1 //===----- CGCUDANV.cpp - Interface to NVIDIA CUDA Runtime ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This provides a class for CUDA code generation targeting the NVIDIA CUDA 10 // runtime library. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCUDARuntime.h" 15 #include "CGCXXABI.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenModule.h" 18 #include "clang/AST/Decl.h" 19 #include "clang/Basic/Cuda.h" 20 #include "clang/CodeGen/CodeGenABITypes.h" 21 #include "clang/CodeGen/ConstantInitBuilder.h" 22 #include "llvm/IR/BasicBlock.h" 23 #include "llvm/IR/Constants.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/ReplaceConstant.h" 26 #include "llvm/Support/Format.h" 27 28 using namespace clang; 29 using namespace CodeGen; 30 31 namespace { 32 constexpr unsigned CudaFatMagic = 0x466243b1; 33 constexpr unsigned HIPFatMagic = 0x48495046; // "HIPF" 34 35 class CGNVCUDARuntime : public CGCUDARuntime { 36 37 private: 38 llvm::IntegerType *IntTy, *SizeTy; 39 llvm::Type *VoidTy; 40 llvm::PointerType *CharPtrTy, *VoidPtrTy, *VoidPtrPtrTy; 41 42 /// Convenience reference to LLVM Context 43 llvm::LLVMContext &Context; 44 /// Convenience reference to the current module 45 llvm::Module &TheModule; 46 /// Keeps track of kernel launch stubs and handles emitted in this module 47 struct KernelInfo { 48 llvm::Function *Kernel; // stub function to help launch kernel 49 const Decl *D; 50 }; 51 llvm::SmallVector<KernelInfo, 16> EmittedKernels; 52 // Map a device stub function to a symbol for identifying kernel in host code. 53 // For CUDA, the symbol for identifying the kernel is the same as the device 54 // stub function. For HIP, they are different. 55 llvm::DenseMap<llvm::Function *, llvm::GlobalValue *> KernelHandles; 56 // Map a kernel handle to the kernel stub. 57 llvm::DenseMap<llvm::GlobalValue *, llvm::Function *> KernelStubs; 58 struct VarInfo { 59 llvm::GlobalVariable *Var; 60 const VarDecl *D; 61 DeviceVarFlags Flags; 62 }; 63 llvm::SmallVector<VarInfo, 16> DeviceVars; 64 /// Keeps track of variable containing handle of GPU binary. Populated by 65 /// ModuleCtorFunction() and used to create corresponding cleanup calls in 66 /// ModuleDtorFunction() 67 llvm::GlobalVariable *GpuBinaryHandle = nullptr; 68 /// Whether we generate relocatable device code. 69 bool RelocatableDeviceCode; 70 /// Mangle context for device. 71 std::unique_ptr<MangleContext> DeviceMC; 72 73 llvm::FunctionCallee getSetupArgumentFn() const; 74 llvm::FunctionCallee getLaunchFn() const; 75 76 llvm::FunctionType *getRegisterGlobalsFnTy() const; 77 llvm::FunctionType *getCallbackFnTy() const; 78 llvm::FunctionType *getRegisterLinkedBinaryFnTy() const; 79 std::string addPrefixToName(StringRef FuncName) const; 80 std::string addUnderscoredPrefixToName(StringRef FuncName) const; 81 82 /// Creates a function to register all kernel stubs generated in this module. 83 llvm::Function *makeRegisterGlobalsFn(); 84 85 /// Helper function that generates a constant string and returns a pointer to 86 /// the start of the string. The result of this function can be used anywhere 87 /// where the C code specifies const char*. 88 llvm::Constant *makeConstantString(const std::string &Str, 89 const std::string &Name = "", 90 const std::string &SectionName = "", 91 unsigned Alignment = 0) { 92 llvm::Constant *Zeros[] = {llvm::ConstantInt::get(SizeTy, 0), 93 llvm::ConstantInt::get(SizeTy, 0)}; 94 auto ConstStr = CGM.GetAddrOfConstantCString(Str, Name.c_str()); 95 llvm::GlobalVariable *GV = 96 cast<llvm::GlobalVariable>(ConstStr.getPointer()); 97 if (!SectionName.empty()) { 98 GV->setSection(SectionName); 99 // Mark the address as used which make sure that this section isn't 100 // merged and we will really have it in the object file. 101 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::None); 102 } 103 if (Alignment) 104 GV->setAlignment(llvm::Align(Alignment)); 105 106 return llvm::ConstantExpr::getGetElementPtr(ConstStr.getElementType(), 107 ConstStr.getPointer(), Zeros); 108 } 109 110 /// Helper function that generates an empty dummy function returning void. 111 llvm::Function *makeDummyFunction(llvm::FunctionType *FnTy) { 112 assert(FnTy->getReturnType()->isVoidTy() && 113 "Can only generate dummy functions returning void!"); 114 llvm::Function *DummyFunc = llvm::Function::Create( 115 FnTy, llvm::GlobalValue::InternalLinkage, "dummy", &TheModule); 116 117 llvm::BasicBlock *DummyBlock = 118 llvm::BasicBlock::Create(Context, "", DummyFunc); 119 CGBuilderTy FuncBuilder(CGM, Context); 120 FuncBuilder.SetInsertPoint(DummyBlock); 121 FuncBuilder.CreateRetVoid(); 122 123 return DummyFunc; 124 } 125 126 void emitDeviceStubBodyLegacy(CodeGenFunction &CGF, FunctionArgList &Args); 127 void emitDeviceStubBodyNew(CodeGenFunction &CGF, FunctionArgList &Args); 128 std::string getDeviceSideName(const NamedDecl *ND) override; 129 130 void registerDeviceVar(const VarDecl *VD, llvm::GlobalVariable &Var, 131 bool Extern, bool Constant) { 132 DeviceVars.push_back({&Var, 133 VD, 134 {DeviceVarFlags::Variable, Extern, Constant, 135 VD->hasAttr<HIPManagedAttr>(), 136 /*Normalized*/ false, 0}}); 137 } 138 void registerDeviceSurf(const VarDecl *VD, llvm::GlobalVariable &Var, 139 bool Extern, int Type) { 140 DeviceVars.push_back({&Var, 141 VD, 142 {DeviceVarFlags::Surface, Extern, /*Constant*/ false, 143 /*Managed*/ false, 144 /*Normalized*/ false, Type}}); 145 } 146 void registerDeviceTex(const VarDecl *VD, llvm::GlobalVariable &Var, 147 bool Extern, int Type, bool Normalized) { 148 DeviceVars.push_back({&Var, 149 VD, 150 {DeviceVarFlags::Texture, Extern, /*Constant*/ false, 151 /*Managed*/ false, Normalized, Type}}); 152 } 153 154 /// Creates module constructor function 155 llvm::Function *makeModuleCtorFunction(); 156 /// Creates module destructor function 157 llvm::Function *makeModuleDtorFunction(); 158 /// Transform managed variables for device compilation. 159 void transformManagedVars(); 160 161 public: 162 CGNVCUDARuntime(CodeGenModule &CGM); 163 164 llvm::GlobalValue *getKernelHandle(llvm::Function *F, GlobalDecl GD) override; 165 llvm::Function *getKernelStub(llvm::GlobalValue *Handle) override { 166 auto Loc = KernelStubs.find(Handle); 167 assert(Loc != KernelStubs.end()); 168 return Loc->second; 169 } 170 void emitDeviceStub(CodeGenFunction &CGF, FunctionArgList &Args) override; 171 void handleVarRegistration(const VarDecl *VD, 172 llvm::GlobalVariable &Var) override; 173 void 174 internalizeDeviceSideVar(const VarDecl *D, 175 llvm::GlobalValue::LinkageTypes &Linkage) override; 176 177 llvm::Function *finalizeModule() override; 178 }; 179 180 } 181 182 std::string CGNVCUDARuntime::addPrefixToName(StringRef FuncName) const { 183 if (CGM.getLangOpts().HIP) 184 return ((Twine("hip") + Twine(FuncName)).str()); 185 return ((Twine("cuda") + Twine(FuncName)).str()); 186 } 187 std::string 188 CGNVCUDARuntime::addUnderscoredPrefixToName(StringRef FuncName) const { 189 if (CGM.getLangOpts().HIP) 190 return ((Twine("__hip") + Twine(FuncName)).str()); 191 return ((Twine("__cuda") + Twine(FuncName)).str()); 192 } 193 194 CGNVCUDARuntime::CGNVCUDARuntime(CodeGenModule &CGM) 195 : CGCUDARuntime(CGM), Context(CGM.getLLVMContext()), 196 TheModule(CGM.getModule()), 197 RelocatableDeviceCode(CGM.getLangOpts().GPURelocatableDeviceCode), 198 DeviceMC(CGM.getContext().createMangleContext( 199 CGM.getContext().getAuxTargetInfo())) { 200 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 201 ASTContext &Ctx = CGM.getContext(); 202 203 IntTy = CGM.IntTy; 204 SizeTy = CGM.SizeTy; 205 VoidTy = CGM.VoidTy; 206 207 CharPtrTy = llvm::PointerType::getUnqual(Types.ConvertType(Ctx.CharTy)); 208 VoidPtrTy = cast<llvm::PointerType>(Types.ConvertType(Ctx.VoidPtrTy)); 209 VoidPtrPtrTy = VoidPtrTy->getPointerTo(); 210 if (CGM.getContext().getAuxTargetInfo()) { 211 // If the host and device have different C++ ABIs, mark it as the device 212 // mangle context so that the mangling needs to retrieve the additonal 213 // device lambda mangling number instead of the regular host one. 214 DeviceMC->setDeviceMangleContext( 215 CGM.getContext().getTargetInfo().getCXXABI().isMicrosoft() && 216 CGM.getContext().getAuxTargetInfo()->getCXXABI().isItaniumFamily()); 217 } 218 } 219 220 llvm::FunctionCallee CGNVCUDARuntime::getSetupArgumentFn() const { 221 // cudaError_t cudaSetupArgument(void *, size_t, size_t) 222 llvm::Type *Params[] = {VoidPtrTy, SizeTy, SizeTy}; 223 return CGM.CreateRuntimeFunction( 224 llvm::FunctionType::get(IntTy, Params, false), 225 addPrefixToName("SetupArgument")); 226 } 227 228 llvm::FunctionCallee CGNVCUDARuntime::getLaunchFn() const { 229 if (CGM.getLangOpts().HIP) { 230 // hipError_t hipLaunchByPtr(char *); 231 return CGM.CreateRuntimeFunction( 232 llvm::FunctionType::get(IntTy, CharPtrTy, false), "hipLaunchByPtr"); 233 } else { 234 // cudaError_t cudaLaunch(char *); 235 return CGM.CreateRuntimeFunction( 236 llvm::FunctionType::get(IntTy, CharPtrTy, false), "cudaLaunch"); 237 } 238 } 239 240 llvm::FunctionType *CGNVCUDARuntime::getRegisterGlobalsFnTy() const { 241 return llvm::FunctionType::get(VoidTy, VoidPtrPtrTy, false); 242 } 243 244 llvm::FunctionType *CGNVCUDARuntime::getCallbackFnTy() const { 245 return llvm::FunctionType::get(VoidTy, VoidPtrTy, false); 246 } 247 248 llvm::FunctionType *CGNVCUDARuntime::getRegisterLinkedBinaryFnTy() const { 249 auto CallbackFnTy = getCallbackFnTy(); 250 auto RegisterGlobalsFnTy = getRegisterGlobalsFnTy(); 251 llvm::Type *Params[] = {RegisterGlobalsFnTy->getPointerTo(), VoidPtrTy, 252 VoidPtrTy, CallbackFnTy->getPointerTo()}; 253 return llvm::FunctionType::get(VoidTy, Params, false); 254 } 255 256 std::string CGNVCUDARuntime::getDeviceSideName(const NamedDecl *ND) { 257 GlobalDecl GD; 258 // D could be either a kernel or a variable. 259 if (auto *FD = dyn_cast<FunctionDecl>(ND)) 260 GD = GlobalDecl(FD, KernelReferenceKind::Kernel); 261 else 262 GD = GlobalDecl(ND); 263 std::string DeviceSideName; 264 MangleContext *MC; 265 if (CGM.getLangOpts().CUDAIsDevice) 266 MC = &CGM.getCXXABI().getMangleContext(); 267 else 268 MC = DeviceMC.get(); 269 if (MC->shouldMangleDeclName(ND)) { 270 SmallString<256> Buffer; 271 llvm::raw_svector_ostream Out(Buffer); 272 MC->mangleName(GD, Out); 273 DeviceSideName = std::string(Out.str()); 274 } else 275 DeviceSideName = std::string(ND->getIdentifier()->getName()); 276 277 // Make unique name for device side static file-scope variable for HIP. 278 if (CGM.getContext().shouldExternalizeStaticVar(ND) && 279 CGM.getLangOpts().GPURelocatableDeviceCode && 280 !CGM.getLangOpts().CUID.empty()) { 281 SmallString<256> Buffer; 282 llvm::raw_svector_ostream Out(Buffer); 283 Out << DeviceSideName; 284 CGM.printPostfixForExternalizedStaticVar(Out); 285 DeviceSideName = std::string(Out.str()); 286 } 287 return DeviceSideName; 288 } 289 290 void CGNVCUDARuntime::emitDeviceStub(CodeGenFunction &CGF, 291 FunctionArgList &Args) { 292 EmittedKernels.push_back({CGF.CurFn, CGF.CurFuncDecl}); 293 if (auto *GV = dyn_cast<llvm::GlobalVariable>(KernelHandles[CGF.CurFn])) { 294 GV->setLinkage(CGF.CurFn->getLinkage()); 295 GV->setInitializer(CGF.CurFn); 296 } 297 if (CudaFeatureEnabled(CGM.getTarget().getSDKVersion(), 298 CudaFeature::CUDA_USES_NEW_LAUNCH) || 299 (CGF.getLangOpts().HIP && CGF.getLangOpts().HIPUseNewLaunchAPI)) 300 emitDeviceStubBodyNew(CGF, Args); 301 else 302 emitDeviceStubBodyLegacy(CGF, Args); 303 } 304 305 // CUDA 9.0+ uses new way to launch kernels. Parameters are packed in a local 306 // array and kernels are launched using cudaLaunchKernel(). 307 void CGNVCUDARuntime::emitDeviceStubBodyNew(CodeGenFunction &CGF, 308 FunctionArgList &Args) { 309 // Build the shadow stack entry at the very start of the function. 310 311 // Calculate amount of space we will need for all arguments. If we have no 312 // args, allocate a single pointer so we still have a valid pointer to the 313 // argument array that we can pass to runtime, even if it will be unused. 314 Address KernelArgs = CGF.CreateTempAlloca( 315 VoidPtrTy, CharUnits::fromQuantity(16), "kernel_args", 316 llvm::ConstantInt::get(SizeTy, std::max<size_t>(1, Args.size()))); 317 // Store pointers to the arguments in a locally allocated launch_args. 318 for (unsigned i = 0; i < Args.size(); ++i) { 319 llvm::Value* VarPtr = CGF.GetAddrOfLocalVar(Args[i]).getPointer(); 320 llvm::Value *VoidVarPtr = CGF.Builder.CreatePointerCast(VarPtr, VoidPtrTy); 321 CGF.Builder.CreateDefaultAlignedStore( 322 VoidVarPtr, CGF.Builder.CreateConstGEP1_32(KernelArgs.getPointer(), i)); 323 } 324 325 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("setup.end"); 326 327 // Lookup cudaLaunchKernel/hipLaunchKernel function. 328 // cudaError_t cudaLaunchKernel(const void *func, dim3 gridDim, dim3 blockDim, 329 // void **args, size_t sharedMem, 330 // cudaStream_t stream); 331 // hipError_t hipLaunchKernel(const void *func, dim3 gridDim, dim3 blockDim, 332 // void **args, size_t sharedMem, 333 // hipStream_t stream); 334 TranslationUnitDecl *TUDecl = CGM.getContext().getTranslationUnitDecl(); 335 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 336 auto LaunchKernelName = addPrefixToName("LaunchKernel"); 337 IdentifierInfo &cudaLaunchKernelII = 338 CGM.getContext().Idents.get(LaunchKernelName); 339 FunctionDecl *cudaLaunchKernelFD = nullptr; 340 for (auto *Result : DC->lookup(&cudaLaunchKernelII)) { 341 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Result)) 342 cudaLaunchKernelFD = FD; 343 } 344 345 if (cudaLaunchKernelFD == nullptr) { 346 CGM.Error(CGF.CurFuncDecl->getLocation(), 347 "Can't find declaration for " + LaunchKernelName); 348 return; 349 } 350 // Create temporary dim3 grid_dim, block_dim. 351 ParmVarDecl *GridDimParam = cudaLaunchKernelFD->getParamDecl(1); 352 QualType Dim3Ty = GridDimParam->getType(); 353 Address GridDim = 354 CGF.CreateMemTemp(Dim3Ty, CharUnits::fromQuantity(8), "grid_dim"); 355 Address BlockDim = 356 CGF.CreateMemTemp(Dim3Ty, CharUnits::fromQuantity(8), "block_dim"); 357 Address ShmemSize = 358 CGF.CreateTempAlloca(SizeTy, CGM.getSizeAlign(), "shmem_size"); 359 Address Stream = 360 CGF.CreateTempAlloca(VoidPtrTy, CGM.getPointerAlign(), "stream"); 361 llvm::FunctionCallee cudaPopConfigFn = CGM.CreateRuntimeFunction( 362 llvm::FunctionType::get(IntTy, 363 {/*gridDim=*/GridDim.getType(), 364 /*blockDim=*/BlockDim.getType(), 365 /*ShmemSize=*/ShmemSize.getType(), 366 /*Stream=*/Stream.getType()}, 367 /*isVarArg=*/false), 368 addUnderscoredPrefixToName("PopCallConfiguration")); 369 370 CGF.EmitRuntimeCallOrInvoke(cudaPopConfigFn, 371 {GridDim.getPointer(), BlockDim.getPointer(), 372 ShmemSize.getPointer(), Stream.getPointer()}); 373 374 // Emit the call to cudaLaunch 375 llvm::Value *Kernel = 376 CGF.Builder.CreatePointerCast(KernelHandles[CGF.CurFn], VoidPtrTy); 377 CallArgList LaunchKernelArgs; 378 LaunchKernelArgs.add(RValue::get(Kernel), 379 cudaLaunchKernelFD->getParamDecl(0)->getType()); 380 LaunchKernelArgs.add(RValue::getAggregate(GridDim), Dim3Ty); 381 LaunchKernelArgs.add(RValue::getAggregate(BlockDim), Dim3Ty); 382 LaunchKernelArgs.add(RValue::get(KernelArgs.getPointer()), 383 cudaLaunchKernelFD->getParamDecl(3)->getType()); 384 LaunchKernelArgs.add(RValue::get(CGF.Builder.CreateLoad(ShmemSize)), 385 cudaLaunchKernelFD->getParamDecl(4)->getType()); 386 LaunchKernelArgs.add(RValue::get(CGF.Builder.CreateLoad(Stream)), 387 cudaLaunchKernelFD->getParamDecl(5)->getType()); 388 389 QualType QT = cudaLaunchKernelFD->getType(); 390 QualType CQT = QT.getCanonicalType(); 391 llvm::Type *Ty = CGM.getTypes().ConvertType(CQT); 392 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(Ty); 393 394 const CGFunctionInfo &FI = 395 CGM.getTypes().arrangeFunctionDeclaration(cudaLaunchKernelFD); 396 llvm::FunctionCallee cudaLaunchKernelFn = 397 CGM.CreateRuntimeFunction(FTy, LaunchKernelName); 398 CGF.EmitCall(FI, CGCallee::forDirect(cudaLaunchKernelFn), ReturnValueSlot(), 399 LaunchKernelArgs); 400 CGF.EmitBranch(EndBlock); 401 402 CGF.EmitBlock(EndBlock); 403 } 404 405 void CGNVCUDARuntime::emitDeviceStubBodyLegacy(CodeGenFunction &CGF, 406 FunctionArgList &Args) { 407 // Emit a call to cudaSetupArgument for each arg in Args. 408 llvm::FunctionCallee cudaSetupArgFn = getSetupArgumentFn(); 409 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("setup.end"); 410 CharUnits Offset = CharUnits::Zero(); 411 for (const VarDecl *A : Args) { 412 auto TInfo = CGM.getContext().getTypeInfoInChars(A->getType()); 413 Offset = Offset.alignTo(TInfo.Align); 414 llvm::Value *Args[] = { 415 CGF.Builder.CreatePointerCast(CGF.GetAddrOfLocalVar(A).getPointer(), 416 VoidPtrTy), 417 llvm::ConstantInt::get(SizeTy, TInfo.Width.getQuantity()), 418 llvm::ConstantInt::get(SizeTy, Offset.getQuantity()), 419 }; 420 llvm::CallBase *CB = CGF.EmitRuntimeCallOrInvoke(cudaSetupArgFn, Args); 421 llvm::Constant *Zero = llvm::ConstantInt::get(IntTy, 0); 422 llvm::Value *CBZero = CGF.Builder.CreateICmpEQ(CB, Zero); 423 llvm::BasicBlock *NextBlock = CGF.createBasicBlock("setup.next"); 424 CGF.Builder.CreateCondBr(CBZero, NextBlock, EndBlock); 425 CGF.EmitBlock(NextBlock); 426 Offset += TInfo.Width; 427 } 428 429 // Emit the call to cudaLaunch 430 llvm::FunctionCallee cudaLaunchFn = getLaunchFn(); 431 llvm::Value *Arg = 432 CGF.Builder.CreatePointerCast(KernelHandles[CGF.CurFn], CharPtrTy); 433 CGF.EmitRuntimeCallOrInvoke(cudaLaunchFn, Arg); 434 CGF.EmitBranch(EndBlock); 435 436 CGF.EmitBlock(EndBlock); 437 } 438 439 // Replace the original variable Var with the address loaded from variable 440 // ManagedVar populated by HIP runtime. 441 static void replaceManagedVar(llvm::GlobalVariable *Var, 442 llvm::GlobalVariable *ManagedVar) { 443 SmallVector<SmallVector<llvm::User *, 8>, 8> WorkList; 444 for (auto &&VarUse : Var->uses()) { 445 WorkList.push_back({VarUse.getUser()}); 446 } 447 while (!WorkList.empty()) { 448 auto &&WorkItem = WorkList.pop_back_val(); 449 auto *U = WorkItem.back(); 450 if (isa<llvm::ConstantExpr>(U)) { 451 for (auto &&UU : U->uses()) { 452 WorkItem.push_back(UU.getUser()); 453 WorkList.push_back(WorkItem); 454 WorkItem.pop_back(); 455 } 456 continue; 457 } 458 if (auto *I = dyn_cast<llvm::Instruction>(U)) { 459 llvm::Value *OldV = Var; 460 llvm::Instruction *NewV = 461 new llvm::LoadInst(Var->getType(), ManagedVar, "ld.managed", false, 462 llvm::Align(Var->getAlignment()), I); 463 WorkItem.pop_back(); 464 // Replace constant expressions directly or indirectly using the managed 465 // variable with instructions. 466 for (auto &&Op : WorkItem) { 467 auto *CE = cast<llvm::ConstantExpr>(Op); 468 auto *NewInst = llvm::createReplacementInstr(CE, I); 469 NewInst->replaceUsesOfWith(OldV, NewV); 470 OldV = CE; 471 NewV = NewInst; 472 } 473 I->replaceUsesOfWith(OldV, NewV); 474 } else { 475 llvm_unreachable("Invalid use of managed variable"); 476 } 477 } 478 } 479 480 /// Creates a function that sets up state on the host side for CUDA objects that 481 /// have a presence on both the host and device sides. Specifically, registers 482 /// the host side of kernel functions and device global variables with the CUDA 483 /// runtime. 484 /// \code 485 /// void __cuda_register_globals(void** GpuBinaryHandle) { 486 /// __cudaRegisterFunction(GpuBinaryHandle,Kernel0,...); 487 /// ... 488 /// __cudaRegisterFunction(GpuBinaryHandle,KernelM,...); 489 /// __cudaRegisterVar(GpuBinaryHandle, GlobalVar0, ...); 490 /// ... 491 /// __cudaRegisterVar(GpuBinaryHandle, GlobalVarN, ...); 492 /// } 493 /// \endcode 494 llvm::Function *CGNVCUDARuntime::makeRegisterGlobalsFn() { 495 // No need to register anything 496 if (EmittedKernels.empty() && DeviceVars.empty()) 497 return nullptr; 498 499 llvm::Function *RegisterKernelsFunc = llvm::Function::Create( 500 getRegisterGlobalsFnTy(), llvm::GlobalValue::InternalLinkage, 501 addUnderscoredPrefixToName("_register_globals"), &TheModule); 502 llvm::BasicBlock *EntryBB = 503 llvm::BasicBlock::Create(Context, "entry", RegisterKernelsFunc); 504 CGBuilderTy Builder(CGM, Context); 505 Builder.SetInsertPoint(EntryBB); 506 507 // void __cudaRegisterFunction(void **, const char *, char *, const char *, 508 // int, uint3*, uint3*, dim3*, dim3*, int*) 509 llvm::Type *RegisterFuncParams[] = { 510 VoidPtrPtrTy, CharPtrTy, CharPtrTy, CharPtrTy, IntTy, 511 VoidPtrTy, VoidPtrTy, VoidPtrTy, VoidPtrTy, IntTy->getPointerTo()}; 512 llvm::FunctionCallee RegisterFunc = CGM.CreateRuntimeFunction( 513 llvm::FunctionType::get(IntTy, RegisterFuncParams, false), 514 addUnderscoredPrefixToName("RegisterFunction")); 515 516 // Extract GpuBinaryHandle passed as the first argument passed to 517 // __cuda_register_globals() and generate __cudaRegisterFunction() call for 518 // each emitted kernel. 519 llvm::Argument &GpuBinaryHandlePtr = *RegisterKernelsFunc->arg_begin(); 520 for (auto &&I : EmittedKernels) { 521 llvm::Constant *KernelName = 522 makeConstantString(getDeviceSideName(cast<NamedDecl>(I.D))); 523 llvm::Constant *NullPtr = llvm::ConstantPointerNull::get(VoidPtrTy); 524 llvm::Value *Args[] = { 525 &GpuBinaryHandlePtr, 526 Builder.CreateBitCast(KernelHandles[I.Kernel], VoidPtrTy), 527 KernelName, 528 KernelName, 529 llvm::ConstantInt::get(IntTy, -1), 530 NullPtr, 531 NullPtr, 532 NullPtr, 533 NullPtr, 534 llvm::ConstantPointerNull::get(IntTy->getPointerTo())}; 535 Builder.CreateCall(RegisterFunc, Args); 536 } 537 538 llvm::Type *VarSizeTy = IntTy; 539 // For HIP or CUDA 9.0+, device variable size is type of `size_t`. 540 if (CGM.getLangOpts().HIP || 541 ToCudaVersion(CGM.getTarget().getSDKVersion()) >= CudaVersion::CUDA_90) 542 VarSizeTy = SizeTy; 543 544 // void __cudaRegisterVar(void **, char *, char *, const char *, 545 // int, int, int, int) 546 llvm::Type *RegisterVarParams[] = {VoidPtrPtrTy, CharPtrTy, CharPtrTy, 547 CharPtrTy, IntTy, VarSizeTy, 548 IntTy, IntTy}; 549 llvm::FunctionCallee RegisterVar = CGM.CreateRuntimeFunction( 550 llvm::FunctionType::get(VoidTy, RegisterVarParams, false), 551 addUnderscoredPrefixToName("RegisterVar")); 552 // void __hipRegisterManagedVar(void **, char *, char *, const char *, 553 // size_t, unsigned) 554 llvm::Type *RegisterManagedVarParams[] = {VoidPtrPtrTy, CharPtrTy, CharPtrTy, 555 CharPtrTy, VarSizeTy, IntTy}; 556 llvm::FunctionCallee RegisterManagedVar = CGM.CreateRuntimeFunction( 557 llvm::FunctionType::get(VoidTy, RegisterManagedVarParams, false), 558 addUnderscoredPrefixToName("RegisterManagedVar")); 559 // void __cudaRegisterSurface(void **, const struct surfaceReference *, 560 // const void **, const char *, int, int); 561 llvm::FunctionCallee RegisterSurf = CGM.CreateRuntimeFunction( 562 llvm::FunctionType::get( 563 VoidTy, {VoidPtrPtrTy, VoidPtrTy, CharPtrTy, CharPtrTy, IntTy, IntTy}, 564 false), 565 addUnderscoredPrefixToName("RegisterSurface")); 566 // void __cudaRegisterTexture(void **, const struct textureReference *, 567 // const void **, const char *, int, int, int) 568 llvm::FunctionCallee RegisterTex = CGM.CreateRuntimeFunction( 569 llvm::FunctionType::get( 570 VoidTy, 571 {VoidPtrPtrTy, VoidPtrTy, CharPtrTy, CharPtrTy, IntTy, IntTy, IntTy}, 572 false), 573 addUnderscoredPrefixToName("RegisterTexture")); 574 for (auto &&Info : DeviceVars) { 575 llvm::GlobalVariable *Var = Info.Var; 576 assert((!Var->isDeclaration() || Info.Flags.isManaged()) && 577 "External variables should not show up here, except HIP managed " 578 "variables"); 579 llvm::Constant *VarName = makeConstantString(getDeviceSideName(Info.D)); 580 switch (Info.Flags.getKind()) { 581 case DeviceVarFlags::Variable: { 582 uint64_t VarSize = 583 CGM.getDataLayout().getTypeAllocSize(Var->getValueType()); 584 if (Info.Flags.isManaged()) { 585 auto ManagedVar = new llvm::GlobalVariable( 586 CGM.getModule(), Var->getType(), 587 /*isConstant=*/false, Var->getLinkage(), 588 /*Init=*/Var->isDeclaration() 589 ? nullptr 590 : llvm::ConstantPointerNull::get(Var->getType()), 591 /*Name=*/"", /*InsertBefore=*/nullptr, 592 llvm::GlobalVariable::NotThreadLocal); 593 ManagedVar->setDSOLocal(Var->isDSOLocal()); 594 ManagedVar->setVisibility(Var->getVisibility()); 595 ManagedVar->setExternallyInitialized(true); 596 ManagedVar->takeName(Var); 597 Var->setName(Twine(ManagedVar->getName() + ".managed")); 598 replaceManagedVar(Var, ManagedVar); 599 llvm::Value *Args[] = { 600 &GpuBinaryHandlePtr, 601 Builder.CreateBitCast(ManagedVar, VoidPtrTy), 602 Builder.CreateBitCast(Var, VoidPtrTy), 603 VarName, 604 llvm::ConstantInt::get(VarSizeTy, VarSize), 605 llvm::ConstantInt::get(IntTy, Var->getAlignment())}; 606 if (!Var->isDeclaration()) 607 Builder.CreateCall(RegisterManagedVar, Args); 608 } else { 609 llvm::Value *Args[] = { 610 &GpuBinaryHandlePtr, 611 Builder.CreateBitCast(Var, VoidPtrTy), 612 VarName, 613 VarName, 614 llvm::ConstantInt::get(IntTy, Info.Flags.isExtern()), 615 llvm::ConstantInt::get(VarSizeTy, VarSize), 616 llvm::ConstantInt::get(IntTy, Info.Flags.isConstant()), 617 llvm::ConstantInt::get(IntTy, 0)}; 618 Builder.CreateCall(RegisterVar, Args); 619 } 620 break; 621 } 622 case DeviceVarFlags::Surface: 623 Builder.CreateCall( 624 RegisterSurf, 625 {&GpuBinaryHandlePtr, Builder.CreateBitCast(Var, VoidPtrTy), VarName, 626 VarName, llvm::ConstantInt::get(IntTy, Info.Flags.getSurfTexType()), 627 llvm::ConstantInt::get(IntTy, Info.Flags.isExtern())}); 628 break; 629 case DeviceVarFlags::Texture: 630 Builder.CreateCall( 631 RegisterTex, 632 {&GpuBinaryHandlePtr, Builder.CreateBitCast(Var, VoidPtrTy), VarName, 633 VarName, llvm::ConstantInt::get(IntTy, Info.Flags.getSurfTexType()), 634 llvm::ConstantInt::get(IntTy, Info.Flags.isNormalized()), 635 llvm::ConstantInt::get(IntTy, Info.Flags.isExtern())}); 636 break; 637 } 638 } 639 640 Builder.CreateRetVoid(); 641 return RegisterKernelsFunc; 642 } 643 644 /// Creates a global constructor function for the module: 645 /// 646 /// For CUDA: 647 /// \code 648 /// void __cuda_module_ctor(void*) { 649 /// Handle = __cudaRegisterFatBinary(GpuBinaryBlob); 650 /// __cuda_register_globals(Handle); 651 /// } 652 /// \endcode 653 /// 654 /// For HIP: 655 /// \code 656 /// void __hip_module_ctor(void*) { 657 /// if (__hip_gpubin_handle == 0) { 658 /// __hip_gpubin_handle = __hipRegisterFatBinary(GpuBinaryBlob); 659 /// __hip_register_globals(__hip_gpubin_handle); 660 /// } 661 /// } 662 /// \endcode 663 llvm::Function *CGNVCUDARuntime::makeModuleCtorFunction() { 664 bool IsHIP = CGM.getLangOpts().HIP; 665 bool IsCUDA = CGM.getLangOpts().CUDA; 666 // No need to generate ctors/dtors if there is no GPU binary. 667 StringRef CudaGpuBinaryFileName = CGM.getCodeGenOpts().CudaGpuBinaryFileName; 668 if (CudaGpuBinaryFileName.empty() && !IsHIP) 669 return nullptr; 670 if ((IsHIP || (IsCUDA && !RelocatableDeviceCode)) && EmittedKernels.empty() && 671 DeviceVars.empty()) 672 return nullptr; 673 674 // void __{cuda|hip}_register_globals(void* handle); 675 llvm::Function *RegisterGlobalsFunc = makeRegisterGlobalsFn(); 676 // We always need a function to pass in as callback. Create a dummy 677 // implementation if we don't need to register anything. 678 if (RelocatableDeviceCode && !RegisterGlobalsFunc) 679 RegisterGlobalsFunc = makeDummyFunction(getRegisterGlobalsFnTy()); 680 681 // void ** __{cuda|hip}RegisterFatBinary(void *); 682 llvm::FunctionCallee RegisterFatbinFunc = CGM.CreateRuntimeFunction( 683 llvm::FunctionType::get(VoidPtrPtrTy, VoidPtrTy, false), 684 addUnderscoredPrefixToName("RegisterFatBinary")); 685 // struct { int magic, int version, void * gpu_binary, void * dont_care }; 686 llvm::StructType *FatbinWrapperTy = 687 llvm::StructType::get(IntTy, IntTy, VoidPtrTy, VoidPtrTy); 688 689 // Register GPU binary with the CUDA runtime, store returned handle in a 690 // global variable and save a reference in GpuBinaryHandle to be cleaned up 691 // in destructor on exit. Then associate all known kernels with the GPU binary 692 // handle so CUDA runtime can figure out what to call on the GPU side. 693 std::unique_ptr<llvm::MemoryBuffer> CudaGpuBinary = nullptr; 694 if (!CudaGpuBinaryFileName.empty()) { 695 llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> CudaGpuBinaryOrErr = 696 llvm::MemoryBuffer::getFileOrSTDIN(CudaGpuBinaryFileName); 697 if (std::error_code EC = CudaGpuBinaryOrErr.getError()) { 698 CGM.getDiags().Report(diag::err_cannot_open_file) 699 << CudaGpuBinaryFileName << EC.message(); 700 return nullptr; 701 } 702 CudaGpuBinary = std::move(CudaGpuBinaryOrErr.get()); 703 } 704 705 llvm::Function *ModuleCtorFunc = llvm::Function::Create( 706 llvm::FunctionType::get(VoidTy, VoidPtrTy, false), 707 llvm::GlobalValue::InternalLinkage, 708 addUnderscoredPrefixToName("_module_ctor"), &TheModule); 709 llvm::BasicBlock *CtorEntryBB = 710 llvm::BasicBlock::Create(Context, "entry", ModuleCtorFunc); 711 CGBuilderTy CtorBuilder(CGM, Context); 712 713 CtorBuilder.SetInsertPoint(CtorEntryBB); 714 715 const char *FatbinConstantName; 716 const char *FatbinSectionName; 717 const char *ModuleIDSectionName; 718 StringRef ModuleIDPrefix; 719 llvm::Constant *FatBinStr; 720 unsigned FatMagic; 721 if (IsHIP) { 722 FatbinConstantName = ".hip_fatbin"; 723 FatbinSectionName = ".hipFatBinSegment"; 724 725 ModuleIDSectionName = "__hip_module_id"; 726 ModuleIDPrefix = "__hip_"; 727 728 if (CudaGpuBinary) { 729 // If fatbin is available from early finalization, create a string 730 // literal containing the fat binary loaded from the given file. 731 const unsigned HIPCodeObjectAlign = 4096; 732 FatBinStr = 733 makeConstantString(std::string(CudaGpuBinary->getBuffer()), "", 734 FatbinConstantName, HIPCodeObjectAlign); 735 } else { 736 // If fatbin is not available, create an external symbol 737 // __hip_fatbin in section .hip_fatbin. The external symbol is supposed 738 // to contain the fat binary but will be populated somewhere else, 739 // e.g. by lld through link script. 740 FatBinStr = new llvm::GlobalVariable( 741 CGM.getModule(), CGM.Int8Ty, 742 /*isConstant=*/true, llvm::GlobalValue::ExternalLinkage, nullptr, 743 "__hip_fatbin", nullptr, 744 llvm::GlobalVariable::NotThreadLocal); 745 cast<llvm::GlobalVariable>(FatBinStr)->setSection(FatbinConstantName); 746 } 747 748 FatMagic = HIPFatMagic; 749 } else { 750 if (RelocatableDeviceCode) 751 FatbinConstantName = CGM.getTriple().isMacOSX() 752 ? "__NV_CUDA,__nv_relfatbin" 753 : "__nv_relfatbin"; 754 else 755 FatbinConstantName = 756 CGM.getTriple().isMacOSX() ? "__NV_CUDA,__nv_fatbin" : ".nv_fatbin"; 757 // NVIDIA's cuobjdump looks for fatbins in this section. 758 FatbinSectionName = 759 CGM.getTriple().isMacOSX() ? "__NV_CUDA,__fatbin" : ".nvFatBinSegment"; 760 761 ModuleIDSectionName = CGM.getTriple().isMacOSX() 762 ? "__NV_CUDA,__nv_module_id" 763 : "__nv_module_id"; 764 ModuleIDPrefix = "__nv_"; 765 766 // For CUDA, create a string literal containing the fat binary loaded from 767 // the given file. 768 FatBinStr = makeConstantString(std::string(CudaGpuBinary->getBuffer()), "", 769 FatbinConstantName, 8); 770 FatMagic = CudaFatMagic; 771 } 772 773 // Create initialized wrapper structure that points to the loaded GPU binary 774 ConstantInitBuilder Builder(CGM); 775 auto Values = Builder.beginStruct(FatbinWrapperTy); 776 // Fatbin wrapper magic. 777 Values.addInt(IntTy, FatMagic); 778 // Fatbin version. 779 Values.addInt(IntTy, 1); 780 // Data. 781 Values.add(FatBinStr); 782 // Unused in fatbin v1. 783 Values.add(llvm::ConstantPointerNull::get(VoidPtrTy)); 784 llvm::GlobalVariable *FatbinWrapper = Values.finishAndCreateGlobal( 785 addUnderscoredPrefixToName("_fatbin_wrapper"), CGM.getPointerAlign(), 786 /*constant*/ true); 787 FatbinWrapper->setSection(FatbinSectionName); 788 789 // There is only one HIP fat binary per linked module, however there are 790 // multiple constructor functions. Make sure the fat binary is registered 791 // only once. The constructor functions are executed by the dynamic loader 792 // before the program gains control. The dynamic loader cannot execute the 793 // constructor functions concurrently since doing that would not guarantee 794 // thread safety of the loaded program. Therefore we can assume sequential 795 // execution of constructor functions here. 796 if (IsHIP) { 797 auto Linkage = CudaGpuBinary ? llvm::GlobalValue::InternalLinkage : 798 llvm::GlobalValue::LinkOnceAnyLinkage; 799 llvm::BasicBlock *IfBlock = 800 llvm::BasicBlock::Create(Context, "if", ModuleCtorFunc); 801 llvm::BasicBlock *ExitBlock = 802 llvm::BasicBlock::Create(Context, "exit", ModuleCtorFunc); 803 // The name, size, and initialization pattern of this variable is part 804 // of HIP ABI. 805 GpuBinaryHandle = new llvm::GlobalVariable( 806 TheModule, VoidPtrPtrTy, /*isConstant=*/false, 807 Linkage, 808 /*Initializer=*/llvm::ConstantPointerNull::get(VoidPtrPtrTy), 809 "__hip_gpubin_handle"); 810 GpuBinaryHandle->setAlignment(CGM.getPointerAlign().getAsAlign()); 811 // Prevent the weak symbol in different shared libraries being merged. 812 if (Linkage != llvm::GlobalValue::InternalLinkage) 813 GpuBinaryHandle->setVisibility(llvm::GlobalValue::HiddenVisibility); 814 Address GpuBinaryAddr( 815 GpuBinaryHandle, 816 CharUnits::fromQuantity(GpuBinaryHandle->getAlignment())); 817 { 818 auto HandleValue = CtorBuilder.CreateLoad(GpuBinaryAddr); 819 llvm::Constant *Zero = 820 llvm::Constant::getNullValue(HandleValue->getType()); 821 llvm::Value *EQZero = CtorBuilder.CreateICmpEQ(HandleValue, Zero); 822 CtorBuilder.CreateCondBr(EQZero, IfBlock, ExitBlock); 823 } 824 { 825 CtorBuilder.SetInsertPoint(IfBlock); 826 // GpuBinaryHandle = __hipRegisterFatBinary(&FatbinWrapper); 827 llvm::CallInst *RegisterFatbinCall = CtorBuilder.CreateCall( 828 RegisterFatbinFunc, 829 CtorBuilder.CreateBitCast(FatbinWrapper, VoidPtrTy)); 830 CtorBuilder.CreateStore(RegisterFatbinCall, GpuBinaryAddr); 831 CtorBuilder.CreateBr(ExitBlock); 832 } 833 { 834 CtorBuilder.SetInsertPoint(ExitBlock); 835 // Call __hip_register_globals(GpuBinaryHandle); 836 if (RegisterGlobalsFunc) { 837 auto HandleValue = CtorBuilder.CreateLoad(GpuBinaryAddr); 838 CtorBuilder.CreateCall(RegisterGlobalsFunc, HandleValue); 839 } 840 } 841 } else if (!RelocatableDeviceCode) { 842 // Register binary with CUDA runtime. This is substantially different in 843 // default mode vs. separate compilation! 844 // GpuBinaryHandle = __cudaRegisterFatBinary(&FatbinWrapper); 845 llvm::CallInst *RegisterFatbinCall = CtorBuilder.CreateCall( 846 RegisterFatbinFunc, 847 CtorBuilder.CreateBitCast(FatbinWrapper, VoidPtrTy)); 848 GpuBinaryHandle = new llvm::GlobalVariable( 849 TheModule, VoidPtrPtrTy, false, llvm::GlobalValue::InternalLinkage, 850 llvm::ConstantPointerNull::get(VoidPtrPtrTy), "__cuda_gpubin_handle"); 851 GpuBinaryHandle->setAlignment(CGM.getPointerAlign().getAsAlign()); 852 CtorBuilder.CreateAlignedStore(RegisterFatbinCall, GpuBinaryHandle, 853 CGM.getPointerAlign()); 854 855 // Call __cuda_register_globals(GpuBinaryHandle); 856 if (RegisterGlobalsFunc) 857 CtorBuilder.CreateCall(RegisterGlobalsFunc, RegisterFatbinCall); 858 859 // Call __cudaRegisterFatBinaryEnd(Handle) if this CUDA version needs it. 860 if (CudaFeatureEnabled(CGM.getTarget().getSDKVersion(), 861 CudaFeature::CUDA_USES_FATBIN_REGISTER_END)) { 862 // void __cudaRegisterFatBinaryEnd(void **); 863 llvm::FunctionCallee RegisterFatbinEndFunc = CGM.CreateRuntimeFunction( 864 llvm::FunctionType::get(VoidTy, VoidPtrPtrTy, false), 865 "__cudaRegisterFatBinaryEnd"); 866 CtorBuilder.CreateCall(RegisterFatbinEndFunc, RegisterFatbinCall); 867 } 868 } else { 869 // Generate a unique module ID. 870 SmallString<64> ModuleID; 871 llvm::raw_svector_ostream OS(ModuleID); 872 OS << ModuleIDPrefix << llvm::format("%" PRIx64, FatbinWrapper->getGUID()); 873 llvm::Constant *ModuleIDConstant = makeConstantString( 874 std::string(ModuleID.str()), "", ModuleIDSectionName, 32); 875 876 // Create an alias for the FatbinWrapper that nvcc will look for. 877 llvm::GlobalAlias::create(llvm::GlobalValue::ExternalLinkage, 878 Twine("__fatbinwrap") + ModuleID, FatbinWrapper); 879 880 // void __cudaRegisterLinkedBinary%ModuleID%(void (*)(void *), void *, 881 // void *, void (*)(void **)) 882 SmallString<128> RegisterLinkedBinaryName("__cudaRegisterLinkedBinary"); 883 RegisterLinkedBinaryName += ModuleID; 884 llvm::FunctionCallee RegisterLinkedBinaryFunc = CGM.CreateRuntimeFunction( 885 getRegisterLinkedBinaryFnTy(), RegisterLinkedBinaryName); 886 887 assert(RegisterGlobalsFunc && "Expecting at least dummy function!"); 888 llvm::Value *Args[] = {RegisterGlobalsFunc, 889 CtorBuilder.CreateBitCast(FatbinWrapper, VoidPtrTy), 890 ModuleIDConstant, 891 makeDummyFunction(getCallbackFnTy())}; 892 CtorBuilder.CreateCall(RegisterLinkedBinaryFunc, Args); 893 } 894 895 // Create destructor and register it with atexit() the way NVCC does it. Doing 896 // it during regular destructor phase worked in CUDA before 9.2 but results in 897 // double-free in 9.2. 898 if (llvm::Function *CleanupFn = makeModuleDtorFunction()) { 899 // extern "C" int atexit(void (*f)(void)); 900 llvm::FunctionType *AtExitTy = 901 llvm::FunctionType::get(IntTy, CleanupFn->getType(), false); 902 llvm::FunctionCallee AtExitFunc = 903 CGM.CreateRuntimeFunction(AtExitTy, "atexit", llvm::AttributeList(), 904 /*Local=*/true); 905 CtorBuilder.CreateCall(AtExitFunc, CleanupFn); 906 } 907 908 CtorBuilder.CreateRetVoid(); 909 return ModuleCtorFunc; 910 } 911 912 /// Creates a global destructor function that unregisters the GPU code blob 913 /// registered by constructor. 914 /// 915 /// For CUDA: 916 /// \code 917 /// void __cuda_module_dtor(void*) { 918 /// __cudaUnregisterFatBinary(Handle); 919 /// } 920 /// \endcode 921 /// 922 /// For HIP: 923 /// \code 924 /// void __hip_module_dtor(void*) { 925 /// if (__hip_gpubin_handle) { 926 /// __hipUnregisterFatBinary(__hip_gpubin_handle); 927 /// __hip_gpubin_handle = 0; 928 /// } 929 /// } 930 /// \endcode 931 llvm::Function *CGNVCUDARuntime::makeModuleDtorFunction() { 932 // No need for destructor if we don't have a handle to unregister. 933 if (!GpuBinaryHandle) 934 return nullptr; 935 936 // void __cudaUnregisterFatBinary(void ** handle); 937 llvm::FunctionCallee UnregisterFatbinFunc = CGM.CreateRuntimeFunction( 938 llvm::FunctionType::get(VoidTy, VoidPtrPtrTy, false), 939 addUnderscoredPrefixToName("UnregisterFatBinary")); 940 941 llvm::Function *ModuleDtorFunc = llvm::Function::Create( 942 llvm::FunctionType::get(VoidTy, VoidPtrTy, false), 943 llvm::GlobalValue::InternalLinkage, 944 addUnderscoredPrefixToName("_module_dtor"), &TheModule); 945 946 llvm::BasicBlock *DtorEntryBB = 947 llvm::BasicBlock::Create(Context, "entry", ModuleDtorFunc); 948 CGBuilderTy DtorBuilder(CGM, Context); 949 DtorBuilder.SetInsertPoint(DtorEntryBB); 950 951 Address GpuBinaryAddr(GpuBinaryHandle, CharUnits::fromQuantity( 952 GpuBinaryHandle->getAlignment())); 953 auto HandleValue = DtorBuilder.CreateLoad(GpuBinaryAddr); 954 // There is only one HIP fat binary per linked module, however there are 955 // multiple destructor functions. Make sure the fat binary is unregistered 956 // only once. 957 if (CGM.getLangOpts().HIP) { 958 llvm::BasicBlock *IfBlock = 959 llvm::BasicBlock::Create(Context, "if", ModuleDtorFunc); 960 llvm::BasicBlock *ExitBlock = 961 llvm::BasicBlock::Create(Context, "exit", ModuleDtorFunc); 962 llvm::Constant *Zero = llvm::Constant::getNullValue(HandleValue->getType()); 963 llvm::Value *NEZero = DtorBuilder.CreateICmpNE(HandleValue, Zero); 964 DtorBuilder.CreateCondBr(NEZero, IfBlock, ExitBlock); 965 966 DtorBuilder.SetInsertPoint(IfBlock); 967 DtorBuilder.CreateCall(UnregisterFatbinFunc, HandleValue); 968 DtorBuilder.CreateStore(Zero, GpuBinaryAddr); 969 DtorBuilder.CreateBr(ExitBlock); 970 971 DtorBuilder.SetInsertPoint(ExitBlock); 972 } else { 973 DtorBuilder.CreateCall(UnregisterFatbinFunc, HandleValue); 974 } 975 DtorBuilder.CreateRetVoid(); 976 return ModuleDtorFunc; 977 } 978 979 CGCUDARuntime *CodeGen::CreateNVCUDARuntime(CodeGenModule &CGM) { 980 return new CGNVCUDARuntime(CGM); 981 } 982 983 void CGNVCUDARuntime::internalizeDeviceSideVar( 984 const VarDecl *D, llvm::GlobalValue::LinkageTypes &Linkage) { 985 // For -fno-gpu-rdc, host-side shadows of external declarations of device-side 986 // global variables become internal definitions. These have to be internal in 987 // order to prevent name conflicts with global host variables with the same 988 // name in a different TUs. 989 // 990 // For -fgpu-rdc, the shadow variables should not be internalized because 991 // they may be accessed by different TU. 992 if (CGM.getLangOpts().GPURelocatableDeviceCode) 993 return; 994 995 // __shared__ variables are odd. Shadows do get created, but 996 // they are not registered with the CUDA runtime, so they 997 // can't really be used to access their device-side 998 // counterparts. It's not clear yet whether it's nvcc's bug or 999 // a feature, but we've got to do the same for compatibility. 1000 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 1001 D->hasAttr<CUDASharedAttr>() || 1002 D->getType()->isCUDADeviceBuiltinSurfaceType() || 1003 D->getType()->isCUDADeviceBuiltinTextureType()) { 1004 Linkage = llvm::GlobalValue::InternalLinkage; 1005 } 1006 } 1007 1008 void CGNVCUDARuntime::handleVarRegistration(const VarDecl *D, 1009 llvm::GlobalVariable &GV) { 1010 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 1011 // Shadow variables and their properties must be registered with CUDA 1012 // runtime. Skip Extern global variables, which will be registered in 1013 // the TU where they are defined. 1014 // 1015 // Don't register a C++17 inline variable. The local symbol can be 1016 // discarded and referencing a discarded local symbol from outside the 1017 // comdat (__cuda_register_globals) is disallowed by the ELF spec. 1018 // 1019 // HIP managed variables need to be always recorded in device and host 1020 // compilations for transformation. 1021 // 1022 // HIP managed variables and variables in CUDADeviceVarODRUsedByHost are 1023 // added to llvm.compiler-used, therefore they are safe to be registered. 1024 if ((!D->hasExternalStorage() && !D->isInline()) || 1025 CGM.getContext().CUDADeviceVarODRUsedByHost.contains(D) || 1026 D->hasAttr<HIPManagedAttr>()) { 1027 registerDeviceVar(D, GV, !D->hasDefinition(), 1028 D->hasAttr<CUDAConstantAttr>()); 1029 } 1030 } else if (D->getType()->isCUDADeviceBuiltinSurfaceType() || 1031 D->getType()->isCUDADeviceBuiltinTextureType()) { 1032 // Builtin surfaces and textures and their template arguments are 1033 // also registered with CUDA runtime. 1034 const auto *TD = cast<ClassTemplateSpecializationDecl>( 1035 D->getType()->castAs<RecordType>()->getDecl()); 1036 const TemplateArgumentList &Args = TD->getTemplateArgs(); 1037 if (TD->hasAttr<CUDADeviceBuiltinSurfaceTypeAttr>()) { 1038 assert(Args.size() == 2 && 1039 "Unexpected number of template arguments of CUDA device " 1040 "builtin surface type."); 1041 auto SurfType = Args[1].getAsIntegral(); 1042 if (!D->hasExternalStorage()) 1043 registerDeviceSurf(D, GV, !D->hasDefinition(), SurfType.getSExtValue()); 1044 } else { 1045 assert(Args.size() == 3 && 1046 "Unexpected number of template arguments of CUDA device " 1047 "builtin texture type."); 1048 auto TexType = Args[1].getAsIntegral(); 1049 auto Normalized = Args[2].getAsIntegral(); 1050 if (!D->hasExternalStorage()) 1051 registerDeviceTex(D, GV, !D->hasDefinition(), TexType.getSExtValue(), 1052 Normalized.getZExtValue()); 1053 } 1054 } 1055 } 1056 1057 // Transform managed variables to pointers to managed variables in device code. 1058 // Each use of the original managed variable is replaced by a load from the 1059 // transformed managed variable. The transformed managed variable contains 1060 // the address of managed memory which will be allocated by the runtime. 1061 void CGNVCUDARuntime::transformManagedVars() { 1062 for (auto &&Info : DeviceVars) { 1063 llvm::GlobalVariable *Var = Info.Var; 1064 if (Info.Flags.getKind() == DeviceVarFlags::Variable && 1065 Info.Flags.isManaged()) { 1066 auto ManagedVar = new llvm::GlobalVariable( 1067 CGM.getModule(), Var->getType(), 1068 /*isConstant=*/false, Var->getLinkage(), 1069 /*Init=*/Var->isDeclaration() 1070 ? nullptr 1071 : llvm::ConstantPointerNull::get(Var->getType()), 1072 /*Name=*/"", /*InsertBefore=*/nullptr, 1073 llvm::GlobalVariable::NotThreadLocal, 1074 CGM.getContext().getTargetAddressSpace(LangAS::cuda_device)); 1075 ManagedVar->setDSOLocal(Var->isDSOLocal()); 1076 ManagedVar->setVisibility(Var->getVisibility()); 1077 ManagedVar->setExternallyInitialized(true); 1078 replaceManagedVar(Var, ManagedVar); 1079 ManagedVar->takeName(Var); 1080 Var->setName(Twine(ManagedVar->getName()) + ".managed"); 1081 // Keep managed variables even if they are not used in device code since 1082 // they need to be allocated by the runtime. 1083 if (!Var->isDeclaration()) { 1084 assert(!ManagedVar->isDeclaration()); 1085 CGM.addCompilerUsedGlobal(Var); 1086 CGM.addCompilerUsedGlobal(ManagedVar); 1087 } 1088 } 1089 } 1090 } 1091 1092 // Returns module constructor to be added. 1093 llvm::Function *CGNVCUDARuntime::finalizeModule() { 1094 if (CGM.getLangOpts().CUDAIsDevice) { 1095 transformManagedVars(); 1096 1097 // Mark ODR-used device variables as compiler used to prevent it from being 1098 // eliminated by optimization. This is necessary for device variables 1099 // ODR-used by host functions. Sema correctly marks them as ODR-used no 1100 // matter whether they are ODR-used by device or host functions. 1101 // 1102 // We do not need to do this if the variable has used attribute since it 1103 // has already been added. 1104 // 1105 // Static device variables have been externalized at this point, therefore 1106 // variables with LLVM private or internal linkage need not be added. 1107 for (auto &&Info : DeviceVars) { 1108 auto Kind = Info.Flags.getKind(); 1109 if (!Info.Var->isDeclaration() && 1110 !llvm::GlobalValue::isLocalLinkage(Info.Var->getLinkage()) && 1111 (Kind == DeviceVarFlags::Variable || 1112 Kind == DeviceVarFlags::Surface || 1113 Kind == DeviceVarFlags::Texture) && 1114 Info.D->isUsed() && !Info.D->hasAttr<UsedAttr>()) { 1115 CGM.addCompilerUsedGlobal(Info.Var); 1116 } 1117 } 1118 return nullptr; 1119 } 1120 return makeModuleCtorFunction(); 1121 } 1122 1123 llvm::GlobalValue *CGNVCUDARuntime::getKernelHandle(llvm::Function *F, 1124 GlobalDecl GD) { 1125 auto Loc = KernelHandles.find(F); 1126 if (Loc != KernelHandles.end()) 1127 return Loc->second; 1128 1129 if (!CGM.getLangOpts().HIP) { 1130 KernelHandles[F] = F; 1131 KernelStubs[F] = F; 1132 return F; 1133 } 1134 1135 auto *Var = new llvm::GlobalVariable( 1136 TheModule, F->getType(), /*isConstant=*/true, F->getLinkage(), 1137 /*Initializer=*/nullptr, 1138 CGM.getMangledName( 1139 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel))); 1140 Var->setAlignment(CGM.getPointerAlign().getAsAlign()); 1141 Var->setDSOLocal(F->isDSOLocal()); 1142 Var->setVisibility(F->getVisibility()); 1143 KernelHandles[F] = Var; 1144 KernelStubs[Var] = F; 1145 return Var; 1146 } 1147