xref: /netbsd-src/external/apache2/llvm/dist/clang/lib/CodeGen/CGBuiltin.cpp (revision 627f7eb200a4419d89b531d55fccd2ee3ffdcde0)
1 //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Builtin calls as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCXXABI.h"
14 #include "CGObjCRuntime.h"
15 #include "CGOpenCLRuntime.h"
16 #include "CGRecordLayout.h"
17 #include "CodeGenFunction.h"
18 #include "CodeGenModule.h"
19 #include "ConstantEmitter.h"
20 #include "PatternInit.h"
21 #include "TargetInfo.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/Decl.h"
24 #include "clang/AST/OSLog.h"
25 #include "clang/Basic/TargetBuiltins.h"
26 #include "clang/Basic/TargetInfo.h"
27 #include "clang/CodeGen/CGFunctionInfo.h"
28 #include "llvm/ADT/SmallPtrSet.h"
29 #include "llvm/ADT/StringExtras.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/InlineAsm.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/MDBuilder.h"
34 #include "llvm/Support/ConvertUTF.h"
35 #include "llvm/Support/ScopedPrinter.h"
36 #include "llvm/Support/TargetParser.h"
37 #include <sstream>
38 
39 using namespace clang;
40 using namespace CodeGen;
41 using namespace llvm;
42 
43 static
44 int64_t clamp(int64_t Value, int64_t Low, int64_t High) {
45   return std::min(High, std::max(Low, Value));
46 }
47 
48 static void initializeAlloca(CodeGenFunction &CGF, AllocaInst *AI, Value *Size, unsigned AlignmentInBytes) {
49   ConstantInt *Byte;
50   switch (CGF.getLangOpts().getTrivialAutoVarInit()) {
51   case LangOptions::TrivialAutoVarInitKind::Uninitialized:
52     // Nothing to initialize.
53     return;
54   case LangOptions::TrivialAutoVarInitKind::Zero:
55     Byte = CGF.Builder.getInt8(0x00);
56     break;
57   case LangOptions::TrivialAutoVarInitKind::Pattern: {
58     llvm::Type *Int8 = llvm::IntegerType::getInt8Ty(CGF.CGM.getLLVMContext());
59     Byte = llvm::dyn_cast<llvm::ConstantInt>(
60         initializationPatternFor(CGF.CGM, Int8));
61     break;
62   }
63   }
64   CGF.Builder.CreateMemSet(AI, Byte, Size, AlignmentInBytes);
65 }
66 
67 /// getBuiltinLibFunction - Given a builtin id for a function like
68 /// "__builtin_fabsf", return a Function* for "fabsf".
69 llvm::Constant *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
70                                                      unsigned BuiltinID) {
71   assert(Context.BuiltinInfo.isLibFunction(BuiltinID));
72 
73   // Get the name, skip over the __builtin_ prefix (if necessary).
74   StringRef Name;
75   GlobalDecl D(FD);
76 
77   // If the builtin has been declared explicitly with an assembler label,
78   // use the mangled name. This differs from the plain label on platforms
79   // that prefix labels.
80   if (FD->hasAttr<AsmLabelAttr>())
81     Name = getMangledName(D);
82   else
83     Name = Context.BuiltinInfo.getName(BuiltinID) + 10;
84 
85   llvm::FunctionType *Ty =
86     cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
87 
88   return GetOrCreateLLVMFunction(Name, Ty, D, /*ForVTable=*/false);
89 }
90 
91 /// Emit the conversions required to turn the given value into an
92 /// integer of the given size.
93 static Value *EmitToInt(CodeGenFunction &CGF, llvm::Value *V,
94                         QualType T, llvm::IntegerType *IntType) {
95   V = CGF.EmitToMemory(V, T);
96 
97   if (V->getType()->isPointerTy())
98     return CGF.Builder.CreatePtrToInt(V, IntType);
99 
100   assert(V->getType() == IntType);
101   return V;
102 }
103 
104 static Value *EmitFromInt(CodeGenFunction &CGF, llvm::Value *V,
105                           QualType T, llvm::Type *ResultType) {
106   V = CGF.EmitFromMemory(V, T);
107 
108   if (ResultType->isPointerTy())
109     return CGF.Builder.CreateIntToPtr(V, ResultType);
110 
111   assert(V->getType() == ResultType);
112   return V;
113 }
114 
115 /// Utility to insert an atomic instruction based on Intrinsic::ID
116 /// and the expression node.
117 static Value *MakeBinaryAtomicValue(
118     CodeGenFunction &CGF, llvm::AtomicRMWInst::BinOp Kind, const CallExpr *E,
119     AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
120   QualType T = E->getType();
121   assert(E->getArg(0)->getType()->isPointerType());
122   assert(CGF.getContext().hasSameUnqualifiedType(T,
123                                   E->getArg(0)->getType()->getPointeeType()));
124   assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
125 
126   llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
127   unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
128 
129   llvm::IntegerType *IntType =
130     llvm::IntegerType::get(CGF.getLLVMContext(),
131                            CGF.getContext().getTypeSize(T));
132   llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
133 
134   llvm::Value *Args[2];
135   Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
136   Args[1] = CGF.EmitScalarExpr(E->getArg(1));
137   llvm::Type *ValueType = Args[1]->getType();
138   Args[1] = EmitToInt(CGF, Args[1], T, IntType);
139 
140   llvm::Value *Result = CGF.Builder.CreateAtomicRMW(
141       Kind, Args[0], Args[1], Ordering);
142   return EmitFromInt(CGF, Result, T, ValueType);
143 }
144 
145 static Value *EmitNontemporalStore(CodeGenFunction &CGF, const CallExpr *E) {
146   Value *Val = CGF.EmitScalarExpr(E->getArg(0));
147   Value *Address = CGF.EmitScalarExpr(E->getArg(1));
148 
149   // Convert the type of the pointer to a pointer to the stored type.
150   Val = CGF.EmitToMemory(Val, E->getArg(0)->getType());
151   Value *BC = CGF.Builder.CreateBitCast(
152       Address, llvm::PointerType::getUnqual(Val->getType()), "cast");
153   LValue LV = CGF.MakeNaturalAlignAddrLValue(BC, E->getArg(0)->getType());
154   LV.setNontemporal(true);
155   CGF.EmitStoreOfScalar(Val, LV, false);
156   return nullptr;
157 }
158 
159 static Value *EmitNontemporalLoad(CodeGenFunction &CGF, const CallExpr *E) {
160   Value *Address = CGF.EmitScalarExpr(E->getArg(0));
161 
162   LValue LV = CGF.MakeNaturalAlignAddrLValue(Address, E->getType());
163   LV.setNontemporal(true);
164   return CGF.EmitLoadOfScalar(LV, E->getExprLoc());
165 }
166 
167 static RValue EmitBinaryAtomic(CodeGenFunction &CGF,
168                                llvm::AtomicRMWInst::BinOp Kind,
169                                const CallExpr *E) {
170   return RValue::get(MakeBinaryAtomicValue(CGF, Kind, E));
171 }
172 
173 /// Utility to insert an atomic instruction based Intrinsic::ID and
174 /// the expression node, where the return value is the result of the
175 /// operation.
176 static RValue EmitBinaryAtomicPost(CodeGenFunction &CGF,
177                                    llvm::AtomicRMWInst::BinOp Kind,
178                                    const CallExpr *E,
179                                    Instruction::BinaryOps Op,
180                                    bool Invert = false) {
181   QualType T = E->getType();
182   assert(E->getArg(0)->getType()->isPointerType());
183   assert(CGF.getContext().hasSameUnqualifiedType(T,
184                                   E->getArg(0)->getType()->getPointeeType()));
185   assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
186 
187   llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
188   unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
189 
190   llvm::IntegerType *IntType =
191     llvm::IntegerType::get(CGF.getLLVMContext(),
192                            CGF.getContext().getTypeSize(T));
193   llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
194 
195   llvm::Value *Args[2];
196   Args[1] = CGF.EmitScalarExpr(E->getArg(1));
197   llvm::Type *ValueType = Args[1]->getType();
198   Args[1] = EmitToInt(CGF, Args[1], T, IntType);
199   Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
200 
201   llvm::Value *Result = CGF.Builder.CreateAtomicRMW(
202       Kind, Args[0], Args[1], llvm::AtomicOrdering::SequentiallyConsistent);
203   Result = CGF.Builder.CreateBinOp(Op, Result, Args[1]);
204   if (Invert)
205     Result = CGF.Builder.CreateBinOp(llvm::Instruction::Xor, Result,
206                                      llvm::ConstantInt::get(IntType, -1));
207   Result = EmitFromInt(CGF, Result, T, ValueType);
208   return RValue::get(Result);
209 }
210 
211 /// Utility to insert an atomic cmpxchg instruction.
212 ///
213 /// @param CGF The current codegen function.
214 /// @param E   Builtin call expression to convert to cmpxchg.
215 ///            arg0 - address to operate on
216 ///            arg1 - value to compare with
217 ///            arg2 - new value
218 /// @param ReturnBool Specifies whether to return success flag of
219 ///                   cmpxchg result or the old value.
220 ///
221 /// @returns result of cmpxchg, according to ReturnBool
222 ///
223 /// Note: In order to lower Microsoft's _InterlockedCompareExchange* intrinsics
224 /// invoke the function EmitAtomicCmpXchgForMSIntrin.
225 static Value *MakeAtomicCmpXchgValue(CodeGenFunction &CGF, const CallExpr *E,
226                                      bool ReturnBool) {
227   QualType T = ReturnBool ? E->getArg(1)->getType() : E->getType();
228   llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
229   unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
230 
231   llvm::IntegerType *IntType = llvm::IntegerType::get(
232       CGF.getLLVMContext(), CGF.getContext().getTypeSize(T));
233   llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
234 
235   Value *Args[3];
236   Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
237   Args[1] = CGF.EmitScalarExpr(E->getArg(1));
238   llvm::Type *ValueType = Args[1]->getType();
239   Args[1] = EmitToInt(CGF, Args[1], T, IntType);
240   Args[2] = EmitToInt(CGF, CGF.EmitScalarExpr(E->getArg(2)), T, IntType);
241 
242   Value *Pair = CGF.Builder.CreateAtomicCmpXchg(
243       Args[0], Args[1], Args[2], llvm::AtomicOrdering::SequentiallyConsistent,
244       llvm::AtomicOrdering::SequentiallyConsistent);
245   if (ReturnBool)
246     // Extract boolean success flag and zext it to int.
247     return CGF.Builder.CreateZExt(CGF.Builder.CreateExtractValue(Pair, 1),
248                                   CGF.ConvertType(E->getType()));
249   else
250     // Extract old value and emit it using the same type as compare value.
251     return EmitFromInt(CGF, CGF.Builder.CreateExtractValue(Pair, 0), T,
252                        ValueType);
253 }
254 
255 /// This function should be invoked to emit atomic cmpxchg for Microsoft's
256 /// _InterlockedCompareExchange* intrinsics which have the following signature:
257 /// T _InterlockedCompareExchange(T volatile *Destination,
258 ///                               T Exchange,
259 ///                               T Comparand);
260 ///
261 /// Whereas the llvm 'cmpxchg' instruction has the following syntax:
262 /// cmpxchg *Destination, Comparand, Exchange.
263 /// So we need to swap Comparand and Exchange when invoking
264 /// CreateAtomicCmpXchg. That is the reason we could not use the above utility
265 /// function MakeAtomicCmpXchgValue since it expects the arguments to be
266 /// already swapped.
267 
268 static
269 Value *EmitAtomicCmpXchgForMSIntrin(CodeGenFunction &CGF, const CallExpr *E,
270     AtomicOrdering SuccessOrdering = AtomicOrdering::SequentiallyConsistent) {
271   assert(E->getArg(0)->getType()->isPointerType());
272   assert(CGF.getContext().hasSameUnqualifiedType(
273       E->getType(), E->getArg(0)->getType()->getPointeeType()));
274   assert(CGF.getContext().hasSameUnqualifiedType(E->getType(),
275                                                  E->getArg(1)->getType()));
276   assert(CGF.getContext().hasSameUnqualifiedType(E->getType(),
277                                                  E->getArg(2)->getType()));
278 
279   auto *Destination = CGF.EmitScalarExpr(E->getArg(0));
280   auto *Comparand = CGF.EmitScalarExpr(E->getArg(2));
281   auto *Exchange = CGF.EmitScalarExpr(E->getArg(1));
282 
283   // For Release ordering, the failure ordering should be Monotonic.
284   auto FailureOrdering = SuccessOrdering == AtomicOrdering::Release ?
285                          AtomicOrdering::Monotonic :
286                          SuccessOrdering;
287 
288   auto *Result = CGF.Builder.CreateAtomicCmpXchg(
289                    Destination, Comparand, Exchange,
290                    SuccessOrdering, FailureOrdering);
291   Result->setVolatile(true);
292   return CGF.Builder.CreateExtractValue(Result, 0);
293 }
294 
295 static Value *EmitAtomicIncrementValue(CodeGenFunction &CGF, const CallExpr *E,
296     AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
297   assert(E->getArg(0)->getType()->isPointerType());
298 
299   auto *IntTy = CGF.ConvertType(E->getType());
300   auto *Result = CGF.Builder.CreateAtomicRMW(
301                    AtomicRMWInst::Add,
302                    CGF.EmitScalarExpr(E->getArg(0)),
303                    ConstantInt::get(IntTy, 1),
304                    Ordering);
305   return CGF.Builder.CreateAdd(Result, ConstantInt::get(IntTy, 1));
306 }
307 
308 static Value *EmitAtomicDecrementValue(CodeGenFunction &CGF, const CallExpr *E,
309     AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
310   assert(E->getArg(0)->getType()->isPointerType());
311 
312   auto *IntTy = CGF.ConvertType(E->getType());
313   auto *Result = CGF.Builder.CreateAtomicRMW(
314                    AtomicRMWInst::Sub,
315                    CGF.EmitScalarExpr(E->getArg(0)),
316                    ConstantInt::get(IntTy, 1),
317                    Ordering);
318   return CGF.Builder.CreateSub(Result, ConstantInt::get(IntTy, 1));
319 }
320 
321 // Build a plain volatile load.
322 static Value *EmitISOVolatileLoad(CodeGenFunction &CGF, const CallExpr *E) {
323   Value *Ptr = CGF.EmitScalarExpr(E->getArg(0));
324   QualType ElTy = E->getArg(0)->getType()->getPointeeType();
325   CharUnits LoadSize = CGF.getContext().getTypeSizeInChars(ElTy);
326   llvm::Type *ITy =
327       llvm::IntegerType::get(CGF.getLLVMContext(), LoadSize.getQuantity() * 8);
328   Ptr = CGF.Builder.CreateBitCast(Ptr, ITy->getPointerTo());
329   llvm::LoadInst *Load = CGF.Builder.CreateAlignedLoad(Ptr, LoadSize);
330   Load->setVolatile(true);
331   return Load;
332 }
333 
334 // Build a plain volatile store.
335 static Value *EmitISOVolatileStore(CodeGenFunction &CGF, const CallExpr *E) {
336   Value *Ptr = CGF.EmitScalarExpr(E->getArg(0));
337   Value *Value = CGF.EmitScalarExpr(E->getArg(1));
338   QualType ElTy = E->getArg(0)->getType()->getPointeeType();
339   CharUnits StoreSize = CGF.getContext().getTypeSizeInChars(ElTy);
340   llvm::Type *ITy =
341       llvm::IntegerType::get(CGF.getLLVMContext(), StoreSize.getQuantity() * 8);
342   Ptr = CGF.Builder.CreateBitCast(Ptr, ITy->getPointerTo());
343   llvm::StoreInst *Store =
344       CGF.Builder.CreateAlignedStore(Value, Ptr, StoreSize);
345   Store->setVolatile(true);
346   return Store;
347 }
348 
349 // Emit a simple mangled intrinsic that has 1 argument and a return type
350 // matching the argument type.
351 static Value *emitUnaryBuiltin(CodeGenFunction &CGF,
352                                const CallExpr *E,
353                                unsigned IntrinsicID) {
354   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
355 
356   Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
357   return CGF.Builder.CreateCall(F, Src0);
358 }
359 
360 // Emit an intrinsic that has 2 operands of the same type as its result.
361 static Value *emitBinaryBuiltin(CodeGenFunction &CGF,
362                                 const CallExpr *E,
363                                 unsigned IntrinsicID) {
364   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
365   llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
366 
367   Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
368   return CGF.Builder.CreateCall(F, { Src0, Src1 });
369 }
370 
371 // Emit an intrinsic that has 3 operands of the same type as its result.
372 static Value *emitTernaryBuiltin(CodeGenFunction &CGF,
373                                  const CallExpr *E,
374                                  unsigned IntrinsicID) {
375   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
376   llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
377   llvm::Value *Src2 = CGF.EmitScalarExpr(E->getArg(2));
378 
379   Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
380   return CGF.Builder.CreateCall(F, { Src0, Src1, Src2 });
381 }
382 
383 // Emit an intrinsic that has 1 float or double operand, and 1 integer.
384 static Value *emitFPIntBuiltin(CodeGenFunction &CGF,
385                                const CallExpr *E,
386                                unsigned IntrinsicID) {
387   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
388   llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
389 
390   Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
391   return CGF.Builder.CreateCall(F, {Src0, Src1});
392 }
393 
394 // Emit an intrinsic that has overloaded integer result and fp operand.
395 static Value *emitFPToIntRoundBuiltin(CodeGenFunction &CGF,
396                                       const CallExpr *E,
397                                       unsigned IntrinsicID) {
398    llvm::Type *ResultType = CGF.ConvertType(E->getType());
399    llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
400 
401    Function *F = CGF.CGM.getIntrinsic(IntrinsicID,
402                                       {ResultType, Src0->getType()});
403    return CGF.Builder.CreateCall(F, Src0);
404 }
405 
406 /// EmitFAbs - Emit a call to @llvm.fabs().
407 static Value *EmitFAbs(CodeGenFunction &CGF, Value *V) {
408   Function *F = CGF.CGM.getIntrinsic(Intrinsic::fabs, V->getType());
409   llvm::CallInst *Call = CGF.Builder.CreateCall(F, V);
410   Call->setDoesNotAccessMemory();
411   return Call;
412 }
413 
414 /// Emit the computation of the sign bit for a floating point value. Returns
415 /// the i1 sign bit value.
416 static Value *EmitSignBit(CodeGenFunction &CGF, Value *V) {
417   LLVMContext &C = CGF.CGM.getLLVMContext();
418 
419   llvm::Type *Ty = V->getType();
420   int Width = Ty->getPrimitiveSizeInBits();
421   llvm::Type *IntTy = llvm::IntegerType::get(C, Width);
422   V = CGF.Builder.CreateBitCast(V, IntTy);
423   if (Ty->isPPC_FP128Ty()) {
424     // We want the sign bit of the higher-order double. The bitcast we just
425     // did works as if the double-double was stored to memory and then
426     // read as an i128. The "store" will put the higher-order double in the
427     // lower address in both little- and big-Endian modes, but the "load"
428     // will treat those bits as a different part of the i128: the low bits in
429     // little-Endian, the high bits in big-Endian. Therefore, on big-Endian
430     // we need to shift the high bits down to the low before truncating.
431     Width >>= 1;
432     if (CGF.getTarget().isBigEndian()) {
433       Value *ShiftCst = llvm::ConstantInt::get(IntTy, Width);
434       V = CGF.Builder.CreateLShr(V, ShiftCst);
435     }
436     // We are truncating value in order to extract the higher-order
437     // double, which we will be using to extract the sign from.
438     IntTy = llvm::IntegerType::get(C, Width);
439     V = CGF.Builder.CreateTrunc(V, IntTy);
440   }
441   Value *Zero = llvm::Constant::getNullValue(IntTy);
442   return CGF.Builder.CreateICmpSLT(V, Zero);
443 }
444 
445 static RValue emitLibraryCall(CodeGenFunction &CGF, const FunctionDecl *FD,
446                               const CallExpr *E, llvm::Constant *calleeValue) {
447   CGCallee callee = CGCallee::forDirect(calleeValue, GlobalDecl(FD));
448   return CGF.EmitCall(E->getCallee()->getType(), callee, E, ReturnValueSlot());
449 }
450 
451 /// Emit a call to llvm.{sadd,uadd,ssub,usub,smul,umul}.with.overflow.*
452 /// depending on IntrinsicID.
453 ///
454 /// \arg CGF The current codegen function.
455 /// \arg IntrinsicID The ID for the Intrinsic we wish to generate.
456 /// \arg X The first argument to the llvm.*.with.overflow.*.
457 /// \arg Y The second argument to the llvm.*.with.overflow.*.
458 /// \arg Carry The carry returned by the llvm.*.with.overflow.*.
459 /// \returns The result (i.e. sum/product) returned by the intrinsic.
460 static llvm::Value *EmitOverflowIntrinsic(CodeGenFunction &CGF,
461                                           const llvm::Intrinsic::ID IntrinsicID,
462                                           llvm::Value *X, llvm::Value *Y,
463                                           llvm::Value *&Carry) {
464   // Make sure we have integers of the same width.
465   assert(X->getType() == Y->getType() &&
466          "Arguments must be the same type. (Did you forget to make sure both "
467          "arguments have the same integer width?)");
468 
469   Function *Callee = CGF.CGM.getIntrinsic(IntrinsicID, X->getType());
470   llvm::Value *Tmp = CGF.Builder.CreateCall(Callee, {X, Y});
471   Carry = CGF.Builder.CreateExtractValue(Tmp, 1);
472   return CGF.Builder.CreateExtractValue(Tmp, 0);
473 }
474 
475 static Value *emitRangedBuiltin(CodeGenFunction &CGF,
476                                 unsigned IntrinsicID,
477                                 int low, int high) {
478     llvm::MDBuilder MDHelper(CGF.getLLVMContext());
479     llvm::MDNode *RNode = MDHelper.createRange(APInt(32, low), APInt(32, high));
480     Function *F = CGF.CGM.getIntrinsic(IntrinsicID, {});
481     llvm::Instruction *Call = CGF.Builder.CreateCall(F);
482     Call->setMetadata(llvm::LLVMContext::MD_range, RNode);
483     return Call;
484 }
485 
486 namespace {
487   struct WidthAndSignedness {
488     unsigned Width;
489     bool Signed;
490   };
491 }
492 
493 static WidthAndSignedness
494 getIntegerWidthAndSignedness(const clang::ASTContext &context,
495                              const clang::QualType Type) {
496   assert(Type->isIntegerType() && "Given type is not an integer.");
497   unsigned Width = Type->isBooleanType() ? 1 : context.getTypeInfo(Type).Width;
498   bool Signed = Type->isSignedIntegerType();
499   return {Width, Signed};
500 }
501 
502 // Given one or more integer types, this function produces an integer type that
503 // encompasses them: any value in one of the given types could be expressed in
504 // the encompassing type.
505 static struct WidthAndSignedness
506 EncompassingIntegerType(ArrayRef<struct WidthAndSignedness> Types) {
507   assert(Types.size() > 0 && "Empty list of types.");
508 
509   // If any of the given types is signed, we must return a signed type.
510   bool Signed = false;
511   for (const auto &Type : Types) {
512     Signed |= Type.Signed;
513   }
514 
515   // The encompassing type must have a width greater than or equal to the width
516   // of the specified types.  Additionally, if the encompassing type is signed,
517   // its width must be strictly greater than the width of any unsigned types
518   // given.
519   unsigned Width = 0;
520   for (const auto &Type : Types) {
521     unsigned MinWidth = Type.Width + (Signed && !Type.Signed);
522     if (Width < MinWidth) {
523       Width = MinWidth;
524     }
525   }
526 
527   return {Width, Signed};
528 }
529 
530 Value *CodeGenFunction::EmitVAStartEnd(Value *ArgValue, bool IsStart) {
531   llvm::Type *DestType = Int8PtrTy;
532   if (ArgValue->getType() != DestType)
533     ArgValue =
534         Builder.CreateBitCast(ArgValue, DestType, ArgValue->getName().data());
535 
536   Intrinsic::ID inst = IsStart ? Intrinsic::vastart : Intrinsic::vaend;
537   return Builder.CreateCall(CGM.getIntrinsic(inst), ArgValue);
538 }
539 
540 /// Checks if using the result of __builtin_object_size(p, @p From) in place of
541 /// __builtin_object_size(p, @p To) is correct
542 static bool areBOSTypesCompatible(int From, int To) {
543   // Note: Our __builtin_object_size implementation currently treats Type=0 and
544   // Type=2 identically. Encoding this implementation detail here may make
545   // improving __builtin_object_size difficult in the future, so it's omitted.
546   return From == To || (From == 0 && To == 1) || (From == 3 && To == 2);
547 }
548 
549 static llvm::Value *
550 getDefaultBuiltinObjectSizeResult(unsigned Type, llvm::IntegerType *ResType) {
551   return ConstantInt::get(ResType, (Type & 2) ? 0 : -1, /*isSigned=*/true);
552 }
553 
554 llvm::Value *
555 CodeGenFunction::evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
556                                                  llvm::IntegerType *ResType,
557                                                  llvm::Value *EmittedE,
558                                                  bool IsDynamic) {
559   uint64_t ObjectSize;
560   if (!E->tryEvaluateObjectSize(ObjectSize, getContext(), Type))
561     return emitBuiltinObjectSize(E, Type, ResType, EmittedE, IsDynamic);
562   return ConstantInt::get(ResType, ObjectSize, /*isSigned=*/true);
563 }
564 
565 /// Returns a Value corresponding to the size of the given expression.
566 /// This Value may be either of the following:
567 ///   - A llvm::Argument (if E is a param with the pass_object_size attribute on
568 ///     it)
569 ///   - A call to the @llvm.objectsize intrinsic
570 ///
571 /// EmittedE is the result of emitting `E` as a scalar expr. If it's non-null
572 /// and we wouldn't otherwise try to reference a pass_object_size parameter,
573 /// we'll call @llvm.objectsize on EmittedE, rather than emitting E.
574 llvm::Value *
575 CodeGenFunction::emitBuiltinObjectSize(const Expr *E, unsigned Type,
576                                        llvm::IntegerType *ResType,
577                                        llvm::Value *EmittedE, bool IsDynamic) {
578   // We need to reference an argument if the pointer is a parameter with the
579   // pass_object_size attribute.
580   if (auto *D = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) {
581     auto *Param = dyn_cast<ParmVarDecl>(D->getDecl());
582     auto *PS = D->getDecl()->getAttr<PassObjectSizeAttr>();
583     if (Param != nullptr && PS != nullptr &&
584         areBOSTypesCompatible(PS->getType(), Type)) {
585       auto Iter = SizeArguments.find(Param);
586       assert(Iter != SizeArguments.end());
587 
588       const ImplicitParamDecl *D = Iter->second;
589       auto DIter = LocalDeclMap.find(D);
590       assert(DIter != LocalDeclMap.end());
591 
592       return EmitLoadOfScalar(DIter->second, /*Volatile=*/false,
593                               getContext().getSizeType(), E->getBeginLoc());
594     }
595   }
596 
597   // LLVM can't handle Type=3 appropriately, and __builtin_object_size shouldn't
598   // evaluate E for side-effects. In either case, we shouldn't lower to
599   // @llvm.objectsize.
600   if (Type == 3 || (!EmittedE && E->HasSideEffects(getContext())))
601     return getDefaultBuiltinObjectSizeResult(Type, ResType);
602 
603   Value *Ptr = EmittedE ? EmittedE : EmitScalarExpr(E);
604   assert(Ptr->getType()->isPointerTy() &&
605          "Non-pointer passed to __builtin_object_size?");
606 
607   Function *F =
608       CGM.getIntrinsic(Intrinsic::objectsize, {ResType, Ptr->getType()});
609 
610   // LLVM only supports 0 and 2, make sure that we pass along that as a boolean.
611   Value *Min = Builder.getInt1((Type & 2) != 0);
612   // For GCC compatibility, __builtin_object_size treat NULL as unknown size.
613   Value *NullIsUnknown = Builder.getTrue();
614   Value *Dynamic = Builder.getInt1(IsDynamic);
615   return Builder.CreateCall(F, {Ptr, Min, NullIsUnknown, Dynamic});
616 }
617 
618 namespace {
619 /// A struct to generically describe a bit test intrinsic.
620 struct BitTest {
621   enum ActionKind : uint8_t { TestOnly, Complement, Reset, Set };
622   enum InterlockingKind : uint8_t {
623     Unlocked,
624     Sequential,
625     Acquire,
626     Release,
627     NoFence
628   };
629 
630   ActionKind Action;
631   InterlockingKind Interlocking;
632   bool Is64Bit;
633 
634   static BitTest decodeBitTestBuiltin(unsigned BuiltinID);
635 };
636 } // namespace
637 
638 BitTest BitTest::decodeBitTestBuiltin(unsigned BuiltinID) {
639   switch (BuiltinID) {
640     // Main portable variants.
641   case Builtin::BI_bittest:
642     return {TestOnly, Unlocked, false};
643   case Builtin::BI_bittestandcomplement:
644     return {Complement, Unlocked, false};
645   case Builtin::BI_bittestandreset:
646     return {Reset, Unlocked, false};
647   case Builtin::BI_bittestandset:
648     return {Set, Unlocked, false};
649   case Builtin::BI_interlockedbittestandreset:
650     return {Reset, Sequential, false};
651   case Builtin::BI_interlockedbittestandset:
652     return {Set, Sequential, false};
653 
654     // X86-specific 64-bit variants.
655   case Builtin::BI_bittest64:
656     return {TestOnly, Unlocked, true};
657   case Builtin::BI_bittestandcomplement64:
658     return {Complement, Unlocked, true};
659   case Builtin::BI_bittestandreset64:
660     return {Reset, Unlocked, true};
661   case Builtin::BI_bittestandset64:
662     return {Set, Unlocked, true};
663   case Builtin::BI_interlockedbittestandreset64:
664     return {Reset, Sequential, true};
665   case Builtin::BI_interlockedbittestandset64:
666     return {Set, Sequential, true};
667 
668     // ARM/AArch64-specific ordering variants.
669   case Builtin::BI_interlockedbittestandset_acq:
670     return {Set, Acquire, false};
671   case Builtin::BI_interlockedbittestandset_rel:
672     return {Set, Release, false};
673   case Builtin::BI_interlockedbittestandset_nf:
674     return {Set, NoFence, false};
675   case Builtin::BI_interlockedbittestandreset_acq:
676     return {Reset, Acquire, false};
677   case Builtin::BI_interlockedbittestandreset_rel:
678     return {Reset, Release, false};
679   case Builtin::BI_interlockedbittestandreset_nf:
680     return {Reset, NoFence, false};
681   }
682   llvm_unreachable("expected only bittest intrinsics");
683 }
684 
685 static char bitActionToX86BTCode(BitTest::ActionKind A) {
686   switch (A) {
687   case BitTest::TestOnly:   return '\0';
688   case BitTest::Complement: return 'c';
689   case BitTest::Reset:      return 'r';
690   case BitTest::Set:        return 's';
691   }
692   llvm_unreachable("invalid action");
693 }
694 
695 static llvm::Value *EmitX86BitTestIntrinsic(CodeGenFunction &CGF,
696                                             BitTest BT,
697                                             const CallExpr *E, Value *BitBase,
698                                             Value *BitPos) {
699   char Action = bitActionToX86BTCode(BT.Action);
700   char SizeSuffix = BT.Is64Bit ? 'q' : 'l';
701 
702   // Build the assembly.
703   SmallString<64> Asm;
704   raw_svector_ostream AsmOS(Asm);
705   if (BT.Interlocking != BitTest::Unlocked)
706     AsmOS << "lock ";
707   AsmOS << "bt";
708   if (Action)
709     AsmOS << Action;
710   AsmOS << SizeSuffix << " $2, ($1)\n\tsetc ${0:b}";
711 
712   // Build the constraints. FIXME: We should support immediates when possible.
713   std::string Constraints = "=r,r,r,~{cc},~{flags},~{fpsr}";
714   llvm::IntegerType *IntType = llvm::IntegerType::get(
715       CGF.getLLVMContext(),
716       CGF.getContext().getTypeSize(E->getArg(1)->getType()));
717   llvm::Type *IntPtrType = IntType->getPointerTo();
718   llvm::FunctionType *FTy =
719       llvm::FunctionType::get(CGF.Int8Ty, {IntPtrType, IntType}, false);
720 
721   llvm::InlineAsm *IA =
722       llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true);
723   return CGF.Builder.CreateCall(IA, {BitBase, BitPos});
724 }
725 
726 static llvm::AtomicOrdering
727 getBitTestAtomicOrdering(BitTest::InterlockingKind I) {
728   switch (I) {
729   case BitTest::Unlocked:   return llvm::AtomicOrdering::NotAtomic;
730   case BitTest::Sequential: return llvm::AtomicOrdering::SequentiallyConsistent;
731   case BitTest::Acquire:    return llvm::AtomicOrdering::Acquire;
732   case BitTest::Release:    return llvm::AtomicOrdering::Release;
733   case BitTest::NoFence:    return llvm::AtomicOrdering::Monotonic;
734   }
735   llvm_unreachable("invalid interlocking");
736 }
737 
738 /// Emit a _bittest* intrinsic. These intrinsics take a pointer to an array of
739 /// bits and a bit position and read and optionally modify the bit at that
740 /// position. The position index can be arbitrarily large, i.e. it can be larger
741 /// than 31 or 63, so we need an indexed load in the general case.
742 static llvm::Value *EmitBitTestIntrinsic(CodeGenFunction &CGF,
743                                          unsigned BuiltinID,
744                                          const CallExpr *E) {
745   Value *BitBase = CGF.EmitScalarExpr(E->getArg(0));
746   Value *BitPos = CGF.EmitScalarExpr(E->getArg(1));
747 
748   BitTest BT = BitTest::decodeBitTestBuiltin(BuiltinID);
749 
750   // X86 has special BT, BTC, BTR, and BTS instructions that handle the array
751   // indexing operation internally. Use them if possible.
752   llvm::Triple::ArchType Arch = CGF.getTarget().getTriple().getArch();
753   if (Arch == llvm::Triple::x86 || Arch == llvm::Triple::x86_64)
754     return EmitX86BitTestIntrinsic(CGF, BT, E, BitBase, BitPos);
755 
756   // Otherwise, use generic code to load one byte and test the bit. Use all but
757   // the bottom three bits as the array index, and the bottom three bits to form
758   // a mask.
759   // Bit = BitBaseI8[BitPos >> 3] & (1 << (BitPos & 0x7)) != 0;
760   Value *ByteIndex = CGF.Builder.CreateAShr(
761       BitPos, llvm::ConstantInt::get(BitPos->getType(), 3), "bittest.byteidx");
762   Value *BitBaseI8 = CGF.Builder.CreatePointerCast(BitBase, CGF.Int8PtrTy);
763   Address ByteAddr(CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, BitBaseI8,
764                                                  ByteIndex, "bittest.byteaddr"),
765                    CharUnits::One());
766   Value *PosLow =
767       CGF.Builder.CreateAnd(CGF.Builder.CreateTrunc(BitPos, CGF.Int8Ty),
768                             llvm::ConstantInt::get(CGF.Int8Ty, 0x7));
769 
770   // The updating instructions will need a mask.
771   Value *Mask = nullptr;
772   if (BT.Action != BitTest::TestOnly) {
773     Mask = CGF.Builder.CreateShl(llvm::ConstantInt::get(CGF.Int8Ty, 1), PosLow,
774                                  "bittest.mask");
775   }
776 
777   // Check the action and ordering of the interlocked intrinsics.
778   llvm::AtomicOrdering Ordering = getBitTestAtomicOrdering(BT.Interlocking);
779 
780   Value *OldByte = nullptr;
781   if (Ordering != llvm::AtomicOrdering::NotAtomic) {
782     // Emit a combined atomicrmw load/store operation for the interlocked
783     // intrinsics.
784     llvm::AtomicRMWInst::BinOp RMWOp = llvm::AtomicRMWInst::Or;
785     if (BT.Action == BitTest::Reset) {
786       Mask = CGF.Builder.CreateNot(Mask);
787       RMWOp = llvm::AtomicRMWInst::And;
788     }
789     OldByte = CGF.Builder.CreateAtomicRMW(RMWOp, ByteAddr.getPointer(), Mask,
790                                           Ordering);
791   } else {
792     // Emit a plain load for the non-interlocked intrinsics.
793     OldByte = CGF.Builder.CreateLoad(ByteAddr, "bittest.byte");
794     Value *NewByte = nullptr;
795     switch (BT.Action) {
796     case BitTest::TestOnly:
797       // Don't store anything.
798       break;
799     case BitTest::Complement:
800       NewByte = CGF.Builder.CreateXor(OldByte, Mask);
801       break;
802     case BitTest::Reset:
803       NewByte = CGF.Builder.CreateAnd(OldByte, CGF.Builder.CreateNot(Mask));
804       break;
805     case BitTest::Set:
806       NewByte = CGF.Builder.CreateOr(OldByte, Mask);
807       break;
808     }
809     if (NewByte)
810       CGF.Builder.CreateStore(NewByte, ByteAddr);
811   }
812 
813   // However we loaded the old byte, either by plain load or atomicrmw, shift
814   // the bit into the low position and mask it to 0 or 1.
815   Value *ShiftedByte = CGF.Builder.CreateLShr(OldByte, PosLow, "bittest.shr");
816   return CGF.Builder.CreateAnd(
817       ShiftedByte, llvm::ConstantInt::get(CGF.Int8Ty, 1), "bittest.res");
818 }
819 
820 namespace {
821 enum class MSVCSetJmpKind {
822   _setjmpex,
823   _setjmp3,
824   _setjmp
825 };
826 }
827 
828 /// MSVC handles setjmp a bit differently on different platforms. On every
829 /// architecture except 32-bit x86, the frame address is passed. On x86, extra
830 /// parameters can be passed as variadic arguments, but we always pass none.
831 static RValue EmitMSVCRTSetJmp(CodeGenFunction &CGF, MSVCSetJmpKind SJKind,
832                                const CallExpr *E) {
833   llvm::Value *Arg1 = nullptr;
834   llvm::Type *Arg1Ty = nullptr;
835   StringRef Name;
836   bool IsVarArg = false;
837   if (SJKind == MSVCSetJmpKind::_setjmp3) {
838     Name = "_setjmp3";
839     Arg1Ty = CGF.Int32Ty;
840     Arg1 = llvm::ConstantInt::get(CGF.IntTy, 0);
841     IsVarArg = true;
842   } else {
843     Name = SJKind == MSVCSetJmpKind::_setjmp ? "_setjmp" : "_setjmpex";
844     Arg1Ty = CGF.Int8PtrTy;
845     if (CGF.getTarget().getTriple().getArch() == llvm::Triple::aarch64) {
846       Arg1 = CGF.Builder.CreateCall(
847           CGF.CGM.getIntrinsic(Intrinsic::sponentry, CGF.AllocaInt8PtrTy));
848     } else
849       Arg1 = CGF.Builder.CreateCall(
850           CGF.CGM.getIntrinsic(Intrinsic::frameaddress, CGF.AllocaInt8PtrTy),
851           llvm::ConstantInt::get(CGF.Int32Ty, 0));
852   }
853 
854   // Mark the call site and declaration with ReturnsTwice.
855   llvm::Type *ArgTypes[2] = {CGF.Int8PtrTy, Arg1Ty};
856   llvm::AttributeList ReturnsTwiceAttr = llvm::AttributeList::get(
857       CGF.getLLVMContext(), llvm::AttributeList::FunctionIndex,
858       llvm::Attribute::ReturnsTwice);
859   llvm::FunctionCallee SetJmpFn = CGF.CGM.CreateRuntimeFunction(
860       llvm::FunctionType::get(CGF.IntTy, ArgTypes, IsVarArg), Name,
861       ReturnsTwiceAttr, /*Local=*/true);
862 
863   llvm::Value *Buf = CGF.Builder.CreateBitOrPointerCast(
864       CGF.EmitScalarExpr(E->getArg(0)), CGF.Int8PtrTy);
865   llvm::Value *Args[] = {Buf, Arg1};
866   llvm::CallBase *CB = CGF.EmitRuntimeCallOrInvoke(SetJmpFn, Args);
867   CB->setAttributes(ReturnsTwiceAttr);
868   return RValue::get(CB);
869 }
870 
871 // Many of MSVC builtins are on x64, ARM and AArch64; to avoid repeating code,
872 // we handle them here.
873 enum class CodeGenFunction::MSVCIntrin {
874   _BitScanForward,
875   _BitScanReverse,
876   _InterlockedAnd,
877   _InterlockedDecrement,
878   _InterlockedExchange,
879   _InterlockedExchangeAdd,
880   _InterlockedExchangeSub,
881   _InterlockedIncrement,
882   _InterlockedOr,
883   _InterlockedXor,
884   _InterlockedExchangeAdd_acq,
885   _InterlockedExchangeAdd_rel,
886   _InterlockedExchangeAdd_nf,
887   _InterlockedExchange_acq,
888   _InterlockedExchange_rel,
889   _InterlockedExchange_nf,
890   _InterlockedCompareExchange_acq,
891   _InterlockedCompareExchange_rel,
892   _InterlockedCompareExchange_nf,
893   _InterlockedOr_acq,
894   _InterlockedOr_rel,
895   _InterlockedOr_nf,
896   _InterlockedXor_acq,
897   _InterlockedXor_rel,
898   _InterlockedXor_nf,
899   _InterlockedAnd_acq,
900   _InterlockedAnd_rel,
901   _InterlockedAnd_nf,
902   _InterlockedIncrement_acq,
903   _InterlockedIncrement_rel,
904   _InterlockedIncrement_nf,
905   _InterlockedDecrement_acq,
906   _InterlockedDecrement_rel,
907   _InterlockedDecrement_nf,
908   __fastfail,
909 };
910 
911 Value *CodeGenFunction::EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID,
912                                             const CallExpr *E) {
913   switch (BuiltinID) {
914   case MSVCIntrin::_BitScanForward:
915   case MSVCIntrin::_BitScanReverse: {
916     Value *ArgValue = EmitScalarExpr(E->getArg(1));
917 
918     llvm::Type *ArgType = ArgValue->getType();
919     llvm::Type *IndexType =
920       EmitScalarExpr(E->getArg(0))->getType()->getPointerElementType();
921     llvm::Type *ResultType = ConvertType(E->getType());
922 
923     Value *ArgZero = llvm::Constant::getNullValue(ArgType);
924     Value *ResZero = llvm::Constant::getNullValue(ResultType);
925     Value *ResOne = llvm::ConstantInt::get(ResultType, 1);
926 
927     BasicBlock *Begin = Builder.GetInsertBlock();
928     BasicBlock *End = createBasicBlock("bitscan_end", this->CurFn);
929     Builder.SetInsertPoint(End);
930     PHINode *Result = Builder.CreatePHI(ResultType, 2, "bitscan_result");
931 
932     Builder.SetInsertPoint(Begin);
933     Value *IsZero = Builder.CreateICmpEQ(ArgValue, ArgZero);
934     BasicBlock *NotZero = createBasicBlock("bitscan_not_zero", this->CurFn);
935     Builder.CreateCondBr(IsZero, End, NotZero);
936     Result->addIncoming(ResZero, Begin);
937 
938     Builder.SetInsertPoint(NotZero);
939     Address IndexAddress = EmitPointerWithAlignment(E->getArg(0));
940 
941     if (BuiltinID == MSVCIntrin::_BitScanForward) {
942       Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
943       Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()});
944       ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false);
945       Builder.CreateStore(ZeroCount, IndexAddress, false);
946     } else {
947       unsigned ArgWidth = cast<llvm::IntegerType>(ArgType)->getBitWidth();
948       Value *ArgTypeLastIndex = llvm::ConstantInt::get(IndexType, ArgWidth - 1);
949 
950       Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
951       Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()});
952       ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false);
953       Value *Index = Builder.CreateNSWSub(ArgTypeLastIndex, ZeroCount);
954       Builder.CreateStore(Index, IndexAddress, false);
955     }
956     Builder.CreateBr(End);
957     Result->addIncoming(ResOne, NotZero);
958 
959     Builder.SetInsertPoint(End);
960     return Result;
961   }
962   case MSVCIntrin::_InterlockedAnd:
963     return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E);
964   case MSVCIntrin::_InterlockedExchange:
965     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E);
966   case MSVCIntrin::_InterlockedExchangeAdd:
967     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E);
968   case MSVCIntrin::_InterlockedExchangeSub:
969     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Sub, E);
970   case MSVCIntrin::_InterlockedOr:
971     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E);
972   case MSVCIntrin::_InterlockedXor:
973     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E);
974   case MSVCIntrin::_InterlockedExchangeAdd_acq:
975     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
976                                  AtomicOrdering::Acquire);
977   case MSVCIntrin::_InterlockedExchangeAdd_rel:
978     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
979                                  AtomicOrdering::Release);
980   case MSVCIntrin::_InterlockedExchangeAdd_nf:
981     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
982                                  AtomicOrdering::Monotonic);
983   case MSVCIntrin::_InterlockedExchange_acq:
984     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
985                                  AtomicOrdering::Acquire);
986   case MSVCIntrin::_InterlockedExchange_rel:
987     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
988                                  AtomicOrdering::Release);
989   case MSVCIntrin::_InterlockedExchange_nf:
990     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
991                                  AtomicOrdering::Monotonic);
992   case MSVCIntrin::_InterlockedCompareExchange_acq:
993     return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Acquire);
994   case MSVCIntrin::_InterlockedCompareExchange_rel:
995     return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Release);
996   case MSVCIntrin::_InterlockedCompareExchange_nf:
997     return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Monotonic);
998   case MSVCIntrin::_InterlockedOr_acq:
999     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
1000                                  AtomicOrdering::Acquire);
1001   case MSVCIntrin::_InterlockedOr_rel:
1002     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
1003                                  AtomicOrdering::Release);
1004   case MSVCIntrin::_InterlockedOr_nf:
1005     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
1006                                  AtomicOrdering::Monotonic);
1007   case MSVCIntrin::_InterlockedXor_acq:
1008     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
1009                                  AtomicOrdering::Acquire);
1010   case MSVCIntrin::_InterlockedXor_rel:
1011     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
1012                                  AtomicOrdering::Release);
1013   case MSVCIntrin::_InterlockedXor_nf:
1014     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
1015                                  AtomicOrdering::Monotonic);
1016   case MSVCIntrin::_InterlockedAnd_acq:
1017     return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
1018                                  AtomicOrdering::Acquire);
1019   case MSVCIntrin::_InterlockedAnd_rel:
1020     return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
1021                                  AtomicOrdering::Release);
1022   case MSVCIntrin::_InterlockedAnd_nf:
1023     return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
1024                                  AtomicOrdering::Monotonic);
1025   case MSVCIntrin::_InterlockedIncrement_acq:
1026     return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Acquire);
1027   case MSVCIntrin::_InterlockedIncrement_rel:
1028     return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Release);
1029   case MSVCIntrin::_InterlockedIncrement_nf:
1030     return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Monotonic);
1031   case MSVCIntrin::_InterlockedDecrement_acq:
1032     return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Acquire);
1033   case MSVCIntrin::_InterlockedDecrement_rel:
1034     return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Release);
1035   case MSVCIntrin::_InterlockedDecrement_nf:
1036     return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Monotonic);
1037 
1038   case MSVCIntrin::_InterlockedDecrement:
1039     return EmitAtomicDecrementValue(*this, E);
1040   case MSVCIntrin::_InterlockedIncrement:
1041     return EmitAtomicIncrementValue(*this, E);
1042 
1043   case MSVCIntrin::__fastfail: {
1044     // Request immediate process termination from the kernel. The instruction
1045     // sequences to do this are documented on MSDN:
1046     // https://msdn.microsoft.com/en-us/library/dn774154.aspx
1047     llvm::Triple::ArchType ISA = getTarget().getTriple().getArch();
1048     StringRef Asm, Constraints;
1049     switch (ISA) {
1050     default:
1051       ErrorUnsupported(E, "__fastfail call for this architecture");
1052       break;
1053     case llvm::Triple::x86:
1054     case llvm::Triple::x86_64:
1055       Asm = "int $$0x29";
1056       Constraints = "{cx}";
1057       break;
1058     case llvm::Triple::thumb:
1059       Asm = "udf #251";
1060       Constraints = "{r0}";
1061       break;
1062     case llvm::Triple::aarch64:
1063       Asm = "brk #0xF003";
1064       Constraints = "{w0}";
1065     }
1066     llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, {Int32Ty}, false);
1067     llvm::InlineAsm *IA =
1068         llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true);
1069     llvm::AttributeList NoReturnAttr = llvm::AttributeList::get(
1070         getLLVMContext(), llvm::AttributeList::FunctionIndex,
1071         llvm::Attribute::NoReturn);
1072     llvm::CallInst *CI = Builder.CreateCall(IA, EmitScalarExpr(E->getArg(0)));
1073     CI->setAttributes(NoReturnAttr);
1074     return CI;
1075   }
1076   }
1077   llvm_unreachable("Incorrect MSVC intrinsic!");
1078 }
1079 
1080 namespace {
1081 // ARC cleanup for __builtin_os_log_format
1082 struct CallObjCArcUse final : EHScopeStack::Cleanup {
1083   CallObjCArcUse(llvm::Value *object) : object(object) {}
1084   llvm::Value *object;
1085 
1086   void Emit(CodeGenFunction &CGF, Flags flags) override {
1087     CGF.EmitARCIntrinsicUse(object);
1088   }
1089 };
1090 }
1091 
1092 Value *CodeGenFunction::EmitCheckedArgForBuiltin(const Expr *E,
1093                                                  BuiltinCheckKind Kind) {
1094   assert((Kind == BCK_CLZPassedZero || Kind == BCK_CTZPassedZero)
1095           && "Unsupported builtin check kind");
1096 
1097   Value *ArgValue = EmitScalarExpr(E);
1098   if (!SanOpts.has(SanitizerKind::Builtin) || !getTarget().isCLZForZeroUndef())
1099     return ArgValue;
1100 
1101   SanitizerScope SanScope(this);
1102   Value *Cond = Builder.CreateICmpNE(
1103       ArgValue, llvm::Constant::getNullValue(ArgValue->getType()));
1104   EmitCheck(std::make_pair(Cond, SanitizerKind::Builtin),
1105             SanitizerHandler::InvalidBuiltin,
1106             {EmitCheckSourceLocation(E->getExprLoc()),
1107              llvm::ConstantInt::get(Builder.getInt8Ty(), Kind)},
1108             None);
1109   return ArgValue;
1110 }
1111 
1112 /// Get the argument type for arguments to os_log_helper.
1113 static CanQualType getOSLogArgType(ASTContext &C, int Size) {
1114   QualType UnsignedTy = C.getIntTypeForBitwidth(Size * 8, /*Signed=*/false);
1115   return C.getCanonicalType(UnsignedTy);
1116 }
1117 
1118 llvm::Function *CodeGenFunction::generateBuiltinOSLogHelperFunction(
1119     const analyze_os_log::OSLogBufferLayout &Layout,
1120     CharUnits BufferAlignment) {
1121   ASTContext &Ctx = getContext();
1122 
1123   llvm::SmallString<64> Name;
1124   {
1125     raw_svector_ostream OS(Name);
1126     OS << "__os_log_helper";
1127     OS << "_" << BufferAlignment.getQuantity();
1128     OS << "_" << int(Layout.getSummaryByte());
1129     OS << "_" << int(Layout.getNumArgsByte());
1130     for (const auto &Item : Layout.Items)
1131       OS << "_" << int(Item.getSizeByte()) << "_"
1132          << int(Item.getDescriptorByte());
1133   }
1134 
1135   if (llvm::Function *F = CGM.getModule().getFunction(Name))
1136     return F;
1137 
1138   llvm::SmallVector<QualType, 4> ArgTys;
1139   FunctionArgList Args;
1140   Args.push_back(ImplicitParamDecl::Create(
1141       Ctx, nullptr, SourceLocation(), &Ctx.Idents.get("buffer"), Ctx.VoidPtrTy,
1142       ImplicitParamDecl::Other));
1143   ArgTys.emplace_back(Ctx.VoidPtrTy);
1144 
1145   for (unsigned int I = 0, E = Layout.Items.size(); I < E; ++I) {
1146     char Size = Layout.Items[I].getSizeByte();
1147     if (!Size)
1148       continue;
1149 
1150     QualType ArgTy = getOSLogArgType(Ctx, Size);
1151     Args.push_back(ImplicitParamDecl::Create(
1152         Ctx, nullptr, SourceLocation(),
1153         &Ctx.Idents.get(std::string("arg") + llvm::to_string(I)), ArgTy,
1154         ImplicitParamDecl::Other));
1155     ArgTys.emplace_back(ArgTy);
1156   }
1157 
1158   QualType ReturnTy = Ctx.VoidTy;
1159   QualType FuncionTy = Ctx.getFunctionType(ReturnTy, ArgTys, {});
1160 
1161   // The helper function has linkonce_odr linkage to enable the linker to merge
1162   // identical functions. To ensure the merging always happens, 'noinline' is
1163   // attached to the function when compiling with -Oz.
1164   const CGFunctionInfo &FI =
1165       CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, Args);
1166   llvm::FunctionType *FuncTy = CGM.getTypes().GetFunctionType(FI);
1167   llvm::Function *Fn = llvm::Function::Create(
1168       FuncTy, llvm::GlobalValue::LinkOnceODRLinkage, Name, &CGM.getModule());
1169   Fn->setVisibility(llvm::GlobalValue::HiddenVisibility);
1170   CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, Fn);
1171   CGM.SetLLVMFunctionAttributesForDefinition(nullptr, Fn);
1172   Fn->setDoesNotThrow();
1173 
1174   // Attach 'noinline' at -Oz.
1175   if (CGM.getCodeGenOpts().OptimizeSize == 2)
1176     Fn->addFnAttr(llvm::Attribute::NoInline);
1177 
1178   auto NL = ApplyDebugLocation::CreateEmpty(*this);
1179   IdentifierInfo *II = &Ctx.Idents.get(Name);
1180   FunctionDecl *FD = FunctionDecl::Create(
1181       Ctx, Ctx.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II,
1182       FuncionTy, nullptr, SC_PrivateExtern, false, false);
1183 
1184   StartFunction(FD, ReturnTy, Fn, FI, Args);
1185 
1186   // Create a scope with an artificial location for the body of this function.
1187   auto AL = ApplyDebugLocation::CreateArtificial(*this);
1188 
1189   CharUnits Offset;
1190   Address BufAddr(Builder.CreateLoad(GetAddrOfLocalVar(Args[0]), "buf"),
1191                   BufferAlignment);
1192   Builder.CreateStore(Builder.getInt8(Layout.getSummaryByte()),
1193                       Builder.CreateConstByteGEP(BufAddr, Offset++, "summary"));
1194   Builder.CreateStore(Builder.getInt8(Layout.getNumArgsByte()),
1195                       Builder.CreateConstByteGEP(BufAddr, Offset++, "numArgs"));
1196 
1197   unsigned I = 1;
1198   for (const auto &Item : Layout.Items) {
1199     Builder.CreateStore(
1200         Builder.getInt8(Item.getDescriptorByte()),
1201         Builder.CreateConstByteGEP(BufAddr, Offset++, "argDescriptor"));
1202     Builder.CreateStore(
1203         Builder.getInt8(Item.getSizeByte()),
1204         Builder.CreateConstByteGEP(BufAddr, Offset++, "argSize"));
1205 
1206     CharUnits Size = Item.size();
1207     if (!Size.getQuantity())
1208       continue;
1209 
1210     Address Arg = GetAddrOfLocalVar(Args[I]);
1211     Address Addr = Builder.CreateConstByteGEP(BufAddr, Offset, "argData");
1212     Addr = Builder.CreateBitCast(Addr, Arg.getPointer()->getType(),
1213                                  "argDataCast");
1214     Builder.CreateStore(Builder.CreateLoad(Arg), Addr);
1215     Offset += Size;
1216     ++I;
1217   }
1218 
1219   FinishFunction();
1220 
1221   return Fn;
1222 }
1223 
1224 RValue CodeGenFunction::emitBuiltinOSLogFormat(const CallExpr &E) {
1225   assert(E.getNumArgs() >= 2 &&
1226          "__builtin_os_log_format takes at least 2 arguments");
1227   ASTContext &Ctx = getContext();
1228   analyze_os_log::OSLogBufferLayout Layout;
1229   analyze_os_log::computeOSLogBufferLayout(Ctx, &E, Layout);
1230   Address BufAddr = EmitPointerWithAlignment(E.getArg(0));
1231   llvm::SmallVector<llvm::Value *, 4> RetainableOperands;
1232 
1233   // Ignore argument 1, the format string. It is not currently used.
1234   CallArgList Args;
1235   Args.add(RValue::get(BufAddr.getPointer()), Ctx.VoidPtrTy);
1236 
1237   for (const auto &Item : Layout.Items) {
1238     int Size = Item.getSizeByte();
1239     if (!Size)
1240       continue;
1241 
1242     llvm::Value *ArgVal;
1243 
1244     if (Item.getKind() == analyze_os_log::OSLogBufferItem::MaskKind) {
1245       uint64_t Val = 0;
1246       for (unsigned I = 0, E = Item.getMaskType().size(); I < E; ++I)
1247         Val |= ((uint64_t)Item.getMaskType()[I]) << I * 8;
1248       ArgVal = llvm::Constant::getIntegerValue(Int64Ty, llvm::APInt(64, Val));
1249     } else if (const Expr *TheExpr = Item.getExpr()) {
1250       ArgVal = EmitScalarExpr(TheExpr, /*Ignore*/ false);
1251 
1252       // Check if this is a retainable type.
1253       if (TheExpr->getType()->isObjCRetainableType()) {
1254         assert(getEvaluationKind(TheExpr->getType()) == TEK_Scalar &&
1255                "Only scalar can be a ObjC retainable type");
1256         // Check if the object is constant, if not, save it in
1257         // RetainableOperands.
1258         if (!isa<Constant>(ArgVal))
1259           RetainableOperands.push_back(ArgVal);
1260       }
1261     } else {
1262       ArgVal = Builder.getInt32(Item.getConstValue().getQuantity());
1263     }
1264 
1265     unsigned ArgValSize =
1266         CGM.getDataLayout().getTypeSizeInBits(ArgVal->getType());
1267     llvm::IntegerType *IntTy = llvm::Type::getIntNTy(getLLVMContext(),
1268                                                      ArgValSize);
1269     ArgVal = Builder.CreateBitOrPointerCast(ArgVal, IntTy);
1270     CanQualType ArgTy = getOSLogArgType(Ctx, Size);
1271     // If ArgVal has type x86_fp80, zero-extend ArgVal.
1272     ArgVal = Builder.CreateZExtOrBitCast(ArgVal, ConvertType(ArgTy));
1273     Args.add(RValue::get(ArgVal), ArgTy);
1274   }
1275 
1276   const CGFunctionInfo &FI =
1277       CGM.getTypes().arrangeBuiltinFunctionCall(Ctx.VoidTy, Args);
1278   llvm::Function *F = CodeGenFunction(CGM).generateBuiltinOSLogHelperFunction(
1279       Layout, BufAddr.getAlignment());
1280   EmitCall(FI, CGCallee::forDirect(F), ReturnValueSlot(), Args);
1281 
1282   // Push a clang.arc.use cleanup for each object in RetainableOperands. The
1283   // cleanup will cause the use to appear after the final log call, keeping
1284   // the object valid while it’s held in the log buffer.  Note that if there’s
1285   // a release cleanup on the object, it will already be active; since
1286   // cleanups are emitted in reverse order, the use will occur before the
1287   // object is released.
1288   if (!RetainableOperands.empty() && getLangOpts().ObjCAutoRefCount &&
1289       CGM.getCodeGenOpts().OptimizationLevel != 0)
1290     for (llvm::Value *Object : RetainableOperands)
1291       pushFullExprCleanup<CallObjCArcUse>(getARCCleanupKind(), Object);
1292 
1293   return RValue::get(BufAddr.getPointer());
1294 }
1295 
1296 /// Determine if a binop is a checked mixed-sign multiply we can specialize.
1297 static bool isSpecialMixedSignMultiply(unsigned BuiltinID,
1298                                        WidthAndSignedness Op1Info,
1299                                        WidthAndSignedness Op2Info,
1300                                        WidthAndSignedness ResultInfo) {
1301   return BuiltinID == Builtin::BI__builtin_mul_overflow &&
1302          std::max(Op1Info.Width, Op2Info.Width) >= ResultInfo.Width &&
1303          Op1Info.Signed != Op2Info.Signed;
1304 }
1305 
1306 /// Emit a checked mixed-sign multiply. This is a cheaper specialization of
1307 /// the generic checked-binop irgen.
1308 static RValue
1309 EmitCheckedMixedSignMultiply(CodeGenFunction &CGF, const clang::Expr *Op1,
1310                              WidthAndSignedness Op1Info, const clang::Expr *Op2,
1311                              WidthAndSignedness Op2Info,
1312                              const clang::Expr *ResultArg, QualType ResultQTy,
1313                              WidthAndSignedness ResultInfo) {
1314   assert(isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow, Op1Info,
1315                                     Op2Info, ResultInfo) &&
1316          "Not a mixed-sign multipliction we can specialize");
1317 
1318   // Emit the signed and unsigned operands.
1319   const clang::Expr *SignedOp = Op1Info.Signed ? Op1 : Op2;
1320   const clang::Expr *UnsignedOp = Op1Info.Signed ? Op2 : Op1;
1321   llvm::Value *Signed = CGF.EmitScalarExpr(SignedOp);
1322   llvm::Value *Unsigned = CGF.EmitScalarExpr(UnsignedOp);
1323   unsigned SignedOpWidth = Op1Info.Signed ? Op1Info.Width : Op2Info.Width;
1324   unsigned UnsignedOpWidth = Op1Info.Signed ? Op2Info.Width : Op1Info.Width;
1325 
1326   // One of the operands may be smaller than the other. If so, [s|z]ext it.
1327   if (SignedOpWidth < UnsignedOpWidth)
1328     Signed = CGF.Builder.CreateSExt(Signed, Unsigned->getType(), "op.sext");
1329   if (UnsignedOpWidth < SignedOpWidth)
1330     Unsigned = CGF.Builder.CreateZExt(Unsigned, Signed->getType(), "op.zext");
1331 
1332   llvm::Type *OpTy = Signed->getType();
1333   llvm::Value *Zero = llvm::Constant::getNullValue(OpTy);
1334   Address ResultPtr = CGF.EmitPointerWithAlignment(ResultArg);
1335   llvm::Type *ResTy = ResultPtr.getElementType();
1336   unsigned OpWidth = std::max(Op1Info.Width, Op2Info.Width);
1337 
1338   // Take the absolute value of the signed operand.
1339   llvm::Value *IsNegative = CGF.Builder.CreateICmpSLT(Signed, Zero);
1340   llvm::Value *AbsOfNegative = CGF.Builder.CreateSub(Zero, Signed);
1341   llvm::Value *AbsSigned =
1342       CGF.Builder.CreateSelect(IsNegative, AbsOfNegative, Signed);
1343 
1344   // Perform a checked unsigned multiplication.
1345   llvm::Value *UnsignedOverflow;
1346   llvm::Value *UnsignedResult =
1347       EmitOverflowIntrinsic(CGF, llvm::Intrinsic::umul_with_overflow, AbsSigned,
1348                             Unsigned, UnsignedOverflow);
1349 
1350   llvm::Value *Overflow, *Result;
1351   if (ResultInfo.Signed) {
1352     // Signed overflow occurs if the result is greater than INT_MAX or lesser
1353     // than INT_MIN, i.e when |Result| > (INT_MAX + IsNegative).
1354     auto IntMax =
1355         llvm::APInt::getSignedMaxValue(ResultInfo.Width).zextOrSelf(OpWidth);
1356     llvm::Value *MaxResult =
1357         CGF.Builder.CreateAdd(llvm::ConstantInt::get(OpTy, IntMax),
1358                               CGF.Builder.CreateZExt(IsNegative, OpTy));
1359     llvm::Value *SignedOverflow =
1360         CGF.Builder.CreateICmpUGT(UnsignedResult, MaxResult);
1361     Overflow = CGF.Builder.CreateOr(UnsignedOverflow, SignedOverflow);
1362 
1363     // Prepare the signed result (possibly by negating it).
1364     llvm::Value *NegativeResult = CGF.Builder.CreateNeg(UnsignedResult);
1365     llvm::Value *SignedResult =
1366         CGF.Builder.CreateSelect(IsNegative, NegativeResult, UnsignedResult);
1367     Result = CGF.Builder.CreateTrunc(SignedResult, ResTy);
1368   } else {
1369     // Unsigned overflow occurs if the result is < 0 or greater than UINT_MAX.
1370     llvm::Value *Underflow = CGF.Builder.CreateAnd(
1371         IsNegative, CGF.Builder.CreateIsNotNull(UnsignedResult));
1372     Overflow = CGF.Builder.CreateOr(UnsignedOverflow, Underflow);
1373     if (ResultInfo.Width < OpWidth) {
1374       auto IntMax =
1375           llvm::APInt::getMaxValue(ResultInfo.Width).zext(OpWidth);
1376       llvm::Value *TruncOverflow = CGF.Builder.CreateICmpUGT(
1377           UnsignedResult, llvm::ConstantInt::get(OpTy, IntMax));
1378       Overflow = CGF.Builder.CreateOr(Overflow, TruncOverflow);
1379     }
1380 
1381     // Negate the product if it would be negative in infinite precision.
1382     Result = CGF.Builder.CreateSelect(
1383         IsNegative, CGF.Builder.CreateNeg(UnsignedResult), UnsignedResult);
1384 
1385     Result = CGF.Builder.CreateTrunc(Result, ResTy);
1386   }
1387   assert(Overflow && Result && "Missing overflow or result");
1388 
1389   bool isVolatile =
1390       ResultArg->getType()->getPointeeType().isVolatileQualified();
1391   CGF.Builder.CreateStore(CGF.EmitToMemory(Result, ResultQTy), ResultPtr,
1392                           isVolatile);
1393   return RValue::get(Overflow);
1394 }
1395 
1396 static llvm::Value *dumpRecord(CodeGenFunction &CGF, QualType RType,
1397                                Value *&RecordPtr, CharUnits Align,
1398                                llvm::FunctionCallee Func, int Lvl) {
1399   ASTContext &Context = CGF.getContext();
1400   RecordDecl *RD = RType->castAs<RecordType>()->getDecl()->getDefinition();
1401   std::string Pad = std::string(Lvl * 4, ' ');
1402 
1403   Value *GString =
1404       CGF.Builder.CreateGlobalStringPtr(RType.getAsString() + " {\n");
1405   Value *Res = CGF.Builder.CreateCall(Func, {GString});
1406 
1407   static llvm::DenseMap<QualType, const char *> Types;
1408   if (Types.empty()) {
1409     Types[Context.CharTy] = "%c";
1410     Types[Context.BoolTy] = "%d";
1411     Types[Context.SignedCharTy] = "%hhd";
1412     Types[Context.UnsignedCharTy] = "%hhu";
1413     Types[Context.IntTy] = "%d";
1414     Types[Context.UnsignedIntTy] = "%u";
1415     Types[Context.LongTy] = "%ld";
1416     Types[Context.UnsignedLongTy] = "%lu";
1417     Types[Context.LongLongTy] = "%lld";
1418     Types[Context.UnsignedLongLongTy] = "%llu";
1419     Types[Context.ShortTy] = "%hd";
1420     Types[Context.UnsignedShortTy] = "%hu";
1421     Types[Context.VoidPtrTy] = "%p";
1422     Types[Context.FloatTy] = "%f";
1423     Types[Context.DoubleTy] = "%f";
1424     Types[Context.LongDoubleTy] = "%Lf";
1425     Types[Context.getPointerType(Context.CharTy)] = "%s";
1426     Types[Context.getPointerType(Context.getConstType(Context.CharTy))] = "%s";
1427   }
1428 
1429   for (const auto *FD : RD->fields()) {
1430     Value *FieldPtr = RecordPtr;
1431     if (RD->isUnion())
1432       FieldPtr = CGF.Builder.CreatePointerCast(
1433           FieldPtr, CGF.ConvertType(Context.getPointerType(FD->getType())));
1434     else
1435       FieldPtr = CGF.Builder.CreateStructGEP(CGF.ConvertType(RType), FieldPtr,
1436                                              FD->getFieldIndex());
1437 
1438     GString = CGF.Builder.CreateGlobalStringPtr(
1439         llvm::Twine(Pad)
1440             .concat(FD->getType().getAsString())
1441             .concat(llvm::Twine(' '))
1442             .concat(FD->getNameAsString())
1443             .concat(" : ")
1444             .str());
1445     Value *TmpRes = CGF.Builder.CreateCall(Func, {GString});
1446     Res = CGF.Builder.CreateAdd(Res, TmpRes);
1447 
1448     QualType CanonicalType =
1449         FD->getType().getUnqualifiedType().getCanonicalType();
1450 
1451     // We check whether we are in a recursive type
1452     if (CanonicalType->isRecordType()) {
1453       Value *TmpRes =
1454           dumpRecord(CGF, CanonicalType, FieldPtr, Align, Func, Lvl + 1);
1455       Res = CGF.Builder.CreateAdd(TmpRes, Res);
1456       continue;
1457     }
1458 
1459     // We try to determine the best format to print the current field
1460     llvm::Twine Format = Types.find(CanonicalType) == Types.end()
1461                              ? Types[Context.VoidPtrTy]
1462                              : Types[CanonicalType];
1463 
1464     Address FieldAddress = Address(FieldPtr, Align);
1465     FieldPtr = CGF.Builder.CreateLoad(FieldAddress);
1466 
1467     // FIXME Need to handle bitfield here
1468     GString = CGF.Builder.CreateGlobalStringPtr(
1469         Format.concat(llvm::Twine('\n')).str());
1470     TmpRes = CGF.Builder.CreateCall(Func, {GString, FieldPtr});
1471     Res = CGF.Builder.CreateAdd(Res, TmpRes);
1472   }
1473 
1474   GString = CGF.Builder.CreateGlobalStringPtr(Pad + "}\n");
1475   Value *TmpRes = CGF.Builder.CreateCall(Func, {GString});
1476   Res = CGF.Builder.CreateAdd(Res, TmpRes);
1477   return Res;
1478 }
1479 
1480 static bool
1481 TypeRequiresBuiltinLaunderImp(const ASTContext &Ctx, QualType Ty,
1482                               llvm::SmallPtrSetImpl<const Decl *> &Seen) {
1483   if (const auto *Arr = Ctx.getAsArrayType(Ty))
1484     Ty = Ctx.getBaseElementType(Arr);
1485 
1486   const auto *Record = Ty->getAsCXXRecordDecl();
1487   if (!Record)
1488     return false;
1489 
1490   // We've already checked this type, or are in the process of checking it.
1491   if (!Seen.insert(Record).second)
1492     return false;
1493 
1494   assert(Record->hasDefinition() &&
1495          "Incomplete types should already be diagnosed");
1496 
1497   if (Record->isDynamicClass())
1498     return true;
1499 
1500   for (FieldDecl *F : Record->fields()) {
1501     if (TypeRequiresBuiltinLaunderImp(Ctx, F->getType(), Seen))
1502       return true;
1503   }
1504   return false;
1505 }
1506 
1507 /// Determine if the specified type requires laundering by checking if it is a
1508 /// dynamic class type or contains a subobject which is a dynamic class type.
1509 static bool TypeRequiresBuiltinLaunder(CodeGenModule &CGM, QualType Ty) {
1510   if (!CGM.getCodeGenOpts().StrictVTablePointers)
1511     return false;
1512   llvm::SmallPtrSet<const Decl *, 16> Seen;
1513   return TypeRequiresBuiltinLaunderImp(CGM.getContext(), Ty, Seen);
1514 }
1515 
1516 RValue CodeGenFunction::emitRotate(const CallExpr *E, bool IsRotateRight) {
1517   llvm::Value *Src = EmitScalarExpr(E->getArg(0));
1518   llvm::Value *ShiftAmt = EmitScalarExpr(E->getArg(1));
1519 
1520   // The builtin's shift arg may have a different type than the source arg and
1521   // result, but the LLVM intrinsic uses the same type for all values.
1522   llvm::Type *Ty = Src->getType();
1523   ShiftAmt = Builder.CreateIntCast(ShiftAmt, Ty, false);
1524 
1525   // Rotate is a special case of LLVM funnel shift - 1st 2 args are the same.
1526   unsigned IID = IsRotateRight ? Intrinsic::fshr : Intrinsic::fshl;
1527   Function *F = CGM.getIntrinsic(IID, Ty);
1528   return RValue::get(Builder.CreateCall(F, { Src, Src, ShiftAmt }));
1529 }
1530 
1531 RValue CodeGenFunction::EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID,
1532                                         const CallExpr *E,
1533                                         ReturnValueSlot ReturnValue) {
1534   const FunctionDecl *FD = GD.getDecl()->getAsFunction();
1535   // See if we can constant fold this builtin.  If so, don't emit it at all.
1536   Expr::EvalResult Result;
1537   if (E->EvaluateAsRValue(Result, CGM.getContext()) &&
1538       !Result.hasSideEffects()) {
1539     if (Result.Val.isInt())
1540       return RValue::get(llvm::ConstantInt::get(getLLVMContext(),
1541                                                 Result.Val.getInt()));
1542     if (Result.Val.isFloat())
1543       return RValue::get(llvm::ConstantFP::get(getLLVMContext(),
1544                                                Result.Val.getFloat()));
1545   }
1546 
1547   // There are LLVM math intrinsics/instructions corresponding to math library
1548   // functions except the LLVM op will never set errno while the math library
1549   // might. Also, math builtins have the same semantics as their math library
1550   // twins. Thus, we can transform math library and builtin calls to their
1551   // LLVM counterparts if the call is marked 'const' (known to never set errno).
1552   if (FD->hasAttr<ConstAttr>()) {
1553     switch (BuiltinID) {
1554     case Builtin::BIceil:
1555     case Builtin::BIceilf:
1556     case Builtin::BIceill:
1557     case Builtin::BI__builtin_ceil:
1558     case Builtin::BI__builtin_ceilf:
1559     case Builtin::BI__builtin_ceilf16:
1560     case Builtin::BI__builtin_ceill:
1561       return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::ceil));
1562 
1563     case Builtin::BIcopysign:
1564     case Builtin::BIcopysignf:
1565     case Builtin::BIcopysignl:
1566     case Builtin::BI__builtin_copysign:
1567     case Builtin::BI__builtin_copysignf:
1568     case Builtin::BI__builtin_copysignf16:
1569     case Builtin::BI__builtin_copysignl:
1570     case Builtin::BI__builtin_copysignf128:
1571       return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::copysign));
1572 
1573     case Builtin::BIcos:
1574     case Builtin::BIcosf:
1575     case Builtin::BIcosl:
1576     case Builtin::BI__builtin_cos:
1577     case Builtin::BI__builtin_cosf:
1578     case Builtin::BI__builtin_cosf16:
1579     case Builtin::BI__builtin_cosl:
1580       return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::cos));
1581 
1582     case Builtin::BIexp:
1583     case Builtin::BIexpf:
1584     case Builtin::BIexpl:
1585     case Builtin::BI__builtin_exp:
1586     case Builtin::BI__builtin_expf:
1587     case Builtin::BI__builtin_expf16:
1588     case Builtin::BI__builtin_expl:
1589       return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::exp));
1590 
1591     case Builtin::BIexp2:
1592     case Builtin::BIexp2f:
1593     case Builtin::BIexp2l:
1594     case Builtin::BI__builtin_exp2:
1595     case Builtin::BI__builtin_exp2f:
1596     case Builtin::BI__builtin_exp2f16:
1597     case Builtin::BI__builtin_exp2l:
1598       return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::exp2));
1599 
1600     case Builtin::BIfabs:
1601     case Builtin::BIfabsf:
1602     case Builtin::BIfabsl:
1603     case Builtin::BI__builtin_fabs:
1604     case Builtin::BI__builtin_fabsf:
1605     case Builtin::BI__builtin_fabsf16:
1606     case Builtin::BI__builtin_fabsl:
1607     case Builtin::BI__builtin_fabsf128:
1608       return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::fabs));
1609 
1610     case Builtin::BIfloor:
1611     case Builtin::BIfloorf:
1612     case Builtin::BIfloorl:
1613     case Builtin::BI__builtin_floor:
1614     case Builtin::BI__builtin_floorf:
1615     case Builtin::BI__builtin_floorf16:
1616     case Builtin::BI__builtin_floorl:
1617       return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::floor));
1618 
1619     case Builtin::BIfma:
1620     case Builtin::BIfmaf:
1621     case Builtin::BIfmal:
1622     case Builtin::BI__builtin_fma:
1623     case Builtin::BI__builtin_fmaf:
1624     case Builtin::BI__builtin_fmaf16:
1625     case Builtin::BI__builtin_fmal:
1626       return RValue::get(emitTernaryBuiltin(*this, E, Intrinsic::fma));
1627 
1628     case Builtin::BIfmax:
1629     case Builtin::BIfmaxf:
1630     case Builtin::BIfmaxl:
1631     case Builtin::BI__builtin_fmax:
1632     case Builtin::BI__builtin_fmaxf:
1633     case Builtin::BI__builtin_fmaxf16:
1634     case Builtin::BI__builtin_fmaxl:
1635       return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::maxnum));
1636 
1637     case Builtin::BIfmin:
1638     case Builtin::BIfminf:
1639     case Builtin::BIfminl:
1640     case Builtin::BI__builtin_fmin:
1641     case Builtin::BI__builtin_fminf:
1642     case Builtin::BI__builtin_fminf16:
1643     case Builtin::BI__builtin_fminl:
1644       return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::minnum));
1645 
1646     // fmod() is a special-case. It maps to the frem instruction rather than an
1647     // LLVM intrinsic.
1648     case Builtin::BIfmod:
1649     case Builtin::BIfmodf:
1650     case Builtin::BIfmodl:
1651     case Builtin::BI__builtin_fmod:
1652     case Builtin::BI__builtin_fmodf:
1653     case Builtin::BI__builtin_fmodf16:
1654     case Builtin::BI__builtin_fmodl: {
1655       Value *Arg1 = EmitScalarExpr(E->getArg(0));
1656       Value *Arg2 = EmitScalarExpr(E->getArg(1));
1657       return RValue::get(Builder.CreateFRem(Arg1, Arg2, "fmod"));
1658     }
1659 
1660     case Builtin::BIlog:
1661     case Builtin::BIlogf:
1662     case Builtin::BIlogl:
1663     case Builtin::BI__builtin_log:
1664     case Builtin::BI__builtin_logf:
1665     case Builtin::BI__builtin_logf16:
1666     case Builtin::BI__builtin_logl:
1667       return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::log));
1668 
1669     case Builtin::BIlog10:
1670     case Builtin::BIlog10f:
1671     case Builtin::BIlog10l:
1672     case Builtin::BI__builtin_log10:
1673     case Builtin::BI__builtin_log10f:
1674     case Builtin::BI__builtin_log10f16:
1675     case Builtin::BI__builtin_log10l:
1676       return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::log10));
1677 
1678     case Builtin::BIlog2:
1679     case Builtin::BIlog2f:
1680     case Builtin::BIlog2l:
1681     case Builtin::BI__builtin_log2:
1682     case Builtin::BI__builtin_log2f:
1683     case Builtin::BI__builtin_log2f16:
1684     case Builtin::BI__builtin_log2l:
1685       return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::log2));
1686 
1687     case Builtin::BInearbyint:
1688     case Builtin::BInearbyintf:
1689     case Builtin::BInearbyintl:
1690     case Builtin::BI__builtin_nearbyint:
1691     case Builtin::BI__builtin_nearbyintf:
1692     case Builtin::BI__builtin_nearbyintl:
1693       return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::nearbyint));
1694 
1695     case Builtin::BIpow:
1696     case Builtin::BIpowf:
1697     case Builtin::BIpowl:
1698     case Builtin::BI__builtin_pow:
1699     case Builtin::BI__builtin_powf:
1700     case Builtin::BI__builtin_powf16:
1701     case Builtin::BI__builtin_powl:
1702       return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::pow));
1703 
1704     case Builtin::BIrint:
1705     case Builtin::BIrintf:
1706     case Builtin::BIrintl:
1707     case Builtin::BI__builtin_rint:
1708     case Builtin::BI__builtin_rintf:
1709     case Builtin::BI__builtin_rintf16:
1710     case Builtin::BI__builtin_rintl:
1711       return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::rint));
1712 
1713     case Builtin::BIround:
1714     case Builtin::BIroundf:
1715     case Builtin::BIroundl:
1716     case Builtin::BI__builtin_round:
1717     case Builtin::BI__builtin_roundf:
1718     case Builtin::BI__builtin_roundf16:
1719     case Builtin::BI__builtin_roundl:
1720       return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::round));
1721 
1722     case Builtin::BIsin:
1723     case Builtin::BIsinf:
1724     case Builtin::BIsinl:
1725     case Builtin::BI__builtin_sin:
1726     case Builtin::BI__builtin_sinf:
1727     case Builtin::BI__builtin_sinf16:
1728     case Builtin::BI__builtin_sinl:
1729       return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::sin));
1730 
1731     case Builtin::BIsqrt:
1732     case Builtin::BIsqrtf:
1733     case Builtin::BIsqrtl:
1734     case Builtin::BI__builtin_sqrt:
1735     case Builtin::BI__builtin_sqrtf:
1736     case Builtin::BI__builtin_sqrtf16:
1737     case Builtin::BI__builtin_sqrtl:
1738       return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::sqrt));
1739 
1740     case Builtin::BItrunc:
1741     case Builtin::BItruncf:
1742     case Builtin::BItruncl:
1743     case Builtin::BI__builtin_trunc:
1744     case Builtin::BI__builtin_truncf:
1745     case Builtin::BI__builtin_truncf16:
1746     case Builtin::BI__builtin_truncl:
1747       return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::trunc));
1748 
1749     case Builtin::BIlround:
1750     case Builtin::BIlroundf:
1751     case Builtin::BIlroundl:
1752     case Builtin::BI__builtin_lround:
1753     case Builtin::BI__builtin_lroundf:
1754     case Builtin::BI__builtin_lroundl:
1755       return RValue::get(emitFPToIntRoundBuiltin(*this, E, Intrinsic::lround));
1756 
1757     case Builtin::BIllround:
1758     case Builtin::BIllroundf:
1759     case Builtin::BIllroundl:
1760     case Builtin::BI__builtin_llround:
1761     case Builtin::BI__builtin_llroundf:
1762     case Builtin::BI__builtin_llroundl:
1763       return RValue::get(emitFPToIntRoundBuiltin(*this, E, Intrinsic::llround));
1764 
1765     case Builtin::BIlrint:
1766     case Builtin::BIlrintf:
1767     case Builtin::BIlrintl:
1768     case Builtin::BI__builtin_lrint:
1769     case Builtin::BI__builtin_lrintf:
1770     case Builtin::BI__builtin_lrintl:
1771       return RValue::get(emitFPToIntRoundBuiltin(*this, E, Intrinsic::lrint));
1772 
1773     case Builtin::BIllrint:
1774     case Builtin::BIllrintf:
1775     case Builtin::BIllrintl:
1776     case Builtin::BI__builtin_llrint:
1777     case Builtin::BI__builtin_llrintf:
1778     case Builtin::BI__builtin_llrintl:
1779       return RValue::get(emitFPToIntRoundBuiltin(*this, E, Intrinsic::llrint));
1780 
1781     default:
1782       break;
1783     }
1784   }
1785 
1786   switch (BuiltinID) {
1787   default: break;
1788   case Builtin::BI__builtin___CFStringMakeConstantString:
1789   case Builtin::BI__builtin___NSStringMakeConstantString:
1790     return RValue::get(ConstantEmitter(*this).emitAbstract(E, E->getType()));
1791   case Builtin::BI__builtin_stdarg_start:
1792   case Builtin::BI__builtin_va_start:
1793   case Builtin::BI__va_start:
1794   case Builtin::BI__builtin_va_end:
1795     return RValue::get(
1796         EmitVAStartEnd(BuiltinID == Builtin::BI__va_start
1797                            ? EmitScalarExpr(E->getArg(0))
1798                            : EmitVAListRef(E->getArg(0)).getPointer(),
1799                        BuiltinID != Builtin::BI__builtin_va_end));
1800   case Builtin::BI__builtin_va_copy: {
1801     Value *DstPtr = EmitVAListRef(E->getArg(0)).getPointer();
1802     Value *SrcPtr = EmitVAListRef(E->getArg(1)).getPointer();
1803 
1804     llvm::Type *Type = Int8PtrTy;
1805 
1806     DstPtr = Builder.CreateBitCast(DstPtr, Type);
1807     SrcPtr = Builder.CreateBitCast(SrcPtr, Type);
1808     return RValue::get(Builder.CreateCall(CGM.getIntrinsic(Intrinsic::vacopy),
1809                                           {DstPtr, SrcPtr}));
1810   }
1811   case Builtin::BI__builtin_abs:
1812   case Builtin::BI__builtin_labs:
1813   case Builtin::BI__builtin_llabs: {
1814     // X < 0 ? -X : X
1815     // The negation has 'nsw' because abs of INT_MIN is undefined.
1816     Value *ArgValue = EmitScalarExpr(E->getArg(0));
1817     Value *NegOp = Builder.CreateNSWNeg(ArgValue, "neg");
1818     Constant *Zero = llvm::Constant::getNullValue(ArgValue->getType());
1819     Value *CmpResult = Builder.CreateICmpSLT(ArgValue, Zero, "abscond");
1820     Value *Result = Builder.CreateSelect(CmpResult, NegOp, ArgValue, "abs");
1821     return RValue::get(Result);
1822   }
1823   case Builtin::BI__builtin_conj:
1824   case Builtin::BI__builtin_conjf:
1825   case Builtin::BI__builtin_conjl: {
1826     ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
1827     Value *Real = ComplexVal.first;
1828     Value *Imag = ComplexVal.second;
1829     Value *Zero =
1830       Imag->getType()->isFPOrFPVectorTy()
1831         ? llvm::ConstantFP::getZeroValueForNegation(Imag->getType())
1832         : llvm::Constant::getNullValue(Imag->getType());
1833 
1834     Imag = Builder.CreateFSub(Zero, Imag, "sub");
1835     return RValue::getComplex(std::make_pair(Real, Imag));
1836   }
1837   case Builtin::BI__builtin_creal:
1838   case Builtin::BI__builtin_crealf:
1839   case Builtin::BI__builtin_creall:
1840   case Builtin::BIcreal:
1841   case Builtin::BIcrealf:
1842   case Builtin::BIcreall: {
1843     ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
1844     return RValue::get(ComplexVal.first);
1845   }
1846 
1847   case Builtin::BI__builtin_dump_struct: {
1848     llvm::Type *LLVMIntTy = getTypes().ConvertType(getContext().IntTy);
1849     llvm::FunctionType *LLVMFuncType = llvm::FunctionType::get(
1850         LLVMIntTy, {llvm::Type::getInt8PtrTy(getLLVMContext())}, true);
1851 
1852     Value *Func = EmitScalarExpr(E->getArg(1)->IgnoreImpCasts());
1853     CharUnits Arg0Align = EmitPointerWithAlignment(E->getArg(0)).getAlignment();
1854 
1855     const Expr *Arg0 = E->getArg(0)->IgnoreImpCasts();
1856     QualType Arg0Type = Arg0->getType()->getPointeeType();
1857 
1858     Value *RecordPtr = EmitScalarExpr(Arg0);
1859     Value *Res = dumpRecord(*this, Arg0Type, RecordPtr, Arg0Align,
1860                             {LLVMFuncType, Func}, 0);
1861     return RValue::get(Res);
1862   }
1863 
1864   case Builtin::BI__builtin_preserve_access_index: {
1865     // Only enabled preserved access index region when debuginfo
1866     // is available as debuginfo is needed to preserve user-level
1867     // access pattern.
1868     if (!getDebugInfo()) {
1869       CGM.Error(E->getExprLoc(), "using builtin_preserve_access_index() without -g");
1870       return RValue::get(EmitScalarExpr(E->getArg(0)));
1871     }
1872 
1873     // Nested builtin_preserve_access_index() not supported
1874     if (IsInPreservedAIRegion) {
1875       CGM.Error(E->getExprLoc(), "nested builtin_preserve_access_index() not supported");
1876       return RValue::get(EmitScalarExpr(E->getArg(0)));
1877     }
1878 
1879     IsInPreservedAIRegion = true;
1880     Value *Res = EmitScalarExpr(E->getArg(0));
1881     IsInPreservedAIRegion = false;
1882     return RValue::get(Res);
1883   }
1884 
1885   case Builtin::BI__builtin_cimag:
1886   case Builtin::BI__builtin_cimagf:
1887   case Builtin::BI__builtin_cimagl:
1888   case Builtin::BIcimag:
1889   case Builtin::BIcimagf:
1890   case Builtin::BIcimagl: {
1891     ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
1892     return RValue::get(ComplexVal.second);
1893   }
1894 
1895   case Builtin::BI__builtin_clrsb:
1896   case Builtin::BI__builtin_clrsbl:
1897   case Builtin::BI__builtin_clrsbll: {
1898     // clrsb(x) -> clz(x < 0 ? ~x : x) - 1 or
1899     Value *ArgValue = EmitScalarExpr(E->getArg(0));
1900 
1901     llvm::Type *ArgType = ArgValue->getType();
1902     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
1903 
1904     llvm::Type *ResultType = ConvertType(E->getType());
1905     Value *Zero = llvm::Constant::getNullValue(ArgType);
1906     Value *IsNeg = Builder.CreateICmpSLT(ArgValue, Zero, "isneg");
1907     Value *Inverse = Builder.CreateNot(ArgValue, "not");
1908     Value *Tmp = Builder.CreateSelect(IsNeg, Inverse, ArgValue);
1909     Value *Ctlz = Builder.CreateCall(F, {Tmp, Builder.getFalse()});
1910     Value *Result = Builder.CreateSub(Ctlz, llvm::ConstantInt::get(ArgType, 1));
1911     Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
1912                                    "cast");
1913     return RValue::get(Result);
1914   }
1915   case Builtin::BI__builtin_ctzs:
1916   case Builtin::BI__builtin_ctz:
1917   case Builtin::BI__builtin_ctzl:
1918   case Builtin::BI__builtin_ctzll: {
1919     Value *ArgValue = EmitCheckedArgForBuiltin(E->getArg(0), BCK_CTZPassedZero);
1920 
1921     llvm::Type *ArgType = ArgValue->getType();
1922     Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
1923 
1924     llvm::Type *ResultType = ConvertType(E->getType());
1925     Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
1926     Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef});
1927     if (Result->getType() != ResultType)
1928       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
1929                                      "cast");
1930     return RValue::get(Result);
1931   }
1932   case Builtin::BI__builtin_clzs:
1933   case Builtin::BI__builtin_clz:
1934   case Builtin::BI__builtin_clzl:
1935   case Builtin::BI__builtin_clzll: {
1936     Value *ArgValue = EmitCheckedArgForBuiltin(E->getArg(0), BCK_CLZPassedZero);
1937 
1938     llvm::Type *ArgType = ArgValue->getType();
1939     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
1940 
1941     llvm::Type *ResultType = ConvertType(E->getType());
1942     Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
1943     Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef});
1944     if (Result->getType() != ResultType)
1945       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
1946                                      "cast");
1947     return RValue::get(Result);
1948   }
1949   case Builtin::BI__builtin_ffs:
1950   case Builtin::BI__builtin_ffsl:
1951   case Builtin::BI__builtin_ffsll: {
1952     // ffs(x) -> x ? cttz(x) + 1 : 0
1953     Value *ArgValue = EmitScalarExpr(E->getArg(0));
1954 
1955     llvm::Type *ArgType = ArgValue->getType();
1956     Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
1957 
1958     llvm::Type *ResultType = ConvertType(E->getType());
1959     Value *Tmp =
1960         Builder.CreateAdd(Builder.CreateCall(F, {ArgValue, Builder.getTrue()}),
1961                           llvm::ConstantInt::get(ArgType, 1));
1962     Value *Zero = llvm::Constant::getNullValue(ArgType);
1963     Value *IsZero = Builder.CreateICmpEQ(ArgValue, Zero, "iszero");
1964     Value *Result = Builder.CreateSelect(IsZero, Zero, Tmp, "ffs");
1965     if (Result->getType() != ResultType)
1966       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
1967                                      "cast");
1968     return RValue::get(Result);
1969   }
1970   case Builtin::BI__builtin_parity:
1971   case Builtin::BI__builtin_parityl:
1972   case Builtin::BI__builtin_parityll: {
1973     // parity(x) -> ctpop(x) & 1
1974     Value *ArgValue = EmitScalarExpr(E->getArg(0));
1975 
1976     llvm::Type *ArgType = ArgValue->getType();
1977     Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
1978 
1979     llvm::Type *ResultType = ConvertType(E->getType());
1980     Value *Tmp = Builder.CreateCall(F, ArgValue);
1981     Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1));
1982     if (Result->getType() != ResultType)
1983       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
1984                                      "cast");
1985     return RValue::get(Result);
1986   }
1987   case Builtin::BI__lzcnt16:
1988   case Builtin::BI__lzcnt:
1989   case Builtin::BI__lzcnt64: {
1990     Value *ArgValue = EmitScalarExpr(E->getArg(0));
1991 
1992     llvm::Type *ArgType = ArgValue->getType();
1993     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
1994 
1995     llvm::Type *ResultType = ConvertType(E->getType());
1996     Value *Result = Builder.CreateCall(F, {ArgValue, Builder.getFalse()});
1997     if (Result->getType() != ResultType)
1998       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
1999                                      "cast");
2000     return RValue::get(Result);
2001   }
2002   case Builtin::BI__popcnt16:
2003   case Builtin::BI__popcnt:
2004   case Builtin::BI__popcnt64:
2005   case Builtin::BI__builtin_popcount:
2006   case Builtin::BI__builtin_popcountl:
2007   case Builtin::BI__builtin_popcountll: {
2008     Value *ArgValue = EmitScalarExpr(E->getArg(0));
2009 
2010     llvm::Type *ArgType = ArgValue->getType();
2011     Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
2012 
2013     llvm::Type *ResultType = ConvertType(E->getType());
2014     Value *Result = Builder.CreateCall(F, ArgValue);
2015     if (Result->getType() != ResultType)
2016       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2017                                      "cast");
2018     return RValue::get(Result);
2019   }
2020   case Builtin::BI__builtin_unpredictable: {
2021     // Always return the argument of __builtin_unpredictable. LLVM does not
2022     // handle this builtin. Metadata for this builtin should be added directly
2023     // to instructions such as branches or switches that use it.
2024     return RValue::get(EmitScalarExpr(E->getArg(0)));
2025   }
2026   case Builtin::BI__builtin_expect: {
2027     Value *ArgValue = EmitScalarExpr(E->getArg(0));
2028     llvm::Type *ArgType = ArgValue->getType();
2029 
2030     Value *ExpectedValue = EmitScalarExpr(E->getArg(1));
2031     // Don't generate llvm.expect on -O0 as the backend won't use it for
2032     // anything.
2033     // Note, we still IRGen ExpectedValue because it could have side-effects.
2034     if (CGM.getCodeGenOpts().OptimizationLevel == 0)
2035       return RValue::get(ArgValue);
2036 
2037     Function *FnExpect = CGM.getIntrinsic(Intrinsic::expect, ArgType);
2038     Value *Result =
2039         Builder.CreateCall(FnExpect, {ArgValue, ExpectedValue}, "expval");
2040     return RValue::get(Result);
2041   }
2042   case Builtin::BI__builtin_assume_aligned: {
2043     const Expr *Ptr = E->getArg(0);
2044     Value *PtrValue = EmitScalarExpr(Ptr);
2045     Value *OffsetValue =
2046       (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) : nullptr;
2047 
2048     Value *AlignmentValue = EmitScalarExpr(E->getArg(1));
2049     ConstantInt *AlignmentCI = cast<ConstantInt>(AlignmentValue);
2050     if (AlignmentCI->getValue().ugt(llvm::Value::MaximumAlignment))
2051       AlignmentCI = ConstantInt::get(AlignmentCI->getType(),
2052                                      llvm::Value::MaximumAlignment);
2053 
2054     EmitAlignmentAssumption(PtrValue, Ptr,
2055                             /*The expr loc is sufficient.*/ SourceLocation(),
2056                             AlignmentCI, OffsetValue);
2057     return RValue::get(PtrValue);
2058   }
2059   case Builtin::BI__assume:
2060   case Builtin::BI__builtin_assume: {
2061     if (E->getArg(0)->HasSideEffects(getContext()))
2062       return RValue::get(nullptr);
2063 
2064     Value *ArgValue = EmitScalarExpr(E->getArg(0));
2065     Function *FnAssume = CGM.getIntrinsic(Intrinsic::assume);
2066     return RValue::get(Builder.CreateCall(FnAssume, ArgValue));
2067   }
2068   case Builtin::BI__builtin_bswap16:
2069   case Builtin::BI__builtin_bswap32:
2070   case Builtin::BI__builtin_bswap64: {
2071     return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bswap));
2072   }
2073   case Builtin::BI__builtin_bitreverse8:
2074   case Builtin::BI__builtin_bitreverse16:
2075   case Builtin::BI__builtin_bitreverse32:
2076   case Builtin::BI__builtin_bitreverse64: {
2077     return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bitreverse));
2078   }
2079   case Builtin::BI__builtin_rotateleft8:
2080   case Builtin::BI__builtin_rotateleft16:
2081   case Builtin::BI__builtin_rotateleft32:
2082   case Builtin::BI__builtin_rotateleft64:
2083   case Builtin::BI_rotl8: // Microsoft variants of rotate left
2084   case Builtin::BI_rotl16:
2085   case Builtin::BI_rotl:
2086   case Builtin::BI_lrotl:
2087   case Builtin::BI_rotl64:
2088     return emitRotate(E, false);
2089 
2090   case Builtin::BI__builtin_rotateright8:
2091   case Builtin::BI__builtin_rotateright16:
2092   case Builtin::BI__builtin_rotateright32:
2093   case Builtin::BI__builtin_rotateright64:
2094   case Builtin::BI_rotr8: // Microsoft variants of rotate right
2095   case Builtin::BI_rotr16:
2096   case Builtin::BI_rotr:
2097   case Builtin::BI_lrotr:
2098   case Builtin::BI_rotr64:
2099     return emitRotate(E, true);
2100 
2101   case Builtin::BI__builtin_constant_p: {
2102     llvm::Type *ResultType = ConvertType(E->getType());
2103 
2104     const Expr *Arg = E->getArg(0);
2105     QualType ArgType = Arg->getType();
2106     // FIXME: The allowance for Obj-C pointers and block pointers is historical
2107     // and likely a mistake.
2108     if (!ArgType->isIntegralOrEnumerationType() && !ArgType->isFloatingType() &&
2109         !ArgType->isObjCObjectPointerType() && !ArgType->isBlockPointerType())
2110       // Per the GCC documentation, only numeric constants are recognized after
2111       // inlining.
2112       return RValue::get(ConstantInt::get(ResultType, 0));
2113 
2114     if (Arg->HasSideEffects(getContext()))
2115       // The argument is unevaluated, so be conservative if it might have
2116       // side-effects.
2117       return RValue::get(ConstantInt::get(ResultType, 0));
2118 
2119     Value *ArgValue = EmitScalarExpr(Arg);
2120     if (ArgType->isObjCObjectPointerType()) {
2121       // Convert Objective-C objects to id because we cannot distinguish between
2122       // LLVM types for Obj-C classes as they are opaque.
2123       ArgType = CGM.getContext().getObjCIdType();
2124       ArgValue = Builder.CreateBitCast(ArgValue, ConvertType(ArgType));
2125     }
2126     Function *F =
2127         CGM.getIntrinsic(Intrinsic::is_constant, ConvertType(ArgType));
2128     Value *Result = Builder.CreateCall(F, ArgValue);
2129     if (Result->getType() != ResultType)
2130       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/false);
2131     return RValue::get(Result);
2132   }
2133   case Builtin::BI__builtin_dynamic_object_size:
2134   case Builtin::BI__builtin_object_size: {
2135     unsigned Type =
2136         E->getArg(1)->EvaluateKnownConstInt(getContext()).getZExtValue();
2137     auto *ResType = cast<llvm::IntegerType>(ConvertType(E->getType()));
2138 
2139     // We pass this builtin onto the optimizer so that it can figure out the
2140     // object size in more complex cases.
2141     bool IsDynamic = BuiltinID == Builtin::BI__builtin_dynamic_object_size;
2142     return RValue::get(emitBuiltinObjectSize(E->getArg(0), Type, ResType,
2143                                              /*EmittedE=*/nullptr, IsDynamic));
2144   }
2145   case Builtin::BI__builtin_prefetch: {
2146     Value *Locality, *RW, *Address = EmitScalarExpr(E->getArg(0));
2147     // FIXME: Technically these constants should of type 'int', yes?
2148     RW = (E->getNumArgs() > 1) ? EmitScalarExpr(E->getArg(1)) :
2149       llvm::ConstantInt::get(Int32Ty, 0);
2150     Locality = (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) :
2151       llvm::ConstantInt::get(Int32Ty, 3);
2152     Value *Data = llvm::ConstantInt::get(Int32Ty, 1);
2153     Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
2154     return RValue::get(Builder.CreateCall(F, {Address, RW, Locality, Data}));
2155   }
2156   case Builtin::BI__builtin_readcyclecounter: {
2157     Function *F = CGM.getIntrinsic(Intrinsic::readcyclecounter);
2158     return RValue::get(Builder.CreateCall(F));
2159   }
2160   case Builtin::BI__builtin___clear_cache: {
2161     Value *Begin = EmitScalarExpr(E->getArg(0));
2162     Value *End = EmitScalarExpr(E->getArg(1));
2163     Function *F = CGM.getIntrinsic(Intrinsic::clear_cache);
2164     return RValue::get(Builder.CreateCall(F, {Begin, End}));
2165   }
2166   case Builtin::BI__builtin_trap:
2167     return RValue::get(EmitTrapCall(Intrinsic::trap));
2168   case Builtin::BI__debugbreak:
2169     return RValue::get(EmitTrapCall(Intrinsic::debugtrap));
2170   case Builtin::BI__builtin_unreachable: {
2171     EmitUnreachable(E->getExprLoc());
2172 
2173     // We do need to preserve an insertion point.
2174     EmitBlock(createBasicBlock("unreachable.cont"));
2175 
2176     return RValue::get(nullptr);
2177   }
2178 
2179   case Builtin::BI__builtin_powi:
2180   case Builtin::BI__builtin_powif:
2181   case Builtin::BI__builtin_powil: {
2182     Value *Base = EmitScalarExpr(E->getArg(0));
2183     Value *Exponent = EmitScalarExpr(E->getArg(1));
2184     llvm::Type *ArgType = Base->getType();
2185     Function *F = CGM.getIntrinsic(Intrinsic::powi, ArgType);
2186     return RValue::get(Builder.CreateCall(F, {Base, Exponent}));
2187   }
2188 
2189   case Builtin::BI__builtin_isgreater:
2190   case Builtin::BI__builtin_isgreaterequal:
2191   case Builtin::BI__builtin_isless:
2192   case Builtin::BI__builtin_islessequal:
2193   case Builtin::BI__builtin_islessgreater:
2194   case Builtin::BI__builtin_isunordered: {
2195     // Ordered comparisons: we know the arguments to these are matching scalar
2196     // floating point values.
2197     Value *LHS = EmitScalarExpr(E->getArg(0));
2198     Value *RHS = EmitScalarExpr(E->getArg(1));
2199 
2200     switch (BuiltinID) {
2201     default: llvm_unreachable("Unknown ordered comparison");
2202     case Builtin::BI__builtin_isgreater:
2203       LHS = Builder.CreateFCmpOGT(LHS, RHS, "cmp");
2204       break;
2205     case Builtin::BI__builtin_isgreaterequal:
2206       LHS = Builder.CreateFCmpOGE(LHS, RHS, "cmp");
2207       break;
2208     case Builtin::BI__builtin_isless:
2209       LHS = Builder.CreateFCmpOLT(LHS, RHS, "cmp");
2210       break;
2211     case Builtin::BI__builtin_islessequal:
2212       LHS = Builder.CreateFCmpOLE(LHS, RHS, "cmp");
2213       break;
2214     case Builtin::BI__builtin_islessgreater:
2215       LHS = Builder.CreateFCmpONE(LHS, RHS, "cmp");
2216       break;
2217     case Builtin::BI__builtin_isunordered:
2218       LHS = Builder.CreateFCmpUNO(LHS, RHS, "cmp");
2219       break;
2220     }
2221     // ZExt bool to int type.
2222     return RValue::get(Builder.CreateZExt(LHS, ConvertType(E->getType())));
2223   }
2224   case Builtin::BI__builtin_isnan: {
2225     Value *V = EmitScalarExpr(E->getArg(0));
2226     V = Builder.CreateFCmpUNO(V, V, "cmp");
2227     return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
2228   }
2229 
2230   case Builtin::BIfinite:
2231   case Builtin::BI__finite:
2232   case Builtin::BIfinitef:
2233   case Builtin::BI__finitef:
2234   case Builtin::BIfinitel:
2235   case Builtin::BI__finitel:
2236   case Builtin::BI__builtin_isinf:
2237   case Builtin::BI__builtin_isfinite: {
2238     // isinf(x)    --> fabs(x) == infinity
2239     // isfinite(x) --> fabs(x) != infinity
2240     // x != NaN via the ordered compare in either case.
2241     Value *V = EmitScalarExpr(E->getArg(0));
2242     Value *Fabs = EmitFAbs(*this, V);
2243     Constant *Infinity = ConstantFP::getInfinity(V->getType());
2244     CmpInst::Predicate Pred = (BuiltinID == Builtin::BI__builtin_isinf)
2245                                   ? CmpInst::FCMP_OEQ
2246                                   : CmpInst::FCMP_ONE;
2247     Value *FCmp = Builder.CreateFCmp(Pred, Fabs, Infinity, "cmpinf");
2248     return RValue::get(Builder.CreateZExt(FCmp, ConvertType(E->getType())));
2249   }
2250 
2251   case Builtin::BI__builtin_isinf_sign: {
2252     // isinf_sign(x) -> fabs(x) == infinity ? (signbit(x) ? -1 : 1) : 0
2253     Value *Arg = EmitScalarExpr(E->getArg(0));
2254     Value *AbsArg = EmitFAbs(*this, Arg);
2255     Value *IsInf = Builder.CreateFCmpOEQ(
2256         AbsArg, ConstantFP::getInfinity(Arg->getType()), "isinf");
2257     Value *IsNeg = EmitSignBit(*this, Arg);
2258 
2259     llvm::Type *IntTy = ConvertType(E->getType());
2260     Value *Zero = Constant::getNullValue(IntTy);
2261     Value *One = ConstantInt::get(IntTy, 1);
2262     Value *NegativeOne = ConstantInt::get(IntTy, -1);
2263     Value *SignResult = Builder.CreateSelect(IsNeg, NegativeOne, One);
2264     Value *Result = Builder.CreateSelect(IsInf, SignResult, Zero);
2265     return RValue::get(Result);
2266   }
2267 
2268   case Builtin::BI__builtin_isnormal: {
2269     // isnormal(x) --> x == x && fabsf(x) < infinity && fabsf(x) >= float_min
2270     Value *V = EmitScalarExpr(E->getArg(0));
2271     Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq");
2272 
2273     Value *Abs = EmitFAbs(*this, V);
2274     Value *IsLessThanInf =
2275       Builder.CreateFCmpULT(Abs, ConstantFP::getInfinity(V->getType()),"isinf");
2276     APFloat Smallest = APFloat::getSmallestNormalized(
2277                    getContext().getFloatTypeSemantics(E->getArg(0)->getType()));
2278     Value *IsNormal =
2279       Builder.CreateFCmpUGE(Abs, ConstantFP::get(V->getContext(), Smallest),
2280                             "isnormal");
2281     V = Builder.CreateAnd(Eq, IsLessThanInf, "and");
2282     V = Builder.CreateAnd(V, IsNormal, "and");
2283     return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
2284   }
2285 
2286   case Builtin::BI__builtin_flt_rounds: {
2287     Function *F = CGM.getIntrinsic(Intrinsic::flt_rounds);
2288 
2289     llvm::Type *ResultType = ConvertType(E->getType());
2290     Value *Result = Builder.CreateCall(F);
2291     if (Result->getType() != ResultType)
2292       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2293                                      "cast");
2294     return RValue::get(Result);
2295   }
2296 
2297   case Builtin::BI__builtin_fpclassify: {
2298     Value *V = EmitScalarExpr(E->getArg(5));
2299     llvm::Type *Ty = ConvertType(E->getArg(5)->getType());
2300 
2301     // Create Result
2302     BasicBlock *Begin = Builder.GetInsertBlock();
2303     BasicBlock *End = createBasicBlock("fpclassify_end", this->CurFn);
2304     Builder.SetInsertPoint(End);
2305     PHINode *Result =
2306       Builder.CreatePHI(ConvertType(E->getArg(0)->getType()), 4,
2307                         "fpclassify_result");
2308 
2309     // if (V==0) return FP_ZERO
2310     Builder.SetInsertPoint(Begin);
2311     Value *IsZero = Builder.CreateFCmpOEQ(V, Constant::getNullValue(Ty),
2312                                           "iszero");
2313     Value *ZeroLiteral = EmitScalarExpr(E->getArg(4));
2314     BasicBlock *NotZero = createBasicBlock("fpclassify_not_zero", this->CurFn);
2315     Builder.CreateCondBr(IsZero, End, NotZero);
2316     Result->addIncoming(ZeroLiteral, Begin);
2317 
2318     // if (V != V) return FP_NAN
2319     Builder.SetInsertPoint(NotZero);
2320     Value *IsNan = Builder.CreateFCmpUNO(V, V, "cmp");
2321     Value *NanLiteral = EmitScalarExpr(E->getArg(0));
2322     BasicBlock *NotNan = createBasicBlock("fpclassify_not_nan", this->CurFn);
2323     Builder.CreateCondBr(IsNan, End, NotNan);
2324     Result->addIncoming(NanLiteral, NotZero);
2325 
2326     // if (fabs(V) == infinity) return FP_INFINITY
2327     Builder.SetInsertPoint(NotNan);
2328     Value *VAbs = EmitFAbs(*this, V);
2329     Value *IsInf =
2330       Builder.CreateFCmpOEQ(VAbs, ConstantFP::getInfinity(V->getType()),
2331                             "isinf");
2332     Value *InfLiteral = EmitScalarExpr(E->getArg(1));
2333     BasicBlock *NotInf = createBasicBlock("fpclassify_not_inf", this->CurFn);
2334     Builder.CreateCondBr(IsInf, End, NotInf);
2335     Result->addIncoming(InfLiteral, NotNan);
2336 
2337     // if (fabs(V) >= MIN_NORMAL) return FP_NORMAL else FP_SUBNORMAL
2338     Builder.SetInsertPoint(NotInf);
2339     APFloat Smallest = APFloat::getSmallestNormalized(
2340         getContext().getFloatTypeSemantics(E->getArg(5)->getType()));
2341     Value *IsNormal =
2342       Builder.CreateFCmpUGE(VAbs, ConstantFP::get(V->getContext(), Smallest),
2343                             "isnormal");
2344     Value *NormalResult =
2345       Builder.CreateSelect(IsNormal, EmitScalarExpr(E->getArg(2)),
2346                            EmitScalarExpr(E->getArg(3)));
2347     Builder.CreateBr(End);
2348     Result->addIncoming(NormalResult, NotInf);
2349 
2350     // return Result
2351     Builder.SetInsertPoint(End);
2352     return RValue::get(Result);
2353   }
2354 
2355   case Builtin::BIalloca:
2356   case Builtin::BI_alloca:
2357   case Builtin::BI__builtin_alloca: {
2358     Value *Size = EmitScalarExpr(E->getArg(0));
2359     const TargetInfo &TI = getContext().getTargetInfo();
2360     // The alignment of the alloca should correspond to __BIGGEST_ALIGNMENT__.
2361     unsigned SuitableAlignmentInBytes =
2362         CGM.getContext()
2363             .toCharUnitsFromBits(TI.getSuitableAlign())
2364             .getQuantity();
2365     AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size);
2366     AI->setAlignment(MaybeAlign(SuitableAlignmentInBytes));
2367     initializeAlloca(*this, AI, Size, SuitableAlignmentInBytes);
2368     return RValue::get(AI);
2369   }
2370 
2371   case Builtin::BI__builtin_alloca_with_align: {
2372     Value *Size = EmitScalarExpr(E->getArg(0));
2373     Value *AlignmentInBitsValue = EmitScalarExpr(E->getArg(1));
2374     auto *AlignmentInBitsCI = cast<ConstantInt>(AlignmentInBitsValue);
2375     unsigned AlignmentInBits = AlignmentInBitsCI->getZExtValue();
2376     unsigned AlignmentInBytes =
2377         CGM.getContext().toCharUnitsFromBits(AlignmentInBits).getQuantity();
2378     AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size);
2379     AI->setAlignment(MaybeAlign(AlignmentInBytes));
2380     initializeAlloca(*this, AI, Size, AlignmentInBytes);
2381     return RValue::get(AI);
2382   }
2383 
2384   case Builtin::BIbzero:
2385   case Builtin::BI__builtin_bzero: {
2386     Address Dest = EmitPointerWithAlignment(E->getArg(0));
2387     Value *SizeVal = EmitScalarExpr(E->getArg(1));
2388     EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
2389                         E->getArg(0)->getExprLoc(), FD, 0);
2390     Builder.CreateMemSet(Dest, Builder.getInt8(0), SizeVal, false);
2391     return RValue::get(nullptr);
2392   }
2393   case Builtin::BImemcpy:
2394   case Builtin::BI__builtin_memcpy: {
2395     Address Dest = EmitPointerWithAlignment(E->getArg(0));
2396     Address Src = EmitPointerWithAlignment(E->getArg(1));
2397     Value *SizeVal = EmitScalarExpr(E->getArg(2));
2398     EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
2399                         E->getArg(0)->getExprLoc(), FD, 0);
2400     EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(),
2401                         E->getArg(1)->getExprLoc(), FD, 1);
2402     Builder.CreateMemCpy(Dest, Src, SizeVal, false);
2403     return RValue::get(Dest.getPointer());
2404   }
2405 
2406   case Builtin::BI__builtin_char_memchr:
2407     BuiltinID = Builtin::BI__builtin_memchr;
2408     break;
2409 
2410   case Builtin::BI__builtin___memcpy_chk: {
2411     // fold __builtin_memcpy_chk(x, y, cst1, cst2) to memcpy iff cst1<=cst2.
2412     Expr::EvalResult SizeResult, DstSizeResult;
2413     if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
2414         !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
2415       break;
2416     llvm::APSInt Size = SizeResult.Val.getInt();
2417     llvm::APSInt DstSize = DstSizeResult.Val.getInt();
2418     if (Size.ugt(DstSize))
2419       break;
2420     Address Dest = EmitPointerWithAlignment(E->getArg(0));
2421     Address Src = EmitPointerWithAlignment(E->getArg(1));
2422     Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
2423     Builder.CreateMemCpy(Dest, Src, SizeVal, false);
2424     return RValue::get(Dest.getPointer());
2425   }
2426 
2427   case Builtin::BI__builtin_objc_memmove_collectable: {
2428     Address DestAddr = EmitPointerWithAlignment(E->getArg(0));
2429     Address SrcAddr = EmitPointerWithAlignment(E->getArg(1));
2430     Value *SizeVal = EmitScalarExpr(E->getArg(2));
2431     CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this,
2432                                                   DestAddr, SrcAddr, SizeVal);
2433     return RValue::get(DestAddr.getPointer());
2434   }
2435 
2436   case Builtin::BI__builtin___memmove_chk: {
2437     // fold __builtin_memmove_chk(x, y, cst1, cst2) to memmove iff cst1<=cst2.
2438     Expr::EvalResult SizeResult, DstSizeResult;
2439     if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
2440         !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
2441       break;
2442     llvm::APSInt Size = SizeResult.Val.getInt();
2443     llvm::APSInt DstSize = DstSizeResult.Val.getInt();
2444     if (Size.ugt(DstSize))
2445       break;
2446     Address Dest = EmitPointerWithAlignment(E->getArg(0));
2447     Address Src = EmitPointerWithAlignment(E->getArg(1));
2448     Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
2449     Builder.CreateMemMove(Dest, Src, SizeVal, false);
2450     return RValue::get(Dest.getPointer());
2451   }
2452 
2453   case Builtin::BImemmove:
2454   case Builtin::BI__builtin_memmove: {
2455     Address Dest = EmitPointerWithAlignment(E->getArg(0));
2456     Address Src = EmitPointerWithAlignment(E->getArg(1));
2457     Value *SizeVal = EmitScalarExpr(E->getArg(2));
2458     EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
2459                         E->getArg(0)->getExprLoc(), FD, 0);
2460     EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(),
2461                         E->getArg(1)->getExprLoc(), FD, 1);
2462     Builder.CreateMemMove(Dest, Src, SizeVal, false);
2463     return RValue::get(Dest.getPointer());
2464   }
2465   case Builtin::BImemset:
2466   case Builtin::BI__builtin_memset: {
2467     Address Dest = EmitPointerWithAlignment(E->getArg(0));
2468     Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
2469                                          Builder.getInt8Ty());
2470     Value *SizeVal = EmitScalarExpr(E->getArg(2));
2471     EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
2472                         E->getArg(0)->getExprLoc(), FD, 0);
2473     Builder.CreateMemSet(Dest, ByteVal, SizeVal, false);
2474     return RValue::get(Dest.getPointer());
2475   }
2476   case Builtin::BI__builtin___memset_chk: {
2477     // fold __builtin_memset_chk(x, y, cst1, cst2) to memset iff cst1<=cst2.
2478     Expr::EvalResult SizeResult, DstSizeResult;
2479     if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
2480         !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
2481       break;
2482     llvm::APSInt Size = SizeResult.Val.getInt();
2483     llvm::APSInt DstSize = DstSizeResult.Val.getInt();
2484     if (Size.ugt(DstSize))
2485       break;
2486     Address Dest = EmitPointerWithAlignment(E->getArg(0));
2487     Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
2488                                          Builder.getInt8Ty());
2489     Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
2490     Builder.CreateMemSet(Dest, ByteVal, SizeVal, false);
2491     return RValue::get(Dest.getPointer());
2492   }
2493   case Builtin::BI__builtin_wmemcmp: {
2494     // The MSVC runtime library does not provide a definition of wmemcmp, so we
2495     // need an inline implementation.
2496     if (!getTarget().getTriple().isOSMSVCRT())
2497       break;
2498 
2499     llvm::Type *WCharTy = ConvertType(getContext().WCharTy);
2500 
2501     Value *Dst = EmitScalarExpr(E->getArg(0));
2502     Value *Src = EmitScalarExpr(E->getArg(1));
2503     Value *Size = EmitScalarExpr(E->getArg(2));
2504 
2505     BasicBlock *Entry = Builder.GetInsertBlock();
2506     BasicBlock *CmpGT = createBasicBlock("wmemcmp.gt");
2507     BasicBlock *CmpLT = createBasicBlock("wmemcmp.lt");
2508     BasicBlock *Next = createBasicBlock("wmemcmp.next");
2509     BasicBlock *Exit = createBasicBlock("wmemcmp.exit");
2510     Value *SizeEq0 = Builder.CreateICmpEQ(Size, ConstantInt::get(SizeTy, 0));
2511     Builder.CreateCondBr(SizeEq0, Exit, CmpGT);
2512 
2513     EmitBlock(CmpGT);
2514     PHINode *DstPhi = Builder.CreatePHI(Dst->getType(), 2);
2515     DstPhi->addIncoming(Dst, Entry);
2516     PHINode *SrcPhi = Builder.CreatePHI(Src->getType(), 2);
2517     SrcPhi->addIncoming(Src, Entry);
2518     PHINode *SizePhi = Builder.CreatePHI(SizeTy, 2);
2519     SizePhi->addIncoming(Size, Entry);
2520     CharUnits WCharAlign =
2521         getContext().getTypeAlignInChars(getContext().WCharTy);
2522     Value *DstCh = Builder.CreateAlignedLoad(WCharTy, DstPhi, WCharAlign);
2523     Value *SrcCh = Builder.CreateAlignedLoad(WCharTy, SrcPhi, WCharAlign);
2524     Value *DstGtSrc = Builder.CreateICmpUGT(DstCh, SrcCh);
2525     Builder.CreateCondBr(DstGtSrc, Exit, CmpLT);
2526 
2527     EmitBlock(CmpLT);
2528     Value *DstLtSrc = Builder.CreateICmpULT(DstCh, SrcCh);
2529     Builder.CreateCondBr(DstLtSrc, Exit, Next);
2530 
2531     EmitBlock(Next);
2532     Value *NextDst = Builder.CreateConstInBoundsGEP1_32(WCharTy, DstPhi, 1);
2533     Value *NextSrc = Builder.CreateConstInBoundsGEP1_32(WCharTy, SrcPhi, 1);
2534     Value *NextSize = Builder.CreateSub(SizePhi, ConstantInt::get(SizeTy, 1));
2535     Value *NextSizeEq0 =
2536         Builder.CreateICmpEQ(NextSize, ConstantInt::get(SizeTy, 0));
2537     Builder.CreateCondBr(NextSizeEq0, Exit, CmpGT);
2538     DstPhi->addIncoming(NextDst, Next);
2539     SrcPhi->addIncoming(NextSrc, Next);
2540     SizePhi->addIncoming(NextSize, Next);
2541 
2542     EmitBlock(Exit);
2543     PHINode *Ret = Builder.CreatePHI(IntTy, 4);
2544     Ret->addIncoming(ConstantInt::get(IntTy, 0), Entry);
2545     Ret->addIncoming(ConstantInt::get(IntTy, 1), CmpGT);
2546     Ret->addIncoming(ConstantInt::get(IntTy, -1), CmpLT);
2547     Ret->addIncoming(ConstantInt::get(IntTy, 0), Next);
2548     return RValue::get(Ret);
2549   }
2550   case Builtin::BI__builtin_dwarf_cfa: {
2551     // The offset in bytes from the first argument to the CFA.
2552     //
2553     // Why on earth is this in the frontend?  Is there any reason at
2554     // all that the backend can't reasonably determine this while
2555     // lowering llvm.eh.dwarf.cfa()?
2556     //
2557     // TODO: If there's a satisfactory reason, add a target hook for
2558     // this instead of hard-coding 0, which is correct for most targets.
2559     int32_t Offset = 0;
2560 
2561     Function *F = CGM.getIntrinsic(Intrinsic::eh_dwarf_cfa);
2562     return RValue::get(Builder.CreateCall(F,
2563                                       llvm::ConstantInt::get(Int32Ty, Offset)));
2564   }
2565   case Builtin::BI__builtin_return_address: {
2566     Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0),
2567                                                    getContext().UnsignedIntTy);
2568     Function *F = CGM.getIntrinsic(Intrinsic::returnaddress);
2569     return RValue::get(Builder.CreateCall(F, Depth));
2570   }
2571   case Builtin::BI_ReturnAddress: {
2572     Function *F = CGM.getIntrinsic(Intrinsic::returnaddress);
2573     return RValue::get(Builder.CreateCall(F, Builder.getInt32(0)));
2574   }
2575   case Builtin::BI__builtin_frame_address: {
2576     Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0),
2577                                                    getContext().UnsignedIntTy);
2578     Function *F = CGM.getIntrinsic(Intrinsic::frameaddress, AllocaInt8PtrTy);
2579     return RValue::get(Builder.CreateCall(F, Depth));
2580   }
2581   case Builtin::BI__builtin_extract_return_addr: {
2582     Value *Address = EmitScalarExpr(E->getArg(0));
2583     Value *Result = getTargetHooks().decodeReturnAddress(*this, Address);
2584     return RValue::get(Result);
2585   }
2586   case Builtin::BI__builtin_frob_return_addr: {
2587     Value *Address = EmitScalarExpr(E->getArg(0));
2588     Value *Result = getTargetHooks().encodeReturnAddress(*this, Address);
2589     return RValue::get(Result);
2590   }
2591   case Builtin::BI__builtin_dwarf_sp_column: {
2592     llvm::IntegerType *Ty
2593       = cast<llvm::IntegerType>(ConvertType(E->getType()));
2594     int Column = getTargetHooks().getDwarfEHStackPointer(CGM);
2595     if (Column == -1) {
2596       CGM.ErrorUnsupported(E, "__builtin_dwarf_sp_column");
2597       return RValue::get(llvm::UndefValue::get(Ty));
2598     }
2599     return RValue::get(llvm::ConstantInt::get(Ty, Column, true));
2600   }
2601   case Builtin::BI__builtin_init_dwarf_reg_size_table: {
2602     Value *Address = EmitScalarExpr(E->getArg(0));
2603     if (getTargetHooks().initDwarfEHRegSizeTable(*this, Address))
2604       CGM.ErrorUnsupported(E, "__builtin_init_dwarf_reg_size_table");
2605     return RValue::get(llvm::UndefValue::get(ConvertType(E->getType())));
2606   }
2607   case Builtin::BI__builtin_eh_return: {
2608     Value *Int = EmitScalarExpr(E->getArg(0));
2609     Value *Ptr = EmitScalarExpr(E->getArg(1));
2610 
2611     llvm::IntegerType *IntTy = cast<llvm::IntegerType>(Int->getType());
2612     assert((IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) &&
2613            "LLVM's __builtin_eh_return only supports 32- and 64-bit variants");
2614     Function *F =
2615         CGM.getIntrinsic(IntTy->getBitWidth() == 32 ? Intrinsic::eh_return_i32
2616                                                     : Intrinsic::eh_return_i64);
2617     Builder.CreateCall(F, {Int, Ptr});
2618     Builder.CreateUnreachable();
2619 
2620     // We do need to preserve an insertion point.
2621     EmitBlock(createBasicBlock("builtin_eh_return.cont"));
2622 
2623     return RValue::get(nullptr);
2624   }
2625   case Builtin::BI__builtin_unwind_init: {
2626     Function *F = CGM.getIntrinsic(Intrinsic::eh_unwind_init);
2627     return RValue::get(Builder.CreateCall(F));
2628   }
2629   case Builtin::BI__builtin_extend_pointer: {
2630     // Extends a pointer to the size of an _Unwind_Word, which is
2631     // uint64_t on all platforms.  Generally this gets poked into a
2632     // register and eventually used as an address, so if the
2633     // addressing registers are wider than pointers and the platform
2634     // doesn't implicitly ignore high-order bits when doing
2635     // addressing, we need to make sure we zext / sext based on
2636     // the platform's expectations.
2637     //
2638     // See: http://gcc.gnu.org/ml/gcc-bugs/2002-02/msg00237.html
2639 
2640     // Cast the pointer to intptr_t.
2641     Value *Ptr = EmitScalarExpr(E->getArg(0));
2642     Value *Result = Builder.CreatePtrToInt(Ptr, IntPtrTy, "extend.cast");
2643 
2644     // If that's 64 bits, we're done.
2645     if (IntPtrTy->getBitWidth() == 64)
2646       return RValue::get(Result);
2647 
2648     // Otherwise, ask the codegen data what to do.
2649     if (getTargetHooks().extendPointerWithSExt())
2650       return RValue::get(Builder.CreateSExt(Result, Int64Ty, "extend.sext"));
2651     else
2652       return RValue::get(Builder.CreateZExt(Result, Int64Ty, "extend.zext"));
2653   }
2654   case Builtin::BI__builtin_setjmp: {
2655     // Buffer is a void**.
2656     Address Buf = EmitPointerWithAlignment(E->getArg(0));
2657 
2658     // Store the frame pointer to the setjmp buffer.
2659     Value *FrameAddr = Builder.CreateCall(
2660         CGM.getIntrinsic(Intrinsic::frameaddress, AllocaInt8PtrTy),
2661         ConstantInt::get(Int32Ty, 0));
2662     Builder.CreateStore(FrameAddr, Buf);
2663 
2664     // Store the stack pointer to the setjmp buffer.
2665     Value *StackAddr =
2666         Builder.CreateCall(CGM.getIntrinsic(Intrinsic::stacksave));
2667     Address StackSaveSlot = Builder.CreateConstInBoundsGEP(Buf, 2);
2668     Builder.CreateStore(StackAddr, StackSaveSlot);
2669 
2670     // Call LLVM's EH setjmp, which is lightweight.
2671     Function *F = CGM.getIntrinsic(Intrinsic::eh_sjlj_setjmp);
2672     Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
2673     return RValue::get(Builder.CreateCall(F, Buf.getPointer()));
2674   }
2675   case Builtin::BI__builtin_longjmp: {
2676     Value *Buf = EmitScalarExpr(E->getArg(0));
2677     Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
2678 
2679     // Call LLVM's EH longjmp, which is lightweight.
2680     Builder.CreateCall(CGM.getIntrinsic(Intrinsic::eh_sjlj_longjmp), Buf);
2681 
2682     // longjmp doesn't return; mark this as unreachable.
2683     Builder.CreateUnreachable();
2684 
2685     // We do need to preserve an insertion point.
2686     EmitBlock(createBasicBlock("longjmp.cont"));
2687 
2688     return RValue::get(nullptr);
2689   }
2690   case Builtin::BI__builtin_launder: {
2691     const Expr *Arg = E->getArg(0);
2692     QualType ArgTy = Arg->getType()->getPointeeType();
2693     Value *Ptr = EmitScalarExpr(Arg);
2694     if (TypeRequiresBuiltinLaunder(CGM, ArgTy))
2695       Ptr = Builder.CreateLaunderInvariantGroup(Ptr);
2696 
2697     return RValue::get(Ptr);
2698   }
2699   case Builtin::BI__sync_fetch_and_add:
2700   case Builtin::BI__sync_fetch_and_sub:
2701   case Builtin::BI__sync_fetch_and_or:
2702   case Builtin::BI__sync_fetch_and_and:
2703   case Builtin::BI__sync_fetch_and_xor:
2704   case Builtin::BI__sync_fetch_and_nand:
2705   case Builtin::BI__sync_add_and_fetch:
2706   case Builtin::BI__sync_sub_and_fetch:
2707   case Builtin::BI__sync_and_and_fetch:
2708   case Builtin::BI__sync_or_and_fetch:
2709   case Builtin::BI__sync_xor_and_fetch:
2710   case Builtin::BI__sync_nand_and_fetch:
2711   case Builtin::BI__sync_val_compare_and_swap:
2712   case Builtin::BI__sync_bool_compare_and_swap:
2713   case Builtin::BI__sync_lock_test_and_set:
2714   case Builtin::BI__sync_lock_release:
2715   case Builtin::BI__sync_swap:
2716     llvm_unreachable("Shouldn't make it through sema");
2717   case Builtin::BI__sync_fetch_and_add_1:
2718   case Builtin::BI__sync_fetch_and_add_2:
2719   case Builtin::BI__sync_fetch_and_add_4:
2720   case Builtin::BI__sync_fetch_and_add_8:
2721   case Builtin::BI__sync_fetch_and_add_16:
2722     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Add, E);
2723   case Builtin::BI__sync_fetch_and_sub_1:
2724   case Builtin::BI__sync_fetch_and_sub_2:
2725   case Builtin::BI__sync_fetch_and_sub_4:
2726   case Builtin::BI__sync_fetch_and_sub_8:
2727   case Builtin::BI__sync_fetch_and_sub_16:
2728     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Sub, E);
2729   case Builtin::BI__sync_fetch_and_or_1:
2730   case Builtin::BI__sync_fetch_and_or_2:
2731   case Builtin::BI__sync_fetch_and_or_4:
2732   case Builtin::BI__sync_fetch_and_or_8:
2733   case Builtin::BI__sync_fetch_and_or_16:
2734     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Or, E);
2735   case Builtin::BI__sync_fetch_and_and_1:
2736   case Builtin::BI__sync_fetch_and_and_2:
2737   case Builtin::BI__sync_fetch_and_and_4:
2738   case Builtin::BI__sync_fetch_and_and_8:
2739   case Builtin::BI__sync_fetch_and_and_16:
2740     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::And, E);
2741   case Builtin::BI__sync_fetch_and_xor_1:
2742   case Builtin::BI__sync_fetch_and_xor_2:
2743   case Builtin::BI__sync_fetch_and_xor_4:
2744   case Builtin::BI__sync_fetch_and_xor_8:
2745   case Builtin::BI__sync_fetch_and_xor_16:
2746     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xor, E);
2747   case Builtin::BI__sync_fetch_and_nand_1:
2748   case Builtin::BI__sync_fetch_and_nand_2:
2749   case Builtin::BI__sync_fetch_and_nand_4:
2750   case Builtin::BI__sync_fetch_and_nand_8:
2751   case Builtin::BI__sync_fetch_and_nand_16:
2752     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Nand, E);
2753 
2754   // Clang extensions: not overloaded yet.
2755   case Builtin::BI__sync_fetch_and_min:
2756     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Min, E);
2757   case Builtin::BI__sync_fetch_and_max:
2758     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Max, E);
2759   case Builtin::BI__sync_fetch_and_umin:
2760     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMin, E);
2761   case Builtin::BI__sync_fetch_and_umax:
2762     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMax, E);
2763 
2764   case Builtin::BI__sync_add_and_fetch_1:
2765   case Builtin::BI__sync_add_and_fetch_2:
2766   case Builtin::BI__sync_add_and_fetch_4:
2767   case Builtin::BI__sync_add_and_fetch_8:
2768   case Builtin::BI__sync_add_and_fetch_16:
2769     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Add, E,
2770                                 llvm::Instruction::Add);
2771   case Builtin::BI__sync_sub_and_fetch_1:
2772   case Builtin::BI__sync_sub_and_fetch_2:
2773   case Builtin::BI__sync_sub_and_fetch_4:
2774   case Builtin::BI__sync_sub_and_fetch_8:
2775   case Builtin::BI__sync_sub_and_fetch_16:
2776     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Sub, E,
2777                                 llvm::Instruction::Sub);
2778   case Builtin::BI__sync_and_and_fetch_1:
2779   case Builtin::BI__sync_and_and_fetch_2:
2780   case Builtin::BI__sync_and_and_fetch_4:
2781   case Builtin::BI__sync_and_and_fetch_8:
2782   case Builtin::BI__sync_and_and_fetch_16:
2783     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::And, E,
2784                                 llvm::Instruction::And);
2785   case Builtin::BI__sync_or_and_fetch_1:
2786   case Builtin::BI__sync_or_and_fetch_2:
2787   case Builtin::BI__sync_or_and_fetch_4:
2788   case Builtin::BI__sync_or_and_fetch_8:
2789   case Builtin::BI__sync_or_and_fetch_16:
2790     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Or, E,
2791                                 llvm::Instruction::Or);
2792   case Builtin::BI__sync_xor_and_fetch_1:
2793   case Builtin::BI__sync_xor_and_fetch_2:
2794   case Builtin::BI__sync_xor_and_fetch_4:
2795   case Builtin::BI__sync_xor_and_fetch_8:
2796   case Builtin::BI__sync_xor_and_fetch_16:
2797     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Xor, E,
2798                                 llvm::Instruction::Xor);
2799   case Builtin::BI__sync_nand_and_fetch_1:
2800   case Builtin::BI__sync_nand_and_fetch_2:
2801   case Builtin::BI__sync_nand_and_fetch_4:
2802   case Builtin::BI__sync_nand_and_fetch_8:
2803   case Builtin::BI__sync_nand_and_fetch_16:
2804     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Nand, E,
2805                                 llvm::Instruction::And, true);
2806 
2807   case Builtin::BI__sync_val_compare_and_swap_1:
2808   case Builtin::BI__sync_val_compare_and_swap_2:
2809   case Builtin::BI__sync_val_compare_and_swap_4:
2810   case Builtin::BI__sync_val_compare_and_swap_8:
2811   case Builtin::BI__sync_val_compare_and_swap_16:
2812     return RValue::get(MakeAtomicCmpXchgValue(*this, E, false));
2813 
2814   case Builtin::BI__sync_bool_compare_and_swap_1:
2815   case Builtin::BI__sync_bool_compare_and_swap_2:
2816   case Builtin::BI__sync_bool_compare_and_swap_4:
2817   case Builtin::BI__sync_bool_compare_and_swap_8:
2818   case Builtin::BI__sync_bool_compare_and_swap_16:
2819     return RValue::get(MakeAtomicCmpXchgValue(*this, E, true));
2820 
2821   case Builtin::BI__sync_swap_1:
2822   case Builtin::BI__sync_swap_2:
2823   case Builtin::BI__sync_swap_4:
2824   case Builtin::BI__sync_swap_8:
2825   case Builtin::BI__sync_swap_16:
2826     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
2827 
2828   case Builtin::BI__sync_lock_test_and_set_1:
2829   case Builtin::BI__sync_lock_test_and_set_2:
2830   case Builtin::BI__sync_lock_test_and_set_4:
2831   case Builtin::BI__sync_lock_test_and_set_8:
2832   case Builtin::BI__sync_lock_test_and_set_16:
2833     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
2834 
2835   case Builtin::BI__sync_lock_release_1:
2836   case Builtin::BI__sync_lock_release_2:
2837   case Builtin::BI__sync_lock_release_4:
2838   case Builtin::BI__sync_lock_release_8:
2839   case Builtin::BI__sync_lock_release_16: {
2840     Value *Ptr = EmitScalarExpr(E->getArg(0));
2841     QualType ElTy = E->getArg(0)->getType()->getPointeeType();
2842     CharUnits StoreSize = getContext().getTypeSizeInChars(ElTy);
2843     llvm::Type *ITy = llvm::IntegerType::get(getLLVMContext(),
2844                                              StoreSize.getQuantity() * 8);
2845     Ptr = Builder.CreateBitCast(Ptr, ITy->getPointerTo());
2846     llvm::StoreInst *Store =
2847       Builder.CreateAlignedStore(llvm::Constant::getNullValue(ITy), Ptr,
2848                                  StoreSize);
2849     Store->setAtomic(llvm::AtomicOrdering::Release);
2850     return RValue::get(nullptr);
2851   }
2852 
2853   case Builtin::BI__sync_synchronize: {
2854     // We assume this is supposed to correspond to a C++0x-style
2855     // sequentially-consistent fence (i.e. this is only usable for
2856     // synchronization, not device I/O or anything like that). This intrinsic
2857     // is really badly designed in the sense that in theory, there isn't
2858     // any way to safely use it... but in practice, it mostly works
2859     // to use it with non-atomic loads and stores to get acquire/release
2860     // semantics.
2861     Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent);
2862     return RValue::get(nullptr);
2863   }
2864 
2865   case Builtin::BI__builtin_nontemporal_load:
2866     return RValue::get(EmitNontemporalLoad(*this, E));
2867   case Builtin::BI__builtin_nontemporal_store:
2868     return RValue::get(EmitNontemporalStore(*this, E));
2869   case Builtin::BI__c11_atomic_is_lock_free:
2870   case Builtin::BI__atomic_is_lock_free: {
2871     // Call "bool __atomic_is_lock_free(size_t size, void *ptr)". For the
2872     // __c11 builtin, ptr is 0 (indicating a properly-aligned object), since
2873     // _Atomic(T) is always properly-aligned.
2874     const char *LibCallName = "__atomic_is_lock_free";
2875     CallArgList Args;
2876     Args.add(RValue::get(EmitScalarExpr(E->getArg(0))),
2877              getContext().getSizeType());
2878     if (BuiltinID == Builtin::BI__atomic_is_lock_free)
2879       Args.add(RValue::get(EmitScalarExpr(E->getArg(1))),
2880                getContext().VoidPtrTy);
2881     else
2882       Args.add(RValue::get(llvm::Constant::getNullValue(VoidPtrTy)),
2883                getContext().VoidPtrTy);
2884     const CGFunctionInfo &FuncInfo =
2885         CGM.getTypes().arrangeBuiltinFunctionCall(E->getType(), Args);
2886     llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo);
2887     llvm::FunctionCallee Func = CGM.CreateRuntimeFunction(FTy, LibCallName);
2888     return EmitCall(FuncInfo, CGCallee::forDirect(Func),
2889                     ReturnValueSlot(), Args);
2890   }
2891 
2892   case Builtin::BI__atomic_test_and_set: {
2893     // Look at the argument type to determine whether this is a volatile
2894     // operation. The parameter type is always volatile.
2895     QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
2896     bool Volatile =
2897         PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
2898 
2899     Value *Ptr = EmitScalarExpr(E->getArg(0));
2900     unsigned AddrSpace = Ptr->getType()->getPointerAddressSpace();
2901     Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace));
2902     Value *NewVal = Builder.getInt8(1);
2903     Value *Order = EmitScalarExpr(E->getArg(1));
2904     if (isa<llvm::ConstantInt>(Order)) {
2905       int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
2906       AtomicRMWInst *Result = nullptr;
2907       switch (ord) {
2908       case 0:  // memory_order_relaxed
2909       default: // invalid order
2910         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
2911                                          llvm::AtomicOrdering::Monotonic);
2912         break;
2913       case 1: // memory_order_consume
2914       case 2: // memory_order_acquire
2915         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
2916                                          llvm::AtomicOrdering::Acquire);
2917         break;
2918       case 3: // memory_order_release
2919         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
2920                                          llvm::AtomicOrdering::Release);
2921         break;
2922       case 4: // memory_order_acq_rel
2923 
2924         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
2925                                          llvm::AtomicOrdering::AcquireRelease);
2926         break;
2927       case 5: // memory_order_seq_cst
2928         Result = Builder.CreateAtomicRMW(
2929             llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
2930             llvm::AtomicOrdering::SequentiallyConsistent);
2931         break;
2932       }
2933       Result->setVolatile(Volatile);
2934       return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
2935     }
2936 
2937     llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
2938 
2939     llvm::BasicBlock *BBs[5] = {
2940       createBasicBlock("monotonic", CurFn),
2941       createBasicBlock("acquire", CurFn),
2942       createBasicBlock("release", CurFn),
2943       createBasicBlock("acqrel", CurFn),
2944       createBasicBlock("seqcst", CurFn)
2945     };
2946     llvm::AtomicOrdering Orders[5] = {
2947         llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Acquire,
2948         llvm::AtomicOrdering::Release, llvm::AtomicOrdering::AcquireRelease,
2949         llvm::AtomicOrdering::SequentiallyConsistent};
2950 
2951     Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
2952     llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
2953 
2954     Builder.SetInsertPoint(ContBB);
2955     PHINode *Result = Builder.CreatePHI(Int8Ty, 5, "was_set");
2956 
2957     for (unsigned i = 0; i < 5; ++i) {
2958       Builder.SetInsertPoint(BBs[i]);
2959       AtomicRMWInst *RMW = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
2960                                                    Ptr, NewVal, Orders[i]);
2961       RMW->setVolatile(Volatile);
2962       Result->addIncoming(RMW, BBs[i]);
2963       Builder.CreateBr(ContBB);
2964     }
2965 
2966     SI->addCase(Builder.getInt32(0), BBs[0]);
2967     SI->addCase(Builder.getInt32(1), BBs[1]);
2968     SI->addCase(Builder.getInt32(2), BBs[1]);
2969     SI->addCase(Builder.getInt32(3), BBs[2]);
2970     SI->addCase(Builder.getInt32(4), BBs[3]);
2971     SI->addCase(Builder.getInt32(5), BBs[4]);
2972 
2973     Builder.SetInsertPoint(ContBB);
2974     return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
2975   }
2976 
2977   case Builtin::BI__atomic_clear: {
2978     QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
2979     bool Volatile =
2980         PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
2981 
2982     Address Ptr = EmitPointerWithAlignment(E->getArg(0));
2983     unsigned AddrSpace = Ptr.getPointer()->getType()->getPointerAddressSpace();
2984     Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace));
2985     Value *NewVal = Builder.getInt8(0);
2986     Value *Order = EmitScalarExpr(E->getArg(1));
2987     if (isa<llvm::ConstantInt>(Order)) {
2988       int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
2989       StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
2990       switch (ord) {
2991       case 0:  // memory_order_relaxed
2992       default: // invalid order
2993         Store->setOrdering(llvm::AtomicOrdering::Monotonic);
2994         break;
2995       case 3:  // memory_order_release
2996         Store->setOrdering(llvm::AtomicOrdering::Release);
2997         break;
2998       case 5:  // memory_order_seq_cst
2999         Store->setOrdering(llvm::AtomicOrdering::SequentiallyConsistent);
3000         break;
3001       }
3002       return RValue::get(nullptr);
3003     }
3004 
3005     llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
3006 
3007     llvm::BasicBlock *BBs[3] = {
3008       createBasicBlock("monotonic", CurFn),
3009       createBasicBlock("release", CurFn),
3010       createBasicBlock("seqcst", CurFn)
3011     };
3012     llvm::AtomicOrdering Orders[3] = {
3013         llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Release,
3014         llvm::AtomicOrdering::SequentiallyConsistent};
3015 
3016     Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
3017     llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
3018 
3019     for (unsigned i = 0; i < 3; ++i) {
3020       Builder.SetInsertPoint(BBs[i]);
3021       StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
3022       Store->setOrdering(Orders[i]);
3023       Builder.CreateBr(ContBB);
3024     }
3025 
3026     SI->addCase(Builder.getInt32(0), BBs[0]);
3027     SI->addCase(Builder.getInt32(3), BBs[1]);
3028     SI->addCase(Builder.getInt32(5), BBs[2]);
3029 
3030     Builder.SetInsertPoint(ContBB);
3031     return RValue::get(nullptr);
3032   }
3033 
3034   case Builtin::BI__atomic_thread_fence:
3035   case Builtin::BI__atomic_signal_fence:
3036   case Builtin::BI__c11_atomic_thread_fence:
3037   case Builtin::BI__c11_atomic_signal_fence: {
3038     llvm::SyncScope::ID SSID;
3039     if (BuiltinID == Builtin::BI__atomic_signal_fence ||
3040         BuiltinID == Builtin::BI__c11_atomic_signal_fence)
3041       SSID = llvm::SyncScope::SingleThread;
3042     else
3043       SSID = llvm::SyncScope::System;
3044     Value *Order = EmitScalarExpr(E->getArg(0));
3045     if (isa<llvm::ConstantInt>(Order)) {
3046       int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
3047       switch (ord) {
3048       case 0:  // memory_order_relaxed
3049       default: // invalid order
3050         break;
3051       case 1:  // memory_order_consume
3052       case 2:  // memory_order_acquire
3053         Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID);
3054         break;
3055       case 3:  // memory_order_release
3056         Builder.CreateFence(llvm::AtomicOrdering::Release, SSID);
3057         break;
3058       case 4:  // memory_order_acq_rel
3059         Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID);
3060         break;
3061       case 5:  // memory_order_seq_cst
3062         Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID);
3063         break;
3064       }
3065       return RValue::get(nullptr);
3066     }
3067 
3068     llvm::BasicBlock *AcquireBB, *ReleaseBB, *AcqRelBB, *SeqCstBB;
3069     AcquireBB = createBasicBlock("acquire", CurFn);
3070     ReleaseBB = createBasicBlock("release", CurFn);
3071     AcqRelBB = createBasicBlock("acqrel", CurFn);
3072     SeqCstBB = createBasicBlock("seqcst", CurFn);
3073     llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
3074 
3075     Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
3076     llvm::SwitchInst *SI = Builder.CreateSwitch(Order, ContBB);
3077 
3078     Builder.SetInsertPoint(AcquireBB);
3079     Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID);
3080     Builder.CreateBr(ContBB);
3081     SI->addCase(Builder.getInt32(1), AcquireBB);
3082     SI->addCase(Builder.getInt32(2), AcquireBB);
3083 
3084     Builder.SetInsertPoint(ReleaseBB);
3085     Builder.CreateFence(llvm::AtomicOrdering::Release, SSID);
3086     Builder.CreateBr(ContBB);
3087     SI->addCase(Builder.getInt32(3), ReleaseBB);
3088 
3089     Builder.SetInsertPoint(AcqRelBB);
3090     Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID);
3091     Builder.CreateBr(ContBB);
3092     SI->addCase(Builder.getInt32(4), AcqRelBB);
3093 
3094     Builder.SetInsertPoint(SeqCstBB);
3095     Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID);
3096     Builder.CreateBr(ContBB);
3097     SI->addCase(Builder.getInt32(5), SeqCstBB);
3098 
3099     Builder.SetInsertPoint(ContBB);
3100     return RValue::get(nullptr);
3101   }
3102 
3103   case Builtin::BI__builtin_signbit:
3104   case Builtin::BI__builtin_signbitf:
3105   case Builtin::BI__builtin_signbitl: {
3106     return RValue::get(
3107         Builder.CreateZExt(EmitSignBit(*this, EmitScalarExpr(E->getArg(0))),
3108                            ConvertType(E->getType())));
3109   }
3110   case Builtin::BI__annotation: {
3111     // Re-encode each wide string to UTF8 and make an MDString.
3112     SmallVector<Metadata *, 1> Strings;
3113     for (const Expr *Arg : E->arguments()) {
3114       const auto *Str = cast<StringLiteral>(Arg->IgnoreParenCasts());
3115       assert(Str->getCharByteWidth() == 2);
3116       StringRef WideBytes = Str->getBytes();
3117       std::string StrUtf8;
3118       if (!convertUTF16ToUTF8String(
3119               makeArrayRef(WideBytes.data(), WideBytes.size()), StrUtf8)) {
3120         CGM.ErrorUnsupported(E, "non-UTF16 __annotation argument");
3121         continue;
3122       }
3123       Strings.push_back(llvm::MDString::get(getLLVMContext(), StrUtf8));
3124     }
3125 
3126     // Build and MDTuple of MDStrings and emit the intrinsic call.
3127     llvm::Function *F =
3128         CGM.getIntrinsic(llvm::Intrinsic::codeview_annotation, {});
3129     MDTuple *StrTuple = MDTuple::get(getLLVMContext(), Strings);
3130     Builder.CreateCall(F, MetadataAsValue::get(getLLVMContext(), StrTuple));
3131     return RValue::getIgnored();
3132   }
3133   case Builtin::BI__builtin_annotation: {
3134     llvm::Value *AnnVal = EmitScalarExpr(E->getArg(0));
3135     llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::annotation,
3136                                       AnnVal->getType());
3137 
3138     // Get the annotation string, go through casts. Sema requires this to be a
3139     // non-wide string literal, potentially casted, so the cast<> is safe.
3140     const Expr *AnnotationStrExpr = E->getArg(1)->IgnoreParenCasts();
3141     StringRef Str = cast<StringLiteral>(AnnotationStrExpr)->getString();
3142     return RValue::get(EmitAnnotationCall(F, AnnVal, Str, E->getExprLoc()));
3143   }
3144   case Builtin::BI__builtin_addcb:
3145   case Builtin::BI__builtin_addcs:
3146   case Builtin::BI__builtin_addc:
3147   case Builtin::BI__builtin_addcl:
3148   case Builtin::BI__builtin_addcll:
3149   case Builtin::BI__builtin_subcb:
3150   case Builtin::BI__builtin_subcs:
3151   case Builtin::BI__builtin_subc:
3152   case Builtin::BI__builtin_subcl:
3153   case Builtin::BI__builtin_subcll: {
3154 
3155     // We translate all of these builtins from expressions of the form:
3156     //   int x = ..., y = ..., carryin = ..., carryout, result;
3157     //   result = __builtin_addc(x, y, carryin, &carryout);
3158     //
3159     // to LLVM IR of the form:
3160     //
3161     //   %tmp1 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %x, i32 %y)
3162     //   %tmpsum1 = extractvalue {i32, i1} %tmp1, 0
3163     //   %carry1 = extractvalue {i32, i1} %tmp1, 1
3164     //   %tmp2 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %tmpsum1,
3165     //                                                       i32 %carryin)
3166     //   %result = extractvalue {i32, i1} %tmp2, 0
3167     //   %carry2 = extractvalue {i32, i1} %tmp2, 1
3168     //   %tmp3 = or i1 %carry1, %carry2
3169     //   %tmp4 = zext i1 %tmp3 to i32
3170     //   store i32 %tmp4, i32* %carryout
3171 
3172     // Scalarize our inputs.
3173     llvm::Value *X = EmitScalarExpr(E->getArg(0));
3174     llvm::Value *Y = EmitScalarExpr(E->getArg(1));
3175     llvm::Value *Carryin = EmitScalarExpr(E->getArg(2));
3176     Address CarryOutPtr = EmitPointerWithAlignment(E->getArg(3));
3177 
3178     // Decide if we are lowering to a uadd.with.overflow or usub.with.overflow.
3179     llvm::Intrinsic::ID IntrinsicId;
3180     switch (BuiltinID) {
3181     default: llvm_unreachable("Unknown multiprecision builtin id.");
3182     case Builtin::BI__builtin_addcb:
3183     case Builtin::BI__builtin_addcs:
3184     case Builtin::BI__builtin_addc:
3185     case Builtin::BI__builtin_addcl:
3186     case Builtin::BI__builtin_addcll:
3187       IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
3188       break;
3189     case Builtin::BI__builtin_subcb:
3190     case Builtin::BI__builtin_subcs:
3191     case Builtin::BI__builtin_subc:
3192     case Builtin::BI__builtin_subcl:
3193     case Builtin::BI__builtin_subcll:
3194       IntrinsicId = llvm::Intrinsic::usub_with_overflow;
3195       break;
3196     }
3197 
3198     // Construct our resulting LLVM IR expression.
3199     llvm::Value *Carry1;
3200     llvm::Value *Sum1 = EmitOverflowIntrinsic(*this, IntrinsicId,
3201                                               X, Y, Carry1);
3202     llvm::Value *Carry2;
3203     llvm::Value *Sum2 = EmitOverflowIntrinsic(*this, IntrinsicId,
3204                                               Sum1, Carryin, Carry2);
3205     llvm::Value *CarryOut = Builder.CreateZExt(Builder.CreateOr(Carry1, Carry2),
3206                                                X->getType());
3207     Builder.CreateStore(CarryOut, CarryOutPtr);
3208     return RValue::get(Sum2);
3209   }
3210 
3211   case Builtin::BI__builtin_add_overflow:
3212   case Builtin::BI__builtin_sub_overflow:
3213   case Builtin::BI__builtin_mul_overflow: {
3214     const clang::Expr *LeftArg = E->getArg(0);
3215     const clang::Expr *RightArg = E->getArg(1);
3216     const clang::Expr *ResultArg = E->getArg(2);
3217 
3218     clang::QualType ResultQTy =
3219         ResultArg->getType()->castAs<PointerType>()->getPointeeType();
3220 
3221     WidthAndSignedness LeftInfo =
3222         getIntegerWidthAndSignedness(CGM.getContext(), LeftArg->getType());
3223     WidthAndSignedness RightInfo =
3224         getIntegerWidthAndSignedness(CGM.getContext(), RightArg->getType());
3225     WidthAndSignedness ResultInfo =
3226         getIntegerWidthAndSignedness(CGM.getContext(), ResultQTy);
3227 
3228     // Handle mixed-sign multiplication as a special case, because adding
3229     // runtime or backend support for our generic irgen would be too expensive.
3230     if (isSpecialMixedSignMultiply(BuiltinID, LeftInfo, RightInfo, ResultInfo))
3231       return EmitCheckedMixedSignMultiply(*this, LeftArg, LeftInfo, RightArg,
3232                                           RightInfo, ResultArg, ResultQTy,
3233                                           ResultInfo);
3234 
3235     WidthAndSignedness EncompassingInfo =
3236         EncompassingIntegerType({LeftInfo, RightInfo, ResultInfo});
3237 
3238     llvm::Type *EncompassingLLVMTy =
3239         llvm::IntegerType::get(CGM.getLLVMContext(), EncompassingInfo.Width);
3240 
3241     llvm::Type *ResultLLVMTy = CGM.getTypes().ConvertType(ResultQTy);
3242 
3243     llvm::Intrinsic::ID IntrinsicId;
3244     switch (BuiltinID) {
3245     default:
3246       llvm_unreachable("Unknown overflow builtin id.");
3247     case Builtin::BI__builtin_add_overflow:
3248       IntrinsicId = EncompassingInfo.Signed
3249                         ? llvm::Intrinsic::sadd_with_overflow
3250                         : llvm::Intrinsic::uadd_with_overflow;
3251       break;
3252     case Builtin::BI__builtin_sub_overflow:
3253       IntrinsicId = EncompassingInfo.Signed
3254                         ? llvm::Intrinsic::ssub_with_overflow
3255                         : llvm::Intrinsic::usub_with_overflow;
3256       break;
3257     case Builtin::BI__builtin_mul_overflow:
3258       IntrinsicId = EncompassingInfo.Signed
3259                         ? llvm::Intrinsic::smul_with_overflow
3260                         : llvm::Intrinsic::umul_with_overflow;
3261       break;
3262     }
3263 
3264     llvm::Value *Left = EmitScalarExpr(LeftArg);
3265     llvm::Value *Right = EmitScalarExpr(RightArg);
3266     Address ResultPtr = EmitPointerWithAlignment(ResultArg);
3267 
3268     // Extend each operand to the encompassing type.
3269     Left = Builder.CreateIntCast(Left, EncompassingLLVMTy, LeftInfo.Signed);
3270     Right = Builder.CreateIntCast(Right, EncompassingLLVMTy, RightInfo.Signed);
3271 
3272     // Perform the operation on the extended values.
3273     llvm::Value *Overflow, *Result;
3274     Result = EmitOverflowIntrinsic(*this, IntrinsicId, Left, Right, Overflow);
3275 
3276     if (EncompassingInfo.Width > ResultInfo.Width) {
3277       // The encompassing type is wider than the result type, so we need to
3278       // truncate it.
3279       llvm::Value *ResultTrunc = Builder.CreateTrunc(Result, ResultLLVMTy);
3280 
3281       // To see if the truncation caused an overflow, we will extend
3282       // the result and then compare it to the original result.
3283       llvm::Value *ResultTruncExt = Builder.CreateIntCast(
3284           ResultTrunc, EncompassingLLVMTy, ResultInfo.Signed);
3285       llvm::Value *TruncationOverflow =
3286           Builder.CreateICmpNE(Result, ResultTruncExt);
3287 
3288       Overflow = Builder.CreateOr(Overflow, TruncationOverflow);
3289       Result = ResultTrunc;
3290     }
3291 
3292     // Finally, store the result using the pointer.
3293     bool isVolatile =
3294       ResultArg->getType()->getPointeeType().isVolatileQualified();
3295     Builder.CreateStore(EmitToMemory(Result, ResultQTy), ResultPtr, isVolatile);
3296 
3297     return RValue::get(Overflow);
3298   }
3299 
3300   case Builtin::BI__builtin_uadd_overflow:
3301   case Builtin::BI__builtin_uaddl_overflow:
3302   case Builtin::BI__builtin_uaddll_overflow:
3303   case Builtin::BI__builtin_usub_overflow:
3304   case Builtin::BI__builtin_usubl_overflow:
3305   case Builtin::BI__builtin_usubll_overflow:
3306   case Builtin::BI__builtin_umul_overflow:
3307   case Builtin::BI__builtin_umull_overflow:
3308   case Builtin::BI__builtin_umulll_overflow:
3309   case Builtin::BI__builtin_sadd_overflow:
3310   case Builtin::BI__builtin_saddl_overflow:
3311   case Builtin::BI__builtin_saddll_overflow:
3312   case Builtin::BI__builtin_ssub_overflow:
3313   case Builtin::BI__builtin_ssubl_overflow:
3314   case Builtin::BI__builtin_ssubll_overflow:
3315   case Builtin::BI__builtin_smul_overflow:
3316   case Builtin::BI__builtin_smull_overflow:
3317   case Builtin::BI__builtin_smulll_overflow: {
3318 
3319     // We translate all of these builtins directly to the relevant llvm IR node.
3320 
3321     // Scalarize our inputs.
3322     llvm::Value *X = EmitScalarExpr(E->getArg(0));
3323     llvm::Value *Y = EmitScalarExpr(E->getArg(1));
3324     Address SumOutPtr = EmitPointerWithAlignment(E->getArg(2));
3325 
3326     // Decide which of the overflow intrinsics we are lowering to:
3327     llvm::Intrinsic::ID IntrinsicId;
3328     switch (BuiltinID) {
3329     default: llvm_unreachable("Unknown overflow builtin id.");
3330     case Builtin::BI__builtin_uadd_overflow:
3331     case Builtin::BI__builtin_uaddl_overflow:
3332     case Builtin::BI__builtin_uaddll_overflow:
3333       IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
3334       break;
3335     case Builtin::BI__builtin_usub_overflow:
3336     case Builtin::BI__builtin_usubl_overflow:
3337     case Builtin::BI__builtin_usubll_overflow:
3338       IntrinsicId = llvm::Intrinsic::usub_with_overflow;
3339       break;
3340     case Builtin::BI__builtin_umul_overflow:
3341     case Builtin::BI__builtin_umull_overflow:
3342     case Builtin::BI__builtin_umulll_overflow:
3343       IntrinsicId = llvm::Intrinsic::umul_with_overflow;
3344       break;
3345     case Builtin::BI__builtin_sadd_overflow:
3346     case Builtin::BI__builtin_saddl_overflow:
3347     case Builtin::BI__builtin_saddll_overflow:
3348       IntrinsicId = llvm::Intrinsic::sadd_with_overflow;
3349       break;
3350     case Builtin::BI__builtin_ssub_overflow:
3351     case Builtin::BI__builtin_ssubl_overflow:
3352     case Builtin::BI__builtin_ssubll_overflow:
3353       IntrinsicId = llvm::Intrinsic::ssub_with_overflow;
3354       break;
3355     case Builtin::BI__builtin_smul_overflow:
3356     case Builtin::BI__builtin_smull_overflow:
3357     case Builtin::BI__builtin_smulll_overflow:
3358       IntrinsicId = llvm::Intrinsic::smul_with_overflow;
3359       break;
3360     }
3361 
3362 
3363     llvm::Value *Carry;
3364     llvm::Value *Sum = EmitOverflowIntrinsic(*this, IntrinsicId, X, Y, Carry);
3365     Builder.CreateStore(Sum, SumOutPtr);
3366 
3367     return RValue::get(Carry);
3368   }
3369   case Builtin::BI__builtin_addressof:
3370     return RValue::get(EmitLValue(E->getArg(0)).getPointer());
3371   case Builtin::BI__builtin_operator_new:
3372     return EmitBuiltinNewDeleteCall(
3373         E->getCallee()->getType()->castAs<FunctionProtoType>(), E, false);
3374   case Builtin::BI__builtin_operator_delete:
3375     return EmitBuiltinNewDeleteCall(
3376         E->getCallee()->getType()->castAs<FunctionProtoType>(), E, true);
3377 
3378   case Builtin::BI__noop:
3379     // __noop always evaluates to an integer literal zero.
3380     return RValue::get(ConstantInt::get(IntTy, 0));
3381   case Builtin::BI__builtin_call_with_static_chain: {
3382     const CallExpr *Call = cast<CallExpr>(E->getArg(0));
3383     const Expr *Chain = E->getArg(1);
3384     return EmitCall(Call->getCallee()->getType(),
3385                     EmitCallee(Call->getCallee()), Call, ReturnValue,
3386                     EmitScalarExpr(Chain));
3387   }
3388   case Builtin::BI_InterlockedExchange8:
3389   case Builtin::BI_InterlockedExchange16:
3390   case Builtin::BI_InterlockedExchange:
3391   case Builtin::BI_InterlockedExchangePointer:
3392     return RValue::get(
3393         EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E));
3394   case Builtin::BI_InterlockedCompareExchangePointer:
3395   case Builtin::BI_InterlockedCompareExchangePointer_nf: {
3396     llvm::Type *RTy;
3397     llvm::IntegerType *IntType =
3398       IntegerType::get(getLLVMContext(),
3399                        getContext().getTypeSize(E->getType()));
3400     llvm::Type *IntPtrType = IntType->getPointerTo();
3401 
3402     llvm::Value *Destination =
3403       Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), IntPtrType);
3404 
3405     llvm::Value *Exchange = EmitScalarExpr(E->getArg(1));
3406     RTy = Exchange->getType();
3407     Exchange = Builder.CreatePtrToInt(Exchange, IntType);
3408 
3409     llvm::Value *Comparand =
3410       Builder.CreatePtrToInt(EmitScalarExpr(E->getArg(2)), IntType);
3411 
3412     auto Ordering =
3413       BuiltinID == Builtin::BI_InterlockedCompareExchangePointer_nf ?
3414       AtomicOrdering::Monotonic : AtomicOrdering::SequentiallyConsistent;
3415 
3416     auto Result = Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange,
3417                                               Ordering, Ordering);
3418     Result->setVolatile(true);
3419 
3420     return RValue::get(Builder.CreateIntToPtr(Builder.CreateExtractValue(Result,
3421                                                                          0),
3422                                               RTy));
3423   }
3424   case Builtin::BI_InterlockedCompareExchange8:
3425   case Builtin::BI_InterlockedCompareExchange16:
3426   case Builtin::BI_InterlockedCompareExchange:
3427   case Builtin::BI_InterlockedCompareExchange64:
3428     return RValue::get(EmitAtomicCmpXchgForMSIntrin(*this, E));
3429   case Builtin::BI_InterlockedIncrement16:
3430   case Builtin::BI_InterlockedIncrement:
3431     return RValue::get(
3432         EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E));
3433   case Builtin::BI_InterlockedDecrement16:
3434   case Builtin::BI_InterlockedDecrement:
3435     return RValue::get(
3436         EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E));
3437   case Builtin::BI_InterlockedAnd8:
3438   case Builtin::BI_InterlockedAnd16:
3439   case Builtin::BI_InterlockedAnd:
3440     return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E));
3441   case Builtin::BI_InterlockedExchangeAdd8:
3442   case Builtin::BI_InterlockedExchangeAdd16:
3443   case Builtin::BI_InterlockedExchangeAdd:
3444     return RValue::get(
3445         EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E));
3446   case Builtin::BI_InterlockedExchangeSub8:
3447   case Builtin::BI_InterlockedExchangeSub16:
3448   case Builtin::BI_InterlockedExchangeSub:
3449     return RValue::get(
3450         EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E));
3451   case Builtin::BI_InterlockedOr8:
3452   case Builtin::BI_InterlockedOr16:
3453   case Builtin::BI_InterlockedOr:
3454     return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E));
3455   case Builtin::BI_InterlockedXor8:
3456   case Builtin::BI_InterlockedXor16:
3457   case Builtin::BI_InterlockedXor:
3458     return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E));
3459 
3460   case Builtin::BI_bittest64:
3461   case Builtin::BI_bittest:
3462   case Builtin::BI_bittestandcomplement64:
3463   case Builtin::BI_bittestandcomplement:
3464   case Builtin::BI_bittestandreset64:
3465   case Builtin::BI_bittestandreset:
3466   case Builtin::BI_bittestandset64:
3467   case Builtin::BI_bittestandset:
3468   case Builtin::BI_interlockedbittestandreset:
3469   case Builtin::BI_interlockedbittestandreset64:
3470   case Builtin::BI_interlockedbittestandset64:
3471   case Builtin::BI_interlockedbittestandset:
3472   case Builtin::BI_interlockedbittestandset_acq:
3473   case Builtin::BI_interlockedbittestandset_rel:
3474   case Builtin::BI_interlockedbittestandset_nf:
3475   case Builtin::BI_interlockedbittestandreset_acq:
3476   case Builtin::BI_interlockedbittestandreset_rel:
3477   case Builtin::BI_interlockedbittestandreset_nf:
3478     return RValue::get(EmitBitTestIntrinsic(*this, BuiltinID, E));
3479 
3480     // These builtins exist to emit regular volatile loads and stores not
3481     // affected by the -fms-volatile setting.
3482   case Builtin::BI__iso_volatile_load8:
3483   case Builtin::BI__iso_volatile_load16:
3484   case Builtin::BI__iso_volatile_load32:
3485   case Builtin::BI__iso_volatile_load64:
3486     return RValue::get(EmitISOVolatileLoad(*this, E));
3487   case Builtin::BI__iso_volatile_store8:
3488   case Builtin::BI__iso_volatile_store16:
3489   case Builtin::BI__iso_volatile_store32:
3490   case Builtin::BI__iso_volatile_store64:
3491     return RValue::get(EmitISOVolatileStore(*this, E));
3492 
3493   case Builtin::BI__exception_code:
3494   case Builtin::BI_exception_code:
3495     return RValue::get(EmitSEHExceptionCode());
3496   case Builtin::BI__exception_info:
3497   case Builtin::BI_exception_info:
3498     return RValue::get(EmitSEHExceptionInfo());
3499   case Builtin::BI__abnormal_termination:
3500   case Builtin::BI_abnormal_termination:
3501     return RValue::get(EmitSEHAbnormalTermination());
3502   case Builtin::BI_setjmpex:
3503     if (getTarget().getTriple().isOSMSVCRT())
3504       return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmpex, E);
3505     break;
3506   case Builtin::BI_setjmp:
3507     if (getTarget().getTriple().isOSMSVCRT()) {
3508       if (getTarget().getTriple().getArch() == llvm::Triple::x86)
3509         return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmp3, E);
3510       else if (getTarget().getTriple().getArch() == llvm::Triple::aarch64)
3511         return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmpex, E);
3512       return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmp, E);
3513     }
3514     break;
3515 
3516   case Builtin::BI__GetExceptionInfo: {
3517     if (llvm::GlobalVariable *GV =
3518             CGM.getCXXABI().getThrowInfo(FD->getParamDecl(0)->getType()))
3519       return RValue::get(llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy));
3520     break;
3521   }
3522 
3523   case Builtin::BI__fastfail:
3524     return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::__fastfail, E));
3525 
3526   case Builtin::BI__builtin_coro_size: {
3527     auto & Context = getContext();
3528     auto SizeTy = Context.getSizeType();
3529     auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy));
3530     Function *F = CGM.getIntrinsic(Intrinsic::coro_size, T);
3531     return RValue::get(Builder.CreateCall(F));
3532   }
3533 
3534   case Builtin::BI__builtin_coro_id:
3535     return EmitCoroutineIntrinsic(E, Intrinsic::coro_id);
3536   case Builtin::BI__builtin_coro_promise:
3537     return EmitCoroutineIntrinsic(E, Intrinsic::coro_promise);
3538   case Builtin::BI__builtin_coro_resume:
3539     return EmitCoroutineIntrinsic(E, Intrinsic::coro_resume);
3540   case Builtin::BI__builtin_coro_frame:
3541     return EmitCoroutineIntrinsic(E, Intrinsic::coro_frame);
3542   case Builtin::BI__builtin_coro_noop:
3543     return EmitCoroutineIntrinsic(E, Intrinsic::coro_noop);
3544   case Builtin::BI__builtin_coro_free:
3545     return EmitCoroutineIntrinsic(E, Intrinsic::coro_free);
3546   case Builtin::BI__builtin_coro_destroy:
3547     return EmitCoroutineIntrinsic(E, Intrinsic::coro_destroy);
3548   case Builtin::BI__builtin_coro_done:
3549     return EmitCoroutineIntrinsic(E, Intrinsic::coro_done);
3550   case Builtin::BI__builtin_coro_alloc:
3551     return EmitCoroutineIntrinsic(E, Intrinsic::coro_alloc);
3552   case Builtin::BI__builtin_coro_begin:
3553     return EmitCoroutineIntrinsic(E, Intrinsic::coro_begin);
3554   case Builtin::BI__builtin_coro_end:
3555     return EmitCoroutineIntrinsic(E, Intrinsic::coro_end);
3556   case Builtin::BI__builtin_coro_suspend:
3557     return EmitCoroutineIntrinsic(E, Intrinsic::coro_suspend);
3558   case Builtin::BI__builtin_coro_param:
3559     return EmitCoroutineIntrinsic(E, Intrinsic::coro_param);
3560 
3561   // OpenCL v2.0 s6.13.16.2, Built-in pipe read and write functions
3562   case Builtin::BIread_pipe:
3563   case Builtin::BIwrite_pipe: {
3564     Value *Arg0 = EmitScalarExpr(E->getArg(0)),
3565           *Arg1 = EmitScalarExpr(E->getArg(1));
3566     CGOpenCLRuntime OpenCLRT(CGM);
3567     Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
3568     Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
3569 
3570     // Type of the generic packet parameter.
3571     unsigned GenericAS =
3572         getContext().getTargetAddressSpace(LangAS::opencl_generic);
3573     llvm::Type *I8PTy = llvm::PointerType::get(
3574         llvm::Type::getInt8Ty(getLLVMContext()), GenericAS);
3575 
3576     // Testing which overloaded version we should generate the call for.
3577     if (2U == E->getNumArgs()) {
3578       const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_2"
3579                                                              : "__write_pipe_2";
3580       // Creating a generic function type to be able to call with any builtin or
3581       // user defined type.
3582       llvm::Type *ArgTys[] = {Arg0->getType(), I8PTy, Int32Ty, Int32Ty};
3583       llvm::FunctionType *FTy = llvm::FunctionType::get(
3584           Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
3585       Value *BCast = Builder.CreatePointerCast(Arg1, I8PTy);
3586       return RValue::get(
3587           Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
3588                              {Arg0, BCast, PacketSize, PacketAlign}));
3589     } else {
3590       assert(4 == E->getNumArgs() &&
3591              "Illegal number of parameters to pipe function");
3592       const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_4"
3593                                                              : "__write_pipe_4";
3594 
3595       llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, I8PTy,
3596                               Int32Ty, Int32Ty};
3597       Value *Arg2 = EmitScalarExpr(E->getArg(2)),
3598             *Arg3 = EmitScalarExpr(E->getArg(3));
3599       llvm::FunctionType *FTy = llvm::FunctionType::get(
3600           Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
3601       Value *BCast = Builder.CreatePointerCast(Arg3, I8PTy);
3602       // We know the third argument is an integer type, but we may need to cast
3603       // it to i32.
3604       if (Arg2->getType() != Int32Ty)
3605         Arg2 = Builder.CreateZExtOrTrunc(Arg2, Int32Ty);
3606       return RValue::get(Builder.CreateCall(
3607           CGM.CreateRuntimeFunction(FTy, Name),
3608           {Arg0, Arg1, Arg2, BCast, PacketSize, PacketAlign}));
3609     }
3610   }
3611   // OpenCL v2.0 s6.13.16 ,s9.17.3.5 - Built-in pipe reserve read and write
3612   // functions
3613   case Builtin::BIreserve_read_pipe:
3614   case Builtin::BIreserve_write_pipe:
3615   case Builtin::BIwork_group_reserve_read_pipe:
3616   case Builtin::BIwork_group_reserve_write_pipe:
3617   case Builtin::BIsub_group_reserve_read_pipe:
3618   case Builtin::BIsub_group_reserve_write_pipe: {
3619     // Composing the mangled name for the function.
3620     const char *Name;
3621     if (BuiltinID == Builtin::BIreserve_read_pipe)
3622       Name = "__reserve_read_pipe";
3623     else if (BuiltinID == Builtin::BIreserve_write_pipe)
3624       Name = "__reserve_write_pipe";
3625     else if (BuiltinID == Builtin::BIwork_group_reserve_read_pipe)
3626       Name = "__work_group_reserve_read_pipe";
3627     else if (BuiltinID == Builtin::BIwork_group_reserve_write_pipe)
3628       Name = "__work_group_reserve_write_pipe";
3629     else if (BuiltinID == Builtin::BIsub_group_reserve_read_pipe)
3630       Name = "__sub_group_reserve_read_pipe";
3631     else
3632       Name = "__sub_group_reserve_write_pipe";
3633 
3634     Value *Arg0 = EmitScalarExpr(E->getArg(0)),
3635           *Arg1 = EmitScalarExpr(E->getArg(1));
3636     llvm::Type *ReservedIDTy = ConvertType(getContext().OCLReserveIDTy);
3637     CGOpenCLRuntime OpenCLRT(CGM);
3638     Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
3639     Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
3640 
3641     // Building the generic function prototype.
3642     llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty, Int32Ty};
3643     llvm::FunctionType *FTy = llvm::FunctionType::get(
3644         ReservedIDTy, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
3645     // We know the second argument is an integer type, but we may need to cast
3646     // it to i32.
3647     if (Arg1->getType() != Int32Ty)
3648       Arg1 = Builder.CreateZExtOrTrunc(Arg1, Int32Ty);
3649     return RValue::get(
3650         Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
3651                            {Arg0, Arg1, PacketSize, PacketAlign}));
3652   }
3653   // OpenCL v2.0 s6.13.16, s9.17.3.5 - Built-in pipe commit read and write
3654   // functions
3655   case Builtin::BIcommit_read_pipe:
3656   case Builtin::BIcommit_write_pipe:
3657   case Builtin::BIwork_group_commit_read_pipe:
3658   case Builtin::BIwork_group_commit_write_pipe:
3659   case Builtin::BIsub_group_commit_read_pipe:
3660   case Builtin::BIsub_group_commit_write_pipe: {
3661     const char *Name;
3662     if (BuiltinID == Builtin::BIcommit_read_pipe)
3663       Name = "__commit_read_pipe";
3664     else if (BuiltinID == Builtin::BIcommit_write_pipe)
3665       Name = "__commit_write_pipe";
3666     else if (BuiltinID == Builtin::BIwork_group_commit_read_pipe)
3667       Name = "__work_group_commit_read_pipe";
3668     else if (BuiltinID == Builtin::BIwork_group_commit_write_pipe)
3669       Name = "__work_group_commit_write_pipe";
3670     else if (BuiltinID == Builtin::BIsub_group_commit_read_pipe)
3671       Name = "__sub_group_commit_read_pipe";
3672     else
3673       Name = "__sub_group_commit_write_pipe";
3674 
3675     Value *Arg0 = EmitScalarExpr(E->getArg(0)),
3676           *Arg1 = EmitScalarExpr(E->getArg(1));
3677     CGOpenCLRuntime OpenCLRT(CGM);
3678     Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
3679     Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
3680 
3681     // Building the generic function prototype.
3682     llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, Int32Ty};
3683     llvm::FunctionType *FTy =
3684         llvm::FunctionType::get(llvm::Type::getVoidTy(getLLVMContext()),
3685                                 llvm::ArrayRef<llvm::Type *>(ArgTys), false);
3686 
3687     return RValue::get(
3688         Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
3689                            {Arg0, Arg1, PacketSize, PacketAlign}));
3690   }
3691   // OpenCL v2.0 s6.13.16.4 Built-in pipe query functions
3692   case Builtin::BIget_pipe_num_packets:
3693   case Builtin::BIget_pipe_max_packets: {
3694     const char *BaseName;
3695     const auto *PipeTy = E->getArg(0)->getType()->castAs<PipeType>();
3696     if (BuiltinID == Builtin::BIget_pipe_num_packets)
3697       BaseName = "__get_pipe_num_packets";
3698     else
3699       BaseName = "__get_pipe_max_packets";
3700     std::string Name = std::string(BaseName) +
3701                        std::string(PipeTy->isReadOnly() ? "_ro" : "_wo");
3702 
3703     // Building the generic function prototype.
3704     Value *Arg0 = EmitScalarExpr(E->getArg(0));
3705     CGOpenCLRuntime OpenCLRT(CGM);
3706     Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
3707     Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
3708     llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty};
3709     llvm::FunctionType *FTy = llvm::FunctionType::get(
3710         Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
3711 
3712     return RValue::get(Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
3713                                           {Arg0, PacketSize, PacketAlign}));
3714   }
3715 
3716   // OpenCL v2.0 s6.13.9 - Address space qualifier functions.
3717   case Builtin::BIto_global:
3718   case Builtin::BIto_local:
3719   case Builtin::BIto_private: {
3720     auto Arg0 = EmitScalarExpr(E->getArg(0));
3721     auto NewArgT = llvm::PointerType::get(Int8Ty,
3722       CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic));
3723     auto NewRetT = llvm::PointerType::get(Int8Ty,
3724       CGM.getContext().getTargetAddressSpace(
3725         E->getType()->getPointeeType().getAddressSpace()));
3726     auto FTy = llvm::FunctionType::get(NewRetT, {NewArgT}, false);
3727     llvm::Value *NewArg;
3728     if (Arg0->getType()->getPointerAddressSpace() !=
3729         NewArgT->getPointerAddressSpace())
3730       NewArg = Builder.CreateAddrSpaceCast(Arg0, NewArgT);
3731     else
3732       NewArg = Builder.CreateBitOrPointerCast(Arg0, NewArgT);
3733     auto NewName = std::string("__") + E->getDirectCallee()->getName().str();
3734     auto NewCall =
3735         Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, NewName), {NewArg});
3736     return RValue::get(Builder.CreateBitOrPointerCast(NewCall,
3737       ConvertType(E->getType())));
3738   }
3739 
3740   // OpenCL v2.0, s6.13.17 - Enqueue kernel function.
3741   // It contains four different overload formats specified in Table 6.13.17.1.
3742   case Builtin::BIenqueue_kernel: {
3743     StringRef Name; // Generated function call name
3744     unsigned NumArgs = E->getNumArgs();
3745 
3746     llvm::Type *QueueTy = ConvertType(getContext().OCLQueueTy);
3747     llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
3748         getContext().getTargetAddressSpace(LangAS::opencl_generic));
3749 
3750     llvm::Value *Queue = EmitScalarExpr(E->getArg(0));
3751     llvm::Value *Flags = EmitScalarExpr(E->getArg(1));
3752     LValue NDRangeL = EmitAggExprToLValue(E->getArg(2));
3753     llvm::Value *Range = NDRangeL.getAddress().getPointer();
3754     llvm::Type *RangeTy = NDRangeL.getAddress().getType();
3755 
3756     if (NumArgs == 4) {
3757       // The most basic form of the call with parameters:
3758       // queue_t, kernel_enqueue_flags_t, ndrange_t, block(void)
3759       Name = "__enqueue_kernel_basic";
3760       llvm::Type *ArgTys[] = {QueueTy, Int32Ty, RangeTy, GenericVoidPtrTy,
3761                               GenericVoidPtrTy};
3762       llvm::FunctionType *FTy = llvm::FunctionType::get(
3763           Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
3764 
3765       auto Info =
3766           CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3));
3767       llvm::Value *Kernel =
3768           Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
3769       llvm::Value *Block =
3770           Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
3771 
3772       AttrBuilder B;
3773       B.addByValAttr(NDRangeL.getAddress().getElementType());
3774       llvm::AttributeList ByValAttrSet =
3775           llvm::AttributeList::get(CGM.getModule().getContext(), 3U, B);
3776 
3777       auto RTCall =
3778           Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name, ByValAttrSet),
3779                              {Queue, Flags, Range, Kernel, Block});
3780       RTCall->setAttributes(ByValAttrSet);
3781       return RValue::get(RTCall);
3782     }
3783     assert(NumArgs >= 5 && "Invalid enqueue_kernel signature");
3784 
3785     // Create a temporary array to hold the sizes of local pointer arguments
3786     // for the block. \p First is the position of the first size argument.
3787     auto CreateArrayForSizeVar = [=](unsigned First)
3788         -> std::tuple<llvm::Value *, llvm::Value *, llvm::Value *> {
3789       llvm::APInt ArraySize(32, NumArgs - First);
3790       QualType SizeArrayTy = getContext().getConstantArrayType(
3791           getContext().getSizeType(), ArraySize, nullptr, ArrayType::Normal,
3792           /*IndexTypeQuals=*/0);
3793       auto Tmp = CreateMemTemp(SizeArrayTy, "block_sizes");
3794       llvm::Value *TmpPtr = Tmp.getPointer();
3795       llvm::Value *TmpSize = EmitLifetimeStart(
3796           CGM.getDataLayout().getTypeAllocSize(Tmp.getElementType()), TmpPtr);
3797       llvm::Value *ElemPtr;
3798       // Each of the following arguments specifies the size of the corresponding
3799       // argument passed to the enqueued block.
3800       auto *Zero = llvm::ConstantInt::get(IntTy, 0);
3801       for (unsigned I = First; I < NumArgs; ++I) {
3802         auto *Index = llvm::ConstantInt::get(IntTy, I - First);
3803         auto *GEP = Builder.CreateGEP(TmpPtr, {Zero, Index});
3804         if (I == First)
3805           ElemPtr = GEP;
3806         auto *V =
3807             Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(I)), SizeTy);
3808         Builder.CreateAlignedStore(
3809             V, GEP, CGM.getDataLayout().getPrefTypeAlignment(SizeTy));
3810       }
3811       return std::tie(ElemPtr, TmpSize, TmpPtr);
3812     };
3813 
3814     // Could have events and/or varargs.
3815     if (E->getArg(3)->getType()->isBlockPointerType()) {
3816       // No events passed, but has variadic arguments.
3817       Name = "__enqueue_kernel_varargs";
3818       auto Info =
3819           CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3));
3820       llvm::Value *Kernel =
3821           Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
3822       auto *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
3823       llvm::Value *ElemPtr, *TmpSize, *TmpPtr;
3824       std::tie(ElemPtr, TmpSize, TmpPtr) = CreateArrayForSizeVar(4);
3825 
3826       // Create a vector of the arguments, as well as a constant value to
3827       // express to the runtime the number of variadic arguments.
3828       std::vector<llvm::Value *> Args = {
3829           Queue,  Flags, Range,
3830           Kernel, Block, ConstantInt::get(IntTy, NumArgs - 4),
3831           ElemPtr};
3832       std::vector<llvm::Type *> ArgTys = {
3833           QueueTy,          IntTy, RangeTy,           GenericVoidPtrTy,
3834           GenericVoidPtrTy, IntTy, ElemPtr->getType()};
3835 
3836       llvm::FunctionType *FTy = llvm::FunctionType::get(
3837           Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
3838       auto Call =
3839           RValue::get(Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
3840                                          llvm::ArrayRef<llvm::Value *>(Args)));
3841       if (TmpSize)
3842         EmitLifetimeEnd(TmpSize, TmpPtr);
3843       return Call;
3844     }
3845     // Any calls now have event arguments passed.
3846     if (NumArgs >= 7) {
3847       llvm::Type *EventTy = ConvertType(getContext().OCLClkEventTy);
3848       llvm::PointerType *EventPtrTy = EventTy->getPointerTo(
3849           CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic));
3850 
3851       llvm::Value *NumEvents =
3852           Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(3)), Int32Ty);
3853 
3854       // Since SemaOpenCLBuiltinEnqueueKernel allows fifth and sixth arguments
3855       // to be a null pointer constant (including `0` literal), we can take it
3856       // into account and emit null pointer directly.
3857       llvm::Value *EventWaitList = nullptr;
3858       if (E->getArg(4)->isNullPointerConstant(
3859               getContext(), Expr::NPC_ValueDependentIsNotNull)) {
3860         EventWaitList = llvm::ConstantPointerNull::get(EventPtrTy);
3861       } else {
3862         EventWaitList = E->getArg(4)->getType()->isArrayType()
3863                         ? EmitArrayToPointerDecay(E->getArg(4)).getPointer()
3864                         : EmitScalarExpr(E->getArg(4));
3865         // Convert to generic address space.
3866         EventWaitList = Builder.CreatePointerCast(EventWaitList, EventPtrTy);
3867       }
3868       llvm::Value *EventRet = nullptr;
3869       if (E->getArg(5)->isNullPointerConstant(
3870               getContext(), Expr::NPC_ValueDependentIsNotNull)) {
3871         EventRet = llvm::ConstantPointerNull::get(EventPtrTy);
3872       } else {
3873         EventRet =
3874             Builder.CreatePointerCast(EmitScalarExpr(E->getArg(5)), EventPtrTy);
3875       }
3876 
3877       auto Info =
3878           CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(6));
3879       llvm::Value *Kernel =
3880           Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
3881       llvm::Value *Block =
3882           Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
3883 
3884       std::vector<llvm::Type *> ArgTys = {
3885           QueueTy,    Int32Ty,    RangeTy,          Int32Ty,
3886           EventPtrTy, EventPtrTy, GenericVoidPtrTy, GenericVoidPtrTy};
3887 
3888       std::vector<llvm::Value *> Args = {Queue,     Flags,         Range,
3889                                          NumEvents, EventWaitList, EventRet,
3890                                          Kernel,    Block};
3891 
3892       if (NumArgs == 7) {
3893         // Has events but no variadics.
3894         Name = "__enqueue_kernel_basic_events";
3895         llvm::FunctionType *FTy = llvm::FunctionType::get(
3896             Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
3897         return RValue::get(
3898             Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
3899                                llvm::ArrayRef<llvm::Value *>(Args)));
3900       }
3901       // Has event info and variadics
3902       // Pass the number of variadics to the runtime function too.
3903       Args.push_back(ConstantInt::get(Int32Ty, NumArgs - 7));
3904       ArgTys.push_back(Int32Ty);
3905       Name = "__enqueue_kernel_events_varargs";
3906 
3907       llvm::Value *ElemPtr, *TmpSize, *TmpPtr;
3908       std::tie(ElemPtr, TmpSize, TmpPtr) = CreateArrayForSizeVar(7);
3909       Args.push_back(ElemPtr);
3910       ArgTys.push_back(ElemPtr->getType());
3911 
3912       llvm::FunctionType *FTy = llvm::FunctionType::get(
3913           Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
3914       auto Call =
3915           RValue::get(Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
3916                                          llvm::ArrayRef<llvm::Value *>(Args)));
3917       if (TmpSize)
3918         EmitLifetimeEnd(TmpSize, TmpPtr);
3919       return Call;
3920     }
3921     LLVM_FALLTHROUGH;
3922   }
3923   // OpenCL v2.0 s6.13.17.6 - Kernel query functions need bitcast of block
3924   // parameter.
3925   case Builtin::BIget_kernel_work_group_size: {
3926     llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
3927         getContext().getTargetAddressSpace(LangAS::opencl_generic));
3928     auto Info =
3929         CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0));
3930     Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
3931     Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
3932     return RValue::get(Builder.CreateCall(
3933         CGM.CreateRuntimeFunction(
3934             llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy},
3935                                     false),
3936             "__get_kernel_work_group_size_impl"),
3937         {Kernel, Arg}));
3938   }
3939   case Builtin::BIget_kernel_preferred_work_group_size_multiple: {
3940     llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
3941         getContext().getTargetAddressSpace(LangAS::opencl_generic));
3942     auto Info =
3943         CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0));
3944     Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
3945     Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
3946     return RValue::get(Builder.CreateCall(
3947         CGM.CreateRuntimeFunction(
3948             llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy},
3949                                     false),
3950             "__get_kernel_preferred_work_group_size_multiple_impl"),
3951         {Kernel, Arg}));
3952   }
3953   case Builtin::BIget_kernel_max_sub_group_size_for_ndrange:
3954   case Builtin::BIget_kernel_sub_group_count_for_ndrange: {
3955     llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
3956         getContext().getTargetAddressSpace(LangAS::opencl_generic));
3957     LValue NDRangeL = EmitAggExprToLValue(E->getArg(0));
3958     llvm::Value *NDRange = NDRangeL.getAddress().getPointer();
3959     auto Info =
3960         CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(1));
3961     Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
3962     Value *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
3963     const char *Name =
3964         BuiltinID == Builtin::BIget_kernel_max_sub_group_size_for_ndrange
3965             ? "__get_kernel_max_sub_group_size_for_ndrange_impl"
3966             : "__get_kernel_sub_group_count_for_ndrange_impl";
3967     return RValue::get(Builder.CreateCall(
3968         CGM.CreateRuntimeFunction(
3969             llvm::FunctionType::get(
3970                 IntTy, {NDRange->getType(), GenericVoidPtrTy, GenericVoidPtrTy},
3971                 false),
3972             Name),
3973         {NDRange, Kernel, Block}));
3974   }
3975 
3976   case Builtin::BI__builtin_store_half:
3977   case Builtin::BI__builtin_store_halff: {
3978     Value *Val = EmitScalarExpr(E->getArg(0));
3979     Address Address = EmitPointerWithAlignment(E->getArg(1));
3980     Value *HalfVal = Builder.CreateFPTrunc(Val, Builder.getHalfTy());
3981     return RValue::get(Builder.CreateStore(HalfVal, Address));
3982   }
3983   case Builtin::BI__builtin_load_half: {
3984     Address Address = EmitPointerWithAlignment(E->getArg(0));
3985     Value *HalfVal = Builder.CreateLoad(Address);
3986     return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getDoubleTy()));
3987   }
3988   case Builtin::BI__builtin_load_halff: {
3989     Address Address = EmitPointerWithAlignment(E->getArg(0));
3990     Value *HalfVal = Builder.CreateLoad(Address);
3991     return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getFloatTy()));
3992   }
3993   case Builtin::BIprintf:
3994     if (getTarget().getTriple().isNVPTX())
3995       return EmitNVPTXDevicePrintfCallExpr(E, ReturnValue);
3996     break;
3997   case Builtin::BI__builtin_canonicalize:
3998   case Builtin::BI__builtin_canonicalizef:
3999   case Builtin::BI__builtin_canonicalizef16:
4000   case Builtin::BI__builtin_canonicalizel:
4001     return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::canonicalize));
4002 
4003   case Builtin::BI__builtin_thread_pointer: {
4004     if (!getContext().getTargetInfo().isTLSSupported())
4005       CGM.ErrorUnsupported(E, "__builtin_thread_pointer");
4006     // Fall through - it's already mapped to the intrinsic by GCCBuiltin.
4007     break;
4008   }
4009   case Builtin::BI__builtin_os_log_format:
4010     return emitBuiltinOSLogFormat(*E);
4011 
4012   case Builtin::BI__xray_customevent: {
4013     if (!ShouldXRayInstrumentFunction())
4014       return RValue::getIgnored();
4015 
4016     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
4017             XRayInstrKind::Custom))
4018       return RValue::getIgnored();
4019 
4020     if (const auto *XRayAttr = CurFuncDecl->getAttr<XRayInstrumentAttr>())
4021       if (XRayAttr->neverXRayInstrument() && !AlwaysEmitXRayCustomEvents())
4022         return RValue::getIgnored();
4023 
4024     Function *F = CGM.getIntrinsic(Intrinsic::xray_customevent);
4025     auto FTy = F->getFunctionType();
4026     auto Arg0 = E->getArg(0);
4027     auto Arg0Val = EmitScalarExpr(Arg0);
4028     auto Arg0Ty = Arg0->getType();
4029     auto PTy0 = FTy->getParamType(0);
4030     if (PTy0 != Arg0Val->getType()) {
4031       if (Arg0Ty->isArrayType())
4032         Arg0Val = EmitArrayToPointerDecay(Arg0).getPointer();
4033       else
4034         Arg0Val = Builder.CreatePointerCast(Arg0Val, PTy0);
4035     }
4036     auto Arg1 = EmitScalarExpr(E->getArg(1));
4037     auto PTy1 = FTy->getParamType(1);
4038     if (PTy1 != Arg1->getType())
4039       Arg1 = Builder.CreateTruncOrBitCast(Arg1, PTy1);
4040     return RValue::get(Builder.CreateCall(F, {Arg0Val, Arg1}));
4041   }
4042 
4043   case Builtin::BI__xray_typedevent: {
4044     // TODO: There should be a way to always emit events even if the current
4045     // function is not instrumented. Losing events in a stream can cripple
4046     // a trace.
4047     if (!ShouldXRayInstrumentFunction())
4048       return RValue::getIgnored();
4049 
4050     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
4051             XRayInstrKind::Typed))
4052       return RValue::getIgnored();
4053 
4054     if (const auto *XRayAttr = CurFuncDecl->getAttr<XRayInstrumentAttr>())
4055       if (XRayAttr->neverXRayInstrument() && !AlwaysEmitXRayTypedEvents())
4056         return RValue::getIgnored();
4057 
4058     Function *F = CGM.getIntrinsic(Intrinsic::xray_typedevent);
4059     auto FTy = F->getFunctionType();
4060     auto Arg0 = EmitScalarExpr(E->getArg(0));
4061     auto PTy0 = FTy->getParamType(0);
4062     if (PTy0 != Arg0->getType())
4063       Arg0 = Builder.CreateTruncOrBitCast(Arg0, PTy0);
4064     auto Arg1 = E->getArg(1);
4065     auto Arg1Val = EmitScalarExpr(Arg1);
4066     auto Arg1Ty = Arg1->getType();
4067     auto PTy1 = FTy->getParamType(1);
4068     if (PTy1 != Arg1Val->getType()) {
4069       if (Arg1Ty->isArrayType())
4070         Arg1Val = EmitArrayToPointerDecay(Arg1).getPointer();
4071       else
4072         Arg1Val = Builder.CreatePointerCast(Arg1Val, PTy1);
4073     }
4074     auto Arg2 = EmitScalarExpr(E->getArg(2));
4075     auto PTy2 = FTy->getParamType(2);
4076     if (PTy2 != Arg2->getType())
4077       Arg2 = Builder.CreateTruncOrBitCast(Arg2, PTy2);
4078     return RValue::get(Builder.CreateCall(F, {Arg0, Arg1Val, Arg2}));
4079   }
4080 
4081   case Builtin::BI__builtin_ms_va_start:
4082   case Builtin::BI__builtin_ms_va_end:
4083     return RValue::get(
4084         EmitVAStartEnd(EmitMSVAListRef(E->getArg(0)).getPointer(),
4085                        BuiltinID == Builtin::BI__builtin_ms_va_start));
4086 
4087   case Builtin::BI__builtin_ms_va_copy: {
4088     // Lower this manually. We can't reliably determine whether or not any
4089     // given va_copy() is for a Win64 va_list from the calling convention
4090     // alone, because it's legal to do this from a System V ABI function.
4091     // With opaque pointer types, we won't have enough information in LLVM
4092     // IR to determine this from the argument types, either. Best to do it
4093     // now, while we have enough information.
4094     Address DestAddr = EmitMSVAListRef(E->getArg(0));
4095     Address SrcAddr = EmitMSVAListRef(E->getArg(1));
4096 
4097     llvm::Type *BPP = Int8PtrPtrTy;
4098 
4099     DestAddr = Address(Builder.CreateBitCast(DestAddr.getPointer(), BPP, "cp"),
4100                        DestAddr.getAlignment());
4101     SrcAddr = Address(Builder.CreateBitCast(SrcAddr.getPointer(), BPP, "ap"),
4102                       SrcAddr.getAlignment());
4103 
4104     Value *ArgPtr = Builder.CreateLoad(SrcAddr, "ap.val");
4105     return RValue::get(Builder.CreateStore(ArgPtr, DestAddr));
4106   }
4107   }
4108 
4109   // If this is an alias for a lib function (e.g. __builtin_sin), emit
4110   // the call using the normal call path, but using the unmangled
4111   // version of the function name.
4112   if (getContext().BuiltinInfo.isLibFunction(BuiltinID))
4113     return emitLibraryCall(*this, FD, E,
4114                            CGM.getBuiltinLibFunction(FD, BuiltinID));
4115 
4116   // If this is a predefined lib function (e.g. malloc), emit the call
4117   // using exactly the normal call path.
4118   if (getContext().BuiltinInfo.isPredefinedLibFunction(BuiltinID))
4119     return emitLibraryCall(*this, FD, E,
4120                       cast<llvm::Constant>(EmitScalarExpr(E->getCallee())));
4121 
4122   // Check that a call to a target specific builtin has the correct target
4123   // features.
4124   // This is down here to avoid non-target specific builtins, however, if
4125   // generic builtins start to require generic target features then we
4126   // can move this up to the beginning of the function.
4127   checkTargetFeatures(E, FD);
4128 
4129   if (unsigned VectorWidth = getContext().BuiltinInfo.getRequiredVectorWidth(BuiltinID))
4130     LargestVectorWidth = std::max(LargestVectorWidth, VectorWidth);
4131 
4132   // See if we have a target specific intrinsic.
4133   const char *Name = getContext().BuiltinInfo.getName(BuiltinID);
4134   Intrinsic::ID IntrinsicID = Intrinsic::not_intrinsic;
4135   StringRef Prefix =
4136       llvm::Triple::getArchTypePrefix(getTarget().getTriple().getArch());
4137   if (!Prefix.empty()) {
4138     IntrinsicID = Intrinsic::getIntrinsicForGCCBuiltin(Prefix.data(), Name);
4139     // NOTE we don't need to perform a compatibility flag check here since the
4140     // intrinsics are declared in Builtins*.def via LANGBUILTIN which filter the
4141     // MS builtins via ALL_MS_LANGUAGES and are filtered earlier.
4142     if (IntrinsicID == Intrinsic::not_intrinsic)
4143       IntrinsicID = Intrinsic::getIntrinsicForMSBuiltin(Prefix.data(), Name);
4144   }
4145 
4146   if (IntrinsicID != Intrinsic::not_intrinsic) {
4147     SmallVector<Value*, 16> Args;
4148 
4149     // Find out if any arguments are required to be integer constant
4150     // expressions.
4151     unsigned ICEArguments = 0;
4152     ASTContext::GetBuiltinTypeError Error;
4153     getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
4154     assert(Error == ASTContext::GE_None && "Should not codegen an error");
4155 
4156     Function *F = CGM.getIntrinsic(IntrinsicID);
4157     llvm::FunctionType *FTy = F->getFunctionType();
4158 
4159     for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
4160       Value *ArgValue;
4161       // If this is a normal argument, just emit it as a scalar.
4162       if ((ICEArguments & (1 << i)) == 0) {
4163         ArgValue = EmitScalarExpr(E->getArg(i));
4164       } else {
4165         // If this is required to be a constant, constant fold it so that we
4166         // know that the generated intrinsic gets a ConstantInt.
4167         llvm::APSInt Result;
4168         bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result,getContext());
4169         assert(IsConst && "Constant arg isn't actually constant?");
4170         (void)IsConst;
4171         ArgValue = llvm::ConstantInt::get(getLLVMContext(), Result);
4172       }
4173 
4174       // If the intrinsic arg type is different from the builtin arg type
4175       // we need to do a bit cast.
4176       llvm::Type *PTy = FTy->getParamType(i);
4177       if (PTy != ArgValue->getType()) {
4178         // XXX - vector of pointers?
4179         if (auto *PtrTy = dyn_cast<llvm::PointerType>(PTy)) {
4180           if (PtrTy->getAddressSpace() !=
4181               ArgValue->getType()->getPointerAddressSpace()) {
4182             ArgValue = Builder.CreateAddrSpaceCast(
4183               ArgValue,
4184               ArgValue->getType()->getPointerTo(PtrTy->getAddressSpace()));
4185           }
4186         }
4187 
4188         assert(PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) &&
4189                "Must be able to losslessly bit cast to param");
4190         ArgValue = Builder.CreateBitCast(ArgValue, PTy);
4191       }
4192 
4193       Args.push_back(ArgValue);
4194     }
4195 
4196     Value *V = Builder.CreateCall(F, Args);
4197     QualType BuiltinRetType = E->getType();
4198 
4199     llvm::Type *RetTy = VoidTy;
4200     if (!BuiltinRetType->isVoidType())
4201       RetTy = ConvertType(BuiltinRetType);
4202 
4203     if (RetTy != V->getType()) {
4204       // XXX - vector of pointers?
4205       if (auto *PtrTy = dyn_cast<llvm::PointerType>(RetTy)) {
4206         if (PtrTy->getAddressSpace() != V->getType()->getPointerAddressSpace()) {
4207           V = Builder.CreateAddrSpaceCast(
4208             V, V->getType()->getPointerTo(PtrTy->getAddressSpace()));
4209         }
4210       }
4211 
4212       assert(V->getType()->canLosslesslyBitCastTo(RetTy) &&
4213              "Must be able to losslessly bit cast result type");
4214       V = Builder.CreateBitCast(V, RetTy);
4215     }
4216 
4217     return RValue::get(V);
4218   }
4219 
4220   // See if we have a target specific builtin that needs to be lowered.
4221   if (Value *V = EmitTargetBuiltinExpr(BuiltinID, E, ReturnValue))
4222     return RValue::get(V);
4223 
4224   ErrorUnsupported(E, "builtin function");
4225 
4226   // Unknown builtin, for now just dump it out and return undef.
4227   return GetUndefRValue(E->getType());
4228 }
4229 
4230 static Value *EmitTargetArchBuiltinExpr(CodeGenFunction *CGF,
4231                                         unsigned BuiltinID, const CallExpr *E,
4232                                         ReturnValueSlot ReturnValue,
4233                                         llvm::Triple::ArchType Arch) {
4234   switch (Arch) {
4235   case llvm::Triple::arm:
4236   case llvm::Triple::armeb:
4237   case llvm::Triple::thumb:
4238   case llvm::Triple::thumbeb:
4239     return CGF->EmitARMBuiltinExpr(BuiltinID, E, ReturnValue, Arch);
4240   case llvm::Triple::aarch64:
4241   case llvm::Triple::aarch64_be:
4242     return CGF->EmitAArch64BuiltinExpr(BuiltinID, E, Arch);
4243   case llvm::Triple::bpfeb:
4244   case llvm::Triple::bpfel:
4245     return CGF->EmitBPFBuiltinExpr(BuiltinID, E);
4246   case llvm::Triple::x86:
4247   case llvm::Triple::x86_64:
4248     return CGF->EmitX86BuiltinExpr(BuiltinID, E);
4249   case llvm::Triple::ppc:
4250   case llvm::Triple::ppc64:
4251   case llvm::Triple::ppc64le:
4252     return CGF->EmitPPCBuiltinExpr(BuiltinID, E);
4253   case llvm::Triple::r600:
4254   case llvm::Triple::amdgcn:
4255     return CGF->EmitAMDGPUBuiltinExpr(BuiltinID, E);
4256   case llvm::Triple::systemz:
4257     return CGF->EmitSystemZBuiltinExpr(BuiltinID, E);
4258   case llvm::Triple::nvptx:
4259   case llvm::Triple::nvptx64:
4260     return CGF->EmitNVPTXBuiltinExpr(BuiltinID, E);
4261   case llvm::Triple::wasm32:
4262   case llvm::Triple::wasm64:
4263     return CGF->EmitWebAssemblyBuiltinExpr(BuiltinID, E);
4264   case llvm::Triple::hexagon:
4265     return CGF->EmitHexagonBuiltinExpr(BuiltinID, E);
4266   default:
4267     return nullptr;
4268   }
4269 }
4270 
4271 Value *CodeGenFunction::EmitTargetBuiltinExpr(unsigned BuiltinID,
4272                                               const CallExpr *E,
4273                                               ReturnValueSlot ReturnValue) {
4274   if (getContext().BuiltinInfo.isAuxBuiltinID(BuiltinID)) {
4275     assert(getContext().getAuxTargetInfo() && "Missing aux target info");
4276     return EmitTargetArchBuiltinExpr(
4277         this, getContext().BuiltinInfo.getAuxBuiltinID(BuiltinID), E,
4278         ReturnValue, getContext().getAuxTargetInfo()->getTriple().getArch());
4279   }
4280 
4281   return EmitTargetArchBuiltinExpr(this, BuiltinID, E, ReturnValue,
4282                                    getTarget().getTriple().getArch());
4283 }
4284 
4285 static llvm::VectorType *GetNeonType(CodeGenFunction *CGF,
4286                                      NeonTypeFlags TypeFlags,
4287                                      bool HasLegalHalfType=true,
4288                                      bool V1Ty=false) {
4289   int IsQuad = TypeFlags.isQuad();
4290   switch (TypeFlags.getEltType()) {
4291   case NeonTypeFlags::Int8:
4292   case NeonTypeFlags::Poly8:
4293     return llvm::VectorType::get(CGF->Int8Ty, V1Ty ? 1 : (8 << IsQuad));
4294   case NeonTypeFlags::Int16:
4295   case NeonTypeFlags::Poly16:
4296     return llvm::VectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
4297   case NeonTypeFlags::Float16:
4298     if (HasLegalHalfType)
4299       return llvm::VectorType::get(CGF->HalfTy, V1Ty ? 1 : (4 << IsQuad));
4300     else
4301       return llvm::VectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
4302   case NeonTypeFlags::Int32:
4303     return llvm::VectorType::get(CGF->Int32Ty, V1Ty ? 1 : (2 << IsQuad));
4304   case NeonTypeFlags::Int64:
4305   case NeonTypeFlags::Poly64:
4306     return llvm::VectorType::get(CGF->Int64Ty, V1Ty ? 1 : (1 << IsQuad));
4307   case NeonTypeFlags::Poly128:
4308     // FIXME: i128 and f128 doesn't get fully support in Clang and llvm.
4309     // There is a lot of i128 and f128 API missing.
4310     // so we use v16i8 to represent poly128 and get pattern matched.
4311     return llvm::VectorType::get(CGF->Int8Ty, 16);
4312   case NeonTypeFlags::Float32:
4313     return llvm::VectorType::get(CGF->FloatTy, V1Ty ? 1 : (2 << IsQuad));
4314   case NeonTypeFlags::Float64:
4315     return llvm::VectorType::get(CGF->DoubleTy, V1Ty ? 1 : (1 << IsQuad));
4316   }
4317   llvm_unreachable("Unknown vector element type!");
4318 }
4319 
4320 static llvm::VectorType *GetFloatNeonType(CodeGenFunction *CGF,
4321                                           NeonTypeFlags IntTypeFlags) {
4322   int IsQuad = IntTypeFlags.isQuad();
4323   switch (IntTypeFlags.getEltType()) {
4324   case NeonTypeFlags::Int16:
4325     return llvm::VectorType::get(CGF->HalfTy, (4 << IsQuad));
4326   case NeonTypeFlags::Int32:
4327     return llvm::VectorType::get(CGF->FloatTy, (2 << IsQuad));
4328   case NeonTypeFlags::Int64:
4329     return llvm::VectorType::get(CGF->DoubleTy, (1 << IsQuad));
4330   default:
4331     llvm_unreachable("Type can't be converted to floating-point!");
4332   }
4333 }
4334 
4335 Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C) {
4336   unsigned nElts = V->getType()->getVectorNumElements();
4337   Value* SV = llvm::ConstantVector::getSplat(nElts, C);
4338   return Builder.CreateShuffleVector(V, V, SV, "lane");
4339 }
4340 
4341 Value *CodeGenFunction::EmitNeonCall(Function *F, SmallVectorImpl<Value*> &Ops,
4342                                      const char *name,
4343                                      unsigned shift, bool rightshift) {
4344   unsigned j = 0;
4345   for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
4346        ai != ae; ++ai, ++j)
4347     if (shift > 0 && shift == j)
4348       Ops[j] = EmitNeonShiftVector(Ops[j], ai->getType(), rightshift);
4349     else
4350       Ops[j] = Builder.CreateBitCast(Ops[j], ai->getType(), name);
4351 
4352   return Builder.CreateCall(F, Ops, name);
4353 }
4354 
4355 Value *CodeGenFunction::EmitNeonShiftVector(Value *V, llvm::Type *Ty,
4356                                             bool neg) {
4357   int SV = cast<ConstantInt>(V)->getSExtValue();
4358   return ConstantInt::get(Ty, neg ? -SV : SV);
4359 }
4360 
4361 // Right-shift a vector by a constant.
4362 Value *CodeGenFunction::EmitNeonRShiftImm(Value *Vec, Value *Shift,
4363                                           llvm::Type *Ty, bool usgn,
4364                                           const char *name) {
4365   llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
4366 
4367   int ShiftAmt = cast<ConstantInt>(Shift)->getSExtValue();
4368   int EltSize = VTy->getScalarSizeInBits();
4369 
4370   Vec = Builder.CreateBitCast(Vec, Ty);
4371 
4372   // lshr/ashr are undefined when the shift amount is equal to the vector
4373   // element size.
4374   if (ShiftAmt == EltSize) {
4375     if (usgn) {
4376       // Right-shifting an unsigned value by its size yields 0.
4377       return llvm::ConstantAggregateZero::get(VTy);
4378     } else {
4379       // Right-shifting a signed value by its size is equivalent
4380       // to a shift of size-1.
4381       --ShiftAmt;
4382       Shift = ConstantInt::get(VTy->getElementType(), ShiftAmt);
4383     }
4384   }
4385 
4386   Shift = EmitNeonShiftVector(Shift, Ty, false);
4387   if (usgn)
4388     return Builder.CreateLShr(Vec, Shift, name);
4389   else
4390     return Builder.CreateAShr(Vec, Shift, name);
4391 }
4392 
4393 enum {
4394   AddRetType = (1 << 0),
4395   Add1ArgType = (1 << 1),
4396   Add2ArgTypes = (1 << 2),
4397 
4398   VectorizeRetType = (1 << 3),
4399   VectorizeArgTypes = (1 << 4),
4400 
4401   InventFloatType = (1 << 5),
4402   UnsignedAlts = (1 << 6),
4403 
4404   Use64BitVectors = (1 << 7),
4405   Use128BitVectors = (1 << 8),
4406 
4407   Vectorize1ArgType = Add1ArgType | VectorizeArgTypes,
4408   VectorRet = AddRetType | VectorizeRetType,
4409   VectorRetGetArgs01 =
4410       AddRetType | Add2ArgTypes | VectorizeRetType | VectorizeArgTypes,
4411   FpCmpzModifiers =
4412       AddRetType | VectorizeRetType | Add1ArgType | InventFloatType
4413 };
4414 
4415 namespace {
4416 struct NeonIntrinsicInfo {
4417   const char *NameHint;
4418   unsigned BuiltinID;
4419   unsigned LLVMIntrinsic;
4420   unsigned AltLLVMIntrinsic;
4421   unsigned TypeModifier;
4422 
4423   bool operator<(unsigned RHSBuiltinID) const {
4424     return BuiltinID < RHSBuiltinID;
4425   }
4426   bool operator<(const NeonIntrinsicInfo &TE) const {
4427     return BuiltinID < TE.BuiltinID;
4428   }
4429 };
4430 } // end anonymous namespace
4431 
4432 #define NEONMAP0(NameBase) \
4433   { #NameBase, NEON::BI__builtin_neon_ ## NameBase, 0, 0, 0 }
4434 
4435 #define NEONMAP1(NameBase, LLVMIntrinsic, TypeModifier) \
4436   { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \
4437       Intrinsic::LLVMIntrinsic, 0, TypeModifier }
4438 
4439 #define NEONMAP2(NameBase, LLVMIntrinsic, AltLLVMIntrinsic, TypeModifier) \
4440   { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \
4441       Intrinsic::LLVMIntrinsic, Intrinsic::AltLLVMIntrinsic, \
4442       TypeModifier }
4443 
4444 static const NeonIntrinsicInfo ARMSIMDIntrinsicMap [] = {
4445   NEONMAP2(vabd_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts),
4446   NEONMAP2(vabdq_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts),
4447   NEONMAP1(vabs_v, arm_neon_vabs, 0),
4448   NEONMAP1(vabsq_v, arm_neon_vabs, 0),
4449   NEONMAP0(vaddhn_v),
4450   NEONMAP1(vaesdq_v, arm_neon_aesd, 0),
4451   NEONMAP1(vaeseq_v, arm_neon_aese, 0),
4452   NEONMAP1(vaesimcq_v, arm_neon_aesimc, 0),
4453   NEONMAP1(vaesmcq_v, arm_neon_aesmc, 0),
4454   NEONMAP1(vbsl_v, arm_neon_vbsl, AddRetType),
4455   NEONMAP1(vbslq_v, arm_neon_vbsl, AddRetType),
4456   NEONMAP1(vcage_v, arm_neon_vacge, 0),
4457   NEONMAP1(vcageq_v, arm_neon_vacge, 0),
4458   NEONMAP1(vcagt_v, arm_neon_vacgt, 0),
4459   NEONMAP1(vcagtq_v, arm_neon_vacgt, 0),
4460   NEONMAP1(vcale_v, arm_neon_vacge, 0),
4461   NEONMAP1(vcaleq_v, arm_neon_vacge, 0),
4462   NEONMAP1(vcalt_v, arm_neon_vacgt, 0),
4463   NEONMAP1(vcaltq_v, arm_neon_vacgt, 0),
4464   NEONMAP0(vceqz_v),
4465   NEONMAP0(vceqzq_v),
4466   NEONMAP0(vcgez_v),
4467   NEONMAP0(vcgezq_v),
4468   NEONMAP0(vcgtz_v),
4469   NEONMAP0(vcgtzq_v),
4470   NEONMAP0(vclez_v),
4471   NEONMAP0(vclezq_v),
4472   NEONMAP1(vcls_v, arm_neon_vcls, Add1ArgType),
4473   NEONMAP1(vclsq_v, arm_neon_vcls, Add1ArgType),
4474   NEONMAP0(vcltz_v),
4475   NEONMAP0(vcltzq_v),
4476   NEONMAP1(vclz_v, ctlz, Add1ArgType),
4477   NEONMAP1(vclzq_v, ctlz, Add1ArgType),
4478   NEONMAP1(vcnt_v, ctpop, Add1ArgType),
4479   NEONMAP1(vcntq_v, ctpop, Add1ArgType),
4480   NEONMAP1(vcvt_f16_f32, arm_neon_vcvtfp2hf, 0),
4481   NEONMAP0(vcvt_f16_v),
4482   NEONMAP1(vcvt_f32_f16, arm_neon_vcvthf2fp, 0),
4483   NEONMAP0(vcvt_f32_v),
4484   NEONMAP2(vcvt_n_f16_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
4485   NEONMAP2(vcvt_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
4486   NEONMAP1(vcvt_n_s16_v, arm_neon_vcvtfp2fxs, 0),
4487   NEONMAP1(vcvt_n_s32_v, arm_neon_vcvtfp2fxs, 0),
4488   NEONMAP1(vcvt_n_s64_v, arm_neon_vcvtfp2fxs, 0),
4489   NEONMAP1(vcvt_n_u16_v, arm_neon_vcvtfp2fxu, 0),
4490   NEONMAP1(vcvt_n_u32_v, arm_neon_vcvtfp2fxu, 0),
4491   NEONMAP1(vcvt_n_u64_v, arm_neon_vcvtfp2fxu, 0),
4492   NEONMAP0(vcvt_s16_v),
4493   NEONMAP0(vcvt_s32_v),
4494   NEONMAP0(vcvt_s64_v),
4495   NEONMAP0(vcvt_u16_v),
4496   NEONMAP0(vcvt_u32_v),
4497   NEONMAP0(vcvt_u64_v),
4498   NEONMAP1(vcvta_s16_v, arm_neon_vcvtas, 0),
4499   NEONMAP1(vcvta_s32_v, arm_neon_vcvtas, 0),
4500   NEONMAP1(vcvta_s64_v, arm_neon_vcvtas, 0),
4501   NEONMAP1(vcvta_u16_v, arm_neon_vcvtau, 0),
4502   NEONMAP1(vcvta_u32_v, arm_neon_vcvtau, 0),
4503   NEONMAP1(vcvta_u64_v, arm_neon_vcvtau, 0),
4504   NEONMAP1(vcvtaq_s16_v, arm_neon_vcvtas, 0),
4505   NEONMAP1(vcvtaq_s32_v, arm_neon_vcvtas, 0),
4506   NEONMAP1(vcvtaq_s64_v, arm_neon_vcvtas, 0),
4507   NEONMAP1(vcvtaq_u16_v, arm_neon_vcvtau, 0),
4508   NEONMAP1(vcvtaq_u32_v, arm_neon_vcvtau, 0),
4509   NEONMAP1(vcvtaq_u64_v, arm_neon_vcvtau, 0),
4510   NEONMAP1(vcvtm_s16_v, arm_neon_vcvtms, 0),
4511   NEONMAP1(vcvtm_s32_v, arm_neon_vcvtms, 0),
4512   NEONMAP1(vcvtm_s64_v, arm_neon_vcvtms, 0),
4513   NEONMAP1(vcvtm_u16_v, arm_neon_vcvtmu, 0),
4514   NEONMAP1(vcvtm_u32_v, arm_neon_vcvtmu, 0),
4515   NEONMAP1(vcvtm_u64_v, arm_neon_vcvtmu, 0),
4516   NEONMAP1(vcvtmq_s16_v, arm_neon_vcvtms, 0),
4517   NEONMAP1(vcvtmq_s32_v, arm_neon_vcvtms, 0),
4518   NEONMAP1(vcvtmq_s64_v, arm_neon_vcvtms, 0),
4519   NEONMAP1(vcvtmq_u16_v, arm_neon_vcvtmu, 0),
4520   NEONMAP1(vcvtmq_u32_v, arm_neon_vcvtmu, 0),
4521   NEONMAP1(vcvtmq_u64_v, arm_neon_vcvtmu, 0),
4522   NEONMAP1(vcvtn_s16_v, arm_neon_vcvtns, 0),
4523   NEONMAP1(vcvtn_s32_v, arm_neon_vcvtns, 0),
4524   NEONMAP1(vcvtn_s64_v, arm_neon_vcvtns, 0),
4525   NEONMAP1(vcvtn_u16_v, arm_neon_vcvtnu, 0),
4526   NEONMAP1(vcvtn_u32_v, arm_neon_vcvtnu, 0),
4527   NEONMAP1(vcvtn_u64_v, arm_neon_vcvtnu, 0),
4528   NEONMAP1(vcvtnq_s16_v, arm_neon_vcvtns, 0),
4529   NEONMAP1(vcvtnq_s32_v, arm_neon_vcvtns, 0),
4530   NEONMAP1(vcvtnq_s64_v, arm_neon_vcvtns, 0),
4531   NEONMAP1(vcvtnq_u16_v, arm_neon_vcvtnu, 0),
4532   NEONMAP1(vcvtnq_u32_v, arm_neon_vcvtnu, 0),
4533   NEONMAP1(vcvtnq_u64_v, arm_neon_vcvtnu, 0),
4534   NEONMAP1(vcvtp_s16_v, arm_neon_vcvtps, 0),
4535   NEONMAP1(vcvtp_s32_v, arm_neon_vcvtps, 0),
4536   NEONMAP1(vcvtp_s64_v, arm_neon_vcvtps, 0),
4537   NEONMAP1(vcvtp_u16_v, arm_neon_vcvtpu, 0),
4538   NEONMAP1(vcvtp_u32_v, arm_neon_vcvtpu, 0),
4539   NEONMAP1(vcvtp_u64_v, arm_neon_vcvtpu, 0),
4540   NEONMAP1(vcvtpq_s16_v, arm_neon_vcvtps, 0),
4541   NEONMAP1(vcvtpq_s32_v, arm_neon_vcvtps, 0),
4542   NEONMAP1(vcvtpq_s64_v, arm_neon_vcvtps, 0),
4543   NEONMAP1(vcvtpq_u16_v, arm_neon_vcvtpu, 0),
4544   NEONMAP1(vcvtpq_u32_v, arm_neon_vcvtpu, 0),
4545   NEONMAP1(vcvtpq_u64_v, arm_neon_vcvtpu, 0),
4546   NEONMAP0(vcvtq_f16_v),
4547   NEONMAP0(vcvtq_f32_v),
4548   NEONMAP2(vcvtq_n_f16_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
4549   NEONMAP2(vcvtq_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
4550   NEONMAP1(vcvtq_n_s16_v, arm_neon_vcvtfp2fxs, 0),
4551   NEONMAP1(vcvtq_n_s32_v, arm_neon_vcvtfp2fxs, 0),
4552   NEONMAP1(vcvtq_n_s64_v, arm_neon_vcvtfp2fxs, 0),
4553   NEONMAP1(vcvtq_n_u16_v, arm_neon_vcvtfp2fxu, 0),
4554   NEONMAP1(vcvtq_n_u32_v, arm_neon_vcvtfp2fxu, 0),
4555   NEONMAP1(vcvtq_n_u64_v, arm_neon_vcvtfp2fxu, 0),
4556   NEONMAP0(vcvtq_s16_v),
4557   NEONMAP0(vcvtq_s32_v),
4558   NEONMAP0(vcvtq_s64_v),
4559   NEONMAP0(vcvtq_u16_v),
4560   NEONMAP0(vcvtq_u32_v),
4561   NEONMAP0(vcvtq_u64_v),
4562   NEONMAP2(vdot_v, arm_neon_udot, arm_neon_sdot, 0),
4563   NEONMAP2(vdotq_v, arm_neon_udot, arm_neon_sdot, 0),
4564   NEONMAP0(vext_v),
4565   NEONMAP0(vextq_v),
4566   NEONMAP0(vfma_v),
4567   NEONMAP0(vfmaq_v),
4568   NEONMAP2(vhadd_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts),
4569   NEONMAP2(vhaddq_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts),
4570   NEONMAP2(vhsub_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts),
4571   NEONMAP2(vhsubq_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts),
4572   NEONMAP0(vld1_dup_v),
4573   NEONMAP1(vld1_v, arm_neon_vld1, 0),
4574   NEONMAP1(vld1_x2_v, arm_neon_vld1x2, 0),
4575   NEONMAP1(vld1_x3_v, arm_neon_vld1x3, 0),
4576   NEONMAP1(vld1_x4_v, arm_neon_vld1x4, 0),
4577   NEONMAP0(vld1q_dup_v),
4578   NEONMAP1(vld1q_v, arm_neon_vld1, 0),
4579   NEONMAP1(vld1q_x2_v, arm_neon_vld1x2, 0),
4580   NEONMAP1(vld1q_x3_v, arm_neon_vld1x3, 0),
4581   NEONMAP1(vld1q_x4_v, arm_neon_vld1x4, 0),
4582   NEONMAP1(vld2_dup_v, arm_neon_vld2dup, 0),
4583   NEONMAP1(vld2_lane_v, arm_neon_vld2lane, 0),
4584   NEONMAP1(vld2_v, arm_neon_vld2, 0),
4585   NEONMAP1(vld2q_dup_v, arm_neon_vld2dup, 0),
4586   NEONMAP1(vld2q_lane_v, arm_neon_vld2lane, 0),
4587   NEONMAP1(vld2q_v, arm_neon_vld2, 0),
4588   NEONMAP1(vld3_dup_v, arm_neon_vld3dup, 0),
4589   NEONMAP1(vld3_lane_v, arm_neon_vld3lane, 0),
4590   NEONMAP1(vld3_v, arm_neon_vld3, 0),
4591   NEONMAP1(vld3q_dup_v, arm_neon_vld3dup, 0),
4592   NEONMAP1(vld3q_lane_v, arm_neon_vld3lane, 0),
4593   NEONMAP1(vld3q_v, arm_neon_vld3, 0),
4594   NEONMAP1(vld4_dup_v, arm_neon_vld4dup, 0),
4595   NEONMAP1(vld4_lane_v, arm_neon_vld4lane, 0),
4596   NEONMAP1(vld4_v, arm_neon_vld4, 0),
4597   NEONMAP1(vld4q_dup_v, arm_neon_vld4dup, 0),
4598   NEONMAP1(vld4q_lane_v, arm_neon_vld4lane, 0),
4599   NEONMAP1(vld4q_v, arm_neon_vld4, 0),
4600   NEONMAP2(vmax_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts),
4601   NEONMAP1(vmaxnm_v, arm_neon_vmaxnm, Add1ArgType),
4602   NEONMAP1(vmaxnmq_v, arm_neon_vmaxnm, Add1ArgType),
4603   NEONMAP2(vmaxq_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts),
4604   NEONMAP2(vmin_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts),
4605   NEONMAP1(vminnm_v, arm_neon_vminnm, Add1ArgType),
4606   NEONMAP1(vminnmq_v, arm_neon_vminnm, Add1ArgType),
4607   NEONMAP2(vminq_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts),
4608   NEONMAP0(vmovl_v),
4609   NEONMAP0(vmovn_v),
4610   NEONMAP1(vmul_v, arm_neon_vmulp, Add1ArgType),
4611   NEONMAP0(vmull_v),
4612   NEONMAP1(vmulq_v, arm_neon_vmulp, Add1ArgType),
4613   NEONMAP2(vpadal_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts),
4614   NEONMAP2(vpadalq_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts),
4615   NEONMAP1(vpadd_v, arm_neon_vpadd, Add1ArgType),
4616   NEONMAP2(vpaddl_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts),
4617   NEONMAP2(vpaddlq_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts),
4618   NEONMAP1(vpaddq_v, arm_neon_vpadd, Add1ArgType),
4619   NEONMAP2(vpmax_v, arm_neon_vpmaxu, arm_neon_vpmaxs, Add1ArgType | UnsignedAlts),
4620   NEONMAP2(vpmin_v, arm_neon_vpminu, arm_neon_vpmins, Add1ArgType | UnsignedAlts),
4621   NEONMAP1(vqabs_v, arm_neon_vqabs, Add1ArgType),
4622   NEONMAP1(vqabsq_v, arm_neon_vqabs, Add1ArgType),
4623   NEONMAP2(vqadd_v, arm_neon_vqaddu, arm_neon_vqadds, Add1ArgType | UnsignedAlts),
4624   NEONMAP2(vqaddq_v, arm_neon_vqaddu, arm_neon_vqadds, Add1ArgType | UnsignedAlts),
4625   NEONMAP2(vqdmlal_v, arm_neon_vqdmull, arm_neon_vqadds, 0),
4626   NEONMAP2(vqdmlsl_v, arm_neon_vqdmull, arm_neon_vqsubs, 0),
4627   NEONMAP1(vqdmulh_v, arm_neon_vqdmulh, Add1ArgType),
4628   NEONMAP1(vqdmulhq_v, arm_neon_vqdmulh, Add1ArgType),
4629   NEONMAP1(vqdmull_v, arm_neon_vqdmull, Add1ArgType),
4630   NEONMAP2(vqmovn_v, arm_neon_vqmovnu, arm_neon_vqmovns, Add1ArgType | UnsignedAlts),
4631   NEONMAP1(vqmovun_v, arm_neon_vqmovnsu, Add1ArgType),
4632   NEONMAP1(vqneg_v, arm_neon_vqneg, Add1ArgType),
4633   NEONMAP1(vqnegq_v, arm_neon_vqneg, Add1ArgType),
4634   NEONMAP1(vqrdmulh_v, arm_neon_vqrdmulh, Add1ArgType),
4635   NEONMAP1(vqrdmulhq_v, arm_neon_vqrdmulh, Add1ArgType),
4636   NEONMAP2(vqrshl_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts),
4637   NEONMAP2(vqrshlq_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts),
4638   NEONMAP2(vqshl_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts),
4639   NEONMAP2(vqshl_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts),
4640   NEONMAP2(vqshlq_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts),
4641   NEONMAP2(vqshlq_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts),
4642   NEONMAP1(vqshlu_n_v, arm_neon_vqshiftsu, 0),
4643   NEONMAP1(vqshluq_n_v, arm_neon_vqshiftsu, 0),
4644   NEONMAP2(vqsub_v, arm_neon_vqsubu, arm_neon_vqsubs, Add1ArgType | UnsignedAlts),
4645   NEONMAP2(vqsubq_v, arm_neon_vqsubu, arm_neon_vqsubs, Add1ArgType | UnsignedAlts),
4646   NEONMAP1(vraddhn_v, arm_neon_vraddhn, Add1ArgType),
4647   NEONMAP2(vrecpe_v, arm_neon_vrecpe, arm_neon_vrecpe, 0),
4648   NEONMAP2(vrecpeq_v, arm_neon_vrecpe, arm_neon_vrecpe, 0),
4649   NEONMAP1(vrecps_v, arm_neon_vrecps, Add1ArgType),
4650   NEONMAP1(vrecpsq_v, arm_neon_vrecps, Add1ArgType),
4651   NEONMAP2(vrhadd_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts),
4652   NEONMAP2(vrhaddq_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts),
4653   NEONMAP1(vrnd_v, arm_neon_vrintz, Add1ArgType),
4654   NEONMAP1(vrnda_v, arm_neon_vrinta, Add1ArgType),
4655   NEONMAP1(vrndaq_v, arm_neon_vrinta, Add1ArgType),
4656   NEONMAP0(vrndi_v),
4657   NEONMAP0(vrndiq_v),
4658   NEONMAP1(vrndm_v, arm_neon_vrintm, Add1ArgType),
4659   NEONMAP1(vrndmq_v, arm_neon_vrintm, Add1ArgType),
4660   NEONMAP1(vrndn_v, arm_neon_vrintn, Add1ArgType),
4661   NEONMAP1(vrndnq_v, arm_neon_vrintn, Add1ArgType),
4662   NEONMAP1(vrndp_v, arm_neon_vrintp, Add1ArgType),
4663   NEONMAP1(vrndpq_v, arm_neon_vrintp, Add1ArgType),
4664   NEONMAP1(vrndq_v, arm_neon_vrintz, Add1ArgType),
4665   NEONMAP1(vrndx_v, arm_neon_vrintx, Add1ArgType),
4666   NEONMAP1(vrndxq_v, arm_neon_vrintx, Add1ArgType),
4667   NEONMAP2(vrshl_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts),
4668   NEONMAP2(vrshlq_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts),
4669   NEONMAP2(vrshr_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts),
4670   NEONMAP2(vrshrq_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts),
4671   NEONMAP2(vrsqrte_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0),
4672   NEONMAP2(vrsqrteq_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0),
4673   NEONMAP1(vrsqrts_v, arm_neon_vrsqrts, Add1ArgType),
4674   NEONMAP1(vrsqrtsq_v, arm_neon_vrsqrts, Add1ArgType),
4675   NEONMAP1(vrsubhn_v, arm_neon_vrsubhn, Add1ArgType),
4676   NEONMAP1(vsha1su0q_v, arm_neon_sha1su0, 0),
4677   NEONMAP1(vsha1su1q_v, arm_neon_sha1su1, 0),
4678   NEONMAP1(vsha256h2q_v, arm_neon_sha256h2, 0),
4679   NEONMAP1(vsha256hq_v, arm_neon_sha256h, 0),
4680   NEONMAP1(vsha256su0q_v, arm_neon_sha256su0, 0),
4681   NEONMAP1(vsha256su1q_v, arm_neon_sha256su1, 0),
4682   NEONMAP0(vshl_n_v),
4683   NEONMAP2(vshl_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts),
4684   NEONMAP0(vshll_n_v),
4685   NEONMAP0(vshlq_n_v),
4686   NEONMAP2(vshlq_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts),
4687   NEONMAP0(vshr_n_v),
4688   NEONMAP0(vshrn_n_v),
4689   NEONMAP0(vshrq_n_v),
4690   NEONMAP1(vst1_v, arm_neon_vst1, 0),
4691   NEONMAP1(vst1_x2_v, arm_neon_vst1x2, 0),
4692   NEONMAP1(vst1_x3_v, arm_neon_vst1x3, 0),
4693   NEONMAP1(vst1_x4_v, arm_neon_vst1x4, 0),
4694   NEONMAP1(vst1q_v, arm_neon_vst1, 0),
4695   NEONMAP1(vst1q_x2_v, arm_neon_vst1x2, 0),
4696   NEONMAP1(vst1q_x3_v, arm_neon_vst1x3, 0),
4697   NEONMAP1(vst1q_x4_v, arm_neon_vst1x4, 0),
4698   NEONMAP1(vst2_lane_v, arm_neon_vst2lane, 0),
4699   NEONMAP1(vst2_v, arm_neon_vst2, 0),
4700   NEONMAP1(vst2q_lane_v, arm_neon_vst2lane, 0),
4701   NEONMAP1(vst2q_v, arm_neon_vst2, 0),
4702   NEONMAP1(vst3_lane_v, arm_neon_vst3lane, 0),
4703   NEONMAP1(vst3_v, arm_neon_vst3, 0),
4704   NEONMAP1(vst3q_lane_v, arm_neon_vst3lane, 0),
4705   NEONMAP1(vst3q_v, arm_neon_vst3, 0),
4706   NEONMAP1(vst4_lane_v, arm_neon_vst4lane, 0),
4707   NEONMAP1(vst4_v, arm_neon_vst4, 0),
4708   NEONMAP1(vst4q_lane_v, arm_neon_vst4lane, 0),
4709   NEONMAP1(vst4q_v, arm_neon_vst4, 0),
4710   NEONMAP0(vsubhn_v),
4711   NEONMAP0(vtrn_v),
4712   NEONMAP0(vtrnq_v),
4713   NEONMAP0(vtst_v),
4714   NEONMAP0(vtstq_v),
4715   NEONMAP0(vuzp_v),
4716   NEONMAP0(vuzpq_v),
4717   NEONMAP0(vzip_v),
4718   NEONMAP0(vzipq_v)
4719 };
4720 
4721 static const NeonIntrinsicInfo AArch64SIMDIntrinsicMap[] = {
4722   NEONMAP1(vabs_v, aarch64_neon_abs, 0),
4723   NEONMAP1(vabsq_v, aarch64_neon_abs, 0),
4724   NEONMAP0(vaddhn_v),
4725   NEONMAP1(vaesdq_v, aarch64_crypto_aesd, 0),
4726   NEONMAP1(vaeseq_v, aarch64_crypto_aese, 0),
4727   NEONMAP1(vaesimcq_v, aarch64_crypto_aesimc, 0),
4728   NEONMAP1(vaesmcq_v, aarch64_crypto_aesmc, 0),
4729   NEONMAP1(vcage_v, aarch64_neon_facge, 0),
4730   NEONMAP1(vcageq_v, aarch64_neon_facge, 0),
4731   NEONMAP1(vcagt_v, aarch64_neon_facgt, 0),
4732   NEONMAP1(vcagtq_v, aarch64_neon_facgt, 0),
4733   NEONMAP1(vcale_v, aarch64_neon_facge, 0),
4734   NEONMAP1(vcaleq_v, aarch64_neon_facge, 0),
4735   NEONMAP1(vcalt_v, aarch64_neon_facgt, 0),
4736   NEONMAP1(vcaltq_v, aarch64_neon_facgt, 0),
4737   NEONMAP0(vceqz_v),
4738   NEONMAP0(vceqzq_v),
4739   NEONMAP0(vcgez_v),
4740   NEONMAP0(vcgezq_v),
4741   NEONMAP0(vcgtz_v),
4742   NEONMAP0(vcgtzq_v),
4743   NEONMAP0(vclez_v),
4744   NEONMAP0(vclezq_v),
4745   NEONMAP1(vcls_v, aarch64_neon_cls, Add1ArgType),
4746   NEONMAP1(vclsq_v, aarch64_neon_cls, Add1ArgType),
4747   NEONMAP0(vcltz_v),
4748   NEONMAP0(vcltzq_v),
4749   NEONMAP1(vclz_v, ctlz, Add1ArgType),
4750   NEONMAP1(vclzq_v, ctlz, Add1ArgType),
4751   NEONMAP1(vcnt_v, ctpop, Add1ArgType),
4752   NEONMAP1(vcntq_v, ctpop, Add1ArgType),
4753   NEONMAP1(vcvt_f16_f32, aarch64_neon_vcvtfp2hf, 0),
4754   NEONMAP0(vcvt_f16_v),
4755   NEONMAP1(vcvt_f32_f16, aarch64_neon_vcvthf2fp, 0),
4756   NEONMAP0(vcvt_f32_v),
4757   NEONMAP2(vcvt_n_f16_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
4758   NEONMAP2(vcvt_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
4759   NEONMAP2(vcvt_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
4760   NEONMAP1(vcvt_n_s16_v, aarch64_neon_vcvtfp2fxs, 0),
4761   NEONMAP1(vcvt_n_s32_v, aarch64_neon_vcvtfp2fxs, 0),
4762   NEONMAP1(vcvt_n_s64_v, aarch64_neon_vcvtfp2fxs, 0),
4763   NEONMAP1(vcvt_n_u16_v, aarch64_neon_vcvtfp2fxu, 0),
4764   NEONMAP1(vcvt_n_u32_v, aarch64_neon_vcvtfp2fxu, 0),
4765   NEONMAP1(vcvt_n_u64_v, aarch64_neon_vcvtfp2fxu, 0),
4766   NEONMAP0(vcvtq_f16_v),
4767   NEONMAP0(vcvtq_f32_v),
4768   NEONMAP2(vcvtq_n_f16_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
4769   NEONMAP2(vcvtq_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
4770   NEONMAP2(vcvtq_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
4771   NEONMAP1(vcvtq_n_s16_v, aarch64_neon_vcvtfp2fxs, 0),
4772   NEONMAP1(vcvtq_n_s32_v, aarch64_neon_vcvtfp2fxs, 0),
4773   NEONMAP1(vcvtq_n_s64_v, aarch64_neon_vcvtfp2fxs, 0),
4774   NEONMAP1(vcvtq_n_u16_v, aarch64_neon_vcvtfp2fxu, 0),
4775   NEONMAP1(vcvtq_n_u32_v, aarch64_neon_vcvtfp2fxu, 0),
4776   NEONMAP1(vcvtq_n_u64_v, aarch64_neon_vcvtfp2fxu, 0),
4777   NEONMAP1(vcvtx_f32_v, aarch64_neon_fcvtxn, AddRetType | Add1ArgType),
4778   NEONMAP2(vdot_v, aarch64_neon_udot, aarch64_neon_sdot, 0),
4779   NEONMAP2(vdotq_v, aarch64_neon_udot, aarch64_neon_sdot, 0),
4780   NEONMAP0(vext_v),
4781   NEONMAP0(vextq_v),
4782   NEONMAP0(vfma_v),
4783   NEONMAP0(vfmaq_v),
4784   NEONMAP1(vfmlal_high_v, aarch64_neon_fmlal2, 0),
4785   NEONMAP1(vfmlal_low_v, aarch64_neon_fmlal, 0),
4786   NEONMAP1(vfmlalq_high_v, aarch64_neon_fmlal2, 0),
4787   NEONMAP1(vfmlalq_low_v, aarch64_neon_fmlal, 0),
4788   NEONMAP1(vfmlsl_high_v, aarch64_neon_fmlsl2, 0),
4789   NEONMAP1(vfmlsl_low_v, aarch64_neon_fmlsl, 0),
4790   NEONMAP1(vfmlslq_high_v, aarch64_neon_fmlsl2, 0),
4791   NEONMAP1(vfmlslq_low_v, aarch64_neon_fmlsl, 0),
4792   NEONMAP2(vhadd_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts),
4793   NEONMAP2(vhaddq_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts),
4794   NEONMAP2(vhsub_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts),
4795   NEONMAP2(vhsubq_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts),
4796   NEONMAP1(vld1_x2_v, aarch64_neon_ld1x2, 0),
4797   NEONMAP1(vld1_x3_v, aarch64_neon_ld1x3, 0),
4798   NEONMAP1(vld1_x4_v, aarch64_neon_ld1x4, 0),
4799   NEONMAP1(vld1q_x2_v, aarch64_neon_ld1x2, 0),
4800   NEONMAP1(vld1q_x3_v, aarch64_neon_ld1x3, 0),
4801   NEONMAP1(vld1q_x4_v, aarch64_neon_ld1x4, 0),
4802   NEONMAP0(vmovl_v),
4803   NEONMAP0(vmovn_v),
4804   NEONMAP1(vmul_v, aarch64_neon_pmul, Add1ArgType),
4805   NEONMAP1(vmulq_v, aarch64_neon_pmul, Add1ArgType),
4806   NEONMAP1(vpadd_v, aarch64_neon_addp, Add1ArgType),
4807   NEONMAP2(vpaddl_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts),
4808   NEONMAP2(vpaddlq_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts),
4809   NEONMAP1(vpaddq_v, aarch64_neon_addp, Add1ArgType),
4810   NEONMAP1(vqabs_v, aarch64_neon_sqabs, Add1ArgType),
4811   NEONMAP1(vqabsq_v, aarch64_neon_sqabs, Add1ArgType),
4812   NEONMAP2(vqadd_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts),
4813   NEONMAP2(vqaddq_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts),
4814   NEONMAP2(vqdmlal_v, aarch64_neon_sqdmull, aarch64_neon_sqadd, 0),
4815   NEONMAP2(vqdmlsl_v, aarch64_neon_sqdmull, aarch64_neon_sqsub, 0),
4816   NEONMAP1(vqdmulh_v, aarch64_neon_sqdmulh, Add1ArgType),
4817   NEONMAP1(vqdmulhq_v, aarch64_neon_sqdmulh, Add1ArgType),
4818   NEONMAP1(vqdmull_v, aarch64_neon_sqdmull, Add1ArgType),
4819   NEONMAP2(vqmovn_v, aarch64_neon_uqxtn, aarch64_neon_sqxtn, Add1ArgType | UnsignedAlts),
4820   NEONMAP1(vqmovun_v, aarch64_neon_sqxtun, Add1ArgType),
4821   NEONMAP1(vqneg_v, aarch64_neon_sqneg, Add1ArgType),
4822   NEONMAP1(vqnegq_v, aarch64_neon_sqneg, Add1ArgType),
4823   NEONMAP1(vqrdmulh_v, aarch64_neon_sqrdmulh, Add1ArgType),
4824   NEONMAP1(vqrdmulhq_v, aarch64_neon_sqrdmulh, Add1ArgType),
4825   NEONMAP2(vqrshl_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts),
4826   NEONMAP2(vqrshlq_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts),
4827   NEONMAP2(vqshl_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl, UnsignedAlts),
4828   NEONMAP2(vqshl_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts),
4829   NEONMAP2(vqshlq_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl,UnsignedAlts),
4830   NEONMAP2(vqshlq_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts),
4831   NEONMAP1(vqshlu_n_v, aarch64_neon_sqshlu, 0),
4832   NEONMAP1(vqshluq_n_v, aarch64_neon_sqshlu, 0),
4833   NEONMAP2(vqsub_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts),
4834   NEONMAP2(vqsubq_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts),
4835   NEONMAP1(vraddhn_v, aarch64_neon_raddhn, Add1ArgType),
4836   NEONMAP2(vrecpe_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0),
4837   NEONMAP2(vrecpeq_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0),
4838   NEONMAP1(vrecps_v, aarch64_neon_frecps, Add1ArgType),
4839   NEONMAP1(vrecpsq_v, aarch64_neon_frecps, Add1ArgType),
4840   NEONMAP2(vrhadd_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts),
4841   NEONMAP2(vrhaddq_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts),
4842   NEONMAP0(vrndi_v),
4843   NEONMAP0(vrndiq_v),
4844   NEONMAP2(vrshl_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts),
4845   NEONMAP2(vrshlq_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts),
4846   NEONMAP2(vrshr_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts),
4847   NEONMAP2(vrshrq_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts),
4848   NEONMAP2(vrsqrte_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0),
4849   NEONMAP2(vrsqrteq_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0),
4850   NEONMAP1(vrsqrts_v, aarch64_neon_frsqrts, Add1ArgType),
4851   NEONMAP1(vrsqrtsq_v, aarch64_neon_frsqrts, Add1ArgType),
4852   NEONMAP1(vrsubhn_v, aarch64_neon_rsubhn, Add1ArgType),
4853   NEONMAP1(vsha1su0q_v, aarch64_crypto_sha1su0, 0),
4854   NEONMAP1(vsha1su1q_v, aarch64_crypto_sha1su1, 0),
4855   NEONMAP1(vsha256h2q_v, aarch64_crypto_sha256h2, 0),
4856   NEONMAP1(vsha256hq_v, aarch64_crypto_sha256h, 0),
4857   NEONMAP1(vsha256su0q_v, aarch64_crypto_sha256su0, 0),
4858   NEONMAP1(vsha256su1q_v, aarch64_crypto_sha256su1, 0),
4859   NEONMAP0(vshl_n_v),
4860   NEONMAP2(vshl_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts),
4861   NEONMAP0(vshll_n_v),
4862   NEONMAP0(vshlq_n_v),
4863   NEONMAP2(vshlq_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts),
4864   NEONMAP0(vshr_n_v),
4865   NEONMAP0(vshrn_n_v),
4866   NEONMAP0(vshrq_n_v),
4867   NEONMAP1(vst1_x2_v, aarch64_neon_st1x2, 0),
4868   NEONMAP1(vst1_x3_v, aarch64_neon_st1x3, 0),
4869   NEONMAP1(vst1_x4_v, aarch64_neon_st1x4, 0),
4870   NEONMAP1(vst1q_x2_v, aarch64_neon_st1x2, 0),
4871   NEONMAP1(vst1q_x3_v, aarch64_neon_st1x3, 0),
4872   NEONMAP1(vst1q_x4_v, aarch64_neon_st1x4, 0),
4873   NEONMAP0(vsubhn_v),
4874   NEONMAP0(vtst_v),
4875   NEONMAP0(vtstq_v),
4876 };
4877 
4878 static const NeonIntrinsicInfo AArch64SISDIntrinsicMap[] = {
4879   NEONMAP1(vabdd_f64, aarch64_sisd_fabd, Add1ArgType),
4880   NEONMAP1(vabds_f32, aarch64_sisd_fabd, Add1ArgType),
4881   NEONMAP1(vabsd_s64, aarch64_neon_abs, Add1ArgType),
4882   NEONMAP1(vaddlv_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType),
4883   NEONMAP1(vaddlv_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType),
4884   NEONMAP1(vaddlvq_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType),
4885   NEONMAP1(vaddlvq_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType),
4886   NEONMAP1(vaddv_f32, aarch64_neon_faddv, AddRetType | Add1ArgType),
4887   NEONMAP1(vaddv_s32, aarch64_neon_saddv, AddRetType | Add1ArgType),
4888   NEONMAP1(vaddv_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType),
4889   NEONMAP1(vaddvq_f32, aarch64_neon_faddv, AddRetType | Add1ArgType),
4890   NEONMAP1(vaddvq_f64, aarch64_neon_faddv, AddRetType | Add1ArgType),
4891   NEONMAP1(vaddvq_s32, aarch64_neon_saddv, AddRetType | Add1ArgType),
4892   NEONMAP1(vaddvq_s64, aarch64_neon_saddv, AddRetType | Add1ArgType),
4893   NEONMAP1(vaddvq_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType),
4894   NEONMAP1(vaddvq_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
4895   NEONMAP1(vcaged_f64, aarch64_neon_facge, AddRetType | Add1ArgType),
4896   NEONMAP1(vcages_f32, aarch64_neon_facge, AddRetType | Add1ArgType),
4897   NEONMAP1(vcagtd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType),
4898   NEONMAP1(vcagts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType),
4899   NEONMAP1(vcaled_f64, aarch64_neon_facge, AddRetType | Add1ArgType),
4900   NEONMAP1(vcales_f32, aarch64_neon_facge, AddRetType | Add1ArgType),
4901   NEONMAP1(vcaltd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType),
4902   NEONMAP1(vcalts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType),
4903   NEONMAP1(vcvtad_s64_f64, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
4904   NEONMAP1(vcvtad_u64_f64, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
4905   NEONMAP1(vcvtas_s32_f32, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
4906   NEONMAP1(vcvtas_u32_f32, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
4907   NEONMAP1(vcvtd_n_f64_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
4908   NEONMAP1(vcvtd_n_f64_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
4909   NEONMAP1(vcvtd_n_s64_f64, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
4910   NEONMAP1(vcvtd_n_u64_f64, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
4911   NEONMAP1(vcvtmd_s64_f64, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
4912   NEONMAP1(vcvtmd_u64_f64, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
4913   NEONMAP1(vcvtms_s32_f32, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
4914   NEONMAP1(vcvtms_u32_f32, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
4915   NEONMAP1(vcvtnd_s64_f64, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
4916   NEONMAP1(vcvtnd_u64_f64, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
4917   NEONMAP1(vcvtns_s32_f32, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
4918   NEONMAP1(vcvtns_u32_f32, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
4919   NEONMAP1(vcvtpd_s64_f64, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
4920   NEONMAP1(vcvtpd_u64_f64, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
4921   NEONMAP1(vcvtps_s32_f32, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
4922   NEONMAP1(vcvtps_u32_f32, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
4923   NEONMAP1(vcvts_n_f32_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
4924   NEONMAP1(vcvts_n_f32_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
4925   NEONMAP1(vcvts_n_s32_f32, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
4926   NEONMAP1(vcvts_n_u32_f32, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
4927   NEONMAP1(vcvtxd_f32_f64, aarch64_sisd_fcvtxn, 0),
4928   NEONMAP1(vmaxnmv_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
4929   NEONMAP1(vmaxnmvq_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
4930   NEONMAP1(vmaxnmvq_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
4931   NEONMAP1(vmaxv_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
4932   NEONMAP1(vmaxv_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType),
4933   NEONMAP1(vmaxv_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType),
4934   NEONMAP1(vmaxvq_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
4935   NEONMAP1(vmaxvq_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
4936   NEONMAP1(vmaxvq_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType),
4937   NEONMAP1(vmaxvq_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType),
4938   NEONMAP1(vminnmv_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
4939   NEONMAP1(vminnmvq_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
4940   NEONMAP1(vminnmvq_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
4941   NEONMAP1(vminv_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
4942   NEONMAP1(vminv_s32, aarch64_neon_sminv, AddRetType | Add1ArgType),
4943   NEONMAP1(vminv_u32, aarch64_neon_uminv, AddRetType | Add1ArgType),
4944   NEONMAP1(vminvq_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
4945   NEONMAP1(vminvq_f64, aarch64_neon_fminv, AddRetType | Add1ArgType),
4946   NEONMAP1(vminvq_s32, aarch64_neon_sminv, AddRetType | Add1ArgType),
4947   NEONMAP1(vminvq_u32, aarch64_neon_uminv, AddRetType | Add1ArgType),
4948   NEONMAP1(vmull_p64, aarch64_neon_pmull64, 0),
4949   NEONMAP1(vmulxd_f64, aarch64_neon_fmulx, Add1ArgType),
4950   NEONMAP1(vmulxs_f32, aarch64_neon_fmulx, Add1ArgType),
4951   NEONMAP1(vpaddd_s64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
4952   NEONMAP1(vpaddd_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
4953   NEONMAP1(vpmaxnmqd_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
4954   NEONMAP1(vpmaxnms_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
4955   NEONMAP1(vpmaxqd_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
4956   NEONMAP1(vpmaxs_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
4957   NEONMAP1(vpminnmqd_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
4958   NEONMAP1(vpminnms_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
4959   NEONMAP1(vpminqd_f64, aarch64_neon_fminv, AddRetType | Add1ArgType),
4960   NEONMAP1(vpmins_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
4961   NEONMAP1(vqabsb_s8, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors),
4962   NEONMAP1(vqabsd_s64, aarch64_neon_sqabs, Add1ArgType),
4963   NEONMAP1(vqabsh_s16, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors),
4964   NEONMAP1(vqabss_s32, aarch64_neon_sqabs, Add1ArgType),
4965   NEONMAP1(vqaddb_s8, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors),
4966   NEONMAP1(vqaddb_u8, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors),
4967   NEONMAP1(vqaddd_s64, aarch64_neon_sqadd, Add1ArgType),
4968   NEONMAP1(vqaddd_u64, aarch64_neon_uqadd, Add1ArgType),
4969   NEONMAP1(vqaddh_s16, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors),
4970   NEONMAP1(vqaddh_u16, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors),
4971   NEONMAP1(vqadds_s32, aarch64_neon_sqadd, Add1ArgType),
4972   NEONMAP1(vqadds_u32, aarch64_neon_uqadd, Add1ArgType),
4973   NEONMAP1(vqdmulhh_s16, aarch64_neon_sqdmulh, Vectorize1ArgType | Use64BitVectors),
4974   NEONMAP1(vqdmulhs_s32, aarch64_neon_sqdmulh, Add1ArgType),
4975   NEONMAP1(vqdmullh_s16, aarch64_neon_sqdmull, VectorRet | Use128BitVectors),
4976   NEONMAP1(vqdmulls_s32, aarch64_neon_sqdmulls_scalar, 0),
4977   NEONMAP1(vqmovnd_s64, aarch64_neon_scalar_sqxtn, AddRetType | Add1ArgType),
4978   NEONMAP1(vqmovnd_u64, aarch64_neon_scalar_uqxtn, AddRetType | Add1ArgType),
4979   NEONMAP1(vqmovnh_s16, aarch64_neon_sqxtn, VectorRet | Use64BitVectors),
4980   NEONMAP1(vqmovnh_u16, aarch64_neon_uqxtn, VectorRet | Use64BitVectors),
4981   NEONMAP1(vqmovns_s32, aarch64_neon_sqxtn, VectorRet | Use64BitVectors),
4982   NEONMAP1(vqmovns_u32, aarch64_neon_uqxtn, VectorRet | Use64BitVectors),
4983   NEONMAP1(vqmovund_s64, aarch64_neon_scalar_sqxtun, AddRetType | Add1ArgType),
4984   NEONMAP1(vqmovunh_s16, aarch64_neon_sqxtun, VectorRet | Use64BitVectors),
4985   NEONMAP1(vqmovuns_s32, aarch64_neon_sqxtun, VectorRet | Use64BitVectors),
4986   NEONMAP1(vqnegb_s8, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors),
4987   NEONMAP1(vqnegd_s64, aarch64_neon_sqneg, Add1ArgType),
4988   NEONMAP1(vqnegh_s16, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors),
4989   NEONMAP1(vqnegs_s32, aarch64_neon_sqneg, Add1ArgType),
4990   NEONMAP1(vqrdmulhh_s16, aarch64_neon_sqrdmulh, Vectorize1ArgType | Use64BitVectors),
4991   NEONMAP1(vqrdmulhs_s32, aarch64_neon_sqrdmulh, Add1ArgType),
4992   NEONMAP1(vqrshlb_s8, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors),
4993   NEONMAP1(vqrshlb_u8, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors),
4994   NEONMAP1(vqrshld_s64, aarch64_neon_sqrshl, Add1ArgType),
4995   NEONMAP1(vqrshld_u64, aarch64_neon_uqrshl, Add1ArgType),
4996   NEONMAP1(vqrshlh_s16, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors),
4997   NEONMAP1(vqrshlh_u16, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors),
4998   NEONMAP1(vqrshls_s32, aarch64_neon_sqrshl, Add1ArgType),
4999   NEONMAP1(vqrshls_u32, aarch64_neon_uqrshl, Add1ArgType),
5000   NEONMAP1(vqrshrnd_n_s64, aarch64_neon_sqrshrn, AddRetType),
5001   NEONMAP1(vqrshrnd_n_u64, aarch64_neon_uqrshrn, AddRetType),
5002   NEONMAP1(vqrshrnh_n_s16, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors),
5003   NEONMAP1(vqrshrnh_n_u16, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors),
5004   NEONMAP1(vqrshrns_n_s32, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors),
5005   NEONMAP1(vqrshrns_n_u32, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors),
5006   NEONMAP1(vqrshrund_n_s64, aarch64_neon_sqrshrun, AddRetType),
5007   NEONMAP1(vqrshrunh_n_s16, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors),
5008   NEONMAP1(vqrshruns_n_s32, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors),
5009   NEONMAP1(vqshlb_n_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
5010   NEONMAP1(vqshlb_n_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
5011   NEONMAP1(vqshlb_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
5012   NEONMAP1(vqshlb_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
5013   NEONMAP1(vqshld_s64, aarch64_neon_sqshl, Add1ArgType),
5014   NEONMAP1(vqshld_u64, aarch64_neon_uqshl, Add1ArgType),
5015   NEONMAP1(vqshlh_n_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
5016   NEONMAP1(vqshlh_n_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
5017   NEONMAP1(vqshlh_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
5018   NEONMAP1(vqshlh_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
5019   NEONMAP1(vqshls_n_s32, aarch64_neon_sqshl, Add1ArgType),
5020   NEONMAP1(vqshls_n_u32, aarch64_neon_uqshl, Add1ArgType),
5021   NEONMAP1(vqshls_s32, aarch64_neon_sqshl, Add1ArgType),
5022   NEONMAP1(vqshls_u32, aarch64_neon_uqshl, Add1ArgType),
5023   NEONMAP1(vqshlub_n_s8, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors),
5024   NEONMAP1(vqshluh_n_s16, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors),
5025   NEONMAP1(vqshlus_n_s32, aarch64_neon_sqshlu, Add1ArgType),
5026   NEONMAP1(vqshrnd_n_s64, aarch64_neon_sqshrn, AddRetType),
5027   NEONMAP1(vqshrnd_n_u64, aarch64_neon_uqshrn, AddRetType),
5028   NEONMAP1(vqshrnh_n_s16, aarch64_neon_sqshrn, VectorRet | Use64BitVectors),
5029   NEONMAP1(vqshrnh_n_u16, aarch64_neon_uqshrn, VectorRet | Use64BitVectors),
5030   NEONMAP1(vqshrns_n_s32, aarch64_neon_sqshrn, VectorRet | Use64BitVectors),
5031   NEONMAP1(vqshrns_n_u32, aarch64_neon_uqshrn, VectorRet | Use64BitVectors),
5032   NEONMAP1(vqshrund_n_s64, aarch64_neon_sqshrun, AddRetType),
5033   NEONMAP1(vqshrunh_n_s16, aarch64_neon_sqshrun, VectorRet | Use64BitVectors),
5034   NEONMAP1(vqshruns_n_s32, aarch64_neon_sqshrun, VectorRet | Use64BitVectors),
5035   NEONMAP1(vqsubb_s8, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors),
5036   NEONMAP1(vqsubb_u8, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors),
5037   NEONMAP1(vqsubd_s64, aarch64_neon_sqsub, Add1ArgType),
5038   NEONMAP1(vqsubd_u64, aarch64_neon_uqsub, Add1ArgType),
5039   NEONMAP1(vqsubh_s16, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors),
5040   NEONMAP1(vqsubh_u16, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors),
5041   NEONMAP1(vqsubs_s32, aarch64_neon_sqsub, Add1ArgType),
5042   NEONMAP1(vqsubs_u32, aarch64_neon_uqsub, Add1ArgType),
5043   NEONMAP1(vrecped_f64, aarch64_neon_frecpe, Add1ArgType),
5044   NEONMAP1(vrecpes_f32, aarch64_neon_frecpe, Add1ArgType),
5045   NEONMAP1(vrecpxd_f64, aarch64_neon_frecpx, Add1ArgType),
5046   NEONMAP1(vrecpxs_f32, aarch64_neon_frecpx, Add1ArgType),
5047   NEONMAP1(vrshld_s64, aarch64_neon_srshl, Add1ArgType),
5048   NEONMAP1(vrshld_u64, aarch64_neon_urshl, Add1ArgType),
5049   NEONMAP1(vrsqrted_f64, aarch64_neon_frsqrte, Add1ArgType),
5050   NEONMAP1(vrsqrtes_f32, aarch64_neon_frsqrte, Add1ArgType),
5051   NEONMAP1(vrsqrtsd_f64, aarch64_neon_frsqrts, Add1ArgType),
5052   NEONMAP1(vrsqrtss_f32, aarch64_neon_frsqrts, Add1ArgType),
5053   NEONMAP1(vsha1cq_u32, aarch64_crypto_sha1c, 0),
5054   NEONMAP1(vsha1h_u32, aarch64_crypto_sha1h, 0),
5055   NEONMAP1(vsha1mq_u32, aarch64_crypto_sha1m, 0),
5056   NEONMAP1(vsha1pq_u32, aarch64_crypto_sha1p, 0),
5057   NEONMAP1(vshld_s64, aarch64_neon_sshl, Add1ArgType),
5058   NEONMAP1(vshld_u64, aarch64_neon_ushl, Add1ArgType),
5059   NEONMAP1(vslid_n_s64, aarch64_neon_vsli, Vectorize1ArgType),
5060   NEONMAP1(vslid_n_u64, aarch64_neon_vsli, Vectorize1ArgType),
5061   NEONMAP1(vsqaddb_u8, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors),
5062   NEONMAP1(vsqaddd_u64, aarch64_neon_usqadd, Add1ArgType),
5063   NEONMAP1(vsqaddh_u16, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors),
5064   NEONMAP1(vsqadds_u32, aarch64_neon_usqadd, Add1ArgType),
5065   NEONMAP1(vsrid_n_s64, aarch64_neon_vsri, Vectorize1ArgType),
5066   NEONMAP1(vsrid_n_u64, aarch64_neon_vsri, Vectorize1ArgType),
5067   NEONMAP1(vuqaddb_s8, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors),
5068   NEONMAP1(vuqaddd_s64, aarch64_neon_suqadd, Add1ArgType),
5069   NEONMAP1(vuqaddh_s16, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors),
5070   NEONMAP1(vuqadds_s32, aarch64_neon_suqadd, Add1ArgType),
5071   // FP16 scalar intrinisics go here.
5072   NEONMAP1(vabdh_f16, aarch64_sisd_fabd, Add1ArgType),
5073   NEONMAP1(vcvtah_s32_f16, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
5074   NEONMAP1(vcvtah_s64_f16, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
5075   NEONMAP1(vcvtah_u32_f16, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
5076   NEONMAP1(vcvtah_u64_f16, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
5077   NEONMAP1(vcvth_n_f16_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
5078   NEONMAP1(vcvth_n_f16_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
5079   NEONMAP1(vcvth_n_f16_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
5080   NEONMAP1(vcvth_n_f16_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
5081   NEONMAP1(vcvth_n_s32_f16, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
5082   NEONMAP1(vcvth_n_s64_f16, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
5083   NEONMAP1(vcvth_n_u32_f16, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
5084   NEONMAP1(vcvth_n_u64_f16, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
5085   NEONMAP1(vcvtmh_s32_f16, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
5086   NEONMAP1(vcvtmh_s64_f16, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
5087   NEONMAP1(vcvtmh_u32_f16, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
5088   NEONMAP1(vcvtmh_u64_f16, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
5089   NEONMAP1(vcvtnh_s32_f16, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
5090   NEONMAP1(vcvtnh_s64_f16, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
5091   NEONMAP1(vcvtnh_u32_f16, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
5092   NEONMAP1(vcvtnh_u64_f16, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
5093   NEONMAP1(vcvtph_s32_f16, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
5094   NEONMAP1(vcvtph_s64_f16, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
5095   NEONMAP1(vcvtph_u32_f16, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
5096   NEONMAP1(vcvtph_u64_f16, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
5097   NEONMAP1(vmulxh_f16, aarch64_neon_fmulx, Add1ArgType),
5098   NEONMAP1(vrecpeh_f16, aarch64_neon_frecpe, Add1ArgType),
5099   NEONMAP1(vrecpxh_f16, aarch64_neon_frecpx, Add1ArgType),
5100   NEONMAP1(vrsqrteh_f16, aarch64_neon_frsqrte, Add1ArgType),
5101   NEONMAP1(vrsqrtsh_f16, aarch64_neon_frsqrts, Add1ArgType),
5102 };
5103 
5104 #undef NEONMAP0
5105 #undef NEONMAP1
5106 #undef NEONMAP2
5107 
5108 static bool NEONSIMDIntrinsicsProvenSorted = false;
5109 
5110 static bool AArch64SIMDIntrinsicsProvenSorted = false;
5111 static bool AArch64SISDIntrinsicsProvenSorted = false;
5112 
5113 
5114 static const NeonIntrinsicInfo *
5115 findNeonIntrinsicInMap(ArrayRef<NeonIntrinsicInfo> IntrinsicMap,
5116                        unsigned BuiltinID, bool &MapProvenSorted) {
5117 
5118 #ifndef NDEBUG
5119   if (!MapProvenSorted) {
5120     assert(std::is_sorted(std::begin(IntrinsicMap), std::end(IntrinsicMap)));
5121     MapProvenSorted = true;
5122   }
5123 #endif
5124 
5125   const NeonIntrinsicInfo *Builtin = llvm::lower_bound(IntrinsicMap, BuiltinID);
5126 
5127   if (Builtin != IntrinsicMap.end() && Builtin->BuiltinID == BuiltinID)
5128     return Builtin;
5129 
5130   return nullptr;
5131 }
5132 
5133 Function *CodeGenFunction::LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
5134                                                    unsigned Modifier,
5135                                                    llvm::Type *ArgType,
5136                                                    const CallExpr *E) {
5137   int VectorSize = 0;
5138   if (Modifier & Use64BitVectors)
5139     VectorSize = 64;
5140   else if (Modifier & Use128BitVectors)
5141     VectorSize = 128;
5142 
5143   // Return type.
5144   SmallVector<llvm::Type *, 3> Tys;
5145   if (Modifier & AddRetType) {
5146     llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext()));
5147     if (Modifier & VectorizeRetType)
5148       Ty = llvm::VectorType::get(
5149           Ty, VectorSize ? VectorSize / Ty->getPrimitiveSizeInBits() : 1);
5150 
5151     Tys.push_back(Ty);
5152   }
5153 
5154   // Arguments.
5155   if (Modifier & VectorizeArgTypes) {
5156     int Elts = VectorSize ? VectorSize / ArgType->getPrimitiveSizeInBits() : 1;
5157     ArgType = llvm::VectorType::get(ArgType, Elts);
5158   }
5159 
5160   if (Modifier & (Add1ArgType | Add2ArgTypes))
5161     Tys.push_back(ArgType);
5162 
5163   if (Modifier & Add2ArgTypes)
5164     Tys.push_back(ArgType);
5165 
5166   if (Modifier & InventFloatType)
5167     Tys.push_back(FloatTy);
5168 
5169   return CGM.getIntrinsic(IntrinsicID, Tys);
5170 }
5171 
5172 static Value *EmitCommonNeonSISDBuiltinExpr(CodeGenFunction &CGF,
5173                                             const NeonIntrinsicInfo &SISDInfo,
5174                                             SmallVectorImpl<Value *> &Ops,
5175                                             const CallExpr *E) {
5176   unsigned BuiltinID = SISDInfo.BuiltinID;
5177   unsigned int Int = SISDInfo.LLVMIntrinsic;
5178   unsigned Modifier = SISDInfo.TypeModifier;
5179   const char *s = SISDInfo.NameHint;
5180 
5181   switch (BuiltinID) {
5182   case NEON::BI__builtin_neon_vcled_s64:
5183   case NEON::BI__builtin_neon_vcled_u64:
5184   case NEON::BI__builtin_neon_vcles_f32:
5185   case NEON::BI__builtin_neon_vcled_f64:
5186   case NEON::BI__builtin_neon_vcltd_s64:
5187   case NEON::BI__builtin_neon_vcltd_u64:
5188   case NEON::BI__builtin_neon_vclts_f32:
5189   case NEON::BI__builtin_neon_vcltd_f64:
5190   case NEON::BI__builtin_neon_vcales_f32:
5191   case NEON::BI__builtin_neon_vcaled_f64:
5192   case NEON::BI__builtin_neon_vcalts_f32:
5193   case NEON::BI__builtin_neon_vcaltd_f64:
5194     // Only one direction of comparisons actually exist, cmle is actually a cmge
5195     // with swapped operands. The table gives us the right intrinsic but we
5196     // still need to do the swap.
5197     std::swap(Ops[0], Ops[1]);
5198     break;
5199   }
5200 
5201   assert(Int && "Generic code assumes a valid intrinsic");
5202 
5203   // Determine the type(s) of this overloaded AArch64 intrinsic.
5204   const Expr *Arg = E->getArg(0);
5205   llvm::Type *ArgTy = CGF.ConvertType(Arg->getType());
5206   Function *F = CGF.LookupNeonLLVMIntrinsic(Int, Modifier, ArgTy, E);
5207 
5208   int j = 0;
5209   ConstantInt *C0 = ConstantInt::get(CGF.SizeTy, 0);
5210   for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
5211        ai != ae; ++ai, ++j) {
5212     llvm::Type *ArgTy = ai->getType();
5213     if (Ops[j]->getType()->getPrimitiveSizeInBits() ==
5214              ArgTy->getPrimitiveSizeInBits())
5215       continue;
5216 
5217     assert(ArgTy->isVectorTy() && !Ops[j]->getType()->isVectorTy());
5218     // The constant argument to an _n_ intrinsic always has Int32Ty, so truncate
5219     // it before inserting.
5220     Ops[j] =
5221         CGF.Builder.CreateTruncOrBitCast(Ops[j], ArgTy->getVectorElementType());
5222     Ops[j] =
5223         CGF.Builder.CreateInsertElement(UndefValue::get(ArgTy), Ops[j], C0);
5224   }
5225 
5226   Value *Result = CGF.EmitNeonCall(F, Ops, s);
5227   llvm::Type *ResultType = CGF.ConvertType(E->getType());
5228   if (ResultType->getPrimitiveSizeInBits() <
5229       Result->getType()->getPrimitiveSizeInBits())
5230     return CGF.Builder.CreateExtractElement(Result, C0);
5231 
5232   return CGF.Builder.CreateBitCast(Result, ResultType, s);
5233 }
5234 
5235 Value *CodeGenFunction::EmitCommonNeonBuiltinExpr(
5236     unsigned BuiltinID, unsigned LLVMIntrinsic, unsigned AltLLVMIntrinsic,
5237     const char *NameHint, unsigned Modifier, const CallExpr *E,
5238     SmallVectorImpl<llvm::Value *> &Ops, Address PtrOp0, Address PtrOp1,
5239     llvm::Triple::ArchType Arch) {
5240   // Get the last argument, which specifies the vector type.
5241   llvm::APSInt NeonTypeConst;
5242   const Expr *Arg = E->getArg(E->getNumArgs() - 1);
5243   if (!Arg->isIntegerConstantExpr(NeonTypeConst, getContext()))
5244     return nullptr;
5245 
5246   // Determine the type of this overloaded NEON intrinsic.
5247   NeonTypeFlags Type(NeonTypeConst.getZExtValue());
5248   bool Usgn = Type.isUnsigned();
5249   bool Quad = Type.isQuad();
5250   const bool HasLegalHalfType = getTarget().hasLegalHalfType();
5251 
5252   llvm::VectorType *VTy = GetNeonType(this, Type, HasLegalHalfType);
5253   llvm::Type *Ty = VTy;
5254   if (!Ty)
5255     return nullptr;
5256 
5257   auto getAlignmentValue32 = [&](Address addr) -> Value* {
5258     return Builder.getInt32(addr.getAlignment().getQuantity());
5259   };
5260 
5261   unsigned Int = LLVMIntrinsic;
5262   if ((Modifier & UnsignedAlts) && !Usgn)
5263     Int = AltLLVMIntrinsic;
5264 
5265   switch (BuiltinID) {
5266   default: break;
5267   case NEON::BI__builtin_neon_vpadd_v:
5268   case NEON::BI__builtin_neon_vpaddq_v:
5269     // We don't allow fp/int overloading of intrinsics.
5270     if (VTy->getElementType()->isFloatingPointTy() &&
5271         Int == Intrinsic::aarch64_neon_addp)
5272       Int = Intrinsic::aarch64_neon_faddp;
5273     break;
5274   case NEON::BI__builtin_neon_vabs_v:
5275   case NEON::BI__builtin_neon_vabsq_v:
5276     if (VTy->getElementType()->isFloatingPointTy())
5277       return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, Ty), Ops, "vabs");
5278     return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), Ops, "vabs");
5279   case NEON::BI__builtin_neon_vaddhn_v: {
5280     llvm::VectorType *SrcTy =
5281         llvm::VectorType::getExtendedElementVectorType(VTy);
5282 
5283     // %sum = add <4 x i32> %lhs, %rhs
5284     Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
5285     Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy);
5286     Ops[0] = Builder.CreateAdd(Ops[0], Ops[1], "vaddhn");
5287 
5288     // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
5289     Constant *ShiftAmt =
5290         ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2);
5291     Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vaddhn");
5292 
5293     // %res = trunc <4 x i32> %high to <4 x i16>
5294     return Builder.CreateTrunc(Ops[0], VTy, "vaddhn");
5295   }
5296   case NEON::BI__builtin_neon_vcale_v:
5297   case NEON::BI__builtin_neon_vcaleq_v:
5298   case NEON::BI__builtin_neon_vcalt_v:
5299   case NEON::BI__builtin_neon_vcaltq_v:
5300     std::swap(Ops[0], Ops[1]);
5301     LLVM_FALLTHROUGH;
5302   case NEON::BI__builtin_neon_vcage_v:
5303   case NEON::BI__builtin_neon_vcageq_v:
5304   case NEON::BI__builtin_neon_vcagt_v:
5305   case NEON::BI__builtin_neon_vcagtq_v: {
5306     llvm::Type *Ty;
5307     switch (VTy->getScalarSizeInBits()) {
5308     default: llvm_unreachable("unexpected type");
5309     case 32:
5310       Ty = FloatTy;
5311       break;
5312     case 64:
5313       Ty = DoubleTy;
5314       break;
5315     case 16:
5316       Ty = HalfTy;
5317       break;
5318     }
5319     llvm::Type *VecFlt = llvm::VectorType::get(Ty, VTy->getNumElements());
5320     llvm::Type *Tys[] = { VTy, VecFlt };
5321     Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
5322     return EmitNeonCall(F, Ops, NameHint);
5323   }
5324   case NEON::BI__builtin_neon_vceqz_v:
5325   case NEON::BI__builtin_neon_vceqzq_v:
5326     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OEQ,
5327                                          ICmpInst::ICMP_EQ, "vceqz");
5328   case NEON::BI__builtin_neon_vcgez_v:
5329   case NEON::BI__builtin_neon_vcgezq_v:
5330     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGE,
5331                                          ICmpInst::ICMP_SGE, "vcgez");
5332   case NEON::BI__builtin_neon_vclez_v:
5333   case NEON::BI__builtin_neon_vclezq_v:
5334     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLE,
5335                                          ICmpInst::ICMP_SLE, "vclez");
5336   case NEON::BI__builtin_neon_vcgtz_v:
5337   case NEON::BI__builtin_neon_vcgtzq_v:
5338     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGT,
5339                                          ICmpInst::ICMP_SGT, "vcgtz");
5340   case NEON::BI__builtin_neon_vcltz_v:
5341   case NEON::BI__builtin_neon_vcltzq_v:
5342     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLT,
5343                                          ICmpInst::ICMP_SLT, "vcltz");
5344   case NEON::BI__builtin_neon_vclz_v:
5345   case NEON::BI__builtin_neon_vclzq_v:
5346     // We generate target-independent intrinsic, which needs a second argument
5347     // for whether or not clz of zero is undefined; on ARM it isn't.
5348     Ops.push_back(Builder.getInt1(getTarget().isCLZForZeroUndef()));
5349     break;
5350   case NEON::BI__builtin_neon_vcvt_f32_v:
5351   case NEON::BI__builtin_neon_vcvtq_f32_v:
5352     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5353     Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, Quad),
5354                      HasLegalHalfType);
5355     return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
5356                 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
5357   case NEON::BI__builtin_neon_vcvt_f16_v:
5358   case NEON::BI__builtin_neon_vcvtq_f16_v:
5359     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5360     Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float16, false, Quad),
5361                      HasLegalHalfType);
5362     return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
5363                 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
5364   case NEON::BI__builtin_neon_vcvt_n_f16_v:
5365   case NEON::BI__builtin_neon_vcvt_n_f32_v:
5366   case NEON::BI__builtin_neon_vcvt_n_f64_v:
5367   case NEON::BI__builtin_neon_vcvtq_n_f16_v:
5368   case NEON::BI__builtin_neon_vcvtq_n_f32_v:
5369   case NEON::BI__builtin_neon_vcvtq_n_f64_v: {
5370     llvm::Type *Tys[2] = { GetFloatNeonType(this, Type), Ty };
5371     Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic;
5372     Function *F = CGM.getIntrinsic(Int, Tys);
5373     return EmitNeonCall(F, Ops, "vcvt_n");
5374   }
5375   case NEON::BI__builtin_neon_vcvt_n_s16_v:
5376   case NEON::BI__builtin_neon_vcvt_n_s32_v:
5377   case NEON::BI__builtin_neon_vcvt_n_u16_v:
5378   case NEON::BI__builtin_neon_vcvt_n_u32_v:
5379   case NEON::BI__builtin_neon_vcvt_n_s64_v:
5380   case NEON::BI__builtin_neon_vcvt_n_u64_v:
5381   case NEON::BI__builtin_neon_vcvtq_n_s16_v:
5382   case NEON::BI__builtin_neon_vcvtq_n_s32_v:
5383   case NEON::BI__builtin_neon_vcvtq_n_u16_v:
5384   case NEON::BI__builtin_neon_vcvtq_n_u32_v:
5385   case NEON::BI__builtin_neon_vcvtq_n_s64_v:
5386   case NEON::BI__builtin_neon_vcvtq_n_u64_v: {
5387     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
5388     Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
5389     return EmitNeonCall(F, Ops, "vcvt_n");
5390   }
5391   case NEON::BI__builtin_neon_vcvt_s32_v:
5392   case NEON::BI__builtin_neon_vcvt_u32_v:
5393   case NEON::BI__builtin_neon_vcvt_s64_v:
5394   case NEON::BI__builtin_neon_vcvt_u64_v:
5395   case NEON::BI__builtin_neon_vcvt_s16_v:
5396   case NEON::BI__builtin_neon_vcvt_u16_v:
5397   case NEON::BI__builtin_neon_vcvtq_s32_v:
5398   case NEON::BI__builtin_neon_vcvtq_u32_v:
5399   case NEON::BI__builtin_neon_vcvtq_s64_v:
5400   case NEON::BI__builtin_neon_vcvtq_u64_v:
5401   case NEON::BI__builtin_neon_vcvtq_s16_v:
5402   case NEON::BI__builtin_neon_vcvtq_u16_v: {
5403     Ops[0] = Builder.CreateBitCast(Ops[0], GetFloatNeonType(this, Type));
5404     return Usgn ? Builder.CreateFPToUI(Ops[0], Ty, "vcvt")
5405                 : Builder.CreateFPToSI(Ops[0], Ty, "vcvt");
5406   }
5407   case NEON::BI__builtin_neon_vcvta_s16_v:
5408   case NEON::BI__builtin_neon_vcvta_s32_v:
5409   case NEON::BI__builtin_neon_vcvta_s64_v:
5410   case NEON::BI__builtin_neon_vcvta_u16_v:
5411   case NEON::BI__builtin_neon_vcvta_u32_v:
5412   case NEON::BI__builtin_neon_vcvta_u64_v:
5413   case NEON::BI__builtin_neon_vcvtaq_s16_v:
5414   case NEON::BI__builtin_neon_vcvtaq_s32_v:
5415   case NEON::BI__builtin_neon_vcvtaq_s64_v:
5416   case NEON::BI__builtin_neon_vcvtaq_u16_v:
5417   case NEON::BI__builtin_neon_vcvtaq_u32_v:
5418   case NEON::BI__builtin_neon_vcvtaq_u64_v:
5419   case NEON::BI__builtin_neon_vcvtn_s16_v:
5420   case NEON::BI__builtin_neon_vcvtn_s32_v:
5421   case NEON::BI__builtin_neon_vcvtn_s64_v:
5422   case NEON::BI__builtin_neon_vcvtn_u16_v:
5423   case NEON::BI__builtin_neon_vcvtn_u32_v:
5424   case NEON::BI__builtin_neon_vcvtn_u64_v:
5425   case NEON::BI__builtin_neon_vcvtnq_s16_v:
5426   case NEON::BI__builtin_neon_vcvtnq_s32_v:
5427   case NEON::BI__builtin_neon_vcvtnq_s64_v:
5428   case NEON::BI__builtin_neon_vcvtnq_u16_v:
5429   case NEON::BI__builtin_neon_vcvtnq_u32_v:
5430   case NEON::BI__builtin_neon_vcvtnq_u64_v:
5431   case NEON::BI__builtin_neon_vcvtp_s16_v:
5432   case NEON::BI__builtin_neon_vcvtp_s32_v:
5433   case NEON::BI__builtin_neon_vcvtp_s64_v:
5434   case NEON::BI__builtin_neon_vcvtp_u16_v:
5435   case NEON::BI__builtin_neon_vcvtp_u32_v:
5436   case NEON::BI__builtin_neon_vcvtp_u64_v:
5437   case NEON::BI__builtin_neon_vcvtpq_s16_v:
5438   case NEON::BI__builtin_neon_vcvtpq_s32_v:
5439   case NEON::BI__builtin_neon_vcvtpq_s64_v:
5440   case NEON::BI__builtin_neon_vcvtpq_u16_v:
5441   case NEON::BI__builtin_neon_vcvtpq_u32_v:
5442   case NEON::BI__builtin_neon_vcvtpq_u64_v:
5443   case NEON::BI__builtin_neon_vcvtm_s16_v:
5444   case NEON::BI__builtin_neon_vcvtm_s32_v:
5445   case NEON::BI__builtin_neon_vcvtm_s64_v:
5446   case NEON::BI__builtin_neon_vcvtm_u16_v:
5447   case NEON::BI__builtin_neon_vcvtm_u32_v:
5448   case NEON::BI__builtin_neon_vcvtm_u64_v:
5449   case NEON::BI__builtin_neon_vcvtmq_s16_v:
5450   case NEON::BI__builtin_neon_vcvtmq_s32_v:
5451   case NEON::BI__builtin_neon_vcvtmq_s64_v:
5452   case NEON::BI__builtin_neon_vcvtmq_u16_v:
5453   case NEON::BI__builtin_neon_vcvtmq_u32_v:
5454   case NEON::BI__builtin_neon_vcvtmq_u64_v: {
5455     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
5456     return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, NameHint);
5457   }
5458   case NEON::BI__builtin_neon_vext_v:
5459   case NEON::BI__builtin_neon_vextq_v: {
5460     int CV = cast<ConstantInt>(Ops[2])->getSExtValue();
5461     SmallVector<uint32_t, 16> Indices;
5462     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
5463       Indices.push_back(i+CV);
5464 
5465     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5466     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
5467     return Builder.CreateShuffleVector(Ops[0], Ops[1], Indices, "vext");
5468   }
5469   case NEON::BI__builtin_neon_vfma_v:
5470   case NEON::BI__builtin_neon_vfmaq_v: {
5471     Function *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
5472     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5473     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
5474     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
5475 
5476     // NEON intrinsic puts accumulator first, unlike the LLVM fma.
5477     return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0]});
5478   }
5479   case NEON::BI__builtin_neon_vld1_v:
5480   case NEON::BI__builtin_neon_vld1q_v: {
5481     llvm::Type *Tys[] = {Ty, Int8PtrTy};
5482     Ops.push_back(getAlignmentValue32(PtrOp0));
5483     return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "vld1");
5484   }
5485   case NEON::BI__builtin_neon_vld1_x2_v:
5486   case NEON::BI__builtin_neon_vld1q_x2_v:
5487   case NEON::BI__builtin_neon_vld1_x3_v:
5488   case NEON::BI__builtin_neon_vld1q_x3_v:
5489   case NEON::BI__builtin_neon_vld1_x4_v:
5490   case NEON::BI__builtin_neon_vld1q_x4_v: {
5491     llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getVectorElementType());
5492     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
5493     llvm::Type *Tys[2] = { VTy, PTy };
5494     Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
5495     Ops[1] = Builder.CreateCall(F, Ops[1], "vld1xN");
5496     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
5497     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5498     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
5499   }
5500   case NEON::BI__builtin_neon_vld2_v:
5501   case NEON::BI__builtin_neon_vld2q_v:
5502   case NEON::BI__builtin_neon_vld3_v:
5503   case NEON::BI__builtin_neon_vld3q_v:
5504   case NEON::BI__builtin_neon_vld4_v:
5505   case NEON::BI__builtin_neon_vld4q_v:
5506   case NEON::BI__builtin_neon_vld2_dup_v:
5507   case NEON::BI__builtin_neon_vld2q_dup_v:
5508   case NEON::BI__builtin_neon_vld3_dup_v:
5509   case NEON::BI__builtin_neon_vld3q_dup_v:
5510   case NEON::BI__builtin_neon_vld4_dup_v:
5511   case NEON::BI__builtin_neon_vld4q_dup_v: {
5512     llvm::Type *Tys[] = {Ty, Int8PtrTy};
5513     Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
5514     Value *Align = getAlignmentValue32(PtrOp1);
5515     Ops[1] = Builder.CreateCall(F, {Ops[1], Align}, NameHint);
5516     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
5517     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5518     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
5519   }
5520   case NEON::BI__builtin_neon_vld1_dup_v:
5521   case NEON::BI__builtin_neon_vld1q_dup_v: {
5522     Value *V = UndefValue::get(Ty);
5523     Ty = llvm::PointerType::getUnqual(VTy->getElementType());
5524     PtrOp0 = Builder.CreateBitCast(PtrOp0, Ty);
5525     LoadInst *Ld = Builder.CreateLoad(PtrOp0);
5526     llvm::Constant *CI = ConstantInt::get(SizeTy, 0);
5527     Ops[0] = Builder.CreateInsertElement(V, Ld, CI);
5528     return EmitNeonSplat(Ops[0], CI);
5529   }
5530   case NEON::BI__builtin_neon_vld2_lane_v:
5531   case NEON::BI__builtin_neon_vld2q_lane_v:
5532   case NEON::BI__builtin_neon_vld3_lane_v:
5533   case NEON::BI__builtin_neon_vld3q_lane_v:
5534   case NEON::BI__builtin_neon_vld4_lane_v:
5535   case NEON::BI__builtin_neon_vld4q_lane_v: {
5536     llvm::Type *Tys[] = {Ty, Int8PtrTy};
5537     Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
5538     for (unsigned I = 2; I < Ops.size() - 1; ++I)
5539       Ops[I] = Builder.CreateBitCast(Ops[I], Ty);
5540     Ops.push_back(getAlignmentValue32(PtrOp1));
5541     Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), NameHint);
5542     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
5543     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5544     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
5545   }
5546   case NEON::BI__builtin_neon_vmovl_v: {
5547     llvm::Type *DTy =llvm::VectorType::getTruncatedElementVectorType(VTy);
5548     Ops[0] = Builder.CreateBitCast(Ops[0], DTy);
5549     if (Usgn)
5550       return Builder.CreateZExt(Ops[0], Ty, "vmovl");
5551     return Builder.CreateSExt(Ops[0], Ty, "vmovl");
5552   }
5553   case NEON::BI__builtin_neon_vmovn_v: {
5554     llvm::Type *QTy = llvm::VectorType::getExtendedElementVectorType(VTy);
5555     Ops[0] = Builder.CreateBitCast(Ops[0], QTy);
5556     return Builder.CreateTrunc(Ops[0], Ty, "vmovn");
5557   }
5558   case NEON::BI__builtin_neon_vmull_v:
5559     // FIXME: the integer vmull operations could be emitted in terms of pure
5560     // LLVM IR (2 exts followed by a mul). Unfortunately LLVM has a habit of
5561     // hoisting the exts outside loops. Until global ISel comes along that can
5562     // see through such movement this leads to bad CodeGen. So we need an
5563     // intrinsic for now.
5564     Int = Usgn ? Intrinsic::arm_neon_vmullu : Intrinsic::arm_neon_vmulls;
5565     Int = Type.isPoly() ? (unsigned)Intrinsic::arm_neon_vmullp : Int;
5566     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
5567   case NEON::BI__builtin_neon_vpadal_v:
5568   case NEON::BI__builtin_neon_vpadalq_v: {
5569     // The source operand type has twice as many elements of half the size.
5570     unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
5571     llvm::Type *EltTy =
5572       llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
5573     llvm::Type *NarrowTy =
5574       llvm::VectorType::get(EltTy, VTy->getNumElements() * 2);
5575     llvm::Type *Tys[2] = { Ty, NarrowTy };
5576     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint);
5577   }
5578   case NEON::BI__builtin_neon_vpaddl_v:
5579   case NEON::BI__builtin_neon_vpaddlq_v: {
5580     // The source operand type has twice as many elements of half the size.
5581     unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
5582     llvm::Type *EltTy = llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
5583     llvm::Type *NarrowTy =
5584       llvm::VectorType::get(EltTy, VTy->getNumElements() * 2);
5585     llvm::Type *Tys[2] = { Ty, NarrowTy };
5586     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vpaddl");
5587   }
5588   case NEON::BI__builtin_neon_vqdmlal_v:
5589   case NEON::BI__builtin_neon_vqdmlsl_v: {
5590     SmallVector<Value *, 2> MulOps(Ops.begin() + 1, Ops.end());
5591     Ops[1] =
5592         EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), MulOps, "vqdmlal");
5593     Ops.resize(2);
5594     return EmitNeonCall(CGM.getIntrinsic(AltLLVMIntrinsic, Ty), Ops, NameHint);
5595   }
5596   case NEON::BI__builtin_neon_vqshl_n_v:
5597   case NEON::BI__builtin_neon_vqshlq_n_v:
5598     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshl_n",
5599                         1, false);
5600   case NEON::BI__builtin_neon_vqshlu_n_v:
5601   case NEON::BI__builtin_neon_vqshluq_n_v:
5602     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshlu_n",
5603                         1, false);
5604   case NEON::BI__builtin_neon_vrecpe_v:
5605   case NEON::BI__builtin_neon_vrecpeq_v:
5606   case NEON::BI__builtin_neon_vrsqrte_v:
5607   case NEON::BI__builtin_neon_vrsqrteq_v:
5608     Int = Ty->isFPOrFPVectorTy() ? LLVMIntrinsic : AltLLVMIntrinsic;
5609     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint);
5610   case NEON::BI__builtin_neon_vrndi_v:
5611   case NEON::BI__builtin_neon_vrndiq_v:
5612     Int = Intrinsic::nearbyint;
5613     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint);
5614   case NEON::BI__builtin_neon_vrshr_n_v:
5615   case NEON::BI__builtin_neon_vrshrq_n_v:
5616     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshr_n",
5617                         1, true);
5618   case NEON::BI__builtin_neon_vshl_n_v:
5619   case NEON::BI__builtin_neon_vshlq_n_v:
5620     Ops[1] = EmitNeonShiftVector(Ops[1], Ty, false);
5621     return Builder.CreateShl(Builder.CreateBitCast(Ops[0],Ty), Ops[1],
5622                              "vshl_n");
5623   case NEON::BI__builtin_neon_vshll_n_v: {
5624     llvm::Type *SrcTy = llvm::VectorType::getTruncatedElementVectorType(VTy);
5625     Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
5626     if (Usgn)
5627       Ops[0] = Builder.CreateZExt(Ops[0], VTy);
5628     else
5629       Ops[0] = Builder.CreateSExt(Ops[0], VTy);
5630     Ops[1] = EmitNeonShiftVector(Ops[1], VTy, false);
5631     return Builder.CreateShl(Ops[0], Ops[1], "vshll_n");
5632   }
5633   case NEON::BI__builtin_neon_vshrn_n_v: {
5634     llvm::Type *SrcTy = llvm::VectorType::getExtendedElementVectorType(VTy);
5635     Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
5636     Ops[1] = EmitNeonShiftVector(Ops[1], SrcTy, false);
5637     if (Usgn)
5638       Ops[0] = Builder.CreateLShr(Ops[0], Ops[1]);
5639     else
5640       Ops[0] = Builder.CreateAShr(Ops[0], Ops[1]);
5641     return Builder.CreateTrunc(Ops[0], Ty, "vshrn_n");
5642   }
5643   case NEON::BI__builtin_neon_vshr_n_v:
5644   case NEON::BI__builtin_neon_vshrq_n_v:
5645     return EmitNeonRShiftImm(Ops[0], Ops[1], Ty, Usgn, "vshr_n");
5646   case NEON::BI__builtin_neon_vst1_v:
5647   case NEON::BI__builtin_neon_vst1q_v:
5648   case NEON::BI__builtin_neon_vst2_v:
5649   case NEON::BI__builtin_neon_vst2q_v:
5650   case NEON::BI__builtin_neon_vst3_v:
5651   case NEON::BI__builtin_neon_vst3q_v:
5652   case NEON::BI__builtin_neon_vst4_v:
5653   case NEON::BI__builtin_neon_vst4q_v:
5654   case NEON::BI__builtin_neon_vst2_lane_v:
5655   case NEON::BI__builtin_neon_vst2q_lane_v:
5656   case NEON::BI__builtin_neon_vst3_lane_v:
5657   case NEON::BI__builtin_neon_vst3q_lane_v:
5658   case NEON::BI__builtin_neon_vst4_lane_v:
5659   case NEON::BI__builtin_neon_vst4q_lane_v: {
5660     llvm::Type *Tys[] = {Int8PtrTy, Ty};
5661     Ops.push_back(getAlignmentValue32(PtrOp0));
5662     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "");
5663   }
5664   case NEON::BI__builtin_neon_vst1_x2_v:
5665   case NEON::BI__builtin_neon_vst1q_x2_v:
5666   case NEON::BI__builtin_neon_vst1_x3_v:
5667   case NEON::BI__builtin_neon_vst1q_x3_v:
5668   case NEON::BI__builtin_neon_vst1_x4_v:
5669   case NEON::BI__builtin_neon_vst1q_x4_v: {
5670     llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getVectorElementType());
5671     // TODO: Currently in AArch32 mode the pointer operand comes first, whereas
5672     // in AArch64 it comes last. We may want to stick to one or another.
5673     if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_be) {
5674       llvm::Type *Tys[2] = { VTy, PTy };
5675       std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
5676       return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "");
5677     }
5678     llvm::Type *Tys[2] = { PTy, VTy };
5679     return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "");
5680   }
5681   case NEON::BI__builtin_neon_vsubhn_v: {
5682     llvm::VectorType *SrcTy =
5683         llvm::VectorType::getExtendedElementVectorType(VTy);
5684 
5685     // %sum = add <4 x i32> %lhs, %rhs
5686     Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
5687     Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy);
5688     Ops[0] = Builder.CreateSub(Ops[0], Ops[1], "vsubhn");
5689 
5690     // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
5691     Constant *ShiftAmt =
5692         ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2);
5693     Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vsubhn");
5694 
5695     // %res = trunc <4 x i32> %high to <4 x i16>
5696     return Builder.CreateTrunc(Ops[0], VTy, "vsubhn");
5697   }
5698   case NEON::BI__builtin_neon_vtrn_v:
5699   case NEON::BI__builtin_neon_vtrnq_v: {
5700     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
5701     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
5702     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
5703     Value *SV = nullptr;
5704 
5705     for (unsigned vi = 0; vi != 2; ++vi) {
5706       SmallVector<uint32_t, 16> Indices;
5707       for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
5708         Indices.push_back(i+vi);
5709         Indices.push_back(i+e+vi);
5710       }
5711       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
5712       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vtrn");
5713       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
5714     }
5715     return SV;
5716   }
5717   case NEON::BI__builtin_neon_vtst_v:
5718   case NEON::BI__builtin_neon_vtstq_v: {
5719     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5720     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
5721     Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
5722     Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
5723                                 ConstantAggregateZero::get(Ty));
5724     return Builder.CreateSExt(Ops[0], Ty, "vtst");
5725   }
5726   case NEON::BI__builtin_neon_vuzp_v:
5727   case NEON::BI__builtin_neon_vuzpq_v: {
5728     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
5729     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
5730     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
5731     Value *SV = nullptr;
5732 
5733     for (unsigned vi = 0; vi != 2; ++vi) {
5734       SmallVector<uint32_t, 16> Indices;
5735       for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
5736         Indices.push_back(2*i+vi);
5737 
5738       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
5739       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vuzp");
5740       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
5741     }
5742     return SV;
5743   }
5744   case NEON::BI__builtin_neon_vzip_v:
5745   case NEON::BI__builtin_neon_vzipq_v: {
5746     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
5747     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
5748     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
5749     Value *SV = nullptr;
5750 
5751     for (unsigned vi = 0; vi != 2; ++vi) {
5752       SmallVector<uint32_t, 16> Indices;
5753       for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
5754         Indices.push_back((i + vi*e) >> 1);
5755         Indices.push_back(((i + vi*e) >> 1)+e);
5756       }
5757       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
5758       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vzip");
5759       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
5760     }
5761     return SV;
5762   }
5763   case NEON::BI__builtin_neon_vdot_v:
5764   case NEON::BI__builtin_neon_vdotq_v: {
5765     llvm::Type *InputTy =
5766         llvm::VectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
5767     llvm::Type *Tys[2] = { Ty, InputTy };
5768     Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic;
5769     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vdot");
5770   }
5771   case NEON::BI__builtin_neon_vfmlal_low_v:
5772   case NEON::BI__builtin_neon_vfmlalq_low_v: {
5773     llvm::Type *InputTy =
5774         llvm::VectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
5775     llvm::Type *Tys[2] = { Ty, InputTy };
5776     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlal_low");
5777   }
5778   case NEON::BI__builtin_neon_vfmlsl_low_v:
5779   case NEON::BI__builtin_neon_vfmlslq_low_v: {
5780     llvm::Type *InputTy =
5781         llvm::VectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
5782     llvm::Type *Tys[2] = { Ty, InputTy };
5783     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlsl_low");
5784   }
5785   case NEON::BI__builtin_neon_vfmlal_high_v:
5786   case NEON::BI__builtin_neon_vfmlalq_high_v: {
5787     llvm::Type *InputTy =
5788            llvm::VectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
5789     llvm::Type *Tys[2] = { Ty, InputTy };
5790     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlal_high");
5791   }
5792   case NEON::BI__builtin_neon_vfmlsl_high_v:
5793   case NEON::BI__builtin_neon_vfmlslq_high_v: {
5794     llvm::Type *InputTy =
5795            llvm::VectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
5796     llvm::Type *Tys[2] = { Ty, InputTy };
5797     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlsl_high");
5798   }
5799   }
5800 
5801   assert(Int && "Expected valid intrinsic number");
5802 
5803   // Determine the type(s) of this overloaded AArch64 intrinsic.
5804   Function *F = LookupNeonLLVMIntrinsic(Int, Modifier, Ty, E);
5805 
5806   Value *Result = EmitNeonCall(F, Ops, NameHint);
5807   llvm::Type *ResultType = ConvertType(E->getType());
5808   // AArch64 intrinsic one-element vector type cast to
5809   // scalar type expected by the builtin
5810   return Builder.CreateBitCast(Result, ResultType, NameHint);
5811 }
5812 
5813 Value *CodeGenFunction::EmitAArch64CompareBuiltinExpr(
5814     Value *Op, llvm::Type *Ty, const CmpInst::Predicate Fp,
5815     const CmpInst::Predicate Ip, const Twine &Name) {
5816   llvm::Type *OTy = Op->getType();
5817 
5818   // FIXME: this is utterly horrific. We should not be looking at previous
5819   // codegen context to find out what needs doing. Unfortunately TableGen
5820   // currently gives us exactly the same calls for vceqz_f32 and vceqz_s32
5821   // (etc).
5822   if (BitCastInst *BI = dyn_cast<BitCastInst>(Op))
5823     OTy = BI->getOperand(0)->getType();
5824 
5825   Op = Builder.CreateBitCast(Op, OTy);
5826   if (OTy->getScalarType()->isFloatingPointTy()) {
5827     Op = Builder.CreateFCmp(Fp, Op, Constant::getNullValue(OTy));
5828   } else {
5829     Op = Builder.CreateICmp(Ip, Op, Constant::getNullValue(OTy));
5830   }
5831   return Builder.CreateSExt(Op, Ty, Name);
5832 }
5833 
5834 static Value *packTBLDVectorList(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
5835                                  Value *ExtOp, Value *IndexOp,
5836                                  llvm::Type *ResTy, unsigned IntID,
5837                                  const char *Name) {
5838   SmallVector<Value *, 2> TblOps;
5839   if (ExtOp)
5840     TblOps.push_back(ExtOp);
5841 
5842   // Build a vector containing sequential number like (0, 1, 2, ..., 15)
5843   SmallVector<uint32_t, 16> Indices;
5844   llvm::VectorType *TblTy = cast<llvm::VectorType>(Ops[0]->getType());
5845   for (unsigned i = 0, e = TblTy->getNumElements(); i != e; ++i) {
5846     Indices.push_back(2*i);
5847     Indices.push_back(2*i+1);
5848   }
5849 
5850   int PairPos = 0, End = Ops.size() - 1;
5851   while (PairPos < End) {
5852     TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos],
5853                                                      Ops[PairPos+1], Indices,
5854                                                      Name));
5855     PairPos += 2;
5856   }
5857 
5858   // If there's an odd number of 64-bit lookup table, fill the high 64-bit
5859   // of the 128-bit lookup table with zero.
5860   if (PairPos == End) {
5861     Value *ZeroTbl = ConstantAggregateZero::get(TblTy);
5862     TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos],
5863                                                      ZeroTbl, Indices, Name));
5864   }
5865 
5866   Function *TblF;
5867   TblOps.push_back(IndexOp);
5868   TblF = CGF.CGM.getIntrinsic(IntID, ResTy);
5869 
5870   return CGF.EmitNeonCall(TblF, TblOps, Name);
5871 }
5872 
5873 Value *CodeGenFunction::GetValueForARMHint(unsigned BuiltinID) {
5874   unsigned Value;
5875   switch (BuiltinID) {
5876   default:
5877     return nullptr;
5878   case ARM::BI__builtin_arm_nop:
5879     Value = 0;
5880     break;
5881   case ARM::BI__builtin_arm_yield:
5882   case ARM::BI__yield:
5883     Value = 1;
5884     break;
5885   case ARM::BI__builtin_arm_wfe:
5886   case ARM::BI__wfe:
5887     Value = 2;
5888     break;
5889   case ARM::BI__builtin_arm_wfi:
5890   case ARM::BI__wfi:
5891     Value = 3;
5892     break;
5893   case ARM::BI__builtin_arm_sev:
5894   case ARM::BI__sev:
5895     Value = 4;
5896     break;
5897   case ARM::BI__builtin_arm_sevl:
5898   case ARM::BI__sevl:
5899     Value = 5;
5900     break;
5901   }
5902 
5903   return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_hint),
5904                             llvm::ConstantInt::get(Int32Ty, Value));
5905 }
5906 
5907 // Generates the IR for the read/write special register builtin,
5908 // ValueType is the type of the value that is to be written or read,
5909 // RegisterType is the type of the register being written to or read from.
5910 static Value *EmitSpecialRegisterBuiltin(CodeGenFunction &CGF,
5911                                          const CallExpr *E,
5912                                          llvm::Type *RegisterType,
5913                                          llvm::Type *ValueType,
5914                                          bool IsRead,
5915                                          StringRef SysReg = "") {
5916   // write and register intrinsics only support 32 and 64 bit operations.
5917   assert((RegisterType->isIntegerTy(32) || RegisterType->isIntegerTy(64))
5918           && "Unsupported size for register.");
5919 
5920   CodeGen::CGBuilderTy &Builder = CGF.Builder;
5921   CodeGen::CodeGenModule &CGM = CGF.CGM;
5922   LLVMContext &Context = CGM.getLLVMContext();
5923 
5924   if (SysReg.empty()) {
5925     const Expr *SysRegStrExpr = E->getArg(0)->IgnoreParenCasts();
5926     SysReg = cast<clang::StringLiteral>(SysRegStrExpr)->getString();
5927   }
5928 
5929   llvm::Metadata *Ops[] = { llvm::MDString::get(Context, SysReg) };
5930   llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
5931   llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
5932 
5933   llvm::Type *Types[] = { RegisterType };
5934 
5935   bool MixedTypes = RegisterType->isIntegerTy(64) && ValueType->isIntegerTy(32);
5936   assert(!(RegisterType->isIntegerTy(32) && ValueType->isIntegerTy(64))
5937             && "Can't fit 64-bit value in 32-bit register");
5938 
5939   if (IsRead) {
5940     llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
5941     llvm::Value *Call = Builder.CreateCall(F, Metadata);
5942 
5943     if (MixedTypes)
5944       // Read into 64 bit register and then truncate result to 32 bit.
5945       return Builder.CreateTrunc(Call, ValueType);
5946 
5947     if (ValueType->isPointerTy())
5948       // Have i32/i64 result (Call) but want to return a VoidPtrTy (i8*).
5949       return Builder.CreateIntToPtr(Call, ValueType);
5950 
5951     return Call;
5952   }
5953 
5954   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
5955   llvm::Value *ArgValue = CGF.EmitScalarExpr(E->getArg(1));
5956   if (MixedTypes) {
5957     // Extend 32 bit write value to 64 bit to pass to write.
5958     ArgValue = Builder.CreateZExt(ArgValue, RegisterType);
5959     return Builder.CreateCall(F, { Metadata, ArgValue });
5960   }
5961 
5962   if (ValueType->isPointerTy()) {
5963     // Have VoidPtrTy ArgValue but want to return an i32/i64.
5964     ArgValue = Builder.CreatePtrToInt(ArgValue, RegisterType);
5965     return Builder.CreateCall(F, { Metadata, ArgValue });
5966   }
5967 
5968   return Builder.CreateCall(F, { Metadata, ArgValue });
5969 }
5970 
5971 /// Return true if BuiltinID is an overloaded Neon intrinsic with an extra
5972 /// argument that specifies the vector type.
5973 static bool HasExtraNeonArgument(unsigned BuiltinID) {
5974   switch (BuiltinID) {
5975   default: break;
5976   case NEON::BI__builtin_neon_vget_lane_i8:
5977   case NEON::BI__builtin_neon_vget_lane_i16:
5978   case NEON::BI__builtin_neon_vget_lane_i32:
5979   case NEON::BI__builtin_neon_vget_lane_i64:
5980   case NEON::BI__builtin_neon_vget_lane_f32:
5981   case NEON::BI__builtin_neon_vgetq_lane_i8:
5982   case NEON::BI__builtin_neon_vgetq_lane_i16:
5983   case NEON::BI__builtin_neon_vgetq_lane_i32:
5984   case NEON::BI__builtin_neon_vgetq_lane_i64:
5985   case NEON::BI__builtin_neon_vgetq_lane_f32:
5986   case NEON::BI__builtin_neon_vset_lane_i8:
5987   case NEON::BI__builtin_neon_vset_lane_i16:
5988   case NEON::BI__builtin_neon_vset_lane_i32:
5989   case NEON::BI__builtin_neon_vset_lane_i64:
5990   case NEON::BI__builtin_neon_vset_lane_f32:
5991   case NEON::BI__builtin_neon_vsetq_lane_i8:
5992   case NEON::BI__builtin_neon_vsetq_lane_i16:
5993   case NEON::BI__builtin_neon_vsetq_lane_i32:
5994   case NEON::BI__builtin_neon_vsetq_lane_i64:
5995   case NEON::BI__builtin_neon_vsetq_lane_f32:
5996   case NEON::BI__builtin_neon_vsha1h_u32:
5997   case NEON::BI__builtin_neon_vsha1cq_u32:
5998   case NEON::BI__builtin_neon_vsha1pq_u32:
5999   case NEON::BI__builtin_neon_vsha1mq_u32:
6000   case clang::ARM::BI_MoveToCoprocessor:
6001   case clang::ARM::BI_MoveToCoprocessor2:
6002     return false;
6003   }
6004   return true;
6005 }
6006 
6007 Value *CodeGenFunction::EmitARMBuiltinExpr(unsigned BuiltinID,
6008                                            const CallExpr *E,
6009                                            ReturnValueSlot ReturnValue,
6010                                            llvm::Triple::ArchType Arch) {
6011   if (auto Hint = GetValueForARMHint(BuiltinID))
6012     return Hint;
6013 
6014   if (BuiltinID == ARM::BI__emit) {
6015     bool IsThumb = getTarget().getTriple().getArch() == llvm::Triple::thumb;
6016     llvm::FunctionType *FTy =
6017         llvm::FunctionType::get(VoidTy, /*Variadic=*/false);
6018 
6019     Expr::EvalResult Result;
6020     if (!E->getArg(0)->EvaluateAsInt(Result, CGM.getContext()))
6021       llvm_unreachable("Sema will ensure that the parameter is constant");
6022 
6023     llvm::APSInt Value = Result.Val.getInt();
6024     uint64_t ZExtValue = Value.zextOrTrunc(IsThumb ? 16 : 32).getZExtValue();
6025 
6026     llvm::InlineAsm *Emit =
6027         IsThumb ? InlineAsm::get(FTy, ".inst.n 0x" + utohexstr(ZExtValue), "",
6028                                  /*hasSideEffects=*/true)
6029                 : InlineAsm::get(FTy, ".inst 0x" + utohexstr(ZExtValue), "",
6030                                  /*hasSideEffects=*/true);
6031 
6032     return Builder.CreateCall(Emit);
6033   }
6034 
6035   if (BuiltinID == ARM::BI__builtin_arm_dbg) {
6036     Value *Option = EmitScalarExpr(E->getArg(0));
6037     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_dbg), Option);
6038   }
6039 
6040   if (BuiltinID == ARM::BI__builtin_arm_prefetch) {
6041     Value *Address = EmitScalarExpr(E->getArg(0));
6042     Value *RW      = EmitScalarExpr(E->getArg(1));
6043     Value *IsData  = EmitScalarExpr(E->getArg(2));
6044 
6045     // Locality is not supported on ARM target
6046     Value *Locality = llvm::ConstantInt::get(Int32Ty, 3);
6047 
6048     Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
6049     return Builder.CreateCall(F, {Address, RW, Locality, IsData});
6050   }
6051 
6052   if (BuiltinID == ARM::BI__builtin_arm_rbit) {
6053     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
6054     return Builder.CreateCall(
6055         CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
6056   }
6057 
6058   if (BuiltinID == ARM::BI__builtin_arm_cls) {
6059     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
6060     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_cls), Arg, "cls");
6061   }
6062   if (BuiltinID == ARM::BI__builtin_arm_cls64) {
6063     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
6064     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_cls64), Arg,
6065                               "cls");
6066   }
6067 
6068   if (BuiltinID == ARM::BI__clear_cache) {
6069     assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments");
6070     const FunctionDecl *FD = E->getDirectCallee();
6071     Value *Ops[2];
6072     for (unsigned i = 0; i < 2; i++)
6073       Ops[i] = EmitScalarExpr(E->getArg(i));
6074     llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
6075     llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
6076     StringRef Name = FD->getName();
6077     return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
6078   }
6079 
6080   if (BuiltinID == ARM::BI__builtin_arm_mcrr ||
6081       BuiltinID == ARM::BI__builtin_arm_mcrr2) {
6082     Function *F;
6083 
6084     switch (BuiltinID) {
6085     default: llvm_unreachable("unexpected builtin");
6086     case ARM::BI__builtin_arm_mcrr:
6087       F = CGM.getIntrinsic(Intrinsic::arm_mcrr);
6088       break;
6089     case ARM::BI__builtin_arm_mcrr2:
6090       F = CGM.getIntrinsic(Intrinsic::arm_mcrr2);
6091       break;
6092     }
6093 
6094     // MCRR{2} instruction has 5 operands but
6095     // the intrinsic has 4 because Rt and Rt2
6096     // are represented as a single unsigned 64
6097     // bit integer in the intrinsic definition
6098     // but internally it's represented as 2 32
6099     // bit integers.
6100 
6101     Value *Coproc = EmitScalarExpr(E->getArg(0));
6102     Value *Opc1 = EmitScalarExpr(E->getArg(1));
6103     Value *RtAndRt2 = EmitScalarExpr(E->getArg(2));
6104     Value *CRm = EmitScalarExpr(E->getArg(3));
6105 
6106     Value *C1 = llvm::ConstantInt::get(Int64Ty, 32);
6107     Value *Rt = Builder.CreateTruncOrBitCast(RtAndRt2, Int32Ty);
6108     Value *Rt2 = Builder.CreateLShr(RtAndRt2, C1);
6109     Rt2 = Builder.CreateTruncOrBitCast(Rt2, Int32Ty);
6110 
6111     return Builder.CreateCall(F, {Coproc, Opc1, Rt, Rt2, CRm});
6112   }
6113 
6114   if (BuiltinID == ARM::BI__builtin_arm_mrrc ||
6115       BuiltinID == ARM::BI__builtin_arm_mrrc2) {
6116     Function *F;
6117 
6118     switch (BuiltinID) {
6119     default: llvm_unreachable("unexpected builtin");
6120     case ARM::BI__builtin_arm_mrrc:
6121       F = CGM.getIntrinsic(Intrinsic::arm_mrrc);
6122       break;
6123     case ARM::BI__builtin_arm_mrrc2:
6124       F = CGM.getIntrinsic(Intrinsic::arm_mrrc2);
6125       break;
6126     }
6127 
6128     Value *Coproc = EmitScalarExpr(E->getArg(0));
6129     Value *Opc1 = EmitScalarExpr(E->getArg(1));
6130     Value *CRm  = EmitScalarExpr(E->getArg(2));
6131     Value *RtAndRt2 = Builder.CreateCall(F, {Coproc, Opc1, CRm});
6132 
6133     // Returns an unsigned 64 bit integer, represented
6134     // as two 32 bit integers.
6135 
6136     Value *Rt = Builder.CreateExtractValue(RtAndRt2, 1);
6137     Value *Rt1 = Builder.CreateExtractValue(RtAndRt2, 0);
6138     Rt = Builder.CreateZExt(Rt, Int64Ty);
6139     Rt1 = Builder.CreateZExt(Rt1, Int64Ty);
6140 
6141     Value *ShiftCast = llvm::ConstantInt::get(Int64Ty, 32);
6142     RtAndRt2 = Builder.CreateShl(Rt, ShiftCast, "shl", true);
6143     RtAndRt2 = Builder.CreateOr(RtAndRt2, Rt1);
6144 
6145     return Builder.CreateBitCast(RtAndRt2, ConvertType(E->getType()));
6146   }
6147 
6148   if (BuiltinID == ARM::BI__builtin_arm_ldrexd ||
6149       ((BuiltinID == ARM::BI__builtin_arm_ldrex ||
6150         BuiltinID == ARM::BI__builtin_arm_ldaex) &&
6151        getContext().getTypeSize(E->getType()) == 64) ||
6152       BuiltinID == ARM::BI__ldrexd) {
6153     Function *F;
6154 
6155     switch (BuiltinID) {
6156     default: llvm_unreachable("unexpected builtin");
6157     case ARM::BI__builtin_arm_ldaex:
6158       F = CGM.getIntrinsic(Intrinsic::arm_ldaexd);
6159       break;
6160     case ARM::BI__builtin_arm_ldrexd:
6161     case ARM::BI__builtin_arm_ldrex:
6162     case ARM::BI__ldrexd:
6163       F = CGM.getIntrinsic(Intrinsic::arm_ldrexd);
6164       break;
6165     }
6166 
6167     Value *LdPtr = EmitScalarExpr(E->getArg(0));
6168     Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy),
6169                                     "ldrexd");
6170 
6171     Value *Val0 = Builder.CreateExtractValue(Val, 1);
6172     Value *Val1 = Builder.CreateExtractValue(Val, 0);
6173     Val0 = Builder.CreateZExt(Val0, Int64Ty);
6174     Val1 = Builder.CreateZExt(Val1, Int64Ty);
6175 
6176     Value *ShiftCst = llvm::ConstantInt::get(Int64Ty, 32);
6177     Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
6178     Val = Builder.CreateOr(Val, Val1);
6179     return Builder.CreateBitCast(Val, ConvertType(E->getType()));
6180   }
6181 
6182   if (BuiltinID == ARM::BI__builtin_arm_ldrex ||
6183       BuiltinID == ARM::BI__builtin_arm_ldaex) {
6184     Value *LoadAddr = EmitScalarExpr(E->getArg(0));
6185 
6186     QualType Ty = E->getType();
6187     llvm::Type *RealResTy = ConvertType(Ty);
6188     llvm::Type *PtrTy = llvm::IntegerType::get(
6189         getLLVMContext(), getContext().getTypeSize(Ty))->getPointerTo();
6190     LoadAddr = Builder.CreateBitCast(LoadAddr, PtrTy);
6191 
6192     Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_ldaex
6193                                        ? Intrinsic::arm_ldaex
6194                                        : Intrinsic::arm_ldrex,
6195                                    PtrTy);
6196     Value *Val = Builder.CreateCall(F, LoadAddr, "ldrex");
6197 
6198     if (RealResTy->isPointerTy())
6199       return Builder.CreateIntToPtr(Val, RealResTy);
6200     else {
6201       llvm::Type *IntResTy = llvm::IntegerType::get(
6202           getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(RealResTy));
6203       Val = Builder.CreateTruncOrBitCast(Val, IntResTy);
6204       return Builder.CreateBitCast(Val, RealResTy);
6205     }
6206   }
6207 
6208   if (BuiltinID == ARM::BI__builtin_arm_strexd ||
6209       ((BuiltinID == ARM::BI__builtin_arm_stlex ||
6210         BuiltinID == ARM::BI__builtin_arm_strex) &&
6211        getContext().getTypeSize(E->getArg(0)->getType()) == 64)) {
6212     Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_stlex
6213                                        ? Intrinsic::arm_stlexd
6214                                        : Intrinsic::arm_strexd);
6215     llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty);
6216 
6217     Address Tmp = CreateMemTemp(E->getArg(0)->getType());
6218     Value *Val = EmitScalarExpr(E->getArg(0));
6219     Builder.CreateStore(Val, Tmp);
6220 
6221     Address LdPtr = Builder.CreateBitCast(Tmp,llvm::PointerType::getUnqual(STy));
6222     Val = Builder.CreateLoad(LdPtr);
6223 
6224     Value *Arg0 = Builder.CreateExtractValue(Val, 0);
6225     Value *Arg1 = Builder.CreateExtractValue(Val, 1);
6226     Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), Int8PtrTy);
6227     return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "strexd");
6228   }
6229 
6230   if (BuiltinID == ARM::BI__builtin_arm_strex ||
6231       BuiltinID == ARM::BI__builtin_arm_stlex) {
6232     Value *StoreVal = EmitScalarExpr(E->getArg(0));
6233     Value *StoreAddr = EmitScalarExpr(E->getArg(1));
6234 
6235     QualType Ty = E->getArg(0)->getType();
6236     llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(),
6237                                                  getContext().getTypeSize(Ty));
6238     StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo());
6239 
6240     if (StoreVal->getType()->isPointerTy())
6241       StoreVal = Builder.CreatePtrToInt(StoreVal, Int32Ty);
6242     else {
6243       llvm::Type *IntTy = llvm::IntegerType::get(
6244           getLLVMContext(),
6245           CGM.getDataLayout().getTypeSizeInBits(StoreVal->getType()));
6246       StoreVal = Builder.CreateBitCast(StoreVal, IntTy);
6247       StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int32Ty);
6248     }
6249 
6250     Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_stlex
6251                                        ? Intrinsic::arm_stlex
6252                                        : Intrinsic::arm_strex,
6253                                    StoreAddr->getType());
6254     return Builder.CreateCall(F, {StoreVal, StoreAddr}, "strex");
6255   }
6256 
6257   if (BuiltinID == ARM::BI__builtin_arm_clrex) {
6258     Function *F = CGM.getIntrinsic(Intrinsic::arm_clrex);
6259     return Builder.CreateCall(F);
6260   }
6261 
6262   // CRC32
6263   Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic;
6264   switch (BuiltinID) {
6265   case ARM::BI__builtin_arm_crc32b:
6266     CRCIntrinsicID = Intrinsic::arm_crc32b; break;
6267   case ARM::BI__builtin_arm_crc32cb:
6268     CRCIntrinsicID = Intrinsic::arm_crc32cb; break;
6269   case ARM::BI__builtin_arm_crc32h:
6270     CRCIntrinsicID = Intrinsic::arm_crc32h; break;
6271   case ARM::BI__builtin_arm_crc32ch:
6272     CRCIntrinsicID = Intrinsic::arm_crc32ch; break;
6273   case ARM::BI__builtin_arm_crc32w:
6274   case ARM::BI__builtin_arm_crc32d:
6275     CRCIntrinsicID = Intrinsic::arm_crc32w; break;
6276   case ARM::BI__builtin_arm_crc32cw:
6277   case ARM::BI__builtin_arm_crc32cd:
6278     CRCIntrinsicID = Intrinsic::arm_crc32cw; break;
6279   }
6280 
6281   if (CRCIntrinsicID != Intrinsic::not_intrinsic) {
6282     Value *Arg0 = EmitScalarExpr(E->getArg(0));
6283     Value *Arg1 = EmitScalarExpr(E->getArg(1));
6284 
6285     // crc32{c,}d intrinsics are implemnted as two calls to crc32{c,}w
6286     // intrinsics, hence we need different codegen for these cases.
6287     if (BuiltinID == ARM::BI__builtin_arm_crc32d ||
6288         BuiltinID == ARM::BI__builtin_arm_crc32cd) {
6289       Value *C1 = llvm::ConstantInt::get(Int64Ty, 32);
6290       Value *Arg1a = Builder.CreateTruncOrBitCast(Arg1, Int32Ty);
6291       Value *Arg1b = Builder.CreateLShr(Arg1, C1);
6292       Arg1b = Builder.CreateTruncOrBitCast(Arg1b, Int32Ty);
6293 
6294       Function *F = CGM.getIntrinsic(CRCIntrinsicID);
6295       Value *Res = Builder.CreateCall(F, {Arg0, Arg1a});
6296       return Builder.CreateCall(F, {Res, Arg1b});
6297     } else {
6298       Arg1 = Builder.CreateZExtOrBitCast(Arg1, Int32Ty);
6299 
6300       Function *F = CGM.getIntrinsic(CRCIntrinsicID);
6301       return Builder.CreateCall(F, {Arg0, Arg1});
6302     }
6303   }
6304 
6305   if (BuiltinID == ARM::BI__builtin_arm_rsr ||
6306       BuiltinID == ARM::BI__builtin_arm_rsr64 ||
6307       BuiltinID == ARM::BI__builtin_arm_rsrp ||
6308       BuiltinID == ARM::BI__builtin_arm_wsr ||
6309       BuiltinID == ARM::BI__builtin_arm_wsr64 ||
6310       BuiltinID == ARM::BI__builtin_arm_wsrp) {
6311 
6312     bool IsRead = BuiltinID == ARM::BI__builtin_arm_rsr ||
6313                   BuiltinID == ARM::BI__builtin_arm_rsr64 ||
6314                   BuiltinID == ARM::BI__builtin_arm_rsrp;
6315 
6316     bool IsPointerBuiltin = BuiltinID == ARM::BI__builtin_arm_rsrp ||
6317                             BuiltinID == ARM::BI__builtin_arm_wsrp;
6318 
6319     bool Is64Bit = BuiltinID == ARM::BI__builtin_arm_rsr64 ||
6320                    BuiltinID == ARM::BI__builtin_arm_wsr64;
6321 
6322     llvm::Type *ValueType;
6323     llvm::Type *RegisterType;
6324     if (IsPointerBuiltin) {
6325       ValueType = VoidPtrTy;
6326       RegisterType = Int32Ty;
6327     } else if (Is64Bit) {
6328       ValueType = RegisterType = Int64Ty;
6329     } else {
6330       ValueType = RegisterType = Int32Ty;
6331     }
6332 
6333     return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType, IsRead);
6334   }
6335 
6336   // Deal with MVE builtins
6337   if (Value *Result = EmitARMMVEBuiltinExpr(BuiltinID, E, ReturnValue, Arch))
6338     return Result;
6339 
6340   // Find out if any arguments are required to be integer constant
6341   // expressions.
6342   unsigned ICEArguments = 0;
6343   ASTContext::GetBuiltinTypeError Error;
6344   getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
6345   assert(Error == ASTContext::GE_None && "Should not codegen an error");
6346 
6347   auto getAlignmentValue32 = [&](Address addr) -> Value* {
6348     return Builder.getInt32(addr.getAlignment().getQuantity());
6349   };
6350 
6351   Address PtrOp0 = Address::invalid();
6352   Address PtrOp1 = Address::invalid();
6353   SmallVector<Value*, 4> Ops;
6354   bool HasExtraArg = HasExtraNeonArgument(BuiltinID);
6355   unsigned NumArgs = E->getNumArgs() - (HasExtraArg ? 1 : 0);
6356   for (unsigned i = 0, e = NumArgs; i != e; i++) {
6357     if (i == 0) {
6358       switch (BuiltinID) {
6359       case NEON::BI__builtin_neon_vld1_v:
6360       case NEON::BI__builtin_neon_vld1q_v:
6361       case NEON::BI__builtin_neon_vld1q_lane_v:
6362       case NEON::BI__builtin_neon_vld1_lane_v:
6363       case NEON::BI__builtin_neon_vld1_dup_v:
6364       case NEON::BI__builtin_neon_vld1q_dup_v:
6365       case NEON::BI__builtin_neon_vst1_v:
6366       case NEON::BI__builtin_neon_vst1q_v:
6367       case NEON::BI__builtin_neon_vst1q_lane_v:
6368       case NEON::BI__builtin_neon_vst1_lane_v:
6369       case NEON::BI__builtin_neon_vst2_v:
6370       case NEON::BI__builtin_neon_vst2q_v:
6371       case NEON::BI__builtin_neon_vst2_lane_v:
6372       case NEON::BI__builtin_neon_vst2q_lane_v:
6373       case NEON::BI__builtin_neon_vst3_v:
6374       case NEON::BI__builtin_neon_vst3q_v:
6375       case NEON::BI__builtin_neon_vst3_lane_v:
6376       case NEON::BI__builtin_neon_vst3q_lane_v:
6377       case NEON::BI__builtin_neon_vst4_v:
6378       case NEON::BI__builtin_neon_vst4q_v:
6379       case NEON::BI__builtin_neon_vst4_lane_v:
6380       case NEON::BI__builtin_neon_vst4q_lane_v:
6381         // Get the alignment for the argument in addition to the value;
6382         // we'll use it later.
6383         PtrOp0 = EmitPointerWithAlignment(E->getArg(0));
6384         Ops.push_back(PtrOp0.getPointer());
6385         continue;
6386       }
6387     }
6388     if (i == 1) {
6389       switch (BuiltinID) {
6390       case NEON::BI__builtin_neon_vld2_v:
6391       case NEON::BI__builtin_neon_vld2q_v:
6392       case NEON::BI__builtin_neon_vld3_v:
6393       case NEON::BI__builtin_neon_vld3q_v:
6394       case NEON::BI__builtin_neon_vld4_v:
6395       case NEON::BI__builtin_neon_vld4q_v:
6396       case NEON::BI__builtin_neon_vld2_lane_v:
6397       case NEON::BI__builtin_neon_vld2q_lane_v:
6398       case NEON::BI__builtin_neon_vld3_lane_v:
6399       case NEON::BI__builtin_neon_vld3q_lane_v:
6400       case NEON::BI__builtin_neon_vld4_lane_v:
6401       case NEON::BI__builtin_neon_vld4q_lane_v:
6402       case NEON::BI__builtin_neon_vld2_dup_v:
6403       case NEON::BI__builtin_neon_vld2q_dup_v:
6404       case NEON::BI__builtin_neon_vld3_dup_v:
6405       case NEON::BI__builtin_neon_vld3q_dup_v:
6406       case NEON::BI__builtin_neon_vld4_dup_v:
6407       case NEON::BI__builtin_neon_vld4q_dup_v:
6408         // Get the alignment for the argument in addition to the value;
6409         // we'll use it later.
6410         PtrOp1 = EmitPointerWithAlignment(E->getArg(1));
6411         Ops.push_back(PtrOp1.getPointer());
6412         continue;
6413       }
6414     }
6415 
6416     if ((ICEArguments & (1 << i)) == 0) {
6417       Ops.push_back(EmitScalarExpr(E->getArg(i)));
6418     } else {
6419       // If this is required to be a constant, constant fold it so that we know
6420       // that the generated intrinsic gets a ConstantInt.
6421       llvm::APSInt Result;
6422       bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext());
6423       assert(IsConst && "Constant arg isn't actually constant?"); (void)IsConst;
6424       Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result));
6425     }
6426   }
6427 
6428   switch (BuiltinID) {
6429   default: break;
6430 
6431   case NEON::BI__builtin_neon_vget_lane_i8:
6432   case NEON::BI__builtin_neon_vget_lane_i16:
6433   case NEON::BI__builtin_neon_vget_lane_i32:
6434   case NEON::BI__builtin_neon_vget_lane_i64:
6435   case NEON::BI__builtin_neon_vget_lane_f32:
6436   case NEON::BI__builtin_neon_vgetq_lane_i8:
6437   case NEON::BI__builtin_neon_vgetq_lane_i16:
6438   case NEON::BI__builtin_neon_vgetq_lane_i32:
6439   case NEON::BI__builtin_neon_vgetq_lane_i64:
6440   case NEON::BI__builtin_neon_vgetq_lane_f32:
6441     return Builder.CreateExtractElement(Ops[0], Ops[1], "vget_lane");
6442 
6443   case NEON::BI__builtin_neon_vrndns_f32: {
6444     Value *Arg = EmitScalarExpr(E->getArg(0));
6445     llvm::Type *Tys[] = {Arg->getType()};
6446     Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vrintn, Tys);
6447     return Builder.CreateCall(F, {Arg}, "vrndn"); }
6448 
6449   case NEON::BI__builtin_neon_vset_lane_i8:
6450   case NEON::BI__builtin_neon_vset_lane_i16:
6451   case NEON::BI__builtin_neon_vset_lane_i32:
6452   case NEON::BI__builtin_neon_vset_lane_i64:
6453   case NEON::BI__builtin_neon_vset_lane_f32:
6454   case NEON::BI__builtin_neon_vsetq_lane_i8:
6455   case NEON::BI__builtin_neon_vsetq_lane_i16:
6456   case NEON::BI__builtin_neon_vsetq_lane_i32:
6457   case NEON::BI__builtin_neon_vsetq_lane_i64:
6458   case NEON::BI__builtin_neon_vsetq_lane_f32:
6459     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
6460 
6461   case NEON::BI__builtin_neon_vsha1h_u32:
6462     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1h), Ops,
6463                         "vsha1h");
6464   case NEON::BI__builtin_neon_vsha1cq_u32:
6465     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1c), Ops,
6466                         "vsha1h");
6467   case NEON::BI__builtin_neon_vsha1pq_u32:
6468     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1p), Ops,
6469                         "vsha1h");
6470   case NEON::BI__builtin_neon_vsha1mq_u32:
6471     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1m), Ops,
6472                         "vsha1h");
6473 
6474   // The ARM _MoveToCoprocessor builtins put the input register value as
6475   // the first argument, but the LLVM intrinsic expects it as the third one.
6476   case ARM::BI_MoveToCoprocessor:
6477   case ARM::BI_MoveToCoprocessor2: {
6478     Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI_MoveToCoprocessor ?
6479                                    Intrinsic::arm_mcr : Intrinsic::arm_mcr2);
6480     return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0],
6481                                   Ops[3], Ops[4], Ops[5]});
6482   }
6483   case ARM::BI_BitScanForward:
6484   case ARM::BI_BitScanForward64:
6485     return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanForward, E);
6486   case ARM::BI_BitScanReverse:
6487   case ARM::BI_BitScanReverse64:
6488     return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanReverse, E);
6489 
6490   case ARM::BI_InterlockedAnd64:
6491     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E);
6492   case ARM::BI_InterlockedExchange64:
6493     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E);
6494   case ARM::BI_InterlockedExchangeAdd64:
6495     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E);
6496   case ARM::BI_InterlockedExchangeSub64:
6497     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E);
6498   case ARM::BI_InterlockedOr64:
6499     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E);
6500   case ARM::BI_InterlockedXor64:
6501     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E);
6502   case ARM::BI_InterlockedDecrement64:
6503     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E);
6504   case ARM::BI_InterlockedIncrement64:
6505     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E);
6506   case ARM::BI_InterlockedExchangeAdd8_acq:
6507   case ARM::BI_InterlockedExchangeAdd16_acq:
6508   case ARM::BI_InterlockedExchangeAdd_acq:
6509   case ARM::BI_InterlockedExchangeAdd64_acq:
6510     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_acq, E);
6511   case ARM::BI_InterlockedExchangeAdd8_rel:
6512   case ARM::BI_InterlockedExchangeAdd16_rel:
6513   case ARM::BI_InterlockedExchangeAdd_rel:
6514   case ARM::BI_InterlockedExchangeAdd64_rel:
6515     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_rel, E);
6516   case ARM::BI_InterlockedExchangeAdd8_nf:
6517   case ARM::BI_InterlockedExchangeAdd16_nf:
6518   case ARM::BI_InterlockedExchangeAdd_nf:
6519   case ARM::BI_InterlockedExchangeAdd64_nf:
6520     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_nf, E);
6521   case ARM::BI_InterlockedExchange8_acq:
6522   case ARM::BI_InterlockedExchange16_acq:
6523   case ARM::BI_InterlockedExchange_acq:
6524   case ARM::BI_InterlockedExchange64_acq:
6525     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_acq, E);
6526   case ARM::BI_InterlockedExchange8_rel:
6527   case ARM::BI_InterlockedExchange16_rel:
6528   case ARM::BI_InterlockedExchange_rel:
6529   case ARM::BI_InterlockedExchange64_rel:
6530     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_rel, E);
6531   case ARM::BI_InterlockedExchange8_nf:
6532   case ARM::BI_InterlockedExchange16_nf:
6533   case ARM::BI_InterlockedExchange_nf:
6534   case ARM::BI_InterlockedExchange64_nf:
6535     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_nf, E);
6536   case ARM::BI_InterlockedCompareExchange8_acq:
6537   case ARM::BI_InterlockedCompareExchange16_acq:
6538   case ARM::BI_InterlockedCompareExchange_acq:
6539   case ARM::BI_InterlockedCompareExchange64_acq:
6540     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_acq, E);
6541   case ARM::BI_InterlockedCompareExchange8_rel:
6542   case ARM::BI_InterlockedCompareExchange16_rel:
6543   case ARM::BI_InterlockedCompareExchange_rel:
6544   case ARM::BI_InterlockedCompareExchange64_rel:
6545     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_rel, E);
6546   case ARM::BI_InterlockedCompareExchange8_nf:
6547   case ARM::BI_InterlockedCompareExchange16_nf:
6548   case ARM::BI_InterlockedCompareExchange_nf:
6549   case ARM::BI_InterlockedCompareExchange64_nf:
6550     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_nf, E);
6551   case ARM::BI_InterlockedOr8_acq:
6552   case ARM::BI_InterlockedOr16_acq:
6553   case ARM::BI_InterlockedOr_acq:
6554   case ARM::BI_InterlockedOr64_acq:
6555     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_acq, E);
6556   case ARM::BI_InterlockedOr8_rel:
6557   case ARM::BI_InterlockedOr16_rel:
6558   case ARM::BI_InterlockedOr_rel:
6559   case ARM::BI_InterlockedOr64_rel:
6560     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_rel, E);
6561   case ARM::BI_InterlockedOr8_nf:
6562   case ARM::BI_InterlockedOr16_nf:
6563   case ARM::BI_InterlockedOr_nf:
6564   case ARM::BI_InterlockedOr64_nf:
6565     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_nf, E);
6566   case ARM::BI_InterlockedXor8_acq:
6567   case ARM::BI_InterlockedXor16_acq:
6568   case ARM::BI_InterlockedXor_acq:
6569   case ARM::BI_InterlockedXor64_acq:
6570     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_acq, E);
6571   case ARM::BI_InterlockedXor8_rel:
6572   case ARM::BI_InterlockedXor16_rel:
6573   case ARM::BI_InterlockedXor_rel:
6574   case ARM::BI_InterlockedXor64_rel:
6575     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_rel, E);
6576   case ARM::BI_InterlockedXor8_nf:
6577   case ARM::BI_InterlockedXor16_nf:
6578   case ARM::BI_InterlockedXor_nf:
6579   case ARM::BI_InterlockedXor64_nf:
6580     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_nf, E);
6581   case ARM::BI_InterlockedAnd8_acq:
6582   case ARM::BI_InterlockedAnd16_acq:
6583   case ARM::BI_InterlockedAnd_acq:
6584   case ARM::BI_InterlockedAnd64_acq:
6585     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_acq, E);
6586   case ARM::BI_InterlockedAnd8_rel:
6587   case ARM::BI_InterlockedAnd16_rel:
6588   case ARM::BI_InterlockedAnd_rel:
6589   case ARM::BI_InterlockedAnd64_rel:
6590     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_rel, E);
6591   case ARM::BI_InterlockedAnd8_nf:
6592   case ARM::BI_InterlockedAnd16_nf:
6593   case ARM::BI_InterlockedAnd_nf:
6594   case ARM::BI_InterlockedAnd64_nf:
6595     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_nf, E);
6596   case ARM::BI_InterlockedIncrement16_acq:
6597   case ARM::BI_InterlockedIncrement_acq:
6598   case ARM::BI_InterlockedIncrement64_acq:
6599     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_acq, E);
6600   case ARM::BI_InterlockedIncrement16_rel:
6601   case ARM::BI_InterlockedIncrement_rel:
6602   case ARM::BI_InterlockedIncrement64_rel:
6603     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_rel, E);
6604   case ARM::BI_InterlockedIncrement16_nf:
6605   case ARM::BI_InterlockedIncrement_nf:
6606   case ARM::BI_InterlockedIncrement64_nf:
6607     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_nf, E);
6608   case ARM::BI_InterlockedDecrement16_acq:
6609   case ARM::BI_InterlockedDecrement_acq:
6610   case ARM::BI_InterlockedDecrement64_acq:
6611     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_acq, E);
6612   case ARM::BI_InterlockedDecrement16_rel:
6613   case ARM::BI_InterlockedDecrement_rel:
6614   case ARM::BI_InterlockedDecrement64_rel:
6615     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_rel, E);
6616   case ARM::BI_InterlockedDecrement16_nf:
6617   case ARM::BI_InterlockedDecrement_nf:
6618   case ARM::BI_InterlockedDecrement64_nf:
6619     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_nf, E);
6620   }
6621 
6622   // Get the last argument, which specifies the vector type.
6623   assert(HasExtraArg);
6624   llvm::APSInt Result;
6625   const Expr *Arg = E->getArg(E->getNumArgs()-1);
6626   if (!Arg->isIntegerConstantExpr(Result, getContext()))
6627     return nullptr;
6628 
6629   if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f ||
6630       BuiltinID == ARM::BI__builtin_arm_vcvtr_d) {
6631     // Determine the overloaded type of this builtin.
6632     llvm::Type *Ty;
6633     if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f)
6634       Ty = FloatTy;
6635     else
6636       Ty = DoubleTy;
6637 
6638     // Determine whether this is an unsigned conversion or not.
6639     bool usgn = Result.getZExtValue() == 1;
6640     unsigned Int = usgn ? Intrinsic::arm_vcvtru : Intrinsic::arm_vcvtr;
6641 
6642     // Call the appropriate intrinsic.
6643     Function *F = CGM.getIntrinsic(Int, Ty);
6644     return Builder.CreateCall(F, Ops, "vcvtr");
6645   }
6646 
6647   // Determine the type of this overloaded NEON intrinsic.
6648   NeonTypeFlags Type(Result.getZExtValue());
6649   bool usgn = Type.isUnsigned();
6650   bool rightShift = false;
6651 
6652   llvm::VectorType *VTy = GetNeonType(this, Type,
6653                                       getTarget().hasLegalHalfType());
6654   llvm::Type *Ty = VTy;
6655   if (!Ty)
6656     return nullptr;
6657 
6658   // Many NEON builtins have identical semantics and uses in ARM and
6659   // AArch64. Emit these in a single function.
6660   auto IntrinsicMap = makeArrayRef(ARMSIMDIntrinsicMap);
6661   const NeonIntrinsicInfo *Builtin = findNeonIntrinsicInMap(
6662       IntrinsicMap, BuiltinID, NEONSIMDIntrinsicsProvenSorted);
6663   if (Builtin)
6664     return EmitCommonNeonBuiltinExpr(
6665         Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic,
6666         Builtin->NameHint, Builtin->TypeModifier, E, Ops, PtrOp0, PtrOp1, Arch);
6667 
6668   unsigned Int;
6669   switch (BuiltinID) {
6670   default: return nullptr;
6671   case NEON::BI__builtin_neon_vld1q_lane_v:
6672     // Handle 64-bit integer elements as a special case.  Use shuffles of
6673     // one-element vectors to avoid poor code for i64 in the backend.
6674     if (VTy->getElementType()->isIntegerTy(64)) {
6675       // Extract the other lane.
6676       Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6677       uint32_t Lane = cast<ConstantInt>(Ops[2])->getZExtValue();
6678       Value *SV = llvm::ConstantVector::get(ConstantInt::get(Int32Ty, 1-Lane));
6679       Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
6680       // Load the value as a one-element vector.
6681       Ty = llvm::VectorType::get(VTy->getElementType(), 1);
6682       llvm::Type *Tys[] = {Ty, Int8PtrTy};
6683       Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld1, Tys);
6684       Value *Align = getAlignmentValue32(PtrOp0);
6685       Value *Ld = Builder.CreateCall(F, {Ops[0], Align});
6686       // Combine them.
6687       uint32_t Indices[] = {1 - Lane, Lane};
6688       SV = llvm::ConstantDataVector::get(getLLVMContext(), Indices);
6689       return Builder.CreateShuffleVector(Ops[1], Ld, SV, "vld1q_lane");
6690     }
6691     LLVM_FALLTHROUGH;
6692   case NEON::BI__builtin_neon_vld1_lane_v: {
6693     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6694     PtrOp0 = Builder.CreateElementBitCast(PtrOp0, VTy->getElementType());
6695     Value *Ld = Builder.CreateLoad(PtrOp0);
6696     return Builder.CreateInsertElement(Ops[1], Ld, Ops[2], "vld1_lane");
6697   }
6698   case NEON::BI__builtin_neon_vqrshrn_n_v:
6699     Int =
6700       usgn ? Intrinsic::arm_neon_vqrshiftnu : Intrinsic::arm_neon_vqrshiftns;
6701     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n",
6702                         1, true);
6703   case NEON::BI__builtin_neon_vqrshrun_n_v:
6704     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqrshiftnsu, Ty),
6705                         Ops, "vqrshrun_n", 1, true);
6706   case NEON::BI__builtin_neon_vqshrn_n_v:
6707     Int = usgn ? Intrinsic::arm_neon_vqshiftnu : Intrinsic::arm_neon_vqshiftns;
6708     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n",
6709                         1, true);
6710   case NEON::BI__builtin_neon_vqshrun_n_v:
6711     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqshiftnsu, Ty),
6712                         Ops, "vqshrun_n", 1, true);
6713   case NEON::BI__builtin_neon_vrecpe_v:
6714   case NEON::BI__builtin_neon_vrecpeq_v:
6715     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrecpe, Ty),
6716                         Ops, "vrecpe");
6717   case NEON::BI__builtin_neon_vrshrn_n_v:
6718     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrshiftn, Ty),
6719                         Ops, "vrshrn_n", 1, true);
6720   case NEON::BI__builtin_neon_vrsra_n_v:
6721   case NEON::BI__builtin_neon_vrsraq_n_v:
6722     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6723     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6724     Ops[2] = EmitNeonShiftVector(Ops[2], Ty, true);
6725     Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts;
6726     Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Ty), {Ops[1], Ops[2]});
6727     return Builder.CreateAdd(Ops[0], Ops[1], "vrsra_n");
6728   case NEON::BI__builtin_neon_vsri_n_v:
6729   case NEON::BI__builtin_neon_vsriq_n_v:
6730     rightShift = true;
6731     LLVM_FALLTHROUGH;
6732   case NEON::BI__builtin_neon_vsli_n_v:
6733   case NEON::BI__builtin_neon_vsliq_n_v:
6734     Ops[2] = EmitNeonShiftVector(Ops[2], Ty, rightShift);
6735     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vshiftins, Ty),
6736                         Ops, "vsli_n");
6737   case NEON::BI__builtin_neon_vsra_n_v:
6738   case NEON::BI__builtin_neon_vsraq_n_v:
6739     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6740     Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n");
6741     return Builder.CreateAdd(Ops[0], Ops[1]);
6742   case NEON::BI__builtin_neon_vst1q_lane_v:
6743     // Handle 64-bit integer elements as a special case.  Use a shuffle to get
6744     // a one-element vector and avoid poor code for i64 in the backend.
6745     if (VTy->getElementType()->isIntegerTy(64)) {
6746       Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6747       Value *SV = llvm::ConstantVector::get(cast<llvm::Constant>(Ops[2]));
6748       Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
6749       Ops[2] = getAlignmentValue32(PtrOp0);
6750       llvm::Type *Tys[] = {Int8PtrTy, Ops[1]->getType()};
6751       return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst1,
6752                                                  Tys), Ops);
6753     }
6754     LLVM_FALLTHROUGH;
6755   case NEON::BI__builtin_neon_vst1_lane_v: {
6756     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6757     Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
6758     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
6759     auto St = Builder.CreateStore(Ops[1], Builder.CreateBitCast(PtrOp0, Ty));
6760     return St;
6761   }
6762   case NEON::BI__builtin_neon_vtbl1_v:
6763     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl1),
6764                         Ops, "vtbl1");
6765   case NEON::BI__builtin_neon_vtbl2_v:
6766     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl2),
6767                         Ops, "vtbl2");
6768   case NEON::BI__builtin_neon_vtbl3_v:
6769     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl3),
6770                         Ops, "vtbl3");
6771   case NEON::BI__builtin_neon_vtbl4_v:
6772     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl4),
6773                         Ops, "vtbl4");
6774   case NEON::BI__builtin_neon_vtbx1_v:
6775     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx1),
6776                         Ops, "vtbx1");
6777   case NEON::BI__builtin_neon_vtbx2_v:
6778     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx2),
6779                         Ops, "vtbx2");
6780   case NEON::BI__builtin_neon_vtbx3_v:
6781     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx3),
6782                         Ops, "vtbx3");
6783   case NEON::BI__builtin_neon_vtbx4_v:
6784     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx4),
6785                         Ops, "vtbx4");
6786   }
6787 }
6788 
6789 Value *CodeGenFunction::EmitARMMVEBuiltinExpr(unsigned BuiltinID,
6790                                               const CallExpr *E,
6791                                               ReturnValueSlot ReturnValue,
6792                                               llvm::Triple::ArchType Arch) {
6793   enum class CustomCodeGen { VLD24, VST24 } CustomCodeGenType;
6794   Intrinsic::ID IRIntr;
6795   unsigned NumVectors;
6796 
6797   // Code autogenerated by Tablegen will handle all the simple builtins.
6798   switch (BuiltinID) {
6799     #include "clang/Basic/arm_mve_builtin_cg.inc"
6800 
6801     // If we didn't match an MVE builtin id at all, go back to the
6802     // main EmitARMBuiltinExpr.
6803   default:
6804     return nullptr;
6805   }
6806 
6807   // Anything that breaks from that switch is an MVE builtin that
6808   // needs handwritten code to generate.
6809 
6810   switch (CustomCodeGenType) {
6811 
6812   case CustomCodeGen::VLD24: {
6813     llvm::SmallVector<Value *, 4> Ops;
6814     llvm::SmallVector<llvm::Type *, 4> Tys;
6815 
6816     auto MvecCType = E->getType();
6817     auto MvecLType = ConvertType(MvecCType);
6818     assert(MvecLType->isStructTy() &&
6819            "Return type for vld[24]q should be a struct");
6820     assert(MvecLType->getStructNumElements() == 1 &&
6821            "Return-type struct for vld[24]q should have one element");
6822     auto MvecLTypeInner = MvecLType->getStructElementType(0);
6823     assert(MvecLTypeInner->isArrayTy() &&
6824            "Return-type struct for vld[24]q should contain an array");
6825     assert(MvecLTypeInner->getArrayNumElements() == NumVectors &&
6826            "Array member of return-type struct vld[24]q has wrong length");
6827     auto VecLType = MvecLTypeInner->getArrayElementType();
6828 
6829     Tys.push_back(VecLType);
6830 
6831     auto Addr = E->getArg(0);
6832     Ops.push_back(EmitScalarExpr(Addr));
6833     Tys.push_back(ConvertType(Addr->getType()));
6834 
6835     Function *F = CGM.getIntrinsic(IRIntr, makeArrayRef(Tys));
6836     Value *LoadResult = Builder.CreateCall(F, Ops);
6837     Value *MvecOut = UndefValue::get(MvecLType);
6838     for (unsigned i = 0; i < NumVectors; ++i) {
6839       Value *Vec = Builder.CreateExtractValue(LoadResult, i);
6840       MvecOut = Builder.CreateInsertValue(MvecOut, Vec, {0, i});
6841     }
6842 
6843     if (ReturnValue.isNull())
6844       return MvecOut;
6845     else
6846       return Builder.CreateStore(MvecOut, ReturnValue.getValue());
6847   }
6848 
6849   case CustomCodeGen::VST24: {
6850     llvm::SmallVector<Value *, 4> Ops;
6851     llvm::SmallVector<llvm::Type *, 4> Tys;
6852 
6853     auto Addr = E->getArg(0);
6854     Ops.push_back(EmitScalarExpr(Addr));
6855     Tys.push_back(ConvertType(Addr->getType()));
6856 
6857     auto MvecCType = E->getArg(1)->getType();
6858     auto MvecLType = ConvertType(MvecCType);
6859     assert(MvecLType->isStructTy() && "Data type for vst2q should be a struct");
6860     assert(MvecLType->getStructNumElements() == 1 &&
6861            "Data-type struct for vst2q should have one element");
6862     auto MvecLTypeInner = MvecLType->getStructElementType(0);
6863     assert(MvecLTypeInner->isArrayTy() &&
6864            "Data-type struct for vst2q should contain an array");
6865     assert(MvecLTypeInner->getArrayNumElements() == NumVectors &&
6866            "Array member of return-type struct vld[24]q has wrong length");
6867     auto VecLType = MvecLTypeInner->getArrayElementType();
6868 
6869     Tys.push_back(VecLType);
6870 
6871     AggValueSlot MvecSlot = CreateAggTemp(MvecCType);
6872     EmitAggExpr(E->getArg(1), MvecSlot);
6873     auto Mvec = Builder.CreateLoad(MvecSlot.getAddress());
6874     for (unsigned i = 0; i < NumVectors; i++)
6875       Ops.push_back(Builder.CreateExtractValue(Mvec, {0, i}));
6876 
6877     Function *F = CGM.getIntrinsic(IRIntr, makeArrayRef(Tys));
6878     Value *ToReturn = nullptr;
6879     for (unsigned i = 0; i < NumVectors; i++) {
6880       Ops.push_back(llvm::ConstantInt::get(Int32Ty, i));
6881       ToReturn = Builder.CreateCall(F, Ops);
6882       Ops.pop_back();
6883     }
6884     return ToReturn;
6885   }
6886   }
6887   llvm_unreachable("unknown custom codegen type.");
6888 }
6889 
6890 static Value *EmitAArch64TblBuiltinExpr(CodeGenFunction &CGF, unsigned BuiltinID,
6891                                       const CallExpr *E,
6892                                       SmallVectorImpl<Value *> &Ops,
6893                                       llvm::Triple::ArchType Arch) {
6894   unsigned int Int = 0;
6895   const char *s = nullptr;
6896 
6897   switch (BuiltinID) {
6898   default:
6899     return nullptr;
6900   case NEON::BI__builtin_neon_vtbl1_v:
6901   case NEON::BI__builtin_neon_vqtbl1_v:
6902   case NEON::BI__builtin_neon_vqtbl1q_v:
6903   case NEON::BI__builtin_neon_vtbl2_v:
6904   case NEON::BI__builtin_neon_vqtbl2_v:
6905   case NEON::BI__builtin_neon_vqtbl2q_v:
6906   case NEON::BI__builtin_neon_vtbl3_v:
6907   case NEON::BI__builtin_neon_vqtbl3_v:
6908   case NEON::BI__builtin_neon_vqtbl3q_v:
6909   case NEON::BI__builtin_neon_vtbl4_v:
6910   case NEON::BI__builtin_neon_vqtbl4_v:
6911   case NEON::BI__builtin_neon_vqtbl4q_v:
6912     break;
6913   case NEON::BI__builtin_neon_vtbx1_v:
6914   case NEON::BI__builtin_neon_vqtbx1_v:
6915   case NEON::BI__builtin_neon_vqtbx1q_v:
6916   case NEON::BI__builtin_neon_vtbx2_v:
6917   case NEON::BI__builtin_neon_vqtbx2_v:
6918   case NEON::BI__builtin_neon_vqtbx2q_v:
6919   case NEON::BI__builtin_neon_vtbx3_v:
6920   case NEON::BI__builtin_neon_vqtbx3_v:
6921   case NEON::BI__builtin_neon_vqtbx3q_v:
6922   case NEON::BI__builtin_neon_vtbx4_v:
6923   case NEON::BI__builtin_neon_vqtbx4_v:
6924   case NEON::BI__builtin_neon_vqtbx4q_v:
6925     break;
6926   }
6927 
6928   assert(E->getNumArgs() >= 3);
6929 
6930   // Get the last argument, which specifies the vector type.
6931   llvm::APSInt Result;
6932   const Expr *Arg = E->getArg(E->getNumArgs() - 1);
6933   if (!Arg->isIntegerConstantExpr(Result, CGF.getContext()))
6934     return nullptr;
6935 
6936   // Determine the type of this overloaded NEON intrinsic.
6937   NeonTypeFlags Type(Result.getZExtValue());
6938   llvm::VectorType *Ty = GetNeonType(&CGF, Type);
6939   if (!Ty)
6940     return nullptr;
6941 
6942   CodeGen::CGBuilderTy &Builder = CGF.Builder;
6943 
6944   // AArch64 scalar builtins are not overloaded, they do not have an extra
6945   // argument that specifies the vector type, need to handle each case.
6946   switch (BuiltinID) {
6947   case NEON::BI__builtin_neon_vtbl1_v: {
6948     return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 1), nullptr,
6949                               Ops[1], Ty, Intrinsic::aarch64_neon_tbl1,
6950                               "vtbl1");
6951   }
6952   case NEON::BI__builtin_neon_vtbl2_v: {
6953     return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 2), nullptr,
6954                               Ops[2], Ty, Intrinsic::aarch64_neon_tbl1,
6955                               "vtbl1");
6956   }
6957   case NEON::BI__builtin_neon_vtbl3_v: {
6958     return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 3), nullptr,
6959                               Ops[3], Ty, Intrinsic::aarch64_neon_tbl2,
6960                               "vtbl2");
6961   }
6962   case NEON::BI__builtin_neon_vtbl4_v: {
6963     return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 4), nullptr,
6964                               Ops[4], Ty, Intrinsic::aarch64_neon_tbl2,
6965                               "vtbl2");
6966   }
6967   case NEON::BI__builtin_neon_vtbx1_v: {
6968     Value *TblRes =
6969         packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 1), nullptr, Ops[2],
6970                            Ty, Intrinsic::aarch64_neon_tbl1, "vtbl1");
6971 
6972     llvm::Constant *EightV = ConstantInt::get(Ty, 8);
6973     Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[2], EightV);
6974     CmpRes = Builder.CreateSExt(CmpRes, Ty);
6975 
6976     Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]);
6977     Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes);
6978     return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx");
6979   }
6980   case NEON::BI__builtin_neon_vtbx2_v: {
6981     return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 2), Ops[0],
6982                               Ops[3], Ty, Intrinsic::aarch64_neon_tbx1,
6983                               "vtbx1");
6984   }
6985   case NEON::BI__builtin_neon_vtbx3_v: {
6986     Value *TblRes =
6987         packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 3), nullptr, Ops[4],
6988                            Ty, Intrinsic::aarch64_neon_tbl2, "vtbl2");
6989 
6990     llvm::Constant *TwentyFourV = ConstantInt::get(Ty, 24);
6991     Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[4],
6992                                            TwentyFourV);
6993     CmpRes = Builder.CreateSExt(CmpRes, Ty);
6994 
6995     Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]);
6996     Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes);
6997     return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx");
6998   }
6999   case NEON::BI__builtin_neon_vtbx4_v: {
7000     return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 4), Ops[0],
7001                               Ops[5], Ty, Intrinsic::aarch64_neon_tbx2,
7002                               "vtbx2");
7003   }
7004   case NEON::BI__builtin_neon_vqtbl1_v:
7005   case NEON::BI__builtin_neon_vqtbl1q_v:
7006     Int = Intrinsic::aarch64_neon_tbl1; s = "vtbl1"; break;
7007   case NEON::BI__builtin_neon_vqtbl2_v:
7008   case NEON::BI__builtin_neon_vqtbl2q_v: {
7009     Int = Intrinsic::aarch64_neon_tbl2; s = "vtbl2"; break;
7010   case NEON::BI__builtin_neon_vqtbl3_v:
7011   case NEON::BI__builtin_neon_vqtbl3q_v:
7012     Int = Intrinsic::aarch64_neon_tbl3; s = "vtbl3"; break;
7013   case NEON::BI__builtin_neon_vqtbl4_v:
7014   case NEON::BI__builtin_neon_vqtbl4q_v:
7015     Int = Intrinsic::aarch64_neon_tbl4; s = "vtbl4"; break;
7016   case NEON::BI__builtin_neon_vqtbx1_v:
7017   case NEON::BI__builtin_neon_vqtbx1q_v:
7018     Int = Intrinsic::aarch64_neon_tbx1; s = "vtbx1"; break;
7019   case NEON::BI__builtin_neon_vqtbx2_v:
7020   case NEON::BI__builtin_neon_vqtbx2q_v:
7021     Int = Intrinsic::aarch64_neon_tbx2; s = "vtbx2"; break;
7022   case NEON::BI__builtin_neon_vqtbx3_v:
7023   case NEON::BI__builtin_neon_vqtbx3q_v:
7024     Int = Intrinsic::aarch64_neon_tbx3; s = "vtbx3"; break;
7025   case NEON::BI__builtin_neon_vqtbx4_v:
7026   case NEON::BI__builtin_neon_vqtbx4q_v:
7027     Int = Intrinsic::aarch64_neon_tbx4; s = "vtbx4"; break;
7028   }
7029   }
7030 
7031   if (!Int)
7032     return nullptr;
7033 
7034   Function *F = CGF.CGM.getIntrinsic(Int, Ty);
7035   return CGF.EmitNeonCall(F, Ops, s);
7036 }
7037 
7038 Value *CodeGenFunction::vectorWrapScalar16(Value *Op) {
7039   llvm::Type *VTy = llvm::VectorType::get(Int16Ty, 4);
7040   Op = Builder.CreateBitCast(Op, Int16Ty);
7041   Value *V = UndefValue::get(VTy);
7042   llvm::Constant *CI = ConstantInt::get(SizeTy, 0);
7043   Op = Builder.CreateInsertElement(V, Op, CI);
7044   return Op;
7045 }
7046 
7047 Value *CodeGenFunction::EmitAArch64BuiltinExpr(unsigned BuiltinID,
7048                                                const CallExpr *E,
7049                                                llvm::Triple::ArchType Arch) {
7050   unsigned HintID = static_cast<unsigned>(-1);
7051   switch (BuiltinID) {
7052   default: break;
7053   case AArch64::BI__builtin_arm_nop:
7054     HintID = 0;
7055     break;
7056   case AArch64::BI__builtin_arm_yield:
7057   case AArch64::BI__yield:
7058     HintID = 1;
7059     break;
7060   case AArch64::BI__builtin_arm_wfe:
7061   case AArch64::BI__wfe:
7062     HintID = 2;
7063     break;
7064   case AArch64::BI__builtin_arm_wfi:
7065   case AArch64::BI__wfi:
7066     HintID = 3;
7067     break;
7068   case AArch64::BI__builtin_arm_sev:
7069   case AArch64::BI__sev:
7070     HintID = 4;
7071     break;
7072   case AArch64::BI__builtin_arm_sevl:
7073   case AArch64::BI__sevl:
7074     HintID = 5;
7075     break;
7076   }
7077 
7078   if (HintID != static_cast<unsigned>(-1)) {
7079     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_hint);
7080     return Builder.CreateCall(F, llvm::ConstantInt::get(Int32Ty, HintID));
7081   }
7082 
7083   if (BuiltinID == AArch64::BI__builtin_arm_prefetch) {
7084     Value *Address         = EmitScalarExpr(E->getArg(0));
7085     Value *RW              = EmitScalarExpr(E->getArg(1));
7086     Value *CacheLevel      = EmitScalarExpr(E->getArg(2));
7087     Value *RetentionPolicy = EmitScalarExpr(E->getArg(3));
7088     Value *IsData          = EmitScalarExpr(E->getArg(4));
7089 
7090     Value *Locality = nullptr;
7091     if (cast<llvm::ConstantInt>(RetentionPolicy)->isZero()) {
7092       // Temporal fetch, needs to convert cache level to locality.
7093       Locality = llvm::ConstantInt::get(Int32Ty,
7094         -cast<llvm::ConstantInt>(CacheLevel)->getValue() + 3);
7095     } else {
7096       // Streaming fetch.
7097       Locality = llvm::ConstantInt::get(Int32Ty, 0);
7098     }
7099 
7100     // FIXME: We need AArch64 specific LLVM intrinsic if we want to specify
7101     // PLDL3STRM or PLDL2STRM.
7102     Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
7103     return Builder.CreateCall(F, {Address, RW, Locality, IsData});
7104   }
7105 
7106   if (BuiltinID == AArch64::BI__builtin_arm_rbit) {
7107     assert((getContext().getTypeSize(E->getType()) == 32) &&
7108            "rbit of unusual size!");
7109     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
7110     return Builder.CreateCall(
7111         CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
7112   }
7113   if (BuiltinID == AArch64::BI__builtin_arm_rbit64) {
7114     assert((getContext().getTypeSize(E->getType()) == 64) &&
7115            "rbit of unusual size!");
7116     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
7117     return Builder.CreateCall(
7118         CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
7119   }
7120 
7121   if (BuiltinID == AArch64::BI__builtin_arm_cls) {
7122     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
7123     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_cls), Arg,
7124                               "cls");
7125   }
7126   if (BuiltinID == AArch64::BI__builtin_arm_cls64) {
7127     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
7128     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_cls64), Arg,
7129                               "cls");
7130   }
7131 
7132   if (BuiltinID == AArch64::BI__builtin_arm_jcvt) {
7133     assert((getContext().getTypeSize(E->getType()) == 32) &&
7134            "__jcvt of unusual size!");
7135     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
7136     return Builder.CreateCall(
7137         CGM.getIntrinsic(Intrinsic::aarch64_fjcvtzs), Arg);
7138   }
7139 
7140   if (BuiltinID == AArch64::BI__clear_cache) {
7141     assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments");
7142     const FunctionDecl *FD = E->getDirectCallee();
7143     Value *Ops[2];
7144     for (unsigned i = 0; i < 2; i++)
7145       Ops[i] = EmitScalarExpr(E->getArg(i));
7146     llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
7147     llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
7148     StringRef Name = FD->getName();
7149     return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
7150   }
7151 
7152   if ((BuiltinID == AArch64::BI__builtin_arm_ldrex ||
7153       BuiltinID == AArch64::BI__builtin_arm_ldaex) &&
7154       getContext().getTypeSize(E->getType()) == 128) {
7155     Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_ldaex
7156                                        ? Intrinsic::aarch64_ldaxp
7157                                        : Intrinsic::aarch64_ldxp);
7158 
7159     Value *LdPtr = EmitScalarExpr(E->getArg(0));
7160     Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy),
7161                                     "ldxp");
7162 
7163     Value *Val0 = Builder.CreateExtractValue(Val, 1);
7164     Value *Val1 = Builder.CreateExtractValue(Val, 0);
7165     llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
7166     Val0 = Builder.CreateZExt(Val0, Int128Ty);
7167     Val1 = Builder.CreateZExt(Val1, Int128Ty);
7168 
7169     Value *ShiftCst = llvm::ConstantInt::get(Int128Ty, 64);
7170     Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
7171     Val = Builder.CreateOr(Val, Val1);
7172     return Builder.CreateBitCast(Val, ConvertType(E->getType()));
7173   } else if (BuiltinID == AArch64::BI__builtin_arm_ldrex ||
7174              BuiltinID == AArch64::BI__builtin_arm_ldaex) {
7175     Value *LoadAddr = EmitScalarExpr(E->getArg(0));
7176 
7177     QualType Ty = E->getType();
7178     llvm::Type *RealResTy = ConvertType(Ty);
7179     llvm::Type *PtrTy = llvm::IntegerType::get(
7180         getLLVMContext(), getContext().getTypeSize(Ty))->getPointerTo();
7181     LoadAddr = Builder.CreateBitCast(LoadAddr, PtrTy);
7182 
7183     Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_ldaex
7184                                        ? Intrinsic::aarch64_ldaxr
7185                                        : Intrinsic::aarch64_ldxr,
7186                                    PtrTy);
7187     Value *Val = Builder.CreateCall(F, LoadAddr, "ldxr");
7188 
7189     if (RealResTy->isPointerTy())
7190       return Builder.CreateIntToPtr(Val, RealResTy);
7191 
7192     llvm::Type *IntResTy = llvm::IntegerType::get(
7193         getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(RealResTy));
7194     Val = Builder.CreateTruncOrBitCast(Val, IntResTy);
7195     return Builder.CreateBitCast(Val, RealResTy);
7196   }
7197 
7198   if ((BuiltinID == AArch64::BI__builtin_arm_strex ||
7199        BuiltinID == AArch64::BI__builtin_arm_stlex) &&
7200       getContext().getTypeSize(E->getArg(0)->getType()) == 128) {
7201     Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_stlex
7202                                        ? Intrinsic::aarch64_stlxp
7203                                        : Intrinsic::aarch64_stxp);
7204     llvm::Type *STy = llvm::StructType::get(Int64Ty, Int64Ty);
7205 
7206     Address Tmp = CreateMemTemp(E->getArg(0)->getType());
7207     EmitAnyExprToMem(E->getArg(0), Tmp, Qualifiers(), /*init*/ true);
7208 
7209     Tmp = Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(STy));
7210     llvm::Value *Val = Builder.CreateLoad(Tmp);
7211 
7212     Value *Arg0 = Builder.CreateExtractValue(Val, 0);
7213     Value *Arg1 = Builder.CreateExtractValue(Val, 1);
7214     Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)),
7215                                          Int8PtrTy);
7216     return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "stxp");
7217   }
7218 
7219   if (BuiltinID == AArch64::BI__builtin_arm_strex ||
7220       BuiltinID == AArch64::BI__builtin_arm_stlex) {
7221     Value *StoreVal = EmitScalarExpr(E->getArg(0));
7222     Value *StoreAddr = EmitScalarExpr(E->getArg(1));
7223 
7224     QualType Ty = E->getArg(0)->getType();
7225     llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(),
7226                                                  getContext().getTypeSize(Ty));
7227     StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo());
7228 
7229     if (StoreVal->getType()->isPointerTy())
7230       StoreVal = Builder.CreatePtrToInt(StoreVal, Int64Ty);
7231     else {
7232       llvm::Type *IntTy = llvm::IntegerType::get(
7233           getLLVMContext(),
7234           CGM.getDataLayout().getTypeSizeInBits(StoreVal->getType()));
7235       StoreVal = Builder.CreateBitCast(StoreVal, IntTy);
7236       StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int64Ty);
7237     }
7238 
7239     Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_stlex
7240                                        ? Intrinsic::aarch64_stlxr
7241                                        : Intrinsic::aarch64_stxr,
7242                                    StoreAddr->getType());
7243     return Builder.CreateCall(F, {StoreVal, StoreAddr}, "stxr");
7244   }
7245 
7246   if (BuiltinID == AArch64::BI__getReg) {
7247     Expr::EvalResult Result;
7248     if (!E->getArg(0)->EvaluateAsInt(Result, CGM.getContext()))
7249       llvm_unreachable("Sema will ensure that the parameter is constant");
7250 
7251     llvm::APSInt Value = Result.Val.getInt();
7252     LLVMContext &Context = CGM.getLLVMContext();
7253     std::string Reg = Value == 31 ? "sp" : "x" + Value.toString(10);
7254 
7255     llvm::Metadata *Ops[] = {llvm::MDString::get(Context, Reg)};
7256     llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
7257     llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
7258 
7259     llvm::Function *F =
7260         CGM.getIntrinsic(llvm::Intrinsic::read_register, {Int64Ty});
7261     return Builder.CreateCall(F, Metadata);
7262   }
7263 
7264   if (BuiltinID == AArch64::BI__builtin_arm_clrex) {
7265     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_clrex);
7266     return Builder.CreateCall(F);
7267   }
7268 
7269   if (BuiltinID == AArch64::BI_ReadWriteBarrier)
7270     return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
7271                                llvm::SyncScope::SingleThread);
7272 
7273   // CRC32
7274   Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic;
7275   switch (BuiltinID) {
7276   case AArch64::BI__builtin_arm_crc32b:
7277     CRCIntrinsicID = Intrinsic::aarch64_crc32b; break;
7278   case AArch64::BI__builtin_arm_crc32cb:
7279     CRCIntrinsicID = Intrinsic::aarch64_crc32cb; break;
7280   case AArch64::BI__builtin_arm_crc32h:
7281     CRCIntrinsicID = Intrinsic::aarch64_crc32h; break;
7282   case AArch64::BI__builtin_arm_crc32ch:
7283     CRCIntrinsicID = Intrinsic::aarch64_crc32ch; break;
7284   case AArch64::BI__builtin_arm_crc32w:
7285     CRCIntrinsicID = Intrinsic::aarch64_crc32w; break;
7286   case AArch64::BI__builtin_arm_crc32cw:
7287     CRCIntrinsicID = Intrinsic::aarch64_crc32cw; break;
7288   case AArch64::BI__builtin_arm_crc32d:
7289     CRCIntrinsicID = Intrinsic::aarch64_crc32x; break;
7290   case AArch64::BI__builtin_arm_crc32cd:
7291     CRCIntrinsicID = Intrinsic::aarch64_crc32cx; break;
7292   }
7293 
7294   if (CRCIntrinsicID != Intrinsic::not_intrinsic) {
7295     Value *Arg0 = EmitScalarExpr(E->getArg(0));
7296     Value *Arg1 = EmitScalarExpr(E->getArg(1));
7297     Function *F = CGM.getIntrinsic(CRCIntrinsicID);
7298 
7299     llvm::Type *DataTy = F->getFunctionType()->getParamType(1);
7300     Arg1 = Builder.CreateZExtOrBitCast(Arg1, DataTy);
7301 
7302     return Builder.CreateCall(F, {Arg0, Arg1});
7303   }
7304 
7305   // Memory Tagging Extensions (MTE) Intrinsics
7306   Intrinsic::ID MTEIntrinsicID = Intrinsic::not_intrinsic;
7307   switch (BuiltinID) {
7308   case AArch64::BI__builtin_arm_irg:
7309     MTEIntrinsicID = Intrinsic::aarch64_irg; break;
7310   case  AArch64::BI__builtin_arm_addg:
7311     MTEIntrinsicID = Intrinsic::aarch64_addg; break;
7312   case  AArch64::BI__builtin_arm_gmi:
7313     MTEIntrinsicID = Intrinsic::aarch64_gmi; break;
7314   case  AArch64::BI__builtin_arm_ldg:
7315     MTEIntrinsicID = Intrinsic::aarch64_ldg; break;
7316   case AArch64::BI__builtin_arm_stg:
7317     MTEIntrinsicID = Intrinsic::aarch64_stg; break;
7318   case AArch64::BI__builtin_arm_subp:
7319     MTEIntrinsicID = Intrinsic::aarch64_subp; break;
7320   }
7321 
7322   if (MTEIntrinsicID != Intrinsic::not_intrinsic) {
7323     llvm::Type *T = ConvertType(E->getType());
7324 
7325     if (MTEIntrinsicID == Intrinsic::aarch64_irg) {
7326       Value *Pointer = EmitScalarExpr(E->getArg(0));
7327       Value *Mask = EmitScalarExpr(E->getArg(1));
7328 
7329       Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy);
7330       Mask = Builder.CreateZExt(Mask, Int64Ty);
7331       Value *RV = Builder.CreateCall(
7332                        CGM.getIntrinsic(MTEIntrinsicID), {Pointer, Mask});
7333        return Builder.CreatePointerCast(RV, T);
7334     }
7335     if (MTEIntrinsicID == Intrinsic::aarch64_addg) {
7336       Value *Pointer = EmitScalarExpr(E->getArg(0));
7337       Value *TagOffset = EmitScalarExpr(E->getArg(1));
7338 
7339       Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy);
7340       TagOffset = Builder.CreateZExt(TagOffset, Int64Ty);
7341       Value *RV = Builder.CreateCall(
7342                        CGM.getIntrinsic(MTEIntrinsicID), {Pointer, TagOffset});
7343       return Builder.CreatePointerCast(RV, T);
7344     }
7345     if (MTEIntrinsicID == Intrinsic::aarch64_gmi) {
7346       Value *Pointer = EmitScalarExpr(E->getArg(0));
7347       Value *ExcludedMask = EmitScalarExpr(E->getArg(1));
7348 
7349       ExcludedMask = Builder.CreateZExt(ExcludedMask, Int64Ty);
7350       Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy);
7351       return Builder.CreateCall(
7352                        CGM.getIntrinsic(MTEIntrinsicID), {Pointer, ExcludedMask});
7353     }
7354     // Although it is possible to supply a different return
7355     // address (first arg) to this intrinsic, for now we set
7356     // return address same as input address.
7357     if (MTEIntrinsicID == Intrinsic::aarch64_ldg) {
7358       Value *TagAddress = EmitScalarExpr(E->getArg(0));
7359       TagAddress = Builder.CreatePointerCast(TagAddress, Int8PtrTy);
7360       Value *RV = Builder.CreateCall(
7361                     CGM.getIntrinsic(MTEIntrinsicID), {TagAddress, TagAddress});
7362       return Builder.CreatePointerCast(RV, T);
7363     }
7364     // Although it is possible to supply a different tag (to set)
7365     // to this intrinsic (as first arg), for now we supply
7366     // the tag that is in input address arg (common use case).
7367     if (MTEIntrinsicID == Intrinsic::aarch64_stg) {
7368         Value *TagAddress = EmitScalarExpr(E->getArg(0));
7369         TagAddress = Builder.CreatePointerCast(TagAddress, Int8PtrTy);
7370         return Builder.CreateCall(
7371                  CGM.getIntrinsic(MTEIntrinsicID), {TagAddress, TagAddress});
7372     }
7373     if (MTEIntrinsicID == Intrinsic::aarch64_subp) {
7374       Value *PointerA = EmitScalarExpr(E->getArg(0));
7375       Value *PointerB = EmitScalarExpr(E->getArg(1));
7376       PointerA = Builder.CreatePointerCast(PointerA, Int8PtrTy);
7377       PointerB = Builder.CreatePointerCast(PointerB, Int8PtrTy);
7378       return Builder.CreateCall(
7379                        CGM.getIntrinsic(MTEIntrinsicID), {PointerA, PointerB});
7380     }
7381   }
7382 
7383   if (BuiltinID == AArch64::BI__builtin_arm_rsr ||
7384       BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
7385       BuiltinID == AArch64::BI__builtin_arm_rsrp ||
7386       BuiltinID == AArch64::BI__builtin_arm_wsr ||
7387       BuiltinID == AArch64::BI__builtin_arm_wsr64 ||
7388       BuiltinID == AArch64::BI__builtin_arm_wsrp) {
7389 
7390     bool IsRead = BuiltinID == AArch64::BI__builtin_arm_rsr ||
7391                   BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
7392                   BuiltinID == AArch64::BI__builtin_arm_rsrp;
7393 
7394     bool IsPointerBuiltin = BuiltinID == AArch64::BI__builtin_arm_rsrp ||
7395                             BuiltinID == AArch64::BI__builtin_arm_wsrp;
7396 
7397     bool Is64Bit = BuiltinID != AArch64::BI__builtin_arm_rsr &&
7398                    BuiltinID != AArch64::BI__builtin_arm_wsr;
7399 
7400     llvm::Type *ValueType;
7401     llvm::Type *RegisterType = Int64Ty;
7402     if (IsPointerBuiltin) {
7403       ValueType = VoidPtrTy;
7404     } else if (Is64Bit) {
7405       ValueType = Int64Ty;
7406     } else {
7407       ValueType = Int32Ty;
7408     }
7409 
7410     return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType, IsRead);
7411   }
7412 
7413   if (BuiltinID == AArch64::BI_ReadStatusReg ||
7414       BuiltinID == AArch64::BI_WriteStatusReg) {
7415     LLVMContext &Context = CGM.getLLVMContext();
7416 
7417     unsigned SysReg =
7418       E->getArg(0)->EvaluateKnownConstInt(getContext()).getZExtValue();
7419 
7420     std::string SysRegStr;
7421     llvm::raw_string_ostream(SysRegStr) <<
7422                        ((1 << 1) | ((SysReg >> 14) & 1))  << ":" <<
7423                        ((SysReg >> 11) & 7)               << ":" <<
7424                        ((SysReg >> 7)  & 15)              << ":" <<
7425                        ((SysReg >> 3)  & 15)              << ":" <<
7426                        ( SysReg        & 7);
7427 
7428     llvm::Metadata *Ops[] = { llvm::MDString::get(Context, SysRegStr) };
7429     llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
7430     llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
7431 
7432     llvm::Type *RegisterType = Int64Ty;
7433     llvm::Type *Types[] = { RegisterType };
7434 
7435     if (BuiltinID == AArch64::BI_ReadStatusReg) {
7436       llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
7437 
7438       return Builder.CreateCall(F, Metadata);
7439     }
7440 
7441     llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
7442     llvm::Value *ArgValue = EmitScalarExpr(E->getArg(1));
7443 
7444     return Builder.CreateCall(F, { Metadata, ArgValue });
7445   }
7446 
7447   if (BuiltinID == AArch64::BI_AddressOfReturnAddress) {
7448     llvm::Function *F =
7449         CGM.getIntrinsic(Intrinsic::addressofreturnaddress, AllocaInt8PtrTy);
7450     return Builder.CreateCall(F);
7451   }
7452 
7453   if (BuiltinID == AArch64::BI__builtin_sponentry) {
7454     llvm::Function *F = CGM.getIntrinsic(Intrinsic::sponentry, AllocaInt8PtrTy);
7455     return Builder.CreateCall(F);
7456   }
7457 
7458   // Find out if any arguments are required to be integer constant
7459   // expressions.
7460   unsigned ICEArguments = 0;
7461   ASTContext::GetBuiltinTypeError Error;
7462   getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
7463   assert(Error == ASTContext::GE_None && "Should not codegen an error");
7464 
7465   llvm::SmallVector<Value*, 4> Ops;
7466   for (unsigned i = 0, e = E->getNumArgs() - 1; i != e; i++) {
7467     if ((ICEArguments & (1 << i)) == 0) {
7468       Ops.push_back(EmitScalarExpr(E->getArg(i)));
7469     } else {
7470       // If this is required to be a constant, constant fold it so that we know
7471       // that the generated intrinsic gets a ConstantInt.
7472       llvm::APSInt Result;
7473       bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext());
7474       assert(IsConst && "Constant arg isn't actually constant?");
7475       (void)IsConst;
7476       Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result));
7477     }
7478   }
7479 
7480   auto SISDMap = makeArrayRef(AArch64SISDIntrinsicMap);
7481   const NeonIntrinsicInfo *Builtin = findNeonIntrinsicInMap(
7482       SISDMap, BuiltinID, AArch64SISDIntrinsicsProvenSorted);
7483 
7484   if (Builtin) {
7485     Ops.push_back(EmitScalarExpr(E->getArg(E->getNumArgs() - 1)));
7486     Value *Result = EmitCommonNeonSISDBuiltinExpr(*this, *Builtin, Ops, E);
7487     assert(Result && "SISD intrinsic should have been handled");
7488     return Result;
7489   }
7490 
7491   llvm::APSInt Result;
7492   const Expr *Arg = E->getArg(E->getNumArgs()-1);
7493   NeonTypeFlags Type(0);
7494   if (Arg->isIntegerConstantExpr(Result, getContext()))
7495     // Determine the type of this overloaded NEON intrinsic.
7496     Type = NeonTypeFlags(Result.getZExtValue());
7497 
7498   bool usgn = Type.isUnsigned();
7499   bool quad = Type.isQuad();
7500 
7501   // Handle non-overloaded intrinsics first.
7502   switch (BuiltinID) {
7503   default: break;
7504   case NEON::BI__builtin_neon_vabsh_f16:
7505     Ops.push_back(EmitScalarExpr(E->getArg(0)));
7506     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, HalfTy), Ops, "vabs");
7507   case NEON::BI__builtin_neon_vldrq_p128: {
7508     llvm::Type *Int128Ty = llvm::Type::getIntNTy(getLLVMContext(), 128);
7509     llvm::Type *Int128PTy = llvm::PointerType::get(Int128Ty, 0);
7510     Value *Ptr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int128PTy);
7511     return Builder.CreateAlignedLoad(Int128Ty, Ptr,
7512                                      CharUnits::fromQuantity(16));
7513   }
7514   case NEON::BI__builtin_neon_vstrq_p128: {
7515     llvm::Type *Int128PTy = llvm::Type::getIntNPtrTy(getLLVMContext(), 128);
7516     Value *Ptr = Builder.CreateBitCast(Ops[0], Int128PTy);
7517     return Builder.CreateDefaultAlignedStore(EmitScalarExpr(E->getArg(1)), Ptr);
7518   }
7519   case NEON::BI__builtin_neon_vcvts_u32_f32:
7520   case NEON::BI__builtin_neon_vcvtd_u64_f64:
7521     usgn = true;
7522     LLVM_FALLTHROUGH;
7523   case NEON::BI__builtin_neon_vcvts_s32_f32:
7524   case NEON::BI__builtin_neon_vcvtd_s64_f64: {
7525     Ops.push_back(EmitScalarExpr(E->getArg(0)));
7526     bool Is64 = Ops[0]->getType()->getPrimitiveSizeInBits() == 64;
7527     llvm::Type *InTy = Is64 ? Int64Ty : Int32Ty;
7528     llvm::Type *FTy = Is64 ? DoubleTy : FloatTy;
7529     Ops[0] = Builder.CreateBitCast(Ops[0], FTy);
7530     if (usgn)
7531       return Builder.CreateFPToUI(Ops[0], InTy);
7532     return Builder.CreateFPToSI(Ops[0], InTy);
7533   }
7534   case NEON::BI__builtin_neon_vcvts_f32_u32:
7535   case NEON::BI__builtin_neon_vcvtd_f64_u64:
7536     usgn = true;
7537     LLVM_FALLTHROUGH;
7538   case NEON::BI__builtin_neon_vcvts_f32_s32:
7539   case NEON::BI__builtin_neon_vcvtd_f64_s64: {
7540     Ops.push_back(EmitScalarExpr(E->getArg(0)));
7541     bool Is64 = Ops[0]->getType()->getPrimitiveSizeInBits() == 64;
7542     llvm::Type *InTy = Is64 ? Int64Ty : Int32Ty;
7543     llvm::Type *FTy = Is64 ? DoubleTy : FloatTy;
7544     Ops[0] = Builder.CreateBitCast(Ops[0], InTy);
7545     if (usgn)
7546       return Builder.CreateUIToFP(Ops[0], FTy);
7547     return Builder.CreateSIToFP(Ops[0], FTy);
7548   }
7549   case NEON::BI__builtin_neon_vcvth_f16_u16:
7550   case NEON::BI__builtin_neon_vcvth_f16_u32:
7551   case NEON::BI__builtin_neon_vcvth_f16_u64:
7552     usgn = true;
7553     LLVM_FALLTHROUGH;
7554   case NEON::BI__builtin_neon_vcvth_f16_s16:
7555   case NEON::BI__builtin_neon_vcvth_f16_s32:
7556   case NEON::BI__builtin_neon_vcvth_f16_s64: {
7557     Ops.push_back(EmitScalarExpr(E->getArg(0)));
7558     llvm::Type *FTy = HalfTy;
7559     llvm::Type *InTy;
7560     if (Ops[0]->getType()->getPrimitiveSizeInBits() == 64)
7561       InTy = Int64Ty;
7562     else if (Ops[0]->getType()->getPrimitiveSizeInBits() == 32)
7563       InTy = Int32Ty;
7564     else
7565       InTy = Int16Ty;
7566     Ops[0] = Builder.CreateBitCast(Ops[0], InTy);
7567     if (usgn)
7568       return Builder.CreateUIToFP(Ops[0], FTy);
7569     return Builder.CreateSIToFP(Ops[0], FTy);
7570   }
7571   case NEON::BI__builtin_neon_vcvth_u16_f16:
7572     usgn = true;
7573     LLVM_FALLTHROUGH;
7574   case NEON::BI__builtin_neon_vcvth_s16_f16: {
7575     Ops.push_back(EmitScalarExpr(E->getArg(0)));
7576     Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy);
7577     if (usgn)
7578       return Builder.CreateFPToUI(Ops[0], Int16Ty);
7579     return Builder.CreateFPToSI(Ops[0], Int16Ty);
7580   }
7581   case NEON::BI__builtin_neon_vcvth_u32_f16:
7582     usgn = true;
7583     LLVM_FALLTHROUGH;
7584   case NEON::BI__builtin_neon_vcvth_s32_f16: {
7585     Ops.push_back(EmitScalarExpr(E->getArg(0)));
7586     Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy);
7587     if (usgn)
7588       return Builder.CreateFPToUI(Ops[0], Int32Ty);
7589     return Builder.CreateFPToSI(Ops[0], Int32Ty);
7590   }
7591   case NEON::BI__builtin_neon_vcvth_u64_f16:
7592     usgn = true;
7593     LLVM_FALLTHROUGH;
7594   case NEON::BI__builtin_neon_vcvth_s64_f16: {
7595     Ops.push_back(EmitScalarExpr(E->getArg(0)));
7596     Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy);
7597     if (usgn)
7598       return Builder.CreateFPToUI(Ops[0], Int64Ty);
7599     return Builder.CreateFPToSI(Ops[0], Int64Ty);
7600   }
7601   case NEON::BI__builtin_neon_vcvtah_u16_f16:
7602   case NEON::BI__builtin_neon_vcvtmh_u16_f16:
7603   case NEON::BI__builtin_neon_vcvtnh_u16_f16:
7604   case NEON::BI__builtin_neon_vcvtph_u16_f16:
7605   case NEON::BI__builtin_neon_vcvtah_s16_f16:
7606   case NEON::BI__builtin_neon_vcvtmh_s16_f16:
7607   case NEON::BI__builtin_neon_vcvtnh_s16_f16:
7608   case NEON::BI__builtin_neon_vcvtph_s16_f16: {
7609     unsigned Int;
7610     llvm::Type* InTy = Int32Ty;
7611     llvm::Type* FTy  = HalfTy;
7612     llvm::Type *Tys[2] = {InTy, FTy};
7613     Ops.push_back(EmitScalarExpr(E->getArg(0)));
7614     switch (BuiltinID) {
7615     default: llvm_unreachable("missing builtin ID in switch!");
7616     case NEON::BI__builtin_neon_vcvtah_u16_f16:
7617       Int = Intrinsic::aarch64_neon_fcvtau; break;
7618     case NEON::BI__builtin_neon_vcvtmh_u16_f16:
7619       Int = Intrinsic::aarch64_neon_fcvtmu; break;
7620     case NEON::BI__builtin_neon_vcvtnh_u16_f16:
7621       Int = Intrinsic::aarch64_neon_fcvtnu; break;
7622     case NEON::BI__builtin_neon_vcvtph_u16_f16:
7623       Int = Intrinsic::aarch64_neon_fcvtpu; break;
7624     case NEON::BI__builtin_neon_vcvtah_s16_f16:
7625       Int = Intrinsic::aarch64_neon_fcvtas; break;
7626     case NEON::BI__builtin_neon_vcvtmh_s16_f16:
7627       Int = Intrinsic::aarch64_neon_fcvtms; break;
7628     case NEON::BI__builtin_neon_vcvtnh_s16_f16:
7629       Int = Intrinsic::aarch64_neon_fcvtns; break;
7630     case NEON::BI__builtin_neon_vcvtph_s16_f16:
7631       Int = Intrinsic::aarch64_neon_fcvtps; break;
7632     }
7633     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvt");
7634     return Builder.CreateTrunc(Ops[0], Int16Ty);
7635   }
7636   case NEON::BI__builtin_neon_vcaleh_f16:
7637   case NEON::BI__builtin_neon_vcalth_f16:
7638   case NEON::BI__builtin_neon_vcageh_f16:
7639   case NEON::BI__builtin_neon_vcagth_f16: {
7640     unsigned Int;
7641     llvm::Type* InTy = Int32Ty;
7642     llvm::Type* FTy  = HalfTy;
7643     llvm::Type *Tys[2] = {InTy, FTy};
7644     Ops.push_back(EmitScalarExpr(E->getArg(1)));
7645     switch (BuiltinID) {
7646     default: llvm_unreachable("missing builtin ID in switch!");
7647     case NEON::BI__builtin_neon_vcageh_f16:
7648       Int = Intrinsic::aarch64_neon_facge; break;
7649     case NEON::BI__builtin_neon_vcagth_f16:
7650       Int = Intrinsic::aarch64_neon_facgt; break;
7651     case NEON::BI__builtin_neon_vcaleh_f16:
7652       Int = Intrinsic::aarch64_neon_facge; std::swap(Ops[0], Ops[1]); break;
7653     case NEON::BI__builtin_neon_vcalth_f16:
7654       Int = Intrinsic::aarch64_neon_facgt; std::swap(Ops[0], Ops[1]); break;
7655     }
7656     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "facg");
7657     return Builder.CreateTrunc(Ops[0], Int16Ty);
7658   }
7659   case NEON::BI__builtin_neon_vcvth_n_s16_f16:
7660   case NEON::BI__builtin_neon_vcvth_n_u16_f16: {
7661     unsigned Int;
7662     llvm::Type* InTy = Int32Ty;
7663     llvm::Type* FTy  = HalfTy;
7664     llvm::Type *Tys[2] = {InTy, FTy};
7665     Ops.push_back(EmitScalarExpr(E->getArg(1)));
7666     switch (BuiltinID) {
7667     default: llvm_unreachable("missing builtin ID in switch!");
7668     case NEON::BI__builtin_neon_vcvth_n_s16_f16:
7669       Int = Intrinsic::aarch64_neon_vcvtfp2fxs; break;
7670     case NEON::BI__builtin_neon_vcvth_n_u16_f16:
7671       Int = Intrinsic::aarch64_neon_vcvtfp2fxu; break;
7672     }
7673     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvth_n");
7674     return Builder.CreateTrunc(Ops[0], Int16Ty);
7675   }
7676   case NEON::BI__builtin_neon_vcvth_n_f16_s16:
7677   case NEON::BI__builtin_neon_vcvth_n_f16_u16: {
7678     unsigned Int;
7679     llvm::Type* FTy  = HalfTy;
7680     llvm::Type* InTy = Int32Ty;
7681     llvm::Type *Tys[2] = {FTy, InTy};
7682     Ops.push_back(EmitScalarExpr(E->getArg(1)));
7683     switch (BuiltinID) {
7684     default: llvm_unreachable("missing builtin ID in switch!");
7685     case NEON::BI__builtin_neon_vcvth_n_f16_s16:
7686       Int = Intrinsic::aarch64_neon_vcvtfxs2fp;
7687       Ops[0] = Builder.CreateSExt(Ops[0], InTy, "sext");
7688       break;
7689     case NEON::BI__builtin_neon_vcvth_n_f16_u16:
7690       Int = Intrinsic::aarch64_neon_vcvtfxu2fp;
7691       Ops[0] = Builder.CreateZExt(Ops[0], InTy);
7692       break;
7693     }
7694     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvth_n");
7695   }
7696   case NEON::BI__builtin_neon_vpaddd_s64: {
7697     llvm::Type *Ty = llvm::VectorType::get(Int64Ty, 2);
7698     Value *Vec = EmitScalarExpr(E->getArg(0));
7699     // The vector is v2f64, so make sure it's bitcast to that.
7700     Vec = Builder.CreateBitCast(Vec, Ty, "v2i64");
7701     llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
7702     llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
7703     Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
7704     Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
7705     // Pairwise addition of a v2f64 into a scalar f64.
7706     return Builder.CreateAdd(Op0, Op1, "vpaddd");
7707   }
7708   case NEON::BI__builtin_neon_vpaddd_f64: {
7709     llvm::Type *Ty =
7710       llvm::VectorType::get(DoubleTy, 2);
7711     Value *Vec = EmitScalarExpr(E->getArg(0));
7712     // The vector is v2f64, so make sure it's bitcast to that.
7713     Vec = Builder.CreateBitCast(Vec, Ty, "v2f64");
7714     llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
7715     llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
7716     Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
7717     Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
7718     // Pairwise addition of a v2f64 into a scalar f64.
7719     return Builder.CreateFAdd(Op0, Op1, "vpaddd");
7720   }
7721   case NEON::BI__builtin_neon_vpadds_f32: {
7722     llvm::Type *Ty =
7723       llvm::VectorType::get(FloatTy, 2);
7724     Value *Vec = EmitScalarExpr(E->getArg(0));
7725     // The vector is v2f32, so make sure it's bitcast to that.
7726     Vec = Builder.CreateBitCast(Vec, Ty, "v2f32");
7727     llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
7728     llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
7729     Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
7730     Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
7731     // Pairwise addition of a v2f32 into a scalar f32.
7732     return Builder.CreateFAdd(Op0, Op1, "vpaddd");
7733   }
7734   case NEON::BI__builtin_neon_vceqzd_s64:
7735   case NEON::BI__builtin_neon_vceqzd_f64:
7736   case NEON::BI__builtin_neon_vceqzs_f32:
7737   case NEON::BI__builtin_neon_vceqzh_f16:
7738     Ops.push_back(EmitScalarExpr(E->getArg(0)));
7739     return EmitAArch64CompareBuiltinExpr(
7740         Ops[0], ConvertType(E->getCallReturnType(getContext())),
7741         ICmpInst::FCMP_OEQ, ICmpInst::ICMP_EQ, "vceqz");
7742   case NEON::BI__builtin_neon_vcgezd_s64:
7743   case NEON::BI__builtin_neon_vcgezd_f64:
7744   case NEON::BI__builtin_neon_vcgezs_f32:
7745   case NEON::BI__builtin_neon_vcgezh_f16:
7746     Ops.push_back(EmitScalarExpr(E->getArg(0)));
7747     return EmitAArch64CompareBuiltinExpr(
7748         Ops[0], ConvertType(E->getCallReturnType(getContext())),
7749         ICmpInst::FCMP_OGE, ICmpInst::ICMP_SGE, "vcgez");
7750   case NEON::BI__builtin_neon_vclezd_s64:
7751   case NEON::BI__builtin_neon_vclezd_f64:
7752   case NEON::BI__builtin_neon_vclezs_f32:
7753   case NEON::BI__builtin_neon_vclezh_f16:
7754     Ops.push_back(EmitScalarExpr(E->getArg(0)));
7755     return EmitAArch64CompareBuiltinExpr(
7756         Ops[0], ConvertType(E->getCallReturnType(getContext())),
7757         ICmpInst::FCMP_OLE, ICmpInst::ICMP_SLE, "vclez");
7758   case NEON::BI__builtin_neon_vcgtzd_s64:
7759   case NEON::BI__builtin_neon_vcgtzd_f64:
7760   case NEON::BI__builtin_neon_vcgtzs_f32:
7761   case NEON::BI__builtin_neon_vcgtzh_f16:
7762     Ops.push_back(EmitScalarExpr(E->getArg(0)));
7763     return EmitAArch64CompareBuiltinExpr(
7764         Ops[0], ConvertType(E->getCallReturnType(getContext())),
7765         ICmpInst::FCMP_OGT, ICmpInst::ICMP_SGT, "vcgtz");
7766   case NEON::BI__builtin_neon_vcltzd_s64:
7767   case NEON::BI__builtin_neon_vcltzd_f64:
7768   case NEON::BI__builtin_neon_vcltzs_f32:
7769   case NEON::BI__builtin_neon_vcltzh_f16:
7770     Ops.push_back(EmitScalarExpr(E->getArg(0)));
7771     return EmitAArch64CompareBuiltinExpr(
7772         Ops[0], ConvertType(E->getCallReturnType(getContext())),
7773         ICmpInst::FCMP_OLT, ICmpInst::ICMP_SLT, "vcltz");
7774 
7775   case NEON::BI__builtin_neon_vceqzd_u64: {
7776     Ops.push_back(EmitScalarExpr(E->getArg(0)));
7777     Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
7778     Ops[0] =
7779         Builder.CreateICmpEQ(Ops[0], llvm::Constant::getNullValue(Int64Ty));
7780     return Builder.CreateSExt(Ops[0], Int64Ty, "vceqzd");
7781   }
7782   case NEON::BI__builtin_neon_vceqd_f64:
7783   case NEON::BI__builtin_neon_vcled_f64:
7784   case NEON::BI__builtin_neon_vcltd_f64:
7785   case NEON::BI__builtin_neon_vcged_f64:
7786   case NEON::BI__builtin_neon_vcgtd_f64: {
7787     llvm::CmpInst::Predicate P;
7788     switch (BuiltinID) {
7789     default: llvm_unreachable("missing builtin ID in switch!");
7790     case NEON::BI__builtin_neon_vceqd_f64: P = llvm::FCmpInst::FCMP_OEQ; break;
7791     case NEON::BI__builtin_neon_vcled_f64: P = llvm::FCmpInst::FCMP_OLE; break;
7792     case NEON::BI__builtin_neon_vcltd_f64: P = llvm::FCmpInst::FCMP_OLT; break;
7793     case NEON::BI__builtin_neon_vcged_f64: P = llvm::FCmpInst::FCMP_OGE; break;
7794     case NEON::BI__builtin_neon_vcgtd_f64: P = llvm::FCmpInst::FCMP_OGT; break;
7795     }
7796     Ops.push_back(EmitScalarExpr(E->getArg(1)));
7797     Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
7798     Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy);
7799     Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
7800     return Builder.CreateSExt(Ops[0], Int64Ty, "vcmpd");
7801   }
7802   case NEON::BI__builtin_neon_vceqs_f32:
7803   case NEON::BI__builtin_neon_vcles_f32:
7804   case NEON::BI__builtin_neon_vclts_f32:
7805   case NEON::BI__builtin_neon_vcges_f32:
7806   case NEON::BI__builtin_neon_vcgts_f32: {
7807     llvm::CmpInst::Predicate P;
7808     switch (BuiltinID) {
7809     default: llvm_unreachable("missing builtin ID in switch!");
7810     case NEON::BI__builtin_neon_vceqs_f32: P = llvm::FCmpInst::FCMP_OEQ; break;
7811     case NEON::BI__builtin_neon_vcles_f32: P = llvm::FCmpInst::FCMP_OLE; break;
7812     case NEON::BI__builtin_neon_vclts_f32: P = llvm::FCmpInst::FCMP_OLT; break;
7813     case NEON::BI__builtin_neon_vcges_f32: P = llvm::FCmpInst::FCMP_OGE; break;
7814     case NEON::BI__builtin_neon_vcgts_f32: P = llvm::FCmpInst::FCMP_OGT; break;
7815     }
7816     Ops.push_back(EmitScalarExpr(E->getArg(1)));
7817     Ops[0] = Builder.CreateBitCast(Ops[0], FloatTy);
7818     Ops[1] = Builder.CreateBitCast(Ops[1], FloatTy);
7819     Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
7820     return Builder.CreateSExt(Ops[0], Int32Ty, "vcmpd");
7821   }
7822   case NEON::BI__builtin_neon_vceqh_f16:
7823   case NEON::BI__builtin_neon_vcleh_f16:
7824   case NEON::BI__builtin_neon_vclth_f16:
7825   case NEON::BI__builtin_neon_vcgeh_f16:
7826   case NEON::BI__builtin_neon_vcgth_f16: {
7827     llvm::CmpInst::Predicate P;
7828     switch (BuiltinID) {
7829     default: llvm_unreachable("missing builtin ID in switch!");
7830     case NEON::BI__builtin_neon_vceqh_f16: P = llvm::FCmpInst::FCMP_OEQ; break;
7831     case NEON::BI__builtin_neon_vcleh_f16: P = llvm::FCmpInst::FCMP_OLE; break;
7832     case NEON::BI__builtin_neon_vclth_f16: P = llvm::FCmpInst::FCMP_OLT; break;
7833     case NEON::BI__builtin_neon_vcgeh_f16: P = llvm::FCmpInst::FCMP_OGE; break;
7834     case NEON::BI__builtin_neon_vcgth_f16: P = llvm::FCmpInst::FCMP_OGT; break;
7835     }
7836     Ops.push_back(EmitScalarExpr(E->getArg(1)));
7837     Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy);
7838     Ops[1] = Builder.CreateBitCast(Ops[1], HalfTy);
7839     Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
7840     return Builder.CreateSExt(Ops[0], Int16Ty, "vcmpd");
7841   }
7842   case NEON::BI__builtin_neon_vceqd_s64:
7843   case NEON::BI__builtin_neon_vceqd_u64:
7844   case NEON::BI__builtin_neon_vcgtd_s64:
7845   case NEON::BI__builtin_neon_vcgtd_u64:
7846   case NEON::BI__builtin_neon_vcltd_s64:
7847   case NEON::BI__builtin_neon_vcltd_u64:
7848   case NEON::BI__builtin_neon_vcged_u64:
7849   case NEON::BI__builtin_neon_vcged_s64:
7850   case NEON::BI__builtin_neon_vcled_u64:
7851   case NEON::BI__builtin_neon_vcled_s64: {
7852     llvm::CmpInst::Predicate P;
7853     switch (BuiltinID) {
7854     default: llvm_unreachable("missing builtin ID in switch!");
7855     case NEON::BI__builtin_neon_vceqd_s64:
7856     case NEON::BI__builtin_neon_vceqd_u64:P = llvm::ICmpInst::ICMP_EQ;break;
7857     case NEON::BI__builtin_neon_vcgtd_s64:P = llvm::ICmpInst::ICMP_SGT;break;
7858     case NEON::BI__builtin_neon_vcgtd_u64:P = llvm::ICmpInst::ICMP_UGT;break;
7859     case NEON::BI__builtin_neon_vcltd_s64:P = llvm::ICmpInst::ICMP_SLT;break;
7860     case NEON::BI__builtin_neon_vcltd_u64:P = llvm::ICmpInst::ICMP_ULT;break;
7861     case NEON::BI__builtin_neon_vcged_u64:P = llvm::ICmpInst::ICMP_UGE;break;
7862     case NEON::BI__builtin_neon_vcged_s64:P = llvm::ICmpInst::ICMP_SGE;break;
7863     case NEON::BI__builtin_neon_vcled_u64:P = llvm::ICmpInst::ICMP_ULE;break;
7864     case NEON::BI__builtin_neon_vcled_s64:P = llvm::ICmpInst::ICMP_SLE;break;
7865     }
7866     Ops.push_back(EmitScalarExpr(E->getArg(1)));
7867     Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
7868     Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
7869     Ops[0] = Builder.CreateICmp(P, Ops[0], Ops[1]);
7870     return Builder.CreateSExt(Ops[0], Int64Ty, "vceqd");
7871   }
7872   case NEON::BI__builtin_neon_vtstd_s64:
7873   case NEON::BI__builtin_neon_vtstd_u64: {
7874     Ops.push_back(EmitScalarExpr(E->getArg(1)));
7875     Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
7876     Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
7877     Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
7878     Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
7879                                 llvm::Constant::getNullValue(Int64Ty));
7880     return Builder.CreateSExt(Ops[0], Int64Ty, "vtstd");
7881   }
7882   case NEON::BI__builtin_neon_vset_lane_i8:
7883   case NEON::BI__builtin_neon_vset_lane_i16:
7884   case NEON::BI__builtin_neon_vset_lane_i32:
7885   case NEON::BI__builtin_neon_vset_lane_i64:
7886   case NEON::BI__builtin_neon_vset_lane_f32:
7887   case NEON::BI__builtin_neon_vsetq_lane_i8:
7888   case NEON::BI__builtin_neon_vsetq_lane_i16:
7889   case NEON::BI__builtin_neon_vsetq_lane_i32:
7890   case NEON::BI__builtin_neon_vsetq_lane_i64:
7891   case NEON::BI__builtin_neon_vsetq_lane_f32:
7892     Ops.push_back(EmitScalarExpr(E->getArg(2)));
7893     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
7894   case NEON::BI__builtin_neon_vset_lane_f64:
7895     // The vector type needs a cast for the v1f64 variant.
7896     Ops[1] = Builder.CreateBitCast(Ops[1],
7897                                    llvm::VectorType::get(DoubleTy, 1));
7898     Ops.push_back(EmitScalarExpr(E->getArg(2)));
7899     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
7900   case NEON::BI__builtin_neon_vsetq_lane_f64:
7901     // The vector type needs a cast for the v2f64 variant.
7902     Ops[1] = Builder.CreateBitCast(Ops[1],
7903         llvm::VectorType::get(DoubleTy, 2));
7904     Ops.push_back(EmitScalarExpr(E->getArg(2)));
7905     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
7906 
7907   case NEON::BI__builtin_neon_vget_lane_i8:
7908   case NEON::BI__builtin_neon_vdupb_lane_i8:
7909     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int8Ty, 8));
7910     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
7911                                         "vget_lane");
7912   case NEON::BI__builtin_neon_vgetq_lane_i8:
7913   case NEON::BI__builtin_neon_vdupb_laneq_i8:
7914     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int8Ty, 16));
7915     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
7916                                         "vgetq_lane");
7917   case NEON::BI__builtin_neon_vget_lane_i16:
7918   case NEON::BI__builtin_neon_vduph_lane_i16:
7919     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int16Ty, 4));
7920     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
7921                                         "vget_lane");
7922   case NEON::BI__builtin_neon_vgetq_lane_i16:
7923   case NEON::BI__builtin_neon_vduph_laneq_i16:
7924     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int16Ty, 8));
7925     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
7926                                         "vgetq_lane");
7927   case NEON::BI__builtin_neon_vget_lane_i32:
7928   case NEON::BI__builtin_neon_vdups_lane_i32:
7929     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int32Ty, 2));
7930     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
7931                                         "vget_lane");
7932   case NEON::BI__builtin_neon_vdups_lane_f32:
7933     Ops[0] = Builder.CreateBitCast(Ops[0],
7934         llvm::VectorType::get(FloatTy, 2));
7935     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
7936                                         "vdups_lane");
7937   case NEON::BI__builtin_neon_vgetq_lane_i32:
7938   case NEON::BI__builtin_neon_vdups_laneq_i32:
7939     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int32Ty, 4));
7940     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
7941                                         "vgetq_lane");
7942   case NEON::BI__builtin_neon_vget_lane_i64:
7943   case NEON::BI__builtin_neon_vdupd_lane_i64:
7944     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int64Ty, 1));
7945     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
7946                                         "vget_lane");
7947   case NEON::BI__builtin_neon_vdupd_lane_f64:
7948     Ops[0] = Builder.CreateBitCast(Ops[0],
7949         llvm::VectorType::get(DoubleTy, 1));
7950     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
7951                                         "vdupd_lane");
7952   case NEON::BI__builtin_neon_vgetq_lane_i64:
7953   case NEON::BI__builtin_neon_vdupd_laneq_i64:
7954     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int64Ty, 2));
7955     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
7956                                         "vgetq_lane");
7957   case NEON::BI__builtin_neon_vget_lane_f32:
7958     Ops[0] = Builder.CreateBitCast(Ops[0],
7959         llvm::VectorType::get(FloatTy, 2));
7960     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
7961                                         "vget_lane");
7962   case NEON::BI__builtin_neon_vget_lane_f64:
7963     Ops[0] = Builder.CreateBitCast(Ops[0],
7964         llvm::VectorType::get(DoubleTy, 1));
7965     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
7966                                         "vget_lane");
7967   case NEON::BI__builtin_neon_vgetq_lane_f32:
7968   case NEON::BI__builtin_neon_vdups_laneq_f32:
7969     Ops[0] = Builder.CreateBitCast(Ops[0],
7970         llvm::VectorType::get(FloatTy, 4));
7971     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
7972                                         "vgetq_lane");
7973   case NEON::BI__builtin_neon_vgetq_lane_f64:
7974   case NEON::BI__builtin_neon_vdupd_laneq_f64:
7975     Ops[0] = Builder.CreateBitCast(Ops[0],
7976         llvm::VectorType::get(DoubleTy, 2));
7977     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
7978                                         "vgetq_lane");
7979   case NEON::BI__builtin_neon_vaddh_f16:
7980     Ops.push_back(EmitScalarExpr(E->getArg(1)));
7981     return Builder.CreateFAdd(Ops[0], Ops[1], "vaddh");
7982   case NEON::BI__builtin_neon_vsubh_f16:
7983     Ops.push_back(EmitScalarExpr(E->getArg(1)));
7984     return Builder.CreateFSub(Ops[0], Ops[1], "vsubh");
7985   case NEON::BI__builtin_neon_vmulh_f16:
7986     Ops.push_back(EmitScalarExpr(E->getArg(1)));
7987     return Builder.CreateFMul(Ops[0], Ops[1], "vmulh");
7988   case NEON::BI__builtin_neon_vdivh_f16:
7989     Ops.push_back(EmitScalarExpr(E->getArg(1)));
7990     return Builder.CreateFDiv(Ops[0], Ops[1], "vdivh");
7991   case NEON::BI__builtin_neon_vfmah_f16: {
7992     Function *F = CGM.getIntrinsic(Intrinsic::fma, HalfTy);
7993     // NEON intrinsic puts accumulator first, unlike the LLVM fma.
7994     return Builder.CreateCall(F,
7995       {EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2)), Ops[0]});
7996   }
7997   case NEON::BI__builtin_neon_vfmsh_f16: {
7998     Function *F = CGM.getIntrinsic(Intrinsic::fma, HalfTy);
7999     Value *Zero = llvm::ConstantFP::getZeroValueForNegation(HalfTy);
8000     Value* Sub = Builder.CreateFSub(Zero, EmitScalarExpr(E->getArg(1)), "vsubh");
8001     // NEON intrinsic puts accumulator first, unlike the LLVM fma.
8002     return Builder.CreateCall(F, {Sub, EmitScalarExpr(E->getArg(2)), Ops[0]});
8003   }
8004   case NEON::BI__builtin_neon_vaddd_s64:
8005   case NEON::BI__builtin_neon_vaddd_u64:
8006     return Builder.CreateAdd(Ops[0], EmitScalarExpr(E->getArg(1)), "vaddd");
8007   case NEON::BI__builtin_neon_vsubd_s64:
8008   case NEON::BI__builtin_neon_vsubd_u64:
8009     return Builder.CreateSub(Ops[0], EmitScalarExpr(E->getArg(1)), "vsubd");
8010   case NEON::BI__builtin_neon_vqdmlalh_s16:
8011   case NEON::BI__builtin_neon_vqdmlslh_s16: {
8012     SmallVector<Value *, 2> ProductOps;
8013     ProductOps.push_back(vectorWrapScalar16(Ops[1]));
8014     ProductOps.push_back(vectorWrapScalar16(EmitScalarExpr(E->getArg(2))));
8015     llvm::Type *VTy = llvm::VectorType::get(Int32Ty, 4);
8016     Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy),
8017                           ProductOps, "vqdmlXl");
8018     Constant *CI = ConstantInt::get(SizeTy, 0);
8019     Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0");
8020 
8021     unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlalh_s16
8022                                         ? Intrinsic::aarch64_neon_sqadd
8023                                         : Intrinsic::aarch64_neon_sqsub;
8024     return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int32Ty), Ops, "vqdmlXl");
8025   }
8026   case NEON::BI__builtin_neon_vqshlud_n_s64: {
8027     Ops.push_back(EmitScalarExpr(E->getArg(1)));
8028     Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty);
8029     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqshlu, Int64Ty),
8030                         Ops, "vqshlu_n");
8031   }
8032   case NEON::BI__builtin_neon_vqshld_n_u64:
8033   case NEON::BI__builtin_neon_vqshld_n_s64: {
8034     unsigned Int = BuiltinID == NEON::BI__builtin_neon_vqshld_n_u64
8035                                    ? Intrinsic::aarch64_neon_uqshl
8036                                    : Intrinsic::aarch64_neon_sqshl;
8037     Ops.push_back(EmitScalarExpr(E->getArg(1)));
8038     Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty);
8039     return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vqshl_n");
8040   }
8041   case NEON::BI__builtin_neon_vrshrd_n_u64:
8042   case NEON::BI__builtin_neon_vrshrd_n_s64: {
8043     unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrshrd_n_u64
8044                                    ? Intrinsic::aarch64_neon_urshl
8045                                    : Intrinsic::aarch64_neon_srshl;
8046     Ops.push_back(EmitScalarExpr(E->getArg(1)));
8047     int SV = cast<ConstantInt>(Ops[1])->getSExtValue();
8048     Ops[1] = ConstantInt::get(Int64Ty, -SV);
8049     return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vrshr_n");
8050   }
8051   case NEON::BI__builtin_neon_vrsrad_n_u64:
8052   case NEON::BI__builtin_neon_vrsrad_n_s64: {
8053     unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrsrad_n_u64
8054                                    ? Intrinsic::aarch64_neon_urshl
8055                                    : Intrinsic::aarch64_neon_srshl;
8056     Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
8057     Ops.push_back(Builder.CreateNeg(EmitScalarExpr(E->getArg(2))));
8058     Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Int64Ty),
8059                                 {Ops[1], Builder.CreateSExt(Ops[2], Int64Ty)});
8060     return Builder.CreateAdd(Ops[0], Builder.CreateBitCast(Ops[1], Int64Ty));
8061   }
8062   case NEON::BI__builtin_neon_vshld_n_s64:
8063   case NEON::BI__builtin_neon_vshld_n_u64: {
8064     llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
8065     return Builder.CreateShl(
8066         Ops[0], ConstantInt::get(Int64Ty, Amt->getZExtValue()), "shld_n");
8067   }
8068   case NEON::BI__builtin_neon_vshrd_n_s64: {
8069     llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
8070     return Builder.CreateAShr(
8071         Ops[0], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63),
8072                                                    Amt->getZExtValue())),
8073         "shrd_n");
8074   }
8075   case NEON::BI__builtin_neon_vshrd_n_u64: {
8076     llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
8077     uint64_t ShiftAmt = Amt->getZExtValue();
8078     // Right-shifting an unsigned value by its size yields 0.
8079     if (ShiftAmt == 64)
8080       return ConstantInt::get(Int64Ty, 0);
8081     return Builder.CreateLShr(Ops[0], ConstantInt::get(Int64Ty, ShiftAmt),
8082                               "shrd_n");
8083   }
8084   case NEON::BI__builtin_neon_vsrad_n_s64: {
8085     llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2)));
8086     Ops[1] = Builder.CreateAShr(
8087         Ops[1], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63),
8088                                                    Amt->getZExtValue())),
8089         "shrd_n");
8090     return Builder.CreateAdd(Ops[0], Ops[1]);
8091   }
8092   case NEON::BI__builtin_neon_vsrad_n_u64: {
8093     llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2)));
8094     uint64_t ShiftAmt = Amt->getZExtValue();
8095     // Right-shifting an unsigned value by its size yields 0.
8096     // As Op + 0 = Op, return Ops[0] directly.
8097     if (ShiftAmt == 64)
8098       return Ops[0];
8099     Ops[1] = Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, ShiftAmt),
8100                                 "shrd_n");
8101     return Builder.CreateAdd(Ops[0], Ops[1]);
8102   }
8103   case NEON::BI__builtin_neon_vqdmlalh_lane_s16:
8104   case NEON::BI__builtin_neon_vqdmlalh_laneq_s16:
8105   case NEON::BI__builtin_neon_vqdmlslh_lane_s16:
8106   case NEON::BI__builtin_neon_vqdmlslh_laneq_s16: {
8107     Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)),
8108                                           "lane");
8109     SmallVector<Value *, 2> ProductOps;
8110     ProductOps.push_back(vectorWrapScalar16(Ops[1]));
8111     ProductOps.push_back(vectorWrapScalar16(Ops[2]));
8112     llvm::Type *VTy = llvm::VectorType::get(Int32Ty, 4);
8113     Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy),
8114                           ProductOps, "vqdmlXl");
8115     Constant *CI = ConstantInt::get(SizeTy, 0);
8116     Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0");
8117     Ops.pop_back();
8118 
8119     unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlalh_lane_s16 ||
8120                        BuiltinID == NEON::BI__builtin_neon_vqdmlalh_laneq_s16)
8121                           ? Intrinsic::aarch64_neon_sqadd
8122                           : Intrinsic::aarch64_neon_sqsub;
8123     return EmitNeonCall(CGM.getIntrinsic(AccInt, Int32Ty), Ops, "vqdmlXl");
8124   }
8125   case NEON::BI__builtin_neon_vqdmlals_s32:
8126   case NEON::BI__builtin_neon_vqdmlsls_s32: {
8127     SmallVector<Value *, 2> ProductOps;
8128     ProductOps.push_back(Ops[1]);
8129     ProductOps.push_back(EmitScalarExpr(E->getArg(2)));
8130     Ops[1] =
8131         EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar),
8132                      ProductOps, "vqdmlXl");
8133 
8134     unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlals_s32
8135                                         ? Intrinsic::aarch64_neon_sqadd
8136                                         : Intrinsic::aarch64_neon_sqsub;
8137     return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int64Ty), Ops, "vqdmlXl");
8138   }
8139   case NEON::BI__builtin_neon_vqdmlals_lane_s32:
8140   case NEON::BI__builtin_neon_vqdmlals_laneq_s32:
8141   case NEON::BI__builtin_neon_vqdmlsls_lane_s32:
8142   case NEON::BI__builtin_neon_vqdmlsls_laneq_s32: {
8143     Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)),
8144                                           "lane");
8145     SmallVector<Value *, 2> ProductOps;
8146     ProductOps.push_back(Ops[1]);
8147     ProductOps.push_back(Ops[2]);
8148     Ops[1] =
8149         EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar),
8150                      ProductOps, "vqdmlXl");
8151     Ops.pop_back();
8152 
8153     unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlals_lane_s32 ||
8154                        BuiltinID == NEON::BI__builtin_neon_vqdmlals_laneq_s32)
8155                           ? Intrinsic::aarch64_neon_sqadd
8156                           : Intrinsic::aarch64_neon_sqsub;
8157     return EmitNeonCall(CGM.getIntrinsic(AccInt, Int64Ty), Ops, "vqdmlXl");
8158   }
8159   case NEON::BI__builtin_neon_vduph_lane_f16: {
8160     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
8161                                         "vget_lane");
8162   }
8163   case NEON::BI__builtin_neon_vduph_laneq_f16: {
8164     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
8165                                         "vgetq_lane");
8166   }
8167   case AArch64::BI_BitScanForward:
8168   case AArch64::BI_BitScanForward64:
8169     return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanForward, E);
8170   case AArch64::BI_BitScanReverse:
8171   case AArch64::BI_BitScanReverse64:
8172     return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanReverse, E);
8173   case AArch64::BI_InterlockedAnd64:
8174     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E);
8175   case AArch64::BI_InterlockedExchange64:
8176     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E);
8177   case AArch64::BI_InterlockedExchangeAdd64:
8178     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E);
8179   case AArch64::BI_InterlockedExchangeSub64:
8180     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E);
8181   case AArch64::BI_InterlockedOr64:
8182     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E);
8183   case AArch64::BI_InterlockedXor64:
8184     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E);
8185   case AArch64::BI_InterlockedDecrement64:
8186     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E);
8187   case AArch64::BI_InterlockedIncrement64:
8188     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E);
8189   case AArch64::BI_InterlockedExchangeAdd8_acq:
8190   case AArch64::BI_InterlockedExchangeAdd16_acq:
8191   case AArch64::BI_InterlockedExchangeAdd_acq:
8192   case AArch64::BI_InterlockedExchangeAdd64_acq:
8193     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_acq, E);
8194   case AArch64::BI_InterlockedExchangeAdd8_rel:
8195   case AArch64::BI_InterlockedExchangeAdd16_rel:
8196   case AArch64::BI_InterlockedExchangeAdd_rel:
8197   case AArch64::BI_InterlockedExchangeAdd64_rel:
8198     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_rel, E);
8199   case AArch64::BI_InterlockedExchangeAdd8_nf:
8200   case AArch64::BI_InterlockedExchangeAdd16_nf:
8201   case AArch64::BI_InterlockedExchangeAdd_nf:
8202   case AArch64::BI_InterlockedExchangeAdd64_nf:
8203     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_nf, E);
8204   case AArch64::BI_InterlockedExchange8_acq:
8205   case AArch64::BI_InterlockedExchange16_acq:
8206   case AArch64::BI_InterlockedExchange_acq:
8207   case AArch64::BI_InterlockedExchange64_acq:
8208     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_acq, E);
8209   case AArch64::BI_InterlockedExchange8_rel:
8210   case AArch64::BI_InterlockedExchange16_rel:
8211   case AArch64::BI_InterlockedExchange_rel:
8212   case AArch64::BI_InterlockedExchange64_rel:
8213     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_rel, E);
8214   case AArch64::BI_InterlockedExchange8_nf:
8215   case AArch64::BI_InterlockedExchange16_nf:
8216   case AArch64::BI_InterlockedExchange_nf:
8217   case AArch64::BI_InterlockedExchange64_nf:
8218     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_nf, E);
8219   case AArch64::BI_InterlockedCompareExchange8_acq:
8220   case AArch64::BI_InterlockedCompareExchange16_acq:
8221   case AArch64::BI_InterlockedCompareExchange_acq:
8222   case AArch64::BI_InterlockedCompareExchange64_acq:
8223     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_acq, E);
8224   case AArch64::BI_InterlockedCompareExchange8_rel:
8225   case AArch64::BI_InterlockedCompareExchange16_rel:
8226   case AArch64::BI_InterlockedCompareExchange_rel:
8227   case AArch64::BI_InterlockedCompareExchange64_rel:
8228     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_rel, E);
8229   case AArch64::BI_InterlockedCompareExchange8_nf:
8230   case AArch64::BI_InterlockedCompareExchange16_nf:
8231   case AArch64::BI_InterlockedCompareExchange_nf:
8232   case AArch64::BI_InterlockedCompareExchange64_nf:
8233     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_nf, E);
8234   case AArch64::BI_InterlockedOr8_acq:
8235   case AArch64::BI_InterlockedOr16_acq:
8236   case AArch64::BI_InterlockedOr_acq:
8237   case AArch64::BI_InterlockedOr64_acq:
8238     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_acq, E);
8239   case AArch64::BI_InterlockedOr8_rel:
8240   case AArch64::BI_InterlockedOr16_rel:
8241   case AArch64::BI_InterlockedOr_rel:
8242   case AArch64::BI_InterlockedOr64_rel:
8243     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_rel, E);
8244   case AArch64::BI_InterlockedOr8_nf:
8245   case AArch64::BI_InterlockedOr16_nf:
8246   case AArch64::BI_InterlockedOr_nf:
8247   case AArch64::BI_InterlockedOr64_nf:
8248     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_nf, E);
8249   case AArch64::BI_InterlockedXor8_acq:
8250   case AArch64::BI_InterlockedXor16_acq:
8251   case AArch64::BI_InterlockedXor_acq:
8252   case AArch64::BI_InterlockedXor64_acq:
8253     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_acq, E);
8254   case AArch64::BI_InterlockedXor8_rel:
8255   case AArch64::BI_InterlockedXor16_rel:
8256   case AArch64::BI_InterlockedXor_rel:
8257   case AArch64::BI_InterlockedXor64_rel:
8258     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_rel, E);
8259   case AArch64::BI_InterlockedXor8_nf:
8260   case AArch64::BI_InterlockedXor16_nf:
8261   case AArch64::BI_InterlockedXor_nf:
8262   case AArch64::BI_InterlockedXor64_nf:
8263     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_nf, E);
8264   case AArch64::BI_InterlockedAnd8_acq:
8265   case AArch64::BI_InterlockedAnd16_acq:
8266   case AArch64::BI_InterlockedAnd_acq:
8267   case AArch64::BI_InterlockedAnd64_acq:
8268     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_acq, E);
8269   case AArch64::BI_InterlockedAnd8_rel:
8270   case AArch64::BI_InterlockedAnd16_rel:
8271   case AArch64::BI_InterlockedAnd_rel:
8272   case AArch64::BI_InterlockedAnd64_rel:
8273     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_rel, E);
8274   case AArch64::BI_InterlockedAnd8_nf:
8275   case AArch64::BI_InterlockedAnd16_nf:
8276   case AArch64::BI_InterlockedAnd_nf:
8277   case AArch64::BI_InterlockedAnd64_nf:
8278     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_nf, E);
8279   case AArch64::BI_InterlockedIncrement16_acq:
8280   case AArch64::BI_InterlockedIncrement_acq:
8281   case AArch64::BI_InterlockedIncrement64_acq:
8282     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_acq, E);
8283   case AArch64::BI_InterlockedIncrement16_rel:
8284   case AArch64::BI_InterlockedIncrement_rel:
8285   case AArch64::BI_InterlockedIncrement64_rel:
8286     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_rel, E);
8287   case AArch64::BI_InterlockedIncrement16_nf:
8288   case AArch64::BI_InterlockedIncrement_nf:
8289   case AArch64::BI_InterlockedIncrement64_nf:
8290     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_nf, E);
8291   case AArch64::BI_InterlockedDecrement16_acq:
8292   case AArch64::BI_InterlockedDecrement_acq:
8293   case AArch64::BI_InterlockedDecrement64_acq:
8294     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_acq, E);
8295   case AArch64::BI_InterlockedDecrement16_rel:
8296   case AArch64::BI_InterlockedDecrement_rel:
8297   case AArch64::BI_InterlockedDecrement64_rel:
8298     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_rel, E);
8299   case AArch64::BI_InterlockedDecrement16_nf:
8300   case AArch64::BI_InterlockedDecrement_nf:
8301   case AArch64::BI_InterlockedDecrement64_nf:
8302     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_nf, E);
8303 
8304   case AArch64::BI_InterlockedAdd: {
8305     Value *Arg0 = EmitScalarExpr(E->getArg(0));
8306     Value *Arg1 = EmitScalarExpr(E->getArg(1));
8307     AtomicRMWInst *RMWI = Builder.CreateAtomicRMW(
8308       AtomicRMWInst::Add, Arg0, Arg1,
8309       llvm::AtomicOrdering::SequentiallyConsistent);
8310     return Builder.CreateAdd(RMWI, Arg1);
8311   }
8312   }
8313 
8314   llvm::VectorType *VTy = GetNeonType(this, Type);
8315   llvm::Type *Ty = VTy;
8316   if (!Ty)
8317     return nullptr;
8318 
8319   // Not all intrinsics handled by the common case work for AArch64 yet, so only
8320   // defer to common code if it's been added to our special map.
8321   Builtin = findNeonIntrinsicInMap(AArch64SIMDIntrinsicMap, BuiltinID,
8322                                    AArch64SIMDIntrinsicsProvenSorted);
8323 
8324   if (Builtin)
8325     return EmitCommonNeonBuiltinExpr(
8326         Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic,
8327         Builtin->NameHint, Builtin->TypeModifier, E, Ops,
8328         /*never use addresses*/ Address::invalid(), Address::invalid(), Arch);
8329 
8330   if (Value *V = EmitAArch64TblBuiltinExpr(*this, BuiltinID, E, Ops, Arch))
8331     return V;
8332 
8333   unsigned Int;
8334   switch (BuiltinID) {
8335   default: return nullptr;
8336   case NEON::BI__builtin_neon_vbsl_v:
8337   case NEON::BI__builtin_neon_vbslq_v: {
8338     llvm::Type *BitTy = llvm::VectorType::getInteger(VTy);
8339     Ops[0] = Builder.CreateBitCast(Ops[0], BitTy, "vbsl");
8340     Ops[1] = Builder.CreateBitCast(Ops[1], BitTy, "vbsl");
8341     Ops[2] = Builder.CreateBitCast(Ops[2], BitTy, "vbsl");
8342 
8343     Ops[1] = Builder.CreateAnd(Ops[0], Ops[1], "vbsl");
8344     Ops[2] = Builder.CreateAnd(Builder.CreateNot(Ops[0]), Ops[2], "vbsl");
8345     Ops[0] = Builder.CreateOr(Ops[1], Ops[2], "vbsl");
8346     return Builder.CreateBitCast(Ops[0], Ty);
8347   }
8348   case NEON::BI__builtin_neon_vfma_lane_v:
8349   case NEON::BI__builtin_neon_vfmaq_lane_v: { // Only used for FP types
8350     // The ARM builtins (and instructions) have the addend as the first
8351     // operand, but the 'fma' intrinsics have it last. Swap it around here.
8352     Value *Addend = Ops[0];
8353     Value *Multiplicand = Ops[1];
8354     Value *LaneSource = Ops[2];
8355     Ops[0] = Multiplicand;
8356     Ops[1] = LaneSource;
8357     Ops[2] = Addend;
8358 
8359     // Now adjust things to handle the lane access.
8360     llvm::Type *SourceTy = BuiltinID == NEON::BI__builtin_neon_vfmaq_lane_v ?
8361       llvm::VectorType::get(VTy->getElementType(), VTy->getNumElements() / 2) :
8362       VTy;
8363     llvm::Constant *cst = cast<Constant>(Ops[3]);
8364     Value *SV = llvm::ConstantVector::getSplat(VTy->getNumElements(), cst);
8365     Ops[1] = Builder.CreateBitCast(Ops[1], SourceTy);
8366     Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV, "lane");
8367 
8368     Ops.pop_back();
8369     Int = Intrinsic::fma;
8370     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "fmla");
8371   }
8372   case NEON::BI__builtin_neon_vfma_laneq_v: {
8373     llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
8374     // v1f64 fma should be mapped to Neon scalar f64 fma
8375     if (VTy && VTy->getElementType() == DoubleTy) {
8376       Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
8377       Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy);
8378       llvm::Type *VTy = GetNeonType(this,
8379         NeonTypeFlags(NeonTypeFlags::Float64, false, true));
8380       Ops[2] = Builder.CreateBitCast(Ops[2], VTy);
8381       Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract");
8382       Function *F = CGM.getIntrinsic(Intrinsic::fma, DoubleTy);
8383       Value *Result = Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0]});
8384       return Builder.CreateBitCast(Result, Ty);
8385     }
8386     Function *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
8387     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
8388     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
8389 
8390     llvm::Type *STy = llvm::VectorType::get(VTy->getElementType(),
8391                                             VTy->getNumElements() * 2);
8392     Ops[2] = Builder.CreateBitCast(Ops[2], STy);
8393     Value* SV = llvm::ConstantVector::getSplat(VTy->getNumElements(),
8394                                                cast<ConstantInt>(Ops[3]));
8395     Ops[2] = Builder.CreateShuffleVector(Ops[2], Ops[2], SV, "lane");
8396 
8397     return Builder.CreateCall(F, {Ops[2], Ops[1], Ops[0]});
8398   }
8399   case NEON::BI__builtin_neon_vfmaq_laneq_v: {
8400     Function *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
8401     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
8402     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
8403 
8404     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
8405     Ops[2] = EmitNeonSplat(Ops[2], cast<ConstantInt>(Ops[3]));
8406     return Builder.CreateCall(F, {Ops[2], Ops[1], Ops[0]});
8407   }
8408   case NEON::BI__builtin_neon_vfmah_lane_f16:
8409   case NEON::BI__builtin_neon_vfmas_lane_f32:
8410   case NEON::BI__builtin_neon_vfmah_laneq_f16:
8411   case NEON::BI__builtin_neon_vfmas_laneq_f32:
8412   case NEON::BI__builtin_neon_vfmad_lane_f64:
8413   case NEON::BI__builtin_neon_vfmad_laneq_f64: {
8414     Ops.push_back(EmitScalarExpr(E->getArg(3)));
8415     llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext()));
8416     Function *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
8417     Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract");
8418     return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0]});
8419   }
8420   case NEON::BI__builtin_neon_vmull_v:
8421     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
8422     Int = usgn ? Intrinsic::aarch64_neon_umull : Intrinsic::aarch64_neon_smull;
8423     if (Type.isPoly()) Int = Intrinsic::aarch64_neon_pmull;
8424     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
8425   case NEON::BI__builtin_neon_vmax_v:
8426   case NEON::BI__builtin_neon_vmaxq_v:
8427     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
8428     Int = usgn ? Intrinsic::aarch64_neon_umax : Intrinsic::aarch64_neon_smax;
8429     if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmax;
8430     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmax");
8431   case NEON::BI__builtin_neon_vmaxh_f16: {
8432     Ops.push_back(EmitScalarExpr(E->getArg(1)));
8433     Int = Intrinsic::aarch64_neon_fmax;
8434     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmax");
8435   }
8436   case NEON::BI__builtin_neon_vmin_v:
8437   case NEON::BI__builtin_neon_vminq_v:
8438     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
8439     Int = usgn ? Intrinsic::aarch64_neon_umin : Intrinsic::aarch64_neon_smin;
8440     if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmin;
8441     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmin");
8442   case NEON::BI__builtin_neon_vminh_f16: {
8443     Ops.push_back(EmitScalarExpr(E->getArg(1)));
8444     Int = Intrinsic::aarch64_neon_fmin;
8445     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmin");
8446   }
8447   case NEON::BI__builtin_neon_vabd_v:
8448   case NEON::BI__builtin_neon_vabdq_v:
8449     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
8450     Int = usgn ? Intrinsic::aarch64_neon_uabd : Intrinsic::aarch64_neon_sabd;
8451     if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fabd;
8452     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vabd");
8453   case NEON::BI__builtin_neon_vpadal_v:
8454   case NEON::BI__builtin_neon_vpadalq_v: {
8455     unsigned ArgElts = VTy->getNumElements();
8456     llvm::IntegerType *EltTy = cast<IntegerType>(VTy->getElementType());
8457     unsigned BitWidth = EltTy->getBitWidth();
8458     llvm::Type *ArgTy = llvm::VectorType::get(
8459         llvm::IntegerType::get(getLLVMContext(), BitWidth/2), 2*ArgElts);
8460     llvm::Type* Tys[2] = { VTy, ArgTy };
8461     Int = usgn ? Intrinsic::aarch64_neon_uaddlp : Intrinsic::aarch64_neon_saddlp;
8462     SmallVector<llvm::Value*, 1> TmpOps;
8463     TmpOps.push_back(Ops[1]);
8464     Function *F = CGM.getIntrinsic(Int, Tys);
8465     llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vpadal");
8466     llvm::Value *addend = Builder.CreateBitCast(Ops[0], tmp->getType());
8467     return Builder.CreateAdd(tmp, addend);
8468   }
8469   case NEON::BI__builtin_neon_vpmin_v:
8470   case NEON::BI__builtin_neon_vpminq_v:
8471     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
8472     Int = usgn ? Intrinsic::aarch64_neon_uminp : Intrinsic::aarch64_neon_sminp;
8473     if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fminp;
8474     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmin");
8475   case NEON::BI__builtin_neon_vpmax_v:
8476   case NEON::BI__builtin_neon_vpmaxq_v:
8477     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
8478     Int = usgn ? Intrinsic::aarch64_neon_umaxp : Intrinsic::aarch64_neon_smaxp;
8479     if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmaxp;
8480     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmax");
8481   case NEON::BI__builtin_neon_vminnm_v:
8482   case NEON::BI__builtin_neon_vminnmq_v:
8483     Int = Intrinsic::aarch64_neon_fminnm;
8484     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vminnm");
8485   case NEON::BI__builtin_neon_vminnmh_f16:
8486     Ops.push_back(EmitScalarExpr(E->getArg(1)));
8487     Int = Intrinsic::aarch64_neon_fminnm;
8488     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vminnm");
8489   case NEON::BI__builtin_neon_vmaxnm_v:
8490   case NEON::BI__builtin_neon_vmaxnmq_v:
8491     Int = Intrinsic::aarch64_neon_fmaxnm;
8492     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmaxnm");
8493   case NEON::BI__builtin_neon_vmaxnmh_f16:
8494     Ops.push_back(EmitScalarExpr(E->getArg(1)));
8495     Int = Intrinsic::aarch64_neon_fmaxnm;
8496     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmaxnm");
8497   case NEON::BI__builtin_neon_vrecpss_f32: {
8498     Ops.push_back(EmitScalarExpr(E->getArg(1)));
8499     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, FloatTy),
8500                         Ops, "vrecps");
8501   }
8502   case NEON::BI__builtin_neon_vrecpsd_f64:
8503     Ops.push_back(EmitScalarExpr(E->getArg(1)));
8504     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, DoubleTy),
8505                         Ops, "vrecps");
8506   case NEON::BI__builtin_neon_vrecpsh_f16:
8507     Ops.push_back(EmitScalarExpr(E->getArg(1)));
8508     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, HalfTy),
8509                         Ops, "vrecps");
8510   case NEON::BI__builtin_neon_vqshrun_n_v:
8511     Int = Intrinsic::aarch64_neon_sqshrun;
8512     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrun_n");
8513   case NEON::BI__builtin_neon_vqrshrun_n_v:
8514     Int = Intrinsic::aarch64_neon_sqrshrun;
8515     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrun_n");
8516   case NEON::BI__builtin_neon_vqshrn_n_v:
8517     Int = usgn ? Intrinsic::aarch64_neon_uqshrn : Intrinsic::aarch64_neon_sqshrn;
8518     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n");
8519   case NEON::BI__builtin_neon_vrshrn_n_v:
8520     Int = Intrinsic::aarch64_neon_rshrn;
8521     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshrn_n");
8522   case NEON::BI__builtin_neon_vqrshrn_n_v:
8523     Int = usgn ? Intrinsic::aarch64_neon_uqrshrn : Intrinsic::aarch64_neon_sqrshrn;
8524     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n");
8525   case NEON::BI__builtin_neon_vrndah_f16: {
8526     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8527     Int = Intrinsic::round;
8528     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrnda");
8529   }
8530   case NEON::BI__builtin_neon_vrnda_v:
8531   case NEON::BI__builtin_neon_vrndaq_v: {
8532     Int = Intrinsic::round;
8533     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnda");
8534   }
8535   case NEON::BI__builtin_neon_vrndih_f16: {
8536     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8537     Int = Intrinsic::nearbyint;
8538     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndi");
8539   }
8540   case NEON::BI__builtin_neon_vrndmh_f16: {
8541     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8542     Int = Intrinsic::floor;
8543     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndm");
8544   }
8545   case NEON::BI__builtin_neon_vrndm_v:
8546   case NEON::BI__builtin_neon_vrndmq_v: {
8547     Int = Intrinsic::floor;
8548     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndm");
8549   }
8550   case NEON::BI__builtin_neon_vrndnh_f16: {
8551     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8552     Int = Intrinsic::aarch64_neon_frintn;
8553     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndn");
8554   }
8555   case NEON::BI__builtin_neon_vrndn_v:
8556   case NEON::BI__builtin_neon_vrndnq_v: {
8557     Int = Intrinsic::aarch64_neon_frintn;
8558     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndn");
8559   }
8560   case NEON::BI__builtin_neon_vrndns_f32: {
8561     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8562     Int = Intrinsic::aarch64_neon_frintn;
8563     return EmitNeonCall(CGM.getIntrinsic(Int, FloatTy), Ops, "vrndn");
8564   }
8565   case NEON::BI__builtin_neon_vrndph_f16: {
8566     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8567     Int = Intrinsic::ceil;
8568     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndp");
8569   }
8570   case NEON::BI__builtin_neon_vrndp_v:
8571   case NEON::BI__builtin_neon_vrndpq_v: {
8572     Int = Intrinsic::ceil;
8573     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndp");
8574   }
8575   case NEON::BI__builtin_neon_vrndxh_f16: {
8576     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8577     Int = Intrinsic::rint;
8578     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndx");
8579   }
8580   case NEON::BI__builtin_neon_vrndx_v:
8581   case NEON::BI__builtin_neon_vrndxq_v: {
8582     Int = Intrinsic::rint;
8583     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndx");
8584   }
8585   case NEON::BI__builtin_neon_vrndh_f16: {
8586     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8587     Int = Intrinsic::trunc;
8588     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndz");
8589   }
8590   case NEON::BI__builtin_neon_vrnd_v:
8591   case NEON::BI__builtin_neon_vrndq_v: {
8592     Int = Intrinsic::trunc;
8593     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndz");
8594   }
8595   case NEON::BI__builtin_neon_vcvt_f64_v:
8596   case NEON::BI__builtin_neon_vcvtq_f64_v:
8597     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
8598     Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, quad));
8599     return usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
8600                 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
8601   case NEON::BI__builtin_neon_vcvt_f64_f32: {
8602     assert(Type.getEltType() == NeonTypeFlags::Float64 && quad &&
8603            "unexpected vcvt_f64_f32 builtin");
8604     NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float32, false, false);
8605     Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag));
8606 
8607     return Builder.CreateFPExt(Ops[0], Ty, "vcvt");
8608   }
8609   case NEON::BI__builtin_neon_vcvt_f32_f64: {
8610     assert(Type.getEltType() == NeonTypeFlags::Float32 &&
8611            "unexpected vcvt_f32_f64 builtin");
8612     NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float64, false, true);
8613     Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag));
8614 
8615     return Builder.CreateFPTrunc(Ops[0], Ty, "vcvt");
8616   }
8617   case NEON::BI__builtin_neon_vcvt_s32_v:
8618   case NEON::BI__builtin_neon_vcvt_u32_v:
8619   case NEON::BI__builtin_neon_vcvt_s64_v:
8620   case NEON::BI__builtin_neon_vcvt_u64_v:
8621   case NEON::BI__builtin_neon_vcvt_s16_v:
8622   case NEON::BI__builtin_neon_vcvt_u16_v:
8623   case NEON::BI__builtin_neon_vcvtq_s32_v:
8624   case NEON::BI__builtin_neon_vcvtq_u32_v:
8625   case NEON::BI__builtin_neon_vcvtq_s64_v:
8626   case NEON::BI__builtin_neon_vcvtq_u64_v:
8627   case NEON::BI__builtin_neon_vcvtq_s16_v:
8628   case NEON::BI__builtin_neon_vcvtq_u16_v: {
8629     Ops[0] = Builder.CreateBitCast(Ops[0], GetFloatNeonType(this, Type));
8630     if (usgn)
8631       return Builder.CreateFPToUI(Ops[0], Ty);
8632     return Builder.CreateFPToSI(Ops[0], Ty);
8633   }
8634   case NEON::BI__builtin_neon_vcvta_s16_v:
8635   case NEON::BI__builtin_neon_vcvta_u16_v:
8636   case NEON::BI__builtin_neon_vcvta_s32_v:
8637   case NEON::BI__builtin_neon_vcvtaq_s16_v:
8638   case NEON::BI__builtin_neon_vcvtaq_s32_v:
8639   case NEON::BI__builtin_neon_vcvta_u32_v:
8640   case NEON::BI__builtin_neon_vcvtaq_u16_v:
8641   case NEON::BI__builtin_neon_vcvtaq_u32_v:
8642   case NEON::BI__builtin_neon_vcvta_s64_v:
8643   case NEON::BI__builtin_neon_vcvtaq_s64_v:
8644   case NEON::BI__builtin_neon_vcvta_u64_v:
8645   case NEON::BI__builtin_neon_vcvtaq_u64_v: {
8646     Int = usgn ? Intrinsic::aarch64_neon_fcvtau : Intrinsic::aarch64_neon_fcvtas;
8647     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
8648     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvta");
8649   }
8650   case NEON::BI__builtin_neon_vcvtm_s16_v:
8651   case NEON::BI__builtin_neon_vcvtm_s32_v:
8652   case NEON::BI__builtin_neon_vcvtmq_s16_v:
8653   case NEON::BI__builtin_neon_vcvtmq_s32_v:
8654   case NEON::BI__builtin_neon_vcvtm_u16_v:
8655   case NEON::BI__builtin_neon_vcvtm_u32_v:
8656   case NEON::BI__builtin_neon_vcvtmq_u16_v:
8657   case NEON::BI__builtin_neon_vcvtmq_u32_v:
8658   case NEON::BI__builtin_neon_vcvtm_s64_v:
8659   case NEON::BI__builtin_neon_vcvtmq_s64_v:
8660   case NEON::BI__builtin_neon_vcvtm_u64_v:
8661   case NEON::BI__builtin_neon_vcvtmq_u64_v: {
8662     Int = usgn ? Intrinsic::aarch64_neon_fcvtmu : Intrinsic::aarch64_neon_fcvtms;
8663     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
8664     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtm");
8665   }
8666   case NEON::BI__builtin_neon_vcvtn_s16_v:
8667   case NEON::BI__builtin_neon_vcvtn_s32_v:
8668   case NEON::BI__builtin_neon_vcvtnq_s16_v:
8669   case NEON::BI__builtin_neon_vcvtnq_s32_v:
8670   case NEON::BI__builtin_neon_vcvtn_u16_v:
8671   case NEON::BI__builtin_neon_vcvtn_u32_v:
8672   case NEON::BI__builtin_neon_vcvtnq_u16_v:
8673   case NEON::BI__builtin_neon_vcvtnq_u32_v:
8674   case NEON::BI__builtin_neon_vcvtn_s64_v:
8675   case NEON::BI__builtin_neon_vcvtnq_s64_v:
8676   case NEON::BI__builtin_neon_vcvtn_u64_v:
8677   case NEON::BI__builtin_neon_vcvtnq_u64_v: {
8678     Int = usgn ? Intrinsic::aarch64_neon_fcvtnu : Intrinsic::aarch64_neon_fcvtns;
8679     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
8680     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtn");
8681   }
8682   case NEON::BI__builtin_neon_vcvtp_s16_v:
8683   case NEON::BI__builtin_neon_vcvtp_s32_v:
8684   case NEON::BI__builtin_neon_vcvtpq_s16_v:
8685   case NEON::BI__builtin_neon_vcvtpq_s32_v:
8686   case NEON::BI__builtin_neon_vcvtp_u16_v:
8687   case NEON::BI__builtin_neon_vcvtp_u32_v:
8688   case NEON::BI__builtin_neon_vcvtpq_u16_v:
8689   case NEON::BI__builtin_neon_vcvtpq_u32_v:
8690   case NEON::BI__builtin_neon_vcvtp_s64_v:
8691   case NEON::BI__builtin_neon_vcvtpq_s64_v:
8692   case NEON::BI__builtin_neon_vcvtp_u64_v:
8693   case NEON::BI__builtin_neon_vcvtpq_u64_v: {
8694     Int = usgn ? Intrinsic::aarch64_neon_fcvtpu : Intrinsic::aarch64_neon_fcvtps;
8695     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
8696     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtp");
8697   }
8698   case NEON::BI__builtin_neon_vmulx_v:
8699   case NEON::BI__builtin_neon_vmulxq_v: {
8700     Int = Intrinsic::aarch64_neon_fmulx;
8701     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmulx");
8702   }
8703   case NEON::BI__builtin_neon_vmulxh_lane_f16:
8704   case NEON::BI__builtin_neon_vmulxh_laneq_f16: {
8705     // vmulx_lane should be mapped to Neon scalar mulx after
8706     // extracting the scalar element
8707     Ops.push_back(EmitScalarExpr(E->getArg(2)));
8708     Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract");
8709     Ops.pop_back();
8710     Int = Intrinsic::aarch64_neon_fmulx;
8711     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmulx");
8712   }
8713   case NEON::BI__builtin_neon_vmul_lane_v:
8714   case NEON::BI__builtin_neon_vmul_laneq_v: {
8715     // v1f64 vmul_lane should be mapped to Neon scalar mul lane
8716     bool Quad = false;
8717     if (BuiltinID == NEON::BI__builtin_neon_vmul_laneq_v)
8718       Quad = true;
8719     Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
8720     llvm::Type *VTy = GetNeonType(this,
8721       NeonTypeFlags(NeonTypeFlags::Float64, false, Quad));
8722     Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
8723     Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract");
8724     Value *Result = Builder.CreateFMul(Ops[0], Ops[1]);
8725     return Builder.CreateBitCast(Result, Ty);
8726   }
8727   case NEON::BI__builtin_neon_vnegd_s64:
8728     return Builder.CreateNeg(EmitScalarExpr(E->getArg(0)), "vnegd");
8729   case NEON::BI__builtin_neon_vnegh_f16:
8730     return Builder.CreateFNeg(EmitScalarExpr(E->getArg(0)), "vnegh");
8731   case NEON::BI__builtin_neon_vpmaxnm_v:
8732   case NEON::BI__builtin_neon_vpmaxnmq_v: {
8733     Int = Intrinsic::aarch64_neon_fmaxnmp;
8734     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmaxnm");
8735   }
8736   case NEON::BI__builtin_neon_vpminnm_v:
8737   case NEON::BI__builtin_neon_vpminnmq_v: {
8738     Int = Intrinsic::aarch64_neon_fminnmp;
8739     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpminnm");
8740   }
8741   case NEON::BI__builtin_neon_vsqrth_f16: {
8742     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8743     Int = Intrinsic::sqrt;
8744     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vsqrt");
8745   }
8746   case NEON::BI__builtin_neon_vsqrt_v:
8747   case NEON::BI__builtin_neon_vsqrtq_v: {
8748     Int = Intrinsic::sqrt;
8749     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
8750     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqrt");
8751   }
8752   case NEON::BI__builtin_neon_vrbit_v:
8753   case NEON::BI__builtin_neon_vrbitq_v: {
8754     Int = Intrinsic::aarch64_neon_rbit;
8755     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrbit");
8756   }
8757   case NEON::BI__builtin_neon_vaddv_u8:
8758     // FIXME: These are handled by the AArch64 scalar code.
8759     usgn = true;
8760     LLVM_FALLTHROUGH;
8761   case NEON::BI__builtin_neon_vaddv_s8: {
8762     Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
8763     Ty = Int32Ty;
8764     VTy = llvm::VectorType::get(Int8Ty, 8);
8765     llvm::Type *Tys[2] = { Ty, VTy };
8766     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8767     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
8768     return Builder.CreateTrunc(Ops[0], Int8Ty);
8769   }
8770   case NEON::BI__builtin_neon_vaddv_u16:
8771     usgn = true;
8772     LLVM_FALLTHROUGH;
8773   case NEON::BI__builtin_neon_vaddv_s16: {
8774     Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
8775     Ty = Int32Ty;
8776     VTy = llvm::VectorType::get(Int16Ty, 4);
8777     llvm::Type *Tys[2] = { Ty, VTy };
8778     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8779     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
8780     return Builder.CreateTrunc(Ops[0], Int16Ty);
8781   }
8782   case NEON::BI__builtin_neon_vaddvq_u8:
8783     usgn = true;
8784     LLVM_FALLTHROUGH;
8785   case NEON::BI__builtin_neon_vaddvq_s8: {
8786     Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
8787     Ty = Int32Ty;
8788     VTy = llvm::VectorType::get(Int8Ty, 16);
8789     llvm::Type *Tys[2] = { Ty, VTy };
8790     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8791     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
8792     return Builder.CreateTrunc(Ops[0], Int8Ty);
8793   }
8794   case NEON::BI__builtin_neon_vaddvq_u16:
8795     usgn = true;
8796     LLVM_FALLTHROUGH;
8797   case NEON::BI__builtin_neon_vaddvq_s16: {
8798     Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
8799     Ty = Int32Ty;
8800     VTy = llvm::VectorType::get(Int16Ty, 8);
8801     llvm::Type *Tys[2] = { Ty, VTy };
8802     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8803     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
8804     return Builder.CreateTrunc(Ops[0], Int16Ty);
8805   }
8806   case NEON::BI__builtin_neon_vmaxv_u8: {
8807     Int = Intrinsic::aarch64_neon_umaxv;
8808     Ty = Int32Ty;
8809     VTy = llvm::VectorType::get(Int8Ty, 8);
8810     llvm::Type *Tys[2] = { Ty, VTy };
8811     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8812     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
8813     return Builder.CreateTrunc(Ops[0], Int8Ty);
8814   }
8815   case NEON::BI__builtin_neon_vmaxv_u16: {
8816     Int = Intrinsic::aarch64_neon_umaxv;
8817     Ty = Int32Ty;
8818     VTy = llvm::VectorType::get(Int16Ty, 4);
8819     llvm::Type *Tys[2] = { Ty, VTy };
8820     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8821     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
8822     return Builder.CreateTrunc(Ops[0], Int16Ty);
8823   }
8824   case NEON::BI__builtin_neon_vmaxvq_u8: {
8825     Int = Intrinsic::aarch64_neon_umaxv;
8826     Ty = Int32Ty;
8827     VTy = llvm::VectorType::get(Int8Ty, 16);
8828     llvm::Type *Tys[2] = { Ty, VTy };
8829     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8830     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
8831     return Builder.CreateTrunc(Ops[0], Int8Ty);
8832   }
8833   case NEON::BI__builtin_neon_vmaxvq_u16: {
8834     Int = Intrinsic::aarch64_neon_umaxv;
8835     Ty = Int32Ty;
8836     VTy = llvm::VectorType::get(Int16Ty, 8);
8837     llvm::Type *Tys[2] = { Ty, VTy };
8838     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8839     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
8840     return Builder.CreateTrunc(Ops[0], Int16Ty);
8841   }
8842   case NEON::BI__builtin_neon_vmaxv_s8: {
8843     Int = Intrinsic::aarch64_neon_smaxv;
8844     Ty = Int32Ty;
8845     VTy = llvm::VectorType::get(Int8Ty, 8);
8846     llvm::Type *Tys[2] = { Ty, VTy };
8847     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8848     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
8849     return Builder.CreateTrunc(Ops[0], Int8Ty);
8850   }
8851   case NEON::BI__builtin_neon_vmaxv_s16: {
8852     Int = Intrinsic::aarch64_neon_smaxv;
8853     Ty = Int32Ty;
8854     VTy = llvm::VectorType::get(Int16Ty, 4);
8855     llvm::Type *Tys[2] = { Ty, VTy };
8856     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8857     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
8858     return Builder.CreateTrunc(Ops[0], Int16Ty);
8859   }
8860   case NEON::BI__builtin_neon_vmaxvq_s8: {
8861     Int = Intrinsic::aarch64_neon_smaxv;
8862     Ty = Int32Ty;
8863     VTy = llvm::VectorType::get(Int8Ty, 16);
8864     llvm::Type *Tys[2] = { Ty, VTy };
8865     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8866     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
8867     return Builder.CreateTrunc(Ops[0], Int8Ty);
8868   }
8869   case NEON::BI__builtin_neon_vmaxvq_s16: {
8870     Int = Intrinsic::aarch64_neon_smaxv;
8871     Ty = Int32Ty;
8872     VTy = llvm::VectorType::get(Int16Ty, 8);
8873     llvm::Type *Tys[2] = { Ty, VTy };
8874     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8875     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
8876     return Builder.CreateTrunc(Ops[0], Int16Ty);
8877   }
8878   case NEON::BI__builtin_neon_vmaxv_f16: {
8879     Int = Intrinsic::aarch64_neon_fmaxv;
8880     Ty = HalfTy;
8881     VTy = llvm::VectorType::get(HalfTy, 4);
8882     llvm::Type *Tys[2] = { Ty, VTy };
8883     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8884     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
8885     return Builder.CreateTrunc(Ops[0], HalfTy);
8886   }
8887   case NEON::BI__builtin_neon_vmaxvq_f16: {
8888     Int = Intrinsic::aarch64_neon_fmaxv;
8889     Ty = HalfTy;
8890     VTy = llvm::VectorType::get(HalfTy, 8);
8891     llvm::Type *Tys[2] = { Ty, VTy };
8892     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8893     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
8894     return Builder.CreateTrunc(Ops[0], HalfTy);
8895   }
8896   case NEON::BI__builtin_neon_vminv_u8: {
8897     Int = Intrinsic::aarch64_neon_uminv;
8898     Ty = Int32Ty;
8899     VTy = llvm::VectorType::get(Int8Ty, 8);
8900     llvm::Type *Tys[2] = { Ty, VTy };
8901     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8902     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
8903     return Builder.CreateTrunc(Ops[0], Int8Ty);
8904   }
8905   case NEON::BI__builtin_neon_vminv_u16: {
8906     Int = Intrinsic::aarch64_neon_uminv;
8907     Ty = Int32Ty;
8908     VTy = llvm::VectorType::get(Int16Ty, 4);
8909     llvm::Type *Tys[2] = { Ty, VTy };
8910     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8911     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
8912     return Builder.CreateTrunc(Ops[0], Int16Ty);
8913   }
8914   case NEON::BI__builtin_neon_vminvq_u8: {
8915     Int = Intrinsic::aarch64_neon_uminv;
8916     Ty = Int32Ty;
8917     VTy = llvm::VectorType::get(Int8Ty, 16);
8918     llvm::Type *Tys[2] = { Ty, VTy };
8919     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8920     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
8921     return Builder.CreateTrunc(Ops[0], Int8Ty);
8922   }
8923   case NEON::BI__builtin_neon_vminvq_u16: {
8924     Int = Intrinsic::aarch64_neon_uminv;
8925     Ty = Int32Ty;
8926     VTy = llvm::VectorType::get(Int16Ty, 8);
8927     llvm::Type *Tys[2] = { Ty, VTy };
8928     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8929     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
8930     return Builder.CreateTrunc(Ops[0], Int16Ty);
8931   }
8932   case NEON::BI__builtin_neon_vminv_s8: {
8933     Int = Intrinsic::aarch64_neon_sminv;
8934     Ty = Int32Ty;
8935     VTy = llvm::VectorType::get(Int8Ty, 8);
8936     llvm::Type *Tys[2] = { Ty, VTy };
8937     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8938     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
8939     return Builder.CreateTrunc(Ops[0], Int8Ty);
8940   }
8941   case NEON::BI__builtin_neon_vminv_s16: {
8942     Int = Intrinsic::aarch64_neon_sminv;
8943     Ty = Int32Ty;
8944     VTy = llvm::VectorType::get(Int16Ty, 4);
8945     llvm::Type *Tys[2] = { Ty, VTy };
8946     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8947     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
8948     return Builder.CreateTrunc(Ops[0], Int16Ty);
8949   }
8950   case NEON::BI__builtin_neon_vminvq_s8: {
8951     Int = Intrinsic::aarch64_neon_sminv;
8952     Ty = Int32Ty;
8953     VTy = llvm::VectorType::get(Int8Ty, 16);
8954     llvm::Type *Tys[2] = { Ty, VTy };
8955     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8956     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
8957     return Builder.CreateTrunc(Ops[0], Int8Ty);
8958   }
8959   case NEON::BI__builtin_neon_vminvq_s16: {
8960     Int = Intrinsic::aarch64_neon_sminv;
8961     Ty = Int32Ty;
8962     VTy = llvm::VectorType::get(Int16Ty, 8);
8963     llvm::Type *Tys[2] = { Ty, VTy };
8964     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8965     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
8966     return Builder.CreateTrunc(Ops[0], Int16Ty);
8967   }
8968   case NEON::BI__builtin_neon_vminv_f16: {
8969     Int = Intrinsic::aarch64_neon_fminv;
8970     Ty = HalfTy;
8971     VTy = llvm::VectorType::get(HalfTy, 4);
8972     llvm::Type *Tys[2] = { Ty, VTy };
8973     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8974     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
8975     return Builder.CreateTrunc(Ops[0], HalfTy);
8976   }
8977   case NEON::BI__builtin_neon_vminvq_f16: {
8978     Int = Intrinsic::aarch64_neon_fminv;
8979     Ty = HalfTy;
8980     VTy = llvm::VectorType::get(HalfTy, 8);
8981     llvm::Type *Tys[2] = { Ty, VTy };
8982     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8983     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
8984     return Builder.CreateTrunc(Ops[0], HalfTy);
8985   }
8986   case NEON::BI__builtin_neon_vmaxnmv_f16: {
8987     Int = Intrinsic::aarch64_neon_fmaxnmv;
8988     Ty = HalfTy;
8989     VTy = llvm::VectorType::get(HalfTy, 4);
8990     llvm::Type *Tys[2] = { Ty, VTy };
8991     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8992     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxnmv");
8993     return Builder.CreateTrunc(Ops[0], HalfTy);
8994   }
8995   case NEON::BI__builtin_neon_vmaxnmvq_f16: {
8996     Int = Intrinsic::aarch64_neon_fmaxnmv;
8997     Ty = HalfTy;
8998     VTy = llvm::VectorType::get(HalfTy, 8);
8999     llvm::Type *Tys[2] = { Ty, VTy };
9000     Ops.push_back(EmitScalarExpr(E->getArg(0)));
9001     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxnmv");
9002     return Builder.CreateTrunc(Ops[0], HalfTy);
9003   }
9004   case NEON::BI__builtin_neon_vminnmv_f16: {
9005     Int = Intrinsic::aarch64_neon_fminnmv;
9006     Ty = HalfTy;
9007     VTy = llvm::VectorType::get(HalfTy, 4);
9008     llvm::Type *Tys[2] = { Ty, VTy };
9009     Ops.push_back(EmitScalarExpr(E->getArg(0)));
9010     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminnmv");
9011     return Builder.CreateTrunc(Ops[0], HalfTy);
9012   }
9013   case NEON::BI__builtin_neon_vminnmvq_f16: {
9014     Int = Intrinsic::aarch64_neon_fminnmv;
9015     Ty = HalfTy;
9016     VTy = llvm::VectorType::get(HalfTy, 8);
9017     llvm::Type *Tys[2] = { Ty, VTy };
9018     Ops.push_back(EmitScalarExpr(E->getArg(0)));
9019     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminnmv");
9020     return Builder.CreateTrunc(Ops[0], HalfTy);
9021   }
9022   case NEON::BI__builtin_neon_vmul_n_f64: {
9023     Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
9024     Value *RHS = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), DoubleTy);
9025     return Builder.CreateFMul(Ops[0], RHS);
9026   }
9027   case NEON::BI__builtin_neon_vaddlv_u8: {
9028     Int = Intrinsic::aarch64_neon_uaddlv;
9029     Ty = Int32Ty;
9030     VTy = llvm::VectorType::get(Int8Ty, 8);
9031     llvm::Type *Tys[2] = { Ty, VTy };
9032     Ops.push_back(EmitScalarExpr(E->getArg(0)));
9033     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
9034     return Builder.CreateTrunc(Ops[0], Int16Ty);
9035   }
9036   case NEON::BI__builtin_neon_vaddlv_u16: {
9037     Int = Intrinsic::aarch64_neon_uaddlv;
9038     Ty = Int32Ty;
9039     VTy = llvm::VectorType::get(Int16Ty, 4);
9040     llvm::Type *Tys[2] = { Ty, VTy };
9041     Ops.push_back(EmitScalarExpr(E->getArg(0)));
9042     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
9043   }
9044   case NEON::BI__builtin_neon_vaddlvq_u8: {
9045     Int = Intrinsic::aarch64_neon_uaddlv;
9046     Ty = Int32Ty;
9047     VTy = llvm::VectorType::get(Int8Ty, 16);
9048     llvm::Type *Tys[2] = { Ty, VTy };
9049     Ops.push_back(EmitScalarExpr(E->getArg(0)));
9050     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
9051     return Builder.CreateTrunc(Ops[0], Int16Ty);
9052   }
9053   case NEON::BI__builtin_neon_vaddlvq_u16: {
9054     Int = Intrinsic::aarch64_neon_uaddlv;
9055     Ty = Int32Ty;
9056     VTy = llvm::VectorType::get(Int16Ty, 8);
9057     llvm::Type *Tys[2] = { Ty, VTy };
9058     Ops.push_back(EmitScalarExpr(E->getArg(0)));
9059     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
9060   }
9061   case NEON::BI__builtin_neon_vaddlv_s8: {
9062     Int = Intrinsic::aarch64_neon_saddlv;
9063     Ty = Int32Ty;
9064     VTy = llvm::VectorType::get(Int8Ty, 8);
9065     llvm::Type *Tys[2] = { Ty, VTy };
9066     Ops.push_back(EmitScalarExpr(E->getArg(0)));
9067     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
9068     return Builder.CreateTrunc(Ops[0], Int16Ty);
9069   }
9070   case NEON::BI__builtin_neon_vaddlv_s16: {
9071     Int = Intrinsic::aarch64_neon_saddlv;
9072     Ty = Int32Ty;
9073     VTy = llvm::VectorType::get(Int16Ty, 4);
9074     llvm::Type *Tys[2] = { Ty, VTy };
9075     Ops.push_back(EmitScalarExpr(E->getArg(0)));
9076     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
9077   }
9078   case NEON::BI__builtin_neon_vaddlvq_s8: {
9079     Int = Intrinsic::aarch64_neon_saddlv;
9080     Ty = Int32Ty;
9081     VTy = llvm::VectorType::get(Int8Ty, 16);
9082     llvm::Type *Tys[2] = { Ty, VTy };
9083     Ops.push_back(EmitScalarExpr(E->getArg(0)));
9084     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
9085     return Builder.CreateTrunc(Ops[0], Int16Ty);
9086   }
9087   case NEON::BI__builtin_neon_vaddlvq_s16: {
9088     Int = Intrinsic::aarch64_neon_saddlv;
9089     Ty = Int32Ty;
9090     VTy = llvm::VectorType::get(Int16Ty, 8);
9091     llvm::Type *Tys[2] = { Ty, VTy };
9092     Ops.push_back(EmitScalarExpr(E->getArg(0)));
9093     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
9094   }
9095   case NEON::BI__builtin_neon_vsri_n_v:
9096   case NEON::BI__builtin_neon_vsriq_n_v: {
9097     Int = Intrinsic::aarch64_neon_vsri;
9098     llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty);
9099     return EmitNeonCall(Intrin, Ops, "vsri_n");
9100   }
9101   case NEON::BI__builtin_neon_vsli_n_v:
9102   case NEON::BI__builtin_neon_vsliq_n_v: {
9103     Int = Intrinsic::aarch64_neon_vsli;
9104     llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty);
9105     return EmitNeonCall(Intrin, Ops, "vsli_n");
9106   }
9107   case NEON::BI__builtin_neon_vsra_n_v:
9108   case NEON::BI__builtin_neon_vsraq_n_v:
9109     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
9110     Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n");
9111     return Builder.CreateAdd(Ops[0], Ops[1]);
9112   case NEON::BI__builtin_neon_vrsra_n_v:
9113   case NEON::BI__builtin_neon_vrsraq_n_v: {
9114     Int = usgn ? Intrinsic::aarch64_neon_urshl : Intrinsic::aarch64_neon_srshl;
9115     SmallVector<llvm::Value*,2> TmpOps;
9116     TmpOps.push_back(Ops[1]);
9117     TmpOps.push_back(Ops[2]);
9118     Function* F = CGM.getIntrinsic(Int, Ty);
9119     llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vrshr_n", 1, true);
9120     Ops[0] = Builder.CreateBitCast(Ops[0], VTy);
9121     return Builder.CreateAdd(Ops[0], tmp);
9122   }
9123   case NEON::BI__builtin_neon_vld1_v:
9124   case NEON::BI__builtin_neon_vld1q_v: {
9125     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy));
9126     auto Alignment = CharUnits::fromQuantity(
9127         BuiltinID == NEON::BI__builtin_neon_vld1_v ? 8 : 16);
9128     return Builder.CreateAlignedLoad(VTy, Ops[0], Alignment);
9129   }
9130   case NEON::BI__builtin_neon_vst1_v:
9131   case NEON::BI__builtin_neon_vst1q_v:
9132     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy));
9133     Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
9134     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
9135   case NEON::BI__builtin_neon_vld1_lane_v:
9136   case NEON::BI__builtin_neon_vld1q_lane_v: {
9137     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
9138     Ty = llvm::PointerType::getUnqual(VTy->getElementType());
9139     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
9140     auto Alignment = CharUnits::fromQuantity(
9141         BuiltinID == NEON::BI__builtin_neon_vld1_lane_v ? 8 : 16);
9142     Ops[0] =
9143         Builder.CreateAlignedLoad(VTy->getElementType(), Ops[0], Alignment);
9144     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vld1_lane");
9145   }
9146   case NEON::BI__builtin_neon_vld1_dup_v:
9147   case NEON::BI__builtin_neon_vld1q_dup_v: {
9148     Value *V = UndefValue::get(Ty);
9149     Ty = llvm::PointerType::getUnqual(VTy->getElementType());
9150     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
9151     auto Alignment = CharUnits::fromQuantity(
9152         BuiltinID == NEON::BI__builtin_neon_vld1_dup_v ? 8 : 16);
9153     Ops[0] =
9154         Builder.CreateAlignedLoad(VTy->getElementType(), Ops[0], Alignment);
9155     llvm::Constant *CI = ConstantInt::get(Int32Ty, 0);
9156     Ops[0] = Builder.CreateInsertElement(V, Ops[0], CI);
9157     return EmitNeonSplat(Ops[0], CI);
9158   }
9159   case NEON::BI__builtin_neon_vst1_lane_v:
9160   case NEON::BI__builtin_neon_vst1q_lane_v:
9161     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
9162     Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
9163     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
9164     return Builder.CreateDefaultAlignedStore(Ops[1],
9165                                              Builder.CreateBitCast(Ops[0], Ty));
9166   case NEON::BI__builtin_neon_vld2_v:
9167   case NEON::BI__builtin_neon_vld2q_v: {
9168     llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
9169     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
9170     llvm::Type *Tys[2] = { VTy, PTy };
9171     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2, Tys);
9172     Ops[1] = Builder.CreateCall(F, Ops[1], "vld2");
9173     Ops[0] = Builder.CreateBitCast(Ops[0],
9174                 llvm::PointerType::getUnqual(Ops[1]->getType()));
9175     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
9176   }
9177   case NEON::BI__builtin_neon_vld3_v:
9178   case NEON::BI__builtin_neon_vld3q_v: {
9179     llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
9180     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
9181     llvm::Type *Tys[2] = { VTy, PTy };
9182     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3, Tys);
9183     Ops[1] = Builder.CreateCall(F, Ops[1], "vld3");
9184     Ops[0] = Builder.CreateBitCast(Ops[0],
9185                 llvm::PointerType::getUnqual(Ops[1]->getType()));
9186     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
9187   }
9188   case NEON::BI__builtin_neon_vld4_v:
9189   case NEON::BI__builtin_neon_vld4q_v: {
9190     llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
9191     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
9192     llvm::Type *Tys[2] = { VTy, PTy };
9193     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4, Tys);
9194     Ops[1] = Builder.CreateCall(F, Ops[1], "vld4");
9195     Ops[0] = Builder.CreateBitCast(Ops[0],
9196                 llvm::PointerType::getUnqual(Ops[1]->getType()));
9197     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
9198   }
9199   case NEON::BI__builtin_neon_vld2_dup_v:
9200   case NEON::BI__builtin_neon_vld2q_dup_v: {
9201     llvm::Type *PTy =
9202       llvm::PointerType::getUnqual(VTy->getElementType());
9203     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
9204     llvm::Type *Tys[2] = { VTy, PTy };
9205     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2r, Tys);
9206     Ops[1] = Builder.CreateCall(F, Ops[1], "vld2");
9207     Ops[0] = Builder.CreateBitCast(Ops[0],
9208                 llvm::PointerType::getUnqual(Ops[1]->getType()));
9209     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
9210   }
9211   case NEON::BI__builtin_neon_vld3_dup_v:
9212   case NEON::BI__builtin_neon_vld3q_dup_v: {
9213     llvm::Type *PTy =
9214       llvm::PointerType::getUnqual(VTy->getElementType());
9215     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
9216     llvm::Type *Tys[2] = { VTy, PTy };
9217     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3r, Tys);
9218     Ops[1] = Builder.CreateCall(F, Ops[1], "vld3");
9219     Ops[0] = Builder.CreateBitCast(Ops[0],
9220                 llvm::PointerType::getUnqual(Ops[1]->getType()));
9221     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
9222   }
9223   case NEON::BI__builtin_neon_vld4_dup_v:
9224   case NEON::BI__builtin_neon_vld4q_dup_v: {
9225     llvm::Type *PTy =
9226       llvm::PointerType::getUnqual(VTy->getElementType());
9227     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
9228     llvm::Type *Tys[2] = { VTy, PTy };
9229     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4r, Tys);
9230     Ops[1] = Builder.CreateCall(F, Ops[1], "vld4");
9231     Ops[0] = Builder.CreateBitCast(Ops[0],
9232                 llvm::PointerType::getUnqual(Ops[1]->getType()));
9233     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
9234   }
9235   case NEON::BI__builtin_neon_vld2_lane_v:
9236   case NEON::BI__builtin_neon_vld2q_lane_v: {
9237     llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
9238     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2lane, Tys);
9239     Ops.push_back(Ops[1]);
9240     Ops.erase(Ops.begin()+1);
9241     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
9242     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
9243     Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty);
9244     Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld2_lane");
9245     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
9246     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
9247     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
9248   }
9249   case NEON::BI__builtin_neon_vld3_lane_v:
9250   case NEON::BI__builtin_neon_vld3q_lane_v: {
9251     llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
9252     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3lane, Tys);
9253     Ops.push_back(Ops[1]);
9254     Ops.erase(Ops.begin()+1);
9255     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
9256     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
9257     Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
9258     Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty);
9259     Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld3_lane");
9260     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
9261     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
9262     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
9263   }
9264   case NEON::BI__builtin_neon_vld4_lane_v:
9265   case NEON::BI__builtin_neon_vld4q_lane_v: {
9266     llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
9267     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4lane, Tys);
9268     Ops.push_back(Ops[1]);
9269     Ops.erase(Ops.begin()+1);
9270     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
9271     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
9272     Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
9273     Ops[4] = Builder.CreateBitCast(Ops[4], Ty);
9274     Ops[5] = Builder.CreateZExt(Ops[5], Int64Ty);
9275     Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld4_lane");
9276     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
9277     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
9278     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
9279   }
9280   case NEON::BI__builtin_neon_vst2_v:
9281   case NEON::BI__builtin_neon_vst2q_v: {
9282     Ops.push_back(Ops[0]);
9283     Ops.erase(Ops.begin());
9284     llvm::Type *Tys[2] = { VTy, Ops[2]->getType() };
9285     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2, Tys),
9286                         Ops, "");
9287   }
9288   case NEON::BI__builtin_neon_vst2_lane_v:
9289   case NEON::BI__builtin_neon_vst2q_lane_v: {
9290     Ops.push_back(Ops[0]);
9291     Ops.erase(Ops.begin());
9292     Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty);
9293     llvm::Type *Tys[2] = { VTy, Ops[3]->getType() };
9294     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2lane, Tys),
9295                         Ops, "");
9296   }
9297   case NEON::BI__builtin_neon_vst3_v:
9298   case NEON::BI__builtin_neon_vst3q_v: {
9299     Ops.push_back(Ops[0]);
9300     Ops.erase(Ops.begin());
9301     llvm::Type *Tys[2] = { VTy, Ops[3]->getType() };
9302     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3, Tys),
9303                         Ops, "");
9304   }
9305   case NEON::BI__builtin_neon_vst3_lane_v:
9306   case NEON::BI__builtin_neon_vst3q_lane_v: {
9307     Ops.push_back(Ops[0]);
9308     Ops.erase(Ops.begin());
9309     Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty);
9310     llvm::Type *Tys[2] = { VTy, Ops[4]->getType() };
9311     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3lane, Tys),
9312                         Ops, "");
9313   }
9314   case NEON::BI__builtin_neon_vst4_v:
9315   case NEON::BI__builtin_neon_vst4q_v: {
9316     Ops.push_back(Ops[0]);
9317     Ops.erase(Ops.begin());
9318     llvm::Type *Tys[2] = { VTy, Ops[4]->getType() };
9319     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4, Tys),
9320                         Ops, "");
9321   }
9322   case NEON::BI__builtin_neon_vst4_lane_v:
9323   case NEON::BI__builtin_neon_vst4q_lane_v: {
9324     Ops.push_back(Ops[0]);
9325     Ops.erase(Ops.begin());
9326     Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty);
9327     llvm::Type *Tys[2] = { VTy, Ops[5]->getType() };
9328     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4lane, Tys),
9329                         Ops, "");
9330   }
9331   case NEON::BI__builtin_neon_vtrn_v:
9332   case NEON::BI__builtin_neon_vtrnq_v: {
9333     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
9334     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
9335     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
9336     Value *SV = nullptr;
9337 
9338     for (unsigned vi = 0; vi != 2; ++vi) {
9339       SmallVector<uint32_t, 16> Indices;
9340       for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
9341         Indices.push_back(i+vi);
9342         Indices.push_back(i+e+vi);
9343       }
9344       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
9345       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vtrn");
9346       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
9347     }
9348     return SV;
9349   }
9350   case NEON::BI__builtin_neon_vuzp_v:
9351   case NEON::BI__builtin_neon_vuzpq_v: {
9352     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
9353     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
9354     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
9355     Value *SV = nullptr;
9356 
9357     for (unsigned vi = 0; vi != 2; ++vi) {
9358       SmallVector<uint32_t, 16> Indices;
9359       for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
9360         Indices.push_back(2*i+vi);
9361 
9362       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
9363       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vuzp");
9364       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
9365     }
9366     return SV;
9367   }
9368   case NEON::BI__builtin_neon_vzip_v:
9369   case NEON::BI__builtin_neon_vzipq_v: {
9370     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
9371     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
9372     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
9373     Value *SV = nullptr;
9374 
9375     for (unsigned vi = 0; vi != 2; ++vi) {
9376       SmallVector<uint32_t, 16> Indices;
9377       for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
9378         Indices.push_back((i + vi*e) >> 1);
9379         Indices.push_back(((i + vi*e) >> 1)+e);
9380       }
9381       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
9382       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vzip");
9383       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
9384     }
9385     return SV;
9386   }
9387   case NEON::BI__builtin_neon_vqtbl1q_v: {
9388     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl1, Ty),
9389                         Ops, "vtbl1");
9390   }
9391   case NEON::BI__builtin_neon_vqtbl2q_v: {
9392     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl2, Ty),
9393                         Ops, "vtbl2");
9394   }
9395   case NEON::BI__builtin_neon_vqtbl3q_v: {
9396     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl3, Ty),
9397                         Ops, "vtbl3");
9398   }
9399   case NEON::BI__builtin_neon_vqtbl4q_v: {
9400     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl4, Ty),
9401                         Ops, "vtbl4");
9402   }
9403   case NEON::BI__builtin_neon_vqtbx1q_v: {
9404     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx1, Ty),
9405                         Ops, "vtbx1");
9406   }
9407   case NEON::BI__builtin_neon_vqtbx2q_v: {
9408     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx2, Ty),
9409                         Ops, "vtbx2");
9410   }
9411   case NEON::BI__builtin_neon_vqtbx3q_v: {
9412     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx3, Ty),
9413                         Ops, "vtbx3");
9414   }
9415   case NEON::BI__builtin_neon_vqtbx4q_v: {
9416     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx4, Ty),
9417                         Ops, "vtbx4");
9418   }
9419   case NEON::BI__builtin_neon_vsqadd_v:
9420   case NEON::BI__builtin_neon_vsqaddq_v: {
9421     Int = Intrinsic::aarch64_neon_usqadd;
9422     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqadd");
9423   }
9424   case NEON::BI__builtin_neon_vuqadd_v:
9425   case NEON::BI__builtin_neon_vuqaddq_v: {
9426     Int = Intrinsic::aarch64_neon_suqadd;
9427     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vuqadd");
9428   }
9429   }
9430 }
9431 
9432 Value *CodeGenFunction::EmitBPFBuiltinExpr(unsigned BuiltinID,
9433                                            const CallExpr *E) {
9434   assert(BuiltinID == BPF::BI__builtin_preserve_field_info &&
9435          "unexpected ARM builtin");
9436 
9437   const Expr *Arg = E->getArg(0);
9438   bool IsBitField = Arg->IgnoreParens()->getObjectKind() == OK_BitField;
9439 
9440   if (!getDebugInfo()) {
9441     CGM.Error(E->getExprLoc(), "using builtin_preserve_field_info() without -g");
9442     return IsBitField ? EmitLValue(Arg).getBitFieldPointer()
9443                       : EmitLValue(Arg).getPointer();
9444   }
9445 
9446   // Enable underlying preserve_*_access_index() generation.
9447   bool OldIsInPreservedAIRegion = IsInPreservedAIRegion;
9448   IsInPreservedAIRegion = true;
9449   Value *FieldAddr = IsBitField ? EmitLValue(Arg).getBitFieldPointer()
9450                                 : EmitLValue(Arg).getPointer();
9451   IsInPreservedAIRegion = OldIsInPreservedAIRegion;
9452 
9453   ConstantInt *C = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
9454   Value *InfoKind = ConstantInt::get(Int64Ty, C->getSExtValue());
9455 
9456   // Built the IR for the preserve_field_info intrinsic.
9457   llvm::Function *FnGetFieldInfo = llvm::Intrinsic::getDeclaration(
9458       &CGM.getModule(), llvm::Intrinsic::bpf_preserve_field_info,
9459       {FieldAddr->getType()});
9460   return Builder.CreateCall(FnGetFieldInfo, {FieldAddr, InfoKind});
9461 }
9462 
9463 llvm::Value *CodeGenFunction::
9464 BuildVector(ArrayRef<llvm::Value*> Ops) {
9465   assert((Ops.size() & (Ops.size() - 1)) == 0 &&
9466          "Not a power-of-two sized vector!");
9467   bool AllConstants = true;
9468   for (unsigned i = 0, e = Ops.size(); i != e && AllConstants; ++i)
9469     AllConstants &= isa<Constant>(Ops[i]);
9470 
9471   // If this is a constant vector, create a ConstantVector.
9472   if (AllConstants) {
9473     SmallVector<llvm::Constant*, 16> CstOps;
9474     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
9475       CstOps.push_back(cast<Constant>(Ops[i]));
9476     return llvm::ConstantVector::get(CstOps);
9477   }
9478 
9479   // Otherwise, insertelement the values to build the vector.
9480   Value *Result =
9481     llvm::UndefValue::get(llvm::VectorType::get(Ops[0]->getType(), Ops.size()));
9482 
9483   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
9484     Result = Builder.CreateInsertElement(Result, Ops[i], Builder.getInt32(i));
9485 
9486   return Result;
9487 }
9488 
9489 // Convert the mask from an integer type to a vector of i1.
9490 static Value *getMaskVecValue(CodeGenFunction &CGF, Value *Mask,
9491                               unsigned NumElts) {
9492 
9493   llvm::VectorType *MaskTy = llvm::VectorType::get(CGF.Builder.getInt1Ty(),
9494                          cast<IntegerType>(Mask->getType())->getBitWidth());
9495   Value *MaskVec = CGF.Builder.CreateBitCast(Mask, MaskTy);
9496 
9497   // If we have less than 8 elements, then the starting mask was an i8 and
9498   // we need to extract down to the right number of elements.
9499   if (NumElts < 8) {
9500     uint32_t Indices[4];
9501     for (unsigned i = 0; i != NumElts; ++i)
9502       Indices[i] = i;
9503     MaskVec = CGF.Builder.CreateShuffleVector(MaskVec, MaskVec,
9504                                              makeArrayRef(Indices, NumElts),
9505                                              "extract");
9506   }
9507   return MaskVec;
9508 }
9509 
9510 static Value *EmitX86MaskedStore(CodeGenFunction &CGF,
9511                                  ArrayRef<Value *> Ops,
9512                                  unsigned Align) {
9513   // Cast the pointer to right type.
9514   Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
9515                                llvm::PointerType::getUnqual(Ops[1]->getType()));
9516 
9517   Value *MaskVec = getMaskVecValue(CGF, Ops[2],
9518                                    Ops[1]->getType()->getVectorNumElements());
9519 
9520   return CGF.Builder.CreateMaskedStore(Ops[1], Ptr, Align, MaskVec);
9521 }
9522 
9523 static Value *EmitX86MaskedLoad(CodeGenFunction &CGF,
9524                                 ArrayRef<Value *> Ops, unsigned Align) {
9525   // Cast the pointer to right type.
9526   Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
9527                                llvm::PointerType::getUnqual(Ops[1]->getType()));
9528 
9529   Value *MaskVec = getMaskVecValue(CGF, Ops[2],
9530                                    Ops[1]->getType()->getVectorNumElements());
9531 
9532   return CGF.Builder.CreateMaskedLoad(Ptr, Align, MaskVec, Ops[1]);
9533 }
9534 
9535 static Value *EmitX86ExpandLoad(CodeGenFunction &CGF,
9536                                 ArrayRef<Value *> Ops) {
9537   llvm::Type *ResultTy = Ops[1]->getType();
9538   llvm::Type *PtrTy = ResultTy->getVectorElementType();
9539 
9540   // Cast the pointer to element type.
9541   Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
9542                                          llvm::PointerType::getUnqual(PtrTy));
9543 
9544   Value *MaskVec = getMaskVecValue(CGF, Ops[2],
9545                                    ResultTy->getVectorNumElements());
9546 
9547   llvm::Function *F = CGF.CGM.getIntrinsic(Intrinsic::masked_expandload,
9548                                            ResultTy);
9549   return CGF.Builder.CreateCall(F, { Ptr, MaskVec, Ops[1] });
9550 }
9551 
9552 static Value *EmitX86CompressExpand(CodeGenFunction &CGF,
9553                                     ArrayRef<Value *> Ops,
9554                                     bool IsCompress) {
9555   llvm::Type *ResultTy = Ops[1]->getType();
9556 
9557   Value *MaskVec = getMaskVecValue(CGF, Ops[2],
9558                                    ResultTy->getVectorNumElements());
9559 
9560   Intrinsic::ID IID = IsCompress ? Intrinsic::x86_avx512_mask_compress
9561                                  : Intrinsic::x86_avx512_mask_expand;
9562   llvm::Function *F = CGF.CGM.getIntrinsic(IID, ResultTy);
9563   return CGF.Builder.CreateCall(F, { Ops[0], Ops[1], MaskVec });
9564 }
9565 
9566 static Value *EmitX86CompressStore(CodeGenFunction &CGF,
9567                                    ArrayRef<Value *> Ops) {
9568   llvm::Type *ResultTy = Ops[1]->getType();
9569   llvm::Type *PtrTy = ResultTy->getVectorElementType();
9570 
9571   // Cast the pointer to element type.
9572   Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
9573                                          llvm::PointerType::getUnqual(PtrTy));
9574 
9575   Value *MaskVec = getMaskVecValue(CGF, Ops[2],
9576                                    ResultTy->getVectorNumElements());
9577 
9578   llvm::Function *F = CGF.CGM.getIntrinsic(Intrinsic::masked_compressstore,
9579                                            ResultTy);
9580   return CGF.Builder.CreateCall(F, { Ops[1], Ptr, MaskVec });
9581 }
9582 
9583 static Value *EmitX86MaskLogic(CodeGenFunction &CGF, Instruction::BinaryOps Opc,
9584                               ArrayRef<Value *> Ops,
9585                               bool InvertLHS = false) {
9586   unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
9587   Value *LHS = getMaskVecValue(CGF, Ops[0], NumElts);
9588   Value *RHS = getMaskVecValue(CGF, Ops[1], NumElts);
9589 
9590   if (InvertLHS)
9591     LHS = CGF.Builder.CreateNot(LHS);
9592 
9593   return CGF.Builder.CreateBitCast(CGF.Builder.CreateBinOp(Opc, LHS, RHS),
9594                                    Ops[0]->getType());
9595 }
9596 
9597 static Value *EmitX86FunnelShift(CodeGenFunction &CGF, Value *Op0, Value *Op1,
9598                                  Value *Amt, bool IsRight) {
9599   llvm::Type *Ty = Op0->getType();
9600 
9601   // Amount may be scalar immediate, in which case create a splat vector.
9602   // Funnel shifts amounts are treated as modulo and types are all power-of-2 so
9603   // we only care about the lowest log2 bits anyway.
9604   if (Amt->getType() != Ty) {
9605     unsigned NumElts = Ty->getVectorNumElements();
9606     Amt = CGF.Builder.CreateIntCast(Amt, Ty->getScalarType(), false);
9607     Amt = CGF.Builder.CreateVectorSplat(NumElts, Amt);
9608   }
9609 
9610   unsigned IID = IsRight ? Intrinsic::fshr : Intrinsic::fshl;
9611   Function *F = CGF.CGM.getIntrinsic(IID, Ty);
9612   return CGF.Builder.CreateCall(F, {Op0, Op1, Amt});
9613 }
9614 
9615 static Value *EmitX86vpcom(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
9616                            bool IsSigned) {
9617   Value *Op0 = Ops[0];
9618   Value *Op1 = Ops[1];
9619   llvm::Type *Ty = Op0->getType();
9620   uint64_t Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
9621 
9622   CmpInst::Predicate Pred;
9623   switch (Imm) {
9624   case 0x0:
9625     Pred = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
9626     break;
9627   case 0x1:
9628     Pred = IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
9629     break;
9630   case 0x2:
9631     Pred = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
9632     break;
9633   case 0x3:
9634     Pred = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
9635     break;
9636   case 0x4:
9637     Pred = ICmpInst::ICMP_EQ;
9638     break;
9639   case 0x5:
9640     Pred = ICmpInst::ICMP_NE;
9641     break;
9642   case 0x6:
9643     return llvm::Constant::getNullValue(Ty); // FALSE
9644   case 0x7:
9645     return llvm::Constant::getAllOnesValue(Ty); // TRUE
9646   default:
9647     llvm_unreachable("Unexpected XOP vpcom/vpcomu predicate");
9648   }
9649 
9650   Value *Cmp = CGF.Builder.CreateICmp(Pred, Op0, Op1);
9651   Value *Res = CGF.Builder.CreateSExt(Cmp, Ty);
9652   return Res;
9653 }
9654 
9655 static Value *EmitX86Select(CodeGenFunction &CGF,
9656                             Value *Mask, Value *Op0, Value *Op1) {
9657 
9658   // If the mask is all ones just return first argument.
9659   if (const auto *C = dyn_cast<Constant>(Mask))
9660     if (C->isAllOnesValue())
9661       return Op0;
9662 
9663   Mask = getMaskVecValue(CGF, Mask, Op0->getType()->getVectorNumElements());
9664 
9665   return CGF.Builder.CreateSelect(Mask, Op0, Op1);
9666 }
9667 
9668 static Value *EmitX86ScalarSelect(CodeGenFunction &CGF,
9669                                   Value *Mask, Value *Op0, Value *Op1) {
9670   // If the mask is all ones just return first argument.
9671   if (const auto *C = dyn_cast<Constant>(Mask))
9672     if (C->isAllOnesValue())
9673       return Op0;
9674 
9675   llvm::VectorType *MaskTy =
9676     llvm::VectorType::get(CGF.Builder.getInt1Ty(),
9677                           Mask->getType()->getIntegerBitWidth());
9678   Mask = CGF.Builder.CreateBitCast(Mask, MaskTy);
9679   Mask = CGF.Builder.CreateExtractElement(Mask, (uint64_t)0);
9680   return CGF.Builder.CreateSelect(Mask, Op0, Op1);
9681 }
9682 
9683 static Value *EmitX86MaskedCompareResult(CodeGenFunction &CGF, Value *Cmp,
9684                                          unsigned NumElts, Value *MaskIn) {
9685   if (MaskIn) {
9686     const auto *C = dyn_cast<Constant>(MaskIn);
9687     if (!C || !C->isAllOnesValue())
9688       Cmp = CGF.Builder.CreateAnd(Cmp, getMaskVecValue(CGF, MaskIn, NumElts));
9689   }
9690 
9691   if (NumElts < 8) {
9692     uint32_t Indices[8];
9693     for (unsigned i = 0; i != NumElts; ++i)
9694       Indices[i] = i;
9695     for (unsigned i = NumElts; i != 8; ++i)
9696       Indices[i] = i % NumElts + NumElts;
9697     Cmp = CGF.Builder.CreateShuffleVector(
9698         Cmp, llvm::Constant::getNullValue(Cmp->getType()), Indices);
9699   }
9700 
9701   return CGF.Builder.CreateBitCast(Cmp,
9702                                    IntegerType::get(CGF.getLLVMContext(),
9703                                                     std::max(NumElts, 8U)));
9704 }
9705 
9706 static Value *EmitX86MaskedCompare(CodeGenFunction &CGF, unsigned CC,
9707                                    bool Signed, ArrayRef<Value *> Ops) {
9708   assert((Ops.size() == 2 || Ops.size() == 4) &&
9709          "Unexpected number of arguments");
9710   unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
9711   Value *Cmp;
9712 
9713   if (CC == 3) {
9714     Cmp = Constant::getNullValue(
9715                        llvm::VectorType::get(CGF.Builder.getInt1Ty(), NumElts));
9716   } else if (CC == 7) {
9717     Cmp = Constant::getAllOnesValue(
9718                        llvm::VectorType::get(CGF.Builder.getInt1Ty(), NumElts));
9719   } else {
9720     ICmpInst::Predicate Pred;
9721     switch (CC) {
9722     default: llvm_unreachable("Unknown condition code");
9723     case 0: Pred = ICmpInst::ICMP_EQ;  break;
9724     case 1: Pred = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; break;
9725     case 2: Pred = Signed ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; break;
9726     case 4: Pred = ICmpInst::ICMP_NE;  break;
9727     case 5: Pred = Signed ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; break;
9728     case 6: Pred = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; break;
9729     }
9730     Cmp = CGF.Builder.CreateICmp(Pred, Ops[0], Ops[1]);
9731   }
9732 
9733   Value *MaskIn = nullptr;
9734   if (Ops.size() == 4)
9735     MaskIn = Ops[3];
9736 
9737   return EmitX86MaskedCompareResult(CGF, Cmp, NumElts, MaskIn);
9738 }
9739 
9740 static Value *EmitX86ConvertToMask(CodeGenFunction &CGF, Value *In) {
9741   Value *Zero = Constant::getNullValue(In->getType());
9742   return EmitX86MaskedCompare(CGF, 1, true, { In, Zero });
9743 }
9744 
9745 static Value *EmitX86ConvertIntToFp(CodeGenFunction &CGF,
9746                                     ArrayRef<Value *> Ops, bool IsSigned) {
9747   unsigned Rnd = cast<llvm::ConstantInt>(Ops[3])->getZExtValue();
9748   llvm::Type *Ty = Ops[1]->getType();
9749 
9750   Value *Res;
9751   if (Rnd != 4) {
9752     Intrinsic::ID IID = IsSigned ? Intrinsic::x86_avx512_sitofp_round
9753                                  : Intrinsic::x86_avx512_uitofp_round;
9754     Function *F = CGF.CGM.getIntrinsic(IID, { Ty, Ops[0]->getType() });
9755     Res = CGF.Builder.CreateCall(F, { Ops[0], Ops[3] });
9756   } else {
9757     Res = IsSigned ? CGF.Builder.CreateSIToFP(Ops[0], Ty)
9758                    : CGF.Builder.CreateUIToFP(Ops[0], Ty);
9759   }
9760 
9761   return EmitX86Select(CGF, Ops[2], Res, Ops[1]);
9762 }
9763 
9764 static Value *EmitX86Abs(CodeGenFunction &CGF, ArrayRef<Value *> Ops) {
9765 
9766   llvm::Type *Ty = Ops[0]->getType();
9767   Value *Zero = llvm::Constant::getNullValue(Ty);
9768   Value *Sub = CGF.Builder.CreateSub(Zero, Ops[0]);
9769   Value *Cmp = CGF.Builder.CreateICmp(ICmpInst::ICMP_SGT, Ops[0], Zero);
9770   Value *Res = CGF.Builder.CreateSelect(Cmp, Ops[0], Sub);
9771   return Res;
9772 }
9773 
9774 static Value *EmitX86MinMax(CodeGenFunction &CGF, ICmpInst::Predicate Pred,
9775                             ArrayRef<Value *> Ops) {
9776   Value *Cmp = CGF.Builder.CreateICmp(Pred, Ops[0], Ops[1]);
9777   Value *Res = CGF.Builder.CreateSelect(Cmp, Ops[0], Ops[1]);
9778 
9779   assert(Ops.size() == 2);
9780   return Res;
9781 }
9782 
9783 // Lowers X86 FMA intrinsics to IR.
9784 static Value *EmitX86FMAExpr(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
9785                              unsigned BuiltinID, bool IsAddSub) {
9786 
9787   bool Subtract = false;
9788   Intrinsic::ID IID = Intrinsic::not_intrinsic;
9789   switch (BuiltinID) {
9790   default: break;
9791   case clang::X86::BI__builtin_ia32_vfmsubps512_mask3:
9792     Subtract = true;
9793     LLVM_FALLTHROUGH;
9794   case clang::X86::BI__builtin_ia32_vfmaddps512_mask:
9795   case clang::X86::BI__builtin_ia32_vfmaddps512_maskz:
9796   case clang::X86::BI__builtin_ia32_vfmaddps512_mask3:
9797     IID = llvm::Intrinsic::x86_avx512_vfmadd_ps_512; break;
9798   case clang::X86::BI__builtin_ia32_vfmsubpd512_mask3:
9799     Subtract = true;
9800     LLVM_FALLTHROUGH;
9801   case clang::X86::BI__builtin_ia32_vfmaddpd512_mask:
9802   case clang::X86::BI__builtin_ia32_vfmaddpd512_maskz:
9803   case clang::X86::BI__builtin_ia32_vfmaddpd512_mask3:
9804     IID = llvm::Intrinsic::x86_avx512_vfmadd_pd_512; break;
9805   case clang::X86::BI__builtin_ia32_vfmsubaddps512_mask3:
9806     Subtract = true;
9807     LLVM_FALLTHROUGH;
9808   case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask:
9809   case clang::X86::BI__builtin_ia32_vfmaddsubps512_maskz:
9810   case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask3:
9811     IID = llvm::Intrinsic::x86_avx512_vfmaddsub_ps_512;
9812     break;
9813   case clang::X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
9814     Subtract = true;
9815     LLVM_FALLTHROUGH;
9816   case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask:
9817   case clang::X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
9818   case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
9819     IID = llvm::Intrinsic::x86_avx512_vfmaddsub_pd_512;
9820     break;
9821   }
9822 
9823   Value *A = Ops[0];
9824   Value *B = Ops[1];
9825   Value *C = Ops[2];
9826 
9827   if (Subtract)
9828     C = CGF.Builder.CreateFNeg(C);
9829 
9830   Value *Res;
9831 
9832   // Only handle in case of _MM_FROUND_CUR_DIRECTION/4 (no rounding).
9833   if (IID != Intrinsic::not_intrinsic &&
9834       cast<llvm::ConstantInt>(Ops.back())->getZExtValue() != (uint64_t)4) {
9835     Function *Intr = CGF.CGM.getIntrinsic(IID);
9836     Res = CGF.Builder.CreateCall(Intr, {A, B, C, Ops.back() });
9837   } else {
9838     llvm::Type *Ty = A->getType();
9839     Function *FMA = CGF.CGM.getIntrinsic(Intrinsic::fma, Ty);
9840     Res = CGF.Builder.CreateCall(FMA, {A, B, C} );
9841 
9842     if (IsAddSub) {
9843       // Negate even elts in C using a mask.
9844       unsigned NumElts = Ty->getVectorNumElements();
9845       SmallVector<uint32_t, 16> Indices(NumElts);
9846       for (unsigned i = 0; i != NumElts; ++i)
9847         Indices[i] = i + (i % 2) * NumElts;
9848 
9849       Value *NegC = CGF.Builder.CreateFNeg(C);
9850       Value *FMSub = CGF.Builder.CreateCall(FMA, {A, B, NegC} );
9851       Res = CGF.Builder.CreateShuffleVector(FMSub, Res, Indices);
9852     }
9853   }
9854 
9855   // Handle any required masking.
9856   Value *MaskFalseVal = nullptr;
9857   switch (BuiltinID) {
9858   case clang::X86::BI__builtin_ia32_vfmaddps512_mask:
9859   case clang::X86::BI__builtin_ia32_vfmaddpd512_mask:
9860   case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask:
9861   case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask:
9862     MaskFalseVal = Ops[0];
9863     break;
9864   case clang::X86::BI__builtin_ia32_vfmaddps512_maskz:
9865   case clang::X86::BI__builtin_ia32_vfmaddpd512_maskz:
9866   case clang::X86::BI__builtin_ia32_vfmaddsubps512_maskz:
9867   case clang::X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
9868     MaskFalseVal = Constant::getNullValue(Ops[0]->getType());
9869     break;
9870   case clang::X86::BI__builtin_ia32_vfmsubps512_mask3:
9871   case clang::X86::BI__builtin_ia32_vfmaddps512_mask3:
9872   case clang::X86::BI__builtin_ia32_vfmsubpd512_mask3:
9873   case clang::X86::BI__builtin_ia32_vfmaddpd512_mask3:
9874   case clang::X86::BI__builtin_ia32_vfmsubaddps512_mask3:
9875   case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask3:
9876   case clang::X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
9877   case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
9878     MaskFalseVal = Ops[2];
9879     break;
9880   }
9881 
9882   if (MaskFalseVal)
9883     return EmitX86Select(CGF, Ops[3], Res, MaskFalseVal);
9884 
9885   return Res;
9886 }
9887 
9888 static Value *
9889 EmitScalarFMAExpr(CodeGenFunction &CGF, MutableArrayRef<Value *> Ops,
9890                   Value *Upper, bool ZeroMask = false, unsigned PTIdx = 0,
9891                   bool NegAcc = false) {
9892   unsigned Rnd = 4;
9893   if (Ops.size() > 4)
9894     Rnd = cast<llvm::ConstantInt>(Ops[4])->getZExtValue();
9895 
9896   if (NegAcc)
9897     Ops[2] = CGF.Builder.CreateFNeg(Ops[2]);
9898 
9899   Ops[0] = CGF.Builder.CreateExtractElement(Ops[0], (uint64_t)0);
9900   Ops[1] = CGF.Builder.CreateExtractElement(Ops[1], (uint64_t)0);
9901   Ops[2] = CGF.Builder.CreateExtractElement(Ops[2], (uint64_t)0);
9902   Value *Res;
9903   if (Rnd != 4) {
9904     Intrinsic::ID IID = Ops[0]->getType()->getPrimitiveSizeInBits() == 32 ?
9905                         Intrinsic::x86_avx512_vfmadd_f32 :
9906                         Intrinsic::x86_avx512_vfmadd_f64;
9907     Res = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(IID),
9908                                  {Ops[0], Ops[1], Ops[2], Ops[4]});
9909   } else {
9910     Function *FMA = CGF.CGM.getIntrinsic(Intrinsic::fma, Ops[0]->getType());
9911     Res = CGF.Builder.CreateCall(FMA, Ops.slice(0, 3));
9912   }
9913   // If we have more than 3 arguments, we need to do masking.
9914   if (Ops.size() > 3) {
9915     Value *PassThru = ZeroMask ? Constant::getNullValue(Res->getType())
9916                                : Ops[PTIdx];
9917 
9918     // If we negated the accumulator and the its the PassThru value we need to
9919     // bypass the negate. Conveniently Upper should be the same thing in this
9920     // case.
9921     if (NegAcc && PTIdx == 2)
9922       PassThru = CGF.Builder.CreateExtractElement(Upper, (uint64_t)0);
9923 
9924     Res = EmitX86ScalarSelect(CGF, Ops[3], Res, PassThru);
9925   }
9926   return CGF.Builder.CreateInsertElement(Upper, Res, (uint64_t)0);
9927 }
9928 
9929 static Value *EmitX86Muldq(CodeGenFunction &CGF, bool IsSigned,
9930                            ArrayRef<Value *> Ops) {
9931   llvm::Type *Ty = Ops[0]->getType();
9932   // Arguments have a vXi32 type so cast to vXi64.
9933   Ty = llvm::VectorType::get(CGF.Int64Ty,
9934                              Ty->getPrimitiveSizeInBits() / 64);
9935   Value *LHS = CGF.Builder.CreateBitCast(Ops[0], Ty);
9936   Value *RHS = CGF.Builder.CreateBitCast(Ops[1], Ty);
9937 
9938   if (IsSigned) {
9939     // Shift left then arithmetic shift right.
9940     Constant *ShiftAmt = ConstantInt::get(Ty, 32);
9941     LHS = CGF.Builder.CreateShl(LHS, ShiftAmt);
9942     LHS = CGF.Builder.CreateAShr(LHS, ShiftAmt);
9943     RHS = CGF.Builder.CreateShl(RHS, ShiftAmt);
9944     RHS = CGF.Builder.CreateAShr(RHS, ShiftAmt);
9945   } else {
9946     // Clear the upper bits.
9947     Constant *Mask = ConstantInt::get(Ty, 0xffffffff);
9948     LHS = CGF.Builder.CreateAnd(LHS, Mask);
9949     RHS = CGF.Builder.CreateAnd(RHS, Mask);
9950   }
9951 
9952   return CGF.Builder.CreateMul(LHS, RHS);
9953 }
9954 
9955 // Emit a masked pternlog intrinsic. This only exists because the header has to
9956 // use a macro and we aren't able to pass the input argument to a pternlog
9957 // builtin and a select builtin without evaluating it twice.
9958 static Value *EmitX86Ternlog(CodeGenFunction &CGF, bool ZeroMask,
9959                              ArrayRef<Value *> Ops) {
9960   llvm::Type *Ty = Ops[0]->getType();
9961 
9962   unsigned VecWidth = Ty->getPrimitiveSizeInBits();
9963   unsigned EltWidth = Ty->getScalarSizeInBits();
9964   Intrinsic::ID IID;
9965   if (VecWidth == 128 && EltWidth == 32)
9966     IID = Intrinsic::x86_avx512_pternlog_d_128;
9967   else if (VecWidth == 256 && EltWidth == 32)
9968     IID = Intrinsic::x86_avx512_pternlog_d_256;
9969   else if (VecWidth == 512 && EltWidth == 32)
9970     IID = Intrinsic::x86_avx512_pternlog_d_512;
9971   else if (VecWidth == 128 && EltWidth == 64)
9972     IID = Intrinsic::x86_avx512_pternlog_q_128;
9973   else if (VecWidth == 256 && EltWidth == 64)
9974     IID = Intrinsic::x86_avx512_pternlog_q_256;
9975   else if (VecWidth == 512 && EltWidth == 64)
9976     IID = Intrinsic::x86_avx512_pternlog_q_512;
9977   else
9978     llvm_unreachable("Unexpected intrinsic");
9979 
9980   Value *Ternlog = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(IID),
9981                                           Ops.drop_back());
9982   Value *PassThru = ZeroMask ? ConstantAggregateZero::get(Ty) : Ops[0];
9983   return EmitX86Select(CGF, Ops[4], Ternlog, PassThru);
9984 }
9985 
9986 static Value *EmitX86SExtMask(CodeGenFunction &CGF, Value *Op,
9987                               llvm::Type *DstTy) {
9988   unsigned NumberOfElements = DstTy->getVectorNumElements();
9989   Value *Mask = getMaskVecValue(CGF, Op, NumberOfElements);
9990   return CGF.Builder.CreateSExt(Mask, DstTy, "vpmovm2");
9991 }
9992 
9993 // Emit addition or subtraction with signed/unsigned saturation.
9994 static Value *EmitX86AddSubSatExpr(CodeGenFunction &CGF,
9995                                    ArrayRef<Value *> Ops, bool IsSigned,
9996                                    bool IsAddition) {
9997   Intrinsic::ID IID =
9998       IsSigned ? (IsAddition ? Intrinsic::sadd_sat : Intrinsic::ssub_sat)
9999                : (IsAddition ? Intrinsic::uadd_sat : Intrinsic::usub_sat);
10000   llvm::Function *F = CGF.CGM.getIntrinsic(IID, Ops[0]->getType());
10001   return CGF.Builder.CreateCall(F, {Ops[0], Ops[1]});
10002 }
10003 
10004 Value *CodeGenFunction::EmitX86CpuIs(const CallExpr *E) {
10005   const Expr *CPUExpr = E->getArg(0)->IgnoreParenCasts();
10006   StringRef CPUStr = cast<clang::StringLiteral>(CPUExpr)->getString();
10007   return EmitX86CpuIs(CPUStr);
10008 }
10009 
10010 // Convert a BF16 to a float.
10011 static Value *EmitX86CvtBF16ToFloatExpr(CodeGenFunction &CGF,
10012                                         const CallExpr *E,
10013                                         ArrayRef<Value *> Ops) {
10014   llvm::Type *Int32Ty = CGF.Builder.getInt32Ty();
10015   Value *ZeroExt = CGF.Builder.CreateZExt(Ops[0], Int32Ty);
10016   Value *Shl = CGF.Builder.CreateShl(ZeroExt, 16);
10017   llvm::Type *ResultType = CGF.ConvertType(E->getType());
10018   Value *BitCast = CGF.Builder.CreateBitCast(Shl, ResultType);
10019   return BitCast;
10020 }
10021 
10022 Value *CodeGenFunction::EmitX86CpuIs(StringRef CPUStr) {
10023 
10024   llvm::Type *Int32Ty = Builder.getInt32Ty();
10025 
10026   // Matching the struct layout from the compiler-rt/libgcc structure that is
10027   // filled in:
10028   // unsigned int __cpu_vendor;
10029   // unsigned int __cpu_type;
10030   // unsigned int __cpu_subtype;
10031   // unsigned int __cpu_features[1];
10032   llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty,
10033                                           llvm::ArrayType::get(Int32Ty, 1));
10034 
10035   // Grab the global __cpu_model.
10036   llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model");
10037   cast<llvm::GlobalValue>(CpuModel)->setDSOLocal(true);
10038 
10039   // Calculate the index needed to access the correct field based on the
10040   // range. Also adjust the expected value.
10041   unsigned Index;
10042   unsigned Value;
10043   std::tie(Index, Value) = StringSwitch<std::pair<unsigned, unsigned>>(CPUStr)
10044 #define X86_VENDOR(ENUM, STRING)                                               \
10045   .Case(STRING, {0u, static_cast<unsigned>(llvm::X86::ENUM)})
10046 #define X86_CPU_TYPE_COMPAT_WITH_ALIAS(ARCHNAME, ENUM, STR, ALIAS)             \
10047   .Cases(STR, ALIAS, {1u, static_cast<unsigned>(llvm::X86::ENUM)})
10048 #define X86_CPU_TYPE_COMPAT(ARCHNAME, ENUM, STR)                               \
10049   .Case(STR, {1u, static_cast<unsigned>(llvm::X86::ENUM)})
10050 #define X86_CPU_SUBTYPE_COMPAT(ARCHNAME, ENUM, STR)                            \
10051   .Case(STR, {2u, static_cast<unsigned>(llvm::X86::ENUM)})
10052 #include "llvm/Support/X86TargetParser.def"
10053                                .Default({0, 0});
10054   assert(Value != 0 && "Invalid CPUStr passed to CpuIs");
10055 
10056   // Grab the appropriate field from __cpu_model.
10057   llvm::Value *Idxs[] = {ConstantInt::get(Int32Ty, 0),
10058                          ConstantInt::get(Int32Ty, Index)};
10059   llvm::Value *CpuValue = Builder.CreateGEP(STy, CpuModel, Idxs);
10060   CpuValue = Builder.CreateAlignedLoad(CpuValue, CharUnits::fromQuantity(4));
10061 
10062   // Check the value of the field against the requested value.
10063   return Builder.CreateICmpEQ(CpuValue,
10064                                   llvm::ConstantInt::get(Int32Ty, Value));
10065 }
10066 
10067 Value *CodeGenFunction::EmitX86CpuSupports(const CallExpr *E) {
10068   const Expr *FeatureExpr = E->getArg(0)->IgnoreParenCasts();
10069   StringRef FeatureStr = cast<StringLiteral>(FeatureExpr)->getString();
10070   return EmitX86CpuSupports(FeatureStr);
10071 }
10072 
10073 uint64_t
10074 CodeGenFunction::GetX86CpuSupportsMask(ArrayRef<StringRef> FeatureStrs) {
10075   // Processor features and mapping to processor feature value.
10076   uint64_t FeaturesMask = 0;
10077   for (const StringRef &FeatureStr : FeatureStrs) {
10078     unsigned Feature =
10079         StringSwitch<unsigned>(FeatureStr)
10080 #define X86_FEATURE_COMPAT(VAL, ENUM, STR) .Case(STR, VAL)
10081 #include "llvm/Support/X86TargetParser.def"
10082         ;
10083     FeaturesMask |= (1ULL << Feature);
10084   }
10085   return FeaturesMask;
10086 }
10087 
10088 Value *CodeGenFunction::EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs) {
10089   return EmitX86CpuSupports(GetX86CpuSupportsMask(FeatureStrs));
10090 }
10091 
10092 llvm::Value *CodeGenFunction::EmitX86CpuSupports(uint64_t FeaturesMask) {
10093   uint32_t Features1 = Lo_32(FeaturesMask);
10094   uint32_t Features2 = Hi_32(FeaturesMask);
10095 
10096   Value *Result = Builder.getTrue();
10097 
10098   if (Features1 != 0) {
10099     // Matching the struct layout from the compiler-rt/libgcc structure that is
10100     // filled in:
10101     // unsigned int __cpu_vendor;
10102     // unsigned int __cpu_type;
10103     // unsigned int __cpu_subtype;
10104     // unsigned int __cpu_features[1];
10105     llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty,
10106                                             llvm::ArrayType::get(Int32Ty, 1));
10107 
10108     // Grab the global __cpu_model.
10109     llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model");
10110     cast<llvm::GlobalValue>(CpuModel)->setDSOLocal(true);
10111 
10112     // Grab the first (0th) element from the field __cpu_features off of the
10113     // global in the struct STy.
10114     Value *Idxs[] = {Builder.getInt32(0), Builder.getInt32(3),
10115                      Builder.getInt32(0)};
10116     Value *CpuFeatures = Builder.CreateGEP(STy, CpuModel, Idxs);
10117     Value *Features =
10118         Builder.CreateAlignedLoad(CpuFeatures, CharUnits::fromQuantity(4));
10119 
10120     // Check the value of the bit corresponding to the feature requested.
10121     Value *Mask = Builder.getInt32(Features1);
10122     Value *Bitset = Builder.CreateAnd(Features, Mask);
10123     Value *Cmp = Builder.CreateICmpEQ(Bitset, Mask);
10124     Result = Builder.CreateAnd(Result, Cmp);
10125   }
10126 
10127   if (Features2 != 0) {
10128     llvm::Constant *CpuFeatures2 = CGM.CreateRuntimeVariable(Int32Ty,
10129                                                              "__cpu_features2");
10130     cast<llvm::GlobalValue>(CpuFeatures2)->setDSOLocal(true);
10131 
10132     Value *Features =
10133         Builder.CreateAlignedLoad(CpuFeatures2, CharUnits::fromQuantity(4));
10134 
10135     // Check the value of the bit corresponding to the feature requested.
10136     Value *Mask = Builder.getInt32(Features2);
10137     Value *Bitset = Builder.CreateAnd(Features, Mask);
10138     Value *Cmp = Builder.CreateICmpEQ(Bitset, Mask);
10139     Result = Builder.CreateAnd(Result, Cmp);
10140   }
10141 
10142   return Result;
10143 }
10144 
10145 Value *CodeGenFunction::EmitX86CpuInit() {
10146   llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy,
10147                                                     /*Variadic*/ false);
10148   llvm::FunctionCallee Func =
10149       CGM.CreateRuntimeFunction(FTy, "__cpu_indicator_init");
10150   cast<llvm::GlobalValue>(Func.getCallee())->setDSOLocal(true);
10151   cast<llvm::GlobalValue>(Func.getCallee())
10152       ->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
10153   return Builder.CreateCall(Func);
10154 }
10155 
10156 Value *CodeGenFunction::EmitX86BuiltinExpr(unsigned BuiltinID,
10157                                            const CallExpr *E) {
10158   if (BuiltinID == X86::BI__builtin_cpu_is)
10159     return EmitX86CpuIs(E);
10160   if (BuiltinID == X86::BI__builtin_cpu_supports)
10161     return EmitX86CpuSupports(E);
10162   if (BuiltinID == X86::BI__builtin_cpu_init)
10163     return EmitX86CpuInit();
10164 
10165   SmallVector<Value*, 4> Ops;
10166 
10167   // Find out if any arguments are required to be integer constant expressions.
10168   unsigned ICEArguments = 0;
10169   ASTContext::GetBuiltinTypeError Error;
10170   getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
10171   assert(Error == ASTContext::GE_None && "Should not codegen an error");
10172 
10173   for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
10174     // If this is a normal argument, just emit it as a scalar.
10175     if ((ICEArguments & (1 << i)) == 0) {
10176       Ops.push_back(EmitScalarExpr(E->getArg(i)));
10177       continue;
10178     }
10179 
10180     // If this is required to be a constant, constant fold it so that we know
10181     // that the generated intrinsic gets a ConstantInt.
10182     llvm::APSInt Result;
10183     bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext());
10184     assert(IsConst && "Constant arg isn't actually constant?"); (void)IsConst;
10185     Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result));
10186   }
10187 
10188   // These exist so that the builtin that takes an immediate can be bounds
10189   // checked by clang to avoid passing bad immediates to the backend. Since
10190   // AVX has a larger immediate than SSE we would need separate builtins to
10191   // do the different bounds checking. Rather than create a clang specific
10192   // SSE only builtin, this implements eight separate builtins to match gcc
10193   // implementation.
10194   auto getCmpIntrinsicCall = [this, &Ops](Intrinsic::ID ID, unsigned Imm) {
10195     Ops.push_back(llvm::ConstantInt::get(Int8Ty, Imm));
10196     llvm::Function *F = CGM.getIntrinsic(ID);
10197     return Builder.CreateCall(F, Ops);
10198   };
10199 
10200   // For the vector forms of FP comparisons, translate the builtins directly to
10201   // IR.
10202   // TODO: The builtins could be removed if the SSE header files used vector
10203   // extension comparisons directly (vector ordered/unordered may need
10204   // additional support via __builtin_isnan()).
10205   auto getVectorFCmpIR = [this, &Ops](CmpInst::Predicate Pred) {
10206     Value *Cmp = Builder.CreateFCmp(Pred, Ops[0], Ops[1]);
10207     llvm::VectorType *FPVecTy = cast<llvm::VectorType>(Ops[0]->getType());
10208     llvm::VectorType *IntVecTy = llvm::VectorType::getInteger(FPVecTy);
10209     Value *Sext = Builder.CreateSExt(Cmp, IntVecTy);
10210     return Builder.CreateBitCast(Sext, FPVecTy);
10211   };
10212 
10213   switch (BuiltinID) {
10214   default: return nullptr;
10215   case X86::BI_mm_prefetch: {
10216     Value *Address = Ops[0];
10217     ConstantInt *C = cast<ConstantInt>(Ops[1]);
10218     Value *RW = ConstantInt::get(Int32Ty, (C->getZExtValue() >> 2) & 0x1);
10219     Value *Locality = ConstantInt::get(Int32Ty, C->getZExtValue() & 0x3);
10220     Value *Data = ConstantInt::get(Int32Ty, 1);
10221     Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
10222     return Builder.CreateCall(F, {Address, RW, Locality, Data});
10223   }
10224   case X86::BI_mm_clflush: {
10225     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_clflush),
10226                               Ops[0]);
10227   }
10228   case X86::BI_mm_lfence: {
10229     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_lfence));
10230   }
10231   case X86::BI_mm_mfence: {
10232     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_mfence));
10233   }
10234   case X86::BI_mm_sfence: {
10235     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_sfence));
10236   }
10237   case X86::BI_mm_pause: {
10238     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_pause));
10239   }
10240   case X86::BI__rdtsc: {
10241     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_rdtsc));
10242   }
10243   case X86::BI__builtin_ia32_rdtscp: {
10244     Value *Call = Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_rdtscp));
10245     Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 1),
10246                                       Ops[0]);
10247     return Builder.CreateExtractValue(Call, 0);
10248   }
10249   case X86::BI__builtin_ia32_lzcnt_u16:
10250   case X86::BI__builtin_ia32_lzcnt_u32:
10251   case X86::BI__builtin_ia32_lzcnt_u64: {
10252     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType());
10253     return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)});
10254   }
10255   case X86::BI__builtin_ia32_tzcnt_u16:
10256   case X86::BI__builtin_ia32_tzcnt_u32:
10257   case X86::BI__builtin_ia32_tzcnt_u64: {
10258     Function *F = CGM.getIntrinsic(Intrinsic::cttz, Ops[0]->getType());
10259     return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)});
10260   }
10261   case X86::BI__builtin_ia32_undef128:
10262   case X86::BI__builtin_ia32_undef256:
10263   case X86::BI__builtin_ia32_undef512:
10264     // The x86 definition of "undef" is not the same as the LLVM definition
10265     // (PR32176). We leave optimizing away an unnecessary zero constant to the
10266     // IR optimizer and backend.
10267     // TODO: If we had a "freeze" IR instruction to generate a fixed undef
10268     // value, we should use that here instead of a zero.
10269     return llvm::Constant::getNullValue(ConvertType(E->getType()));
10270   case X86::BI__builtin_ia32_vec_init_v8qi:
10271   case X86::BI__builtin_ia32_vec_init_v4hi:
10272   case X86::BI__builtin_ia32_vec_init_v2si:
10273     return Builder.CreateBitCast(BuildVector(Ops),
10274                                  llvm::Type::getX86_MMXTy(getLLVMContext()));
10275   case X86::BI__builtin_ia32_vec_ext_v2si:
10276   case X86::BI__builtin_ia32_vec_ext_v16qi:
10277   case X86::BI__builtin_ia32_vec_ext_v8hi:
10278   case X86::BI__builtin_ia32_vec_ext_v4si:
10279   case X86::BI__builtin_ia32_vec_ext_v4sf:
10280   case X86::BI__builtin_ia32_vec_ext_v2di:
10281   case X86::BI__builtin_ia32_vec_ext_v32qi:
10282   case X86::BI__builtin_ia32_vec_ext_v16hi:
10283   case X86::BI__builtin_ia32_vec_ext_v8si:
10284   case X86::BI__builtin_ia32_vec_ext_v4di: {
10285     unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
10286     uint64_t Index = cast<ConstantInt>(Ops[1])->getZExtValue();
10287     Index &= NumElts - 1;
10288     // These builtins exist so we can ensure the index is an ICE and in range.
10289     // Otherwise we could just do this in the header file.
10290     return Builder.CreateExtractElement(Ops[0], Index);
10291   }
10292   case X86::BI__builtin_ia32_vec_set_v16qi:
10293   case X86::BI__builtin_ia32_vec_set_v8hi:
10294   case X86::BI__builtin_ia32_vec_set_v4si:
10295   case X86::BI__builtin_ia32_vec_set_v2di:
10296   case X86::BI__builtin_ia32_vec_set_v32qi:
10297   case X86::BI__builtin_ia32_vec_set_v16hi:
10298   case X86::BI__builtin_ia32_vec_set_v8si:
10299   case X86::BI__builtin_ia32_vec_set_v4di: {
10300     unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
10301     unsigned Index = cast<ConstantInt>(Ops[2])->getZExtValue();
10302     Index &= NumElts - 1;
10303     // These builtins exist so we can ensure the index is an ICE and in range.
10304     // Otherwise we could just do this in the header file.
10305     return Builder.CreateInsertElement(Ops[0], Ops[1], Index);
10306   }
10307   case X86::BI_mm_setcsr:
10308   case X86::BI__builtin_ia32_ldmxcsr: {
10309     Address Tmp = CreateMemTemp(E->getArg(0)->getType());
10310     Builder.CreateStore(Ops[0], Tmp);
10311     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_ldmxcsr),
10312                           Builder.CreateBitCast(Tmp.getPointer(), Int8PtrTy));
10313   }
10314   case X86::BI_mm_getcsr:
10315   case X86::BI__builtin_ia32_stmxcsr: {
10316     Address Tmp = CreateMemTemp(E->getType());
10317     Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_stmxcsr),
10318                        Builder.CreateBitCast(Tmp.getPointer(), Int8PtrTy));
10319     return Builder.CreateLoad(Tmp, "stmxcsr");
10320   }
10321   case X86::BI__builtin_ia32_xsave:
10322   case X86::BI__builtin_ia32_xsave64:
10323   case X86::BI__builtin_ia32_xrstor:
10324   case X86::BI__builtin_ia32_xrstor64:
10325   case X86::BI__builtin_ia32_xsaveopt:
10326   case X86::BI__builtin_ia32_xsaveopt64:
10327   case X86::BI__builtin_ia32_xrstors:
10328   case X86::BI__builtin_ia32_xrstors64:
10329   case X86::BI__builtin_ia32_xsavec:
10330   case X86::BI__builtin_ia32_xsavec64:
10331   case X86::BI__builtin_ia32_xsaves:
10332   case X86::BI__builtin_ia32_xsaves64:
10333   case X86::BI__builtin_ia32_xsetbv:
10334   case X86::BI_xsetbv: {
10335     Intrinsic::ID ID;
10336 #define INTRINSIC_X86_XSAVE_ID(NAME) \
10337     case X86::BI__builtin_ia32_##NAME: \
10338       ID = Intrinsic::x86_##NAME; \
10339       break
10340     switch (BuiltinID) {
10341     default: llvm_unreachable("Unsupported intrinsic!");
10342     INTRINSIC_X86_XSAVE_ID(xsave);
10343     INTRINSIC_X86_XSAVE_ID(xsave64);
10344     INTRINSIC_X86_XSAVE_ID(xrstor);
10345     INTRINSIC_X86_XSAVE_ID(xrstor64);
10346     INTRINSIC_X86_XSAVE_ID(xsaveopt);
10347     INTRINSIC_X86_XSAVE_ID(xsaveopt64);
10348     INTRINSIC_X86_XSAVE_ID(xrstors);
10349     INTRINSIC_X86_XSAVE_ID(xrstors64);
10350     INTRINSIC_X86_XSAVE_ID(xsavec);
10351     INTRINSIC_X86_XSAVE_ID(xsavec64);
10352     INTRINSIC_X86_XSAVE_ID(xsaves);
10353     INTRINSIC_X86_XSAVE_ID(xsaves64);
10354     INTRINSIC_X86_XSAVE_ID(xsetbv);
10355     case X86::BI_xsetbv:
10356       ID = Intrinsic::x86_xsetbv;
10357       break;
10358     }
10359 #undef INTRINSIC_X86_XSAVE_ID
10360     Value *Mhi = Builder.CreateTrunc(
10361       Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, 32)), Int32Ty);
10362     Value *Mlo = Builder.CreateTrunc(Ops[1], Int32Ty);
10363     Ops[1] = Mhi;
10364     Ops.push_back(Mlo);
10365     return Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
10366   }
10367   case X86::BI__builtin_ia32_xgetbv:
10368   case X86::BI_xgetbv:
10369     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_xgetbv), Ops);
10370   case X86::BI__builtin_ia32_storedqudi128_mask:
10371   case X86::BI__builtin_ia32_storedqusi128_mask:
10372   case X86::BI__builtin_ia32_storedquhi128_mask:
10373   case X86::BI__builtin_ia32_storedquqi128_mask:
10374   case X86::BI__builtin_ia32_storeupd128_mask:
10375   case X86::BI__builtin_ia32_storeups128_mask:
10376   case X86::BI__builtin_ia32_storedqudi256_mask:
10377   case X86::BI__builtin_ia32_storedqusi256_mask:
10378   case X86::BI__builtin_ia32_storedquhi256_mask:
10379   case X86::BI__builtin_ia32_storedquqi256_mask:
10380   case X86::BI__builtin_ia32_storeupd256_mask:
10381   case X86::BI__builtin_ia32_storeups256_mask:
10382   case X86::BI__builtin_ia32_storedqudi512_mask:
10383   case X86::BI__builtin_ia32_storedqusi512_mask:
10384   case X86::BI__builtin_ia32_storedquhi512_mask:
10385   case X86::BI__builtin_ia32_storedquqi512_mask:
10386   case X86::BI__builtin_ia32_storeupd512_mask:
10387   case X86::BI__builtin_ia32_storeups512_mask:
10388     return EmitX86MaskedStore(*this, Ops, 1);
10389 
10390   case X86::BI__builtin_ia32_storess128_mask:
10391   case X86::BI__builtin_ia32_storesd128_mask: {
10392     return EmitX86MaskedStore(*this, Ops, 1);
10393   }
10394   case X86::BI__builtin_ia32_vpopcntb_128:
10395   case X86::BI__builtin_ia32_vpopcntd_128:
10396   case X86::BI__builtin_ia32_vpopcntq_128:
10397   case X86::BI__builtin_ia32_vpopcntw_128:
10398   case X86::BI__builtin_ia32_vpopcntb_256:
10399   case X86::BI__builtin_ia32_vpopcntd_256:
10400   case X86::BI__builtin_ia32_vpopcntq_256:
10401   case X86::BI__builtin_ia32_vpopcntw_256:
10402   case X86::BI__builtin_ia32_vpopcntb_512:
10403   case X86::BI__builtin_ia32_vpopcntd_512:
10404   case X86::BI__builtin_ia32_vpopcntq_512:
10405   case X86::BI__builtin_ia32_vpopcntw_512: {
10406     llvm::Type *ResultType = ConvertType(E->getType());
10407     llvm::Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
10408     return Builder.CreateCall(F, Ops);
10409   }
10410   case X86::BI__builtin_ia32_cvtmask2b128:
10411   case X86::BI__builtin_ia32_cvtmask2b256:
10412   case X86::BI__builtin_ia32_cvtmask2b512:
10413   case X86::BI__builtin_ia32_cvtmask2w128:
10414   case X86::BI__builtin_ia32_cvtmask2w256:
10415   case X86::BI__builtin_ia32_cvtmask2w512:
10416   case X86::BI__builtin_ia32_cvtmask2d128:
10417   case X86::BI__builtin_ia32_cvtmask2d256:
10418   case X86::BI__builtin_ia32_cvtmask2d512:
10419   case X86::BI__builtin_ia32_cvtmask2q128:
10420   case X86::BI__builtin_ia32_cvtmask2q256:
10421   case X86::BI__builtin_ia32_cvtmask2q512:
10422     return EmitX86SExtMask(*this, Ops[0], ConvertType(E->getType()));
10423 
10424   case X86::BI__builtin_ia32_cvtb2mask128:
10425   case X86::BI__builtin_ia32_cvtb2mask256:
10426   case X86::BI__builtin_ia32_cvtb2mask512:
10427   case X86::BI__builtin_ia32_cvtw2mask128:
10428   case X86::BI__builtin_ia32_cvtw2mask256:
10429   case X86::BI__builtin_ia32_cvtw2mask512:
10430   case X86::BI__builtin_ia32_cvtd2mask128:
10431   case X86::BI__builtin_ia32_cvtd2mask256:
10432   case X86::BI__builtin_ia32_cvtd2mask512:
10433   case X86::BI__builtin_ia32_cvtq2mask128:
10434   case X86::BI__builtin_ia32_cvtq2mask256:
10435   case X86::BI__builtin_ia32_cvtq2mask512:
10436     return EmitX86ConvertToMask(*this, Ops[0]);
10437 
10438   case X86::BI__builtin_ia32_cvtdq2ps512_mask:
10439   case X86::BI__builtin_ia32_cvtqq2ps512_mask:
10440   case X86::BI__builtin_ia32_cvtqq2pd512_mask:
10441     return EmitX86ConvertIntToFp(*this, Ops, /*IsSigned*/true);
10442   case X86::BI__builtin_ia32_cvtudq2ps512_mask:
10443   case X86::BI__builtin_ia32_cvtuqq2ps512_mask:
10444   case X86::BI__builtin_ia32_cvtuqq2pd512_mask:
10445     return EmitX86ConvertIntToFp(*this, Ops, /*IsSigned*/false);
10446 
10447   case X86::BI__builtin_ia32_vfmaddss3:
10448   case X86::BI__builtin_ia32_vfmaddsd3:
10449   case X86::BI__builtin_ia32_vfmaddss3_mask:
10450   case X86::BI__builtin_ia32_vfmaddsd3_mask:
10451     return EmitScalarFMAExpr(*this, Ops, Ops[0]);
10452   case X86::BI__builtin_ia32_vfmaddss:
10453   case X86::BI__builtin_ia32_vfmaddsd:
10454     return EmitScalarFMAExpr(*this, Ops,
10455                              Constant::getNullValue(Ops[0]->getType()));
10456   case X86::BI__builtin_ia32_vfmaddss3_maskz:
10457   case X86::BI__builtin_ia32_vfmaddsd3_maskz:
10458     return EmitScalarFMAExpr(*this, Ops, Ops[0], /*ZeroMask*/true);
10459   case X86::BI__builtin_ia32_vfmaddss3_mask3:
10460   case X86::BI__builtin_ia32_vfmaddsd3_mask3:
10461     return EmitScalarFMAExpr(*this, Ops, Ops[2], /*ZeroMask*/false, 2);
10462   case X86::BI__builtin_ia32_vfmsubss3_mask3:
10463   case X86::BI__builtin_ia32_vfmsubsd3_mask3:
10464     return EmitScalarFMAExpr(*this, Ops, Ops[2], /*ZeroMask*/false, 2,
10465                              /*NegAcc*/true);
10466   case X86::BI__builtin_ia32_vfmaddps:
10467   case X86::BI__builtin_ia32_vfmaddpd:
10468   case X86::BI__builtin_ia32_vfmaddps256:
10469   case X86::BI__builtin_ia32_vfmaddpd256:
10470   case X86::BI__builtin_ia32_vfmaddps512_mask:
10471   case X86::BI__builtin_ia32_vfmaddps512_maskz:
10472   case X86::BI__builtin_ia32_vfmaddps512_mask3:
10473   case X86::BI__builtin_ia32_vfmsubps512_mask3:
10474   case X86::BI__builtin_ia32_vfmaddpd512_mask:
10475   case X86::BI__builtin_ia32_vfmaddpd512_maskz:
10476   case X86::BI__builtin_ia32_vfmaddpd512_mask3:
10477   case X86::BI__builtin_ia32_vfmsubpd512_mask3:
10478     return EmitX86FMAExpr(*this, Ops, BuiltinID, /*IsAddSub*/false);
10479   case X86::BI__builtin_ia32_vfmaddsubps:
10480   case X86::BI__builtin_ia32_vfmaddsubpd:
10481   case X86::BI__builtin_ia32_vfmaddsubps256:
10482   case X86::BI__builtin_ia32_vfmaddsubpd256:
10483   case X86::BI__builtin_ia32_vfmaddsubps512_mask:
10484   case X86::BI__builtin_ia32_vfmaddsubps512_maskz:
10485   case X86::BI__builtin_ia32_vfmaddsubps512_mask3:
10486   case X86::BI__builtin_ia32_vfmsubaddps512_mask3:
10487   case X86::BI__builtin_ia32_vfmaddsubpd512_mask:
10488   case X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
10489   case X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
10490   case X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
10491     return EmitX86FMAExpr(*this, Ops, BuiltinID, /*IsAddSub*/true);
10492 
10493   case X86::BI__builtin_ia32_movdqa32store128_mask:
10494   case X86::BI__builtin_ia32_movdqa64store128_mask:
10495   case X86::BI__builtin_ia32_storeaps128_mask:
10496   case X86::BI__builtin_ia32_storeapd128_mask:
10497   case X86::BI__builtin_ia32_movdqa32store256_mask:
10498   case X86::BI__builtin_ia32_movdqa64store256_mask:
10499   case X86::BI__builtin_ia32_storeaps256_mask:
10500   case X86::BI__builtin_ia32_storeapd256_mask:
10501   case X86::BI__builtin_ia32_movdqa32store512_mask:
10502   case X86::BI__builtin_ia32_movdqa64store512_mask:
10503   case X86::BI__builtin_ia32_storeaps512_mask:
10504   case X86::BI__builtin_ia32_storeapd512_mask: {
10505     unsigned Align =
10506       getContext().getTypeAlignInChars(E->getArg(1)->getType()).getQuantity();
10507     return EmitX86MaskedStore(*this, Ops, Align);
10508   }
10509   case X86::BI__builtin_ia32_loadups128_mask:
10510   case X86::BI__builtin_ia32_loadups256_mask:
10511   case X86::BI__builtin_ia32_loadups512_mask:
10512   case X86::BI__builtin_ia32_loadupd128_mask:
10513   case X86::BI__builtin_ia32_loadupd256_mask:
10514   case X86::BI__builtin_ia32_loadupd512_mask:
10515   case X86::BI__builtin_ia32_loaddquqi128_mask:
10516   case X86::BI__builtin_ia32_loaddquqi256_mask:
10517   case X86::BI__builtin_ia32_loaddquqi512_mask:
10518   case X86::BI__builtin_ia32_loaddquhi128_mask:
10519   case X86::BI__builtin_ia32_loaddquhi256_mask:
10520   case X86::BI__builtin_ia32_loaddquhi512_mask:
10521   case X86::BI__builtin_ia32_loaddqusi128_mask:
10522   case X86::BI__builtin_ia32_loaddqusi256_mask:
10523   case X86::BI__builtin_ia32_loaddqusi512_mask:
10524   case X86::BI__builtin_ia32_loaddqudi128_mask:
10525   case X86::BI__builtin_ia32_loaddqudi256_mask:
10526   case X86::BI__builtin_ia32_loaddqudi512_mask:
10527     return EmitX86MaskedLoad(*this, Ops, 1);
10528 
10529   case X86::BI__builtin_ia32_loadss128_mask:
10530   case X86::BI__builtin_ia32_loadsd128_mask:
10531     return EmitX86MaskedLoad(*this, Ops, 1);
10532 
10533   case X86::BI__builtin_ia32_loadaps128_mask:
10534   case X86::BI__builtin_ia32_loadaps256_mask:
10535   case X86::BI__builtin_ia32_loadaps512_mask:
10536   case X86::BI__builtin_ia32_loadapd128_mask:
10537   case X86::BI__builtin_ia32_loadapd256_mask:
10538   case X86::BI__builtin_ia32_loadapd512_mask:
10539   case X86::BI__builtin_ia32_movdqa32load128_mask:
10540   case X86::BI__builtin_ia32_movdqa32load256_mask:
10541   case X86::BI__builtin_ia32_movdqa32load512_mask:
10542   case X86::BI__builtin_ia32_movdqa64load128_mask:
10543   case X86::BI__builtin_ia32_movdqa64load256_mask:
10544   case X86::BI__builtin_ia32_movdqa64load512_mask: {
10545     unsigned Align =
10546       getContext().getTypeAlignInChars(E->getArg(1)->getType()).getQuantity();
10547     return EmitX86MaskedLoad(*this, Ops, Align);
10548   }
10549 
10550   case X86::BI__builtin_ia32_expandloaddf128_mask:
10551   case X86::BI__builtin_ia32_expandloaddf256_mask:
10552   case X86::BI__builtin_ia32_expandloaddf512_mask:
10553   case X86::BI__builtin_ia32_expandloadsf128_mask:
10554   case X86::BI__builtin_ia32_expandloadsf256_mask:
10555   case X86::BI__builtin_ia32_expandloadsf512_mask:
10556   case X86::BI__builtin_ia32_expandloaddi128_mask:
10557   case X86::BI__builtin_ia32_expandloaddi256_mask:
10558   case X86::BI__builtin_ia32_expandloaddi512_mask:
10559   case X86::BI__builtin_ia32_expandloadsi128_mask:
10560   case X86::BI__builtin_ia32_expandloadsi256_mask:
10561   case X86::BI__builtin_ia32_expandloadsi512_mask:
10562   case X86::BI__builtin_ia32_expandloadhi128_mask:
10563   case X86::BI__builtin_ia32_expandloadhi256_mask:
10564   case X86::BI__builtin_ia32_expandloadhi512_mask:
10565   case X86::BI__builtin_ia32_expandloadqi128_mask:
10566   case X86::BI__builtin_ia32_expandloadqi256_mask:
10567   case X86::BI__builtin_ia32_expandloadqi512_mask:
10568     return EmitX86ExpandLoad(*this, Ops);
10569 
10570   case X86::BI__builtin_ia32_compressstoredf128_mask:
10571   case X86::BI__builtin_ia32_compressstoredf256_mask:
10572   case X86::BI__builtin_ia32_compressstoredf512_mask:
10573   case X86::BI__builtin_ia32_compressstoresf128_mask:
10574   case X86::BI__builtin_ia32_compressstoresf256_mask:
10575   case X86::BI__builtin_ia32_compressstoresf512_mask:
10576   case X86::BI__builtin_ia32_compressstoredi128_mask:
10577   case X86::BI__builtin_ia32_compressstoredi256_mask:
10578   case X86::BI__builtin_ia32_compressstoredi512_mask:
10579   case X86::BI__builtin_ia32_compressstoresi128_mask:
10580   case X86::BI__builtin_ia32_compressstoresi256_mask:
10581   case X86::BI__builtin_ia32_compressstoresi512_mask:
10582   case X86::BI__builtin_ia32_compressstorehi128_mask:
10583   case X86::BI__builtin_ia32_compressstorehi256_mask:
10584   case X86::BI__builtin_ia32_compressstorehi512_mask:
10585   case X86::BI__builtin_ia32_compressstoreqi128_mask:
10586   case X86::BI__builtin_ia32_compressstoreqi256_mask:
10587   case X86::BI__builtin_ia32_compressstoreqi512_mask:
10588     return EmitX86CompressStore(*this, Ops);
10589 
10590   case X86::BI__builtin_ia32_expanddf128_mask:
10591   case X86::BI__builtin_ia32_expanddf256_mask:
10592   case X86::BI__builtin_ia32_expanddf512_mask:
10593   case X86::BI__builtin_ia32_expandsf128_mask:
10594   case X86::BI__builtin_ia32_expandsf256_mask:
10595   case X86::BI__builtin_ia32_expandsf512_mask:
10596   case X86::BI__builtin_ia32_expanddi128_mask:
10597   case X86::BI__builtin_ia32_expanddi256_mask:
10598   case X86::BI__builtin_ia32_expanddi512_mask:
10599   case X86::BI__builtin_ia32_expandsi128_mask:
10600   case X86::BI__builtin_ia32_expandsi256_mask:
10601   case X86::BI__builtin_ia32_expandsi512_mask:
10602   case X86::BI__builtin_ia32_expandhi128_mask:
10603   case X86::BI__builtin_ia32_expandhi256_mask:
10604   case X86::BI__builtin_ia32_expandhi512_mask:
10605   case X86::BI__builtin_ia32_expandqi128_mask:
10606   case X86::BI__builtin_ia32_expandqi256_mask:
10607   case X86::BI__builtin_ia32_expandqi512_mask:
10608     return EmitX86CompressExpand(*this, Ops, /*IsCompress*/false);
10609 
10610   case X86::BI__builtin_ia32_compressdf128_mask:
10611   case X86::BI__builtin_ia32_compressdf256_mask:
10612   case X86::BI__builtin_ia32_compressdf512_mask:
10613   case X86::BI__builtin_ia32_compresssf128_mask:
10614   case X86::BI__builtin_ia32_compresssf256_mask:
10615   case X86::BI__builtin_ia32_compresssf512_mask:
10616   case X86::BI__builtin_ia32_compressdi128_mask:
10617   case X86::BI__builtin_ia32_compressdi256_mask:
10618   case X86::BI__builtin_ia32_compressdi512_mask:
10619   case X86::BI__builtin_ia32_compresssi128_mask:
10620   case X86::BI__builtin_ia32_compresssi256_mask:
10621   case X86::BI__builtin_ia32_compresssi512_mask:
10622   case X86::BI__builtin_ia32_compresshi128_mask:
10623   case X86::BI__builtin_ia32_compresshi256_mask:
10624   case X86::BI__builtin_ia32_compresshi512_mask:
10625   case X86::BI__builtin_ia32_compressqi128_mask:
10626   case X86::BI__builtin_ia32_compressqi256_mask:
10627   case X86::BI__builtin_ia32_compressqi512_mask:
10628     return EmitX86CompressExpand(*this, Ops, /*IsCompress*/true);
10629 
10630   case X86::BI__builtin_ia32_gather3div2df:
10631   case X86::BI__builtin_ia32_gather3div2di:
10632   case X86::BI__builtin_ia32_gather3div4df:
10633   case X86::BI__builtin_ia32_gather3div4di:
10634   case X86::BI__builtin_ia32_gather3div4sf:
10635   case X86::BI__builtin_ia32_gather3div4si:
10636   case X86::BI__builtin_ia32_gather3div8sf:
10637   case X86::BI__builtin_ia32_gather3div8si:
10638   case X86::BI__builtin_ia32_gather3siv2df:
10639   case X86::BI__builtin_ia32_gather3siv2di:
10640   case X86::BI__builtin_ia32_gather3siv4df:
10641   case X86::BI__builtin_ia32_gather3siv4di:
10642   case X86::BI__builtin_ia32_gather3siv4sf:
10643   case X86::BI__builtin_ia32_gather3siv4si:
10644   case X86::BI__builtin_ia32_gather3siv8sf:
10645   case X86::BI__builtin_ia32_gather3siv8si:
10646   case X86::BI__builtin_ia32_gathersiv8df:
10647   case X86::BI__builtin_ia32_gathersiv16sf:
10648   case X86::BI__builtin_ia32_gatherdiv8df:
10649   case X86::BI__builtin_ia32_gatherdiv16sf:
10650   case X86::BI__builtin_ia32_gathersiv8di:
10651   case X86::BI__builtin_ia32_gathersiv16si:
10652   case X86::BI__builtin_ia32_gatherdiv8di:
10653   case X86::BI__builtin_ia32_gatherdiv16si: {
10654     Intrinsic::ID IID;
10655     switch (BuiltinID) {
10656     default: llvm_unreachable("Unexpected builtin");
10657     case X86::BI__builtin_ia32_gather3div2df:
10658       IID = Intrinsic::x86_avx512_mask_gather3div2_df;
10659       break;
10660     case X86::BI__builtin_ia32_gather3div2di:
10661       IID = Intrinsic::x86_avx512_mask_gather3div2_di;
10662       break;
10663     case X86::BI__builtin_ia32_gather3div4df:
10664       IID = Intrinsic::x86_avx512_mask_gather3div4_df;
10665       break;
10666     case X86::BI__builtin_ia32_gather3div4di:
10667       IID = Intrinsic::x86_avx512_mask_gather3div4_di;
10668       break;
10669     case X86::BI__builtin_ia32_gather3div4sf:
10670       IID = Intrinsic::x86_avx512_mask_gather3div4_sf;
10671       break;
10672     case X86::BI__builtin_ia32_gather3div4si:
10673       IID = Intrinsic::x86_avx512_mask_gather3div4_si;
10674       break;
10675     case X86::BI__builtin_ia32_gather3div8sf:
10676       IID = Intrinsic::x86_avx512_mask_gather3div8_sf;
10677       break;
10678     case X86::BI__builtin_ia32_gather3div8si:
10679       IID = Intrinsic::x86_avx512_mask_gather3div8_si;
10680       break;
10681     case X86::BI__builtin_ia32_gather3siv2df:
10682       IID = Intrinsic::x86_avx512_mask_gather3siv2_df;
10683       break;
10684     case X86::BI__builtin_ia32_gather3siv2di:
10685       IID = Intrinsic::x86_avx512_mask_gather3siv2_di;
10686       break;
10687     case X86::BI__builtin_ia32_gather3siv4df:
10688       IID = Intrinsic::x86_avx512_mask_gather3siv4_df;
10689       break;
10690     case X86::BI__builtin_ia32_gather3siv4di:
10691       IID = Intrinsic::x86_avx512_mask_gather3siv4_di;
10692       break;
10693     case X86::BI__builtin_ia32_gather3siv4sf:
10694       IID = Intrinsic::x86_avx512_mask_gather3siv4_sf;
10695       break;
10696     case X86::BI__builtin_ia32_gather3siv4si:
10697       IID = Intrinsic::x86_avx512_mask_gather3siv4_si;
10698       break;
10699     case X86::BI__builtin_ia32_gather3siv8sf:
10700       IID = Intrinsic::x86_avx512_mask_gather3siv8_sf;
10701       break;
10702     case X86::BI__builtin_ia32_gather3siv8si:
10703       IID = Intrinsic::x86_avx512_mask_gather3siv8_si;
10704       break;
10705     case X86::BI__builtin_ia32_gathersiv8df:
10706       IID = Intrinsic::x86_avx512_mask_gather_dpd_512;
10707       break;
10708     case X86::BI__builtin_ia32_gathersiv16sf:
10709       IID = Intrinsic::x86_avx512_mask_gather_dps_512;
10710       break;
10711     case X86::BI__builtin_ia32_gatherdiv8df:
10712       IID = Intrinsic::x86_avx512_mask_gather_qpd_512;
10713       break;
10714     case X86::BI__builtin_ia32_gatherdiv16sf:
10715       IID = Intrinsic::x86_avx512_mask_gather_qps_512;
10716       break;
10717     case X86::BI__builtin_ia32_gathersiv8di:
10718       IID = Intrinsic::x86_avx512_mask_gather_dpq_512;
10719       break;
10720     case X86::BI__builtin_ia32_gathersiv16si:
10721       IID = Intrinsic::x86_avx512_mask_gather_dpi_512;
10722       break;
10723     case X86::BI__builtin_ia32_gatherdiv8di:
10724       IID = Intrinsic::x86_avx512_mask_gather_qpq_512;
10725       break;
10726     case X86::BI__builtin_ia32_gatherdiv16si:
10727       IID = Intrinsic::x86_avx512_mask_gather_qpi_512;
10728       break;
10729     }
10730 
10731     unsigned MinElts = std::min(Ops[0]->getType()->getVectorNumElements(),
10732                                 Ops[2]->getType()->getVectorNumElements());
10733     Ops[3] = getMaskVecValue(*this, Ops[3], MinElts);
10734     Function *Intr = CGM.getIntrinsic(IID);
10735     return Builder.CreateCall(Intr, Ops);
10736   }
10737 
10738   case X86::BI__builtin_ia32_scattersiv8df:
10739   case X86::BI__builtin_ia32_scattersiv16sf:
10740   case X86::BI__builtin_ia32_scatterdiv8df:
10741   case X86::BI__builtin_ia32_scatterdiv16sf:
10742   case X86::BI__builtin_ia32_scattersiv8di:
10743   case X86::BI__builtin_ia32_scattersiv16si:
10744   case X86::BI__builtin_ia32_scatterdiv8di:
10745   case X86::BI__builtin_ia32_scatterdiv16si:
10746   case X86::BI__builtin_ia32_scatterdiv2df:
10747   case X86::BI__builtin_ia32_scatterdiv2di:
10748   case X86::BI__builtin_ia32_scatterdiv4df:
10749   case X86::BI__builtin_ia32_scatterdiv4di:
10750   case X86::BI__builtin_ia32_scatterdiv4sf:
10751   case X86::BI__builtin_ia32_scatterdiv4si:
10752   case X86::BI__builtin_ia32_scatterdiv8sf:
10753   case X86::BI__builtin_ia32_scatterdiv8si:
10754   case X86::BI__builtin_ia32_scattersiv2df:
10755   case X86::BI__builtin_ia32_scattersiv2di:
10756   case X86::BI__builtin_ia32_scattersiv4df:
10757   case X86::BI__builtin_ia32_scattersiv4di:
10758   case X86::BI__builtin_ia32_scattersiv4sf:
10759   case X86::BI__builtin_ia32_scattersiv4si:
10760   case X86::BI__builtin_ia32_scattersiv8sf:
10761   case X86::BI__builtin_ia32_scattersiv8si: {
10762     Intrinsic::ID IID;
10763     switch (BuiltinID) {
10764     default: llvm_unreachable("Unexpected builtin");
10765     case X86::BI__builtin_ia32_scattersiv8df:
10766       IID = Intrinsic::x86_avx512_mask_scatter_dpd_512;
10767       break;
10768     case X86::BI__builtin_ia32_scattersiv16sf:
10769       IID = Intrinsic::x86_avx512_mask_scatter_dps_512;
10770       break;
10771     case X86::BI__builtin_ia32_scatterdiv8df:
10772       IID = Intrinsic::x86_avx512_mask_scatter_qpd_512;
10773       break;
10774     case X86::BI__builtin_ia32_scatterdiv16sf:
10775       IID = Intrinsic::x86_avx512_mask_scatter_qps_512;
10776       break;
10777     case X86::BI__builtin_ia32_scattersiv8di:
10778       IID = Intrinsic::x86_avx512_mask_scatter_dpq_512;
10779       break;
10780     case X86::BI__builtin_ia32_scattersiv16si:
10781       IID = Intrinsic::x86_avx512_mask_scatter_dpi_512;
10782       break;
10783     case X86::BI__builtin_ia32_scatterdiv8di:
10784       IID = Intrinsic::x86_avx512_mask_scatter_qpq_512;
10785       break;
10786     case X86::BI__builtin_ia32_scatterdiv16si:
10787       IID = Intrinsic::x86_avx512_mask_scatter_qpi_512;
10788       break;
10789     case X86::BI__builtin_ia32_scatterdiv2df:
10790       IID = Intrinsic::x86_avx512_mask_scatterdiv2_df;
10791       break;
10792     case X86::BI__builtin_ia32_scatterdiv2di:
10793       IID = Intrinsic::x86_avx512_mask_scatterdiv2_di;
10794       break;
10795     case X86::BI__builtin_ia32_scatterdiv4df:
10796       IID = Intrinsic::x86_avx512_mask_scatterdiv4_df;
10797       break;
10798     case X86::BI__builtin_ia32_scatterdiv4di:
10799       IID = Intrinsic::x86_avx512_mask_scatterdiv4_di;
10800       break;
10801     case X86::BI__builtin_ia32_scatterdiv4sf:
10802       IID = Intrinsic::x86_avx512_mask_scatterdiv4_sf;
10803       break;
10804     case X86::BI__builtin_ia32_scatterdiv4si:
10805       IID = Intrinsic::x86_avx512_mask_scatterdiv4_si;
10806       break;
10807     case X86::BI__builtin_ia32_scatterdiv8sf:
10808       IID = Intrinsic::x86_avx512_mask_scatterdiv8_sf;
10809       break;
10810     case X86::BI__builtin_ia32_scatterdiv8si:
10811       IID = Intrinsic::x86_avx512_mask_scatterdiv8_si;
10812       break;
10813     case X86::BI__builtin_ia32_scattersiv2df:
10814       IID = Intrinsic::x86_avx512_mask_scattersiv2_df;
10815       break;
10816     case X86::BI__builtin_ia32_scattersiv2di:
10817       IID = Intrinsic::x86_avx512_mask_scattersiv2_di;
10818       break;
10819     case X86::BI__builtin_ia32_scattersiv4df:
10820       IID = Intrinsic::x86_avx512_mask_scattersiv4_df;
10821       break;
10822     case X86::BI__builtin_ia32_scattersiv4di:
10823       IID = Intrinsic::x86_avx512_mask_scattersiv4_di;
10824       break;
10825     case X86::BI__builtin_ia32_scattersiv4sf:
10826       IID = Intrinsic::x86_avx512_mask_scattersiv4_sf;
10827       break;
10828     case X86::BI__builtin_ia32_scattersiv4si:
10829       IID = Intrinsic::x86_avx512_mask_scattersiv4_si;
10830       break;
10831     case X86::BI__builtin_ia32_scattersiv8sf:
10832       IID = Intrinsic::x86_avx512_mask_scattersiv8_sf;
10833       break;
10834     case X86::BI__builtin_ia32_scattersiv8si:
10835       IID = Intrinsic::x86_avx512_mask_scattersiv8_si;
10836       break;
10837     }
10838 
10839     unsigned MinElts = std::min(Ops[2]->getType()->getVectorNumElements(),
10840                                 Ops[3]->getType()->getVectorNumElements());
10841     Ops[1] = getMaskVecValue(*this, Ops[1], MinElts);
10842     Function *Intr = CGM.getIntrinsic(IID);
10843     return Builder.CreateCall(Intr, Ops);
10844   }
10845 
10846   case X86::BI__builtin_ia32_vextractf128_pd256:
10847   case X86::BI__builtin_ia32_vextractf128_ps256:
10848   case X86::BI__builtin_ia32_vextractf128_si256:
10849   case X86::BI__builtin_ia32_extract128i256:
10850   case X86::BI__builtin_ia32_extractf64x4_mask:
10851   case X86::BI__builtin_ia32_extractf32x4_mask:
10852   case X86::BI__builtin_ia32_extracti64x4_mask:
10853   case X86::BI__builtin_ia32_extracti32x4_mask:
10854   case X86::BI__builtin_ia32_extractf32x8_mask:
10855   case X86::BI__builtin_ia32_extracti32x8_mask:
10856   case X86::BI__builtin_ia32_extractf32x4_256_mask:
10857   case X86::BI__builtin_ia32_extracti32x4_256_mask:
10858   case X86::BI__builtin_ia32_extractf64x2_256_mask:
10859   case X86::BI__builtin_ia32_extracti64x2_256_mask:
10860   case X86::BI__builtin_ia32_extractf64x2_512_mask:
10861   case X86::BI__builtin_ia32_extracti64x2_512_mask: {
10862     llvm::Type *DstTy = ConvertType(E->getType());
10863     unsigned NumElts = DstTy->getVectorNumElements();
10864     unsigned SrcNumElts = Ops[0]->getType()->getVectorNumElements();
10865     unsigned SubVectors = SrcNumElts / NumElts;
10866     unsigned Index = cast<ConstantInt>(Ops[1])->getZExtValue();
10867     assert(llvm::isPowerOf2_32(SubVectors) && "Expected power of 2 subvectors");
10868     Index &= SubVectors - 1; // Remove any extra bits.
10869     Index *= NumElts;
10870 
10871     uint32_t Indices[16];
10872     for (unsigned i = 0; i != NumElts; ++i)
10873       Indices[i] = i + Index;
10874 
10875     Value *Res = Builder.CreateShuffleVector(Ops[0],
10876                                              UndefValue::get(Ops[0]->getType()),
10877                                              makeArrayRef(Indices, NumElts),
10878                                              "extract");
10879 
10880     if (Ops.size() == 4)
10881       Res = EmitX86Select(*this, Ops[3], Res, Ops[2]);
10882 
10883     return Res;
10884   }
10885   case X86::BI__builtin_ia32_vinsertf128_pd256:
10886   case X86::BI__builtin_ia32_vinsertf128_ps256:
10887   case X86::BI__builtin_ia32_vinsertf128_si256:
10888   case X86::BI__builtin_ia32_insert128i256:
10889   case X86::BI__builtin_ia32_insertf64x4:
10890   case X86::BI__builtin_ia32_insertf32x4:
10891   case X86::BI__builtin_ia32_inserti64x4:
10892   case X86::BI__builtin_ia32_inserti32x4:
10893   case X86::BI__builtin_ia32_insertf32x8:
10894   case X86::BI__builtin_ia32_inserti32x8:
10895   case X86::BI__builtin_ia32_insertf32x4_256:
10896   case X86::BI__builtin_ia32_inserti32x4_256:
10897   case X86::BI__builtin_ia32_insertf64x2_256:
10898   case X86::BI__builtin_ia32_inserti64x2_256:
10899   case X86::BI__builtin_ia32_insertf64x2_512:
10900   case X86::BI__builtin_ia32_inserti64x2_512: {
10901     unsigned DstNumElts = Ops[0]->getType()->getVectorNumElements();
10902     unsigned SrcNumElts = Ops[1]->getType()->getVectorNumElements();
10903     unsigned SubVectors = DstNumElts / SrcNumElts;
10904     unsigned Index = cast<ConstantInt>(Ops[2])->getZExtValue();
10905     assert(llvm::isPowerOf2_32(SubVectors) && "Expected power of 2 subvectors");
10906     Index &= SubVectors - 1; // Remove any extra bits.
10907     Index *= SrcNumElts;
10908 
10909     uint32_t Indices[16];
10910     for (unsigned i = 0; i != DstNumElts; ++i)
10911       Indices[i] = (i >= SrcNumElts) ? SrcNumElts + (i % SrcNumElts) : i;
10912 
10913     Value *Op1 = Builder.CreateShuffleVector(Ops[1],
10914                                              UndefValue::get(Ops[1]->getType()),
10915                                              makeArrayRef(Indices, DstNumElts),
10916                                              "widen");
10917 
10918     for (unsigned i = 0; i != DstNumElts; ++i) {
10919       if (i >= Index && i < (Index + SrcNumElts))
10920         Indices[i] = (i - Index) + DstNumElts;
10921       else
10922         Indices[i] = i;
10923     }
10924 
10925     return Builder.CreateShuffleVector(Ops[0], Op1,
10926                                        makeArrayRef(Indices, DstNumElts),
10927                                        "insert");
10928   }
10929   case X86::BI__builtin_ia32_pmovqd512_mask:
10930   case X86::BI__builtin_ia32_pmovwb512_mask: {
10931     Value *Res = Builder.CreateTrunc(Ops[0], Ops[1]->getType());
10932     return EmitX86Select(*this, Ops[2], Res, Ops[1]);
10933   }
10934   case X86::BI__builtin_ia32_pmovdb512_mask:
10935   case X86::BI__builtin_ia32_pmovdw512_mask:
10936   case X86::BI__builtin_ia32_pmovqw512_mask: {
10937     if (const auto *C = dyn_cast<Constant>(Ops[2]))
10938       if (C->isAllOnesValue())
10939         return Builder.CreateTrunc(Ops[0], Ops[1]->getType());
10940 
10941     Intrinsic::ID IID;
10942     switch (BuiltinID) {
10943     default: llvm_unreachable("Unsupported intrinsic!");
10944     case X86::BI__builtin_ia32_pmovdb512_mask:
10945       IID = Intrinsic::x86_avx512_mask_pmov_db_512;
10946       break;
10947     case X86::BI__builtin_ia32_pmovdw512_mask:
10948       IID = Intrinsic::x86_avx512_mask_pmov_dw_512;
10949       break;
10950     case X86::BI__builtin_ia32_pmovqw512_mask:
10951       IID = Intrinsic::x86_avx512_mask_pmov_qw_512;
10952       break;
10953     }
10954 
10955     Function *Intr = CGM.getIntrinsic(IID);
10956     return Builder.CreateCall(Intr, Ops);
10957   }
10958   case X86::BI__builtin_ia32_pblendw128:
10959   case X86::BI__builtin_ia32_blendpd:
10960   case X86::BI__builtin_ia32_blendps:
10961   case X86::BI__builtin_ia32_blendpd256:
10962   case X86::BI__builtin_ia32_blendps256:
10963   case X86::BI__builtin_ia32_pblendw256:
10964   case X86::BI__builtin_ia32_pblendd128:
10965   case X86::BI__builtin_ia32_pblendd256: {
10966     unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
10967     unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
10968 
10969     uint32_t Indices[16];
10970     // If there are more than 8 elements, the immediate is used twice so make
10971     // sure we handle that.
10972     for (unsigned i = 0; i != NumElts; ++i)
10973       Indices[i] = ((Imm >> (i % 8)) & 0x1) ? NumElts + i : i;
10974 
10975     return Builder.CreateShuffleVector(Ops[0], Ops[1],
10976                                        makeArrayRef(Indices, NumElts),
10977                                        "blend");
10978   }
10979   case X86::BI__builtin_ia32_pshuflw:
10980   case X86::BI__builtin_ia32_pshuflw256:
10981   case X86::BI__builtin_ia32_pshuflw512: {
10982     uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
10983     llvm::Type *Ty = Ops[0]->getType();
10984     unsigned NumElts = Ty->getVectorNumElements();
10985 
10986     // Splat the 8-bits of immediate 4 times to help the loop wrap around.
10987     Imm = (Imm & 0xff) * 0x01010101;
10988 
10989     uint32_t Indices[32];
10990     for (unsigned l = 0; l != NumElts; l += 8) {
10991       for (unsigned i = 0; i != 4; ++i) {
10992         Indices[l + i] = l + (Imm & 3);
10993         Imm >>= 2;
10994       }
10995       for (unsigned i = 4; i != 8; ++i)
10996         Indices[l + i] = l + i;
10997     }
10998 
10999     return Builder.CreateShuffleVector(Ops[0], UndefValue::get(Ty),
11000                                        makeArrayRef(Indices, NumElts),
11001                                        "pshuflw");
11002   }
11003   case X86::BI__builtin_ia32_pshufhw:
11004   case X86::BI__builtin_ia32_pshufhw256:
11005   case X86::BI__builtin_ia32_pshufhw512: {
11006     uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
11007     llvm::Type *Ty = Ops[0]->getType();
11008     unsigned NumElts = Ty->getVectorNumElements();
11009 
11010     // Splat the 8-bits of immediate 4 times to help the loop wrap around.
11011     Imm = (Imm & 0xff) * 0x01010101;
11012 
11013     uint32_t Indices[32];
11014     for (unsigned l = 0; l != NumElts; l += 8) {
11015       for (unsigned i = 0; i != 4; ++i)
11016         Indices[l + i] = l + i;
11017       for (unsigned i = 4; i != 8; ++i) {
11018         Indices[l + i] = l + 4 + (Imm & 3);
11019         Imm >>= 2;
11020       }
11021     }
11022 
11023     return Builder.CreateShuffleVector(Ops[0], UndefValue::get(Ty),
11024                                        makeArrayRef(Indices, NumElts),
11025                                        "pshufhw");
11026   }
11027   case X86::BI__builtin_ia32_pshufd:
11028   case X86::BI__builtin_ia32_pshufd256:
11029   case X86::BI__builtin_ia32_pshufd512:
11030   case X86::BI__builtin_ia32_vpermilpd:
11031   case X86::BI__builtin_ia32_vpermilps:
11032   case X86::BI__builtin_ia32_vpermilpd256:
11033   case X86::BI__builtin_ia32_vpermilps256:
11034   case X86::BI__builtin_ia32_vpermilpd512:
11035   case X86::BI__builtin_ia32_vpermilps512: {
11036     uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
11037     llvm::Type *Ty = Ops[0]->getType();
11038     unsigned NumElts = Ty->getVectorNumElements();
11039     unsigned NumLanes = Ty->getPrimitiveSizeInBits() / 128;
11040     unsigned NumLaneElts = NumElts / NumLanes;
11041 
11042     // Splat the 8-bits of immediate 4 times to help the loop wrap around.
11043     Imm = (Imm & 0xff) * 0x01010101;
11044 
11045     uint32_t Indices[16];
11046     for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
11047       for (unsigned i = 0; i != NumLaneElts; ++i) {
11048         Indices[i + l] = (Imm % NumLaneElts) + l;
11049         Imm /= NumLaneElts;
11050       }
11051     }
11052 
11053     return Builder.CreateShuffleVector(Ops[0], UndefValue::get(Ty),
11054                                        makeArrayRef(Indices, NumElts),
11055                                        "permil");
11056   }
11057   case X86::BI__builtin_ia32_shufpd:
11058   case X86::BI__builtin_ia32_shufpd256:
11059   case X86::BI__builtin_ia32_shufpd512:
11060   case X86::BI__builtin_ia32_shufps:
11061   case X86::BI__builtin_ia32_shufps256:
11062   case X86::BI__builtin_ia32_shufps512: {
11063     uint32_t Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
11064     llvm::Type *Ty = Ops[0]->getType();
11065     unsigned NumElts = Ty->getVectorNumElements();
11066     unsigned NumLanes = Ty->getPrimitiveSizeInBits() / 128;
11067     unsigned NumLaneElts = NumElts / NumLanes;
11068 
11069     // Splat the 8-bits of immediate 4 times to help the loop wrap around.
11070     Imm = (Imm & 0xff) * 0x01010101;
11071 
11072     uint32_t Indices[16];
11073     for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
11074       for (unsigned i = 0; i != NumLaneElts; ++i) {
11075         unsigned Index = Imm % NumLaneElts;
11076         Imm /= NumLaneElts;
11077         if (i >= (NumLaneElts / 2))
11078           Index += NumElts;
11079         Indices[l + i] = l + Index;
11080       }
11081     }
11082 
11083     return Builder.CreateShuffleVector(Ops[0], Ops[1],
11084                                        makeArrayRef(Indices, NumElts),
11085                                        "shufp");
11086   }
11087   case X86::BI__builtin_ia32_permdi256:
11088   case X86::BI__builtin_ia32_permdf256:
11089   case X86::BI__builtin_ia32_permdi512:
11090   case X86::BI__builtin_ia32_permdf512: {
11091     unsigned Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
11092     llvm::Type *Ty = Ops[0]->getType();
11093     unsigned NumElts = Ty->getVectorNumElements();
11094 
11095     // These intrinsics operate on 256-bit lanes of four 64-bit elements.
11096     uint32_t Indices[8];
11097     for (unsigned l = 0; l != NumElts; l += 4)
11098       for (unsigned i = 0; i != 4; ++i)
11099         Indices[l + i] = l + ((Imm >> (2 * i)) & 0x3);
11100 
11101     return Builder.CreateShuffleVector(Ops[0], UndefValue::get(Ty),
11102                                        makeArrayRef(Indices, NumElts),
11103                                        "perm");
11104   }
11105   case X86::BI__builtin_ia32_palignr128:
11106   case X86::BI__builtin_ia32_palignr256:
11107   case X86::BI__builtin_ia32_palignr512: {
11108     unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0xff;
11109 
11110     unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
11111     assert(NumElts % 16 == 0);
11112 
11113     // If palignr is shifting the pair of vectors more than the size of two
11114     // lanes, emit zero.
11115     if (ShiftVal >= 32)
11116       return llvm::Constant::getNullValue(ConvertType(E->getType()));
11117 
11118     // If palignr is shifting the pair of input vectors more than one lane,
11119     // but less than two lanes, convert to shifting in zeroes.
11120     if (ShiftVal > 16) {
11121       ShiftVal -= 16;
11122       Ops[1] = Ops[0];
11123       Ops[0] = llvm::Constant::getNullValue(Ops[0]->getType());
11124     }
11125 
11126     uint32_t Indices[64];
11127     // 256-bit palignr operates on 128-bit lanes so we need to handle that
11128     for (unsigned l = 0; l != NumElts; l += 16) {
11129       for (unsigned i = 0; i != 16; ++i) {
11130         unsigned Idx = ShiftVal + i;
11131         if (Idx >= 16)
11132           Idx += NumElts - 16; // End of lane, switch operand.
11133         Indices[l + i] = Idx + l;
11134       }
11135     }
11136 
11137     return Builder.CreateShuffleVector(Ops[1], Ops[0],
11138                                        makeArrayRef(Indices, NumElts),
11139                                        "palignr");
11140   }
11141   case X86::BI__builtin_ia32_alignd128:
11142   case X86::BI__builtin_ia32_alignd256:
11143   case X86::BI__builtin_ia32_alignd512:
11144   case X86::BI__builtin_ia32_alignq128:
11145   case X86::BI__builtin_ia32_alignq256:
11146   case X86::BI__builtin_ia32_alignq512: {
11147     unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
11148     unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0xff;
11149 
11150     // Mask the shift amount to width of two vectors.
11151     ShiftVal &= (2 * NumElts) - 1;
11152 
11153     uint32_t Indices[16];
11154     for (unsigned i = 0; i != NumElts; ++i)
11155       Indices[i] = i + ShiftVal;
11156 
11157     return Builder.CreateShuffleVector(Ops[1], Ops[0],
11158                                        makeArrayRef(Indices, NumElts),
11159                                        "valign");
11160   }
11161   case X86::BI__builtin_ia32_shuf_f32x4_256:
11162   case X86::BI__builtin_ia32_shuf_f64x2_256:
11163   case X86::BI__builtin_ia32_shuf_i32x4_256:
11164   case X86::BI__builtin_ia32_shuf_i64x2_256:
11165   case X86::BI__builtin_ia32_shuf_f32x4:
11166   case X86::BI__builtin_ia32_shuf_f64x2:
11167   case X86::BI__builtin_ia32_shuf_i32x4:
11168   case X86::BI__builtin_ia32_shuf_i64x2: {
11169     unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
11170     llvm::Type *Ty = Ops[0]->getType();
11171     unsigned NumElts = Ty->getVectorNumElements();
11172     unsigned NumLanes = Ty->getPrimitiveSizeInBits() == 512 ? 4 : 2;
11173     unsigned NumLaneElts = NumElts / NumLanes;
11174 
11175     uint32_t Indices[16];
11176     for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
11177       unsigned Index = (Imm % NumLanes) * NumLaneElts;
11178       Imm /= NumLanes; // Discard the bits we just used.
11179       if (l >= (NumElts / 2))
11180         Index += NumElts; // Switch to other source.
11181       for (unsigned i = 0; i != NumLaneElts; ++i) {
11182         Indices[l + i] = Index + i;
11183       }
11184     }
11185 
11186     return Builder.CreateShuffleVector(Ops[0], Ops[1],
11187                                        makeArrayRef(Indices, NumElts),
11188                                        "shuf");
11189   }
11190 
11191   case X86::BI__builtin_ia32_vperm2f128_pd256:
11192   case X86::BI__builtin_ia32_vperm2f128_ps256:
11193   case X86::BI__builtin_ia32_vperm2f128_si256:
11194   case X86::BI__builtin_ia32_permti256: {
11195     unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
11196     unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
11197 
11198     // This takes a very simple approach since there are two lanes and a
11199     // shuffle can have 2 inputs. So we reserve the first input for the first
11200     // lane and the second input for the second lane. This may result in
11201     // duplicate sources, but this can be dealt with in the backend.
11202 
11203     Value *OutOps[2];
11204     uint32_t Indices[8];
11205     for (unsigned l = 0; l != 2; ++l) {
11206       // Determine the source for this lane.
11207       if (Imm & (1 << ((l * 4) + 3)))
11208         OutOps[l] = llvm::ConstantAggregateZero::get(Ops[0]->getType());
11209       else if (Imm & (1 << ((l * 4) + 1)))
11210         OutOps[l] = Ops[1];
11211       else
11212         OutOps[l] = Ops[0];
11213 
11214       for (unsigned i = 0; i != NumElts/2; ++i) {
11215         // Start with ith element of the source for this lane.
11216         unsigned Idx = (l * NumElts) + i;
11217         // If bit 0 of the immediate half is set, switch to the high half of
11218         // the source.
11219         if (Imm & (1 << (l * 4)))
11220           Idx += NumElts/2;
11221         Indices[(l * (NumElts/2)) + i] = Idx;
11222       }
11223     }
11224 
11225     return Builder.CreateShuffleVector(OutOps[0], OutOps[1],
11226                                        makeArrayRef(Indices, NumElts),
11227                                        "vperm");
11228   }
11229 
11230   case X86::BI__builtin_ia32_pslldqi128_byteshift:
11231   case X86::BI__builtin_ia32_pslldqi256_byteshift:
11232   case X86::BI__builtin_ia32_pslldqi512_byteshift: {
11233     unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
11234     llvm::Type *ResultType = Ops[0]->getType();
11235     // Builtin type is vXi64 so multiply by 8 to get bytes.
11236     unsigned NumElts = ResultType->getVectorNumElements() * 8;
11237 
11238     // If pslldq is shifting the vector more than 15 bytes, emit zero.
11239     if (ShiftVal >= 16)
11240       return llvm::Constant::getNullValue(ResultType);
11241 
11242     uint32_t Indices[64];
11243     // 256/512-bit pslldq operates on 128-bit lanes so we need to handle that
11244     for (unsigned l = 0; l != NumElts; l += 16) {
11245       for (unsigned i = 0; i != 16; ++i) {
11246         unsigned Idx = NumElts + i - ShiftVal;
11247         if (Idx < NumElts) Idx -= NumElts - 16; // end of lane, switch operand.
11248         Indices[l + i] = Idx + l;
11249       }
11250     }
11251 
11252     llvm::Type *VecTy = llvm::VectorType::get(Int8Ty, NumElts);
11253     Value *Cast = Builder.CreateBitCast(Ops[0], VecTy, "cast");
11254     Value *Zero = llvm::Constant::getNullValue(VecTy);
11255     Value *SV = Builder.CreateShuffleVector(Zero, Cast,
11256                                             makeArrayRef(Indices, NumElts),
11257                                             "pslldq");
11258     return Builder.CreateBitCast(SV, Ops[0]->getType(), "cast");
11259   }
11260   case X86::BI__builtin_ia32_psrldqi128_byteshift:
11261   case X86::BI__builtin_ia32_psrldqi256_byteshift:
11262   case X86::BI__builtin_ia32_psrldqi512_byteshift: {
11263     unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
11264     llvm::Type *ResultType = Ops[0]->getType();
11265     // Builtin type is vXi64 so multiply by 8 to get bytes.
11266     unsigned NumElts = ResultType->getVectorNumElements() * 8;
11267 
11268     // If psrldq is shifting the vector more than 15 bytes, emit zero.
11269     if (ShiftVal >= 16)
11270       return llvm::Constant::getNullValue(ResultType);
11271 
11272     uint32_t Indices[64];
11273     // 256/512-bit psrldq operates on 128-bit lanes so we need to handle that
11274     for (unsigned l = 0; l != NumElts; l += 16) {
11275       for (unsigned i = 0; i != 16; ++i) {
11276         unsigned Idx = i + ShiftVal;
11277         if (Idx >= 16) Idx += NumElts - 16; // end of lane, switch operand.
11278         Indices[l + i] = Idx + l;
11279       }
11280     }
11281 
11282     llvm::Type *VecTy = llvm::VectorType::get(Int8Ty, NumElts);
11283     Value *Cast = Builder.CreateBitCast(Ops[0], VecTy, "cast");
11284     Value *Zero = llvm::Constant::getNullValue(VecTy);
11285     Value *SV = Builder.CreateShuffleVector(Cast, Zero,
11286                                             makeArrayRef(Indices, NumElts),
11287                                             "psrldq");
11288     return Builder.CreateBitCast(SV, ResultType, "cast");
11289   }
11290   case X86::BI__builtin_ia32_kshiftliqi:
11291   case X86::BI__builtin_ia32_kshiftlihi:
11292   case X86::BI__builtin_ia32_kshiftlisi:
11293   case X86::BI__builtin_ia32_kshiftlidi: {
11294     unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
11295     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
11296 
11297     if (ShiftVal >= NumElts)
11298       return llvm::Constant::getNullValue(Ops[0]->getType());
11299 
11300     Value *In = getMaskVecValue(*this, Ops[0], NumElts);
11301 
11302     uint32_t Indices[64];
11303     for (unsigned i = 0; i != NumElts; ++i)
11304       Indices[i] = NumElts + i - ShiftVal;
11305 
11306     Value *Zero = llvm::Constant::getNullValue(In->getType());
11307     Value *SV = Builder.CreateShuffleVector(Zero, In,
11308                                             makeArrayRef(Indices, NumElts),
11309                                             "kshiftl");
11310     return Builder.CreateBitCast(SV, Ops[0]->getType());
11311   }
11312   case X86::BI__builtin_ia32_kshiftriqi:
11313   case X86::BI__builtin_ia32_kshiftrihi:
11314   case X86::BI__builtin_ia32_kshiftrisi:
11315   case X86::BI__builtin_ia32_kshiftridi: {
11316     unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
11317     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
11318 
11319     if (ShiftVal >= NumElts)
11320       return llvm::Constant::getNullValue(Ops[0]->getType());
11321 
11322     Value *In = getMaskVecValue(*this, Ops[0], NumElts);
11323 
11324     uint32_t Indices[64];
11325     for (unsigned i = 0; i != NumElts; ++i)
11326       Indices[i] = i + ShiftVal;
11327 
11328     Value *Zero = llvm::Constant::getNullValue(In->getType());
11329     Value *SV = Builder.CreateShuffleVector(In, Zero,
11330                                             makeArrayRef(Indices, NumElts),
11331                                             "kshiftr");
11332     return Builder.CreateBitCast(SV, Ops[0]->getType());
11333   }
11334   case X86::BI__builtin_ia32_movnti:
11335   case X86::BI__builtin_ia32_movnti64:
11336   case X86::BI__builtin_ia32_movntsd:
11337   case X86::BI__builtin_ia32_movntss: {
11338     llvm::MDNode *Node = llvm::MDNode::get(
11339         getLLVMContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
11340 
11341     Value *Ptr = Ops[0];
11342     Value *Src = Ops[1];
11343 
11344     // Extract the 0'th element of the source vector.
11345     if (BuiltinID == X86::BI__builtin_ia32_movntsd ||
11346         BuiltinID == X86::BI__builtin_ia32_movntss)
11347       Src = Builder.CreateExtractElement(Src, (uint64_t)0, "extract");
11348 
11349     // Convert the type of the pointer to a pointer to the stored type.
11350     Value *BC = Builder.CreateBitCast(
11351         Ptr, llvm::PointerType::getUnqual(Src->getType()), "cast");
11352 
11353     // Unaligned nontemporal store of the scalar value.
11354     StoreInst *SI = Builder.CreateDefaultAlignedStore(Src, BC);
11355     SI->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
11356     SI->setAlignment(llvm::Align::None());
11357     return SI;
11358   }
11359   // Rotate is a special case of funnel shift - 1st 2 args are the same.
11360   case X86::BI__builtin_ia32_vprotb:
11361   case X86::BI__builtin_ia32_vprotw:
11362   case X86::BI__builtin_ia32_vprotd:
11363   case X86::BI__builtin_ia32_vprotq:
11364   case X86::BI__builtin_ia32_vprotbi:
11365   case X86::BI__builtin_ia32_vprotwi:
11366   case X86::BI__builtin_ia32_vprotdi:
11367   case X86::BI__builtin_ia32_vprotqi:
11368   case X86::BI__builtin_ia32_prold128:
11369   case X86::BI__builtin_ia32_prold256:
11370   case X86::BI__builtin_ia32_prold512:
11371   case X86::BI__builtin_ia32_prolq128:
11372   case X86::BI__builtin_ia32_prolq256:
11373   case X86::BI__builtin_ia32_prolq512:
11374   case X86::BI__builtin_ia32_prolvd128:
11375   case X86::BI__builtin_ia32_prolvd256:
11376   case X86::BI__builtin_ia32_prolvd512:
11377   case X86::BI__builtin_ia32_prolvq128:
11378   case X86::BI__builtin_ia32_prolvq256:
11379   case X86::BI__builtin_ia32_prolvq512:
11380     return EmitX86FunnelShift(*this, Ops[0], Ops[0], Ops[1], false);
11381   case X86::BI__builtin_ia32_prord128:
11382   case X86::BI__builtin_ia32_prord256:
11383   case X86::BI__builtin_ia32_prord512:
11384   case X86::BI__builtin_ia32_prorq128:
11385   case X86::BI__builtin_ia32_prorq256:
11386   case X86::BI__builtin_ia32_prorq512:
11387   case X86::BI__builtin_ia32_prorvd128:
11388   case X86::BI__builtin_ia32_prorvd256:
11389   case X86::BI__builtin_ia32_prorvd512:
11390   case X86::BI__builtin_ia32_prorvq128:
11391   case X86::BI__builtin_ia32_prorvq256:
11392   case X86::BI__builtin_ia32_prorvq512:
11393     return EmitX86FunnelShift(*this, Ops[0], Ops[0], Ops[1], true);
11394   case X86::BI__builtin_ia32_selectb_128:
11395   case X86::BI__builtin_ia32_selectb_256:
11396   case X86::BI__builtin_ia32_selectb_512:
11397   case X86::BI__builtin_ia32_selectw_128:
11398   case X86::BI__builtin_ia32_selectw_256:
11399   case X86::BI__builtin_ia32_selectw_512:
11400   case X86::BI__builtin_ia32_selectd_128:
11401   case X86::BI__builtin_ia32_selectd_256:
11402   case X86::BI__builtin_ia32_selectd_512:
11403   case X86::BI__builtin_ia32_selectq_128:
11404   case X86::BI__builtin_ia32_selectq_256:
11405   case X86::BI__builtin_ia32_selectq_512:
11406   case X86::BI__builtin_ia32_selectps_128:
11407   case X86::BI__builtin_ia32_selectps_256:
11408   case X86::BI__builtin_ia32_selectps_512:
11409   case X86::BI__builtin_ia32_selectpd_128:
11410   case X86::BI__builtin_ia32_selectpd_256:
11411   case X86::BI__builtin_ia32_selectpd_512:
11412     return EmitX86Select(*this, Ops[0], Ops[1], Ops[2]);
11413   case X86::BI__builtin_ia32_selectss_128:
11414   case X86::BI__builtin_ia32_selectsd_128: {
11415     Value *A = Builder.CreateExtractElement(Ops[1], (uint64_t)0);
11416     Value *B = Builder.CreateExtractElement(Ops[2], (uint64_t)0);
11417     A = EmitX86ScalarSelect(*this, Ops[0], A, B);
11418     return Builder.CreateInsertElement(Ops[1], A, (uint64_t)0);
11419   }
11420   case X86::BI__builtin_ia32_cmpb128_mask:
11421   case X86::BI__builtin_ia32_cmpb256_mask:
11422   case X86::BI__builtin_ia32_cmpb512_mask:
11423   case X86::BI__builtin_ia32_cmpw128_mask:
11424   case X86::BI__builtin_ia32_cmpw256_mask:
11425   case X86::BI__builtin_ia32_cmpw512_mask:
11426   case X86::BI__builtin_ia32_cmpd128_mask:
11427   case X86::BI__builtin_ia32_cmpd256_mask:
11428   case X86::BI__builtin_ia32_cmpd512_mask:
11429   case X86::BI__builtin_ia32_cmpq128_mask:
11430   case X86::BI__builtin_ia32_cmpq256_mask:
11431   case X86::BI__builtin_ia32_cmpq512_mask: {
11432     unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
11433     return EmitX86MaskedCompare(*this, CC, true, Ops);
11434   }
11435   case X86::BI__builtin_ia32_ucmpb128_mask:
11436   case X86::BI__builtin_ia32_ucmpb256_mask:
11437   case X86::BI__builtin_ia32_ucmpb512_mask:
11438   case X86::BI__builtin_ia32_ucmpw128_mask:
11439   case X86::BI__builtin_ia32_ucmpw256_mask:
11440   case X86::BI__builtin_ia32_ucmpw512_mask:
11441   case X86::BI__builtin_ia32_ucmpd128_mask:
11442   case X86::BI__builtin_ia32_ucmpd256_mask:
11443   case X86::BI__builtin_ia32_ucmpd512_mask:
11444   case X86::BI__builtin_ia32_ucmpq128_mask:
11445   case X86::BI__builtin_ia32_ucmpq256_mask:
11446   case X86::BI__builtin_ia32_ucmpq512_mask: {
11447     unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
11448     return EmitX86MaskedCompare(*this, CC, false, Ops);
11449   }
11450   case X86::BI__builtin_ia32_vpcomb:
11451   case X86::BI__builtin_ia32_vpcomw:
11452   case X86::BI__builtin_ia32_vpcomd:
11453   case X86::BI__builtin_ia32_vpcomq:
11454     return EmitX86vpcom(*this, Ops, true);
11455   case X86::BI__builtin_ia32_vpcomub:
11456   case X86::BI__builtin_ia32_vpcomuw:
11457   case X86::BI__builtin_ia32_vpcomud:
11458   case X86::BI__builtin_ia32_vpcomuq:
11459     return EmitX86vpcom(*this, Ops, false);
11460 
11461   case X86::BI__builtin_ia32_kortestcqi:
11462   case X86::BI__builtin_ia32_kortestchi:
11463   case X86::BI__builtin_ia32_kortestcsi:
11464   case X86::BI__builtin_ia32_kortestcdi: {
11465     Value *Or = EmitX86MaskLogic(*this, Instruction::Or, Ops);
11466     Value *C = llvm::Constant::getAllOnesValue(Ops[0]->getType());
11467     Value *Cmp = Builder.CreateICmpEQ(Or, C);
11468     return Builder.CreateZExt(Cmp, ConvertType(E->getType()));
11469   }
11470   case X86::BI__builtin_ia32_kortestzqi:
11471   case X86::BI__builtin_ia32_kortestzhi:
11472   case X86::BI__builtin_ia32_kortestzsi:
11473   case X86::BI__builtin_ia32_kortestzdi: {
11474     Value *Or = EmitX86MaskLogic(*this, Instruction::Or, Ops);
11475     Value *C = llvm::Constant::getNullValue(Ops[0]->getType());
11476     Value *Cmp = Builder.CreateICmpEQ(Or, C);
11477     return Builder.CreateZExt(Cmp, ConvertType(E->getType()));
11478   }
11479 
11480   case X86::BI__builtin_ia32_ktestcqi:
11481   case X86::BI__builtin_ia32_ktestzqi:
11482   case X86::BI__builtin_ia32_ktestchi:
11483   case X86::BI__builtin_ia32_ktestzhi:
11484   case X86::BI__builtin_ia32_ktestcsi:
11485   case X86::BI__builtin_ia32_ktestzsi:
11486   case X86::BI__builtin_ia32_ktestcdi:
11487   case X86::BI__builtin_ia32_ktestzdi: {
11488     Intrinsic::ID IID;
11489     switch (BuiltinID) {
11490     default: llvm_unreachable("Unsupported intrinsic!");
11491     case X86::BI__builtin_ia32_ktestcqi:
11492       IID = Intrinsic::x86_avx512_ktestc_b;
11493       break;
11494     case X86::BI__builtin_ia32_ktestzqi:
11495       IID = Intrinsic::x86_avx512_ktestz_b;
11496       break;
11497     case X86::BI__builtin_ia32_ktestchi:
11498       IID = Intrinsic::x86_avx512_ktestc_w;
11499       break;
11500     case X86::BI__builtin_ia32_ktestzhi:
11501       IID = Intrinsic::x86_avx512_ktestz_w;
11502       break;
11503     case X86::BI__builtin_ia32_ktestcsi:
11504       IID = Intrinsic::x86_avx512_ktestc_d;
11505       break;
11506     case X86::BI__builtin_ia32_ktestzsi:
11507       IID = Intrinsic::x86_avx512_ktestz_d;
11508       break;
11509     case X86::BI__builtin_ia32_ktestcdi:
11510       IID = Intrinsic::x86_avx512_ktestc_q;
11511       break;
11512     case X86::BI__builtin_ia32_ktestzdi:
11513       IID = Intrinsic::x86_avx512_ktestz_q;
11514       break;
11515     }
11516 
11517     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
11518     Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
11519     Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
11520     Function *Intr = CGM.getIntrinsic(IID);
11521     return Builder.CreateCall(Intr, {LHS, RHS});
11522   }
11523 
11524   case X86::BI__builtin_ia32_kaddqi:
11525   case X86::BI__builtin_ia32_kaddhi:
11526   case X86::BI__builtin_ia32_kaddsi:
11527   case X86::BI__builtin_ia32_kadddi: {
11528     Intrinsic::ID IID;
11529     switch (BuiltinID) {
11530     default: llvm_unreachable("Unsupported intrinsic!");
11531     case X86::BI__builtin_ia32_kaddqi:
11532       IID = Intrinsic::x86_avx512_kadd_b;
11533       break;
11534     case X86::BI__builtin_ia32_kaddhi:
11535       IID = Intrinsic::x86_avx512_kadd_w;
11536       break;
11537     case X86::BI__builtin_ia32_kaddsi:
11538       IID = Intrinsic::x86_avx512_kadd_d;
11539       break;
11540     case X86::BI__builtin_ia32_kadddi:
11541       IID = Intrinsic::x86_avx512_kadd_q;
11542       break;
11543     }
11544 
11545     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
11546     Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
11547     Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
11548     Function *Intr = CGM.getIntrinsic(IID);
11549     Value *Res = Builder.CreateCall(Intr, {LHS, RHS});
11550     return Builder.CreateBitCast(Res, Ops[0]->getType());
11551   }
11552   case X86::BI__builtin_ia32_kandqi:
11553   case X86::BI__builtin_ia32_kandhi:
11554   case X86::BI__builtin_ia32_kandsi:
11555   case X86::BI__builtin_ia32_kanddi:
11556     return EmitX86MaskLogic(*this, Instruction::And, Ops);
11557   case X86::BI__builtin_ia32_kandnqi:
11558   case X86::BI__builtin_ia32_kandnhi:
11559   case X86::BI__builtin_ia32_kandnsi:
11560   case X86::BI__builtin_ia32_kandndi:
11561     return EmitX86MaskLogic(*this, Instruction::And, Ops, true);
11562   case X86::BI__builtin_ia32_korqi:
11563   case X86::BI__builtin_ia32_korhi:
11564   case X86::BI__builtin_ia32_korsi:
11565   case X86::BI__builtin_ia32_kordi:
11566     return EmitX86MaskLogic(*this, Instruction::Or, Ops);
11567   case X86::BI__builtin_ia32_kxnorqi:
11568   case X86::BI__builtin_ia32_kxnorhi:
11569   case X86::BI__builtin_ia32_kxnorsi:
11570   case X86::BI__builtin_ia32_kxnordi:
11571     return EmitX86MaskLogic(*this, Instruction::Xor, Ops, true);
11572   case X86::BI__builtin_ia32_kxorqi:
11573   case X86::BI__builtin_ia32_kxorhi:
11574   case X86::BI__builtin_ia32_kxorsi:
11575   case X86::BI__builtin_ia32_kxordi:
11576     return EmitX86MaskLogic(*this, Instruction::Xor,  Ops);
11577   case X86::BI__builtin_ia32_knotqi:
11578   case X86::BI__builtin_ia32_knothi:
11579   case X86::BI__builtin_ia32_knotsi:
11580   case X86::BI__builtin_ia32_knotdi: {
11581     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
11582     Value *Res = getMaskVecValue(*this, Ops[0], NumElts);
11583     return Builder.CreateBitCast(Builder.CreateNot(Res),
11584                                  Ops[0]->getType());
11585   }
11586   case X86::BI__builtin_ia32_kmovb:
11587   case X86::BI__builtin_ia32_kmovw:
11588   case X86::BI__builtin_ia32_kmovd:
11589   case X86::BI__builtin_ia32_kmovq: {
11590     // Bitcast to vXi1 type and then back to integer. This gets the mask
11591     // register type into the IR, but might be optimized out depending on
11592     // what's around it.
11593     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
11594     Value *Res = getMaskVecValue(*this, Ops[0], NumElts);
11595     return Builder.CreateBitCast(Res, Ops[0]->getType());
11596   }
11597 
11598   case X86::BI__builtin_ia32_kunpckdi:
11599   case X86::BI__builtin_ia32_kunpcksi:
11600   case X86::BI__builtin_ia32_kunpckhi: {
11601     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
11602     Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
11603     Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
11604     uint32_t Indices[64];
11605     for (unsigned i = 0; i != NumElts; ++i)
11606       Indices[i] = i;
11607 
11608     // First extract half of each vector. This gives better codegen than
11609     // doing it in a single shuffle.
11610     LHS = Builder.CreateShuffleVector(LHS, LHS,
11611                                       makeArrayRef(Indices, NumElts / 2));
11612     RHS = Builder.CreateShuffleVector(RHS, RHS,
11613                                       makeArrayRef(Indices, NumElts / 2));
11614     // Concat the vectors.
11615     // NOTE: Operands are swapped to match the intrinsic definition.
11616     Value *Res = Builder.CreateShuffleVector(RHS, LHS,
11617                                              makeArrayRef(Indices, NumElts));
11618     return Builder.CreateBitCast(Res, Ops[0]->getType());
11619   }
11620 
11621   case X86::BI__builtin_ia32_vplzcntd_128:
11622   case X86::BI__builtin_ia32_vplzcntd_256:
11623   case X86::BI__builtin_ia32_vplzcntd_512:
11624   case X86::BI__builtin_ia32_vplzcntq_128:
11625   case X86::BI__builtin_ia32_vplzcntq_256:
11626   case X86::BI__builtin_ia32_vplzcntq_512: {
11627     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType());
11628     return Builder.CreateCall(F, {Ops[0],Builder.getInt1(false)});
11629   }
11630   case X86::BI__builtin_ia32_sqrtss:
11631   case X86::BI__builtin_ia32_sqrtsd: {
11632     Value *A = Builder.CreateExtractElement(Ops[0], (uint64_t)0);
11633     Function *F = CGM.getIntrinsic(Intrinsic::sqrt, A->getType());
11634     A = Builder.CreateCall(F, {A});
11635     return Builder.CreateInsertElement(Ops[0], A, (uint64_t)0);
11636   }
11637   case X86::BI__builtin_ia32_sqrtsd_round_mask:
11638   case X86::BI__builtin_ia32_sqrtss_round_mask: {
11639     unsigned CC = cast<llvm::ConstantInt>(Ops[4])->getZExtValue();
11640     // Support only if the rounding mode is 4 (AKA CUR_DIRECTION),
11641     // otherwise keep the intrinsic.
11642     if (CC != 4) {
11643       Intrinsic::ID IID = BuiltinID == X86::BI__builtin_ia32_sqrtsd_round_mask ?
11644                           Intrinsic::x86_avx512_mask_sqrt_sd :
11645                           Intrinsic::x86_avx512_mask_sqrt_ss;
11646       return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
11647     }
11648     Value *A = Builder.CreateExtractElement(Ops[1], (uint64_t)0);
11649     Function *F = CGM.getIntrinsic(Intrinsic::sqrt, A->getType());
11650     A = Builder.CreateCall(F, A);
11651     Value *Src = Builder.CreateExtractElement(Ops[2], (uint64_t)0);
11652     A = EmitX86ScalarSelect(*this, Ops[3], A, Src);
11653     return Builder.CreateInsertElement(Ops[0], A, (uint64_t)0);
11654   }
11655   case X86::BI__builtin_ia32_sqrtpd256:
11656   case X86::BI__builtin_ia32_sqrtpd:
11657   case X86::BI__builtin_ia32_sqrtps256:
11658   case X86::BI__builtin_ia32_sqrtps:
11659   case X86::BI__builtin_ia32_sqrtps512:
11660   case X86::BI__builtin_ia32_sqrtpd512: {
11661     if (Ops.size() == 2) {
11662       unsigned CC = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
11663       // Support only if the rounding mode is 4 (AKA CUR_DIRECTION),
11664       // otherwise keep the intrinsic.
11665       if (CC != 4) {
11666         Intrinsic::ID IID = BuiltinID == X86::BI__builtin_ia32_sqrtps512 ?
11667                             Intrinsic::x86_avx512_sqrt_ps_512 :
11668                             Intrinsic::x86_avx512_sqrt_pd_512;
11669         return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
11670       }
11671     }
11672     Function *F = CGM.getIntrinsic(Intrinsic::sqrt, Ops[0]->getType());
11673     return Builder.CreateCall(F, Ops[0]);
11674   }
11675   case X86::BI__builtin_ia32_pabsb128:
11676   case X86::BI__builtin_ia32_pabsw128:
11677   case X86::BI__builtin_ia32_pabsd128:
11678   case X86::BI__builtin_ia32_pabsb256:
11679   case X86::BI__builtin_ia32_pabsw256:
11680   case X86::BI__builtin_ia32_pabsd256:
11681   case X86::BI__builtin_ia32_pabsq128:
11682   case X86::BI__builtin_ia32_pabsq256:
11683   case X86::BI__builtin_ia32_pabsb512:
11684   case X86::BI__builtin_ia32_pabsw512:
11685   case X86::BI__builtin_ia32_pabsd512:
11686   case X86::BI__builtin_ia32_pabsq512:
11687     return EmitX86Abs(*this, Ops);
11688 
11689   case X86::BI__builtin_ia32_pmaxsb128:
11690   case X86::BI__builtin_ia32_pmaxsw128:
11691   case X86::BI__builtin_ia32_pmaxsd128:
11692   case X86::BI__builtin_ia32_pmaxsq128:
11693   case X86::BI__builtin_ia32_pmaxsb256:
11694   case X86::BI__builtin_ia32_pmaxsw256:
11695   case X86::BI__builtin_ia32_pmaxsd256:
11696   case X86::BI__builtin_ia32_pmaxsq256:
11697   case X86::BI__builtin_ia32_pmaxsb512:
11698   case X86::BI__builtin_ia32_pmaxsw512:
11699   case X86::BI__builtin_ia32_pmaxsd512:
11700   case X86::BI__builtin_ia32_pmaxsq512:
11701     return EmitX86MinMax(*this, ICmpInst::ICMP_SGT, Ops);
11702   case X86::BI__builtin_ia32_pmaxub128:
11703   case X86::BI__builtin_ia32_pmaxuw128:
11704   case X86::BI__builtin_ia32_pmaxud128:
11705   case X86::BI__builtin_ia32_pmaxuq128:
11706   case X86::BI__builtin_ia32_pmaxub256:
11707   case X86::BI__builtin_ia32_pmaxuw256:
11708   case X86::BI__builtin_ia32_pmaxud256:
11709   case X86::BI__builtin_ia32_pmaxuq256:
11710   case X86::BI__builtin_ia32_pmaxub512:
11711   case X86::BI__builtin_ia32_pmaxuw512:
11712   case X86::BI__builtin_ia32_pmaxud512:
11713   case X86::BI__builtin_ia32_pmaxuq512:
11714     return EmitX86MinMax(*this, ICmpInst::ICMP_UGT, Ops);
11715   case X86::BI__builtin_ia32_pminsb128:
11716   case X86::BI__builtin_ia32_pminsw128:
11717   case X86::BI__builtin_ia32_pminsd128:
11718   case X86::BI__builtin_ia32_pminsq128:
11719   case X86::BI__builtin_ia32_pminsb256:
11720   case X86::BI__builtin_ia32_pminsw256:
11721   case X86::BI__builtin_ia32_pminsd256:
11722   case X86::BI__builtin_ia32_pminsq256:
11723   case X86::BI__builtin_ia32_pminsb512:
11724   case X86::BI__builtin_ia32_pminsw512:
11725   case X86::BI__builtin_ia32_pminsd512:
11726   case X86::BI__builtin_ia32_pminsq512:
11727     return EmitX86MinMax(*this, ICmpInst::ICMP_SLT, Ops);
11728   case X86::BI__builtin_ia32_pminub128:
11729   case X86::BI__builtin_ia32_pminuw128:
11730   case X86::BI__builtin_ia32_pminud128:
11731   case X86::BI__builtin_ia32_pminuq128:
11732   case X86::BI__builtin_ia32_pminub256:
11733   case X86::BI__builtin_ia32_pminuw256:
11734   case X86::BI__builtin_ia32_pminud256:
11735   case X86::BI__builtin_ia32_pminuq256:
11736   case X86::BI__builtin_ia32_pminub512:
11737   case X86::BI__builtin_ia32_pminuw512:
11738   case X86::BI__builtin_ia32_pminud512:
11739   case X86::BI__builtin_ia32_pminuq512:
11740     return EmitX86MinMax(*this, ICmpInst::ICMP_ULT, Ops);
11741 
11742   case X86::BI__builtin_ia32_pmuludq128:
11743   case X86::BI__builtin_ia32_pmuludq256:
11744   case X86::BI__builtin_ia32_pmuludq512:
11745     return EmitX86Muldq(*this, /*IsSigned*/false, Ops);
11746 
11747   case X86::BI__builtin_ia32_pmuldq128:
11748   case X86::BI__builtin_ia32_pmuldq256:
11749   case X86::BI__builtin_ia32_pmuldq512:
11750     return EmitX86Muldq(*this, /*IsSigned*/true, Ops);
11751 
11752   case X86::BI__builtin_ia32_pternlogd512_mask:
11753   case X86::BI__builtin_ia32_pternlogq512_mask:
11754   case X86::BI__builtin_ia32_pternlogd128_mask:
11755   case X86::BI__builtin_ia32_pternlogd256_mask:
11756   case X86::BI__builtin_ia32_pternlogq128_mask:
11757   case X86::BI__builtin_ia32_pternlogq256_mask:
11758     return EmitX86Ternlog(*this, /*ZeroMask*/false, Ops);
11759 
11760   case X86::BI__builtin_ia32_pternlogd512_maskz:
11761   case X86::BI__builtin_ia32_pternlogq512_maskz:
11762   case X86::BI__builtin_ia32_pternlogd128_maskz:
11763   case X86::BI__builtin_ia32_pternlogd256_maskz:
11764   case X86::BI__builtin_ia32_pternlogq128_maskz:
11765   case X86::BI__builtin_ia32_pternlogq256_maskz:
11766     return EmitX86Ternlog(*this, /*ZeroMask*/true, Ops);
11767 
11768   case X86::BI__builtin_ia32_vpshldd128:
11769   case X86::BI__builtin_ia32_vpshldd256:
11770   case X86::BI__builtin_ia32_vpshldd512:
11771   case X86::BI__builtin_ia32_vpshldq128:
11772   case X86::BI__builtin_ia32_vpshldq256:
11773   case X86::BI__builtin_ia32_vpshldq512:
11774   case X86::BI__builtin_ia32_vpshldw128:
11775   case X86::BI__builtin_ia32_vpshldw256:
11776   case X86::BI__builtin_ia32_vpshldw512:
11777     return EmitX86FunnelShift(*this, Ops[0], Ops[1], Ops[2], false);
11778 
11779   case X86::BI__builtin_ia32_vpshrdd128:
11780   case X86::BI__builtin_ia32_vpshrdd256:
11781   case X86::BI__builtin_ia32_vpshrdd512:
11782   case X86::BI__builtin_ia32_vpshrdq128:
11783   case X86::BI__builtin_ia32_vpshrdq256:
11784   case X86::BI__builtin_ia32_vpshrdq512:
11785   case X86::BI__builtin_ia32_vpshrdw128:
11786   case X86::BI__builtin_ia32_vpshrdw256:
11787   case X86::BI__builtin_ia32_vpshrdw512:
11788     // Ops 0 and 1 are swapped.
11789     return EmitX86FunnelShift(*this, Ops[1], Ops[0], Ops[2], true);
11790 
11791   case X86::BI__builtin_ia32_vpshldvd128:
11792   case X86::BI__builtin_ia32_vpshldvd256:
11793   case X86::BI__builtin_ia32_vpshldvd512:
11794   case X86::BI__builtin_ia32_vpshldvq128:
11795   case X86::BI__builtin_ia32_vpshldvq256:
11796   case X86::BI__builtin_ia32_vpshldvq512:
11797   case X86::BI__builtin_ia32_vpshldvw128:
11798   case X86::BI__builtin_ia32_vpshldvw256:
11799   case X86::BI__builtin_ia32_vpshldvw512:
11800     return EmitX86FunnelShift(*this, Ops[0], Ops[1], Ops[2], false);
11801 
11802   case X86::BI__builtin_ia32_vpshrdvd128:
11803   case X86::BI__builtin_ia32_vpshrdvd256:
11804   case X86::BI__builtin_ia32_vpshrdvd512:
11805   case X86::BI__builtin_ia32_vpshrdvq128:
11806   case X86::BI__builtin_ia32_vpshrdvq256:
11807   case X86::BI__builtin_ia32_vpshrdvq512:
11808   case X86::BI__builtin_ia32_vpshrdvw128:
11809   case X86::BI__builtin_ia32_vpshrdvw256:
11810   case X86::BI__builtin_ia32_vpshrdvw512:
11811     // Ops 0 and 1 are swapped.
11812     return EmitX86FunnelShift(*this, Ops[1], Ops[0], Ops[2], true);
11813 
11814   // 3DNow!
11815   case X86::BI__builtin_ia32_pswapdsf:
11816   case X86::BI__builtin_ia32_pswapdsi: {
11817     llvm::Type *MMXTy = llvm::Type::getX86_MMXTy(getLLVMContext());
11818     Ops[0] = Builder.CreateBitCast(Ops[0], MMXTy, "cast");
11819     llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_3dnowa_pswapd);
11820     return Builder.CreateCall(F, Ops, "pswapd");
11821   }
11822   case X86::BI__builtin_ia32_rdrand16_step:
11823   case X86::BI__builtin_ia32_rdrand32_step:
11824   case X86::BI__builtin_ia32_rdrand64_step:
11825   case X86::BI__builtin_ia32_rdseed16_step:
11826   case X86::BI__builtin_ia32_rdseed32_step:
11827   case X86::BI__builtin_ia32_rdseed64_step: {
11828     Intrinsic::ID ID;
11829     switch (BuiltinID) {
11830     default: llvm_unreachable("Unsupported intrinsic!");
11831     case X86::BI__builtin_ia32_rdrand16_step:
11832       ID = Intrinsic::x86_rdrand_16;
11833       break;
11834     case X86::BI__builtin_ia32_rdrand32_step:
11835       ID = Intrinsic::x86_rdrand_32;
11836       break;
11837     case X86::BI__builtin_ia32_rdrand64_step:
11838       ID = Intrinsic::x86_rdrand_64;
11839       break;
11840     case X86::BI__builtin_ia32_rdseed16_step:
11841       ID = Intrinsic::x86_rdseed_16;
11842       break;
11843     case X86::BI__builtin_ia32_rdseed32_step:
11844       ID = Intrinsic::x86_rdseed_32;
11845       break;
11846     case X86::BI__builtin_ia32_rdseed64_step:
11847       ID = Intrinsic::x86_rdseed_64;
11848       break;
11849     }
11850 
11851     Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID));
11852     Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 0),
11853                                       Ops[0]);
11854     return Builder.CreateExtractValue(Call, 1);
11855   }
11856   case X86::BI__builtin_ia32_addcarryx_u32:
11857   case X86::BI__builtin_ia32_addcarryx_u64:
11858   case X86::BI__builtin_ia32_subborrow_u32:
11859   case X86::BI__builtin_ia32_subborrow_u64: {
11860     Intrinsic::ID IID;
11861     switch (BuiltinID) {
11862     default: llvm_unreachable("Unsupported intrinsic!");
11863     case X86::BI__builtin_ia32_addcarryx_u32:
11864       IID = Intrinsic::x86_addcarry_32;
11865       break;
11866     case X86::BI__builtin_ia32_addcarryx_u64:
11867       IID = Intrinsic::x86_addcarry_64;
11868       break;
11869     case X86::BI__builtin_ia32_subborrow_u32:
11870       IID = Intrinsic::x86_subborrow_32;
11871       break;
11872     case X86::BI__builtin_ia32_subborrow_u64:
11873       IID = Intrinsic::x86_subborrow_64;
11874       break;
11875     }
11876 
11877     Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID),
11878                                      { Ops[0], Ops[1], Ops[2] });
11879     Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 1),
11880                                       Ops[3]);
11881     return Builder.CreateExtractValue(Call, 0);
11882   }
11883 
11884   case X86::BI__builtin_ia32_fpclassps128_mask:
11885   case X86::BI__builtin_ia32_fpclassps256_mask:
11886   case X86::BI__builtin_ia32_fpclassps512_mask:
11887   case X86::BI__builtin_ia32_fpclasspd128_mask:
11888   case X86::BI__builtin_ia32_fpclasspd256_mask:
11889   case X86::BI__builtin_ia32_fpclasspd512_mask: {
11890     unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
11891     Value *MaskIn = Ops[2];
11892     Ops.erase(&Ops[2]);
11893 
11894     Intrinsic::ID ID;
11895     switch (BuiltinID) {
11896     default: llvm_unreachable("Unsupported intrinsic!");
11897     case X86::BI__builtin_ia32_fpclassps128_mask:
11898       ID = Intrinsic::x86_avx512_fpclass_ps_128;
11899       break;
11900     case X86::BI__builtin_ia32_fpclassps256_mask:
11901       ID = Intrinsic::x86_avx512_fpclass_ps_256;
11902       break;
11903     case X86::BI__builtin_ia32_fpclassps512_mask:
11904       ID = Intrinsic::x86_avx512_fpclass_ps_512;
11905       break;
11906     case X86::BI__builtin_ia32_fpclasspd128_mask:
11907       ID = Intrinsic::x86_avx512_fpclass_pd_128;
11908       break;
11909     case X86::BI__builtin_ia32_fpclasspd256_mask:
11910       ID = Intrinsic::x86_avx512_fpclass_pd_256;
11911       break;
11912     case X86::BI__builtin_ia32_fpclasspd512_mask:
11913       ID = Intrinsic::x86_avx512_fpclass_pd_512;
11914       break;
11915     }
11916 
11917     Value *Fpclass = Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
11918     return EmitX86MaskedCompareResult(*this, Fpclass, NumElts, MaskIn);
11919   }
11920 
11921   case X86::BI__builtin_ia32_vp2intersect_q_512:
11922   case X86::BI__builtin_ia32_vp2intersect_q_256:
11923   case X86::BI__builtin_ia32_vp2intersect_q_128:
11924   case X86::BI__builtin_ia32_vp2intersect_d_512:
11925   case X86::BI__builtin_ia32_vp2intersect_d_256:
11926   case X86::BI__builtin_ia32_vp2intersect_d_128: {
11927     unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
11928     Intrinsic::ID ID;
11929 
11930     switch (BuiltinID) {
11931     default: llvm_unreachable("Unsupported intrinsic!");
11932     case X86::BI__builtin_ia32_vp2intersect_q_512:
11933       ID = Intrinsic::x86_avx512_vp2intersect_q_512;
11934       break;
11935     case X86::BI__builtin_ia32_vp2intersect_q_256:
11936       ID = Intrinsic::x86_avx512_vp2intersect_q_256;
11937       break;
11938     case X86::BI__builtin_ia32_vp2intersect_q_128:
11939       ID = Intrinsic::x86_avx512_vp2intersect_q_128;
11940       break;
11941     case X86::BI__builtin_ia32_vp2intersect_d_512:
11942       ID = Intrinsic::x86_avx512_vp2intersect_d_512;
11943       break;
11944     case X86::BI__builtin_ia32_vp2intersect_d_256:
11945       ID = Intrinsic::x86_avx512_vp2intersect_d_256;
11946       break;
11947     case X86::BI__builtin_ia32_vp2intersect_d_128:
11948       ID = Intrinsic::x86_avx512_vp2intersect_d_128;
11949       break;
11950     }
11951 
11952     Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID), {Ops[0], Ops[1]});
11953     Value *Result = Builder.CreateExtractValue(Call, 0);
11954     Result = EmitX86MaskedCompareResult(*this, Result, NumElts, nullptr);
11955     Builder.CreateDefaultAlignedStore(Result, Ops[2]);
11956 
11957     Result = Builder.CreateExtractValue(Call, 1);
11958     Result = EmitX86MaskedCompareResult(*this, Result, NumElts, nullptr);
11959     return Builder.CreateDefaultAlignedStore(Result, Ops[3]);
11960   }
11961 
11962   case X86::BI__builtin_ia32_vpmultishiftqb128:
11963   case X86::BI__builtin_ia32_vpmultishiftqb256:
11964   case X86::BI__builtin_ia32_vpmultishiftqb512: {
11965     Intrinsic::ID ID;
11966     switch (BuiltinID) {
11967     default: llvm_unreachable("Unsupported intrinsic!");
11968     case X86::BI__builtin_ia32_vpmultishiftqb128:
11969       ID = Intrinsic::x86_avx512_pmultishift_qb_128;
11970       break;
11971     case X86::BI__builtin_ia32_vpmultishiftqb256:
11972       ID = Intrinsic::x86_avx512_pmultishift_qb_256;
11973       break;
11974     case X86::BI__builtin_ia32_vpmultishiftqb512:
11975       ID = Intrinsic::x86_avx512_pmultishift_qb_512;
11976       break;
11977     }
11978 
11979     return Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
11980   }
11981 
11982   case X86::BI__builtin_ia32_vpshufbitqmb128_mask:
11983   case X86::BI__builtin_ia32_vpshufbitqmb256_mask:
11984   case X86::BI__builtin_ia32_vpshufbitqmb512_mask: {
11985     unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
11986     Value *MaskIn = Ops[2];
11987     Ops.erase(&Ops[2]);
11988 
11989     Intrinsic::ID ID;
11990     switch (BuiltinID) {
11991     default: llvm_unreachable("Unsupported intrinsic!");
11992     case X86::BI__builtin_ia32_vpshufbitqmb128_mask:
11993       ID = Intrinsic::x86_avx512_vpshufbitqmb_128;
11994       break;
11995     case X86::BI__builtin_ia32_vpshufbitqmb256_mask:
11996       ID = Intrinsic::x86_avx512_vpshufbitqmb_256;
11997       break;
11998     case X86::BI__builtin_ia32_vpshufbitqmb512_mask:
11999       ID = Intrinsic::x86_avx512_vpshufbitqmb_512;
12000       break;
12001     }
12002 
12003     Value *Shufbit = Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
12004     return EmitX86MaskedCompareResult(*this, Shufbit, NumElts, MaskIn);
12005   }
12006 
12007   // packed comparison intrinsics
12008   case X86::BI__builtin_ia32_cmpeqps:
12009   case X86::BI__builtin_ia32_cmpeqpd:
12010     return getVectorFCmpIR(CmpInst::FCMP_OEQ);
12011   case X86::BI__builtin_ia32_cmpltps:
12012   case X86::BI__builtin_ia32_cmpltpd:
12013     return getVectorFCmpIR(CmpInst::FCMP_OLT);
12014   case X86::BI__builtin_ia32_cmpleps:
12015   case X86::BI__builtin_ia32_cmplepd:
12016     return getVectorFCmpIR(CmpInst::FCMP_OLE);
12017   case X86::BI__builtin_ia32_cmpunordps:
12018   case X86::BI__builtin_ia32_cmpunordpd:
12019     return getVectorFCmpIR(CmpInst::FCMP_UNO);
12020   case X86::BI__builtin_ia32_cmpneqps:
12021   case X86::BI__builtin_ia32_cmpneqpd:
12022     return getVectorFCmpIR(CmpInst::FCMP_UNE);
12023   case X86::BI__builtin_ia32_cmpnltps:
12024   case X86::BI__builtin_ia32_cmpnltpd:
12025     return getVectorFCmpIR(CmpInst::FCMP_UGE);
12026   case X86::BI__builtin_ia32_cmpnleps:
12027   case X86::BI__builtin_ia32_cmpnlepd:
12028     return getVectorFCmpIR(CmpInst::FCMP_UGT);
12029   case X86::BI__builtin_ia32_cmpordps:
12030   case X86::BI__builtin_ia32_cmpordpd:
12031     return getVectorFCmpIR(CmpInst::FCMP_ORD);
12032   case X86::BI__builtin_ia32_cmpps:
12033   case X86::BI__builtin_ia32_cmpps256:
12034   case X86::BI__builtin_ia32_cmppd:
12035   case X86::BI__builtin_ia32_cmppd256:
12036   case X86::BI__builtin_ia32_cmpps128_mask:
12037   case X86::BI__builtin_ia32_cmpps256_mask:
12038   case X86::BI__builtin_ia32_cmpps512_mask:
12039   case X86::BI__builtin_ia32_cmppd128_mask:
12040   case X86::BI__builtin_ia32_cmppd256_mask:
12041   case X86::BI__builtin_ia32_cmppd512_mask: {
12042     // Lowering vector comparisons to fcmp instructions, while
12043     // ignoring signalling behaviour requested
12044     // ignoring rounding mode requested
12045     // This is is only possible as long as FENV_ACCESS is not implemented.
12046     // See also: https://reviews.llvm.org/D45616
12047 
12048     // The third argument is the comparison condition, and integer in the
12049     // range [0, 31]
12050     unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x1f;
12051 
12052     // Lowering to IR fcmp instruction.
12053     // Ignoring requested signaling behaviour,
12054     // e.g. both _CMP_GT_OS & _CMP_GT_OQ are translated to FCMP_OGT.
12055     FCmpInst::Predicate Pred;
12056     switch (CC) {
12057     case 0x00: Pred = FCmpInst::FCMP_OEQ;   break;
12058     case 0x01: Pred = FCmpInst::FCMP_OLT;   break;
12059     case 0x02: Pred = FCmpInst::FCMP_OLE;   break;
12060     case 0x03: Pred = FCmpInst::FCMP_UNO;   break;
12061     case 0x04: Pred = FCmpInst::FCMP_UNE;   break;
12062     case 0x05: Pred = FCmpInst::FCMP_UGE;   break;
12063     case 0x06: Pred = FCmpInst::FCMP_UGT;   break;
12064     case 0x07: Pred = FCmpInst::FCMP_ORD;   break;
12065     case 0x08: Pred = FCmpInst::FCMP_UEQ;   break;
12066     case 0x09: Pred = FCmpInst::FCMP_ULT;   break;
12067     case 0x0a: Pred = FCmpInst::FCMP_ULE;   break;
12068     case 0x0b: Pred = FCmpInst::FCMP_FALSE; break;
12069     case 0x0c: Pred = FCmpInst::FCMP_ONE;   break;
12070     case 0x0d: Pred = FCmpInst::FCMP_OGE;   break;
12071     case 0x0e: Pred = FCmpInst::FCMP_OGT;   break;
12072     case 0x0f: Pred = FCmpInst::FCMP_TRUE;  break;
12073     case 0x10: Pred = FCmpInst::FCMP_OEQ;   break;
12074     case 0x11: Pred = FCmpInst::FCMP_OLT;   break;
12075     case 0x12: Pred = FCmpInst::FCMP_OLE;   break;
12076     case 0x13: Pred = FCmpInst::FCMP_UNO;   break;
12077     case 0x14: Pred = FCmpInst::FCMP_UNE;   break;
12078     case 0x15: Pred = FCmpInst::FCMP_UGE;   break;
12079     case 0x16: Pred = FCmpInst::FCMP_UGT;   break;
12080     case 0x17: Pred = FCmpInst::FCMP_ORD;   break;
12081     case 0x18: Pred = FCmpInst::FCMP_UEQ;   break;
12082     case 0x19: Pred = FCmpInst::FCMP_ULT;   break;
12083     case 0x1a: Pred = FCmpInst::FCMP_ULE;   break;
12084     case 0x1b: Pred = FCmpInst::FCMP_FALSE; break;
12085     case 0x1c: Pred = FCmpInst::FCMP_ONE;   break;
12086     case 0x1d: Pred = FCmpInst::FCMP_OGE;   break;
12087     case 0x1e: Pred = FCmpInst::FCMP_OGT;   break;
12088     case 0x1f: Pred = FCmpInst::FCMP_TRUE;  break;
12089     default: llvm_unreachable("Unhandled CC");
12090     }
12091 
12092     // Builtins without the _mask suffix return a vector of integers
12093     // of the same width as the input vectors
12094     switch (BuiltinID) {
12095     case X86::BI__builtin_ia32_cmpps512_mask:
12096     case X86::BI__builtin_ia32_cmppd512_mask:
12097     case X86::BI__builtin_ia32_cmpps128_mask:
12098     case X86::BI__builtin_ia32_cmpps256_mask:
12099     case X86::BI__builtin_ia32_cmppd128_mask:
12100     case X86::BI__builtin_ia32_cmppd256_mask: {
12101       unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
12102       Value *Cmp = Builder.CreateFCmp(Pred, Ops[0], Ops[1]);
12103       return EmitX86MaskedCompareResult(*this, Cmp, NumElts, Ops[3]);
12104     }
12105     default:
12106       return getVectorFCmpIR(Pred);
12107     }
12108   }
12109 
12110   // SSE scalar comparison intrinsics
12111   case X86::BI__builtin_ia32_cmpeqss:
12112     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 0);
12113   case X86::BI__builtin_ia32_cmpltss:
12114     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 1);
12115   case X86::BI__builtin_ia32_cmpless:
12116     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 2);
12117   case X86::BI__builtin_ia32_cmpunordss:
12118     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 3);
12119   case X86::BI__builtin_ia32_cmpneqss:
12120     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 4);
12121   case X86::BI__builtin_ia32_cmpnltss:
12122     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 5);
12123   case X86::BI__builtin_ia32_cmpnless:
12124     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 6);
12125   case X86::BI__builtin_ia32_cmpordss:
12126     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 7);
12127   case X86::BI__builtin_ia32_cmpeqsd:
12128     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 0);
12129   case X86::BI__builtin_ia32_cmpltsd:
12130     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 1);
12131   case X86::BI__builtin_ia32_cmplesd:
12132     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 2);
12133   case X86::BI__builtin_ia32_cmpunordsd:
12134     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 3);
12135   case X86::BI__builtin_ia32_cmpneqsd:
12136     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 4);
12137   case X86::BI__builtin_ia32_cmpnltsd:
12138     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 5);
12139   case X86::BI__builtin_ia32_cmpnlesd:
12140     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 6);
12141   case X86::BI__builtin_ia32_cmpordsd:
12142     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 7);
12143 
12144 // AVX512 bf16 intrinsics
12145   case X86::BI__builtin_ia32_cvtneps2bf16_128_mask: {
12146     Ops[2] = getMaskVecValue(*this, Ops[2],
12147                              Ops[0]->getType()->getVectorNumElements());
12148     Intrinsic::ID IID = Intrinsic::x86_avx512bf16_mask_cvtneps2bf16_128;
12149     return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
12150   }
12151   case X86::BI__builtin_ia32_cvtsbf162ss_32:
12152     return EmitX86CvtBF16ToFloatExpr(*this, E, Ops);
12153 
12154   case X86::BI__builtin_ia32_cvtneps2bf16_256_mask:
12155   case X86::BI__builtin_ia32_cvtneps2bf16_512_mask: {
12156     Intrinsic::ID IID;
12157     switch (BuiltinID) {
12158     default: llvm_unreachable("Unsupported intrinsic!");
12159     case X86::BI__builtin_ia32_cvtneps2bf16_256_mask:
12160       IID = Intrinsic::x86_avx512bf16_cvtneps2bf16_256;
12161       break;
12162     case X86::BI__builtin_ia32_cvtneps2bf16_512_mask:
12163       IID = Intrinsic::x86_avx512bf16_cvtneps2bf16_512;
12164       break;
12165     }
12166     Value *Res = Builder.CreateCall(CGM.getIntrinsic(IID), Ops[0]);
12167     return EmitX86Select(*this, Ops[2], Res, Ops[1]);
12168   }
12169 
12170   case X86::BI__emul:
12171   case X86::BI__emulu: {
12172     llvm::Type *Int64Ty = llvm::IntegerType::get(getLLVMContext(), 64);
12173     bool isSigned = (BuiltinID == X86::BI__emul);
12174     Value *LHS = Builder.CreateIntCast(Ops[0], Int64Ty, isSigned);
12175     Value *RHS = Builder.CreateIntCast(Ops[1], Int64Ty, isSigned);
12176     return Builder.CreateMul(LHS, RHS, "", !isSigned, isSigned);
12177   }
12178   case X86::BI__mulh:
12179   case X86::BI__umulh:
12180   case X86::BI_mul128:
12181   case X86::BI_umul128: {
12182     llvm::Type *ResType = ConvertType(E->getType());
12183     llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
12184 
12185     bool IsSigned = (BuiltinID == X86::BI__mulh || BuiltinID == X86::BI_mul128);
12186     Value *LHS = Builder.CreateIntCast(Ops[0], Int128Ty, IsSigned);
12187     Value *RHS = Builder.CreateIntCast(Ops[1], Int128Ty, IsSigned);
12188 
12189     Value *MulResult, *HigherBits;
12190     if (IsSigned) {
12191       MulResult = Builder.CreateNSWMul(LHS, RHS);
12192       HigherBits = Builder.CreateAShr(MulResult, 64);
12193     } else {
12194       MulResult = Builder.CreateNUWMul(LHS, RHS);
12195       HigherBits = Builder.CreateLShr(MulResult, 64);
12196     }
12197     HigherBits = Builder.CreateIntCast(HigherBits, ResType, IsSigned);
12198 
12199     if (BuiltinID == X86::BI__mulh || BuiltinID == X86::BI__umulh)
12200       return HigherBits;
12201 
12202     Address HighBitsAddress = EmitPointerWithAlignment(E->getArg(2));
12203     Builder.CreateStore(HigherBits, HighBitsAddress);
12204     return Builder.CreateIntCast(MulResult, ResType, IsSigned);
12205   }
12206 
12207   case X86::BI__faststorefence: {
12208     return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
12209                                llvm::SyncScope::System);
12210   }
12211   case X86::BI__shiftleft128:
12212   case X86::BI__shiftright128: {
12213     // FIXME: Once fshl/fshr no longer add an unneeded and and cmov, do this:
12214     // llvm::Function *F = CGM.getIntrinsic(
12215     //   BuiltinID == X86::BI__shiftleft128 ? Intrinsic::fshl : Intrinsic::fshr,
12216     //   Int64Ty);
12217     // Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty);
12218     // return Builder.CreateCall(F, Ops);
12219     llvm::Type *Int128Ty = Builder.getInt128Ty();
12220     Value *HighPart128 =
12221         Builder.CreateShl(Builder.CreateZExt(Ops[1], Int128Ty), 64);
12222     Value *LowPart128 = Builder.CreateZExt(Ops[0], Int128Ty);
12223     Value *Val = Builder.CreateOr(HighPart128, LowPart128);
12224     Value *Amt = Builder.CreateAnd(Builder.CreateZExt(Ops[2], Int128Ty),
12225                                    llvm::ConstantInt::get(Int128Ty, 0x3f));
12226     Value *Res;
12227     if (BuiltinID == X86::BI__shiftleft128)
12228       Res = Builder.CreateLShr(Builder.CreateShl(Val, Amt), 64);
12229     else
12230       Res = Builder.CreateLShr(Val, Amt);
12231     return Builder.CreateTrunc(Res, Int64Ty);
12232   }
12233   case X86::BI_ReadWriteBarrier:
12234   case X86::BI_ReadBarrier:
12235   case X86::BI_WriteBarrier: {
12236     return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
12237                                llvm::SyncScope::SingleThread);
12238   }
12239   case X86::BI_BitScanForward:
12240   case X86::BI_BitScanForward64:
12241     return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanForward, E);
12242   case X86::BI_BitScanReverse:
12243   case X86::BI_BitScanReverse64:
12244     return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanReverse, E);
12245 
12246   case X86::BI_InterlockedAnd64:
12247     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E);
12248   case X86::BI_InterlockedExchange64:
12249     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E);
12250   case X86::BI_InterlockedExchangeAdd64:
12251     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E);
12252   case X86::BI_InterlockedExchangeSub64:
12253     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E);
12254   case X86::BI_InterlockedOr64:
12255     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E);
12256   case X86::BI_InterlockedXor64:
12257     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E);
12258   case X86::BI_InterlockedDecrement64:
12259     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E);
12260   case X86::BI_InterlockedIncrement64:
12261     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E);
12262   case X86::BI_InterlockedCompareExchange128: {
12263     // InterlockedCompareExchange128 doesn't directly refer to 128bit ints,
12264     // instead it takes pointers to 64bit ints for Destination and
12265     // ComparandResult, and exchange is taken as two 64bit ints (high & low).
12266     // The previous value is written to ComparandResult, and success is
12267     // returned.
12268 
12269     llvm::Type *Int128Ty = Builder.getInt128Ty();
12270     llvm::Type *Int128PtrTy = Int128Ty->getPointerTo();
12271 
12272     Value *Destination =
12273         Builder.CreateBitCast(Ops[0], Int128PtrTy);
12274     Value *ExchangeHigh128 = Builder.CreateZExt(Ops[1], Int128Ty);
12275     Value *ExchangeLow128 = Builder.CreateZExt(Ops[2], Int128Ty);
12276     Address ComparandResult(Builder.CreateBitCast(Ops[3], Int128PtrTy),
12277                             getContext().toCharUnitsFromBits(128));
12278 
12279     Value *Exchange = Builder.CreateOr(
12280         Builder.CreateShl(ExchangeHigh128, 64, "", false, false),
12281         ExchangeLow128);
12282 
12283     Value *Comparand = Builder.CreateLoad(ComparandResult);
12284 
12285     AtomicCmpXchgInst *CXI =
12286         Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange,
12287                                     AtomicOrdering::SequentiallyConsistent,
12288                                     AtomicOrdering::SequentiallyConsistent);
12289     CXI->setVolatile(true);
12290 
12291     // Write the result back to the inout pointer.
12292     Builder.CreateStore(Builder.CreateExtractValue(CXI, 0), ComparandResult);
12293 
12294     // Get the success boolean and zero extend it to i8.
12295     Value *Success = Builder.CreateExtractValue(CXI, 1);
12296     return Builder.CreateZExt(Success, ConvertType(E->getType()));
12297   }
12298 
12299   case X86::BI_AddressOfReturnAddress: {
12300     Function *F =
12301         CGM.getIntrinsic(Intrinsic::addressofreturnaddress, AllocaInt8PtrTy);
12302     return Builder.CreateCall(F);
12303   }
12304   case X86::BI__stosb: {
12305     // We treat __stosb as a volatile memset - it may not generate "rep stosb"
12306     // instruction, but it will create a memset that won't be optimized away.
12307     return Builder.CreateMemSet(Ops[0], Ops[1], Ops[2], 1, true);
12308   }
12309   case X86::BI__ud2:
12310     // llvm.trap makes a ud2a instruction on x86.
12311     return EmitTrapCall(Intrinsic::trap);
12312   case X86::BI__int2c: {
12313     // This syscall signals a driver assertion failure in x86 NT kernels.
12314     llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
12315     llvm::InlineAsm *IA =
12316         llvm::InlineAsm::get(FTy, "int $$0x2c", "", /*hasSideEffects=*/true);
12317     llvm::AttributeList NoReturnAttr = llvm::AttributeList::get(
12318         getLLVMContext(), llvm::AttributeList::FunctionIndex,
12319         llvm::Attribute::NoReturn);
12320     llvm::CallInst *CI = Builder.CreateCall(IA);
12321     CI->setAttributes(NoReturnAttr);
12322     return CI;
12323   }
12324   case X86::BI__readfsbyte:
12325   case X86::BI__readfsword:
12326   case X86::BI__readfsdword:
12327   case X86::BI__readfsqword: {
12328     llvm::Type *IntTy = ConvertType(E->getType());
12329     Value *Ptr =
12330         Builder.CreateIntToPtr(Ops[0], llvm::PointerType::get(IntTy, 257));
12331     LoadInst *Load = Builder.CreateAlignedLoad(
12332         IntTy, Ptr, getContext().getTypeAlignInChars(E->getType()));
12333     Load->setVolatile(true);
12334     return Load;
12335   }
12336   case X86::BI__readgsbyte:
12337   case X86::BI__readgsword:
12338   case X86::BI__readgsdword:
12339   case X86::BI__readgsqword: {
12340     llvm::Type *IntTy = ConvertType(E->getType());
12341     Value *Ptr =
12342         Builder.CreateIntToPtr(Ops[0], llvm::PointerType::get(IntTy, 256));
12343     LoadInst *Load = Builder.CreateAlignedLoad(
12344         IntTy, Ptr, getContext().getTypeAlignInChars(E->getType()));
12345     Load->setVolatile(true);
12346     return Load;
12347   }
12348   case X86::BI__builtin_ia32_paddsb512:
12349   case X86::BI__builtin_ia32_paddsw512:
12350   case X86::BI__builtin_ia32_paddsb256:
12351   case X86::BI__builtin_ia32_paddsw256:
12352   case X86::BI__builtin_ia32_paddsb128:
12353   case X86::BI__builtin_ia32_paddsw128:
12354     return EmitX86AddSubSatExpr(*this, Ops, true, true);
12355   case X86::BI__builtin_ia32_paddusb512:
12356   case X86::BI__builtin_ia32_paddusw512:
12357   case X86::BI__builtin_ia32_paddusb256:
12358   case X86::BI__builtin_ia32_paddusw256:
12359   case X86::BI__builtin_ia32_paddusb128:
12360   case X86::BI__builtin_ia32_paddusw128:
12361     return EmitX86AddSubSatExpr(*this, Ops, false, true);
12362   case X86::BI__builtin_ia32_psubsb512:
12363   case X86::BI__builtin_ia32_psubsw512:
12364   case X86::BI__builtin_ia32_psubsb256:
12365   case X86::BI__builtin_ia32_psubsw256:
12366   case X86::BI__builtin_ia32_psubsb128:
12367   case X86::BI__builtin_ia32_psubsw128:
12368     return EmitX86AddSubSatExpr(*this, Ops, true, false);
12369   case X86::BI__builtin_ia32_psubusb512:
12370   case X86::BI__builtin_ia32_psubusw512:
12371   case X86::BI__builtin_ia32_psubusb256:
12372   case X86::BI__builtin_ia32_psubusw256:
12373   case X86::BI__builtin_ia32_psubusb128:
12374   case X86::BI__builtin_ia32_psubusw128:
12375     return EmitX86AddSubSatExpr(*this, Ops, false, false);
12376   }
12377 }
12378 
12379 Value *CodeGenFunction::EmitPPCBuiltinExpr(unsigned BuiltinID,
12380                                            const CallExpr *E) {
12381   SmallVector<Value*, 4> Ops;
12382 
12383   for (unsigned i = 0, e = E->getNumArgs(); i != e; i++)
12384     Ops.push_back(EmitScalarExpr(E->getArg(i)));
12385 
12386   Intrinsic::ID ID = Intrinsic::not_intrinsic;
12387 
12388   switch (BuiltinID) {
12389   default: return nullptr;
12390 
12391   // __builtin_ppc_get_timebase is GCC 4.8+'s PowerPC-specific name for what we
12392   // call __builtin_readcyclecounter.
12393   case PPC::BI__builtin_ppc_get_timebase:
12394     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::readcyclecounter));
12395 
12396   // vec_ld, vec_xl_be, vec_lvsl, vec_lvsr
12397   case PPC::BI__builtin_altivec_lvx:
12398   case PPC::BI__builtin_altivec_lvxl:
12399   case PPC::BI__builtin_altivec_lvebx:
12400   case PPC::BI__builtin_altivec_lvehx:
12401   case PPC::BI__builtin_altivec_lvewx:
12402   case PPC::BI__builtin_altivec_lvsl:
12403   case PPC::BI__builtin_altivec_lvsr:
12404   case PPC::BI__builtin_vsx_lxvd2x:
12405   case PPC::BI__builtin_vsx_lxvw4x:
12406   case PPC::BI__builtin_vsx_lxvd2x_be:
12407   case PPC::BI__builtin_vsx_lxvw4x_be:
12408   case PPC::BI__builtin_vsx_lxvl:
12409   case PPC::BI__builtin_vsx_lxvll:
12410   {
12411     if(BuiltinID == PPC::BI__builtin_vsx_lxvl ||
12412        BuiltinID == PPC::BI__builtin_vsx_lxvll){
12413       Ops[0] = Builder.CreateBitCast(Ops[0], Int8PtrTy);
12414     }else {
12415       Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
12416       Ops[0] = Builder.CreateGEP(Ops[1], Ops[0]);
12417       Ops.pop_back();
12418     }
12419 
12420     switch (BuiltinID) {
12421     default: llvm_unreachable("Unsupported ld/lvsl/lvsr intrinsic!");
12422     case PPC::BI__builtin_altivec_lvx:
12423       ID = Intrinsic::ppc_altivec_lvx;
12424       break;
12425     case PPC::BI__builtin_altivec_lvxl:
12426       ID = Intrinsic::ppc_altivec_lvxl;
12427       break;
12428     case PPC::BI__builtin_altivec_lvebx:
12429       ID = Intrinsic::ppc_altivec_lvebx;
12430       break;
12431     case PPC::BI__builtin_altivec_lvehx:
12432       ID = Intrinsic::ppc_altivec_lvehx;
12433       break;
12434     case PPC::BI__builtin_altivec_lvewx:
12435       ID = Intrinsic::ppc_altivec_lvewx;
12436       break;
12437     case PPC::BI__builtin_altivec_lvsl:
12438       ID = Intrinsic::ppc_altivec_lvsl;
12439       break;
12440     case PPC::BI__builtin_altivec_lvsr:
12441       ID = Intrinsic::ppc_altivec_lvsr;
12442       break;
12443     case PPC::BI__builtin_vsx_lxvd2x:
12444       ID = Intrinsic::ppc_vsx_lxvd2x;
12445       break;
12446     case PPC::BI__builtin_vsx_lxvw4x:
12447       ID = Intrinsic::ppc_vsx_lxvw4x;
12448       break;
12449     case PPC::BI__builtin_vsx_lxvd2x_be:
12450       ID = Intrinsic::ppc_vsx_lxvd2x_be;
12451       break;
12452     case PPC::BI__builtin_vsx_lxvw4x_be:
12453       ID = Intrinsic::ppc_vsx_lxvw4x_be;
12454       break;
12455     case PPC::BI__builtin_vsx_lxvl:
12456       ID = Intrinsic::ppc_vsx_lxvl;
12457       break;
12458     case PPC::BI__builtin_vsx_lxvll:
12459       ID = Intrinsic::ppc_vsx_lxvll;
12460       break;
12461     }
12462     llvm::Function *F = CGM.getIntrinsic(ID);
12463     return Builder.CreateCall(F, Ops, "");
12464   }
12465 
12466   // vec_st, vec_xst_be
12467   case PPC::BI__builtin_altivec_stvx:
12468   case PPC::BI__builtin_altivec_stvxl:
12469   case PPC::BI__builtin_altivec_stvebx:
12470   case PPC::BI__builtin_altivec_stvehx:
12471   case PPC::BI__builtin_altivec_stvewx:
12472   case PPC::BI__builtin_vsx_stxvd2x:
12473   case PPC::BI__builtin_vsx_stxvw4x:
12474   case PPC::BI__builtin_vsx_stxvd2x_be:
12475   case PPC::BI__builtin_vsx_stxvw4x_be:
12476   case PPC::BI__builtin_vsx_stxvl:
12477   case PPC::BI__builtin_vsx_stxvll:
12478   {
12479     if(BuiltinID == PPC::BI__builtin_vsx_stxvl ||
12480       BuiltinID == PPC::BI__builtin_vsx_stxvll ){
12481       Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
12482     }else {
12483       Ops[2] = Builder.CreateBitCast(Ops[2], Int8PtrTy);
12484       Ops[1] = Builder.CreateGEP(Ops[2], Ops[1]);
12485       Ops.pop_back();
12486     }
12487 
12488     switch (BuiltinID) {
12489     default: llvm_unreachable("Unsupported st intrinsic!");
12490     case PPC::BI__builtin_altivec_stvx:
12491       ID = Intrinsic::ppc_altivec_stvx;
12492       break;
12493     case PPC::BI__builtin_altivec_stvxl:
12494       ID = Intrinsic::ppc_altivec_stvxl;
12495       break;
12496     case PPC::BI__builtin_altivec_stvebx:
12497       ID = Intrinsic::ppc_altivec_stvebx;
12498       break;
12499     case PPC::BI__builtin_altivec_stvehx:
12500       ID = Intrinsic::ppc_altivec_stvehx;
12501       break;
12502     case PPC::BI__builtin_altivec_stvewx:
12503       ID = Intrinsic::ppc_altivec_stvewx;
12504       break;
12505     case PPC::BI__builtin_vsx_stxvd2x:
12506       ID = Intrinsic::ppc_vsx_stxvd2x;
12507       break;
12508     case PPC::BI__builtin_vsx_stxvw4x:
12509       ID = Intrinsic::ppc_vsx_stxvw4x;
12510       break;
12511     case PPC::BI__builtin_vsx_stxvd2x_be:
12512       ID = Intrinsic::ppc_vsx_stxvd2x_be;
12513       break;
12514     case PPC::BI__builtin_vsx_stxvw4x_be:
12515       ID = Intrinsic::ppc_vsx_stxvw4x_be;
12516       break;
12517     case PPC::BI__builtin_vsx_stxvl:
12518       ID = Intrinsic::ppc_vsx_stxvl;
12519       break;
12520     case PPC::BI__builtin_vsx_stxvll:
12521       ID = Intrinsic::ppc_vsx_stxvll;
12522       break;
12523     }
12524     llvm::Function *F = CGM.getIntrinsic(ID);
12525     return Builder.CreateCall(F, Ops, "");
12526   }
12527   // Square root
12528   case PPC::BI__builtin_vsx_xvsqrtsp:
12529   case PPC::BI__builtin_vsx_xvsqrtdp: {
12530     llvm::Type *ResultType = ConvertType(E->getType());
12531     Value *X = EmitScalarExpr(E->getArg(0));
12532     ID = Intrinsic::sqrt;
12533     llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
12534     return Builder.CreateCall(F, X);
12535   }
12536   // Count leading zeros
12537   case PPC::BI__builtin_altivec_vclzb:
12538   case PPC::BI__builtin_altivec_vclzh:
12539   case PPC::BI__builtin_altivec_vclzw:
12540   case PPC::BI__builtin_altivec_vclzd: {
12541     llvm::Type *ResultType = ConvertType(E->getType());
12542     Value *X = EmitScalarExpr(E->getArg(0));
12543     Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
12544     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType);
12545     return Builder.CreateCall(F, {X, Undef});
12546   }
12547   case PPC::BI__builtin_altivec_vctzb:
12548   case PPC::BI__builtin_altivec_vctzh:
12549   case PPC::BI__builtin_altivec_vctzw:
12550   case PPC::BI__builtin_altivec_vctzd: {
12551     llvm::Type *ResultType = ConvertType(E->getType());
12552     Value *X = EmitScalarExpr(E->getArg(0));
12553     Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
12554     Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType);
12555     return Builder.CreateCall(F, {X, Undef});
12556   }
12557   case PPC::BI__builtin_altivec_vpopcntb:
12558   case PPC::BI__builtin_altivec_vpopcnth:
12559   case PPC::BI__builtin_altivec_vpopcntw:
12560   case PPC::BI__builtin_altivec_vpopcntd: {
12561     llvm::Type *ResultType = ConvertType(E->getType());
12562     Value *X = EmitScalarExpr(E->getArg(0));
12563     llvm::Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
12564     return Builder.CreateCall(F, X);
12565   }
12566   // Copy sign
12567   case PPC::BI__builtin_vsx_xvcpsgnsp:
12568   case PPC::BI__builtin_vsx_xvcpsgndp: {
12569     llvm::Type *ResultType = ConvertType(E->getType());
12570     Value *X = EmitScalarExpr(E->getArg(0));
12571     Value *Y = EmitScalarExpr(E->getArg(1));
12572     ID = Intrinsic::copysign;
12573     llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
12574     return Builder.CreateCall(F, {X, Y});
12575   }
12576   // Rounding/truncation
12577   case PPC::BI__builtin_vsx_xvrspip:
12578   case PPC::BI__builtin_vsx_xvrdpip:
12579   case PPC::BI__builtin_vsx_xvrdpim:
12580   case PPC::BI__builtin_vsx_xvrspim:
12581   case PPC::BI__builtin_vsx_xvrdpi:
12582   case PPC::BI__builtin_vsx_xvrspi:
12583   case PPC::BI__builtin_vsx_xvrdpic:
12584   case PPC::BI__builtin_vsx_xvrspic:
12585   case PPC::BI__builtin_vsx_xvrdpiz:
12586   case PPC::BI__builtin_vsx_xvrspiz: {
12587     llvm::Type *ResultType = ConvertType(E->getType());
12588     Value *X = EmitScalarExpr(E->getArg(0));
12589     if (BuiltinID == PPC::BI__builtin_vsx_xvrdpim ||
12590         BuiltinID == PPC::BI__builtin_vsx_xvrspim)
12591       ID = Intrinsic::floor;
12592     else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpi ||
12593              BuiltinID == PPC::BI__builtin_vsx_xvrspi)
12594       ID = Intrinsic::round;
12595     else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpic ||
12596              BuiltinID == PPC::BI__builtin_vsx_xvrspic)
12597       ID = Intrinsic::nearbyint;
12598     else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpip ||
12599              BuiltinID == PPC::BI__builtin_vsx_xvrspip)
12600       ID = Intrinsic::ceil;
12601     else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpiz ||
12602              BuiltinID == PPC::BI__builtin_vsx_xvrspiz)
12603       ID = Intrinsic::trunc;
12604     llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
12605     return Builder.CreateCall(F, X);
12606   }
12607 
12608   // Absolute value
12609   case PPC::BI__builtin_vsx_xvabsdp:
12610   case PPC::BI__builtin_vsx_xvabssp: {
12611     llvm::Type *ResultType = ConvertType(E->getType());
12612     Value *X = EmitScalarExpr(E->getArg(0));
12613     llvm::Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
12614     return Builder.CreateCall(F, X);
12615   }
12616 
12617   // FMA variations
12618   case PPC::BI__builtin_vsx_xvmaddadp:
12619   case PPC::BI__builtin_vsx_xvmaddasp:
12620   case PPC::BI__builtin_vsx_xvnmaddadp:
12621   case PPC::BI__builtin_vsx_xvnmaddasp:
12622   case PPC::BI__builtin_vsx_xvmsubadp:
12623   case PPC::BI__builtin_vsx_xvmsubasp:
12624   case PPC::BI__builtin_vsx_xvnmsubadp:
12625   case PPC::BI__builtin_vsx_xvnmsubasp: {
12626     llvm::Type *ResultType = ConvertType(E->getType());
12627     Value *X = EmitScalarExpr(E->getArg(0));
12628     Value *Y = EmitScalarExpr(E->getArg(1));
12629     Value *Z = EmitScalarExpr(E->getArg(2));
12630     Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType);
12631     llvm::Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
12632     switch (BuiltinID) {
12633       case PPC::BI__builtin_vsx_xvmaddadp:
12634       case PPC::BI__builtin_vsx_xvmaddasp:
12635         return Builder.CreateCall(F, {X, Y, Z});
12636       case PPC::BI__builtin_vsx_xvnmaddadp:
12637       case PPC::BI__builtin_vsx_xvnmaddasp:
12638         return Builder.CreateFSub(Zero,
12639                                   Builder.CreateCall(F, {X, Y, Z}), "sub");
12640       case PPC::BI__builtin_vsx_xvmsubadp:
12641       case PPC::BI__builtin_vsx_xvmsubasp:
12642         return Builder.CreateCall(F,
12643                                   {X, Y, Builder.CreateFSub(Zero, Z, "sub")});
12644       case PPC::BI__builtin_vsx_xvnmsubadp:
12645       case PPC::BI__builtin_vsx_xvnmsubasp:
12646         Value *FsubRes =
12647           Builder.CreateCall(F, {X, Y, Builder.CreateFSub(Zero, Z, "sub")});
12648         return Builder.CreateFSub(Zero, FsubRes, "sub");
12649     }
12650     llvm_unreachable("Unknown FMA operation");
12651     return nullptr; // Suppress no-return warning
12652   }
12653 
12654   case PPC::BI__builtin_vsx_insertword: {
12655     llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxinsertw);
12656 
12657     // Third argument is a compile time constant int. It must be clamped to
12658     // to the range [0, 12].
12659     ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]);
12660     assert(ArgCI &&
12661            "Third arg to xxinsertw intrinsic must be constant integer");
12662     const int64_t MaxIndex = 12;
12663     int64_t Index = clamp(ArgCI->getSExtValue(), 0, MaxIndex);
12664 
12665     // The builtin semantics don't exactly match the xxinsertw instructions
12666     // semantics (which ppc_vsx_xxinsertw follows). The builtin extracts the
12667     // word from the first argument, and inserts it in the second argument. The
12668     // instruction extracts the word from its second input register and inserts
12669     // it into its first input register, so swap the first and second arguments.
12670     std::swap(Ops[0], Ops[1]);
12671 
12672     // Need to cast the second argument from a vector of unsigned int to a
12673     // vector of long long.
12674     Ops[1] = Builder.CreateBitCast(Ops[1], llvm::VectorType::get(Int64Ty, 2));
12675 
12676     if (getTarget().isLittleEndian()) {
12677       // Create a shuffle mask of (1, 0)
12678       Constant *ShuffleElts[2] = { ConstantInt::get(Int32Ty, 1),
12679                                    ConstantInt::get(Int32Ty, 0)
12680                                  };
12681       Constant *ShuffleMask = llvm::ConstantVector::get(ShuffleElts);
12682 
12683       // Reverse the double words in the vector we will extract from.
12684       Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int64Ty, 2));
12685       Ops[0] = Builder.CreateShuffleVector(Ops[0], Ops[0], ShuffleMask);
12686 
12687       // Reverse the index.
12688       Index = MaxIndex - Index;
12689     }
12690 
12691     // Intrinsic expects the first arg to be a vector of int.
12692     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int32Ty, 4));
12693     Ops[2] = ConstantInt::getSigned(Int32Ty, Index);
12694     return Builder.CreateCall(F, Ops);
12695   }
12696 
12697   case PPC::BI__builtin_vsx_extractuword: {
12698     llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxextractuw);
12699 
12700     // Intrinsic expects the first argument to be a vector of doublewords.
12701     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int64Ty, 2));
12702 
12703     // The second argument is a compile time constant int that needs to
12704     // be clamped to the range [0, 12].
12705     ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[1]);
12706     assert(ArgCI &&
12707            "Second Arg to xxextractuw intrinsic must be a constant integer!");
12708     const int64_t MaxIndex = 12;
12709     int64_t Index = clamp(ArgCI->getSExtValue(), 0, MaxIndex);
12710 
12711     if (getTarget().isLittleEndian()) {
12712       // Reverse the index.
12713       Index = MaxIndex - Index;
12714       Ops[1] = ConstantInt::getSigned(Int32Ty, Index);
12715 
12716       // Emit the call, then reverse the double words of the results vector.
12717       Value *Call = Builder.CreateCall(F, Ops);
12718 
12719       // Create a shuffle mask of (1, 0)
12720       Constant *ShuffleElts[2] = { ConstantInt::get(Int32Ty, 1),
12721                                    ConstantInt::get(Int32Ty, 0)
12722                                  };
12723       Constant *ShuffleMask = llvm::ConstantVector::get(ShuffleElts);
12724 
12725       Value *ShuffleCall = Builder.CreateShuffleVector(Call, Call, ShuffleMask);
12726       return ShuffleCall;
12727     } else {
12728       Ops[1] = ConstantInt::getSigned(Int32Ty, Index);
12729       return Builder.CreateCall(F, Ops);
12730     }
12731   }
12732 
12733   case PPC::BI__builtin_vsx_xxpermdi: {
12734     ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]);
12735     assert(ArgCI && "Third arg must be constant integer!");
12736 
12737     unsigned Index = ArgCI->getZExtValue();
12738     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int64Ty, 2));
12739     Ops[1] = Builder.CreateBitCast(Ops[1], llvm::VectorType::get(Int64Ty, 2));
12740 
12741     // Account for endianness by treating this as just a shuffle. So we use the
12742     // same indices for both LE and BE in order to produce expected results in
12743     // both cases.
12744     unsigned ElemIdx0 = (Index & 2) >> 1;
12745     unsigned ElemIdx1 = 2 + (Index & 1);
12746 
12747     Constant *ShuffleElts[2] = {ConstantInt::get(Int32Ty, ElemIdx0),
12748                                 ConstantInt::get(Int32Ty, ElemIdx1)};
12749     Constant *ShuffleMask = llvm::ConstantVector::get(ShuffleElts);
12750 
12751     Value *ShuffleCall =
12752         Builder.CreateShuffleVector(Ops[0], Ops[1], ShuffleMask);
12753     QualType BIRetType = E->getType();
12754     auto RetTy = ConvertType(BIRetType);
12755     return Builder.CreateBitCast(ShuffleCall, RetTy);
12756   }
12757 
12758   case PPC::BI__builtin_vsx_xxsldwi: {
12759     ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]);
12760     assert(ArgCI && "Third argument must be a compile time constant");
12761     unsigned Index = ArgCI->getZExtValue() & 0x3;
12762     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int32Ty, 4));
12763     Ops[1] = Builder.CreateBitCast(Ops[1], llvm::VectorType::get(Int32Ty, 4));
12764 
12765     // Create a shuffle mask
12766     unsigned ElemIdx0;
12767     unsigned ElemIdx1;
12768     unsigned ElemIdx2;
12769     unsigned ElemIdx3;
12770     if (getTarget().isLittleEndian()) {
12771       // Little endian element N comes from element 8+N-Index of the
12772       // concatenated wide vector (of course, using modulo arithmetic on
12773       // the total number of elements).
12774       ElemIdx0 = (8 - Index) % 8;
12775       ElemIdx1 = (9 - Index) % 8;
12776       ElemIdx2 = (10 - Index) % 8;
12777       ElemIdx3 = (11 - Index) % 8;
12778     } else {
12779       // Big endian ElemIdx<N> = Index + N
12780       ElemIdx0 = Index;
12781       ElemIdx1 = Index + 1;
12782       ElemIdx2 = Index + 2;
12783       ElemIdx3 = Index + 3;
12784     }
12785 
12786     Constant *ShuffleElts[4] = {ConstantInt::get(Int32Ty, ElemIdx0),
12787                                 ConstantInt::get(Int32Ty, ElemIdx1),
12788                                 ConstantInt::get(Int32Ty, ElemIdx2),
12789                                 ConstantInt::get(Int32Ty, ElemIdx3)};
12790 
12791     Constant *ShuffleMask = llvm::ConstantVector::get(ShuffleElts);
12792     Value *ShuffleCall =
12793         Builder.CreateShuffleVector(Ops[0], Ops[1], ShuffleMask);
12794     QualType BIRetType = E->getType();
12795     auto RetTy = ConvertType(BIRetType);
12796     return Builder.CreateBitCast(ShuffleCall, RetTy);
12797   }
12798 
12799   case PPC::BI__builtin_pack_vector_int128: {
12800     bool isLittleEndian = getTarget().isLittleEndian();
12801     Value *UndefValue =
12802         llvm::UndefValue::get(llvm::VectorType::get(Ops[0]->getType(), 2));
12803     Value *Res = Builder.CreateInsertElement(
12804         UndefValue, Ops[0], (uint64_t)(isLittleEndian ? 1 : 0));
12805     Res = Builder.CreateInsertElement(Res, Ops[1],
12806                                       (uint64_t)(isLittleEndian ? 0 : 1));
12807     return Builder.CreateBitCast(Res, ConvertType(E->getType()));
12808   }
12809 
12810   case PPC::BI__builtin_unpack_vector_int128: {
12811     ConstantInt *Index = cast<ConstantInt>(Ops[1]);
12812     Value *Unpacked = Builder.CreateBitCast(
12813         Ops[0], llvm::VectorType::get(ConvertType(E->getType()), 2));
12814 
12815     if (getTarget().isLittleEndian())
12816       Index = ConstantInt::get(Index->getType(), 1 - Index->getZExtValue());
12817 
12818     return Builder.CreateExtractElement(Unpacked, Index);
12819   }
12820   }
12821 }
12822 
12823 Value *CodeGenFunction::EmitAMDGPUBuiltinExpr(unsigned BuiltinID,
12824                                               const CallExpr *E) {
12825   switch (BuiltinID) {
12826   case AMDGPU::BI__builtin_amdgcn_div_scale:
12827   case AMDGPU::BI__builtin_amdgcn_div_scalef: {
12828     // Translate from the intrinsics's struct return to the builtin's out
12829     // argument.
12830 
12831     Address FlagOutPtr = EmitPointerWithAlignment(E->getArg(3));
12832 
12833     llvm::Value *X = EmitScalarExpr(E->getArg(0));
12834     llvm::Value *Y = EmitScalarExpr(E->getArg(1));
12835     llvm::Value *Z = EmitScalarExpr(E->getArg(2));
12836 
12837     llvm::Function *Callee = CGM.getIntrinsic(Intrinsic::amdgcn_div_scale,
12838                                            X->getType());
12839 
12840     llvm::Value *Tmp = Builder.CreateCall(Callee, {X, Y, Z});
12841 
12842     llvm::Value *Result = Builder.CreateExtractValue(Tmp, 0);
12843     llvm::Value *Flag = Builder.CreateExtractValue(Tmp, 1);
12844 
12845     llvm::Type *RealFlagType
12846       = FlagOutPtr.getPointer()->getType()->getPointerElementType();
12847 
12848     llvm::Value *FlagExt = Builder.CreateZExt(Flag, RealFlagType);
12849     Builder.CreateStore(FlagExt, FlagOutPtr);
12850     return Result;
12851   }
12852   case AMDGPU::BI__builtin_amdgcn_div_fmas:
12853   case AMDGPU::BI__builtin_amdgcn_div_fmasf: {
12854     llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
12855     llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
12856     llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
12857     llvm::Value *Src3 = EmitScalarExpr(E->getArg(3));
12858 
12859     llvm::Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_div_fmas,
12860                                       Src0->getType());
12861     llvm::Value *Src3ToBool = Builder.CreateIsNotNull(Src3);
12862     return Builder.CreateCall(F, {Src0, Src1, Src2, Src3ToBool});
12863   }
12864 
12865   case AMDGPU::BI__builtin_amdgcn_ds_swizzle:
12866     return emitBinaryBuiltin(*this, E, Intrinsic::amdgcn_ds_swizzle);
12867   case AMDGPU::BI__builtin_amdgcn_mov_dpp8:
12868     return emitBinaryBuiltin(*this, E, Intrinsic::amdgcn_mov_dpp8);
12869   case AMDGPU::BI__builtin_amdgcn_mov_dpp:
12870   case AMDGPU::BI__builtin_amdgcn_update_dpp: {
12871     llvm::SmallVector<llvm::Value *, 6> Args;
12872     for (unsigned I = 0; I != E->getNumArgs(); ++I)
12873       Args.push_back(EmitScalarExpr(E->getArg(I)));
12874     assert(Args.size() == 5 || Args.size() == 6);
12875     if (Args.size() == 5)
12876       Args.insert(Args.begin(), llvm::UndefValue::get(Args[0]->getType()));
12877     Function *F =
12878         CGM.getIntrinsic(Intrinsic::amdgcn_update_dpp, Args[0]->getType());
12879     return Builder.CreateCall(F, Args);
12880   }
12881   case AMDGPU::BI__builtin_amdgcn_div_fixup:
12882   case AMDGPU::BI__builtin_amdgcn_div_fixupf:
12883   case AMDGPU::BI__builtin_amdgcn_div_fixuph:
12884     return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_div_fixup);
12885   case AMDGPU::BI__builtin_amdgcn_trig_preop:
12886   case AMDGPU::BI__builtin_amdgcn_trig_preopf:
12887     return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_trig_preop);
12888   case AMDGPU::BI__builtin_amdgcn_rcp:
12889   case AMDGPU::BI__builtin_amdgcn_rcpf:
12890   case AMDGPU::BI__builtin_amdgcn_rcph:
12891     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rcp);
12892   case AMDGPU::BI__builtin_amdgcn_rsq:
12893   case AMDGPU::BI__builtin_amdgcn_rsqf:
12894   case AMDGPU::BI__builtin_amdgcn_rsqh:
12895     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rsq);
12896   case AMDGPU::BI__builtin_amdgcn_rsq_clamp:
12897   case AMDGPU::BI__builtin_amdgcn_rsq_clampf:
12898     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rsq_clamp);
12899   case AMDGPU::BI__builtin_amdgcn_sinf:
12900   case AMDGPU::BI__builtin_amdgcn_sinh:
12901     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_sin);
12902   case AMDGPU::BI__builtin_amdgcn_cosf:
12903   case AMDGPU::BI__builtin_amdgcn_cosh:
12904     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_cos);
12905   case AMDGPU::BI__builtin_amdgcn_log_clampf:
12906     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_log_clamp);
12907   case AMDGPU::BI__builtin_amdgcn_ldexp:
12908   case AMDGPU::BI__builtin_amdgcn_ldexpf:
12909   case AMDGPU::BI__builtin_amdgcn_ldexph:
12910     return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_ldexp);
12911   case AMDGPU::BI__builtin_amdgcn_frexp_mant:
12912   case AMDGPU::BI__builtin_amdgcn_frexp_mantf:
12913   case AMDGPU::BI__builtin_amdgcn_frexp_manth:
12914     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_frexp_mant);
12915   case AMDGPU::BI__builtin_amdgcn_frexp_exp:
12916   case AMDGPU::BI__builtin_amdgcn_frexp_expf: {
12917     Value *Src0 = EmitScalarExpr(E->getArg(0));
12918     Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_frexp_exp,
12919                                 { Builder.getInt32Ty(), Src0->getType() });
12920     return Builder.CreateCall(F, Src0);
12921   }
12922   case AMDGPU::BI__builtin_amdgcn_frexp_exph: {
12923     Value *Src0 = EmitScalarExpr(E->getArg(0));
12924     Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_frexp_exp,
12925                                 { Builder.getInt16Ty(), Src0->getType() });
12926     return Builder.CreateCall(F, Src0);
12927   }
12928   case AMDGPU::BI__builtin_amdgcn_fract:
12929   case AMDGPU::BI__builtin_amdgcn_fractf:
12930   case AMDGPU::BI__builtin_amdgcn_fracth:
12931     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_fract);
12932   case AMDGPU::BI__builtin_amdgcn_lerp:
12933     return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_lerp);
12934   case AMDGPU::BI__builtin_amdgcn_ubfe:
12935     return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_ubfe);
12936   case AMDGPU::BI__builtin_amdgcn_sbfe:
12937     return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_sbfe);
12938   case AMDGPU::BI__builtin_amdgcn_uicmp:
12939   case AMDGPU::BI__builtin_amdgcn_uicmpl:
12940   case AMDGPU::BI__builtin_amdgcn_sicmp:
12941   case AMDGPU::BI__builtin_amdgcn_sicmpl: {
12942     llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
12943     llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
12944     llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
12945 
12946     // FIXME-GFX10: How should 32 bit mask be handled?
12947     Value *F = CGM.getIntrinsic(Intrinsic::amdgcn_icmp,
12948       { Builder.getInt64Ty(), Src0->getType() });
12949     return Builder.CreateCall(F, { Src0, Src1, Src2 });
12950   }
12951   case AMDGPU::BI__builtin_amdgcn_fcmp:
12952   case AMDGPU::BI__builtin_amdgcn_fcmpf: {
12953     llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
12954     llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
12955     llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
12956 
12957     // FIXME-GFX10: How should 32 bit mask be handled?
12958     Value *F = CGM.getIntrinsic(Intrinsic::amdgcn_fcmp,
12959       { Builder.getInt64Ty(), Src0->getType() });
12960     return Builder.CreateCall(F, { Src0, Src1, Src2 });
12961   }
12962   case AMDGPU::BI__builtin_amdgcn_class:
12963   case AMDGPU::BI__builtin_amdgcn_classf:
12964   case AMDGPU::BI__builtin_amdgcn_classh:
12965     return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_class);
12966   case AMDGPU::BI__builtin_amdgcn_fmed3f:
12967   case AMDGPU::BI__builtin_amdgcn_fmed3h:
12968     return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_fmed3);
12969   case AMDGPU::BI__builtin_amdgcn_ds_append:
12970   case AMDGPU::BI__builtin_amdgcn_ds_consume: {
12971     Intrinsic::ID Intrin = BuiltinID == AMDGPU::BI__builtin_amdgcn_ds_append ?
12972       Intrinsic::amdgcn_ds_append : Intrinsic::amdgcn_ds_consume;
12973     Value *Src0 = EmitScalarExpr(E->getArg(0));
12974     Function *F = CGM.getIntrinsic(Intrin, { Src0->getType() });
12975     return Builder.CreateCall(F, { Src0, Builder.getFalse() });
12976   }
12977   case AMDGPU::BI__builtin_amdgcn_read_exec: {
12978     CallInst *CI = cast<CallInst>(
12979       EmitSpecialRegisterBuiltin(*this, E, Int64Ty, Int64Ty, true, "exec"));
12980     CI->setConvergent();
12981     return CI;
12982   }
12983   case AMDGPU::BI__builtin_amdgcn_read_exec_lo:
12984   case AMDGPU::BI__builtin_amdgcn_read_exec_hi: {
12985     StringRef RegName = BuiltinID == AMDGPU::BI__builtin_amdgcn_read_exec_lo ?
12986       "exec_lo" : "exec_hi";
12987     CallInst *CI = cast<CallInst>(
12988       EmitSpecialRegisterBuiltin(*this, E, Int32Ty, Int32Ty, true, RegName));
12989     CI->setConvergent();
12990     return CI;
12991   }
12992   // amdgcn workitem
12993   case AMDGPU::BI__builtin_amdgcn_workitem_id_x:
12994     return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_x, 0, 1024);
12995   case AMDGPU::BI__builtin_amdgcn_workitem_id_y:
12996     return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_y, 0, 1024);
12997   case AMDGPU::BI__builtin_amdgcn_workitem_id_z:
12998     return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_z, 0, 1024);
12999 
13000   // r600 intrinsics
13001   case AMDGPU::BI__builtin_r600_recipsqrt_ieee:
13002   case AMDGPU::BI__builtin_r600_recipsqrt_ieeef:
13003     return emitUnaryBuiltin(*this, E, Intrinsic::r600_recipsqrt_ieee);
13004   case AMDGPU::BI__builtin_r600_read_tidig_x:
13005     return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_x, 0, 1024);
13006   case AMDGPU::BI__builtin_r600_read_tidig_y:
13007     return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_y, 0, 1024);
13008   case AMDGPU::BI__builtin_r600_read_tidig_z:
13009     return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_z, 0, 1024);
13010   default:
13011     return nullptr;
13012   }
13013 }
13014 
13015 /// Handle a SystemZ function in which the final argument is a pointer
13016 /// to an int that receives the post-instruction CC value.  At the LLVM level
13017 /// this is represented as a function that returns a {result, cc} pair.
13018 static Value *EmitSystemZIntrinsicWithCC(CodeGenFunction &CGF,
13019                                          unsigned IntrinsicID,
13020                                          const CallExpr *E) {
13021   unsigned NumArgs = E->getNumArgs() - 1;
13022   SmallVector<Value *, 8> Args(NumArgs);
13023   for (unsigned I = 0; I < NumArgs; ++I)
13024     Args[I] = CGF.EmitScalarExpr(E->getArg(I));
13025   Address CCPtr = CGF.EmitPointerWithAlignment(E->getArg(NumArgs));
13026   Function *F = CGF.CGM.getIntrinsic(IntrinsicID);
13027   Value *Call = CGF.Builder.CreateCall(F, Args);
13028   Value *CC = CGF.Builder.CreateExtractValue(Call, 1);
13029   CGF.Builder.CreateStore(CC, CCPtr);
13030   return CGF.Builder.CreateExtractValue(Call, 0);
13031 }
13032 
13033 Value *CodeGenFunction::EmitSystemZBuiltinExpr(unsigned BuiltinID,
13034                                                const CallExpr *E) {
13035   switch (BuiltinID) {
13036   case SystemZ::BI__builtin_tbegin: {
13037     Value *TDB = EmitScalarExpr(E->getArg(0));
13038     Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c);
13039     Function *F = CGM.getIntrinsic(Intrinsic::s390_tbegin);
13040     return Builder.CreateCall(F, {TDB, Control});
13041   }
13042   case SystemZ::BI__builtin_tbegin_nofloat: {
13043     Value *TDB = EmitScalarExpr(E->getArg(0));
13044     Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c);
13045     Function *F = CGM.getIntrinsic(Intrinsic::s390_tbegin_nofloat);
13046     return Builder.CreateCall(F, {TDB, Control});
13047   }
13048   case SystemZ::BI__builtin_tbeginc: {
13049     Value *TDB = llvm::ConstantPointerNull::get(Int8PtrTy);
13050     Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff08);
13051     Function *F = CGM.getIntrinsic(Intrinsic::s390_tbeginc);
13052     return Builder.CreateCall(F, {TDB, Control});
13053   }
13054   case SystemZ::BI__builtin_tabort: {
13055     Value *Data = EmitScalarExpr(E->getArg(0));
13056     Function *F = CGM.getIntrinsic(Intrinsic::s390_tabort);
13057     return Builder.CreateCall(F, Builder.CreateSExt(Data, Int64Ty, "tabort"));
13058   }
13059   case SystemZ::BI__builtin_non_tx_store: {
13060     Value *Address = EmitScalarExpr(E->getArg(0));
13061     Value *Data = EmitScalarExpr(E->getArg(1));
13062     Function *F = CGM.getIntrinsic(Intrinsic::s390_ntstg);
13063     return Builder.CreateCall(F, {Data, Address});
13064   }
13065 
13066   // Vector builtins.  Note that most vector builtins are mapped automatically
13067   // to target-specific LLVM intrinsics.  The ones handled specially here can
13068   // be represented via standard LLVM IR, which is preferable to enable common
13069   // LLVM optimizations.
13070 
13071   case SystemZ::BI__builtin_s390_vpopctb:
13072   case SystemZ::BI__builtin_s390_vpopcth:
13073   case SystemZ::BI__builtin_s390_vpopctf:
13074   case SystemZ::BI__builtin_s390_vpopctg: {
13075     llvm::Type *ResultType = ConvertType(E->getType());
13076     Value *X = EmitScalarExpr(E->getArg(0));
13077     Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
13078     return Builder.CreateCall(F, X);
13079   }
13080 
13081   case SystemZ::BI__builtin_s390_vclzb:
13082   case SystemZ::BI__builtin_s390_vclzh:
13083   case SystemZ::BI__builtin_s390_vclzf:
13084   case SystemZ::BI__builtin_s390_vclzg: {
13085     llvm::Type *ResultType = ConvertType(E->getType());
13086     Value *X = EmitScalarExpr(E->getArg(0));
13087     Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
13088     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType);
13089     return Builder.CreateCall(F, {X, Undef});
13090   }
13091 
13092   case SystemZ::BI__builtin_s390_vctzb:
13093   case SystemZ::BI__builtin_s390_vctzh:
13094   case SystemZ::BI__builtin_s390_vctzf:
13095   case SystemZ::BI__builtin_s390_vctzg: {
13096     llvm::Type *ResultType = ConvertType(E->getType());
13097     Value *X = EmitScalarExpr(E->getArg(0));
13098     Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
13099     Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType);
13100     return Builder.CreateCall(F, {X, Undef});
13101   }
13102 
13103   case SystemZ::BI__builtin_s390_vfsqsb:
13104   case SystemZ::BI__builtin_s390_vfsqdb: {
13105     llvm::Type *ResultType = ConvertType(E->getType());
13106     Value *X = EmitScalarExpr(E->getArg(0));
13107     Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType);
13108     return Builder.CreateCall(F, X);
13109   }
13110   case SystemZ::BI__builtin_s390_vfmasb:
13111   case SystemZ::BI__builtin_s390_vfmadb: {
13112     llvm::Type *ResultType = ConvertType(E->getType());
13113     Value *X = EmitScalarExpr(E->getArg(0));
13114     Value *Y = EmitScalarExpr(E->getArg(1));
13115     Value *Z = EmitScalarExpr(E->getArg(2));
13116     Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
13117     return Builder.CreateCall(F, {X, Y, Z});
13118   }
13119   case SystemZ::BI__builtin_s390_vfmssb:
13120   case SystemZ::BI__builtin_s390_vfmsdb: {
13121     llvm::Type *ResultType = ConvertType(E->getType());
13122     Value *X = EmitScalarExpr(E->getArg(0));
13123     Value *Y = EmitScalarExpr(E->getArg(1));
13124     Value *Z = EmitScalarExpr(E->getArg(2));
13125     Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType);
13126     Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
13127     return Builder.CreateCall(F, {X, Y, Builder.CreateFSub(Zero, Z, "sub")});
13128   }
13129   case SystemZ::BI__builtin_s390_vfnmasb:
13130   case SystemZ::BI__builtin_s390_vfnmadb: {
13131     llvm::Type *ResultType = ConvertType(E->getType());
13132     Value *X = EmitScalarExpr(E->getArg(0));
13133     Value *Y = EmitScalarExpr(E->getArg(1));
13134     Value *Z = EmitScalarExpr(E->getArg(2));
13135     Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType);
13136     Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
13137     return Builder.CreateFSub(Zero, Builder.CreateCall(F, {X, Y, Z}), "sub");
13138   }
13139   case SystemZ::BI__builtin_s390_vfnmssb:
13140   case SystemZ::BI__builtin_s390_vfnmsdb: {
13141     llvm::Type *ResultType = ConvertType(E->getType());
13142     Value *X = EmitScalarExpr(E->getArg(0));
13143     Value *Y = EmitScalarExpr(E->getArg(1));
13144     Value *Z = EmitScalarExpr(E->getArg(2));
13145     Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType);
13146     Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
13147     Value *NegZ = Builder.CreateFSub(Zero, Z, "sub");
13148     return Builder.CreateFSub(Zero, Builder.CreateCall(F, {X, Y, NegZ}));
13149   }
13150   case SystemZ::BI__builtin_s390_vflpsb:
13151   case SystemZ::BI__builtin_s390_vflpdb: {
13152     llvm::Type *ResultType = ConvertType(E->getType());
13153     Value *X = EmitScalarExpr(E->getArg(0));
13154     Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
13155     return Builder.CreateCall(F, X);
13156   }
13157   case SystemZ::BI__builtin_s390_vflnsb:
13158   case SystemZ::BI__builtin_s390_vflndb: {
13159     llvm::Type *ResultType = ConvertType(E->getType());
13160     Value *X = EmitScalarExpr(E->getArg(0));
13161     Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType);
13162     Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
13163     return Builder.CreateFSub(Zero, Builder.CreateCall(F, X), "sub");
13164   }
13165   case SystemZ::BI__builtin_s390_vfisb:
13166   case SystemZ::BI__builtin_s390_vfidb: {
13167     llvm::Type *ResultType = ConvertType(E->getType());
13168     Value *X = EmitScalarExpr(E->getArg(0));
13169     // Constant-fold the M4 and M5 mask arguments.
13170     llvm::APSInt M4, M5;
13171     bool IsConstM4 = E->getArg(1)->isIntegerConstantExpr(M4, getContext());
13172     bool IsConstM5 = E->getArg(2)->isIntegerConstantExpr(M5, getContext());
13173     assert(IsConstM4 && IsConstM5 && "Constant arg isn't actually constant?");
13174     (void)IsConstM4; (void)IsConstM5;
13175     // Check whether this instance can be represented via a LLVM standard
13176     // intrinsic.  We only support some combinations of M4 and M5.
13177     Intrinsic::ID ID = Intrinsic::not_intrinsic;
13178     switch (M4.getZExtValue()) {
13179     default: break;
13180     case 0:  // IEEE-inexact exception allowed
13181       switch (M5.getZExtValue()) {
13182       default: break;
13183       case 0: ID = Intrinsic::rint; break;
13184       }
13185       break;
13186     case 4:  // IEEE-inexact exception suppressed
13187       switch (M5.getZExtValue()) {
13188       default: break;
13189       case 0: ID = Intrinsic::nearbyint; break;
13190       case 1: ID = Intrinsic::round; break;
13191       case 5: ID = Intrinsic::trunc; break;
13192       case 6: ID = Intrinsic::ceil; break;
13193       case 7: ID = Intrinsic::floor; break;
13194       }
13195       break;
13196     }
13197     if (ID != Intrinsic::not_intrinsic) {
13198       Function *F = CGM.getIntrinsic(ID, ResultType);
13199       return Builder.CreateCall(F, X);
13200     }
13201     switch (BuiltinID) {
13202       case SystemZ::BI__builtin_s390_vfisb: ID = Intrinsic::s390_vfisb; break;
13203       case SystemZ::BI__builtin_s390_vfidb: ID = Intrinsic::s390_vfidb; break;
13204       default: llvm_unreachable("Unknown BuiltinID");
13205     }
13206     Function *F = CGM.getIntrinsic(ID);
13207     Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
13208     Value *M5Value = llvm::ConstantInt::get(getLLVMContext(), M5);
13209     return Builder.CreateCall(F, {X, M4Value, M5Value});
13210   }
13211   case SystemZ::BI__builtin_s390_vfmaxsb:
13212   case SystemZ::BI__builtin_s390_vfmaxdb: {
13213     llvm::Type *ResultType = ConvertType(E->getType());
13214     Value *X = EmitScalarExpr(E->getArg(0));
13215     Value *Y = EmitScalarExpr(E->getArg(1));
13216     // Constant-fold the M4 mask argument.
13217     llvm::APSInt M4;
13218     bool IsConstM4 = E->getArg(2)->isIntegerConstantExpr(M4, getContext());
13219     assert(IsConstM4 && "Constant arg isn't actually constant?");
13220     (void)IsConstM4;
13221     // Check whether this instance can be represented via a LLVM standard
13222     // intrinsic.  We only support some values of M4.
13223     Intrinsic::ID ID = Intrinsic::not_intrinsic;
13224     switch (M4.getZExtValue()) {
13225     default: break;
13226     case 4: ID = Intrinsic::maxnum; break;
13227     }
13228     if (ID != Intrinsic::not_intrinsic) {
13229       Function *F = CGM.getIntrinsic(ID, ResultType);
13230       return Builder.CreateCall(F, {X, Y});
13231     }
13232     switch (BuiltinID) {
13233       case SystemZ::BI__builtin_s390_vfmaxsb: ID = Intrinsic::s390_vfmaxsb; break;
13234       case SystemZ::BI__builtin_s390_vfmaxdb: ID = Intrinsic::s390_vfmaxdb; break;
13235       default: llvm_unreachable("Unknown BuiltinID");
13236     }
13237     Function *F = CGM.getIntrinsic(ID);
13238     Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
13239     return Builder.CreateCall(F, {X, Y, M4Value});
13240   }
13241   case SystemZ::BI__builtin_s390_vfminsb:
13242   case SystemZ::BI__builtin_s390_vfmindb: {
13243     llvm::Type *ResultType = ConvertType(E->getType());
13244     Value *X = EmitScalarExpr(E->getArg(0));
13245     Value *Y = EmitScalarExpr(E->getArg(1));
13246     // Constant-fold the M4 mask argument.
13247     llvm::APSInt M4;
13248     bool IsConstM4 = E->getArg(2)->isIntegerConstantExpr(M4, getContext());
13249     assert(IsConstM4 && "Constant arg isn't actually constant?");
13250     (void)IsConstM4;
13251     // Check whether this instance can be represented via a LLVM standard
13252     // intrinsic.  We only support some values of M4.
13253     Intrinsic::ID ID = Intrinsic::not_intrinsic;
13254     switch (M4.getZExtValue()) {
13255     default: break;
13256     case 4: ID = Intrinsic::minnum; break;
13257     }
13258     if (ID != Intrinsic::not_intrinsic) {
13259       Function *F = CGM.getIntrinsic(ID, ResultType);
13260       return Builder.CreateCall(F, {X, Y});
13261     }
13262     switch (BuiltinID) {
13263       case SystemZ::BI__builtin_s390_vfminsb: ID = Intrinsic::s390_vfminsb; break;
13264       case SystemZ::BI__builtin_s390_vfmindb: ID = Intrinsic::s390_vfmindb; break;
13265       default: llvm_unreachable("Unknown BuiltinID");
13266     }
13267     Function *F = CGM.getIntrinsic(ID);
13268     Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
13269     return Builder.CreateCall(F, {X, Y, M4Value});
13270   }
13271 
13272   case SystemZ::BI__builtin_s390_vlbrh:
13273   case SystemZ::BI__builtin_s390_vlbrf:
13274   case SystemZ::BI__builtin_s390_vlbrg: {
13275     llvm::Type *ResultType = ConvertType(E->getType());
13276     Value *X = EmitScalarExpr(E->getArg(0));
13277     Function *F = CGM.getIntrinsic(Intrinsic::bswap, ResultType);
13278     return Builder.CreateCall(F, X);
13279   }
13280 
13281   // Vector intrinsics that output the post-instruction CC value.
13282 
13283 #define INTRINSIC_WITH_CC(NAME) \
13284     case SystemZ::BI__builtin_##NAME: \
13285       return EmitSystemZIntrinsicWithCC(*this, Intrinsic::NAME, E)
13286 
13287   INTRINSIC_WITH_CC(s390_vpkshs);
13288   INTRINSIC_WITH_CC(s390_vpksfs);
13289   INTRINSIC_WITH_CC(s390_vpksgs);
13290 
13291   INTRINSIC_WITH_CC(s390_vpklshs);
13292   INTRINSIC_WITH_CC(s390_vpklsfs);
13293   INTRINSIC_WITH_CC(s390_vpklsgs);
13294 
13295   INTRINSIC_WITH_CC(s390_vceqbs);
13296   INTRINSIC_WITH_CC(s390_vceqhs);
13297   INTRINSIC_WITH_CC(s390_vceqfs);
13298   INTRINSIC_WITH_CC(s390_vceqgs);
13299 
13300   INTRINSIC_WITH_CC(s390_vchbs);
13301   INTRINSIC_WITH_CC(s390_vchhs);
13302   INTRINSIC_WITH_CC(s390_vchfs);
13303   INTRINSIC_WITH_CC(s390_vchgs);
13304 
13305   INTRINSIC_WITH_CC(s390_vchlbs);
13306   INTRINSIC_WITH_CC(s390_vchlhs);
13307   INTRINSIC_WITH_CC(s390_vchlfs);
13308   INTRINSIC_WITH_CC(s390_vchlgs);
13309 
13310   INTRINSIC_WITH_CC(s390_vfaebs);
13311   INTRINSIC_WITH_CC(s390_vfaehs);
13312   INTRINSIC_WITH_CC(s390_vfaefs);
13313 
13314   INTRINSIC_WITH_CC(s390_vfaezbs);
13315   INTRINSIC_WITH_CC(s390_vfaezhs);
13316   INTRINSIC_WITH_CC(s390_vfaezfs);
13317 
13318   INTRINSIC_WITH_CC(s390_vfeebs);
13319   INTRINSIC_WITH_CC(s390_vfeehs);
13320   INTRINSIC_WITH_CC(s390_vfeefs);
13321 
13322   INTRINSIC_WITH_CC(s390_vfeezbs);
13323   INTRINSIC_WITH_CC(s390_vfeezhs);
13324   INTRINSIC_WITH_CC(s390_vfeezfs);
13325 
13326   INTRINSIC_WITH_CC(s390_vfenebs);
13327   INTRINSIC_WITH_CC(s390_vfenehs);
13328   INTRINSIC_WITH_CC(s390_vfenefs);
13329 
13330   INTRINSIC_WITH_CC(s390_vfenezbs);
13331   INTRINSIC_WITH_CC(s390_vfenezhs);
13332   INTRINSIC_WITH_CC(s390_vfenezfs);
13333 
13334   INTRINSIC_WITH_CC(s390_vistrbs);
13335   INTRINSIC_WITH_CC(s390_vistrhs);
13336   INTRINSIC_WITH_CC(s390_vistrfs);
13337 
13338   INTRINSIC_WITH_CC(s390_vstrcbs);
13339   INTRINSIC_WITH_CC(s390_vstrchs);
13340   INTRINSIC_WITH_CC(s390_vstrcfs);
13341 
13342   INTRINSIC_WITH_CC(s390_vstrczbs);
13343   INTRINSIC_WITH_CC(s390_vstrczhs);
13344   INTRINSIC_WITH_CC(s390_vstrczfs);
13345 
13346   INTRINSIC_WITH_CC(s390_vfcesbs);
13347   INTRINSIC_WITH_CC(s390_vfcedbs);
13348   INTRINSIC_WITH_CC(s390_vfchsbs);
13349   INTRINSIC_WITH_CC(s390_vfchdbs);
13350   INTRINSIC_WITH_CC(s390_vfchesbs);
13351   INTRINSIC_WITH_CC(s390_vfchedbs);
13352 
13353   INTRINSIC_WITH_CC(s390_vftcisb);
13354   INTRINSIC_WITH_CC(s390_vftcidb);
13355 
13356   INTRINSIC_WITH_CC(s390_vstrsb);
13357   INTRINSIC_WITH_CC(s390_vstrsh);
13358   INTRINSIC_WITH_CC(s390_vstrsf);
13359 
13360   INTRINSIC_WITH_CC(s390_vstrszb);
13361   INTRINSIC_WITH_CC(s390_vstrszh);
13362   INTRINSIC_WITH_CC(s390_vstrszf);
13363 
13364 #undef INTRINSIC_WITH_CC
13365 
13366   default:
13367     return nullptr;
13368   }
13369 }
13370 
13371 namespace {
13372 // Helper classes for mapping MMA builtins to particular LLVM intrinsic variant.
13373 struct NVPTXMmaLdstInfo {
13374   unsigned NumResults;  // Number of elements to load/store
13375   // Intrinsic IDs for row/col variants. 0 if particular layout is unsupported.
13376   unsigned IID_col;
13377   unsigned IID_row;
13378 };
13379 
13380 #define MMA_INTR(geom_op_type, layout) \
13381   Intrinsic::nvvm_wmma_##geom_op_type##_##layout##_stride
13382 #define MMA_LDST(n, geom_op_type)                                              \
13383   { n, MMA_INTR(geom_op_type, col), MMA_INTR(geom_op_type, row) }
13384 
13385 static NVPTXMmaLdstInfo getNVPTXMmaLdstInfo(unsigned BuiltinID) {
13386   switch (BuiltinID) {
13387   // FP MMA loads
13388   case NVPTX::BI__hmma_m16n16k16_ld_a:
13389     return MMA_LDST(8, m16n16k16_load_a_f16);
13390   case NVPTX::BI__hmma_m16n16k16_ld_b:
13391     return MMA_LDST(8, m16n16k16_load_b_f16);
13392   case NVPTX::BI__hmma_m16n16k16_ld_c_f16:
13393     return MMA_LDST(4, m16n16k16_load_c_f16);
13394   case NVPTX::BI__hmma_m16n16k16_ld_c_f32:
13395     return MMA_LDST(8, m16n16k16_load_c_f32);
13396   case NVPTX::BI__hmma_m32n8k16_ld_a:
13397     return MMA_LDST(8, m32n8k16_load_a_f16);
13398   case NVPTX::BI__hmma_m32n8k16_ld_b:
13399     return MMA_LDST(8, m32n8k16_load_b_f16);
13400   case NVPTX::BI__hmma_m32n8k16_ld_c_f16:
13401     return MMA_LDST(4, m32n8k16_load_c_f16);
13402   case NVPTX::BI__hmma_m32n8k16_ld_c_f32:
13403     return MMA_LDST(8, m32n8k16_load_c_f32);
13404   case NVPTX::BI__hmma_m8n32k16_ld_a:
13405     return MMA_LDST(8, m8n32k16_load_a_f16);
13406   case NVPTX::BI__hmma_m8n32k16_ld_b:
13407     return MMA_LDST(8, m8n32k16_load_b_f16);
13408   case NVPTX::BI__hmma_m8n32k16_ld_c_f16:
13409     return MMA_LDST(4, m8n32k16_load_c_f16);
13410   case NVPTX::BI__hmma_m8n32k16_ld_c_f32:
13411     return MMA_LDST(8, m8n32k16_load_c_f32);
13412 
13413   // Integer MMA loads
13414   case NVPTX::BI__imma_m16n16k16_ld_a_s8:
13415     return MMA_LDST(2, m16n16k16_load_a_s8);
13416   case NVPTX::BI__imma_m16n16k16_ld_a_u8:
13417     return MMA_LDST(2, m16n16k16_load_a_u8);
13418   case NVPTX::BI__imma_m16n16k16_ld_b_s8:
13419     return MMA_LDST(2, m16n16k16_load_b_s8);
13420   case NVPTX::BI__imma_m16n16k16_ld_b_u8:
13421     return MMA_LDST(2, m16n16k16_load_b_u8);
13422   case NVPTX::BI__imma_m16n16k16_ld_c:
13423     return MMA_LDST(8, m16n16k16_load_c_s32);
13424   case NVPTX::BI__imma_m32n8k16_ld_a_s8:
13425     return MMA_LDST(4, m32n8k16_load_a_s8);
13426   case NVPTX::BI__imma_m32n8k16_ld_a_u8:
13427     return MMA_LDST(4, m32n8k16_load_a_u8);
13428   case NVPTX::BI__imma_m32n8k16_ld_b_s8:
13429     return MMA_LDST(1, m32n8k16_load_b_s8);
13430   case NVPTX::BI__imma_m32n8k16_ld_b_u8:
13431     return MMA_LDST(1, m32n8k16_load_b_u8);
13432   case NVPTX::BI__imma_m32n8k16_ld_c:
13433     return MMA_LDST(8, m32n8k16_load_c_s32);
13434   case NVPTX::BI__imma_m8n32k16_ld_a_s8:
13435     return MMA_LDST(1, m8n32k16_load_a_s8);
13436   case NVPTX::BI__imma_m8n32k16_ld_a_u8:
13437     return MMA_LDST(1, m8n32k16_load_a_u8);
13438   case NVPTX::BI__imma_m8n32k16_ld_b_s8:
13439     return MMA_LDST(4, m8n32k16_load_b_s8);
13440   case NVPTX::BI__imma_m8n32k16_ld_b_u8:
13441     return MMA_LDST(4, m8n32k16_load_b_u8);
13442   case NVPTX::BI__imma_m8n32k16_ld_c:
13443     return MMA_LDST(8, m8n32k16_load_c_s32);
13444 
13445   // Sub-integer MMA loads.
13446   // Only row/col layout is supported by A/B fragments.
13447   case NVPTX::BI__imma_m8n8k32_ld_a_s4:
13448     return {1, 0, MMA_INTR(m8n8k32_load_a_s4, row)};
13449   case NVPTX::BI__imma_m8n8k32_ld_a_u4:
13450     return {1, 0, MMA_INTR(m8n8k32_load_a_u4, row)};
13451   case NVPTX::BI__imma_m8n8k32_ld_b_s4:
13452     return {1, MMA_INTR(m8n8k32_load_b_s4, col), 0};
13453   case NVPTX::BI__imma_m8n8k32_ld_b_u4:
13454     return {1, MMA_INTR(m8n8k32_load_b_u4, col), 0};
13455   case NVPTX::BI__imma_m8n8k32_ld_c:
13456     return MMA_LDST(2, m8n8k32_load_c_s32);
13457   case NVPTX::BI__bmma_m8n8k128_ld_a_b1:
13458     return {1, 0, MMA_INTR(m8n8k128_load_a_b1, row)};
13459   case NVPTX::BI__bmma_m8n8k128_ld_b_b1:
13460     return {1, MMA_INTR(m8n8k128_load_b_b1, col), 0};
13461   case NVPTX::BI__bmma_m8n8k128_ld_c:
13462     return MMA_LDST(2, m8n8k128_load_c_s32);
13463 
13464   // NOTE: We need to follow inconsitent naming scheme used by NVCC.  Unlike
13465   // PTX and LLVM IR where stores always use fragment D, NVCC builtins always
13466   // use fragment C for both loads and stores.
13467   // FP MMA stores.
13468   case NVPTX::BI__hmma_m16n16k16_st_c_f16:
13469     return MMA_LDST(4, m16n16k16_store_d_f16);
13470   case NVPTX::BI__hmma_m16n16k16_st_c_f32:
13471     return MMA_LDST(8, m16n16k16_store_d_f32);
13472   case NVPTX::BI__hmma_m32n8k16_st_c_f16:
13473     return MMA_LDST(4, m32n8k16_store_d_f16);
13474   case NVPTX::BI__hmma_m32n8k16_st_c_f32:
13475     return MMA_LDST(8, m32n8k16_store_d_f32);
13476   case NVPTX::BI__hmma_m8n32k16_st_c_f16:
13477     return MMA_LDST(4, m8n32k16_store_d_f16);
13478   case NVPTX::BI__hmma_m8n32k16_st_c_f32:
13479     return MMA_LDST(8, m8n32k16_store_d_f32);
13480 
13481   // Integer and sub-integer MMA stores.
13482   // Another naming quirk. Unlike other MMA builtins that use PTX types in the
13483   // name, integer loads/stores use LLVM's i32.
13484   case NVPTX::BI__imma_m16n16k16_st_c_i32:
13485     return MMA_LDST(8, m16n16k16_store_d_s32);
13486   case NVPTX::BI__imma_m32n8k16_st_c_i32:
13487     return MMA_LDST(8, m32n8k16_store_d_s32);
13488   case NVPTX::BI__imma_m8n32k16_st_c_i32:
13489     return MMA_LDST(8, m8n32k16_store_d_s32);
13490   case NVPTX::BI__imma_m8n8k32_st_c_i32:
13491     return MMA_LDST(2, m8n8k32_store_d_s32);
13492   case NVPTX::BI__bmma_m8n8k128_st_c_i32:
13493     return MMA_LDST(2, m8n8k128_store_d_s32);
13494 
13495   default:
13496     llvm_unreachable("Unknown MMA builtin");
13497   }
13498 }
13499 #undef MMA_LDST
13500 #undef MMA_INTR
13501 
13502 
13503 struct NVPTXMmaInfo {
13504   unsigned NumEltsA;
13505   unsigned NumEltsB;
13506   unsigned NumEltsC;
13507   unsigned NumEltsD;
13508   std::array<unsigned, 8> Variants;
13509 
13510   unsigned getMMAIntrinsic(int Layout, bool Satf) {
13511     unsigned Index = Layout * 2 + Satf;
13512     if (Index >= Variants.size())
13513       return 0;
13514     return Variants[Index];
13515   }
13516 };
13517 
13518   // Returns an intrinsic that matches Layout and Satf for valid combinations of
13519   // Layout and Satf, 0 otherwise.
13520 static NVPTXMmaInfo getNVPTXMmaInfo(unsigned BuiltinID) {
13521   // clang-format off
13522 #define MMA_VARIANTS(geom, type) {{                                 \
13523       Intrinsic::nvvm_wmma_##geom##_mma_row_row_##type,             \
13524       Intrinsic::nvvm_wmma_##geom##_mma_row_row_##type##_satfinite, \
13525       Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type,             \
13526       Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type##_satfinite, \
13527       Intrinsic::nvvm_wmma_##geom##_mma_col_row_##type,             \
13528       Intrinsic::nvvm_wmma_##geom##_mma_col_row_##type##_satfinite, \
13529       Intrinsic::nvvm_wmma_##geom##_mma_col_col_##type,             \
13530       Intrinsic::nvvm_wmma_##geom##_mma_col_col_##type##_satfinite  \
13531     }}
13532 // Sub-integer MMA only supports row.col layout.
13533 #define MMA_VARIANTS_I4(geom, type) {{ \
13534       0, \
13535       0, \
13536       Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type,             \
13537       Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type##_satfinite, \
13538       0, \
13539       0, \
13540       0, \
13541       0  \
13542     }}
13543 // b1 MMA does not support .satfinite.
13544 #define MMA_VARIANTS_B1(geom, type) {{ \
13545       0, \
13546       0, \
13547       Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type,             \
13548       0, \
13549       0, \
13550       0, \
13551       0, \
13552       0  \
13553     }}
13554     // clang-format on
13555     switch (BuiltinID) {
13556     // FP MMA
13557     // Note that 'type' argument of MMA_VARIANT uses D_C notation, while
13558     // NumEltsN of return value are ordered as A,B,C,D.
13559     case NVPTX::BI__hmma_m16n16k16_mma_f16f16:
13560       return {8, 8, 4, 4, MMA_VARIANTS(m16n16k16, f16_f16)};
13561     case NVPTX::BI__hmma_m16n16k16_mma_f32f16:
13562       return {8, 8, 4, 8, MMA_VARIANTS(m16n16k16, f32_f16)};
13563     case NVPTX::BI__hmma_m16n16k16_mma_f16f32:
13564       return {8, 8, 8, 4, MMA_VARIANTS(m16n16k16, f16_f32)};
13565     case NVPTX::BI__hmma_m16n16k16_mma_f32f32:
13566       return {8, 8, 8, 8, MMA_VARIANTS(m16n16k16, f32_f32)};
13567     case NVPTX::BI__hmma_m32n8k16_mma_f16f16:
13568       return {8, 8, 4, 4, MMA_VARIANTS(m32n8k16, f16_f16)};
13569     case NVPTX::BI__hmma_m32n8k16_mma_f32f16:
13570       return {8, 8, 4, 8, MMA_VARIANTS(m32n8k16, f32_f16)};
13571     case NVPTX::BI__hmma_m32n8k16_mma_f16f32:
13572       return {8, 8, 8, 4, MMA_VARIANTS(m32n8k16, f16_f32)};
13573     case NVPTX::BI__hmma_m32n8k16_mma_f32f32:
13574       return {8, 8, 8, 8, MMA_VARIANTS(m32n8k16, f32_f32)};
13575     case NVPTX::BI__hmma_m8n32k16_mma_f16f16:
13576       return {8, 8, 4, 4, MMA_VARIANTS(m8n32k16, f16_f16)};
13577     case NVPTX::BI__hmma_m8n32k16_mma_f32f16:
13578       return {8, 8, 4, 8, MMA_VARIANTS(m8n32k16, f32_f16)};
13579     case NVPTX::BI__hmma_m8n32k16_mma_f16f32:
13580       return {8, 8, 8, 4, MMA_VARIANTS(m8n32k16, f16_f32)};
13581     case NVPTX::BI__hmma_m8n32k16_mma_f32f32:
13582       return {8, 8, 8, 8, MMA_VARIANTS(m8n32k16, f32_f32)};
13583 
13584     // Integer MMA
13585     case NVPTX::BI__imma_m16n16k16_mma_s8:
13586       return {2, 2, 8, 8, MMA_VARIANTS(m16n16k16, s8)};
13587     case NVPTX::BI__imma_m16n16k16_mma_u8:
13588       return {2, 2, 8, 8, MMA_VARIANTS(m16n16k16, u8)};
13589     case NVPTX::BI__imma_m32n8k16_mma_s8:
13590       return {4, 1, 8, 8, MMA_VARIANTS(m32n8k16, s8)};
13591     case NVPTX::BI__imma_m32n8k16_mma_u8:
13592       return {4, 1, 8, 8, MMA_VARIANTS(m32n8k16, u8)};
13593     case NVPTX::BI__imma_m8n32k16_mma_s8:
13594       return {1, 4, 8, 8, MMA_VARIANTS(m8n32k16, s8)};
13595     case NVPTX::BI__imma_m8n32k16_mma_u8:
13596       return {1, 4, 8, 8, MMA_VARIANTS(m8n32k16, u8)};
13597 
13598     // Sub-integer MMA
13599     case NVPTX::BI__imma_m8n8k32_mma_s4:
13600       return {1, 1, 2, 2, MMA_VARIANTS_I4(m8n8k32, s4)};
13601     case NVPTX::BI__imma_m8n8k32_mma_u4:
13602       return {1, 1, 2, 2, MMA_VARIANTS_I4(m8n8k32, u4)};
13603     case NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1:
13604       return {1, 1, 2, 2, MMA_VARIANTS_B1(m8n8k128, b1)};
13605     default:
13606       llvm_unreachable("Unexpected builtin ID.");
13607     }
13608 #undef MMA_VARIANTS
13609 #undef MMA_VARIANTS_I4
13610 #undef MMA_VARIANTS_B1
13611 }
13612 
13613 } // namespace
13614 
13615 Value *
13616 CodeGenFunction::EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E) {
13617   auto MakeLdg = [&](unsigned IntrinsicID) {
13618     Value *Ptr = EmitScalarExpr(E->getArg(0));
13619     clang::CharUnits Align =
13620         getNaturalPointeeTypeAlignment(E->getArg(0)->getType());
13621     return Builder.CreateCall(
13622         CGM.getIntrinsic(IntrinsicID, {Ptr->getType()->getPointerElementType(),
13623                                        Ptr->getType()}),
13624         {Ptr, ConstantInt::get(Builder.getInt32Ty(), Align.getQuantity())});
13625   };
13626   auto MakeScopedAtomic = [&](unsigned IntrinsicID) {
13627     Value *Ptr = EmitScalarExpr(E->getArg(0));
13628     return Builder.CreateCall(
13629         CGM.getIntrinsic(IntrinsicID, {Ptr->getType()->getPointerElementType(),
13630                                        Ptr->getType()}),
13631         {Ptr, EmitScalarExpr(E->getArg(1))});
13632   };
13633   switch (BuiltinID) {
13634   case NVPTX::BI__nvvm_atom_add_gen_i:
13635   case NVPTX::BI__nvvm_atom_add_gen_l:
13636   case NVPTX::BI__nvvm_atom_add_gen_ll:
13637     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Add, E);
13638 
13639   case NVPTX::BI__nvvm_atom_sub_gen_i:
13640   case NVPTX::BI__nvvm_atom_sub_gen_l:
13641   case NVPTX::BI__nvvm_atom_sub_gen_ll:
13642     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Sub, E);
13643 
13644   case NVPTX::BI__nvvm_atom_and_gen_i:
13645   case NVPTX::BI__nvvm_atom_and_gen_l:
13646   case NVPTX::BI__nvvm_atom_and_gen_ll:
13647     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::And, E);
13648 
13649   case NVPTX::BI__nvvm_atom_or_gen_i:
13650   case NVPTX::BI__nvvm_atom_or_gen_l:
13651   case NVPTX::BI__nvvm_atom_or_gen_ll:
13652     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Or, E);
13653 
13654   case NVPTX::BI__nvvm_atom_xor_gen_i:
13655   case NVPTX::BI__nvvm_atom_xor_gen_l:
13656   case NVPTX::BI__nvvm_atom_xor_gen_ll:
13657     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xor, E);
13658 
13659   case NVPTX::BI__nvvm_atom_xchg_gen_i:
13660   case NVPTX::BI__nvvm_atom_xchg_gen_l:
13661   case NVPTX::BI__nvvm_atom_xchg_gen_ll:
13662     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xchg, E);
13663 
13664   case NVPTX::BI__nvvm_atom_max_gen_i:
13665   case NVPTX::BI__nvvm_atom_max_gen_l:
13666   case NVPTX::BI__nvvm_atom_max_gen_ll:
13667     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Max, E);
13668 
13669   case NVPTX::BI__nvvm_atom_max_gen_ui:
13670   case NVPTX::BI__nvvm_atom_max_gen_ul:
13671   case NVPTX::BI__nvvm_atom_max_gen_ull:
13672     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMax, E);
13673 
13674   case NVPTX::BI__nvvm_atom_min_gen_i:
13675   case NVPTX::BI__nvvm_atom_min_gen_l:
13676   case NVPTX::BI__nvvm_atom_min_gen_ll:
13677     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Min, E);
13678 
13679   case NVPTX::BI__nvvm_atom_min_gen_ui:
13680   case NVPTX::BI__nvvm_atom_min_gen_ul:
13681   case NVPTX::BI__nvvm_atom_min_gen_ull:
13682     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMin, E);
13683 
13684   case NVPTX::BI__nvvm_atom_cas_gen_i:
13685   case NVPTX::BI__nvvm_atom_cas_gen_l:
13686   case NVPTX::BI__nvvm_atom_cas_gen_ll:
13687     // __nvvm_atom_cas_gen_* should return the old value rather than the
13688     // success flag.
13689     return MakeAtomicCmpXchgValue(*this, E, /*ReturnBool=*/false);
13690 
13691   case NVPTX::BI__nvvm_atom_add_gen_f:
13692   case NVPTX::BI__nvvm_atom_add_gen_d: {
13693     Value *Ptr = EmitScalarExpr(E->getArg(0));
13694     Value *Val = EmitScalarExpr(E->getArg(1));
13695     return Builder.CreateAtomicRMW(llvm::AtomicRMWInst::FAdd, Ptr, Val,
13696                                    AtomicOrdering::SequentiallyConsistent);
13697   }
13698 
13699   case NVPTX::BI__nvvm_atom_inc_gen_ui: {
13700     Value *Ptr = EmitScalarExpr(E->getArg(0));
13701     Value *Val = EmitScalarExpr(E->getArg(1));
13702     Function *FnALI32 =
13703         CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_inc_32, Ptr->getType());
13704     return Builder.CreateCall(FnALI32, {Ptr, Val});
13705   }
13706 
13707   case NVPTX::BI__nvvm_atom_dec_gen_ui: {
13708     Value *Ptr = EmitScalarExpr(E->getArg(0));
13709     Value *Val = EmitScalarExpr(E->getArg(1));
13710     Function *FnALD32 =
13711         CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_dec_32, Ptr->getType());
13712     return Builder.CreateCall(FnALD32, {Ptr, Val});
13713   }
13714 
13715   case NVPTX::BI__nvvm_ldg_c:
13716   case NVPTX::BI__nvvm_ldg_c2:
13717   case NVPTX::BI__nvvm_ldg_c4:
13718   case NVPTX::BI__nvvm_ldg_s:
13719   case NVPTX::BI__nvvm_ldg_s2:
13720   case NVPTX::BI__nvvm_ldg_s4:
13721   case NVPTX::BI__nvvm_ldg_i:
13722   case NVPTX::BI__nvvm_ldg_i2:
13723   case NVPTX::BI__nvvm_ldg_i4:
13724   case NVPTX::BI__nvvm_ldg_l:
13725   case NVPTX::BI__nvvm_ldg_ll:
13726   case NVPTX::BI__nvvm_ldg_ll2:
13727   case NVPTX::BI__nvvm_ldg_uc:
13728   case NVPTX::BI__nvvm_ldg_uc2:
13729   case NVPTX::BI__nvvm_ldg_uc4:
13730   case NVPTX::BI__nvvm_ldg_us:
13731   case NVPTX::BI__nvvm_ldg_us2:
13732   case NVPTX::BI__nvvm_ldg_us4:
13733   case NVPTX::BI__nvvm_ldg_ui:
13734   case NVPTX::BI__nvvm_ldg_ui2:
13735   case NVPTX::BI__nvvm_ldg_ui4:
13736   case NVPTX::BI__nvvm_ldg_ul:
13737   case NVPTX::BI__nvvm_ldg_ull:
13738   case NVPTX::BI__nvvm_ldg_ull2:
13739     // PTX Interoperability section 2.2: "For a vector with an even number of
13740     // elements, its alignment is set to number of elements times the alignment
13741     // of its member: n*alignof(t)."
13742     return MakeLdg(Intrinsic::nvvm_ldg_global_i);
13743   case NVPTX::BI__nvvm_ldg_f:
13744   case NVPTX::BI__nvvm_ldg_f2:
13745   case NVPTX::BI__nvvm_ldg_f4:
13746   case NVPTX::BI__nvvm_ldg_d:
13747   case NVPTX::BI__nvvm_ldg_d2:
13748     return MakeLdg(Intrinsic::nvvm_ldg_global_f);
13749 
13750   case NVPTX::BI__nvvm_atom_cta_add_gen_i:
13751   case NVPTX::BI__nvvm_atom_cta_add_gen_l:
13752   case NVPTX::BI__nvvm_atom_cta_add_gen_ll:
13753     return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_i_cta);
13754   case NVPTX::BI__nvvm_atom_sys_add_gen_i:
13755   case NVPTX::BI__nvvm_atom_sys_add_gen_l:
13756   case NVPTX::BI__nvvm_atom_sys_add_gen_ll:
13757     return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_i_sys);
13758   case NVPTX::BI__nvvm_atom_cta_add_gen_f:
13759   case NVPTX::BI__nvvm_atom_cta_add_gen_d:
13760     return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_f_cta);
13761   case NVPTX::BI__nvvm_atom_sys_add_gen_f:
13762   case NVPTX::BI__nvvm_atom_sys_add_gen_d:
13763     return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_f_sys);
13764   case NVPTX::BI__nvvm_atom_cta_xchg_gen_i:
13765   case NVPTX::BI__nvvm_atom_cta_xchg_gen_l:
13766   case NVPTX::BI__nvvm_atom_cta_xchg_gen_ll:
13767     return MakeScopedAtomic(Intrinsic::nvvm_atomic_exch_gen_i_cta);
13768   case NVPTX::BI__nvvm_atom_sys_xchg_gen_i:
13769   case NVPTX::BI__nvvm_atom_sys_xchg_gen_l:
13770   case NVPTX::BI__nvvm_atom_sys_xchg_gen_ll:
13771     return MakeScopedAtomic(Intrinsic::nvvm_atomic_exch_gen_i_sys);
13772   case NVPTX::BI__nvvm_atom_cta_max_gen_i:
13773   case NVPTX::BI__nvvm_atom_cta_max_gen_ui:
13774   case NVPTX::BI__nvvm_atom_cta_max_gen_l:
13775   case NVPTX::BI__nvvm_atom_cta_max_gen_ul:
13776   case NVPTX::BI__nvvm_atom_cta_max_gen_ll:
13777   case NVPTX::BI__nvvm_atom_cta_max_gen_ull:
13778     return MakeScopedAtomic(Intrinsic::nvvm_atomic_max_gen_i_cta);
13779   case NVPTX::BI__nvvm_atom_sys_max_gen_i:
13780   case NVPTX::BI__nvvm_atom_sys_max_gen_ui:
13781   case NVPTX::BI__nvvm_atom_sys_max_gen_l:
13782   case NVPTX::BI__nvvm_atom_sys_max_gen_ul:
13783   case NVPTX::BI__nvvm_atom_sys_max_gen_ll:
13784   case NVPTX::BI__nvvm_atom_sys_max_gen_ull:
13785     return MakeScopedAtomic(Intrinsic::nvvm_atomic_max_gen_i_sys);
13786   case NVPTX::BI__nvvm_atom_cta_min_gen_i:
13787   case NVPTX::BI__nvvm_atom_cta_min_gen_ui:
13788   case NVPTX::BI__nvvm_atom_cta_min_gen_l:
13789   case NVPTX::BI__nvvm_atom_cta_min_gen_ul:
13790   case NVPTX::BI__nvvm_atom_cta_min_gen_ll:
13791   case NVPTX::BI__nvvm_atom_cta_min_gen_ull:
13792     return MakeScopedAtomic(Intrinsic::nvvm_atomic_min_gen_i_cta);
13793   case NVPTX::BI__nvvm_atom_sys_min_gen_i:
13794   case NVPTX::BI__nvvm_atom_sys_min_gen_ui:
13795   case NVPTX::BI__nvvm_atom_sys_min_gen_l:
13796   case NVPTX::BI__nvvm_atom_sys_min_gen_ul:
13797   case NVPTX::BI__nvvm_atom_sys_min_gen_ll:
13798   case NVPTX::BI__nvvm_atom_sys_min_gen_ull:
13799     return MakeScopedAtomic(Intrinsic::nvvm_atomic_min_gen_i_sys);
13800   case NVPTX::BI__nvvm_atom_cta_inc_gen_ui:
13801     return MakeScopedAtomic(Intrinsic::nvvm_atomic_inc_gen_i_cta);
13802   case NVPTX::BI__nvvm_atom_cta_dec_gen_ui:
13803     return MakeScopedAtomic(Intrinsic::nvvm_atomic_dec_gen_i_cta);
13804   case NVPTX::BI__nvvm_atom_sys_inc_gen_ui:
13805     return MakeScopedAtomic(Intrinsic::nvvm_atomic_inc_gen_i_sys);
13806   case NVPTX::BI__nvvm_atom_sys_dec_gen_ui:
13807     return MakeScopedAtomic(Intrinsic::nvvm_atomic_dec_gen_i_sys);
13808   case NVPTX::BI__nvvm_atom_cta_and_gen_i:
13809   case NVPTX::BI__nvvm_atom_cta_and_gen_l:
13810   case NVPTX::BI__nvvm_atom_cta_and_gen_ll:
13811     return MakeScopedAtomic(Intrinsic::nvvm_atomic_and_gen_i_cta);
13812   case NVPTX::BI__nvvm_atom_sys_and_gen_i:
13813   case NVPTX::BI__nvvm_atom_sys_and_gen_l:
13814   case NVPTX::BI__nvvm_atom_sys_and_gen_ll:
13815     return MakeScopedAtomic(Intrinsic::nvvm_atomic_and_gen_i_sys);
13816   case NVPTX::BI__nvvm_atom_cta_or_gen_i:
13817   case NVPTX::BI__nvvm_atom_cta_or_gen_l:
13818   case NVPTX::BI__nvvm_atom_cta_or_gen_ll:
13819     return MakeScopedAtomic(Intrinsic::nvvm_atomic_or_gen_i_cta);
13820   case NVPTX::BI__nvvm_atom_sys_or_gen_i:
13821   case NVPTX::BI__nvvm_atom_sys_or_gen_l:
13822   case NVPTX::BI__nvvm_atom_sys_or_gen_ll:
13823     return MakeScopedAtomic(Intrinsic::nvvm_atomic_or_gen_i_sys);
13824   case NVPTX::BI__nvvm_atom_cta_xor_gen_i:
13825   case NVPTX::BI__nvvm_atom_cta_xor_gen_l:
13826   case NVPTX::BI__nvvm_atom_cta_xor_gen_ll:
13827     return MakeScopedAtomic(Intrinsic::nvvm_atomic_xor_gen_i_cta);
13828   case NVPTX::BI__nvvm_atom_sys_xor_gen_i:
13829   case NVPTX::BI__nvvm_atom_sys_xor_gen_l:
13830   case NVPTX::BI__nvvm_atom_sys_xor_gen_ll:
13831     return MakeScopedAtomic(Intrinsic::nvvm_atomic_xor_gen_i_sys);
13832   case NVPTX::BI__nvvm_atom_cta_cas_gen_i:
13833   case NVPTX::BI__nvvm_atom_cta_cas_gen_l:
13834   case NVPTX::BI__nvvm_atom_cta_cas_gen_ll: {
13835     Value *Ptr = EmitScalarExpr(E->getArg(0));
13836     return Builder.CreateCall(
13837         CGM.getIntrinsic(
13838             Intrinsic::nvvm_atomic_cas_gen_i_cta,
13839             {Ptr->getType()->getPointerElementType(), Ptr->getType()}),
13840         {Ptr, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2))});
13841   }
13842   case NVPTX::BI__nvvm_atom_sys_cas_gen_i:
13843   case NVPTX::BI__nvvm_atom_sys_cas_gen_l:
13844   case NVPTX::BI__nvvm_atom_sys_cas_gen_ll: {
13845     Value *Ptr = EmitScalarExpr(E->getArg(0));
13846     return Builder.CreateCall(
13847         CGM.getIntrinsic(
13848             Intrinsic::nvvm_atomic_cas_gen_i_sys,
13849             {Ptr->getType()->getPointerElementType(), Ptr->getType()}),
13850         {Ptr, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2))});
13851   }
13852   case NVPTX::BI__nvvm_match_all_sync_i32p:
13853   case NVPTX::BI__nvvm_match_all_sync_i64p: {
13854     Value *Mask = EmitScalarExpr(E->getArg(0));
13855     Value *Val = EmitScalarExpr(E->getArg(1));
13856     Address PredOutPtr = EmitPointerWithAlignment(E->getArg(2));
13857     Value *ResultPair = Builder.CreateCall(
13858         CGM.getIntrinsic(BuiltinID == NVPTX::BI__nvvm_match_all_sync_i32p
13859                              ? Intrinsic::nvvm_match_all_sync_i32p
13860                              : Intrinsic::nvvm_match_all_sync_i64p),
13861         {Mask, Val});
13862     Value *Pred = Builder.CreateZExt(Builder.CreateExtractValue(ResultPair, 1),
13863                                      PredOutPtr.getElementType());
13864     Builder.CreateStore(Pred, PredOutPtr);
13865     return Builder.CreateExtractValue(ResultPair, 0);
13866   }
13867 
13868   // FP MMA loads
13869   case NVPTX::BI__hmma_m16n16k16_ld_a:
13870   case NVPTX::BI__hmma_m16n16k16_ld_b:
13871   case NVPTX::BI__hmma_m16n16k16_ld_c_f16:
13872   case NVPTX::BI__hmma_m16n16k16_ld_c_f32:
13873   case NVPTX::BI__hmma_m32n8k16_ld_a:
13874   case NVPTX::BI__hmma_m32n8k16_ld_b:
13875   case NVPTX::BI__hmma_m32n8k16_ld_c_f16:
13876   case NVPTX::BI__hmma_m32n8k16_ld_c_f32:
13877   case NVPTX::BI__hmma_m8n32k16_ld_a:
13878   case NVPTX::BI__hmma_m8n32k16_ld_b:
13879   case NVPTX::BI__hmma_m8n32k16_ld_c_f16:
13880   case NVPTX::BI__hmma_m8n32k16_ld_c_f32:
13881   // Integer MMA loads.
13882   case NVPTX::BI__imma_m16n16k16_ld_a_s8:
13883   case NVPTX::BI__imma_m16n16k16_ld_a_u8:
13884   case NVPTX::BI__imma_m16n16k16_ld_b_s8:
13885   case NVPTX::BI__imma_m16n16k16_ld_b_u8:
13886   case NVPTX::BI__imma_m16n16k16_ld_c:
13887   case NVPTX::BI__imma_m32n8k16_ld_a_s8:
13888   case NVPTX::BI__imma_m32n8k16_ld_a_u8:
13889   case NVPTX::BI__imma_m32n8k16_ld_b_s8:
13890   case NVPTX::BI__imma_m32n8k16_ld_b_u8:
13891   case NVPTX::BI__imma_m32n8k16_ld_c:
13892   case NVPTX::BI__imma_m8n32k16_ld_a_s8:
13893   case NVPTX::BI__imma_m8n32k16_ld_a_u8:
13894   case NVPTX::BI__imma_m8n32k16_ld_b_s8:
13895   case NVPTX::BI__imma_m8n32k16_ld_b_u8:
13896   case NVPTX::BI__imma_m8n32k16_ld_c:
13897   // Sub-integer MMA loads.
13898   case NVPTX::BI__imma_m8n8k32_ld_a_s4:
13899   case NVPTX::BI__imma_m8n8k32_ld_a_u4:
13900   case NVPTX::BI__imma_m8n8k32_ld_b_s4:
13901   case NVPTX::BI__imma_m8n8k32_ld_b_u4:
13902   case NVPTX::BI__imma_m8n8k32_ld_c:
13903   case NVPTX::BI__bmma_m8n8k128_ld_a_b1:
13904   case NVPTX::BI__bmma_m8n8k128_ld_b_b1:
13905   case NVPTX::BI__bmma_m8n8k128_ld_c:
13906   {
13907     Address Dst = EmitPointerWithAlignment(E->getArg(0));
13908     Value *Src = EmitScalarExpr(E->getArg(1));
13909     Value *Ldm = EmitScalarExpr(E->getArg(2));
13910     llvm::APSInt isColMajorArg;
13911     if (!E->getArg(3)->isIntegerConstantExpr(isColMajorArg, getContext()))
13912       return nullptr;
13913     bool isColMajor = isColMajorArg.getSExtValue();
13914     NVPTXMmaLdstInfo II = getNVPTXMmaLdstInfo(BuiltinID);
13915     unsigned IID = isColMajor ? II.IID_col : II.IID_row;
13916     if (IID == 0)
13917       return nullptr;
13918 
13919     Value *Result =
13920         Builder.CreateCall(CGM.getIntrinsic(IID, Src->getType()), {Src, Ldm});
13921 
13922     // Save returned values.
13923     assert(II.NumResults);
13924     if (II.NumResults == 1) {
13925       Builder.CreateAlignedStore(Result, Dst.getPointer(),
13926                                  CharUnits::fromQuantity(4));
13927     } else {
13928       for (unsigned i = 0; i < II.NumResults; ++i) {
13929         Builder.CreateAlignedStore(
13930             Builder.CreateBitCast(Builder.CreateExtractValue(Result, i),
13931                                   Dst.getElementType()),
13932             Builder.CreateGEP(Dst.getPointer(),
13933                               llvm::ConstantInt::get(IntTy, i)),
13934             CharUnits::fromQuantity(4));
13935       }
13936     }
13937     return Result;
13938   }
13939 
13940   case NVPTX::BI__hmma_m16n16k16_st_c_f16:
13941   case NVPTX::BI__hmma_m16n16k16_st_c_f32:
13942   case NVPTX::BI__hmma_m32n8k16_st_c_f16:
13943   case NVPTX::BI__hmma_m32n8k16_st_c_f32:
13944   case NVPTX::BI__hmma_m8n32k16_st_c_f16:
13945   case NVPTX::BI__hmma_m8n32k16_st_c_f32:
13946   case NVPTX::BI__imma_m16n16k16_st_c_i32:
13947   case NVPTX::BI__imma_m32n8k16_st_c_i32:
13948   case NVPTX::BI__imma_m8n32k16_st_c_i32:
13949   case NVPTX::BI__imma_m8n8k32_st_c_i32:
13950   case NVPTX::BI__bmma_m8n8k128_st_c_i32: {
13951     Value *Dst = EmitScalarExpr(E->getArg(0));
13952     Address Src = EmitPointerWithAlignment(E->getArg(1));
13953     Value *Ldm = EmitScalarExpr(E->getArg(2));
13954     llvm::APSInt isColMajorArg;
13955     if (!E->getArg(3)->isIntegerConstantExpr(isColMajorArg, getContext()))
13956       return nullptr;
13957     bool isColMajor = isColMajorArg.getSExtValue();
13958     NVPTXMmaLdstInfo II = getNVPTXMmaLdstInfo(BuiltinID);
13959     unsigned IID = isColMajor ? II.IID_col : II.IID_row;
13960     if (IID == 0)
13961       return nullptr;
13962     Function *Intrinsic =
13963         CGM.getIntrinsic(IID, Dst->getType());
13964     llvm::Type *ParamType = Intrinsic->getFunctionType()->getParamType(1);
13965     SmallVector<Value *, 10> Values = {Dst};
13966     for (unsigned i = 0; i < II.NumResults; ++i) {
13967       Value *V = Builder.CreateAlignedLoad(
13968           Builder.CreateGEP(Src.getPointer(), llvm::ConstantInt::get(IntTy, i)),
13969           CharUnits::fromQuantity(4));
13970       Values.push_back(Builder.CreateBitCast(V, ParamType));
13971     }
13972     Values.push_back(Ldm);
13973     Value *Result = Builder.CreateCall(Intrinsic, Values);
13974     return Result;
13975   }
13976 
13977   // BI__hmma_m16n16k16_mma_<Dtype><CType>(d, a, b, c, layout, satf) -->
13978   // Intrinsic::nvvm_wmma_m16n16k16_mma_sync<layout A,B><DType><CType><Satf>
13979   case NVPTX::BI__hmma_m16n16k16_mma_f16f16:
13980   case NVPTX::BI__hmma_m16n16k16_mma_f32f16:
13981   case NVPTX::BI__hmma_m16n16k16_mma_f32f32:
13982   case NVPTX::BI__hmma_m16n16k16_mma_f16f32:
13983   case NVPTX::BI__hmma_m32n8k16_mma_f16f16:
13984   case NVPTX::BI__hmma_m32n8k16_mma_f32f16:
13985   case NVPTX::BI__hmma_m32n8k16_mma_f32f32:
13986   case NVPTX::BI__hmma_m32n8k16_mma_f16f32:
13987   case NVPTX::BI__hmma_m8n32k16_mma_f16f16:
13988   case NVPTX::BI__hmma_m8n32k16_mma_f32f16:
13989   case NVPTX::BI__hmma_m8n32k16_mma_f32f32:
13990   case NVPTX::BI__hmma_m8n32k16_mma_f16f32:
13991   case NVPTX::BI__imma_m16n16k16_mma_s8:
13992   case NVPTX::BI__imma_m16n16k16_mma_u8:
13993   case NVPTX::BI__imma_m32n8k16_mma_s8:
13994   case NVPTX::BI__imma_m32n8k16_mma_u8:
13995   case NVPTX::BI__imma_m8n32k16_mma_s8:
13996   case NVPTX::BI__imma_m8n32k16_mma_u8:
13997   case NVPTX::BI__imma_m8n8k32_mma_s4:
13998   case NVPTX::BI__imma_m8n8k32_mma_u4:
13999   case NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1: {
14000     Address Dst = EmitPointerWithAlignment(E->getArg(0));
14001     Address SrcA = EmitPointerWithAlignment(E->getArg(1));
14002     Address SrcB = EmitPointerWithAlignment(E->getArg(2));
14003     Address SrcC = EmitPointerWithAlignment(E->getArg(3));
14004     llvm::APSInt LayoutArg;
14005     if (!E->getArg(4)->isIntegerConstantExpr(LayoutArg, getContext()))
14006       return nullptr;
14007     int Layout = LayoutArg.getSExtValue();
14008     if (Layout < 0 || Layout > 3)
14009       return nullptr;
14010     llvm::APSInt SatfArg;
14011     if (BuiltinID == NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1)
14012       SatfArg = 0;  // .b1 does not have satf argument.
14013     else if (!E->getArg(5)->isIntegerConstantExpr(SatfArg, getContext()))
14014       return nullptr;
14015     bool Satf = SatfArg.getSExtValue();
14016     NVPTXMmaInfo MI = getNVPTXMmaInfo(BuiltinID);
14017     unsigned IID = MI.getMMAIntrinsic(Layout, Satf);
14018     if (IID == 0)  // Unsupported combination of Layout/Satf.
14019       return nullptr;
14020 
14021     SmallVector<Value *, 24> Values;
14022     Function *Intrinsic = CGM.getIntrinsic(IID);
14023     llvm::Type *AType = Intrinsic->getFunctionType()->getParamType(0);
14024     // Load A
14025     for (unsigned i = 0; i < MI.NumEltsA; ++i) {
14026       Value *V = Builder.CreateAlignedLoad(
14027           Builder.CreateGEP(SrcA.getPointer(),
14028                             llvm::ConstantInt::get(IntTy, i)),
14029           CharUnits::fromQuantity(4));
14030       Values.push_back(Builder.CreateBitCast(V, AType));
14031     }
14032     // Load B
14033     llvm::Type *BType = Intrinsic->getFunctionType()->getParamType(MI.NumEltsA);
14034     for (unsigned i = 0; i < MI.NumEltsB; ++i) {
14035       Value *V = Builder.CreateAlignedLoad(
14036           Builder.CreateGEP(SrcB.getPointer(),
14037                             llvm::ConstantInt::get(IntTy, i)),
14038           CharUnits::fromQuantity(4));
14039       Values.push_back(Builder.CreateBitCast(V, BType));
14040     }
14041     // Load C
14042     llvm::Type *CType =
14043         Intrinsic->getFunctionType()->getParamType(MI.NumEltsA + MI.NumEltsB);
14044     for (unsigned i = 0; i < MI.NumEltsC; ++i) {
14045       Value *V = Builder.CreateAlignedLoad(
14046           Builder.CreateGEP(SrcC.getPointer(),
14047                             llvm::ConstantInt::get(IntTy, i)),
14048           CharUnits::fromQuantity(4));
14049       Values.push_back(Builder.CreateBitCast(V, CType));
14050     }
14051     Value *Result = Builder.CreateCall(Intrinsic, Values);
14052     llvm::Type *DType = Dst.getElementType();
14053     for (unsigned i = 0; i < MI.NumEltsD; ++i)
14054       Builder.CreateAlignedStore(
14055           Builder.CreateBitCast(Builder.CreateExtractValue(Result, i), DType),
14056           Builder.CreateGEP(Dst.getPointer(), llvm::ConstantInt::get(IntTy, i)),
14057           CharUnits::fromQuantity(4));
14058     return Result;
14059   }
14060   default:
14061     return nullptr;
14062   }
14063 }
14064 
14065 Value *CodeGenFunction::EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
14066                                                    const CallExpr *E) {
14067   switch (BuiltinID) {
14068   case WebAssembly::BI__builtin_wasm_memory_size: {
14069     llvm::Type *ResultType = ConvertType(E->getType());
14070     Value *I = EmitScalarExpr(E->getArg(0));
14071     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_size, ResultType);
14072     return Builder.CreateCall(Callee, I);
14073   }
14074   case WebAssembly::BI__builtin_wasm_memory_grow: {
14075     llvm::Type *ResultType = ConvertType(E->getType());
14076     Value *Args[] = {
14077       EmitScalarExpr(E->getArg(0)),
14078       EmitScalarExpr(E->getArg(1))
14079     };
14080     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_grow, ResultType);
14081     return Builder.CreateCall(Callee, Args);
14082   }
14083   case WebAssembly::BI__builtin_wasm_memory_init: {
14084     llvm::APSInt SegConst;
14085     if (!E->getArg(0)->isIntegerConstantExpr(SegConst, getContext()))
14086       llvm_unreachable("Constant arg isn't actually constant?");
14087     llvm::APSInt MemConst;
14088     if (!E->getArg(1)->isIntegerConstantExpr(MemConst, getContext()))
14089       llvm_unreachable("Constant arg isn't actually constant?");
14090     if (!MemConst.isNullValue())
14091       ErrorUnsupported(E, "non-zero memory index");
14092     Value *Args[] = {llvm::ConstantInt::get(getLLVMContext(), SegConst),
14093                      llvm::ConstantInt::get(getLLVMContext(), MemConst),
14094                      EmitScalarExpr(E->getArg(2)), EmitScalarExpr(E->getArg(3)),
14095                      EmitScalarExpr(E->getArg(4))};
14096     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_init);
14097     return Builder.CreateCall(Callee, Args);
14098   }
14099   case WebAssembly::BI__builtin_wasm_data_drop: {
14100     llvm::APSInt SegConst;
14101     if (!E->getArg(0)->isIntegerConstantExpr(SegConst, getContext()))
14102       llvm_unreachable("Constant arg isn't actually constant?");
14103     Value *Arg = llvm::ConstantInt::get(getLLVMContext(), SegConst);
14104     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_data_drop);
14105     return Builder.CreateCall(Callee, {Arg});
14106   }
14107   case WebAssembly::BI__builtin_wasm_tls_size: {
14108     llvm::Type *ResultType = ConvertType(E->getType());
14109     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_size, ResultType);
14110     return Builder.CreateCall(Callee);
14111   }
14112   case WebAssembly::BI__builtin_wasm_tls_align: {
14113     llvm::Type *ResultType = ConvertType(E->getType());
14114     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_align, ResultType);
14115     return Builder.CreateCall(Callee);
14116   }
14117   case WebAssembly::BI__builtin_wasm_tls_base: {
14118     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_base);
14119     return Builder.CreateCall(Callee);
14120   }
14121   case WebAssembly::BI__builtin_wasm_throw: {
14122     Value *Tag = EmitScalarExpr(E->getArg(0));
14123     Value *Obj = EmitScalarExpr(E->getArg(1));
14124     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_throw);
14125     return Builder.CreateCall(Callee, {Tag, Obj});
14126   }
14127   case WebAssembly::BI__builtin_wasm_rethrow_in_catch: {
14128     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_rethrow_in_catch);
14129     return Builder.CreateCall(Callee);
14130   }
14131   case WebAssembly::BI__builtin_wasm_atomic_wait_i32: {
14132     Value *Addr = EmitScalarExpr(E->getArg(0));
14133     Value *Expected = EmitScalarExpr(E->getArg(1));
14134     Value *Timeout = EmitScalarExpr(E->getArg(2));
14135     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_atomic_wait_i32);
14136     return Builder.CreateCall(Callee, {Addr, Expected, Timeout});
14137   }
14138   case WebAssembly::BI__builtin_wasm_atomic_wait_i64: {
14139     Value *Addr = EmitScalarExpr(E->getArg(0));
14140     Value *Expected = EmitScalarExpr(E->getArg(1));
14141     Value *Timeout = EmitScalarExpr(E->getArg(2));
14142     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_atomic_wait_i64);
14143     return Builder.CreateCall(Callee, {Addr, Expected, Timeout});
14144   }
14145   case WebAssembly::BI__builtin_wasm_atomic_notify: {
14146     Value *Addr = EmitScalarExpr(E->getArg(0));
14147     Value *Count = EmitScalarExpr(E->getArg(1));
14148     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_atomic_notify);
14149     return Builder.CreateCall(Callee, {Addr, Count});
14150   }
14151   case WebAssembly::BI__builtin_wasm_trunc_s_i32_f32:
14152   case WebAssembly::BI__builtin_wasm_trunc_s_i32_f64:
14153   case WebAssembly::BI__builtin_wasm_trunc_s_i64_f32:
14154   case WebAssembly::BI__builtin_wasm_trunc_s_i64_f64: {
14155     Value *Src = EmitScalarExpr(E->getArg(0));
14156     llvm::Type *ResT = ConvertType(E->getType());
14157     Function *Callee =
14158         CGM.getIntrinsic(Intrinsic::wasm_trunc_signed, {ResT, Src->getType()});
14159     return Builder.CreateCall(Callee, {Src});
14160   }
14161   case WebAssembly::BI__builtin_wasm_trunc_u_i32_f32:
14162   case WebAssembly::BI__builtin_wasm_trunc_u_i32_f64:
14163   case WebAssembly::BI__builtin_wasm_trunc_u_i64_f32:
14164   case WebAssembly::BI__builtin_wasm_trunc_u_i64_f64: {
14165     Value *Src = EmitScalarExpr(E->getArg(0));
14166     llvm::Type *ResT = ConvertType(E->getType());
14167     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_trunc_unsigned,
14168                                         {ResT, Src->getType()});
14169     return Builder.CreateCall(Callee, {Src});
14170   }
14171   case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32_f32:
14172   case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32_f64:
14173   case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64_f32:
14174   case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64_f64:
14175   case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32x4_f32x4:
14176   case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64x2_f64x2: {
14177     Value *Src = EmitScalarExpr(E->getArg(0));
14178     llvm::Type *ResT = ConvertType(E->getType());
14179     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_trunc_saturate_signed,
14180                                      {ResT, Src->getType()});
14181     return Builder.CreateCall(Callee, {Src});
14182   }
14183   case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32_f32:
14184   case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32_f64:
14185   case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64_f32:
14186   case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64_f64:
14187   case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32x4_f32x4:
14188   case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64x2_f64x2: {
14189     Value *Src = EmitScalarExpr(E->getArg(0));
14190     llvm::Type *ResT = ConvertType(E->getType());
14191     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_trunc_saturate_unsigned,
14192                                      {ResT, Src->getType()});
14193     return Builder.CreateCall(Callee, {Src});
14194   }
14195   case WebAssembly::BI__builtin_wasm_min_f32:
14196   case WebAssembly::BI__builtin_wasm_min_f64:
14197   case WebAssembly::BI__builtin_wasm_min_f32x4:
14198   case WebAssembly::BI__builtin_wasm_min_f64x2: {
14199     Value *LHS = EmitScalarExpr(E->getArg(0));
14200     Value *RHS = EmitScalarExpr(E->getArg(1));
14201     Function *Callee = CGM.getIntrinsic(Intrinsic::minimum,
14202                                      ConvertType(E->getType()));
14203     return Builder.CreateCall(Callee, {LHS, RHS});
14204   }
14205   case WebAssembly::BI__builtin_wasm_max_f32:
14206   case WebAssembly::BI__builtin_wasm_max_f64:
14207   case WebAssembly::BI__builtin_wasm_max_f32x4:
14208   case WebAssembly::BI__builtin_wasm_max_f64x2: {
14209     Value *LHS = EmitScalarExpr(E->getArg(0));
14210     Value *RHS = EmitScalarExpr(E->getArg(1));
14211     Function *Callee = CGM.getIntrinsic(Intrinsic::maximum,
14212                                      ConvertType(E->getType()));
14213     return Builder.CreateCall(Callee, {LHS, RHS});
14214   }
14215   case WebAssembly::BI__builtin_wasm_swizzle_v8x16: {
14216     Value *Src = EmitScalarExpr(E->getArg(0));
14217     Value *Indices = EmitScalarExpr(E->getArg(1));
14218     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_swizzle);
14219     return Builder.CreateCall(Callee, {Src, Indices});
14220   }
14221   case WebAssembly::BI__builtin_wasm_extract_lane_s_i8x16:
14222   case WebAssembly::BI__builtin_wasm_extract_lane_u_i8x16:
14223   case WebAssembly::BI__builtin_wasm_extract_lane_s_i16x8:
14224   case WebAssembly::BI__builtin_wasm_extract_lane_u_i16x8:
14225   case WebAssembly::BI__builtin_wasm_extract_lane_i32x4:
14226   case WebAssembly::BI__builtin_wasm_extract_lane_i64x2:
14227   case WebAssembly::BI__builtin_wasm_extract_lane_f32x4:
14228   case WebAssembly::BI__builtin_wasm_extract_lane_f64x2: {
14229     llvm::APSInt LaneConst;
14230     if (!E->getArg(1)->isIntegerConstantExpr(LaneConst, getContext()))
14231       llvm_unreachable("Constant arg isn't actually constant?");
14232     Value *Vec = EmitScalarExpr(E->getArg(0));
14233     Value *Lane = llvm::ConstantInt::get(getLLVMContext(), LaneConst);
14234     Value *Extract = Builder.CreateExtractElement(Vec, Lane);
14235     switch (BuiltinID) {
14236     case WebAssembly::BI__builtin_wasm_extract_lane_s_i8x16:
14237     case WebAssembly::BI__builtin_wasm_extract_lane_s_i16x8:
14238       return Builder.CreateSExt(Extract, ConvertType(E->getType()));
14239     case WebAssembly::BI__builtin_wasm_extract_lane_u_i8x16:
14240     case WebAssembly::BI__builtin_wasm_extract_lane_u_i16x8:
14241       return Builder.CreateZExt(Extract, ConvertType(E->getType()));
14242     case WebAssembly::BI__builtin_wasm_extract_lane_i32x4:
14243     case WebAssembly::BI__builtin_wasm_extract_lane_i64x2:
14244     case WebAssembly::BI__builtin_wasm_extract_lane_f32x4:
14245     case WebAssembly::BI__builtin_wasm_extract_lane_f64x2:
14246       return Extract;
14247     default:
14248       llvm_unreachable("unexpected builtin ID");
14249     }
14250   }
14251   case WebAssembly::BI__builtin_wasm_replace_lane_i8x16:
14252   case WebAssembly::BI__builtin_wasm_replace_lane_i16x8:
14253   case WebAssembly::BI__builtin_wasm_replace_lane_i32x4:
14254   case WebAssembly::BI__builtin_wasm_replace_lane_i64x2:
14255   case WebAssembly::BI__builtin_wasm_replace_lane_f32x4:
14256   case WebAssembly::BI__builtin_wasm_replace_lane_f64x2: {
14257     llvm::APSInt LaneConst;
14258     if (!E->getArg(1)->isIntegerConstantExpr(LaneConst, getContext()))
14259       llvm_unreachable("Constant arg isn't actually constant?");
14260     Value *Vec = EmitScalarExpr(E->getArg(0));
14261     Value *Lane = llvm::ConstantInt::get(getLLVMContext(), LaneConst);
14262     Value *Val = EmitScalarExpr(E->getArg(2));
14263     switch (BuiltinID) {
14264     case WebAssembly::BI__builtin_wasm_replace_lane_i8x16:
14265     case WebAssembly::BI__builtin_wasm_replace_lane_i16x8: {
14266       llvm::Type *ElemType = ConvertType(E->getType())->getVectorElementType();
14267       Value *Trunc = Builder.CreateTrunc(Val, ElemType);
14268       return Builder.CreateInsertElement(Vec, Trunc, Lane);
14269     }
14270     case WebAssembly::BI__builtin_wasm_replace_lane_i32x4:
14271     case WebAssembly::BI__builtin_wasm_replace_lane_i64x2:
14272     case WebAssembly::BI__builtin_wasm_replace_lane_f32x4:
14273     case WebAssembly::BI__builtin_wasm_replace_lane_f64x2:
14274       return Builder.CreateInsertElement(Vec, Val, Lane);
14275     default:
14276       llvm_unreachable("unexpected builtin ID");
14277     }
14278   }
14279   case WebAssembly::BI__builtin_wasm_add_saturate_s_i8x16:
14280   case WebAssembly::BI__builtin_wasm_add_saturate_u_i8x16:
14281   case WebAssembly::BI__builtin_wasm_add_saturate_s_i16x8:
14282   case WebAssembly::BI__builtin_wasm_add_saturate_u_i16x8:
14283   case WebAssembly::BI__builtin_wasm_sub_saturate_s_i8x16:
14284   case WebAssembly::BI__builtin_wasm_sub_saturate_u_i8x16:
14285   case WebAssembly::BI__builtin_wasm_sub_saturate_s_i16x8:
14286   case WebAssembly::BI__builtin_wasm_sub_saturate_u_i16x8: {
14287     unsigned IntNo;
14288     switch (BuiltinID) {
14289     case WebAssembly::BI__builtin_wasm_add_saturate_s_i8x16:
14290     case WebAssembly::BI__builtin_wasm_add_saturate_s_i16x8:
14291       IntNo = Intrinsic::sadd_sat;
14292       break;
14293     case WebAssembly::BI__builtin_wasm_add_saturate_u_i8x16:
14294     case WebAssembly::BI__builtin_wasm_add_saturate_u_i16x8:
14295       IntNo = Intrinsic::uadd_sat;
14296       break;
14297     case WebAssembly::BI__builtin_wasm_sub_saturate_s_i8x16:
14298     case WebAssembly::BI__builtin_wasm_sub_saturate_s_i16x8:
14299       IntNo = Intrinsic::wasm_sub_saturate_signed;
14300       break;
14301     case WebAssembly::BI__builtin_wasm_sub_saturate_u_i8x16:
14302     case WebAssembly::BI__builtin_wasm_sub_saturate_u_i16x8:
14303       IntNo = Intrinsic::wasm_sub_saturate_unsigned;
14304       break;
14305     default:
14306       llvm_unreachable("unexpected builtin ID");
14307     }
14308     Value *LHS = EmitScalarExpr(E->getArg(0));
14309     Value *RHS = EmitScalarExpr(E->getArg(1));
14310     Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType()));
14311     return Builder.CreateCall(Callee, {LHS, RHS});
14312   }
14313   case WebAssembly::BI__builtin_wasm_bitselect: {
14314     Value *V1 = EmitScalarExpr(E->getArg(0));
14315     Value *V2 = EmitScalarExpr(E->getArg(1));
14316     Value *C = EmitScalarExpr(E->getArg(2));
14317     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_bitselect,
14318                                      ConvertType(E->getType()));
14319     return Builder.CreateCall(Callee, {V1, V2, C});
14320   }
14321   case WebAssembly::BI__builtin_wasm_any_true_i8x16:
14322   case WebAssembly::BI__builtin_wasm_any_true_i16x8:
14323   case WebAssembly::BI__builtin_wasm_any_true_i32x4:
14324   case WebAssembly::BI__builtin_wasm_any_true_i64x2:
14325   case WebAssembly::BI__builtin_wasm_all_true_i8x16:
14326   case WebAssembly::BI__builtin_wasm_all_true_i16x8:
14327   case WebAssembly::BI__builtin_wasm_all_true_i32x4:
14328   case WebAssembly::BI__builtin_wasm_all_true_i64x2: {
14329     unsigned IntNo;
14330     switch (BuiltinID) {
14331     case WebAssembly::BI__builtin_wasm_any_true_i8x16:
14332     case WebAssembly::BI__builtin_wasm_any_true_i16x8:
14333     case WebAssembly::BI__builtin_wasm_any_true_i32x4:
14334     case WebAssembly::BI__builtin_wasm_any_true_i64x2:
14335       IntNo = Intrinsic::wasm_anytrue;
14336       break;
14337     case WebAssembly::BI__builtin_wasm_all_true_i8x16:
14338     case WebAssembly::BI__builtin_wasm_all_true_i16x8:
14339     case WebAssembly::BI__builtin_wasm_all_true_i32x4:
14340     case WebAssembly::BI__builtin_wasm_all_true_i64x2:
14341       IntNo = Intrinsic::wasm_alltrue;
14342       break;
14343     default:
14344       llvm_unreachable("unexpected builtin ID");
14345     }
14346     Value *Vec = EmitScalarExpr(E->getArg(0));
14347     Function *Callee = CGM.getIntrinsic(IntNo, Vec->getType());
14348     return Builder.CreateCall(Callee, {Vec});
14349   }
14350   case WebAssembly::BI__builtin_wasm_abs_f32x4:
14351   case WebAssembly::BI__builtin_wasm_abs_f64x2: {
14352     Value *Vec = EmitScalarExpr(E->getArg(0));
14353     Function *Callee = CGM.getIntrinsic(Intrinsic::fabs, Vec->getType());
14354     return Builder.CreateCall(Callee, {Vec});
14355   }
14356   case WebAssembly::BI__builtin_wasm_sqrt_f32x4:
14357   case WebAssembly::BI__builtin_wasm_sqrt_f64x2: {
14358     Value *Vec = EmitScalarExpr(E->getArg(0));
14359     Function *Callee = CGM.getIntrinsic(Intrinsic::sqrt, Vec->getType());
14360     return Builder.CreateCall(Callee, {Vec});
14361   }
14362   case WebAssembly::BI__builtin_wasm_qfma_f32x4:
14363   case WebAssembly::BI__builtin_wasm_qfms_f32x4:
14364   case WebAssembly::BI__builtin_wasm_qfma_f64x2:
14365   case WebAssembly::BI__builtin_wasm_qfms_f64x2: {
14366     Value *A = EmitScalarExpr(E->getArg(0));
14367     Value *B = EmitScalarExpr(E->getArg(1));
14368     Value *C = EmitScalarExpr(E->getArg(2));
14369     unsigned IntNo;
14370     switch (BuiltinID) {
14371     case WebAssembly::BI__builtin_wasm_qfma_f32x4:
14372     case WebAssembly::BI__builtin_wasm_qfma_f64x2:
14373       IntNo = Intrinsic::wasm_qfma;
14374       break;
14375     case WebAssembly::BI__builtin_wasm_qfms_f32x4:
14376     case WebAssembly::BI__builtin_wasm_qfms_f64x2:
14377       IntNo = Intrinsic::wasm_qfms;
14378       break;
14379     default:
14380       llvm_unreachable("unexpected builtin ID");
14381     }
14382     Function *Callee = CGM.getIntrinsic(IntNo, A->getType());
14383     return Builder.CreateCall(Callee, {A, B, C});
14384   }
14385   case WebAssembly::BI__builtin_wasm_narrow_s_i8x16_i16x8:
14386   case WebAssembly::BI__builtin_wasm_narrow_u_i8x16_i16x8:
14387   case WebAssembly::BI__builtin_wasm_narrow_s_i16x8_i32x4:
14388   case WebAssembly::BI__builtin_wasm_narrow_u_i16x8_i32x4: {
14389     Value *Low = EmitScalarExpr(E->getArg(0));
14390     Value *High = EmitScalarExpr(E->getArg(1));
14391     unsigned IntNo;
14392     switch (BuiltinID) {
14393     case WebAssembly::BI__builtin_wasm_narrow_s_i8x16_i16x8:
14394     case WebAssembly::BI__builtin_wasm_narrow_s_i16x8_i32x4:
14395       IntNo = Intrinsic::wasm_narrow_signed;
14396       break;
14397     case WebAssembly::BI__builtin_wasm_narrow_u_i8x16_i16x8:
14398     case WebAssembly::BI__builtin_wasm_narrow_u_i16x8_i32x4:
14399       IntNo = Intrinsic::wasm_narrow_unsigned;
14400       break;
14401     default:
14402       llvm_unreachable("unexpected builtin ID");
14403     }
14404     Function *Callee =
14405         CGM.getIntrinsic(IntNo, {ConvertType(E->getType()), Low->getType()});
14406     return Builder.CreateCall(Callee, {Low, High});
14407   }
14408   case WebAssembly::BI__builtin_wasm_widen_low_s_i16x8_i8x16:
14409   case WebAssembly::BI__builtin_wasm_widen_high_s_i16x8_i8x16:
14410   case WebAssembly::BI__builtin_wasm_widen_low_u_i16x8_i8x16:
14411   case WebAssembly::BI__builtin_wasm_widen_high_u_i16x8_i8x16:
14412   case WebAssembly::BI__builtin_wasm_widen_low_s_i32x4_i16x8:
14413   case WebAssembly::BI__builtin_wasm_widen_high_s_i32x4_i16x8:
14414   case WebAssembly::BI__builtin_wasm_widen_low_u_i32x4_i16x8:
14415   case WebAssembly::BI__builtin_wasm_widen_high_u_i32x4_i16x8: {
14416     Value *Vec = EmitScalarExpr(E->getArg(0));
14417     unsigned IntNo;
14418     switch (BuiltinID) {
14419     case WebAssembly::BI__builtin_wasm_widen_low_s_i16x8_i8x16:
14420     case WebAssembly::BI__builtin_wasm_widen_low_s_i32x4_i16x8:
14421       IntNo = Intrinsic::wasm_widen_low_signed;
14422       break;
14423     case WebAssembly::BI__builtin_wasm_widen_high_s_i16x8_i8x16:
14424     case WebAssembly::BI__builtin_wasm_widen_high_s_i32x4_i16x8:
14425       IntNo = Intrinsic::wasm_widen_high_signed;
14426       break;
14427     case WebAssembly::BI__builtin_wasm_widen_low_u_i16x8_i8x16:
14428     case WebAssembly::BI__builtin_wasm_widen_low_u_i32x4_i16x8:
14429       IntNo = Intrinsic::wasm_widen_low_unsigned;
14430       break;
14431     case WebAssembly::BI__builtin_wasm_widen_high_u_i16x8_i8x16:
14432     case WebAssembly::BI__builtin_wasm_widen_high_u_i32x4_i16x8:
14433       IntNo = Intrinsic::wasm_widen_high_unsigned;
14434       break;
14435     default:
14436       llvm_unreachable("unexpected builtin ID");
14437     }
14438     Function *Callee =
14439         CGM.getIntrinsic(IntNo, {ConvertType(E->getType()), Vec->getType()});
14440     return Builder.CreateCall(Callee, Vec);
14441   }
14442   default:
14443     return nullptr;
14444   }
14445 }
14446 
14447 Value *CodeGenFunction::EmitHexagonBuiltinExpr(unsigned BuiltinID,
14448                                                const CallExpr *E) {
14449   SmallVector<llvm::Value *, 4> Ops;
14450   Intrinsic::ID ID = Intrinsic::not_intrinsic;
14451 
14452   auto MakeCircLd = [&](unsigned IntID, bool HasImm) {
14453     // The base pointer is passed by address, so it needs to be loaded.
14454     Address BP = EmitPointerWithAlignment(E->getArg(0));
14455     BP = Address(Builder.CreateBitCast(BP.getPointer(), Int8PtrPtrTy),
14456                  BP.getAlignment());
14457     llvm::Value *Base = Builder.CreateLoad(BP);
14458     // Operands are Base, Increment, Modifier, Start.
14459     if (HasImm)
14460       Ops = { Base, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2)),
14461               EmitScalarExpr(E->getArg(3)) };
14462     else
14463       Ops = { Base, EmitScalarExpr(E->getArg(1)),
14464               EmitScalarExpr(E->getArg(2)) };
14465 
14466     llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(IntID), Ops);
14467     llvm::Value *NewBase = Builder.CreateExtractValue(Result, 1);
14468     llvm::Value *LV = Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)),
14469                                             NewBase->getType()->getPointerTo());
14470     Address Dest = EmitPointerWithAlignment(E->getArg(0));
14471     // The intrinsic generates two results. The new value for the base pointer
14472     // needs to be stored.
14473     Builder.CreateAlignedStore(NewBase, LV, Dest.getAlignment());
14474     return Builder.CreateExtractValue(Result, 0);
14475   };
14476 
14477   auto MakeCircSt = [&](unsigned IntID, bool HasImm) {
14478     // The base pointer is passed by address, so it needs to be loaded.
14479     Address BP = EmitPointerWithAlignment(E->getArg(0));
14480     BP = Address(Builder.CreateBitCast(BP.getPointer(), Int8PtrPtrTy),
14481                  BP.getAlignment());
14482     llvm::Value *Base = Builder.CreateLoad(BP);
14483     // Operands are Base, Increment, Modifier, Value, Start.
14484     if (HasImm)
14485       Ops = { Base, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2)),
14486               EmitScalarExpr(E->getArg(3)), EmitScalarExpr(E->getArg(4)) };
14487     else
14488       Ops = { Base, EmitScalarExpr(E->getArg(1)),
14489               EmitScalarExpr(E->getArg(2)), EmitScalarExpr(E->getArg(3)) };
14490 
14491     llvm::Value *NewBase = Builder.CreateCall(CGM.getIntrinsic(IntID), Ops);
14492     llvm::Value *LV = Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)),
14493                                             NewBase->getType()->getPointerTo());
14494     Address Dest = EmitPointerWithAlignment(E->getArg(0));
14495     // The intrinsic generates one result, which is the new value for the base
14496     // pointer. It needs to be stored.
14497     return Builder.CreateAlignedStore(NewBase, LV, Dest.getAlignment());
14498   };
14499 
14500   // Handle the conversion of bit-reverse load intrinsics to bit code.
14501   // The intrinsic call after this function only reads from memory and the
14502   // write to memory is dealt by the store instruction.
14503   auto MakeBrevLd = [&](unsigned IntID, llvm::Type *DestTy) {
14504     // The intrinsic generates one result, which is the new value for the base
14505     // pointer. It needs to be returned. The result of the load instruction is
14506     // passed to intrinsic by address, so the value needs to be stored.
14507     llvm::Value *BaseAddress =
14508         Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int8PtrTy);
14509 
14510     // Expressions like &(*pt++) will be incremented per evaluation.
14511     // EmitPointerWithAlignment and EmitScalarExpr evaluates the expression
14512     // per call.
14513     Address DestAddr = EmitPointerWithAlignment(E->getArg(1));
14514     DestAddr = Address(Builder.CreateBitCast(DestAddr.getPointer(), Int8PtrTy),
14515                        DestAddr.getAlignment());
14516     llvm::Value *DestAddress = DestAddr.getPointer();
14517 
14518     // Operands are Base, Dest, Modifier.
14519     // The intrinsic format in LLVM IR is defined as
14520     // { ValueType, i8* } (i8*, i32).
14521     Ops = {BaseAddress, EmitScalarExpr(E->getArg(2))};
14522 
14523     llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(IntID), Ops);
14524     // The value needs to be stored as the variable is passed by reference.
14525     llvm::Value *DestVal = Builder.CreateExtractValue(Result, 0);
14526 
14527     // The store needs to be truncated to fit the destination type.
14528     // While i32 and i64 are natively supported on Hexagon, i8 and i16 needs
14529     // to be handled with stores of respective destination type.
14530     DestVal = Builder.CreateTrunc(DestVal, DestTy);
14531 
14532     llvm::Value *DestForStore =
14533         Builder.CreateBitCast(DestAddress, DestVal->getType()->getPointerTo());
14534     Builder.CreateAlignedStore(DestVal, DestForStore, DestAddr.getAlignment());
14535     // The updated value of the base pointer is returned.
14536     return Builder.CreateExtractValue(Result, 1);
14537   };
14538 
14539   switch (BuiltinID) {
14540   case Hexagon::BI__builtin_HEXAGON_V6_vaddcarry:
14541   case Hexagon::BI__builtin_HEXAGON_V6_vaddcarry_128B: {
14542     Address Dest = EmitPointerWithAlignment(E->getArg(2));
14543     unsigned Size;
14544     if (BuiltinID == Hexagon::BI__builtin_HEXAGON_V6_vaddcarry) {
14545       Size = 512;
14546       ID = Intrinsic::hexagon_V6_vaddcarry;
14547     } else {
14548       Size = 1024;
14549       ID = Intrinsic::hexagon_V6_vaddcarry_128B;
14550     }
14551     Dest = Builder.CreateBitCast(Dest,
14552         llvm::VectorType::get(Builder.getInt1Ty(), Size)->getPointerTo(0));
14553     LoadInst *QLd = Builder.CreateLoad(Dest);
14554     Ops = { EmitScalarExpr(E->getArg(0)), EmitScalarExpr(E->getArg(1)), QLd };
14555     llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
14556     llvm::Value *Vprd = Builder.CreateExtractValue(Result, 1);
14557     llvm::Value *Base = Builder.CreateBitCast(EmitScalarExpr(E->getArg(2)),
14558                                               Vprd->getType()->getPointerTo(0));
14559     Builder.CreateAlignedStore(Vprd, Base, Dest.getAlignment());
14560     return Builder.CreateExtractValue(Result, 0);
14561   }
14562   case Hexagon::BI__builtin_HEXAGON_V6_vsubcarry:
14563   case Hexagon::BI__builtin_HEXAGON_V6_vsubcarry_128B: {
14564     Address Dest = EmitPointerWithAlignment(E->getArg(2));
14565     unsigned Size;
14566     if (BuiltinID == Hexagon::BI__builtin_HEXAGON_V6_vsubcarry) {
14567       Size = 512;
14568       ID = Intrinsic::hexagon_V6_vsubcarry;
14569     } else {
14570       Size = 1024;
14571       ID = Intrinsic::hexagon_V6_vsubcarry_128B;
14572     }
14573     Dest = Builder.CreateBitCast(Dest,
14574         llvm::VectorType::get(Builder.getInt1Ty(), Size)->getPointerTo(0));
14575     LoadInst *QLd = Builder.CreateLoad(Dest);
14576     Ops = { EmitScalarExpr(E->getArg(0)), EmitScalarExpr(E->getArg(1)), QLd };
14577     llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
14578     llvm::Value *Vprd = Builder.CreateExtractValue(Result, 1);
14579     llvm::Value *Base = Builder.CreateBitCast(EmitScalarExpr(E->getArg(2)),
14580                                               Vprd->getType()->getPointerTo(0));
14581     Builder.CreateAlignedStore(Vprd, Base, Dest.getAlignment());
14582     return Builder.CreateExtractValue(Result, 0);
14583   }
14584   case Hexagon::BI__builtin_HEXAGON_L2_loadrub_pci:
14585     return MakeCircLd(Intrinsic::hexagon_L2_loadrub_pci, /*HasImm*/true);
14586   case Hexagon::BI__builtin_HEXAGON_L2_loadrb_pci:
14587     return MakeCircLd(Intrinsic::hexagon_L2_loadrb_pci,  /*HasImm*/true);
14588   case Hexagon::BI__builtin_HEXAGON_L2_loadruh_pci:
14589     return MakeCircLd(Intrinsic::hexagon_L2_loadruh_pci, /*HasImm*/true);
14590   case Hexagon::BI__builtin_HEXAGON_L2_loadrh_pci:
14591     return MakeCircLd(Intrinsic::hexagon_L2_loadrh_pci,  /*HasImm*/true);
14592   case Hexagon::BI__builtin_HEXAGON_L2_loadri_pci:
14593     return MakeCircLd(Intrinsic::hexagon_L2_loadri_pci,  /*HasImm*/true);
14594   case Hexagon::BI__builtin_HEXAGON_L2_loadrd_pci:
14595     return MakeCircLd(Intrinsic::hexagon_L2_loadrd_pci,  /*HasImm*/true);
14596   case Hexagon::BI__builtin_HEXAGON_L2_loadrub_pcr:
14597     return MakeCircLd(Intrinsic::hexagon_L2_loadrub_pcr, /*HasImm*/false);
14598   case Hexagon::BI__builtin_HEXAGON_L2_loadrb_pcr:
14599     return MakeCircLd(Intrinsic::hexagon_L2_loadrb_pcr,  /*HasImm*/false);
14600   case Hexagon::BI__builtin_HEXAGON_L2_loadruh_pcr:
14601     return MakeCircLd(Intrinsic::hexagon_L2_loadruh_pcr, /*HasImm*/false);
14602   case Hexagon::BI__builtin_HEXAGON_L2_loadrh_pcr:
14603     return MakeCircLd(Intrinsic::hexagon_L2_loadrh_pcr,  /*HasImm*/false);
14604   case Hexagon::BI__builtin_HEXAGON_L2_loadri_pcr:
14605     return MakeCircLd(Intrinsic::hexagon_L2_loadri_pcr,  /*HasImm*/false);
14606   case Hexagon::BI__builtin_HEXAGON_L2_loadrd_pcr:
14607     return MakeCircLd(Intrinsic::hexagon_L2_loadrd_pcr,  /*HasImm*/false);
14608   case Hexagon::BI__builtin_HEXAGON_S2_storerb_pci:
14609     return MakeCircSt(Intrinsic::hexagon_S2_storerb_pci, /*HasImm*/true);
14610   case Hexagon::BI__builtin_HEXAGON_S2_storerh_pci:
14611     return MakeCircSt(Intrinsic::hexagon_S2_storerh_pci, /*HasImm*/true);
14612   case Hexagon::BI__builtin_HEXAGON_S2_storerf_pci:
14613     return MakeCircSt(Intrinsic::hexagon_S2_storerf_pci, /*HasImm*/true);
14614   case Hexagon::BI__builtin_HEXAGON_S2_storeri_pci:
14615     return MakeCircSt(Intrinsic::hexagon_S2_storeri_pci, /*HasImm*/true);
14616   case Hexagon::BI__builtin_HEXAGON_S2_storerd_pci:
14617     return MakeCircSt(Intrinsic::hexagon_S2_storerd_pci, /*HasImm*/true);
14618   case Hexagon::BI__builtin_HEXAGON_S2_storerb_pcr:
14619     return MakeCircSt(Intrinsic::hexagon_S2_storerb_pcr, /*HasImm*/false);
14620   case Hexagon::BI__builtin_HEXAGON_S2_storerh_pcr:
14621     return MakeCircSt(Intrinsic::hexagon_S2_storerh_pcr, /*HasImm*/false);
14622   case Hexagon::BI__builtin_HEXAGON_S2_storerf_pcr:
14623     return MakeCircSt(Intrinsic::hexagon_S2_storerf_pcr, /*HasImm*/false);
14624   case Hexagon::BI__builtin_HEXAGON_S2_storeri_pcr:
14625     return MakeCircSt(Intrinsic::hexagon_S2_storeri_pcr, /*HasImm*/false);
14626   case Hexagon::BI__builtin_HEXAGON_S2_storerd_pcr:
14627     return MakeCircSt(Intrinsic::hexagon_S2_storerd_pcr, /*HasImm*/false);
14628   case Hexagon::BI__builtin_brev_ldub:
14629     return MakeBrevLd(Intrinsic::hexagon_L2_loadrub_pbr, Int8Ty);
14630   case Hexagon::BI__builtin_brev_ldb:
14631     return MakeBrevLd(Intrinsic::hexagon_L2_loadrb_pbr, Int8Ty);
14632   case Hexagon::BI__builtin_brev_lduh:
14633     return MakeBrevLd(Intrinsic::hexagon_L2_loadruh_pbr, Int16Ty);
14634   case Hexagon::BI__builtin_brev_ldh:
14635     return MakeBrevLd(Intrinsic::hexagon_L2_loadrh_pbr, Int16Ty);
14636   case Hexagon::BI__builtin_brev_ldw:
14637     return MakeBrevLd(Intrinsic::hexagon_L2_loadri_pbr, Int32Ty);
14638   case Hexagon::BI__builtin_brev_ldd:
14639     return MakeBrevLd(Intrinsic::hexagon_L2_loadrd_pbr, Int64Ty);
14640   default:
14641     break;
14642   } // switch
14643 
14644   return nullptr;
14645 }
14646