1 //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Builtin calls as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCUDARuntime.h" 14 #include "CGCXXABI.h" 15 #include "CGObjCRuntime.h" 16 #include "CGOpenCLRuntime.h" 17 #include "CGRecordLayout.h" 18 #include "CodeGenFunction.h" 19 #include "CodeGenModule.h" 20 #include "ConstantEmitter.h" 21 #include "PatternInit.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/ASTContext.h" 24 #include "clang/AST/Attr.h" 25 #include "clang/AST/Decl.h" 26 #include "clang/AST/OSLog.h" 27 #include "clang/Basic/TargetBuiltins.h" 28 #include "clang/Basic/TargetInfo.h" 29 #include "clang/CodeGen/CGFunctionInfo.h" 30 #include "llvm/ADT/APFloat.h" 31 #include "llvm/ADT/APInt.h" 32 #include "llvm/ADT/SmallPtrSet.h" 33 #include "llvm/ADT/StringExtras.h" 34 #include "llvm/Analysis/ValueTracking.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/InlineAsm.h" 37 #include "llvm/IR/Intrinsics.h" 38 #include "llvm/IR/IntrinsicsAArch64.h" 39 #include "llvm/IR/IntrinsicsAMDGPU.h" 40 #include "llvm/IR/IntrinsicsARM.h" 41 #include "llvm/IR/IntrinsicsBPF.h" 42 #include "llvm/IR/IntrinsicsHexagon.h" 43 #include "llvm/IR/IntrinsicsNVPTX.h" 44 #include "llvm/IR/IntrinsicsPowerPC.h" 45 #include "llvm/IR/IntrinsicsR600.h" 46 #include "llvm/IR/IntrinsicsRISCV.h" 47 #include "llvm/IR/IntrinsicsS390.h" 48 #include "llvm/IR/IntrinsicsWebAssembly.h" 49 #include "llvm/IR/IntrinsicsX86.h" 50 #include "llvm/IR/MDBuilder.h" 51 #include "llvm/IR/MatrixBuilder.h" 52 #include "llvm/Support/ConvertUTF.h" 53 #include "llvm/Support/ScopedPrinter.h" 54 #include "llvm/Support/X86TargetParser.h" 55 #include <sstream> 56 57 using namespace clang; 58 using namespace CodeGen; 59 using namespace llvm; 60 61 static 62 int64_t clamp(int64_t Value, int64_t Low, int64_t High) { 63 return std::min(High, std::max(Low, Value)); 64 } 65 66 static void initializeAlloca(CodeGenFunction &CGF, AllocaInst *AI, Value *Size, 67 Align AlignmentInBytes) { 68 ConstantInt *Byte; 69 switch (CGF.getLangOpts().getTrivialAutoVarInit()) { 70 case LangOptions::TrivialAutoVarInitKind::Uninitialized: 71 // Nothing to initialize. 72 return; 73 case LangOptions::TrivialAutoVarInitKind::Zero: 74 Byte = CGF.Builder.getInt8(0x00); 75 break; 76 case LangOptions::TrivialAutoVarInitKind::Pattern: { 77 llvm::Type *Int8 = llvm::IntegerType::getInt8Ty(CGF.CGM.getLLVMContext()); 78 Byte = llvm::dyn_cast<llvm::ConstantInt>( 79 initializationPatternFor(CGF.CGM, Int8)); 80 break; 81 } 82 } 83 if (CGF.CGM.stopAutoInit()) 84 return; 85 auto *I = CGF.Builder.CreateMemSet(AI, Byte, Size, AlignmentInBytes); 86 I->addAnnotationMetadata("auto-init"); 87 } 88 89 /// getBuiltinLibFunction - Given a builtin id for a function like 90 /// "__builtin_fabsf", return a Function* for "fabsf". 91 llvm::Constant *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, 92 unsigned BuiltinID) { 93 assert(Context.BuiltinInfo.isLibFunction(BuiltinID)); 94 95 // Get the name, skip over the __builtin_ prefix (if necessary). 96 StringRef Name; 97 GlobalDecl D(FD); 98 99 // If the builtin has been declared explicitly with an assembler label, 100 // use the mangled name. This differs from the plain label on platforms 101 // that prefix labels. 102 if (FD->hasAttr<AsmLabelAttr>()) 103 Name = getMangledName(D); 104 else 105 Name = Context.BuiltinInfo.getName(BuiltinID) + 10; 106 107 llvm::FunctionType *Ty = 108 cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType())); 109 110 return GetOrCreateLLVMFunction(Name, Ty, D, /*ForVTable=*/false); 111 } 112 113 /// Emit the conversions required to turn the given value into an 114 /// integer of the given size. 115 static Value *EmitToInt(CodeGenFunction &CGF, llvm::Value *V, 116 QualType T, llvm::IntegerType *IntType) { 117 V = CGF.EmitToMemory(V, T); 118 119 if (V->getType()->isPointerTy()) 120 return CGF.Builder.CreatePtrToInt(V, IntType); 121 122 assert(V->getType() == IntType); 123 return V; 124 } 125 126 static Value *EmitFromInt(CodeGenFunction &CGF, llvm::Value *V, 127 QualType T, llvm::Type *ResultType) { 128 V = CGF.EmitFromMemory(V, T); 129 130 if (ResultType->isPointerTy()) 131 return CGF.Builder.CreateIntToPtr(V, ResultType); 132 133 assert(V->getType() == ResultType); 134 return V; 135 } 136 137 /// Utility to insert an atomic instruction based on Intrinsic::ID 138 /// and the expression node. 139 static Value *MakeBinaryAtomicValue( 140 CodeGenFunction &CGF, llvm::AtomicRMWInst::BinOp Kind, const CallExpr *E, 141 AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) { 142 QualType T = E->getType(); 143 assert(E->getArg(0)->getType()->isPointerType()); 144 assert(CGF.getContext().hasSameUnqualifiedType(T, 145 E->getArg(0)->getType()->getPointeeType())); 146 assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType())); 147 148 llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0)); 149 unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace(); 150 151 llvm::IntegerType *IntType = 152 llvm::IntegerType::get(CGF.getLLVMContext(), 153 CGF.getContext().getTypeSize(T)); 154 llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace); 155 156 llvm::Value *Args[2]; 157 Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType); 158 Args[1] = CGF.EmitScalarExpr(E->getArg(1)); 159 llvm::Type *ValueType = Args[1]->getType(); 160 Args[1] = EmitToInt(CGF, Args[1], T, IntType); 161 162 llvm::Value *Result = CGF.Builder.CreateAtomicRMW( 163 Kind, Args[0], Args[1], Ordering); 164 return EmitFromInt(CGF, Result, T, ValueType); 165 } 166 167 static Value *EmitNontemporalStore(CodeGenFunction &CGF, const CallExpr *E) { 168 Value *Val = CGF.EmitScalarExpr(E->getArg(0)); 169 Value *Address = CGF.EmitScalarExpr(E->getArg(1)); 170 171 // Convert the type of the pointer to a pointer to the stored type. 172 Val = CGF.EmitToMemory(Val, E->getArg(0)->getType()); 173 Value *BC = CGF.Builder.CreateBitCast( 174 Address, llvm::PointerType::getUnqual(Val->getType()), "cast"); 175 LValue LV = CGF.MakeNaturalAlignAddrLValue(BC, E->getArg(0)->getType()); 176 LV.setNontemporal(true); 177 CGF.EmitStoreOfScalar(Val, LV, false); 178 return nullptr; 179 } 180 181 static Value *EmitNontemporalLoad(CodeGenFunction &CGF, const CallExpr *E) { 182 Value *Address = CGF.EmitScalarExpr(E->getArg(0)); 183 184 LValue LV = CGF.MakeNaturalAlignAddrLValue(Address, E->getType()); 185 LV.setNontemporal(true); 186 return CGF.EmitLoadOfScalar(LV, E->getExprLoc()); 187 } 188 189 static RValue EmitBinaryAtomic(CodeGenFunction &CGF, 190 llvm::AtomicRMWInst::BinOp Kind, 191 const CallExpr *E) { 192 return RValue::get(MakeBinaryAtomicValue(CGF, Kind, E)); 193 } 194 195 /// Utility to insert an atomic instruction based Intrinsic::ID and 196 /// the expression node, where the return value is the result of the 197 /// operation. 198 static RValue EmitBinaryAtomicPost(CodeGenFunction &CGF, 199 llvm::AtomicRMWInst::BinOp Kind, 200 const CallExpr *E, 201 Instruction::BinaryOps Op, 202 bool Invert = false) { 203 QualType T = E->getType(); 204 assert(E->getArg(0)->getType()->isPointerType()); 205 assert(CGF.getContext().hasSameUnqualifiedType(T, 206 E->getArg(0)->getType()->getPointeeType())); 207 assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType())); 208 209 llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0)); 210 unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace(); 211 212 llvm::IntegerType *IntType = 213 llvm::IntegerType::get(CGF.getLLVMContext(), 214 CGF.getContext().getTypeSize(T)); 215 llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace); 216 217 llvm::Value *Args[2]; 218 Args[1] = CGF.EmitScalarExpr(E->getArg(1)); 219 llvm::Type *ValueType = Args[1]->getType(); 220 Args[1] = EmitToInt(CGF, Args[1], T, IntType); 221 Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType); 222 223 llvm::Value *Result = CGF.Builder.CreateAtomicRMW( 224 Kind, Args[0], Args[1], llvm::AtomicOrdering::SequentiallyConsistent); 225 Result = CGF.Builder.CreateBinOp(Op, Result, Args[1]); 226 if (Invert) 227 Result = 228 CGF.Builder.CreateBinOp(llvm::Instruction::Xor, Result, 229 llvm::ConstantInt::getAllOnesValue(IntType)); 230 Result = EmitFromInt(CGF, Result, T, ValueType); 231 return RValue::get(Result); 232 } 233 234 /// Utility to insert an atomic cmpxchg instruction. 235 /// 236 /// @param CGF The current codegen function. 237 /// @param E Builtin call expression to convert to cmpxchg. 238 /// arg0 - address to operate on 239 /// arg1 - value to compare with 240 /// arg2 - new value 241 /// @param ReturnBool Specifies whether to return success flag of 242 /// cmpxchg result or the old value. 243 /// 244 /// @returns result of cmpxchg, according to ReturnBool 245 /// 246 /// Note: In order to lower Microsoft's _InterlockedCompareExchange* intrinsics 247 /// invoke the function EmitAtomicCmpXchgForMSIntrin. 248 static Value *MakeAtomicCmpXchgValue(CodeGenFunction &CGF, const CallExpr *E, 249 bool ReturnBool) { 250 QualType T = ReturnBool ? E->getArg(1)->getType() : E->getType(); 251 llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0)); 252 unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace(); 253 254 llvm::IntegerType *IntType = llvm::IntegerType::get( 255 CGF.getLLVMContext(), CGF.getContext().getTypeSize(T)); 256 llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace); 257 258 Value *Args[3]; 259 Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType); 260 Args[1] = CGF.EmitScalarExpr(E->getArg(1)); 261 llvm::Type *ValueType = Args[1]->getType(); 262 Args[1] = EmitToInt(CGF, Args[1], T, IntType); 263 Args[2] = EmitToInt(CGF, CGF.EmitScalarExpr(E->getArg(2)), T, IntType); 264 265 Value *Pair = CGF.Builder.CreateAtomicCmpXchg( 266 Args[0], Args[1], Args[2], llvm::AtomicOrdering::SequentiallyConsistent, 267 llvm::AtomicOrdering::SequentiallyConsistent); 268 if (ReturnBool) 269 // Extract boolean success flag and zext it to int. 270 return CGF.Builder.CreateZExt(CGF.Builder.CreateExtractValue(Pair, 1), 271 CGF.ConvertType(E->getType())); 272 else 273 // Extract old value and emit it using the same type as compare value. 274 return EmitFromInt(CGF, CGF.Builder.CreateExtractValue(Pair, 0), T, 275 ValueType); 276 } 277 278 /// This function should be invoked to emit atomic cmpxchg for Microsoft's 279 /// _InterlockedCompareExchange* intrinsics which have the following signature: 280 /// T _InterlockedCompareExchange(T volatile *Destination, 281 /// T Exchange, 282 /// T Comparand); 283 /// 284 /// Whereas the llvm 'cmpxchg' instruction has the following syntax: 285 /// cmpxchg *Destination, Comparand, Exchange. 286 /// So we need to swap Comparand and Exchange when invoking 287 /// CreateAtomicCmpXchg. That is the reason we could not use the above utility 288 /// function MakeAtomicCmpXchgValue since it expects the arguments to be 289 /// already swapped. 290 291 static 292 Value *EmitAtomicCmpXchgForMSIntrin(CodeGenFunction &CGF, const CallExpr *E, 293 AtomicOrdering SuccessOrdering = AtomicOrdering::SequentiallyConsistent) { 294 assert(E->getArg(0)->getType()->isPointerType()); 295 assert(CGF.getContext().hasSameUnqualifiedType( 296 E->getType(), E->getArg(0)->getType()->getPointeeType())); 297 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), 298 E->getArg(1)->getType())); 299 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), 300 E->getArg(2)->getType())); 301 302 auto *Destination = CGF.EmitScalarExpr(E->getArg(0)); 303 auto *Comparand = CGF.EmitScalarExpr(E->getArg(2)); 304 auto *Exchange = CGF.EmitScalarExpr(E->getArg(1)); 305 306 // For Release ordering, the failure ordering should be Monotonic. 307 auto FailureOrdering = SuccessOrdering == AtomicOrdering::Release ? 308 AtomicOrdering::Monotonic : 309 SuccessOrdering; 310 311 // The atomic instruction is marked volatile for consistency with MSVC. This 312 // blocks the few atomics optimizations that LLVM has. If we want to optimize 313 // _Interlocked* operations in the future, we will have to remove the volatile 314 // marker. 315 auto *Result = CGF.Builder.CreateAtomicCmpXchg( 316 Destination, Comparand, Exchange, 317 SuccessOrdering, FailureOrdering); 318 Result->setVolatile(true); 319 return CGF.Builder.CreateExtractValue(Result, 0); 320 } 321 322 // 64-bit Microsoft platforms support 128 bit cmpxchg operations. They are 323 // prototyped like this: 324 // 325 // unsigned char _InterlockedCompareExchange128...( 326 // __int64 volatile * _Destination, 327 // __int64 _ExchangeHigh, 328 // __int64 _ExchangeLow, 329 // __int64 * _ComparandResult); 330 static Value *EmitAtomicCmpXchg128ForMSIntrin(CodeGenFunction &CGF, 331 const CallExpr *E, 332 AtomicOrdering SuccessOrdering) { 333 assert(E->getNumArgs() == 4); 334 llvm::Value *Destination = CGF.EmitScalarExpr(E->getArg(0)); 335 llvm::Value *ExchangeHigh = CGF.EmitScalarExpr(E->getArg(1)); 336 llvm::Value *ExchangeLow = CGF.EmitScalarExpr(E->getArg(2)); 337 llvm::Value *ComparandPtr = CGF.EmitScalarExpr(E->getArg(3)); 338 339 assert(Destination->getType()->isPointerTy()); 340 assert(!ExchangeHigh->getType()->isPointerTy()); 341 assert(!ExchangeLow->getType()->isPointerTy()); 342 assert(ComparandPtr->getType()->isPointerTy()); 343 344 // For Release ordering, the failure ordering should be Monotonic. 345 auto FailureOrdering = SuccessOrdering == AtomicOrdering::Release 346 ? AtomicOrdering::Monotonic 347 : SuccessOrdering; 348 349 // Convert to i128 pointers and values. 350 llvm::Type *Int128Ty = llvm::IntegerType::get(CGF.getLLVMContext(), 128); 351 llvm::Type *Int128PtrTy = Int128Ty->getPointerTo(); 352 Destination = CGF.Builder.CreateBitCast(Destination, Int128PtrTy); 353 Address ComparandResult(CGF.Builder.CreateBitCast(ComparandPtr, Int128PtrTy), 354 CGF.getContext().toCharUnitsFromBits(128)); 355 356 // (((i128)hi) << 64) | ((i128)lo) 357 ExchangeHigh = CGF.Builder.CreateZExt(ExchangeHigh, Int128Ty); 358 ExchangeLow = CGF.Builder.CreateZExt(ExchangeLow, Int128Ty); 359 ExchangeHigh = 360 CGF.Builder.CreateShl(ExchangeHigh, llvm::ConstantInt::get(Int128Ty, 64)); 361 llvm::Value *Exchange = CGF.Builder.CreateOr(ExchangeHigh, ExchangeLow); 362 363 // Load the comparand for the instruction. 364 llvm::Value *Comparand = CGF.Builder.CreateLoad(ComparandResult); 365 366 auto *CXI = CGF.Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange, 367 SuccessOrdering, FailureOrdering); 368 369 // The atomic instruction is marked volatile for consistency with MSVC. This 370 // blocks the few atomics optimizations that LLVM has. If we want to optimize 371 // _Interlocked* operations in the future, we will have to remove the volatile 372 // marker. 373 CXI->setVolatile(true); 374 375 // Store the result as an outparameter. 376 CGF.Builder.CreateStore(CGF.Builder.CreateExtractValue(CXI, 0), 377 ComparandResult); 378 379 // Get the success boolean and zero extend it to i8. 380 Value *Success = CGF.Builder.CreateExtractValue(CXI, 1); 381 return CGF.Builder.CreateZExt(Success, CGF.Int8Ty); 382 } 383 384 static Value *EmitAtomicIncrementValue(CodeGenFunction &CGF, const CallExpr *E, 385 AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) { 386 assert(E->getArg(0)->getType()->isPointerType()); 387 388 auto *IntTy = CGF.ConvertType(E->getType()); 389 auto *Result = CGF.Builder.CreateAtomicRMW( 390 AtomicRMWInst::Add, 391 CGF.EmitScalarExpr(E->getArg(0)), 392 ConstantInt::get(IntTy, 1), 393 Ordering); 394 return CGF.Builder.CreateAdd(Result, ConstantInt::get(IntTy, 1)); 395 } 396 397 static Value *EmitAtomicDecrementValue(CodeGenFunction &CGF, const CallExpr *E, 398 AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) { 399 assert(E->getArg(0)->getType()->isPointerType()); 400 401 auto *IntTy = CGF.ConvertType(E->getType()); 402 auto *Result = CGF.Builder.CreateAtomicRMW( 403 AtomicRMWInst::Sub, 404 CGF.EmitScalarExpr(E->getArg(0)), 405 ConstantInt::get(IntTy, 1), 406 Ordering); 407 return CGF.Builder.CreateSub(Result, ConstantInt::get(IntTy, 1)); 408 } 409 410 // Build a plain volatile load. 411 static Value *EmitISOVolatileLoad(CodeGenFunction &CGF, const CallExpr *E) { 412 Value *Ptr = CGF.EmitScalarExpr(E->getArg(0)); 413 QualType ElTy = E->getArg(0)->getType()->getPointeeType(); 414 CharUnits LoadSize = CGF.getContext().getTypeSizeInChars(ElTy); 415 llvm::Type *ITy = 416 llvm::IntegerType::get(CGF.getLLVMContext(), LoadSize.getQuantity() * 8); 417 Ptr = CGF.Builder.CreateBitCast(Ptr, ITy->getPointerTo()); 418 llvm::LoadInst *Load = CGF.Builder.CreateAlignedLoad(ITy, Ptr, LoadSize); 419 Load->setVolatile(true); 420 return Load; 421 } 422 423 // Build a plain volatile store. 424 static Value *EmitISOVolatileStore(CodeGenFunction &CGF, const CallExpr *E) { 425 Value *Ptr = CGF.EmitScalarExpr(E->getArg(0)); 426 Value *Value = CGF.EmitScalarExpr(E->getArg(1)); 427 QualType ElTy = E->getArg(0)->getType()->getPointeeType(); 428 CharUnits StoreSize = CGF.getContext().getTypeSizeInChars(ElTy); 429 llvm::Type *ITy = 430 llvm::IntegerType::get(CGF.getLLVMContext(), StoreSize.getQuantity() * 8); 431 Ptr = CGF.Builder.CreateBitCast(Ptr, ITy->getPointerTo()); 432 llvm::StoreInst *Store = 433 CGF.Builder.CreateAlignedStore(Value, Ptr, StoreSize); 434 Store->setVolatile(true); 435 return Store; 436 } 437 438 // Emit a simple mangled intrinsic that has 1 argument and a return type 439 // matching the argument type. Depending on mode, this may be a constrained 440 // floating-point intrinsic. 441 static Value *emitUnaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF, 442 const CallExpr *E, unsigned IntrinsicID, 443 unsigned ConstrainedIntrinsicID) { 444 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0)); 445 446 if (CGF.Builder.getIsFPConstrained()) { 447 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E); 448 Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType()); 449 return CGF.Builder.CreateConstrainedFPCall(F, { Src0 }); 450 } else { 451 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType()); 452 return CGF.Builder.CreateCall(F, Src0); 453 } 454 } 455 456 // Emit an intrinsic that has 2 operands of the same type as its result. 457 // Depending on mode, this may be a constrained floating-point intrinsic. 458 static Value *emitBinaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF, 459 const CallExpr *E, unsigned IntrinsicID, 460 unsigned ConstrainedIntrinsicID) { 461 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0)); 462 llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1)); 463 464 if (CGF.Builder.getIsFPConstrained()) { 465 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E); 466 Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType()); 467 return CGF.Builder.CreateConstrainedFPCall(F, { Src0, Src1 }); 468 } else { 469 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType()); 470 return CGF.Builder.CreateCall(F, { Src0, Src1 }); 471 } 472 } 473 474 // Emit an intrinsic that has 3 operands of the same type as its result. 475 // Depending on mode, this may be a constrained floating-point intrinsic. 476 static Value *emitTernaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF, 477 const CallExpr *E, unsigned IntrinsicID, 478 unsigned ConstrainedIntrinsicID) { 479 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0)); 480 llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1)); 481 llvm::Value *Src2 = CGF.EmitScalarExpr(E->getArg(2)); 482 483 if (CGF.Builder.getIsFPConstrained()) { 484 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E); 485 Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType()); 486 return CGF.Builder.CreateConstrainedFPCall(F, { Src0, Src1, Src2 }); 487 } else { 488 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType()); 489 return CGF.Builder.CreateCall(F, { Src0, Src1, Src2 }); 490 } 491 } 492 493 // Emit an intrinsic where all operands are of the same type as the result. 494 // Depending on mode, this may be a constrained floating-point intrinsic. 495 static Value *emitCallMaybeConstrainedFPBuiltin(CodeGenFunction &CGF, 496 unsigned IntrinsicID, 497 unsigned ConstrainedIntrinsicID, 498 llvm::Type *Ty, 499 ArrayRef<Value *> Args) { 500 Function *F; 501 if (CGF.Builder.getIsFPConstrained()) 502 F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Ty); 503 else 504 F = CGF.CGM.getIntrinsic(IntrinsicID, Ty); 505 506 if (CGF.Builder.getIsFPConstrained()) 507 return CGF.Builder.CreateConstrainedFPCall(F, Args); 508 else 509 return CGF.Builder.CreateCall(F, Args); 510 } 511 512 // Emit a simple mangled intrinsic that has 1 argument and a return type 513 // matching the argument type. 514 static Value *emitUnaryBuiltin(CodeGenFunction &CGF, 515 const CallExpr *E, 516 unsigned IntrinsicID) { 517 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0)); 518 519 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType()); 520 return CGF.Builder.CreateCall(F, Src0); 521 } 522 523 // Emit an intrinsic that has 2 operands of the same type as its result. 524 static Value *emitBinaryBuiltin(CodeGenFunction &CGF, 525 const CallExpr *E, 526 unsigned IntrinsicID) { 527 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0)); 528 llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1)); 529 530 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType()); 531 return CGF.Builder.CreateCall(F, { Src0, Src1 }); 532 } 533 534 // Emit an intrinsic that has 3 operands of the same type as its result. 535 static Value *emitTernaryBuiltin(CodeGenFunction &CGF, 536 const CallExpr *E, 537 unsigned IntrinsicID) { 538 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0)); 539 llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1)); 540 llvm::Value *Src2 = CGF.EmitScalarExpr(E->getArg(2)); 541 542 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType()); 543 return CGF.Builder.CreateCall(F, { Src0, Src1, Src2 }); 544 } 545 546 // Emit an intrinsic that has 1 float or double operand, and 1 integer. 547 static Value *emitFPIntBuiltin(CodeGenFunction &CGF, 548 const CallExpr *E, 549 unsigned IntrinsicID) { 550 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0)); 551 llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1)); 552 553 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType()); 554 return CGF.Builder.CreateCall(F, {Src0, Src1}); 555 } 556 557 // Emit an intrinsic that has overloaded integer result and fp operand. 558 static Value * 559 emitMaybeConstrainedFPToIntRoundBuiltin(CodeGenFunction &CGF, const CallExpr *E, 560 unsigned IntrinsicID, 561 unsigned ConstrainedIntrinsicID) { 562 llvm::Type *ResultType = CGF.ConvertType(E->getType()); 563 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0)); 564 565 if (CGF.Builder.getIsFPConstrained()) { 566 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E); 567 Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, 568 {ResultType, Src0->getType()}); 569 return CGF.Builder.CreateConstrainedFPCall(F, {Src0}); 570 } else { 571 Function *F = 572 CGF.CGM.getIntrinsic(IntrinsicID, {ResultType, Src0->getType()}); 573 return CGF.Builder.CreateCall(F, Src0); 574 } 575 } 576 577 /// EmitFAbs - Emit a call to @llvm.fabs(). 578 static Value *EmitFAbs(CodeGenFunction &CGF, Value *V) { 579 Function *F = CGF.CGM.getIntrinsic(Intrinsic::fabs, V->getType()); 580 llvm::CallInst *Call = CGF.Builder.CreateCall(F, V); 581 Call->setDoesNotAccessMemory(); 582 return Call; 583 } 584 585 /// Emit the computation of the sign bit for a floating point value. Returns 586 /// the i1 sign bit value. 587 static Value *EmitSignBit(CodeGenFunction &CGF, Value *V) { 588 LLVMContext &C = CGF.CGM.getLLVMContext(); 589 590 llvm::Type *Ty = V->getType(); 591 int Width = Ty->getPrimitiveSizeInBits(); 592 llvm::Type *IntTy = llvm::IntegerType::get(C, Width); 593 V = CGF.Builder.CreateBitCast(V, IntTy); 594 if (Ty->isPPC_FP128Ty()) { 595 // We want the sign bit of the higher-order double. The bitcast we just 596 // did works as if the double-double was stored to memory and then 597 // read as an i128. The "store" will put the higher-order double in the 598 // lower address in both little- and big-Endian modes, but the "load" 599 // will treat those bits as a different part of the i128: the low bits in 600 // little-Endian, the high bits in big-Endian. Therefore, on big-Endian 601 // we need to shift the high bits down to the low before truncating. 602 Width >>= 1; 603 if (CGF.getTarget().isBigEndian()) { 604 Value *ShiftCst = llvm::ConstantInt::get(IntTy, Width); 605 V = CGF.Builder.CreateLShr(V, ShiftCst); 606 } 607 // We are truncating value in order to extract the higher-order 608 // double, which we will be using to extract the sign from. 609 IntTy = llvm::IntegerType::get(C, Width); 610 V = CGF.Builder.CreateTrunc(V, IntTy); 611 } 612 Value *Zero = llvm::Constant::getNullValue(IntTy); 613 return CGF.Builder.CreateICmpSLT(V, Zero); 614 } 615 616 static RValue emitLibraryCall(CodeGenFunction &CGF, const FunctionDecl *FD, 617 const CallExpr *E, llvm::Constant *calleeValue) { 618 CGCallee callee = CGCallee::forDirect(calleeValue, GlobalDecl(FD)); 619 return CGF.EmitCall(E->getCallee()->getType(), callee, E, ReturnValueSlot()); 620 } 621 622 /// Emit a call to llvm.{sadd,uadd,ssub,usub,smul,umul}.with.overflow.* 623 /// depending on IntrinsicID. 624 /// 625 /// \arg CGF The current codegen function. 626 /// \arg IntrinsicID The ID for the Intrinsic we wish to generate. 627 /// \arg X The first argument to the llvm.*.with.overflow.*. 628 /// \arg Y The second argument to the llvm.*.with.overflow.*. 629 /// \arg Carry The carry returned by the llvm.*.with.overflow.*. 630 /// \returns The result (i.e. sum/product) returned by the intrinsic. 631 static llvm::Value *EmitOverflowIntrinsic(CodeGenFunction &CGF, 632 const llvm::Intrinsic::ID IntrinsicID, 633 llvm::Value *X, llvm::Value *Y, 634 llvm::Value *&Carry) { 635 // Make sure we have integers of the same width. 636 assert(X->getType() == Y->getType() && 637 "Arguments must be the same type. (Did you forget to make sure both " 638 "arguments have the same integer width?)"); 639 640 Function *Callee = CGF.CGM.getIntrinsic(IntrinsicID, X->getType()); 641 llvm::Value *Tmp = CGF.Builder.CreateCall(Callee, {X, Y}); 642 Carry = CGF.Builder.CreateExtractValue(Tmp, 1); 643 return CGF.Builder.CreateExtractValue(Tmp, 0); 644 } 645 646 static Value *emitRangedBuiltin(CodeGenFunction &CGF, 647 unsigned IntrinsicID, 648 int low, int high) { 649 llvm::MDBuilder MDHelper(CGF.getLLVMContext()); 650 llvm::MDNode *RNode = MDHelper.createRange(APInt(32, low), APInt(32, high)); 651 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, {}); 652 llvm::Instruction *Call = CGF.Builder.CreateCall(F); 653 Call->setMetadata(llvm::LLVMContext::MD_range, RNode); 654 return Call; 655 } 656 657 namespace { 658 struct WidthAndSignedness { 659 unsigned Width; 660 bool Signed; 661 }; 662 } 663 664 static WidthAndSignedness 665 getIntegerWidthAndSignedness(const clang::ASTContext &context, 666 const clang::QualType Type) { 667 assert(Type->isIntegerType() && "Given type is not an integer."); 668 unsigned Width = Type->isBooleanType() ? 1 669 : Type->isExtIntType() ? context.getIntWidth(Type) 670 : context.getTypeInfo(Type).Width; 671 bool Signed = Type->isSignedIntegerType(); 672 return {Width, Signed}; 673 } 674 675 // Given one or more integer types, this function produces an integer type that 676 // encompasses them: any value in one of the given types could be expressed in 677 // the encompassing type. 678 static struct WidthAndSignedness 679 EncompassingIntegerType(ArrayRef<struct WidthAndSignedness> Types) { 680 assert(Types.size() > 0 && "Empty list of types."); 681 682 // If any of the given types is signed, we must return a signed type. 683 bool Signed = false; 684 for (const auto &Type : Types) { 685 Signed |= Type.Signed; 686 } 687 688 // The encompassing type must have a width greater than or equal to the width 689 // of the specified types. Additionally, if the encompassing type is signed, 690 // its width must be strictly greater than the width of any unsigned types 691 // given. 692 unsigned Width = 0; 693 for (const auto &Type : Types) { 694 unsigned MinWidth = Type.Width + (Signed && !Type.Signed); 695 if (Width < MinWidth) { 696 Width = MinWidth; 697 } 698 } 699 700 return {Width, Signed}; 701 } 702 703 Value *CodeGenFunction::EmitVAStartEnd(Value *ArgValue, bool IsStart) { 704 llvm::Type *DestType = Int8PtrTy; 705 if (ArgValue->getType() != DestType) 706 ArgValue = 707 Builder.CreateBitCast(ArgValue, DestType, ArgValue->getName().data()); 708 709 Intrinsic::ID inst = IsStart ? Intrinsic::vastart : Intrinsic::vaend; 710 return Builder.CreateCall(CGM.getIntrinsic(inst), ArgValue); 711 } 712 713 /// Checks if using the result of __builtin_object_size(p, @p From) in place of 714 /// __builtin_object_size(p, @p To) is correct 715 static bool areBOSTypesCompatible(int From, int To) { 716 // Note: Our __builtin_object_size implementation currently treats Type=0 and 717 // Type=2 identically. Encoding this implementation detail here may make 718 // improving __builtin_object_size difficult in the future, so it's omitted. 719 return From == To || (From == 0 && To == 1) || (From == 3 && To == 2); 720 } 721 722 static llvm::Value * 723 getDefaultBuiltinObjectSizeResult(unsigned Type, llvm::IntegerType *ResType) { 724 return ConstantInt::get(ResType, (Type & 2) ? 0 : -1, /*isSigned=*/true); 725 } 726 727 llvm::Value * 728 CodeGenFunction::evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type, 729 llvm::IntegerType *ResType, 730 llvm::Value *EmittedE, 731 bool IsDynamic) { 732 uint64_t ObjectSize; 733 if (!E->tryEvaluateObjectSize(ObjectSize, getContext(), Type)) 734 return emitBuiltinObjectSize(E, Type, ResType, EmittedE, IsDynamic); 735 return ConstantInt::get(ResType, ObjectSize, /*isSigned=*/true); 736 } 737 738 /// Returns a Value corresponding to the size of the given expression. 739 /// This Value may be either of the following: 740 /// - A llvm::Argument (if E is a param with the pass_object_size attribute on 741 /// it) 742 /// - A call to the @llvm.objectsize intrinsic 743 /// 744 /// EmittedE is the result of emitting `E` as a scalar expr. If it's non-null 745 /// and we wouldn't otherwise try to reference a pass_object_size parameter, 746 /// we'll call @llvm.objectsize on EmittedE, rather than emitting E. 747 llvm::Value * 748 CodeGenFunction::emitBuiltinObjectSize(const Expr *E, unsigned Type, 749 llvm::IntegerType *ResType, 750 llvm::Value *EmittedE, bool IsDynamic) { 751 // We need to reference an argument if the pointer is a parameter with the 752 // pass_object_size attribute. 753 if (auto *D = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) { 754 auto *Param = dyn_cast<ParmVarDecl>(D->getDecl()); 755 auto *PS = D->getDecl()->getAttr<PassObjectSizeAttr>(); 756 if (Param != nullptr && PS != nullptr && 757 areBOSTypesCompatible(PS->getType(), Type)) { 758 auto Iter = SizeArguments.find(Param); 759 assert(Iter != SizeArguments.end()); 760 761 const ImplicitParamDecl *D = Iter->second; 762 auto DIter = LocalDeclMap.find(D); 763 assert(DIter != LocalDeclMap.end()); 764 765 return EmitLoadOfScalar(DIter->second, /*Volatile=*/false, 766 getContext().getSizeType(), E->getBeginLoc()); 767 } 768 } 769 770 // LLVM can't handle Type=3 appropriately, and __builtin_object_size shouldn't 771 // evaluate E for side-effects. In either case, we shouldn't lower to 772 // @llvm.objectsize. 773 if (Type == 3 || (!EmittedE && E->HasSideEffects(getContext()))) 774 return getDefaultBuiltinObjectSizeResult(Type, ResType); 775 776 Value *Ptr = EmittedE ? EmittedE : EmitScalarExpr(E); 777 assert(Ptr->getType()->isPointerTy() && 778 "Non-pointer passed to __builtin_object_size?"); 779 780 Function *F = 781 CGM.getIntrinsic(Intrinsic::objectsize, {ResType, Ptr->getType()}); 782 783 // LLVM only supports 0 and 2, make sure that we pass along that as a boolean. 784 Value *Min = Builder.getInt1((Type & 2) != 0); 785 // For GCC compatibility, __builtin_object_size treat NULL as unknown size. 786 Value *NullIsUnknown = Builder.getTrue(); 787 Value *Dynamic = Builder.getInt1(IsDynamic); 788 return Builder.CreateCall(F, {Ptr, Min, NullIsUnknown, Dynamic}); 789 } 790 791 namespace { 792 /// A struct to generically describe a bit test intrinsic. 793 struct BitTest { 794 enum ActionKind : uint8_t { TestOnly, Complement, Reset, Set }; 795 enum InterlockingKind : uint8_t { 796 Unlocked, 797 Sequential, 798 Acquire, 799 Release, 800 NoFence 801 }; 802 803 ActionKind Action; 804 InterlockingKind Interlocking; 805 bool Is64Bit; 806 807 static BitTest decodeBitTestBuiltin(unsigned BuiltinID); 808 }; 809 } // namespace 810 811 BitTest BitTest::decodeBitTestBuiltin(unsigned BuiltinID) { 812 switch (BuiltinID) { 813 // Main portable variants. 814 case Builtin::BI_bittest: 815 return {TestOnly, Unlocked, false}; 816 case Builtin::BI_bittestandcomplement: 817 return {Complement, Unlocked, false}; 818 case Builtin::BI_bittestandreset: 819 return {Reset, Unlocked, false}; 820 case Builtin::BI_bittestandset: 821 return {Set, Unlocked, false}; 822 case Builtin::BI_interlockedbittestandreset: 823 return {Reset, Sequential, false}; 824 case Builtin::BI_interlockedbittestandset: 825 return {Set, Sequential, false}; 826 827 // X86-specific 64-bit variants. 828 case Builtin::BI_bittest64: 829 return {TestOnly, Unlocked, true}; 830 case Builtin::BI_bittestandcomplement64: 831 return {Complement, Unlocked, true}; 832 case Builtin::BI_bittestandreset64: 833 return {Reset, Unlocked, true}; 834 case Builtin::BI_bittestandset64: 835 return {Set, Unlocked, true}; 836 case Builtin::BI_interlockedbittestandreset64: 837 return {Reset, Sequential, true}; 838 case Builtin::BI_interlockedbittestandset64: 839 return {Set, Sequential, true}; 840 841 // ARM/AArch64-specific ordering variants. 842 case Builtin::BI_interlockedbittestandset_acq: 843 return {Set, Acquire, false}; 844 case Builtin::BI_interlockedbittestandset_rel: 845 return {Set, Release, false}; 846 case Builtin::BI_interlockedbittestandset_nf: 847 return {Set, NoFence, false}; 848 case Builtin::BI_interlockedbittestandreset_acq: 849 return {Reset, Acquire, false}; 850 case Builtin::BI_interlockedbittestandreset_rel: 851 return {Reset, Release, false}; 852 case Builtin::BI_interlockedbittestandreset_nf: 853 return {Reset, NoFence, false}; 854 } 855 llvm_unreachable("expected only bittest intrinsics"); 856 } 857 858 static char bitActionToX86BTCode(BitTest::ActionKind A) { 859 switch (A) { 860 case BitTest::TestOnly: return '\0'; 861 case BitTest::Complement: return 'c'; 862 case BitTest::Reset: return 'r'; 863 case BitTest::Set: return 's'; 864 } 865 llvm_unreachable("invalid action"); 866 } 867 868 static llvm::Value *EmitX86BitTestIntrinsic(CodeGenFunction &CGF, 869 BitTest BT, 870 const CallExpr *E, Value *BitBase, 871 Value *BitPos) { 872 char Action = bitActionToX86BTCode(BT.Action); 873 char SizeSuffix = BT.Is64Bit ? 'q' : 'l'; 874 875 // Build the assembly. 876 SmallString<64> Asm; 877 raw_svector_ostream AsmOS(Asm); 878 if (BT.Interlocking != BitTest::Unlocked) 879 AsmOS << "lock "; 880 AsmOS << "bt"; 881 if (Action) 882 AsmOS << Action; 883 AsmOS << SizeSuffix << " $2, ($1)"; 884 885 // Build the constraints. FIXME: We should support immediates when possible. 886 std::string Constraints = "={@ccc},r,r,~{cc},~{memory}"; 887 std::string MachineClobbers = CGF.getTarget().getClobbers(); 888 if (!MachineClobbers.empty()) { 889 Constraints += ','; 890 Constraints += MachineClobbers; 891 } 892 llvm::IntegerType *IntType = llvm::IntegerType::get( 893 CGF.getLLVMContext(), 894 CGF.getContext().getTypeSize(E->getArg(1)->getType())); 895 llvm::Type *IntPtrType = IntType->getPointerTo(); 896 llvm::FunctionType *FTy = 897 llvm::FunctionType::get(CGF.Int8Ty, {IntPtrType, IntType}, false); 898 899 llvm::InlineAsm *IA = 900 llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true); 901 return CGF.Builder.CreateCall(IA, {BitBase, BitPos}); 902 } 903 904 static llvm::AtomicOrdering 905 getBitTestAtomicOrdering(BitTest::InterlockingKind I) { 906 switch (I) { 907 case BitTest::Unlocked: return llvm::AtomicOrdering::NotAtomic; 908 case BitTest::Sequential: return llvm::AtomicOrdering::SequentiallyConsistent; 909 case BitTest::Acquire: return llvm::AtomicOrdering::Acquire; 910 case BitTest::Release: return llvm::AtomicOrdering::Release; 911 case BitTest::NoFence: return llvm::AtomicOrdering::Monotonic; 912 } 913 llvm_unreachable("invalid interlocking"); 914 } 915 916 /// Emit a _bittest* intrinsic. These intrinsics take a pointer to an array of 917 /// bits and a bit position and read and optionally modify the bit at that 918 /// position. The position index can be arbitrarily large, i.e. it can be larger 919 /// than 31 or 63, so we need an indexed load in the general case. 920 static llvm::Value *EmitBitTestIntrinsic(CodeGenFunction &CGF, 921 unsigned BuiltinID, 922 const CallExpr *E) { 923 Value *BitBase = CGF.EmitScalarExpr(E->getArg(0)); 924 Value *BitPos = CGF.EmitScalarExpr(E->getArg(1)); 925 926 BitTest BT = BitTest::decodeBitTestBuiltin(BuiltinID); 927 928 // X86 has special BT, BTC, BTR, and BTS instructions that handle the array 929 // indexing operation internally. Use them if possible. 930 if (CGF.getTarget().getTriple().isX86()) 931 return EmitX86BitTestIntrinsic(CGF, BT, E, BitBase, BitPos); 932 933 // Otherwise, use generic code to load one byte and test the bit. Use all but 934 // the bottom three bits as the array index, and the bottom three bits to form 935 // a mask. 936 // Bit = BitBaseI8[BitPos >> 3] & (1 << (BitPos & 0x7)) != 0; 937 Value *ByteIndex = CGF.Builder.CreateAShr( 938 BitPos, llvm::ConstantInt::get(BitPos->getType(), 3), "bittest.byteidx"); 939 Value *BitBaseI8 = CGF.Builder.CreatePointerCast(BitBase, CGF.Int8PtrTy); 940 Address ByteAddr(CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, BitBaseI8, 941 ByteIndex, "bittest.byteaddr"), 942 CharUnits::One()); 943 Value *PosLow = 944 CGF.Builder.CreateAnd(CGF.Builder.CreateTrunc(BitPos, CGF.Int8Ty), 945 llvm::ConstantInt::get(CGF.Int8Ty, 0x7)); 946 947 // The updating instructions will need a mask. 948 Value *Mask = nullptr; 949 if (BT.Action != BitTest::TestOnly) { 950 Mask = CGF.Builder.CreateShl(llvm::ConstantInt::get(CGF.Int8Ty, 1), PosLow, 951 "bittest.mask"); 952 } 953 954 // Check the action and ordering of the interlocked intrinsics. 955 llvm::AtomicOrdering Ordering = getBitTestAtomicOrdering(BT.Interlocking); 956 957 Value *OldByte = nullptr; 958 if (Ordering != llvm::AtomicOrdering::NotAtomic) { 959 // Emit a combined atomicrmw load/store operation for the interlocked 960 // intrinsics. 961 llvm::AtomicRMWInst::BinOp RMWOp = llvm::AtomicRMWInst::Or; 962 if (BT.Action == BitTest::Reset) { 963 Mask = CGF.Builder.CreateNot(Mask); 964 RMWOp = llvm::AtomicRMWInst::And; 965 } 966 OldByte = CGF.Builder.CreateAtomicRMW(RMWOp, ByteAddr.getPointer(), Mask, 967 Ordering); 968 } else { 969 // Emit a plain load for the non-interlocked intrinsics. 970 OldByte = CGF.Builder.CreateLoad(ByteAddr, "bittest.byte"); 971 Value *NewByte = nullptr; 972 switch (BT.Action) { 973 case BitTest::TestOnly: 974 // Don't store anything. 975 break; 976 case BitTest::Complement: 977 NewByte = CGF.Builder.CreateXor(OldByte, Mask); 978 break; 979 case BitTest::Reset: 980 NewByte = CGF.Builder.CreateAnd(OldByte, CGF.Builder.CreateNot(Mask)); 981 break; 982 case BitTest::Set: 983 NewByte = CGF.Builder.CreateOr(OldByte, Mask); 984 break; 985 } 986 if (NewByte) 987 CGF.Builder.CreateStore(NewByte, ByteAddr); 988 } 989 990 // However we loaded the old byte, either by plain load or atomicrmw, shift 991 // the bit into the low position and mask it to 0 or 1. 992 Value *ShiftedByte = CGF.Builder.CreateLShr(OldByte, PosLow, "bittest.shr"); 993 return CGF.Builder.CreateAnd( 994 ShiftedByte, llvm::ConstantInt::get(CGF.Int8Ty, 1), "bittest.res"); 995 } 996 997 namespace { 998 enum class MSVCSetJmpKind { 999 _setjmpex, 1000 _setjmp3, 1001 _setjmp 1002 }; 1003 } 1004 1005 /// MSVC handles setjmp a bit differently on different platforms. On every 1006 /// architecture except 32-bit x86, the frame address is passed. On x86, extra 1007 /// parameters can be passed as variadic arguments, but we always pass none. 1008 static RValue EmitMSVCRTSetJmp(CodeGenFunction &CGF, MSVCSetJmpKind SJKind, 1009 const CallExpr *E) { 1010 llvm::Value *Arg1 = nullptr; 1011 llvm::Type *Arg1Ty = nullptr; 1012 StringRef Name; 1013 bool IsVarArg = false; 1014 if (SJKind == MSVCSetJmpKind::_setjmp3) { 1015 Name = "_setjmp3"; 1016 Arg1Ty = CGF.Int32Ty; 1017 Arg1 = llvm::ConstantInt::get(CGF.IntTy, 0); 1018 IsVarArg = true; 1019 } else { 1020 Name = SJKind == MSVCSetJmpKind::_setjmp ? "_setjmp" : "_setjmpex"; 1021 Arg1Ty = CGF.Int8PtrTy; 1022 if (CGF.getTarget().getTriple().getArch() == llvm::Triple::aarch64) { 1023 Arg1 = CGF.Builder.CreateCall( 1024 CGF.CGM.getIntrinsic(Intrinsic::sponentry, CGF.AllocaInt8PtrTy)); 1025 } else 1026 Arg1 = CGF.Builder.CreateCall( 1027 CGF.CGM.getIntrinsic(Intrinsic::frameaddress, CGF.AllocaInt8PtrTy), 1028 llvm::ConstantInt::get(CGF.Int32Ty, 0)); 1029 } 1030 1031 // Mark the call site and declaration with ReturnsTwice. 1032 llvm::Type *ArgTypes[2] = {CGF.Int8PtrTy, Arg1Ty}; 1033 llvm::AttributeList ReturnsTwiceAttr = llvm::AttributeList::get( 1034 CGF.getLLVMContext(), llvm::AttributeList::FunctionIndex, 1035 llvm::Attribute::ReturnsTwice); 1036 llvm::FunctionCallee SetJmpFn = CGF.CGM.CreateRuntimeFunction( 1037 llvm::FunctionType::get(CGF.IntTy, ArgTypes, IsVarArg), Name, 1038 ReturnsTwiceAttr, /*Local=*/true); 1039 1040 llvm::Value *Buf = CGF.Builder.CreateBitOrPointerCast( 1041 CGF.EmitScalarExpr(E->getArg(0)), CGF.Int8PtrTy); 1042 llvm::Value *Args[] = {Buf, Arg1}; 1043 llvm::CallBase *CB = CGF.EmitRuntimeCallOrInvoke(SetJmpFn, Args); 1044 CB->setAttributes(ReturnsTwiceAttr); 1045 return RValue::get(CB); 1046 } 1047 1048 // Many of MSVC builtins are on x64, ARM and AArch64; to avoid repeating code, 1049 // we handle them here. 1050 enum class CodeGenFunction::MSVCIntrin { 1051 _BitScanForward, 1052 _BitScanReverse, 1053 _InterlockedAnd, 1054 _InterlockedDecrement, 1055 _InterlockedExchange, 1056 _InterlockedExchangeAdd, 1057 _InterlockedExchangeSub, 1058 _InterlockedIncrement, 1059 _InterlockedOr, 1060 _InterlockedXor, 1061 _InterlockedExchangeAdd_acq, 1062 _InterlockedExchangeAdd_rel, 1063 _InterlockedExchangeAdd_nf, 1064 _InterlockedExchange_acq, 1065 _InterlockedExchange_rel, 1066 _InterlockedExchange_nf, 1067 _InterlockedCompareExchange_acq, 1068 _InterlockedCompareExchange_rel, 1069 _InterlockedCompareExchange_nf, 1070 _InterlockedCompareExchange128, 1071 _InterlockedCompareExchange128_acq, 1072 _InterlockedCompareExchange128_rel, 1073 _InterlockedCompareExchange128_nf, 1074 _InterlockedOr_acq, 1075 _InterlockedOr_rel, 1076 _InterlockedOr_nf, 1077 _InterlockedXor_acq, 1078 _InterlockedXor_rel, 1079 _InterlockedXor_nf, 1080 _InterlockedAnd_acq, 1081 _InterlockedAnd_rel, 1082 _InterlockedAnd_nf, 1083 _InterlockedIncrement_acq, 1084 _InterlockedIncrement_rel, 1085 _InterlockedIncrement_nf, 1086 _InterlockedDecrement_acq, 1087 _InterlockedDecrement_rel, 1088 _InterlockedDecrement_nf, 1089 __fastfail, 1090 }; 1091 1092 static Optional<CodeGenFunction::MSVCIntrin> 1093 translateArmToMsvcIntrin(unsigned BuiltinID) { 1094 using MSVCIntrin = CodeGenFunction::MSVCIntrin; 1095 switch (BuiltinID) { 1096 default: 1097 return None; 1098 case ARM::BI_BitScanForward: 1099 case ARM::BI_BitScanForward64: 1100 return MSVCIntrin::_BitScanForward; 1101 case ARM::BI_BitScanReverse: 1102 case ARM::BI_BitScanReverse64: 1103 return MSVCIntrin::_BitScanReverse; 1104 case ARM::BI_InterlockedAnd64: 1105 return MSVCIntrin::_InterlockedAnd; 1106 case ARM::BI_InterlockedExchange64: 1107 return MSVCIntrin::_InterlockedExchange; 1108 case ARM::BI_InterlockedExchangeAdd64: 1109 return MSVCIntrin::_InterlockedExchangeAdd; 1110 case ARM::BI_InterlockedExchangeSub64: 1111 return MSVCIntrin::_InterlockedExchangeSub; 1112 case ARM::BI_InterlockedOr64: 1113 return MSVCIntrin::_InterlockedOr; 1114 case ARM::BI_InterlockedXor64: 1115 return MSVCIntrin::_InterlockedXor; 1116 case ARM::BI_InterlockedDecrement64: 1117 return MSVCIntrin::_InterlockedDecrement; 1118 case ARM::BI_InterlockedIncrement64: 1119 return MSVCIntrin::_InterlockedIncrement; 1120 case ARM::BI_InterlockedExchangeAdd8_acq: 1121 case ARM::BI_InterlockedExchangeAdd16_acq: 1122 case ARM::BI_InterlockedExchangeAdd_acq: 1123 case ARM::BI_InterlockedExchangeAdd64_acq: 1124 return MSVCIntrin::_InterlockedExchangeAdd_acq; 1125 case ARM::BI_InterlockedExchangeAdd8_rel: 1126 case ARM::BI_InterlockedExchangeAdd16_rel: 1127 case ARM::BI_InterlockedExchangeAdd_rel: 1128 case ARM::BI_InterlockedExchangeAdd64_rel: 1129 return MSVCIntrin::_InterlockedExchangeAdd_rel; 1130 case ARM::BI_InterlockedExchangeAdd8_nf: 1131 case ARM::BI_InterlockedExchangeAdd16_nf: 1132 case ARM::BI_InterlockedExchangeAdd_nf: 1133 case ARM::BI_InterlockedExchangeAdd64_nf: 1134 return MSVCIntrin::_InterlockedExchangeAdd_nf; 1135 case ARM::BI_InterlockedExchange8_acq: 1136 case ARM::BI_InterlockedExchange16_acq: 1137 case ARM::BI_InterlockedExchange_acq: 1138 case ARM::BI_InterlockedExchange64_acq: 1139 return MSVCIntrin::_InterlockedExchange_acq; 1140 case ARM::BI_InterlockedExchange8_rel: 1141 case ARM::BI_InterlockedExchange16_rel: 1142 case ARM::BI_InterlockedExchange_rel: 1143 case ARM::BI_InterlockedExchange64_rel: 1144 return MSVCIntrin::_InterlockedExchange_rel; 1145 case ARM::BI_InterlockedExchange8_nf: 1146 case ARM::BI_InterlockedExchange16_nf: 1147 case ARM::BI_InterlockedExchange_nf: 1148 case ARM::BI_InterlockedExchange64_nf: 1149 return MSVCIntrin::_InterlockedExchange_nf; 1150 case ARM::BI_InterlockedCompareExchange8_acq: 1151 case ARM::BI_InterlockedCompareExchange16_acq: 1152 case ARM::BI_InterlockedCompareExchange_acq: 1153 case ARM::BI_InterlockedCompareExchange64_acq: 1154 return MSVCIntrin::_InterlockedCompareExchange_acq; 1155 case ARM::BI_InterlockedCompareExchange8_rel: 1156 case ARM::BI_InterlockedCompareExchange16_rel: 1157 case ARM::BI_InterlockedCompareExchange_rel: 1158 case ARM::BI_InterlockedCompareExchange64_rel: 1159 return MSVCIntrin::_InterlockedCompareExchange_rel; 1160 case ARM::BI_InterlockedCompareExchange8_nf: 1161 case ARM::BI_InterlockedCompareExchange16_nf: 1162 case ARM::BI_InterlockedCompareExchange_nf: 1163 case ARM::BI_InterlockedCompareExchange64_nf: 1164 return MSVCIntrin::_InterlockedCompareExchange_nf; 1165 case ARM::BI_InterlockedOr8_acq: 1166 case ARM::BI_InterlockedOr16_acq: 1167 case ARM::BI_InterlockedOr_acq: 1168 case ARM::BI_InterlockedOr64_acq: 1169 return MSVCIntrin::_InterlockedOr_acq; 1170 case ARM::BI_InterlockedOr8_rel: 1171 case ARM::BI_InterlockedOr16_rel: 1172 case ARM::BI_InterlockedOr_rel: 1173 case ARM::BI_InterlockedOr64_rel: 1174 return MSVCIntrin::_InterlockedOr_rel; 1175 case ARM::BI_InterlockedOr8_nf: 1176 case ARM::BI_InterlockedOr16_nf: 1177 case ARM::BI_InterlockedOr_nf: 1178 case ARM::BI_InterlockedOr64_nf: 1179 return MSVCIntrin::_InterlockedOr_nf; 1180 case ARM::BI_InterlockedXor8_acq: 1181 case ARM::BI_InterlockedXor16_acq: 1182 case ARM::BI_InterlockedXor_acq: 1183 case ARM::BI_InterlockedXor64_acq: 1184 return MSVCIntrin::_InterlockedXor_acq; 1185 case ARM::BI_InterlockedXor8_rel: 1186 case ARM::BI_InterlockedXor16_rel: 1187 case ARM::BI_InterlockedXor_rel: 1188 case ARM::BI_InterlockedXor64_rel: 1189 return MSVCIntrin::_InterlockedXor_rel; 1190 case ARM::BI_InterlockedXor8_nf: 1191 case ARM::BI_InterlockedXor16_nf: 1192 case ARM::BI_InterlockedXor_nf: 1193 case ARM::BI_InterlockedXor64_nf: 1194 return MSVCIntrin::_InterlockedXor_nf; 1195 case ARM::BI_InterlockedAnd8_acq: 1196 case ARM::BI_InterlockedAnd16_acq: 1197 case ARM::BI_InterlockedAnd_acq: 1198 case ARM::BI_InterlockedAnd64_acq: 1199 return MSVCIntrin::_InterlockedAnd_acq; 1200 case ARM::BI_InterlockedAnd8_rel: 1201 case ARM::BI_InterlockedAnd16_rel: 1202 case ARM::BI_InterlockedAnd_rel: 1203 case ARM::BI_InterlockedAnd64_rel: 1204 return MSVCIntrin::_InterlockedAnd_rel; 1205 case ARM::BI_InterlockedAnd8_nf: 1206 case ARM::BI_InterlockedAnd16_nf: 1207 case ARM::BI_InterlockedAnd_nf: 1208 case ARM::BI_InterlockedAnd64_nf: 1209 return MSVCIntrin::_InterlockedAnd_nf; 1210 case ARM::BI_InterlockedIncrement16_acq: 1211 case ARM::BI_InterlockedIncrement_acq: 1212 case ARM::BI_InterlockedIncrement64_acq: 1213 return MSVCIntrin::_InterlockedIncrement_acq; 1214 case ARM::BI_InterlockedIncrement16_rel: 1215 case ARM::BI_InterlockedIncrement_rel: 1216 case ARM::BI_InterlockedIncrement64_rel: 1217 return MSVCIntrin::_InterlockedIncrement_rel; 1218 case ARM::BI_InterlockedIncrement16_nf: 1219 case ARM::BI_InterlockedIncrement_nf: 1220 case ARM::BI_InterlockedIncrement64_nf: 1221 return MSVCIntrin::_InterlockedIncrement_nf; 1222 case ARM::BI_InterlockedDecrement16_acq: 1223 case ARM::BI_InterlockedDecrement_acq: 1224 case ARM::BI_InterlockedDecrement64_acq: 1225 return MSVCIntrin::_InterlockedDecrement_acq; 1226 case ARM::BI_InterlockedDecrement16_rel: 1227 case ARM::BI_InterlockedDecrement_rel: 1228 case ARM::BI_InterlockedDecrement64_rel: 1229 return MSVCIntrin::_InterlockedDecrement_rel; 1230 case ARM::BI_InterlockedDecrement16_nf: 1231 case ARM::BI_InterlockedDecrement_nf: 1232 case ARM::BI_InterlockedDecrement64_nf: 1233 return MSVCIntrin::_InterlockedDecrement_nf; 1234 } 1235 llvm_unreachable("must return from switch"); 1236 } 1237 1238 static Optional<CodeGenFunction::MSVCIntrin> 1239 translateAarch64ToMsvcIntrin(unsigned BuiltinID) { 1240 using MSVCIntrin = CodeGenFunction::MSVCIntrin; 1241 switch (BuiltinID) { 1242 default: 1243 return None; 1244 case AArch64::BI_BitScanForward: 1245 case AArch64::BI_BitScanForward64: 1246 return MSVCIntrin::_BitScanForward; 1247 case AArch64::BI_BitScanReverse: 1248 case AArch64::BI_BitScanReverse64: 1249 return MSVCIntrin::_BitScanReverse; 1250 case AArch64::BI_InterlockedAnd64: 1251 return MSVCIntrin::_InterlockedAnd; 1252 case AArch64::BI_InterlockedExchange64: 1253 return MSVCIntrin::_InterlockedExchange; 1254 case AArch64::BI_InterlockedExchangeAdd64: 1255 return MSVCIntrin::_InterlockedExchangeAdd; 1256 case AArch64::BI_InterlockedExchangeSub64: 1257 return MSVCIntrin::_InterlockedExchangeSub; 1258 case AArch64::BI_InterlockedOr64: 1259 return MSVCIntrin::_InterlockedOr; 1260 case AArch64::BI_InterlockedXor64: 1261 return MSVCIntrin::_InterlockedXor; 1262 case AArch64::BI_InterlockedDecrement64: 1263 return MSVCIntrin::_InterlockedDecrement; 1264 case AArch64::BI_InterlockedIncrement64: 1265 return MSVCIntrin::_InterlockedIncrement; 1266 case AArch64::BI_InterlockedExchangeAdd8_acq: 1267 case AArch64::BI_InterlockedExchangeAdd16_acq: 1268 case AArch64::BI_InterlockedExchangeAdd_acq: 1269 case AArch64::BI_InterlockedExchangeAdd64_acq: 1270 return MSVCIntrin::_InterlockedExchangeAdd_acq; 1271 case AArch64::BI_InterlockedExchangeAdd8_rel: 1272 case AArch64::BI_InterlockedExchangeAdd16_rel: 1273 case AArch64::BI_InterlockedExchangeAdd_rel: 1274 case AArch64::BI_InterlockedExchangeAdd64_rel: 1275 return MSVCIntrin::_InterlockedExchangeAdd_rel; 1276 case AArch64::BI_InterlockedExchangeAdd8_nf: 1277 case AArch64::BI_InterlockedExchangeAdd16_nf: 1278 case AArch64::BI_InterlockedExchangeAdd_nf: 1279 case AArch64::BI_InterlockedExchangeAdd64_nf: 1280 return MSVCIntrin::_InterlockedExchangeAdd_nf; 1281 case AArch64::BI_InterlockedExchange8_acq: 1282 case AArch64::BI_InterlockedExchange16_acq: 1283 case AArch64::BI_InterlockedExchange_acq: 1284 case AArch64::BI_InterlockedExchange64_acq: 1285 return MSVCIntrin::_InterlockedExchange_acq; 1286 case AArch64::BI_InterlockedExchange8_rel: 1287 case AArch64::BI_InterlockedExchange16_rel: 1288 case AArch64::BI_InterlockedExchange_rel: 1289 case AArch64::BI_InterlockedExchange64_rel: 1290 return MSVCIntrin::_InterlockedExchange_rel; 1291 case AArch64::BI_InterlockedExchange8_nf: 1292 case AArch64::BI_InterlockedExchange16_nf: 1293 case AArch64::BI_InterlockedExchange_nf: 1294 case AArch64::BI_InterlockedExchange64_nf: 1295 return MSVCIntrin::_InterlockedExchange_nf; 1296 case AArch64::BI_InterlockedCompareExchange8_acq: 1297 case AArch64::BI_InterlockedCompareExchange16_acq: 1298 case AArch64::BI_InterlockedCompareExchange_acq: 1299 case AArch64::BI_InterlockedCompareExchange64_acq: 1300 return MSVCIntrin::_InterlockedCompareExchange_acq; 1301 case AArch64::BI_InterlockedCompareExchange8_rel: 1302 case AArch64::BI_InterlockedCompareExchange16_rel: 1303 case AArch64::BI_InterlockedCompareExchange_rel: 1304 case AArch64::BI_InterlockedCompareExchange64_rel: 1305 return MSVCIntrin::_InterlockedCompareExchange_rel; 1306 case AArch64::BI_InterlockedCompareExchange8_nf: 1307 case AArch64::BI_InterlockedCompareExchange16_nf: 1308 case AArch64::BI_InterlockedCompareExchange_nf: 1309 case AArch64::BI_InterlockedCompareExchange64_nf: 1310 return MSVCIntrin::_InterlockedCompareExchange_nf; 1311 case AArch64::BI_InterlockedCompareExchange128: 1312 return MSVCIntrin::_InterlockedCompareExchange128; 1313 case AArch64::BI_InterlockedCompareExchange128_acq: 1314 return MSVCIntrin::_InterlockedCompareExchange128_acq; 1315 case AArch64::BI_InterlockedCompareExchange128_nf: 1316 return MSVCIntrin::_InterlockedCompareExchange128_nf; 1317 case AArch64::BI_InterlockedCompareExchange128_rel: 1318 return MSVCIntrin::_InterlockedCompareExchange128_rel; 1319 case AArch64::BI_InterlockedOr8_acq: 1320 case AArch64::BI_InterlockedOr16_acq: 1321 case AArch64::BI_InterlockedOr_acq: 1322 case AArch64::BI_InterlockedOr64_acq: 1323 return MSVCIntrin::_InterlockedOr_acq; 1324 case AArch64::BI_InterlockedOr8_rel: 1325 case AArch64::BI_InterlockedOr16_rel: 1326 case AArch64::BI_InterlockedOr_rel: 1327 case AArch64::BI_InterlockedOr64_rel: 1328 return MSVCIntrin::_InterlockedOr_rel; 1329 case AArch64::BI_InterlockedOr8_nf: 1330 case AArch64::BI_InterlockedOr16_nf: 1331 case AArch64::BI_InterlockedOr_nf: 1332 case AArch64::BI_InterlockedOr64_nf: 1333 return MSVCIntrin::_InterlockedOr_nf; 1334 case AArch64::BI_InterlockedXor8_acq: 1335 case AArch64::BI_InterlockedXor16_acq: 1336 case AArch64::BI_InterlockedXor_acq: 1337 case AArch64::BI_InterlockedXor64_acq: 1338 return MSVCIntrin::_InterlockedXor_acq; 1339 case AArch64::BI_InterlockedXor8_rel: 1340 case AArch64::BI_InterlockedXor16_rel: 1341 case AArch64::BI_InterlockedXor_rel: 1342 case AArch64::BI_InterlockedXor64_rel: 1343 return MSVCIntrin::_InterlockedXor_rel; 1344 case AArch64::BI_InterlockedXor8_nf: 1345 case AArch64::BI_InterlockedXor16_nf: 1346 case AArch64::BI_InterlockedXor_nf: 1347 case AArch64::BI_InterlockedXor64_nf: 1348 return MSVCIntrin::_InterlockedXor_nf; 1349 case AArch64::BI_InterlockedAnd8_acq: 1350 case AArch64::BI_InterlockedAnd16_acq: 1351 case AArch64::BI_InterlockedAnd_acq: 1352 case AArch64::BI_InterlockedAnd64_acq: 1353 return MSVCIntrin::_InterlockedAnd_acq; 1354 case AArch64::BI_InterlockedAnd8_rel: 1355 case AArch64::BI_InterlockedAnd16_rel: 1356 case AArch64::BI_InterlockedAnd_rel: 1357 case AArch64::BI_InterlockedAnd64_rel: 1358 return MSVCIntrin::_InterlockedAnd_rel; 1359 case AArch64::BI_InterlockedAnd8_nf: 1360 case AArch64::BI_InterlockedAnd16_nf: 1361 case AArch64::BI_InterlockedAnd_nf: 1362 case AArch64::BI_InterlockedAnd64_nf: 1363 return MSVCIntrin::_InterlockedAnd_nf; 1364 case AArch64::BI_InterlockedIncrement16_acq: 1365 case AArch64::BI_InterlockedIncrement_acq: 1366 case AArch64::BI_InterlockedIncrement64_acq: 1367 return MSVCIntrin::_InterlockedIncrement_acq; 1368 case AArch64::BI_InterlockedIncrement16_rel: 1369 case AArch64::BI_InterlockedIncrement_rel: 1370 case AArch64::BI_InterlockedIncrement64_rel: 1371 return MSVCIntrin::_InterlockedIncrement_rel; 1372 case AArch64::BI_InterlockedIncrement16_nf: 1373 case AArch64::BI_InterlockedIncrement_nf: 1374 case AArch64::BI_InterlockedIncrement64_nf: 1375 return MSVCIntrin::_InterlockedIncrement_nf; 1376 case AArch64::BI_InterlockedDecrement16_acq: 1377 case AArch64::BI_InterlockedDecrement_acq: 1378 case AArch64::BI_InterlockedDecrement64_acq: 1379 return MSVCIntrin::_InterlockedDecrement_acq; 1380 case AArch64::BI_InterlockedDecrement16_rel: 1381 case AArch64::BI_InterlockedDecrement_rel: 1382 case AArch64::BI_InterlockedDecrement64_rel: 1383 return MSVCIntrin::_InterlockedDecrement_rel; 1384 case AArch64::BI_InterlockedDecrement16_nf: 1385 case AArch64::BI_InterlockedDecrement_nf: 1386 case AArch64::BI_InterlockedDecrement64_nf: 1387 return MSVCIntrin::_InterlockedDecrement_nf; 1388 } 1389 llvm_unreachable("must return from switch"); 1390 } 1391 1392 static Optional<CodeGenFunction::MSVCIntrin> 1393 translateX86ToMsvcIntrin(unsigned BuiltinID) { 1394 using MSVCIntrin = CodeGenFunction::MSVCIntrin; 1395 switch (BuiltinID) { 1396 default: 1397 return None; 1398 case clang::X86::BI_BitScanForward: 1399 case clang::X86::BI_BitScanForward64: 1400 return MSVCIntrin::_BitScanForward; 1401 case clang::X86::BI_BitScanReverse: 1402 case clang::X86::BI_BitScanReverse64: 1403 return MSVCIntrin::_BitScanReverse; 1404 case clang::X86::BI_InterlockedAnd64: 1405 return MSVCIntrin::_InterlockedAnd; 1406 case clang::X86::BI_InterlockedCompareExchange128: 1407 return MSVCIntrin::_InterlockedCompareExchange128; 1408 case clang::X86::BI_InterlockedExchange64: 1409 return MSVCIntrin::_InterlockedExchange; 1410 case clang::X86::BI_InterlockedExchangeAdd64: 1411 return MSVCIntrin::_InterlockedExchangeAdd; 1412 case clang::X86::BI_InterlockedExchangeSub64: 1413 return MSVCIntrin::_InterlockedExchangeSub; 1414 case clang::X86::BI_InterlockedOr64: 1415 return MSVCIntrin::_InterlockedOr; 1416 case clang::X86::BI_InterlockedXor64: 1417 return MSVCIntrin::_InterlockedXor; 1418 case clang::X86::BI_InterlockedDecrement64: 1419 return MSVCIntrin::_InterlockedDecrement; 1420 case clang::X86::BI_InterlockedIncrement64: 1421 return MSVCIntrin::_InterlockedIncrement; 1422 } 1423 llvm_unreachable("must return from switch"); 1424 } 1425 1426 // Emit an MSVC intrinsic. Assumes that arguments have *not* been evaluated. 1427 Value *CodeGenFunction::EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, 1428 const CallExpr *E) { 1429 switch (BuiltinID) { 1430 case MSVCIntrin::_BitScanForward: 1431 case MSVCIntrin::_BitScanReverse: { 1432 Address IndexAddress(EmitPointerWithAlignment(E->getArg(0))); 1433 Value *ArgValue = EmitScalarExpr(E->getArg(1)); 1434 1435 llvm::Type *ArgType = ArgValue->getType(); 1436 llvm::Type *IndexType = 1437 IndexAddress.getPointer()->getType()->getPointerElementType(); 1438 llvm::Type *ResultType = ConvertType(E->getType()); 1439 1440 Value *ArgZero = llvm::Constant::getNullValue(ArgType); 1441 Value *ResZero = llvm::Constant::getNullValue(ResultType); 1442 Value *ResOne = llvm::ConstantInt::get(ResultType, 1); 1443 1444 BasicBlock *Begin = Builder.GetInsertBlock(); 1445 BasicBlock *End = createBasicBlock("bitscan_end", this->CurFn); 1446 Builder.SetInsertPoint(End); 1447 PHINode *Result = Builder.CreatePHI(ResultType, 2, "bitscan_result"); 1448 1449 Builder.SetInsertPoint(Begin); 1450 Value *IsZero = Builder.CreateICmpEQ(ArgValue, ArgZero); 1451 BasicBlock *NotZero = createBasicBlock("bitscan_not_zero", this->CurFn); 1452 Builder.CreateCondBr(IsZero, End, NotZero); 1453 Result->addIncoming(ResZero, Begin); 1454 1455 Builder.SetInsertPoint(NotZero); 1456 1457 if (BuiltinID == MSVCIntrin::_BitScanForward) { 1458 Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType); 1459 Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()}); 1460 ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false); 1461 Builder.CreateStore(ZeroCount, IndexAddress, false); 1462 } else { 1463 unsigned ArgWidth = cast<llvm::IntegerType>(ArgType)->getBitWidth(); 1464 Value *ArgTypeLastIndex = llvm::ConstantInt::get(IndexType, ArgWidth - 1); 1465 1466 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType); 1467 Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()}); 1468 ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false); 1469 Value *Index = Builder.CreateNSWSub(ArgTypeLastIndex, ZeroCount); 1470 Builder.CreateStore(Index, IndexAddress, false); 1471 } 1472 Builder.CreateBr(End); 1473 Result->addIncoming(ResOne, NotZero); 1474 1475 Builder.SetInsertPoint(End); 1476 return Result; 1477 } 1478 case MSVCIntrin::_InterlockedAnd: 1479 return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E); 1480 case MSVCIntrin::_InterlockedExchange: 1481 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E); 1482 case MSVCIntrin::_InterlockedExchangeAdd: 1483 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E); 1484 case MSVCIntrin::_InterlockedExchangeSub: 1485 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Sub, E); 1486 case MSVCIntrin::_InterlockedOr: 1487 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E); 1488 case MSVCIntrin::_InterlockedXor: 1489 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E); 1490 case MSVCIntrin::_InterlockedExchangeAdd_acq: 1491 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E, 1492 AtomicOrdering::Acquire); 1493 case MSVCIntrin::_InterlockedExchangeAdd_rel: 1494 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E, 1495 AtomicOrdering::Release); 1496 case MSVCIntrin::_InterlockedExchangeAdd_nf: 1497 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E, 1498 AtomicOrdering::Monotonic); 1499 case MSVCIntrin::_InterlockedExchange_acq: 1500 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E, 1501 AtomicOrdering::Acquire); 1502 case MSVCIntrin::_InterlockedExchange_rel: 1503 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E, 1504 AtomicOrdering::Release); 1505 case MSVCIntrin::_InterlockedExchange_nf: 1506 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E, 1507 AtomicOrdering::Monotonic); 1508 case MSVCIntrin::_InterlockedCompareExchange_acq: 1509 return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Acquire); 1510 case MSVCIntrin::_InterlockedCompareExchange_rel: 1511 return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Release); 1512 case MSVCIntrin::_InterlockedCompareExchange_nf: 1513 return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Monotonic); 1514 case MSVCIntrin::_InterlockedCompareExchange128: 1515 return EmitAtomicCmpXchg128ForMSIntrin( 1516 *this, E, AtomicOrdering::SequentiallyConsistent); 1517 case MSVCIntrin::_InterlockedCompareExchange128_acq: 1518 return EmitAtomicCmpXchg128ForMSIntrin(*this, E, AtomicOrdering::Acquire); 1519 case MSVCIntrin::_InterlockedCompareExchange128_rel: 1520 return EmitAtomicCmpXchg128ForMSIntrin(*this, E, AtomicOrdering::Release); 1521 case MSVCIntrin::_InterlockedCompareExchange128_nf: 1522 return EmitAtomicCmpXchg128ForMSIntrin(*this, E, AtomicOrdering::Monotonic); 1523 case MSVCIntrin::_InterlockedOr_acq: 1524 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E, 1525 AtomicOrdering::Acquire); 1526 case MSVCIntrin::_InterlockedOr_rel: 1527 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E, 1528 AtomicOrdering::Release); 1529 case MSVCIntrin::_InterlockedOr_nf: 1530 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E, 1531 AtomicOrdering::Monotonic); 1532 case MSVCIntrin::_InterlockedXor_acq: 1533 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E, 1534 AtomicOrdering::Acquire); 1535 case MSVCIntrin::_InterlockedXor_rel: 1536 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E, 1537 AtomicOrdering::Release); 1538 case MSVCIntrin::_InterlockedXor_nf: 1539 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E, 1540 AtomicOrdering::Monotonic); 1541 case MSVCIntrin::_InterlockedAnd_acq: 1542 return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E, 1543 AtomicOrdering::Acquire); 1544 case MSVCIntrin::_InterlockedAnd_rel: 1545 return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E, 1546 AtomicOrdering::Release); 1547 case MSVCIntrin::_InterlockedAnd_nf: 1548 return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E, 1549 AtomicOrdering::Monotonic); 1550 case MSVCIntrin::_InterlockedIncrement_acq: 1551 return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Acquire); 1552 case MSVCIntrin::_InterlockedIncrement_rel: 1553 return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Release); 1554 case MSVCIntrin::_InterlockedIncrement_nf: 1555 return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Monotonic); 1556 case MSVCIntrin::_InterlockedDecrement_acq: 1557 return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Acquire); 1558 case MSVCIntrin::_InterlockedDecrement_rel: 1559 return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Release); 1560 case MSVCIntrin::_InterlockedDecrement_nf: 1561 return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Monotonic); 1562 1563 case MSVCIntrin::_InterlockedDecrement: 1564 return EmitAtomicDecrementValue(*this, E); 1565 case MSVCIntrin::_InterlockedIncrement: 1566 return EmitAtomicIncrementValue(*this, E); 1567 1568 case MSVCIntrin::__fastfail: { 1569 // Request immediate process termination from the kernel. The instruction 1570 // sequences to do this are documented on MSDN: 1571 // https://msdn.microsoft.com/en-us/library/dn774154.aspx 1572 llvm::Triple::ArchType ISA = getTarget().getTriple().getArch(); 1573 StringRef Asm, Constraints; 1574 switch (ISA) { 1575 default: 1576 ErrorUnsupported(E, "__fastfail call for this architecture"); 1577 break; 1578 case llvm::Triple::x86: 1579 case llvm::Triple::x86_64: 1580 Asm = "int $$0x29"; 1581 Constraints = "{cx}"; 1582 break; 1583 case llvm::Triple::thumb: 1584 Asm = "udf #251"; 1585 Constraints = "{r0}"; 1586 break; 1587 case llvm::Triple::aarch64: 1588 Asm = "brk #0xF003"; 1589 Constraints = "{w0}"; 1590 } 1591 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, {Int32Ty}, false); 1592 llvm::InlineAsm *IA = 1593 llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true); 1594 llvm::AttributeList NoReturnAttr = llvm::AttributeList::get( 1595 getLLVMContext(), llvm::AttributeList::FunctionIndex, 1596 llvm::Attribute::NoReturn); 1597 llvm::CallInst *CI = Builder.CreateCall(IA, EmitScalarExpr(E->getArg(0))); 1598 CI->setAttributes(NoReturnAttr); 1599 return CI; 1600 } 1601 } 1602 llvm_unreachable("Incorrect MSVC intrinsic!"); 1603 } 1604 1605 namespace { 1606 // ARC cleanup for __builtin_os_log_format 1607 struct CallObjCArcUse final : EHScopeStack::Cleanup { 1608 CallObjCArcUse(llvm::Value *object) : object(object) {} 1609 llvm::Value *object; 1610 1611 void Emit(CodeGenFunction &CGF, Flags flags) override { 1612 CGF.EmitARCIntrinsicUse(object); 1613 } 1614 }; 1615 } 1616 1617 Value *CodeGenFunction::EmitCheckedArgForBuiltin(const Expr *E, 1618 BuiltinCheckKind Kind) { 1619 assert((Kind == BCK_CLZPassedZero || Kind == BCK_CTZPassedZero) 1620 && "Unsupported builtin check kind"); 1621 1622 Value *ArgValue = EmitScalarExpr(E); 1623 if (!SanOpts.has(SanitizerKind::Builtin) || !getTarget().isCLZForZeroUndef()) 1624 return ArgValue; 1625 1626 SanitizerScope SanScope(this); 1627 Value *Cond = Builder.CreateICmpNE( 1628 ArgValue, llvm::Constant::getNullValue(ArgValue->getType())); 1629 EmitCheck(std::make_pair(Cond, SanitizerKind::Builtin), 1630 SanitizerHandler::InvalidBuiltin, 1631 {EmitCheckSourceLocation(E->getExprLoc()), 1632 llvm::ConstantInt::get(Builder.getInt8Ty(), Kind)}, 1633 None); 1634 return ArgValue; 1635 } 1636 1637 /// Get the argument type for arguments to os_log_helper. 1638 static CanQualType getOSLogArgType(ASTContext &C, int Size) { 1639 QualType UnsignedTy = C.getIntTypeForBitwidth(Size * 8, /*Signed=*/false); 1640 return C.getCanonicalType(UnsignedTy); 1641 } 1642 1643 llvm::Function *CodeGenFunction::generateBuiltinOSLogHelperFunction( 1644 const analyze_os_log::OSLogBufferLayout &Layout, 1645 CharUnits BufferAlignment) { 1646 ASTContext &Ctx = getContext(); 1647 1648 llvm::SmallString<64> Name; 1649 { 1650 raw_svector_ostream OS(Name); 1651 OS << "__os_log_helper"; 1652 OS << "_" << BufferAlignment.getQuantity(); 1653 OS << "_" << int(Layout.getSummaryByte()); 1654 OS << "_" << int(Layout.getNumArgsByte()); 1655 for (const auto &Item : Layout.Items) 1656 OS << "_" << int(Item.getSizeByte()) << "_" 1657 << int(Item.getDescriptorByte()); 1658 } 1659 1660 if (llvm::Function *F = CGM.getModule().getFunction(Name)) 1661 return F; 1662 1663 llvm::SmallVector<QualType, 4> ArgTys; 1664 FunctionArgList Args; 1665 Args.push_back(ImplicitParamDecl::Create( 1666 Ctx, nullptr, SourceLocation(), &Ctx.Idents.get("buffer"), Ctx.VoidPtrTy, 1667 ImplicitParamDecl::Other)); 1668 ArgTys.emplace_back(Ctx.VoidPtrTy); 1669 1670 for (unsigned int I = 0, E = Layout.Items.size(); I < E; ++I) { 1671 char Size = Layout.Items[I].getSizeByte(); 1672 if (!Size) 1673 continue; 1674 1675 QualType ArgTy = getOSLogArgType(Ctx, Size); 1676 Args.push_back(ImplicitParamDecl::Create( 1677 Ctx, nullptr, SourceLocation(), 1678 &Ctx.Idents.get(std::string("arg") + llvm::to_string(I)), ArgTy, 1679 ImplicitParamDecl::Other)); 1680 ArgTys.emplace_back(ArgTy); 1681 } 1682 1683 QualType ReturnTy = Ctx.VoidTy; 1684 QualType FuncionTy = Ctx.getFunctionType(ReturnTy, ArgTys, {}); 1685 1686 // The helper function has linkonce_odr linkage to enable the linker to merge 1687 // identical functions. To ensure the merging always happens, 'noinline' is 1688 // attached to the function when compiling with -Oz. 1689 const CGFunctionInfo &FI = 1690 CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, Args); 1691 llvm::FunctionType *FuncTy = CGM.getTypes().GetFunctionType(FI); 1692 llvm::Function *Fn = llvm::Function::Create( 1693 FuncTy, llvm::GlobalValue::LinkOnceODRLinkage, Name, &CGM.getModule()); 1694 Fn->setVisibility(llvm::GlobalValue::HiddenVisibility); 1695 CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, Fn, /*IsThunk=*/false); 1696 CGM.SetLLVMFunctionAttributesForDefinition(nullptr, Fn); 1697 Fn->setDoesNotThrow(); 1698 1699 // Attach 'noinline' at -Oz. 1700 if (CGM.getCodeGenOpts().OptimizeSize == 2) 1701 Fn->addFnAttr(llvm::Attribute::NoInline); 1702 1703 auto NL = ApplyDebugLocation::CreateEmpty(*this); 1704 IdentifierInfo *II = &Ctx.Idents.get(Name); 1705 FunctionDecl *FD = FunctionDecl::Create( 1706 Ctx, Ctx.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II, 1707 FuncionTy, nullptr, SC_PrivateExtern, false, false); 1708 // Avoid generating debug location info for the function. 1709 FD->setImplicit(); 1710 1711 StartFunction(FD, ReturnTy, Fn, FI, Args); 1712 1713 // Create a scope with an artificial location for the body of this function. 1714 auto AL = ApplyDebugLocation::CreateArtificial(*this); 1715 1716 CharUnits Offset; 1717 Address BufAddr(Builder.CreateLoad(GetAddrOfLocalVar(Args[0]), "buf"), 1718 BufferAlignment); 1719 Builder.CreateStore(Builder.getInt8(Layout.getSummaryByte()), 1720 Builder.CreateConstByteGEP(BufAddr, Offset++, "summary")); 1721 Builder.CreateStore(Builder.getInt8(Layout.getNumArgsByte()), 1722 Builder.CreateConstByteGEP(BufAddr, Offset++, "numArgs")); 1723 1724 unsigned I = 1; 1725 for (const auto &Item : Layout.Items) { 1726 Builder.CreateStore( 1727 Builder.getInt8(Item.getDescriptorByte()), 1728 Builder.CreateConstByteGEP(BufAddr, Offset++, "argDescriptor")); 1729 Builder.CreateStore( 1730 Builder.getInt8(Item.getSizeByte()), 1731 Builder.CreateConstByteGEP(BufAddr, Offset++, "argSize")); 1732 1733 CharUnits Size = Item.size(); 1734 if (!Size.getQuantity()) 1735 continue; 1736 1737 Address Arg = GetAddrOfLocalVar(Args[I]); 1738 Address Addr = Builder.CreateConstByteGEP(BufAddr, Offset, "argData"); 1739 Addr = Builder.CreateBitCast(Addr, Arg.getPointer()->getType(), 1740 "argDataCast"); 1741 Builder.CreateStore(Builder.CreateLoad(Arg), Addr); 1742 Offset += Size; 1743 ++I; 1744 } 1745 1746 FinishFunction(); 1747 1748 return Fn; 1749 } 1750 1751 RValue CodeGenFunction::emitBuiltinOSLogFormat(const CallExpr &E) { 1752 assert(E.getNumArgs() >= 2 && 1753 "__builtin_os_log_format takes at least 2 arguments"); 1754 ASTContext &Ctx = getContext(); 1755 analyze_os_log::OSLogBufferLayout Layout; 1756 analyze_os_log::computeOSLogBufferLayout(Ctx, &E, Layout); 1757 Address BufAddr = EmitPointerWithAlignment(E.getArg(0)); 1758 llvm::SmallVector<llvm::Value *, 4> RetainableOperands; 1759 1760 // Ignore argument 1, the format string. It is not currently used. 1761 CallArgList Args; 1762 Args.add(RValue::get(BufAddr.getPointer()), Ctx.VoidPtrTy); 1763 1764 for (const auto &Item : Layout.Items) { 1765 int Size = Item.getSizeByte(); 1766 if (!Size) 1767 continue; 1768 1769 llvm::Value *ArgVal; 1770 1771 if (Item.getKind() == analyze_os_log::OSLogBufferItem::MaskKind) { 1772 uint64_t Val = 0; 1773 for (unsigned I = 0, E = Item.getMaskType().size(); I < E; ++I) 1774 Val |= ((uint64_t)Item.getMaskType()[I]) << I * 8; 1775 ArgVal = llvm::Constant::getIntegerValue(Int64Ty, llvm::APInt(64, Val)); 1776 } else if (const Expr *TheExpr = Item.getExpr()) { 1777 ArgVal = EmitScalarExpr(TheExpr, /*Ignore*/ false); 1778 1779 // If a temporary object that requires destruction after the full 1780 // expression is passed, push a lifetime-extended cleanup to extend its 1781 // lifetime to the end of the enclosing block scope. 1782 auto LifetimeExtendObject = [&](const Expr *E) { 1783 E = E->IgnoreParenCasts(); 1784 // Extend lifetimes of objects returned by function calls and message 1785 // sends. 1786 1787 // FIXME: We should do this in other cases in which temporaries are 1788 // created including arguments of non-ARC types (e.g., C++ 1789 // temporaries). 1790 if (isa<CallExpr>(E) || isa<ObjCMessageExpr>(E)) 1791 return true; 1792 return false; 1793 }; 1794 1795 if (TheExpr->getType()->isObjCRetainableType() && 1796 getLangOpts().ObjCAutoRefCount && LifetimeExtendObject(TheExpr)) { 1797 assert(getEvaluationKind(TheExpr->getType()) == TEK_Scalar && 1798 "Only scalar can be a ObjC retainable type"); 1799 if (!isa<Constant>(ArgVal)) { 1800 CleanupKind Cleanup = getARCCleanupKind(); 1801 QualType Ty = TheExpr->getType(); 1802 Address Alloca = Address::invalid(); 1803 Address Addr = CreateMemTemp(Ty, "os.log.arg", &Alloca); 1804 ArgVal = EmitARCRetain(Ty, ArgVal); 1805 Builder.CreateStore(ArgVal, Addr); 1806 pushLifetimeExtendedDestroy(Cleanup, Alloca, Ty, 1807 CodeGenFunction::destroyARCStrongPrecise, 1808 Cleanup & EHCleanup); 1809 1810 // Push a clang.arc.use call to ensure ARC optimizer knows that the 1811 // argument has to be alive. 1812 if (CGM.getCodeGenOpts().OptimizationLevel != 0) 1813 pushCleanupAfterFullExpr<CallObjCArcUse>(Cleanup, ArgVal); 1814 } 1815 } 1816 } else { 1817 ArgVal = Builder.getInt32(Item.getConstValue().getQuantity()); 1818 } 1819 1820 unsigned ArgValSize = 1821 CGM.getDataLayout().getTypeSizeInBits(ArgVal->getType()); 1822 llvm::IntegerType *IntTy = llvm::Type::getIntNTy(getLLVMContext(), 1823 ArgValSize); 1824 ArgVal = Builder.CreateBitOrPointerCast(ArgVal, IntTy); 1825 CanQualType ArgTy = getOSLogArgType(Ctx, Size); 1826 // If ArgVal has type x86_fp80, zero-extend ArgVal. 1827 ArgVal = Builder.CreateZExtOrBitCast(ArgVal, ConvertType(ArgTy)); 1828 Args.add(RValue::get(ArgVal), ArgTy); 1829 } 1830 1831 const CGFunctionInfo &FI = 1832 CGM.getTypes().arrangeBuiltinFunctionCall(Ctx.VoidTy, Args); 1833 llvm::Function *F = CodeGenFunction(CGM).generateBuiltinOSLogHelperFunction( 1834 Layout, BufAddr.getAlignment()); 1835 EmitCall(FI, CGCallee::forDirect(F), ReturnValueSlot(), Args); 1836 return RValue::get(BufAddr.getPointer()); 1837 } 1838 1839 static bool isSpecialUnsignedMultiplySignedResult( 1840 unsigned BuiltinID, WidthAndSignedness Op1Info, WidthAndSignedness Op2Info, 1841 WidthAndSignedness ResultInfo) { 1842 return BuiltinID == Builtin::BI__builtin_mul_overflow && 1843 Op1Info.Width == Op2Info.Width && Op2Info.Width == ResultInfo.Width && 1844 !Op1Info.Signed && !Op2Info.Signed && ResultInfo.Signed; 1845 } 1846 1847 static RValue EmitCheckedUnsignedMultiplySignedResult( 1848 CodeGenFunction &CGF, const clang::Expr *Op1, WidthAndSignedness Op1Info, 1849 const clang::Expr *Op2, WidthAndSignedness Op2Info, 1850 const clang::Expr *ResultArg, QualType ResultQTy, 1851 WidthAndSignedness ResultInfo) { 1852 assert(isSpecialUnsignedMultiplySignedResult( 1853 Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) && 1854 "Cannot specialize this multiply"); 1855 1856 llvm::Value *V1 = CGF.EmitScalarExpr(Op1); 1857 llvm::Value *V2 = CGF.EmitScalarExpr(Op2); 1858 1859 llvm::Value *HasOverflow; 1860 llvm::Value *Result = EmitOverflowIntrinsic( 1861 CGF, llvm::Intrinsic::umul_with_overflow, V1, V2, HasOverflow); 1862 1863 // The intrinsic call will detect overflow when the value is > UINT_MAX, 1864 // however, since the original builtin had a signed result, we need to report 1865 // an overflow when the result is greater than INT_MAX. 1866 auto IntMax = llvm::APInt::getSignedMaxValue(ResultInfo.Width); 1867 llvm::Value *IntMaxValue = llvm::ConstantInt::get(Result->getType(), IntMax); 1868 1869 llvm::Value *IntMaxOverflow = CGF.Builder.CreateICmpUGT(Result, IntMaxValue); 1870 HasOverflow = CGF.Builder.CreateOr(HasOverflow, IntMaxOverflow); 1871 1872 bool isVolatile = 1873 ResultArg->getType()->getPointeeType().isVolatileQualified(); 1874 Address ResultPtr = CGF.EmitPointerWithAlignment(ResultArg); 1875 CGF.Builder.CreateStore(CGF.EmitToMemory(Result, ResultQTy), ResultPtr, 1876 isVolatile); 1877 return RValue::get(HasOverflow); 1878 } 1879 1880 /// Determine if a binop is a checked mixed-sign multiply we can specialize. 1881 static bool isSpecialMixedSignMultiply(unsigned BuiltinID, 1882 WidthAndSignedness Op1Info, 1883 WidthAndSignedness Op2Info, 1884 WidthAndSignedness ResultInfo) { 1885 return BuiltinID == Builtin::BI__builtin_mul_overflow && 1886 std::max(Op1Info.Width, Op2Info.Width) >= ResultInfo.Width && 1887 Op1Info.Signed != Op2Info.Signed; 1888 } 1889 1890 /// Emit a checked mixed-sign multiply. This is a cheaper specialization of 1891 /// the generic checked-binop irgen. 1892 static RValue 1893 EmitCheckedMixedSignMultiply(CodeGenFunction &CGF, const clang::Expr *Op1, 1894 WidthAndSignedness Op1Info, const clang::Expr *Op2, 1895 WidthAndSignedness Op2Info, 1896 const clang::Expr *ResultArg, QualType ResultQTy, 1897 WidthAndSignedness ResultInfo) { 1898 assert(isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow, Op1Info, 1899 Op2Info, ResultInfo) && 1900 "Not a mixed-sign multipliction we can specialize"); 1901 1902 // Emit the signed and unsigned operands. 1903 const clang::Expr *SignedOp = Op1Info.Signed ? Op1 : Op2; 1904 const clang::Expr *UnsignedOp = Op1Info.Signed ? Op2 : Op1; 1905 llvm::Value *Signed = CGF.EmitScalarExpr(SignedOp); 1906 llvm::Value *Unsigned = CGF.EmitScalarExpr(UnsignedOp); 1907 unsigned SignedOpWidth = Op1Info.Signed ? Op1Info.Width : Op2Info.Width; 1908 unsigned UnsignedOpWidth = Op1Info.Signed ? Op2Info.Width : Op1Info.Width; 1909 1910 // One of the operands may be smaller than the other. If so, [s|z]ext it. 1911 if (SignedOpWidth < UnsignedOpWidth) 1912 Signed = CGF.Builder.CreateSExt(Signed, Unsigned->getType(), "op.sext"); 1913 if (UnsignedOpWidth < SignedOpWidth) 1914 Unsigned = CGF.Builder.CreateZExt(Unsigned, Signed->getType(), "op.zext"); 1915 1916 llvm::Type *OpTy = Signed->getType(); 1917 llvm::Value *Zero = llvm::Constant::getNullValue(OpTy); 1918 Address ResultPtr = CGF.EmitPointerWithAlignment(ResultArg); 1919 llvm::Type *ResTy = ResultPtr.getElementType(); 1920 unsigned OpWidth = std::max(Op1Info.Width, Op2Info.Width); 1921 1922 // Take the absolute value of the signed operand. 1923 llvm::Value *IsNegative = CGF.Builder.CreateICmpSLT(Signed, Zero); 1924 llvm::Value *AbsOfNegative = CGF.Builder.CreateSub(Zero, Signed); 1925 llvm::Value *AbsSigned = 1926 CGF.Builder.CreateSelect(IsNegative, AbsOfNegative, Signed); 1927 1928 // Perform a checked unsigned multiplication. 1929 llvm::Value *UnsignedOverflow; 1930 llvm::Value *UnsignedResult = 1931 EmitOverflowIntrinsic(CGF, llvm::Intrinsic::umul_with_overflow, AbsSigned, 1932 Unsigned, UnsignedOverflow); 1933 1934 llvm::Value *Overflow, *Result; 1935 if (ResultInfo.Signed) { 1936 // Signed overflow occurs if the result is greater than INT_MAX or lesser 1937 // than INT_MIN, i.e when |Result| > (INT_MAX + IsNegative). 1938 auto IntMax = 1939 llvm::APInt::getSignedMaxValue(ResultInfo.Width).zextOrSelf(OpWidth); 1940 llvm::Value *MaxResult = 1941 CGF.Builder.CreateAdd(llvm::ConstantInt::get(OpTy, IntMax), 1942 CGF.Builder.CreateZExt(IsNegative, OpTy)); 1943 llvm::Value *SignedOverflow = 1944 CGF.Builder.CreateICmpUGT(UnsignedResult, MaxResult); 1945 Overflow = CGF.Builder.CreateOr(UnsignedOverflow, SignedOverflow); 1946 1947 // Prepare the signed result (possibly by negating it). 1948 llvm::Value *NegativeResult = CGF.Builder.CreateNeg(UnsignedResult); 1949 llvm::Value *SignedResult = 1950 CGF.Builder.CreateSelect(IsNegative, NegativeResult, UnsignedResult); 1951 Result = CGF.Builder.CreateTrunc(SignedResult, ResTy); 1952 } else { 1953 // Unsigned overflow occurs if the result is < 0 or greater than UINT_MAX. 1954 llvm::Value *Underflow = CGF.Builder.CreateAnd( 1955 IsNegative, CGF.Builder.CreateIsNotNull(UnsignedResult)); 1956 Overflow = CGF.Builder.CreateOr(UnsignedOverflow, Underflow); 1957 if (ResultInfo.Width < OpWidth) { 1958 auto IntMax = 1959 llvm::APInt::getMaxValue(ResultInfo.Width).zext(OpWidth); 1960 llvm::Value *TruncOverflow = CGF.Builder.CreateICmpUGT( 1961 UnsignedResult, llvm::ConstantInt::get(OpTy, IntMax)); 1962 Overflow = CGF.Builder.CreateOr(Overflow, TruncOverflow); 1963 } 1964 1965 // Negate the product if it would be negative in infinite precision. 1966 Result = CGF.Builder.CreateSelect( 1967 IsNegative, CGF.Builder.CreateNeg(UnsignedResult), UnsignedResult); 1968 1969 Result = CGF.Builder.CreateTrunc(Result, ResTy); 1970 } 1971 assert(Overflow && Result && "Missing overflow or result"); 1972 1973 bool isVolatile = 1974 ResultArg->getType()->getPointeeType().isVolatileQualified(); 1975 CGF.Builder.CreateStore(CGF.EmitToMemory(Result, ResultQTy), ResultPtr, 1976 isVolatile); 1977 return RValue::get(Overflow); 1978 } 1979 1980 static llvm::Value *dumpRecord(CodeGenFunction &CGF, QualType RType, 1981 Value *&RecordPtr, CharUnits Align, 1982 llvm::FunctionCallee Func, int Lvl) { 1983 ASTContext &Context = CGF.getContext(); 1984 RecordDecl *RD = RType->castAs<RecordType>()->getDecl()->getDefinition(); 1985 std::string Pad = std::string(Lvl * 4, ' '); 1986 1987 Value *GString = 1988 CGF.Builder.CreateGlobalStringPtr(RType.getAsString() + " {\n"); 1989 Value *Res = CGF.Builder.CreateCall(Func, {GString}); 1990 1991 static llvm::DenseMap<QualType, const char *> Types; 1992 if (Types.empty()) { 1993 Types[Context.CharTy] = "%c"; 1994 Types[Context.BoolTy] = "%d"; 1995 Types[Context.SignedCharTy] = "%hhd"; 1996 Types[Context.UnsignedCharTy] = "%hhu"; 1997 Types[Context.IntTy] = "%d"; 1998 Types[Context.UnsignedIntTy] = "%u"; 1999 Types[Context.LongTy] = "%ld"; 2000 Types[Context.UnsignedLongTy] = "%lu"; 2001 Types[Context.LongLongTy] = "%lld"; 2002 Types[Context.UnsignedLongLongTy] = "%llu"; 2003 Types[Context.ShortTy] = "%hd"; 2004 Types[Context.UnsignedShortTy] = "%hu"; 2005 Types[Context.VoidPtrTy] = "%p"; 2006 Types[Context.FloatTy] = "%f"; 2007 Types[Context.DoubleTy] = "%f"; 2008 Types[Context.LongDoubleTy] = "%Lf"; 2009 Types[Context.getPointerType(Context.CharTy)] = "%s"; 2010 Types[Context.getPointerType(Context.getConstType(Context.CharTy))] = "%s"; 2011 } 2012 2013 for (const auto *FD : RD->fields()) { 2014 Value *FieldPtr = RecordPtr; 2015 if (RD->isUnion()) 2016 FieldPtr = CGF.Builder.CreatePointerCast( 2017 FieldPtr, CGF.ConvertType(Context.getPointerType(FD->getType()))); 2018 else 2019 FieldPtr = CGF.Builder.CreateStructGEP(CGF.ConvertType(RType), FieldPtr, 2020 FD->getFieldIndex()); 2021 2022 GString = CGF.Builder.CreateGlobalStringPtr( 2023 llvm::Twine(Pad) 2024 .concat(FD->getType().getAsString()) 2025 .concat(llvm::Twine(' ')) 2026 .concat(FD->getNameAsString()) 2027 .concat(" : ") 2028 .str()); 2029 Value *TmpRes = CGF.Builder.CreateCall(Func, {GString}); 2030 Res = CGF.Builder.CreateAdd(Res, TmpRes); 2031 2032 QualType CanonicalType = 2033 FD->getType().getUnqualifiedType().getCanonicalType(); 2034 2035 // We check whether we are in a recursive type 2036 if (CanonicalType->isRecordType()) { 2037 TmpRes = dumpRecord(CGF, CanonicalType, FieldPtr, Align, Func, Lvl + 1); 2038 Res = CGF.Builder.CreateAdd(TmpRes, Res); 2039 continue; 2040 } 2041 2042 // We try to determine the best format to print the current field 2043 llvm::Twine Format = Types.find(CanonicalType) == Types.end() 2044 ? Types[Context.VoidPtrTy] 2045 : Types[CanonicalType]; 2046 2047 Address FieldAddress = Address(FieldPtr, Align); 2048 FieldPtr = CGF.Builder.CreateLoad(FieldAddress); 2049 2050 // FIXME Need to handle bitfield here 2051 GString = CGF.Builder.CreateGlobalStringPtr( 2052 Format.concat(llvm::Twine('\n')).str()); 2053 TmpRes = CGF.Builder.CreateCall(Func, {GString, FieldPtr}); 2054 Res = CGF.Builder.CreateAdd(Res, TmpRes); 2055 } 2056 2057 GString = CGF.Builder.CreateGlobalStringPtr(Pad + "}\n"); 2058 Value *TmpRes = CGF.Builder.CreateCall(Func, {GString}); 2059 Res = CGF.Builder.CreateAdd(Res, TmpRes); 2060 return Res; 2061 } 2062 2063 static bool 2064 TypeRequiresBuiltinLaunderImp(const ASTContext &Ctx, QualType Ty, 2065 llvm::SmallPtrSetImpl<const Decl *> &Seen) { 2066 if (const auto *Arr = Ctx.getAsArrayType(Ty)) 2067 Ty = Ctx.getBaseElementType(Arr); 2068 2069 const auto *Record = Ty->getAsCXXRecordDecl(); 2070 if (!Record) 2071 return false; 2072 2073 // We've already checked this type, or are in the process of checking it. 2074 if (!Seen.insert(Record).second) 2075 return false; 2076 2077 assert(Record->hasDefinition() && 2078 "Incomplete types should already be diagnosed"); 2079 2080 if (Record->isDynamicClass()) 2081 return true; 2082 2083 for (FieldDecl *F : Record->fields()) { 2084 if (TypeRequiresBuiltinLaunderImp(Ctx, F->getType(), Seen)) 2085 return true; 2086 } 2087 return false; 2088 } 2089 2090 /// Determine if the specified type requires laundering by checking if it is a 2091 /// dynamic class type or contains a subobject which is a dynamic class type. 2092 static bool TypeRequiresBuiltinLaunder(CodeGenModule &CGM, QualType Ty) { 2093 if (!CGM.getCodeGenOpts().StrictVTablePointers) 2094 return false; 2095 llvm::SmallPtrSet<const Decl *, 16> Seen; 2096 return TypeRequiresBuiltinLaunderImp(CGM.getContext(), Ty, Seen); 2097 } 2098 2099 RValue CodeGenFunction::emitRotate(const CallExpr *E, bool IsRotateRight) { 2100 llvm::Value *Src = EmitScalarExpr(E->getArg(0)); 2101 llvm::Value *ShiftAmt = EmitScalarExpr(E->getArg(1)); 2102 2103 // The builtin's shift arg may have a different type than the source arg and 2104 // result, but the LLVM intrinsic uses the same type for all values. 2105 llvm::Type *Ty = Src->getType(); 2106 ShiftAmt = Builder.CreateIntCast(ShiftAmt, Ty, false); 2107 2108 // Rotate is a special case of LLVM funnel shift - 1st 2 args are the same. 2109 unsigned IID = IsRotateRight ? Intrinsic::fshr : Intrinsic::fshl; 2110 Function *F = CGM.getIntrinsic(IID, Ty); 2111 return RValue::get(Builder.CreateCall(F, { Src, Src, ShiftAmt })); 2112 } 2113 2114 // Map math builtins for long-double to f128 version. 2115 static unsigned mutateLongDoubleBuiltin(unsigned BuiltinID) { 2116 switch (BuiltinID) { 2117 #define MUTATE_LDBL(func) \ 2118 case Builtin::BI__builtin_##func##l: \ 2119 return Builtin::BI__builtin_##func##f128; 2120 MUTATE_LDBL(sqrt) 2121 MUTATE_LDBL(cbrt) 2122 MUTATE_LDBL(fabs) 2123 MUTATE_LDBL(log) 2124 MUTATE_LDBL(log2) 2125 MUTATE_LDBL(log10) 2126 MUTATE_LDBL(log1p) 2127 MUTATE_LDBL(logb) 2128 MUTATE_LDBL(exp) 2129 MUTATE_LDBL(exp2) 2130 MUTATE_LDBL(expm1) 2131 MUTATE_LDBL(fdim) 2132 MUTATE_LDBL(hypot) 2133 MUTATE_LDBL(ilogb) 2134 MUTATE_LDBL(pow) 2135 MUTATE_LDBL(fmin) 2136 MUTATE_LDBL(fmax) 2137 MUTATE_LDBL(ceil) 2138 MUTATE_LDBL(trunc) 2139 MUTATE_LDBL(rint) 2140 MUTATE_LDBL(nearbyint) 2141 MUTATE_LDBL(round) 2142 MUTATE_LDBL(floor) 2143 MUTATE_LDBL(lround) 2144 MUTATE_LDBL(llround) 2145 MUTATE_LDBL(lrint) 2146 MUTATE_LDBL(llrint) 2147 MUTATE_LDBL(fmod) 2148 MUTATE_LDBL(modf) 2149 MUTATE_LDBL(nan) 2150 MUTATE_LDBL(nans) 2151 MUTATE_LDBL(inf) 2152 MUTATE_LDBL(fma) 2153 MUTATE_LDBL(sin) 2154 MUTATE_LDBL(cos) 2155 MUTATE_LDBL(tan) 2156 MUTATE_LDBL(sinh) 2157 MUTATE_LDBL(cosh) 2158 MUTATE_LDBL(tanh) 2159 MUTATE_LDBL(asin) 2160 MUTATE_LDBL(acos) 2161 MUTATE_LDBL(atan) 2162 MUTATE_LDBL(asinh) 2163 MUTATE_LDBL(acosh) 2164 MUTATE_LDBL(atanh) 2165 MUTATE_LDBL(atan2) 2166 MUTATE_LDBL(erf) 2167 MUTATE_LDBL(erfc) 2168 MUTATE_LDBL(ldexp) 2169 MUTATE_LDBL(frexp) 2170 MUTATE_LDBL(huge_val) 2171 MUTATE_LDBL(copysign) 2172 MUTATE_LDBL(nextafter) 2173 MUTATE_LDBL(nexttoward) 2174 MUTATE_LDBL(remainder) 2175 MUTATE_LDBL(remquo) 2176 MUTATE_LDBL(scalbln) 2177 MUTATE_LDBL(scalbn) 2178 MUTATE_LDBL(tgamma) 2179 MUTATE_LDBL(lgamma) 2180 #undef MUTATE_LDBL 2181 default: 2182 return BuiltinID; 2183 } 2184 } 2185 2186 RValue CodeGenFunction::EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID, 2187 const CallExpr *E, 2188 ReturnValueSlot ReturnValue) { 2189 const FunctionDecl *FD = GD.getDecl()->getAsFunction(); 2190 // See if we can constant fold this builtin. If so, don't emit it at all. 2191 Expr::EvalResult Result; 2192 if (E->EvaluateAsRValue(Result, CGM.getContext()) && 2193 !Result.hasSideEffects()) { 2194 if (Result.Val.isInt()) 2195 return RValue::get(llvm::ConstantInt::get(getLLVMContext(), 2196 Result.Val.getInt())); 2197 if (Result.Val.isFloat()) 2198 return RValue::get(llvm::ConstantFP::get(getLLVMContext(), 2199 Result.Val.getFloat())); 2200 } 2201 2202 // If current long-double semantics is IEEE 128-bit, replace math builtins 2203 // of long-double with f128 equivalent. 2204 // TODO: This mutation should also be applied to other targets other than PPC, 2205 // after backend supports IEEE 128-bit style libcalls. 2206 if (getTarget().getTriple().isPPC64() && 2207 &getTarget().getLongDoubleFormat() == &llvm::APFloat::IEEEquad()) 2208 BuiltinID = mutateLongDoubleBuiltin(BuiltinID); 2209 2210 // If the builtin has been declared explicitly with an assembler label, 2211 // disable the specialized emitting below. Ideally we should communicate the 2212 // rename in IR, or at least avoid generating the intrinsic calls that are 2213 // likely to get lowered to the renamed library functions. 2214 const unsigned BuiltinIDIfNoAsmLabel = 2215 FD->hasAttr<AsmLabelAttr>() ? 0 : BuiltinID; 2216 2217 // There are LLVM math intrinsics/instructions corresponding to math library 2218 // functions except the LLVM op will never set errno while the math library 2219 // might. Also, math builtins have the same semantics as their math library 2220 // twins. Thus, we can transform math library and builtin calls to their 2221 // LLVM counterparts if the call is marked 'const' (known to never set errno). 2222 if (FD->hasAttr<ConstAttr>()) { 2223 switch (BuiltinIDIfNoAsmLabel) { 2224 case Builtin::BIceil: 2225 case Builtin::BIceilf: 2226 case Builtin::BIceill: 2227 case Builtin::BI__builtin_ceil: 2228 case Builtin::BI__builtin_ceilf: 2229 case Builtin::BI__builtin_ceilf16: 2230 case Builtin::BI__builtin_ceill: 2231 case Builtin::BI__builtin_ceilf128: 2232 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, 2233 Intrinsic::ceil, 2234 Intrinsic::experimental_constrained_ceil)); 2235 2236 case Builtin::BIcopysign: 2237 case Builtin::BIcopysignf: 2238 case Builtin::BIcopysignl: 2239 case Builtin::BI__builtin_copysign: 2240 case Builtin::BI__builtin_copysignf: 2241 case Builtin::BI__builtin_copysignf16: 2242 case Builtin::BI__builtin_copysignl: 2243 case Builtin::BI__builtin_copysignf128: 2244 return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::copysign)); 2245 2246 case Builtin::BIcos: 2247 case Builtin::BIcosf: 2248 case Builtin::BIcosl: 2249 case Builtin::BI__builtin_cos: 2250 case Builtin::BI__builtin_cosf: 2251 case Builtin::BI__builtin_cosf16: 2252 case Builtin::BI__builtin_cosl: 2253 case Builtin::BI__builtin_cosf128: 2254 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, 2255 Intrinsic::cos, 2256 Intrinsic::experimental_constrained_cos)); 2257 2258 case Builtin::BIexp: 2259 case Builtin::BIexpf: 2260 case Builtin::BIexpl: 2261 case Builtin::BI__builtin_exp: 2262 case Builtin::BI__builtin_expf: 2263 case Builtin::BI__builtin_expf16: 2264 case Builtin::BI__builtin_expl: 2265 case Builtin::BI__builtin_expf128: 2266 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, 2267 Intrinsic::exp, 2268 Intrinsic::experimental_constrained_exp)); 2269 2270 case Builtin::BIexp2: 2271 case Builtin::BIexp2f: 2272 case Builtin::BIexp2l: 2273 case Builtin::BI__builtin_exp2: 2274 case Builtin::BI__builtin_exp2f: 2275 case Builtin::BI__builtin_exp2f16: 2276 case Builtin::BI__builtin_exp2l: 2277 case Builtin::BI__builtin_exp2f128: 2278 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, 2279 Intrinsic::exp2, 2280 Intrinsic::experimental_constrained_exp2)); 2281 2282 case Builtin::BIfabs: 2283 case Builtin::BIfabsf: 2284 case Builtin::BIfabsl: 2285 case Builtin::BI__builtin_fabs: 2286 case Builtin::BI__builtin_fabsf: 2287 case Builtin::BI__builtin_fabsf16: 2288 case Builtin::BI__builtin_fabsl: 2289 case Builtin::BI__builtin_fabsf128: 2290 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::fabs)); 2291 2292 case Builtin::BIfloor: 2293 case Builtin::BIfloorf: 2294 case Builtin::BIfloorl: 2295 case Builtin::BI__builtin_floor: 2296 case Builtin::BI__builtin_floorf: 2297 case Builtin::BI__builtin_floorf16: 2298 case Builtin::BI__builtin_floorl: 2299 case Builtin::BI__builtin_floorf128: 2300 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, 2301 Intrinsic::floor, 2302 Intrinsic::experimental_constrained_floor)); 2303 2304 case Builtin::BIfma: 2305 case Builtin::BIfmaf: 2306 case Builtin::BIfmal: 2307 case Builtin::BI__builtin_fma: 2308 case Builtin::BI__builtin_fmaf: 2309 case Builtin::BI__builtin_fmaf16: 2310 case Builtin::BI__builtin_fmal: 2311 case Builtin::BI__builtin_fmaf128: 2312 return RValue::get(emitTernaryMaybeConstrainedFPBuiltin(*this, E, 2313 Intrinsic::fma, 2314 Intrinsic::experimental_constrained_fma)); 2315 2316 case Builtin::BIfmax: 2317 case Builtin::BIfmaxf: 2318 case Builtin::BIfmaxl: 2319 case Builtin::BI__builtin_fmax: 2320 case Builtin::BI__builtin_fmaxf: 2321 case Builtin::BI__builtin_fmaxf16: 2322 case Builtin::BI__builtin_fmaxl: 2323 case Builtin::BI__builtin_fmaxf128: 2324 return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E, 2325 Intrinsic::maxnum, 2326 Intrinsic::experimental_constrained_maxnum)); 2327 2328 case Builtin::BIfmin: 2329 case Builtin::BIfminf: 2330 case Builtin::BIfminl: 2331 case Builtin::BI__builtin_fmin: 2332 case Builtin::BI__builtin_fminf: 2333 case Builtin::BI__builtin_fminf16: 2334 case Builtin::BI__builtin_fminl: 2335 case Builtin::BI__builtin_fminf128: 2336 return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E, 2337 Intrinsic::minnum, 2338 Intrinsic::experimental_constrained_minnum)); 2339 2340 // fmod() is a special-case. It maps to the frem instruction rather than an 2341 // LLVM intrinsic. 2342 case Builtin::BIfmod: 2343 case Builtin::BIfmodf: 2344 case Builtin::BIfmodl: 2345 case Builtin::BI__builtin_fmod: 2346 case Builtin::BI__builtin_fmodf: 2347 case Builtin::BI__builtin_fmodf16: 2348 case Builtin::BI__builtin_fmodl: 2349 case Builtin::BI__builtin_fmodf128: { 2350 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); 2351 Value *Arg1 = EmitScalarExpr(E->getArg(0)); 2352 Value *Arg2 = EmitScalarExpr(E->getArg(1)); 2353 return RValue::get(Builder.CreateFRem(Arg1, Arg2, "fmod")); 2354 } 2355 2356 case Builtin::BIlog: 2357 case Builtin::BIlogf: 2358 case Builtin::BIlogl: 2359 case Builtin::BI__builtin_log: 2360 case Builtin::BI__builtin_logf: 2361 case Builtin::BI__builtin_logf16: 2362 case Builtin::BI__builtin_logl: 2363 case Builtin::BI__builtin_logf128: 2364 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, 2365 Intrinsic::log, 2366 Intrinsic::experimental_constrained_log)); 2367 2368 case Builtin::BIlog10: 2369 case Builtin::BIlog10f: 2370 case Builtin::BIlog10l: 2371 case Builtin::BI__builtin_log10: 2372 case Builtin::BI__builtin_log10f: 2373 case Builtin::BI__builtin_log10f16: 2374 case Builtin::BI__builtin_log10l: 2375 case Builtin::BI__builtin_log10f128: 2376 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, 2377 Intrinsic::log10, 2378 Intrinsic::experimental_constrained_log10)); 2379 2380 case Builtin::BIlog2: 2381 case Builtin::BIlog2f: 2382 case Builtin::BIlog2l: 2383 case Builtin::BI__builtin_log2: 2384 case Builtin::BI__builtin_log2f: 2385 case Builtin::BI__builtin_log2f16: 2386 case Builtin::BI__builtin_log2l: 2387 case Builtin::BI__builtin_log2f128: 2388 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, 2389 Intrinsic::log2, 2390 Intrinsic::experimental_constrained_log2)); 2391 2392 case Builtin::BInearbyint: 2393 case Builtin::BInearbyintf: 2394 case Builtin::BInearbyintl: 2395 case Builtin::BI__builtin_nearbyint: 2396 case Builtin::BI__builtin_nearbyintf: 2397 case Builtin::BI__builtin_nearbyintl: 2398 case Builtin::BI__builtin_nearbyintf128: 2399 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, 2400 Intrinsic::nearbyint, 2401 Intrinsic::experimental_constrained_nearbyint)); 2402 2403 case Builtin::BIpow: 2404 case Builtin::BIpowf: 2405 case Builtin::BIpowl: 2406 case Builtin::BI__builtin_pow: 2407 case Builtin::BI__builtin_powf: 2408 case Builtin::BI__builtin_powf16: 2409 case Builtin::BI__builtin_powl: 2410 case Builtin::BI__builtin_powf128: 2411 return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E, 2412 Intrinsic::pow, 2413 Intrinsic::experimental_constrained_pow)); 2414 2415 case Builtin::BIrint: 2416 case Builtin::BIrintf: 2417 case Builtin::BIrintl: 2418 case Builtin::BI__builtin_rint: 2419 case Builtin::BI__builtin_rintf: 2420 case Builtin::BI__builtin_rintf16: 2421 case Builtin::BI__builtin_rintl: 2422 case Builtin::BI__builtin_rintf128: 2423 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, 2424 Intrinsic::rint, 2425 Intrinsic::experimental_constrained_rint)); 2426 2427 case Builtin::BIround: 2428 case Builtin::BIroundf: 2429 case Builtin::BIroundl: 2430 case Builtin::BI__builtin_round: 2431 case Builtin::BI__builtin_roundf: 2432 case Builtin::BI__builtin_roundf16: 2433 case Builtin::BI__builtin_roundl: 2434 case Builtin::BI__builtin_roundf128: 2435 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, 2436 Intrinsic::round, 2437 Intrinsic::experimental_constrained_round)); 2438 2439 case Builtin::BIsin: 2440 case Builtin::BIsinf: 2441 case Builtin::BIsinl: 2442 case Builtin::BI__builtin_sin: 2443 case Builtin::BI__builtin_sinf: 2444 case Builtin::BI__builtin_sinf16: 2445 case Builtin::BI__builtin_sinl: 2446 case Builtin::BI__builtin_sinf128: 2447 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, 2448 Intrinsic::sin, 2449 Intrinsic::experimental_constrained_sin)); 2450 2451 case Builtin::BIsqrt: 2452 case Builtin::BIsqrtf: 2453 case Builtin::BIsqrtl: 2454 case Builtin::BI__builtin_sqrt: 2455 case Builtin::BI__builtin_sqrtf: 2456 case Builtin::BI__builtin_sqrtf16: 2457 case Builtin::BI__builtin_sqrtl: 2458 case Builtin::BI__builtin_sqrtf128: 2459 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, 2460 Intrinsic::sqrt, 2461 Intrinsic::experimental_constrained_sqrt)); 2462 2463 case Builtin::BItrunc: 2464 case Builtin::BItruncf: 2465 case Builtin::BItruncl: 2466 case Builtin::BI__builtin_trunc: 2467 case Builtin::BI__builtin_truncf: 2468 case Builtin::BI__builtin_truncf16: 2469 case Builtin::BI__builtin_truncl: 2470 case Builtin::BI__builtin_truncf128: 2471 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, 2472 Intrinsic::trunc, 2473 Intrinsic::experimental_constrained_trunc)); 2474 2475 case Builtin::BIlround: 2476 case Builtin::BIlroundf: 2477 case Builtin::BIlroundl: 2478 case Builtin::BI__builtin_lround: 2479 case Builtin::BI__builtin_lroundf: 2480 case Builtin::BI__builtin_lroundl: 2481 case Builtin::BI__builtin_lroundf128: 2482 return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin( 2483 *this, E, Intrinsic::lround, 2484 Intrinsic::experimental_constrained_lround)); 2485 2486 case Builtin::BIllround: 2487 case Builtin::BIllroundf: 2488 case Builtin::BIllroundl: 2489 case Builtin::BI__builtin_llround: 2490 case Builtin::BI__builtin_llroundf: 2491 case Builtin::BI__builtin_llroundl: 2492 case Builtin::BI__builtin_llroundf128: 2493 return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin( 2494 *this, E, Intrinsic::llround, 2495 Intrinsic::experimental_constrained_llround)); 2496 2497 case Builtin::BIlrint: 2498 case Builtin::BIlrintf: 2499 case Builtin::BIlrintl: 2500 case Builtin::BI__builtin_lrint: 2501 case Builtin::BI__builtin_lrintf: 2502 case Builtin::BI__builtin_lrintl: 2503 case Builtin::BI__builtin_lrintf128: 2504 return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin( 2505 *this, E, Intrinsic::lrint, 2506 Intrinsic::experimental_constrained_lrint)); 2507 2508 case Builtin::BIllrint: 2509 case Builtin::BIllrintf: 2510 case Builtin::BIllrintl: 2511 case Builtin::BI__builtin_llrint: 2512 case Builtin::BI__builtin_llrintf: 2513 case Builtin::BI__builtin_llrintl: 2514 case Builtin::BI__builtin_llrintf128: 2515 return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin( 2516 *this, E, Intrinsic::llrint, 2517 Intrinsic::experimental_constrained_llrint)); 2518 2519 default: 2520 break; 2521 } 2522 } 2523 2524 switch (BuiltinIDIfNoAsmLabel) { 2525 default: break; 2526 case Builtin::BI__builtin___CFStringMakeConstantString: 2527 case Builtin::BI__builtin___NSStringMakeConstantString: 2528 return RValue::get(ConstantEmitter(*this).emitAbstract(E, E->getType())); 2529 case Builtin::BI__builtin_stdarg_start: 2530 case Builtin::BI__builtin_va_start: 2531 case Builtin::BI__va_start: 2532 case Builtin::BI__builtin_va_end: 2533 return RValue::get( 2534 EmitVAStartEnd(BuiltinID == Builtin::BI__va_start 2535 ? EmitScalarExpr(E->getArg(0)) 2536 : EmitVAListRef(E->getArg(0)).getPointer(), 2537 BuiltinID != Builtin::BI__builtin_va_end)); 2538 case Builtin::BI__builtin_va_copy: { 2539 Value *DstPtr = EmitVAListRef(E->getArg(0)).getPointer(); 2540 Value *SrcPtr = EmitVAListRef(E->getArg(1)).getPointer(); 2541 2542 llvm::Type *Type = Int8PtrTy; 2543 2544 DstPtr = Builder.CreateBitCast(DstPtr, Type); 2545 SrcPtr = Builder.CreateBitCast(SrcPtr, Type); 2546 return RValue::get(Builder.CreateCall(CGM.getIntrinsic(Intrinsic::vacopy), 2547 {DstPtr, SrcPtr})); 2548 } 2549 case Builtin::BI__builtin_abs: 2550 case Builtin::BI__builtin_labs: 2551 case Builtin::BI__builtin_llabs: { 2552 // X < 0 ? -X : X 2553 // The negation has 'nsw' because abs of INT_MIN is undefined. 2554 Value *ArgValue = EmitScalarExpr(E->getArg(0)); 2555 Value *NegOp = Builder.CreateNSWNeg(ArgValue, "neg"); 2556 Constant *Zero = llvm::Constant::getNullValue(ArgValue->getType()); 2557 Value *CmpResult = Builder.CreateICmpSLT(ArgValue, Zero, "abscond"); 2558 Value *Result = Builder.CreateSelect(CmpResult, NegOp, ArgValue, "abs"); 2559 return RValue::get(Result); 2560 } 2561 case Builtin::BI__builtin_complex: { 2562 Value *Real = EmitScalarExpr(E->getArg(0)); 2563 Value *Imag = EmitScalarExpr(E->getArg(1)); 2564 return RValue::getComplex({Real, Imag}); 2565 } 2566 case Builtin::BI__builtin_conj: 2567 case Builtin::BI__builtin_conjf: 2568 case Builtin::BI__builtin_conjl: 2569 case Builtin::BIconj: 2570 case Builtin::BIconjf: 2571 case Builtin::BIconjl: { 2572 ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0)); 2573 Value *Real = ComplexVal.first; 2574 Value *Imag = ComplexVal.second; 2575 Imag = Builder.CreateFNeg(Imag, "neg"); 2576 return RValue::getComplex(std::make_pair(Real, Imag)); 2577 } 2578 case Builtin::BI__builtin_creal: 2579 case Builtin::BI__builtin_crealf: 2580 case Builtin::BI__builtin_creall: 2581 case Builtin::BIcreal: 2582 case Builtin::BIcrealf: 2583 case Builtin::BIcreall: { 2584 ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0)); 2585 return RValue::get(ComplexVal.first); 2586 } 2587 2588 case Builtin::BI__builtin_dump_struct: { 2589 llvm::Type *LLVMIntTy = getTypes().ConvertType(getContext().IntTy); 2590 llvm::FunctionType *LLVMFuncType = llvm::FunctionType::get( 2591 LLVMIntTy, {llvm::Type::getInt8PtrTy(getLLVMContext())}, true); 2592 2593 Value *Func = EmitScalarExpr(E->getArg(1)->IgnoreImpCasts()); 2594 CharUnits Arg0Align = EmitPointerWithAlignment(E->getArg(0)).getAlignment(); 2595 2596 const Expr *Arg0 = E->getArg(0)->IgnoreImpCasts(); 2597 QualType Arg0Type = Arg0->getType()->getPointeeType(); 2598 2599 Value *RecordPtr = EmitScalarExpr(Arg0); 2600 Value *Res = dumpRecord(*this, Arg0Type, RecordPtr, Arg0Align, 2601 {LLVMFuncType, Func}, 0); 2602 return RValue::get(Res); 2603 } 2604 2605 case Builtin::BI__builtin_preserve_access_index: { 2606 // Only enabled preserved access index region when debuginfo 2607 // is available as debuginfo is needed to preserve user-level 2608 // access pattern. 2609 if (!getDebugInfo()) { 2610 CGM.Error(E->getExprLoc(), "using builtin_preserve_access_index() without -g"); 2611 return RValue::get(EmitScalarExpr(E->getArg(0))); 2612 } 2613 2614 // Nested builtin_preserve_access_index() not supported 2615 if (IsInPreservedAIRegion) { 2616 CGM.Error(E->getExprLoc(), "nested builtin_preserve_access_index() not supported"); 2617 return RValue::get(EmitScalarExpr(E->getArg(0))); 2618 } 2619 2620 IsInPreservedAIRegion = true; 2621 Value *Res = EmitScalarExpr(E->getArg(0)); 2622 IsInPreservedAIRegion = false; 2623 return RValue::get(Res); 2624 } 2625 2626 case Builtin::BI__builtin_cimag: 2627 case Builtin::BI__builtin_cimagf: 2628 case Builtin::BI__builtin_cimagl: 2629 case Builtin::BIcimag: 2630 case Builtin::BIcimagf: 2631 case Builtin::BIcimagl: { 2632 ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0)); 2633 return RValue::get(ComplexVal.second); 2634 } 2635 2636 case Builtin::BI__builtin_clrsb: 2637 case Builtin::BI__builtin_clrsbl: 2638 case Builtin::BI__builtin_clrsbll: { 2639 // clrsb(x) -> clz(x < 0 ? ~x : x) - 1 or 2640 Value *ArgValue = EmitScalarExpr(E->getArg(0)); 2641 2642 llvm::Type *ArgType = ArgValue->getType(); 2643 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType); 2644 2645 llvm::Type *ResultType = ConvertType(E->getType()); 2646 Value *Zero = llvm::Constant::getNullValue(ArgType); 2647 Value *IsNeg = Builder.CreateICmpSLT(ArgValue, Zero, "isneg"); 2648 Value *Inverse = Builder.CreateNot(ArgValue, "not"); 2649 Value *Tmp = Builder.CreateSelect(IsNeg, Inverse, ArgValue); 2650 Value *Ctlz = Builder.CreateCall(F, {Tmp, Builder.getFalse()}); 2651 Value *Result = Builder.CreateSub(Ctlz, llvm::ConstantInt::get(ArgType, 1)); 2652 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, 2653 "cast"); 2654 return RValue::get(Result); 2655 } 2656 case Builtin::BI__builtin_ctzs: 2657 case Builtin::BI__builtin_ctz: 2658 case Builtin::BI__builtin_ctzl: 2659 case Builtin::BI__builtin_ctzll: { 2660 Value *ArgValue = EmitCheckedArgForBuiltin(E->getArg(0), BCK_CTZPassedZero); 2661 2662 llvm::Type *ArgType = ArgValue->getType(); 2663 Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType); 2664 2665 llvm::Type *ResultType = ConvertType(E->getType()); 2666 Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef()); 2667 Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef}); 2668 if (Result->getType() != ResultType) 2669 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, 2670 "cast"); 2671 return RValue::get(Result); 2672 } 2673 case Builtin::BI__builtin_clzs: 2674 case Builtin::BI__builtin_clz: 2675 case Builtin::BI__builtin_clzl: 2676 case Builtin::BI__builtin_clzll: { 2677 Value *ArgValue = EmitCheckedArgForBuiltin(E->getArg(0), BCK_CLZPassedZero); 2678 2679 llvm::Type *ArgType = ArgValue->getType(); 2680 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType); 2681 2682 llvm::Type *ResultType = ConvertType(E->getType()); 2683 Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef()); 2684 Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef}); 2685 if (Result->getType() != ResultType) 2686 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, 2687 "cast"); 2688 return RValue::get(Result); 2689 } 2690 case Builtin::BI__builtin_ffs: 2691 case Builtin::BI__builtin_ffsl: 2692 case Builtin::BI__builtin_ffsll: { 2693 // ffs(x) -> x ? cttz(x) + 1 : 0 2694 Value *ArgValue = EmitScalarExpr(E->getArg(0)); 2695 2696 llvm::Type *ArgType = ArgValue->getType(); 2697 Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType); 2698 2699 llvm::Type *ResultType = ConvertType(E->getType()); 2700 Value *Tmp = 2701 Builder.CreateAdd(Builder.CreateCall(F, {ArgValue, Builder.getTrue()}), 2702 llvm::ConstantInt::get(ArgType, 1)); 2703 Value *Zero = llvm::Constant::getNullValue(ArgType); 2704 Value *IsZero = Builder.CreateICmpEQ(ArgValue, Zero, "iszero"); 2705 Value *Result = Builder.CreateSelect(IsZero, Zero, Tmp, "ffs"); 2706 if (Result->getType() != ResultType) 2707 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, 2708 "cast"); 2709 return RValue::get(Result); 2710 } 2711 case Builtin::BI__builtin_parity: 2712 case Builtin::BI__builtin_parityl: 2713 case Builtin::BI__builtin_parityll: { 2714 // parity(x) -> ctpop(x) & 1 2715 Value *ArgValue = EmitScalarExpr(E->getArg(0)); 2716 2717 llvm::Type *ArgType = ArgValue->getType(); 2718 Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType); 2719 2720 llvm::Type *ResultType = ConvertType(E->getType()); 2721 Value *Tmp = Builder.CreateCall(F, ArgValue); 2722 Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1)); 2723 if (Result->getType() != ResultType) 2724 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, 2725 "cast"); 2726 return RValue::get(Result); 2727 } 2728 case Builtin::BI__lzcnt16: 2729 case Builtin::BI__lzcnt: 2730 case Builtin::BI__lzcnt64: { 2731 Value *ArgValue = EmitScalarExpr(E->getArg(0)); 2732 2733 llvm::Type *ArgType = ArgValue->getType(); 2734 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType); 2735 2736 llvm::Type *ResultType = ConvertType(E->getType()); 2737 Value *Result = Builder.CreateCall(F, {ArgValue, Builder.getFalse()}); 2738 if (Result->getType() != ResultType) 2739 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, 2740 "cast"); 2741 return RValue::get(Result); 2742 } 2743 case Builtin::BI__popcnt16: 2744 case Builtin::BI__popcnt: 2745 case Builtin::BI__popcnt64: 2746 case Builtin::BI__builtin_popcount: 2747 case Builtin::BI__builtin_popcountl: 2748 case Builtin::BI__builtin_popcountll: { 2749 Value *ArgValue = EmitScalarExpr(E->getArg(0)); 2750 2751 llvm::Type *ArgType = ArgValue->getType(); 2752 Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType); 2753 2754 llvm::Type *ResultType = ConvertType(E->getType()); 2755 Value *Result = Builder.CreateCall(F, ArgValue); 2756 if (Result->getType() != ResultType) 2757 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, 2758 "cast"); 2759 return RValue::get(Result); 2760 } 2761 case Builtin::BI__builtin_unpredictable: { 2762 // Always return the argument of __builtin_unpredictable. LLVM does not 2763 // handle this builtin. Metadata for this builtin should be added directly 2764 // to instructions such as branches or switches that use it. 2765 return RValue::get(EmitScalarExpr(E->getArg(0))); 2766 } 2767 case Builtin::BI__builtin_expect: { 2768 Value *ArgValue = EmitScalarExpr(E->getArg(0)); 2769 llvm::Type *ArgType = ArgValue->getType(); 2770 2771 Value *ExpectedValue = EmitScalarExpr(E->getArg(1)); 2772 // Don't generate llvm.expect on -O0 as the backend won't use it for 2773 // anything. 2774 // Note, we still IRGen ExpectedValue because it could have side-effects. 2775 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 2776 return RValue::get(ArgValue); 2777 2778 Function *FnExpect = CGM.getIntrinsic(Intrinsic::expect, ArgType); 2779 Value *Result = 2780 Builder.CreateCall(FnExpect, {ArgValue, ExpectedValue}, "expval"); 2781 return RValue::get(Result); 2782 } 2783 case Builtin::BI__builtin_expect_with_probability: { 2784 Value *ArgValue = EmitScalarExpr(E->getArg(0)); 2785 llvm::Type *ArgType = ArgValue->getType(); 2786 2787 Value *ExpectedValue = EmitScalarExpr(E->getArg(1)); 2788 llvm::APFloat Probability(0.0); 2789 const Expr *ProbArg = E->getArg(2); 2790 bool EvalSucceed = ProbArg->EvaluateAsFloat(Probability, CGM.getContext()); 2791 assert(EvalSucceed && "probability should be able to evaluate as float"); 2792 (void)EvalSucceed; 2793 bool LoseInfo = false; 2794 Probability.convert(llvm::APFloat::IEEEdouble(), 2795 llvm::RoundingMode::Dynamic, &LoseInfo); 2796 llvm::Type *Ty = ConvertType(ProbArg->getType()); 2797 Constant *Confidence = ConstantFP::get(Ty, Probability); 2798 // Don't generate llvm.expect.with.probability on -O0 as the backend 2799 // won't use it for anything. 2800 // Note, we still IRGen ExpectedValue because it could have side-effects. 2801 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 2802 return RValue::get(ArgValue); 2803 2804 Function *FnExpect = 2805 CGM.getIntrinsic(Intrinsic::expect_with_probability, ArgType); 2806 Value *Result = Builder.CreateCall( 2807 FnExpect, {ArgValue, ExpectedValue, Confidence}, "expval"); 2808 return RValue::get(Result); 2809 } 2810 case Builtin::BI__builtin_assume_aligned: { 2811 const Expr *Ptr = E->getArg(0); 2812 Value *PtrValue = EmitScalarExpr(Ptr); 2813 Value *OffsetValue = 2814 (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) : nullptr; 2815 2816 Value *AlignmentValue = EmitScalarExpr(E->getArg(1)); 2817 ConstantInt *AlignmentCI = cast<ConstantInt>(AlignmentValue); 2818 if (AlignmentCI->getValue().ugt(llvm::Value::MaximumAlignment)) 2819 AlignmentCI = ConstantInt::get(AlignmentCI->getType(), 2820 llvm::Value::MaximumAlignment); 2821 2822 emitAlignmentAssumption(PtrValue, Ptr, 2823 /*The expr loc is sufficient.*/ SourceLocation(), 2824 AlignmentCI, OffsetValue); 2825 return RValue::get(PtrValue); 2826 } 2827 case Builtin::BI__assume: 2828 case Builtin::BI__builtin_assume: { 2829 if (E->getArg(0)->HasSideEffects(getContext())) 2830 return RValue::get(nullptr); 2831 2832 Value *ArgValue = EmitScalarExpr(E->getArg(0)); 2833 Function *FnAssume = CGM.getIntrinsic(Intrinsic::assume); 2834 return RValue::get(Builder.CreateCall(FnAssume, ArgValue)); 2835 } 2836 case Builtin::BI__builtin_bswap16: 2837 case Builtin::BI__builtin_bswap32: 2838 case Builtin::BI__builtin_bswap64: { 2839 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bswap)); 2840 } 2841 case Builtin::BI__builtin_bitreverse8: 2842 case Builtin::BI__builtin_bitreverse16: 2843 case Builtin::BI__builtin_bitreverse32: 2844 case Builtin::BI__builtin_bitreverse64: { 2845 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bitreverse)); 2846 } 2847 case Builtin::BI__builtin_rotateleft8: 2848 case Builtin::BI__builtin_rotateleft16: 2849 case Builtin::BI__builtin_rotateleft32: 2850 case Builtin::BI__builtin_rotateleft64: 2851 case Builtin::BI_rotl8: // Microsoft variants of rotate left 2852 case Builtin::BI_rotl16: 2853 case Builtin::BI_rotl: 2854 case Builtin::BI_lrotl: 2855 case Builtin::BI_rotl64: 2856 return emitRotate(E, false); 2857 2858 case Builtin::BI__builtin_rotateright8: 2859 case Builtin::BI__builtin_rotateright16: 2860 case Builtin::BI__builtin_rotateright32: 2861 case Builtin::BI__builtin_rotateright64: 2862 case Builtin::BI_rotr8: // Microsoft variants of rotate right 2863 case Builtin::BI_rotr16: 2864 case Builtin::BI_rotr: 2865 case Builtin::BI_lrotr: 2866 case Builtin::BI_rotr64: 2867 return emitRotate(E, true); 2868 2869 case Builtin::BI__builtin_constant_p: { 2870 llvm::Type *ResultType = ConvertType(E->getType()); 2871 2872 const Expr *Arg = E->getArg(0); 2873 QualType ArgType = Arg->getType(); 2874 // FIXME: The allowance for Obj-C pointers and block pointers is historical 2875 // and likely a mistake. 2876 if (!ArgType->isIntegralOrEnumerationType() && !ArgType->isFloatingType() && 2877 !ArgType->isObjCObjectPointerType() && !ArgType->isBlockPointerType()) 2878 // Per the GCC documentation, only numeric constants are recognized after 2879 // inlining. 2880 return RValue::get(ConstantInt::get(ResultType, 0)); 2881 2882 if (Arg->HasSideEffects(getContext())) 2883 // The argument is unevaluated, so be conservative if it might have 2884 // side-effects. 2885 return RValue::get(ConstantInt::get(ResultType, 0)); 2886 2887 Value *ArgValue = EmitScalarExpr(Arg); 2888 if (ArgType->isObjCObjectPointerType()) { 2889 // Convert Objective-C objects to id because we cannot distinguish between 2890 // LLVM types for Obj-C classes as they are opaque. 2891 ArgType = CGM.getContext().getObjCIdType(); 2892 ArgValue = Builder.CreateBitCast(ArgValue, ConvertType(ArgType)); 2893 } 2894 Function *F = 2895 CGM.getIntrinsic(Intrinsic::is_constant, ConvertType(ArgType)); 2896 Value *Result = Builder.CreateCall(F, ArgValue); 2897 if (Result->getType() != ResultType) 2898 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/false); 2899 return RValue::get(Result); 2900 } 2901 case Builtin::BI__builtin_dynamic_object_size: 2902 case Builtin::BI__builtin_object_size: { 2903 unsigned Type = 2904 E->getArg(1)->EvaluateKnownConstInt(getContext()).getZExtValue(); 2905 auto *ResType = cast<llvm::IntegerType>(ConvertType(E->getType())); 2906 2907 // We pass this builtin onto the optimizer so that it can figure out the 2908 // object size in more complex cases. 2909 bool IsDynamic = BuiltinID == Builtin::BI__builtin_dynamic_object_size; 2910 return RValue::get(emitBuiltinObjectSize(E->getArg(0), Type, ResType, 2911 /*EmittedE=*/nullptr, IsDynamic)); 2912 } 2913 case Builtin::BI__builtin_prefetch: { 2914 Value *Locality, *RW, *Address = EmitScalarExpr(E->getArg(0)); 2915 // FIXME: Technically these constants should of type 'int', yes? 2916 RW = (E->getNumArgs() > 1) ? EmitScalarExpr(E->getArg(1)) : 2917 llvm::ConstantInt::get(Int32Ty, 0); 2918 Locality = (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) : 2919 llvm::ConstantInt::get(Int32Ty, 3); 2920 Value *Data = llvm::ConstantInt::get(Int32Ty, 1); 2921 Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType()); 2922 return RValue::get(Builder.CreateCall(F, {Address, RW, Locality, Data})); 2923 } 2924 case Builtin::BI__builtin_readcyclecounter: { 2925 Function *F = CGM.getIntrinsic(Intrinsic::readcyclecounter); 2926 return RValue::get(Builder.CreateCall(F)); 2927 } 2928 case Builtin::BI__builtin___clear_cache: { 2929 Value *Begin = EmitScalarExpr(E->getArg(0)); 2930 Value *End = EmitScalarExpr(E->getArg(1)); 2931 Function *F = CGM.getIntrinsic(Intrinsic::clear_cache); 2932 return RValue::get(Builder.CreateCall(F, {Begin, End})); 2933 } 2934 case Builtin::BI__builtin_trap: 2935 return RValue::get(EmitTrapCall(Intrinsic::trap)); 2936 case Builtin::BI__debugbreak: 2937 return RValue::get(EmitTrapCall(Intrinsic::debugtrap)); 2938 case Builtin::BI__builtin_unreachable: { 2939 EmitUnreachable(E->getExprLoc()); 2940 2941 // We do need to preserve an insertion point. 2942 EmitBlock(createBasicBlock("unreachable.cont")); 2943 2944 return RValue::get(nullptr); 2945 } 2946 2947 case Builtin::BI__builtin_powi: 2948 case Builtin::BI__builtin_powif: 2949 case Builtin::BI__builtin_powil: 2950 return RValue::get(emitBinaryMaybeConstrainedFPBuiltin( 2951 *this, E, Intrinsic::powi, Intrinsic::experimental_constrained_powi)); 2952 2953 case Builtin::BI__builtin_isgreater: 2954 case Builtin::BI__builtin_isgreaterequal: 2955 case Builtin::BI__builtin_isless: 2956 case Builtin::BI__builtin_islessequal: 2957 case Builtin::BI__builtin_islessgreater: 2958 case Builtin::BI__builtin_isunordered: { 2959 // Ordered comparisons: we know the arguments to these are matching scalar 2960 // floating point values. 2961 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); 2962 // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here. 2963 Value *LHS = EmitScalarExpr(E->getArg(0)); 2964 Value *RHS = EmitScalarExpr(E->getArg(1)); 2965 2966 switch (BuiltinID) { 2967 default: llvm_unreachable("Unknown ordered comparison"); 2968 case Builtin::BI__builtin_isgreater: 2969 LHS = Builder.CreateFCmpOGT(LHS, RHS, "cmp"); 2970 break; 2971 case Builtin::BI__builtin_isgreaterequal: 2972 LHS = Builder.CreateFCmpOGE(LHS, RHS, "cmp"); 2973 break; 2974 case Builtin::BI__builtin_isless: 2975 LHS = Builder.CreateFCmpOLT(LHS, RHS, "cmp"); 2976 break; 2977 case Builtin::BI__builtin_islessequal: 2978 LHS = Builder.CreateFCmpOLE(LHS, RHS, "cmp"); 2979 break; 2980 case Builtin::BI__builtin_islessgreater: 2981 LHS = Builder.CreateFCmpONE(LHS, RHS, "cmp"); 2982 break; 2983 case Builtin::BI__builtin_isunordered: 2984 LHS = Builder.CreateFCmpUNO(LHS, RHS, "cmp"); 2985 break; 2986 } 2987 // ZExt bool to int type. 2988 return RValue::get(Builder.CreateZExt(LHS, ConvertType(E->getType()))); 2989 } 2990 case Builtin::BI__builtin_isnan: { 2991 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); 2992 Value *V = EmitScalarExpr(E->getArg(0)); 2993 llvm::Type *Ty = V->getType(); 2994 const llvm::fltSemantics &Semantics = Ty->getFltSemantics(); 2995 if (!Builder.getIsFPConstrained() || 2996 Builder.getDefaultConstrainedExcept() == fp::ebIgnore || 2997 !Ty->isIEEE()) { 2998 V = Builder.CreateFCmpUNO(V, V, "cmp"); 2999 return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType()))); 3000 } 3001 3002 if (Value *Result = getTargetHooks().testFPKind(V, BuiltinID, Builder, CGM)) 3003 return RValue::get(Result); 3004 3005 // NaN has all exp bits set and a non zero significand. Therefore: 3006 // isnan(V) == ((exp mask - (abs(V) & exp mask)) < 0) 3007 unsigned bitsize = Ty->getScalarSizeInBits(); 3008 llvm::IntegerType *IntTy = Builder.getIntNTy(bitsize); 3009 Value *IntV = Builder.CreateBitCast(V, IntTy); 3010 APInt AndMask = APInt::getSignedMaxValue(bitsize); 3011 Value *AbsV = 3012 Builder.CreateAnd(IntV, llvm::ConstantInt::get(IntTy, AndMask)); 3013 APInt ExpMask = APFloat::getInf(Semantics).bitcastToAPInt(); 3014 Value *Sub = 3015 Builder.CreateSub(llvm::ConstantInt::get(IntTy, ExpMask), AbsV); 3016 // V = sign bit (Sub) <=> V = (Sub < 0) 3017 V = Builder.CreateLShr(Sub, llvm::ConstantInt::get(IntTy, bitsize - 1)); 3018 if (bitsize > 32) 3019 V = Builder.CreateTrunc(V, ConvertType(E->getType())); 3020 return RValue::get(V); 3021 } 3022 3023 case Builtin::BI__builtin_matrix_transpose: { 3024 const auto *MatrixTy = E->getArg(0)->getType()->getAs<ConstantMatrixType>(); 3025 Value *MatValue = EmitScalarExpr(E->getArg(0)); 3026 MatrixBuilder<CGBuilderTy> MB(Builder); 3027 Value *Result = MB.CreateMatrixTranspose(MatValue, MatrixTy->getNumRows(), 3028 MatrixTy->getNumColumns()); 3029 return RValue::get(Result); 3030 } 3031 3032 case Builtin::BI__builtin_matrix_column_major_load: { 3033 MatrixBuilder<CGBuilderTy> MB(Builder); 3034 // Emit everything that isn't dependent on the first parameter type 3035 Value *Stride = EmitScalarExpr(E->getArg(3)); 3036 const auto *ResultTy = E->getType()->getAs<ConstantMatrixType>(); 3037 auto *PtrTy = E->getArg(0)->getType()->getAs<PointerType>(); 3038 assert(PtrTy && "arg0 must be of pointer type"); 3039 bool IsVolatile = PtrTy->getPointeeType().isVolatileQualified(); 3040 3041 Address Src = EmitPointerWithAlignment(E->getArg(0)); 3042 EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(0)->getType(), 3043 E->getArg(0)->getExprLoc(), FD, 0); 3044 Value *Result = MB.CreateColumnMajorLoad( 3045 Src.getPointer(), Align(Src.getAlignment().getQuantity()), Stride, 3046 IsVolatile, ResultTy->getNumRows(), ResultTy->getNumColumns(), 3047 "matrix"); 3048 return RValue::get(Result); 3049 } 3050 3051 case Builtin::BI__builtin_matrix_column_major_store: { 3052 MatrixBuilder<CGBuilderTy> MB(Builder); 3053 Value *Matrix = EmitScalarExpr(E->getArg(0)); 3054 Address Dst = EmitPointerWithAlignment(E->getArg(1)); 3055 Value *Stride = EmitScalarExpr(E->getArg(2)); 3056 3057 const auto *MatrixTy = E->getArg(0)->getType()->getAs<ConstantMatrixType>(); 3058 auto *PtrTy = E->getArg(1)->getType()->getAs<PointerType>(); 3059 assert(PtrTy && "arg1 must be of pointer type"); 3060 bool IsVolatile = PtrTy->getPointeeType().isVolatileQualified(); 3061 3062 EmitNonNullArgCheck(RValue::get(Dst.getPointer()), E->getArg(1)->getType(), 3063 E->getArg(1)->getExprLoc(), FD, 0); 3064 Value *Result = MB.CreateColumnMajorStore( 3065 Matrix, Dst.getPointer(), Align(Dst.getAlignment().getQuantity()), 3066 Stride, IsVolatile, MatrixTy->getNumRows(), MatrixTy->getNumColumns()); 3067 return RValue::get(Result); 3068 } 3069 3070 case Builtin::BIfinite: 3071 case Builtin::BI__finite: 3072 case Builtin::BIfinitef: 3073 case Builtin::BI__finitef: 3074 case Builtin::BIfinitel: 3075 case Builtin::BI__finitel: 3076 case Builtin::BI__builtin_isinf: 3077 case Builtin::BI__builtin_isfinite: { 3078 // isinf(x) --> fabs(x) == infinity 3079 // isfinite(x) --> fabs(x) != infinity 3080 // x != NaN via the ordered compare in either case. 3081 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); 3082 Value *V = EmitScalarExpr(E->getArg(0)); 3083 llvm::Type *Ty = V->getType(); 3084 if (!Builder.getIsFPConstrained() || 3085 Builder.getDefaultConstrainedExcept() == fp::ebIgnore || 3086 !Ty->isIEEE()) { 3087 Value *Fabs = EmitFAbs(*this, V); 3088 Constant *Infinity = ConstantFP::getInfinity(V->getType()); 3089 CmpInst::Predicate Pred = (BuiltinID == Builtin::BI__builtin_isinf) 3090 ? CmpInst::FCMP_OEQ 3091 : CmpInst::FCMP_ONE; 3092 Value *FCmp = Builder.CreateFCmp(Pred, Fabs, Infinity, "cmpinf"); 3093 return RValue::get(Builder.CreateZExt(FCmp, ConvertType(E->getType()))); 3094 } 3095 3096 if (Value *Result = getTargetHooks().testFPKind(V, BuiltinID, Builder, CGM)) 3097 return RValue::get(Result); 3098 3099 // Inf values have all exp bits set and a zero significand. Therefore: 3100 // isinf(V) == ((V << 1) == ((exp mask) << 1)) 3101 // isfinite(V) == ((V << 1) < ((exp mask) << 1)) using unsigned comparison 3102 unsigned bitsize = Ty->getScalarSizeInBits(); 3103 llvm::IntegerType *IntTy = Builder.getIntNTy(bitsize); 3104 Value *IntV = Builder.CreateBitCast(V, IntTy); 3105 Value *Shl1 = Builder.CreateShl(IntV, 1); 3106 const llvm::fltSemantics &Semantics = Ty->getFltSemantics(); 3107 APInt ExpMask = APFloat::getInf(Semantics).bitcastToAPInt(); 3108 Value *ExpMaskShl1 = llvm::ConstantInt::get(IntTy, ExpMask.shl(1)); 3109 if (BuiltinID == Builtin::BI__builtin_isinf) 3110 V = Builder.CreateICmpEQ(Shl1, ExpMaskShl1); 3111 else 3112 V = Builder.CreateICmpULT(Shl1, ExpMaskShl1); 3113 return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType()))); 3114 } 3115 3116 case Builtin::BI__builtin_isinf_sign: { 3117 // isinf_sign(x) -> fabs(x) == infinity ? (signbit(x) ? -1 : 1) : 0 3118 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); 3119 // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here. 3120 Value *Arg = EmitScalarExpr(E->getArg(0)); 3121 Value *AbsArg = EmitFAbs(*this, Arg); 3122 Value *IsInf = Builder.CreateFCmpOEQ( 3123 AbsArg, ConstantFP::getInfinity(Arg->getType()), "isinf"); 3124 Value *IsNeg = EmitSignBit(*this, Arg); 3125 3126 llvm::Type *IntTy = ConvertType(E->getType()); 3127 Value *Zero = Constant::getNullValue(IntTy); 3128 Value *One = ConstantInt::get(IntTy, 1); 3129 Value *NegativeOne = ConstantInt::get(IntTy, -1); 3130 Value *SignResult = Builder.CreateSelect(IsNeg, NegativeOne, One); 3131 Value *Result = Builder.CreateSelect(IsInf, SignResult, Zero); 3132 return RValue::get(Result); 3133 } 3134 3135 case Builtin::BI__builtin_isnormal: { 3136 // isnormal(x) --> x == x && fabsf(x) < infinity && fabsf(x) >= float_min 3137 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); 3138 // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here. 3139 Value *V = EmitScalarExpr(E->getArg(0)); 3140 Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq"); 3141 3142 Value *Abs = EmitFAbs(*this, V); 3143 Value *IsLessThanInf = 3144 Builder.CreateFCmpULT(Abs, ConstantFP::getInfinity(V->getType()),"isinf"); 3145 APFloat Smallest = APFloat::getSmallestNormalized( 3146 getContext().getFloatTypeSemantics(E->getArg(0)->getType())); 3147 Value *IsNormal = 3148 Builder.CreateFCmpUGE(Abs, ConstantFP::get(V->getContext(), Smallest), 3149 "isnormal"); 3150 V = Builder.CreateAnd(Eq, IsLessThanInf, "and"); 3151 V = Builder.CreateAnd(V, IsNormal, "and"); 3152 return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType()))); 3153 } 3154 3155 case Builtin::BI__builtin_flt_rounds: { 3156 Function *F = CGM.getIntrinsic(Intrinsic::flt_rounds); 3157 3158 llvm::Type *ResultType = ConvertType(E->getType()); 3159 Value *Result = Builder.CreateCall(F); 3160 if (Result->getType() != ResultType) 3161 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, 3162 "cast"); 3163 return RValue::get(Result); 3164 } 3165 3166 case Builtin::BI__builtin_fpclassify: { 3167 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); 3168 // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here. 3169 Value *V = EmitScalarExpr(E->getArg(5)); 3170 llvm::Type *Ty = ConvertType(E->getArg(5)->getType()); 3171 3172 // Create Result 3173 BasicBlock *Begin = Builder.GetInsertBlock(); 3174 BasicBlock *End = createBasicBlock("fpclassify_end", this->CurFn); 3175 Builder.SetInsertPoint(End); 3176 PHINode *Result = 3177 Builder.CreatePHI(ConvertType(E->getArg(0)->getType()), 4, 3178 "fpclassify_result"); 3179 3180 // if (V==0) return FP_ZERO 3181 Builder.SetInsertPoint(Begin); 3182 Value *IsZero = Builder.CreateFCmpOEQ(V, Constant::getNullValue(Ty), 3183 "iszero"); 3184 Value *ZeroLiteral = EmitScalarExpr(E->getArg(4)); 3185 BasicBlock *NotZero = createBasicBlock("fpclassify_not_zero", this->CurFn); 3186 Builder.CreateCondBr(IsZero, End, NotZero); 3187 Result->addIncoming(ZeroLiteral, Begin); 3188 3189 // if (V != V) return FP_NAN 3190 Builder.SetInsertPoint(NotZero); 3191 Value *IsNan = Builder.CreateFCmpUNO(V, V, "cmp"); 3192 Value *NanLiteral = EmitScalarExpr(E->getArg(0)); 3193 BasicBlock *NotNan = createBasicBlock("fpclassify_not_nan", this->CurFn); 3194 Builder.CreateCondBr(IsNan, End, NotNan); 3195 Result->addIncoming(NanLiteral, NotZero); 3196 3197 // if (fabs(V) == infinity) return FP_INFINITY 3198 Builder.SetInsertPoint(NotNan); 3199 Value *VAbs = EmitFAbs(*this, V); 3200 Value *IsInf = 3201 Builder.CreateFCmpOEQ(VAbs, ConstantFP::getInfinity(V->getType()), 3202 "isinf"); 3203 Value *InfLiteral = EmitScalarExpr(E->getArg(1)); 3204 BasicBlock *NotInf = createBasicBlock("fpclassify_not_inf", this->CurFn); 3205 Builder.CreateCondBr(IsInf, End, NotInf); 3206 Result->addIncoming(InfLiteral, NotNan); 3207 3208 // if (fabs(V) >= MIN_NORMAL) return FP_NORMAL else FP_SUBNORMAL 3209 Builder.SetInsertPoint(NotInf); 3210 APFloat Smallest = APFloat::getSmallestNormalized( 3211 getContext().getFloatTypeSemantics(E->getArg(5)->getType())); 3212 Value *IsNormal = 3213 Builder.CreateFCmpUGE(VAbs, ConstantFP::get(V->getContext(), Smallest), 3214 "isnormal"); 3215 Value *NormalResult = 3216 Builder.CreateSelect(IsNormal, EmitScalarExpr(E->getArg(2)), 3217 EmitScalarExpr(E->getArg(3))); 3218 Builder.CreateBr(End); 3219 Result->addIncoming(NormalResult, NotInf); 3220 3221 // return Result 3222 Builder.SetInsertPoint(End); 3223 return RValue::get(Result); 3224 } 3225 3226 case Builtin::BIalloca: 3227 case Builtin::BI_alloca: 3228 case Builtin::BI__builtin_alloca: { 3229 Value *Size = EmitScalarExpr(E->getArg(0)); 3230 const TargetInfo &TI = getContext().getTargetInfo(); 3231 // The alignment of the alloca should correspond to __BIGGEST_ALIGNMENT__. 3232 const Align SuitableAlignmentInBytes = 3233 CGM.getContext() 3234 .toCharUnitsFromBits(TI.getSuitableAlign()) 3235 .getAsAlign(); 3236 AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size); 3237 AI->setAlignment(SuitableAlignmentInBytes); 3238 initializeAlloca(*this, AI, Size, SuitableAlignmentInBytes); 3239 return RValue::get(AI); 3240 } 3241 3242 case Builtin::BI__builtin_alloca_with_align: { 3243 Value *Size = EmitScalarExpr(E->getArg(0)); 3244 Value *AlignmentInBitsValue = EmitScalarExpr(E->getArg(1)); 3245 auto *AlignmentInBitsCI = cast<ConstantInt>(AlignmentInBitsValue); 3246 unsigned AlignmentInBits = AlignmentInBitsCI->getZExtValue(); 3247 const Align AlignmentInBytes = 3248 CGM.getContext().toCharUnitsFromBits(AlignmentInBits).getAsAlign(); 3249 AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size); 3250 AI->setAlignment(AlignmentInBytes); 3251 initializeAlloca(*this, AI, Size, AlignmentInBytes); 3252 return RValue::get(AI); 3253 } 3254 3255 case Builtin::BIbzero: 3256 case Builtin::BI__builtin_bzero: { 3257 Address Dest = EmitPointerWithAlignment(E->getArg(0)); 3258 Value *SizeVal = EmitScalarExpr(E->getArg(1)); 3259 EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(), 3260 E->getArg(0)->getExprLoc(), FD, 0); 3261 Builder.CreateMemSet(Dest, Builder.getInt8(0), SizeVal, false); 3262 return RValue::get(nullptr); 3263 } 3264 case Builtin::BImemcpy: 3265 case Builtin::BI__builtin_memcpy: 3266 case Builtin::BImempcpy: 3267 case Builtin::BI__builtin_mempcpy: { 3268 Address Dest = EmitPointerWithAlignment(E->getArg(0)); 3269 Address Src = EmitPointerWithAlignment(E->getArg(1)); 3270 Value *SizeVal = EmitScalarExpr(E->getArg(2)); 3271 EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(), 3272 E->getArg(0)->getExprLoc(), FD, 0); 3273 EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(), 3274 E->getArg(1)->getExprLoc(), FD, 1); 3275 Builder.CreateMemCpy(Dest, Src, SizeVal, false); 3276 if (BuiltinID == Builtin::BImempcpy || 3277 BuiltinID == Builtin::BI__builtin_mempcpy) 3278 return RValue::get(Builder.CreateInBoundsGEP(Dest.getElementType(), 3279 Dest.getPointer(), SizeVal)); 3280 else 3281 return RValue::get(Dest.getPointer()); 3282 } 3283 3284 case Builtin::BI__builtin_memcpy_inline: { 3285 Address Dest = EmitPointerWithAlignment(E->getArg(0)); 3286 Address Src = EmitPointerWithAlignment(E->getArg(1)); 3287 uint64_t Size = 3288 E->getArg(2)->EvaluateKnownConstInt(getContext()).getZExtValue(); 3289 EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(), 3290 E->getArg(0)->getExprLoc(), FD, 0); 3291 EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(), 3292 E->getArg(1)->getExprLoc(), FD, 1); 3293 Builder.CreateMemCpyInline(Dest, Src, Size); 3294 return RValue::get(nullptr); 3295 } 3296 3297 case Builtin::BI__builtin_char_memchr: 3298 BuiltinID = Builtin::BI__builtin_memchr; 3299 break; 3300 3301 case Builtin::BI__builtin___memcpy_chk: { 3302 // fold __builtin_memcpy_chk(x, y, cst1, cst2) to memcpy iff cst1<=cst2. 3303 Expr::EvalResult SizeResult, DstSizeResult; 3304 if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) || 3305 !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext())) 3306 break; 3307 llvm::APSInt Size = SizeResult.Val.getInt(); 3308 llvm::APSInt DstSize = DstSizeResult.Val.getInt(); 3309 if (Size.ugt(DstSize)) 3310 break; 3311 Address Dest = EmitPointerWithAlignment(E->getArg(0)); 3312 Address Src = EmitPointerWithAlignment(E->getArg(1)); 3313 Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size); 3314 Builder.CreateMemCpy(Dest, Src, SizeVal, false); 3315 return RValue::get(Dest.getPointer()); 3316 } 3317 3318 case Builtin::BI__builtin_objc_memmove_collectable: { 3319 Address DestAddr = EmitPointerWithAlignment(E->getArg(0)); 3320 Address SrcAddr = EmitPointerWithAlignment(E->getArg(1)); 3321 Value *SizeVal = EmitScalarExpr(E->getArg(2)); 3322 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, 3323 DestAddr, SrcAddr, SizeVal); 3324 return RValue::get(DestAddr.getPointer()); 3325 } 3326 3327 case Builtin::BI__builtin___memmove_chk: { 3328 // fold __builtin_memmove_chk(x, y, cst1, cst2) to memmove iff cst1<=cst2. 3329 Expr::EvalResult SizeResult, DstSizeResult; 3330 if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) || 3331 !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext())) 3332 break; 3333 llvm::APSInt Size = SizeResult.Val.getInt(); 3334 llvm::APSInt DstSize = DstSizeResult.Val.getInt(); 3335 if (Size.ugt(DstSize)) 3336 break; 3337 Address Dest = EmitPointerWithAlignment(E->getArg(0)); 3338 Address Src = EmitPointerWithAlignment(E->getArg(1)); 3339 Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size); 3340 Builder.CreateMemMove(Dest, Src, SizeVal, false); 3341 return RValue::get(Dest.getPointer()); 3342 } 3343 3344 case Builtin::BImemmove: 3345 case Builtin::BI__builtin_memmove: { 3346 Address Dest = EmitPointerWithAlignment(E->getArg(0)); 3347 Address Src = EmitPointerWithAlignment(E->getArg(1)); 3348 Value *SizeVal = EmitScalarExpr(E->getArg(2)); 3349 EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(), 3350 E->getArg(0)->getExprLoc(), FD, 0); 3351 EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(), 3352 E->getArg(1)->getExprLoc(), FD, 1); 3353 Builder.CreateMemMove(Dest, Src, SizeVal, false); 3354 return RValue::get(Dest.getPointer()); 3355 } 3356 case Builtin::BImemset: 3357 case Builtin::BI__builtin_memset: { 3358 Address Dest = EmitPointerWithAlignment(E->getArg(0)); 3359 Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)), 3360 Builder.getInt8Ty()); 3361 Value *SizeVal = EmitScalarExpr(E->getArg(2)); 3362 EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(), 3363 E->getArg(0)->getExprLoc(), FD, 0); 3364 Builder.CreateMemSet(Dest, ByteVal, SizeVal, false); 3365 return RValue::get(Dest.getPointer()); 3366 } 3367 case Builtin::BI__builtin___memset_chk: { 3368 // fold __builtin_memset_chk(x, y, cst1, cst2) to memset iff cst1<=cst2. 3369 Expr::EvalResult SizeResult, DstSizeResult; 3370 if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) || 3371 !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext())) 3372 break; 3373 llvm::APSInt Size = SizeResult.Val.getInt(); 3374 llvm::APSInt DstSize = DstSizeResult.Val.getInt(); 3375 if (Size.ugt(DstSize)) 3376 break; 3377 Address Dest = EmitPointerWithAlignment(E->getArg(0)); 3378 Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)), 3379 Builder.getInt8Ty()); 3380 Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size); 3381 Builder.CreateMemSet(Dest, ByteVal, SizeVal, false); 3382 return RValue::get(Dest.getPointer()); 3383 } 3384 case Builtin::BI__builtin_wmemchr: { 3385 // The MSVC runtime library does not provide a definition of wmemchr, so we 3386 // need an inline implementation. 3387 if (!getTarget().getTriple().isOSMSVCRT()) 3388 break; 3389 3390 llvm::Type *WCharTy = ConvertType(getContext().WCharTy); 3391 Value *Str = EmitScalarExpr(E->getArg(0)); 3392 Value *Chr = EmitScalarExpr(E->getArg(1)); 3393 Value *Size = EmitScalarExpr(E->getArg(2)); 3394 3395 BasicBlock *Entry = Builder.GetInsertBlock(); 3396 BasicBlock *CmpEq = createBasicBlock("wmemchr.eq"); 3397 BasicBlock *Next = createBasicBlock("wmemchr.next"); 3398 BasicBlock *Exit = createBasicBlock("wmemchr.exit"); 3399 Value *SizeEq0 = Builder.CreateICmpEQ(Size, ConstantInt::get(SizeTy, 0)); 3400 Builder.CreateCondBr(SizeEq0, Exit, CmpEq); 3401 3402 EmitBlock(CmpEq); 3403 PHINode *StrPhi = Builder.CreatePHI(Str->getType(), 2); 3404 StrPhi->addIncoming(Str, Entry); 3405 PHINode *SizePhi = Builder.CreatePHI(SizeTy, 2); 3406 SizePhi->addIncoming(Size, Entry); 3407 CharUnits WCharAlign = 3408 getContext().getTypeAlignInChars(getContext().WCharTy); 3409 Value *StrCh = Builder.CreateAlignedLoad(WCharTy, StrPhi, WCharAlign); 3410 Value *FoundChr = Builder.CreateConstInBoundsGEP1_32(WCharTy, StrPhi, 0); 3411 Value *StrEqChr = Builder.CreateICmpEQ(StrCh, Chr); 3412 Builder.CreateCondBr(StrEqChr, Exit, Next); 3413 3414 EmitBlock(Next); 3415 Value *NextStr = Builder.CreateConstInBoundsGEP1_32(WCharTy, StrPhi, 1); 3416 Value *NextSize = Builder.CreateSub(SizePhi, ConstantInt::get(SizeTy, 1)); 3417 Value *NextSizeEq0 = 3418 Builder.CreateICmpEQ(NextSize, ConstantInt::get(SizeTy, 0)); 3419 Builder.CreateCondBr(NextSizeEq0, Exit, CmpEq); 3420 StrPhi->addIncoming(NextStr, Next); 3421 SizePhi->addIncoming(NextSize, Next); 3422 3423 EmitBlock(Exit); 3424 PHINode *Ret = Builder.CreatePHI(Str->getType(), 3); 3425 Ret->addIncoming(llvm::Constant::getNullValue(Str->getType()), Entry); 3426 Ret->addIncoming(llvm::Constant::getNullValue(Str->getType()), Next); 3427 Ret->addIncoming(FoundChr, CmpEq); 3428 return RValue::get(Ret); 3429 } 3430 case Builtin::BI__builtin_wmemcmp: { 3431 // The MSVC runtime library does not provide a definition of wmemcmp, so we 3432 // need an inline implementation. 3433 if (!getTarget().getTriple().isOSMSVCRT()) 3434 break; 3435 3436 llvm::Type *WCharTy = ConvertType(getContext().WCharTy); 3437 3438 Value *Dst = EmitScalarExpr(E->getArg(0)); 3439 Value *Src = EmitScalarExpr(E->getArg(1)); 3440 Value *Size = EmitScalarExpr(E->getArg(2)); 3441 3442 BasicBlock *Entry = Builder.GetInsertBlock(); 3443 BasicBlock *CmpGT = createBasicBlock("wmemcmp.gt"); 3444 BasicBlock *CmpLT = createBasicBlock("wmemcmp.lt"); 3445 BasicBlock *Next = createBasicBlock("wmemcmp.next"); 3446 BasicBlock *Exit = createBasicBlock("wmemcmp.exit"); 3447 Value *SizeEq0 = Builder.CreateICmpEQ(Size, ConstantInt::get(SizeTy, 0)); 3448 Builder.CreateCondBr(SizeEq0, Exit, CmpGT); 3449 3450 EmitBlock(CmpGT); 3451 PHINode *DstPhi = Builder.CreatePHI(Dst->getType(), 2); 3452 DstPhi->addIncoming(Dst, Entry); 3453 PHINode *SrcPhi = Builder.CreatePHI(Src->getType(), 2); 3454 SrcPhi->addIncoming(Src, Entry); 3455 PHINode *SizePhi = Builder.CreatePHI(SizeTy, 2); 3456 SizePhi->addIncoming(Size, Entry); 3457 CharUnits WCharAlign = 3458 getContext().getTypeAlignInChars(getContext().WCharTy); 3459 Value *DstCh = Builder.CreateAlignedLoad(WCharTy, DstPhi, WCharAlign); 3460 Value *SrcCh = Builder.CreateAlignedLoad(WCharTy, SrcPhi, WCharAlign); 3461 Value *DstGtSrc = Builder.CreateICmpUGT(DstCh, SrcCh); 3462 Builder.CreateCondBr(DstGtSrc, Exit, CmpLT); 3463 3464 EmitBlock(CmpLT); 3465 Value *DstLtSrc = Builder.CreateICmpULT(DstCh, SrcCh); 3466 Builder.CreateCondBr(DstLtSrc, Exit, Next); 3467 3468 EmitBlock(Next); 3469 Value *NextDst = Builder.CreateConstInBoundsGEP1_32(WCharTy, DstPhi, 1); 3470 Value *NextSrc = Builder.CreateConstInBoundsGEP1_32(WCharTy, SrcPhi, 1); 3471 Value *NextSize = Builder.CreateSub(SizePhi, ConstantInt::get(SizeTy, 1)); 3472 Value *NextSizeEq0 = 3473 Builder.CreateICmpEQ(NextSize, ConstantInt::get(SizeTy, 0)); 3474 Builder.CreateCondBr(NextSizeEq0, Exit, CmpGT); 3475 DstPhi->addIncoming(NextDst, Next); 3476 SrcPhi->addIncoming(NextSrc, Next); 3477 SizePhi->addIncoming(NextSize, Next); 3478 3479 EmitBlock(Exit); 3480 PHINode *Ret = Builder.CreatePHI(IntTy, 4); 3481 Ret->addIncoming(ConstantInt::get(IntTy, 0), Entry); 3482 Ret->addIncoming(ConstantInt::get(IntTy, 1), CmpGT); 3483 Ret->addIncoming(ConstantInt::get(IntTy, -1), CmpLT); 3484 Ret->addIncoming(ConstantInt::get(IntTy, 0), Next); 3485 return RValue::get(Ret); 3486 } 3487 case Builtin::BI__builtin_dwarf_cfa: { 3488 // The offset in bytes from the first argument to the CFA. 3489 // 3490 // Why on earth is this in the frontend? Is there any reason at 3491 // all that the backend can't reasonably determine this while 3492 // lowering llvm.eh.dwarf.cfa()? 3493 // 3494 // TODO: If there's a satisfactory reason, add a target hook for 3495 // this instead of hard-coding 0, which is correct for most targets. 3496 int32_t Offset = 0; 3497 3498 Function *F = CGM.getIntrinsic(Intrinsic::eh_dwarf_cfa); 3499 return RValue::get(Builder.CreateCall(F, 3500 llvm::ConstantInt::get(Int32Ty, Offset))); 3501 } 3502 case Builtin::BI__builtin_return_address: { 3503 Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0), 3504 getContext().UnsignedIntTy); 3505 Function *F = CGM.getIntrinsic(Intrinsic::returnaddress); 3506 return RValue::get(Builder.CreateCall(F, Depth)); 3507 } 3508 case Builtin::BI_ReturnAddress: { 3509 Function *F = CGM.getIntrinsic(Intrinsic::returnaddress); 3510 return RValue::get(Builder.CreateCall(F, Builder.getInt32(0))); 3511 } 3512 case Builtin::BI__builtin_frame_address: { 3513 Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0), 3514 getContext().UnsignedIntTy); 3515 Function *F = CGM.getIntrinsic(Intrinsic::frameaddress, AllocaInt8PtrTy); 3516 return RValue::get(Builder.CreateCall(F, Depth)); 3517 } 3518 case Builtin::BI__builtin_extract_return_addr: { 3519 Value *Address = EmitScalarExpr(E->getArg(0)); 3520 Value *Result = getTargetHooks().decodeReturnAddress(*this, Address); 3521 return RValue::get(Result); 3522 } 3523 case Builtin::BI__builtin_frob_return_addr: { 3524 Value *Address = EmitScalarExpr(E->getArg(0)); 3525 Value *Result = getTargetHooks().encodeReturnAddress(*this, Address); 3526 return RValue::get(Result); 3527 } 3528 case Builtin::BI__builtin_dwarf_sp_column: { 3529 llvm::IntegerType *Ty 3530 = cast<llvm::IntegerType>(ConvertType(E->getType())); 3531 int Column = getTargetHooks().getDwarfEHStackPointer(CGM); 3532 if (Column == -1) { 3533 CGM.ErrorUnsupported(E, "__builtin_dwarf_sp_column"); 3534 return RValue::get(llvm::UndefValue::get(Ty)); 3535 } 3536 return RValue::get(llvm::ConstantInt::get(Ty, Column, true)); 3537 } 3538 case Builtin::BI__builtin_init_dwarf_reg_size_table: { 3539 Value *Address = EmitScalarExpr(E->getArg(0)); 3540 if (getTargetHooks().initDwarfEHRegSizeTable(*this, Address)) 3541 CGM.ErrorUnsupported(E, "__builtin_init_dwarf_reg_size_table"); 3542 return RValue::get(llvm::UndefValue::get(ConvertType(E->getType()))); 3543 } 3544 case Builtin::BI__builtin_eh_return: { 3545 Value *Int = EmitScalarExpr(E->getArg(0)); 3546 Value *Ptr = EmitScalarExpr(E->getArg(1)); 3547 3548 llvm::IntegerType *IntTy = cast<llvm::IntegerType>(Int->getType()); 3549 assert((IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) && 3550 "LLVM's __builtin_eh_return only supports 32- and 64-bit variants"); 3551 Function *F = 3552 CGM.getIntrinsic(IntTy->getBitWidth() == 32 ? Intrinsic::eh_return_i32 3553 : Intrinsic::eh_return_i64); 3554 Builder.CreateCall(F, {Int, Ptr}); 3555 Builder.CreateUnreachable(); 3556 3557 // We do need to preserve an insertion point. 3558 EmitBlock(createBasicBlock("builtin_eh_return.cont")); 3559 3560 return RValue::get(nullptr); 3561 } 3562 case Builtin::BI__builtin_unwind_init: { 3563 Function *F = CGM.getIntrinsic(Intrinsic::eh_unwind_init); 3564 return RValue::get(Builder.CreateCall(F)); 3565 } 3566 case Builtin::BI__builtin_extend_pointer: { 3567 // Extends a pointer to the size of an _Unwind_Word, which is 3568 // uint64_t on all platforms. Generally this gets poked into a 3569 // register and eventually used as an address, so if the 3570 // addressing registers are wider than pointers and the platform 3571 // doesn't implicitly ignore high-order bits when doing 3572 // addressing, we need to make sure we zext / sext based on 3573 // the platform's expectations. 3574 // 3575 // See: http://gcc.gnu.org/ml/gcc-bugs/2002-02/msg00237.html 3576 3577 // Cast the pointer to intptr_t. 3578 Value *Ptr = EmitScalarExpr(E->getArg(0)); 3579 Value *Result = Builder.CreatePtrToInt(Ptr, IntPtrTy, "extend.cast"); 3580 3581 // If that's 64 bits, we're done. 3582 if (IntPtrTy->getBitWidth() == 64) 3583 return RValue::get(Result); 3584 3585 // Otherwise, ask the codegen data what to do. 3586 if (getTargetHooks().extendPointerWithSExt()) 3587 return RValue::get(Builder.CreateSExt(Result, Int64Ty, "extend.sext")); 3588 else 3589 return RValue::get(Builder.CreateZExt(Result, Int64Ty, "extend.zext")); 3590 } 3591 case Builtin::BI__builtin_setjmp: { 3592 // Buffer is a void**. 3593 Address Buf = EmitPointerWithAlignment(E->getArg(0)); 3594 3595 // Store the frame pointer to the setjmp buffer. 3596 Value *FrameAddr = Builder.CreateCall( 3597 CGM.getIntrinsic(Intrinsic::frameaddress, AllocaInt8PtrTy), 3598 ConstantInt::get(Int32Ty, 0)); 3599 Builder.CreateStore(FrameAddr, Buf); 3600 3601 // Store the stack pointer to the setjmp buffer. 3602 Value *StackAddr = 3603 Builder.CreateCall(CGM.getIntrinsic(Intrinsic::stacksave)); 3604 Address StackSaveSlot = Builder.CreateConstInBoundsGEP(Buf, 2); 3605 Builder.CreateStore(StackAddr, StackSaveSlot); 3606 3607 // Call LLVM's EH setjmp, which is lightweight. 3608 Function *F = CGM.getIntrinsic(Intrinsic::eh_sjlj_setjmp); 3609 Buf = Builder.CreateBitCast(Buf, Int8PtrTy); 3610 return RValue::get(Builder.CreateCall(F, Buf.getPointer())); 3611 } 3612 case Builtin::BI__builtin_longjmp: { 3613 Value *Buf = EmitScalarExpr(E->getArg(0)); 3614 Buf = Builder.CreateBitCast(Buf, Int8PtrTy); 3615 3616 // Call LLVM's EH longjmp, which is lightweight. 3617 Builder.CreateCall(CGM.getIntrinsic(Intrinsic::eh_sjlj_longjmp), Buf); 3618 3619 // longjmp doesn't return; mark this as unreachable. 3620 Builder.CreateUnreachable(); 3621 3622 // We do need to preserve an insertion point. 3623 EmitBlock(createBasicBlock("longjmp.cont")); 3624 3625 return RValue::get(nullptr); 3626 } 3627 case Builtin::BI__builtin_launder: { 3628 const Expr *Arg = E->getArg(0); 3629 QualType ArgTy = Arg->getType()->getPointeeType(); 3630 Value *Ptr = EmitScalarExpr(Arg); 3631 if (TypeRequiresBuiltinLaunder(CGM, ArgTy)) 3632 Ptr = Builder.CreateLaunderInvariantGroup(Ptr); 3633 3634 return RValue::get(Ptr); 3635 } 3636 case Builtin::BI__sync_fetch_and_add: 3637 case Builtin::BI__sync_fetch_and_sub: 3638 case Builtin::BI__sync_fetch_and_or: 3639 case Builtin::BI__sync_fetch_and_and: 3640 case Builtin::BI__sync_fetch_and_xor: 3641 case Builtin::BI__sync_fetch_and_nand: 3642 case Builtin::BI__sync_add_and_fetch: 3643 case Builtin::BI__sync_sub_and_fetch: 3644 case Builtin::BI__sync_and_and_fetch: 3645 case Builtin::BI__sync_or_and_fetch: 3646 case Builtin::BI__sync_xor_and_fetch: 3647 case Builtin::BI__sync_nand_and_fetch: 3648 case Builtin::BI__sync_val_compare_and_swap: 3649 case Builtin::BI__sync_bool_compare_and_swap: 3650 case Builtin::BI__sync_lock_test_and_set: 3651 case Builtin::BI__sync_lock_release: 3652 case Builtin::BI__sync_swap: 3653 llvm_unreachable("Shouldn't make it through sema"); 3654 case Builtin::BI__sync_fetch_and_add_1: 3655 case Builtin::BI__sync_fetch_and_add_2: 3656 case Builtin::BI__sync_fetch_and_add_4: 3657 case Builtin::BI__sync_fetch_and_add_8: 3658 case Builtin::BI__sync_fetch_and_add_16: 3659 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Add, E); 3660 case Builtin::BI__sync_fetch_and_sub_1: 3661 case Builtin::BI__sync_fetch_and_sub_2: 3662 case Builtin::BI__sync_fetch_and_sub_4: 3663 case Builtin::BI__sync_fetch_and_sub_8: 3664 case Builtin::BI__sync_fetch_and_sub_16: 3665 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Sub, E); 3666 case Builtin::BI__sync_fetch_and_or_1: 3667 case Builtin::BI__sync_fetch_and_or_2: 3668 case Builtin::BI__sync_fetch_and_or_4: 3669 case Builtin::BI__sync_fetch_and_or_8: 3670 case Builtin::BI__sync_fetch_and_or_16: 3671 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Or, E); 3672 case Builtin::BI__sync_fetch_and_and_1: 3673 case Builtin::BI__sync_fetch_and_and_2: 3674 case Builtin::BI__sync_fetch_and_and_4: 3675 case Builtin::BI__sync_fetch_and_and_8: 3676 case Builtin::BI__sync_fetch_and_and_16: 3677 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::And, E); 3678 case Builtin::BI__sync_fetch_and_xor_1: 3679 case Builtin::BI__sync_fetch_and_xor_2: 3680 case Builtin::BI__sync_fetch_and_xor_4: 3681 case Builtin::BI__sync_fetch_and_xor_8: 3682 case Builtin::BI__sync_fetch_and_xor_16: 3683 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xor, E); 3684 case Builtin::BI__sync_fetch_and_nand_1: 3685 case Builtin::BI__sync_fetch_and_nand_2: 3686 case Builtin::BI__sync_fetch_and_nand_4: 3687 case Builtin::BI__sync_fetch_and_nand_8: 3688 case Builtin::BI__sync_fetch_and_nand_16: 3689 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Nand, E); 3690 3691 // Clang extensions: not overloaded yet. 3692 case Builtin::BI__sync_fetch_and_min: 3693 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Min, E); 3694 case Builtin::BI__sync_fetch_and_max: 3695 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Max, E); 3696 case Builtin::BI__sync_fetch_and_umin: 3697 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMin, E); 3698 case Builtin::BI__sync_fetch_and_umax: 3699 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMax, E); 3700 3701 case Builtin::BI__sync_add_and_fetch_1: 3702 case Builtin::BI__sync_add_and_fetch_2: 3703 case Builtin::BI__sync_add_and_fetch_4: 3704 case Builtin::BI__sync_add_and_fetch_8: 3705 case Builtin::BI__sync_add_and_fetch_16: 3706 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Add, E, 3707 llvm::Instruction::Add); 3708 case Builtin::BI__sync_sub_and_fetch_1: 3709 case Builtin::BI__sync_sub_and_fetch_2: 3710 case Builtin::BI__sync_sub_and_fetch_4: 3711 case Builtin::BI__sync_sub_and_fetch_8: 3712 case Builtin::BI__sync_sub_and_fetch_16: 3713 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Sub, E, 3714 llvm::Instruction::Sub); 3715 case Builtin::BI__sync_and_and_fetch_1: 3716 case Builtin::BI__sync_and_and_fetch_2: 3717 case Builtin::BI__sync_and_and_fetch_4: 3718 case Builtin::BI__sync_and_and_fetch_8: 3719 case Builtin::BI__sync_and_and_fetch_16: 3720 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::And, E, 3721 llvm::Instruction::And); 3722 case Builtin::BI__sync_or_and_fetch_1: 3723 case Builtin::BI__sync_or_and_fetch_2: 3724 case Builtin::BI__sync_or_and_fetch_4: 3725 case Builtin::BI__sync_or_and_fetch_8: 3726 case Builtin::BI__sync_or_and_fetch_16: 3727 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Or, E, 3728 llvm::Instruction::Or); 3729 case Builtin::BI__sync_xor_and_fetch_1: 3730 case Builtin::BI__sync_xor_and_fetch_2: 3731 case Builtin::BI__sync_xor_and_fetch_4: 3732 case Builtin::BI__sync_xor_and_fetch_8: 3733 case Builtin::BI__sync_xor_and_fetch_16: 3734 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Xor, E, 3735 llvm::Instruction::Xor); 3736 case Builtin::BI__sync_nand_and_fetch_1: 3737 case Builtin::BI__sync_nand_and_fetch_2: 3738 case Builtin::BI__sync_nand_and_fetch_4: 3739 case Builtin::BI__sync_nand_and_fetch_8: 3740 case Builtin::BI__sync_nand_and_fetch_16: 3741 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Nand, E, 3742 llvm::Instruction::And, true); 3743 3744 case Builtin::BI__sync_val_compare_and_swap_1: 3745 case Builtin::BI__sync_val_compare_and_swap_2: 3746 case Builtin::BI__sync_val_compare_and_swap_4: 3747 case Builtin::BI__sync_val_compare_and_swap_8: 3748 case Builtin::BI__sync_val_compare_and_swap_16: 3749 return RValue::get(MakeAtomicCmpXchgValue(*this, E, false)); 3750 3751 case Builtin::BI__sync_bool_compare_and_swap_1: 3752 case Builtin::BI__sync_bool_compare_and_swap_2: 3753 case Builtin::BI__sync_bool_compare_and_swap_4: 3754 case Builtin::BI__sync_bool_compare_and_swap_8: 3755 case Builtin::BI__sync_bool_compare_and_swap_16: 3756 return RValue::get(MakeAtomicCmpXchgValue(*this, E, true)); 3757 3758 case Builtin::BI__sync_swap_1: 3759 case Builtin::BI__sync_swap_2: 3760 case Builtin::BI__sync_swap_4: 3761 case Builtin::BI__sync_swap_8: 3762 case Builtin::BI__sync_swap_16: 3763 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E); 3764 3765 case Builtin::BI__sync_lock_test_and_set_1: 3766 case Builtin::BI__sync_lock_test_and_set_2: 3767 case Builtin::BI__sync_lock_test_and_set_4: 3768 case Builtin::BI__sync_lock_test_and_set_8: 3769 case Builtin::BI__sync_lock_test_and_set_16: 3770 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E); 3771 3772 case Builtin::BI__sync_lock_release_1: 3773 case Builtin::BI__sync_lock_release_2: 3774 case Builtin::BI__sync_lock_release_4: 3775 case Builtin::BI__sync_lock_release_8: 3776 case Builtin::BI__sync_lock_release_16: { 3777 Value *Ptr = EmitScalarExpr(E->getArg(0)); 3778 QualType ElTy = E->getArg(0)->getType()->getPointeeType(); 3779 CharUnits StoreSize = getContext().getTypeSizeInChars(ElTy); 3780 llvm::Type *ITy = llvm::IntegerType::get(getLLVMContext(), 3781 StoreSize.getQuantity() * 8); 3782 Ptr = Builder.CreateBitCast(Ptr, ITy->getPointerTo()); 3783 llvm::StoreInst *Store = 3784 Builder.CreateAlignedStore(llvm::Constant::getNullValue(ITy), Ptr, 3785 StoreSize); 3786 Store->setAtomic(llvm::AtomicOrdering::Release); 3787 return RValue::get(nullptr); 3788 } 3789 3790 case Builtin::BI__sync_synchronize: { 3791 // We assume this is supposed to correspond to a C++0x-style 3792 // sequentially-consistent fence (i.e. this is only usable for 3793 // synchronization, not device I/O or anything like that). This intrinsic 3794 // is really badly designed in the sense that in theory, there isn't 3795 // any way to safely use it... but in practice, it mostly works 3796 // to use it with non-atomic loads and stores to get acquire/release 3797 // semantics. 3798 Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent); 3799 return RValue::get(nullptr); 3800 } 3801 3802 case Builtin::BI__builtin_nontemporal_load: 3803 return RValue::get(EmitNontemporalLoad(*this, E)); 3804 case Builtin::BI__builtin_nontemporal_store: 3805 return RValue::get(EmitNontemporalStore(*this, E)); 3806 case Builtin::BI__c11_atomic_is_lock_free: 3807 case Builtin::BI__atomic_is_lock_free: { 3808 // Call "bool __atomic_is_lock_free(size_t size, void *ptr)". For the 3809 // __c11 builtin, ptr is 0 (indicating a properly-aligned object), since 3810 // _Atomic(T) is always properly-aligned. 3811 const char *LibCallName = "__atomic_is_lock_free"; 3812 CallArgList Args; 3813 Args.add(RValue::get(EmitScalarExpr(E->getArg(0))), 3814 getContext().getSizeType()); 3815 if (BuiltinID == Builtin::BI__atomic_is_lock_free) 3816 Args.add(RValue::get(EmitScalarExpr(E->getArg(1))), 3817 getContext().VoidPtrTy); 3818 else 3819 Args.add(RValue::get(llvm::Constant::getNullValue(VoidPtrTy)), 3820 getContext().VoidPtrTy); 3821 const CGFunctionInfo &FuncInfo = 3822 CGM.getTypes().arrangeBuiltinFunctionCall(E->getType(), Args); 3823 llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo); 3824 llvm::FunctionCallee Func = CGM.CreateRuntimeFunction(FTy, LibCallName); 3825 return EmitCall(FuncInfo, CGCallee::forDirect(Func), 3826 ReturnValueSlot(), Args); 3827 } 3828 3829 case Builtin::BI__atomic_test_and_set: { 3830 // Look at the argument type to determine whether this is a volatile 3831 // operation. The parameter type is always volatile. 3832 QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType(); 3833 bool Volatile = 3834 PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified(); 3835 3836 Value *Ptr = EmitScalarExpr(E->getArg(0)); 3837 unsigned AddrSpace = Ptr->getType()->getPointerAddressSpace(); 3838 Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace)); 3839 Value *NewVal = Builder.getInt8(1); 3840 Value *Order = EmitScalarExpr(E->getArg(1)); 3841 if (isa<llvm::ConstantInt>(Order)) { 3842 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue(); 3843 AtomicRMWInst *Result = nullptr; 3844 switch (ord) { 3845 case 0: // memory_order_relaxed 3846 default: // invalid order 3847 Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal, 3848 llvm::AtomicOrdering::Monotonic); 3849 break; 3850 case 1: // memory_order_consume 3851 case 2: // memory_order_acquire 3852 Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal, 3853 llvm::AtomicOrdering::Acquire); 3854 break; 3855 case 3: // memory_order_release 3856 Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal, 3857 llvm::AtomicOrdering::Release); 3858 break; 3859 case 4: // memory_order_acq_rel 3860 3861 Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal, 3862 llvm::AtomicOrdering::AcquireRelease); 3863 break; 3864 case 5: // memory_order_seq_cst 3865 Result = Builder.CreateAtomicRMW( 3866 llvm::AtomicRMWInst::Xchg, Ptr, NewVal, 3867 llvm::AtomicOrdering::SequentiallyConsistent); 3868 break; 3869 } 3870 Result->setVolatile(Volatile); 3871 return RValue::get(Builder.CreateIsNotNull(Result, "tobool")); 3872 } 3873 3874 llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn); 3875 3876 llvm::BasicBlock *BBs[5] = { 3877 createBasicBlock("monotonic", CurFn), 3878 createBasicBlock("acquire", CurFn), 3879 createBasicBlock("release", CurFn), 3880 createBasicBlock("acqrel", CurFn), 3881 createBasicBlock("seqcst", CurFn) 3882 }; 3883 llvm::AtomicOrdering Orders[5] = { 3884 llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Acquire, 3885 llvm::AtomicOrdering::Release, llvm::AtomicOrdering::AcquireRelease, 3886 llvm::AtomicOrdering::SequentiallyConsistent}; 3887 3888 Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false); 3889 llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]); 3890 3891 Builder.SetInsertPoint(ContBB); 3892 PHINode *Result = Builder.CreatePHI(Int8Ty, 5, "was_set"); 3893 3894 for (unsigned i = 0; i < 5; ++i) { 3895 Builder.SetInsertPoint(BBs[i]); 3896 AtomicRMWInst *RMW = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, 3897 Ptr, NewVal, Orders[i]); 3898 RMW->setVolatile(Volatile); 3899 Result->addIncoming(RMW, BBs[i]); 3900 Builder.CreateBr(ContBB); 3901 } 3902 3903 SI->addCase(Builder.getInt32(0), BBs[0]); 3904 SI->addCase(Builder.getInt32(1), BBs[1]); 3905 SI->addCase(Builder.getInt32(2), BBs[1]); 3906 SI->addCase(Builder.getInt32(3), BBs[2]); 3907 SI->addCase(Builder.getInt32(4), BBs[3]); 3908 SI->addCase(Builder.getInt32(5), BBs[4]); 3909 3910 Builder.SetInsertPoint(ContBB); 3911 return RValue::get(Builder.CreateIsNotNull(Result, "tobool")); 3912 } 3913 3914 case Builtin::BI__atomic_clear: { 3915 QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType(); 3916 bool Volatile = 3917 PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified(); 3918 3919 Address Ptr = EmitPointerWithAlignment(E->getArg(0)); 3920 unsigned AddrSpace = Ptr.getPointer()->getType()->getPointerAddressSpace(); 3921 Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace)); 3922 Value *NewVal = Builder.getInt8(0); 3923 Value *Order = EmitScalarExpr(E->getArg(1)); 3924 if (isa<llvm::ConstantInt>(Order)) { 3925 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue(); 3926 StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile); 3927 switch (ord) { 3928 case 0: // memory_order_relaxed 3929 default: // invalid order 3930 Store->setOrdering(llvm::AtomicOrdering::Monotonic); 3931 break; 3932 case 3: // memory_order_release 3933 Store->setOrdering(llvm::AtomicOrdering::Release); 3934 break; 3935 case 5: // memory_order_seq_cst 3936 Store->setOrdering(llvm::AtomicOrdering::SequentiallyConsistent); 3937 break; 3938 } 3939 return RValue::get(nullptr); 3940 } 3941 3942 llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn); 3943 3944 llvm::BasicBlock *BBs[3] = { 3945 createBasicBlock("monotonic", CurFn), 3946 createBasicBlock("release", CurFn), 3947 createBasicBlock("seqcst", CurFn) 3948 }; 3949 llvm::AtomicOrdering Orders[3] = { 3950 llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Release, 3951 llvm::AtomicOrdering::SequentiallyConsistent}; 3952 3953 Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false); 3954 llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]); 3955 3956 for (unsigned i = 0; i < 3; ++i) { 3957 Builder.SetInsertPoint(BBs[i]); 3958 StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile); 3959 Store->setOrdering(Orders[i]); 3960 Builder.CreateBr(ContBB); 3961 } 3962 3963 SI->addCase(Builder.getInt32(0), BBs[0]); 3964 SI->addCase(Builder.getInt32(3), BBs[1]); 3965 SI->addCase(Builder.getInt32(5), BBs[2]); 3966 3967 Builder.SetInsertPoint(ContBB); 3968 return RValue::get(nullptr); 3969 } 3970 3971 case Builtin::BI__atomic_thread_fence: 3972 case Builtin::BI__atomic_signal_fence: 3973 case Builtin::BI__c11_atomic_thread_fence: 3974 case Builtin::BI__c11_atomic_signal_fence: { 3975 llvm::SyncScope::ID SSID; 3976 if (BuiltinID == Builtin::BI__atomic_signal_fence || 3977 BuiltinID == Builtin::BI__c11_atomic_signal_fence) 3978 SSID = llvm::SyncScope::SingleThread; 3979 else 3980 SSID = llvm::SyncScope::System; 3981 Value *Order = EmitScalarExpr(E->getArg(0)); 3982 if (isa<llvm::ConstantInt>(Order)) { 3983 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue(); 3984 switch (ord) { 3985 case 0: // memory_order_relaxed 3986 default: // invalid order 3987 break; 3988 case 1: // memory_order_consume 3989 case 2: // memory_order_acquire 3990 Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID); 3991 break; 3992 case 3: // memory_order_release 3993 Builder.CreateFence(llvm::AtomicOrdering::Release, SSID); 3994 break; 3995 case 4: // memory_order_acq_rel 3996 Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID); 3997 break; 3998 case 5: // memory_order_seq_cst 3999 Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID); 4000 break; 4001 } 4002 return RValue::get(nullptr); 4003 } 4004 4005 llvm::BasicBlock *AcquireBB, *ReleaseBB, *AcqRelBB, *SeqCstBB; 4006 AcquireBB = createBasicBlock("acquire", CurFn); 4007 ReleaseBB = createBasicBlock("release", CurFn); 4008 AcqRelBB = createBasicBlock("acqrel", CurFn); 4009 SeqCstBB = createBasicBlock("seqcst", CurFn); 4010 llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn); 4011 4012 Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false); 4013 llvm::SwitchInst *SI = Builder.CreateSwitch(Order, ContBB); 4014 4015 Builder.SetInsertPoint(AcquireBB); 4016 Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID); 4017 Builder.CreateBr(ContBB); 4018 SI->addCase(Builder.getInt32(1), AcquireBB); 4019 SI->addCase(Builder.getInt32(2), AcquireBB); 4020 4021 Builder.SetInsertPoint(ReleaseBB); 4022 Builder.CreateFence(llvm::AtomicOrdering::Release, SSID); 4023 Builder.CreateBr(ContBB); 4024 SI->addCase(Builder.getInt32(3), ReleaseBB); 4025 4026 Builder.SetInsertPoint(AcqRelBB); 4027 Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID); 4028 Builder.CreateBr(ContBB); 4029 SI->addCase(Builder.getInt32(4), AcqRelBB); 4030 4031 Builder.SetInsertPoint(SeqCstBB); 4032 Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID); 4033 Builder.CreateBr(ContBB); 4034 SI->addCase(Builder.getInt32(5), SeqCstBB); 4035 4036 Builder.SetInsertPoint(ContBB); 4037 return RValue::get(nullptr); 4038 } 4039 4040 case Builtin::BI__builtin_signbit: 4041 case Builtin::BI__builtin_signbitf: 4042 case Builtin::BI__builtin_signbitl: { 4043 return RValue::get( 4044 Builder.CreateZExt(EmitSignBit(*this, EmitScalarExpr(E->getArg(0))), 4045 ConvertType(E->getType()))); 4046 } 4047 case Builtin::BI__warn_memset_zero_len: 4048 return RValue::getIgnored(); 4049 case Builtin::BI__annotation: { 4050 // Re-encode each wide string to UTF8 and make an MDString. 4051 SmallVector<Metadata *, 1> Strings; 4052 for (const Expr *Arg : E->arguments()) { 4053 const auto *Str = cast<StringLiteral>(Arg->IgnoreParenCasts()); 4054 assert(Str->getCharByteWidth() == 2); 4055 StringRef WideBytes = Str->getBytes(); 4056 std::string StrUtf8; 4057 if (!convertUTF16ToUTF8String( 4058 makeArrayRef(WideBytes.data(), WideBytes.size()), StrUtf8)) { 4059 CGM.ErrorUnsupported(E, "non-UTF16 __annotation argument"); 4060 continue; 4061 } 4062 Strings.push_back(llvm::MDString::get(getLLVMContext(), StrUtf8)); 4063 } 4064 4065 // Build and MDTuple of MDStrings and emit the intrinsic call. 4066 llvm::Function *F = 4067 CGM.getIntrinsic(llvm::Intrinsic::codeview_annotation, {}); 4068 MDTuple *StrTuple = MDTuple::get(getLLVMContext(), Strings); 4069 Builder.CreateCall(F, MetadataAsValue::get(getLLVMContext(), StrTuple)); 4070 return RValue::getIgnored(); 4071 } 4072 case Builtin::BI__builtin_annotation: { 4073 llvm::Value *AnnVal = EmitScalarExpr(E->getArg(0)); 4074 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::annotation, 4075 AnnVal->getType()); 4076 4077 // Get the annotation string, go through casts. Sema requires this to be a 4078 // non-wide string literal, potentially casted, so the cast<> is safe. 4079 const Expr *AnnotationStrExpr = E->getArg(1)->IgnoreParenCasts(); 4080 StringRef Str = cast<StringLiteral>(AnnotationStrExpr)->getString(); 4081 return RValue::get( 4082 EmitAnnotationCall(F, AnnVal, Str, E->getExprLoc(), nullptr)); 4083 } 4084 case Builtin::BI__builtin_addcb: 4085 case Builtin::BI__builtin_addcs: 4086 case Builtin::BI__builtin_addc: 4087 case Builtin::BI__builtin_addcl: 4088 case Builtin::BI__builtin_addcll: 4089 case Builtin::BI__builtin_subcb: 4090 case Builtin::BI__builtin_subcs: 4091 case Builtin::BI__builtin_subc: 4092 case Builtin::BI__builtin_subcl: 4093 case Builtin::BI__builtin_subcll: { 4094 4095 // We translate all of these builtins from expressions of the form: 4096 // int x = ..., y = ..., carryin = ..., carryout, result; 4097 // result = __builtin_addc(x, y, carryin, &carryout); 4098 // 4099 // to LLVM IR of the form: 4100 // 4101 // %tmp1 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %x, i32 %y) 4102 // %tmpsum1 = extractvalue {i32, i1} %tmp1, 0 4103 // %carry1 = extractvalue {i32, i1} %tmp1, 1 4104 // %tmp2 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %tmpsum1, 4105 // i32 %carryin) 4106 // %result = extractvalue {i32, i1} %tmp2, 0 4107 // %carry2 = extractvalue {i32, i1} %tmp2, 1 4108 // %tmp3 = or i1 %carry1, %carry2 4109 // %tmp4 = zext i1 %tmp3 to i32 4110 // store i32 %tmp4, i32* %carryout 4111 4112 // Scalarize our inputs. 4113 llvm::Value *X = EmitScalarExpr(E->getArg(0)); 4114 llvm::Value *Y = EmitScalarExpr(E->getArg(1)); 4115 llvm::Value *Carryin = EmitScalarExpr(E->getArg(2)); 4116 Address CarryOutPtr = EmitPointerWithAlignment(E->getArg(3)); 4117 4118 // Decide if we are lowering to a uadd.with.overflow or usub.with.overflow. 4119 llvm::Intrinsic::ID IntrinsicId; 4120 switch (BuiltinID) { 4121 default: llvm_unreachable("Unknown multiprecision builtin id."); 4122 case Builtin::BI__builtin_addcb: 4123 case Builtin::BI__builtin_addcs: 4124 case Builtin::BI__builtin_addc: 4125 case Builtin::BI__builtin_addcl: 4126 case Builtin::BI__builtin_addcll: 4127 IntrinsicId = llvm::Intrinsic::uadd_with_overflow; 4128 break; 4129 case Builtin::BI__builtin_subcb: 4130 case Builtin::BI__builtin_subcs: 4131 case Builtin::BI__builtin_subc: 4132 case Builtin::BI__builtin_subcl: 4133 case Builtin::BI__builtin_subcll: 4134 IntrinsicId = llvm::Intrinsic::usub_with_overflow; 4135 break; 4136 } 4137 4138 // Construct our resulting LLVM IR expression. 4139 llvm::Value *Carry1; 4140 llvm::Value *Sum1 = EmitOverflowIntrinsic(*this, IntrinsicId, 4141 X, Y, Carry1); 4142 llvm::Value *Carry2; 4143 llvm::Value *Sum2 = EmitOverflowIntrinsic(*this, IntrinsicId, 4144 Sum1, Carryin, Carry2); 4145 llvm::Value *CarryOut = Builder.CreateZExt(Builder.CreateOr(Carry1, Carry2), 4146 X->getType()); 4147 Builder.CreateStore(CarryOut, CarryOutPtr); 4148 return RValue::get(Sum2); 4149 } 4150 4151 case Builtin::BI__builtin_add_overflow: 4152 case Builtin::BI__builtin_sub_overflow: 4153 case Builtin::BI__builtin_mul_overflow: { 4154 const clang::Expr *LeftArg = E->getArg(0); 4155 const clang::Expr *RightArg = E->getArg(1); 4156 const clang::Expr *ResultArg = E->getArg(2); 4157 4158 clang::QualType ResultQTy = 4159 ResultArg->getType()->castAs<PointerType>()->getPointeeType(); 4160 4161 WidthAndSignedness LeftInfo = 4162 getIntegerWidthAndSignedness(CGM.getContext(), LeftArg->getType()); 4163 WidthAndSignedness RightInfo = 4164 getIntegerWidthAndSignedness(CGM.getContext(), RightArg->getType()); 4165 WidthAndSignedness ResultInfo = 4166 getIntegerWidthAndSignedness(CGM.getContext(), ResultQTy); 4167 4168 // Handle mixed-sign multiplication as a special case, because adding 4169 // runtime or backend support for our generic irgen would be too expensive. 4170 if (isSpecialMixedSignMultiply(BuiltinID, LeftInfo, RightInfo, ResultInfo)) 4171 return EmitCheckedMixedSignMultiply(*this, LeftArg, LeftInfo, RightArg, 4172 RightInfo, ResultArg, ResultQTy, 4173 ResultInfo); 4174 4175 if (isSpecialUnsignedMultiplySignedResult(BuiltinID, LeftInfo, RightInfo, 4176 ResultInfo)) 4177 return EmitCheckedUnsignedMultiplySignedResult( 4178 *this, LeftArg, LeftInfo, RightArg, RightInfo, ResultArg, ResultQTy, 4179 ResultInfo); 4180 4181 WidthAndSignedness EncompassingInfo = 4182 EncompassingIntegerType({LeftInfo, RightInfo, ResultInfo}); 4183 4184 llvm::Type *EncompassingLLVMTy = 4185 llvm::IntegerType::get(CGM.getLLVMContext(), EncompassingInfo.Width); 4186 4187 llvm::Type *ResultLLVMTy = CGM.getTypes().ConvertType(ResultQTy); 4188 4189 llvm::Intrinsic::ID IntrinsicId; 4190 switch (BuiltinID) { 4191 default: 4192 llvm_unreachable("Unknown overflow builtin id."); 4193 case Builtin::BI__builtin_add_overflow: 4194 IntrinsicId = EncompassingInfo.Signed 4195 ? llvm::Intrinsic::sadd_with_overflow 4196 : llvm::Intrinsic::uadd_with_overflow; 4197 break; 4198 case Builtin::BI__builtin_sub_overflow: 4199 IntrinsicId = EncompassingInfo.Signed 4200 ? llvm::Intrinsic::ssub_with_overflow 4201 : llvm::Intrinsic::usub_with_overflow; 4202 break; 4203 case Builtin::BI__builtin_mul_overflow: 4204 IntrinsicId = EncompassingInfo.Signed 4205 ? llvm::Intrinsic::smul_with_overflow 4206 : llvm::Intrinsic::umul_with_overflow; 4207 break; 4208 } 4209 4210 llvm::Value *Left = EmitScalarExpr(LeftArg); 4211 llvm::Value *Right = EmitScalarExpr(RightArg); 4212 Address ResultPtr = EmitPointerWithAlignment(ResultArg); 4213 4214 // Extend each operand to the encompassing type. 4215 Left = Builder.CreateIntCast(Left, EncompassingLLVMTy, LeftInfo.Signed); 4216 Right = Builder.CreateIntCast(Right, EncompassingLLVMTy, RightInfo.Signed); 4217 4218 // Perform the operation on the extended values. 4219 llvm::Value *Overflow, *Result; 4220 Result = EmitOverflowIntrinsic(*this, IntrinsicId, Left, Right, Overflow); 4221 4222 if (EncompassingInfo.Width > ResultInfo.Width) { 4223 // The encompassing type is wider than the result type, so we need to 4224 // truncate it. 4225 llvm::Value *ResultTrunc = Builder.CreateTrunc(Result, ResultLLVMTy); 4226 4227 // To see if the truncation caused an overflow, we will extend 4228 // the result and then compare it to the original result. 4229 llvm::Value *ResultTruncExt = Builder.CreateIntCast( 4230 ResultTrunc, EncompassingLLVMTy, ResultInfo.Signed); 4231 llvm::Value *TruncationOverflow = 4232 Builder.CreateICmpNE(Result, ResultTruncExt); 4233 4234 Overflow = Builder.CreateOr(Overflow, TruncationOverflow); 4235 Result = ResultTrunc; 4236 } 4237 4238 // Finally, store the result using the pointer. 4239 bool isVolatile = 4240 ResultArg->getType()->getPointeeType().isVolatileQualified(); 4241 Builder.CreateStore(EmitToMemory(Result, ResultQTy), ResultPtr, isVolatile); 4242 4243 return RValue::get(Overflow); 4244 } 4245 4246 case Builtin::BI__builtin_uadd_overflow: 4247 case Builtin::BI__builtin_uaddl_overflow: 4248 case Builtin::BI__builtin_uaddll_overflow: 4249 case Builtin::BI__builtin_usub_overflow: 4250 case Builtin::BI__builtin_usubl_overflow: 4251 case Builtin::BI__builtin_usubll_overflow: 4252 case Builtin::BI__builtin_umul_overflow: 4253 case Builtin::BI__builtin_umull_overflow: 4254 case Builtin::BI__builtin_umulll_overflow: 4255 case Builtin::BI__builtin_sadd_overflow: 4256 case Builtin::BI__builtin_saddl_overflow: 4257 case Builtin::BI__builtin_saddll_overflow: 4258 case Builtin::BI__builtin_ssub_overflow: 4259 case Builtin::BI__builtin_ssubl_overflow: 4260 case Builtin::BI__builtin_ssubll_overflow: 4261 case Builtin::BI__builtin_smul_overflow: 4262 case Builtin::BI__builtin_smull_overflow: 4263 case Builtin::BI__builtin_smulll_overflow: { 4264 4265 // We translate all of these builtins directly to the relevant llvm IR node. 4266 4267 // Scalarize our inputs. 4268 llvm::Value *X = EmitScalarExpr(E->getArg(0)); 4269 llvm::Value *Y = EmitScalarExpr(E->getArg(1)); 4270 Address SumOutPtr = EmitPointerWithAlignment(E->getArg(2)); 4271 4272 // Decide which of the overflow intrinsics we are lowering to: 4273 llvm::Intrinsic::ID IntrinsicId; 4274 switch (BuiltinID) { 4275 default: llvm_unreachable("Unknown overflow builtin id."); 4276 case Builtin::BI__builtin_uadd_overflow: 4277 case Builtin::BI__builtin_uaddl_overflow: 4278 case Builtin::BI__builtin_uaddll_overflow: 4279 IntrinsicId = llvm::Intrinsic::uadd_with_overflow; 4280 break; 4281 case Builtin::BI__builtin_usub_overflow: 4282 case Builtin::BI__builtin_usubl_overflow: 4283 case Builtin::BI__builtin_usubll_overflow: 4284 IntrinsicId = llvm::Intrinsic::usub_with_overflow; 4285 break; 4286 case Builtin::BI__builtin_umul_overflow: 4287 case Builtin::BI__builtin_umull_overflow: 4288 case Builtin::BI__builtin_umulll_overflow: 4289 IntrinsicId = llvm::Intrinsic::umul_with_overflow; 4290 break; 4291 case Builtin::BI__builtin_sadd_overflow: 4292 case Builtin::BI__builtin_saddl_overflow: 4293 case Builtin::BI__builtin_saddll_overflow: 4294 IntrinsicId = llvm::Intrinsic::sadd_with_overflow; 4295 break; 4296 case Builtin::BI__builtin_ssub_overflow: 4297 case Builtin::BI__builtin_ssubl_overflow: 4298 case Builtin::BI__builtin_ssubll_overflow: 4299 IntrinsicId = llvm::Intrinsic::ssub_with_overflow; 4300 break; 4301 case Builtin::BI__builtin_smul_overflow: 4302 case Builtin::BI__builtin_smull_overflow: 4303 case Builtin::BI__builtin_smulll_overflow: 4304 IntrinsicId = llvm::Intrinsic::smul_with_overflow; 4305 break; 4306 } 4307 4308 4309 llvm::Value *Carry; 4310 llvm::Value *Sum = EmitOverflowIntrinsic(*this, IntrinsicId, X, Y, Carry); 4311 Builder.CreateStore(Sum, SumOutPtr); 4312 4313 return RValue::get(Carry); 4314 } 4315 case Builtin::BI__builtin_addressof: 4316 return RValue::get(EmitLValue(E->getArg(0)).getPointer(*this)); 4317 case Builtin::BI__builtin_operator_new: 4318 return EmitBuiltinNewDeleteCall( 4319 E->getCallee()->getType()->castAs<FunctionProtoType>(), E, false); 4320 case Builtin::BI__builtin_operator_delete: 4321 return EmitBuiltinNewDeleteCall( 4322 E->getCallee()->getType()->castAs<FunctionProtoType>(), E, true); 4323 4324 case Builtin::BI__builtin_is_aligned: 4325 return EmitBuiltinIsAligned(E); 4326 case Builtin::BI__builtin_align_up: 4327 return EmitBuiltinAlignTo(E, true); 4328 case Builtin::BI__builtin_align_down: 4329 return EmitBuiltinAlignTo(E, false); 4330 4331 case Builtin::BI__noop: 4332 // __noop always evaluates to an integer literal zero. 4333 return RValue::get(ConstantInt::get(IntTy, 0)); 4334 case Builtin::BI__builtin_call_with_static_chain: { 4335 const CallExpr *Call = cast<CallExpr>(E->getArg(0)); 4336 const Expr *Chain = E->getArg(1); 4337 return EmitCall(Call->getCallee()->getType(), 4338 EmitCallee(Call->getCallee()), Call, ReturnValue, 4339 EmitScalarExpr(Chain)); 4340 } 4341 case Builtin::BI_InterlockedExchange8: 4342 case Builtin::BI_InterlockedExchange16: 4343 case Builtin::BI_InterlockedExchange: 4344 case Builtin::BI_InterlockedExchangePointer: 4345 return RValue::get( 4346 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E)); 4347 case Builtin::BI_InterlockedCompareExchangePointer: 4348 case Builtin::BI_InterlockedCompareExchangePointer_nf: { 4349 llvm::Type *RTy; 4350 llvm::IntegerType *IntType = 4351 IntegerType::get(getLLVMContext(), 4352 getContext().getTypeSize(E->getType())); 4353 llvm::Type *IntPtrType = IntType->getPointerTo(); 4354 4355 llvm::Value *Destination = 4356 Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), IntPtrType); 4357 4358 llvm::Value *Exchange = EmitScalarExpr(E->getArg(1)); 4359 RTy = Exchange->getType(); 4360 Exchange = Builder.CreatePtrToInt(Exchange, IntType); 4361 4362 llvm::Value *Comparand = 4363 Builder.CreatePtrToInt(EmitScalarExpr(E->getArg(2)), IntType); 4364 4365 auto Ordering = 4366 BuiltinID == Builtin::BI_InterlockedCompareExchangePointer_nf ? 4367 AtomicOrdering::Monotonic : AtomicOrdering::SequentiallyConsistent; 4368 4369 auto Result = Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange, 4370 Ordering, Ordering); 4371 Result->setVolatile(true); 4372 4373 return RValue::get(Builder.CreateIntToPtr(Builder.CreateExtractValue(Result, 4374 0), 4375 RTy)); 4376 } 4377 case Builtin::BI_InterlockedCompareExchange8: 4378 case Builtin::BI_InterlockedCompareExchange16: 4379 case Builtin::BI_InterlockedCompareExchange: 4380 case Builtin::BI_InterlockedCompareExchange64: 4381 return RValue::get(EmitAtomicCmpXchgForMSIntrin(*this, E)); 4382 case Builtin::BI_InterlockedIncrement16: 4383 case Builtin::BI_InterlockedIncrement: 4384 return RValue::get( 4385 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E)); 4386 case Builtin::BI_InterlockedDecrement16: 4387 case Builtin::BI_InterlockedDecrement: 4388 return RValue::get( 4389 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E)); 4390 case Builtin::BI_InterlockedAnd8: 4391 case Builtin::BI_InterlockedAnd16: 4392 case Builtin::BI_InterlockedAnd: 4393 return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E)); 4394 case Builtin::BI_InterlockedExchangeAdd8: 4395 case Builtin::BI_InterlockedExchangeAdd16: 4396 case Builtin::BI_InterlockedExchangeAdd: 4397 return RValue::get( 4398 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E)); 4399 case Builtin::BI_InterlockedExchangeSub8: 4400 case Builtin::BI_InterlockedExchangeSub16: 4401 case Builtin::BI_InterlockedExchangeSub: 4402 return RValue::get( 4403 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E)); 4404 case Builtin::BI_InterlockedOr8: 4405 case Builtin::BI_InterlockedOr16: 4406 case Builtin::BI_InterlockedOr: 4407 return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E)); 4408 case Builtin::BI_InterlockedXor8: 4409 case Builtin::BI_InterlockedXor16: 4410 case Builtin::BI_InterlockedXor: 4411 return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E)); 4412 4413 case Builtin::BI_bittest64: 4414 case Builtin::BI_bittest: 4415 case Builtin::BI_bittestandcomplement64: 4416 case Builtin::BI_bittestandcomplement: 4417 case Builtin::BI_bittestandreset64: 4418 case Builtin::BI_bittestandreset: 4419 case Builtin::BI_bittestandset64: 4420 case Builtin::BI_bittestandset: 4421 case Builtin::BI_interlockedbittestandreset: 4422 case Builtin::BI_interlockedbittestandreset64: 4423 case Builtin::BI_interlockedbittestandset64: 4424 case Builtin::BI_interlockedbittestandset: 4425 case Builtin::BI_interlockedbittestandset_acq: 4426 case Builtin::BI_interlockedbittestandset_rel: 4427 case Builtin::BI_interlockedbittestandset_nf: 4428 case Builtin::BI_interlockedbittestandreset_acq: 4429 case Builtin::BI_interlockedbittestandreset_rel: 4430 case Builtin::BI_interlockedbittestandreset_nf: 4431 return RValue::get(EmitBitTestIntrinsic(*this, BuiltinID, E)); 4432 4433 // These builtins exist to emit regular volatile loads and stores not 4434 // affected by the -fms-volatile setting. 4435 case Builtin::BI__iso_volatile_load8: 4436 case Builtin::BI__iso_volatile_load16: 4437 case Builtin::BI__iso_volatile_load32: 4438 case Builtin::BI__iso_volatile_load64: 4439 return RValue::get(EmitISOVolatileLoad(*this, E)); 4440 case Builtin::BI__iso_volatile_store8: 4441 case Builtin::BI__iso_volatile_store16: 4442 case Builtin::BI__iso_volatile_store32: 4443 case Builtin::BI__iso_volatile_store64: 4444 return RValue::get(EmitISOVolatileStore(*this, E)); 4445 4446 case Builtin::BI__exception_code: 4447 case Builtin::BI_exception_code: 4448 return RValue::get(EmitSEHExceptionCode()); 4449 case Builtin::BI__exception_info: 4450 case Builtin::BI_exception_info: 4451 return RValue::get(EmitSEHExceptionInfo()); 4452 case Builtin::BI__abnormal_termination: 4453 case Builtin::BI_abnormal_termination: 4454 return RValue::get(EmitSEHAbnormalTermination()); 4455 case Builtin::BI_setjmpex: 4456 if (getTarget().getTriple().isOSMSVCRT() && E->getNumArgs() == 1 && 4457 E->getArg(0)->getType()->isPointerType()) 4458 return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmpex, E); 4459 break; 4460 case Builtin::BI_setjmp: 4461 if (getTarget().getTriple().isOSMSVCRT() && E->getNumArgs() == 1 && 4462 E->getArg(0)->getType()->isPointerType()) { 4463 if (getTarget().getTriple().getArch() == llvm::Triple::x86) 4464 return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmp3, E); 4465 else if (getTarget().getTriple().getArch() == llvm::Triple::aarch64) 4466 return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmpex, E); 4467 return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmp, E); 4468 } 4469 break; 4470 4471 case Builtin::BI__GetExceptionInfo: { 4472 if (llvm::GlobalVariable *GV = 4473 CGM.getCXXABI().getThrowInfo(FD->getParamDecl(0)->getType())) 4474 return RValue::get(llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy)); 4475 break; 4476 } 4477 4478 case Builtin::BI__fastfail: 4479 return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::__fastfail, E)); 4480 4481 case Builtin::BI__builtin_coro_size: { 4482 auto & Context = getContext(); 4483 auto SizeTy = Context.getSizeType(); 4484 auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy)); 4485 Function *F = CGM.getIntrinsic(Intrinsic::coro_size, T); 4486 return RValue::get(Builder.CreateCall(F)); 4487 } 4488 4489 case Builtin::BI__builtin_coro_id: 4490 return EmitCoroutineIntrinsic(E, Intrinsic::coro_id); 4491 case Builtin::BI__builtin_coro_promise: 4492 return EmitCoroutineIntrinsic(E, Intrinsic::coro_promise); 4493 case Builtin::BI__builtin_coro_resume: 4494 return EmitCoroutineIntrinsic(E, Intrinsic::coro_resume); 4495 case Builtin::BI__builtin_coro_frame: 4496 return EmitCoroutineIntrinsic(E, Intrinsic::coro_frame); 4497 case Builtin::BI__builtin_coro_noop: 4498 return EmitCoroutineIntrinsic(E, Intrinsic::coro_noop); 4499 case Builtin::BI__builtin_coro_free: 4500 return EmitCoroutineIntrinsic(E, Intrinsic::coro_free); 4501 case Builtin::BI__builtin_coro_destroy: 4502 return EmitCoroutineIntrinsic(E, Intrinsic::coro_destroy); 4503 case Builtin::BI__builtin_coro_done: 4504 return EmitCoroutineIntrinsic(E, Intrinsic::coro_done); 4505 case Builtin::BI__builtin_coro_alloc: 4506 return EmitCoroutineIntrinsic(E, Intrinsic::coro_alloc); 4507 case Builtin::BI__builtin_coro_begin: 4508 return EmitCoroutineIntrinsic(E, Intrinsic::coro_begin); 4509 case Builtin::BI__builtin_coro_end: 4510 return EmitCoroutineIntrinsic(E, Intrinsic::coro_end); 4511 case Builtin::BI__builtin_coro_suspend: 4512 return EmitCoroutineIntrinsic(E, Intrinsic::coro_suspend); 4513 case Builtin::BI__builtin_coro_param: 4514 return EmitCoroutineIntrinsic(E, Intrinsic::coro_param); 4515 4516 // OpenCL v2.0 s6.13.16.2, Built-in pipe read and write functions 4517 case Builtin::BIread_pipe: 4518 case Builtin::BIwrite_pipe: { 4519 Value *Arg0 = EmitScalarExpr(E->getArg(0)), 4520 *Arg1 = EmitScalarExpr(E->getArg(1)); 4521 CGOpenCLRuntime OpenCLRT(CGM); 4522 Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0)); 4523 Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0)); 4524 4525 // Type of the generic packet parameter. 4526 unsigned GenericAS = 4527 getContext().getTargetAddressSpace(LangAS::opencl_generic); 4528 llvm::Type *I8PTy = llvm::PointerType::get( 4529 llvm::Type::getInt8Ty(getLLVMContext()), GenericAS); 4530 4531 // Testing which overloaded version we should generate the call for. 4532 if (2U == E->getNumArgs()) { 4533 const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_2" 4534 : "__write_pipe_2"; 4535 // Creating a generic function type to be able to call with any builtin or 4536 // user defined type. 4537 llvm::Type *ArgTys[] = {Arg0->getType(), I8PTy, Int32Ty, Int32Ty}; 4538 llvm::FunctionType *FTy = llvm::FunctionType::get( 4539 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false); 4540 Value *BCast = Builder.CreatePointerCast(Arg1, I8PTy); 4541 return RValue::get( 4542 EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), 4543 {Arg0, BCast, PacketSize, PacketAlign})); 4544 } else { 4545 assert(4 == E->getNumArgs() && 4546 "Illegal number of parameters to pipe function"); 4547 const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_4" 4548 : "__write_pipe_4"; 4549 4550 llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, I8PTy, 4551 Int32Ty, Int32Ty}; 4552 Value *Arg2 = EmitScalarExpr(E->getArg(2)), 4553 *Arg3 = EmitScalarExpr(E->getArg(3)); 4554 llvm::FunctionType *FTy = llvm::FunctionType::get( 4555 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false); 4556 Value *BCast = Builder.CreatePointerCast(Arg3, I8PTy); 4557 // We know the third argument is an integer type, but we may need to cast 4558 // it to i32. 4559 if (Arg2->getType() != Int32Ty) 4560 Arg2 = Builder.CreateZExtOrTrunc(Arg2, Int32Ty); 4561 return RValue::get( 4562 EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), 4563 {Arg0, Arg1, Arg2, BCast, PacketSize, PacketAlign})); 4564 } 4565 } 4566 // OpenCL v2.0 s6.13.16 ,s9.17.3.5 - Built-in pipe reserve read and write 4567 // functions 4568 case Builtin::BIreserve_read_pipe: 4569 case Builtin::BIreserve_write_pipe: 4570 case Builtin::BIwork_group_reserve_read_pipe: 4571 case Builtin::BIwork_group_reserve_write_pipe: 4572 case Builtin::BIsub_group_reserve_read_pipe: 4573 case Builtin::BIsub_group_reserve_write_pipe: { 4574 // Composing the mangled name for the function. 4575 const char *Name; 4576 if (BuiltinID == Builtin::BIreserve_read_pipe) 4577 Name = "__reserve_read_pipe"; 4578 else if (BuiltinID == Builtin::BIreserve_write_pipe) 4579 Name = "__reserve_write_pipe"; 4580 else if (BuiltinID == Builtin::BIwork_group_reserve_read_pipe) 4581 Name = "__work_group_reserve_read_pipe"; 4582 else if (BuiltinID == Builtin::BIwork_group_reserve_write_pipe) 4583 Name = "__work_group_reserve_write_pipe"; 4584 else if (BuiltinID == Builtin::BIsub_group_reserve_read_pipe) 4585 Name = "__sub_group_reserve_read_pipe"; 4586 else 4587 Name = "__sub_group_reserve_write_pipe"; 4588 4589 Value *Arg0 = EmitScalarExpr(E->getArg(0)), 4590 *Arg1 = EmitScalarExpr(E->getArg(1)); 4591 llvm::Type *ReservedIDTy = ConvertType(getContext().OCLReserveIDTy); 4592 CGOpenCLRuntime OpenCLRT(CGM); 4593 Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0)); 4594 Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0)); 4595 4596 // Building the generic function prototype. 4597 llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty, Int32Ty}; 4598 llvm::FunctionType *FTy = llvm::FunctionType::get( 4599 ReservedIDTy, llvm::ArrayRef<llvm::Type *>(ArgTys), false); 4600 // We know the second argument is an integer type, but we may need to cast 4601 // it to i32. 4602 if (Arg1->getType() != Int32Ty) 4603 Arg1 = Builder.CreateZExtOrTrunc(Arg1, Int32Ty); 4604 return RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), 4605 {Arg0, Arg1, PacketSize, PacketAlign})); 4606 } 4607 // OpenCL v2.0 s6.13.16, s9.17.3.5 - Built-in pipe commit read and write 4608 // functions 4609 case Builtin::BIcommit_read_pipe: 4610 case Builtin::BIcommit_write_pipe: 4611 case Builtin::BIwork_group_commit_read_pipe: 4612 case Builtin::BIwork_group_commit_write_pipe: 4613 case Builtin::BIsub_group_commit_read_pipe: 4614 case Builtin::BIsub_group_commit_write_pipe: { 4615 const char *Name; 4616 if (BuiltinID == Builtin::BIcommit_read_pipe) 4617 Name = "__commit_read_pipe"; 4618 else if (BuiltinID == Builtin::BIcommit_write_pipe) 4619 Name = "__commit_write_pipe"; 4620 else if (BuiltinID == Builtin::BIwork_group_commit_read_pipe) 4621 Name = "__work_group_commit_read_pipe"; 4622 else if (BuiltinID == Builtin::BIwork_group_commit_write_pipe) 4623 Name = "__work_group_commit_write_pipe"; 4624 else if (BuiltinID == Builtin::BIsub_group_commit_read_pipe) 4625 Name = "__sub_group_commit_read_pipe"; 4626 else 4627 Name = "__sub_group_commit_write_pipe"; 4628 4629 Value *Arg0 = EmitScalarExpr(E->getArg(0)), 4630 *Arg1 = EmitScalarExpr(E->getArg(1)); 4631 CGOpenCLRuntime OpenCLRT(CGM); 4632 Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0)); 4633 Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0)); 4634 4635 // Building the generic function prototype. 4636 llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, Int32Ty}; 4637 llvm::FunctionType *FTy = 4638 llvm::FunctionType::get(llvm::Type::getVoidTy(getLLVMContext()), 4639 llvm::ArrayRef<llvm::Type *>(ArgTys), false); 4640 4641 return RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), 4642 {Arg0, Arg1, PacketSize, PacketAlign})); 4643 } 4644 // OpenCL v2.0 s6.13.16.4 Built-in pipe query functions 4645 case Builtin::BIget_pipe_num_packets: 4646 case Builtin::BIget_pipe_max_packets: { 4647 const char *BaseName; 4648 const auto *PipeTy = E->getArg(0)->getType()->castAs<PipeType>(); 4649 if (BuiltinID == Builtin::BIget_pipe_num_packets) 4650 BaseName = "__get_pipe_num_packets"; 4651 else 4652 BaseName = "__get_pipe_max_packets"; 4653 std::string Name = std::string(BaseName) + 4654 std::string(PipeTy->isReadOnly() ? "_ro" : "_wo"); 4655 4656 // Building the generic function prototype. 4657 Value *Arg0 = EmitScalarExpr(E->getArg(0)); 4658 CGOpenCLRuntime OpenCLRT(CGM); 4659 Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0)); 4660 Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0)); 4661 llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty}; 4662 llvm::FunctionType *FTy = llvm::FunctionType::get( 4663 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false); 4664 4665 return RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), 4666 {Arg0, PacketSize, PacketAlign})); 4667 } 4668 4669 // OpenCL v2.0 s6.13.9 - Address space qualifier functions. 4670 case Builtin::BIto_global: 4671 case Builtin::BIto_local: 4672 case Builtin::BIto_private: { 4673 auto Arg0 = EmitScalarExpr(E->getArg(0)); 4674 auto NewArgT = llvm::PointerType::get(Int8Ty, 4675 CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic)); 4676 auto NewRetT = llvm::PointerType::get(Int8Ty, 4677 CGM.getContext().getTargetAddressSpace( 4678 E->getType()->getPointeeType().getAddressSpace())); 4679 auto FTy = llvm::FunctionType::get(NewRetT, {NewArgT}, false); 4680 llvm::Value *NewArg; 4681 if (Arg0->getType()->getPointerAddressSpace() != 4682 NewArgT->getPointerAddressSpace()) 4683 NewArg = Builder.CreateAddrSpaceCast(Arg0, NewArgT); 4684 else 4685 NewArg = Builder.CreateBitOrPointerCast(Arg0, NewArgT); 4686 auto NewName = std::string("__") + E->getDirectCallee()->getName().str(); 4687 auto NewCall = 4688 EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, NewName), {NewArg}); 4689 return RValue::get(Builder.CreateBitOrPointerCast(NewCall, 4690 ConvertType(E->getType()))); 4691 } 4692 4693 // OpenCL v2.0, s6.13.17 - Enqueue kernel function. 4694 // It contains four different overload formats specified in Table 6.13.17.1. 4695 case Builtin::BIenqueue_kernel: { 4696 StringRef Name; // Generated function call name 4697 unsigned NumArgs = E->getNumArgs(); 4698 4699 llvm::Type *QueueTy = ConvertType(getContext().OCLQueueTy); 4700 llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy( 4701 getContext().getTargetAddressSpace(LangAS::opencl_generic)); 4702 4703 llvm::Value *Queue = EmitScalarExpr(E->getArg(0)); 4704 llvm::Value *Flags = EmitScalarExpr(E->getArg(1)); 4705 LValue NDRangeL = EmitAggExprToLValue(E->getArg(2)); 4706 llvm::Value *Range = NDRangeL.getAddress(*this).getPointer(); 4707 llvm::Type *RangeTy = NDRangeL.getAddress(*this).getType(); 4708 4709 if (NumArgs == 4) { 4710 // The most basic form of the call with parameters: 4711 // queue_t, kernel_enqueue_flags_t, ndrange_t, block(void) 4712 Name = "__enqueue_kernel_basic"; 4713 llvm::Type *ArgTys[] = {QueueTy, Int32Ty, RangeTy, GenericVoidPtrTy, 4714 GenericVoidPtrTy}; 4715 llvm::FunctionType *FTy = llvm::FunctionType::get( 4716 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false); 4717 4718 auto Info = 4719 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3)); 4720 llvm::Value *Kernel = 4721 Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy); 4722 llvm::Value *Block = 4723 Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy); 4724 4725 AttrBuilder B; 4726 B.addByValAttr(NDRangeL.getAddress(*this).getElementType()); 4727 llvm::AttributeList ByValAttrSet = 4728 llvm::AttributeList::get(CGM.getModule().getContext(), 3U, B); 4729 4730 auto RTCall = 4731 EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name, ByValAttrSet), 4732 {Queue, Flags, Range, Kernel, Block}); 4733 RTCall->setAttributes(ByValAttrSet); 4734 return RValue::get(RTCall); 4735 } 4736 assert(NumArgs >= 5 && "Invalid enqueue_kernel signature"); 4737 4738 // Create a temporary array to hold the sizes of local pointer arguments 4739 // for the block. \p First is the position of the first size argument. 4740 auto CreateArrayForSizeVar = [=](unsigned First) 4741 -> std::tuple<llvm::Value *, llvm::Value *, llvm::Value *> { 4742 llvm::APInt ArraySize(32, NumArgs - First); 4743 QualType SizeArrayTy = getContext().getConstantArrayType( 4744 getContext().getSizeType(), ArraySize, nullptr, ArrayType::Normal, 4745 /*IndexTypeQuals=*/0); 4746 auto Tmp = CreateMemTemp(SizeArrayTy, "block_sizes"); 4747 llvm::Value *TmpPtr = Tmp.getPointer(); 4748 llvm::Value *TmpSize = EmitLifetimeStart( 4749 CGM.getDataLayout().getTypeAllocSize(Tmp.getElementType()), TmpPtr); 4750 llvm::Value *ElemPtr; 4751 // Each of the following arguments specifies the size of the corresponding 4752 // argument passed to the enqueued block. 4753 auto *Zero = llvm::ConstantInt::get(IntTy, 0); 4754 for (unsigned I = First; I < NumArgs; ++I) { 4755 auto *Index = llvm::ConstantInt::get(IntTy, I - First); 4756 auto *GEP = Builder.CreateGEP(Tmp.getElementType(), TmpPtr, 4757 {Zero, Index}); 4758 if (I == First) 4759 ElemPtr = GEP; 4760 auto *V = 4761 Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(I)), SizeTy); 4762 Builder.CreateAlignedStore( 4763 V, GEP, CGM.getDataLayout().getPrefTypeAlign(SizeTy)); 4764 } 4765 return std::tie(ElemPtr, TmpSize, TmpPtr); 4766 }; 4767 4768 // Could have events and/or varargs. 4769 if (E->getArg(3)->getType()->isBlockPointerType()) { 4770 // No events passed, but has variadic arguments. 4771 Name = "__enqueue_kernel_varargs"; 4772 auto Info = 4773 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3)); 4774 llvm::Value *Kernel = 4775 Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy); 4776 auto *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy); 4777 llvm::Value *ElemPtr, *TmpSize, *TmpPtr; 4778 std::tie(ElemPtr, TmpSize, TmpPtr) = CreateArrayForSizeVar(4); 4779 4780 // Create a vector of the arguments, as well as a constant value to 4781 // express to the runtime the number of variadic arguments. 4782 llvm::Value *const Args[] = {Queue, Flags, 4783 Range, Kernel, 4784 Block, ConstantInt::get(IntTy, NumArgs - 4), 4785 ElemPtr}; 4786 llvm::Type *const ArgTys[] = { 4787 QueueTy, IntTy, RangeTy, GenericVoidPtrTy, 4788 GenericVoidPtrTy, IntTy, ElemPtr->getType()}; 4789 4790 llvm::FunctionType *FTy = llvm::FunctionType::get(Int32Ty, ArgTys, false); 4791 auto Call = RValue::get( 4792 EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Args)); 4793 if (TmpSize) 4794 EmitLifetimeEnd(TmpSize, TmpPtr); 4795 return Call; 4796 } 4797 // Any calls now have event arguments passed. 4798 if (NumArgs >= 7) { 4799 llvm::Type *EventTy = ConvertType(getContext().OCLClkEventTy); 4800 llvm::PointerType *EventPtrTy = EventTy->getPointerTo( 4801 CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic)); 4802 4803 llvm::Value *NumEvents = 4804 Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(3)), Int32Ty); 4805 4806 // Since SemaOpenCLBuiltinEnqueueKernel allows fifth and sixth arguments 4807 // to be a null pointer constant (including `0` literal), we can take it 4808 // into account and emit null pointer directly. 4809 llvm::Value *EventWaitList = nullptr; 4810 if (E->getArg(4)->isNullPointerConstant( 4811 getContext(), Expr::NPC_ValueDependentIsNotNull)) { 4812 EventWaitList = llvm::ConstantPointerNull::get(EventPtrTy); 4813 } else { 4814 EventWaitList = E->getArg(4)->getType()->isArrayType() 4815 ? EmitArrayToPointerDecay(E->getArg(4)).getPointer() 4816 : EmitScalarExpr(E->getArg(4)); 4817 // Convert to generic address space. 4818 EventWaitList = Builder.CreatePointerCast(EventWaitList, EventPtrTy); 4819 } 4820 llvm::Value *EventRet = nullptr; 4821 if (E->getArg(5)->isNullPointerConstant( 4822 getContext(), Expr::NPC_ValueDependentIsNotNull)) { 4823 EventRet = llvm::ConstantPointerNull::get(EventPtrTy); 4824 } else { 4825 EventRet = 4826 Builder.CreatePointerCast(EmitScalarExpr(E->getArg(5)), EventPtrTy); 4827 } 4828 4829 auto Info = 4830 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(6)); 4831 llvm::Value *Kernel = 4832 Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy); 4833 llvm::Value *Block = 4834 Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy); 4835 4836 std::vector<llvm::Type *> ArgTys = { 4837 QueueTy, Int32Ty, RangeTy, Int32Ty, 4838 EventPtrTy, EventPtrTy, GenericVoidPtrTy, GenericVoidPtrTy}; 4839 4840 std::vector<llvm::Value *> Args = {Queue, Flags, Range, 4841 NumEvents, EventWaitList, EventRet, 4842 Kernel, Block}; 4843 4844 if (NumArgs == 7) { 4845 // Has events but no variadics. 4846 Name = "__enqueue_kernel_basic_events"; 4847 llvm::FunctionType *FTy = llvm::FunctionType::get( 4848 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false); 4849 return RValue::get( 4850 EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), 4851 llvm::ArrayRef<llvm::Value *>(Args))); 4852 } 4853 // Has event info and variadics 4854 // Pass the number of variadics to the runtime function too. 4855 Args.push_back(ConstantInt::get(Int32Ty, NumArgs - 7)); 4856 ArgTys.push_back(Int32Ty); 4857 Name = "__enqueue_kernel_events_varargs"; 4858 4859 llvm::Value *ElemPtr, *TmpSize, *TmpPtr; 4860 std::tie(ElemPtr, TmpSize, TmpPtr) = CreateArrayForSizeVar(7); 4861 Args.push_back(ElemPtr); 4862 ArgTys.push_back(ElemPtr->getType()); 4863 4864 llvm::FunctionType *FTy = llvm::FunctionType::get( 4865 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false); 4866 auto Call = 4867 RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), 4868 llvm::ArrayRef<llvm::Value *>(Args))); 4869 if (TmpSize) 4870 EmitLifetimeEnd(TmpSize, TmpPtr); 4871 return Call; 4872 } 4873 LLVM_FALLTHROUGH; 4874 } 4875 // OpenCL v2.0 s6.13.17.6 - Kernel query functions need bitcast of block 4876 // parameter. 4877 case Builtin::BIget_kernel_work_group_size: { 4878 llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy( 4879 getContext().getTargetAddressSpace(LangAS::opencl_generic)); 4880 auto Info = 4881 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0)); 4882 Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy); 4883 Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy); 4884 return RValue::get(EmitRuntimeCall( 4885 CGM.CreateRuntimeFunction( 4886 llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy}, 4887 false), 4888 "__get_kernel_work_group_size_impl"), 4889 {Kernel, Arg})); 4890 } 4891 case Builtin::BIget_kernel_preferred_work_group_size_multiple: { 4892 llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy( 4893 getContext().getTargetAddressSpace(LangAS::opencl_generic)); 4894 auto Info = 4895 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0)); 4896 Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy); 4897 Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy); 4898 return RValue::get(EmitRuntimeCall( 4899 CGM.CreateRuntimeFunction( 4900 llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy}, 4901 false), 4902 "__get_kernel_preferred_work_group_size_multiple_impl"), 4903 {Kernel, Arg})); 4904 } 4905 case Builtin::BIget_kernel_max_sub_group_size_for_ndrange: 4906 case Builtin::BIget_kernel_sub_group_count_for_ndrange: { 4907 llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy( 4908 getContext().getTargetAddressSpace(LangAS::opencl_generic)); 4909 LValue NDRangeL = EmitAggExprToLValue(E->getArg(0)); 4910 llvm::Value *NDRange = NDRangeL.getAddress(*this).getPointer(); 4911 auto Info = 4912 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(1)); 4913 Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy); 4914 Value *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy); 4915 const char *Name = 4916 BuiltinID == Builtin::BIget_kernel_max_sub_group_size_for_ndrange 4917 ? "__get_kernel_max_sub_group_size_for_ndrange_impl" 4918 : "__get_kernel_sub_group_count_for_ndrange_impl"; 4919 return RValue::get(EmitRuntimeCall( 4920 CGM.CreateRuntimeFunction( 4921 llvm::FunctionType::get( 4922 IntTy, {NDRange->getType(), GenericVoidPtrTy, GenericVoidPtrTy}, 4923 false), 4924 Name), 4925 {NDRange, Kernel, Block})); 4926 } 4927 4928 case Builtin::BI__builtin_store_half: 4929 case Builtin::BI__builtin_store_halff: { 4930 Value *Val = EmitScalarExpr(E->getArg(0)); 4931 Address Address = EmitPointerWithAlignment(E->getArg(1)); 4932 Value *HalfVal = Builder.CreateFPTrunc(Val, Builder.getHalfTy()); 4933 return RValue::get(Builder.CreateStore(HalfVal, Address)); 4934 } 4935 case Builtin::BI__builtin_load_half: { 4936 Address Address = EmitPointerWithAlignment(E->getArg(0)); 4937 Value *HalfVal = Builder.CreateLoad(Address); 4938 return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getDoubleTy())); 4939 } 4940 case Builtin::BI__builtin_load_halff: { 4941 Address Address = EmitPointerWithAlignment(E->getArg(0)); 4942 Value *HalfVal = Builder.CreateLoad(Address); 4943 return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getFloatTy())); 4944 } 4945 case Builtin::BIprintf: 4946 if (getTarget().getTriple().isNVPTX()) 4947 return EmitNVPTXDevicePrintfCallExpr(E, ReturnValue); 4948 if (getTarget().getTriple().getArch() == Triple::amdgcn && 4949 getLangOpts().HIP) 4950 return EmitAMDGPUDevicePrintfCallExpr(E, ReturnValue); 4951 break; 4952 case Builtin::BI__builtin_canonicalize: 4953 case Builtin::BI__builtin_canonicalizef: 4954 case Builtin::BI__builtin_canonicalizef16: 4955 case Builtin::BI__builtin_canonicalizel: 4956 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::canonicalize)); 4957 4958 case Builtin::BI__builtin_thread_pointer: { 4959 if (!getContext().getTargetInfo().isTLSSupported()) 4960 CGM.ErrorUnsupported(E, "__builtin_thread_pointer"); 4961 // Fall through - it's already mapped to the intrinsic by GCCBuiltin. 4962 break; 4963 } 4964 case Builtin::BI__builtin_os_log_format: 4965 return emitBuiltinOSLogFormat(*E); 4966 4967 case Builtin::BI__xray_customevent: { 4968 if (!ShouldXRayInstrumentFunction()) 4969 return RValue::getIgnored(); 4970 4971 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 4972 XRayInstrKind::Custom)) 4973 return RValue::getIgnored(); 4974 4975 if (const auto *XRayAttr = CurFuncDecl->getAttr<XRayInstrumentAttr>()) 4976 if (XRayAttr->neverXRayInstrument() && !AlwaysEmitXRayCustomEvents()) 4977 return RValue::getIgnored(); 4978 4979 Function *F = CGM.getIntrinsic(Intrinsic::xray_customevent); 4980 auto FTy = F->getFunctionType(); 4981 auto Arg0 = E->getArg(0); 4982 auto Arg0Val = EmitScalarExpr(Arg0); 4983 auto Arg0Ty = Arg0->getType(); 4984 auto PTy0 = FTy->getParamType(0); 4985 if (PTy0 != Arg0Val->getType()) { 4986 if (Arg0Ty->isArrayType()) 4987 Arg0Val = EmitArrayToPointerDecay(Arg0).getPointer(); 4988 else 4989 Arg0Val = Builder.CreatePointerCast(Arg0Val, PTy0); 4990 } 4991 auto Arg1 = EmitScalarExpr(E->getArg(1)); 4992 auto PTy1 = FTy->getParamType(1); 4993 if (PTy1 != Arg1->getType()) 4994 Arg1 = Builder.CreateTruncOrBitCast(Arg1, PTy1); 4995 return RValue::get(Builder.CreateCall(F, {Arg0Val, Arg1})); 4996 } 4997 4998 case Builtin::BI__xray_typedevent: { 4999 // TODO: There should be a way to always emit events even if the current 5000 // function is not instrumented. Losing events in a stream can cripple 5001 // a trace. 5002 if (!ShouldXRayInstrumentFunction()) 5003 return RValue::getIgnored(); 5004 5005 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 5006 XRayInstrKind::Typed)) 5007 return RValue::getIgnored(); 5008 5009 if (const auto *XRayAttr = CurFuncDecl->getAttr<XRayInstrumentAttr>()) 5010 if (XRayAttr->neverXRayInstrument() && !AlwaysEmitXRayTypedEvents()) 5011 return RValue::getIgnored(); 5012 5013 Function *F = CGM.getIntrinsic(Intrinsic::xray_typedevent); 5014 auto FTy = F->getFunctionType(); 5015 auto Arg0 = EmitScalarExpr(E->getArg(0)); 5016 auto PTy0 = FTy->getParamType(0); 5017 if (PTy0 != Arg0->getType()) 5018 Arg0 = Builder.CreateTruncOrBitCast(Arg0, PTy0); 5019 auto Arg1 = E->getArg(1); 5020 auto Arg1Val = EmitScalarExpr(Arg1); 5021 auto Arg1Ty = Arg1->getType(); 5022 auto PTy1 = FTy->getParamType(1); 5023 if (PTy1 != Arg1Val->getType()) { 5024 if (Arg1Ty->isArrayType()) 5025 Arg1Val = EmitArrayToPointerDecay(Arg1).getPointer(); 5026 else 5027 Arg1Val = Builder.CreatePointerCast(Arg1Val, PTy1); 5028 } 5029 auto Arg2 = EmitScalarExpr(E->getArg(2)); 5030 auto PTy2 = FTy->getParamType(2); 5031 if (PTy2 != Arg2->getType()) 5032 Arg2 = Builder.CreateTruncOrBitCast(Arg2, PTy2); 5033 return RValue::get(Builder.CreateCall(F, {Arg0, Arg1Val, Arg2})); 5034 } 5035 5036 case Builtin::BI__builtin_ms_va_start: 5037 case Builtin::BI__builtin_ms_va_end: 5038 return RValue::get( 5039 EmitVAStartEnd(EmitMSVAListRef(E->getArg(0)).getPointer(), 5040 BuiltinID == Builtin::BI__builtin_ms_va_start)); 5041 5042 case Builtin::BI__builtin_ms_va_copy: { 5043 // Lower this manually. We can't reliably determine whether or not any 5044 // given va_copy() is for a Win64 va_list from the calling convention 5045 // alone, because it's legal to do this from a System V ABI function. 5046 // With opaque pointer types, we won't have enough information in LLVM 5047 // IR to determine this from the argument types, either. Best to do it 5048 // now, while we have enough information. 5049 Address DestAddr = EmitMSVAListRef(E->getArg(0)); 5050 Address SrcAddr = EmitMSVAListRef(E->getArg(1)); 5051 5052 llvm::Type *BPP = Int8PtrPtrTy; 5053 5054 DestAddr = Address(Builder.CreateBitCast(DestAddr.getPointer(), BPP, "cp"), 5055 DestAddr.getAlignment()); 5056 SrcAddr = Address(Builder.CreateBitCast(SrcAddr.getPointer(), BPP, "ap"), 5057 SrcAddr.getAlignment()); 5058 5059 Value *ArgPtr = Builder.CreateLoad(SrcAddr, "ap.val"); 5060 return RValue::get(Builder.CreateStore(ArgPtr, DestAddr)); 5061 } 5062 5063 case Builtin::BI__builtin_get_device_side_mangled_name: { 5064 auto Name = CGM.getCUDARuntime().getDeviceSideName( 5065 cast<DeclRefExpr>(E->getArg(0)->IgnoreImpCasts())->getDecl()); 5066 auto Str = CGM.GetAddrOfConstantCString(Name, ""); 5067 llvm::Constant *Zeros[] = {llvm::ConstantInt::get(SizeTy, 0), 5068 llvm::ConstantInt::get(SizeTy, 0)}; 5069 auto *Ptr = llvm::ConstantExpr::getGetElementPtr(Str.getElementType(), 5070 Str.getPointer(), Zeros); 5071 return RValue::get(Ptr); 5072 } 5073 } 5074 5075 // If this is an alias for a lib function (e.g. __builtin_sin), emit 5076 // the call using the normal call path, but using the unmangled 5077 // version of the function name. 5078 if (getContext().BuiltinInfo.isLibFunction(BuiltinID)) 5079 return emitLibraryCall(*this, FD, E, 5080 CGM.getBuiltinLibFunction(FD, BuiltinID)); 5081 5082 // If this is a predefined lib function (e.g. malloc), emit the call 5083 // using exactly the normal call path. 5084 if (getContext().BuiltinInfo.isPredefinedLibFunction(BuiltinID)) 5085 return emitLibraryCall(*this, FD, E, 5086 cast<llvm::Constant>(EmitScalarExpr(E->getCallee()))); 5087 5088 // Check that a call to a target specific builtin has the correct target 5089 // features. 5090 // This is down here to avoid non-target specific builtins, however, if 5091 // generic builtins start to require generic target features then we 5092 // can move this up to the beginning of the function. 5093 checkTargetFeatures(E, FD); 5094 5095 if (unsigned VectorWidth = getContext().BuiltinInfo.getRequiredVectorWidth(BuiltinID)) 5096 LargestVectorWidth = std::max(LargestVectorWidth, VectorWidth); 5097 5098 // See if we have a target specific intrinsic. 5099 const char *Name = getContext().BuiltinInfo.getName(BuiltinID); 5100 Intrinsic::ID IntrinsicID = Intrinsic::not_intrinsic; 5101 StringRef Prefix = 5102 llvm::Triple::getArchTypePrefix(getTarget().getTriple().getArch()); 5103 if (!Prefix.empty()) { 5104 IntrinsicID = Intrinsic::getIntrinsicForGCCBuiltin(Prefix.data(), Name); 5105 // NOTE we don't need to perform a compatibility flag check here since the 5106 // intrinsics are declared in Builtins*.def via LANGBUILTIN which filter the 5107 // MS builtins via ALL_MS_LANGUAGES and are filtered earlier. 5108 if (IntrinsicID == Intrinsic::not_intrinsic) 5109 IntrinsicID = Intrinsic::getIntrinsicForMSBuiltin(Prefix.data(), Name); 5110 } 5111 5112 if (IntrinsicID != Intrinsic::not_intrinsic) { 5113 SmallVector<Value*, 16> Args; 5114 5115 // Find out if any arguments are required to be integer constant 5116 // expressions. 5117 unsigned ICEArguments = 0; 5118 ASTContext::GetBuiltinTypeError Error; 5119 getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments); 5120 assert(Error == ASTContext::GE_None && "Should not codegen an error"); 5121 5122 Function *F = CGM.getIntrinsic(IntrinsicID); 5123 llvm::FunctionType *FTy = F->getFunctionType(); 5124 5125 for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) { 5126 Value *ArgValue; 5127 // If this is a normal argument, just emit it as a scalar. 5128 if ((ICEArguments & (1 << i)) == 0) { 5129 ArgValue = EmitScalarExpr(E->getArg(i)); 5130 } else { 5131 // If this is required to be a constant, constant fold it so that we 5132 // know that the generated intrinsic gets a ConstantInt. 5133 ArgValue = llvm::ConstantInt::get( 5134 getLLVMContext(), 5135 *E->getArg(i)->getIntegerConstantExpr(getContext())); 5136 } 5137 5138 // If the intrinsic arg type is different from the builtin arg type 5139 // we need to do a bit cast. 5140 llvm::Type *PTy = FTy->getParamType(i); 5141 if (PTy != ArgValue->getType()) { 5142 // XXX - vector of pointers? 5143 if (auto *PtrTy = dyn_cast<llvm::PointerType>(PTy)) { 5144 if (PtrTy->getAddressSpace() != 5145 ArgValue->getType()->getPointerAddressSpace()) { 5146 ArgValue = Builder.CreateAddrSpaceCast( 5147 ArgValue, 5148 ArgValue->getType()->getPointerTo(PtrTy->getAddressSpace())); 5149 } 5150 } 5151 5152 assert(PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) && 5153 "Must be able to losslessly bit cast to param"); 5154 ArgValue = Builder.CreateBitCast(ArgValue, PTy); 5155 } 5156 5157 Args.push_back(ArgValue); 5158 } 5159 5160 Value *V = Builder.CreateCall(F, Args); 5161 QualType BuiltinRetType = E->getType(); 5162 5163 llvm::Type *RetTy = VoidTy; 5164 if (!BuiltinRetType->isVoidType()) 5165 RetTy = ConvertType(BuiltinRetType); 5166 5167 if (RetTy != V->getType()) { 5168 // XXX - vector of pointers? 5169 if (auto *PtrTy = dyn_cast<llvm::PointerType>(RetTy)) { 5170 if (PtrTy->getAddressSpace() != V->getType()->getPointerAddressSpace()) { 5171 V = Builder.CreateAddrSpaceCast( 5172 V, V->getType()->getPointerTo(PtrTy->getAddressSpace())); 5173 } 5174 } 5175 5176 assert(V->getType()->canLosslesslyBitCastTo(RetTy) && 5177 "Must be able to losslessly bit cast result type"); 5178 V = Builder.CreateBitCast(V, RetTy); 5179 } 5180 5181 return RValue::get(V); 5182 } 5183 5184 // Some target-specific builtins can have aggregate return values, e.g. 5185 // __builtin_arm_mve_vld2q_u32. So if the result is an aggregate, force 5186 // ReturnValue to be non-null, so that the target-specific emission code can 5187 // always just emit into it. 5188 TypeEvaluationKind EvalKind = getEvaluationKind(E->getType()); 5189 if (EvalKind == TEK_Aggregate && ReturnValue.isNull()) { 5190 Address DestPtr = CreateMemTemp(E->getType(), "agg.tmp"); 5191 ReturnValue = ReturnValueSlot(DestPtr, false); 5192 } 5193 5194 // Now see if we can emit a target-specific builtin. 5195 if (Value *V = EmitTargetBuiltinExpr(BuiltinID, E, ReturnValue)) { 5196 switch (EvalKind) { 5197 case TEK_Scalar: 5198 return RValue::get(V); 5199 case TEK_Aggregate: 5200 return RValue::getAggregate(ReturnValue.getValue(), 5201 ReturnValue.isVolatile()); 5202 case TEK_Complex: 5203 llvm_unreachable("No current target builtin returns complex"); 5204 } 5205 llvm_unreachable("Bad evaluation kind in EmitBuiltinExpr"); 5206 } 5207 5208 ErrorUnsupported(E, "builtin function"); 5209 5210 // Unknown builtin, for now just dump it out and return undef. 5211 return GetUndefRValue(E->getType()); 5212 } 5213 5214 static Value *EmitTargetArchBuiltinExpr(CodeGenFunction *CGF, 5215 unsigned BuiltinID, const CallExpr *E, 5216 ReturnValueSlot ReturnValue, 5217 llvm::Triple::ArchType Arch) { 5218 switch (Arch) { 5219 case llvm::Triple::arm: 5220 case llvm::Triple::armeb: 5221 case llvm::Triple::thumb: 5222 case llvm::Triple::thumbeb: 5223 return CGF->EmitARMBuiltinExpr(BuiltinID, E, ReturnValue, Arch); 5224 case llvm::Triple::aarch64: 5225 case llvm::Triple::aarch64_32: 5226 case llvm::Triple::aarch64_be: 5227 return CGF->EmitAArch64BuiltinExpr(BuiltinID, E, Arch); 5228 case llvm::Triple::bpfeb: 5229 case llvm::Triple::bpfel: 5230 return CGF->EmitBPFBuiltinExpr(BuiltinID, E); 5231 case llvm::Triple::x86: 5232 case llvm::Triple::x86_64: 5233 return CGF->EmitX86BuiltinExpr(BuiltinID, E); 5234 case llvm::Triple::ppc: 5235 case llvm::Triple::ppcle: 5236 case llvm::Triple::ppc64: 5237 case llvm::Triple::ppc64le: 5238 return CGF->EmitPPCBuiltinExpr(BuiltinID, E); 5239 case llvm::Triple::r600: 5240 case llvm::Triple::amdgcn: 5241 return CGF->EmitAMDGPUBuiltinExpr(BuiltinID, E); 5242 case llvm::Triple::systemz: 5243 return CGF->EmitSystemZBuiltinExpr(BuiltinID, E); 5244 case llvm::Triple::nvptx: 5245 case llvm::Triple::nvptx64: 5246 return CGF->EmitNVPTXBuiltinExpr(BuiltinID, E); 5247 case llvm::Triple::wasm32: 5248 case llvm::Triple::wasm64: 5249 return CGF->EmitWebAssemblyBuiltinExpr(BuiltinID, E); 5250 case llvm::Triple::hexagon: 5251 return CGF->EmitHexagonBuiltinExpr(BuiltinID, E); 5252 case llvm::Triple::riscv32: 5253 case llvm::Triple::riscv64: 5254 return CGF->EmitRISCVBuiltinExpr(BuiltinID, E, ReturnValue); 5255 default: 5256 return nullptr; 5257 } 5258 } 5259 5260 Value *CodeGenFunction::EmitTargetBuiltinExpr(unsigned BuiltinID, 5261 const CallExpr *E, 5262 ReturnValueSlot ReturnValue) { 5263 if (getContext().BuiltinInfo.isAuxBuiltinID(BuiltinID)) { 5264 assert(getContext().getAuxTargetInfo() && "Missing aux target info"); 5265 return EmitTargetArchBuiltinExpr( 5266 this, getContext().BuiltinInfo.getAuxBuiltinID(BuiltinID), E, 5267 ReturnValue, getContext().getAuxTargetInfo()->getTriple().getArch()); 5268 } 5269 5270 return EmitTargetArchBuiltinExpr(this, BuiltinID, E, ReturnValue, 5271 getTarget().getTriple().getArch()); 5272 } 5273 5274 static llvm::FixedVectorType *GetNeonType(CodeGenFunction *CGF, 5275 NeonTypeFlags TypeFlags, 5276 bool HasLegalHalfType = true, 5277 bool V1Ty = false, 5278 bool AllowBFloatArgsAndRet = true) { 5279 int IsQuad = TypeFlags.isQuad(); 5280 switch (TypeFlags.getEltType()) { 5281 case NeonTypeFlags::Int8: 5282 case NeonTypeFlags::Poly8: 5283 return llvm::FixedVectorType::get(CGF->Int8Ty, V1Ty ? 1 : (8 << IsQuad)); 5284 case NeonTypeFlags::Int16: 5285 case NeonTypeFlags::Poly16: 5286 return llvm::FixedVectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad)); 5287 case NeonTypeFlags::BFloat16: 5288 if (AllowBFloatArgsAndRet) 5289 return llvm::FixedVectorType::get(CGF->BFloatTy, V1Ty ? 1 : (4 << IsQuad)); 5290 else 5291 return llvm::FixedVectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad)); 5292 case NeonTypeFlags::Float16: 5293 if (HasLegalHalfType) 5294 return llvm::FixedVectorType::get(CGF->HalfTy, V1Ty ? 1 : (4 << IsQuad)); 5295 else 5296 return llvm::FixedVectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad)); 5297 case NeonTypeFlags::Int32: 5298 return llvm::FixedVectorType::get(CGF->Int32Ty, V1Ty ? 1 : (2 << IsQuad)); 5299 case NeonTypeFlags::Int64: 5300 case NeonTypeFlags::Poly64: 5301 return llvm::FixedVectorType::get(CGF->Int64Ty, V1Ty ? 1 : (1 << IsQuad)); 5302 case NeonTypeFlags::Poly128: 5303 // FIXME: i128 and f128 doesn't get fully support in Clang and llvm. 5304 // There is a lot of i128 and f128 API missing. 5305 // so we use v16i8 to represent poly128 and get pattern matched. 5306 return llvm::FixedVectorType::get(CGF->Int8Ty, 16); 5307 case NeonTypeFlags::Float32: 5308 return llvm::FixedVectorType::get(CGF->FloatTy, V1Ty ? 1 : (2 << IsQuad)); 5309 case NeonTypeFlags::Float64: 5310 return llvm::FixedVectorType::get(CGF->DoubleTy, V1Ty ? 1 : (1 << IsQuad)); 5311 } 5312 llvm_unreachable("Unknown vector element type!"); 5313 } 5314 5315 static llvm::VectorType *GetFloatNeonType(CodeGenFunction *CGF, 5316 NeonTypeFlags IntTypeFlags) { 5317 int IsQuad = IntTypeFlags.isQuad(); 5318 switch (IntTypeFlags.getEltType()) { 5319 case NeonTypeFlags::Int16: 5320 return llvm::FixedVectorType::get(CGF->HalfTy, (4 << IsQuad)); 5321 case NeonTypeFlags::Int32: 5322 return llvm::FixedVectorType::get(CGF->FloatTy, (2 << IsQuad)); 5323 case NeonTypeFlags::Int64: 5324 return llvm::FixedVectorType::get(CGF->DoubleTy, (1 << IsQuad)); 5325 default: 5326 llvm_unreachable("Type can't be converted to floating-point!"); 5327 } 5328 } 5329 5330 Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C, 5331 const ElementCount &Count) { 5332 Value *SV = llvm::ConstantVector::getSplat(Count, C); 5333 return Builder.CreateShuffleVector(V, V, SV, "lane"); 5334 } 5335 5336 Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C) { 5337 ElementCount EC = cast<llvm::VectorType>(V->getType())->getElementCount(); 5338 return EmitNeonSplat(V, C, EC); 5339 } 5340 5341 Value *CodeGenFunction::EmitNeonCall(Function *F, SmallVectorImpl<Value*> &Ops, 5342 const char *name, 5343 unsigned shift, bool rightshift) { 5344 unsigned j = 0; 5345 for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end(); 5346 ai != ae; ++ai, ++j) { 5347 if (F->isConstrainedFPIntrinsic()) 5348 if (ai->getType()->isMetadataTy()) 5349 continue; 5350 if (shift > 0 && shift == j) 5351 Ops[j] = EmitNeonShiftVector(Ops[j], ai->getType(), rightshift); 5352 else 5353 Ops[j] = Builder.CreateBitCast(Ops[j], ai->getType(), name); 5354 } 5355 5356 if (F->isConstrainedFPIntrinsic()) 5357 return Builder.CreateConstrainedFPCall(F, Ops, name); 5358 else 5359 return Builder.CreateCall(F, Ops, name); 5360 } 5361 5362 Value *CodeGenFunction::EmitNeonShiftVector(Value *V, llvm::Type *Ty, 5363 bool neg) { 5364 int SV = cast<ConstantInt>(V)->getSExtValue(); 5365 return ConstantInt::get(Ty, neg ? -SV : SV); 5366 } 5367 5368 // Right-shift a vector by a constant. 5369 Value *CodeGenFunction::EmitNeonRShiftImm(Value *Vec, Value *Shift, 5370 llvm::Type *Ty, bool usgn, 5371 const char *name) { 5372 llvm::VectorType *VTy = cast<llvm::VectorType>(Ty); 5373 5374 int ShiftAmt = cast<ConstantInt>(Shift)->getSExtValue(); 5375 int EltSize = VTy->getScalarSizeInBits(); 5376 5377 Vec = Builder.CreateBitCast(Vec, Ty); 5378 5379 // lshr/ashr are undefined when the shift amount is equal to the vector 5380 // element size. 5381 if (ShiftAmt == EltSize) { 5382 if (usgn) { 5383 // Right-shifting an unsigned value by its size yields 0. 5384 return llvm::ConstantAggregateZero::get(VTy); 5385 } else { 5386 // Right-shifting a signed value by its size is equivalent 5387 // to a shift of size-1. 5388 --ShiftAmt; 5389 Shift = ConstantInt::get(VTy->getElementType(), ShiftAmt); 5390 } 5391 } 5392 5393 Shift = EmitNeonShiftVector(Shift, Ty, false); 5394 if (usgn) 5395 return Builder.CreateLShr(Vec, Shift, name); 5396 else 5397 return Builder.CreateAShr(Vec, Shift, name); 5398 } 5399 5400 enum { 5401 AddRetType = (1 << 0), 5402 Add1ArgType = (1 << 1), 5403 Add2ArgTypes = (1 << 2), 5404 5405 VectorizeRetType = (1 << 3), 5406 VectorizeArgTypes = (1 << 4), 5407 5408 InventFloatType = (1 << 5), 5409 UnsignedAlts = (1 << 6), 5410 5411 Use64BitVectors = (1 << 7), 5412 Use128BitVectors = (1 << 8), 5413 5414 Vectorize1ArgType = Add1ArgType | VectorizeArgTypes, 5415 VectorRet = AddRetType | VectorizeRetType, 5416 VectorRetGetArgs01 = 5417 AddRetType | Add2ArgTypes | VectorizeRetType | VectorizeArgTypes, 5418 FpCmpzModifiers = 5419 AddRetType | VectorizeRetType | Add1ArgType | InventFloatType 5420 }; 5421 5422 namespace { 5423 struct ARMVectorIntrinsicInfo { 5424 const char *NameHint; 5425 unsigned BuiltinID; 5426 unsigned LLVMIntrinsic; 5427 unsigned AltLLVMIntrinsic; 5428 uint64_t TypeModifier; 5429 5430 bool operator<(unsigned RHSBuiltinID) const { 5431 return BuiltinID < RHSBuiltinID; 5432 } 5433 bool operator<(const ARMVectorIntrinsicInfo &TE) const { 5434 return BuiltinID < TE.BuiltinID; 5435 } 5436 }; 5437 } // end anonymous namespace 5438 5439 #define NEONMAP0(NameBase) \ 5440 { #NameBase, NEON::BI__builtin_neon_ ## NameBase, 0, 0, 0 } 5441 5442 #define NEONMAP1(NameBase, LLVMIntrinsic, TypeModifier) \ 5443 { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \ 5444 Intrinsic::LLVMIntrinsic, 0, TypeModifier } 5445 5446 #define NEONMAP2(NameBase, LLVMIntrinsic, AltLLVMIntrinsic, TypeModifier) \ 5447 { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \ 5448 Intrinsic::LLVMIntrinsic, Intrinsic::AltLLVMIntrinsic, \ 5449 TypeModifier } 5450 5451 static const ARMVectorIntrinsicInfo ARMSIMDIntrinsicMap [] = { 5452 NEONMAP1(__a32_vcvt_bf16_v, arm_neon_vcvtfp2bf, 0), 5453 NEONMAP0(splat_lane_v), 5454 NEONMAP0(splat_laneq_v), 5455 NEONMAP0(splatq_lane_v), 5456 NEONMAP0(splatq_laneq_v), 5457 NEONMAP2(vabd_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts), 5458 NEONMAP2(vabdq_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts), 5459 NEONMAP1(vabs_v, arm_neon_vabs, 0), 5460 NEONMAP1(vabsq_v, arm_neon_vabs, 0), 5461 NEONMAP0(vadd_v), 5462 NEONMAP0(vaddhn_v), 5463 NEONMAP0(vaddq_v), 5464 NEONMAP1(vaesdq_v, arm_neon_aesd, 0), 5465 NEONMAP1(vaeseq_v, arm_neon_aese, 0), 5466 NEONMAP1(vaesimcq_v, arm_neon_aesimc, 0), 5467 NEONMAP1(vaesmcq_v, arm_neon_aesmc, 0), 5468 NEONMAP1(vbfdot_v, arm_neon_bfdot, 0), 5469 NEONMAP1(vbfdotq_v, arm_neon_bfdot, 0), 5470 NEONMAP1(vbfmlalbq_v, arm_neon_bfmlalb, 0), 5471 NEONMAP1(vbfmlaltq_v, arm_neon_bfmlalt, 0), 5472 NEONMAP1(vbfmmlaq_v, arm_neon_bfmmla, 0), 5473 NEONMAP1(vbsl_v, arm_neon_vbsl, AddRetType), 5474 NEONMAP1(vbslq_v, arm_neon_vbsl, AddRetType), 5475 NEONMAP1(vcadd_rot270_v, arm_neon_vcadd_rot270, Add1ArgType), 5476 NEONMAP1(vcadd_rot90_v, arm_neon_vcadd_rot90, Add1ArgType), 5477 NEONMAP1(vcaddq_rot270_v, arm_neon_vcadd_rot270, Add1ArgType), 5478 NEONMAP1(vcaddq_rot90_v, arm_neon_vcadd_rot90, Add1ArgType), 5479 NEONMAP1(vcage_v, arm_neon_vacge, 0), 5480 NEONMAP1(vcageq_v, arm_neon_vacge, 0), 5481 NEONMAP1(vcagt_v, arm_neon_vacgt, 0), 5482 NEONMAP1(vcagtq_v, arm_neon_vacgt, 0), 5483 NEONMAP1(vcale_v, arm_neon_vacge, 0), 5484 NEONMAP1(vcaleq_v, arm_neon_vacge, 0), 5485 NEONMAP1(vcalt_v, arm_neon_vacgt, 0), 5486 NEONMAP1(vcaltq_v, arm_neon_vacgt, 0), 5487 NEONMAP0(vceqz_v), 5488 NEONMAP0(vceqzq_v), 5489 NEONMAP0(vcgez_v), 5490 NEONMAP0(vcgezq_v), 5491 NEONMAP0(vcgtz_v), 5492 NEONMAP0(vcgtzq_v), 5493 NEONMAP0(vclez_v), 5494 NEONMAP0(vclezq_v), 5495 NEONMAP1(vcls_v, arm_neon_vcls, Add1ArgType), 5496 NEONMAP1(vclsq_v, arm_neon_vcls, Add1ArgType), 5497 NEONMAP0(vcltz_v), 5498 NEONMAP0(vcltzq_v), 5499 NEONMAP1(vclz_v, ctlz, Add1ArgType), 5500 NEONMAP1(vclzq_v, ctlz, Add1ArgType), 5501 NEONMAP1(vcnt_v, ctpop, Add1ArgType), 5502 NEONMAP1(vcntq_v, ctpop, Add1ArgType), 5503 NEONMAP1(vcvt_f16_f32, arm_neon_vcvtfp2hf, 0), 5504 NEONMAP0(vcvt_f16_v), 5505 NEONMAP1(vcvt_f32_f16, arm_neon_vcvthf2fp, 0), 5506 NEONMAP0(vcvt_f32_v), 5507 NEONMAP2(vcvt_n_f16_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0), 5508 NEONMAP2(vcvt_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0), 5509 NEONMAP1(vcvt_n_s16_v, arm_neon_vcvtfp2fxs, 0), 5510 NEONMAP1(vcvt_n_s32_v, arm_neon_vcvtfp2fxs, 0), 5511 NEONMAP1(vcvt_n_s64_v, arm_neon_vcvtfp2fxs, 0), 5512 NEONMAP1(vcvt_n_u16_v, arm_neon_vcvtfp2fxu, 0), 5513 NEONMAP1(vcvt_n_u32_v, arm_neon_vcvtfp2fxu, 0), 5514 NEONMAP1(vcvt_n_u64_v, arm_neon_vcvtfp2fxu, 0), 5515 NEONMAP0(vcvt_s16_v), 5516 NEONMAP0(vcvt_s32_v), 5517 NEONMAP0(vcvt_s64_v), 5518 NEONMAP0(vcvt_u16_v), 5519 NEONMAP0(vcvt_u32_v), 5520 NEONMAP0(vcvt_u64_v), 5521 NEONMAP1(vcvta_s16_v, arm_neon_vcvtas, 0), 5522 NEONMAP1(vcvta_s32_v, arm_neon_vcvtas, 0), 5523 NEONMAP1(vcvta_s64_v, arm_neon_vcvtas, 0), 5524 NEONMAP1(vcvta_u16_v, arm_neon_vcvtau, 0), 5525 NEONMAP1(vcvta_u32_v, arm_neon_vcvtau, 0), 5526 NEONMAP1(vcvta_u64_v, arm_neon_vcvtau, 0), 5527 NEONMAP1(vcvtaq_s16_v, arm_neon_vcvtas, 0), 5528 NEONMAP1(vcvtaq_s32_v, arm_neon_vcvtas, 0), 5529 NEONMAP1(vcvtaq_s64_v, arm_neon_vcvtas, 0), 5530 NEONMAP1(vcvtaq_u16_v, arm_neon_vcvtau, 0), 5531 NEONMAP1(vcvtaq_u32_v, arm_neon_vcvtau, 0), 5532 NEONMAP1(vcvtaq_u64_v, arm_neon_vcvtau, 0), 5533 NEONMAP1(vcvth_bf16_f32, arm_neon_vcvtbfp2bf, 0), 5534 NEONMAP1(vcvtm_s16_v, arm_neon_vcvtms, 0), 5535 NEONMAP1(vcvtm_s32_v, arm_neon_vcvtms, 0), 5536 NEONMAP1(vcvtm_s64_v, arm_neon_vcvtms, 0), 5537 NEONMAP1(vcvtm_u16_v, arm_neon_vcvtmu, 0), 5538 NEONMAP1(vcvtm_u32_v, arm_neon_vcvtmu, 0), 5539 NEONMAP1(vcvtm_u64_v, arm_neon_vcvtmu, 0), 5540 NEONMAP1(vcvtmq_s16_v, arm_neon_vcvtms, 0), 5541 NEONMAP1(vcvtmq_s32_v, arm_neon_vcvtms, 0), 5542 NEONMAP1(vcvtmq_s64_v, arm_neon_vcvtms, 0), 5543 NEONMAP1(vcvtmq_u16_v, arm_neon_vcvtmu, 0), 5544 NEONMAP1(vcvtmq_u32_v, arm_neon_vcvtmu, 0), 5545 NEONMAP1(vcvtmq_u64_v, arm_neon_vcvtmu, 0), 5546 NEONMAP1(vcvtn_s16_v, arm_neon_vcvtns, 0), 5547 NEONMAP1(vcvtn_s32_v, arm_neon_vcvtns, 0), 5548 NEONMAP1(vcvtn_s64_v, arm_neon_vcvtns, 0), 5549 NEONMAP1(vcvtn_u16_v, arm_neon_vcvtnu, 0), 5550 NEONMAP1(vcvtn_u32_v, arm_neon_vcvtnu, 0), 5551 NEONMAP1(vcvtn_u64_v, arm_neon_vcvtnu, 0), 5552 NEONMAP1(vcvtnq_s16_v, arm_neon_vcvtns, 0), 5553 NEONMAP1(vcvtnq_s32_v, arm_neon_vcvtns, 0), 5554 NEONMAP1(vcvtnq_s64_v, arm_neon_vcvtns, 0), 5555 NEONMAP1(vcvtnq_u16_v, arm_neon_vcvtnu, 0), 5556 NEONMAP1(vcvtnq_u32_v, arm_neon_vcvtnu, 0), 5557 NEONMAP1(vcvtnq_u64_v, arm_neon_vcvtnu, 0), 5558 NEONMAP1(vcvtp_s16_v, arm_neon_vcvtps, 0), 5559 NEONMAP1(vcvtp_s32_v, arm_neon_vcvtps, 0), 5560 NEONMAP1(vcvtp_s64_v, arm_neon_vcvtps, 0), 5561 NEONMAP1(vcvtp_u16_v, arm_neon_vcvtpu, 0), 5562 NEONMAP1(vcvtp_u32_v, arm_neon_vcvtpu, 0), 5563 NEONMAP1(vcvtp_u64_v, arm_neon_vcvtpu, 0), 5564 NEONMAP1(vcvtpq_s16_v, arm_neon_vcvtps, 0), 5565 NEONMAP1(vcvtpq_s32_v, arm_neon_vcvtps, 0), 5566 NEONMAP1(vcvtpq_s64_v, arm_neon_vcvtps, 0), 5567 NEONMAP1(vcvtpq_u16_v, arm_neon_vcvtpu, 0), 5568 NEONMAP1(vcvtpq_u32_v, arm_neon_vcvtpu, 0), 5569 NEONMAP1(vcvtpq_u64_v, arm_neon_vcvtpu, 0), 5570 NEONMAP0(vcvtq_f16_v), 5571 NEONMAP0(vcvtq_f32_v), 5572 NEONMAP2(vcvtq_n_f16_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0), 5573 NEONMAP2(vcvtq_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0), 5574 NEONMAP1(vcvtq_n_s16_v, arm_neon_vcvtfp2fxs, 0), 5575 NEONMAP1(vcvtq_n_s32_v, arm_neon_vcvtfp2fxs, 0), 5576 NEONMAP1(vcvtq_n_s64_v, arm_neon_vcvtfp2fxs, 0), 5577 NEONMAP1(vcvtq_n_u16_v, arm_neon_vcvtfp2fxu, 0), 5578 NEONMAP1(vcvtq_n_u32_v, arm_neon_vcvtfp2fxu, 0), 5579 NEONMAP1(vcvtq_n_u64_v, arm_neon_vcvtfp2fxu, 0), 5580 NEONMAP0(vcvtq_s16_v), 5581 NEONMAP0(vcvtq_s32_v), 5582 NEONMAP0(vcvtq_s64_v), 5583 NEONMAP0(vcvtq_u16_v), 5584 NEONMAP0(vcvtq_u32_v), 5585 NEONMAP0(vcvtq_u64_v), 5586 NEONMAP2(vdot_v, arm_neon_udot, arm_neon_sdot, 0), 5587 NEONMAP2(vdotq_v, arm_neon_udot, arm_neon_sdot, 0), 5588 NEONMAP0(vext_v), 5589 NEONMAP0(vextq_v), 5590 NEONMAP0(vfma_v), 5591 NEONMAP0(vfmaq_v), 5592 NEONMAP2(vhadd_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts), 5593 NEONMAP2(vhaddq_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts), 5594 NEONMAP2(vhsub_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts), 5595 NEONMAP2(vhsubq_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts), 5596 NEONMAP0(vld1_dup_v), 5597 NEONMAP1(vld1_v, arm_neon_vld1, 0), 5598 NEONMAP1(vld1_x2_v, arm_neon_vld1x2, 0), 5599 NEONMAP1(vld1_x3_v, arm_neon_vld1x3, 0), 5600 NEONMAP1(vld1_x4_v, arm_neon_vld1x4, 0), 5601 NEONMAP0(vld1q_dup_v), 5602 NEONMAP1(vld1q_v, arm_neon_vld1, 0), 5603 NEONMAP1(vld1q_x2_v, arm_neon_vld1x2, 0), 5604 NEONMAP1(vld1q_x3_v, arm_neon_vld1x3, 0), 5605 NEONMAP1(vld1q_x4_v, arm_neon_vld1x4, 0), 5606 NEONMAP1(vld2_dup_v, arm_neon_vld2dup, 0), 5607 NEONMAP1(vld2_lane_v, arm_neon_vld2lane, 0), 5608 NEONMAP1(vld2_v, arm_neon_vld2, 0), 5609 NEONMAP1(vld2q_dup_v, arm_neon_vld2dup, 0), 5610 NEONMAP1(vld2q_lane_v, arm_neon_vld2lane, 0), 5611 NEONMAP1(vld2q_v, arm_neon_vld2, 0), 5612 NEONMAP1(vld3_dup_v, arm_neon_vld3dup, 0), 5613 NEONMAP1(vld3_lane_v, arm_neon_vld3lane, 0), 5614 NEONMAP1(vld3_v, arm_neon_vld3, 0), 5615 NEONMAP1(vld3q_dup_v, arm_neon_vld3dup, 0), 5616 NEONMAP1(vld3q_lane_v, arm_neon_vld3lane, 0), 5617 NEONMAP1(vld3q_v, arm_neon_vld3, 0), 5618 NEONMAP1(vld4_dup_v, arm_neon_vld4dup, 0), 5619 NEONMAP1(vld4_lane_v, arm_neon_vld4lane, 0), 5620 NEONMAP1(vld4_v, arm_neon_vld4, 0), 5621 NEONMAP1(vld4q_dup_v, arm_neon_vld4dup, 0), 5622 NEONMAP1(vld4q_lane_v, arm_neon_vld4lane, 0), 5623 NEONMAP1(vld4q_v, arm_neon_vld4, 0), 5624 NEONMAP2(vmax_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts), 5625 NEONMAP1(vmaxnm_v, arm_neon_vmaxnm, Add1ArgType), 5626 NEONMAP1(vmaxnmq_v, arm_neon_vmaxnm, Add1ArgType), 5627 NEONMAP2(vmaxq_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts), 5628 NEONMAP2(vmin_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts), 5629 NEONMAP1(vminnm_v, arm_neon_vminnm, Add1ArgType), 5630 NEONMAP1(vminnmq_v, arm_neon_vminnm, Add1ArgType), 5631 NEONMAP2(vminq_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts), 5632 NEONMAP2(vmmlaq_v, arm_neon_ummla, arm_neon_smmla, 0), 5633 NEONMAP0(vmovl_v), 5634 NEONMAP0(vmovn_v), 5635 NEONMAP1(vmul_v, arm_neon_vmulp, Add1ArgType), 5636 NEONMAP0(vmull_v), 5637 NEONMAP1(vmulq_v, arm_neon_vmulp, Add1ArgType), 5638 NEONMAP2(vpadal_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts), 5639 NEONMAP2(vpadalq_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts), 5640 NEONMAP1(vpadd_v, arm_neon_vpadd, Add1ArgType), 5641 NEONMAP2(vpaddl_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts), 5642 NEONMAP2(vpaddlq_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts), 5643 NEONMAP1(vpaddq_v, arm_neon_vpadd, Add1ArgType), 5644 NEONMAP2(vpmax_v, arm_neon_vpmaxu, arm_neon_vpmaxs, Add1ArgType | UnsignedAlts), 5645 NEONMAP2(vpmin_v, arm_neon_vpminu, arm_neon_vpmins, Add1ArgType | UnsignedAlts), 5646 NEONMAP1(vqabs_v, arm_neon_vqabs, Add1ArgType), 5647 NEONMAP1(vqabsq_v, arm_neon_vqabs, Add1ArgType), 5648 NEONMAP2(vqadd_v, uadd_sat, sadd_sat, Add1ArgType | UnsignedAlts), 5649 NEONMAP2(vqaddq_v, uadd_sat, sadd_sat, Add1ArgType | UnsignedAlts), 5650 NEONMAP2(vqdmlal_v, arm_neon_vqdmull, sadd_sat, 0), 5651 NEONMAP2(vqdmlsl_v, arm_neon_vqdmull, ssub_sat, 0), 5652 NEONMAP1(vqdmulh_v, arm_neon_vqdmulh, Add1ArgType), 5653 NEONMAP1(vqdmulhq_v, arm_neon_vqdmulh, Add1ArgType), 5654 NEONMAP1(vqdmull_v, arm_neon_vqdmull, Add1ArgType), 5655 NEONMAP2(vqmovn_v, arm_neon_vqmovnu, arm_neon_vqmovns, Add1ArgType | UnsignedAlts), 5656 NEONMAP1(vqmovun_v, arm_neon_vqmovnsu, Add1ArgType), 5657 NEONMAP1(vqneg_v, arm_neon_vqneg, Add1ArgType), 5658 NEONMAP1(vqnegq_v, arm_neon_vqneg, Add1ArgType), 5659 NEONMAP1(vqrdmulh_v, arm_neon_vqrdmulh, Add1ArgType), 5660 NEONMAP1(vqrdmulhq_v, arm_neon_vqrdmulh, Add1ArgType), 5661 NEONMAP2(vqrshl_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts), 5662 NEONMAP2(vqrshlq_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts), 5663 NEONMAP2(vqshl_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts), 5664 NEONMAP2(vqshl_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts), 5665 NEONMAP2(vqshlq_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts), 5666 NEONMAP2(vqshlq_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts), 5667 NEONMAP1(vqshlu_n_v, arm_neon_vqshiftsu, 0), 5668 NEONMAP1(vqshluq_n_v, arm_neon_vqshiftsu, 0), 5669 NEONMAP2(vqsub_v, usub_sat, ssub_sat, Add1ArgType | UnsignedAlts), 5670 NEONMAP2(vqsubq_v, usub_sat, ssub_sat, Add1ArgType | UnsignedAlts), 5671 NEONMAP1(vraddhn_v, arm_neon_vraddhn, Add1ArgType), 5672 NEONMAP2(vrecpe_v, arm_neon_vrecpe, arm_neon_vrecpe, 0), 5673 NEONMAP2(vrecpeq_v, arm_neon_vrecpe, arm_neon_vrecpe, 0), 5674 NEONMAP1(vrecps_v, arm_neon_vrecps, Add1ArgType), 5675 NEONMAP1(vrecpsq_v, arm_neon_vrecps, Add1ArgType), 5676 NEONMAP2(vrhadd_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts), 5677 NEONMAP2(vrhaddq_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts), 5678 NEONMAP1(vrnd_v, arm_neon_vrintz, Add1ArgType), 5679 NEONMAP1(vrnda_v, arm_neon_vrinta, Add1ArgType), 5680 NEONMAP1(vrndaq_v, arm_neon_vrinta, Add1ArgType), 5681 NEONMAP0(vrndi_v), 5682 NEONMAP0(vrndiq_v), 5683 NEONMAP1(vrndm_v, arm_neon_vrintm, Add1ArgType), 5684 NEONMAP1(vrndmq_v, arm_neon_vrintm, Add1ArgType), 5685 NEONMAP1(vrndn_v, arm_neon_vrintn, Add1ArgType), 5686 NEONMAP1(vrndnq_v, arm_neon_vrintn, Add1ArgType), 5687 NEONMAP1(vrndp_v, arm_neon_vrintp, Add1ArgType), 5688 NEONMAP1(vrndpq_v, arm_neon_vrintp, Add1ArgType), 5689 NEONMAP1(vrndq_v, arm_neon_vrintz, Add1ArgType), 5690 NEONMAP1(vrndx_v, arm_neon_vrintx, Add1ArgType), 5691 NEONMAP1(vrndxq_v, arm_neon_vrintx, Add1ArgType), 5692 NEONMAP2(vrshl_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts), 5693 NEONMAP2(vrshlq_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts), 5694 NEONMAP2(vrshr_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts), 5695 NEONMAP2(vrshrq_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts), 5696 NEONMAP2(vrsqrte_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0), 5697 NEONMAP2(vrsqrteq_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0), 5698 NEONMAP1(vrsqrts_v, arm_neon_vrsqrts, Add1ArgType), 5699 NEONMAP1(vrsqrtsq_v, arm_neon_vrsqrts, Add1ArgType), 5700 NEONMAP1(vrsubhn_v, arm_neon_vrsubhn, Add1ArgType), 5701 NEONMAP1(vsha1su0q_v, arm_neon_sha1su0, 0), 5702 NEONMAP1(vsha1su1q_v, arm_neon_sha1su1, 0), 5703 NEONMAP1(vsha256h2q_v, arm_neon_sha256h2, 0), 5704 NEONMAP1(vsha256hq_v, arm_neon_sha256h, 0), 5705 NEONMAP1(vsha256su0q_v, arm_neon_sha256su0, 0), 5706 NEONMAP1(vsha256su1q_v, arm_neon_sha256su1, 0), 5707 NEONMAP0(vshl_n_v), 5708 NEONMAP2(vshl_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts), 5709 NEONMAP0(vshll_n_v), 5710 NEONMAP0(vshlq_n_v), 5711 NEONMAP2(vshlq_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts), 5712 NEONMAP0(vshr_n_v), 5713 NEONMAP0(vshrn_n_v), 5714 NEONMAP0(vshrq_n_v), 5715 NEONMAP1(vst1_v, arm_neon_vst1, 0), 5716 NEONMAP1(vst1_x2_v, arm_neon_vst1x2, 0), 5717 NEONMAP1(vst1_x3_v, arm_neon_vst1x3, 0), 5718 NEONMAP1(vst1_x4_v, arm_neon_vst1x4, 0), 5719 NEONMAP1(vst1q_v, arm_neon_vst1, 0), 5720 NEONMAP1(vst1q_x2_v, arm_neon_vst1x2, 0), 5721 NEONMAP1(vst1q_x3_v, arm_neon_vst1x3, 0), 5722 NEONMAP1(vst1q_x4_v, arm_neon_vst1x4, 0), 5723 NEONMAP1(vst2_lane_v, arm_neon_vst2lane, 0), 5724 NEONMAP1(vst2_v, arm_neon_vst2, 0), 5725 NEONMAP1(vst2q_lane_v, arm_neon_vst2lane, 0), 5726 NEONMAP1(vst2q_v, arm_neon_vst2, 0), 5727 NEONMAP1(vst3_lane_v, arm_neon_vst3lane, 0), 5728 NEONMAP1(vst3_v, arm_neon_vst3, 0), 5729 NEONMAP1(vst3q_lane_v, arm_neon_vst3lane, 0), 5730 NEONMAP1(vst3q_v, arm_neon_vst3, 0), 5731 NEONMAP1(vst4_lane_v, arm_neon_vst4lane, 0), 5732 NEONMAP1(vst4_v, arm_neon_vst4, 0), 5733 NEONMAP1(vst4q_lane_v, arm_neon_vst4lane, 0), 5734 NEONMAP1(vst4q_v, arm_neon_vst4, 0), 5735 NEONMAP0(vsubhn_v), 5736 NEONMAP0(vtrn_v), 5737 NEONMAP0(vtrnq_v), 5738 NEONMAP0(vtst_v), 5739 NEONMAP0(vtstq_v), 5740 NEONMAP1(vusdot_v, arm_neon_usdot, 0), 5741 NEONMAP1(vusdotq_v, arm_neon_usdot, 0), 5742 NEONMAP1(vusmmlaq_v, arm_neon_usmmla, 0), 5743 NEONMAP0(vuzp_v), 5744 NEONMAP0(vuzpq_v), 5745 NEONMAP0(vzip_v), 5746 NEONMAP0(vzipq_v) 5747 }; 5748 5749 static const ARMVectorIntrinsicInfo AArch64SIMDIntrinsicMap[] = { 5750 NEONMAP1(__a64_vcvtq_low_bf16_v, aarch64_neon_bfcvtn, 0), 5751 NEONMAP0(splat_lane_v), 5752 NEONMAP0(splat_laneq_v), 5753 NEONMAP0(splatq_lane_v), 5754 NEONMAP0(splatq_laneq_v), 5755 NEONMAP1(vabs_v, aarch64_neon_abs, 0), 5756 NEONMAP1(vabsq_v, aarch64_neon_abs, 0), 5757 NEONMAP0(vadd_v), 5758 NEONMAP0(vaddhn_v), 5759 NEONMAP0(vaddq_p128), 5760 NEONMAP0(vaddq_v), 5761 NEONMAP1(vaesdq_v, aarch64_crypto_aesd, 0), 5762 NEONMAP1(vaeseq_v, aarch64_crypto_aese, 0), 5763 NEONMAP1(vaesimcq_v, aarch64_crypto_aesimc, 0), 5764 NEONMAP1(vaesmcq_v, aarch64_crypto_aesmc, 0), 5765 NEONMAP2(vbcaxq_v, aarch64_crypto_bcaxu, aarch64_crypto_bcaxs, Add1ArgType | UnsignedAlts), 5766 NEONMAP1(vbfdot_v, aarch64_neon_bfdot, 0), 5767 NEONMAP1(vbfdotq_v, aarch64_neon_bfdot, 0), 5768 NEONMAP1(vbfmlalbq_v, aarch64_neon_bfmlalb, 0), 5769 NEONMAP1(vbfmlaltq_v, aarch64_neon_bfmlalt, 0), 5770 NEONMAP1(vbfmmlaq_v, aarch64_neon_bfmmla, 0), 5771 NEONMAP1(vcadd_rot270_v, aarch64_neon_vcadd_rot270, Add1ArgType), 5772 NEONMAP1(vcadd_rot90_v, aarch64_neon_vcadd_rot90, Add1ArgType), 5773 NEONMAP1(vcaddq_rot270_v, aarch64_neon_vcadd_rot270, Add1ArgType), 5774 NEONMAP1(vcaddq_rot90_v, aarch64_neon_vcadd_rot90, Add1ArgType), 5775 NEONMAP1(vcage_v, aarch64_neon_facge, 0), 5776 NEONMAP1(vcageq_v, aarch64_neon_facge, 0), 5777 NEONMAP1(vcagt_v, aarch64_neon_facgt, 0), 5778 NEONMAP1(vcagtq_v, aarch64_neon_facgt, 0), 5779 NEONMAP1(vcale_v, aarch64_neon_facge, 0), 5780 NEONMAP1(vcaleq_v, aarch64_neon_facge, 0), 5781 NEONMAP1(vcalt_v, aarch64_neon_facgt, 0), 5782 NEONMAP1(vcaltq_v, aarch64_neon_facgt, 0), 5783 NEONMAP0(vceqz_v), 5784 NEONMAP0(vceqzq_v), 5785 NEONMAP0(vcgez_v), 5786 NEONMAP0(vcgezq_v), 5787 NEONMAP0(vcgtz_v), 5788 NEONMAP0(vcgtzq_v), 5789 NEONMAP0(vclez_v), 5790 NEONMAP0(vclezq_v), 5791 NEONMAP1(vcls_v, aarch64_neon_cls, Add1ArgType), 5792 NEONMAP1(vclsq_v, aarch64_neon_cls, Add1ArgType), 5793 NEONMAP0(vcltz_v), 5794 NEONMAP0(vcltzq_v), 5795 NEONMAP1(vclz_v, ctlz, Add1ArgType), 5796 NEONMAP1(vclzq_v, ctlz, Add1ArgType), 5797 NEONMAP1(vcmla_rot180_v, aarch64_neon_vcmla_rot180, Add1ArgType), 5798 NEONMAP1(vcmla_rot270_v, aarch64_neon_vcmla_rot270, Add1ArgType), 5799 NEONMAP1(vcmla_rot90_v, aarch64_neon_vcmla_rot90, Add1ArgType), 5800 NEONMAP1(vcmla_v, aarch64_neon_vcmla_rot0, Add1ArgType), 5801 NEONMAP1(vcmlaq_rot180_v, aarch64_neon_vcmla_rot180, Add1ArgType), 5802 NEONMAP1(vcmlaq_rot270_v, aarch64_neon_vcmla_rot270, Add1ArgType), 5803 NEONMAP1(vcmlaq_rot90_v, aarch64_neon_vcmla_rot90, Add1ArgType), 5804 NEONMAP1(vcmlaq_v, aarch64_neon_vcmla_rot0, Add1ArgType), 5805 NEONMAP1(vcnt_v, ctpop, Add1ArgType), 5806 NEONMAP1(vcntq_v, ctpop, Add1ArgType), 5807 NEONMAP1(vcvt_f16_f32, aarch64_neon_vcvtfp2hf, 0), 5808 NEONMAP0(vcvt_f16_v), 5809 NEONMAP1(vcvt_f32_f16, aarch64_neon_vcvthf2fp, 0), 5810 NEONMAP0(vcvt_f32_v), 5811 NEONMAP2(vcvt_n_f16_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0), 5812 NEONMAP2(vcvt_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0), 5813 NEONMAP2(vcvt_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0), 5814 NEONMAP1(vcvt_n_s16_v, aarch64_neon_vcvtfp2fxs, 0), 5815 NEONMAP1(vcvt_n_s32_v, aarch64_neon_vcvtfp2fxs, 0), 5816 NEONMAP1(vcvt_n_s64_v, aarch64_neon_vcvtfp2fxs, 0), 5817 NEONMAP1(vcvt_n_u16_v, aarch64_neon_vcvtfp2fxu, 0), 5818 NEONMAP1(vcvt_n_u32_v, aarch64_neon_vcvtfp2fxu, 0), 5819 NEONMAP1(vcvt_n_u64_v, aarch64_neon_vcvtfp2fxu, 0), 5820 NEONMAP0(vcvtq_f16_v), 5821 NEONMAP0(vcvtq_f32_v), 5822 NEONMAP1(vcvtq_high_bf16_v, aarch64_neon_bfcvtn2, 0), 5823 NEONMAP2(vcvtq_n_f16_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0), 5824 NEONMAP2(vcvtq_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0), 5825 NEONMAP2(vcvtq_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0), 5826 NEONMAP1(vcvtq_n_s16_v, aarch64_neon_vcvtfp2fxs, 0), 5827 NEONMAP1(vcvtq_n_s32_v, aarch64_neon_vcvtfp2fxs, 0), 5828 NEONMAP1(vcvtq_n_s64_v, aarch64_neon_vcvtfp2fxs, 0), 5829 NEONMAP1(vcvtq_n_u16_v, aarch64_neon_vcvtfp2fxu, 0), 5830 NEONMAP1(vcvtq_n_u32_v, aarch64_neon_vcvtfp2fxu, 0), 5831 NEONMAP1(vcvtq_n_u64_v, aarch64_neon_vcvtfp2fxu, 0), 5832 NEONMAP1(vcvtx_f32_v, aarch64_neon_fcvtxn, AddRetType | Add1ArgType), 5833 NEONMAP2(vdot_v, aarch64_neon_udot, aarch64_neon_sdot, 0), 5834 NEONMAP2(vdotq_v, aarch64_neon_udot, aarch64_neon_sdot, 0), 5835 NEONMAP2(veor3q_v, aarch64_crypto_eor3u, aarch64_crypto_eor3s, Add1ArgType | UnsignedAlts), 5836 NEONMAP0(vext_v), 5837 NEONMAP0(vextq_v), 5838 NEONMAP0(vfma_v), 5839 NEONMAP0(vfmaq_v), 5840 NEONMAP1(vfmlal_high_v, aarch64_neon_fmlal2, 0), 5841 NEONMAP1(vfmlal_low_v, aarch64_neon_fmlal, 0), 5842 NEONMAP1(vfmlalq_high_v, aarch64_neon_fmlal2, 0), 5843 NEONMAP1(vfmlalq_low_v, aarch64_neon_fmlal, 0), 5844 NEONMAP1(vfmlsl_high_v, aarch64_neon_fmlsl2, 0), 5845 NEONMAP1(vfmlsl_low_v, aarch64_neon_fmlsl, 0), 5846 NEONMAP1(vfmlslq_high_v, aarch64_neon_fmlsl2, 0), 5847 NEONMAP1(vfmlslq_low_v, aarch64_neon_fmlsl, 0), 5848 NEONMAP2(vhadd_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts), 5849 NEONMAP2(vhaddq_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts), 5850 NEONMAP2(vhsub_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts), 5851 NEONMAP2(vhsubq_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts), 5852 NEONMAP1(vld1_x2_v, aarch64_neon_ld1x2, 0), 5853 NEONMAP1(vld1_x3_v, aarch64_neon_ld1x3, 0), 5854 NEONMAP1(vld1_x4_v, aarch64_neon_ld1x4, 0), 5855 NEONMAP1(vld1q_x2_v, aarch64_neon_ld1x2, 0), 5856 NEONMAP1(vld1q_x3_v, aarch64_neon_ld1x3, 0), 5857 NEONMAP1(vld1q_x4_v, aarch64_neon_ld1x4, 0), 5858 NEONMAP2(vmmlaq_v, aarch64_neon_ummla, aarch64_neon_smmla, 0), 5859 NEONMAP0(vmovl_v), 5860 NEONMAP0(vmovn_v), 5861 NEONMAP1(vmul_v, aarch64_neon_pmul, Add1ArgType), 5862 NEONMAP1(vmulq_v, aarch64_neon_pmul, Add1ArgType), 5863 NEONMAP1(vpadd_v, aarch64_neon_addp, Add1ArgType), 5864 NEONMAP2(vpaddl_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts), 5865 NEONMAP2(vpaddlq_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts), 5866 NEONMAP1(vpaddq_v, aarch64_neon_addp, Add1ArgType), 5867 NEONMAP1(vqabs_v, aarch64_neon_sqabs, Add1ArgType), 5868 NEONMAP1(vqabsq_v, aarch64_neon_sqabs, Add1ArgType), 5869 NEONMAP2(vqadd_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts), 5870 NEONMAP2(vqaddq_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts), 5871 NEONMAP2(vqdmlal_v, aarch64_neon_sqdmull, aarch64_neon_sqadd, 0), 5872 NEONMAP2(vqdmlsl_v, aarch64_neon_sqdmull, aarch64_neon_sqsub, 0), 5873 NEONMAP1(vqdmulh_lane_v, aarch64_neon_sqdmulh_lane, 0), 5874 NEONMAP1(vqdmulh_laneq_v, aarch64_neon_sqdmulh_laneq, 0), 5875 NEONMAP1(vqdmulh_v, aarch64_neon_sqdmulh, Add1ArgType), 5876 NEONMAP1(vqdmulhq_lane_v, aarch64_neon_sqdmulh_lane, 0), 5877 NEONMAP1(vqdmulhq_laneq_v, aarch64_neon_sqdmulh_laneq, 0), 5878 NEONMAP1(vqdmulhq_v, aarch64_neon_sqdmulh, Add1ArgType), 5879 NEONMAP1(vqdmull_v, aarch64_neon_sqdmull, Add1ArgType), 5880 NEONMAP2(vqmovn_v, aarch64_neon_uqxtn, aarch64_neon_sqxtn, Add1ArgType | UnsignedAlts), 5881 NEONMAP1(vqmovun_v, aarch64_neon_sqxtun, Add1ArgType), 5882 NEONMAP1(vqneg_v, aarch64_neon_sqneg, Add1ArgType), 5883 NEONMAP1(vqnegq_v, aarch64_neon_sqneg, Add1ArgType), 5884 NEONMAP1(vqrdmulh_lane_v, aarch64_neon_sqrdmulh_lane, 0), 5885 NEONMAP1(vqrdmulh_laneq_v, aarch64_neon_sqrdmulh_laneq, 0), 5886 NEONMAP1(vqrdmulh_v, aarch64_neon_sqrdmulh, Add1ArgType), 5887 NEONMAP1(vqrdmulhq_lane_v, aarch64_neon_sqrdmulh_lane, 0), 5888 NEONMAP1(vqrdmulhq_laneq_v, aarch64_neon_sqrdmulh_laneq, 0), 5889 NEONMAP1(vqrdmulhq_v, aarch64_neon_sqrdmulh, Add1ArgType), 5890 NEONMAP2(vqrshl_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts), 5891 NEONMAP2(vqrshlq_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts), 5892 NEONMAP2(vqshl_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl, UnsignedAlts), 5893 NEONMAP2(vqshl_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts), 5894 NEONMAP2(vqshlq_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl,UnsignedAlts), 5895 NEONMAP2(vqshlq_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts), 5896 NEONMAP1(vqshlu_n_v, aarch64_neon_sqshlu, 0), 5897 NEONMAP1(vqshluq_n_v, aarch64_neon_sqshlu, 0), 5898 NEONMAP2(vqsub_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts), 5899 NEONMAP2(vqsubq_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts), 5900 NEONMAP1(vraddhn_v, aarch64_neon_raddhn, Add1ArgType), 5901 NEONMAP1(vrax1q_v, aarch64_crypto_rax1, 0), 5902 NEONMAP2(vrecpe_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0), 5903 NEONMAP2(vrecpeq_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0), 5904 NEONMAP1(vrecps_v, aarch64_neon_frecps, Add1ArgType), 5905 NEONMAP1(vrecpsq_v, aarch64_neon_frecps, Add1ArgType), 5906 NEONMAP2(vrhadd_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts), 5907 NEONMAP2(vrhaddq_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts), 5908 NEONMAP1(vrnd32x_v, aarch64_neon_frint32x, Add1ArgType), 5909 NEONMAP1(vrnd32xq_v, aarch64_neon_frint32x, Add1ArgType), 5910 NEONMAP1(vrnd32z_v, aarch64_neon_frint32z, Add1ArgType), 5911 NEONMAP1(vrnd32zq_v, aarch64_neon_frint32z, Add1ArgType), 5912 NEONMAP1(vrnd64x_v, aarch64_neon_frint64x, Add1ArgType), 5913 NEONMAP1(vrnd64xq_v, aarch64_neon_frint64x, Add1ArgType), 5914 NEONMAP1(vrnd64z_v, aarch64_neon_frint64z, Add1ArgType), 5915 NEONMAP1(vrnd64zq_v, aarch64_neon_frint64z, Add1ArgType), 5916 NEONMAP0(vrndi_v), 5917 NEONMAP0(vrndiq_v), 5918 NEONMAP2(vrshl_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts), 5919 NEONMAP2(vrshlq_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts), 5920 NEONMAP2(vrshr_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts), 5921 NEONMAP2(vrshrq_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts), 5922 NEONMAP2(vrsqrte_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0), 5923 NEONMAP2(vrsqrteq_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0), 5924 NEONMAP1(vrsqrts_v, aarch64_neon_frsqrts, Add1ArgType), 5925 NEONMAP1(vrsqrtsq_v, aarch64_neon_frsqrts, Add1ArgType), 5926 NEONMAP1(vrsubhn_v, aarch64_neon_rsubhn, Add1ArgType), 5927 NEONMAP1(vsha1su0q_v, aarch64_crypto_sha1su0, 0), 5928 NEONMAP1(vsha1su1q_v, aarch64_crypto_sha1su1, 0), 5929 NEONMAP1(vsha256h2q_v, aarch64_crypto_sha256h2, 0), 5930 NEONMAP1(vsha256hq_v, aarch64_crypto_sha256h, 0), 5931 NEONMAP1(vsha256su0q_v, aarch64_crypto_sha256su0, 0), 5932 NEONMAP1(vsha256su1q_v, aarch64_crypto_sha256su1, 0), 5933 NEONMAP1(vsha512h2q_v, aarch64_crypto_sha512h2, 0), 5934 NEONMAP1(vsha512hq_v, aarch64_crypto_sha512h, 0), 5935 NEONMAP1(vsha512su0q_v, aarch64_crypto_sha512su0, 0), 5936 NEONMAP1(vsha512su1q_v, aarch64_crypto_sha512su1, 0), 5937 NEONMAP0(vshl_n_v), 5938 NEONMAP2(vshl_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts), 5939 NEONMAP0(vshll_n_v), 5940 NEONMAP0(vshlq_n_v), 5941 NEONMAP2(vshlq_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts), 5942 NEONMAP0(vshr_n_v), 5943 NEONMAP0(vshrn_n_v), 5944 NEONMAP0(vshrq_n_v), 5945 NEONMAP1(vsm3partw1q_v, aarch64_crypto_sm3partw1, 0), 5946 NEONMAP1(vsm3partw2q_v, aarch64_crypto_sm3partw2, 0), 5947 NEONMAP1(vsm3ss1q_v, aarch64_crypto_sm3ss1, 0), 5948 NEONMAP1(vsm3tt1aq_v, aarch64_crypto_sm3tt1a, 0), 5949 NEONMAP1(vsm3tt1bq_v, aarch64_crypto_sm3tt1b, 0), 5950 NEONMAP1(vsm3tt2aq_v, aarch64_crypto_sm3tt2a, 0), 5951 NEONMAP1(vsm3tt2bq_v, aarch64_crypto_sm3tt2b, 0), 5952 NEONMAP1(vsm4ekeyq_v, aarch64_crypto_sm4ekey, 0), 5953 NEONMAP1(vsm4eq_v, aarch64_crypto_sm4e, 0), 5954 NEONMAP1(vst1_x2_v, aarch64_neon_st1x2, 0), 5955 NEONMAP1(vst1_x3_v, aarch64_neon_st1x3, 0), 5956 NEONMAP1(vst1_x4_v, aarch64_neon_st1x4, 0), 5957 NEONMAP1(vst1q_x2_v, aarch64_neon_st1x2, 0), 5958 NEONMAP1(vst1q_x3_v, aarch64_neon_st1x3, 0), 5959 NEONMAP1(vst1q_x4_v, aarch64_neon_st1x4, 0), 5960 NEONMAP0(vsubhn_v), 5961 NEONMAP0(vtst_v), 5962 NEONMAP0(vtstq_v), 5963 NEONMAP1(vusdot_v, aarch64_neon_usdot, 0), 5964 NEONMAP1(vusdotq_v, aarch64_neon_usdot, 0), 5965 NEONMAP1(vusmmlaq_v, aarch64_neon_usmmla, 0), 5966 NEONMAP1(vxarq_v, aarch64_crypto_xar, 0), 5967 }; 5968 5969 static const ARMVectorIntrinsicInfo AArch64SISDIntrinsicMap[] = { 5970 NEONMAP1(vabdd_f64, aarch64_sisd_fabd, Add1ArgType), 5971 NEONMAP1(vabds_f32, aarch64_sisd_fabd, Add1ArgType), 5972 NEONMAP1(vabsd_s64, aarch64_neon_abs, Add1ArgType), 5973 NEONMAP1(vaddlv_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType), 5974 NEONMAP1(vaddlv_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType), 5975 NEONMAP1(vaddlvq_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType), 5976 NEONMAP1(vaddlvq_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType), 5977 NEONMAP1(vaddv_f32, aarch64_neon_faddv, AddRetType | Add1ArgType), 5978 NEONMAP1(vaddv_s32, aarch64_neon_saddv, AddRetType | Add1ArgType), 5979 NEONMAP1(vaddv_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType), 5980 NEONMAP1(vaddvq_f32, aarch64_neon_faddv, AddRetType | Add1ArgType), 5981 NEONMAP1(vaddvq_f64, aarch64_neon_faddv, AddRetType | Add1ArgType), 5982 NEONMAP1(vaddvq_s32, aarch64_neon_saddv, AddRetType | Add1ArgType), 5983 NEONMAP1(vaddvq_s64, aarch64_neon_saddv, AddRetType | Add1ArgType), 5984 NEONMAP1(vaddvq_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType), 5985 NEONMAP1(vaddvq_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType), 5986 NEONMAP1(vcaged_f64, aarch64_neon_facge, AddRetType | Add1ArgType), 5987 NEONMAP1(vcages_f32, aarch64_neon_facge, AddRetType | Add1ArgType), 5988 NEONMAP1(vcagtd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType), 5989 NEONMAP1(vcagts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType), 5990 NEONMAP1(vcaled_f64, aarch64_neon_facge, AddRetType | Add1ArgType), 5991 NEONMAP1(vcales_f32, aarch64_neon_facge, AddRetType | Add1ArgType), 5992 NEONMAP1(vcaltd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType), 5993 NEONMAP1(vcalts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType), 5994 NEONMAP1(vcvtad_s64_f64, aarch64_neon_fcvtas, AddRetType | Add1ArgType), 5995 NEONMAP1(vcvtad_u64_f64, aarch64_neon_fcvtau, AddRetType | Add1ArgType), 5996 NEONMAP1(vcvtas_s32_f32, aarch64_neon_fcvtas, AddRetType | Add1ArgType), 5997 NEONMAP1(vcvtas_u32_f32, aarch64_neon_fcvtau, AddRetType | Add1ArgType), 5998 NEONMAP1(vcvtd_n_f64_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType), 5999 NEONMAP1(vcvtd_n_f64_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType), 6000 NEONMAP1(vcvtd_n_s64_f64, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType), 6001 NEONMAP1(vcvtd_n_u64_f64, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType), 6002 NEONMAP1(vcvtd_s64_f64, aarch64_neon_fcvtzs, AddRetType | Add1ArgType), 6003 NEONMAP1(vcvtd_u64_f64, aarch64_neon_fcvtzu, AddRetType | Add1ArgType), 6004 NEONMAP1(vcvth_bf16_f32, aarch64_neon_bfcvt, 0), 6005 NEONMAP1(vcvtmd_s64_f64, aarch64_neon_fcvtms, AddRetType | Add1ArgType), 6006 NEONMAP1(vcvtmd_u64_f64, aarch64_neon_fcvtmu, AddRetType | Add1ArgType), 6007 NEONMAP1(vcvtms_s32_f32, aarch64_neon_fcvtms, AddRetType | Add1ArgType), 6008 NEONMAP1(vcvtms_u32_f32, aarch64_neon_fcvtmu, AddRetType | Add1ArgType), 6009 NEONMAP1(vcvtnd_s64_f64, aarch64_neon_fcvtns, AddRetType | Add1ArgType), 6010 NEONMAP1(vcvtnd_u64_f64, aarch64_neon_fcvtnu, AddRetType | Add1ArgType), 6011 NEONMAP1(vcvtns_s32_f32, aarch64_neon_fcvtns, AddRetType | Add1ArgType), 6012 NEONMAP1(vcvtns_u32_f32, aarch64_neon_fcvtnu, AddRetType | Add1ArgType), 6013 NEONMAP1(vcvtpd_s64_f64, aarch64_neon_fcvtps, AddRetType | Add1ArgType), 6014 NEONMAP1(vcvtpd_u64_f64, aarch64_neon_fcvtpu, AddRetType | Add1ArgType), 6015 NEONMAP1(vcvtps_s32_f32, aarch64_neon_fcvtps, AddRetType | Add1ArgType), 6016 NEONMAP1(vcvtps_u32_f32, aarch64_neon_fcvtpu, AddRetType | Add1ArgType), 6017 NEONMAP1(vcvts_n_f32_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType), 6018 NEONMAP1(vcvts_n_f32_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType), 6019 NEONMAP1(vcvts_n_s32_f32, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType), 6020 NEONMAP1(vcvts_n_u32_f32, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType), 6021 NEONMAP1(vcvts_s32_f32, aarch64_neon_fcvtzs, AddRetType | Add1ArgType), 6022 NEONMAP1(vcvts_u32_f32, aarch64_neon_fcvtzu, AddRetType | Add1ArgType), 6023 NEONMAP1(vcvtxd_f32_f64, aarch64_sisd_fcvtxn, 0), 6024 NEONMAP1(vmaxnmv_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType), 6025 NEONMAP1(vmaxnmvq_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType), 6026 NEONMAP1(vmaxnmvq_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType), 6027 NEONMAP1(vmaxv_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType), 6028 NEONMAP1(vmaxv_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType), 6029 NEONMAP1(vmaxv_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType), 6030 NEONMAP1(vmaxvq_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType), 6031 NEONMAP1(vmaxvq_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType), 6032 NEONMAP1(vmaxvq_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType), 6033 NEONMAP1(vmaxvq_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType), 6034 NEONMAP1(vminnmv_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType), 6035 NEONMAP1(vminnmvq_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType), 6036 NEONMAP1(vminnmvq_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType), 6037 NEONMAP1(vminv_f32, aarch64_neon_fminv, AddRetType | Add1ArgType), 6038 NEONMAP1(vminv_s32, aarch64_neon_sminv, AddRetType | Add1ArgType), 6039 NEONMAP1(vminv_u32, aarch64_neon_uminv, AddRetType | Add1ArgType), 6040 NEONMAP1(vminvq_f32, aarch64_neon_fminv, AddRetType | Add1ArgType), 6041 NEONMAP1(vminvq_f64, aarch64_neon_fminv, AddRetType | Add1ArgType), 6042 NEONMAP1(vminvq_s32, aarch64_neon_sminv, AddRetType | Add1ArgType), 6043 NEONMAP1(vminvq_u32, aarch64_neon_uminv, AddRetType | Add1ArgType), 6044 NEONMAP1(vmull_p64, aarch64_neon_pmull64, 0), 6045 NEONMAP1(vmulxd_f64, aarch64_neon_fmulx, Add1ArgType), 6046 NEONMAP1(vmulxs_f32, aarch64_neon_fmulx, Add1ArgType), 6047 NEONMAP1(vpaddd_s64, aarch64_neon_uaddv, AddRetType | Add1ArgType), 6048 NEONMAP1(vpaddd_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType), 6049 NEONMAP1(vpmaxnmqd_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType), 6050 NEONMAP1(vpmaxnms_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType), 6051 NEONMAP1(vpmaxqd_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType), 6052 NEONMAP1(vpmaxs_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType), 6053 NEONMAP1(vpminnmqd_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType), 6054 NEONMAP1(vpminnms_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType), 6055 NEONMAP1(vpminqd_f64, aarch64_neon_fminv, AddRetType | Add1ArgType), 6056 NEONMAP1(vpmins_f32, aarch64_neon_fminv, AddRetType | Add1ArgType), 6057 NEONMAP1(vqabsb_s8, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors), 6058 NEONMAP1(vqabsd_s64, aarch64_neon_sqabs, Add1ArgType), 6059 NEONMAP1(vqabsh_s16, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors), 6060 NEONMAP1(vqabss_s32, aarch64_neon_sqabs, Add1ArgType), 6061 NEONMAP1(vqaddb_s8, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors), 6062 NEONMAP1(vqaddb_u8, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors), 6063 NEONMAP1(vqaddd_s64, aarch64_neon_sqadd, Add1ArgType), 6064 NEONMAP1(vqaddd_u64, aarch64_neon_uqadd, Add1ArgType), 6065 NEONMAP1(vqaddh_s16, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors), 6066 NEONMAP1(vqaddh_u16, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors), 6067 NEONMAP1(vqadds_s32, aarch64_neon_sqadd, Add1ArgType), 6068 NEONMAP1(vqadds_u32, aarch64_neon_uqadd, Add1ArgType), 6069 NEONMAP1(vqdmulhh_s16, aarch64_neon_sqdmulh, Vectorize1ArgType | Use64BitVectors), 6070 NEONMAP1(vqdmulhs_s32, aarch64_neon_sqdmulh, Add1ArgType), 6071 NEONMAP1(vqdmullh_s16, aarch64_neon_sqdmull, VectorRet | Use128BitVectors), 6072 NEONMAP1(vqdmulls_s32, aarch64_neon_sqdmulls_scalar, 0), 6073 NEONMAP1(vqmovnd_s64, aarch64_neon_scalar_sqxtn, AddRetType | Add1ArgType), 6074 NEONMAP1(vqmovnd_u64, aarch64_neon_scalar_uqxtn, AddRetType | Add1ArgType), 6075 NEONMAP1(vqmovnh_s16, aarch64_neon_sqxtn, VectorRet | Use64BitVectors), 6076 NEONMAP1(vqmovnh_u16, aarch64_neon_uqxtn, VectorRet | Use64BitVectors), 6077 NEONMAP1(vqmovns_s32, aarch64_neon_sqxtn, VectorRet | Use64BitVectors), 6078 NEONMAP1(vqmovns_u32, aarch64_neon_uqxtn, VectorRet | Use64BitVectors), 6079 NEONMAP1(vqmovund_s64, aarch64_neon_scalar_sqxtun, AddRetType | Add1ArgType), 6080 NEONMAP1(vqmovunh_s16, aarch64_neon_sqxtun, VectorRet | Use64BitVectors), 6081 NEONMAP1(vqmovuns_s32, aarch64_neon_sqxtun, VectorRet | Use64BitVectors), 6082 NEONMAP1(vqnegb_s8, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors), 6083 NEONMAP1(vqnegd_s64, aarch64_neon_sqneg, Add1ArgType), 6084 NEONMAP1(vqnegh_s16, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors), 6085 NEONMAP1(vqnegs_s32, aarch64_neon_sqneg, Add1ArgType), 6086 NEONMAP1(vqrdmulhh_s16, aarch64_neon_sqrdmulh, Vectorize1ArgType | Use64BitVectors), 6087 NEONMAP1(vqrdmulhs_s32, aarch64_neon_sqrdmulh, Add1ArgType), 6088 NEONMAP1(vqrshlb_s8, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors), 6089 NEONMAP1(vqrshlb_u8, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors), 6090 NEONMAP1(vqrshld_s64, aarch64_neon_sqrshl, Add1ArgType), 6091 NEONMAP1(vqrshld_u64, aarch64_neon_uqrshl, Add1ArgType), 6092 NEONMAP1(vqrshlh_s16, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors), 6093 NEONMAP1(vqrshlh_u16, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors), 6094 NEONMAP1(vqrshls_s32, aarch64_neon_sqrshl, Add1ArgType), 6095 NEONMAP1(vqrshls_u32, aarch64_neon_uqrshl, Add1ArgType), 6096 NEONMAP1(vqrshrnd_n_s64, aarch64_neon_sqrshrn, AddRetType), 6097 NEONMAP1(vqrshrnd_n_u64, aarch64_neon_uqrshrn, AddRetType), 6098 NEONMAP1(vqrshrnh_n_s16, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors), 6099 NEONMAP1(vqrshrnh_n_u16, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors), 6100 NEONMAP1(vqrshrns_n_s32, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors), 6101 NEONMAP1(vqrshrns_n_u32, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors), 6102 NEONMAP1(vqrshrund_n_s64, aarch64_neon_sqrshrun, AddRetType), 6103 NEONMAP1(vqrshrunh_n_s16, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors), 6104 NEONMAP1(vqrshruns_n_s32, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors), 6105 NEONMAP1(vqshlb_n_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors), 6106 NEONMAP1(vqshlb_n_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors), 6107 NEONMAP1(vqshlb_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors), 6108 NEONMAP1(vqshlb_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors), 6109 NEONMAP1(vqshld_s64, aarch64_neon_sqshl, Add1ArgType), 6110 NEONMAP1(vqshld_u64, aarch64_neon_uqshl, Add1ArgType), 6111 NEONMAP1(vqshlh_n_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors), 6112 NEONMAP1(vqshlh_n_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors), 6113 NEONMAP1(vqshlh_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors), 6114 NEONMAP1(vqshlh_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors), 6115 NEONMAP1(vqshls_n_s32, aarch64_neon_sqshl, Add1ArgType), 6116 NEONMAP1(vqshls_n_u32, aarch64_neon_uqshl, Add1ArgType), 6117 NEONMAP1(vqshls_s32, aarch64_neon_sqshl, Add1ArgType), 6118 NEONMAP1(vqshls_u32, aarch64_neon_uqshl, Add1ArgType), 6119 NEONMAP1(vqshlub_n_s8, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors), 6120 NEONMAP1(vqshluh_n_s16, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors), 6121 NEONMAP1(vqshlus_n_s32, aarch64_neon_sqshlu, Add1ArgType), 6122 NEONMAP1(vqshrnd_n_s64, aarch64_neon_sqshrn, AddRetType), 6123 NEONMAP1(vqshrnd_n_u64, aarch64_neon_uqshrn, AddRetType), 6124 NEONMAP1(vqshrnh_n_s16, aarch64_neon_sqshrn, VectorRet | Use64BitVectors), 6125 NEONMAP1(vqshrnh_n_u16, aarch64_neon_uqshrn, VectorRet | Use64BitVectors), 6126 NEONMAP1(vqshrns_n_s32, aarch64_neon_sqshrn, VectorRet | Use64BitVectors), 6127 NEONMAP1(vqshrns_n_u32, aarch64_neon_uqshrn, VectorRet | Use64BitVectors), 6128 NEONMAP1(vqshrund_n_s64, aarch64_neon_sqshrun, AddRetType), 6129 NEONMAP1(vqshrunh_n_s16, aarch64_neon_sqshrun, VectorRet | Use64BitVectors), 6130 NEONMAP1(vqshruns_n_s32, aarch64_neon_sqshrun, VectorRet | Use64BitVectors), 6131 NEONMAP1(vqsubb_s8, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors), 6132 NEONMAP1(vqsubb_u8, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors), 6133 NEONMAP1(vqsubd_s64, aarch64_neon_sqsub, Add1ArgType), 6134 NEONMAP1(vqsubd_u64, aarch64_neon_uqsub, Add1ArgType), 6135 NEONMAP1(vqsubh_s16, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors), 6136 NEONMAP1(vqsubh_u16, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors), 6137 NEONMAP1(vqsubs_s32, aarch64_neon_sqsub, Add1ArgType), 6138 NEONMAP1(vqsubs_u32, aarch64_neon_uqsub, Add1ArgType), 6139 NEONMAP1(vrecped_f64, aarch64_neon_frecpe, Add1ArgType), 6140 NEONMAP1(vrecpes_f32, aarch64_neon_frecpe, Add1ArgType), 6141 NEONMAP1(vrecpxd_f64, aarch64_neon_frecpx, Add1ArgType), 6142 NEONMAP1(vrecpxs_f32, aarch64_neon_frecpx, Add1ArgType), 6143 NEONMAP1(vrshld_s64, aarch64_neon_srshl, Add1ArgType), 6144 NEONMAP1(vrshld_u64, aarch64_neon_urshl, Add1ArgType), 6145 NEONMAP1(vrsqrted_f64, aarch64_neon_frsqrte, Add1ArgType), 6146 NEONMAP1(vrsqrtes_f32, aarch64_neon_frsqrte, Add1ArgType), 6147 NEONMAP1(vrsqrtsd_f64, aarch64_neon_frsqrts, Add1ArgType), 6148 NEONMAP1(vrsqrtss_f32, aarch64_neon_frsqrts, Add1ArgType), 6149 NEONMAP1(vsha1cq_u32, aarch64_crypto_sha1c, 0), 6150 NEONMAP1(vsha1h_u32, aarch64_crypto_sha1h, 0), 6151 NEONMAP1(vsha1mq_u32, aarch64_crypto_sha1m, 0), 6152 NEONMAP1(vsha1pq_u32, aarch64_crypto_sha1p, 0), 6153 NEONMAP1(vshld_s64, aarch64_neon_sshl, Add1ArgType), 6154 NEONMAP1(vshld_u64, aarch64_neon_ushl, Add1ArgType), 6155 NEONMAP1(vslid_n_s64, aarch64_neon_vsli, Vectorize1ArgType), 6156 NEONMAP1(vslid_n_u64, aarch64_neon_vsli, Vectorize1ArgType), 6157 NEONMAP1(vsqaddb_u8, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors), 6158 NEONMAP1(vsqaddd_u64, aarch64_neon_usqadd, Add1ArgType), 6159 NEONMAP1(vsqaddh_u16, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors), 6160 NEONMAP1(vsqadds_u32, aarch64_neon_usqadd, Add1ArgType), 6161 NEONMAP1(vsrid_n_s64, aarch64_neon_vsri, Vectorize1ArgType), 6162 NEONMAP1(vsrid_n_u64, aarch64_neon_vsri, Vectorize1ArgType), 6163 NEONMAP1(vuqaddb_s8, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors), 6164 NEONMAP1(vuqaddd_s64, aarch64_neon_suqadd, Add1ArgType), 6165 NEONMAP1(vuqaddh_s16, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors), 6166 NEONMAP1(vuqadds_s32, aarch64_neon_suqadd, Add1ArgType), 6167 // FP16 scalar intrinisics go here. 6168 NEONMAP1(vabdh_f16, aarch64_sisd_fabd, Add1ArgType), 6169 NEONMAP1(vcvtah_s32_f16, aarch64_neon_fcvtas, AddRetType | Add1ArgType), 6170 NEONMAP1(vcvtah_s64_f16, aarch64_neon_fcvtas, AddRetType | Add1ArgType), 6171 NEONMAP1(vcvtah_u32_f16, aarch64_neon_fcvtau, AddRetType | Add1ArgType), 6172 NEONMAP1(vcvtah_u64_f16, aarch64_neon_fcvtau, AddRetType | Add1ArgType), 6173 NEONMAP1(vcvth_n_f16_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType), 6174 NEONMAP1(vcvth_n_f16_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType), 6175 NEONMAP1(vcvth_n_f16_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType), 6176 NEONMAP1(vcvth_n_f16_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType), 6177 NEONMAP1(vcvth_n_s32_f16, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType), 6178 NEONMAP1(vcvth_n_s64_f16, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType), 6179 NEONMAP1(vcvth_n_u32_f16, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType), 6180 NEONMAP1(vcvth_n_u64_f16, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType), 6181 NEONMAP1(vcvth_s32_f16, aarch64_neon_fcvtzs, AddRetType | Add1ArgType), 6182 NEONMAP1(vcvth_s64_f16, aarch64_neon_fcvtzs, AddRetType | Add1ArgType), 6183 NEONMAP1(vcvth_u32_f16, aarch64_neon_fcvtzu, AddRetType | Add1ArgType), 6184 NEONMAP1(vcvth_u64_f16, aarch64_neon_fcvtzu, AddRetType | Add1ArgType), 6185 NEONMAP1(vcvtmh_s32_f16, aarch64_neon_fcvtms, AddRetType | Add1ArgType), 6186 NEONMAP1(vcvtmh_s64_f16, aarch64_neon_fcvtms, AddRetType | Add1ArgType), 6187 NEONMAP1(vcvtmh_u32_f16, aarch64_neon_fcvtmu, AddRetType | Add1ArgType), 6188 NEONMAP1(vcvtmh_u64_f16, aarch64_neon_fcvtmu, AddRetType | Add1ArgType), 6189 NEONMAP1(vcvtnh_s32_f16, aarch64_neon_fcvtns, AddRetType | Add1ArgType), 6190 NEONMAP1(vcvtnh_s64_f16, aarch64_neon_fcvtns, AddRetType | Add1ArgType), 6191 NEONMAP1(vcvtnh_u32_f16, aarch64_neon_fcvtnu, AddRetType | Add1ArgType), 6192 NEONMAP1(vcvtnh_u64_f16, aarch64_neon_fcvtnu, AddRetType | Add1ArgType), 6193 NEONMAP1(vcvtph_s32_f16, aarch64_neon_fcvtps, AddRetType | Add1ArgType), 6194 NEONMAP1(vcvtph_s64_f16, aarch64_neon_fcvtps, AddRetType | Add1ArgType), 6195 NEONMAP1(vcvtph_u32_f16, aarch64_neon_fcvtpu, AddRetType | Add1ArgType), 6196 NEONMAP1(vcvtph_u64_f16, aarch64_neon_fcvtpu, AddRetType | Add1ArgType), 6197 NEONMAP1(vmulxh_f16, aarch64_neon_fmulx, Add1ArgType), 6198 NEONMAP1(vrecpeh_f16, aarch64_neon_frecpe, Add1ArgType), 6199 NEONMAP1(vrecpxh_f16, aarch64_neon_frecpx, Add1ArgType), 6200 NEONMAP1(vrsqrteh_f16, aarch64_neon_frsqrte, Add1ArgType), 6201 NEONMAP1(vrsqrtsh_f16, aarch64_neon_frsqrts, Add1ArgType), 6202 }; 6203 6204 #undef NEONMAP0 6205 #undef NEONMAP1 6206 #undef NEONMAP2 6207 6208 #define SVEMAP1(NameBase, LLVMIntrinsic, TypeModifier) \ 6209 { \ 6210 #NameBase, SVE::BI__builtin_sve_##NameBase, Intrinsic::LLVMIntrinsic, 0, \ 6211 TypeModifier \ 6212 } 6213 6214 #define SVEMAP2(NameBase, TypeModifier) \ 6215 { #NameBase, SVE::BI__builtin_sve_##NameBase, 0, 0, TypeModifier } 6216 static const ARMVectorIntrinsicInfo AArch64SVEIntrinsicMap[] = { 6217 #define GET_SVE_LLVM_INTRINSIC_MAP 6218 #include "clang/Basic/arm_sve_builtin_cg.inc" 6219 #undef GET_SVE_LLVM_INTRINSIC_MAP 6220 }; 6221 6222 #undef SVEMAP1 6223 #undef SVEMAP2 6224 6225 static bool NEONSIMDIntrinsicsProvenSorted = false; 6226 6227 static bool AArch64SIMDIntrinsicsProvenSorted = false; 6228 static bool AArch64SISDIntrinsicsProvenSorted = false; 6229 static bool AArch64SVEIntrinsicsProvenSorted = false; 6230 6231 static const ARMVectorIntrinsicInfo * 6232 findARMVectorIntrinsicInMap(ArrayRef<ARMVectorIntrinsicInfo> IntrinsicMap, 6233 unsigned BuiltinID, bool &MapProvenSorted) { 6234 6235 #ifndef NDEBUG 6236 if (!MapProvenSorted) { 6237 assert(llvm::is_sorted(IntrinsicMap)); 6238 MapProvenSorted = true; 6239 } 6240 #endif 6241 6242 const ARMVectorIntrinsicInfo *Builtin = 6243 llvm::lower_bound(IntrinsicMap, BuiltinID); 6244 6245 if (Builtin != IntrinsicMap.end() && Builtin->BuiltinID == BuiltinID) 6246 return Builtin; 6247 6248 return nullptr; 6249 } 6250 6251 Function *CodeGenFunction::LookupNeonLLVMIntrinsic(unsigned IntrinsicID, 6252 unsigned Modifier, 6253 llvm::Type *ArgType, 6254 const CallExpr *E) { 6255 int VectorSize = 0; 6256 if (Modifier & Use64BitVectors) 6257 VectorSize = 64; 6258 else if (Modifier & Use128BitVectors) 6259 VectorSize = 128; 6260 6261 // Return type. 6262 SmallVector<llvm::Type *, 3> Tys; 6263 if (Modifier & AddRetType) { 6264 llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext())); 6265 if (Modifier & VectorizeRetType) 6266 Ty = llvm::FixedVectorType::get( 6267 Ty, VectorSize ? VectorSize / Ty->getPrimitiveSizeInBits() : 1); 6268 6269 Tys.push_back(Ty); 6270 } 6271 6272 // Arguments. 6273 if (Modifier & VectorizeArgTypes) { 6274 int Elts = VectorSize ? VectorSize / ArgType->getPrimitiveSizeInBits() : 1; 6275 ArgType = llvm::FixedVectorType::get(ArgType, Elts); 6276 } 6277 6278 if (Modifier & (Add1ArgType | Add2ArgTypes)) 6279 Tys.push_back(ArgType); 6280 6281 if (Modifier & Add2ArgTypes) 6282 Tys.push_back(ArgType); 6283 6284 if (Modifier & InventFloatType) 6285 Tys.push_back(FloatTy); 6286 6287 return CGM.getIntrinsic(IntrinsicID, Tys); 6288 } 6289 6290 static Value *EmitCommonNeonSISDBuiltinExpr( 6291 CodeGenFunction &CGF, const ARMVectorIntrinsicInfo &SISDInfo, 6292 SmallVectorImpl<Value *> &Ops, const CallExpr *E) { 6293 unsigned BuiltinID = SISDInfo.BuiltinID; 6294 unsigned int Int = SISDInfo.LLVMIntrinsic; 6295 unsigned Modifier = SISDInfo.TypeModifier; 6296 const char *s = SISDInfo.NameHint; 6297 6298 switch (BuiltinID) { 6299 case NEON::BI__builtin_neon_vcled_s64: 6300 case NEON::BI__builtin_neon_vcled_u64: 6301 case NEON::BI__builtin_neon_vcles_f32: 6302 case NEON::BI__builtin_neon_vcled_f64: 6303 case NEON::BI__builtin_neon_vcltd_s64: 6304 case NEON::BI__builtin_neon_vcltd_u64: 6305 case NEON::BI__builtin_neon_vclts_f32: 6306 case NEON::BI__builtin_neon_vcltd_f64: 6307 case NEON::BI__builtin_neon_vcales_f32: 6308 case NEON::BI__builtin_neon_vcaled_f64: 6309 case NEON::BI__builtin_neon_vcalts_f32: 6310 case NEON::BI__builtin_neon_vcaltd_f64: 6311 // Only one direction of comparisons actually exist, cmle is actually a cmge 6312 // with swapped operands. The table gives us the right intrinsic but we 6313 // still need to do the swap. 6314 std::swap(Ops[0], Ops[1]); 6315 break; 6316 } 6317 6318 assert(Int && "Generic code assumes a valid intrinsic"); 6319 6320 // Determine the type(s) of this overloaded AArch64 intrinsic. 6321 const Expr *Arg = E->getArg(0); 6322 llvm::Type *ArgTy = CGF.ConvertType(Arg->getType()); 6323 Function *F = CGF.LookupNeonLLVMIntrinsic(Int, Modifier, ArgTy, E); 6324 6325 int j = 0; 6326 ConstantInt *C0 = ConstantInt::get(CGF.SizeTy, 0); 6327 for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end(); 6328 ai != ae; ++ai, ++j) { 6329 llvm::Type *ArgTy = ai->getType(); 6330 if (Ops[j]->getType()->getPrimitiveSizeInBits() == 6331 ArgTy->getPrimitiveSizeInBits()) 6332 continue; 6333 6334 assert(ArgTy->isVectorTy() && !Ops[j]->getType()->isVectorTy()); 6335 // The constant argument to an _n_ intrinsic always has Int32Ty, so truncate 6336 // it before inserting. 6337 Ops[j] = CGF.Builder.CreateTruncOrBitCast( 6338 Ops[j], cast<llvm::VectorType>(ArgTy)->getElementType()); 6339 Ops[j] = 6340 CGF.Builder.CreateInsertElement(UndefValue::get(ArgTy), Ops[j], C0); 6341 } 6342 6343 Value *Result = CGF.EmitNeonCall(F, Ops, s); 6344 llvm::Type *ResultType = CGF.ConvertType(E->getType()); 6345 if (ResultType->getPrimitiveSizeInBits().getFixedSize() < 6346 Result->getType()->getPrimitiveSizeInBits().getFixedSize()) 6347 return CGF.Builder.CreateExtractElement(Result, C0); 6348 6349 return CGF.Builder.CreateBitCast(Result, ResultType, s); 6350 } 6351 6352 Value *CodeGenFunction::EmitCommonNeonBuiltinExpr( 6353 unsigned BuiltinID, unsigned LLVMIntrinsic, unsigned AltLLVMIntrinsic, 6354 const char *NameHint, unsigned Modifier, const CallExpr *E, 6355 SmallVectorImpl<llvm::Value *> &Ops, Address PtrOp0, Address PtrOp1, 6356 llvm::Triple::ArchType Arch) { 6357 // Get the last argument, which specifies the vector type. 6358 const Expr *Arg = E->getArg(E->getNumArgs() - 1); 6359 Optional<llvm::APSInt> NeonTypeConst = 6360 Arg->getIntegerConstantExpr(getContext()); 6361 if (!NeonTypeConst) 6362 return nullptr; 6363 6364 // Determine the type of this overloaded NEON intrinsic. 6365 NeonTypeFlags Type(NeonTypeConst->getZExtValue()); 6366 bool Usgn = Type.isUnsigned(); 6367 bool Quad = Type.isQuad(); 6368 const bool HasLegalHalfType = getTarget().hasLegalHalfType(); 6369 const bool AllowBFloatArgsAndRet = 6370 getTargetHooks().getABIInfo().allowBFloatArgsAndRet(); 6371 6372 llvm::FixedVectorType *VTy = 6373 GetNeonType(this, Type, HasLegalHalfType, false, AllowBFloatArgsAndRet); 6374 llvm::Type *Ty = VTy; 6375 if (!Ty) 6376 return nullptr; 6377 6378 auto getAlignmentValue32 = [&](Address addr) -> Value* { 6379 return Builder.getInt32(addr.getAlignment().getQuantity()); 6380 }; 6381 6382 unsigned Int = LLVMIntrinsic; 6383 if ((Modifier & UnsignedAlts) && !Usgn) 6384 Int = AltLLVMIntrinsic; 6385 6386 switch (BuiltinID) { 6387 default: break; 6388 case NEON::BI__builtin_neon_splat_lane_v: 6389 case NEON::BI__builtin_neon_splat_laneq_v: 6390 case NEON::BI__builtin_neon_splatq_lane_v: 6391 case NEON::BI__builtin_neon_splatq_laneq_v: { 6392 auto NumElements = VTy->getElementCount(); 6393 if (BuiltinID == NEON::BI__builtin_neon_splatq_lane_v) 6394 NumElements = NumElements * 2; 6395 if (BuiltinID == NEON::BI__builtin_neon_splat_laneq_v) 6396 NumElements = NumElements.divideCoefficientBy(2); 6397 6398 Ops[0] = Builder.CreateBitCast(Ops[0], VTy); 6399 return EmitNeonSplat(Ops[0], cast<ConstantInt>(Ops[1]), NumElements); 6400 } 6401 case NEON::BI__builtin_neon_vpadd_v: 6402 case NEON::BI__builtin_neon_vpaddq_v: 6403 // We don't allow fp/int overloading of intrinsics. 6404 if (VTy->getElementType()->isFloatingPointTy() && 6405 Int == Intrinsic::aarch64_neon_addp) 6406 Int = Intrinsic::aarch64_neon_faddp; 6407 break; 6408 case NEON::BI__builtin_neon_vabs_v: 6409 case NEON::BI__builtin_neon_vabsq_v: 6410 if (VTy->getElementType()->isFloatingPointTy()) 6411 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, Ty), Ops, "vabs"); 6412 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), Ops, "vabs"); 6413 case NEON::BI__builtin_neon_vadd_v: 6414 case NEON::BI__builtin_neon_vaddq_v: { 6415 llvm::Type *VTy = llvm::FixedVectorType::get(Int8Ty, Quad ? 16 : 8); 6416 Ops[0] = Builder.CreateBitCast(Ops[0], VTy); 6417 Ops[1] = Builder.CreateBitCast(Ops[1], VTy); 6418 Ops[0] = Builder.CreateXor(Ops[0], Ops[1]); 6419 return Builder.CreateBitCast(Ops[0], Ty); 6420 } 6421 case NEON::BI__builtin_neon_vaddhn_v: { 6422 llvm::FixedVectorType *SrcTy = 6423 llvm::FixedVectorType::getExtendedElementVectorType(VTy); 6424 6425 // %sum = add <4 x i32> %lhs, %rhs 6426 Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy); 6427 Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy); 6428 Ops[0] = Builder.CreateAdd(Ops[0], Ops[1], "vaddhn"); 6429 6430 // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16> 6431 Constant *ShiftAmt = 6432 ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2); 6433 Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vaddhn"); 6434 6435 // %res = trunc <4 x i32> %high to <4 x i16> 6436 return Builder.CreateTrunc(Ops[0], VTy, "vaddhn"); 6437 } 6438 case NEON::BI__builtin_neon_vcale_v: 6439 case NEON::BI__builtin_neon_vcaleq_v: 6440 case NEON::BI__builtin_neon_vcalt_v: 6441 case NEON::BI__builtin_neon_vcaltq_v: 6442 std::swap(Ops[0], Ops[1]); 6443 LLVM_FALLTHROUGH; 6444 case NEON::BI__builtin_neon_vcage_v: 6445 case NEON::BI__builtin_neon_vcageq_v: 6446 case NEON::BI__builtin_neon_vcagt_v: 6447 case NEON::BI__builtin_neon_vcagtq_v: { 6448 llvm::Type *Ty; 6449 switch (VTy->getScalarSizeInBits()) { 6450 default: llvm_unreachable("unexpected type"); 6451 case 32: 6452 Ty = FloatTy; 6453 break; 6454 case 64: 6455 Ty = DoubleTy; 6456 break; 6457 case 16: 6458 Ty = HalfTy; 6459 break; 6460 } 6461 auto *VecFlt = llvm::FixedVectorType::get(Ty, VTy->getNumElements()); 6462 llvm::Type *Tys[] = { VTy, VecFlt }; 6463 Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys); 6464 return EmitNeonCall(F, Ops, NameHint); 6465 } 6466 case NEON::BI__builtin_neon_vceqz_v: 6467 case NEON::BI__builtin_neon_vceqzq_v: 6468 return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OEQ, 6469 ICmpInst::ICMP_EQ, "vceqz"); 6470 case NEON::BI__builtin_neon_vcgez_v: 6471 case NEON::BI__builtin_neon_vcgezq_v: 6472 return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGE, 6473 ICmpInst::ICMP_SGE, "vcgez"); 6474 case NEON::BI__builtin_neon_vclez_v: 6475 case NEON::BI__builtin_neon_vclezq_v: 6476 return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLE, 6477 ICmpInst::ICMP_SLE, "vclez"); 6478 case NEON::BI__builtin_neon_vcgtz_v: 6479 case NEON::BI__builtin_neon_vcgtzq_v: 6480 return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGT, 6481 ICmpInst::ICMP_SGT, "vcgtz"); 6482 case NEON::BI__builtin_neon_vcltz_v: 6483 case NEON::BI__builtin_neon_vcltzq_v: 6484 return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLT, 6485 ICmpInst::ICMP_SLT, "vcltz"); 6486 case NEON::BI__builtin_neon_vclz_v: 6487 case NEON::BI__builtin_neon_vclzq_v: 6488 // We generate target-independent intrinsic, which needs a second argument 6489 // for whether or not clz of zero is undefined; on ARM it isn't. 6490 Ops.push_back(Builder.getInt1(getTarget().isCLZForZeroUndef())); 6491 break; 6492 case NEON::BI__builtin_neon_vcvt_f32_v: 6493 case NEON::BI__builtin_neon_vcvtq_f32_v: 6494 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 6495 Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, Quad), 6496 HasLegalHalfType); 6497 return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt") 6498 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt"); 6499 case NEON::BI__builtin_neon_vcvt_f16_v: 6500 case NEON::BI__builtin_neon_vcvtq_f16_v: 6501 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 6502 Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float16, false, Quad), 6503 HasLegalHalfType); 6504 return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt") 6505 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt"); 6506 case NEON::BI__builtin_neon_vcvt_n_f16_v: 6507 case NEON::BI__builtin_neon_vcvt_n_f32_v: 6508 case NEON::BI__builtin_neon_vcvt_n_f64_v: 6509 case NEON::BI__builtin_neon_vcvtq_n_f16_v: 6510 case NEON::BI__builtin_neon_vcvtq_n_f32_v: 6511 case NEON::BI__builtin_neon_vcvtq_n_f64_v: { 6512 llvm::Type *Tys[2] = { GetFloatNeonType(this, Type), Ty }; 6513 Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic; 6514 Function *F = CGM.getIntrinsic(Int, Tys); 6515 return EmitNeonCall(F, Ops, "vcvt_n"); 6516 } 6517 case NEON::BI__builtin_neon_vcvt_n_s16_v: 6518 case NEON::BI__builtin_neon_vcvt_n_s32_v: 6519 case NEON::BI__builtin_neon_vcvt_n_u16_v: 6520 case NEON::BI__builtin_neon_vcvt_n_u32_v: 6521 case NEON::BI__builtin_neon_vcvt_n_s64_v: 6522 case NEON::BI__builtin_neon_vcvt_n_u64_v: 6523 case NEON::BI__builtin_neon_vcvtq_n_s16_v: 6524 case NEON::BI__builtin_neon_vcvtq_n_s32_v: 6525 case NEON::BI__builtin_neon_vcvtq_n_u16_v: 6526 case NEON::BI__builtin_neon_vcvtq_n_u32_v: 6527 case NEON::BI__builtin_neon_vcvtq_n_s64_v: 6528 case NEON::BI__builtin_neon_vcvtq_n_u64_v: { 6529 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) }; 6530 Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys); 6531 return EmitNeonCall(F, Ops, "vcvt_n"); 6532 } 6533 case NEON::BI__builtin_neon_vcvt_s32_v: 6534 case NEON::BI__builtin_neon_vcvt_u32_v: 6535 case NEON::BI__builtin_neon_vcvt_s64_v: 6536 case NEON::BI__builtin_neon_vcvt_u64_v: 6537 case NEON::BI__builtin_neon_vcvt_s16_v: 6538 case NEON::BI__builtin_neon_vcvt_u16_v: 6539 case NEON::BI__builtin_neon_vcvtq_s32_v: 6540 case NEON::BI__builtin_neon_vcvtq_u32_v: 6541 case NEON::BI__builtin_neon_vcvtq_s64_v: 6542 case NEON::BI__builtin_neon_vcvtq_u64_v: 6543 case NEON::BI__builtin_neon_vcvtq_s16_v: 6544 case NEON::BI__builtin_neon_vcvtq_u16_v: { 6545 Ops[0] = Builder.CreateBitCast(Ops[0], GetFloatNeonType(this, Type)); 6546 return Usgn ? Builder.CreateFPToUI(Ops[0], Ty, "vcvt") 6547 : Builder.CreateFPToSI(Ops[0], Ty, "vcvt"); 6548 } 6549 case NEON::BI__builtin_neon_vcvta_s16_v: 6550 case NEON::BI__builtin_neon_vcvta_s32_v: 6551 case NEON::BI__builtin_neon_vcvta_s64_v: 6552 case NEON::BI__builtin_neon_vcvta_u16_v: 6553 case NEON::BI__builtin_neon_vcvta_u32_v: 6554 case NEON::BI__builtin_neon_vcvta_u64_v: 6555 case NEON::BI__builtin_neon_vcvtaq_s16_v: 6556 case NEON::BI__builtin_neon_vcvtaq_s32_v: 6557 case NEON::BI__builtin_neon_vcvtaq_s64_v: 6558 case NEON::BI__builtin_neon_vcvtaq_u16_v: 6559 case NEON::BI__builtin_neon_vcvtaq_u32_v: 6560 case NEON::BI__builtin_neon_vcvtaq_u64_v: 6561 case NEON::BI__builtin_neon_vcvtn_s16_v: 6562 case NEON::BI__builtin_neon_vcvtn_s32_v: 6563 case NEON::BI__builtin_neon_vcvtn_s64_v: 6564 case NEON::BI__builtin_neon_vcvtn_u16_v: 6565 case NEON::BI__builtin_neon_vcvtn_u32_v: 6566 case NEON::BI__builtin_neon_vcvtn_u64_v: 6567 case NEON::BI__builtin_neon_vcvtnq_s16_v: 6568 case NEON::BI__builtin_neon_vcvtnq_s32_v: 6569 case NEON::BI__builtin_neon_vcvtnq_s64_v: 6570 case NEON::BI__builtin_neon_vcvtnq_u16_v: 6571 case NEON::BI__builtin_neon_vcvtnq_u32_v: 6572 case NEON::BI__builtin_neon_vcvtnq_u64_v: 6573 case NEON::BI__builtin_neon_vcvtp_s16_v: 6574 case NEON::BI__builtin_neon_vcvtp_s32_v: 6575 case NEON::BI__builtin_neon_vcvtp_s64_v: 6576 case NEON::BI__builtin_neon_vcvtp_u16_v: 6577 case NEON::BI__builtin_neon_vcvtp_u32_v: 6578 case NEON::BI__builtin_neon_vcvtp_u64_v: 6579 case NEON::BI__builtin_neon_vcvtpq_s16_v: 6580 case NEON::BI__builtin_neon_vcvtpq_s32_v: 6581 case NEON::BI__builtin_neon_vcvtpq_s64_v: 6582 case NEON::BI__builtin_neon_vcvtpq_u16_v: 6583 case NEON::BI__builtin_neon_vcvtpq_u32_v: 6584 case NEON::BI__builtin_neon_vcvtpq_u64_v: 6585 case NEON::BI__builtin_neon_vcvtm_s16_v: 6586 case NEON::BI__builtin_neon_vcvtm_s32_v: 6587 case NEON::BI__builtin_neon_vcvtm_s64_v: 6588 case NEON::BI__builtin_neon_vcvtm_u16_v: 6589 case NEON::BI__builtin_neon_vcvtm_u32_v: 6590 case NEON::BI__builtin_neon_vcvtm_u64_v: 6591 case NEON::BI__builtin_neon_vcvtmq_s16_v: 6592 case NEON::BI__builtin_neon_vcvtmq_s32_v: 6593 case NEON::BI__builtin_neon_vcvtmq_s64_v: 6594 case NEON::BI__builtin_neon_vcvtmq_u16_v: 6595 case NEON::BI__builtin_neon_vcvtmq_u32_v: 6596 case NEON::BI__builtin_neon_vcvtmq_u64_v: { 6597 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) }; 6598 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, NameHint); 6599 } 6600 case NEON::BI__builtin_neon_vcvtx_f32_v: { 6601 llvm::Type *Tys[2] = { VTy->getTruncatedElementVectorType(VTy), Ty}; 6602 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, NameHint); 6603 6604 } 6605 case NEON::BI__builtin_neon_vext_v: 6606 case NEON::BI__builtin_neon_vextq_v: { 6607 int CV = cast<ConstantInt>(Ops[2])->getSExtValue(); 6608 SmallVector<int, 16> Indices; 6609 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) 6610 Indices.push_back(i+CV); 6611 6612 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 6613 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 6614 return Builder.CreateShuffleVector(Ops[0], Ops[1], Indices, "vext"); 6615 } 6616 case NEON::BI__builtin_neon_vfma_v: 6617 case NEON::BI__builtin_neon_vfmaq_v: { 6618 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 6619 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 6620 Ops[2] = Builder.CreateBitCast(Ops[2], Ty); 6621 6622 // NEON intrinsic puts accumulator first, unlike the LLVM fma. 6623 return emitCallMaybeConstrainedFPBuiltin( 6624 *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty, 6625 {Ops[1], Ops[2], Ops[0]}); 6626 } 6627 case NEON::BI__builtin_neon_vld1_v: 6628 case NEON::BI__builtin_neon_vld1q_v: { 6629 llvm::Type *Tys[] = {Ty, Int8PtrTy}; 6630 Ops.push_back(getAlignmentValue32(PtrOp0)); 6631 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "vld1"); 6632 } 6633 case NEON::BI__builtin_neon_vld1_x2_v: 6634 case NEON::BI__builtin_neon_vld1q_x2_v: 6635 case NEON::BI__builtin_neon_vld1_x3_v: 6636 case NEON::BI__builtin_neon_vld1q_x3_v: 6637 case NEON::BI__builtin_neon_vld1_x4_v: 6638 case NEON::BI__builtin_neon_vld1q_x4_v: { 6639 llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getElementType()); 6640 Ops[1] = Builder.CreateBitCast(Ops[1], PTy); 6641 llvm::Type *Tys[2] = { VTy, PTy }; 6642 Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys); 6643 Ops[1] = Builder.CreateCall(F, Ops[1], "vld1xN"); 6644 Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); 6645 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 6646 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); 6647 } 6648 case NEON::BI__builtin_neon_vld2_v: 6649 case NEON::BI__builtin_neon_vld2q_v: 6650 case NEON::BI__builtin_neon_vld3_v: 6651 case NEON::BI__builtin_neon_vld3q_v: 6652 case NEON::BI__builtin_neon_vld4_v: 6653 case NEON::BI__builtin_neon_vld4q_v: 6654 case NEON::BI__builtin_neon_vld2_dup_v: 6655 case NEON::BI__builtin_neon_vld2q_dup_v: 6656 case NEON::BI__builtin_neon_vld3_dup_v: 6657 case NEON::BI__builtin_neon_vld3q_dup_v: 6658 case NEON::BI__builtin_neon_vld4_dup_v: 6659 case NEON::BI__builtin_neon_vld4q_dup_v: { 6660 llvm::Type *Tys[] = {Ty, Int8PtrTy}; 6661 Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys); 6662 Value *Align = getAlignmentValue32(PtrOp1); 6663 Ops[1] = Builder.CreateCall(F, {Ops[1], Align}, NameHint); 6664 Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); 6665 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 6666 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); 6667 } 6668 case NEON::BI__builtin_neon_vld1_dup_v: 6669 case NEON::BI__builtin_neon_vld1q_dup_v: { 6670 Value *V = UndefValue::get(Ty); 6671 Ty = llvm::PointerType::getUnqual(VTy->getElementType()); 6672 PtrOp0 = Builder.CreateBitCast(PtrOp0, Ty); 6673 LoadInst *Ld = Builder.CreateLoad(PtrOp0); 6674 llvm::Constant *CI = ConstantInt::get(SizeTy, 0); 6675 Ops[0] = Builder.CreateInsertElement(V, Ld, CI); 6676 return EmitNeonSplat(Ops[0], CI); 6677 } 6678 case NEON::BI__builtin_neon_vld2_lane_v: 6679 case NEON::BI__builtin_neon_vld2q_lane_v: 6680 case NEON::BI__builtin_neon_vld3_lane_v: 6681 case NEON::BI__builtin_neon_vld3q_lane_v: 6682 case NEON::BI__builtin_neon_vld4_lane_v: 6683 case NEON::BI__builtin_neon_vld4q_lane_v: { 6684 llvm::Type *Tys[] = {Ty, Int8PtrTy}; 6685 Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys); 6686 for (unsigned I = 2; I < Ops.size() - 1; ++I) 6687 Ops[I] = Builder.CreateBitCast(Ops[I], Ty); 6688 Ops.push_back(getAlignmentValue32(PtrOp1)); 6689 Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), NameHint); 6690 Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); 6691 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 6692 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); 6693 } 6694 case NEON::BI__builtin_neon_vmovl_v: { 6695 llvm::FixedVectorType *DTy = 6696 llvm::FixedVectorType::getTruncatedElementVectorType(VTy); 6697 Ops[0] = Builder.CreateBitCast(Ops[0], DTy); 6698 if (Usgn) 6699 return Builder.CreateZExt(Ops[0], Ty, "vmovl"); 6700 return Builder.CreateSExt(Ops[0], Ty, "vmovl"); 6701 } 6702 case NEON::BI__builtin_neon_vmovn_v: { 6703 llvm::FixedVectorType *QTy = 6704 llvm::FixedVectorType::getExtendedElementVectorType(VTy); 6705 Ops[0] = Builder.CreateBitCast(Ops[0], QTy); 6706 return Builder.CreateTrunc(Ops[0], Ty, "vmovn"); 6707 } 6708 case NEON::BI__builtin_neon_vmull_v: 6709 // FIXME: the integer vmull operations could be emitted in terms of pure 6710 // LLVM IR (2 exts followed by a mul). Unfortunately LLVM has a habit of 6711 // hoisting the exts outside loops. Until global ISel comes along that can 6712 // see through such movement this leads to bad CodeGen. So we need an 6713 // intrinsic for now. 6714 Int = Usgn ? Intrinsic::arm_neon_vmullu : Intrinsic::arm_neon_vmulls; 6715 Int = Type.isPoly() ? (unsigned)Intrinsic::arm_neon_vmullp : Int; 6716 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull"); 6717 case NEON::BI__builtin_neon_vpadal_v: 6718 case NEON::BI__builtin_neon_vpadalq_v: { 6719 // The source operand type has twice as many elements of half the size. 6720 unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits(); 6721 llvm::Type *EltTy = 6722 llvm::IntegerType::get(getLLVMContext(), EltBits / 2); 6723 auto *NarrowTy = 6724 llvm::FixedVectorType::get(EltTy, VTy->getNumElements() * 2); 6725 llvm::Type *Tys[2] = { Ty, NarrowTy }; 6726 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint); 6727 } 6728 case NEON::BI__builtin_neon_vpaddl_v: 6729 case NEON::BI__builtin_neon_vpaddlq_v: { 6730 // The source operand type has twice as many elements of half the size. 6731 unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits(); 6732 llvm::Type *EltTy = llvm::IntegerType::get(getLLVMContext(), EltBits / 2); 6733 auto *NarrowTy = 6734 llvm::FixedVectorType::get(EltTy, VTy->getNumElements() * 2); 6735 llvm::Type *Tys[2] = { Ty, NarrowTy }; 6736 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vpaddl"); 6737 } 6738 case NEON::BI__builtin_neon_vqdmlal_v: 6739 case NEON::BI__builtin_neon_vqdmlsl_v: { 6740 SmallVector<Value *, 2> MulOps(Ops.begin() + 1, Ops.end()); 6741 Ops[1] = 6742 EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), MulOps, "vqdmlal"); 6743 Ops.resize(2); 6744 return EmitNeonCall(CGM.getIntrinsic(AltLLVMIntrinsic, Ty), Ops, NameHint); 6745 } 6746 case NEON::BI__builtin_neon_vqdmulhq_lane_v: 6747 case NEON::BI__builtin_neon_vqdmulh_lane_v: 6748 case NEON::BI__builtin_neon_vqrdmulhq_lane_v: 6749 case NEON::BI__builtin_neon_vqrdmulh_lane_v: { 6750 auto *RTy = cast<llvm::FixedVectorType>(Ty); 6751 if (BuiltinID == NEON::BI__builtin_neon_vqdmulhq_lane_v || 6752 BuiltinID == NEON::BI__builtin_neon_vqrdmulhq_lane_v) 6753 RTy = llvm::FixedVectorType::get(RTy->getElementType(), 6754 RTy->getNumElements() * 2); 6755 llvm::Type *Tys[2] = { 6756 RTy, GetNeonType(this, NeonTypeFlags(Type.getEltType(), false, 6757 /*isQuad*/ false))}; 6758 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint); 6759 } 6760 case NEON::BI__builtin_neon_vqdmulhq_laneq_v: 6761 case NEON::BI__builtin_neon_vqdmulh_laneq_v: 6762 case NEON::BI__builtin_neon_vqrdmulhq_laneq_v: 6763 case NEON::BI__builtin_neon_vqrdmulh_laneq_v: { 6764 llvm::Type *Tys[2] = { 6765 Ty, GetNeonType(this, NeonTypeFlags(Type.getEltType(), false, 6766 /*isQuad*/ true))}; 6767 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint); 6768 } 6769 case NEON::BI__builtin_neon_vqshl_n_v: 6770 case NEON::BI__builtin_neon_vqshlq_n_v: 6771 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshl_n", 6772 1, false); 6773 case NEON::BI__builtin_neon_vqshlu_n_v: 6774 case NEON::BI__builtin_neon_vqshluq_n_v: 6775 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshlu_n", 6776 1, false); 6777 case NEON::BI__builtin_neon_vrecpe_v: 6778 case NEON::BI__builtin_neon_vrecpeq_v: 6779 case NEON::BI__builtin_neon_vrsqrte_v: 6780 case NEON::BI__builtin_neon_vrsqrteq_v: 6781 Int = Ty->isFPOrFPVectorTy() ? LLVMIntrinsic : AltLLVMIntrinsic; 6782 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint); 6783 case NEON::BI__builtin_neon_vrndi_v: 6784 case NEON::BI__builtin_neon_vrndiq_v: 6785 Int = Builder.getIsFPConstrained() 6786 ? Intrinsic::experimental_constrained_nearbyint 6787 : Intrinsic::nearbyint; 6788 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint); 6789 case NEON::BI__builtin_neon_vrshr_n_v: 6790 case NEON::BI__builtin_neon_vrshrq_n_v: 6791 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshr_n", 6792 1, true); 6793 case NEON::BI__builtin_neon_vsha512hq_v: 6794 case NEON::BI__builtin_neon_vsha512h2q_v: 6795 case NEON::BI__builtin_neon_vsha512su0q_v: 6796 case NEON::BI__builtin_neon_vsha512su1q_v: { 6797 Function *F = CGM.getIntrinsic(Int); 6798 return EmitNeonCall(F, Ops, ""); 6799 } 6800 case NEON::BI__builtin_neon_vshl_n_v: 6801 case NEON::BI__builtin_neon_vshlq_n_v: 6802 Ops[1] = EmitNeonShiftVector(Ops[1], Ty, false); 6803 return Builder.CreateShl(Builder.CreateBitCast(Ops[0],Ty), Ops[1], 6804 "vshl_n"); 6805 case NEON::BI__builtin_neon_vshll_n_v: { 6806 llvm::FixedVectorType *SrcTy = 6807 llvm::FixedVectorType::getTruncatedElementVectorType(VTy); 6808 Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy); 6809 if (Usgn) 6810 Ops[0] = Builder.CreateZExt(Ops[0], VTy); 6811 else 6812 Ops[0] = Builder.CreateSExt(Ops[0], VTy); 6813 Ops[1] = EmitNeonShiftVector(Ops[1], VTy, false); 6814 return Builder.CreateShl(Ops[0], Ops[1], "vshll_n"); 6815 } 6816 case NEON::BI__builtin_neon_vshrn_n_v: { 6817 llvm::FixedVectorType *SrcTy = 6818 llvm::FixedVectorType::getExtendedElementVectorType(VTy); 6819 Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy); 6820 Ops[1] = EmitNeonShiftVector(Ops[1], SrcTy, false); 6821 if (Usgn) 6822 Ops[0] = Builder.CreateLShr(Ops[0], Ops[1]); 6823 else 6824 Ops[0] = Builder.CreateAShr(Ops[0], Ops[1]); 6825 return Builder.CreateTrunc(Ops[0], Ty, "vshrn_n"); 6826 } 6827 case NEON::BI__builtin_neon_vshr_n_v: 6828 case NEON::BI__builtin_neon_vshrq_n_v: 6829 return EmitNeonRShiftImm(Ops[0], Ops[1], Ty, Usgn, "vshr_n"); 6830 case NEON::BI__builtin_neon_vst1_v: 6831 case NEON::BI__builtin_neon_vst1q_v: 6832 case NEON::BI__builtin_neon_vst2_v: 6833 case NEON::BI__builtin_neon_vst2q_v: 6834 case NEON::BI__builtin_neon_vst3_v: 6835 case NEON::BI__builtin_neon_vst3q_v: 6836 case NEON::BI__builtin_neon_vst4_v: 6837 case NEON::BI__builtin_neon_vst4q_v: 6838 case NEON::BI__builtin_neon_vst2_lane_v: 6839 case NEON::BI__builtin_neon_vst2q_lane_v: 6840 case NEON::BI__builtin_neon_vst3_lane_v: 6841 case NEON::BI__builtin_neon_vst3q_lane_v: 6842 case NEON::BI__builtin_neon_vst4_lane_v: 6843 case NEON::BI__builtin_neon_vst4q_lane_v: { 6844 llvm::Type *Tys[] = {Int8PtrTy, Ty}; 6845 Ops.push_back(getAlignmentValue32(PtrOp0)); 6846 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, ""); 6847 } 6848 case NEON::BI__builtin_neon_vsm3partw1q_v: 6849 case NEON::BI__builtin_neon_vsm3partw2q_v: 6850 case NEON::BI__builtin_neon_vsm3ss1q_v: 6851 case NEON::BI__builtin_neon_vsm4ekeyq_v: 6852 case NEON::BI__builtin_neon_vsm4eq_v: { 6853 Function *F = CGM.getIntrinsic(Int); 6854 return EmitNeonCall(F, Ops, ""); 6855 } 6856 case NEON::BI__builtin_neon_vsm3tt1aq_v: 6857 case NEON::BI__builtin_neon_vsm3tt1bq_v: 6858 case NEON::BI__builtin_neon_vsm3tt2aq_v: 6859 case NEON::BI__builtin_neon_vsm3tt2bq_v: { 6860 Function *F = CGM.getIntrinsic(Int); 6861 Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty); 6862 return EmitNeonCall(F, Ops, ""); 6863 } 6864 case NEON::BI__builtin_neon_vst1_x2_v: 6865 case NEON::BI__builtin_neon_vst1q_x2_v: 6866 case NEON::BI__builtin_neon_vst1_x3_v: 6867 case NEON::BI__builtin_neon_vst1q_x3_v: 6868 case NEON::BI__builtin_neon_vst1_x4_v: 6869 case NEON::BI__builtin_neon_vst1q_x4_v: { 6870 llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getElementType()); 6871 // TODO: Currently in AArch32 mode the pointer operand comes first, whereas 6872 // in AArch64 it comes last. We may want to stick to one or another. 6873 if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_be || 6874 Arch == llvm::Triple::aarch64_32) { 6875 llvm::Type *Tys[2] = { VTy, PTy }; 6876 std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end()); 6877 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, ""); 6878 } 6879 llvm::Type *Tys[2] = { PTy, VTy }; 6880 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, ""); 6881 } 6882 case NEON::BI__builtin_neon_vsubhn_v: { 6883 llvm::FixedVectorType *SrcTy = 6884 llvm::FixedVectorType::getExtendedElementVectorType(VTy); 6885 6886 // %sum = add <4 x i32> %lhs, %rhs 6887 Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy); 6888 Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy); 6889 Ops[0] = Builder.CreateSub(Ops[0], Ops[1], "vsubhn"); 6890 6891 // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16> 6892 Constant *ShiftAmt = 6893 ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2); 6894 Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vsubhn"); 6895 6896 // %res = trunc <4 x i32> %high to <4 x i16> 6897 return Builder.CreateTrunc(Ops[0], VTy, "vsubhn"); 6898 } 6899 case NEON::BI__builtin_neon_vtrn_v: 6900 case NEON::BI__builtin_neon_vtrnq_v: { 6901 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty)); 6902 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 6903 Ops[2] = Builder.CreateBitCast(Ops[2], Ty); 6904 Value *SV = nullptr; 6905 6906 for (unsigned vi = 0; vi != 2; ++vi) { 6907 SmallVector<int, 16> Indices; 6908 for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) { 6909 Indices.push_back(i+vi); 6910 Indices.push_back(i+e+vi); 6911 } 6912 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi); 6913 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vtrn"); 6914 SV = Builder.CreateDefaultAlignedStore(SV, Addr); 6915 } 6916 return SV; 6917 } 6918 case NEON::BI__builtin_neon_vtst_v: 6919 case NEON::BI__builtin_neon_vtstq_v: { 6920 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 6921 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 6922 Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]); 6923 Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0], 6924 ConstantAggregateZero::get(Ty)); 6925 return Builder.CreateSExt(Ops[0], Ty, "vtst"); 6926 } 6927 case NEON::BI__builtin_neon_vuzp_v: 6928 case NEON::BI__builtin_neon_vuzpq_v: { 6929 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty)); 6930 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 6931 Ops[2] = Builder.CreateBitCast(Ops[2], Ty); 6932 Value *SV = nullptr; 6933 6934 for (unsigned vi = 0; vi != 2; ++vi) { 6935 SmallVector<int, 16> Indices; 6936 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) 6937 Indices.push_back(2*i+vi); 6938 6939 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi); 6940 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vuzp"); 6941 SV = Builder.CreateDefaultAlignedStore(SV, Addr); 6942 } 6943 return SV; 6944 } 6945 case NEON::BI__builtin_neon_vxarq_v: { 6946 Function *F = CGM.getIntrinsic(Int); 6947 Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty); 6948 return EmitNeonCall(F, Ops, ""); 6949 } 6950 case NEON::BI__builtin_neon_vzip_v: 6951 case NEON::BI__builtin_neon_vzipq_v: { 6952 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty)); 6953 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 6954 Ops[2] = Builder.CreateBitCast(Ops[2], Ty); 6955 Value *SV = nullptr; 6956 6957 for (unsigned vi = 0; vi != 2; ++vi) { 6958 SmallVector<int, 16> Indices; 6959 for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) { 6960 Indices.push_back((i + vi*e) >> 1); 6961 Indices.push_back(((i + vi*e) >> 1)+e); 6962 } 6963 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi); 6964 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vzip"); 6965 SV = Builder.CreateDefaultAlignedStore(SV, Addr); 6966 } 6967 return SV; 6968 } 6969 case NEON::BI__builtin_neon_vdot_v: 6970 case NEON::BI__builtin_neon_vdotq_v: { 6971 auto *InputTy = 6972 llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8); 6973 llvm::Type *Tys[2] = { Ty, InputTy }; 6974 Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic; 6975 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vdot"); 6976 } 6977 case NEON::BI__builtin_neon_vfmlal_low_v: 6978 case NEON::BI__builtin_neon_vfmlalq_low_v: { 6979 auto *InputTy = 6980 llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16); 6981 llvm::Type *Tys[2] = { Ty, InputTy }; 6982 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlal_low"); 6983 } 6984 case NEON::BI__builtin_neon_vfmlsl_low_v: 6985 case NEON::BI__builtin_neon_vfmlslq_low_v: { 6986 auto *InputTy = 6987 llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16); 6988 llvm::Type *Tys[2] = { Ty, InputTy }; 6989 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlsl_low"); 6990 } 6991 case NEON::BI__builtin_neon_vfmlal_high_v: 6992 case NEON::BI__builtin_neon_vfmlalq_high_v: { 6993 auto *InputTy = 6994 llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16); 6995 llvm::Type *Tys[2] = { Ty, InputTy }; 6996 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlal_high"); 6997 } 6998 case NEON::BI__builtin_neon_vfmlsl_high_v: 6999 case NEON::BI__builtin_neon_vfmlslq_high_v: { 7000 auto *InputTy = 7001 llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16); 7002 llvm::Type *Tys[2] = { Ty, InputTy }; 7003 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlsl_high"); 7004 } 7005 case NEON::BI__builtin_neon_vmmlaq_v: { 7006 auto *InputTy = 7007 llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8); 7008 llvm::Type *Tys[2] = { Ty, InputTy }; 7009 Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic; 7010 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmmla"); 7011 } 7012 case NEON::BI__builtin_neon_vusmmlaq_v: { 7013 auto *InputTy = 7014 llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8); 7015 llvm::Type *Tys[2] = { Ty, InputTy }; 7016 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vusmmla"); 7017 } 7018 case NEON::BI__builtin_neon_vusdot_v: 7019 case NEON::BI__builtin_neon_vusdotq_v: { 7020 auto *InputTy = 7021 llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8); 7022 llvm::Type *Tys[2] = { Ty, InputTy }; 7023 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vusdot"); 7024 } 7025 case NEON::BI__builtin_neon_vbfdot_v: 7026 case NEON::BI__builtin_neon_vbfdotq_v: { 7027 llvm::Type *InputTy = 7028 llvm::FixedVectorType::get(BFloatTy, Ty->getPrimitiveSizeInBits() / 16); 7029 llvm::Type *Tys[2] = { Ty, InputTy }; 7030 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vbfdot"); 7031 } 7032 case NEON::BI__builtin_neon___a32_vcvt_bf16_v: { 7033 llvm::Type *Tys[1] = { Ty }; 7034 Function *F = CGM.getIntrinsic(Int, Tys); 7035 return EmitNeonCall(F, Ops, "vcvtfp2bf"); 7036 } 7037 7038 } 7039 7040 assert(Int && "Expected valid intrinsic number"); 7041 7042 // Determine the type(s) of this overloaded AArch64 intrinsic. 7043 Function *F = LookupNeonLLVMIntrinsic(Int, Modifier, Ty, E); 7044 7045 Value *Result = EmitNeonCall(F, Ops, NameHint); 7046 llvm::Type *ResultType = ConvertType(E->getType()); 7047 // AArch64 intrinsic one-element vector type cast to 7048 // scalar type expected by the builtin 7049 return Builder.CreateBitCast(Result, ResultType, NameHint); 7050 } 7051 7052 Value *CodeGenFunction::EmitAArch64CompareBuiltinExpr( 7053 Value *Op, llvm::Type *Ty, const CmpInst::Predicate Fp, 7054 const CmpInst::Predicate Ip, const Twine &Name) { 7055 llvm::Type *OTy = Op->getType(); 7056 7057 // FIXME: this is utterly horrific. We should not be looking at previous 7058 // codegen context to find out what needs doing. Unfortunately TableGen 7059 // currently gives us exactly the same calls for vceqz_f32 and vceqz_s32 7060 // (etc). 7061 if (BitCastInst *BI = dyn_cast<BitCastInst>(Op)) 7062 OTy = BI->getOperand(0)->getType(); 7063 7064 Op = Builder.CreateBitCast(Op, OTy); 7065 if (OTy->getScalarType()->isFloatingPointTy()) { 7066 Op = Builder.CreateFCmp(Fp, Op, Constant::getNullValue(OTy)); 7067 } else { 7068 Op = Builder.CreateICmp(Ip, Op, Constant::getNullValue(OTy)); 7069 } 7070 return Builder.CreateSExt(Op, Ty, Name); 7071 } 7072 7073 static Value *packTBLDVectorList(CodeGenFunction &CGF, ArrayRef<Value *> Ops, 7074 Value *ExtOp, Value *IndexOp, 7075 llvm::Type *ResTy, unsigned IntID, 7076 const char *Name) { 7077 SmallVector<Value *, 2> TblOps; 7078 if (ExtOp) 7079 TblOps.push_back(ExtOp); 7080 7081 // Build a vector containing sequential number like (0, 1, 2, ..., 15) 7082 SmallVector<int, 16> Indices; 7083 auto *TblTy = cast<llvm::FixedVectorType>(Ops[0]->getType()); 7084 for (unsigned i = 0, e = TblTy->getNumElements(); i != e; ++i) { 7085 Indices.push_back(2*i); 7086 Indices.push_back(2*i+1); 7087 } 7088 7089 int PairPos = 0, End = Ops.size() - 1; 7090 while (PairPos < End) { 7091 TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos], 7092 Ops[PairPos+1], Indices, 7093 Name)); 7094 PairPos += 2; 7095 } 7096 7097 // If there's an odd number of 64-bit lookup table, fill the high 64-bit 7098 // of the 128-bit lookup table with zero. 7099 if (PairPos == End) { 7100 Value *ZeroTbl = ConstantAggregateZero::get(TblTy); 7101 TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos], 7102 ZeroTbl, Indices, Name)); 7103 } 7104 7105 Function *TblF; 7106 TblOps.push_back(IndexOp); 7107 TblF = CGF.CGM.getIntrinsic(IntID, ResTy); 7108 7109 return CGF.EmitNeonCall(TblF, TblOps, Name); 7110 } 7111 7112 Value *CodeGenFunction::GetValueForARMHint(unsigned BuiltinID) { 7113 unsigned Value; 7114 switch (BuiltinID) { 7115 default: 7116 return nullptr; 7117 case ARM::BI__builtin_arm_nop: 7118 Value = 0; 7119 break; 7120 case ARM::BI__builtin_arm_yield: 7121 case ARM::BI__yield: 7122 Value = 1; 7123 break; 7124 case ARM::BI__builtin_arm_wfe: 7125 case ARM::BI__wfe: 7126 Value = 2; 7127 break; 7128 case ARM::BI__builtin_arm_wfi: 7129 case ARM::BI__wfi: 7130 Value = 3; 7131 break; 7132 case ARM::BI__builtin_arm_sev: 7133 case ARM::BI__sev: 7134 Value = 4; 7135 break; 7136 case ARM::BI__builtin_arm_sevl: 7137 case ARM::BI__sevl: 7138 Value = 5; 7139 break; 7140 } 7141 7142 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_hint), 7143 llvm::ConstantInt::get(Int32Ty, Value)); 7144 } 7145 7146 enum SpecialRegisterAccessKind { 7147 NormalRead, 7148 VolatileRead, 7149 Write, 7150 }; 7151 7152 // Generates the IR for the read/write special register builtin, 7153 // ValueType is the type of the value that is to be written or read, 7154 // RegisterType is the type of the register being written to or read from. 7155 static Value *EmitSpecialRegisterBuiltin(CodeGenFunction &CGF, 7156 const CallExpr *E, 7157 llvm::Type *RegisterType, 7158 llvm::Type *ValueType, 7159 SpecialRegisterAccessKind AccessKind, 7160 StringRef SysReg = "") { 7161 // write and register intrinsics only support 32 and 64 bit operations. 7162 assert((RegisterType->isIntegerTy(32) || RegisterType->isIntegerTy(64)) 7163 && "Unsupported size for register."); 7164 7165 CodeGen::CGBuilderTy &Builder = CGF.Builder; 7166 CodeGen::CodeGenModule &CGM = CGF.CGM; 7167 LLVMContext &Context = CGM.getLLVMContext(); 7168 7169 if (SysReg.empty()) { 7170 const Expr *SysRegStrExpr = E->getArg(0)->IgnoreParenCasts(); 7171 SysReg = cast<clang::StringLiteral>(SysRegStrExpr)->getString(); 7172 } 7173 7174 llvm::Metadata *Ops[] = { llvm::MDString::get(Context, SysReg) }; 7175 llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops); 7176 llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName); 7177 7178 llvm::Type *Types[] = { RegisterType }; 7179 7180 bool MixedTypes = RegisterType->isIntegerTy(64) && ValueType->isIntegerTy(32); 7181 assert(!(RegisterType->isIntegerTy(32) && ValueType->isIntegerTy(64)) 7182 && "Can't fit 64-bit value in 32-bit register"); 7183 7184 if (AccessKind != Write) { 7185 assert(AccessKind == NormalRead || AccessKind == VolatileRead); 7186 llvm::Function *F = CGM.getIntrinsic( 7187 AccessKind == VolatileRead ? llvm::Intrinsic::read_volatile_register 7188 : llvm::Intrinsic::read_register, 7189 Types); 7190 llvm::Value *Call = Builder.CreateCall(F, Metadata); 7191 7192 if (MixedTypes) 7193 // Read into 64 bit register and then truncate result to 32 bit. 7194 return Builder.CreateTrunc(Call, ValueType); 7195 7196 if (ValueType->isPointerTy()) 7197 // Have i32/i64 result (Call) but want to return a VoidPtrTy (i8*). 7198 return Builder.CreateIntToPtr(Call, ValueType); 7199 7200 return Call; 7201 } 7202 7203 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types); 7204 llvm::Value *ArgValue = CGF.EmitScalarExpr(E->getArg(1)); 7205 if (MixedTypes) { 7206 // Extend 32 bit write value to 64 bit to pass to write. 7207 ArgValue = Builder.CreateZExt(ArgValue, RegisterType); 7208 return Builder.CreateCall(F, { Metadata, ArgValue }); 7209 } 7210 7211 if (ValueType->isPointerTy()) { 7212 // Have VoidPtrTy ArgValue but want to return an i32/i64. 7213 ArgValue = Builder.CreatePtrToInt(ArgValue, RegisterType); 7214 return Builder.CreateCall(F, { Metadata, ArgValue }); 7215 } 7216 7217 return Builder.CreateCall(F, { Metadata, ArgValue }); 7218 } 7219 7220 /// Return true if BuiltinID is an overloaded Neon intrinsic with an extra 7221 /// argument that specifies the vector type. 7222 static bool HasExtraNeonArgument(unsigned BuiltinID) { 7223 switch (BuiltinID) { 7224 default: break; 7225 case NEON::BI__builtin_neon_vget_lane_i8: 7226 case NEON::BI__builtin_neon_vget_lane_i16: 7227 case NEON::BI__builtin_neon_vget_lane_bf16: 7228 case NEON::BI__builtin_neon_vget_lane_i32: 7229 case NEON::BI__builtin_neon_vget_lane_i64: 7230 case NEON::BI__builtin_neon_vget_lane_f32: 7231 case NEON::BI__builtin_neon_vgetq_lane_i8: 7232 case NEON::BI__builtin_neon_vgetq_lane_i16: 7233 case NEON::BI__builtin_neon_vgetq_lane_bf16: 7234 case NEON::BI__builtin_neon_vgetq_lane_i32: 7235 case NEON::BI__builtin_neon_vgetq_lane_i64: 7236 case NEON::BI__builtin_neon_vgetq_lane_f32: 7237 case NEON::BI__builtin_neon_vduph_lane_bf16: 7238 case NEON::BI__builtin_neon_vduph_laneq_bf16: 7239 case NEON::BI__builtin_neon_vset_lane_i8: 7240 case NEON::BI__builtin_neon_vset_lane_i16: 7241 case NEON::BI__builtin_neon_vset_lane_bf16: 7242 case NEON::BI__builtin_neon_vset_lane_i32: 7243 case NEON::BI__builtin_neon_vset_lane_i64: 7244 case NEON::BI__builtin_neon_vset_lane_f32: 7245 case NEON::BI__builtin_neon_vsetq_lane_i8: 7246 case NEON::BI__builtin_neon_vsetq_lane_i16: 7247 case NEON::BI__builtin_neon_vsetq_lane_bf16: 7248 case NEON::BI__builtin_neon_vsetq_lane_i32: 7249 case NEON::BI__builtin_neon_vsetq_lane_i64: 7250 case NEON::BI__builtin_neon_vsetq_lane_f32: 7251 case NEON::BI__builtin_neon_vsha1h_u32: 7252 case NEON::BI__builtin_neon_vsha1cq_u32: 7253 case NEON::BI__builtin_neon_vsha1pq_u32: 7254 case NEON::BI__builtin_neon_vsha1mq_u32: 7255 case NEON::BI__builtin_neon_vcvth_bf16_f32: 7256 case clang::ARM::BI_MoveToCoprocessor: 7257 case clang::ARM::BI_MoveToCoprocessor2: 7258 return false; 7259 } 7260 return true; 7261 } 7262 7263 Value *CodeGenFunction::EmitARMBuiltinExpr(unsigned BuiltinID, 7264 const CallExpr *E, 7265 ReturnValueSlot ReturnValue, 7266 llvm::Triple::ArchType Arch) { 7267 if (auto Hint = GetValueForARMHint(BuiltinID)) 7268 return Hint; 7269 7270 if (BuiltinID == ARM::BI__emit) { 7271 bool IsThumb = getTarget().getTriple().getArch() == llvm::Triple::thumb; 7272 llvm::FunctionType *FTy = 7273 llvm::FunctionType::get(VoidTy, /*Variadic=*/false); 7274 7275 Expr::EvalResult Result; 7276 if (!E->getArg(0)->EvaluateAsInt(Result, CGM.getContext())) 7277 llvm_unreachable("Sema will ensure that the parameter is constant"); 7278 7279 llvm::APSInt Value = Result.Val.getInt(); 7280 uint64_t ZExtValue = Value.zextOrTrunc(IsThumb ? 16 : 32).getZExtValue(); 7281 7282 llvm::InlineAsm *Emit = 7283 IsThumb ? InlineAsm::get(FTy, ".inst.n 0x" + utohexstr(ZExtValue), "", 7284 /*hasSideEffects=*/true) 7285 : InlineAsm::get(FTy, ".inst 0x" + utohexstr(ZExtValue), "", 7286 /*hasSideEffects=*/true); 7287 7288 return Builder.CreateCall(Emit); 7289 } 7290 7291 if (BuiltinID == ARM::BI__builtin_arm_dbg) { 7292 Value *Option = EmitScalarExpr(E->getArg(0)); 7293 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_dbg), Option); 7294 } 7295 7296 if (BuiltinID == ARM::BI__builtin_arm_prefetch) { 7297 Value *Address = EmitScalarExpr(E->getArg(0)); 7298 Value *RW = EmitScalarExpr(E->getArg(1)); 7299 Value *IsData = EmitScalarExpr(E->getArg(2)); 7300 7301 // Locality is not supported on ARM target 7302 Value *Locality = llvm::ConstantInt::get(Int32Ty, 3); 7303 7304 Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType()); 7305 return Builder.CreateCall(F, {Address, RW, Locality, IsData}); 7306 } 7307 7308 if (BuiltinID == ARM::BI__builtin_arm_rbit) { 7309 llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); 7310 return Builder.CreateCall( 7311 CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit"); 7312 } 7313 7314 if (BuiltinID == ARM::BI__builtin_arm_cls) { 7315 llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); 7316 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_cls), Arg, "cls"); 7317 } 7318 if (BuiltinID == ARM::BI__builtin_arm_cls64) { 7319 llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); 7320 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_cls64), Arg, 7321 "cls"); 7322 } 7323 7324 if (BuiltinID == ARM::BI__clear_cache) { 7325 assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments"); 7326 const FunctionDecl *FD = E->getDirectCallee(); 7327 Value *Ops[2]; 7328 for (unsigned i = 0; i < 2; i++) 7329 Ops[i] = EmitScalarExpr(E->getArg(i)); 7330 llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType()); 7331 llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty); 7332 StringRef Name = FD->getName(); 7333 return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops); 7334 } 7335 7336 if (BuiltinID == ARM::BI__builtin_arm_mcrr || 7337 BuiltinID == ARM::BI__builtin_arm_mcrr2) { 7338 Function *F; 7339 7340 switch (BuiltinID) { 7341 default: llvm_unreachable("unexpected builtin"); 7342 case ARM::BI__builtin_arm_mcrr: 7343 F = CGM.getIntrinsic(Intrinsic::arm_mcrr); 7344 break; 7345 case ARM::BI__builtin_arm_mcrr2: 7346 F = CGM.getIntrinsic(Intrinsic::arm_mcrr2); 7347 break; 7348 } 7349 7350 // MCRR{2} instruction has 5 operands but 7351 // the intrinsic has 4 because Rt and Rt2 7352 // are represented as a single unsigned 64 7353 // bit integer in the intrinsic definition 7354 // but internally it's represented as 2 32 7355 // bit integers. 7356 7357 Value *Coproc = EmitScalarExpr(E->getArg(0)); 7358 Value *Opc1 = EmitScalarExpr(E->getArg(1)); 7359 Value *RtAndRt2 = EmitScalarExpr(E->getArg(2)); 7360 Value *CRm = EmitScalarExpr(E->getArg(3)); 7361 7362 Value *C1 = llvm::ConstantInt::get(Int64Ty, 32); 7363 Value *Rt = Builder.CreateTruncOrBitCast(RtAndRt2, Int32Ty); 7364 Value *Rt2 = Builder.CreateLShr(RtAndRt2, C1); 7365 Rt2 = Builder.CreateTruncOrBitCast(Rt2, Int32Ty); 7366 7367 return Builder.CreateCall(F, {Coproc, Opc1, Rt, Rt2, CRm}); 7368 } 7369 7370 if (BuiltinID == ARM::BI__builtin_arm_mrrc || 7371 BuiltinID == ARM::BI__builtin_arm_mrrc2) { 7372 Function *F; 7373 7374 switch (BuiltinID) { 7375 default: llvm_unreachable("unexpected builtin"); 7376 case ARM::BI__builtin_arm_mrrc: 7377 F = CGM.getIntrinsic(Intrinsic::arm_mrrc); 7378 break; 7379 case ARM::BI__builtin_arm_mrrc2: 7380 F = CGM.getIntrinsic(Intrinsic::arm_mrrc2); 7381 break; 7382 } 7383 7384 Value *Coproc = EmitScalarExpr(E->getArg(0)); 7385 Value *Opc1 = EmitScalarExpr(E->getArg(1)); 7386 Value *CRm = EmitScalarExpr(E->getArg(2)); 7387 Value *RtAndRt2 = Builder.CreateCall(F, {Coproc, Opc1, CRm}); 7388 7389 // Returns an unsigned 64 bit integer, represented 7390 // as two 32 bit integers. 7391 7392 Value *Rt = Builder.CreateExtractValue(RtAndRt2, 1); 7393 Value *Rt1 = Builder.CreateExtractValue(RtAndRt2, 0); 7394 Rt = Builder.CreateZExt(Rt, Int64Ty); 7395 Rt1 = Builder.CreateZExt(Rt1, Int64Ty); 7396 7397 Value *ShiftCast = llvm::ConstantInt::get(Int64Ty, 32); 7398 RtAndRt2 = Builder.CreateShl(Rt, ShiftCast, "shl", true); 7399 RtAndRt2 = Builder.CreateOr(RtAndRt2, Rt1); 7400 7401 return Builder.CreateBitCast(RtAndRt2, ConvertType(E->getType())); 7402 } 7403 7404 if (BuiltinID == ARM::BI__builtin_arm_ldrexd || 7405 ((BuiltinID == ARM::BI__builtin_arm_ldrex || 7406 BuiltinID == ARM::BI__builtin_arm_ldaex) && 7407 getContext().getTypeSize(E->getType()) == 64) || 7408 BuiltinID == ARM::BI__ldrexd) { 7409 Function *F; 7410 7411 switch (BuiltinID) { 7412 default: llvm_unreachable("unexpected builtin"); 7413 case ARM::BI__builtin_arm_ldaex: 7414 F = CGM.getIntrinsic(Intrinsic::arm_ldaexd); 7415 break; 7416 case ARM::BI__builtin_arm_ldrexd: 7417 case ARM::BI__builtin_arm_ldrex: 7418 case ARM::BI__ldrexd: 7419 F = CGM.getIntrinsic(Intrinsic::arm_ldrexd); 7420 break; 7421 } 7422 7423 Value *LdPtr = EmitScalarExpr(E->getArg(0)); 7424 Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy), 7425 "ldrexd"); 7426 7427 Value *Val0 = Builder.CreateExtractValue(Val, 1); 7428 Value *Val1 = Builder.CreateExtractValue(Val, 0); 7429 Val0 = Builder.CreateZExt(Val0, Int64Ty); 7430 Val1 = Builder.CreateZExt(Val1, Int64Ty); 7431 7432 Value *ShiftCst = llvm::ConstantInt::get(Int64Ty, 32); 7433 Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */); 7434 Val = Builder.CreateOr(Val, Val1); 7435 return Builder.CreateBitCast(Val, ConvertType(E->getType())); 7436 } 7437 7438 if (BuiltinID == ARM::BI__builtin_arm_ldrex || 7439 BuiltinID == ARM::BI__builtin_arm_ldaex) { 7440 Value *LoadAddr = EmitScalarExpr(E->getArg(0)); 7441 7442 QualType Ty = E->getType(); 7443 llvm::Type *RealResTy = ConvertType(Ty); 7444 llvm::Type *PtrTy = llvm::IntegerType::get( 7445 getLLVMContext(), getContext().getTypeSize(Ty))->getPointerTo(); 7446 LoadAddr = Builder.CreateBitCast(LoadAddr, PtrTy); 7447 7448 Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_ldaex 7449 ? Intrinsic::arm_ldaex 7450 : Intrinsic::arm_ldrex, 7451 PtrTy); 7452 Value *Val = Builder.CreateCall(F, LoadAddr, "ldrex"); 7453 7454 if (RealResTy->isPointerTy()) 7455 return Builder.CreateIntToPtr(Val, RealResTy); 7456 else { 7457 llvm::Type *IntResTy = llvm::IntegerType::get( 7458 getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(RealResTy)); 7459 Val = Builder.CreateTruncOrBitCast(Val, IntResTy); 7460 return Builder.CreateBitCast(Val, RealResTy); 7461 } 7462 } 7463 7464 if (BuiltinID == ARM::BI__builtin_arm_strexd || 7465 ((BuiltinID == ARM::BI__builtin_arm_stlex || 7466 BuiltinID == ARM::BI__builtin_arm_strex) && 7467 getContext().getTypeSize(E->getArg(0)->getType()) == 64)) { 7468 Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_stlex 7469 ? Intrinsic::arm_stlexd 7470 : Intrinsic::arm_strexd); 7471 llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty); 7472 7473 Address Tmp = CreateMemTemp(E->getArg(0)->getType()); 7474 Value *Val = EmitScalarExpr(E->getArg(0)); 7475 Builder.CreateStore(Val, Tmp); 7476 7477 Address LdPtr = Builder.CreateBitCast(Tmp,llvm::PointerType::getUnqual(STy)); 7478 Val = Builder.CreateLoad(LdPtr); 7479 7480 Value *Arg0 = Builder.CreateExtractValue(Val, 0); 7481 Value *Arg1 = Builder.CreateExtractValue(Val, 1); 7482 Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), Int8PtrTy); 7483 return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "strexd"); 7484 } 7485 7486 if (BuiltinID == ARM::BI__builtin_arm_strex || 7487 BuiltinID == ARM::BI__builtin_arm_stlex) { 7488 Value *StoreVal = EmitScalarExpr(E->getArg(0)); 7489 Value *StoreAddr = EmitScalarExpr(E->getArg(1)); 7490 7491 QualType Ty = E->getArg(0)->getType(); 7492 llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(), 7493 getContext().getTypeSize(Ty)); 7494 StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo()); 7495 7496 if (StoreVal->getType()->isPointerTy()) 7497 StoreVal = Builder.CreatePtrToInt(StoreVal, Int32Ty); 7498 else { 7499 llvm::Type *IntTy = llvm::IntegerType::get( 7500 getLLVMContext(), 7501 CGM.getDataLayout().getTypeSizeInBits(StoreVal->getType())); 7502 StoreVal = Builder.CreateBitCast(StoreVal, IntTy); 7503 StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int32Ty); 7504 } 7505 7506 Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_stlex 7507 ? Intrinsic::arm_stlex 7508 : Intrinsic::arm_strex, 7509 StoreAddr->getType()); 7510 return Builder.CreateCall(F, {StoreVal, StoreAddr}, "strex"); 7511 } 7512 7513 if (BuiltinID == ARM::BI__builtin_arm_clrex) { 7514 Function *F = CGM.getIntrinsic(Intrinsic::arm_clrex); 7515 return Builder.CreateCall(F); 7516 } 7517 7518 // CRC32 7519 Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic; 7520 switch (BuiltinID) { 7521 case ARM::BI__builtin_arm_crc32b: 7522 CRCIntrinsicID = Intrinsic::arm_crc32b; break; 7523 case ARM::BI__builtin_arm_crc32cb: 7524 CRCIntrinsicID = Intrinsic::arm_crc32cb; break; 7525 case ARM::BI__builtin_arm_crc32h: 7526 CRCIntrinsicID = Intrinsic::arm_crc32h; break; 7527 case ARM::BI__builtin_arm_crc32ch: 7528 CRCIntrinsicID = Intrinsic::arm_crc32ch; break; 7529 case ARM::BI__builtin_arm_crc32w: 7530 case ARM::BI__builtin_arm_crc32d: 7531 CRCIntrinsicID = Intrinsic::arm_crc32w; break; 7532 case ARM::BI__builtin_arm_crc32cw: 7533 case ARM::BI__builtin_arm_crc32cd: 7534 CRCIntrinsicID = Intrinsic::arm_crc32cw; break; 7535 } 7536 7537 if (CRCIntrinsicID != Intrinsic::not_intrinsic) { 7538 Value *Arg0 = EmitScalarExpr(E->getArg(0)); 7539 Value *Arg1 = EmitScalarExpr(E->getArg(1)); 7540 7541 // crc32{c,}d intrinsics are implemnted as two calls to crc32{c,}w 7542 // intrinsics, hence we need different codegen for these cases. 7543 if (BuiltinID == ARM::BI__builtin_arm_crc32d || 7544 BuiltinID == ARM::BI__builtin_arm_crc32cd) { 7545 Value *C1 = llvm::ConstantInt::get(Int64Ty, 32); 7546 Value *Arg1a = Builder.CreateTruncOrBitCast(Arg1, Int32Ty); 7547 Value *Arg1b = Builder.CreateLShr(Arg1, C1); 7548 Arg1b = Builder.CreateTruncOrBitCast(Arg1b, Int32Ty); 7549 7550 Function *F = CGM.getIntrinsic(CRCIntrinsicID); 7551 Value *Res = Builder.CreateCall(F, {Arg0, Arg1a}); 7552 return Builder.CreateCall(F, {Res, Arg1b}); 7553 } else { 7554 Arg1 = Builder.CreateZExtOrBitCast(Arg1, Int32Ty); 7555 7556 Function *F = CGM.getIntrinsic(CRCIntrinsicID); 7557 return Builder.CreateCall(F, {Arg0, Arg1}); 7558 } 7559 } 7560 7561 if (BuiltinID == ARM::BI__builtin_arm_rsr || 7562 BuiltinID == ARM::BI__builtin_arm_rsr64 || 7563 BuiltinID == ARM::BI__builtin_arm_rsrp || 7564 BuiltinID == ARM::BI__builtin_arm_wsr || 7565 BuiltinID == ARM::BI__builtin_arm_wsr64 || 7566 BuiltinID == ARM::BI__builtin_arm_wsrp) { 7567 7568 SpecialRegisterAccessKind AccessKind = Write; 7569 if (BuiltinID == ARM::BI__builtin_arm_rsr || 7570 BuiltinID == ARM::BI__builtin_arm_rsr64 || 7571 BuiltinID == ARM::BI__builtin_arm_rsrp) 7572 AccessKind = VolatileRead; 7573 7574 bool IsPointerBuiltin = BuiltinID == ARM::BI__builtin_arm_rsrp || 7575 BuiltinID == ARM::BI__builtin_arm_wsrp; 7576 7577 bool Is64Bit = BuiltinID == ARM::BI__builtin_arm_rsr64 || 7578 BuiltinID == ARM::BI__builtin_arm_wsr64; 7579 7580 llvm::Type *ValueType; 7581 llvm::Type *RegisterType; 7582 if (IsPointerBuiltin) { 7583 ValueType = VoidPtrTy; 7584 RegisterType = Int32Ty; 7585 } else if (Is64Bit) { 7586 ValueType = RegisterType = Int64Ty; 7587 } else { 7588 ValueType = RegisterType = Int32Ty; 7589 } 7590 7591 return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType, 7592 AccessKind); 7593 } 7594 7595 // Handle MSVC intrinsics before argument evaluation to prevent double 7596 // evaluation. 7597 if (Optional<MSVCIntrin> MsvcIntId = translateArmToMsvcIntrin(BuiltinID)) 7598 return EmitMSVCBuiltinExpr(*MsvcIntId, E); 7599 7600 // Deal with MVE builtins 7601 if (Value *Result = EmitARMMVEBuiltinExpr(BuiltinID, E, ReturnValue, Arch)) 7602 return Result; 7603 // Handle CDE builtins 7604 if (Value *Result = EmitARMCDEBuiltinExpr(BuiltinID, E, ReturnValue, Arch)) 7605 return Result; 7606 7607 // Find out if any arguments are required to be integer constant 7608 // expressions. 7609 unsigned ICEArguments = 0; 7610 ASTContext::GetBuiltinTypeError Error; 7611 getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments); 7612 assert(Error == ASTContext::GE_None && "Should not codegen an error"); 7613 7614 auto getAlignmentValue32 = [&](Address addr) -> Value* { 7615 return Builder.getInt32(addr.getAlignment().getQuantity()); 7616 }; 7617 7618 Address PtrOp0 = Address::invalid(); 7619 Address PtrOp1 = Address::invalid(); 7620 SmallVector<Value*, 4> Ops; 7621 bool HasExtraArg = HasExtraNeonArgument(BuiltinID); 7622 unsigned NumArgs = E->getNumArgs() - (HasExtraArg ? 1 : 0); 7623 for (unsigned i = 0, e = NumArgs; i != e; i++) { 7624 if (i == 0) { 7625 switch (BuiltinID) { 7626 case NEON::BI__builtin_neon_vld1_v: 7627 case NEON::BI__builtin_neon_vld1q_v: 7628 case NEON::BI__builtin_neon_vld1q_lane_v: 7629 case NEON::BI__builtin_neon_vld1_lane_v: 7630 case NEON::BI__builtin_neon_vld1_dup_v: 7631 case NEON::BI__builtin_neon_vld1q_dup_v: 7632 case NEON::BI__builtin_neon_vst1_v: 7633 case NEON::BI__builtin_neon_vst1q_v: 7634 case NEON::BI__builtin_neon_vst1q_lane_v: 7635 case NEON::BI__builtin_neon_vst1_lane_v: 7636 case NEON::BI__builtin_neon_vst2_v: 7637 case NEON::BI__builtin_neon_vst2q_v: 7638 case NEON::BI__builtin_neon_vst2_lane_v: 7639 case NEON::BI__builtin_neon_vst2q_lane_v: 7640 case NEON::BI__builtin_neon_vst3_v: 7641 case NEON::BI__builtin_neon_vst3q_v: 7642 case NEON::BI__builtin_neon_vst3_lane_v: 7643 case NEON::BI__builtin_neon_vst3q_lane_v: 7644 case NEON::BI__builtin_neon_vst4_v: 7645 case NEON::BI__builtin_neon_vst4q_v: 7646 case NEON::BI__builtin_neon_vst4_lane_v: 7647 case NEON::BI__builtin_neon_vst4q_lane_v: 7648 // Get the alignment for the argument in addition to the value; 7649 // we'll use it later. 7650 PtrOp0 = EmitPointerWithAlignment(E->getArg(0)); 7651 Ops.push_back(PtrOp0.getPointer()); 7652 continue; 7653 } 7654 } 7655 if (i == 1) { 7656 switch (BuiltinID) { 7657 case NEON::BI__builtin_neon_vld2_v: 7658 case NEON::BI__builtin_neon_vld2q_v: 7659 case NEON::BI__builtin_neon_vld3_v: 7660 case NEON::BI__builtin_neon_vld3q_v: 7661 case NEON::BI__builtin_neon_vld4_v: 7662 case NEON::BI__builtin_neon_vld4q_v: 7663 case NEON::BI__builtin_neon_vld2_lane_v: 7664 case NEON::BI__builtin_neon_vld2q_lane_v: 7665 case NEON::BI__builtin_neon_vld3_lane_v: 7666 case NEON::BI__builtin_neon_vld3q_lane_v: 7667 case NEON::BI__builtin_neon_vld4_lane_v: 7668 case NEON::BI__builtin_neon_vld4q_lane_v: 7669 case NEON::BI__builtin_neon_vld2_dup_v: 7670 case NEON::BI__builtin_neon_vld2q_dup_v: 7671 case NEON::BI__builtin_neon_vld3_dup_v: 7672 case NEON::BI__builtin_neon_vld3q_dup_v: 7673 case NEON::BI__builtin_neon_vld4_dup_v: 7674 case NEON::BI__builtin_neon_vld4q_dup_v: 7675 // Get the alignment for the argument in addition to the value; 7676 // we'll use it later. 7677 PtrOp1 = EmitPointerWithAlignment(E->getArg(1)); 7678 Ops.push_back(PtrOp1.getPointer()); 7679 continue; 7680 } 7681 } 7682 7683 if ((ICEArguments & (1 << i)) == 0) { 7684 Ops.push_back(EmitScalarExpr(E->getArg(i))); 7685 } else { 7686 // If this is required to be a constant, constant fold it so that we know 7687 // that the generated intrinsic gets a ConstantInt. 7688 Ops.push_back(llvm::ConstantInt::get( 7689 getLLVMContext(), 7690 *E->getArg(i)->getIntegerConstantExpr(getContext()))); 7691 } 7692 } 7693 7694 switch (BuiltinID) { 7695 default: break; 7696 7697 case NEON::BI__builtin_neon_vget_lane_i8: 7698 case NEON::BI__builtin_neon_vget_lane_i16: 7699 case NEON::BI__builtin_neon_vget_lane_i32: 7700 case NEON::BI__builtin_neon_vget_lane_i64: 7701 case NEON::BI__builtin_neon_vget_lane_bf16: 7702 case NEON::BI__builtin_neon_vget_lane_f32: 7703 case NEON::BI__builtin_neon_vgetq_lane_i8: 7704 case NEON::BI__builtin_neon_vgetq_lane_i16: 7705 case NEON::BI__builtin_neon_vgetq_lane_i32: 7706 case NEON::BI__builtin_neon_vgetq_lane_i64: 7707 case NEON::BI__builtin_neon_vgetq_lane_bf16: 7708 case NEON::BI__builtin_neon_vgetq_lane_f32: 7709 case NEON::BI__builtin_neon_vduph_lane_bf16: 7710 case NEON::BI__builtin_neon_vduph_laneq_bf16: 7711 return Builder.CreateExtractElement(Ops[0], Ops[1], "vget_lane"); 7712 7713 case NEON::BI__builtin_neon_vrndns_f32: { 7714 Value *Arg = EmitScalarExpr(E->getArg(0)); 7715 llvm::Type *Tys[] = {Arg->getType()}; 7716 Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vrintn, Tys); 7717 return Builder.CreateCall(F, {Arg}, "vrndn"); } 7718 7719 case NEON::BI__builtin_neon_vset_lane_i8: 7720 case NEON::BI__builtin_neon_vset_lane_i16: 7721 case NEON::BI__builtin_neon_vset_lane_i32: 7722 case NEON::BI__builtin_neon_vset_lane_i64: 7723 case NEON::BI__builtin_neon_vset_lane_bf16: 7724 case NEON::BI__builtin_neon_vset_lane_f32: 7725 case NEON::BI__builtin_neon_vsetq_lane_i8: 7726 case NEON::BI__builtin_neon_vsetq_lane_i16: 7727 case NEON::BI__builtin_neon_vsetq_lane_i32: 7728 case NEON::BI__builtin_neon_vsetq_lane_i64: 7729 case NEON::BI__builtin_neon_vsetq_lane_bf16: 7730 case NEON::BI__builtin_neon_vsetq_lane_f32: 7731 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane"); 7732 7733 case NEON::BI__builtin_neon_vsha1h_u32: 7734 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1h), Ops, 7735 "vsha1h"); 7736 case NEON::BI__builtin_neon_vsha1cq_u32: 7737 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1c), Ops, 7738 "vsha1h"); 7739 case NEON::BI__builtin_neon_vsha1pq_u32: 7740 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1p), Ops, 7741 "vsha1h"); 7742 case NEON::BI__builtin_neon_vsha1mq_u32: 7743 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1m), Ops, 7744 "vsha1h"); 7745 7746 case NEON::BI__builtin_neon_vcvth_bf16_f32: { 7747 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vcvtbfp2bf), Ops, 7748 "vcvtbfp2bf"); 7749 } 7750 7751 // The ARM _MoveToCoprocessor builtins put the input register value as 7752 // the first argument, but the LLVM intrinsic expects it as the third one. 7753 case ARM::BI_MoveToCoprocessor: 7754 case ARM::BI_MoveToCoprocessor2: { 7755 Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI_MoveToCoprocessor ? 7756 Intrinsic::arm_mcr : Intrinsic::arm_mcr2); 7757 return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0], 7758 Ops[3], Ops[4], Ops[5]}); 7759 } 7760 } 7761 7762 // Get the last argument, which specifies the vector type. 7763 assert(HasExtraArg); 7764 const Expr *Arg = E->getArg(E->getNumArgs()-1); 7765 Optional<llvm::APSInt> Result = Arg->getIntegerConstantExpr(getContext()); 7766 if (!Result) 7767 return nullptr; 7768 7769 if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f || 7770 BuiltinID == ARM::BI__builtin_arm_vcvtr_d) { 7771 // Determine the overloaded type of this builtin. 7772 llvm::Type *Ty; 7773 if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f) 7774 Ty = FloatTy; 7775 else 7776 Ty = DoubleTy; 7777 7778 // Determine whether this is an unsigned conversion or not. 7779 bool usgn = Result->getZExtValue() == 1; 7780 unsigned Int = usgn ? Intrinsic::arm_vcvtru : Intrinsic::arm_vcvtr; 7781 7782 // Call the appropriate intrinsic. 7783 Function *F = CGM.getIntrinsic(Int, Ty); 7784 return Builder.CreateCall(F, Ops, "vcvtr"); 7785 } 7786 7787 // Determine the type of this overloaded NEON intrinsic. 7788 NeonTypeFlags Type = Result->getZExtValue(); 7789 bool usgn = Type.isUnsigned(); 7790 bool rightShift = false; 7791 7792 llvm::FixedVectorType *VTy = 7793 GetNeonType(this, Type, getTarget().hasLegalHalfType(), false, 7794 getTarget().hasBFloat16Type()); 7795 llvm::Type *Ty = VTy; 7796 if (!Ty) 7797 return nullptr; 7798 7799 // Many NEON builtins have identical semantics and uses in ARM and 7800 // AArch64. Emit these in a single function. 7801 auto IntrinsicMap = makeArrayRef(ARMSIMDIntrinsicMap); 7802 const ARMVectorIntrinsicInfo *Builtin = findARMVectorIntrinsicInMap( 7803 IntrinsicMap, BuiltinID, NEONSIMDIntrinsicsProvenSorted); 7804 if (Builtin) 7805 return EmitCommonNeonBuiltinExpr( 7806 Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic, 7807 Builtin->NameHint, Builtin->TypeModifier, E, Ops, PtrOp0, PtrOp1, Arch); 7808 7809 unsigned Int; 7810 switch (BuiltinID) { 7811 default: return nullptr; 7812 case NEON::BI__builtin_neon_vld1q_lane_v: 7813 // Handle 64-bit integer elements as a special case. Use shuffles of 7814 // one-element vectors to avoid poor code for i64 in the backend. 7815 if (VTy->getElementType()->isIntegerTy(64)) { 7816 // Extract the other lane. 7817 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 7818 int Lane = cast<ConstantInt>(Ops[2])->getZExtValue(); 7819 Value *SV = llvm::ConstantVector::get(ConstantInt::get(Int32Ty, 1-Lane)); 7820 Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV); 7821 // Load the value as a one-element vector. 7822 Ty = llvm::FixedVectorType::get(VTy->getElementType(), 1); 7823 llvm::Type *Tys[] = {Ty, Int8PtrTy}; 7824 Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld1, Tys); 7825 Value *Align = getAlignmentValue32(PtrOp0); 7826 Value *Ld = Builder.CreateCall(F, {Ops[0], Align}); 7827 // Combine them. 7828 int Indices[] = {1 - Lane, Lane}; 7829 return Builder.CreateShuffleVector(Ops[1], Ld, Indices, "vld1q_lane"); 7830 } 7831 LLVM_FALLTHROUGH; 7832 case NEON::BI__builtin_neon_vld1_lane_v: { 7833 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 7834 PtrOp0 = Builder.CreateElementBitCast(PtrOp0, VTy->getElementType()); 7835 Value *Ld = Builder.CreateLoad(PtrOp0); 7836 return Builder.CreateInsertElement(Ops[1], Ld, Ops[2], "vld1_lane"); 7837 } 7838 case NEON::BI__builtin_neon_vqrshrn_n_v: 7839 Int = 7840 usgn ? Intrinsic::arm_neon_vqrshiftnu : Intrinsic::arm_neon_vqrshiftns; 7841 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n", 7842 1, true); 7843 case NEON::BI__builtin_neon_vqrshrun_n_v: 7844 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqrshiftnsu, Ty), 7845 Ops, "vqrshrun_n", 1, true); 7846 case NEON::BI__builtin_neon_vqshrn_n_v: 7847 Int = usgn ? Intrinsic::arm_neon_vqshiftnu : Intrinsic::arm_neon_vqshiftns; 7848 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n", 7849 1, true); 7850 case NEON::BI__builtin_neon_vqshrun_n_v: 7851 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqshiftnsu, Ty), 7852 Ops, "vqshrun_n", 1, true); 7853 case NEON::BI__builtin_neon_vrecpe_v: 7854 case NEON::BI__builtin_neon_vrecpeq_v: 7855 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrecpe, Ty), 7856 Ops, "vrecpe"); 7857 case NEON::BI__builtin_neon_vrshrn_n_v: 7858 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrshiftn, Ty), 7859 Ops, "vrshrn_n", 1, true); 7860 case NEON::BI__builtin_neon_vrsra_n_v: 7861 case NEON::BI__builtin_neon_vrsraq_n_v: 7862 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 7863 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 7864 Ops[2] = EmitNeonShiftVector(Ops[2], Ty, true); 7865 Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts; 7866 Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Ty), {Ops[1], Ops[2]}); 7867 return Builder.CreateAdd(Ops[0], Ops[1], "vrsra_n"); 7868 case NEON::BI__builtin_neon_vsri_n_v: 7869 case NEON::BI__builtin_neon_vsriq_n_v: 7870 rightShift = true; 7871 LLVM_FALLTHROUGH; 7872 case NEON::BI__builtin_neon_vsli_n_v: 7873 case NEON::BI__builtin_neon_vsliq_n_v: 7874 Ops[2] = EmitNeonShiftVector(Ops[2], Ty, rightShift); 7875 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vshiftins, Ty), 7876 Ops, "vsli_n"); 7877 case NEON::BI__builtin_neon_vsra_n_v: 7878 case NEON::BI__builtin_neon_vsraq_n_v: 7879 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 7880 Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n"); 7881 return Builder.CreateAdd(Ops[0], Ops[1]); 7882 case NEON::BI__builtin_neon_vst1q_lane_v: 7883 // Handle 64-bit integer elements as a special case. Use a shuffle to get 7884 // a one-element vector and avoid poor code for i64 in the backend. 7885 if (VTy->getElementType()->isIntegerTy(64)) { 7886 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 7887 Value *SV = llvm::ConstantVector::get(cast<llvm::Constant>(Ops[2])); 7888 Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV); 7889 Ops[2] = getAlignmentValue32(PtrOp0); 7890 llvm::Type *Tys[] = {Int8PtrTy, Ops[1]->getType()}; 7891 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst1, 7892 Tys), Ops); 7893 } 7894 LLVM_FALLTHROUGH; 7895 case NEON::BI__builtin_neon_vst1_lane_v: { 7896 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 7897 Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]); 7898 Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); 7899 auto St = Builder.CreateStore(Ops[1], Builder.CreateBitCast(PtrOp0, Ty)); 7900 return St; 7901 } 7902 case NEON::BI__builtin_neon_vtbl1_v: 7903 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl1), 7904 Ops, "vtbl1"); 7905 case NEON::BI__builtin_neon_vtbl2_v: 7906 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl2), 7907 Ops, "vtbl2"); 7908 case NEON::BI__builtin_neon_vtbl3_v: 7909 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl3), 7910 Ops, "vtbl3"); 7911 case NEON::BI__builtin_neon_vtbl4_v: 7912 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl4), 7913 Ops, "vtbl4"); 7914 case NEON::BI__builtin_neon_vtbx1_v: 7915 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx1), 7916 Ops, "vtbx1"); 7917 case NEON::BI__builtin_neon_vtbx2_v: 7918 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx2), 7919 Ops, "vtbx2"); 7920 case NEON::BI__builtin_neon_vtbx3_v: 7921 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx3), 7922 Ops, "vtbx3"); 7923 case NEON::BI__builtin_neon_vtbx4_v: 7924 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx4), 7925 Ops, "vtbx4"); 7926 } 7927 } 7928 7929 template<typename Integer> 7930 static Integer GetIntegerConstantValue(const Expr *E, ASTContext &Context) { 7931 return E->getIntegerConstantExpr(Context)->getExtValue(); 7932 } 7933 7934 static llvm::Value *SignOrZeroExtend(CGBuilderTy &Builder, llvm::Value *V, 7935 llvm::Type *T, bool Unsigned) { 7936 // Helper function called by Tablegen-constructed ARM MVE builtin codegen, 7937 // which finds it convenient to specify signed/unsigned as a boolean flag. 7938 return Unsigned ? Builder.CreateZExt(V, T) : Builder.CreateSExt(V, T); 7939 } 7940 7941 static llvm::Value *MVEImmediateShr(CGBuilderTy &Builder, llvm::Value *V, 7942 uint32_t Shift, bool Unsigned) { 7943 // MVE helper function for integer shift right. This must handle signed vs 7944 // unsigned, and also deal specially with the case where the shift count is 7945 // equal to the lane size. In LLVM IR, an LShr with that parameter would be 7946 // undefined behavior, but in MVE it's legal, so we must convert it to code 7947 // that is not undefined in IR. 7948 unsigned LaneBits = cast<llvm::VectorType>(V->getType()) 7949 ->getElementType() 7950 ->getPrimitiveSizeInBits(); 7951 if (Shift == LaneBits) { 7952 // An unsigned shift of the full lane size always generates zero, so we can 7953 // simply emit a zero vector. A signed shift of the full lane size does the 7954 // same thing as shifting by one bit fewer. 7955 if (Unsigned) 7956 return llvm::Constant::getNullValue(V->getType()); 7957 else 7958 --Shift; 7959 } 7960 return Unsigned ? Builder.CreateLShr(V, Shift) : Builder.CreateAShr(V, Shift); 7961 } 7962 7963 static llvm::Value *ARMMVEVectorSplat(CGBuilderTy &Builder, llvm::Value *V) { 7964 // MVE-specific helper function for a vector splat, which infers the element 7965 // count of the output vector by knowing that MVE vectors are all 128 bits 7966 // wide. 7967 unsigned Elements = 128 / V->getType()->getPrimitiveSizeInBits(); 7968 return Builder.CreateVectorSplat(Elements, V); 7969 } 7970 7971 static llvm::Value *ARMMVEVectorReinterpret(CGBuilderTy &Builder, 7972 CodeGenFunction *CGF, 7973 llvm::Value *V, 7974 llvm::Type *DestType) { 7975 // Convert one MVE vector type into another by reinterpreting its in-register 7976 // format. 7977 // 7978 // Little-endian, this is identical to a bitcast (which reinterprets the 7979 // memory format). But big-endian, they're not necessarily the same, because 7980 // the register and memory formats map to each other differently depending on 7981 // the lane size. 7982 // 7983 // We generate a bitcast whenever we can (if we're little-endian, or if the 7984 // lane sizes are the same anyway). Otherwise we fall back to an IR intrinsic 7985 // that performs the different kind of reinterpretation. 7986 if (CGF->getTarget().isBigEndian() && 7987 V->getType()->getScalarSizeInBits() != DestType->getScalarSizeInBits()) { 7988 return Builder.CreateCall( 7989 CGF->CGM.getIntrinsic(Intrinsic::arm_mve_vreinterpretq, 7990 {DestType, V->getType()}), 7991 V); 7992 } else { 7993 return Builder.CreateBitCast(V, DestType); 7994 } 7995 } 7996 7997 static llvm::Value *VectorUnzip(CGBuilderTy &Builder, llvm::Value *V, bool Odd) { 7998 // Make a shufflevector that extracts every other element of a vector (evens 7999 // or odds, as desired). 8000 SmallVector<int, 16> Indices; 8001 unsigned InputElements = 8002 cast<llvm::FixedVectorType>(V->getType())->getNumElements(); 8003 for (unsigned i = 0; i < InputElements; i += 2) 8004 Indices.push_back(i + Odd); 8005 return Builder.CreateShuffleVector(V, Indices); 8006 } 8007 8008 static llvm::Value *VectorZip(CGBuilderTy &Builder, llvm::Value *V0, 8009 llvm::Value *V1) { 8010 // Make a shufflevector that interleaves two vectors element by element. 8011 assert(V0->getType() == V1->getType() && "Can't zip different vector types"); 8012 SmallVector<int, 16> Indices; 8013 unsigned InputElements = 8014 cast<llvm::FixedVectorType>(V0->getType())->getNumElements(); 8015 for (unsigned i = 0; i < InputElements; i++) { 8016 Indices.push_back(i); 8017 Indices.push_back(i + InputElements); 8018 } 8019 return Builder.CreateShuffleVector(V0, V1, Indices); 8020 } 8021 8022 template<unsigned HighBit, unsigned OtherBits> 8023 static llvm::Value *ARMMVEConstantSplat(CGBuilderTy &Builder, llvm::Type *VT) { 8024 // MVE-specific helper function to make a vector splat of a constant such as 8025 // UINT_MAX or INT_MIN, in which all bits below the highest one are equal. 8026 llvm::Type *T = cast<llvm::VectorType>(VT)->getElementType(); 8027 unsigned LaneBits = T->getPrimitiveSizeInBits(); 8028 uint32_t Value = HighBit << (LaneBits - 1); 8029 if (OtherBits) 8030 Value |= (1UL << (LaneBits - 1)) - 1; 8031 llvm::Value *Lane = llvm::ConstantInt::get(T, Value); 8032 return ARMMVEVectorSplat(Builder, Lane); 8033 } 8034 8035 static llvm::Value *ARMMVEVectorElementReverse(CGBuilderTy &Builder, 8036 llvm::Value *V, 8037 unsigned ReverseWidth) { 8038 // MVE-specific helper function which reverses the elements of a 8039 // vector within every (ReverseWidth)-bit collection of lanes. 8040 SmallVector<int, 16> Indices; 8041 unsigned LaneSize = V->getType()->getScalarSizeInBits(); 8042 unsigned Elements = 128 / LaneSize; 8043 unsigned Mask = ReverseWidth / LaneSize - 1; 8044 for (unsigned i = 0; i < Elements; i++) 8045 Indices.push_back(i ^ Mask); 8046 return Builder.CreateShuffleVector(V, Indices); 8047 } 8048 8049 Value *CodeGenFunction::EmitARMMVEBuiltinExpr(unsigned BuiltinID, 8050 const CallExpr *E, 8051 ReturnValueSlot ReturnValue, 8052 llvm::Triple::ArchType Arch) { 8053 enum class CustomCodeGen { VLD24, VST24 } CustomCodeGenType; 8054 Intrinsic::ID IRIntr; 8055 unsigned NumVectors; 8056 8057 // Code autogenerated by Tablegen will handle all the simple builtins. 8058 switch (BuiltinID) { 8059 #include "clang/Basic/arm_mve_builtin_cg.inc" 8060 8061 // If we didn't match an MVE builtin id at all, go back to the 8062 // main EmitARMBuiltinExpr. 8063 default: 8064 return nullptr; 8065 } 8066 8067 // Anything that breaks from that switch is an MVE builtin that 8068 // needs handwritten code to generate. 8069 8070 switch (CustomCodeGenType) { 8071 8072 case CustomCodeGen::VLD24: { 8073 llvm::SmallVector<Value *, 4> Ops; 8074 llvm::SmallVector<llvm::Type *, 4> Tys; 8075 8076 auto MvecCType = E->getType(); 8077 auto MvecLType = ConvertType(MvecCType); 8078 assert(MvecLType->isStructTy() && 8079 "Return type for vld[24]q should be a struct"); 8080 assert(MvecLType->getStructNumElements() == 1 && 8081 "Return-type struct for vld[24]q should have one element"); 8082 auto MvecLTypeInner = MvecLType->getStructElementType(0); 8083 assert(MvecLTypeInner->isArrayTy() && 8084 "Return-type struct for vld[24]q should contain an array"); 8085 assert(MvecLTypeInner->getArrayNumElements() == NumVectors && 8086 "Array member of return-type struct vld[24]q has wrong length"); 8087 auto VecLType = MvecLTypeInner->getArrayElementType(); 8088 8089 Tys.push_back(VecLType); 8090 8091 auto Addr = E->getArg(0); 8092 Ops.push_back(EmitScalarExpr(Addr)); 8093 Tys.push_back(ConvertType(Addr->getType())); 8094 8095 Function *F = CGM.getIntrinsic(IRIntr, makeArrayRef(Tys)); 8096 Value *LoadResult = Builder.CreateCall(F, Ops); 8097 Value *MvecOut = UndefValue::get(MvecLType); 8098 for (unsigned i = 0; i < NumVectors; ++i) { 8099 Value *Vec = Builder.CreateExtractValue(LoadResult, i); 8100 MvecOut = Builder.CreateInsertValue(MvecOut, Vec, {0, i}); 8101 } 8102 8103 if (ReturnValue.isNull()) 8104 return MvecOut; 8105 else 8106 return Builder.CreateStore(MvecOut, ReturnValue.getValue()); 8107 } 8108 8109 case CustomCodeGen::VST24: { 8110 llvm::SmallVector<Value *, 4> Ops; 8111 llvm::SmallVector<llvm::Type *, 4> Tys; 8112 8113 auto Addr = E->getArg(0); 8114 Ops.push_back(EmitScalarExpr(Addr)); 8115 Tys.push_back(ConvertType(Addr->getType())); 8116 8117 auto MvecCType = E->getArg(1)->getType(); 8118 auto MvecLType = ConvertType(MvecCType); 8119 assert(MvecLType->isStructTy() && "Data type for vst2q should be a struct"); 8120 assert(MvecLType->getStructNumElements() == 1 && 8121 "Data-type struct for vst2q should have one element"); 8122 auto MvecLTypeInner = MvecLType->getStructElementType(0); 8123 assert(MvecLTypeInner->isArrayTy() && 8124 "Data-type struct for vst2q should contain an array"); 8125 assert(MvecLTypeInner->getArrayNumElements() == NumVectors && 8126 "Array member of return-type struct vld[24]q has wrong length"); 8127 auto VecLType = MvecLTypeInner->getArrayElementType(); 8128 8129 Tys.push_back(VecLType); 8130 8131 AggValueSlot MvecSlot = CreateAggTemp(MvecCType); 8132 EmitAggExpr(E->getArg(1), MvecSlot); 8133 auto Mvec = Builder.CreateLoad(MvecSlot.getAddress()); 8134 for (unsigned i = 0; i < NumVectors; i++) 8135 Ops.push_back(Builder.CreateExtractValue(Mvec, {0, i})); 8136 8137 Function *F = CGM.getIntrinsic(IRIntr, makeArrayRef(Tys)); 8138 Value *ToReturn = nullptr; 8139 for (unsigned i = 0; i < NumVectors; i++) { 8140 Ops.push_back(llvm::ConstantInt::get(Int32Ty, i)); 8141 ToReturn = Builder.CreateCall(F, Ops); 8142 Ops.pop_back(); 8143 } 8144 return ToReturn; 8145 } 8146 } 8147 llvm_unreachable("unknown custom codegen type."); 8148 } 8149 8150 Value *CodeGenFunction::EmitARMCDEBuiltinExpr(unsigned BuiltinID, 8151 const CallExpr *E, 8152 ReturnValueSlot ReturnValue, 8153 llvm::Triple::ArchType Arch) { 8154 switch (BuiltinID) { 8155 default: 8156 return nullptr; 8157 #include "clang/Basic/arm_cde_builtin_cg.inc" 8158 } 8159 } 8160 8161 static Value *EmitAArch64TblBuiltinExpr(CodeGenFunction &CGF, unsigned BuiltinID, 8162 const CallExpr *E, 8163 SmallVectorImpl<Value *> &Ops, 8164 llvm::Triple::ArchType Arch) { 8165 unsigned int Int = 0; 8166 const char *s = nullptr; 8167 8168 switch (BuiltinID) { 8169 default: 8170 return nullptr; 8171 case NEON::BI__builtin_neon_vtbl1_v: 8172 case NEON::BI__builtin_neon_vqtbl1_v: 8173 case NEON::BI__builtin_neon_vqtbl1q_v: 8174 case NEON::BI__builtin_neon_vtbl2_v: 8175 case NEON::BI__builtin_neon_vqtbl2_v: 8176 case NEON::BI__builtin_neon_vqtbl2q_v: 8177 case NEON::BI__builtin_neon_vtbl3_v: 8178 case NEON::BI__builtin_neon_vqtbl3_v: 8179 case NEON::BI__builtin_neon_vqtbl3q_v: 8180 case NEON::BI__builtin_neon_vtbl4_v: 8181 case NEON::BI__builtin_neon_vqtbl4_v: 8182 case NEON::BI__builtin_neon_vqtbl4q_v: 8183 break; 8184 case NEON::BI__builtin_neon_vtbx1_v: 8185 case NEON::BI__builtin_neon_vqtbx1_v: 8186 case NEON::BI__builtin_neon_vqtbx1q_v: 8187 case NEON::BI__builtin_neon_vtbx2_v: 8188 case NEON::BI__builtin_neon_vqtbx2_v: 8189 case NEON::BI__builtin_neon_vqtbx2q_v: 8190 case NEON::BI__builtin_neon_vtbx3_v: 8191 case NEON::BI__builtin_neon_vqtbx3_v: 8192 case NEON::BI__builtin_neon_vqtbx3q_v: 8193 case NEON::BI__builtin_neon_vtbx4_v: 8194 case NEON::BI__builtin_neon_vqtbx4_v: 8195 case NEON::BI__builtin_neon_vqtbx4q_v: 8196 break; 8197 } 8198 8199 assert(E->getNumArgs() >= 3); 8200 8201 // Get the last argument, which specifies the vector type. 8202 const Expr *Arg = E->getArg(E->getNumArgs() - 1); 8203 Optional<llvm::APSInt> Result = Arg->getIntegerConstantExpr(CGF.getContext()); 8204 if (!Result) 8205 return nullptr; 8206 8207 // Determine the type of this overloaded NEON intrinsic. 8208 NeonTypeFlags Type = Result->getZExtValue(); 8209 llvm::FixedVectorType *Ty = GetNeonType(&CGF, Type); 8210 if (!Ty) 8211 return nullptr; 8212 8213 CodeGen::CGBuilderTy &Builder = CGF.Builder; 8214 8215 // AArch64 scalar builtins are not overloaded, they do not have an extra 8216 // argument that specifies the vector type, need to handle each case. 8217 switch (BuiltinID) { 8218 case NEON::BI__builtin_neon_vtbl1_v: { 8219 return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 1), nullptr, 8220 Ops[1], Ty, Intrinsic::aarch64_neon_tbl1, 8221 "vtbl1"); 8222 } 8223 case NEON::BI__builtin_neon_vtbl2_v: { 8224 return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 2), nullptr, 8225 Ops[2], Ty, Intrinsic::aarch64_neon_tbl1, 8226 "vtbl1"); 8227 } 8228 case NEON::BI__builtin_neon_vtbl3_v: { 8229 return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 3), nullptr, 8230 Ops[3], Ty, Intrinsic::aarch64_neon_tbl2, 8231 "vtbl2"); 8232 } 8233 case NEON::BI__builtin_neon_vtbl4_v: { 8234 return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 4), nullptr, 8235 Ops[4], Ty, Intrinsic::aarch64_neon_tbl2, 8236 "vtbl2"); 8237 } 8238 case NEON::BI__builtin_neon_vtbx1_v: { 8239 Value *TblRes = 8240 packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 1), nullptr, Ops[2], 8241 Ty, Intrinsic::aarch64_neon_tbl1, "vtbl1"); 8242 8243 llvm::Constant *EightV = ConstantInt::get(Ty, 8); 8244 Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[2], EightV); 8245 CmpRes = Builder.CreateSExt(CmpRes, Ty); 8246 8247 Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]); 8248 Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes); 8249 return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx"); 8250 } 8251 case NEON::BI__builtin_neon_vtbx2_v: { 8252 return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 2), Ops[0], 8253 Ops[3], Ty, Intrinsic::aarch64_neon_tbx1, 8254 "vtbx1"); 8255 } 8256 case NEON::BI__builtin_neon_vtbx3_v: { 8257 Value *TblRes = 8258 packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 3), nullptr, Ops[4], 8259 Ty, Intrinsic::aarch64_neon_tbl2, "vtbl2"); 8260 8261 llvm::Constant *TwentyFourV = ConstantInt::get(Ty, 24); 8262 Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[4], 8263 TwentyFourV); 8264 CmpRes = Builder.CreateSExt(CmpRes, Ty); 8265 8266 Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]); 8267 Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes); 8268 return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx"); 8269 } 8270 case NEON::BI__builtin_neon_vtbx4_v: { 8271 return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 4), Ops[0], 8272 Ops[5], Ty, Intrinsic::aarch64_neon_tbx2, 8273 "vtbx2"); 8274 } 8275 case NEON::BI__builtin_neon_vqtbl1_v: 8276 case NEON::BI__builtin_neon_vqtbl1q_v: 8277 Int = Intrinsic::aarch64_neon_tbl1; s = "vtbl1"; break; 8278 case NEON::BI__builtin_neon_vqtbl2_v: 8279 case NEON::BI__builtin_neon_vqtbl2q_v: { 8280 Int = Intrinsic::aarch64_neon_tbl2; s = "vtbl2"; break; 8281 case NEON::BI__builtin_neon_vqtbl3_v: 8282 case NEON::BI__builtin_neon_vqtbl3q_v: 8283 Int = Intrinsic::aarch64_neon_tbl3; s = "vtbl3"; break; 8284 case NEON::BI__builtin_neon_vqtbl4_v: 8285 case NEON::BI__builtin_neon_vqtbl4q_v: 8286 Int = Intrinsic::aarch64_neon_tbl4; s = "vtbl4"; break; 8287 case NEON::BI__builtin_neon_vqtbx1_v: 8288 case NEON::BI__builtin_neon_vqtbx1q_v: 8289 Int = Intrinsic::aarch64_neon_tbx1; s = "vtbx1"; break; 8290 case NEON::BI__builtin_neon_vqtbx2_v: 8291 case NEON::BI__builtin_neon_vqtbx2q_v: 8292 Int = Intrinsic::aarch64_neon_tbx2; s = "vtbx2"; break; 8293 case NEON::BI__builtin_neon_vqtbx3_v: 8294 case NEON::BI__builtin_neon_vqtbx3q_v: 8295 Int = Intrinsic::aarch64_neon_tbx3; s = "vtbx3"; break; 8296 case NEON::BI__builtin_neon_vqtbx4_v: 8297 case NEON::BI__builtin_neon_vqtbx4q_v: 8298 Int = Intrinsic::aarch64_neon_tbx4; s = "vtbx4"; break; 8299 } 8300 } 8301 8302 if (!Int) 8303 return nullptr; 8304 8305 Function *F = CGF.CGM.getIntrinsic(Int, Ty); 8306 return CGF.EmitNeonCall(F, Ops, s); 8307 } 8308 8309 Value *CodeGenFunction::vectorWrapScalar16(Value *Op) { 8310 auto *VTy = llvm::FixedVectorType::get(Int16Ty, 4); 8311 Op = Builder.CreateBitCast(Op, Int16Ty); 8312 Value *V = UndefValue::get(VTy); 8313 llvm::Constant *CI = ConstantInt::get(SizeTy, 0); 8314 Op = Builder.CreateInsertElement(V, Op, CI); 8315 return Op; 8316 } 8317 8318 /// SVEBuiltinMemEltTy - Returns the memory element type for this memory 8319 /// access builtin. Only required if it can't be inferred from the base pointer 8320 /// operand. 8321 llvm::Type *CodeGenFunction::SVEBuiltinMemEltTy(SVETypeFlags TypeFlags) { 8322 switch (TypeFlags.getMemEltType()) { 8323 case SVETypeFlags::MemEltTyDefault: 8324 return getEltType(TypeFlags); 8325 case SVETypeFlags::MemEltTyInt8: 8326 return Builder.getInt8Ty(); 8327 case SVETypeFlags::MemEltTyInt16: 8328 return Builder.getInt16Ty(); 8329 case SVETypeFlags::MemEltTyInt32: 8330 return Builder.getInt32Ty(); 8331 case SVETypeFlags::MemEltTyInt64: 8332 return Builder.getInt64Ty(); 8333 } 8334 llvm_unreachable("Unknown MemEltType"); 8335 } 8336 8337 llvm::Type *CodeGenFunction::getEltType(SVETypeFlags TypeFlags) { 8338 switch (TypeFlags.getEltType()) { 8339 default: 8340 llvm_unreachable("Invalid SVETypeFlag!"); 8341 8342 case SVETypeFlags::EltTyInt8: 8343 return Builder.getInt8Ty(); 8344 case SVETypeFlags::EltTyInt16: 8345 return Builder.getInt16Ty(); 8346 case SVETypeFlags::EltTyInt32: 8347 return Builder.getInt32Ty(); 8348 case SVETypeFlags::EltTyInt64: 8349 return Builder.getInt64Ty(); 8350 8351 case SVETypeFlags::EltTyFloat16: 8352 return Builder.getHalfTy(); 8353 case SVETypeFlags::EltTyFloat32: 8354 return Builder.getFloatTy(); 8355 case SVETypeFlags::EltTyFloat64: 8356 return Builder.getDoubleTy(); 8357 8358 case SVETypeFlags::EltTyBFloat16: 8359 return Builder.getBFloatTy(); 8360 8361 case SVETypeFlags::EltTyBool8: 8362 case SVETypeFlags::EltTyBool16: 8363 case SVETypeFlags::EltTyBool32: 8364 case SVETypeFlags::EltTyBool64: 8365 return Builder.getInt1Ty(); 8366 } 8367 } 8368 8369 // Return the llvm predicate vector type corresponding to the specified element 8370 // TypeFlags. 8371 llvm::ScalableVectorType * 8372 CodeGenFunction::getSVEPredType(SVETypeFlags TypeFlags) { 8373 switch (TypeFlags.getEltType()) { 8374 default: llvm_unreachable("Unhandled SVETypeFlag!"); 8375 8376 case SVETypeFlags::EltTyInt8: 8377 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16); 8378 case SVETypeFlags::EltTyInt16: 8379 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8); 8380 case SVETypeFlags::EltTyInt32: 8381 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4); 8382 case SVETypeFlags::EltTyInt64: 8383 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2); 8384 8385 case SVETypeFlags::EltTyBFloat16: 8386 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8); 8387 case SVETypeFlags::EltTyFloat16: 8388 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8); 8389 case SVETypeFlags::EltTyFloat32: 8390 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4); 8391 case SVETypeFlags::EltTyFloat64: 8392 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2); 8393 8394 case SVETypeFlags::EltTyBool8: 8395 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16); 8396 case SVETypeFlags::EltTyBool16: 8397 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8); 8398 case SVETypeFlags::EltTyBool32: 8399 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4); 8400 case SVETypeFlags::EltTyBool64: 8401 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2); 8402 } 8403 } 8404 8405 // Return the llvm vector type corresponding to the specified element TypeFlags. 8406 llvm::ScalableVectorType * 8407 CodeGenFunction::getSVEType(const SVETypeFlags &TypeFlags) { 8408 switch (TypeFlags.getEltType()) { 8409 default: 8410 llvm_unreachable("Invalid SVETypeFlag!"); 8411 8412 case SVETypeFlags::EltTyInt8: 8413 return llvm::ScalableVectorType::get(Builder.getInt8Ty(), 16); 8414 case SVETypeFlags::EltTyInt16: 8415 return llvm::ScalableVectorType::get(Builder.getInt16Ty(), 8); 8416 case SVETypeFlags::EltTyInt32: 8417 return llvm::ScalableVectorType::get(Builder.getInt32Ty(), 4); 8418 case SVETypeFlags::EltTyInt64: 8419 return llvm::ScalableVectorType::get(Builder.getInt64Ty(), 2); 8420 8421 case SVETypeFlags::EltTyFloat16: 8422 return llvm::ScalableVectorType::get(Builder.getHalfTy(), 8); 8423 case SVETypeFlags::EltTyBFloat16: 8424 return llvm::ScalableVectorType::get(Builder.getBFloatTy(), 8); 8425 case SVETypeFlags::EltTyFloat32: 8426 return llvm::ScalableVectorType::get(Builder.getFloatTy(), 4); 8427 case SVETypeFlags::EltTyFloat64: 8428 return llvm::ScalableVectorType::get(Builder.getDoubleTy(), 2); 8429 8430 case SVETypeFlags::EltTyBool8: 8431 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16); 8432 case SVETypeFlags::EltTyBool16: 8433 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8); 8434 case SVETypeFlags::EltTyBool32: 8435 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4); 8436 case SVETypeFlags::EltTyBool64: 8437 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2); 8438 } 8439 } 8440 8441 llvm::Value *CodeGenFunction::EmitSVEAllTruePred(SVETypeFlags TypeFlags) { 8442 Function *Ptrue = 8443 CGM.getIntrinsic(Intrinsic::aarch64_sve_ptrue, getSVEPredType(TypeFlags)); 8444 return Builder.CreateCall(Ptrue, {Builder.getInt32(/*SV_ALL*/ 31)}); 8445 } 8446 8447 constexpr unsigned SVEBitsPerBlock = 128; 8448 8449 static llvm::ScalableVectorType *getSVEVectorForElementType(llvm::Type *EltTy) { 8450 unsigned NumElts = SVEBitsPerBlock / EltTy->getScalarSizeInBits(); 8451 return llvm::ScalableVectorType::get(EltTy, NumElts); 8452 } 8453 8454 // Reinterpret the input predicate so that it can be used to correctly isolate 8455 // the elements of the specified datatype. 8456 Value *CodeGenFunction::EmitSVEPredicateCast(Value *Pred, 8457 llvm::ScalableVectorType *VTy) { 8458 auto *RTy = llvm::VectorType::get(IntegerType::get(getLLVMContext(), 1), VTy); 8459 if (Pred->getType() == RTy) 8460 return Pred; 8461 8462 unsigned IntID; 8463 llvm::Type *IntrinsicTy; 8464 switch (VTy->getMinNumElements()) { 8465 default: 8466 llvm_unreachable("unsupported element count!"); 8467 case 2: 8468 case 4: 8469 case 8: 8470 IntID = Intrinsic::aarch64_sve_convert_from_svbool; 8471 IntrinsicTy = RTy; 8472 break; 8473 case 16: 8474 IntID = Intrinsic::aarch64_sve_convert_to_svbool; 8475 IntrinsicTy = Pred->getType(); 8476 break; 8477 } 8478 8479 Function *F = CGM.getIntrinsic(IntID, IntrinsicTy); 8480 Value *C = Builder.CreateCall(F, Pred); 8481 assert(C->getType() == RTy && "Unexpected return type!"); 8482 return C; 8483 } 8484 8485 Value *CodeGenFunction::EmitSVEGatherLoad(SVETypeFlags TypeFlags, 8486 SmallVectorImpl<Value *> &Ops, 8487 unsigned IntID) { 8488 auto *ResultTy = getSVEType(TypeFlags); 8489 auto *OverloadedTy = 8490 llvm::ScalableVectorType::get(SVEBuiltinMemEltTy(TypeFlags), ResultTy); 8491 8492 // At the ACLE level there's only one predicate type, svbool_t, which is 8493 // mapped to <n x 16 x i1>. However, this might be incompatible with the 8494 // actual type being loaded. For example, when loading doubles (i64) the 8495 // predicated should be <n x 2 x i1> instead. At the IR level the type of 8496 // the predicate and the data being loaded must match. Cast accordingly. 8497 Ops[0] = EmitSVEPredicateCast(Ops[0], OverloadedTy); 8498 8499 Function *F = nullptr; 8500 if (Ops[1]->getType()->isVectorTy()) 8501 // This is the "vector base, scalar offset" case. In order to uniquely 8502 // map this built-in to an LLVM IR intrinsic, we need both the return type 8503 // and the type of the vector base. 8504 F = CGM.getIntrinsic(IntID, {OverloadedTy, Ops[1]->getType()}); 8505 else 8506 // This is the "scalar base, vector offset case". The type of the offset 8507 // is encoded in the name of the intrinsic. We only need to specify the 8508 // return type in order to uniquely map this built-in to an LLVM IR 8509 // intrinsic. 8510 F = CGM.getIntrinsic(IntID, OverloadedTy); 8511 8512 // Pass 0 when the offset is missing. This can only be applied when using 8513 // the "vector base" addressing mode for which ACLE allows no offset. The 8514 // corresponding LLVM IR always requires an offset. 8515 if (Ops.size() == 2) { 8516 assert(Ops[1]->getType()->isVectorTy() && "Scalar base requires an offset"); 8517 Ops.push_back(ConstantInt::get(Int64Ty, 0)); 8518 } 8519 8520 // For "vector base, scalar index" scale the index so that it becomes a 8521 // scalar offset. 8522 if (!TypeFlags.isByteIndexed() && Ops[1]->getType()->isVectorTy()) { 8523 unsigned BytesPerElt = 8524 OverloadedTy->getElementType()->getScalarSizeInBits() / 8; 8525 Value *Scale = ConstantInt::get(Int64Ty, BytesPerElt); 8526 Ops[2] = Builder.CreateMul(Ops[2], Scale); 8527 } 8528 8529 Value *Call = Builder.CreateCall(F, Ops); 8530 8531 // The following sext/zext is only needed when ResultTy != OverloadedTy. In 8532 // other cases it's folded into a nop. 8533 return TypeFlags.isZExtReturn() ? Builder.CreateZExt(Call, ResultTy) 8534 : Builder.CreateSExt(Call, ResultTy); 8535 } 8536 8537 Value *CodeGenFunction::EmitSVEScatterStore(SVETypeFlags TypeFlags, 8538 SmallVectorImpl<Value *> &Ops, 8539 unsigned IntID) { 8540 auto *SrcDataTy = getSVEType(TypeFlags); 8541 auto *OverloadedTy = 8542 llvm::ScalableVectorType::get(SVEBuiltinMemEltTy(TypeFlags), SrcDataTy); 8543 8544 // In ACLE the source data is passed in the last argument, whereas in LLVM IR 8545 // it's the first argument. Move it accordingly. 8546 Ops.insert(Ops.begin(), Ops.pop_back_val()); 8547 8548 Function *F = nullptr; 8549 if (Ops[2]->getType()->isVectorTy()) 8550 // This is the "vector base, scalar offset" case. In order to uniquely 8551 // map this built-in to an LLVM IR intrinsic, we need both the return type 8552 // and the type of the vector base. 8553 F = CGM.getIntrinsic(IntID, {OverloadedTy, Ops[2]->getType()}); 8554 else 8555 // This is the "scalar base, vector offset case". The type of the offset 8556 // is encoded in the name of the intrinsic. We only need to specify the 8557 // return type in order to uniquely map this built-in to an LLVM IR 8558 // intrinsic. 8559 F = CGM.getIntrinsic(IntID, OverloadedTy); 8560 8561 // Pass 0 when the offset is missing. This can only be applied when using 8562 // the "vector base" addressing mode for which ACLE allows no offset. The 8563 // corresponding LLVM IR always requires an offset. 8564 if (Ops.size() == 3) { 8565 assert(Ops[1]->getType()->isVectorTy() && "Scalar base requires an offset"); 8566 Ops.push_back(ConstantInt::get(Int64Ty, 0)); 8567 } 8568 8569 // Truncation is needed when SrcDataTy != OverloadedTy. In other cases it's 8570 // folded into a nop. 8571 Ops[0] = Builder.CreateTrunc(Ops[0], OverloadedTy); 8572 8573 // At the ACLE level there's only one predicate type, svbool_t, which is 8574 // mapped to <n x 16 x i1>. However, this might be incompatible with the 8575 // actual type being stored. For example, when storing doubles (i64) the 8576 // predicated should be <n x 2 x i1> instead. At the IR level the type of 8577 // the predicate and the data being stored must match. Cast accordingly. 8578 Ops[1] = EmitSVEPredicateCast(Ops[1], OverloadedTy); 8579 8580 // For "vector base, scalar index" scale the index so that it becomes a 8581 // scalar offset. 8582 if (!TypeFlags.isByteIndexed() && Ops[2]->getType()->isVectorTy()) { 8583 unsigned BytesPerElt = 8584 OverloadedTy->getElementType()->getScalarSizeInBits() / 8; 8585 Value *Scale = ConstantInt::get(Int64Ty, BytesPerElt); 8586 Ops[3] = Builder.CreateMul(Ops[3], Scale); 8587 } 8588 8589 return Builder.CreateCall(F, Ops); 8590 } 8591 8592 Value *CodeGenFunction::EmitSVEGatherPrefetch(SVETypeFlags TypeFlags, 8593 SmallVectorImpl<Value *> &Ops, 8594 unsigned IntID) { 8595 // The gather prefetches are overloaded on the vector input - this can either 8596 // be the vector of base addresses or vector of offsets. 8597 auto *OverloadedTy = dyn_cast<llvm::ScalableVectorType>(Ops[1]->getType()); 8598 if (!OverloadedTy) 8599 OverloadedTy = cast<llvm::ScalableVectorType>(Ops[2]->getType()); 8600 8601 // Cast the predicate from svbool_t to the right number of elements. 8602 Ops[0] = EmitSVEPredicateCast(Ops[0], OverloadedTy); 8603 8604 // vector + imm addressing modes 8605 if (Ops[1]->getType()->isVectorTy()) { 8606 if (Ops.size() == 3) { 8607 // Pass 0 for 'vector+imm' when the index is omitted. 8608 Ops.push_back(ConstantInt::get(Int64Ty, 0)); 8609 8610 // The sv_prfop is the last operand in the builtin and IR intrinsic. 8611 std::swap(Ops[2], Ops[3]); 8612 } else { 8613 // Index needs to be passed as scaled offset. 8614 llvm::Type *MemEltTy = SVEBuiltinMemEltTy(TypeFlags); 8615 unsigned BytesPerElt = MemEltTy->getPrimitiveSizeInBits() / 8; 8616 Value *Scale = ConstantInt::get(Int64Ty, BytesPerElt); 8617 Ops[2] = Builder.CreateMul(Ops[2], Scale); 8618 } 8619 } 8620 8621 Function *F = CGM.getIntrinsic(IntID, OverloadedTy); 8622 return Builder.CreateCall(F, Ops); 8623 } 8624 8625 Value *CodeGenFunction::EmitSVEStructLoad(SVETypeFlags TypeFlags, 8626 SmallVectorImpl<Value*> &Ops, 8627 unsigned IntID) { 8628 llvm::ScalableVectorType *VTy = getSVEType(TypeFlags); 8629 auto VecPtrTy = llvm::PointerType::getUnqual(VTy); 8630 auto EltPtrTy = llvm::PointerType::getUnqual(VTy->getElementType()); 8631 8632 unsigned N; 8633 switch (IntID) { 8634 case Intrinsic::aarch64_sve_ld2: 8635 N = 2; 8636 break; 8637 case Intrinsic::aarch64_sve_ld3: 8638 N = 3; 8639 break; 8640 case Intrinsic::aarch64_sve_ld4: 8641 N = 4; 8642 break; 8643 default: 8644 llvm_unreachable("unknown intrinsic!"); 8645 } 8646 auto RetTy = llvm::VectorType::get(VTy->getElementType(), 8647 VTy->getElementCount() * N); 8648 8649 Value *Predicate = EmitSVEPredicateCast(Ops[0], VTy); 8650 Value *BasePtr= Builder.CreateBitCast(Ops[1], VecPtrTy); 8651 Value *Offset = Ops.size() > 2 ? Ops[2] : Builder.getInt32(0); 8652 BasePtr = Builder.CreateGEP(VTy, BasePtr, Offset); 8653 BasePtr = Builder.CreateBitCast(BasePtr, EltPtrTy); 8654 8655 Function *F = CGM.getIntrinsic(IntID, {RetTy, Predicate->getType()}); 8656 return Builder.CreateCall(F, { Predicate, BasePtr }); 8657 } 8658 8659 Value *CodeGenFunction::EmitSVEStructStore(SVETypeFlags TypeFlags, 8660 SmallVectorImpl<Value*> &Ops, 8661 unsigned IntID) { 8662 llvm::ScalableVectorType *VTy = getSVEType(TypeFlags); 8663 auto VecPtrTy = llvm::PointerType::getUnqual(VTy); 8664 auto EltPtrTy = llvm::PointerType::getUnqual(VTy->getElementType()); 8665 8666 unsigned N; 8667 switch (IntID) { 8668 case Intrinsic::aarch64_sve_st2: 8669 N = 2; 8670 break; 8671 case Intrinsic::aarch64_sve_st3: 8672 N = 3; 8673 break; 8674 case Intrinsic::aarch64_sve_st4: 8675 N = 4; 8676 break; 8677 default: 8678 llvm_unreachable("unknown intrinsic!"); 8679 } 8680 auto TupleTy = 8681 llvm::VectorType::get(VTy->getElementType(), VTy->getElementCount() * N); 8682 8683 Value *Predicate = EmitSVEPredicateCast(Ops[0], VTy); 8684 Value *BasePtr = Builder.CreateBitCast(Ops[1], VecPtrTy); 8685 Value *Offset = Ops.size() > 3 ? Ops[2] : Builder.getInt32(0); 8686 Value *Val = Ops.back(); 8687 BasePtr = Builder.CreateGEP(VTy, BasePtr, Offset); 8688 BasePtr = Builder.CreateBitCast(BasePtr, EltPtrTy); 8689 8690 // The llvm.aarch64.sve.st2/3/4 intrinsics take legal part vectors, so we 8691 // need to break up the tuple vector. 8692 SmallVector<llvm::Value*, 5> Operands; 8693 Function *FExtr = 8694 CGM.getIntrinsic(Intrinsic::aarch64_sve_tuple_get, {VTy, TupleTy}); 8695 for (unsigned I = 0; I < N; ++I) 8696 Operands.push_back(Builder.CreateCall(FExtr, {Val, Builder.getInt32(I)})); 8697 Operands.append({Predicate, BasePtr}); 8698 8699 Function *F = CGM.getIntrinsic(IntID, { VTy }); 8700 return Builder.CreateCall(F, Operands); 8701 } 8702 8703 // SVE2's svpmullb and svpmullt builtins are similar to the svpmullb_pair and 8704 // svpmullt_pair intrinsics, with the exception that their results are bitcast 8705 // to a wider type. 8706 Value *CodeGenFunction::EmitSVEPMull(SVETypeFlags TypeFlags, 8707 SmallVectorImpl<Value *> &Ops, 8708 unsigned BuiltinID) { 8709 // Splat scalar operand to vector (intrinsics with _n infix) 8710 if (TypeFlags.hasSplatOperand()) { 8711 unsigned OpNo = TypeFlags.getSplatOperand(); 8712 Ops[OpNo] = EmitSVEDupX(Ops[OpNo]); 8713 } 8714 8715 // The pair-wise function has a narrower overloaded type. 8716 Function *F = CGM.getIntrinsic(BuiltinID, Ops[0]->getType()); 8717 Value *Call = Builder.CreateCall(F, {Ops[0], Ops[1]}); 8718 8719 // Now bitcast to the wider result type. 8720 llvm::ScalableVectorType *Ty = getSVEType(TypeFlags); 8721 return EmitSVEReinterpret(Call, Ty); 8722 } 8723 8724 Value *CodeGenFunction::EmitSVEMovl(SVETypeFlags TypeFlags, 8725 ArrayRef<Value *> Ops, unsigned BuiltinID) { 8726 llvm::Type *OverloadedTy = getSVEType(TypeFlags); 8727 Function *F = CGM.getIntrinsic(BuiltinID, OverloadedTy); 8728 return Builder.CreateCall(F, {Ops[0], Builder.getInt32(0)}); 8729 } 8730 8731 Value *CodeGenFunction::EmitSVEPrefetchLoad(SVETypeFlags TypeFlags, 8732 SmallVectorImpl<Value *> &Ops, 8733 unsigned BuiltinID) { 8734 auto *MemEltTy = SVEBuiltinMemEltTy(TypeFlags); 8735 auto *VectorTy = getSVEVectorForElementType(MemEltTy); 8736 auto *MemoryTy = llvm::ScalableVectorType::get(MemEltTy, VectorTy); 8737 8738 Value *Predicate = EmitSVEPredicateCast(Ops[0], MemoryTy); 8739 Value *BasePtr = Ops[1]; 8740 8741 // Implement the index operand if not omitted. 8742 if (Ops.size() > 3) { 8743 BasePtr = Builder.CreateBitCast(BasePtr, MemoryTy->getPointerTo()); 8744 BasePtr = Builder.CreateGEP(MemoryTy, BasePtr, Ops[2]); 8745 } 8746 8747 // Prefetch intriniscs always expect an i8* 8748 BasePtr = Builder.CreateBitCast(BasePtr, llvm::PointerType::getUnqual(Int8Ty)); 8749 Value *PrfOp = Ops.back(); 8750 8751 Function *F = CGM.getIntrinsic(BuiltinID, Predicate->getType()); 8752 return Builder.CreateCall(F, {Predicate, BasePtr, PrfOp}); 8753 } 8754 8755 Value *CodeGenFunction::EmitSVEMaskedLoad(const CallExpr *E, 8756 llvm::Type *ReturnTy, 8757 SmallVectorImpl<Value *> &Ops, 8758 unsigned BuiltinID, 8759 bool IsZExtReturn) { 8760 QualType LangPTy = E->getArg(1)->getType(); 8761 llvm::Type *MemEltTy = CGM.getTypes().ConvertType( 8762 LangPTy->castAs<PointerType>()->getPointeeType()); 8763 8764 // The vector type that is returned may be different from the 8765 // eventual type loaded from memory. 8766 auto VectorTy = cast<llvm::ScalableVectorType>(ReturnTy); 8767 auto MemoryTy = llvm::ScalableVectorType::get(MemEltTy, VectorTy); 8768 8769 Value *Predicate = EmitSVEPredicateCast(Ops[0], MemoryTy); 8770 Value *BasePtr = Builder.CreateBitCast(Ops[1], MemoryTy->getPointerTo()); 8771 Value *Offset = Ops.size() > 2 ? Ops[2] : Builder.getInt32(0); 8772 BasePtr = Builder.CreateGEP(MemoryTy, BasePtr, Offset); 8773 8774 BasePtr = Builder.CreateBitCast(BasePtr, MemEltTy->getPointerTo()); 8775 Function *F = CGM.getIntrinsic(BuiltinID, MemoryTy); 8776 Value *Load = Builder.CreateCall(F, {Predicate, BasePtr}); 8777 8778 return IsZExtReturn ? Builder.CreateZExt(Load, VectorTy) 8779 : Builder.CreateSExt(Load, VectorTy); 8780 } 8781 8782 Value *CodeGenFunction::EmitSVEMaskedStore(const CallExpr *E, 8783 SmallVectorImpl<Value *> &Ops, 8784 unsigned BuiltinID) { 8785 QualType LangPTy = E->getArg(1)->getType(); 8786 llvm::Type *MemEltTy = CGM.getTypes().ConvertType( 8787 LangPTy->castAs<PointerType>()->getPointeeType()); 8788 8789 // The vector type that is stored may be different from the 8790 // eventual type stored to memory. 8791 auto VectorTy = cast<llvm::ScalableVectorType>(Ops.back()->getType()); 8792 auto MemoryTy = llvm::ScalableVectorType::get(MemEltTy, VectorTy); 8793 8794 Value *Predicate = EmitSVEPredicateCast(Ops[0], MemoryTy); 8795 Value *BasePtr = Builder.CreateBitCast(Ops[1], MemoryTy->getPointerTo()); 8796 Value *Offset = Ops.size() == 4 ? Ops[2] : Builder.getInt32(0); 8797 BasePtr = Builder.CreateGEP(MemoryTy, BasePtr, Offset); 8798 8799 // Last value is always the data 8800 llvm::Value *Val = Builder.CreateTrunc(Ops.back(), MemoryTy); 8801 8802 BasePtr = Builder.CreateBitCast(BasePtr, MemEltTy->getPointerTo()); 8803 Function *F = CGM.getIntrinsic(BuiltinID, MemoryTy); 8804 return Builder.CreateCall(F, {Val, Predicate, BasePtr}); 8805 } 8806 8807 // Limit the usage of scalable llvm IR generated by the ACLE by using the 8808 // sve dup.x intrinsic instead of IRBuilder::CreateVectorSplat. 8809 Value *CodeGenFunction::EmitSVEDupX(Value *Scalar, llvm::Type *Ty) { 8810 auto F = CGM.getIntrinsic(Intrinsic::aarch64_sve_dup_x, Ty); 8811 return Builder.CreateCall(F, Scalar); 8812 } 8813 8814 Value *CodeGenFunction::EmitSVEDupX(Value* Scalar) { 8815 return EmitSVEDupX(Scalar, getSVEVectorForElementType(Scalar->getType())); 8816 } 8817 8818 Value *CodeGenFunction::EmitSVEReinterpret(Value *Val, llvm::Type *Ty) { 8819 // FIXME: For big endian this needs an additional REV, or needs a separate 8820 // intrinsic that is code-generated as a no-op, because the LLVM bitcast 8821 // instruction is defined as 'bitwise' equivalent from memory point of 8822 // view (when storing/reloading), whereas the svreinterpret builtin 8823 // implements bitwise equivalent cast from register point of view. 8824 // LLVM CodeGen for a bitcast must add an explicit REV for big-endian. 8825 return Builder.CreateBitCast(Val, Ty); 8826 } 8827 8828 static void InsertExplicitZeroOperand(CGBuilderTy &Builder, llvm::Type *Ty, 8829 SmallVectorImpl<Value *> &Ops) { 8830 auto *SplatZero = Constant::getNullValue(Ty); 8831 Ops.insert(Ops.begin(), SplatZero); 8832 } 8833 8834 static void InsertExplicitUndefOperand(CGBuilderTy &Builder, llvm::Type *Ty, 8835 SmallVectorImpl<Value *> &Ops) { 8836 auto *SplatUndef = UndefValue::get(Ty); 8837 Ops.insert(Ops.begin(), SplatUndef); 8838 } 8839 8840 SmallVector<llvm::Type *, 2> CodeGenFunction::getSVEOverloadTypes( 8841 SVETypeFlags TypeFlags, llvm::Type *ResultType, ArrayRef<Value *> Ops) { 8842 if (TypeFlags.isOverloadNone()) 8843 return {}; 8844 8845 llvm::Type *DefaultType = getSVEType(TypeFlags); 8846 8847 if (TypeFlags.isOverloadWhile()) 8848 return {DefaultType, Ops[1]->getType()}; 8849 8850 if (TypeFlags.isOverloadWhileRW()) 8851 return {getSVEPredType(TypeFlags), Ops[0]->getType()}; 8852 8853 if (TypeFlags.isOverloadCvt() || TypeFlags.isTupleSet()) 8854 return {Ops[0]->getType(), Ops.back()->getType()}; 8855 8856 if (TypeFlags.isTupleCreate() || TypeFlags.isTupleGet()) 8857 return {ResultType, Ops[0]->getType()}; 8858 8859 assert(TypeFlags.isOverloadDefault() && "Unexpected value for overloads"); 8860 return {DefaultType}; 8861 } 8862 8863 Value *CodeGenFunction::EmitAArch64SVEBuiltinExpr(unsigned BuiltinID, 8864 const CallExpr *E) { 8865 // Find out if any arguments are required to be integer constant expressions. 8866 unsigned ICEArguments = 0; 8867 ASTContext::GetBuiltinTypeError Error; 8868 getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments); 8869 assert(Error == ASTContext::GE_None && "Should not codegen an error"); 8870 8871 llvm::Type *Ty = ConvertType(E->getType()); 8872 if (BuiltinID >= SVE::BI__builtin_sve_reinterpret_s8_s8 && 8873 BuiltinID <= SVE::BI__builtin_sve_reinterpret_f64_f64) { 8874 Value *Val = EmitScalarExpr(E->getArg(0)); 8875 return EmitSVEReinterpret(Val, Ty); 8876 } 8877 8878 llvm::SmallVector<Value *, 4> Ops; 8879 for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) { 8880 if ((ICEArguments & (1 << i)) == 0) 8881 Ops.push_back(EmitScalarExpr(E->getArg(i))); 8882 else { 8883 // If this is required to be a constant, constant fold it so that we know 8884 // that the generated intrinsic gets a ConstantInt. 8885 Optional<llvm::APSInt> Result = 8886 E->getArg(i)->getIntegerConstantExpr(getContext()); 8887 assert(Result && "Expected argument to be a constant"); 8888 8889 // Immediates for SVE llvm intrinsics are always 32bit. We can safely 8890 // truncate because the immediate has been range checked and no valid 8891 // immediate requires more than a handful of bits. 8892 *Result = Result->extOrTrunc(32); 8893 Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), *Result)); 8894 } 8895 } 8896 8897 auto *Builtin = findARMVectorIntrinsicInMap(AArch64SVEIntrinsicMap, BuiltinID, 8898 AArch64SVEIntrinsicsProvenSorted); 8899 SVETypeFlags TypeFlags(Builtin->TypeModifier); 8900 if (TypeFlags.isLoad()) 8901 return EmitSVEMaskedLoad(E, Ty, Ops, Builtin->LLVMIntrinsic, 8902 TypeFlags.isZExtReturn()); 8903 else if (TypeFlags.isStore()) 8904 return EmitSVEMaskedStore(E, Ops, Builtin->LLVMIntrinsic); 8905 else if (TypeFlags.isGatherLoad()) 8906 return EmitSVEGatherLoad(TypeFlags, Ops, Builtin->LLVMIntrinsic); 8907 else if (TypeFlags.isScatterStore()) 8908 return EmitSVEScatterStore(TypeFlags, Ops, Builtin->LLVMIntrinsic); 8909 else if (TypeFlags.isPrefetch()) 8910 return EmitSVEPrefetchLoad(TypeFlags, Ops, Builtin->LLVMIntrinsic); 8911 else if (TypeFlags.isGatherPrefetch()) 8912 return EmitSVEGatherPrefetch(TypeFlags, Ops, Builtin->LLVMIntrinsic); 8913 else if (TypeFlags.isStructLoad()) 8914 return EmitSVEStructLoad(TypeFlags, Ops, Builtin->LLVMIntrinsic); 8915 else if (TypeFlags.isStructStore()) 8916 return EmitSVEStructStore(TypeFlags, Ops, Builtin->LLVMIntrinsic); 8917 else if (TypeFlags.isUndef()) 8918 return UndefValue::get(Ty); 8919 else if (Builtin->LLVMIntrinsic != 0) { 8920 if (TypeFlags.getMergeType() == SVETypeFlags::MergeZeroExp) 8921 InsertExplicitZeroOperand(Builder, Ty, Ops); 8922 8923 if (TypeFlags.getMergeType() == SVETypeFlags::MergeAnyExp) 8924 InsertExplicitUndefOperand(Builder, Ty, Ops); 8925 8926 // Some ACLE builtins leave out the argument to specify the predicate 8927 // pattern, which is expected to be expanded to an SV_ALL pattern. 8928 if (TypeFlags.isAppendSVALL()) 8929 Ops.push_back(Builder.getInt32(/*SV_ALL*/ 31)); 8930 if (TypeFlags.isInsertOp1SVALL()) 8931 Ops.insert(&Ops[1], Builder.getInt32(/*SV_ALL*/ 31)); 8932 8933 // Predicates must match the main datatype. 8934 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 8935 if (auto PredTy = dyn_cast<llvm::VectorType>(Ops[i]->getType())) 8936 if (PredTy->getElementType()->isIntegerTy(1)) 8937 Ops[i] = EmitSVEPredicateCast(Ops[i], getSVEType(TypeFlags)); 8938 8939 // Splat scalar operand to vector (intrinsics with _n infix) 8940 if (TypeFlags.hasSplatOperand()) { 8941 unsigned OpNo = TypeFlags.getSplatOperand(); 8942 Ops[OpNo] = EmitSVEDupX(Ops[OpNo]); 8943 } 8944 8945 if (TypeFlags.isReverseCompare()) 8946 std::swap(Ops[1], Ops[2]); 8947 8948 if (TypeFlags.isReverseUSDOT()) 8949 std::swap(Ops[1], Ops[2]); 8950 8951 // Predicated intrinsics with _z suffix need a select w/ zeroinitializer. 8952 if (TypeFlags.getMergeType() == SVETypeFlags::MergeZero) { 8953 llvm::Type *OpndTy = Ops[1]->getType(); 8954 auto *SplatZero = Constant::getNullValue(OpndTy); 8955 Function *Sel = CGM.getIntrinsic(Intrinsic::aarch64_sve_sel, OpndTy); 8956 Ops[1] = Builder.CreateCall(Sel, {Ops[0], Ops[1], SplatZero}); 8957 } 8958 8959 Function *F = CGM.getIntrinsic(Builtin->LLVMIntrinsic, 8960 getSVEOverloadTypes(TypeFlags, Ty, Ops)); 8961 Value *Call = Builder.CreateCall(F, Ops); 8962 8963 // Predicate results must be converted to svbool_t. 8964 if (auto PredTy = dyn_cast<llvm::VectorType>(Call->getType())) 8965 if (PredTy->getScalarType()->isIntegerTy(1)) 8966 Call = EmitSVEPredicateCast(Call, cast<llvm::ScalableVectorType>(Ty)); 8967 8968 return Call; 8969 } 8970 8971 switch (BuiltinID) { 8972 default: 8973 return nullptr; 8974 8975 case SVE::BI__builtin_sve_svmov_b_z: { 8976 // svmov_b_z(pg, op) <=> svand_b_z(pg, op, op) 8977 SVETypeFlags TypeFlags(Builtin->TypeModifier); 8978 llvm::Type* OverloadedTy = getSVEType(TypeFlags); 8979 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_and_z, OverloadedTy); 8980 return Builder.CreateCall(F, {Ops[0], Ops[1], Ops[1]}); 8981 } 8982 8983 case SVE::BI__builtin_sve_svnot_b_z: { 8984 // svnot_b_z(pg, op) <=> sveor_b_z(pg, op, pg) 8985 SVETypeFlags TypeFlags(Builtin->TypeModifier); 8986 llvm::Type* OverloadedTy = getSVEType(TypeFlags); 8987 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_eor_z, OverloadedTy); 8988 return Builder.CreateCall(F, {Ops[0], Ops[1], Ops[0]}); 8989 } 8990 8991 case SVE::BI__builtin_sve_svmovlb_u16: 8992 case SVE::BI__builtin_sve_svmovlb_u32: 8993 case SVE::BI__builtin_sve_svmovlb_u64: 8994 return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_ushllb); 8995 8996 case SVE::BI__builtin_sve_svmovlb_s16: 8997 case SVE::BI__builtin_sve_svmovlb_s32: 8998 case SVE::BI__builtin_sve_svmovlb_s64: 8999 return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_sshllb); 9000 9001 case SVE::BI__builtin_sve_svmovlt_u16: 9002 case SVE::BI__builtin_sve_svmovlt_u32: 9003 case SVE::BI__builtin_sve_svmovlt_u64: 9004 return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_ushllt); 9005 9006 case SVE::BI__builtin_sve_svmovlt_s16: 9007 case SVE::BI__builtin_sve_svmovlt_s32: 9008 case SVE::BI__builtin_sve_svmovlt_s64: 9009 return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_sshllt); 9010 9011 case SVE::BI__builtin_sve_svpmullt_u16: 9012 case SVE::BI__builtin_sve_svpmullt_u64: 9013 case SVE::BI__builtin_sve_svpmullt_n_u16: 9014 case SVE::BI__builtin_sve_svpmullt_n_u64: 9015 return EmitSVEPMull(TypeFlags, Ops, Intrinsic::aarch64_sve_pmullt_pair); 9016 9017 case SVE::BI__builtin_sve_svpmullb_u16: 9018 case SVE::BI__builtin_sve_svpmullb_u64: 9019 case SVE::BI__builtin_sve_svpmullb_n_u16: 9020 case SVE::BI__builtin_sve_svpmullb_n_u64: 9021 return EmitSVEPMull(TypeFlags, Ops, Intrinsic::aarch64_sve_pmullb_pair); 9022 9023 case SVE::BI__builtin_sve_svdup_n_b8: 9024 case SVE::BI__builtin_sve_svdup_n_b16: 9025 case SVE::BI__builtin_sve_svdup_n_b32: 9026 case SVE::BI__builtin_sve_svdup_n_b64: { 9027 Value *CmpNE = 9028 Builder.CreateICmpNE(Ops[0], Constant::getNullValue(Ops[0]->getType())); 9029 llvm::ScalableVectorType *OverloadedTy = getSVEType(TypeFlags); 9030 Value *Dup = EmitSVEDupX(CmpNE, OverloadedTy); 9031 return EmitSVEPredicateCast(Dup, cast<llvm::ScalableVectorType>(Ty)); 9032 } 9033 9034 case SVE::BI__builtin_sve_svdupq_n_b8: 9035 case SVE::BI__builtin_sve_svdupq_n_b16: 9036 case SVE::BI__builtin_sve_svdupq_n_b32: 9037 case SVE::BI__builtin_sve_svdupq_n_b64: 9038 case SVE::BI__builtin_sve_svdupq_n_u8: 9039 case SVE::BI__builtin_sve_svdupq_n_s8: 9040 case SVE::BI__builtin_sve_svdupq_n_u64: 9041 case SVE::BI__builtin_sve_svdupq_n_f64: 9042 case SVE::BI__builtin_sve_svdupq_n_s64: 9043 case SVE::BI__builtin_sve_svdupq_n_u16: 9044 case SVE::BI__builtin_sve_svdupq_n_f16: 9045 case SVE::BI__builtin_sve_svdupq_n_bf16: 9046 case SVE::BI__builtin_sve_svdupq_n_s16: 9047 case SVE::BI__builtin_sve_svdupq_n_u32: 9048 case SVE::BI__builtin_sve_svdupq_n_f32: 9049 case SVE::BI__builtin_sve_svdupq_n_s32: { 9050 // These builtins are implemented by storing each element to an array and using 9051 // ld1rq to materialize a vector. 9052 unsigned NumOpnds = Ops.size(); 9053 9054 bool IsBoolTy = 9055 cast<llvm::VectorType>(Ty)->getElementType()->isIntegerTy(1); 9056 9057 // For svdupq_n_b* the element type of is an integer of type 128/numelts, 9058 // so that the compare can use the width that is natural for the expected 9059 // number of predicate lanes. 9060 llvm::Type *EltTy = Ops[0]->getType(); 9061 if (IsBoolTy) 9062 EltTy = IntegerType::get(getLLVMContext(), SVEBitsPerBlock / NumOpnds); 9063 9064 Address Alloca = CreateTempAlloca(llvm::ArrayType::get(EltTy, NumOpnds), 9065 CharUnits::fromQuantity(16)); 9066 for (unsigned I = 0; I < NumOpnds; ++I) 9067 Builder.CreateDefaultAlignedStore( 9068 IsBoolTy ? Builder.CreateZExt(Ops[I], EltTy) : Ops[I], 9069 Builder.CreateGEP(Alloca.getElementType(), Alloca.getPointer(), 9070 {Builder.getInt64(0), Builder.getInt64(I)})); 9071 9072 SVETypeFlags TypeFlags(Builtin->TypeModifier); 9073 Value *Pred = EmitSVEAllTruePred(TypeFlags); 9074 9075 llvm::Type *OverloadedTy = getSVEVectorForElementType(EltTy); 9076 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_ld1rq, OverloadedTy); 9077 Value *Alloca0 = Builder.CreateGEP( 9078 Alloca.getElementType(), Alloca.getPointer(), 9079 {Builder.getInt64(0), Builder.getInt64(0)}); 9080 Value *LD1RQ = Builder.CreateCall(F, {Pred, Alloca0}); 9081 9082 if (!IsBoolTy) 9083 return LD1RQ; 9084 9085 // For svdupq_n_b* we need to add an additional 'cmpne' with '0'. 9086 F = CGM.getIntrinsic(NumOpnds == 2 ? Intrinsic::aarch64_sve_cmpne 9087 : Intrinsic::aarch64_sve_cmpne_wide, 9088 OverloadedTy); 9089 Value *Call = 9090 Builder.CreateCall(F, {Pred, LD1RQ, EmitSVEDupX(Builder.getInt64(0))}); 9091 return EmitSVEPredicateCast(Call, cast<llvm::ScalableVectorType>(Ty)); 9092 } 9093 9094 case SVE::BI__builtin_sve_svpfalse_b: 9095 return ConstantInt::getFalse(Ty); 9096 9097 case SVE::BI__builtin_sve_svlen_bf16: 9098 case SVE::BI__builtin_sve_svlen_f16: 9099 case SVE::BI__builtin_sve_svlen_f32: 9100 case SVE::BI__builtin_sve_svlen_f64: 9101 case SVE::BI__builtin_sve_svlen_s8: 9102 case SVE::BI__builtin_sve_svlen_s16: 9103 case SVE::BI__builtin_sve_svlen_s32: 9104 case SVE::BI__builtin_sve_svlen_s64: 9105 case SVE::BI__builtin_sve_svlen_u8: 9106 case SVE::BI__builtin_sve_svlen_u16: 9107 case SVE::BI__builtin_sve_svlen_u32: 9108 case SVE::BI__builtin_sve_svlen_u64: { 9109 SVETypeFlags TF(Builtin->TypeModifier); 9110 auto VTy = cast<llvm::VectorType>(getSVEType(TF)); 9111 auto *NumEls = 9112 llvm::ConstantInt::get(Ty, VTy->getElementCount().getKnownMinValue()); 9113 9114 Function *F = CGM.getIntrinsic(Intrinsic::vscale, Ty); 9115 return Builder.CreateMul(NumEls, Builder.CreateCall(F)); 9116 } 9117 9118 case SVE::BI__builtin_sve_svtbl2_u8: 9119 case SVE::BI__builtin_sve_svtbl2_s8: 9120 case SVE::BI__builtin_sve_svtbl2_u16: 9121 case SVE::BI__builtin_sve_svtbl2_s16: 9122 case SVE::BI__builtin_sve_svtbl2_u32: 9123 case SVE::BI__builtin_sve_svtbl2_s32: 9124 case SVE::BI__builtin_sve_svtbl2_u64: 9125 case SVE::BI__builtin_sve_svtbl2_s64: 9126 case SVE::BI__builtin_sve_svtbl2_f16: 9127 case SVE::BI__builtin_sve_svtbl2_bf16: 9128 case SVE::BI__builtin_sve_svtbl2_f32: 9129 case SVE::BI__builtin_sve_svtbl2_f64: { 9130 SVETypeFlags TF(Builtin->TypeModifier); 9131 auto VTy = cast<llvm::VectorType>(getSVEType(TF)); 9132 auto TupleTy = llvm::VectorType::getDoubleElementsVectorType(VTy); 9133 Function *FExtr = 9134 CGM.getIntrinsic(Intrinsic::aarch64_sve_tuple_get, {VTy, TupleTy}); 9135 Value *V0 = Builder.CreateCall(FExtr, {Ops[0], Builder.getInt32(0)}); 9136 Value *V1 = Builder.CreateCall(FExtr, {Ops[0], Builder.getInt32(1)}); 9137 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_tbl2, VTy); 9138 return Builder.CreateCall(F, {V0, V1, Ops[1]}); 9139 } 9140 } 9141 9142 /// Should not happen 9143 return nullptr; 9144 } 9145 9146 Value *CodeGenFunction::EmitAArch64BuiltinExpr(unsigned BuiltinID, 9147 const CallExpr *E, 9148 llvm::Triple::ArchType Arch) { 9149 if (BuiltinID >= AArch64::FirstSVEBuiltin && 9150 BuiltinID <= AArch64::LastSVEBuiltin) 9151 return EmitAArch64SVEBuiltinExpr(BuiltinID, E); 9152 9153 unsigned HintID = static_cast<unsigned>(-1); 9154 switch (BuiltinID) { 9155 default: break; 9156 case AArch64::BI__builtin_arm_nop: 9157 HintID = 0; 9158 break; 9159 case AArch64::BI__builtin_arm_yield: 9160 case AArch64::BI__yield: 9161 HintID = 1; 9162 break; 9163 case AArch64::BI__builtin_arm_wfe: 9164 case AArch64::BI__wfe: 9165 HintID = 2; 9166 break; 9167 case AArch64::BI__builtin_arm_wfi: 9168 case AArch64::BI__wfi: 9169 HintID = 3; 9170 break; 9171 case AArch64::BI__builtin_arm_sev: 9172 case AArch64::BI__sev: 9173 HintID = 4; 9174 break; 9175 case AArch64::BI__builtin_arm_sevl: 9176 case AArch64::BI__sevl: 9177 HintID = 5; 9178 break; 9179 } 9180 9181 if (HintID != static_cast<unsigned>(-1)) { 9182 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_hint); 9183 return Builder.CreateCall(F, llvm::ConstantInt::get(Int32Ty, HintID)); 9184 } 9185 9186 if (BuiltinID == AArch64::BI__builtin_arm_prefetch) { 9187 Value *Address = EmitScalarExpr(E->getArg(0)); 9188 Value *RW = EmitScalarExpr(E->getArg(1)); 9189 Value *CacheLevel = EmitScalarExpr(E->getArg(2)); 9190 Value *RetentionPolicy = EmitScalarExpr(E->getArg(3)); 9191 Value *IsData = EmitScalarExpr(E->getArg(4)); 9192 9193 Value *Locality = nullptr; 9194 if (cast<llvm::ConstantInt>(RetentionPolicy)->isZero()) { 9195 // Temporal fetch, needs to convert cache level to locality. 9196 Locality = llvm::ConstantInt::get(Int32Ty, 9197 -cast<llvm::ConstantInt>(CacheLevel)->getValue() + 3); 9198 } else { 9199 // Streaming fetch. 9200 Locality = llvm::ConstantInt::get(Int32Ty, 0); 9201 } 9202 9203 // FIXME: We need AArch64 specific LLVM intrinsic if we want to specify 9204 // PLDL3STRM or PLDL2STRM. 9205 Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType()); 9206 return Builder.CreateCall(F, {Address, RW, Locality, IsData}); 9207 } 9208 9209 if (BuiltinID == AArch64::BI__builtin_arm_rbit) { 9210 assert((getContext().getTypeSize(E->getType()) == 32) && 9211 "rbit of unusual size!"); 9212 llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); 9213 return Builder.CreateCall( 9214 CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit"); 9215 } 9216 if (BuiltinID == AArch64::BI__builtin_arm_rbit64) { 9217 assert((getContext().getTypeSize(E->getType()) == 64) && 9218 "rbit of unusual size!"); 9219 llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); 9220 return Builder.CreateCall( 9221 CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit"); 9222 } 9223 9224 if (BuiltinID == AArch64::BI__builtin_arm_cls) { 9225 llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); 9226 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_cls), Arg, 9227 "cls"); 9228 } 9229 if (BuiltinID == AArch64::BI__builtin_arm_cls64) { 9230 llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); 9231 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_cls64), Arg, 9232 "cls"); 9233 } 9234 9235 if (BuiltinID == AArch64::BI__builtin_arm_frint32zf || 9236 BuiltinID == AArch64::BI__builtin_arm_frint32z) { 9237 llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); 9238 llvm::Type *Ty = Arg->getType(); 9239 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_frint32z, Ty), 9240 Arg, "frint32z"); 9241 } 9242 9243 if (BuiltinID == AArch64::BI__builtin_arm_frint64zf || 9244 BuiltinID == AArch64::BI__builtin_arm_frint64z) { 9245 llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); 9246 llvm::Type *Ty = Arg->getType(); 9247 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_frint64z, Ty), 9248 Arg, "frint64z"); 9249 } 9250 9251 if (BuiltinID == AArch64::BI__builtin_arm_frint32xf || 9252 BuiltinID == AArch64::BI__builtin_arm_frint32x) { 9253 llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); 9254 llvm::Type *Ty = Arg->getType(); 9255 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_frint32x, Ty), 9256 Arg, "frint32x"); 9257 } 9258 9259 if (BuiltinID == AArch64::BI__builtin_arm_frint64xf || 9260 BuiltinID == AArch64::BI__builtin_arm_frint64x) { 9261 llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); 9262 llvm::Type *Ty = Arg->getType(); 9263 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_frint64x, Ty), 9264 Arg, "frint64x"); 9265 } 9266 9267 if (BuiltinID == AArch64::BI__builtin_arm_jcvt) { 9268 assert((getContext().getTypeSize(E->getType()) == 32) && 9269 "__jcvt of unusual size!"); 9270 llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); 9271 return Builder.CreateCall( 9272 CGM.getIntrinsic(Intrinsic::aarch64_fjcvtzs), Arg); 9273 } 9274 9275 if (BuiltinID == AArch64::BI__builtin_arm_ld64b || 9276 BuiltinID == AArch64::BI__builtin_arm_st64b || 9277 BuiltinID == AArch64::BI__builtin_arm_st64bv || 9278 BuiltinID == AArch64::BI__builtin_arm_st64bv0) { 9279 llvm::Value *MemAddr = EmitScalarExpr(E->getArg(0)); 9280 llvm::Value *ValPtr = EmitScalarExpr(E->getArg(1)); 9281 9282 if (BuiltinID == AArch64::BI__builtin_arm_ld64b) { 9283 // Load from the address via an LLVM intrinsic, receiving a 9284 // tuple of 8 i64 words, and store each one to ValPtr. 9285 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_ld64b); 9286 llvm::Value *Val = Builder.CreateCall(F, MemAddr); 9287 llvm::Value *ToRet; 9288 for (size_t i = 0; i < 8; i++) { 9289 llvm::Value *ValOffsetPtr = Builder.CreateGEP(ValPtr, Builder.getInt32(i)); 9290 Address Addr(ValOffsetPtr, CharUnits::fromQuantity(8)); 9291 ToRet = Builder.CreateStore(Builder.CreateExtractValue(Val, i), Addr); 9292 } 9293 return ToRet; 9294 } else { 9295 // Load 8 i64 words from ValPtr, and store them to the address 9296 // via an LLVM intrinsic. 9297 SmallVector<llvm::Value *, 9> Args; 9298 Args.push_back(MemAddr); 9299 for (size_t i = 0; i < 8; i++) { 9300 llvm::Value *ValOffsetPtr = Builder.CreateGEP(ValPtr, Builder.getInt32(i)); 9301 Address Addr(ValOffsetPtr, CharUnits::fromQuantity(8)); 9302 Args.push_back(Builder.CreateLoad(Addr)); 9303 } 9304 9305 auto Intr = (BuiltinID == AArch64::BI__builtin_arm_st64b 9306 ? Intrinsic::aarch64_st64b 9307 : BuiltinID == AArch64::BI__builtin_arm_st64bv 9308 ? Intrinsic::aarch64_st64bv 9309 : Intrinsic::aarch64_st64bv0); 9310 Function *F = CGM.getIntrinsic(Intr); 9311 return Builder.CreateCall(F, Args); 9312 } 9313 } 9314 9315 if (BuiltinID == AArch64::BI__builtin_arm_rndr || 9316 BuiltinID == AArch64::BI__builtin_arm_rndrrs) { 9317 9318 auto Intr = (BuiltinID == AArch64::BI__builtin_arm_rndr 9319 ? Intrinsic::aarch64_rndr 9320 : Intrinsic::aarch64_rndrrs); 9321 Function *F = CGM.getIntrinsic(Intr); 9322 llvm::Value *Val = Builder.CreateCall(F); 9323 Value *RandomValue = Builder.CreateExtractValue(Val, 0); 9324 Value *Status = Builder.CreateExtractValue(Val, 1); 9325 9326 Address MemAddress = EmitPointerWithAlignment(E->getArg(0)); 9327 Builder.CreateStore(RandomValue, MemAddress); 9328 Status = Builder.CreateZExt(Status, Int32Ty); 9329 return Status; 9330 } 9331 9332 if (BuiltinID == AArch64::BI__clear_cache) { 9333 assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments"); 9334 const FunctionDecl *FD = E->getDirectCallee(); 9335 Value *Ops[2]; 9336 for (unsigned i = 0; i < 2; i++) 9337 Ops[i] = EmitScalarExpr(E->getArg(i)); 9338 llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType()); 9339 llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty); 9340 StringRef Name = FD->getName(); 9341 return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops); 9342 } 9343 9344 if ((BuiltinID == AArch64::BI__builtin_arm_ldrex || 9345 BuiltinID == AArch64::BI__builtin_arm_ldaex) && 9346 getContext().getTypeSize(E->getType()) == 128) { 9347 Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_ldaex 9348 ? Intrinsic::aarch64_ldaxp 9349 : Intrinsic::aarch64_ldxp); 9350 9351 Value *LdPtr = EmitScalarExpr(E->getArg(0)); 9352 Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy), 9353 "ldxp"); 9354 9355 Value *Val0 = Builder.CreateExtractValue(Val, 1); 9356 Value *Val1 = Builder.CreateExtractValue(Val, 0); 9357 llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128); 9358 Val0 = Builder.CreateZExt(Val0, Int128Ty); 9359 Val1 = Builder.CreateZExt(Val1, Int128Ty); 9360 9361 Value *ShiftCst = llvm::ConstantInt::get(Int128Ty, 64); 9362 Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */); 9363 Val = Builder.CreateOr(Val, Val1); 9364 return Builder.CreateBitCast(Val, ConvertType(E->getType())); 9365 } else if (BuiltinID == AArch64::BI__builtin_arm_ldrex || 9366 BuiltinID == AArch64::BI__builtin_arm_ldaex) { 9367 Value *LoadAddr = EmitScalarExpr(E->getArg(0)); 9368 9369 QualType Ty = E->getType(); 9370 llvm::Type *RealResTy = ConvertType(Ty); 9371 llvm::Type *PtrTy = llvm::IntegerType::get( 9372 getLLVMContext(), getContext().getTypeSize(Ty))->getPointerTo(); 9373 LoadAddr = Builder.CreateBitCast(LoadAddr, PtrTy); 9374 9375 Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_ldaex 9376 ? Intrinsic::aarch64_ldaxr 9377 : Intrinsic::aarch64_ldxr, 9378 PtrTy); 9379 Value *Val = Builder.CreateCall(F, LoadAddr, "ldxr"); 9380 9381 if (RealResTy->isPointerTy()) 9382 return Builder.CreateIntToPtr(Val, RealResTy); 9383 9384 llvm::Type *IntResTy = llvm::IntegerType::get( 9385 getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(RealResTy)); 9386 Val = Builder.CreateTruncOrBitCast(Val, IntResTy); 9387 return Builder.CreateBitCast(Val, RealResTy); 9388 } 9389 9390 if ((BuiltinID == AArch64::BI__builtin_arm_strex || 9391 BuiltinID == AArch64::BI__builtin_arm_stlex) && 9392 getContext().getTypeSize(E->getArg(0)->getType()) == 128) { 9393 Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_stlex 9394 ? Intrinsic::aarch64_stlxp 9395 : Intrinsic::aarch64_stxp); 9396 llvm::Type *STy = llvm::StructType::get(Int64Ty, Int64Ty); 9397 9398 Address Tmp = CreateMemTemp(E->getArg(0)->getType()); 9399 EmitAnyExprToMem(E->getArg(0), Tmp, Qualifiers(), /*init*/ true); 9400 9401 Tmp = Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(STy)); 9402 llvm::Value *Val = Builder.CreateLoad(Tmp); 9403 9404 Value *Arg0 = Builder.CreateExtractValue(Val, 0); 9405 Value *Arg1 = Builder.CreateExtractValue(Val, 1); 9406 Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), 9407 Int8PtrTy); 9408 return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "stxp"); 9409 } 9410 9411 if (BuiltinID == AArch64::BI__builtin_arm_strex || 9412 BuiltinID == AArch64::BI__builtin_arm_stlex) { 9413 Value *StoreVal = EmitScalarExpr(E->getArg(0)); 9414 Value *StoreAddr = EmitScalarExpr(E->getArg(1)); 9415 9416 QualType Ty = E->getArg(0)->getType(); 9417 llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(), 9418 getContext().getTypeSize(Ty)); 9419 StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo()); 9420 9421 if (StoreVal->getType()->isPointerTy()) 9422 StoreVal = Builder.CreatePtrToInt(StoreVal, Int64Ty); 9423 else { 9424 llvm::Type *IntTy = llvm::IntegerType::get( 9425 getLLVMContext(), 9426 CGM.getDataLayout().getTypeSizeInBits(StoreVal->getType())); 9427 StoreVal = Builder.CreateBitCast(StoreVal, IntTy); 9428 StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int64Ty); 9429 } 9430 9431 Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_stlex 9432 ? Intrinsic::aarch64_stlxr 9433 : Intrinsic::aarch64_stxr, 9434 StoreAddr->getType()); 9435 return Builder.CreateCall(F, {StoreVal, StoreAddr}, "stxr"); 9436 } 9437 9438 if (BuiltinID == AArch64::BI__getReg) { 9439 Expr::EvalResult Result; 9440 if (!E->getArg(0)->EvaluateAsInt(Result, CGM.getContext())) 9441 llvm_unreachable("Sema will ensure that the parameter is constant"); 9442 9443 llvm::APSInt Value = Result.Val.getInt(); 9444 LLVMContext &Context = CGM.getLLVMContext(); 9445 std::string Reg = Value == 31 ? "sp" : "x" + Value.toString(10); 9446 9447 llvm::Metadata *Ops[] = {llvm::MDString::get(Context, Reg)}; 9448 llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops); 9449 llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName); 9450 9451 llvm::Function *F = 9452 CGM.getIntrinsic(llvm::Intrinsic::read_register, {Int64Ty}); 9453 return Builder.CreateCall(F, Metadata); 9454 } 9455 9456 if (BuiltinID == AArch64::BI__builtin_arm_clrex) { 9457 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_clrex); 9458 return Builder.CreateCall(F); 9459 } 9460 9461 if (BuiltinID == AArch64::BI_ReadWriteBarrier) 9462 return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, 9463 llvm::SyncScope::SingleThread); 9464 9465 // CRC32 9466 Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic; 9467 switch (BuiltinID) { 9468 case AArch64::BI__builtin_arm_crc32b: 9469 CRCIntrinsicID = Intrinsic::aarch64_crc32b; break; 9470 case AArch64::BI__builtin_arm_crc32cb: 9471 CRCIntrinsicID = Intrinsic::aarch64_crc32cb; break; 9472 case AArch64::BI__builtin_arm_crc32h: 9473 CRCIntrinsicID = Intrinsic::aarch64_crc32h; break; 9474 case AArch64::BI__builtin_arm_crc32ch: 9475 CRCIntrinsicID = Intrinsic::aarch64_crc32ch; break; 9476 case AArch64::BI__builtin_arm_crc32w: 9477 CRCIntrinsicID = Intrinsic::aarch64_crc32w; break; 9478 case AArch64::BI__builtin_arm_crc32cw: 9479 CRCIntrinsicID = Intrinsic::aarch64_crc32cw; break; 9480 case AArch64::BI__builtin_arm_crc32d: 9481 CRCIntrinsicID = Intrinsic::aarch64_crc32x; break; 9482 case AArch64::BI__builtin_arm_crc32cd: 9483 CRCIntrinsicID = Intrinsic::aarch64_crc32cx; break; 9484 } 9485 9486 if (CRCIntrinsicID != Intrinsic::not_intrinsic) { 9487 Value *Arg0 = EmitScalarExpr(E->getArg(0)); 9488 Value *Arg1 = EmitScalarExpr(E->getArg(1)); 9489 Function *F = CGM.getIntrinsic(CRCIntrinsicID); 9490 9491 llvm::Type *DataTy = F->getFunctionType()->getParamType(1); 9492 Arg1 = Builder.CreateZExtOrBitCast(Arg1, DataTy); 9493 9494 return Builder.CreateCall(F, {Arg0, Arg1}); 9495 } 9496 9497 // Memory Tagging Extensions (MTE) Intrinsics 9498 Intrinsic::ID MTEIntrinsicID = Intrinsic::not_intrinsic; 9499 switch (BuiltinID) { 9500 case AArch64::BI__builtin_arm_irg: 9501 MTEIntrinsicID = Intrinsic::aarch64_irg; break; 9502 case AArch64::BI__builtin_arm_addg: 9503 MTEIntrinsicID = Intrinsic::aarch64_addg; break; 9504 case AArch64::BI__builtin_arm_gmi: 9505 MTEIntrinsicID = Intrinsic::aarch64_gmi; break; 9506 case AArch64::BI__builtin_arm_ldg: 9507 MTEIntrinsicID = Intrinsic::aarch64_ldg; break; 9508 case AArch64::BI__builtin_arm_stg: 9509 MTEIntrinsicID = Intrinsic::aarch64_stg; break; 9510 case AArch64::BI__builtin_arm_subp: 9511 MTEIntrinsicID = Intrinsic::aarch64_subp; break; 9512 } 9513 9514 if (MTEIntrinsicID != Intrinsic::not_intrinsic) { 9515 llvm::Type *T = ConvertType(E->getType()); 9516 9517 if (MTEIntrinsicID == Intrinsic::aarch64_irg) { 9518 Value *Pointer = EmitScalarExpr(E->getArg(0)); 9519 Value *Mask = EmitScalarExpr(E->getArg(1)); 9520 9521 Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy); 9522 Mask = Builder.CreateZExt(Mask, Int64Ty); 9523 Value *RV = Builder.CreateCall( 9524 CGM.getIntrinsic(MTEIntrinsicID), {Pointer, Mask}); 9525 return Builder.CreatePointerCast(RV, T); 9526 } 9527 if (MTEIntrinsicID == Intrinsic::aarch64_addg) { 9528 Value *Pointer = EmitScalarExpr(E->getArg(0)); 9529 Value *TagOffset = EmitScalarExpr(E->getArg(1)); 9530 9531 Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy); 9532 TagOffset = Builder.CreateZExt(TagOffset, Int64Ty); 9533 Value *RV = Builder.CreateCall( 9534 CGM.getIntrinsic(MTEIntrinsicID), {Pointer, TagOffset}); 9535 return Builder.CreatePointerCast(RV, T); 9536 } 9537 if (MTEIntrinsicID == Intrinsic::aarch64_gmi) { 9538 Value *Pointer = EmitScalarExpr(E->getArg(0)); 9539 Value *ExcludedMask = EmitScalarExpr(E->getArg(1)); 9540 9541 ExcludedMask = Builder.CreateZExt(ExcludedMask, Int64Ty); 9542 Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy); 9543 return Builder.CreateCall( 9544 CGM.getIntrinsic(MTEIntrinsicID), {Pointer, ExcludedMask}); 9545 } 9546 // Although it is possible to supply a different return 9547 // address (first arg) to this intrinsic, for now we set 9548 // return address same as input address. 9549 if (MTEIntrinsicID == Intrinsic::aarch64_ldg) { 9550 Value *TagAddress = EmitScalarExpr(E->getArg(0)); 9551 TagAddress = Builder.CreatePointerCast(TagAddress, Int8PtrTy); 9552 Value *RV = Builder.CreateCall( 9553 CGM.getIntrinsic(MTEIntrinsicID), {TagAddress, TagAddress}); 9554 return Builder.CreatePointerCast(RV, T); 9555 } 9556 // Although it is possible to supply a different tag (to set) 9557 // to this intrinsic (as first arg), for now we supply 9558 // the tag that is in input address arg (common use case). 9559 if (MTEIntrinsicID == Intrinsic::aarch64_stg) { 9560 Value *TagAddress = EmitScalarExpr(E->getArg(0)); 9561 TagAddress = Builder.CreatePointerCast(TagAddress, Int8PtrTy); 9562 return Builder.CreateCall( 9563 CGM.getIntrinsic(MTEIntrinsicID), {TagAddress, TagAddress}); 9564 } 9565 if (MTEIntrinsicID == Intrinsic::aarch64_subp) { 9566 Value *PointerA = EmitScalarExpr(E->getArg(0)); 9567 Value *PointerB = EmitScalarExpr(E->getArg(1)); 9568 PointerA = Builder.CreatePointerCast(PointerA, Int8PtrTy); 9569 PointerB = Builder.CreatePointerCast(PointerB, Int8PtrTy); 9570 return Builder.CreateCall( 9571 CGM.getIntrinsic(MTEIntrinsicID), {PointerA, PointerB}); 9572 } 9573 } 9574 9575 if (BuiltinID == AArch64::BI__builtin_arm_rsr || 9576 BuiltinID == AArch64::BI__builtin_arm_rsr64 || 9577 BuiltinID == AArch64::BI__builtin_arm_rsrp || 9578 BuiltinID == AArch64::BI__builtin_arm_wsr || 9579 BuiltinID == AArch64::BI__builtin_arm_wsr64 || 9580 BuiltinID == AArch64::BI__builtin_arm_wsrp) { 9581 9582 SpecialRegisterAccessKind AccessKind = Write; 9583 if (BuiltinID == AArch64::BI__builtin_arm_rsr || 9584 BuiltinID == AArch64::BI__builtin_arm_rsr64 || 9585 BuiltinID == AArch64::BI__builtin_arm_rsrp) 9586 AccessKind = VolatileRead; 9587 9588 bool IsPointerBuiltin = BuiltinID == AArch64::BI__builtin_arm_rsrp || 9589 BuiltinID == AArch64::BI__builtin_arm_wsrp; 9590 9591 bool Is64Bit = BuiltinID != AArch64::BI__builtin_arm_rsr && 9592 BuiltinID != AArch64::BI__builtin_arm_wsr; 9593 9594 llvm::Type *ValueType; 9595 llvm::Type *RegisterType = Int64Ty; 9596 if (IsPointerBuiltin) { 9597 ValueType = VoidPtrTy; 9598 } else if (Is64Bit) { 9599 ValueType = Int64Ty; 9600 } else { 9601 ValueType = Int32Ty; 9602 } 9603 9604 return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType, 9605 AccessKind); 9606 } 9607 9608 if (BuiltinID == AArch64::BI_ReadStatusReg || 9609 BuiltinID == AArch64::BI_WriteStatusReg) { 9610 LLVMContext &Context = CGM.getLLVMContext(); 9611 9612 unsigned SysReg = 9613 E->getArg(0)->EvaluateKnownConstInt(getContext()).getZExtValue(); 9614 9615 std::string SysRegStr; 9616 llvm::raw_string_ostream(SysRegStr) << 9617 ((1 << 1) | ((SysReg >> 14) & 1)) << ":" << 9618 ((SysReg >> 11) & 7) << ":" << 9619 ((SysReg >> 7) & 15) << ":" << 9620 ((SysReg >> 3) & 15) << ":" << 9621 ( SysReg & 7); 9622 9623 llvm::Metadata *Ops[] = { llvm::MDString::get(Context, SysRegStr) }; 9624 llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops); 9625 llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName); 9626 9627 llvm::Type *RegisterType = Int64Ty; 9628 llvm::Type *Types[] = { RegisterType }; 9629 9630 if (BuiltinID == AArch64::BI_ReadStatusReg) { 9631 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types); 9632 9633 return Builder.CreateCall(F, Metadata); 9634 } 9635 9636 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types); 9637 llvm::Value *ArgValue = EmitScalarExpr(E->getArg(1)); 9638 9639 return Builder.CreateCall(F, { Metadata, ArgValue }); 9640 } 9641 9642 if (BuiltinID == AArch64::BI_AddressOfReturnAddress) { 9643 llvm::Function *F = 9644 CGM.getIntrinsic(Intrinsic::addressofreturnaddress, AllocaInt8PtrTy); 9645 return Builder.CreateCall(F); 9646 } 9647 9648 if (BuiltinID == AArch64::BI__builtin_sponentry) { 9649 llvm::Function *F = CGM.getIntrinsic(Intrinsic::sponentry, AllocaInt8PtrTy); 9650 return Builder.CreateCall(F); 9651 } 9652 9653 // Handle MSVC intrinsics before argument evaluation to prevent double 9654 // evaluation. 9655 if (Optional<MSVCIntrin> MsvcIntId = translateAarch64ToMsvcIntrin(BuiltinID)) 9656 return EmitMSVCBuiltinExpr(*MsvcIntId, E); 9657 9658 // Find out if any arguments are required to be integer constant 9659 // expressions. 9660 unsigned ICEArguments = 0; 9661 ASTContext::GetBuiltinTypeError Error; 9662 getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments); 9663 assert(Error == ASTContext::GE_None && "Should not codegen an error"); 9664 9665 llvm::SmallVector<Value*, 4> Ops; 9666 Address PtrOp0 = Address::invalid(); 9667 for (unsigned i = 0, e = E->getNumArgs() - 1; i != e; i++) { 9668 if (i == 0) { 9669 switch (BuiltinID) { 9670 case NEON::BI__builtin_neon_vld1_v: 9671 case NEON::BI__builtin_neon_vld1q_v: 9672 case NEON::BI__builtin_neon_vld1_dup_v: 9673 case NEON::BI__builtin_neon_vld1q_dup_v: 9674 case NEON::BI__builtin_neon_vld1_lane_v: 9675 case NEON::BI__builtin_neon_vld1q_lane_v: 9676 case NEON::BI__builtin_neon_vst1_v: 9677 case NEON::BI__builtin_neon_vst1q_v: 9678 case NEON::BI__builtin_neon_vst1_lane_v: 9679 case NEON::BI__builtin_neon_vst1q_lane_v: 9680 // Get the alignment for the argument in addition to the value; 9681 // we'll use it later. 9682 PtrOp0 = EmitPointerWithAlignment(E->getArg(0)); 9683 Ops.push_back(PtrOp0.getPointer()); 9684 continue; 9685 } 9686 } 9687 if ((ICEArguments & (1 << i)) == 0) { 9688 Ops.push_back(EmitScalarExpr(E->getArg(i))); 9689 } else { 9690 // If this is required to be a constant, constant fold it so that we know 9691 // that the generated intrinsic gets a ConstantInt. 9692 Ops.push_back(llvm::ConstantInt::get( 9693 getLLVMContext(), 9694 *E->getArg(i)->getIntegerConstantExpr(getContext()))); 9695 } 9696 } 9697 9698 auto SISDMap = makeArrayRef(AArch64SISDIntrinsicMap); 9699 const ARMVectorIntrinsicInfo *Builtin = findARMVectorIntrinsicInMap( 9700 SISDMap, BuiltinID, AArch64SISDIntrinsicsProvenSorted); 9701 9702 if (Builtin) { 9703 Ops.push_back(EmitScalarExpr(E->getArg(E->getNumArgs() - 1))); 9704 Value *Result = EmitCommonNeonSISDBuiltinExpr(*this, *Builtin, Ops, E); 9705 assert(Result && "SISD intrinsic should have been handled"); 9706 return Result; 9707 } 9708 9709 const Expr *Arg = E->getArg(E->getNumArgs()-1); 9710 NeonTypeFlags Type(0); 9711 if (Optional<llvm::APSInt> Result = Arg->getIntegerConstantExpr(getContext())) 9712 // Determine the type of this overloaded NEON intrinsic. 9713 Type = NeonTypeFlags(Result->getZExtValue()); 9714 9715 bool usgn = Type.isUnsigned(); 9716 bool quad = Type.isQuad(); 9717 9718 // Handle non-overloaded intrinsics first. 9719 switch (BuiltinID) { 9720 default: break; 9721 case NEON::BI__builtin_neon_vabsh_f16: 9722 Ops.push_back(EmitScalarExpr(E->getArg(0))); 9723 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, HalfTy), Ops, "vabs"); 9724 case NEON::BI__builtin_neon_vaddq_p128: { 9725 llvm::Type *Ty = GetNeonType(this, NeonTypeFlags::Poly128); 9726 Ops.push_back(EmitScalarExpr(E->getArg(1))); 9727 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 9728 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 9729 Ops[0] = Builder.CreateXor(Ops[0], Ops[1]); 9730 llvm::Type *Int128Ty = llvm::Type::getIntNTy(getLLVMContext(), 128); 9731 return Builder.CreateBitCast(Ops[0], Int128Ty); 9732 } 9733 case NEON::BI__builtin_neon_vldrq_p128: { 9734 llvm::Type *Int128Ty = llvm::Type::getIntNTy(getLLVMContext(), 128); 9735 llvm::Type *Int128PTy = llvm::PointerType::get(Int128Ty, 0); 9736 Value *Ptr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int128PTy); 9737 return Builder.CreateAlignedLoad(Int128Ty, Ptr, 9738 CharUnits::fromQuantity(16)); 9739 } 9740 case NEON::BI__builtin_neon_vstrq_p128: { 9741 llvm::Type *Int128PTy = llvm::Type::getIntNPtrTy(getLLVMContext(), 128); 9742 Value *Ptr = Builder.CreateBitCast(Ops[0], Int128PTy); 9743 return Builder.CreateDefaultAlignedStore(EmitScalarExpr(E->getArg(1)), Ptr); 9744 } 9745 case NEON::BI__builtin_neon_vcvts_f32_u32: 9746 case NEON::BI__builtin_neon_vcvtd_f64_u64: 9747 usgn = true; 9748 LLVM_FALLTHROUGH; 9749 case NEON::BI__builtin_neon_vcvts_f32_s32: 9750 case NEON::BI__builtin_neon_vcvtd_f64_s64: { 9751 Ops.push_back(EmitScalarExpr(E->getArg(0))); 9752 bool Is64 = Ops[0]->getType()->getPrimitiveSizeInBits() == 64; 9753 llvm::Type *InTy = Is64 ? Int64Ty : Int32Ty; 9754 llvm::Type *FTy = Is64 ? DoubleTy : FloatTy; 9755 Ops[0] = Builder.CreateBitCast(Ops[0], InTy); 9756 if (usgn) 9757 return Builder.CreateUIToFP(Ops[0], FTy); 9758 return Builder.CreateSIToFP(Ops[0], FTy); 9759 } 9760 case NEON::BI__builtin_neon_vcvth_f16_u16: 9761 case NEON::BI__builtin_neon_vcvth_f16_u32: 9762 case NEON::BI__builtin_neon_vcvth_f16_u64: 9763 usgn = true; 9764 LLVM_FALLTHROUGH; 9765 case NEON::BI__builtin_neon_vcvth_f16_s16: 9766 case NEON::BI__builtin_neon_vcvth_f16_s32: 9767 case NEON::BI__builtin_neon_vcvth_f16_s64: { 9768 Ops.push_back(EmitScalarExpr(E->getArg(0))); 9769 llvm::Type *FTy = HalfTy; 9770 llvm::Type *InTy; 9771 if (Ops[0]->getType()->getPrimitiveSizeInBits() == 64) 9772 InTy = Int64Ty; 9773 else if (Ops[0]->getType()->getPrimitiveSizeInBits() == 32) 9774 InTy = Int32Ty; 9775 else 9776 InTy = Int16Ty; 9777 Ops[0] = Builder.CreateBitCast(Ops[0], InTy); 9778 if (usgn) 9779 return Builder.CreateUIToFP(Ops[0], FTy); 9780 return Builder.CreateSIToFP(Ops[0], FTy); 9781 } 9782 case NEON::BI__builtin_neon_vcvtah_u16_f16: 9783 case NEON::BI__builtin_neon_vcvtmh_u16_f16: 9784 case NEON::BI__builtin_neon_vcvtnh_u16_f16: 9785 case NEON::BI__builtin_neon_vcvtph_u16_f16: 9786 case NEON::BI__builtin_neon_vcvth_u16_f16: 9787 case NEON::BI__builtin_neon_vcvtah_s16_f16: 9788 case NEON::BI__builtin_neon_vcvtmh_s16_f16: 9789 case NEON::BI__builtin_neon_vcvtnh_s16_f16: 9790 case NEON::BI__builtin_neon_vcvtph_s16_f16: 9791 case NEON::BI__builtin_neon_vcvth_s16_f16: { 9792 unsigned Int; 9793 llvm::Type* InTy = Int32Ty; 9794 llvm::Type* FTy = HalfTy; 9795 llvm::Type *Tys[2] = {InTy, FTy}; 9796 Ops.push_back(EmitScalarExpr(E->getArg(0))); 9797 switch (BuiltinID) { 9798 default: llvm_unreachable("missing builtin ID in switch!"); 9799 case NEON::BI__builtin_neon_vcvtah_u16_f16: 9800 Int = Intrinsic::aarch64_neon_fcvtau; break; 9801 case NEON::BI__builtin_neon_vcvtmh_u16_f16: 9802 Int = Intrinsic::aarch64_neon_fcvtmu; break; 9803 case NEON::BI__builtin_neon_vcvtnh_u16_f16: 9804 Int = Intrinsic::aarch64_neon_fcvtnu; break; 9805 case NEON::BI__builtin_neon_vcvtph_u16_f16: 9806 Int = Intrinsic::aarch64_neon_fcvtpu; break; 9807 case NEON::BI__builtin_neon_vcvth_u16_f16: 9808 Int = Intrinsic::aarch64_neon_fcvtzu; break; 9809 case NEON::BI__builtin_neon_vcvtah_s16_f16: 9810 Int = Intrinsic::aarch64_neon_fcvtas; break; 9811 case NEON::BI__builtin_neon_vcvtmh_s16_f16: 9812 Int = Intrinsic::aarch64_neon_fcvtms; break; 9813 case NEON::BI__builtin_neon_vcvtnh_s16_f16: 9814 Int = Intrinsic::aarch64_neon_fcvtns; break; 9815 case NEON::BI__builtin_neon_vcvtph_s16_f16: 9816 Int = Intrinsic::aarch64_neon_fcvtps; break; 9817 case NEON::BI__builtin_neon_vcvth_s16_f16: 9818 Int = Intrinsic::aarch64_neon_fcvtzs; break; 9819 } 9820 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvt"); 9821 return Builder.CreateTrunc(Ops[0], Int16Ty); 9822 } 9823 case NEON::BI__builtin_neon_vcaleh_f16: 9824 case NEON::BI__builtin_neon_vcalth_f16: 9825 case NEON::BI__builtin_neon_vcageh_f16: 9826 case NEON::BI__builtin_neon_vcagth_f16: { 9827 unsigned Int; 9828 llvm::Type* InTy = Int32Ty; 9829 llvm::Type* FTy = HalfTy; 9830 llvm::Type *Tys[2] = {InTy, FTy}; 9831 Ops.push_back(EmitScalarExpr(E->getArg(1))); 9832 switch (BuiltinID) { 9833 default: llvm_unreachable("missing builtin ID in switch!"); 9834 case NEON::BI__builtin_neon_vcageh_f16: 9835 Int = Intrinsic::aarch64_neon_facge; break; 9836 case NEON::BI__builtin_neon_vcagth_f16: 9837 Int = Intrinsic::aarch64_neon_facgt; break; 9838 case NEON::BI__builtin_neon_vcaleh_f16: 9839 Int = Intrinsic::aarch64_neon_facge; std::swap(Ops[0], Ops[1]); break; 9840 case NEON::BI__builtin_neon_vcalth_f16: 9841 Int = Intrinsic::aarch64_neon_facgt; std::swap(Ops[0], Ops[1]); break; 9842 } 9843 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "facg"); 9844 return Builder.CreateTrunc(Ops[0], Int16Ty); 9845 } 9846 case NEON::BI__builtin_neon_vcvth_n_s16_f16: 9847 case NEON::BI__builtin_neon_vcvth_n_u16_f16: { 9848 unsigned Int; 9849 llvm::Type* InTy = Int32Ty; 9850 llvm::Type* FTy = HalfTy; 9851 llvm::Type *Tys[2] = {InTy, FTy}; 9852 Ops.push_back(EmitScalarExpr(E->getArg(1))); 9853 switch (BuiltinID) { 9854 default: llvm_unreachable("missing builtin ID in switch!"); 9855 case NEON::BI__builtin_neon_vcvth_n_s16_f16: 9856 Int = Intrinsic::aarch64_neon_vcvtfp2fxs; break; 9857 case NEON::BI__builtin_neon_vcvth_n_u16_f16: 9858 Int = Intrinsic::aarch64_neon_vcvtfp2fxu; break; 9859 } 9860 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvth_n"); 9861 return Builder.CreateTrunc(Ops[0], Int16Ty); 9862 } 9863 case NEON::BI__builtin_neon_vcvth_n_f16_s16: 9864 case NEON::BI__builtin_neon_vcvth_n_f16_u16: { 9865 unsigned Int; 9866 llvm::Type* FTy = HalfTy; 9867 llvm::Type* InTy = Int32Ty; 9868 llvm::Type *Tys[2] = {FTy, InTy}; 9869 Ops.push_back(EmitScalarExpr(E->getArg(1))); 9870 switch (BuiltinID) { 9871 default: llvm_unreachable("missing builtin ID in switch!"); 9872 case NEON::BI__builtin_neon_vcvth_n_f16_s16: 9873 Int = Intrinsic::aarch64_neon_vcvtfxs2fp; 9874 Ops[0] = Builder.CreateSExt(Ops[0], InTy, "sext"); 9875 break; 9876 case NEON::BI__builtin_neon_vcvth_n_f16_u16: 9877 Int = Intrinsic::aarch64_neon_vcvtfxu2fp; 9878 Ops[0] = Builder.CreateZExt(Ops[0], InTy); 9879 break; 9880 } 9881 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvth_n"); 9882 } 9883 case NEON::BI__builtin_neon_vpaddd_s64: { 9884 auto *Ty = llvm::FixedVectorType::get(Int64Ty, 2); 9885 Value *Vec = EmitScalarExpr(E->getArg(0)); 9886 // The vector is v2f64, so make sure it's bitcast to that. 9887 Vec = Builder.CreateBitCast(Vec, Ty, "v2i64"); 9888 llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0); 9889 llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1); 9890 Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0"); 9891 Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1"); 9892 // Pairwise addition of a v2f64 into a scalar f64. 9893 return Builder.CreateAdd(Op0, Op1, "vpaddd"); 9894 } 9895 case NEON::BI__builtin_neon_vpaddd_f64: { 9896 auto *Ty = llvm::FixedVectorType::get(DoubleTy, 2); 9897 Value *Vec = EmitScalarExpr(E->getArg(0)); 9898 // The vector is v2f64, so make sure it's bitcast to that. 9899 Vec = Builder.CreateBitCast(Vec, Ty, "v2f64"); 9900 llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0); 9901 llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1); 9902 Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0"); 9903 Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1"); 9904 // Pairwise addition of a v2f64 into a scalar f64. 9905 return Builder.CreateFAdd(Op0, Op1, "vpaddd"); 9906 } 9907 case NEON::BI__builtin_neon_vpadds_f32: { 9908 auto *Ty = llvm::FixedVectorType::get(FloatTy, 2); 9909 Value *Vec = EmitScalarExpr(E->getArg(0)); 9910 // The vector is v2f32, so make sure it's bitcast to that. 9911 Vec = Builder.CreateBitCast(Vec, Ty, "v2f32"); 9912 llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0); 9913 llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1); 9914 Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0"); 9915 Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1"); 9916 // Pairwise addition of a v2f32 into a scalar f32. 9917 return Builder.CreateFAdd(Op0, Op1, "vpaddd"); 9918 } 9919 case NEON::BI__builtin_neon_vceqzd_s64: 9920 case NEON::BI__builtin_neon_vceqzd_f64: 9921 case NEON::BI__builtin_neon_vceqzs_f32: 9922 case NEON::BI__builtin_neon_vceqzh_f16: 9923 Ops.push_back(EmitScalarExpr(E->getArg(0))); 9924 return EmitAArch64CompareBuiltinExpr( 9925 Ops[0], ConvertType(E->getCallReturnType(getContext())), 9926 ICmpInst::FCMP_OEQ, ICmpInst::ICMP_EQ, "vceqz"); 9927 case NEON::BI__builtin_neon_vcgezd_s64: 9928 case NEON::BI__builtin_neon_vcgezd_f64: 9929 case NEON::BI__builtin_neon_vcgezs_f32: 9930 case NEON::BI__builtin_neon_vcgezh_f16: 9931 Ops.push_back(EmitScalarExpr(E->getArg(0))); 9932 return EmitAArch64CompareBuiltinExpr( 9933 Ops[0], ConvertType(E->getCallReturnType(getContext())), 9934 ICmpInst::FCMP_OGE, ICmpInst::ICMP_SGE, "vcgez"); 9935 case NEON::BI__builtin_neon_vclezd_s64: 9936 case NEON::BI__builtin_neon_vclezd_f64: 9937 case NEON::BI__builtin_neon_vclezs_f32: 9938 case NEON::BI__builtin_neon_vclezh_f16: 9939 Ops.push_back(EmitScalarExpr(E->getArg(0))); 9940 return EmitAArch64CompareBuiltinExpr( 9941 Ops[0], ConvertType(E->getCallReturnType(getContext())), 9942 ICmpInst::FCMP_OLE, ICmpInst::ICMP_SLE, "vclez"); 9943 case NEON::BI__builtin_neon_vcgtzd_s64: 9944 case NEON::BI__builtin_neon_vcgtzd_f64: 9945 case NEON::BI__builtin_neon_vcgtzs_f32: 9946 case NEON::BI__builtin_neon_vcgtzh_f16: 9947 Ops.push_back(EmitScalarExpr(E->getArg(0))); 9948 return EmitAArch64CompareBuiltinExpr( 9949 Ops[0], ConvertType(E->getCallReturnType(getContext())), 9950 ICmpInst::FCMP_OGT, ICmpInst::ICMP_SGT, "vcgtz"); 9951 case NEON::BI__builtin_neon_vcltzd_s64: 9952 case NEON::BI__builtin_neon_vcltzd_f64: 9953 case NEON::BI__builtin_neon_vcltzs_f32: 9954 case NEON::BI__builtin_neon_vcltzh_f16: 9955 Ops.push_back(EmitScalarExpr(E->getArg(0))); 9956 return EmitAArch64CompareBuiltinExpr( 9957 Ops[0], ConvertType(E->getCallReturnType(getContext())), 9958 ICmpInst::FCMP_OLT, ICmpInst::ICMP_SLT, "vcltz"); 9959 9960 case NEON::BI__builtin_neon_vceqzd_u64: { 9961 Ops.push_back(EmitScalarExpr(E->getArg(0))); 9962 Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty); 9963 Ops[0] = 9964 Builder.CreateICmpEQ(Ops[0], llvm::Constant::getNullValue(Int64Ty)); 9965 return Builder.CreateSExt(Ops[0], Int64Ty, "vceqzd"); 9966 } 9967 case NEON::BI__builtin_neon_vceqd_f64: 9968 case NEON::BI__builtin_neon_vcled_f64: 9969 case NEON::BI__builtin_neon_vcltd_f64: 9970 case NEON::BI__builtin_neon_vcged_f64: 9971 case NEON::BI__builtin_neon_vcgtd_f64: { 9972 llvm::CmpInst::Predicate P; 9973 switch (BuiltinID) { 9974 default: llvm_unreachable("missing builtin ID in switch!"); 9975 case NEON::BI__builtin_neon_vceqd_f64: P = llvm::FCmpInst::FCMP_OEQ; break; 9976 case NEON::BI__builtin_neon_vcled_f64: P = llvm::FCmpInst::FCMP_OLE; break; 9977 case NEON::BI__builtin_neon_vcltd_f64: P = llvm::FCmpInst::FCMP_OLT; break; 9978 case NEON::BI__builtin_neon_vcged_f64: P = llvm::FCmpInst::FCMP_OGE; break; 9979 case NEON::BI__builtin_neon_vcgtd_f64: P = llvm::FCmpInst::FCMP_OGT; break; 9980 } 9981 Ops.push_back(EmitScalarExpr(E->getArg(1))); 9982 Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy); 9983 Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy); 9984 Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]); 9985 return Builder.CreateSExt(Ops[0], Int64Ty, "vcmpd"); 9986 } 9987 case NEON::BI__builtin_neon_vceqs_f32: 9988 case NEON::BI__builtin_neon_vcles_f32: 9989 case NEON::BI__builtin_neon_vclts_f32: 9990 case NEON::BI__builtin_neon_vcges_f32: 9991 case NEON::BI__builtin_neon_vcgts_f32: { 9992 llvm::CmpInst::Predicate P; 9993 switch (BuiltinID) { 9994 default: llvm_unreachable("missing builtin ID in switch!"); 9995 case NEON::BI__builtin_neon_vceqs_f32: P = llvm::FCmpInst::FCMP_OEQ; break; 9996 case NEON::BI__builtin_neon_vcles_f32: P = llvm::FCmpInst::FCMP_OLE; break; 9997 case NEON::BI__builtin_neon_vclts_f32: P = llvm::FCmpInst::FCMP_OLT; break; 9998 case NEON::BI__builtin_neon_vcges_f32: P = llvm::FCmpInst::FCMP_OGE; break; 9999 case NEON::BI__builtin_neon_vcgts_f32: P = llvm::FCmpInst::FCMP_OGT; break; 10000 } 10001 Ops.push_back(EmitScalarExpr(E->getArg(1))); 10002 Ops[0] = Builder.CreateBitCast(Ops[0], FloatTy); 10003 Ops[1] = Builder.CreateBitCast(Ops[1], FloatTy); 10004 Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]); 10005 return Builder.CreateSExt(Ops[0], Int32Ty, "vcmpd"); 10006 } 10007 case NEON::BI__builtin_neon_vceqh_f16: 10008 case NEON::BI__builtin_neon_vcleh_f16: 10009 case NEON::BI__builtin_neon_vclth_f16: 10010 case NEON::BI__builtin_neon_vcgeh_f16: 10011 case NEON::BI__builtin_neon_vcgth_f16: { 10012 llvm::CmpInst::Predicate P; 10013 switch (BuiltinID) { 10014 default: llvm_unreachable("missing builtin ID in switch!"); 10015 case NEON::BI__builtin_neon_vceqh_f16: P = llvm::FCmpInst::FCMP_OEQ; break; 10016 case NEON::BI__builtin_neon_vcleh_f16: P = llvm::FCmpInst::FCMP_OLE; break; 10017 case NEON::BI__builtin_neon_vclth_f16: P = llvm::FCmpInst::FCMP_OLT; break; 10018 case NEON::BI__builtin_neon_vcgeh_f16: P = llvm::FCmpInst::FCMP_OGE; break; 10019 case NEON::BI__builtin_neon_vcgth_f16: P = llvm::FCmpInst::FCMP_OGT; break; 10020 } 10021 Ops.push_back(EmitScalarExpr(E->getArg(1))); 10022 Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy); 10023 Ops[1] = Builder.CreateBitCast(Ops[1], HalfTy); 10024 Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]); 10025 return Builder.CreateSExt(Ops[0], Int16Ty, "vcmpd"); 10026 } 10027 case NEON::BI__builtin_neon_vceqd_s64: 10028 case NEON::BI__builtin_neon_vceqd_u64: 10029 case NEON::BI__builtin_neon_vcgtd_s64: 10030 case NEON::BI__builtin_neon_vcgtd_u64: 10031 case NEON::BI__builtin_neon_vcltd_s64: 10032 case NEON::BI__builtin_neon_vcltd_u64: 10033 case NEON::BI__builtin_neon_vcged_u64: 10034 case NEON::BI__builtin_neon_vcged_s64: 10035 case NEON::BI__builtin_neon_vcled_u64: 10036 case NEON::BI__builtin_neon_vcled_s64: { 10037 llvm::CmpInst::Predicate P; 10038 switch (BuiltinID) { 10039 default: llvm_unreachable("missing builtin ID in switch!"); 10040 case NEON::BI__builtin_neon_vceqd_s64: 10041 case NEON::BI__builtin_neon_vceqd_u64:P = llvm::ICmpInst::ICMP_EQ;break; 10042 case NEON::BI__builtin_neon_vcgtd_s64:P = llvm::ICmpInst::ICMP_SGT;break; 10043 case NEON::BI__builtin_neon_vcgtd_u64:P = llvm::ICmpInst::ICMP_UGT;break; 10044 case NEON::BI__builtin_neon_vcltd_s64:P = llvm::ICmpInst::ICMP_SLT;break; 10045 case NEON::BI__builtin_neon_vcltd_u64:P = llvm::ICmpInst::ICMP_ULT;break; 10046 case NEON::BI__builtin_neon_vcged_u64:P = llvm::ICmpInst::ICMP_UGE;break; 10047 case NEON::BI__builtin_neon_vcged_s64:P = llvm::ICmpInst::ICMP_SGE;break; 10048 case NEON::BI__builtin_neon_vcled_u64:P = llvm::ICmpInst::ICMP_ULE;break; 10049 case NEON::BI__builtin_neon_vcled_s64:P = llvm::ICmpInst::ICMP_SLE;break; 10050 } 10051 Ops.push_back(EmitScalarExpr(E->getArg(1))); 10052 Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty); 10053 Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty); 10054 Ops[0] = Builder.CreateICmp(P, Ops[0], Ops[1]); 10055 return Builder.CreateSExt(Ops[0], Int64Ty, "vceqd"); 10056 } 10057 case NEON::BI__builtin_neon_vtstd_s64: 10058 case NEON::BI__builtin_neon_vtstd_u64: { 10059 Ops.push_back(EmitScalarExpr(E->getArg(1))); 10060 Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty); 10061 Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty); 10062 Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]); 10063 Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0], 10064 llvm::Constant::getNullValue(Int64Ty)); 10065 return Builder.CreateSExt(Ops[0], Int64Ty, "vtstd"); 10066 } 10067 case NEON::BI__builtin_neon_vset_lane_i8: 10068 case NEON::BI__builtin_neon_vset_lane_i16: 10069 case NEON::BI__builtin_neon_vset_lane_i32: 10070 case NEON::BI__builtin_neon_vset_lane_i64: 10071 case NEON::BI__builtin_neon_vset_lane_bf16: 10072 case NEON::BI__builtin_neon_vset_lane_f32: 10073 case NEON::BI__builtin_neon_vsetq_lane_i8: 10074 case NEON::BI__builtin_neon_vsetq_lane_i16: 10075 case NEON::BI__builtin_neon_vsetq_lane_i32: 10076 case NEON::BI__builtin_neon_vsetq_lane_i64: 10077 case NEON::BI__builtin_neon_vsetq_lane_bf16: 10078 case NEON::BI__builtin_neon_vsetq_lane_f32: 10079 Ops.push_back(EmitScalarExpr(E->getArg(2))); 10080 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane"); 10081 case NEON::BI__builtin_neon_vset_lane_f64: 10082 // The vector type needs a cast for the v1f64 variant. 10083 Ops[1] = 10084 Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(DoubleTy, 1)); 10085 Ops.push_back(EmitScalarExpr(E->getArg(2))); 10086 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane"); 10087 case NEON::BI__builtin_neon_vsetq_lane_f64: 10088 // The vector type needs a cast for the v2f64 variant. 10089 Ops[1] = 10090 Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(DoubleTy, 2)); 10091 Ops.push_back(EmitScalarExpr(E->getArg(2))); 10092 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane"); 10093 10094 case NEON::BI__builtin_neon_vget_lane_i8: 10095 case NEON::BI__builtin_neon_vdupb_lane_i8: 10096 Ops[0] = 10097 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int8Ty, 8)); 10098 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 10099 "vget_lane"); 10100 case NEON::BI__builtin_neon_vgetq_lane_i8: 10101 case NEON::BI__builtin_neon_vdupb_laneq_i8: 10102 Ops[0] = 10103 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int8Ty, 16)); 10104 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 10105 "vgetq_lane"); 10106 case NEON::BI__builtin_neon_vget_lane_i16: 10107 case NEON::BI__builtin_neon_vduph_lane_i16: 10108 Ops[0] = 10109 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int16Ty, 4)); 10110 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 10111 "vget_lane"); 10112 case NEON::BI__builtin_neon_vgetq_lane_i16: 10113 case NEON::BI__builtin_neon_vduph_laneq_i16: 10114 Ops[0] = 10115 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int16Ty, 8)); 10116 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 10117 "vgetq_lane"); 10118 case NEON::BI__builtin_neon_vget_lane_i32: 10119 case NEON::BI__builtin_neon_vdups_lane_i32: 10120 Ops[0] = 10121 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int32Ty, 2)); 10122 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 10123 "vget_lane"); 10124 case NEON::BI__builtin_neon_vdups_lane_f32: 10125 Ops[0] = 10126 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(FloatTy, 2)); 10127 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 10128 "vdups_lane"); 10129 case NEON::BI__builtin_neon_vgetq_lane_i32: 10130 case NEON::BI__builtin_neon_vdups_laneq_i32: 10131 Ops[0] = 10132 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int32Ty, 4)); 10133 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 10134 "vgetq_lane"); 10135 case NEON::BI__builtin_neon_vget_lane_i64: 10136 case NEON::BI__builtin_neon_vdupd_lane_i64: 10137 Ops[0] = 10138 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 1)); 10139 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 10140 "vget_lane"); 10141 case NEON::BI__builtin_neon_vdupd_lane_f64: 10142 Ops[0] = 10143 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(DoubleTy, 1)); 10144 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 10145 "vdupd_lane"); 10146 case NEON::BI__builtin_neon_vgetq_lane_i64: 10147 case NEON::BI__builtin_neon_vdupd_laneq_i64: 10148 Ops[0] = 10149 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 2)); 10150 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 10151 "vgetq_lane"); 10152 case NEON::BI__builtin_neon_vget_lane_f32: 10153 Ops[0] = 10154 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(FloatTy, 2)); 10155 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 10156 "vget_lane"); 10157 case NEON::BI__builtin_neon_vget_lane_f64: 10158 Ops[0] = 10159 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(DoubleTy, 1)); 10160 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 10161 "vget_lane"); 10162 case NEON::BI__builtin_neon_vgetq_lane_f32: 10163 case NEON::BI__builtin_neon_vdups_laneq_f32: 10164 Ops[0] = 10165 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(FloatTy, 4)); 10166 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 10167 "vgetq_lane"); 10168 case NEON::BI__builtin_neon_vgetq_lane_f64: 10169 case NEON::BI__builtin_neon_vdupd_laneq_f64: 10170 Ops[0] = 10171 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(DoubleTy, 2)); 10172 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 10173 "vgetq_lane"); 10174 case NEON::BI__builtin_neon_vaddh_f16: 10175 Ops.push_back(EmitScalarExpr(E->getArg(1))); 10176 return Builder.CreateFAdd(Ops[0], Ops[1], "vaddh"); 10177 case NEON::BI__builtin_neon_vsubh_f16: 10178 Ops.push_back(EmitScalarExpr(E->getArg(1))); 10179 return Builder.CreateFSub(Ops[0], Ops[1], "vsubh"); 10180 case NEON::BI__builtin_neon_vmulh_f16: 10181 Ops.push_back(EmitScalarExpr(E->getArg(1))); 10182 return Builder.CreateFMul(Ops[0], Ops[1], "vmulh"); 10183 case NEON::BI__builtin_neon_vdivh_f16: 10184 Ops.push_back(EmitScalarExpr(E->getArg(1))); 10185 return Builder.CreateFDiv(Ops[0], Ops[1], "vdivh"); 10186 case NEON::BI__builtin_neon_vfmah_f16: 10187 // NEON intrinsic puts accumulator first, unlike the LLVM fma. 10188 return emitCallMaybeConstrainedFPBuiltin( 10189 *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, HalfTy, 10190 {EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2)), Ops[0]}); 10191 case NEON::BI__builtin_neon_vfmsh_f16: { 10192 // FIXME: This should be an fneg instruction: 10193 Value *Zero = llvm::ConstantFP::getZeroValueForNegation(HalfTy); 10194 Value* Sub = Builder.CreateFSub(Zero, EmitScalarExpr(E->getArg(1)), "vsubh"); 10195 10196 // NEON intrinsic puts accumulator first, unlike the LLVM fma. 10197 return emitCallMaybeConstrainedFPBuiltin( 10198 *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, HalfTy, 10199 {Sub, EmitScalarExpr(E->getArg(2)), Ops[0]}); 10200 } 10201 case NEON::BI__builtin_neon_vaddd_s64: 10202 case NEON::BI__builtin_neon_vaddd_u64: 10203 return Builder.CreateAdd(Ops[0], EmitScalarExpr(E->getArg(1)), "vaddd"); 10204 case NEON::BI__builtin_neon_vsubd_s64: 10205 case NEON::BI__builtin_neon_vsubd_u64: 10206 return Builder.CreateSub(Ops[0], EmitScalarExpr(E->getArg(1)), "vsubd"); 10207 case NEON::BI__builtin_neon_vqdmlalh_s16: 10208 case NEON::BI__builtin_neon_vqdmlslh_s16: { 10209 SmallVector<Value *, 2> ProductOps; 10210 ProductOps.push_back(vectorWrapScalar16(Ops[1])); 10211 ProductOps.push_back(vectorWrapScalar16(EmitScalarExpr(E->getArg(2)))); 10212 auto *VTy = llvm::FixedVectorType::get(Int32Ty, 4); 10213 Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy), 10214 ProductOps, "vqdmlXl"); 10215 Constant *CI = ConstantInt::get(SizeTy, 0); 10216 Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0"); 10217 10218 unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlalh_s16 10219 ? Intrinsic::aarch64_neon_sqadd 10220 : Intrinsic::aarch64_neon_sqsub; 10221 return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int32Ty), Ops, "vqdmlXl"); 10222 } 10223 case NEON::BI__builtin_neon_vqshlud_n_s64: { 10224 Ops.push_back(EmitScalarExpr(E->getArg(1))); 10225 Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty); 10226 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqshlu, Int64Ty), 10227 Ops, "vqshlu_n"); 10228 } 10229 case NEON::BI__builtin_neon_vqshld_n_u64: 10230 case NEON::BI__builtin_neon_vqshld_n_s64: { 10231 unsigned Int = BuiltinID == NEON::BI__builtin_neon_vqshld_n_u64 10232 ? Intrinsic::aarch64_neon_uqshl 10233 : Intrinsic::aarch64_neon_sqshl; 10234 Ops.push_back(EmitScalarExpr(E->getArg(1))); 10235 Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty); 10236 return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vqshl_n"); 10237 } 10238 case NEON::BI__builtin_neon_vrshrd_n_u64: 10239 case NEON::BI__builtin_neon_vrshrd_n_s64: { 10240 unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrshrd_n_u64 10241 ? Intrinsic::aarch64_neon_urshl 10242 : Intrinsic::aarch64_neon_srshl; 10243 Ops.push_back(EmitScalarExpr(E->getArg(1))); 10244 int SV = cast<ConstantInt>(Ops[1])->getSExtValue(); 10245 Ops[1] = ConstantInt::get(Int64Ty, -SV); 10246 return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vrshr_n"); 10247 } 10248 case NEON::BI__builtin_neon_vrsrad_n_u64: 10249 case NEON::BI__builtin_neon_vrsrad_n_s64: { 10250 unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrsrad_n_u64 10251 ? Intrinsic::aarch64_neon_urshl 10252 : Intrinsic::aarch64_neon_srshl; 10253 Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty); 10254 Ops.push_back(Builder.CreateNeg(EmitScalarExpr(E->getArg(2)))); 10255 Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Int64Ty), 10256 {Ops[1], Builder.CreateSExt(Ops[2], Int64Ty)}); 10257 return Builder.CreateAdd(Ops[0], Builder.CreateBitCast(Ops[1], Int64Ty)); 10258 } 10259 case NEON::BI__builtin_neon_vshld_n_s64: 10260 case NEON::BI__builtin_neon_vshld_n_u64: { 10261 llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1))); 10262 return Builder.CreateShl( 10263 Ops[0], ConstantInt::get(Int64Ty, Amt->getZExtValue()), "shld_n"); 10264 } 10265 case NEON::BI__builtin_neon_vshrd_n_s64: { 10266 llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1))); 10267 return Builder.CreateAShr( 10268 Ops[0], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63), 10269 Amt->getZExtValue())), 10270 "shrd_n"); 10271 } 10272 case NEON::BI__builtin_neon_vshrd_n_u64: { 10273 llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1))); 10274 uint64_t ShiftAmt = Amt->getZExtValue(); 10275 // Right-shifting an unsigned value by its size yields 0. 10276 if (ShiftAmt == 64) 10277 return ConstantInt::get(Int64Ty, 0); 10278 return Builder.CreateLShr(Ops[0], ConstantInt::get(Int64Ty, ShiftAmt), 10279 "shrd_n"); 10280 } 10281 case NEON::BI__builtin_neon_vsrad_n_s64: { 10282 llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2))); 10283 Ops[1] = Builder.CreateAShr( 10284 Ops[1], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63), 10285 Amt->getZExtValue())), 10286 "shrd_n"); 10287 return Builder.CreateAdd(Ops[0], Ops[1]); 10288 } 10289 case NEON::BI__builtin_neon_vsrad_n_u64: { 10290 llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2))); 10291 uint64_t ShiftAmt = Amt->getZExtValue(); 10292 // Right-shifting an unsigned value by its size yields 0. 10293 // As Op + 0 = Op, return Ops[0] directly. 10294 if (ShiftAmt == 64) 10295 return Ops[0]; 10296 Ops[1] = Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, ShiftAmt), 10297 "shrd_n"); 10298 return Builder.CreateAdd(Ops[0], Ops[1]); 10299 } 10300 case NEON::BI__builtin_neon_vqdmlalh_lane_s16: 10301 case NEON::BI__builtin_neon_vqdmlalh_laneq_s16: 10302 case NEON::BI__builtin_neon_vqdmlslh_lane_s16: 10303 case NEON::BI__builtin_neon_vqdmlslh_laneq_s16: { 10304 Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)), 10305 "lane"); 10306 SmallVector<Value *, 2> ProductOps; 10307 ProductOps.push_back(vectorWrapScalar16(Ops[1])); 10308 ProductOps.push_back(vectorWrapScalar16(Ops[2])); 10309 auto *VTy = llvm::FixedVectorType::get(Int32Ty, 4); 10310 Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy), 10311 ProductOps, "vqdmlXl"); 10312 Constant *CI = ConstantInt::get(SizeTy, 0); 10313 Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0"); 10314 Ops.pop_back(); 10315 10316 unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlalh_lane_s16 || 10317 BuiltinID == NEON::BI__builtin_neon_vqdmlalh_laneq_s16) 10318 ? Intrinsic::aarch64_neon_sqadd 10319 : Intrinsic::aarch64_neon_sqsub; 10320 return EmitNeonCall(CGM.getIntrinsic(AccInt, Int32Ty), Ops, "vqdmlXl"); 10321 } 10322 case NEON::BI__builtin_neon_vqdmlals_s32: 10323 case NEON::BI__builtin_neon_vqdmlsls_s32: { 10324 SmallVector<Value *, 2> ProductOps; 10325 ProductOps.push_back(Ops[1]); 10326 ProductOps.push_back(EmitScalarExpr(E->getArg(2))); 10327 Ops[1] = 10328 EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar), 10329 ProductOps, "vqdmlXl"); 10330 10331 unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlals_s32 10332 ? Intrinsic::aarch64_neon_sqadd 10333 : Intrinsic::aarch64_neon_sqsub; 10334 return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int64Ty), Ops, "vqdmlXl"); 10335 } 10336 case NEON::BI__builtin_neon_vqdmlals_lane_s32: 10337 case NEON::BI__builtin_neon_vqdmlals_laneq_s32: 10338 case NEON::BI__builtin_neon_vqdmlsls_lane_s32: 10339 case NEON::BI__builtin_neon_vqdmlsls_laneq_s32: { 10340 Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)), 10341 "lane"); 10342 SmallVector<Value *, 2> ProductOps; 10343 ProductOps.push_back(Ops[1]); 10344 ProductOps.push_back(Ops[2]); 10345 Ops[1] = 10346 EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar), 10347 ProductOps, "vqdmlXl"); 10348 Ops.pop_back(); 10349 10350 unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlals_lane_s32 || 10351 BuiltinID == NEON::BI__builtin_neon_vqdmlals_laneq_s32) 10352 ? Intrinsic::aarch64_neon_sqadd 10353 : Intrinsic::aarch64_neon_sqsub; 10354 return EmitNeonCall(CGM.getIntrinsic(AccInt, Int64Ty), Ops, "vqdmlXl"); 10355 } 10356 case NEON::BI__builtin_neon_vget_lane_bf16: 10357 case NEON::BI__builtin_neon_vduph_lane_bf16: 10358 case NEON::BI__builtin_neon_vduph_lane_f16: { 10359 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 10360 "vget_lane"); 10361 } 10362 case NEON::BI__builtin_neon_vgetq_lane_bf16: 10363 case NEON::BI__builtin_neon_vduph_laneq_bf16: 10364 case NEON::BI__builtin_neon_vduph_laneq_f16: { 10365 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 10366 "vgetq_lane"); 10367 } 10368 10369 case AArch64::BI_InterlockedAdd: { 10370 Value *Arg0 = EmitScalarExpr(E->getArg(0)); 10371 Value *Arg1 = EmitScalarExpr(E->getArg(1)); 10372 AtomicRMWInst *RMWI = Builder.CreateAtomicRMW( 10373 AtomicRMWInst::Add, Arg0, Arg1, 10374 llvm::AtomicOrdering::SequentiallyConsistent); 10375 return Builder.CreateAdd(RMWI, Arg1); 10376 } 10377 } 10378 10379 llvm::FixedVectorType *VTy = GetNeonType(this, Type); 10380 llvm::Type *Ty = VTy; 10381 if (!Ty) 10382 return nullptr; 10383 10384 // Not all intrinsics handled by the common case work for AArch64 yet, so only 10385 // defer to common code if it's been added to our special map. 10386 Builtin = findARMVectorIntrinsicInMap(AArch64SIMDIntrinsicMap, BuiltinID, 10387 AArch64SIMDIntrinsicsProvenSorted); 10388 10389 if (Builtin) 10390 return EmitCommonNeonBuiltinExpr( 10391 Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic, 10392 Builtin->NameHint, Builtin->TypeModifier, E, Ops, 10393 /*never use addresses*/ Address::invalid(), Address::invalid(), Arch); 10394 10395 if (Value *V = EmitAArch64TblBuiltinExpr(*this, BuiltinID, E, Ops, Arch)) 10396 return V; 10397 10398 unsigned Int; 10399 switch (BuiltinID) { 10400 default: return nullptr; 10401 case NEON::BI__builtin_neon_vbsl_v: 10402 case NEON::BI__builtin_neon_vbslq_v: { 10403 llvm::Type *BitTy = llvm::VectorType::getInteger(VTy); 10404 Ops[0] = Builder.CreateBitCast(Ops[0], BitTy, "vbsl"); 10405 Ops[1] = Builder.CreateBitCast(Ops[1], BitTy, "vbsl"); 10406 Ops[2] = Builder.CreateBitCast(Ops[2], BitTy, "vbsl"); 10407 10408 Ops[1] = Builder.CreateAnd(Ops[0], Ops[1], "vbsl"); 10409 Ops[2] = Builder.CreateAnd(Builder.CreateNot(Ops[0]), Ops[2], "vbsl"); 10410 Ops[0] = Builder.CreateOr(Ops[1], Ops[2], "vbsl"); 10411 return Builder.CreateBitCast(Ops[0], Ty); 10412 } 10413 case NEON::BI__builtin_neon_vfma_lane_v: 10414 case NEON::BI__builtin_neon_vfmaq_lane_v: { // Only used for FP types 10415 // The ARM builtins (and instructions) have the addend as the first 10416 // operand, but the 'fma' intrinsics have it last. Swap it around here. 10417 Value *Addend = Ops[0]; 10418 Value *Multiplicand = Ops[1]; 10419 Value *LaneSource = Ops[2]; 10420 Ops[0] = Multiplicand; 10421 Ops[1] = LaneSource; 10422 Ops[2] = Addend; 10423 10424 // Now adjust things to handle the lane access. 10425 auto *SourceTy = BuiltinID == NEON::BI__builtin_neon_vfmaq_lane_v 10426 ? llvm::FixedVectorType::get(VTy->getElementType(), 10427 VTy->getNumElements() / 2) 10428 : VTy; 10429 llvm::Constant *cst = cast<Constant>(Ops[3]); 10430 Value *SV = llvm::ConstantVector::getSplat(VTy->getElementCount(), cst); 10431 Ops[1] = Builder.CreateBitCast(Ops[1], SourceTy); 10432 Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV, "lane"); 10433 10434 Ops.pop_back(); 10435 Int = Builder.getIsFPConstrained() ? Intrinsic::experimental_constrained_fma 10436 : Intrinsic::fma; 10437 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "fmla"); 10438 } 10439 case NEON::BI__builtin_neon_vfma_laneq_v: { 10440 auto *VTy = cast<llvm::FixedVectorType>(Ty); 10441 // v1f64 fma should be mapped to Neon scalar f64 fma 10442 if (VTy && VTy->getElementType() == DoubleTy) { 10443 Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy); 10444 Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy); 10445 llvm::FixedVectorType *VTy = 10446 GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, true)); 10447 Ops[2] = Builder.CreateBitCast(Ops[2], VTy); 10448 Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract"); 10449 Value *Result; 10450 Result = emitCallMaybeConstrainedFPBuiltin( 10451 *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, 10452 DoubleTy, {Ops[1], Ops[2], Ops[0]}); 10453 return Builder.CreateBitCast(Result, Ty); 10454 } 10455 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 10456 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 10457 10458 auto *STy = llvm::FixedVectorType::get(VTy->getElementType(), 10459 VTy->getNumElements() * 2); 10460 Ops[2] = Builder.CreateBitCast(Ops[2], STy); 10461 Value *SV = llvm::ConstantVector::getSplat(VTy->getElementCount(), 10462 cast<ConstantInt>(Ops[3])); 10463 Ops[2] = Builder.CreateShuffleVector(Ops[2], Ops[2], SV, "lane"); 10464 10465 return emitCallMaybeConstrainedFPBuiltin( 10466 *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty, 10467 {Ops[2], Ops[1], Ops[0]}); 10468 } 10469 case NEON::BI__builtin_neon_vfmaq_laneq_v: { 10470 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 10471 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 10472 10473 Ops[2] = Builder.CreateBitCast(Ops[2], Ty); 10474 Ops[2] = EmitNeonSplat(Ops[2], cast<ConstantInt>(Ops[3])); 10475 return emitCallMaybeConstrainedFPBuiltin( 10476 *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty, 10477 {Ops[2], Ops[1], Ops[0]}); 10478 } 10479 case NEON::BI__builtin_neon_vfmah_lane_f16: 10480 case NEON::BI__builtin_neon_vfmas_lane_f32: 10481 case NEON::BI__builtin_neon_vfmah_laneq_f16: 10482 case NEON::BI__builtin_neon_vfmas_laneq_f32: 10483 case NEON::BI__builtin_neon_vfmad_lane_f64: 10484 case NEON::BI__builtin_neon_vfmad_laneq_f64: { 10485 Ops.push_back(EmitScalarExpr(E->getArg(3))); 10486 llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext())); 10487 Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract"); 10488 return emitCallMaybeConstrainedFPBuiltin( 10489 *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty, 10490 {Ops[1], Ops[2], Ops[0]}); 10491 } 10492 case NEON::BI__builtin_neon_vmull_v: 10493 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics. 10494 Int = usgn ? Intrinsic::aarch64_neon_umull : Intrinsic::aarch64_neon_smull; 10495 if (Type.isPoly()) Int = Intrinsic::aarch64_neon_pmull; 10496 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull"); 10497 case NEON::BI__builtin_neon_vmax_v: 10498 case NEON::BI__builtin_neon_vmaxq_v: 10499 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics. 10500 Int = usgn ? Intrinsic::aarch64_neon_umax : Intrinsic::aarch64_neon_smax; 10501 if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmax; 10502 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmax"); 10503 case NEON::BI__builtin_neon_vmaxh_f16: { 10504 Ops.push_back(EmitScalarExpr(E->getArg(1))); 10505 Int = Intrinsic::aarch64_neon_fmax; 10506 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmax"); 10507 } 10508 case NEON::BI__builtin_neon_vmin_v: 10509 case NEON::BI__builtin_neon_vminq_v: 10510 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics. 10511 Int = usgn ? Intrinsic::aarch64_neon_umin : Intrinsic::aarch64_neon_smin; 10512 if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmin; 10513 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmin"); 10514 case NEON::BI__builtin_neon_vminh_f16: { 10515 Ops.push_back(EmitScalarExpr(E->getArg(1))); 10516 Int = Intrinsic::aarch64_neon_fmin; 10517 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmin"); 10518 } 10519 case NEON::BI__builtin_neon_vabd_v: 10520 case NEON::BI__builtin_neon_vabdq_v: 10521 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics. 10522 Int = usgn ? Intrinsic::aarch64_neon_uabd : Intrinsic::aarch64_neon_sabd; 10523 if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fabd; 10524 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vabd"); 10525 case NEON::BI__builtin_neon_vpadal_v: 10526 case NEON::BI__builtin_neon_vpadalq_v: { 10527 unsigned ArgElts = VTy->getNumElements(); 10528 llvm::IntegerType *EltTy = cast<IntegerType>(VTy->getElementType()); 10529 unsigned BitWidth = EltTy->getBitWidth(); 10530 auto *ArgTy = llvm::FixedVectorType::get( 10531 llvm::IntegerType::get(getLLVMContext(), BitWidth / 2), 2 * ArgElts); 10532 llvm::Type* Tys[2] = { VTy, ArgTy }; 10533 Int = usgn ? Intrinsic::aarch64_neon_uaddlp : Intrinsic::aarch64_neon_saddlp; 10534 SmallVector<llvm::Value*, 1> TmpOps; 10535 TmpOps.push_back(Ops[1]); 10536 Function *F = CGM.getIntrinsic(Int, Tys); 10537 llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vpadal"); 10538 llvm::Value *addend = Builder.CreateBitCast(Ops[0], tmp->getType()); 10539 return Builder.CreateAdd(tmp, addend); 10540 } 10541 case NEON::BI__builtin_neon_vpmin_v: 10542 case NEON::BI__builtin_neon_vpminq_v: 10543 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics. 10544 Int = usgn ? Intrinsic::aarch64_neon_uminp : Intrinsic::aarch64_neon_sminp; 10545 if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fminp; 10546 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmin"); 10547 case NEON::BI__builtin_neon_vpmax_v: 10548 case NEON::BI__builtin_neon_vpmaxq_v: 10549 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics. 10550 Int = usgn ? Intrinsic::aarch64_neon_umaxp : Intrinsic::aarch64_neon_smaxp; 10551 if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmaxp; 10552 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmax"); 10553 case NEON::BI__builtin_neon_vminnm_v: 10554 case NEON::BI__builtin_neon_vminnmq_v: 10555 Int = Intrinsic::aarch64_neon_fminnm; 10556 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vminnm"); 10557 case NEON::BI__builtin_neon_vminnmh_f16: 10558 Ops.push_back(EmitScalarExpr(E->getArg(1))); 10559 Int = Intrinsic::aarch64_neon_fminnm; 10560 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vminnm"); 10561 case NEON::BI__builtin_neon_vmaxnm_v: 10562 case NEON::BI__builtin_neon_vmaxnmq_v: 10563 Int = Intrinsic::aarch64_neon_fmaxnm; 10564 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmaxnm"); 10565 case NEON::BI__builtin_neon_vmaxnmh_f16: 10566 Ops.push_back(EmitScalarExpr(E->getArg(1))); 10567 Int = Intrinsic::aarch64_neon_fmaxnm; 10568 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmaxnm"); 10569 case NEON::BI__builtin_neon_vrecpss_f32: { 10570 Ops.push_back(EmitScalarExpr(E->getArg(1))); 10571 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, FloatTy), 10572 Ops, "vrecps"); 10573 } 10574 case NEON::BI__builtin_neon_vrecpsd_f64: 10575 Ops.push_back(EmitScalarExpr(E->getArg(1))); 10576 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, DoubleTy), 10577 Ops, "vrecps"); 10578 case NEON::BI__builtin_neon_vrecpsh_f16: 10579 Ops.push_back(EmitScalarExpr(E->getArg(1))); 10580 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, HalfTy), 10581 Ops, "vrecps"); 10582 case NEON::BI__builtin_neon_vqshrun_n_v: 10583 Int = Intrinsic::aarch64_neon_sqshrun; 10584 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrun_n"); 10585 case NEON::BI__builtin_neon_vqrshrun_n_v: 10586 Int = Intrinsic::aarch64_neon_sqrshrun; 10587 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrun_n"); 10588 case NEON::BI__builtin_neon_vqshrn_n_v: 10589 Int = usgn ? Intrinsic::aarch64_neon_uqshrn : Intrinsic::aarch64_neon_sqshrn; 10590 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n"); 10591 case NEON::BI__builtin_neon_vrshrn_n_v: 10592 Int = Intrinsic::aarch64_neon_rshrn; 10593 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshrn_n"); 10594 case NEON::BI__builtin_neon_vqrshrn_n_v: 10595 Int = usgn ? Intrinsic::aarch64_neon_uqrshrn : Intrinsic::aarch64_neon_sqrshrn; 10596 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n"); 10597 case NEON::BI__builtin_neon_vrndah_f16: { 10598 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10599 Int = Builder.getIsFPConstrained() 10600 ? Intrinsic::experimental_constrained_round 10601 : Intrinsic::round; 10602 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrnda"); 10603 } 10604 case NEON::BI__builtin_neon_vrnda_v: 10605 case NEON::BI__builtin_neon_vrndaq_v: { 10606 Int = Builder.getIsFPConstrained() 10607 ? Intrinsic::experimental_constrained_round 10608 : Intrinsic::round; 10609 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnda"); 10610 } 10611 case NEON::BI__builtin_neon_vrndih_f16: { 10612 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10613 Int = Builder.getIsFPConstrained() 10614 ? Intrinsic::experimental_constrained_nearbyint 10615 : Intrinsic::nearbyint; 10616 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndi"); 10617 } 10618 case NEON::BI__builtin_neon_vrndmh_f16: { 10619 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10620 Int = Builder.getIsFPConstrained() 10621 ? Intrinsic::experimental_constrained_floor 10622 : Intrinsic::floor; 10623 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndm"); 10624 } 10625 case NEON::BI__builtin_neon_vrndm_v: 10626 case NEON::BI__builtin_neon_vrndmq_v: { 10627 Int = Builder.getIsFPConstrained() 10628 ? Intrinsic::experimental_constrained_floor 10629 : Intrinsic::floor; 10630 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndm"); 10631 } 10632 case NEON::BI__builtin_neon_vrndnh_f16: { 10633 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10634 Int = Builder.getIsFPConstrained() 10635 ? Intrinsic::experimental_constrained_roundeven 10636 : Intrinsic::roundeven; 10637 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndn"); 10638 } 10639 case NEON::BI__builtin_neon_vrndn_v: 10640 case NEON::BI__builtin_neon_vrndnq_v: { 10641 Int = Builder.getIsFPConstrained() 10642 ? Intrinsic::experimental_constrained_roundeven 10643 : Intrinsic::roundeven; 10644 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndn"); 10645 } 10646 case NEON::BI__builtin_neon_vrndns_f32: { 10647 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10648 Int = Builder.getIsFPConstrained() 10649 ? Intrinsic::experimental_constrained_roundeven 10650 : Intrinsic::roundeven; 10651 return EmitNeonCall(CGM.getIntrinsic(Int, FloatTy), Ops, "vrndn"); 10652 } 10653 case NEON::BI__builtin_neon_vrndph_f16: { 10654 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10655 Int = Builder.getIsFPConstrained() 10656 ? Intrinsic::experimental_constrained_ceil 10657 : Intrinsic::ceil; 10658 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndp"); 10659 } 10660 case NEON::BI__builtin_neon_vrndp_v: 10661 case NEON::BI__builtin_neon_vrndpq_v: { 10662 Int = Builder.getIsFPConstrained() 10663 ? Intrinsic::experimental_constrained_ceil 10664 : Intrinsic::ceil; 10665 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndp"); 10666 } 10667 case NEON::BI__builtin_neon_vrndxh_f16: { 10668 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10669 Int = Builder.getIsFPConstrained() 10670 ? Intrinsic::experimental_constrained_rint 10671 : Intrinsic::rint; 10672 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndx"); 10673 } 10674 case NEON::BI__builtin_neon_vrndx_v: 10675 case NEON::BI__builtin_neon_vrndxq_v: { 10676 Int = Builder.getIsFPConstrained() 10677 ? Intrinsic::experimental_constrained_rint 10678 : Intrinsic::rint; 10679 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndx"); 10680 } 10681 case NEON::BI__builtin_neon_vrndh_f16: { 10682 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10683 Int = Builder.getIsFPConstrained() 10684 ? Intrinsic::experimental_constrained_trunc 10685 : Intrinsic::trunc; 10686 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndz"); 10687 } 10688 case NEON::BI__builtin_neon_vrnd32x_v: 10689 case NEON::BI__builtin_neon_vrnd32xq_v: { 10690 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10691 Int = Intrinsic::aarch64_neon_frint32x; 10692 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnd32x"); 10693 } 10694 case NEON::BI__builtin_neon_vrnd32z_v: 10695 case NEON::BI__builtin_neon_vrnd32zq_v: { 10696 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10697 Int = Intrinsic::aarch64_neon_frint32z; 10698 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnd32z"); 10699 } 10700 case NEON::BI__builtin_neon_vrnd64x_v: 10701 case NEON::BI__builtin_neon_vrnd64xq_v: { 10702 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10703 Int = Intrinsic::aarch64_neon_frint64x; 10704 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnd64x"); 10705 } 10706 case NEON::BI__builtin_neon_vrnd64z_v: 10707 case NEON::BI__builtin_neon_vrnd64zq_v: { 10708 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10709 Int = Intrinsic::aarch64_neon_frint64z; 10710 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnd64z"); 10711 } 10712 case NEON::BI__builtin_neon_vrnd_v: 10713 case NEON::BI__builtin_neon_vrndq_v: { 10714 Int = Builder.getIsFPConstrained() 10715 ? Intrinsic::experimental_constrained_trunc 10716 : Intrinsic::trunc; 10717 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndz"); 10718 } 10719 case NEON::BI__builtin_neon_vcvt_f64_v: 10720 case NEON::BI__builtin_neon_vcvtq_f64_v: 10721 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 10722 Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, quad)); 10723 return usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt") 10724 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt"); 10725 case NEON::BI__builtin_neon_vcvt_f64_f32: { 10726 assert(Type.getEltType() == NeonTypeFlags::Float64 && quad && 10727 "unexpected vcvt_f64_f32 builtin"); 10728 NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float32, false, false); 10729 Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag)); 10730 10731 return Builder.CreateFPExt(Ops[0], Ty, "vcvt"); 10732 } 10733 case NEON::BI__builtin_neon_vcvt_f32_f64: { 10734 assert(Type.getEltType() == NeonTypeFlags::Float32 && 10735 "unexpected vcvt_f32_f64 builtin"); 10736 NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float64, false, true); 10737 Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag)); 10738 10739 return Builder.CreateFPTrunc(Ops[0], Ty, "vcvt"); 10740 } 10741 case NEON::BI__builtin_neon_vcvt_s32_v: 10742 case NEON::BI__builtin_neon_vcvt_u32_v: 10743 case NEON::BI__builtin_neon_vcvt_s64_v: 10744 case NEON::BI__builtin_neon_vcvt_u64_v: 10745 case NEON::BI__builtin_neon_vcvt_s16_v: 10746 case NEON::BI__builtin_neon_vcvt_u16_v: 10747 case NEON::BI__builtin_neon_vcvtq_s32_v: 10748 case NEON::BI__builtin_neon_vcvtq_u32_v: 10749 case NEON::BI__builtin_neon_vcvtq_s64_v: 10750 case NEON::BI__builtin_neon_vcvtq_u64_v: 10751 case NEON::BI__builtin_neon_vcvtq_s16_v: 10752 case NEON::BI__builtin_neon_vcvtq_u16_v: { 10753 Int = 10754 usgn ? Intrinsic::aarch64_neon_fcvtzu : Intrinsic::aarch64_neon_fcvtzs; 10755 llvm::Type *Tys[2] = {Ty, GetFloatNeonType(this, Type)}; 10756 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtz"); 10757 } 10758 case NEON::BI__builtin_neon_vcvta_s16_v: 10759 case NEON::BI__builtin_neon_vcvta_u16_v: 10760 case NEON::BI__builtin_neon_vcvta_s32_v: 10761 case NEON::BI__builtin_neon_vcvtaq_s16_v: 10762 case NEON::BI__builtin_neon_vcvtaq_s32_v: 10763 case NEON::BI__builtin_neon_vcvta_u32_v: 10764 case NEON::BI__builtin_neon_vcvtaq_u16_v: 10765 case NEON::BI__builtin_neon_vcvtaq_u32_v: 10766 case NEON::BI__builtin_neon_vcvta_s64_v: 10767 case NEON::BI__builtin_neon_vcvtaq_s64_v: 10768 case NEON::BI__builtin_neon_vcvta_u64_v: 10769 case NEON::BI__builtin_neon_vcvtaq_u64_v: { 10770 Int = usgn ? Intrinsic::aarch64_neon_fcvtau : Intrinsic::aarch64_neon_fcvtas; 10771 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) }; 10772 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvta"); 10773 } 10774 case NEON::BI__builtin_neon_vcvtm_s16_v: 10775 case NEON::BI__builtin_neon_vcvtm_s32_v: 10776 case NEON::BI__builtin_neon_vcvtmq_s16_v: 10777 case NEON::BI__builtin_neon_vcvtmq_s32_v: 10778 case NEON::BI__builtin_neon_vcvtm_u16_v: 10779 case NEON::BI__builtin_neon_vcvtm_u32_v: 10780 case NEON::BI__builtin_neon_vcvtmq_u16_v: 10781 case NEON::BI__builtin_neon_vcvtmq_u32_v: 10782 case NEON::BI__builtin_neon_vcvtm_s64_v: 10783 case NEON::BI__builtin_neon_vcvtmq_s64_v: 10784 case NEON::BI__builtin_neon_vcvtm_u64_v: 10785 case NEON::BI__builtin_neon_vcvtmq_u64_v: { 10786 Int = usgn ? Intrinsic::aarch64_neon_fcvtmu : Intrinsic::aarch64_neon_fcvtms; 10787 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) }; 10788 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtm"); 10789 } 10790 case NEON::BI__builtin_neon_vcvtn_s16_v: 10791 case NEON::BI__builtin_neon_vcvtn_s32_v: 10792 case NEON::BI__builtin_neon_vcvtnq_s16_v: 10793 case NEON::BI__builtin_neon_vcvtnq_s32_v: 10794 case NEON::BI__builtin_neon_vcvtn_u16_v: 10795 case NEON::BI__builtin_neon_vcvtn_u32_v: 10796 case NEON::BI__builtin_neon_vcvtnq_u16_v: 10797 case NEON::BI__builtin_neon_vcvtnq_u32_v: 10798 case NEON::BI__builtin_neon_vcvtn_s64_v: 10799 case NEON::BI__builtin_neon_vcvtnq_s64_v: 10800 case NEON::BI__builtin_neon_vcvtn_u64_v: 10801 case NEON::BI__builtin_neon_vcvtnq_u64_v: { 10802 Int = usgn ? Intrinsic::aarch64_neon_fcvtnu : Intrinsic::aarch64_neon_fcvtns; 10803 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) }; 10804 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtn"); 10805 } 10806 case NEON::BI__builtin_neon_vcvtp_s16_v: 10807 case NEON::BI__builtin_neon_vcvtp_s32_v: 10808 case NEON::BI__builtin_neon_vcvtpq_s16_v: 10809 case NEON::BI__builtin_neon_vcvtpq_s32_v: 10810 case NEON::BI__builtin_neon_vcvtp_u16_v: 10811 case NEON::BI__builtin_neon_vcvtp_u32_v: 10812 case NEON::BI__builtin_neon_vcvtpq_u16_v: 10813 case NEON::BI__builtin_neon_vcvtpq_u32_v: 10814 case NEON::BI__builtin_neon_vcvtp_s64_v: 10815 case NEON::BI__builtin_neon_vcvtpq_s64_v: 10816 case NEON::BI__builtin_neon_vcvtp_u64_v: 10817 case NEON::BI__builtin_neon_vcvtpq_u64_v: { 10818 Int = usgn ? Intrinsic::aarch64_neon_fcvtpu : Intrinsic::aarch64_neon_fcvtps; 10819 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) }; 10820 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtp"); 10821 } 10822 case NEON::BI__builtin_neon_vmulx_v: 10823 case NEON::BI__builtin_neon_vmulxq_v: { 10824 Int = Intrinsic::aarch64_neon_fmulx; 10825 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmulx"); 10826 } 10827 case NEON::BI__builtin_neon_vmulxh_lane_f16: 10828 case NEON::BI__builtin_neon_vmulxh_laneq_f16: { 10829 // vmulx_lane should be mapped to Neon scalar mulx after 10830 // extracting the scalar element 10831 Ops.push_back(EmitScalarExpr(E->getArg(2))); 10832 Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract"); 10833 Ops.pop_back(); 10834 Int = Intrinsic::aarch64_neon_fmulx; 10835 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmulx"); 10836 } 10837 case NEON::BI__builtin_neon_vmul_lane_v: 10838 case NEON::BI__builtin_neon_vmul_laneq_v: { 10839 // v1f64 vmul_lane should be mapped to Neon scalar mul lane 10840 bool Quad = false; 10841 if (BuiltinID == NEON::BI__builtin_neon_vmul_laneq_v) 10842 Quad = true; 10843 Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy); 10844 llvm::FixedVectorType *VTy = 10845 GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, Quad)); 10846 Ops[1] = Builder.CreateBitCast(Ops[1], VTy); 10847 Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract"); 10848 Value *Result = Builder.CreateFMul(Ops[0], Ops[1]); 10849 return Builder.CreateBitCast(Result, Ty); 10850 } 10851 case NEON::BI__builtin_neon_vnegd_s64: 10852 return Builder.CreateNeg(EmitScalarExpr(E->getArg(0)), "vnegd"); 10853 case NEON::BI__builtin_neon_vnegh_f16: 10854 return Builder.CreateFNeg(EmitScalarExpr(E->getArg(0)), "vnegh"); 10855 case NEON::BI__builtin_neon_vpmaxnm_v: 10856 case NEON::BI__builtin_neon_vpmaxnmq_v: { 10857 Int = Intrinsic::aarch64_neon_fmaxnmp; 10858 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmaxnm"); 10859 } 10860 case NEON::BI__builtin_neon_vpminnm_v: 10861 case NEON::BI__builtin_neon_vpminnmq_v: { 10862 Int = Intrinsic::aarch64_neon_fminnmp; 10863 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpminnm"); 10864 } 10865 case NEON::BI__builtin_neon_vsqrth_f16: { 10866 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10867 Int = Builder.getIsFPConstrained() 10868 ? Intrinsic::experimental_constrained_sqrt 10869 : Intrinsic::sqrt; 10870 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vsqrt"); 10871 } 10872 case NEON::BI__builtin_neon_vsqrt_v: 10873 case NEON::BI__builtin_neon_vsqrtq_v: { 10874 Int = Builder.getIsFPConstrained() 10875 ? Intrinsic::experimental_constrained_sqrt 10876 : Intrinsic::sqrt; 10877 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 10878 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqrt"); 10879 } 10880 case NEON::BI__builtin_neon_vrbit_v: 10881 case NEON::BI__builtin_neon_vrbitq_v: { 10882 Int = Intrinsic::bitreverse; 10883 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrbit"); 10884 } 10885 case NEON::BI__builtin_neon_vaddv_u8: 10886 // FIXME: These are handled by the AArch64 scalar code. 10887 usgn = true; 10888 LLVM_FALLTHROUGH; 10889 case NEON::BI__builtin_neon_vaddv_s8: { 10890 Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv; 10891 Ty = Int32Ty; 10892 VTy = llvm::FixedVectorType::get(Int8Ty, 8); 10893 llvm::Type *Tys[2] = { Ty, VTy }; 10894 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10895 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv"); 10896 return Builder.CreateTrunc(Ops[0], Int8Ty); 10897 } 10898 case NEON::BI__builtin_neon_vaddv_u16: 10899 usgn = true; 10900 LLVM_FALLTHROUGH; 10901 case NEON::BI__builtin_neon_vaddv_s16: { 10902 Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv; 10903 Ty = Int32Ty; 10904 VTy = llvm::FixedVectorType::get(Int16Ty, 4); 10905 llvm::Type *Tys[2] = { Ty, VTy }; 10906 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10907 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv"); 10908 return Builder.CreateTrunc(Ops[0], Int16Ty); 10909 } 10910 case NEON::BI__builtin_neon_vaddvq_u8: 10911 usgn = true; 10912 LLVM_FALLTHROUGH; 10913 case NEON::BI__builtin_neon_vaddvq_s8: { 10914 Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv; 10915 Ty = Int32Ty; 10916 VTy = llvm::FixedVectorType::get(Int8Ty, 16); 10917 llvm::Type *Tys[2] = { Ty, VTy }; 10918 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10919 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv"); 10920 return Builder.CreateTrunc(Ops[0], Int8Ty); 10921 } 10922 case NEON::BI__builtin_neon_vaddvq_u16: 10923 usgn = true; 10924 LLVM_FALLTHROUGH; 10925 case NEON::BI__builtin_neon_vaddvq_s16: { 10926 Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv; 10927 Ty = Int32Ty; 10928 VTy = llvm::FixedVectorType::get(Int16Ty, 8); 10929 llvm::Type *Tys[2] = { Ty, VTy }; 10930 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10931 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv"); 10932 return Builder.CreateTrunc(Ops[0], Int16Ty); 10933 } 10934 case NEON::BI__builtin_neon_vmaxv_u8: { 10935 Int = Intrinsic::aarch64_neon_umaxv; 10936 Ty = Int32Ty; 10937 VTy = llvm::FixedVectorType::get(Int8Ty, 8); 10938 llvm::Type *Tys[2] = { Ty, VTy }; 10939 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10940 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); 10941 return Builder.CreateTrunc(Ops[0], Int8Ty); 10942 } 10943 case NEON::BI__builtin_neon_vmaxv_u16: { 10944 Int = Intrinsic::aarch64_neon_umaxv; 10945 Ty = Int32Ty; 10946 VTy = llvm::FixedVectorType::get(Int16Ty, 4); 10947 llvm::Type *Tys[2] = { Ty, VTy }; 10948 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10949 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); 10950 return Builder.CreateTrunc(Ops[0], Int16Ty); 10951 } 10952 case NEON::BI__builtin_neon_vmaxvq_u8: { 10953 Int = Intrinsic::aarch64_neon_umaxv; 10954 Ty = Int32Ty; 10955 VTy = llvm::FixedVectorType::get(Int8Ty, 16); 10956 llvm::Type *Tys[2] = { Ty, VTy }; 10957 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10958 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); 10959 return Builder.CreateTrunc(Ops[0], Int8Ty); 10960 } 10961 case NEON::BI__builtin_neon_vmaxvq_u16: { 10962 Int = Intrinsic::aarch64_neon_umaxv; 10963 Ty = Int32Ty; 10964 VTy = llvm::FixedVectorType::get(Int16Ty, 8); 10965 llvm::Type *Tys[2] = { Ty, VTy }; 10966 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10967 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); 10968 return Builder.CreateTrunc(Ops[0], Int16Ty); 10969 } 10970 case NEON::BI__builtin_neon_vmaxv_s8: { 10971 Int = Intrinsic::aarch64_neon_smaxv; 10972 Ty = Int32Ty; 10973 VTy = llvm::FixedVectorType::get(Int8Ty, 8); 10974 llvm::Type *Tys[2] = { Ty, VTy }; 10975 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10976 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); 10977 return Builder.CreateTrunc(Ops[0], Int8Ty); 10978 } 10979 case NEON::BI__builtin_neon_vmaxv_s16: { 10980 Int = Intrinsic::aarch64_neon_smaxv; 10981 Ty = Int32Ty; 10982 VTy = llvm::FixedVectorType::get(Int16Ty, 4); 10983 llvm::Type *Tys[2] = { Ty, VTy }; 10984 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10985 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); 10986 return Builder.CreateTrunc(Ops[0], Int16Ty); 10987 } 10988 case NEON::BI__builtin_neon_vmaxvq_s8: { 10989 Int = Intrinsic::aarch64_neon_smaxv; 10990 Ty = Int32Ty; 10991 VTy = llvm::FixedVectorType::get(Int8Ty, 16); 10992 llvm::Type *Tys[2] = { Ty, VTy }; 10993 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10994 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); 10995 return Builder.CreateTrunc(Ops[0], Int8Ty); 10996 } 10997 case NEON::BI__builtin_neon_vmaxvq_s16: { 10998 Int = Intrinsic::aarch64_neon_smaxv; 10999 Ty = Int32Ty; 11000 VTy = llvm::FixedVectorType::get(Int16Ty, 8); 11001 llvm::Type *Tys[2] = { Ty, VTy }; 11002 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11003 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); 11004 return Builder.CreateTrunc(Ops[0], Int16Ty); 11005 } 11006 case NEON::BI__builtin_neon_vmaxv_f16: { 11007 Int = Intrinsic::aarch64_neon_fmaxv; 11008 Ty = HalfTy; 11009 VTy = llvm::FixedVectorType::get(HalfTy, 4); 11010 llvm::Type *Tys[2] = { Ty, VTy }; 11011 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11012 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); 11013 return Builder.CreateTrunc(Ops[0], HalfTy); 11014 } 11015 case NEON::BI__builtin_neon_vmaxvq_f16: { 11016 Int = Intrinsic::aarch64_neon_fmaxv; 11017 Ty = HalfTy; 11018 VTy = llvm::FixedVectorType::get(HalfTy, 8); 11019 llvm::Type *Tys[2] = { Ty, VTy }; 11020 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11021 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); 11022 return Builder.CreateTrunc(Ops[0], HalfTy); 11023 } 11024 case NEON::BI__builtin_neon_vminv_u8: { 11025 Int = Intrinsic::aarch64_neon_uminv; 11026 Ty = Int32Ty; 11027 VTy = llvm::FixedVectorType::get(Int8Ty, 8); 11028 llvm::Type *Tys[2] = { Ty, VTy }; 11029 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11030 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); 11031 return Builder.CreateTrunc(Ops[0], Int8Ty); 11032 } 11033 case NEON::BI__builtin_neon_vminv_u16: { 11034 Int = Intrinsic::aarch64_neon_uminv; 11035 Ty = Int32Ty; 11036 VTy = llvm::FixedVectorType::get(Int16Ty, 4); 11037 llvm::Type *Tys[2] = { Ty, VTy }; 11038 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11039 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); 11040 return Builder.CreateTrunc(Ops[0], Int16Ty); 11041 } 11042 case NEON::BI__builtin_neon_vminvq_u8: { 11043 Int = Intrinsic::aarch64_neon_uminv; 11044 Ty = Int32Ty; 11045 VTy = llvm::FixedVectorType::get(Int8Ty, 16); 11046 llvm::Type *Tys[2] = { Ty, VTy }; 11047 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11048 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); 11049 return Builder.CreateTrunc(Ops[0], Int8Ty); 11050 } 11051 case NEON::BI__builtin_neon_vminvq_u16: { 11052 Int = Intrinsic::aarch64_neon_uminv; 11053 Ty = Int32Ty; 11054 VTy = llvm::FixedVectorType::get(Int16Ty, 8); 11055 llvm::Type *Tys[2] = { Ty, VTy }; 11056 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11057 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); 11058 return Builder.CreateTrunc(Ops[0], Int16Ty); 11059 } 11060 case NEON::BI__builtin_neon_vminv_s8: { 11061 Int = Intrinsic::aarch64_neon_sminv; 11062 Ty = Int32Ty; 11063 VTy = llvm::FixedVectorType::get(Int8Ty, 8); 11064 llvm::Type *Tys[2] = { Ty, VTy }; 11065 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11066 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); 11067 return Builder.CreateTrunc(Ops[0], Int8Ty); 11068 } 11069 case NEON::BI__builtin_neon_vminv_s16: { 11070 Int = Intrinsic::aarch64_neon_sminv; 11071 Ty = Int32Ty; 11072 VTy = llvm::FixedVectorType::get(Int16Ty, 4); 11073 llvm::Type *Tys[2] = { Ty, VTy }; 11074 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11075 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); 11076 return Builder.CreateTrunc(Ops[0], Int16Ty); 11077 } 11078 case NEON::BI__builtin_neon_vminvq_s8: { 11079 Int = Intrinsic::aarch64_neon_sminv; 11080 Ty = Int32Ty; 11081 VTy = llvm::FixedVectorType::get(Int8Ty, 16); 11082 llvm::Type *Tys[2] = { Ty, VTy }; 11083 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11084 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); 11085 return Builder.CreateTrunc(Ops[0], Int8Ty); 11086 } 11087 case NEON::BI__builtin_neon_vminvq_s16: { 11088 Int = Intrinsic::aarch64_neon_sminv; 11089 Ty = Int32Ty; 11090 VTy = llvm::FixedVectorType::get(Int16Ty, 8); 11091 llvm::Type *Tys[2] = { Ty, VTy }; 11092 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11093 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); 11094 return Builder.CreateTrunc(Ops[0], Int16Ty); 11095 } 11096 case NEON::BI__builtin_neon_vminv_f16: { 11097 Int = Intrinsic::aarch64_neon_fminv; 11098 Ty = HalfTy; 11099 VTy = llvm::FixedVectorType::get(HalfTy, 4); 11100 llvm::Type *Tys[2] = { Ty, VTy }; 11101 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11102 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); 11103 return Builder.CreateTrunc(Ops[0], HalfTy); 11104 } 11105 case NEON::BI__builtin_neon_vminvq_f16: { 11106 Int = Intrinsic::aarch64_neon_fminv; 11107 Ty = HalfTy; 11108 VTy = llvm::FixedVectorType::get(HalfTy, 8); 11109 llvm::Type *Tys[2] = { Ty, VTy }; 11110 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11111 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); 11112 return Builder.CreateTrunc(Ops[0], HalfTy); 11113 } 11114 case NEON::BI__builtin_neon_vmaxnmv_f16: { 11115 Int = Intrinsic::aarch64_neon_fmaxnmv; 11116 Ty = HalfTy; 11117 VTy = llvm::FixedVectorType::get(HalfTy, 4); 11118 llvm::Type *Tys[2] = { Ty, VTy }; 11119 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11120 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxnmv"); 11121 return Builder.CreateTrunc(Ops[0], HalfTy); 11122 } 11123 case NEON::BI__builtin_neon_vmaxnmvq_f16: { 11124 Int = Intrinsic::aarch64_neon_fmaxnmv; 11125 Ty = HalfTy; 11126 VTy = llvm::FixedVectorType::get(HalfTy, 8); 11127 llvm::Type *Tys[2] = { Ty, VTy }; 11128 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11129 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxnmv"); 11130 return Builder.CreateTrunc(Ops[0], HalfTy); 11131 } 11132 case NEON::BI__builtin_neon_vminnmv_f16: { 11133 Int = Intrinsic::aarch64_neon_fminnmv; 11134 Ty = HalfTy; 11135 VTy = llvm::FixedVectorType::get(HalfTy, 4); 11136 llvm::Type *Tys[2] = { Ty, VTy }; 11137 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11138 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminnmv"); 11139 return Builder.CreateTrunc(Ops[0], HalfTy); 11140 } 11141 case NEON::BI__builtin_neon_vminnmvq_f16: { 11142 Int = Intrinsic::aarch64_neon_fminnmv; 11143 Ty = HalfTy; 11144 VTy = llvm::FixedVectorType::get(HalfTy, 8); 11145 llvm::Type *Tys[2] = { Ty, VTy }; 11146 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11147 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminnmv"); 11148 return Builder.CreateTrunc(Ops[0], HalfTy); 11149 } 11150 case NEON::BI__builtin_neon_vmul_n_f64: { 11151 Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy); 11152 Value *RHS = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), DoubleTy); 11153 return Builder.CreateFMul(Ops[0], RHS); 11154 } 11155 case NEON::BI__builtin_neon_vaddlv_u8: { 11156 Int = Intrinsic::aarch64_neon_uaddlv; 11157 Ty = Int32Ty; 11158 VTy = llvm::FixedVectorType::get(Int8Ty, 8); 11159 llvm::Type *Tys[2] = { Ty, VTy }; 11160 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11161 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); 11162 return Builder.CreateTrunc(Ops[0], Int16Ty); 11163 } 11164 case NEON::BI__builtin_neon_vaddlv_u16: { 11165 Int = Intrinsic::aarch64_neon_uaddlv; 11166 Ty = Int32Ty; 11167 VTy = llvm::FixedVectorType::get(Int16Ty, 4); 11168 llvm::Type *Tys[2] = { Ty, VTy }; 11169 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11170 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); 11171 } 11172 case NEON::BI__builtin_neon_vaddlvq_u8: { 11173 Int = Intrinsic::aarch64_neon_uaddlv; 11174 Ty = Int32Ty; 11175 VTy = llvm::FixedVectorType::get(Int8Ty, 16); 11176 llvm::Type *Tys[2] = { Ty, VTy }; 11177 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11178 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); 11179 return Builder.CreateTrunc(Ops[0], Int16Ty); 11180 } 11181 case NEON::BI__builtin_neon_vaddlvq_u16: { 11182 Int = Intrinsic::aarch64_neon_uaddlv; 11183 Ty = Int32Ty; 11184 VTy = llvm::FixedVectorType::get(Int16Ty, 8); 11185 llvm::Type *Tys[2] = { Ty, VTy }; 11186 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11187 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); 11188 } 11189 case NEON::BI__builtin_neon_vaddlv_s8: { 11190 Int = Intrinsic::aarch64_neon_saddlv; 11191 Ty = Int32Ty; 11192 VTy = llvm::FixedVectorType::get(Int8Ty, 8); 11193 llvm::Type *Tys[2] = { Ty, VTy }; 11194 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11195 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); 11196 return Builder.CreateTrunc(Ops[0], Int16Ty); 11197 } 11198 case NEON::BI__builtin_neon_vaddlv_s16: { 11199 Int = Intrinsic::aarch64_neon_saddlv; 11200 Ty = Int32Ty; 11201 VTy = llvm::FixedVectorType::get(Int16Ty, 4); 11202 llvm::Type *Tys[2] = { Ty, VTy }; 11203 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11204 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); 11205 } 11206 case NEON::BI__builtin_neon_vaddlvq_s8: { 11207 Int = Intrinsic::aarch64_neon_saddlv; 11208 Ty = Int32Ty; 11209 VTy = llvm::FixedVectorType::get(Int8Ty, 16); 11210 llvm::Type *Tys[2] = { Ty, VTy }; 11211 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11212 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); 11213 return Builder.CreateTrunc(Ops[0], Int16Ty); 11214 } 11215 case NEON::BI__builtin_neon_vaddlvq_s16: { 11216 Int = Intrinsic::aarch64_neon_saddlv; 11217 Ty = Int32Ty; 11218 VTy = llvm::FixedVectorType::get(Int16Ty, 8); 11219 llvm::Type *Tys[2] = { Ty, VTy }; 11220 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11221 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); 11222 } 11223 case NEON::BI__builtin_neon_vsri_n_v: 11224 case NEON::BI__builtin_neon_vsriq_n_v: { 11225 Int = Intrinsic::aarch64_neon_vsri; 11226 llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty); 11227 return EmitNeonCall(Intrin, Ops, "vsri_n"); 11228 } 11229 case NEON::BI__builtin_neon_vsli_n_v: 11230 case NEON::BI__builtin_neon_vsliq_n_v: { 11231 Int = Intrinsic::aarch64_neon_vsli; 11232 llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty); 11233 return EmitNeonCall(Intrin, Ops, "vsli_n"); 11234 } 11235 case NEON::BI__builtin_neon_vsra_n_v: 11236 case NEON::BI__builtin_neon_vsraq_n_v: 11237 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 11238 Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n"); 11239 return Builder.CreateAdd(Ops[0], Ops[1]); 11240 case NEON::BI__builtin_neon_vrsra_n_v: 11241 case NEON::BI__builtin_neon_vrsraq_n_v: { 11242 Int = usgn ? Intrinsic::aarch64_neon_urshl : Intrinsic::aarch64_neon_srshl; 11243 SmallVector<llvm::Value*,2> TmpOps; 11244 TmpOps.push_back(Ops[1]); 11245 TmpOps.push_back(Ops[2]); 11246 Function* F = CGM.getIntrinsic(Int, Ty); 11247 llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vrshr_n", 1, true); 11248 Ops[0] = Builder.CreateBitCast(Ops[0], VTy); 11249 return Builder.CreateAdd(Ops[0], tmp); 11250 } 11251 case NEON::BI__builtin_neon_vld1_v: 11252 case NEON::BI__builtin_neon_vld1q_v: { 11253 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy)); 11254 return Builder.CreateAlignedLoad(VTy, Ops[0], PtrOp0.getAlignment()); 11255 } 11256 case NEON::BI__builtin_neon_vst1_v: 11257 case NEON::BI__builtin_neon_vst1q_v: 11258 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy)); 11259 Ops[1] = Builder.CreateBitCast(Ops[1], VTy); 11260 return Builder.CreateAlignedStore(Ops[1], Ops[0], PtrOp0.getAlignment()); 11261 case NEON::BI__builtin_neon_vld1_lane_v: 11262 case NEON::BI__builtin_neon_vld1q_lane_v: { 11263 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 11264 Ty = llvm::PointerType::getUnqual(VTy->getElementType()); 11265 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 11266 Ops[0] = Builder.CreateAlignedLoad(VTy->getElementType(), Ops[0], 11267 PtrOp0.getAlignment()); 11268 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vld1_lane"); 11269 } 11270 case NEON::BI__builtin_neon_vld1_dup_v: 11271 case NEON::BI__builtin_neon_vld1q_dup_v: { 11272 Value *V = UndefValue::get(Ty); 11273 Ty = llvm::PointerType::getUnqual(VTy->getElementType()); 11274 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 11275 Ops[0] = Builder.CreateAlignedLoad(VTy->getElementType(), Ops[0], 11276 PtrOp0.getAlignment()); 11277 llvm::Constant *CI = ConstantInt::get(Int32Ty, 0); 11278 Ops[0] = Builder.CreateInsertElement(V, Ops[0], CI); 11279 return EmitNeonSplat(Ops[0], CI); 11280 } 11281 case NEON::BI__builtin_neon_vst1_lane_v: 11282 case NEON::BI__builtin_neon_vst1q_lane_v: 11283 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 11284 Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]); 11285 Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); 11286 return Builder.CreateAlignedStore(Ops[1], Builder.CreateBitCast(Ops[0], Ty), 11287 PtrOp0.getAlignment()); 11288 case NEON::BI__builtin_neon_vld2_v: 11289 case NEON::BI__builtin_neon_vld2q_v: { 11290 llvm::Type *PTy = llvm::PointerType::getUnqual(VTy); 11291 Ops[1] = Builder.CreateBitCast(Ops[1], PTy); 11292 llvm::Type *Tys[2] = { VTy, PTy }; 11293 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2, Tys); 11294 Ops[1] = Builder.CreateCall(F, Ops[1], "vld2"); 11295 Ops[0] = Builder.CreateBitCast(Ops[0], 11296 llvm::PointerType::getUnqual(Ops[1]->getType())); 11297 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); 11298 } 11299 case NEON::BI__builtin_neon_vld3_v: 11300 case NEON::BI__builtin_neon_vld3q_v: { 11301 llvm::Type *PTy = llvm::PointerType::getUnqual(VTy); 11302 Ops[1] = Builder.CreateBitCast(Ops[1], PTy); 11303 llvm::Type *Tys[2] = { VTy, PTy }; 11304 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3, Tys); 11305 Ops[1] = Builder.CreateCall(F, Ops[1], "vld3"); 11306 Ops[0] = Builder.CreateBitCast(Ops[0], 11307 llvm::PointerType::getUnqual(Ops[1]->getType())); 11308 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); 11309 } 11310 case NEON::BI__builtin_neon_vld4_v: 11311 case NEON::BI__builtin_neon_vld4q_v: { 11312 llvm::Type *PTy = llvm::PointerType::getUnqual(VTy); 11313 Ops[1] = Builder.CreateBitCast(Ops[1], PTy); 11314 llvm::Type *Tys[2] = { VTy, PTy }; 11315 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4, Tys); 11316 Ops[1] = Builder.CreateCall(F, Ops[1], "vld4"); 11317 Ops[0] = Builder.CreateBitCast(Ops[0], 11318 llvm::PointerType::getUnqual(Ops[1]->getType())); 11319 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); 11320 } 11321 case NEON::BI__builtin_neon_vld2_dup_v: 11322 case NEON::BI__builtin_neon_vld2q_dup_v: { 11323 llvm::Type *PTy = 11324 llvm::PointerType::getUnqual(VTy->getElementType()); 11325 Ops[1] = Builder.CreateBitCast(Ops[1], PTy); 11326 llvm::Type *Tys[2] = { VTy, PTy }; 11327 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2r, Tys); 11328 Ops[1] = Builder.CreateCall(F, Ops[1], "vld2"); 11329 Ops[0] = Builder.CreateBitCast(Ops[0], 11330 llvm::PointerType::getUnqual(Ops[1]->getType())); 11331 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); 11332 } 11333 case NEON::BI__builtin_neon_vld3_dup_v: 11334 case NEON::BI__builtin_neon_vld3q_dup_v: { 11335 llvm::Type *PTy = 11336 llvm::PointerType::getUnqual(VTy->getElementType()); 11337 Ops[1] = Builder.CreateBitCast(Ops[1], PTy); 11338 llvm::Type *Tys[2] = { VTy, PTy }; 11339 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3r, Tys); 11340 Ops[1] = Builder.CreateCall(F, Ops[1], "vld3"); 11341 Ops[0] = Builder.CreateBitCast(Ops[0], 11342 llvm::PointerType::getUnqual(Ops[1]->getType())); 11343 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); 11344 } 11345 case NEON::BI__builtin_neon_vld4_dup_v: 11346 case NEON::BI__builtin_neon_vld4q_dup_v: { 11347 llvm::Type *PTy = 11348 llvm::PointerType::getUnqual(VTy->getElementType()); 11349 Ops[1] = Builder.CreateBitCast(Ops[1], PTy); 11350 llvm::Type *Tys[2] = { VTy, PTy }; 11351 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4r, Tys); 11352 Ops[1] = Builder.CreateCall(F, Ops[1], "vld4"); 11353 Ops[0] = Builder.CreateBitCast(Ops[0], 11354 llvm::PointerType::getUnqual(Ops[1]->getType())); 11355 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); 11356 } 11357 case NEON::BI__builtin_neon_vld2_lane_v: 11358 case NEON::BI__builtin_neon_vld2q_lane_v: { 11359 llvm::Type *Tys[2] = { VTy, Ops[1]->getType() }; 11360 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2lane, Tys); 11361 std::rotate(Ops.begin() + 1, Ops.begin() + 2, Ops.end()); 11362 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 11363 Ops[2] = Builder.CreateBitCast(Ops[2], Ty); 11364 Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty); 11365 Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld2_lane"); 11366 Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); 11367 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 11368 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); 11369 } 11370 case NEON::BI__builtin_neon_vld3_lane_v: 11371 case NEON::BI__builtin_neon_vld3q_lane_v: { 11372 llvm::Type *Tys[2] = { VTy, Ops[1]->getType() }; 11373 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3lane, Tys); 11374 std::rotate(Ops.begin() + 1, Ops.begin() + 2, Ops.end()); 11375 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 11376 Ops[2] = Builder.CreateBitCast(Ops[2], Ty); 11377 Ops[3] = Builder.CreateBitCast(Ops[3], Ty); 11378 Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty); 11379 Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld3_lane"); 11380 Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); 11381 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 11382 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); 11383 } 11384 case NEON::BI__builtin_neon_vld4_lane_v: 11385 case NEON::BI__builtin_neon_vld4q_lane_v: { 11386 llvm::Type *Tys[2] = { VTy, Ops[1]->getType() }; 11387 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4lane, Tys); 11388 std::rotate(Ops.begin() + 1, Ops.begin() + 2, Ops.end()); 11389 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 11390 Ops[2] = Builder.CreateBitCast(Ops[2], Ty); 11391 Ops[3] = Builder.CreateBitCast(Ops[3], Ty); 11392 Ops[4] = Builder.CreateBitCast(Ops[4], Ty); 11393 Ops[5] = Builder.CreateZExt(Ops[5], Int64Ty); 11394 Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld4_lane"); 11395 Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); 11396 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 11397 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); 11398 } 11399 case NEON::BI__builtin_neon_vst2_v: 11400 case NEON::BI__builtin_neon_vst2q_v: { 11401 std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end()); 11402 llvm::Type *Tys[2] = { VTy, Ops[2]->getType() }; 11403 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2, Tys), 11404 Ops, ""); 11405 } 11406 case NEON::BI__builtin_neon_vst2_lane_v: 11407 case NEON::BI__builtin_neon_vst2q_lane_v: { 11408 std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end()); 11409 Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty); 11410 llvm::Type *Tys[2] = { VTy, Ops[3]->getType() }; 11411 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2lane, Tys), 11412 Ops, ""); 11413 } 11414 case NEON::BI__builtin_neon_vst3_v: 11415 case NEON::BI__builtin_neon_vst3q_v: { 11416 std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end()); 11417 llvm::Type *Tys[2] = { VTy, Ops[3]->getType() }; 11418 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3, Tys), 11419 Ops, ""); 11420 } 11421 case NEON::BI__builtin_neon_vst3_lane_v: 11422 case NEON::BI__builtin_neon_vst3q_lane_v: { 11423 std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end()); 11424 Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty); 11425 llvm::Type *Tys[2] = { VTy, Ops[4]->getType() }; 11426 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3lane, Tys), 11427 Ops, ""); 11428 } 11429 case NEON::BI__builtin_neon_vst4_v: 11430 case NEON::BI__builtin_neon_vst4q_v: { 11431 std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end()); 11432 llvm::Type *Tys[2] = { VTy, Ops[4]->getType() }; 11433 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4, Tys), 11434 Ops, ""); 11435 } 11436 case NEON::BI__builtin_neon_vst4_lane_v: 11437 case NEON::BI__builtin_neon_vst4q_lane_v: { 11438 std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end()); 11439 Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty); 11440 llvm::Type *Tys[2] = { VTy, Ops[5]->getType() }; 11441 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4lane, Tys), 11442 Ops, ""); 11443 } 11444 case NEON::BI__builtin_neon_vtrn_v: 11445 case NEON::BI__builtin_neon_vtrnq_v: { 11446 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty)); 11447 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 11448 Ops[2] = Builder.CreateBitCast(Ops[2], Ty); 11449 Value *SV = nullptr; 11450 11451 for (unsigned vi = 0; vi != 2; ++vi) { 11452 SmallVector<int, 16> Indices; 11453 for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) { 11454 Indices.push_back(i+vi); 11455 Indices.push_back(i+e+vi); 11456 } 11457 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi); 11458 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vtrn"); 11459 SV = Builder.CreateDefaultAlignedStore(SV, Addr); 11460 } 11461 return SV; 11462 } 11463 case NEON::BI__builtin_neon_vuzp_v: 11464 case NEON::BI__builtin_neon_vuzpq_v: { 11465 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty)); 11466 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 11467 Ops[2] = Builder.CreateBitCast(Ops[2], Ty); 11468 Value *SV = nullptr; 11469 11470 for (unsigned vi = 0; vi != 2; ++vi) { 11471 SmallVector<int, 16> Indices; 11472 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) 11473 Indices.push_back(2*i+vi); 11474 11475 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi); 11476 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vuzp"); 11477 SV = Builder.CreateDefaultAlignedStore(SV, Addr); 11478 } 11479 return SV; 11480 } 11481 case NEON::BI__builtin_neon_vzip_v: 11482 case NEON::BI__builtin_neon_vzipq_v: { 11483 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty)); 11484 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 11485 Ops[2] = Builder.CreateBitCast(Ops[2], Ty); 11486 Value *SV = nullptr; 11487 11488 for (unsigned vi = 0; vi != 2; ++vi) { 11489 SmallVector<int, 16> Indices; 11490 for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) { 11491 Indices.push_back((i + vi*e) >> 1); 11492 Indices.push_back(((i + vi*e) >> 1)+e); 11493 } 11494 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi); 11495 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vzip"); 11496 SV = Builder.CreateDefaultAlignedStore(SV, Addr); 11497 } 11498 return SV; 11499 } 11500 case NEON::BI__builtin_neon_vqtbl1q_v: { 11501 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl1, Ty), 11502 Ops, "vtbl1"); 11503 } 11504 case NEON::BI__builtin_neon_vqtbl2q_v: { 11505 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl2, Ty), 11506 Ops, "vtbl2"); 11507 } 11508 case NEON::BI__builtin_neon_vqtbl3q_v: { 11509 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl3, Ty), 11510 Ops, "vtbl3"); 11511 } 11512 case NEON::BI__builtin_neon_vqtbl4q_v: { 11513 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl4, Ty), 11514 Ops, "vtbl4"); 11515 } 11516 case NEON::BI__builtin_neon_vqtbx1q_v: { 11517 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx1, Ty), 11518 Ops, "vtbx1"); 11519 } 11520 case NEON::BI__builtin_neon_vqtbx2q_v: { 11521 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx2, Ty), 11522 Ops, "vtbx2"); 11523 } 11524 case NEON::BI__builtin_neon_vqtbx3q_v: { 11525 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx3, Ty), 11526 Ops, "vtbx3"); 11527 } 11528 case NEON::BI__builtin_neon_vqtbx4q_v: { 11529 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx4, Ty), 11530 Ops, "vtbx4"); 11531 } 11532 case NEON::BI__builtin_neon_vsqadd_v: 11533 case NEON::BI__builtin_neon_vsqaddq_v: { 11534 Int = Intrinsic::aarch64_neon_usqadd; 11535 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqadd"); 11536 } 11537 case NEON::BI__builtin_neon_vuqadd_v: 11538 case NEON::BI__builtin_neon_vuqaddq_v: { 11539 Int = Intrinsic::aarch64_neon_suqadd; 11540 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vuqadd"); 11541 } 11542 } 11543 } 11544 11545 Value *CodeGenFunction::EmitBPFBuiltinExpr(unsigned BuiltinID, 11546 const CallExpr *E) { 11547 assert((BuiltinID == BPF::BI__builtin_preserve_field_info || 11548 BuiltinID == BPF::BI__builtin_btf_type_id || 11549 BuiltinID == BPF::BI__builtin_preserve_type_info || 11550 BuiltinID == BPF::BI__builtin_preserve_enum_value) && 11551 "unexpected BPF builtin"); 11552 11553 // A sequence number, injected into IR builtin functions, to 11554 // prevent CSE given the only difference of the funciton 11555 // may just be the debuginfo metadata. 11556 static uint32_t BuiltinSeqNum; 11557 11558 switch (BuiltinID) { 11559 default: 11560 llvm_unreachable("Unexpected BPF builtin"); 11561 case BPF::BI__builtin_preserve_field_info: { 11562 const Expr *Arg = E->getArg(0); 11563 bool IsBitField = Arg->IgnoreParens()->getObjectKind() == OK_BitField; 11564 11565 if (!getDebugInfo()) { 11566 CGM.Error(E->getExprLoc(), 11567 "using __builtin_preserve_field_info() without -g"); 11568 return IsBitField ? EmitLValue(Arg).getBitFieldPointer() 11569 : EmitLValue(Arg).getPointer(*this); 11570 } 11571 11572 // Enable underlying preserve_*_access_index() generation. 11573 bool OldIsInPreservedAIRegion = IsInPreservedAIRegion; 11574 IsInPreservedAIRegion = true; 11575 Value *FieldAddr = IsBitField ? EmitLValue(Arg).getBitFieldPointer() 11576 : EmitLValue(Arg).getPointer(*this); 11577 IsInPreservedAIRegion = OldIsInPreservedAIRegion; 11578 11579 ConstantInt *C = cast<ConstantInt>(EmitScalarExpr(E->getArg(1))); 11580 Value *InfoKind = ConstantInt::get(Int64Ty, C->getSExtValue()); 11581 11582 // Built the IR for the preserve_field_info intrinsic. 11583 llvm::Function *FnGetFieldInfo = llvm::Intrinsic::getDeclaration( 11584 &CGM.getModule(), llvm::Intrinsic::bpf_preserve_field_info, 11585 {FieldAddr->getType()}); 11586 return Builder.CreateCall(FnGetFieldInfo, {FieldAddr, InfoKind}); 11587 } 11588 case BPF::BI__builtin_btf_type_id: 11589 case BPF::BI__builtin_preserve_type_info: { 11590 if (!getDebugInfo()) { 11591 CGM.Error(E->getExprLoc(), "using builtin function without -g"); 11592 return nullptr; 11593 } 11594 11595 const Expr *Arg0 = E->getArg(0); 11596 llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType( 11597 Arg0->getType(), Arg0->getExprLoc()); 11598 11599 ConstantInt *Flag = cast<ConstantInt>(EmitScalarExpr(E->getArg(1))); 11600 Value *FlagValue = ConstantInt::get(Int64Ty, Flag->getSExtValue()); 11601 Value *SeqNumVal = ConstantInt::get(Int32Ty, BuiltinSeqNum++); 11602 11603 llvm::Function *FnDecl; 11604 if (BuiltinID == BPF::BI__builtin_btf_type_id) 11605 FnDecl = llvm::Intrinsic::getDeclaration( 11606 &CGM.getModule(), llvm::Intrinsic::bpf_btf_type_id, {}); 11607 else 11608 FnDecl = llvm::Intrinsic::getDeclaration( 11609 &CGM.getModule(), llvm::Intrinsic::bpf_preserve_type_info, {}); 11610 CallInst *Fn = Builder.CreateCall(FnDecl, {SeqNumVal, FlagValue}); 11611 Fn->setMetadata(LLVMContext::MD_preserve_access_index, DbgInfo); 11612 return Fn; 11613 } 11614 case BPF::BI__builtin_preserve_enum_value: { 11615 if (!getDebugInfo()) { 11616 CGM.Error(E->getExprLoc(), "using builtin function without -g"); 11617 return nullptr; 11618 } 11619 11620 const Expr *Arg0 = E->getArg(0); 11621 llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType( 11622 Arg0->getType(), Arg0->getExprLoc()); 11623 11624 // Find enumerator 11625 const auto *UO = cast<UnaryOperator>(Arg0->IgnoreParens()); 11626 const auto *CE = cast<CStyleCastExpr>(UO->getSubExpr()); 11627 const auto *DR = cast<DeclRefExpr>(CE->getSubExpr()); 11628 const auto *Enumerator = cast<EnumConstantDecl>(DR->getDecl()); 11629 11630 auto &InitVal = Enumerator->getInitVal(); 11631 std::string InitValStr; 11632 if (InitVal.isNegative() || InitVal > uint64_t(INT64_MAX)) 11633 InitValStr = std::to_string(InitVal.getSExtValue()); 11634 else 11635 InitValStr = std::to_string(InitVal.getZExtValue()); 11636 std::string EnumStr = Enumerator->getNameAsString() + ":" + InitValStr; 11637 Value *EnumStrVal = Builder.CreateGlobalStringPtr(EnumStr); 11638 11639 ConstantInt *Flag = cast<ConstantInt>(EmitScalarExpr(E->getArg(1))); 11640 Value *FlagValue = ConstantInt::get(Int64Ty, Flag->getSExtValue()); 11641 Value *SeqNumVal = ConstantInt::get(Int32Ty, BuiltinSeqNum++); 11642 11643 llvm::Function *IntrinsicFn = llvm::Intrinsic::getDeclaration( 11644 &CGM.getModule(), llvm::Intrinsic::bpf_preserve_enum_value, {}); 11645 CallInst *Fn = 11646 Builder.CreateCall(IntrinsicFn, {SeqNumVal, EnumStrVal, FlagValue}); 11647 Fn->setMetadata(LLVMContext::MD_preserve_access_index, DbgInfo); 11648 return Fn; 11649 } 11650 } 11651 } 11652 11653 llvm::Value *CodeGenFunction:: 11654 BuildVector(ArrayRef<llvm::Value*> Ops) { 11655 assert((Ops.size() & (Ops.size() - 1)) == 0 && 11656 "Not a power-of-two sized vector!"); 11657 bool AllConstants = true; 11658 for (unsigned i = 0, e = Ops.size(); i != e && AllConstants; ++i) 11659 AllConstants &= isa<Constant>(Ops[i]); 11660 11661 // If this is a constant vector, create a ConstantVector. 11662 if (AllConstants) { 11663 SmallVector<llvm::Constant*, 16> CstOps; 11664 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 11665 CstOps.push_back(cast<Constant>(Ops[i])); 11666 return llvm::ConstantVector::get(CstOps); 11667 } 11668 11669 // Otherwise, insertelement the values to build the vector. 11670 Value *Result = llvm::UndefValue::get( 11671 llvm::FixedVectorType::get(Ops[0]->getType(), Ops.size())); 11672 11673 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 11674 Result = Builder.CreateInsertElement(Result, Ops[i], Builder.getInt32(i)); 11675 11676 return Result; 11677 } 11678 11679 // Convert the mask from an integer type to a vector of i1. 11680 static Value *getMaskVecValue(CodeGenFunction &CGF, Value *Mask, 11681 unsigned NumElts) { 11682 11683 auto *MaskTy = llvm::FixedVectorType::get( 11684 CGF.Builder.getInt1Ty(), 11685 cast<IntegerType>(Mask->getType())->getBitWidth()); 11686 Value *MaskVec = CGF.Builder.CreateBitCast(Mask, MaskTy); 11687 11688 // If we have less than 8 elements, then the starting mask was an i8 and 11689 // we need to extract down to the right number of elements. 11690 if (NumElts < 8) { 11691 int Indices[4]; 11692 for (unsigned i = 0; i != NumElts; ++i) 11693 Indices[i] = i; 11694 MaskVec = CGF.Builder.CreateShuffleVector(MaskVec, MaskVec, 11695 makeArrayRef(Indices, NumElts), 11696 "extract"); 11697 } 11698 return MaskVec; 11699 } 11700 11701 static Value *EmitX86MaskedStore(CodeGenFunction &CGF, ArrayRef<Value *> Ops, 11702 Align Alignment) { 11703 // Cast the pointer to right type. 11704 Value *Ptr = CGF.Builder.CreateBitCast(Ops[0], 11705 llvm::PointerType::getUnqual(Ops[1]->getType())); 11706 11707 Value *MaskVec = getMaskVecValue( 11708 CGF, Ops[2], 11709 cast<llvm::FixedVectorType>(Ops[1]->getType())->getNumElements()); 11710 11711 return CGF.Builder.CreateMaskedStore(Ops[1], Ptr, Alignment, MaskVec); 11712 } 11713 11714 static Value *EmitX86MaskedLoad(CodeGenFunction &CGF, ArrayRef<Value *> Ops, 11715 Align Alignment) { 11716 // Cast the pointer to right type. 11717 Value *Ptr = CGF.Builder.CreateBitCast(Ops[0], 11718 llvm::PointerType::getUnqual(Ops[1]->getType())); 11719 11720 Value *MaskVec = getMaskVecValue( 11721 CGF, Ops[2], 11722 cast<llvm::FixedVectorType>(Ops[1]->getType())->getNumElements()); 11723 11724 return CGF.Builder.CreateMaskedLoad(Ptr, Alignment, MaskVec, Ops[1]); 11725 } 11726 11727 static Value *EmitX86ExpandLoad(CodeGenFunction &CGF, 11728 ArrayRef<Value *> Ops) { 11729 auto *ResultTy = cast<llvm::VectorType>(Ops[1]->getType()); 11730 llvm::Type *PtrTy = ResultTy->getElementType(); 11731 11732 // Cast the pointer to element type. 11733 Value *Ptr = CGF.Builder.CreateBitCast(Ops[0], 11734 llvm::PointerType::getUnqual(PtrTy)); 11735 11736 Value *MaskVec = getMaskVecValue( 11737 CGF, Ops[2], cast<FixedVectorType>(ResultTy)->getNumElements()); 11738 11739 llvm::Function *F = CGF.CGM.getIntrinsic(Intrinsic::masked_expandload, 11740 ResultTy); 11741 return CGF.Builder.CreateCall(F, { Ptr, MaskVec, Ops[1] }); 11742 } 11743 11744 static Value *EmitX86CompressExpand(CodeGenFunction &CGF, 11745 ArrayRef<Value *> Ops, 11746 bool IsCompress) { 11747 auto *ResultTy = cast<llvm::FixedVectorType>(Ops[1]->getType()); 11748 11749 Value *MaskVec = getMaskVecValue(CGF, Ops[2], ResultTy->getNumElements()); 11750 11751 Intrinsic::ID IID = IsCompress ? Intrinsic::x86_avx512_mask_compress 11752 : Intrinsic::x86_avx512_mask_expand; 11753 llvm::Function *F = CGF.CGM.getIntrinsic(IID, ResultTy); 11754 return CGF.Builder.CreateCall(F, { Ops[0], Ops[1], MaskVec }); 11755 } 11756 11757 static Value *EmitX86CompressStore(CodeGenFunction &CGF, 11758 ArrayRef<Value *> Ops) { 11759 auto *ResultTy = cast<llvm::FixedVectorType>(Ops[1]->getType()); 11760 llvm::Type *PtrTy = ResultTy->getElementType(); 11761 11762 // Cast the pointer to element type. 11763 Value *Ptr = CGF.Builder.CreateBitCast(Ops[0], 11764 llvm::PointerType::getUnqual(PtrTy)); 11765 11766 Value *MaskVec = getMaskVecValue(CGF, Ops[2], ResultTy->getNumElements()); 11767 11768 llvm::Function *F = CGF.CGM.getIntrinsic(Intrinsic::masked_compressstore, 11769 ResultTy); 11770 return CGF.Builder.CreateCall(F, { Ops[1], Ptr, MaskVec }); 11771 } 11772 11773 static Value *EmitX86MaskLogic(CodeGenFunction &CGF, Instruction::BinaryOps Opc, 11774 ArrayRef<Value *> Ops, 11775 bool InvertLHS = false) { 11776 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth(); 11777 Value *LHS = getMaskVecValue(CGF, Ops[0], NumElts); 11778 Value *RHS = getMaskVecValue(CGF, Ops[1], NumElts); 11779 11780 if (InvertLHS) 11781 LHS = CGF.Builder.CreateNot(LHS); 11782 11783 return CGF.Builder.CreateBitCast(CGF.Builder.CreateBinOp(Opc, LHS, RHS), 11784 Ops[0]->getType()); 11785 } 11786 11787 static Value *EmitX86FunnelShift(CodeGenFunction &CGF, Value *Op0, Value *Op1, 11788 Value *Amt, bool IsRight) { 11789 llvm::Type *Ty = Op0->getType(); 11790 11791 // Amount may be scalar immediate, in which case create a splat vector. 11792 // Funnel shifts amounts are treated as modulo and types are all power-of-2 so 11793 // we only care about the lowest log2 bits anyway. 11794 if (Amt->getType() != Ty) { 11795 unsigned NumElts = cast<llvm::FixedVectorType>(Ty)->getNumElements(); 11796 Amt = CGF.Builder.CreateIntCast(Amt, Ty->getScalarType(), false); 11797 Amt = CGF.Builder.CreateVectorSplat(NumElts, Amt); 11798 } 11799 11800 unsigned IID = IsRight ? Intrinsic::fshr : Intrinsic::fshl; 11801 Function *F = CGF.CGM.getIntrinsic(IID, Ty); 11802 return CGF.Builder.CreateCall(F, {Op0, Op1, Amt}); 11803 } 11804 11805 static Value *EmitX86vpcom(CodeGenFunction &CGF, ArrayRef<Value *> Ops, 11806 bool IsSigned) { 11807 Value *Op0 = Ops[0]; 11808 Value *Op1 = Ops[1]; 11809 llvm::Type *Ty = Op0->getType(); 11810 uint64_t Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7; 11811 11812 CmpInst::Predicate Pred; 11813 switch (Imm) { 11814 case 0x0: 11815 Pred = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 11816 break; 11817 case 0x1: 11818 Pred = IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 11819 break; 11820 case 0x2: 11821 Pred = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 11822 break; 11823 case 0x3: 11824 Pred = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 11825 break; 11826 case 0x4: 11827 Pred = ICmpInst::ICMP_EQ; 11828 break; 11829 case 0x5: 11830 Pred = ICmpInst::ICMP_NE; 11831 break; 11832 case 0x6: 11833 return llvm::Constant::getNullValue(Ty); // FALSE 11834 case 0x7: 11835 return llvm::Constant::getAllOnesValue(Ty); // TRUE 11836 default: 11837 llvm_unreachable("Unexpected XOP vpcom/vpcomu predicate"); 11838 } 11839 11840 Value *Cmp = CGF.Builder.CreateICmp(Pred, Op0, Op1); 11841 Value *Res = CGF.Builder.CreateSExt(Cmp, Ty); 11842 return Res; 11843 } 11844 11845 static Value *EmitX86Select(CodeGenFunction &CGF, 11846 Value *Mask, Value *Op0, Value *Op1) { 11847 11848 // If the mask is all ones just return first argument. 11849 if (const auto *C = dyn_cast<Constant>(Mask)) 11850 if (C->isAllOnesValue()) 11851 return Op0; 11852 11853 Mask = getMaskVecValue( 11854 CGF, Mask, cast<llvm::FixedVectorType>(Op0->getType())->getNumElements()); 11855 11856 return CGF.Builder.CreateSelect(Mask, Op0, Op1); 11857 } 11858 11859 static Value *EmitX86ScalarSelect(CodeGenFunction &CGF, 11860 Value *Mask, Value *Op0, Value *Op1) { 11861 // If the mask is all ones just return first argument. 11862 if (const auto *C = dyn_cast<Constant>(Mask)) 11863 if (C->isAllOnesValue()) 11864 return Op0; 11865 11866 auto *MaskTy = llvm::FixedVectorType::get( 11867 CGF.Builder.getInt1Ty(), Mask->getType()->getIntegerBitWidth()); 11868 Mask = CGF.Builder.CreateBitCast(Mask, MaskTy); 11869 Mask = CGF.Builder.CreateExtractElement(Mask, (uint64_t)0); 11870 return CGF.Builder.CreateSelect(Mask, Op0, Op1); 11871 } 11872 11873 static Value *EmitX86MaskedCompareResult(CodeGenFunction &CGF, Value *Cmp, 11874 unsigned NumElts, Value *MaskIn) { 11875 if (MaskIn) { 11876 const auto *C = dyn_cast<Constant>(MaskIn); 11877 if (!C || !C->isAllOnesValue()) 11878 Cmp = CGF.Builder.CreateAnd(Cmp, getMaskVecValue(CGF, MaskIn, NumElts)); 11879 } 11880 11881 if (NumElts < 8) { 11882 int Indices[8]; 11883 for (unsigned i = 0; i != NumElts; ++i) 11884 Indices[i] = i; 11885 for (unsigned i = NumElts; i != 8; ++i) 11886 Indices[i] = i % NumElts + NumElts; 11887 Cmp = CGF.Builder.CreateShuffleVector( 11888 Cmp, llvm::Constant::getNullValue(Cmp->getType()), Indices); 11889 } 11890 11891 return CGF.Builder.CreateBitCast(Cmp, 11892 IntegerType::get(CGF.getLLVMContext(), 11893 std::max(NumElts, 8U))); 11894 } 11895 11896 static Value *EmitX86MaskedCompare(CodeGenFunction &CGF, unsigned CC, 11897 bool Signed, ArrayRef<Value *> Ops) { 11898 assert((Ops.size() == 2 || Ops.size() == 4) && 11899 "Unexpected number of arguments"); 11900 unsigned NumElts = 11901 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(); 11902 Value *Cmp; 11903 11904 if (CC == 3) { 11905 Cmp = Constant::getNullValue( 11906 llvm::FixedVectorType::get(CGF.Builder.getInt1Ty(), NumElts)); 11907 } else if (CC == 7) { 11908 Cmp = Constant::getAllOnesValue( 11909 llvm::FixedVectorType::get(CGF.Builder.getInt1Ty(), NumElts)); 11910 } else { 11911 ICmpInst::Predicate Pred; 11912 switch (CC) { 11913 default: llvm_unreachable("Unknown condition code"); 11914 case 0: Pred = ICmpInst::ICMP_EQ; break; 11915 case 1: Pred = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; break; 11916 case 2: Pred = Signed ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; break; 11917 case 4: Pred = ICmpInst::ICMP_NE; break; 11918 case 5: Pred = Signed ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; break; 11919 case 6: Pred = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; break; 11920 } 11921 Cmp = CGF.Builder.CreateICmp(Pred, Ops[0], Ops[1]); 11922 } 11923 11924 Value *MaskIn = nullptr; 11925 if (Ops.size() == 4) 11926 MaskIn = Ops[3]; 11927 11928 return EmitX86MaskedCompareResult(CGF, Cmp, NumElts, MaskIn); 11929 } 11930 11931 static Value *EmitX86ConvertToMask(CodeGenFunction &CGF, Value *In) { 11932 Value *Zero = Constant::getNullValue(In->getType()); 11933 return EmitX86MaskedCompare(CGF, 1, true, { In, Zero }); 11934 } 11935 11936 static Value *EmitX86ConvertIntToFp(CodeGenFunction &CGF, const CallExpr *E, 11937 ArrayRef<Value *> Ops, bool IsSigned) { 11938 unsigned Rnd = cast<llvm::ConstantInt>(Ops[3])->getZExtValue(); 11939 llvm::Type *Ty = Ops[1]->getType(); 11940 11941 Value *Res; 11942 if (Rnd != 4) { 11943 Intrinsic::ID IID = IsSigned ? Intrinsic::x86_avx512_sitofp_round 11944 : Intrinsic::x86_avx512_uitofp_round; 11945 Function *F = CGF.CGM.getIntrinsic(IID, { Ty, Ops[0]->getType() }); 11946 Res = CGF.Builder.CreateCall(F, { Ops[0], Ops[3] }); 11947 } else { 11948 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E); 11949 Res = IsSigned ? CGF.Builder.CreateSIToFP(Ops[0], Ty) 11950 : CGF.Builder.CreateUIToFP(Ops[0], Ty); 11951 } 11952 11953 return EmitX86Select(CGF, Ops[2], Res, Ops[1]); 11954 } 11955 11956 // Lowers X86 FMA intrinsics to IR. 11957 static Value *EmitX86FMAExpr(CodeGenFunction &CGF, const CallExpr *E, 11958 ArrayRef<Value *> Ops, unsigned BuiltinID, 11959 bool IsAddSub) { 11960 11961 bool Subtract = false; 11962 Intrinsic::ID IID = Intrinsic::not_intrinsic; 11963 switch (BuiltinID) { 11964 default: break; 11965 case clang::X86::BI__builtin_ia32_vfmsubps512_mask3: 11966 Subtract = true; 11967 LLVM_FALLTHROUGH; 11968 case clang::X86::BI__builtin_ia32_vfmaddps512_mask: 11969 case clang::X86::BI__builtin_ia32_vfmaddps512_maskz: 11970 case clang::X86::BI__builtin_ia32_vfmaddps512_mask3: 11971 IID = llvm::Intrinsic::x86_avx512_vfmadd_ps_512; break; 11972 case clang::X86::BI__builtin_ia32_vfmsubpd512_mask3: 11973 Subtract = true; 11974 LLVM_FALLTHROUGH; 11975 case clang::X86::BI__builtin_ia32_vfmaddpd512_mask: 11976 case clang::X86::BI__builtin_ia32_vfmaddpd512_maskz: 11977 case clang::X86::BI__builtin_ia32_vfmaddpd512_mask3: 11978 IID = llvm::Intrinsic::x86_avx512_vfmadd_pd_512; break; 11979 case clang::X86::BI__builtin_ia32_vfmsubaddps512_mask3: 11980 Subtract = true; 11981 LLVM_FALLTHROUGH; 11982 case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask: 11983 case clang::X86::BI__builtin_ia32_vfmaddsubps512_maskz: 11984 case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask3: 11985 IID = llvm::Intrinsic::x86_avx512_vfmaddsub_ps_512; 11986 break; 11987 case clang::X86::BI__builtin_ia32_vfmsubaddpd512_mask3: 11988 Subtract = true; 11989 LLVM_FALLTHROUGH; 11990 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask: 11991 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_maskz: 11992 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask3: 11993 IID = llvm::Intrinsic::x86_avx512_vfmaddsub_pd_512; 11994 break; 11995 } 11996 11997 Value *A = Ops[0]; 11998 Value *B = Ops[1]; 11999 Value *C = Ops[2]; 12000 12001 if (Subtract) 12002 C = CGF.Builder.CreateFNeg(C); 12003 12004 Value *Res; 12005 12006 // Only handle in case of _MM_FROUND_CUR_DIRECTION/4 (no rounding). 12007 if (IID != Intrinsic::not_intrinsic && 12008 (cast<llvm::ConstantInt>(Ops.back())->getZExtValue() != (uint64_t)4 || 12009 IsAddSub)) { 12010 Function *Intr = CGF.CGM.getIntrinsic(IID); 12011 Res = CGF.Builder.CreateCall(Intr, {A, B, C, Ops.back() }); 12012 } else { 12013 llvm::Type *Ty = A->getType(); 12014 Function *FMA; 12015 if (CGF.Builder.getIsFPConstrained()) { 12016 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E); 12017 FMA = CGF.CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, Ty); 12018 Res = CGF.Builder.CreateConstrainedFPCall(FMA, {A, B, C}); 12019 } else { 12020 FMA = CGF.CGM.getIntrinsic(Intrinsic::fma, Ty); 12021 Res = CGF.Builder.CreateCall(FMA, {A, B, C}); 12022 } 12023 } 12024 12025 // Handle any required masking. 12026 Value *MaskFalseVal = nullptr; 12027 switch (BuiltinID) { 12028 case clang::X86::BI__builtin_ia32_vfmaddps512_mask: 12029 case clang::X86::BI__builtin_ia32_vfmaddpd512_mask: 12030 case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask: 12031 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask: 12032 MaskFalseVal = Ops[0]; 12033 break; 12034 case clang::X86::BI__builtin_ia32_vfmaddps512_maskz: 12035 case clang::X86::BI__builtin_ia32_vfmaddpd512_maskz: 12036 case clang::X86::BI__builtin_ia32_vfmaddsubps512_maskz: 12037 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_maskz: 12038 MaskFalseVal = Constant::getNullValue(Ops[0]->getType()); 12039 break; 12040 case clang::X86::BI__builtin_ia32_vfmsubps512_mask3: 12041 case clang::X86::BI__builtin_ia32_vfmaddps512_mask3: 12042 case clang::X86::BI__builtin_ia32_vfmsubpd512_mask3: 12043 case clang::X86::BI__builtin_ia32_vfmaddpd512_mask3: 12044 case clang::X86::BI__builtin_ia32_vfmsubaddps512_mask3: 12045 case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask3: 12046 case clang::X86::BI__builtin_ia32_vfmsubaddpd512_mask3: 12047 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask3: 12048 MaskFalseVal = Ops[2]; 12049 break; 12050 } 12051 12052 if (MaskFalseVal) 12053 return EmitX86Select(CGF, Ops[3], Res, MaskFalseVal); 12054 12055 return Res; 12056 } 12057 12058 static Value *EmitScalarFMAExpr(CodeGenFunction &CGF, const CallExpr *E, 12059 MutableArrayRef<Value *> Ops, Value *Upper, 12060 bool ZeroMask = false, unsigned PTIdx = 0, 12061 bool NegAcc = false) { 12062 unsigned Rnd = 4; 12063 if (Ops.size() > 4) 12064 Rnd = cast<llvm::ConstantInt>(Ops[4])->getZExtValue(); 12065 12066 if (NegAcc) 12067 Ops[2] = CGF.Builder.CreateFNeg(Ops[2]); 12068 12069 Ops[0] = CGF.Builder.CreateExtractElement(Ops[0], (uint64_t)0); 12070 Ops[1] = CGF.Builder.CreateExtractElement(Ops[1], (uint64_t)0); 12071 Ops[2] = CGF.Builder.CreateExtractElement(Ops[2], (uint64_t)0); 12072 Value *Res; 12073 if (Rnd != 4) { 12074 Intrinsic::ID IID = Ops[0]->getType()->getPrimitiveSizeInBits() == 32 ? 12075 Intrinsic::x86_avx512_vfmadd_f32 : 12076 Intrinsic::x86_avx512_vfmadd_f64; 12077 Res = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(IID), 12078 {Ops[0], Ops[1], Ops[2], Ops[4]}); 12079 } else if (CGF.Builder.getIsFPConstrained()) { 12080 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E); 12081 Function *FMA = CGF.CGM.getIntrinsic( 12082 Intrinsic::experimental_constrained_fma, Ops[0]->getType()); 12083 Res = CGF.Builder.CreateConstrainedFPCall(FMA, Ops.slice(0, 3)); 12084 } else { 12085 Function *FMA = CGF.CGM.getIntrinsic(Intrinsic::fma, Ops[0]->getType()); 12086 Res = CGF.Builder.CreateCall(FMA, Ops.slice(0, 3)); 12087 } 12088 // If we have more than 3 arguments, we need to do masking. 12089 if (Ops.size() > 3) { 12090 Value *PassThru = ZeroMask ? Constant::getNullValue(Res->getType()) 12091 : Ops[PTIdx]; 12092 12093 // If we negated the accumulator and the its the PassThru value we need to 12094 // bypass the negate. Conveniently Upper should be the same thing in this 12095 // case. 12096 if (NegAcc && PTIdx == 2) 12097 PassThru = CGF.Builder.CreateExtractElement(Upper, (uint64_t)0); 12098 12099 Res = EmitX86ScalarSelect(CGF, Ops[3], Res, PassThru); 12100 } 12101 return CGF.Builder.CreateInsertElement(Upper, Res, (uint64_t)0); 12102 } 12103 12104 static Value *EmitX86Muldq(CodeGenFunction &CGF, bool IsSigned, 12105 ArrayRef<Value *> Ops) { 12106 llvm::Type *Ty = Ops[0]->getType(); 12107 // Arguments have a vXi32 type so cast to vXi64. 12108 Ty = llvm::FixedVectorType::get(CGF.Int64Ty, 12109 Ty->getPrimitiveSizeInBits() / 64); 12110 Value *LHS = CGF.Builder.CreateBitCast(Ops[0], Ty); 12111 Value *RHS = CGF.Builder.CreateBitCast(Ops[1], Ty); 12112 12113 if (IsSigned) { 12114 // Shift left then arithmetic shift right. 12115 Constant *ShiftAmt = ConstantInt::get(Ty, 32); 12116 LHS = CGF.Builder.CreateShl(LHS, ShiftAmt); 12117 LHS = CGF.Builder.CreateAShr(LHS, ShiftAmt); 12118 RHS = CGF.Builder.CreateShl(RHS, ShiftAmt); 12119 RHS = CGF.Builder.CreateAShr(RHS, ShiftAmt); 12120 } else { 12121 // Clear the upper bits. 12122 Constant *Mask = ConstantInt::get(Ty, 0xffffffff); 12123 LHS = CGF.Builder.CreateAnd(LHS, Mask); 12124 RHS = CGF.Builder.CreateAnd(RHS, Mask); 12125 } 12126 12127 return CGF.Builder.CreateMul(LHS, RHS); 12128 } 12129 12130 // Emit a masked pternlog intrinsic. This only exists because the header has to 12131 // use a macro and we aren't able to pass the input argument to a pternlog 12132 // builtin and a select builtin without evaluating it twice. 12133 static Value *EmitX86Ternlog(CodeGenFunction &CGF, bool ZeroMask, 12134 ArrayRef<Value *> Ops) { 12135 llvm::Type *Ty = Ops[0]->getType(); 12136 12137 unsigned VecWidth = Ty->getPrimitiveSizeInBits(); 12138 unsigned EltWidth = Ty->getScalarSizeInBits(); 12139 Intrinsic::ID IID; 12140 if (VecWidth == 128 && EltWidth == 32) 12141 IID = Intrinsic::x86_avx512_pternlog_d_128; 12142 else if (VecWidth == 256 && EltWidth == 32) 12143 IID = Intrinsic::x86_avx512_pternlog_d_256; 12144 else if (VecWidth == 512 && EltWidth == 32) 12145 IID = Intrinsic::x86_avx512_pternlog_d_512; 12146 else if (VecWidth == 128 && EltWidth == 64) 12147 IID = Intrinsic::x86_avx512_pternlog_q_128; 12148 else if (VecWidth == 256 && EltWidth == 64) 12149 IID = Intrinsic::x86_avx512_pternlog_q_256; 12150 else if (VecWidth == 512 && EltWidth == 64) 12151 IID = Intrinsic::x86_avx512_pternlog_q_512; 12152 else 12153 llvm_unreachable("Unexpected intrinsic"); 12154 12155 Value *Ternlog = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(IID), 12156 Ops.drop_back()); 12157 Value *PassThru = ZeroMask ? ConstantAggregateZero::get(Ty) : Ops[0]; 12158 return EmitX86Select(CGF, Ops[4], Ternlog, PassThru); 12159 } 12160 12161 static Value *EmitX86SExtMask(CodeGenFunction &CGF, Value *Op, 12162 llvm::Type *DstTy) { 12163 unsigned NumberOfElements = 12164 cast<llvm::FixedVectorType>(DstTy)->getNumElements(); 12165 Value *Mask = getMaskVecValue(CGF, Op, NumberOfElements); 12166 return CGF.Builder.CreateSExt(Mask, DstTy, "vpmovm2"); 12167 } 12168 12169 // Emit binary intrinsic with the same type used in result/args. 12170 static Value *EmitX86BinaryIntrinsic(CodeGenFunction &CGF, 12171 ArrayRef<Value *> Ops, Intrinsic::ID IID) { 12172 llvm::Function *F = CGF.CGM.getIntrinsic(IID, Ops[0]->getType()); 12173 return CGF.Builder.CreateCall(F, {Ops[0], Ops[1]}); 12174 } 12175 12176 Value *CodeGenFunction::EmitX86CpuIs(const CallExpr *E) { 12177 const Expr *CPUExpr = E->getArg(0)->IgnoreParenCasts(); 12178 StringRef CPUStr = cast<clang::StringLiteral>(CPUExpr)->getString(); 12179 return EmitX86CpuIs(CPUStr); 12180 } 12181 12182 // Convert F16 halfs to floats. 12183 static Value *EmitX86CvtF16ToFloatExpr(CodeGenFunction &CGF, 12184 ArrayRef<Value *> Ops, 12185 llvm::Type *DstTy) { 12186 assert((Ops.size() == 1 || Ops.size() == 3 || Ops.size() == 4) && 12187 "Unknown cvtph2ps intrinsic"); 12188 12189 // If the SAE intrinsic doesn't use default rounding then we can't upgrade. 12190 if (Ops.size() == 4 && cast<llvm::ConstantInt>(Ops[3])->getZExtValue() != 4) { 12191 Function *F = 12192 CGF.CGM.getIntrinsic(Intrinsic::x86_avx512_mask_vcvtph2ps_512); 12193 return CGF.Builder.CreateCall(F, {Ops[0], Ops[1], Ops[2], Ops[3]}); 12194 } 12195 12196 unsigned NumDstElts = cast<llvm::FixedVectorType>(DstTy)->getNumElements(); 12197 Value *Src = Ops[0]; 12198 12199 // Extract the subvector. 12200 if (NumDstElts != 12201 cast<llvm::FixedVectorType>(Src->getType())->getNumElements()) { 12202 assert(NumDstElts == 4 && "Unexpected vector size"); 12203 Src = CGF.Builder.CreateShuffleVector(Src, ArrayRef<int>{0, 1, 2, 3}); 12204 } 12205 12206 // Bitcast from vXi16 to vXf16. 12207 auto *HalfTy = llvm::FixedVectorType::get( 12208 llvm::Type::getHalfTy(CGF.getLLVMContext()), NumDstElts); 12209 Src = CGF.Builder.CreateBitCast(Src, HalfTy); 12210 12211 // Perform the fp-extension. 12212 Value *Res = CGF.Builder.CreateFPExt(Src, DstTy, "cvtph2ps"); 12213 12214 if (Ops.size() >= 3) 12215 Res = EmitX86Select(CGF, Ops[2], Res, Ops[1]); 12216 return Res; 12217 } 12218 12219 // Convert a BF16 to a float. 12220 static Value *EmitX86CvtBF16ToFloatExpr(CodeGenFunction &CGF, 12221 const CallExpr *E, 12222 ArrayRef<Value *> Ops) { 12223 llvm::Type *Int32Ty = CGF.Builder.getInt32Ty(); 12224 Value *ZeroExt = CGF.Builder.CreateZExt(Ops[0], Int32Ty); 12225 Value *Shl = CGF.Builder.CreateShl(ZeroExt, 16); 12226 llvm::Type *ResultType = CGF.ConvertType(E->getType()); 12227 Value *BitCast = CGF.Builder.CreateBitCast(Shl, ResultType); 12228 return BitCast; 12229 } 12230 12231 Value *CodeGenFunction::EmitX86CpuIs(StringRef CPUStr) { 12232 12233 llvm::Type *Int32Ty = Builder.getInt32Ty(); 12234 12235 // Matching the struct layout from the compiler-rt/libgcc structure that is 12236 // filled in: 12237 // unsigned int __cpu_vendor; 12238 // unsigned int __cpu_type; 12239 // unsigned int __cpu_subtype; 12240 // unsigned int __cpu_features[1]; 12241 llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty, 12242 llvm::ArrayType::get(Int32Ty, 1)); 12243 12244 // Grab the global __cpu_model. 12245 llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model"); 12246 cast<llvm::GlobalValue>(CpuModel)->setDSOLocal(true); 12247 12248 // Calculate the index needed to access the correct field based on the 12249 // range. Also adjust the expected value. 12250 unsigned Index; 12251 unsigned Value; 12252 std::tie(Index, Value) = StringSwitch<std::pair<unsigned, unsigned>>(CPUStr) 12253 #define X86_VENDOR(ENUM, STRING) \ 12254 .Case(STRING, {0u, static_cast<unsigned>(llvm::X86::ENUM)}) 12255 #define X86_CPU_TYPE_ALIAS(ENUM, ALIAS) \ 12256 .Case(ALIAS, {1u, static_cast<unsigned>(llvm::X86::ENUM)}) 12257 #define X86_CPU_TYPE(ENUM, STR) \ 12258 .Case(STR, {1u, static_cast<unsigned>(llvm::X86::ENUM)}) 12259 #define X86_CPU_SUBTYPE(ENUM, STR) \ 12260 .Case(STR, {2u, static_cast<unsigned>(llvm::X86::ENUM)}) 12261 #include "llvm/Support/X86TargetParser.def" 12262 .Default({0, 0}); 12263 assert(Value != 0 && "Invalid CPUStr passed to CpuIs"); 12264 12265 // Grab the appropriate field from __cpu_model. 12266 llvm::Value *Idxs[] = {ConstantInt::get(Int32Ty, 0), 12267 ConstantInt::get(Int32Ty, Index)}; 12268 llvm::Value *CpuValue = Builder.CreateGEP(STy, CpuModel, Idxs); 12269 CpuValue = Builder.CreateAlignedLoad(Int32Ty, CpuValue, 12270 CharUnits::fromQuantity(4)); 12271 12272 // Check the value of the field against the requested value. 12273 return Builder.CreateICmpEQ(CpuValue, 12274 llvm::ConstantInt::get(Int32Ty, Value)); 12275 } 12276 12277 Value *CodeGenFunction::EmitX86CpuSupports(const CallExpr *E) { 12278 const Expr *FeatureExpr = E->getArg(0)->IgnoreParenCasts(); 12279 StringRef FeatureStr = cast<StringLiteral>(FeatureExpr)->getString(); 12280 return EmitX86CpuSupports(FeatureStr); 12281 } 12282 12283 uint64_t 12284 CodeGenFunction::GetX86CpuSupportsMask(ArrayRef<StringRef> FeatureStrs) { 12285 // Processor features and mapping to processor feature value. 12286 uint64_t FeaturesMask = 0; 12287 for (const StringRef &FeatureStr : FeatureStrs) { 12288 unsigned Feature = 12289 StringSwitch<unsigned>(FeatureStr) 12290 #define X86_FEATURE_COMPAT(ENUM, STR) .Case(STR, llvm::X86::FEATURE_##ENUM) 12291 #include "llvm/Support/X86TargetParser.def" 12292 ; 12293 FeaturesMask |= (1ULL << Feature); 12294 } 12295 return FeaturesMask; 12296 } 12297 12298 Value *CodeGenFunction::EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs) { 12299 return EmitX86CpuSupports(GetX86CpuSupportsMask(FeatureStrs)); 12300 } 12301 12302 llvm::Value *CodeGenFunction::EmitX86CpuSupports(uint64_t FeaturesMask) { 12303 uint32_t Features1 = Lo_32(FeaturesMask); 12304 uint32_t Features2 = Hi_32(FeaturesMask); 12305 12306 Value *Result = Builder.getTrue(); 12307 12308 if (Features1 != 0) { 12309 // Matching the struct layout from the compiler-rt/libgcc structure that is 12310 // filled in: 12311 // unsigned int __cpu_vendor; 12312 // unsigned int __cpu_type; 12313 // unsigned int __cpu_subtype; 12314 // unsigned int __cpu_features[1]; 12315 llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty, 12316 llvm::ArrayType::get(Int32Ty, 1)); 12317 12318 // Grab the global __cpu_model. 12319 llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model"); 12320 cast<llvm::GlobalValue>(CpuModel)->setDSOLocal(true); 12321 12322 // Grab the first (0th) element from the field __cpu_features off of the 12323 // global in the struct STy. 12324 Value *Idxs[] = {Builder.getInt32(0), Builder.getInt32(3), 12325 Builder.getInt32(0)}; 12326 Value *CpuFeatures = Builder.CreateGEP(STy, CpuModel, Idxs); 12327 Value *Features = Builder.CreateAlignedLoad(Int32Ty, CpuFeatures, 12328 CharUnits::fromQuantity(4)); 12329 12330 // Check the value of the bit corresponding to the feature requested. 12331 Value *Mask = Builder.getInt32(Features1); 12332 Value *Bitset = Builder.CreateAnd(Features, Mask); 12333 Value *Cmp = Builder.CreateICmpEQ(Bitset, Mask); 12334 Result = Builder.CreateAnd(Result, Cmp); 12335 } 12336 12337 if (Features2 != 0) { 12338 llvm::Constant *CpuFeatures2 = CGM.CreateRuntimeVariable(Int32Ty, 12339 "__cpu_features2"); 12340 cast<llvm::GlobalValue>(CpuFeatures2)->setDSOLocal(true); 12341 12342 Value *Features = Builder.CreateAlignedLoad(Int32Ty, CpuFeatures2, 12343 CharUnits::fromQuantity(4)); 12344 12345 // Check the value of the bit corresponding to the feature requested. 12346 Value *Mask = Builder.getInt32(Features2); 12347 Value *Bitset = Builder.CreateAnd(Features, Mask); 12348 Value *Cmp = Builder.CreateICmpEQ(Bitset, Mask); 12349 Result = Builder.CreateAnd(Result, Cmp); 12350 } 12351 12352 return Result; 12353 } 12354 12355 Value *CodeGenFunction::EmitX86CpuInit() { 12356 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, 12357 /*Variadic*/ false); 12358 llvm::FunctionCallee Func = 12359 CGM.CreateRuntimeFunction(FTy, "__cpu_indicator_init"); 12360 cast<llvm::GlobalValue>(Func.getCallee())->setDSOLocal(true); 12361 cast<llvm::GlobalValue>(Func.getCallee()) 12362 ->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 12363 return Builder.CreateCall(Func); 12364 } 12365 12366 Value *CodeGenFunction::EmitX86BuiltinExpr(unsigned BuiltinID, 12367 const CallExpr *E) { 12368 if (BuiltinID == X86::BI__builtin_cpu_is) 12369 return EmitX86CpuIs(E); 12370 if (BuiltinID == X86::BI__builtin_cpu_supports) 12371 return EmitX86CpuSupports(E); 12372 if (BuiltinID == X86::BI__builtin_cpu_init) 12373 return EmitX86CpuInit(); 12374 12375 // Handle MSVC intrinsics before argument evaluation to prevent double 12376 // evaluation. 12377 if (Optional<MSVCIntrin> MsvcIntId = translateX86ToMsvcIntrin(BuiltinID)) 12378 return EmitMSVCBuiltinExpr(*MsvcIntId, E); 12379 12380 SmallVector<Value*, 4> Ops; 12381 bool IsMaskFCmp = false; 12382 12383 // Find out if any arguments are required to be integer constant expressions. 12384 unsigned ICEArguments = 0; 12385 ASTContext::GetBuiltinTypeError Error; 12386 getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments); 12387 assert(Error == ASTContext::GE_None && "Should not codegen an error"); 12388 12389 for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) { 12390 // If this is a normal argument, just emit it as a scalar. 12391 if ((ICEArguments & (1 << i)) == 0) { 12392 Ops.push_back(EmitScalarExpr(E->getArg(i))); 12393 continue; 12394 } 12395 12396 // If this is required to be a constant, constant fold it so that we know 12397 // that the generated intrinsic gets a ConstantInt. 12398 Ops.push_back(llvm::ConstantInt::get( 12399 getLLVMContext(), *E->getArg(i)->getIntegerConstantExpr(getContext()))); 12400 } 12401 12402 // These exist so that the builtin that takes an immediate can be bounds 12403 // checked by clang to avoid passing bad immediates to the backend. Since 12404 // AVX has a larger immediate than SSE we would need separate builtins to 12405 // do the different bounds checking. Rather than create a clang specific 12406 // SSE only builtin, this implements eight separate builtins to match gcc 12407 // implementation. 12408 auto getCmpIntrinsicCall = [this, &Ops](Intrinsic::ID ID, unsigned Imm) { 12409 Ops.push_back(llvm::ConstantInt::get(Int8Ty, Imm)); 12410 llvm::Function *F = CGM.getIntrinsic(ID); 12411 return Builder.CreateCall(F, Ops); 12412 }; 12413 12414 // For the vector forms of FP comparisons, translate the builtins directly to 12415 // IR. 12416 // TODO: The builtins could be removed if the SSE header files used vector 12417 // extension comparisons directly (vector ordered/unordered may need 12418 // additional support via __builtin_isnan()). 12419 auto getVectorFCmpIR = [this, &Ops, E](CmpInst::Predicate Pred, 12420 bool IsSignaling) { 12421 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); 12422 Value *Cmp; 12423 if (IsSignaling) 12424 Cmp = Builder.CreateFCmpS(Pred, Ops[0], Ops[1]); 12425 else 12426 Cmp = Builder.CreateFCmp(Pred, Ops[0], Ops[1]); 12427 llvm::VectorType *FPVecTy = cast<llvm::VectorType>(Ops[0]->getType()); 12428 llvm::VectorType *IntVecTy = llvm::VectorType::getInteger(FPVecTy); 12429 Value *Sext = Builder.CreateSExt(Cmp, IntVecTy); 12430 return Builder.CreateBitCast(Sext, FPVecTy); 12431 }; 12432 12433 switch (BuiltinID) { 12434 default: return nullptr; 12435 case X86::BI_mm_prefetch: { 12436 Value *Address = Ops[0]; 12437 ConstantInt *C = cast<ConstantInt>(Ops[1]); 12438 Value *RW = ConstantInt::get(Int32Ty, (C->getZExtValue() >> 2) & 0x1); 12439 Value *Locality = ConstantInt::get(Int32Ty, C->getZExtValue() & 0x3); 12440 Value *Data = ConstantInt::get(Int32Ty, 1); 12441 Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType()); 12442 return Builder.CreateCall(F, {Address, RW, Locality, Data}); 12443 } 12444 case X86::BI_mm_clflush: { 12445 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_clflush), 12446 Ops[0]); 12447 } 12448 case X86::BI_mm_lfence: { 12449 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_lfence)); 12450 } 12451 case X86::BI_mm_mfence: { 12452 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_mfence)); 12453 } 12454 case X86::BI_mm_sfence: { 12455 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_sfence)); 12456 } 12457 case X86::BI_mm_pause: { 12458 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_pause)); 12459 } 12460 case X86::BI__rdtsc: { 12461 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_rdtsc)); 12462 } 12463 case X86::BI__builtin_ia32_rdtscp: { 12464 Value *Call = Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_rdtscp)); 12465 Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 1), 12466 Ops[0]); 12467 return Builder.CreateExtractValue(Call, 0); 12468 } 12469 case X86::BI__builtin_ia32_lzcnt_u16: 12470 case X86::BI__builtin_ia32_lzcnt_u32: 12471 case X86::BI__builtin_ia32_lzcnt_u64: { 12472 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType()); 12473 return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)}); 12474 } 12475 case X86::BI__builtin_ia32_tzcnt_u16: 12476 case X86::BI__builtin_ia32_tzcnt_u32: 12477 case X86::BI__builtin_ia32_tzcnt_u64: { 12478 Function *F = CGM.getIntrinsic(Intrinsic::cttz, Ops[0]->getType()); 12479 return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)}); 12480 } 12481 case X86::BI__builtin_ia32_undef128: 12482 case X86::BI__builtin_ia32_undef256: 12483 case X86::BI__builtin_ia32_undef512: 12484 // The x86 definition of "undef" is not the same as the LLVM definition 12485 // (PR32176). We leave optimizing away an unnecessary zero constant to the 12486 // IR optimizer and backend. 12487 // TODO: If we had a "freeze" IR instruction to generate a fixed undef 12488 // value, we should use that here instead of a zero. 12489 return llvm::Constant::getNullValue(ConvertType(E->getType())); 12490 case X86::BI__builtin_ia32_vec_init_v8qi: 12491 case X86::BI__builtin_ia32_vec_init_v4hi: 12492 case X86::BI__builtin_ia32_vec_init_v2si: 12493 return Builder.CreateBitCast(BuildVector(Ops), 12494 llvm::Type::getX86_MMXTy(getLLVMContext())); 12495 case X86::BI__builtin_ia32_vec_ext_v2si: 12496 case X86::BI__builtin_ia32_vec_ext_v16qi: 12497 case X86::BI__builtin_ia32_vec_ext_v8hi: 12498 case X86::BI__builtin_ia32_vec_ext_v4si: 12499 case X86::BI__builtin_ia32_vec_ext_v4sf: 12500 case X86::BI__builtin_ia32_vec_ext_v2di: 12501 case X86::BI__builtin_ia32_vec_ext_v32qi: 12502 case X86::BI__builtin_ia32_vec_ext_v16hi: 12503 case X86::BI__builtin_ia32_vec_ext_v8si: 12504 case X86::BI__builtin_ia32_vec_ext_v4di: { 12505 unsigned NumElts = 12506 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(); 12507 uint64_t Index = cast<ConstantInt>(Ops[1])->getZExtValue(); 12508 Index &= NumElts - 1; 12509 // These builtins exist so we can ensure the index is an ICE and in range. 12510 // Otherwise we could just do this in the header file. 12511 return Builder.CreateExtractElement(Ops[0], Index); 12512 } 12513 case X86::BI__builtin_ia32_vec_set_v16qi: 12514 case X86::BI__builtin_ia32_vec_set_v8hi: 12515 case X86::BI__builtin_ia32_vec_set_v4si: 12516 case X86::BI__builtin_ia32_vec_set_v2di: 12517 case X86::BI__builtin_ia32_vec_set_v32qi: 12518 case X86::BI__builtin_ia32_vec_set_v16hi: 12519 case X86::BI__builtin_ia32_vec_set_v8si: 12520 case X86::BI__builtin_ia32_vec_set_v4di: { 12521 unsigned NumElts = 12522 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(); 12523 unsigned Index = cast<ConstantInt>(Ops[2])->getZExtValue(); 12524 Index &= NumElts - 1; 12525 // These builtins exist so we can ensure the index is an ICE and in range. 12526 // Otherwise we could just do this in the header file. 12527 return Builder.CreateInsertElement(Ops[0], Ops[1], Index); 12528 } 12529 case X86::BI_mm_setcsr: 12530 case X86::BI__builtin_ia32_ldmxcsr: { 12531 Address Tmp = CreateMemTemp(E->getArg(0)->getType()); 12532 Builder.CreateStore(Ops[0], Tmp); 12533 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_ldmxcsr), 12534 Builder.CreateBitCast(Tmp.getPointer(), Int8PtrTy)); 12535 } 12536 case X86::BI_mm_getcsr: 12537 case X86::BI__builtin_ia32_stmxcsr: { 12538 Address Tmp = CreateMemTemp(E->getType()); 12539 Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_stmxcsr), 12540 Builder.CreateBitCast(Tmp.getPointer(), Int8PtrTy)); 12541 return Builder.CreateLoad(Tmp, "stmxcsr"); 12542 } 12543 case X86::BI__builtin_ia32_xsave: 12544 case X86::BI__builtin_ia32_xsave64: 12545 case X86::BI__builtin_ia32_xrstor: 12546 case X86::BI__builtin_ia32_xrstor64: 12547 case X86::BI__builtin_ia32_xsaveopt: 12548 case X86::BI__builtin_ia32_xsaveopt64: 12549 case X86::BI__builtin_ia32_xrstors: 12550 case X86::BI__builtin_ia32_xrstors64: 12551 case X86::BI__builtin_ia32_xsavec: 12552 case X86::BI__builtin_ia32_xsavec64: 12553 case X86::BI__builtin_ia32_xsaves: 12554 case X86::BI__builtin_ia32_xsaves64: 12555 case X86::BI__builtin_ia32_xsetbv: 12556 case X86::BI_xsetbv: { 12557 Intrinsic::ID ID; 12558 #define INTRINSIC_X86_XSAVE_ID(NAME) \ 12559 case X86::BI__builtin_ia32_##NAME: \ 12560 ID = Intrinsic::x86_##NAME; \ 12561 break 12562 switch (BuiltinID) { 12563 default: llvm_unreachable("Unsupported intrinsic!"); 12564 INTRINSIC_X86_XSAVE_ID(xsave); 12565 INTRINSIC_X86_XSAVE_ID(xsave64); 12566 INTRINSIC_X86_XSAVE_ID(xrstor); 12567 INTRINSIC_X86_XSAVE_ID(xrstor64); 12568 INTRINSIC_X86_XSAVE_ID(xsaveopt); 12569 INTRINSIC_X86_XSAVE_ID(xsaveopt64); 12570 INTRINSIC_X86_XSAVE_ID(xrstors); 12571 INTRINSIC_X86_XSAVE_ID(xrstors64); 12572 INTRINSIC_X86_XSAVE_ID(xsavec); 12573 INTRINSIC_X86_XSAVE_ID(xsavec64); 12574 INTRINSIC_X86_XSAVE_ID(xsaves); 12575 INTRINSIC_X86_XSAVE_ID(xsaves64); 12576 INTRINSIC_X86_XSAVE_ID(xsetbv); 12577 case X86::BI_xsetbv: 12578 ID = Intrinsic::x86_xsetbv; 12579 break; 12580 } 12581 #undef INTRINSIC_X86_XSAVE_ID 12582 Value *Mhi = Builder.CreateTrunc( 12583 Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, 32)), Int32Ty); 12584 Value *Mlo = Builder.CreateTrunc(Ops[1], Int32Ty); 12585 Ops[1] = Mhi; 12586 Ops.push_back(Mlo); 12587 return Builder.CreateCall(CGM.getIntrinsic(ID), Ops); 12588 } 12589 case X86::BI__builtin_ia32_xgetbv: 12590 case X86::BI_xgetbv: 12591 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_xgetbv), Ops); 12592 case X86::BI__builtin_ia32_storedqudi128_mask: 12593 case X86::BI__builtin_ia32_storedqusi128_mask: 12594 case X86::BI__builtin_ia32_storedquhi128_mask: 12595 case X86::BI__builtin_ia32_storedquqi128_mask: 12596 case X86::BI__builtin_ia32_storeupd128_mask: 12597 case X86::BI__builtin_ia32_storeups128_mask: 12598 case X86::BI__builtin_ia32_storedqudi256_mask: 12599 case X86::BI__builtin_ia32_storedqusi256_mask: 12600 case X86::BI__builtin_ia32_storedquhi256_mask: 12601 case X86::BI__builtin_ia32_storedquqi256_mask: 12602 case X86::BI__builtin_ia32_storeupd256_mask: 12603 case X86::BI__builtin_ia32_storeups256_mask: 12604 case X86::BI__builtin_ia32_storedqudi512_mask: 12605 case X86::BI__builtin_ia32_storedqusi512_mask: 12606 case X86::BI__builtin_ia32_storedquhi512_mask: 12607 case X86::BI__builtin_ia32_storedquqi512_mask: 12608 case X86::BI__builtin_ia32_storeupd512_mask: 12609 case X86::BI__builtin_ia32_storeups512_mask: 12610 return EmitX86MaskedStore(*this, Ops, Align(1)); 12611 12612 case X86::BI__builtin_ia32_storess128_mask: 12613 case X86::BI__builtin_ia32_storesd128_mask: 12614 return EmitX86MaskedStore(*this, Ops, Align(1)); 12615 12616 case X86::BI__builtin_ia32_vpopcntb_128: 12617 case X86::BI__builtin_ia32_vpopcntd_128: 12618 case X86::BI__builtin_ia32_vpopcntq_128: 12619 case X86::BI__builtin_ia32_vpopcntw_128: 12620 case X86::BI__builtin_ia32_vpopcntb_256: 12621 case X86::BI__builtin_ia32_vpopcntd_256: 12622 case X86::BI__builtin_ia32_vpopcntq_256: 12623 case X86::BI__builtin_ia32_vpopcntw_256: 12624 case X86::BI__builtin_ia32_vpopcntb_512: 12625 case X86::BI__builtin_ia32_vpopcntd_512: 12626 case X86::BI__builtin_ia32_vpopcntq_512: 12627 case X86::BI__builtin_ia32_vpopcntw_512: { 12628 llvm::Type *ResultType = ConvertType(E->getType()); 12629 llvm::Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType); 12630 return Builder.CreateCall(F, Ops); 12631 } 12632 case X86::BI__builtin_ia32_cvtmask2b128: 12633 case X86::BI__builtin_ia32_cvtmask2b256: 12634 case X86::BI__builtin_ia32_cvtmask2b512: 12635 case X86::BI__builtin_ia32_cvtmask2w128: 12636 case X86::BI__builtin_ia32_cvtmask2w256: 12637 case X86::BI__builtin_ia32_cvtmask2w512: 12638 case X86::BI__builtin_ia32_cvtmask2d128: 12639 case X86::BI__builtin_ia32_cvtmask2d256: 12640 case X86::BI__builtin_ia32_cvtmask2d512: 12641 case X86::BI__builtin_ia32_cvtmask2q128: 12642 case X86::BI__builtin_ia32_cvtmask2q256: 12643 case X86::BI__builtin_ia32_cvtmask2q512: 12644 return EmitX86SExtMask(*this, Ops[0], ConvertType(E->getType())); 12645 12646 case X86::BI__builtin_ia32_cvtb2mask128: 12647 case X86::BI__builtin_ia32_cvtb2mask256: 12648 case X86::BI__builtin_ia32_cvtb2mask512: 12649 case X86::BI__builtin_ia32_cvtw2mask128: 12650 case X86::BI__builtin_ia32_cvtw2mask256: 12651 case X86::BI__builtin_ia32_cvtw2mask512: 12652 case X86::BI__builtin_ia32_cvtd2mask128: 12653 case X86::BI__builtin_ia32_cvtd2mask256: 12654 case X86::BI__builtin_ia32_cvtd2mask512: 12655 case X86::BI__builtin_ia32_cvtq2mask128: 12656 case X86::BI__builtin_ia32_cvtq2mask256: 12657 case X86::BI__builtin_ia32_cvtq2mask512: 12658 return EmitX86ConvertToMask(*this, Ops[0]); 12659 12660 case X86::BI__builtin_ia32_cvtdq2ps512_mask: 12661 case X86::BI__builtin_ia32_cvtqq2ps512_mask: 12662 case X86::BI__builtin_ia32_cvtqq2pd512_mask: 12663 return EmitX86ConvertIntToFp(*this, E, Ops, /*IsSigned*/ true); 12664 case X86::BI__builtin_ia32_cvtudq2ps512_mask: 12665 case X86::BI__builtin_ia32_cvtuqq2ps512_mask: 12666 case X86::BI__builtin_ia32_cvtuqq2pd512_mask: 12667 return EmitX86ConvertIntToFp(*this, E, Ops, /*IsSigned*/ false); 12668 12669 case X86::BI__builtin_ia32_vfmaddss3: 12670 case X86::BI__builtin_ia32_vfmaddsd3: 12671 case X86::BI__builtin_ia32_vfmaddss3_mask: 12672 case X86::BI__builtin_ia32_vfmaddsd3_mask: 12673 return EmitScalarFMAExpr(*this, E, Ops, Ops[0]); 12674 case X86::BI__builtin_ia32_vfmaddss: 12675 case X86::BI__builtin_ia32_vfmaddsd: 12676 return EmitScalarFMAExpr(*this, E, Ops, 12677 Constant::getNullValue(Ops[0]->getType())); 12678 case X86::BI__builtin_ia32_vfmaddss3_maskz: 12679 case X86::BI__builtin_ia32_vfmaddsd3_maskz: 12680 return EmitScalarFMAExpr(*this, E, Ops, Ops[0], /*ZeroMask*/ true); 12681 case X86::BI__builtin_ia32_vfmaddss3_mask3: 12682 case X86::BI__builtin_ia32_vfmaddsd3_mask3: 12683 return EmitScalarFMAExpr(*this, E, Ops, Ops[2], /*ZeroMask*/ false, 2); 12684 case X86::BI__builtin_ia32_vfmsubss3_mask3: 12685 case X86::BI__builtin_ia32_vfmsubsd3_mask3: 12686 return EmitScalarFMAExpr(*this, E, Ops, Ops[2], /*ZeroMask*/ false, 2, 12687 /*NegAcc*/ true); 12688 case X86::BI__builtin_ia32_vfmaddps: 12689 case X86::BI__builtin_ia32_vfmaddpd: 12690 case X86::BI__builtin_ia32_vfmaddps256: 12691 case X86::BI__builtin_ia32_vfmaddpd256: 12692 case X86::BI__builtin_ia32_vfmaddps512_mask: 12693 case X86::BI__builtin_ia32_vfmaddps512_maskz: 12694 case X86::BI__builtin_ia32_vfmaddps512_mask3: 12695 case X86::BI__builtin_ia32_vfmsubps512_mask3: 12696 case X86::BI__builtin_ia32_vfmaddpd512_mask: 12697 case X86::BI__builtin_ia32_vfmaddpd512_maskz: 12698 case X86::BI__builtin_ia32_vfmaddpd512_mask3: 12699 case X86::BI__builtin_ia32_vfmsubpd512_mask3: 12700 return EmitX86FMAExpr(*this, E, Ops, BuiltinID, /*IsAddSub*/ false); 12701 case X86::BI__builtin_ia32_vfmaddsubps512_mask: 12702 case X86::BI__builtin_ia32_vfmaddsubps512_maskz: 12703 case X86::BI__builtin_ia32_vfmaddsubps512_mask3: 12704 case X86::BI__builtin_ia32_vfmsubaddps512_mask3: 12705 case X86::BI__builtin_ia32_vfmaddsubpd512_mask: 12706 case X86::BI__builtin_ia32_vfmaddsubpd512_maskz: 12707 case X86::BI__builtin_ia32_vfmaddsubpd512_mask3: 12708 case X86::BI__builtin_ia32_vfmsubaddpd512_mask3: 12709 return EmitX86FMAExpr(*this, E, Ops, BuiltinID, /*IsAddSub*/ true); 12710 12711 case X86::BI__builtin_ia32_movdqa32store128_mask: 12712 case X86::BI__builtin_ia32_movdqa64store128_mask: 12713 case X86::BI__builtin_ia32_storeaps128_mask: 12714 case X86::BI__builtin_ia32_storeapd128_mask: 12715 case X86::BI__builtin_ia32_movdqa32store256_mask: 12716 case X86::BI__builtin_ia32_movdqa64store256_mask: 12717 case X86::BI__builtin_ia32_storeaps256_mask: 12718 case X86::BI__builtin_ia32_storeapd256_mask: 12719 case X86::BI__builtin_ia32_movdqa32store512_mask: 12720 case X86::BI__builtin_ia32_movdqa64store512_mask: 12721 case X86::BI__builtin_ia32_storeaps512_mask: 12722 case X86::BI__builtin_ia32_storeapd512_mask: 12723 return EmitX86MaskedStore( 12724 *this, Ops, 12725 getContext().getTypeAlignInChars(E->getArg(1)->getType()).getAsAlign()); 12726 12727 case X86::BI__builtin_ia32_loadups128_mask: 12728 case X86::BI__builtin_ia32_loadups256_mask: 12729 case X86::BI__builtin_ia32_loadups512_mask: 12730 case X86::BI__builtin_ia32_loadupd128_mask: 12731 case X86::BI__builtin_ia32_loadupd256_mask: 12732 case X86::BI__builtin_ia32_loadupd512_mask: 12733 case X86::BI__builtin_ia32_loaddquqi128_mask: 12734 case X86::BI__builtin_ia32_loaddquqi256_mask: 12735 case X86::BI__builtin_ia32_loaddquqi512_mask: 12736 case X86::BI__builtin_ia32_loaddquhi128_mask: 12737 case X86::BI__builtin_ia32_loaddquhi256_mask: 12738 case X86::BI__builtin_ia32_loaddquhi512_mask: 12739 case X86::BI__builtin_ia32_loaddqusi128_mask: 12740 case X86::BI__builtin_ia32_loaddqusi256_mask: 12741 case X86::BI__builtin_ia32_loaddqusi512_mask: 12742 case X86::BI__builtin_ia32_loaddqudi128_mask: 12743 case X86::BI__builtin_ia32_loaddqudi256_mask: 12744 case X86::BI__builtin_ia32_loaddqudi512_mask: 12745 return EmitX86MaskedLoad(*this, Ops, Align(1)); 12746 12747 case X86::BI__builtin_ia32_loadss128_mask: 12748 case X86::BI__builtin_ia32_loadsd128_mask: 12749 return EmitX86MaskedLoad(*this, Ops, Align(1)); 12750 12751 case X86::BI__builtin_ia32_loadaps128_mask: 12752 case X86::BI__builtin_ia32_loadaps256_mask: 12753 case X86::BI__builtin_ia32_loadaps512_mask: 12754 case X86::BI__builtin_ia32_loadapd128_mask: 12755 case X86::BI__builtin_ia32_loadapd256_mask: 12756 case X86::BI__builtin_ia32_loadapd512_mask: 12757 case X86::BI__builtin_ia32_movdqa32load128_mask: 12758 case X86::BI__builtin_ia32_movdqa32load256_mask: 12759 case X86::BI__builtin_ia32_movdqa32load512_mask: 12760 case X86::BI__builtin_ia32_movdqa64load128_mask: 12761 case X86::BI__builtin_ia32_movdqa64load256_mask: 12762 case X86::BI__builtin_ia32_movdqa64load512_mask: 12763 return EmitX86MaskedLoad( 12764 *this, Ops, 12765 getContext().getTypeAlignInChars(E->getArg(1)->getType()).getAsAlign()); 12766 12767 case X86::BI__builtin_ia32_expandloaddf128_mask: 12768 case X86::BI__builtin_ia32_expandloaddf256_mask: 12769 case X86::BI__builtin_ia32_expandloaddf512_mask: 12770 case X86::BI__builtin_ia32_expandloadsf128_mask: 12771 case X86::BI__builtin_ia32_expandloadsf256_mask: 12772 case X86::BI__builtin_ia32_expandloadsf512_mask: 12773 case X86::BI__builtin_ia32_expandloaddi128_mask: 12774 case X86::BI__builtin_ia32_expandloaddi256_mask: 12775 case X86::BI__builtin_ia32_expandloaddi512_mask: 12776 case X86::BI__builtin_ia32_expandloadsi128_mask: 12777 case X86::BI__builtin_ia32_expandloadsi256_mask: 12778 case X86::BI__builtin_ia32_expandloadsi512_mask: 12779 case X86::BI__builtin_ia32_expandloadhi128_mask: 12780 case X86::BI__builtin_ia32_expandloadhi256_mask: 12781 case X86::BI__builtin_ia32_expandloadhi512_mask: 12782 case X86::BI__builtin_ia32_expandloadqi128_mask: 12783 case X86::BI__builtin_ia32_expandloadqi256_mask: 12784 case X86::BI__builtin_ia32_expandloadqi512_mask: 12785 return EmitX86ExpandLoad(*this, Ops); 12786 12787 case X86::BI__builtin_ia32_compressstoredf128_mask: 12788 case X86::BI__builtin_ia32_compressstoredf256_mask: 12789 case X86::BI__builtin_ia32_compressstoredf512_mask: 12790 case X86::BI__builtin_ia32_compressstoresf128_mask: 12791 case X86::BI__builtin_ia32_compressstoresf256_mask: 12792 case X86::BI__builtin_ia32_compressstoresf512_mask: 12793 case X86::BI__builtin_ia32_compressstoredi128_mask: 12794 case X86::BI__builtin_ia32_compressstoredi256_mask: 12795 case X86::BI__builtin_ia32_compressstoredi512_mask: 12796 case X86::BI__builtin_ia32_compressstoresi128_mask: 12797 case X86::BI__builtin_ia32_compressstoresi256_mask: 12798 case X86::BI__builtin_ia32_compressstoresi512_mask: 12799 case X86::BI__builtin_ia32_compressstorehi128_mask: 12800 case X86::BI__builtin_ia32_compressstorehi256_mask: 12801 case X86::BI__builtin_ia32_compressstorehi512_mask: 12802 case X86::BI__builtin_ia32_compressstoreqi128_mask: 12803 case X86::BI__builtin_ia32_compressstoreqi256_mask: 12804 case X86::BI__builtin_ia32_compressstoreqi512_mask: 12805 return EmitX86CompressStore(*this, Ops); 12806 12807 case X86::BI__builtin_ia32_expanddf128_mask: 12808 case X86::BI__builtin_ia32_expanddf256_mask: 12809 case X86::BI__builtin_ia32_expanddf512_mask: 12810 case X86::BI__builtin_ia32_expandsf128_mask: 12811 case X86::BI__builtin_ia32_expandsf256_mask: 12812 case X86::BI__builtin_ia32_expandsf512_mask: 12813 case X86::BI__builtin_ia32_expanddi128_mask: 12814 case X86::BI__builtin_ia32_expanddi256_mask: 12815 case X86::BI__builtin_ia32_expanddi512_mask: 12816 case X86::BI__builtin_ia32_expandsi128_mask: 12817 case X86::BI__builtin_ia32_expandsi256_mask: 12818 case X86::BI__builtin_ia32_expandsi512_mask: 12819 case X86::BI__builtin_ia32_expandhi128_mask: 12820 case X86::BI__builtin_ia32_expandhi256_mask: 12821 case X86::BI__builtin_ia32_expandhi512_mask: 12822 case X86::BI__builtin_ia32_expandqi128_mask: 12823 case X86::BI__builtin_ia32_expandqi256_mask: 12824 case X86::BI__builtin_ia32_expandqi512_mask: 12825 return EmitX86CompressExpand(*this, Ops, /*IsCompress*/false); 12826 12827 case X86::BI__builtin_ia32_compressdf128_mask: 12828 case X86::BI__builtin_ia32_compressdf256_mask: 12829 case X86::BI__builtin_ia32_compressdf512_mask: 12830 case X86::BI__builtin_ia32_compresssf128_mask: 12831 case X86::BI__builtin_ia32_compresssf256_mask: 12832 case X86::BI__builtin_ia32_compresssf512_mask: 12833 case X86::BI__builtin_ia32_compressdi128_mask: 12834 case X86::BI__builtin_ia32_compressdi256_mask: 12835 case X86::BI__builtin_ia32_compressdi512_mask: 12836 case X86::BI__builtin_ia32_compresssi128_mask: 12837 case X86::BI__builtin_ia32_compresssi256_mask: 12838 case X86::BI__builtin_ia32_compresssi512_mask: 12839 case X86::BI__builtin_ia32_compresshi128_mask: 12840 case X86::BI__builtin_ia32_compresshi256_mask: 12841 case X86::BI__builtin_ia32_compresshi512_mask: 12842 case X86::BI__builtin_ia32_compressqi128_mask: 12843 case X86::BI__builtin_ia32_compressqi256_mask: 12844 case X86::BI__builtin_ia32_compressqi512_mask: 12845 return EmitX86CompressExpand(*this, Ops, /*IsCompress*/true); 12846 12847 case X86::BI__builtin_ia32_gather3div2df: 12848 case X86::BI__builtin_ia32_gather3div2di: 12849 case X86::BI__builtin_ia32_gather3div4df: 12850 case X86::BI__builtin_ia32_gather3div4di: 12851 case X86::BI__builtin_ia32_gather3div4sf: 12852 case X86::BI__builtin_ia32_gather3div4si: 12853 case X86::BI__builtin_ia32_gather3div8sf: 12854 case X86::BI__builtin_ia32_gather3div8si: 12855 case X86::BI__builtin_ia32_gather3siv2df: 12856 case X86::BI__builtin_ia32_gather3siv2di: 12857 case X86::BI__builtin_ia32_gather3siv4df: 12858 case X86::BI__builtin_ia32_gather3siv4di: 12859 case X86::BI__builtin_ia32_gather3siv4sf: 12860 case X86::BI__builtin_ia32_gather3siv4si: 12861 case X86::BI__builtin_ia32_gather3siv8sf: 12862 case X86::BI__builtin_ia32_gather3siv8si: 12863 case X86::BI__builtin_ia32_gathersiv8df: 12864 case X86::BI__builtin_ia32_gathersiv16sf: 12865 case X86::BI__builtin_ia32_gatherdiv8df: 12866 case X86::BI__builtin_ia32_gatherdiv16sf: 12867 case X86::BI__builtin_ia32_gathersiv8di: 12868 case X86::BI__builtin_ia32_gathersiv16si: 12869 case X86::BI__builtin_ia32_gatherdiv8di: 12870 case X86::BI__builtin_ia32_gatherdiv16si: { 12871 Intrinsic::ID IID; 12872 switch (BuiltinID) { 12873 default: llvm_unreachable("Unexpected builtin"); 12874 case X86::BI__builtin_ia32_gather3div2df: 12875 IID = Intrinsic::x86_avx512_mask_gather3div2_df; 12876 break; 12877 case X86::BI__builtin_ia32_gather3div2di: 12878 IID = Intrinsic::x86_avx512_mask_gather3div2_di; 12879 break; 12880 case X86::BI__builtin_ia32_gather3div4df: 12881 IID = Intrinsic::x86_avx512_mask_gather3div4_df; 12882 break; 12883 case X86::BI__builtin_ia32_gather3div4di: 12884 IID = Intrinsic::x86_avx512_mask_gather3div4_di; 12885 break; 12886 case X86::BI__builtin_ia32_gather3div4sf: 12887 IID = Intrinsic::x86_avx512_mask_gather3div4_sf; 12888 break; 12889 case X86::BI__builtin_ia32_gather3div4si: 12890 IID = Intrinsic::x86_avx512_mask_gather3div4_si; 12891 break; 12892 case X86::BI__builtin_ia32_gather3div8sf: 12893 IID = Intrinsic::x86_avx512_mask_gather3div8_sf; 12894 break; 12895 case X86::BI__builtin_ia32_gather3div8si: 12896 IID = Intrinsic::x86_avx512_mask_gather3div8_si; 12897 break; 12898 case X86::BI__builtin_ia32_gather3siv2df: 12899 IID = Intrinsic::x86_avx512_mask_gather3siv2_df; 12900 break; 12901 case X86::BI__builtin_ia32_gather3siv2di: 12902 IID = Intrinsic::x86_avx512_mask_gather3siv2_di; 12903 break; 12904 case X86::BI__builtin_ia32_gather3siv4df: 12905 IID = Intrinsic::x86_avx512_mask_gather3siv4_df; 12906 break; 12907 case X86::BI__builtin_ia32_gather3siv4di: 12908 IID = Intrinsic::x86_avx512_mask_gather3siv4_di; 12909 break; 12910 case X86::BI__builtin_ia32_gather3siv4sf: 12911 IID = Intrinsic::x86_avx512_mask_gather3siv4_sf; 12912 break; 12913 case X86::BI__builtin_ia32_gather3siv4si: 12914 IID = Intrinsic::x86_avx512_mask_gather3siv4_si; 12915 break; 12916 case X86::BI__builtin_ia32_gather3siv8sf: 12917 IID = Intrinsic::x86_avx512_mask_gather3siv8_sf; 12918 break; 12919 case X86::BI__builtin_ia32_gather3siv8si: 12920 IID = Intrinsic::x86_avx512_mask_gather3siv8_si; 12921 break; 12922 case X86::BI__builtin_ia32_gathersiv8df: 12923 IID = Intrinsic::x86_avx512_mask_gather_dpd_512; 12924 break; 12925 case X86::BI__builtin_ia32_gathersiv16sf: 12926 IID = Intrinsic::x86_avx512_mask_gather_dps_512; 12927 break; 12928 case X86::BI__builtin_ia32_gatherdiv8df: 12929 IID = Intrinsic::x86_avx512_mask_gather_qpd_512; 12930 break; 12931 case X86::BI__builtin_ia32_gatherdiv16sf: 12932 IID = Intrinsic::x86_avx512_mask_gather_qps_512; 12933 break; 12934 case X86::BI__builtin_ia32_gathersiv8di: 12935 IID = Intrinsic::x86_avx512_mask_gather_dpq_512; 12936 break; 12937 case X86::BI__builtin_ia32_gathersiv16si: 12938 IID = Intrinsic::x86_avx512_mask_gather_dpi_512; 12939 break; 12940 case X86::BI__builtin_ia32_gatherdiv8di: 12941 IID = Intrinsic::x86_avx512_mask_gather_qpq_512; 12942 break; 12943 case X86::BI__builtin_ia32_gatherdiv16si: 12944 IID = Intrinsic::x86_avx512_mask_gather_qpi_512; 12945 break; 12946 } 12947 12948 unsigned MinElts = std::min( 12949 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(), 12950 cast<llvm::FixedVectorType>(Ops[2]->getType())->getNumElements()); 12951 Ops[3] = getMaskVecValue(*this, Ops[3], MinElts); 12952 Function *Intr = CGM.getIntrinsic(IID); 12953 return Builder.CreateCall(Intr, Ops); 12954 } 12955 12956 case X86::BI__builtin_ia32_scattersiv8df: 12957 case X86::BI__builtin_ia32_scattersiv16sf: 12958 case X86::BI__builtin_ia32_scatterdiv8df: 12959 case X86::BI__builtin_ia32_scatterdiv16sf: 12960 case X86::BI__builtin_ia32_scattersiv8di: 12961 case X86::BI__builtin_ia32_scattersiv16si: 12962 case X86::BI__builtin_ia32_scatterdiv8di: 12963 case X86::BI__builtin_ia32_scatterdiv16si: 12964 case X86::BI__builtin_ia32_scatterdiv2df: 12965 case X86::BI__builtin_ia32_scatterdiv2di: 12966 case X86::BI__builtin_ia32_scatterdiv4df: 12967 case X86::BI__builtin_ia32_scatterdiv4di: 12968 case X86::BI__builtin_ia32_scatterdiv4sf: 12969 case X86::BI__builtin_ia32_scatterdiv4si: 12970 case X86::BI__builtin_ia32_scatterdiv8sf: 12971 case X86::BI__builtin_ia32_scatterdiv8si: 12972 case X86::BI__builtin_ia32_scattersiv2df: 12973 case X86::BI__builtin_ia32_scattersiv2di: 12974 case X86::BI__builtin_ia32_scattersiv4df: 12975 case X86::BI__builtin_ia32_scattersiv4di: 12976 case X86::BI__builtin_ia32_scattersiv4sf: 12977 case X86::BI__builtin_ia32_scattersiv4si: 12978 case X86::BI__builtin_ia32_scattersiv8sf: 12979 case X86::BI__builtin_ia32_scattersiv8si: { 12980 Intrinsic::ID IID; 12981 switch (BuiltinID) { 12982 default: llvm_unreachable("Unexpected builtin"); 12983 case X86::BI__builtin_ia32_scattersiv8df: 12984 IID = Intrinsic::x86_avx512_mask_scatter_dpd_512; 12985 break; 12986 case X86::BI__builtin_ia32_scattersiv16sf: 12987 IID = Intrinsic::x86_avx512_mask_scatter_dps_512; 12988 break; 12989 case X86::BI__builtin_ia32_scatterdiv8df: 12990 IID = Intrinsic::x86_avx512_mask_scatter_qpd_512; 12991 break; 12992 case X86::BI__builtin_ia32_scatterdiv16sf: 12993 IID = Intrinsic::x86_avx512_mask_scatter_qps_512; 12994 break; 12995 case X86::BI__builtin_ia32_scattersiv8di: 12996 IID = Intrinsic::x86_avx512_mask_scatter_dpq_512; 12997 break; 12998 case X86::BI__builtin_ia32_scattersiv16si: 12999 IID = Intrinsic::x86_avx512_mask_scatter_dpi_512; 13000 break; 13001 case X86::BI__builtin_ia32_scatterdiv8di: 13002 IID = Intrinsic::x86_avx512_mask_scatter_qpq_512; 13003 break; 13004 case X86::BI__builtin_ia32_scatterdiv16si: 13005 IID = Intrinsic::x86_avx512_mask_scatter_qpi_512; 13006 break; 13007 case X86::BI__builtin_ia32_scatterdiv2df: 13008 IID = Intrinsic::x86_avx512_mask_scatterdiv2_df; 13009 break; 13010 case X86::BI__builtin_ia32_scatterdiv2di: 13011 IID = Intrinsic::x86_avx512_mask_scatterdiv2_di; 13012 break; 13013 case X86::BI__builtin_ia32_scatterdiv4df: 13014 IID = Intrinsic::x86_avx512_mask_scatterdiv4_df; 13015 break; 13016 case X86::BI__builtin_ia32_scatterdiv4di: 13017 IID = Intrinsic::x86_avx512_mask_scatterdiv4_di; 13018 break; 13019 case X86::BI__builtin_ia32_scatterdiv4sf: 13020 IID = Intrinsic::x86_avx512_mask_scatterdiv4_sf; 13021 break; 13022 case X86::BI__builtin_ia32_scatterdiv4si: 13023 IID = Intrinsic::x86_avx512_mask_scatterdiv4_si; 13024 break; 13025 case X86::BI__builtin_ia32_scatterdiv8sf: 13026 IID = Intrinsic::x86_avx512_mask_scatterdiv8_sf; 13027 break; 13028 case X86::BI__builtin_ia32_scatterdiv8si: 13029 IID = Intrinsic::x86_avx512_mask_scatterdiv8_si; 13030 break; 13031 case X86::BI__builtin_ia32_scattersiv2df: 13032 IID = Intrinsic::x86_avx512_mask_scattersiv2_df; 13033 break; 13034 case X86::BI__builtin_ia32_scattersiv2di: 13035 IID = Intrinsic::x86_avx512_mask_scattersiv2_di; 13036 break; 13037 case X86::BI__builtin_ia32_scattersiv4df: 13038 IID = Intrinsic::x86_avx512_mask_scattersiv4_df; 13039 break; 13040 case X86::BI__builtin_ia32_scattersiv4di: 13041 IID = Intrinsic::x86_avx512_mask_scattersiv4_di; 13042 break; 13043 case X86::BI__builtin_ia32_scattersiv4sf: 13044 IID = Intrinsic::x86_avx512_mask_scattersiv4_sf; 13045 break; 13046 case X86::BI__builtin_ia32_scattersiv4si: 13047 IID = Intrinsic::x86_avx512_mask_scattersiv4_si; 13048 break; 13049 case X86::BI__builtin_ia32_scattersiv8sf: 13050 IID = Intrinsic::x86_avx512_mask_scattersiv8_sf; 13051 break; 13052 case X86::BI__builtin_ia32_scattersiv8si: 13053 IID = Intrinsic::x86_avx512_mask_scattersiv8_si; 13054 break; 13055 } 13056 13057 unsigned MinElts = std::min( 13058 cast<llvm::FixedVectorType>(Ops[2]->getType())->getNumElements(), 13059 cast<llvm::FixedVectorType>(Ops[3]->getType())->getNumElements()); 13060 Ops[1] = getMaskVecValue(*this, Ops[1], MinElts); 13061 Function *Intr = CGM.getIntrinsic(IID); 13062 return Builder.CreateCall(Intr, Ops); 13063 } 13064 13065 case X86::BI__builtin_ia32_vextractf128_pd256: 13066 case X86::BI__builtin_ia32_vextractf128_ps256: 13067 case X86::BI__builtin_ia32_vextractf128_si256: 13068 case X86::BI__builtin_ia32_extract128i256: 13069 case X86::BI__builtin_ia32_extractf64x4_mask: 13070 case X86::BI__builtin_ia32_extractf32x4_mask: 13071 case X86::BI__builtin_ia32_extracti64x4_mask: 13072 case X86::BI__builtin_ia32_extracti32x4_mask: 13073 case X86::BI__builtin_ia32_extractf32x8_mask: 13074 case X86::BI__builtin_ia32_extracti32x8_mask: 13075 case X86::BI__builtin_ia32_extractf32x4_256_mask: 13076 case X86::BI__builtin_ia32_extracti32x4_256_mask: 13077 case X86::BI__builtin_ia32_extractf64x2_256_mask: 13078 case X86::BI__builtin_ia32_extracti64x2_256_mask: 13079 case X86::BI__builtin_ia32_extractf64x2_512_mask: 13080 case X86::BI__builtin_ia32_extracti64x2_512_mask: { 13081 auto *DstTy = cast<llvm::FixedVectorType>(ConvertType(E->getType())); 13082 unsigned NumElts = DstTy->getNumElements(); 13083 unsigned SrcNumElts = 13084 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(); 13085 unsigned SubVectors = SrcNumElts / NumElts; 13086 unsigned Index = cast<ConstantInt>(Ops[1])->getZExtValue(); 13087 assert(llvm::isPowerOf2_32(SubVectors) && "Expected power of 2 subvectors"); 13088 Index &= SubVectors - 1; // Remove any extra bits. 13089 Index *= NumElts; 13090 13091 int Indices[16]; 13092 for (unsigned i = 0; i != NumElts; ++i) 13093 Indices[i] = i + Index; 13094 13095 Value *Res = Builder.CreateShuffleVector(Ops[0], 13096 makeArrayRef(Indices, NumElts), 13097 "extract"); 13098 13099 if (Ops.size() == 4) 13100 Res = EmitX86Select(*this, Ops[3], Res, Ops[2]); 13101 13102 return Res; 13103 } 13104 case X86::BI__builtin_ia32_vinsertf128_pd256: 13105 case X86::BI__builtin_ia32_vinsertf128_ps256: 13106 case X86::BI__builtin_ia32_vinsertf128_si256: 13107 case X86::BI__builtin_ia32_insert128i256: 13108 case X86::BI__builtin_ia32_insertf64x4: 13109 case X86::BI__builtin_ia32_insertf32x4: 13110 case X86::BI__builtin_ia32_inserti64x4: 13111 case X86::BI__builtin_ia32_inserti32x4: 13112 case X86::BI__builtin_ia32_insertf32x8: 13113 case X86::BI__builtin_ia32_inserti32x8: 13114 case X86::BI__builtin_ia32_insertf32x4_256: 13115 case X86::BI__builtin_ia32_inserti32x4_256: 13116 case X86::BI__builtin_ia32_insertf64x2_256: 13117 case X86::BI__builtin_ia32_inserti64x2_256: 13118 case X86::BI__builtin_ia32_insertf64x2_512: 13119 case X86::BI__builtin_ia32_inserti64x2_512: { 13120 unsigned DstNumElts = 13121 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(); 13122 unsigned SrcNumElts = 13123 cast<llvm::FixedVectorType>(Ops[1]->getType())->getNumElements(); 13124 unsigned SubVectors = DstNumElts / SrcNumElts; 13125 unsigned Index = cast<ConstantInt>(Ops[2])->getZExtValue(); 13126 assert(llvm::isPowerOf2_32(SubVectors) && "Expected power of 2 subvectors"); 13127 Index &= SubVectors - 1; // Remove any extra bits. 13128 Index *= SrcNumElts; 13129 13130 int Indices[16]; 13131 for (unsigned i = 0; i != DstNumElts; ++i) 13132 Indices[i] = (i >= SrcNumElts) ? SrcNumElts + (i % SrcNumElts) : i; 13133 13134 Value *Op1 = Builder.CreateShuffleVector(Ops[1], 13135 makeArrayRef(Indices, DstNumElts), 13136 "widen"); 13137 13138 for (unsigned i = 0; i != DstNumElts; ++i) { 13139 if (i >= Index && i < (Index + SrcNumElts)) 13140 Indices[i] = (i - Index) + DstNumElts; 13141 else 13142 Indices[i] = i; 13143 } 13144 13145 return Builder.CreateShuffleVector(Ops[0], Op1, 13146 makeArrayRef(Indices, DstNumElts), 13147 "insert"); 13148 } 13149 case X86::BI__builtin_ia32_pmovqd512_mask: 13150 case X86::BI__builtin_ia32_pmovwb512_mask: { 13151 Value *Res = Builder.CreateTrunc(Ops[0], Ops[1]->getType()); 13152 return EmitX86Select(*this, Ops[2], Res, Ops[1]); 13153 } 13154 case X86::BI__builtin_ia32_pmovdb512_mask: 13155 case X86::BI__builtin_ia32_pmovdw512_mask: 13156 case X86::BI__builtin_ia32_pmovqw512_mask: { 13157 if (const auto *C = dyn_cast<Constant>(Ops[2])) 13158 if (C->isAllOnesValue()) 13159 return Builder.CreateTrunc(Ops[0], Ops[1]->getType()); 13160 13161 Intrinsic::ID IID; 13162 switch (BuiltinID) { 13163 default: llvm_unreachable("Unsupported intrinsic!"); 13164 case X86::BI__builtin_ia32_pmovdb512_mask: 13165 IID = Intrinsic::x86_avx512_mask_pmov_db_512; 13166 break; 13167 case X86::BI__builtin_ia32_pmovdw512_mask: 13168 IID = Intrinsic::x86_avx512_mask_pmov_dw_512; 13169 break; 13170 case X86::BI__builtin_ia32_pmovqw512_mask: 13171 IID = Intrinsic::x86_avx512_mask_pmov_qw_512; 13172 break; 13173 } 13174 13175 Function *Intr = CGM.getIntrinsic(IID); 13176 return Builder.CreateCall(Intr, Ops); 13177 } 13178 case X86::BI__builtin_ia32_pblendw128: 13179 case X86::BI__builtin_ia32_blendpd: 13180 case X86::BI__builtin_ia32_blendps: 13181 case X86::BI__builtin_ia32_blendpd256: 13182 case X86::BI__builtin_ia32_blendps256: 13183 case X86::BI__builtin_ia32_pblendw256: 13184 case X86::BI__builtin_ia32_pblendd128: 13185 case X86::BI__builtin_ia32_pblendd256: { 13186 unsigned NumElts = 13187 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(); 13188 unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue(); 13189 13190 int Indices[16]; 13191 // If there are more than 8 elements, the immediate is used twice so make 13192 // sure we handle that. 13193 for (unsigned i = 0; i != NumElts; ++i) 13194 Indices[i] = ((Imm >> (i % 8)) & 0x1) ? NumElts + i : i; 13195 13196 return Builder.CreateShuffleVector(Ops[0], Ops[1], 13197 makeArrayRef(Indices, NumElts), 13198 "blend"); 13199 } 13200 case X86::BI__builtin_ia32_pshuflw: 13201 case X86::BI__builtin_ia32_pshuflw256: 13202 case X86::BI__builtin_ia32_pshuflw512: { 13203 uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue(); 13204 auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType()); 13205 unsigned NumElts = Ty->getNumElements(); 13206 13207 // Splat the 8-bits of immediate 4 times to help the loop wrap around. 13208 Imm = (Imm & 0xff) * 0x01010101; 13209 13210 int Indices[32]; 13211 for (unsigned l = 0; l != NumElts; l += 8) { 13212 for (unsigned i = 0; i != 4; ++i) { 13213 Indices[l + i] = l + (Imm & 3); 13214 Imm >>= 2; 13215 } 13216 for (unsigned i = 4; i != 8; ++i) 13217 Indices[l + i] = l + i; 13218 } 13219 13220 return Builder.CreateShuffleVector(Ops[0], makeArrayRef(Indices, NumElts), 13221 "pshuflw"); 13222 } 13223 case X86::BI__builtin_ia32_pshufhw: 13224 case X86::BI__builtin_ia32_pshufhw256: 13225 case X86::BI__builtin_ia32_pshufhw512: { 13226 uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue(); 13227 auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType()); 13228 unsigned NumElts = Ty->getNumElements(); 13229 13230 // Splat the 8-bits of immediate 4 times to help the loop wrap around. 13231 Imm = (Imm & 0xff) * 0x01010101; 13232 13233 int Indices[32]; 13234 for (unsigned l = 0; l != NumElts; l += 8) { 13235 for (unsigned i = 0; i != 4; ++i) 13236 Indices[l + i] = l + i; 13237 for (unsigned i = 4; i != 8; ++i) { 13238 Indices[l + i] = l + 4 + (Imm & 3); 13239 Imm >>= 2; 13240 } 13241 } 13242 13243 return Builder.CreateShuffleVector(Ops[0], makeArrayRef(Indices, NumElts), 13244 "pshufhw"); 13245 } 13246 case X86::BI__builtin_ia32_pshufd: 13247 case X86::BI__builtin_ia32_pshufd256: 13248 case X86::BI__builtin_ia32_pshufd512: 13249 case X86::BI__builtin_ia32_vpermilpd: 13250 case X86::BI__builtin_ia32_vpermilps: 13251 case X86::BI__builtin_ia32_vpermilpd256: 13252 case X86::BI__builtin_ia32_vpermilps256: 13253 case X86::BI__builtin_ia32_vpermilpd512: 13254 case X86::BI__builtin_ia32_vpermilps512: { 13255 uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue(); 13256 auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType()); 13257 unsigned NumElts = Ty->getNumElements(); 13258 unsigned NumLanes = Ty->getPrimitiveSizeInBits() / 128; 13259 unsigned NumLaneElts = NumElts / NumLanes; 13260 13261 // Splat the 8-bits of immediate 4 times to help the loop wrap around. 13262 Imm = (Imm & 0xff) * 0x01010101; 13263 13264 int Indices[16]; 13265 for (unsigned l = 0; l != NumElts; l += NumLaneElts) { 13266 for (unsigned i = 0; i != NumLaneElts; ++i) { 13267 Indices[i + l] = (Imm % NumLaneElts) + l; 13268 Imm /= NumLaneElts; 13269 } 13270 } 13271 13272 return Builder.CreateShuffleVector(Ops[0], makeArrayRef(Indices, NumElts), 13273 "permil"); 13274 } 13275 case X86::BI__builtin_ia32_shufpd: 13276 case X86::BI__builtin_ia32_shufpd256: 13277 case X86::BI__builtin_ia32_shufpd512: 13278 case X86::BI__builtin_ia32_shufps: 13279 case X86::BI__builtin_ia32_shufps256: 13280 case X86::BI__builtin_ia32_shufps512: { 13281 uint32_t Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue(); 13282 auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType()); 13283 unsigned NumElts = Ty->getNumElements(); 13284 unsigned NumLanes = Ty->getPrimitiveSizeInBits() / 128; 13285 unsigned NumLaneElts = NumElts / NumLanes; 13286 13287 // Splat the 8-bits of immediate 4 times to help the loop wrap around. 13288 Imm = (Imm & 0xff) * 0x01010101; 13289 13290 int Indices[16]; 13291 for (unsigned l = 0; l != NumElts; l += NumLaneElts) { 13292 for (unsigned i = 0; i != NumLaneElts; ++i) { 13293 unsigned Index = Imm % NumLaneElts; 13294 Imm /= NumLaneElts; 13295 if (i >= (NumLaneElts / 2)) 13296 Index += NumElts; 13297 Indices[l + i] = l + Index; 13298 } 13299 } 13300 13301 return Builder.CreateShuffleVector(Ops[0], Ops[1], 13302 makeArrayRef(Indices, NumElts), 13303 "shufp"); 13304 } 13305 case X86::BI__builtin_ia32_permdi256: 13306 case X86::BI__builtin_ia32_permdf256: 13307 case X86::BI__builtin_ia32_permdi512: 13308 case X86::BI__builtin_ia32_permdf512: { 13309 unsigned Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue(); 13310 auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType()); 13311 unsigned NumElts = Ty->getNumElements(); 13312 13313 // These intrinsics operate on 256-bit lanes of four 64-bit elements. 13314 int Indices[8]; 13315 for (unsigned l = 0; l != NumElts; l += 4) 13316 for (unsigned i = 0; i != 4; ++i) 13317 Indices[l + i] = l + ((Imm >> (2 * i)) & 0x3); 13318 13319 return Builder.CreateShuffleVector(Ops[0], makeArrayRef(Indices, NumElts), 13320 "perm"); 13321 } 13322 case X86::BI__builtin_ia32_palignr128: 13323 case X86::BI__builtin_ia32_palignr256: 13324 case X86::BI__builtin_ia32_palignr512: { 13325 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0xff; 13326 13327 unsigned NumElts = 13328 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(); 13329 assert(NumElts % 16 == 0); 13330 13331 // If palignr is shifting the pair of vectors more than the size of two 13332 // lanes, emit zero. 13333 if (ShiftVal >= 32) 13334 return llvm::Constant::getNullValue(ConvertType(E->getType())); 13335 13336 // If palignr is shifting the pair of input vectors more than one lane, 13337 // but less than two lanes, convert to shifting in zeroes. 13338 if (ShiftVal > 16) { 13339 ShiftVal -= 16; 13340 Ops[1] = Ops[0]; 13341 Ops[0] = llvm::Constant::getNullValue(Ops[0]->getType()); 13342 } 13343 13344 int Indices[64]; 13345 // 256-bit palignr operates on 128-bit lanes so we need to handle that 13346 for (unsigned l = 0; l != NumElts; l += 16) { 13347 for (unsigned i = 0; i != 16; ++i) { 13348 unsigned Idx = ShiftVal + i; 13349 if (Idx >= 16) 13350 Idx += NumElts - 16; // End of lane, switch operand. 13351 Indices[l + i] = Idx + l; 13352 } 13353 } 13354 13355 return Builder.CreateShuffleVector(Ops[1], Ops[0], 13356 makeArrayRef(Indices, NumElts), 13357 "palignr"); 13358 } 13359 case X86::BI__builtin_ia32_alignd128: 13360 case X86::BI__builtin_ia32_alignd256: 13361 case X86::BI__builtin_ia32_alignd512: 13362 case X86::BI__builtin_ia32_alignq128: 13363 case X86::BI__builtin_ia32_alignq256: 13364 case X86::BI__builtin_ia32_alignq512: { 13365 unsigned NumElts = 13366 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(); 13367 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0xff; 13368 13369 // Mask the shift amount to width of two vectors. 13370 ShiftVal &= (2 * NumElts) - 1; 13371 13372 int Indices[16]; 13373 for (unsigned i = 0; i != NumElts; ++i) 13374 Indices[i] = i + ShiftVal; 13375 13376 return Builder.CreateShuffleVector(Ops[1], Ops[0], 13377 makeArrayRef(Indices, NumElts), 13378 "valign"); 13379 } 13380 case X86::BI__builtin_ia32_shuf_f32x4_256: 13381 case X86::BI__builtin_ia32_shuf_f64x2_256: 13382 case X86::BI__builtin_ia32_shuf_i32x4_256: 13383 case X86::BI__builtin_ia32_shuf_i64x2_256: 13384 case X86::BI__builtin_ia32_shuf_f32x4: 13385 case X86::BI__builtin_ia32_shuf_f64x2: 13386 case X86::BI__builtin_ia32_shuf_i32x4: 13387 case X86::BI__builtin_ia32_shuf_i64x2: { 13388 unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue(); 13389 auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType()); 13390 unsigned NumElts = Ty->getNumElements(); 13391 unsigned NumLanes = Ty->getPrimitiveSizeInBits() == 512 ? 4 : 2; 13392 unsigned NumLaneElts = NumElts / NumLanes; 13393 13394 int Indices[16]; 13395 for (unsigned l = 0; l != NumElts; l += NumLaneElts) { 13396 unsigned Index = (Imm % NumLanes) * NumLaneElts; 13397 Imm /= NumLanes; // Discard the bits we just used. 13398 if (l >= (NumElts / 2)) 13399 Index += NumElts; // Switch to other source. 13400 for (unsigned i = 0; i != NumLaneElts; ++i) { 13401 Indices[l + i] = Index + i; 13402 } 13403 } 13404 13405 return Builder.CreateShuffleVector(Ops[0], Ops[1], 13406 makeArrayRef(Indices, NumElts), 13407 "shuf"); 13408 } 13409 13410 case X86::BI__builtin_ia32_vperm2f128_pd256: 13411 case X86::BI__builtin_ia32_vperm2f128_ps256: 13412 case X86::BI__builtin_ia32_vperm2f128_si256: 13413 case X86::BI__builtin_ia32_permti256: { 13414 unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue(); 13415 unsigned NumElts = 13416 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(); 13417 13418 // This takes a very simple approach since there are two lanes and a 13419 // shuffle can have 2 inputs. So we reserve the first input for the first 13420 // lane and the second input for the second lane. This may result in 13421 // duplicate sources, but this can be dealt with in the backend. 13422 13423 Value *OutOps[2]; 13424 int Indices[8]; 13425 for (unsigned l = 0; l != 2; ++l) { 13426 // Determine the source for this lane. 13427 if (Imm & (1 << ((l * 4) + 3))) 13428 OutOps[l] = llvm::ConstantAggregateZero::get(Ops[0]->getType()); 13429 else if (Imm & (1 << ((l * 4) + 1))) 13430 OutOps[l] = Ops[1]; 13431 else 13432 OutOps[l] = Ops[0]; 13433 13434 for (unsigned i = 0; i != NumElts/2; ++i) { 13435 // Start with ith element of the source for this lane. 13436 unsigned Idx = (l * NumElts) + i; 13437 // If bit 0 of the immediate half is set, switch to the high half of 13438 // the source. 13439 if (Imm & (1 << (l * 4))) 13440 Idx += NumElts/2; 13441 Indices[(l * (NumElts/2)) + i] = Idx; 13442 } 13443 } 13444 13445 return Builder.CreateShuffleVector(OutOps[0], OutOps[1], 13446 makeArrayRef(Indices, NumElts), 13447 "vperm"); 13448 } 13449 13450 case X86::BI__builtin_ia32_pslldqi128_byteshift: 13451 case X86::BI__builtin_ia32_pslldqi256_byteshift: 13452 case X86::BI__builtin_ia32_pslldqi512_byteshift: { 13453 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff; 13454 auto *ResultType = cast<llvm::FixedVectorType>(Ops[0]->getType()); 13455 // Builtin type is vXi64 so multiply by 8 to get bytes. 13456 unsigned NumElts = ResultType->getNumElements() * 8; 13457 13458 // If pslldq is shifting the vector more than 15 bytes, emit zero. 13459 if (ShiftVal >= 16) 13460 return llvm::Constant::getNullValue(ResultType); 13461 13462 int Indices[64]; 13463 // 256/512-bit pslldq operates on 128-bit lanes so we need to handle that 13464 for (unsigned l = 0; l != NumElts; l += 16) { 13465 for (unsigned i = 0; i != 16; ++i) { 13466 unsigned Idx = NumElts + i - ShiftVal; 13467 if (Idx < NumElts) Idx -= NumElts - 16; // end of lane, switch operand. 13468 Indices[l + i] = Idx + l; 13469 } 13470 } 13471 13472 auto *VecTy = llvm::FixedVectorType::get(Int8Ty, NumElts); 13473 Value *Cast = Builder.CreateBitCast(Ops[0], VecTy, "cast"); 13474 Value *Zero = llvm::Constant::getNullValue(VecTy); 13475 Value *SV = Builder.CreateShuffleVector(Zero, Cast, 13476 makeArrayRef(Indices, NumElts), 13477 "pslldq"); 13478 return Builder.CreateBitCast(SV, Ops[0]->getType(), "cast"); 13479 } 13480 case X86::BI__builtin_ia32_psrldqi128_byteshift: 13481 case X86::BI__builtin_ia32_psrldqi256_byteshift: 13482 case X86::BI__builtin_ia32_psrldqi512_byteshift: { 13483 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff; 13484 auto *ResultType = cast<llvm::FixedVectorType>(Ops[0]->getType()); 13485 // Builtin type is vXi64 so multiply by 8 to get bytes. 13486 unsigned NumElts = ResultType->getNumElements() * 8; 13487 13488 // If psrldq is shifting the vector more than 15 bytes, emit zero. 13489 if (ShiftVal >= 16) 13490 return llvm::Constant::getNullValue(ResultType); 13491 13492 int Indices[64]; 13493 // 256/512-bit psrldq operates on 128-bit lanes so we need to handle that 13494 for (unsigned l = 0; l != NumElts; l += 16) { 13495 for (unsigned i = 0; i != 16; ++i) { 13496 unsigned Idx = i + ShiftVal; 13497 if (Idx >= 16) Idx += NumElts - 16; // end of lane, switch operand. 13498 Indices[l + i] = Idx + l; 13499 } 13500 } 13501 13502 auto *VecTy = llvm::FixedVectorType::get(Int8Ty, NumElts); 13503 Value *Cast = Builder.CreateBitCast(Ops[0], VecTy, "cast"); 13504 Value *Zero = llvm::Constant::getNullValue(VecTy); 13505 Value *SV = Builder.CreateShuffleVector(Cast, Zero, 13506 makeArrayRef(Indices, NumElts), 13507 "psrldq"); 13508 return Builder.CreateBitCast(SV, ResultType, "cast"); 13509 } 13510 case X86::BI__builtin_ia32_kshiftliqi: 13511 case X86::BI__builtin_ia32_kshiftlihi: 13512 case X86::BI__builtin_ia32_kshiftlisi: 13513 case X86::BI__builtin_ia32_kshiftlidi: { 13514 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff; 13515 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth(); 13516 13517 if (ShiftVal >= NumElts) 13518 return llvm::Constant::getNullValue(Ops[0]->getType()); 13519 13520 Value *In = getMaskVecValue(*this, Ops[0], NumElts); 13521 13522 int Indices[64]; 13523 for (unsigned i = 0; i != NumElts; ++i) 13524 Indices[i] = NumElts + i - ShiftVal; 13525 13526 Value *Zero = llvm::Constant::getNullValue(In->getType()); 13527 Value *SV = Builder.CreateShuffleVector(Zero, In, 13528 makeArrayRef(Indices, NumElts), 13529 "kshiftl"); 13530 return Builder.CreateBitCast(SV, Ops[0]->getType()); 13531 } 13532 case X86::BI__builtin_ia32_kshiftriqi: 13533 case X86::BI__builtin_ia32_kshiftrihi: 13534 case X86::BI__builtin_ia32_kshiftrisi: 13535 case X86::BI__builtin_ia32_kshiftridi: { 13536 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff; 13537 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth(); 13538 13539 if (ShiftVal >= NumElts) 13540 return llvm::Constant::getNullValue(Ops[0]->getType()); 13541 13542 Value *In = getMaskVecValue(*this, Ops[0], NumElts); 13543 13544 int Indices[64]; 13545 for (unsigned i = 0; i != NumElts; ++i) 13546 Indices[i] = i + ShiftVal; 13547 13548 Value *Zero = llvm::Constant::getNullValue(In->getType()); 13549 Value *SV = Builder.CreateShuffleVector(In, Zero, 13550 makeArrayRef(Indices, NumElts), 13551 "kshiftr"); 13552 return Builder.CreateBitCast(SV, Ops[0]->getType()); 13553 } 13554 case X86::BI__builtin_ia32_movnti: 13555 case X86::BI__builtin_ia32_movnti64: 13556 case X86::BI__builtin_ia32_movntsd: 13557 case X86::BI__builtin_ia32_movntss: { 13558 llvm::MDNode *Node = llvm::MDNode::get( 13559 getLLVMContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 13560 13561 Value *Ptr = Ops[0]; 13562 Value *Src = Ops[1]; 13563 13564 // Extract the 0'th element of the source vector. 13565 if (BuiltinID == X86::BI__builtin_ia32_movntsd || 13566 BuiltinID == X86::BI__builtin_ia32_movntss) 13567 Src = Builder.CreateExtractElement(Src, (uint64_t)0, "extract"); 13568 13569 // Convert the type of the pointer to a pointer to the stored type. 13570 Value *BC = Builder.CreateBitCast( 13571 Ptr, llvm::PointerType::getUnqual(Src->getType()), "cast"); 13572 13573 // Unaligned nontemporal store of the scalar value. 13574 StoreInst *SI = Builder.CreateDefaultAlignedStore(Src, BC); 13575 SI->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 13576 SI->setAlignment(llvm::Align(1)); 13577 return SI; 13578 } 13579 // Rotate is a special case of funnel shift - 1st 2 args are the same. 13580 case X86::BI__builtin_ia32_vprotb: 13581 case X86::BI__builtin_ia32_vprotw: 13582 case X86::BI__builtin_ia32_vprotd: 13583 case X86::BI__builtin_ia32_vprotq: 13584 case X86::BI__builtin_ia32_vprotbi: 13585 case X86::BI__builtin_ia32_vprotwi: 13586 case X86::BI__builtin_ia32_vprotdi: 13587 case X86::BI__builtin_ia32_vprotqi: 13588 case X86::BI__builtin_ia32_prold128: 13589 case X86::BI__builtin_ia32_prold256: 13590 case X86::BI__builtin_ia32_prold512: 13591 case X86::BI__builtin_ia32_prolq128: 13592 case X86::BI__builtin_ia32_prolq256: 13593 case X86::BI__builtin_ia32_prolq512: 13594 case X86::BI__builtin_ia32_prolvd128: 13595 case X86::BI__builtin_ia32_prolvd256: 13596 case X86::BI__builtin_ia32_prolvd512: 13597 case X86::BI__builtin_ia32_prolvq128: 13598 case X86::BI__builtin_ia32_prolvq256: 13599 case X86::BI__builtin_ia32_prolvq512: 13600 return EmitX86FunnelShift(*this, Ops[0], Ops[0], Ops[1], false); 13601 case X86::BI__builtin_ia32_prord128: 13602 case X86::BI__builtin_ia32_prord256: 13603 case X86::BI__builtin_ia32_prord512: 13604 case X86::BI__builtin_ia32_prorq128: 13605 case X86::BI__builtin_ia32_prorq256: 13606 case X86::BI__builtin_ia32_prorq512: 13607 case X86::BI__builtin_ia32_prorvd128: 13608 case X86::BI__builtin_ia32_prorvd256: 13609 case X86::BI__builtin_ia32_prorvd512: 13610 case X86::BI__builtin_ia32_prorvq128: 13611 case X86::BI__builtin_ia32_prorvq256: 13612 case X86::BI__builtin_ia32_prorvq512: 13613 return EmitX86FunnelShift(*this, Ops[0], Ops[0], Ops[1], true); 13614 case X86::BI__builtin_ia32_selectb_128: 13615 case X86::BI__builtin_ia32_selectb_256: 13616 case X86::BI__builtin_ia32_selectb_512: 13617 case X86::BI__builtin_ia32_selectw_128: 13618 case X86::BI__builtin_ia32_selectw_256: 13619 case X86::BI__builtin_ia32_selectw_512: 13620 case X86::BI__builtin_ia32_selectd_128: 13621 case X86::BI__builtin_ia32_selectd_256: 13622 case X86::BI__builtin_ia32_selectd_512: 13623 case X86::BI__builtin_ia32_selectq_128: 13624 case X86::BI__builtin_ia32_selectq_256: 13625 case X86::BI__builtin_ia32_selectq_512: 13626 case X86::BI__builtin_ia32_selectps_128: 13627 case X86::BI__builtin_ia32_selectps_256: 13628 case X86::BI__builtin_ia32_selectps_512: 13629 case X86::BI__builtin_ia32_selectpd_128: 13630 case X86::BI__builtin_ia32_selectpd_256: 13631 case X86::BI__builtin_ia32_selectpd_512: 13632 return EmitX86Select(*this, Ops[0], Ops[1], Ops[2]); 13633 case X86::BI__builtin_ia32_selectss_128: 13634 case X86::BI__builtin_ia32_selectsd_128: { 13635 Value *A = Builder.CreateExtractElement(Ops[1], (uint64_t)0); 13636 Value *B = Builder.CreateExtractElement(Ops[2], (uint64_t)0); 13637 A = EmitX86ScalarSelect(*this, Ops[0], A, B); 13638 return Builder.CreateInsertElement(Ops[1], A, (uint64_t)0); 13639 } 13640 case X86::BI__builtin_ia32_cmpb128_mask: 13641 case X86::BI__builtin_ia32_cmpb256_mask: 13642 case X86::BI__builtin_ia32_cmpb512_mask: 13643 case X86::BI__builtin_ia32_cmpw128_mask: 13644 case X86::BI__builtin_ia32_cmpw256_mask: 13645 case X86::BI__builtin_ia32_cmpw512_mask: 13646 case X86::BI__builtin_ia32_cmpd128_mask: 13647 case X86::BI__builtin_ia32_cmpd256_mask: 13648 case X86::BI__builtin_ia32_cmpd512_mask: 13649 case X86::BI__builtin_ia32_cmpq128_mask: 13650 case X86::BI__builtin_ia32_cmpq256_mask: 13651 case X86::BI__builtin_ia32_cmpq512_mask: { 13652 unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7; 13653 return EmitX86MaskedCompare(*this, CC, true, Ops); 13654 } 13655 case X86::BI__builtin_ia32_ucmpb128_mask: 13656 case X86::BI__builtin_ia32_ucmpb256_mask: 13657 case X86::BI__builtin_ia32_ucmpb512_mask: 13658 case X86::BI__builtin_ia32_ucmpw128_mask: 13659 case X86::BI__builtin_ia32_ucmpw256_mask: 13660 case X86::BI__builtin_ia32_ucmpw512_mask: 13661 case X86::BI__builtin_ia32_ucmpd128_mask: 13662 case X86::BI__builtin_ia32_ucmpd256_mask: 13663 case X86::BI__builtin_ia32_ucmpd512_mask: 13664 case X86::BI__builtin_ia32_ucmpq128_mask: 13665 case X86::BI__builtin_ia32_ucmpq256_mask: 13666 case X86::BI__builtin_ia32_ucmpq512_mask: { 13667 unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7; 13668 return EmitX86MaskedCompare(*this, CC, false, Ops); 13669 } 13670 case X86::BI__builtin_ia32_vpcomb: 13671 case X86::BI__builtin_ia32_vpcomw: 13672 case X86::BI__builtin_ia32_vpcomd: 13673 case X86::BI__builtin_ia32_vpcomq: 13674 return EmitX86vpcom(*this, Ops, true); 13675 case X86::BI__builtin_ia32_vpcomub: 13676 case X86::BI__builtin_ia32_vpcomuw: 13677 case X86::BI__builtin_ia32_vpcomud: 13678 case X86::BI__builtin_ia32_vpcomuq: 13679 return EmitX86vpcom(*this, Ops, false); 13680 13681 case X86::BI__builtin_ia32_kortestcqi: 13682 case X86::BI__builtin_ia32_kortestchi: 13683 case X86::BI__builtin_ia32_kortestcsi: 13684 case X86::BI__builtin_ia32_kortestcdi: { 13685 Value *Or = EmitX86MaskLogic(*this, Instruction::Or, Ops); 13686 Value *C = llvm::Constant::getAllOnesValue(Ops[0]->getType()); 13687 Value *Cmp = Builder.CreateICmpEQ(Or, C); 13688 return Builder.CreateZExt(Cmp, ConvertType(E->getType())); 13689 } 13690 case X86::BI__builtin_ia32_kortestzqi: 13691 case X86::BI__builtin_ia32_kortestzhi: 13692 case X86::BI__builtin_ia32_kortestzsi: 13693 case X86::BI__builtin_ia32_kortestzdi: { 13694 Value *Or = EmitX86MaskLogic(*this, Instruction::Or, Ops); 13695 Value *C = llvm::Constant::getNullValue(Ops[0]->getType()); 13696 Value *Cmp = Builder.CreateICmpEQ(Or, C); 13697 return Builder.CreateZExt(Cmp, ConvertType(E->getType())); 13698 } 13699 13700 case X86::BI__builtin_ia32_ktestcqi: 13701 case X86::BI__builtin_ia32_ktestzqi: 13702 case X86::BI__builtin_ia32_ktestchi: 13703 case X86::BI__builtin_ia32_ktestzhi: 13704 case X86::BI__builtin_ia32_ktestcsi: 13705 case X86::BI__builtin_ia32_ktestzsi: 13706 case X86::BI__builtin_ia32_ktestcdi: 13707 case X86::BI__builtin_ia32_ktestzdi: { 13708 Intrinsic::ID IID; 13709 switch (BuiltinID) { 13710 default: llvm_unreachable("Unsupported intrinsic!"); 13711 case X86::BI__builtin_ia32_ktestcqi: 13712 IID = Intrinsic::x86_avx512_ktestc_b; 13713 break; 13714 case X86::BI__builtin_ia32_ktestzqi: 13715 IID = Intrinsic::x86_avx512_ktestz_b; 13716 break; 13717 case X86::BI__builtin_ia32_ktestchi: 13718 IID = Intrinsic::x86_avx512_ktestc_w; 13719 break; 13720 case X86::BI__builtin_ia32_ktestzhi: 13721 IID = Intrinsic::x86_avx512_ktestz_w; 13722 break; 13723 case X86::BI__builtin_ia32_ktestcsi: 13724 IID = Intrinsic::x86_avx512_ktestc_d; 13725 break; 13726 case X86::BI__builtin_ia32_ktestzsi: 13727 IID = Intrinsic::x86_avx512_ktestz_d; 13728 break; 13729 case X86::BI__builtin_ia32_ktestcdi: 13730 IID = Intrinsic::x86_avx512_ktestc_q; 13731 break; 13732 case X86::BI__builtin_ia32_ktestzdi: 13733 IID = Intrinsic::x86_avx512_ktestz_q; 13734 break; 13735 } 13736 13737 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth(); 13738 Value *LHS = getMaskVecValue(*this, Ops[0], NumElts); 13739 Value *RHS = getMaskVecValue(*this, Ops[1], NumElts); 13740 Function *Intr = CGM.getIntrinsic(IID); 13741 return Builder.CreateCall(Intr, {LHS, RHS}); 13742 } 13743 13744 case X86::BI__builtin_ia32_kaddqi: 13745 case X86::BI__builtin_ia32_kaddhi: 13746 case X86::BI__builtin_ia32_kaddsi: 13747 case X86::BI__builtin_ia32_kadddi: { 13748 Intrinsic::ID IID; 13749 switch (BuiltinID) { 13750 default: llvm_unreachable("Unsupported intrinsic!"); 13751 case X86::BI__builtin_ia32_kaddqi: 13752 IID = Intrinsic::x86_avx512_kadd_b; 13753 break; 13754 case X86::BI__builtin_ia32_kaddhi: 13755 IID = Intrinsic::x86_avx512_kadd_w; 13756 break; 13757 case X86::BI__builtin_ia32_kaddsi: 13758 IID = Intrinsic::x86_avx512_kadd_d; 13759 break; 13760 case X86::BI__builtin_ia32_kadddi: 13761 IID = Intrinsic::x86_avx512_kadd_q; 13762 break; 13763 } 13764 13765 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth(); 13766 Value *LHS = getMaskVecValue(*this, Ops[0], NumElts); 13767 Value *RHS = getMaskVecValue(*this, Ops[1], NumElts); 13768 Function *Intr = CGM.getIntrinsic(IID); 13769 Value *Res = Builder.CreateCall(Intr, {LHS, RHS}); 13770 return Builder.CreateBitCast(Res, Ops[0]->getType()); 13771 } 13772 case X86::BI__builtin_ia32_kandqi: 13773 case X86::BI__builtin_ia32_kandhi: 13774 case X86::BI__builtin_ia32_kandsi: 13775 case X86::BI__builtin_ia32_kanddi: 13776 return EmitX86MaskLogic(*this, Instruction::And, Ops); 13777 case X86::BI__builtin_ia32_kandnqi: 13778 case X86::BI__builtin_ia32_kandnhi: 13779 case X86::BI__builtin_ia32_kandnsi: 13780 case X86::BI__builtin_ia32_kandndi: 13781 return EmitX86MaskLogic(*this, Instruction::And, Ops, true); 13782 case X86::BI__builtin_ia32_korqi: 13783 case X86::BI__builtin_ia32_korhi: 13784 case X86::BI__builtin_ia32_korsi: 13785 case X86::BI__builtin_ia32_kordi: 13786 return EmitX86MaskLogic(*this, Instruction::Or, Ops); 13787 case X86::BI__builtin_ia32_kxnorqi: 13788 case X86::BI__builtin_ia32_kxnorhi: 13789 case X86::BI__builtin_ia32_kxnorsi: 13790 case X86::BI__builtin_ia32_kxnordi: 13791 return EmitX86MaskLogic(*this, Instruction::Xor, Ops, true); 13792 case X86::BI__builtin_ia32_kxorqi: 13793 case X86::BI__builtin_ia32_kxorhi: 13794 case X86::BI__builtin_ia32_kxorsi: 13795 case X86::BI__builtin_ia32_kxordi: 13796 return EmitX86MaskLogic(*this, Instruction::Xor, Ops); 13797 case X86::BI__builtin_ia32_knotqi: 13798 case X86::BI__builtin_ia32_knothi: 13799 case X86::BI__builtin_ia32_knotsi: 13800 case X86::BI__builtin_ia32_knotdi: { 13801 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth(); 13802 Value *Res = getMaskVecValue(*this, Ops[0], NumElts); 13803 return Builder.CreateBitCast(Builder.CreateNot(Res), 13804 Ops[0]->getType()); 13805 } 13806 case X86::BI__builtin_ia32_kmovb: 13807 case X86::BI__builtin_ia32_kmovw: 13808 case X86::BI__builtin_ia32_kmovd: 13809 case X86::BI__builtin_ia32_kmovq: { 13810 // Bitcast to vXi1 type and then back to integer. This gets the mask 13811 // register type into the IR, but might be optimized out depending on 13812 // what's around it. 13813 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth(); 13814 Value *Res = getMaskVecValue(*this, Ops[0], NumElts); 13815 return Builder.CreateBitCast(Res, Ops[0]->getType()); 13816 } 13817 13818 case X86::BI__builtin_ia32_kunpckdi: 13819 case X86::BI__builtin_ia32_kunpcksi: 13820 case X86::BI__builtin_ia32_kunpckhi: { 13821 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth(); 13822 Value *LHS = getMaskVecValue(*this, Ops[0], NumElts); 13823 Value *RHS = getMaskVecValue(*this, Ops[1], NumElts); 13824 int Indices[64]; 13825 for (unsigned i = 0; i != NumElts; ++i) 13826 Indices[i] = i; 13827 13828 // First extract half of each vector. This gives better codegen than 13829 // doing it in a single shuffle. 13830 LHS = Builder.CreateShuffleVector(LHS, LHS, 13831 makeArrayRef(Indices, NumElts / 2)); 13832 RHS = Builder.CreateShuffleVector(RHS, RHS, 13833 makeArrayRef(Indices, NumElts / 2)); 13834 // Concat the vectors. 13835 // NOTE: Operands are swapped to match the intrinsic definition. 13836 Value *Res = Builder.CreateShuffleVector(RHS, LHS, 13837 makeArrayRef(Indices, NumElts)); 13838 return Builder.CreateBitCast(Res, Ops[0]->getType()); 13839 } 13840 13841 case X86::BI__builtin_ia32_vplzcntd_128: 13842 case X86::BI__builtin_ia32_vplzcntd_256: 13843 case X86::BI__builtin_ia32_vplzcntd_512: 13844 case X86::BI__builtin_ia32_vplzcntq_128: 13845 case X86::BI__builtin_ia32_vplzcntq_256: 13846 case X86::BI__builtin_ia32_vplzcntq_512: { 13847 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType()); 13848 return Builder.CreateCall(F, {Ops[0],Builder.getInt1(false)}); 13849 } 13850 case X86::BI__builtin_ia32_sqrtss: 13851 case X86::BI__builtin_ia32_sqrtsd: { 13852 Value *A = Builder.CreateExtractElement(Ops[0], (uint64_t)0); 13853 Function *F; 13854 if (Builder.getIsFPConstrained()) { 13855 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); 13856 F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt, 13857 A->getType()); 13858 A = Builder.CreateConstrainedFPCall(F, {A}); 13859 } else { 13860 F = CGM.getIntrinsic(Intrinsic::sqrt, A->getType()); 13861 A = Builder.CreateCall(F, {A}); 13862 } 13863 return Builder.CreateInsertElement(Ops[0], A, (uint64_t)0); 13864 } 13865 case X86::BI__builtin_ia32_sqrtsd_round_mask: 13866 case X86::BI__builtin_ia32_sqrtss_round_mask: { 13867 unsigned CC = cast<llvm::ConstantInt>(Ops[4])->getZExtValue(); 13868 // Support only if the rounding mode is 4 (AKA CUR_DIRECTION), 13869 // otherwise keep the intrinsic. 13870 if (CC != 4) { 13871 Intrinsic::ID IID = BuiltinID == X86::BI__builtin_ia32_sqrtsd_round_mask ? 13872 Intrinsic::x86_avx512_mask_sqrt_sd : 13873 Intrinsic::x86_avx512_mask_sqrt_ss; 13874 return Builder.CreateCall(CGM.getIntrinsic(IID), Ops); 13875 } 13876 Value *A = Builder.CreateExtractElement(Ops[1], (uint64_t)0); 13877 Function *F; 13878 if (Builder.getIsFPConstrained()) { 13879 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); 13880 F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt, 13881 A->getType()); 13882 A = Builder.CreateConstrainedFPCall(F, A); 13883 } else { 13884 F = CGM.getIntrinsic(Intrinsic::sqrt, A->getType()); 13885 A = Builder.CreateCall(F, A); 13886 } 13887 Value *Src = Builder.CreateExtractElement(Ops[2], (uint64_t)0); 13888 A = EmitX86ScalarSelect(*this, Ops[3], A, Src); 13889 return Builder.CreateInsertElement(Ops[0], A, (uint64_t)0); 13890 } 13891 case X86::BI__builtin_ia32_sqrtpd256: 13892 case X86::BI__builtin_ia32_sqrtpd: 13893 case X86::BI__builtin_ia32_sqrtps256: 13894 case X86::BI__builtin_ia32_sqrtps: 13895 case X86::BI__builtin_ia32_sqrtps512: 13896 case X86::BI__builtin_ia32_sqrtpd512: { 13897 if (Ops.size() == 2) { 13898 unsigned CC = cast<llvm::ConstantInt>(Ops[1])->getZExtValue(); 13899 // Support only if the rounding mode is 4 (AKA CUR_DIRECTION), 13900 // otherwise keep the intrinsic. 13901 if (CC != 4) { 13902 Intrinsic::ID IID = BuiltinID == X86::BI__builtin_ia32_sqrtps512 ? 13903 Intrinsic::x86_avx512_sqrt_ps_512 : 13904 Intrinsic::x86_avx512_sqrt_pd_512; 13905 return Builder.CreateCall(CGM.getIntrinsic(IID), Ops); 13906 } 13907 } 13908 if (Builder.getIsFPConstrained()) { 13909 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); 13910 Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt, 13911 Ops[0]->getType()); 13912 return Builder.CreateConstrainedFPCall(F, Ops[0]); 13913 } else { 13914 Function *F = CGM.getIntrinsic(Intrinsic::sqrt, Ops[0]->getType()); 13915 return Builder.CreateCall(F, Ops[0]); 13916 } 13917 } 13918 case X86::BI__builtin_ia32_pabsb128: 13919 case X86::BI__builtin_ia32_pabsw128: 13920 case X86::BI__builtin_ia32_pabsd128: 13921 case X86::BI__builtin_ia32_pabsb256: 13922 case X86::BI__builtin_ia32_pabsw256: 13923 case X86::BI__builtin_ia32_pabsd256: 13924 case X86::BI__builtin_ia32_pabsq128: 13925 case X86::BI__builtin_ia32_pabsq256: 13926 case X86::BI__builtin_ia32_pabsb512: 13927 case X86::BI__builtin_ia32_pabsw512: 13928 case X86::BI__builtin_ia32_pabsd512: 13929 case X86::BI__builtin_ia32_pabsq512: { 13930 Function *F = CGM.getIntrinsic(Intrinsic::abs, Ops[0]->getType()); 13931 return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)}); 13932 } 13933 case X86::BI__builtin_ia32_pmaxsb128: 13934 case X86::BI__builtin_ia32_pmaxsw128: 13935 case X86::BI__builtin_ia32_pmaxsd128: 13936 case X86::BI__builtin_ia32_pmaxsq128: 13937 case X86::BI__builtin_ia32_pmaxsb256: 13938 case X86::BI__builtin_ia32_pmaxsw256: 13939 case X86::BI__builtin_ia32_pmaxsd256: 13940 case X86::BI__builtin_ia32_pmaxsq256: 13941 case X86::BI__builtin_ia32_pmaxsb512: 13942 case X86::BI__builtin_ia32_pmaxsw512: 13943 case X86::BI__builtin_ia32_pmaxsd512: 13944 case X86::BI__builtin_ia32_pmaxsq512: 13945 return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::smax); 13946 case X86::BI__builtin_ia32_pmaxub128: 13947 case X86::BI__builtin_ia32_pmaxuw128: 13948 case X86::BI__builtin_ia32_pmaxud128: 13949 case X86::BI__builtin_ia32_pmaxuq128: 13950 case X86::BI__builtin_ia32_pmaxub256: 13951 case X86::BI__builtin_ia32_pmaxuw256: 13952 case X86::BI__builtin_ia32_pmaxud256: 13953 case X86::BI__builtin_ia32_pmaxuq256: 13954 case X86::BI__builtin_ia32_pmaxub512: 13955 case X86::BI__builtin_ia32_pmaxuw512: 13956 case X86::BI__builtin_ia32_pmaxud512: 13957 case X86::BI__builtin_ia32_pmaxuq512: 13958 return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::umax); 13959 case X86::BI__builtin_ia32_pminsb128: 13960 case X86::BI__builtin_ia32_pminsw128: 13961 case X86::BI__builtin_ia32_pminsd128: 13962 case X86::BI__builtin_ia32_pminsq128: 13963 case X86::BI__builtin_ia32_pminsb256: 13964 case X86::BI__builtin_ia32_pminsw256: 13965 case X86::BI__builtin_ia32_pminsd256: 13966 case X86::BI__builtin_ia32_pminsq256: 13967 case X86::BI__builtin_ia32_pminsb512: 13968 case X86::BI__builtin_ia32_pminsw512: 13969 case X86::BI__builtin_ia32_pminsd512: 13970 case X86::BI__builtin_ia32_pminsq512: 13971 return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::smin); 13972 case X86::BI__builtin_ia32_pminub128: 13973 case X86::BI__builtin_ia32_pminuw128: 13974 case X86::BI__builtin_ia32_pminud128: 13975 case X86::BI__builtin_ia32_pminuq128: 13976 case X86::BI__builtin_ia32_pminub256: 13977 case X86::BI__builtin_ia32_pminuw256: 13978 case X86::BI__builtin_ia32_pminud256: 13979 case X86::BI__builtin_ia32_pminuq256: 13980 case X86::BI__builtin_ia32_pminub512: 13981 case X86::BI__builtin_ia32_pminuw512: 13982 case X86::BI__builtin_ia32_pminud512: 13983 case X86::BI__builtin_ia32_pminuq512: 13984 return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::umin); 13985 13986 case X86::BI__builtin_ia32_pmuludq128: 13987 case X86::BI__builtin_ia32_pmuludq256: 13988 case X86::BI__builtin_ia32_pmuludq512: 13989 return EmitX86Muldq(*this, /*IsSigned*/false, Ops); 13990 13991 case X86::BI__builtin_ia32_pmuldq128: 13992 case X86::BI__builtin_ia32_pmuldq256: 13993 case X86::BI__builtin_ia32_pmuldq512: 13994 return EmitX86Muldq(*this, /*IsSigned*/true, Ops); 13995 13996 case X86::BI__builtin_ia32_pternlogd512_mask: 13997 case X86::BI__builtin_ia32_pternlogq512_mask: 13998 case X86::BI__builtin_ia32_pternlogd128_mask: 13999 case X86::BI__builtin_ia32_pternlogd256_mask: 14000 case X86::BI__builtin_ia32_pternlogq128_mask: 14001 case X86::BI__builtin_ia32_pternlogq256_mask: 14002 return EmitX86Ternlog(*this, /*ZeroMask*/false, Ops); 14003 14004 case X86::BI__builtin_ia32_pternlogd512_maskz: 14005 case X86::BI__builtin_ia32_pternlogq512_maskz: 14006 case X86::BI__builtin_ia32_pternlogd128_maskz: 14007 case X86::BI__builtin_ia32_pternlogd256_maskz: 14008 case X86::BI__builtin_ia32_pternlogq128_maskz: 14009 case X86::BI__builtin_ia32_pternlogq256_maskz: 14010 return EmitX86Ternlog(*this, /*ZeroMask*/true, Ops); 14011 14012 case X86::BI__builtin_ia32_vpshldd128: 14013 case X86::BI__builtin_ia32_vpshldd256: 14014 case X86::BI__builtin_ia32_vpshldd512: 14015 case X86::BI__builtin_ia32_vpshldq128: 14016 case X86::BI__builtin_ia32_vpshldq256: 14017 case X86::BI__builtin_ia32_vpshldq512: 14018 case X86::BI__builtin_ia32_vpshldw128: 14019 case X86::BI__builtin_ia32_vpshldw256: 14020 case X86::BI__builtin_ia32_vpshldw512: 14021 return EmitX86FunnelShift(*this, Ops[0], Ops[1], Ops[2], false); 14022 14023 case X86::BI__builtin_ia32_vpshrdd128: 14024 case X86::BI__builtin_ia32_vpshrdd256: 14025 case X86::BI__builtin_ia32_vpshrdd512: 14026 case X86::BI__builtin_ia32_vpshrdq128: 14027 case X86::BI__builtin_ia32_vpshrdq256: 14028 case X86::BI__builtin_ia32_vpshrdq512: 14029 case X86::BI__builtin_ia32_vpshrdw128: 14030 case X86::BI__builtin_ia32_vpshrdw256: 14031 case X86::BI__builtin_ia32_vpshrdw512: 14032 // Ops 0 and 1 are swapped. 14033 return EmitX86FunnelShift(*this, Ops[1], Ops[0], Ops[2], true); 14034 14035 case X86::BI__builtin_ia32_vpshldvd128: 14036 case X86::BI__builtin_ia32_vpshldvd256: 14037 case X86::BI__builtin_ia32_vpshldvd512: 14038 case X86::BI__builtin_ia32_vpshldvq128: 14039 case X86::BI__builtin_ia32_vpshldvq256: 14040 case X86::BI__builtin_ia32_vpshldvq512: 14041 case X86::BI__builtin_ia32_vpshldvw128: 14042 case X86::BI__builtin_ia32_vpshldvw256: 14043 case X86::BI__builtin_ia32_vpshldvw512: 14044 return EmitX86FunnelShift(*this, Ops[0], Ops[1], Ops[2], false); 14045 14046 case X86::BI__builtin_ia32_vpshrdvd128: 14047 case X86::BI__builtin_ia32_vpshrdvd256: 14048 case X86::BI__builtin_ia32_vpshrdvd512: 14049 case X86::BI__builtin_ia32_vpshrdvq128: 14050 case X86::BI__builtin_ia32_vpshrdvq256: 14051 case X86::BI__builtin_ia32_vpshrdvq512: 14052 case X86::BI__builtin_ia32_vpshrdvw128: 14053 case X86::BI__builtin_ia32_vpshrdvw256: 14054 case X86::BI__builtin_ia32_vpshrdvw512: 14055 // Ops 0 and 1 are swapped. 14056 return EmitX86FunnelShift(*this, Ops[1], Ops[0], Ops[2], true); 14057 14058 // Reductions 14059 case X86::BI__builtin_ia32_reduce_add_d512: 14060 case X86::BI__builtin_ia32_reduce_add_q512: { 14061 Function *F = 14062 CGM.getIntrinsic(Intrinsic::vector_reduce_add, Ops[0]->getType()); 14063 return Builder.CreateCall(F, {Ops[0]}); 14064 } 14065 case X86::BI__builtin_ia32_reduce_and_d512: 14066 case X86::BI__builtin_ia32_reduce_and_q512: { 14067 Function *F = 14068 CGM.getIntrinsic(Intrinsic::vector_reduce_and, Ops[0]->getType()); 14069 return Builder.CreateCall(F, {Ops[0]}); 14070 } 14071 case X86::BI__builtin_ia32_reduce_fadd_pd512: 14072 case X86::BI__builtin_ia32_reduce_fadd_ps512: { 14073 Function *F = 14074 CGM.getIntrinsic(Intrinsic::vector_reduce_fadd, Ops[1]->getType()); 14075 Builder.getFastMathFlags().setAllowReassoc(); 14076 return Builder.CreateCall(F, {Ops[0], Ops[1]}); 14077 } 14078 case X86::BI__builtin_ia32_reduce_fmul_pd512: 14079 case X86::BI__builtin_ia32_reduce_fmul_ps512: { 14080 Function *F = 14081 CGM.getIntrinsic(Intrinsic::vector_reduce_fmul, Ops[1]->getType()); 14082 Builder.getFastMathFlags().setAllowReassoc(); 14083 return Builder.CreateCall(F, {Ops[0], Ops[1]}); 14084 } 14085 case X86::BI__builtin_ia32_reduce_fmax_pd512: 14086 case X86::BI__builtin_ia32_reduce_fmax_ps512: { 14087 Function *F = 14088 CGM.getIntrinsic(Intrinsic::vector_reduce_fmax, Ops[0]->getType()); 14089 Builder.getFastMathFlags().setNoNaNs(); 14090 return Builder.CreateCall(F, {Ops[0]}); 14091 } 14092 case X86::BI__builtin_ia32_reduce_fmin_pd512: 14093 case X86::BI__builtin_ia32_reduce_fmin_ps512: { 14094 Function *F = 14095 CGM.getIntrinsic(Intrinsic::vector_reduce_fmin, Ops[0]->getType()); 14096 Builder.getFastMathFlags().setNoNaNs(); 14097 return Builder.CreateCall(F, {Ops[0]}); 14098 } 14099 case X86::BI__builtin_ia32_reduce_mul_d512: 14100 case X86::BI__builtin_ia32_reduce_mul_q512: { 14101 Function *F = 14102 CGM.getIntrinsic(Intrinsic::vector_reduce_mul, Ops[0]->getType()); 14103 return Builder.CreateCall(F, {Ops[0]}); 14104 } 14105 case X86::BI__builtin_ia32_reduce_or_d512: 14106 case X86::BI__builtin_ia32_reduce_or_q512: { 14107 Function *F = 14108 CGM.getIntrinsic(Intrinsic::vector_reduce_or, Ops[0]->getType()); 14109 return Builder.CreateCall(F, {Ops[0]}); 14110 } 14111 case X86::BI__builtin_ia32_reduce_smax_d512: 14112 case X86::BI__builtin_ia32_reduce_smax_q512: { 14113 Function *F = 14114 CGM.getIntrinsic(Intrinsic::vector_reduce_smax, Ops[0]->getType()); 14115 return Builder.CreateCall(F, {Ops[0]}); 14116 } 14117 case X86::BI__builtin_ia32_reduce_smin_d512: 14118 case X86::BI__builtin_ia32_reduce_smin_q512: { 14119 Function *F = 14120 CGM.getIntrinsic(Intrinsic::vector_reduce_smin, Ops[0]->getType()); 14121 return Builder.CreateCall(F, {Ops[0]}); 14122 } 14123 case X86::BI__builtin_ia32_reduce_umax_d512: 14124 case X86::BI__builtin_ia32_reduce_umax_q512: { 14125 Function *F = 14126 CGM.getIntrinsic(Intrinsic::vector_reduce_umax, Ops[0]->getType()); 14127 return Builder.CreateCall(F, {Ops[0]}); 14128 } 14129 case X86::BI__builtin_ia32_reduce_umin_d512: 14130 case X86::BI__builtin_ia32_reduce_umin_q512: { 14131 Function *F = 14132 CGM.getIntrinsic(Intrinsic::vector_reduce_umin, Ops[0]->getType()); 14133 return Builder.CreateCall(F, {Ops[0]}); 14134 } 14135 14136 // 3DNow! 14137 case X86::BI__builtin_ia32_pswapdsf: 14138 case X86::BI__builtin_ia32_pswapdsi: { 14139 llvm::Type *MMXTy = llvm::Type::getX86_MMXTy(getLLVMContext()); 14140 Ops[0] = Builder.CreateBitCast(Ops[0], MMXTy, "cast"); 14141 llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_3dnowa_pswapd); 14142 return Builder.CreateCall(F, Ops, "pswapd"); 14143 } 14144 case X86::BI__builtin_ia32_rdrand16_step: 14145 case X86::BI__builtin_ia32_rdrand32_step: 14146 case X86::BI__builtin_ia32_rdrand64_step: 14147 case X86::BI__builtin_ia32_rdseed16_step: 14148 case X86::BI__builtin_ia32_rdseed32_step: 14149 case X86::BI__builtin_ia32_rdseed64_step: { 14150 Intrinsic::ID ID; 14151 switch (BuiltinID) { 14152 default: llvm_unreachable("Unsupported intrinsic!"); 14153 case X86::BI__builtin_ia32_rdrand16_step: 14154 ID = Intrinsic::x86_rdrand_16; 14155 break; 14156 case X86::BI__builtin_ia32_rdrand32_step: 14157 ID = Intrinsic::x86_rdrand_32; 14158 break; 14159 case X86::BI__builtin_ia32_rdrand64_step: 14160 ID = Intrinsic::x86_rdrand_64; 14161 break; 14162 case X86::BI__builtin_ia32_rdseed16_step: 14163 ID = Intrinsic::x86_rdseed_16; 14164 break; 14165 case X86::BI__builtin_ia32_rdseed32_step: 14166 ID = Intrinsic::x86_rdseed_32; 14167 break; 14168 case X86::BI__builtin_ia32_rdseed64_step: 14169 ID = Intrinsic::x86_rdseed_64; 14170 break; 14171 } 14172 14173 Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID)); 14174 Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 0), 14175 Ops[0]); 14176 return Builder.CreateExtractValue(Call, 1); 14177 } 14178 case X86::BI__builtin_ia32_addcarryx_u32: 14179 case X86::BI__builtin_ia32_addcarryx_u64: 14180 case X86::BI__builtin_ia32_subborrow_u32: 14181 case X86::BI__builtin_ia32_subborrow_u64: { 14182 Intrinsic::ID IID; 14183 switch (BuiltinID) { 14184 default: llvm_unreachable("Unsupported intrinsic!"); 14185 case X86::BI__builtin_ia32_addcarryx_u32: 14186 IID = Intrinsic::x86_addcarry_32; 14187 break; 14188 case X86::BI__builtin_ia32_addcarryx_u64: 14189 IID = Intrinsic::x86_addcarry_64; 14190 break; 14191 case X86::BI__builtin_ia32_subborrow_u32: 14192 IID = Intrinsic::x86_subborrow_32; 14193 break; 14194 case X86::BI__builtin_ia32_subborrow_u64: 14195 IID = Intrinsic::x86_subborrow_64; 14196 break; 14197 } 14198 14199 Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), 14200 { Ops[0], Ops[1], Ops[2] }); 14201 Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 1), 14202 Ops[3]); 14203 return Builder.CreateExtractValue(Call, 0); 14204 } 14205 14206 case X86::BI__builtin_ia32_fpclassps128_mask: 14207 case X86::BI__builtin_ia32_fpclassps256_mask: 14208 case X86::BI__builtin_ia32_fpclassps512_mask: 14209 case X86::BI__builtin_ia32_fpclasspd128_mask: 14210 case X86::BI__builtin_ia32_fpclasspd256_mask: 14211 case X86::BI__builtin_ia32_fpclasspd512_mask: { 14212 unsigned NumElts = 14213 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(); 14214 Value *MaskIn = Ops[2]; 14215 Ops.erase(&Ops[2]); 14216 14217 Intrinsic::ID ID; 14218 switch (BuiltinID) { 14219 default: llvm_unreachable("Unsupported intrinsic!"); 14220 case X86::BI__builtin_ia32_fpclassps128_mask: 14221 ID = Intrinsic::x86_avx512_fpclass_ps_128; 14222 break; 14223 case X86::BI__builtin_ia32_fpclassps256_mask: 14224 ID = Intrinsic::x86_avx512_fpclass_ps_256; 14225 break; 14226 case X86::BI__builtin_ia32_fpclassps512_mask: 14227 ID = Intrinsic::x86_avx512_fpclass_ps_512; 14228 break; 14229 case X86::BI__builtin_ia32_fpclasspd128_mask: 14230 ID = Intrinsic::x86_avx512_fpclass_pd_128; 14231 break; 14232 case X86::BI__builtin_ia32_fpclasspd256_mask: 14233 ID = Intrinsic::x86_avx512_fpclass_pd_256; 14234 break; 14235 case X86::BI__builtin_ia32_fpclasspd512_mask: 14236 ID = Intrinsic::x86_avx512_fpclass_pd_512; 14237 break; 14238 } 14239 14240 Value *Fpclass = Builder.CreateCall(CGM.getIntrinsic(ID), Ops); 14241 return EmitX86MaskedCompareResult(*this, Fpclass, NumElts, MaskIn); 14242 } 14243 14244 case X86::BI__builtin_ia32_vp2intersect_q_512: 14245 case X86::BI__builtin_ia32_vp2intersect_q_256: 14246 case X86::BI__builtin_ia32_vp2intersect_q_128: 14247 case X86::BI__builtin_ia32_vp2intersect_d_512: 14248 case X86::BI__builtin_ia32_vp2intersect_d_256: 14249 case X86::BI__builtin_ia32_vp2intersect_d_128: { 14250 unsigned NumElts = 14251 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(); 14252 Intrinsic::ID ID; 14253 14254 switch (BuiltinID) { 14255 default: llvm_unreachable("Unsupported intrinsic!"); 14256 case X86::BI__builtin_ia32_vp2intersect_q_512: 14257 ID = Intrinsic::x86_avx512_vp2intersect_q_512; 14258 break; 14259 case X86::BI__builtin_ia32_vp2intersect_q_256: 14260 ID = Intrinsic::x86_avx512_vp2intersect_q_256; 14261 break; 14262 case X86::BI__builtin_ia32_vp2intersect_q_128: 14263 ID = Intrinsic::x86_avx512_vp2intersect_q_128; 14264 break; 14265 case X86::BI__builtin_ia32_vp2intersect_d_512: 14266 ID = Intrinsic::x86_avx512_vp2intersect_d_512; 14267 break; 14268 case X86::BI__builtin_ia32_vp2intersect_d_256: 14269 ID = Intrinsic::x86_avx512_vp2intersect_d_256; 14270 break; 14271 case X86::BI__builtin_ia32_vp2intersect_d_128: 14272 ID = Intrinsic::x86_avx512_vp2intersect_d_128; 14273 break; 14274 } 14275 14276 Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID), {Ops[0], Ops[1]}); 14277 Value *Result = Builder.CreateExtractValue(Call, 0); 14278 Result = EmitX86MaskedCompareResult(*this, Result, NumElts, nullptr); 14279 Builder.CreateDefaultAlignedStore(Result, Ops[2]); 14280 14281 Result = Builder.CreateExtractValue(Call, 1); 14282 Result = EmitX86MaskedCompareResult(*this, Result, NumElts, nullptr); 14283 return Builder.CreateDefaultAlignedStore(Result, Ops[3]); 14284 } 14285 14286 case X86::BI__builtin_ia32_vpmultishiftqb128: 14287 case X86::BI__builtin_ia32_vpmultishiftqb256: 14288 case X86::BI__builtin_ia32_vpmultishiftqb512: { 14289 Intrinsic::ID ID; 14290 switch (BuiltinID) { 14291 default: llvm_unreachable("Unsupported intrinsic!"); 14292 case X86::BI__builtin_ia32_vpmultishiftqb128: 14293 ID = Intrinsic::x86_avx512_pmultishift_qb_128; 14294 break; 14295 case X86::BI__builtin_ia32_vpmultishiftqb256: 14296 ID = Intrinsic::x86_avx512_pmultishift_qb_256; 14297 break; 14298 case X86::BI__builtin_ia32_vpmultishiftqb512: 14299 ID = Intrinsic::x86_avx512_pmultishift_qb_512; 14300 break; 14301 } 14302 14303 return Builder.CreateCall(CGM.getIntrinsic(ID), Ops); 14304 } 14305 14306 case X86::BI__builtin_ia32_vpshufbitqmb128_mask: 14307 case X86::BI__builtin_ia32_vpshufbitqmb256_mask: 14308 case X86::BI__builtin_ia32_vpshufbitqmb512_mask: { 14309 unsigned NumElts = 14310 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(); 14311 Value *MaskIn = Ops[2]; 14312 Ops.erase(&Ops[2]); 14313 14314 Intrinsic::ID ID; 14315 switch (BuiltinID) { 14316 default: llvm_unreachable("Unsupported intrinsic!"); 14317 case X86::BI__builtin_ia32_vpshufbitqmb128_mask: 14318 ID = Intrinsic::x86_avx512_vpshufbitqmb_128; 14319 break; 14320 case X86::BI__builtin_ia32_vpshufbitqmb256_mask: 14321 ID = Intrinsic::x86_avx512_vpshufbitqmb_256; 14322 break; 14323 case X86::BI__builtin_ia32_vpshufbitqmb512_mask: 14324 ID = Intrinsic::x86_avx512_vpshufbitqmb_512; 14325 break; 14326 } 14327 14328 Value *Shufbit = Builder.CreateCall(CGM.getIntrinsic(ID), Ops); 14329 return EmitX86MaskedCompareResult(*this, Shufbit, NumElts, MaskIn); 14330 } 14331 14332 // packed comparison intrinsics 14333 case X86::BI__builtin_ia32_cmpeqps: 14334 case X86::BI__builtin_ia32_cmpeqpd: 14335 return getVectorFCmpIR(CmpInst::FCMP_OEQ, /*IsSignaling*/false); 14336 case X86::BI__builtin_ia32_cmpltps: 14337 case X86::BI__builtin_ia32_cmpltpd: 14338 return getVectorFCmpIR(CmpInst::FCMP_OLT, /*IsSignaling*/true); 14339 case X86::BI__builtin_ia32_cmpleps: 14340 case X86::BI__builtin_ia32_cmplepd: 14341 return getVectorFCmpIR(CmpInst::FCMP_OLE, /*IsSignaling*/true); 14342 case X86::BI__builtin_ia32_cmpunordps: 14343 case X86::BI__builtin_ia32_cmpunordpd: 14344 return getVectorFCmpIR(CmpInst::FCMP_UNO, /*IsSignaling*/false); 14345 case X86::BI__builtin_ia32_cmpneqps: 14346 case X86::BI__builtin_ia32_cmpneqpd: 14347 return getVectorFCmpIR(CmpInst::FCMP_UNE, /*IsSignaling*/false); 14348 case X86::BI__builtin_ia32_cmpnltps: 14349 case X86::BI__builtin_ia32_cmpnltpd: 14350 return getVectorFCmpIR(CmpInst::FCMP_UGE, /*IsSignaling*/true); 14351 case X86::BI__builtin_ia32_cmpnleps: 14352 case X86::BI__builtin_ia32_cmpnlepd: 14353 return getVectorFCmpIR(CmpInst::FCMP_UGT, /*IsSignaling*/true); 14354 case X86::BI__builtin_ia32_cmpordps: 14355 case X86::BI__builtin_ia32_cmpordpd: 14356 return getVectorFCmpIR(CmpInst::FCMP_ORD, /*IsSignaling*/false); 14357 case X86::BI__builtin_ia32_cmpps128_mask: 14358 case X86::BI__builtin_ia32_cmpps256_mask: 14359 case X86::BI__builtin_ia32_cmpps512_mask: 14360 case X86::BI__builtin_ia32_cmppd128_mask: 14361 case X86::BI__builtin_ia32_cmppd256_mask: 14362 case X86::BI__builtin_ia32_cmppd512_mask: 14363 IsMaskFCmp = true; 14364 LLVM_FALLTHROUGH; 14365 case X86::BI__builtin_ia32_cmpps: 14366 case X86::BI__builtin_ia32_cmpps256: 14367 case X86::BI__builtin_ia32_cmppd: 14368 case X86::BI__builtin_ia32_cmppd256: { 14369 // Lowering vector comparisons to fcmp instructions, while 14370 // ignoring signalling behaviour requested 14371 // ignoring rounding mode requested 14372 // This is only possible if fp-model is not strict and FENV_ACCESS is off. 14373 14374 // The third argument is the comparison condition, and integer in the 14375 // range [0, 31] 14376 unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x1f; 14377 14378 // Lowering to IR fcmp instruction. 14379 // Ignoring requested signaling behaviour, 14380 // e.g. both _CMP_GT_OS & _CMP_GT_OQ are translated to FCMP_OGT. 14381 FCmpInst::Predicate Pred; 14382 bool IsSignaling; 14383 // Predicates for 16-31 repeat the 0-15 predicates. Only the signalling 14384 // behavior is inverted. We'll handle that after the switch. 14385 switch (CC & 0xf) { 14386 case 0x00: Pred = FCmpInst::FCMP_OEQ; IsSignaling = false; break; 14387 case 0x01: Pred = FCmpInst::FCMP_OLT; IsSignaling = true; break; 14388 case 0x02: Pred = FCmpInst::FCMP_OLE; IsSignaling = true; break; 14389 case 0x03: Pred = FCmpInst::FCMP_UNO; IsSignaling = false; break; 14390 case 0x04: Pred = FCmpInst::FCMP_UNE; IsSignaling = false; break; 14391 case 0x05: Pred = FCmpInst::FCMP_UGE; IsSignaling = true; break; 14392 case 0x06: Pred = FCmpInst::FCMP_UGT; IsSignaling = true; break; 14393 case 0x07: Pred = FCmpInst::FCMP_ORD; IsSignaling = false; break; 14394 case 0x08: Pred = FCmpInst::FCMP_UEQ; IsSignaling = false; break; 14395 case 0x09: Pred = FCmpInst::FCMP_ULT; IsSignaling = true; break; 14396 case 0x0a: Pred = FCmpInst::FCMP_ULE; IsSignaling = true; break; 14397 case 0x0b: Pred = FCmpInst::FCMP_FALSE; IsSignaling = false; break; 14398 case 0x0c: Pred = FCmpInst::FCMP_ONE; IsSignaling = false; break; 14399 case 0x0d: Pred = FCmpInst::FCMP_OGE; IsSignaling = true; break; 14400 case 0x0e: Pred = FCmpInst::FCMP_OGT; IsSignaling = true; break; 14401 case 0x0f: Pred = FCmpInst::FCMP_TRUE; IsSignaling = false; break; 14402 default: llvm_unreachable("Unhandled CC"); 14403 } 14404 14405 // Invert the signalling behavior for 16-31. 14406 if (CC & 0x10) 14407 IsSignaling = !IsSignaling; 14408 14409 // If the predicate is true or false and we're using constrained intrinsics, 14410 // we don't have a compare intrinsic we can use. Just use the legacy X86 14411 // specific intrinsic. 14412 // If the intrinsic is mask enabled and we're using constrained intrinsics, 14413 // use the legacy X86 specific intrinsic. 14414 if (Builder.getIsFPConstrained() && 14415 (Pred == FCmpInst::FCMP_TRUE || Pred == FCmpInst::FCMP_FALSE || 14416 IsMaskFCmp)) { 14417 14418 Intrinsic::ID IID; 14419 switch (BuiltinID) { 14420 default: llvm_unreachable("Unexpected builtin"); 14421 case X86::BI__builtin_ia32_cmpps: 14422 IID = Intrinsic::x86_sse_cmp_ps; 14423 break; 14424 case X86::BI__builtin_ia32_cmpps256: 14425 IID = Intrinsic::x86_avx_cmp_ps_256; 14426 break; 14427 case X86::BI__builtin_ia32_cmppd: 14428 IID = Intrinsic::x86_sse2_cmp_pd; 14429 break; 14430 case X86::BI__builtin_ia32_cmppd256: 14431 IID = Intrinsic::x86_avx_cmp_pd_256; 14432 break; 14433 case X86::BI__builtin_ia32_cmpps512_mask: 14434 IID = Intrinsic::x86_avx512_mask_cmp_ps_512; 14435 break; 14436 case X86::BI__builtin_ia32_cmppd512_mask: 14437 IID = Intrinsic::x86_avx512_mask_cmp_pd_512; 14438 break; 14439 case X86::BI__builtin_ia32_cmpps128_mask: 14440 IID = Intrinsic::x86_avx512_mask_cmp_ps_128; 14441 break; 14442 case X86::BI__builtin_ia32_cmpps256_mask: 14443 IID = Intrinsic::x86_avx512_mask_cmp_ps_256; 14444 break; 14445 case X86::BI__builtin_ia32_cmppd128_mask: 14446 IID = Intrinsic::x86_avx512_mask_cmp_pd_128; 14447 break; 14448 case X86::BI__builtin_ia32_cmppd256_mask: 14449 IID = Intrinsic::x86_avx512_mask_cmp_pd_256; 14450 break; 14451 } 14452 14453 Function *Intr = CGM.getIntrinsic(IID); 14454 if (IsMaskFCmp) { 14455 unsigned NumElts = 14456 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(); 14457 Ops[3] = getMaskVecValue(*this, Ops[3], NumElts); 14458 Value *Cmp = Builder.CreateCall(Intr, Ops); 14459 return EmitX86MaskedCompareResult(*this, Cmp, NumElts, nullptr); 14460 } 14461 14462 return Builder.CreateCall(Intr, Ops); 14463 } 14464 14465 // Builtins without the _mask suffix return a vector of integers 14466 // of the same width as the input vectors 14467 if (IsMaskFCmp) { 14468 // We ignore SAE if strict FP is disabled. We only keep precise 14469 // exception behavior under strict FP. 14470 // NOTE: If strict FP does ever go through here a CGFPOptionsRAII 14471 // object will be required. 14472 unsigned NumElts = 14473 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(); 14474 Value *Cmp; 14475 if (IsSignaling) 14476 Cmp = Builder.CreateFCmpS(Pred, Ops[0], Ops[1]); 14477 else 14478 Cmp = Builder.CreateFCmp(Pred, Ops[0], Ops[1]); 14479 return EmitX86MaskedCompareResult(*this, Cmp, NumElts, Ops[3]); 14480 } 14481 14482 return getVectorFCmpIR(Pred, IsSignaling); 14483 } 14484 14485 // SSE scalar comparison intrinsics 14486 case X86::BI__builtin_ia32_cmpeqss: 14487 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 0); 14488 case X86::BI__builtin_ia32_cmpltss: 14489 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 1); 14490 case X86::BI__builtin_ia32_cmpless: 14491 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 2); 14492 case X86::BI__builtin_ia32_cmpunordss: 14493 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 3); 14494 case X86::BI__builtin_ia32_cmpneqss: 14495 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 4); 14496 case X86::BI__builtin_ia32_cmpnltss: 14497 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 5); 14498 case X86::BI__builtin_ia32_cmpnless: 14499 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 6); 14500 case X86::BI__builtin_ia32_cmpordss: 14501 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 7); 14502 case X86::BI__builtin_ia32_cmpeqsd: 14503 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 0); 14504 case X86::BI__builtin_ia32_cmpltsd: 14505 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 1); 14506 case X86::BI__builtin_ia32_cmplesd: 14507 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 2); 14508 case X86::BI__builtin_ia32_cmpunordsd: 14509 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 3); 14510 case X86::BI__builtin_ia32_cmpneqsd: 14511 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 4); 14512 case X86::BI__builtin_ia32_cmpnltsd: 14513 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 5); 14514 case X86::BI__builtin_ia32_cmpnlesd: 14515 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 6); 14516 case X86::BI__builtin_ia32_cmpordsd: 14517 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 7); 14518 14519 // f16c half2float intrinsics 14520 case X86::BI__builtin_ia32_vcvtph2ps: 14521 case X86::BI__builtin_ia32_vcvtph2ps256: 14522 case X86::BI__builtin_ia32_vcvtph2ps_mask: 14523 case X86::BI__builtin_ia32_vcvtph2ps256_mask: 14524 case X86::BI__builtin_ia32_vcvtph2ps512_mask: { 14525 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); 14526 return EmitX86CvtF16ToFloatExpr(*this, Ops, ConvertType(E->getType())); 14527 } 14528 14529 // AVX512 bf16 intrinsics 14530 case X86::BI__builtin_ia32_cvtneps2bf16_128_mask: { 14531 Ops[2] = getMaskVecValue( 14532 *this, Ops[2], 14533 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements()); 14534 Intrinsic::ID IID = Intrinsic::x86_avx512bf16_mask_cvtneps2bf16_128; 14535 return Builder.CreateCall(CGM.getIntrinsic(IID), Ops); 14536 } 14537 case X86::BI__builtin_ia32_cvtsbf162ss_32: 14538 return EmitX86CvtBF16ToFloatExpr(*this, E, Ops); 14539 14540 case X86::BI__builtin_ia32_cvtneps2bf16_256_mask: 14541 case X86::BI__builtin_ia32_cvtneps2bf16_512_mask: { 14542 Intrinsic::ID IID; 14543 switch (BuiltinID) { 14544 default: llvm_unreachable("Unsupported intrinsic!"); 14545 case X86::BI__builtin_ia32_cvtneps2bf16_256_mask: 14546 IID = Intrinsic::x86_avx512bf16_cvtneps2bf16_256; 14547 break; 14548 case X86::BI__builtin_ia32_cvtneps2bf16_512_mask: 14549 IID = Intrinsic::x86_avx512bf16_cvtneps2bf16_512; 14550 break; 14551 } 14552 Value *Res = Builder.CreateCall(CGM.getIntrinsic(IID), Ops[0]); 14553 return EmitX86Select(*this, Ops[2], Res, Ops[1]); 14554 } 14555 14556 case X86::BI__emul: 14557 case X86::BI__emulu: { 14558 llvm::Type *Int64Ty = llvm::IntegerType::get(getLLVMContext(), 64); 14559 bool isSigned = (BuiltinID == X86::BI__emul); 14560 Value *LHS = Builder.CreateIntCast(Ops[0], Int64Ty, isSigned); 14561 Value *RHS = Builder.CreateIntCast(Ops[1], Int64Ty, isSigned); 14562 return Builder.CreateMul(LHS, RHS, "", !isSigned, isSigned); 14563 } 14564 case X86::BI__mulh: 14565 case X86::BI__umulh: 14566 case X86::BI_mul128: 14567 case X86::BI_umul128: { 14568 llvm::Type *ResType = ConvertType(E->getType()); 14569 llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128); 14570 14571 bool IsSigned = (BuiltinID == X86::BI__mulh || BuiltinID == X86::BI_mul128); 14572 Value *LHS = Builder.CreateIntCast(Ops[0], Int128Ty, IsSigned); 14573 Value *RHS = Builder.CreateIntCast(Ops[1], Int128Ty, IsSigned); 14574 14575 Value *MulResult, *HigherBits; 14576 if (IsSigned) { 14577 MulResult = Builder.CreateNSWMul(LHS, RHS); 14578 HigherBits = Builder.CreateAShr(MulResult, 64); 14579 } else { 14580 MulResult = Builder.CreateNUWMul(LHS, RHS); 14581 HigherBits = Builder.CreateLShr(MulResult, 64); 14582 } 14583 HigherBits = Builder.CreateIntCast(HigherBits, ResType, IsSigned); 14584 14585 if (BuiltinID == X86::BI__mulh || BuiltinID == X86::BI__umulh) 14586 return HigherBits; 14587 14588 Address HighBitsAddress = EmitPointerWithAlignment(E->getArg(2)); 14589 Builder.CreateStore(HigherBits, HighBitsAddress); 14590 return Builder.CreateIntCast(MulResult, ResType, IsSigned); 14591 } 14592 14593 case X86::BI__faststorefence: { 14594 return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, 14595 llvm::SyncScope::System); 14596 } 14597 case X86::BI__shiftleft128: 14598 case X86::BI__shiftright128: { 14599 llvm::Function *F = CGM.getIntrinsic( 14600 BuiltinID == X86::BI__shiftleft128 ? Intrinsic::fshl : Intrinsic::fshr, 14601 Int64Ty); 14602 // Flip low/high ops and zero-extend amount to matching type. 14603 // shiftleft128(Low, High, Amt) -> fshl(High, Low, Amt) 14604 // shiftright128(Low, High, Amt) -> fshr(High, Low, Amt) 14605 std::swap(Ops[0], Ops[1]); 14606 Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty); 14607 return Builder.CreateCall(F, Ops); 14608 } 14609 case X86::BI_ReadWriteBarrier: 14610 case X86::BI_ReadBarrier: 14611 case X86::BI_WriteBarrier: { 14612 return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, 14613 llvm::SyncScope::SingleThread); 14614 } 14615 14616 case X86::BI_AddressOfReturnAddress: { 14617 Function *F = 14618 CGM.getIntrinsic(Intrinsic::addressofreturnaddress, AllocaInt8PtrTy); 14619 return Builder.CreateCall(F); 14620 } 14621 case X86::BI__stosb: { 14622 // We treat __stosb as a volatile memset - it may not generate "rep stosb" 14623 // instruction, but it will create a memset that won't be optimized away. 14624 return Builder.CreateMemSet(Ops[0], Ops[1], Ops[2], Align(1), true); 14625 } 14626 case X86::BI__ud2: 14627 // llvm.trap makes a ud2a instruction on x86. 14628 return EmitTrapCall(Intrinsic::trap); 14629 case X86::BI__int2c: { 14630 // This syscall signals a driver assertion failure in x86 NT kernels. 14631 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false); 14632 llvm::InlineAsm *IA = 14633 llvm::InlineAsm::get(FTy, "int $$0x2c", "", /*hasSideEffects=*/true); 14634 llvm::AttributeList NoReturnAttr = llvm::AttributeList::get( 14635 getLLVMContext(), llvm::AttributeList::FunctionIndex, 14636 llvm::Attribute::NoReturn); 14637 llvm::CallInst *CI = Builder.CreateCall(IA); 14638 CI->setAttributes(NoReturnAttr); 14639 return CI; 14640 } 14641 case X86::BI__readfsbyte: 14642 case X86::BI__readfsword: 14643 case X86::BI__readfsdword: 14644 case X86::BI__readfsqword: { 14645 llvm::Type *IntTy = ConvertType(E->getType()); 14646 Value *Ptr = 14647 Builder.CreateIntToPtr(Ops[0], llvm::PointerType::get(IntTy, 257)); 14648 LoadInst *Load = Builder.CreateAlignedLoad( 14649 IntTy, Ptr, getContext().getTypeAlignInChars(E->getType())); 14650 Load->setVolatile(true); 14651 return Load; 14652 } 14653 case X86::BI__readgsbyte: 14654 case X86::BI__readgsword: 14655 case X86::BI__readgsdword: 14656 case X86::BI__readgsqword: { 14657 llvm::Type *IntTy = ConvertType(E->getType()); 14658 Value *Ptr = 14659 Builder.CreateIntToPtr(Ops[0], llvm::PointerType::get(IntTy, 256)); 14660 LoadInst *Load = Builder.CreateAlignedLoad( 14661 IntTy, Ptr, getContext().getTypeAlignInChars(E->getType())); 14662 Load->setVolatile(true); 14663 return Load; 14664 } 14665 case X86::BI__builtin_ia32_paddsb512: 14666 case X86::BI__builtin_ia32_paddsw512: 14667 case X86::BI__builtin_ia32_paddsb256: 14668 case X86::BI__builtin_ia32_paddsw256: 14669 case X86::BI__builtin_ia32_paddsb128: 14670 case X86::BI__builtin_ia32_paddsw128: 14671 return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::sadd_sat); 14672 case X86::BI__builtin_ia32_paddusb512: 14673 case X86::BI__builtin_ia32_paddusw512: 14674 case X86::BI__builtin_ia32_paddusb256: 14675 case X86::BI__builtin_ia32_paddusw256: 14676 case X86::BI__builtin_ia32_paddusb128: 14677 case X86::BI__builtin_ia32_paddusw128: 14678 return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::uadd_sat); 14679 case X86::BI__builtin_ia32_psubsb512: 14680 case X86::BI__builtin_ia32_psubsw512: 14681 case X86::BI__builtin_ia32_psubsb256: 14682 case X86::BI__builtin_ia32_psubsw256: 14683 case X86::BI__builtin_ia32_psubsb128: 14684 case X86::BI__builtin_ia32_psubsw128: 14685 return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::ssub_sat); 14686 case X86::BI__builtin_ia32_psubusb512: 14687 case X86::BI__builtin_ia32_psubusw512: 14688 case X86::BI__builtin_ia32_psubusb256: 14689 case X86::BI__builtin_ia32_psubusw256: 14690 case X86::BI__builtin_ia32_psubusb128: 14691 case X86::BI__builtin_ia32_psubusw128: 14692 return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::usub_sat); 14693 case X86::BI__builtin_ia32_encodekey128_u32: { 14694 Intrinsic::ID IID = Intrinsic::x86_encodekey128; 14695 14696 Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), {Ops[0], Ops[1]}); 14697 14698 for (int i = 0; i < 6; ++i) { 14699 Value *Extract = Builder.CreateExtractValue(Call, i + 1); 14700 Value *Ptr = Builder.CreateConstGEP1_32(Ops[2], i * 16); 14701 Ptr = Builder.CreateBitCast( 14702 Ptr, llvm::PointerType::getUnqual(Extract->getType())); 14703 Builder.CreateAlignedStore(Extract, Ptr, Align(1)); 14704 } 14705 14706 return Builder.CreateExtractValue(Call, 0); 14707 } 14708 case X86::BI__builtin_ia32_encodekey256_u32: { 14709 Intrinsic::ID IID = Intrinsic::x86_encodekey256; 14710 14711 Value *Call = 14712 Builder.CreateCall(CGM.getIntrinsic(IID), {Ops[0], Ops[1], Ops[2]}); 14713 14714 for (int i = 0; i < 7; ++i) { 14715 Value *Extract = Builder.CreateExtractValue(Call, i + 1); 14716 Value *Ptr = Builder.CreateConstGEP1_32(Ops[3], i * 16); 14717 Ptr = Builder.CreateBitCast( 14718 Ptr, llvm::PointerType::getUnqual(Extract->getType())); 14719 Builder.CreateAlignedStore(Extract, Ptr, Align(1)); 14720 } 14721 14722 return Builder.CreateExtractValue(Call, 0); 14723 } 14724 case X86::BI__builtin_ia32_aesenc128kl_u8: 14725 case X86::BI__builtin_ia32_aesdec128kl_u8: 14726 case X86::BI__builtin_ia32_aesenc256kl_u8: 14727 case X86::BI__builtin_ia32_aesdec256kl_u8: { 14728 Intrinsic::ID IID; 14729 switch (BuiltinID) { 14730 default: llvm_unreachable("Unexpected builtin"); 14731 case X86::BI__builtin_ia32_aesenc128kl_u8: 14732 IID = Intrinsic::x86_aesenc128kl; 14733 break; 14734 case X86::BI__builtin_ia32_aesdec128kl_u8: 14735 IID = Intrinsic::x86_aesdec128kl; 14736 break; 14737 case X86::BI__builtin_ia32_aesenc256kl_u8: 14738 IID = Intrinsic::x86_aesenc256kl; 14739 break; 14740 case X86::BI__builtin_ia32_aesdec256kl_u8: 14741 IID = Intrinsic::x86_aesdec256kl; 14742 break; 14743 } 14744 14745 Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), {Ops[1], Ops[2]}); 14746 14747 Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 1), 14748 Ops[0]); 14749 14750 return Builder.CreateExtractValue(Call, 0); 14751 } 14752 case X86::BI__builtin_ia32_aesencwide128kl_u8: 14753 case X86::BI__builtin_ia32_aesdecwide128kl_u8: 14754 case X86::BI__builtin_ia32_aesencwide256kl_u8: 14755 case X86::BI__builtin_ia32_aesdecwide256kl_u8: { 14756 Intrinsic::ID IID; 14757 switch (BuiltinID) { 14758 case X86::BI__builtin_ia32_aesencwide128kl_u8: 14759 IID = Intrinsic::x86_aesencwide128kl; 14760 break; 14761 case X86::BI__builtin_ia32_aesdecwide128kl_u8: 14762 IID = Intrinsic::x86_aesdecwide128kl; 14763 break; 14764 case X86::BI__builtin_ia32_aesencwide256kl_u8: 14765 IID = Intrinsic::x86_aesencwide256kl; 14766 break; 14767 case X86::BI__builtin_ia32_aesdecwide256kl_u8: 14768 IID = Intrinsic::x86_aesdecwide256kl; 14769 break; 14770 } 14771 14772 llvm::Type *Ty = FixedVectorType::get(Builder.getInt64Ty(), 2); 14773 Value *InOps[9]; 14774 InOps[0] = Ops[2]; 14775 for (int i = 0; i != 8; ++i) { 14776 Value *Ptr = Builder.CreateConstGEP1_32(Ops[1], i); 14777 InOps[i + 1] = Builder.CreateAlignedLoad(Ty, Ptr, Align(16)); 14778 } 14779 14780 Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), InOps); 14781 14782 for (int i = 0; i != 8; ++i) { 14783 Value *Extract = Builder.CreateExtractValue(Call, i + 1); 14784 Value *Ptr = Builder.CreateConstGEP1_32(Ops[0], i); 14785 Builder.CreateAlignedStore(Extract, Ptr, Align(16)); 14786 } 14787 14788 return Builder.CreateExtractValue(Call, 0); 14789 } 14790 } 14791 } 14792 14793 Value *CodeGenFunction::EmitPPCBuiltinExpr(unsigned BuiltinID, 14794 const CallExpr *E) { 14795 SmallVector<Value*, 4> Ops; 14796 14797 for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) 14798 Ops.push_back(EmitScalarExpr(E->getArg(i))); 14799 14800 Intrinsic::ID ID = Intrinsic::not_intrinsic; 14801 14802 switch (BuiltinID) { 14803 default: return nullptr; 14804 14805 // __builtin_ppc_get_timebase is GCC 4.8+'s PowerPC-specific name for what we 14806 // call __builtin_readcyclecounter. 14807 case PPC::BI__builtin_ppc_get_timebase: 14808 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::readcyclecounter)); 14809 14810 // vec_ld, vec_xl_be, vec_lvsl, vec_lvsr 14811 case PPC::BI__builtin_altivec_lvx: 14812 case PPC::BI__builtin_altivec_lvxl: 14813 case PPC::BI__builtin_altivec_lvebx: 14814 case PPC::BI__builtin_altivec_lvehx: 14815 case PPC::BI__builtin_altivec_lvewx: 14816 case PPC::BI__builtin_altivec_lvsl: 14817 case PPC::BI__builtin_altivec_lvsr: 14818 case PPC::BI__builtin_vsx_lxvd2x: 14819 case PPC::BI__builtin_vsx_lxvw4x: 14820 case PPC::BI__builtin_vsx_lxvd2x_be: 14821 case PPC::BI__builtin_vsx_lxvw4x_be: 14822 case PPC::BI__builtin_vsx_lxvl: 14823 case PPC::BI__builtin_vsx_lxvll: 14824 { 14825 if(BuiltinID == PPC::BI__builtin_vsx_lxvl || 14826 BuiltinID == PPC::BI__builtin_vsx_lxvll){ 14827 Ops[0] = Builder.CreateBitCast(Ops[0], Int8PtrTy); 14828 }else { 14829 Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy); 14830 Ops[0] = Builder.CreateGEP(Ops[1], Ops[0]); 14831 Ops.pop_back(); 14832 } 14833 14834 switch (BuiltinID) { 14835 default: llvm_unreachable("Unsupported ld/lvsl/lvsr intrinsic!"); 14836 case PPC::BI__builtin_altivec_lvx: 14837 ID = Intrinsic::ppc_altivec_lvx; 14838 break; 14839 case PPC::BI__builtin_altivec_lvxl: 14840 ID = Intrinsic::ppc_altivec_lvxl; 14841 break; 14842 case PPC::BI__builtin_altivec_lvebx: 14843 ID = Intrinsic::ppc_altivec_lvebx; 14844 break; 14845 case PPC::BI__builtin_altivec_lvehx: 14846 ID = Intrinsic::ppc_altivec_lvehx; 14847 break; 14848 case PPC::BI__builtin_altivec_lvewx: 14849 ID = Intrinsic::ppc_altivec_lvewx; 14850 break; 14851 case PPC::BI__builtin_altivec_lvsl: 14852 ID = Intrinsic::ppc_altivec_lvsl; 14853 break; 14854 case PPC::BI__builtin_altivec_lvsr: 14855 ID = Intrinsic::ppc_altivec_lvsr; 14856 break; 14857 case PPC::BI__builtin_vsx_lxvd2x: 14858 ID = Intrinsic::ppc_vsx_lxvd2x; 14859 break; 14860 case PPC::BI__builtin_vsx_lxvw4x: 14861 ID = Intrinsic::ppc_vsx_lxvw4x; 14862 break; 14863 case PPC::BI__builtin_vsx_lxvd2x_be: 14864 ID = Intrinsic::ppc_vsx_lxvd2x_be; 14865 break; 14866 case PPC::BI__builtin_vsx_lxvw4x_be: 14867 ID = Intrinsic::ppc_vsx_lxvw4x_be; 14868 break; 14869 case PPC::BI__builtin_vsx_lxvl: 14870 ID = Intrinsic::ppc_vsx_lxvl; 14871 break; 14872 case PPC::BI__builtin_vsx_lxvll: 14873 ID = Intrinsic::ppc_vsx_lxvll; 14874 break; 14875 } 14876 llvm::Function *F = CGM.getIntrinsic(ID); 14877 return Builder.CreateCall(F, Ops, ""); 14878 } 14879 14880 // vec_st, vec_xst_be 14881 case PPC::BI__builtin_altivec_stvx: 14882 case PPC::BI__builtin_altivec_stvxl: 14883 case PPC::BI__builtin_altivec_stvebx: 14884 case PPC::BI__builtin_altivec_stvehx: 14885 case PPC::BI__builtin_altivec_stvewx: 14886 case PPC::BI__builtin_vsx_stxvd2x: 14887 case PPC::BI__builtin_vsx_stxvw4x: 14888 case PPC::BI__builtin_vsx_stxvd2x_be: 14889 case PPC::BI__builtin_vsx_stxvw4x_be: 14890 case PPC::BI__builtin_vsx_stxvl: 14891 case PPC::BI__builtin_vsx_stxvll: 14892 { 14893 if(BuiltinID == PPC::BI__builtin_vsx_stxvl || 14894 BuiltinID == PPC::BI__builtin_vsx_stxvll ){ 14895 Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy); 14896 }else { 14897 Ops[2] = Builder.CreateBitCast(Ops[2], Int8PtrTy); 14898 Ops[1] = Builder.CreateGEP(Ops[2], Ops[1]); 14899 Ops.pop_back(); 14900 } 14901 14902 switch (BuiltinID) { 14903 default: llvm_unreachable("Unsupported st intrinsic!"); 14904 case PPC::BI__builtin_altivec_stvx: 14905 ID = Intrinsic::ppc_altivec_stvx; 14906 break; 14907 case PPC::BI__builtin_altivec_stvxl: 14908 ID = Intrinsic::ppc_altivec_stvxl; 14909 break; 14910 case PPC::BI__builtin_altivec_stvebx: 14911 ID = Intrinsic::ppc_altivec_stvebx; 14912 break; 14913 case PPC::BI__builtin_altivec_stvehx: 14914 ID = Intrinsic::ppc_altivec_stvehx; 14915 break; 14916 case PPC::BI__builtin_altivec_stvewx: 14917 ID = Intrinsic::ppc_altivec_stvewx; 14918 break; 14919 case PPC::BI__builtin_vsx_stxvd2x: 14920 ID = Intrinsic::ppc_vsx_stxvd2x; 14921 break; 14922 case PPC::BI__builtin_vsx_stxvw4x: 14923 ID = Intrinsic::ppc_vsx_stxvw4x; 14924 break; 14925 case PPC::BI__builtin_vsx_stxvd2x_be: 14926 ID = Intrinsic::ppc_vsx_stxvd2x_be; 14927 break; 14928 case PPC::BI__builtin_vsx_stxvw4x_be: 14929 ID = Intrinsic::ppc_vsx_stxvw4x_be; 14930 break; 14931 case PPC::BI__builtin_vsx_stxvl: 14932 ID = Intrinsic::ppc_vsx_stxvl; 14933 break; 14934 case PPC::BI__builtin_vsx_stxvll: 14935 ID = Intrinsic::ppc_vsx_stxvll; 14936 break; 14937 } 14938 llvm::Function *F = CGM.getIntrinsic(ID); 14939 return Builder.CreateCall(F, Ops, ""); 14940 } 14941 // Square root 14942 case PPC::BI__builtin_vsx_xvsqrtsp: 14943 case PPC::BI__builtin_vsx_xvsqrtdp: { 14944 llvm::Type *ResultType = ConvertType(E->getType()); 14945 Value *X = EmitScalarExpr(E->getArg(0)); 14946 if (Builder.getIsFPConstrained()) { 14947 llvm::Function *F = CGM.getIntrinsic( 14948 Intrinsic::experimental_constrained_sqrt, ResultType); 14949 return Builder.CreateConstrainedFPCall(F, X); 14950 } else { 14951 llvm::Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType); 14952 return Builder.CreateCall(F, X); 14953 } 14954 } 14955 // Count leading zeros 14956 case PPC::BI__builtin_altivec_vclzb: 14957 case PPC::BI__builtin_altivec_vclzh: 14958 case PPC::BI__builtin_altivec_vclzw: 14959 case PPC::BI__builtin_altivec_vclzd: { 14960 llvm::Type *ResultType = ConvertType(E->getType()); 14961 Value *X = EmitScalarExpr(E->getArg(0)); 14962 Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false); 14963 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType); 14964 return Builder.CreateCall(F, {X, Undef}); 14965 } 14966 case PPC::BI__builtin_altivec_vctzb: 14967 case PPC::BI__builtin_altivec_vctzh: 14968 case PPC::BI__builtin_altivec_vctzw: 14969 case PPC::BI__builtin_altivec_vctzd: { 14970 llvm::Type *ResultType = ConvertType(E->getType()); 14971 Value *X = EmitScalarExpr(E->getArg(0)); 14972 Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false); 14973 Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType); 14974 return Builder.CreateCall(F, {X, Undef}); 14975 } 14976 case PPC::BI__builtin_altivec_vec_replace_elt: 14977 case PPC::BI__builtin_altivec_vec_replace_unaligned: { 14978 // The third argument of vec_replace_elt and vec_replace_unaligned must 14979 // be a compile time constant and will be emitted either to the vinsw 14980 // or vinsd instruction. 14981 ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]); 14982 assert(ArgCI && 14983 "Third Arg to vinsw/vinsd intrinsic must be a constant integer!"); 14984 llvm::Type *ResultType = ConvertType(E->getType()); 14985 llvm::Function *F = nullptr; 14986 Value *Call = nullptr; 14987 int64_t ConstArg = ArgCI->getSExtValue(); 14988 unsigned ArgWidth = Ops[1]->getType()->getPrimitiveSizeInBits(); 14989 bool Is32Bit = false; 14990 assert((ArgWidth == 32 || ArgWidth == 64) && "Invalid argument width"); 14991 // The input to vec_replace_elt is an element index, not a byte index. 14992 if (BuiltinID == PPC::BI__builtin_altivec_vec_replace_elt) 14993 ConstArg *= ArgWidth / 8; 14994 if (ArgWidth == 32) { 14995 Is32Bit = true; 14996 // When the second argument is 32 bits, it can either be an integer or 14997 // a float. The vinsw intrinsic is used in this case. 14998 F = CGM.getIntrinsic(Intrinsic::ppc_altivec_vinsw); 14999 // Fix the constant according to endianess. 15000 if (getTarget().isLittleEndian()) 15001 ConstArg = 12 - ConstArg; 15002 } else { 15003 // When the second argument is 64 bits, it can either be a long long or 15004 // a double. The vinsd intrinsic is used in this case. 15005 F = CGM.getIntrinsic(Intrinsic::ppc_altivec_vinsd); 15006 // Fix the constant for little endian. 15007 if (getTarget().isLittleEndian()) 15008 ConstArg = 8 - ConstArg; 15009 } 15010 Ops[2] = ConstantInt::getSigned(Int32Ty, ConstArg); 15011 // Depending on ArgWidth, the input vector could be a float or a double. 15012 // If the input vector is a float type, bitcast the inputs to integers. Or, 15013 // if the input vector is a double, bitcast the inputs to 64-bit integers. 15014 if (!Ops[1]->getType()->isIntegerTy(ArgWidth)) { 15015 Ops[0] = Builder.CreateBitCast( 15016 Ops[0], Is32Bit ? llvm::FixedVectorType::get(Int32Ty, 4) 15017 : llvm::FixedVectorType::get(Int64Ty, 2)); 15018 Ops[1] = Builder.CreateBitCast(Ops[1], Is32Bit ? Int32Ty : Int64Ty); 15019 } 15020 // Emit the call to vinsw or vinsd. 15021 Call = Builder.CreateCall(F, Ops); 15022 // Depending on the builtin, bitcast to the approriate result type. 15023 if (BuiltinID == PPC::BI__builtin_altivec_vec_replace_elt && 15024 !Ops[1]->getType()->isIntegerTy()) 15025 return Builder.CreateBitCast(Call, ResultType); 15026 else if (BuiltinID == PPC::BI__builtin_altivec_vec_replace_elt && 15027 Ops[1]->getType()->isIntegerTy()) 15028 return Call; 15029 else 15030 return Builder.CreateBitCast(Call, 15031 llvm::FixedVectorType::get(Int8Ty, 16)); 15032 } 15033 case PPC::BI__builtin_altivec_vpopcntb: 15034 case PPC::BI__builtin_altivec_vpopcnth: 15035 case PPC::BI__builtin_altivec_vpopcntw: 15036 case PPC::BI__builtin_altivec_vpopcntd: { 15037 llvm::Type *ResultType = ConvertType(E->getType()); 15038 Value *X = EmitScalarExpr(E->getArg(0)); 15039 llvm::Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType); 15040 return Builder.CreateCall(F, X); 15041 } 15042 case PPC::BI__builtin_altivec_vadduqm: 15043 case PPC::BI__builtin_altivec_vsubuqm: { 15044 llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128); 15045 Ops[0] = 15046 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int128Ty, 1)); 15047 Ops[1] = 15048 Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(Int128Ty, 1)); 15049 if (BuiltinID == PPC::BI__builtin_altivec_vadduqm) 15050 return Builder.CreateAdd(Ops[0], Ops[1], "vadduqm"); 15051 else 15052 return Builder.CreateSub(Ops[0], Ops[1], "vsubuqm"); 15053 } 15054 // Copy sign 15055 case PPC::BI__builtin_vsx_xvcpsgnsp: 15056 case PPC::BI__builtin_vsx_xvcpsgndp: { 15057 llvm::Type *ResultType = ConvertType(E->getType()); 15058 Value *X = EmitScalarExpr(E->getArg(0)); 15059 Value *Y = EmitScalarExpr(E->getArg(1)); 15060 ID = Intrinsic::copysign; 15061 llvm::Function *F = CGM.getIntrinsic(ID, ResultType); 15062 return Builder.CreateCall(F, {X, Y}); 15063 } 15064 // Rounding/truncation 15065 case PPC::BI__builtin_vsx_xvrspip: 15066 case PPC::BI__builtin_vsx_xvrdpip: 15067 case PPC::BI__builtin_vsx_xvrdpim: 15068 case PPC::BI__builtin_vsx_xvrspim: 15069 case PPC::BI__builtin_vsx_xvrdpi: 15070 case PPC::BI__builtin_vsx_xvrspi: 15071 case PPC::BI__builtin_vsx_xvrdpic: 15072 case PPC::BI__builtin_vsx_xvrspic: 15073 case PPC::BI__builtin_vsx_xvrdpiz: 15074 case PPC::BI__builtin_vsx_xvrspiz: { 15075 llvm::Type *ResultType = ConvertType(E->getType()); 15076 Value *X = EmitScalarExpr(E->getArg(0)); 15077 if (BuiltinID == PPC::BI__builtin_vsx_xvrdpim || 15078 BuiltinID == PPC::BI__builtin_vsx_xvrspim) 15079 ID = Builder.getIsFPConstrained() 15080 ? Intrinsic::experimental_constrained_floor 15081 : Intrinsic::floor; 15082 else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpi || 15083 BuiltinID == PPC::BI__builtin_vsx_xvrspi) 15084 ID = Builder.getIsFPConstrained() 15085 ? Intrinsic::experimental_constrained_round 15086 : Intrinsic::round; 15087 else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpic || 15088 BuiltinID == PPC::BI__builtin_vsx_xvrspic) 15089 ID = Builder.getIsFPConstrained() 15090 ? Intrinsic::experimental_constrained_rint 15091 : Intrinsic::rint; 15092 else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpip || 15093 BuiltinID == PPC::BI__builtin_vsx_xvrspip) 15094 ID = Builder.getIsFPConstrained() 15095 ? Intrinsic::experimental_constrained_ceil 15096 : Intrinsic::ceil; 15097 else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpiz || 15098 BuiltinID == PPC::BI__builtin_vsx_xvrspiz) 15099 ID = Builder.getIsFPConstrained() 15100 ? Intrinsic::experimental_constrained_trunc 15101 : Intrinsic::trunc; 15102 llvm::Function *F = CGM.getIntrinsic(ID, ResultType); 15103 return Builder.getIsFPConstrained() ? Builder.CreateConstrainedFPCall(F, X) 15104 : Builder.CreateCall(F, X); 15105 } 15106 15107 // Absolute value 15108 case PPC::BI__builtin_vsx_xvabsdp: 15109 case PPC::BI__builtin_vsx_xvabssp: { 15110 llvm::Type *ResultType = ConvertType(E->getType()); 15111 Value *X = EmitScalarExpr(E->getArg(0)); 15112 llvm::Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType); 15113 return Builder.CreateCall(F, X); 15114 } 15115 15116 // Fastmath by default 15117 case PPC::BI__builtin_ppc_recipdivf: 15118 case PPC::BI__builtin_ppc_recipdivd: 15119 case PPC::BI__builtin_ppc_rsqrtf: 15120 case PPC::BI__builtin_ppc_rsqrtd: { 15121 Builder.getFastMathFlags().setFast(); 15122 llvm::Type *ResultType = ConvertType(E->getType()); 15123 Value *X = EmitScalarExpr(E->getArg(0)); 15124 15125 if (BuiltinID == PPC::BI__builtin_ppc_recipdivf || 15126 BuiltinID == PPC::BI__builtin_ppc_recipdivd) { 15127 Value *Y = EmitScalarExpr(E->getArg(1)); 15128 return Builder.CreateFDiv(X, Y, "recipdiv"); 15129 } 15130 auto *One = ConstantFP::get(ResultType, 1.0); 15131 llvm::Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType); 15132 return Builder.CreateFDiv(One, Builder.CreateCall(F, X), "rsqrt"); 15133 } 15134 15135 // FMA variations 15136 case PPC::BI__builtin_vsx_xvmaddadp: 15137 case PPC::BI__builtin_vsx_xvmaddasp: 15138 case PPC::BI__builtin_vsx_xvnmaddadp: 15139 case PPC::BI__builtin_vsx_xvnmaddasp: 15140 case PPC::BI__builtin_vsx_xvmsubadp: 15141 case PPC::BI__builtin_vsx_xvmsubasp: 15142 case PPC::BI__builtin_vsx_xvnmsubadp: 15143 case PPC::BI__builtin_vsx_xvnmsubasp: { 15144 llvm::Type *ResultType = ConvertType(E->getType()); 15145 Value *X = EmitScalarExpr(E->getArg(0)); 15146 Value *Y = EmitScalarExpr(E->getArg(1)); 15147 Value *Z = EmitScalarExpr(E->getArg(2)); 15148 llvm::Function *F; 15149 if (Builder.getIsFPConstrained()) 15150 F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType); 15151 else 15152 F = CGM.getIntrinsic(Intrinsic::fma, ResultType); 15153 switch (BuiltinID) { 15154 case PPC::BI__builtin_vsx_xvmaddadp: 15155 case PPC::BI__builtin_vsx_xvmaddasp: 15156 if (Builder.getIsFPConstrained()) 15157 return Builder.CreateConstrainedFPCall(F, {X, Y, Z}); 15158 else 15159 return Builder.CreateCall(F, {X, Y, Z}); 15160 case PPC::BI__builtin_vsx_xvnmaddadp: 15161 case PPC::BI__builtin_vsx_xvnmaddasp: 15162 if (Builder.getIsFPConstrained()) 15163 return Builder.CreateFNeg( 15164 Builder.CreateConstrainedFPCall(F, {X, Y, Z}), "neg"); 15165 else 15166 return Builder.CreateFNeg(Builder.CreateCall(F, {X, Y, Z}), "neg"); 15167 case PPC::BI__builtin_vsx_xvmsubadp: 15168 case PPC::BI__builtin_vsx_xvmsubasp: 15169 if (Builder.getIsFPConstrained()) 15170 return Builder.CreateConstrainedFPCall( 15171 F, {X, Y, Builder.CreateFNeg(Z, "neg")}); 15172 else 15173 return Builder.CreateCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")}); 15174 case PPC::BI__builtin_vsx_xvnmsubadp: 15175 case PPC::BI__builtin_vsx_xvnmsubasp: 15176 if (Builder.getIsFPConstrained()) 15177 return Builder.CreateFNeg( 15178 Builder.CreateConstrainedFPCall( 15179 F, {X, Y, Builder.CreateFNeg(Z, "neg")}), 15180 "neg"); 15181 else 15182 return Builder.CreateFNeg( 15183 Builder.CreateCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")}), 15184 "neg"); 15185 } 15186 llvm_unreachable("Unknown FMA operation"); 15187 return nullptr; // Suppress no-return warning 15188 } 15189 15190 case PPC::BI__builtin_vsx_insertword: { 15191 llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxinsertw); 15192 15193 // Third argument is a compile time constant int. It must be clamped to 15194 // to the range [0, 12]. 15195 ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]); 15196 assert(ArgCI && 15197 "Third arg to xxinsertw intrinsic must be constant integer"); 15198 const int64_t MaxIndex = 12; 15199 int64_t Index = clamp(ArgCI->getSExtValue(), 0, MaxIndex); 15200 15201 // The builtin semantics don't exactly match the xxinsertw instructions 15202 // semantics (which ppc_vsx_xxinsertw follows). The builtin extracts the 15203 // word from the first argument, and inserts it in the second argument. The 15204 // instruction extracts the word from its second input register and inserts 15205 // it into its first input register, so swap the first and second arguments. 15206 std::swap(Ops[0], Ops[1]); 15207 15208 // Need to cast the second argument from a vector of unsigned int to a 15209 // vector of long long. 15210 Ops[1] = 15211 Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(Int64Ty, 2)); 15212 15213 if (getTarget().isLittleEndian()) { 15214 // Reverse the double words in the vector we will extract from. 15215 Ops[0] = 15216 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 2)); 15217 Ops[0] = Builder.CreateShuffleVector(Ops[0], Ops[0], ArrayRef<int>{1, 0}); 15218 15219 // Reverse the index. 15220 Index = MaxIndex - Index; 15221 } 15222 15223 // Intrinsic expects the first arg to be a vector of int. 15224 Ops[0] = 15225 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int32Ty, 4)); 15226 Ops[2] = ConstantInt::getSigned(Int32Ty, Index); 15227 return Builder.CreateCall(F, Ops); 15228 } 15229 15230 case PPC::BI__builtin_vsx_extractuword: { 15231 llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxextractuw); 15232 15233 // Intrinsic expects the first argument to be a vector of doublewords. 15234 Ops[0] = 15235 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 2)); 15236 15237 // The second argument is a compile time constant int that needs to 15238 // be clamped to the range [0, 12]. 15239 ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[1]); 15240 assert(ArgCI && 15241 "Second Arg to xxextractuw intrinsic must be a constant integer!"); 15242 const int64_t MaxIndex = 12; 15243 int64_t Index = clamp(ArgCI->getSExtValue(), 0, MaxIndex); 15244 15245 if (getTarget().isLittleEndian()) { 15246 // Reverse the index. 15247 Index = MaxIndex - Index; 15248 Ops[1] = ConstantInt::getSigned(Int32Ty, Index); 15249 15250 // Emit the call, then reverse the double words of the results vector. 15251 Value *Call = Builder.CreateCall(F, Ops); 15252 15253 Value *ShuffleCall = 15254 Builder.CreateShuffleVector(Call, Call, ArrayRef<int>{1, 0}); 15255 return ShuffleCall; 15256 } else { 15257 Ops[1] = ConstantInt::getSigned(Int32Ty, Index); 15258 return Builder.CreateCall(F, Ops); 15259 } 15260 } 15261 15262 case PPC::BI__builtin_vsx_xxpermdi: { 15263 ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]); 15264 assert(ArgCI && "Third arg must be constant integer!"); 15265 15266 unsigned Index = ArgCI->getZExtValue(); 15267 Ops[0] = 15268 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 2)); 15269 Ops[1] = 15270 Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(Int64Ty, 2)); 15271 15272 // Account for endianness by treating this as just a shuffle. So we use the 15273 // same indices for both LE and BE in order to produce expected results in 15274 // both cases. 15275 int ElemIdx0 = (Index & 2) >> 1; 15276 int ElemIdx1 = 2 + (Index & 1); 15277 15278 int ShuffleElts[2] = {ElemIdx0, ElemIdx1}; 15279 Value *ShuffleCall = 15280 Builder.CreateShuffleVector(Ops[0], Ops[1], ShuffleElts); 15281 QualType BIRetType = E->getType(); 15282 auto RetTy = ConvertType(BIRetType); 15283 return Builder.CreateBitCast(ShuffleCall, RetTy); 15284 } 15285 15286 case PPC::BI__builtin_vsx_xxsldwi: { 15287 ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]); 15288 assert(ArgCI && "Third argument must be a compile time constant"); 15289 unsigned Index = ArgCI->getZExtValue() & 0x3; 15290 Ops[0] = 15291 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int32Ty, 4)); 15292 Ops[1] = 15293 Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(Int32Ty, 4)); 15294 15295 // Create a shuffle mask 15296 int ElemIdx0; 15297 int ElemIdx1; 15298 int ElemIdx2; 15299 int ElemIdx3; 15300 if (getTarget().isLittleEndian()) { 15301 // Little endian element N comes from element 8+N-Index of the 15302 // concatenated wide vector (of course, using modulo arithmetic on 15303 // the total number of elements). 15304 ElemIdx0 = (8 - Index) % 8; 15305 ElemIdx1 = (9 - Index) % 8; 15306 ElemIdx2 = (10 - Index) % 8; 15307 ElemIdx3 = (11 - Index) % 8; 15308 } else { 15309 // Big endian ElemIdx<N> = Index + N 15310 ElemIdx0 = Index; 15311 ElemIdx1 = Index + 1; 15312 ElemIdx2 = Index + 2; 15313 ElemIdx3 = Index + 3; 15314 } 15315 15316 int ShuffleElts[4] = {ElemIdx0, ElemIdx1, ElemIdx2, ElemIdx3}; 15317 Value *ShuffleCall = 15318 Builder.CreateShuffleVector(Ops[0], Ops[1], ShuffleElts); 15319 QualType BIRetType = E->getType(); 15320 auto RetTy = ConvertType(BIRetType); 15321 return Builder.CreateBitCast(ShuffleCall, RetTy); 15322 } 15323 15324 case PPC::BI__builtin_pack_vector_int128: { 15325 bool isLittleEndian = getTarget().isLittleEndian(); 15326 Value *UndefValue = 15327 llvm::UndefValue::get(llvm::FixedVectorType::get(Ops[0]->getType(), 2)); 15328 Value *Res = Builder.CreateInsertElement( 15329 UndefValue, Ops[0], (uint64_t)(isLittleEndian ? 1 : 0)); 15330 Res = Builder.CreateInsertElement(Res, Ops[1], 15331 (uint64_t)(isLittleEndian ? 0 : 1)); 15332 return Builder.CreateBitCast(Res, ConvertType(E->getType())); 15333 } 15334 15335 case PPC::BI__builtin_unpack_vector_int128: { 15336 ConstantInt *Index = cast<ConstantInt>(Ops[1]); 15337 Value *Unpacked = Builder.CreateBitCast( 15338 Ops[0], llvm::FixedVectorType::get(ConvertType(E->getType()), 2)); 15339 15340 if (getTarget().isLittleEndian()) 15341 Index = ConstantInt::get(Index->getType(), 1 - Index->getZExtValue()); 15342 15343 return Builder.CreateExtractElement(Unpacked, Index); 15344 } 15345 15346 // The PPC MMA builtins take a pointer to a __vector_quad as an argument. 15347 // Some of the MMA instructions accumulate their result into an existing 15348 // accumulator whereas the others generate a new accumulator. So we need to 15349 // use custom code generation to expand a builtin call with a pointer to a 15350 // load (if the corresponding instruction accumulates its result) followed by 15351 // the call to the intrinsic and a store of the result. 15352 #define CUSTOM_BUILTIN(Name, Intr, Types, Accumulate) \ 15353 case PPC::BI__builtin_##Name: 15354 #include "clang/Basic/BuiltinsPPC.def" 15355 { 15356 // The first argument of these two builtins is a pointer used to store their 15357 // result. However, the llvm intrinsics return their result in multiple 15358 // return values. So, here we emit code extracting these values from the 15359 // intrinsic results and storing them using that pointer. 15360 if (BuiltinID == PPC::BI__builtin_mma_disassemble_acc || 15361 BuiltinID == PPC::BI__builtin_vsx_disassemble_pair || 15362 BuiltinID == PPC::BI__builtin_mma_disassemble_pair) { 15363 unsigned NumVecs = 2; 15364 auto Intrinsic = Intrinsic::ppc_vsx_disassemble_pair; 15365 if (BuiltinID == PPC::BI__builtin_mma_disassemble_acc) { 15366 NumVecs = 4; 15367 Intrinsic = Intrinsic::ppc_mma_disassemble_acc; 15368 } 15369 llvm::Function *F = CGM.getIntrinsic(Intrinsic); 15370 Address Addr = EmitPointerWithAlignment(E->getArg(1)); 15371 Value *Vec = Builder.CreateLoad(Addr); 15372 Value *Call = Builder.CreateCall(F, {Vec}); 15373 llvm::Type *VTy = llvm::FixedVectorType::get(Int8Ty, 16); 15374 Value *Ptr = Builder.CreateBitCast(Ops[0], VTy->getPointerTo()); 15375 for (unsigned i=0; i<NumVecs; i++) { 15376 Value *Vec = Builder.CreateExtractValue(Call, i); 15377 llvm::ConstantInt* Index = llvm::ConstantInt::get(IntTy, i); 15378 Value *GEP = Builder.CreateInBoundsGEP(VTy, Ptr, Index); 15379 Builder.CreateAlignedStore(Vec, GEP, MaybeAlign(16)); 15380 } 15381 return Call; 15382 } 15383 bool Accumulate; 15384 switch (BuiltinID) { 15385 #define CUSTOM_BUILTIN(Name, Intr, Types, Acc) \ 15386 case PPC::BI__builtin_##Name: \ 15387 ID = Intrinsic::ppc_##Intr; \ 15388 Accumulate = Acc; \ 15389 break; 15390 #include "clang/Basic/BuiltinsPPC.def" 15391 } 15392 if (BuiltinID == PPC::BI__builtin_vsx_lxvp || 15393 BuiltinID == PPC::BI__builtin_vsx_stxvp || 15394 BuiltinID == PPC::BI__builtin_mma_lxvp || 15395 BuiltinID == PPC::BI__builtin_mma_stxvp) { 15396 if (BuiltinID == PPC::BI__builtin_vsx_lxvp || 15397 BuiltinID == PPC::BI__builtin_mma_lxvp) { 15398 Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy); 15399 Ops[0] = Builder.CreateGEP(Ops[1], Ops[0]); 15400 } else { 15401 Ops[2] = Builder.CreateBitCast(Ops[2], Int8PtrTy); 15402 Ops[1] = Builder.CreateGEP(Ops[2], Ops[1]); 15403 } 15404 Ops.pop_back(); 15405 llvm::Function *F = CGM.getIntrinsic(ID); 15406 return Builder.CreateCall(F, Ops, ""); 15407 } 15408 SmallVector<Value*, 4> CallOps; 15409 if (Accumulate) { 15410 Address Addr = EmitPointerWithAlignment(E->getArg(0)); 15411 Value *Acc = Builder.CreateLoad(Addr); 15412 CallOps.push_back(Acc); 15413 } 15414 for (unsigned i=1; i<Ops.size(); i++) 15415 CallOps.push_back(Ops[i]); 15416 llvm::Function *F = CGM.getIntrinsic(ID); 15417 Value *Call = Builder.CreateCall(F, CallOps); 15418 return Builder.CreateAlignedStore(Call, Ops[0], MaybeAlign(64)); 15419 } 15420 } 15421 } 15422 15423 namespace { 15424 // If \p E is not null pointer, insert address space cast to match return 15425 // type of \p E if necessary. 15426 Value *EmitAMDGPUDispatchPtr(CodeGenFunction &CGF, 15427 const CallExpr *E = nullptr) { 15428 auto *F = CGF.CGM.getIntrinsic(Intrinsic::amdgcn_dispatch_ptr); 15429 auto *Call = CGF.Builder.CreateCall(F); 15430 Call->addAttribute( 15431 AttributeList::ReturnIndex, 15432 Attribute::getWithDereferenceableBytes(Call->getContext(), 64)); 15433 Call->addAttribute(AttributeList::ReturnIndex, 15434 Attribute::getWithAlignment(Call->getContext(), Align(4))); 15435 if (!E) 15436 return Call; 15437 QualType BuiltinRetType = E->getType(); 15438 auto *RetTy = cast<llvm::PointerType>(CGF.ConvertType(BuiltinRetType)); 15439 if (RetTy == Call->getType()) 15440 return Call; 15441 return CGF.Builder.CreateAddrSpaceCast(Call, RetTy); 15442 } 15443 15444 // \p Index is 0, 1, and 2 for x, y, and z dimension, respectively. 15445 Value *EmitAMDGPUWorkGroupSize(CodeGenFunction &CGF, unsigned Index) { 15446 const unsigned XOffset = 4; 15447 auto *DP = EmitAMDGPUDispatchPtr(CGF); 15448 // Indexing the HSA kernel_dispatch_packet struct. 15449 auto *Offset = llvm::ConstantInt::get(CGF.Int32Ty, XOffset + Index * 2); 15450 auto *GEP = CGF.Builder.CreateGEP(DP, Offset); 15451 auto *DstTy = 15452 CGF.Int16Ty->getPointerTo(GEP->getType()->getPointerAddressSpace()); 15453 auto *Cast = CGF.Builder.CreateBitCast(GEP, DstTy); 15454 auto *LD = CGF.Builder.CreateLoad(Address(Cast, CharUnits::fromQuantity(2))); 15455 llvm::MDBuilder MDHelper(CGF.getLLVMContext()); 15456 llvm::MDNode *RNode = MDHelper.createRange(APInt(16, 1), 15457 APInt(16, CGF.getTarget().getMaxOpenCLWorkGroupSize() + 1)); 15458 LD->setMetadata(llvm::LLVMContext::MD_range, RNode); 15459 LD->setMetadata(llvm::LLVMContext::MD_invariant_load, 15460 llvm::MDNode::get(CGF.getLLVMContext(), None)); 15461 return LD; 15462 } 15463 15464 // \p Index is 0, 1, and 2 for x, y, and z dimension, respectively. 15465 Value *EmitAMDGPUGridSize(CodeGenFunction &CGF, unsigned Index) { 15466 const unsigned XOffset = 12; 15467 auto *DP = EmitAMDGPUDispatchPtr(CGF); 15468 // Indexing the HSA kernel_dispatch_packet struct. 15469 auto *Offset = llvm::ConstantInt::get(CGF.Int32Ty, XOffset + Index * 4); 15470 auto *GEP = CGF.Builder.CreateGEP(DP, Offset); 15471 auto *DstTy = 15472 CGF.Int32Ty->getPointerTo(GEP->getType()->getPointerAddressSpace()); 15473 auto *Cast = CGF.Builder.CreateBitCast(GEP, DstTy); 15474 auto *LD = CGF.Builder.CreateLoad(Address(Cast, CharUnits::fromQuantity(4))); 15475 LD->setMetadata(llvm::LLVMContext::MD_invariant_load, 15476 llvm::MDNode::get(CGF.getLLVMContext(), None)); 15477 return LD; 15478 } 15479 } // namespace 15480 15481 // For processing memory ordering and memory scope arguments of various 15482 // amdgcn builtins. 15483 // \p Order takes a C++11 comptabile memory-ordering specifier and converts 15484 // it into LLVM's memory ordering specifier using atomic C ABI, and writes 15485 // to \p AO. \p Scope takes a const char * and converts it into AMDGCN 15486 // specific SyncScopeID and writes it to \p SSID. 15487 bool CodeGenFunction::ProcessOrderScopeAMDGCN(Value *Order, Value *Scope, 15488 llvm::AtomicOrdering &AO, 15489 llvm::SyncScope::ID &SSID) { 15490 if (isa<llvm::ConstantInt>(Order)) { 15491 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue(); 15492 15493 // Map C11/C++11 memory ordering to LLVM memory ordering 15494 assert(llvm::isValidAtomicOrderingCABI(ord)); 15495 switch (static_cast<llvm::AtomicOrderingCABI>(ord)) { 15496 case llvm::AtomicOrderingCABI::acquire: 15497 case llvm::AtomicOrderingCABI::consume: 15498 AO = llvm::AtomicOrdering::Acquire; 15499 break; 15500 case llvm::AtomicOrderingCABI::release: 15501 AO = llvm::AtomicOrdering::Release; 15502 break; 15503 case llvm::AtomicOrderingCABI::acq_rel: 15504 AO = llvm::AtomicOrdering::AcquireRelease; 15505 break; 15506 case llvm::AtomicOrderingCABI::seq_cst: 15507 AO = llvm::AtomicOrdering::SequentiallyConsistent; 15508 break; 15509 case llvm::AtomicOrderingCABI::relaxed: 15510 AO = llvm::AtomicOrdering::Monotonic; 15511 break; 15512 } 15513 15514 StringRef scp; 15515 llvm::getConstantStringInfo(Scope, scp); 15516 SSID = getLLVMContext().getOrInsertSyncScopeID(scp); 15517 return true; 15518 } 15519 return false; 15520 } 15521 15522 Value *CodeGenFunction::EmitAMDGPUBuiltinExpr(unsigned BuiltinID, 15523 const CallExpr *E) { 15524 llvm::AtomicOrdering AO = llvm::AtomicOrdering::SequentiallyConsistent; 15525 llvm::SyncScope::ID SSID; 15526 switch (BuiltinID) { 15527 case AMDGPU::BI__builtin_amdgcn_div_scale: 15528 case AMDGPU::BI__builtin_amdgcn_div_scalef: { 15529 // Translate from the intrinsics's struct return to the builtin's out 15530 // argument. 15531 15532 Address FlagOutPtr = EmitPointerWithAlignment(E->getArg(3)); 15533 15534 llvm::Value *X = EmitScalarExpr(E->getArg(0)); 15535 llvm::Value *Y = EmitScalarExpr(E->getArg(1)); 15536 llvm::Value *Z = EmitScalarExpr(E->getArg(2)); 15537 15538 llvm::Function *Callee = CGM.getIntrinsic(Intrinsic::amdgcn_div_scale, 15539 X->getType()); 15540 15541 llvm::Value *Tmp = Builder.CreateCall(Callee, {X, Y, Z}); 15542 15543 llvm::Value *Result = Builder.CreateExtractValue(Tmp, 0); 15544 llvm::Value *Flag = Builder.CreateExtractValue(Tmp, 1); 15545 15546 llvm::Type *RealFlagType 15547 = FlagOutPtr.getPointer()->getType()->getPointerElementType(); 15548 15549 llvm::Value *FlagExt = Builder.CreateZExt(Flag, RealFlagType); 15550 Builder.CreateStore(FlagExt, FlagOutPtr); 15551 return Result; 15552 } 15553 case AMDGPU::BI__builtin_amdgcn_div_fmas: 15554 case AMDGPU::BI__builtin_amdgcn_div_fmasf: { 15555 llvm::Value *Src0 = EmitScalarExpr(E->getArg(0)); 15556 llvm::Value *Src1 = EmitScalarExpr(E->getArg(1)); 15557 llvm::Value *Src2 = EmitScalarExpr(E->getArg(2)); 15558 llvm::Value *Src3 = EmitScalarExpr(E->getArg(3)); 15559 15560 llvm::Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_div_fmas, 15561 Src0->getType()); 15562 llvm::Value *Src3ToBool = Builder.CreateIsNotNull(Src3); 15563 return Builder.CreateCall(F, {Src0, Src1, Src2, Src3ToBool}); 15564 } 15565 15566 case AMDGPU::BI__builtin_amdgcn_ds_swizzle: 15567 return emitBinaryBuiltin(*this, E, Intrinsic::amdgcn_ds_swizzle); 15568 case AMDGPU::BI__builtin_amdgcn_mov_dpp8: 15569 return emitBinaryBuiltin(*this, E, Intrinsic::amdgcn_mov_dpp8); 15570 case AMDGPU::BI__builtin_amdgcn_mov_dpp: 15571 case AMDGPU::BI__builtin_amdgcn_update_dpp: { 15572 llvm::SmallVector<llvm::Value *, 6> Args; 15573 for (unsigned I = 0; I != E->getNumArgs(); ++I) 15574 Args.push_back(EmitScalarExpr(E->getArg(I))); 15575 assert(Args.size() == 5 || Args.size() == 6); 15576 if (Args.size() == 5) 15577 Args.insert(Args.begin(), llvm::UndefValue::get(Args[0]->getType())); 15578 Function *F = 15579 CGM.getIntrinsic(Intrinsic::amdgcn_update_dpp, Args[0]->getType()); 15580 return Builder.CreateCall(F, Args); 15581 } 15582 case AMDGPU::BI__builtin_amdgcn_div_fixup: 15583 case AMDGPU::BI__builtin_amdgcn_div_fixupf: 15584 case AMDGPU::BI__builtin_amdgcn_div_fixuph: 15585 return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_div_fixup); 15586 case AMDGPU::BI__builtin_amdgcn_trig_preop: 15587 case AMDGPU::BI__builtin_amdgcn_trig_preopf: 15588 return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_trig_preop); 15589 case AMDGPU::BI__builtin_amdgcn_rcp: 15590 case AMDGPU::BI__builtin_amdgcn_rcpf: 15591 case AMDGPU::BI__builtin_amdgcn_rcph: 15592 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rcp); 15593 case AMDGPU::BI__builtin_amdgcn_sqrt: 15594 case AMDGPU::BI__builtin_amdgcn_sqrtf: 15595 case AMDGPU::BI__builtin_amdgcn_sqrth: 15596 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_sqrt); 15597 case AMDGPU::BI__builtin_amdgcn_rsq: 15598 case AMDGPU::BI__builtin_amdgcn_rsqf: 15599 case AMDGPU::BI__builtin_amdgcn_rsqh: 15600 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rsq); 15601 case AMDGPU::BI__builtin_amdgcn_rsq_clamp: 15602 case AMDGPU::BI__builtin_amdgcn_rsq_clampf: 15603 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rsq_clamp); 15604 case AMDGPU::BI__builtin_amdgcn_sinf: 15605 case AMDGPU::BI__builtin_amdgcn_sinh: 15606 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_sin); 15607 case AMDGPU::BI__builtin_amdgcn_cosf: 15608 case AMDGPU::BI__builtin_amdgcn_cosh: 15609 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_cos); 15610 case AMDGPU::BI__builtin_amdgcn_dispatch_ptr: 15611 return EmitAMDGPUDispatchPtr(*this, E); 15612 case AMDGPU::BI__builtin_amdgcn_log_clampf: 15613 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_log_clamp); 15614 case AMDGPU::BI__builtin_amdgcn_ldexp: 15615 case AMDGPU::BI__builtin_amdgcn_ldexpf: 15616 case AMDGPU::BI__builtin_amdgcn_ldexph: 15617 return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_ldexp); 15618 case AMDGPU::BI__builtin_amdgcn_frexp_mant: 15619 case AMDGPU::BI__builtin_amdgcn_frexp_mantf: 15620 case AMDGPU::BI__builtin_amdgcn_frexp_manth: 15621 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_frexp_mant); 15622 case AMDGPU::BI__builtin_amdgcn_frexp_exp: 15623 case AMDGPU::BI__builtin_amdgcn_frexp_expf: { 15624 Value *Src0 = EmitScalarExpr(E->getArg(0)); 15625 Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_frexp_exp, 15626 { Builder.getInt32Ty(), Src0->getType() }); 15627 return Builder.CreateCall(F, Src0); 15628 } 15629 case AMDGPU::BI__builtin_amdgcn_frexp_exph: { 15630 Value *Src0 = EmitScalarExpr(E->getArg(0)); 15631 Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_frexp_exp, 15632 { Builder.getInt16Ty(), Src0->getType() }); 15633 return Builder.CreateCall(F, Src0); 15634 } 15635 case AMDGPU::BI__builtin_amdgcn_fract: 15636 case AMDGPU::BI__builtin_amdgcn_fractf: 15637 case AMDGPU::BI__builtin_amdgcn_fracth: 15638 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_fract); 15639 case AMDGPU::BI__builtin_amdgcn_lerp: 15640 return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_lerp); 15641 case AMDGPU::BI__builtin_amdgcn_ubfe: 15642 return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_ubfe); 15643 case AMDGPU::BI__builtin_amdgcn_sbfe: 15644 return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_sbfe); 15645 case AMDGPU::BI__builtin_amdgcn_uicmp: 15646 case AMDGPU::BI__builtin_amdgcn_uicmpl: 15647 case AMDGPU::BI__builtin_amdgcn_sicmp: 15648 case AMDGPU::BI__builtin_amdgcn_sicmpl: { 15649 llvm::Value *Src0 = EmitScalarExpr(E->getArg(0)); 15650 llvm::Value *Src1 = EmitScalarExpr(E->getArg(1)); 15651 llvm::Value *Src2 = EmitScalarExpr(E->getArg(2)); 15652 15653 // FIXME-GFX10: How should 32 bit mask be handled? 15654 Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_icmp, 15655 { Builder.getInt64Ty(), Src0->getType() }); 15656 return Builder.CreateCall(F, { Src0, Src1, Src2 }); 15657 } 15658 case AMDGPU::BI__builtin_amdgcn_fcmp: 15659 case AMDGPU::BI__builtin_amdgcn_fcmpf: { 15660 llvm::Value *Src0 = EmitScalarExpr(E->getArg(0)); 15661 llvm::Value *Src1 = EmitScalarExpr(E->getArg(1)); 15662 llvm::Value *Src2 = EmitScalarExpr(E->getArg(2)); 15663 15664 // FIXME-GFX10: How should 32 bit mask be handled? 15665 Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_fcmp, 15666 { Builder.getInt64Ty(), Src0->getType() }); 15667 return Builder.CreateCall(F, { Src0, Src1, Src2 }); 15668 } 15669 case AMDGPU::BI__builtin_amdgcn_class: 15670 case AMDGPU::BI__builtin_amdgcn_classf: 15671 case AMDGPU::BI__builtin_amdgcn_classh: 15672 return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_class); 15673 case AMDGPU::BI__builtin_amdgcn_fmed3f: 15674 case AMDGPU::BI__builtin_amdgcn_fmed3h: 15675 return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_fmed3); 15676 case AMDGPU::BI__builtin_amdgcn_ds_append: 15677 case AMDGPU::BI__builtin_amdgcn_ds_consume: { 15678 Intrinsic::ID Intrin = BuiltinID == AMDGPU::BI__builtin_amdgcn_ds_append ? 15679 Intrinsic::amdgcn_ds_append : Intrinsic::amdgcn_ds_consume; 15680 Value *Src0 = EmitScalarExpr(E->getArg(0)); 15681 Function *F = CGM.getIntrinsic(Intrin, { Src0->getType() }); 15682 return Builder.CreateCall(F, { Src0, Builder.getFalse() }); 15683 } 15684 case AMDGPU::BI__builtin_amdgcn_ds_faddf: 15685 case AMDGPU::BI__builtin_amdgcn_ds_fminf: 15686 case AMDGPU::BI__builtin_amdgcn_ds_fmaxf: { 15687 Intrinsic::ID Intrin; 15688 switch (BuiltinID) { 15689 case AMDGPU::BI__builtin_amdgcn_ds_faddf: 15690 Intrin = Intrinsic::amdgcn_ds_fadd; 15691 break; 15692 case AMDGPU::BI__builtin_amdgcn_ds_fminf: 15693 Intrin = Intrinsic::amdgcn_ds_fmin; 15694 break; 15695 case AMDGPU::BI__builtin_amdgcn_ds_fmaxf: 15696 Intrin = Intrinsic::amdgcn_ds_fmax; 15697 break; 15698 } 15699 llvm::Value *Src0 = EmitScalarExpr(E->getArg(0)); 15700 llvm::Value *Src1 = EmitScalarExpr(E->getArg(1)); 15701 llvm::Value *Src2 = EmitScalarExpr(E->getArg(2)); 15702 llvm::Value *Src3 = EmitScalarExpr(E->getArg(3)); 15703 llvm::Value *Src4 = EmitScalarExpr(E->getArg(4)); 15704 llvm::Function *F = CGM.getIntrinsic(Intrin, { Src1->getType() }); 15705 llvm::FunctionType *FTy = F->getFunctionType(); 15706 llvm::Type *PTy = FTy->getParamType(0); 15707 Src0 = Builder.CreatePointerBitCastOrAddrSpaceCast(Src0, PTy); 15708 return Builder.CreateCall(F, { Src0, Src1, Src2, Src3, Src4 }); 15709 } 15710 case AMDGPU::BI__builtin_amdgcn_read_exec: { 15711 CallInst *CI = cast<CallInst>( 15712 EmitSpecialRegisterBuiltin(*this, E, Int64Ty, Int64Ty, NormalRead, "exec")); 15713 CI->setConvergent(); 15714 return CI; 15715 } 15716 case AMDGPU::BI__builtin_amdgcn_read_exec_lo: 15717 case AMDGPU::BI__builtin_amdgcn_read_exec_hi: { 15718 StringRef RegName = BuiltinID == AMDGPU::BI__builtin_amdgcn_read_exec_lo ? 15719 "exec_lo" : "exec_hi"; 15720 CallInst *CI = cast<CallInst>( 15721 EmitSpecialRegisterBuiltin(*this, E, Int32Ty, Int32Ty, NormalRead, RegName)); 15722 CI->setConvergent(); 15723 return CI; 15724 } 15725 // amdgcn workitem 15726 case AMDGPU::BI__builtin_amdgcn_workitem_id_x: 15727 return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_x, 0, 1024); 15728 case AMDGPU::BI__builtin_amdgcn_workitem_id_y: 15729 return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_y, 0, 1024); 15730 case AMDGPU::BI__builtin_amdgcn_workitem_id_z: 15731 return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_z, 0, 1024); 15732 15733 // amdgcn workgroup size 15734 case AMDGPU::BI__builtin_amdgcn_workgroup_size_x: 15735 return EmitAMDGPUWorkGroupSize(*this, 0); 15736 case AMDGPU::BI__builtin_amdgcn_workgroup_size_y: 15737 return EmitAMDGPUWorkGroupSize(*this, 1); 15738 case AMDGPU::BI__builtin_amdgcn_workgroup_size_z: 15739 return EmitAMDGPUWorkGroupSize(*this, 2); 15740 15741 // amdgcn grid size 15742 case AMDGPU::BI__builtin_amdgcn_grid_size_x: 15743 return EmitAMDGPUGridSize(*this, 0); 15744 case AMDGPU::BI__builtin_amdgcn_grid_size_y: 15745 return EmitAMDGPUGridSize(*this, 1); 15746 case AMDGPU::BI__builtin_amdgcn_grid_size_z: 15747 return EmitAMDGPUGridSize(*this, 2); 15748 15749 // r600 intrinsics 15750 case AMDGPU::BI__builtin_r600_recipsqrt_ieee: 15751 case AMDGPU::BI__builtin_r600_recipsqrt_ieeef: 15752 return emitUnaryBuiltin(*this, E, Intrinsic::r600_recipsqrt_ieee); 15753 case AMDGPU::BI__builtin_r600_read_tidig_x: 15754 return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_x, 0, 1024); 15755 case AMDGPU::BI__builtin_r600_read_tidig_y: 15756 return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_y, 0, 1024); 15757 case AMDGPU::BI__builtin_r600_read_tidig_z: 15758 return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_z, 0, 1024); 15759 case AMDGPU::BI__builtin_amdgcn_alignbit: { 15760 llvm::Value *Src0 = EmitScalarExpr(E->getArg(0)); 15761 llvm::Value *Src1 = EmitScalarExpr(E->getArg(1)); 15762 llvm::Value *Src2 = EmitScalarExpr(E->getArg(2)); 15763 Function *F = CGM.getIntrinsic(Intrinsic::fshr, Src0->getType()); 15764 return Builder.CreateCall(F, { Src0, Src1, Src2 }); 15765 } 15766 15767 case AMDGPU::BI__builtin_amdgcn_fence: { 15768 if (ProcessOrderScopeAMDGCN(EmitScalarExpr(E->getArg(0)), 15769 EmitScalarExpr(E->getArg(1)), AO, SSID)) 15770 return Builder.CreateFence(AO, SSID); 15771 LLVM_FALLTHROUGH; 15772 } 15773 case AMDGPU::BI__builtin_amdgcn_atomic_inc32: 15774 case AMDGPU::BI__builtin_amdgcn_atomic_inc64: 15775 case AMDGPU::BI__builtin_amdgcn_atomic_dec32: 15776 case AMDGPU::BI__builtin_amdgcn_atomic_dec64: { 15777 unsigned BuiltinAtomicOp; 15778 llvm::Type *ResultType = ConvertType(E->getType()); 15779 15780 switch (BuiltinID) { 15781 case AMDGPU::BI__builtin_amdgcn_atomic_inc32: 15782 case AMDGPU::BI__builtin_amdgcn_atomic_inc64: 15783 BuiltinAtomicOp = Intrinsic::amdgcn_atomic_inc; 15784 break; 15785 case AMDGPU::BI__builtin_amdgcn_atomic_dec32: 15786 case AMDGPU::BI__builtin_amdgcn_atomic_dec64: 15787 BuiltinAtomicOp = Intrinsic::amdgcn_atomic_dec; 15788 break; 15789 } 15790 15791 Value *Ptr = EmitScalarExpr(E->getArg(0)); 15792 Value *Val = EmitScalarExpr(E->getArg(1)); 15793 15794 llvm::Function *F = 15795 CGM.getIntrinsic(BuiltinAtomicOp, {ResultType, Ptr->getType()}); 15796 15797 if (ProcessOrderScopeAMDGCN(EmitScalarExpr(E->getArg(2)), 15798 EmitScalarExpr(E->getArg(3)), AO, SSID)) { 15799 15800 // llvm.amdgcn.atomic.inc and llvm.amdgcn.atomic.dec expects ordering and 15801 // scope as unsigned values 15802 Value *MemOrder = Builder.getInt32(static_cast<int>(AO)); 15803 Value *MemScope = Builder.getInt32(static_cast<int>(SSID)); 15804 15805 QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType(); 15806 bool Volatile = 15807 PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified(); 15808 Value *IsVolatile = Builder.getInt1(static_cast<bool>(Volatile)); 15809 15810 return Builder.CreateCall(F, {Ptr, Val, MemOrder, MemScope, IsVolatile}); 15811 } 15812 LLVM_FALLTHROUGH; 15813 } 15814 default: 15815 return nullptr; 15816 } 15817 } 15818 15819 /// Handle a SystemZ function in which the final argument is a pointer 15820 /// to an int that receives the post-instruction CC value. At the LLVM level 15821 /// this is represented as a function that returns a {result, cc} pair. 15822 static Value *EmitSystemZIntrinsicWithCC(CodeGenFunction &CGF, 15823 unsigned IntrinsicID, 15824 const CallExpr *E) { 15825 unsigned NumArgs = E->getNumArgs() - 1; 15826 SmallVector<Value *, 8> Args(NumArgs); 15827 for (unsigned I = 0; I < NumArgs; ++I) 15828 Args[I] = CGF.EmitScalarExpr(E->getArg(I)); 15829 Address CCPtr = CGF.EmitPointerWithAlignment(E->getArg(NumArgs)); 15830 Function *F = CGF.CGM.getIntrinsic(IntrinsicID); 15831 Value *Call = CGF.Builder.CreateCall(F, Args); 15832 Value *CC = CGF.Builder.CreateExtractValue(Call, 1); 15833 CGF.Builder.CreateStore(CC, CCPtr); 15834 return CGF.Builder.CreateExtractValue(Call, 0); 15835 } 15836 15837 Value *CodeGenFunction::EmitSystemZBuiltinExpr(unsigned BuiltinID, 15838 const CallExpr *E) { 15839 switch (BuiltinID) { 15840 case SystemZ::BI__builtin_tbegin: { 15841 Value *TDB = EmitScalarExpr(E->getArg(0)); 15842 Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c); 15843 Function *F = CGM.getIntrinsic(Intrinsic::s390_tbegin); 15844 return Builder.CreateCall(F, {TDB, Control}); 15845 } 15846 case SystemZ::BI__builtin_tbegin_nofloat: { 15847 Value *TDB = EmitScalarExpr(E->getArg(0)); 15848 Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c); 15849 Function *F = CGM.getIntrinsic(Intrinsic::s390_tbegin_nofloat); 15850 return Builder.CreateCall(F, {TDB, Control}); 15851 } 15852 case SystemZ::BI__builtin_tbeginc: { 15853 Value *TDB = llvm::ConstantPointerNull::get(Int8PtrTy); 15854 Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff08); 15855 Function *F = CGM.getIntrinsic(Intrinsic::s390_tbeginc); 15856 return Builder.CreateCall(F, {TDB, Control}); 15857 } 15858 case SystemZ::BI__builtin_tabort: { 15859 Value *Data = EmitScalarExpr(E->getArg(0)); 15860 Function *F = CGM.getIntrinsic(Intrinsic::s390_tabort); 15861 return Builder.CreateCall(F, Builder.CreateSExt(Data, Int64Ty, "tabort")); 15862 } 15863 case SystemZ::BI__builtin_non_tx_store: { 15864 Value *Address = EmitScalarExpr(E->getArg(0)); 15865 Value *Data = EmitScalarExpr(E->getArg(1)); 15866 Function *F = CGM.getIntrinsic(Intrinsic::s390_ntstg); 15867 return Builder.CreateCall(F, {Data, Address}); 15868 } 15869 15870 // Vector builtins. Note that most vector builtins are mapped automatically 15871 // to target-specific LLVM intrinsics. The ones handled specially here can 15872 // be represented via standard LLVM IR, which is preferable to enable common 15873 // LLVM optimizations. 15874 15875 case SystemZ::BI__builtin_s390_vpopctb: 15876 case SystemZ::BI__builtin_s390_vpopcth: 15877 case SystemZ::BI__builtin_s390_vpopctf: 15878 case SystemZ::BI__builtin_s390_vpopctg: { 15879 llvm::Type *ResultType = ConvertType(E->getType()); 15880 Value *X = EmitScalarExpr(E->getArg(0)); 15881 Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType); 15882 return Builder.CreateCall(F, X); 15883 } 15884 15885 case SystemZ::BI__builtin_s390_vclzb: 15886 case SystemZ::BI__builtin_s390_vclzh: 15887 case SystemZ::BI__builtin_s390_vclzf: 15888 case SystemZ::BI__builtin_s390_vclzg: { 15889 llvm::Type *ResultType = ConvertType(E->getType()); 15890 Value *X = EmitScalarExpr(E->getArg(0)); 15891 Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false); 15892 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType); 15893 return Builder.CreateCall(F, {X, Undef}); 15894 } 15895 15896 case SystemZ::BI__builtin_s390_vctzb: 15897 case SystemZ::BI__builtin_s390_vctzh: 15898 case SystemZ::BI__builtin_s390_vctzf: 15899 case SystemZ::BI__builtin_s390_vctzg: { 15900 llvm::Type *ResultType = ConvertType(E->getType()); 15901 Value *X = EmitScalarExpr(E->getArg(0)); 15902 Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false); 15903 Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType); 15904 return Builder.CreateCall(F, {X, Undef}); 15905 } 15906 15907 case SystemZ::BI__builtin_s390_vfsqsb: 15908 case SystemZ::BI__builtin_s390_vfsqdb: { 15909 llvm::Type *ResultType = ConvertType(E->getType()); 15910 Value *X = EmitScalarExpr(E->getArg(0)); 15911 if (Builder.getIsFPConstrained()) { 15912 Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt, ResultType); 15913 return Builder.CreateConstrainedFPCall(F, { X }); 15914 } else { 15915 Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType); 15916 return Builder.CreateCall(F, X); 15917 } 15918 } 15919 case SystemZ::BI__builtin_s390_vfmasb: 15920 case SystemZ::BI__builtin_s390_vfmadb: { 15921 llvm::Type *ResultType = ConvertType(E->getType()); 15922 Value *X = EmitScalarExpr(E->getArg(0)); 15923 Value *Y = EmitScalarExpr(E->getArg(1)); 15924 Value *Z = EmitScalarExpr(E->getArg(2)); 15925 if (Builder.getIsFPConstrained()) { 15926 Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType); 15927 return Builder.CreateConstrainedFPCall(F, {X, Y, Z}); 15928 } else { 15929 Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType); 15930 return Builder.CreateCall(F, {X, Y, Z}); 15931 } 15932 } 15933 case SystemZ::BI__builtin_s390_vfmssb: 15934 case SystemZ::BI__builtin_s390_vfmsdb: { 15935 llvm::Type *ResultType = ConvertType(E->getType()); 15936 Value *X = EmitScalarExpr(E->getArg(0)); 15937 Value *Y = EmitScalarExpr(E->getArg(1)); 15938 Value *Z = EmitScalarExpr(E->getArg(2)); 15939 if (Builder.getIsFPConstrained()) { 15940 Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType); 15941 return Builder.CreateConstrainedFPCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")}); 15942 } else { 15943 Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType); 15944 return Builder.CreateCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")}); 15945 } 15946 } 15947 case SystemZ::BI__builtin_s390_vfnmasb: 15948 case SystemZ::BI__builtin_s390_vfnmadb: { 15949 llvm::Type *ResultType = ConvertType(E->getType()); 15950 Value *X = EmitScalarExpr(E->getArg(0)); 15951 Value *Y = EmitScalarExpr(E->getArg(1)); 15952 Value *Z = EmitScalarExpr(E->getArg(2)); 15953 if (Builder.getIsFPConstrained()) { 15954 Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType); 15955 return Builder.CreateFNeg(Builder.CreateConstrainedFPCall(F, {X, Y, Z}), "neg"); 15956 } else { 15957 Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType); 15958 return Builder.CreateFNeg(Builder.CreateCall(F, {X, Y, Z}), "neg"); 15959 } 15960 } 15961 case SystemZ::BI__builtin_s390_vfnmssb: 15962 case SystemZ::BI__builtin_s390_vfnmsdb: { 15963 llvm::Type *ResultType = ConvertType(E->getType()); 15964 Value *X = EmitScalarExpr(E->getArg(0)); 15965 Value *Y = EmitScalarExpr(E->getArg(1)); 15966 Value *Z = EmitScalarExpr(E->getArg(2)); 15967 if (Builder.getIsFPConstrained()) { 15968 Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType); 15969 Value *NegZ = Builder.CreateFNeg(Z, "sub"); 15970 return Builder.CreateFNeg(Builder.CreateConstrainedFPCall(F, {X, Y, NegZ})); 15971 } else { 15972 Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType); 15973 Value *NegZ = Builder.CreateFNeg(Z, "neg"); 15974 return Builder.CreateFNeg(Builder.CreateCall(F, {X, Y, NegZ})); 15975 } 15976 } 15977 case SystemZ::BI__builtin_s390_vflpsb: 15978 case SystemZ::BI__builtin_s390_vflpdb: { 15979 llvm::Type *ResultType = ConvertType(E->getType()); 15980 Value *X = EmitScalarExpr(E->getArg(0)); 15981 Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType); 15982 return Builder.CreateCall(F, X); 15983 } 15984 case SystemZ::BI__builtin_s390_vflnsb: 15985 case SystemZ::BI__builtin_s390_vflndb: { 15986 llvm::Type *ResultType = ConvertType(E->getType()); 15987 Value *X = EmitScalarExpr(E->getArg(0)); 15988 Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType); 15989 return Builder.CreateFNeg(Builder.CreateCall(F, X), "neg"); 15990 } 15991 case SystemZ::BI__builtin_s390_vfisb: 15992 case SystemZ::BI__builtin_s390_vfidb: { 15993 llvm::Type *ResultType = ConvertType(E->getType()); 15994 Value *X = EmitScalarExpr(E->getArg(0)); 15995 // Constant-fold the M4 and M5 mask arguments. 15996 llvm::APSInt M4 = *E->getArg(1)->getIntegerConstantExpr(getContext()); 15997 llvm::APSInt M5 = *E->getArg(2)->getIntegerConstantExpr(getContext()); 15998 // Check whether this instance can be represented via a LLVM standard 15999 // intrinsic. We only support some combinations of M4 and M5. 16000 Intrinsic::ID ID = Intrinsic::not_intrinsic; 16001 Intrinsic::ID CI; 16002 switch (M4.getZExtValue()) { 16003 default: break; 16004 case 0: // IEEE-inexact exception allowed 16005 switch (M5.getZExtValue()) { 16006 default: break; 16007 case 0: ID = Intrinsic::rint; 16008 CI = Intrinsic::experimental_constrained_rint; break; 16009 } 16010 break; 16011 case 4: // IEEE-inexact exception suppressed 16012 switch (M5.getZExtValue()) { 16013 default: break; 16014 case 0: ID = Intrinsic::nearbyint; 16015 CI = Intrinsic::experimental_constrained_nearbyint; break; 16016 case 1: ID = Intrinsic::round; 16017 CI = Intrinsic::experimental_constrained_round; break; 16018 case 5: ID = Intrinsic::trunc; 16019 CI = Intrinsic::experimental_constrained_trunc; break; 16020 case 6: ID = Intrinsic::ceil; 16021 CI = Intrinsic::experimental_constrained_ceil; break; 16022 case 7: ID = Intrinsic::floor; 16023 CI = Intrinsic::experimental_constrained_floor; break; 16024 } 16025 break; 16026 } 16027 if (ID != Intrinsic::not_intrinsic) { 16028 if (Builder.getIsFPConstrained()) { 16029 Function *F = CGM.getIntrinsic(CI, ResultType); 16030 return Builder.CreateConstrainedFPCall(F, X); 16031 } else { 16032 Function *F = CGM.getIntrinsic(ID, ResultType); 16033 return Builder.CreateCall(F, X); 16034 } 16035 } 16036 switch (BuiltinID) { // FIXME: constrained version? 16037 case SystemZ::BI__builtin_s390_vfisb: ID = Intrinsic::s390_vfisb; break; 16038 case SystemZ::BI__builtin_s390_vfidb: ID = Intrinsic::s390_vfidb; break; 16039 default: llvm_unreachable("Unknown BuiltinID"); 16040 } 16041 Function *F = CGM.getIntrinsic(ID); 16042 Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4); 16043 Value *M5Value = llvm::ConstantInt::get(getLLVMContext(), M5); 16044 return Builder.CreateCall(F, {X, M4Value, M5Value}); 16045 } 16046 case SystemZ::BI__builtin_s390_vfmaxsb: 16047 case SystemZ::BI__builtin_s390_vfmaxdb: { 16048 llvm::Type *ResultType = ConvertType(E->getType()); 16049 Value *X = EmitScalarExpr(E->getArg(0)); 16050 Value *Y = EmitScalarExpr(E->getArg(1)); 16051 // Constant-fold the M4 mask argument. 16052 llvm::APSInt M4 = *E->getArg(2)->getIntegerConstantExpr(getContext()); 16053 // Check whether this instance can be represented via a LLVM standard 16054 // intrinsic. We only support some values of M4. 16055 Intrinsic::ID ID = Intrinsic::not_intrinsic; 16056 Intrinsic::ID CI; 16057 switch (M4.getZExtValue()) { 16058 default: break; 16059 case 4: ID = Intrinsic::maxnum; 16060 CI = Intrinsic::experimental_constrained_maxnum; break; 16061 } 16062 if (ID != Intrinsic::not_intrinsic) { 16063 if (Builder.getIsFPConstrained()) { 16064 Function *F = CGM.getIntrinsic(CI, ResultType); 16065 return Builder.CreateConstrainedFPCall(F, {X, Y}); 16066 } else { 16067 Function *F = CGM.getIntrinsic(ID, ResultType); 16068 return Builder.CreateCall(F, {X, Y}); 16069 } 16070 } 16071 switch (BuiltinID) { 16072 case SystemZ::BI__builtin_s390_vfmaxsb: ID = Intrinsic::s390_vfmaxsb; break; 16073 case SystemZ::BI__builtin_s390_vfmaxdb: ID = Intrinsic::s390_vfmaxdb; break; 16074 default: llvm_unreachable("Unknown BuiltinID"); 16075 } 16076 Function *F = CGM.getIntrinsic(ID); 16077 Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4); 16078 return Builder.CreateCall(F, {X, Y, M4Value}); 16079 } 16080 case SystemZ::BI__builtin_s390_vfminsb: 16081 case SystemZ::BI__builtin_s390_vfmindb: { 16082 llvm::Type *ResultType = ConvertType(E->getType()); 16083 Value *X = EmitScalarExpr(E->getArg(0)); 16084 Value *Y = EmitScalarExpr(E->getArg(1)); 16085 // Constant-fold the M4 mask argument. 16086 llvm::APSInt M4 = *E->getArg(2)->getIntegerConstantExpr(getContext()); 16087 // Check whether this instance can be represented via a LLVM standard 16088 // intrinsic. We only support some values of M4. 16089 Intrinsic::ID ID = Intrinsic::not_intrinsic; 16090 Intrinsic::ID CI; 16091 switch (M4.getZExtValue()) { 16092 default: break; 16093 case 4: ID = Intrinsic::minnum; 16094 CI = Intrinsic::experimental_constrained_minnum; break; 16095 } 16096 if (ID != Intrinsic::not_intrinsic) { 16097 if (Builder.getIsFPConstrained()) { 16098 Function *F = CGM.getIntrinsic(CI, ResultType); 16099 return Builder.CreateConstrainedFPCall(F, {X, Y}); 16100 } else { 16101 Function *F = CGM.getIntrinsic(ID, ResultType); 16102 return Builder.CreateCall(F, {X, Y}); 16103 } 16104 } 16105 switch (BuiltinID) { 16106 case SystemZ::BI__builtin_s390_vfminsb: ID = Intrinsic::s390_vfminsb; break; 16107 case SystemZ::BI__builtin_s390_vfmindb: ID = Intrinsic::s390_vfmindb; break; 16108 default: llvm_unreachable("Unknown BuiltinID"); 16109 } 16110 Function *F = CGM.getIntrinsic(ID); 16111 Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4); 16112 return Builder.CreateCall(F, {X, Y, M4Value}); 16113 } 16114 16115 case SystemZ::BI__builtin_s390_vlbrh: 16116 case SystemZ::BI__builtin_s390_vlbrf: 16117 case SystemZ::BI__builtin_s390_vlbrg: { 16118 llvm::Type *ResultType = ConvertType(E->getType()); 16119 Value *X = EmitScalarExpr(E->getArg(0)); 16120 Function *F = CGM.getIntrinsic(Intrinsic::bswap, ResultType); 16121 return Builder.CreateCall(F, X); 16122 } 16123 16124 // Vector intrinsics that output the post-instruction CC value. 16125 16126 #define INTRINSIC_WITH_CC(NAME) \ 16127 case SystemZ::BI__builtin_##NAME: \ 16128 return EmitSystemZIntrinsicWithCC(*this, Intrinsic::NAME, E) 16129 16130 INTRINSIC_WITH_CC(s390_vpkshs); 16131 INTRINSIC_WITH_CC(s390_vpksfs); 16132 INTRINSIC_WITH_CC(s390_vpksgs); 16133 16134 INTRINSIC_WITH_CC(s390_vpklshs); 16135 INTRINSIC_WITH_CC(s390_vpklsfs); 16136 INTRINSIC_WITH_CC(s390_vpklsgs); 16137 16138 INTRINSIC_WITH_CC(s390_vceqbs); 16139 INTRINSIC_WITH_CC(s390_vceqhs); 16140 INTRINSIC_WITH_CC(s390_vceqfs); 16141 INTRINSIC_WITH_CC(s390_vceqgs); 16142 16143 INTRINSIC_WITH_CC(s390_vchbs); 16144 INTRINSIC_WITH_CC(s390_vchhs); 16145 INTRINSIC_WITH_CC(s390_vchfs); 16146 INTRINSIC_WITH_CC(s390_vchgs); 16147 16148 INTRINSIC_WITH_CC(s390_vchlbs); 16149 INTRINSIC_WITH_CC(s390_vchlhs); 16150 INTRINSIC_WITH_CC(s390_vchlfs); 16151 INTRINSIC_WITH_CC(s390_vchlgs); 16152 16153 INTRINSIC_WITH_CC(s390_vfaebs); 16154 INTRINSIC_WITH_CC(s390_vfaehs); 16155 INTRINSIC_WITH_CC(s390_vfaefs); 16156 16157 INTRINSIC_WITH_CC(s390_vfaezbs); 16158 INTRINSIC_WITH_CC(s390_vfaezhs); 16159 INTRINSIC_WITH_CC(s390_vfaezfs); 16160 16161 INTRINSIC_WITH_CC(s390_vfeebs); 16162 INTRINSIC_WITH_CC(s390_vfeehs); 16163 INTRINSIC_WITH_CC(s390_vfeefs); 16164 16165 INTRINSIC_WITH_CC(s390_vfeezbs); 16166 INTRINSIC_WITH_CC(s390_vfeezhs); 16167 INTRINSIC_WITH_CC(s390_vfeezfs); 16168 16169 INTRINSIC_WITH_CC(s390_vfenebs); 16170 INTRINSIC_WITH_CC(s390_vfenehs); 16171 INTRINSIC_WITH_CC(s390_vfenefs); 16172 16173 INTRINSIC_WITH_CC(s390_vfenezbs); 16174 INTRINSIC_WITH_CC(s390_vfenezhs); 16175 INTRINSIC_WITH_CC(s390_vfenezfs); 16176 16177 INTRINSIC_WITH_CC(s390_vistrbs); 16178 INTRINSIC_WITH_CC(s390_vistrhs); 16179 INTRINSIC_WITH_CC(s390_vistrfs); 16180 16181 INTRINSIC_WITH_CC(s390_vstrcbs); 16182 INTRINSIC_WITH_CC(s390_vstrchs); 16183 INTRINSIC_WITH_CC(s390_vstrcfs); 16184 16185 INTRINSIC_WITH_CC(s390_vstrczbs); 16186 INTRINSIC_WITH_CC(s390_vstrczhs); 16187 INTRINSIC_WITH_CC(s390_vstrczfs); 16188 16189 INTRINSIC_WITH_CC(s390_vfcesbs); 16190 INTRINSIC_WITH_CC(s390_vfcedbs); 16191 INTRINSIC_WITH_CC(s390_vfchsbs); 16192 INTRINSIC_WITH_CC(s390_vfchdbs); 16193 INTRINSIC_WITH_CC(s390_vfchesbs); 16194 INTRINSIC_WITH_CC(s390_vfchedbs); 16195 16196 INTRINSIC_WITH_CC(s390_vftcisb); 16197 INTRINSIC_WITH_CC(s390_vftcidb); 16198 16199 INTRINSIC_WITH_CC(s390_vstrsb); 16200 INTRINSIC_WITH_CC(s390_vstrsh); 16201 INTRINSIC_WITH_CC(s390_vstrsf); 16202 16203 INTRINSIC_WITH_CC(s390_vstrszb); 16204 INTRINSIC_WITH_CC(s390_vstrszh); 16205 INTRINSIC_WITH_CC(s390_vstrszf); 16206 16207 #undef INTRINSIC_WITH_CC 16208 16209 default: 16210 return nullptr; 16211 } 16212 } 16213 16214 namespace { 16215 // Helper classes for mapping MMA builtins to particular LLVM intrinsic variant. 16216 struct NVPTXMmaLdstInfo { 16217 unsigned NumResults; // Number of elements to load/store 16218 // Intrinsic IDs for row/col variants. 0 if particular layout is unsupported. 16219 unsigned IID_col; 16220 unsigned IID_row; 16221 }; 16222 16223 #define MMA_INTR(geom_op_type, layout) \ 16224 Intrinsic::nvvm_wmma_##geom_op_type##_##layout##_stride 16225 #define MMA_LDST(n, geom_op_type) \ 16226 { n, MMA_INTR(geom_op_type, col), MMA_INTR(geom_op_type, row) } 16227 16228 static NVPTXMmaLdstInfo getNVPTXMmaLdstInfo(unsigned BuiltinID) { 16229 switch (BuiltinID) { 16230 // FP MMA loads 16231 case NVPTX::BI__hmma_m16n16k16_ld_a: 16232 return MMA_LDST(8, m16n16k16_load_a_f16); 16233 case NVPTX::BI__hmma_m16n16k16_ld_b: 16234 return MMA_LDST(8, m16n16k16_load_b_f16); 16235 case NVPTX::BI__hmma_m16n16k16_ld_c_f16: 16236 return MMA_LDST(4, m16n16k16_load_c_f16); 16237 case NVPTX::BI__hmma_m16n16k16_ld_c_f32: 16238 return MMA_LDST(8, m16n16k16_load_c_f32); 16239 case NVPTX::BI__hmma_m32n8k16_ld_a: 16240 return MMA_LDST(8, m32n8k16_load_a_f16); 16241 case NVPTX::BI__hmma_m32n8k16_ld_b: 16242 return MMA_LDST(8, m32n8k16_load_b_f16); 16243 case NVPTX::BI__hmma_m32n8k16_ld_c_f16: 16244 return MMA_LDST(4, m32n8k16_load_c_f16); 16245 case NVPTX::BI__hmma_m32n8k16_ld_c_f32: 16246 return MMA_LDST(8, m32n8k16_load_c_f32); 16247 case NVPTX::BI__hmma_m8n32k16_ld_a: 16248 return MMA_LDST(8, m8n32k16_load_a_f16); 16249 case NVPTX::BI__hmma_m8n32k16_ld_b: 16250 return MMA_LDST(8, m8n32k16_load_b_f16); 16251 case NVPTX::BI__hmma_m8n32k16_ld_c_f16: 16252 return MMA_LDST(4, m8n32k16_load_c_f16); 16253 case NVPTX::BI__hmma_m8n32k16_ld_c_f32: 16254 return MMA_LDST(8, m8n32k16_load_c_f32); 16255 16256 // Integer MMA loads 16257 case NVPTX::BI__imma_m16n16k16_ld_a_s8: 16258 return MMA_LDST(2, m16n16k16_load_a_s8); 16259 case NVPTX::BI__imma_m16n16k16_ld_a_u8: 16260 return MMA_LDST(2, m16n16k16_load_a_u8); 16261 case NVPTX::BI__imma_m16n16k16_ld_b_s8: 16262 return MMA_LDST(2, m16n16k16_load_b_s8); 16263 case NVPTX::BI__imma_m16n16k16_ld_b_u8: 16264 return MMA_LDST(2, m16n16k16_load_b_u8); 16265 case NVPTX::BI__imma_m16n16k16_ld_c: 16266 return MMA_LDST(8, m16n16k16_load_c_s32); 16267 case NVPTX::BI__imma_m32n8k16_ld_a_s8: 16268 return MMA_LDST(4, m32n8k16_load_a_s8); 16269 case NVPTX::BI__imma_m32n8k16_ld_a_u8: 16270 return MMA_LDST(4, m32n8k16_load_a_u8); 16271 case NVPTX::BI__imma_m32n8k16_ld_b_s8: 16272 return MMA_LDST(1, m32n8k16_load_b_s8); 16273 case NVPTX::BI__imma_m32n8k16_ld_b_u8: 16274 return MMA_LDST(1, m32n8k16_load_b_u8); 16275 case NVPTX::BI__imma_m32n8k16_ld_c: 16276 return MMA_LDST(8, m32n8k16_load_c_s32); 16277 case NVPTX::BI__imma_m8n32k16_ld_a_s8: 16278 return MMA_LDST(1, m8n32k16_load_a_s8); 16279 case NVPTX::BI__imma_m8n32k16_ld_a_u8: 16280 return MMA_LDST(1, m8n32k16_load_a_u8); 16281 case NVPTX::BI__imma_m8n32k16_ld_b_s8: 16282 return MMA_LDST(4, m8n32k16_load_b_s8); 16283 case NVPTX::BI__imma_m8n32k16_ld_b_u8: 16284 return MMA_LDST(4, m8n32k16_load_b_u8); 16285 case NVPTX::BI__imma_m8n32k16_ld_c: 16286 return MMA_LDST(8, m8n32k16_load_c_s32); 16287 16288 // Sub-integer MMA loads. 16289 // Only row/col layout is supported by A/B fragments. 16290 case NVPTX::BI__imma_m8n8k32_ld_a_s4: 16291 return {1, 0, MMA_INTR(m8n8k32_load_a_s4, row)}; 16292 case NVPTX::BI__imma_m8n8k32_ld_a_u4: 16293 return {1, 0, MMA_INTR(m8n8k32_load_a_u4, row)}; 16294 case NVPTX::BI__imma_m8n8k32_ld_b_s4: 16295 return {1, MMA_INTR(m8n8k32_load_b_s4, col), 0}; 16296 case NVPTX::BI__imma_m8n8k32_ld_b_u4: 16297 return {1, MMA_INTR(m8n8k32_load_b_u4, col), 0}; 16298 case NVPTX::BI__imma_m8n8k32_ld_c: 16299 return MMA_LDST(2, m8n8k32_load_c_s32); 16300 case NVPTX::BI__bmma_m8n8k128_ld_a_b1: 16301 return {1, 0, MMA_INTR(m8n8k128_load_a_b1, row)}; 16302 case NVPTX::BI__bmma_m8n8k128_ld_b_b1: 16303 return {1, MMA_INTR(m8n8k128_load_b_b1, col), 0}; 16304 case NVPTX::BI__bmma_m8n8k128_ld_c: 16305 return MMA_LDST(2, m8n8k128_load_c_s32); 16306 16307 // NOTE: We need to follow inconsitent naming scheme used by NVCC. Unlike 16308 // PTX and LLVM IR where stores always use fragment D, NVCC builtins always 16309 // use fragment C for both loads and stores. 16310 // FP MMA stores. 16311 case NVPTX::BI__hmma_m16n16k16_st_c_f16: 16312 return MMA_LDST(4, m16n16k16_store_d_f16); 16313 case NVPTX::BI__hmma_m16n16k16_st_c_f32: 16314 return MMA_LDST(8, m16n16k16_store_d_f32); 16315 case NVPTX::BI__hmma_m32n8k16_st_c_f16: 16316 return MMA_LDST(4, m32n8k16_store_d_f16); 16317 case NVPTX::BI__hmma_m32n8k16_st_c_f32: 16318 return MMA_LDST(8, m32n8k16_store_d_f32); 16319 case NVPTX::BI__hmma_m8n32k16_st_c_f16: 16320 return MMA_LDST(4, m8n32k16_store_d_f16); 16321 case NVPTX::BI__hmma_m8n32k16_st_c_f32: 16322 return MMA_LDST(8, m8n32k16_store_d_f32); 16323 16324 // Integer and sub-integer MMA stores. 16325 // Another naming quirk. Unlike other MMA builtins that use PTX types in the 16326 // name, integer loads/stores use LLVM's i32. 16327 case NVPTX::BI__imma_m16n16k16_st_c_i32: 16328 return MMA_LDST(8, m16n16k16_store_d_s32); 16329 case NVPTX::BI__imma_m32n8k16_st_c_i32: 16330 return MMA_LDST(8, m32n8k16_store_d_s32); 16331 case NVPTX::BI__imma_m8n32k16_st_c_i32: 16332 return MMA_LDST(8, m8n32k16_store_d_s32); 16333 case NVPTX::BI__imma_m8n8k32_st_c_i32: 16334 return MMA_LDST(2, m8n8k32_store_d_s32); 16335 case NVPTX::BI__bmma_m8n8k128_st_c_i32: 16336 return MMA_LDST(2, m8n8k128_store_d_s32); 16337 16338 default: 16339 llvm_unreachable("Unknown MMA builtin"); 16340 } 16341 } 16342 #undef MMA_LDST 16343 #undef MMA_INTR 16344 16345 16346 struct NVPTXMmaInfo { 16347 unsigned NumEltsA; 16348 unsigned NumEltsB; 16349 unsigned NumEltsC; 16350 unsigned NumEltsD; 16351 std::array<unsigned, 8> Variants; 16352 16353 unsigned getMMAIntrinsic(int Layout, bool Satf) { 16354 unsigned Index = Layout * 2 + Satf; 16355 if (Index >= Variants.size()) 16356 return 0; 16357 return Variants[Index]; 16358 } 16359 }; 16360 16361 // Returns an intrinsic that matches Layout and Satf for valid combinations of 16362 // Layout and Satf, 0 otherwise. 16363 static NVPTXMmaInfo getNVPTXMmaInfo(unsigned BuiltinID) { 16364 // clang-format off 16365 #define MMA_VARIANTS(geom, type) {{ \ 16366 Intrinsic::nvvm_wmma_##geom##_mma_row_row_##type, \ 16367 Intrinsic::nvvm_wmma_##geom##_mma_row_row_##type##_satfinite, \ 16368 Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type, \ 16369 Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type##_satfinite, \ 16370 Intrinsic::nvvm_wmma_##geom##_mma_col_row_##type, \ 16371 Intrinsic::nvvm_wmma_##geom##_mma_col_row_##type##_satfinite, \ 16372 Intrinsic::nvvm_wmma_##geom##_mma_col_col_##type, \ 16373 Intrinsic::nvvm_wmma_##geom##_mma_col_col_##type##_satfinite \ 16374 }} 16375 // Sub-integer MMA only supports row.col layout. 16376 #define MMA_VARIANTS_I4(geom, type) {{ \ 16377 0, \ 16378 0, \ 16379 Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type, \ 16380 Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type##_satfinite, \ 16381 0, \ 16382 0, \ 16383 0, \ 16384 0 \ 16385 }} 16386 // b1 MMA does not support .satfinite. 16387 #define MMA_VARIANTS_B1(geom, type) {{ \ 16388 0, \ 16389 0, \ 16390 Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type, \ 16391 0, \ 16392 0, \ 16393 0, \ 16394 0, \ 16395 0 \ 16396 }} 16397 // clang-format on 16398 switch (BuiltinID) { 16399 // FP MMA 16400 // Note that 'type' argument of MMA_VARIANT uses D_C notation, while 16401 // NumEltsN of return value are ordered as A,B,C,D. 16402 case NVPTX::BI__hmma_m16n16k16_mma_f16f16: 16403 return {8, 8, 4, 4, MMA_VARIANTS(m16n16k16, f16_f16)}; 16404 case NVPTX::BI__hmma_m16n16k16_mma_f32f16: 16405 return {8, 8, 4, 8, MMA_VARIANTS(m16n16k16, f32_f16)}; 16406 case NVPTX::BI__hmma_m16n16k16_mma_f16f32: 16407 return {8, 8, 8, 4, MMA_VARIANTS(m16n16k16, f16_f32)}; 16408 case NVPTX::BI__hmma_m16n16k16_mma_f32f32: 16409 return {8, 8, 8, 8, MMA_VARIANTS(m16n16k16, f32_f32)}; 16410 case NVPTX::BI__hmma_m32n8k16_mma_f16f16: 16411 return {8, 8, 4, 4, MMA_VARIANTS(m32n8k16, f16_f16)}; 16412 case NVPTX::BI__hmma_m32n8k16_mma_f32f16: 16413 return {8, 8, 4, 8, MMA_VARIANTS(m32n8k16, f32_f16)}; 16414 case NVPTX::BI__hmma_m32n8k16_mma_f16f32: 16415 return {8, 8, 8, 4, MMA_VARIANTS(m32n8k16, f16_f32)}; 16416 case NVPTX::BI__hmma_m32n8k16_mma_f32f32: 16417 return {8, 8, 8, 8, MMA_VARIANTS(m32n8k16, f32_f32)}; 16418 case NVPTX::BI__hmma_m8n32k16_mma_f16f16: 16419 return {8, 8, 4, 4, MMA_VARIANTS(m8n32k16, f16_f16)}; 16420 case NVPTX::BI__hmma_m8n32k16_mma_f32f16: 16421 return {8, 8, 4, 8, MMA_VARIANTS(m8n32k16, f32_f16)}; 16422 case NVPTX::BI__hmma_m8n32k16_mma_f16f32: 16423 return {8, 8, 8, 4, MMA_VARIANTS(m8n32k16, f16_f32)}; 16424 case NVPTX::BI__hmma_m8n32k16_mma_f32f32: 16425 return {8, 8, 8, 8, MMA_VARIANTS(m8n32k16, f32_f32)}; 16426 16427 // Integer MMA 16428 case NVPTX::BI__imma_m16n16k16_mma_s8: 16429 return {2, 2, 8, 8, MMA_VARIANTS(m16n16k16, s8)}; 16430 case NVPTX::BI__imma_m16n16k16_mma_u8: 16431 return {2, 2, 8, 8, MMA_VARIANTS(m16n16k16, u8)}; 16432 case NVPTX::BI__imma_m32n8k16_mma_s8: 16433 return {4, 1, 8, 8, MMA_VARIANTS(m32n8k16, s8)}; 16434 case NVPTX::BI__imma_m32n8k16_mma_u8: 16435 return {4, 1, 8, 8, MMA_VARIANTS(m32n8k16, u8)}; 16436 case NVPTX::BI__imma_m8n32k16_mma_s8: 16437 return {1, 4, 8, 8, MMA_VARIANTS(m8n32k16, s8)}; 16438 case NVPTX::BI__imma_m8n32k16_mma_u8: 16439 return {1, 4, 8, 8, MMA_VARIANTS(m8n32k16, u8)}; 16440 16441 // Sub-integer MMA 16442 case NVPTX::BI__imma_m8n8k32_mma_s4: 16443 return {1, 1, 2, 2, MMA_VARIANTS_I4(m8n8k32, s4)}; 16444 case NVPTX::BI__imma_m8n8k32_mma_u4: 16445 return {1, 1, 2, 2, MMA_VARIANTS_I4(m8n8k32, u4)}; 16446 case NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1: 16447 return {1, 1, 2, 2, MMA_VARIANTS_B1(m8n8k128, b1)}; 16448 default: 16449 llvm_unreachable("Unexpected builtin ID."); 16450 } 16451 #undef MMA_VARIANTS 16452 #undef MMA_VARIANTS_I4 16453 #undef MMA_VARIANTS_B1 16454 } 16455 16456 } // namespace 16457 16458 Value * 16459 CodeGenFunction::EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E) { 16460 auto MakeLdg = [&](unsigned IntrinsicID) { 16461 Value *Ptr = EmitScalarExpr(E->getArg(0)); 16462 clang::CharUnits Align = 16463 CGM.getNaturalPointeeTypeAlignment(E->getArg(0)->getType()); 16464 return Builder.CreateCall( 16465 CGM.getIntrinsic(IntrinsicID, {Ptr->getType()->getPointerElementType(), 16466 Ptr->getType()}), 16467 {Ptr, ConstantInt::get(Builder.getInt32Ty(), Align.getQuantity())}); 16468 }; 16469 auto MakeScopedAtomic = [&](unsigned IntrinsicID) { 16470 Value *Ptr = EmitScalarExpr(E->getArg(0)); 16471 return Builder.CreateCall( 16472 CGM.getIntrinsic(IntrinsicID, {Ptr->getType()->getPointerElementType(), 16473 Ptr->getType()}), 16474 {Ptr, EmitScalarExpr(E->getArg(1))}); 16475 }; 16476 switch (BuiltinID) { 16477 case NVPTX::BI__nvvm_atom_add_gen_i: 16478 case NVPTX::BI__nvvm_atom_add_gen_l: 16479 case NVPTX::BI__nvvm_atom_add_gen_ll: 16480 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Add, E); 16481 16482 case NVPTX::BI__nvvm_atom_sub_gen_i: 16483 case NVPTX::BI__nvvm_atom_sub_gen_l: 16484 case NVPTX::BI__nvvm_atom_sub_gen_ll: 16485 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Sub, E); 16486 16487 case NVPTX::BI__nvvm_atom_and_gen_i: 16488 case NVPTX::BI__nvvm_atom_and_gen_l: 16489 case NVPTX::BI__nvvm_atom_and_gen_ll: 16490 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::And, E); 16491 16492 case NVPTX::BI__nvvm_atom_or_gen_i: 16493 case NVPTX::BI__nvvm_atom_or_gen_l: 16494 case NVPTX::BI__nvvm_atom_or_gen_ll: 16495 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Or, E); 16496 16497 case NVPTX::BI__nvvm_atom_xor_gen_i: 16498 case NVPTX::BI__nvvm_atom_xor_gen_l: 16499 case NVPTX::BI__nvvm_atom_xor_gen_ll: 16500 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xor, E); 16501 16502 case NVPTX::BI__nvvm_atom_xchg_gen_i: 16503 case NVPTX::BI__nvvm_atom_xchg_gen_l: 16504 case NVPTX::BI__nvvm_atom_xchg_gen_ll: 16505 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xchg, E); 16506 16507 case NVPTX::BI__nvvm_atom_max_gen_i: 16508 case NVPTX::BI__nvvm_atom_max_gen_l: 16509 case NVPTX::BI__nvvm_atom_max_gen_ll: 16510 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Max, E); 16511 16512 case NVPTX::BI__nvvm_atom_max_gen_ui: 16513 case NVPTX::BI__nvvm_atom_max_gen_ul: 16514 case NVPTX::BI__nvvm_atom_max_gen_ull: 16515 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMax, E); 16516 16517 case NVPTX::BI__nvvm_atom_min_gen_i: 16518 case NVPTX::BI__nvvm_atom_min_gen_l: 16519 case NVPTX::BI__nvvm_atom_min_gen_ll: 16520 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Min, E); 16521 16522 case NVPTX::BI__nvvm_atom_min_gen_ui: 16523 case NVPTX::BI__nvvm_atom_min_gen_ul: 16524 case NVPTX::BI__nvvm_atom_min_gen_ull: 16525 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMin, E); 16526 16527 case NVPTX::BI__nvvm_atom_cas_gen_i: 16528 case NVPTX::BI__nvvm_atom_cas_gen_l: 16529 case NVPTX::BI__nvvm_atom_cas_gen_ll: 16530 // __nvvm_atom_cas_gen_* should return the old value rather than the 16531 // success flag. 16532 return MakeAtomicCmpXchgValue(*this, E, /*ReturnBool=*/false); 16533 16534 case NVPTX::BI__nvvm_atom_add_gen_f: 16535 case NVPTX::BI__nvvm_atom_add_gen_d: { 16536 Value *Ptr = EmitScalarExpr(E->getArg(0)); 16537 Value *Val = EmitScalarExpr(E->getArg(1)); 16538 return Builder.CreateAtomicRMW(llvm::AtomicRMWInst::FAdd, Ptr, Val, 16539 AtomicOrdering::SequentiallyConsistent); 16540 } 16541 16542 case NVPTX::BI__nvvm_atom_inc_gen_ui: { 16543 Value *Ptr = EmitScalarExpr(E->getArg(0)); 16544 Value *Val = EmitScalarExpr(E->getArg(1)); 16545 Function *FnALI32 = 16546 CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_inc_32, Ptr->getType()); 16547 return Builder.CreateCall(FnALI32, {Ptr, Val}); 16548 } 16549 16550 case NVPTX::BI__nvvm_atom_dec_gen_ui: { 16551 Value *Ptr = EmitScalarExpr(E->getArg(0)); 16552 Value *Val = EmitScalarExpr(E->getArg(1)); 16553 Function *FnALD32 = 16554 CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_dec_32, Ptr->getType()); 16555 return Builder.CreateCall(FnALD32, {Ptr, Val}); 16556 } 16557 16558 case NVPTX::BI__nvvm_ldg_c: 16559 case NVPTX::BI__nvvm_ldg_c2: 16560 case NVPTX::BI__nvvm_ldg_c4: 16561 case NVPTX::BI__nvvm_ldg_s: 16562 case NVPTX::BI__nvvm_ldg_s2: 16563 case NVPTX::BI__nvvm_ldg_s4: 16564 case NVPTX::BI__nvvm_ldg_i: 16565 case NVPTX::BI__nvvm_ldg_i2: 16566 case NVPTX::BI__nvvm_ldg_i4: 16567 case NVPTX::BI__nvvm_ldg_l: 16568 case NVPTX::BI__nvvm_ldg_ll: 16569 case NVPTX::BI__nvvm_ldg_ll2: 16570 case NVPTX::BI__nvvm_ldg_uc: 16571 case NVPTX::BI__nvvm_ldg_uc2: 16572 case NVPTX::BI__nvvm_ldg_uc4: 16573 case NVPTX::BI__nvvm_ldg_us: 16574 case NVPTX::BI__nvvm_ldg_us2: 16575 case NVPTX::BI__nvvm_ldg_us4: 16576 case NVPTX::BI__nvvm_ldg_ui: 16577 case NVPTX::BI__nvvm_ldg_ui2: 16578 case NVPTX::BI__nvvm_ldg_ui4: 16579 case NVPTX::BI__nvvm_ldg_ul: 16580 case NVPTX::BI__nvvm_ldg_ull: 16581 case NVPTX::BI__nvvm_ldg_ull2: 16582 // PTX Interoperability section 2.2: "For a vector with an even number of 16583 // elements, its alignment is set to number of elements times the alignment 16584 // of its member: n*alignof(t)." 16585 return MakeLdg(Intrinsic::nvvm_ldg_global_i); 16586 case NVPTX::BI__nvvm_ldg_f: 16587 case NVPTX::BI__nvvm_ldg_f2: 16588 case NVPTX::BI__nvvm_ldg_f4: 16589 case NVPTX::BI__nvvm_ldg_d: 16590 case NVPTX::BI__nvvm_ldg_d2: 16591 return MakeLdg(Intrinsic::nvvm_ldg_global_f); 16592 16593 case NVPTX::BI__nvvm_atom_cta_add_gen_i: 16594 case NVPTX::BI__nvvm_atom_cta_add_gen_l: 16595 case NVPTX::BI__nvvm_atom_cta_add_gen_ll: 16596 return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_i_cta); 16597 case NVPTX::BI__nvvm_atom_sys_add_gen_i: 16598 case NVPTX::BI__nvvm_atom_sys_add_gen_l: 16599 case NVPTX::BI__nvvm_atom_sys_add_gen_ll: 16600 return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_i_sys); 16601 case NVPTX::BI__nvvm_atom_cta_add_gen_f: 16602 case NVPTX::BI__nvvm_atom_cta_add_gen_d: 16603 return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_f_cta); 16604 case NVPTX::BI__nvvm_atom_sys_add_gen_f: 16605 case NVPTX::BI__nvvm_atom_sys_add_gen_d: 16606 return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_f_sys); 16607 case NVPTX::BI__nvvm_atom_cta_xchg_gen_i: 16608 case NVPTX::BI__nvvm_atom_cta_xchg_gen_l: 16609 case NVPTX::BI__nvvm_atom_cta_xchg_gen_ll: 16610 return MakeScopedAtomic(Intrinsic::nvvm_atomic_exch_gen_i_cta); 16611 case NVPTX::BI__nvvm_atom_sys_xchg_gen_i: 16612 case NVPTX::BI__nvvm_atom_sys_xchg_gen_l: 16613 case NVPTX::BI__nvvm_atom_sys_xchg_gen_ll: 16614 return MakeScopedAtomic(Intrinsic::nvvm_atomic_exch_gen_i_sys); 16615 case NVPTX::BI__nvvm_atom_cta_max_gen_i: 16616 case NVPTX::BI__nvvm_atom_cta_max_gen_ui: 16617 case NVPTX::BI__nvvm_atom_cta_max_gen_l: 16618 case NVPTX::BI__nvvm_atom_cta_max_gen_ul: 16619 case NVPTX::BI__nvvm_atom_cta_max_gen_ll: 16620 case NVPTX::BI__nvvm_atom_cta_max_gen_ull: 16621 return MakeScopedAtomic(Intrinsic::nvvm_atomic_max_gen_i_cta); 16622 case NVPTX::BI__nvvm_atom_sys_max_gen_i: 16623 case NVPTX::BI__nvvm_atom_sys_max_gen_ui: 16624 case NVPTX::BI__nvvm_atom_sys_max_gen_l: 16625 case NVPTX::BI__nvvm_atom_sys_max_gen_ul: 16626 case NVPTX::BI__nvvm_atom_sys_max_gen_ll: 16627 case NVPTX::BI__nvvm_atom_sys_max_gen_ull: 16628 return MakeScopedAtomic(Intrinsic::nvvm_atomic_max_gen_i_sys); 16629 case NVPTX::BI__nvvm_atom_cta_min_gen_i: 16630 case NVPTX::BI__nvvm_atom_cta_min_gen_ui: 16631 case NVPTX::BI__nvvm_atom_cta_min_gen_l: 16632 case NVPTX::BI__nvvm_atom_cta_min_gen_ul: 16633 case NVPTX::BI__nvvm_atom_cta_min_gen_ll: 16634 case NVPTX::BI__nvvm_atom_cta_min_gen_ull: 16635 return MakeScopedAtomic(Intrinsic::nvvm_atomic_min_gen_i_cta); 16636 case NVPTX::BI__nvvm_atom_sys_min_gen_i: 16637 case NVPTX::BI__nvvm_atom_sys_min_gen_ui: 16638 case NVPTX::BI__nvvm_atom_sys_min_gen_l: 16639 case NVPTX::BI__nvvm_atom_sys_min_gen_ul: 16640 case NVPTX::BI__nvvm_atom_sys_min_gen_ll: 16641 case NVPTX::BI__nvvm_atom_sys_min_gen_ull: 16642 return MakeScopedAtomic(Intrinsic::nvvm_atomic_min_gen_i_sys); 16643 case NVPTX::BI__nvvm_atom_cta_inc_gen_ui: 16644 return MakeScopedAtomic(Intrinsic::nvvm_atomic_inc_gen_i_cta); 16645 case NVPTX::BI__nvvm_atom_cta_dec_gen_ui: 16646 return MakeScopedAtomic(Intrinsic::nvvm_atomic_dec_gen_i_cta); 16647 case NVPTX::BI__nvvm_atom_sys_inc_gen_ui: 16648 return MakeScopedAtomic(Intrinsic::nvvm_atomic_inc_gen_i_sys); 16649 case NVPTX::BI__nvvm_atom_sys_dec_gen_ui: 16650 return MakeScopedAtomic(Intrinsic::nvvm_atomic_dec_gen_i_sys); 16651 case NVPTX::BI__nvvm_atom_cta_and_gen_i: 16652 case NVPTX::BI__nvvm_atom_cta_and_gen_l: 16653 case NVPTX::BI__nvvm_atom_cta_and_gen_ll: 16654 return MakeScopedAtomic(Intrinsic::nvvm_atomic_and_gen_i_cta); 16655 case NVPTX::BI__nvvm_atom_sys_and_gen_i: 16656 case NVPTX::BI__nvvm_atom_sys_and_gen_l: 16657 case NVPTX::BI__nvvm_atom_sys_and_gen_ll: 16658 return MakeScopedAtomic(Intrinsic::nvvm_atomic_and_gen_i_sys); 16659 case NVPTX::BI__nvvm_atom_cta_or_gen_i: 16660 case NVPTX::BI__nvvm_atom_cta_or_gen_l: 16661 case NVPTX::BI__nvvm_atom_cta_or_gen_ll: 16662 return MakeScopedAtomic(Intrinsic::nvvm_atomic_or_gen_i_cta); 16663 case NVPTX::BI__nvvm_atom_sys_or_gen_i: 16664 case NVPTX::BI__nvvm_atom_sys_or_gen_l: 16665 case NVPTX::BI__nvvm_atom_sys_or_gen_ll: 16666 return MakeScopedAtomic(Intrinsic::nvvm_atomic_or_gen_i_sys); 16667 case NVPTX::BI__nvvm_atom_cta_xor_gen_i: 16668 case NVPTX::BI__nvvm_atom_cta_xor_gen_l: 16669 case NVPTX::BI__nvvm_atom_cta_xor_gen_ll: 16670 return MakeScopedAtomic(Intrinsic::nvvm_atomic_xor_gen_i_cta); 16671 case NVPTX::BI__nvvm_atom_sys_xor_gen_i: 16672 case NVPTX::BI__nvvm_atom_sys_xor_gen_l: 16673 case NVPTX::BI__nvvm_atom_sys_xor_gen_ll: 16674 return MakeScopedAtomic(Intrinsic::nvvm_atomic_xor_gen_i_sys); 16675 case NVPTX::BI__nvvm_atom_cta_cas_gen_i: 16676 case NVPTX::BI__nvvm_atom_cta_cas_gen_l: 16677 case NVPTX::BI__nvvm_atom_cta_cas_gen_ll: { 16678 Value *Ptr = EmitScalarExpr(E->getArg(0)); 16679 return Builder.CreateCall( 16680 CGM.getIntrinsic( 16681 Intrinsic::nvvm_atomic_cas_gen_i_cta, 16682 {Ptr->getType()->getPointerElementType(), Ptr->getType()}), 16683 {Ptr, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2))}); 16684 } 16685 case NVPTX::BI__nvvm_atom_sys_cas_gen_i: 16686 case NVPTX::BI__nvvm_atom_sys_cas_gen_l: 16687 case NVPTX::BI__nvvm_atom_sys_cas_gen_ll: { 16688 Value *Ptr = EmitScalarExpr(E->getArg(0)); 16689 return Builder.CreateCall( 16690 CGM.getIntrinsic( 16691 Intrinsic::nvvm_atomic_cas_gen_i_sys, 16692 {Ptr->getType()->getPointerElementType(), Ptr->getType()}), 16693 {Ptr, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2))}); 16694 } 16695 case NVPTX::BI__nvvm_match_all_sync_i32p: 16696 case NVPTX::BI__nvvm_match_all_sync_i64p: { 16697 Value *Mask = EmitScalarExpr(E->getArg(0)); 16698 Value *Val = EmitScalarExpr(E->getArg(1)); 16699 Address PredOutPtr = EmitPointerWithAlignment(E->getArg(2)); 16700 Value *ResultPair = Builder.CreateCall( 16701 CGM.getIntrinsic(BuiltinID == NVPTX::BI__nvvm_match_all_sync_i32p 16702 ? Intrinsic::nvvm_match_all_sync_i32p 16703 : Intrinsic::nvvm_match_all_sync_i64p), 16704 {Mask, Val}); 16705 Value *Pred = Builder.CreateZExt(Builder.CreateExtractValue(ResultPair, 1), 16706 PredOutPtr.getElementType()); 16707 Builder.CreateStore(Pred, PredOutPtr); 16708 return Builder.CreateExtractValue(ResultPair, 0); 16709 } 16710 16711 // FP MMA loads 16712 case NVPTX::BI__hmma_m16n16k16_ld_a: 16713 case NVPTX::BI__hmma_m16n16k16_ld_b: 16714 case NVPTX::BI__hmma_m16n16k16_ld_c_f16: 16715 case NVPTX::BI__hmma_m16n16k16_ld_c_f32: 16716 case NVPTX::BI__hmma_m32n8k16_ld_a: 16717 case NVPTX::BI__hmma_m32n8k16_ld_b: 16718 case NVPTX::BI__hmma_m32n8k16_ld_c_f16: 16719 case NVPTX::BI__hmma_m32n8k16_ld_c_f32: 16720 case NVPTX::BI__hmma_m8n32k16_ld_a: 16721 case NVPTX::BI__hmma_m8n32k16_ld_b: 16722 case NVPTX::BI__hmma_m8n32k16_ld_c_f16: 16723 case NVPTX::BI__hmma_m8n32k16_ld_c_f32: 16724 // Integer MMA loads. 16725 case NVPTX::BI__imma_m16n16k16_ld_a_s8: 16726 case NVPTX::BI__imma_m16n16k16_ld_a_u8: 16727 case NVPTX::BI__imma_m16n16k16_ld_b_s8: 16728 case NVPTX::BI__imma_m16n16k16_ld_b_u8: 16729 case NVPTX::BI__imma_m16n16k16_ld_c: 16730 case NVPTX::BI__imma_m32n8k16_ld_a_s8: 16731 case NVPTX::BI__imma_m32n8k16_ld_a_u8: 16732 case NVPTX::BI__imma_m32n8k16_ld_b_s8: 16733 case NVPTX::BI__imma_m32n8k16_ld_b_u8: 16734 case NVPTX::BI__imma_m32n8k16_ld_c: 16735 case NVPTX::BI__imma_m8n32k16_ld_a_s8: 16736 case NVPTX::BI__imma_m8n32k16_ld_a_u8: 16737 case NVPTX::BI__imma_m8n32k16_ld_b_s8: 16738 case NVPTX::BI__imma_m8n32k16_ld_b_u8: 16739 case NVPTX::BI__imma_m8n32k16_ld_c: 16740 // Sub-integer MMA loads. 16741 case NVPTX::BI__imma_m8n8k32_ld_a_s4: 16742 case NVPTX::BI__imma_m8n8k32_ld_a_u4: 16743 case NVPTX::BI__imma_m8n8k32_ld_b_s4: 16744 case NVPTX::BI__imma_m8n8k32_ld_b_u4: 16745 case NVPTX::BI__imma_m8n8k32_ld_c: 16746 case NVPTX::BI__bmma_m8n8k128_ld_a_b1: 16747 case NVPTX::BI__bmma_m8n8k128_ld_b_b1: 16748 case NVPTX::BI__bmma_m8n8k128_ld_c: 16749 { 16750 Address Dst = EmitPointerWithAlignment(E->getArg(0)); 16751 Value *Src = EmitScalarExpr(E->getArg(1)); 16752 Value *Ldm = EmitScalarExpr(E->getArg(2)); 16753 Optional<llvm::APSInt> isColMajorArg = 16754 E->getArg(3)->getIntegerConstantExpr(getContext()); 16755 if (!isColMajorArg) 16756 return nullptr; 16757 bool isColMajor = isColMajorArg->getSExtValue(); 16758 NVPTXMmaLdstInfo II = getNVPTXMmaLdstInfo(BuiltinID); 16759 unsigned IID = isColMajor ? II.IID_col : II.IID_row; 16760 if (IID == 0) 16761 return nullptr; 16762 16763 Value *Result = 16764 Builder.CreateCall(CGM.getIntrinsic(IID, Src->getType()), {Src, Ldm}); 16765 16766 // Save returned values. 16767 assert(II.NumResults); 16768 if (II.NumResults == 1) { 16769 Builder.CreateAlignedStore(Result, Dst.getPointer(), 16770 CharUnits::fromQuantity(4)); 16771 } else { 16772 for (unsigned i = 0; i < II.NumResults; ++i) { 16773 Builder.CreateAlignedStore( 16774 Builder.CreateBitCast(Builder.CreateExtractValue(Result, i), 16775 Dst.getElementType()), 16776 Builder.CreateGEP(Dst.getPointer(), 16777 llvm::ConstantInt::get(IntTy, i)), 16778 CharUnits::fromQuantity(4)); 16779 } 16780 } 16781 return Result; 16782 } 16783 16784 case NVPTX::BI__hmma_m16n16k16_st_c_f16: 16785 case NVPTX::BI__hmma_m16n16k16_st_c_f32: 16786 case NVPTX::BI__hmma_m32n8k16_st_c_f16: 16787 case NVPTX::BI__hmma_m32n8k16_st_c_f32: 16788 case NVPTX::BI__hmma_m8n32k16_st_c_f16: 16789 case NVPTX::BI__hmma_m8n32k16_st_c_f32: 16790 case NVPTX::BI__imma_m16n16k16_st_c_i32: 16791 case NVPTX::BI__imma_m32n8k16_st_c_i32: 16792 case NVPTX::BI__imma_m8n32k16_st_c_i32: 16793 case NVPTX::BI__imma_m8n8k32_st_c_i32: 16794 case NVPTX::BI__bmma_m8n8k128_st_c_i32: { 16795 Value *Dst = EmitScalarExpr(E->getArg(0)); 16796 Address Src = EmitPointerWithAlignment(E->getArg(1)); 16797 Value *Ldm = EmitScalarExpr(E->getArg(2)); 16798 Optional<llvm::APSInt> isColMajorArg = 16799 E->getArg(3)->getIntegerConstantExpr(getContext()); 16800 if (!isColMajorArg) 16801 return nullptr; 16802 bool isColMajor = isColMajorArg->getSExtValue(); 16803 NVPTXMmaLdstInfo II = getNVPTXMmaLdstInfo(BuiltinID); 16804 unsigned IID = isColMajor ? II.IID_col : II.IID_row; 16805 if (IID == 0) 16806 return nullptr; 16807 Function *Intrinsic = 16808 CGM.getIntrinsic(IID, Dst->getType()); 16809 llvm::Type *ParamType = Intrinsic->getFunctionType()->getParamType(1); 16810 SmallVector<Value *, 10> Values = {Dst}; 16811 for (unsigned i = 0; i < II.NumResults; ++i) { 16812 Value *V = Builder.CreateAlignedLoad( 16813 Src.getElementType(), 16814 Builder.CreateGEP(Src.getElementType(), Src.getPointer(), 16815 llvm::ConstantInt::get(IntTy, i)), 16816 CharUnits::fromQuantity(4)); 16817 Values.push_back(Builder.CreateBitCast(V, ParamType)); 16818 } 16819 Values.push_back(Ldm); 16820 Value *Result = Builder.CreateCall(Intrinsic, Values); 16821 return Result; 16822 } 16823 16824 // BI__hmma_m16n16k16_mma_<Dtype><CType>(d, a, b, c, layout, satf) --> 16825 // Intrinsic::nvvm_wmma_m16n16k16_mma_sync<layout A,B><DType><CType><Satf> 16826 case NVPTX::BI__hmma_m16n16k16_mma_f16f16: 16827 case NVPTX::BI__hmma_m16n16k16_mma_f32f16: 16828 case NVPTX::BI__hmma_m16n16k16_mma_f32f32: 16829 case NVPTX::BI__hmma_m16n16k16_mma_f16f32: 16830 case NVPTX::BI__hmma_m32n8k16_mma_f16f16: 16831 case NVPTX::BI__hmma_m32n8k16_mma_f32f16: 16832 case NVPTX::BI__hmma_m32n8k16_mma_f32f32: 16833 case NVPTX::BI__hmma_m32n8k16_mma_f16f32: 16834 case NVPTX::BI__hmma_m8n32k16_mma_f16f16: 16835 case NVPTX::BI__hmma_m8n32k16_mma_f32f16: 16836 case NVPTX::BI__hmma_m8n32k16_mma_f32f32: 16837 case NVPTX::BI__hmma_m8n32k16_mma_f16f32: 16838 case NVPTX::BI__imma_m16n16k16_mma_s8: 16839 case NVPTX::BI__imma_m16n16k16_mma_u8: 16840 case NVPTX::BI__imma_m32n8k16_mma_s8: 16841 case NVPTX::BI__imma_m32n8k16_mma_u8: 16842 case NVPTX::BI__imma_m8n32k16_mma_s8: 16843 case NVPTX::BI__imma_m8n32k16_mma_u8: 16844 case NVPTX::BI__imma_m8n8k32_mma_s4: 16845 case NVPTX::BI__imma_m8n8k32_mma_u4: 16846 case NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1: { 16847 Address Dst = EmitPointerWithAlignment(E->getArg(0)); 16848 Address SrcA = EmitPointerWithAlignment(E->getArg(1)); 16849 Address SrcB = EmitPointerWithAlignment(E->getArg(2)); 16850 Address SrcC = EmitPointerWithAlignment(E->getArg(3)); 16851 Optional<llvm::APSInt> LayoutArg = 16852 E->getArg(4)->getIntegerConstantExpr(getContext()); 16853 if (!LayoutArg) 16854 return nullptr; 16855 int Layout = LayoutArg->getSExtValue(); 16856 if (Layout < 0 || Layout > 3) 16857 return nullptr; 16858 llvm::APSInt SatfArg; 16859 if (BuiltinID == NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1) 16860 SatfArg = 0; // .b1 does not have satf argument. 16861 else if (Optional<llvm::APSInt> OptSatfArg = 16862 E->getArg(5)->getIntegerConstantExpr(getContext())) 16863 SatfArg = *OptSatfArg; 16864 else 16865 return nullptr; 16866 bool Satf = SatfArg.getSExtValue(); 16867 NVPTXMmaInfo MI = getNVPTXMmaInfo(BuiltinID); 16868 unsigned IID = MI.getMMAIntrinsic(Layout, Satf); 16869 if (IID == 0) // Unsupported combination of Layout/Satf. 16870 return nullptr; 16871 16872 SmallVector<Value *, 24> Values; 16873 Function *Intrinsic = CGM.getIntrinsic(IID); 16874 llvm::Type *AType = Intrinsic->getFunctionType()->getParamType(0); 16875 // Load A 16876 for (unsigned i = 0; i < MI.NumEltsA; ++i) { 16877 Value *V = Builder.CreateAlignedLoad( 16878 SrcA.getElementType(), 16879 Builder.CreateGEP(SrcA.getElementType(), SrcA.getPointer(), 16880 llvm::ConstantInt::get(IntTy, i)), 16881 CharUnits::fromQuantity(4)); 16882 Values.push_back(Builder.CreateBitCast(V, AType)); 16883 } 16884 // Load B 16885 llvm::Type *BType = Intrinsic->getFunctionType()->getParamType(MI.NumEltsA); 16886 for (unsigned i = 0; i < MI.NumEltsB; ++i) { 16887 Value *V = Builder.CreateAlignedLoad( 16888 SrcB.getElementType(), 16889 Builder.CreateGEP(SrcB.getElementType(), SrcB.getPointer(), 16890 llvm::ConstantInt::get(IntTy, i)), 16891 CharUnits::fromQuantity(4)); 16892 Values.push_back(Builder.CreateBitCast(V, BType)); 16893 } 16894 // Load C 16895 llvm::Type *CType = 16896 Intrinsic->getFunctionType()->getParamType(MI.NumEltsA + MI.NumEltsB); 16897 for (unsigned i = 0; i < MI.NumEltsC; ++i) { 16898 Value *V = Builder.CreateAlignedLoad( 16899 SrcC.getElementType(), 16900 Builder.CreateGEP(SrcC.getElementType(), SrcC.getPointer(), 16901 llvm::ConstantInt::get(IntTy, i)), 16902 CharUnits::fromQuantity(4)); 16903 Values.push_back(Builder.CreateBitCast(V, CType)); 16904 } 16905 Value *Result = Builder.CreateCall(Intrinsic, Values); 16906 llvm::Type *DType = Dst.getElementType(); 16907 for (unsigned i = 0; i < MI.NumEltsD; ++i) 16908 Builder.CreateAlignedStore( 16909 Builder.CreateBitCast(Builder.CreateExtractValue(Result, i), DType), 16910 Builder.CreateGEP(Dst.getPointer(), llvm::ConstantInt::get(IntTy, i)), 16911 CharUnits::fromQuantity(4)); 16912 return Result; 16913 } 16914 default: 16915 return nullptr; 16916 } 16917 } 16918 16919 namespace { 16920 struct BuiltinAlignArgs { 16921 llvm::Value *Src = nullptr; 16922 llvm::Type *SrcType = nullptr; 16923 llvm::Value *Alignment = nullptr; 16924 llvm::Value *Mask = nullptr; 16925 llvm::IntegerType *IntType = nullptr; 16926 16927 BuiltinAlignArgs(const CallExpr *E, CodeGenFunction &CGF) { 16928 QualType AstType = E->getArg(0)->getType(); 16929 if (AstType->isArrayType()) 16930 Src = CGF.EmitArrayToPointerDecay(E->getArg(0)).getPointer(); 16931 else 16932 Src = CGF.EmitScalarExpr(E->getArg(0)); 16933 SrcType = Src->getType(); 16934 if (SrcType->isPointerTy()) { 16935 IntType = IntegerType::get( 16936 CGF.getLLVMContext(), 16937 CGF.CGM.getDataLayout().getIndexTypeSizeInBits(SrcType)); 16938 } else { 16939 assert(SrcType->isIntegerTy()); 16940 IntType = cast<llvm::IntegerType>(SrcType); 16941 } 16942 Alignment = CGF.EmitScalarExpr(E->getArg(1)); 16943 Alignment = CGF.Builder.CreateZExtOrTrunc(Alignment, IntType, "alignment"); 16944 auto *One = llvm::ConstantInt::get(IntType, 1); 16945 Mask = CGF.Builder.CreateSub(Alignment, One, "mask"); 16946 } 16947 }; 16948 } // namespace 16949 16950 /// Generate (x & (y-1)) == 0. 16951 RValue CodeGenFunction::EmitBuiltinIsAligned(const CallExpr *E) { 16952 BuiltinAlignArgs Args(E, *this); 16953 llvm::Value *SrcAddress = Args.Src; 16954 if (Args.SrcType->isPointerTy()) 16955 SrcAddress = 16956 Builder.CreateBitOrPointerCast(Args.Src, Args.IntType, "src_addr"); 16957 return RValue::get(Builder.CreateICmpEQ( 16958 Builder.CreateAnd(SrcAddress, Args.Mask, "set_bits"), 16959 llvm::Constant::getNullValue(Args.IntType), "is_aligned")); 16960 } 16961 16962 /// Generate (x & ~(y-1)) to align down or ((x+(y-1)) & ~(y-1)) to align up. 16963 /// Note: For pointer types we can avoid ptrtoint/inttoptr pairs by using the 16964 /// llvm.ptrmask instrinsic (with a GEP before in the align_up case). 16965 /// TODO: actually use ptrmask once most optimization passes know about it. 16966 RValue CodeGenFunction::EmitBuiltinAlignTo(const CallExpr *E, bool AlignUp) { 16967 BuiltinAlignArgs Args(E, *this); 16968 llvm::Value *SrcAddr = Args.Src; 16969 if (Args.Src->getType()->isPointerTy()) 16970 SrcAddr = Builder.CreatePtrToInt(Args.Src, Args.IntType, "intptr"); 16971 llvm::Value *SrcForMask = SrcAddr; 16972 if (AlignUp) { 16973 // When aligning up we have to first add the mask to ensure we go over the 16974 // next alignment value and then align down to the next valid multiple. 16975 // By adding the mask, we ensure that align_up on an already aligned 16976 // value will not change the value. 16977 SrcForMask = Builder.CreateAdd(SrcForMask, Args.Mask, "over_boundary"); 16978 } 16979 // Invert the mask to only clear the lower bits. 16980 llvm::Value *InvertedMask = Builder.CreateNot(Args.Mask, "inverted_mask"); 16981 llvm::Value *Result = 16982 Builder.CreateAnd(SrcForMask, InvertedMask, "aligned_result"); 16983 if (Args.Src->getType()->isPointerTy()) { 16984 /// TODO: Use ptrmask instead of ptrtoint+gep once it is optimized well. 16985 // Result = Builder.CreateIntrinsic( 16986 // Intrinsic::ptrmask, {Args.SrcType, SrcForMask->getType(), Args.IntType}, 16987 // {SrcForMask, NegatedMask}, nullptr, "aligned_result"); 16988 Result->setName("aligned_intptr"); 16989 llvm::Value *Difference = Builder.CreateSub(Result, SrcAddr, "diff"); 16990 // The result must point to the same underlying allocation. This means we 16991 // can use an inbounds GEP to enable better optimization. 16992 Value *Base = EmitCastToVoidPtr(Args.Src); 16993 if (getLangOpts().isSignedOverflowDefined()) 16994 Result = Builder.CreateGEP(Base, Difference, "aligned_result"); 16995 else 16996 Result = EmitCheckedInBoundsGEP(Base, Difference, 16997 /*SignedIndices=*/true, 16998 /*isSubtraction=*/!AlignUp, 16999 E->getExprLoc(), "aligned_result"); 17000 Result = Builder.CreatePointerCast(Result, Args.SrcType); 17001 // Emit an alignment assumption to ensure that the new alignment is 17002 // propagated to loads/stores, etc. 17003 emitAlignmentAssumption(Result, E, E->getExprLoc(), Args.Alignment); 17004 } 17005 assert(Result->getType() == Args.SrcType); 17006 return RValue::get(Result); 17007 } 17008 17009 Value *CodeGenFunction::EmitWebAssemblyBuiltinExpr(unsigned BuiltinID, 17010 const CallExpr *E) { 17011 switch (BuiltinID) { 17012 case WebAssembly::BI__builtin_wasm_memory_size: { 17013 llvm::Type *ResultType = ConvertType(E->getType()); 17014 Value *I = EmitScalarExpr(E->getArg(0)); 17015 Function *Callee = 17016 CGM.getIntrinsic(Intrinsic::wasm_memory_size, ResultType); 17017 return Builder.CreateCall(Callee, I); 17018 } 17019 case WebAssembly::BI__builtin_wasm_memory_grow: { 17020 llvm::Type *ResultType = ConvertType(E->getType()); 17021 Value *Args[] = {EmitScalarExpr(E->getArg(0)), 17022 EmitScalarExpr(E->getArg(1))}; 17023 Function *Callee = 17024 CGM.getIntrinsic(Intrinsic::wasm_memory_grow, ResultType); 17025 return Builder.CreateCall(Callee, Args); 17026 } 17027 case WebAssembly::BI__builtin_wasm_tls_size: { 17028 llvm::Type *ResultType = ConvertType(E->getType()); 17029 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_size, ResultType); 17030 return Builder.CreateCall(Callee); 17031 } 17032 case WebAssembly::BI__builtin_wasm_tls_align: { 17033 llvm::Type *ResultType = ConvertType(E->getType()); 17034 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_align, ResultType); 17035 return Builder.CreateCall(Callee); 17036 } 17037 case WebAssembly::BI__builtin_wasm_tls_base: { 17038 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_base); 17039 return Builder.CreateCall(Callee); 17040 } 17041 case WebAssembly::BI__builtin_wasm_throw: { 17042 Value *Tag = EmitScalarExpr(E->getArg(0)); 17043 Value *Obj = EmitScalarExpr(E->getArg(1)); 17044 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_throw); 17045 return Builder.CreateCall(Callee, {Tag, Obj}); 17046 } 17047 case WebAssembly::BI__builtin_wasm_rethrow: { 17048 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_rethrow); 17049 return Builder.CreateCall(Callee); 17050 } 17051 case WebAssembly::BI__builtin_wasm_memory_atomic_wait32: { 17052 Value *Addr = EmitScalarExpr(E->getArg(0)); 17053 Value *Expected = EmitScalarExpr(E->getArg(1)); 17054 Value *Timeout = EmitScalarExpr(E->getArg(2)); 17055 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_atomic_wait32); 17056 return Builder.CreateCall(Callee, {Addr, Expected, Timeout}); 17057 } 17058 case WebAssembly::BI__builtin_wasm_memory_atomic_wait64: { 17059 Value *Addr = EmitScalarExpr(E->getArg(0)); 17060 Value *Expected = EmitScalarExpr(E->getArg(1)); 17061 Value *Timeout = EmitScalarExpr(E->getArg(2)); 17062 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_atomic_wait64); 17063 return Builder.CreateCall(Callee, {Addr, Expected, Timeout}); 17064 } 17065 case WebAssembly::BI__builtin_wasm_memory_atomic_notify: { 17066 Value *Addr = EmitScalarExpr(E->getArg(0)); 17067 Value *Count = EmitScalarExpr(E->getArg(1)); 17068 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_atomic_notify); 17069 return Builder.CreateCall(Callee, {Addr, Count}); 17070 } 17071 case WebAssembly::BI__builtin_wasm_trunc_s_i32_f32: 17072 case WebAssembly::BI__builtin_wasm_trunc_s_i32_f64: 17073 case WebAssembly::BI__builtin_wasm_trunc_s_i64_f32: 17074 case WebAssembly::BI__builtin_wasm_trunc_s_i64_f64: { 17075 Value *Src = EmitScalarExpr(E->getArg(0)); 17076 llvm::Type *ResT = ConvertType(E->getType()); 17077 Function *Callee = 17078 CGM.getIntrinsic(Intrinsic::wasm_trunc_signed, {ResT, Src->getType()}); 17079 return Builder.CreateCall(Callee, {Src}); 17080 } 17081 case WebAssembly::BI__builtin_wasm_trunc_u_i32_f32: 17082 case WebAssembly::BI__builtin_wasm_trunc_u_i32_f64: 17083 case WebAssembly::BI__builtin_wasm_trunc_u_i64_f32: 17084 case WebAssembly::BI__builtin_wasm_trunc_u_i64_f64: { 17085 Value *Src = EmitScalarExpr(E->getArg(0)); 17086 llvm::Type *ResT = ConvertType(E->getType()); 17087 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_trunc_unsigned, 17088 {ResT, Src->getType()}); 17089 return Builder.CreateCall(Callee, {Src}); 17090 } 17091 case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32_f32: 17092 case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32_f64: 17093 case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64_f32: 17094 case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64_f64: 17095 case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32x4_f32x4: { 17096 Value *Src = EmitScalarExpr(E->getArg(0)); 17097 llvm::Type *ResT = ConvertType(E->getType()); 17098 Function *Callee = 17099 CGM.getIntrinsic(Intrinsic::fptosi_sat, {ResT, Src->getType()}); 17100 return Builder.CreateCall(Callee, {Src}); 17101 } 17102 case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32_f32: 17103 case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32_f64: 17104 case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64_f32: 17105 case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64_f64: 17106 case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32x4_f32x4: { 17107 Value *Src = EmitScalarExpr(E->getArg(0)); 17108 llvm::Type *ResT = ConvertType(E->getType()); 17109 Function *Callee = 17110 CGM.getIntrinsic(Intrinsic::fptoui_sat, {ResT, Src->getType()}); 17111 return Builder.CreateCall(Callee, {Src}); 17112 } 17113 case WebAssembly::BI__builtin_wasm_min_f32: 17114 case WebAssembly::BI__builtin_wasm_min_f64: 17115 case WebAssembly::BI__builtin_wasm_min_f32x4: 17116 case WebAssembly::BI__builtin_wasm_min_f64x2: { 17117 Value *LHS = EmitScalarExpr(E->getArg(0)); 17118 Value *RHS = EmitScalarExpr(E->getArg(1)); 17119 Function *Callee = 17120 CGM.getIntrinsic(Intrinsic::minimum, ConvertType(E->getType())); 17121 return Builder.CreateCall(Callee, {LHS, RHS}); 17122 } 17123 case WebAssembly::BI__builtin_wasm_max_f32: 17124 case WebAssembly::BI__builtin_wasm_max_f64: 17125 case WebAssembly::BI__builtin_wasm_max_f32x4: 17126 case WebAssembly::BI__builtin_wasm_max_f64x2: { 17127 Value *LHS = EmitScalarExpr(E->getArg(0)); 17128 Value *RHS = EmitScalarExpr(E->getArg(1)); 17129 Function *Callee = 17130 CGM.getIntrinsic(Intrinsic::maximum, ConvertType(E->getType())); 17131 return Builder.CreateCall(Callee, {LHS, RHS}); 17132 } 17133 case WebAssembly::BI__builtin_wasm_pmin_f32x4: 17134 case WebAssembly::BI__builtin_wasm_pmin_f64x2: { 17135 Value *LHS = EmitScalarExpr(E->getArg(0)); 17136 Value *RHS = EmitScalarExpr(E->getArg(1)); 17137 Function *Callee = 17138 CGM.getIntrinsic(Intrinsic::wasm_pmin, ConvertType(E->getType())); 17139 return Builder.CreateCall(Callee, {LHS, RHS}); 17140 } 17141 case WebAssembly::BI__builtin_wasm_pmax_f32x4: 17142 case WebAssembly::BI__builtin_wasm_pmax_f64x2: { 17143 Value *LHS = EmitScalarExpr(E->getArg(0)); 17144 Value *RHS = EmitScalarExpr(E->getArg(1)); 17145 Function *Callee = 17146 CGM.getIntrinsic(Intrinsic::wasm_pmax, ConvertType(E->getType())); 17147 return Builder.CreateCall(Callee, {LHS, RHS}); 17148 } 17149 case WebAssembly::BI__builtin_wasm_ceil_f32x4: 17150 case WebAssembly::BI__builtin_wasm_floor_f32x4: 17151 case WebAssembly::BI__builtin_wasm_trunc_f32x4: 17152 case WebAssembly::BI__builtin_wasm_nearest_f32x4: 17153 case WebAssembly::BI__builtin_wasm_ceil_f64x2: 17154 case WebAssembly::BI__builtin_wasm_floor_f64x2: 17155 case WebAssembly::BI__builtin_wasm_trunc_f64x2: 17156 case WebAssembly::BI__builtin_wasm_nearest_f64x2: { 17157 unsigned IntNo; 17158 switch (BuiltinID) { 17159 case WebAssembly::BI__builtin_wasm_ceil_f32x4: 17160 case WebAssembly::BI__builtin_wasm_ceil_f64x2: 17161 IntNo = Intrinsic::ceil; 17162 break; 17163 case WebAssembly::BI__builtin_wasm_floor_f32x4: 17164 case WebAssembly::BI__builtin_wasm_floor_f64x2: 17165 IntNo = Intrinsic::floor; 17166 break; 17167 case WebAssembly::BI__builtin_wasm_trunc_f32x4: 17168 case WebAssembly::BI__builtin_wasm_trunc_f64x2: 17169 IntNo = Intrinsic::trunc; 17170 break; 17171 case WebAssembly::BI__builtin_wasm_nearest_f32x4: 17172 case WebAssembly::BI__builtin_wasm_nearest_f64x2: 17173 IntNo = Intrinsic::nearbyint; 17174 break; 17175 default: 17176 llvm_unreachable("unexpected builtin ID"); 17177 } 17178 Value *Value = EmitScalarExpr(E->getArg(0)); 17179 Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType())); 17180 return Builder.CreateCall(Callee, Value); 17181 } 17182 case WebAssembly::BI__builtin_wasm_swizzle_i8x16: { 17183 Value *Src = EmitScalarExpr(E->getArg(0)); 17184 Value *Indices = EmitScalarExpr(E->getArg(1)); 17185 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_swizzle); 17186 return Builder.CreateCall(Callee, {Src, Indices}); 17187 } 17188 case WebAssembly::BI__builtin_wasm_extract_lane_s_i8x16: 17189 case WebAssembly::BI__builtin_wasm_extract_lane_u_i8x16: 17190 case WebAssembly::BI__builtin_wasm_extract_lane_s_i16x8: 17191 case WebAssembly::BI__builtin_wasm_extract_lane_u_i16x8: 17192 case WebAssembly::BI__builtin_wasm_extract_lane_i32x4: 17193 case WebAssembly::BI__builtin_wasm_extract_lane_i64x2: 17194 case WebAssembly::BI__builtin_wasm_extract_lane_f32x4: 17195 case WebAssembly::BI__builtin_wasm_extract_lane_f64x2: { 17196 llvm::APSInt LaneConst = 17197 *E->getArg(1)->getIntegerConstantExpr(getContext()); 17198 Value *Vec = EmitScalarExpr(E->getArg(0)); 17199 Value *Lane = llvm::ConstantInt::get(getLLVMContext(), LaneConst); 17200 Value *Extract = Builder.CreateExtractElement(Vec, Lane); 17201 switch (BuiltinID) { 17202 case WebAssembly::BI__builtin_wasm_extract_lane_s_i8x16: 17203 case WebAssembly::BI__builtin_wasm_extract_lane_s_i16x8: 17204 return Builder.CreateSExt(Extract, ConvertType(E->getType())); 17205 case WebAssembly::BI__builtin_wasm_extract_lane_u_i8x16: 17206 case WebAssembly::BI__builtin_wasm_extract_lane_u_i16x8: 17207 return Builder.CreateZExt(Extract, ConvertType(E->getType())); 17208 case WebAssembly::BI__builtin_wasm_extract_lane_i32x4: 17209 case WebAssembly::BI__builtin_wasm_extract_lane_i64x2: 17210 case WebAssembly::BI__builtin_wasm_extract_lane_f32x4: 17211 case WebAssembly::BI__builtin_wasm_extract_lane_f64x2: 17212 return Extract; 17213 default: 17214 llvm_unreachable("unexpected builtin ID"); 17215 } 17216 } 17217 case WebAssembly::BI__builtin_wasm_replace_lane_i8x16: 17218 case WebAssembly::BI__builtin_wasm_replace_lane_i16x8: 17219 case WebAssembly::BI__builtin_wasm_replace_lane_i32x4: 17220 case WebAssembly::BI__builtin_wasm_replace_lane_i64x2: 17221 case WebAssembly::BI__builtin_wasm_replace_lane_f32x4: 17222 case WebAssembly::BI__builtin_wasm_replace_lane_f64x2: { 17223 llvm::APSInt LaneConst = 17224 *E->getArg(1)->getIntegerConstantExpr(getContext()); 17225 Value *Vec = EmitScalarExpr(E->getArg(0)); 17226 Value *Lane = llvm::ConstantInt::get(getLLVMContext(), LaneConst); 17227 Value *Val = EmitScalarExpr(E->getArg(2)); 17228 switch (BuiltinID) { 17229 case WebAssembly::BI__builtin_wasm_replace_lane_i8x16: 17230 case WebAssembly::BI__builtin_wasm_replace_lane_i16x8: { 17231 llvm::Type *ElemType = 17232 cast<llvm::VectorType>(ConvertType(E->getType()))->getElementType(); 17233 Value *Trunc = Builder.CreateTrunc(Val, ElemType); 17234 return Builder.CreateInsertElement(Vec, Trunc, Lane); 17235 } 17236 case WebAssembly::BI__builtin_wasm_replace_lane_i32x4: 17237 case WebAssembly::BI__builtin_wasm_replace_lane_i64x2: 17238 case WebAssembly::BI__builtin_wasm_replace_lane_f32x4: 17239 case WebAssembly::BI__builtin_wasm_replace_lane_f64x2: 17240 return Builder.CreateInsertElement(Vec, Val, Lane); 17241 default: 17242 llvm_unreachable("unexpected builtin ID"); 17243 } 17244 } 17245 case WebAssembly::BI__builtin_wasm_add_sat_s_i8x16: 17246 case WebAssembly::BI__builtin_wasm_add_sat_u_i8x16: 17247 case WebAssembly::BI__builtin_wasm_add_sat_s_i16x8: 17248 case WebAssembly::BI__builtin_wasm_add_sat_u_i16x8: 17249 case WebAssembly::BI__builtin_wasm_sub_sat_s_i8x16: 17250 case WebAssembly::BI__builtin_wasm_sub_sat_u_i8x16: 17251 case WebAssembly::BI__builtin_wasm_sub_sat_s_i16x8: 17252 case WebAssembly::BI__builtin_wasm_sub_sat_u_i16x8: { 17253 unsigned IntNo; 17254 switch (BuiltinID) { 17255 case WebAssembly::BI__builtin_wasm_add_sat_s_i8x16: 17256 case WebAssembly::BI__builtin_wasm_add_sat_s_i16x8: 17257 IntNo = Intrinsic::sadd_sat; 17258 break; 17259 case WebAssembly::BI__builtin_wasm_add_sat_u_i8x16: 17260 case WebAssembly::BI__builtin_wasm_add_sat_u_i16x8: 17261 IntNo = Intrinsic::uadd_sat; 17262 break; 17263 case WebAssembly::BI__builtin_wasm_sub_sat_s_i8x16: 17264 case WebAssembly::BI__builtin_wasm_sub_sat_s_i16x8: 17265 IntNo = Intrinsic::wasm_sub_sat_signed; 17266 break; 17267 case WebAssembly::BI__builtin_wasm_sub_sat_u_i8x16: 17268 case WebAssembly::BI__builtin_wasm_sub_sat_u_i16x8: 17269 IntNo = Intrinsic::wasm_sub_sat_unsigned; 17270 break; 17271 default: 17272 llvm_unreachable("unexpected builtin ID"); 17273 } 17274 Value *LHS = EmitScalarExpr(E->getArg(0)); 17275 Value *RHS = EmitScalarExpr(E->getArg(1)); 17276 Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType())); 17277 return Builder.CreateCall(Callee, {LHS, RHS}); 17278 } 17279 case WebAssembly::BI__builtin_wasm_abs_i8x16: 17280 case WebAssembly::BI__builtin_wasm_abs_i16x8: 17281 case WebAssembly::BI__builtin_wasm_abs_i32x4: 17282 case WebAssembly::BI__builtin_wasm_abs_i64x2: { 17283 Value *Vec = EmitScalarExpr(E->getArg(0)); 17284 Value *Neg = Builder.CreateNeg(Vec, "neg"); 17285 Constant *Zero = llvm::Constant::getNullValue(Vec->getType()); 17286 Value *ICmp = Builder.CreateICmpSLT(Vec, Zero, "abscond"); 17287 return Builder.CreateSelect(ICmp, Neg, Vec, "abs"); 17288 } 17289 case WebAssembly::BI__builtin_wasm_min_s_i8x16: 17290 case WebAssembly::BI__builtin_wasm_min_u_i8x16: 17291 case WebAssembly::BI__builtin_wasm_max_s_i8x16: 17292 case WebAssembly::BI__builtin_wasm_max_u_i8x16: 17293 case WebAssembly::BI__builtin_wasm_min_s_i16x8: 17294 case WebAssembly::BI__builtin_wasm_min_u_i16x8: 17295 case WebAssembly::BI__builtin_wasm_max_s_i16x8: 17296 case WebAssembly::BI__builtin_wasm_max_u_i16x8: 17297 case WebAssembly::BI__builtin_wasm_min_s_i32x4: 17298 case WebAssembly::BI__builtin_wasm_min_u_i32x4: 17299 case WebAssembly::BI__builtin_wasm_max_s_i32x4: 17300 case WebAssembly::BI__builtin_wasm_max_u_i32x4: { 17301 Value *LHS = EmitScalarExpr(E->getArg(0)); 17302 Value *RHS = EmitScalarExpr(E->getArg(1)); 17303 Value *ICmp; 17304 switch (BuiltinID) { 17305 case WebAssembly::BI__builtin_wasm_min_s_i8x16: 17306 case WebAssembly::BI__builtin_wasm_min_s_i16x8: 17307 case WebAssembly::BI__builtin_wasm_min_s_i32x4: 17308 ICmp = Builder.CreateICmpSLT(LHS, RHS); 17309 break; 17310 case WebAssembly::BI__builtin_wasm_min_u_i8x16: 17311 case WebAssembly::BI__builtin_wasm_min_u_i16x8: 17312 case WebAssembly::BI__builtin_wasm_min_u_i32x4: 17313 ICmp = Builder.CreateICmpULT(LHS, RHS); 17314 break; 17315 case WebAssembly::BI__builtin_wasm_max_s_i8x16: 17316 case WebAssembly::BI__builtin_wasm_max_s_i16x8: 17317 case WebAssembly::BI__builtin_wasm_max_s_i32x4: 17318 ICmp = Builder.CreateICmpSGT(LHS, RHS); 17319 break; 17320 case WebAssembly::BI__builtin_wasm_max_u_i8x16: 17321 case WebAssembly::BI__builtin_wasm_max_u_i16x8: 17322 case WebAssembly::BI__builtin_wasm_max_u_i32x4: 17323 ICmp = Builder.CreateICmpUGT(LHS, RHS); 17324 break; 17325 default: 17326 llvm_unreachable("unexpected builtin ID"); 17327 } 17328 return Builder.CreateSelect(ICmp, LHS, RHS); 17329 } 17330 case WebAssembly::BI__builtin_wasm_avgr_u_i8x16: 17331 case WebAssembly::BI__builtin_wasm_avgr_u_i16x8: { 17332 Value *LHS = EmitScalarExpr(E->getArg(0)); 17333 Value *RHS = EmitScalarExpr(E->getArg(1)); 17334 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_avgr_unsigned, 17335 ConvertType(E->getType())); 17336 return Builder.CreateCall(Callee, {LHS, RHS}); 17337 } 17338 case WebAssembly::BI__builtin_wasm_q15mulr_sat_s_i16x8: { 17339 Value *LHS = EmitScalarExpr(E->getArg(0)); 17340 Value *RHS = EmitScalarExpr(E->getArg(1)); 17341 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_q15mulr_sat_signed); 17342 return Builder.CreateCall(Callee, {LHS, RHS}); 17343 } 17344 case WebAssembly::BI__builtin_wasm_extmul_low_i8x16_s_i16x8: 17345 case WebAssembly::BI__builtin_wasm_extmul_high_i8x16_s_i16x8: 17346 case WebAssembly::BI__builtin_wasm_extmul_low_i8x16_u_i16x8: 17347 case WebAssembly::BI__builtin_wasm_extmul_high_i8x16_u_i16x8: 17348 case WebAssembly::BI__builtin_wasm_extmul_low_i16x8_s_i32x4: 17349 case WebAssembly::BI__builtin_wasm_extmul_high_i16x8_s_i32x4: 17350 case WebAssembly::BI__builtin_wasm_extmul_low_i16x8_u_i32x4: 17351 case WebAssembly::BI__builtin_wasm_extmul_high_i16x8_u_i32x4: 17352 case WebAssembly::BI__builtin_wasm_extmul_low_i32x4_s_i64x2: 17353 case WebAssembly::BI__builtin_wasm_extmul_high_i32x4_s_i64x2: 17354 case WebAssembly::BI__builtin_wasm_extmul_low_i32x4_u_i64x2: 17355 case WebAssembly::BI__builtin_wasm_extmul_high_i32x4_u_i64x2: { 17356 Value *LHS = EmitScalarExpr(E->getArg(0)); 17357 Value *RHS = EmitScalarExpr(E->getArg(1)); 17358 unsigned IntNo; 17359 switch (BuiltinID) { 17360 case WebAssembly::BI__builtin_wasm_extmul_low_i8x16_s_i16x8: 17361 case WebAssembly::BI__builtin_wasm_extmul_low_i16x8_s_i32x4: 17362 case WebAssembly::BI__builtin_wasm_extmul_low_i32x4_s_i64x2: 17363 IntNo = Intrinsic::wasm_extmul_low_signed; 17364 break; 17365 case WebAssembly::BI__builtin_wasm_extmul_low_i8x16_u_i16x8: 17366 case WebAssembly::BI__builtin_wasm_extmul_low_i16x8_u_i32x4: 17367 case WebAssembly::BI__builtin_wasm_extmul_low_i32x4_u_i64x2: 17368 IntNo = Intrinsic::wasm_extmul_low_unsigned; 17369 break; 17370 case WebAssembly::BI__builtin_wasm_extmul_high_i8x16_s_i16x8: 17371 case WebAssembly::BI__builtin_wasm_extmul_high_i16x8_s_i32x4: 17372 case WebAssembly::BI__builtin_wasm_extmul_high_i32x4_s_i64x2: 17373 IntNo = Intrinsic::wasm_extmul_high_signed; 17374 break; 17375 case WebAssembly::BI__builtin_wasm_extmul_high_i8x16_u_i16x8: 17376 case WebAssembly::BI__builtin_wasm_extmul_high_i16x8_u_i32x4: 17377 case WebAssembly::BI__builtin_wasm_extmul_high_i32x4_u_i64x2: 17378 IntNo = Intrinsic::wasm_extmul_high_unsigned; 17379 break; 17380 default: 17381 llvm_unreachable("unexptected builtin ID"); 17382 } 17383 17384 Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType())); 17385 return Builder.CreateCall(Callee, {LHS, RHS}); 17386 } 17387 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_s_i16x8: 17388 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_u_i16x8: 17389 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_s_i32x4: 17390 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_u_i32x4: { 17391 Value *Vec = EmitScalarExpr(E->getArg(0)); 17392 unsigned IntNo; 17393 switch (BuiltinID) { 17394 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_s_i16x8: 17395 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_s_i32x4: 17396 IntNo = Intrinsic::wasm_extadd_pairwise_signed; 17397 break; 17398 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_u_i16x8: 17399 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_u_i32x4: 17400 IntNo = Intrinsic::wasm_extadd_pairwise_unsigned; 17401 break; 17402 default: 17403 llvm_unreachable("unexptected builtin ID"); 17404 } 17405 17406 Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType())); 17407 return Builder.CreateCall(Callee, Vec); 17408 } 17409 case WebAssembly::BI__builtin_wasm_bitselect: { 17410 Value *V1 = EmitScalarExpr(E->getArg(0)); 17411 Value *V2 = EmitScalarExpr(E->getArg(1)); 17412 Value *C = EmitScalarExpr(E->getArg(2)); 17413 Function *Callee = 17414 CGM.getIntrinsic(Intrinsic::wasm_bitselect, ConvertType(E->getType())); 17415 return Builder.CreateCall(Callee, {V1, V2, C}); 17416 } 17417 case WebAssembly::BI__builtin_wasm_dot_s_i32x4_i16x8: { 17418 Value *LHS = EmitScalarExpr(E->getArg(0)); 17419 Value *RHS = EmitScalarExpr(E->getArg(1)); 17420 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_dot); 17421 return Builder.CreateCall(Callee, {LHS, RHS}); 17422 } 17423 case WebAssembly::BI__builtin_wasm_popcnt_i8x16: { 17424 Value *Vec = EmitScalarExpr(E->getArg(0)); 17425 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_popcnt); 17426 return Builder.CreateCall(Callee, {Vec}); 17427 } 17428 case WebAssembly::BI__builtin_wasm_any_true_v128: 17429 case WebAssembly::BI__builtin_wasm_all_true_i8x16: 17430 case WebAssembly::BI__builtin_wasm_all_true_i16x8: 17431 case WebAssembly::BI__builtin_wasm_all_true_i32x4: 17432 case WebAssembly::BI__builtin_wasm_all_true_i64x2: { 17433 unsigned IntNo; 17434 switch (BuiltinID) { 17435 case WebAssembly::BI__builtin_wasm_any_true_v128: 17436 IntNo = Intrinsic::wasm_anytrue; 17437 break; 17438 case WebAssembly::BI__builtin_wasm_all_true_i8x16: 17439 case WebAssembly::BI__builtin_wasm_all_true_i16x8: 17440 case WebAssembly::BI__builtin_wasm_all_true_i32x4: 17441 case WebAssembly::BI__builtin_wasm_all_true_i64x2: 17442 IntNo = Intrinsic::wasm_alltrue; 17443 break; 17444 default: 17445 llvm_unreachable("unexpected builtin ID"); 17446 } 17447 Value *Vec = EmitScalarExpr(E->getArg(0)); 17448 Function *Callee = CGM.getIntrinsic(IntNo, Vec->getType()); 17449 return Builder.CreateCall(Callee, {Vec}); 17450 } 17451 case WebAssembly::BI__builtin_wasm_bitmask_i8x16: 17452 case WebAssembly::BI__builtin_wasm_bitmask_i16x8: 17453 case WebAssembly::BI__builtin_wasm_bitmask_i32x4: 17454 case WebAssembly::BI__builtin_wasm_bitmask_i64x2: { 17455 Value *Vec = EmitScalarExpr(E->getArg(0)); 17456 Function *Callee = 17457 CGM.getIntrinsic(Intrinsic::wasm_bitmask, Vec->getType()); 17458 return Builder.CreateCall(Callee, {Vec}); 17459 } 17460 case WebAssembly::BI__builtin_wasm_abs_f32x4: 17461 case WebAssembly::BI__builtin_wasm_abs_f64x2: { 17462 Value *Vec = EmitScalarExpr(E->getArg(0)); 17463 Function *Callee = CGM.getIntrinsic(Intrinsic::fabs, Vec->getType()); 17464 return Builder.CreateCall(Callee, {Vec}); 17465 } 17466 case WebAssembly::BI__builtin_wasm_sqrt_f32x4: 17467 case WebAssembly::BI__builtin_wasm_sqrt_f64x2: { 17468 Value *Vec = EmitScalarExpr(E->getArg(0)); 17469 Function *Callee = CGM.getIntrinsic(Intrinsic::sqrt, Vec->getType()); 17470 return Builder.CreateCall(Callee, {Vec}); 17471 } 17472 case WebAssembly::BI__builtin_wasm_narrow_s_i8x16_i16x8: 17473 case WebAssembly::BI__builtin_wasm_narrow_u_i8x16_i16x8: 17474 case WebAssembly::BI__builtin_wasm_narrow_s_i16x8_i32x4: 17475 case WebAssembly::BI__builtin_wasm_narrow_u_i16x8_i32x4: { 17476 Value *Low = EmitScalarExpr(E->getArg(0)); 17477 Value *High = EmitScalarExpr(E->getArg(1)); 17478 unsigned IntNo; 17479 switch (BuiltinID) { 17480 case WebAssembly::BI__builtin_wasm_narrow_s_i8x16_i16x8: 17481 case WebAssembly::BI__builtin_wasm_narrow_s_i16x8_i32x4: 17482 IntNo = Intrinsic::wasm_narrow_signed; 17483 break; 17484 case WebAssembly::BI__builtin_wasm_narrow_u_i8x16_i16x8: 17485 case WebAssembly::BI__builtin_wasm_narrow_u_i16x8_i32x4: 17486 IntNo = Intrinsic::wasm_narrow_unsigned; 17487 break; 17488 default: 17489 llvm_unreachable("unexpected builtin ID"); 17490 } 17491 Function *Callee = 17492 CGM.getIntrinsic(IntNo, {ConvertType(E->getType()), Low->getType()}); 17493 return Builder.CreateCall(Callee, {Low, High}); 17494 } 17495 case WebAssembly::BI__builtin_wasm_trunc_sat_zero_s_f64x2_i32x4: 17496 case WebAssembly::BI__builtin_wasm_trunc_sat_zero_u_f64x2_i32x4: { 17497 Value *Vec = EmitScalarExpr(E->getArg(0)); 17498 unsigned IntNo; 17499 switch (BuiltinID) { 17500 case WebAssembly::BI__builtin_wasm_trunc_sat_zero_s_f64x2_i32x4: 17501 IntNo = Intrinsic::fptosi_sat; 17502 break; 17503 case WebAssembly::BI__builtin_wasm_trunc_sat_zero_u_f64x2_i32x4: 17504 IntNo = Intrinsic::fptoui_sat; 17505 break; 17506 default: 17507 llvm_unreachable("unexpected builtin ID"); 17508 } 17509 llvm::Type *SrcT = Vec->getType(); 17510 llvm::Type *TruncT = 17511 SrcT->getWithNewType(llvm::IntegerType::get(getLLVMContext(), 32)); 17512 Function *Callee = CGM.getIntrinsic(IntNo, {TruncT, SrcT}); 17513 Value *Trunc = Builder.CreateCall(Callee, Vec); 17514 Value *Splat = Builder.CreateVectorSplat(2, Builder.getInt32(0)); 17515 Value *ConcatMask = 17516 llvm::ConstantVector::get({Builder.getInt32(0), Builder.getInt32(1), 17517 Builder.getInt32(2), Builder.getInt32(3)}); 17518 return Builder.CreateShuffleVector(Trunc, Splat, ConcatMask); 17519 } 17520 case WebAssembly::BI__builtin_wasm_demote_zero_f64x2_f32x4: { 17521 Value *Vec = EmitScalarExpr(E->getArg(0)); 17522 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_demote_zero); 17523 return Builder.CreateCall(Callee, Vec); 17524 } 17525 case WebAssembly::BI__builtin_wasm_promote_low_f32x4_f64x2: { 17526 Value *Vec = EmitScalarExpr(E->getArg(0)); 17527 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_promote_low); 17528 return Builder.CreateCall(Callee, Vec); 17529 } 17530 case WebAssembly::BI__builtin_wasm_load32_zero: { 17531 Value *Ptr = EmitScalarExpr(E->getArg(0)); 17532 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_load32_zero); 17533 return Builder.CreateCall(Callee, {Ptr}); 17534 } 17535 case WebAssembly::BI__builtin_wasm_load64_zero: { 17536 Value *Ptr = EmitScalarExpr(E->getArg(0)); 17537 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_load64_zero); 17538 return Builder.CreateCall(Callee, {Ptr}); 17539 } 17540 case WebAssembly::BI__builtin_wasm_load8_lane: 17541 case WebAssembly::BI__builtin_wasm_load16_lane: 17542 case WebAssembly::BI__builtin_wasm_load32_lane: 17543 case WebAssembly::BI__builtin_wasm_load64_lane: 17544 case WebAssembly::BI__builtin_wasm_store8_lane: 17545 case WebAssembly::BI__builtin_wasm_store16_lane: 17546 case WebAssembly::BI__builtin_wasm_store32_lane: 17547 case WebAssembly::BI__builtin_wasm_store64_lane: { 17548 Value *Ptr = EmitScalarExpr(E->getArg(0)); 17549 Value *Vec = EmitScalarExpr(E->getArg(1)); 17550 Optional<llvm::APSInt> LaneIdxConst = 17551 E->getArg(2)->getIntegerConstantExpr(getContext()); 17552 assert(LaneIdxConst && "Constant arg isn't actually constant?"); 17553 Value *LaneIdx = llvm::ConstantInt::get(getLLVMContext(), *LaneIdxConst); 17554 unsigned IntNo; 17555 switch (BuiltinID) { 17556 case WebAssembly::BI__builtin_wasm_load8_lane: 17557 IntNo = Intrinsic::wasm_load8_lane; 17558 break; 17559 case WebAssembly::BI__builtin_wasm_load16_lane: 17560 IntNo = Intrinsic::wasm_load16_lane; 17561 break; 17562 case WebAssembly::BI__builtin_wasm_load32_lane: 17563 IntNo = Intrinsic::wasm_load32_lane; 17564 break; 17565 case WebAssembly::BI__builtin_wasm_load64_lane: 17566 IntNo = Intrinsic::wasm_load64_lane; 17567 break; 17568 case WebAssembly::BI__builtin_wasm_store8_lane: 17569 IntNo = Intrinsic::wasm_store8_lane; 17570 break; 17571 case WebAssembly::BI__builtin_wasm_store16_lane: 17572 IntNo = Intrinsic::wasm_store16_lane; 17573 break; 17574 case WebAssembly::BI__builtin_wasm_store32_lane: 17575 IntNo = Intrinsic::wasm_store32_lane; 17576 break; 17577 case WebAssembly::BI__builtin_wasm_store64_lane: 17578 IntNo = Intrinsic::wasm_store64_lane; 17579 break; 17580 default: 17581 llvm_unreachable("unexpected builtin ID"); 17582 } 17583 Function *Callee = CGM.getIntrinsic(IntNo); 17584 return Builder.CreateCall(Callee, {Ptr, Vec, LaneIdx}); 17585 } 17586 case WebAssembly::BI__builtin_wasm_shuffle_i8x16: { 17587 Value *Ops[18]; 17588 size_t OpIdx = 0; 17589 Ops[OpIdx++] = EmitScalarExpr(E->getArg(0)); 17590 Ops[OpIdx++] = EmitScalarExpr(E->getArg(1)); 17591 while (OpIdx < 18) { 17592 Optional<llvm::APSInt> LaneConst = 17593 E->getArg(OpIdx)->getIntegerConstantExpr(getContext()); 17594 assert(LaneConst && "Constant arg isn't actually constant?"); 17595 Ops[OpIdx++] = llvm::ConstantInt::get(getLLVMContext(), *LaneConst); 17596 } 17597 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_shuffle); 17598 return Builder.CreateCall(Callee, Ops); 17599 } 17600 default: 17601 return nullptr; 17602 } 17603 } 17604 17605 static std::pair<Intrinsic::ID, unsigned> 17606 getIntrinsicForHexagonNonGCCBuiltin(unsigned BuiltinID) { 17607 struct Info { 17608 unsigned BuiltinID; 17609 Intrinsic::ID IntrinsicID; 17610 unsigned VecLen; 17611 }; 17612 Info Infos[] = { 17613 #define CUSTOM_BUILTIN_MAPPING(x,s) \ 17614 { Hexagon::BI__builtin_HEXAGON_##x, Intrinsic::hexagon_##x, s }, 17615 CUSTOM_BUILTIN_MAPPING(L2_loadrub_pci, 0) 17616 CUSTOM_BUILTIN_MAPPING(L2_loadrb_pci, 0) 17617 CUSTOM_BUILTIN_MAPPING(L2_loadruh_pci, 0) 17618 CUSTOM_BUILTIN_MAPPING(L2_loadrh_pci, 0) 17619 CUSTOM_BUILTIN_MAPPING(L2_loadri_pci, 0) 17620 CUSTOM_BUILTIN_MAPPING(L2_loadrd_pci, 0) 17621 CUSTOM_BUILTIN_MAPPING(L2_loadrub_pcr, 0) 17622 CUSTOM_BUILTIN_MAPPING(L2_loadrb_pcr, 0) 17623 CUSTOM_BUILTIN_MAPPING(L2_loadruh_pcr, 0) 17624 CUSTOM_BUILTIN_MAPPING(L2_loadrh_pcr, 0) 17625 CUSTOM_BUILTIN_MAPPING(L2_loadri_pcr, 0) 17626 CUSTOM_BUILTIN_MAPPING(L2_loadrd_pcr, 0) 17627 CUSTOM_BUILTIN_MAPPING(S2_storerb_pci, 0) 17628 CUSTOM_BUILTIN_MAPPING(S2_storerh_pci, 0) 17629 CUSTOM_BUILTIN_MAPPING(S2_storerf_pci, 0) 17630 CUSTOM_BUILTIN_MAPPING(S2_storeri_pci, 0) 17631 CUSTOM_BUILTIN_MAPPING(S2_storerd_pci, 0) 17632 CUSTOM_BUILTIN_MAPPING(S2_storerb_pcr, 0) 17633 CUSTOM_BUILTIN_MAPPING(S2_storerh_pcr, 0) 17634 CUSTOM_BUILTIN_MAPPING(S2_storerf_pcr, 0) 17635 CUSTOM_BUILTIN_MAPPING(S2_storeri_pcr, 0) 17636 CUSTOM_BUILTIN_MAPPING(S2_storerd_pcr, 0) 17637 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstoreq, 64) 17638 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorenq, 64) 17639 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentq, 64) 17640 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentnq, 64) 17641 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstoreq_128B, 128) 17642 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorenq_128B, 128) 17643 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentq_128B, 128) 17644 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentnq_128B, 128) 17645 #include "clang/Basic/BuiltinsHexagonMapCustomDep.def" 17646 #undef CUSTOM_BUILTIN_MAPPING 17647 }; 17648 17649 auto CmpInfo = [] (Info A, Info B) { return A.BuiltinID < B.BuiltinID; }; 17650 static const bool SortOnce = (llvm::sort(Infos, CmpInfo), true); 17651 (void)SortOnce; 17652 17653 const Info *F = std::lower_bound(std::begin(Infos), std::end(Infos), 17654 Info{BuiltinID, 0, 0}, CmpInfo); 17655 if (F == std::end(Infos) || F->BuiltinID != BuiltinID) 17656 return {Intrinsic::not_intrinsic, 0}; 17657 17658 return {F->IntrinsicID, F->VecLen}; 17659 } 17660 17661 Value *CodeGenFunction::EmitHexagonBuiltinExpr(unsigned BuiltinID, 17662 const CallExpr *E) { 17663 Intrinsic::ID ID; 17664 unsigned VecLen; 17665 std::tie(ID, VecLen) = getIntrinsicForHexagonNonGCCBuiltin(BuiltinID); 17666 17667 auto MakeCircOp = [this, E](unsigned IntID, bool IsLoad) { 17668 // The base pointer is passed by address, so it needs to be loaded. 17669 Address A = EmitPointerWithAlignment(E->getArg(0)); 17670 Address BP = Address( 17671 Builder.CreateBitCast(A.getPointer(), Int8PtrPtrTy), A.getAlignment()); 17672 llvm::Value *Base = Builder.CreateLoad(BP); 17673 // The treatment of both loads and stores is the same: the arguments for 17674 // the builtin are the same as the arguments for the intrinsic. 17675 // Load: 17676 // builtin(Base, Inc, Mod, Start) -> intr(Base, Inc, Mod, Start) 17677 // builtin(Base, Mod, Start) -> intr(Base, Mod, Start) 17678 // Store: 17679 // builtin(Base, Inc, Mod, Val, Start) -> intr(Base, Inc, Mod, Val, Start) 17680 // builtin(Base, Mod, Val, Start) -> intr(Base, Mod, Val, Start) 17681 SmallVector<llvm::Value*,5> Ops = { Base }; 17682 for (unsigned i = 1, e = E->getNumArgs(); i != e; ++i) 17683 Ops.push_back(EmitScalarExpr(E->getArg(i))); 17684 17685 llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(IntID), Ops); 17686 // The load intrinsics generate two results (Value, NewBase), stores 17687 // generate one (NewBase). The new base address needs to be stored. 17688 llvm::Value *NewBase = IsLoad ? Builder.CreateExtractValue(Result, 1) 17689 : Result; 17690 llvm::Value *LV = Builder.CreateBitCast( 17691 EmitScalarExpr(E->getArg(0)), NewBase->getType()->getPointerTo()); 17692 Address Dest = EmitPointerWithAlignment(E->getArg(0)); 17693 llvm::Value *RetVal = 17694 Builder.CreateAlignedStore(NewBase, LV, Dest.getAlignment()); 17695 if (IsLoad) 17696 RetVal = Builder.CreateExtractValue(Result, 0); 17697 return RetVal; 17698 }; 17699 17700 // Handle the conversion of bit-reverse load intrinsics to bit code. 17701 // The intrinsic call after this function only reads from memory and the 17702 // write to memory is dealt by the store instruction. 17703 auto MakeBrevLd = [this, E](unsigned IntID, llvm::Type *DestTy) { 17704 // The intrinsic generates one result, which is the new value for the base 17705 // pointer. It needs to be returned. The result of the load instruction is 17706 // passed to intrinsic by address, so the value needs to be stored. 17707 llvm::Value *BaseAddress = 17708 Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int8PtrTy); 17709 17710 // Expressions like &(*pt++) will be incremented per evaluation. 17711 // EmitPointerWithAlignment and EmitScalarExpr evaluates the expression 17712 // per call. 17713 Address DestAddr = EmitPointerWithAlignment(E->getArg(1)); 17714 DestAddr = Address(Builder.CreateBitCast(DestAddr.getPointer(), Int8PtrTy), 17715 DestAddr.getAlignment()); 17716 llvm::Value *DestAddress = DestAddr.getPointer(); 17717 17718 // Operands are Base, Dest, Modifier. 17719 // The intrinsic format in LLVM IR is defined as 17720 // { ValueType, i8* } (i8*, i32). 17721 llvm::Value *Result = Builder.CreateCall( 17722 CGM.getIntrinsic(IntID), {BaseAddress, EmitScalarExpr(E->getArg(2))}); 17723 17724 // The value needs to be stored as the variable is passed by reference. 17725 llvm::Value *DestVal = Builder.CreateExtractValue(Result, 0); 17726 17727 // The store needs to be truncated to fit the destination type. 17728 // While i32 and i64 are natively supported on Hexagon, i8 and i16 needs 17729 // to be handled with stores of respective destination type. 17730 DestVal = Builder.CreateTrunc(DestVal, DestTy); 17731 17732 llvm::Value *DestForStore = 17733 Builder.CreateBitCast(DestAddress, DestVal->getType()->getPointerTo()); 17734 Builder.CreateAlignedStore(DestVal, DestForStore, DestAddr.getAlignment()); 17735 // The updated value of the base pointer is returned. 17736 return Builder.CreateExtractValue(Result, 1); 17737 }; 17738 17739 auto V2Q = [this, VecLen] (llvm::Value *Vec) { 17740 Intrinsic::ID ID = VecLen == 128 ? Intrinsic::hexagon_V6_vandvrt_128B 17741 : Intrinsic::hexagon_V6_vandvrt; 17742 return Builder.CreateCall(CGM.getIntrinsic(ID), 17743 {Vec, Builder.getInt32(-1)}); 17744 }; 17745 auto Q2V = [this, VecLen] (llvm::Value *Pred) { 17746 Intrinsic::ID ID = VecLen == 128 ? Intrinsic::hexagon_V6_vandqrt_128B 17747 : Intrinsic::hexagon_V6_vandqrt; 17748 return Builder.CreateCall(CGM.getIntrinsic(ID), 17749 {Pred, Builder.getInt32(-1)}); 17750 }; 17751 17752 switch (BuiltinID) { 17753 // These intrinsics return a tuple {Vector, VectorPred} in LLVM IR, 17754 // and the corresponding C/C++ builtins use loads/stores to update 17755 // the predicate. 17756 case Hexagon::BI__builtin_HEXAGON_V6_vaddcarry: 17757 case Hexagon::BI__builtin_HEXAGON_V6_vaddcarry_128B: 17758 case Hexagon::BI__builtin_HEXAGON_V6_vsubcarry: 17759 case Hexagon::BI__builtin_HEXAGON_V6_vsubcarry_128B: { 17760 // Get the type from the 0-th argument. 17761 llvm::Type *VecType = ConvertType(E->getArg(0)->getType()); 17762 Address PredAddr = Builder.CreateBitCast( 17763 EmitPointerWithAlignment(E->getArg(2)), VecType->getPointerTo(0)); 17764 llvm::Value *PredIn = V2Q(Builder.CreateLoad(PredAddr)); 17765 llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(ID), 17766 {EmitScalarExpr(E->getArg(0)), EmitScalarExpr(E->getArg(1)), PredIn}); 17767 17768 llvm::Value *PredOut = Builder.CreateExtractValue(Result, 1); 17769 Builder.CreateAlignedStore(Q2V(PredOut), PredAddr.getPointer(), 17770 PredAddr.getAlignment()); 17771 return Builder.CreateExtractValue(Result, 0); 17772 } 17773 17774 case Hexagon::BI__builtin_HEXAGON_L2_loadrub_pci: 17775 case Hexagon::BI__builtin_HEXAGON_L2_loadrb_pci: 17776 case Hexagon::BI__builtin_HEXAGON_L2_loadruh_pci: 17777 case Hexagon::BI__builtin_HEXAGON_L2_loadrh_pci: 17778 case Hexagon::BI__builtin_HEXAGON_L2_loadri_pci: 17779 case Hexagon::BI__builtin_HEXAGON_L2_loadrd_pci: 17780 case Hexagon::BI__builtin_HEXAGON_L2_loadrub_pcr: 17781 case Hexagon::BI__builtin_HEXAGON_L2_loadrb_pcr: 17782 case Hexagon::BI__builtin_HEXAGON_L2_loadruh_pcr: 17783 case Hexagon::BI__builtin_HEXAGON_L2_loadrh_pcr: 17784 case Hexagon::BI__builtin_HEXAGON_L2_loadri_pcr: 17785 case Hexagon::BI__builtin_HEXAGON_L2_loadrd_pcr: 17786 return MakeCircOp(ID, /*IsLoad=*/true); 17787 case Hexagon::BI__builtin_HEXAGON_S2_storerb_pci: 17788 case Hexagon::BI__builtin_HEXAGON_S2_storerh_pci: 17789 case Hexagon::BI__builtin_HEXAGON_S2_storerf_pci: 17790 case Hexagon::BI__builtin_HEXAGON_S2_storeri_pci: 17791 case Hexagon::BI__builtin_HEXAGON_S2_storerd_pci: 17792 case Hexagon::BI__builtin_HEXAGON_S2_storerb_pcr: 17793 case Hexagon::BI__builtin_HEXAGON_S2_storerh_pcr: 17794 case Hexagon::BI__builtin_HEXAGON_S2_storerf_pcr: 17795 case Hexagon::BI__builtin_HEXAGON_S2_storeri_pcr: 17796 case Hexagon::BI__builtin_HEXAGON_S2_storerd_pcr: 17797 return MakeCircOp(ID, /*IsLoad=*/false); 17798 case Hexagon::BI__builtin_brev_ldub: 17799 return MakeBrevLd(Intrinsic::hexagon_L2_loadrub_pbr, Int8Ty); 17800 case Hexagon::BI__builtin_brev_ldb: 17801 return MakeBrevLd(Intrinsic::hexagon_L2_loadrb_pbr, Int8Ty); 17802 case Hexagon::BI__builtin_brev_lduh: 17803 return MakeBrevLd(Intrinsic::hexagon_L2_loadruh_pbr, Int16Ty); 17804 case Hexagon::BI__builtin_brev_ldh: 17805 return MakeBrevLd(Intrinsic::hexagon_L2_loadrh_pbr, Int16Ty); 17806 case Hexagon::BI__builtin_brev_ldw: 17807 return MakeBrevLd(Intrinsic::hexagon_L2_loadri_pbr, Int32Ty); 17808 case Hexagon::BI__builtin_brev_ldd: 17809 return MakeBrevLd(Intrinsic::hexagon_L2_loadrd_pbr, Int64Ty); 17810 17811 default: { 17812 if (ID == Intrinsic::not_intrinsic) 17813 return nullptr; 17814 17815 auto IsVectorPredTy = [](llvm::Type *T) { 17816 return T->isVectorTy() && 17817 cast<llvm::VectorType>(T)->getElementType()->isIntegerTy(1); 17818 }; 17819 17820 llvm::Function *IntrFn = CGM.getIntrinsic(ID); 17821 llvm::FunctionType *IntrTy = IntrFn->getFunctionType(); 17822 SmallVector<llvm::Value*,4> Ops; 17823 for (unsigned i = 0, e = IntrTy->getNumParams(); i != e; ++i) { 17824 llvm::Type *T = IntrTy->getParamType(i); 17825 const Expr *A = E->getArg(i); 17826 if (IsVectorPredTy(T)) { 17827 // There will be an implicit cast to a boolean vector. Strip it. 17828 if (auto *Cast = dyn_cast<ImplicitCastExpr>(A)) { 17829 if (Cast->getCastKind() == CK_BitCast) 17830 A = Cast->getSubExpr(); 17831 } 17832 Ops.push_back(V2Q(EmitScalarExpr(A))); 17833 } else { 17834 Ops.push_back(EmitScalarExpr(A)); 17835 } 17836 } 17837 17838 llvm::Value *Call = Builder.CreateCall(IntrFn, Ops); 17839 if (IsVectorPredTy(IntrTy->getReturnType())) 17840 Call = Q2V(Call); 17841 17842 return Call; 17843 } // default 17844 } // switch 17845 17846 return nullptr; 17847 } 17848 17849 Value *CodeGenFunction::EmitRISCVBuiltinExpr(unsigned BuiltinID, 17850 const CallExpr *E, 17851 ReturnValueSlot ReturnValue) { 17852 SmallVector<Value *, 4> Ops; 17853 llvm::Type *ResultType = ConvertType(E->getType()); 17854 17855 for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) 17856 Ops.push_back(EmitScalarExpr(E->getArg(i))); 17857 17858 Intrinsic::ID ID = Intrinsic::not_intrinsic; 17859 17860 // Required for overloaded intrinsics. 17861 llvm::SmallVector<llvm::Type *, 2> IntrinsicTypes; 17862 switch (BuiltinID) { 17863 default: llvm_unreachable("unexpected builtin ID"); 17864 case RISCV::BI__builtin_riscv_orc_b_32: 17865 case RISCV::BI__builtin_riscv_orc_b_64: 17866 case RISCV::BI__builtin_riscv_clmul: 17867 case RISCV::BI__builtin_riscv_clmulh: 17868 case RISCV::BI__builtin_riscv_clmulr: 17869 case RISCV::BI__builtin_riscv_bcompress_32: 17870 case RISCV::BI__builtin_riscv_bcompress_64: 17871 case RISCV::BI__builtin_riscv_bdecompress_32: 17872 case RISCV::BI__builtin_riscv_bdecompress_64: 17873 case RISCV::BI__builtin_riscv_grev_32: 17874 case RISCV::BI__builtin_riscv_grev_64: 17875 case RISCV::BI__builtin_riscv_gorc_32: 17876 case RISCV::BI__builtin_riscv_gorc_64: 17877 case RISCV::BI__builtin_riscv_shfl_32: 17878 case RISCV::BI__builtin_riscv_shfl_64: 17879 case RISCV::BI__builtin_riscv_unshfl_32: 17880 case RISCV::BI__builtin_riscv_unshfl_64: 17881 case RISCV::BI__builtin_riscv_xperm_n: 17882 case RISCV::BI__builtin_riscv_xperm_b: 17883 case RISCV::BI__builtin_riscv_xperm_h: 17884 case RISCV::BI__builtin_riscv_xperm_w: 17885 case RISCV::BI__builtin_riscv_crc32_b: 17886 case RISCV::BI__builtin_riscv_crc32_h: 17887 case RISCV::BI__builtin_riscv_crc32_w: 17888 case RISCV::BI__builtin_riscv_crc32_d: 17889 case RISCV::BI__builtin_riscv_crc32c_b: 17890 case RISCV::BI__builtin_riscv_crc32c_h: 17891 case RISCV::BI__builtin_riscv_crc32c_w: 17892 case RISCV::BI__builtin_riscv_crc32c_d: { 17893 switch (BuiltinID) { 17894 default: llvm_unreachable("unexpected builtin ID"); 17895 // Zbb 17896 case RISCV::BI__builtin_riscv_orc_b_32: 17897 case RISCV::BI__builtin_riscv_orc_b_64: 17898 ID = Intrinsic::riscv_orc_b; 17899 break; 17900 17901 // Zbc 17902 case RISCV::BI__builtin_riscv_clmul: 17903 ID = Intrinsic::riscv_clmul; 17904 break; 17905 case RISCV::BI__builtin_riscv_clmulh: 17906 ID = Intrinsic::riscv_clmulh; 17907 break; 17908 case RISCV::BI__builtin_riscv_clmulr: 17909 ID = Intrinsic::riscv_clmulr; 17910 break; 17911 17912 // Zbe 17913 case RISCV::BI__builtin_riscv_bcompress_32: 17914 case RISCV::BI__builtin_riscv_bcompress_64: 17915 ID = Intrinsic::riscv_bcompress; 17916 break; 17917 case RISCV::BI__builtin_riscv_bdecompress_32: 17918 case RISCV::BI__builtin_riscv_bdecompress_64: 17919 ID = Intrinsic::riscv_bdecompress; 17920 break; 17921 17922 // Zbp 17923 case RISCV::BI__builtin_riscv_grev_32: 17924 case RISCV::BI__builtin_riscv_grev_64: 17925 ID = Intrinsic::riscv_grev; 17926 break; 17927 case RISCV::BI__builtin_riscv_gorc_32: 17928 case RISCV::BI__builtin_riscv_gorc_64: 17929 ID = Intrinsic::riscv_gorc; 17930 break; 17931 case RISCV::BI__builtin_riscv_shfl_32: 17932 case RISCV::BI__builtin_riscv_shfl_64: 17933 ID = Intrinsic::riscv_shfl; 17934 break; 17935 case RISCV::BI__builtin_riscv_unshfl_32: 17936 case RISCV::BI__builtin_riscv_unshfl_64: 17937 ID = Intrinsic::riscv_unshfl; 17938 break; 17939 case RISCV::BI__builtin_riscv_xperm_n: 17940 ID = Intrinsic::riscv_xperm_n; 17941 break; 17942 case RISCV::BI__builtin_riscv_xperm_b: 17943 ID = Intrinsic::riscv_xperm_b; 17944 break; 17945 case RISCV::BI__builtin_riscv_xperm_h: 17946 ID = Intrinsic::riscv_xperm_h; 17947 break; 17948 case RISCV::BI__builtin_riscv_xperm_w: 17949 ID = Intrinsic::riscv_xperm_w; 17950 break; 17951 17952 // Zbr 17953 case RISCV::BI__builtin_riscv_crc32_b: 17954 ID = Intrinsic::riscv_crc32_b; 17955 break; 17956 case RISCV::BI__builtin_riscv_crc32_h: 17957 ID = Intrinsic::riscv_crc32_h; 17958 break; 17959 case RISCV::BI__builtin_riscv_crc32_w: 17960 ID = Intrinsic::riscv_crc32_w; 17961 break; 17962 case RISCV::BI__builtin_riscv_crc32_d: 17963 ID = Intrinsic::riscv_crc32_d; 17964 break; 17965 case RISCV::BI__builtin_riscv_crc32c_b: 17966 ID = Intrinsic::riscv_crc32c_b; 17967 break; 17968 case RISCV::BI__builtin_riscv_crc32c_h: 17969 ID = Intrinsic::riscv_crc32c_h; 17970 break; 17971 case RISCV::BI__builtin_riscv_crc32c_w: 17972 ID = Intrinsic::riscv_crc32c_w; 17973 break; 17974 case RISCV::BI__builtin_riscv_crc32c_d: 17975 ID = Intrinsic::riscv_crc32c_d; 17976 break; 17977 } 17978 17979 IntrinsicTypes = {ResultType}; 17980 break; 17981 } 17982 // Vector builtins are handled from here. 17983 #include "clang/Basic/riscv_vector_builtin_cg.inc" 17984 } 17985 17986 assert(ID != Intrinsic::not_intrinsic); 17987 17988 llvm::Function *F = CGM.getIntrinsic(ID, IntrinsicTypes); 17989 return Builder.CreateCall(F, Ops, ""); 17990 } 17991