1 //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Builtin calls as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCXXABI.h" 14 #include "CGObjCRuntime.h" 15 #include "CGOpenCLRuntime.h" 16 #include "CGRecordLayout.h" 17 #include "CodeGenFunction.h" 18 #include "CodeGenModule.h" 19 #include "ConstantEmitter.h" 20 #include "PatternInit.h" 21 #include "TargetInfo.h" 22 #include "clang/AST/ASTContext.h" 23 #include "clang/AST/Decl.h" 24 #include "clang/AST/OSLog.h" 25 #include "clang/Basic/TargetBuiltins.h" 26 #include "clang/Basic/TargetInfo.h" 27 #include "clang/CodeGen/CGFunctionInfo.h" 28 #include "llvm/ADT/SmallPtrSet.h" 29 #include "llvm/ADT/StringExtras.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/InlineAsm.h" 32 #include "llvm/IR/Intrinsics.h" 33 #include "llvm/IR/MDBuilder.h" 34 #include "llvm/Support/ConvertUTF.h" 35 #include "llvm/Support/ScopedPrinter.h" 36 #include "llvm/Support/TargetParser.h" 37 #include <sstream> 38 39 using namespace clang; 40 using namespace CodeGen; 41 using namespace llvm; 42 43 static 44 int64_t clamp(int64_t Value, int64_t Low, int64_t High) { 45 return std::min(High, std::max(Low, Value)); 46 } 47 48 static void initializeAlloca(CodeGenFunction &CGF, AllocaInst *AI, Value *Size, unsigned AlignmentInBytes) { 49 ConstantInt *Byte; 50 switch (CGF.getLangOpts().getTrivialAutoVarInit()) { 51 case LangOptions::TrivialAutoVarInitKind::Uninitialized: 52 // Nothing to initialize. 53 return; 54 case LangOptions::TrivialAutoVarInitKind::Zero: 55 Byte = CGF.Builder.getInt8(0x00); 56 break; 57 case LangOptions::TrivialAutoVarInitKind::Pattern: { 58 llvm::Type *Int8 = llvm::IntegerType::getInt8Ty(CGF.CGM.getLLVMContext()); 59 Byte = llvm::dyn_cast<llvm::ConstantInt>( 60 initializationPatternFor(CGF.CGM, Int8)); 61 break; 62 } 63 } 64 CGF.Builder.CreateMemSet(AI, Byte, Size, AlignmentInBytes); 65 } 66 67 /// getBuiltinLibFunction - Given a builtin id for a function like 68 /// "__builtin_fabsf", return a Function* for "fabsf". 69 llvm::Constant *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, 70 unsigned BuiltinID) { 71 assert(Context.BuiltinInfo.isLibFunction(BuiltinID)); 72 73 // Get the name, skip over the __builtin_ prefix (if necessary). 74 StringRef Name; 75 GlobalDecl D(FD); 76 77 // If the builtin has been declared explicitly with an assembler label, 78 // use the mangled name. This differs from the plain label on platforms 79 // that prefix labels. 80 if (FD->hasAttr<AsmLabelAttr>()) 81 Name = getMangledName(D); 82 else 83 Name = Context.BuiltinInfo.getName(BuiltinID) + 10; 84 85 llvm::FunctionType *Ty = 86 cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType())); 87 88 return GetOrCreateLLVMFunction(Name, Ty, D, /*ForVTable=*/false); 89 } 90 91 /// Emit the conversions required to turn the given value into an 92 /// integer of the given size. 93 static Value *EmitToInt(CodeGenFunction &CGF, llvm::Value *V, 94 QualType T, llvm::IntegerType *IntType) { 95 V = CGF.EmitToMemory(V, T); 96 97 if (V->getType()->isPointerTy()) 98 return CGF.Builder.CreatePtrToInt(V, IntType); 99 100 assert(V->getType() == IntType); 101 return V; 102 } 103 104 static Value *EmitFromInt(CodeGenFunction &CGF, llvm::Value *V, 105 QualType T, llvm::Type *ResultType) { 106 V = CGF.EmitFromMemory(V, T); 107 108 if (ResultType->isPointerTy()) 109 return CGF.Builder.CreateIntToPtr(V, ResultType); 110 111 assert(V->getType() == ResultType); 112 return V; 113 } 114 115 /// Utility to insert an atomic instruction based on Intrinsic::ID 116 /// and the expression node. 117 static Value *MakeBinaryAtomicValue( 118 CodeGenFunction &CGF, llvm::AtomicRMWInst::BinOp Kind, const CallExpr *E, 119 AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) { 120 QualType T = E->getType(); 121 assert(E->getArg(0)->getType()->isPointerType()); 122 assert(CGF.getContext().hasSameUnqualifiedType(T, 123 E->getArg(0)->getType()->getPointeeType())); 124 assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType())); 125 126 llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0)); 127 unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace(); 128 129 llvm::IntegerType *IntType = 130 llvm::IntegerType::get(CGF.getLLVMContext(), 131 CGF.getContext().getTypeSize(T)); 132 llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace); 133 134 llvm::Value *Args[2]; 135 Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType); 136 Args[1] = CGF.EmitScalarExpr(E->getArg(1)); 137 llvm::Type *ValueType = Args[1]->getType(); 138 Args[1] = EmitToInt(CGF, Args[1], T, IntType); 139 140 llvm::Value *Result = CGF.Builder.CreateAtomicRMW( 141 Kind, Args[0], Args[1], Ordering); 142 return EmitFromInt(CGF, Result, T, ValueType); 143 } 144 145 static Value *EmitNontemporalStore(CodeGenFunction &CGF, const CallExpr *E) { 146 Value *Val = CGF.EmitScalarExpr(E->getArg(0)); 147 Value *Address = CGF.EmitScalarExpr(E->getArg(1)); 148 149 // Convert the type of the pointer to a pointer to the stored type. 150 Val = CGF.EmitToMemory(Val, E->getArg(0)->getType()); 151 Value *BC = CGF.Builder.CreateBitCast( 152 Address, llvm::PointerType::getUnqual(Val->getType()), "cast"); 153 LValue LV = CGF.MakeNaturalAlignAddrLValue(BC, E->getArg(0)->getType()); 154 LV.setNontemporal(true); 155 CGF.EmitStoreOfScalar(Val, LV, false); 156 return nullptr; 157 } 158 159 static Value *EmitNontemporalLoad(CodeGenFunction &CGF, const CallExpr *E) { 160 Value *Address = CGF.EmitScalarExpr(E->getArg(0)); 161 162 LValue LV = CGF.MakeNaturalAlignAddrLValue(Address, E->getType()); 163 LV.setNontemporal(true); 164 return CGF.EmitLoadOfScalar(LV, E->getExprLoc()); 165 } 166 167 static RValue EmitBinaryAtomic(CodeGenFunction &CGF, 168 llvm::AtomicRMWInst::BinOp Kind, 169 const CallExpr *E) { 170 return RValue::get(MakeBinaryAtomicValue(CGF, Kind, E)); 171 } 172 173 /// Utility to insert an atomic instruction based Intrinsic::ID and 174 /// the expression node, where the return value is the result of the 175 /// operation. 176 static RValue EmitBinaryAtomicPost(CodeGenFunction &CGF, 177 llvm::AtomicRMWInst::BinOp Kind, 178 const CallExpr *E, 179 Instruction::BinaryOps Op, 180 bool Invert = false) { 181 QualType T = E->getType(); 182 assert(E->getArg(0)->getType()->isPointerType()); 183 assert(CGF.getContext().hasSameUnqualifiedType(T, 184 E->getArg(0)->getType()->getPointeeType())); 185 assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType())); 186 187 llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0)); 188 unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace(); 189 190 llvm::IntegerType *IntType = 191 llvm::IntegerType::get(CGF.getLLVMContext(), 192 CGF.getContext().getTypeSize(T)); 193 llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace); 194 195 llvm::Value *Args[2]; 196 Args[1] = CGF.EmitScalarExpr(E->getArg(1)); 197 llvm::Type *ValueType = Args[1]->getType(); 198 Args[1] = EmitToInt(CGF, Args[1], T, IntType); 199 Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType); 200 201 llvm::Value *Result = CGF.Builder.CreateAtomicRMW( 202 Kind, Args[0], Args[1], llvm::AtomicOrdering::SequentiallyConsistent); 203 Result = CGF.Builder.CreateBinOp(Op, Result, Args[1]); 204 if (Invert) 205 Result = CGF.Builder.CreateBinOp(llvm::Instruction::Xor, Result, 206 llvm::ConstantInt::get(IntType, -1)); 207 Result = EmitFromInt(CGF, Result, T, ValueType); 208 return RValue::get(Result); 209 } 210 211 /// Utility to insert an atomic cmpxchg instruction. 212 /// 213 /// @param CGF The current codegen function. 214 /// @param E Builtin call expression to convert to cmpxchg. 215 /// arg0 - address to operate on 216 /// arg1 - value to compare with 217 /// arg2 - new value 218 /// @param ReturnBool Specifies whether to return success flag of 219 /// cmpxchg result or the old value. 220 /// 221 /// @returns result of cmpxchg, according to ReturnBool 222 /// 223 /// Note: In order to lower Microsoft's _InterlockedCompareExchange* intrinsics 224 /// invoke the function EmitAtomicCmpXchgForMSIntrin. 225 static Value *MakeAtomicCmpXchgValue(CodeGenFunction &CGF, const CallExpr *E, 226 bool ReturnBool) { 227 QualType T = ReturnBool ? E->getArg(1)->getType() : E->getType(); 228 llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0)); 229 unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace(); 230 231 llvm::IntegerType *IntType = llvm::IntegerType::get( 232 CGF.getLLVMContext(), CGF.getContext().getTypeSize(T)); 233 llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace); 234 235 Value *Args[3]; 236 Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType); 237 Args[1] = CGF.EmitScalarExpr(E->getArg(1)); 238 llvm::Type *ValueType = Args[1]->getType(); 239 Args[1] = EmitToInt(CGF, Args[1], T, IntType); 240 Args[2] = EmitToInt(CGF, CGF.EmitScalarExpr(E->getArg(2)), T, IntType); 241 242 Value *Pair = CGF.Builder.CreateAtomicCmpXchg( 243 Args[0], Args[1], Args[2], llvm::AtomicOrdering::SequentiallyConsistent, 244 llvm::AtomicOrdering::SequentiallyConsistent); 245 if (ReturnBool) 246 // Extract boolean success flag and zext it to int. 247 return CGF.Builder.CreateZExt(CGF.Builder.CreateExtractValue(Pair, 1), 248 CGF.ConvertType(E->getType())); 249 else 250 // Extract old value and emit it using the same type as compare value. 251 return EmitFromInt(CGF, CGF.Builder.CreateExtractValue(Pair, 0), T, 252 ValueType); 253 } 254 255 /// This function should be invoked to emit atomic cmpxchg for Microsoft's 256 /// _InterlockedCompareExchange* intrinsics which have the following signature: 257 /// T _InterlockedCompareExchange(T volatile *Destination, 258 /// T Exchange, 259 /// T Comparand); 260 /// 261 /// Whereas the llvm 'cmpxchg' instruction has the following syntax: 262 /// cmpxchg *Destination, Comparand, Exchange. 263 /// So we need to swap Comparand and Exchange when invoking 264 /// CreateAtomicCmpXchg. That is the reason we could not use the above utility 265 /// function MakeAtomicCmpXchgValue since it expects the arguments to be 266 /// already swapped. 267 268 static 269 Value *EmitAtomicCmpXchgForMSIntrin(CodeGenFunction &CGF, const CallExpr *E, 270 AtomicOrdering SuccessOrdering = AtomicOrdering::SequentiallyConsistent) { 271 assert(E->getArg(0)->getType()->isPointerType()); 272 assert(CGF.getContext().hasSameUnqualifiedType( 273 E->getType(), E->getArg(0)->getType()->getPointeeType())); 274 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), 275 E->getArg(1)->getType())); 276 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), 277 E->getArg(2)->getType())); 278 279 auto *Destination = CGF.EmitScalarExpr(E->getArg(0)); 280 auto *Comparand = CGF.EmitScalarExpr(E->getArg(2)); 281 auto *Exchange = CGF.EmitScalarExpr(E->getArg(1)); 282 283 // For Release ordering, the failure ordering should be Monotonic. 284 auto FailureOrdering = SuccessOrdering == AtomicOrdering::Release ? 285 AtomicOrdering::Monotonic : 286 SuccessOrdering; 287 288 auto *Result = CGF.Builder.CreateAtomicCmpXchg( 289 Destination, Comparand, Exchange, 290 SuccessOrdering, FailureOrdering); 291 Result->setVolatile(true); 292 return CGF.Builder.CreateExtractValue(Result, 0); 293 } 294 295 static Value *EmitAtomicIncrementValue(CodeGenFunction &CGF, const CallExpr *E, 296 AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) { 297 assert(E->getArg(0)->getType()->isPointerType()); 298 299 auto *IntTy = CGF.ConvertType(E->getType()); 300 auto *Result = CGF.Builder.CreateAtomicRMW( 301 AtomicRMWInst::Add, 302 CGF.EmitScalarExpr(E->getArg(0)), 303 ConstantInt::get(IntTy, 1), 304 Ordering); 305 return CGF.Builder.CreateAdd(Result, ConstantInt::get(IntTy, 1)); 306 } 307 308 static Value *EmitAtomicDecrementValue(CodeGenFunction &CGF, const CallExpr *E, 309 AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) { 310 assert(E->getArg(0)->getType()->isPointerType()); 311 312 auto *IntTy = CGF.ConvertType(E->getType()); 313 auto *Result = CGF.Builder.CreateAtomicRMW( 314 AtomicRMWInst::Sub, 315 CGF.EmitScalarExpr(E->getArg(0)), 316 ConstantInt::get(IntTy, 1), 317 Ordering); 318 return CGF.Builder.CreateSub(Result, ConstantInt::get(IntTy, 1)); 319 } 320 321 // Build a plain volatile load. 322 static Value *EmitISOVolatileLoad(CodeGenFunction &CGF, const CallExpr *E) { 323 Value *Ptr = CGF.EmitScalarExpr(E->getArg(0)); 324 QualType ElTy = E->getArg(0)->getType()->getPointeeType(); 325 CharUnits LoadSize = CGF.getContext().getTypeSizeInChars(ElTy); 326 llvm::Type *ITy = 327 llvm::IntegerType::get(CGF.getLLVMContext(), LoadSize.getQuantity() * 8); 328 Ptr = CGF.Builder.CreateBitCast(Ptr, ITy->getPointerTo()); 329 llvm::LoadInst *Load = CGF.Builder.CreateAlignedLoad(Ptr, LoadSize); 330 Load->setVolatile(true); 331 return Load; 332 } 333 334 // Build a plain volatile store. 335 static Value *EmitISOVolatileStore(CodeGenFunction &CGF, const CallExpr *E) { 336 Value *Ptr = CGF.EmitScalarExpr(E->getArg(0)); 337 Value *Value = CGF.EmitScalarExpr(E->getArg(1)); 338 QualType ElTy = E->getArg(0)->getType()->getPointeeType(); 339 CharUnits StoreSize = CGF.getContext().getTypeSizeInChars(ElTy); 340 llvm::Type *ITy = 341 llvm::IntegerType::get(CGF.getLLVMContext(), StoreSize.getQuantity() * 8); 342 Ptr = CGF.Builder.CreateBitCast(Ptr, ITy->getPointerTo()); 343 llvm::StoreInst *Store = 344 CGF.Builder.CreateAlignedStore(Value, Ptr, StoreSize); 345 Store->setVolatile(true); 346 return Store; 347 } 348 349 // Emit a simple mangled intrinsic that has 1 argument and a return type 350 // matching the argument type. 351 static Value *emitUnaryBuiltin(CodeGenFunction &CGF, 352 const CallExpr *E, 353 unsigned IntrinsicID) { 354 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0)); 355 356 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType()); 357 return CGF.Builder.CreateCall(F, Src0); 358 } 359 360 // Emit an intrinsic that has 2 operands of the same type as its result. 361 static Value *emitBinaryBuiltin(CodeGenFunction &CGF, 362 const CallExpr *E, 363 unsigned IntrinsicID) { 364 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0)); 365 llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1)); 366 367 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType()); 368 return CGF.Builder.CreateCall(F, { Src0, Src1 }); 369 } 370 371 // Emit an intrinsic that has 3 operands of the same type as its result. 372 static Value *emitTernaryBuiltin(CodeGenFunction &CGF, 373 const CallExpr *E, 374 unsigned IntrinsicID) { 375 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0)); 376 llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1)); 377 llvm::Value *Src2 = CGF.EmitScalarExpr(E->getArg(2)); 378 379 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType()); 380 return CGF.Builder.CreateCall(F, { Src0, Src1, Src2 }); 381 } 382 383 // Emit an intrinsic that has 1 float or double operand, and 1 integer. 384 static Value *emitFPIntBuiltin(CodeGenFunction &CGF, 385 const CallExpr *E, 386 unsigned IntrinsicID) { 387 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0)); 388 llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1)); 389 390 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType()); 391 return CGF.Builder.CreateCall(F, {Src0, Src1}); 392 } 393 394 // Emit an intrinsic that has overloaded integer result and fp operand. 395 static Value *emitFPToIntRoundBuiltin(CodeGenFunction &CGF, 396 const CallExpr *E, 397 unsigned IntrinsicID) { 398 llvm::Type *ResultType = CGF.ConvertType(E->getType()); 399 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0)); 400 401 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, 402 {ResultType, Src0->getType()}); 403 return CGF.Builder.CreateCall(F, Src0); 404 } 405 406 /// EmitFAbs - Emit a call to @llvm.fabs(). 407 static Value *EmitFAbs(CodeGenFunction &CGF, Value *V) { 408 Function *F = CGF.CGM.getIntrinsic(Intrinsic::fabs, V->getType()); 409 llvm::CallInst *Call = CGF.Builder.CreateCall(F, V); 410 Call->setDoesNotAccessMemory(); 411 return Call; 412 } 413 414 /// Emit the computation of the sign bit for a floating point value. Returns 415 /// the i1 sign bit value. 416 static Value *EmitSignBit(CodeGenFunction &CGF, Value *V) { 417 LLVMContext &C = CGF.CGM.getLLVMContext(); 418 419 llvm::Type *Ty = V->getType(); 420 int Width = Ty->getPrimitiveSizeInBits(); 421 llvm::Type *IntTy = llvm::IntegerType::get(C, Width); 422 V = CGF.Builder.CreateBitCast(V, IntTy); 423 if (Ty->isPPC_FP128Ty()) { 424 // We want the sign bit of the higher-order double. The bitcast we just 425 // did works as if the double-double was stored to memory and then 426 // read as an i128. The "store" will put the higher-order double in the 427 // lower address in both little- and big-Endian modes, but the "load" 428 // will treat those bits as a different part of the i128: the low bits in 429 // little-Endian, the high bits in big-Endian. Therefore, on big-Endian 430 // we need to shift the high bits down to the low before truncating. 431 Width >>= 1; 432 if (CGF.getTarget().isBigEndian()) { 433 Value *ShiftCst = llvm::ConstantInt::get(IntTy, Width); 434 V = CGF.Builder.CreateLShr(V, ShiftCst); 435 } 436 // We are truncating value in order to extract the higher-order 437 // double, which we will be using to extract the sign from. 438 IntTy = llvm::IntegerType::get(C, Width); 439 V = CGF.Builder.CreateTrunc(V, IntTy); 440 } 441 Value *Zero = llvm::Constant::getNullValue(IntTy); 442 return CGF.Builder.CreateICmpSLT(V, Zero); 443 } 444 445 static RValue emitLibraryCall(CodeGenFunction &CGF, const FunctionDecl *FD, 446 const CallExpr *E, llvm::Constant *calleeValue) { 447 CGCallee callee = CGCallee::forDirect(calleeValue, GlobalDecl(FD)); 448 return CGF.EmitCall(E->getCallee()->getType(), callee, E, ReturnValueSlot()); 449 } 450 451 /// Emit a call to llvm.{sadd,uadd,ssub,usub,smul,umul}.with.overflow.* 452 /// depending on IntrinsicID. 453 /// 454 /// \arg CGF The current codegen function. 455 /// \arg IntrinsicID The ID for the Intrinsic we wish to generate. 456 /// \arg X The first argument to the llvm.*.with.overflow.*. 457 /// \arg Y The second argument to the llvm.*.with.overflow.*. 458 /// \arg Carry The carry returned by the llvm.*.with.overflow.*. 459 /// \returns The result (i.e. sum/product) returned by the intrinsic. 460 static llvm::Value *EmitOverflowIntrinsic(CodeGenFunction &CGF, 461 const llvm::Intrinsic::ID IntrinsicID, 462 llvm::Value *X, llvm::Value *Y, 463 llvm::Value *&Carry) { 464 // Make sure we have integers of the same width. 465 assert(X->getType() == Y->getType() && 466 "Arguments must be the same type. (Did you forget to make sure both " 467 "arguments have the same integer width?)"); 468 469 Function *Callee = CGF.CGM.getIntrinsic(IntrinsicID, X->getType()); 470 llvm::Value *Tmp = CGF.Builder.CreateCall(Callee, {X, Y}); 471 Carry = CGF.Builder.CreateExtractValue(Tmp, 1); 472 return CGF.Builder.CreateExtractValue(Tmp, 0); 473 } 474 475 static Value *emitRangedBuiltin(CodeGenFunction &CGF, 476 unsigned IntrinsicID, 477 int low, int high) { 478 llvm::MDBuilder MDHelper(CGF.getLLVMContext()); 479 llvm::MDNode *RNode = MDHelper.createRange(APInt(32, low), APInt(32, high)); 480 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, {}); 481 llvm::Instruction *Call = CGF.Builder.CreateCall(F); 482 Call->setMetadata(llvm::LLVMContext::MD_range, RNode); 483 return Call; 484 } 485 486 namespace { 487 struct WidthAndSignedness { 488 unsigned Width; 489 bool Signed; 490 }; 491 } 492 493 static WidthAndSignedness 494 getIntegerWidthAndSignedness(const clang::ASTContext &context, 495 const clang::QualType Type) { 496 assert(Type->isIntegerType() && "Given type is not an integer."); 497 unsigned Width = Type->isBooleanType() ? 1 : context.getTypeInfo(Type).Width; 498 bool Signed = Type->isSignedIntegerType(); 499 return {Width, Signed}; 500 } 501 502 // Given one or more integer types, this function produces an integer type that 503 // encompasses them: any value in one of the given types could be expressed in 504 // the encompassing type. 505 static struct WidthAndSignedness 506 EncompassingIntegerType(ArrayRef<struct WidthAndSignedness> Types) { 507 assert(Types.size() > 0 && "Empty list of types."); 508 509 // If any of the given types is signed, we must return a signed type. 510 bool Signed = false; 511 for (const auto &Type : Types) { 512 Signed |= Type.Signed; 513 } 514 515 // The encompassing type must have a width greater than or equal to the width 516 // of the specified types. Additionally, if the encompassing type is signed, 517 // its width must be strictly greater than the width of any unsigned types 518 // given. 519 unsigned Width = 0; 520 for (const auto &Type : Types) { 521 unsigned MinWidth = Type.Width + (Signed && !Type.Signed); 522 if (Width < MinWidth) { 523 Width = MinWidth; 524 } 525 } 526 527 return {Width, Signed}; 528 } 529 530 Value *CodeGenFunction::EmitVAStartEnd(Value *ArgValue, bool IsStart) { 531 llvm::Type *DestType = Int8PtrTy; 532 if (ArgValue->getType() != DestType) 533 ArgValue = 534 Builder.CreateBitCast(ArgValue, DestType, ArgValue->getName().data()); 535 536 Intrinsic::ID inst = IsStart ? Intrinsic::vastart : Intrinsic::vaend; 537 return Builder.CreateCall(CGM.getIntrinsic(inst), ArgValue); 538 } 539 540 /// Checks if using the result of __builtin_object_size(p, @p From) in place of 541 /// __builtin_object_size(p, @p To) is correct 542 static bool areBOSTypesCompatible(int From, int To) { 543 // Note: Our __builtin_object_size implementation currently treats Type=0 and 544 // Type=2 identically. Encoding this implementation detail here may make 545 // improving __builtin_object_size difficult in the future, so it's omitted. 546 return From == To || (From == 0 && To == 1) || (From == 3 && To == 2); 547 } 548 549 static llvm::Value * 550 getDefaultBuiltinObjectSizeResult(unsigned Type, llvm::IntegerType *ResType) { 551 return ConstantInt::get(ResType, (Type & 2) ? 0 : -1, /*isSigned=*/true); 552 } 553 554 llvm::Value * 555 CodeGenFunction::evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type, 556 llvm::IntegerType *ResType, 557 llvm::Value *EmittedE, 558 bool IsDynamic) { 559 uint64_t ObjectSize; 560 if (!E->tryEvaluateObjectSize(ObjectSize, getContext(), Type)) 561 return emitBuiltinObjectSize(E, Type, ResType, EmittedE, IsDynamic); 562 return ConstantInt::get(ResType, ObjectSize, /*isSigned=*/true); 563 } 564 565 /// Returns a Value corresponding to the size of the given expression. 566 /// This Value may be either of the following: 567 /// - A llvm::Argument (if E is a param with the pass_object_size attribute on 568 /// it) 569 /// - A call to the @llvm.objectsize intrinsic 570 /// 571 /// EmittedE is the result of emitting `E` as a scalar expr. If it's non-null 572 /// and we wouldn't otherwise try to reference a pass_object_size parameter, 573 /// we'll call @llvm.objectsize on EmittedE, rather than emitting E. 574 llvm::Value * 575 CodeGenFunction::emitBuiltinObjectSize(const Expr *E, unsigned Type, 576 llvm::IntegerType *ResType, 577 llvm::Value *EmittedE, bool IsDynamic) { 578 // We need to reference an argument if the pointer is a parameter with the 579 // pass_object_size attribute. 580 if (auto *D = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) { 581 auto *Param = dyn_cast<ParmVarDecl>(D->getDecl()); 582 auto *PS = D->getDecl()->getAttr<PassObjectSizeAttr>(); 583 if (Param != nullptr && PS != nullptr && 584 areBOSTypesCompatible(PS->getType(), Type)) { 585 auto Iter = SizeArguments.find(Param); 586 assert(Iter != SizeArguments.end()); 587 588 const ImplicitParamDecl *D = Iter->second; 589 auto DIter = LocalDeclMap.find(D); 590 assert(DIter != LocalDeclMap.end()); 591 592 return EmitLoadOfScalar(DIter->second, /*Volatile=*/false, 593 getContext().getSizeType(), E->getBeginLoc()); 594 } 595 } 596 597 // LLVM can't handle Type=3 appropriately, and __builtin_object_size shouldn't 598 // evaluate E for side-effects. In either case, we shouldn't lower to 599 // @llvm.objectsize. 600 if (Type == 3 || (!EmittedE && E->HasSideEffects(getContext()))) 601 return getDefaultBuiltinObjectSizeResult(Type, ResType); 602 603 Value *Ptr = EmittedE ? EmittedE : EmitScalarExpr(E); 604 assert(Ptr->getType()->isPointerTy() && 605 "Non-pointer passed to __builtin_object_size?"); 606 607 Function *F = 608 CGM.getIntrinsic(Intrinsic::objectsize, {ResType, Ptr->getType()}); 609 610 // LLVM only supports 0 and 2, make sure that we pass along that as a boolean. 611 Value *Min = Builder.getInt1((Type & 2) != 0); 612 // For GCC compatibility, __builtin_object_size treat NULL as unknown size. 613 Value *NullIsUnknown = Builder.getTrue(); 614 Value *Dynamic = Builder.getInt1(IsDynamic); 615 return Builder.CreateCall(F, {Ptr, Min, NullIsUnknown, Dynamic}); 616 } 617 618 namespace { 619 /// A struct to generically describe a bit test intrinsic. 620 struct BitTest { 621 enum ActionKind : uint8_t { TestOnly, Complement, Reset, Set }; 622 enum InterlockingKind : uint8_t { 623 Unlocked, 624 Sequential, 625 Acquire, 626 Release, 627 NoFence 628 }; 629 630 ActionKind Action; 631 InterlockingKind Interlocking; 632 bool Is64Bit; 633 634 static BitTest decodeBitTestBuiltin(unsigned BuiltinID); 635 }; 636 } // namespace 637 638 BitTest BitTest::decodeBitTestBuiltin(unsigned BuiltinID) { 639 switch (BuiltinID) { 640 // Main portable variants. 641 case Builtin::BI_bittest: 642 return {TestOnly, Unlocked, false}; 643 case Builtin::BI_bittestandcomplement: 644 return {Complement, Unlocked, false}; 645 case Builtin::BI_bittestandreset: 646 return {Reset, Unlocked, false}; 647 case Builtin::BI_bittestandset: 648 return {Set, Unlocked, false}; 649 case Builtin::BI_interlockedbittestandreset: 650 return {Reset, Sequential, false}; 651 case Builtin::BI_interlockedbittestandset: 652 return {Set, Sequential, false}; 653 654 // X86-specific 64-bit variants. 655 case Builtin::BI_bittest64: 656 return {TestOnly, Unlocked, true}; 657 case Builtin::BI_bittestandcomplement64: 658 return {Complement, Unlocked, true}; 659 case Builtin::BI_bittestandreset64: 660 return {Reset, Unlocked, true}; 661 case Builtin::BI_bittestandset64: 662 return {Set, Unlocked, true}; 663 case Builtin::BI_interlockedbittestandreset64: 664 return {Reset, Sequential, true}; 665 case Builtin::BI_interlockedbittestandset64: 666 return {Set, Sequential, true}; 667 668 // ARM/AArch64-specific ordering variants. 669 case Builtin::BI_interlockedbittestandset_acq: 670 return {Set, Acquire, false}; 671 case Builtin::BI_interlockedbittestandset_rel: 672 return {Set, Release, false}; 673 case Builtin::BI_interlockedbittestandset_nf: 674 return {Set, NoFence, false}; 675 case Builtin::BI_interlockedbittestandreset_acq: 676 return {Reset, Acquire, false}; 677 case Builtin::BI_interlockedbittestandreset_rel: 678 return {Reset, Release, false}; 679 case Builtin::BI_interlockedbittestandreset_nf: 680 return {Reset, NoFence, false}; 681 } 682 llvm_unreachable("expected only bittest intrinsics"); 683 } 684 685 static char bitActionToX86BTCode(BitTest::ActionKind A) { 686 switch (A) { 687 case BitTest::TestOnly: return '\0'; 688 case BitTest::Complement: return 'c'; 689 case BitTest::Reset: return 'r'; 690 case BitTest::Set: return 's'; 691 } 692 llvm_unreachable("invalid action"); 693 } 694 695 static llvm::Value *EmitX86BitTestIntrinsic(CodeGenFunction &CGF, 696 BitTest BT, 697 const CallExpr *E, Value *BitBase, 698 Value *BitPos) { 699 char Action = bitActionToX86BTCode(BT.Action); 700 char SizeSuffix = BT.Is64Bit ? 'q' : 'l'; 701 702 // Build the assembly. 703 SmallString<64> Asm; 704 raw_svector_ostream AsmOS(Asm); 705 if (BT.Interlocking != BitTest::Unlocked) 706 AsmOS << "lock "; 707 AsmOS << "bt"; 708 if (Action) 709 AsmOS << Action; 710 AsmOS << SizeSuffix << " $2, ($1)\n\tsetc ${0:b}"; 711 712 // Build the constraints. FIXME: We should support immediates when possible. 713 std::string Constraints = "=r,r,r,~{cc},~{flags},~{fpsr}"; 714 llvm::IntegerType *IntType = llvm::IntegerType::get( 715 CGF.getLLVMContext(), 716 CGF.getContext().getTypeSize(E->getArg(1)->getType())); 717 llvm::Type *IntPtrType = IntType->getPointerTo(); 718 llvm::FunctionType *FTy = 719 llvm::FunctionType::get(CGF.Int8Ty, {IntPtrType, IntType}, false); 720 721 llvm::InlineAsm *IA = 722 llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true); 723 return CGF.Builder.CreateCall(IA, {BitBase, BitPos}); 724 } 725 726 static llvm::AtomicOrdering 727 getBitTestAtomicOrdering(BitTest::InterlockingKind I) { 728 switch (I) { 729 case BitTest::Unlocked: return llvm::AtomicOrdering::NotAtomic; 730 case BitTest::Sequential: return llvm::AtomicOrdering::SequentiallyConsistent; 731 case BitTest::Acquire: return llvm::AtomicOrdering::Acquire; 732 case BitTest::Release: return llvm::AtomicOrdering::Release; 733 case BitTest::NoFence: return llvm::AtomicOrdering::Monotonic; 734 } 735 llvm_unreachable("invalid interlocking"); 736 } 737 738 /// Emit a _bittest* intrinsic. These intrinsics take a pointer to an array of 739 /// bits and a bit position and read and optionally modify the bit at that 740 /// position. The position index can be arbitrarily large, i.e. it can be larger 741 /// than 31 or 63, so we need an indexed load in the general case. 742 static llvm::Value *EmitBitTestIntrinsic(CodeGenFunction &CGF, 743 unsigned BuiltinID, 744 const CallExpr *E) { 745 Value *BitBase = CGF.EmitScalarExpr(E->getArg(0)); 746 Value *BitPos = CGF.EmitScalarExpr(E->getArg(1)); 747 748 BitTest BT = BitTest::decodeBitTestBuiltin(BuiltinID); 749 750 // X86 has special BT, BTC, BTR, and BTS instructions that handle the array 751 // indexing operation internally. Use them if possible. 752 llvm::Triple::ArchType Arch = CGF.getTarget().getTriple().getArch(); 753 if (Arch == llvm::Triple::x86 || Arch == llvm::Triple::x86_64) 754 return EmitX86BitTestIntrinsic(CGF, BT, E, BitBase, BitPos); 755 756 // Otherwise, use generic code to load one byte and test the bit. Use all but 757 // the bottom three bits as the array index, and the bottom three bits to form 758 // a mask. 759 // Bit = BitBaseI8[BitPos >> 3] & (1 << (BitPos & 0x7)) != 0; 760 Value *ByteIndex = CGF.Builder.CreateAShr( 761 BitPos, llvm::ConstantInt::get(BitPos->getType(), 3), "bittest.byteidx"); 762 Value *BitBaseI8 = CGF.Builder.CreatePointerCast(BitBase, CGF.Int8PtrTy); 763 Address ByteAddr(CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, BitBaseI8, 764 ByteIndex, "bittest.byteaddr"), 765 CharUnits::One()); 766 Value *PosLow = 767 CGF.Builder.CreateAnd(CGF.Builder.CreateTrunc(BitPos, CGF.Int8Ty), 768 llvm::ConstantInt::get(CGF.Int8Ty, 0x7)); 769 770 // The updating instructions will need a mask. 771 Value *Mask = nullptr; 772 if (BT.Action != BitTest::TestOnly) { 773 Mask = CGF.Builder.CreateShl(llvm::ConstantInt::get(CGF.Int8Ty, 1), PosLow, 774 "bittest.mask"); 775 } 776 777 // Check the action and ordering of the interlocked intrinsics. 778 llvm::AtomicOrdering Ordering = getBitTestAtomicOrdering(BT.Interlocking); 779 780 Value *OldByte = nullptr; 781 if (Ordering != llvm::AtomicOrdering::NotAtomic) { 782 // Emit a combined atomicrmw load/store operation for the interlocked 783 // intrinsics. 784 llvm::AtomicRMWInst::BinOp RMWOp = llvm::AtomicRMWInst::Or; 785 if (BT.Action == BitTest::Reset) { 786 Mask = CGF.Builder.CreateNot(Mask); 787 RMWOp = llvm::AtomicRMWInst::And; 788 } 789 OldByte = CGF.Builder.CreateAtomicRMW(RMWOp, ByteAddr.getPointer(), Mask, 790 Ordering); 791 } else { 792 // Emit a plain load for the non-interlocked intrinsics. 793 OldByte = CGF.Builder.CreateLoad(ByteAddr, "bittest.byte"); 794 Value *NewByte = nullptr; 795 switch (BT.Action) { 796 case BitTest::TestOnly: 797 // Don't store anything. 798 break; 799 case BitTest::Complement: 800 NewByte = CGF.Builder.CreateXor(OldByte, Mask); 801 break; 802 case BitTest::Reset: 803 NewByte = CGF.Builder.CreateAnd(OldByte, CGF.Builder.CreateNot(Mask)); 804 break; 805 case BitTest::Set: 806 NewByte = CGF.Builder.CreateOr(OldByte, Mask); 807 break; 808 } 809 if (NewByte) 810 CGF.Builder.CreateStore(NewByte, ByteAddr); 811 } 812 813 // However we loaded the old byte, either by plain load or atomicrmw, shift 814 // the bit into the low position and mask it to 0 or 1. 815 Value *ShiftedByte = CGF.Builder.CreateLShr(OldByte, PosLow, "bittest.shr"); 816 return CGF.Builder.CreateAnd( 817 ShiftedByte, llvm::ConstantInt::get(CGF.Int8Ty, 1), "bittest.res"); 818 } 819 820 namespace { 821 enum class MSVCSetJmpKind { 822 _setjmpex, 823 _setjmp3, 824 _setjmp 825 }; 826 } 827 828 /// MSVC handles setjmp a bit differently on different platforms. On every 829 /// architecture except 32-bit x86, the frame address is passed. On x86, extra 830 /// parameters can be passed as variadic arguments, but we always pass none. 831 static RValue EmitMSVCRTSetJmp(CodeGenFunction &CGF, MSVCSetJmpKind SJKind, 832 const CallExpr *E) { 833 llvm::Value *Arg1 = nullptr; 834 llvm::Type *Arg1Ty = nullptr; 835 StringRef Name; 836 bool IsVarArg = false; 837 if (SJKind == MSVCSetJmpKind::_setjmp3) { 838 Name = "_setjmp3"; 839 Arg1Ty = CGF.Int32Ty; 840 Arg1 = llvm::ConstantInt::get(CGF.IntTy, 0); 841 IsVarArg = true; 842 } else { 843 Name = SJKind == MSVCSetJmpKind::_setjmp ? "_setjmp" : "_setjmpex"; 844 Arg1Ty = CGF.Int8PtrTy; 845 if (CGF.getTarget().getTriple().getArch() == llvm::Triple::aarch64) { 846 Arg1 = CGF.Builder.CreateCall( 847 CGF.CGM.getIntrinsic(Intrinsic::sponentry, CGF.AllocaInt8PtrTy)); 848 } else 849 Arg1 = CGF.Builder.CreateCall( 850 CGF.CGM.getIntrinsic(Intrinsic::frameaddress, CGF.AllocaInt8PtrTy), 851 llvm::ConstantInt::get(CGF.Int32Ty, 0)); 852 } 853 854 // Mark the call site and declaration with ReturnsTwice. 855 llvm::Type *ArgTypes[2] = {CGF.Int8PtrTy, Arg1Ty}; 856 llvm::AttributeList ReturnsTwiceAttr = llvm::AttributeList::get( 857 CGF.getLLVMContext(), llvm::AttributeList::FunctionIndex, 858 llvm::Attribute::ReturnsTwice); 859 llvm::FunctionCallee SetJmpFn = CGF.CGM.CreateRuntimeFunction( 860 llvm::FunctionType::get(CGF.IntTy, ArgTypes, IsVarArg), Name, 861 ReturnsTwiceAttr, /*Local=*/true); 862 863 llvm::Value *Buf = CGF.Builder.CreateBitOrPointerCast( 864 CGF.EmitScalarExpr(E->getArg(0)), CGF.Int8PtrTy); 865 llvm::Value *Args[] = {Buf, Arg1}; 866 llvm::CallBase *CB = CGF.EmitRuntimeCallOrInvoke(SetJmpFn, Args); 867 CB->setAttributes(ReturnsTwiceAttr); 868 return RValue::get(CB); 869 } 870 871 // Many of MSVC builtins are on x64, ARM and AArch64; to avoid repeating code, 872 // we handle them here. 873 enum class CodeGenFunction::MSVCIntrin { 874 _BitScanForward, 875 _BitScanReverse, 876 _InterlockedAnd, 877 _InterlockedDecrement, 878 _InterlockedExchange, 879 _InterlockedExchangeAdd, 880 _InterlockedExchangeSub, 881 _InterlockedIncrement, 882 _InterlockedOr, 883 _InterlockedXor, 884 _InterlockedExchangeAdd_acq, 885 _InterlockedExchangeAdd_rel, 886 _InterlockedExchangeAdd_nf, 887 _InterlockedExchange_acq, 888 _InterlockedExchange_rel, 889 _InterlockedExchange_nf, 890 _InterlockedCompareExchange_acq, 891 _InterlockedCompareExchange_rel, 892 _InterlockedCompareExchange_nf, 893 _InterlockedOr_acq, 894 _InterlockedOr_rel, 895 _InterlockedOr_nf, 896 _InterlockedXor_acq, 897 _InterlockedXor_rel, 898 _InterlockedXor_nf, 899 _InterlockedAnd_acq, 900 _InterlockedAnd_rel, 901 _InterlockedAnd_nf, 902 _InterlockedIncrement_acq, 903 _InterlockedIncrement_rel, 904 _InterlockedIncrement_nf, 905 _InterlockedDecrement_acq, 906 _InterlockedDecrement_rel, 907 _InterlockedDecrement_nf, 908 __fastfail, 909 }; 910 911 Value *CodeGenFunction::EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, 912 const CallExpr *E) { 913 switch (BuiltinID) { 914 case MSVCIntrin::_BitScanForward: 915 case MSVCIntrin::_BitScanReverse: { 916 Value *ArgValue = EmitScalarExpr(E->getArg(1)); 917 918 llvm::Type *ArgType = ArgValue->getType(); 919 llvm::Type *IndexType = 920 EmitScalarExpr(E->getArg(0))->getType()->getPointerElementType(); 921 llvm::Type *ResultType = ConvertType(E->getType()); 922 923 Value *ArgZero = llvm::Constant::getNullValue(ArgType); 924 Value *ResZero = llvm::Constant::getNullValue(ResultType); 925 Value *ResOne = llvm::ConstantInt::get(ResultType, 1); 926 927 BasicBlock *Begin = Builder.GetInsertBlock(); 928 BasicBlock *End = createBasicBlock("bitscan_end", this->CurFn); 929 Builder.SetInsertPoint(End); 930 PHINode *Result = Builder.CreatePHI(ResultType, 2, "bitscan_result"); 931 932 Builder.SetInsertPoint(Begin); 933 Value *IsZero = Builder.CreateICmpEQ(ArgValue, ArgZero); 934 BasicBlock *NotZero = createBasicBlock("bitscan_not_zero", this->CurFn); 935 Builder.CreateCondBr(IsZero, End, NotZero); 936 Result->addIncoming(ResZero, Begin); 937 938 Builder.SetInsertPoint(NotZero); 939 Address IndexAddress = EmitPointerWithAlignment(E->getArg(0)); 940 941 if (BuiltinID == MSVCIntrin::_BitScanForward) { 942 Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType); 943 Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()}); 944 ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false); 945 Builder.CreateStore(ZeroCount, IndexAddress, false); 946 } else { 947 unsigned ArgWidth = cast<llvm::IntegerType>(ArgType)->getBitWidth(); 948 Value *ArgTypeLastIndex = llvm::ConstantInt::get(IndexType, ArgWidth - 1); 949 950 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType); 951 Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()}); 952 ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false); 953 Value *Index = Builder.CreateNSWSub(ArgTypeLastIndex, ZeroCount); 954 Builder.CreateStore(Index, IndexAddress, false); 955 } 956 Builder.CreateBr(End); 957 Result->addIncoming(ResOne, NotZero); 958 959 Builder.SetInsertPoint(End); 960 return Result; 961 } 962 case MSVCIntrin::_InterlockedAnd: 963 return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E); 964 case MSVCIntrin::_InterlockedExchange: 965 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E); 966 case MSVCIntrin::_InterlockedExchangeAdd: 967 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E); 968 case MSVCIntrin::_InterlockedExchangeSub: 969 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Sub, E); 970 case MSVCIntrin::_InterlockedOr: 971 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E); 972 case MSVCIntrin::_InterlockedXor: 973 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E); 974 case MSVCIntrin::_InterlockedExchangeAdd_acq: 975 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E, 976 AtomicOrdering::Acquire); 977 case MSVCIntrin::_InterlockedExchangeAdd_rel: 978 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E, 979 AtomicOrdering::Release); 980 case MSVCIntrin::_InterlockedExchangeAdd_nf: 981 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E, 982 AtomicOrdering::Monotonic); 983 case MSVCIntrin::_InterlockedExchange_acq: 984 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E, 985 AtomicOrdering::Acquire); 986 case MSVCIntrin::_InterlockedExchange_rel: 987 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E, 988 AtomicOrdering::Release); 989 case MSVCIntrin::_InterlockedExchange_nf: 990 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E, 991 AtomicOrdering::Monotonic); 992 case MSVCIntrin::_InterlockedCompareExchange_acq: 993 return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Acquire); 994 case MSVCIntrin::_InterlockedCompareExchange_rel: 995 return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Release); 996 case MSVCIntrin::_InterlockedCompareExchange_nf: 997 return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Monotonic); 998 case MSVCIntrin::_InterlockedOr_acq: 999 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E, 1000 AtomicOrdering::Acquire); 1001 case MSVCIntrin::_InterlockedOr_rel: 1002 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E, 1003 AtomicOrdering::Release); 1004 case MSVCIntrin::_InterlockedOr_nf: 1005 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E, 1006 AtomicOrdering::Monotonic); 1007 case MSVCIntrin::_InterlockedXor_acq: 1008 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E, 1009 AtomicOrdering::Acquire); 1010 case MSVCIntrin::_InterlockedXor_rel: 1011 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E, 1012 AtomicOrdering::Release); 1013 case MSVCIntrin::_InterlockedXor_nf: 1014 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E, 1015 AtomicOrdering::Monotonic); 1016 case MSVCIntrin::_InterlockedAnd_acq: 1017 return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E, 1018 AtomicOrdering::Acquire); 1019 case MSVCIntrin::_InterlockedAnd_rel: 1020 return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E, 1021 AtomicOrdering::Release); 1022 case MSVCIntrin::_InterlockedAnd_nf: 1023 return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E, 1024 AtomicOrdering::Monotonic); 1025 case MSVCIntrin::_InterlockedIncrement_acq: 1026 return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Acquire); 1027 case MSVCIntrin::_InterlockedIncrement_rel: 1028 return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Release); 1029 case MSVCIntrin::_InterlockedIncrement_nf: 1030 return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Monotonic); 1031 case MSVCIntrin::_InterlockedDecrement_acq: 1032 return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Acquire); 1033 case MSVCIntrin::_InterlockedDecrement_rel: 1034 return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Release); 1035 case MSVCIntrin::_InterlockedDecrement_nf: 1036 return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Monotonic); 1037 1038 case MSVCIntrin::_InterlockedDecrement: 1039 return EmitAtomicDecrementValue(*this, E); 1040 case MSVCIntrin::_InterlockedIncrement: 1041 return EmitAtomicIncrementValue(*this, E); 1042 1043 case MSVCIntrin::__fastfail: { 1044 // Request immediate process termination from the kernel. The instruction 1045 // sequences to do this are documented on MSDN: 1046 // https://msdn.microsoft.com/en-us/library/dn774154.aspx 1047 llvm::Triple::ArchType ISA = getTarget().getTriple().getArch(); 1048 StringRef Asm, Constraints; 1049 switch (ISA) { 1050 default: 1051 ErrorUnsupported(E, "__fastfail call for this architecture"); 1052 break; 1053 case llvm::Triple::x86: 1054 case llvm::Triple::x86_64: 1055 Asm = "int $$0x29"; 1056 Constraints = "{cx}"; 1057 break; 1058 case llvm::Triple::thumb: 1059 Asm = "udf #251"; 1060 Constraints = "{r0}"; 1061 break; 1062 case llvm::Triple::aarch64: 1063 Asm = "brk #0xF003"; 1064 Constraints = "{w0}"; 1065 } 1066 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, {Int32Ty}, false); 1067 llvm::InlineAsm *IA = 1068 llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true); 1069 llvm::AttributeList NoReturnAttr = llvm::AttributeList::get( 1070 getLLVMContext(), llvm::AttributeList::FunctionIndex, 1071 llvm::Attribute::NoReturn); 1072 llvm::CallInst *CI = Builder.CreateCall(IA, EmitScalarExpr(E->getArg(0))); 1073 CI->setAttributes(NoReturnAttr); 1074 return CI; 1075 } 1076 } 1077 llvm_unreachable("Incorrect MSVC intrinsic!"); 1078 } 1079 1080 namespace { 1081 // ARC cleanup for __builtin_os_log_format 1082 struct CallObjCArcUse final : EHScopeStack::Cleanup { 1083 CallObjCArcUse(llvm::Value *object) : object(object) {} 1084 llvm::Value *object; 1085 1086 void Emit(CodeGenFunction &CGF, Flags flags) override { 1087 CGF.EmitARCIntrinsicUse(object); 1088 } 1089 }; 1090 } 1091 1092 Value *CodeGenFunction::EmitCheckedArgForBuiltin(const Expr *E, 1093 BuiltinCheckKind Kind) { 1094 assert((Kind == BCK_CLZPassedZero || Kind == BCK_CTZPassedZero) 1095 && "Unsupported builtin check kind"); 1096 1097 Value *ArgValue = EmitScalarExpr(E); 1098 if (!SanOpts.has(SanitizerKind::Builtin) || !getTarget().isCLZForZeroUndef()) 1099 return ArgValue; 1100 1101 SanitizerScope SanScope(this); 1102 Value *Cond = Builder.CreateICmpNE( 1103 ArgValue, llvm::Constant::getNullValue(ArgValue->getType())); 1104 EmitCheck(std::make_pair(Cond, SanitizerKind::Builtin), 1105 SanitizerHandler::InvalidBuiltin, 1106 {EmitCheckSourceLocation(E->getExprLoc()), 1107 llvm::ConstantInt::get(Builder.getInt8Ty(), Kind)}, 1108 None); 1109 return ArgValue; 1110 } 1111 1112 /// Get the argument type for arguments to os_log_helper. 1113 static CanQualType getOSLogArgType(ASTContext &C, int Size) { 1114 QualType UnsignedTy = C.getIntTypeForBitwidth(Size * 8, /*Signed=*/false); 1115 return C.getCanonicalType(UnsignedTy); 1116 } 1117 1118 llvm::Function *CodeGenFunction::generateBuiltinOSLogHelperFunction( 1119 const analyze_os_log::OSLogBufferLayout &Layout, 1120 CharUnits BufferAlignment) { 1121 ASTContext &Ctx = getContext(); 1122 1123 llvm::SmallString<64> Name; 1124 { 1125 raw_svector_ostream OS(Name); 1126 OS << "__os_log_helper"; 1127 OS << "_" << BufferAlignment.getQuantity(); 1128 OS << "_" << int(Layout.getSummaryByte()); 1129 OS << "_" << int(Layout.getNumArgsByte()); 1130 for (const auto &Item : Layout.Items) 1131 OS << "_" << int(Item.getSizeByte()) << "_" 1132 << int(Item.getDescriptorByte()); 1133 } 1134 1135 if (llvm::Function *F = CGM.getModule().getFunction(Name)) 1136 return F; 1137 1138 llvm::SmallVector<QualType, 4> ArgTys; 1139 FunctionArgList Args; 1140 Args.push_back(ImplicitParamDecl::Create( 1141 Ctx, nullptr, SourceLocation(), &Ctx.Idents.get("buffer"), Ctx.VoidPtrTy, 1142 ImplicitParamDecl::Other)); 1143 ArgTys.emplace_back(Ctx.VoidPtrTy); 1144 1145 for (unsigned int I = 0, E = Layout.Items.size(); I < E; ++I) { 1146 char Size = Layout.Items[I].getSizeByte(); 1147 if (!Size) 1148 continue; 1149 1150 QualType ArgTy = getOSLogArgType(Ctx, Size); 1151 Args.push_back(ImplicitParamDecl::Create( 1152 Ctx, nullptr, SourceLocation(), 1153 &Ctx.Idents.get(std::string("arg") + llvm::to_string(I)), ArgTy, 1154 ImplicitParamDecl::Other)); 1155 ArgTys.emplace_back(ArgTy); 1156 } 1157 1158 QualType ReturnTy = Ctx.VoidTy; 1159 QualType FuncionTy = Ctx.getFunctionType(ReturnTy, ArgTys, {}); 1160 1161 // The helper function has linkonce_odr linkage to enable the linker to merge 1162 // identical functions. To ensure the merging always happens, 'noinline' is 1163 // attached to the function when compiling with -Oz. 1164 const CGFunctionInfo &FI = 1165 CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, Args); 1166 llvm::FunctionType *FuncTy = CGM.getTypes().GetFunctionType(FI); 1167 llvm::Function *Fn = llvm::Function::Create( 1168 FuncTy, llvm::GlobalValue::LinkOnceODRLinkage, Name, &CGM.getModule()); 1169 Fn->setVisibility(llvm::GlobalValue::HiddenVisibility); 1170 CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, Fn); 1171 CGM.SetLLVMFunctionAttributesForDefinition(nullptr, Fn); 1172 Fn->setDoesNotThrow(); 1173 1174 // Attach 'noinline' at -Oz. 1175 if (CGM.getCodeGenOpts().OptimizeSize == 2) 1176 Fn->addFnAttr(llvm::Attribute::NoInline); 1177 1178 auto NL = ApplyDebugLocation::CreateEmpty(*this); 1179 IdentifierInfo *II = &Ctx.Idents.get(Name); 1180 FunctionDecl *FD = FunctionDecl::Create( 1181 Ctx, Ctx.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II, 1182 FuncionTy, nullptr, SC_PrivateExtern, false, false); 1183 1184 StartFunction(FD, ReturnTy, Fn, FI, Args); 1185 1186 // Create a scope with an artificial location for the body of this function. 1187 auto AL = ApplyDebugLocation::CreateArtificial(*this); 1188 1189 CharUnits Offset; 1190 Address BufAddr(Builder.CreateLoad(GetAddrOfLocalVar(Args[0]), "buf"), 1191 BufferAlignment); 1192 Builder.CreateStore(Builder.getInt8(Layout.getSummaryByte()), 1193 Builder.CreateConstByteGEP(BufAddr, Offset++, "summary")); 1194 Builder.CreateStore(Builder.getInt8(Layout.getNumArgsByte()), 1195 Builder.CreateConstByteGEP(BufAddr, Offset++, "numArgs")); 1196 1197 unsigned I = 1; 1198 for (const auto &Item : Layout.Items) { 1199 Builder.CreateStore( 1200 Builder.getInt8(Item.getDescriptorByte()), 1201 Builder.CreateConstByteGEP(BufAddr, Offset++, "argDescriptor")); 1202 Builder.CreateStore( 1203 Builder.getInt8(Item.getSizeByte()), 1204 Builder.CreateConstByteGEP(BufAddr, Offset++, "argSize")); 1205 1206 CharUnits Size = Item.size(); 1207 if (!Size.getQuantity()) 1208 continue; 1209 1210 Address Arg = GetAddrOfLocalVar(Args[I]); 1211 Address Addr = Builder.CreateConstByteGEP(BufAddr, Offset, "argData"); 1212 Addr = Builder.CreateBitCast(Addr, Arg.getPointer()->getType(), 1213 "argDataCast"); 1214 Builder.CreateStore(Builder.CreateLoad(Arg), Addr); 1215 Offset += Size; 1216 ++I; 1217 } 1218 1219 FinishFunction(); 1220 1221 return Fn; 1222 } 1223 1224 RValue CodeGenFunction::emitBuiltinOSLogFormat(const CallExpr &E) { 1225 assert(E.getNumArgs() >= 2 && 1226 "__builtin_os_log_format takes at least 2 arguments"); 1227 ASTContext &Ctx = getContext(); 1228 analyze_os_log::OSLogBufferLayout Layout; 1229 analyze_os_log::computeOSLogBufferLayout(Ctx, &E, Layout); 1230 Address BufAddr = EmitPointerWithAlignment(E.getArg(0)); 1231 llvm::SmallVector<llvm::Value *, 4> RetainableOperands; 1232 1233 // Ignore argument 1, the format string. It is not currently used. 1234 CallArgList Args; 1235 Args.add(RValue::get(BufAddr.getPointer()), Ctx.VoidPtrTy); 1236 1237 for (const auto &Item : Layout.Items) { 1238 int Size = Item.getSizeByte(); 1239 if (!Size) 1240 continue; 1241 1242 llvm::Value *ArgVal; 1243 1244 if (Item.getKind() == analyze_os_log::OSLogBufferItem::MaskKind) { 1245 uint64_t Val = 0; 1246 for (unsigned I = 0, E = Item.getMaskType().size(); I < E; ++I) 1247 Val |= ((uint64_t)Item.getMaskType()[I]) << I * 8; 1248 ArgVal = llvm::Constant::getIntegerValue(Int64Ty, llvm::APInt(64, Val)); 1249 } else if (const Expr *TheExpr = Item.getExpr()) { 1250 ArgVal = EmitScalarExpr(TheExpr, /*Ignore*/ false); 1251 1252 // Check if this is a retainable type. 1253 if (TheExpr->getType()->isObjCRetainableType()) { 1254 assert(getEvaluationKind(TheExpr->getType()) == TEK_Scalar && 1255 "Only scalar can be a ObjC retainable type"); 1256 // Check if the object is constant, if not, save it in 1257 // RetainableOperands. 1258 if (!isa<Constant>(ArgVal)) 1259 RetainableOperands.push_back(ArgVal); 1260 } 1261 } else { 1262 ArgVal = Builder.getInt32(Item.getConstValue().getQuantity()); 1263 } 1264 1265 unsigned ArgValSize = 1266 CGM.getDataLayout().getTypeSizeInBits(ArgVal->getType()); 1267 llvm::IntegerType *IntTy = llvm::Type::getIntNTy(getLLVMContext(), 1268 ArgValSize); 1269 ArgVal = Builder.CreateBitOrPointerCast(ArgVal, IntTy); 1270 CanQualType ArgTy = getOSLogArgType(Ctx, Size); 1271 // If ArgVal has type x86_fp80, zero-extend ArgVal. 1272 ArgVal = Builder.CreateZExtOrBitCast(ArgVal, ConvertType(ArgTy)); 1273 Args.add(RValue::get(ArgVal), ArgTy); 1274 } 1275 1276 const CGFunctionInfo &FI = 1277 CGM.getTypes().arrangeBuiltinFunctionCall(Ctx.VoidTy, Args); 1278 llvm::Function *F = CodeGenFunction(CGM).generateBuiltinOSLogHelperFunction( 1279 Layout, BufAddr.getAlignment()); 1280 EmitCall(FI, CGCallee::forDirect(F), ReturnValueSlot(), Args); 1281 1282 // Push a clang.arc.use cleanup for each object in RetainableOperands. The 1283 // cleanup will cause the use to appear after the final log call, keeping 1284 // the object valid while it’s held in the log buffer. Note that if there’s 1285 // a release cleanup on the object, it will already be active; since 1286 // cleanups are emitted in reverse order, the use will occur before the 1287 // object is released. 1288 if (!RetainableOperands.empty() && getLangOpts().ObjCAutoRefCount && 1289 CGM.getCodeGenOpts().OptimizationLevel != 0) 1290 for (llvm::Value *Object : RetainableOperands) 1291 pushFullExprCleanup<CallObjCArcUse>(getARCCleanupKind(), Object); 1292 1293 return RValue::get(BufAddr.getPointer()); 1294 } 1295 1296 /// Determine if a binop is a checked mixed-sign multiply we can specialize. 1297 static bool isSpecialMixedSignMultiply(unsigned BuiltinID, 1298 WidthAndSignedness Op1Info, 1299 WidthAndSignedness Op2Info, 1300 WidthAndSignedness ResultInfo) { 1301 return BuiltinID == Builtin::BI__builtin_mul_overflow && 1302 std::max(Op1Info.Width, Op2Info.Width) >= ResultInfo.Width && 1303 Op1Info.Signed != Op2Info.Signed; 1304 } 1305 1306 /// Emit a checked mixed-sign multiply. This is a cheaper specialization of 1307 /// the generic checked-binop irgen. 1308 static RValue 1309 EmitCheckedMixedSignMultiply(CodeGenFunction &CGF, const clang::Expr *Op1, 1310 WidthAndSignedness Op1Info, const clang::Expr *Op2, 1311 WidthAndSignedness Op2Info, 1312 const clang::Expr *ResultArg, QualType ResultQTy, 1313 WidthAndSignedness ResultInfo) { 1314 assert(isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow, Op1Info, 1315 Op2Info, ResultInfo) && 1316 "Not a mixed-sign multipliction we can specialize"); 1317 1318 // Emit the signed and unsigned operands. 1319 const clang::Expr *SignedOp = Op1Info.Signed ? Op1 : Op2; 1320 const clang::Expr *UnsignedOp = Op1Info.Signed ? Op2 : Op1; 1321 llvm::Value *Signed = CGF.EmitScalarExpr(SignedOp); 1322 llvm::Value *Unsigned = CGF.EmitScalarExpr(UnsignedOp); 1323 unsigned SignedOpWidth = Op1Info.Signed ? Op1Info.Width : Op2Info.Width; 1324 unsigned UnsignedOpWidth = Op1Info.Signed ? Op2Info.Width : Op1Info.Width; 1325 1326 // One of the operands may be smaller than the other. If so, [s|z]ext it. 1327 if (SignedOpWidth < UnsignedOpWidth) 1328 Signed = CGF.Builder.CreateSExt(Signed, Unsigned->getType(), "op.sext"); 1329 if (UnsignedOpWidth < SignedOpWidth) 1330 Unsigned = CGF.Builder.CreateZExt(Unsigned, Signed->getType(), "op.zext"); 1331 1332 llvm::Type *OpTy = Signed->getType(); 1333 llvm::Value *Zero = llvm::Constant::getNullValue(OpTy); 1334 Address ResultPtr = CGF.EmitPointerWithAlignment(ResultArg); 1335 llvm::Type *ResTy = ResultPtr.getElementType(); 1336 unsigned OpWidth = std::max(Op1Info.Width, Op2Info.Width); 1337 1338 // Take the absolute value of the signed operand. 1339 llvm::Value *IsNegative = CGF.Builder.CreateICmpSLT(Signed, Zero); 1340 llvm::Value *AbsOfNegative = CGF.Builder.CreateSub(Zero, Signed); 1341 llvm::Value *AbsSigned = 1342 CGF.Builder.CreateSelect(IsNegative, AbsOfNegative, Signed); 1343 1344 // Perform a checked unsigned multiplication. 1345 llvm::Value *UnsignedOverflow; 1346 llvm::Value *UnsignedResult = 1347 EmitOverflowIntrinsic(CGF, llvm::Intrinsic::umul_with_overflow, AbsSigned, 1348 Unsigned, UnsignedOverflow); 1349 1350 llvm::Value *Overflow, *Result; 1351 if (ResultInfo.Signed) { 1352 // Signed overflow occurs if the result is greater than INT_MAX or lesser 1353 // than INT_MIN, i.e when |Result| > (INT_MAX + IsNegative). 1354 auto IntMax = 1355 llvm::APInt::getSignedMaxValue(ResultInfo.Width).zextOrSelf(OpWidth); 1356 llvm::Value *MaxResult = 1357 CGF.Builder.CreateAdd(llvm::ConstantInt::get(OpTy, IntMax), 1358 CGF.Builder.CreateZExt(IsNegative, OpTy)); 1359 llvm::Value *SignedOverflow = 1360 CGF.Builder.CreateICmpUGT(UnsignedResult, MaxResult); 1361 Overflow = CGF.Builder.CreateOr(UnsignedOverflow, SignedOverflow); 1362 1363 // Prepare the signed result (possibly by negating it). 1364 llvm::Value *NegativeResult = CGF.Builder.CreateNeg(UnsignedResult); 1365 llvm::Value *SignedResult = 1366 CGF.Builder.CreateSelect(IsNegative, NegativeResult, UnsignedResult); 1367 Result = CGF.Builder.CreateTrunc(SignedResult, ResTy); 1368 } else { 1369 // Unsigned overflow occurs if the result is < 0 or greater than UINT_MAX. 1370 llvm::Value *Underflow = CGF.Builder.CreateAnd( 1371 IsNegative, CGF.Builder.CreateIsNotNull(UnsignedResult)); 1372 Overflow = CGF.Builder.CreateOr(UnsignedOverflow, Underflow); 1373 if (ResultInfo.Width < OpWidth) { 1374 auto IntMax = 1375 llvm::APInt::getMaxValue(ResultInfo.Width).zext(OpWidth); 1376 llvm::Value *TruncOverflow = CGF.Builder.CreateICmpUGT( 1377 UnsignedResult, llvm::ConstantInt::get(OpTy, IntMax)); 1378 Overflow = CGF.Builder.CreateOr(Overflow, TruncOverflow); 1379 } 1380 1381 // Negate the product if it would be negative in infinite precision. 1382 Result = CGF.Builder.CreateSelect( 1383 IsNegative, CGF.Builder.CreateNeg(UnsignedResult), UnsignedResult); 1384 1385 Result = CGF.Builder.CreateTrunc(Result, ResTy); 1386 } 1387 assert(Overflow && Result && "Missing overflow or result"); 1388 1389 bool isVolatile = 1390 ResultArg->getType()->getPointeeType().isVolatileQualified(); 1391 CGF.Builder.CreateStore(CGF.EmitToMemory(Result, ResultQTy), ResultPtr, 1392 isVolatile); 1393 return RValue::get(Overflow); 1394 } 1395 1396 static llvm::Value *dumpRecord(CodeGenFunction &CGF, QualType RType, 1397 Value *&RecordPtr, CharUnits Align, 1398 llvm::FunctionCallee Func, int Lvl) { 1399 ASTContext &Context = CGF.getContext(); 1400 RecordDecl *RD = RType->castAs<RecordType>()->getDecl()->getDefinition(); 1401 std::string Pad = std::string(Lvl * 4, ' '); 1402 1403 Value *GString = 1404 CGF.Builder.CreateGlobalStringPtr(RType.getAsString() + " {\n"); 1405 Value *Res = CGF.Builder.CreateCall(Func, {GString}); 1406 1407 static llvm::DenseMap<QualType, const char *> Types; 1408 if (Types.empty()) { 1409 Types[Context.CharTy] = "%c"; 1410 Types[Context.BoolTy] = "%d"; 1411 Types[Context.SignedCharTy] = "%hhd"; 1412 Types[Context.UnsignedCharTy] = "%hhu"; 1413 Types[Context.IntTy] = "%d"; 1414 Types[Context.UnsignedIntTy] = "%u"; 1415 Types[Context.LongTy] = "%ld"; 1416 Types[Context.UnsignedLongTy] = "%lu"; 1417 Types[Context.LongLongTy] = "%lld"; 1418 Types[Context.UnsignedLongLongTy] = "%llu"; 1419 Types[Context.ShortTy] = "%hd"; 1420 Types[Context.UnsignedShortTy] = "%hu"; 1421 Types[Context.VoidPtrTy] = "%p"; 1422 Types[Context.FloatTy] = "%f"; 1423 Types[Context.DoubleTy] = "%f"; 1424 Types[Context.LongDoubleTy] = "%Lf"; 1425 Types[Context.getPointerType(Context.CharTy)] = "%s"; 1426 Types[Context.getPointerType(Context.getConstType(Context.CharTy))] = "%s"; 1427 } 1428 1429 for (const auto *FD : RD->fields()) { 1430 Value *FieldPtr = RecordPtr; 1431 if (RD->isUnion()) 1432 FieldPtr = CGF.Builder.CreatePointerCast( 1433 FieldPtr, CGF.ConvertType(Context.getPointerType(FD->getType()))); 1434 else 1435 FieldPtr = CGF.Builder.CreateStructGEP(CGF.ConvertType(RType), FieldPtr, 1436 FD->getFieldIndex()); 1437 1438 GString = CGF.Builder.CreateGlobalStringPtr( 1439 llvm::Twine(Pad) 1440 .concat(FD->getType().getAsString()) 1441 .concat(llvm::Twine(' ')) 1442 .concat(FD->getNameAsString()) 1443 .concat(" : ") 1444 .str()); 1445 Value *TmpRes = CGF.Builder.CreateCall(Func, {GString}); 1446 Res = CGF.Builder.CreateAdd(Res, TmpRes); 1447 1448 QualType CanonicalType = 1449 FD->getType().getUnqualifiedType().getCanonicalType(); 1450 1451 // We check whether we are in a recursive type 1452 if (CanonicalType->isRecordType()) { 1453 Value *TmpRes = 1454 dumpRecord(CGF, CanonicalType, FieldPtr, Align, Func, Lvl + 1); 1455 Res = CGF.Builder.CreateAdd(TmpRes, Res); 1456 continue; 1457 } 1458 1459 // We try to determine the best format to print the current field 1460 llvm::Twine Format = Types.find(CanonicalType) == Types.end() 1461 ? Types[Context.VoidPtrTy] 1462 : Types[CanonicalType]; 1463 1464 Address FieldAddress = Address(FieldPtr, Align); 1465 FieldPtr = CGF.Builder.CreateLoad(FieldAddress); 1466 1467 // FIXME Need to handle bitfield here 1468 GString = CGF.Builder.CreateGlobalStringPtr( 1469 Format.concat(llvm::Twine('\n')).str()); 1470 TmpRes = CGF.Builder.CreateCall(Func, {GString, FieldPtr}); 1471 Res = CGF.Builder.CreateAdd(Res, TmpRes); 1472 } 1473 1474 GString = CGF.Builder.CreateGlobalStringPtr(Pad + "}\n"); 1475 Value *TmpRes = CGF.Builder.CreateCall(Func, {GString}); 1476 Res = CGF.Builder.CreateAdd(Res, TmpRes); 1477 return Res; 1478 } 1479 1480 static bool 1481 TypeRequiresBuiltinLaunderImp(const ASTContext &Ctx, QualType Ty, 1482 llvm::SmallPtrSetImpl<const Decl *> &Seen) { 1483 if (const auto *Arr = Ctx.getAsArrayType(Ty)) 1484 Ty = Ctx.getBaseElementType(Arr); 1485 1486 const auto *Record = Ty->getAsCXXRecordDecl(); 1487 if (!Record) 1488 return false; 1489 1490 // We've already checked this type, or are in the process of checking it. 1491 if (!Seen.insert(Record).second) 1492 return false; 1493 1494 assert(Record->hasDefinition() && 1495 "Incomplete types should already be diagnosed"); 1496 1497 if (Record->isDynamicClass()) 1498 return true; 1499 1500 for (FieldDecl *F : Record->fields()) { 1501 if (TypeRequiresBuiltinLaunderImp(Ctx, F->getType(), Seen)) 1502 return true; 1503 } 1504 return false; 1505 } 1506 1507 /// Determine if the specified type requires laundering by checking if it is a 1508 /// dynamic class type or contains a subobject which is a dynamic class type. 1509 static bool TypeRequiresBuiltinLaunder(CodeGenModule &CGM, QualType Ty) { 1510 if (!CGM.getCodeGenOpts().StrictVTablePointers) 1511 return false; 1512 llvm::SmallPtrSet<const Decl *, 16> Seen; 1513 return TypeRequiresBuiltinLaunderImp(CGM.getContext(), Ty, Seen); 1514 } 1515 1516 RValue CodeGenFunction::emitRotate(const CallExpr *E, bool IsRotateRight) { 1517 llvm::Value *Src = EmitScalarExpr(E->getArg(0)); 1518 llvm::Value *ShiftAmt = EmitScalarExpr(E->getArg(1)); 1519 1520 // The builtin's shift arg may have a different type than the source arg and 1521 // result, but the LLVM intrinsic uses the same type for all values. 1522 llvm::Type *Ty = Src->getType(); 1523 ShiftAmt = Builder.CreateIntCast(ShiftAmt, Ty, false); 1524 1525 // Rotate is a special case of LLVM funnel shift - 1st 2 args are the same. 1526 unsigned IID = IsRotateRight ? Intrinsic::fshr : Intrinsic::fshl; 1527 Function *F = CGM.getIntrinsic(IID, Ty); 1528 return RValue::get(Builder.CreateCall(F, { Src, Src, ShiftAmt })); 1529 } 1530 1531 RValue CodeGenFunction::EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID, 1532 const CallExpr *E, 1533 ReturnValueSlot ReturnValue) { 1534 const FunctionDecl *FD = GD.getDecl()->getAsFunction(); 1535 // See if we can constant fold this builtin. If so, don't emit it at all. 1536 Expr::EvalResult Result; 1537 if (E->EvaluateAsRValue(Result, CGM.getContext()) && 1538 !Result.hasSideEffects()) { 1539 if (Result.Val.isInt()) 1540 return RValue::get(llvm::ConstantInt::get(getLLVMContext(), 1541 Result.Val.getInt())); 1542 if (Result.Val.isFloat()) 1543 return RValue::get(llvm::ConstantFP::get(getLLVMContext(), 1544 Result.Val.getFloat())); 1545 } 1546 1547 // There are LLVM math intrinsics/instructions corresponding to math library 1548 // functions except the LLVM op will never set errno while the math library 1549 // might. Also, math builtins have the same semantics as their math library 1550 // twins. Thus, we can transform math library and builtin calls to their 1551 // LLVM counterparts if the call is marked 'const' (known to never set errno). 1552 if (FD->hasAttr<ConstAttr>()) { 1553 switch (BuiltinID) { 1554 case Builtin::BIceil: 1555 case Builtin::BIceilf: 1556 case Builtin::BIceill: 1557 case Builtin::BI__builtin_ceil: 1558 case Builtin::BI__builtin_ceilf: 1559 case Builtin::BI__builtin_ceilf16: 1560 case Builtin::BI__builtin_ceill: 1561 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::ceil)); 1562 1563 case Builtin::BIcopysign: 1564 case Builtin::BIcopysignf: 1565 case Builtin::BIcopysignl: 1566 case Builtin::BI__builtin_copysign: 1567 case Builtin::BI__builtin_copysignf: 1568 case Builtin::BI__builtin_copysignf16: 1569 case Builtin::BI__builtin_copysignl: 1570 case Builtin::BI__builtin_copysignf128: 1571 return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::copysign)); 1572 1573 case Builtin::BIcos: 1574 case Builtin::BIcosf: 1575 case Builtin::BIcosl: 1576 case Builtin::BI__builtin_cos: 1577 case Builtin::BI__builtin_cosf: 1578 case Builtin::BI__builtin_cosf16: 1579 case Builtin::BI__builtin_cosl: 1580 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::cos)); 1581 1582 case Builtin::BIexp: 1583 case Builtin::BIexpf: 1584 case Builtin::BIexpl: 1585 case Builtin::BI__builtin_exp: 1586 case Builtin::BI__builtin_expf: 1587 case Builtin::BI__builtin_expf16: 1588 case Builtin::BI__builtin_expl: 1589 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::exp)); 1590 1591 case Builtin::BIexp2: 1592 case Builtin::BIexp2f: 1593 case Builtin::BIexp2l: 1594 case Builtin::BI__builtin_exp2: 1595 case Builtin::BI__builtin_exp2f: 1596 case Builtin::BI__builtin_exp2f16: 1597 case Builtin::BI__builtin_exp2l: 1598 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::exp2)); 1599 1600 case Builtin::BIfabs: 1601 case Builtin::BIfabsf: 1602 case Builtin::BIfabsl: 1603 case Builtin::BI__builtin_fabs: 1604 case Builtin::BI__builtin_fabsf: 1605 case Builtin::BI__builtin_fabsf16: 1606 case Builtin::BI__builtin_fabsl: 1607 case Builtin::BI__builtin_fabsf128: 1608 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::fabs)); 1609 1610 case Builtin::BIfloor: 1611 case Builtin::BIfloorf: 1612 case Builtin::BIfloorl: 1613 case Builtin::BI__builtin_floor: 1614 case Builtin::BI__builtin_floorf: 1615 case Builtin::BI__builtin_floorf16: 1616 case Builtin::BI__builtin_floorl: 1617 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::floor)); 1618 1619 case Builtin::BIfma: 1620 case Builtin::BIfmaf: 1621 case Builtin::BIfmal: 1622 case Builtin::BI__builtin_fma: 1623 case Builtin::BI__builtin_fmaf: 1624 case Builtin::BI__builtin_fmaf16: 1625 case Builtin::BI__builtin_fmal: 1626 return RValue::get(emitTernaryBuiltin(*this, E, Intrinsic::fma)); 1627 1628 case Builtin::BIfmax: 1629 case Builtin::BIfmaxf: 1630 case Builtin::BIfmaxl: 1631 case Builtin::BI__builtin_fmax: 1632 case Builtin::BI__builtin_fmaxf: 1633 case Builtin::BI__builtin_fmaxf16: 1634 case Builtin::BI__builtin_fmaxl: 1635 return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::maxnum)); 1636 1637 case Builtin::BIfmin: 1638 case Builtin::BIfminf: 1639 case Builtin::BIfminl: 1640 case Builtin::BI__builtin_fmin: 1641 case Builtin::BI__builtin_fminf: 1642 case Builtin::BI__builtin_fminf16: 1643 case Builtin::BI__builtin_fminl: 1644 return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::minnum)); 1645 1646 // fmod() is a special-case. It maps to the frem instruction rather than an 1647 // LLVM intrinsic. 1648 case Builtin::BIfmod: 1649 case Builtin::BIfmodf: 1650 case Builtin::BIfmodl: 1651 case Builtin::BI__builtin_fmod: 1652 case Builtin::BI__builtin_fmodf: 1653 case Builtin::BI__builtin_fmodf16: 1654 case Builtin::BI__builtin_fmodl: { 1655 Value *Arg1 = EmitScalarExpr(E->getArg(0)); 1656 Value *Arg2 = EmitScalarExpr(E->getArg(1)); 1657 return RValue::get(Builder.CreateFRem(Arg1, Arg2, "fmod")); 1658 } 1659 1660 case Builtin::BIlog: 1661 case Builtin::BIlogf: 1662 case Builtin::BIlogl: 1663 case Builtin::BI__builtin_log: 1664 case Builtin::BI__builtin_logf: 1665 case Builtin::BI__builtin_logf16: 1666 case Builtin::BI__builtin_logl: 1667 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::log)); 1668 1669 case Builtin::BIlog10: 1670 case Builtin::BIlog10f: 1671 case Builtin::BIlog10l: 1672 case Builtin::BI__builtin_log10: 1673 case Builtin::BI__builtin_log10f: 1674 case Builtin::BI__builtin_log10f16: 1675 case Builtin::BI__builtin_log10l: 1676 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::log10)); 1677 1678 case Builtin::BIlog2: 1679 case Builtin::BIlog2f: 1680 case Builtin::BIlog2l: 1681 case Builtin::BI__builtin_log2: 1682 case Builtin::BI__builtin_log2f: 1683 case Builtin::BI__builtin_log2f16: 1684 case Builtin::BI__builtin_log2l: 1685 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::log2)); 1686 1687 case Builtin::BInearbyint: 1688 case Builtin::BInearbyintf: 1689 case Builtin::BInearbyintl: 1690 case Builtin::BI__builtin_nearbyint: 1691 case Builtin::BI__builtin_nearbyintf: 1692 case Builtin::BI__builtin_nearbyintl: 1693 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::nearbyint)); 1694 1695 case Builtin::BIpow: 1696 case Builtin::BIpowf: 1697 case Builtin::BIpowl: 1698 case Builtin::BI__builtin_pow: 1699 case Builtin::BI__builtin_powf: 1700 case Builtin::BI__builtin_powf16: 1701 case Builtin::BI__builtin_powl: 1702 return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::pow)); 1703 1704 case Builtin::BIrint: 1705 case Builtin::BIrintf: 1706 case Builtin::BIrintl: 1707 case Builtin::BI__builtin_rint: 1708 case Builtin::BI__builtin_rintf: 1709 case Builtin::BI__builtin_rintf16: 1710 case Builtin::BI__builtin_rintl: 1711 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::rint)); 1712 1713 case Builtin::BIround: 1714 case Builtin::BIroundf: 1715 case Builtin::BIroundl: 1716 case Builtin::BI__builtin_round: 1717 case Builtin::BI__builtin_roundf: 1718 case Builtin::BI__builtin_roundf16: 1719 case Builtin::BI__builtin_roundl: 1720 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::round)); 1721 1722 case Builtin::BIsin: 1723 case Builtin::BIsinf: 1724 case Builtin::BIsinl: 1725 case Builtin::BI__builtin_sin: 1726 case Builtin::BI__builtin_sinf: 1727 case Builtin::BI__builtin_sinf16: 1728 case Builtin::BI__builtin_sinl: 1729 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::sin)); 1730 1731 case Builtin::BIsqrt: 1732 case Builtin::BIsqrtf: 1733 case Builtin::BIsqrtl: 1734 case Builtin::BI__builtin_sqrt: 1735 case Builtin::BI__builtin_sqrtf: 1736 case Builtin::BI__builtin_sqrtf16: 1737 case Builtin::BI__builtin_sqrtl: 1738 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::sqrt)); 1739 1740 case Builtin::BItrunc: 1741 case Builtin::BItruncf: 1742 case Builtin::BItruncl: 1743 case Builtin::BI__builtin_trunc: 1744 case Builtin::BI__builtin_truncf: 1745 case Builtin::BI__builtin_truncf16: 1746 case Builtin::BI__builtin_truncl: 1747 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::trunc)); 1748 1749 case Builtin::BIlround: 1750 case Builtin::BIlroundf: 1751 case Builtin::BIlroundl: 1752 case Builtin::BI__builtin_lround: 1753 case Builtin::BI__builtin_lroundf: 1754 case Builtin::BI__builtin_lroundl: 1755 return RValue::get(emitFPToIntRoundBuiltin(*this, E, Intrinsic::lround)); 1756 1757 case Builtin::BIllround: 1758 case Builtin::BIllroundf: 1759 case Builtin::BIllroundl: 1760 case Builtin::BI__builtin_llround: 1761 case Builtin::BI__builtin_llroundf: 1762 case Builtin::BI__builtin_llroundl: 1763 return RValue::get(emitFPToIntRoundBuiltin(*this, E, Intrinsic::llround)); 1764 1765 case Builtin::BIlrint: 1766 case Builtin::BIlrintf: 1767 case Builtin::BIlrintl: 1768 case Builtin::BI__builtin_lrint: 1769 case Builtin::BI__builtin_lrintf: 1770 case Builtin::BI__builtin_lrintl: 1771 return RValue::get(emitFPToIntRoundBuiltin(*this, E, Intrinsic::lrint)); 1772 1773 case Builtin::BIllrint: 1774 case Builtin::BIllrintf: 1775 case Builtin::BIllrintl: 1776 case Builtin::BI__builtin_llrint: 1777 case Builtin::BI__builtin_llrintf: 1778 case Builtin::BI__builtin_llrintl: 1779 return RValue::get(emitFPToIntRoundBuiltin(*this, E, Intrinsic::llrint)); 1780 1781 default: 1782 break; 1783 } 1784 } 1785 1786 switch (BuiltinID) { 1787 default: break; 1788 case Builtin::BI__builtin___CFStringMakeConstantString: 1789 case Builtin::BI__builtin___NSStringMakeConstantString: 1790 return RValue::get(ConstantEmitter(*this).emitAbstract(E, E->getType())); 1791 case Builtin::BI__builtin_stdarg_start: 1792 case Builtin::BI__builtin_va_start: 1793 case Builtin::BI__va_start: 1794 case Builtin::BI__builtin_va_end: 1795 return RValue::get( 1796 EmitVAStartEnd(BuiltinID == Builtin::BI__va_start 1797 ? EmitScalarExpr(E->getArg(0)) 1798 : EmitVAListRef(E->getArg(0)).getPointer(), 1799 BuiltinID != Builtin::BI__builtin_va_end)); 1800 case Builtin::BI__builtin_va_copy: { 1801 Value *DstPtr = EmitVAListRef(E->getArg(0)).getPointer(); 1802 Value *SrcPtr = EmitVAListRef(E->getArg(1)).getPointer(); 1803 1804 llvm::Type *Type = Int8PtrTy; 1805 1806 DstPtr = Builder.CreateBitCast(DstPtr, Type); 1807 SrcPtr = Builder.CreateBitCast(SrcPtr, Type); 1808 return RValue::get(Builder.CreateCall(CGM.getIntrinsic(Intrinsic::vacopy), 1809 {DstPtr, SrcPtr})); 1810 } 1811 case Builtin::BI__builtin_abs: 1812 case Builtin::BI__builtin_labs: 1813 case Builtin::BI__builtin_llabs: { 1814 // X < 0 ? -X : X 1815 // The negation has 'nsw' because abs of INT_MIN is undefined. 1816 Value *ArgValue = EmitScalarExpr(E->getArg(0)); 1817 Value *NegOp = Builder.CreateNSWNeg(ArgValue, "neg"); 1818 Constant *Zero = llvm::Constant::getNullValue(ArgValue->getType()); 1819 Value *CmpResult = Builder.CreateICmpSLT(ArgValue, Zero, "abscond"); 1820 Value *Result = Builder.CreateSelect(CmpResult, NegOp, ArgValue, "abs"); 1821 return RValue::get(Result); 1822 } 1823 case Builtin::BI__builtin_conj: 1824 case Builtin::BI__builtin_conjf: 1825 case Builtin::BI__builtin_conjl: { 1826 ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0)); 1827 Value *Real = ComplexVal.first; 1828 Value *Imag = ComplexVal.second; 1829 Value *Zero = 1830 Imag->getType()->isFPOrFPVectorTy() 1831 ? llvm::ConstantFP::getZeroValueForNegation(Imag->getType()) 1832 : llvm::Constant::getNullValue(Imag->getType()); 1833 1834 Imag = Builder.CreateFSub(Zero, Imag, "sub"); 1835 return RValue::getComplex(std::make_pair(Real, Imag)); 1836 } 1837 case Builtin::BI__builtin_creal: 1838 case Builtin::BI__builtin_crealf: 1839 case Builtin::BI__builtin_creall: 1840 case Builtin::BIcreal: 1841 case Builtin::BIcrealf: 1842 case Builtin::BIcreall: { 1843 ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0)); 1844 return RValue::get(ComplexVal.first); 1845 } 1846 1847 case Builtin::BI__builtin_dump_struct: { 1848 llvm::Type *LLVMIntTy = getTypes().ConvertType(getContext().IntTy); 1849 llvm::FunctionType *LLVMFuncType = llvm::FunctionType::get( 1850 LLVMIntTy, {llvm::Type::getInt8PtrTy(getLLVMContext())}, true); 1851 1852 Value *Func = EmitScalarExpr(E->getArg(1)->IgnoreImpCasts()); 1853 CharUnits Arg0Align = EmitPointerWithAlignment(E->getArg(0)).getAlignment(); 1854 1855 const Expr *Arg0 = E->getArg(0)->IgnoreImpCasts(); 1856 QualType Arg0Type = Arg0->getType()->getPointeeType(); 1857 1858 Value *RecordPtr = EmitScalarExpr(Arg0); 1859 Value *Res = dumpRecord(*this, Arg0Type, RecordPtr, Arg0Align, 1860 {LLVMFuncType, Func}, 0); 1861 return RValue::get(Res); 1862 } 1863 1864 case Builtin::BI__builtin_preserve_access_index: { 1865 // Only enabled preserved access index region when debuginfo 1866 // is available as debuginfo is needed to preserve user-level 1867 // access pattern. 1868 if (!getDebugInfo()) { 1869 CGM.Error(E->getExprLoc(), "using builtin_preserve_access_index() without -g"); 1870 return RValue::get(EmitScalarExpr(E->getArg(0))); 1871 } 1872 1873 // Nested builtin_preserve_access_index() not supported 1874 if (IsInPreservedAIRegion) { 1875 CGM.Error(E->getExprLoc(), "nested builtin_preserve_access_index() not supported"); 1876 return RValue::get(EmitScalarExpr(E->getArg(0))); 1877 } 1878 1879 IsInPreservedAIRegion = true; 1880 Value *Res = EmitScalarExpr(E->getArg(0)); 1881 IsInPreservedAIRegion = false; 1882 return RValue::get(Res); 1883 } 1884 1885 case Builtin::BI__builtin_cimag: 1886 case Builtin::BI__builtin_cimagf: 1887 case Builtin::BI__builtin_cimagl: 1888 case Builtin::BIcimag: 1889 case Builtin::BIcimagf: 1890 case Builtin::BIcimagl: { 1891 ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0)); 1892 return RValue::get(ComplexVal.second); 1893 } 1894 1895 case Builtin::BI__builtin_clrsb: 1896 case Builtin::BI__builtin_clrsbl: 1897 case Builtin::BI__builtin_clrsbll: { 1898 // clrsb(x) -> clz(x < 0 ? ~x : x) - 1 or 1899 Value *ArgValue = EmitScalarExpr(E->getArg(0)); 1900 1901 llvm::Type *ArgType = ArgValue->getType(); 1902 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType); 1903 1904 llvm::Type *ResultType = ConvertType(E->getType()); 1905 Value *Zero = llvm::Constant::getNullValue(ArgType); 1906 Value *IsNeg = Builder.CreateICmpSLT(ArgValue, Zero, "isneg"); 1907 Value *Inverse = Builder.CreateNot(ArgValue, "not"); 1908 Value *Tmp = Builder.CreateSelect(IsNeg, Inverse, ArgValue); 1909 Value *Ctlz = Builder.CreateCall(F, {Tmp, Builder.getFalse()}); 1910 Value *Result = Builder.CreateSub(Ctlz, llvm::ConstantInt::get(ArgType, 1)); 1911 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, 1912 "cast"); 1913 return RValue::get(Result); 1914 } 1915 case Builtin::BI__builtin_ctzs: 1916 case Builtin::BI__builtin_ctz: 1917 case Builtin::BI__builtin_ctzl: 1918 case Builtin::BI__builtin_ctzll: { 1919 Value *ArgValue = EmitCheckedArgForBuiltin(E->getArg(0), BCK_CTZPassedZero); 1920 1921 llvm::Type *ArgType = ArgValue->getType(); 1922 Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType); 1923 1924 llvm::Type *ResultType = ConvertType(E->getType()); 1925 Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef()); 1926 Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef}); 1927 if (Result->getType() != ResultType) 1928 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, 1929 "cast"); 1930 return RValue::get(Result); 1931 } 1932 case Builtin::BI__builtin_clzs: 1933 case Builtin::BI__builtin_clz: 1934 case Builtin::BI__builtin_clzl: 1935 case Builtin::BI__builtin_clzll: { 1936 Value *ArgValue = EmitCheckedArgForBuiltin(E->getArg(0), BCK_CLZPassedZero); 1937 1938 llvm::Type *ArgType = ArgValue->getType(); 1939 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType); 1940 1941 llvm::Type *ResultType = ConvertType(E->getType()); 1942 Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef()); 1943 Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef}); 1944 if (Result->getType() != ResultType) 1945 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, 1946 "cast"); 1947 return RValue::get(Result); 1948 } 1949 case Builtin::BI__builtin_ffs: 1950 case Builtin::BI__builtin_ffsl: 1951 case Builtin::BI__builtin_ffsll: { 1952 // ffs(x) -> x ? cttz(x) + 1 : 0 1953 Value *ArgValue = EmitScalarExpr(E->getArg(0)); 1954 1955 llvm::Type *ArgType = ArgValue->getType(); 1956 Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType); 1957 1958 llvm::Type *ResultType = ConvertType(E->getType()); 1959 Value *Tmp = 1960 Builder.CreateAdd(Builder.CreateCall(F, {ArgValue, Builder.getTrue()}), 1961 llvm::ConstantInt::get(ArgType, 1)); 1962 Value *Zero = llvm::Constant::getNullValue(ArgType); 1963 Value *IsZero = Builder.CreateICmpEQ(ArgValue, Zero, "iszero"); 1964 Value *Result = Builder.CreateSelect(IsZero, Zero, Tmp, "ffs"); 1965 if (Result->getType() != ResultType) 1966 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, 1967 "cast"); 1968 return RValue::get(Result); 1969 } 1970 case Builtin::BI__builtin_parity: 1971 case Builtin::BI__builtin_parityl: 1972 case Builtin::BI__builtin_parityll: { 1973 // parity(x) -> ctpop(x) & 1 1974 Value *ArgValue = EmitScalarExpr(E->getArg(0)); 1975 1976 llvm::Type *ArgType = ArgValue->getType(); 1977 Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType); 1978 1979 llvm::Type *ResultType = ConvertType(E->getType()); 1980 Value *Tmp = Builder.CreateCall(F, ArgValue); 1981 Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1)); 1982 if (Result->getType() != ResultType) 1983 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, 1984 "cast"); 1985 return RValue::get(Result); 1986 } 1987 case Builtin::BI__lzcnt16: 1988 case Builtin::BI__lzcnt: 1989 case Builtin::BI__lzcnt64: { 1990 Value *ArgValue = EmitScalarExpr(E->getArg(0)); 1991 1992 llvm::Type *ArgType = ArgValue->getType(); 1993 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType); 1994 1995 llvm::Type *ResultType = ConvertType(E->getType()); 1996 Value *Result = Builder.CreateCall(F, {ArgValue, Builder.getFalse()}); 1997 if (Result->getType() != ResultType) 1998 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, 1999 "cast"); 2000 return RValue::get(Result); 2001 } 2002 case Builtin::BI__popcnt16: 2003 case Builtin::BI__popcnt: 2004 case Builtin::BI__popcnt64: 2005 case Builtin::BI__builtin_popcount: 2006 case Builtin::BI__builtin_popcountl: 2007 case Builtin::BI__builtin_popcountll: { 2008 Value *ArgValue = EmitScalarExpr(E->getArg(0)); 2009 2010 llvm::Type *ArgType = ArgValue->getType(); 2011 Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType); 2012 2013 llvm::Type *ResultType = ConvertType(E->getType()); 2014 Value *Result = Builder.CreateCall(F, ArgValue); 2015 if (Result->getType() != ResultType) 2016 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, 2017 "cast"); 2018 return RValue::get(Result); 2019 } 2020 case Builtin::BI__builtin_unpredictable: { 2021 // Always return the argument of __builtin_unpredictable. LLVM does not 2022 // handle this builtin. Metadata for this builtin should be added directly 2023 // to instructions such as branches or switches that use it. 2024 return RValue::get(EmitScalarExpr(E->getArg(0))); 2025 } 2026 case Builtin::BI__builtin_expect: { 2027 Value *ArgValue = EmitScalarExpr(E->getArg(0)); 2028 llvm::Type *ArgType = ArgValue->getType(); 2029 2030 Value *ExpectedValue = EmitScalarExpr(E->getArg(1)); 2031 // Don't generate llvm.expect on -O0 as the backend won't use it for 2032 // anything. 2033 // Note, we still IRGen ExpectedValue because it could have side-effects. 2034 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 2035 return RValue::get(ArgValue); 2036 2037 Function *FnExpect = CGM.getIntrinsic(Intrinsic::expect, ArgType); 2038 Value *Result = 2039 Builder.CreateCall(FnExpect, {ArgValue, ExpectedValue}, "expval"); 2040 return RValue::get(Result); 2041 } 2042 case Builtin::BI__builtin_assume_aligned: { 2043 const Expr *Ptr = E->getArg(0); 2044 Value *PtrValue = EmitScalarExpr(Ptr); 2045 Value *OffsetValue = 2046 (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) : nullptr; 2047 2048 Value *AlignmentValue = EmitScalarExpr(E->getArg(1)); 2049 ConstantInt *AlignmentCI = cast<ConstantInt>(AlignmentValue); 2050 if (AlignmentCI->getValue().ugt(llvm::Value::MaximumAlignment)) 2051 AlignmentCI = ConstantInt::get(AlignmentCI->getType(), 2052 llvm::Value::MaximumAlignment); 2053 2054 EmitAlignmentAssumption(PtrValue, Ptr, 2055 /*The expr loc is sufficient.*/ SourceLocation(), 2056 AlignmentCI, OffsetValue); 2057 return RValue::get(PtrValue); 2058 } 2059 case Builtin::BI__assume: 2060 case Builtin::BI__builtin_assume: { 2061 if (E->getArg(0)->HasSideEffects(getContext())) 2062 return RValue::get(nullptr); 2063 2064 Value *ArgValue = EmitScalarExpr(E->getArg(0)); 2065 Function *FnAssume = CGM.getIntrinsic(Intrinsic::assume); 2066 return RValue::get(Builder.CreateCall(FnAssume, ArgValue)); 2067 } 2068 case Builtin::BI__builtin_bswap16: 2069 case Builtin::BI__builtin_bswap32: 2070 case Builtin::BI__builtin_bswap64: { 2071 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bswap)); 2072 } 2073 case Builtin::BI__builtin_bitreverse8: 2074 case Builtin::BI__builtin_bitreverse16: 2075 case Builtin::BI__builtin_bitreverse32: 2076 case Builtin::BI__builtin_bitreverse64: { 2077 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bitreverse)); 2078 } 2079 case Builtin::BI__builtin_rotateleft8: 2080 case Builtin::BI__builtin_rotateleft16: 2081 case Builtin::BI__builtin_rotateleft32: 2082 case Builtin::BI__builtin_rotateleft64: 2083 case Builtin::BI_rotl8: // Microsoft variants of rotate left 2084 case Builtin::BI_rotl16: 2085 case Builtin::BI_rotl: 2086 case Builtin::BI_lrotl: 2087 case Builtin::BI_rotl64: 2088 return emitRotate(E, false); 2089 2090 case Builtin::BI__builtin_rotateright8: 2091 case Builtin::BI__builtin_rotateright16: 2092 case Builtin::BI__builtin_rotateright32: 2093 case Builtin::BI__builtin_rotateright64: 2094 case Builtin::BI_rotr8: // Microsoft variants of rotate right 2095 case Builtin::BI_rotr16: 2096 case Builtin::BI_rotr: 2097 case Builtin::BI_lrotr: 2098 case Builtin::BI_rotr64: 2099 return emitRotate(E, true); 2100 2101 case Builtin::BI__builtin_constant_p: { 2102 llvm::Type *ResultType = ConvertType(E->getType()); 2103 2104 const Expr *Arg = E->getArg(0); 2105 QualType ArgType = Arg->getType(); 2106 // FIXME: The allowance for Obj-C pointers and block pointers is historical 2107 // and likely a mistake. 2108 if (!ArgType->isIntegralOrEnumerationType() && !ArgType->isFloatingType() && 2109 !ArgType->isObjCObjectPointerType() && !ArgType->isBlockPointerType()) 2110 // Per the GCC documentation, only numeric constants are recognized after 2111 // inlining. 2112 return RValue::get(ConstantInt::get(ResultType, 0)); 2113 2114 if (Arg->HasSideEffects(getContext())) 2115 // The argument is unevaluated, so be conservative if it might have 2116 // side-effects. 2117 return RValue::get(ConstantInt::get(ResultType, 0)); 2118 2119 Value *ArgValue = EmitScalarExpr(Arg); 2120 if (ArgType->isObjCObjectPointerType()) { 2121 // Convert Objective-C objects to id because we cannot distinguish between 2122 // LLVM types for Obj-C classes as they are opaque. 2123 ArgType = CGM.getContext().getObjCIdType(); 2124 ArgValue = Builder.CreateBitCast(ArgValue, ConvertType(ArgType)); 2125 } 2126 Function *F = 2127 CGM.getIntrinsic(Intrinsic::is_constant, ConvertType(ArgType)); 2128 Value *Result = Builder.CreateCall(F, ArgValue); 2129 if (Result->getType() != ResultType) 2130 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/false); 2131 return RValue::get(Result); 2132 } 2133 case Builtin::BI__builtin_dynamic_object_size: 2134 case Builtin::BI__builtin_object_size: { 2135 unsigned Type = 2136 E->getArg(1)->EvaluateKnownConstInt(getContext()).getZExtValue(); 2137 auto *ResType = cast<llvm::IntegerType>(ConvertType(E->getType())); 2138 2139 // We pass this builtin onto the optimizer so that it can figure out the 2140 // object size in more complex cases. 2141 bool IsDynamic = BuiltinID == Builtin::BI__builtin_dynamic_object_size; 2142 return RValue::get(emitBuiltinObjectSize(E->getArg(0), Type, ResType, 2143 /*EmittedE=*/nullptr, IsDynamic)); 2144 } 2145 case Builtin::BI__builtin_prefetch: { 2146 Value *Locality, *RW, *Address = EmitScalarExpr(E->getArg(0)); 2147 // FIXME: Technically these constants should of type 'int', yes? 2148 RW = (E->getNumArgs() > 1) ? EmitScalarExpr(E->getArg(1)) : 2149 llvm::ConstantInt::get(Int32Ty, 0); 2150 Locality = (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) : 2151 llvm::ConstantInt::get(Int32Ty, 3); 2152 Value *Data = llvm::ConstantInt::get(Int32Ty, 1); 2153 Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType()); 2154 return RValue::get(Builder.CreateCall(F, {Address, RW, Locality, Data})); 2155 } 2156 case Builtin::BI__builtin_readcyclecounter: { 2157 Function *F = CGM.getIntrinsic(Intrinsic::readcyclecounter); 2158 return RValue::get(Builder.CreateCall(F)); 2159 } 2160 case Builtin::BI__builtin___clear_cache: { 2161 Value *Begin = EmitScalarExpr(E->getArg(0)); 2162 Value *End = EmitScalarExpr(E->getArg(1)); 2163 Function *F = CGM.getIntrinsic(Intrinsic::clear_cache); 2164 return RValue::get(Builder.CreateCall(F, {Begin, End})); 2165 } 2166 case Builtin::BI__builtin_trap: 2167 return RValue::get(EmitTrapCall(Intrinsic::trap)); 2168 case Builtin::BI__debugbreak: 2169 return RValue::get(EmitTrapCall(Intrinsic::debugtrap)); 2170 case Builtin::BI__builtin_unreachable: { 2171 EmitUnreachable(E->getExprLoc()); 2172 2173 // We do need to preserve an insertion point. 2174 EmitBlock(createBasicBlock("unreachable.cont")); 2175 2176 return RValue::get(nullptr); 2177 } 2178 2179 case Builtin::BI__builtin_powi: 2180 case Builtin::BI__builtin_powif: 2181 case Builtin::BI__builtin_powil: { 2182 Value *Base = EmitScalarExpr(E->getArg(0)); 2183 Value *Exponent = EmitScalarExpr(E->getArg(1)); 2184 llvm::Type *ArgType = Base->getType(); 2185 Function *F = CGM.getIntrinsic(Intrinsic::powi, ArgType); 2186 return RValue::get(Builder.CreateCall(F, {Base, Exponent})); 2187 } 2188 2189 case Builtin::BI__builtin_isgreater: 2190 case Builtin::BI__builtin_isgreaterequal: 2191 case Builtin::BI__builtin_isless: 2192 case Builtin::BI__builtin_islessequal: 2193 case Builtin::BI__builtin_islessgreater: 2194 case Builtin::BI__builtin_isunordered: { 2195 // Ordered comparisons: we know the arguments to these are matching scalar 2196 // floating point values. 2197 Value *LHS = EmitScalarExpr(E->getArg(0)); 2198 Value *RHS = EmitScalarExpr(E->getArg(1)); 2199 2200 switch (BuiltinID) { 2201 default: llvm_unreachable("Unknown ordered comparison"); 2202 case Builtin::BI__builtin_isgreater: 2203 LHS = Builder.CreateFCmpOGT(LHS, RHS, "cmp"); 2204 break; 2205 case Builtin::BI__builtin_isgreaterequal: 2206 LHS = Builder.CreateFCmpOGE(LHS, RHS, "cmp"); 2207 break; 2208 case Builtin::BI__builtin_isless: 2209 LHS = Builder.CreateFCmpOLT(LHS, RHS, "cmp"); 2210 break; 2211 case Builtin::BI__builtin_islessequal: 2212 LHS = Builder.CreateFCmpOLE(LHS, RHS, "cmp"); 2213 break; 2214 case Builtin::BI__builtin_islessgreater: 2215 LHS = Builder.CreateFCmpONE(LHS, RHS, "cmp"); 2216 break; 2217 case Builtin::BI__builtin_isunordered: 2218 LHS = Builder.CreateFCmpUNO(LHS, RHS, "cmp"); 2219 break; 2220 } 2221 // ZExt bool to int type. 2222 return RValue::get(Builder.CreateZExt(LHS, ConvertType(E->getType()))); 2223 } 2224 case Builtin::BI__builtin_isnan: { 2225 Value *V = EmitScalarExpr(E->getArg(0)); 2226 V = Builder.CreateFCmpUNO(V, V, "cmp"); 2227 return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType()))); 2228 } 2229 2230 case Builtin::BIfinite: 2231 case Builtin::BI__finite: 2232 case Builtin::BIfinitef: 2233 case Builtin::BI__finitef: 2234 case Builtin::BIfinitel: 2235 case Builtin::BI__finitel: 2236 case Builtin::BI__builtin_isinf: 2237 case Builtin::BI__builtin_isfinite: { 2238 // isinf(x) --> fabs(x) == infinity 2239 // isfinite(x) --> fabs(x) != infinity 2240 // x != NaN via the ordered compare in either case. 2241 Value *V = EmitScalarExpr(E->getArg(0)); 2242 Value *Fabs = EmitFAbs(*this, V); 2243 Constant *Infinity = ConstantFP::getInfinity(V->getType()); 2244 CmpInst::Predicate Pred = (BuiltinID == Builtin::BI__builtin_isinf) 2245 ? CmpInst::FCMP_OEQ 2246 : CmpInst::FCMP_ONE; 2247 Value *FCmp = Builder.CreateFCmp(Pred, Fabs, Infinity, "cmpinf"); 2248 return RValue::get(Builder.CreateZExt(FCmp, ConvertType(E->getType()))); 2249 } 2250 2251 case Builtin::BI__builtin_isinf_sign: { 2252 // isinf_sign(x) -> fabs(x) == infinity ? (signbit(x) ? -1 : 1) : 0 2253 Value *Arg = EmitScalarExpr(E->getArg(0)); 2254 Value *AbsArg = EmitFAbs(*this, Arg); 2255 Value *IsInf = Builder.CreateFCmpOEQ( 2256 AbsArg, ConstantFP::getInfinity(Arg->getType()), "isinf"); 2257 Value *IsNeg = EmitSignBit(*this, Arg); 2258 2259 llvm::Type *IntTy = ConvertType(E->getType()); 2260 Value *Zero = Constant::getNullValue(IntTy); 2261 Value *One = ConstantInt::get(IntTy, 1); 2262 Value *NegativeOne = ConstantInt::get(IntTy, -1); 2263 Value *SignResult = Builder.CreateSelect(IsNeg, NegativeOne, One); 2264 Value *Result = Builder.CreateSelect(IsInf, SignResult, Zero); 2265 return RValue::get(Result); 2266 } 2267 2268 case Builtin::BI__builtin_isnormal: { 2269 // isnormal(x) --> x == x && fabsf(x) < infinity && fabsf(x) >= float_min 2270 Value *V = EmitScalarExpr(E->getArg(0)); 2271 Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq"); 2272 2273 Value *Abs = EmitFAbs(*this, V); 2274 Value *IsLessThanInf = 2275 Builder.CreateFCmpULT(Abs, ConstantFP::getInfinity(V->getType()),"isinf"); 2276 APFloat Smallest = APFloat::getSmallestNormalized( 2277 getContext().getFloatTypeSemantics(E->getArg(0)->getType())); 2278 Value *IsNormal = 2279 Builder.CreateFCmpUGE(Abs, ConstantFP::get(V->getContext(), Smallest), 2280 "isnormal"); 2281 V = Builder.CreateAnd(Eq, IsLessThanInf, "and"); 2282 V = Builder.CreateAnd(V, IsNormal, "and"); 2283 return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType()))); 2284 } 2285 2286 case Builtin::BI__builtin_flt_rounds: { 2287 Function *F = CGM.getIntrinsic(Intrinsic::flt_rounds); 2288 2289 llvm::Type *ResultType = ConvertType(E->getType()); 2290 Value *Result = Builder.CreateCall(F); 2291 if (Result->getType() != ResultType) 2292 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, 2293 "cast"); 2294 return RValue::get(Result); 2295 } 2296 2297 case Builtin::BI__builtin_fpclassify: { 2298 Value *V = EmitScalarExpr(E->getArg(5)); 2299 llvm::Type *Ty = ConvertType(E->getArg(5)->getType()); 2300 2301 // Create Result 2302 BasicBlock *Begin = Builder.GetInsertBlock(); 2303 BasicBlock *End = createBasicBlock("fpclassify_end", this->CurFn); 2304 Builder.SetInsertPoint(End); 2305 PHINode *Result = 2306 Builder.CreatePHI(ConvertType(E->getArg(0)->getType()), 4, 2307 "fpclassify_result"); 2308 2309 // if (V==0) return FP_ZERO 2310 Builder.SetInsertPoint(Begin); 2311 Value *IsZero = Builder.CreateFCmpOEQ(V, Constant::getNullValue(Ty), 2312 "iszero"); 2313 Value *ZeroLiteral = EmitScalarExpr(E->getArg(4)); 2314 BasicBlock *NotZero = createBasicBlock("fpclassify_not_zero", this->CurFn); 2315 Builder.CreateCondBr(IsZero, End, NotZero); 2316 Result->addIncoming(ZeroLiteral, Begin); 2317 2318 // if (V != V) return FP_NAN 2319 Builder.SetInsertPoint(NotZero); 2320 Value *IsNan = Builder.CreateFCmpUNO(V, V, "cmp"); 2321 Value *NanLiteral = EmitScalarExpr(E->getArg(0)); 2322 BasicBlock *NotNan = createBasicBlock("fpclassify_not_nan", this->CurFn); 2323 Builder.CreateCondBr(IsNan, End, NotNan); 2324 Result->addIncoming(NanLiteral, NotZero); 2325 2326 // if (fabs(V) == infinity) return FP_INFINITY 2327 Builder.SetInsertPoint(NotNan); 2328 Value *VAbs = EmitFAbs(*this, V); 2329 Value *IsInf = 2330 Builder.CreateFCmpOEQ(VAbs, ConstantFP::getInfinity(V->getType()), 2331 "isinf"); 2332 Value *InfLiteral = EmitScalarExpr(E->getArg(1)); 2333 BasicBlock *NotInf = createBasicBlock("fpclassify_not_inf", this->CurFn); 2334 Builder.CreateCondBr(IsInf, End, NotInf); 2335 Result->addIncoming(InfLiteral, NotNan); 2336 2337 // if (fabs(V) >= MIN_NORMAL) return FP_NORMAL else FP_SUBNORMAL 2338 Builder.SetInsertPoint(NotInf); 2339 APFloat Smallest = APFloat::getSmallestNormalized( 2340 getContext().getFloatTypeSemantics(E->getArg(5)->getType())); 2341 Value *IsNormal = 2342 Builder.CreateFCmpUGE(VAbs, ConstantFP::get(V->getContext(), Smallest), 2343 "isnormal"); 2344 Value *NormalResult = 2345 Builder.CreateSelect(IsNormal, EmitScalarExpr(E->getArg(2)), 2346 EmitScalarExpr(E->getArg(3))); 2347 Builder.CreateBr(End); 2348 Result->addIncoming(NormalResult, NotInf); 2349 2350 // return Result 2351 Builder.SetInsertPoint(End); 2352 return RValue::get(Result); 2353 } 2354 2355 case Builtin::BIalloca: 2356 case Builtin::BI_alloca: 2357 case Builtin::BI__builtin_alloca: { 2358 Value *Size = EmitScalarExpr(E->getArg(0)); 2359 const TargetInfo &TI = getContext().getTargetInfo(); 2360 // The alignment of the alloca should correspond to __BIGGEST_ALIGNMENT__. 2361 unsigned SuitableAlignmentInBytes = 2362 CGM.getContext() 2363 .toCharUnitsFromBits(TI.getSuitableAlign()) 2364 .getQuantity(); 2365 AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size); 2366 AI->setAlignment(MaybeAlign(SuitableAlignmentInBytes)); 2367 initializeAlloca(*this, AI, Size, SuitableAlignmentInBytes); 2368 return RValue::get(AI); 2369 } 2370 2371 case Builtin::BI__builtin_alloca_with_align: { 2372 Value *Size = EmitScalarExpr(E->getArg(0)); 2373 Value *AlignmentInBitsValue = EmitScalarExpr(E->getArg(1)); 2374 auto *AlignmentInBitsCI = cast<ConstantInt>(AlignmentInBitsValue); 2375 unsigned AlignmentInBits = AlignmentInBitsCI->getZExtValue(); 2376 unsigned AlignmentInBytes = 2377 CGM.getContext().toCharUnitsFromBits(AlignmentInBits).getQuantity(); 2378 AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size); 2379 AI->setAlignment(MaybeAlign(AlignmentInBytes)); 2380 initializeAlloca(*this, AI, Size, AlignmentInBytes); 2381 return RValue::get(AI); 2382 } 2383 2384 case Builtin::BIbzero: 2385 case Builtin::BI__builtin_bzero: { 2386 Address Dest = EmitPointerWithAlignment(E->getArg(0)); 2387 Value *SizeVal = EmitScalarExpr(E->getArg(1)); 2388 EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(), 2389 E->getArg(0)->getExprLoc(), FD, 0); 2390 Builder.CreateMemSet(Dest, Builder.getInt8(0), SizeVal, false); 2391 return RValue::get(nullptr); 2392 } 2393 case Builtin::BImemcpy: 2394 case Builtin::BI__builtin_memcpy: { 2395 Address Dest = EmitPointerWithAlignment(E->getArg(0)); 2396 Address Src = EmitPointerWithAlignment(E->getArg(1)); 2397 Value *SizeVal = EmitScalarExpr(E->getArg(2)); 2398 EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(), 2399 E->getArg(0)->getExprLoc(), FD, 0); 2400 EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(), 2401 E->getArg(1)->getExprLoc(), FD, 1); 2402 Builder.CreateMemCpy(Dest, Src, SizeVal, false); 2403 return RValue::get(Dest.getPointer()); 2404 } 2405 2406 case Builtin::BI__builtin_char_memchr: 2407 BuiltinID = Builtin::BI__builtin_memchr; 2408 break; 2409 2410 case Builtin::BI__builtin___memcpy_chk: { 2411 // fold __builtin_memcpy_chk(x, y, cst1, cst2) to memcpy iff cst1<=cst2. 2412 Expr::EvalResult SizeResult, DstSizeResult; 2413 if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) || 2414 !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext())) 2415 break; 2416 llvm::APSInt Size = SizeResult.Val.getInt(); 2417 llvm::APSInt DstSize = DstSizeResult.Val.getInt(); 2418 if (Size.ugt(DstSize)) 2419 break; 2420 Address Dest = EmitPointerWithAlignment(E->getArg(0)); 2421 Address Src = EmitPointerWithAlignment(E->getArg(1)); 2422 Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size); 2423 Builder.CreateMemCpy(Dest, Src, SizeVal, false); 2424 return RValue::get(Dest.getPointer()); 2425 } 2426 2427 case Builtin::BI__builtin_objc_memmove_collectable: { 2428 Address DestAddr = EmitPointerWithAlignment(E->getArg(0)); 2429 Address SrcAddr = EmitPointerWithAlignment(E->getArg(1)); 2430 Value *SizeVal = EmitScalarExpr(E->getArg(2)); 2431 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, 2432 DestAddr, SrcAddr, SizeVal); 2433 return RValue::get(DestAddr.getPointer()); 2434 } 2435 2436 case Builtin::BI__builtin___memmove_chk: { 2437 // fold __builtin_memmove_chk(x, y, cst1, cst2) to memmove iff cst1<=cst2. 2438 Expr::EvalResult SizeResult, DstSizeResult; 2439 if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) || 2440 !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext())) 2441 break; 2442 llvm::APSInt Size = SizeResult.Val.getInt(); 2443 llvm::APSInt DstSize = DstSizeResult.Val.getInt(); 2444 if (Size.ugt(DstSize)) 2445 break; 2446 Address Dest = EmitPointerWithAlignment(E->getArg(0)); 2447 Address Src = EmitPointerWithAlignment(E->getArg(1)); 2448 Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size); 2449 Builder.CreateMemMove(Dest, Src, SizeVal, false); 2450 return RValue::get(Dest.getPointer()); 2451 } 2452 2453 case Builtin::BImemmove: 2454 case Builtin::BI__builtin_memmove: { 2455 Address Dest = EmitPointerWithAlignment(E->getArg(0)); 2456 Address Src = EmitPointerWithAlignment(E->getArg(1)); 2457 Value *SizeVal = EmitScalarExpr(E->getArg(2)); 2458 EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(), 2459 E->getArg(0)->getExprLoc(), FD, 0); 2460 EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(), 2461 E->getArg(1)->getExprLoc(), FD, 1); 2462 Builder.CreateMemMove(Dest, Src, SizeVal, false); 2463 return RValue::get(Dest.getPointer()); 2464 } 2465 case Builtin::BImemset: 2466 case Builtin::BI__builtin_memset: { 2467 Address Dest = EmitPointerWithAlignment(E->getArg(0)); 2468 Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)), 2469 Builder.getInt8Ty()); 2470 Value *SizeVal = EmitScalarExpr(E->getArg(2)); 2471 EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(), 2472 E->getArg(0)->getExprLoc(), FD, 0); 2473 Builder.CreateMemSet(Dest, ByteVal, SizeVal, false); 2474 return RValue::get(Dest.getPointer()); 2475 } 2476 case Builtin::BI__builtin___memset_chk: { 2477 // fold __builtin_memset_chk(x, y, cst1, cst2) to memset iff cst1<=cst2. 2478 Expr::EvalResult SizeResult, DstSizeResult; 2479 if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) || 2480 !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext())) 2481 break; 2482 llvm::APSInt Size = SizeResult.Val.getInt(); 2483 llvm::APSInt DstSize = DstSizeResult.Val.getInt(); 2484 if (Size.ugt(DstSize)) 2485 break; 2486 Address Dest = EmitPointerWithAlignment(E->getArg(0)); 2487 Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)), 2488 Builder.getInt8Ty()); 2489 Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size); 2490 Builder.CreateMemSet(Dest, ByteVal, SizeVal, false); 2491 return RValue::get(Dest.getPointer()); 2492 } 2493 case Builtin::BI__builtin_wmemcmp: { 2494 // The MSVC runtime library does not provide a definition of wmemcmp, so we 2495 // need an inline implementation. 2496 if (!getTarget().getTriple().isOSMSVCRT()) 2497 break; 2498 2499 llvm::Type *WCharTy = ConvertType(getContext().WCharTy); 2500 2501 Value *Dst = EmitScalarExpr(E->getArg(0)); 2502 Value *Src = EmitScalarExpr(E->getArg(1)); 2503 Value *Size = EmitScalarExpr(E->getArg(2)); 2504 2505 BasicBlock *Entry = Builder.GetInsertBlock(); 2506 BasicBlock *CmpGT = createBasicBlock("wmemcmp.gt"); 2507 BasicBlock *CmpLT = createBasicBlock("wmemcmp.lt"); 2508 BasicBlock *Next = createBasicBlock("wmemcmp.next"); 2509 BasicBlock *Exit = createBasicBlock("wmemcmp.exit"); 2510 Value *SizeEq0 = Builder.CreateICmpEQ(Size, ConstantInt::get(SizeTy, 0)); 2511 Builder.CreateCondBr(SizeEq0, Exit, CmpGT); 2512 2513 EmitBlock(CmpGT); 2514 PHINode *DstPhi = Builder.CreatePHI(Dst->getType(), 2); 2515 DstPhi->addIncoming(Dst, Entry); 2516 PHINode *SrcPhi = Builder.CreatePHI(Src->getType(), 2); 2517 SrcPhi->addIncoming(Src, Entry); 2518 PHINode *SizePhi = Builder.CreatePHI(SizeTy, 2); 2519 SizePhi->addIncoming(Size, Entry); 2520 CharUnits WCharAlign = 2521 getContext().getTypeAlignInChars(getContext().WCharTy); 2522 Value *DstCh = Builder.CreateAlignedLoad(WCharTy, DstPhi, WCharAlign); 2523 Value *SrcCh = Builder.CreateAlignedLoad(WCharTy, SrcPhi, WCharAlign); 2524 Value *DstGtSrc = Builder.CreateICmpUGT(DstCh, SrcCh); 2525 Builder.CreateCondBr(DstGtSrc, Exit, CmpLT); 2526 2527 EmitBlock(CmpLT); 2528 Value *DstLtSrc = Builder.CreateICmpULT(DstCh, SrcCh); 2529 Builder.CreateCondBr(DstLtSrc, Exit, Next); 2530 2531 EmitBlock(Next); 2532 Value *NextDst = Builder.CreateConstInBoundsGEP1_32(WCharTy, DstPhi, 1); 2533 Value *NextSrc = Builder.CreateConstInBoundsGEP1_32(WCharTy, SrcPhi, 1); 2534 Value *NextSize = Builder.CreateSub(SizePhi, ConstantInt::get(SizeTy, 1)); 2535 Value *NextSizeEq0 = 2536 Builder.CreateICmpEQ(NextSize, ConstantInt::get(SizeTy, 0)); 2537 Builder.CreateCondBr(NextSizeEq0, Exit, CmpGT); 2538 DstPhi->addIncoming(NextDst, Next); 2539 SrcPhi->addIncoming(NextSrc, Next); 2540 SizePhi->addIncoming(NextSize, Next); 2541 2542 EmitBlock(Exit); 2543 PHINode *Ret = Builder.CreatePHI(IntTy, 4); 2544 Ret->addIncoming(ConstantInt::get(IntTy, 0), Entry); 2545 Ret->addIncoming(ConstantInt::get(IntTy, 1), CmpGT); 2546 Ret->addIncoming(ConstantInt::get(IntTy, -1), CmpLT); 2547 Ret->addIncoming(ConstantInt::get(IntTy, 0), Next); 2548 return RValue::get(Ret); 2549 } 2550 case Builtin::BI__builtin_dwarf_cfa: { 2551 // The offset in bytes from the first argument to the CFA. 2552 // 2553 // Why on earth is this in the frontend? Is there any reason at 2554 // all that the backend can't reasonably determine this while 2555 // lowering llvm.eh.dwarf.cfa()? 2556 // 2557 // TODO: If there's a satisfactory reason, add a target hook for 2558 // this instead of hard-coding 0, which is correct for most targets. 2559 int32_t Offset = 0; 2560 2561 Function *F = CGM.getIntrinsic(Intrinsic::eh_dwarf_cfa); 2562 return RValue::get(Builder.CreateCall(F, 2563 llvm::ConstantInt::get(Int32Ty, Offset))); 2564 } 2565 case Builtin::BI__builtin_return_address: { 2566 Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0), 2567 getContext().UnsignedIntTy); 2568 Function *F = CGM.getIntrinsic(Intrinsic::returnaddress); 2569 return RValue::get(Builder.CreateCall(F, Depth)); 2570 } 2571 case Builtin::BI_ReturnAddress: { 2572 Function *F = CGM.getIntrinsic(Intrinsic::returnaddress); 2573 return RValue::get(Builder.CreateCall(F, Builder.getInt32(0))); 2574 } 2575 case Builtin::BI__builtin_frame_address: { 2576 Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0), 2577 getContext().UnsignedIntTy); 2578 Function *F = CGM.getIntrinsic(Intrinsic::frameaddress, AllocaInt8PtrTy); 2579 return RValue::get(Builder.CreateCall(F, Depth)); 2580 } 2581 case Builtin::BI__builtin_extract_return_addr: { 2582 Value *Address = EmitScalarExpr(E->getArg(0)); 2583 Value *Result = getTargetHooks().decodeReturnAddress(*this, Address); 2584 return RValue::get(Result); 2585 } 2586 case Builtin::BI__builtin_frob_return_addr: { 2587 Value *Address = EmitScalarExpr(E->getArg(0)); 2588 Value *Result = getTargetHooks().encodeReturnAddress(*this, Address); 2589 return RValue::get(Result); 2590 } 2591 case Builtin::BI__builtin_dwarf_sp_column: { 2592 llvm::IntegerType *Ty 2593 = cast<llvm::IntegerType>(ConvertType(E->getType())); 2594 int Column = getTargetHooks().getDwarfEHStackPointer(CGM); 2595 if (Column == -1) { 2596 CGM.ErrorUnsupported(E, "__builtin_dwarf_sp_column"); 2597 return RValue::get(llvm::UndefValue::get(Ty)); 2598 } 2599 return RValue::get(llvm::ConstantInt::get(Ty, Column, true)); 2600 } 2601 case Builtin::BI__builtin_init_dwarf_reg_size_table: { 2602 Value *Address = EmitScalarExpr(E->getArg(0)); 2603 if (getTargetHooks().initDwarfEHRegSizeTable(*this, Address)) 2604 CGM.ErrorUnsupported(E, "__builtin_init_dwarf_reg_size_table"); 2605 return RValue::get(llvm::UndefValue::get(ConvertType(E->getType()))); 2606 } 2607 case Builtin::BI__builtin_eh_return: { 2608 Value *Int = EmitScalarExpr(E->getArg(0)); 2609 Value *Ptr = EmitScalarExpr(E->getArg(1)); 2610 2611 llvm::IntegerType *IntTy = cast<llvm::IntegerType>(Int->getType()); 2612 assert((IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) && 2613 "LLVM's __builtin_eh_return only supports 32- and 64-bit variants"); 2614 Function *F = 2615 CGM.getIntrinsic(IntTy->getBitWidth() == 32 ? Intrinsic::eh_return_i32 2616 : Intrinsic::eh_return_i64); 2617 Builder.CreateCall(F, {Int, Ptr}); 2618 Builder.CreateUnreachable(); 2619 2620 // We do need to preserve an insertion point. 2621 EmitBlock(createBasicBlock("builtin_eh_return.cont")); 2622 2623 return RValue::get(nullptr); 2624 } 2625 case Builtin::BI__builtin_unwind_init: { 2626 Function *F = CGM.getIntrinsic(Intrinsic::eh_unwind_init); 2627 return RValue::get(Builder.CreateCall(F)); 2628 } 2629 case Builtin::BI__builtin_extend_pointer: { 2630 // Extends a pointer to the size of an _Unwind_Word, which is 2631 // uint64_t on all platforms. Generally this gets poked into a 2632 // register and eventually used as an address, so if the 2633 // addressing registers are wider than pointers and the platform 2634 // doesn't implicitly ignore high-order bits when doing 2635 // addressing, we need to make sure we zext / sext based on 2636 // the platform's expectations. 2637 // 2638 // See: http://gcc.gnu.org/ml/gcc-bugs/2002-02/msg00237.html 2639 2640 // Cast the pointer to intptr_t. 2641 Value *Ptr = EmitScalarExpr(E->getArg(0)); 2642 Value *Result = Builder.CreatePtrToInt(Ptr, IntPtrTy, "extend.cast"); 2643 2644 // If that's 64 bits, we're done. 2645 if (IntPtrTy->getBitWidth() == 64) 2646 return RValue::get(Result); 2647 2648 // Otherwise, ask the codegen data what to do. 2649 if (getTargetHooks().extendPointerWithSExt()) 2650 return RValue::get(Builder.CreateSExt(Result, Int64Ty, "extend.sext")); 2651 else 2652 return RValue::get(Builder.CreateZExt(Result, Int64Ty, "extend.zext")); 2653 } 2654 case Builtin::BI__builtin_setjmp: { 2655 // Buffer is a void**. 2656 Address Buf = EmitPointerWithAlignment(E->getArg(0)); 2657 2658 // Store the frame pointer to the setjmp buffer. 2659 Value *FrameAddr = Builder.CreateCall( 2660 CGM.getIntrinsic(Intrinsic::frameaddress, AllocaInt8PtrTy), 2661 ConstantInt::get(Int32Ty, 0)); 2662 Builder.CreateStore(FrameAddr, Buf); 2663 2664 // Store the stack pointer to the setjmp buffer. 2665 Value *StackAddr = 2666 Builder.CreateCall(CGM.getIntrinsic(Intrinsic::stacksave)); 2667 Address StackSaveSlot = Builder.CreateConstInBoundsGEP(Buf, 2); 2668 Builder.CreateStore(StackAddr, StackSaveSlot); 2669 2670 // Call LLVM's EH setjmp, which is lightweight. 2671 Function *F = CGM.getIntrinsic(Intrinsic::eh_sjlj_setjmp); 2672 Buf = Builder.CreateBitCast(Buf, Int8PtrTy); 2673 return RValue::get(Builder.CreateCall(F, Buf.getPointer())); 2674 } 2675 case Builtin::BI__builtin_longjmp: { 2676 Value *Buf = EmitScalarExpr(E->getArg(0)); 2677 Buf = Builder.CreateBitCast(Buf, Int8PtrTy); 2678 2679 // Call LLVM's EH longjmp, which is lightweight. 2680 Builder.CreateCall(CGM.getIntrinsic(Intrinsic::eh_sjlj_longjmp), Buf); 2681 2682 // longjmp doesn't return; mark this as unreachable. 2683 Builder.CreateUnreachable(); 2684 2685 // We do need to preserve an insertion point. 2686 EmitBlock(createBasicBlock("longjmp.cont")); 2687 2688 return RValue::get(nullptr); 2689 } 2690 case Builtin::BI__builtin_launder: { 2691 const Expr *Arg = E->getArg(0); 2692 QualType ArgTy = Arg->getType()->getPointeeType(); 2693 Value *Ptr = EmitScalarExpr(Arg); 2694 if (TypeRequiresBuiltinLaunder(CGM, ArgTy)) 2695 Ptr = Builder.CreateLaunderInvariantGroup(Ptr); 2696 2697 return RValue::get(Ptr); 2698 } 2699 case Builtin::BI__sync_fetch_and_add: 2700 case Builtin::BI__sync_fetch_and_sub: 2701 case Builtin::BI__sync_fetch_and_or: 2702 case Builtin::BI__sync_fetch_and_and: 2703 case Builtin::BI__sync_fetch_and_xor: 2704 case Builtin::BI__sync_fetch_and_nand: 2705 case Builtin::BI__sync_add_and_fetch: 2706 case Builtin::BI__sync_sub_and_fetch: 2707 case Builtin::BI__sync_and_and_fetch: 2708 case Builtin::BI__sync_or_and_fetch: 2709 case Builtin::BI__sync_xor_and_fetch: 2710 case Builtin::BI__sync_nand_and_fetch: 2711 case Builtin::BI__sync_val_compare_and_swap: 2712 case Builtin::BI__sync_bool_compare_and_swap: 2713 case Builtin::BI__sync_lock_test_and_set: 2714 case Builtin::BI__sync_lock_release: 2715 case Builtin::BI__sync_swap: 2716 llvm_unreachable("Shouldn't make it through sema"); 2717 case Builtin::BI__sync_fetch_and_add_1: 2718 case Builtin::BI__sync_fetch_and_add_2: 2719 case Builtin::BI__sync_fetch_and_add_4: 2720 case Builtin::BI__sync_fetch_and_add_8: 2721 case Builtin::BI__sync_fetch_and_add_16: 2722 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Add, E); 2723 case Builtin::BI__sync_fetch_and_sub_1: 2724 case Builtin::BI__sync_fetch_and_sub_2: 2725 case Builtin::BI__sync_fetch_and_sub_4: 2726 case Builtin::BI__sync_fetch_and_sub_8: 2727 case Builtin::BI__sync_fetch_and_sub_16: 2728 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Sub, E); 2729 case Builtin::BI__sync_fetch_and_or_1: 2730 case Builtin::BI__sync_fetch_and_or_2: 2731 case Builtin::BI__sync_fetch_and_or_4: 2732 case Builtin::BI__sync_fetch_and_or_8: 2733 case Builtin::BI__sync_fetch_and_or_16: 2734 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Or, E); 2735 case Builtin::BI__sync_fetch_and_and_1: 2736 case Builtin::BI__sync_fetch_and_and_2: 2737 case Builtin::BI__sync_fetch_and_and_4: 2738 case Builtin::BI__sync_fetch_and_and_8: 2739 case Builtin::BI__sync_fetch_and_and_16: 2740 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::And, E); 2741 case Builtin::BI__sync_fetch_and_xor_1: 2742 case Builtin::BI__sync_fetch_and_xor_2: 2743 case Builtin::BI__sync_fetch_and_xor_4: 2744 case Builtin::BI__sync_fetch_and_xor_8: 2745 case Builtin::BI__sync_fetch_and_xor_16: 2746 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xor, E); 2747 case Builtin::BI__sync_fetch_and_nand_1: 2748 case Builtin::BI__sync_fetch_and_nand_2: 2749 case Builtin::BI__sync_fetch_and_nand_4: 2750 case Builtin::BI__sync_fetch_and_nand_8: 2751 case Builtin::BI__sync_fetch_and_nand_16: 2752 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Nand, E); 2753 2754 // Clang extensions: not overloaded yet. 2755 case Builtin::BI__sync_fetch_and_min: 2756 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Min, E); 2757 case Builtin::BI__sync_fetch_and_max: 2758 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Max, E); 2759 case Builtin::BI__sync_fetch_and_umin: 2760 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMin, E); 2761 case Builtin::BI__sync_fetch_and_umax: 2762 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMax, E); 2763 2764 case Builtin::BI__sync_add_and_fetch_1: 2765 case Builtin::BI__sync_add_and_fetch_2: 2766 case Builtin::BI__sync_add_and_fetch_4: 2767 case Builtin::BI__sync_add_and_fetch_8: 2768 case Builtin::BI__sync_add_and_fetch_16: 2769 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Add, E, 2770 llvm::Instruction::Add); 2771 case Builtin::BI__sync_sub_and_fetch_1: 2772 case Builtin::BI__sync_sub_and_fetch_2: 2773 case Builtin::BI__sync_sub_and_fetch_4: 2774 case Builtin::BI__sync_sub_and_fetch_8: 2775 case Builtin::BI__sync_sub_and_fetch_16: 2776 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Sub, E, 2777 llvm::Instruction::Sub); 2778 case Builtin::BI__sync_and_and_fetch_1: 2779 case Builtin::BI__sync_and_and_fetch_2: 2780 case Builtin::BI__sync_and_and_fetch_4: 2781 case Builtin::BI__sync_and_and_fetch_8: 2782 case Builtin::BI__sync_and_and_fetch_16: 2783 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::And, E, 2784 llvm::Instruction::And); 2785 case Builtin::BI__sync_or_and_fetch_1: 2786 case Builtin::BI__sync_or_and_fetch_2: 2787 case Builtin::BI__sync_or_and_fetch_4: 2788 case Builtin::BI__sync_or_and_fetch_8: 2789 case Builtin::BI__sync_or_and_fetch_16: 2790 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Or, E, 2791 llvm::Instruction::Or); 2792 case Builtin::BI__sync_xor_and_fetch_1: 2793 case Builtin::BI__sync_xor_and_fetch_2: 2794 case Builtin::BI__sync_xor_and_fetch_4: 2795 case Builtin::BI__sync_xor_and_fetch_8: 2796 case Builtin::BI__sync_xor_and_fetch_16: 2797 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Xor, E, 2798 llvm::Instruction::Xor); 2799 case Builtin::BI__sync_nand_and_fetch_1: 2800 case Builtin::BI__sync_nand_and_fetch_2: 2801 case Builtin::BI__sync_nand_and_fetch_4: 2802 case Builtin::BI__sync_nand_and_fetch_8: 2803 case Builtin::BI__sync_nand_and_fetch_16: 2804 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Nand, E, 2805 llvm::Instruction::And, true); 2806 2807 case Builtin::BI__sync_val_compare_and_swap_1: 2808 case Builtin::BI__sync_val_compare_and_swap_2: 2809 case Builtin::BI__sync_val_compare_and_swap_4: 2810 case Builtin::BI__sync_val_compare_and_swap_8: 2811 case Builtin::BI__sync_val_compare_and_swap_16: 2812 return RValue::get(MakeAtomicCmpXchgValue(*this, E, false)); 2813 2814 case Builtin::BI__sync_bool_compare_and_swap_1: 2815 case Builtin::BI__sync_bool_compare_and_swap_2: 2816 case Builtin::BI__sync_bool_compare_and_swap_4: 2817 case Builtin::BI__sync_bool_compare_and_swap_8: 2818 case Builtin::BI__sync_bool_compare_and_swap_16: 2819 return RValue::get(MakeAtomicCmpXchgValue(*this, E, true)); 2820 2821 case Builtin::BI__sync_swap_1: 2822 case Builtin::BI__sync_swap_2: 2823 case Builtin::BI__sync_swap_4: 2824 case Builtin::BI__sync_swap_8: 2825 case Builtin::BI__sync_swap_16: 2826 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E); 2827 2828 case Builtin::BI__sync_lock_test_and_set_1: 2829 case Builtin::BI__sync_lock_test_and_set_2: 2830 case Builtin::BI__sync_lock_test_and_set_4: 2831 case Builtin::BI__sync_lock_test_and_set_8: 2832 case Builtin::BI__sync_lock_test_and_set_16: 2833 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E); 2834 2835 case Builtin::BI__sync_lock_release_1: 2836 case Builtin::BI__sync_lock_release_2: 2837 case Builtin::BI__sync_lock_release_4: 2838 case Builtin::BI__sync_lock_release_8: 2839 case Builtin::BI__sync_lock_release_16: { 2840 Value *Ptr = EmitScalarExpr(E->getArg(0)); 2841 QualType ElTy = E->getArg(0)->getType()->getPointeeType(); 2842 CharUnits StoreSize = getContext().getTypeSizeInChars(ElTy); 2843 llvm::Type *ITy = llvm::IntegerType::get(getLLVMContext(), 2844 StoreSize.getQuantity() * 8); 2845 Ptr = Builder.CreateBitCast(Ptr, ITy->getPointerTo()); 2846 llvm::StoreInst *Store = 2847 Builder.CreateAlignedStore(llvm::Constant::getNullValue(ITy), Ptr, 2848 StoreSize); 2849 Store->setAtomic(llvm::AtomicOrdering::Release); 2850 return RValue::get(nullptr); 2851 } 2852 2853 case Builtin::BI__sync_synchronize: { 2854 // We assume this is supposed to correspond to a C++0x-style 2855 // sequentially-consistent fence (i.e. this is only usable for 2856 // synchronization, not device I/O or anything like that). This intrinsic 2857 // is really badly designed in the sense that in theory, there isn't 2858 // any way to safely use it... but in practice, it mostly works 2859 // to use it with non-atomic loads and stores to get acquire/release 2860 // semantics. 2861 Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent); 2862 return RValue::get(nullptr); 2863 } 2864 2865 case Builtin::BI__builtin_nontemporal_load: 2866 return RValue::get(EmitNontemporalLoad(*this, E)); 2867 case Builtin::BI__builtin_nontemporal_store: 2868 return RValue::get(EmitNontemporalStore(*this, E)); 2869 case Builtin::BI__c11_atomic_is_lock_free: 2870 case Builtin::BI__atomic_is_lock_free: { 2871 // Call "bool __atomic_is_lock_free(size_t size, void *ptr)". For the 2872 // __c11 builtin, ptr is 0 (indicating a properly-aligned object), since 2873 // _Atomic(T) is always properly-aligned. 2874 const char *LibCallName = "__atomic_is_lock_free"; 2875 CallArgList Args; 2876 Args.add(RValue::get(EmitScalarExpr(E->getArg(0))), 2877 getContext().getSizeType()); 2878 if (BuiltinID == Builtin::BI__atomic_is_lock_free) 2879 Args.add(RValue::get(EmitScalarExpr(E->getArg(1))), 2880 getContext().VoidPtrTy); 2881 else 2882 Args.add(RValue::get(llvm::Constant::getNullValue(VoidPtrTy)), 2883 getContext().VoidPtrTy); 2884 const CGFunctionInfo &FuncInfo = 2885 CGM.getTypes().arrangeBuiltinFunctionCall(E->getType(), Args); 2886 llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo); 2887 llvm::FunctionCallee Func = CGM.CreateRuntimeFunction(FTy, LibCallName); 2888 return EmitCall(FuncInfo, CGCallee::forDirect(Func), 2889 ReturnValueSlot(), Args); 2890 } 2891 2892 case Builtin::BI__atomic_test_and_set: { 2893 // Look at the argument type to determine whether this is a volatile 2894 // operation. The parameter type is always volatile. 2895 QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType(); 2896 bool Volatile = 2897 PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified(); 2898 2899 Value *Ptr = EmitScalarExpr(E->getArg(0)); 2900 unsigned AddrSpace = Ptr->getType()->getPointerAddressSpace(); 2901 Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace)); 2902 Value *NewVal = Builder.getInt8(1); 2903 Value *Order = EmitScalarExpr(E->getArg(1)); 2904 if (isa<llvm::ConstantInt>(Order)) { 2905 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue(); 2906 AtomicRMWInst *Result = nullptr; 2907 switch (ord) { 2908 case 0: // memory_order_relaxed 2909 default: // invalid order 2910 Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal, 2911 llvm::AtomicOrdering::Monotonic); 2912 break; 2913 case 1: // memory_order_consume 2914 case 2: // memory_order_acquire 2915 Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal, 2916 llvm::AtomicOrdering::Acquire); 2917 break; 2918 case 3: // memory_order_release 2919 Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal, 2920 llvm::AtomicOrdering::Release); 2921 break; 2922 case 4: // memory_order_acq_rel 2923 2924 Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal, 2925 llvm::AtomicOrdering::AcquireRelease); 2926 break; 2927 case 5: // memory_order_seq_cst 2928 Result = Builder.CreateAtomicRMW( 2929 llvm::AtomicRMWInst::Xchg, Ptr, NewVal, 2930 llvm::AtomicOrdering::SequentiallyConsistent); 2931 break; 2932 } 2933 Result->setVolatile(Volatile); 2934 return RValue::get(Builder.CreateIsNotNull(Result, "tobool")); 2935 } 2936 2937 llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn); 2938 2939 llvm::BasicBlock *BBs[5] = { 2940 createBasicBlock("monotonic", CurFn), 2941 createBasicBlock("acquire", CurFn), 2942 createBasicBlock("release", CurFn), 2943 createBasicBlock("acqrel", CurFn), 2944 createBasicBlock("seqcst", CurFn) 2945 }; 2946 llvm::AtomicOrdering Orders[5] = { 2947 llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Acquire, 2948 llvm::AtomicOrdering::Release, llvm::AtomicOrdering::AcquireRelease, 2949 llvm::AtomicOrdering::SequentiallyConsistent}; 2950 2951 Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false); 2952 llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]); 2953 2954 Builder.SetInsertPoint(ContBB); 2955 PHINode *Result = Builder.CreatePHI(Int8Ty, 5, "was_set"); 2956 2957 for (unsigned i = 0; i < 5; ++i) { 2958 Builder.SetInsertPoint(BBs[i]); 2959 AtomicRMWInst *RMW = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, 2960 Ptr, NewVal, Orders[i]); 2961 RMW->setVolatile(Volatile); 2962 Result->addIncoming(RMW, BBs[i]); 2963 Builder.CreateBr(ContBB); 2964 } 2965 2966 SI->addCase(Builder.getInt32(0), BBs[0]); 2967 SI->addCase(Builder.getInt32(1), BBs[1]); 2968 SI->addCase(Builder.getInt32(2), BBs[1]); 2969 SI->addCase(Builder.getInt32(3), BBs[2]); 2970 SI->addCase(Builder.getInt32(4), BBs[3]); 2971 SI->addCase(Builder.getInt32(5), BBs[4]); 2972 2973 Builder.SetInsertPoint(ContBB); 2974 return RValue::get(Builder.CreateIsNotNull(Result, "tobool")); 2975 } 2976 2977 case Builtin::BI__atomic_clear: { 2978 QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType(); 2979 bool Volatile = 2980 PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified(); 2981 2982 Address Ptr = EmitPointerWithAlignment(E->getArg(0)); 2983 unsigned AddrSpace = Ptr.getPointer()->getType()->getPointerAddressSpace(); 2984 Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace)); 2985 Value *NewVal = Builder.getInt8(0); 2986 Value *Order = EmitScalarExpr(E->getArg(1)); 2987 if (isa<llvm::ConstantInt>(Order)) { 2988 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue(); 2989 StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile); 2990 switch (ord) { 2991 case 0: // memory_order_relaxed 2992 default: // invalid order 2993 Store->setOrdering(llvm::AtomicOrdering::Monotonic); 2994 break; 2995 case 3: // memory_order_release 2996 Store->setOrdering(llvm::AtomicOrdering::Release); 2997 break; 2998 case 5: // memory_order_seq_cst 2999 Store->setOrdering(llvm::AtomicOrdering::SequentiallyConsistent); 3000 break; 3001 } 3002 return RValue::get(nullptr); 3003 } 3004 3005 llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn); 3006 3007 llvm::BasicBlock *BBs[3] = { 3008 createBasicBlock("monotonic", CurFn), 3009 createBasicBlock("release", CurFn), 3010 createBasicBlock("seqcst", CurFn) 3011 }; 3012 llvm::AtomicOrdering Orders[3] = { 3013 llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Release, 3014 llvm::AtomicOrdering::SequentiallyConsistent}; 3015 3016 Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false); 3017 llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]); 3018 3019 for (unsigned i = 0; i < 3; ++i) { 3020 Builder.SetInsertPoint(BBs[i]); 3021 StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile); 3022 Store->setOrdering(Orders[i]); 3023 Builder.CreateBr(ContBB); 3024 } 3025 3026 SI->addCase(Builder.getInt32(0), BBs[0]); 3027 SI->addCase(Builder.getInt32(3), BBs[1]); 3028 SI->addCase(Builder.getInt32(5), BBs[2]); 3029 3030 Builder.SetInsertPoint(ContBB); 3031 return RValue::get(nullptr); 3032 } 3033 3034 case Builtin::BI__atomic_thread_fence: 3035 case Builtin::BI__atomic_signal_fence: 3036 case Builtin::BI__c11_atomic_thread_fence: 3037 case Builtin::BI__c11_atomic_signal_fence: { 3038 llvm::SyncScope::ID SSID; 3039 if (BuiltinID == Builtin::BI__atomic_signal_fence || 3040 BuiltinID == Builtin::BI__c11_atomic_signal_fence) 3041 SSID = llvm::SyncScope::SingleThread; 3042 else 3043 SSID = llvm::SyncScope::System; 3044 Value *Order = EmitScalarExpr(E->getArg(0)); 3045 if (isa<llvm::ConstantInt>(Order)) { 3046 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue(); 3047 switch (ord) { 3048 case 0: // memory_order_relaxed 3049 default: // invalid order 3050 break; 3051 case 1: // memory_order_consume 3052 case 2: // memory_order_acquire 3053 Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID); 3054 break; 3055 case 3: // memory_order_release 3056 Builder.CreateFence(llvm::AtomicOrdering::Release, SSID); 3057 break; 3058 case 4: // memory_order_acq_rel 3059 Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID); 3060 break; 3061 case 5: // memory_order_seq_cst 3062 Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID); 3063 break; 3064 } 3065 return RValue::get(nullptr); 3066 } 3067 3068 llvm::BasicBlock *AcquireBB, *ReleaseBB, *AcqRelBB, *SeqCstBB; 3069 AcquireBB = createBasicBlock("acquire", CurFn); 3070 ReleaseBB = createBasicBlock("release", CurFn); 3071 AcqRelBB = createBasicBlock("acqrel", CurFn); 3072 SeqCstBB = createBasicBlock("seqcst", CurFn); 3073 llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn); 3074 3075 Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false); 3076 llvm::SwitchInst *SI = Builder.CreateSwitch(Order, ContBB); 3077 3078 Builder.SetInsertPoint(AcquireBB); 3079 Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID); 3080 Builder.CreateBr(ContBB); 3081 SI->addCase(Builder.getInt32(1), AcquireBB); 3082 SI->addCase(Builder.getInt32(2), AcquireBB); 3083 3084 Builder.SetInsertPoint(ReleaseBB); 3085 Builder.CreateFence(llvm::AtomicOrdering::Release, SSID); 3086 Builder.CreateBr(ContBB); 3087 SI->addCase(Builder.getInt32(3), ReleaseBB); 3088 3089 Builder.SetInsertPoint(AcqRelBB); 3090 Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID); 3091 Builder.CreateBr(ContBB); 3092 SI->addCase(Builder.getInt32(4), AcqRelBB); 3093 3094 Builder.SetInsertPoint(SeqCstBB); 3095 Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID); 3096 Builder.CreateBr(ContBB); 3097 SI->addCase(Builder.getInt32(5), SeqCstBB); 3098 3099 Builder.SetInsertPoint(ContBB); 3100 return RValue::get(nullptr); 3101 } 3102 3103 case Builtin::BI__builtin_signbit: 3104 case Builtin::BI__builtin_signbitf: 3105 case Builtin::BI__builtin_signbitl: { 3106 return RValue::get( 3107 Builder.CreateZExt(EmitSignBit(*this, EmitScalarExpr(E->getArg(0))), 3108 ConvertType(E->getType()))); 3109 } 3110 case Builtin::BI__annotation: { 3111 // Re-encode each wide string to UTF8 and make an MDString. 3112 SmallVector<Metadata *, 1> Strings; 3113 for (const Expr *Arg : E->arguments()) { 3114 const auto *Str = cast<StringLiteral>(Arg->IgnoreParenCasts()); 3115 assert(Str->getCharByteWidth() == 2); 3116 StringRef WideBytes = Str->getBytes(); 3117 std::string StrUtf8; 3118 if (!convertUTF16ToUTF8String( 3119 makeArrayRef(WideBytes.data(), WideBytes.size()), StrUtf8)) { 3120 CGM.ErrorUnsupported(E, "non-UTF16 __annotation argument"); 3121 continue; 3122 } 3123 Strings.push_back(llvm::MDString::get(getLLVMContext(), StrUtf8)); 3124 } 3125 3126 // Build and MDTuple of MDStrings and emit the intrinsic call. 3127 llvm::Function *F = 3128 CGM.getIntrinsic(llvm::Intrinsic::codeview_annotation, {}); 3129 MDTuple *StrTuple = MDTuple::get(getLLVMContext(), Strings); 3130 Builder.CreateCall(F, MetadataAsValue::get(getLLVMContext(), StrTuple)); 3131 return RValue::getIgnored(); 3132 } 3133 case Builtin::BI__builtin_annotation: { 3134 llvm::Value *AnnVal = EmitScalarExpr(E->getArg(0)); 3135 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::annotation, 3136 AnnVal->getType()); 3137 3138 // Get the annotation string, go through casts. Sema requires this to be a 3139 // non-wide string literal, potentially casted, so the cast<> is safe. 3140 const Expr *AnnotationStrExpr = E->getArg(1)->IgnoreParenCasts(); 3141 StringRef Str = cast<StringLiteral>(AnnotationStrExpr)->getString(); 3142 return RValue::get(EmitAnnotationCall(F, AnnVal, Str, E->getExprLoc())); 3143 } 3144 case Builtin::BI__builtin_addcb: 3145 case Builtin::BI__builtin_addcs: 3146 case Builtin::BI__builtin_addc: 3147 case Builtin::BI__builtin_addcl: 3148 case Builtin::BI__builtin_addcll: 3149 case Builtin::BI__builtin_subcb: 3150 case Builtin::BI__builtin_subcs: 3151 case Builtin::BI__builtin_subc: 3152 case Builtin::BI__builtin_subcl: 3153 case Builtin::BI__builtin_subcll: { 3154 3155 // We translate all of these builtins from expressions of the form: 3156 // int x = ..., y = ..., carryin = ..., carryout, result; 3157 // result = __builtin_addc(x, y, carryin, &carryout); 3158 // 3159 // to LLVM IR of the form: 3160 // 3161 // %tmp1 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %x, i32 %y) 3162 // %tmpsum1 = extractvalue {i32, i1} %tmp1, 0 3163 // %carry1 = extractvalue {i32, i1} %tmp1, 1 3164 // %tmp2 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %tmpsum1, 3165 // i32 %carryin) 3166 // %result = extractvalue {i32, i1} %tmp2, 0 3167 // %carry2 = extractvalue {i32, i1} %tmp2, 1 3168 // %tmp3 = or i1 %carry1, %carry2 3169 // %tmp4 = zext i1 %tmp3 to i32 3170 // store i32 %tmp4, i32* %carryout 3171 3172 // Scalarize our inputs. 3173 llvm::Value *X = EmitScalarExpr(E->getArg(0)); 3174 llvm::Value *Y = EmitScalarExpr(E->getArg(1)); 3175 llvm::Value *Carryin = EmitScalarExpr(E->getArg(2)); 3176 Address CarryOutPtr = EmitPointerWithAlignment(E->getArg(3)); 3177 3178 // Decide if we are lowering to a uadd.with.overflow or usub.with.overflow. 3179 llvm::Intrinsic::ID IntrinsicId; 3180 switch (BuiltinID) { 3181 default: llvm_unreachable("Unknown multiprecision builtin id."); 3182 case Builtin::BI__builtin_addcb: 3183 case Builtin::BI__builtin_addcs: 3184 case Builtin::BI__builtin_addc: 3185 case Builtin::BI__builtin_addcl: 3186 case Builtin::BI__builtin_addcll: 3187 IntrinsicId = llvm::Intrinsic::uadd_with_overflow; 3188 break; 3189 case Builtin::BI__builtin_subcb: 3190 case Builtin::BI__builtin_subcs: 3191 case Builtin::BI__builtin_subc: 3192 case Builtin::BI__builtin_subcl: 3193 case Builtin::BI__builtin_subcll: 3194 IntrinsicId = llvm::Intrinsic::usub_with_overflow; 3195 break; 3196 } 3197 3198 // Construct our resulting LLVM IR expression. 3199 llvm::Value *Carry1; 3200 llvm::Value *Sum1 = EmitOverflowIntrinsic(*this, IntrinsicId, 3201 X, Y, Carry1); 3202 llvm::Value *Carry2; 3203 llvm::Value *Sum2 = EmitOverflowIntrinsic(*this, IntrinsicId, 3204 Sum1, Carryin, Carry2); 3205 llvm::Value *CarryOut = Builder.CreateZExt(Builder.CreateOr(Carry1, Carry2), 3206 X->getType()); 3207 Builder.CreateStore(CarryOut, CarryOutPtr); 3208 return RValue::get(Sum2); 3209 } 3210 3211 case Builtin::BI__builtin_add_overflow: 3212 case Builtin::BI__builtin_sub_overflow: 3213 case Builtin::BI__builtin_mul_overflow: { 3214 const clang::Expr *LeftArg = E->getArg(0); 3215 const clang::Expr *RightArg = E->getArg(1); 3216 const clang::Expr *ResultArg = E->getArg(2); 3217 3218 clang::QualType ResultQTy = 3219 ResultArg->getType()->castAs<PointerType>()->getPointeeType(); 3220 3221 WidthAndSignedness LeftInfo = 3222 getIntegerWidthAndSignedness(CGM.getContext(), LeftArg->getType()); 3223 WidthAndSignedness RightInfo = 3224 getIntegerWidthAndSignedness(CGM.getContext(), RightArg->getType()); 3225 WidthAndSignedness ResultInfo = 3226 getIntegerWidthAndSignedness(CGM.getContext(), ResultQTy); 3227 3228 // Handle mixed-sign multiplication as a special case, because adding 3229 // runtime or backend support for our generic irgen would be too expensive. 3230 if (isSpecialMixedSignMultiply(BuiltinID, LeftInfo, RightInfo, ResultInfo)) 3231 return EmitCheckedMixedSignMultiply(*this, LeftArg, LeftInfo, RightArg, 3232 RightInfo, ResultArg, ResultQTy, 3233 ResultInfo); 3234 3235 WidthAndSignedness EncompassingInfo = 3236 EncompassingIntegerType({LeftInfo, RightInfo, ResultInfo}); 3237 3238 llvm::Type *EncompassingLLVMTy = 3239 llvm::IntegerType::get(CGM.getLLVMContext(), EncompassingInfo.Width); 3240 3241 llvm::Type *ResultLLVMTy = CGM.getTypes().ConvertType(ResultQTy); 3242 3243 llvm::Intrinsic::ID IntrinsicId; 3244 switch (BuiltinID) { 3245 default: 3246 llvm_unreachable("Unknown overflow builtin id."); 3247 case Builtin::BI__builtin_add_overflow: 3248 IntrinsicId = EncompassingInfo.Signed 3249 ? llvm::Intrinsic::sadd_with_overflow 3250 : llvm::Intrinsic::uadd_with_overflow; 3251 break; 3252 case Builtin::BI__builtin_sub_overflow: 3253 IntrinsicId = EncompassingInfo.Signed 3254 ? llvm::Intrinsic::ssub_with_overflow 3255 : llvm::Intrinsic::usub_with_overflow; 3256 break; 3257 case Builtin::BI__builtin_mul_overflow: 3258 IntrinsicId = EncompassingInfo.Signed 3259 ? llvm::Intrinsic::smul_with_overflow 3260 : llvm::Intrinsic::umul_with_overflow; 3261 break; 3262 } 3263 3264 llvm::Value *Left = EmitScalarExpr(LeftArg); 3265 llvm::Value *Right = EmitScalarExpr(RightArg); 3266 Address ResultPtr = EmitPointerWithAlignment(ResultArg); 3267 3268 // Extend each operand to the encompassing type. 3269 Left = Builder.CreateIntCast(Left, EncompassingLLVMTy, LeftInfo.Signed); 3270 Right = Builder.CreateIntCast(Right, EncompassingLLVMTy, RightInfo.Signed); 3271 3272 // Perform the operation on the extended values. 3273 llvm::Value *Overflow, *Result; 3274 Result = EmitOverflowIntrinsic(*this, IntrinsicId, Left, Right, Overflow); 3275 3276 if (EncompassingInfo.Width > ResultInfo.Width) { 3277 // The encompassing type is wider than the result type, so we need to 3278 // truncate it. 3279 llvm::Value *ResultTrunc = Builder.CreateTrunc(Result, ResultLLVMTy); 3280 3281 // To see if the truncation caused an overflow, we will extend 3282 // the result and then compare it to the original result. 3283 llvm::Value *ResultTruncExt = Builder.CreateIntCast( 3284 ResultTrunc, EncompassingLLVMTy, ResultInfo.Signed); 3285 llvm::Value *TruncationOverflow = 3286 Builder.CreateICmpNE(Result, ResultTruncExt); 3287 3288 Overflow = Builder.CreateOr(Overflow, TruncationOverflow); 3289 Result = ResultTrunc; 3290 } 3291 3292 // Finally, store the result using the pointer. 3293 bool isVolatile = 3294 ResultArg->getType()->getPointeeType().isVolatileQualified(); 3295 Builder.CreateStore(EmitToMemory(Result, ResultQTy), ResultPtr, isVolatile); 3296 3297 return RValue::get(Overflow); 3298 } 3299 3300 case Builtin::BI__builtin_uadd_overflow: 3301 case Builtin::BI__builtin_uaddl_overflow: 3302 case Builtin::BI__builtin_uaddll_overflow: 3303 case Builtin::BI__builtin_usub_overflow: 3304 case Builtin::BI__builtin_usubl_overflow: 3305 case Builtin::BI__builtin_usubll_overflow: 3306 case Builtin::BI__builtin_umul_overflow: 3307 case Builtin::BI__builtin_umull_overflow: 3308 case Builtin::BI__builtin_umulll_overflow: 3309 case Builtin::BI__builtin_sadd_overflow: 3310 case Builtin::BI__builtin_saddl_overflow: 3311 case Builtin::BI__builtin_saddll_overflow: 3312 case Builtin::BI__builtin_ssub_overflow: 3313 case Builtin::BI__builtin_ssubl_overflow: 3314 case Builtin::BI__builtin_ssubll_overflow: 3315 case Builtin::BI__builtin_smul_overflow: 3316 case Builtin::BI__builtin_smull_overflow: 3317 case Builtin::BI__builtin_smulll_overflow: { 3318 3319 // We translate all of these builtins directly to the relevant llvm IR node. 3320 3321 // Scalarize our inputs. 3322 llvm::Value *X = EmitScalarExpr(E->getArg(0)); 3323 llvm::Value *Y = EmitScalarExpr(E->getArg(1)); 3324 Address SumOutPtr = EmitPointerWithAlignment(E->getArg(2)); 3325 3326 // Decide which of the overflow intrinsics we are lowering to: 3327 llvm::Intrinsic::ID IntrinsicId; 3328 switch (BuiltinID) { 3329 default: llvm_unreachable("Unknown overflow builtin id."); 3330 case Builtin::BI__builtin_uadd_overflow: 3331 case Builtin::BI__builtin_uaddl_overflow: 3332 case Builtin::BI__builtin_uaddll_overflow: 3333 IntrinsicId = llvm::Intrinsic::uadd_with_overflow; 3334 break; 3335 case Builtin::BI__builtin_usub_overflow: 3336 case Builtin::BI__builtin_usubl_overflow: 3337 case Builtin::BI__builtin_usubll_overflow: 3338 IntrinsicId = llvm::Intrinsic::usub_with_overflow; 3339 break; 3340 case Builtin::BI__builtin_umul_overflow: 3341 case Builtin::BI__builtin_umull_overflow: 3342 case Builtin::BI__builtin_umulll_overflow: 3343 IntrinsicId = llvm::Intrinsic::umul_with_overflow; 3344 break; 3345 case Builtin::BI__builtin_sadd_overflow: 3346 case Builtin::BI__builtin_saddl_overflow: 3347 case Builtin::BI__builtin_saddll_overflow: 3348 IntrinsicId = llvm::Intrinsic::sadd_with_overflow; 3349 break; 3350 case Builtin::BI__builtin_ssub_overflow: 3351 case Builtin::BI__builtin_ssubl_overflow: 3352 case Builtin::BI__builtin_ssubll_overflow: 3353 IntrinsicId = llvm::Intrinsic::ssub_with_overflow; 3354 break; 3355 case Builtin::BI__builtin_smul_overflow: 3356 case Builtin::BI__builtin_smull_overflow: 3357 case Builtin::BI__builtin_smulll_overflow: 3358 IntrinsicId = llvm::Intrinsic::smul_with_overflow; 3359 break; 3360 } 3361 3362 3363 llvm::Value *Carry; 3364 llvm::Value *Sum = EmitOverflowIntrinsic(*this, IntrinsicId, X, Y, Carry); 3365 Builder.CreateStore(Sum, SumOutPtr); 3366 3367 return RValue::get(Carry); 3368 } 3369 case Builtin::BI__builtin_addressof: 3370 return RValue::get(EmitLValue(E->getArg(0)).getPointer()); 3371 case Builtin::BI__builtin_operator_new: 3372 return EmitBuiltinNewDeleteCall( 3373 E->getCallee()->getType()->castAs<FunctionProtoType>(), E, false); 3374 case Builtin::BI__builtin_operator_delete: 3375 return EmitBuiltinNewDeleteCall( 3376 E->getCallee()->getType()->castAs<FunctionProtoType>(), E, true); 3377 3378 case Builtin::BI__noop: 3379 // __noop always evaluates to an integer literal zero. 3380 return RValue::get(ConstantInt::get(IntTy, 0)); 3381 case Builtin::BI__builtin_call_with_static_chain: { 3382 const CallExpr *Call = cast<CallExpr>(E->getArg(0)); 3383 const Expr *Chain = E->getArg(1); 3384 return EmitCall(Call->getCallee()->getType(), 3385 EmitCallee(Call->getCallee()), Call, ReturnValue, 3386 EmitScalarExpr(Chain)); 3387 } 3388 case Builtin::BI_InterlockedExchange8: 3389 case Builtin::BI_InterlockedExchange16: 3390 case Builtin::BI_InterlockedExchange: 3391 case Builtin::BI_InterlockedExchangePointer: 3392 return RValue::get( 3393 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E)); 3394 case Builtin::BI_InterlockedCompareExchangePointer: 3395 case Builtin::BI_InterlockedCompareExchangePointer_nf: { 3396 llvm::Type *RTy; 3397 llvm::IntegerType *IntType = 3398 IntegerType::get(getLLVMContext(), 3399 getContext().getTypeSize(E->getType())); 3400 llvm::Type *IntPtrType = IntType->getPointerTo(); 3401 3402 llvm::Value *Destination = 3403 Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), IntPtrType); 3404 3405 llvm::Value *Exchange = EmitScalarExpr(E->getArg(1)); 3406 RTy = Exchange->getType(); 3407 Exchange = Builder.CreatePtrToInt(Exchange, IntType); 3408 3409 llvm::Value *Comparand = 3410 Builder.CreatePtrToInt(EmitScalarExpr(E->getArg(2)), IntType); 3411 3412 auto Ordering = 3413 BuiltinID == Builtin::BI_InterlockedCompareExchangePointer_nf ? 3414 AtomicOrdering::Monotonic : AtomicOrdering::SequentiallyConsistent; 3415 3416 auto Result = Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange, 3417 Ordering, Ordering); 3418 Result->setVolatile(true); 3419 3420 return RValue::get(Builder.CreateIntToPtr(Builder.CreateExtractValue(Result, 3421 0), 3422 RTy)); 3423 } 3424 case Builtin::BI_InterlockedCompareExchange8: 3425 case Builtin::BI_InterlockedCompareExchange16: 3426 case Builtin::BI_InterlockedCompareExchange: 3427 case Builtin::BI_InterlockedCompareExchange64: 3428 return RValue::get(EmitAtomicCmpXchgForMSIntrin(*this, E)); 3429 case Builtin::BI_InterlockedIncrement16: 3430 case Builtin::BI_InterlockedIncrement: 3431 return RValue::get( 3432 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E)); 3433 case Builtin::BI_InterlockedDecrement16: 3434 case Builtin::BI_InterlockedDecrement: 3435 return RValue::get( 3436 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E)); 3437 case Builtin::BI_InterlockedAnd8: 3438 case Builtin::BI_InterlockedAnd16: 3439 case Builtin::BI_InterlockedAnd: 3440 return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E)); 3441 case Builtin::BI_InterlockedExchangeAdd8: 3442 case Builtin::BI_InterlockedExchangeAdd16: 3443 case Builtin::BI_InterlockedExchangeAdd: 3444 return RValue::get( 3445 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E)); 3446 case Builtin::BI_InterlockedExchangeSub8: 3447 case Builtin::BI_InterlockedExchangeSub16: 3448 case Builtin::BI_InterlockedExchangeSub: 3449 return RValue::get( 3450 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E)); 3451 case Builtin::BI_InterlockedOr8: 3452 case Builtin::BI_InterlockedOr16: 3453 case Builtin::BI_InterlockedOr: 3454 return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E)); 3455 case Builtin::BI_InterlockedXor8: 3456 case Builtin::BI_InterlockedXor16: 3457 case Builtin::BI_InterlockedXor: 3458 return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E)); 3459 3460 case Builtin::BI_bittest64: 3461 case Builtin::BI_bittest: 3462 case Builtin::BI_bittestandcomplement64: 3463 case Builtin::BI_bittestandcomplement: 3464 case Builtin::BI_bittestandreset64: 3465 case Builtin::BI_bittestandreset: 3466 case Builtin::BI_bittestandset64: 3467 case Builtin::BI_bittestandset: 3468 case Builtin::BI_interlockedbittestandreset: 3469 case Builtin::BI_interlockedbittestandreset64: 3470 case Builtin::BI_interlockedbittestandset64: 3471 case Builtin::BI_interlockedbittestandset: 3472 case Builtin::BI_interlockedbittestandset_acq: 3473 case Builtin::BI_interlockedbittestandset_rel: 3474 case Builtin::BI_interlockedbittestandset_nf: 3475 case Builtin::BI_interlockedbittestandreset_acq: 3476 case Builtin::BI_interlockedbittestandreset_rel: 3477 case Builtin::BI_interlockedbittestandreset_nf: 3478 return RValue::get(EmitBitTestIntrinsic(*this, BuiltinID, E)); 3479 3480 // These builtins exist to emit regular volatile loads and stores not 3481 // affected by the -fms-volatile setting. 3482 case Builtin::BI__iso_volatile_load8: 3483 case Builtin::BI__iso_volatile_load16: 3484 case Builtin::BI__iso_volatile_load32: 3485 case Builtin::BI__iso_volatile_load64: 3486 return RValue::get(EmitISOVolatileLoad(*this, E)); 3487 case Builtin::BI__iso_volatile_store8: 3488 case Builtin::BI__iso_volatile_store16: 3489 case Builtin::BI__iso_volatile_store32: 3490 case Builtin::BI__iso_volatile_store64: 3491 return RValue::get(EmitISOVolatileStore(*this, E)); 3492 3493 case Builtin::BI__exception_code: 3494 case Builtin::BI_exception_code: 3495 return RValue::get(EmitSEHExceptionCode()); 3496 case Builtin::BI__exception_info: 3497 case Builtin::BI_exception_info: 3498 return RValue::get(EmitSEHExceptionInfo()); 3499 case Builtin::BI__abnormal_termination: 3500 case Builtin::BI_abnormal_termination: 3501 return RValue::get(EmitSEHAbnormalTermination()); 3502 case Builtin::BI_setjmpex: 3503 if (getTarget().getTriple().isOSMSVCRT()) 3504 return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmpex, E); 3505 break; 3506 case Builtin::BI_setjmp: 3507 if (getTarget().getTriple().isOSMSVCRT()) { 3508 if (getTarget().getTriple().getArch() == llvm::Triple::x86) 3509 return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmp3, E); 3510 else if (getTarget().getTriple().getArch() == llvm::Triple::aarch64) 3511 return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmpex, E); 3512 return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmp, E); 3513 } 3514 break; 3515 3516 case Builtin::BI__GetExceptionInfo: { 3517 if (llvm::GlobalVariable *GV = 3518 CGM.getCXXABI().getThrowInfo(FD->getParamDecl(0)->getType())) 3519 return RValue::get(llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy)); 3520 break; 3521 } 3522 3523 case Builtin::BI__fastfail: 3524 return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::__fastfail, E)); 3525 3526 case Builtin::BI__builtin_coro_size: { 3527 auto & Context = getContext(); 3528 auto SizeTy = Context.getSizeType(); 3529 auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy)); 3530 Function *F = CGM.getIntrinsic(Intrinsic::coro_size, T); 3531 return RValue::get(Builder.CreateCall(F)); 3532 } 3533 3534 case Builtin::BI__builtin_coro_id: 3535 return EmitCoroutineIntrinsic(E, Intrinsic::coro_id); 3536 case Builtin::BI__builtin_coro_promise: 3537 return EmitCoroutineIntrinsic(E, Intrinsic::coro_promise); 3538 case Builtin::BI__builtin_coro_resume: 3539 return EmitCoroutineIntrinsic(E, Intrinsic::coro_resume); 3540 case Builtin::BI__builtin_coro_frame: 3541 return EmitCoroutineIntrinsic(E, Intrinsic::coro_frame); 3542 case Builtin::BI__builtin_coro_noop: 3543 return EmitCoroutineIntrinsic(E, Intrinsic::coro_noop); 3544 case Builtin::BI__builtin_coro_free: 3545 return EmitCoroutineIntrinsic(E, Intrinsic::coro_free); 3546 case Builtin::BI__builtin_coro_destroy: 3547 return EmitCoroutineIntrinsic(E, Intrinsic::coro_destroy); 3548 case Builtin::BI__builtin_coro_done: 3549 return EmitCoroutineIntrinsic(E, Intrinsic::coro_done); 3550 case Builtin::BI__builtin_coro_alloc: 3551 return EmitCoroutineIntrinsic(E, Intrinsic::coro_alloc); 3552 case Builtin::BI__builtin_coro_begin: 3553 return EmitCoroutineIntrinsic(E, Intrinsic::coro_begin); 3554 case Builtin::BI__builtin_coro_end: 3555 return EmitCoroutineIntrinsic(E, Intrinsic::coro_end); 3556 case Builtin::BI__builtin_coro_suspend: 3557 return EmitCoroutineIntrinsic(E, Intrinsic::coro_suspend); 3558 case Builtin::BI__builtin_coro_param: 3559 return EmitCoroutineIntrinsic(E, Intrinsic::coro_param); 3560 3561 // OpenCL v2.0 s6.13.16.2, Built-in pipe read and write functions 3562 case Builtin::BIread_pipe: 3563 case Builtin::BIwrite_pipe: { 3564 Value *Arg0 = EmitScalarExpr(E->getArg(0)), 3565 *Arg1 = EmitScalarExpr(E->getArg(1)); 3566 CGOpenCLRuntime OpenCLRT(CGM); 3567 Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0)); 3568 Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0)); 3569 3570 // Type of the generic packet parameter. 3571 unsigned GenericAS = 3572 getContext().getTargetAddressSpace(LangAS::opencl_generic); 3573 llvm::Type *I8PTy = llvm::PointerType::get( 3574 llvm::Type::getInt8Ty(getLLVMContext()), GenericAS); 3575 3576 // Testing which overloaded version we should generate the call for. 3577 if (2U == E->getNumArgs()) { 3578 const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_2" 3579 : "__write_pipe_2"; 3580 // Creating a generic function type to be able to call with any builtin or 3581 // user defined type. 3582 llvm::Type *ArgTys[] = {Arg0->getType(), I8PTy, Int32Ty, Int32Ty}; 3583 llvm::FunctionType *FTy = llvm::FunctionType::get( 3584 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false); 3585 Value *BCast = Builder.CreatePointerCast(Arg1, I8PTy); 3586 return RValue::get( 3587 Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name), 3588 {Arg0, BCast, PacketSize, PacketAlign})); 3589 } else { 3590 assert(4 == E->getNumArgs() && 3591 "Illegal number of parameters to pipe function"); 3592 const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_4" 3593 : "__write_pipe_4"; 3594 3595 llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, I8PTy, 3596 Int32Ty, Int32Ty}; 3597 Value *Arg2 = EmitScalarExpr(E->getArg(2)), 3598 *Arg3 = EmitScalarExpr(E->getArg(3)); 3599 llvm::FunctionType *FTy = llvm::FunctionType::get( 3600 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false); 3601 Value *BCast = Builder.CreatePointerCast(Arg3, I8PTy); 3602 // We know the third argument is an integer type, but we may need to cast 3603 // it to i32. 3604 if (Arg2->getType() != Int32Ty) 3605 Arg2 = Builder.CreateZExtOrTrunc(Arg2, Int32Ty); 3606 return RValue::get(Builder.CreateCall( 3607 CGM.CreateRuntimeFunction(FTy, Name), 3608 {Arg0, Arg1, Arg2, BCast, PacketSize, PacketAlign})); 3609 } 3610 } 3611 // OpenCL v2.0 s6.13.16 ,s9.17.3.5 - Built-in pipe reserve read and write 3612 // functions 3613 case Builtin::BIreserve_read_pipe: 3614 case Builtin::BIreserve_write_pipe: 3615 case Builtin::BIwork_group_reserve_read_pipe: 3616 case Builtin::BIwork_group_reserve_write_pipe: 3617 case Builtin::BIsub_group_reserve_read_pipe: 3618 case Builtin::BIsub_group_reserve_write_pipe: { 3619 // Composing the mangled name for the function. 3620 const char *Name; 3621 if (BuiltinID == Builtin::BIreserve_read_pipe) 3622 Name = "__reserve_read_pipe"; 3623 else if (BuiltinID == Builtin::BIreserve_write_pipe) 3624 Name = "__reserve_write_pipe"; 3625 else if (BuiltinID == Builtin::BIwork_group_reserve_read_pipe) 3626 Name = "__work_group_reserve_read_pipe"; 3627 else if (BuiltinID == Builtin::BIwork_group_reserve_write_pipe) 3628 Name = "__work_group_reserve_write_pipe"; 3629 else if (BuiltinID == Builtin::BIsub_group_reserve_read_pipe) 3630 Name = "__sub_group_reserve_read_pipe"; 3631 else 3632 Name = "__sub_group_reserve_write_pipe"; 3633 3634 Value *Arg0 = EmitScalarExpr(E->getArg(0)), 3635 *Arg1 = EmitScalarExpr(E->getArg(1)); 3636 llvm::Type *ReservedIDTy = ConvertType(getContext().OCLReserveIDTy); 3637 CGOpenCLRuntime OpenCLRT(CGM); 3638 Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0)); 3639 Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0)); 3640 3641 // Building the generic function prototype. 3642 llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty, Int32Ty}; 3643 llvm::FunctionType *FTy = llvm::FunctionType::get( 3644 ReservedIDTy, llvm::ArrayRef<llvm::Type *>(ArgTys), false); 3645 // We know the second argument is an integer type, but we may need to cast 3646 // it to i32. 3647 if (Arg1->getType() != Int32Ty) 3648 Arg1 = Builder.CreateZExtOrTrunc(Arg1, Int32Ty); 3649 return RValue::get( 3650 Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name), 3651 {Arg0, Arg1, PacketSize, PacketAlign})); 3652 } 3653 // OpenCL v2.0 s6.13.16, s9.17.3.5 - Built-in pipe commit read and write 3654 // functions 3655 case Builtin::BIcommit_read_pipe: 3656 case Builtin::BIcommit_write_pipe: 3657 case Builtin::BIwork_group_commit_read_pipe: 3658 case Builtin::BIwork_group_commit_write_pipe: 3659 case Builtin::BIsub_group_commit_read_pipe: 3660 case Builtin::BIsub_group_commit_write_pipe: { 3661 const char *Name; 3662 if (BuiltinID == Builtin::BIcommit_read_pipe) 3663 Name = "__commit_read_pipe"; 3664 else if (BuiltinID == Builtin::BIcommit_write_pipe) 3665 Name = "__commit_write_pipe"; 3666 else if (BuiltinID == Builtin::BIwork_group_commit_read_pipe) 3667 Name = "__work_group_commit_read_pipe"; 3668 else if (BuiltinID == Builtin::BIwork_group_commit_write_pipe) 3669 Name = "__work_group_commit_write_pipe"; 3670 else if (BuiltinID == Builtin::BIsub_group_commit_read_pipe) 3671 Name = "__sub_group_commit_read_pipe"; 3672 else 3673 Name = "__sub_group_commit_write_pipe"; 3674 3675 Value *Arg0 = EmitScalarExpr(E->getArg(0)), 3676 *Arg1 = EmitScalarExpr(E->getArg(1)); 3677 CGOpenCLRuntime OpenCLRT(CGM); 3678 Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0)); 3679 Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0)); 3680 3681 // Building the generic function prototype. 3682 llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, Int32Ty}; 3683 llvm::FunctionType *FTy = 3684 llvm::FunctionType::get(llvm::Type::getVoidTy(getLLVMContext()), 3685 llvm::ArrayRef<llvm::Type *>(ArgTys), false); 3686 3687 return RValue::get( 3688 Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name), 3689 {Arg0, Arg1, PacketSize, PacketAlign})); 3690 } 3691 // OpenCL v2.0 s6.13.16.4 Built-in pipe query functions 3692 case Builtin::BIget_pipe_num_packets: 3693 case Builtin::BIget_pipe_max_packets: { 3694 const char *BaseName; 3695 const auto *PipeTy = E->getArg(0)->getType()->castAs<PipeType>(); 3696 if (BuiltinID == Builtin::BIget_pipe_num_packets) 3697 BaseName = "__get_pipe_num_packets"; 3698 else 3699 BaseName = "__get_pipe_max_packets"; 3700 std::string Name = std::string(BaseName) + 3701 std::string(PipeTy->isReadOnly() ? "_ro" : "_wo"); 3702 3703 // Building the generic function prototype. 3704 Value *Arg0 = EmitScalarExpr(E->getArg(0)); 3705 CGOpenCLRuntime OpenCLRT(CGM); 3706 Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0)); 3707 Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0)); 3708 llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty}; 3709 llvm::FunctionType *FTy = llvm::FunctionType::get( 3710 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false); 3711 3712 return RValue::get(Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name), 3713 {Arg0, PacketSize, PacketAlign})); 3714 } 3715 3716 // OpenCL v2.0 s6.13.9 - Address space qualifier functions. 3717 case Builtin::BIto_global: 3718 case Builtin::BIto_local: 3719 case Builtin::BIto_private: { 3720 auto Arg0 = EmitScalarExpr(E->getArg(0)); 3721 auto NewArgT = llvm::PointerType::get(Int8Ty, 3722 CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic)); 3723 auto NewRetT = llvm::PointerType::get(Int8Ty, 3724 CGM.getContext().getTargetAddressSpace( 3725 E->getType()->getPointeeType().getAddressSpace())); 3726 auto FTy = llvm::FunctionType::get(NewRetT, {NewArgT}, false); 3727 llvm::Value *NewArg; 3728 if (Arg0->getType()->getPointerAddressSpace() != 3729 NewArgT->getPointerAddressSpace()) 3730 NewArg = Builder.CreateAddrSpaceCast(Arg0, NewArgT); 3731 else 3732 NewArg = Builder.CreateBitOrPointerCast(Arg0, NewArgT); 3733 auto NewName = std::string("__") + E->getDirectCallee()->getName().str(); 3734 auto NewCall = 3735 Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, NewName), {NewArg}); 3736 return RValue::get(Builder.CreateBitOrPointerCast(NewCall, 3737 ConvertType(E->getType()))); 3738 } 3739 3740 // OpenCL v2.0, s6.13.17 - Enqueue kernel function. 3741 // It contains four different overload formats specified in Table 6.13.17.1. 3742 case Builtin::BIenqueue_kernel: { 3743 StringRef Name; // Generated function call name 3744 unsigned NumArgs = E->getNumArgs(); 3745 3746 llvm::Type *QueueTy = ConvertType(getContext().OCLQueueTy); 3747 llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy( 3748 getContext().getTargetAddressSpace(LangAS::opencl_generic)); 3749 3750 llvm::Value *Queue = EmitScalarExpr(E->getArg(0)); 3751 llvm::Value *Flags = EmitScalarExpr(E->getArg(1)); 3752 LValue NDRangeL = EmitAggExprToLValue(E->getArg(2)); 3753 llvm::Value *Range = NDRangeL.getAddress().getPointer(); 3754 llvm::Type *RangeTy = NDRangeL.getAddress().getType(); 3755 3756 if (NumArgs == 4) { 3757 // The most basic form of the call with parameters: 3758 // queue_t, kernel_enqueue_flags_t, ndrange_t, block(void) 3759 Name = "__enqueue_kernel_basic"; 3760 llvm::Type *ArgTys[] = {QueueTy, Int32Ty, RangeTy, GenericVoidPtrTy, 3761 GenericVoidPtrTy}; 3762 llvm::FunctionType *FTy = llvm::FunctionType::get( 3763 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false); 3764 3765 auto Info = 3766 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3)); 3767 llvm::Value *Kernel = 3768 Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy); 3769 llvm::Value *Block = 3770 Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy); 3771 3772 AttrBuilder B; 3773 B.addByValAttr(NDRangeL.getAddress().getElementType()); 3774 llvm::AttributeList ByValAttrSet = 3775 llvm::AttributeList::get(CGM.getModule().getContext(), 3U, B); 3776 3777 auto RTCall = 3778 Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name, ByValAttrSet), 3779 {Queue, Flags, Range, Kernel, Block}); 3780 RTCall->setAttributes(ByValAttrSet); 3781 return RValue::get(RTCall); 3782 } 3783 assert(NumArgs >= 5 && "Invalid enqueue_kernel signature"); 3784 3785 // Create a temporary array to hold the sizes of local pointer arguments 3786 // for the block. \p First is the position of the first size argument. 3787 auto CreateArrayForSizeVar = [=](unsigned First) 3788 -> std::tuple<llvm::Value *, llvm::Value *, llvm::Value *> { 3789 llvm::APInt ArraySize(32, NumArgs - First); 3790 QualType SizeArrayTy = getContext().getConstantArrayType( 3791 getContext().getSizeType(), ArraySize, nullptr, ArrayType::Normal, 3792 /*IndexTypeQuals=*/0); 3793 auto Tmp = CreateMemTemp(SizeArrayTy, "block_sizes"); 3794 llvm::Value *TmpPtr = Tmp.getPointer(); 3795 llvm::Value *TmpSize = EmitLifetimeStart( 3796 CGM.getDataLayout().getTypeAllocSize(Tmp.getElementType()), TmpPtr); 3797 llvm::Value *ElemPtr; 3798 // Each of the following arguments specifies the size of the corresponding 3799 // argument passed to the enqueued block. 3800 auto *Zero = llvm::ConstantInt::get(IntTy, 0); 3801 for (unsigned I = First; I < NumArgs; ++I) { 3802 auto *Index = llvm::ConstantInt::get(IntTy, I - First); 3803 auto *GEP = Builder.CreateGEP(TmpPtr, {Zero, Index}); 3804 if (I == First) 3805 ElemPtr = GEP; 3806 auto *V = 3807 Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(I)), SizeTy); 3808 Builder.CreateAlignedStore( 3809 V, GEP, CGM.getDataLayout().getPrefTypeAlignment(SizeTy)); 3810 } 3811 return std::tie(ElemPtr, TmpSize, TmpPtr); 3812 }; 3813 3814 // Could have events and/or varargs. 3815 if (E->getArg(3)->getType()->isBlockPointerType()) { 3816 // No events passed, but has variadic arguments. 3817 Name = "__enqueue_kernel_varargs"; 3818 auto Info = 3819 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3)); 3820 llvm::Value *Kernel = 3821 Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy); 3822 auto *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy); 3823 llvm::Value *ElemPtr, *TmpSize, *TmpPtr; 3824 std::tie(ElemPtr, TmpSize, TmpPtr) = CreateArrayForSizeVar(4); 3825 3826 // Create a vector of the arguments, as well as a constant value to 3827 // express to the runtime the number of variadic arguments. 3828 std::vector<llvm::Value *> Args = { 3829 Queue, Flags, Range, 3830 Kernel, Block, ConstantInt::get(IntTy, NumArgs - 4), 3831 ElemPtr}; 3832 std::vector<llvm::Type *> ArgTys = { 3833 QueueTy, IntTy, RangeTy, GenericVoidPtrTy, 3834 GenericVoidPtrTy, IntTy, ElemPtr->getType()}; 3835 3836 llvm::FunctionType *FTy = llvm::FunctionType::get( 3837 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false); 3838 auto Call = 3839 RValue::get(Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name), 3840 llvm::ArrayRef<llvm::Value *>(Args))); 3841 if (TmpSize) 3842 EmitLifetimeEnd(TmpSize, TmpPtr); 3843 return Call; 3844 } 3845 // Any calls now have event arguments passed. 3846 if (NumArgs >= 7) { 3847 llvm::Type *EventTy = ConvertType(getContext().OCLClkEventTy); 3848 llvm::PointerType *EventPtrTy = EventTy->getPointerTo( 3849 CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic)); 3850 3851 llvm::Value *NumEvents = 3852 Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(3)), Int32Ty); 3853 3854 // Since SemaOpenCLBuiltinEnqueueKernel allows fifth and sixth arguments 3855 // to be a null pointer constant (including `0` literal), we can take it 3856 // into account and emit null pointer directly. 3857 llvm::Value *EventWaitList = nullptr; 3858 if (E->getArg(4)->isNullPointerConstant( 3859 getContext(), Expr::NPC_ValueDependentIsNotNull)) { 3860 EventWaitList = llvm::ConstantPointerNull::get(EventPtrTy); 3861 } else { 3862 EventWaitList = E->getArg(4)->getType()->isArrayType() 3863 ? EmitArrayToPointerDecay(E->getArg(4)).getPointer() 3864 : EmitScalarExpr(E->getArg(4)); 3865 // Convert to generic address space. 3866 EventWaitList = Builder.CreatePointerCast(EventWaitList, EventPtrTy); 3867 } 3868 llvm::Value *EventRet = nullptr; 3869 if (E->getArg(5)->isNullPointerConstant( 3870 getContext(), Expr::NPC_ValueDependentIsNotNull)) { 3871 EventRet = llvm::ConstantPointerNull::get(EventPtrTy); 3872 } else { 3873 EventRet = 3874 Builder.CreatePointerCast(EmitScalarExpr(E->getArg(5)), EventPtrTy); 3875 } 3876 3877 auto Info = 3878 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(6)); 3879 llvm::Value *Kernel = 3880 Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy); 3881 llvm::Value *Block = 3882 Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy); 3883 3884 std::vector<llvm::Type *> ArgTys = { 3885 QueueTy, Int32Ty, RangeTy, Int32Ty, 3886 EventPtrTy, EventPtrTy, GenericVoidPtrTy, GenericVoidPtrTy}; 3887 3888 std::vector<llvm::Value *> Args = {Queue, Flags, Range, 3889 NumEvents, EventWaitList, EventRet, 3890 Kernel, Block}; 3891 3892 if (NumArgs == 7) { 3893 // Has events but no variadics. 3894 Name = "__enqueue_kernel_basic_events"; 3895 llvm::FunctionType *FTy = llvm::FunctionType::get( 3896 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false); 3897 return RValue::get( 3898 Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name), 3899 llvm::ArrayRef<llvm::Value *>(Args))); 3900 } 3901 // Has event info and variadics 3902 // Pass the number of variadics to the runtime function too. 3903 Args.push_back(ConstantInt::get(Int32Ty, NumArgs - 7)); 3904 ArgTys.push_back(Int32Ty); 3905 Name = "__enqueue_kernel_events_varargs"; 3906 3907 llvm::Value *ElemPtr, *TmpSize, *TmpPtr; 3908 std::tie(ElemPtr, TmpSize, TmpPtr) = CreateArrayForSizeVar(7); 3909 Args.push_back(ElemPtr); 3910 ArgTys.push_back(ElemPtr->getType()); 3911 3912 llvm::FunctionType *FTy = llvm::FunctionType::get( 3913 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false); 3914 auto Call = 3915 RValue::get(Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name), 3916 llvm::ArrayRef<llvm::Value *>(Args))); 3917 if (TmpSize) 3918 EmitLifetimeEnd(TmpSize, TmpPtr); 3919 return Call; 3920 } 3921 LLVM_FALLTHROUGH; 3922 } 3923 // OpenCL v2.0 s6.13.17.6 - Kernel query functions need bitcast of block 3924 // parameter. 3925 case Builtin::BIget_kernel_work_group_size: { 3926 llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy( 3927 getContext().getTargetAddressSpace(LangAS::opencl_generic)); 3928 auto Info = 3929 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0)); 3930 Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy); 3931 Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy); 3932 return RValue::get(Builder.CreateCall( 3933 CGM.CreateRuntimeFunction( 3934 llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy}, 3935 false), 3936 "__get_kernel_work_group_size_impl"), 3937 {Kernel, Arg})); 3938 } 3939 case Builtin::BIget_kernel_preferred_work_group_size_multiple: { 3940 llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy( 3941 getContext().getTargetAddressSpace(LangAS::opencl_generic)); 3942 auto Info = 3943 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0)); 3944 Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy); 3945 Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy); 3946 return RValue::get(Builder.CreateCall( 3947 CGM.CreateRuntimeFunction( 3948 llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy}, 3949 false), 3950 "__get_kernel_preferred_work_group_size_multiple_impl"), 3951 {Kernel, Arg})); 3952 } 3953 case Builtin::BIget_kernel_max_sub_group_size_for_ndrange: 3954 case Builtin::BIget_kernel_sub_group_count_for_ndrange: { 3955 llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy( 3956 getContext().getTargetAddressSpace(LangAS::opencl_generic)); 3957 LValue NDRangeL = EmitAggExprToLValue(E->getArg(0)); 3958 llvm::Value *NDRange = NDRangeL.getAddress().getPointer(); 3959 auto Info = 3960 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(1)); 3961 Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy); 3962 Value *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy); 3963 const char *Name = 3964 BuiltinID == Builtin::BIget_kernel_max_sub_group_size_for_ndrange 3965 ? "__get_kernel_max_sub_group_size_for_ndrange_impl" 3966 : "__get_kernel_sub_group_count_for_ndrange_impl"; 3967 return RValue::get(Builder.CreateCall( 3968 CGM.CreateRuntimeFunction( 3969 llvm::FunctionType::get( 3970 IntTy, {NDRange->getType(), GenericVoidPtrTy, GenericVoidPtrTy}, 3971 false), 3972 Name), 3973 {NDRange, Kernel, Block})); 3974 } 3975 3976 case Builtin::BI__builtin_store_half: 3977 case Builtin::BI__builtin_store_halff: { 3978 Value *Val = EmitScalarExpr(E->getArg(0)); 3979 Address Address = EmitPointerWithAlignment(E->getArg(1)); 3980 Value *HalfVal = Builder.CreateFPTrunc(Val, Builder.getHalfTy()); 3981 return RValue::get(Builder.CreateStore(HalfVal, Address)); 3982 } 3983 case Builtin::BI__builtin_load_half: { 3984 Address Address = EmitPointerWithAlignment(E->getArg(0)); 3985 Value *HalfVal = Builder.CreateLoad(Address); 3986 return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getDoubleTy())); 3987 } 3988 case Builtin::BI__builtin_load_halff: { 3989 Address Address = EmitPointerWithAlignment(E->getArg(0)); 3990 Value *HalfVal = Builder.CreateLoad(Address); 3991 return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getFloatTy())); 3992 } 3993 case Builtin::BIprintf: 3994 if (getTarget().getTriple().isNVPTX()) 3995 return EmitNVPTXDevicePrintfCallExpr(E, ReturnValue); 3996 break; 3997 case Builtin::BI__builtin_canonicalize: 3998 case Builtin::BI__builtin_canonicalizef: 3999 case Builtin::BI__builtin_canonicalizef16: 4000 case Builtin::BI__builtin_canonicalizel: 4001 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::canonicalize)); 4002 4003 case Builtin::BI__builtin_thread_pointer: { 4004 if (!getContext().getTargetInfo().isTLSSupported()) 4005 CGM.ErrorUnsupported(E, "__builtin_thread_pointer"); 4006 // Fall through - it's already mapped to the intrinsic by GCCBuiltin. 4007 break; 4008 } 4009 case Builtin::BI__builtin_os_log_format: 4010 return emitBuiltinOSLogFormat(*E); 4011 4012 case Builtin::BI__xray_customevent: { 4013 if (!ShouldXRayInstrumentFunction()) 4014 return RValue::getIgnored(); 4015 4016 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 4017 XRayInstrKind::Custom)) 4018 return RValue::getIgnored(); 4019 4020 if (const auto *XRayAttr = CurFuncDecl->getAttr<XRayInstrumentAttr>()) 4021 if (XRayAttr->neverXRayInstrument() && !AlwaysEmitXRayCustomEvents()) 4022 return RValue::getIgnored(); 4023 4024 Function *F = CGM.getIntrinsic(Intrinsic::xray_customevent); 4025 auto FTy = F->getFunctionType(); 4026 auto Arg0 = E->getArg(0); 4027 auto Arg0Val = EmitScalarExpr(Arg0); 4028 auto Arg0Ty = Arg0->getType(); 4029 auto PTy0 = FTy->getParamType(0); 4030 if (PTy0 != Arg0Val->getType()) { 4031 if (Arg0Ty->isArrayType()) 4032 Arg0Val = EmitArrayToPointerDecay(Arg0).getPointer(); 4033 else 4034 Arg0Val = Builder.CreatePointerCast(Arg0Val, PTy0); 4035 } 4036 auto Arg1 = EmitScalarExpr(E->getArg(1)); 4037 auto PTy1 = FTy->getParamType(1); 4038 if (PTy1 != Arg1->getType()) 4039 Arg1 = Builder.CreateTruncOrBitCast(Arg1, PTy1); 4040 return RValue::get(Builder.CreateCall(F, {Arg0Val, Arg1})); 4041 } 4042 4043 case Builtin::BI__xray_typedevent: { 4044 // TODO: There should be a way to always emit events even if the current 4045 // function is not instrumented. Losing events in a stream can cripple 4046 // a trace. 4047 if (!ShouldXRayInstrumentFunction()) 4048 return RValue::getIgnored(); 4049 4050 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 4051 XRayInstrKind::Typed)) 4052 return RValue::getIgnored(); 4053 4054 if (const auto *XRayAttr = CurFuncDecl->getAttr<XRayInstrumentAttr>()) 4055 if (XRayAttr->neverXRayInstrument() && !AlwaysEmitXRayTypedEvents()) 4056 return RValue::getIgnored(); 4057 4058 Function *F = CGM.getIntrinsic(Intrinsic::xray_typedevent); 4059 auto FTy = F->getFunctionType(); 4060 auto Arg0 = EmitScalarExpr(E->getArg(0)); 4061 auto PTy0 = FTy->getParamType(0); 4062 if (PTy0 != Arg0->getType()) 4063 Arg0 = Builder.CreateTruncOrBitCast(Arg0, PTy0); 4064 auto Arg1 = E->getArg(1); 4065 auto Arg1Val = EmitScalarExpr(Arg1); 4066 auto Arg1Ty = Arg1->getType(); 4067 auto PTy1 = FTy->getParamType(1); 4068 if (PTy1 != Arg1Val->getType()) { 4069 if (Arg1Ty->isArrayType()) 4070 Arg1Val = EmitArrayToPointerDecay(Arg1).getPointer(); 4071 else 4072 Arg1Val = Builder.CreatePointerCast(Arg1Val, PTy1); 4073 } 4074 auto Arg2 = EmitScalarExpr(E->getArg(2)); 4075 auto PTy2 = FTy->getParamType(2); 4076 if (PTy2 != Arg2->getType()) 4077 Arg2 = Builder.CreateTruncOrBitCast(Arg2, PTy2); 4078 return RValue::get(Builder.CreateCall(F, {Arg0, Arg1Val, Arg2})); 4079 } 4080 4081 case Builtin::BI__builtin_ms_va_start: 4082 case Builtin::BI__builtin_ms_va_end: 4083 return RValue::get( 4084 EmitVAStartEnd(EmitMSVAListRef(E->getArg(0)).getPointer(), 4085 BuiltinID == Builtin::BI__builtin_ms_va_start)); 4086 4087 case Builtin::BI__builtin_ms_va_copy: { 4088 // Lower this manually. We can't reliably determine whether or not any 4089 // given va_copy() is for a Win64 va_list from the calling convention 4090 // alone, because it's legal to do this from a System V ABI function. 4091 // With opaque pointer types, we won't have enough information in LLVM 4092 // IR to determine this from the argument types, either. Best to do it 4093 // now, while we have enough information. 4094 Address DestAddr = EmitMSVAListRef(E->getArg(0)); 4095 Address SrcAddr = EmitMSVAListRef(E->getArg(1)); 4096 4097 llvm::Type *BPP = Int8PtrPtrTy; 4098 4099 DestAddr = Address(Builder.CreateBitCast(DestAddr.getPointer(), BPP, "cp"), 4100 DestAddr.getAlignment()); 4101 SrcAddr = Address(Builder.CreateBitCast(SrcAddr.getPointer(), BPP, "ap"), 4102 SrcAddr.getAlignment()); 4103 4104 Value *ArgPtr = Builder.CreateLoad(SrcAddr, "ap.val"); 4105 return RValue::get(Builder.CreateStore(ArgPtr, DestAddr)); 4106 } 4107 } 4108 4109 // If this is an alias for a lib function (e.g. __builtin_sin), emit 4110 // the call using the normal call path, but using the unmangled 4111 // version of the function name. 4112 if (getContext().BuiltinInfo.isLibFunction(BuiltinID)) 4113 return emitLibraryCall(*this, FD, E, 4114 CGM.getBuiltinLibFunction(FD, BuiltinID)); 4115 4116 // If this is a predefined lib function (e.g. malloc), emit the call 4117 // using exactly the normal call path. 4118 if (getContext().BuiltinInfo.isPredefinedLibFunction(BuiltinID)) 4119 return emitLibraryCall(*this, FD, E, 4120 cast<llvm::Constant>(EmitScalarExpr(E->getCallee()))); 4121 4122 // Check that a call to a target specific builtin has the correct target 4123 // features. 4124 // This is down here to avoid non-target specific builtins, however, if 4125 // generic builtins start to require generic target features then we 4126 // can move this up to the beginning of the function. 4127 checkTargetFeatures(E, FD); 4128 4129 if (unsigned VectorWidth = getContext().BuiltinInfo.getRequiredVectorWidth(BuiltinID)) 4130 LargestVectorWidth = std::max(LargestVectorWidth, VectorWidth); 4131 4132 // See if we have a target specific intrinsic. 4133 const char *Name = getContext().BuiltinInfo.getName(BuiltinID); 4134 Intrinsic::ID IntrinsicID = Intrinsic::not_intrinsic; 4135 StringRef Prefix = 4136 llvm::Triple::getArchTypePrefix(getTarget().getTriple().getArch()); 4137 if (!Prefix.empty()) { 4138 IntrinsicID = Intrinsic::getIntrinsicForGCCBuiltin(Prefix.data(), Name); 4139 // NOTE we don't need to perform a compatibility flag check here since the 4140 // intrinsics are declared in Builtins*.def via LANGBUILTIN which filter the 4141 // MS builtins via ALL_MS_LANGUAGES and are filtered earlier. 4142 if (IntrinsicID == Intrinsic::not_intrinsic) 4143 IntrinsicID = Intrinsic::getIntrinsicForMSBuiltin(Prefix.data(), Name); 4144 } 4145 4146 if (IntrinsicID != Intrinsic::not_intrinsic) { 4147 SmallVector<Value*, 16> Args; 4148 4149 // Find out if any arguments are required to be integer constant 4150 // expressions. 4151 unsigned ICEArguments = 0; 4152 ASTContext::GetBuiltinTypeError Error; 4153 getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments); 4154 assert(Error == ASTContext::GE_None && "Should not codegen an error"); 4155 4156 Function *F = CGM.getIntrinsic(IntrinsicID); 4157 llvm::FunctionType *FTy = F->getFunctionType(); 4158 4159 for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) { 4160 Value *ArgValue; 4161 // If this is a normal argument, just emit it as a scalar. 4162 if ((ICEArguments & (1 << i)) == 0) { 4163 ArgValue = EmitScalarExpr(E->getArg(i)); 4164 } else { 4165 // If this is required to be a constant, constant fold it so that we 4166 // know that the generated intrinsic gets a ConstantInt. 4167 llvm::APSInt Result; 4168 bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result,getContext()); 4169 assert(IsConst && "Constant arg isn't actually constant?"); 4170 (void)IsConst; 4171 ArgValue = llvm::ConstantInt::get(getLLVMContext(), Result); 4172 } 4173 4174 // If the intrinsic arg type is different from the builtin arg type 4175 // we need to do a bit cast. 4176 llvm::Type *PTy = FTy->getParamType(i); 4177 if (PTy != ArgValue->getType()) { 4178 // XXX - vector of pointers? 4179 if (auto *PtrTy = dyn_cast<llvm::PointerType>(PTy)) { 4180 if (PtrTy->getAddressSpace() != 4181 ArgValue->getType()->getPointerAddressSpace()) { 4182 ArgValue = Builder.CreateAddrSpaceCast( 4183 ArgValue, 4184 ArgValue->getType()->getPointerTo(PtrTy->getAddressSpace())); 4185 } 4186 } 4187 4188 assert(PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) && 4189 "Must be able to losslessly bit cast to param"); 4190 ArgValue = Builder.CreateBitCast(ArgValue, PTy); 4191 } 4192 4193 Args.push_back(ArgValue); 4194 } 4195 4196 Value *V = Builder.CreateCall(F, Args); 4197 QualType BuiltinRetType = E->getType(); 4198 4199 llvm::Type *RetTy = VoidTy; 4200 if (!BuiltinRetType->isVoidType()) 4201 RetTy = ConvertType(BuiltinRetType); 4202 4203 if (RetTy != V->getType()) { 4204 // XXX - vector of pointers? 4205 if (auto *PtrTy = dyn_cast<llvm::PointerType>(RetTy)) { 4206 if (PtrTy->getAddressSpace() != V->getType()->getPointerAddressSpace()) { 4207 V = Builder.CreateAddrSpaceCast( 4208 V, V->getType()->getPointerTo(PtrTy->getAddressSpace())); 4209 } 4210 } 4211 4212 assert(V->getType()->canLosslesslyBitCastTo(RetTy) && 4213 "Must be able to losslessly bit cast result type"); 4214 V = Builder.CreateBitCast(V, RetTy); 4215 } 4216 4217 return RValue::get(V); 4218 } 4219 4220 // See if we have a target specific builtin that needs to be lowered. 4221 if (Value *V = EmitTargetBuiltinExpr(BuiltinID, E, ReturnValue)) 4222 return RValue::get(V); 4223 4224 ErrorUnsupported(E, "builtin function"); 4225 4226 // Unknown builtin, for now just dump it out and return undef. 4227 return GetUndefRValue(E->getType()); 4228 } 4229 4230 static Value *EmitTargetArchBuiltinExpr(CodeGenFunction *CGF, 4231 unsigned BuiltinID, const CallExpr *E, 4232 ReturnValueSlot ReturnValue, 4233 llvm::Triple::ArchType Arch) { 4234 switch (Arch) { 4235 case llvm::Triple::arm: 4236 case llvm::Triple::armeb: 4237 case llvm::Triple::thumb: 4238 case llvm::Triple::thumbeb: 4239 return CGF->EmitARMBuiltinExpr(BuiltinID, E, ReturnValue, Arch); 4240 case llvm::Triple::aarch64: 4241 case llvm::Triple::aarch64_be: 4242 return CGF->EmitAArch64BuiltinExpr(BuiltinID, E, Arch); 4243 case llvm::Triple::bpfeb: 4244 case llvm::Triple::bpfel: 4245 return CGF->EmitBPFBuiltinExpr(BuiltinID, E); 4246 case llvm::Triple::x86: 4247 case llvm::Triple::x86_64: 4248 return CGF->EmitX86BuiltinExpr(BuiltinID, E); 4249 case llvm::Triple::ppc: 4250 case llvm::Triple::ppc64: 4251 case llvm::Triple::ppc64le: 4252 return CGF->EmitPPCBuiltinExpr(BuiltinID, E); 4253 case llvm::Triple::r600: 4254 case llvm::Triple::amdgcn: 4255 return CGF->EmitAMDGPUBuiltinExpr(BuiltinID, E); 4256 case llvm::Triple::systemz: 4257 return CGF->EmitSystemZBuiltinExpr(BuiltinID, E); 4258 case llvm::Triple::nvptx: 4259 case llvm::Triple::nvptx64: 4260 return CGF->EmitNVPTXBuiltinExpr(BuiltinID, E); 4261 case llvm::Triple::wasm32: 4262 case llvm::Triple::wasm64: 4263 return CGF->EmitWebAssemblyBuiltinExpr(BuiltinID, E); 4264 case llvm::Triple::hexagon: 4265 return CGF->EmitHexagonBuiltinExpr(BuiltinID, E); 4266 default: 4267 return nullptr; 4268 } 4269 } 4270 4271 Value *CodeGenFunction::EmitTargetBuiltinExpr(unsigned BuiltinID, 4272 const CallExpr *E, 4273 ReturnValueSlot ReturnValue) { 4274 if (getContext().BuiltinInfo.isAuxBuiltinID(BuiltinID)) { 4275 assert(getContext().getAuxTargetInfo() && "Missing aux target info"); 4276 return EmitTargetArchBuiltinExpr( 4277 this, getContext().BuiltinInfo.getAuxBuiltinID(BuiltinID), E, 4278 ReturnValue, getContext().getAuxTargetInfo()->getTriple().getArch()); 4279 } 4280 4281 return EmitTargetArchBuiltinExpr(this, BuiltinID, E, ReturnValue, 4282 getTarget().getTriple().getArch()); 4283 } 4284 4285 static llvm::VectorType *GetNeonType(CodeGenFunction *CGF, 4286 NeonTypeFlags TypeFlags, 4287 bool HasLegalHalfType=true, 4288 bool V1Ty=false) { 4289 int IsQuad = TypeFlags.isQuad(); 4290 switch (TypeFlags.getEltType()) { 4291 case NeonTypeFlags::Int8: 4292 case NeonTypeFlags::Poly8: 4293 return llvm::VectorType::get(CGF->Int8Ty, V1Ty ? 1 : (8 << IsQuad)); 4294 case NeonTypeFlags::Int16: 4295 case NeonTypeFlags::Poly16: 4296 return llvm::VectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad)); 4297 case NeonTypeFlags::Float16: 4298 if (HasLegalHalfType) 4299 return llvm::VectorType::get(CGF->HalfTy, V1Ty ? 1 : (4 << IsQuad)); 4300 else 4301 return llvm::VectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad)); 4302 case NeonTypeFlags::Int32: 4303 return llvm::VectorType::get(CGF->Int32Ty, V1Ty ? 1 : (2 << IsQuad)); 4304 case NeonTypeFlags::Int64: 4305 case NeonTypeFlags::Poly64: 4306 return llvm::VectorType::get(CGF->Int64Ty, V1Ty ? 1 : (1 << IsQuad)); 4307 case NeonTypeFlags::Poly128: 4308 // FIXME: i128 and f128 doesn't get fully support in Clang and llvm. 4309 // There is a lot of i128 and f128 API missing. 4310 // so we use v16i8 to represent poly128 and get pattern matched. 4311 return llvm::VectorType::get(CGF->Int8Ty, 16); 4312 case NeonTypeFlags::Float32: 4313 return llvm::VectorType::get(CGF->FloatTy, V1Ty ? 1 : (2 << IsQuad)); 4314 case NeonTypeFlags::Float64: 4315 return llvm::VectorType::get(CGF->DoubleTy, V1Ty ? 1 : (1 << IsQuad)); 4316 } 4317 llvm_unreachable("Unknown vector element type!"); 4318 } 4319 4320 static llvm::VectorType *GetFloatNeonType(CodeGenFunction *CGF, 4321 NeonTypeFlags IntTypeFlags) { 4322 int IsQuad = IntTypeFlags.isQuad(); 4323 switch (IntTypeFlags.getEltType()) { 4324 case NeonTypeFlags::Int16: 4325 return llvm::VectorType::get(CGF->HalfTy, (4 << IsQuad)); 4326 case NeonTypeFlags::Int32: 4327 return llvm::VectorType::get(CGF->FloatTy, (2 << IsQuad)); 4328 case NeonTypeFlags::Int64: 4329 return llvm::VectorType::get(CGF->DoubleTy, (1 << IsQuad)); 4330 default: 4331 llvm_unreachable("Type can't be converted to floating-point!"); 4332 } 4333 } 4334 4335 Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C) { 4336 unsigned nElts = V->getType()->getVectorNumElements(); 4337 Value* SV = llvm::ConstantVector::getSplat(nElts, C); 4338 return Builder.CreateShuffleVector(V, V, SV, "lane"); 4339 } 4340 4341 Value *CodeGenFunction::EmitNeonCall(Function *F, SmallVectorImpl<Value*> &Ops, 4342 const char *name, 4343 unsigned shift, bool rightshift) { 4344 unsigned j = 0; 4345 for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end(); 4346 ai != ae; ++ai, ++j) 4347 if (shift > 0 && shift == j) 4348 Ops[j] = EmitNeonShiftVector(Ops[j], ai->getType(), rightshift); 4349 else 4350 Ops[j] = Builder.CreateBitCast(Ops[j], ai->getType(), name); 4351 4352 return Builder.CreateCall(F, Ops, name); 4353 } 4354 4355 Value *CodeGenFunction::EmitNeonShiftVector(Value *V, llvm::Type *Ty, 4356 bool neg) { 4357 int SV = cast<ConstantInt>(V)->getSExtValue(); 4358 return ConstantInt::get(Ty, neg ? -SV : SV); 4359 } 4360 4361 // Right-shift a vector by a constant. 4362 Value *CodeGenFunction::EmitNeonRShiftImm(Value *Vec, Value *Shift, 4363 llvm::Type *Ty, bool usgn, 4364 const char *name) { 4365 llvm::VectorType *VTy = cast<llvm::VectorType>(Ty); 4366 4367 int ShiftAmt = cast<ConstantInt>(Shift)->getSExtValue(); 4368 int EltSize = VTy->getScalarSizeInBits(); 4369 4370 Vec = Builder.CreateBitCast(Vec, Ty); 4371 4372 // lshr/ashr are undefined when the shift amount is equal to the vector 4373 // element size. 4374 if (ShiftAmt == EltSize) { 4375 if (usgn) { 4376 // Right-shifting an unsigned value by its size yields 0. 4377 return llvm::ConstantAggregateZero::get(VTy); 4378 } else { 4379 // Right-shifting a signed value by its size is equivalent 4380 // to a shift of size-1. 4381 --ShiftAmt; 4382 Shift = ConstantInt::get(VTy->getElementType(), ShiftAmt); 4383 } 4384 } 4385 4386 Shift = EmitNeonShiftVector(Shift, Ty, false); 4387 if (usgn) 4388 return Builder.CreateLShr(Vec, Shift, name); 4389 else 4390 return Builder.CreateAShr(Vec, Shift, name); 4391 } 4392 4393 enum { 4394 AddRetType = (1 << 0), 4395 Add1ArgType = (1 << 1), 4396 Add2ArgTypes = (1 << 2), 4397 4398 VectorizeRetType = (1 << 3), 4399 VectorizeArgTypes = (1 << 4), 4400 4401 InventFloatType = (1 << 5), 4402 UnsignedAlts = (1 << 6), 4403 4404 Use64BitVectors = (1 << 7), 4405 Use128BitVectors = (1 << 8), 4406 4407 Vectorize1ArgType = Add1ArgType | VectorizeArgTypes, 4408 VectorRet = AddRetType | VectorizeRetType, 4409 VectorRetGetArgs01 = 4410 AddRetType | Add2ArgTypes | VectorizeRetType | VectorizeArgTypes, 4411 FpCmpzModifiers = 4412 AddRetType | VectorizeRetType | Add1ArgType | InventFloatType 4413 }; 4414 4415 namespace { 4416 struct NeonIntrinsicInfo { 4417 const char *NameHint; 4418 unsigned BuiltinID; 4419 unsigned LLVMIntrinsic; 4420 unsigned AltLLVMIntrinsic; 4421 unsigned TypeModifier; 4422 4423 bool operator<(unsigned RHSBuiltinID) const { 4424 return BuiltinID < RHSBuiltinID; 4425 } 4426 bool operator<(const NeonIntrinsicInfo &TE) const { 4427 return BuiltinID < TE.BuiltinID; 4428 } 4429 }; 4430 } // end anonymous namespace 4431 4432 #define NEONMAP0(NameBase) \ 4433 { #NameBase, NEON::BI__builtin_neon_ ## NameBase, 0, 0, 0 } 4434 4435 #define NEONMAP1(NameBase, LLVMIntrinsic, TypeModifier) \ 4436 { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \ 4437 Intrinsic::LLVMIntrinsic, 0, TypeModifier } 4438 4439 #define NEONMAP2(NameBase, LLVMIntrinsic, AltLLVMIntrinsic, TypeModifier) \ 4440 { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \ 4441 Intrinsic::LLVMIntrinsic, Intrinsic::AltLLVMIntrinsic, \ 4442 TypeModifier } 4443 4444 static const NeonIntrinsicInfo ARMSIMDIntrinsicMap [] = { 4445 NEONMAP2(vabd_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts), 4446 NEONMAP2(vabdq_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts), 4447 NEONMAP1(vabs_v, arm_neon_vabs, 0), 4448 NEONMAP1(vabsq_v, arm_neon_vabs, 0), 4449 NEONMAP0(vaddhn_v), 4450 NEONMAP1(vaesdq_v, arm_neon_aesd, 0), 4451 NEONMAP1(vaeseq_v, arm_neon_aese, 0), 4452 NEONMAP1(vaesimcq_v, arm_neon_aesimc, 0), 4453 NEONMAP1(vaesmcq_v, arm_neon_aesmc, 0), 4454 NEONMAP1(vbsl_v, arm_neon_vbsl, AddRetType), 4455 NEONMAP1(vbslq_v, arm_neon_vbsl, AddRetType), 4456 NEONMAP1(vcage_v, arm_neon_vacge, 0), 4457 NEONMAP1(vcageq_v, arm_neon_vacge, 0), 4458 NEONMAP1(vcagt_v, arm_neon_vacgt, 0), 4459 NEONMAP1(vcagtq_v, arm_neon_vacgt, 0), 4460 NEONMAP1(vcale_v, arm_neon_vacge, 0), 4461 NEONMAP1(vcaleq_v, arm_neon_vacge, 0), 4462 NEONMAP1(vcalt_v, arm_neon_vacgt, 0), 4463 NEONMAP1(vcaltq_v, arm_neon_vacgt, 0), 4464 NEONMAP0(vceqz_v), 4465 NEONMAP0(vceqzq_v), 4466 NEONMAP0(vcgez_v), 4467 NEONMAP0(vcgezq_v), 4468 NEONMAP0(vcgtz_v), 4469 NEONMAP0(vcgtzq_v), 4470 NEONMAP0(vclez_v), 4471 NEONMAP0(vclezq_v), 4472 NEONMAP1(vcls_v, arm_neon_vcls, Add1ArgType), 4473 NEONMAP1(vclsq_v, arm_neon_vcls, Add1ArgType), 4474 NEONMAP0(vcltz_v), 4475 NEONMAP0(vcltzq_v), 4476 NEONMAP1(vclz_v, ctlz, Add1ArgType), 4477 NEONMAP1(vclzq_v, ctlz, Add1ArgType), 4478 NEONMAP1(vcnt_v, ctpop, Add1ArgType), 4479 NEONMAP1(vcntq_v, ctpop, Add1ArgType), 4480 NEONMAP1(vcvt_f16_f32, arm_neon_vcvtfp2hf, 0), 4481 NEONMAP0(vcvt_f16_v), 4482 NEONMAP1(vcvt_f32_f16, arm_neon_vcvthf2fp, 0), 4483 NEONMAP0(vcvt_f32_v), 4484 NEONMAP2(vcvt_n_f16_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0), 4485 NEONMAP2(vcvt_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0), 4486 NEONMAP1(vcvt_n_s16_v, arm_neon_vcvtfp2fxs, 0), 4487 NEONMAP1(vcvt_n_s32_v, arm_neon_vcvtfp2fxs, 0), 4488 NEONMAP1(vcvt_n_s64_v, arm_neon_vcvtfp2fxs, 0), 4489 NEONMAP1(vcvt_n_u16_v, arm_neon_vcvtfp2fxu, 0), 4490 NEONMAP1(vcvt_n_u32_v, arm_neon_vcvtfp2fxu, 0), 4491 NEONMAP1(vcvt_n_u64_v, arm_neon_vcvtfp2fxu, 0), 4492 NEONMAP0(vcvt_s16_v), 4493 NEONMAP0(vcvt_s32_v), 4494 NEONMAP0(vcvt_s64_v), 4495 NEONMAP0(vcvt_u16_v), 4496 NEONMAP0(vcvt_u32_v), 4497 NEONMAP0(vcvt_u64_v), 4498 NEONMAP1(vcvta_s16_v, arm_neon_vcvtas, 0), 4499 NEONMAP1(vcvta_s32_v, arm_neon_vcvtas, 0), 4500 NEONMAP1(vcvta_s64_v, arm_neon_vcvtas, 0), 4501 NEONMAP1(vcvta_u16_v, arm_neon_vcvtau, 0), 4502 NEONMAP1(vcvta_u32_v, arm_neon_vcvtau, 0), 4503 NEONMAP1(vcvta_u64_v, arm_neon_vcvtau, 0), 4504 NEONMAP1(vcvtaq_s16_v, arm_neon_vcvtas, 0), 4505 NEONMAP1(vcvtaq_s32_v, arm_neon_vcvtas, 0), 4506 NEONMAP1(vcvtaq_s64_v, arm_neon_vcvtas, 0), 4507 NEONMAP1(vcvtaq_u16_v, arm_neon_vcvtau, 0), 4508 NEONMAP1(vcvtaq_u32_v, arm_neon_vcvtau, 0), 4509 NEONMAP1(vcvtaq_u64_v, arm_neon_vcvtau, 0), 4510 NEONMAP1(vcvtm_s16_v, arm_neon_vcvtms, 0), 4511 NEONMAP1(vcvtm_s32_v, arm_neon_vcvtms, 0), 4512 NEONMAP1(vcvtm_s64_v, arm_neon_vcvtms, 0), 4513 NEONMAP1(vcvtm_u16_v, arm_neon_vcvtmu, 0), 4514 NEONMAP1(vcvtm_u32_v, arm_neon_vcvtmu, 0), 4515 NEONMAP1(vcvtm_u64_v, arm_neon_vcvtmu, 0), 4516 NEONMAP1(vcvtmq_s16_v, arm_neon_vcvtms, 0), 4517 NEONMAP1(vcvtmq_s32_v, arm_neon_vcvtms, 0), 4518 NEONMAP1(vcvtmq_s64_v, arm_neon_vcvtms, 0), 4519 NEONMAP1(vcvtmq_u16_v, arm_neon_vcvtmu, 0), 4520 NEONMAP1(vcvtmq_u32_v, arm_neon_vcvtmu, 0), 4521 NEONMAP1(vcvtmq_u64_v, arm_neon_vcvtmu, 0), 4522 NEONMAP1(vcvtn_s16_v, arm_neon_vcvtns, 0), 4523 NEONMAP1(vcvtn_s32_v, arm_neon_vcvtns, 0), 4524 NEONMAP1(vcvtn_s64_v, arm_neon_vcvtns, 0), 4525 NEONMAP1(vcvtn_u16_v, arm_neon_vcvtnu, 0), 4526 NEONMAP1(vcvtn_u32_v, arm_neon_vcvtnu, 0), 4527 NEONMAP1(vcvtn_u64_v, arm_neon_vcvtnu, 0), 4528 NEONMAP1(vcvtnq_s16_v, arm_neon_vcvtns, 0), 4529 NEONMAP1(vcvtnq_s32_v, arm_neon_vcvtns, 0), 4530 NEONMAP1(vcvtnq_s64_v, arm_neon_vcvtns, 0), 4531 NEONMAP1(vcvtnq_u16_v, arm_neon_vcvtnu, 0), 4532 NEONMAP1(vcvtnq_u32_v, arm_neon_vcvtnu, 0), 4533 NEONMAP1(vcvtnq_u64_v, arm_neon_vcvtnu, 0), 4534 NEONMAP1(vcvtp_s16_v, arm_neon_vcvtps, 0), 4535 NEONMAP1(vcvtp_s32_v, arm_neon_vcvtps, 0), 4536 NEONMAP1(vcvtp_s64_v, arm_neon_vcvtps, 0), 4537 NEONMAP1(vcvtp_u16_v, arm_neon_vcvtpu, 0), 4538 NEONMAP1(vcvtp_u32_v, arm_neon_vcvtpu, 0), 4539 NEONMAP1(vcvtp_u64_v, arm_neon_vcvtpu, 0), 4540 NEONMAP1(vcvtpq_s16_v, arm_neon_vcvtps, 0), 4541 NEONMAP1(vcvtpq_s32_v, arm_neon_vcvtps, 0), 4542 NEONMAP1(vcvtpq_s64_v, arm_neon_vcvtps, 0), 4543 NEONMAP1(vcvtpq_u16_v, arm_neon_vcvtpu, 0), 4544 NEONMAP1(vcvtpq_u32_v, arm_neon_vcvtpu, 0), 4545 NEONMAP1(vcvtpq_u64_v, arm_neon_vcvtpu, 0), 4546 NEONMAP0(vcvtq_f16_v), 4547 NEONMAP0(vcvtq_f32_v), 4548 NEONMAP2(vcvtq_n_f16_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0), 4549 NEONMAP2(vcvtq_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0), 4550 NEONMAP1(vcvtq_n_s16_v, arm_neon_vcvtfp2fxs, 0), 4551 NEONMAP1(vcvtq_n_s32_v, arm_neon_vcvtfp2fxs, 0), 4552 NEONMAP1(vcvtq_n_s64_v, arm_neon_vcvtfp2fxs, 0), 4553 NEONMAP1(vcvtq_n_u16_v, arm_neon_vcvtfp2fxu, 0), 4554 NEONMAP1(vcvtq_n_u32_v, arm_neon_vcvtfp2fxu, 0), 4555 NEONMAP1(vcvtq_n_u64_v, arm_neon_vcvtfp2fxu, 0), 4556 NEONMAP0(vcvtq_s16_v), 4557 NEONMAP0(vcvtq_s32_v), 4558 NEONMAP0(vcvtq_s64_v), 4559 NEONMAP0(vcvtq_u16_v), 4560 NEONMAP0(vcvtq_u32_v), 4561 NEONMAP0(vcvtq_u64_v), 4562 NEONMAP2(vdot_v, arm_neon_udot, arm_neon_sdot, 0), 4563 NEONMAP2(vdotq_v, arm_neon_udot, arm_neon_sdot, 0), 4564 NEONMAP0(vext_v), 4565 NEONMAP0(vextq_v), 4566 NEONMAP0(vfma_v), 4567 NEONMAP0(vfmaq_v), 4568 NEONMAP2(vhadd_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts), 4569 NEONMAP2(vhaddq_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts), 4570 NEONMAP2(vhsub_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts), 4571 NEONMAP2(vhsubq_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts), 4572 NEONMAP0(vld1_dup_v), 4573 NEONMAP1(vld1_v, arm_neon_vld1, 0), 4574 NEONMAP1(vld1_x2_v, arm_neon_vld1x2, 0), 4575 NEONMAP1(vld1_x3_v, arm_neon_vld1x3, 0), 4576 NEONMAP1(vld1_x4_v, arm_neon_vld1x4, 0), 4577 NEONMAP0(vld1q_dup_v), 4578 NEONMAP1(vld1q_v, arm_neon_vld1, 0), 4579 NEONMAP1(vld1q_x2_v, arm_neon_vld1x2, 0), 4580 NEONMAP1(vld1q_x3_v, arm_neon_vld1x3, 0), 4581 NEONMAP1(vld1q_x4_v, arm_neon_vld1x4, 0), 4582 NEONMAP1(vld2_dup_v, arm_neon_vld2dup, 0), 4583 NEONMAP1(vld2_lane_v, arm_neon_vld2lane, 0), 4584 NEONMAP1(vld2_v, arm_neon_vld2, 0), 4585 NEONMAP1(vld2q_dup_v, arm_neon_vld2dup, 0), 4586 NEONMAP1(vld2q_lane_v, arm_neon_vld2lane, 0), 4587 NEONMAP1(vld2q_v, arm_neon_vld2, 0), 4588 NEONMAP1(vld3_dup_v, arm_neon_vld3dup, 0), 4589 NEONMAP1(vld3_lane_v, arm_neon_vld3lane, 0), 4590 NEONMAP1(vld3_v, arm_neon_vld3, 0), 4591 NEONMAP1(vld3q_dup_v, arm_neon_vld3dup, 0), 4592 NEONMAP1(vld3q_lane_v, arm_neon_vld3lane, 0), 4593 NEONMAP1(vld3q_v, arm_neon_vld3, 0), 4594 NEONMAP1(vld4_dup_v, arm_neon_vld4dup, 0), 4595 NEONMAP1(vld4_lane_v, arm_neon_vld4lane, 0), 4596 NEONMAP1(vld4_v, arm_neon_vld4, 0), 4597 NEONMAP1(vld4q_dup_v, arm_neon_vld4dup, 0), 4598 NEONMAP1(vld4q_lane_v, arm_neon_vld4lane, 0), 4599 NEONMAP1(vld4q_v, arm_neon_vld4, 0), 4600 NEONMAP2(vmax_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts), 4601 NEONMAP1(vmaxnm_v, arm_neon_vmaxnm, Add1ArgType), 4602 NEONMAP1(vmaxnmq_v, arm_neon_vmaxnm, Add1ArgType), 4603 NEONMAP2(vmaxq_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts), 4604 NEONMAP2(vmin_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts), 4605 NEONMAP1(vminnm_v, arm_neon_vminnm, Add1ArgType), 4606 NEONMAP1(vminnmq_v, arm_neon_vminnm, Add1ArgType), 4607 NEONMAP2(vminq_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts), 4608 NEONMAP0(vmovl_v), 4609 NEONMAP0(vmovn_v), 4610 NEONMAP1(vmul_v, arm_neon_vmulp, Add1ArgType), 4611 NEONMAP0(vmull_v), 4612 NEONMAP1(vmulq_v, arm_neon_vmulp, Add1ArgType), 4613 NEONMAP2(vpadal_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts), 4614 NEONMAP2(vpadalq_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts), 4615 NEONMAP1(vpadd_v, arm_neon_vpadd, Add1ArgType), 4616 NEONMAP2(vpaddl_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts), 4617 NEONMAP2(vpaddlq_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts), 4618 NEONMAP1(vpaddq_v, arm_neon_vpadd, Add1ArgType), 4619 NEONMAP2(vpmax_v, arm_neon_vpmaxu, arm_neon_vpmaxs, Add1ArgType | UnsignedAlts), 4620 NEONMAP2(vpmin_v, arm_neon_vpminu, arm_neon_vpmins, Add1ArgType | UnsignedAlts), 4621 NEONMAP1(vqabs_v, arm_neon_vqabs, Add1ArgType), 4622 NEONMAP1(vqabsq_v, arm_neon_vqabs, Add1ArgType), 4623 NEONMAP2(vqadd_v, arm_neon_vqaddu, arm_neon_vqadds, Add1ArgType | UnsignedAlts), 4624 NEONMAP2(vqaddq_v, arm_neon_vqaddu, arm_neon_vqadds, Add1ArgType | UnsignedAlts), 4625 NEONMAP2(vqdmlal_v, arm_neon_vqdmull, arm_neon_vqadds, 0), 4626 NEONMAP2(vqdmlsl_v, arm_neon_vqdmull, arm_neon_vqsubs, 0), 4627 NEONMAP1(vqdmulh_v, arm_neon_vqdmulh, Add1ArgType), 4628 NEONMAP1(vqdmulhq_v, arm_neon_vqdmulh, Add1ArgType), 4629 NEONMAP1(vqdmull_v, arm_neon_vqdmull, Add1ArgType), 4630 NEONMAP2(vqmovn_v, arm_neon_vqmovnu, arm_neon_vqmovns, Add1ArgType | UnsignedAlts), 4631 NEONMAP1(vqmovun_v, arm_neon_vqmovnsu, Add1ArgType), 4632 NEONMAP1(vqneg_v, arm_neon_vqneg, Add1ArgType), 4633 NEONMAP1(vqnegq_v, arm_neon_vqneg, Add1ArgType), 4634 NEONMAP1(vqrdmulh_v, arm_neon_vqrdmulh, Add1ArgType), 4635 NEONMAP1(vqrdmulhq_v, arm_neon_vqrdmulh, Add1ArgType), 4636 NEONMAP2(vqrshl_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts), 4637 NEONMAP2(vqrshlq_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts), 4638 NEONMAP2(vqshl_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts), 4639 NEONMAP2(vqshl_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts), 4640 NEONMAP2(vqshlq_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts), 4641 NEONMAP2(vqshlq_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts), 4642 NEONMAP1(vqshlu_n_v, arm_neon_vqshiftsu, 0), 4643 NEONMAP1(vqshluq_n_v, arm_neon_vqshiftsu, 0), 4644 NEONMAP2(vqsub_v, arm_neon_vqsubu, arm_neon_vqsubs, Add1ArgType | UnsignedAlts), 4645 NEONMAP2(vqsubq_v, arm_neon_vqsubu, arm_neon_vqsubs, Add1ArgType | UnsignedAlts), 4646 NEONMAP1(vraddhn_v, arm_neon_vraddhn, Add1ArgType), 4647 NEONMAP2(vrecpe_v, arm_neon_vrecpe, arm_neon_vrecpe, 0), 4648 NEONMAP2(vrecpeq_v, arm_neon_vrecpe, arm_neon_vrecpe, 0), 4649 NEONMAP1(vrecps_v, arm_neon_vrecps, Add1ArgType), 4650 NEONMAP1(vrecpsq_v, arm_neon_vrecps, Add1ArgType), 4651 NEONMAP2(vrhadd_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts), 4652 NEONMAP2(vrhaddq_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts), 4653 NEONMAP1(vrnd_v, arm_neon_vrintz, Add1ArgType), 4654 NEONMAP1(vrnda_v, arm_neon_vrinta, Add1ArgType), 4655 NEONMAP1(vrndaq_v, arm_neon_vrinta, Add1ArgType), 4656 NEONMAP0(vrndi_v), 4657 NEONMAP0(vrndiq_v), 4658 NEONMAP1(vrndm_v, arm_neon_vrintm, Add1ArgType), 4659 NEONMAP1(vrndmq_v, arm_neon_vrintm, Add1ArgType), 4660 NEONMAP1(vrndn_v, arm_neon_vrintn, Add1ArgType), 4661 NEONMAP1(vrndnq_v, arm_neon_vrintn, Add1ArgType), 4662 NEONMAP1(vrndp_v, arm_neon_vrintp, Add1ArgType), 4663 NEONMAP1(vrndpq_v, arm_neon_vrintp, Add1ArgType), 4664 NEONMAP1(vrndq_v, arm_neon_vrintz, Add1ArgType), 4665 NEONMAP1(vrndx_v, arm_neon_vrintx, Add1ArgType), 4666 NEONMAP1(vrndxq_v, arm_neon_vrintx, Add1ArgType), 4667 NEONMAP2(vrshl_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts), 4668 NEONMAP2(vrshlq_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts), 4669 NEONMAP2(vrshr_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts), 4670 NEONMAP2(vrshrq_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts), 4671 NEONMAP2(vrsqrte_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0), 4672 NEONMAP2(vrsqrteq_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0), 4673 NEONMAP1(vrsqrts_v, arm_neon_vrsqrts, Add1ArgType), 4674 NEONMAP1(vrsqrtsq_v, arm_neon_vrsqrts, Add1ArgType), 4675 NEONMAP1(vrsubhn_v, arm_neon_vrsubhn, Add1ArgType), 4676 NEONMAP1(vsha1su0q_v, arm_neon_sha1su0, 0), 4677 NEONMAP1(vsha1su1q_v, arm_neon_sha1su1, 0), 4678 NEONMAP1(vsha256h2q_v, arm_neon_sha256h2, 0), 4679 NEONMAP1(vsha256hq_v, arm_neon_sha256h, 0), 4680 NEONMAP1(vsha256su0q_v, arm_neon_sha256su0, 0), 4681 NEONMAP1(vsha256su1q_v, arm_neon_sha256su1, 0), 4682 NEONMAP0(vshl_n_v), 4683 NEONMAP2(vshl_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts), 4684 NEONMAP0(vshll_n_v), 4685 NEONMAP0(vshlq_n_v), 4686 NEONMAP2(vshlq_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts), 4687 NEONMAP0(vshr_n_v), 4688 NEONMAP0(vshrn_n_v), 4689 NEONMAP0(vshrq_n_v), 4690 NEONMAP1(vst1_v, arm_neon_vst1, 0), 4691 NEONMAP1(vst1_x2_v, arm_neon_vst1x2, 0), 4692 NEONMAP1(vst1_x3_v, arm_neon_vst1x3, 0), 4693 NEONMAP1(vst1_x4_v, arm_neon_vst1x4, 0), 4694 NEONMAP1(vst1q_v, arm_neon_vst1, 0), 4695 NEONMAP1(vst1q_x2_v, arm_neon_vst1x2, 0), 4696 NEONMAP1(vst1q_x3_v, arm_neon_vst1x3, 0), 4697 NEONMAP1(vst1q_x4_v, arm_neon_vst1x4, 0), 4698 NEONMAP1(vst2_lane_v, arm_neon_vst2lane, 0), 4699 NEONMAP1(vst2_v, arm_neon_vst2, 0), 4700 NEONMAP1(vst2q_lane_v, arm_neon_vst2lane, 0), 4701 NEONMAP1(vst2q_v, arm_neon_vst2, 0), 4702 NEONMAP1(vst3_lane_v, arm_neon_vst3lane, 0), 4703 NEONMAP1(vst3_v, arm_neon_vst3, 0), 4704 NEONMAP1(vst3q_lane_v, arm_neon_vst3lane, 0), 4705 NEONMAP1(vst3q_v, arm_neon_vst3, 0), 4706 NEONMAP1(vst4_lane_v, arm_neon_vst4lane, 0), 4707 NEONMAP1(vst4_v, arm_neon_vst4, 0), 4708 NEONMAP1(vst4q_lane_v, arm_neon_vst4lane, 0), 4709 NEONMAP1(vst4q_v, arm_neon_vst4, 0), 4710 NEONMAP0(vsubhn_v), 4711 NEONMAP0(vtrn_v), 4712 NEONMAP0(vtrnq_v), 4713 NEONMAP0(vtst_v), 4714 NEONMAP0(vtstq_v), 4715 NEONMAP0(vuzp_v), 4716 NEONMAP0(vuzpq_v), 4717 NEONMAP0(vzip_v), 4718 NEONMAP0(vzipq_v) 4719 }; 4720 4721 static const NeonIntrinsicInfo AArch64SIMDIntrinsicMap[] = { 4722 NEONMAP1(vabs_v, aarch64_neon_abs, 0), 4723 NEONMAP1(vabsq_v, aarch64_neon_abs, 0), 4724 NEONMAP0(vaddhn_v), 4725 NEONMAP1(vaesdq_v, aarch64_crypto_aesd, 0), 4726 NEONMAP1(vaeseq_v, aarch64_crypto_aese, 0), 4727 NEONMAP1(vaesimcq_v, aarch64_crypto_aesimc, 0), 4728 NEONMAP1(vaesmcq_v, aarch64_crypto_aesmc, 0), 4729 NEONMAP1(vcage_v, aarch64_neon_facge, 0), 4730 NEONMAP1(vcageq_v, aarch64_neon_facge, 0), 4731 NEONMAP1(vcagt_v, aarch64_neon_facgt, 0), 4732 NEONMAP1(vcagtq_v, aarch64_neon_facgt, 0), 4733 NEONMAP1(vcale_v, aarch64_neon_facge, 0), 4734 NEONMAP1(vcaleq_v, aarch64_neon_facge, 0), 4735 NEONMAP1(vcalt_v, aarch64_neon_facgt, 0), 4736 NEONMAP1(vcaltq_v, aarch64_neon_facgt, 0), 4737 NEONMAP0(vceqz_v), 4738 NEONMAP0(vceqzq_v), 4739 NEONMAP0(vcgez_v), 4740 NEONMAP0(vcgezq_v), 4741 NEONMAP0(vcgtz_v), 4742 NEONMAP0(vcgtzq_v), 4743 NEONMAP0(vclez_v), 4744 NEONMAP0(vclezq_v), 4745 NEONMAP1(vcls_v, aarch64_neon_cls, Add1ArgType), 4746 NEONMAP1(vclsq_v, aarch64_neon_cls, Add1ArgType), 4747 NEONMAP0(vcltz_v), 4748 NEONMAP0(vcltzq_v), 4749 NEONMAP1(vclz_v, ctlz, Add1ArgType), 4750 NEONMAP1(vclzq_v, ctlz, Add1ArgType), 4751 NEONMAP1(vcnt_v, ctpop, Add1ArgType), 4752 NEONMAP1(vcntq_v, ctpop, Add1ArgType), 4753 NEONMAP1(vcvt_f16_f32, aarch64_neon_vcvtfp2hf, 0), 4754 NEONMAP0(vcvt_f16_v), 4755 NEONMAP1(vcvt_f32_f16, aarch64_neon_vcvthf2fp, 0), 4756 NEONMAP0(vcvt_f32_v), 4757 NEONMAP2(vcvt_n_f16_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0), 4758 NEONMAP2(vcvt_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0), 4759 NEONMAP2(vcvt_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0), 4760 NEONMAP1(vcvt_n_s16_v, aarch64_neon_vcvtfp2fxs, 0), 4761 NEONMAP1(vcvt_n_s32_v, aarch64_neon_vcvtfp2fxs, 0), 4762 NEONMAP1(vcvt_n_s64_v, aarch64_neon_vcvtfp2fxs, 0), 4763 NEONMAP1(vcvt_n_u16_v, aarch64_neon_vcvtfp2fxu, 0), 4764 NEONMAP1(vcvt_n_u32_v, aarch64_neon_vcvtfp2fxu, 0), 4765 NEONMAP1(vcvt_n_u64_v, aarch64_neon_vcvtfp2fxu, 0), 4766 NEONMAP0(vcvtq_f16_v), 4767 NEONMAP0(vcvtq_f32_v), 4768 NEONMAP2(vcvtq_n_f16_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0), 4769 NEONMAP2(vcvtq_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0), 4770 NEONMAP2(vcvtq_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0), 4771 NEONMAP1(vcvtq_n_s16_v, aarch64_neon_vcvtfp2fxs, 0), 4772 NEONMAP1(vcvtq_n_s32_v, aarch64_neon_vcvtfp2fxs, 0), 4773 NEONMAP1(vcvtq_n_s64_v, aarch64_neon_vcvtfp2fxs, 0), 4774 NEONMAP1(vcvtq_n_u16_v, aarch64_neon_vcvtfp2fxu, 0), 4775 NEONMAP1(vcvtq_n_u32_v, aarch64_neon_vcvtfp2fxu, 0), 4776 NEONMAP1(vcvtq_n_u64_v, aarch64_neon_vcvtfp2fxu, 0), 4777 NEONMAP1(vcvtx_f32_v, aarch64_neon_fcvtxn, AddRetType | Add1ArgType), 4778 NEONMAP2(vdot_v, aarch64_neon_udot, aarch64_neon_sdot, 0), 4779 NEONMAP2(vdotq_v, aarch64_neon_udot, aarch64_neon_sdot, 0), 4780 NEONMAP0(vext_v), 4781 NEONMAP0(vextq_v), 4782 NEONMAP0(vfma_v), 4783 NEONMAP0(vfmaq_v), 4784 NEONMAP1(vfmlal_high_v, aarch64_neon_fmlal2, 0), 4785 NEONMAP1(vfmlal_low_v, aarch64_neon_fmlal, 0), 4786 NEONMAP1(vfmlalq_high_v, aarch64_neon_fmlal2, 0), 4787 NEONMAP1(vfmlalq_low_v, aarch64_neon_fmlal, 0), 4788 NEONMAP1(vfmlsl_high_v, aarch64_neon_fmlsl2, 0), 4789 NEONMAP1(vfmlsl_low_v, aarch64_neon_fmlsl, 0), 4790 NEONMAP1(vfmlslq_high_v, aarch64_neon_fmlsl2, 0), 4791 NEONMAP1(vfmlslq_low_v, aarch64_neon_fmlsl, 0), 4792 NEONMAP2(vhadd_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts), 4793 NEONMAP2(vhaddq_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts), 4794 NEONMAP2(vhsub_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts), 4795 NEONMAP2(vhsubq_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts), 4796 NEONMAP1(vld1_x2_v, aarch64_neon_ld1x2, 0), 4797 NEONMAP1(vld1_x3_v, aarch64_neon_ld1x3, 0), 4798 NEONMAP1(vld1_x4_v, aarch64_neon_ld1x4, 0), 4799 NEONMAP1(vld1q_x2_v, aarch64_neon_ld1x2, 0), 4800 NEONMAP1(vld1q_x3_v, aarch64_neon_ld1x3, 0), 4801 NEONMAP1(vld1q_x4_v, aarch64_neon_ld1x4, 0), 4802 NEONMAP0(vmovl_v), 4803 NEONMAP0(vmovn_v), 4804 NEONMAP1(vmul_v, aarch64_neon_pmul, Add1ArgType), 4805 NEONMAP1(vmulq_v, aarch64_neon_pmul, Add1ArgType), 4806 NEONMAP1(vpadd_v, aarch64_neon_addp, Add1ArgType), 4807 NEONMAP2(vpaddl_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts), 4808 NEONMAP2(vpaddlq_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts), 4809 NEONMAP1(vpaddq_v, aarch64_neon_addp, Add1ArgType), 4810 NEONMAP1(vqabs_v, aarch64_neon_sqabs, Add1ArgType), 4811 NEONMAP1(vqabsq_v, aarch64_neon_sqabs, Add1ArgType), 4812 NEONMAP2(vqadd_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts), 4813 NEONMAP2(vqaddq_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts), 4814 NEONMAP2(vqdmlal_v, aarch64_neon_sqdmull, aarch64_neon_sqadd, 0), 4815 NEONMAP2(vqdmlsl_v, aarch64_neon_sqdmull, aarch64_neon_sqsub, 0), 4816 NEONMAP1(vqdmulh_v, aarch64_neon_sqdmulh, Add1ArgType), 4817 NEONMAP1(vqdmulhq_v, aarch64_neon_sqdmulh, Add1ArgType), 4818 NEONMAP1(vqdmull_v, aarch64_neon_sqdmull, Add1ArgType), 4819 NEONMAP2(vqmovn_v, aarch64_neon_uqxtn, aarch64_neon_sqxtn, Add1ArgType | UnsignedAlts), 4820 NEONMAP1(vqmovun_v, aarch64_neon_sqxtun, Add1ArgType), 4821 NEONMAP1(vqneg_v, aarch64_neon_sqneg, Add1ArgType), 4822 NEONMAP1(vqnegq_v, aarch64_neon_sqneg, Add1ArgType), 4823 NEONMAP1(vqrdmulh_v, aarch64_neon_sqrdmulh, Add1ArgType), 4824 NEONMAP1(vqrdmulhq_v, aarch64_neon_sqrdmulh, Add1ArgType), 4825 NEONMAP2(vqrshl_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts), 4826 NEONMAP2(vqrshlq_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts), 4827 NEONMAP2(vqshl_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl, UnsignedAlts), 4828 NEONMAP2(vqshl_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts), 4829 NEONMAP2(vqshlq_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl,UnsignedAlts), 4830 NEONMAP2(vqshlq_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts), 4831 NEONMAP1(vqshlu_n_v, aarch64_neon_sqshlu, 0), 4832 NEONMAP1(vqshluq_n_v, aarch64_neon_sqshlu, 0), 4833 NEONMAP2(vqsub_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts), 4834 NEONMAP2(vqsubq_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts), 4835 NEONMAP1(vraddhn_v, aarch64_neon_raddhn, Add1ArgType), 4836 NEONMAP2(vrecpe_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0), 4837 NEONMAP2(vrecpeq_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0), 4838 NEONMAP1(vrecps_v, aarch64_neon_frecps, Add1ArgType), 4839 NEONMAP1(vrecpsq_v, aarch64_neon_frecps, Add1ArgType), 4840 NEONMAP2(vrhadd_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts), 4841 NEONMAP2(vrhaddq_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts), 4842 NEONMAP0(vrndi_v), 4843 NEONMAP0(vrndiq_v), 4844 NEONMAP2(vrshl_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts), 4845 NEONMAP2(vrshlq_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts), 4846 NEONMAP2(vrshr_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts), 4847 NEONMAP2(vrshrq_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts), 4848 NEONMAP2(vrsqrte_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0), 4849 NEONMAP2(vrsqrteq_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0), 4850 NEONMAP1(vrsqrts_v, aarch64_neon_frsqrts, Add1ArgType), 4851 NEONMAP1(vrsqrtsq_v, aarch64_neon_frsqrts, Add1ArgType), 4852 NEONMAP1(vrsubhn_v, aarch64_neon_rsubhn, Add1ArgType), 4853 NEONMAP1(vsha1su0q_v, aarch64_crypto_sha1su0, 0), 4854 NEONMAP1(vsha1su1q_v, aarch64_crypto_sha1su1, 0), 4855 NEONMAP1(vsha256h2q_v, aarch64_crypto_sha256h2, 0), 4856 NEONMAP1(vsha256hq_v, aarch64_crypto_sha256h, 0), 4857 NEONMAP1(vsha256su0q_v, aarch64_crypto_sha256su0, 0), 4858 NEONMAP1(vsha256su1q_v, aarch64_crypto_sha256su1, 0), 4859 NEONMAP0(vshl_n_v), 4860 NEONMAP2(vshl_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts), 4861 NEONMAP0(vshll_n_v), 4862 NEONMAP0(vshlq_n_v), 4863 NEONMAP2(vshlq_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts), 4864 NEONMAP0(vshr_n_v), 4865 NEONMAP0(vshrn_n_v), 4866 NEONMAP0(vshrq_n_v), 4867 NEONMAP1(vst1_x2_v, aarch64_neon_st1x2, 0), 4868 NEONMAP1(vst1_x3_v, aarch64_neon_st1x3, 0), 4869 NEONMAP1(vst1_x4_v, aarch64_neon_st1x4, 0), 4870 NEONMAP1(vst1q_x2_v, aarch64_neon_st1x2, 0), 4871 NEONMAP1(vst1q_x3_v, aarch64_neon_st1x3, 0), 4872 NEONMAP1(vst1q_x4_v, aarch64_neon_st1x4, 0), 4873 NEONMAP0(vsubhn_v), 4874 NEONMAP0(vtst_v), 4875 NEONMAP0(vtstq_v), 4876 }; 4877 4878 static const NeonIntrinsicInfo AArch64SISDIntrinsicMap[] = { 4879 NEONMAP1(vabdd_f64, aarch64_sisd_fabd, Add1ArgType), 4880 NEONMAP1(vabds_f32, aarch64_sisd_fabd, Add1ArgType), 4881 NEONMAP1(vabsd_s64, aarch64_neon_abs, Add1ArgType), 4882 NEONMAP1(vaddlv_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType), 4883 NEONMAP1(vaddlv_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType), 4884 NEONMAP1(vaddlvq_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType), 4885 NEONMAP1(vaddlvq_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType), 4886 NEONMAP1(vaddv_f32, aarch64_neon_faddv, AddRetType | Add1ArgType), 4887 NEONMAP1(vaddv_s32, aarch64_neon_saddv, AddRetType | Add1ArgType), 4888 NEONMAP1(vaddv_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType), 4889 NEONMAP1(vaddvq_f32, aarch64_neon_faddv, AddRetType | Add1ArgType), 4890 NEONMAP1(vaddvq_f64, aarch64_neon_faddv, AddRetType | Add1ArgType), 4891 NEONMAP1(vaddvq_s32, aarch64_neon_saddv, AddRetType | Add1ArgType), 4892 NEONMAP1(vaddvq_s64, aarch64_neon_saddv, AddRetType | Add1ArgType), 4893 NEONMAP1(vaddvq_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType), 4894 NEONMAP1(vaddvq_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType), 4895 NEONMAP1(vcaged_f64, aarch64_neon_facge, AddRetType | Add1ArgType), 4896 NEONMAP1(vcages_f32, aarch64_neon_facge, AddRetType | Add1ArgType), 4897 NEONMAP1(vcagtd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType), 4898 NEONMAP1(vcagts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType), 4899 NEONMAP1(vcaled_f64, aarch64_neon_facge, AddRetType | Add1ArgType), 4900 NEONMAP1(vcales_f32, aarch64_neon_facge, AddRetType | Add1ArgType), 4901 NEONMAP1(vcaltd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType), 4902 NEONMAP1(vcalts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType), 4903 NEONMAP1(vcvtad_s64_f64, aarch64_neon_fcvtas, AddRetType | Add1ArgType), 4904 NEONMAP1(vcvtad_u64_f64, aarch64_neon_fcvtau, AddRetType | Add1ArgType), 4905 NEONMAP1(vcvtas_s32_f32, aarch64_neon_fcvtas, AddRetType | Add1ArgType), 4906 NEONMAP1(vcvtas_u32_f32, aarch64_neon_fcvtau, AddRetType | Add1ArgType), 4907 NEONMAP1(vcvtd_n_f64_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType), 4908 NEONMAP1(vcvtd_n_f64_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType), 4909 NEONMAP1(vcvtd_n_s64_f64, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType), 4910 NEONMAP1(vcvtd_n_u64_f64, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType), 4911 NEONMAP1(vcvtmd_s64_f64, aarch64_neon_fcvtms, AddRetType | Add1ArgType), 4912 NEONMAP1(vcvtmd_u64_f64, aarch64_neon_fcvtmu, AddRetType | Add1ArgType), 4913 NEONMAP1(vcvtms_s32_f32, aarch64_neon_fcvtms, AddRetType | Add1ArgType), 4914 NEONMAP1(vcvtms_u32_f32, aarch64_neon_fcvtmu, AddRetType | Add1ArgType), 4915 NEONMAP1(vcvtnd_s64_f64, aarch64_neon_fcvtns, AddRetType | Add1ArgType), 4916 NEONMAP1(vcvtnd_u64_f64, aarch64_neon_fcvtnu, AddRetType | Add1ArgType), 4917 NEONMAP1(vcvtns_s32_f32, aarch64_neon_fcvtns, AddRetType | Add1ArgType), 4918 NEONMAP1(vcvtns_u32_f32, aarch64_neon_fcvtnu, AddRetType | Add1ArgType), 4919 NEONMAP1(vcvtpd_s64_f64, aarch64_neon_fcvtps, AddRetType | Add1ArgType), 4920 NEONMAP1(vcvtpd_u64_f64, aarch64_neon_fcvtpu, AddRetType | Add1ArgType), 4921 NEONMAP1(vcvtps_s32_f32, aarch64_neon_fcvtps, AddRetType | Add1ArgType), 4922 NEONMAP1(vcvtps_u32_f32, aarch64_neon_fcvtpu, AddRetType | Add1ArgType), 4923 NEONMAP1(vcvts_n_f32_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType), 4924 NEONMAP1(vcvts_n_f32_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType), 4925 NEONMAP1(vcvts_n_s32_f32, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType), 4926 NEONMAP1(vcvts_n_u32_f32, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType), 4927 NEONMAP1(vcvtxd_f32_f64, aarch64_sisd_fcvtxn, 0), 4928 NEONMAP1(vmaxnmv_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType), 4929 NEONMAP1(vmaxnmvq_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType), 4930 NEONMAP1(vmaxnmvq_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType), 4931 NEONMAP1(vmaxv_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType), 4932 NEONMAP1(vmaxv_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType), 4933 NEONMAP1(vmaxv_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType), 4934 NEONMAP1(vmaxvq_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType), 4935 NEONMAP1(vmaxvq_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType), 4936 NEONMAP1(vmaxvq_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType), 4937 NEONMAP1(vmaxvq_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType), 4938 NEONMAP1(vminnmv_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType), 4939 NEONMAP1(vminnmvq_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType), 4940 NEONMAP1(vminnmvq_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType), 4941 NEONMAP1(vminv_f32, aarch64_neon_fminv, AddRetType | Add1ArgType), 4942 NEONMAP1(vminv_s32, aarch64_neon_sminv, AddRetType | Add1ArgType), 4943 NEONMAP1(vminv_u32, aarch64_neon_uminv, AddRetType | Add1ArgType), 4944 NEONMAP1(vminvq_f32, aarch64_neon_fminv, AddRetType | Add1ArgType), 4945 NEONMAP1(vminvq_f64, aarch64_neon_fminv, AddRetType | Add1ArgType), 4946 NEONMAP1(vminvq_s32, aarch64_neon_sminv, AddRetType | Add1ArgType), 4947 NEONMAP1(vminvq_u32, aarch64_neon_uminv, AddRetType | Add1ArgType), 4948 NEONMAP1(vmull_p64, aarch64_neon_pmull64, 0), 4949 NEONMAP1(vmulxd_f64, aarch64_neon_fmulx, Add1ArgType), 4950 NEONMAP1(vmulxs_f32, aarch64_neon_fmulx, Add1ArgType), 4951 NEONMAP1(vpaddd_s64, aarch64_neon_uaddv, AddRetType | Add1ArgType), 4952 NEONMAP1(vpaddd_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType), 4953 NEONMAP1(vpmaxnmqd_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType), 4954 NEONMAP1(vpmaxnms_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType), 4955 NEONMAP1(vpmaxqd_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType), 4956 NEONMAP1(vpmaxs_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType), 4957 NEONMAP1(vpminnmqd_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType), 4958 NEONMAP1(vpminnms_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType), 4959 NEONMAP1(vpminqd_f64, aarch64_neon_fminv, AddRetType | Add1ArgType), 4960 NEONMAP1(vpmins_f32, aarch64_neon_fminv, AddRetType | Add1ArgType), 4961 NEONMAP1(vqabsb_s8, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors), 4962 NEONMAP1(vqabsd_s64, aarch64_neon_sqabs, Add1ArgType), 4963 NEONMAP1(vqabsh_s16, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors), 4964 NEONMAP1(vqabss_s32, aarch64_neon_sqabs, Add1ArgType), 4965 NEONMAP1(vqaddb_s8, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors), 4966 NEONMAP1(vqaddb_u8, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors), 4967 NEONMAP1(vqaddd_s64, aarch64_neon_sqadd, Add1ArgType), 4968 NEONMAP1(vqaddd_u64, aarch64_neon_uqadd, Add1ArgType), 4969 NEONMAP1(vqaddh_s16, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors), 4970 NEONMAP1(vqaddh_u16, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors), 4971 NEONMAP1(vqadds_s32, aarch64_neon_sqadd, Add1ArgType), 4972 NEONMAP1(vqadds_u32, aarch64_neon_uqadd, Add1ArgType), 4973 NEONMAP1(vqdmulhh_s16, aarch64_neon_sqdmulh, Vectorize1ArgType | Use64BitVectors), 4974 NEONMAP1(vqdmulhs_s32, aarch64_neon_sqdmulh, Add1ArgType), 4975 NEONMAP1(vqdmullh_s16, aarch64_neon_sqdmull, VectorRet | Use128BitVectors), 4976 NEONMAP1(vqdmulls_s32, aarch64_neon_sqdmulls_scalar, 0), 4977 NEONMAP1(vqmovnd_s64, aarch64_neon_scalar_sqxtn, AddRetType | Add1ArgType), 4978 NEONMAP1(vqmovnd_u64, aarch64_neon_scalar_uqxtn, AddRetType | Add1ArgType), 4979 NEONMAP1(vqmovnh_s16, aarch64_neon_sqxtn, VectorRet | Use64BitVectors), 4980 NEONMAP1(vqmovnh_u16, aarch64_neon_uqxtn, VectorRet | Use64BitVectors), 4981 NEONMAP1(vqmovns_s32, aarch64_neon_sqxtn, VectorRet | Use64BitVectors), 4982 NEONMAP1(vqmovns_u32, aarch64_neon_uqxtn, VectorRet | Use64BitVectors), 4983 NEONMAP1(vqmovund_s64, aarch64_neon_scalar_sqxtun, AddRetType | Add1ArgType), 4984 NEONMAP1(vqmovunh_s16, aarch64_neon_sqxtun, VectorRet | Use64BitVectors), 4985 NEONMAP1(vqmovuns_s32, aarch64_neon_sqxtun, VectorRet | Use64BitVectors), 4986 NEONMAP1(vqnegb_s8, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors), 4987 NEONMAP1(vqnegd_s64, aarch64_neon_sqneg, Add1ArgType), 4988 NEONMAP1(vqnegh_s16, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors), 4989 NEONMAP1(vqnegs_s32, aarch64_neon_sqneg, Add1ArgType), 4990 NEONMAP1(vqrdmulhh_s16, aarch64_neon_sqrdmulh, Vectorize1ArgType | Use64BitVectors), 4991 NEONMAP1(vqrdmulhs_s32, aarch64_neon_sqrdmulh, Add1ArgType), 4992 NEONMAP1(vqrshlb_s8, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors), 4993 NEONMAP1(vqrshlb_u8, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors), 4994 NEONMAP1(vqrshld_s64, aarch64_neon_sqrshl, Add1ArgType), 4995 NEONMAP1(vqrshld_u64, aarch64_neon_uqrshl, Add1ArgType), 4996 NEONMAP1(vqrshlh_s16, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors), 4997 NEONMAP1(vqrshlh_u16, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors), 4998 NEONMAP1(vqrshls_s32, aarch64_neon_sqrshl, Add1ArgType), 4999 NEONMAP1(vqrshls_u32, aarch64_neon_uqrshl, Add1ArgType), 5000 NEONMAP1(vqrshrnd_n_s64, aarch64_neon_sqrshrn, AddRetType), 5001 NEONMAP1(vqrshrnd_n_u64, aarch64_neon_uqrshrn, AddRetType), 5002 NEONMAP1(vqrshrnh_n_s16, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors), 5003 NEONMAP1(vqrshrnh_n_u16, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors), 5004 NEONMAP1(vqrshrns_n_s32, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors), 5005 NEONMAP1(vqrshrns_n_u32, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors), 5006 NEONMAP1(vqrshrund_n_s64, aarch64_neon_sqrshrun, AddRetType), 5007 NEONMAP1(vqrshrunh_n_s16, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors), 5008 NEONMAP1(vqrshruns_n_s32, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors), 5009 NEONMAP1(vqshlb_n_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors), 5010 NEONMAP1(vqshlb_n_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors), 5011 NEONMAP1(vqshlb_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors), 5012 NEONMAP1(vqshlb_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors), 5013 NEONMAP1(vqshld_s64, aarch64_neon_sqshl, Add1ArgType), 5014 NEONMAP1(vqshld_u64, aarch64_neon_uqshl, Add1ArgType), 5015 NEONMAP1(vqshlh_n_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors), 5016 NEONMAP1(vqshlh_n_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors), 5017 NEONMAP1(vqshlh_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors), 5018 NEONMAP1(vqshlh_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors), 5019 NEONMAP1(vqshls_n_s32, aarch64_neon_sqshl, Add1ArgType), 5020 NEONMAP1(vqshls_n_u32, aarch64_neon_uqshl, Add1ArgType), 5021 NEONMAP1(vqshls_s32, aarch64_neon_sqshl, Add1ArgType), 5022 NEONMAP1(vqshls_u32, aarch64_neon_uqshl, Add1ArgType), 5023 NEONMAP1(vqshlub_n_s8, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors), 5024 NEONMAP1(vqshluh_n_s16, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors), 5025 NEONMAP1(vqshlus_n_s32, aarch64_neon_sqshlu, Add1ArgType), 5026 NEONMAP1(vqshrnd_n_s64, aarch64_neon_sqshrn, AddRetType), 5027 NEONMAP1(vqshrnd_n_u64, aarch64_neon_uqshrn, AddRetType), 5028 NEONMAP1(vqshrnh_n_s16, aarch64_neon_sqshrn, VectorRet | Use64BitVectors), 5029 NEONMAP1(vqshrnh_n_u16, aarch64_neon_uqshrn, VectorRet | Use64BitVectors), 5030 NEONMAP1(vqshrns_n_s32, aarch64_neon_sqshrn, VectorRet | Use64BitVectors), 5031 NEONMAP1(vqshrns_n_u32, aarch64_neon_uqshrn, VectorRet | Use64BitVectors), 5032 NEONMAP1(vqshrund_n_s64, aarch64_neon_sqshrun, AddRetType), 5033 NEONMAP1(vqshrunh_n_s16, aarch64_neon_sqshrun, VectorRet | Use64BitVectors), 5034 NEONMAP1(vqshruns_n_s32, aarch64_neon_sqshrun, VectorRet | Use64BitVectors), 5035 NEONMAP1(vqsubb_s8, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors), 5036 NEONMAP1(vqsubb_u8, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors), 5037 NEONMAP1(vqsubd_s64, aarch64_neon_sqsub, Add1ArgType), 5038 NEONMAP1(vqsubd_u64, aarch64_neon_uqsub, Add1ArgType), 5039 NEONMAP1(vqsubh_s16, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors), 5040 NEONMAP1(vqsubh_u16, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors), 5041 NEONMAP1(vqsubs_s32, aarch64_neon_sqsub, Add1ArgType), 5042 NEONMAP1(vqsubs_u32, aarch64_neon_uqsub, Add1ArgType), 5043 NEONMAP1(vrecped_f64, aarch64_neon_frecpe, Add1ArgType), 5044 NEONMAP1(vrecpes_f32, aarch64_neon_frecpe, Add1ArgType), 5045 NEONMAP1(vrecpxd_f64, aarch64_neon_frecpx, Add1ArgType), 5046 NEONMAP1(vrecpxs_f32, aarch64_neon_frecpx, Add1ArgType), 5047 NEONMAP1(vrshld_s64, aarch64_neon_srshl, Add1ArgType), 5048 NEONMAP1(vrshld_u64, aarch64_neon_urshl, Add1ArgType), 5049 NEONMAP1(vrsqrted_f64, aarch64_neon_frsqrte, Add1ArgType), 5050 NEONMAP1(vrsqrtes_f32, aarch64_neon_frsqrte, Add1ArgType), 5051 NEONMAP1(vrsqrtsd_f64, aarch64_neon_frsqrts, Add1ArgType), 5052 NEONMAP1(vrsqrtss_f32, aarch64_neon_frsqrts, Add1ArgType), 5053 NEONMAP1(vsha1cq_u32, aarch64_crypto_sha1c, 0), 5054 NEONMAP1(vsha1h_u32, aarch64_crypto_sha1h, 0), 5055 NEONMAP1(vsha1mq_u32, aarch64_crypto_sha1m, 0), 5056 NEONMAP1(vsha1pq_u32, aarch64_crypto_sha1p, 0), 5057 NEONMAP1(vshld_s64, aarch64_neon_sshl, Add1ArgType), 5058 NEONMAP1(vshld_u64, aarch64_neon_ushl, Add1ArgType), 5059 NEONMAP1(vslid_n_s64, aarch64_neon_vsli, Vectorize1ArgType), 5060 NEONMAP1(vslid_n_u64, aarch64_neon_vsli, Vectorize1ArgType), 5061 NEONMAP1(vsqaddb_u8, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors), 5062 NEONMAP1(vsqaddd_u64, aarch64_neon_usqadd, Add1ArgType), 5063 NEONMAP1(vsqaddh_u16, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors), 5064 NEONMAP1(vsqadds_u32, aarch64_neon_usqadd, Add1ArgType), 5065 NEONMAP1(vsrid_n_s64, aarch64_neon_vsri, Vectorize1ArgType), 5066 NEONMAP1(vsrid_n_u64, aarch64_neon_vsri, Vectorize1ArgType), 5067 NEONMAP1(vuqaddb_s8, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors), 5068 NEONMAP1(vuqaddd_s64, aarch64_neon_suqadd, Add1ArgType), 5069 NEONMAP1(vuqaddh_s16, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors), 5070 NEONMAP1(vuqadds_s32, aarch64_neon_suqadd, Add1ArgType), 5071 // FP16 scalar intrinisics go here. 5072 NEONMAP1(vabdh_f16, aarch64_sisd_fabd, Add1ArgType), 5073 NEONMAP1(vcvtah_s32_f16, aarch64_neon_fcvtas, AddRetType | Add1ArgType), 5074 NEONMAP1(vcvtah_s64_f16, aarch64_neon_fcvtas, AddRetType | Add1ArgType), 5075 NEONMAP1(vcvtah_u32_f16, aarch64_neon_fcvtau, AddRetType | Add1ArgType), 5076 NEONMAP1(vcvtah_u64_f16, aarch64_neon_fcvtau, AddRetType | Add1ArgType), 5077 NEONMAP1(vcvth_n_f16_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType), 5078 NEONMAP1(vcvth_n_f16_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType), 5079 NEONMAP1(vcvth_n_f16_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType), 5080 NEONMAP1(vcvth_n_f16_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType), 5081 NEONMAP1(vcvth_n_s32_f16, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType), 5082 NEONMAP1(vcvth_n_s64_f16, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType), 5083 NEONMAP1(vcvth_n_u32_f16, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType), 5084 NEONMAP1(vcvth_n_u64_f16, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType), 5085 NEONMAP1(vcvtmh_s32_f16, aarch64_neon_fcvtms, AddRetType | Add1ArgType), 5086 NEONMAP1(vcvtmh_s64_f16, aarch64_neon_fcvtms, AddRetType | Add1ArgType), 5087 NEONMAP1(vcvtmh_u32_f16, aarch64_neon_fcvtmu, AddRetType | Add1ArgType), 5088 NEONMAP1(vcvtmh_u64_f16, aarch64_neon_fcvtmu, AddRetType | Add1ArgType), 5089 NEONMAP1(vcvtnh_s32_f16, aarch64_neon_fcvtns, AddRetType | Add1ArgType), 5090 NEONMAP1(vcvtnh_s64_f16, aarch64_neon_fcvtns, AddRetType | Add1ArgType), 5091 NEONMAP1(vcvtnh_u32_f16, aarch64_neon_fcvtnu, AddRetType | Add1ArgType), 5092 NEONMAP1(vcvtnh_u64_f16, aarch64_neon_fcvtnu, AddRetType | Add1ArgType), 5093 NEONMAP1(vcvtph_s32_f16, aarch64_neon_fcvtps, AddRetType | Add1ArgType), 5094 NEONMAP1(vcvtph_s64_f16, aarch64_neon_fcvtps, AddRetType | Add1ArgType), 5095 NEONMAP1(vcvtph_u32_f16, aarch64_neon_fcvtpu, AddRetType | Add1ArgType), 5096 NEONMAP1(vcvtph_u64_f16, aarch64_neon_fcvtpu, AddRetType | Add1ArgType), 5097 NEONMAP1(vmulxh_f16, aarch64_neon_fmulx, Add1ArgType), 5098 NEONMAP1(vrecpeh_f16, aarch64_neon_frecpe, Add1ArgType), 5099 NEONMAP1(vrecpxh_f16, aarch64_neon_frecpx, Add1ArgType), 5100 NEONMAP1(vrsqrteh_f16, aarch64_neon_frsqrte, Add1ArgType), 5101 NEONMAP1(vrsqrtsh_f16, aarch64_neon_frsqrts, Add1ArgType), 5102 }; 5103 5104 #undef NEONMAP0 5105 #undef NEONMAP1 5106 #undef NEONMAP2 5107 5108 static bool NEONSIMDIntrinsicsProvenSorted = false; 5109 5110 static bool AArch64SIMDIntrinsicsProvenSorted = false; 5111 static bool AArch64SISDIntrinsicsProvenSorted = false; 5112 5113 5114 static const NeonIntrinsicInfo * 5115 findNeonIntrinsicInMap(ArrayRef<NeonIntrinsicInfo> IntrinsicMap, 5116 unsigned BuiltinID, bool &MapProvenSorted) { 5117 5118 #ifndef NDEBUG 5119 if (!MapProvenSorted) { 5120 assert(std::is_sorted(std::begin(IntrinsicMap), std::end(IntrinsicMap))); 5121 MapProvenSorted = true; 5122 } 5123 #endif 5124 5125 const NeonIntrinsicInfo *Builtin = llvm::lower_bound(IntrinsicMap, BuiltinID); 5126 5127 if (Builtin != IntrinsicMap.end() && Builtin->BuiltinID == BuiltinID) 5128 return Builtin; 5129 5130 return nullptr; 5131 } 5132 5133 Function *CodeGenFunction::LookupNeonLLVMIntrinsic(unsigned IntrinsicID, 5134 unsigned Modifier, 5135 llvm::Type *ArgType, 5136 const CallExpr *E) { 5137 int VectorSize = 0; 5138 if (Modifier & Use64BitVectors) 5139 VectorSize = 64; 5140 else if (Modifier & Use128BitVectors) 5141 VectorSize = 128; 5142 5143 // Return type. 5144 SmallVector<llvm::Type *, 3> Tys; 5145 if (Modifier & AddRetType) { 5146 llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext())); 5147 if (Modifier & VectorizeRetType) 5148 Ty = llvm::VectorType::get( 5149 Ty, VectorSize ? VectorSize / Ty->getPrimitiveSizeInBits() : 1); 5150 5151 Tys.push_back(Ty); 5152 } 5153 5154 // Arguments. 5155 if (Modifier & VectorizeArgTypes) { 5156 int Elts = VectorSize ? VectorSize / ArgType->getPrimitiveSizeInBits() : 1; 5157 ArgType = llvm::VectorType::get(ArgType, Elts); 5158 } 5159 5160 if (Modifier & (Add1ArgType | Add2ArgTypes)) 5161 Tys.push_back(ArgType); 5162 5163 if (Modifier & Add2ArgTypes) 5164 Tys.push_back(ArgType); 5165 5166 if (Modifier & InventFloatType) 5167 Tys.push_back(FloatTy); 5168 5169 return CGM.getIntrinsic(IntrinsicID, Tys); 5170 } 5171 5172 static Value *EmitCommonNeonSISDBuiltinExpr(CodeGenFunction &CGF, 5173 const NeonIntrinsicInfo &SISDInfo, 5174 SmallVectorImpl<Value *> &Ops, 5175 const CallExpr *E) { 5176 unsigned BuiltinID = SISDInfo.BuiltinID; 5177 unsigned int Int = SISDInfo.LLVMIntrinsic; 5178 unsigned Modifier = SISDInfo.TypeModifier; 5179 const char *s = SISDInfo.NameHint; 5180 5181 switch (BuiltinID) { 5182 case NEON::BI__builtin_neon_vcled_s64: 5183 case NEON::BI__builtin_neon_vcled_u64: 5184 case NEON::BI__builtin_neon_vcles_f32: 5185 case NEON::BI__builtin_neon_vcled_f64: 5186 case NEON::BI__builtin_neon_vcltd_s64: 5187 case NEON::BI__builtin_neon_vcltd_u64: 5188 case NEON::BI__builtin_neon_vclts_f32: 5189 case NEON::BI__builtin_neon_vcltd_f64: 5190 case NEON::BI__builtin_neon_vcales_f32: 5191 case NEON::BI__builtin_neon_vcaled_f64: 5192 case NEON::BI__builtin_neon_vcalts_f32: 5193 case NEON::BI__builtin_neon_vcaltd_f64: 5194 // Only one direction of comparisons actually exist, cmle is actually a cmge 5195 // with swapped operands. The table gives us the right intrinsic but we 5196 // still need to do the swap. 5197 std::swap(Ops[0], Ops[1]); 5198 break; 5199 } 5200 5201 assert(Int && "Generic code assumes a valid intrinsic"); 5202 5203 // Determine the type(s) of this overloaded AArch64 intrinsic. 5204 const Expr *Arg = E->getArg(0); 5205 llvm::Type *ArgTy = CGF.ConvertType(Arg->getType()); 5206 Function *F = CGF.LookupNeonLLVMIntrinsic(Int, Modifier, ArgTy, E); 5207 5208 int j = 0; 5209 ConstantInt *C0 = ConstantInt::get(CGF.SizeTy, 0); 5210 for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end(); 5211 ai != ae; ++ai, ++j) { 5212 llvm::Type *ArgTy = ai->getType(); 5213 if (Ops[j]->getType()->getPrimitiveSizeInBits() == 5214 ArgTy->getPrimitiveSizeInBits()) 5215 continue; 5216 5217 assert(ArgTy->isVectorTy() && !Ops[j]->getType()->isVectorTy()); 5218 // The constant argument to an _n_ intrinsic always has Int32Ty, so truncate 5219 // it before inserting. 5220 Ops[j] = 5221 CGF.Builder.CreateTruncOrBitCast(Ops[j], ArgTy->getVectorElementType()); 5222 Ops[j] = 5223 CGF.Builder.CreateInsertElement(UndefValue::get(ArgTy), Ops[j], C0); 5224 } 5225 5226 Value *Result = CGF.EmitNeonCall(F, Ops, s); 5227 llvm::Type *ResultType = CGF.ConvertType(E->getType()); 5228 if (ResultType->getPrimitiveSizeInBits() < 5229 Result->getType()->getPrimitiveSizeInBits()) 5230 return CGF.Builder.CreateExtractElement(Result, C0); 5231 5232 return CGF.Builder.CreateBitCast(Result, ResultType, s); 5233 } 5234 5235 Value *CodeGenFunction::EmitCommonNeonBuiltinExpr( 5236 unsigned BuiltinID, unsigned LLVMIntrinsic, unsigned AltLLVMIntrinsic, 5237 const char *NameHint, unsigned Modifier, const CallExpr *E, 5238 SmallVectorImpl<llvm::Value *> &Ops, Address PtrOp0, Address PtrOp1, 5239 llvm::Triple::ArchType Arch) { 5240 // Get the last argument, which specifies the vector type. 5241 llvm::APSInt NeonTypeConst; 5242 const Expr *Arg = E->getArg(E->getNumArgs() - 1); 5243 if (!Arg->isIntegerConstantExpr(NeonTypeConst, getContext())) 5244 return nullptr; 5245 5246 // Determine the type of this overloaded NEON intrinsic. 5247 NeonTypeFlags Type(NeonTypeConst.getZExtValue()); 5248 bool Usgn = Type.isUnsigned(); 5249 bool Quad = Type.isQuad(); 5250 const bool HasLegalHalfType = getTarget().hasLegalHalfType(); 5251 5252 llvm::VectorType *VTy = GetNeonType(this, Type, HasLegalHalfType); 5253 llvm::Type *Ty = VTy; 5254 if (!Ty) 5255 return nullptr; 5256 5257 auto getAlignmentValue32 = [&](Address addr) -> Value* { 5258 return Builder.getInt32(addr.getAlignment().getQuantity()); 5259 }; 5260 5261 unsigned Int = LLVMIntrinsic; 5262 if ((Modifier & UnsignedAlts) && !Usgn) 5263 Int = AltLLVMIntrinsic; 5264 5265 switch (BuiltinID) { 5266 default: break; 5267 case NEON::BI__builtin_neon_vpadd_v: 5268 case NEON::BI__builtin_neon_vpaddq_v: 5269 // We don't allow fp/int overloading of intrinsics. 5270 if (VTy->getElementType()->isFloatingPointTy() && 5271 Int == Intrinsic::aarch64_neon_addp) 5272 Int = Intrinsic::aarch64_neon_faddp; 5273 break; 5274 case NEON::BI__builtin_neon_vabs_v: 5275 case NEON::BI__builtin_neon_vabsq_v: 5276 if (VTy->getElementType()->isFloatingPointTy()) 5277 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, Ty), Ops, "vabs"); 5278 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), Ops, "vabs"); 5279 case NEON::BI__builtin_neon_vaddhn_v: { 5280 llvm::VectorType *SrcTy = 5281 llvm::VectorType::getExtendedElementVectorType(VTy); 5282 5283 // %sum = add <4 x i32> %lhs, %rhs 5284 Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy); 5285 Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy); 5286 Ops[0] = Builder.CreateAdd(Ops[0], Ops[1], "vaddhn"); 5287 5288 // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16> 5289 Constant *ShiftAmt = 5290 ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2); 5291 Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vaddhn"); 5292 5293 // %res = trunc <4 x i32> %high to <4 x i16> 5294 return Builder.CreateTrunc(Ops[0], VTy, "vaddhn"); 5295 } 5296 case NEON::BI__builtin_neon_vcale_v: 5297 case NEON::BI__builtin_neon_vcaleq_v: 5298 case NEON::BI__builtin_neon_vcalt_v: 5299 case NEON::BI__builtin_neon_vcaltq_v: 5300 std::swap(Ops[0], Ops[1]); 5301 LLVM_FALLTHROUGH; 5302 case NEON::BI__builtin_neon_vcage_v: 5303 case NEON::BI__builtin_neon_vcageq_v: 5304 case NEON::BI__builtin_neon_vcagt_v: 5305 case NEON::BI__builtin_neon_vcagtq_v: { 5306 llvm::Type *Ty; 5307 switch (VTy->getScalarSizeInBits()) { 5308 default: llvm_unreachable("unexpected type"); 5309 case 32: 5310 Ty = FloatTy; 5311 break; 5312 case 64: 5313 Ty = DoubleTy; 5314 break; 5315 case 16: 5316 Ty = HalfTy; 5317 break; 5318 } 5319 llvm::Type *VecFlt = llvm::VectorType::get(Ty, VTy->getNumElements()); 5320 llvm::Type *Tys[] = { VTy, VecFlt }; 5321 Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys); 5322 return EmitNeonCall(F, Ops, NameHint); 5323 } 5324 case NEON::BI__builtin_neon_vceqz_v: 5325 case NEON::BI__builtin_neon_vceqzq_v: 5326 return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OEQ, 5327 ICmpInst::ICMP_EQ, "vceqz"); 5328 case NEON::BI__builtin_neon_vcgez_v: 5329 case NEON::BI__builtin_neon_vcgezq_v: 5330 return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGE, 5331 ICmpInst::ICMP_SGE, "vcgez"); 5332 case NEON::BI__builtin_neon_vclez_v: 5333 case NEON::BI__builtin_neon_vclezq_v: 5334 return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLE, 5335 ICmpInst::ICMP_SLE, "vclez"); 5336 case NEON::BI__builtin_neon_vcgtz_v: 5337 case NEON::BI__builtin_neon_vcgtzq_v: 5338 return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGT, 5339 ICmpInst::ICMP_SGT, "vcgtz"); 5340 case NEON::BI__builtin_neon_vcltz_v: 5341 case NEON::BI__builtin_neon_vcltzq_v: 5342 return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLT, 5343 ICmpInst::ICMP_SLT, "vcltz"); 5344 case NEON::BI__builtin_neon_vclz_v: 5345 case NEON::BI__builtin_neon_vclzq_v: 5346 // We generate target-independent intrinsic, which needs a second argument 5347 // for whether or not clz of zero is undefined; on ARM it isn't. 5348 Ops.push_back(Builder.getInt1(getTarget().isCLZForZeroUndef())); 5349 break; 5350 case NEON::BI__builtin_neon_vcvt_f32_v: 5351 case NEON::BI__builtin_neon_vcvtq_f32_v: 5352 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 5353 Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, Quad), 5354 HasLegalHalfType); 5355 return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt") 5356 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt"); 5357 case NEON::BI__builtin_neon_vcvt_f16_v: 5358 case NEON::BI__builtin_neon_vcvtq_f16_v: 5359 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 5360 Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float16, false, Quad), 5361 HasLegalHalfType); 5362 return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt") 5363 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt"); 5364 case NEON::BI__builtin_neon_vcvt_n_f16_v: 5365 case NEON::BI__builtin_neon_vcvt_n_f32_v: 5366 case NEON::BI__builtin_neon_vcvt_n_f64_v: 5367 case NEON::BI__builtin_neon_vcvtq_n_f16_v: 5368 case NEON::BI__builtin_neon_vcvtq_n_f32_v: 5369 case NEON::BI__builtin_neon_vcvtq_n_f64_v: { 5370 llvm::Type *Tys[2] = { GetFloatNeonType(this, Type), Ty }; 5371 Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic; 5372 Function *F = CGM.getIntrinsic(Int, Tys); 5373 return EmitNeonCall(F, Ops, "vcvt_n"); 5374 } 5375 case NEON::BI__builtin_neon_vcvt_n_s16_v: 5376 case NEON::BI__builtin_neon_vcvt_n_s32_v: 5377 case NEON::BI__builtin_neon_vcvt_n_u16_v: 5378 case NEON::BI__builtin_neon_vcvt_n_u32_v: 5379 case NEON::BI__builtin_neon_vcvt_n_s64_v: 5380 case NEON::BI__builtin_neon_vcvt_n_u64_v: 5381 case NEON::BI__builtin_neon_vcvtq_n_s16_v: 5382 case NEON::BI__builtin_neon_vcvtq_n_s32_v: 5383 case NEON::BI__builtin_neon_vcvtq_n_u16_v: 5384 case NEON::BI__builtin_neon_vcvtq_n_u32_v: 5385 case NEON::BI__builtin_neon_vcvtq_n_s64_v: 5386 case NEON::BI__builtin_neon_vcvtq_n_u64_v: { 5387 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) }; 5388 Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys); 5389 return EmitNeonCall(F, Ops, "vcvt_n"); 5390 } 5391 case NEON::BI__builtin_neon_vcvt_s32_v: 5392 case NEON::BI__builtin_neon_vcvt_u32_v: 5393 case NEON::BI__builtin_neon_vcvt_s64_v: 5394 case NEON::BI__builtin_neon_vcvt_u64_v: 5395 case NEON::BI__builtin_neon_vcvt_s16_v: 5396 case NEON::BI__builtin_neon_vcvt_u16_v: 5397 case NEON::BI__builtin_neon_vcvtq_s32_v: 5398 case NEON::BI__builtin_neon_vcvtq_u32_v: 5399 case NEON::BI__builtin_neon_vcvtq_s64_v: 5400 case NEON::BI__builtin_neon_vcvtq_u64_v: 5401 case NEON::BI__builtin_neon_vcvtq_s16_v: 5402 case NEON::BI__builtin_neon_vcvtq_u16_v: { 5403 Ops[0] = Builder.CreateBitCast(Ops[0], GetFloatNeonType(this, Type)); 5404 return Usgn ? Builder.CreateFPToUI(Ops[0], Ty, "vcvt") 5405 : Builder.CreateFPToSI(Ops[0], Ty, "vcvt"); 5406 } 5407 case NEON::BI__builtin_neon_vcvta_s16_v: 5408 case NEON::BI__builtin_neon_vcvta_s32_v: 5409 case NEON::BI__builtin_neon_vcvta_s64_v: 5410 case NEON::BI__builtin_neon_vcvta_u16_v: 5411 case NEON::BI__builtin_neon_vcvta_u32_v: 5412 case NEON::BI__builtin_neon_vcvta_u64_v: 5413 case NEON::BI__builtin_neon_vcvtaq_s16_v: 5414 case NEON::BI__builtin_neon_vcvtaq_s32_v: 5415 case NEON::BI__builtin_neon_vcvtaq_s64_v: 5416 case NEON::BI__builtin_neon_vcvtaq_u16_v: 5417 case NEON::BI__builtin_neon_vcvtaq_u32_v: 5418 case NEON::BI__builtin_neon_vcvtaq_u64_v: 5419 case NEON::BI__builtin_neon_vcvtn_s16_v: 5420 case NEON::BI__builtin_neon_vcvtn_s32_v: 5421 case NEON::BI__builtin_neon_vcvtn_s64_v: 5422 case NEON::BI__builtin_neon_vcvtn_u16_v: 5423 case NEON::BI__builtin_neon_vcvtn_u32_v: 5424 case NEON::BI__builtin_neon_vcvtn_u64_v: 5425 case NEON::BI__builtin_neon_vcvtnq_s16_v: 5426 case NEON::BI__builtin_neon_vcvtnq_s32_v: 5427 case NEON::BI__builtin_neon_vcvtnq_s64_v: 5428 case NEON::BI__builtin_neon_vcvtnq_u16_v: 5429 case NEON::BI__builtin_neon_vcvtnq_u32_v: 5430 case NEON::BI__builtin_neon_vcvtnq_u64_v: 5431 case NEON::BI__builtin_neon_vcvtp_s16_v: 5432 case NEON::BI__builtin_neon_vcvtp_s32_v: 5433 case NEON::BI__builtin_neon_vcvtp_s64_v: 5434 case NEON::BI__builtin_neon_vcvtp_u16_v: 5435 case NEON::BI__builtin_neon_vcvtp_u32_v: 5436 case NEON::BI__builtin_neon_vcvtp_u64_v: 5437 case NEON::BI__builtin_neon_vcvtpq_s16_v: 5438 case NEON::BI__builtin_neon_vcvtpq_s32_v: 5439 case NEON::BI__builtin_neon_vcvtpq_s64_v: 5440 case NEON::BI__builtin_neon_vcvtpq_u16_v: 5441 case NEON::BI__builtin_neon_vcvtpq_u32_v: 5442 case NEON::BI__builtin_neon_vcvtpq_u64_v: 5443 case NEON::BI__builtin_neon_vcvtm_s16_v: 5444 case NEON::BI__builtin_neon_vcvtm_s32_v: 5445 case NEON::BI__builtin_neon_vcvtm_s64_v: 5446 case NEON::BI__builtin_neon_vcvtm_u16_v: 5447 case NEON::BI__builtin_neon_vcvtm_u32_v: 5448 case NEON::BI__builtin_neon_vcvtm_u64_v: 5449 case NEON::BI__builtin_neon_vcvtmq_s16_v: 5450 case NEON::BI__builtin_neon_vcvtmq_s32_v: 5451 case NEON::BI__builtin_neon_vcvtmq_s64_v: 5452 case NEON::BI__builtin_neon_vcvtmq_u16_v: 5453 case NEON::BI__builtin_neon_vcvtmq_u32_v: 5454 case NEON::BI__builtin_neon_vcvtmq_u64_v: { 5455 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) }; 5456 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, NameHint); 5457 } 5458 case NEON::BI__builtin_neon_vext_v: 5459 case NEON::BI__builtin_neon_vextq_v: { 5460 int CV = cast<ConstantInt>(Ops[2])->getSExtValue(); 5461 SmallVector<uint32_t, 16> Indices; 5462 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) 5463 Indices.push_back(i+CV); 5464 5465 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 5466 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 5467 return Builder.CreateShuffleVector(Ops[0], Ops[1], Indices, "vext"); 5468 } 5469 case NEON::BI__builtin_neon_vfma_v: 5470 case NEON::BI__builtin_neon_vfmaq_v: { 5471 Function *F = CGM.getIntrinsic(Intrinsic::fma, Ty); 5472 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 5473 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 5474 Ops[2] = Builder.CreateBitCast(Ops[2], Ty); 5475 5476 // NEON intrinsic puts accumulator first, unlike the LLVM fma. 5477 return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0]}); 5478 } 5479 case NEON::BI__builtin_neon_vld1_v: 5480 case NEON::BI__builtin_neon_vld1q_v: { 5481 llvm::Type *Tys[] = {Ty, Int8PtrTy}; 5482 Ops.push_back(getAlignmentValue32(PtrOp0)); 5483 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "vld1"); 5484 } 5485 case NEON::BI__builtin_neon_vld1_x2_v: 5486 case NEON::BI__builtin_neon_vld1q_x2_v: 5487 case NEON::BI__builtin_neon_vld1_x3_v: 5488 case NEON::BI__builtin_neon_vld1q_x3_v: 5489 case NEON::BI__builtin_neon_vld1_x4_v: 5490 case NEON::BI__builtin_neon_vld1q_x4_v: { 5491 llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getVectorElementType()); 5492 Ops[1] = Builder.CreateBitCast(Ops[1], PTy); 5493 llvm::Type *Tys[2] = { VTy, PTy }; 5494 Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys); 5495 Ops[1] = Builder.CreateCall(F, Ops[1], "vld1xN"); 5496 Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); 5497 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 5498 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); 5499 } 5500 case NEON::BI__builtin_neon_vld2_v: 5501 case NEON::BI__builtin_neon_vld2q_v: 5502 case NEON::BI__builtin_neon_vld3_v: 5503 case NEON::BI__builtin_neon_vld3q_v: 5504 case NEON::BI__builtin_neon_vld4_v: 5505 case NEON::BI__builtin_neon_vld4q_v: 5506 case NEON::BI__builtin_neon_vld2_dup_v: 5507 case NEON::BI__builtin_neon_vld2q_dup_v: 5508 case NEON::BI__builtin_neon_vld3_dup_v: 5509 case NEON::BI__builtin_neon_vld3q_dup_v: 5510 case NEON::BI__builtin_neon_vld4_dup_v: 5511 case NEON::BI__builtin_neon_vld4q_dup_v: { 5512 llvm::Type *Tys[] = {Ty, Int8PtrTy}; 5513 Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys); 5514 Value *Align = getAlignmentValue32(PtrOp1); 5515 Ops[1] = Builder.CreateCall(F, {Ops[1], Align}, NameHint); 5516 Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); 5517 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 5518 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); 5519 } 5520 case NEON::BI__builtin_neon_vld1_dup_v: 5521 case NEON::BI__builtin_neon_vld1q_dup_v: { 5522 Value *V = UndefValue::get(Ty); 5523 Ty = llvm::PointerType::getUnqual(VTy->getElementType()); 5524 PtrOp0 = Builder.CreateBitCast(PtrOp0, Ty); 5525 LoadInst *Ld = Builder.CreateLoad(PtrOp0); 5526 llvm::Constant *CI = ConstantInt::get(SizeTy, 0); 5527 Ops[0] = Builder.CreateInsertElement(V, Ld, CI); 5528 return EmitNeonSplat(Ops[0], CI); 5529 } 5530 case NEON::BI__builtin_neon_vld2_lane_v: 5531 case NEON::BI__builtin_neon_vld2q_lane_v: 5532 case NEON::BI__builtin_neon_vld3_lane_v: 5533 case NEON::BI__builtin_neon_vld3q_lane_v: 5534 case NEON::BI__builtin_neon_vld4_lane_v: 5535 case NEON::BI__builtin_neon_vld4q_lane_v: { 5536 llvm::Type *Tys[] = {Ty, Int8PtrTy}; 5537 Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys); 5538 for (unsigned I = 2; I < Ops.size() - 1; ++I) 5539 Ops[I] = Builder.CreateBitCast(Ops[I], Ty); 5540 Ops.push_back(getAlignmentValue32(PtrOp1)); 5541 Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), NameHint); 5542 Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); 5543 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 5544 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); 5545 } 5546 case NEON::BI__builtin_neon_vmovl_v: { 5547 llvm::Type *DTy =llvm::VectorType::getTruncatedElementVectorType(VTy); 5548 Ops[0] = Builder.CreateBitCast(Ops[0], DTy); 5549 if (Usgn) 5550 return Builder.CreateZExt(Ops[0], Ty, "vmovl"); 5551 return Builder.CreateSExt(Ops[0], Ty, "vmovl"); 5552 } 5553 case NEON::BI__builtin_neon_vmovn_v: { 5554 llvm::Type *QTy = llvm::VectorType::getExtendedElementVectorType(VTy); 5555 Ops[0] = Builder.CreateBitCast(Ops[0], QTy); 5556 return Builder.CreateTrunc(Ops[0], Ty, "vmovn"); 5557 } 5558 case NEON::BI__builtin_neon_vmull_v: 5559 // FIXME: the integer vmull operations could be emitted in terms of pure 5560 // LLVM IR (2 exts followed by a mul). Unfortunately LLVM has a habit of 5561 // hoisting the exts outside loops. Until global ISel comes along that can 5562 // see through such movement this leads to bad CodeGen. So we need an 5563 // intrinsic for now. 5564 Int = Usgn ? Intrinsic::arm_neon_vmullu : Intrinsic::arm_neon_vmulls; 5565 Int = Type.isPoly() ? (unsigned)Intrinsic::arm_neon_vmullp : Int; 5566 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull"); 5567 case NEON::BI__builtin_neon_vpadal_v: 5568 case NEON::BI__builtin_neon_vpadalq_v: { 5569 // The source operand type has twice as many elements of half the size. 5570 unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits(); 5571 llvm::Type *EltTy = 5572 llvm::IntegerType::get(getLLVMContext(), EltBits / 2); 5573 llvm::Type *NarrowTy = 5574 llvm::VectorType::get(EltTy, VTy->getNumElements() * 2); 5575 llvm::Type *Tys[2] = { Ty, NarrowTy }; 5576 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint); 5577 } 5578 case NEON::BI__builtin_neon_vpaddl_v: 5579 case NEON::BI__builtin_neon_vpaddlq_v: { 5580 // The source operand type has twice as many elements of half the size. 5581 unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits(); 5582 llvm::Type *EltTy = llvm::IntegerType::get(getLLVMContext(), EltBits / 2); 5583 llvm::Type *NarrowTy = 5584 llvm::VectorType::get(EltTy, VTy->getNumElements() * 2); 5585 llvm::Type *Tys[2] = { Ty, NarrowTy }; 5586 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vpaddl"); 5587 } 5588 case NEON::BI__builtin_neon_vqdmlal_v: 5589 case NEON::BI__builtin_neon_vqdmlsl_v: { 5590 SmallVector<Value *, 2> MulOps(Ops.begin() + 1, Ops.end()); 5591 Ops[1] = 5592 EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), MulOps, "vqdmlal"); 5593 Ops.resize(2); 5594 return EmitNeonCall(CGM.getIntrinsic(AltLLVMIntrinsic, Ty), Ops, NameHint); 5595 } 5596 case NEON::BI__builtin_neon_vqshl_n_v: 5597 case NEON::BI__builtin_neon_vqshlq_n_v: 5598 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshl_n", 5599 1, false); 5600 case NEON::BI__builtin_neon_vqshlu_n_v: 5601 case NEON::BI__builtin_neon_vqshluq_n_v: 5602 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshlu_n", 5603 1, false); 5604 case NEON::BI__builtin_neon_vrecpe_v: 5605 case NEON::BI__builtin_neon_vrecpeq_v: 5606 case NEON::BI__builtin_neon_vrsqrte_v: 5607 case NEON::BI__builtin_neon_vrsqrteq_v: 5608 Int = Ty->isFPOrFPVectorTy() ? LLVMIntrinsic : AltLLVMIntrinsic; 5609 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint); 5610 case NEON::BI__builtin_neon_vrndi_v: 5611 case NEON::BI__builtin_neon_vrndiq_v: 5612 Int = Intrinsic::nearbyint; 5613 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint); 5614 case NEON::BI__builtin_neon_vrshr_n_v: 5615 case NEON::BI__builtin_neon_vrshrq_n_v: 5616 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshr_n", 5617 1, true); 5618 case NEON::BI__builtin_neon_vshl_n_v: 5619 case NEON::BI__builtin_neon_vshlq_n_v: 5620 Ops[1] = EmitNeonShiftVector(Ops[1], Ty, false); 5621 return Builder.CreateShl(Builder.CreateBitCast(Ops[0],Ty), Ops[1], 5622 "vshl_n"); 5623 case NEON::BI__builtin_neon_vshll_n_v: { 5624 llvm::Type *SrcTy = llvm::VectorType::getTruncatedElementVectorType(VTy); 5625 Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy); 5626 if (Usgn) 5627 Ops[0] = Builder.CreateZExt(Ops[0], VTy); 5628 else 5629 Ops[0] = Builder.CreateSExt(Ops[0], VTy); 5630 Ops[1] = EmitNeonShiftVector(Ops[1], VTy, false); 5631 return Builder.CreateShl(Ops[0], Ops[1], "vshll_n"); 5632 } 5633 case NEON::BI__builtin_neon_vshrn_n_v: { 5634 llvm::Type *SrcTy = llvm::VectorType::getExtendedElementVectorType(VTy); 5635 Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy); 5636 Ops[1] = EmitNeonShiftVector(Ops[1], SrcTy, false); 5637 if (Usgn) 5638 Ops[0] = Builder.CreateLShr(Ops[0], Ops[1]); 5639 else 5640 Ops[0] = Builder.CreateAShr(Ops[0], Ops[1]); 5641 return Builder.CreateTrunc(Ops[0], Ty, "vshrn_n"); 5642 } 5643 case NEON::BI__builtin_neon_vshr_n_v: 5644 case NEON::BI__builtin_neon_vshrq_n_v: 5645 return EmitNeonRShiftImm(Ops[0], Ops[1], Ty, Usgn, "vshr_n"); 5646 case NEON::BI__builtin_neon_vst1_v: 5647 case NEON::BI__builtin_neon_vst1q_v: 5648 case NEON::BI__builtin_neon_vst2_v: 5649 case NEON::BI__builtin_neon_vst2q_v: 5650 case NEON::BI__builtin_neon_vst3_v: 5651 case NEON::BI__builtin_neon_vst3q_v: 5652 case NEON::BI__builtin_neon_vst4_v: 5653 case NEON::BI__builtin_neon_vst4q_v: 5654 case NEON::BI__builtin_neon_vst2_lane_v: 5655 case NEON::BI__builtin_neon_vst2q_lane_v: 5656 case NEON::BI__builtin_neon_vst3_lane_v: 5657 case NEON::BI__builtin_neon_vst3q_lane_v: 5658 case NEON::BI__builtin_neon_vst4_lane_v: 5659 case NEON::BI__builtin_neon_vst4q_lane_v: { 5660 llvm::Type *Tys[] = {Int8PtrTy, Ty}; 5661 Ops.push_back(getAlignmentValue32(PtrOp0)); 5662 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, ""); 5663 } 5664 case NEON::BI__builtin_neon_vst1_x2_v: 5665 case NEON::BI__builtin_neon_vst1q_x2_v: 5666 case NEON::BI__builtin_neon_vst1_x3_v: 5667 case NEON::BI__builtin_neon_vst1q_x3_v: 5668 case NEON::BI__builtin_neon_vst1_x4_v: 5669 case NEON::BI__builtin_neon_vst1q_x4_v: { 5670 llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getVectorElementType()); 5671 // TODO: Currently in AArch32 mode the pointer operand comes first, whereas 5672 // in AArch64 it comes last. We may want to stick to one or another. 5673 if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_be) { 5674 llvm::Type *Tys[2] = { VTy, PTy }; 5675 std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end()); 5676 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, ""); 5677 } 5678 llvm::Type *Tys[2] = { PTy, VTy }; 5679 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, ""); 5680 } 5681 case NEON::BI__builtin_neon_vsubhn_v: { 5682 llvm::VectorType *SrcTy = 5683 llvm::VectorType::getExtendedElementVectorType(VTy); 5684 5685 // %sum = add <4 x i32> %lhs, %rhs 5686 Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy); 5687 Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy); 5688 Ops[0] = Builder.CreateSub(Ops[0], Ops[1], "vsubhn"); 5689 5690 // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16> 5691 Constant *ShiftAmt = 5692 ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2); 5693 Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vsubhn"); 5694 5695 // %res = trunc <4 x i32> %high to <4 x i16> 5696 return Builder.CreateTrunc(Ops[0], VTy, "vsubhn"); 5697 } 5698 case NEON::BI__builtin_neon_vtrn_v: 5699 case NEON::BI__builtin_neon_vtrnq_v: { 5700 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty)); 5701 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 5702 Ops[2] = Builder.CreateBitCast(Ops[2], Ty); 5703 Value *SV = nullptr; 5704 5705 for (unsigned vi = 0; vi != 2; ++vi) { 5706 SmallVector<uint32_t, 16> Indices; 5707 for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) { 5708 Indices.push_back(i+vi); 5709 Indices.push_back(i+e+vi); 5710 } 5711 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi); 5712 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vtrn"); 5713 SV = Builder.CreateDefaultAlignedStore(SV, Addr); 5714 } 5715 return SV; 5716 } 5717 case NEON::BI__builtin_neon_vtst_v: 5718 case NEON::BI__builtin_neon_vtstq_v: { 5719 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 5720 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 5721 Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]); 5722 Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0], 5723 ConstantAggregateZero::get(Ty)); 5724 return Builder.CreateSExt(Ops[0], Ty, "vtst"); 5725 } 5726 case NEON::BI__builtin_neon_vuzp_v: 5727 case NEON::BI__builtin_neon_vuzpq_v: { 5728 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty)); 5729 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 5730 Ops[2] = Builder.CreateBitCast(Ops[2], Ty); 5731 Value *SV = nullptr; 5732 5733 for (unsigned vi = 0; vi != 2; ++vi) { 5734 SmallVector<uint32_t, 16> Indices; 5735 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) 5736 Indices.push_back(2*i+vi); 5737 5738 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi); 5739 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vuzp"); 5740 SV = Builder.CreateDefaultAlignedStore(SV, Addr); 5741 } 5742 return SV; 5743 } 5744 case NEON::BI__builtin_neon_vzip_v: 5745 case NEON::BI__builtin_neon_vzipq_v: { 5746 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty)); 5747 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 5748 Ops[2] = Builder.CreateBitCast(Ops[2], Ty); 5749 Value *SV = nullptr; 5750 5751 for (unsigned vi = 0; vi != 2; ++vi) { 5752 SmallVector<uint32_t, 16> Indices; 5753 for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) { 5754 Indices.push_back((i + vi*e) >> 1); 5755 Indices.push_back(((i + vi*e) >> 1)+e); 5756 } 5757 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi); 5758 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vzip"); 5759 SV = Builder.CreateDefaultAlignedStore(SV, Addr); 5760 } 5761 return SV; 5762 } 5763 case NEON::BI__builtin_neon_vdot_v: 5764 case NEON::BI__builtin_neon_vdotq_v: { 5765 llvm::Type *InputTy = 5766 llvm::VectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8); 5767 llvm::Type *Tys[2] = { Ty, InputTy }; 5768 Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic; 5769 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vdot"); 5770 } 5771 case NEON::BI__builtin_neon_vfmlal_low_v: 5772 case NEON::BI__builtin_neon_vfmlalq_low_v: { 5773 llvm::Type *InputTy = 5774 llvm::VectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16); 5775 llvm::Type *Tys[2] = { Ty, InputTy }; 5776 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlal_low"); 5777 } 5778 case NEON::BI__builtin_neon_vfmlsl_low_v: 5779 case NEON::BI__builtin_neon_vfmlslq_low_v: { 5780 llvm::Type *InputTy = 5781 llvm::VectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16); 5782 llvm::Type *Tys[2] = { Ty, InputTy }; 5783 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlsl_low"); 5784 } 5785 case NEON::BI__builtin_neon_vfmlal_high_v: 5786 case NEON::BI__builtin_neon_vfmlalq_high_v: { 5787 llvm::Type *InputTy = 5788 llvm::VectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16); 5789 llvm::Type *Tys[2] = { Ty, InputTy }; 5790 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlal_high"); 5791 } 5792 case NEON::BI__builtin_neon_vfmlsl_high_v: 5793 case NEON::BI__builtin_neon_vfmlslq_high_v: { 5794 llvm::Type *InputTy = 5795 llvm::VectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16); 5796 llvm::Type *Tys[2] = { Ty, InputTy }; 5797 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlsl_high"); 5798 } 5799 } 5800 5801 assert(Int && "Expected valid intrinsic number"); 5802 5803 // Determine the type(s) of this overloaded AArch64 intrinsic. 5804 Function *F = LookupNeonLLVMIntrinsic(Int, Modifier, Ty, E); 5805 5806 Value *Result = EmitNeonCall(F, Ops, NameHint); 5807 llvm::Type *ResultType = ConvertType(E->getType()); 5808 // AArch64 intrinsic one-element vector type cast to 5809 // scalar type expected by the builtin 5810 return Builder.CreateBitCast(Result, ResultType, NameHint); 5811 } 5812 5813 Value *CodeGenFunction::EmitAArch64CompareBuiltinExpr( 5814 Value *Op, llvm::Type *Ty, const CmpInst::Predicate Fp, 5815 const CmpInst::Predicate Ip, const Twine &Name) { 5816 llvm::Type *OTy = Op->getType(); 5817 5818 // FIXME: this is utterly horrific. We should not be looking at previous 5819 // codegen context to find out what needs doing. Unfortunately TableGen 5820 // currently gives us exactly the same calls for vceqz_f32 and vceqz_s32 5821 // (etc). 5822 if (BitCastInst *BI = dyn_cast<BitCastInst>(Op)) 5823 OTy = BI->getOperand(0)->getType(); 5824 5825 Op = Builder.CreateBitCast(Op, OTy); 5826 if (OTy->getScalarType()->isFloatingPointTy()) { 5827 Op = Builder.CreateFCmp(Fp, Op, Constant::getNullValue(OTy)); 5828 } else { 5829 Op = Builder.CreateICmp(Ip, Op, Constant::getNullValue(OTy)); 5830 } 5831 return Builder.CreateSExt(Op, Ty, Name); 5832 } 5833 5834 static Value *packTBLDVectorList(CodeGenFunction &CGF, ArrayRef<Value *> Ops, 5835 Value *ExtOp, Value *IndexOp, 5836 llvm::Type *ResTy, unsigned IntID, 5837 const char *Name) { 5838 SmallVector<Value *, 2> TblOps; 5839 if (ExtOp) 5840 TblOps.push_back(ExtOp); 5841 5842 // Build a vector containing sequential number like (0, 1, 2, ..., 15) 5843 SmallVector<uint32_t, 16> Indices; 5844 llvm::VectorType *TblTy = cast<llvm::VectorType>(Ops[0]->getType()); 5845 for (unsigned i = 0, e = TblTy->getNumElements(); i != e; ++i) { 5846 Indices.push_back(2*i); 5847 Indices.push_back(2*i+1); 5848 } 5849 5850 int PairPos = 0, End = Ops.size() - 1; 5851 while (PairPos < End) { 5852 TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos], 5853 Ops[PairPos+1], Indices, 5854 Name)); 5855 PairPos += 2; 5856 } 5857 5858 // If there's an odd number of 64-bit lookup table, fill the high 64-bit 5859 // of the 128-bit lookup table with zero. 5860 if (PairPos == End) { 5861 Value *ZeroTbl = ConstantAggregateZero::get(TblTy); 5862 TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos], 5863 ZeroTbl, Indices, Name)); 5864 } 5865 5866 Function *TblF; 5867 TblOps.push_back(IndexOp); 5868 TblF = CGF.CGM.getIntrinsic(IntID, ResTy); 5869 5870 return CGF.EmitNeonCall(TblF, TblOps, Name); 5871 } 5872 5873 Value *CodeGenFunction::GetValueForARMHint(unsigned BuiltinID) { 5874 unsigned Value; 5875 switch (BuiltinID) { 5876 default: 5877 return nullptr; 5878 case ARM::BI__builtin_arm_nop: 5879 Value = 0; 5880 break; 5881 case ARM::BI__builtin_arm_yield: 5882 case ARM::BI__yield: 5883 Value = 1; 5884 break; 5885 case ARM::BI__builtin_arm_wfe: 5886 case ARM::BI__wfe: 5887 Value = 2; 5888 break; 5889 case ARM::BI__builtin_arm_wfi: 5890 case ARM::BI__wfi: 5891 Value = 3; 5892 break; 5893 case ARM::BI__builtin_arm_sev: 5894 case ARM::BI__sev: 5895 Value = 4; 5896 break; 5897 case ARM::BI__builtin_arm_sevl: 5898 case ARM::BI__sevl: 5899 Value = 5; 5900 break; 5901 } 5902 5903 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_hint), 5904 llvm::ConstantInt::get(Int32Ty, Value)); 5905 } 5906 5907 // Generates the IR for the read/write special register builtin, 5908 // ValueType is the type of the value that is to be written or read, 5909 // RegisterType is the type of the register being written to or read from. 5910 static Value *EmitSpecialRegisterBuiltin(CodeGenFunction &CGF, 5911 const CallExpr *E, 5912 llvm::Type *RegisterType, 5913 llvm::Type *ValueType, 5914 bool IsRead, 5915 StringRef SysReg = "") { 5916 // write and register intrinsics only support 32 and 64 bit operations. 5917 assert((RegisterType->isIntegerTy(32) || RegisterType->isIntegerTy(64)) 5918 && "Unsupported size for register."); 5919 5920 CodeGen::CGBuilderTy &Builder = CGF.Builder; 5921 CodeGen::CodeGenModule &CGM = CGF.CGM; 5922 LLVMContext &Context = CGM.getLLVMContext(); 5923 5924 if (SysReg.empty()) { 5925 const Expr *SysRegStrExpr = E->getArg(0)->IgnoreParenCasts(); 5926 SysReg = cast<clang::StringLiteral>(SysRegStrExpr)->getString(); 5927 } 5928 5929 llvm::Metadata *Ops[] = { llvm::MDString::get(Context, SysReg) }; 5930 llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops); 5931 llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName); 5932 5933 llvm::Type *Types[] = { RegisterType }; 5934 5935 bool MixedTypes = RegisterType->isIntegerTy(64) && ValueType->isIntegerTy(32); 5936 assert(!(RegisterType->isIntegerTy(32) && ValueType->isIntegerTy(64)) 5937 && "Can't fit 64-bit value in 32-bit register"); 5938 5939 if (IsRead) { 5940 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types); 5941 llvm::Value *Call = Builder.CreateCall(F, Metadata); 5942 5943 if (MixedTypes) 5944 // Read into 64 bit register and then truncate result to 32 bit. 5945 return Builder.CreateTrunc(Call, ValueType); 5946 5947 if (ValueType->isPointerTy()) 5948 // Have i32/i64 result (Call) but want to return a VoidPtrTy (i8*). 5949 return Builder.CreateIntToPtr(Call, ValueType); 5950 5951 return Call; 5952 } 5953 5954 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types); 5955 llvm::Value *ArgValue = CGF.EmitScalarExpr(E->getArg(1)); 5956 if (MixedTypes) { 5957 // Extend 32 bit write value to 64 bit to pass to write. 5958 ArgValue = Builder.CreateZExt(ArgValue, RegisterType); 5959 return Builder.CreateCall(F, { Metadata, ArgValue }); 5960 } 5961 5962 if (ValueType->isPointerTy()) { 5963 // Have VoidPtrTy ArgValue but want to return an i32/i64. 5964 ArgValue = Builder.CreatePtrToInt(ArgValue, RegisterType); 5965 return Builder.CreateCall(F, { Metadata, ArgValue }); 5966 } 5967 5968 return Builder.CreateCall(F, { Metadata, ArgValue }); 5969 } 5970 5971 /// Return true if BuiltinID is an overloaded Neon intrinsic with an extra 5972 /// argument that specifies the vector type. 5973 static bool HasExtraNeonArgument(unsigned BuiltinID) { 5974 switch (BuiltinID) { 5975 default: break; 5976 case NEON::BI__builtin_neon_vget_lane_i8: 5977 case NEON::BI__builtin_neon_vget_lane_i16: 5978 case NEON::BI__builtin_neon_vget_lane_i32: 5979 case NEON::BI__builtin_neon_vget_lane_i64: 5980 case NEON::BI__builtin_neon_vget_lane_f32: 5981 case NEON::BI__builtin_neon_vgetq_lane_i8: 5982 case NEON::BI__builtin_neon_vgetq_lane_i16: 5983 case NEON::BI__builtin_neon_vgetq_lane_i32: 5984 case NEON::BI__builtin_neon_vgetq_lane_i64: 5985 case NEON::BI__builtin_neon_vgetq_lane_f32: 5986 case NEON::BI__builtin_neon_vset_lane_i8: 5987 case NEON::BI__builtin_neon_vset_lane_i16: 5988 case NEON::BI__builtin_neon_vset_lane_i32: 5989 case NEON::BI__builtin_neon_vset_lane_i64: 5990 case NEON::BI__builtin_neon_vset_lane_f32: 5991 case NEON::BI__builtin_neon_vsetq_lane_i8: 5992 case NEON::BI__builtin_neon_vsetq_lane_i16: 5993 case NEON::BI__builtin_neon_vsetq_lane_i32: 5994 case NEON::BI__builtin_neon_vsetq_lane_i64: 5995 case NEON::BI__builtin_neon_vsetq_lane_f32: 5996 case NEON::BI__builtin_neon_vsha1h_u32: 5997 case NEON::BI__builtin_neon_vsha1cq_u32: 5998 case NEON::BI__builtin_neon_vsha1pq_u32: 5999 case NEON::BI__builtin_neon_vsha1mq_u32: 6000 case clang::ARM::BI_MoveToCoprocessor: 6001 case clang::ARM::BI_MoveToCoprocessor2: 6002 return false; 6003 } 6004 return true; 6005 } 6006 6007 Value *CodeGenFunction::EmitARMBuiltinExpr(unsigned BuiltinID, 6008 const CallExpr *E, 6009 ReturnValueSlot ReturnValue, 6010 llvm::Triple::ArchType Arch) { 6011 if (auto Hint = GetValueForARMHint(BuiltinID)) 6012 return Hint; 6013 6014 if (BuiltinID == ARM::BI__emit) { 6015 bool IsThumb = getTarget().getTriple().getArch() == llvm::Triple::thumb; 6016 llvm::FunctionType *FTy = 6017 llvm::FunctionType::get(VoidTy, /*Variadic=*/false); 6018 6019 Expr::EvalResult Result; 6020 if (!E->getArg(0)->EvaluateAsInt(Result, CGM.getContext())) 6021 llvm_unreachable("Sema will ensure that the parameter is constant"); 6022 6023 llvm::APSInt Value = Result.Val.getInt(); 6024 uint64_t ZExtValue = Value.zextOrTrunc(IsThumb ? 16 : 32).getZExtValue(); 6025 6026 llvm::InlineAsm *Emit = 6027 IsThumb ? InlineAsm::get(FTy, ".inst.n 0x" + utohexstr(ZExtValue), "", 6028 /*hasSideEffects=*/true) 6029 : InlineAsm::get(FTy, ".inst 0x" + utohexstr(ZExtValue), "", 6030 /*hasSideEffects=*/true); 6031 6032 return Builder.CreateCall(Emit); 6033 } 6034 6035 if (BuiltinID == ARM::BI__builtin_arm_dbg) { 6036 Value *Option = EmitScalarExpr(E->getArg(0)); 6037 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_dbg), Option); 6038 } 6039 6040 if (BuiltinID == ARM::BI__builtin_arm_prefetch) { 6041 Value *Address = EmitScalarExpr(E->getArg(0)); 6042 Value *RW = EmitScalarExpr(E->getArg(1)); 6043 Value *IsData = EmitScalarExpr(E->getArg(2)); 6044 6045 // Locality is not supported on ARM target 6046 Value *Locality = llvm::ConstantInt::get(Int32Ty, 3); 6047 6048 Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType()); 6049 return Builder.CreateCall(F, {Address, RW, Locality, IsData}); 6050 } 6051 6052 if (BuiltinID == ARM::BI__builtin_arm_rbit) { 6053 llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); 6054 return Builder.CreateCall( 6055 CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit"); 6056 } 6057 6058 if (BuiltinID == ARM::BI__builtin_arm_cls) { 6059 llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); 6060 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_cls), Arg, "cls"); 6061 } 6062 if (BuiltinID == ARM::BI__builtin_arm_cls64) { 6063 llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); 6064 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_cls64), Arg, 6065 "cls"); 6066 } 6067 6068 if (BuiltinID == ARM::BI__clear_cache) { 6069 assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments"); 6070 const FunctionDecl *FD = E->getDirectCallee(); 6071 Value *Ops[2]; 6072 for (unsigned i = 0; i < 2; i++) 6073 Ops[i] = EmitScalarExpr(E->getArg(i)); 6074 llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType()); 6075 llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty); 6076 StringRef Name = FD->getName(); 6077 return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops); 6078 } 6079 6080 if (BuiltinID == ARM::BI__builtin_arm_mcrr || 6081 BuiltinID == ARM::BI__builtin_arm_mcrr2) { 6082 Function *F; 6083 6084 switch (BuiltinID) { 6085 default: llvm_unreachable("unexpected builtin"); 6086 case ARM::BI__builtin_arm_mcrr: 6087 F = CGM.getIntrinsic(Intrinsic::arm_mcrr); 6088 break; 6089 case ARM::BI__builtin_arm_mcrr2: 6090 F = CGM.getIntrinsic(Intrinsic::arm_mcrr2); 6091 break; 6092 } 6093 6094 // MCRR{2} instruction has 5 operands but 6095 // the intrinsic has 4 because Rt and Rt2 6096 // are represented as a single unsigned 64 6097 // bit integer in the intrinsic definition 6098 // but internally it's represented as 2 32 6099 // bit integers. 6100 6101 Value *Coproc = EmitScalarExpr(E->getArg(0)); 6102 Value *Opc1 = EmitScalarExpr(E->getArg(1)); 6103 Value *RtAndRt2 = EmitScalarExpr(E->getArg(2)); 6104 Value *CRm = EmitScalarExpr(E->getArg(3)); 6105 6106 Value *C1 = llvm::ConstantInt::get(Int64Ty, 32); 6107 Value *Rt = Builder.CreateTruncOrBitCast(RtAndRt2, Int32Ty); 6108 Value *Rt2 = Builder.CreateLShr(RtAndRt2, C1); 6109 Rt2 = Builder.CreateTruncOrBitCast(Rt2, Int32Ty); 6110 6111 return Builder.CreateCall(F, {Coproc, Opc1, Rt, Rt2, CRm}); 6112 } 6113 6114 if (BuiltinID == ARM::BI__builtin_arm_mrrc || 6115 BuiltinID == ARM::BI__builtin_arm_mrrc2) { 6116 Function *F; 6117 6118 switch (BuiltinID) { 6119 default: llvm_unreachable("unexpected builtin"); 6120 case ARM::BI__builtin_arm_mrrc: 6121 F = CGM.getIntrinsic(Intrinsic::arm_mrrc); 6122 break; 6123 case ARM::BI__builtin_arm_mrrc2: 6124 F = CGM.getIntrinsic(Intrinsic::arm_mrrc2); 6125 break; 6126 } 6127 6128 Value *Coproc = EmitScalarExpr(E->getArg(0)); 6129 Value *Opc1 = EmitScalarExpr(E->getArg(1)); 6130 Value *CRm = EmitScalarExpr(E->getArg(2)); 6131 Value *RtAndRt2 = Builder.CreateCall(F, {Coproc, Opc1, CRm}); 6132 6133 // Returns an unsigned 64 bit integer, represented 6134 // as two 32 bit integers. 6135 6136 Value *Rt = Builder.CreateExtractValue(RtAndRt2, 1); 6137 Value *Rt1 = Builder.CreateExtractValue(RtAndRt2, 0); 6138 Rt = Builder.CreateZExt(Rt, Int64Ty); 6139 Rt1 = Builder.CreateZExt(Rt1, Int64Ty); 6140 6141 Value *ShiftCast = llvm::ConstantInt::get(Int64Ty, 32); 6142 RtAndRt2 = Builder.CreateShl(Rt, ShiftCast, "shl", true); 6143 RtAndRt2 = Builder.CreateOr(RtAndRt2, Rt1); 6144 6145 return Builder.CreateBitCast(RtAndRt2, ConvertType(E->getType())); 6146 } 6147 6148 if (BuiltinID == ARM::BI__builtin_arm_ldrexd || 6149 ((BuiltinID == ARM::BI__builtin_arm_ldrex || 6150 BuiltinID == ARM::BI__builtin_arm_ldaex) && 6151 getContext().getTypeSize(E->getType()) == 64) || 6152 BuiltinID == ARM::BI__ldrexd) { 6153 Function *F; 6154 6155 switch (BuiltinID) { 6156 default: llvm_unreachable("unexpected builtin"); 6157 case ARM::BI__builtin_arm_ldaex: 6158 F = CGM.getIntrinsic(Intrinsic::arm_ldaexd); 6159 break; 6160 case ARM::BI__builtin_arm_ldrexd: 6161 case ARM::BI__builtin_arm_ldrex: 6162 case ARM::BI__ldrexd: 6163 F = CGM.getIntrinsic(Intrinsic::arm_ldrexd); 6164 break; 6165 } 6166 6167 Value *LdPtr = EmitScalarExpr(E->getArg(0)); 6168 Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy), 6169 "ldrexd"); 6170 6171 Value *Val0 = Builder.CreateExtractValue(Val, 1); 6172 Value *Val1 = Builder.CreateExtractValue(Val, 0); 6173 Val0 = Builder.CreateZExt(Val0, Int64Ty); 6174 Val1 = Builder.CreateZExt(Val1, Int64Ty); 6175 6176 Value *ShiftCst = llvm::ConstantInt::get(Int64Ty, 32); 6177 Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */); 6178 Val = Builder.CreateOr(Val, Val1); 6179 return Builder.CreateBitCast(Val, ConvertType(E->getType())); 6180 } 6181 6182 if (BuiltinID == ARM::BI__builtin_arm_ldrex || 6183 BuiltinID == ARM::BI__builtin_arm_ldaex) { 6184 Value *LoadAddr = EmitScalarExpr(E->getArg(0)); 6185 6186 QualType Ty = E->getType(); 6187 llvm::Type *RealResTy = ConvertType(Ty); 6188 llvm::Type *PtrTy = llvm::IntegerType::get( 6189 getLLVMContext(), getContext().getTypeSize(Ty))->getPointerTo(); 6190 LoadAddr = Builder.CreateBitCast(LoadAddr, PtrTy); 6191 6192 Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_ldaex 6193 ? Intrinsic::arm_ldaex 6194 : Intrinsic::arm_ldrex, 6195 PtrTy); 6196 Value *Val = Builder.CreateCall(F, LoadAddr, "ldrex"); 6197 6198 if (RealResTy->isPointerTy()) 6199 return Builder.CreateIntToPtr(Val, RealResTy); 6200 else { 6201 llvm::Type *IntResTy = llvm::IntegerType::get( 6202 getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(RealResTy)); 6203 Val = Builder.CreateTruncOrBitCast(Val, IntResTy); 6204 return Builder.CreateBitCast(Val, RealResTy); 6205 } 6206 } 6207 6208 if (BuiltinID == ARM::BI__builtin_arm_strexd || 6209 ((BuiltinID == ARM::BI__builtin_arm_stlex || 6210 BuiltinID == ARM::BI__builtin_arm_strex) && 6211 getContext().getTypeSize(E->getArg(0)->getType()) == 64)) { 6212 Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_stlex 6213 ? Intrinsic::arm_stlexd 6214 : Intrinsic::arm_strexd); 6215 llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty); 6216 6217 Address Tmp = CreateMemTemp(E->getArg(0)->getType()); 6218 Value *Val = EmitScalarExpr(E->getArg(0)); 6219 Builder.CreateStore(Val, Tmp); 6220 6221 Address LdPtr = Builder.CreateBitCast(Tmp,llvm::PointerType::getUnqual(STy)); 6222 Val = Builder.CreateLoad(LdPtr); 6223 6224 Value *Arg0 = Builder.CreateExtractValue(Val, 0); 6225 Value *Arg1 = Builder.CreateExtractValue(Val, 1); 6226 Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), Int8PtrTy); 6227 return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "strexd"); 6228 } 6229 6230 if (BuiltinID == ARM::BI__builtin_arm_strex || 6231 BuiltinID == ARM::BI__builtin_arm_stlex) { 6232 Value *StoreVal = EmitScalarExpr(E->getArg(0)); 6233 Value *StoreAddr = EmitScalarExpr(E->getArg(1)); 6234 6235 QualType Ty = E->getArg(0)->getType(); 6236 llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(), 6237 getContext().getTypeSize(Ty)); 6238 StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo()); 6239 6240 if (StoreVal->getType()->isPointerTy()) 6241 StoreVal = Builder.CreatePtrToInt(StoreVal, Int32Ty); 6242 else { 6243 llvm::Type *IntTy = llvm::IntegerType::get( 6244 getLLVMContext(), 6245 CGM.getDataLayout().getTypeSizeInBits(StoreVal->getType())); 6246 StoreVal = Builder.CreateBitCast(StoreVal, IntTy); 6247 StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int32Ty); 6248 } 6249 6250 Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_stlex 6251 ? Intrinsic::arm_stlex 6252 : Intrinsic::arm_strex, 6253 StoreAddr->getType()); 6254 return Builder.CreateCall(F, {StoreVal, StoreAddr}, "strex"); 6255 } 6256 6257 if (BuiltinID == ARM::BI__builtin_arm_clrex) { 6258 Function *F = CGM.getIntrinsic(Intrinsic::arm_clrex); 6259 return Builder.CreateCall(F); 6260 } 6261 6262 // CRC32 6263 Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic; 6264 switch (BuiltinID) { 6265 case ARM::BI__builtin_arm_crc32b: 6266 CRCIntrinsicID = Intrinsic::arm_crc32b; break; 6267 case ARM::BI__builtin_arm_crc32cb: 6268 CRCIntrinsicID = Intrinsic::arm_crc32cb; break; 6269 case ARM::BI__builtin_arm_crc32h: 6270 CRCIntrinsicID = Intrinsic::arm_crc32h; break; 6271 case ARM::BI__builtin_arm_crc32ch: 6272 CRCIntrinsicID = Intrinsic::arm_crc32ch; break; 6273 case ARM::BI__builtin_arm_crc32w: 6274 case ARM::BI__builtin_arm_crc32d: 6275 CRCIntrinsicID = Intrinsic::arm_crc32w; break; 6276 case ARM::BI__builtin_arm_crc32cw: 6277 case ARM::BI__builtin_arm_crc32cd: 6278 CRCIntrinsicID = Intrinsic::arm_crc32cw; break; 6279 } 6280 6281 if (CRCIntrinsicID != Intrinsic::not_intrinsic) { 6282 Value *Arg0 = EmitScalarExpr(E->getArg(0)); 6283 Value *Arg1 = EmitScalarExpr(E->getArg(1)); 6284 6285 // crc32{c,}d intrinsics are implemnted as two calls to crc32{c,}w 6286 // intrinsics, hence we need different codegen for these cases. 6287 if (BuiltinID == ARM::BI__builtin_arm_crc32d || 6288 BuiltinID == ARM::BI__builtin_arm_crc32cd) { 6289 Value *C1 = llvm::ConstantInt::get(Int64Ty, 32); 6290 Value *Arg1a = Builder.CreateTruncOrBitCast(Arg1, Int32Ty); 6291 Value *Arg1b = Builder.CreateLShr(Arg1, C1); 6292 Arg1b = Builder.CreateTruncOrBitCast(Arg1b, Int32Ty); 6293 6294 Function *F = CGM.getIntrinsic(CRCIntrinsicID); 6295 Value *Res = Builder.CreateCall(F, {Arg0, Arg1a}); 6296 return Builder.CreateCall(F, {Res, Arg1b}); 6297 } else { 6298 Arg1 = Builder.CreateZExtOrBitCast(Arg1, Int32Ty); 6299 6300 Function *F = CGM.getIntrinsic(CRCIntrinsicID); 6301 return Builder.CreateCall(F, {Arg0, Arg1}); 6302 } 6303 } 6304 6305 if (BuiltinID == ARM::BI__builtin_arm_rsr || 6306 BuiltinID == ARM::BI__builtin_arm_rsr64 || 6307 BuiltinID == ARM::BI__builtin_arm_rsrp || 6308 BuiltinID == ARM::BI__builtin_arm_wsr || 6309 BuiltinID == ARM::BI__builtin_arm_wsr64 || 6310 BuiltinID == ARM::BI__builtin_arm_wsrp) { 6311 6312 bool IsRead = BuiltinID == ARM::BI__builtin_arm_rsr || 6313 BuiltinID == ARM::BI__builtin_arm_rsr64 || 6314 BuiltinID == ARM::BI__builtin_arm_rsrp; 6315 6316 bool IsPointerBuiltin = BuiltinID == ARM::BI__builtin_arm_rsrp || 6317 BuiltinID == ARM::BI__builtin_arm_wsrp; 6318 6319 bool Is64Bit = BuiltinID == ARM::BI__builtin_arm_rsr64 || 6320 BuiltinID == ARM::BI__builtin_arm_wsr64; 6321 6322 llvm::Type *ValueType; 6323 llvm::Type *RegisterType; 6324 if (IsPointerBuiltin) { 6325 ValueType = VoidPtrTy; 6326 RegisterType = Int32Ty; 6327 } else if (Is64Bit) { 6328 ValueType = RegisterType = Int64Ty; 6329 } else { 6330 ValueType = RegisterType = Int32Ty; 6331 } 6332 6333 return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType, IsRead); 6334 } 6335 6336 // Deal with MVE builtins 6337 if (Value *Result = EmitARMMVEBuiltinExpr(BuiltinID, E, ReturnValue, Arch)) 6338 return Result; 6339 6340 // Find out if any arguments are required to be integer constant 6341 // expressions. 6342 unsigned ICEArguments = 0; 6343 ASTContext::GetBuiltinTypeError Error; 6344 getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments); 6345 assert(Error == ASTContext::GE_None && "Should not codegen an error"); 6346 6347 auto getAlignmentValue32 = [&](Address addr) -> Value* { 6348 return Builder.getInt32(addr.getAlignment().getQuantity()); 6349 }; 6350 6351 Address PtrOp0 = Address::invalid(); 6352 Address PtrOp1 = Address::invalid(); 6353 SmallVector<Value*, 4> Ops; 6354 bool HasExtraArg = HasExtraNeonArgument(BuiltinID); 6355 unsigned NumArgs = E->getNumArgs() - (HasExtraArg ? 1 : 0); 6356 for (unsigned i = 0, e = NumArgs; i != e; i++) { 6357 if (i == 0) { 6358 switch (BuiltinID) { 6359 case NEON::BI__builtin_neon_vld1_v: 6360 case NEON::BI__builtin_neon_vld1q_v: 6361 case NEON::BI__builtin_neon_vld1q_lane_v: 6362 case NEON::BI__builtin_neon_vld1_lane_v: 6363 case NEON::BI__builtin_neon_vld1_dup_v: 6364 case NEON::BI__builtin_neon_vld1q_dup_v: 6365 case NEON::BI__builtin_neon_vst1_v: 6366 case NEON::BI__builtin_neon_vst1q_v: 6367 case NEON::BI__builtin_neon_vst1q_lane_v: 6368 case NEON::BI__builtin_neon_vst1_lane_v: 6369 case NEON::BI__builtin_neon_vst2_v: 6370 case NEON::BI__builtin_neon_vst2q_v: 6371 case NEON::BI__builtin_neon_vst2_lane_v: 6372 case NEON::BI__builtin_neon_vst2q_lane_v: 6373 case NEON::BI__builtin_neon_vst3_v: 6374 case NEON::BI__builtin_neon_vst3q_v: 6375 case NEON::BI__builtin_neon_vst3_lane_v: 6376 case NEON::BI__builtin_neon_vst3q_lane_v: 6377 case NEON::BI__builtin_neon_vst4_v: 6378 case NEON::BI__builtin_neon_vst4q_v: 6379 case NEON::BI__builtin_neon_vst4_lane_v: 6380 case NEON::BI__builtin_neon_vst4q_lane_v: 6381 // Get the alignment for the argument in addition to the value; 6382 // we'll use it later. 6383 PtrOp0 = EmitPointerWithAlignment(E->getArg(0)); 6384 Ops.push_back(PtrOp0.getPointer()); 6385 continue; 6386 } 6387 } 6388 if (i == 1) { 6389 switch (BuiltinID) { 6390 case NEON::BI__builtin_neon_vld2_v: 6391 case NEON::BI__builtin_neon_vld2q_v: 6392 case NEON::BI__builtin_neon_vld3_v: 6393 case NEON::BI__builtin_neon_vld3q_v: 6394 case NEON::BI__builtin_neon_vld4_v: 6395 case NEON::BI__builtin_neon_vld4q_v: 6396 case NEON::BI__builtin_neon_vld2_lane_v: 6397 case NEON::BI__builtin_neon_vld2q_lane_v: 6398 case NEON::BI__builtin_neon_vld3_lane_v: 6399 case NEON::BI__builtin_neon_vld3q_lane_v: 6400 case NEON::BI__builtin_neon_vld4_lane_v: 6401 case NEON::BI__builtin_neon_vld4q_lane_v: 6402 case NEON::BI__builtin_neon_vld2_dup_v: 6403 case NEON::BI__builtin_neon_vld2q_dup_v: 6404 case NEON::BI__builtin_neon_vld3_dup_v: 6405 case NEON::BI__builtin_neon_vld3q_dup_v: 6406 case NEON::BI__builtin_neon_vld4_dup_v: 6407 case NEON::BI__builtin_neon_vld4q_dup_v: 6408 // Get the alignment for the argument in addition to the value; 6409 // we'll use it later. 6410 PtrOp1 = EmitPointerWithAlignment(E->getArg(1)); 6411 Ops.push_back(PtrOp1.getPointer()); 6412 continue; 6413 } 6414 } 6415 6416 if ((ICEArguments & (1 << i)) == 0) { 6417 Ops.push_back(EmitScalarExpr(E->getArg(i))); 6418 } else { 6419 // If this is required to be a constant, constant fold it so that we know 6420 // that the generated intrinsic gets a ConstantInt. 6421 llvm::APSInt Result; 6422 bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext()); 6423 assert(IsConst && "Constant arg isn't actually constant?"); (void)IsConst; 6424 Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result)); 6425 } 6426 } 6427 6428 switch (BuiltinID) { 6429 default: break; 6430 6431 case NEON::BI__builtin_neon_vget_lane_i8: 6432 case NEON::BI__builtin_neon_vget_lane_i16: 6433 case NEON::BI__builtin_neon_vget_lane_i32: 6434 case NEON::BI__builtin_neon_vget_lane_i64: 6435 case NEON::BI__builtin_neon_vget_lane_f32: 6436 case NEON::BI__builtin_neon_vgetq_lane_i8: 6437 case NEON::BI__builtin_neon_vgetq_lane_i16: 6438 case NEON::BI__builtin_neon_vgetq_lane_i32: 6439 case NEON::BI__builtin_neon_vgetq_lane_i64: 6440 case NEON::BI__builtin_neon_vgetq_lane_f32: 6441 return Builder.CreateExtractElement(Ops[0], Ops[1], "vget_lane"); 6442 6443 case NEON::BI__builtin_neon_vrndns_f32: { 6444 Value *Arg = EmitScalarExpr(E->getArg(0)); 6445 llvm::Type *Tys[] = {Arg->getType()}; 6446 Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vrintn, Tys); 6447 return Builder.CreateCall(F, {Arg}, "vrndn"); } 6448 6449 case NEON::BI__builtin_neon_vset_lane_i8: 6450 case NEON::BI__builtin_neon_vset_lane_i16: 6451 case NEON::BI__builtin_neon_vset_lane_i32: 6452 case NEON::BI__builtin_neon_vset_lane_i64: 6453 case NEON::BI__builtin_neon_vset_lane_f32: 6454 case NEON::BI__builtin_neon_vsetq_lane_i8: 6455 case NEON::BI__builtin_neon_vsetq_lane_i16: 6456 case NEON::BI__builtin_neon_vsetq_lane_i32: 6457 case NEON::BI__builtin_neon_vsetq_lane_i64: 6458 case NEON::BI__builtin_neon_vsetq_lane_f32: 6459 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane"); 6460 6461 case NEON::BI__builtin_neon_vsha1h_u32: 6462 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1h), Ops, 6463 "vsha1h"); 6464 case NEON::BI__builtin_neon_vsha1cq_u32: 6465 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1c), Ops, 6466 "vsha1h"); 6467 case NEON::BI__builtin_neon_vsha1pq_u32: 6468 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1p), Ops, 6469 "vsha1h"); 6470 case NEON::BI__builtin_neon_vsha1mq_u32: 6471 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1m), Ops, 6472 "vsha1h"); 6473 6474 // The ARM _MoveToCoprocessor builtins put the input register value as 6475 // the first argument, but the LLVM intrinsic expects it as the third one. 6476 case ARM::BI_MoveToCoprocessor: 6477 case ARM::BI_MoveToCoprocessor2: { 6478 Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI_MoveToCoprocessor ? 6479 Intrinsic::arm_mcr : Intrinsic::arm_mcr2); 6480 return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0], 6481 Ops[3], Ops[4], Ops[5]}); 6482 } 6483 case ARM::BI_BitScanForward: 6484 case ARM::BI_BitScanForward64: 6485 return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanForward, E); 6486 case ARM::BI_BitScanReverse: 6487 case ARM::BI_BitScanReverse64: 6488 return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanReverse, E); 6489 6490 case ARM::BI_InterlockedAnd64: 6491 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E); 6492 case ARM::BI_InterlockedExchange64: 6493 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E); 6494 case ARM::BI_InterlockedExchangeAdd64: 6495 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E); 6496 case ARM::BI_InterlockedExchangeSub64: 6497 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E); 6498 case ARM::BI_InterlockedOr64: 6499 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E); 6500 case ARM::BI_InterlockedXor64: 6501 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E); 6502 case ARM::BI_InterlockedDecrement64: 6503 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E); 6504 case ARM::BI_InterlockedIncrement64: 6505 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E); 6506 case ARM::BI_InterlockedExchangeAdd8_acq: 6507 case ARM::BI_InterlockedExchangeAdd16_acq: 6508 case ARM::BI_InterlockedExchangeAdd_acq: 6509 case ARM::BI_InterlockedExchangeAdd64_acq: 6510 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_acq, E); 6511 case ARM::BI_InterlockedExchangeAdd8_rel: 6512 case ARM::BI_InterlockedExchangeAdd16_rel: 6513 case ARM::BI_InterlockedExchangeAdd_rel: 6514 case ARM::BI_InterlockedExchangeAdd64_rel: 6515 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_rel, E); 6516 case ARM::BI_InterlockedExchangeAdd8_nf: 6517 case ARM::BI_InterlockedExchangeAdd16_nf: 6518 case ARM::BI_InterlockedExchangeAdd_nf: 6519 case ARM::BI_InterlockedExchangeAdd64_nf: 6520 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_nf, E); 6521 case ARM::BI_InterlockedExchange8_acq: 6522 case ARM::BI_InterlockedExchange16_acq: 6523 case ARM::BI_InterlockedExchange_acq: 6524 case ARM::BI_InterlockedExchange64_acq: 6525 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_acq, E); 6526 case ARM::BI_InterlockedExchange8_rel: 6527 case ARM::BI_InterlockedExchange16_rel: 6528 case ARM::BI_InterlockedExchange_rel: 6529 case ARM::BI_InterlockedExchange64_rel: 6530 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_rel, E); 6531 case ARM::BI_InterlockedExchange8_nf: 6532 case ARM::BI_InterlockedExchange16_nf: 6533 case ARM::BI_InterlockedExchange_nf: 6534 case ARM::BI_InterlockedExchange64_nf: 6535 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_nf, E); 6536 case ARM::BI_InterlockedCompareExchange8_acq: 6537 case ARM::BI_InterlockedCompareExchange16_acq: 6538 case ARM::BI_InterlockedCompareExchange_acq: 6539 case ARM::BI_InterlockedCompareExchange64_acq: 6540 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_acq, E); 6541 case ARM::BI_InterlockedCompareExchange8_rel: 6542 case ARM::BI_InterlockedCompareExchange16_rel: 6543 case ARM::BI_InterlockedCompareExchange_rel: 6544 case ARM::BI_InterlockedCompareExchange64_rel: 6545 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_rel, E); 6546 case ARM::BI_InterlockedCompareExchange8_nf: 6547 case ARM::BI_InterlockedCompareExchange16_nf: 6548 case ARM::BI_InterlockedCompareExchange_nf: 6549 case ARM::BI_InterlockedCompareExchange64_nf: 6550 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_nf, E); 6551 case ARM::BI_InterlockedOr8_acq: 6552 case ARM::BI_InterlockedOr16_acq: 6553 case ARM::BI_InterlockedOr_acq: 6554 case ARM::BI_InterlockedOr64_acq: 6555 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_acq, E); 6556 case ARM::BI_InterlockedOr8_rel: 6557 case ARM::BI_InterlockedOr16_rel: 6558 case ARM::BI_InterlockedOr_rel: 6559 case ARM::BI_InterlockedOr64_rel: 6560 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_rel, E); 6561 case ARM::BI_InterlockedOr8_nf: 6562 case ARM::BI_InterlockedOr16_nf: 6563 case ARM::BI_InterlockedOr_nf: 6564 case ARM::BI_InterlockedOr64_nf: 6565 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_nf, E); 6566 case ARM::BI_InterlockedXor8_acq: 6567 case ARM::BI_InterlockedXor16_acq: 6568 case ARM::BI_InterlockedXor_acq: 6569 case ARM::BI_InterlockedXor64_acq: 6570 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_acq, E); 6571 case ARM::BI_InterlockedXor8_rel: 6572 case ARM::BI_InterlockedXor16_rel: 6573 case ARM::BI_InterlockedXor_rel: 6574 case ARM::BI_InterlockedXor64_rel: 6575 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_rel, E); 6576 case ARM::BI_InterlockedXor8_nf: 6577 case ARM::BI_InterlockedXor16_nf: 6578 case ARM::BI_InterlockedXor_nf: 6579 case ARM::BI_InterlockedXor64_nf: 6580 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_nf, E); 6581 case ARM::BI_InterlockedAnd8_acq: 6582 case ARM::BI_InterlockedAnd16_acq: 6583 case ARM::BI_InterlockedAnd_acq: 6584 case ARM::BI_InterlockedAnd64_acq: 6585 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_acq, E); 6586 case ARM::BI_InterlockedAnd8_rel: 6587 case ARM::BI_InterlockedAnd16_rel: 6588 case ARM::BI_InterlockedAnd_rel: 6589 case ARM::BI_InterlockedAnd64_rel: 6590 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_rel, E); 6591 case ARM::BI_InterlockedAnd8_nf: 6592 case ARM::BI_InterlockedAnd16_nf: 6593 case ARM::BI_InterlockedAnd_nf: 6594 case ARM::BI_InterlockedAnd64_nf: 6595 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_nf, E); 6596 case ARM::BI_InterlockedIncrement16_acq: 6597 case ARM::BI_InterlockedIncrement_acq: 6598 case ARM::BI_InterlockedIncrement64_acq: 6599 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_acq, E); 6600 case ARM::BI_InterlockedIncrement16_rel: 6601 case ARM::BI_InterlockedIncrement_rel: 6602 case ARM::BI_InterlockedIncrement64_rel: 6603 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_rel, E); 6604 case ARM::BI_InterlockedIncrement16_nf: 6605 case ARM::BI_InterlockedIncrement_nf: 6606 case ARM::BI_InterlockedIncrement64_nf: 6607 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_nf, E); 6608 case ARM::BI_InterlockedDecrement16_acq: 6609 case ARM::BI_InterlockedDecrement_acq: 6610 case ARM::BI_InterlockedDecrement64_acq: 6611 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_acq, E); 6612 case ARM::BI_InterlockedDecrement16_rel: 6613 case ARM::BI_InterlockedDecrement_rel: 6614 case ARM::BI_InterlockedDecrement64_rel: 6615 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_rel, E); 6616 case ARM::BI_InterlockedDecrement16_nf: 6617 case ARM::BI_InterlockedDecrement_nf: 6618 case ARM::BI_InterlockedDecrement64_nf: 6619 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_nf, E); 6620 } 6621 6622 // Get the last argument, which specifies the vector type. 6623 assert(HasExtraArg); 6624 llvm::APSInt Result; 6625 const Expr *Arg = E->getArg(E->getNumArgs()-1); 6626 if (!Arg->isIntegerConstantExpr(Result, getContext())) 6627 return nullptr; 6628 6629 if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f || 6630 BuiltinID == ARM::BI__builtin_arm_vcvtr_d) { 6631 // Determine the overloaded type of this builtin. 6632 llvm::Type *Ty; 6633 if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f) 6634 Ty = FloatTy; 6635 else 6636 Ty = DoubleTy; 6637 6638 // Determine whether this is an unsigned conversion or not. 6639 bool usgn = Result.getZExtValue() == 1; 6640 unsigned Int = usgn ? Intrinsic::arm_vcvtru : Intrinsic::arm_vcvtr; 6641 6642 // Call the appropriate intrinsic. 6643 Function *F = CGM.getIntrinsic(Int, Ty); 6644 return Builder.CreateCall(F, Ops, "vcvtr"); 6645 } 6646 6647 // Determine the type of this overloaded NEON intrinsic. 6648 NeonTypeFlags Type(Result.getZExtValue()); 6649 bool usgn = Type.isUnsigned(); 6650 bool rightShift = false; 6651 6652 llvm::VectorType *VTy = GetNeonType(this, Type, 6653 getTarget().hasLegalHalfType()); 6654 llvm::Type *Ty = VTy; 6655 if (!Ty) 6656 return nullptr; 6657 6658 // Many NEON builtins have identical semantics and uses in ARM and 6659 // AArch64. Emit these in a single function. 6660 auto IntrinsicMap = makeArrayRef(ARMSIMDIntrinsicMap); 6661 const NeonIntrinsicInfo *Builtin = findNeonIntrinsicInMap( 6662 IntrinsicMap, BuiltinID, NEONSIMDIntrinsicsProvenSorted); 6663 if (Builtin) 6664 return EmitCommonNeonBuiltinExpr( 6665 Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic, 6666 Builtin->NameHint, Builtin->TypeModifier, E, Ops, PtrOp0, PtrOp1, Arch); 6667 6668 unsigned Int; 6669 switch (BuiltinID) { 6670 default: return nullptr; 6671 case NEON::BI__builtin_neon_vld1q_lane_v: 6672 // Handle 64-bit integer elements as a special case. Use shuffles of 6673 // one-element vectors to avoid poor code for i64 in the backend. 6674 if (VTy->getElementType()->isIntegerTy(64)) { 6675 // Extract the other lane. 6676 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 6677 uint32_t Lane = cast<ConstantInt>(Ops[2])->getZExtValue(); 6678 Value *SV = llvm::ConstantVector::get(ConstantInt::get(Int32Ty, 1-Lane)); 6679 Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV); 6680 // Load the value as a one-element vector. 6681 Ty = llvm::VectorType::get(VTy->getElementType(), 1); 6682 llvm::Type *Tys[] = {Ty, Int8PtrTy}; 6683 Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld1, Tys); 6684 Value *Align = getAlignmentValue32(PtrOp0); 6685 Value *Ld = Builder.CreateCall(F, {Ops[0], Align}); 6686 // Combine them. 6687 uint32_t Indices[] = {1 - Lane, Lane}; 6688 SV = llvm::ConstantDataVector::get(getLLVMContext(), Indices); 6689 return Builder.CreateShuffleVector(Ops[1], Ld, SV, "vld1q_lane"); 6690 } 6691 LLVM_FALLTHROUGH; 6692 case NEON::BI__builtin_neon_vld1_lane_v: { 6693 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 6694 PtrOp0 = Builder.CreateElementBitCast(PtrOp0, VTy->getElementType()); 6695 Value *Ld = Builder.CreateLoad(PtrOp0); 6696 return Builder.CreateInsertElement(Ops[1], Ld, Ops[2], "vld1_lane"); 6697 } 6698 case NEON::BI__builtin_neon_vqrshrn_n_v: 6699 Int = 6700 usgn ? Intrinsic::arm_neon_vqrshiftnu : Intrinsic::arm_neon_vqrshiftns; 6701 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n", 6702 1, true); 6703 case NEON::BI__builtin_neon_vqrshrun_n_v: 6704 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqrshiftnsu, Ty), 6705 Ops, "vqrshrun_n", 1, true); 6706 case NEON::BI__builtin_neon_vqshrn_n_v: 6707 Int = usgn ? Intrinsic::arm_neon_vqshiftnu : Intrinsic::arm_neon_vqshiftns; 6708 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n", 6709 1, true); 6710 case NEON::BI__builtin_neon_vqshrun_n_v: 6711 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqshiftnsu, Ty), 6712 Ops, "vqshrun_n", 1, true); 6713 case NEON::BI__builtin_neon_vrecpe_v: 6714 case NEON::BI__builtin_neon_vrecpeq_v: 6715 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrecpe, Ty), 6716 Ops, "vrecpe"); 6717 case NEON::BI__builtin_neon_vrshrn_n_v: 6718 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrshiftn, Ty), 6719 Ops, "vrshrn_n", 1, true); 6720 case NEON::BI__builtin_neon_vrsra_n_v: 6721 case NEON::BI__builtin_neon_vrsraq_n_v: 6722 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 6723 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 6724 Ops[2] = EmitNeonShiftVector(Ops[2], Ty, true); 6725 Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts; 6726 Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Ty), {Ops[1], Ops[2]}); 6727 return Builder.CreateAdd(Ops[0], Ops[1], "vrsra_n"); 6728 case NEON::BI__builtin_neon_vsri_n_v: 6729 case NEON::BI__builtin_neon_vsriq_n_v: 6730 rightShift = true; 6731 LLVM_FALLTHROUGH; 6732 case NEON::BI__builtin_neon_vsli_n_v: 6733 case NEON::BI__builtin_neon_vsliq_n_v: 6734 Ops[2] = EmitNeonShiftVector(Ops[2], Ty, rightShift); 6735 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vshiftins, Ty), 6736 Ops, "vsli_n"); 6737 case NEON::BI__builtin_neon_vsra_n_v: 6738 case NEON::BI__builtin_neon_vsraq_n_v: 6739 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 6740 Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n"); 6741 return Builder.CreateAdd(Ops[0], Ops[1]); 6742 case NEON::BI__builtin_neon_vst1q_lane_v: 6743 // Handle 64-bit integer elements as a special case. Use a shuffle to get 6744 // a one-element vector and avoid poor code for i64 in the backend. 6745 if (VTy->getElementType()->isIntegerTy(64)) { 6746 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 6747 Value *SV = llvm::ConstantVector::get(cast<llvm::Constant>(Ops[2])); 6748 Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV); 6749 Ops[2] = getAlignmentValue32(PtrOp0); 6750 llvm::Type *Tys[] = {Int8PtrTy, Ops[1]->getType()}; 6751 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst1, 6752 Tys), Ops); 6753 } 6754 LLVM_FALLTHROUGH; 6755 case NEON::BI__builtin_neon_vst1_lane_v: { 6756 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 6757 Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]); 6758 Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); 6759 auto St = Builder.CreateStore(Ops[1], Builder.CreateBitCast(PtrOp0, Ty)); 6760 return St; 6761 } 6762 case NEON::BI__builtin_neon_vtbl1_v: 6763 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl1), 6764 Ops, "vtbl1"); 6765 case NEON::BI__builtin_neon_vtbl2_v: 6766 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl2), 6767 Ops, "vtbl2"); 6768 case NEON::BI__builtin_neon_vtbl3_v: 6769 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl3), 6770 Ops, "vtbl3"); 6771 case NEON::BI__builtin_neon_vtbl4_v: 6772 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl4), 6773 Ops, "vtbl4"); 6774 case NEON::BI__builtin_neon_vtbx1_v: 6775 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx1), 6776 Ops, "vtbx1"); 6777 case NEON::BI__builtin_neon_vtbx2_v: 6778 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx2), 6779 Ops, "vtbx2"); 6780 case NEON::BI__builtin_neon_vtbx3_v: 6781 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx3), 6782 Ops, "vtbx3"); 6783 case NEON::BI__builtin_neon_vtbx4_v: 6784 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx4), 6785 Ops, "vtbx4"); 6786 } 6787 } 6788 6789 Value *CodeGenFunction::EmitARMMVEBuiltinExpr(unsigned BuiltinID, 6790 const CallExpr *E, 6791 ReturnValueSlot ReturnValue, 6792 llvm::Triple::ArchType Arch) { 6793 enum class CustomCodeGen { VLD24, VST24 } CustomCodeGenType; 6794 Intrinsic::ID IRIntr; 6795 unsigned NumVectors; 6796 6797 // Code autogenerated by Tablegen will handle all the simple builtins. 6798 switch (BuiltinID) { 6799 #include "clang/Basic/arm_mve_builtin_cg.inc" 6800 6801 // If we didn't match an MVE builtin id at all, go back to the 6802 // main EmitARMBuiltinExpr. 6803 default: 6804 return nullptr; 6805 } 6806 6807 // Anything that breaks from that switch is an MVE builtin that 6808 // needs handwritten code to generate. 6809 6810 switch (CustomCodeGenType) { 6811 6812 case CustomCodeGen::VLD24: { 6813 llvm::SmallVector<Value *, 4> Ops; 6814 llvm::SmallVector<llvm::Type *, 4> Tys; 6815 6816 auto MvecCType = E->getType(); 6817 auto MvecLType = ConvertType(MvecCType); 6818 assert(MvecLType->isStructTy() && 6819 "Return type for vld[24]q should be a struct"); 6820 assert(MvecLType->getStructNumElements() == 1 && 6821 "Return-type struct for vld[24]q should have one element"); 6822 auto MvecLTypeInner = MvecLType->getStructElementType(0); 6823 assert(MvecLTypeInner->isArrayTy() && 6824 "Return-type struct for vld[24]q should contain an array"); 6825 assert(MvecLTypeInner->getArrayNumElements() == NumVectors && 6826 "Array member of return-type struct vld[24]q has wrong length"); 6827 auto VecLType = MvecLTypeInner->getArrayElementType(); 6828 6829 Tys.push_back(VecLType); 6830 6831 auto Addr = E->getArg(0); 6832 Ops.push_back(EmitScalarExpr(Addr)); 6833 Tys.push_back(ConvertType(Addr->getType())); 6834 6835 Function *F = CGM.getIntrinsic(IRIntr, makeArrayRef(Tys)); 6836 Value *LoadResult = Builder.CreateCall(F, Ops); 6837 Value *MvecOut = UndefValue::get(MvecLType); 6838 for (unsigned i = 0; i < NumVectors; ++i) { 6839 Value *Vec = Builder.CreateExtractValue(LoadResult, i); 6840 MvecOut = Builder.CreateInsertValue(MvecOut, Vec, {0, i}); 6841 } 6842 6843 if (ReturnValue.isNull()) 6844 return MvecOut; 6845 else 6846 return Builder.CreateStore(MvecOut, ReturnValue.getValue()); 6847 } 6848 6849 case CustomCodeGen::VST24: { 6850 llvm::SmallVector<Value *, 4> Ops; 6851 llvm::SmallVector<llvm::Type *, 4> Tys; 6852 6853 auto Addr = E->getArg(0); 6854 Ops.push_back(EmitScalarExpr(Addr)); 6855 Tys.push_back(ConvertType(Addr->getType())); 6856 6857 auto MvecCType = E->getArg(1)->getType(); 6858 auto MvecLType = ConvertType(MvecCType); 6859 assert(MvecLType->isStructTy() && "Data type for vst2q should be a struct"); 6860 assert(MvecLType->getStructNumElements() == 1 && 6861 "Data-type struct for vst2q should have one element"); 6862 auto MvecLTypeInner = MvecLType->getStructElementType(0); 6863 assert(MvecLTypeInner->isArrayTy() && 6864 "Data-type struct for vst2q should contain an array"); 6865 assert(MvecLTypeInner->getArrayNumElements() == NumVectors && 6866 "Array member of return-type struct vld[24]q has wrong length"); 6867 auto VecLType = MvecLTypeInner->getArrayElementType(); 6868 6869 Tys.push_back(VecLType); 6870 6871 AggValueSlot MvecSlot = CreateAggTemp(MvecCType); 6872 EmitAggExpr(E->getArg(1), MvecSlot); 6873 auto Mvec = Builder.CreateLoad(MvecSlot.getAddress()); 6874 for (unsigned i = 0; i < NumVectors; i++) 6875 Ops.push_back(Builder.CreateExtractValue(Mvec, {0, i})); 6876 6877 Function *F = CGM.getIntrinsic(IRIntr, makeArrayRef(Tys)); 6878 Value *ToReturn = nullptr; 6879 for (unsigned i = 0; i < NumVectors; i++) { 6880 Ops.push_back(llvm::ConstantInt::get(Int32Ty, i)); 6881 ToReturn = Builder.CreateCall(F, Ops); 6882 Ops.pop_back(); 6883 } 6884 return ToReturn; 6885 } 6886 } 6887 llvm_unreachable("unknown custom codegen type."); 6888 } 6889 6890 static Value *EmitAArch64TblBuiltinExpr(CodeGenFunction &CGF, unsigned BuiltinID, 6891 const CallExpr *E, 6892 SmallVectorImpl<Value *> &Ops, 6893 llvm::Triple::ArchType Arch) { 6894 unsigned int Int = 0; 6895 const char *s = nullptr; 6896 6897 switch (BuiltinID) { 6898 default: 6899 return nullptr; 6900 case NEON::BI__builtin_neon_vtbl1_v: 6901 case NEON::BI__builtin_neon_vqtbl1_v: 6902 case NEON::BI__builtin_neon_vqtbl1q_v: 6903 case NEON::BI__builtin_neon_vtbl2_v: 6904 case NEON::BI__builtin_neon_vqtbl2_v: 6905 case NEON::BI__builtin_neon_vqtbl2q_v: 6906 case NEON::BI__builtin_neon_vtbl3_v: 6907 case NEON::BI__builtin_neon_vqtbl3_v: 6908 case NEON::BI__builtin_neon_vqtbl3q_v: 6909 case NEON::BI__builtin_neon_vtbl4_v: 6910 case NEON::BI__builtin_neon_vqtbl4_v: 6911 case NEON::BI__builtin_neon_vqtbl4q_v: 6912 break; 6913 case NEON::BI__builtin_neon_vtbx1_v: 6914 case NEON::BI__builtin_neon_vqtbx1_v: 6915 case NEON::BI__builtin_neon_vqtbx1q_v: 6916 case NEON::BI__builtin_neon_vtbx2_v: 6917 case NEON::BI__builtin_neon_vqtbx2_v: 6918 case NEON::BI__builtin_neon_vqtbx2q_v: 6919 case NEON::BI__builtin_neon_vtbx3_v: 6920 case NEON::BI__builtin_neon_vqtbx3_v: 6921 case NEON::BI__builtin_neon_vqtbx3q_v: 6922 case NEON::BI__builtin_neon_vtbx4_v: 6923 case NEON::BI__builtin_neon_vqtbx4_v: 6924 case NEON::BI__builtin_neon_vqtbx4q_v: 6925 break; 6926 } 6927 6928 assert(E->getNumArgs() >= 3); 6929 6930 // Get the last argument, which specifies the vector type. 6931 llvm::APSInt Result; 6932 const Expr *Arg = E->getArg(E->getNumArgs() - 1); 6933 if (!Arg->isIntegerConstantExpr(Result, CGF.getContext())) 6934 return nullptr; 6935 6936 // Determine the type of this overloaded NEON intrinsic. 6937 NeonTypeFlags Type(Result.getZExtValue()); 6938 llvm::VectorType *Ty = GetNeonType(&CGF, Type); 6939 if (!Ty) 6940 return nullptr; 6941 6942 CodeGen::CGBuilderTy &Builder = CGF.Builder; 6943 6944 // AArch64 scalar builtins are not overloaded, they do not have an extra 6945 // argument that specifies the vector type, need to handle each case. 6946 switch (BuiltinID) { 6947 case NEON::BI__builtin_neon_vtbl1_v: { 6948 return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 1), nullptr, 6949 Ops[1], Ty, Intrinsic::aarch64_neon_tbl1, 6950 "vtbl1"); 6951 } 6952 case NEON::BI__builtin_neon_vtbl2_v: { 6953 return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 2), nullptr, 6954 Ops[2], Ty, Intrinsic::aarch64_neon_tbl1, 6955 "vtbl1"); 6956 } 6957 case NEON::BI__builtin_neon_vtbl3_v: { 6958 return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 3), nullptr, 6959 Ops[3], Ty, Intrinsic::aarch64_neon_tbl2, 6960 "vtbl2"); 6961 } 6962 case NEON::BI__builtin_neon_vtbl4_v: { 6963 return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 4), nullptr, 6964 Ops[4], Ty, Intrinsic::aarch64_neon_tbl2, 6965 "vtbl2"); 6966 } 6967 case NEON::BI__builtin_neon_vtbx1_v: { 6968 Value *TblRes = 6969 packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 1), nullptr, Ops[2], 6970 Ty, Intrinsic::aarch64_neon_tbl1, "vtbl1"); 6971 6972 llvm::Constant *EightV = ConstantInt::get(Ty, 8); 6973 Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[2], EightV); 6974 CmpRes = Builder.CreateSExt(CmpRes, Ty); 6975 6976 Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]); 6977 Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes); 6978 return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx"); 6979 } 6980 case NEON::BI__builtin_neon_vtbx2_v: { 6981 return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 2), Ops[0], 6982 Ops[3], Ty, Intrinsic::aarch64_neon_tbx1, 6983 "vtbx1"); 6984 } 6985 case NEON::BI__builtin_neon_vtbx3_v: { 6986 Value *TblRes = 6987 packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 3), nullptr, Ops[4], 6988 Ty, Intrinsic::aarch64_neon_tbl2, "vtbl2"); 6989 6990 llvm::Constant *TwentyFourV = ConstantInt::get(Ty, 24); 6991 Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[4], 6992 TwentyFourV); 6993 CmpRes = Builder.CreateSExt(CmpRes, Ty); 6994 6995 Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]); 6996 Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes); 6997 return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx"); 6998 } 6999 case NEON::BI__builtin_neon_vtbx4_v: { 7000 return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 4), Ops[0], 7001 Ops[5], Ty, Intrinsic::aarch64_neon_tbx2, 7002 "vtbx2"); 7003 } 7004 case NEON::BI__builtin_neon_vqtbl1_v: 7005 case NEON::BI__builtin_neon_vqtbl1q_v: 7006 Int = Intrinsic::aarch64_neon_tbl1; s = "vtbl1"; break; 7007 case NEON::BI__builtin_neon_vqtbl2_v: 7008 case NEON::BI__builtin_neon_vqtbl2q_v: { 7009 Int = Intrinsic::aarch64_neon_tbl2; s = "vtbl2"; break; 7010 case NEON::BI__builtin_neon_vqtbl3_v: 7011 case NEON::BI__builtin_neon_vqtbl3q_v: 7012 Int = Intrinsic::aarch64_neon_tbl3; s = "vtbl3"; break; 7013 case NEON::BI__builtin_neon_vqtbl4_v: 7014 case NEON::BI__builtin_neon_vqtbl4q_v: 7015 Int = Intrinsic::aarch64_neon_tbl4; s = "vtbl4"; break; 7016 case NEON::BI__builtin_neon_vqtbx1_v: 7017 case NEON::BI__builtin_neon_vqtbx1q_v: 7018 Int = Intrinsic::aarch64_neon_tbx1; s = "vtbx1"; break; 7019 case NEON::BI__builtin_neon_vqtbx2_v: 7020 case NEON::BI__builtin_neon_vqtbx2q_v: 7021 Int = Intrinsic::aarch64_neon_tbx2; s = "vtbx2"; break; 7022 case NEON::BI__builtin_neon_vqtbx3_v: 7023 case NEON::BI__builtin_neon_vqtbx3q_v: 7024 Int = Intrinsic::aarch64_neon_tbx3; s = "vtbx3"; break; 7025 case NEON::BI__builtin_neon_vqtbx4_v: 7026 case NEON::BI__builtin_neon_vqtbx4q_v: 7027 Int = Intrinsic::aarch64_neon_tbx4; s = "vtbx4"; break; 7028 } 7029 } 7030 7031 if (!Int) 7032 return nullptr; 7033 7034 Function *F = CGF.CGM.getIntrinsic(Int, Ty); 7035 return CGF.EmitNeonCall(F, Ops, s); 7036 } 7037 7038 Value *CodeGenFunction::vectorWrapScalar16(Value *Op) { 7039 llvm::Type *VTy = llvm::VectorType::get(Int16Ty, 4); 7040 Op = Builder.CreateBitCast(Op, Int16Ty); 7041 Value *V = UndefValue::get(VTy); 7042 llvm::Constant *CI = ConstantInt::get(SizeTy, 0); 7043 Op = Builder.CreateInsertElement(V, Op, CI); 7044 return Op; 7045 } 7046 7047 Value *CodeGenFunction::EmitAArch64BuiltinExpr(unsigned BuiltinID, 7048 const CallExpr *E, 7049 llvm::Triple::ArchType Arch) { 7050 unsigned HintID = static_cast<unsigned>(-1); 7051 switch (BuiltinID) { 7052 default: break; 7053 case AArch64::BI__builtin_arm_nop: 7054 HintID = 0; 7055 break; 7056 case AArch64::BI__builtin_arm_yield: 7057 case AArch64::BI__yield: 7058 HintID = 1; 7059 break; 7060 case AArch64::BI__builtin_arm_wfe: 7061 case AArch64::BI__wfe: 7062 HintID = 2; 7063 break; 7064 case AArch64::BI__builtin_arm_wfi: 7065 case AArch64::BI__wfi: 7066 HintID = 3; 7067 break; 7068 case AArch64::BI__builtin_arm_sev: 7069 case AArch64::BI__sev: 7070 HintID = 4; 7071 break; 7072 case AArch64::BI__builtin_arm_sevl: 7073 case AArch64::BI__sevl: 7074 HintID = 5; 7075 break; 7076 } 7077 7078 if (HintID != static_cast<unsigned>(-1)) { 7079 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_hint); 7080 return Builder.CreateCall(F, llvm::ConstantInt::get(Int32Ty, HintID)); 7081 } 7082 7083 if (BuiltinID == AArch64::BI__builtin_arm_prefetch) { 7084 Value *Address = EmitScalarExpr(E->getArg(0)); 7085 Value *RW = EmitScalarExpr(E->getArg(1)); 7086 Value *CacheLevel = EmitScalarExpr(E->getArg(2)); 7087 Value *RetentionPolicy = EmitScalarExpr(E->getArg(3)); 7088 Value *IsData = EmitScalarExpr(E->getArg(4)); 7089 7090 Value *Locality = nullptr; 7091 if (cast<llvm::ConstantInt>(RetentionPolicy)->isZero()) { 7092 // Temporal fetch, needs to convert cache level to locality. 7093 Locality = llvm::ConstantInt::get(Int32Ty, 7094 -cast<llvm::ConstantInt>(CacheLevel)->getValue() + 3); 7095 } else { 7096 // Streaming fetch. 7097 Locality = llvm::ConstantInt::get(Int32Ty, 0); 7098 } 7099 7100 // FIXME: We need AArch64 specific LLVM intrinsic if we want to specify 7101 // PLDL3STRM or PLDL2STRM. 7102 Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType()); 7103 return Builder.CreateCall(F, {Address, RW, Locality, IsData}); 7104 } 7105 7106 if (BuiltinID == AArch64::BI__builtin_arm_rbit) { 7107 assert((getContext().getTypeSize(E->getType()) == 32) && 7108 "rbit of unusual size!"); 7109 llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); 7110 return Builder.CreateCall( 7111 CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit"); 7112 } 7113 if (BuiltinID == AArch64::BI__builtin_arm_rbit64) { 7114 assert((getContext().getTypeSize(E->getType()) == 64) && 7115 "rbit of unusual size!"); 7116 llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); 7117 return Builder.CreateCall( 7118 CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit"); 7119 } 7120 7121 if (BuiltinID == AArch64::BI__builtin_arm_cls) { 7122 llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); 7123 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_cls), Arg, 7124 "cls"); 7125 } 7126 if (BuiltinID == AArch64::BI__builtin_arm_cls64) { 7127 llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); 7128 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_cls64), Arg, 7129 "cls"); 7130 } 7131 7132 if (BuiltinID == AArch64::BI__builtin_arm_jcvt) { 7133 assert((getContext().getTypeSize(E->getType()) == 32) && 7134 "__jcvt of unusual size!"); 7135 llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); 7136 return Builder.CreateCall( 7137 CGM.getIntrinsic(Intrinsic::aarch64_fjcvtzs), Arg); 7138 } 7139 7140 if (BuiltinID == AArch64::BI__clear_cache) { 7141 assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments"); 7142 const FunctionDecl *FD = E->getDirectCallee(); 7143 Value *Ops[2]; 7144 for (unsigned i = 0; i < 2; i++) 7145 Ops[i] = EmitScalarExpr(E->getArg(i)); 7146 llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType()); 7147 llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty); 7148 StringRef Name = FD->getName(); 7149 return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops); 7150 } 7151 7152 if ((BuiltinID == AArch64::BI__builtin_arm_ldrex || 7153 BuiltinID == AArch64::BI__builtin_arm_ldaex) && 7154 getContext().getTypeSize(E->getType()) == 128) { 7155 Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_ldaex 7156 ? Intrinsic::aarch64_ldaxp 7157 : Intrinsic::aarch64_ldxp); 7158 7159 Value *LdPtr = EmitScalarExpr(E->getArg(0)); 7160 Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy), 7161 "ldxp"); 7162 7163 Value *Val0 = Builder.CreateExtractValue(Val, 1); 7164 Value *Val1 = Builder.CreateExtractValue(Val, 0); 7165 llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128); 7166 Val0 = Builder.CreateZExt(Val0, Int128Ty); 7167 Val1 = Builder.CreateZExt(Val1, Int128Ty); 7168 7169 Value *ShiftCst = llvm::ConstantInt::get(Int128Ty, 64); 7170 Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */); 7171 Val = Builder.CreateOr(Val, Val1); 7172 return Builder.CreateBitCast(Val, ConvertType(E->getType())); 7173 } else if (BuiltinID == AArch64::BI__builtin_arm_ldrex || 7174 BuiltinID == AArch64::BI__builtin_arm_ldaex) { 7175 Value *LoadAddr = EmitScalarExpr(E->getArg(0)); 7176 7177 QualType Ty = E->getType(); 7178 llvm::Type *RealResTy = ConvertType(Ty); 7179 llvm::Type *PtrTy = llvm::IntegerType::get( 7180 getLLVMContext(), getContext().getTypeSize(Ty))->getPointerTo(); 7181 LoadAddr = Builder.CreateBitCast(LoadAddr, PtrTy); 7182 7183 Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_ldaex 7184 ? Intrinsic::aarch64_ldaxr 7185 : Intrinsic::aarch64_ldxr, 7186 PtrTy); 7187 Value *Val = Builder.CreateCall(F, LoadAddr, "ldxr"); 7188 7189 if (RealResTy->isPointerTy()) 7190 return Builder.CreateIntToPtr(Val, RealResTy); 7191 7192 llvm::Type *IntResTy = llvm::IntegerType::get( 7193 getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(RealResTy)); 7194 Val = Builder.CreateTruncOrBitCast(Val, IntResTy); 7195 return Builder.CreateBitCast(Val, RealResTy); 7196 } 7197 7198 if ((BuiltinID == AArch64::BI__builtin_arm_strex || 7199 BuiltinID == AArch64::BI__builtin_arm_stlex) && 7200 getContext().getTypeSize(E->getArg(0)->getType()) == 128) { 7201 Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_stlex 7202 ? Intrinsic::aarch64_stlxp 7203 : Intrinsic::aarch64_stxp); 7204 llvm::Type *STy = llvm::StructType::get(Int64Ty, Int64Ty); 7205 7206 Address Tmp = CreateMemTemp(E->getArg(0)->getType()); 7207 EmitAnyExprToMem(E->getArg(0), Tmp, Qualifiers(), /*init*/ true); 7208 7209 Tmp = Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(STy)); 7210 llvm::Value *Val = Builder.CreateLoad(Tmp); 7211 7212 Value *Arg0 = Builder.CreateExtractValue(Val, 0); 7213 Value *Arg1 = Builder.CreateExtractValue(Val, 1); 7214 Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), 7215 Int8PtrTy); 7216 return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "stxp"); 7217 } 7218 7219 if (BuiltinID == AArch64::BI__builtin_arm_strex || 7220 BuiltinID == AArch64::BI__builtin_arm_stlex) { 7221 Value *StoreVal = EmitScalarExpr(E->getArg(0)); 7222 Value *StoreAddr = EmitScalarExpr(E->getArg(1)); 7223 7224 QualType Ty = E->getArg(0)->getType(); 7225 llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(), 7226 getContext().getTypeSize(Ty)); 7227 StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo()); 7228 7229 if (StoreVal->getType()->isPointerTy()) 7230 StoreVal = Builder.CreatePtrToInt(StoreVal, Int64Ty); 7231 else { 7232 llvm::Type *IntTy = llvm::IntegerType::get( 7233 getLLVMContext(), 7234 CGM.getDataLayout().getTypeSizeInBits(StoreVal->getType())); 7235 StoreVal = Builder.CreateBitCast(StoreVal, IntTy); 7236 StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int64Ty); 7237 } 7238 7239 Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_stlex 7240 ? Intrinsic::aarch64_stlxr 7241 : Intrinsic::aarch64_stxr, 7242 StoreAddr->getType()); 7243 return Builder.CreateCall(F, {StoreVal, StoreAddr}, "stxr"); 7244 } 7245 7246 if (BuiltinID == AArch64::BI__getReg) { 7247 Expr::EvalResult Result; 7248 if (!E->getArg(0)->EvaluateAsInt(Result, CGM.getContext())) 7249 llvm_unreachable("Sema will ensure that the parameter is constant"); 7250 7251 llvm::APSInt Value = Result.Val.getInt(); 7252 LLVMContext &Context = CGM.getLLVMContext(); 7253 std::string Reg = Value == 31 ? "sp" : "x" + Value.toString(10); 7254 7255 llvm::Metadata *Ops[] = {llvm::MDString::get(Context, Reg)}; 7256 llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops); 7257 llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName); 7258 7259 llvm::Function *F = 7260 CGM.getIntrinsic(llvm::Intrinsic::read_register, {Int64Ty}); 7261 return Builder.CreateCall(F, Metadata); 7262 } 7263 7264 if (BuiltinID == AArch64::BI__builtin_arm_clrex) { 7265 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_clrex); 7266 return Builder.CreateCall(F); 7267 } 7268 7269 if (BuiltinID == AArch64::BI_ReadWriteBarrier) 7270 return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, 7271 llvm::SyncScope::SingleThread); 7272 7273 // CRC32 7274 Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic; 7275 switch (BuiltinID) { 7276 case AArch64::BI__builtin_arm_crc32b: 7277 CRCIntrinsicID = Intrinsic::aarch64_crc32b; break; 7278 case AArch64::BI__builtin_arm_crc32cb: 7279 CRCIntrinsicID = Intrinsic::aarch64_crc32cb; break; 7280 case AArch64::BI__builtin_arm_crc32h: 7281 CRCIntrinsicID = Intrinsic::aarch64_crc32h; break; 7282 case AArch64::BI__builtin_arm_crc32ch: 7283 CRCIntrinsicID = Intrinsic::aarch64_crc32ch; break; 7284 case AArch64::BI__builtin_arm_crc32w: 7285 CRCIntrinsicID = Intrinsic::aarch64_crc32w; break; 7286 case AArch64::BI__builtin_arm_crc32cw: 7287 CRCIntrinsicID = Intrinsic::aarch64_crc32cw; break; 7288 case AArch64::BI__builtin_arm_crc32d: 7289 CRCIntrinsicID = Intrinsic::aarch64_crc32x; break; 7290 case AArch64::BI__builtin_arm_crc32cd: 7291 CRCIntrinsicID = Intrinsic::aarch64_crc32cx; break; 7292 } 7293 7294 if (CRCIntrinsicID != Intrinsic::not_intrinsic) { 7295 Value *Arg0 = EmitScalarExpr(E->getArg(0)); 7296 Value *Arg1 = EmitScalarExpr(E->getArg(1)); 7297 Function *F = CGM.getIntrinsic(CRCIntrinsicID); 7298 7299 llvm::Type *DataTy = F->getFunctionType()->getParamType(1); 7300 Arg1 = Builder.CreateZExtOrBitCast(Arg1, DataTy); 7301 7302 return Builder.CreateCall(F, {Arg0, Arg1}); 7303 } 7304 7305 // Memory Tagging Extensions (MTE) Intrinsics 7306 Intrinsic::ID MTEIntrinsicID = Intrinsic::not_intrinsic; 7307 switch (BuiltinID) { 7308 case AArch64::BI__builtin_arm_irg: 7309 MTEIntrinsicID = Intrinsic::aarch64_irg; break; 7310 case AArch64::BI__builtin_arm_addg: 7311 MTEIntrinsicID = Intrinsic::aarch64_addg; break; 7312 case AArch64::BI__builtin_arm_gmi: 7313 MTEIntrinsicID = Intrinsic::aarch64_gmi; break; 7314 case AArch64::BI__builtin_arm_ldg: 7315 MTEIntrinsicID = Intrinsic::aarch64_ldg; break; 7316 case AArch64::BI__builtin_arm_stg: 7317 MTEIntrinsicID = Intrinsic::aarch64_stg; break; 7318 case AArch64::BI__builtin_arm_subp: 7319 MTEIntrinsicID = Intrinsic::aarch64_subp; break; 7320 } 7321 7322 if (MTEIntrinsicID != Intrinsic::not_intrinsic) { 7323 llvm::Type *T = ConvertType(E->getType()); 7324 7325 if (MTEIntrinsicID == Intrinsic::aarch64_irg) { 7326 Value *Pointer = EmitScalarExpr(E->getArg(0)); 7327 Value *Mask = EmitScalarExpr(E->getArg(1)); 7328 7329 Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy); 7330 Mask = Builder.CreateZExt(Mask, Int64Ty); 7331 Value *RV = Builder.CreateCall( 7332 CGM.getIntrinsic(MTEIntrinsicID), {Pointer, Mask}); 7333 return Builder.CreatePointerCast(RV, T); 7334 } 7335 if (MTEIntrinsicID == Intrinsic::aarch64_addg) { 7336 Value *Pointer = EmitScalarExpr(E->getArg(0)); 7337 Value *TagOffset = EmitScalarExpr(E->getArg(1)); 7338 7339 Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy); 7340 TagOffset = Builder.CreateZExt(TagOffset, Int64Ty); 7341 Value *RV = Builder.CreateCall( 7342 CGM.getIntrinsic(MTEIntrinsicID), {Pointer, TagOffset}); 7343 return Builder.CreatePointerCast(RV, T); 7344 } 7345 if (MTEIntrinsicID == Intrinsic::aarch64_gmi) { 7346 Value *Pointer = EmitScalarExpr(E->getArg(0)); 7347 Value *ExcludedMask = EmitScalarExpr(E->getArg(1)); 7348 7349 ExcludedMask = Builder.CreateZExt(ExcludedMask, Int64Ty); 7350 Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy); 7351 return Builder.CreateCall( 7352 CGM.getIntrinsic(MTEIntrinsicID), {Pointer, ExcludedMask}); 7353 } 7354 // Although it is possible to supply a different return 7355 // address (first arg) to this intrinsic, for now we set 7356 // return address same as input address. 7357 if (MTEIntrinsicID == Intrinsic::aarch64_ldg) { 7358 Value *TagAddress = EmitScalarExpr(E->getArg(0)); 7359 TagAddress = Builder.CreatePointerCast(TagAddress, Int8PtrTy); 7360 Value *RV = Builder.CreateCall( 7361 CGM.getIntrinsic(MTEIntrinsicID), {TagAddress, TagAddress}); 7362 return Builder.CreatePointerCast(RV, T); 7363 } 7364 // Although it is possible to supply a different tag (to set) 7365 // to this intrinsic (as first arg), for now we supply 7366 // the tag that is in input address arg (common use case). 7367 if (MTEIntrinsicID == Intrinsic::aarch64_stg) { 7368 Value *TagAddress = EmitScalarExpr(E->getArg(0)); 7369 TagAddress = Builder.CreatePointerCast(TagAddress, Int8PtrTy); 7370 return Builder.CreateCall( 7371 CGM.getIntrinsic(MTEIntrinsicID), {TagAddress, TagAddress}); 7372 } 7373 if (MTEIntrinsicID == Intrinsic::aarch64_subp) { 7374 Value *PointerA = EmitScalarExpr(E->getArg(0)); 7375 Value *PointerB = EmitScalarExpr(E->getArg(1)); 7376 PointerA = Builder.CreatePointerCast(PointerA, Int8PtrTy); 7377 PointerB = Builder.CreatePointerCast(PointerB, Int8PtrTy); 7378 return Builder.CreateCall( 7379 CGM.getIntrinsic(MTEIntrinsicID), {PointerA, PointerB}); 7380 } 7381 } 7382 7383 if (BuiltinID == AArch64::BI__builtin_arm_rsr || 7384 BuiltinID == AArch64::BI__builtin_arm_rsr64 || 7385 BuiltinID == AArch64::BI__builtin_arm_rsrp || 7386 BuiltinID == AArch64::BI__builtin_arm_wsr || 7387 BuiltinID == AArch64::BI__builtin_arm_wsr64 || 7388 BuiltinID == AArch64::BI__builtin_arm_wsrp) { 7389 7390 bool IsRead = BuiltinID == AArch64::BI__builtin_arm_rsr || 7391 BuiltinID == AArch64::BI__builtin_arm_rsr64 || 7392 BuiltinID == AArch64::BI__builtin_arm_rsrp; 7393 7394 bool IsPointerBuiltin = BuiltinID == AArch64::BI__builtin_arm_rsrp || 7395 BuiltinID == AArch64::BI__builtin_arm_wsrp; 7396 7397 bool Is64Bit = BuiltinID != AArch64::BI__builtin_arm_rsr && 7398 BuiltinID != AArch64::BI__builtin_arm_wsr; 7399 7400 llvm::Type *ValueType; 7401 llvm::Type *RegisterType = Int64Ty; 7402 if (IsPointerBuiltin) { 7403 ValueType = VoidPtrTy; 7404 } else if (Is64Bit) { 7405 ValueType = Int64Ty; 7406 } else { 7407 ValueType = Int32Ty; 7408 } 7409 7410 return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType, IsRead); 7411 } 7412 7413 if (BuiltinID == AArch64::BI_ReadStatusReg || 7414 BuiltinID == AArch64::BI_WriteStatusReg) { 7415 LLVMContext &Context = CGM.getLLVMContext(); 7416 7417 unsigned SysReg = 7418 E->getArg(0)->EvaluateKnownConstInt(getContext()).getZExtValue(); 7419 7420 std::string SysRegStr; 7421 llvm::raw_string_ostream(SysRegStr) << 7422 ((1 << 1) | ((SysReg >> 14) & 1)) << ":" << 7423 ((SysReg >> 11) & 7) << ":" << 7424 ((SysReg >> 7) & 15) << ":" << 7425 ((SysReg >> 3) & 15) << ":" << 7426 ( SysReg & 7); 7427 7428 llvm::Metadata *Ops[] = { llvm::MDString::get(Context, SysRegStr) }; 7429 llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops); 7430 llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName); 7431 7432 llvm::Type *RegisterType = Int64Ty; 7433 llvm::Type *Types[] = { RegisterType }; 7434 7435 if (BuiltinID == AArch64::BI_ReadStatusReg) { 7436 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types); 7437 7438 return Builder.CreateCall(F, Metadata); 7439 } 7440 7441 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types); 7442 llvm::Value *ArgValue = EmitScalarExpr(E->getArg(1)); 7443 7444 return Builder.CreateCall(F, { Metadata, ArgValue }); 7445 } 7446 7447 if (BuiltinID == AArch64::BI_AddressOfReturnAddress) { 7448 llvm::Function *F = 7449 CGM.getIntrinsic(Intrinsic::addressofreturnaddress, AllocaInt8PtrTy); 7450 return Builder.CreateCall(F); 7451 } 7452 7453 if (BuiltinID == AArch64::BI__builtin_sponentry) { 7454 llvm::Function *F = CGM.getIntrinsic(Intrinsic::sponentry, AllocaInt8PtrTy); 7455 return Builder.CreateCall(F); 7456 } 7457 7458 // Find out if any arguments are required to be integer constant 7459 // expressions. 7460 unsigned ICEArguments = 0; 7461 ASTContext::GetBuiltinTypeError Error; 7462 getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments); 7463 assert(Error == ASTContext::GE_None && "Should not codegen an error"); 7464 7465 llvm::SmallVector<Value*, 4> Ops; 7466 for (unsigned i = 0, e = E->getNumArgs() - 1; i != e; i++) { 7467 if ((ICEArguments & (1 << i)) == 0) { 7468 Ops.push_back(EmitScalarExpr(E->getArg(i))); 7469 } else { 7470 // If this is required to be a constant, constant fold it so that we know 7471 // that the generated intrinsic gets a ConstantInt. 7472 llvm::APSInt Result; 7473 bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext()); 7474 assert(IsConst && "Constant arg isn't actually constant?"); 7475 (void)IsConst; 7476 Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result)); 7477 } 7478 } 7479 7480 auto SISDMap = makeArrayRef(AArch64SISDIntrinsicMap); 7481 const NeonIntrinsicInfo *Builtin = findNeonIntrinsicInMap( 7482 SISDMap, BuiltinID, AArch64SISDIntrinsicsProvenSorted); 7483 7484 if (Builtin) { 7485 Ops.push_back(EmitScalarExpr(E->getArg(E->getNumArgs() - 1))); 7486 Value *Result = EmitCommonNeonSISDBuiltinExpr(*this, *Builtin, Ops, E); 7487 assert(Result && "SISD intrinsic should have been handled"); 7488 return Result; 7489 } 7490 7491 llvm::APSInt Result; 7492 const Expr *Arg = E->getArg(E->getNumArgs()-1); 7493 NeonTypeFlags Type(0); 7494 if (Arg->isIntegerConstantExpr(Result, getContext())) 7495 // Determine the type of this overloaded NEON intrinsic. 7496 Type = NeonTypeFlags(Result.getZExtValue()); 7497 7498 bool usgn = Type.isUnsigned(); 7499 bool quad = Type.isQuad(); 7500 7501 // Handle non-overloaded intrinsics first. 7502 switch (BuiltinID) { 7503 default: break; 7504 case NEON::BI__builtin_neon_vabsh_f16: 7505 Ops.push_back(EmitScalarExpr(E->getArg(0))); 7506 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, HalfTy), Ops, "vabs"); 7507 case NEON::BI__builtin_neon_vldrq_p128: { 7508 llvm::Type *Int128Ty = llvm::Type::getIntNTy(getLLVMContext(), 128); 7509 llvm::Type *Int128PTy = llvm::PointerType::get(Int128Ty, 0); 7510 Value *Ptr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int128PTy); 7511 return Builder.CreateAlignedLoad(Int128Ty, Ptr, 7512 CharUnits::fromQuantity(16)); 7513 } 7514 case NEON::BI__builtin_neon_vstrq_p128: { 7515 llvm::Type *Int128PTy = llvm::Type::getIntNPtrTy(getLLVMContext(), 128); 7516 Value *Ptr = Builder.CreateBitCast(Ops[0], Int128PTy); 7517 return Builder.CreateDefaultAlignedStore(EmitScalarExpr(E->getArg(1)), Ptr); 7518 } 7519 case NEON::BI__builtin_neon_vcvts_u32_f32: 7520 case NEON::BI__builtin_neon_vcvtd_u64_f64: 7521 usgn = true; 7522 LLVM_FALLTHROUGH; 7523 case NEON::BI__builtin_neon_vcvts_s32_f32: 7524 case NEON::BI__builtin_neon_vcvtd_s64_f64: { 7525 Ops.push_back(EmitScalarExpr(E->getArg(0))); 7526 bool Is64 = Ops[0]->getType()->getPrimitiveSizeInBits() == 64; 7527 llvm::Type *InTy = Is64 ? Int64Ty : Int32Ty; 7528 llvm::Type *FTy = Is64 ? DoubleTy : FloatTy; 7529 Ops[0] = Builder.CreateBitCast(Ops[0], FTy); 7530 if (usgn) 7531 return Builder.CreateFPToUI(Ops[0], InTy); 7532 return Builder.CreateFPToSI(Ops[0], InTy); 7533 } 7534 case NEON::BI__builtin_neon_vcvts_f32_u32: 7535 case NEON::BI__builtin_neon_vcvtd_f64_u64: 7536 usgn = true; 7537 LLVM_FALLTHROUGH; 7538 case NEON::BI__builtin_neon_vcvts_f32_s32: 7539 case NEON::BI__builtin_neon_vcvtd_f64_s64: { 7540 Ops.push_back(EmitScalarExpr(E->getArg(0))); 7541 bool Is64 = Ops[0]->getType()->getPrimitiveSizeInBits() == 64; 7542 llvm::Type *InTy = Is64 ? Int64Ty : Int32Ty; 7543 llvm::Type *FTy = Is64 ? DoubleTy : FloatTy; 7544 Ops[0] = Builder.CreateBitCast(Ops[0], InTy); 7545 if (usgn) 7546 return Builder.CreateUIToFP(Ops[0], FTy); 7547 return Builder.CreateSIToFP(Ops[0], FTy); 7548 } 7549 case NEON::BI__builtin_neon_vcvth_f16_u16: 7550 case NEON::BI__builtin_neon_vcvth_f16_u32: 7551 case NEON::BI__builtin_neon_vcvth_f16_u64: 7552 usgn = true; 7553 LLVM_FALLTHROUGH; 7554 case NEON::BI__builtin_neon_vcvth_f16_s16: 7555 case NEON::BI__builtin_neon_vcvth_f16_s32: 7556 case NEON::BI__builtin_neon_vcvth_f16_s64: { 7557 Ops.push_back(EmitScalarExpr(E->getArg(0))); 7558 llvm::Type *FTy = HalfTy; 7559 llvm::Type *InTy; 7560 if (Ops[0]->getType()->getPrimitiveSizeInBits() == 64) 7561 InTy = Int64Ty; 7562 else if (Ops[0]->getType()->getPrimitiveSizeInBits() == 32) 7563 InTy = Int32Ty; 7564 else 7565 InTy = Int16Ty; 7566 Ops[0] = Builder.CreateBitCast(Ops[0], InTy); 7567 if (usgn) 7568 return Builder.CreateUIToFP(Ops[0], FTy); 7569 return Builder.CreateSIToFP(Ops[0], FTy); 7570 } 7571 case NEON::BI__builtin_neon_vcvth_u16_f16: 7572 usgn = true; 7573 LLVM_FALLTHROUGH; 7574 case NEON::BI__builtin_neon_vcvth_s16_f16: { 7575 Ops.push_back(EmitScalarExpr(E->getArg(0))); 7576 Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy); 7577 if (usgn) 7578 return Builder.CreateFPToUI(Ops[0], Int16Ty); 7579 return Builder.CreateFPToSI(Ops[0], Int16Ty); 7580 } 7581 case NEON::BI__builtin_neon_vcvth_u32_f16: 7582 usgn = true; 7583 LLVM_FALLTHROUGH; 7584 case NEON::BI__builtin_neon_vcvth_s32_f16: { 7585 Ops.push_back(EmitScalarExpr(E->getArg(0))); 7586 Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy); 7587 if (usgn) 7588 return Builder.CreateFPToUI(Ops[0], Int32Ty); 7589 return Builder.CreateFPToSI(Ops[0], Int32Ty); 7590 } 7591 case NEON::BI__builtin_neon_vcvth_u64_f16: 7592 usgn = true; 7593 LLVM_FALLTHROUGH; 7594 case NEON::BI__builtin_neon_vcvth_s64_f16: { 7595 Ops.push_back(EmitScalarExpr(E->getArg(0))); 7596 Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy); 7597 if (usgn) 7598 return Builder.CreateFPToUI(Ops[0], Int64Ty); 7599 return Builder.CreateFPToSI(Ops[0], Int64Ty); 7600 } 7601 case NEON::BI__builtin_neon_vcvtah_u16_f16: 7602 case NEON::BI__builtin_neon_vcvtmh_u16_f16: 7603 case NEON::BI__builtin_neon_vcvtnh_u16_f16: 7604 case NEON::BI__builtin_neon_vcvtph_u16_f16: 7605 case NEON::BI__builtin_neon_vcvtah_s16_f16: 7606 case NEON::BI__builtin_neon_vcvtmh_s16_f16: 7607 case NEON::BI__builtin_neon_vcvtnh_s16_f16: 7608 case NEON::BI__builtin_neon_vcvtph_s16_f16: { 7609 unsigned Int; 7610 llvm::Type* InTy = Int32Ty; 7611 llvm::Type* FTy = HalfTy; 7612 llvm::Type *Tys[2] = {InTy, FTy}; 7613 Ops.push_back(EmitScalarExpr(E->getArg(0))); 7614 switch (BuiltinID) { 7615 default: llvm_unreachable("missing builtin ID in switch!"); 7616 case NEON::BI__builtin_neon_vcvtah_u16_f16: 7617 Int = Intrinsic::aarch64_neon_fcvtau; break; 7618 case NEON::BI__builtin_neon_vcvtmh_u16_f16: 7619 Int = Intrinsic::aarch64_neon_fcvtmu; break; 7620 case NEON::BI__builtin_neon_vcvtnh_u16_f16: 7621 Int = Intrinsic::aarch64_neon_fcvtnu; break; 7622 case NEON::BI__builtin_neon_vcvtph_u16_f16: 7623 Int = Intrinsic::aarch64_neon_fcvtpu; break; 7624 case NEON::BI__builtin_neon_vcvtah_s16_f16: 7625 Int = Intrinsic::aarch64_neon_fcvtas; break; 7626 case NEON::BI__builtin_neon_vcvtmh_s16_f16: 7627 Int = Intrinsic::aarch64_neon_fcvtms; break; 7628 case NEON::BI__builtin_neon_vcvtnh_s16_f16: 7629 Int = Intrinsic::aarch64_neon_fcvtns; break; 7630 case NEON::BI__builtin_neon_vcvtph_s16_f16: 7631 Int = Intrinsic::aarch64_neon_fcvtps; break; 7632 } 7633 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvt"); 7634 return Builder.CreateTrunc(Ops[0], Int16Ty); 7635 } 7636 case NEON::BI__builtin_neon_vcaleh_f16: 7637 case NEON::BI__builtin_neon_vcalth_f16: 7638 case NEON::BI__builtin_neon_vcageh_f16: 7639 case NEON::BI__builtin_neon_vcagth_f16: { 7640 unsigned Int; 7641 llvm::Type* InTy = Int32Ty; 7642 llvm::Type* FTy = HalfTy; 7643 llvm::Type *Tys[2] = {InTy, FTy}; 7644 Ops.push_back(EmitScalarExpr(E->getArg(1))); 7645 switch (BuiltinID) { 7646 default: llvm_unreachable("missing builtin ID in switch!"); 7647 case NEON::BI__builtin_neon_vcageh_f16: 7648 Int = Intrinsic::aarch64_neon_facge; break; 7649 case NEON::BI__builtin_neon_vcagth_f16: 7650 Int = Intrinsic::aarch64_neon_facgt; break; 7651 case NEON::BI__builtin_neon_vcaleh_f16: 7652 Int = Intrinsic::aarch64_neon_facge; std::swap(Ops[0], Ops[1]); break; 7653 case NEON::BI__builtin_neon_vcalth_f16: 7654 Int = Intrinsic::aarch64_neon_facgt; std::swap(Ops[0], Ops[1]); break; 7655 } 7656 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "facg"); 7657 return Builder.CreateTrunc(Ops[0], Int16Ty); 7658 } 7659 case NEON::BI__builtin_neon_vcvth_n_s16_f16: 7660 case NEON::BI__builtin_neon_vcvth_n_u16_f16: { 7661 unsigned Int; 7662 llvm::Type* InTy = Int32Ty; 7663 llvm::Type* FTy = HalfTy; 7664 llvm::Type *Tys[2] = {InTy, FTy}; 7665 Ops.push_back(EmitScalarExpr(E->getArg(1))); 7666 switch (BuiltinID) { 7667 default: llvm_unreachable("missing builtin ID in switch!"); 7668 case NEON::BI__builtin_neon_vcvth_n_s16_f16: 7669 Int = Intrinsic::aarch64_neon_vcvtfp2fxs; break; 7670 case NEON::BI__builtin_neon_vcvth_n_u16_f16: 7671 Int = Intrinsic::aarch64_neon_vcvtfp2fxu; break; 7672 } 7673 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvth_n"); 7674 return Builder.CreateTrunc(Ops[0], Int16Ty); 7675 } 7676 case NEON::BI__builtin_neon_vcvth_n_f16_s16: 7677 case NEON::BI__builtin_neon_vcvth_n_f16_u16: { 7678 unsigned Int; 7679 llvm::Type* FTy = HalfTy; 7680 llvm::Type* InTy = Int32Ty; 7681 llvm::Type *Tys[2] = {FTy, InTy}; 7682 Ops.push_back(EmitScalarExpr(E->getArg(1))); 7683 switch (BuiltinID) { 7684 default: llvm_unreachable("missing builtin ID in switch!"); 7685 case NEON::BI__builtin_neon_vcvth_n_f16_s16: 7686 Int = Intrinsic::aarch64_neon_vcvtfxs2fp; 7687 Ops[0] = Builder.CreateSExt(Ops[0], InTy, "sext"); 7688 break; 7689 case NEON::BI__builtin_neon_vcvth_n_f16_u16: 7690 Int = Intrinsic::aarch64_neon_vcvtfxu2fp; 7691 Ops[0] = Builder.CreateZExt(Ops[0], InTy); 7692 break; 7693 } 7694 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvth_n"); 7695 } 7696 case NEON::BI__builtin_neon_vpaddd_s64: { 7697 llvm::Type *Ty = llvm::VectorType::get(Int64Ty, 2); 7698 Value *Vec = EmitScalarExpr(E->getArg(0)); 7699 // The vector is v2f64, so make sure it's bitcast to that. 7700 Vec = Builder.CreateBitCast(Vec, Ty, "v2i64"); 7701 llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0); 7702 llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1); 7703 Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0"); 7704 Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1"); 7705 // Pairwise addition of a v2f64 into a scalar f64. 7706 return Builder.CreateAdd(Op0, Op1, "vpaddd"); 7707 } 7708 case NEON::BI__builtin_neon_vpaddd_f64: { 7709 llvm::Type *Ty = 7710 llvm::VectorType::get(DoubleTy, 2); 7711 Value *Vec = EmitScalarExpr(E->getArg(0)); 7712 // The vector is v2f64, so make sure it's bitcast to that. 7713 Vec = Builder.CreateBitCast(Vec, Ty, "v2f64"); 7714 llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0); 7715 llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1); 7716 Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0"); 7717 Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1"); 7718 // Pairwise addition of a v2f64 into a scalar f64. 7719 return Builder.CreateFAdd(Op0, Op1, "vpaddd"); 7720 } 7721 case NEON::BI__builtin_neon_vpadds_f32: { 7722 llvm::Type *Ty = 7723 llvm::VectorType::get(FloatTy, 2); 7724 Value *Vec = EmitScalarExpr(E->getArg(0)); 7725 // The vector is v2f32, so make sure it's bitcast to that. 7726 Vec = Builder.CreateBitCast(Vec, Ty, "v2f32"); 7727 llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0); 7728 llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1); 7729 Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0"); 7730 Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1"); 7731 // Pairwise addition of a v2f32 into a scalar f32. 7732 return Builder.CreateFAdd(Op0, Op1, "vpaddd"); 7733 } 7734 case NEON::BI__builtin_neon_vceqzd_s64: 7735 case NEON::BI__builtin_neon_vceqzd_f64: 7736 case NEON::BI__builtin_neon_vceqzs_f32: 7737 case NEON::BI__builtin_neon_vceqzh_f16: 7738 Ops.push_back(EmitScalarExpr(E->getArg(0))); 7739 return EmitAArch64CompareBuiltinExpr( 7740 Ops[0], ConvertType(E->getCallReturnType(getContext())), 7741 ICmpInst::FCMP_OEQ, ICmpInst::ICMP_EQ, "vceqz"); 7742 case NEON::BI__builtin_neon_vcgezd_s64: 7743 case NEON::BI__builtin_neon_vcgezd_f64: 7744 case NEON::BI__builtin_neon_vcgezs_f32: 7745 case NEON::BI__builtin_neon_vcgezh_f16: 7746 Ops.push_back(EmitScalarExpr(E->getArg(0))); 7747 return EmitAArch64CompareBuiltinExpr( 7748 Ops[0], ConvertType(E->getCallReturnType(getContext())), 7749 ICmpInst::FCMP_OGE, ICmpInst::ICMP_SGE, "vcgez"); 7750 case NEON::BI__builtin_neon_vclezd_s64: 7751 case NEON::BI__builtin_neon_vclezd_f64: 7752 case NEON::BI__builtin_neon_vclezs_f32: 7753 case NEON::BI__builtin_neon_vclezh_f16: 7754 Ops.push_back(EmitScalarExpr(E->getArg(0))); 7755 return EmitAArch64CompareBuiltinExpr( 7756 Ops[0], ConvertType(E->getCallReturnType(getContext())), 7757 ICmpInst::FCMP_OLE, ICmpInst::ICMP_SLE, "vclez"); 7758 case NEON::BI__builtin_neon_vcgtzd_s64: 7759 case NEON::BI__builtin_neon_vcgtzd_f64: 7760 case NEON::BI__builtin_neon_vcgtzs_f32: 7761 case NEON::BI__builtin_neon_vcgtzh_f16: 7762 Ops.push_back(EmitScalarExpr(E->getArg(0))); 7763 return EmitAArch64CompareBuiltinExpr( 7764 Ops[0], ConvertType(E->getCallReturnType(getContext())), 7765 ICmpInst::FCMP_OGT, ICmpInst::ICMP_SGT, "vcgtz"); 7766 case NEON::BI__builtin_neon_vcltzd_s64: 7767 case NEON::BI__builtin_neon_vcltzd_f64: 7768 case NEON::BI__builtin_neon_vcltzs_f32: 7769 case NEON::BI__builtin_neon_vcltzh_f16: 7770 Ops.push_back(EmitScalarExpr(E->getArg(0))); 7771 return EmitAArch64CompareBuiltinExpr( 7772 Ops[0], ConvertType(E->getCallReturnType(getContext())), 7773 ICmpInst::FCMP_OLT, ICmpInst::ICMP_SLT, "vcltz"); 7774 7775 case NEON::BI__builtin_neon_vceqzd_u64: { 7776 Ops.push_back(EmitScalarExpr(E->getArg(0))); 7777 Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty); 7778 Ops[0] = 7779 Builder.CreateICmpEQ(Ops[0], llvm::Constant::getNullValue(Int64Ty)); 7780 return Builder.CreateSExt(Ops[0], Int64Ty, "vceqzd"); 7781 } 7782 case NEON::BI__builtin_neon_vceqd_f64: 7783 case NEON::BI__builtin_neon_vcled_f64: 7784 case NEON::BI__builtin_neon_vcltd_f64: 7785 case NEON::BI__builtin_neon_vcged_f64: 7786 case NEON::BI__builtin_neon_vcgtd_f64: { 7787 llvm::CmpInst::Predicate P; 7788 switch (BuiltinID) { 7789 default: llvm_unreachable("missing builtin ID in switch!"); 7790 case NEON::BI__builtin_neon_vceqd_f64: P = llvm::FCmpInst::FCMP_OEQ; break; 7791 case NEON::BI__builtin_neon_vcled_f64: P = llvm::FCmpInst::FCMP_OLE; break; 7792 case NEON::BI__builtin_neon_vcltd_f64: P = llvm::FCmpInst::FCMP_OLT; break; 7793 case NEON::BI__builtin_neon_vcged_f64: P = llvm::FCmpInst::FCMP_OGE; break; 7794 case NEON::BI__builtin_neon_vcgtd_f64: P = llvm::FCmpInst::FCMP_OGT; break; 7795 } 7796 Ops.push_back(EmitScalarExpr(E->getArg(1))); 7797 Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy); 7798 Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy); 7799 Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]); 7800 return Builder.CreateSExt(Ops[0], Int64Ty, "vcmpd"); 7801 } 7802 case NEON::BI__builtin_neon_vceqs_f32: 7803 case NEON::BI__builtin_neon_vcles_f32: 7804 case NEON::BI__builtin_neon_vclts_f32: 7805 case NEON::BI__builtin_neon_vcges_f32: 7806 case NEON::BI__builtin_neon_vcgts_f32: { 7807 llvm::CmpInst::Predicate P; 7808 switch (BuiltinID) { 7809 default: llvm_unreachable("missing builtin ID in switch!"); 7810 case NEON::BI__builtin_neon_vceqs_f32: P = llvm::FCmpInst::FCMP_OEQ; break; 7811 case NEON::BI__builtin_neon_vcles_f32: P = llvm::FCmpInst::FCMP_OLE; break; 7812 case NEON::BI__builtin_neon_vclts_f32: P = llvm::FCmpInst::FCMP_OLT; break; 7813 case NEON::BI__builtin_neon_vcges_f32: P = llvm::FCmpInst::FCMP_OGE; break; 7814 case NEON::BI__builtin_neon_vcgts_f32: P = llvm::FCmpInst::FCMP_OGT; break; 7815 } 7816 Ops.push_back(EmitScalarExpr(E->getArg(1))); 7817 Ops[0] = Builder.CreateBitCast(Ops[0], FloatTy); 7818 Ops[1] = Builder.CreateBitCast(Ops[1], FloatTy); 7819 Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]); 7820 return Builder.CreateSExt(Ops[0], Int32Ty, "vcmpd"); 7821 } 7822 case NEON::BI__builtin_neon_vceqh_f16: 7823 case NEON::BI__builtin_neon_vcleh_f16: 7824 case NEON::BI__builtin_neon_vclth_f16: 7825 case NEON::BI__builtin_neon_vcgeh_f16: 7826 case NEON::BI__builtin_neon_vcgth_f16: { 7827 llvm::CmpInst::Predicate P; 7828 switch (BuiltinID) { 7829 default: llvm_unreachable("missing builtin ID in switch!"); 7830 case NEON::BI__builtin_neon_vceqh_f16: P = llvm::FCmpInst::FCMP_OEQ; break; 7831 case NEON::BI__builtin_neon_vcleh_f16: P = llvm::FCmpInst::FCMP_OLE; break; 7832 case NEON::BI__builtin_neon_vclth_f16: P = llvm::FCmpInst::FCMP_OLT; break; 7833 case NEON::BI__builtin_neon_vcgeh_f16: P = llvm::FCmpInst::FCMP_OGE; break; 7834 case NEON::BI__builtin_neon_vcgth_f16: P = llvm::FCmpInst::FCMP_OGT; break; 7835 } 7836 Ops.push_back(EmitScalarExpr(E->getArg(1))); 7837 Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy); 7838 Ops[1] = Builder.CreateBitCast(Ops[1], HalfTy); 7839 Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]); 7840 return Builder.CreateSExt(Ops[0], Int16Ty, "vcmpd"); 7841 } 7842 case NEON::BI__builtin_neon_vceqd_s64: 7843 case NEON::BI__builtin_neon_vceqd_u64: 7844 case NEON::BI__builtin_neon_vcgtd_s64: 7845 case NEON::BI__builtin_neon_vcgtd_u64: 7846 case NEON::BI__builtin_neon_vcltd_s64: 7847 case NEON::BI__builtin_neon_vcltd_u64: 7848 case NEON::BI__builtin_neon_vcged_u64: 7849 case NEON::BI__builtin_neon_vcged_s64: 7850 case NEON::BI__builtin_neon_vcled_u64: 7851 case NEON::BI__builtin_neon_vcled_s64: { 7852 llvm::CmpInst::Predicate P; 7853 switch (BuiltinID) { 7854 default: llvm_unreachable("missing builtin ID in switch!"); 7855 case NEON::BI__builtin_neon_vceqd_s64: 7856 case NEON::BI__builtin_neon_vceqd_u64:P = llvm::ICmpInst::ICMP_EQ;break; 7857 case NEON::BI__builtin_neon_vcgtd_s64:P = llvm::ICmpInst::ICMP_SGT;break; 7858 case NEON::BI__builtin_neon_vcgtd_u64:P = llvm::ICmpInst::ICMP_UGT;break; 7859 case NEON::BI__builtin_neon_vcltd_s64:P = llvm::ICmpInst::ICMP_SLT;break; 7860 case NEON::BI__builtin_neon_vcltd_u64:P = llvm::ICmpInst::ICMP_ULT;break; 7861 case NEON::BI__builtin_neon_vcged_u64:P = llvm::ICmpInst::ICMP_UGE;break; 7862 case NEON::BI__builtin_neon_vcged_s64:P = llvm::ICmpInst::ICMP_SGE;break; 7863 case NEON::BI__builtin_neon_vcled_u64:P = llvm::ICmpInst::ICMP_ULE;break; 7864 case NEON::BI__builtin_neon_vcled_s64:P = llvm::ICmpInst::ICMP_SLE;break; 7865 } 7866 Ops.push_back(EmitScalarExpr(E->getArg(1))); 7867 Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty); 7868 Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty); 7869 Ops[0] = Builder.CreateICmp(P, Ops[0], Ops[1]); 7870 return Builder.CreateSExt(Ops[0], Int64Ty, "vceqd"); 7871 } 7872 case NEON::BI__builtin_neon_vtstd_s64: 7873 case NEON::BI__builtin_neon_vtstd_u64: { 7874 Ops.push_back(EmitScalarExpr(E->getArg(1))); 7875 Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty); 7876 Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty); 7877 Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]); 7878 Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0], 7879 llvm::Constant::getNullValue(Int64Ty)); 7880 return Builder.CreateSExt(Ops[0], Int64Ty, "vtstd"); 7881 } 7882 case NEON::BI__builtin_neon_vset_lane_i8: 7883 case NEON::BI__builtin_neon_vset_lane_i16: 7884 case NEON::BI__builtin_neon_vset_lane_i32: 7885 case NEON::BI__builtin_neon_vset_lane_i64: 7886 case NEON::BI__builtin_neon_vset_lane_f32: 7887 case NEON::BI__builtin_neon_vsetq_lane_i8: 7888 case NEON::BI__builtin_neon_vsetq_lane_i16: 7889 case NEON::BI__builtin_neon_vsetq_lane_i32: 7890 case NEON::BI__builtin_neon_vsetq_lane_i64: 7891 case NEON::BI__builtin_neon_vsetq_lane_f32: 7892 Ops.push_back(EmitScalarExpr(E->getArg(2))); 7893 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane"); 7894 case NEON::BI__builtin_neon_vset_lane_f64: 7895 // The vector type needs a cast for the v1f64 variant. 7896 Ops[1] = Builder.CreateBitCast(Ops[1], 7897 llvm::VectorType::get(DoubleTy, 1)); 7898 Ops.push_back(EmitScalarExpr(E->getArg(2))); 7899 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane"); 7900 case NEON::BI__builtin_neon_vsetq_lane_f64: 7901 // The vector type needs a cast for the v2f64 variant. 7902 Ops[1] = Builder.CreateBitCast(Ops[1], 7903 llvm::VectorType::get(DoubleTy, 2)); 7904 Ops.push_back(EmitScalarExpr(E->getArg(2))); 7905 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane"); 7906 7907 case NEON::BI__builtin_neon_vget_lane_i8: 7908 case NEON::BI__builtin_neon_vdupb_lane_i8: 7909 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int8Ty, 8)); 7910 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 7911 "vget_lane"); 7912 case NEON::BI__builtin_neon_vgetq_lane_i8: 7913 case NEON::BI__builtin_neon_vdupb_laneq_i8: 7914 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int8Ty, 16)); 7915 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 7916 "vgetq_lane"); 7917 case NEON::BI__builtin_neon_vget_lane_i16: 7918 case NEON::BI__builtin_neon_vduph_lane_i16: 7919 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int16Ty, 4)); 7920 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 7921 "vget_lane"); 7922 case NEON::BI__builtin_neon_vgetq_lane_i16: 7923 case NEON::BI__builtin_neon_vduph_laneq_i16: 7924 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int16Ty, 8)); 7925 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 7926 "vgetq_lane"); 7927 case NEON::BI__builtin_neon_vget_lane_i32: 7928 case NEON::BI__builtin_neon_vdups_lane_i32: 7929 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int32Ty, 2)); 7930 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 7931 "vget_lane"); 7932 case NEON::BI__builtin_neon_vdups_lane_f32: 7933 Ops[0] = Builder.CreateBitCast(Ops[0], 7934 llvm::VectorType::get(FloatTy, 2)); 7935 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 7936 "vdups_lane"); 7937 case NEON::BI__builtin_neon_vgetq_lane_i32: 7938 case NEON::BI__builtin_neon_vdups_laneq_i32: 7939 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int32Ty, 4)); 7940 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 7941 "vgetq_lane"); 7942 case NEON::BI__builtin_neon_vget_lane_i64: 7943 case NEON::BI__builtin_neon_vdupd_lane_i64: 7944 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int64Ty, 1)); 7945 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 7946 "vget_lane"); 7947 case NEON::BI__builtin_neon_vdupd_lane_f64: 7948 Ops[0] = Builder.CreateBitCast(Ops[0], 7949 llvm::VectorType::get(DoubleTy, 1)); 7950 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 7951 "vdupd_lane"); 7952 case NEON::BI__builtin_neon_vgetq_lane_i64: 7953 case NEON::BI__builtin_neon_vdupd_laneq_i64: 7954 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int64Ty, 2)); 7955 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 7956 "vgetq_lane"); 7957 case NEON::BI__builtin_neon_vget_lane_f32: 7958 Ops[0] = Builder.CreateBitCast(Ops[0], 7959 llvm::VectorType::get(FloatTy, 2)); 7960 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 7961 "vget_lane"); 7962 case NEON::BI__builtin_neon_vget_lane_f64: 7963 Ops[0] = Builder.CreateBitCast(Ops[0], 7964 llvm::VectorType::get(DoubleTy, 1)); 7965 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 7966 "vget_lane"); 7967 case NEON::BI__builtin_neon_vgetq_lane_f32: 7968 case NEON::BI__builtin_neon_vdups_laneq_f32: 7969 Ops[0] = Builder.CreateBitCast(Ops[0], 7970 llvm::VectorType::get(FloatTy, 4)); 7971 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 7972 "vgetq_lane"); 7973 case NEON::BI__builtin_neon_vgetq_lane_f64: 7974 case NEON::BI__builtin_neon_vdupd_laneq_f64: 7975 Ops[0] = Builder.CreateBitCast(Ops[0], 7976 llvm::VectorType::get(DoubleTy, 2)); 7977 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 7978 "vgetq_lane"); 7979 case NEON::BI__builtin_neon_vaddh_f16: 7980 Ops.push_back(EmitScalarExpr(E->getArg(1))); 7981 return Builder.CreateFAdd(Ops[0], Ops[1], "vaddh"); 7982 case NEON::BI__builtin_neon_vsubh_f16: 7983 Ops.push_back(EmitScalarExpr(E->getArg(1))); 7984 return Builder.CreateFSub(Ops[0], Ops[1], "vsubh"); 7985 case NEON::BI__builtin_neon_vmulh_f16: 7986 Ops.push_back(EmitScalarExpr(E->getArg(1))); 7987 return Builder.CreateFMul(Ops[0], Ops[1], "vmulh"); 7988 case NEON::BI__builtin_neon_vdivh_f16: 7989 Ops.push_back(EmitScalarExpr(E->getArg(1))); 7990 return Builder.CreateFDiv(Ops[0], Ops[1], "vdivh"); 7991 case NEON::BI__builtin_neon_vfmah_f16: { 7992 Function *F = CGM.getIntrinsic(Intrinsic::fma, HalfTy); 7993 // NEON intrinsic puts accumulator first, unlike the LLVM fma. 7994 return Builder.CreateCall(F, 7995 {EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2)), Ops[0]}); 7996 } 7997 case NEON::BI__builtin_neon_vfmsh_f16: { 7998 Function *F = CGM.getIntrinsic(Intrinsic::fma, HalfTy); 7999 Value *Zero = llvm::ConstantFP::getZeroValueForNegation(HalfTy); 8000 Value* Sub = Builder.CreateFSub(Zero, EmitScalarExpr(E->getArg(1)), "vsubh"); 8001 // NEON intrinsic puts accumulator first, unlike the LLVM fma. 8002 return Builder.CreateCall(F, {Sub, EmitScalarExpr(E->getArg(2)), Ops[0]}); 8003 } 8004 case NEON::BI__builtin_neon_vaddd_s64: 8005 case NEON::BI__builtin_neon_vaddd_u64: 8006 return Builder.CreateAdd(Ops[0], EmitScalarExpr(E->getArg(1)), "vaddd"); 8007 case NEON::BI__builtin_neon_vsubd_s64: 8008 case NEON::BI__builtin_neon_vsubd_u64: 8009 return Builder.CreateSub(Ops[0], EmitScalarExpr(E->getArg(1)), "vsubd"); 8010 case NEON::BI__builtin_neon_vqdmlalh_s16: 8011 case NEON::BI__builtin_neon_vqdmlslh_s16: { 8012 SmallVector<Value *, 2> ProductOps; 8013 ProductOps.push_back(vectorWrapScalar16(Ops[1])); 8014 ProductOps.push_back(vectorWrapScalar16(EmitScalarExpr(E->getArg(2)))); 8015 llvm::Type *VTy = llvm::VectorType::get(Int32Ty, 4); 8016 Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy), 8017 ProductOps, "vqdmlXl"); 8018 Constant *CI = ConstantInt::get(SizeTy, 0); 8019 Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0"); 8020 8021 unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlalh_s16 8022 ? Intrinsic::aarch64_neon_sqadd 8023 : Intrinsic::aarch64_neon_sqsub; 8024 return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int32Ty), Ops, "vqdmlXl"); 8025 } 8026 case NEON::BI__builtin_neon_vqshlud_n_s64: { 8027 Ops.push_back(EmitScalarExpr(E->getArg(1))); 8028 Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty); 8029 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqshlu, Int64Ty), 8030 Ops, "vqshlu_n"); 8031 } 8032 case NEON::BI__builtin_neon_vqshld_n_u64: 8033 case NEON::BI__builtin_neon_vqshld_n_s64: { 8034 unsigned Int = BuiltinID == NEON::BI__builtin_neon_vqshld_n_u64 8035 ? Intrinsic::aarch64_neon_uqshl 8036 : Intrinsic::aarch64_neon_sqshl; 8037 Ops.push_back(EmitScalarExpr(E->getArg(1))); 8038 Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty); 8039 return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vqshl_n"); 8040 } 8041 case NEON::BI__builtin_neon_vrshrd_n_u64: 8042 case NEON::BI__builtin_neon_vrshrd_n_s64: { 8043 unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrshrd_n_u64 8044 ? Intrinsic::aarch64_neon_urshl 8045 : Intrinsic::aarch64_neon_srshl; 8046 Ops.push_back(EmitScalarExpr(E->getArg(1))); 8047 int SV = cast<ConstantInt>(Ops[1])->getSExtValue(); 8048 Ops[1] = ConstantInt::get(Int64Ty, -SV); 8049 return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vrshr_n"); 8050 } 8051 case NEON::BI__builtin_neon_vrsrad_n_u64: 8052 case NEON::BI__builtin_neon_vrsrad_n_s64: { 8053 unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrsrad_n_u64 8054 ? Intrinsic::aarch64_neon_urshl 8055 : Intrinsic::aarch64_neon_srshl; 8056 Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty); 8057 Ops.push_back(Builder.CreateNeg(EmitScalarExpr(E->getArg(2)))); 8058 Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Int64Ty), 8059 {Ops[1], Builder.CreateSExt(Ops[2], Int64Ty)}); 8060 return Builder.CreateAdd(Ops[0], Builder.CreateBitCast(Ops[1], Int64Ty)); 8061 } 8062 case NEON::BI__builtin_neon_vshld_n_s64: 8063 case NEON::BI__builtin_neon_vshld_n_u64: { 8064 llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1))); 8065 return Builder.CreateShl( 8066 Ops[0], ConstantInt::get(Int64Ty, Amt->getZExtValue()), "shld_n"); 8067 } 8068 case NEON::BI__builtin_neon_vshrd_n_s64: { 8069 llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1))); 8070 return Builder.CreateAShr( 8071 Ops[0], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63), 8072 Amt->getZExtValue())), 8073 "shrd_n"); 8074 } 8075 case NEON::BI__builtin_neon_vshrd_n_u64: { 8076 llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1))); 8077 uint64_t ShiftAmt = Amt->getZExtValue(); 8078 // Right-shifting an unsigned value by its size yields 0. 8079 if (ShiftAmt == 64) 8080 return ConstantInt::get(Int64Ty, 0); 8081 return Builder.CreateLShr(Ops[0], ConstantInt::get(Int64Ty, ShiftAmt), 8082 "shrd_n"); 8083 } 8084 case NEON::BI__builtin_neon_vsrad_n_s64: { 8085 llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2))); 8086 Ops[1] = Builder.CreateAShr( 8087 Ops[1], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63), 8088 Amt->getZExtValue())), 8089 "shrd_n"); 8090 return Builder.CreateAdd(Ops[0], Ops[1]); 8091 } 8092 case NEON::BI__builtin_neon_vsrad_n_u64: { 8093 llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2))); 8094 uint64_t ShiftAmt = Amt->getZExtValue(); 8095 // Right-shifting an unsigned value by its size yields 0. 8096 // As Op + 0 = Op, return Ops[0] directly. 8097 if (ShiftAmt == 64) 8098 return Ops[0]; 8099 Ops[1] = Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, ShiftAmt), 8100 "shrd_n"); 8101 return Builder.CreateAdd(Ops[0], Ops[1]); 8102 } 8103 case NEON::BI__builtin_neon_vqdmlalh_lane_s16: 8104 case NEON::BI__builtin_neon_vqdmlalh_laneq_s16: 8105 case NEON::BI__builtin_neon_vqdmlslh_lane_s16: 8106 case NEON::BI__builtin_neon_vqdmlslh_laneq_s16: { 8107 Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)), 8108 "lane"); 8109 SmallVector<Value *, 2> ProductOps; 8110 ProductOps.push_back(vectorWrapScalar16(Ops[1])); 8111 ProductOps.push_back(vectorWrapScalar16(Ops[2])); 8112 llvm::Type *VTy = llvm::VectorType::get(Int32Ty, 4); 8113 Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy), 8114 ProductOps, "vqdmlXl"); 8115 Constant *CI = ConstantInt::get(SizeTy, 0); 8116 Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0"); 8117 Ops.pop_back(); 8118 8119 unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlalh_lane_s16 || 8120 BuiltinID == NEON::BI__builtin_neon_vqdmlalh_laneq_s16) 8121 ? Intrinsic::aarch64_neon_sqadd 8122 : Intrinsic::aarch64_neon_sqsub; 8123 return EmitNeonCall(CGM.getIntrinsic(AccInt, Int32Ty), Ops, "vqdmlXl"); 8124 } 8125 case NEON::BI__builtin_neon_vqdmlals_s32: 8126 case NEON::BI__builtin_neon_vqdmlsls_s32: { 8127 SmallVector<Value *, 2> ProductOps; 8128 ProductOps.push_back(Ops[1]); 8129 ProductOps.push_back(EmitScalarExpr(E->getArg(2))); 8130 Ops[1] = 8131 EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar), 8132 ProductOps, "vqdmlXl"); 8133 8134 unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlals_s32 8135 ? Intrinsic::aarch64_neon_sqadd 8136 : Intrinsic::aarch64_neon_sqsub; 8137 return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int64Ty), Ops, "vqdmlXl"); 8138 } 8139 case NEON::BI__builtin_neon_vqdmlals_lane_s32: 8140 case NEON::BI__builtin_neon_vqdmlals_laneq_s32: 8141 case NEON::BI__builtin_neon_vqdmlsls_lane_s32: 8142 case NEON::BI__builtin_neon_vqdmlsls_laneq_s32: { 8143 Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)), 8144 "lane"); 8145 SmallVector<Value *, 2> ProductOps; 8146 ProductOps.push_back(Ops[1]); 8147 ProductOps.push_back(Ops[2]); 8148 Ops[1] = 8149 EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar), 8150 ProductOps, "vqdmlXl"); 8151 Ops.pop_back(); 8152 8153 unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlals_lane_s32 || 8154 BuiltinID == NEON::BI__builtin_neon_vqdmlals_laneq_s32) 8155 ? Intrinsic::aarch64_neon_sqadd 8156 : Intrinsic::aarch64_neon_sqsub; 8157 return EmitNeonCall(CGM.getIntrinsic(AccInt, Int64Ty), Ops, "vqdmlXl"); 8158 } 8159 case NEON::BI__builtin_neon_vduph_lane_f16: { 8160 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 8161 "vget_lane"); 8162 } 8163 case NEON::BI__builtin_neon_vduph_laneq_f16: { 8164 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 8165 "vgetq_lane"); 8166 } 8167 case AArch64::BI_BitScanForward: 8168 case AArch64::BI_BitScanForward64: 8169 return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanForward, E); 8170 case AArch64::BI_BitScanReverse: 8171 case AArch64::BI_BitScanReverse64: 8172 return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanReverse, E); 8173 case AArch64::BI_InterlockedAnd64: 8174 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E); 8175 case AArch64::BI_InterlockedExchange64: 8176 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E); 8177 case AArch64::BI_InterlockedExchangeAdd64: 8178 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E); 8179 case AArch64::BI_InterlockedExchangeSub64: 8180 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E); 8181 case AArch64::BI_InterlockedOr64: 8182 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E); 8183 case AArch64::BI_InterlockedXor64: 8184 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E); 8185 case AArch64::BI_InterlockedDecrement64: 8186 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E); 8187 case AArch64::BI_InterlockedIncrement64: 8188 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E); 8189 case AArch64::BI_InterlockedExchangeAdd8_acq: 8190 case AArch64::BI_InterlockedExchangeAdd16_acq: 8191 case AArch64::BI_InterlockedExchangeAdd_acq: 8192 case AArch64::BI_InterlockedExchangeAdd64_acq: 8193 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_acq, E); 8194 case AArch64::BI_InterlockedExchangeAdd8_rel: 8195 case AArch64::BI_InterlockedExchangeAdd16_rel: 8196 case AArch64::BI_InterlockedExchangeAdd_rel: 8197 case AArch64::BI_InterlockedExchangeAdd64_rel: 8198 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_rel, E); 8199 case AArch64::BI_InterlockedExchangeAdd8_nf: 8200 case AArch64::BI_InterlockedExchangeAdd16_nf: 8201 case AArch64::BI_InterlockedExchangeAdd_nf: 8202 case AArch64::BI_InterlockedExchangeAdd64_nf: 8203 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_nf, E); 8204 case AArch64::BI_InterlockedExchange8_acq: 8205 case AArch64::BI_InterlockedExchange16_acq: 8206 case AArch64::BI_InterlockedExchange_acq: 8207 case AArch64::BI_InterlockedExchange64_acq: 8208 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_acq, E); 8209 case AArch64::BI_InterlockedExchange8_rel: 8210 case AArch64::BI_InterlockedExchange16_rel: 8211 case AArch64::BI_InterlockedExchange_rel: 8212 case AArch64::BI_InterlockedExchange64_rel: 8213 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_rel, E); 8214 case AArch64::BI_InterlockedExchange8_nf: 8215 case AArch64::BI_InterlockedExchange16_nf: 8216 case AArch64::BI_InterlockedExchange_nf: 8217 case AArch64::BI_InterlockedExchange64_nf: 8218 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_nf, E); 8219 case AArch64::BI_InterlockedCompareExchange8_acq: 8220 case AArch64::BI_InterlockedCompareExchange16_acq: 8221 case AArch64::BI_InterlockedCompareExchange_acq: 8222 case AArch64::BI_InterlockedCompareExchange64_acq: 8223 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_acq, E); 8224 case AArch64::BI_InterlockedCompareExchange8_rel: 8225 case AArch64::BI_InterlockedCompareExchange16_rel: 8226 case AArch64::BI_InterlockedCompareExchange_rel: 8227 case AArch64::BI_InterlockedCompareExchange64_rel: 8228 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_rel, E); 8229 case AArch64::BI_InterlockedCompareExchange8_nf: 8230 case AArch64::BI_InterlockedCompareExchange16_nf: 8231 case AArch64::BI_InterlockedCompareExchange_nf: 8232 case AArch64::BI_InterlockedCompareExchange64_nf: 8233 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_nf, E); 8234 case AArch64::BI_InterlockedOr8_acq: 8235 case AArch64::BI_InterlockedOr16_acq: 8236 case AArch64::BI_InterlockedOr_acq: 8237 case AArch64::BI_InterlockedOr64_acq: 8238 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_acq, E); 8239 case AArch64::BI_InterlockedOr8_rel: 8240 case AArch64::BI_InterlockedOr16_rel: 8241 case AArch64::BI_InterlockedOr_rel: 8242 case AArch64::BI_InterlockedOr64_rel: 8243 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_rel, E); 8244 case AArch64::BI_InterlockedOr8_nf: 8245 case AArch64::BI_InterlockedOr16_nf: 8246 case AArch64::BI_InterlockedOr_nf: 8247 case AArch64::BI_InterlockedOr64_nf: 8248 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_nf, E); 8249 case AArch64::BI_InterlockedXor8_acq: 8250 case AArch64::BI_InterlockedXor16_acq: 8251 case AArch64::BI_InterlockedXor_acq: 8252 case AArch64::BI_InterlockedXor64_acq: 8253 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_acq, E); 8254 case AArch64::BI_InterlockedXor8_rel: 8255 case AArch64::BI_InterlockedXor16_rel: 8256 case AArch64::BI_InterlockedXor_rel: 8257 case AArch64::BI_InterlockedXor64_rel: 8258 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_rel, E); 8259 case AArch64::BI_InterlockedXor8_nf: 8260 case AArch64::BI_InterlockedXor16_nf: 8261 case AArch64::BI_InterlockedXor_nf: 8262 case AArch64::BI_InterlockedXor64_nf: 8263 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_nf, E); 8264 case AArch64::BI_InterlockedAnd8_acq: 8265 case AArch64::BI_InterlockedAnd16_acq: 8266 case AArch64::BI_InterlockedAnd_acq: 8267 case AArch64::BI_InterlockedAnd64_acq: 8268 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_acq, E); 8269 case AArch64::BI_InterlockedAnd8_rel: 8270 case AArch64::BI_InterlockedAnd16_rel: 8271 case AArch64::BI_InterlockedAnd_rel: 8272 case AArch64::BI_InterlockedAnd64_rel: 8273 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_rel, E); 8274 case AArch64::BI_InterlockedAnd8_nf: 8275 case AArch64::BI_InterlockedAnd16_nf: 8276 case AArch64::BI_InterlockedAnd_nf: 8277 case AArch64::BI_InterlockedAnd64_nf: 8278 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_nf, E); 8279 case AArch64::BI_InterlockedIncrement16_acq: 8280 case AArch64::BI_InterlockedIncrement_acq: 8281 case AArch64::BI_InterlockedIncrement64_acq: 8282 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_acq, E); 8283 case AArch64::BI_InterlockedIncrement16_rel: 8284 case AArch64::BI_InterlockedIncrement_rel: 8285 case AArch64::BI_InterlockedIncrement64_rel: 8286 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_rel, E); 8287 case AArch64::BI_InterlockedIncrement16_nf: 8288 case AArch64::BI_InterlockedIncrement_nf: 8289 case AArch64::BI_InterlockedIncrement64_nf: 8290 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_nf, E); 8291 case AArch64::BI_InterlockedDecrement16_acq: 8292 case AArch64::BI_InterlockedDecrement_acq: 8293 case AArch64::BI_InterlockedDecrement64_acq: 8294 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_acq, E); 8295 case AArch64::BI_InterlockedDecrement16_rel: 8296 case AArch64::BI_InterlockedDecrement_rel: 8297 case AArch64::BI_InterlockedDecrement64_rel: 8298 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_rel, E); 8299 case AArch64::BI_InterlockedDecrement16_nf: 8300 case AArch64::BI_InterlockedDecrement_nf: 8301 case AArch64::BI_InterlockedDecrement64_nf: 8302 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_nf, E); 8303 8304 case AArch64::BI_InterlockedAdd: { 8305 Value *Arg0 = EmitScalarExpr(E->getArg(0)); 8306 Value *Arg1 = EmitScalarExpr(E->getArg(1)); 8307 AtomicRMWInst *RMWI = Builder.CreateAtomicRMW( 8308 AtomicRMWInst::Add, Arg0, Arg1, 8309 llvm::AtomicOrdering::SequentiallyConsistent); 8310 return Builder.CreateAdd(RMWI, Arg1); 8311 } 8312 } 8313 8314 llvm::VectorType *VTy = GetNeonType(this, Type); 8315 llvm::Type *Ty = VTy; 8316 if (!Ty) 8317 return nullptr; 8318 8319 // Not all intrinsics handled by the common case work for AArch64 yet, so only 8320 // defer to common code if it's been added to our special map. 8321 Builtin = findNeonIntrinsicInMap(AArch64SIMDIntrinsicMap, BuiltinID, 8322 AArch64SIMDIntrinsicsProvenSorted); 8323 8324 if (Builtin) 8325 return EmitCommonNeonBuiltinExpr( 8326 Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic, 8327 Builtin->NameHint, Builtin->TypeModifier, E, Ops, 8328 /*never use addresses*/ Address::invalid(), Address::invalid(), Arch); 8329 8330 if (Value *V = EmitAArch64TblBuiltinExpr(*this, BuiltinID, E, Ops, Arch)) 8331 return V; 8332 8333 unsigned Int; 8334 switch (BuiltinID) { 8335 default: return nullptr; 8336 case NEON::BI__builtin_neon_vbsl_v: 8337 case NEON::BI__builtin_neon_vbslq_v: { 8338 llvm::Type *BitTy = llvm::VectorType::getInteger(VTy); 8339 Ops[0] = Builder.CreateBitCast(Ops[0], BitTy, "vbsl"); 8340 Ops[1] = Builder.CreateBitCast(Ops[1], BitTy, "vbsl"); 8341 Ops[2] = Builder.CreateBitCast(Ops[2], BitTy, "vbsl"); 8342 8343 Ops[1] = Builder.CreateAnd(Ops[0], Ops[1], "vbsl"); 8344 Ops[2] = Builder.CreateAnd(Builder.CreateNot(Ops[0]), Ops[2], "vbsl"); 8345 Ops[0] = Builder.CreateOr(Ops[1], Ops[2], "vbsl"); 8346 return Builder.CreateBitCast(Ops[0], Ty); 8347 } 8348 case NEON::BI__builtin_neon_vfma_lane_v: 8349 case NEON::BI__builtin_neon_vfmaq_lane_v: { // Only used for FP types 8350 // The ARM builtins (and instructions) have the addend as the first 8351 // operand, but the 'fma' intrinsics have it last. Swap it around here. 8352 Value *Addend = Ops[0]; 8353 Value *Multiplicand = Ops[1]; 8354 Value *LaneSource = Ops[2]; 8355 Ops[0] = Multiplicand; 8356 Ops[1] = LaneSource; 8357 Ops[2] = Addend; 8358 8359 // Now adjust things to handle the lane access. 8360 llvm::Type *SourceTy = BuiltinID == NEON::BI__builtin_neon_vfmaq_lane_v ? 8361 llvm::VectorType::get(VTy->getElementType(), VTy->getNumElements() / 2) : 8362 VTy; 8363 llvm::Constant *cst = cast<Constant>(Ops[3]); 8364 Value *SV = llvm::ConstantVector::getSplat(VTy->getNumElements(), cst); 8365 Ops[1] = Builder.CreateBitCast(Ops[1], SourceTy); 8366 Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV, "lane"); 8367 8368 Ops.pop_back(); 8369 Int = Intrinsic::fma; 8370 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "fmla"); 8371 } 8372 case NEON::BI__builtin_neon_vfma_laneq_v: { 8373 llvm::VectorType *VTy = cast<llvm::VectorType>(Ty); 8374 // v1f64 fma should be mapped to Neon scalar f64 fma 8375 if (VTy && VTy->getElementType() == DoubleTy) { 8376 Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy); 8377 Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy); 8378 llvm::Type *VTy = GetNeonType(this, 8379 NeonTypeFlags(NeonTypeFlags::Float64, false, true)); 8380 Ops[2] = Builder.CreateBitCast(Ops[2], VTy); 8381 Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract"); 8382 Function *F = CGM.getIntrinsic(Intrinsic::fma, DoubleTy); 8383 Value *Result = Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0]}); 8384 return Builder.CreateBitCast(Result, Ty); 8385 } 8386 Function *F = CGM.getIntrinsic(Intrinsic::fma, Ty); 8387 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 8388 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 8389 8390 llvm::Type *STy = llvm::VectorType::get(VTy->getElementType(), 8391 VTy->getNumElements() * 2); 8392 Ops[2] = Builder.CreateBitCast(Ops[2], STy); 8393 Value* SV = llvm::ConstantVector::getSplat(VTy->getNumElements(), 8394 cast<ConstantInt>(Ops[3])); 8395 Ops[2] = Builder.CreateShuffleVector(Ops[2], Ops[2], SV, "lane"); 8396 8397 return Builder.CreateCall(F, {Ops[2], Ops[1], Ops[0]}); 8398 } 8399 case NEON::BI__builtin_neon_vfmaq_laneq_v: { 8400 Function *F = CGM.getIntrinsic(Intrinsic::fma, Ty); 8401 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 8402 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 8403 8404 Ops[2] = Builder.CreateBitCast(Ops[2], Ty); 8405 Ops[2] = EmitNeonSplat(Ops[2], cast<ConstantInt>(Ops[3])); 8406 return Builder.CreateCall(F, {Ops[2], Ops[1], Ops[0]}); 8407 } 8408 case NEON::BI__builtin_neon_vfmah_lane_f16: 8409 case NEON::BI__builtin_neon_vfmas_lane_f32: 8410 case NEON::BI__builtin_neon_vfmah_laneq_f16: 8411 case NEON::BI__builtin_neon_vfmas_laneq_f32: 8412 case NEON::BI__builtin_neon_vfmad_lane_f64: 8413 case NEON::BI__builtin_neon_vfmad_laneq_f64: { 8414 Ops.push_back(EmitScalarExpr(E->getArg(3))); 8415 llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext())); 8416 Function *F = CGM.getIntrinsic(Intrinsic::fma, Ty); 8417 Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract"); 8418 return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0]}); 8419 } 8420 case NEON::BI__builtin_neon_vmull_v: 8421 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics. 8422 Int = usgn ? Intrinsic::aarch64_neon_umull : Intrinsic::aarch64_neon_smull; 8423 if (Type.isPoly()) Int = Intrinsic::aarch64_neon_pmull; 8424 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull"); 8425 case NEON::BI__builtin_neon_vmax_v: 8426 case NEON::BI__builtin_neon_vmaxq_v: 8427 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics. 8428 Int = usgn ? Intrinsic::aarch64_neon_umax : Intrinsic::aarch64_neon_smax; 8429 if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmax; 8430 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmax"); 8431 case NEON::BI__builtin_neon_vmaxh_f16: { 8432 Ops.push_back(EmitScalarExpr(E->getArg(1))); 8433 Int = Intrinsic::aarch64_neon_fmax; 8434 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmax"); 8435 } 8436 case NEON::BI__builtin_neon_vmin_v: 8437 case NEON::BI__builtin_neon_vminq_v: 8438 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics. 8439 Int = usgn ? Intrinsic::aarch64_neon_umin : Intrinsic::aarch64_neon_smin; 8440 if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmin; 8441 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmin"); 8442 case NEON::BI__builtin_neon_vminh_f16: { 8443 Ops.push_back(EmitScalarExpr(E->getArg(1))); 8444 Int = Intrinsic::aarch64_neon_fmin; 8445 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmin"); 8446 } 8447 case NEON::BI__builtin_neon_vabd_v: 8448 case NEON::BI__builtin_neon_vabdq_v: 8449 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics. 8450 Int = usgn ? Intrinsic::aarch64_neon_uabd : Intrinsic::aarch64_neon_sabd; 8451 if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fabd; 8452 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vabd"); 8453 case NEON::BI__builtin_neon_vpadal_v: 8454 case NEON::BI__builtin_neon_vpadalq_v: { 8455 unsigned ArgElts = VTy->getNumElements(); 8456 llvm::IntegerType *EltTy = cast<IntegerType>(VTy->getElementType()); 8457 unsigned BitWidth = EltTy->getBitWidth(); 8458 llvm::Type *ArgTy = llvm::VectorType::get( 8459 llvm::IntegerType::get(getLLVMContext(), BitWidth/2), 2*ArgElts); 8460 llvm::Type* Tys[2] = { VTy, ArgTy }; 8461 Int = usgn ? Intrinsic::aarch64_neon_uaddlp : Intrinsic::aarch64_neon_saddlp; 8462 SmallVector<llvm::Value*, 1> TmpOps; 8463 TmpOps.push_back(Ops[1]); 8464 Function *F = CGM.getIntrinsic(Int, Tys); 8465 llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vpadal"); 8466 llvm::Value *addend = Builder.CreateBitCast(Ops[0], tmp->getType()); 8467 return Builder.CreateAdd(tmp, addend); 8468 } 8469 case NEON::BI__builtin_neon_vpmin_v: 8470 case NEON::BI__builtin_neon_vpminq_v: 8471 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics. 8472 Int = usgn ? Intrinsic::aarch64_neon_uminp : Intrinsic::aarch64_neon_sminp; 8473 if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fminp; 8474 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmin"); 8475 case NEON::BI__builtin_neon_vpmax_v: 8476 case NEON::BI__builtin_neon_vpmaxq_v: 8477 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics. 8478 Int = usgn ? Intrinsic::aarch64_neon_umaxp : Intrinsic::aarch64_neon_smaxp; 8479 if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmaxp; 8480 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmax"); 8481 case NEON::BI__builtin_neon_vminnm_v: 8482 case NEON::BI__builtin_neon_vminnmq_v: 8483 Int = Intrinsic::aarch64_neon_fminnm; 8484 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vminnm"); 8485 case NEON::BI__builtin_neon_vminnmh_f16: 8486 Ops.push_back(EmitScalarExpr(E->getArg(1))); 8487 Int = Intrinsic::aarch64_neon_fminnm; 8488 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vminnm"); 8489 case NEON::BI__builtin_neon_vmaxnm_v: 8490 case NEON::BI__builtin_neon_vmaxnmq_v: 8491 Int = Intrinsic::aarch64_neon_fmaxnm; 8492 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmaxnm"); 8493 case NEON::BI__builtin_neon_vmaxnmh_f16: 8494 Ops.push_back(EmitScalarExpr(E->getArg(1))); 8495 Int = Intrinsic::aarch64_neon_fmaxnm; 8496 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmaxnm"); 8497 case NEON::BI__builtin_neon_vrecpss_f32: { 8498 Ops.push_back(EmitScalarExpr(E->getArg(1))); 8499 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, FloatTy), 8500 Ops, "vrecps"); 8501 } 8502 case NEON::BI__builtin_neon_vrecpsd_f64: 8503 Ops.push_back(EmitScalarExpr(E->getArg(1))); 8504 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, DoubleTy), 8505 Ops, "vrecps"); 8506 case NEON::BI__builtin_neon_vrecpsh_f16: 8507 Ops.push_back(EmitScalarExpr(E->getArg(1))); 8508 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, HalfTy), 8509 Ops, "vrecps"); 8510 case NEON::BI__builtin_neon_vqshrun_n_v: 8511 Int = Intrinsic::aarch64_neon_sqshrun; 8512 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrun_n"); 8513 case NEON::BI__builtin_neon_vqrshrun_n_v: 8514 Int = Intrinsic::aarch64_neon_sqrshrun; 8515 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrun_n"); 8516 case NEON::BI__builtin_neon_vqshrn_n_v: 8517 Int = usgn ? Intrinsic::aarch64_neon_uqshrn : Intrinsic::aarch64_neon_sqshrn; 8518 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n"); 8519 case NEON::BI__builtin_neon_vrshrn_n_v: 8520 Int = Intrinsic::aarch64_neon_rshrn; 8521 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshrn_n"); 8522 case NEON::BI__builtin_neon_vqrshrn_n_v: 8523 Int = usgn ? Intrinsic::aarch64_neon_uqrshrn : Intrinsic::aarch64_neon_sqrshrn; 8524 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n"); 8525 case NEON::BI__builtin_neon_vrndah_f16: { 8526 Ops.push_back(EmitScalarExpr(E->getArg(0))); 8527 Int = Intrinsic::round; 8528 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrnda"); 8529 } 8530 case NEON::BI__builtin_neon_vrnda_v: 8531 case NEON::BI__builtin_neon_vrndaq_v: { 8532 Int = Intrinsic::round; 8533 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnda"); 8534 } 8535 case NEON::BI__builtin_neon_vrndih_f16: { 8536 Ops.push_back(EmitScalarExpr(E->getArg(0))); 8537 Int = Intrinsic::nearbyint; 8538 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndi"); 8539 } 8540 case NEON::BI__builtin_neon_vrndmh_f16: { 8541 Ops.push_back(EmitScalarExpr(E->getArg(0))); 8542 Int = Intrinsic::floor; 8543 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndm"); 8544 } 8545 case NEON::BI__builtin_neon_vrndm_v: 8546 case NEON::BI__builtin_neon_vrndmq_v: { 8547 Int = Intrinsic::floor; 8548 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndm"); 8549 } 8550 case NEON::BI__builtin_neon_vrndnh_f16: { 8551 Ops.push_back(EmitScalarExpr(E->getArg(0))); 8552 Int = Intrinsic::aarch64_neon_frintn; 8553 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndn"); 8554 } 8555 case NEON::BI__builtin_neon_vrndn_v: 8556 case NEON::BI__builtin_neon_vrndnq_v: { 8557 Int = Intrinsic::aarch64_neon_frintn; 8558 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndn"); 8559 } 8560 case NEON::BI__builtin_neon_vrndns_f32: { 8561 Ops.push_back(EmitScalarExpr(E->getArg(0))); 8562 Int = Intrinsic::aarch64_neon_frintn; 8563 return EmitNeonCall(CGM.getIntrinsic(Int, FloatTy), Ops, "vrndn"); 8564 } 8565 case NEON::BI__builtin_neon_vrndph_f16: { 8566 Ops.push_back(EmitScalarExpr(E->getArg(0))); 8567 Int = Intrinsic::ceil; 8568 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndp"); 8569 } 8570 case NEON::BI__builtin_neon_vrndp_v: 8571 case NEON::BI__builtin_neon_vrndpq_v: { 8572 Int = Intrinsic::ceil; 8573 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndp"); 8574 } 8575 case NEON::BI__builtin_neon_vrndxh_f16: { 8576 Ops.push_back(EmitScalarExpr(E->getArg(0))); 8577 Int = Intrinsic::rint; 8578 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndx"); 8579 } 8580 case NEON::BI__builtin_neon_vrndx_v: 8581 case NEON::BI__builtin_neon_vrndxq_v: { 8582 Int = Intrinsic::rint; 8583 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndx"); 8584 } 8585 case NEON::BI__builtin_neon_vrndh_f16: { 8586 Ops.push_back(EmitScalarExpr(E->getArg(0))); 8587 Int = Intrinsic::trunc; 8588 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndz"); 8589 } 8590 case NEON::BI__builtin_neon_vrnd_v: 8591 case NEON::BI__builtin_neon_vrndq_v: { 8592 Int = Intrinsic::trunc; 8593 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndz"); 8594 } 8595 case NEON::BI__builtin_neon_vcvt_f64_v: 8596 case NEON::BI__builtin_neon_vcvtq_f64_v: 8597 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 8598 Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, quad)); 8599 return usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt") 8600 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt"); 8601 case NEON::BI__builtin_neon_vcvt_f64_f32: { 8602 assert(Type.getEltType() == NeonTypeFlags::Float64 && quad && 8603 "unexpected vcvt_f64_f32 builtin"); 8604 NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float32, false, false); 8605 Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag)); 8606 8607 return Builder.CreateFPExt(Ops[0], Ty, "vcvt"); 8608 } 8609 case NEON::BI__builtin_neon_vcvt_f32_f64: { 8610 assert(Type.getEltType() == NeonTypeFlags::Float32 && 8611 "unexpected vcvt_f32_f64 builtin"); 8612 NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float64, false, true); 8613 Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag)); 8614 8615 return Builder.CreateFPTrunc(Ops[0], Ty, "vcvt"); 8616 } 8617 case NEON::BI__builtin_neon_vcvt_s32_v: 8618 case NEON::BI__builtin_neon_vcvt_u32_v: 8619 case NEON::BI__builtin_neon_vcvt_s64_v: 8620 case NEON::BI__builtin_neon_vcvt_u64_v: 8621 case NEON::BI__builtin_neon_vcvt_s16_v: 8622 case NEON::BI__builtin_neon_vcvt_u16_v: 8623 case NEON::BI__builtin_neon_vcvtq_s32_v: 8624 case NEON::BI__builtin_neon_vcvtq_u32_v: 8625 case NEON::BI__builtin_neon_vcvtq_s64_v: 8626 case NEON::BI__builtin_neon_vcvtq_u64_v: 8627 case NEON::BI__builtin_neon_vcvtq_s16_v: 8628 case NEON::BI__builtin_neon_vcvtq_u16_v: { 8629 Ops[0] = Builder.CreateBitCast(Ops[0], GetFloatNeonType(this, Type)); 8630 if (usgn) 8631 return Builder.CreateFPToUI(Ops[0], Ty); 8632 return Builder.CreateFPToSI(Ops[0], Ty); 8633 } 8634 case NEON::BI__builtin_neon_vcvta_s16_v: 8635 case NEON::BI__builtin_neon_vcvta_u16_v: 8636 case NEON::BI__builtin_neon_vcvta_s32_v: 8637 case NEON::BI__builtin_neon_vcvtaq_s16_v: 8638 case NEON::BI__builtin_neon_vcvtaq_s32_v: 8639 case NEON::BI__builtin_neon_vcvta_u32_v: 8640 case NEON::BI__builtin_neon_vcvtaq_u16_v: 8641 case NEON::BI__builtin_neon_vcvtaq_u32_v: 8642 case NEON::BI__builtin_neon_vcvta_s64_v: 8643 case NEON::BI__builtin_neon_vcvtaq_s64_v: 8644 case NEON::BI__builtin_neon_vcvta_u64_v: 8645 case NEON::BI__builtin_neon_vcvtaq_u64_v: { 8646 Int = usgn ? Intrinsic::aarch64_neon_fcvtau : Intrinsic::aarch64_neon_fcvtas; 8647 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) }; 8648 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvta"); 8649 } 8650 case NEON::BI__builtin_neon_vcvtm_s16_v: 8651 case NEON::BI__builtin_neon_vcvtm_s32_v: 8652 case NEON::BI__builtin_neon_vcvtmq_s16_v: 8653 case NEON::BI__builtin_neon_vcvtmq_s32_v: 8654 case NEON::BI__builtin_neon_vcvtm_u16_v: 8655 case NEON::BI__builtin_neon_vcvtm_u32_v: 8656 case NEON::BI__builtin_neon_vcvtmq_u16_v: 8657 case NEON::BI__builtin_neon_vcvtmq_u32_v: 8658 case NEON::BI__builtin_neon_vcvtm_s64_v: 8659 case NEON::BI__builtin_neon_vcvtmq_s64_v: 8660 case NEON::BI__builtin_neon_vcvtm_u64_v: 8661 case NEON::BI__builtin_neon_vcvtmq_u64_v: { 8662 Int = usgn ? Intrinsic::aarch64_neon_fcvtmu : Intrinsic::aarch64_neon_fcvtms; 8663 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) }; 8664 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtm"); 8665 } 8666 case NEON::BI__builtin_neon_vcvtn_s16_v: 8667 case NEON::BI__builtin_neon_vcvtn_s32_v: 8668 case NEON::BI__builtin_neon_vcvtnq_s16_v: 8669 case NEON::BI__builtin_neon_vcvtnq_s32_v: 8670 case NEON::BI__builtin_neon_vcvtn_u16_v: 8671 case NEON::BI__builtin_neon_vcvtn_u32_v: 8672 case NEON::BI__builtin_neon_vcvtnq_u16_v: 8673 case NEON::BI__builtin_neon_vcvtnq_u32_v: 8674 case NEON::BI__builtin_neon_vcvtn_s64_v: 8675 case NEON::BI__builtin_neon_vcvtnq_s64_v: 8676 case NEON::BI__builtin_neon_vcvtn_u64_v: 8677 case NEON::BI__builtin_neon_vcvtnq_u64_v: { 8678 Int = usgn ? Intrinsic::aarch64_neon_fcvtnu : Intrinsic::aarch64_neon_fcvtns; 8679 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) }; 8680 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtn"); 8681 } 8682 case NEON::BI__builtin_neon_vcvtp_s16_v: 8683 case NEON::BI__builtin_neon_vcvtp_s32_v: 8684 case NEON::BI__builtin_neon_vcvtpq_s16_v: 8685 case NEON::BI__builtin_neon_vcvtpq_s32_v: 8686 case NEON::BI__builtin_neon_vcvtp_u16_v: 8687 case NEON::BI__builtin_neon_vcvtp_u32_v: 8688 case NEON::BI__builtin_neon_vcvtpq_u16_v: 8689 case NEON::BI__builtin_neon_vcvtpq_u32_v: 8690 case NEON::BI__builtin_neon_vcvtp_s64_v: 8691 case NEON::BI__builtin_neon_vcvtpq_s64_v: 8692 case NEON::BI__builtin_neon_vcvtp_u64_v: 8693 case NEON::BI__builtin_neon_vcvtpq_u64_v: { 8694 Int = usgn ? Intrinsic::aarch64_neon_fcvtpu : Intrinsic::aarch64_neon_fcvtps; 8695 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) }; 8696 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtp"); 8697 } 8698 case NEON::BI__builtin_neon_vmulx_v: 8699 case NEON::BI__builtin_neon_vmulxq_v: { 8700 Int = Intrinsic::aarch64_neon_fmulx; 8701 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmulx"); 8702 } 8703 case NEON::BI__builtin_neon_vmulxh_lane_f16: 8704 case NEON::BI__builtin_neon_vmulxh_laneq_f16: { 8705 // vmulx_lane should be mapped to Neon scalar mulx after 8706 // extracting the scalar element 8707 Ops.push_back(EmitScalarExpr(E->getArg(2))); 8708 Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract"); 8709 Ops.pop_back(); 8710 Int = Intrinsic::aarch64_neon_fmulx; 8711 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmulx"); 8712 } 8713 case NEON::BI__builtin_neon_vmul_lane_v: 8714 case NEON::BI__builtin_neon_vmul_laneq_v: { 8715 // v1f64 vmul_lane should be mapped to Neon scalar mul lane 8716 bool Quad = false; 8717 if (BuiltinID == NEON::BI__builtin_neon_vmul_laneq_v) 8718 Quad = true; 8719 Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy); 8720 llvm::Type *VTy = GetNeonType(this, 8721 NeonTypeFlags(NeonTypeFlags::Float64, false, Quad)); 8722 Ops[1] = Builder.CreateBitCast(Ops[1], VTy); 8723 Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract"); 8724 Value *Result = Builder.CreateFMul(Ops[0], Ops[1]); 8725 return Builder.CreateBitCast(Result, Ty); 8726 } 8727 case NEON::BI__builtin_neon_vnegd_s64: 8728 return Builder.CreateNeg(EmitScalarExpr(E->getArg(0)), "vnegd"); 8729 case NEON::BI__builtin_neon_vnegh_f16: 8730 return Builder.CreateFNeg(EmitScalarExpr(E->getArg(0)), "vnegh"); 8731 case NEON::BI__builtin_neon_vpmaxnm_v: 8732 case NEON::BI__builtin_neon_vpmaxnmq_v: { 8733 Int = Intrinsic::aarch64_neon_fmaxnmp; 8734 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmaxnm"); 8735 } 8736 case NEON::BI__builtin_neon_vpminnm_v: 8737 case NEON::BI__builtin_neon_vpminnmq_v: { 8738 Int = Intrinsic::aarch64_neon_fminnmp; 8739 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpminnm"); 8740 } 8741 case NEON::BI__builtin_neon_vsqrth_f16: { 8742 Ops.push_back(EmitScalarExpr(E->getArg(0))); 8743 Int = Intrinsic::sqrt; 8744 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vsqrt"); 8745 } 8746 case NEON::BI__builtin_neon_vsqrt_v: 8747 case NEON::BI__builtin_neon_vsqrtq_v: { 8748 Int = Intrinsic::sqrt; 8749 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 8750 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqrt"); 8751 } 8752 case NEON::BI__builtin_neon_vrbit_v: 8753 case NEON::BI__builtin_neon_vrbitq_v: { 8754 Int = Intrinsic::aarch64_neon_rbit; 8755 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrbit"); 8756 } 8757 case NEON::BI__builtin_neon_vaddv_u8: 8758 // FIXME: These are handled by the AArch64 scalar code. 8759 usgn = true; 8760 LLVM_FALLTHROUGH; 8761 case NEON::BI__builtin_neon_vaddv_s8: { 8762 Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv; 8763 Ty = Int32Ty; 8764 VTy = llvm::VectorType::get(Int8Ty, 8); 8765 llvm::Type *Tys[2] = { Ty, VTy }; 8766 Ops.push_back(EmitScalarExpr(E->getArg(0))); 8767 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv"); 8768 return Builder.CreateTrunc(Ops[0], Int8Ty); 8769 } 8770 case NEON::BI__builtin_neon_vaddv_u16: 8771 usgn = true; 8772 LLVM_FALLTHROUGH; 8773 case NEON::BI__builtin_neon_vaddv_s16: { 8774 Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv; 8775 Ty = Int32Ty; 8776 VTy = llvm::VectorType::get(Int16Ty, 4); 8777 llvm::Type *Tys[2] = { Ty, VTy }; 8778 Ops.push_back(EmitScalarExpr(E->getArg(0))); 8779 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv"); 8780 return Builder.CreateTrunc(Ops[0], Int16Ty); 8781 } 8782 case NEON::BI__builtin_neon_vaddvq_u8: 8783 usgn = true; 8784 LLVM_FALLTHROUGH; 8785 case NEON::BI__builtin_neon_vaddvq_s8: { 8786 Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv; 8787 Ty = Int32Ty; 8788 VTy = llvm::VectorType::get(Int8Ty, 16); 8789 llvm::Type *Tys[2] = { Ty, VTy }; 8790 Ops.push_back(EmitScalarExpr(E->getArg(0))); 8791 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv"); 8792 return Builder.CreateTrunc(Ops[0], Int8Ty); 8793 } 8794 case NEON::BI__builtin_neon_vaddvq_u16: 8795 usgn = true; 8796 LLVM_FALLTHROUGH; 8797 case NEON::BI__builtin_neon_vaddvq_s16: { 8798 Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv; 8799 Ty = Int32Ty; 8800 VTy = llvm::VectorType::get(Int16Ty, 8); 8801 llvm::Type *Tys[2] = { Ty, VTy }; 8802 Ops.push_back(EmitScalarExpr(E->getArg(0))); 8803 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv"); 8804 return Builder.CreateTrunc(Ops[0], Int16Ty); 8805 } 8806 case NEON::BI__builtin_neon_vmaxv_u8: { 8807 Int = Intrinsic::aarch64_neon_umaxv; 8808 Ty = Int32Ty; 8809 VTy = llvm::VectorType::get(Int8Ty, 8); 8810 llvm::Type *Tys[2] = { Ty, VTy }; 8811 Ops.push_back(EmitScalarExpr(E->getArg(0))); 8812 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); 8813 return Builder.CreateTrunc(Ops[0], Int8Ty); 8814 } 8815 case NEON::BI__builtin_neon_vmaxv_u16: { 8816 Int = Intrinsic::aarch64_neon_umaxv; 8817 Ty = Int32Ty; 8818 VTy = llvm::VectorType::get(Int16Ty, 4); 8819 llvm::Type *Tys[2] = { Ty, VTy }; 8820 Ops.push_back(EmitScalarExpr(E->getArg(0))); 8821 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); 8822 return Builder.CreateTrunc(Ops[0], Int16Ty); 8823 } 8824 case NEON::BI__builtin_neon_vmaxvq_u8: { 8825 Int = Intrinsic::aarch64_neon_umaxv; 8826 Ty = Int32Ty; 8827 VTy = llvm::VectorType::get(Int8Ty, 16); 8828 llvm::Type *Tys[2] = { Ty, VTy }; 8829 Ops.push_back(EmitScalarExpr(E->getArg(0))); 8830 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); 8831 return Builder.CreateTrunc(Ops[0], Int8Ty); 8832 } 8833 case NEON::BI__builtin_neon_vmaxvq_u16: { 8834 Int = Intrinsic::aarch64_neon_umaxv; 8835 Ty = Int32Ty; 8836 VTy = llvm::VectorType::get(Int16Ty, 8); 8837 llvm::Type *Tys[2] = { Ty, VTy }; 8838 Ops.push_back(EmitScalarExpr(E->getArg(0))); 8839 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); 8840 return Builder.CreateTrunc(Ops[0], Int16Ty); 8841 } 8842 case NEON::BI__builtin_neon_vmaxv_s8: { 8843 Int = Intrinsic::aarch64_neon_smaxv; 8844 Ty = Int32Ty; 8845 VTy = llvm::VectorType::get(Int8Ty, 8); 8846 llvm::Type *Tys[2] = { Ty, VTy }; 8847 Ops.push_back(EmitScalarExpr(E->getArg(0))); 8848 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); 8849 return Builder.CreateTrunc(Ops[0], Int8Ty); 8850 } 8851 case NEON::BI__builtin_neon_vmaxv_s16: { 8852 Int = Intrinsic::aarch64_neon_smaxv; 8853 Ty = Int32Ty; 8854 VTy = llvm::VectorType::get(Int16Ty, 4); 8855 llvm::Type *Tys[2] = { Ty, VTy }; 8856 Ops.push_back(EmitScalarExpr(E->getArg(0))); 8857 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); 8858 return Builder.CreateTrunc(Ops[0], Int16Ty); 8859 } 8860 case NEON::BI__builtin_neon_vmaxvq_s8: { 8861 Int = Intrinsic::aarch64_neon_smaxv; 8862 Ty = Int32Ty; 8863 VTy = llvm::VectorType::get(Int8Ty, 16); 8864 llvm::Type *Tys[2] = { Ty, VTy }; 8865 Ops.push_back(EmitScalarExpr(E->getArg(0))); 8866 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); 8867 return Builder.CreateTrunc(Ops[0], Int8Ty); 8868 } 8869 case NEON::BI__builtin_neon_vmaxvq_s16: { 8870 Int = Intrinsic::aarch64_neon_smaxv; 8871 Ty = Int32Ty; 8872 VTy = llvm::VectorType::get(Int16Ty, 8); 8873 llvm::Type *Tys[2] = { Ty, VTy }; 8874 Ops.push_back(EmitScalarExpr(E->getArg(0))); 8875 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); 8876 return Builder.CreateTrunc(Ops[0], Int16Ty); 8877 } 8878 case NEON::BI__builtin_neon_vmaxv_f16: { 8879 Int = Intrinsic::aarch64_neon_fmaxv; 8880 Ty = HalfTy; 8881 VTy = llvm::VectorType::get(HalfTy, 4); 8882 llvm::Type *Tys[2] = { Ty, VTy }; 8883 Ops.push_back(EmitScalarExpr(E->getArg(0))); 8884 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); 8885 return Builder.CreateTrunc(Ops[0], HalfTy); 8886 } 8887 case NEON::BI__builtin_neon_vmaxvq_f16: { 8888 Int = Intrinsic::aarch64_neon_fmaxv; 8889 Ty = HalfTy; 8890 VTy = llvm::VectorType::get(HalfTy, 8); 8891 llvm::Type *Tys[2] = { Ty, VTy }; 8892 Ops.push_back(EmitScalarExpr(E->getArg(0))); 8893 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); 8894 return Builder.CreateTrunc(Ops[0], HalfTy); 8895 } 8896 case NEON::BI__builtin_neon_vminv_u8: { 8897 Int = Intrinsic::aarch64_neon_uminv; 8898 Ty = Int32Ty; 8899 VTy = llvm::VectorType::get(Int8Ty, 8); 8900 llvm::Type *Tys[2] = { Ty, VTy }; 8901 Ops.push_back(EmitScalarExpr(E->getArg(0))); 8902 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); 8903 return Builder.CreateTrunc(Ops[0], Int8Ty); 8904 } 8905 case NEON::BI__builtin_neon_vminv_u16: { 8906 Int = Intrinsic::aarch64_neon_uminv; 8907 Ty = Int32Ty; 8908 VTy = llvm::VectorType::get(Int16Ty, 4); 8909 llvm::Type *Tys[2] = { Ty, VTy }; 8910 Ops.push_back(EmitScalarExpr(E->getArg(0))); 8911 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); 8912 return Builder.CreateTrunc(Ops[0], Int16Ty); 8913 } 8914 case NEON::BI__builtin_neon_vminvq_u8: { 8915 Int = Intrinsic::aarch64_neon_uminv; 8916 Ty = Int32Ty; 8917 VTy = llvm::VectorType::get(Int8Ty, 16); 8918 llvm::Type *Tys[2] = { Ty, VTy }; 8919 Ops.push_back(EmitScalarExpr(E->getArg(0))); 8920 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); 8921 return Builder.CreateTrunc(Ops[0], Int8Ty); 8922 } 8923 case NEON::BI__builtin_neon_vminvq_u16: { 8924 Int = Intrinsic::aarch64_neon_uminv; 8925 Ty = Int32Ty; 8926 VTy = llvm::VectorType::get(Int16Ty, 8); 8927 llvm::Type *Tys[2] = { Ty, VTy }; 8928 Ops.push_back(EmitScalarExpr(E->getArg(0))); 8929 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); 8930 return Builder.CreateTrunc(Ops[0], Int16Ty); 8931 } 8932 case NEON::BI__builtin_neon_vminv_s8: { 8933 Int = Intrinsic::aarch64_neon_sminv; 8934 Ty = Int32Ty; 8935 VTy = llvm::VectorType::get(Int8Ty, 8); 8936 llvm::Type *Tys[2] = { Ty, VTy }; 8937 Ops.push_back(EmitScalarExpr(E->getArg(0))); 8938 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); 8939 return Builder.CreateTrunc(Ops[0], Int8Ty); 8940 } 8941 case NEON::BI__builtin_neon_vminv_s16: { 8942 Int = Intrinsic::aarch64_neon_sminv; 8943 Ty = Int32Ty; 8944 VTy = llvm::VectorType::get(Int16Ty, 4); 8945 llvm::Type *Tys[2] = { Ty, VTy }; 8946 Ops.push_back(EmitScalarExpr(E->getArg(0))); 8947 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); 8948 return Builder.CreateTrunc(Ops[0], Int16Ty); 8949 } 8950 case NEON::BI__builtin_neon_vminvq_s8: { 8951 Int = Intrinsic::aarch64_neon_sminv; 8952 Ty = Int32Ty; 8953 VTy = llvm::VectorType::get(Int8Ty, 16); 8954 llvm::Type *Tys[2] = { Ty, VTy }; 8955 Ops.push_back(EmitScalarExpr(E->getArg(0))); 8956 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); 8957 return Builder.CreateTrunc(Ops[0], Int8Ty); 8958 } 8959 case NEON::BI__builtin_neon_vminvq_s16: { 8960 Int = Intrinsic::aarch64_neon_sminv; 8961 Ty = Int32Ty; 8962 VTy = llvm::VectorType::get(Int16Ty, 8); 8963 llvm::Type *Tys[2] = { Ty, VTy }; 8964 Ops.push_back(EmitScalarExpr(E->getArg(0))); 8965 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); 8966 return Builder.CreateTrunc(Ops[0], Int16Ty); 8967 } 8968 case NEON::BI__builtin_neon_vminv_f16: { 8969 Int = Intrinsic::aarch64_neon_fminv; 8970 Ty = HalfTy; 8971 VTy = llvm::VectorType::get(HalfTy, 4); 8972 llvm::Type *Tys[2] = { Ty, VTy }; 8973 Ops.push_back(EmitScalarExpr(E->getArg(0))); 8974 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); 8975 return Builder.CreateTrunc(Ops[0], HalfTy); 8976 } 8977 case NEON::BI__builtin_neon_vminvq_f16: { 8978 Int = Intrinsic::aarch64_neon_fminv; 8979 Ty = HalfTy; 8980 VTy = llvm::VectorType::get(HalfTy, 8); 8981 llvm::Type *Tys[2] = { Ty, VTy }; 8982 Ops.push_back(EmitScalarExpr(E->getArg(0))); 8983 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); 8984 return Builder.CreateTrunc(Ops[0], HalfTy); 8985 } 8986 case NEON::BI__builtin_neon_vmaxnmv_f16: { 8987 Int = Intrinsic::aarch64_neon_fmaxnmv; 8988 Ty = HalfTy; 8989 VTy = llvm::VectorType::get(HalfTy, 4); 8990 llvm::Type *Tys[2] = { Ty, VTy }; 8991 Ops.push_back(EmitScalarExpr(E->getArg(0))); 8992 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxnmv"); 8993 return Builder.CreateTrunc(Ops[0], HalfTy); 8994 } 8995 case NEON::BI__builtin_neon_vmaxnmvq_f16: { 8996 Int = Intrinsic::aarch64_neon_fmaxnmv; 8997 Ty = HalfTy; 8998 VTy = llvm::VectorType::get(HalfTy, 8); 8999 llvm::Type *Tys[2] = { Ty, VTy }; 9000 Ops.push_back(EmitScalarExpr(E->getArg(0))); 9001 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxnmv"); 9002 return Builder.CreateTrunc(Ops[0], HalfTy); 9003 } 9004 case NEON::BI__builtin_neon_vminnmv_f16: { 9005 Int = Intrinsic::aarch64_neon_fminnmv; 9006 Ty = HalfTy; 9007 VTy = llvm::VectorType::get(HalfTy, 4); 9008 llvm::Type *Tys[2] = { Ty, VTy }; 9009 Ops.push_back(EmitScalarExpr(E->getArg(0))); 9010 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminnmv"); 9011 return Builder.CreateTrunc(Ops[0], HalfTy); 9012 } 9013 case NEON::BI__builtin_neon_vminnmvq_f16: { 9014 Int = Intrinsic::aarch64_neon_fminnmv; 9015 Ty = HalfTy; 9016 VTy = llvm::VectorType::get(HalfTy, 8); 9017 llvm::Type *Tys[2] = { Ty, VTy }; 9018 Ops.push_back(EmitScalarExpr(E->getArg(0))); 9019 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminnmv"); 9020 return Builder.CreateTrunc(Ops[0], HalfTy); 9021 } 9022 case NEON::BI__builtin_neon_vmul_n_f64: { 9023 Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy); 9024 Value *RHS = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), DoubleTy); 9025 return Builder.CreateFMul(Ops[0], RHS); 9026 } 9027 case NEON::BI__builtin_neon_vaddlv_u8: { 9028 Int = Intrinsic::aarch64_neon_uaddlv; 9029 Ty = Int32Ty; 9030 VTy = llvm::VectorType::get(Int8Ty, 8); 9031 llvm::Type *Tys[2] = { Ty, VTy }; 9032 Ops.push_back(EmitScalarExpr(E->getArg(0))); 9033 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); 9034 return Builder.CreateTrunc(Ops[0], Int16Ty); 9035 } 9036 case NEON::BI__builtin_neon_vaddlv_u16: { 9037 Int = Intrinsic::aarch64_neon_uaddlv; 9038 Ty = Int32Ty; 9039 VTy = llvm::VectorType::get(Int16Ty, 4); 9040 llvm::Type *Tys[2] = { Ty, VTy }; 9041 Ops.push_back(EmitScalarExpr(E->getArg(0))); 9042 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); 9043 } 9044 case NEON::BI__builtin_neon_vaddlvq_u8: { 9045 Int = Intrinsic::aarch64_neon_uaddlv; 9046 Ty = Int32Ty; 9047 VTy = llvm::VectorType::get(Int8Ty, 16); 9048 llvm::Type *Tys[2] = { Ty, VTy }; 9049 Ops.push_back(EmitScalarExpr(E->getArg(0))); 9050 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); 9051 return Builder.CreateTrunc(Ops[0], Int16Ty); 9052 } 9053 case NEON::BI__builtin_neon_vaddlvq_u16: { 9054 Int = Intrinsic::aarch64_neon_uaddlv; 9055 Ty = Int32Ty; 9056 VTy = llvm::VectorType::get(Int16Ty, 8); 9057 llvm::Type *Tys[2] = { Ty, VTy }; 9058 Ops.push_back(EmitScalarExpr(E->getArg(0))); 9059 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); 9060 } 9061 case NEON::BI__builtin_neon_vaddlv_s8: { 9062 Int = Intrinsic::aarch64_neon_saddlv; 9063 Ty = Int32Ty; 9064 VTy = llvm::VectorType::get(Int8Ty, 8); 9065 llvm::Type *Tys[2] = { Ty, VTy }; 9066 Ops.push_back(EmitScalarExpr(E->getArg(0))); 9067 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); 9068 return Builder.CreateTrunc(Ops[0], Int16Ty); 9069 } 9070 case NEON::BI__builtin_neon_vaddlv_s16: { 9071 Int = Intrinsic::aarch64_neon_saddlv; 9072 Ty = Int32Ty; 9073 VTy = llvm::VectorType::get(Int16Ty, 4); 9074 llvm::Type *Tys[2] = { Ty, VTy }; 9075 Ops.push_back(EmitScalarExpr(E->getArg(0))); 9076 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); 9077 } 9078 case NEON::BI__builtin_neon_vaddlvq_s8: { 9079 Int = Intrinsic::aarch64_neon_saddlv; 9080 Ty = Int32Ty; 9081 VTy = llvm::VectorType::get(Int8Ty, 16); 9082 llvm::Type *Tys[2] = { Ty, VTy }; 9083 Ops.push_back(EmitScalarExpr(E->getArg(0))); 9084 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); 9085 return Builder.CreateTrunc(Ops[0], Int16Ty); 9086 } 9087 case NEON::BI__builtin_neon_vaddlvq_s16: { 9088 Int = Intrinsic::aarch64_neon_saddlv; 9089 Ty = Int32Ty; 9090 VTy = llvm::VectorType::get(Int16Ty, 8); 9091 llvm::Type *Tys[2] = { Ty, VTy }; 9092 Ops.push_back(EmitScalarExpr(E->getArg(0))); 9093 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); 9094 } 9095 case NEON::BI__builtin_neon_vsri_n_v: 9096 case NEON::BI__builtin_neon_vsriq_n_v: { 9097 Int = Intrinsic::aarch64_neon_vsri; 9098 llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty); 9099 return EmitNeonCall(Intrin, Ops, "vsri_n"); 9100 } 9101 case NEON::BI__builtin_neon_vsli_n_v: 9102 case NEON::BI__builtin_neon_vsliq_n_v: { 9103 Int = Intrinsic::aarch64_neon_vsli; 9104 llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty); 9105 return EmitNeonCall(Intrin, Ops, "vsli_n"); 9106 } 9107 case NEON::BI__builtin_neon_vsra_n_v: 9108 case NEON::BI__builtin_neon_vsraq_n_v: 9109 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 9110 Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n"); 9111 return Builder.CreateAdd(Ops[0], Ops[1]); 9112 case NEON::BI__builtin_neon_vrsra_n_v: 9113 case NEON::BI__builtin_neon_vrsraq_n_v: { 9114 Int = usgn ? Intrinsic::aarch64_neon_urshl : Intrinsic::aarch64_neon_srshl; 9115 SmallVector<llvm::Value*,2> TmpOps; 9116 TmpOps.push_back(Ops[1]); 9117 TmpOps.push_back(Ops[2]); 9118 Function* F = CGM.getIntrinsic(Int, Ty); 9119 llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vrshr_n", 1, true); 9120 Ops[0] = Builder.CreateBitCast(Ops[0], VTy); 9121 return Builder.CreateAdd(Ops[0], tmp); 9122 } 9123 case NEON::BI__builtin_neon_vld1_v: 9124 case NEON::BI__builtin_neon_vld1q_v: { 9125 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy)); 9126 auto Alignment = CharUnits::fromQuantity( 9127 BuiltinID == NEON::BI__builtin_neon_vld1_v ? 8 : 16); 9128 return Builder.CreateAlignedLoad(VTy, Ops[0], Alignment); 9129 } 9130 case NEON::BI__builtin_neon_vst1_v: 9131 case NEON::BI__builtin_neon_vst1q_v: 9132 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy)); 9133 Ops[1] = Builder.CreateBitCast(Ops[1], VTy); 9134 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); 9135 case NEON::BI__builtin_neon_vld1_lane_v: 9136 case NEON::BI__builtin_neon_vld1q_lane_v: { 9137 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 9138 Ty = llvm::PointerType::getUnqual(VTy->getElementType()); 9139 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 9140 auto Alignment = CharUnits::fromQuantity( 9141 BuiltinID == NEON::BI__builtin_neon_vld1_lane_v ? 8 : 16); 9142 Ops[0] = 9143 Builder.CreateAlignedLoad(VTy->getElementType(), Ops[0], Alignment); 9144 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vld1_lane"); 9145 } 9146 case NEON::BI__builtin_neon_vld1_dup_v: 9147 case NEON::BI__builtin_neon_vld1q_dup_v: { 9148 Value *V = UndefValue::get(Ty); 9149 Ty = llvm::PointerType::getUnqual(VTy->getElementType()); 9150 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 9151 auto Alignment = CharUnits::fromQuantity( 9152 BuiltinID == NEON::BI__builtin_neon_vld1_dup_v ? 8 : 16); 9153 Ops[0] = 9154 Builder.CreateAlignedLoad(VTy->getElementType(), Ops[0], Alignment); 9155 llvm::Constant *CI = ConstantInt::get(Int32Ty, 0); 9156 Ops[0] = Builder.CreateInsertElement(V, Ops[0], CI); 9157 return EmitNeonSplat(Ops[0], CI); 9158 } 9159 case NEON::BI__builtin_neon_vst1_lane_v: 9160 case NEON::BI__builtin_neon_vst1q_lane_v: 9161 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 9162 Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]); 9163 Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); 9164 return Builder.CreateDefaultAlignedStore(Ops[1], 9165 Builder.CreateBitCast(Ops[0], Ty)); 9166 case NEON::BI__builtin_neon_vld2_v: 9167 case NEON::BI__builtin_neon_vld2q_v: { 9168 llvm::Type *PTy = llvm::PointerType::getUnqual(VTy); 9169 Ops[1] = Builder.CreateBitCast(Ops[1], PTy); 9170 llvm::Type *Tys[2] = { VTy, PTy }; 9171 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2, Tys); 9172 Ops[1] = Builder.CreateCall(F, Ops[1], "vld2"); 9173 Ops[0] = Builder.CreateBitCast(Ops[0], 9174 llvm::PointerType::getUnqual(Ops[1]->getType())); 9175 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); 9176 } 9177 case NEON::BI__builtin_neon_vld3_v: 9178 case NEON::BI__builtin_neon_vld3q_v: { 9179 llvm::Type *PTy = llvm::PointerType::getUnqual(VTy); 9180 Ops[1] = Builder.CreateBitCast(Ops[1], PTy); 9181 llvm::Type *Tys[2] = { VTy, PTy }; 9182 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3, Tys); 9183 Ops[1] = Builder.CreateCall(F, Ops[1], "vld3"); 9184 Ops[0] = Builder.CreateBitCast(Ops[0], 9185 llvm::PointerType::getUnqual(Ops[1]->getType())); 9186 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); 9187 } 9188 case NEON::BI__builtin_neon_vld4_v: 9189 case NEON::BI__builtin_neon_vld4q_v: { 9190 llvm::Type *PTy = llvm::PointerType::getUnqual(VTy); 9191 Ops[1] = Builder.CreateBitCast(Ops[1], PTy); 9192 llvm::Type *Tys[2] = { VTy, PTy }; 9193 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4, Tys); 9194 Ops[1] = Builder.CreateCall(F, Ops[1], "vld4"); 9195 Ops[0] = Builder.CreateBitCast(Ops[0], 9196 llvm::PointerType::getUnqual(Ops[1]->getType())); 9197 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); 9198 } 9199 case NEON::BI__builtin_neon_vld2_dup_v: 9200 case NEON::BI__builtin_neon_vld2q_dup_v: { 9201 llvm::Type *PTy = 9202 llvm::PointerType::getUnqual(VTy->getElementType()); 9203 Ops[1] = Builder.CreateBitCast(Ops[1], PTy); 9204 llvm::Type *Tys[2] = { VTy, PTy }; 9205 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2r, Tys); 9206 Ops[1] = Builder.CreateCall(F, Ops[1], "vld2"); 9207 Ops[0] = Builder.CreateBitCast(Ops[0], 9208 llvm::PointerType::getUnqual(Ops[1]->getType())); 9209 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); 9210 } 9211 case NEON::BI__builtin_neon_vld3_dup_v: 9212 case NEON::BI__builtin_neon_vld3q_dup_v: { 9213 llvm::Type *PTy = 9214 llvm::PointerType::getUnqual(VTy->getElementType()); 9215 Ops[1] = Builder.CreateBitCast(Ops[1], PTy); 9216 llvm::Type *Tys[2] = { VTy, PTy }; 9217 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3r, Tys); 9218 Ops[1] = Builder.CreateCall(F, Ops[1], "vld3"); 9219 Ops[0] = Builder.CreateBitCast(Ops[0], 9220 llvm::PointerType::getUnqual(Ops[1]->getType())); 9221 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); 9222 } 9223 case NEON::BI__builtin_neon_vld4_dup_v: 9224 case NEON::BI__builtin_neon_vld4q_dup_v: { 9225 llvm::Type *PTy = 9226 llvm::PointerType::getUnqual(VTy->getElementType()); 9227 Ops[1] = Builder.CreateBitCast(Ops[1], PTy); 9228 llvm::Type *Tys[2] = { VTy, PTy }; 9229 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4r, Tys); 9230 Ops[1] = Builder.CreateCall(F, Ops[1], "vld4"); 9231 Ops[0] = Builder.CreateBitCast(Ops[0], 9232 llvm::PointerType::getUnqual(Ops[1]->getType())); 9233 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); 9234 } 9235 case NEON::BI__builtin_neon_vld2_lane_v: 9236 case NEON::BI__builtin_neon_vld2q_lane_v: { 9237 llvm::Type *Tys[2] = { VTy, Ops[1]->getType() }; 9238 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2lane, Tys); 9239 Ops.push_back(Ops[1]); 9240 Ops.erase(Ops.begin()+1); 9241 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 9242 Ops[2] = Builder.CreateBitCast(Ops[2], Ty); 9243 Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty); 9244 Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld2_lane"); 9245 Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); 9246 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 9247 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); 9248 } 9249 case NEON::BI__builtin_neon_vld3_lane_v: 9250 case NEON::BI__builtin_neon_vld3q_lane_v: { 9251 llvm::Type *Tys[2] = { VTy, Ops[1]->getType() }; 9252 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3lane, Tys); 9253 Ops.push_back(Ops[1]); 9254 Ops.erase(Ops.begin()+1); 9255 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 9256 Ops[2] = Builder.CreateBitCast(Ops[2], Ty); 9257 Ops[3] = Builder.CreateBitCast(Ops[3], Ty); 9258 Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty); 9259 Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld3_lane"); 9260 Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); 9261 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 9262 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); 9263 } 9264 case NEON::BI__builtin_neon_vld4_lane_v: 9265 case NEON::BI__builtin_neon_vld4q_lane_v: { 9266 llvm::Type *Tys[2] = { VTy, Ops[1]->getType() }; 9267 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4lane, Tys); 9268 Ops.push_back(Ops[1]); 9269 Ops.erase(Ops.begin()+1); 9270 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 9271 Ops[2] = Builder.CreateBitCast(Ops[2], Ty); 9272 Ops[3] = Builder.CreateBitCast(Ops[3], Ty); 9273 Ops[4] = Builder.CreateBitCast(Ops[4], Ty); 9274 Ops[5] = Builder.CreateZExt(Ops[5], Int64Ty); 9275 Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld4_lane"); 9276 Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); 9277 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 9278 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); 9279 } 9280 case NEON::BI__builtin_neon_vst2_v: 9281 case NEON::BI__builtin_neon_vst2q_v: { 9282 Ops.push_back(Ops[0]); 9283 Ops.erase(Ops.begin()); 9284 llvm::Type *Tys[2] = { VTy, Ops[2]->getType() }; 9285 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2, Tys), 9286 Ops, ""); 9287 } 9288 case NEON::BI__builtin_neon_vst2_lane_v: 9289 case NEON::BI__builtin_neon_vst2q_lane_v: { 9290 Ops.push_back(Ops[0]); 9291 Ops.erase(Ops.begin()); 9292 Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty); 9293 llvm::Type *Tys[2] = { VTy, Ops[3]->getType() }; 9294 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2lane, Tys), 9295 Ops, ""); 9296 } 9297 case NEON::BI__builtin_neon_vst3_v: 9298 case NEON::BI__builtin_neon_vst3q_v: { 9299 Ops.push_back(Ops[0]); 9300 Ops.erase(Ops.begin()); 9301 llvm::Type *Tys[2] = { VTy, Ops[3]->getType() }; 9302 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3, Tys), 9303 Ops, ""); 9304 } 9305 case NEON::BI__builtin_neon_vst3_lane_v: 9306 case NEON::BI__builtin_neon_vst3q_lane_v: { 9307 Ops.push_back(Ops[0]); 9308 Ops.erase(Ops.begin()); 9309 Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty); 9310 llvm::Type *Tys[2] = { VTy, Ops[4]->getType() }; 9311 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3lane, Tys), 9312 Ops, ""); 9313 } 9314 case NEON::BI__builtin_neon_vst4_v: 9315 case NEON::BI__builtin_neon_vst4q_v: { 9316 Ops.push_back(Ops[0]); 9317 Ops.erase(Ops.begin()); 9318 llvm::Type *Tys[2] = { VTy, Ops[4]->getType() }; 9319 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4, Tys), 9320 Ops, ""); 9321 } 9322 case NEON::BI__builtin_neon_vst4_lane_v: 9323 case NEON::BI__builtin_neon_vst4q_lane_v: { 9324 Ops.push_back(Ops[0]); 9325 Ops.erase(Ops.begin()); 9326 Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty); 9327 llvm::Type *Tys[2] = { VTy, Ops[5]->getType() }; 9328 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4lane, Tys), 9329 Ops, ""); 9330 } 9331 case NEON::BI__builtin_neon_vtrn_v: 9332 case NEON::BI__builtin_neon_vtrnq_v: { 9333 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty)); 9334 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 9335 Ops[2] = Builder.CreateBitCast(Ops[2], Ty); 9336 Value *SV = nullptr; 9337 9338 for (unsigned vi = 0; vi != 2; ++vi) { 9339 SmallVector<uint32_t, 16> Indices; 9340 for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) { 9341 Indices.push_back(i+vi); 9342 Indices.push_back(i+e+vi); 9343 } 9344 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi); 9345 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vtrn"); 9346 SV = Builder.CreateDefaultAlignedStore(SV, Addr); 9347 } 9348 return SV; 9349 } 9350 case NEON::BI__builtin_neon_vuzp_v: 9351 case NEON::BI__builtin_neon_vuzpq_v: { 9352 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty)); 9353 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 9354 Ops[2] = Builder.CreateBitCast(Ops[2], Ty); 9355 Value *SV = nullptr; 9356 9357 for (unsigned vi = 0; vi != 2; ++vi) { 9358 SmallVector<uint32_t, 16> Indices; 9359 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) 9360 Indices.push_back(2*i+vi); 9361 9362 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi); 9363 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vuzp"); 9364 SV = Builder.CreateDefaultAlignedStore(SV, Addr); 9365 } 9366 return SV; 9367 } 9368 case NEON::BI__builtin_neon_vzip_v: 9369 case NEON::BI__builtin_neon_vzipq_v: { 9370 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty)); 9371 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 9372 Ops[2] = Builder.CreateBitCast(Ops[2], Ty); 9373 Value *SV = nullptr; 9374 9375 for (unsigned vi = 0; vi != 2; ++vi) { 9376 SmallVector<uint32_t, 16> Indices; 9377 for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) { 9378 Indices.push_back((i + vi*e) >> 1); 9379 Indices.push_back(((i + vi*e) >> 1)+e); 9380 } 9381 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi); 9382 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vzip"); 9383 SV = Builder.CreateDefaultAlignedStore(SV, Addr); 9384 } 9385 return SV; 9386 } 9387 case NEON::BI__builtin_neon_vqtbl1q_v: { 9388 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl1, Ty), 9389 Ops, "vtbl1"); 9390 } 9391 case NEON::BI__builtin_neon_vqtbl2q_v: { 9392 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl2, Ty), 9393 Ops, "vtbl2"); 9394 } 9395 case NEON::BI__builtin_neon_vqtbl3q_v: { 9396 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl3, Ty), 9397 Ops, "vtbl3"); 9398 } 9399 case NEON::BI__builtin_neon_vqtbl4q_v: { 9400 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl4, Ty), 9401 Ops, "vtbl4"); 9402 } 9403 case NEON::BI__builtin_neon_vqtbx1q_v: { 9404 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx1, Ty), 9405 Ops, "vtbx1"); 9406 } 9407 case NEON::BI__builtin_neon_vqtbx2q_v: { 9408 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx2, Ty), 9409 Ops, "vtbx2"); 9410 } 9411 case NEON::BI__builtin_neon_vqtbx3q_v: { 9412 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx3, Ty), 9413 Ops, "vtbx3"); 9414 } 9415 case NEON::BI__builtin_neon_vqtbx4q_v: { 9416 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx4, Ty), 9417 Ops, "vtbx4"); 9418 } 9419 case NEON::BI__builtin_neon_vsqadd_v: 9420 case NEON::BI__builtin_neon_vsqaddq_v: { 9421 Int = Intrinsic::aarch64_neon_usqadd; 9422 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqadd"); 9423 } 9424 case NEON::BI__builtin_neon_vuqadd_v: 9425 case NEON::BI__builtin_neon_vuqaddq_v: { 9426 Int = Intrinsic::aarch64_neon_suqadd; 9427 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vuqadd"); 9428 } 9429 } 9430 } 9431 9432 Value *CodeGenFunction::EmitBPFBuiltinExpr(unsigned BuiltinID, 9433 const CallExpr *E) { 9434 assert(BuiltinID == BPF::BI__builtin_preserve_field_info && 9435 "unexpected ARM builtin"); 9436 9437 const Expr *Arg = E->getArg(0); 9438 bool IsBitField = Arg->IgnoreParens()->getObjectKind() == OK_BitField; 9439 9440 if (!getDebugInfo()) { 9441 CGM.Error(E->getExprLoc(), "using builtin_preserve_field_info() without -g"); 9442 return IsBitField ? EmitLValue(Arg).getBitFieldPointer() 9443 : EmitLValue(Arg).getPointer(); 9444 } 9445 9446 // Enable underlying preserve_*_access_index() generation. 9447 bool OldIsInPreservedAIRegion = IsInPreservedAIRegion; 9448 IsInPreservedAIRegion = true; 9449 Value *FieldAddr = IsBitField ? EmitLValue(Arg).getBitFieldPointer() 9450 : EmitLValue(Arg).getPointer(); 9451 IsInPreservedAIRegion = OldIsInPreservedAIRegion; 9452 9453 ConstantInt *C = cast<ConstantInt>(EmitScalarExpr(E->getArg(1))); 9454 Value *InfoKind = ConstantInt::get(Int64Ty, C->getSExtValue()); 9455 9456 // Built the IR for the preserve_field_info intrinsic. 9457 llvm::Function *FnGetFieldInfo = llvm::Intrinsic::getDeclaration( 9458 &CGM.getModule(), llvm::Intrinsic::bpf_preserve_field_info, 9459 {FieldAddr->getType()}); 9460 return Builder.CreateCall(FnGetFieldInfo, {FieldAddr, InfoKind}); 9461 } 9462 9463 llvm::Value *CodeGenFunction:: 9464 BuildVector(ArrayRef<llvm::Value*> Ops) { 9465 assert((Ops.size() & (Ops.size() - 1)) == 0 && 9466 "Not a power-of-two sized vector!"); 9467 bool AllConstants = true; 9468 for (unsigned i = 0, e = Ops.size(); i != e && AllConstants; ++i) 9469 AllConstants &= isa<Constant>(Ops[i]); 9470 9471 // If this is a constant vector, create a ConstantVector. 9472 if (AllConstants) { 9473 SmallVector<llvm::Constant*, 16> CstOps; 9474 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 9475 CstOps.push_back(cast<Constant>(Ops[i])); 9476 return llvm::ConstantVector::get(CstOps); 9477 } 9478 9479 // Otherwise, insertelement the values to build the vector. 9480 Value *Result = 9481 llvm::UndefValue::get(llvm::VectorType::get(Ops[0]->getType(), Ops.size())); 9482 9483 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 9484 Result = Builder.CreateInsertElement(Result, Ops[i], Builder.getInt32(i)); 9485 9486 return Result; 9487 } 9488 9489 // Convert the mask from an integer type to a vector of i1. 9490 static Value *getMaskVecValue(CodeGenFunction &CGF, Value *Mask, 9491 unsigned NumElts) { 9492 9493 llvm::VectorType *MaskTy = llvm::VectorType::get(CGF.Builder.getInt1Ty(), 9494 cast<IntegerType>(Mask->getType())->getBitWidth()); 9495 Value *MaskVec = CGF.Builder.CreateBitCast(Mask, MaskTy); 9496 9497 // If we have less than 8 elements, then the starting mask was an i8 and 9498 // we need to extract down to the right number of elements. 9499 if (NumElts < 8) { 9500 uint32_t Indices[4]; 9501 for (unsigned i = 0; i != NumElts; ++i) 9502 Indices[i] = i; 9503 MaskVec = CGF.Builder.CreateShuffleVector(MaskVec, MaskVec, 9504 makeArrayRef(Indices, NumElts), 9505 "extract"); 9506 } 9507 return MaskVec; 9508 } 9509 9510 static Value *EmitX86MaskedStore(CodeGenFunction &CGF, 9511 ArrayRef<Value *> Ops, 9512 unsigned Align) { 9513 // Cast the pointer to right type. 9514 Value *Ptr = CGF.Builder.CreateBitCast(Ops[0], 9515 llvm::PointerType::getUnqual(Ops[1]->getType())); 9516 9517 Value *MaskVec = getMaskVecValue(CGF, Ops[2], 9518 Ops[1]->getType()->getVectorNumElements()); 9519 9520 return CGF.Builder.CreateMaskedStore(Ops[1], Ptr, Align, MaskVec); 9521 } 9522 9523 static Value *EmitX86MaskedLoad(CodeGenFunction &CGF, 9524 ArrayRef<Value *> Ops, unsigned Align) { 9525 // Cast the pointer to right type. 9526 Value *Ptr = CGF.Builder.CreateBitCast(Ops[0], 9527 llvm::PointerType::getUnqual(Ops[1]->getType())); 9528 9529 Value *MaskVec = getMaskVecValue(CGF, Ops[2], 9530 Ops[1]->getType()->getVectorNumElements()); 9531 9532 return CGF.Builder.CreateMaskedLoad(Ptr, Align, MaskVec, Ops[1]); 9533 } 9534 9535 static Value *EmitX86ExpandLoad(CodeGenFunction &CGF, 9536 ArrayRef<Value *> Ops) { 9537 llvm::Type *ResultTy = Ops[1]->getType(); 9538 llvm::Type *PtrTy = ResultTy->getVectorElementType(); 9539 9540 // Cast the pointer to element type. 9541 Value *Ptr = CGF.Builder.CreateBitCast(Ops[0], 9542 llvm::PointerType::getUnqual(PtrTy)); 9543 9544 Value *MaskVec = getMaskVecValue(CGF, Ops[2], 9545 ResultTy->getVectorNumElements()); 9546 9547 llvm::Function *F = CGF.CGM.getIntrinsic(Intrinsic::masked_expandload, 9548 ResultTy); 9549 return CGF.Builder.CreateCall(F, { Ptr, MaskVec, Ops[1] }); 9550 } 9551 9552 static Value *EmitX86CompressExpand(CodeGenFunction &CGF, 9553 ArrayRef<Value *> Ops, 9554 bool IsCompress) { 9555 llvm::Type *ResultTy = Ops[1]->getType(); 9556 9557 Value *MaskVec = getMaskVecValue(CGF, Ops[2], 9558 ResultTy->getVectorNumElements()); 9559 9560 Intrinsic::ID IID = IsCompress ? Intrinsic::x86_avx512_mask_compress 9561 : Intrinsic::x86_avx512_mask_expand; 9562 llvm::Function *F = CGF.CGM.getIntrinsic(IID, ResultTy); 9563 return CGF.Builder.CreateCall(F, { Ops[0], Ops[1], MaskVec }); 9564 } 9565 9566 static Value *EmitX86CompressStore(CodeGenFunction &CGF, 9567 ArrayRef<Value *> Ops) { 9568 llvm::Type *ResultTy = Ops[1]->getType(); 9569 llvm::Type *PtrTy = ResultTy->getVectorElementType(); 9570 9571 // Cast the pointer to element type. 9572 Value *Ptr = CGF.Builder.CreateBitCast(Ops[0], 9573 llvm::PointerType::getUnqual(PtrTy)); 9574 9575 Value *MaskVec = getMaskVecValue(CGF, Ops[2], 9576 ResultTy->getVectorNumElements()); 9577 9578 llvm::Function *F = CGF.CGM.getIntrinsic(Intrinsic::masked_compressstore, 9579 ResultTy); 9580 return CGF.Builder.CreateCall(F, { Ops[1], Ptr, MaskVec }); 9581 } 9582 9583 static Value *EmitX86MaskLogic(CodeGenFunction &CGF, Instruction::BinaryOps Opc, 9584 ArrayRef<Value *> Ops, 9585 bool InvertLHS = false) { 9586 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth(); 9587 Value *LHS = getMaskVecValue(CGF, Ops[0], NumElts); 9588 Value *RHS = getMaskVecValue(CGF, Ops[1], NumElts); 9589 9590 if (InvertLHS) 9591 LHS = CGF.Builder.CreateNot(LHS); 9592 9593 return CGF.Builder.CreateBitCast(CGF.Builder.CreateBinOp(Opc, LHS, RHS), 9594 Ops[0]->getType()); 9595 } 9596 9597 static Value *EmitX86FunnelShift(CodeGenFunction &CGF, Value *Op0, Value *Op1, 9598 Value *Amt, bool IsRight) { 9599 llvm::Type *Ty = Op0->getType(); 9600 9601 // Amount may be scalar immediate, in which case create a splat vector. 9602 // Funnel shifts amounts are treated as modulo and types are all power-of-2 so 9603 // we only care about the lowest log2 bits anyway. 9604 if (Amt->getType() != Ty) { 9605 unsigned NumElts = Ty->getVectorNumElements(); 9606 Amt = CGF.Builder.CreateIntCast(Amt, Ty->getScalarType(), false); 9607 Amt = CGF.Builder.CreateVectorSplat(NumElts, Amt); 9608 } 9609 9610 unsigned IID = IsRight ? Intrinsic::fshr : Intrinsic::fshl; 9611 Function *F = CGF.CGM.getIntrinsic(IID, Ty); 9612 return CGF.Builder.CreateCall(F, {Op0, Op1, Amt}); 9613 } 9614 9615 static Value *EmitX86vpcom(CodeGenFunction &CGF, ArrayRef<Value *> Ops, 9616 bool IsSigned) { 9617 Value *Op0 = Ops[0]; 9618 Value *Op1 = Ops[1]; 9619 llvm::Type *Ty = Op0->getType(); 9620 uint64_t Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7; 9621 9622 CmpInst::Predicate Pred; 9623 switch (Imm) { 9624 case 0x0: 9625 Pred = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 9626 break; 9627 case 0x1: 9628 Pred = IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 9629 break; 9630 case 0x2: 9631 Pred = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 9632 break; 9633 case 0x3: 9634 Pred = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 9635 break; 9636 case 0x4: 9637 Pred = ICmpInst::ICMP_EQ; 9638 break; 9639 case 0x5: 9640 Pred = ICmpInst::ICMP_NE; 9641 break; 9642 case 0x6: 9643 return llvm::Constant::getNullValue(Ty); // FALSE 9644 case 0x7: 9645 return llvm::Constant::getAllOnesValue(Ty); // TRUE 9646 default: 9647 llvm_unreachable("Unexpected XOP vpcom/vpcomu predicate"); 9648 } 9649 9650 Value *Cmp = CGF.Builder.CreateICmp(Pred, Op0, Op1); 9651 Value *Res = CGF.Builder.CreateSExt(Cmp, Ty); 9652 return Res; 9653 } 9654 9655 static Value *EmitX86Select(CodeGenFunction &CGF, 9656 Value *Mask, Value *Op0, Value *Op1) { 9657 9658 // If the mask is all ones just return first argument. 9659 if (const auto *C = dyn_cast<Constant>(Mask)) 9660 if (C->isAllOnesValue()) 9661 return Op0; 9662 9663 Mask = getMaskVecValue(CGF, Mask, Op0->getType()->getVectorNumElements()); 9664 9665 return CGF.Builder.CreateSelect(Mask, Op0, Op1); 9666 } 9667 9668 static Value *EmitX86ScalarSelect(CodeGenFunction &CGF, 9669 Value *Mask, Value *Op0, Value *Op1) { 9670 // If the mask is all ones just return first argument. 9671 if (const auto *C = dyn_cast<Constant>(Mask)) 9672 if (C->isAllOnesValue()) 9673 return Op0; 9674 9675 llvm::VectorType *MaskTy = 9676 llvm::VectorType::get(CGF.Builder.getInt1Ty(), 9677 Mask->getType()->getIntegerBitWidth()); 9678 Mask = CGF.Builder.CreateBitCast(Mask, MaskTy); 9679 Mask = CGF.Builder.CreateExtractElement(Mask, (uint64_t)0); 9680 return CGF.Builder.CreateSelect(Mask, Op0, Op1); 9681 } 9682 9683 static Value *EmitX86MaskedCompareResult(CodeGenFunction &CGF, Value *Cmp, 9684 unsigned NumElts, Value *MaskIn) { 9685 if (MaskIn) { 9686 const auto *C = dyn_cast<Constant>(MaskIn); 9687 if (!C || !C->isAllOnesValue()) 9688 Cmp = CGF.Builder.CreateAnd(Cmp, getMaskVecValue(CGF, MaskIn, NumElts)); 9689 } 9690 9691 if (NumElts < 8) { 9692 uint32_t Indices[8]; 9693 for (unsigned i = 0; i != NumElts; ++i) 9694 Indices[i] = i; 9695 for (unsigned i = NumElts; i != 8; ++i) 9696 Indices[i] = i % NumElts + NumElts; 9697 Cmp = CGF.Builder.CreateShuffleVector( 9698 Cmp, llvm::Constant::getNullValue(Cmp->getType()), Indices); 9699 } 9700 9701 return CGF.Builder.CreateBitCast(Cmp, 9702 IntegerType::get(CGF.getLLVMContext(), 9703 std::max(NumElts, 8U))); 9704 } 9705 9706 static Value *EmitX86MaskedCompare(CodeGenFunction &CGF, unsigned CC, 9707 bool Signed, ArrayRef<Value *> Ops) { 9708 assert((Ops.size() == 2 || Ops.size() == 4) && 9709 "Unexpected number of arguments"); 9710 unsigned NumElts = Ops[0]->getType()->getVectorNumElements(); 9711 Value *Cmp; 9712 9713 if (CC == 3) { 9714 Cmp = Constant::getNullValue( 9715 llvm::VectorType::get(CGF.Builder.getInt1Ty(), NumElts)); 9716 } else if (CC == 7) { 9717 Cmp = Constant::getAllOnesValue( 9718 llvm::VectorType::get(CGF.Builder.getInt1Ty(), NumElts)); 9719 } else { 9720 ICmpInst::Predicate Pred; 9721 switch (CC) { 9722 default: llvm_unreachable("Unknown condition code"); 9723 case 0: Pred = ICmpInst::ICMP_EQ; break; 9724 case 1: Pred = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; break; 9725 case 2: Pred = Signed ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; break; 9726 case 4: Pred = ICmpInst::ICMP_NE; break; 9727 case 5: Pred = Signed ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; break; 9728 case 6: Pred = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; break; 9729 } 9730 Cmp = CGF.Builder.CreateICmp(Pred, Ops[0], Ops[1]); 9731 } 9732 9733 Value *MaskIn = nullptr; 9734 if (Ops.size() == 4) 9735 MaskIn = Ops[3]; 9736 9737 return EmitX86MaskedCompareResult(CGF, Cmp, NumElts, MaskIn); 9738 } 9739 9740 static Value *EmitX86ConvertToMask(CodeGenFunction &CGF, Value *In) { 9741 Value *Zero = Constant::getNullValue(In->getType()); 9742 return EmitX86MaskedCompare(CGF, 1, true, { In, Zero }); 9743 } 9744 9745 static Value *EmitX86ConvertIntToFp(CodeGenFunction &CGF, 9746 ArrayRef<Value *> Ops, bool IsSigned) { 9747 unsigned Rnd = cast<llvm::ConstantInt>(Ops[3])->getZExtValue(); 9748 llvm::Type *Ty = Ops[1]->getType(); 9749 9750 Value *Res; 9751 if (Rnd != 4) { 9752 Intrinsic::ID IID = IsSigned ? Intrinsic::x86_avx512_sitofp_round 9753 : Intrinsic::x86_avx512_uitofp_round; 9754 Function *F = CGF.CGM.getIntrinsic(IID, { Ty, Ops[0]->getType() }); 9755 Res = CGF.Builder.CreateCall(F, { Ops[0], Ops[3] }); 9756 } else { 9757 Res = IsSigned ? CGF.Builder.CreateSIToFP(Ops[0], Ty) 9758 : CGF.Builder.CreateUIToFP(Ops[0], Ty); 9759 } 9760 9761 return EmitX86Select(CGF, Ops[2], Res, Ops[1]); 9762 } 9763 9764 static Value *EmitX86Abs(CodeGenFunction &CGF, ArrayRef<Value *> Ops) { 9765 9766 llvm::Type *Ty = Ops[0]->getType(); 9767 Value *Zero = llvm::Constant::getNullValue(Ty); 9768 Value *Sub = CGF.Builder.CreateSub(Zero, Ops[0]); 9769 Value *Cmp = CGF.Builder.CreateICmp(ICmpInst::ICMP_SGT, Ops[0], Zero); 9770 Value *Res = CGF.Builder.CreateSelect(Cmp, Ops[0], Sub); 9771 return Res; 9772 } 9773 9774 static Value *EmitX86MinMax(CodeGenFunction &CGF, ICmpInst::Predicate Pred, 9775 ArrayRef<Value *> Ops) { 9776 Value *Cmp = CGF.Builder.CreateICmp(Pred, Ops[0], Ops[1]); 9777 Value *Res = CGF.Builder.CreateSelect(Cmp, Ops[0], Ops[1]); 9778 9779 assert(Ops.size() == 2); 9780 return Res; 9781 } 9782 9783 // Lowers X86 FMA intrinsics to IR. 9784 static Value *EmitX86FMAExpr(CodeGenFunction &CGF, ArrayRef<Value *> Ops, 9785 unsigned BuiltinID, bool IsAddSub) { 9786 9787 bool Subtract = false; 9788 Intrinsic::ID IID = Intrinsic::not_intrinsic; 9789 switch (BuiltinID) { 9790 default: break; 9791 case clang::X86::BI__builtin_ia32_vfmsubps512_mask3: 9792 Subtract = true; 9793 LLVM_FALLTHROUGH; 9794 case clang::X86::BI__builtin_ia32_vfmaddps512_mask: 9795 case clang::X86::BI__builtin_ia32_vfmaddps512_maskz: 9796 case clang::X86::BI__builtin_ia32_vfmaddps512_mask3: 9797 IID = llvm::Intrinsic::x86_avx512_vfmadd_ps_512; break; 9798 case clang::X86::BI__builtin_ia32_vfmsubpd512_mask3: 9799 Subtract = true; 9800 LLVM_FALLTHROUGH; 9801 case clang::X86::BI__builtin_ia32_vfmaddpd512_mask: 9802 case clang::X86::BI__builtin_ia32_vfmaddpd512_maskz: 9803 case clang::X86::BI__builtin_ia32_vfmaddpd512_mask3: 9804 IID = llvm::Intrinsic::x86_avx512_vfmadd_pd_512; break; 9805 case clang::X86::BI__builtin_ia32_vfmsubaddps512_mask3: 9806 Subtract = true; 9807 LLVM_FALLTHROUGH; 9808 case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask: 9809 case clang::X86::BI__builtin_ia32_vfmaddsubps512_maskz: 9810 case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask3: 9811 IID = llvm::Intrinsic::x86_avx512_vfmaddsub_ps_512; 9812 break; 9813 case clang::X86::BI__builtin_ia32_vfmsubaddpd512_mask3: 9814 Subtract = true; 9815 LLVM_FALLTHROUGH; 9816 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask: 9817 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_maskz: 9818 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask3: 9819 IID = llvm::Intrinsic::x86_avx512_vfmaddsub_pd_512; 9820 break; 9821 } 9822 9823 Value *A = Ops[0]; 9824 Value *B = Ops[1]; 9825 Value *C = Ops[2]; 9826 9827 if (Subtract) 9828 C = CGF.Builder.CreateFNeg(C); 9829 9830 Value *Res; 9831 9832 // Only handle in case of _MM_FROUND_CUR_DIRECTION/4 (no rounding). 9833 if (IID != Intrinsic::not_intrinsic && 9834 cast<llvm::ConstantInt>(Ops.back())->getZExtValue() != (uint64_t)4) { 9835 Function *Intr = CGF.CGM.getIntrinsic(IID); 9836 Res = CGF.Builder.CreateCall(Intr, {A, B, C, Ops.back() }); 9837 } else { 9838 llvm::Type *Ty = A->getType(); 9839 Function *FMA = CGF.CGM.getIntrinsic(Intrinsic::fma, Ty); 9840 Res = CGF.Builder.CreateCall(FMA, {A, B, C} ); 9841 9842 if (IsAddSub) { 9843 // Negate even elts in C using a mask. 9844 unsigned NumElts = Ty->getVectorNumElements(); 9845 SmallVector<uint32_t, 16> Indices(NumElts); 9846 for (unsigned i = 0; i != NumElts; ++i) 9847 Indices[i] = i + (i % 2) * NumElts; 9848 9849 Value *NegC = CGF.Builder.CreateFNeg(C); 9850 Value *FMSub = CGF.Builder.CreateCall(FMA, {A, B, NegC} ); 9851 Res = CGF.Builder.CreateShuffleVector(FMSub, Res, Indices); 9852 } 9853 } 9854 9855 // Handle any required masking. 9856 Value *MaskFalseVal = nullptr; 9857 switch (BuiltinID) { 9858 case clang::X86::BI__builtin_ia32_vfmaddps512_mask: 9859 case clang::X86::BI__builtin_ia32_vfmaddpd512_mask: 9860 case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask: 9861 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask: 9862 MaskFalseVal = Ops[0]; 9863 break; 9864 case clang::X86::BI__builtin_ia32_vfmaddps512_maskz: 9865 case clang::X86::BI__builtin_ia32_vfmaddpd512_maskz: 9866 case clang::X86::BI__builtin_ia32_vfmaddsubps512_maskz: 9867 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_maskz: 9868 MaskFalseVal = Constant::getNullValue(Ops[0]->getType()); 9869 break; 9870 case clang::X86::BI__builtin_ia32_vfmsubps512_mask3: 9871 case clang::X86::BI__builtin_ia32_vfmaddps512_mask3: 9872 case clang::X86::BI__builtin_ia32_vfmsubpd512_mask3: 9873 case clang::X86::BI__builtin_ia32_vfmaddpd512_mask3: 9874 case clang::X86::BI__builtin_ia32_vfmsubaddps512_mask3: 9875 case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask3: 9876 case clang::X86::BI__builtin_ia32_vfmsubaddpd512_mask3: 9877 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask3: 9878 MaskFalseVal = Ops[2]; 9879 break; 9880 } 9881 9882 if (MaskFalseVal) 9883 return EmitX86Select(CGF, Ops[3], Res, MaskFalseVal); 9884 9885 return Res; 9886 } 9887 9888 static Value * 9889 EmitScalarFMAExpr(CodeGenFunction &CGF, MutableArrayRef<Value *> Ops, 9890 Value *Upper, bool ZeroMask = false, unsigned PTIdx = 0, 9891 bool NegAcc = false) { 9892 unsigned Rnd = 4; 9893 if (Ops.size() > 4) 9894 Rnd = cast<llvm::ConstantInt>(Ops[4])->getZExtValue(); 9895 9896 if (NegAcc) 9897 Ops[2] = CGF.Builder.CreateFNeg(Ops[2]); 9898 9899 Ops[0] = CGF.Builder.CreateExtractElement(Ops[0], (uint64_t)0); 9900 Ops[1] = CGF.Builder.CreateExtractElement(Ops[1], (uint64_t)0); 9901 Ops[2] = CGF.Builder.CreateExtractElement(Ops[2], (uint64_t)0); 9902 Value *Res; 9903 if (Rnd != 4) { 9904 Intrinsic::ID IID = Ops[0]->getType()->getPrimitiveSizeInBits() == 32 ? 9905 Intrinsic::x86_avx512_vfmadd_f32 : 9906 Intrinsic::x86_avx512_vfmadd_f64; 9907 Res = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(IID), 9908 {Ops[0], Ops[1], Ops[2], Ops[4]}); 9909 } else { 9910 Function *FMA = CGF.CGM.getIntrinsic(Intrinsic::fma, Ops[0]->getType()); 9911 Res = CGF.Builder.CreateCall(FMA, Ops.slice(0, 3)); 9912 } 9913 // If we have more than 3 arguments, we need to do masking. 9914 if (Ops.size() > 3) { 9915 Value *PassThru = ZeroMask ? Constant::getNullValue(Res->getType()) 9916 : Ops[PTIdx]; 9917 9918 // If we negated the accumulator and the its the PassThru value we need to 9919 // bypass the negate. Conveniently Upper should be the same thing in this 9920 // case. 9921 if (NegAcc && PTIdx == 2) 9922 PassThru = CGF.Builder.CreateExtractElement(Upper, (uint64_t)0); 9923 9924 Res = EmitX86ScalarSelect(CGF, Ops[3], Res, PassThru); 9925 } 9926 return CGF.Builder.CreateInsertElement(Upper, Res, (uint64_t)0); 9927 } 9928 9929 static Value *EmitX86Muldq(CodeGenFunction &CGF, bool IsSigned, 9930 ArrayRef<Value *> Ops) { 9931 llvm::Type *Ty = Ops[0]->getType(); 9932 // Arguments have a vXi32 type so cast to vXi64. 9933 Ty = llvm::VectorType::get(CGF.Int64Ty, 9934 Ty->getPrimitiveSizeInBits() / 64); 9935 Value *LHS = CGF.Builder.CreateBitCast(Ops[0], Ty); 9936 Value *RHS = CGF.Builder.CreateBitCast(Ops[1], Ty); 9937 9938 if (IsSigned) { 9939 // Shift left then arithmetic shift right. 9940 Constant *ShiftAmt = ConstantInt::get(Ty, 32); 9941 LHS = CGF.Builder.CreateShl(LHS, ShiftAmt); 9942 LHS = CGF.Builder.CreateAShr(LHS, ShiftAmt); 9943 RHS = CGF.Builder.CreateShl(RHS, ShiftAmt); 9944 RHS = CGF.Builder.CreateAShr(RHS, ShiftAmt); 9945 } else { 9946 // Clear the upper bits. 9947 Constant *Mask = ConstantInt::get(Ty, 0xffffffff); 9948 LHS = CGF.Builder.CreateAnd(LHS, Mask); 9949 RHS = CGF.Builder.CreateAnd(RHS, Mask); 9950 } 9951 9952 return CGF.Builder.CreateMul(LHS, RHS); 9953 } 9954 9955 // Emit a masked pternlog intrinsic. This only exists because the header has to 9956 // use a macro and we aren't able to pass the input argument to a pternlog 9957 // builtin and a select builtin without evaluating it twice. 9958 static Value *EmitX86Ternlog(CodeGenFunction &CGF, bool ZeroMask, 9959 ArrayRef<Value *> Ops) { 9960 llvm::Type *Ty = Ops[0]->getType(); 9961 9962 unsigned VecWidth = Ty->getPrimitiveSizeInBits(); 9963 unsigned EltWidth = Ty->getScalarSizeInBits(); 9964 Intrinsic::ID IID; 9965 if (VecWidth == 128 && EltWidth == 32) 9966 IID = Intrinsic::x86_avx512_pternlog_d_128; 9967 else if (VecWidth == 256 && EltWidth == 32) 9968 IID = Intrinsic::x86_avx512_pternlog_d_256; 9969 else if (VecWidth == 512 && EltWidth == 32) 9970 IID = Intrinsic::x86_avx512_pternlog_d_512; 9971 else if (VecWidth == 128 && EltWidth == 64) 9972 IID = Intrinsic::x86_avx512_pternlog_q_128; 9973 else if (VecWidth == 256 && EltWidth == 64) 9974 IID = Intrinsic::x86_avx512_pternlog_q_256; 9975 else if (VecWidth == 512 && EltWidth == 64) 9976 IID = Intrinsic::x86_avx512_pternlog_q_512; 9977 else 9978 llvm_unreachable("Unexpected intrinsic"); 9979 9980 Value *Ternlog = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(IID), 9981 Ops.drop_back()); 9982 Value *PassThru = ZeroMask ? ConstantAggregateZero::get(Ty) : Ops[0]; 9983 return EmitX86Select(CGF, Ops[4], Ternlog, PassThru); 9984 } 9985 9986 static Value *EmitX86SExtMask(CodeGenFunction &CGF, Value *Op, 9987 llvm::Type *DstTy) { 9988 unsigned NumberOfElements = DstTy->getVectorNumElements(); 9989 Value *Mask = getMaskVecValue(CGF, Op, NumberOfElements); 9990 return CGF.Builder.CreateSExt(Mask, DstTy, "vpmovm2"); 9991 } 9992 9993 // Emit addition or subtraction with signed/unsigned saturation. 9994 static Value *EmitX86AddSubSatExpr(CodeGenFunction &CGF, 9995 ArrayRef<Value *> Ops, bool IsSigned, 9996 bool IsAddition) { 9997 Intrinsic::ID IID = 9998 IsSigned ? (IsAddition ? Intrinsic::sadd_sat : Intrinsic::ssub_sat) 9999 : (IsAddition ? Intrinsic::uadd_sat : Intrinsic::usub_sat); 10000 llvm::Function *F = CGF.CGM.getIntrinsic(IID, Ops[0]->getType()); 10001 return CGF.Builder.CreateCall(F, {Ops[0], Ops[1]}); 10002 } 10003 10004 Value *CodeGenFunction::EmitX86CpuIs(const CallExpr *E) { 10005 const Expr *CPUExpr = E->getArg(0)->IgnoreParenCasts(); 10006 StringRef CPUStr = cast<clang::StringLiteral>(CPUExpr)->getString(); 10007 return EmitX86CpuIs(CPUStr); 10008 } 10009 10010 // Convert a BF16 to a float. 10011 static Value *EmitX86CvtBF16ToFloatExpr(CodeGenFunction &CGF, 10012 const CallExpr *E, 10013 ArrayRef<Value *> Ops) { 10014 llvm::Type *Int32Ty = CGF.Builder.getInt32Ty(); 10015 Value *ZeroExt = CGF.Builder.CreateZExt(Ops[0], Int32Ty); 10016 Value *Shl = CGF.Builder.CreateShl(ZeroExt, 16); 10017 llvm::Type *ResultType = CGF.ConvertType(E->getType()); 10018 Value *BitCast = CGF.Builder.CreateBitCast(Shl, ResultType); 10019 return BitCast; 10020 } 10021 10022 Value *CodeGenFunction::EmitX86CpuIs(StringRef CPUStr) { 10023 10024 llvm::Type *Int32Ty = Builder.getInt32Ty(); 10025 10026 // Matching the struct layout from the compiler-rt/libgcc structure that is 10027 // filled in: 10028 // unsigned int __cpu_vendor; 10029 // unsigned int __cpu_type; 10030 // unsigned int __cpu_subtype; 10031 // unsigned int __cpu_features[1]; 10032 llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty, 10033 llvm::ArrayType::get(Int32Ty, 1)); 10034 10035 // Grab the global __cpu_model. 10036 llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model"); 10037 cast<llvm::GlobalValue>(CpuModel)->setDSOLocal(true); 10038 10039 // Calculate the index needed to access the correct field based on the 10040 // range. Also adjust the expected value. 10041 unsigned Index; 10042 unsigned Value; 10043 std::tie(Index, Value) = StringSwitch<std::pair<unsigned, unsigned>>(CPUStr) 10044 #define X86_VENDOR(ENUM, STRING) \ 10045 .Case(STRING, {0u, static_cast<unsigned>(llvm::X86::ENUM)}) 10046 #define X86_CPU_TYPE_COMPAT_WITH_ALIAS(ARCHNAME, ENUM, STR, ALIAS) \ 10047 .Cases(STR, ALIAS, {1u, static_cast<unsigned>(llvm::X86::ENUM)}) 10048 #define X86_CPU_TYPE_COMPAT(ARCHNAME, ENUM, STR) \ 10049 .Case(STR, {1u, static_cast<unsigned>(llvm::X86::ENUM)}) 10050 #define X86_CPU_SUBTYPE_COMPAT(ARCHNAME, ENUM, STR) \ 10051 .Case(STR, {2u, static_cast<unsigned>(llvm::X86::ENUM)}) 10052 #include "llvm/Support/X86TargetParser.def" 10053 .Default({0, 0}); 10054 assert(Value != 0 && "Invalid CPUStr passed to CpuIs"); 10055 10056 // Grab the appropriate field from __cpu_model. 10057 llvm::Value *Idxs[] = {ConstantInt::get(Int32Ty, 0), 10058 ConstantInt::get(Int32Ty, Index)}; 10059 llvm::Value *CpuValue = Builder.CreateGEP(STy, CpuModel, Idxs); 10060 CpuValue = Builder.CreateAlignedLoad(CpuValue, CharUnits::fromQuantity(4)); 10061 10062 // Check the value of the field against the requested value. 10063 return Builder.CreateICmpEQ(CpuValue, 10064 llvm::ConstantInt::get(Int32Ty, Value)); 10065 } 10066 10067 Value *CodeGenFunction::EmitX86CpuSupports(const CallExpr *E) { 10068 const Expr *FeatureExpr = E->getArg(0)->IgnoreParenCasts(); 10069 StringRef FeatureStr = cast<StringLiteral>(FeatureExpr)->getString(); 10070 return EmitX86CpuSupports(FeatureStr); 10071 } 10072 10073 uint64_t 10074 CodeGenFunction::GetX86CpuSupportsMask(ArrayRef<StringRef> FeatureStrs) { 10075 // Processor features and mapping to processor feature value. 10076 uint64_t FeaturesMask = 0; 10077 for (const StringRef &FeatureStr : FeatureStrs) { 10078 unsigned Feature = 10079 StringSwitch<unsigned>(FeatureStr) 10080 #define X86_FEATURE_COMPAT(VAL, ENUM, STR) .Case(STR, VAL) 10081 #include "llvm/Support/X86TargetParser.def" 10082 ; 10083 FeaturesMask |= (1ULL << Feature); 10084 } 10085 return FeaturesMask; 10086 } 10087 10088 Value *CodeGenFunction::EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs) { 10089 return EmitX86CpuSupports(GetX86CpuSupportsMask(FeatureStrs)); 10090 } 10091 10092 llvm::Value *CodeGenFunction::EmitX86CpuSupports(uint64_t FeaturesMask) { 10093 uint32_t Features1 = Lo_32(FeaturesMask); 10094 uint32_t Features2 = Hi_32(FeaturesMask); 10095 10096 Value *Result = Builder.getTrue(); 10097 10098 if (Features1 != 0) { 10099 // Matching the struct layout from the compiler-rt/libgcc structure that is 10100 // filled in: 10101 // unsigned int __cpu_vendor; 10102 // unsigned int __cpu_type; 10103 // unsigned int __cpu_subtype; 10104 // unsigned int __cpu_features[1]; 10105 llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty, 10106 llvm::ArrayType::get(Int32Ty, 1)); 10107 10108 // Grab the global __cpu_model. 10109 llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model"); 10110 cast<llvm::GlobalValue>(CpuModel)->setDSOLocal(true); 10111 10112 // Grab the first (0th) element from the field __cpu_features off of the 10113 // global in the struct STy. 10114 Value *Idxs[] = {Builder.getInt32(0), Builder.getInt32(3), 10115 Builder.getInt32(0)}; 10116 Value *CpuFeatures = Builder.CreateGEP(STy, CpuModel, Idxs); 10117 Value *Features = 10118 Builder.CreateAlignedLoad(CpuFeatures, CharUnits::fromQuantity(4)); 10119 10120 // Check the value of the bit corresponding to the feature requested. 10121 Value *Mask = Builder.getInt32(Features1); 10122 Value *Bitset = Builder.CreateAnd(Features, Mask); 10123 Value *Cmp = Builder.CreateICmpEQ(Bitset, Mask); 10124 Result = Builder.CreateAnd(Result, Cmp); 10125 } 10126 10127 if (Features2 != 0) { 10128 llvm::Constant *CpuFeatures2 = CGM.CreateRuntimeVariable(Int32Ty, 10129 "__cpu_features2"); 10130 cast<llvm::GlobalValue>(CpuFeatures2)->setDSOLocal(true); 10131 10132 Value *Features = 10133 Builder.CreateAlignedLoad(CpuFeatures2, CharUnits::fromQuantity(4)); 10134 10135 // Check the value of the bit corresponding to the feature requested. 10136 Value *Mask = Builder.getInt32(Features2); 10137 Value *Bitset = Builder.CreateAnd(Features, Mask); 10138 Value *Cmp = Builder.CreateICmpEQ(Bitset, Mask); 10139 Result = Builder.CreateAnd(Result, Cmp); 10140 } 10141 10142 return Result; 10143 } 10144 10145 Value *CodeGenFunction::EmitX86CpuInit() { 10146 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, 10147 /*Variadic*/ false); 10148 llvm::FunctionCallee Func = 10149 CGM.CreateRuntimeFunction(FTy, "__cpu_indicator_init"); 10150 cast<llvm::GlobalValue>(Func.getCallee())->setDSOLocal(true); 10151 cast<llvm::GlobalValue>(Func.getCallee()) 10152 ->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 10153 return Builder.CreateCall(Func); 10154 } 10155 10156 Value *CodeGenFunction::EmitX86BuiltinExpr(unsigned BuiltinID, 10157 const CallExpr *E) { 10158 if (BuiltinID == X86::BI__builtin_cpu_is) 10159 return EmitX86CpuIs(E); 10160 if (BuiltinID == X86::BI__builtin_cpu_supports) 10161 return EmitX86CpuSupports(E); 10162 if (BuiltinID == X86::BI__builtin_cpu_init) 10163 return EmitX86CpuInit(); 10164 10165 SmallVector<Value*, 4> Ops; 10166 10167 // Find out if any arguments are required to be integer constant expressions. 10168 unsigned ICEArguments = 0; 10169 ASTContext::GetBuiltinTypeError Error; 10170 getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments); 10171 assert(Error == ASTContext::GE_None && "Should not codegen an error"); 10172 10173 for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) { 10174 // If this is a normal argument, just emit it as a scalar. 10175 if ((ICEArguments & (1 << i)) == 0) { 10176 Ops.push_back(EmitScalarExpr(E->getArg(i))); 10177 continue; 10178 } 10179 10180 // If this is required to be a constant, constant fold it so that we know 10181 // that the generated intrinsic gets a ConstantInt. 10182 llvm::APSInt Result; 10183 bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext()); 10184 assert(IsConst && "Constant arg isn't actually constant?"); (void)IsConst; 10185 Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result)); 10186 } 10187 10188 // These exist so that the builtin that takes an immediate can be bounds 10189 // checked by clang to avoid passing bad immediates to the backend. Since 10190 // AVX has a larger immediate than SSE we would need separate builtins to 10191 // do the different bounds checking. Rather than create a clang specific 10192 // SSE only builtin, this implements eight separate builtins to match gcc 10193 // implementation. 10194 auto getCmpIntrinsicCall = [this, &Ops](Intrinsic::ID ID, unsigned Imm) { 10195 Ops.push_back(llvm::ConstantInt::get(Int8Ty, Imm)); 10196 llvm::Function *F = CGM.getIntrinsic(ID); 10197 return Builder.CreateCall(F, Ops); 10198 }; 10199 10200 // For the vector forms of FP comparisons, translate the builtins directly to 10201 // IR. 10202 // TODO: The builtins could be removed if the SSE header files used vector 10203 // extension comparisons directly (vector ordered/unordered may need 10204 // additional support via __builtin_isnan()). 10205 auto getVectorFCmpIR = [this, &Ops](CmpInst::Predicate Pred) { 10206 Value *Cmp = Builder.CreateFCmp(Pred, Ops[0], Ops[1]); 10207 llvm::VectorType *FPVecTy = cast<llvm::VectorType>(Ops[0]->getType()); 10208 llvm::VectorType *IntVecTy = llvm::VectorType::getInteger(FPVecTy); 10209 Value *Sext = Builder.CreateSExt(Cmp, IntVecTy); 10210 return Builder.CreateBitCast(Sext, FPVecTy); 10211 }; 10212 10213 switch (BuiltinID) { 10214 default: return nullptr; 10215 case X86::BI_mm_prefetch: { 10216 Value *Address = Ops[0]; 10217 ConstantInt *C = cast<ConstantInt>(Ops[1]); 10218 Value *RW = ConstantInt::get(Int32Ty, (C->getZExtValue() >> 2) & 0x1); 10219 Value *Locality = ConstantInt::get(Int32Ty, C->getZExtValue() & 0x3); 10220 Value *Data = ConstantInt::get(Int32Ty, 1); 10221 Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType()); 10222 return Builder.CreateCall(F, {Address, RW, Locality, Data}); 10223 } 10224 case X86::BI_mm_clflush: { 10225 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_clflush), 10226 Ops[0]); 10227 } 10228 case X86::BI_mm_lfence: { 10229 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_lfence)); 10230 } 10231 case X86::BI_mm_mfence: { 10232 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_mfence)); 10233 } 10234 case X86::BI_mm_sfence: { 10235 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_sfence)); 10236 } 10237 case X86::BI_mm_pause: { 10238 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_pause)); 10239 } 10240 case X86::BI__rdtsc: { 10241 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_rdtsc)); 10242 } 10243 case X86::BI__builtin_ia32_rdtscp: { 10244 Value *Call = Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_rdtscp)); 10245 Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 1), 10246 Ops[0]); 10247 return Builder.CreateExtractValue(Call, 0); 10248 } 10249 case X86::BI__builtin_ia32_lzcnt_u16: 10250 case X86::BI__builtin_ia32_lzcnt_u32: 10251 case X86::BI__builtin_ia32_lzcnt_u64: { 10252 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType()); 10253 return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)}); 10254 } 10255 case X86::BI__builtin_ia32_tzcnt_u16: 10256 case X86::BI__builtin_ia32_tzcnt_u32: 10257 case X86::BI__builtin_ia32_tzcnt_u64: { 10258 Function *F = CGM.getIntrinsic(Intrinsic::cttz, Ops[0]->getType()); 10259 return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)}); 10260 } 10261 case X86::BI__builtin_ia32_undef128: 10262 case X86::BI__builtin_ia32_undef256: 10263 case X86::BI__builtin_ia32_undef512: 10264 // The x86 definition of "undef" is not the same as the LLVM definition 10265 // (PR32176). We leave optimizing away an unnecessary zero constant to the 10266 // IR optimizer and backend. 10267 // TODO: If we had a "freeze" IR instruction to generate a fixed undef 10268 // value, we should use that here instead of a zero. 10269 return llvm::Constant::getNullValue(ConvertType(E->getType())); 10270 case X86::BI__builtin_ia32_vec_init_v8qi: 10271 case X86::BI__builtin_ia32_vec_init_v4hi: 10272 case X86::BI__builtin_ia32_vec_init_v2si: 10273 return Builder.CreateBitCast(BuildVector(Ops), 10274 llvm::Type::getX86_MMXTy(getLLVMContext())); 10275 case X86::BI__builtin_ia32_vec_ext_v2si: 10276 case X86::BI__builtin_ia32_vec_ext_v16qi: 10277 case X86::BI__builtin_ia32_vec_ext_v8hi: 10278 case X86::BI__builtin_ia32_vec_ext_v4si: 10279 case X86::BI__builtin_ia32_vec_ext_v4sf: 10280 case X86::BI__builtin_ia32_vec_ext_v2di: 10281 case X86::BI__builtin_ia32_vec_ext_v32qi: 10282 case X86::BI__builtin_ia32_vec_ext_v16hi: 10283 case X86::BI__builtin_ia32_vec_ext_v8si: 10284 case X86::BI__builtin_ia32_vec_ext_v4di: { 10285 unsigned NumElts = Ops[0]->getType()->getVectorNumElements(); 10286 uint64_t Index = cast<ConstantInt>(Ops[1])->getZExtValue(); 10287 Index &= NumElts - 1; 10288 // These builtins exist so we can ensure the index is an ICE and in range. 10289 // Otherwise we could just do this in the header file. 10290 return Builder.CreateExtractElement(Ops[0], Index); 10291 } 10292 case X86::BI__builtin_ia32_vec_set_v16qi: 10293 case X86::BI__builtin_ia32_vec_set_v8hi: 10294 case X86::BI__builtin_ia32_vec_set_v4si: 10295 case X86::BI__builtin_ia32_vec_set_v2di: 10296 case X86::BI__builtin_ia32_vec_set_v32qi: 10297 case X86::BI__builtin_ia32_vec_set_v16hi: 10298 case X86::BI__builtin_ia32_vec_set_v8si: 10299 case X86::BI__builtin_ia32_vec_set_v4di: { 10300 unsigned NumElts = Ops[0]->getType()->getVectorNumElements(); 10301 unsigned Index = cast<ConstantInt>(Ops[2])->getZExtValue(); 10302 Index &= NumElts - 1; 10303 // These builtins exist so we can ensure the index is an ICE and in range. 10304 // Otherwise we could just do this in the header file. 10305 return Builder.CreateInsertElement(Ops[0], Ops[1], Index); 10306 } 10307 case X86::BI_mm_setcsr: 10308 case X86::BI__builtin_ia32_ldmxcsr: { 10309 Address Tmp = CreateMemTemp(E->getArg(0)->getType()); 10310 Builder.CreateStore(Ops[0], Tmp); 10311 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_ldmxcsr), 10312 Builder.CreateBitCast(Tmp.getPointer(), Int8PtrTy)); 10313 } 10314 case X86::BI_mm_getcsr: 10315 case X86::BI__builtin_ia32_stmxcsr: { 10316 Address Tmp = CreateMemTemp(E->getType()); 10317 Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_stmxcsr), 10318 Builder.CreateBitCast(Tmp.getPointer(), Int8PtrTy)); 10319 return Builder.CreateLoad(Tmp, "stmxcsr"); 10320 } 10321 case X86::BI__builtin_ia32_xsave: 10322 case X86::BI__builtin_ia32_xsave64: 10323 case X86::BI__builtin_ia32_xrstor: 10324 case X86::BI__builtin_ia32_xrstor64: 10325 case X86::BI__builtin_ia32_xsaveopt: 10326 case X86::BI__builtin_ia32_xsaveopt64: 10327 case X86::BI__builtin_ia32_xrstors: 10328 case X86::BI__builtin_ia32_xrstors64: 10329 case X86::BI__builtin_ia32_xsavec: 10330 case X86::BI__builtin_ia32_xsavec64: 10331 case X86::BI__builtin_ia32_xsaves: 10332 case X86::BI__builtin_ia32_xsaves64: 10333 case X86::BI__builtin_ia32_xsetbv: 10334 case X86::BI_xsetbv: { 10335 Intrinsic::ID ID; 10336 #define INTRINSIC_X86_XSAVE_ID(NAME) \ 10337 case X86::BI__builtin_ia32_##NAME: \ 10338 ID = Intrinsic::x86_##NAME; \ 10339 break 10340 switch (BuiltinID) { 10341 default: llvm_unreachable("Unsupported intrinsic!"); 10342 INTRINSIC_X86_XSAVE_ID(xsave); 10343 INTRINSIC_X86_XSAVE_ID(xsave64); 10344 INTRINSIC_X86_XSAVE_ID(xrstor); 10345 INTRINSIC_X86_XSAVE_ID(xrstor64); 10346 INTRINSIC_X86_XSAVE_ID(xsaveopt); 10347 INTRINSIC_X86_XSAVE_ID(xsaveopt64); 10348 INTRINSIC_X86_XSAVE_ID(xrstors); 10349 INTRINSIC_X86_XSAVE_ID(xrstors64); 10350 INTRINSIC_X86_XSAVE_ID(xsavec); 10351 INTRINSIC_X86_XSAVE_ID(xsavec64); 10352 INTRINSIC_X86_XSAVE_ID(xsaves); 10353 INTRINSIC_X86_XSAVE_ID(xsaves64); 10354 INTRINSIC_X86_XSAVE_ID(xsetbv); 10355 case X86::BI_xsetbv: 10356 ID = Intrinsic::x86_xsetbv; 10357 break; 10358 } 10359 #undef INTRINSIC_X86_XSAVE_ID 10360 Value *Mhi = Builder.CreateTrunc( 10361 Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, 32)), Int32Ty); 10362 Value *Mlo = Builder.CreateTrunc(Ops[1], Int32Ty); 10363 Ops[1] = Mhi; 10364 Ops.push_back(Mlo); 10365 return Builder.CreateCall(CGM.getIntrinsic(ID), Ops); 10366 } 10367 case X86::BI__builtin_ia32_xgetbv: 10368 case X86::BI_xgetbv: 10369 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_xgetbv), Ops); 10370 case X86::BI__builtin_ia32_storedqudi128_mask: 10371 case X86::BI__builtin_ia32_storedqusi128_mask: 10372 case X86::BI__builtin_ia32_storedquhi128_mask: 10373 case X86::BI__builtin_ia32_storedquqi128_mask: 10374 case X86::BI__builtin_ia32_storeupd128_mask: 10375 case X86::BI__builtin_ia32_storeups128_mask: 10376 case X86::BI__builtin_ia32_storedqudi256_mask: 10377 case X86::BI__builtin_ia32_storedqusi256_mask: 10378 case X86::BI__builtin_ia32_storedquhi256_mask: 10379 case X86::BI__builtin_ia32_storedquqi256_mask: 10380 case X86::BI__builtin_ia32_storeupd256_mask: 10381 case X86::BI__builtin_ia32_storeups256_mask: 10382 case X86::BI__builtin_ia32_storedqudi512_mask: 10383 case X86::BI__builtin_ia32_storedqusi512_mask: 10384 case X86::BI__builtin_ia32_storedquhi512_mask: 10385 case X86::BI__builtin_ia32_storedquqi512_mask: 10386 case X86::BI__builtin_ia32_storeupd512_mask: 10387 case X86::BI__builtin_ia32_storeups512_mask: 10388 return EmitX86MaskedStore(*this, Ops, 1); 10389 10390 case X86::BI__builtin_ia32_storess128_mask: 10391 case X86::BI__builtin_ia32_storesd128_mask: { 10392 return EmitX86MaskedStore(*this, Ops, 1); 10393 } 10394 case X86::BI__builtin_ia32_vpopcntb_128: 10395 case X86::BI__builtin_ia32_vpopcntd_128: 10396 case X86::BI__builtin_ia32_vpopcntq_128: 10397 case X86::BI__builtin_ia32_vpopcntw_128: 10398 case X86::BI__builtin_ia32_vpopcntb_256: 10399 case X86::BI__builtin_ia32_vpopcntd_256: 10400 case X86::BI__builtin_ia32_vpopcntq_256: 10401 case X86::BI__builtin_ia32_vpopcntw_256: 10402 case X86::BI__builtin_ia32_vpopcntb_512: 10403 case X86::BI__builtin_ia32_vpopcntd_512: 10404 case X86::BI__builtin_ia32_vpopcntq_512: 10405 case X86::BI__builtin_ia32_vpopcntw_512: { 10406 llvm::Type *ResultType = ConvertType(E->getType()); 10407 llvm::Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType); 10408 return Builder.CreateCall(F, Ops); 10409 } 10410 case X86::BI__builtin_ia32_cvtmask2b128: 10411 case X86::BI__builtin_ia32_cvtmask2b256: 10412 case X86::BI__builtin_ia32_cvtmask2b512: 10413 case X86::BI__builtin_ia32_cvtmask2w128: 10414 case X86::BI__builtin_ia32_cvtmask2w256: 10415 case X86::BI__builtin_ia32_cvtmask2w512: 10416 case X86::BI__builtin_ia32_cvtmask2d128: 10417 case X86::BI__builtin_ia32_cvtmask2d256: 10418 case X86::BI__builtin_ia32_cvtmask2d512: 10419 case X86::BI__builtin_ia32_cvtmask2q128: 10420 case X86::BI__builtin_ia32_cvtmask2q256: 10421 case X86::BI__builtin_ia32_cvtmask2q512: 10422 return EmitX86SExtMask(*this, Ops[0], ConvertType(E->getType())); 10423 10424 case X86::BI__builtin_ia32_cvtb2mask128: 10425 case X86::BI__builtin_ia32_cvtb2mask256: 10426 case X86::BI__builtin_ia32_cvtb2mask512: 10427 case X86::BI__builtin_ia32_cvtw2mask128: 10428 case X86::BI__builtin_ia32_cvtw2mask256: 10429 case X86::BI__builtin_ia32_cvtw2mask512: 10430 case X86::BI__builtin_ia32_cvtd2mask128: 10431 case X86::BI__builtin_ia32_cvtd2mask256: 10432 case X86::BI__builtin_ia32_cvtd2mask512: 10433 case X86::BI__builtin_ia32_cvtq2mask128: 10434 case X86::BI__builtin_ia32_cvtq2mask256: 10435 case X86::BI__builtin_ia32_cvtq2mask512: 10436 return EmitX86ConvertToMask(*this, Ops[0]); 10437 10438 case X86::BI__builtin_ia32_cvtdq2ps512_mask: 10439 case X86::BI__builtin_ia32_cvtqq2ps512_mask: 10440 case X86::BI__builtin_ia32_cvtqq2pd512_mask: 10441 return EmitX86ConvertIntToFp(*this, Ops, /*IsSigned*/true); 10442 case X86::BI__builtin_ia32_cvtudq2ps512_mask: 10443 case X86::BI__builtin_ia32_cvtuqq2ps512_mask: 10444 case X86::BI__builtin_ia32_cvtuqq2pd512_mask: 10445 return EmitX86ConvertIntToFp(*this, Ops, /*IsSigned*/false); 10446 10447 case X86::BI__builtin_ia32_vfmaddss3: 10448 case X86::BI__builtin_ia32_vfmaddsd3: 10449 case X86::BI__builtin_ia32_vfmaddss3_mask: 10450 case X86::BI__builtin_ia32_vfmaddsd3_mask: 10451 return EmitScalarFMAExpr(*this, Ops, Ops[0]); 10452 case X86::BI__builtin_ia32_vfmaddss: 10453 case X86::BI__builtin_ia32_vfmaddsd: 10454 return EmitScalarFMAExpr(*this, Ops, 10455 Constant::getNullValue(Ops[0]->getType())); 10456 case X86::BI__builtin_ia32_vfmaddss3_maskz: 10457 case X86::BI__builtin_ia32_vfmaddsd3_maskz: 10458 return EmitScalarFMAExpr(*this, Ops, Ops[0], /*ZeroMask*/true); 10459 case X86::BI__builtin_ia32_vfmaddss3_mask3: 10460 case X86::BI__builtin_ia32_vfmaddsd3_mask3: 10461 return EmitScalarFMAExpr(*this, Ops, Ops[2], /*ZeroMask*/false, 2); 10462 case X86::BI__builtin_ia32_vfmsubss3_mask3: 10463 case X86::BI__builtin_ia32_vfmsubsd3_mask3: 10464 return EmitScalarFMAExpr(*this, Ops, Ops[2], /*ZeroMask*/false, 2, 10465 /*NegAcc*/true); 10466 case X86::BI__builtin_ia32_vfmaddps: 10467 case X86::BI__builtin_ia32_vfmaddpd: 10468 case X86::BI__builtin_ia32_vfmaddps256: 10469 case X86::BI__builtin_ia32_vfmaddpd256: 10470 case X86::BI__builtin_ia32_vfmaddps512_mask: 10471 case X86::BI__builtin_ia32_vfmaddps512_maskz: 10472 case X86::BI__builtin_ia32_vfmaddps512_mask3: 10473 case X86::BI__builtin_ia32_vfmsubps512_mask3: 10474 case X86::BI__builtin_ia32_vfmaddpd512_mask: 10475 case X86::BI__builtin_ia32_vfmaddpd512_maskz: 10476 case X86::BI__builtin_ia32_vfmaddpd512_mask3: 10477 case X86::BI__builtin_ia32_vfmsubpd512_mask3: 10478 return EmitX86FMAExpr(*this, Ops, BuiltinID, /*IsAddSub*/false); 10479 case X86::BI__builtin_ia32_vfmaddsubps: 10480 case X86::BI__builtin_ia32_vfmaddsubpd: 10481 case X86::BI__builtin_ia32_vfmaddsubps256: 10482 case X86::BI__builtin_ia32_vfmaddsubpd256: 10483 case X86::BI__builtin_ia32_vfmaddsubps512_mask: 10484 case X86::BI__builtin_ia32_vfmaddsubps512_maskz: 10485 case X86::BI__builtin_ia32_vfmaddsubps512_mask3: 10486 case X86::BI__builtin_ia32_vfmsubaddps512_mask3: 10487 case X86::BI__builtin_ia32_vfmaddsubpd512_mask: 10488 case X86::BI__builtin_ia32_vfmaddsubpd512_maskz: 10489 case X86::BI__builtin_ia32_vfmaddsubpd512_mask3: 10490 case X86::BI__builtin_ia32_vfmsubaddpd512_mask3: 10491 return EmitX86FMAExpr(*this, Ops, BuiltinID, /*IsAddSub*/true); 10492 10493 case X86::BI__builtin_ia32_movdqa32store128_mask: 10494 case X86::BI__builtin_ia32_movdqa64store128_mask: 10495 case X86::BI__builtin_ia32_storeaps128_mask: 10496 case X86::BI__builtin_ia32_storeapd128_mask: 10497 case X86::BI__builtin_ia32_movdqa32store256_mask: 10498 case X86::BI__builtin_ia32_movdqa64store256_mask: 10499 case X86::BI__builtin_ia32_storeaps256_mask: 10500 case X86::BI__builtin_ia32_storeapd256_mask: 10501 case X86::BI__builtin_ia32_movdqa32store512_mask: 10502 case X86::BI__builtin_ia32_movdqa64store512_mask: 10503 case X86::BI__builtin_ia32_storeaps512_mask: 10504 case X86::BI__builtin_ia32_storeapd512_mask: { 10505 unsigned Align = 10506 getContext().getTypeAlignInChars(E->getArg(1)->getType()).getQuantity(); 10507 return EmitX86MaskedStore(*this, Ops, Align); 10508 } 10509 case X86::BI__builtin_ia32_loadups128_mask: 10510 case X86::BI__builtin_ia32_loadups256_mask: 10511 case X86::BI__builtin_ia32_loadups512_mask: 10512 case X86::BI__builtin_ia32_loadupd128_mask: 10513 case X86::BI__builtin_ia32_loadupd256_mask: 10514 case X86::BI__builtin_ia32_loadupd512_mask: 10515 case X86::BI__builtin_ia32_loaddquqi128_mask: 10516 case X86::BI__builtin_ia32_loaddquqi256_mask: 10517 case X86::BI__builtin_ia32_loaddquqi512_mask: 10518 case X86::BI__builtin_ia32_loaddquhi128_mask: 10519 case X86::BI__builtin_ia32_loaddquhi256_mask: 10520 case X86::BI__builtin_ia32_loaddquhi512_mask: 10521 case X86::BI__builtin_ia32_loaddqusi128_mask: 10522 case X86::BI__builtin_ia32_loaddqusi256_mask: 10523 case X86::BI__builtin_ia32_loaddqusi512_mask: 10524 case X86::BI__builtin_ia32_loaddqudi128_mask: 10525 case X86::BI__builtin_ia32_loaddqudi256_mask: 10526 case X86::BI__builtin_ia32_loaddqudi512_mask: 10527 return EmitX86MaskedLoad(*this, Ops, 1); 10528 10529 case X86::BI__builtin_ia32_loadss128_mask: 10530 case X86::BI__builtin_ia32_loadsd128_mask: 10531 return EmitX86MaskedLoad(*this, Ops, 1); 10532 10533 case X86::BI__builtin_ia32_loadaps128_mask: 10534 case X86::BI__builtin_ia32_loadaps256_mask: 10535 case X86::BI__builtin_ia32_loadaps512_mask: 10536 case X86::BI__builtin_ia32_loadapd128_mask: 10537 case X86::BI__builtin_ia32_loadapd256_mask: 10538 case X86::BI__builtin_ia32_loadapd512_mask: 10539 case X86::BI__builtin_ia32_movdqa32load128_mask: 10540 case X86::BI__builtin_ia32_movdqa32load256_mask: 10541 case X86::BI__builtin_ia32_movdqa32load512_mask: 10542 case X86::BI__builtin_ia32_movdqa64load128_mask: 10543 case X86::BI__builtin_ia32_movdqa64load256_mask: 10544 case X86::BI__builtin_ia32_movdqa64load512_mask: { 10545 unsigned Align = 10546 getContext().getTypeAlignInChars(E->getArg(1)->getType()).getQuantity(); 10547 return EmitX86MaskedLoad(*this, Ops, Align); 10548 } 10549 10550 case X86::BI__builtin_ia32_expandloaddf128_mask: 10551 case X86::BI__builtin_ia32_expandloaddf256_mask: 10552 case X86::BI__builtin_ia32_expandloaddf512_mask: 10553 case X86::BI__builtin_ia32_expandloadsf128_mask: 10554 case X86::BI__builtin_ia32_expandloadsf256_mask: 10555 case X86::BI__builtin_ia32_expandloadsf512_mask: 10556 case X86::BI__builtin_ia32_expandloaddi128_mask: 10557 case X86::BI__builtin_ia32_expandloaddi256_mask: 10558 case X86::BI__builtin_ia32_expandloaddi512_mask: 10559 case X86::BI__builtin_ia32_expandloadsi128_mask: 10560 case X86::BI__builtin_ia32_expandloadsi256_mask: 10561 case X86::BI__builtin_ia32_expandloadsi512_mask: 10562 case X86::BI__builtin_ia32_expandloadhi128_mask: 10563 case X86::BI__builtin_ia32_expandloadhi256_mask: 10564 case X86::BI__builtin_ia32_expandloadhi512_mask: 10565 case X86::BI__builtin_ia32_expandloadqi128_mask: 10566 case X86::BI__builtin_ia32_expandloadqi256_mask: 10567 case X86::BI__builtin_ia32_expandloadqi512_mask: 10568 return EmitX86ExpandLoad(*this, Ops); 10569 10570 case X86::BI__builtin_ia32_compressstoredf128_mask: 10571 case X86::BI__builtin_ia32_compressstoredf256_mask: 10572 case X86::BI__builtin_ia32_compressstoredf512_mask: 10573 case X86::BI__builtin_ia32_compressstoresf128_mask: 10574 case X86::BI__builtin_ia32_compressstoresf256_mask: 10575 case X86::BI__builtin_ia32_compressstoresf512_mask: 10576 case X86::BI__builtin_ia32_compressstoredi128_mask: 10577 case X86::BI__builtin_ia32_compressstoredi256_mask: 10578 case X86::BI__builtin_ia32_compressstoredi512_mask: 10579 case X86::BI__builtin_ia32_compressstoresi128_mask: 10580 case X86::BI__builtin_ia32_compressstoresi256_mask: 10581 case X86::BI__builtin_ia32_compressstoresi512_mask: 10582 case X86::BI__builtin_ia32_compressstorehi128_mask: 10583 case X86::BI__builtin_ia32_compressstorehi256_mask: 10584 case X86::BI__builtin_ia32_compressstorehi512_mask: 10585 case X86::BI__builtin_ia32_compressstoreqi128_mask: 10586 case X86::BI__builtin_ia32_compressstoreqi256_mask: 10587 case X86::BI__builtin_ia32_compressstoreqi512_mask: 10588 return EmitX86CompressStore(*this, Ops); 10589 10590 case X86::BI__builtin_ia32_expanddf128_mask: 10591 case X86::BI__builtin_ia32_expanddf256_mask: 10592 case X86::BI__builtin_ia32_expanddf512_mask: 10593 case X86::BI__builtin_ia32_expandsf128_mask: 10594 case X86::BI__builtin_ia32_expandsf256_mask: 10595 case X86::BI__builtin_ia32_expandsf512_mask: 10596 case X86::BI__builtin_ia32_expanddi128_mask: 10597 case X86::BI__builtin_ia32_expanddi256_mask: 10598 case X86::BI__builtin_ia32_expanddi512_mask: 10599 case X86::BI__builtin_ia32_expandsi128_mask: 10600 case X86::BI__builtin_ia32_expandsi256_mask: 10601 case X86::BI__builtin_ia32_expandsi512_mask: 10602 case X86::BI__builtin_ia32_expandhi128_mask: 10603 case X86::BI__builtin_ia32_expandhi256_mask: 10604 case X86::BI__builtin_ia32_expandhi512_mask: 10605 case X86::BI__builtin_ia32_expandqi128_mask: 10606 case X86::BI__builtin_ia32_expandqi256_mask: 10607 case X86::BI__builtin_ia32_expandqi512_mask: 10608 return EmitX86CompressExpand(*this, Ops, /*IsCompress*/false); 10609 10610 case X86::BI__builtin_ia32_compressdf128_mask: 10611 case X86::BI__builtin_ia32_compressdf256_mask: 10612 case X86::BI__builtin_ia32_compressdf512_mask: 10613 case X86::BI__builtin_ia32_compresssf128_mask: 10614 case X86::BI__builtin_ia32_compresssf256_mask: 10615 case X86::BI__builtin_ia32_compresssf512_mask: 10616 case X86::BI__builtin_ia32_compressdi128_mask: 10617 case X86::BI__builtin_ia32_compressdi256_mask: 10618 case X86::BI__builtin_ia32_compressdi512_mask: 10619 case X86::BI__builtin_ia32_compresssi128_mask: 10620 case X86::BI__builtin_ia32_compresssi256_mask: 10621 case X86::BI__builtin_ia32_compresssi512_mask: 10622 case X86::BI__builtin_ia32_compresshi128_mask: 10623 case X86::BI__builtin_ia32_compresshi256_mask: 10624 case X86::BI__builtin_ia32_compresshi512_mask: 10625 case X86::BI__builtin_ia32_compressqi128_mask: 10626 case X86::BI__builtin_ia32_compressqi256_mask: 10627 case X86::BI__builtin_ia32_compressqi512_mask: 10628 return EmitX86CompressExpand(*this, Ops, /*IsCompress*/true); 10629 10630 case X86::BI__builtin_ia32_gather3div2df: 10631 case X86::BI__builtin_ia32_gather3div2di: 10632 case X86::BI__builtin_ia32_gather3div4df: 10633 case X86::BI__builtin_ia32_gather3div4di: 10634 case X86::BI__builtin_ia32_gather3div4sf: 10635 case X86::BI__builtin_ia32_gather3div4si: 10636 case X86::BI__builtin_ia32_gather3div8sf: 10637 case X86::BI__builtin_ia32_gather3div8si: 10638 case X86::BI__builtin_ia32_gather3siv2df: 10639 case X86::BI__builtin_ia32_gather3siv2di: 10640 case X86::BI__builtin_ia32_gather3siv4df: 10641 case X86::BI__builtin_ia32_gather3siv4di: 10642 case X86::BI__builtin_ia32_gather3siv4sf: 10643 case X86::BI__builtin_ia32_gather3siv4si: 10644 case X86::BI__builtin_ia32_gather3siv8sf: 10645 case X86::BI__builtin_ia32_gather3siv8si: 10646 case X86::BI__builtin_ia32_gathersiv8df: 10647 case X86::BI__builtin_ia32_gathersiv16sf: 10648 case X86::BI__builtin_ia32_gatherdiv8df: 10649 case X86::BI__builtin_ia32_gatherdiv16sf: 10650 case X86::BI__builtin_ia32_gathersiv8di: 10651 case X86::BI__builtin_ia32_gathersiv16si: 10652 case X86::BI__builtin_ia32_gatherdiv8di: 10653 case X86::BI__builtin_ia32_gatherdiv16si: { 10654 Intrinsic::ID IID; 10655 switch (BuiltinID) { 10656 default: llvm_unreachable("Unexpected builtin"); 10657 case X86::BI__builtin_ia32_gather3div2df: 10658 IID = Intrinsic::x86_avx512_mask_gather3div2_df; 10659 break; 10660 case X86::BI__builtin_ia32_gather3div2di: 10661 IID = Intrinsic::x86_avx512_mask_gather3div2_di; 10662 break; 10663 case X86::BI__builtin_ia32_gather3div4df: 10664 IID = Intrinsic::x86_avx512_mask_gather3div4_df; 10665 break; 10666 case X86::BI__builtin_ia32_gather3div4di: 10667 IID = Intrinsic::x86_avx512_mask_gather3div4_di; 10668 break; 10669 case X86::BI__builtin_ia32_gather3div4sf: 10670 IID = Intrinsic::x86_avx512_mask_gather3div4_sf; 10671 break; 10672 case X86::BI__builtin_ia32_gather3div4si: 10673 IID = Intrinsic::x86_avx512_mask_gather3div4_si; 10674 break; 10675 case X86::BI__builtin_ia32_gather3div8sf: 10676 IID = Intrinsic::x86_avx512_mask_gather3div8_sf; 10677 break; 10678 case X86::BI__builtin_ia32_gather3div8si: 10679 IID = Intrinsic::x86_avx512_mask_gather3div8_si; 10680 break; 10681 case X86::BI__builtin_ia32_gather3siv2df: 10682 IID = Intrinsic::x86_avx512_mask_gather3siv2_df; 10683 break; 10684 case X86::BI__builtin_ia32_gather3siv2di: 10685 IID = Intrinsic::x86_avx512_mask_gather3siv2_di; 10686 break; 10687 case X86::BI__builtin_ia32_gather3siv4df: 10688 IID = Intrinsic::x86_avx512_mask_gather3siv4_df; 10689 break; 10690 case X86::BI__builtin_ia32_gather3siv4di: 10691 IID = Intrinsic::x86_avx512_mask_gather3siv4_di; 10692 break; 10693 case X86::BI__builtin_ia32_gather3siv4sf: 10694 IID = Intrinsic::x86_avx512_mask_gather3siv4_sf; 10695 break; 10696 case X86::BI__builtin_ia32_gather3siv4si: 10697 IID = Intrinsic::x86_avx512_mask_gather3siv4_si; 10698 break; 10699 case X86::BI__builtin_ia32_gather3siv8sf: 10700 IID = Intrinsic::x86_avx512_mask_gather3siv8_sf; 10701 break; 10702 case X86::BI__builtin_ia32_gather3siv8si: 10703 IID = Intrinsic::x86_avx512_mask_gather3siv8_si; 10704 break; 10705 case X86::BI__builtin_ia32_gathersiv8df: 10706 IID = Intrinsic::x86_avx512_mask_gather_dpd_512; 10707 break; 10708 case X86::BI__builtin_ia32_gathersiv16sf: 10709 IID = Intrinsic::x86_avx512_mask_gather_dps_512; 10710 break; 10711 case X86::BI__builtin_ia32_gatherdiv8df: 10712 IID = Intrinsic::x86_avx512_mask_gather_qpd_512; 10713 break; 10714 case X86::BI__builtin_ia32_gatherdiv16sf: 10715 IID = Intrinsic::x86_avx512_mask_gather_qps_512; 10716 break; 10717 case X86::BI__builtin_ia32_gathersiv8di: 10718 IID = Intrinsic::x86_avx512_mask_gather_dpq_512; 10719 break; 10720 case X86::BI__builtin_ia32_gathersiv16si: 10721 IID = Intrinsic::x86_avx512_mask_gather_dpi_512; 10722 break; 10723 case X86::BI__builtin_ia32_gatherdiv8di: 10724 IID = Intrinsic::x86_avx512_mask_gather_qpq_512; 10725 break; 10726 case X86::BI__builtin_ia32_gatherdiv16si: 10727 IID = Intrinsic::x86_avx512_mask_gather_qpi_512; 10728 break; 10729 } 10730 10731 unsigned MinElts = std::min(Ops[0]->getType()->getVectorNumElements(), 10732 Ops[2]->getType()->getVectorNumElements()); 10733 Ops[3] = getMaskVecValue(*this, Ops[3], MinElts); 10734 Function *Intr = CGM.getIntrinsic(IID); 10735 return Builder.CreateCall(Intr, Ops); 10736 } 10737 10738 case X86::BI__builtin_ia32_scattersiv8df: 10739 case X86::BI__builtin_ia32_scattersiv16sf: 10740 case X86::BI__builtin_ia32_scatterdiv8df: 10741 case X86::BI__builtin_ia32_scatterdiv16sf: 10742 case X86::BI__builtin_ia32_scattersiv8di: 10743 case X86::BI__builtin_ia32_scattersiv16si: 10744 case X86::BI__builtin_ia32_scatterdiv8di: 10745 case X86::BI__builtin_ia32_scatterdiv16si: 10746 case X86::BI__builtin_ia32_scatterdiv2df: 10747 case X86::BI__builtin_ia32_scatterdiv2di: 10748 case X86::BI__builtin_ia32_scatterdiv4df: 10749 case X86::BI__builtin_ia32_scatterdiv4di: 10750 case X86::BI__builtin_ia32_scatterdiv4sf: 10751 case X86::BI__builtin_ia32_scatterdiv4si: 10752 case X86::BI__builtin_ia32_scatterdiv8sf: 10753 case X86::BI__builtin_ia32_scatterdiv8si: 10754 case X86::BI__builtin_ia32_scattersiv2df: 10755 case X86::BI__builtin_ia32_scattersiv2di: 10756 case X86::BI__builtin_ia32_scattersiv4df: 10757 case X86::BI__builtin_ia32_scattersiv4di: 10758 case X86::BI__builtin_ia32_scattersiv4sf: 10759 case X86::BI__builtin_ia32_scattersiv4si: 10760 case X86::BI__builtin_ia32_scattersiv8sf: 10761 case X86::BI__builtin_ia32_scattersiv8si: { 10762 Intrinsic::ID IID; 10763 switch (BuiltinID) { 10764 default: llvm_unreachable("Unexpected builtin"); 10765 case X86::BI__builtin_ia32_scattersiv8df: 10766 IID = Intrinsic::x86_avx512_mask_scatter_dpd_512; 10767 break; 10768 case X86::BI__builtin_ia32_scattersiv16sf: 10769 IID = Intrinsic::x86_avx512_mask_scatter_dps_512; 10770 break; 10771 case X86::BI__builtin_ia32_scatterdiv8df: 10772 IID = Intrinsic::x86_avx512_mask_scatter_qpd_512; 10773 break; 10774 case X86::BI__builtin_ia32_scatterdiv16sf: 10775 IID = Intrinsic::x86_avx512_mask_scatter_qps_512; 10776 break; 10777 case X86::BI__builtin_ia32_scattersiv8di: 10778 IID = Intrinsic::x86_avx512_mask_scatter_dpq_512; 10779 break; 10780 case X86::BI__builtin_ia32_scattersiv16si: 10781 IID = Intrinsic::x86_avx512_mask_scatter_dpi_512; 10782 break; 10783 case X86::BI__builtin_ia32_scatterdiv8di: 10784 IID = Intrinsic::x86_avx512_mask_scatter_qpq_512; 10785 break; 10786 case X86::BI__builtin_ia32_scatterdiv16si: 10787 IID = Intrinsic::x86_avx512_mask_scatter_qpi_512; 10788 break; 10789 case X86::BI__builtin_ia32_scatterdiv2df: 10790 IID = Intrinsic::x86_avx512_mask_scatterdiv2_df; 10791 break; 10792 case X86::BI__builtin_ia32_scatterdiv2di: 10793 IID = Intrinsic::x86_avx512_mask_scatterdiv2_di; 10794 break; 10795 case X86::BI__builtin_ia32_scatterdiv4df: 10796 IID = Intrinsic::x86_avx512_mask_scatterdiv4_df; 10797 break; 10798 case X86::BI__builtin_ia32_scatterdiv4di: 10799 IID = Intrinsic::x86_avx512_mask_scatterdiv4_di; 10800 break; 10801 case X86::BI__builtin_ia32_scatterdiv4sf: 10802 IID = Intrinsic::x86_avx512_mask_scatterdiv4_sf; 10803 break; 10804 case X86::BI__builtin_ia32_scatterdiv4si: 10805 IID = Intrinsic::x86_avx512_mask_scatterdiv4_si; 10806 break; 10807 case X86::BI__builtin_ia32_scatterdiv8sf: 10808 IID = Intrinsic::x86_avx512_mask_scatterdiv8_sf; 10809 break; 10810 case X86::BI__builtin_ia32_scatterdiv8si: 10811 IID = Intrinsic::x86_avx512_mask_scatterdiv8_si; 10812 break; 10813 case X86::BI__builtin_ia32_scattersiv2df: 10814 IID = Intrinsic::x86_avx512_mask_scattersiv2_df; 10815 break; 10816 case X86::BI__builtin_ia32_scattersiv2di: 10817 IID = Intrinsic::x86_avx512_mask_scattersiv2_di; 10818 break; 10819 case X86::BI__builtin_ia32_scattersiv4df: 10820 IID = Intrinsic::x86_avx512_mask_scattersiv4_df; 10821 break; 10822 case X86::BI__builtin_ia32_scattersiv4di: 10823 IID = Intrinsic::x86_avx512_mask_scattersiv4_di; 10824 break; 10825 case X86::BI__builtin_ia32_scattersiv4sf: 10826 IID = Intrinsic::x86_avx512_mask_scattersiv4_sf; 10827 break; 10828 case X86::BI__builtin_ia32_scattersiv4si: 10829 IID = Intrinsic::x86_avx512_mask_scattersiv4_si; 10830 break; 10831 case X86::BI__builtin_ia32_scattersiv8sf: 10832 IID = Intrinsic::x86_avx512_mask_scattersiv8_sf; 10833 break; 10834 case X86::BI__builtin_ia32_scattersiv8si: 10835 IID = Intrinsic::x86_avx512_mask_scattersiv8_si; 10836 break; 10837 } 10838 10839 unsigned MinElts = std::min(Ops[2]->getType()->getVectorNumElements(), 10840 Ops[3]->getType()->getVectorNumElements()); 10841 Ops[1] = getMaskVecValue(*this, Ops[1], MinElts); 10842 Function *Intr = CGM.getIntrinsic(IID); 10843 return Builder.CreateCall(Intr, Ops); 10844 } 10845 10846 case X86::BI__builtin_ia32_vextractf128_pd256: 10847 case X86::BI__builtin_ia32_vextractf128_ps256: 10848 case X86::BI__builtin_ia32_vextractf128_si256: 10849 case X86::BI__builtin_ia32_extract128i256: 10850 case X86::BI__builtin_ia32_extractf64x4_mask: 10851 case X86::BI__builtin_ia32_extractf32x4_mask: 10852 case X86::BI__builtin_ia32_extracti64x4_mask: 10853 case X86::BI__builtin_ia32_extracti32x4_mask: 10854 case X86::BI__builtin_ia32_extractf32x8_mask: 10855 case X86::BI__builtin_ia32_extracti32x8_mask: 10856 case X86::BI__builtin_ia32_extractf32x4_256_mask: 10857 case X86::BI__builtin_ia32_extracti32x4_256_mask: 10858 case X86::BI__builtin_ia32_extractf64x2_256_mask: 10859 case X86::BI__builtin_ia32_extracti64x2_256_mask: 10860 case X86::BI__builtin_ia32_extractf64x2_512_mask: 10861 case X86::BI__builtin_ia32_extracti64x2_512_mask: { 10862 llvm::Type *DstTy = ConvertType(E->getType()); 10863 unsigned NumElts = DstTy->getVectorNumElements(); 10864 unsigned SrcNumElts = Ops[0]->getType()->getVectorNumElements(); 10865 unsigned SubVectors = SrcNumElts / NumElts; 10866 unsigned Index = cast<ConstantInt>(Ops[1])->getZExtValue(); 10867 assert(llvm::isPowerOf2_32(SubVectors) && "Expected power of 2 subvectors"); 10868 Index &= SubVectors - 1; // Remove any extra bits. 10869 Index *= NumElts; 10870 10871 uint32_t Indices[16]; 10872 for (unsigned i = 0; i != NumElts; ++i) 10873 Indices[i] = i + Index; 10874 10875 Value *Res = Builder.CreateShuffleVector(Ops[0], 10876 UndefValue::get(Ops[0]->getType()), 10877 makeArrayRef(Indices, NumElts), 10878 "extract"); 10879 10880 if (Ops.size() == 4) 10881 Res = EmitX86Select(*this, Ops[3], Res, Ops[2]); 10882 10883 return Res; 10884 } 10885 case X86::BI__builtin_ia32_vinsertf128_pd256: 10886 case X86::BI__builtin_ia32_vinsertf128_ps256: 10887 case X86::BI__builtin_ia32_vinsertf128_si256: 10888 case X86::BI__builtin_ia32_insert128i256: 10889 case X86::BI__builtin_ia32_insertf64x4: 10890 case X86::BI__builtin_ia32_insertf32x4: 10891 case X86::BI__builtin_ia32_inserti64x4: 10892 case X86::BI__builtin_ia32_inserti32x4: 10893 case X86::BI__builtin_ia32_insertf32x8: 10894 case X86::BI__builtin_ia32_inserti32x8: 10895 case X86::BI__builtin_ia32_insertf32x4_256: 10896 case X86::BI__builtin_ia32_inserti32x4_256: 10897 case X86::BI__builtin_ia32_insertf64x2_256: 10898 case X86::BI__builtin_ia32_inserti64x2_256: 10899 case X86::BI__builtin_ia32_insertf64x2_512: 10900 case X86::BI__builtin_ia32_inserti64x2_512: { 10901 unsigned DstNumElts = Ops[0]->getType()->getVectorNumElements(); 10902 unsigned SrcNumElts = Ops[1]->getType()->getVectorNumElements(); 10903 unsigned SubVectors = DstNumElts / SrcNumElts; 10904 unsigned Index = cast<ConstantInt>(Ops[2])->getZExtValue(); 10905 assert(llvm::isPowerOf2_32(SubVectors) && "Expected power of 2 subvectors"); 10906 Index &= SubVectors - 1; // Remove any extra bits. 10907 Index *= SrcNumElts; 10908 10909 uint32_t Indices[16]; 10910 for (unsigned i = 0; i != DstNumElts; ++i) 10911 Indices[i] = (i >= SrcNumElts) ? SrcNumElts + (i % SrcNumElts) : i; 10912 10913 Value *Op1 = Builder.CreateShuffleVector(Ops[1], 10914 UndefValue::get(Ops[1]->getType()), 10915 makeArrayRef(Indices, DstNumElts), 10916 "widen"); 10917 10918 for (unsigned i = 0; i != DstNumElts; ++i) { 10919 if (i >= Index && i < (Index + SrcNumElts)) 10920 Indices[i] = (i - Index) + DstNumElts; 10921 else 10922 Indices[i] = i; 10923 } 10924 10925 return Builder.CreateShuffleVector(Ops[0], Op1, 10926 makeArrayRef(Indices, DstNumElts), 10927 "insert"); 10928 } 10929 case X86::BI__builtin_ia32_pmovqd512_mask: 10930 case X86::BI__builtin_ia32_pmovwb512_mask: { 10931 Value *Res = Builder.CreateTrunc(Ops[0], Ops[1]->getType()); 10932 return EmitX86Select(*this, Ops[2], Res, Ops[1]); 10933 } 10934 case X86::BI__builtin_ia32_pmovdb512_mask: 10935 case X86::BI__builtin_ia32_pmovdw512_mask: 10936 case X86::BI__builtin_ia32_pmovqw512_mask: { 10937 if (const auto *C = dyn_cast<Constant>(Ops[2])) 10938 if (C->isAllOnesValue()) 10939 return Builder.CreateTrunc(Ops[0], Ops[1]->getType()); 10940 10941 Intrinsic::ID IID; 10942 switch (BuiltinID) { 10943 default: llvm_unreachable("Unsupported intrinsic!"); 10944 case X86::BI__builtin_ia32_pmovdb512_mask: 10945 IID = Intrinsic::x86_avx512_mask_pmov_db_512; 10946 break; 10947 case X86::BI__builtin_ia32_pmovdw512_mask: 10948 IID = Intrinsic::x86_avx512_mask_pmov_dw_512; 10949 break; 10950 case X86::BI__builtin_ia32_pmovqw512_mask: 10951 IID = Intrinsic::x86_avx512_mask_pmov_qw_512; 10952 break; 10953 } 10954 10955 Function *Intr = CGM.getIntrinsic(IID); 10956 return Builder.CreateCall(Intr, Ops); 10957 } 10958 case X86::BI__builtin_ia32_pblendw128: 10959 case X86::BI__builtin_ia32_blendpd: 10960 case X86::BI__builtin_ia32_blendps: 10961 case X86::BI__builtin_ia32_blendpd256: 10962 case X86::BI__builtin_ia32_blendps256: 10963 case X86::BI__builtin_ia32_pblendw256: 10964 case X86::BI__builtin_ia32_pblendd128: 10965 case X86::BI__builtin_ia32_pblendd256: { 10966 unsigned NumElts = Ops[0]->getType()->getVectorNumElements(); 10967 unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue(); 10968 10969 uint32_t Indices[16]; 10970 // If there are more than 8 elements, the immediate is used twice so make 10971 // sure we handle that. 10972 for (unsigned i = 0; i != NumElts; ++i) 10973 Indices[i] = ((Imm >> (i % 8)) & 0x1) ? NumElts + i : i; 10974 10975 return Builder.CreateShuffleVector(Ops[0], Ops[1], 10976 makeArrayRef(Indices, NumElts), 10977 "blend"); 10978 } 10979 case X86::BI__builtin_ia32_pshuflw: 10980 case X86::BI__builtin_ia32_pshuflw256: 10981 case X86::BI__builtin_ia32_pshuflw512: { 10982 uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue(); 10983 llvm::Type *Ty = Ops[0]->getType(); 10984 unsigned NumElts = Ty->getVectorNumElements(); 10985 10986 // Splat the 8-bits of immediate 4 times to help the loop wrap around. 10987 Imm = (Imm & 0xff) * 0x01010101; 10988 10989 uint32_t Indices[32]; 10990 for (unsigned l = 0; l != NumElts; l += 8) { 10991 for (unsigned i = 0; i != 4; ++i) { 10992 Indices[l + i] = l + (Imm & 3); 10993 Imm >>= 2; 10994 } 10995 for (unsigned i = 4; i != 8; ++i) 10996 Indices[l + i] = l + i; 10997 } 10998 10999 return Builder.CreateShuffleVector(Ops[0], UndefValue::get(Ty), 11000 makeArrayRef(Indices, NumElts), 11001 "pshuflw"); 11002 } 11003 case X86::BI__builtin_ia32_pshufhw: 11004 case X86::BI__builtin_ia32_pshufhw256: 11005 case X86::BI__builtin_ia32_pshufhw512: { 11006 uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue(); 11007 llvm::Type *Ty = Ops[0]->getType(); 11008 unsigned NumElts = Ty->getVectorNumElements(); 11009 11010 // Splat the 8-bits of immediate 4 times to help the loop wrap around. 11011 Imm = (Imm & 0xff) * 0x01010101; 11012 11013 uint32_t Indices[32]; 11014 for (unsigned l = 0; l != NumElts; l += 8) { 11015 for (unsigned i = 0; i != 4; ++i) 11016 Indices[l + i] = l + i; 11017 for (unsigned i = 4; i != 8; ++i) { 11018 Indices[l + i] = l + 4 + (Imm & 3); 11019 Imm >>= 2; 11020 } 11021 } 11022 11023 return Builder.CreateShuffleVector(Ops[0], UndefValue::get(Ty), 11024 makeArrayRef(Indices, NumElts), 11025 "pshufhw"); 11026 } 11027 case X86::BI__builtin_ia32_pshufd: 11028 case X86::BI__builtin_ia32_pshufd256: 11029 case X86::BI__builtin_ia32_pshufd512: 11030 case X86::BI__builtin_ia32_vpermilpd: 11031 case X86::BI__builtin_ia32_vpermilps: 11032 case X86::BI__builtin_ia32_vpermilpd256: 11033 case X86::BI__builtin_ia32_vpermilps256: 11034 case X86::BI__builtin_ia32_vpermilpd512: 11035 case X86::BI__builtin_ia32_vpermilps512: { 11036 uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue(); 11037 llvm::Type *Ty = Ops[0]->getType(); 11038 unsigned NumElts = Ty->getVectorNumElements(); 11039 unsigned NumLanes = Ty->getPrimitiveSizeInBits() / 128; 11040 unsigned NumLaneElts = NumElts / NumLanes; 11041 11042 // Splat the 8-bits of immediate 4 times to help the loop wrap around. 11043 Imm = (Imm & 0xff) * 0x01010101; 11044 11045 uint32_t Indices[16]; 11046 for (unsigned l = 0; l != NumElts; l += NumLaneElts) { 11047 for (unsigned i = 0; i != NumLaneElts; ++i) { 11048 Indices[i + l] = (Imm % NumLaneElts) + l; 11049 Imm /= NumLaneElts; 11050 } 11051 } 11052 11053 return Builder.CreateShuffleVector(Ops[0], UndefValue::get(Ty), 11054 makeArrayRef(Indices, NumElts), 11055 "permil"); 11056 } 11057 case X86::BI__builtin_ia32_shufpd: 11058 case X86::BI__builtin_ia32_shufpd256: 11059 case X86::BI__builtin_ia32_shufpd512: 11060 case X86::BI__builtin_ia32_shufps: 11061 case X86::BI__builtin_ia32_shufps256: 11062 case X86::BI__builtin_ia32_shufps512: { 11063 uint32_t Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue(); 11064 llvm::Type *Ty = Ops[0]->getType(); 11065 unsigned NumElts = Ty->getVectorNumElements(); 11066 unsigned NumLanes = Ty->getPrimitiveSizeInBits() / 128; 11067 unsigned NumLaneElts = NumElts / NumLanes; 11068 11069 // Splat the 8-bits of immediate 4 times to help the loop wrap around. 11070 Imm = (Imm & 0xff) * 0x01010101; 11071 11072 uint32_t Indices[16]; 11073 for (unsigned l = 0; l != NumElts; l += NumLaneElts) { 11074 for (unsigned i = 0; i != NumLaneElts; ++i) { 11075 unsigned Index = Imm % NumLaneElts; 11076 Imm /= NumLaneElts; 11077 if (i >= (NumLaneElts / 2)) 11078 Index += NumElts; 11079 Indices[l + i] = l + Index; 11080 } 11081 } 11082 11083 return Builder.CreateShuffleVector(Ops[0], Ops[1], 11084 makeArrayRef(Indices, NumElts), 11085 "shufp"); 11086 } 11087 case X86::BI__builtin_ia32_permdi256: 11088 case X86::BI__builtin_ia32_permdf256: 11089 case X86::BI__builtin_ia32_permdi512: 11090 case X86::BI__builtin_ia32_permdf512: { 11091 unsigned Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue(); 11092 llvm::Type *Ty = Ops[0]->getType(); 11093 unsigned NumElts = Ty->getVectorNumElements(); 11094 11095 // These intrinsics operate on 256-bit lanes of four 64-bit elements. 11096 uint32_t Indices[8]; 11097 for (unsigned l = 0; l != NumElts; l += 4) 11098 for (unsigned i = 0; i != 4; ++i) 11099 Indices[l + i] = l + ((Imm >> (2 * i)) & 0x3); 11100 11101 return Builder.CreateShuffleVector(Ops[0], UndefValue::get(Ty), 11102 makeArrayRef(Indices, NumElts), 11103 "perm"); 11104 } 11105 case X86::BI__builtin_ia32_palignr128: 11106 case X86::BI__builtin_ia32_palignr256: 11107 case X86::BI__builtin_ia32_palignr512: { 11108 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0xff; 11109 11110 unsigned NumElts = Ops[0]->getType()->getVectorNumElements(); 11111 assert(NumElts % 16 == 0); 11112 11113 // If palignr is shifting the pair of vectors more than the size of two 11114 // lanes, emit zero. 11115 if (ShiftVal >= 32) 11116 return llvm::Constant::getNullValue(ConvertType(E->getType())); 11117 11118 // If palignr is shifting the pair of input vectors more than one lane, 11119 // but less than two lanes, convert to shifting in zeroes. 11120 if (ShiftVal > 16) { 11121 ShiftVal -= 16; 11122 Ops[1] = Ops[0]; 11123 Ops[0] = llvm::Constant::getNullValue(Ops[0]->getType()); 11124 } 11125 11126 uint32_t Indices[64]; 11127 // 256-bit palignr operates on 128-bit lanes so we need to handle that 11128 for (unsigned l = 0; l != NumElts; l += 16) { 11129 for (unsigned i = 0; i != 16; ++i) { 11130 unsigned Idx = ShiftVal + i; 11131 if (Idx >= 16) 11132 Idx += NumElts - 16; // End of lane, switch operand. 11133 Indices[l + i] = Idx + l; 11134 } 11135 } 11136 11137 return Builder.CreateShuffleVector(Ops[1], Ops[0], 11138 makeArrayRef(Indices, NumElts), 11139 "palignr"); 11140 } 11141 case X86::BI__builtin_ia32_alignd128: 11142 case X86::BI__builtin_ia32_alignd256: 11143 case X86::BI__builtin_ia32_alignd512: 11144 case X86::BI__builtin_ia32_alignq128: 11145 case X86::BI__builtin_ia32_alignq256: 11146 case X86::BI__builtin_ia32_alignq512: { 11147 unsigned NumElts = Ops[0]->getType()->getVectorNumElements(); 11148 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0xff; 11149 11150 // Mask the shift amount to width of two vectors. 11151 ShiftVal &= (2 * NumElts) - 1; 11152 11153 uint32_t Indices[16]; 11154 for (unsigned i = 0; i != NumElts; ++i) 11155 Indices[i] = i + ShiftVal; 11156 11157 return Builder.CreateShuffleVector(Ops[1], Ops[0], 11158 makeArrayRef(Indices, NumElts), 11159 "valign"); 11160 } 11161 case X86::BI__builtin_ia32_shuf_f32x4_256: 11162 case X86::BI__builtin_ia32_shuf_f64x2_256: 11163 case X86::BI__builtin_ia32_shuf_i32x4_256: 11164 case X86::BI__builtin_ia32_shuf_i64x2_256: 11165 case X86::BI__builtin_ia32_shuf_f32x4: 11166 case X86::BI__builtin_ia32_shuf_f64x2: 11167 case X86::BI__builtin_ia32_shuf_i32x4: 11168 case X86::BI__builtin_ia32_shuf_i64x2: { 11169 unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue(); 11170 llvm::Type *Ty = Ops[0]->getType(); 11171 unsigned NumElts = Ty->getVectorNumElements(); 11172 unsigned NumLanes = Ty->getPrimitiveSizeInBits() == 512 ? 4 : 2; 11173 unsigned NumLaneElts = NumElts / NumLanes; 11174 11175 uint32_t Indices[16]; 11176 for (unsigned l = 0; l != NumElts; l += NumLaneElts) { 11177 unsigned Index = (Imm % NumLanes) * NumLaneElts; 11178 Imm /= NumLanes; // Discard the bits we just used. 11179 if (l >= (NumElts / 2)) 11180 Index += NumElts; // Switch to other source. 11181 for (unsigned i = 0; i != NumLaneElts; ++i) { 11182 Indices[l + i] = Index + i; 11183 } 11184 } 11185 11186 return Builder.CreateShuffleVector(Ops[0], Ops[1], 11187 makeArrayRef(Indices, NumElts), 11188 "shuf"); 11189 } 11190 11191 case X86::BI__builtin_ia32_vperm2f128_pd256: 11192 case X86::BI__builtin_ia32_vperm2f128_ps256: 11193 case X86::BI__builtin_ia32_vperm2f128_si256: 11194 case X86::BI__builtin_ia32_permti256: { 11195 unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue(); 11196 unsigned NumElts = Ops[0]->getType()->getVectorNumElements(); 11197 11198 // This takes a very simple approach since there are two lanes and a 11199 // shuffle can have 2 inputs. So we reserve the first input for the first 11200 // lane and the second input for the second lane. This may result in 11201 // duplicate sources, but this can be dealt with in the backend. 11202 11203 Value *OutOps[2]; 11204 uint32_t Indices[8]; 11205 for (unsigned l = 0; l != 2; ++l) { 11206 // Determine the source for this lane. 11207 if (Imm & (1 << ((l * 4) + 3))) 11208 OutOps[l] = llvm::ConstantAggregateZero::get(Ops[0]->getType()); 11209 else if (Imm & (1 << ((l * 4) + 1))) 11210 OutOps[l] = Ops[1]; 11211 else 11212 OutOps[l] = Ops[0]; 11213 11214 for (unsigned i = 0; i != NumElts/2; ++i) { 11215 // Start with ith element of the source for this lane. 11216 unsigned Idx = (l * NumElts) + i; 11217 // If bit 0 of the immediate half is set, switch to the high half of 11218 // the source. 11219 if (Imm & (1 << (l * 4))) 11220 Idx += NumElts/2; 11221 Indices[(l * (NumElts/2)) + i] = Idx; 11222 } 11223 } 11224 11225 return Builder.CreateShuffleVector(OutOps[0], OutOps[1], 11226 makeArrayRef(Indices, NumElts), 11227 "vperm"); 11228 } 11229 11230 case X86::BI__builtin_ia32_pslldqi128_byteshift: 11231 case X86::BI__builtin_ia32_pslldqi256_byteshift: 11232 case X86::BI__builtin_ia32_pslldqi512_byteshift: { 11233 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff; 11234 llvm::Type *ResultType = Ops[0]->getType(); 11235 // Builtin type is vXi64 so multiply by 8 to get bytes. 11236 unsigned NumElts = ResultType->getVectorNumElements() * 8; 11237 11238 // If pslldq is shifting the vector more than 15 bytes, emit zero. 11239 if (ShiftVal >= 16) 11240 return llvm::Constant::getNullValue(ResultType); 11241 11242 uint32_t Indices[64]; 11243 // 256/512-bit pslldq operates on 128-bit lanes so we need to handle that 11244 for (unsigned l = 0; l != NumElts; l += 16) { 11245 for (unsigned i = 0; i != 16; ++i) { 11246 unsigned Idx = NumElts + i - ShiftVal; 11247 if (Idx < NumElts) Idx -= NumElts - 16; // end of lane, switch operand. 11248 Indices[l + i] = Idx + l; 11249 } 11250 } 11251 11252 llvm::Type *VecTy = llvm::VectorType::get(Int8Ty, NumElts); 11253 Value *Cast = Builder.CreateBitCast(Ops[0], VecTy, "cast"); 11254 Value *Zero = llvm::Constant::getNullValue(VecTy); 11255 Value *SV = Builder.CreateShuffleVector(Zero, Cast, 11256 makeArrayRef(Indices, NumElts), 11257 "pslldq"); 11258 return Builder.CreateBitCast(SV, Ops[0]->getType(), "cast"); 11259 } 11260 case X86::BI__builtin_ia32_psrldqi128_byteshift: 11261 case X86::BI__builtin_ia32_psrldqi256_byteshift: 11262 case X86::BI__builtin_ia32_psrldqi512_byteshift: { 11263 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff; 11264 llvm::Type *ResultType = Ops[0]->getType(); 11265 // Builtin type is vXi64 so multiply by 8 to get bytes. 11266 unsigned NumElts = ResultType->getVectorNumElements() * 8; 11267 11268 // If psrldq is shifting the vector more than 15 bytes, emit zero. 11269 if (ShiftVal >= 16) 11270 return llvm::Constant::getNullValue(ResultType); 11271 11272 uint32_t Indices[64]; 11273 // 256/512-bit psrldq operates on 128-bit lanes so we need to handle that 11274 for (unsigned l = 0; l != NumElts; l += 16) { 11275 for (unsigned i = 0; i != 16; ++i) { 11276 unsigned Idx = i + ShiftVal; 11277 if (Idx >= 16) Idx += NumElts - 16; // end of lane, switch operand. 11278 Indices[l + i] = Idx + l; 11279 } 11280 } 11281 11282 llvm::Type *VecTy = llvm::VectorType::get(Int8Ty, NumElts); 11283 Value *Cast = Builder.CreateBitCast(Ops[0], VecTy, "cast"); 11284 Value *Zero = llvm::Constant::getNullValue(VecTy); 11285 Value *SV = Builder.CreateShuffleVector(Cast, Zero, 11286 makeArrayRef(Indices, NumElts), 11287 "psrldq"); 11288 return Builder.CreateBitCast(SV, ResultType, "cast"); 11289 } 11290 case X86::BI__builtin_ia32_kshiftliqi: 11291 case X86::BI__builtin_ia32_kshiftlihi: 11292 case X86::BI__builtin_ia32_kshiftlisi: 11293 case X86::BI__builtin_ia32_kshiftlidi: { 11294 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff; 11295 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth(); 11296 11297 if (ShiftVal >= NumElts) 11298 return llvm::Constant::getNullValue(Ops[0]->getType()); 11299 11300 Value *In = getMaskVecValue(*this, Ops[0], NumElts); 11301 11302 uint32_t Indices[64]; 11303 for (unsigned i = 0; i != NumElts; ++i) 11304 Indices[i] = NumElts + i - ShiftVal; 11305 11306 Value *Zero = llvm::Constant::getNullValue(In->getType()); 11307 Value *SV = Builder.CreateShuffleVector(Zero, In, 11308 makeArrayRef(Indices, NumElts), 11309 "kshiftl"); 11310 return Builder.CreateBitCast(SV, Ops[0]->getType()); 11311 } 11312 case X86::BI__builtin_ia32_kshiftriqi: 11313 case X86::BI__builtin_ia32_kshiftrihi: 11314 case X86::BI__builtin_ia32_kshiftrisi: 11315 case X86::BI__builtin_ia32_kshiftridi: { 11316 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff; 11317 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth(); 11318 11319 if (ShiftVal >= NumElts) 11320 return llvm::Constant::getNullValue(Ops[0]->getType()); 11321 11322 Value *In = getMaskVecValue(*this, Ops[0], NumElts); 11323 11324 uint32_t Indices[64]; 11325 for (unsigned i = 0; i != NumElts; ++i) 11326 Indices[i] = i + ShiftVal; 11327 11328 Value *Zero = llvm::Constant::getNullValue(In->getType()); 11329 Value *SV = Builder.CreateShuffleVector(In, Zero, 11330 makeArrayRef(Indices, NumElts), 11331 "kshiftr"); 11332 return Builder.CreateBitCast(SV, Ops[0]->getType()); 11333 } 11334 case X86::BI__builtin_ia32_movnti: 11335 case X86::BI__builtin_ia32_movnti64: 11336 case X86::BI__builtin_ia32_movntsd: 11337 case X86::BI__builtin_ia32_movntss: { 11338 llvm::MDNode *Node = llvm::MDNode::get( 11339 getLLVMContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 11340 11341 Value *Ptr = Ops[0]; 11342 Value *Src = Ops[1]; 11343 11344 // Extract the 0'th element of the source vector. 11345 if (BuiltinID == X86::BI__builtin_ia32_movntsd || 11346 BuiltinID == X86::BI__builtin_ia32_movntss) 11347 Src = Builder.CreateExtractElement(Src, (uint64_t)0, "extract"); 11348 11349 // Convert the type of the pointer to a pointer to the stored type. 11350 Value *BC = Builder.CreateBitCast( 11351 Ptr, llvm::PointerType::getUnqual(Src->getType()), "cast"); 11352 11353 // Unaligned nontemporal store of the scalar value. 11354 StoreInst *SI = Builder.CreateDefaultAlignedStore(Src, BC); 11355 SI->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 11356 SI->setAlignment(llvm::Align::None()); 11357 return SI; 11358 } 11359 // Rotate is a special case of funnel shift - 1st 2 args are the same. 11360 case X86::BI__builtin_ia32_vprotb: 11361 case X86::BI__builtin_ia32_vprotw: 11362 case X86::BI__builtin_ia32_vprotd: 11363 case X86::BI__builtin_ia32_vprotq: 11364 case X86::BI__builtin_ia32_vprotbi: 11365 case X86::BI__builtin_ia32_vprotwi: 11366 case X86::BI__builtin_ia32_vprotdi: 11367 case X86::BI__builtin_ia32_vprotqi: 11368 case X86::BI__builtin_ia32_prold128: 11369 case X86::BI__builtin_ia32_prold256: 11370 case X86::BI__builtin_ia32_prold512: 11371 case X86::BI__builtin_ia32_prolq128: 11372 case X86::BI__builtin_ia32_prolq256: 11373 case X86::BI__builtin_ia32_prolq512: 11374 case X86::BI__builtin_ia32_prolvd128: 11375 case X86::BI__builtin_ia32_prolvd256: 11376 case X86::BI__builtin_ia32_prolvd512: 11377 case X86::BI__builtin_ia32_prolvq128: 11378 case X86::BI__builtin_ia32_prolvq256: 11379 case X86::BI__builtin_ia32_prolvq512: 11380 return EmitX86FunnelShift(*this, Ops[0], Ops[0], Ops[1], false); 11381 case X86::BI__builtin_ia32_prord128: 11382 case X86::BI__builtin_ia32_prord256: 11383 case X86::BI__builtin_ia32_prord512: 11384 case X86::BI__builtin_ia32_prorq128: 11385 case X86::BI__builtin_ia32_prorq256: 11386 case X86::BI__builtin_ia32_prorq512: 11387 case X86::BI__builtin_ia32_prorvd128: 11388 case X86::BI__builtin_ia32_prorvd256: 11389 case X86::BI__builtin_ia32_prorvd512: 11390 case X86::BI__builtin_ia32_prorvq128: 11391 case X86::BI__builtin_ia32_prorvq256: 11392 case X86::BI__builtin_ia32_prorvq512: 11393 return EmitX86FunnelShift(*this, Ops[0], Ops[0], Ops[1], true); 11394 case X86::BI__builtin_ia32_selectb_128: 11395 case X86::BI__builtin_ia32_selectb_256: 11396 case X86::BI__builtin_ia32_selectb_512: 11397 case X86::BI__builtin_ia32_selectw_128: 11398 case X86::BI__builtin_ia32_selectw_256: 11399 case X86::BI__builtin_ia32_selectw_512: 11400 case X86::BI__builtin_ia32_selectd_128: 11401 case X86::BI__builtin_ia32_selectd_256: 11402 case X86::BI__builtin_ia32_selectd_512: 11403 case X86::BI__builtin_ia32_selectq_128: 11404 case X86::BI__builtin_ia32_selectq_256: 11405 case X86::BI__builtin_ia32_selectq_512: 11406 case X86::BI__builtin_ia32_selectps_128: 11407 case X86::BI__builtin_ia32_selectps_256: 11408 case X86::BI__builtin_ia32_selectps_512: 11409 case X86::BI__builtin_ia32_selectpd_128: 11410 case X86::BI__builtin_ia32_selectpd_256: 11411 case X86::BI__builtin_ia32_selectpd_512: 11412 return EmitX86Select(*this, Ops[0], Ops[1], Ops[2]); 11413 case X86::BI__builtin_ia32_selectss_128: 11414 case X86::BI__builtin_ia32_selectsd_128: { 11415 Value *A = Builder.CreateExtractElement(Ops[1], (uint64_t)0); 11416 Value *B = Builder.CreateExtractElement(Ops[2], (uint64_t)0); 11417 A = EmitX86ScalarSelect(*this, Ops[0], A, B); 11418 return Builder.CreateInsertElement(Ops[1], A, (uint64_t)0); 11419 } 11420 case X86::BI__builtin_ia32_cmpb128_mask: 11421 case X86::BI__builtin_ia32_cmpb256_mask: 11422 case X86::BI__builtin_ia32_cmpb512_mask: 11423 case X86::BI__builtin_ia32_cmpw128_mask: 11424 case X86::BI__builtin_ia32_cmpw256_mask: 11425 case X86::BI__builtin_ia32_cmpw512_mask: 11426 case X86::BI__builtin_ia32_cmpd128_mask: 11427 case X86::BI__builtin_ia32_cmpd256_mask: 11428 case X86::BI__builtin_ia32_cmpd512_mask: 11429 case X86::BI__builtin_ia32_cmpq128_mask: 11430 case X86::BI__builtin_ia32_cmpq256_mask: 11431 case X86::BI__builtin_ia32_cmpq512_mask: { 11432 unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7; 11433 return EmitX86MaskedCompare(*this, CC, true, Ops); 11434 } 11435 case X86::BI__builtin_ia32_ucmpb128_mask: 11436 case X86::BI__builtin_ia32_ucmpb256_mask: 11437 case X86::BI__builtin_ia32_ucmpb512_mask: 11438 case X86::BI__builtin_ia32_ucmpw128_mask: 11439 case X86::BI__builtin_ia32_ucmpw256_mask: 11440 case X86::BI__builtin_ia32_ucmpw512_mask: 11441 case X86::BI__builtin_ia32_ucmpd128_mask: 11442 case X86::BI__builtin_ia32_ucmpd256_mask: 11443 case X86::BI__builtin_ia32_ucmpd512_mask: 11444 case X86::BI__builtin_ia32_ucmpq128_mask: 11445 case X86::BI__builtin_ia32_ucmpq256_mask: 11446 case X86::BI__builtin_ia32_ucmpq512_mask: { 11447 unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7; 11448 return EmitX86MaskedCompare(*this, CC, false, Ops); 11449 } 11450 case X86::BI__builtin_ia32_vpcomb: 11451 case X86::BI__builtin_ia32_vpcomw: 11452 case X86::BI__builtin_ia32_vpcomd: 11453 case X86::BI__builtin_ia32_vpcomq: 11454 return EmitX86vpcom(*this, Ops, true); 11455 case X86::BI__builtin_ia32_vpcomub: 11456 case X86::BI__builtin_ia32_vpcomuw: 11457 case X86::BI__builtin_ia32_vpcomud: 11458 case X86::BI__builtin_ia32_vpcomuq: 11459 return EmitX86vpcom(*this, Ops, false); 11460 11461 case X86::BI__builtin_ia32_kortestcqi: 11462 case X86::BI__builtin_ia32_kortestchi: 11463 case X86::BI__builtin_ia32_kortestcsi: 11464 case X86::BI__builtin_ia32_kortestcdi: { 11465 Value *Or = EmitX86MaskLogic(*this, Instruction::Or, Ops); 11466 Value *C = llvm::Constant::getAllOnesValue(Ops[0]->getType()); 11467 Value *Cmp = Builder.CreateICmpEQ(Or, C); 11468 return Builder.CreateZExt(Cmp, ConvertType(E->getType())); 11469 } 11470 case X86::BI__builtin_ia32_kortestzqi: 11471 case X86::BI__builtin_ia32_kortestzhi: 11472 case X86::BI__builtin_ia32_kortestzsi: 11473 case X86::BI__builtin_ia32_kortestzdi: { 11474 Value *Or = EmitX86MaskLogic(*this, Instruction::Or, Ops); 11475 Value *C = llvm::Constant::getNullValue(Ops[0]->getType()); 11476 Value *Cmp = Builder.CreateICmpEQ(Or, C); 11477 return Builder.CreateZExt(Cmp, ConvertType(E->getType())); 11478 } 11479 11480 case X86::BI__builtin_ia32_ktestcqi: 11481 case X86::BI__builtin_ia32_ktestzqi: 11482 case X86::BI__builtin_ia32_ktestchi: 11483 case X86::BI__builtin_ia32_ktestzhi: 11484 case X86::BI__builtin_ia32_ktestcsi: 11485 case X86::BI__builtin_ia32_ktestzsi: 11486 case X86::BI__builtin_ia32_ktestcdi: 11487 case X86::BI__builtin_ia32_ktestzdi: { 11488 Intrinsic::ID IID; 11489 switch (BuiltinID) { 11490 default: llvm_unreachable("Unsupported intrinsic!"); 11491 case X86::BI__builtin_ia32_ktestcqi: 11492 IID = Intrinsic::x86_avx512_ktestc_b; 11493 break; 11494 case X86::BI__builtin_ia32_ktestzqi: 11495 IID = Intrinsic::x86_avx512_ktestz_b; 11496 break; 11497 case X86::BI__builtin_ia32_ktestchi: 11498 IID = Intrinsic::x86_avx512_ktestc_w; 11499 break; 11500 case X86::BI__builtin_ia32_ktestzhi: 11501 IID = Intrinsic::x86_avx512_ktestz_w; 11502 break; 11503 case X86::BI__builtin_ia32_ktestcsi: 11504 IID = Intrinsic::x86_avx512_ktestc_d; 11505 break; 11506 case X86::BI__builtin_ia32_ktestzsi: 11507 IID = Intrinsic::x86_avx512_ktestz_d; 11508 break; 11509 case X86::BI__builtin_ia32_ktestcdi: 11510 IID = Intrinsic::x86_avx512_ktestc_q; 11511 break; 11512 case X86::BI__builtin_ia32_ktestzdi: 11513 IID = Intrinsic::x86_avx512_ktestz_q; 11514 break; 11515 } 11516 11517 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth(); 11518 Value *LHS = getMaskVecValue(*this, Ops[0], NumElts); 11519 Value *RHS = getMaskVecValue(*this, Ops[1], NumElts); 11520 Function *Intr = CGM.getIntrinsic(IID); 11521 return Builder.CreateCall(Intr, {LHS, RHS}); 11522 } 11523 11524 case X86::BI__builtin_ia32_kaddqi: 11525 case X86::BI__builtin_ia32_kaddhi: 11526 case X86::BI__builtin_ia32_kaddsi: 11527 case X86::BI__builtin_ia32_kadddi: { 11528 Intrinsic::ID IID; 11529 switch (BuiltinID) { 11530 default: llvm_unreachable("Unsupported intrinsic!"); 11531 case X86::BI__builtin_ia32_kaddqi: 11532 IID = Intrinsic::x86_avx512_kadd_b; 11533 break; 11534 case X86::BI__builtin_ia32_kaddhi: 11535 IID = Intrinsic::x86_avx512_kadd_w; 11536 break; 11537 case X86::BI__builtin_ia32_kaddsi: 11538 IID = Intrinsic::x86_avx512_kadd_d; 11539 break; 11540 case X86::BI__builtin_ia32_kadddi: 11541 IID = Intrinsic::x86_avx512_kadd_q; 11542 break; 11543 } 11544 11545 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth(); 11546 Value *LHS = getMaskVecValue(*this, Ops[0], NumElts); 11547 Value *RHS = getMaskVecValue(*this, Ops[1], NumElts); 11548 Function *Intr = CGM.getIntrinsic(IID); 11549 Value *Res = Builder.CreateCall(Intr, {LHS, RHS}); 11550 return Builder.CreateBitCast(Res, Ops[0]->getType()); 11551 } 11552 case X86::BI__builtin_ia32_kandqi: 11553 case X86::BI__builtin_ia32_kandhi: 11554 case X86::BI__builtin_ia32_kandsi: 11555 case X86::BI__builtin_ia32_kanddi: 11556 return EmitX86MaskLogic(*this, Instruction::And, Ops); 11557 case X86::BI__builtin_ia32_kandnqi: 11558 case X86::BI__builtin_ia32_kandnhi: 11559 case X86::BI__builtin_ia32_kandnsi: 11560 case X86::BI__builtin_ia32_kandndi: 11561 return EmitX86MaskLogic(*this, Instruction::And, Ops, true); 11562 case X86::BI__builtin_ia32_korqi: 11563 case X86::BI__builtin_ia32_korhi: 11564 case X86::BI__builtin_ia32_korsi: 11565 case X86::BI__builtin_ia32_kordi: 11566 return EmitX86MaskLogic(*this, Instruction::Or, Ops); 11567 case X86::BI__builtin_ia32_kxnorqi: 11568 case X86::BI__builtin_ia32_kxnorhi: 11569 case X86::BI__builtin_ia32_kxnorsi: 11570 case X86::BI__builtin_ia32_kxnordi: 11571 return EmitX86MaskLogic(*this, Instruction::Xor, Ops, true); 11572 case X86::BI__builtin_ia32_kxorqi: 11573 case X86::BI__builtin_ia32_kxorhi: 11574 case X86::BI__builtin_ia32_kxorsi: 11575 case X86::BI__builtin_ia32_kxordi: 11576 return EmitX86MaskLogic(*this, Instruction::Xor, Ops); 11577 case X86::BI__builtin_ia32_knotqi: 11578 case X86::BI__builtin_ia32_knothi: 11579 case X86::BI__builtin_ia32_knotsi: 11580 case X86::BI__builtin_ia32_knotdi: { 11581 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth(); 11582 Value *Res = getMaskVecValue(*this, Ops[0], NumElts); 11583 return Builder.CreateBitCast(Builder.CreateNot(Res), 11584 Ops[0]->getType()); 11585 } 11586 case X86::BI__builtin_ia32_kmovb: 11587 case X86::BI__builtin_ia32_kmovw: 11588 case X86::BI__builtin_ia32_kmovd: 11589 case X86::BI__builtin_ia32_kmovq: { 11590 // Bitcast to vXi1 type and then back to integer. This gets the mask 11591 // register type into the IR, but might be optimized out depending on 11592 // what's around it. 11593 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth(); 11594 Value *Res = getMaskVecValue(*this, Ops[0], NumElts); 11595 return Builder.CreateBitCast(Res, Ops[0]->getType()); 11596 } 11597 11598 case X86::BI__builtin_ia32_kunpckdi: 11599 case X86::BI__builtin_ia32_kunpcksi: 11600 case X86::BI__builtin_ia32_kunpckhi: { 11601 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth(); 11602 Value *LHS = getMaskVecValue(*this, Ops[0], NumElts); 11603 Value *RHS = getMaskVecValue(*this, Ops[1], NumElts); 11604 uint32_t Indices[64]; 11605 for (unsigned i = 0; i != NumElts; ++i) 11606 Indices[i] = i; 11607 11608 // First extract half of each vector. This gives better codegen than 11609 // doing it in a single shuffle. 11610 LHS = Builder.CreateShuffleVector(LHS, LHS, 11611 makeArrayRef(Indices, NumElts / 2)); 11612 RHS = Builder.CreateShuffleVector(RHS, RHS, 11613 makeArrayRef(Indices, NumElts / 2)); 11614 // Concat the vectors. 11615 // NOTE: Operands are swapped to match the intrinsic definition. 11616 Value *Res = Builder.CreateShuffleVector(RHS, LHS, 11617 makeArrayRef(Indices, NumElts)); 11618 return Builder.CreateBitCast(Res, Ops[0]->getType()); 11619 } 11620 11621 case X86::BI__builtin_ia32_vplzcntd_128: 11622 case X86::BI__builtin_ia32_vplzcntd_256: 11623 case X86::BI__builtin_ia32_vplzcntd_512: 11624 case X86::BI__builtin_ia32_vplzcntq_128: 11625 case X86::BI__builtin_ia32_vplzcntq_256: 11626 case X86::BI__builtin_ia32_vplzcntq_512: { 11627 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType()); 11628 return Builder.CreateCall(F, {Ops[0],Builder.getInt1(false)}); 11629 } 11630 case X86::BI__builtin_ia32_sqrtss: 11631 case X86::BI__builtin_ia32_sqrtsd: { 11632 Value *A = Builder.CreateExtractElement(Ops[0], (uint64_t)0); 11633 Function *F = CGM.getIntrinsic(Intrinsic::sqrt, A->getType()); 11634 A = Builder.CreateCall(F, {A}); 11635 return Builder.CreateInsertElement(Ops[0], A, (uint64_t)0); 11636 } 11637 case X86::BI__builtin_ia32_sqrtsd_round_mask: 11638 case X86::BI__builtin_ia32_sqrtss_round_mask: { 11639 unsigned CC = cast<llvm::ConstantInt>(Ops[4])->getZExtValue(); 11640 // Support only if the rounding mode is 4 (AKA CUR_DIRECTION), 11641 // otherwise keep the intrinsic. 11642 if (CC != 4) { 11643 Intrinsic::ID IID = BuiltinID == X86::BI__builtin_ia32_sqrtsd_round_mask ? 11644 Intrinsic::x86_avx512_mask_sqrt_sd : 11645 Intrinsic::x86_avx512_mask_sqrt_ss; 11646 return Builder.CreateCall(CGM.getIntrinsic(IID), Ops); 11647 } 11648 Value *A = Builder.CreateExtractElement(Ops[1], (uint64_t)0); 11649 Function *F = CGM.getIntrinsic(Intrinsic::sqrt, A->getType()); 11650 A = Builder.CreateCall(F, A); 11651 Value *Src = Builder.CreateExtractElement(Ops[2], (uint64_t)0); 11652 A = EmitX86ScalarSelect(*this, Ops[3], A, Src); 11653 return Builder.CreateInsertElement(Ops[0], A, (uint64_t)0); 11654 } 11655 case X86::BI__builtin_ia32_sqrtpd256: 11656 case X86::BI__builtin_ia32_sqrtpd: 11657 case X86::BI__builtin_ia32_sqrtps256: 11658 case X86::BI__builtin_ia32_sqrtps: 11659 case X86::BI__builtin_ia32_sqrtps512: 11660 case X86::BI__builtin_ia32_sqrtpd512: { 11661 if (Ops.size() == 2) { 11662 unsigned CC = cast<llvm::ConstantInt>(Ops[1])->getZExtValue(); 11663 // Support only if the rounding mode is 4 (AKA CUR_DIRECTION), 11664 // otherwise keep the intrinsic. 11665 if (CC != 4) { 11666 Intrinsic::ID IID = BuiltinID == X86::BI__builtin_ia32_sqrtps512 ? 11667 Intrinsic::x86_avx512_sqrt_ps_512 : 11668 Intrinsic::x86_avx512_sqrt_pd_512; 11669 return Builder.CreateCall(CGM.getIntrinsic(IID), Ops); 11670 } 11671 } 11672 Function *F = CGM.getIntrinsic(Intrinsic::sqrt, Ops[0]->getType()); 11673 return Builder.CreateCall(F, Ops[0]); 11674 } 11675 case X86::BI__builtin_ia32_pabsb128: 11676 case X86::BI__builtin_ia32_pabsw128: 11677 case X86::BI__builtin_ia32_pabsd128: 11678 case X86::BI__builtin_ia32_pabsb256: 11679 case X86::BI__builtin_ia32_pabsw256: 11680 case X86::BI__builtin_ia32_pabsd256: 11681 case X86::BI__builtin_ia32_pabsq128: 11682 case X86::BI__builtin_ia32_pabsq256: 11683 case X86::BI__builtin_ia32_pabsb512: 11684 case X86::BI__builtin_ia32_pabsw512: 11685 case X86::BI__builtin_ia32_pabsd512: 11686 case X86::BI__builtin_ia32_pabsq512: 11687 return EmitX86Abs(*this, Ops); 11688 11689 case X86::BI__builtin_ia32_pmaxsb128: 11690 case X86::BI__builtin_ia32_pmaxsw128: 11691 case X86::BI__builtin_ia32_pmaxsd128: 11692 case X86::BI__builtin_ia32_pmaxsq128: 11693 case X86::BI__builtin_ia32_pmaxsb256: 11694 case X86::BI__builtin_ia32_pmaxsw256: 11695 case X86::BI__builtin_ia32_pmaxsd256: 11696 case X86::BI__builtin_ia32_pmaxsq256: 11697 case X86::BI__builtin_ia32_pmaxsb512: 11698 case X86::BI__builtin_ia32_pmaxsw512: 11699 case X86::BI__builtin_ia32_pmaxsd512: 11700 case X86::BI__builtin_ia32_pmaxsq512: 11701 return EmitX86MinMax(*this, ICmpInst::ICMP_SGT, Ops); 11702 case X86::BI__builtin_ia32_pmaxub128: 11703 case X86::BI__builtin_ia32_pmaxuw128: 11704 case X86::BI__builtin_ia32_pmaxud128: 11705 case X86::BI__builtin_ia32_pmaxuq128: 11706 case X86::BI__builtin_ia32_pmaxub256: 11707 case X86::BI__builtin_ia32_pmaxuw256: 11708 case X86::BI__builtin_ia32_pmaxud256: 11709 case X86::BI__builtin_ia32_pmaxuq256: 11710 case X86::BI__builtin_ia32_pmaxub512: 11711 case X86::BI__builtin_ia32_pmaxuw512: 11712 case X86::BI__builtin_ia32_pmaxud512: 11713 case X86::BI__builtin_ia32_pmaxuq512: 11714 return EmitX86MinMax(*this, ICmpInst::ICMP_UGT, Ops); 11715 case X86::BI__builtin_ia32_pminsb128: 11716 case X86::BI__builtin_ia32_pminsw128: 11717 case X86::BI__builtin_ia32_pminsd128: 11718 case X86::BI__builtin_ia32_pminsq128: 11719 case X86::BI__builtin_ia32_pminsb256: 11720 case X86::BI__builtin_ia32_pminsw256: 11721 case X86::BI__builtin_ia32_pminsd256: 11722 case X86::BI__builtin_ia32_pminsq256: 11723 case X86::BI__builtin_ia32_pminsb512: 11724 case X86::BI__builtin_ia32_pminsw512: 11725 case X86::BI__builtin_ia32_pminsd512: 11726 case X86::BI__builtin_ia32_pminsq512: 11727 return EmitX86MinMax(*this, ICmpInst::ICMP_SLT, Ops); 11728 case X86::BI__builtin_ia32_pminub128: 11729 case X86::BI__builtin_ia32_pminuw128: 11730 case X86::BI__builtin_ia32_pminud128: 11731 case X86::BI__builtin_ia32_pminuq128: 11732 case X86::BI__builtin_ia32_pminub256: 11733 case X86::BI__builtin_ia32_pminuw256: 11734 case X86::BI__builtin_ia32_pminud256: 11735 case X86::BI__builtin_ia32_pminuq256: 11736 case X86::BI__builtin_ia32_pminub512: 11737 case X86::BI__builtin_ia32_pminuw512: 11738 case X86::BI__builtin_ia32_pminud512: 11739 case X86::BI__builtin_ia32_pminuq512: 11740 return EmitX86MinMax(*this, ICmpInst::ICMP_ULT, Ops); 11741 11742 case X86::BI__builtin_ia32_pmuludq128: 11743 case X86::BI__builtin_ia32_pmuludq256: 11744 case X86::BI__builtin_ia32_pmuludq512: 11745 return EmitX86Muldq(*this, /*IsSigned*/false, Ops); 11746 11747 case X86::BI__builtin_ia32_pmuldq128: 11748 case X86::BI__builtin_ia32_pmuldq256: 11749 case X86::BI__builtin_ia32_pmuldq512: 11750 return EmitX86Muldq(*this, /*IsSigned*/true, Ops); 11751 11752 case X86::BI__builtin_ia32_pternlogd512_mask: 11753 case X86::BI__builtin_ia32_pternlogq512_mask: 11754 case X86::BI__builtin_ia32_pternlogd128_mask: 11755 case X86::BI__builtin_ia32_pternlogd256_mask: 11756 case X86::BI__builtin_ia32_pternlogq128_mask: 11757 case X86::BI__builtin_ia32_pternlogq256_mask: 11758 return EmitX86Ternlog(*this, /*ZeroMask*/false, Ops); 11759 11760 case X86::BI__builtin_ia32_pternlogd512_maskz: 11761 case X86::BI__builtin_ia32_pternlogq512_maskz: 11762 case X86::BI__builtin_ia32_pternlogd128_maskz: 11763 case X86::BI__builtin_ia32_pternlogd256_maskz: 11764 case X86::BI__builtin_ia32_pternlogq128_maskz: 11765 case X86::BI__builtin_ia32_pternlogq256_maskz: 11766 return EmitX86Ternlog(*this, /*ZeroMask*/true, Ops); 11767 11768 case X86::BI__builtin_ia32_vpshldd128: 11769 case X86::BI__builtin_ia32_vpshldd256: 11770 case X86::BI__builtin_ia32_vpshldd512: 11771 case X86::BI__builtin_ia32_vpshldq128: 11772 case X86::BI__builtin_ia32_vpshldq256: 11773 case X86::BI__builtin_ia32_vpshldq512: 11774 case X86::BI__builtin_ia32_vpshldw128: 11775 case X86::BI__builtin_ia32_vpshldw256: 11776 case X86::BI__builtin_ia32_vpshldw512: 11777 return EmitX86FunnelShift(*this, Ops[0], Ops[1], Ops[2], false); 11778 11779 case X86::BI__builtin_ia32_vpshrdd128: 11780 case X86::BI__builtin_ia32_vpshrdd256: 11781 case X86::BI__builtin_ia32_vpshrdd512: 11782 case X86::BI__builtin_ia32_vpshrdq128: 11783 case X86::BI__builtin_ia32_vpshrdq256: 11784 case X86::BI__builtin_ia32_vpshrdq512: 11785 case X86::BI__builtin_ia32_vpshrdw128: 11786 case X86::BI__builtin_ia32_vpshrdw256: 11787 case X86::BI__builtin_ia32_vpshrdw512: 11788 // Ops 0 and 1 are swapped. 11789 return EmitX86FunnelShift(*this, Ops[1], Ops[0], Ops[2], true); 11790 11791 case X86::BI__builtin_ia32_vpshldvd128: 11792 case X86::BI__builtin_ia32_vpshldvd256: 11793 case X86::BI__builtin_ia32_vpshldvd512: 11794 case X86::BI__builtin_ia32_vpshldvq128: 11795 case X86::BI__builtin_ia32_vpshldvq256: 11796 case X86::BI__builtin_ia32_vpshldvq512: 11797 case X86::BI__builtin_ia32_vpshldvw128: 11798 case X86::BI__builtin_ia32_vpshldvw256: 11799 case X86::BI__builtin_ia32_vpshldvw512: 11800 return EmitX86FunnelShift(*this, Ops[0], Ops[1], Ops[2], false); 11801 11802 case X86::BI__builtin_ia32_vpshrdvd128: 11803 case X86::BI__builtin_ia32_vpshrdvd256: 11804 case X86::BI__builtin_ia32_vpshrdvd512: 11805 case X86::BI__builtin_ia32_vpshrdvq128: 11806 case X86::BI__builtin_ia32_vpshrdvq256: 11807 case X86::BI__builtin_ia32_vpshrdvq512: 11808 case X86::BI__builtin_ia32_vpshrdvw128: 11809 case X86::BI__builtin_ia32_vpshrdvw256: 11810 case X86::BI__builtin_ia32_vpshrdvw512: 11811 // Ops 0 and 1 are swapped. 11812 return EmitX86FunnelShift(*this, Ops[1], Ops[0], Ops[2], true); 11813 11814 // 3DNow! 11815 case X86::BI__builtin_ia32_pswapdsf: 11816 case X86::BI__builtin_ia32_pswapdsi: { 11817 llvm::Type *MMXTy = llvm::Type::getX86_MMXTy(getLLVMContext()); 11818 Ops[0] = Builder.CreateBitCast(Ops[0], MMXTy, "cast"); 11819 llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_3dnowa_pswapd); 11820 return Builder.CreateCall(F, Ops, "pswapd"); 11821 } 11822 case X86::BI__builtin_ia32_rdrand16_step: 11823 case X86::BI__builtin_ia32_rdrand32_step: 11824 case X86::BI__builtin_ia32_rdrand64_step: 11825 case X86::BI__builtin_ia32_rdseed16_step: 11826 case X86::BI__builtin_ia32_rdseed32_step: 11827 case X86::BI__builtin_ia32_rdseed64_step: { 11828 Intrinsic::ID ID; 11829 switch (BuiltinID) { 11830 default: llvm_unreachable("Unsupported intrinsic!"); 11831 case X86::BI__builtin_ia32_rdrand16_step: 11832 ID = Intrinsic::x86_rdrand_16; 11833 break; 11834 case X86::BI__builtin_ia32_rdrand32_step: 11835 ID = Intrinsic::x86_rdrand_32; 11836 break; 11837 case X86::BI__builtin_ia32_rdrand64_step: 11838 ID = Intrinsic::x86_rdrand_64; 11839 break; 11840 case X86::BI__builtin_ia32_rdseed16_step: 11841 ID = Intrinsic::x86_rdseed_16; 11842 break; 11843 case X86::BI__builtin_ia32_rdseed32_step: 11844 ID = Intrinsic::x86_rdseed_32; 11845 break; 11846 case X86::BI__builtin_ia32_rdseed64_step: 11847 ID = Intrinsic::x86_rdseed_64; 11848 break; 11849 } 11850 11851 Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID)); 11852 Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 0), 11853 Ops[0]); 11854 return Builder.CreateExtractValue(Call, 1); 11855 } 11856 case X86::BI__builtin_ia32_addcarryx_u32: 11857 case X86::BI__builtin_ia32_addcarryx_u64: 11858 case X86::BI__builtin_ia32_subborrow_u32: 11859 case X86::BI__builtin_ia32_subborrow_u64: { 11860 Intrinsic::ID IID; 11861 switch (BuiltinID) { 11862 default: llvm_unreachable("Unsupported intrinsic!"); 11863 case X86::BI__builtin_ia32_addcarryx_u32: 11864 IID = Intrinsic::x86_addcarry_32; 11865 break; 11866 case X86::BI__builtin_ia32_addcarryx_u64: 11867 IID = Intrinsic::x86_addcarry_64; 11868 break; 11869 case X86::BI__builtin_ia32_subborrow_u32: 11870 IID = Intrinsic::x86_subborrow_32; 11871 break; 11872 case X86::BI__builtin_ia32_subborrow_u64: 11873 IID = Intrinsic::x86_subborrow_64; 11874 break; 11875 } 11876 11877 Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), 11878 { Ops[0], Ops[1], Ops[2] }); 11879 Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 1), 11880 Ops[3]); 11881 return Builder.CreateExtractValue(Call, 0); 11882 } 11883 11884 case X86::BI__builtin_ia32_fpclassps128_mask: 11885 case X86::BI__builtin_ia32_fpclassps256_mask: 11886 case X86::BI__builtin_ia32_fpclassps512_mask: 11887 case X86::BI__builtin_ia32_fpclasspd128_mask: 11888 case X86::BI__builtin_ia32_fpclasspd256_mask: 11889 case X86::BI__builtin_ia32_fpclasspd512_mask: { 11890 unsigned NumElts = Ops[0]->getType()->getVectorNumElements(); 11891 Value *MaskIn = Ops[2]; 11892 Ops.erase(&Ops[2]); 11893 11894 Intrinsic::ID ID; 11895 switch (BuiltinID) { 11896 default: llvm_unreachable("Unsupported intrinsic!"); 11897 case X86::BI__builtin_ia32_fpclassps128_mask: 11898 ID = Intrinsic::x86_avx512_fpclass_ps_128; 11899 break; 11900 case X86::BI__builtin_ia32_fpclassps256_mask: 11901 ID = Intrinsic::x86_avx512_fpclass_ps_256; 11902 break; 11903 case X86::BI__builtin_ia32_fpclassps512_mask: 11904 ID = Intrinsic::x86_avx512_fpclass_ps_512; 11905 break; 11906 case X86::BI__builtin_ia32_fpclasspd128_mask: 11907 ID = Intrinsic::x86_avx512_fpclass_pd_128; 11908 break; 11909 case X86::BI__builtin_ia32_fpclasspd256_mask: 11910 ID = Intrinsic::x86_avx512_fpclass_pd_256; 11911 break; 11912 case X86::BI__builtin_ia32_fpclasspd512_mask: 11913 ID = Intrinsic::x86_avx512_fpclass_pd_512; 11914 break; 11915 } 11916 11917 Value *Fpclass = Builder.CreateCall(CGM.getIntrinsic(ID), Ops); 11918 return EmitX86MaskedCompareResult(*this, Fpclass, NumElts, MaskIn); 11919 } 11920 11921 case X86::BI__builtin_ia32_vp2intersect_q_512: 11922 case X86::BI__builtin_ia32_vp2intersect_q_256: 11923 case X86::BI__builtin_ia32_vp2intersect_q_128: 11924 case X86::BI__builtin_ia32_vp2intersect_d_512: 11925 case X86::BI__builtin_ia32_vp2intersect_d_256: 11926 case X86::BI__builtin_ia32_vp2intersect_d_128: { 11927 unsigned NumElts = Ops[0]->getType()->getVectorNumElements(); 11928 Intrinsic::ID ID; 11929 11930 switch (BuiltinID) { 11931 default: llvm_unreachable("Unsupported intrinsic!"); 11932 case X86::BI__builtin_ia32_vp2intersect_q_512: 11933 ID = Intrinsic::x86_avx512_vp2intersect_q_512; 11934 break; 11935 case X86::BI__builtin_ia32_vp2intersect_q_256: 11936 ID = Intrinsic::x86_avx512_vp2intersect_q_256; 11937 break; 11938 case X86::BI__builtin_ia32_vp2intersect_q_128: 11939 ID = Intrinsic::x86_avx512_vp2intersect_q_128; 11940 break; 11941 case X86::BI__builtin_ia32_vp2intersect_d_512: 11942 ID = Intrinsic::x86_avx512_vp2intersect_d_512; 11943 break; 11944 case X86::BI__builtin_ia32_vp2intersect_d_256: 11945 ID = Intrinsic::x86_avx512_vp2intersect_d_256; 11946 break; 11947 case X86::BI__builtin_ia32_vp2intersect_d_128: 11948 ID = Intrinsic::x86_avx512_vp2intersect_d_128; 11949 break; 11950 } 11951 11952 Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID), {Ops[0], Ops[1]}); 11953 Value *Result = Builder.CreateExtractValue(Call, 0); 11954 Result = EmitX86MaskedCompareResult(*this, Result, NumElts, nullptr); 11955 Builder.CreateDefaultAlignedStore(Result, Ops[2]); 11956 11957 Result = Builder.CreateExtractValue(Call, 1); 11958 Result = EmitX86MaskedCompareResult(*this, Result, NumElts, nullptr); 11959 return Builder.CreateDefaultAlignedStore(Result, Ops[3]); 11960 } 11961 11962 case X86::BI__builtin_ia32_vpmultishiftqb128: 11963 case X86::BI__builtin_ia32_vpmultishiftqb256: 11964 case X86::BI__builtin_ia32_vpmultishiftqb512: { 11965 Intrinsic::ID ID; 11966 switch (BuiltinID) { 11967 default: llvm_unreachable("Unsupported intrinsic!"); 11968 case X86::BI__builtin_ia32_vpmultishiftqb128: 11969 ID = Intrinsic::x86_avx512_pmultishift_qb_128; 11970 break; 11971 case X86::BI__builtin_ia32_vpmultishiftqb256: 11972 ID = Intrinsic::x86_avx512_pmultishift_qb_256; 11973 break; 11974 case X86::BI__builtin_ia32_vpmultishiftqb512: 11975 ID = Intrinsic::x86_avx512_pmultishift_qb_512; 11976 break; 11977 } 11978 11979 return Builder.CreateCall(CGM.getIntrinsic(ID), Ops); 11980 } 11981 11982 case X86::BI__builtin_ia32_vpshufbitqmb128_mask: 11983 case X86::BI__builtin_ia32_vpshufbitqmb256_mask: 11984 case X86::BI__builtin_ia32_vpshufbitqmb512_mask: { 11985 unsigned NumElts = Ops[0]->getType()->getVectorNumElements(); 11986 Value *MaskIn = Ops[2]; 11987 Ops.erase(&Ops[2]); 11988 11989 Intrinsic::ID ID; 11990 switch (BuiltinID) { 11991 default: llvm_unreachable("Unsupported intrinsic!"); 11992 case X86::BI__builtin_ia32_vpshufbitqmb128_mask: 11993 ID = Intrinsic::x86_avx512_vpshufbitqmb_128; 11994 break; 11995 case X86::BI__builtin_ia32_vpshufbitqmb256_mask: 11996 ID = Intrinsic::x86_avx512_vpshufbitqmb_256; 11997 break; 11998 case X86::BI__builtin_ia32_vpshufbitqmb512_mask: 11999 ID = Intrinsic::x86_avx512_vpshufbitqmb_512; 12000 break; 12001 } 12002 12003 Value *Shufbit = Builder.CreateCall(CGM.getIntrinsic(ID), Ops); 12004 return EmitX86MaskedCompareResult(*this, Shufbit, NumElts, MaskIn); 12005 } 12006 12007 // packed comparison intrinsics 12008 case X86::BI__builtin_ia32_cmpeqps: 12009 case X86::BI__builtin_ia32_cmpeqpd: 12010 return getVectorFCmpIR(CmpInst::FCMP_OEQ); 12011 case X86::BI__builtin_ia32_cmpltps: 12012 case X86::BI__builtin_ia32_cmpltpd: 12013 return getVectorFCmpIR(CmpInst::FCMP_OLT); 12014 case X86::BI__builtin_ia32_cmpleps: 12015 case X86::BI__builtin_ia32_cmplepd: 12016 return getVectorFCmpIR(CmpInst::FCMP_OLE); 12017 case X86::BI__builtin_ia32_cmpunordps: 12018 case X86::BI__builtin_ia32_cmpunordpd: 12019 return getVectorFCmpIR(CmpInst::FCMP_UNO); 12020 case X86::BI__builtin_ia32_cmpneqps: 12021 case X86::BI__builtin_ia32_cmpneqpd: 12022 return getVectorFCmpIR(CmpInst::FCMP_UNE); 12023 case X86::BI__builtin_ia32_cmpnltps: 12024 case X86::BI__builtin_ia32_cmpnltpd: 12025 return getVectorFCmpIR(CmpInst::FCMP_UGE); 12026 case X86::BI__builtin_ia32_cmpnleps: 12027 case X86::BI__builtin_ia32_cmpnlepd: 12028 return getVectorFCmpIR(CmpInst::FCMP_UGT); 12029 case X86::BI__builtin_ia32_cmpordps: 12030 case X86::BI__builtin_ia32_cmpordpd: 12031 return getVectorFCmpIR(CmpInst::FCMP_ORD); 12032 case X86::BI__builtin_ia32_cmpps: 12033 case X86::BI__builtin_ia32_cmpps256: 12034 case X86::BI__builtin_ia32_cmppd: 12035 case X86::BI__builtin_ia32_cmppd256: 12036 case X86::BI__builtin_ia32_cmpps128_mask: 12037 case X86::BI__builtin_ia32_cmpps256_mask: 12038 case X86::BI__builtin_ia32_cmpps512_mask: 12039 case X86::BI__builtin_ia32_cmppd128_mask: 12040 case X86::BI__builtin_ia32_cmppd256_mask: 12041 case X86::BI__builtin_ia32_cmppd512_mask: { 12042 // Lowering vector comparisons to fcmp instructions, while 12043 // ignoring signalling behaviour requested 12044 // ignoring rounding mode requested 12045 // This is is only possible as long as FENV_ACCESS is not implemented. 12046 // See also: https://reviews.llvm.org/D45616 12047 12048 // The third argument is the comparison condition, and integer in the 12049 // range [0, 31] 12050 unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x1f; 12051 12052 // Lowering to IR fcmp instruction. 12053 // Ignoring requested signaling behaviour, 12054 // e.g. both _CMP_GT_OS & _CMP_GT_OQ are translated to FCMP_OGT. 12055 FCmpInst::Predicate Pred; 12056 switch (CC) { 12057 case 0x00: Pred = FCmpInst::FCMP_OEQ; break; 12058 case 0x01: Pred = FCmpInst::FCMP_OLT; break; 12059 case 0x02: Pred = FCmpInst::FCMP_OLE; break; 12060 case 0x03: Pred = FCmpInst::FCMP_UNO; break; 12061 case 0x04: Pred = FCmpInst::FCMP_UNE; break; 12062 case 0x05: Pred = FCmpInst::FCMP_UGE; break; 12063 case 0x06: Pred = FCmpInst::FCMP_UGT; break; 12064 case 0x07: Pred = FCmpInst::FCMP_ORD; break; 12065 case 0x08: Pred = FCmpInst::FCMP_UEQ; break; 12066 case 0x09: Pred = FCmpInst::FCMP_ULT; break; 12067 case 0x0a: Pred = FCmpInst::FCMP_ULE; break; 12068 case 0x0b: Pred = FCmpInst::FCMP_FALSE; break; 12069 case 0x0c: Pred = FCmpInst::FCMP_ONE; break; 12070 case 0x0d: Pred = FCmpInst::FCMP_OGE; break; 12071 case 0x0e: Pred = FCmpInst::FCMP_OGT; break; 12072 case 0x0f: Pred = FCmpInst::FCMP_TRUE; break; 12073 case 0x10: Pred = FCmpInst::FCMP_OEQ; break; 12074 case 0x11: Pred = FCmpInst::FCMP_OLT; break; 12075 case 0x12: Pred = FCmpInst::FCMP_OLE; break; 12076 case 0x13: Pred = FCmpInst::FCMP_UNO; break; 12077 case 0x14: Pred = FCmpInst::FCMP_UNE; break; 12078 case 0x15: Pred = FCmpInst::FCMP_UGE; break; 12079 case 0x16: Pred = FCmpInst::FCMP_UGT; break; 12080 case 0x17: Pred = FCmpInst::FCMP_ORD; break; 12081 case 0x18: Pred = FCmpInst::FCMP_UEQ; break; 12082 case 0x19: Pred = FCmpInst::FCMP_ULT; break; 12083 case 0x1a: Pred = FCmpInst::FCMP_ULE; break; 12084 case 0x1b: Pred = FCmpInst::FCMP_FALSE; break; 12085 case 0x1c: Pred = FCmpInst::FCMP_ONE; break; 12086 case 0x1d: Pred = FCmpInst::FCMP_OGE; break; 12087 case 0x1e: Pred = FCmpInst::FCMP_OGT; break; 12088 case 0x1f: Pred = FCmpInst::FCMP_TRUE; break; 12089 default: llvm_unreachable("Unhandled CC"); 12090 } 12091 12092 // Builtins without the _mask suffix return a vector of integers 12093 // of the same width as the input vectors 12094 switch (BuiltinID) { 12095 case X86::BI__builtin_ia32_cmpps512_mask: 12096 case X86::BI__builtin_ia32_cmppd512_mask: 12097 case X86::BI__builtin_ia32_cmpps128_mask: 12098 case X86::BI__builtin_ia32_cmpps256_mask: 12099 case X86::BI__builtin_ia32_cmppd128_mask: 12100 case X86::BI__builtin_ia32_cmppd256_mask: { 12101 unsigned NumElts = Ops[0]->getType()->getVectorNumElements(); 12102 Value *Cmp = Builder.CreateFCmp(Pred, Ops[0], Ops[1]); 12103 return EmitX86MaskedCompareResult(*this, Cmp, NumElts, Ops[3]); 12104 } 12105 default: 12106 return getVectorFCmpIR(Pred); 12107 } 12108 } 12109 12110 // SSE scalar comparison intrinsics 12111 case X86::BI__builtin_ia32_cmpeqss: 12112 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 0); 12113 case X86::BI__builtin_ia32_cmpltss: 12114 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 1); 12115 case X86::BI__builtin_ia32_cmpless: 12116 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 2); 12117 case X86::BI__builtin_ia32_cmpunordss: 12118 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 3); 12119 case X86::BI__builtin_ia32_cmpneqss: 12120 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 4); 12121 case X86::BI__builtin_ia32_cmpnltss: 12122 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 5); 12123 case X86::BI__builtin_ia32_cmpnless: 12124 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 6); 12125 case X86::BI__builtin_ia32_cmpordss: 12126 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 7); 12127 case X86::BI__builtin_ia32_cmpeqsd: 12128 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 0); 12129 case X86::BI__builtin_ia32_cmpltsd: 12130 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 1); 12131 case X86::BI__builtin_ia32_cmplesd: 12132 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 2); 12133 case X86::BI__builtin_ia32_cmpunordsd: 12134 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 3); 12135 case X86::BI__builtin_ia32_cmpneqsd: 12136 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 4); 12137 case X86::BI__builtin_ia32_cmpnltsd: 12138 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 5); 12139 case X86::BI__builtin_ia32_cmpnlesd: 12140 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 6); 12141 case X86::BI__builtin_ia32_cmpordsd: 12142 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 7); 12143 12144 // AVX512 bf16 intrinsics 12145 case X86::BI__builtin_ia32_cvtneps2bf16_128_mask: { 12146 Ops[2] = getMaskVecValue(*this, Ops[2], 12147 Ops[0]->getType()->getVectorNumElements()); 12148 Intrinsic::ID IID = Intrinsic::x86_avx512bf16_mask_cvtneps2bf16_128; 12149 return Builder.CreateCall(CGM.getIntrinsic(IID), Ops); 12150 } 12151 case X86::BI__builtin_ia32_cvtsbf162ss_32: 12152 return EmitX86CvtBF16ToFloatExpr(*this, E, Ops); 12153 12154 case X86::BI__builtin_ia32_cvtneps2bf16_256_mask: 12155 case X86::BI__builtin_ia32_cvtneps2bf16_512_mask: { 12156 Intrinsic::ID IID; 12157 switch (BuiltinID) { 12158 default: llvm_unreachable("Unsupported intrinsic!"); 12159 case X86::BI__builtin_ia32_cvtneps2bf16_256_mask: 12160 IID = Intrinsic::x86_avx512bf16_cvtneps2bf16_256; 12161 break; 12162 case X86::BI__builtin_ia32_cvtneps2bf16_512_mask: 12163 IID = Intrinsic::x86_avx512bf16_cvtneps2bf16_512; 12164 break; 12165 } 12166 Value *Res = Builder.CreateCall(CGM.getIntrinsic(IID), Ops[0]); 12167 return EmitX86Select(*this, Ops[2], Res, Ops[1]); 12168 } 12169 12170 case X86::BI__emul: 12171 case X86::BI__emulu: { 12172 llvm::Type *Int64Ty = llvm::IntegerType::get(getLLVMContext(), 64); 12173 bool isSigned = (BuiltinID == X86::BI__emul); 12174 Value *LHS = Builder.CreateIntCast(Ops[0], Int64Ty, isSigned); 12175 Value *RHS = Builder.CreateIntCast(Ops[1], Int64Ty, isSigned); 12176 return Builder.CreateMul(LHS, RHS, "", !isSigned, isSigned); 12177 } 12178 case X86::BI__mulh: 12179 case X86::BI__umulh: 12180 case X86::BI_mul128: 12181 case X86::BI_umul128: { 12182 llvm::Type *ResType = ConvertType(E->getType()); 12183 llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128); 12184 12185 bool IsSigned = (BuiltinID == X86::BI__mulh || BuiltinID == X86::BI_mul128); 12186 Value *LHS = Builder.CreateIntCast(Ops[0], Int128Ty, IsSigned); 12187 Value *RHS = Builder.CreateIntCast(Ops[1], Int128Ty, IsSigned); 12188 12189 Value *MulResult, *HigherBits; 12190 if (IsSigned) { 12191 MulResult = Builder.CreateNSWMul(LHS, RHS); 12192 HigherBits = Builder.CreateAShr(MulResult, 64); 12193 } else { 12194 MulResult = Builder.CreateNUWMul(LHS, RHS); 12195 HigherBits = Builder.CreateLShr(MulResult, 64); 12196 } 12197 HigherBits = Builder.CreateIntCast(HigherBits, ResType, IsSigned); 12198 12199 if (BuiltinID == X86::BI__mulh || BuiltinID == X86::BI__umulh) 12200 return HigherBits; 12201 12202 Address HighBitsAddress = EmitPointerWithAlignment(E->getArg(2)); 12203 Builder.CreateStore(HigherBits, HighBitsAddress); 12204 return Builder.CreateIntCast(MulResult, ResType, IsSigned); 12205 } 12206 12207 case X86::BI__faststorefence: { 12208 return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, 12209 llvm::SyncScope::System); 12210 } 12211 case X86::BI__shiftleft128: 12212 case X86::BI__shiftright128: { 12213 // FIXME: Once fshl/fshr no longer add an unneeded and and cmov, do this: 12214 // llvm::Function *F = CGM.getIntrinsic( 12215 // BuiltinID == X86::BI__shiftleft128 ? Intrinsic::fshl : Intrinsic::fshr, 12216 // Int64Ty); 12217 // Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty); 12218 // return Builder.CreateCall(F, Ops); 12219 llvm::Type *Int128Ty = Builder.getInt128Ty(); 12220 Value *HighPart128 = 12221 Builder.CreateShl(Builder.CreateZExt(Ops[1], Int128Ty), 64); 12222 Value *LowPart128 = Builder.CreateZExt(Ops[0], Int128Ty); 12223 Value *Val = Builder.CreateOr(HighPart128, LowPart128); 12224 Value *Amt = Builder.CreateAnd(Builder.CreateZExt(Ops[2], Int128Ty), 12225 llvm::ConstantInt::get(Int128Ty, 0x3f)); 12226 Value *Res; 12227 if (BuiltinID == X86::BI__shiftleft128) 12228 Res = Builder.CreateLShr(Builder.CreateShl(Val, Amt), 64); 12229 else 12230 Res = Builder.CreateLShr(Val, Amt); 12231 return Builder.CreateTrunc(Res, Int64Ty); 12232 } 12233 case X86::BI_ReadWriteBarrier: 12234 case X86::BI_ReadBarrier: 12235 case X86::BI_WriteBarrier: { 12236 return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, 12237 llvm::SyncScope::SingleThread); 12238 } 12239 case X86::BI_BitScanForward: 12240 case X86::BI_BitScanForward64: 12241 return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanForward, E); 12242 case X86::BI_BitScanReverse: 12243 case X86::BI_BitScanReverse64: 12244 return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanReverse, E); 12245 12246 case X86::BI_InterlockedAnd64: 12247 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E); 12248 case X86::BI_InterlockedExchange64: 12249 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E); 12250 case X86::BI_InterlockedExchangeAdd64: 12251 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E); 12252 case X86::BI_InterlockedExchangeSub64: 12253 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E); 12254 case X86::BI_InterlockedOr64: 12255 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E); 12256 case X86::BI_InterlockedXor64: 12257 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E); 12258 case X86::BI_InterlockedDecrement64: 12259 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E); 12260 case X86::BI_InterlockedIncrement64: 12261 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E); 12262 case X86::BI_InterlockedCompareExchange128: { 12263 // InterlockedCompareExchange128 doesn't directly refer to 128bit ints, 12264 // instead it takes pointers to 64bit ints for Destination and 12265 // ComparandResult, and exchange is taken as two 64bit ints (high & low). 12266 // The previous value is written to ComparandResult, and success is 12267 // returned. 12268 12269 llvm::Type *Int128Ty = Builder.getInt128Ty(); 12270 llvm::Type *Int128PtrTy = Int128Ty->getPointerTo(); 12271 12272 Value *Destination = 12273 Builder.CreateBitCast(Ops[0], Int128PtrTy); 12274 Value *ExchangeHigh128 = Builder.CreateZExt(Ops[1], Int128Ty); 12275 Value *ExchangeLow128 = Builder.CreateZExt(Ops[2], Int128Ty); 12276 Address ComparandResult(Builder.CreateBitCast(Ops[3], Int128PtrTy), 12277 getContext().toCharUnitsFromBits(128)); 12278 12279 Value *Exchange = Builder.CreateOr( 12280 Builder.CreateShl(ExchangeHigh128, 64, "", false, false), 12281 ExchangeLow128); 12282 12283 Value *Comparand = Builder.CreateLoad(ComparandResult); 12284 12285 AtomicCmpXchgInst *CXI = 12286 Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange, 12287 AtomicOrdering::SequentiallyConsistent, 12288 AtomicOrdering::SequentiallyConsistent); 12289 CXI->setVolatile(true); 12290 12291 // Write the result back to the inout pointer. 12292 Builder.CreateStore(Builder.CreateExtractValue(CXI, 0), ComparandResult); 12293 12294 // Get the success boolean and zero extend it to i8. 12295 Value *Success = Builder.CreateExtractValue(CXI, 1); 12296 return Builder.CreateZExt(Success, ConvertType(E->getType())); 12297 } 12298 12299 case X86::BI_AddressOfReturnAddress: { 12300 Function *F = 12301 CGM.getIntrinsic(Intrinsic::addressofreturnaddress, AllocaInt8PtrTy); 12302 return Builder.CreateCall(F); 12303 } 12304 case X86::BI__stosb: { 12305 // We treat __stosb as a volatile memset - it may not generate "rep stosb" 12306 // instruction, but it will create a memset that won't be optimized away. 12307 return Builder.CreateMemSet(Ops[0], Ops[1], Ops[2], 1, true); 12308 } 12309 case X86::BI__ud2: 12310 // llvm.trap makes a ud2a instruction on x86. 12311 return EmitTrapCall(Intrinsic::trap); 12312 case X86::BI__int2c: { 12313 // This syscall signals a driver assertion failure in x86 NT kernels. 12314 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false); 12315 llvm::InlineAsm *IA = 12316 llvm::InlineAsm::get(FTy, "int $$0x2c", "", /*hasSideEffects=*/true); 12317 llvm::AttributeList NoReturnAttr = llvm::AttributeList::get( 12318 getLLVMContext(), llvm::AttributeList::FunctionIndex, 12319 llvm::Attribute::NoReturn); 12320 llvm::CallInst *CI = Builder.CreateCall(IA); 12321 CI->setAttributes(NoReturnAttr); 12322 return CI; 12323 } 12324 case X86::BI__readfsbyte: 12325 case X86::BI__readfsword: 12326 case X86::BI__readfsdword: 12327 case X86::BI__readfsqword: { 12328 llvm::Type *IntTy = ConvertType(E->getType()); 12329 Value *Ptr = 12330 Builder.CreateIntToPtr(Ops[0], llvm::PointerType::get(IntTy, 257)); 12331 LoadInst *Load = Builder.CreateAlignedLoad( 12332 IntTy, Ptr, getContext().getTypeAlignInChars(E->getType())); 12333 Load->setVolatile(true); 12334 return Load; 12335 } 12336 case X86::BI__readgsbyte: 12337 case X86::BI__readgsword: 12338 case X86::BI__readgsdword: 12339 case X86::BI__readgsqword: { 12340 llvm::Type *IntTy = ConvertType(E->getType()); 12341 Value *Ptr = 12342 Builder.CreateIntToPtr(Ops[0], llvm::PointerType::get(IntTy, 256)); 12343 LoadInst *Load = Builder.CreateAlignedLoad( 12344 IntTy, Ptr, getContext().getTypeAlignInChars(E->getType())); 12345 Load->setVolatile(true); 12346 return Load; 12347 } 12348 case X86::BI__builtin_ia32_paddsb512: 12349 case X86::BI__builtin_ia32_paddsw512: 12350 case X86::BI__builtin_ia32_paddsb256: 12351 case X86::BI__builtin_ia32_paddsw256: 12352 case X86::BI__builtin_ia32_paddsb128: 12353 case X86::BI__builtin_ia32_paddsw128: 12354 return EmitX86AddSubSatExpr(*this, Ops, true, true); 12355 case X86::BI__builtin_ia32_paddusb512: 12356 case X86::BI__builtin_ia32_paddusw512: 12357 case X86::BI__builtin_ia32_paddusb256: 12358 case X86::BI__builtin_ia32_paddusw256: 12359 case X86::BI__builtin_ia32_paddusb128: 12360 case X86::BI__builtin_ia32_paddusw128: 12361 return EmitX86AddSubSatExpr(*this, Ops, false, true); 12362 case X86::BI__builtin_ia32_psubsb512: 12363 case X86::BI__builtin_ia32_psubsw512: 12364 case X86::BI__builtin_ia32_psubsb256: 12365 case X86::BI__builtin_ia32_psubsw256: 12366 case X86::BI__builtin_ia32_psubsb128: 12367 case X86::BI__builtin_ia32_psubsw128: 12368 return EmitX86AddSubSatExpr(*this, Ops, true, false); 12369 case X86::BI__builtin_ia32_psubusb512: 12370 case X86::BI__builtin_ia32_psubusw512: 12371 case X86::BI__builtin_ia32_psubusb256: 12372 case X86::BI__builtin_ia32_psubusw256: 12373 case X86::BI__builtin_ia32_psubusb128: 12374 case X86::BI__builtin_ia32_psubusw128: 12375 return EmitX86AddSubSatExpr(*this, Ops, false, false); 12376 } 12377 } 12378 12379 Value *CodeGenFunction::EmitPPCBuiltinExpr(unsigned BuiltinID, 12380 const CallExpr *E) { 12381 SmallVector<Value*, 4> Ops; 12382 12383 for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) 12384 Ops.push_back(EmitScalarExpr(E->getArg(i))); 12385 12386 Intrinsic::ID ID = Intrinsic::not_intrinsic; 12387 12388 switch (BuiltinID) { 12389 default: return nullptr; 12390 12391 // __builtin_ppc_get_timebase is GCC 4.8+'s PowerPC-specific name for what we 12392 // call __builtin_readcyclecounter. 12393 case PPC::BI__builtin_ppc_get_timebase: 12394 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::readcyclecounter)); 12395 12396 // vec_ld, vec_xl_be, vec_lvsl, vec_lvsr 12397 case PPC::BI__builtin_altivec_lvx: 12398 case PPC::BI__builtin_altivec_lvxl: 12399 case PPC::BI__builtin_altivec_lvebx: 12400 case PPC::BI__builtin_altivec_lvehx: 12401 case PPC::BI__builtin_altivec_lvewx: 12402 case PPC::BI__builtin_altivec_lvsl: 12403 case PPC::BI__builtin_altivec_lvsr: 12404 case PPC::BI__builtin_vsx_lxvd2x: 12405 case PPC::BI__builtin_vsx_lxvw4x: 12406 case PPC::BI__builtin_vsx_lxvd2x_be: 12407 case PPC::BI__builtin_vsx_lxvw4x_be: 12408 case PPC::BI__builtin_vsx_lxvl: 12409 case PPC::BI__builtin_vsx_lxvll: 12410 { 12411 if(BuiltinID == PPC::BI__builtin_vsx_lxvl || 12412 BuiltinID == PPC::BI__builtin_vsx_lxvll){ 12413 Ops[0] = Builder.CreateBitCast(Ops[0], Int8PtrTy); 12414 }else { 12415 Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy); 12416 Ops[0] = Builder.CreateGEP(Ops[1], Ops[0]); 12417 Ops.pop_back(); 12418 } 12419 12420 switch (BuiltinID) { 12421 default: llvm_unreachable("Unsupported ld/lvsl/lvsr intrinsic!"); 12422 case PPC::BI__builtin_altivec_lvx: 12423 ID = Intrinsic::ppc_altivec_lvx; 12424 break; 12425 case PPC::BI__builtin_altivec_lvxl: 12426 ID = Intrinsic::ppc_altivec_lvxl; 12427 break; 12428 case PPC::BI__builtin_altivec_lvebx: 12429 ID = Intrinsic::ppc_altivec_lvebx; 12430 break; 12431 case PPC::BI__builtin_altivec_lvehx: 12432 ID = Intrinsic::ppc_altivec_lvehx; 12433 break; 12434 case PPC::BI__builtin_altivec_lvewx: 12435 ID = Intrinsic::ppc_altivec_lvewx; 12436 break; 12437 case PPC::BI__builtin_altivec_lvsl: 12438 ID = Intrinsic::ppc_altivec_lvsl; 12439 break; 12440 case PPC::BI__builtin_altivec_lvsr: 12441 ID = Intrinsic::ppc_altivec_lvsr; 12442 break; 12443 case PPC::BI__builtin_vsx_lxvd2x: 12444 ID = Intrinsic::ppc_vsx_lxvd2x; 12445 break; 12446 case PPC::BI__builtin_vsx_lxvw4x: 12447 ID = Intrinsic::ppc_vsx_lxvw4x; 12448 break; 12449 case PPC::BI__builtin_vsx_lxvd2x_be: 12450 ID = Intrinsic::ppc_vsx_lxvd2x_be; 12451 break; 12452 case PPC::BI__builtin_vsx_lxvw4x_be: 12453 ID = Intrinsic::ppc_vsx_lxvw4x_be; 12454 break; 12455 case PPC::BI__builtin_vsx_lxvl: 12456 ID = Intrinsic::ppc_vsx_lxvl; 12457 break; 12458 case PPC::BI__builtin_vsx_lxvll: 12459 ID = Intrinsic::ppc_vsx_lxvll; 12460 break; 12461 } 12462 llvm::Function *F = CGM.getIntrinsic(ID); 12463 return Builder.CreateCall(F, Ops, ""); 12464 } 12465 12466 // vec_st, vec_xst_be 12467 case PPC::BI__builtin_altivec_stvx: 12468 case PPC::BI__builtin_altivec_stvxl: 12469 case PPC::BI__builtin_altivec_stvebx: 12470 case PPC::BI__builtin_altivec_stvehx: 12471 case PPC::BI__builtin_altivec_stvewx: 12472 case PPC::BI__builtin_vsx_stxvd2x: 12473 case PPC::BI__builtin_vsx_stxvw4x: 12474 case PPC::BI__builtin_vsx_stxvd2x_be: 12475 case PPC::BI__builtin_vsx_stxvw4x_be: 12476 case PPC::BI__builtin_vsx_stxvl: 12477 case PPC::BI__builtin_vsx_stxvll: 12478 { 12479 if(BuiltinID == PPC::BI__builtin_vsx_stxvl || 12480 BuiltinID == PPC::BI__builtin_vsx_stxvll ){ 12481 Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy); 12482 }else { 12483 Ops[2] = Builder.CreateBitCast(Ops[2], Int8PtrTy); 12484 Ops[1] = Builder.CreateGEP(Ops[2], Ops[1]); 12485 Ops.pop_back(); 12486 } 12487 12488 switch (BuiltinID) { 12489 default: llvm_unreachable("Unsupported st intrinsic!"); 12490 case PPC::BI__builtin_altivec_stvx: 12491 ID = Intrinsic::ppc_altivec_stvx; 12492 break; 12493 case PPC::BI__builtin_altivec_stvxl: 12494 ID = Intrinsic::ppc_altivec_stvxl; 12495 break; 12496 case PPC::BI__builtin_altivec_stvebx: 12497 ID = Intrinsic::ppc_altivec_stvebx; 12498 break; 12499 case PPC::BI__builtin_altivec_stvehx: 12500 ID = Intrinsic::ppc_altivec_stvehx; 12501 break; 12502 case PPC::BI__builtin_altivec_stvewx: 12503 ID = Intrinsic::ppc_altivec_stvewx; 12504 break; 12505 case PPC::BI__builtin_vsx_stxvd2x: 12506 ID = Intrinsic::ppc_vsx_stxvd2x; 12507 break; 12508 case PPC::BI__builtin_vsx_stxvw4x: 12509 ID = Intrinsic::ppc_vsx_stxvw4x; 12510 break; 12511 case PPC::BI__builtin_vsx_stxvd2x_be: 12512 ID = Intrinsic::ppc_vsx_stxvd2x_be; 12513 break; 12514 case PPC::BI__builtin_vsx_stxvw4x_be: 12515 ID = Intrinsic::ppc_vsx_stxvw4x_be; 12516 break; 12517 case PPC::BI__builtin_vsx_stxvl: 12518 ID = Intrinsic::ppc_vsx_stxvl; 12519 break; 12520 case PPC::BI__builtin_vsx_stxvll: 12521 ID = Intrinsic::ppc_vsx_stxvll; 12522 break; 12523 } 12524 llvm::Function *F = CGM.getIntrinsic(ID); 12525 return Builder.CreateCall(F, Ops, ""); 12526 } 12527 // Square root 12528 case PPC::BI__builtin_vsx_xvsqrtsp: 12529 case PPC::BI__builtin_vsx_xvsqrtdp: { 12530 llvm::Type *ResultType = ConvertType(E->getType()); 12531 Value *X = EmitScalarExpr(E->getArg(0)); 12532 ID = Intrinsic::sqrt; 12533 llvm::Function *F = CGM.getIntrinsic(ID, ResultType); 12534 return Builder.CreateCall(F, X); 12535 } 12536 // Count leading zeros 12537 case PPC::BI__builtin_altivec_vclzb: 12538 case PPC::BI__builtin_altivec_vclzh: 12539 case PPC::BI__builtin_altivec_vclzw: 12540 case PPC::BI__builtin_altivec_vclzd: { 12541 llvm::Type *ResultType = ConvertType(E->getType()); 12542 Value *X = EmitScalarExpr(E->getArg(0)); 12543 Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false); 12544 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType); 12545 return Builder.CreateCall(F, {X, Undef}); 12546 } 12547 case PPC::BI__builtin_altivec_vctzb: 12548 case PPC::BI__builtin_altivec_vctzh: 12549 case PPC::BI__builtin_altivec_vctzw: 12550 case PPC::BI__builtin_altivec_vctzd: { 12551 llvm::Type *ResultType = ConvertType(E->getType()); 12552 Value *X = EmitScalarExpr(E->getArg(0)); 12553 Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false); 12554 Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType); 12555 return Builder.CreateCall(F, {X, Undef}); 12556 } 12557 case PPC::BI__builtin_altivec_vpopcntb: 12558 case PPC::BI__builtin_altivec_vpopcnth: 12559 case PPC::BI__builtin_altivec_vpopcntw: 12560 case PPC::BI__builtin_altivec_vpopcntd: { 12561 llvm::Type *ResultType = ConvertType(E->getType()); 12562 Value *X = EmitScalarExpr(E->getArg(0)); 12563 llvm::Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType); 12564 return Builder.CreateCall(F, X); 12565 } 12566 // Copy sign 12567 case PPC::BI__builtin_vsx_xvcpsgnsp: 12568 case PPC::BI__builtin_vsx_xvcpsgndp: { 12569 llvm::Type *ResultType = ConvertType(E->getType()); 12570 Value *X = EmitScalarExpr(E->getArg(0)); 12571 Value *Y = EmitScalarExpr(E->getArg(1)); 12572 ID = Intrinsic::copysign; 12573 llvm::Function *F = CGM.getIntrinsic(ID, ResultType); 12574 return Builder.CreateCall(F, {X, Y}); 12575 } 12576 // Rounding/truncation 12577 case PPC::BI__builtin_vsx_xvrspip: 12578 case PPC::BI__builtin_vsx_xvrdpip: 12579 case PPC::BI__builtin_vsx_xvrdpim: 12580 case PPC::BI__builtin_vsx_xvrspim: 12581 case PPC::BI__builtin_vsx_xvrdpi: 12582 case PPC::BI__builtin_vsx_xvrspi: 12583 case PPC::BI__builtin_vsx_xvrdpic: 12584 case PPC::BI__builtin_vsx_xvrspic: 12585 case PPC::BI__builtin_vsx_xvrdpiz: 12586 case PPC::BI__builtin_vsx_xvrspiz: { 12587 llvm::Type *ResultType = ConvertType(E->getType()); 12588 Value *X = EmitScalarExpr(E->getArg(0)); 12589 if (BuiltinID == PPC::BI__builtin_vsx_xvrdpim || 12590 BuiltinID == PPC::BI__builtin_vsx_xvrspim) 12591 ID = Intrinsic::floor; 12592 else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpi || 12593 BuiltinID == PPC::BI__builtin_vsx_xvrspi) 12594 ID = Intrinsic::round; 12595 else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpic || 12596 BuiltinID == PPC::BI__builtin_vsx_xvrspic) 12597 ID = Intrinsic::nearbyint; 12598 else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpip || 12599 BuiltinID == PPC::BI__builtin_vsx_xvrspip) 12600 ID = Intrinsic::ceil; 12601 else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpiz || 12602 BuiltinID == PPC::BI__builtin_vsx_xvrspiz) 12603 ID = Intrinsic::trunc; 12604 llvm::Function *F = CGM.getIntrinsic(ID, ResultType); 12605 return Builder.CreateCall(F, X); 12606 } 12607 12608 // Absolute value 12609 case PPC::BI__builtin_vsx_xvabsdp: 12610 case PPC::BI__builtin_vsx_xvabssp: { 12611 llvm::Type *ResultType = ConvertType(E->getType()); 12612 Value *X = EmitScalarExpr(E->getArg(0)); 12613 llvm::Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType); 12614 return Builder.CreateCall(F, X); 12615 } 12616 12617 // FMA variations 12618 case PPC::BI__builtin_vsx_xvmaddadp: 12619 case PPC::BI__builtin_vsx_xvmaddasp: 12620 case PPC::BI__builtin_vsx_xvnmaddadp: 12621 case PPC::BI__builtin_vsx_xvnmaddasp: 12622 case PPC::BI__builtin_vsx_xvmsubadp: 12623 case PPC::BI__builtin_vsx_xvmsubasp: 12624 case PPC::BI__builtin_vsx_xvnmsubadp: 12625 case PPC::BI__builtin_vsx_xvnmsubasp: { 12626 llvm::Type *ResultType = ConvertType(E->getType()); 12627 Value *X = EmitScalarExpr(E->getArg(0)); 12628 Value *Y = EmitScalarExpr(E->getArg(1)); 12629 Value *Z = EmitScalarExpr(E->getArg(2)); 12630 Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType); 12631 llvm::Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType); 12632 switch (BuiltinID) { 12633 case PPC::BI__builtin_vsx_xvmaddadp: 12634 case PPC::BI__builtin_vsx_xvmaddasp: 12635 return Builder.CreateCall(F, {X, Y, Z}); 12636 case PPC::BI__builtin_vsx_xvnmaddadp: 12637 case PPC::BI__builtin_vsx_xvnmaddasp: 12638 return Builder.CreateFSub(Zero, 12639 Builder.CreateCall(F, {X, Y, Z}), "sub"); 12640 case PPC::BI__builtin_vsx_xvmsubadp: 12641 case PPC::BI__builtin_vsx_xvmsubasp: 12642 return Builder.CreateCall(F, 12643 {X, Y, Builder.CreateFSub(Zero, Z, "sub")}); 12644 case PPC::BI__builtin_vsx_xvnmsubadp: 12645 case PPC::BI__builtin_vsx_xvnmsubasp: 12646 Value *FsubRes = 12647 Builder.CreateCall(F, {X, Y, Builder.CreateFSub(Zero, Z, "sub")}); 12648 return Builder.CreateFSub(Zero, FsubRes, "sub"); 12649 } 12650 llvm_unreachable("Unknown FMA operation"); 12651 return nullptr; // Suppress no-return warning 12652 } 12653 12654 case PPC::BI__builtin_vsx_insertword: { 12655 llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxinsertw); 12656 12657 // Third argument is a compile time constant int. It must be clamped to 12658 // to the range [0, 12]. 12659 ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]); 12660 assert(ArgCI && 12661 "Third arg to xxinsertw intrinsic must be constant integer"); 12662 const int64_t MaxIndex = 12; 12663 int64_t Index = clamp(ArgCI->getSExtValue(), 0, MaxIndex); 12664 12665 // The builtin semantics don't exactly match the xxinsertw instructions 12666 // semantics (which ppc_vsx_xxinsertw follows). The builtin extracts the 12667 // word from the first argument, and inserts it in the second argument. The 12668 // instruction extracts the word from its second input register and inserts 12669 // it into its first input register, so swap the first and second arguments. 12670 std::swap(Ops[0], Ops[1]); 12671 12672 // Need to cast the second argument from a vector of unsigned int to a 12673 // vector of long long. 12674 Ops[1] = Builder.CreateBitCast(Ops[1], llvm::VectorType::get(Int64Ty, 2)); 12675 12676 if (getTarget().isLittleEndian()) { 12677 // Create a shuffle mask of (1, 0) 12678 Constant *ShuffleElts[2] = { ConstantInt::get(Int32Ty, 1), 12679 ConstantInt::get(Int32Ty, 0) 12680 }; 12681 Constant *ShuffleMask = llvm::ConstantVector::get(ShuffleElts); 12682 12683 // Reverse the double words in the vector we will extract from. 12684 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int64Ty, 2)); 12685 Ops[0] = Builder.CreateShuffleVector(Ops[0], Ops[0], ShuffleMask); 12686 12687 // Reverse the index. 12688 Index = MaxIndex - Index; 12689 } 12690 12691 // Intrinsic expects the first arg to be a vector of int. 12692 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int32Ty, 4)); 12693 Ops[2] = ConstantInt::getSigned(Int32Ty, Index); 12694 return Builder.CreateCall(F, Ops); 12695 } 12696 12697 case PPC::BI__builtin_vsx_extractuword: { 12698 llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxextractuw); 12699 12700 // Intrinsic expects the first argument to be a vector of doublewords. 12701 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int64Ty, 2)); 12702 12703 // The second argument is a compile time constant int that needs to 12704 // be clamped to the range [0, 12]. 12705 ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[1]); 12706 assert(ArgCI && 12707 "Second Arg to xxextractuw intrinsic must be a constant integer!"); 12708 const int64_t MaxIndex = 12; 12709 int64_t Index = clamp(ArgCI->getSExtValue(), 0, MaxIndex); 12710 12711 if (getTarget().isLittleEndian()) { 12712 // Reverse the index. 12713 Index = MaxIndex - Index; 12714 Ops[1] = ConstantInt::getSigned(Int32Ty, Index); 12715 12716 // Emit the call, then reverse the double words of the results vector. 12717 Value *Call = Builder.CreateCall(F, Ops); 12718 12719 // Create a shuffle mask of (1, 0) 12720 Constant *ShuffleElts[2] = { ConstantInt::get(Int32Ty, 1), 12721 ConstantInt::get(Int32Ty, 0) 12722 }; 12723 Constant *ShuffleMask = llvm::ConstantVector::get(ShuffleElts); 12724 12725 Value *ShuffleCall = Builder.CreateShuffleVector(Call, Call, ShuffleMask); 12726 return ShuffleCall; 12727 } else { 12728 Ops[1] = ConstantInt::getSigned(Int32Ty, Index); 12729 return Builder.CreateCall(F, Ops); 12730 } 12731 } 12732 12733 case PPC::BI__builtin_vsx_xxpermdi: { 12734 ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]); 12735 assert(ArgCI && "Third arg must be constant integer!"); 12736 12737 unsigned Index = ArgCI->getZExtValue(); 12738 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int64Ty, 2)); 12739 Ops[1] = Builder.CreateBitCast(Ops[1], llvm::VectorType::get(Int64Ty, 2)); 12740 12741 // Account for endianness by treating this as just a shuffle. So we use the 12742 // same indices for both LE and BE in order to produce expected results in 12743 // both cases. 12744 unsigned ElemIdx0 = (Index & 2) >> 1; 12745 unsigned ElemIdx1 = 2 + (Index & 1); 12746 12747 Constant *ShuffleElts[2] = {ConstantInt::get(Int32Ty, ElemIdx0), 12748 ConstantInt::get(Int32Ty, ElemIdx1)}; 12749 Constant *ShuffleMask = llvm::ConstantVector::get(ShuffleElts); 12750 12751 Value *ShuffleCall = 12752 Builder.CreateShuffleVector(Ops[0], Ops[1], ShuffleMask); 12753 QualType BIRetType = E->getType(); 12754 auto RetTy = ConvertType(BIRetType); 12755 return Builder.CreateBitCast(ShuffleCall, RetTy); 12756 } 12757 12758 case PPC::BI__builtin_vsx_xxsldwi: { 12759 ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]); 12760 assert(ArgCI && "Third argument must be a compile time constant"); 12761 unsigned Index = ArgCI->getZExtValue() & 0x3; 12762 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int32Ty, 4)); 12763 Ops[1] = Builder.CreateBitCast(Ops[1], llvm::VectorType::get(Int32Ty, 4)); 12764 12765 // Create a shuffle mask 12766 unsigned ElemIdx0; 12767 unsigned ElemIdx1; 12768 unsigned ElemIdx2; 12769 unsigned ElemIdx3; 12770 if (getTarget().isLittleEndian()) { 12771 // Little endian element N comes from element 8+N-Index of the 12772 // concatenated wide vector (of course, using modulo arithmetic on 12773 // the total number of elements). 12774 ElemIdx0 = (8 - Index) % 8; 12775 ElemIdx1 = (9 - Index) % 8; 12776 ElemIdx2 = (10 - Index) % 8; 12777 ElemIdx3 = (11 - Index) % 8; 12778 } else { 12779 // Big endian ElemIdx<N> = Index + N 12780 ElemIdx0 = Index; 12781 ElemIdx1 = Index + 1; 12782 ElemIdx2 = Index + 2; 12783 ElemIdx3 = Index + 3; 12784 } 12785 12786 Constant *ShuffleElts[4] = {ConstantInt::get(Int32Ty, ElemIdx0), 12787 ConstantInt::get(Int32Ty, ElemIdx1), 12788 ConstantInt::get(Int32Ty, ElemIdx2), 12789 ConstantInt::get(Int32Ty, ElemIdx3)}; 12790 12791 Constant *ShuffleMask = llvm::ConstantVector::get(ShuffleElts); 12792 Value *ShuffleCall = 12793 Builder.CreateShuffleVector(Ops[0], Ops[1], ShuffleMask); 12794 QualType BIRetType = E->getType(); 12795 auto RetTy = ConvertType(BIRetType); 12796 return Builder.CreateBitCast(ShuffleCall, RetTy); 12797 } 12798 12799 case PPC::BI__builtin_pack_vector_int128: { 12800 bool isLittleEndian = getTarget().isLittleEndian(); 12801 Value *UndefValue = 12802 llvm::UndefValue::get(llvm::VectorType::get(Ops[0]->getType(), 2)); 12803 Value *Res = Builder.CreateInsertElement( 12804 UndefValue, Ops[0], (uint64_t)(isLittleEndian ? 1 : 0)); 12805 Res = Builder.CreateInsertElement(Res, Ops[1], 12806 (uint64_t)(isLittleEndian ? 0 : 1)); 12807 return Builder.CreateBitCast(Res, ConvertType(E->getType())); 12808 } 12809 12810 case PPC::BI__builtin_unpack_vector_int128: { 12811 ConstantInt *Index = cast<ConstantInt>(Ops[1]); 12812 Value *Unpacked = Builder.CreateBitCast( 12813 Ops[0], llvm::VectorType::get(ConvertType(E->getType()), 2)); 12814 12815 if (getTarget().isLittleEndian()) 12816 Index = ConstantInt::get(Index->getType(), 1 - Index->getZExtValue()); 12817 12818 return Builder.CreateExtractElement(Unpacked, Index); 12819 } 12820 } 12821 } 12822 12823 Value *CodeGenFunction::EmitAMDGPUBuiltinExpr(unsigned BuiltinID, 12824 const CallExpr *E) { 12825 switch (BuiltinID) { 12826 case AMDGPU::BI__builtin_amdgcn_div_scale: 12827 case AMDGPU::BI__builtin_amdgcn_div_scalef: { 12828 // Translate from the intrinsics's struct return to the builtin's out 12829 // argument. 12830 12831 Address FlagOutPtr = EmitPointerWithAlignment(E->getArg(3)); 12832 12833 llvm::Value *X = EmitScalarExpr(E->getArg(0)); 12834 llvm::Value *Y = EmitScalarExpr(E->getArg(1)); 12835 llvm::Value *Z = EmitScalarExpr(E->getArg(2)); 12836 12837 llvm::Function *Callee = CGM.getIntrinsic(Intrinsic::amdgcn_div_scale, 12838 X->getType()); 12839 12840 llvm::Value *Tmp = Builder.CreateCall(Callee, {X, Y, Z}); 12841 12842 llvm::Value *Result = Builder.CreateExtractValue(Tmp, 0); 12843 llvm::Value *Flag = Builder.CreateExtractValue(Tmp, 1); 12844 12845 llvm::Type *RealFlagType 12846 = FlagOutPtr.getPointer()->getType()->getPointerElementType(); 12847 12848 llvm::Value *FlagExt = Builder.CreateZExt(Flag, RealFlagType); 12849 Builder.CreateStore(FlagExt, FlagOutPtr); 12850 return Result; 12851 } 12852 case AMDGPU::BI__builtin_amdgcn_div_fmas: 12853 case AMDGPU::BI__builtin_amdgcn_div_fmasf: { 12854 llvm::Value *Src0 = EmitScalarExpr(E->getArg(0)); 12855 llvm::Value *Src1 = EmitScalarExpr(E->getArg(1)); 12856 llvm::Value *Src2 = EmitScalarExpr(E->getArg(2)); 12857 llvm::Value *Src3 = EmitScalarExpr(E->getArg(3)); 12858 12859 llvm::Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_div_fmas, 12860 Src0->getType()); 12861 llvm::Value *Src3ToBool = Builder.CreateIsNotNull(Src3); 12862 return Builder.CreateCall(F, {Src0, Src1, Src2, Src3ToBool}); 12863 } 12864 12865 case AMDGPU::BI__builtin_amdgcn_ds_swizzle: 12866 return emitBinaryBuiltin(*this, E, Intrinsic::amdgcn_ds_swizzle); 12867 case AMDGPU::BI__builtin_amdgcn_mov_dpp8: 12868 return emitBinaryBuiltin(*this, E, Intrinsic::amdgcn_mov_dpp8); 12869 case AMDGPU::BI__builtin_amdgcn_mov_dpp: 12870 case AMDGPU::BI__builtin_amdgcn_update_dpp: { 12871 llvm::SmallVector<llvm::Value *, 6> Args; 12872 for (unsigned I = 0; I != E->getNumArgs(); ++I) 12873 Args.push_back(EmitScalarExpr(E->getArg(I))); 12874 assert(Args.size() == 5 || Args.size() == 6); 12875 if (Args.size() == 5) 12876 Args.insert(Args.begin(), llvm::UndefValue::get(Args[0]->getType())); 12877 Function *F = 12878 CGM.getIntrinsic(Intrinsic::amdgcn_update_dpp, Args[0]->getType()); 12879 return Builder.CreateCall(F, Args); 12880 } 12881 case AMDGPU::BI__builtin_amdgcn_div_fixup: 12882 case AMDGPU::BI__builtin_amdgcn_div_fixupf: 12883 case AMDGPU::BI__builtin_amdgcn_div_fixuph: 12884 return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_div_fixup); 12885 case AMDGPU::BI__builtin_amdgcn_trig_preop: 12886 case AMDGPU::BI__builtin_amdgcn_trig_preopf: 12887 return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_trig_preop); 12888 case AMDGPU::BI__builtin_amdgcn_rcp: 12889 case AMDGPU::BI__builtin_amdgcn_rcpf: 12890 case AMDGPU::BI__builtin_amdgcn_rcph: 12891 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rcp); 12892 case AMDGPU::BI__builtin_amdgcn_rsq: 12893 case AMDGPU::BI__builtin_amdgcn_rsqf: 12894 case AMDGPU::BI__builtin_amdgcn_rsqh: 12895 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rsq); 12896 case AMDGPU::BI__builtin_amdgcn_rsq_clamp: 12897 case AMDGPU::BI__builtin_amdgcn_rsq_clampf: 12898 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rsq_clamp); 12899 case AMDGPU::BI__builtin_amdgcn_sinf: 12900 case AMDGPU::BI__builtin_amdgcn_sinh: 12901 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_sin); 12902 case AMDGPU::BI__builtin_amdgcn_cosf: 12903 case AMDGPU::BI__builtin_amdgcn_cosh: 12904 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_cos); 12905 case AMDGPU::BI__builtin_amdgcn_log_clampf: 12906 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_log_clamp); 12907 case AMDGPU::BI__builtin_amdgcn_ldexp: 12908 case AMDGPU::BI__builtin_amdgcn_ldexpf: 12909 case AMDGPU::BI__builtin_amdgcn_ldexph: 12910 return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_ldexp); 12911 case AMDGPU::BI__builtin_amdgcn_frexp_mant: 12912 case AMDGPU::BI__builtin_amdgcn_frexp_mantf: 12913 case AMDGPU::BI__builtin_amdgcn_frexp_manth: 12914 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_frexp_mant); 12915 case AMDGPU::BI__builtin_amdgcn_frexp_exp: 12916 case AMDGPU::BI__builtin_amdgcn_frexp_expf: { 12917 Value *Src0 = EmitScalarExpr(E->getArg(0)); 12918 Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_frexp_exp, 12919 { Builder.getInt32Ty(), Src0->getType() }); 12920 return Builder.CreateCall(F, Src0); 12921 } 12922 case AMDGPU::BI__builtin_amdgcn_frexp_exph: { 12923 Value *Src0 = EmitScalarExpr(E->getArg(0)); 12924 Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_frexp_exp, 12925 { Builder.getInt16Ty(), Src0->getType() }); 12926 return Builder.CreateCall(F, Src0); 12927 } 12928 case AMDGPU::BI__builtin_amdgcn_fract: 12929 case AMDGPU::BI__builtin_amdgcn_fractf: 12930 case AMDGPU::BI__builtin_amdgcn_fracth: 12931 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_fract); 12932 case AMDGPU::BI__builtin_amdgcn_lerp: 12933 return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_lerp); 12934 case AMDGPU::BI__builtin_amdgcn_ubfe: 12935 return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_ubfe); 12936 case AMDGPU::BI__builtin_amdgcn_sbfe: 12937 return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_sbfe); 12938 case AMDGPU::BI__builtin_amdgcn_uicmp: 12939 case AMDGPU::BI__builtin_amdgcn_uicmpl: 12940 case AMDGPU::BI__builtin_amdgcn_sicmp: 12941 case AMDGPU::BI__builtin_amdgcn_sicmpl: { 12942 llvm::Value *Src0 = EmitScalarExpr(E->getArg(0)); 12943 llvm::Value *Src1 = EmitScalarExpr(E->getArg(1)); 12944 llvm::Value *Src2 = EmitScalarExpr(E->getArg(2)); 12945 12946 // FIXME-GFX10: How should 32 bit mask be handled? 12947 Value *F = CGM.getIntrinsic(Intrinsic::amdgcn_icmp, 12948 { Builder.getInt64Ty(), Src0->getType() }); 12949 return Builder.CreateCall(F, { Src0, Src1, Src2 }); 12950 } 12951 case AMDGPU::BI__builtin_amdgcn_fcmp: 12952 case AMDGPU::BI__builtin_amdgcn_fcmpf: { 12953 llvm::Value *Src0 = EmitScalarExpr(E->getArg(0)); 12954 llvm::Value *Src1 = EmitScalarExpr(E->getArg(1)); 12955 llvm::Value *Src2 = EmitScalarExpr(E->getArg(2)); 12956 12957 // FIXME-GFX10: How should 32 bit mask be handled? 12958 Value *F = CGM.getIntrinsic(Intrinsic::amdgcn_fcmp, 12959 { Builder.getInt64Ty(), Src0->getType() }); 12960 return Builder.CreateCall(F, { Src0, Src1, Src2 }); 12961 } 12962 case AMDGPU::BI__builtin_amdgcn_class: 12963 case AMDGPU::BI__builtin_amdgcn_classf: 12964 case AMDGPU::BI__builtin_amdgcn_classh: 12965 return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_class); 12966 case AMDGPU::BI__builtin_amdgcn_fmed3f: 12967 case AMDGPU::BI__builtin_amdgcn_fmed3h: 12968 return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_fmed3); 12969 case AMDGPU::BI__builtin_amdgcn_ds_append: 12970 case AMDGPU::BI__builtin_amdgcn_ds_consume: { 12971 Intrinsic::ID Intrin = BuiltinID == AMDGPU::BI__builtin_amdgcn_ds_append ? 12972 Intrinsic::amdgcn_ds_append : Intrinsic::amdgcn_ds_consume; 12973 Value *Src0 = EmitScalarExpr(E->getArg(0)); 12974 Function *F = CGM.getIntrinsic(Intrin, { Src0->getType() }); 12975 return Builder.CreateCall(F, { Src0, Builder.getFalse() }); 12976 } 12977 case AMDGPU::BI__builtin_amdgcn_read_exec: { 12978 CallInst *CI = cast<CallInst>( 12979 EmitSpecialRegisterBuiltin(*this, E, Int64Ty, Int64Ty, true, "exec")); 12980 CI->setConvergent(); 12981 return CI; 12982 } 12983 case AMDGPU::BI__builtin_amdgcn_read_exec_lo: 12984 case AMDGPU::BI__builtin_amdgcn_read_exec_hi: { 12985 StringRef RegName = BuiltinID == AMDGPU::BI__builtin_amdgcn_read_exec_lo ? 12986 "exec_lo" : "exec_hi"; 12987 CallInst *CI = cast<CallInst>( 12988 EmitSpecialRegisterBuiltin(*this, E, Int32Ty, Int32Ty, true, RegName)); 12989 CI->setConvergent(); 12990 return CI; 12991 } 12992 // amdgcn workitem 12993 case AMDGPU::BI__builtin_amdgcn_workitem_id_x: 12994 return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_x, 0, 1024); 12995 case AMDGPU::BI__builtin_amdgcn_workitem_id_y: 12996 return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_y, 0, 1024); 12997 case AMDGPU::BI__builtin_amdgcn_workitem_id_z: 12998 return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_z, 0, 1024); 12999 13000 // r600 intrinsics 13001 case AMDGPU::BI__builtin_r600_recipsqrt_ieee: 13002 case AMDGPU::BI__builtin_r600_recipsqrt_ieeef: 13003 return emitUnaryBuiltin(*this, E, Intrinsic::r600_recipsqrt_ieee); 13004 case AMDGPU::BI__builtin_r600_read_tidig_x: 13005 return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_x, 0, 1024); 13006 case AMDGPU::BI__builtin_r600_read_tidig_y: 13007 return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_y, 0, 1024); 13008 case AMDGPU::BI__builtin_r600_read_tidig_z: 13009 return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_z, 0, 1024); 13010 default: 13011 return nullptr; 13012 } 13013 } 13014 13015 /// Handle a SystemZ function in which the final argument is a pointer 13016 /// to an int that receives the post-instruction CC value. At the LLVM level 13017 /// this is represented as a function that returns a {result, cc} pair. 13018 static Value *EmitSystemZIntrinsicWithCC(CodeGenFunction &CGF, 13019 unsigned IntrinsicID, 13020 const CallExpr *E) { 13021 unsigned NumArgs = E->getNumArgs() - 1; 13022 SmallVector<Value *, 8> Args(NumArgs); 13023 for (unsigned I = 0; I < NumArgs; ++I) 13024 Args[I] = CGF.EmitScalarExpr(E->getArg(I)); 13025 Address CCPtr = CGF.EmitPointerWithAlignment(E->getArg(NumArgs)); 13026 Function *F = CGF.CGM.getIntrinsic(IntrinsicID); 13027 Value *Call = CGF.Builder.CreateCall(F, Args); 13028 Value *CC = CGF.Builder.CreateExtractValue(Call, 1); 13029 CGF.Builder.CreateStore(CC, CCPtr); 13030 return CGF.Builder.CreateExtractValue(Call, 0); 13031 } 13032 13033 Value *CodeGenFunction::EmitSystemZBuiltinExpr(unsigned BuiltinID, 13034 const CallExpr *E) { 13035 switch (BuiltinID) { 13036 case SystemZ::BI__builtin_tbegin: { 13037 Value *TDB = EmitScalarExpr(E->getArg(0)); 13038 Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c); 13039 Function *F = CGM.getIntrinsic(Intrinsic::s390_tbegin); 13040 return Builder.CreateCall(F, {TDB, Control}); 13041 } 13042 case SystemZ::BI__builtin_tbegin_nofloat: { 13043 Value *TDB = EmitScalarExpr(E->getArg(0)); 13044 Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c); 13045 Function *F = CGM.getIntrinsic(Intrinsic::s390_tbegin_nofloat); 13046 return Builder.CreateCall(F, {TDB, Control}); 13047 } 13048 case SystemZ::BI__builtin_tbeginc: { 13049 Value *TDB = llvm::ConstantPointerNull::get(Int8PtrTy); 13050 Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff08); 13051 Function *F = CGM.getIntrinsic(Intrinsic::s390_tbeginc); 13052 return Builder.CreateCall(F, {TDB, Control}); 13053 } 13054 case SystemZ::BI__builtin_tabort: { 13055 Value *Data = EmitScalarExpr(E->getArg(0)); 13056 Function *F = CGM.getIntrinsic(Intrinsic::s390_tabort); 13057 return Builder.CreateCall(F, Builder.CreateSExt(Data, Int64Ty, "tabort")); 13058 } 13059 case SystemZ::BI__builtin_non_tx_store: { 13060 Value *Address = EmitScalarExpr(E->getArg(0)); 13061 Value *Data = EmitScalarExpr(E->getArg(1)); 13062 Function *F = CGM.getIntrinsic(Intrinsic::s390_ntstg); 13063 return Builder.CreateCall(F, {Data, Address}); 13064 } 13065 13066 // Vector builtins. Note that most vector builtins are mapped automatically 13067 // to target-specific LLVM intrinsics. The ones handled specially here can 13068 // be represented via standard LLVM IR, which is preferable to enable common 13069 // LLVM optimizations. 13070 13071 case SystemZ::BI__builtin_s390_vpopctb: 13072 case SystemZ::BI__builtin_s390_vpopcth: 13073 case SystemZ::BI__builtin_s390_vpopctf: 13074 case SystemZ::BI__builtin_s390_vpopctg: { 13075 llvm::Type *ResultType = ConvertType(E->getType()); 13076 Value *X = EmitScalarExpr(E->getArg(0)); 13077 Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType); 13078 return Builder.CreateCall(F, X); 13079 } 13080 13081 case SystemZ::BI__builtin_s390_vclzb: 13082 case SystemZ::BI__builtin_s390_vclzh: 13083 case SystemZ::BI__builtin_s390_vclzf: 13084 case SystemZ::BI__builtin_s390_vclzg: { 13085 llvm::Type *ResultType = ConvertType(E->getType()); 13086 Value *X = EmitScalarExpr(E->getArg(0)); 13087 Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false); 13088 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType); 13089 return Builder.CreateCall(F, {X, Undef}); 13090 } 13091 13092 case SystemZ::BI__builtin_s390_vctzb: 13093 case SystemZ::BI__builtin_s390_vctzh: 13094 case SystemZ::BI__builtin_s390_vctzf: 13095 case SystemZ::BI__builtin_s390_vctzg: { 13096 llvm::Type *ResultType = ConvertType(E->getType()); 13097 Value *X = EmitScalarExpr(E->getArg(0)); 13098 Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false); 13099 Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType); 13100 return Builder.CreateCall(F, {X, Undef}); 13101 } 13102 13103 case SystemZ::BI__builtin_s390_vfsqsb: 13104 case SystemZ::BI__builtin_s390_vfsqdb: { 13105 llvm::Type *ResultType = ConvertType(E->getType()); 13106 Value *X = EmitScalarExpr(E->getArg(0)); 13107 Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType); 13108 return Builder.CreateCall(F, X); 13109 } 13110 case SystemZ::BI__builtin_s390_vfmasb: 13111 case SystemZ::BI__builtin_s390_vfmadb: { 13112 llvm::Type *ResultType = ConvertType(E->getType()); 13113 Value *X = EmitScalarExpr(E->getArg(0)); 13114 Value *Y = EmitScalarExpr(E->getArg(1)); 13115 Value *Z = EmitScalarExpr(E->getArg(2)); 13116 Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType); 13117 return Builder.CreateCall(F, {X, Y, Z}); 13118 } 13119 case SystemZ::BI__builtin_s390_vfmssb: 13120 case SystemZ::BI__builtin_s390_vfmsdb: { 13121 llvm::Type *ResultType = ConvertType(E->getType()); 13122 Value *X = EmitScalarExpr(E->getArg(0)); 13123 Value *Y = EmitScalarExpr(E->getArg(1)); 13124 Value *Z = EmitScalarExpr(E->getArg(2)); 13125 Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType); 13126 Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType); 13127 return Builder.CreateCall(F, {X, Y, Builder.CreateFSub(Zero, Z, "sub")}); 13128 } 13129 case SystemZ::BI__builtin_s390_vfnmasb: 13130 case SystemZ::BI__builtin_s390_vfnmadb: { 13131 llvm::Type *ResultType = ConvertType(E->getType()); 13132 Value *X = EmitScalarExpr(E->getArg(0)); 13133 Value *Y = EmitScalarExpr(E->getArg(1)); 13134 Value *Z = EmitScalarExpr(E->getArg(2)); 13135 Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType); 13136 Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType); 13137 return Builder.CreateFSub(Zero, Builder.CreateCall(F, {X, Y, Z}), "sub"); 13138 } 13139 case SystemZ::BI__builtin_s390_vfnmssb: 13140 case SystemZ::BI__builtin_s390_vfnmsdb: { 13141 llvm::Type *ResultType = ConvertType(E->getType()); 13142 Value *X = EmitScalarExpr(E->getArg(0)); 13143 Value *Y = EmitScalarExpr(E->getArg(1)); 13144 Value *Z = EmitScalarExpr(E->getArg(2)); 13145 Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType); 13146 Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType); 13147 Value *NegZ = Builder.CreateFSub(Zero, Z, "sub"); 13148 return Builder.CreateFSub(Zero, Builder.CreateCall(F, {X, Y, NegZ})); 13149 } 13150 case SystemZ::BI__builtin_s390_vflpsb: 13151 case SystemZ::BI__builtin_s390_vflpdb: { 13152 llvm::Type *ResultType = ConvertType(E->getType()); 13153 Value *X = EmitScalarExpr(E->getArg(0)); 13154 Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType); 13155 return Builder.CreateCall(F, X); 13156 } 13157 case SystemZ::BI__builtin_s390_vflnsb: 13158 case SystemZ::BI__builtin_s390_vflndb: { 13159 llvm::Type *ResultType = ConvertType(E->getType()); 13160 Value *X = EmitScalarExpr(E->getArg(0)); 13161 Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType); 13162 Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType); 13163 return Builder.CreateFSub(Zero, Builder.CreateCall(F, X), "sub"); 13164 } 13165 case SystemZ::BI__builtin_s390_vfisb: 13166 case SystemZ::BI__builtin_s390_vfidb: { 13167 llvm::Type *ResultType = ConvertType(E->getType()); 13168 Value *X = EmitScalarExpr(E->getArg(0)); 13169 // Constant-fold the M4 and M5 mask arguments. 13170 llvm::APSInt M4, M5; 13171 bool IsConstM4 = E->getArg(1)->isIntegerConstantExpr(M4, getContext()); 13172 bool IsConstM5 = E->getArg(2)->isIntegerConstantExpr(M5, getContext()); 13173 assert(IsConstM4 && IsConstM5 && "Constant arg isn't actually constant?"); 13174 (void)IsConstM4; (void)IsConstM5; 13175 // Check whether this instance can be represented via a LLVM standard 13176 // intrinsic. We only support some combinations of M4 and M5. 13177 Intrinsic::ID ID = Intrinsic::not_intrinsic; 13178 switch (M4.getZExtValue()) { 13179 default: break; 13180 case 0: // IEEE-inexact exception allowed 13181 switch (M5.getZExtValue()) { 13182 default: break; 13183 case 0: ID = Intrinsic::rint; break; 13184 } 13185 break; 13186 case 4: // IEEE-inexact exception suppressed 13187 switch (M5.getZExtValue()) { 13188 default: break; 13189 case 0: ID = Intrinsic::nearbyint; break; 13190 case 1: ID = Intrinsic::round; break; 13191 case 5: ID = Intrinsic::trunc; break; 13192 case 6: ID = Intrinsic::ceil; break; 13193 case 7: ID = Intrinsic::floor; break; 13194 } 13195 break; 13196 } 13197 if (ID != Intrinsic::not_intrinsic) { 13198 Function *F = CGM.getIntrinsic(ID, ResultType); 13199 return Builder.CreateCall(F, X); 13200 } 13201 switch (BuiltinID) { 13202 case SystemZ::BI__builtin_s390_vfisb: ID = Intrinsic::s390_vfisb; break; 13203 case SystemZ::BI__builtin_s390_vfidb: ID = Intrinsic::s390_vfidb; break; 13204 default: llvm_unreachable("Unknown BuiltinID"); 13205 } 13206 Function *F = CGM.getIntrinsic(ID); 13207 Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4); 13208 Value *M5Value = llvm::ConstantInt::get(getLLVMContext(), M5); 13209 return Builder.CreateCall(F, {X, M4Value, M5Value}); 13210 } 13211 case SystemZ::BI__builtin_s390_vfmaxsb: 13212 case SystemZ::BI__builtin_s390_vfmaxdb: { 13213 llvm::Type *ResultType = ConvertType(E->getType()); 13214 Value *X = EmitScalarExpr(E->getArg(0)); 13215 Value *Y = EmitScalarExpr(E->getArg(1)); 13216 // Constant-fold the M4 mask argument. 13217 llvm::APSInt M4; 13218 bool IsConstM4 = E->getArg(2)->isIntegerConstantExpr(M4, getContext()); 13219 assert(IsConstM4 && "Constant arg isn't actually constant?"); 13220 (void)IsConstM4; 13221 // Check whether this instance can be represented via a LLVM standard 13222 // intrinsic. We only support some values of M4. 13223 Intrinsic::ID ID = Intrinsic::not_intrinsic; 13224 switch (M4.getZExtValue()) { 13225 default: break; 13226 case 4: ID = Intrinsic::maxnum; break; 13227 } 13228 if (ID != Intrinsic::not_intrinsic) { 13229 Function *F = CGM.getIntrinsic(ID, ResultType); 13230 return Builder.CreateCall(F, {X, Y}); 13231 } 13232 switch (BuiltinID) { 13233 case SystemZ::BI__builtin_s390_vfmaxsb: ID = Intrinsic::s390_vfmaxsb; break; 13234 case SystemZ::BI__builtin_s390_vfmaxdb: ID = Intrinsic::s390_vfmaxdb; break; 13235 default: llvm_unreachable("Unknown BuiltinID"); 13236 } 13237 Function *F = CGM.getIntrinsic(ID); 13238 Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4); 13239 return Builder.CreateCall(F, {X, Y, M4Value}); 13240 } 13241 case SystemZ::BI__builtin_s390_vfminsb: 13242 case SystemZ::BI__builtin_s390_vfmindb: { 13243 llvm::Type *ResultType = ConvertType(E->getType()); 13244 Value *X = EmitScalarExpr(E->getArg(0)); 13245 Value *Y = EmitScalarExpr(E->getArg(1)); 13246 // Constant-fold the M4 mask argument. 13247 llvm::APSInt M4; 13248 bool IsConstM4 = E->getArg(2)->isIntegerConstantExpr(M4, getContext()); 13249 assert(IsConstM4 && "Constant arg isn't actually constant?"); 13250 (void)IsConstM4; 13251 // Check whether this instance can be represented via a LLVM standard 13252 // intrinsic. We only support some values of M4. 13253 Intrinsic::ID ID = Intrinsic::not_intrinsic; 13254 switch (M4.getZExtValue()) { 13255 default: break; 13256 case 4: ID = Intrinsic::minnum; break; 13257 } 13258 if (ID != Intrinsic::not_intrinsic) { 13259 Function *F = CGM.getIntrinsic(ID, ResultType); 13260 return Builder.CreateCall(F, {X, Y}); 13261 } 13262 switch (BuiltinID) { 13263 case SystemZ::BI__builtin_s390_vfminsb: ID = Intrinsic::s390_vfminsb; break; 13264 case SystemZ::BI__builtin_s390_vfmindb: ID = Intrinsic::s390_vfmindb; break; 13265 default: llvm_unreachable("Unknown BuiltinID"); 13266 } 13267 Function *F = CGM.getIntrinsic(ID); 13268 Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4); 13269 return Builder.CreateCall(F, {X, Y, M4Value}); 13270 } 13271 13272 case SystemZ::BI__builtin_s390_vlbrh: 13273 case SystemZ::BI__builtin_s390_vlbrf: 13274 case SystemZ::BI__builtin_s390_vlbrg: { 13275 llvm::Type *ResultType = ConvertType(E->getType()); 13276 Value *X = EmitScalarExpr(E->getArg(0)); 13277 Function *F = CGM.getIntrinsic(Intrinsic::bswap, ResultType); 13278 return Builder.CreateCall(F, X); 13279 } 13280 13281 // Vector intrinsics that output the post-instruction CC value. 13282 13283 #define INTRINSIC_WITH_CC(NAME) \ 13284 case SystemZ::BI__builtin_##NAME: \ 13285 return EmitSystemZIntrinsicWithCC(*this, Intrinsic::NAME, E) 13286 13287 INTRINSIC_WITH_CC(s390_vpkshs); 13288 INTRINSIC_WITH_CC(s390_vpksfs); 13289 INTRINSIC_WITH_CC(s390_vpksgs); 13290 13291 INTRINSIC_WITH_CC(s390_vpklshs); 13292 INTRINSIC_WITH_CC(s390_vpklsfs); 13293 INTRINSIC_WITH_CC(s390_vpklsgs); 13294 13295 INTRINSIC_WITH_CC(s390_vceqbs); 13296 INTRINSIC_WITH_CC(s390_vceqhs); 13297 INTRINSIC_WITH_CC(s390_vceqfs); 13298 INTRINSIC_WITH_CC(s390_vceqgs); 13299 13300 INTRINSIC_WITH_CC(s390_vchbs); 13301 INTRINSIC_WITH_CC(s390_vchhs); 13302 INTRINSIC_WITH_CC(s390_vchfs); 13303 INTRINSIC_WITH_CC(s390_vchgs); 13304 13305 INTRINSIC_WITH_CC(s390_vchlbs); 13306 INTRINSIC_WITH_CC(s390_vchlhs); 13307 INTRINSIC_WITH_CC(s390_vchlfs); 13308 INTRINSIC_WITH_CC(s390_vchlgs); 13309 13310 INTRINSIC_WITH_CC(s390_vfaebs); 13311 INTRINSIC_WITH_CC(s390_vfaehs); 13312 INTRINSIC_WITH_CC(s390_vfaefs); 13313 13314 INTRINSIC_WITH_CC(s390_vfaezbs); 13315 INTRINSIC_WITH_CC(s390_vfaezhs); 13316 INTRINSIC_WITH_CC(s390_vfaezfs); 13317 13318 INTRINSIC_WITH_CC(s390_vfeebs); 13319 INTRINSIC_WITH_CC(s390_vfeehs); 13320 INTRINSIC_WITH_CC(s390_vfeefs); 13321 13322 INTRINSIC_WITH_CC(s390_vfeezbs); 13323 INTRINSIC_WITH_CC(s390_vfeezhs); 13324 INTRINSIC_WITH_CC(s390_vfeezfs); 13325 13326 INTRINSIC_WITH_CC(s390_vfenebs); 13327 INTRINSIC_WITH_CC(s390_vfenehs); 13328 INTRINSIC_WITH_CC(s390_vfenefs); 13329 13330 INTRINSIC_WITH_CC(s390_vfenezbs); 13331 INTRINSIC_WITH_CC(s390_vfenezhs); 13332 INTRINSIC_WITH_CC(s390_vfenezfs); 13333 13334 INTRINSIC_WITH_CC(s390_vistrbs); 13335 INTRINSIC_WITH_CC(s390_vistrhs); 13336 INTRINSIC_WITH_CC(s390_vistrfs); 13337 13338 INTRINSIC_WITH_CC(s390_vstrcbs); 13339 INTRINSIC_WITH_CC(s390_vstrchs); 13340 INTRINSIC_WITH_CC(s390_vstrcfs); 13341 13342 INTRINSIC_WITH_CC(s390_vstrczbs); 13343 INTRINSIC_WITH_CC(s390_vstrczhs); 13344 INTRINSIC_WITH_CC(s390_vstrczfs); 13345 13346 INTRINSIC_WITH_CC(s390_vfcesbs); 13347 INTRINSIC_WITH_CC(s390_vfcedbs); 13348 INTRINSIC_WITH_CC(s390_vfchsbs); 13349 INTRINSIC_WITH_CC(s390_vfchdbs); 13350 INTRINSIC_WITH_CC(s390_vfchesbs); 13351 INTRINSIC_WITH_CC(s390_vfchedbs); 13352 13353 INTRINSIC_WITH_CC(s390_vftcisb); 13354 INTRINSIC_WITH_CC(s390_vftcidb); 13355 13356 INTRINSIC_WITH_CC(s390_vstrsb); 13357 INTRINSIC_WITH_CC(s390_vstrsh); 13358 INTRINSIC_WITH_CC(s390_vstrsf); 13359 13360 INTRINSIC_WITH_CC(s390_vstrszb); 13361 INTRINSIC_WITH_CC(s390_vstrszh); 13362 INTRINSIC_WITH_CC(s390_vstrszf); 13363 13364 #undef INTRINSIC_WITH_CC 13365 13366 default: 13367 return nullptr; 13368 } 13369 } 13370 13371 namespace { 13372 // Helper classes for mapping MMA builtins to particular LLVM intrinsic variant. 13373 struct NVPTXMmaLdstInfo { 13374 unsigned NumResults; // Number of elements to load/store 13375 // Intrinsic IDs for row/col variants. 0 if particular layout is unsupported. 13376 unsigned IID_col; 13377 unsigned IID_row; 13378 }; 13379 13380 #define MMA_INTR(geom_op_type, layout) \ 13381 Intrinsic::nvvm_wmma_##geom_op_type##_##layout##_stride 13382 #define MMA_LDST(n, geom_op_type) \ 13383 { n, MMA_INTR(geom_op_type, col), MMA_INTR(geom_op_type, row) } 13384 13385 static NVPTXMmaLdstInfo getNVPTXMmaLdstInfo(unsigned BuiltinID) { 13386 switch (BuiltinID) { 13387 // FP MMA loads 13388 case NVPTX::BI__hmma_m16n16k16_ld_a: 13389 return MMA_LDST(8, m16n16k16_load_a_f16); 13390 case NVPTX::BI__hmma_m16n16k16_ld_b: 13391 return MMA_LDST(8, m16n16k16_load_b_f16); 13392 case NVPTX::BI__hmma_m16n16k16_ld_c_f16: 13393 return MMA_LDST(4, m16n16k16_load_c_f16); 13394 case NVPTX::BI__hmma_m16n16k16_ld_c_f32: 13395 return MMA_LDST(8, m16n16k16_load_c_f32); 13396 case NVPTX::BI__hmma_m32n8k16_ld_a: 13397 return MMA_LDST(8, m32n8k16_load_a_f16); 13398 case NVPTX::BI__hmma_m32n8k16_ld_b: 13399 return MMA_LDST(8, m32n8k16_load_b_f16); 13400 case NVPTX::BI__hmma_m32n8k16_ld_c_f16: 13401 return MMA_LDST(4, m32n8k16_load_c_f16); 13402 case NVPTX::BI__hmma_m32n8k16_ld_c_f32: 13403 return MMA_LDST(8, m32n8k16_load_c_f32); 13404 case NVPTX::BI__hmma_m8n32k16_ld_a: 13405 return MMA_LDST(8, m8n32k16_load_a_f16); 13406 case NVPTX::BI__hmma_m8n32k16_ld_b: 13407 return MMA_LDST(8, m8n32k16_load_b_f16); 13408 case NVPTX::BI__hmma_m8n32k16_ld_c_f16: 13409 return MMA_LDST(4, m8n32k16_load_c_f16); 13410 case NVPTX::BI__hmma_m8n32k16_ld_c_f32: 13411 return MMA_LDST(8, m8n32k16_load_c_f32); 13412 13413 // Integer MMA loads 13414 case NVPTX::BI__imma_m16n16k16_ld_a_s8: 13415 return MMA_LDST(2, m16n16k16_load_a_s8); 13416 case NVPTX::BI__imma_m16n16k16_ld_a_u8: 13417 return MMA_LDST(2, m16n16k16_load_a_u8); 13418 case NVPTX::BI__imma_m16n16k16_ld_b_s8: 13419 return MMA_LDST(2, m16n16k16_load_b_s8); 13420 case NVPTX::BI__imma_m16n16k16_ld_b_u8: 13421 return MMA_LDST(2, m16n16k16_load_b_u8); 13422 case NVPTX::BI__imma_m16n16k16_ld_c: 13423 return MMA_LDST(8, m16n16k16_load_c_s32); 13424 case NVPTX::BI__imma_m32n8k16_ld_a_s8: 13425 return MMA_LDST(4, m32n8k16_load_a_s8); 13426 case NVPTX::BI__imma_m32n8k16_ld_a_u8: 13427 return MMA_LDST(4, m32n8k16_load_a_u8); 13428 case NVPTX::BI__imma_m32n8k16_ld_b_s8: 13429 return MMA_LDST(1, m32n8k16_load_b_s8); 13430 case NVPTX::BI__imma_m32n8k16_ld_b_u8: 13431 return MMA_LDST(1, m32n8k16_load_b_u8); 13432 case NVPTX::BI__imma_m32n8k16_ld_c: 13433 return MMA_LDST(8, m32n8k16_load_c_s32); 13434 case NVPTX::BI__imma_m8n32k16_ld_a_s8: 13435 return MMA_LDST(1, m8n32k16_load_a_s8); 13436 case NVPTX::BI__imma_m8n32k16_ld_a_u8: 13437 return MMA_LDST(1, m8n32k16_load_a_u8); 13438 case NVPTX::BI__imma_m8n32k16_ld_b_s8: 13439 return MMA_LDST(4, m8n32k16_load_b_s8); 13440 case NVPTX::BI__imma_m8n32k16_ld_b_u8: 13441 return MMA_LDST(4, m8n32k16_load_b_u8); 13442 case NVPTX::BI__imma_m8n32k16_ld_c: 13443 return MMA_LDST(8, m8n32k16_load_c_s32); 13444 13445 // Sub-integer MMA loads. 13446 // Only row/col layout is supported by A/B fragments. 13447 case NVPTX::BI__imma_m8n8k32_ld_a_s4: 13448 return {1, 0, MMA_INTR(m8n8k32_load_a_s4, row)}; 13449 case NVPTX::BI__imma_m8n8k32_ld_a_u4: 13450 return {1, 0, MMA_INTR(m8n8k32_load_a_u4, row)}; 13451 case NVPTX::BI__imma_m8n8k32_ld_b_s4: 13452 return {1, MMA_INTR(m8n8k32_load_b_s4, col), 0}; 13453 case NVPTX::BI__imma_m8n8k32_ld_b_u4: 13454 return {1, MMA_INTR(m8n8k32_load_b_u4, col), 0}; 13455 case NVPTX::BI__imma_m8n8k32_ld_c: 13456 return MMA_LDST(2, m8n8k32_load_c_s32); 13457 case NVPTX::BI__bmma_m8n8k128_ld_a_b1: 13458 return {1, 0, MMA_INTR(m8n8k128_load_a_b1, row)}; 13459 case NVPTX::BI__bmma_m8n8k128_ld_b_b1: 13460 return {1, MMA_INTR(m8n8k128_load_b_b1, col), 0}; 13461 case NVPTX::BI__bmma_m8n8k128_ld_c: 13462 return MMA_LDST(2, m8n8k128_load_c_s32); 13463 13464 // NOTE: We need to follow inconsitent naming scheme used by NVCC. Unlike 13465 // PTX and LLVM IR where stores always use fragment D, NVCC builtins always 13466 // use fragment C for both loads and stores. 13467 // FP MMA stores. 13468 case NVPTX::BI__hmma_m16n16k16_st_c_f16: 13469 return MMA_LDST(4, m16n16k16_store_d_f16); 13470 case NVPTX::BI__hmma_m16n16k16_st_c_f32: 13471 return MMA_LDST(8, m16n16k16_store_d_f32); 13472 case NVPTX::BI__hmma_m32n8k16_st_c_f16: 13473 return MMA_LDST(4, m32n8k16_store_d_f16); 13474 case NVPTX::BI__hmma_m32n8k16_st_c_f32: 13475 return MMA_LDST(8, m32n8k16_store_d_f32); 13476 case NVPTX::BI__hmma_m8n32k16_st_c_f16: 13477 return MMA_LDST(4, m8n32k16_store_d_f16); 13478 case NVPTX::BI__hmma_m8n32k16_st_c_f32: 13479 return MMA_LDST(8, m8n32k16_store_d_f32); 13480 13481 // Integer and sub-integer MMA stores. 13482 // Another naming quirk. Unlike other MMA builtins that use PTX types in the 13483 // name, integer loads/stores use LLVM's i32. 13484 case NVPTX::BI__imma_m16n16k16_st_c_i32: 13485 return MMA_LDST(8, m16n16k16_store_d_s32); 13486 case NVPTX::BI__imma_m32n8k16_st_c_i32: 13487 return MMA_LDST(8, m32n8k16_store_d_s32); 13488 case NVPTX::BI__imma_m8n32k16_st_c_i32: 13489 return MMA_LDST(8, m8n32k16_store_d_s32); 13490 case NVPTX::BI__imma_m8n8k32_st_c_i32: 13491 return MMA_LDST(2, m8n8k32_store_d_s32); 13492 case NVPTX::BI__bmma_m8n8k128_st_c_i32: 13493 return MMA_LDST(2, m8n8k128_store_d_s32); 13494 13495 default: 13496 llvm_unreachable("Unknown MMA builtin"); 13497 } 13498 } 13499 #undef MMA_LDST 13500 #undef MMA_INTR 13501 13502 13503 struct NVPTXMmaInfo { 13504 unsigned NumEltsA; 13505 unsigned NumEltsB; 13506 unsigned NumEltsC; 13507 unsigned NumEltsD; 13508 std::array<unsigned, 8> Variants; 13509 13510 unsigned getMMAIntrinsic(int Layout, bool Satf) { 13511 unsigned Index = Layout * 2 + Satf; 13512 if (Index >= Variants.size()) 13513 return 0; 13514 return Variants[Index]; 13515 } 13516 }; 13517 13518 // Returns an intrinsic that matches Layout and Satf for valid combinations of 13519 // Layout and Satf, 0 otherwise. 13520 static NVPTXMmaInfo getNVPTXMmaInfo(unsigned BuiltinID) { 13521 // clang-format off 13522 #define MMA_VARIANTS(geom, type) {{ \ 13523 Intrinsic::nvvm_wmma_##geom##_mma_row_row_##type, \ 13524 Intrinsic::nvvm_wmma_##geom##_mma_row_row_##type##_satfinite, \ 13525 Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type, \ 13526 Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type##_satfinite, \ 13527 Intrinsic::nvvm_wmma_##geom##_mma_col_row_##type, \ 13528 Intrinsic::nvvm_wmma_##geom##_mma_col_row_##type##_satfinite, \ 13529 Intrinsic::nvvm_wmma_##geom##_mma_col_col_##type, \ 13530 Intrinsic::nvvm_wmma_##geom##_mma_col_col_##type##_satfinite \ 13531 }} 13532 // Sub-integer MMA only supports row.col layout. 13533 #define MMA_VARIANTS_I4(geom, type) {{ \ 13534 0, \ 13535 0, \ 13536 Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type, \ 13537 Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type##_satfinite, \ 13538 0, \ 13539 0, \ 13540 0, \ 13541 0 \ 13542 }} 13543 // b1 MMA does not support .satfinite. 13544 #define MMA_VARIANTS_B1(geom, type) {{ \ 13545 0, \ 13546 0, \ 13547 Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type, \ 13548 0, \ 13549 0, \ 13550 0, \ 13551 0, \ 13552 0 \ 13553 }} 13554 // clang-format on 13555 switch (BuiltinID) { 13556 // FP MMA 13557 // Note that 'type' argument of MMA_VARIANT uses D_C notation, while 13558 // NumEltsN of return value are ordered as A,B,C,D. 13559 case NVPTX::BI__hmma_m16n16k16_mma_f16f16: 13560 return {8, 8, 4, 4, MMA_VARIANTS(m16n16k16, f16_f16)}; 13561 case NVPTX::BI__hmma_m16n16k16_mma_f32f16: 13562 return {8, 8, 4, 8, MMA_VARIANTS(m16n16k16, f32_f16)}; 13563 case NVPTX::BI__hmma_m16n16k16_mma_f16f32: 13564 return {8, 8, 8, 4, MMA_VARIANTS(m16n16k16, f16_f32)}; 13565 case NVPTX::BI__hmma_m16n16k16_mma_f32f32: 13566 return {8, 8, 8, 8, MMA_VARIANTS(m16n16k16, f32_f32)}; 13567 case NVPTX::BI__hmma_m32n8k16_mma_f16f16: 13568 return {8, 8, 4, 4, MMA_VARIANTS(m32n8k16, f16_f16)}; 13569 case NVPTX::BI__hmma_m32n8k16_mma_f32f16: 13570 return {8, 8, 4, 8, MMA_VARIANTS(m32n8k16, f32_f16)}; 13571 case NVPTX::BI__hmma_m32n8k16_mma_f16f32: 13572 return {8, 8, 8, 4, MMA_VARIANTS(m32n8k16, f16_f32)}; 13573 case NVPTX::BI__hmma_m32n8k16_mma_f32f32: 13574 return {8, 8, 8, 8, MMA_VARIANTS(m32n8k16, f32_f32)}; 13575 case NVPTX::BI__hmma_m8n32k16_mma_f16f16: 13576 return {8, 8, 4, 4, MMA_VARIANTS(m8n32k16, f16_f16)}; 13577 case NVPTX::BI__hmma_m8n32k16_mma_f32f16: 13578 return {8, 8, 4, 8, MMA_VARIANTS(m8n32k16, f32_f16)}; 13579 case NVPTX::BI__hmma_m8n32k16_mma_f16f32: 13580 return {8, 8, 8, 4, MMA_VARIANTS(m8n32k16, f16_f32)}; 13581 case NVPTX::BI__hmma_m8n32k16_mma_f32f32: 13582 return {8, 8, 8, 8, MMA_VARIANTS(m8n32k16, f32_f32)}; 13583 13584 // Integer MMA 13585 case NVPTX::BI__imma_m16n16k16_mma_s8: 13586 return {2, 2, 8, 8, MMA_VARIANTS(m16n16k16, s8)}; 13587 case NVPTX::BI__imma_m16n16k16_mma_u8: 13588 return {2, 2, 8, 8, MMA_VARIANTS(m16n16k16, u8)}; 13589 case NVPTX::BI__imma_m32n8k16_mma_s8: 13590 return {4, 1, 8, 8, MMA_VARIANTS(m32n8k16, s8)}; 13591 case NVPTX::BI__imma_m32n8k16_mma_u8: 13592 return {4, 1, 8, 8, MMA_VARIANTS(m32n8k16, u8)}; 13593 case NVPTX::BI__imma_m8n32k16_mma_s8: 13594 return {1, 4, 8, 8, MMA_VARIANTS(m8n32k16, s8)}; 13595 case NVPTX::BI__imma_m8n32k16_mma_u8: 13596 return {1, 4, 8, 8, MMA_VARIANTS(m8n32k16, u8)}; 13597 13598 // Sub-integer MMA 13599 case NVPTX::BI__imma_m8n8k32_mma_s4: 13600 return {1, 1, 2, 2, MMA_VARIANTS_I4(m8n8k32, s4)}; 13601 case NVPTX::BI__imma_m8n8k32_mma_u4: 13602 return {1, 1, 2, 2, MMA_VARIANTS_I4(m8n8k32, u4)}; 13603 case NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1: 13604 return {1, 1, 2, 2, MMA_VARIANTS_B1(m8n8k128, b1)}; 13605 default: 13606 llvm_unreachable("Unexpected builtin ID."); 13607 } 13608 #undef MMA_VARIANTS 13609 #undef MMA_VARIANTS_I4 13610 #undef MMA_VARIANTS_B1 13611 } 13612 13613 } // namespace 13614 13615 Value * 13616 CodeGenFunction::EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E) { 13617 auto MakeLdg = [&](unsigned IntrinsicID) { 13618 Value *Ptr = EmitScalarExpr(E->getArg(0)); 13619 clang::CharUnits Align = 13620 getNaturalPointeeTypeAlignment(E->getArg(0)->getType()); 13621 return Builder.CreateCall( 13622 CGM.getIntrinsic(IntrinsicID, {Ptr->getType()->getPointerElementType(), 13623 Ptr->getType()}), 13624 {Ptr, ConstantInt::get(Builder.getInt32Ty(), Align.getQuantity())}); 13625 }; 13626 auto MakeScopedAtomic = [&](unsigned IntrinsicID) { 13627 Value *Ptr = EmitScalarExpr(E->getArg(0)); 13628 return Builder.CreateCall( 13629 CGM.getIntrinsic(IntrinsicID, {Ptr->getType()->getPointerElementType(), 13630 Ptr->getType()}), 13631 {Ptr, EmitScalarExpr(E->getArg(1))}); 13632 }; 13633 switch (BuiltinID) { 13634 case NVPTX::BI__nvvm_atom_add_gen_i: 13635 case NVPTX::BI__nvvm_atom_add_gen_l: 13636 case NVPTX::BI__nvvm_atom_add_gen_ll: 13637 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Add, E); 13638 13639 case NVPTX::BI__nvvm_atom_sub_gen_i: 13640 case NVPTX::BI__nvvm_atom_sub_gen_l: 13641 case NVPTX::BI__nvvm_atom_sub_gen_ll: 13642 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Sub, E); 13643 13644 case NVPTX::BI__nvvm_atom_and_gen_i: 13645 case NVPTX::BI__nvvm_atom_and_gen_l: 13646 case NVPTX::BI__nvvm_atom_and_gen_ll: 13647 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::And, E); 13648 13649 case NVPTX::BI__nvvm_atom_or_gen_i: 13650 case NVPTX::BI__nvvm_atom_or_gen_l: 13651 case NVPTX::BI__nvvm_atom_or_gen_ll: 13652 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Or, E); 13653 13654 case NVPTX::BI__nvvm_atom_xor_gen_i: 13655 case NVPTX::BI__nvvm_atom_xor_gen_l: 13656 case NVPTX::BI__nvvm_atom_xor_gen_ll: 13657 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xor, E); 13658 13659 case NVPTX::BI__nvvm_atom_xchg_gen_i: 13660 case NVPTX::BI__nvvm_atom_xchg_gen_l: 13661 case NVPTX::BI__nvvm_atom_xchg_gen_ll: 13662 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xchg, E); 13663 13664 case NVPTX::BI__nvvm_atom_max_gen_i: 13665 case NVPTX::BI__nvvm_atom_max_gen_l: 13666 case NVPTX::BI__nvvm_atom_max_gen_ll: 13667 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Max, E); 13668 13669 case NVPTX::BI__nvvm_atom_max_gen_ui: 13670 case NVPTX::BI__nvvm_atom_max_gen_ul: 13671 case NVPTX::BI__nvvm_atom_max_gen_ull: 13672 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMax, E); 13673 13674 case NVPTX::BI__nvvm_atom_min_gen_i: 13675 case NVPTX::BI__nvvm_atom_min_gen_l: 13676 case NVPTX::BI__nvvm_atom_min_gen_ll: 13677 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Min, E); 13678 13679 case NVPTX::BI__nvvm_atom_min_gen_ui: 13680 case NVPTX::BI__nvvm_atom_min_gen_ul: 13681 case NVPTX::BI__nvvm_atom_min_gen_ull: 13682 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMin, E); 13683 13684 case NVPTX::BI__nvvm_atom_cas_gen_i: 13685 case NVPTX::BI__nvvm_atom_cas_gen_l: 13686 case NVPTX::BI__nvvm_atom_cas_gen_ll: 13687 // __nvvm_atom_cas_gen_* should return the old value rather than the 13688 // success flag. 13689 return MakeAtomicCmpXchgValue(*this, E, /*ReturnBool=*/false); 13690 13691 case NVPTX::BI__nvvm_atom_add_gen_f: 13692 case NVPTX::BI__nvvm_atom_add_gen_d: { 13693 Value *Ptr = EmitScalarExpr(E->getArg(0)); 13694 Value *Val = EmitScalarExpr(E->getArg(1)); 13695 return Builder.CreateAtomicRMW(llvm::AtomicRMWInst::FAdd, Ptr, Val, 13696 AtomicOrdering::SequentiallyConsistent); 13697 } 13698 13699 case NVPTX::BI__nvvm_atom_inc_gen_ui: { 13700 Value *Ptr = EmitScalarExpr(E->getArg(0)); 13701 Value *Val = EmitScalarExpr(E->getArg(1)); 13702 Function *FnALI32 = 13703 CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_inc_32, Ptr->getType()); 13704 return Builder.CreateCall(FnALI32, {Ptr, Val}); 13705 } 13706 13707 case NVPTX::BI__nvvm_atom_dec_gen_ui: { 13708 Value *Ptr = EmitScalarExpr(E->getArg(0)); 13709 Value *Val = EmitScalarExpr(E->getArg(1)); 13710 Function *FnALD32 = 13711 CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_dec_32, Ptr->getType()); 13712 return Builder.CreateCall(FnALD32, {Ptr, Val}); 13713 } 13714 13715 case NVPTX::BI__nvvm_ldg_c: 13716 case NVPTX::BI__nvvm_ldg_c2: 13717 case NVPTX::BI__nvvm_ldg_c4: 13718 case NVPTX::BI__nvvm_ldg_s: 13719 case NVPTX::BI__nvvm_ldg_s2: 13720 case NVPTX::BI__nvvm_ldg_s4: 13721 case NVPTX::BI__nvvm_ldg_i: 13722 case NVPTX::BI__nvvm_ldg_i2: 13723 case NVPTX::BI__nvvm_ldg_i4: 13724 case NVPTX::BI__nvvm_ldg_l: 13725 case NVPTX::BI__nvvm_ldg_ll: 13726 case NVPTX::BI__nvvm_ldg_ll2: 13727 case NVPTX::BI__nvvm_ldg_uc: 13728 case NVPTX::BI__nvvm_ldg_uc2: 13729 case NVPTX::BI__nvvm_ldg_uc4: 13730 case NVPTX::BI__nvvm_ldg_us: 13731 case NVPTX::BI__nvvm_ldg_us2: 13732 case NVPTX::BI__nvvm_ldg_us4: 13733 case NVPTX::BI__nvvm_ldg_ui: 13734 case NVPTX::BI__nvvm_ldg_ui2: 13735 case NVPTX::BI__nvvm_ldg_ui4: 13736 case NVPTX::BI__nvvm_ldg_ul: 13737 case NVPTX::BI__nvvm_ldg_ull: 13738 case NVPTX::BI__nvvm_ldg_ull2: 13739 // PTX Interoperability section 2.2: "For a vector with an even number of 13740 // elements, its alignment is set to number of elements times the alignment 13741 // of its member: n*alignof(t)." 13742 return MakeLdg(Intrinsic::nvvm_ldg_global_i); 13743 case NVPTX::BI__nvvm_ldg_f: 13744 case NVPTX::BI__nvvm_ldg_f2: 13745 case NVPTX::BI__nvvm_ldg_f4: 13746 case NVPTX::BI__nvvm_ldg_d: 13747 case NVPTX::BI__nvvm_ldg_d2: 13748 return MakeLdg(Intrinsic::nvvm_ldg_global_f); 13749 13750 case NVPTX::BI__nvvm_atom_cta_add_gen_i: 13751 case NVPTX::BI__nvvm_atom_cta_add_gen_l: 13752 case NVPTX::BI__nvvm_atom_cta_add_gen_ll: 13753 return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_i_cta); 13754 case NVPTX::BI__nvvm_atom_sys_add_gen_i: 13755 case NVPTX::BI__nvvm_atom_sys_add_gen_l: 13756 case NVPTX::BI__nvvm_atom_sys_add_gen_ll: 13757 return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_i_sys); 13758 case NVPTX::BI__nvvm_atom_cta_add_gen_f: 13759 case NVPTX::BI__nvvm_atom_cta_add_gen_d: 13760 return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_f_cta); 13761 case NVPTX::BI__nvvm_atom_sys_add_gen_f: 13762 case NVPTX::BI__nvvm_atom_sys_add_gen_d: 13763 return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_f_sys); 13764 case NVPTX::BI__nvvm_atom_cta_xchg_gen_i: 13765 case NVPTX::BI__nvvm_atom_cta_xchg_gen_l: 13766 case NVPTX::BI__nvvm_atom_cta_xchg_gen_ll: 13767 return MakeScopedAtomic(Intrinsic::nvvm_atomic_exch_gen_i_cta); 13768 case NVPTX::BI__nvvm_atom_sys_xchg_gen_i: 13769 case NVPTX::BI__nvvm_atom_sys_xchg_gen_l: 13770 case NVPTX::BI__nvvm_atom_sys_xchg_gen_ll: 13771 return MakeScopedAtomic(Intrinsic::nvvm_atomic_exch_gen_i_sys); 13772 case NVPTX::BI__nvvm_atom_cta_max_gen_i: 13773 case NVPTX::BI__nvvm_atom_cta_max_gen_ui: 13774 case NVPTX::BI__nvvm_atom_cta_max_gen_l: 13775 case NVPTX::BI__nvvm_atom_cta_max_gen_ul: 13776 case NVPTX::BI__nvvm_atom_cta_max_gen_ll: 13777 case NVPTX::BI__nvvm_atom_cta_max_gen_ull: 13778 return MakeScopedAtomic(Intrinsic::nvvm_atomic_max_gen_i_cta); 13779 case NVPTX::BI__nvvm_atom_sys_max_gen_i: 13780 case NVPTX::BI__nvvm_atom_sys_max_gen_ui: 13781 case NVPTX::BI__nvvm_atom_sys_max_gen_l: 13782 case NVPTX::BI__nvvm_atom_sys_max_gen_ul: 13783 case NVPTX::BI__nvvm_atom_sys_max_gen_ll: 13784 case NVPTX::BI__nvvm_atom_sys_max_gen_ull: 13785 return MakeScopedAtomic(Intrinsic::nvvm_atomic_max_gen_i_sys); 13786 case NVPTX::BI__nvvm_atom_cta_min_gen_i: 13787 case NVPTX::BI__nvvm_atom_cta_min_gen_ui: 13788 case NVPTX::BI__nvvm_atom_cta_min_gen_l: 13789 case NVPTX::BI__nvvm_atom_cta_min_gen_ul: 13790 case NVPTX::BI__nvvm_atom_cta_min_gen_ll: 13791 case NVPTX::BI__nvvm_atom_cta_min_gen_ull: 13792 return MakeScopedAtomic(Intrinsic::nvvm_atomic_min_gen_i_cta); 13793 case NVPTX::BI__nvvm_atom_sys_min_gen_i: 13794 case NVPTX::BI__nvvm_atom_sys_min_gen_ui: 13795 case NVPTX::BI__nvvm_atom_sys_min_gen_l: 13796 case NVPTX::BI__nvvm_atom_sys_min_gen_ul: 13797 case NVPTX::BI__nvvm_atom_sys_min_gen_ll: 13798 case NVPTX::BI__nvvm_atom_sys_min_gen_ull: 13799 return MakeScopedAtomic(Intrinsic::nvvm_atomic_min_gen_i_sys); 13800 case NVPTX::BI__nvvm_atom_cta_inc_gen_ui: 13801 return MakeScopedAtomic(Intrinsic::nvvm_atomic_inc_gen_i_cta); 13802 case NVPTX::BI__nvvm_atom_cta_dec_gen_ui: 13803 return MakeScopedAtomic(Intrinsic::nvvm_atomic_dec_gen_i_cta); 13804 case NVPTX::BI__nvvm_atom_sys_inc_gen_ui: 13805 return MakeScopedAtomic(Intrinsic::nvvm_atomic_inc_gen_i_sys); 13806 case NVPTX::BI__nvvm_atom_sys_dec_gen_ui: 13807 return MakeScopedAtomic(Intrinsic::nvvm_atomic_dec_gen_i_sys); 13808 case NVPTX::BI__nvvm_atom_cta_and_gen_i: 13809 case NVPTX::BI__nvvm_atom_cta_and_gen_l: 13810 case NVPTX::BI__nvvm_atom_cta_and_gen_ll: 13811 return MakeScopedAtomic(Intrinsic::nvvm_atomic_and_gen_i_cta); 13812 case NVPTX::BI__nvvm_atom_sys_and_gen_i: 13813 case NVPTX::BI__nvvm_atom_sys_and_gen_l: 13814 case NVPTX::BI__nvvm_atom_sys_and_gen_ll: 13815 return MakeScopedAtomic(Intrinsic::nvvm_atomic_and_gen_i_sys); 13816 case NVPTX::BI__nvvm_atom_cta_or_gen_i: 13817 case NVPTX::BI__nvvm_atom_cta_or_gen_l: 13818 case NVPTX::BI__nvvm_atom_cta_or_gen_ll: 13819 return MakeScopedAtomic(Intrinsic::nvvm_atomic_or_gen_i_cta); 13820 case NVPTX::BI__nvvm_atom_sys_or_gen_i: 13821 case NVPTX::BI__nvvm_atom_sys_or_gen_l: 13822 case NVPTX::BI__nvvm_atom_sys_or_gen_ll: 13823 return MakeScopedAtomic(Intrinsic::nvvm_atomic_or_gen_i_sys); 13824 case NVPTX::BI__nvvm_atom_cta_xor_gen_i: 13825 case NVPTX::BI__nvvm_atom_cta_xor_gen_l: 13826 case NVPTX::BI__nvvm_atom_cta_xor_gen_ll: 13827 return MakeScopedAtomic(Intrinsic::nvvm_atomic_xor_gen_i_cta); 13828 case NVPTX::BI__nvvm_atom_sys_xor_gen_i: 13829 case NVPTX::BI__nvvm_atom_sys_xor_gen_l: 13830 case NVPTX::BI__nvvm_atom_sys_xor_gen_ll: 13831 return MakeScopedAtomic(Intrinsic::nvvm_atomic_xor_gen_i_sys); 13832 case NVPTX::BI__nvvm_atom_cta_cas_gen_i: 13833 case NVPTX::BI__nvvm_atom_cta_cas_gen_l: 13834 case NVPTX::BI__nvvm_atom_cta_cas_gen_ll: { 13835 Value *Ptr = EmitScalarExpr(E->getArg(0)); 13836 return Builder.CreateCall( 13837 CGM.getIntrinsic( 13838 Intrinsic::nvvm_atomic_cas_gen_i_cta, 13839 {Ptr->getType()->getPointerElementType(), Ptr->getType()}), 13840 {Ptr, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2))}); 13841 } 13842 case NVPTX::BI__nvvm_atom_sys_cas_gen_i: 13843 case NVPTX::BI__nvvm_atom_sys_cas_gen_l: 13844 case NVPTX::BI__nvvm_atom_sys_cas_gen_ll: { 13845 Value *Ptr = EmitScalarExpr(E->getArg(0)); 13846 return Builder.CreateCall( 13847 CGM.getIntrinsic( 13848 Intrinsic::nvvm_atomic_cas_gen_i_sys, 13849 {Ptr->getType()->getPointerElementType(), Ptr->getType()}), 13850 {Ptr, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2))}); 13851 } 13852 case NVPTX::BI__nvvm_match_all_sync_i32p: 13853 case NVPTX::BI__nvvm_match_all_sync_i64p: { 13854 Value *Mask = EmitScalarExpr(E->getArg(0)); 13855 Value *Val = EmitScalarExpr(E->getArg(1)); 13856 Address PredOutPtr = EmitPointerWithAlignment(E->getArg(2)); 13857 Value *ResultPair = Builder.CreateCall( 13858 CGM.getIntrinsic(BuiltinID == NVPTX::BI__nvvm_match_all_sync_i32p 13859 ? Intrinsic::nvvm_match_all_sync_i32p 13860 : Intrinsic::nvvm_match_all_sync_i64p), 13861 {Mask, Val}); 13862 Value *Pred = Builder.CreateZExt(Builder.CreateExtractValue(ResultPair, 1), 13863 PredOutPtr.getElementType()); 13864 Builder.CreateStore(Pred, PredOutPtr); 13865 return Builder.CreateExtractValue(ResultPair, 0); 13866 } 13867 13868 // FP MMA loads 13869 case NVPTX::BI__hmma_m16n16k16_ld_a: 13870 case NVPTX::BI__hmma_m16n16k16_ld_b: 13871 case NVPTX::BI__hmma_m16n16k16_ld_c_f16: 13872 case NVPTX::BI__hmma_m16n16k16_ld_c_f32: 13873 case NVPTX::BI__hmma_m32n8k16_ld_a: 13874 case NVPTX::BI__hmma_m32n8k16_ld_b: 13875 case NVPTX::BI__hmma_m32n8k16_ld_c_f16: 13876 case NVPTX::BI__hmma_m32n8k16_ld_c_f32: 13877 case NVPTX::BI__hmma_m8n32k16_ld_a: 13878 case NVPTX::BI__hmma_m8n32k16_ld_b: 13879 case NVPTX::BI__hmma_m8n32k16_ld_c_f16: 13880 case NVPTX::BI__hmma_m8n32k16_ld_c_f32: 13881 // Integer MMA loads. 13882 case NVPTX::BI__imma_m16n16k16_ld_a_s8: 13883 case NVPTX::BI__imma_m16n16k16_ld_a_u8: 13884 case NVPTX::BI__imma_m16n16k16_ld_b_s8: 13885 case NVPTX::BI__imma_m16n16k16_ld_b_u8: 13886 case NVPTX::BI__imma_m16n16k16_ld_c: 13887 case NVPTX::BI__imma_m32n8k16_ld_a_s8: 13888 case NVPTX::BI__imma_m32n8k16_ld_a_u8: 13889 case NVPTX::BI__imma_m32n8k16_ld_b_s8: 13890 case NVPTX::BI__imma_m32n8k16_ld_b_u8: 13891 case NVPTX::BI__imma_m32n8k16_ld_c: 13892 case NVPTX::BI__imma_m8n32k16_ld_a_s8: 13893 case NVPTX::BI__imma_m8n32k16_ld_a_u8: 13894 case NVPTX::BI__imma_m8n32k16_ld_b_s8: 13895 case NVPTX::BI__imma_m8n32k16_ld_b_u8: 13896 case NVPTX::BI__imma_m8n32k16_ld_c: 13897 // Sub-integer MMA loads. 13898 case NVPTX::BI__imma_m8n8k32_ld_a_s4: 13899 case NVPTX::BI__imma_m8n8k32_ld_a_u4: 13900 case NVPTX::BI__imma_m8n8k32_ld_b_s4: 13901 case NVPTX::BI__imma_m8n8k32_ld_b_u4: 13902 case NVPTX::BI__imma_m8n8k32_ld_c: 13903 case NVPTX::BI__bmma_m8n8k128_ld_a_b1: 13904 case NVPTX::BI__bmma_m8n8k128_ld_b_b1: 13905 case NVPTX::BI__bmma_m8n8k128_ld_c: 13906 { 13907 Address Dst = EmitPointerWithAlignment(E->getArg(0)); 13908 Value *Src = EmitScalarExpr(E->getArg(1)); 13909 Value *Ldm = EmitScalarExpr(E->getArg(2)); 13910 llvm::APSInt isColMajorArg; 13911 if (!E->getArg(3)->isIntegerConstantExpr(isColMajorArg, getContext())) 13912 return nullptr; 13913 bool isColMajor = isColMajorArg.getSExtValue(); 13914 NVPTXMmaLdstInfo II = getNVPTXMmaLdstInfo(BuiltinID); 13915 unsigned IID = isColMajor ? II.IID_col : II.IID_row; 13916 if (IID == 0) 13917 return nullptr; 13918 13919 Value *Result = 13920 Builder.CreateCall(CGM.getIntrinsic(IID, Src->getType()), {Src, Ldm}); 13921 13922 // Save returned values. 13923 assert(II.NumResults); 13924 if (II.NumResults == 1) { 13925 Builder.CreateAlignedStore(Result, Dst.getPointer(), 13926 CharUnits::fromQuantity(4)); 13927 } else { 13928 for (unsigned i = 0; i < II.NumResults; ++i) { 13929 Builder.CreateAlignedStore( 13930 Builder.CreateBitCast(Builder.CreateExtractValue(Result, i), 13931 Dst.getElementType()), 13932 Builder.CreateGEP(Dst.getPointer(), 13933 llvm::ConstantInt::get(IntTy, i)), 13934 CharUnits::fromQuantity(4)); 13935 } 13936 } 13937 return Result; 13938 } 13939 13940 case NVPTX::BI__hmma_m16n16k16_st_c_f16: 13941 case NVPTX::BI__hmma_m16n16k16_st_c_f32: 13942 case NVPTX::BI__hmma_m32n8k16_st_c_f16: 13943 case NVPTX::BI__hmma_m32n8k16_st_c_f32: 13944 case NVPTX::BI__hmma_m8n32k16_st_c_f16: 13945 case NVPTX::BI__hmma_m8n32k16_st_c_f32: 13946 case NVPTX::BI__imma_m16n16k16_st_c_i32: 13947 case NVPTX::BI__imma_m32n8k16_st_c_i32: 13948 case NVPTX::BI__imma_m8n32k16_st_c_i32: 13949 case NVPTX::BI__imma_m8n8k32_st_c_i32: 13950 case NVPTX::BI__bmma_m8n8k128_st_c_i32: { 13951 Value *Dst = EmitScalarExpr(E->getArg(0)); 13952 Address Src = EmitPointerWithAlignment(E->getArg(1)); 13953 Value *Ldm = EmitScalarExpr(E->getArg(2)); 13954 llvm::APSInt isColMajorArg; 13955 if (!E->getArg(3)->isIntegerConstantExpr(isColMajorArg, getContext())) 13956 return nullptr; 13957 bool isColMajor = isColMajorArg.getSExtValue(); 13958 NVPTXMmaLdstInfo II = getNVPTXMmaLdstInfo(BuiltinID); 13959 unsigned IID = isColMajor ? II.IID_col : II.IID_row; 13960 if (IID == 0) 13961 return nullptr; 13962 Function *Intrinsic = 13963 CGM.getIntrinsic(IID, Dst->getType()); 13964 llvm::Type *ParamType = Intrinsic->getFunctionType()->getParamType(1); 13965 SmallVector<Value *, 10> Values = {Dst}; 13966 for (unsigned i = 0; i < II.NumResults; ++i) { 13967 Value *V = Builder.CreateAlignedLoad( 13968 Builder.CreateGEP(Src.getPointer(), llvm::ConstantInt::get(IntTy, i)), 13969 CharUnits::fromQuantity(4)); 13970 Values.push_back(Builder.CreateBitCast(V, ParamType)); 13971 } 13972 Values.push_back(Ldm); 13973 Value *Result = Builder.CreateCall(Intrinsic, Values); 13974 return Result; 13975 } 13976 13977 // BI__hmma_m16n16k16_mma_<Dtype><CType>(d, a, b, c, layout, satf) --> 13978 // Intrinsic::nvvm_wmma_m16n16k16_mma_sync<layout A,B><DType><CType><Satf> 13979 case NVPTX::BI__hmma_m16n16k16_mma_f16f16: 13980 case NVPTX::BI__hmma_m16n16k16_mma_f32f16: 13981 case NVPTX::BI__hmma_m16n16k16_mma_f32f32: 13982 case NVPTX::BI__hmma_m16n16k16_mma_f16f32: 13983 case NVPTX::BI__hmma_m32n8k16_mma_f16f16: 13984 case NVPTX::BI__hmma_m32n8k16_mma_f32f16: 13985 case NVPTX::BI__hmma_m32n8k16_mma_f32f32: 13986 case NVPTX::BI__hmma_m32n8k16_mma_f16f32: 13987 case NVPTX::BI__hmma_m8n32k16_mma_f16f16: 13988 case NVPTX::BI__hmma_m8n32k16_mma_f32f16: 13989 case NVPTX::BI__hmma_m8n32k16_mma_f32f32: 13990 case NVPTX::BI__hmma_m8n32k16_mma_f16f32: 13991 case NVPTX::BI__imma_m16n16k16_mma_s8: 13992 case NVPTX::BI__imma_m16n16k16_mma_u8: 13993 case NVPTX::BI__imma_m32n8k16_mma_s8: 13994 case NVPTX::BI__imma_m32n8k16_mma_u8: 13995 case NVPTX::BI__imma_m8n32k16_mma_s8: 13996 case NVPTX::BI__imma_m8n32k16_mma_u8: 13997 case NVPTX::BI__imma_m8n8k32_mma_s4: 13998 case NVPTX::BI__imma_m8n8k32_mma_u4: 13999 case NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1: { 14000 Address Dst = EmitPointerWithAlignment(E->getArg(0)); 14001 Address SrcA = EmitPointerWithAlignment(E->getArg(1)); 14002 Address SrcB = EmitPointerWithAlignment(E->getArg(2)); 14003 Address SrcC = EmitPointerWithAlignment(E->getArg(3)); 14004 llvm::APSInt LayoutArg; 14005 if (!E->getArg(4)->isIntegerConstantExpr(LayoutArg, getContext())) 14006 return nullptr; 14007 int Layout = LayoutArg.getSExtValue(); 14008 if (Layout < 0 || Layout > 3) 14009 return nullptr; 14010 llvm::APSInt SatfArg; 14011 if (BuiltinID == NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1) 14012 SatfArg = 0; // .b1 does not have satf argument. 14013 else if (!E->getArg(5)->isIntegerConstantExpr(SatfArg, getContext())) 14014 return nullptr; 14015 bool Satf = SatfArg.getSExtValue(); 14016 NVPTXMmaInfo MI = getNVPTXMmaInfo(BuiltinID); 14017 unsigned IID = MI.getMMAIntrinsic(Layout, Satf); 14018 if (IID == 0) // Unsupported combination of Layout/Satf. 14019 return nullptr; 14020 14021 SmallVector<Value *, 24> Values; 14022 Function *Intrinsic = CGM.getIntrinsic(IID); 14023 llvm::Type *AType = Intrinsic->getFunctionType()->getParamType(0); 14024 // Load A 14025 for (unsigned i = 0; i < MI.NumEltsA; ++i) { 14026 Value *V = Builder.CreateAlignedLoad( 14027 Builder.CreateGEP(SrcA.getPointer(), 14028 llvm::ConstantInt::get(IntTy, i)), 14029 CharUnits::fromQuantity(4)); 14030 Values.push_back(Builder.CreateBitCast(V, AType)); 14031 } 14032 // Load B 14033 llvm::Type *BType = Intrinsic->getFunctionType()->getParamType(MI.NumEltsA); 14034 for (unsigned i = 0; i < MI.NumEltsB; ++i) { 14035 Value *V = Builder.CreateAlignedLoad( 14036 Builder.CreateGEP(SrcB.getPointer(), 14037 llvm::ConstantInt::get(IntTy, i)), 14038 CharUnits::fromQuantity(4)); 14039 Values.push_back(Builder.CreateBitCast(V, BType)); 14040 } 14041 // Load C 14042 llvm::Type *CType = 14043 Intrinsic->getFunctionType()->getParamType(MI.NumEltsA + MI.NumEltsB); 14044 for (unsigned i = 0; i < MI.NumEltsC; ++i) { 14045 Value *V = Builder.CreateAlignedLoad( 14046 Builder.CreateGEP(SrcC.getPointer(), 14047 llvm::ConstantInt::get(IntTy, i)), 14048 CharUnits::fromQuantity(4)); 14049 Values.push_back(Builder.CreateBitCast(V, CType)); 14050 } 14051 Value *Result = Builder.CreateCall(Intrinsic, Values); 14052 llvm::Type *DType = Dst.getElementType(); 14053 for (unsigned i = 0; i < MI.NumEltsD; ++i) 14054 Builder.CreateAlignedStore( 14055 Builder.CreateBitCast(Builder.CreateExtractValue(Result, i), DType), 14056 Builder.CreateGEP(Dst.getPointer(), llvm::ConstantInt::get(IntTy, i)), 14057 CharUnits::fromQuantity(4)); 14058 return Result; 14059 } 14060 default: 14061 return nullptr; 14062 } 14063 } 14064 14065 Value *CodeGenFunction::EmitWebAssemblyBuiltinExpr(unsigned BuiltinID, 14066 const CallExpr *E) { 14067 switch (BuiltinID) { 14068 case WebAssembly::BI__builtin_wasm_memory_size: { 14069 llvm::Type *ResultType = ConvertType(E->getType()); 14070 Value *I = EmitScalarExpr(E->getArg(0)); 14071 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_size, ResultType); 14072 return Builder.CreateCall(Callee, I); 14073 } 14074 case WebAssembly::BI__builtin_wasm_memory_grow: { 14075 llvm::Type *ResultType = ConvertType(E->getType()); 14076 Value *Args[] = { 14077 EmitScalarExpr(E->getArg(0)), 14078 EmitScalarExpr(E->getArg(1)) 14079 }; 14080 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_grow, ResultType); 14081 return Builder.CreateCall(Callee, Args); 14082 } 14083 case WebAssembly::BI__builtin_wasm_memory_init: { 14084 llvm::APSInt SegConst; 14085 if (!E->getArg(0)->isIntegerConstantExpr(SegConst, getContext())) 14086 llvm_unreachable("Constant arg isn't actually constant?"); 14087 llvm::APSInt MemConst; 14088 if (!E->getArg(1)->isIntegerConstantExpr(MemConst, getContext())) 14089 llvm_unreachable("Constant arg isn't actually constant?"); 14090 if (!MemConst.isNullValue()) 14091 ErrorUnsupported(E, "non-zero memory index"); 14092 Value *Args[] = {llvm::ConstantInt::get(getLLVMContext(), SegConst), 14093 llvm::ConstantInt::get(getLLVMContext(), MemConst), 14094 EmitScalarExpr(E->getArg(2)), EmitScalarExpr(E->getArg(3)), 14095 EmitScalarExpr(E->getArg(4))}; 14096 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_init); 14097 return Builder.CreateCall(Callee, Args); 14098 } 14099 case WebAssembly::BI__builtin_wasm_data_drop: { 14100 llvm::APSInt SegConst; 14101 if (!E->getArg(0)->isIntegerConstantExpr(SegConst, getContext())) 14102 llvm_unreachable("Constant arg isn't actually constant?"); 14103 Value *Arg = llvm::ConstantInt::get(getLLVMContext(), SegConst); 14104 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_data_drop); 14105 return Builder.CreateCall(Callee, {Arg}); 14106 } 14107 case WebAssembly::BI__builtin_wasm_tls_size: { 14108 llvm::Type *ResultType = ConvertType(E->getType()); 14109 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_size, ResultType); 14110 return Builder.CreateCall(Callee); 14111 } 14112 case WebAssembly::BI__builtin_wasm_tls_align: { 14113 llvm::Type *ResultType = ConvertType(E->getType()); 14114 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_align, ResultType); 14115 return Builder.CreateCall(Callee); 14116 } 14117 case WebAssembly::BI__builtin_wasm_tls_base: { 14118 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_base); 14119 return Builder.CreateCall(Callee); 14120 } 14121 case WebAssembly::BI__builtin_wasm_throw: { 14122 Value *Tag = EmitScalarExpr(E->getArg(0)); 14123 Value *Obj = EmitScalarExpr(E->getArg(1)); 14124 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_throw); 14125 return Builder.CreateCall(Callee, {Tag, Obj}); 14126 } 14127 case WebAssembly::BI__builtin_wasm_rethrow_in_catch: { 14128 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_rethrow_in_catch); 14129 return Builder.CreateCall(Callee); 14130 } 14131 case WebAssembly::BI__builtin_wasm_atomic_wait_i32: { 14132 Value *Addr = EmitScalarExpr(E->getArg(0)); 14133 Value *Expected = EmitScalarExpr(E->getArg(1)); 14134 Value *Timeout = EmitScalarExpr(E->getArg(2)); 14135 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_atomic_wait_i32); 14136 return Builder.CreateCall(Callee, {Addr, Expected, Timeout}); 14137 } 14138 case WebAssembly::BI__builtin_wasm_atomic_wait_i64: { 14139 Value *Addr = EmitScalarExpr(E->getArg(0)); 14140 Value *Expected = EmitScalarExpr(E->getArg(1)); 14141 Value *Timeout = EmitScalarExpr(E->getArg(2)); 14142 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_atomic_wait_i64); 14143 return Builder.CreateCall(Callee, {Addr, Expected, Timeout}); 14144 } 14145 case WebAssembly::BI__builtin_wasm_atomic_notify: { 14146 Value *Addr = EmitScalarExpr(E->getArg(0)); 14147 Value *Count = EmitScalarExpr(E->getArg(1)); 14148 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_atomic_notify); 14149 return Builder.CreateCall(Callee, {Addr, Count}); 14150 } 14151 case WebAssembly::BI__builtin_wasm_trunc_s_i32_f32: 14152 case WebAssembly::BI__builtin_wasm_trunc_s_i32_f64: 14153 case WebAssembly::BI__builtin_wasm_trunc_s_i64_f32: 14154 case WebAssembly::BI__builtin_wasm_trunc_s_i64_f64: { 14155 Value *Src = EmitScalarExpr(E->getArg(0)); 14156 llvm::Type *ResT = ConvertType(E->getType()); 14157 Function *Callee = 14158 CGM.getIntrinsic(Intrinsic::wasm_trunc_signed, {ResT, Src->getType()}); 14159 return Builder.CreateCall(Callee, {Src}); 14160 } 14161 case WebAssembly::BI__builtin_wasm_trunc_u_i32_f32: 14162 case WebAssembly::BI__builtin_wasm_trunc_u_i32_f64: 14163 case WebAssembly::BI__builtin_wasm_trunc_u_i64_f32: 14164 case WebAssembly::BI__builtin_wasm_trunc_u_i64_f64: { 14165 Value *Src = EmitScalarExpr(E->getArg(0)); 14166 llvm::Type *ResT = ConvertType(E->getType()); 14167 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_trunc_unsigned, 14168 {ResT, Src->getType()}); 14169 return Builder.CreateCall(Callee, {Src}); 14170 } 14171 case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32_f32: 14172 case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32_f64: 14173 case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64_f32: 14174 case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64_f64: 14175 case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32x4_f32x4: 14176 case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64x2_f64x2: { 14177 Value *Src = EmitScalarExpr(E->getArg(0)); 14178 llvm::Type *ResT = ConvertType(E->getType()); 14179 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_trunc_saturate_signed, 14180 {ResT, Src->getType()}); 14181 return Builder.CreateCall(Callee, {Src}); 14182 } 14183 case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32_f32: 14184 case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32_f64: 14185 case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64_f32: 14186 case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64_f64: 14187 case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32x4_f32x4: 14188 case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64x2_f64x2: { 14189 Value *Src = EmitScalarExpr(E->getArg(0)); 14190 llvm::Type *ResT = ConvertType(E->getType()); 14191 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_trunc_saturate_unsigned, 14192 {ResT, Src->getType()}); 14193 return Builder.CreateCall(Callee, {Src}); 14194 } 14195 case WebAssembly::BI__builtin_wasm_min_f32: 14196 case WebAssembly::BI__builtin_wasm_min_f64: 14197 case WebAssembly::BI__builtin_wasm_min_f32x4: 14198 case WebAssembly::BI__builtin_wasm_min_f64x2: { 14199 Value *LHS = EmitScalarExpr(E->getArg(0)); 14200 Value *RHS = EmitScalarExpr(E->getArg(1)); 14201 Function *Callee = CGM.getIntrinsic(Intrinsic::minimum, 14202 ConvertType(E->getType())); 14203 return Builder.CreateCall(Callee, {LHS, RHS}); 14204 } 14205 case WebAssembly::BI__builtin_wasm_max_f32: 14206 case WebAssembly::BI__builtin_wasm_max_f64: 14207 case WebAssembly::BI__builtin_wasm_max_f32x4: 14208 case WebAssembly::BI__builtin_wasm_max_f64x2: { 14209 Value *LHS = EmitScalarExpr(E->getArg(0)); 14210 Value *RHS = EmitScalarExpr(E->getArg(1)); 14211 Function *Callee = CGM.getIntrinsic(Intrinsic::maximum, 14212 ConvertType(E->getType())); 14213 return Builder.CreateCall(Callee, {LHS, RHS}); 14214 } 14215 case WebAssembly::BI__builtin_wasm_swizzle_v8x16: { 14216 Value *Src = EmitScalarExpr(E->getArg(0)); 14217 Value *Indices = EmitScalarExpr(E->getArg(1)); 14218 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_swizzle); 14219 return Builder.CreateCall(Callee, {Src, Indices}); 14220 } 14221 case WebAssembly::BI__builtin_wasm_extract_lane_s_i8x16: 14222 case WebAssembly::BI__builtin_wasm_extract_lane_u_i8x16: 14223 case WebAssembly::BI__builtin_wasm_extract_lane_s_i16x8: 14224 case WebAssembly::BI__builtin_wasm_extract_lane_u_i16x8: 14225 case WebAssembly::BI__builtin_wasm_extract_lane_i32x4: 14226 case WebAssembly::BI__builtin_wasm_extract_lane_i64x2: 14227 case WebAssembly::BI__builtin_wasm_extract_lane_f32x4: 14228 case WebAssembly::BI__builtin_wasm_extract_lane_f64x2: { 14229 llvm::APSInt LaneConst; 14230 if (!E->getArg(1)->isIntegerConstantExpr(LaneConst, getContext())) 14231 llvm_unreachable("Constant arg isn't actually constant?"); 14232 Value *Vec = EmitScalarExpr(E->getArg(0)); 14233 Value *Lane = llvm::ConstantInt::get(getLLVMContext(), LaneConst); 14234 Value *Extract = Builder.CreateExtractElement(Vec, Lane); 14235 switch (BuiltinID) { 14236 case WebAssembly::BI__builtin_wasm_extract_lane_s_i8x16: 14237 case WebAssembly::BI__builtin_wasm_extract_lane_s_i16x8: 14238 return Builder.CreateSExt(Extract, ConvertType(E->getType())); 14239 case WebAssembly::BI__builtin_wasm_extract_lane_u_i8x16: 14240 case WebAssembly::BI__builtin_wasm_extract_lane_u_i16x8: 14241 return Builder.CreateZExt(Extract, ConvertType(E->getType())); 14242 case WebAssembly::BI__builtin_wasm_extract_lane_i32x4: 14243 case WebAssembly::BI__builtin_wasm_extract_lane_i64x2: 14244 case WebAssembly::BI__builtin_wasm_extract_lane_f32x4: 14245 case WebAssembly::BI__builtin_wasm_extract_lane_f64x2: 14246 return Extract; 14247 default: 14248 llvm_unreachable("unexpected builtin ID"); 14249 } 14250 } 14251 case WebAssembly::BI__builtin_wasm_replace_lane_i8x16: 14252 case WebAssembly::BI__builtin_wasm_replace_lane_i16x8: 14253 case WebAssembly::BI__builtin_wasm_replace_lane_i32x4: 14254 case WebAssembly::BI__builtin_wasm_replace_lane_i64x2: 14255 case WebAssembly::BI__builtin_wasm_replace_lane_f32x4: 14256 case WebAssembly::BI__builtin_wasm_replace_lane_f64x2: { 14257 llvm::APSInt LaneConst; 14258 if (!E->getArg(1)->isIntegerConstantExpr(LaneConst, getContext())) 14259 llvm_unreachable("Constant arg isn't actually constant?"); 14260 Value *Vec = EmitScalarExpr(E->getArg(0)); 14261 Value *Lane = llvm::ConstantInt::get(getLLVMContext(), LaneConst); 14262 Value *Val = EmitScalarExpr(E->getArg(2)); 14263 switch (BuiltinID) { 14264 case WebAssembly::BI__builtin_wasm_replace_lane_i8x16: 14265 case WebAssembly::BI__builtin_wasm_replace_lane_i16x8: { 14266 llvm::Type *ElemType = ConvertType(E->getType())->getVectorElementType(); 14267 Value *Trunc = Builder.CreateTrunc(Val, ElemType); 14268 return Builder.CreateInsertElement(Vec, Trunc, Lane); 14269 } 14270 case WebAssembly::BI__builtin_wasm_replace_lane_i32x4: 14271 case WebAssembly::BI__builtin_wasm_replace_lane_i64x2: 14272 case WebAssembly::BI__builtin_wasm_replace_lane_f32x4: 14273 case WebAssembly::BI__builtin_wasm_replace_lane_f64x2: 14274 return Builder.CreateInsertElement(Vec, Val, Lane); 14275 default: 14276 llvm_unreachable("unexpected builtin ID"); 14277 } 14278 } 14279 case WebAssembly::BI__builtin_wasm_add_saturate_s_i8x16: 14280 case WebAssembly::BI__builtin_wasm_add_saturate_u_i8x16: 14281 case WebAssembly::BI__builtin_wasm_add_saturate_s_i16x8: 14282 case WebAssembly::BI__builtin_wasm_add_saturate_u_i16x8: 14283 case WebAssembly::BI__builtin_wasm_sub_saturate_s_i8x16: 14284 case WebAssembly::BI__builtin_wasm_sub_saturate_u_i8x16: 14285 case WebAssembly::BI__builtin_wasm_sub_saturate_s_i16x8: 14286 case WebAssembly::BI__builtin_wasm_sub_saturate_u_i16x8: { 14287 unsigned IntNo; 14288 switch (BuiltinID) { 14289 case WebAssembly::BI__builtin_wasm_add_saturate_s_i8x16: 14290 case WebAssembly::BI__builtin_wasm_add_saturate_s_i16x8: 14291 IntNo = Intrinsic::sadd_sat; 14292 break; 14293 case WebAssembly::BI__builtin_wasm_add_saturate_u_i8x16: 14294 case WebAssembly::BI__builtin_wasm_add_saturate_u_i16x8: 14295 IntNo = Intrinsic::uadd_sat; 14296 break; 14297 case WebAssembly::BI__builtin_wasm_sub_saturate_s_i8x16: 14298 case WebAssembly::BI__builtin_wasm_sub_saturate_s_i16x8: 14299 IntNo = Intrinsic::wasm_sub_saturate_signed; 14300 break; 14301 case WebAssembly::BI__builtin_wasm_sub_saturate_u_i8x16: 14302 case WebAssembly::BI__builtin_wasm_sub_saturate_u_i16x8: 14303 IntNo = Intrinsic::wasm_sub_saturate_unsigned; 14304 break; 14305 default: 14306 llvm_unreachable("unexpected builtin ID"); 14307 } 14308 Value *LHS = EmitScalarExpr(E->getArg(0)); 14309 Value *RHS = EmitScalarExpr(E->getArg(1)); 14310 Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType())); 14311 return Builder.CreateCall(Callee, {LHS, RHS}); 14312 } 14313 case WebAssembly::BI__builtin_wasm_bitselect: { 14314 Value *V1 = EmitScalarExpr(E->getArg(0)); 14315 Value *V2 = EmitScalarExpr(E->getArg(1)); 14316 Value *C = EmitScalarExpr(E->getArg(2)); 14317 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_bitselect, 14318 ConvertType(E->getType())); 14319 return Builder.CreateCall(Callee, {V1, V2, C}); 14320 } 14321 case WebAssembly::BI__builtin_wasm_any_true_i8x16: 14322 case WebAssembly::BI__builtin_wasm_any_true_i16x8: 14323 case WebAssembly::BI__builtin_wasm_any_true_i32x4: 14324 case WebAssembly::BI__builtin_wasm_any_true_i64x2: 14325 case WebAssembly::BI__builtin_wasm_all_true_i8x16: 14326 case WebAssembly::BI__builtin_wasm_all_true_i16x8: 14327 case WebAssembly::BI__builtin_wasm_all_true_i32x4: 14328 case WebAssembly::BI__builtin_wasm_all_true_i64x2: { 14329 unsigned IntNo; 14330 switch (BuiltinID) { 14331 case WebAssembly::BI__builtin_wasm_any_true_i8x16: 14332 case WebAssembly::BI__builtin_wasm_any_true_i16x8: 14333 case WebAssembly::BI__builtin_wasm_any_true_i32x4: 14334 case WebAssembly::BI__builtin_wasm_any_true_i64x2: 14335 IntNo = Intrinsic::wasm_anytrue; 14336 break; 14337 case WebAssembly::BI__builtin_wasm_all_true_i8x16: 14338 case WebAssembly::BI__builtin_wasm_all_true_i16x8: 14339 case WebAssembly::BI__builtin_wasm_all_true_i32x4: 14340 case WebAssembly::BI__builtin_wasm_all_true_i64x2: 14341 IntNo = Intrinsic::wasm_alltrue; 14342 break; 14343 default: 14344 llvm_unreachable("unexpected builtin ID"); 14345 } 14346 Value *Vec = EmitScalarExpr(E->getArg(0)); 14347 Function *Callee = CGM.getIntrinsic(IntNo, Vec->getType()); 14348 return Builder.CreateCall(Callee, {Vec}); 14349 } 14350 case WebAssembly::BI__builtin_wasm_abs_f32x4: 14351 case WebAssembly::BI__builtin_wasm_abs_f64x2: { 14352 Value *Vec = EmitScalarExpr(E->getArg(0)); 14353 Function *Callee = CGM.getIntrinsic(Intrinsic::fabs, Vec->getType()); 14354 return Builder.CreateCall(Callee, {Vec}); 14355 } 14356 case WebAssembly::BI__builtin_wasm_sqrt_f32x4: 14357 case WebAssembly::BI__builtin_wasm_sqrt_f64x2: { 14358 Value *Vec = EmitScalarExpr(E->getArg(0)); 14359 Function *Callee = CGM.getIntrinsic(Intrinsic::sqrt, Vec->getType()); 14360 return Builder.CreateCall(Callee, {Vec}); 14361 } 14362 case WebAssembly::BI__builtin_wasm_qfma_f32x4: 14363 case WebAssembly::BI__builtin_wasm_qfms_f32x4: 14364 case WebAssembly::BI__builtin_wasm_qfma_f64x2: 14365 case WebAssembly::BI__builtin_wasm_qfms_f64x2: { 14366 Value *A = EmitScalarExpr(E->getArg(0)); 14367 Value *B = EmitScalarExpr(E->getArg(1)); 14368 Value *C = EmitScalarExpr(E->getArg(2)); 14369 unsigned IntNo; 14370 switch (BuiltinID) { 14371 case WebAssembly::BI__builtin_wasm_qfma_f32x4: 14372 case WebAssembly::BI__builtin_wasm_qfma_f64x2: 14373 IntNo = Intrinsic::wasm_qfma; 14374 break; 14375 case WebAssembly::BI__builtin_wasm_qfms_f32x4: 14376 case WebAssembly::BI__builtin_wasm_qfms_f64x2: 14377 IntNo = Intrinsic::wasm_qfms; 14378 break; 14379 default: 14380 llvm_unreachable("unexpected builtin ID"); 14381 } 14382 Function *Callee = CGM.getIntrinsic(IntNo, A->getType()); 14383 return Builder.CreateCall(Callee, {A, B, C}); 14384 } 14385 case WebAssembly::BI__builtin_wasm_narrow_s_i8x16_i16x8: 14386 case WebAssembly::BI__builtin_wasm_narrow_u_i8x16_i16x8: 14387 case WebAssembly::BI__builtin_wasm_narrow_s_i16x8_i32x4: 14388 case WebAssembly::BI__builtin_wasm_narrow_u_i16x8_i32x4: { 14389 Value *Low = EmitScalarExpr(E->getArg(0)); 14390 Value *High = EmitScalarExpr(E->getArg(1)); 14391 unsigned IntNo; 14392 switch (BuiltinID) { 14393 case WebAssembly::BI__builtin_wasm_narrow_s_i8x16_i16x8: 14394 case WebAssembly::BI__builtin_wasm_narrow_s_i16x8_i32x4: 14395 IntNo = Intrinsic::wasm_narrow_signed; 14396 break; 14397 case WebAssembly::BI__builtin_wasm_narrow_u_i8x16_i16x8: 14398 case WebAssembly::BI__builtin_wasm_narrow_u_i16x8_i32x4: 14399 IntNo = Intrinsic::wasm_narrow_unsigned; 14400 break; 14401 default: 14402 llvm_unreachable("unexpected builtin ID"); 14403 } 14404 Function *Callee = 14405 CGM.getIntrinsic(IntNo, {ConvertType(E->getType()), Low->getType()}); 14406 return Builder.CreateCall(Callee, {Low, High}); 14407 } 14408 case WebAssembly::BI__builtin_wasm_widen_low_s_i16x8_i8x16: 14409 case WebAssembly::BI__builtin_wasm_widen_high_s_i16x8_i8x16: 14410 case WebAssembly::BI__builtin_wasm_widen_low_u_i16x8_i8x16: 14411 case WebAssembly::BI__builtin_wasm_widen_high_u_i16x8_i8x16: 14412 case WebAssembly::BI__builtin_wasm_widen_low_s_i32x4_i16x8: 14413 case WebAssembly::BI__builtin_wasm_widen_high_s_i32x4_i16x8: 14414 case WebAssembly::BI__builtin_wasm_widen_low_u_i32x4_i16x8: 14415 case WebAssembly::BI__builtin_wasm_widen_high_u_i32x4_i16x8: { 14416 Value *Vec = EmitScalarExpr(E->getArg(0)); 14417 unsigned IntNo; 14418 switch (BuiltinID) { 14419 case WebAssembly::BI__builtin_wasm_widen_low_s_i16x8_i8x16: 14420 case WebAssembly::BI__builtin_wasm_widen_low_s_i32x4_i16x8: 14421 IntNo = Intrinsic::wasm_widen_low_signed; 14422 break; 14423 case WebAssembly::BI__builtin_wasm_widen_high_s_i16x8_i8x16: 14424 case WebAssembly::BI__builtin_wasm_widen_high_s_i32x4_i16x8: 14425 IntNo = Intrinsic::wasm_widen_high_signed; 14426 break; 14427 case WebAssembly::BI__builtin_wasm_widen_low_u_i16x8_i8x16: 14428 case WebAssembly::BI__builtin_wasm_widen_low_u_i32x4_i16x8: 14429 IntNo = Intrinsic::wasm_widen_low_unsigned; 14430 break; 14431 case WebAssembly::BI__builtin_wasm_widen_high_u_i16x8_i8x16: 14432 case WebAssembly::BI__builtin_wasm_widen_high_u_i32x4_i16x8: 14433 IntNo = Intrinsic::wasm_widen_high_unsigned; 14434 break; 14435 default: 14436 llvm_unreachable("unexpected builtin ID"); 14437 } 14438 Function *Callee = 14439 CGM.getIntrinsic(IntNo, {ConvertType(E->getType()), Vec->getType()}); 14440 return Builder.CreateCall(Callee, Vec); 14441 } 14442 default: 14443 return nullptr; 14444 } 14445 } 14446 14447 Value *CodeGenFunction::EmitHexagonBuiltinExpr(unsigned BuiltinID, 14448 const CallExpr *E) { 14449 SmallVector<llvm::Value *, 4> Ops; 14450 Intrinsic::ID ID = Intrinsic::not_intrinsic; 14451 14452 auto MakeCircLd = [&](unsigned IntID, bool HasImm) { 14453 // The base pointer is passed by address, so it needs to be loaded. 14454 Address BP = EmitPointerWithAlignment(E->getArg(0)); 14455 BP = Address(Builder.CreateBitCast(BP.getPointer(), Int8PtrPtrTy), 14456 BP.getAlignment()); 14457 llvm::Value *Base = Builder.CreateLoad(BP); 14458 // Operands are Base, Increment, Modifier, Start. 14459 if (HasImm) 14460 Ops = { Base, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2)), 14461 EmitScalarExpr(E->getArg(3)) }; 14462 else 14463 Ops = { Base, EmitScalarExpr(E->getArg(1)), 14464 EmitScalarExpr(E->getArg(2)) }; 14465 14466 llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(IntID), Ops); 14467 llvm::Value *NewBase = Builder.CreateExtractValue(Result, 1); 14468 llvm::Value *LV = Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), 14469 NewBase->getType()->getPointerTo()); 14470 Address Dest = EmitPointerWithAlignment(E->getArg(0)); 14471 // The intrinsic generates two results. The new value for the base pointer 14472 // needs to be stored. 14473 Builder.CreateAlignedStore(NewBase, LV, Dest.getAlignment()); 14474 return Builder.CreateExtractValue(Result, 0); 14475 }; 14476 14477 auto MakeCircSt = [&](unsigned IntID, bool HasImm) { 14478 // The base pointer is passed by address, so it needs to be loaded. 14479 Address BP = EmitPointerWithAlignment(E->getArg(0)); 14480 BP = Address(Builder.CreateBitCast(BP.getPointer(), Int8PtrPtrTy), 14481 BP.getAlignment()); 14482 llvm::Value *Base = Builder.CreateLoad(BP); 14483 // Operands are Base, Increment, Modifier, Value, Start. 14484 if (HasImm) 14485 Ops = { Base, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2)), 14486 EmitScalarExpr(E->getArg(3)), EmitScalarExpr(E->getArg(4)) }; 14487 else 14488 Ops = { Base, EmitScalarExpr(E->getArg(1)), 14489 EmitScalarExpr(E->getArg(2)), EmitScalarExpr(E->getArg(3)) }; 14490 14491 llvm::Value *NewBase = Builder.CreateCall(CGM.getIntrinsic(IntID), Ops); 14492 llvm::Value *LV = Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), 14493 NewBase->getType()->getPointerTo()); 14494 Address Dest = EmitPointerWithAlignment(E->getArg(0)); 14495 // The intrinsic generates one result, which is the new value for the base 14496 // pointer. It needs to be stored. 14497 return Builder.CreateAlignedStore(NewBase, LV, Dest.getAlignment()); 14498 }; 14499 14500 // Handle the conversion of bit-reverse load intrinsics to bit code. 14501 // The intrinsic call after this function only reads from memory and the 14502 // write to memory is dealt by the store instruction. 14503 auto MakeBrevLd = [&](unsigned IntID, llvm::Type *DestTy) { 14504 // The intrinsic generates one result, which is the new value for the base 14505 // pointer. It needs to be returned. The result of the load instruction is 14506 // passed to intrinsic by address, so the value needs to be stored. 14507 llvm::Value *BaseAddress = 14508 Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int8PtrTy); 14509 14510 // Expressions like &(*pt++) will be incremented per evaluation. 14511 // EmitPointerWithAlignment and EmitScalarExpr evaluates the expression 14512 // per call. 14513 Address DestAddr = EmitPointerWithAlignment(E->getArg(1)); 14514 DestAddr = Address(Builder.CreateBitCast(DestAddr.getPointer(), Int8PtrTy), 14515 DestAddr.getAlignment()); 14516 llvm::Value *DestAddress = DestAddr.getPointer(); 14517 14518 // Operands are Base, Dest, Modifier. 14519 // The intrinsic format in LLVM IR is defined as 14520 // { ValueType, i8* } (i8*, i32). 14521 Ops = {BaseAddress, EmitScalarExpr(E->getArg(2))}; 14522 14523 llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(IntID), Ops); 14524 // The value needs to be stored as the variable is passed by reference. 14525 llvm::Value *DestVal = Builder.CreateExtractValue(Result, 0); 14526 14527 // The store needs to be truncated to fit the destination type. 14528 // While i32 and i64 are natively supported on Hexagon, i8 and i16 needs 14529 // to be handled with stores of respective destination type. 14530 DestVal = Builder.CreateTrunc(DestVal, DestTy); 14531 14532 llvm::Value *DestForStore = 14533 Builder.CreateBitCast(DestAddress, DestVal->getType()->getPointerTo()); 14534 Builder.CreateAlignedStore(DestVal, DestForStore, DestAddr.getAlignment()); 14535 // The updated value of the base pointer is returned. 14536 return Builder.CreateExtractValue(Result, 1); 14537 }; 14538 14539 switch (BuiltinID) { 14540 case Hexagon::BI__builtin_HEXAGON_V6_vaddcarry: 14541 case Hexagon::BI__builtin_HEXAGON_V6_vaddcarry_128B: { 14542 Address Dest = EmitPointerWithAlignment(E->getArg(2)); 14543 unsigned Size; 14544 if (BuiltinID == Hexagon::BI__builtin_HEXAGON_V6_vaddcarry) { 14545 Size = 512; 14546 ID = Intrinsic::hexagon_V6_vaddcarry; 14547 } else { 14548 Size = 1024; 14549 ID = Intrinsic::hexagon_V6_vaddcarry_128B; 14550 } 14551 Dest = Builder.CreateBitCast(Dest, 14552 llvm::VectorType::get(Builder.getInt1Ty(), Size)->getPointerTo(0)); 14553 LoadInst *QLd = Builder.CreateLoad(Dest); 14554 Ops = { EmitScalarExpr(E->getArg(0)), EmitScalarExpr(E->getArg(1)), QLd }; 14555 llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(ID), Ops); 14556 llvm::Value *Vprd = Builder.CreateExtractValue(Result, 1); 14557 llvm::Value *Base = Builder.CreateBitCast(EmitScalarExpr(E->getArg(2)), 14558 Vprd->getType()->getPointerTo(0)); 14559 Builder.CreateAlignedStore(Vprd, Base, Dest.getAlignment()); 14560 return Builder.CreateExtractValue(Result, 0); 14561 } 14562 case Hexagon::BI__builtin_HEXAGON_V6_vsubcarry: 14563 case Hexagon::BI__builtin_HEXAGON_V6_vsubcarry_128B: { 14564 Address Dest = EmitPointerWithAlignment(E->getArg(2)); 14565 unsigned Size; 14566 if (BuiltinID == Hexagon::BI__builtin_HEXAGON_V6_vsubcarry) { 14567 Size = 512; 14568 ID = Intrinsic::hexagon_V6_vsubcarry; 14569 } else { 14570 Size = 1024; 14571 ID = Intrinsic::hexagon_V6_vsubcarry_128B; 14572 } 14573 Dest = Builder.CreateBitCast(Dest, 14574 llvm::VectorType::get(Builder.getInt1Ty(), Size)->getPointerTo(0)); 14575 LoadInst *QLd = Builder.CreateLoad(Dest); 14576 Ops = { EmitScalarExpr(E->getArg(0)), EmitScalarExpr(E->getArg(1)), QLd }; 14577 llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(ID), Ops); 14578 llvm::Value *Vprd = Builder.CreateExtractValue(Result, 1); 14579 llvm::Value *Base = Builder.CreateBitCast(EmitScalarExpr(E->getArg(2)), 14580 Vprd->getType()->getPointerTo(0)); 14581 Builder.CreateAlignedStore(Vprd, Base, Dest.getAlignment()); 14582 return Builder.CreateExtractValue(Result, 0); 14583 } 14584 case Hexagon::BI__builtin_HEXAGON_L2_loadrub_pci: 14585 return MakeCircLd(Intrinsic::hexagon_L2_loadrub_pci, /*HasImm*/true); 14586 case Hexagon::BI__builtin_HEXAGON_L2_loadrb_pci: 14587 return MakeCircLd(Intrinsic::hexagon_L2_loadrb_pci, /*HasImm*/true); 14588 case Hexagon::BI__builtin_HEXAGON_L2_loadruh_pci: 14589 return MakeCircLd(Intrinsic::hexagon_L2_loadruh_pci, /*HasImm*/true); 14590 case Hexagon::BI__builtin_HEXAGON_L2_loadrh_pci: 14591 return MakeCircLd(Intrinsic::hexagon_L2_loadrh_pci, /*HasImm*/true); 14592 case Hexagon::BI__builtin_HEXAGON_L2_loadri_pci: 14593 return MakeCircLd(Intrinsic::hexagon_L2_loadri_pci, /*HasImm*/true); 14594 case Hexagon::BI__builtin_HEXAGON_L2_loadrd_pci: 14595 return MakeCircLd(Intrinsic::hexagon_L2_loadrd_pci, /*HasImm*/true); 14596 case Hexagon::BI__builtin_HEXAGON_L2_loadrub_pcr: 14597 return MakeCircLd(Intrinsic::hexagon_L2_loadrub_pcr, /*HasImm*/false); 14598 case Hexagon::BI__builtin_HEXAGON_L2_loadrb_pcr: 14599 return MakeCircLd(Intrinsic::hexagon_L2_loadrb_pcr, /*HasImm*/false); 14600 case Hexagon::BI__builtin_HEXAGON_L2_loadruh_pcr: 14601 return MakeCircLd(Intrinsic::hexagon_L2_loadruh_pcr, /*HasImm*/false); 14602 case Hexagon::BI__builtin_HEXAGON_L2_loadrh_pcr: 14603 return MakeCircLd(Intrinsic::hexagon_L2_loadrh_pcr, /*HasImm*/false); 14604 case Hexagon::BI__builtin_HEXAGON_L2_loadri_pcr: 14605 return MakeCircLd(Intrinsic::hexagon_L2_loadri_pcr, /*HasImm*/false); 14606 case Hexagon::BI__builtin_HEXAGON_L2_loadrd_pcr: 14607 return MakeCircLd(Intrinsic::hexagon_L2_loadrd_pcr, /*HasImm*/false); 14608 case Hexagon::BI__builtin_HEXAGON_S2_storerb_pci: 14609 return MakeCircSt(Intrinsic::hexagon_S2_storerb_pci, /*HasImm*/true); 14610 case Hexagon::BI__builtin_HEXAGON_S2_storerh_pci: 14611 return MakeCircSt(Intrinsic::hexagon_S2_storerh_pci, /*HasImm*/true); 14612 case Hexagon::BI__builtin_HEXAGON_S2_storerf_pci: 14613 return MakeCircSt(Intrinsic::hexagon_S2_storerf_pci, /*HasImm*/true); 14614 case Hexagon::BI__builtin_HEXAGON_S2_storeri_pci: 14615 return MakeCircSt(Intrinsic::hexagon_S2_storeri_pci, /*HasImm*/true); 14616 case Hexagon::BI__builtin_HEXAGON_S2_storerd_pci: 14617 return MakeCircSt(Intrinsic::hexagon_S2_storerd_pci, /*HasImm*/true); 14618 case Hexagon::BI__builtin_HEXAGON_S2_storerb_pcr: 14619 return MakeCircSt(Intrinsic::hexagon_S2_storerb_pcr, /*HasImm*/false); 14620 case Hexagon::BI__builtin_HEXAGON_S2_storerh_pcr: 14621 return MakeCircSt(Intrinsic::hexagon_S2_storerh_pcr, /*HasImm*/false); 14622 case Hexagon::BI__builtin_HEXAGON_S2_storerf_pcr: 14623 return MakeCircSt(Intrinsic::hexagon_S2_storerf_pcr, /*HasImm*/false); 14624 case Hexagon::BI__builtin_HEXAGON_S2_storeri_pcr: 14625 return MakeCircSt(Intrinsic::hexagon_S2_storeri_pcr, /*HasImm*/false); 14626 case Hexagon::BI__builtin_HEXAGON_S2_storerd_pcr: 14627 return MakeCircSt(Intrinsic::hexagon_S2_storerd_pcr, /*HasImm*/false); 14628 case Hexagon::BI__builtin_brev_ldub: 14629 return MakeBrevLd(Intrinsic::hexagon_L2_loadrub_pbr, Int8Ty); 14630 case Hexagon::BI__builtin_brev_ldb: 14631 return MakeBrevLd(Intrinsic::hexagon_L2_loadrb_pbr, Int8Ty); 14632 case Hexagon::BI__builtin_brev_lduh: 14633 return MakeBrevLd(Intrinsic::hexagon_L2_loadruh_pbr, Int16Ty); 14634 case Hexagon::BI__builtin_brev_ldh: 14635 return MakeBrevLd(Intrinsic::hexagon_L2_loadrh_pbr, Int16Ty); 14636 case Hexagon::BI__builtin_brev_ldw: 14637 return MakeBrevLd(Intrinsic::hexagon_L2_loadri_pbr, Int32Ty); 14638 case Hexagon::BI__builtin_brev_ldd: 14639 return MakeBrevLd(Intrinsic::hexagon_L2_loadrd_pbr, Int64Ty); 14640 default: 14641 break; 14642 } // switch 14643 14644 return nullptr; 14645 } 14646