17330f729Sjoerg //===- ThreadSafety.cpp ---------------------------------------------------===//
27330f729Sjoerg //
37330f729Sjoerg // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
47330f729Sjoerg // See https://llvm.org/LICENSE.txt for license information.
57330f729Sjoerg // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
67330f729Sjoerg //
77330f729Sjoerg //===----------------------------------------------------------------------===//
87330f729Sjoerg //
97330f729Sjoerg // A intra-procedural analysis for thread safety (e.g. deadlocks and race
107330f729Sjoerg // conditions), based off of an annotation system.
117330f729Sjoerg //
127330f729Sjoerg // See http://clang.llvm.org/docs/ThreadSafetyAnalysis.html
137330f729Sjoerg // for more information.
147330f729Sjoerg //
157330f729Sjoerg //===----------------------------------------------------------------------===//
167330f729Sjoerg
177330f729Sjoerg #include "clang/Analysis/Analyses/ThreadSafety.h"
187330f729Sjoerg #include "clang/AST/Attr.h"
197330f729Sjoerg #include "clang/AST/Decl.h"
207330f729Sjoerg #include "clang/AST/DeclCXX.h"
217330f729Sjoerg #include "clang/AST/DeclGroup.h"
227330f729Sjoerg #include "clang/AST/Expr.h"
237330f729Sjoerg #include "clang/AST/ExprCXX.h"
247330f729Sjoerg #include "clang/AST/OperationKinds.h"
257330f729Sjoerg #include "clang/AST/Stmt.h"
267330f729Sjoerg #include "clang/AST/StmtVisitor.h"
277330f729Sjoerg #include "clang/AST/Type.h"
287330f729Sjoerg #include "clang/Analysis/Analyses/PostOrderCFGView.h"
297330f729Sjoerg #include "clang/Analysis/Analyses/ThreadSafetyCommon.h"
307330f729Sjoerg #include "clang/Analysis/Analyses/ThreadSafetyTIL.h"
317330f729Sjoerg #include "clang/Analysis/Analyses/ThreadSafetyTraverse.h"
327330f729Sjoerg #include "clang/Analysis/Analyses/ThreadSafetyUtil.h"
337330f729Sjoerg #include "clang/Analysis/AnalysisDeclContext.h"
347330f729Sjoerg #include "clang/Analysis/CFG.h"
357330f729Sjoerg #include "clang/Basic/Builtins.h"
367330f729Sjoerg #include "clang/Basic/LLVM.h"
377330f729Sjoerg #include "clang/Basic/OperatorKinds.h"
387330f729Sjoerg #include "clang/Basic/SourceLocation.h"
397330f729Sjoerg #include "clang/Basic/Specifiers.h"
407330f729Sjoerg #include "llvm/ADT/ArrayRef.h"
417330f729Sjoerg #include "llvm/ADT/DenseMap.h"
427330f729Sjoerg #include "llvm/ADT/ImmutableMap.h"
437330f729Sjoerg #include "llvm/ADT/Optional.h"
447330f729Sjoerg #include "llvm/ADT/PointerIntPair.h"
457330f729Sjoerg #include "llvm/ADT/STLExtras.h"
467330f729Sjoerg #include "llvm/ADT/SmallVector.h"
477330f729Sjoerg #include "llvm/ADT/StringRef.h"
487330f729Sjoerg #include "llvm/Support/Allocator.h"
497330f729Sjoerg #include "llvm/Support/Casting.h"
507330f729Sjoerg #include "llvm/Support/ErrorHandling.h"
517330f729Sjoerg #include "llvm/Support/raw_ostream.h"
527330f729Sjoerg #include <algorithm>
537330f729Sjoerg #include <cassert>
547330f729Sjoerg #include <functional>
557330f729Sjoerg #include <iterator>
567330f729Sjoerg #include <memory>
577330f729Sjoerg #include <string>
587330f729Sjoerg #include <type_traits>
597330f729Sjoerg #include <utility>
607330f729Sjoerg #include <vector>
617330f729Sjoerg
627330f729Sjoerg using namespace clang;
637330f729Sjoerg using namespace threadSafety;
647330f729Sjoerg
657330f729Sjoerg // Key method definition
667330f729Sjoerg ThreadSafetyHandler::~ThreadSafetyHandler() = default;
677330f729Sjoerg
687330f729Sjoerg /// Issue a warning about an invalid lock expression
warnInvalidLock(ThreadSafetyHandler & Handler,const Expr * MutexExp,const NamedDecl * D,const Expr * DeclExp,StringRef Kind)697330f729Sjoerg static void warnInvalidLock(ThreadSafetyHandler &Handler,
707330f729Sjoerg const Expr *MutexExp, const NamedDecl *D,
717330f729Sjoerg const Expr *DeclExp, StringRef Kind) {
727330f729Sjoerg SourceLocation Loc;
737330f729Sjoerg if (DeclExp)
747330f729Sjoerg Loc = DeclExp->getExprLoc();
757330f729Sjoerg
767330f729Sjoerg // FIXME: add a note about the attribute location in MutexExp or D
777330f729Sjoerg if (Loc.isValid())
787330f729Sjoerg Handler.handleInvalidLockExp(Kind, Loc);
797330f729Sjoerg }
807330f729Sjoerg
817330f729Sjoerg namespace {
827330f729Sjoerg
837330f729Sjoerg /// A set of CapabilityExpr objects, which are compiled from thread safety
847330f729Sjoerg /// attributes on a function.
857330f729Sjoerg class CapExprSet : public SmallVector<CapabilityExpr, 4> {
867330f729Sjoerg public:
877330f729Sjoerg /// Push M onto list, but discard duplicates.
push_back_nodup(const CapabilityExpr & CapE)887330f729Sjoerg void push_back_nodup(const CapabilityExpr &CapE) {
897330f729Sjoerg iterator It = std::find_if(begin(), end(),
907330f729Sjoerg [=](const CapabilityExpr &CapE2) {
917330f729Sjoerg return CapE.equals(CapE2);
927330f729Sjoerg });
937330f729Sjoerg if (It == end())
947330f729Sjoerg push_back(CapE);
957330f729Sjoerg }
967330f729Sjoerg };
977330f729Sjoerg
987330f729Sjoerg class FactManager;
997330f729Sjoerg class FactSet;
1007330f729Sjoerg
1017330f729Sjoerg /// This is a helper class that stores a fact that is known at a
1027330f729Sjoerg /// particular point in program execution. Currently, a fact is a capability,
1037330f729Sjoerg /// along with additional information, such as where it was acquired, whether
1047330f729Sjoerg /// it is exclusive or shared, etc.
1057330f729Sjoerg ///
1067330f729Sjoerg /// FIXME: this analysis does not currently support re-entrant locking.
1077330f729Sjoerg class FactEntry : public CapabilityExpr {
108*e038c9c4Sjoerg public:
109*e038c9c4Sjoerg /// Where a fact comes from.
110*e038c9c4Sjoerg enum SourceKind {
111*e038c9c4Sjoerg Acquired, ///< The fact has been directly acquired.
112*e038c9c4Sjoerg Asserted, ///< The fact has been asserted to be held.
113*e038c9c4Sjoerg Declared, ///< The fact is assumed to be held by callers.
114*e038c9c4Sjoerg Managed, ///< The fact has been acquired through a scoped capability.
115*e038c9c4Sjoerg };
116*e038c9c4Sjoerg
1177330f729Sjoerg private:
1187330f729Sjoerg /// Exclusive or shared.
119*e038c9c4Sjoerg LockKind LKind : 8;
120*e038c9c4Sjoerg
121*e038c9c4Sjoerg // How it was acquired.
122*e038c9c4Sjoerg SourceKind Source : 8;
1237330f729Sjoerg
1247330f729Sjoerg /// Where it was acquired.
1257330f729Sjoerg SourceLocation AcquireLoc;
1267330f729Sjoerg
1277330f729Sjoerg public:
FactEntry(const CapabilityExpr & CE,LockKind LK,SourceLocation Loc,SourceKind Src)1287330f729Sjoerg FactEntry(const CapabilityExpr &CE, LockKind LK, SourceLocation Loc,
129*e038c9c4Sjoerg SourceKind Src)
130*e038c9c4Sjoerg : CapabilityExpr(CE), LKind(LK), Source(Src), AcquireLoc(Loc) {}
1317330f729Sjoerg virtual ~FactEntry() = default;
1327330f729Sjoerg
kind() const1337330f729Sjoerg LockKind kind() const { return LKind; }
loc() const1347330f729Sjoerg SourceLocation loc() const { return AcquireLoc; }
1357330f729Sjoerg
asserted() const136*e038c9c4Sjoerg bool asserted() const { return Source == Asserted; }
declared() const137*e038c9c4Sjoerg bool declared() const { return Source == Declared; }
managed() const138*e038c9c4Sjoerg bool managed() const { return Source == Managed; }
1397330f729Sjoerg
1407330f729Sjoerg virtual void
1417330f729Sjoerg handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan,
1427330f729Sjoerg SourceLocation JoinLoc, LockErrorKind LEK,
1437330f729Sjoerg ThreadSafetyHandler &Handler) const = 0;
1447330f729Sjoerg virtual void handleLock(FactSet &FSet, FactManager &FactMan,
1457330f729Sjoerg const FactEntry &entry, ThreadSafetyHandler &Handler,
1467330f729Sjoerg StringRef DiagKind) const = 0;
1477330f729Sjoerg virtual void handleUnlock(FactSet &FSet, FactManager &FactMan,
1487330f729Sjoerg const CapabilityExpr &Cp, SourceLocation UnlockLoc,
1497330f729Sjoerg bool FullyRemove, ThreadSafetyHandler &Handler,
1507330f729Sjoerg StringRef DiagKind) const = 0;
1517330f729Sjoerg
1527330f729Sjoerg // Return true if LKind >= LK, where exclusive > shared
isAtLeast(LockKind LK) const1537330f729Sjoerg bool isAtLeast(LockKind LK) const {
1547330f729Sjoerg return (LKind == LK_Exclusive) || (LK == LK_Shared);
1557330f729Sjoerg }
1567330f729Sjoerg };
1577330f729Sjoerg
1587330f729Sjoerg using FactID = unsigned short;
1597330f729Sjoerg
1607330f729Sjoerg /// FactManager manages the memory for all facts that are created during
1617330f729Sjoerg /// the analysis of a single routine.
1627330f729Sjoerg class FactManager {
1637330f729Sjoerg private:
1647330f729Sjoerg std::vector<std::unique_ptr<const FactEntry>> Facts;
1657330f729Sjoerg
1667330f729Sjoerg public:
newFact(std::unique_ptr<FactEntry> Entry)1677330f729Sjoerg FactID newFact(std::unique_ptr<FactEntry> Entry) {
1687330f729Sjoerg Facts.push_back(std::move(Entry));
1697330f729Sjoerg return static_cast<unsigned short>(Facts.size() - 1);
1707330f729Sjoerg }
1717330f729Sjoerg
operator [](FactID F) const1727330f729Sjoerg const FactEntry &operator[](FactID F) const { return *Facts[F]; }
1737330f729Sjoerg };
1747330f729Sjoerg
1757330f729Sjoerg /// A FactSet is the set of facts that are known to be true at a
1767330f729Sjoerg /// particular program point. FactSets must be small, because they are
1777330f729Sjoerg /// frequently copied, and are thus implemented as a set of indices into a
1787330f729Sjoerg /// table maintained by a FactManager. A typical FactSet only holds 1 or 2
1797330f729Sjoerg /// locks, so we can get away with doing a linear search for lookup. Note
1807330f729Sjoerg /// that a hashtable or map is inappropriate in this case, because lookups
1817330f729Sjoerg /// may involve partial pattern matches, rather than exact matches.
1827330f729Sjoerg class FactSet {
1837330f729Sjoerg private:
1847330f729Sjoerg using FactVec = SmallVector<FactID, 4>;
1857330f729Sjoerg
1867330f729Sjoerg FactVec FactIDs;
1877330f729Sjoerg
1887330f729Sjoerg public:
1897330f729Sjoerg using iterator = FactVec::iterator;
1907330f729Sjoerg using const_iterator = FactVec::const_iterator;
1917330f729Sjoerg
begin()1927330f729Sjoerg iterator begin() { return FactIDs.begin(); }
begin() const1937330f729Sjoerg const_iterator begin() const { return FactIDs.begin(); }
1947330f729Sjoerg
end()1957330f729Sjoerg iterator end() { return FactIDs.end(); }
end() const1967330f729Sjoerg const_iterator end() const { return FactIDs.end(); }
1977330f729Sjoerg
isEmpty() const1987330f729Sjoerg bool isEmpty() const { return FactIDs.size() == 0; }
1997330f729Sjoerg
2007330f729Sjoerg // Return true if the set contains only negative facts
isEmpty(FactManager & FactMan) const2017330f729Sjoerg bool isEmpty(FactManager &FactMan) const {
2027330f729Sjoerg for (const auto FID : *this) {
2037330f729Sjoerg if (!FactMan[FID].negative())
2047330f729Sjoerg return false;
2057330f729Sjoerg }
2067330f729Sjoerg return true;
2077330f729Sjoerg }
2087330f729Sjoerg
addLockByID(FactID ID)2097330f729Sjoerg void addLockByID(FactID ID) { FactIDs.push_back(ID); }
2107330f729Sjoerg
addLock(FactManager & FM,std::unique_ptr<FactEntry> Entry)2117330f729Sjoerg FactID addLock(FactManager &FM, std::unique_ptr<FactEntry> Entry) {
2127330f729Sjoerg FactID F = FM.newFact(std::move(Entry));
2137330f729Sjoerg FactIDs.push_back(F);
2147330f729Sjoerg return F;
2157330f729Sjoerg }
2167330f729Sjoerg
removeLock(FactManager & FM,const CapabilityExpr & CapE)2177330f729Sjoerg bool removeLock(FactManager& FM, const CapabilityExpr &CapE) {
2187330f729Sjoerg unsigned n = FactIDs.size();
2197330f729Sjoerg if (n == 0)
2207330f729Sjoerg return false;
2217330f729Sjoerg
2227330f729Sjoerg for (unsigned i = 0; i < n-1; ++i) {
2237330f729Sjoerg if (FM[FactIDs[i]].matches(CapE)) {
2247330f729Sjoerg FactIDs[i] = FactIDs[n-1];
2257330f729Sjoerg FactIDs.pop_back();
2267330f729Sjoerg return true;
2277330f729Sjoerg }
2287330f729Sjoerg }
2297330f729Sjoerg if (FM[FactIDs[n-1]].matches(CapE)) {
2307330f729Sjoerg FactIDs.pop_back();
2317330f729Sjoerg return true;
2327330f729Sjoerg }
2337330f729Sjoerg return false;
2347330f729Sjoerg }
2357330f729Sjoerg
findLockIter(FactManager & FM,const CapabilityExpr & CapE)2367330f729Sjoerg iterator findLockIter(FactManager &FM, const CapabilityExpr &CapE) {
2377330f729Sjoerg return std::find_if(begin(), end(), [&](FactID ID) {
2387330f729Sjoerg return FM[ID].matches(CapE);
2397330f729Sjoerg });
2407330f729Sjoerg }
2417330f729Sjoerg
findLock(FactManager & FM,const CapabilityExpr & CapE) const2427330f729Sjoerg const FactEntry *findLock(FactManager &FM, const CapabilityExpr &CapE) const {
2437330f729Sjoerg auto I = std::find_if(begin(), end(), [&](FactID ID) {
2447330f729Sjoerg return FM[ID].matches(CapE);
2457330f729Sjoerg });
2467330f729Sjoerg return I != end() ? &FM[*I] : nullptr;
2477330f729Sjoerg }
2487330f729Sjoerg
findLockUniv(FactManager & FM,const CapabilityExpr & CapE) const2497330f729Sjoerg const FactEntry *findLockUniv(FactManager &FM,
2507330f729Sjoerg const CapabilityExpr &CapE) const {
2517330f729Sjoerg auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool {
2527330f729Sjoerg return FM[ID].matchesUniv(CapE);
2537330f729Sjoerg });
2547330f729Sjoerg return I != end() ? &FM[*I] : nullptr;
2557330f729Sjoerg }
2567330f729Sjoerg
findPartialMatch(FactManager & FM,const CapabilityExpr & CapE) const2577330f729Sjoerg const FactEntry *findPartialMatch(FactManager &FM,
2587330f729Sjoerg const CapabilityExpr &CapE) const {
2597330f729Sjoerg auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool {
2607330f729Sjoerg return FM[ID].partiallyMatches(CapE);
2617330f729Sjoerg });
2627330f729Sjoerg return I != end() ? &FM[*I] : nullptr;
2637330f729Sjoerg }
2647330f729Sjoerg
containsMutexDecl(FactManager & FM,const ValueDecl * Vd) const2657330f729Sjoerg bool containsMutexDecl(FactManager &FM, const ValueDecl* Vd) const {
2667330f729Sjoerg auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool {
2677330f729Sjoerg return FM[ID].valueDecl() == Vd;
2687330f729Sjoerg });
2697330f729Sjoerg return I != end();
2707330f729Sjoerg }
2717330f729Sjoerg };
2727330f729Sjoerg
2737330f729Sjoerg class ThreadSafetyAnalyzer;
2747330f729Sjoerg
2757330f729Sjoerg } // namespace
2767330f729Sjoerg
2777330f729Sjoerg namespace clang {
2787330f729Sjoerg namespace threadSafety {
2797330f729Sjoerg
2807330f729Sjoerg class BeforeSet {
2817330f729Sjoerg private:
2827330f729Sjoerg using BeforeVect = SmallVector<const ValueDecl *, 4>;
2837330f729Sjoerg
2847330f729Sjoerg struct BeforeInfo {
2857330f729Sjoerg BeforeVect Vect;
2867330f729Sjoerg int Visited = 0;
2877330f729Sjoerg
2887330f729Sjoerg BeforeInfo() = default;
2897330f729Sjoerg BeforeInfo(BeforeInfo &&) = default;
2907330f729Sjoerg };
2917330f729Sjoerg
2927330f729Sjoerg using BeforeMap =
2937330f729Sjoerg llvm::DenseMap<const ValueDecl *, std::unique_ptr<BeforeInfo>>;
2947330f729Sjoerg using CycleMap = llvm::DenseMap<const ValueDecl *, bool>;
2957330f729Sjoerg
2967330f729Sjoerg public:
2977330f729Sjoerg BeforeSet() = default;
2987330f729Sjoerg
2997330f729Sjoerg BeforeInfo* insertAttrExprs(const ValueDecl* Vd,
3007330f729Sjoerg ThreadSafetyAnalyzer& Analyzer);
3017330f729Sjoerg
3027330f729Sjoerg BeforeInfo *getBeforeInfoForDecl(const ValueDecl *Vd,
3037330f729Sjoerg ThreadSafetyAnalyzer &Analyzer);
3047330f729Sjoerg
3057330f729Sjoerg void checkBeforeAfter(const ValueDecl* Vd,
3067330f729Sjoerg const FactSet& FSet,
3077330f729Sjoerg ThreadSafetyAnalyzer& Analyzer,
3087330f729Sjoerg SourceLocation Loc, StringRef CapKind);
3097330f729Sjoerg
3107330f729Sjoerg private:
3117330f729Sjoerg BeforeMap BMap;
3127330f729Sjoerg CycleMap CycMap;
3137330f729Sjoerg };
3147330f729Sjoerg
3157330f729Sjoerg } // namespace threadSafety
3167330f729Sjoerg } // namespace clang
3177330f729Sjoerg
3187330f729Sjoerg namespace {
3197330f729Sjoerg
3207330f729Sjoerg class LocalVariableMap;
3217330f729Sjoerg
3227330f729Sjoerg using LocalVarContext = llvm::ImmutableMap<const NamedDecl *, unsigned>;
3237330f729Sjoerg
3247330f729Sjoerg /// A side (entry or exit) of a CFG node.
3257330f729Sjoerg enum CFGBlockSide { CBS_Entry, CBS_Exit };
3267330f729Sjoerg
3277330f729Sjoerg /// CFGBlockInfo is a struct which contains all the information that is
3287330f729Sjoerg /// maintained for each block in the CFG. See LocalVariableMap for more
3297330f729Sjoerg /// information about the contexts.
3307330f729Sjoerg struct CFGBlockInfo {
3317330f729Sjoerg // Lockset held at entry to block
3327330f729Sjoerg FactSet EntrySet;
3337330f729Sjoerg
3347330f729Sjoerg // Lockset held at exit from block
3357330f729Sjoerg FactSet ExitSet;
3367330f729Sjoerg
3377330f729Sjoerg // Context held at entry to block
3387330f729Sjoerg LocalVarContext EntryContext;
3397330f729Sjoerg
3407330f729Sjoerg // Context held at exit from block
3417330f729Sjoerg LocalVarContext ExitContext;
3427330f729Sjoerg
3437330f729Sjoerg // Location of first statement in block
3447330f729Sjoerg SourceLocation EntryLoc;
3457330f729Sjoerg
3467330f729Sjoerg // Location of last statement in block.
3477330f729Sjoerg SourceLocation ExitLoc;
3487330f729Sjoerg
3497330f729Sjoerg // Used to replay contexts later
3507330f729Sjoerg unsigned EntryIndex;
3517330f729Sjoerg
3527330f729Sjoerg // Is this block reachable?
3537330f729Sjoerg bool Reachable = false;
3547330f729Sjoerg
getSet__anon68dfda3c0811::CFGBlockInfo3557330f729Sjoerg const FactSet &getSet(CFGBlockSide Side) const {
3567330f729Sjoerg return Side == CBS_Entry ? EntrySet : ExitSet;
3577330f729Sjoerg }
3587330f729Sjoerg
getLocation__anon68dfda3c0811::CFGBlockInfo3597330f729Sjoerg SourceLocation getLocation(CFGBlockSide Side) const {
3607330f729Sjoerg return Side == CBS_Entry ? EntryLoc : ExitLoc;
3617330f729Sjoerg }
3627330f729Sjoerg
3637330f729Sjoerg private:
CFGBlockInfo__anon68dfda3c0811::CFGBlockInfo3647330f729Sjoerg CFGBlockInfo(LocalVarContext EmptyCtx)
3657330f729Sjoerg : EntryContext(EmptyCtx), ExitContext(EmptyCtx) {}
3667330f729Sjoerg
3677330f729Sjoerg public:
3687330f729Sjoerg static CFGBlockInfo getEmptyBlockInfo(LocalVariableMap &M);
3697330f729Sjoerg };
3707330f729Sjoerg
3717330f729Sjoerg // A LocalVariableMap maintains a map from local variables to their currently
3727330f729Sjoerg // valid definitions. It provides SSA-like functionality when traversing the
3737330f729Sjoerg // CFG. Like SSA, each definition or assignment to a variable is assigned a
3747330f729Sjoerg // unique name (an integer), which acts as the SSA name for that definition.
3757330f729Sjoerg // The total set of names is shared among all CFG basic blocks.
3767330f729Sjoerg // Unlike SSA, we do not rewrite expressions to replace local variables declrefs
3777330f729Sjoerg // with their SSA-names. Instead, we compute a Context for each point in the
3787330f729Sjoerg // code, which maps local variables to the appropriate SSA-name. This map
3797330f729Sjoerg // changes with each assignment.
3807330f729Sjoerg //
3817330f729Sjoerg // The map is computed in a single pass over the CFG. Subsequent analyses can
3827330f729Sjoerg // then query the map to find the appropriate Context for a statement, and use
3837330f729Sjoerg // that Context to look up the definitions of variables.
3847330f729Sjoerg class LocalVariableMap {
3857330f729Sjoerg public:
3867330f729Sjoerg using Context = LocalVarContext;
3877330f729Sjoerg
3887330f729Sjoerg /// A VarDefinition consists of an expression, representing the value of the
3897330f729Sjoerg /// variable, along with the context in which that expression should be
3907330f729Sjoerg /// interpreted. A reference VarDefinition does not itself contain this
3917330f729Sjoerg /// information, but instead contains a pointer to a previous VarDefinition.
3927330f729Sjoerg struct VarDefinition {
3937330f729Sjoerg public:
3947330f729Sjoerg friend class LocalVariableMap;
3957330f729Sjoerg
3967330f729Sjoerg // The original declaration for this variable.
3977330f729Sjoerg const NamedDecl *Dec;
3987330f729Sjoerg
3997330f729Sjoerg // The expression for this variable, OR
4007330f729Sjoerg const Expr *Exp = nullptr;
4017330f729Sjoerg
4027330f729Sjoerg // Reference to another VarDefinition
4037330f729Sjoerg unsigned Ref = 0;
4047330f729Sjoerg
4057330f729Sjoerg // The map with which Exp should be interpreted.
4067330f729Sjoerg Context Ctx;
4077330f729Sjoerg
isReference__anon68dfda3c0811::LocalVariableMap::VarDefinition4087330f729Sjoerg bool isReference() { return !Exp; }
4097330f729Sjoerg
4107330f729Sjoerg private:
4117330f729Sjoerg // Create ordinary variable definition
VarDefinition__anon68dfda3c0811::LocalVariableMap::VarDefinition4127330f729Sjoerg VarDefinition(const NamedDecl *D, const Expr *E, Context C)
4137330f729Sjoerg : Dec(D), Exp(E), Ctx(C) {}
4147330f729Sjoerg
4157330f729Sjoerg // Create reference to previous definition
VarDefinition__anon68dfda3c0811::LocalVariableMap::VarDefinition4167330f729Sjoerg VarDefinition(const NamedDecl *D, unsigned R, Context C)
4177330f729Sjoerg : Dec(D), Ref(R), Ctx(C) {}
4187330f729Sjoerg };
4197330f729Sjoerg
4207330f729Sjoerg private:
4217330f729Sjoerg Context::Factory ContextFactory;
4227330f729Sjoerg std::vector<VarDefinition> VarDefinitions;
4237330f729Sjoerg std::vector<unsigned> CtxIndices;
4247330f729Sjoerg std::vector<std::pair<const Stmt *, Context>> SavedContexts;
4257330f729Sjoerg
4267330f729Sjoerg public:
LocalVariableMap()4277330f729Sjoerg LocalVariableMap() {
4287330f729Sjoerg // index 0 is a placeholder for undefined variables (aka phi-nodes).
4297330f729Sjoerg VarDefinitions.push_back(VarDefinition(nullptr, 0u, getEmptyContext()));
4307330f729Sjoerg }
4317330f729Sjoerg
4327330f729Sjoerg /// Look up a definition, within the given context.
lookup(const NamedDecl * D,Context Ctx)4337330f729Sjoerg const VarDefinition* lookup(const NamedDecl *D, Context Ctx) {
4347330f729Sjoerg const unsigned *i = Ctx.lookup(D);
4357330f729Sjoerg if (!i)
4367330f729Sjoerg return nullptr;
4377330f729Sjoerg assert(*i < VarDefinitions.size());
4387330f729Sjoerg return &VarDefinitions[*i];
4397330f729Sjoerg }
4407330f729Sjoerg
4417330f729Sjoerg /// Look up the definition for D within the given context. Returns
4427330f729Sjoerg /// NULL if the expression is not statically known. If successful, also
4437330f729Sjoerg /// modifies Ctx to hold the context of the return Expr.
lookupExpr(const NamedDecl * D,Context & Ctx)4447330f729Sjoerg const Expr* lookupExpr(const NamedDecl *D, Context &Ctx) {
4457330f729Sjoerg const unsigned *P = Ctx.lookup(D);
4467330f729Sjoerg if (!P)
4477330f729Sjoerg return nullptr;
4487330f729Sjoerg
4497330f729Sjoerg unsigned i = *P;
4507330f729Sjoerg while (i > 0) {
4517330f729Sjoerg if (VarDefinitions[i].Exp) {
4527330f729Sjoerg Ctx = VarDefinitions[i].Ctx;
4537330f729Sjoerg return VarDefinitions[i].Exp;
4547330f729Sjoerg }
4557330f729Sjoerg i = VarDefinitions[i].Ref;
4567330f729Sjoerg }
4577330f729Sjoerg return nullptr;
4587330f729Sjoerg }
4597330f729Sjoerg
getEmptyContext()4607330f729Sjoerg Context getEmptyContext() { return ContextFactory.getEmptyMap(); }
4617330f729Sjoerg
4627330f729Sjoerg /// Return the next context after processing S. This function is used by
4637330f729Sjoerg /// clients of the class to get the appropriate context when traversing the
4647330f729Sjoerg /// CFG. It must be called for every assignment or DeclStmt.
getNextContext(unsigned & CtxIndex,const Stmt * S,Context C)4657330f729Sjoerg Context getNextContext(unsigned &CtxIndex, const Stmt *S, Context C) {
4667330f729Sjoerg if (SavedContexts[CtxIndex+1].first == S) {
4677330f729Sjoerg CtxIndex++;
4687330f729Sjoerg Context Result = SavedContexts[CtxIndex].second;
4697330f729Sjoerg return Result;
4707330f729Sjoerg }
4717330f729Sjoerg return C;
4727330f729Sjoerg }
4737330f729Sjoerg
dumpVarDefinitionName(unsigned i)4747330f729Sjoerg void dumpVarDefinitionName(unsigned i) {
4757330f729Sjoerg if (i == 0) {
4767330f729Sjoerg llvm::errs() << "Undefined";
4777330f729Sjoerg return;
4787330f729Sjoerg }
4797330f729Sjoerg const NamedDecl *Dec = VarDefinitions[i].Dec;
4807330f729Sjoerg if (!Dec) {
4817330f729Sjoerg llvm::errs() << "<<NULL>>";
4827330f729Sjoerg return;
4837330f729Sjoerg }
4847330f729Sjoerg Dec->printName(llvm::errs());
4857330f729Sjoerg llvm::errs() << "." << i << " " << ((const void*) Dec);
4867330f729Sjoerg }
4877330f729Sjoerg
4887330f729Sjoerg /// Dumps an ASCII representation of the variable map to llvm::errs()
dump()4897330f729Sjoerg void dump() {
4907330f729Sjoerg for (unsigned i = 1, e = VarDefinitions.size(); i < e; ++i) {
4917330f729Sjoerg const Expr *Exp = VarDefinitions[i].Exp;
4927330f729Sjoerg unsigned Ref = VarDefinitions[i].Ref;
4937330f729Sjoerg
4947330f729Sjoerg dumpVarDefinitionName(i);
4957330f729Sjoerg llvm::errs() << " = ";
4967330f729Sjoerg if (Exp) Exp->dump();
4977330f729Sjoerg else {
4987330f729Sjoerg dumpVarDefinitionName(Ref);
4997330f729Sjoerg llvm::errs() << "\n";
5007330f729Sjoerg }
5017330f729Sjoerg }
5027330f729Sjoerg }
5037330f729Sjoerg
5047330f729Sjoerg /// Dumps an ASCII representation of a Context to llvm::errs()
dumpContext(Context C)5057330f729Sjoerg void dumpContext(Context C) {
5067330f729Sjoerg for (Context::iterator I = C.begin(), E = C.end(); I != E; ++I) {
5077330f729Sjoerg const NamedDecl *D = I.getKey();
5087330f729Sjoerg D->printName(llvm::errs());
5097330f729Sjoerg const unsigned *i = C.lookup(D);
5107330f729Sjoerg llvm::errs() << " -> ";
5117330f729Sjoerg dumpVarDefinitionName(*i);
5127330f729Sjoerg llvm::errs() << "\n";
5137330f729Sjoerg }
5147330f729Sjoerg }
5157330f729Sjoerg
5167330f729Sjoerg /// Builds the variable map.
5177330f729Sjoerg void traverseCFG(CFG *CFGraph, const PostOrderCFGView *SortedGraph,
5187330f729Sjoerg std::vector<CFGBlockInfo> &BlockInfo);
5197330f729Sjoerg
5207330f729Sjoerg protected:
5217330f729Sjoerg friend class VarMapBuilder;
5227330f729Sjoerg
5237330f729Sjoerg // Get the current context index
getContextIndex()5247330f729Sjoerg unsigned getContextIndex() { return SavedContexts.size()-1; }
5257330f729Sjoerg
5267330f729Sjoerg // Save the current context for later replay
saveContext(const Stmt * S,Context C)5277330f729Sjoerg void saveContext(const Stmt *S, Context C) {
5287330f729Sjoerg SavedContexts.push_back(std::make_pair(S, C));
5297330f729Sjoerg }
5307330f729Sjoerg
5317330f729Sjoerg // Adds a new definition to the given context, and returns a new context.
5327330f729Sjoerg // This method should be called when declaring a new variable.
addDefinition(const NamedDecl * D,const Expr * Exp,Context Ctx)5337330f729Sjoerg Context addDefinition(const NamedDecl *D, const Expr *Exp, Context Ctx) {
5347330f729Sjoerg assert(!Ctx.contains(D));
5357330f729Sjoerg unsigned newID = VarDefinitions.size();
5367330f729Sjoerg Context NewCtx = ContextFactory.add(Ctx, D, newID);
5377330f729Sjoerg VarDefinitions.push_back(VarDefinition(D, Exp, Ctx));
5387330f729Sjoerg return NewCtx;
5397330f729Sjoerg }
5407330f729Sjoerg
5417330f729Sjoerg // Add a new reference to an existing definition.
addReference(const NamedDecl * D,unsigned i,Context Ctx)5427330f729Sjoerg Context addReference(const NamedDecl *D, unsigned i, Context Ctx) {
5437330f729Sjoerg unsigned newID = VarDefinitions.size();
5447330f729Sjoerg Context NewCtx = ContextFactory.add(Ctx, D, newID);
5457330f729Sjoerg VarDefinitions.push_back(VarDefinition(D, i, Ctx));
5467330f729Sjoerg return NewCtx;
5477330f729Sjoerg }
5487330f729Sjoerg
5497330f729Sjoerg // Updates a definition only if that definition is already in the map.
5507330f729Sjoerg // This method should be called when assigning to an existing variable.
updateDefinition(const NamedDecl * D,Expr * Exp,Context Ctx)5517330f729Sjoerg Context updateDefinition(const NamedDecl *D, Expr *Exp, Context Ctx) {
5527330f729Sjoerg if (Ctx.contains(D)) {
5537330f729Sjoerg unsigned newID = VarDefinitions.size();
5547330f729Sjoerg Context NewCtx = ContextFactory.remove(Ctx, D);
5557330f729Sjoerg NewCtx = ContextFactory.add(NewCtx, D, newID);
5567330f729Sjoerg VarDefinitions.push_back(VarDefinition(D, Exp, Ctx));
5577330f729Sjoerg return NewCtx;
5587330f729Sjoerg }
5597330f729Sjoerg return Ctx;
5607330f729Sjoerg }
5617330f729Sjoerg
5627330f729Sjoerg // Removes a definition from the context, but keeps the variable name
5637330f729Sjoerg // as a valid variable. The index 0 is a placeholder for cleared definitions.
clearDefinition(const NamedDecl * D,Context Ctx)5647330f729Sjoerg Context clearDefinition(const NamedDecl *D, Context Ctx) {
5657330f729Sjoerg Context NewCtx = Ctx;
5667330f729Sjoerg if (NewCtx.contains(D)) {
5677330f729Sjoerg NewCtx = ContextFactory.remove(NewCtx, D);
5687330f729Sjoerg NewCtx = ContextFactory.add(NewCtx, D, 0);
5697330f729Sjoerg }
5707330f729Sjoerg return NewCtx;
5717330f729Sjoerg }
5727330f729Sjoerg
5737330f729Sjoerg // Remove a definition entirely frmo the context.
removeDefinition(const NamedDecl * D,Context Ctx)5747330f729Sjoerg Context removeDefinition(const NamedDecl *D, Context Ctx) {
5757330f729Sjoerg Context NewCtx = Ctx;
5767330f729Sjoerg if (NewCtx.contains(D)) {
5777330f729Sjoerg NewCtx = ContextFactory.remove(NewCtx, D);
5787330f729Sjoerg }
5797330f729Sjoerg return NewCtx;
5807330f729Sjoerg }
5817330f729Sjoerg
5827330f729Sjoerg Context intersectContexts(Context C1, Context C2);
5837330f729Sjoerg Context createReferenceContext(Context C);
5847330f729Sjoerg void intersectBackEdge(Context C1, Context C2);
5857330f729Sjoerg };
5867330f729Sjoerg
5877330f729Sjoerg } // namespace
5887330f729Sjoerg
5897330f729Sjoerg // This has to be defined after LocalVariableMap.
getEmptyBlockInfo(LocalVariableMap & M)5907330f729Sjoerg CFGBlockInfo CFGBlockInfo::getEmptyBlockInfo(LocalVariableMap &M) {
5917330f729Sjoerg return CFGBlockInfo(M.getEmptyContext());
5927330f729Sjoerg }
5937330f729Sjoerg
5947330f729Sjoerg namespace {
5957330f729Sjoerg
5967330f729Sjoerg /// Visitor which builds a LocalVariableMap
5977330f729Sjoerg class VarMapBuilder : public ConstStmtVisitor<VarMapBuilder> {
5987330f729Sjoerg public:
5997330f729Sjoerg LocalVariableMap* VMap;
6007330f729Sjoerg LocalVariableMap::Context Ctx;
6017330f729Sjoerg
VarMapBuilder(LocalVariableMap * VM,LocalVariableMap::Context C)6027330f729Sjoerg VarMapBuilder(LocalVariableMap *VM, LocalVariableMap::Context C)
6037330f729Sjoerg : VMap(VM), Ctx(C) {}
6047330f729Sjoerg
6057330f729Sjoerg void VisitDeclStmt(const DeclStmt *S);
6067330f729Sjoerg void VisitBinaryOperator(const BinaryOperator *BO);
6077330f729Sjoerg };
6087330f729Sjoerg
6097330f729Sjoerg } // namespace
6107330f729Sjoerg
6117330f729Sjoerg // Add new local variables to the variable map
VisitDeclStmt(const DeclStmt * S)6127330f729Sjoerg void VarMapBuilder::VisitDeclStmt(const DeclStmt *S) {
6137330f729Sjoerg bool modifiedCtx = false;
6147330f729Sjoerg const DeclGroupRef DGrp = S->getDeclGroup();
6157330f729Sjoerg for (const auto *D : DGrp) {
6167330f729Sjoerg if (const auto *VD = dyn_cast_or_null<VarDecl>(D)) {
6177330f729Sjoerg const Expr *E = VD->getInit();
6187330f729Sjoerg
6197330f729Sjoerg // Add local variables with trivial type to the variable map
6207330f729Sjoerg QualType T = VD->getType();
6217330f729Sjoerg if (T.isTrivialType(VD->getASTContext())) {
6227330f729Sjoerg Ctx = VMap->addDefinition(VD, E, Ctx);
6237330f729Sjoerg modifiedCtx = true;
6247330f729Sjoerg }
6257330f729Sjoerg }
6267330f729Sjoerg }
6277330f729Sjoerg if (modifiedCtx)
6287330f729Sjoerg VMap->saveContext(S, Ctx);
6297330f729Sjoerg }
6307330f729Sjoerg
6317330f729Sjoerg // Update local variable definitions in variable map
VisitBinaryOperator(const BinaryOperator * BO)6327330f729Sjoerg void VarMapBuilder::VisitBinaryOperator(const BinaryOperator *BO) {
6337330f729Sjoerg if (!BO->isAssignmentOp())
6347330f729Sjoerg return;
6357330f729Sjoerg
6367330f729Sjoerg Expr *LHSExp = BO->getLHS()->IgnoreParenCasts();
6377330f729Sjoerg
6387330f729Sjoerg // Update the variable map and current context.
6397330f729Sjoerg if (const auto *DRE = dyn_cast<DeclRefExpr>(LHSExp)) {
6407330f729Sjoerg const ValueDecl *VDec = DRE->getDecl();
6417330f729Sjoerg if (Ctx.lookup(VDec)) {
6427330f729Sjoerg if (BO->getOpcode() == BO_Assign)
6437330f729Sjoerg Ctx = VMap->updateDefinition(VDec, BO->getRHS(), Ctx);
6447330f729Sjoerg else
6457330f729Sjoerg // FIXME -- handle compound assignment operators
6467330f729Sjoerg Ctx = VMap->clearDefinition(VDec, Ctx);
6477330f729Sjoerg VMap->saveContext(BO, Ctx);
6487330f729Sjoerg }
6497330f729Sjoerg }
6507330f729Sjoerg }
6517330f729Sjoerg
6527330f729Sjoerg // Computes the intersection of two contexts. The intersection is the
6537330f729Sjoerg // set of variables which have the same definition in both contexts;
6547330f729Sjoerg // variables with different definitions are discarded.
6557330f729Sjoerg LocalVariableMap::Context
intersectContexts(Context C1,Context C2)6567330f729Sjoerg LocalVariableMap::intersectContexts(Context C1, Context C2) {
6577330f729Sjoerg Context Result = C1;
6587330f729Sjoerg for (const auto &P : C1) {
6597330f729Sjoerg const NamedDecl *Dec = P.first;
6607330f729Sjoerg const unsigned *i2 = C2.lookup(Dec);
6617330f729Sjoerg if (!i2) // variable doesn't exist on second path
6627330f729Sjoerg Result = removeDefinition(Dec, Result);
6637330f729Sjoerg else if (*i2 != P.second) // variable exists, but has different definition
6647330f729Sjoerg Result = clearDefinition(Dec, Result);
6657330f729Sjoerg }
6667330f729Sjoerg return Result;
6677330f729Sjoerg }
6687330f729Sjoerg
6697330f729Sjoerg // For every variable in C, create a new variable that refers to the
6707330f729Sjoerg // definition in C. Return a new context that contains these new variables.
6717330f729Sjoerg // (We use this for a naive implementation of SSA on loop back-edges.)
createReferenceContext(Context C)6727330f729Sjoerg LocalVariableMap::Context LocalVariableMap::createReferenceContext(Context C) {
6737330f729Sjoerg Context Result = getEmptyContext();
6747330f729Sjoerg for (const auto &P : C)
6757330f729Sjoerg Result = addReference(P.first, P.second, Result);
6767330f729Sjoerg return Result;
6777330f729Sjoerg }
6787330f729Sjoerg
6797330f729Sjoerg // This routine also takes the intersection of C1 and C2, but it does so by
6807330f729Sjoerg // altering the VarDefinitions. C1 must be the result of an earlier call to
6817330f729Sjoerg // createReferenceContext.
intersectBackEdge(Context C1,Context C2)6827330f729Sjoerg void LocalVariableMap::intersectBackEdge(Context C1, Context C2) {
6837330f729Sjoerg for (const auto &P : C1) {
6847330f729Sjoerg unsigned i1 = P.second;
6857330f729Sjoerg VarDefinition *VDef = &VarDefinitions[i1];
6867330f729Sjoerg assert(VDef->isReference());
6877330f729Sjoerg
6887330f729Sjoerg const unsigned *i2 = C2.lookup(P.first);
6897330f729Sjoerg if (!i2 || (*i2 != i1))
6907330f729Sjoerg VDef->Ref = 0; // Mark this variable as undefined
6917330f729Sjoerg }
6927330f729Sjoerg }
6937330f729Sjoerg
6947330f729Sjoerg // Traverse the CFG in topological order, so all predecessors of a block
6957330f729Sjoerg // (excluding back-edges) are visited before the block itself. At
6967330f729Sjoerg // each point in the code, we calculate a Context, which holds the set of
6977330f729Sjoerg // variable definitions which are visible at that point in execution.
6987330f729Sjoerg // Visible variables are mapped to their definitions using an array that
6997330f729Sjoerg // contains all definitions.
7007330f729Sjoerg //
7017330f729Sjoerg // At join points in the CFG, the set is computed as the intersection of
7027330f729Sjoerg // the incoming sets along each edge, E.g.
7037330f729Sjoerg //
7047330f729Sjoerg // { Context | VarDefinitions }
7057330f729Sjoerg // int x = 0; { x -> x1 | x1 = 0 }
7067330f729Sjoerg // int y = 0; { x -> x1, y -> y1 | y1 = 0, x1 = 0 }
7077330f729Sjoerg // if (b) x = 1; { x -> x2, y -> y1 | x2 = 1, y1 = 0, ... }
7087330f729Sjoerg // else x = 2; { x -> x3, y -> y1 | x3 = 2, x2 = 1, ... }
7097330f729Sjoerg // ... { y -> y1 (x is unknown) | x3 = 2, x2 = 1, ... }
7107330f729Sjoerg //
7117330f729Sjoerg // This is essentially a simpler and more naive version of the standard SSA
7127330f729Sjoerg // algorithm. Those definitions that remain in the intersection are from blocks
7137330f729Sjoerg // that strictly dominate the current block. We do not bother to insert proper
7147330f729Sjoerg // phi nodes, because they are not used in our analysis; instead, wherever
7157330f729Sjoerg // a phi node would be required, we simply remove that definition from the
7167330f729Sjoerg // context (E.g. x above).
7177330f729Sjoerg //
7187330f729Sjoerg // The initial traversal does not capture back-edges, so those need to be
7197330f729Sjoerg // handled on a separate pass. Whenever the first pass encounters an
7207330f729Sjoerg // incoming back edge, it duplicates the context, creating new definitions
7217330f729Sjoerg // that refer back to the originals. (These correspond to places where SSA
7227330f729Sjoerg // might have to insert a phi node.) On the second pass, these definitions are
7237330f729Sjoerg // set to NULL if the variable has changed on the back-edge (i.e. a phi
7247330f729Sjoerg // node was actually required.) E.g.
7257330f729Sjoerg //
7267330f729Sjoerg // { Context | VarDefinitions }
7277330f729Sjoerg // int x = 0, y = 0; { x -> x1, y -> y1 | y1 = 0, x1 = 0 }
7287330f729Sjoerg // while (b) { x -> x2, y -> y1 | [1st:] x2=x1; [2nd:] x2=NULL; }
7297330f729Sjoerg // x = x+1; { x -> x3, y -> y1 | x3 = x2 + 1, ... }
7307330f729Sjoerg // ... { y -> y1 | x3 = 2, x2 = 1, ... }
traverseCFG(CFG * CFGraph,const PostOrderCFGView * SortedGraph,std::vector<CFGBlockInfo> & BlockInfo)7317330f729Sjoerg void LocalVariableMap::traverseCFG(CFG *CFGraph,
7327330f729Sjoerg const PostOrderCFGView *SortedGraph,
7337330f729Sjoerg std::vector<CFGBlockInfo> &BlockInfo) {
7347330f729Sjoerg PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph);
7357330f729Sjoerg
7367330f729Sjoerg CtxIndices.resize(CFGraph->getNumBlockIDs());
7377330f729Sjoerg
7387330f729Sjoerg for (const auto *CurrBlock : *SortedGraph) {
7397330f729Sjoerg unsigned CurrBlockID = CurrBlock->getBlockID();
7407330f729Sjoerg CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID];
7417330f729Sjoerg
7427330f729Sjoerg VisitedBlocks.insert(CurrBlock);
7437330f729Sjoerg
7447330f729Sjoerg // Calculate the entry context for the current block
7457330f729Sjoerg bool HasBackEdges = false;
7467330f729Sjoerg bool CtxInit = true;
7477330f729Sjoerg for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
7487330f729Sjoerg PE = CurrBlock->pred_end(); PI != PE; ++PI) {
7497330f729Sjoerg // if *PI -> CurrBlock is a back edge, so skip it
7507330f729Sjoerg if (*PI == nullptr || !VisitedBlocks.alreadySet(*PI)) {
7517330f729Sjoerg HasBackEdges = true;
7527330f729Sjoerg continue;
7537330f729Sjoerg }
7547330f729Sjoerg
7557330f729Sjoerg unsigned PrevBlockID = (*PI)->getBlockID();
7567330f729Sjoerg CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
7577330f729Sjoerg
7587330f729Sjoerg if (CtxInit) {
7597330f729Sjoerg CurrBlockInfo->EntryContext = PrevBlockInfo->ExitContext;
7607330f729Sjoerg CtxInit = false;
7617330f729Sjoerg }
7627330f729Sjoerg else {
7637330f729Sjoerg CurrBlockInfo->EntryContext =
7647330f729Sjoerg intersectContexts(CurrBlockInfo->EntryContext,
7657330f729Sjoerg PrevBlockInfo->ExitContext);
7667330f729Sjoerg }
7677330f729Sjoerg }
7687330f729Sjoerg
7697330f729Sjoerg // Duplicate the context if we have back-edges, so we can call
7707330f729Sjoerg // intersectBackEdges later.
7717330f729Sjoerg if (HasBackEdges)
7727330f729Sjoerg CurrBlockInfo->EntryContext =
7737330f729Sjoerg createReferenceContext(CurrBlockInfo->EntryContext);
7747330f729Sjoerg
7757330f729Sjoerg // Create a starting context index for the current block
7767330f729Sjoerg saveContext(nullptr, CurrBlockInfo->EntryContext);
7777330f729Sjoerg CurrBlockInfo->EntryIndex = getContextIndex();
7787330f729Sjoerg
7797330f729Sjoerg // Visit all the statements in the basic block.
7807330f729Sjoerg VarMapBuilder VMapBuilder(this, CurrBlockInfo->EntryContext);
7817330f729Sjoerg for (const auto &BI : *CurrBlock) {
7827330f729Sjoerg switch (BI.getKind()) {
7837330f729Sjoerg case CFGElement::Statement: {
7847330f729Sjoerg CFGStmt CS = BI.castAs<CFGStmt>();
7857330f729Sjoerg VMapBuilder.Visit(CS.getStmt());
7867330f729Sjoerg break;
7877330f729Sjoerg }
7887330f729Sjoerg default:
7897330f729Sjoerg break;
7907330f729Sjoerg }
7917330f729Sjoerg }
7927330f729Sjoerg CurrBlockInfo->ExitContext = VMapBuilder.Ctx;
7937330f729Sjoerg
7947330f729Sjoerg // Mark variables on back edges as "unknown" if they've been changed.
7957330f729Sjoerg for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
7967330f729Sjoerg SE = CurrBlock->succ_end(); SI != SE; ++SI) {
7977330f729Sjoerg // if CurrBlock -> *SI is *not* a back edge
7987330f729Sjoerg if (*SI == nullptr || !VisitedBlocks.alreadySet(*SI))
7997330f729Sjoerg continue;
8007330f729Sjoerg
8017330f729Sjoerg CFGBlock *FirstLoopBlock = *SI;
8027330f729Sjoerg Context LoopBegin = BlockInfo[FirstLoopBlock->getBlockID()].EntryContext;
8037330f729Sjoerg Context LoopEnd = CurrBlockInfo->ExitContext;
8047330f729Sjoerg intersectBackEdge(LoopBegin, LoopEnd);
8057330f729Sjoerg }
8067330f729Sjoerg }
8077330f729Sjoerg
8087330f729Sjoerg // Put an extra entry at the end of the indexed context array
8097330f729Sjoerg unsigned exitID = CFGraph->getExit().getBlockID();
8107330f729Sjoerg saveContext(nullptr, BlockInfo[exitID].ExitContext);
8117330f729Sjoerg }
8127330f729Sjoerg
8137330f729Sjoerg /// Find the appropriate source locations to use when producing diagnostics for
8147330f729Sjoerg /// each block in the CFG.
findBlockLocations(CFG * CFGraph,const PostOrderCFGView * SortedGraph,std::vector<CFGBlockInfo> & BlockInfo)8157330f729Sjoerg static void findBlockLocations(CFG *CFGraph,
8167330f729Sjoerg const PostOrderCFGView *SortedGraph,
8177330f729Sjoerg std::vector<CFGBlockInfo> &BlockInfo) {
8187330f729Sjoerg for (const auto *CurrBlock : *SortedGraph) {
8197330f729Sjoerg CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlock->getBlockID()];
8207330f729Sjoerg
8217330f729Sjoerg // Find the source location of the last statement in the block, if the
8227330f729Sjoerg // block is not empty.
8237330f729Sjoerg if (const Stmt *S = CurrBlock->getTerminatorStmt()) {
8247330f729Sjoerg CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = S->getBeginLoc();
8257330f729Sjoerg } else {
8267330f729Sjoerg for (CFGBlock::const_reverse_iterator BI = CurrBlock->rbegin(),
8277330f729Sjoerg BE = CurrBlock->rend(); BI != BE; ++BI) {
8287330f729Sjoerg // FIXME: Handle other CFGElement kinds.
8297330f729Sjoerg if (Optional<CFGStmt> CS = BI->getAs<CFGStmt>()) {
8307330f729Sjoerg CurrBlockInfo->ExitLoc = CS->getStmt()->getBeginLoc();
8317330f729Sjoerg break;
8327330f729Sjoerg }
8337330f729Sjoerg }
8347330f729Sjoerg }
8357330f729Sjoerg
8367330f729Sjoerg if (CurrBlockInfo->ExitLoc.isValid()) {
8377330f729Sjoerg // This block contains at least one statement. Find the source location
8387330f729Sjoerg // of the first statement in the block.
8397330f729Sjoerg for (const auto &BI : *CurrBlock) {
8407330f729Sjoerg // FIXME: Handle other CFGElement kinds.
8417330f729Sjoerg if (Optional<CFGStmt> CS = BI.getAs<CFGStmt>()) {
8427330f729Sjoerg CurrBlockInfo->EntryLoc = CS->getStmt()->getBeginLoc();
8437330f729Sjoerg break;
8447330f729Sjoerg }
8457330f729Sjoerg }
8467330f729Sjoerg } else if (CurrBlock->pred_size() == 1 && *CurrBlock->pred_begin() &&
8477330f729Sjoerg CurrBlock != &CFGraph->getExit()) {
8487330f729Sjoerg // The block is empty, and has a single predecessor. Use its exit
8497330f729Sjoerg // location.
8507330f729Sjoerg CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc =
8517330f729Sjoerg BlockInfo[(*CurrBlock->pred_begin())->getBlockID()].ExitLoc;
8527330f729Sjoerg }
8537330f729Sjoerg }
8547330f729Sjoerg }
8557330f729Sjoerg
8567330f729Sjoerg namespace {
8577330f729Sjoerg
8587330f729Sjoerg class LockableFactEntry : public FactEntry {
8597330f729Sjoerg public:
LockableFactEntry(const CapabilityExpr & CE,LockKind LK,SourceLocation Loc,SourceKind Src=Acquired)8607330f729Sjoerg LockableFactEntry(const CapabilityExpr &CE, LockKind LK, SourceLocation Loc,
861*e038c9c4Sjoerg SourceKind Src = Acquired)
862*e038c9c4Sjoerg : FactEntry(CE, LK, Loc, Src) {}
8637330f729Sjoerg
8647330f729Sjoerg void
handleRemovalFromIntersection(const FactSet & FSet,FactManager & FactMan,SourceLocation JoinLoc,LockErrorKind LEK,ThreadSafetyHandler & Handler) const8657330f729Sjoerg handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan,
8667330f729Sjoerg SourceLocation JoinLoc, LockErrorKind LEK,
8677330f729Sjoerg ThreadSafetyHandler &Handler) const override {
868*e038c9c4Sjoerg if (!managed() && !asserted() && !negative() && !isUniversal()) {
8697330f729Sjoerg Handler.handleMutexHeldEndOfScope("mutex", toString(), loc(), JoinLoc,
8707330f729Sjoerg LEK);
8717330f729Sjoerg }
8727330f729Sjoerg }
8737330f729Sjoerg
handleLock(FactSet & FSet,FactManager & FactMan,const FactEntry & entry,ThreadSafetyHandler & Handler,StringRef DiagKind) const8747330f729Sjoerg void handleLock(FactSet &FSet, FactManager &FactMan, const FactEntry &entry,
8757330f729Sjoerg ThreadSafetyHandler &Handler,
8767330f729Sjoerg StringRef DiagKind) const override {
8777330f729Sjoerg Handler.handleDoubleLock(DiagKind, entry.toString(), loc(), entry.loc());
8787330f729Sjoerg }
8797330f729Sjoerg
handleUnlock(FactSet & FSet,FactManager & FactMan,const CapabilityExpr & Cp,SourceLocation UnlockLoc,bool FullyRemove,ThreadSafetyHandler & Handler,StringRef DiagKind) const8807330f729Sjoerg void handleUnlock(FactSet &FSet, FactManager &FactMan,
8817330f729Sjoerg const CapabilityExpr &Cp, SourceLocation UnlockLoc,
8827330f729Sjoerg bool FullyRemove, ThreadSafetyHandler &Handler,
8837330f729Sjoerg StringRef DiagKind) const override {
8847330f729Sjoerg FSet.removeLock(FactMan, Cp);
8857330f729Sjoerg if (!Cp.negative()) {
8867330f729Sjoerg FSet.addLock(FactMan, std::make_unique<LockableFactEntry>(
8877330f729Sjoerg !Cp, LK_Exclusive, UnlockLoc));
8887330f729Sjoerg }
8897330f729Sjoerg }
8907330f729Sjoerg };
8917330f729Sjoerg
8927330f729Sjoerg class ScopedLockableFactEntry : public FactEntry {
8937330f729Sjoerg private:
8947330f729Sjoerg enum UnderlyingCapabilityKind {
8957330f729Sjoerg UCK_Acquired, ///< Any kind of acquired capability.
8967330f729Sjoerg UCK_ReleasedShared, ///< Shared capability that was released.
8977330f729Sjoerg UCK_ReleasedExclusive, ///< Exclusive capability that was released.
8987330f729Sjoerg };
8997330f729Sjoerg
9007330f729Sjoerg using UnderlyingCapability =
9017330f729Sjoerg llvm::PointerIntPair<const til::SExpr *, 2, UnderlyingCapabilityKind>;
9027330f729Sjoerg
9037330f729Sjoerg SmallVector<UnderlyingCapability, 4> UnderlyingMutexes;
9047330f729Sjoerg
9057330f729Sjoerg public:
ScopedLockableFactEntry(const CapabilityExpr & CE,SourceLocation Loc)9067330f729Sjoerg ScopedLockableFactEntry(const CapabilityExpr &CE, SourceLocation Loc)
907*e038c9c4Sjoerg : FactEntry(CE, LK_Exclusive, Loc, Acquired) {}
9087330f729Sjoerg
addLock(const CapabilityExpr & M)909*e038c9c4Sjoerg void addLock(const CapabilityExpr &M) {
9107330f729Sjoerg UnderlyingMutexes.emplace_back(M.sexpr(), UCK_Acquired);
9117330f729Sjoerg }
9127330f729Sjoerg
addExclusiveUnlock(const CapabilityExpr & M)9137330f729Sjoerg void addExclusiveUnlock(const CapabilityExpr &M) {
9147330f729Sjoerg UnderlyingMutexes.emplace_back(M.sexpr(), UCK_ReleasedExclusive);
9157330f729Sjoerg }
9167330f729Sjoerg
addSharedUnlock(const CapabilityExpr & M)9177330f729Sjoerg void addSharedUnlock(const CapabilityExpr &M) {
9187330f729Sjoerg UnderlyingMutexes.emplace_back(M.sexpr(), UCK_ReleasedShared);
9197330f729Sjoerg }
9207330f729Sjoerg
9217330f729Sjoerg void
handleRemovalFromIntersection(const FactSet & FSet,FactManager & FactMan,SourceLocation JoinLoc,LockErrorKind LEK,ThreadSafetyHandler & Handler) const9227330f729Sjoerg handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan,
9237330f729Sjoerg SourceLocation JoinLoc, LockErrorKind LEK,
9247330f729Sjoerg ThreadSafetyHandler &Handler) const override {
9257330f729Sjoerg for (const auto &UnderlyingMutex : UnderlyingMutexes) {
9267330f729Sjoerg const auto *Entry = FSet.findLock(
9277330f729Sjoerg FactMan, CapabilityExpr(UnderlyingMutex.getPointer(), false));
9287330f729Sjoerg if ((UnderlyingMutex.getInt() == UCK_Acquired && Entry) ||
9297330f729Sjoerg (UnderlyingMutex.getInt() != UCK_Acquired && !Entry)) {
9307330f729Sjoerg // If this scoped lock manages another mutex, and if the underlying
9317330f729Sjoerg // mutex is still/not held, then warn about the underlying mutex.
9327330f729Sjoerg Handler.handleMutexHeldEndOfScope(
9337330f729Sjoerg "mutex", sx::toString(UnderlyingMutex.getPointer()), loc(), JoinLoc,
9347330f729Sjoerg LEK);
9357330f729Sjoerg }
9367330f729Sjoerg }
9377330f729Sjoerg }
9387330f729Sjoerg
handleLock(FactSet & FSet,FactManager & FactMan,const FactEntry & entry,ThreadSafetyHandler & Handler,StringRef DiagKind) const9397330f729Sjoerg void handleLock(FactSet &FSet, FactManager &FactMan, const FactEntry &entry,
9407330f729Sjoerg ThreadSafetyHandler &Handler,
9417330f729Sjoerg StringRef DiagKind) const override {
9427330f729Sjoerg for (const auto &UnderlyingMutex : UnderlyingMutexes) {
9437330f729Sjoerg CapabilityExpr UnderCp(UnderlyingMutex.getPointer(), false);
9447330f729Sjoerg
9457330f729Sjoerg if (UnderlyingMutex.getInt() == UCK_Acquired)
9467330f729Sjoerg lock(FSet, FactMan, UnderCp, entry.kind(), entry.loc(), &Handler,
9477330f729Sjoerg DiagKind);
9487330f729Sjoerg else
9497330f729Sjoerg unlock(FSet, FactMan, UnderCp, entry.loc(), &Handler, DiagKind);
9507330f729Sjoerg }
9517330f729Sjoerg }
9527330f729Sjoerg
handleUnlock(FactSet & FSet,FactManager & FactMan,const CapabilityExpr & Cp,SourceLocation UnlockLoc,bool FullyRemove,ThreadSafetyHandler & Handler,StringRef DiagKind) const9537330f729Sjoerg void handleUnlock(FactSet &FSet, FactManager &FactMan,
9547330f729Sjoerg const CapabilityExpr &Cp, SourceLocation UnlockLoc,
9557330f729Sjoerg bool FullyRemove, ThreadSafetyHandler &Handler,
9567330f729Sjoerg StringRef DiagKind) const override {
9577330f729Sjoerg assert(!Cp.negative() && "Managing object cannot be negative.");
9587330f729Sjoerg for (const auto &UnderlyingMutex : UnderlyingMutexes) {
9597330f729Sjoerg CapabilityExpr UnderCp(UnderlyingMutex.getPointer(), false);
9607330f729Sjoerg
9617330f729Sjoerg // Remove/lock the underlying mutex if it exists/is still unlocked; warn
9627330f729Sjoerg // on double unlocking/locking if we're not destroying the scoped object.
9637330f729Sjoerg ThreadSafetyHandler *TSHandler = FullyRemove ? nullptr : &Handler;
9647330f729Sjoerg if (UnderlyingMutex.getInt() == UCK_Acquired) {
9657330f729Sjoerg unlock(FSet, FactMan, UnderCp, UnlockLoc, TSHandler, DiagKind);
9667330f729Sjoerg } else {
9677330f729Sjoerg LockKind kind = UnderlyingMutex.getInt() == UCK_ReleasedShared
9687330f729Sjoerg ? LK_Shared
9697330f729Sjoerg : LK_Exclusive;
9707330f729Sjoerg lock(FSet, FactMan, UnderCp, kind, UnlockLoc, TSHandler, DiagKind);
9717330f729Sjoerg }
9727330f729Sjoerg }
9737330f729Sjoerg if (FullyRemove)
9747330f729Sjoerg FSet.removeLock(FactMan, Cp);
9757330f729Sjoerg }
9767330f729Sjoerg
9777330f729Sjoerg private:
lock(FactSet & FSet,FactManager & FactMan,const CapabilityExpr & Cp,LockKind kind,SourceLocation loc,ThreadSafetyHandler * Handler,StringRef DiagKind) const9787330f729Sjoerg void lock(FactSet &FSet, FactManager &FactMan, const CapabilityExpr &Cp,
9797330f729Sjoerg LockKind kind, SourceLocation loc, ThreadSafetyHandler *Handler,
9807330f729Sjoerg StringRef DiagKind) const {
9817330f729Sjoerg if (const FactEntry *Fact = FSet.findLock(FactMan, Cp)) {
9827330f729Sjoerg if (Handler)
9837330f729Sjoerg Handler->handleDoubleLock(DiagKind, Cp.toString(), Fact->loc(), loc);
9847330f729Sjoerg } else {
9857330f729Sjoerg FSet.removeLock(FactMan, !Cp);
9867330f729Sjoerg FSet.addLock(FactMan,
987*e038c9c4Sjoerg std::make_unique<LockableFactEntry>(Cp, kind, loc, Managed));
9887330f729Sjoerg }
9897330f729Sjoerg }
9907330f729Sjoerg
unlock(FactSet & FSet,FactManager & FactMan,const CapabilityExpr & Cp,SourceLocation loc,ThreadSafetyHandler * Handler,StringRef DiagKind) const9917330f729Sjoerg void unlock(FactSet &FSet, FactManager &FactMan, const CapabilityExpr &Cp,
9927330f729Sjoerg SourceLocation loc, ThreadSafetyHandler *Handler,
9937330f729Sjoerg StringRef DiagKind) const {
9947330f729Sjoerg if (FSet.findLock(FactMan, Cp)) {
9957330f729Sjoerg FSet.removeLock(FactMan, Cp);
9967330f729Sjoerg FSet.addLock(FactMan, std::make_unique<LockableFactEntry>(
9977330f729Sjoerg !Cp, LK_Exclusive, loc));
9987330f729Sjoerg } else if (Handler) {
999*e038c9c4Sjoerg SourceLocation PrevLoc;
1000*e038c9c4Sjoerg if (const FactEntry *Neg = FSet.findLock(FactMan, !Cp))
1001*e038c9c4Sjoerg PrevLoc = Neg->loc();
1002*e038c9c4Sjoerg Handler->handleUnmatchedUnlock(DiagKind, Cp.toString(), loc, PrevLoc);
10037330f729Sjoerg }
10047330f729Sjoerg }
10057330f729Sjoerg };
10067330f729Sjoerg
10077330f729Sjoerg /// Class which implements the core thread safety analysis routines.
10087330f729Sjoerg class ThreadSafetyAnalyzer {
10097330f729Sjoerg friend class BuildLockset;
10107330f729Sjoerg friend class threadSafety::BeforeSet;
10117330f729Sjoerg
10127330f729Sjoerg llvm::BumpPtrAllocator Bpa;
10137330f729Sjoerg threadSafety::til::MemRegionRef Arena;
10147330f729Sjoerg threadSafety::SExprBuilder SxBuilder;
10157330f729Sjoerg
10167330f729Sjoerg ThreadSafetyHandler &Handler;
10177330f729Sjoerg const CXXMethodDecl *CurrentMethod;
10187330f729Sjoerg LocalVariableMap LocalVarMap;
10197330f729Sjoerg FactManager FactMan;
10207330f729Sjoerg std::vector<CFGBlockInfo> BlockInfo;
10217330f729Sjoerg
10227330f729Sjoerg BeforeSet *GlobalBeforeSet;
10237330f729Sjoerg
10247330f729Sjoerg public:
ThreadSafetyAnalyzer(ThreadSafetyHandler & H,BeforeSet * Bset)10257330f729Sjoerg ThreadSafetyAnalyzer(ThreadSafetyHandler &H, BeforeSet* Bset)
10267330f729Sjoerg : Arena(&Bpa), SxBuilder(Arena), Handler(H), GlobalBeforeSet(Bset) {}
10277330f729Sjoerg
10287330f729Sjoerg bool inCurrentScope(const CapabilityExpr &CapE);
10297330f729Sjoerg
10307330f729Sjoerg void addLock(FactSet &FSet, std::unique_ptr<FactEntry> Entry,
10317330f729Sjoerg StringRef DiagKind, bool ReqAttr = false);
10327330f729Sjoerg void removeLock(FactSet &FSet, const CapabilityExpr &CapE,
10337330f729Sjoerg SourceLocation UnlockLoc, bool FullyRemove, LockKind Kind,
10347330f729Sjoerg StringRef DiagKind);
10357330f729Sjoerg
10367330f729Sjoerg template <typename AttrType>
10377330f729Sjoerg void getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, const Expr *Exp,
10387330f729Sjoerg const NamedDecl *D, VarDecl *SelfDecl = nullptr);
10397330f729Sjoerg
10407330f729Sjoerg template <class AttrType>
10417330f729Sjoerg void getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, const Expr *Exp,
10427330f729Sjoerg const NamedDecl *D,
10437330f729Sjoerg const CFGBlock *PredBlock, const CFGBlock *CurrBlock,
10447330f729Sjoerg Expr *BrE, bool Neg);
10457330f729Sjoerg
10467330f729Sjoerg const CallExpr* getTrylockCallExpr(const Stmt *Cond, LocalVarContext C,
10477330f729Sjoerg bool &Negate);
10487330f729Sjoerg
10497330f729Sjoerg void getEdgeLockset(FactSet &Result, const FactSet &ExitSet,
10507330f729Sjoerg const CFGBlock* PredBlock,
10517330f729Sjoerg const CFGBlock *CurrBlock);
10527330f729Sjoerg
10537330f729Sjoerg void intersectAndWarn(FactSet &FSet1, const FactSet &FSet2,
1054*e038c9c4Sjoerg SourceLocation JoinLoc, LockErrorKind LEK1,
1055*e038c9c4Sjoerg LockErrorKind LEK2);
10567330f729Sjoerg
intersectAndWarn(FactSet & FSet1,const FactSet & FSet2,SourceLocation JoinLoc,LockErrorKind LEK1)10577330f729Sjoerg void intersectAndWarn(FactSet &FSet1, const FactSet &FSet2,
1058*e038c9c4Sjoerg SourceLocation JoinLoc, LockErrorKind LEK1) {
1059*e038c9c4Sjoerg intersectAndWarn(FSet1, FSet2, JoinLoc, LEK1, LEK1);
10607330f729Sjoerg }
10617330f729Sjoerg
10627330f729Sjoerg void runAnalysis(AnalysisDeclContext &AC);
10637330f729Sjoerg };
10647330f729Sjoerg
10657330f729Sjoerg } // namespace
10667330f729Sjoerg
10677330f729Sjoerg /// Process acquired_before and acquired_after attributes on Vd.
insertAttrExprs(const ValueDecl * Vd,ThreadSafetyAnalyzer & Analyzer)10687330f729Sjoerg BeforeSet::BeforeInfo* BeforeSet::insertAttrExprs(const ValueDecl* Vd,
10697330f729Sjoerg ThreadSafetyAnalyzer& Analyzer) {
10707330f729Sjoerg // Create a new entry for Vd.
10717330f729Sjoerg BeforeInfo *Info = nullptr;
10727330f729Sjoerg {
10737330f729Sjoerg // Keep InfoPtr in its own scope in case BMap is modified later and the
10747330f729Sjoerg // reference becomes invalid.
10757330f729Sjoerg std::unique_ptr<BeforeInfo> &InfoPtr = BMap[Vd];
10767330f729Sjoerg if (!InfoPtr)
10777330f729Sjoerg InfoPtr.reset(new BeforeInfo());
10787330f729Sjoerg Info = InfoPtr.get();
10797330f729Sjoerg }
10807330f729Sjoerg
10817330f729Sjoerg for (const auto *At : Vd->attrs()) {
10827330f729Sjoerg switch (At->getKind()) {
10837330f729Sjoerg case attr::AcquiredBefore: {
10847330f729Sjoerg const auto *A = cast<AcquiredBeforeAttr>(At);
10857330f729Sjoerg
10867330f729Sjoerg // Read exprs from the attribute, and add them to BeforeVect.
10877330f729Sjoerg for (const auto *Arg : A->args()) {
10887330f729Sjoerg CapabilityExpr Cp =
10897330f729Sjoerg Analyzer.SxBuilder.translateAttrExpr(Arg, nullptr);
10907330f729Sjoerg if (const ValueDecl *Cpvd = Cp.valueDecl()) {
10917330f729Sjoerg Info->Vect.push_back(Cpvd);
10927330f729Sjoerg const auto It = BMap.find(Cpvd);
10937330f729Sjoerg if (It == BMap.end())
10947330f729Sjoerg insertAttrExprs(Cpvd, Analyzer);
10957330f729Sjoerg }
10967330f729Sjoerg }
10977330f729Sjoerg break;
10987330f729Sjoerg }
10997330f729Sjoerg case attr::AcquiredAfter: {
11007330f729Sjoerg const auto *A = cast<AcquiredAfterAttr>(At);
11017330f729Sjoerg
11027330f729Sjoerg // Read exprs from the attribute, and add them to BeforeVect.
11037330f729Sjoerg for (const auto *Arg : A->args()) {
11047330f729Sjoerg CapabilityExpr Cp =
11057330f729Sjoerg Analyzer.SxBuilder.translateAttrExpr(Arg, nullptr);
11067330f729Sjoerg if (const ValueDecl *ArgVd = Cp.valueDecl()) {
11077330f729Sjoerg // Get entry for mutex listed in attribute
11087330f729Sjoerg BeforeInfo *ArgInfo = getBeforeInfoForDecl(ArgVd, Analyzer);
11097330f729Sjoerg ArgInfo->Vect.push_back(Vd);
11107330f729Sjoerg }
11117330f729Sjoerg }
11127330f729Sjoerg break;
11137330f729Sjoerg }
11147330f729Sjoerg default:
11157330f729Sjoerg break;
11167330f729Sjoerg }
11177330f729Sjoerg }
11187330f729Sjoerg
11197330f729Sjoerg return Info;
11207330f729Sjoerg }
11217330f729Sjoerg
11227330f729Sjoerg BeforeSet::BeforeInfo *
getBeforeInfoForDecl(const ValueDecl * Vd,ThreadSafetyAnalyzer & Analyzer)11237330f729Sjoerg BeforeSet::getBeforeInfoForDecl(const ValueDecl *Vd,
11247330f729Sjoerg ThreadSafetyAnalyzer &Analyzer) {
11257330f729Sjoerg auto It = BMap.find(Vd);
11267330f729Sjoerg BeforeInfo *Info = nullptr;
11277330f729Sjoerg if (It == BMap.end())
11287330f729Sjoerg Info = insertAttrExprs(Vd, Analyzer);
11297330f729Sjoerg else
11307330f729Sjoerg Info = It->second.get();
11317330f729Sjoerg assert(Info && "BMap contained nullptr?");
11327330f729Sjoerg return Info;
11337330f729Sjoerg }
11347330f729Sjoerg
11357330f729Sjoerg /// Return true if any mutexes in FSet are in the acquired_before set of Vd.
checkBeforeAfter(const ValueDecl * StartVd,const FactSet & FSet,ThreadSafetyAnalyzer & Analyzer,SourceLocation Loc,StringRef CapKind)11367330f729Sjoerg void BeforeSet::checkBeforeAfter(const ValueDecl* StartVd,
11377330f729Sjoerg const FactSet& FSet,
11387330f729Sjoerg ThreadSafetyAnalyzer& Analyzer,
11397330f729Sjoerg SourceLocation Loc, StringRef CapKind) {
11407330f729Sjoerg SmallVector<BeforeInfo*, 8> InfoVect;
11417330f729Sjoerg
11427330f729Sjoerg // Do a depth-first traversal of Vd.
11437330f729Sjoerg // Return true if there are cycles.
11447330f729Sjoerg std::function<bool (const ValueDecl*)> traverse = [&](const ValueDecl* Vd) {
11457330f729Sjoerg if (!Vd)
11467330f729Sjoerg return false;
11477330f729Sjoerg
11487330f729Sjoerg BeforeSet::BeforeInfo *Info = getBeforeInfoForDecl(Vd, Analyzer);
11497330f729Sjoerg
11507330f729Sjoerg if (Info->Visited == 1)
11517330f729Sjoerg return true;
11527330f729Sjoerg
11537330f729Sjoerg if (Info->Visited == 2)
11547330f729Sjoerg return false;
11557330f729Sjoerg
11567330f729Sjoerg if (Info->Vect.empty())
11577330f729Sjoerg return false;
11587330f729Sjoerg
11597330f729Sjoerg InfoVect.push_back(Info);
11607330f729Sjoerg Info->Visited = 1;
11617330f729Sjoerg for (const auto *Vdb : Info->Vect) {
11627330f729Sjoerg // Exclude mutexes in our immediate before set.
11637330f729Sjoerg if (FSet.containsMutexDecl(Analyzer.FactMan, Vdb)) {
11647330f729Sjoerg StringRef L1 = StartVd->getName();
11657330f729Sjoerg StringRef L2 = Vdb->getName();
11667330f729Sjoerg Analyzer.Handler.handleLockAcquiredBefore(CapKind, L1, L2, Loc);
11677330f729Sjoerg }
11687330f729Sjoerg // Transitively search other before sets, and warn on cycles.
11697330f729Sjoerg if (traverse(Vdb)) {
11707330f729Sjoerg if (CycMap.find(Vd) == CycMap.end()) {
11717330f729Sjoerg CycMap.insert(std::make_pair(Vd, true));
11727330f729Sjoerg StringRef L1 = Vd->getName();
11737330f729Sjoerg Analyzer.Handler.handleBeforeAfterCycle(L1, Vd->getLocation());
11747330f729Sjoerg }
11757330f729Sjoerg }
11767330f729Sjoerg }
11777330f729Sjoerg Info->Visited = 2;
11787330f729Sjoerg return false;
11797330f729Sjoerg };
11807330f729Sjoerg
11817330f729Sjoerg traverse(StartVd);
11827330f729Sjoerg
11837330f729Sjoerg for (auto *Info : InfoVect)
11847330f729Sjoerg Info->Visited = 0;
11857330f729Sjoerg }
11867330f729Sjoerg
11877330f729Sjoerg /// Gets the value decl pointer from DeclRefExprs or MemberExprs.
getValueDecl(const Expr * Exp)11887330f729Sjoerg static const ValueDecl *getValueDecl(const Expr *Exp) {
11897330f729Sjoerg if (const auto *CE = dyn_cast<ImplicitCastExpr>(Exp))
11907330f729Sjoerg return getValueDecl(CE->getSubExpr());
11917330f729Sjoerg
11927330f729Sjoerg if (const auto *DR = dyn_cast<DeclRefExpr>(Exp))
11937330f729Sjoerg return DR->getDecl();
11947330f729Sjoerg
11957330f729Sjoerg if (const auto *ME = dyn_cast<MemberExpr>(Exp))
11967330f729Sjoerg return ME->getMemberDecl();
11977330f729Sjoerg
11987330f729Sjoerg return nullptr;
11997330f729Sjoerg }
12007330f729Sjoerg
12017330f729Sjoerg namespace {
12027330f729Sjoerg
12037330f729Sjoerg template <typename Ty>
12047330f729Sjoerg class has_arg_iterator_range {
12057330f729Sjoerg using yes = char[1];
12067330f729Sjoerg using no = char[2];
12077330f729Sjoerg
12087330f729Sjoerg template <typename Inner>
12097330f729Sjoerg static yes& test(Inner *I, decltype(I->args()) * = nullptr);
12107330f729Sjoerg
12117330f729Sjoerg template <typename>
12127330f729Sjoerg static no& test(...);
12137330f729Sjoerg
12147330f729Sjoerg public:
12157330f729Sjoerg static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes);
12167330f729Sjoerg };
12177330f729Sjoerg
12187330f729Sjoerg } // namespace
12197330f729Sjoerg
ClassifyDiagnostic(const CapabilityAttr * A)12207330f729Sjoerg static StringRef ClassifyDiagnostic(const CapabilityAttr *A) {
12217330f729Sjoerg return A->getName();
12227330f729Sjoerg }
12237330f729Sjoerg
ClassifyDiagnostic(QualType VDT)12247330f729Sjoerg static StringRef ClassifyDiagnostic(QualType VDT) {
12257330f729Sjoerg // We need to look at the declaration of the type of the value to determine
12267330f729Sjoerg // which it is. The type should either be a record or a typedef, or a pointer
12277330f729Sjoerg // or reference thereof.
12287330f729Sjoerg if (const auto *RT = VDT->getAs<RecordType>()) {
12297330f729Sjoerg if (const auto *RD = RT->getDecl())
12307330f729Sjoerg if (const auto *CA = RD->getAttr<CapabilityAttr>())
12317330f729Sjoerg return ClassifyDiagnostic(CA);
12327330f729Sjoerg } else if (const auto *TT = VDT->getAs<TypedefType>()) {
12337330f729Sjoerg if (const auto *TD = TT->getDecl())
12347330f729Sjoerg if (const auto *CA = TD->getAttr<CapabilityAttr>())
12357330f729Sjoerg return ClassifyDiagnostic(CA);
12367330f729Sjoerg } else if (VDT->isPointerType() || VDT->isReferenceType())
12377330f729Sjoerg return ClassifyDiagnostic(VDT->getPointeeType());
12387330f729Sjoerg
12397330f729Sjoerg return "mutex";
12407330f729Sjoerg }
12417330f729Sjoerg
ClassifyDiagnostic(const ValueDecl * VD)12427330f729Sjoerg static StringRef ClassifyDiagnostic(const ValueDecl *VD) {
12437330f729Sjoerg assert(VD && "No ValueDecl passed");
12447330f729Sjoerg
12457330f729Sjoerg // The ValueDecl is the declaration of a mutex or role (hopefully).
12467330f729Sjoerg return ClassifyDiagnostic(VD->getType());
12477330f729Sjoerg }
12487330f729Sjoerg
12497330f729Sjoerg template <typename AttrTy>
1250*e038c9c4Sjoerg static std::enable_if_t<!has_arg_iterator_range<AttrTy>::value, StringRef>
ClassifyDiagnostic(const AttrTy * A)12517330f729Sjoerg ClassifyDiagnostic(const AttrTy *A) {
12527330f729Sjoerg if (const ValueDecl *VD = getValueDecl(A->getArg()))
12537330f729Sjoerg return ClassifyDiagnostic(VD);
12547330f729Sjoerg return "mutex";
12557330f729Sjoerg }
12567330f729Sjoerg
12577330f729Sjoerg template <typename AttrTy>
1258*e038c9c4Sjoerg static std::enable_if_t<has_arg_iterator_range<AttrTy>::value, StringRef>
ClassifyDiagnostic(const AttrTy * A)12597330f729Sjoerg ClassifyDiagnostic(const AttrTy *A) {
12607330f729Sjoerg for (const auto *Arg : A->args()) {
12617330f729Sjoerg if (const ValueDecl *VD = getValueDecl(Arg))
12627330f729Sjoerg return ClassifyDiagnostic(VD);
12637330f729Sjoerg }
12647330f729Sjoerg return "mutex";
12657330f729Sjoerg }
12667330f729Sjoerg
inCurrentScope(const CapabilityExpr & CapE)12677330f729Sjoerg bool ThreadSafetyAnalyzer::inCurrentScope(const CapabilityExpr &CapE) {
1268*e038c9c4Sjoerg const threadSafety::til::SExpr *SExp = CapE.sexpr();
1269*e038c9c4Sjoerg assert(SExp && "Null expressions should be ignored");
1270*e038c9c4Sjoerg
1271*e038c9c4Sjoerg if (const auto *LP = dyn_cast<til::LiteralPtr>(SExp)) {
1272*e038c9c4Sjoerg const ValueDecl *VD = LP->clangDecl();
1273*e038c9c4Sjoerg // Variables defined in a function are always inaccessible.
1274*e038c9c4Sjoerg if (!VD->isDefinedOutsideFunctionOrMethod())
1275*e038c9c4Sjoerg return false;
1276*e038c9c4Sjoerg // For now we consider static class members to be inaccessible.
1277*e038c9c4Sjoerg if (isa<CXXRecordDecl>(VD->getDeclContext()))
1278*e038c9c4Sjoerg return false;
1279*e038c9c4Sjoerg // Global variables are always in scope.
1280*e038c9c4Sjoerg return true;
1281*e038c9c4Sjoerg }
1282*e038c9c4Sjoerg
1283*e038c9c4Sjoerg // Members are in scope from methods of the same class.
1284*e038c9c4Sjoerg if (const auto *P = dyn_cast<til::Project>(SExp)) {
12857330f729Sjoerg if (!CurrentMethod)
12867330f729Sjoerg return false;
1287*e038c9c4Sjoerg const ValueDecl *VD = P->clangDecl();
12887330f729Sjoerg return VD->getDeclContext() == CurrentMethod->getDeclContext();
12897330f729Sjoerg }
1290*e038c9c4Sjoerg
12917330f729Sjoerg return false;
12927330f729Sjoerg }
12937330f729Sjoerg
12947330f729Sjoerg /// Add a new lock to the lockset, warning if the lock is already there.
12957330f729Sjoerg /// \param ReqAttr -- true if this is part of an initial Requires attribute.
addLock(FactSet & FSet,std::unique_ptr<FactEntry> Entry,StringRef DiagKind,bool ReqAttr)12967330f729Sjoerg void ThreadSafetyAnalyzer::addLock(FactSet &FSet,
12977330f729Sjoerg std::unique_ptr<FactEntry> Entry,
12987330f729Sjoerg StringRef DiagKind, bool ReqAttr) {
12997330f729Sjoerg if (Entry->shouldIgnore())
13007330f729Sjoerg return;
13017330f729Sjoerg
13027330f729Sjoerg if (!ReqAttr && !Entry->negative()) {
13037330f729Sjoerg // look for the negative capability, and remove it from the fact set.
13047330f729Sjoerg CapabilityExpr NegC = !*Entry;
13057330f729Sjoerg const FactEntry *Nen = FSet.findLock(FactMan, NegC);
13067330f729Sjoerg if (Nen) {
13077330f729Sjoerg FSet.removeLock(FactMan, NegC);
13087330f729Sjoerg }
13097330f729Sjoerg else {
13107330f729Sjoerg if (inCurrentScope(*Entry) && !Entry->asserted())
13117330f729Sjoerg Handler.handleNegativeNotHeld(DiagKind, Entry->toString(),
13127330f729Sjoerg NegC.toString(), Entry->loc());
13137330f729Sjoerg }
13147330f729Sjoerg }
13157330f729Sjoerg
13167330f729Sjoerg // Check before/after constraints
13177330f729Sjoerg if (Handler.issueBetaWarnings() &&
13187330f729Sjoerg !Entry->asserted() && !Entry->declared()) {
13197330f729Sjoerg GlobalBeforeSet->checkBeforeAfter(Entry->valueDecl(), FSet, *this,
13207330f729Sjoerg Entry->loc(), DiagKind);
13217330f729Sjoerg }
13227330f729Sjoerg
13237330f729Sjoerg // FIXME: Don't always warn when we have support for reentrant locks.
13247330f729Sjoerg if (const FactEntry *Cp = FSet.findLock(FactMan, *Entry)) {
13257330f729Sjoerg if (!Entry->asserted())
13267330f729Sjoerg Cp->handleLock(FSet, FactMan, *Entry, Handler, DiagKind);
13277330f729Sjoerg } else {
13287330f729Sjoerg FSet.addLock(FactMan, std::move(Entry));
13297330f729Sjoerg }
13307330f729Sjoerg }
13317330f729Sjoerg
13327330f729Sjoerg /// Remove a lock from the lockset, warning if the lock is not there.
13337330f729Sjoerg /// \param UnlockLoc The source location of the unlock (only used in error msg)
removeLock(FactSet & FSet,const CapabilityExpr & Cp,SourceLocation UnlockLoc,bool FullyRemove,LockKind ReceivedKind,StringRef DiagKind)13347330f729Sjoerg void ThreadSafetyAnalyzer::removeLock(FactSet &FSet, const CapabilityExpr &Cp,
13357330f729Sjoerg SourceLocation UnlockLoc,
13367330f729Sjoerg bool FullyRemove, LockKind ReceivedKind,
13377330f729Sjoerg StringRef DiagKind) {
13387330f729Sjoerg if (Cp.shouldIgnore())
13397330f729Sjoerg return;
13407330f729Sjoerg
13417330f729Sjoerg const FactEntry *LDat = FSet.findLock(FactMan, Cp);
13427330f729Sjoerg if (!LDat) {
1343*e038c9c4Sjoerg SourceLocation PrevLoc;
1344*e038c9c4Sjoerg if (const FactEntry *Neg = FSet.findLock(FactMan, !Cp))
1345*e038c9c4Sjoerg PrevLoc = Neg->loc();
1346*e038c9c4Sjoerg Handler.handleUnmatchedUnlock(DiagKind, Cp.toString(), UnlockLoc, PrevLoc);
13477330f729Sjoerg return;
13487330f729Sjoerg }
13497330f729Sjoerg
13507330f729Sjoerg // Generic lock removal doesn't care about lock kind mismatches, but
13517330f729Sjoerg // otherwise diagnose when the lock kinds are mismatched.
13527330f729Sjoerg if (ReceivedKind != LK_Generic && LDat->kind() != ReceivedKind) {
13537330f729Sjoerg Handler.handleIncorrectUnlockKind(DiagKind, Cp.toString(), LDat->kind(),
13547330f729Sjoerg ReceivedKind, LDat->loc(), UnlockLoc);
13557330f729Sjoerg }
13567330f729Sjoerg
13577330f729Sjoerg LDat->handleUnlock(FSet, FactMan, Cp, UnlockLoc, FullyRemove, Handler,
13587330f729Sjoerg DiagKind);
13597330f729Sjoerg }
13607330f729Sjoerg
13617330f729Sjoerg /// Extract the list of mutexIDs from the attribute on an expression,
13627330f729Sjoerg /// and push them onto Mtxs, discarding any duplicates.
13637330f729Sjoerg template <typename AttrType>
getMutexIDs(CapExprSet & Mtxs,AttrType * Attr,const Expr * Exp,const NamedDecl * D,VarDecl * SelfDecl)13647330f729Sjoerg void ThreadSafetyAnalyzer::getMutexIDs(CapExprSet &Mtxs, AttrType *Attr,
13657330f729Sjoerg const Expr *Exp, const NamedDecl *D,
13667330f729Sjoerg VarDecl *SelfDecl) {
13677330f729Sjoerg if (Attr->args_size() == 0) {
13687330f729Sjoerg // The mutex held is the "this" object.
13697330f729Sjoerg CapabilityExpr Cp = SxBuilder.translateAttrExpr(nullptr, D, Exp, SelfDecl);
13707330f729Sjoerg if (Cp.isInvalid()) {
13717330f729Sjoerg warnInvalidLock(Handler, nullptr, D, Exp, ClassifyDiagnostic(Attr));
13727330f729Sjoerg return;
13737330f729Sjoerg }
13747330f729Sjoerg //else
13757330f729Sjoerg if (!Cp.shouldIgnore())
13767330f729Sjoerg Mtxs.push_back_nodup(Cp);
13777330f729Sjoerg return;
13787330f729Sjoerg }
13797330f729Sjoerg
13807330f729Sjoerg for (const auto *Arg : Attr->args()) {
13817330f729Sjoerg CapabilityExpr Cp = SxBuilder.translateAttrExpr(Arg, D, Exp, SelfDecl);
13827330f729Sjoerg if (Cp.isInvalid()) {
13837330f729Sjoerg warnInvalidLock(Handler, nullptr, D, Exp, ClassifyDiagnostic(Attr));
13847330f729Sjoerg continue;
13857330f729Sjoerg }
13867330f729Sjoerg //else
13877330f729Sjoerg if (!Cp.shouldIgnore())
13887330f729Sjoerg Mtxs.push_back_nodup(Cp);
13897330f729Sjoerg }
13907330f729Sjoerg }
13917330f729Sjoerg
13927330f729Sjoerg /// Extract the list of mutexIDs from a trylock attribute. If the
13937330f729Sjoerg /// trylock applies to the given edge, then push them onto Mtxs, discarding
13947330f729Sjoerg /// any duplicates.
13957330f729Sjoerg template <class AttrType>
getMutexIDs(CapExprSet & Mtxs,AttrType * Attr,const Expr * Exp,const NamedDecl * D,const CFGBlock * PredBlock,const CFGBlock * CurrBlock,Expr * BrE,bool Neg)13967330f729Sjoerg void ThreadSafetyAnalyzer::getMutexIDs(CapExprSet &Mtxs, AttrType *Attr,
13977330f729Sjoerg const Expr *Exp, const NamedDecl *D,
13987330f729Sjoerg const CFGBlock *PredBlock,
13997330f729Sjoerg const CFGBlock *CurrBlock,
14007330f729Sjoerg Expr *BrE, bool Neg) {
14017330f729Sjoerg // Find out which branch has the lock
14027330f729Sjoerg bool branch = false;
14037330f729Sjoerg if (const auto *BLE = dyn_cast_or_null<CXXBoolLiteralExpr>(BrE))
14047330f729Sjoerg branch = BLE->getValue();
14057330f729Sjoerg else if (const auto *ILE = dyn_cast_or_null<IntegerLiteral>(BrE))
14067330f729Sjoerg branch = ILE->getValue().getBoolValue();
14077330f729Sjoerg
14087330f729Sjoerg int branchnum = branch ? 0 : 1;
14097330f729Sjoerg if (Neg)
14107330f729Sjoerg branchnum = !branchnum;
14117330f729Sjoerg
14127330f729Sjoerg // If we've taken the trylock branch, then add the lock
14137330f729Sjoerg int i = 0;
14147330f729Sjoerg for (CFGBlock::const_succ_iterator SI = PredBlock->succ_begin(),
14157330f729Sjoerg SE = PredBlock->succ_end(); SI != SE && i < 2; ++SI, ++i) {
14167330f729Sjoerg if (*SI == CurrBlock && i == branchnum)
14177330f729Sjoerg getMutexIDs(Mtxs, Attr, Exp, D);
14187330f729Sjoerg }
14197330f729Sjoerg }
14207330f729Sjoerg
getStaticBooleanValue(Expr * E,bool & TCond)14217330f729Sjoerg static bool getStaticBooleanValue(Expr *E, bool &TCond) {
14227330f729Sjoerg if (isa<CXXNullPtrLiteralExpr>(E) || isa<GNUNullExpr>(E)) {
14237330f729Sjoerg TCond = false;
14247330f729Sjoerg return true;
14257330f729Sjoerg } else if (const auto *BLE = dyn_cast<CXXBoolLiteralExpr>(E)) {
14267330f729Sjoerg TCond = BLE->getValue();
14277330f729Sjoerg return true;
14287330f729Sjoerg } else if (const auto *ILE = dyn_cast<IntegerLiteral>(E)) {
14297330f729Sjoerg TCond = ILE->getValue().getBoolValue();
14307330f729Sjoerg return true;
14317330f729Sjoerg } else if (auto *CE = dyn_cast<ImplicitCastExpr>(E))
14327330f729Sjoerg return getStaticBooleanValue(CE->getSubExpr(), TCond);
14337330f729Sjoerg return false;
14347330f729Sjoerg }
14357330f729Sjoerg
14367330f729Sjoerg // If Cond can be traced back to a function call, return the call expression.
14377330f729Sjoerg // The negate variable should be called with false, and will be set to true
14387330f729Sjoerg // if the function call is negated, e.g. if (!mu.tryLock(...))
getTrylockCallExpr(const Stmt * Cond,LocalVarContext C,bool & Negate)14397330f729Sjoerg const CallExpr* ThreadSafetyAnalyzer::getTrylockCallExpr(const Stmt *Cond,
14407330f729Sjoerg LocalVarContext C,
14417330f729Sjoerg bool &Negate) {
14427330f729Sjoerg if (!Cond)
14437330f729Sjoerg return nullptr;
14447330f729Sjoerg
14457330f729Sjoerg if (const auto *CallExp = dyn_cast<CallExpr>(Cond)) {
14467330f729Sjoerg if (CallExp->getBuiltinCallee() == Builtin::BI__builtin_expect)
14477330f729Sjoerg return getTrylockCallExpr(CallExp->getArg(0), C, Negate);
14487330f729Sjoerg return CallExp;
14497330f729Sjoerg }
14507330f729Sjoerg else if (const auto *PE = dyn_cast<ParenExpr>(Cond))
14517330f729Sjoerg return getTrylockCallExpr(PE->getSubExpr(), C, Negate);
14527330f729Sjoerg else if (const auto *CE = dyn_cast<ImplicitCastExpr>(Cond))
14537330f729Sjoerg return getTrylockCallExpr(CE->getSubExpr(), C, Negate);
14547330f729Sjoerg else if (const auto *FE = dyn_cast<FullExpr>(Cond))
14557330f729Sjoerg return getTrylockCallExpr(FE->getSubExpr(), C, Negate);
14567330f729Sjoerg else if (const auto *DRE = dyn_cast<DeclRefExpr>(Cond)) {
14577330f729Sjoerg const Expr *E = LocalVarMap.lookupExpr(DRE->getDecl(), C);
14587330f729Sjoerg return getTrylockCallExpr(E, C, Negate);
14597330f729Sjoerg }
14607330f729Sjoerg else if (const auto *UOP = dyn_cast<UnaryOperator>(Cond)) {
14617330f729Sjoerg if (UOP->getOpcode() == UO_LNot) {
14627330f729Sjoerg Negate = !Negate;
14637330f729Sjoerg return getTrylockCallExpr(UOP->getSubExpr(), C, Negate);
14647330f729Sjoerg }
14657330f729Sjoerg return nullptr;
14667330f729Sjoerg }
14677330f729Sjoerg else if (const auto *BOP = dyn_cast<BinaryOperator>(Cond)) {
14687330f729Sjoerg if (BOP->getOpcode() == BO_EQ || BOP->getOpcode() == BO_NE) {
14697330f729Sjoerg if (BOP->getOpcode() == BO_NE)
14707330f729Sjoerg Negate = !Negate;
14717330f729Sjoerg
14727330f729Sjoerg bool TCond = false;
14737330f729Sjoerg if (getStaticBooleanValue(BOP->getRHS(), TCond)) {
14747330f729Sjoerg if (!TCond) Negate = !Negate;
14757330f729Sjoerg return getTrylockCallExpr(BOP->getLHS(), C, Negate);
14767330f729Sjoerg }
14777330f729Sjoerg TCond = false;
14787330f729Sjoerg if (getStaticBooleanValue(BOP->getLHS(), TCond)) {
14797330f729Sjoerg if (!TCond) Negate = !Negate;
14807330f729Sjoerg return getTrylockCallExpr(BOP->getRHS(), C, Negate);
14817330f729Sjoerg }
14827330f729Sjoerg return nullptr;
14837330f729Sjoerg }
14847330f729Sjoerg if (BOP->getOpcode() == BO_LAnd) {
14857330f729Sjoerg // LHS must have been evaluated in a different block.
14867330f729Sjoerg return getTrylockCallExpr(BOP->getRHS(), C, Negate);
14877330f729Sjoerg }
14887330f729Sjoerg if (BOP->getOpcode() == BO_LOr)
14897330f729Sjoerg return getTrylockCallExpr(BOP->getRHS(), C, Negate);
14907330f729Sjoerg return nullptr;
14917330f729Sjoerg } else if (const auto *COP = dyn_cast<ConditionalOperator>(Cond)) {
14927330f729Sjoerg bool TCond, FCond;
14937330f729Sjoerg if (getStaticBooleanValue(COP->getTrueExpr(), TCond) &&
14947330f729Sjoerg getStaticBooleanValue(COP->getFalseExpr(), FCond)) {
14957330f729Sjoerg if (TCond && !FCond)
14967330f729Sjoerg return getTrylockCallExpr(COP->getCond(), C, Negate);
14977330f729Sjoerg if (!TCond && FCond) {
14987330f729Sjoerg Negate = !Negate;
14997330f729Sjoerg return getTrylockCallExpr(COP->getCond(), C, Negate);
15007330f729Sjoerg }
15017330f729Sjoerg }
15027330f729Sjoerg }
15037330f729Sjoerg return nullptr;
15047330f729Sjoerg }
15057330f729Sjoerg
15067330f729Sjoerg /// Find the lockset that holds on the edge between PredBlock
15077330f729Sjoerg /// and CurrBlock. The edge set is the exit set of PredBlock (passed
15087330f729Sjoerg /// as the ExitSet parameter) plus any trylocks, which are conditionally held.
getEdgeLockset(FactSet & Result,const FactSet & ExitSet,const CFGBlock * PredBlock,const CFGBlock * CurrBlock)15097330f729Sjoerg void ThreadSafetyAnalyzer::getEdgeLockset(FactSet& Result,
15107330f729Sjoerg const FactSet &ExitSet,
15117330f729Sjoerg const CFGBlock *PredBlock,
15127330f729Sjoerg const CFGBlock *CurrBlock) {
15137330f729Sjoerg Result = ExitSet;
15147330f729Sjoerg
15157330f729Sjoerg const Stmt *Cond = PredBlock->getTerminatorCondition();
15167330f729Sjoerg // We don't acquire try-locks on ?: branches, only when its result is used.
15177330f729Sjoerg if (!Cond || isa<ConditionalOperator>(PredBlock->getTerminatorStmt()))
15187330f729Sjoerg return;
15197330f729Sjoerg
15207330f729Sjoerg bool Negate = false;
15217330f729Sjoerg const CFGBlockInfo *PredBlockInfo = &BlockInfo[PredBlock->getBlockID()];
15227330f729Sjoerg const LocalVarContext &LVarCtx = PredBlockInfo->ExitContext;
15237330f729Sjoerg StringRef CapDiagKind = "mutex";
15247330f729Sjoerg
15257330f729Sjoerg const auto *Exp = getTrylockCallExpr(Cond, LVarCtx, Negate);
15267330f729Sjoerg if (!Exp)
15277330f729Sjoerg return;
15287330f729Sjoerg
15297330f729Sjoerg auto *FunDecl = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
15307330f729Sjoerg if(!FunDecl || !FunDecl->hasAttrs())
15317330f729Sjoerg return;
15327330f729Sjoerg
15337330f729Sjoerg CapExprSet ExclusiveLocksToAdd;
15347330f729Sjoerg CapExprSet SharedLocksToAdd;
15357330f729Sjoerg
15367330f729Sjoerg // If the condition is a call to a Trylock function, then grab the attributes
15377330f729Sjoerg for (const auto *Attr : FunDecl->attrs()) {
15387330f729Sjoerg switch (Attr->getKind()) {
15397330f729Sjoerg case attr::TryAcquireCapability: {
15407330f729Sjoerg auto *A = cast<TryAcquireCapabilityAttr>(Attr);
15417330f729Sjoerg getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A,
15427330f729Sjoerg Exp, FunDecl, PredBlock, CurrBlock, A->getSuccessValue(),
15437330f729Sjoerg Negate);
15447330f729Sjoerg CapDiagKind = ClassifyDiagnostic(A);
15457330f729Sjoerg break;
15467330f729Sjoerg };
15477330f729Sjoerg case attr::ExclusiveTrylockFunction: {
15487330f729Sjoerg const auto *A = cast<ExclusiveTrylockFunctionAttr>(Attr);
15497330f729Sjoerg getMutexIDs(ExclusiveLocksToAdd, A, Exp, FunDecl,
15507330f729Sjoerg PredBlock, CurrBlock, A->getSuccessValue(), Negate);
15517330f729Sjoerg CapDiagKind = ClassifyDiagnostic(A);
15527330f729Sjoerg break;
15537330f729Sjoerg }
15547330f729Sjoerg case attr::SharedTrylockFunction: {
15557330f729Sjoerg const auto *A = cast<SharedTrylockFunctionAttr>(Attr);
15567330f729Sjoerg getMutexIDs(SharedLocksToAdd, A, Exp, FunDecl,
15577330f729Sjoerg PredBlock, CurrBlock, A->getSuccessValue(), Negate);
15587330f729Sjoerg CapDiagKind = ClassifyDiagnostic(A);
15597330f729Sjoerg break;
15607330f729Sjoerg }
15617330f729Sjoerg default:
15627330f729Sjoerg break;
15637330f729Sjoerg }
15647330f729Sjoerg }
15657330f729Sjoerg
15667330f729Sjoerg // Add and remove locks.
15677330f729Sjoerg SourceLocation Loc = Exp->getExprLoc();
15687330f729Sjoerg for (const auto &ExclusiveLockToAdd : ExclusiveLocksToAdd)
15697330f729Sjoerg addLock(Result, std::make_unique<LockableFactEntry>(ExclusiveLockToAdd,
15707330f729Sjoerg LK_Exclusive, Loc),
15717330f729Sjoerg CapDiagKind);
15727330f729Sjoerg for (const auto &SharedLockToAdd : SharedLocksToAdd)
15737330f729Sjoerg addLock(Result, std::make_unique<LockableFactEntry>(SharedLockToAdd,
15747330f729Sjoerg LK_Shared, Loc),
15757330f729Sjoerg CapDiagKind);
15767330f729Sjoerg }
15777330f729Sjoerg
15787330f729Sjoerg namespace {
15797330f729Sjoerg
15807330f729Sjoerg /// We use this class to visit different types of expressions in
15817330f729Sjoerg /// CFGBlocks, and build up the lockset.
15827330f729Sjoerg /// An expression may cause us to add or remove locks from the lockset, or else
15837330f729Sjoerg /// output error messages related to missing locks.
15847330f729Sjoerg /// FIXME: In future, we may be able to not inherit from a visitor.
15857330f729Sjoerg class BuildLockset : public ConstStmtVisitor<BuildLockset> {
15867330f729Sjoerg friend class ThreadSafetyAnalyzer;
15877330f729Sjoerg
15887330f729Sjoerg ThreadSafetyAnalyzer *Analyzer;
15897330f729Sjoerg FactSet FSet;
15907330f729Sjoerg LocalVariableMap::Context LVarCtx;
15917330f729Sjoerg unsigned CtxIndex;
15927330f729Sjoerg
15937330f729Sjoerg // helper functions
15947330f729Sjoerg void warnIfMutexNotHeld(const NamedDecl *D, const Expr *Exp, AccessKind AK,
15957330f729Sjoerg Expr *MutexExp, ProtectedOperationKind POK,
15967330f729Sjoerg StringRef DiagKind, SourceLocation Loc);
15977330f729Sjoerg void warnIfMutexHeld(const NamedDecl *D, const Expr *Exp, Expr *MutexExp,
15987330f729Sjoerg StringRef DiagKind);
15997330f729Sjoerg
16007330f729Sjoerg void checkAccess(const Expr *Exp, AccessKind AK,
16017330f729Sjoerg ProtectedOperationKind POK = POK_VarAccess);
16027330f729Sjoerg void checkPtAccess(const Expr *Exp, AccessKind AK,
16037330f729Sjoerg ProtectedOperationKind POK = POK_VarAccess);
16047330f729Sjoerg
16057330f729Sjoerg void handleCall(const Expr *Exp, const NamedDecl *D, VarDecl *VD = nullptr);
16067330f729Sjoerg void examineArguments(const FunctionDecl *FD,
16077330f729Sjoerg CallExpr::const_arg_iterator ArgBegin,
16087330f729Sjoerg CallExpr::const_arg_iterator ArgEnd,
16097330f729Sjoerg bool SkipFirstParam = false);
16107330f729Sjoerg
16117330f729Sjoerg public:
BuildLockset(ThreadSafetyAnalyzer * Anlzr,CFGBlockInfo & Info)16127330f729Sjoerg BuildLockset(ThreadSafetyAnalyzer *Anlzr, CFGBlockInfo &Info)
16137330f729Sjoerg : ConstStmtVisitor<BuildLockset>(), Analyzer(Anlzr), FSet(Info.EntrySet),
16147330f729Sjoerg LVarCtx(Info.EntryContext), CtxIndex(Info.EntryIndex) {}
16157330f729Sjoerg
16167330f729Sjoerg void VisitUnaryOperator(const UnaryOperator *UO);
16177330f729Sjoerg void VisitBinaryOperator(const BinaryOperator *BO);
16187330f729Sjoerg void VisitCastExpr(const CastExpr *CE);
16197330f729Sjoerg void VisitCallExpr(const CallExpr *Exp);
16207330f729Sjoerg void VisitCXXConstructExpr(const CXXConstructExpr *Exp);
16217330f729Sjoerg void VisitDeclStmt(const DeclStmt *S);
16227330f729Sjoerg };
16237330f729Sjoerg
16247330f729Sjoerg } // namespace
16257330f729Sjoerg
16267330f729Sjoerg /// Warn if the LSet does not contain a lock sufficient to protect access
16277330f729Sjoerg /// of at least the passed in AccessKind.
warnIfMutexNotHeld(const NamedDecl * D,const Expr * Exp,AccessKind AK,Expr * MutexExp,ProtectedOperationKind POK,StringRef DiagKind,SourceLocation Loc)16287330f729Sjoerg void BuildLockset::warnIfMutexNotHeld(const NamedDecl *D, const Expr *Exp,
16297330f729Sjoerg AccessKind AK, Expr *MutexExp,
16307330f729Sjoerg ProtectedOperationKind POK,
16317330f729Sjoerg StringRef DiagKind, SourceLocation Loc) {
16327330f729Sjoerg LockKind LK = getLockKindFromAccessKind(AK);
16337330f729Sjoerg
16347330f729Sjoerg CapabilityExpr Cp = Analyzer->SxBuilder.translateAttrExpr(MutexExp, D, Exp);
16357330f729Sjoerg if (Cp.isInvalid()) {
16367330f729Sjoerg warnInvalidLock(Analyzer->Handler, MutexExp, D, Exp, DiagKind);
16377330f729Sjoerg return;
16387330f729Sjoerg } else if (Cp.shouldIgnore()) {
16397330f729Sjoerg return;
16407330f729Sjoerg }
16417330f729Sjoerg
16427330f729Sjoerg if (Cp.negative()) {
16437330f729Sjoerg // Negative capabilities act like locks excluded
16447330f729Sjoerg const FactEntry *LDat = FSet.findLock(Analyzer->FactMan, !Cp);
16457330f729Sjoerg if (LDat) {
16467330f729Sjoerg Analyzer->Handler.handleFunExcludesLock(
16477330f729Sjoerg DiagKind, D->getNameAsString(), (!Cp).toString(), Loc);
16487330f729Sjoerg return;
16497330f729Sjoerg }
16507330f729Sjoerg
16517330f729Sjoerg // If this does not refer to a negative capability in the same class,
16527330f729Sjoerg // then stop here.
16537330f729Sjoerg if (!Analyzer->inCurrentScope(Cp))
16547330f729Sjoerg return;
16557330f729Sjoerg
16567330f729Sjoerg // Otherwise the negative requirement must be propagated to the caller.
16577330f729Sjoerg LDat = FSet.findLock(Analyzer->FactMan, Cp);
16587330f729Sjoerg if (!LDat) {
1659*e038c9c4Sjoerg Analyzer->Handler.handleNegativeNotHeld(D, Cp.toString(), Loc);
16607330f729Sjoerg }
16617330f729Sjoerg return;
16627330f729Sjoerg }
16637330f729Sjoerg
16647330f729Sjoerg const FactEntry *LDat = FSet.findLockUniv(Analyzer->FactMan, Cp);
16657330f729Sjoerg bool NoError = true;
16667330f729Sjoerg if (!LDat) {
16677330f729Sjoerg // No exact match found. Look for a partial match.
16687330f729Sjoerg LDat = FSet.findPartialMatch(Analyzer->FactMan, Cp);
16697330f729Sjoerg if (LDat) {
16707330f729Sjoerg // Warn that there's no precise match.
16717330f729Sjoerg std::string PartMatchStr = LDat->toString();
16727330f729Sjoerg StringRef PartMatchName(PartMatchStr);
16737330f729Sjoerg Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK, Cp.toString(),
16747330f729Sjoerg LK, Loc, &PartMatchName);
16757330f729Sjoerg } else {
16767330f729Sjoerg // Warn that there's no match at all.
16777330f729Sjoerg Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK, Cp.toString(),
16787330f729Sjoerg LK, Loc);
16797330f729Sjoerg }
16807330f729Sjoerg NoError = false;
16817330f729Sjoerg }
16827330f729Sjoerg // Make sure the mutex we found is the right kind.
16837330f729Sjoerg if (NoError && LDat && !LDat->isAtLeast(LK)) {
16847330f729Sjoerg Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK, Cp.toString(),
16857330f729Sjoerg LK, Loc);
16867330f729Sjoerg }
16877330f729Sjoerg }
16887330f729Sjoerg
16897330f729Sjoerg /// Warn if the LSet contains the given lock.
warnIfMutexHeld(const NamedDecl * D,const Expr * Exp,Expr * MutexExp,StringRef DiagKind)16907330f729Sjoerg void BuildLockset::warnIfMutexHeld(const NamedDecl *D, const Expr *Exp,
16917330f729Sjoerg Expr *MutexExp, StringRef DiagKind) {
16927330f729Sjoerg CapabilityExpr Cp = Analyzer->SxBuilder.translateAttrExpr(MutexExp, D, Exp);
16937330f729Sjoerg if (Cp.isInvalid()) {
16947330f729Sjoerg warnInvalidLock(Analyzer->Handler, MutexExp, D, Exp, DiagKind);
16957330f729Sjoerg return;
16967330f729Sjoerg } else if (Cp.shouldIgnore()) {
16977330f729Sjoerg return;
16987330f729Sjoerg }
16997330f729Sjoerg
17007330f729Sjoerg const FactEntry *LDat = FSet.findLock(Analyzer->FactMan, Cp);
17017330f729Sjoerg if (LDat) {
17027330f729Sjoerg Analyzer->Handler.handleFunExcludesLock(
17037330f729Sjoerg DiagKind, D->getNameAsString(), Cp.toString(), Exp->getExprLoc());
17047330f729Sjoerg }
17057330f729Sjoerg }
17067330f729Sjoerg
17077330f729Sjoerg /// Checks guarded_by and pt_guarded_by attributes.
17087330f729Sjoerg /// Whenever we identify an access (read or write) to a DeclRefExpr that is
17097330f729Sjoerg /// marked with guarded_by, we must ensure the appropriate mutexes are held.
17107330f729Sjoerg /// Similarly, we check if the access is to an expression that dereferences
17117330f729Sjoerg /// a pointer marked with pt_guarded_by.
checkAccess(const Expr * Exp,AccessKind AK,ProtectedOperationKind POK)17127330f729Sjoerg void BuildLockset::checkAccess(const Expr *Exp, AccessKind AK,
17137330f729Sjoerg ProtectedOperationKind POK) {
17147330f729Sjoerg Exp = Exp->IgnoreImplicit()->IgnoreParenCasts();
17157330f729Sjoerg
17167330f729Sjoerg SourceLocation Loc = Exp->getExprLoc();
17177330f729Sjoerg
17187330f729Sjoerg // Local variables of reference type cannot be re-assigned;
17197330f729Sjoerg // map them to their initializer.
17207330f729Sjoerg while (const auto *DRE = dyn_cast<DeclRefExpr>(Exp)) {
17217330f729Sjoerg const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()->getCanonicalDecl());
17227330f729Sjoerg if (VD && VD->isLocalVarDecl() && VD->getType()->isReferenceType()) {
17237330f729Sjoerg if (const auto *E = VD->getInit()) {
17247330f729Sjoerg // Guard against self-initialization. e.g., int &i = i;
17257330f729Sjoerg if (E == Exp)
17267330f729Sjoerg break;
17277330f729Sjoerg Exp = E;
17287330f729Sjoerg continue;
17297330f729Sjoerg }
17307330f729Sjoerg }
17317330f729Sjoerg break;
17327330f729Sjoerg }
17337330f729Sjoerg
17347330f729Sjoerg if (const auto *UO = dyn_cast<UnaryOperator>(Exp)) {
17357330f729Sjoerg // For dereferences
17367330f729Sjoerg if (UO->getOpcode() == UO_Deref)
17377330f729Sjoerg checkPtAccess(UO->getSubExpr(), AK, POK);
17387330f729Sjoerg return;
17397330f729Sjoerg }
17407330f729Sjoerg
17417330f729Sjoerg if (const auto *AE = dyn_cast<ArraySubscriptExpr>(Exp)) {
17427330f729Sjoerg checkPtAccess(AE->getLHS(), AK, POK);
17437330f729Sjoerg return;
17447330f729Sjoerg }
17457330f729Sjoerg
17467330f729Sjoerg if (const auto *ME = dyn_cast<MemberExpr>(Exp)) {
17477330f729Sjoerg if (ME->isArrow())
17487330f729Sjoerg checkPtAccess(ME->getBase(), AK, POK);
17497330f729Sjoerg else
17507330f729Sjoerg checkAccess(ME->getBase(), AK, POK);
17517330f729Sjoerg }
17527330f729Sjoerg
17537330f729Sjoerg const ValueDecl *D = getValueDecl(Exp);
17547330f729Sjoerg if (!D || !D->hasAttrs())
17557330f729Sjoerg return;
17567330f729Sjoerg
17577330f729Sjoerg if (D->hasAttr<GuardedVarAttr>() && FSet.isEmpty(Analyzer->FactMan)) {
17587330f729Sjoerg Analyzer->Handler.handleNoMutexHeld("mutex", D, POK, AK, Loc);
17597330f729Sjoerg }
17607330f729Sjoerg
17617330f729Sjoerg for (const auto *I : D->specific_attrs<GuardedByAttr>())
17627330f729Sjoerg warnIfMutexNotHeld(D, Exp, AK, I->getArg(), POK,
17637330f729Sjoerg ClassifyDiagnostic(I), Loc);
17647330f729Sjoerg }
17657330f729Sjoerg
17667330f729Sjoerg /// Checks pt_guarded_by and pt_guarded_var attributes.
17677330f729Sjoerg /// POK is the same operationKind that was passed to checkAccess.
checkPtAccess(const Expr * Exp,AccessKind AK,ProtectedOperationKind POK)17687330f729Sjoerg void BuildLockset::checkPtAccess(const Expr *Exp, AccessKind AK,
17697330f729Sjoerg ProtectedOperationKind POK) {
17707330f729Sjoerg while (true) {
17717330f729Sjoerg if (const auto *PE = dyn_cast<ParenExpr>(Exp)) {
17727330f729Sjoerg Exp = PE->getSubExpr();
17737330f729Sjoerg continue;
17747330f729Sjoerg }
17757330f729Sjoerg if (const auto *CE = dyn_cast<CastExpr>(Exp)) {
17767330f729Sjoerg if (CE->getCastKind() == CK_ArrayToPointerDecay) {
17777330f729Sjoerg // If it's an actual array, and not a pointer, then it's elements
17787330f729Sjoerg // are protected by GUARDED_BY, not PT_GUARDED_BY;
17797330f729Sjoerg checkAccess(CE->getSubExpr(), AK, POK);
17807330f729Sjoerg return;
17817330f729Sjoerg }
17827330f729Sjoerg Exp = CE->getSubExpr();
17837330f729Sjoerg continue;
17847330f729Sjoerg }
17857330f729Sjoerg break;
17867330f729Sjoerg }
17877330f729Sjoerg
17887330f729Sjoerg // Pass by reference warnings are under a different flag.
17897330f729Sjoerg ProtectedOperationKind PtPOK = POK_VarDereference;
17907330f729Sjoerg if (POK == POK_PassByRef) PtPOK = POK_PtPassByRef;
17917330f729Sjoerg
17927330f729Sjoerg const ValueDecl *D = getValueDecl(Exp);
17937330f729Sjoerg if (!D || !D->hasAttrs())
17947330f729Sjoerg return;
17957330f729Sjoerg
17967330f729Sjoerg if (D->hasAttr<PtGuardedVarAttr>() && FSet.isEmpty(Analyzer->FactMan))
17977330f729Sjoerg Analyzer->Handler.handleNoMutexHeld("mutex", D, PtPOK, AK,
17987330f729Sjoerg Exp->getExprLoc());
17997330f729Sjoerg
18007330f729Sjoerg for (auto const *I : D->specific_attrs<PtGuardedByAttr>())
18017330f729Sjoerg warnIfMutexNotHeld(D, Exp, AK, I->getArg(), PtPOK,
18027330f729Sjoerg ClassifyDiagnostic(I), Exp->getExprLoc());
18037330f729Sjoerg }
18047330f729Sjoerg
18057330f729Sjoerg /// Process a function call, method call, constructor call,
18067330f729Sjoerg /// or destructor call. This involves looking at the attributes on the
18077330f729Sjoerg /// corresponding function/method/constructor/destructor, issuing warnings,
18087330f729Sjoerg /// and updating the locksets accordingly.
18097330f729Sjoerg ///
18107330f729Sjoerg /// FIXME: For classes annotated with one of the guarded annotations, we need
18117330f729Sjoerg /// to treat const method calls as reads and non-const method calls as writes,
18127330f729Sjoerg /// and check that the appropriate locks are held. Non-const method calls with
18137330f729Sjoerg /// the same signature as const method calls can be also treated as reads.
18147330f729Sjoerg ///
handleCall(const Expr * Exp,const NamedDecl * D,VarDecl * VD)18157330f729Sjoerg void BuildLockset::handleCall(const Expr *Exp, const NamedDecl *D,
18167330f729Sjoerg VarDecl *VD) {
18177330f729Sjoerg SourceLocation Loc = Exp->getExprLoc();
18187330f729Sjoerg CapExprSet ExclusiveLocksToAdd, SharedLocksToAdd;
18197330f729Sjoerg CapExprSet ExclusiveLocksToRemove, SharedLocksToRemove, GenericLocksToRemove;
1820*e038c9c4Sjoerg CapExprSet ScopedReqsAndExcludes;
18217330f729Sjoerg StringRef CapDiagKind = "mutex";
18227330f729Sjoerg
18237330f729Sjoerg // Figure out if we're constructing an object of scoped lockable class
18247330f729Sjoerg bool isScopedVar = false;
18257330f729Sjoerg if (VD) {
18267330f729Sjoerg if (const auto *CD = dyn_cast<const CXXConstructorDecl>(D)) {
18277330f729Sjoerg const CXXRecordDecl* PD = CD->getParent();
18287330f729Sjoerg if (PD && PD->hasAttr<ScopedLockableAttr>())
18297330f729Sjoerg isScopedVar = true;
18307330f729Sjoerg }
18317330f729Sjoerg }
18327330f729Sjoerg
18337330f729Sjoerg for(const Attr *At : D->attrs()) {
18347330f729Sjoerg switch (At->getKind()) {
18357330f729Sjoerg // When we encounter a lock function, we need to add the lock to our
18367330f729Sjoerg // lockset.
18377330f729Sjoerg case attr::AcquireCapability: {
18387330f729Sjoerg const auto *A = cast<AcquireCapabilityAttr>(At);
18397330f729Sjoerg Analyzer->getMutexIDs(A->isShared() ? SharedLocksToAdd
18407330f729Sjoerg : ExclusiveLocksToAdd,
18417330f729Sjoerg A, Exp, D, VD);
18427330f729Sjoerg
18437330f729Sjoerg CapDiagKind = ClassifyDiagnostic(A);
18447330f729Sjoerg break;
18457330f729Sjoerg }
18467330f729Sjoerg
18477330f729Sjoerg // An assert will add a lock to the lockset, but will not generate
18487330f729Sjoerg // a warning if it is already there, and will not generate a warning
18497330f729Sjoerg // if it is not removed.
18507330f729Sjoerg case attr::AssertExclusiveLock: {
18517330f729Sjoerg const auto *A = cast<AssertExclusiveLockAttr>(At);
18527330f729Sjoerg
18537330f729Sjoerg CapExprSet AssertLocks;
18547330f729Sjoerg Analyzer->getMutexIDs(AssertLocks, A, Exp, D, VD);
18557330f729Sjoerg for (const auto &AssertLock : AssertLocks)
1856*e038c9c4Sjoerg Analyzer->addLock(
1857*e038c9c4Sjoerg FSet,
1858*e038c9c4Sjoerg std::make_unique<LockableFactEntry>(AssertLock, LK_Exclusive, Loc,
1859*e038c9c4Sjoerg FactEntry::Asserted),
18607330f729Sjoerg ClassifyDiagnostic(A));
18617330f729Sjoerg break;
18627330f729Sjoerg }
18637330f729Sjoerg case attr::AssertSharedLock: {
18647330f729Sjoerg const auto *A = cast<AssertSharedLockAttr>(At);
18657330f729Sjoerg
18667330f729Sjoerg CapExprSet AssertLocks;
18677330f729Sjoerg Analyzer->getMutexIDs(AssertLocks, A, Exp, D, VD);
18687330f729Sjoerg for (const auto &AssertLock : AssertLocks)
1869*e038c9c4Sjoerg Analyzer->addLock(
1870*e038c9c4Sjoerg FSet,
1871*e038c9c4Sjoerg std::make_unique<LockableFactEntry>(AssertLock, LK_Shared, Loc,
1872*e038c9c4Sjoerg FactEntry::Asserted),
18737330f729Sjoerg ClassifyDiagnostic(A));
18747330f729Sjoerg break;
18757330f729Sjoerg }
18767330f729Sjoerg
18777330f729Sjoerg case attr::AssertCapability: {
18787330f729Sjoerg const auto *A = cast<AssertCapabilityAttr>(At);
18797330f729Sjoerg CapExprSet AssertLocks;
18807330f729Sjoerg Analyzer->getMutexIDs(AssertLocks, A, Exp, D, VD);
18817330f729Sjoerg for (const auto &AssertLock : AssertLocks)
18827330f729Sjoerg Analyzer->addLock(FSet,
18837330f729Sjoerg std::make_unique<LockableFactEntry>(
18847330f729Sjoerg AssertLock,
18857330f729Sjoerg A->isShared() ? LK_Shared : LK_Exclusive, Loc,
1886*e038c9c4Sjoerg FactEntry::Asserted),
18877330f729Sjoerg ClassifyDiagnostic(A));
18887330f729Sjoerg break;
18897330f729Sjoerg }
18907330f729Sjoerg
18917330f729Sjoerg // When we encounter an unlock function, we need to remove unlocked
18927330f729Sjoerg // mutexes from the lockset, and flag a warning if they are not there.
18937330f729Sjoerg case attr::ReleaseCapability: {
18947330f729Sjoerg const auto *A = cast<ReleaseCapabilityAttr>(At);
18957330f729Sjoerg if (A->isGeneric())
18967330f729Sjoerg Analyzer->getMutexIDs(GenericLocksToRemove, A, Exp, D, VD);
18977330f729Sjoerg else if (A->isShared())
18987330f729Sjoerg Analyzer->getMutexIDs(SharedLocksToRemove, A, Exp, D, VD);
18997330f729Sjoerg else
19007330f729Sjoerg Analyzer->getMutexIDs(ExclusiveLocksToRemove, A, Exp, D, VD);
19017330f729Sjoerg
19027330f729Sjoerg CapDiagKind = ClassifyDiagnostic(A);
19037330f729Sjoerg break;
19047330f729Sjoerg }
19057330f729Sjoerg
19067330f729Sjoerg case attr::RequiresCapability: {
19077330f729Sjoerg const auto *A = cast<RequiresCapabilityAttr>(At);
19087330f729Sjoerg for (auto *Arg : A->args()) {
19097330f729Sjoerg warnIfMutexNotHeld(D, Exp, A->isShared() ? AK_Read : AK_Written, Arg,
19107330f729Sjoerg POK_FunctionCall, ClassifyDiagnostic(A),
19117330f729Sjoerg Exp->getExprLoc());
19127330f729Sjoerg // use for adopting a lock
1913*e038c9c4Sjoerg if (isScopedVar)
1914*e038c9c4Sjoerg Analyzer->getMutexIDs(ScopedReqsAndExcludes, A, Exp, D, VD);
19157330f729Sjoerg }
19167330f729Sjoerg break;
19177330f729Sjoerg }
19187330f729Sjoerg
19197330f729Sjoerg case attr::LocksExcluded: {
19207330f729Sjoerg const auto *A = cast<LocksExcludedAttr>(At);
1921*e038c9c4Sjoerg for (auto *Arg : A->args()) {
19227330f729Sjoerg warnIfMutexHeld(D, Exp, Arg, ClassifyDiagnostic(A));
1923*e038c9c4Sjoerg // use for deferring a lock
1924*e038c9c4Sjoerg if (isScopedVar)
1925*e038c9c4Sjoerg Analyzer->getMutexIDs(ScopedReqsAndExcludes, A, Exp, D, VD);
1926*e038c9c4Sjoerg }
19277330f729Sjoerg break;
19287330f729Sjoerg }
19297330f729Sjoerg
19307330f729Sjoerg // Ignore attributes unrelated to thread-safety
19317330f729Sjoerg default:
19327330f729Sjoerg break;
19337330f729Sjoerg }
19347330f729Sjoerg }
19357330f729Sjoerg
19367330f729Sjoerg // Remove locks first to allow lock upgrading/downgrading.
19377330f729Sjoerg // FIXME -- should only fully remove if the attribute refers to 'this'.
19387330f729Sjoerg bool Dtor = isa<CXXDestructorDecl>(D);
19397330f729Sjoerg for (const auto &M : ExclusiveLocksToRemove)
19407330f729Sjoerg Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Exclusive, CapDiagKind);
19417330f729Sjoerg for (const auto &M : SharedLocksToRemove)
19427330f729Sjoerg Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Shared, CapDiagKind);
19437330f729Sjoerg for (const auto &M : GenericLocksToRemove)
19447330f729Sjoerg Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Generic, CapDiagKind);
19457330f729Sjoerg
19467330f729Sjoerg // Add locks.
1947*e038c9c4Sjoerg FactEntry::SourceKind Source =
1948*e038c9c4Sjoerg isScopedVar ? FactEntry::Managed : FactEntry::Acquired;
19497330f729Sjoerg for (const auto &M : ExclusiveLocksToAdd)
1950*e038c9c4Sjoerg Analyzer->addLock(
1951*e038c9c4Sjoerg FSet, std::make_unique<LockableFactEntry>(M, LK_Exclusive, Loc, Source),
19527330f729Sjoerg CapDiagKind);
19537330f729Sjoerg for (const auto &M : SharedLocksToAdd)
1954*e038c9c4Sjoerg Analyzer->addLock(
1955*e038c9c4Sjoerg FSet, std::make_unique<LockableFactEntry>(M, LK_Shared, Loc, Source),
19567330f729Sjoerg CapDiagKind);
19577330f729Sjoerg
19587330f729Sjoerg if (isScopedVar) {
19597330f729Sjoerg // Add the managing object as a dummy mutex, mapped to the underlying mutex.
19607330f729Sjoerg SourceLocation MLoc = VD->getLocation();
19617330f729Sjoerg DeclRefExpr DRE(VD->getASTContext(), VD, false, VD->getType(), VK_LValue,
19627330f729Sjoerg VD->getLocation());
19637330f729Sjoerg // FIXME: does this store a pointer to DRE?
19647330f729Sjoerg CapabilityExpr Scp = Analyzer->SxBuilder.translateAttrExpr(&DRE, nullptr);
19657330f729Sjoerg
19667330f729Sjoerg auto ScopedEntry = std::make_unique<ScopedLockableFactEntry>(Scp, MLoc);
19677330f729Sjoerg for (const auto &M : ExclusiveLocksToAdd)
1968*e038c9c4Sjoerg ScopedEntry->addLock(M);
19697330f729Sjoerg for (const auto &M : SharedLocksToAdd)
1970*e038c9c4Sjoerg ScopedEntry->addLock(M);
1971*e038c9c4Sjoerg for (const auto &M : ScopedReqsAndExcludes)
1972*e038c9c4Sjoerg ScopedEntry->addLock(M);
19737330f729Sjoerg for (const auto &M : ExclusiveLocksToRemove)
19747330f729Sjoerg ScopedEntry->addExclusiveUnlock(M);
19757330f729Sjoerg for (const auto &M : SharedLocksToRemove)
19767330f729Sjoerg ScopedEntry->addSharedUnlock(M);
19777330f729Sjoerg Analyzer->addLock(FSet, std::move(ScopedEntry), CapDiagKind);
19787330f729Sjoerg }
19797330f729Sjoerg }
19807330f729Sjoerg
19817330f729Sjoerg /// For unary operations which read and write a variable, we need to
19827330f729Sjoerg /// check whether we hold any required mutexes. Reads are checked in
19837330f729Sjoerg /// VisitCastExpr.
VisitUnaryOperator(const UnaryOperator * UO)19847330f729Sjoerg void BuildLockset::VisitUnaryOperator(const UnaryOperator *UO) {
19857330f729Sjoerg switch (UO->getOpcode()) {
19867330f729Sjoerg case UO_PostDec:
19877330f729Sjoerg case UO_PostInc:
19887330f729Sjoerg case UO_PreDec:
19897330f729Sjoerg case UO_PreInc:
19907330f729Sjoerg checkAccess(UO->getSubExpr(), AK_Written);
19917330f729Sjoerg break;
19927330f729Sjoerg default:
19937330f729Sjoerg break;
19947330f729Sjoerg }
19957330f729Sjoerg }
19967330f729Sjoerg
19977330f729Sjoerg /// For binary operations which assign to a variable (writes), we need to check
19987330f729Sjoerg /// whether we hold any required mutexes.
19997330f729Sjoerg /// FIXME: Deal with non-primitive types.
VisitBinaryOperator(const BinaryOperator * BO)20007330f729Sjoerg void BuildLockset::VisitBinaryOperator(const BinaryOperator *BO) {
20017330f729Sjoerg if (!BO->isAssignmentOp())
20027330f729Sjoerg return;
20037330f729Sjoerg
20047330f729Sjoerg // adjust the context
20057330f729Sjoerg LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, BO, LVarCtx);
20067330f729Sjoerg
20077330f729Sjoerg checkAccess(BO->getLHS(), AK_Written);
20087330f729Sjoerg }
20097330f729Sjoerg
20107330f729Sjoerg /// Whenever we do an LValue to Rvalue cast, we are reading a variable and
20117330f729Sjoerg /// need to ensure we hold any required mutexes.
20127330f729Sjoerg /// FIXME: Deal with non-primitive types.
VisitCastExpr(const CastExpr * CE)20137330f729Sjoerg void BuildLockset::VisitCastExpr(const CastExpr *CE) {
20147330f729Sjoerg if (CE->getCastKind() != CK_LValueToRValue)
20157330f729Sjoerg return;
20167330f729Sjoerg checkAccess(CE->getSubExpr(), AK_Read);
20177330f729Sjoerg }
20187330f729Sjoerg
examineArguments(const FunctionDecl * FD,CallExpr::const_arg_iterator ArgBegin,CallExpr::const_arg_iterator ArgEnd,bool SkipFirstParam)20197330f729Sjoerg void BuildLockset::examineArguments(const FunctionDecl *FD,
20207330f729Sjoerg CallExpr::const_arg_iterator ArgBegin,
20217330f729Sjoerg CallExpr::const_arg_iterator ArgEnd,
20227330f729Sjoerg bool SkipFirstParam) {
20237330f729Sjoerg // Currently we can't do anything if we don't know the function declaration.
20247330f729Sjoerg if (!FD)
20257330f729Sjoerg return;
20267330f729Sjoerg
20277330f729Sjoerg // NO_THREAD_SAFETY_ANALYSIS does double duty here. Normally it
20287330f729Sjoerg // only turns off checking within the body of a function, but we also
20297330f729Sjoerg // use it to turn off checking in arguments to the function. This
20307330f729Sjoerg // could result in some false negatives, but the alternative is to
20317330f729Sjoerg // create yet another attribute.
20327330f729Sjoerg if (FD->hasAttr<NoThreadSafetyAnalysisAttr>())
20337330f729Sjoerg return;
20347330f729Sjoerg
20357330f729Sjoerg const ArrayRef<ParmVarDecl *> Params = FD->parameters();
20367330f729Sjoerg auto Param = Params.begin();
20377330f729Sjoerg if (SkipFirstParam)
20387330f729Sjoerg ++Param;
20397330f729Sjoerg
20407330f729Sjoerg // There can be default arguments, so we stop when one iterator is at end().
20417330f729Sjoerg for (auto Arg = ArgBegin; Param != Params.end() && Arg != ArgEnd;
20427330f729Sjoerg ++Param, ++Arg) {
20437330f729Sjoerg QualType Qt = (*Param)->getType();
20447330f729Sjoerg if (Qt->isReferenceType())
20457330f729Sjoerg checkAccess(*Arg, AK_Read, POK_PassByRef);
20467330f729Sjoerg }
20477330f729Sjoerg }
20487330f729Sjoerg
VisitCallExpr(const CallExpr * Exp)20497330f729Sjoerg void BuildLockset::VisitCallExpr(const CallExpr *Exp) {
20507330f729Sjoerg if (const auto *CE = dyn_cast<CXXMemberCallExpr>(Exp)) {
20517330f729Sjoerg const auto *ME = dyn_cast<MemberExpr>(CE->getCallee());
20527330f729Sjoerg // ME can be null when calling a method pointer
20537330f729Sjoerg const CXXMethodDecl *MD = CE->getMethodDecl();
20547330f729Sjoerg
20557330f729Sjoerg if (ME && MD) {
20567330f729Sjoerg if (ME->isArrow()) {
2057*e038c9c4Sjoerg // Should perhaps be AK_Written if !MD->isConst().
20587330f729Sjoerg checkPtAccess(CE->getImplicitObjectArgument(), AK_Read);
20597330f729Sjoerg } else {
2060*e038c9c4Sjoerg // Should perhaps be AK_Written if !MD->isConst().
20617330f729Sjoerg checkAccess(CE->getImplicitObjectArgument(), AK_Read);
20627330f729Sjoerg }
20637330f729Sjoerg }
20647330f729Sjoerg
20657330f729Sjoerg examineArguments(CE->getDirectCallee(), CE->arg_begin(), CE->arg_end());
20667330f729Sjoerg } else if (const auto *OE = dyn_cast<CXXOperatorCallExpr>(Exp)) {
20677330f729Sjoerg auto OEop = OE->getOperator();
20687330f729Sjoerg switch (OEop) {
20697330f729Sjoerg case OO_Equal: {
20707330f729Sjoerg const Expr *Target = OE->getArg(0);
20717330f729Sjoerg const Expr *Source = OE->getArg(1);
20727330f729Sjoerg checkAccess(Target, AK_Written);
20737330f729Sjoerg checkAccess(Source, AK_Read);
20747330f729Sjoerg break;
20757330f729Sjoerg }
20767330f729Sjoerg case OO_Star:
20777330f729Sjoerg case OO_Arrow:
20787330f729Sjoerg case OO_Subscript:
20797330f729Sjoerg if (!(OEop == OO_Star && OE->getNumArgs() > 1)) {
20807330f729Sjoerg // Grrr. operator* can be multiplication...
20817330f729Sjoerg checkPtAccess(OE->getArg(0), AK_Read);
20827330f729Sjoerg }
20837330f729Sjoerg LLVM_FALLTHROUGH;
20847330f729Sjoerg default: {
20857330f729Sjoerg // TODO: get rid of this, and rely on pass-by-ref instead.
20867330f729Sjoerg const Expr *Obj = OE->getArg(0);
20877330f729Sjoerg checkAccess(Obj, AK_Read);
20887330f729Sjoerg // Check the remaining arguments. For method operators, the first
20897330f729Sjoerg // argument is the implicit self argument, and doesn't appear in the
20907330f729Sjoerg // FunctionDecl, but for non-methods it does.
20917330f729Sjoerg const FunctionDecl *FD = OE->getDirectCallee();
20927330f729Sjoerg examineArguments(FD, std::next(OE->arg_begin()), OE->arg_end(),
20937330f729Sjoerg /*SkipFirstParam*/ !isa<CXXMethodDecl>(FD));
20947330f729Sjoerg break;
20957330f729Sjoerg }
20967330f729Sjoerg }
20977330f729Sjoerg } else {
20987330f729Sjoerg examineArguments(Exp->getDirectCallee(), Exp->arg_begin(), Exp->arg_end());
20997330f729Sjoerg }
21007330f729Sjoerg
21017330f729Sjoerg auto *D = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
21027330f729Sjoerg if(!D || !D->hasAttrs())
21037330f729Sjoerg return;
21047330f729Sjoerg handleCall(Exp, D);
21057330f729Sjoerg }
21067330f729Sjoerg
VisitCXXConstructExpr(const CXXConstructExpr * Exp)21077330f729Sjoerg void BuildLockset::VisitCXXConstructExpr(const CXXConstructExpr *Exp) {
21087330f729Sjoerg const CXXConstructorDecl *D = Exp->getConstructor();
21097330f729Sjoerg if (D && D->isCopyConstructor()) {
21107330f729Sjoerg const Expr* Source = Exp->getArg(0);
21117330f729Sjoerg checkAccess(Source, AK_Read);
21127330f729Sjoerg } else {
21137330f729Sjoerg examineArguments(D, Exp->arg_begin(), Exp->arg_end());
21147330f729Sjoerg }
21157330f729Sjoerg }
21167330f729Sjoerg
21177330f729Sjoerg static CXXConstructorDecl *
findConstructorForByValueReturn(const CXXRecordDecl * RD)21187330f729Sjoerg findConstructorForByValueReturn(const CXXRecordDecl *RD) {
21197330f729Sjoerg // Prefer a move constructor over a copy constructor. If there's more than
21207330f729Sjoerg // one copy constructor or more than one move constructor, we arbitrarily
21217330f729Sjoerg // pick the first declared such constructor rather than trying to guess which
21227330f729Sjoerg // one is more appropriate.
21237330f729Sjoerg CXXConstructorDecl *CopyCtor = nullptr;
21247330f729Sjoerg for (auto *Ctor : RD->ctors()) {
21257330f729Sjoerg if (Ctor->isDeleted())
21267330f729Sjoerg continue;
21277330f729Sjoerg if (Ctor->isMoveConstructor())
21287330f729Sjoerg return Ctor;
21297330f729Sjoerg if (!CopyCtor && Ctor->isCopyConstructor())
21307330f729Sjoerg CopyCtor = Ctor;
21317330f729Sjoerg }
21327330f729Sjoerg return CopyCtor;
21337330f729Sjoerg }
21347330f729Sjoerg
buildFakeCtorCall(CXXConstructorDecl * CD,ArrayRef<Expr * > Args,SourceLocation Loc)21357330f729Sjoerg static Expr *buildFakeCtorCall(CXXConstructorDecl *CD, ArrayRef<Expr *> Args,
21367330f729Sjoerg SourceLocation Loc) {
21377330f729Sjoerg ASTContext &Ctx = CD->getASTContext();
21387330f729Sjoerg return CXXConstructExpr::Create(Ctx, Ctx.getRecordType(CD->getParent()), Loc,
21397330f729Sjoerg CD, true, Args, false, false, false, false,
21407330f729Sjoerg CXXConstructExpr::CK_Complete,
21417330f729Sjoerg SourceRange(Loc, Loc));
21427330f729Sjoerg }
21437330f729Sjoerg
VisitDeclStmt(const DeclStmt * S)21447330f729Sjoerg void BuildLockset::VisitDeclStmt(const DeclStmt *S) {
21457330f729Sjoerg // adjust the context
21467330f729Sjoerg LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, S, LVarCtx);
21477330f729Sjoerg
21487330f729Sjoerg for (auto *D : S->getDeclGroup()) {
21497330f729Sjoerg if (auto *VD = dyn_cast_or_null<VarDecl>(D)) {
21507330f729Sjoerg Expr *E = VD->getInit();
21517330f729Sjoerg if (!E)
21527330f729Sjoerg continue;
21537330f729Sjoerg E = E->IgnoreParens();
21547330f729Sjoerg
21557330f729Sjoerg // handle constructors that involve temporaries
21567330f729Sjoerg if (auto *EWC = dyn_cast<ExprWithCleanups>(E))
2157*e038c9c4Sjoerg E = EWC->getSubExpr()->IgnoreParens();
2158*e038c9c4Sjoerg if (auto *CE = dyn_cast<CastExpr>(E))
2159*e038c9c4Sjoerg if (CE->getCastKind() == CK_NoOp ||
2160*e038c9c4Sjoerg CE->getCastKind() == CK_ConstructorConversion ||
2161*e038c9c4Sjoerg CE->getCastKind() == CK_UserDefinedConversion)
2162*e038c9c4Sjoerg E = CE->getSubExpr()->IgnoreParens();
21637330f729Sjoerg if (auto *BTE = dyn_cast<CXXBindTemporaryExpr>(E))
2164*e038c9c4Sjoerg E = BTE->getSubExpr()->IgnoreParens();
21657330f729Sjoerg
21667330f729Sjoerg if (const auto *CE = dyn_cast<CXXConstructExpr>(E)) {
21677330f729Sjoerg const auto *CtorD = dyn_cast_or_null<NamedDecl>(CE->getConstructor());
21687330f729Sjoerg if (!CtorD || !CtorD->hasAttrs())
21697330f729Sjoerg continue;
21707330f729Sjoerg handleCall(E, CtorD, VD);
21717330f729Sjoerg } else if (isa<CallExpr>(E) && E->isRValue()) {
21727330f729Sjoerg // If the object is initialized by a function call that returns a
21737330f729Sjoerg // scoped lockable by value, use the attributes on the copy or move
21747330f729Sjoerg // constructor to figure out what effect that should have on the
21757330f729Sjoerg // lockset.
21767330f729Sjoerg // FIXME: Is this really the best way to handle this situation?
21777330f729Sjoerg auto *RD = E->getType()->getAsCXXRecordDecl();
21787330f729Sjoerg if (!RD || !RD->hasAttr<ScopedLockableAttr>())
21797330f729Sjoerg continue;
21807330f729Sjoerg CXXConstructorDecl *CtorD = findConstructorForByValueReturn(RD);
21817330f729Sjoerg if (!CtorD || !CtorD->hasAttrs())
21827330f729Sjoerg continue;
21837330f729Sjoerg handleCall(buildFakeCtorCall(CtorD, {E}, E->getBeginLoc()), CtorD, VD);
21847330f729Sjoerg }
21857330f729Sjoerg }
21867330f729Sjoerg }
21877330f729Sjoerg }
21887330f729Sjoerg
21897330f729Sjoerg /// Compute the intersection of two locksets and issue warnings for any
21907330f729Sjoerg /// locks in the symmetric difference.
21917330f729Sjoerg ///
21927330f729Sjoerg /// This function is used at a merge point in the CFG when comparing the lockset
21937330f729Sjoerg /// of each branch being merged. For example, given the following sequence:
21947330f729Sjoerg /// A; if () then B; else C; D; we need to check that the lockset after B and C
21957330f729Sjoerg /// are the same. In the event of a difference, we use the intersection of these
21967330f729Sjoerg /// two locksets at the start of D.
21977330f729Sjoerg ///
21987330f729Sjoerg /// \param FSet1 The first lockset.
21997330f729Sjoerg /// \param FSet2 The second lockset.
22007330f729Sjoerg /// \param JoinLoc The location of the join point for error reporting
22017330f729Sjoerg /// \param LEK1 The error message to report if a mutex is missing from LSet1
22027330f729Sjoerg /// \param LEK2 The error message to report if a mutex is missing from Lset2
intersectAndWarn(FactSet & FSet1,const FactSet & FSet2,SourceLocation JoinLoc,LockErrorKind LEK1,LockErrorKind LEK2)22037330f729Sjoerg void ThreadSafetyAnalyzer::intersectAndWarn(FactSet &FSet1,
22047330f729Sjoerg const FactSet &FSet2,
22057330f729Sjoerg SourceLocation JoinLoc,
22067330f729Sjoerg LockErrorKind LEK1,
2207*e038c9c4Sjoerg LockErrorKind LEK2) {
22087330f729Sjoerg FactSet FSet1Orig = FSet1;
22097330f729Sjoerg
22107330f729Sjoerg // Find locks in FSet2 that conflict or are not in FSet1, and warn.
22117330f729Sjoerg for (const auto &Fact : FSet2) {
2212*e038c9c4Sjoerg const FactEntry &LDat2 = FactMan[Fact];
22137330f729Sjoerg
2214*e038c9c4Sjoerg FactSet::iterator Iter1 = FSet1.findLockIter(FactMan, LDat2);
2215*e038c9c4Sjoerg if (Iter1 != FSet1.end()) {
2216*e038c9c4Sjoerg const FactEntry &LDat1 = FactMan[*Iter1];
2217*e038c9c4Sjoerg if (LDat1.kind() != LDat2.kind()) {
2218*e038c9c4Sjoerg Handler.handleExclusiveAndShared("mutex", LDat2.toString(), LDat2.loc(),
2219*e038c9c4Sjoerg LDat1.loc());
2220*e038c9c4Sjoerg if (LEK1 == LEK_LockedSomePredecessors &&
2221*e038c9c4Sjoerg LDat1.kind() != LK_Exclusive) {
22227330f729Sjoerg // Take the exclusive lock, which is the one in FSet2.
22237330f729Sjoerg *Iter1 = Fact;
22247330f729Sjoerg }
2225*e038c9c4Sjoerg } else if (LEK1 == LEK_LockedSomePredecessors && LDat1.asserted() &&
2226*e038c9c4Sjoerg !LDat2.asserted()) {
22277330f729Sjoerg // The non-asserted lock in FSet2 is the one we want to track.
22287330f729Sjoerg *Iter1 = Fact;
22297330f729Sjoerg }
22307330f729Sjoerg } else {
2231*e038c9c4Sjoerg LDat2.handleRemovalFromIntersection(FSet2, FactMan, JoinLoc, LEK1,
22327330f729Sjoerg Handler);
22337330f729Sjoerg }
22347330f729Sjoerg }
22357330f729Sjoerg
22367330f729Sjoerg // Find locks in FSet1 that are not in FSet2, and remove them.
22377330f729Sjoerg for (const auto &Fact : FSet1Orig) {
22387330f729Sjoerg const FactEntry *LDat1 = &FactMan[Fact];
22397330f729Sjoerg const FactEntry *LDat2 = FSet2.findLock(FactMan, *LDat1);
22407330f729Sjoerg
22417330f729Sjoerg if (!LDat2) {
22427330f729Sjoerg LDat1->handleRemovalFromIntersection(FSet1Orig, FactMan, JoinLoc, LEK2,
22437330f729Sjoerg Handler);
2244*e038c9c4Sjoerg if (LEK2 == LEK_LockedSomePredecessors)
22457330f729Sjoerg FSet1.removeLock(FactMan, *LDat1);
22467330f729Sjoerg }
22477330f729Sjoerg }
22487330f729Sjoerg }
22497330f729Sjoerg
22507330f729Sjoerg // Return true if block B never continues to its successors.
neverReturns(const CFGBlock * B)22517330f729Sjoerg static bool neverReturns(const CFGBlock *B) {
22527330f729Sjoerg if (B->hasNoReturnElement())
22537330f729Sjoerg return true;
22547330f729Sjoerg if (B->empty())
22557330f729Sjoerg return false;
22567330f729Sjoerg
22577330f729Sjoerg CFGElement Last = B->back();
22587330f729Sjoerg if (Optional<CFGStmt> S = Last.getAs<CFGStmt>()) {
22597330f729Sjoerg if (isa<CXXThrowExpr>(S->getStmt()))
22607330f729Sjoerg return true;
22617330f729Sjoerg }
22627330f729Sjoerg return false;
22637330f729Sjoerg }
22647330f729Sjoerg
22657330f729Sjoerg /// Check a function's CFG for thread-safety violations.
22667330f729Sjoerg ///
22677330f729Sjoerg /// We traverse the blocks in the CFG, compute the set of mutexes that are held
22687330f729Sjoerg /// at the end of each block, and issue warnings for thread safety violations.
22697330f729Sjoerg /// Each block in the CFG is traversed exactly once.
runAnalysis(AnalysisDeclContext & AC)22707330f729Sjoerg void ThreadSafetyAnalyzer::runAnalysis(AnalysisDeclContext &AC) {
22717330f729Sjoerg // TODO: this whole function needs be rewritten as a visitor for CFGWalker.
22727330f729Sjoerg // For now, we just use the walker to set things up.
22737330f729Sjoerg threadSafety::CFGWalker walker;
22747330f729Sjoerg if (!walker.init(AC))
22757330f729Sjoerg return;
22767330f729Sjoerg
22777330f729Sjoerg // AC.dumpCFG(true);
22787330f729Sjoerg // threadSafety::printSCFG(walker);
22797330f729Sjoerg
22807330f729Sjoerg CFG *CFGraph = walker.getGraph();
22817330f729Sjoerg const NamedDecl *D = walker.getDecl();
22827330f729Sjoerg const auto *CurrentFunction = dyn_cast<FunctionDecl>(D);
22837330f729Sjoerg CurrentMethod = dyn_cast<CXXMethodDecl>(D);
22847330f729Sjoerg
22857330f729Sjoerg if (D->hasAttr<NoThreadSafetyAnalysisAttr>())
22867330f729Sjoerg return;
22877330f729Sjoerg
22887330f729Sjoerg // FIXME: Do something a bit more intelligent inside constructor and
22897330f729Sjoerg // destructor code. Constructors and destructors must assume unique access
22907330f729Sjoerg // to 'this', so checks on member variable access is disabled, but we should
22917330f729Sjoerg // still enable checks on other objects.
22927330f729Sjoerg if (isa<CXXConstructorDecl>(D))
22937330f729Sjoerg return; // Don't check inside constructors.
22947330f729Sjoerg if (isa<CXXDestructorDecl>(D))
22957330f729Sjoerg return; // Don't check inside destructors.
22967330f729Sjoerg
22977330f729Sjoerg Handler.enterFunction(CurrentFunction);
22987330f729Sjoerg
22997330f729Sjoerg BlockInfo.resize(CFGraph->getNumBlockIDs(),
23007330f729Sjoerg CFGBlockInfo::getEmptyBlockInfo(LocalVarMap));
23017330f729Sjoerg
23027330f729Sjoerg // We need to explore the CFG via a "topological" ordering.
23037330f729Sjoerg // That way, we will be guaranteed to have information about required
23047330f729Sjoerg // predecessor locksets when exploring a new block.
23057330f729Sjoerg const PostOrderCFGView *SortedGraph = walker.getSortedGraph();
23067330f729Sjoerg PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph);
23077330f729Sjoerg
23087330f729Sjoerg // Mark entry block as reachable
23097330f729Sjoerg BlockInfo[CFGraph->getEntry().getBlockID()].Reachable = true;
23107330f729Sjoerg
23117330f729Sjoerg // Compute SSA names for local variables
23127330f729Sjoerg LocalVarMap.traverseCFG(CFGraph, SortedGraph, BlockInfo);
23137330f729Sjoerg
23147330f729Sjoerg // Fill in source locations for all CFGBlocks.
23157330f729Sjoerg findBlockLocations(CFGraph, SortedGraph, BlockInfo);
23167330f729Sjoerg
23177330f729Sjoerg CapExprSet ExclusiveLocksAcquired;
23187330f729Sjoerg CapExprSet SharedLocksAcquired;
23197330f729Sjoerg CapExprSet LocksReleased;
23207330f729Sjoerg
23217330f729Sjoerg // Add locks from exclusive_locks_required and shared_locks_required
23227330f729Sjoerg // to initial lockset. Also turn off checking for lock and unlock functions.
23237330f729Sjoerg // FIXME: is there a more intelligent way to check lock/unlock functions?
23247330f729Sjoerg if (!SortedGraph->empty() && D->hasAttrs()) {
23257330f729Sjoerg const CFGBlock *FirstBlock = *SortedGraph->begin();
23267330f729Sjoerg FactSet &InitialLockset = BlockInfo[FirstBlock->getBlockID()].EntrySet;
23277330f729Sjoerg
23287330f729Sjoerg CapExprSet ExclusiveLocksToAdd;
23297330f729Sjoerg CapExprSet SharedLocksToAdd;
23307330f729Sjoerg StringRef CapDiagKind = "mutex";
23317330f729Sjoerg
23327330f729Sjoerg SourceLocation Loc = D->getLocation();
23337330f729Sjoerg for (const auto *Attr : D->attrs()) {
23347330f729Sjoerg Loc = Attr->getLocation();
23357330f729Sjoerg if (const auto *A = dyn_cast<RequiresCapabilityAttr>(Attr)) {
23367330f729Sjoerg getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A,
23377330f729Sjoerg nullptr, D);
23387330f729Sjoerg CapDiagKind = ClassifyDiagnostic(A);
23397330f729Sjoerg } else if (const auto *A = dyn_cast<ReleaseCapabilityAttr>(Attr)) {
23407330f729Sjoerg // UNLOCK_FUNCTION() is used to hide the underlying lock implementation.
23417330f729Sjoerg // We must ignore such methods.
23427330f729Sjoerg if (A->args_size() == 0)
23437330f729Sjoerg return;
23447330f729Sjoerg getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A,
23457330f729Sjoerg nullptr, D);
23467330f729Sjoerg getMutexIDs(LocksReleased, A, nullptr, D);
23477330f729Sjoerg CapDiagKind = ClassifyDiagnostic(A);
23487330f729Sjoerg } else if (const auto *A = dyn_cast<AcquireCapabilityAttr>(Attr)) {
23497330f729Sjoerg if (A->args_size() == 0)
23507330f729Sjoerg return;
23517330f729Sjoerg getMutexIDs(A->isShared() ? SharedLocksAcquired
23527330f729Sjoerg : ExclusiveLocksAcquired,
23537330f729Sjoerg A, nullptr, D);
23547330f729Sjoerg CapDiagKind = ClassifyDiagnostic(A);
23557330f729Sjoerg } else if (isa<ExclusiveTrylockFunctionAttr>(Attr)) {
23567330f729Sjoerg // Don't try to check trylock functions for now.
23577330f729Sjoerg return;
23587330f729Sjoerg } else if (isa<SharedTrylockFunctionAttr>(Attr)) {
23597330f729Sjoerg // Don't try to check trylock functions for now.
23607330f729Sjoerg return;
23617330f729Sjoerg } else if (isa<TryAcquireCapabilityAttr>(Attr)) {
23627330f729Sjoerg // Don't try to check trylock functions for now.
23637330f729Sjoerg return;
23647330f729Sjoerg }
23657330f729Sjoerg }
23667330f729Sjoerg
23677330f729Sjoerg // FIXME -- Loc can be wrong here.
23687330f729Sjoerg for (const auto &Mu : ExclusiveLocksToAdd) {
2369*e038c9c4Sjoerg auto Entry = std::make_unique<LockableFactEntry>(Mu, LK_Exclusive, Loc,
2370*e038c9c4Sjoerg FactEntry::Declared);
23717330f729Sjoerg addLock(InitialLockset, std::move(Entry), CapDiagKind, true);
23727330f729Sjoerg }
23737330f729Sjoerg for (const auto &Mu : SharedLocksToAdd) {
2374*e038c9c4Sjoerg auto Entry = std::make_unique<LockableFactEntry>(Mu, LK_Shared, Loc,
2375*e038c9c4Sjoerg FactEntry::Declared);
23767330f729Sjoerg addLock(InitialLockset, std::move(Entry), CapDiagKind, true);
23777330f729Sjoerg }
23787330f729Sjoerg }
23797330f729Sjoerg
23807330f729Sjoerg for (const auto *CurrBlock : *SortedGraph) {
23817330f729Sjoerg unsigned CurrBlockID = CurrBlock->getBlockID();
23827330f729Sjoerg CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID];
23837330f729Sjoerg
23847330f729Sjoerg // Use the default initial lockset in case there are no predecessors.
23857330f729Sjoerg VisitedBlocks.insert(CurrBlock);
23867330f729Sjoerg
23877330f729Sjoerg // Iterate through the predecessor blocks and warn if the lockset for all
23887330f729Sjoerg // predecessors is not the same. We take the entry lockset of the current
23897330f729Sjoerg // block to be the intersection of all previous locksets.
23907330f729Sjoerg // FIXME: By keeping the intersection, we may output more errors in future
23917330f729Sjoerg // for a lock which is not in the intersection, but was in the union. We
23927330f729Sjoerg // may want to also keep the union in future. As an example, let's say
23937330f729Sjoerg // the intersection contains Mutex L, and the union contains L and M.
23947330f729Sjoerg // Later we unlock M. At this point, we would output an error because we
23957330f729Sjoerg // never locked M; although the real error is probably that we forgot to
23967330f729Sjoerg // lock M on all code paths. Conversely, let's say that later we lock M.
23977330f729Sjoerg // In this case, we should compare against the intersection instead of the
23987330f729Sjoerg // union because the real error is probably that we forgot to unlock M on
23997330f729Sjoerg // all code paths.
24007330f729Sjoerg bool LocksetInitialized = false;
24017330f729Sjoerg SmallVector<CFGBlock *, 8> SpecialBlocks;
24027330f729Sjoerg for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
24037330f729Sjoerg PE = CurrBlock->pred_end(); PI != PE; ++PI) {
24047330f729Sjoerg // if *PI -> CurrBlock is a back edge
24057330f729Sjoerg if (*PI == nullptr || !VisitedBlocks.alreadySet(*PI))
24067330f729Sjoerg continue;
24077330f729Sjoerg
24087330f729Sjoerg unsigned PrevBlockID = (*PI)->getBlockID();
24097330f729Sjoerg CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
24107330f729Sjoerg
24117330f729Sjoerg // Ignore edges from blocks that can't return.
24127330f729Sjoerg if (neverReturns(*PI) || !PrevBlockInfo->Reachable)
24137330f729Sjoerg continue;
24147330f729Sjoerg
24157330f729Sjoerg // Okay, we can reach this block from the entry.
24167330f729Sjoerg CurrBlockInfo->Reachable = true;
24177330f729Sjoerg
24187330f729Sjoerg // If the previous block ended in a 'continue' or 'break' statement, then
24197330f729Sjoerg // a difference in locksets is probably due to a bug in that block, rather
24207330f729Sjoerg // than in some other predecessor. In that case, keep the other
24217330f729Sjoerg // predecessor's lockset.
24227330f729Sjoerg if (const Stmt *Terminator = (*PI)->getTerminatorStmt()) {
24237330f729Sjoerg if (isa<ContinueStmt>(Terminator) || isa<BreakStmt>(Terminator)) {
24247330f729Sjoerg SpecialBlocks.push_back(*PI);
24257330f729Sjoerg continue;
24267330f729Sjoerg }
24277330f729Sjoerg }
24287330f729Sjoerg
24297330f729Sjoerg FactSet PrevLockset;
24307330f729Sjoerg getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet, *PI, CurrBlock);
24317330f729Sjoerg
24327330f729Sjoerg if (!LocksetInitialized) {
24337330f729Sjoerg CurrBlockInfo->EntrySet = PrevLockset;
24347330f729Sjoerg LocksetInitialized = true;
24357330f729Sjoerg } else {
24367330f729Sjoerg intersectAndWarn(CurrBlockInfo->EntrySet, PrevLockset,
24377330f729Sjoerg CurrBlockInfo->EntryLoc,
24387330f729Sjoerg LEK_LockedSomePredecessors);
24397330f729Sjoerg }
24407330f729Sjoerg }
24417330f729Sjoerg
24427330f729Sjoerg // Skip rest of block if it's not reachable.
24437330f729Sjoerg if (!CurrBlockInfo->Reachable)
24447330f729Sjoerg continue;
24457330f729Sjoerg
24467330f729Sjoerg // Process continue and break blocks. Assume that the lockset for the
24477330f729Sjoerg // resulting block is unaffected by any discrepancies in them.
24487330f729Sjoerg for (const auto *PrevBlock : SpecialBlocks) {
24497330f729Sjoerg unsigned PrevBlockID = PrevBlock->getBlockID();
24507330f729Sjoerg CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
24517330f729Sjoerg
24527330f729Sjoerg if (!LocksetInitialized) {
24537330f729Sjoerg CurrBlockInfo->EntrySet = PrevBlockInfo->ExitSet;
24547330f729Sjoerg LocksetInitialized = true;
24557330f729Sjoerg } else {
24567330f729Sjoerg // Determine whether this edge is a loop terminator for diagnostic
24577330f729Sjoerg // purposes. FIXME: A 'break' statement might be a loop terminator, but
24587330f729Sjoerg // it might also be part of a switch. Also, a subsequent destructor
24597330f729Sjoerg // might add to the lockset, in which case the real issue might be a
24607330f729Sjoerg // double lock on the other path.
24617330f729Sjoerg const Stmt *Terminator = PrevBlock->getTerminatorStmt();
24627330f729Sjoerg bool IsLoop = Terminator && isa<ContinueStmt>(Terminator);
24637330f729Sjoerg
24647330f729Sjoerg FactSet PrevLockset;
24657330f729Sjoerg getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet,
24667330f729Sjoerg PrevBlock, CurrBlock);
24677330f729Sjoerg
24687330f729Sjoerg // Do not update EntrySet.
2469*e038c9c4Sjoerg intersectAndWarn(
2470*e038c9c4Sjoerg CurrBlockInfo->EntrySet, PrevLockset, PrevBlockInfo->ExitLoc,
2471*e038c9c4Sjoerg IsLoop ? LEK_LockedSomeLoopIterations : LEK_LockedSomePredecessors);
24727330f729Sjoerg }
24737330f729Sjoerg }
24747330f729Sjoerg
24757330f729Sjoerg BuildLockset LocksetBuilder(this, *CurrBlockInfo);
24767330f729Sjoerg
24777330f729Sjoerg // Visit all the statements in the basic block.
24787330f729Sjoerg for (const auto &BI : *CurrBlock) {
24797330f729Sjoerg switch (BI.getKind()) {
24807330f729Sjoerg case CFGElement::Statement: {
24817330f729Sjoerg CFGStmt CS = BI.castAs<CFGStmt>();
24827330f729Sjoerg LocksetBuilder.Visit(CS.getStmt());
24837330f729Sjoerg break;
24847330f729Sjoerg }
24857330f729Sjoerg // Ignore BaseDtor, MemberDtor, and TemporaryDtor for now.
24867330f729Sjoerg case CFGElement::AutomaticObjectDtor: {
24877330f729Sjoerg CFGAutomaticObjDtor AD = BI.castAs<CFGAutomaticObjDtor>();
24887330f729Sjoerg const auto *DD = AD.getDestructorDecl(AC.getASTContext());
24897330f729Sjoerg if (!DD->hasAttrs())
24907330f729Sjoerg break;
24917330f729Sjoerg
24927330f729Sjoerg // Create a dummy expression,
24937330f729Sjoerg auto *VD = const_cast<VarDecl *>(AD.getVarDecl());
24947330f729Sjoerg DeclRefExpr DRE(VD->getASTContext(), VD, false,
24957330f729Sjoerg VD->getType().getNonReferenceType(), VK_LValue,
24967330f729Sjoerg AD.getTriggerStmt()->getEndLoc());
24977330f729Sjoerg LocksetBuilder.handleCall(&DRE, DD);
24987330f729Sjoerg break;
24997330f729Sjoerg }
25007330f729Sjoerg default:
25017330f729Sjoerg break;
25027330f729Sjoerg }
25037330f729Sjoerg }
25047330f729Sjoerg CurrBlockInfo->ExitSet = LocksetBuilder.FSet;
25057330f729Sjoerg
25067330f729Sjoerg // For every back edge from CurrBlock (the end of the loop) to another block
25077330f729Sjoerg // (FirstLoopBlock) we need to check that the Lockset of Block is equal to
25087330f729Sjoerg // the one held at the beginning of FirstLoopBlock. We can look up the
25097330f729Sjoerg // Lockset held at the beginning of FirstLoopBlock in the EntryLockSets map.
25107330f729Sjoerg for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
25117330f729Sjoerg SE = CurrBlock->succ_end(); SI != SE; ++SI) {
25127330f729Sjoerg // if CurrBlock -> *SI is *not* a back edge
25137330f729Sjoerg if (*SI == nullptr || !VisitedBlocks.alreadySet(*SI))
25147330f729Sjoerg continue;
25157330f729Sjoerg
25167330f729Sjoerg CFGBlock *FirstLoopBlock = *SI;
25177330f729Sjoerg CFGBlockInfo *PreLoop = &BlockInfo[FirstLoopBlock->getBlockID()];
25187330f729Sjoerg CFGBlockInfo *LoopEnd = &BlockInfo[CurrBlockID];
2519*e038c9c4Sjoerg intersectAndWarn(LoopEnd->ExitSet, PreLoop->EntrySet, PreLoop->EntryLoc,
2520*e038c9c4Sjoerg LEK_LockedSomeLoopIterations);
25217330f729Sjoerg }
25227330f729Sjoerg }
25237330f729Sjoerg
25247330f729Sjoerg CFGBlockInfo *Initial = &BlockInfo[CFGraph->getEntry().getBlockID()];
25257330f729Sjoerg CFGBlockInfo *Final = &BlockInfo[CFGraph->getExit().getBlockID()];
25267330f729Sjoerg
25277330f729Sjoerg // Skip the final check if the exit block is unreachable.
25287330f729Sjoerg if (!Final->Reachable)
25297330f729Sjoerg return;
25307330f729Sjoerg
25317330f729Sjoerg // By default, we expect all locks held on entry to be held on exit.
25327330f729Sjoerg FactSet ExpectedExitSet = Initial->EntrySet;
25337330f729Sjoerg
25347330f729Sjoerg // Adjust the expected exit set by adding or removing locks, as declared
25357330f729Sjoerg // by *-LOCK_FUNCTION and UNLOCK_FUNCTION. The intersect below will then
25367330f729Sjoerg // issue the appropriate warning.
25377330f729Sjoerg // FIXME: the location here is not quite right.
25387330f729Sjoerg for (const auto &Lock : ExclusiveLocksAcquired)
25397330f729Sjoerg ExpectedExitSet.addLock(FactMan, std::make_unique<LockableFactEntry>(
25407330f729Sjoerg Lock, LK_Exclusive, D->getLocation()));
25417330f729Sjoerg for (const auto &Lock : SharedLocksAcquired)
25427330f729Sjoerg ExpectedExitSet.addLock(FactMan, std::make_unique<LockableFactEntry>(
25437330f729Sjoerg Lock, LK_Shared, D->getLocation()));
25447330f729Sjoerg for (const auto &Lock : LocksReleased)
25457330f729Sjoerg ExpectedExitSet.removeLock(FactMan, Lock);
25467330f729Sjoerg
25477330f729Sjoerg // FIXME: Should we call this function for all blocks which exit the function?
2548*e038c9c4Sjoerg intersectAndWarn(ExpectedExitSet, Final->ExitSet, Final->ExitLoc,
2549*e038c9c4Sjoerg LEK_LockedAtEndOfFunction, LEK_NotLockedAtEndOfFunction);
25507330f729Sjoerg
25517330f729Sjoerg Handler.leaveFunction(CurrentFunction);
25527330f729Sjoerg }
25537330f729Sjoerg
25547330f729Sjoerg /// Check a function's CFG for thread-safety violations.
25557330f729Sjoerg ///
25567330f729Sjoerg /// We traverse the blocks in the CFG, compute the set of mutexes that are held
25577330f729Sjoerg /// at the end of each block, and issue warnings for thread safety violations.
25587330f729Sjoerg /// Each block in the CFG is traversed exactly once.
runThreadSafetyAnalysis(AnalysisDeclContext & AC,ThreadSafetyHandler & Handler,BeforeSet ** BSet)25597330f729Sjoerg void threadSafety::runThreadSafetyAnalysis(AnalysisDeclContext &AC,
25607330f729Sjoerg ThreadSafetyHandler &Handler,
25617330f729Sjoerg BeforeSet **BSet) {
25627330f729Sjoerg if (!*BSet)
25637330f729Sjoerg *BSet = new BeforeSet;
25647330f729Sjoerg ThreadSafetyAnalyzer Analyzer(Handler, *BSet);
25657330f729Sjoerg Analyzer.runAnalysis(AC);
25667330f729Sjoerg }
25677330f729Sjoerg
threadSafetyCleanup(BeforeSet * Cache)25687330f729Sjoerg void threadSafety::threadSafetyCleanup(BeforeSet *Cache) { delete Cache; }
25697330f729Sjoerg
25707330f729Sjoerg /// Helper function that returns a LockKind required for the given level
25717330f729Sjoerg /// of access.
getLockKindFromAccessKind(AccessKind AK)25727330f729Sjoerg LockKind threadSafety::getLockKindFromAccessKind(AccessKind AK) {
25737330f729Sjoerg switch (AK) {
25747330f729Sjoerg case AK_Read :
25757330f729Sjoerg return LK_Shared;
25767330f729Sjoerg case AK_Written :
25777330f729Sjoerg return LK_Exclusive;
25787330f729Sjoerg }
25797330f729Sjoerg llvm_unreachable("Unknown AccessKind");
25807330f729Sjoerg }
2581