1 //===- Stmt.cpp - Statement AST Node Implementation -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Stmt class and statement subclasses. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/Stmt.h" 14 #include "clang/AST/ASTContext.h" 15 #include "clang/AST/ASTDiagnostic.h" 16 #include "clang/AST/Attr.h" 17 #include "clang/AST/Decl.h" 18 #include "clang/AST/DeclGroup.h" 19 #include "clang/AST/Expr.h" 20 #include "clang/AST/ExprCXX.h" 21 #include "clang/AST/ExprConcepts.h" 22 #include "clang/AST/ExprObjC.h" 23 #include "clang/AST/ExprOpenMP.h" 24 #include "clang/AST/StmtCXX.h" 25 #include "clang/AST/StmtObjC.h" 26 #include "clang/AST/StmtOpenMP.h" 27 #include "clang/AST/Type.h" 28 #include "clang/Basic/CharInfo.h" 29 #include "clang/Basic/LLVM.h" 30 #include "clang/Basic/SourceLocation.h" 31 #include "clang/Basic/TargetInfo.h" 32 #include "clang/Lex/Token.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/StringExtras.h" 35 #include "llvm/ADT/StringRef.h" 36 #include "llvm/Support/Casting.h" 37 #include "llvm/Support/Compiler.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/MathExtras.h" 40 #include "llvm/Support/raw_ostream.h" 41 #include <algorithm> 42 #include <cassert> 43 #include <cstring> 44 #include <string> 45 #include <type_traits> 46 #include <utility> 47 48 using namespace clang; 49 50 static struct StmtClassNameTable { 51 const char *Name; 52 unsigned Counter; 53 unsigned Size; 54 } StmtClassInfo[Stmt::lastStmtConstant+1]; 55 56 static StmtClassNameTable &getStmtInfoTableEntry(Stmt::StmtClass E) { 57 static bool Initialized = false; 58 if (Initialized) 59 return StmtClassInfo[E]; 60 61 // Initialize the table on the first use. 62 Initialized = true; 63 #define ABSTRACT_STMT(STMT) 64 #define STMT(CLASS, PARENT) \ 65 StmtClassInfo[(unsigned)Stmt::CLASS##Class].Name = #CLASS; \ 66 StmtClassInfo[(unsigned)Stmt::CLASS##Class].Size = sizeof(CLASS); 67 #include "clang/AST/StmtNodes.inc" 68 69 return StmtClassInfo[E]; 70 } 71 72 void *Stmt::operator new(size_t bytes, const ASTContext& C, 73 unsigned alignment) { 74 return ::operator new(bytes, C, alignment); 75 } 76 77 const char *Stmt::getStmtClassName() const { 78 return getStmtInfoTableEntry((StmtClass) StmtBits.sClass).Name; 79 } 80 81 // Check that no statement / expression class is polymorphic. LLVM style RTTI 82 // should be used instead. If absolutely needed an exception can still be added 83 // here by defining the appropriate macro (but please don't do this). 84 #define STMT(CLASS, PARENT) \ 85 static_assert(!std::is_polymorphic<CLASS>::value, \ 86 #CLASS " should not be polymorphic!"); 87 #include "clang/AST/StmtNodes.inc" 88 89 // Check that no statement / expression class has a non-trival destructor. 90 // Statements and expressions are allocated with the BumpPtrAllocator from 91 // ASTContext and therefore their destructor is not executed. 92 #define STMT(CLASS, PARENT) \ 93 static_assert(std::is_trivially_destructible<CLASS>::value, \ 94 #CLASS " should be trivially destructible!"); 95 // FIXME: InitListExpr is not trivially destructible due to its ASTVector. 96 #define INITLISTEXPR(CLASS, PARENT) 97 #include "clang/AST/StmtNodes.inc" 98 99 void Stmt::PrintStats() { 100 // Ensure the table is primed. 101 getStmtInfoTableEntry(Stmt::NullStmtClass); 102 103 unsigned sum = 0; 104 llvm::errs() << "\n*** Stmt/Expr Stats:\n"; 105 for (int i = 0; i != Stmt::lastStmtConstant+1; i++) { 106 if (StmtClassInfo[i].Name == nullptr) continue; 107 sum += StmtClassInfo[i].Counter; 108 } 109 llvm::errs() << " " << sum << " stmts/exprs total.\n"; 110 sum = 0; 111 for (int i = 0; i != Stmt::lastStmtConstant+1; i++) { 112 if (StmtClassInfo[i].Name == nullptr) continue; 113 if (StmtClassInfo[i].Counter == 0) continue; 114 llvm::errs() << " " << StmtClassInfo[i].Counter << " " 115 << StmtClassInfo[i].Name << ", " << StmtClassInfo[i].Size 116 << " each (" << StmtClassInfo[i].Counter*StmtClassInfo[i].Size 117 << " bytes)\n"; 118 sum += StmtClassInfo[i].Counter*StmtClassInfo[i].Size; 119 } 120 121 llvm::errs() << "Total bytes = " << sum << "\n"; 122 } 123 124 void Stmt::addStmtClass(StmtClass s) { 125 ++getStmtInfoTableEntry(s).Counter; 126 } 127 128 bool Stmt::StatisticsEnabled = false; 129 void Stmt::EnableStatistics() { 130 StatisticsEnabled = true; 131 } 132 133 static std::pair<Stmt::Likelihood, const Attr *> 134 getLikelihood(ArrayRef<const Attr *> Attrs) { 135 for (const auto *A : Attrs) { 136 if (isa<LikelyAttr>(A)) 137 return std::make_pair(Stmt::LH_Likely, A); 138 139 if (isa<UnlikelyAttr>(A)) 140 return std::make_pair(Stmt::LH_Unlikely, A); 141 } 142 143 return std::make_pair(Stmt::LH_None, nullptr); 144 } 145 146 static std::pair<Stmt::Likelihood, const Attr *> getLikelihood(const Stmt *S) { 147 if (const auto *AS = dyn_cast_or_null<AttributedStmt>(S)) 148 return getLikelihood(AS->getAttrs()); 149 150 return std::make_pair(Stmt::LH_None, nullptr); 151 } 152 153 Stmt::Likelihood Stmt::getLikelihood(ArrayRef<const Attr *> Attrs) { 154 return ::getLikelihood(Attrs).first; 155 } 156 157 Stmt::Likelihood Stmt::getLikelihood(const Stmt *S) { 158 return ::getLikelihood(S).first; 159 } 160 161 const Attr *Stmt::getLikelihoodAttr(const Stmt *S) { 162 return ::getLikelihood(S).second; 163 } 164 165 Stmt::Likelihood Stmt::getLikelihood(const Stmt *Then, const Stmt *Else) { 166 Likelihood LHT = ::getLikelihood(Then).first; 167 Likelihood LHE = ::getLikelihood(Else).first; 168 if (LHE == LH_None) 169 return LHT; 170 171 // If the same attribute is used on both branches there's a conflict. 172 if (LHT == LHE) 173 return LH_None; 174 175 if (LHT != LH_None) 176 return LHT; 177 178 // Invert the value of Else to get the value for Then. 179 return LHE == LH_Likely ? LH_Unlikely : LH_Likely; 180 } 181 182 std::tuple<bool, const Attr *, const Attr *> 183 Stmt::determineLikelihoodConflict(const Stmt *Then, const Stmt *Else) { 184 std::pair<Likelihood, const Attr *> LHT = ::getLikelihood(Then); 185 std::pair<Likelihood, const Attr *> LHE = ::getLikelihood(Else); 186 // If the same attribute is used on both branches there's a conflict. 187 if (LHT.first != LH_None && LHT.first == LHE.first) 188 return std::make_tuple(true, LHT.second, LHE.second); 189 190 return std::make_tuple(false, nullptr, nullptr); 191 } 192 193 /// Skip no-op (attributed, compound) container stmts and skip captured 194 /// stmt at the top, if \a IgnoreCaptured is true. 195 Stmt *Stmt::IgnoreContainers(bool IgnoreCaptured) { 196 Stmt *S = this; 197 if (IgnoreCaptured) 198 if (auto CapS = dyn_cast_or_null<CapturedStmt>(S)) 199 S = CapS->getCapturedStmt(); 200 while (true) { 201 if (auto AS = dyn_cast_or_null<AttributedStmt>(S)) 202 S = AS->getSubStmt(); 203 else if (auto CS = dyn_cast_or_null<CompoundStmt>(S)) { 204 if (CS->size() != 1) 205 break; 206 S = CS->body_back(); 207 } else 208 break; 209 } 210 return S; 211 } 212 213 /// Strip off all label-like statements. 214 /// 215 /// This will strip off label statements, case statements, attributed 216 /// statements and default statements recursively. 217 const Stmt *Stmt::stripLabelLikeStatements() const { 218 const Stmt *S = this; 219 while (true) { 220 if (const auto *LS = dyn_cast<LabelStmt>(S)) 221 S = LS->getSubStmt(); 222 else if (const auto *SC = dyn_cast<SwitchCase>(S)) 223 S = SC->getSubStmt(); 224 else if (const auto *AS = dyn_cast<AttributedStmt>(S)) 225 S = AS->getSubStmt(); 226 else 227 return S; 228 } 229 } 230 231 namespace { 232 233 struct good {}; 234 struct bad {}; 235 236 // These silly little functions have to be static inline to suppress 237 // unused warnings, and they have to be defined to suppress other 238 // warnings. 239 static good is_good(good) { return good(); } 240 241 typedef Stmt::child_range children_t(); 242 template <class T> good implements_children(children_t T::*) { 243 return good(); 244 } 245 LLVM_ATTRIBUTE_UNUSED 246 static bad implements_children(children_t Stmt::*) { 247 return bad(); 248 } 249 250 typedef SourceLocation getBeginLoc_t() const; 251 template <class T> good implements_getBeginLoc(getBeginLoc_t T::*) { 252 return good(); 253 } 254 LLVM_ATTRIBUTE_UNUSED 255 static bad implements_getBeginLoc(getBeginLoc_t Stmt::*) { return bad(); } 256 257 typedef SourceLocation getLocEnd_t() const; 258 template <class T> good implements_getEndLoc(getLocEnd_t T::*) { 259 return good(); 260 } 261 LLVM_ATTRIBUTE_UNUSED 262 static bad implements_getEndLoc(getLocEnd_t Stmt::*) { return bad(); } 263 264 #define ASSERT_IMPLEMENTS_children(type) \ 265 (void) is_good(implements_children(&type::children)) 266 #define ASSERT_IMPLEMENTS_getBeginLoc(type) \ 267 (void)is_good(implements_getBeginLoc(&type::getBeginLoc)) 268 #define ASSERT_IMPLEMENTS_getEndLoc(type) \ 269 (void)is_good(implements_getEndLoc(&type::getEndLoc)) 270 271 } // namespace 272 273 /// Check whether the various Stmt classes implement their member 274 /// functions. 275 LLVM_ATTRIBUTE_UNUSED 276 static inline void check_implementations() { 277 #define ABSTRACT_STMT(type) 278 #define STMT(type, base) \ 279 ASSERT_IMPLEMENTS_children(type); \ 280 ASSERT_IMPLEMENTS_getBeginLoc(type); \ 281 ASSERT_IMPLEMENTS_getEndLoc(type); 282 #include "clang/AST/StmtNodes.inc" 283 } 284 285 Stmt::child_range Stmt::children() { 286 switch (getStmtClass()) { 287 case Stmt::NoStmtClass: llvm_unreachable("statement without class"); 288 #define ABSTRACT_STMT(type) 289 #define STMT(type, base) \ 290 case Stmt::type##Class: \ 291 return static_cast<type*>(this)->children(); 292 #include "clang/AST/StmtNodes.inc" 293 } 294 llvm_unreachable("unknown statement kind!"); 295 } 296 297 // Amusing macro metaprogramming hack: check whether a class provides 298 // a more specific implementation of getSourceRange. 299 // 300 // See also Expr.cpp:getExprLoc(). 301 namespace { 302 303 /// This implementation is used when a class provides a custom 304 /// implementation of getSourceRange. 305 template <class S, class T> 306 SourceRange getSourceRangeImpl(const Stmt *stmt, 307 SourceRange (T::*v)() const) { 308 return static_cast<const S*>(stmt)->getSourceRange(); 309 } 310 311 /// This implementation is used when a class doesn't provide a custom 312 /// implementation of getSourceRange. Overload resolution should pick it over 313 /// the implementation above because it's more specialized according to 314 /// function template partial ordering. 315 template <class S> 316 SourceRange getSourceRangeImpl(const Stmt *stmt, 317 SourceRange (Stmt::*v)() const) { 318 return SourceRange(static_cast<const S *>(stmt)->getBeginLoc(), 319 static_cast<const S *>(stmt)->getEndLoc()); 320 } 321 322 } // namespace 323 324 SourceRange Stmt::getSourceRange() const { 325 switch (getStmtClass()) { 326 case Stmt::NoStmtClass: llvm_unreachable("statement without class"); 327 #define ABSTRACT_STMT(type) 328 #define STMT(type, base) \ 329 case Stmt::type##Class: \ 330 return getSourceRangeImpl<type>(this, &type::getSourceRange); 331 #include "clang/AST/StmtNodes.inc" 332 } 333 llvm_unreachable("unknown statement kind!"); 334 } 335 336 SourceLocation Stmt::getBeginLoc() const { 337 switch (getStmtClass()) { 338 case Stmt::NoStmtClass: llvm_unreachable("statement without class"); 339 #define ABSTRACT_STMT(type) 340 #define STMT(type, base) \ 341 case Stmt::type##Class: \ 342 return static_cast<const type *>(this)->getBeginLoc(); 343 #include "clang/AST/StmtNodes.inc" 344 } 345 llvm_unreachable("unknown statement kind"); 346 } 347 348 SourceLocation Stmt::getEndLoc() const { 349 switch (getStmtClass()) { 350 case Stmt::NoStmtClass: llvm_unreachable("statement without class"); 351 #define ABSTRACT_STMT(type) 352 #define STMT(type, base) \ 353 case Stmt::type##Class: \ 354 return static_cast<const type *>(this)->getEndLoc(); 355 #include "clang/AST/StmtNodes.inc" 356 } 357 llvm_unreachable("unknown statement kind"); 358 } 359 360 int64_t Stmt::getID(const ASTContext &Context) const { 361 return Context.getAllocator().identifyKnownAlignedObject<Stmt>(this); 362 } 363 364 CompoundStmt::CompoundStmt(ArrayRef<Stmt *> Stmts, SourceLocation LB, 365 SourceLocation RB) 366 : Stmt(CompoundStmtClass), RBraceLoc(RB) { 367 CompoundStmtBits.NumStmts = Stmts.size(); 368 setStmts(Stmts); 369 CompoundStmtBits.LBraceLoc = LB; 370 } 371 372 void CompoundStmt::setStmts(ArrayRef<Stmt *> Stmts) { 373 assert(CompoundStmtBits.NumStmts == Stmts.size() && 374 "NumStmts doesn't fit in bits of CompoundStmtBits.NumStmts!"); 375 376 std::copy(Stmts.begin(), Stmts.end(), body_begin()); 377 } 378 379 CompoundStmt *CompoundStmt::Create(const ASTContext &C, ArrayRef<Stmt *> Stmts, 380 SourceLocation LB, SourceLocation RB) { 381 void *Mem = 382 C.Allocate(totalSizeToAlloc<Stmt *>(Stmts.size()), alignof(CompoundStmt)); 383 return new (Mem) CompoundStmt(Stmts, LB, RB); 384 } 385 386 CompoundStmt *CompoundStmt::CreateEmpty(const ASTContext &C, 387 unsigned NumStmts) { 388 void *Mem = 389 C.Allocate(totalSizeToAlloc<Stmt *>(NumStmts), alignof(CompoundStmt)); 390 CompoundStmt *New = new (Mem) CompoundStmt(EmptyShell()); 391 New->CompoundStmtBits.NumStmts = NumStmts; 392 return New; 393 } 394 395 const Expr *ValueStmt::getExprStmt() const { 396 const Stmt *S = this; 397 do { 398 if (const auto *E = dyn_cast<Expr>(S)) 399 return E; 400 401 if (const auto *LS = dyn_cast<LabelStmt>(S)) 402 S = LS->getSubStmt(); 403 else if (const auto *AS = dyn_cast<AttributedStmt>(S)) 404 S = AS->getSubStmt(); 405 else 406 llvm_unreachable("unknown kind of ValueStmt"); 407 } while (isa<ValueStmt>(S)); 408 409 return nullptr; 410 } 411 412 const char *LabelStmt::getName() const { 413 return getDecl()->getIdentifier()->getNameStart(); 414 } 415 416 AttributedStmt *AttributedStmt::Create(const ASTContext &C, SourceLocation Loc, 417 ArrayRef<const Attr*> Attrs, 418 Stmt *SubStmt) { 419 assert(!Attrs.empty() && "Attrs should not be empty"); 420 void *Mem = C.Allocate(totalSizeToAlloc<const Attr *>(Attrs.size()), 421 alignof(AttributedStmt)); 422 return new (Mem) AttributedStmt(Loc, Attrs, SubStmt); 423 } 424 425 AttributedStmt *AttributedStmt::CreateEmpty(const ASTContext &C, 426 unsigned NumAttrs) { 427 assert(NumAttrs > 0 && "NumAttrs should be greater than zero"); 428 void *Mem = C.Allocate(totalSizeToAlloc<const Attr *>(NumAttrs), 429 alignof(AttributedStmt)); 430 return new (Mem) AttributedStmt(EmptyShell(), NumAttrs); 431 } 432 433 std::string AsmStmt::generateAsmString(const ASTContext &C) const { 434 if (const auto *gccAsmStmt = dyn_cast<GCCAsmStmt>(this)) 435 return gccAsmStmt->generateAsmString(C); 436 if (const auto *msAsmStmt = dyn_cast<MSAsmStmt>(this)) 437 return msAsmStmt->generateAsmString(C); 438 llvm_unreachable("unknown asm statement kind!"); 439 } 440 441 StringRef AsmStmt::getOutputConstraint(unsigned i) const { 442 if (const auto *gccAsmStmt = dyn_cast<GCCAsmStmt>(this)) 443 return gccAsmStmt->getOutputConstraint(i); 444 if (const auto *msAsmStmt = dyn_cast<MSAsmStmt>(this)) 445 return msAsmStmt->getOutputConstraint(i); 446 llvm_unreachable("unknown asm statement kind!"); 447 } 448 449 const Expr *AsmStmt::getOutputExpr(unsigned i) const { 450 if (const auto *gccAsmStmt = dyn_cast<GCCAsmStmt>(this)) 451 return gccAsmStmt->getOutputExpr(i); 452 if (const auto *msAsmStmt = dyn_cast<MSAsmStmt>(this)) 453 return msAsmStmt->getOutputExpr(i); 454 llvm_unreachable("unknown asm statement kind!"); 455 } 456 457 StringRef AsmStmt::getInputConstraint(unsigned i) const { 458 if (const auto *gccAsmStmt = dyn_cast<GCCAsmStmt>(this)) 459 return gccAsmStmt->getInputConstraint(i); 460 if (const auto *msAsmStmt = dyn_cast<MSAsmStmt>(this)) 461 return msAsmStmt->getInputConstraint(i); 462 llvm_unreachable("unknown asm statement kind!"); 463 } 464 465 const Expr *AsmStmt::getInputExpr(unsigned i) const { 466 if (const auto *gccAsmStmt = dyn_cast<GCCAsmStmt>(this)) 467 return gccAsmStmt->getInputExpr(i); 468 if (const auto *msAsmStmt = dyn_cast<MSAsmStmt>(this)) 469 return msAsmStmt->getInputExpr(i); 470 llvm_unreachable("unknown asm statement kind!"); 471 } 472 473 StringRef AsmStmt::getClobber(unsigned i) const { 474 if (const auto *gccAsmStmt = dyn_cast<GCCAsmStmt>(this)) 475 return gccAsmStmt->getClobber(i); 476 if (const auto *msAsmStmt = dyn_cast<MSAsmStmt>(this)) 477 return msAsmStmt->getClobber(i); 478 llvm_unreachable("unknown asm statement kind!"); 479 } 480 481 /// getNumPlusOperands - Return the number of output operands that have a "+" 482 /// constraint. 483 unsigned AsmStmt::getNumPlusOperands() const { 484 unsigned Res = 0; 485 for (unsigned i = 0, e = getNumOutputs(); i != e; ++i) 486 if (isOutputPlusConstraint(i)) 487 ++Res; 488 return Res; 489 } 490 491 char GCCAsmStmt::AsmStringPiece::getModifier() const { 492 assert(isOperand() && "Only Operands can have modifiers."); 493 return isLetter(Str[0]) ? Str[0] : '\0'; 494 } 495 496 StringRef GCCAsmStmt::getClobber(unsigned i) const { 497 return getClobberStringLiteral(i)->getString(); 498 } 499 500 Expr *GCCAsmStmt::getOutputExpr(unsigned i) { 501 return cast<Expr>(Exprs[i]); 502 } 503 504 /// getOutputConstraint - Return the constraint string for the specified 505 /// output operand. All output constraints are known to be non-empty (either 506 /// '=' or '+'). 507 StringRef GCCAsmStmt::getOutputConstraint(unsigned i) const { 508 return getOutputConstraintLiteral(i)->getString(); 509 } 510 511 Expr *GCCAsmStmt::getInputExpr(unsigned i) { 512 return cast<Expr>(Exprs[i + NumOutputs]); 513 } 514 515 void GCCAsmStmt::setInputExpr(unsigned i, Expr *E) { 516 Exprs[i + NumOutputs] = E; 517 } 518 519 AddrLabelExpr *GCCAsmStmt::getLabelExpr(unsigned i) const { 520 return cast<AddrLabelExpr>(Exprs[i + NumOutputs + NumInputs]); 521 } 522 523 StringRef GCCAsmStmt::getLabelName(unsigned i) const { 524 return getLabelExpr(i)->getLabel()->getName(); 525 } 526 527 /// getInputConstraint - Return the specified input constraint. Unlike output 528 /// constraints, these can be empty. 529 StringRef GCCAsmStmt::getInputConstraint(unsigned i) const { 530 return getInputConstraintLiteral(i)->getString(); 531 } 532 533 void GCCAsmStmt::setOutputsAndInputsAndClobbers(const ASTContext &C, 534 IdentifierInfo **Names, 535 StringLiteral **Constraints, 536 Stmt **Exprs, 537 unsigned NumOutputs, 538 unsigned NumInputs, 539 unsigned NumLabels, 540 StringLiteral **Clobbers, 541 unsigned NumClobbers) { 542 this->NumOutputs = NumOutputs; 543 this->NumInputs = NumInputs; 544 this->NumClobbers = NumClobbers; 545 this->NumLabels = NumLabels; 546 547 unsigned NumExprs = NumOutputs + NumInputs + NumLabels; 548 549 C.Deallocate(this->Names); 550 this->Names = new (C) IdentifierInfo*[NumExprs]; 551 std::copy(Names, Names + NumExprs, this->Names); 552 553 C.Deallocate(this->Exprs); 554 this->Exprs = new (C) Stmt*[NumExprs]; 555 std::copy(Exprs, Exprs + NumExprs, this->Exprs); 556 557 unsigned NumConstraints = NumOutputs + NumInputs; 558 C.Deallocate(this->Constraints); 559 this->Constraints = new (C) StringLiteral*[NumConstraints]; 560 std::copy(Constraints, Constraints + NumConstraints, this->Constraints); 561 562 C.Deallocate(this->Clobbers); 563 this->Clobbers = new (C) StringLiteral*[NumClobbers]; 564 std::copy(Clobbers, Clobbers + NumClobbers, this->Clobbers); 565 } 566 567 /// getNamedOperand - Given a symbolic operand reference like %[foo], 568 /// translate this into a numeric value needed to reference the same operand. 569 /// This returns -1 if the operand name is invalid. 570 int GCCAsmStmt::getNamedOperand(StringRef SymbolicName) const { 571 unsigned NumPlusOperands = 0; 572 573 // Check if this is an output operand. 574 for (unsigned i = 0, e = getNumOutputs(); i != e; ++i) { 575 if (getOutputName(i) == SymbolicName) 576 return i; 577 } 578 579 for (unsigned i = 0, e = getNumInputs(); i != e; ++i) 580 if (getInputName(i) == SymbolicName) 581 return getNumOutputs() + NumPlusOperands + i; 582 583 for (unsigned i = 0, e = getNumLabels(); i != e; ++i) 584 if (getLabelName(i) == SymbolicName) 585 return i + getNumOutputs() + getNumInputs(); 586 587 // Not found. 588 return -1; 589 } 590 591 /// AnalyzeAsmString - Analyze the asm string of the current asm, decomposing 592 /// it into pieces. If the asm string is erroneous, emit errors and return 593 /// true, otherwise return false. 594 unsigned GCCAsmStmt::AnalyzeAsmString(SmallVectorImpl<AsmStringPiece>&Pieces, 595 const ASTContext &C, unsigned &DiagOffs) const { 596 StringRef Str = getAsmString()->getString(); 597 const char *StrStart = Str.begin(); 598 const char *StrEnd = Str.end(); 599 const char *CurPtr = StrStart; 600 601 // "Simple" inline asms have no constraints or operands, just convert the asm 602 // string to escape $'s. 603 if (isSimple()) { 604 std::string Result; 605 for (; CurPtr != StrEnd; ++CurPtr) { 606 switch (*CurPtr) { 607 case '$': 608 Result += "$$"; 609 break; 610 default: 611 Result += *CurPtr; 612 break; 613 } 614 } 615 Pieces.push_back(AsmStringPiece(Result)); 616 return 0; 617 } 618 619 // CurStringPiece - The current string that we are building up as we scan the 620 // asm string. 621 std::string CurStringPiece; 622 623 bool HasVariants = !C.getTargetInfo().hasNoAsmVariants(); 624 625 unsigned LastAsmStringToken = 0; 626 unsigned LastAsmStringOffset = 0; 627 628 while (true) { 629 // Done with the string? 630 if (CurPtr == StrEnd) { 631 if (!CurStringPiece.empty()) 632 Pieces.push_back(AsmStringPiece(CurStringPiece)); 633 return 0; 634 } 635 636 char CurChar = *CurPtr++; 637 switch (CurChar) { 638 case '$': CurStringPiece += "$$"; continue; 639 case '{': CurStringPiece += (HasVariants ? "$(" : "{"); continue; 640 case '|': CurStringPiece += (HasVariants ? "$|" : "|"); continue; 641 case '}': CurStringPiece += (HasVariants ? "$)" : "}"); continue; 642 case '%': 643 break; 644 default: 645 CurStringPiece += CurChar; 646 continue; 647 } 648 649 // Escaped "%" character in asm string. 650 if (CurPtr == StrEnd) { 651 // % at end of string is invalid (no escape). 652 DiagOffs = CurPtr-StrStart-1; 653 return diag::err_asm_invalid_escape; 654 } 655 // Handle escaped char and continue looping over the asm string. 656 char EscapedChar = *CurPtr++; 657 switch (EscapedChar) { 658 default: 659 break; 660 case '%': // %% -> % 661 case '{': // %{ -> { 662 case '}': // %} -> } 663 CurStringPiece += EscapedChar; 664 continue; 665 case '=': // %= -> Generate a unique ID. 666 CurStringPiece += "${:uid}"; 667 continue; 668 } 669 670 // Otherwise, we have an operand. If we have accumulated a string so far, 671 // add it to the Pieces list. 672 if (!CurStringPiece.empty()) { 673 Pieces.push_back(AsmStringPiece(CurStringPiece)); 674 CurStringPiece.clear(); 675 } 676 677 // Handle operands that have asmSymbolicName (e.g., %x[foo]) and those that 678 // don't (e.g., %x4). 'x' following the '%' is the constraint modifier. 679 680 const char *Begin = CurPtr - 1; // Points to the character following '%'. 681 const char *Percent = Begin - 1; // Points to '%'. 682 683 if (isLetter(EscapedChar)) { 684 if (CurPtr == StrEnd) { // Premature end. 685 DiagOffs = CurPtr-StrStart-1; 686 return diag::err_asm_invalid_escape; 687 } 688 EscapedChar = *CurPtr++; 689 } 690 691 const TargetInfo &TI = C.getTargetInfo(); 692 const SourceManager &SM = C.getSourceManager(); 693 const LangOptions &LO = C.getLangOpts(); 694 695 // Handle operands that don't have asmSymbolicName (e.g., %x4). 696 if (isDigit(EscapedChar)) { 697 // %n - Assembler operand n 698 unsigned N = 0; 699 700 --CurPtr; 701 while (CurPtr != StrEnd && isDigit(*CurPtr)) 702 N = N*10 + ((*CurPtr++)-'0'); 703 704 unsigned NumOperands = getNumOutputs() + getNumPlusOperands() + 705 getNumInputs() + getNumLabels(); 706 if (N >= NumOperands) { 707 DiagOffs = CurPtr-StrStart-1; 708 return diag::err_asm_invalid_operand_number; 709 } 710 711 // Str contains "x4" (Operand without the leading %). 712 std::string Str(Begin, CurPtr - Begin); 713 714 // (BeginLoc, EndLoc) represents the range of the operand we are currently 715 // processing. Unlike Str, the range includes the leading '%'. 716 SourceLocation BeginLoc = getAsmString()->getLocationOfByte( 717 Percent - StrStart, SM, LO, TI, &LastAsmStringToken, 718 &LastAsmStringOffset); 719 SourceLocation EndLoc = getAsmString()->getLocationOfByte( 720 CurPtr - StrStart, SM, LO, TI, &LastAsmStringToken, 721 &LastAsmStringOffset); 722 723 Pieces.emplace_back(N, std::move(Str), BeginLoc, EndLoc); 724 continue; 725 } 726 727 // Handle operands that have asmSymbolicName (e.g., %x[foo]). 728 if (EscapedChar == '[') { 729 DiagOffs = CurPtr-StrStart-1; 730 731 // Find the ']'. 732 const char *NameEnd = (const char*)memchr(CurPtr, ']', StrEnd-CurPtr); 733 if (NameEnd == nullptr) 734 return diag::err_asm_unterminated_symbolic_operand_name; 735 if (NameEnd == CurPtr) 736 return diag::err_asm_empty_symbolic_operand_name; 737 738 StringRef SymbolicName(CurPtr, NameEnd - CurPtr); 739 740 int N = getNamedOperand(SymbolicName); 741 if (N == -1) { 742 // Verify that an operand with that name exists. 743 DiagOffs = CurPtr-StrStart; 744 return diag::err_asm_unknown_symbolic_operand_name; 745 } 746 747 // Str contains "x[foo]" (Operand without the leading %). 748 std::string Str(Begin, NameEnd + 1 - Begin); 749 750 // (BeginLoc, EndLoc) represents the range of the operand we are currently 751 // processing. Unlike Str, the range includes the leading '%'. 752 SourceLocation BeginLoc = getAsmString()->getLocationOfByte( 753 Percent - StrStart, SM, LO, TI, &LastAsmStringToken, 754 &LastAsmStringOffset); 755 SourceLocation EndLoc = getAsmString()->getLocationOfByte( 756 NameEnd + 1 - StrStart, SM, LO, TI, &LastAsmStringToken, 757 &LastAsmStringOffset); 758 759 Pieces.emplace_back(N, std::move(Str), BeginLoc, EndLoc); 760 761 CurPtr = NameEnd+1; 762 continue; 763 } 764 765 DiagOffs = CurPtr-StrStart-1; 766 return diag::err_asm_invalid_escape; 767 } 768 } 769 770 /// Assemble final IR asm string (GCC-style). 771 std::string GCCAsmStmt::generateAsmString(const ASTContext &C) const { 772 // Analyze the asm string to decompose it into its pieces. We know that Sema 773 // has already done this, so it is guaranteed to be successful. 774 SmallVector<GCCAsmStmt::AsmStringPiece, 4> Pieces; 775 unsigned DiagOffs; 776 AnalyzeAsmString(Pieces, C, DiagOffs); 777 778 std::string AsmString; 779 for (const auto &Piece : Pieces) { 780 if (Piece.isString()) 781 AsmString += Piece.getString(); 782 else if (Piece.getModifier() == '\0') 783 AsmString += '$' + llvm::utostr(Piece.getOperandNo()); 784 else 785 AsmString += "${" + llvm::utostr(Piece.getOperandNo()) + ':' + 786 Piece.getModifier() + '}'; 787 } 788 return AsmString; 789 } 790 791 /// Assemble final IR asm string (MS-style). 792 std::string MSAsmStmt::generateAsmString(const ASTContext &C) const { 793 // FIXME: This needs to be translated into the IR string representation. 794 SmallVector<StringRef, 8> Pieces; 795 AsmStr.split(Pieces, "\n\t"); 796 std::string MSAsmString; 797 for (size_t I = 0, E = Pieces.size(); I < E; ++I) { 798 StringRef Instruction = Pieces[I]; 799 // For vex/vex2/vex3/evex masm style prefix, convert it to att style 800 // since we don't support masm style prefix in backend. 801 if (Instruction.startswith("vex ")) 802 MSAsmString += '{' + Instruction.substr(0, 3).str() + '}' + 803 Instruction.substr(3).str(); 804 else if (Instruction.startswith("vex2 ") || 805 Instruction.startswith("vex3 ") || Instruction.startswith("evex ")) 806 MSAsmString += '{' + Instruction.substr(0, 4).str() + '}' + 807 Instruction.substr(4).str(); 808 else 809 MSAsmString += Instruction.str(); 810 // If this is not the last instruction, adding back the '\n\t'. 811 if (I < E - 1) 812 MSAsmString += "\n\t"; 813 } 814 return MSAsmString; 815 } 816 817 Expr *MSAsmStmt::getOutputExpr(unsigned i) { 818 return cast<Expr>(Exprs[i]); 819 } 820 821 Expr *MSAsmStmt::getInputExpr(unsigned i) { 822 return cast<Expr>(Exprs[i + NumOutputs]); 823 } 824 825 void MSAsmStmt::setInputExpr(unsigned i, Expr *E) { 826 Exprs[i + NumOutputs] = E; 827 } 828 829 //===----------------------------------------------------------------------===// 830 // Constructors 831 //===----------------------------------------------------------------------===// 832 833 GCCAsmStmt::GCCAsmStmt(const ASTContext &C, SourceLocation asmloc, 834 bool issimple, bool isvolatile, unsigned numoutputs, 835 unsigned numinputs, IdentifierInfo **names, 836 StringLiteral **constraints, Expr **exprs, 837 StringLiteral *asmstr, unsigned numclobbers, 838 StringLiteral **clobbers, unsigned numlabels, 839 SourceLocation rparenloc) 840 : AsmStmt(GCCAsmStmtClass, asmloc, issimple, isvolatile, numoutputs, 841 numinputs, numclobbers), 842 RParenLoc(rparenloc), AsmStr(asmstr), NumLabels(numlabels) { 843 unsigned NumExprs = NumOutputs + NumInputs + NumLabels; 844 845 Names = new (C) IdentifierInfo*[NumExprs]; 846 std::copy(names, names + NumExprs, Names); 847 848 Exprs = new (C) Stmt*[NumExprs]; 849 std::copy(exprs, exprs + NumExprs, Exprs); 850 851 unsigned NumConstraints = NumOutputs + NumInputs; 852 Constraints = new (C) StringLiteral*[NumConstraints]; 853 std::copy(constraints, constraints + NumConstraints, Constraints); 854 855 Clobbers = new (C) StringLiteral*[NumClobbers]; 856 std::copy(clobbers, clobbers + NumClobbers, Clobbers); 857 } 858 859 MSAsmStmt::MSAsmStmt(const ASTContext &C, SourceLocation asmloc, 860 SourceLocation lbraceloc, bool issimple, bool isvolatile, 861 ArrayRef<Token> asmtoks, unsigned numoutputs, 862 unsigned numinputs, 863 ArrayRef<StringRef> constraints, ArrayRef<Expr*> exprs, 864 StringRef asmstr, ArrayRef<StringRef> clobbers, 865 SourceLocation endloc) 866 : AsmStmt(MSAsmStmtClass, asmloc, issimple, isvolatile, numoutputs, 867 numinputs, clobbers.size()), LBraceLoc(lbraceloc), 868 EndLoc(endloc), NumAsmToks(asmtoks.size()) { 869 initialize(C, asmstr, asmtoks, constraints, exprs, clobbers); 870 } 871 872 static StringRef copyIntoContext(const ASTContext &C, StringRef str) { 873 return str.copy(C); 874 } 875 876 void MSAsmStmt::initialize(const ASTContext &C, StringRef asmstr, 877 ArrayRef<Token> asmtoks, 878 ArrayRef<StringRef> constraints, 879 ArrayRef<Expr*> exprs, 880 ArrayRef<StringRef> clobbers) { 881 assert(NumAsmToks == asmtoks.size()); 882 assert(NumClobbers == clobbers.size()); 883 884 assert(exprs.size() == NumOutputs + NumInputs); 885 assert(exprs.size() == constraints.size()); 886 887 AsmStr = copyIntoContext(C, asmstr); 888 889 Exprs = new (C) Stmt*[exprs.size()]; 890 std::copy(exprs.begin(), exprs.end(), Exprs); 891 892 AsmToks = new (C) Token[asmtoks.size()]; 893 std::copy(asmtoks.begin(), asmtoks.end(), AsmToks); 894 895 Constraints = new (C) StringRef[exprs.size()]; 896 std::transform(constraints.begin(), constraints.end(), Constraints, 897 [&](StringRef Constraint) { 898 return copyIntoContext(C, Constraint); 899 }); 900 901 Clobbers = new (C) StringRef[NumClobbers]; 902 // FIXME: Avoid the allocation/copy if at all possible. 903 std::transform(clobbers.begin(), clobbers.end(), Clobbers, 904 [&](StringRef Clobber) { 905 return copyIntoContext(C, Clobber); 906 }); 907 } 908 909 IfStmt::IfStmt(const ASTContext &Ctx, SourceLocation IL, bool IsConstexpr, 910 Stmt *Init, VarDecl *Var, Expr *Cond, SourceLocation LPL, 911 SourceLocation RPL, Stmt *Then, SourceLocation EL, Stmt *Else) 912 : Stmt(IfStmtClass), LParenLoc(LPL), RParenLoc(RPL) { 913 bool HasElse = Else != nullptr; 914 bool HasVar = Var != nullptr; 915 bool HasInit = Init != nullptr; 916 IfStmtBits.HasElse = HasElse; 917 IfStmtBits.HasVar = HasVar; 918 IfStmtBits.HasInit = HasInit; 919 920 setConstexpr(IsConstexpr); 921 922 setCond(Cond); 923 setThen(Then); 924 if (HasElse) 925 setElse(Else); 926 if (HasVar) 927 setConditionVariable(Ctx, Var); 928 if (HasInit) 929 setInit(Init); 930 931 setIfLoc(IL); 932 if (HasElse) 933 setElseLoc(EL); 934 } 935 936 IfStmt::IfStmt(EmptyShell Empty, bool HasElse, bool HasVar, bool HasInit) 937 : Stmt(IfStmtClass, Empty) { 938 IfStmtBits.HasElse = HasElse; 939 IfStmtBits.HasVar = HasVar; 940 IfStmtBits.HasInit = HasInit; 941 } 942 943 IfStmt *IfStmt::Create(const ASTContext &Ctx, SourceLocation IL, 944 bool IsConstexpr, Stmt *Init, VarDecl *Var, Expr *Cond, 945 SourceLocation LPL, SourceLocation RPL, Stmt *Then, 946 SourceLocation EL, Stmt *Else) { 947 bool HasElse = Else != nullptr; 948 bool HasVar = Var != nullptr; 949 bool HasInit = Init != nullptr; 950 void *Mem = Ctx.Allocate( 951 totalSizeToAlloc<Stmt *, SourceLocation>( 952 NumMandatoryStmtPtr + HasElse + HasVar + HasInit, HasElse), 953 alignof(IfStmt)); 954 return new (Mem) 955 IfStmt(Ctx, IL, IsConstexpr, Init, Var, Cond, LPL, RPL, Then, EL, Else); 956 } 957 958 IfStmt *IfStmt::CreateEmpty(const ASTContext &Ctx, bool HasElse, bool HasVar, 959 bool HasInit) { 960 void *Mem = Ctx.Allocate( 961 totalSizeToAlloc<Stmt *, SourceLocation>( 962 NumMandatoryStmtPtr + HasElse + HasVar + HasInit, HasElse), 963 alignof(IfStmt)); 964 return new (Mem) IfStmt(EmptyShell(), HasElse, HasVar, HasInit); 965 } 966 967 VarDecl *IfStmt::getConditionVariable() { 968 auto *DS = getConditionVariableDeclStmt(); 969 if (!DS) 970 return nullptr; 971 return cast<VarDecl>(DS->getSingleDecl()); 972 } 973 974 void IfStmt::setConditionVariable(const ASTContext &Ctx, VarDecl *V) { 975 assert(hasVarStorage() && 976 "This if statement has no storage for a condition variable!"); 977 978 if (!V) { 979 getTrailingObjects<Stmt *>()[varOffset()] = nullptr; 980 return; 981 } 982 983 SourceRange VarRange = V->getSourceRange(); 984 getTrailingObjects<Stmt *>()[varOffset()] = new (Ctx) 985 DeclStmt(DeclGroupRef(V), VarRange.getBegin(), VarRange.getEnd()); 986 } 987 988 bool IfStmt::isObjCAvailabilityCheck() const { 989 return isa<ObjCAvailabilityCheckExpr>(getCond()); 990 } 991 992 Optional<Stmt *> IfStmt::getNondiscardedCase(const ASTContext &Ctx) { 993 if (!isConstexpr() || getCond()->isValueDependent()) 994 return None; 995 return !getCond()->EvaluateKnownConstInt(Ctx) ? getElse() : getThen(); 996 } 997 998 Optional<const Stmt *> 999 IfStmt::getNondiscardedCase(const ASTContext &Ctx) const { 1000 if (Optional<Stmt *> Result = 1001 const_cast<IfStmt *>(this)->getNondiscardedCase(Ctx)) 1002 return *Result; 1003 return None; 1004 } 1005 1006 ForStmt::ForStmt(const ASTContext &C, Stmt *Init, Expr *Cond, VarDecl *condVar, 1007 Expr *Inc, Stmt *Body, SourceLocation FL, SourceLocation LP, 1008 SourceLocation RP) 1009 : Stmt(ForStmtClass), LParenLoc(LP), RParenLoc(RP) 1010 { 1011 SubExprs[INIT] = Init; 1012 setConditionVariable(C, condVar); 1013 SubExprs[COND] = Cond; 1014 SubExprs[INC] = Inc; 1015 SubExprs[BODY] = Body; 1016 ForStmtBits.ForLoc = FL; 1017 } 1018 1019 VarDecl *ForStmt::getConditionVariable() const { 1020 if (!SubExprs[CONDVAR]) 1021 return nullptr; 1022 1023 auto *DS = cast<DeclStmt>(SubExprs[CONDVAR]); 1024 return cast<VarDecl>(DS->getSingleDecl()); 1025 } 1026 1027 void ForStmt::setConditionVariable(const ASTContext &C, VarDecl *V) { 1028 if (!V) { 1029 SubExprs[CONDVAR] = nullptr; 1030 return; 1031 } 1032 1033 SourceRange VarRange = V->getSourceRange(); 1034 SubExprs[CONDVAR] = new (C) DeclStmt(DeclGroupRef(V), VarRange.getBegin(), 1035 VarRange.getEnd()); 1036 } 1037 1038 SwitchStmt::SwitchStmt(const ASTContext &Ctx, Stmt *Init, VarDecl *Var, 1039 Expr *Cond, SourceLocation LParenLoc, 1040 SourceLocation RParenLoc) 1041 : Stmt(SwitchStmtClass), FirstCase(nullptr), LParenLoc(LParenLoc), 1042 RParenLoc(RParenLoc) { 1043 bool HasInit = Init != nullptr; 1044 bool HasVar = Var != nullptr; 1045 SwitchStmtBits.HasInit = HasInit; 1046 SwitchStmtBits.HasVar = HasVar; 1047 SwitchStmtBits.AllEnumCasesCovered = false; 1048 1049 setCond(Cond); 1050 setBody(nullptr); 1051 if (HasInit) 1052 setInit(Init); 1053 if (HasVar) 1054 setConditionVariable(Ctx, Var); 1055 1056 setSwitchLoc(SourceLocation{}); 1057 } 1058 1059 SwitchStmt::SwitchStmt(EmptyShell Empty, bool HasInit, bool HasVar) 1060 : Stmt(SwitchStmtClass, Empty) { 1061 SwitchStmtBits.HasInit = HasInit; 1062 SwitchStmtBits.HasVar = HasVar; 1063 SwitchStmtBits.AllEnumCasesCovered = false; 1064 } 1065 1066 SwitchStmt *SwitchStmt::Create(const ASTContext &Ctx, Stmt *Init, VarDecl *Var, 1067 Expr *Cond, SourceLocation LParenLoc, 1068 SourceLocation RParenLoc) { 1069 bool HasInit = Init != nullptr; 1070 bool HasVar = Var != nullptr; 1071 void *Mem = Ctx.Allocate( 1072 totalSizeToAlloc<Stmt *>(NumMandatoryStmtPtr + HasInit + HasVar), 1073 alignof(SwitchStmt)); 1074 return new (Mem) SwitchStmt(Ctx, Init, Var, Cond, LParenLoc, RParenLoc); 1075 } 1076 1077 SwitchStmt *SwitchStmt::CreateEmpty(const ASTContext &Ctx, bool HasInit, 1078 bool HasVar) { 1079 void *Mem = Ctx.Allocate( 1080 totalSizeToAlloc<Stmt *>(NumMandatoryStmtPtr + HasInit + HasVar), 1081 alignof(SwitchStmt)); 1082 return new (Mem) SwitchStmt(EmptyShell(), HasInit, HasVar); 1083 } 1084 1085 VarDecl *SwitchStmt::getConditionVariable() { 1086 auto *DS = getConditionVariableDeclStmt(); 1087 if (!DS) 1088 return nullptr; 1089 return cast<VarDecl>(DS->getSingleDecl()); 1090 } 1091 1092 void SwitchStmt::setConditionVariable(const ASTContext &Ctx, VarDecl *V) { 1093 assert(hasVarStorage() && 1094 "This switch statement has no storage for a condition variable!"); 1095 1096 if (!V) { 1097 getTrailingObjects<Stmt *>()[varOffset()] = nullptr; 1098 return; 1099 } 1100 1101 SourceRange VarRange = V->getSourceRange(); 1102 getTrailingObjects<Stmt *>()[varOffset()] = new (Ctx) 1103 DeclStmt(DeclGroupRef(V), VarRange.getBegin(), VarRange.getEnd()); 1104 } 1105 1106 WhileStmt::WhileStmt(const ASTContext &Ctx, VarDecl *Var, Expr *Cond, 1107 Stmt *Body, SourceLocation WL, SourceLocation LParenLoc, 1108 SourceLocation RParenLoc) 1109 : Stmt(WhileStmtClass) { 1110 bool HasVar = Var != nullptr; 1111 WhileStmtBits.HasVar = HasVar; 1112 1113 setCond(Cond); 1114 setBody(Body); 1115 if (HasVar) 1116 setConditionVariable(Ctx, Var); 1117 1118 setWhileLoc(WL); 1119 setLParenLoc(LParenLoc); 1120 setRParenLoc(RParenLoc); 1121 } 1122 1123 WhileStmt::WhileStmt(EmptyShell Empty, bool HasVar) 1124 : Stmt(WhileStmtClass, Empty) { 1125 WhileStmtBits.HasVar = HasVar; 1126 } 1127 1128 WhileStmt *WhileStmt::Create(const ASTContext &Ctx, VarDecl *Var, Expr *Cond, 1129 Stmt *Body, SourceLocation WL, 1130 SourceLocation LParenLoc, 1131 SourceLocation RParenLoc) { 1132 bool HasVar = Var != nullptr; 1133 void *Mem = 1134 Ctx.Allocate(totalSizeToAlloc<Stmt *>(NumMandatoryStmtPtr + HasVar), 1135 alignof(WhileStmt)); 1136 return new (Mem) WhileStmt(Ctx, Var, Cond, Body, WL, LParenLoc, RParenLoc); 1137 } 1138 1139 WhileStmt *WhileStmt::CreateEmpty(const ASTContext &Ctx, bool HasVar) { 1140 void *Mem = 1141 Ctx.Allocate(totalSizeToAlloc<Stmt *>(NumMandatoryStmtPtr + HasVar), 1142 alignof(WhileStmt)); 1143 return new (Mem) WhileStmt(EmptyShell(), HasVar); 1144 } 1145 1146 VarDecl *WhileStmt::getConditionVariable() { 1147 auto *DS = getConditionVariableDeclStmt(); 1148 if (!DS) 1149 return nullptr; 1150 return cast<VarDecl>(DS->getSingleDecl()); 1151 } 1152 1153 void WhileStmt::setConditionVariable(const ASTContext &Ctx, VarDecl *V) { 1154 assert(hasVarStorage() && 1155 "This while statement has no storage for a condition variable!"); 1156 1157 if (!V) { 1158 getTrailingObjects<Stmt *>()[varOffset()] = nullptr; 1159 return; 1160 } 1161 1162 SourceRange VarRange = V->getSourceRange(); 1163 getTrailingObjects<Stmt *>()[varOffset()] = new (Ctx) 1164 DeclStmt(DeclGroupRef(V), VarRange.getBegin(), VarRange.getEnd()); 1165 } 1166 1167 // IndirectGotoStmt 1168 LabelDecl *IndirectGotoStmt::getConstantTarget() { 1169 if (auto *E = dyn_cast<AddrLabelExpr>(getTarget()->IgnoreParenImpCasts())) 1170 return E->getLabel(); 1171 return nullptr; 1172 } 1173 1174 // ReturnStmt 1175 ReturnStmt::ReturnStmt(SourceLocation RL, Expr *E, const VarDecl *NRVOCandidate) 1176 : Stmt(ReturnStmtClass), RetExpr(E) { 1177 bool HasNRVOCandidate = NRVOCandidate != nullptr; 1178 ReturnStmtBits.HasNRVOCandidate = HasNRVOCandidate; 1179 if (HasNRVOCandidate) 1180 setNRVOCandidate(NRVOCandidate); 1181 setReturnLoc(RL); 1182 } 1183 1184 ReturnStmt::ReturnStmt(EmptyShell Empty, bool HasNRVOCandidate) 1185 : Stmt(ReturnStmtClass, Empty) { 1186 ReturnStmtBits.HasNRVOCandidate = HasNRVOCandidate; 1187 } 1188 1189 ReturnStmt *ReturnStmt::Create(const ASTContext &Ctx, SourceLocation RL, 1190 Expr *E, const VarDecl *NRVOCandidate) { 1191 bool HasNRVOCandidate = NRVOCandidate != nullptr; 1192 void *Mem = Ctx.Allocate(totalSizeToAlloc<const VarDecl *>(HasNRVOCandidate), 1193 alignof(ReturnStmt)); 1194 return new (Mem) ReturnStmt(RL, E, NRVOCandidate); 1195 } 1196 1197 ReturnStmt *ReturnStmt::CreateEmpty(const ASTContext &Ctx, 1198 bool HasNRVOCandidate) { 1199 void *Mem = Ctx.Allocate(totalSizeToAlloc<const VarDecl *>(HasNRVOCandidate), 1200 alignof(ReturnStmt)); 1201 return new (Mem) ReturnStmt(EmptyShell(), HasNRVOCandidate); 1202 } 1203 1204 // CaseStmt 1205 CaseStmt *CaseStmt::Create(const ASTContext &Ctx, Expr *lhs, Expr *rhs, 1206 SourceLocation caseLoc, SourceLocation ellipsisLoc, 1207 SourceLocation colonLoc) { 1208 bool CaseStmtIsGNURange = rhs != nullptr; 1209 void *Mem = Ctx.Allocate( 1210 totalSizeToAlloc<Stmt *, SourceLocation>( 1211 NumMandatoryStmtPtr + CaseStmtIsGNURange, CaseStmtIsGNURange), 1212 alignof(CaseStmt)); 1213 return new (Mem) CaseStmt(lhs, rhs, caseLoc, ellipsisLoc, colonLoc); 1214 } 1215 1216 CaseStmt *CaseStmt::CreateEmpty(const ASTContext &Ctx, 1217 bool CaseStmtIsGNURange) { 1218 void *Mem = Ctx.Allocate( 1219 totalSizeToAlloc<Stmt *, SourceLocation>( 1220 NumMandatoryStmtPtr + CaseStmtIsGNURange, CaseStmtIsGNURange), 1221 alignof(CaseStmt)); 1222 return new (Mem) CaseStmt(EmptyShell(), CaseStmtIsGNURange); 1223 } 1224 1225 SEHTryStmt::SEHTryStmt(bool IsCXXTry, SourceLocation TryLoc, Stmt *TryBlock, 1226 Stmt *Handler) 1227 : Stmt(SEHTryStmtClass), IsCXXTry(IsCXXTry), TryLoc(TryLoc) { 1228 Children[TRY] = TryBlock; 1229 Children[HANDLER] = Handler; 1230 } 1231 1232 SEHTryStmt* SEHTryStmt::Create(const ASTContext &C, bool IsCXXTry, 1233 SourceLocation TryLoc, Stmt *TryBlock, 1234 Stmt *Handler) { 1235 return new(C) SEHTryStmt(IsCXXTry,TryLoc,TryBlock,Handler); 1236 } 1237 1238 SEHExceptStmt* SEHTryStmt::getExceptHandler() const { 1239 return dyn_cast<SEHExceptStmt>(getHandler()); 1240 } 1241 1242 SEHFinallyStmt* SEHTryStmt::getFinallyHandler() const { 1243 return dyn_cast<SEHFinallyStmt>(getHandler()); 1244 } 1245 1246 SEHExceptStmt::SEHExceptStmt(SourceLocation Loc, Expr *FilterExpr, Stmt *Block) 1247 : Stmt(SEHExceptStmtClass), Loc(Loc) { 1248 Children[FILTER_EXPR] = FilterExpr; 1249 Children[BLOCK] = Block; 1250 } 1251 1252 SEHExceptStmt* SEHExceptStmt::Create(const ASTContext &C, SourceLocation Loc, 1253 Expr *FilterExpr, Stmt *Block) { 1254 return new(C) SEHExceptStmt(Loc,FilterExpr,Block); 1255 } 1256 1257 SEHFinallyStmt::SEHFinallyStmt(SourceLocation Loc, Stmt *Block) 1258 : Stmt(SEHFinallyStmtClass), Loc(Loc), Block(Block) {} 1259 1260 SEHFinallyStmt* SEHFinallyStmt::Create(const ASTContext &C, SourceLocation Loc, 1261 Stmt *Block) { 1262 return new(C)SEHFinallyStmt(Loc,Block); 1263 } 1264 1265 CapturedStmt::Capture::Capture(SourceLocation Loc, VariableCaptureKind Kind, 1266 VarDecl *Var) 1267 : VarAndKind(Var, Kind), Loc(Loc) { 1268 switch (Kind) { 1269 case VCK_This: 1270 assert(!Var && "'this' capture cannot have a variable!"); 1271 break; 1272 case VCK_ByRef: 1273 assert(Var && "capturing by reference must have a variable!"); 1274 break; 1275 case VCK_ByCopy: 1276 assert(Var && "capturing by copy must have a variable!"); 1277 break; 1278 case VCK_VLAType: 1279 assert(!Var && 1280 "Variable-length array type capture cannot have a variable!"); 1281 break; 1282 } 1283 } 1284 1285 CapturedStmt::VariableCaptureKind 1286 CapturedStmt::Capture::getCaptureKind() const { 1287 return VarAndKind.getInt(); 1288 } 1289 1290 VarDecl *CapturedStmt::Capture::getCapturedVar() const { 1291 assert((capturesVariable() || capturesVariableByCopy()) && 1292 "No variable available for 'this' or VAT capture"); 1293 return VarAndKind.getPointer(); 1294 } 1295 1296 CapturedStmt::Capture *CapturedStmt::getStoredCaptures() const { 1297 unsigned Size = sizeof(CapturedStmt) + sizeof(Stmt *) * (NumCaptures + 1); 1298 1299 // Offset of the first Capture object. 1300 unsigned FirstCaptureOffset = llvm::alignTo(Size, alignof(Capture)); 1301 1302 return reinterpret_cast<Capture *>( 1303 reinterpret_cast<char *>(const_cast<CapturedStmt *>(this)) 1304 + FirstCaptureOffset); 1305 } 1306 1307 CapturedStmt::CapturedStmt(Stmt *S, CapturedRegionKind Kind, 1308 ArrayRef<Capture> Captures, 1309 ArrayRef<Expr *> CaptureInits, 1310 CapturedDecl *CD, 1311 RecordDecl *RD) 1312 : Stmt(CapturedStmtClass), NumCaptures(Captures.size()), 1313 CapDeclAndKind(CD, Kind), TheRecordDecl(RD) { 1314 assert( S && "null captured statement"); 1315 assert(CD && "null captured declaration for captured statement"); 1316 assert(RD && "null record declaration for captured statement"); 1317 1318 // Copy initialization expressions. 1319 Stmt **Stored = getStoredStmts(); 1320 for (unsigned I = 0, N = NumCaptures; I != N; ++I) 1321 *Stored++ = CaptureInits[I]; 1322 1323 // Copy the statement being captured. 1324 *Stored = S; 1325 1326 // Copy all Capture objects. 1327 Capture *Buffer = getStoredCaptures(); 1328 std::copy(Captures.begin(), Captures.end(), Buffer); 1329 } 1330 1331 CapturedStmt::CapturedStmt(EmptyShell Empty, unsigned NumCaptures) 1332 : Stmt(CapturedStmtClass, Empty), NumCaptures(NumCaptures), 1333 CapDeclAndKind(nullptr, CR_Default) { 1334 getStoredStmts()[NumCaptures] = nullptr; 1335 } 1336 1337 CapturedStmt *CapturedStmt::Create(const ASTContext &Context, Stmt *S, 1338 CapturedRegionKind Kind, 1339 ArrayRef<Capture> Captures, 1340 ArrayRef<Expr *> CaptureInits, 1341 CapturedDecl *CD, 1342 RecordDecl *RD) { 1343 // The layout is 1344 // 1345 // ----------------------------------------------------------- 1346 // | CapturedStmt, Init, ..., Init, S, Capture, ..., Capture | 1347 // ----------------^-------------------^---------------------- 1348 // getStoredStmts() getStoredCaptures() 1349 // 1350 // where S is the statement being captured. 1351 // 1352 assert(CaptureInits.size() == Captures.size() && "wrong number of arguments"); 1353 1354 unsigned Size = sizeof(CapturedStmt) + sizeof(Stmt *) * (Captures.size() + 1); 1355 if (!Captures.empty()) { 1356 // Realign for the following Capture array. 1357 Size = llvm::alignTo(Size, alignof(Capture)); 1358 Size += sizeof(Capture) * Captures.size(); 1359 } 1360 1361 void *Mem = Context.Allocate(Size); 1362 return new (Mem) CapturedStmt(S, Kind, Captures, CaptureInits, CD, RD); 1363 } 1364 1365 CapturedStmt *CapturedStmt::CreateDeserialized(const ASTContext &Context, 1366 unsigned NumCaptures) { 1367 unsigned Size = sizeof(CapturedStmt) + sizeof(Stmt *) * (NumCaptures + 1); 1368 if (NumCaptures > 0) { 1369 // Realign for the following Capture array. 1370 Size = llvm::alignTo(Size, alignof(Capture)); 1371 Size += sizeof(Capture) * NumCaptures; 1372 } 1373 1374 void *Mem = Context.Allocate(Size); 1375 return new (Mem) CapturedStmt(EmptyShell(), NumCaptures); 1376 } 1377 1378 Stmt::child_range CapturedStmt::children() { 1379 // Children are captured field initializers. 1380 return child_range(getStoredStmts(), getStoredStmts() + NumCaptures); 1381 } 1382 1383 Stmt::const_child_range CapturedStmt::children() const { 1384 return const_child_range(getStoredStmts(), getStoredStmts() + NumCaptures); 1385 } 1386 1387 CapturedDecl *CapturedStmt::getCapturedDecl() { 1388 return CapDeclAndKind.getPointer(); 1389 } 1390 1391 const CapturedDecl *CapturedStmt::getCapturedDecl() const { 1392 return CapDeclAndKind.getPointer(); 1393 } 1394 1395 /// Set the outlined function declaration. 1396 void CapturedStmt::setCapturedDecl(CapturedDecl *D) { 1397 assert(D && "null CapturedDecl"); 1398 CapDeclAndKind.setPointer(D); 1399 } 1400 1401 /// Retrieve the captured region kind. 1402 CapturedRegionKind CapturedStmt::getCapturedRegionKind() const { 1403 return CapDeclAndKind.getInt(); 1404 } 1405 1406 /// Set the captured region kind. 1407 void CapturedStmt::setCapturedRegionKind(CapturedRegionKind Kind) { 1408 CapDeclAndKind.setInt(Kind); 1409 } 1410 1411 bool CapturedStmt::capturesVariable(const VarDecl *Var) const { 1412 for (const auto &I : captures()) { 1413 if (!I.capturesVariable() && !I.capturesVariableByCopy()) 1414 continue; 1415 if (I.getCapturedVar()->getCanonicalDecl() == Var->getCanonicalDecl()) 1416 return true; 1417 } 1418 1419 return false; 1420 } 1421