192 // check, which it is for data member pointers (but not member 2193 // function pointers on Itanium and ARM). 2194 return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src); 2195 } 2196 2197 case CK_ARCProduceObject: 2198 return CGF.EmitARCRetainScalarExpr(E); 2199 case CK_ARCConsumeObject: 2200 return CGF.EmitObjCConsumeObject(E->getType(), Visit(E)); 2201 case CK_ARCReclaimReturnedObject: 2202 return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored); 2203 case CK_ARCExtendBlockObject: 2204 return CGF.EmitARCExtendBlockObject(E); 2205 2206 case CK_CopyAndAutoreleaseBlockObject: 2207 return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType()); 2208 2209 case CK_FloatingRealToComplex: 2210 case CK_FloatingComplexCast: 2211 case CK_IntegralRealToComplex: 2212 case CK_IntegralComplexCast: 2213 case CK_IntegralComplexToFloatingComplex: 2214 case CK_FloatingComplexToIntegralComplex: 2215 case CK_ConstructorConversion: 2216 case CK_ToUnion: 2217 llvm_unreachable("scalar cast to non-scalar value"); 2218 2219 case CK_LValueToRValue: 2220 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy)); 2221 assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!"); 2222 return Visit(const_cast<Expr*>(E)); 2223 2224 case CK_IntegralToPointer: { 2225 Value *Src = Visit(const_cast<Expr*>(E)); 2226 2227 // First, convert to the correct width so that we control the kind of 2228 // extension. 2229 auto DestLLVMTy = ConvertType(DestTy); 2230 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy); 2231 bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType(); 2232 llvm::Value* IntResult = 2233 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 2234 2235 auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy); 2236 2237 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 2238 // Going from integer to pointer that could be dynamic requires reloading 2239 // dynamic information from invariant.group. 2240 if (DestTy.mayBeDynamicClass()) 2241 IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr); 2242 } 2243 return IntToPtr; 2244 } 2245 case CK_PointerToIntegral: { 2246 assert(!DestTy->isBooleanType() && "bool should use PointerToBool"); 2247 auto *PtrExpr = Visit(E); 2248 2249 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 2250 const QualType SrcType = E->getType(); 2251 2252 // Casting to integer requires stripping dynamic information as it does 2253 // not carries it. 2254 if (SrcType.mayBeDynamicClass()) 2255 PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr); 2256 } 2257 2258 return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy)); 2259 } 2260 case CK_ToVoid: { 2261 CGF.EmitIgnoredExpr(E); 2262 return nullptr; 2263 } 2264 case CK_MatrixCast: { 2265 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2266 CE->getExprLoc()); 2267 } 2268 case CK_VectorSplat: { 2269 llvm::Type *DstTy = ConvertType(DestTy); 2270 Value *Elt = Visit(const_cast<Expr*>(E)); 2271 // Splat the element across to all elements 2272 unsigned NumElements = cast<llvm::FixedVectorType>(DstTy)->getNumElements(); 2273 return Builder.CreateVectorSplat(NumElements, Elt, "splat"); 2274 } 2275 2276 case CK_FixedPointCast: 2277 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2278 CE->getExprLoc()); 2279 2280 case CK_FixedPointToBoolean: 2281 assert(E->getType()->isFixedPointType() && 2282 "Expected src type to be fixed point type"); 2283 assert(DestTy->isBooleanType() && "Expected dest type to be boolean type"); 2284 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2285 CE->getExprLoc()); 2286 2287 case CK_FixedPointToIntegral: 2288 assert(E->getType()->isFixedPointType() && 2289 "Expected src type to be fixed point type"); 2290 assert(DestTy->isIntegerType() && "Expected dest type to be an integer"); 2291 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2292 CE->getExprLoc()); 2293 2294 case CK_IntegralToFixedPoint: 2295 assert(E->getType()->isIntegerType() && 2296 "Expected src type to be an integer"); 2297 assert(DestTy->isFixedPointType() && 2298 "Expected dest type to be fixed point type"); 2299 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2300 CE->getExprLoc()); 2301 2302 case CK_IntegralCast: { 2303 ScalarConversionOpts Opts; 2304 if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 2305 if (!ICE->isPartOfExplicitCast()) 2306 Opts = ScalarConversionOpts(CGF.SanOpts); 2307 } 2308 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2309 CE->getExprLoc(), Opts); 2310 } 2311 case CK_IntegralToFloating: 2312 case CK_FloatingToIntegral: 2313 case CK_FloatingCast: 2314 case CK_FixedPointToFloating: 2315 case CK_FloatingToFixedPoint: { 2316 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE); 2317 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2318 CE->getExprLoc()); 2319 } 2320 case CK_BooleanToSignedIntegral: { 2321 ScalarConversionOpts Opts; 2322 Opts.TreatBooleanAsSigned = true; 2323 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2324 CE->getExprLoc(), Opts); 2325 } 2326 case CK_IntegralToBoolean: 2327 return EmitIntToBoolConversion(Visit(E)); 2328 case CK_PointerToBoolean: 2329 return EmitPointerToBoolConversion(Visit(E), E->getType()); 2330 case CK_FloatingToBoolean: { 2331 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE); 2332 return EmitFloatToBoolConversion(Visit(E)); 2333 } 2334 case CK_MemberPointerToBoolean: { 2335 llvm::Value *MemPtr = Visit(E); 2336 const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>(); 2337 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT); 2338 } 2339 2340 case CK_FloatingComplexToReal: 2341 case CK_IntegralComplexToReal: 2342 return CGF.EmitComplexExpr(E, false, true).first; 2343 2344 case CK_FloatingComplexToBoolean: 2345 case CK_IntegralComplexToBoolean: { 2346 CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E); 2347 2348 // TODO: kill this function off, inline appropriate case here 2349 return EmitComplexToScalarConversion(V, E->getType(), DestTy, 2350 CE->getExprLoc()); 2351 } 2352 2353 case CK_ZeroToOCLOpaqueType: { 2354 assert((DestTy->isEventT() || DestTy->isQueueT() || 2355 DestTy->isOCLIntelSubgroupAVCType()) && 2356 "CK_ZeroToOCLEvent cast on non-event type"); 2357 return llvm::Constant::getNullValue(ConvertType(DestTy)); 2358 } 2359 2360 case CK_IntToOCLSampler: 2361 return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF); 2362 2363 } // end of switch 2364 2365 llvm_unreachable("unknown scalar cast"); 2366 } 2367 2368 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) { 2369 CodeGenFunction::StmtExprEvaluation eval(CGF); 2370 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), 2371 !E->getType()->isVoidType()); 2372 if (!RetAlloca.isValid()) 2373 return nullptr; 2374 return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()), 2375 E->getExprLoc()); 2376 } 2377 2378 Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { 2379 CodeGenFunction::RunCleanupsScope Scope(CGF); 2380 Value *V = Visit(E->getSubExpr()); 2381 // Defend against dominance problems caused by jumps out of expression 2382 // evaluation through the shared cleanup block. 2383 Scope.ForceCleanup({&V}); 2384 return V; 2385 } 2386 2387 //===----------------------------------------------------------------------===// 2388 // Unary Operators 2389 //===----------------------------------------------------------------------===// 2390 2391 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E, 2392 llvm::Value *InVal, bool IsInc, 2393 FPOptions FPFeatures) { 2394 BinOpInfo BinOp; 2395 BinOp.LHS = InVal; 2396 BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false); 2397 BinOp.Ty = E->getType(); 2398 BinOp.Opcode = IsInc ? BO_Add : BO_Sub; 2399 BinOp.FPFeatures = FPFeatures; 2400 BinOp.E = E; 2401 return BinOp; 2402 } 2403 2404 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior( 2405 const UnaryOperator *E, llvm::Value *InVal, bool IsInc) { 2406 llvm::Value *Amount = 2407 llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true); 2408 StringRef Name = IsInc ? "inc" : "dec"; 2409 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2410 case LangOptions::SOB_Defined: 2411 return Builder.CreateAdd(InVal, Amount, Name); 2412 case LangOptions::SOB_Undefined: 2413 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 2414 return Builder.CreateNSWAdd(InVal, Amount, Name); 2415 LLVM_FALLTHROUGH; 2416 case LangOptions::SOB_Trapping: 2417 if (!E->canOverflow()) 2418 return Builder.CreateNSWAdd(InVal, Amount, Name); 2419 return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec( 2420 E, InVal, IsInc, E->getFPFeaturesInEffect(CGF.getLangOpts()))); 2421 } 2422 llvm_unreachable("Unknown SignedOverflowBehaviorTy"); 2423 } 2424 2425 namespace { 2426 /// Handles check and update for lastprivate conditional variables. 2427 class OMPLastprivateConditionalUpdateRAII { 2428 private: 2429 CodeGenFunction &CGF; 2430 const UnaryOperator *E; 2431 2432 public: 2433 OMPLastprivateConditionalUpdateRAII(CodeGenFunction &CGF, 2434 const UnaryOperator *E) 2435 : CGF(CGF), E(E) {} 2436 ~OMPLastprivateConditionalUpdateRAII() { 2437 if (CGF.getLangOpts().OpenMP) 2438 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional( 2439 CGF, E->getSubExpr()); 2440 } 2441 }; 2442 } // namespace 2443 2444 llvm::Value * 2445 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 2446 bool isInc, bool isPre) { 2447 OMPLastprivateConditionalUpdateRAII OMPRegion(CGF, E); 2448 QualType type = E->getSubExpr()->getType(); 2449 llvm::PHINode *atomicPHI = nullptr; 2450 llvm::Value *value; 2451 llvm::Value *input; 2452 2453 int amount = (isInc ? 1 : -1); 2454 bool isSubtraction = !isInc; 2455 2456 if (const AtomicType *atomicTy = type->getAs<AtomicType>()) { 2457 type = atomicTy->getValueType(); 2458 if (isInc && type->isBooleanType()) { 2459 llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type); 2460 if (isPre) { 2461 Builder.CreateStore(True, LV.getAddress(CGF), LV.isVolatileQualified()) 2462 ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent); 2463 return Builder.getTrue(); 2464 } 2465 // For atomic bool increment, we just store true and return it for 2466 // preincrement, do an atomic swap with true for postincrement 2467 return Builder.CreateAtomicRMW( 2468 llvm::AtomicRMWInst::Xchg, LV.getPointer(CGF), True, 2469 llvm::AtomicOrdering::SequentiallyConsistent); 2470 } 2471 // Special case for atomic increment / decrement on integers, emit 2472 // atomicrmw instructions. We skip this if we want to be doing overflow 2473 // checking, and fall into the slow path with the atomic cmpxchg loop. 2474 if (!type->isBooleanType() && type->isIntegerType() && 2475 !(type->isUnsignedIntegerType() && 2476 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 2477 CGF.getLangOpts().getSignedOverflowBehavior() != 2478 LangOptions::SOB_Trapping) { 2479 llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add : 2480 llvm::AtomicRMWInst::Sub; 2481 llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add : 2482 llvm::Instruction::Sub; 2483 llvm::Value *amt = CGF.EmitToMemory( 2484 llvm::ConstantInt::get(ConvertType(type), 1, true), type); 2485 llvm::Value *old = 2486 Builder.CreateAtomicRMW(aop, LV.getPointer(CGF), amt, 2487 llvm::AtomicOrdering::SequentiallyConsistent); 2488 return isPre ? Builder.CreateBinOp(op, old, amt) : old; 2489 } 2490 value = EmitLoadOfLValue(LV, E->getExprLoc()); 2491 input = value; 2492 // For every other atomic operation, we need to emit a load-op-cmpxchg loop 2493 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 2494 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 2495 value = CGF.EmitToMemory(value, type); 2496 Builder.CreateBr(opBB); 2497 Builder.SetInsertPoint(opBB); 2498 atomicPHI = Builder.CreatePHI(value->getType(), 2); 2499 atomicPHI->addIncoming(value, startBB); 2500 value = atomicPHI; 2501 } else { 2502 value = EmitLoadOfLValue(LV, E->getExprLoc()); 2503 input = value; 2504 } 2505 2506 // Special case of integer increment that we have to check first: bool++. 2507 // Due to promotion rules, we get: 2508 // bool++ -> bool = bool + 1 2509 // -> bool = (int)bool + 1 2510 // -> bool = ((int)bool + 1 != 0) 2511 // An interesting aspect of this is that increment is always true. 2512 // Decrement does not have this property. 2513 if (isInc && type->isBooleanType()) { 2514 value = Builder.getTrue(); 2515 2516 // Most common case by far: integer increment. 2517 } else if (type->isIntegerType()) { 2518 QualType promotedType; 2519 bool canPerformLossyDemotionCheck = false; 2520 if (type->isPromotableIntegerType()) { 2521 promotedType = CGF.getContext().getPromotedIntegerType(type); 2522 assert(promotedType != type && "Shouldn't promote to the same type."); 2523 canPerformLossyDemotionCheck = true; 2524 canPerformLossyDemotionCheck &= 2525 CGF.getContext().getCanonicalType(type) != 2526 CGF.getContext().getCanonicalType(promotedType); 2527 canPerformLossyDemotionCheck &= 2528 PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck( 2529 type, promotedType); 2530 assert((!canPerformLossyDemotionCheck || 2531 type->isSignedIntegerOrEnumerationType() || 2532 promotedType->isSignedIntegerOrEnumerationType() || 2533 ConvertType(type)->getScalarSizeInBits() == 2534 ConvertType(promotedType)->getScalarSizeInBits()) && 2535 "The following check expects that if we do promotion to different " 2536 "underlying canonical type, at least one of the types (either " 2537 "base or promoted) will be signed, or the bitwidths will match."); 2538 } 2539 if (CGF.SanOpts.hasOneOf( 2540 SanitizerKind::ImplicitIntegerArithmeticValueChange) && 2541 canPerformLossyDemotionCheck) { 2542 // While `x += 1` (for `x` with width less than int) is modeled as 2543 // promotion+arithmetics+demotion, and we can catch lossy demotion with 2544 // ease; inc/dec with width less than int can't overflow because of 2545 // promotion rules, so we omit promotion+demotion, which means that we can 2546 // not catch lossy "demotion". Because we still want to catch these cases 2547 // when the sanitizer is enabled, we perform the promotion, then perform 2548 // the increment/decrement in the wider type, and finally 2549 // perform the demotion. This will catch lossy demotions. 2550 2551 value = EmitScalarConversion(value, type, promotedType, E->getExprLoc()); 2552 Value *amt = llvm::ConstantInt::get(value->getType(), amount, true); 2553 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 2554 // Do pass non-default ScalarConversionOpts so that sanitizer check is 2555 // emitted. 2556 value = EmitScalarConversion(value, promotedType, type, E->getExprLoc(), 2557 ScalarConversionOpts(CGF.SanOpts)); 2558 2559 // Note that signed integer inc/dec with width less than int can't 2560 // overflow because of promotion rules; we're just eliding a few steps 2561 // here. 2562 } else if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) { 2563 value = EmitIncDecConsiderOverflowBehavior(E, value, isInc); 2564 } else if (E->canOverflow() && type->isUnsignedIntegerType() && 2565 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) { 2566 value = EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec( 2567 E, value, isInc, E->getFPFeaturesInEffect(CGF.getLangOpts()))); 2568 } else { 2569 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true); 2570 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 2571 } 2572 2573 // Next most common: pointer increment. 2574 } else if (const PointerType *ptr = type->getAs<PointerType>()) { 2575 QualType type = ptr->getPointeeType(); 2576 2577 // VLA types don't have constant size. 2578 if (const VariableArrayType *vla 2579 = CGF.getContext().getAsVariableArrayType(type)) { 2580 llvm::Value *numElts = CGF.getVLASize(vla).NumElts; 2581 if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize"); 2582 if (CGF.getLangOpts().isSignedOverflowDefined()) 2583 value = Builder.CreateGEP(value, numElts, "vla.inc"); 2584 else 2585 value = CGF.EmitCheckedInBoundsGEP( 2586 value, numElts, /*SignedIndices=*/false, isSubtraction, 2587 E->getExprLoc(), "vla.inc"); 2588 2589 // Arithmetic on function pointers (!) is just +-1. 2590 } else if (type->isFunctionType()) { 2591 llvm::Value *amt = Builder.getInt32(amount); 2592 2593 value = CGF.EmitCastToVoidPtr(value); 2594 if (CGF.getLangOpts().isSignedOverflowDefined()) 2595 value = Builder.CreateGEP(value, amt, "incdec.funcptr"); 2596 else 2597 value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false, 2598 isSubtraction, E->getExprLoc(), 2599 "incdec.funcptr"); 2600 value = Builder.CreateBitCast(value, input->getType()); 2601 2602 // For everything else, we can just do a simple increment. 2603 } else { 2604 llvm::Value *amt = Builder.getInt32(amount); 2605 if (CGF.getLangOpts().isSignedOverflowDefined()) 2606 value = Builder.CreateGEP(value, amt, "incdec.ptr"); 2607 else 2608 value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false, 2609 isSubtraction, E->getExprLoc(), 2610 "incdec.ptr"); 2611 } 2612 2613 // Vector increment/decrement. 2614 } else if (type->isVectorType()) { 2615 if (type->hasIntegerRepresentation()) { 2616 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount); 2617 2618 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 2619 } else { 2620 value = Builder.CreateFAdd( 2621 value, 2622 llvm::ConstantFP::get(value->getType(), amount), 2623 isInc ? "inc" : "dec"); 2624 } 2625 2626 // Floating point. 2627 } else if (type->isRealFloatingType()) { 2628 // Add the inc/dec to the real part. 2629 llvm::Value *amt; 2630 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E); 2631 2632 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 2633 // Another special case: half FP increment should be done via float 2634 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 2635 value = Builder.CreateCall( 2636 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 2637 CGF.CGM.FloatTy), 2638 input, "incdec.conv"); 2639 } else { 2640 value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv"); 2641 } 2642 } 2643 2644 if (value->getType()->isFloatTy()) 2645 amt = llvm::ConstantFP::get(VMContext, 2646 llvm::APFloat(static_cast<float>(amount))); 2647 else if (value->getType()->isDoubleTy()) 2648 amt = llvm::ConstantFP::get(VMContext, 2649 llvm::APFloat(static_cast<double>(amount))); 2650 else { 2651 // Remaining types are Half, LongDouble or __float128. Convert from float. 2652 llvm::APFloat F(static_cast<float>(amount)); 2653 bool ignored; 2654 const llvm::fltSemantics *FS; 2655 // Don't use getFloatTypeSemantics because Half isn't 2656 // necessarily represented using the "half" LLVM type. 2657 if (value->getType()->isFP128Ty()) 2658 FS = &CGF.getTarget().getFloat128Format(); 2659 else if (value->getType()->isHalfTy()) 2660 FS = &CGF.getTarget().getHalfFormat(); 2661 else 2662 FS = &CGF.getTarget().getLongDoubleFormat(); 2663 F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored); 2664 amt = llvm::ConstantFP::get(VMContext, F); 2665 } 2666 value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec"); 2667 2668 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 2669 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 2670 value = Builder.CreateCall( 2671 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, 2672 CGF.CGM.FloatTy), 2673 value, "incdec.conv"); 2674 } else { 2675 value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv"); 2676 } 2677 } 2678 2679 // Fixed-point types. 2680 } else if (type->isFixedPointType()) { 2681 // Fixed-point types are tricky. In some cases, it isn't possible to 2682 // represent a 1 or a -1 in the type at all. Piggyback off of 2683 // EmitFixedPointBinOp to avoid having to reimplement saturation. 2684 BinOpInfo Info; 2685 Info.E = E; 2686 Info.Ty = E->getType(); 2687 Info.Opcode = isInc ? BO_Add : BO_Sub; 2688 Info.LHS = value; 2689 Info.RHS = llvm::ConstantInt::get(value->getType(), 1, false); 2690 // If the type is signed, it's better to represent this as +(-1) or -(-1), 2691 // since -1 is guaranteed to be representable. 2692 if (type->isSignedFixedPointType()) { 2693 Info.Opcode = isInc ? BO_Sub : BO_Add; 2694 Info.RHS = Builder.CreateNeg(Info.RHS); 2695 } 2696 // Now, convert from our invented integer literal to the type of the unary 2697 // op. This will upscale and saturate if necessary. This value can become 2698 // undef in some cases. 2699 llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder); 2700 auto DstSema = CGF.getContext().getFixedPointSemantics(Info.Ty); 2701 Info.RHS = FPBuilder.CreateIntegerToFixed(Info.RHS, true, DstSema); 2702 value = EmitFixedPointBinOp(Info); 2703 2704 // Objective-C pointer types. 2705 } else { 2706 const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>(); 2707 value = CGF.EmitCastToVoidPtr(value); 2708 2709 CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType()); 2710 if (!isInc) size = -size; 2711 llvm::Value *sizeValue = 2712 llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity()); 2713 2714 if (CGF.getLangOpts().isSignedOverflowDefined()) 2715 value = Builder.CreateGEP(value, sizeValue, "incdec.objptr"); 2716 else 2717 value = CGF.EmitCheckedInBoundsGEP(value, sizeValue, 2718 /*SignedIndices=*/false, isSubtraction, 2719 E->getExprLoc(), "incdec.objptr"); 2720 value = Builder.CreateBitCast(value, input->getType()); 2721 } 2722 2723 if (atomicPHI) { 2724 llvm::BasicBlock *curBlock = Builder.GetInsertBlock(); 2725 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 2726 auto Pair = CGF.EmitAtomicCompareExchange( 2727 LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc()); 2728 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type); 2729 llvm::Value *success = Pair.second; 2730 atomicPHI->addIncoming(old, curBlock); 2731 Builder.CreateCondBr(success, contBB, atomicPHI->getParent()); 2732 Builder.SetInsertPoint(contBB); 2733 return isPre ? value : input; 2734 } 2735 2736 // Store the updated result through the lvalue. 2737 if (LV.isBitField()) 2738 CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value); 2739 else 2740 CGF.EmitStoreThroughLValue(RValue::get(value), LV); 2741 2742 // If this is a postinc, return the value read from memory, otherwise use the 2743 // updated value. 2744 return isPre ? value : input; 2745 } 2746 2747 2748 2749 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { 2750 TestAndClearIgnoreResultAssign(); 2751 Value *Op = Visit(E->getSubExpr()); 2752 2753 // Generate a unary FNeg for FP ops. 2754 if (Op->getType()->isFPOrFPVectorTy()) 2755 return Builder.CreateFNeg(Op, "fneg"); 2756 2757 // Emit unary minus with EmitSub so we handle overflow cases etc. 2758 BinOpInfo BinOp; 2759 BinOp.RHS = Op; 2760 BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType()); 2761 BinOp.Ty = E->getType(); 2762 BinOp.Opcode = BO_Sub; 2763 BinOp.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts()); 2764 BinOp.E = E; 2765 return EmitSub(BinOp); 2766 } 2767 2768 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 2769 TestAndClearIgnoreResultAssign(); 2770 Value *Op = Visit(E->getSubExpr()); 2771 return Builder.CreateNot(Op, "neg"); 2772 } 2773 2774 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) { 2775 // Perform vector logical not on comparison with zero vector. 2776 if (E->getType()->isVectorType() && 2777 E->getType()->castAs<VectorType>()->getVectorKind() == 2778 VectorType::GenericVector) { 2779 Value *Oper = Visit(E->getSubExpr()); 2780 Value *Zero = llvm::Constant::getNullValue(Oper->getType()); 2781 Value *Result; 2782 if (Oper->getType()->isFPOrFPVectorTy()) { 2783 CodeGenFunction::CGFPOptionsRAII FPOptsRAII( 2784 CGF, E->getFPFeaturesInEffect(CGF.getLangOpts())); 2785 Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp"); 2786 } else 2787 Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp"); 2788 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 2789 } 2790 2791 // Compare operand to zero. 2792 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr()); 2793 2794 // Invert value. 2795 // TODO: Could dynamically modify easy computations here. For example, if 2796 // the operand is an icmp ne, turn into icmp eq. 2797 BoolVal = Builder.CreateNot(BoolVal, "lnot"); 2798 2799 // ZExt result to the expr type. 2800 return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext"); 2801 } 2802 2803 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) { 2804 // Try folding the offsetof to a constant. 2805 Expr::EvalResult EVResult; 2806 if (E->EvaluateAsInt(EVResult, CGF.getContext())) { 2807 llvm::APSInt Value = EVResult.Val.getInt(); 2808 return Builder.getInt(Value); 2809 } 2810 2811 // Loop over the components of the offsetof to compute the value. 2812 unsigned n = E->getNumComponents(); 2813 llvm::Type* ResultType = ConvertType(E->getType()); 2814 llvm::Value* Result = llvm::Constant::getNullValue(ResultType); 2815 QualType CurrentType = E->getTypeSourceInfo()->getType(); 2816 for (unsigned i = 0; i != n; ++i) { 2817 OffsetOfNode ON = E->getComponent(i); 2818 llvm::Value *Offset = nullptr; 2819 switch (ON.getKind()) { 2820 case OffsetOfNode::Array: { 2821 // Compute the index 2822 Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex()); 2823 llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr); 2824 bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType(); 2825 Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv"); 2826 2827 // Save the element type 2828 CurrentType = 2829 CGF.getContext().getAsArrayType(CurrentType)->getElementType(); 2830 2831 // Compute the element size 2832 llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType, 2833 CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity()); 2834 2835 // Multiply out to compute the result 2836 Offset = Builder.CreateMul(Idx, ElemSize); 2837 break; 2838 } 2839 2840 case OffsetOfNode::Field: { 2841 FieldDecl *MemberDecl = ON.getField(); 2842 RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl(); 2843 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 2844 2845 // Compute the index of the field in its parent. 2846 unsigned i = 0; 2847 // FIXME: It would be nice if we didn't have to loop here! 2848 for (RecordDecl::field_iterator Field = RD->field_begin(), 2849 FieldEnd = RD->field_end(); 2850 Field != FieldEnd; ++Field, ++i) { 2851 if (*Field == MemberDecl) 2852 break; 2853 } 2854 assert(i < RL.getFieldCount() && "offsetof field in wrong type"); 2855 2856 // Compute the offset to the field 2857 int64_t OffsetInt = RL.getFieldOffset(i) / 2858 CGF.getContext().getCharWidth(); 2859 Offset = llvm::ConstantInt::get(ResultType, OffsetInt); 2860 2861 // Save the element type. 2862 CurrentType = MemberDecl->getType(); 2863 break; 2864 } 2865 2866 case OffsetOfNode::Identifier: 2867 llvm_unreachable("dependent __builtin_offsetof"); 2868 2869 case OffsetOfNode::Base: { 2870 if (ON.getBase()->isVirtual()) { 2871 CGF.ErrorUnsupported(E, "virtual base in offsetof"); 2872 continue; 2873 } 2874 2875 RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl(); 2876 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 2877 2878 // Save the element type. 2879 CurrentType = ON.getBase()->getType(); 2880 2881 // Compute the offset to the base. 2882 const RecordType *BaseRT = CurrentType->getAs<RecordType>(); 2883 CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl()); 2884 CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD); 2885 Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity()); 2886 break; 2887 } 2888 } 2889 Result = Builder.CreateAdd(Result, Offset); 2890 } 2891 return Result; 2892 } 2893 2894 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of 2895 /// argument of the sizeof expression as an integer. 2896 Value * 2897 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr( 2898 const UnaryExprOrTypeTraitExpr *E) { 2899 QualType TypeToSize = E->getTypeOfArgument(); 2900 if (E->getKind() == UETT_SizeOf) { 2901 if (const VariableArrayType *VAT = 2902 CGF.getContext().getAsVariableArrayType(TypeToSize)) { 2903 if (E->isArgumentType()) { 2904 // sizeof(type) - make sure to emit the VLA size. 2905 CGF.EmitVariablyModifiedType(TypeToSize); 2906 } else { 2907 // C99 6.5.3.4p2: If the argument is an expression of type 2908 // VLA, it is evaluated. 2909 CGF.EmitIgnoredExpr(E->getArgumentExpr()); 2910 } 2911 2912 auto VlaSize = CGF.getVLASize(VAT); 2913 llvm::Value *size = VlaSize.NumElts; 2914 2915 // Scale the number of non-VLA elements by the non-VLA element size. 2916 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type); 2917 if (!eltSize.isOne()) 2918 size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size); 2919 2920 return size; 2921 } 2922 } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) { 2923 auto Alignment = 2924 CGF.getContext() 2925 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 2926 E->getTypeOfArgument()->getPointeeType())) 2927 .getQuantity(); 2928 return llvm::ConstantInt::get(CGF.SizeTy, Alignment); 2929 } 2930 2931 // If this isn't sizeof(vla), the result must be constant; use the constant 2932 // folding logic so we don't have to duplicate it here. 2933 return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext())); 2934 } 2935 2936 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) { 2937 Expr *Op = E->getSubExpr(); 2938 if (Op->getType()->isAnyComplexType()) { 2939 // If it's an l-value, load through the appropriate subobject l-value. 2940 // Note that we have to ask E because Op might be an l-value that 2941 // this won't work for, e.g. an Obj-C property. 2942 if (E->isGLValue()) 2943 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2944 E->getExprLoc()).getScalarVal(); 2945 2946 // Otherwise, calculate and project. 2947 return CGF.EmitComplexExpr(Op, false, true).first; 2948 } 2949 2950 return Visit(Op); 2951 } 2952 2953 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) { 2954 Expr *Op = E->getSubExpr(); 2955 if (Op->getType()->isAnyComplexType()) { 2956 // If it's an l-value, load through the appropriate subobject l-value. 2957 // Note that we have to ask E because Op might be an l-value that 2958 // this won't work for, e.g. an Obj-C property. 2959 if (Op->isGLValue()) 2960 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2961 E->getExprLoc()).getScalarVal(); 2962 2963 // Otherwise, calculate and project. 2964 return CGF.EmitComplexExpr(Op, true, false).second; 2965 } 2966 2967 // __imag on a scalar returns zero. Emit the subexpr to ensure side 2968 // effects are evaluated, but not the actual value. 2969 if (Op->isGLValue()) 2970 CGF.EmitLValue(Op); 2971 else 2972 CGF.EmitScalarExpr(Op, true); 2973 return llvm::Constant::getNullValue(ConvertType(E->getType())); 2974 } 2975 2976 //===----------------------------------------------------------------------===// 2977 // Binary Operators 2978 //===----------------------------------------------------------------------===// 2979 2980 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) { 2981 TestAndClearIgnoreResultAssign(); 2982 BinOpInfo Result; 2983 Result.LHS = Visit(E->getLHS()); 2984 Result.RHS = Visit(E->getRHS()); 2985 Result.Ty = E->getType(); 2986 Result.Opcode = E->getOpcode(); 2987 Result.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts()); 2988 Result.E = E; 2989 return Result; 2990 } 2991 2992 LValue ScalarExprEmitter::EmitCompoundAssignLValue( 2993 const CompoundAssignOperator *E, 2994 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &), 2995 Value *&Result) { 2996 QualType LHSTy = E->getLHS()->getType(); 2997 BinOpInfo OpInfo; 2998 2999 if (E->getComputationResultType()->isAnyComplexType()) 3000 return CGF.EmitScalarCompoundAssignWithComplex(E, Result); 3001 3002 // Emit the RHS first. __block variables need to have the rhs evaluated 3003 // first, plus this should improve codegen a little. 3004 OpInfo.RHS = Visit(E->getRHS()); 3005 OpInfo.Ty = E->getComputationResultType(); 3006 OpInfo.Opcode = E->getOpcode(); 3007 OpInfo.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts()); 3008 OpInfo.E = E; 3009 // Load/convert the LHS. 3010 LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 3011 3012 llvm::PHINode *atomicPHI = nullptr; 3013 if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) { 3014 QualType type = atomicTy->getValueType(); 3015 if (!type->isBooleanType() && type->isIntegerType() && 3016 !(type->isUnsignedIntegerType() && 3017 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 3018 CGF.getLangOpts().getSignedOverflowBehavior() != 3019 LangOptions::SOB_Trapping) { 3020 llvm::AtomicRMWInst::BinOp AtomicOp = llvm::AtomicRMWInst::BAD_BINOP; 3021 llvm::Instruction::BinaryOps Op; 3022 switch (OpInfo.Opcode) { 3023 // We don't have atomicrmw operands for *, %, /, <<, >> 3024 case BO_MulAssign: case BO_DivAssign: 3025 case BO_RemAssign: 3026 case BO_ShlAssign: 3027 case BO_ShrAssign: 3028 break; 3029 case BO_AddAssign: 3030 AtomicOp = llvm::AtomicRMWInst::Add; 3031 Op = llvm::Instruction::Add; 3032 break; 3033 case BO_SubAssign: 3034 AtomicOp = llvm::AtomicRMWInst::Sub; 3035 Op = llvm::Instruction::Sub; 3036 break; 3037 case BO_AndAssign: 3038 AtomicOp = llvm::AtomicRMWInst::And; 3039 Op = llvm::Instruction::And; 3040 break; 3041 case BO_XorAssign: 3042 AtomicOp = llvm::AtomicRMWInst::Xor; 3043 Op = llvm::Instruction::Xor; 3044 break; 3045 case BO_OrAssign: 3046 AtomicOp = llvm::AtomicRMWInst::Or; 3047 Op = llvm::Instruction::Or; 3048 break; 3049 default: 3050 llvm_unreachable("Invalid compound assignment type"); 3051 } 3052 if (AtomicOp != llvm::AtomicRMWInst::BAD_BINOP) { 3053 llvm::Value *Amt = CGF.EmitToMemory( 3054 EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy, 3055 E->getExprLoc()), 3056 LHSTy); 3057 Value *OldVal = Builder.CreateAtomicRMW( 3058 AtomicOp, LHSLV.getPointer(CGF), Amt, 3059 llvm::AtomicOrdering::SequentiallyConsistent); 3060 3061 // Since operation is atomic, the result type is guaranteed to be the 3062 // same as the input in LLVM terms. 3063 Result = Builder.CreateBinOp(Op, OldVal, Amt); 3064 return LHSLV; 3065 } 3066 } 3067 // FIXME: For floating point types, we should be saving and restoring the 3068 // floating point environment in the loop. 3069 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 3070 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 3071 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 3072 OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type); 3073 Builder.CreateBr(opBB); 3074 Builder.SetInsertPoint(opBB); 3075 atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2); 3076 atomicPHI->addIncoming(OpInfo.LHS, startBB); 3077 OpInfo.LHS = atomicPHI; 3078 } 3079 else 3080 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 3081 3082 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, OpInfo.FPFeatures); 3083 SourceLocation Loc = E->getExprLoc(); 3084 OpInfo.LHS = 3085 EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc); 3086 3087 // Expand the binary operator. 3088 Result = (this->*Func)(OpInfo); 3089 3090 // Convert the result back to the LHS type, 3091 // potentially with Implicit Conversion sanitizer check. 3092 Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy, 3093 Loc, ScalarConversionOpts(CGF.SanOpts)); 3094 3095 if (atomicPHI) { 3096 llvm::BasicBlock *curBlock = Builder.GetInsertBlock(); 3097 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 3098 auto Pair = CGF.EmitAtomicCompareExchange( 3099 LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc()); 3100 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy); 3101 llvm::Value *success = Pair.second; 3102 atomicPHI->addIncoming(old, curBlock); 3103 Builder.CreateCondBr(success, contBB, atomicPHI->getParent()); 3104 Builder.SetInsertPoint(contBB); 3105 return LHSLV; 3106 } 3107 3108 // Store the result value into the LHS lvalue. Bit-fields are handled 3109 // specially because the result is altered by the store, i.e., [C99 6.5.16p1] 3110 // 'An assignment expression has the value of the left operand after the 3111 // assignment...'. 3112 if (LHSLV.isBitField()) 3113 CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result); 3114 else 3115 CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV); 3116 3117 if (CGF.getLangOpts().OpenMP) 3118 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, 3119 E->getLHS()); 3120 return LHSLV; 3121 } 3122 3123 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E, 3124 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) { 3125 bool Ignore = TestAndClearIgnoreResultAssign(); 3126 Value *RHS = nullptr; 3127 LValue LHS = EmitCompoundAssignLValue(E, Func, RHS); 3128 3129 // If the result is clearly ignored, return now. 3130 if (Ignore) 3131 return nullptr; 3132 3133 // The result of an assignment in C is the assigned r-value. 3134 if (!CGF.getLangOpts().CPlusPlus) 3135 return RHS; 3136 3137 // If the lvalue is non-volatile, return the computed value of the assignment. 3138 if (!LHS.isVolatileQualified()) 3139 return RHS; 3140 3141 // Otherwise, reload the value. 3142 return EmitLoadOfLValue(LHS, E->getExprLoc()); 3143 } 3144 3145 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck( 3146 const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) { 3147 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 3148 3149 if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) { 3150 Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero), 3151 SanitizerKind::IntegerDivideByZero)); 3152 } 3153 3154 const auto *BO = cast<BinaryOperator>(Ops.E); 3155 if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) && 3156 Ops.Ty->hasSignedIntegerRepresentation() && 3157 !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) && 3158 Ops.mayHaveIntegerOverflow()) { 3159 llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType()); 3160 3161 llvm::Value *IntMin = 3162 Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth())); 3163 llvm::Value *NegOne = llvm::Constant::getAllOnesValue(Ty); 3164 3165 llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin); 3166 llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne); 3167 llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or"); 3168 Checks.push_back( 3169 std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow)); 3170 } 3171 3172 if (Checks.size() > 0) 3173 EmitBinOpCheck(Checks, Ops); 3174 } 3175 3176 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) { 3177 { 3178 CodeGenFunction::SanitizerScope SanScope(&CGF); 3179 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || 3180 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && 3181 Ops.Ty->isIntegerType() && 3182 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) { 3183 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 3184 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true); 3185 } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) && 3186 Ops.Ty->isRealFloatingType() && 3187 Ops.mayHaveFloatDivisionByZero()) { 3188 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 3189 llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero); 3190 EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero), 3191 Ops); 3192 } 3193 } 3194 3195 if (Ops.Ty->isConstantMatrixType()) { 3196 llvm::MatrixBuilder<CGBuilderTy> MB(Builder); 3197 // We need to check the types of the operands of the operator to get the 3198 // correct matrix dimensions. 3199 auto *BO = cast<BinaryOperator>(Ops.E); 3200 (void)BO; 3201 assert( 3202 isa<ConstantMatrixType>(BO->getLHS()->getType().getCanonicalType()) && 3203 "first operand must be a matrix"); 3204 assert(BO->getRHS()->getType().getCanonicalType()->isArithmeticType() && 3205 "second operand must be an arithmetic type"); 3206 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures); 3207 return MB.CreateScalarDiv(Ops.LHS, Ops.RHS, 3208 Ops.Ty->hasUnsignedIntegerRepresentation()); 3209 } 3210 3211 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 3212 llvm::Value *Val; 3213 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures); 3214 Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div"); 3215 if ((CGF.getLangOpts().OpenCL && 3216 !CGF.CGM.getCodeGenOpts().OpenCLCorrectlyRoundedDivSqrt) || 3217 (CGF.getLangOpts().HIP && CGF.getLangOpts().CUDAIsDevice && 3218 !CGF.CGM.getCodeGenOpts().HIPCorrectlyRoundedDivSqrt)) { 3219 // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp 3220 // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt 3221 // build option allows an application to specify that single precision 3222 // floating-point divide (x/y and 1/x) and sqrt used in the program 3223 // source are correctly rounded. 3224 llvm::Type *ValTy = Val->getType(); 3225 if (ValTy->isFloatTy() || 3226 (isa<llvm::VectorType>(ValTy) && 3227 cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy())) 3228 CGF.SetFPAccuracy(Val, 2.5); 3229 } 3230 return Val; 3231 } 3232 else if (Ops.isFixedPointOp()) 3233 return EmitFixedPointBinOp(Ops); 3234 else if (Ops.Ty->hasUnsignedIntegerRepresentation()) 3235 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div"); 3236 else 3237 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div"); 3238 } 3239 3240 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) { 3241 // Rem in C can't be a floating point type: C99 6.5.5p2. 3242 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || 3243 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && 3244 Ops.Ty->isIntegerType() && 3245 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) { 3246 CodeGenFunction::SanitizerScope SanScope(&CGF); 3247 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 3248 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false); 3249 } 3250 3251 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 3252 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem"); 3253 else 3254 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem"); 3255 } 3256 3257 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) { 3258 unsigned IID; 3259 unsigned OpID = 0; 3260 SanitizerHandler OverflowKind; 3261 3262 bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType(); 3263 switch (Ops.Opcode) { 3264 case BO_Add: 3265 case BO_AddAssign: 3266 OpID = 1; 3267 IID = isSigned ? llvm::Intrinsic::sadd_with_overflow : 3268 llvm::Intrinsic::uadd_with_overflow; 3269 OverflowKind = SanitizerHandler::AddOverflow; 3270 break; 3271 case BO_Sub: 3272 case BO_SubAssign: 3273 OpID = 2; 3274 IID = isSigned ? llvm::Intrinsic::ssub_with_overflow : 3275 llvm::Intrinsic::usub_with_overflow; 3276 OverflowKind = SanitizerHandler::SubOverflow; 3277 break; 3278 case BO_Mul: 3279 case BO_MulAssign: 3280 OpID = 3; 3281 IID = isSigned ? llvm::Intrinsic::smul_with_overflow : 3282 llvm::Intrinsic::umul_with_overflow; 3283 OverflowKind = SanitizerHandler::MulOverflow; 3284 break; 3285 default: 3286 llvm_unreachable("Unsupported operation for overflow detection"); 3287 } 3288 OpID <<= 1; 3289 if (isSigned) 3290 OpID |= 1; 3291 3292 CodeGenFunction::SanitizerScope SanScope(&CGF); 3293 llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty); 3294 3295 llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy); 3296 3297 Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS}); 3298 Value *result = Builder.CreateExtractValue(resultAndOverflow, 0); 3299 Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1); 3300 3301 // Handle overflow with llvm.trap if no custom handler has been specified. 3302 const std::string *handlerName = 3303 &CGF.getLangOpts().OverflowHandler; 3304 if (handlerName->empty()) { 3305 // If the signed-integer-overflow sanitizer is enabled, emit a call to its 3306 // runtime. Otherwise, this is a -ftrapv check, so just emit a trap. 3307 if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) { 3308 llvm::Value *NotOverflow = Builder.CreateNot(overflow); 3309 SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow 3310 : SanitizerKind::UnsignedIntegerOverflow; 3311 EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops); 3312 } else 3313 CGF.EmitTrapCheck(Builder.CreateNot(overflow), OverflowKind); 3314 return result; 3315 } 3316 3317 // Branch in case of overflow. 3318 llvm::BasicBlock *initialBB = Builder.GetInsertBlock(); 3319 llvm::BasicBlock *continueBB = 3320 CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode()); 3321 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn); 3322 3323 Builder.CreateCondBr(overflow, overflowBB, continueBB); 3324 3325 // If an overflow handler is set, then we want to call it and then use its 3326 // result, if it returns. 3327 Builder.SetInsertPoint(overflowBB); 3328 3329 // Get the overflow handler. 3330 llvm::Type *Int8Ty = CGF.Int8Ty; 3331 llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty }; 3332 llvm::FunctionType *handlerTy = 3333 llvm::FunctionType::get(CGF.Int64Ty, argTypes, true); 3334 llvm::FunctionCallee handler = 3335 CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName); 3336 3337 // Sign extend the args to 64-bit, so that we can use the same handler for 3338 // all types of overflow. 3339 llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty); 3340 llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty); 3341 3342 // Call the handler with the two arguments, the operation, and the size of 3343 // the result. 3344 llvm::Value *handlerArgs[] = { 3345 lhs, 3346 rhs, 3347 Builder.getInt8(OpID), 3348 Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()) 3349 }; 3350 llvm::Value *handlerResult = 3351 CGF.EmitNounwindRuntimeCall(handler, handlerArgs); 3352 3353 // Truncate the result back to the desired size. 3354 handlerResult = Builder.CreateTrunc(handlerResult, opTy); 3355 Builder.CreateBr(continueBB); 3356 3357 Builder.SetInsertPoint(continueBB); 3358 llvm::PHINode *phi = Builder.CreatePHI(opTy, 2); 3359 phi->addIncoming(result, initialBB); 3360 phi->addIncoming(handlerResult, overflowBB); 3361 3362 return phi; 3363 } 3364 3365 /// Emit pointer + index arithmetic. 3366 static Value *emitPointerArithmetic(CodeGenFunction &CGF, 3367 const BinOpInfo &op, 3368 bool isSubtraction) { 3369 // Must have binary (not unary) expr here. Unary pointer 3370 // increment/decrement doesn't use this path. 3371 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 3372 3373 Value *pointer = op.LHS; 3374 Expr *pointerOperand = expr->getLHS(); 3375 Value *index = op.RHS; 3376 Expr *indexOperand = expr->getRHS(); 3377 3378 // In a subtraction, the LHS is always the pointer. 3379 if (!isSubtraction && !pointer->getType()->isPointerTy()) { 3380 std::swap(pointer, index); 3381 std::swap(pointerOperand, indexOperand); 3382 } 3383 3384 bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType(); 3385 3386 unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth(); 3387 auto &DL = CGF.CGM.getDataLayout(); 3388 auto PtrTy = cast<llvm::PointerType>(pointer->getType()); 3389 3390 // Some versions of glibc and gcc use idioms (particularly in their malloc 3391 // routines) that add a pointer-sized integer (known to be a pointer value) 3392 // to a null pointer in order to cast the value back to an integer or as 3393 // part of a pointer alignment algorithm. This is undefined behavior, but 3394 // we'd like to be able to compile programs that use it. 3395 // 3396 // Normally, we'd generate a GEP with a null-pointer base here in response 3397 // to that code, but it's also UB to dereference a pointer created that 3398 // way. Instead (as an acknowledged hack to tolerate the idiom) we will 3399 // generate a direct cast of the integer value to a pointer. 3400 // 3401 // The idiom (p = nullptr + N) is not met if any of the following are true: 3402 // 3403 // The operation is subtraction. 3404 // The index is not pointer-sized. 3405 // The pointer type is not byte-sized. 3406 // 3407 if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(), 3408 op.Opcode, 3409 expr->getLHS(), 3410 expr->getRHS())) 3411 return CGF.Builder.CreateIntToPtr(index, pointer->getType()); 3412 3413 if (width != DL.getIndexTypeSizeInBits(PtrTy)) { 3414 // Zero-extend or sign-extend the pointer value according to 3415 // whether the index is signed or not. 3416 index = CGF.Builder.CreateIntCast(index, DL.getIndexType(PtrTy), isSigned, 3417 "idx.ext"); 3418 } 3419 3420 // If this is subtraction, negate the index. 3421 if (isSubtraction) 3422 index = CGF.Builder.CreateNeg(index, "idx.neg"); 3423 3424 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 3425 CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(), 3426 /*Accessed*/ false); 3427 3428 const PointerType *pointerType 3429 = pointerOperand->getType()->getAs<PointerType>(); 3430 if (!pointerType) { 3431 QualType objectType = pointerOperand->getType() 3432 ->castAs<ObjCObjectPointerType>() 3433 ->getPointeeType(); 3434 llvm::Value *objectSize 3435 = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType)); 3436 3437 index = CGF.Builder.CreateMul(index, objectSize); 3438 3439 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 3440 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 3441 return CGF.Builder.CreateBitCast(result, pointer->getType()); 3442 } 3443 3444 QualType elementType = pointerType->getPointeeType(); 3445 if (const VariableArrayType *vla 3446 = CGF.getContext().getAsVariableArrayType(elementType)) { 3447 // The element count here is the total number of non-VLA elements. 3448 llvm::Value *numElements = CGF.getVLASize(vla).NumElts; 3449 3450 // Effectively, the multiply by the VLA size is part of the GEP. 3451 // GEP indexes are signed, and scaling an index isn't permitted to 3452 // signed-overflow, so we use the same semantics for our explicit 3453 // multiply. We suppress this if overflow is not undefined behavior. 3454 if (CGF.getLangOpts().isSignedOverflowDefined()) { 3455 index = CGF.Builder.CreateMul(index, numElements, "vla.index"); 3456 pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 3457 } else { 3458 index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index"); 3459 pointer = 3460 CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction, 3461 op.E->getExprLoc(), "add.ptr"); 3462 } 3463 return pointer; 3464 } 3465 3466 // Explicitly handle GNU void* and function pointer arithmetic extensions. The 3467 // GNU void* casts amount to no-ops since our void* type is i8*, but this is 3468 // future proof. 3469 if (elementType->isVoidType() || elementType->isFunctionType()) { 3470 Value *result = CGF.EmitCastToVoidPtr(pointer); 3471 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 3472 return CGF.Builder.CreateBitCast(result, pointer->getType()); 3473 } 3474 3475 if (CGF.getLangOpts().isSignedOverflowDefined()) 3476 return CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 3477 3478 return CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction, 3479 op.E->getExprLoc(), "add.ptr"); 3480 } 3481 3482 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and 3483 // Addend. Use negMul and negAdd to negate the first operand of the Mul or 3484 // the add operand respectively. This allows fmuladd to represent a*b-c, or 3485 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to 3486 // efficient operations. 3487 static Value* buildFMulAdd(llvm::Instruction *MulOp, Value *Addend, 3488 const CodeGenFunction &CGF, CGBuilderTy &Builder, 3489 bool negMul, bool negAdd) { 3490 assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set."); 3491 3492 Value *MulOp0 = MulOp->getOperand(0); 3493 Value *MulOp1 = MulOp->getOperand(1); 3494 if (negMul) 3495 MulOp0 = Builder.CreateFNeg(MulOp0, "neg"); 3496 if (negAdd) 3497 Addend = Builder.CreateFNeg(Addend, "neg"); 3498 3499 Value *FMulAdd = nullptr; 3500 if (Builder.getIsFPConstrained()) { 3501 assert(isa<llvm::ConstrainedFPIntrinsic>(MulOp) && 3502 "Only constrained operation should be created when Builder is in FP " 3503 "constrained mode"); 3504 FMulAdd = Builder.CreateConstrainedFPCall( 3505 CGF.CGM.getIntrinsic(llvm::Intrinsic::experimental_constrained_fmuladd, 3506 Addend->getType()), 3507 {MulOp0, MulOp1, Addend}); 3508 } else { 3509 FMulAdd = Builder.CreateCall( 3510 CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()), 3511 {MulOp0, MulOp1, Addend}); 3512 } 3513 MulOp->eraseFromParent(); 3514 3515 return FMulAdd; 3516 } 3517 3518 // Check whether it would be legal to emit an fmuladd intrinsic call to 3519 // represent op and if so, build the fmuladd. 3520 // 3521 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on. 3522 // Does NOT check the type of the operation - it's assumed that this function 3523 // will be called from contexts where it's known that the type is contractable. 3524 static Value* tryEmitFMulAdd(const BinOpInfo &op, 3525 const CodeGenFunction &CGF, CGBuilderTy &Builder, 3526 bool isSub=false) { 3527 3528 assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign || 3529 op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) && 3530 "Only fadd/fsub can be the root of an fmuladd."); 3531 3532 // Check whether this op is marked as fusable. 3533 if (!op.FPFeatures.allowFPContractWithinStatement()) 3534 return nullptr; 3535 3536 // We have a potentially fusable op. Look for a mul on one of the operands. 3537 // Also, make sure that the mul result isn't used directly. In that case, 3538 // there's no point creating a muladd operation. 3539 if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) { 3540 if (LHSBinOp->getOpcode() == llvm::Instruction::FMul && 3541 LHSBinOp->use_empty()) 3542 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub); 3543 } 3544 if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) { 3545 if (RHSBinOp->getOpcode() == llvm::Instruction::FMul && 3546 RHSBinOp->use_empty()) 3547 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false); 3548 } 3549 3550 if (auto *LHSBinOp = dyn_cast<llvm::CallBase>(op.LHS)) { 3551 if (LHSBinOp->getIntrinsicID() == 3552 llvm::Intrinsic::experimental_constrained_fmul && 3553 LHSBinOp->use_empty()) 3554 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub); 3555 } 3556 if (auto *RHSBinOp = dyn_cast<llvm::CallBase>(op.RHS)) { 3557 if (RHSBinOp->getIntrinsicID() == 3558 llvm::Intrinsic::experimental_constrained_fmul && 3559 RHSBinOp->use_empty()) 3560 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false); 3561 } 3562 3563 return nullptr; 3564 } 3565 3566 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) { 3567 if (op.LHS->getType()->isPointerTy() || 3568 op.RHS->getType()->isPointerTy()) 3569 return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction); 3570 3571 if (op.Ty->isSignedIntegerOrEnumerationType()) { 3572 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 3573 case LangOptions::SOB_Defined: 3574 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 3575 case LangOptions::SOB_Undefined: 3576 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 3577 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 3578 LLVM_FALLTHROUGH; 3579 case LangOptions::SOB_Trapping: 3580 if (CanElideOverflowCheck(CGF.getContext(), op)) 3581 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 3582 return EmitOverflowCheckedBinOp(op); 3583 } 3584 } 3585 3586 if (op.Ty->isConstantMatrixType()) { 3587 llvm::MatrixBuilder<CGBuilderTy> MB(Builder); 3588 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures); 3589 return MB.CreateAdd(op.LHS, op.RHS); 3590 } 3591 3592 if (op.Ty->isUnsignedIntegerType() && 3593 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 3594 !CanElideOverflowCheck(CGF.getContext(), op)) 3595 return EmitOverflowCheckedBinOp(op); 3596 3597 if (op.LHS->getType()->isFPOrFPVectorTy()) { 3598 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures); 3599 // Try to form an fmuladd. 3600 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder)) 3601 return FMulAdd; 3602 3603 return Builder.CreateFAdd(op.LHS, op.RHS, "add"); 3604 } 3605 3606 if (op.isFixedPointOp()) 3607 return EmitFixedPointBinOp(op); 3608 3609 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 3610 } 3611 3612 /// The resulting value must be calculated with exact precision, so the operands 3613 /// may not be the same type. 3614 Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) { 3615 using llvm::APSInt; 3616 using llvm::ConstantInt; 3617 3618 // This is either a binary operation where at least one of the operands is 3619 // a fixed-point type, or a unary operation where the operand is a fixed-point 3620 // type. The result type of a binary operation is determined by 3621 // Sema::handleFixedPointConversions(). 3622 QualType ResultTy = op.Ty; 3623 QualType LHSTy, RHSTy; 3624 if (const auto *BinOp = dyn_cast<BinaryOperator>(op.E)) { 3625 RHSTy = BinOp->getRHS()->getType(); 3626 if (const auto *CAO = dyn_cast<CompoundAssignOperator>(BinOp)) { 3627 // For compound assignment, the effective type of the LHS at this point 3628 // is the computation LHS type, not the actual LHS type, and the final 3629 // result type is not the type of the expression but rather the 3630 // computation result type. 3631 LHSTy = CAO->getComputationLHSType(); 3632 ResultTy = CAO->getComputationResultType(); 3633 } else 3634 LHSTy = BinOp->getLHS()->getType(); 3635 } else if (const auto *UnOp = dyn_cast<UnaryOperator>(op.E)) { 3636 LHSTy = UnOp->getSubExpr()->getType(); 3637 RHSTy = UnOp->getSubExpr()->getType(); 3638 } 3639 ASTContext &Ctx = CGF.getContext(); 3640 Value *LHS = op.LHS; 3641 Value *RHS = op.RHS; 3642 3643 auto LHSFixedSema = Ctx.getFixedPointSemantics(LHSTy); 3644 auto RHSFixedSema = Ctx.getFixedPointSemantics(RHSTy); 3645 auto ResultFixedSema = Ctx.getFixedPointSemantics(ResultTy); 3646 auto CommonFixedSema = LHSFixedSema.getCommonSemantics(RHSFixedSema); 3647 3648 // Perform the actual operation. 3649 Value *Result; 3650 llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder); 3651 switch (op.Opcode) { 3652 case BO_AddAssign: 3653 case BO_Add: 3654 Result = FPBuilder.CreateAdd(LHS, LHSFixedSema, RHS, RHSFixedSema); 3655 break; 3656 case BO_SubAssign: 3657 case BO_Sub: 3658 Result = FPBuilder.CreateSub(LHS, LHSFixedSema, RHS, RHSFixedSema); 3659 break; 3660 case BO_MulAssign: 3661 case BO_Mul: 3662 Result = FPBuilder.CreateMul(LHS, LHSFixedSema, RHS, RHSFixedSema); 3663 break; 3664 case BO_DivAssign: 3665 case BO_Div: 3666 Result = FPBuilder.CreateDiv(LHS, LHSFixedSema, RHS, RHSFixedSema); 3667 break; 3668 case BO_ShlAssign: 3669 case BO_Shl: 3670 Result = FPBuilder.CreateShl(LHS, LHSFixedSema, RHS); 3671 break; 3672 case BO_ShrAssign: 3673 case BO_Shr: 3674 Result = FPBuilder.CreateShr(LHS, LHSFixedSema, RHS); 3675 break; 3676 case BO_LT: 3677 return FPBuilder.CreateLT(LHS, LHSFixedSema, RHS, RHSFixedSema); 3678 case BO_GT: 3679 return FPBuilder.CreateGT(LHS, LHSFixedSema, RHS, RHSFixedSema); 3680 case BO_LE: 3681 return FPBuilder.CreateLE(LHS, LHSFixedSema, RHS, RHSFixedSema); 3682 case BO_GE: 3683 return FPBuilder.CreateGE(LHS, LHSFixedSema, RHS, RHSFixedSema); 3684 case BO_EQ: 3685 // For equality operations, we assume any padding bits on unsigned types are 3686 // zero'd out. They could be overwritten through non-saturating operations 3687 // that cause overflow, but this leads to undefined behavior. 3688 return FPBuilder.CreateEQ(LHS, LHSFixedSema, RHS, RHSFixedSema); 3689 case BO_NE: 3690 return FPBuilder.CreateNE(LHS, LHSFixedSema, RHS, RHSFixedSema); 3691 case BO_Cmp: 3692 case BO_LAnd: 3693 case BO_LOr: 3694 llvm_unreachable("Found unimplemented fixed point binary operation"); 3695 case BO_PtrMemD: 3696 case BO_PtrMemI: 3697 case BO_Rem: 3698 case BO_Xor: 3699 case BO_And: 3700 case BO_Or: 3701 case BO_Assign: 3702 case BO_RemAssign: 3703 case BO_AndAssign: 3704 case BO_XorAssign: 3705 case BO_OrAssign: 3706 case BO_Comma: 3707 llvm_unreachable("Found unsupported binary operation for fixed point types."); 3708 } 3709 3710 bool IsShift = BinaryOperator::isShiftOp(op.Opcode) || 3711 BinaryOperator::isShiftAssignOp(op.Opcode); 3712 // Convert to the result type. 3713 return FPBuilder.CreateFixedToFixed(Result, IsShift ? LHSFixedSema 3714 : CommonFixedSema, 3715 ResultFixedSema); 3716 } 3717 3718 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) { 3719 // The LHS is always a pointer if either side is. 3720 if (!op.LHS->getType()->isPointerTy()) { 3721 if (op.Ty->isSignedIntegerOrEnumerationType()) { 3722 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 3723 case LangOptions::SOB_Defined: 3724 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 3725 case LangOptions::SOB_Undefined: 3726 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 3727 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 3728 LLVM_FALLTHROUGH; 3729 case LangOptions::SOB_Trapping: 3730 if (CanElideOverflowCheck(CGF.getContext(), op)) 3731 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 3732 return EmitOverflowCheckedBinOp(op); 3733 } 3734 } 3735 3736 if (op.Ty->isConstantMatrixType()) { 3737 llvm::MatrixBuilder<CGBuilderTy> MB(Builder); 3738 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures); 3739 return MB.CreateSub(op.LHS, op.RHS); 3740 } 3741 3742 if (op.Ty->isUnsignedIntegerType() && 3743 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 3744 !CanElideOverflowCheck(CGF.getContext(), op)) 3745 return EmitOverflowCheckedBinOp(op); 3746 3747 if (op.LHS->getType()->isFPOrFPVectorTy()) { 3748 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures); 3749 // Try to form an fmuladd. 3750 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true)) 3751 return FMulAdd; 3752 return Builder.CreateFSub(op.LHS, op.RHS, "sub"); 3753 } 3754 3755 if (op.isFixedPointOp()) 3756 return EmitFixedPointBinOp(op); 3757 3758 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 3759 } 3760 3761 // If the RHS is not a pointer, then we have normal pointer 3762 // arithmetic. 3763 if (!op.RHS->getType()->isPointerTy()) 3764 return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction); 3765 3766 // Otherwise, this is a pointer subtraction. 3767 3768 // Do the raw subtraction part. 3769 llvm::Value *LHS 3770 = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast"); 3771 llvm::Value *RHS 3772 = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast"); 3773 Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub"); 3774 3775 // Okay, figure out the element size. 3776 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 3777 QualType elementType = expr->getLHS()->getType()->getPointeeType(); 3778 3779 llvm::Value *divisor = nullptr; 3780 3781 // For a variable-length array, this is going to be non-constant. 3782 if (const VariableArrayType *vla 3783 = CGF.getContext().getAsVariableArrayType(elementType)) { 3784 auto VlaSize = CGF.getVLASize(vla); 3785 elementType = VlaSize.Type; 3786 divisor = VlaSize.NumElts; 3787 3788 // Scale the number of non-VLA elements by the non-VLA element size. 3789 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType); 3790 if (!eltSize.isOne()) 3791 divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor); 3792 3793 // For everything elese, we can just compute it, safe in the 3794 // assumption that Sema won't let anything through that we can't 3795 // safely compute the size of. 3796 } else { 3797 CharUnits elementSize; 3798 // Handle GCC extension for pointer arithmetic on void* and 3799 // function pointer types. 3800 if (elementType->isVoidType() || elementType->isFunctionType()) 3801 elementSize = CharUnits::One(); 3802 else 3803 elementSize = CGF.getContext().getTypeSizeInChars(elementType); 3804 3805 // Don't even emit the divide for element size of 1. 3806 if (elementSize.isOne()) 3807 return diffInChars; 3808 3809 divisor = CGF.CGM.getSize(elementSize); 3810 } 3811 3812 // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since 3813 // pointer difference in C is only defined in the case where both operands 3814 // are pointing to elements of an array. 3815 return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div"); 3816 } 3817 3818 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) { 3819 llvm::IntegerType *Ty; 3820 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType())) 3821 Ty = cast<llvm::IntegerType>(VT->getElementType()); 3822 else 3823 Ty = cast<llvm::IntegerType>(LHS->getType()); 3824 return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1); 3825 } 3826 3827 Value *ScalarExprEmitter::ConstrainShiftValue(Value *LHS, Value *RHS, 3828 const Twine &Name) { 3829 llvm::IntegerType *Ty; 3830 if (auto *VT = dyn_cast<llvm::VectorType>(LHS->getType())) 3831 Ty = cast<llvm::IntegerType>(VT->getElementType()); 3832 else 3833 Ty = cast<llvm::IntegerType>(LHS->getType()); 3834 3835 if (llvm::isPowerOf2_64(Ty->getBitWidth())) 3836 return Builder.CreateAnd(RHS, GetWidthMinusOneValue(LHS, RHS), Name); 3837 3838 return Builder.CreateURem( 3839 RHS, llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth()), Name); 3840 } 3841 3842 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) { 3843 // TODO: This misses out on the sanitizer check below. 3844 if (Ops.isFixedPointOp()) 3845 return EmitFixedPointBinOp(Ops); 3846 3847 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 3848 // RHS to the same size as the LHS. 3849 Value *RHS = Ops.RHS; 3850 if (Ops.LHS->getType() != RHS->getType()) 3851 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 3852 3853 bool SanitizeSignedBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) && 3854 Ops.Ty->hasSignedIntegerRepresentation() && 3855 !CGF.getLangOpts().isSignedOverflowDefined() && 3856 !CGF.getLangOpts().CPlusPlus20; 3857 bool SanitizeUnsignedBase = 3858 CGF.SanOpts.has(SanitizerKind::UnsignedShiftBase) && 3859 Ops.Ty->hasUnsignedIntegerRepresentation(); 3860 bool SanitizeBase = SanitizeSignedBase || SanitizeUnsignedBase; 3861 bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent); 3862 // OpenCL 6.3j: shift values are effectively % word size of LHS. 3863 if (CGF.getLangOpts().OpenCL) 3864 RHS = ConstrainShiftValue(Ops.LHS, RHS, "shl.mask"); 3865 else if ((SanitizeBase || SanitizeExponent) && 3866 isa<llvm::IntegerType>(Ops.LHS->getType())) { 3867 CodeGenFunction::SanitizerScope SanScope(&CGF); 3868 SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks; 3869 llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS); 3870 llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne); 3871 3872 if (SanitizeExponent) { 3873 Checks.push_back( 3874 std::make_pair(ValidExponent, SanitizerKind::ShiftExponent)); 3875 } 3876 3877 if (SanitizeBase) { 3878 // Check whether we are shifting any non-zero bits off the top of the 3879 // integer. We only emit this check if exponent is valid - otherwise 3880 // instructions below will have undefined behavior themselves. 3881 llvm::BasicBlock *Orig = Builder.GetInsertBlock(); 3882 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 3883 llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check"); 3884 Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont); 3885 llvm::Value *PromotedWidthMinusOne = 3886 (RHS == Ops.RHS) ? WidthMinusOne 3887 : GetWidthMinusOneValue(Ops.LHS, RHS); 3888 CGF.EmitBlock(CheckShiftBase); 3889 llvm::Value *BitsShiftedOff = Builder.CreateLShr( 3890 Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros", 3891 /*NUW*/ true, /*NSW*/ true), 3892 "shl.check"); 3893 if (SanitizeUnsignedBase || CGF.getLangOpts().CPlusPlus) { 3894 // In C99, we are not permitted to shift a 1 bit into the sign bit. 3895 // Under C++11's rules, shifting a 1 bit into the sign bit is 3896 // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't 3897 // define signed left shifts, so we use the C99 and C++11 rules there). 3898 // Unsigned shifts can always shift into the top bit. 3899 llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1); 3900 BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One); 3901 } 3902 llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0); 3903 llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero); 3904 CGF.EmitBlock(Cont); 3905 llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2); 3906 BaseCheck->addIncoming(Builder.getTrue(), Orig); 3907 BaseCheck->addIncoming(ValidBase, CheckShiftBase); 3908 Checks.push_back(std::make_pair( 3909 BaseCheck, SanitizeSignedBase ? SanitizerKind::ShiftBase 3910 : SanitizerKind::UnsignedShiftBase)); 3911 } 3912 3913 assert(!Checks.empty()); 3914 EmitBinOpCheck(Checks, Ops); 3915 } 3916 3917 return Builder.CreateShl(Ops.LHS, RHS, "shl"); 3918 } 3919 3920 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) { 3921 // TODO: This misses out on the sanitizer check below. 3922 if (Ops.isFixedPointOp()) 3923 return EmitFixedPointBinOp(Ops); 3924 3925 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 3926 // RHS to the same size as the LHS. 3927 Value *RHS = Ops.RHS; 3928 if (Ops.LHS->getType() != RHS->getType()) 3929 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 3930 3931 // OpenCL 6.3j: shift values are effectively % word size of LHS. 3932 if (CGF.getLangOpts().OpenCL) 3933 RHS = ConstrainShiftValue(Ops.LHS, RHS, "shr.mask"); 3934 else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) && 3935 isa<llvm::IntegerType>(Ops.LHS->getType())) { 3936 CodeGenFunction::SanitizerScope SanScope(&CGF); 3937 llvm::Value *Valid = 3938 Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS)); 3939 EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops); 3940 } 3941 3942 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 3943 return Builder.CreateLShr(Ops.LHS, RHS, "shr"); 3944 return Builder.CreateAShr(Ops.LHS, RHS, "shr"); 3945 } 3946 3947 enum IntrinsicType { VCMPEQ, VCMPGT }; 3948 // return corresponding comparison intrinsic for given vector type 3949 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT, 3950 BuiltinType::Kind ElemKind) { 3951 switch (ElemKind) { 3952 default: llvm_unreachable("unexpected element type"); 3953 case BuiltinType::Char_U: 3954 case BuiltinType::UChar: 3955 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 3956 llvm::Intrinsic::ppc_altivec_vcmpgtub_p; 3957 case BuiltinType::Char_S: 3958 case BuiltinType::SChar: 3959 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 3960 llvm::Intrinsic::ppc_altivec_vcmpgtsb_p; 3961 case BuiltinType::UShort: 3962 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 3963 llvm::Intrinsic::ppc_altivec_vcmpgtuh_p; 3964 case BuiltinType::Short: 3965 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 3966 llvm::Intrinsic::ppc_altivec_vcmpgtsh_p; 3967 case BuiltinType::UInt: 3968 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 3969 llvm::Intrinsic::ppc_altivec_vcmpgtuw_p; 3970 case BuiltinType::Int: 3971 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 3972 llvm::Intrinsic::ppc_altivec_vcmpgtsw_p; 3973 case BuiltinType::ULong: 3974 case BuiltinType::ULongLong: 3975 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p : 3976 llvm::Intrinsic::ppc_altivec_vcmpgtud_p; 3977 case BuiltinType::Long: 3978 case BuiltinType::LongLong: 3979 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p : 3980 llvm::Intrinsic::ppc_altivec_vcmpgtsd_p; 3981 case BuiltinType::Float: 3982 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p : 3983 llvm::Intrinsic::ppc_altivec_vcmpgtfp_p; 3984 case BuiltinType::Double: 3985 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p : 3986 llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p; 3987 case BuiltinType::UInt128: 3988 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p 3989 : llvm::Intrinsic::ppc_altivec_vcmpgtuq_p; 3990 case BuiltinType::Int128: 3991 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p 3992 : llvm::Intrinsic::ppc_altivec_vcmpgtsq_p; 3993 } 3994 } 3995 3996 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E, 3997 llvm::CmpInst::Predicate UICmpOpc, 3998 llvm::CmpInst::Predicate SICmpOpc, 3999 llvm::CmpInst::Predicate FCmpOpc, 4000 bool IsSignaling) { 4001 TestAndClearIgnoreResultAssign(); 4002 Value *Result; 4003 QualType LHSTy = E->getLHS()->getType(); 4004 QualType RHSTy = E->getRHS()->getType(); 4005 if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) { 4006 assert(E->getOpcode() == BO_EQ || 4007 E->getOpcode() == BO_NE); 4008 Value *LHS = CGF.EmitScalarExpr(E->getLHS()); 4009 Value *RHS = CGF.EmitScalarExpr(E->getRHS()); 4010 Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison( 4011 CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE); 4012 } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) { 4013 BinOpInfo BOInfo = EmitBinOps(E); 4014 Value *LHS = BOInfo.LHS; 4015 Value *RHS = BOInfo.RHS; 4016 4017 // If AltiVec, the comparison results in a numeric type, so we use 4018 // intrinsics comparing vectors and giving 0 or 1 as a result 4019 if (LHSTy->isVectorType() && !E->getType()->isVectorType()) { 4020 // constants for mapping CR6 register bits to predicate result 4021 enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6; 4022 4023 llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic; 4024 4025 // in several cases vector arguments order will be reversed 4026 Value *FirstVecArg = LHS, 4027 *SecondVecArg = RHS; 4028 4029 QualType ElTy = LHSTy->castAs<VectorType>()->getElementType(); 4030 BuiltinType::Kind ElementKind = ElTy->castAs<BuiltinType>()->getKind(); 4031 4032 switch(E->getOpcode()) { 4033 default: llvm_unreachable("is not a comparison operation"); 4034 case BO_EQ: 4035 CR6 = CR6_LT; 4036 ID = GetIntrinsic(VCMPEQ, ElementKind); 4037 break; 4038 case BO_NE: 4039 CR6 = CR6_EQ; 4040 ID = GetIntrinsic(VCMPEQ, ElementKind); 4041 break; 4042 case BO_LT: 4043 CR6 = CR6_LT; 4044 ID = GetIntrinsic(VCMPGT, ElementKind); 4045 std::swap(FirstVecArg, SecondVecArg); 4046 break; 4047 case BO_GT: 4048 CR6 = CR6_LT; 4049 ID = GetIntrinsic(VCMPGT, ElementKind); 4050 break; 4051 case BO_LE: 4052 if (ElementKind == BuiltinType::Float) { 4053 CR6 = CR6_LT; 4054 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 4055 std::swap(FirstVecArg, SecondVecArg); 4056 } 4057 else { 4058 CR6 = CR6_EQ; 4059 ID = GetIntrinsic(VCMPGT, ElementKind); 4060 } 4061 break; 4062 case BO_GE: 4063 if (ElementKind == BuiltinType::Float) { 4064 CR6 = CR6_LT; 4065 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 4066 } 4067 else { 4068 CR6 = CR6_EQ; 4069 ID = GetIntrinsic(VCMPGT, ElementKind); 4070 std::swap(FirstVecArg, SecondVecArg); 4071 } 4072 break; 4073 } 4074 4075 Value *CR6Param = Builder.getInt32(CR6); 4076 llvm::Function *F = CGF.CGM.getIntrinsic(ID); 4077 Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg}); 4078 4079 // The result type of intrinsic may not be same as E->getType(). 4080 // If E->getType() is not BoolTy, EmitScalarConversion will do the 4081 // conversion work. If E->getType() is BoolTy, EmitScalarConversion will 4082 // do nothing, if ResultTy is not i1 at the same time, it will cause 4083 // crash later. 4084 llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType()); 4085 if (ResultTy->getBitWidth() > 1 && 4086 E->getType() == CGF.getContext().BoolTy) 4087 Result = Builder.CreateTrunc(Result, Builder.getInt1Ty()); 4088 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 4089 E->getExprLoc()); 4090 } 4091 4092 if (BOInfo.isFixedPointOp()) { 4093 Result = EmitFixedPointBinOp(BOInfo); 4094 } else if (LHS->getType()->isFPOrFPVectorTy()) { 4095 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, BOInfo.FPFeatures); 4096 if (!IsSignaling) 4097 Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp"); 4098 else 4099 Result = Builder.CreateFCmpS(FCmpOpc, LHS, RHS, "cmp"); 4100 } else if (LHSTy->hasSignedIntegerRepresentation()) { 4101 Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp"); 4102 } else { 4103 // Unsigned integers and pointers. 4104 4105 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers && 4106 !isa<llvm::ConstantPointerNull>(LHS) && 4107 !isa<llvm::ConstantPointerNull>(RHS)) { 4108 4109 // Dynamic information is required to be stripped for comparisons, 4110 // because it could leak the dynamic information. Based on comparisons 4111 // of pointers to dynamic objects, the optimizer can replace one pointer 4112 // with another, which might be incorrect in presence of invariant 4113 // groups. Comparison with null is safe because null does not carry any 4114 // dynamic information. 4115 if (LHSTy.mayBeDynamicClass()) 4116 LHS = Builder.CreateStripInvariantGroup(LHS); 4117 if (RHSTy.mayBeDynamicClass()) 4118 RHS = Builder.CreateStripInvariantGroup(RHS); 4119 } 4120 4121 Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp"); 4122 } 4123 4124 // If this is a vector comparison, sign extend the result to the appropriate 4125 // vector integer type and return it (don't convert to bool). 4126 if (LHSTy->isVectorType()) 4127 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 4128 4129 } else { 4130 // Complex Comparison: can only be an equality comparison. 4131 CodeGenFunction::ComplexPairTy LHS, RHS; 4132 QualType CETy; 4133 if (auto *CTy = LHSTy->getAs<ComplexType>()) { 4134 LHS = CGF.EmitComplexExpr(E->getLHS()); 4135 CETy = CTy->getElementType(); 4136 } else { 4137 LHS.first = Visit(E->getLHS()); 4138 LHS.second = llvm::Constant::getNullValue(LHS.first->getType()); 4139 CETy = LHSTy; 4140 } 4141 if (auto *CTy = RHSTy->getAs<ComplexType>()) { 4142 RHS = CGF.EmitComplexExpr(E->getRHS()); 4143 assert(CGF.getContext().hasSameUnqualifiedType(CETy, 4144 CTy->getElementType()) && 4145 "The element types must always match."); 4146 (void)CTy; 4147 } else { 4148 RHS.first = Visit(E->getRHS()); 4149 RHS.second = llvm::Constant::getNullValue(RHS.first->getType()); 4150 assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) && 4151 "The element types must always match."); 4152 } 4153 4154 Value *ResultR, *ResultI; 4155 if (CETy->isRealFloatingType()) { 4156 // As complex comparisons can only be equality comparisons, they 4157 // are never signaling comparisons. 4158 ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r"); 4159 ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i"); 4160 } else { 4161 // Complex comparisons can only be equality comparisons. As such, signed 4162 // and unsigned opcodes are the same. 4163 ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r"); 4164 ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i"); 4165 } 4166 4167 if (E->getOpcode() == BO_EQ) { 4168 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri"); 4169 } else { 4170 assert(E->getOpcode() == BO_NE && 4171 "Complex comparison other than == or != ?"); 4172 Result = Builder.CreateOr(ResultR, ResultI, "or.ri"); 4173 } 4174 } 4175 4176 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 4177 E->getExprLoc()); 4178 } 4179 4180 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) { 4181 bool Ignore = TestAndClearIgnoreResultAssign(); 4182 4183 Value *RHS; 4184 LValue LHS; 4185 4186 switch (E->getLHS()->getType().getObjCLifetime()) { 4187 case Qualifiers::OCL_Strong: 4188 std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore); 4189 break; 4190 4191 case Qualifiers::OCL_Autoreleasing: 4192 std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E); 4193 break; 4194 4195 case Qualifiers::OCL_ExplicitNone: 4196 std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore); 4197 break; 4198 4199 case Qualifiers::OCL_Weak: 4200 RHS = Visit(E->getRHS()); 4201 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 4202 RHS = CGF.EmitARCStoreWeak(LHS.getAddress(CGF), RHS, Ignore); 4203 break; 4204 4205 case Qualifiers::OCL_None: 4206 // __block variables need to have the rhs evaluated first, plus 4207 // this should improve codegen just a little. 4208 RHS = Visit(E->getRHS()); 4209 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 4210 4211 // Store the value into the LHS. Bit-fields are handled specially 4212 // because the result is altered by the store, i.e., [C99 6.5.16p1] 4213 // 'An assignment expression has the value of the left operand after 4214 // the assignment...'. 4215 if (LHS.isBitField()) { 4216 CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS); 4217 } else { 4218 CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc()); 4219 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS); 4220 } 4221 } 4222 4223 // If the result is clearly ignored, return now. 4224 if (Ignore) 4225 return nullptr; 4226 4227 // The result of an assignment in C is the assigned r-value. 4228 if (!CGF.getLangOpts().CPlusPlus) 4229 return RHS; 4230 4231 // If the lvalue is non-volatile, return the computed value of the assignment. 4232 if (!LHS.isVolatileQualified()) 4233 return RHS; 4234 4235 // Otherwise, reload the value. 4236 return EmitLoadOfLValue(LHS, E->getExprLoc()); 4237 } 4238 4239 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) { 4240 // Perform vector logical and on comparisons with zero vectors. 4241 if (E->getType()->isVectorType()) { 4242 CGF.incrementProfileCounter(E); 4243 4244 Value *LHS = Visit(E->getLHS()); 4245 Value *RHS = Visit(E->getRHS()); 4246 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 4247 if (LHS->getType()->isFPOrFPVectorTy()) { 4248 CodeGenFunction::CGFPOptionsRAII FPOptsRAII( 4249 CGF, E->getFPFeaturesInEffect(CGF.getLangOpts())); 4250 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 4251 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 4252 } else { 4253 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 4254 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 4255 } 4256 Value *And = Builder.CreateAnd(LHS, RHS); 4257 return Builder.CreateSExt(And, ConvertType(E->getType()), "sext"); 4258 } 4259 4260 bool InstrumentRegions = CGF.CGM.getCodeGenOpts().hasProfileClangInstr(); 4261 llvm::Type *ResTy = ConvertType(E->getType()); 4262 4263 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0. 4264 // If we have 1 && X, just emit X without inserting the control flow. 4265 bool LHSCondVal; 4266 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 4267 if (LHSCondVal) { // If we have 1 && X, just emit X. 4268 CGF.incrementProfileCounter(E); 4269 4270 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4271 4272 // If we're generating for profiling or coverage, generate a branch to a 4273 // block that increments the RHS counter needed to track branch condition 4274 // coverage. In this case, use "FBlock" as both the final "TrueBlock" and 4275 // "FalseBlock" after the increment is done. 4276 if (InstrumentRegions && 4277 CodeGenFunction::isInstrumentedCondition(E->getRHS())) { 4278 llvm::BasicBlock *FBlock = CGF.createBasicBlock("land.end"); 4279 llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("land.rhscnt"); 4280 Builder.CreateCondBr(RHSCond, RHSBlockCnt, FBlock); 4281 CGF.EmitBlock(RHSBlockCnt); 4282 CGF.incrementProfileCounter(E->getRHS()); 4283 CGF.EmitBranch(FBlock); 4284 CGF.EmitBlock(FBlock); 4285 } 4286 4287 // ZExt result to int or bool. 4288 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext"); 4289 } 4290 4291 // 0 && RHS: If it is safe, just elide the RHS, and return 0/false. 4292 if (!CGF.ContainsLabel(E->getRHS())) 4293 return llvm::Constant::getNullValue(ResTy); 4294 } 4295 4296 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end"); 4297 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs"); 4298 4299 CodeGenFunction::ConditionalEvaluation eval(CGF); 4300 4301 // Branch on the LHS first. If it is false, go to the failure (cont) block. 4302 CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock, 4303 CGF.getProfileCount(E->getRHS())); 4304 4305 // Any edges into the ContBlock are now from an (indeterminate number of) 4306 // edges from this first condition. All of these values will be false. Start 4307 // setting up the PHI node in the Cont Block for this. 4308 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 4309 "", ContBlock); 4310 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 4311 PI != PE; ++PI) 4312 PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI); 4313 4314 eval.begin(CGF); 4315 CGF.EmitBlock(RHSBlock); 4316 CGF.incrementProfileCounter(E); 4317 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4318 eval.end(CGF); 4319 4320 // Reaquire the RHS block, as there may be subblocks inserted. 4321 RHSBlock = Builder.GetInsertBlock(); 4322 4323 // If we're generating for profiling or coverage, generate a branch on the 4324 // RHS to a block that increments the RHS true counter needed to track branch 4325 // condition coverage. 4326 if (InstrumentRegions && 4327 CodeGenFunction::isInstrumentedCondition(E->getRHS())) { 4328 llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("land.rhscnt"); 4329 Builder.CreateCondBr(RHSCond, RHSBlockCnt, ContBlock); 4330 CGF.EmitBlock(RHSBlockCnt); 4331 CGF.incrementProfileCounter(E->getRHS()); 4332 CGF.EmitBranch(ContBlock); 4333 PN->addIncoming(RHSCond, RHSBlockCnt); 4334 } 4335 4336 // Emit an unconditional branch from this block to ContBlock. 4337 { 4338 // There is no need to emit line number for unconditional branch. 4339 auto NL = ApplyDebugLocation::CreateEmpty(CGF); 4340 CGF.EmitBlock(ContBlock); 4341 } 4342 // Insert an entry into the phi node for the edge with the value of RHSCond. 4343 PN->addIncoming(RHSCond, RHSBlock); 4344 4345 // Artificial location to preserve the scope information 4346 { 4347 auto NL = ApplyDebugLocation::CreateArtificial(CGF); 4348 PN->setDebugLoc(Builder.getCurrentDebugLocation()); 4349 } 4350 4351 // ZExt result to int. 4352 return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext"); 4353 } 4354 4355 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) { 4356 // Perform vector logical or on comparisons with zero vectors. 4357 if (E->getType()->isVectorType()) { 4358 CGF.incrementProfileCounter(E); 4359 4360 Value *LHS = Visit(E->getLHS()); 4361 Value *RHS = Visit(E->getRHS()); 4362 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 4363 if (LHS->getType()->isFPOrFPVectorTy()) { 4364 CodeGenFunction::CGFPOptionsRAII FPOptsRAII( 4365 CGF, E->getFPFeaturesInEffect(CGF.getLangOpts())); 4366 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 4367 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 4368 } else { 4369 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 4370 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 4371 } 4372 Value *Or = Builder.CreateOr(LHS, RHS); 4373 return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext"); 4374 } 4375 4376 bool InstrumentRegions = CGF.CGM.getCodeGenOpts().hasProfileClangInstr(); 4377 llvm::Type *ResTy = ConvertType(E->getType()); 4378 4379 // If we have 1 || RHS, see if we can elide RHS, if so, just return 1. 4380 // If we have 0 || X, just emit X without inserting the control flow. 4381 bool LHSCondVal; 4382 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 4383 if (!LHSCondVal) { // If we have 0 || X, just emit X. 4384 CGF.incrementProfileCounter(E); 4385 4386 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4387 4388 // If we're generating for profiling or coverage, generate a branch to a 4389 // block that increments the RHS counter need to track branch condition 4390 // coverage. In this case, use "FBlock" as both the final "TrueBlock" and 4391 // "FalseBlock" after the increment is done. 4392 if (InstrumentRegions && 4393 CodeGenFunction::isInstrumentedCondition(E->getRHS())) { 4394 llvm::BasicBlock *FBlock = CGF.createBasicBlock("lor.end"); 4395 llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("lor.rhscnt"); 4396 Builder.CreateCondBr(RHSCond, FBlock, RHSBlockCnt); 4397 CGF.EmitBlock(RHSBlockCnt); 4398 CGF.incrementProfileCounter(E->getRHS()); 4399 CGF.EmitBranch(FBlock); 4400 CGF.EmitBlock(FBlock); 4401 } 4402 4403 // ZExt result to int or bool. 4404 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext"); 4405 } 4406 4407 // 1 || RHS: If it is safe, just elide the RHS, and return 1/true. 4408 if (!CGF.ContainsLabel(E->getRHS())) 4409 return llvm::ConstantInt::get(ResTy, 1); 4410 } 4411 4412 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end"); 4413 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs"); 4414 4415 CodeGenFunction::ConditionalEvaluation eval(CGF); 4416 4417 // Branch on the LHS first. If it is true, go to the success (cont) block. 4418 CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock, 4419 CGF.getCurrentProfileCount() - 4420 CGF.getProfileCount(E->getRHS())); 4421 4422 // Any edges into the ContBlock are now from an (indeterminate number of) 4423 // edges from this first condition. All of these values will be true. Start 4424 // setting up the PHI node in the Cont Block for this. 4425 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 4426 "", ContBlock); 4427 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 4428 PI != PE; ++PI) 4429 PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI); 4430 4431 eval.begin(CGF); 4432 4433 // Emit the RHS condition as a bool value. 4434 CGF.EmitBlock(RHSBlock); 4435 CGF.incrementProfileCounter(E); 4436 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4437 4438 eval.end(CGF); 4439 4440 // Reaquire the RHS block, as there may be subblocks inserted. 4441 RHSBlock = Builder.GetInsertBlock(); 4442 4443 // If we're generating for profiling or coverage, generate a branch on the 4444 // RHS to a block that increments the RHS true counter needed to track branch 4445 // condition coverage. 4446 if (InstrumentRegions && 4447 CodeGenFunction::isInstrumentedCondition(E->getRHS())) { 4448 llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("lor.rhscnt"); 4449 Builder.CreateCondBr(RHSCond, ContBlock, RHSBlockCnt); 4450 CGF.EmitBlock(RHSBlockCnt); 4451 CGF.incrementProfileCounter(E->getRHS()); 4452 CGF.EmitBranch(ContBlock); 4453 PN->addIncoming(RHSCond, RHSBlockCnt); 4454 } 4455 4456 // Emit an unconditional branch from this block to ContBlock. Insert an entry 4457 // into the phi node for the edge with the value of RHSCond. 4458 CGF.EmitBlock(ContBlock); 4459 PN->addIncoming(RHSCond, RHSBlock); 4460 4461 // ZExt result to int. 4462 return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext"); 4463 } 4464 4465 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) { 4466 CGF.EmitIgnoredExpr(E->getLHS()); 4467 CGF.EnsureInsertPoint(); 4468 return Visit(E->getRHS()); 4469 } 4470 4471 //===----------------------------------------------------------------------===// 4472 // Other Operators 4473 //===----------------------------------------------------------------------===// 4474 4475 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified 4476 /// expression is cheap enough and side-effect-free enough to evaluate 4477 /// unconditionally instead of conditionally. This is used to convert control 4478 /// flow into selects in some cases. 4479 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E, 4480 CodeGenFunction &CGF) { 4481 // Anything that is an integer or floating point constant is fine. 4482 return E->IgnoreParens()->isEvaluatable(CGF.getContext()); 4483 4484 // Even non-volatile automatic variables can't be evaluated unconditionally. 4485 // Referencing a thread_local may cause non-trivial initialization work to 4486 // occur. If we're inside a lambda and one of the variables is from the scope 4487 // outside the lambda, that function may have returned already. Reading its 4488 // locals is a bad idea. Also, these reads may introduce races there didn't 4489 // exist in the source-level program. 4490 } 4491 4492 4493 Value *ScalarExprEmitter:: 4494 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 4495 TestAndClearIgnoreResultAssign(); 4496 4497 // Bind the common expression if necessary. 4498 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 4499 4500 Expr *condExpr = E->getCond(); 4501 Expr *lhsExpr = E->getTrueExpr(); 4502 Expr *rhsExpr = E->getFalseExpr(); 4503 4504 // If the condition constant folds and can be elided, try to avoid emitting 4505 // the condition and the dead arm. 4506 bool CondExprBool; 4507 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 4508 Expr *live = lhsExpr, *dead = rhsExpr; 4509 if (!CondExprBool) std::swap(live, dead); 4510 4511 // If the dead side doesn't have labels we need, just emit the Live part. 4512 if (!CGF.ContainsLabel(dead)) { 4513 if (CondExprBool) 4514 CGF.incrementProfileCounter(E); 4515 Value *Result = Visit(live); 4516 4517 // If the live part is a throw expression, it acts like it has a void 4518 // type, so evaluating it returns a null Value*. However, a conditional 4519 // with non-void type must return a non-null Value*. 4520 if (!Result && !E->getType()->isVoidType()) 4521 Result = llvm::UndefValue::get(CGF.ConvertType(E->getType())); 4522 4523 return Result; 4524 } 4525 } 4526 4527 // OpenCL: If the condition is a vector, we can treat this condition like 4528 // the select function. 4529 if ((CGF.getLangOpts().OpenCL && condExpr->getType()->isVectorType()) || 4530 condExpr->getType()->isExtVectorType()) { 4531 CGF.incrementProfileCounter(E); 4532 4533 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr); 4534 llvm::Value *LHS = Visit(lhsExpr); 4535 llvm::Value *RHS = Visit(rhsExpr); 4536 4537 llvm::Type *condType = ConvertType(condExpr->getType()); 4538 auto *vecTy = cast<llvm::FixedVectorType>(condType); 4539 4540 unsigned numElem = vecTy->getNumElements(); 4541 llvm::Type *elemType = vecTy->getElementType(); 4542 4543 llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy); 4544 llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec); 4545 llvm::Value *tmp = Builder.CreateSExt( 4546 TestMSB, llvm::FixedVectorType::get(elemType, numElem), "sext"); 4547 llvm::Value *tmp2 = Builder.CreateNot(tmp); 4548 4549 // Cast float to int to perform ANDs if necessary. 4550 llvm::Value *RHSTmp = RHS; 4551 llvm::Value *LHSTmp = LHS; 4552 bool wasCast = false; 4553 llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType()); 4554 if (rhsVTy->getElementType()->isFloatingPointTy()) { 4555 RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType()); 4556 LHSTmp = Builder.CreateBitCast(LHS, tmp->getType()); 4557 wasCast = true; 4558 } 4559 4560 llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2); 4561 llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp); 4562 llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond"); 4563 if (wasCast) 4564 tmp5 = Builder.CreateBitCast(tmp5, RHS->getType()); 4565 4566 return tmp5; 4567 } 4568 4569 if (condExpr->getType()->isVectorType()) { 4570 CGF.incrementProfileCounter(E); 4571 4572 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr); 4573 llvm::Value *LHS = Visit(lhsExpr); 4574 llvm::Value *RHS = Visit(rhsExpr); 4575 4576 llvm::Type *CondType = ConvertType(condExpr->getType()); 4577 auto *VecTy = cast<llvm::VectorType>(CondType); 4578 llvm::Value *ZeroVec = llvm::Constant::getNullValue(VecTy); 4579 4580 CondV = Builder.CreateICmpNE(CondV, ZeroVec, "vector_cond"); 4581 return Builder.CreateSelect(CondV, LHS, RHS, "vector_select"); 4582 } 4583 4584 // If this is a really simple expression (like x ? 4 : 5), emit this as a 4585 // select instead of as control flow. We can only do this if it is cheap and 4586 // safe to evaluate the LHS and RHS unconditionally. 4587 if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) && 4588 isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) { 4589 llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr); 4590 llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty); 4591 4592 CGF.incrementProfileCounter(E, StepV); 4593 4594 llvm::Value *LHS = Visit(lhsExpr); 4595 llvm::Value *RHS = Visit(rhsExpr); 4596 if (!LHS) { 4597 // If the conditional has void type, make sure we return a null Value*. 4598 assert(!RHS && "LHS and RHS types must match"); 4599 return nullptr; 4600 } 4601 return Builder.CreateSelect(CondV, LHS, RHS, "cond"); 4602 } 4603 4604 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 4605 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 4606 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 4607 4608 CodeGenFunction::ConditionalEvaluation eval(CGF); 4609 CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock, 4610 CGF.getProfileCount(lhsExpr)); 4611 4612 CGF.EmitBlock(LHSBlock); 4613 CGF.incrementProfileCounter(E); 4614 eval.begin(CGF); 4615 Value *LHS = Visit(lhsExpr); 4616 eval.end(CGF); 4617 4618 LHSBlock = Builder.GetInsertBlock(); 4619 Builder.CreateBr(ContBlock); 4620 4621 CGF.EmitBlock(RHSBlock); 4622 eval.begin(CGF); 4623 Value *RHS = Visit(rhsExpr); 4624 eval.end(CGF); 4625 4626 RHSBlock = Builder.GetInsertBlock(); 4627 CGF.EmitBlock(ContBlock); 4628 4629 // If the LHS or RHS is a throw expression, it will be legitimately null. 4630 if (!LHS) 4631 return RHS; 4632 if (!RHS) 4633 return LHS; 4634 4635 // Create a PHI node for the real part. 4636 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond"); 4637 PN->addIncoming(LHS, LHSBlock); 4638 PN->addIncoming(RHS, RHSBlock); 4639 return PN; 4640 } 4641 4642 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) { 4643 return Visit(E->getChosenSubExpr()); 4644 } 4645 4646 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 4647 QualType Ty = VE->getType(); 4648 4649 if (Ty->isVariablyModifiedType()) 4650 CGF.EmitVariablyModifiedType(Ty); 4651 4652 Address ArgValue = Address::invalid(); 4653 Address ArgPtr = CGF.EmitVAArg(VE, ArgValue); 4654 4655 llvm::Type *ArgTy = ConvertType(VE->getType()); 4656 4657 // If EmitVAArg fails, emit an error. 4658 if (!ArgPtr.isValid()) { 4659 CGF.ErrorUnsupported(VE, "va_arg expression"); 4660 return llvm::UndefValue::get(ArgTy); 4661 } 4662 4663 // FIXME Volatility. 4664 llvm::Value *Val = Builder.CreateLoad(ArgPtr); 4665 4666 // If EmitVAArg promoted the type, we must truncate it. 4667 if (ArgTy != Val->getType()) { 4668 if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy()) 4669 Val = Builder.CreateIntToPtr(Val, ArgTy); 4670 else 4671 Val = Builder.CreateTrunc(Val, ArgTy); 4672 } 4673 4674 return Val; 4675 } 4676 4677 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) { 4678 return CGF.EmitBlockLiteral(block); 4679 } 4680 4681 // Convert a vec3 to vec4, or vice versa. 4682 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF, 4683 Value *Src, unsigned NumElementsDst) { 4684 static constexpr int Mask[] = {0, 1, 2, -1}; 4685 return Builder.CreateShuffleVector(Src, 4686 llvm::makeArrayRef(Mask, NumElementsDst)); 4687 } 4688 4689 // Create cast instructions for converting LLVM value \p Src to LLVM type \p 4690 // DstTy. \p Src has the same size as \p DstTy. Both are single value types 4691 // but could be scalar or vectors of different lengths, and either can be 4692 // pointer. 4693 // There are 4 cases: 4694 // 1. non-pointer -> non-pointer : needs 1 bitcast 4695 // 2. pointer -> pointer : needs 1 bitcast or addrspacecast 4696 // 3. pointer -> non-pointer 4697 // a) pointer -> intptr_t : needs 1 ptrtoint 4698 // b) pointer -> non-intptr_t : needs 1 ptrtoint then 1 bitcast 4699 // 4. non-pointer -> pointer 4700 // a) intptr_t -> pointer : needs 1 inttoptr 4701 // b) non-intptr_t -> pointer : needs 1 bitcast then 1 inttoptr 4702 // Note: for cases 3b and 4b two casts are required since LLVM casts do not 4703 // allow casting directly between pointer types and non-integer non-pointer 4704 // types. 4705 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder, 4706 const llvm::DataLayout &DL, 4707 Value *Src, llvm::Type *DstTy, 4708 StringRef Name = "") { 4709 auto SrcTy = Src->getType(); 4710 4711 // Case 1. 4712 if (!SrcTy->isPointerTy() && !DstTy->isPointerTy()) 4713 return Builder.CreateBitCast(Src, DstTy, Name); 4714 4715 // Case 2. 4716 if (SrcTy->isPointerTy() && DstTy->isPointerTy()) 4717 return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name); 4718 4719 // Case 3. 4720 if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) { 4721 // Case 3b. 4722 if (!DstTy->isIntegerTy()) 4723 Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy)); 4724 // Cases 3a and 3b. 4725 return Builder.CreateBitOrPointerCast(Src, DstTy, Name); 4726 } 4727 4728 // Case 4b. 4729 if (!SrcTy->isIntegerTy()) 4730 Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy)); 4731 // Cases 4a and 4b. 4732 return Builder.CreateIntToPtr(Src, DstTy, Name); 4733 } 4734 4735 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) { 4736 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 4737 llvm::Type *DstTy = ConvertType(E->getType()); 4738 4739 llvm::Type *SrcTy = Src->getType(); 4740 unsigned NumElementsSrc = 4741 isa<llvm::VectorType>(SrcTy) 4742 ? cast<llvm::FixedVectorType>(SrcTy)->getNumElements() 4743 : 0; 4744 unsigned NumElementsDst = 4745 isa<llvm::VectorType>(DstTy) 4746 ? cast<llvm::FixedVectorType>(DstTy)->getNumElements() 4747 : 0; 4748 4749 // Going from vec3 to non-vec3 is a special case and requires a shuffle 4750 // vector to get a vec4, then a bitcast if the target type is different. 4751 if (NumElementsSrc == 3 && NumElementsDst != 3) { 4752 Src = ConvertVec3AndVec4(Builder, CGF, Src, 4); 4753 4754 if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) { 4755 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src, 4756 DstTy); 4757 } 4758 4759 Src->setName("astype"); 4760 return Src; 4761 } 4762 4763 // Going from non-vec3 to vec3 is a special case and requires a bitcast 4764 // to vec4 if the original type is not vec4, then a shuffle vector to 4765 // get a vec3. 4766 if (NumElementsSrc != 3 && NumElementsDst == 3) { 4767 if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) { 4768 auto *Vec4Ty = llvm::FixedVectorType::get( 4769 cast<llvm::VectorType>(DstTy)->getElementType(), 4); 4770 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src, 4771 Vec4Ty); 4772 } 4773 4774 Src = ConvertVec3AndVec4(Builder, CGF, Src, 3); 4775 Src->setName("astype"); 4776 return Src; 4777 } 4778 4779 return createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), 4780 Src, DstTy, "astype"); 4781 } 4782 4783 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) { 4784 return CGF.EmitAtomicExpr(E).getScalarVal(); 4785 } 4786 4787 //===----------------------------------------------------------------------===// 4788 // Entry Point into this File 4789 //===----------------------------------------------------------------------===// 4790 4791 /// Emit the computation of the specified expression of scalar type, ignoring 4792 /// the result. 4793 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) { 4794 assert(E && hasScalarEvaluationKind(E->getType()) && 4795 "Invalid scalar expression to emit"); 4796 4797 return ScalarExprEmitter(*this, IgnoreResultAssign) 4798 .Visit(const_cast<Expr *>(E)); 4799 } 4800 4801 /// Emit a conversion from the specified type to the specified destination type, 4802 /// both of which are LLVM scalar types. 4803 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy, 4804 QualType DstTy, 4805 SourceLocation Loc) { 4806 assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) && 4807 "Invalid scalar expression to emit"); 4808 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc); 4809 } 4810 4811 /// Emit a conversion from the specified complex type to the specified 4812 /// destination type, where the destination type is an LLVM scalar type. 4813 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src, 4814 QualType SrcTy, 4815 QualType DstTy, 4816 SourceLocation Loc) { 4817 assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) && 4818 "Invalid complex -> scalar conversion"); 4819 return ScalarExprEmitter(*this) 4820 .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc); 4821 } 4822 4823 4824 llvm::Value *CodeGenFunction:: 4825 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 4826 bool isInc, bool isPre) { 4827 return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre); 4828 } 4829 4830 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) { 4831 // object->isa or (*object).isa 4832 // Generate code as for: *(Class*)object 4833 4834 Expr *BaseExpr = E->getBase(); 4835 Address Addr = Address::invalid(); 4836 if (BaseExpr->isRValue()) { 4837 Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign()); 4838 } else { 4839 Addr = EmitLValue(BaseExpr).getAddress(*this); 4840 } 4841 4842 // Cast the address to Class*. 4843 Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType())); 4844 return MakeAddrLValue(Addr, E->getType()); 4845 } 4846 4847 4848 LValue CodeGenFunction::EmitCompoundAssignmentLValue( 4849 const CompoundAssignOperator *E) { 4850 ScalarExprEmitter Scalar(*this); 4851 Value *Result = nullptr; 4852 switch (E->getOpcode()) { 4853 #define COMPOUND_OP(Op) \ 4854 case BO_##Op##Assign: \ 4855 return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \ 4856 Result) 4857 COMPOUND_OP(Mul); 4858 COMPOUND_OP(Div); 4859 COMPOUND_OP(Rem); 4860 COMPOUND_OP(Add); 4861 COMPOUND_OP(Sub); 4862 COMPOUND_OP(Shl); 4863 COMPOUND_OP(Shr); 4864 COMPOUND_OP(And); 4865 COMPOUND_OP(Xor); 4866 COMPOUND_OP(Or); 4867 #undef COMPOUND_OP 4868 4869 case BO_PtrMemD: 4870 case BO_PtrMemI: 4871 case BO_Mul: 4872 case BO_Div: 4873 case BO_Rem: 4874 case BO_Add: 4875 case BO_Sub: 4876 case BO_Shl: 4877 case BO_Shr: 4878 case BO_LT: 4879 case BO_GT: 4880 case BO_LE: 4881 case BO_GE: 4882 case BO_EQ: 4883 case BO_NE: 4884 case BO_Cmp: 4885 case BO_And: 4886 case BO_Xor: 4887 case BO_Or: 4888 case BO_LAnd: 4889 case BO_LOr: 4890 case BO_Assign: 4891 case BO_Comma: 4892 llvm_unreachable("Not valid compound assignment operators"); 4893 } 4894 4895 llvm_unreachable("Unhandled compound assignment operator"); 4896 } 4897 4898 struct GEPOffsetAndOverflow { 4899 // The total (signed) byte offset for the GEP. 4900 llvm::Value *TotalOffset; 4901 // The offset overflow flag - true if the total offset overflows. 4902 llvm::Value *OffsetOverflows; 4903 }; 4904 4905 /// Evaluate given GEPVal, which is either an inbounds GEP, or a constant, 4906 /// and compute the total offset it applies from it's base pointer BasePtr. 4907 /// Returns offset in bytes and a boolean flag whether an overflow happened 4908 /// during evaluation. 4909 static GEPOffsetAndOverflow EmitGEPOffsetInBytes(Value *BasePtr, Value *GEPVal, 4910 llvm::LLVMContext &VMContext, 4911 CodeGenModule &CGM, 4912 CGBuilderTy &Builder) { 4913 const auto &DL = CGM.getDataLayout(); 4914 4915 // The total (signed) byte offset for the GEP. 4916 llvm::Value *TotalOffset = nullptr; 4917 4918 // Was the GEP already reduced to a constant? 4919 if (isa<llvm::Constant>(GEPVal)) { 4920 // Compute the offset by casting both pointers to integers and subtracting: 4921 // GEPVal = BasePtr + ptr(Offset) <--> Offset = int(GEPVal) - int(BasePtr) 4922 Value *BasePtr_int = 4923 Builder.CreatePtrToInt(BasePtr, DL.getIntPtrType(BasePtr->getType())); 4924 Value *GEPVal_int = 4925 Builder.CreatePtrToInt(GEPVal, DL.getIntPtrType(GEPVal->getType())); 4926 TotalOffset = Builder.CreateSub(GEPVal_int, BasePtr_int); 4927 return {TotalOffset, /*OffsetOverflows=*/Builder.getFalse()}; 4928 } 4929 4930 auto *GEP = cast<llvm::GEPOperator>(GEPVal); 4931 assert(GEP->getPointerOperand() == BasePtr && 4932 "BasePtr must be the the base of the GEP."); 4933 assert(GEP->isInBounds() && "Expected inbounds GEP"); 4934 4935 auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType()); 4936 4937 // Grab references to the signed add/mul overflow intrinsics for intptr_t. 4938 auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy); 4939 auto *SAddIntrinsic = 4940 CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy); 4941 auto *SMulIntrinsic = 4942 CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy); 4943 4944 // The offset overflow flag - true if the total offset overflows. 4945 llvm::Value *OffsetOverflows = Builder.getFalse(); 4946 4947 /// Return the result of the given binary operation. 4948 auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS, 4949 llvm::Value *RHS) -> llvm::Value * { 4950 assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop"); 4951 4952 // If the operands are constants, return a constant result. 4953 if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) { 4954 if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) { 4955 llvm::APInt N; 4956 bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode, 4957 /*Signed=*/true, N); 4958 if (HasOverflow) 4959 OffsetOverflows = Builder.getTrue(); 4960 return llvm::ConstantInt::get(VMContext, N); 4961 } 4962 } 4963 4964 // Otherwise, compute the result with checked arithmetic. 4965 auto *ResultAndOverflow = Builder.CreateCall( 4966 (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS}); 4967 OffsetOverflows = Builder.CreateOr( 4968 Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows); 4969 return Builder.CreateExtractValue(ResultAndOverflow, 0); 4970 }; 4971 4972 // Determine the total byte offset by looking at each GEP operand. 4973 for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP); 4974 GTI != GTE; ++GTI) { 4975 llvm::Value *LocalOffset; 4976 auto *Index = GTI.getOperand(); 4977 // Compute the local offset contributed by this indexing step: 4978 if (auto *STy = GTI.getStructTypeOrNull()) { 4979 // For struct indexing, the local offset is the byte position of the 4980 // specified field. 4981 unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue(); 4982 LocalOffset = llvm::ConstantInt::get( 4983 IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo)); 4984 } else { 4985 // Otherwise this is array-like indexing. The local offset is the index 4986 // multiplied by the element size. 4987 auto *ElementSize = llvm::ConstantInt::get( 4988 IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType())); 4989 auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true); 4990 LocalOffset = eval(BO_Mul, ElementSize, IndexS); 4991 } 4992 4993 // If this is the first offset, set it as the total offset. Otherwise, add 4994 // the local offset into the running total. 4995 if (!TotalOffset || TotalOffset == Zero) 4996 TotalOffset = LocalOffset; 4997 else 4998 TotalOffset = eval(BO_Add, TotalOffset, LocalOffset); 4999 } 5000 5001 return {TotalOffset, OffsetOverflows}; 5002 } 5003 5004 Value * 5005 CodeGenFunction::EmitCheckedInBoundsGEP(Value *Ptr, ArrayRef<Value *> IdxList, 5006 bool SignedIndices, bool IsSubtraction, 5007 SourceLocation Loc, const Twine &Name) { 5008 Value *GEPVal = Builder.CreateInBoundsGEP(Ptr, IdxList, Name); 5009 5010 // If the pointer overflow sanitizer isn't enabled, do nothing. 5011 if (!SanOpts.has(SanitizerKind::PointerOverflow)) 5012 return GEPVal; 5013 5014 llvm::Type *PtrTy = Ptr->getType(); 5015 5016 // Perform nullptr-and-offset check unless the nullptr is defined. 5017 bool PerformNullCheck = !NullPointerIsDefined( 5018 Builder.GetInsertBlock()->getParent(), PtrTy->getPointerAddressSpace()); 5019 // Check for overflows unless the GEP got constant-folded, 5020 // and only in the default address space 5021 bool PerformOverflowCheck = 5022 !isa<llvm::Constant>(GEPVal) && PtrTy->getPointerAddressSpace() == 0; 5023 5024 if (!(PerformNullCheck || PerformOverflowCheck)) 5025 return GEPVal; 5026 5027 const auto &DL = CGM.getDataLayout(); 5028 5029 SanitizerScope SanScope(this); 5030 llvm::Type *IntPtrTy = DL.getIntPtrType(PtrTy); 5031 5032 GEPOffsetAndOverflow EvaluatedGEP = 5033 EmitGEPOffsetInBytes(Ptr, GEPVal, getLLVMContext(), CGM, Builder); 5034 5035 assert((!isa<llvm::Constant>(EvaluatedGEP.TotalOffset) || 5036 EvaluatedGEP.OffsetOverflows == Builder.getFalse()) && 5037 "If the offset got constant-folded, we don't expect that there was an " 5038 "overflow."); 5039 5040 auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy); 5041 5042 // Common case: if the total offset is zero, and we are using C++ semantics, 5043 // where nullptr+0 is defined, don't emit a check. 5044 if (EvaluatedGEP.TotalOffset == Zero && CGM.getLangOpts().CPlusPlus) 5045 return GEPVal; 5046 5047 // Now that we've computed the total offset, add it to the base pointer (with 5048 // wrapping semantics). 5049 auto *IntPtr = Builder.CreatePtrToInt(Ptr, IntPtrTy); 5050 auto *ComputedGEP = Builder.CreateAdd(IntPtr, EvaluatedGEP.TotalOffset); 5051 5052 llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 5053 5054 if (PerformNullCheck) { 5055 // In C++, if the base pointer evaluates to a null pointer value, 5056 // the only valid pointer this inbounds GEP can produce is also 5057 // a null pointer, so the offset must also evaluate to zero. 5058 // Likewise, if we have non-zero base pointer, we can not get null pointer 5059 // as a result, so the offset can not be -intptr_t(BasePtr). 5060 // In other words, both pointers are either null, or both are non-null, 5061 // or the behaviour is undefined. 5062 // 5063 // C, however, is more strict in this regard, and gives more 5064 // optimization opportunities: in C, additionally, nullptr+0 is undefined. 5065 // So both the input to the 'gep inbounds' AND the output must not be null. 5066 auto *BaseIsNotNullptr = Builder.CreateIsNotNull(Ptr); 5067 auto *ResultIsNotNullptr = Builder.CreateIsNotNull(ComputedGEP); 5068 auto *Valid = 5069 CGM.getLangOpts().CPlusPlus 5070 ? Builder.CreateICmpEQ(BaseIsNotNullptr, ResultIsNotNullptr) 5071 : Builder.CreateAnd(BaseIsNotNullptr, ResultIsNotNullptr); 5072 Checks.emplace_back(Valid, SanitizerKind::PointerOverflow); 5073 } 5074 5075 if (PerformOverflowCheck) { 5076 // The GEP is valid if: 5077 // 1) The total offset doesn't overflow, and 5078 // 2) The sign of the difference between the computed address and the base 5079 // pointer matches the sign of the total offset. 5080 llvm::Value *ValidGEP; 5081 auto *NoOffsetOverflow = Builder.CreateNot(EvaluatedGEP.OffsetOverflows); 5082 if (SignedIndices) { 5083 // GEP is computed as `unsigned base + signed offset`, therefore: 5084 // * If offset was positive, then the computed pointer can not be 5085 // [unsigned] less than the base pointer, unless it overflowed. 5086 // * If offset was negative, then the computed pointer can not be 5087 // [unsigned] greater than the bas pointere, unless it overflowed. 5088 auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr); 5089 auto *PosOrZeroOffset = 5090 Builder.CreateICmpSGE(EvaluatedGEP.TotalOffset, Zero); 5091 llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr); 5092 ValidGEP = 5093 Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid); 5094 } else if (!IsSubtraction) { 5095 // GEP is computed as `unsigned base + unsigned offset`, therefore the 5096 // computed pointer can not be [unsigned] less than base pointer, 5097 // unless there was an overflow. 5098 // Equivalent to `@llvm.uadd.with.overflow(%base, %offset)`. 5099 ValidGEP = Builder.CreateICmpUGE(ComputedGEP, IntPtr); 5100 } else { 5101 // GEP is computed as `unsigned base - unsigned offset`, therefore the 5102 // computed pointer can not be [unsigned] greater than base pointer, 5103 // unless there was an overflow. 5104 // Equivalent to `@llvm.usub.with.overflow(%base, sub(0, %offset))`. 5105 ValidGEP = Builder.CreateICmpULE(ComputedGEP, IntPtr); 5106 } 5107 ValidGEP = Builder.CreateAnd(ValidGEP, NoOffsetOverflow); 5108 Checks.emplace_back(ValidGEP, SanitizerKind::PointerOverflow); 5109 } 5110 5111 assert(!Checks.empty() && "Should have produced some checks."); 5112 5113 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)}; 5114 // Pass the computed GEP to the runtime to avoid emitting poisoned arguments. 5115 llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP}; 5116 EmitCheck(Checks, SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs); 5117 5118 return GEPVal; 5119 } 5120