1 //===--- ExprConstant.cpp - Expression Constant Evaluator -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Expr constant evaluator. 10 // 11 // Constant expression evaluation produces four main results: 12 // 13 // * A success/failure flag indicating whether constant folding was successful. 14 // This is the 'bool' return value used by most of the code in this file. A 15 // 'false' return value indicates that constant folding has failed, and any 16 // appropriate diagnostic has already been produced. 17 // 18 // * An evaluated result, valid only if constant folding has not failed. 19 // 20 // * A flag indicating if evaluation encountered (unevaluated) side-effects. 21 // These arise in cases such as (sideEffect(), 0) and (sideEffect() || 1), 22 // where it is possible to determine the evaluated result regardless. 23 // 24 // * A set of notes indicating why the evaluation was not a constant expression 25 // (under the C++11 / C++1y rules only, at the moment), or, if folding failed 26 // too, why the expression could not be folded. 27 // 28 // If we are checking for a potential constant expression, failure to constant 29 // fold a potential constant sub-expression will be indicated by a 'false' 30 // return value (the expression could not be folded) and no diagnostic (the 31 // expression is not necessarily non-constant). 32 // 33 //===----------------------------------------------------------------------===// 34 35 #include "Interp/Context.h" 36 #include "Interp/Frame.h" 37 #include "Interp/State.h" 38 #include "clang/AST/APValue.h" 39 #include "clang/AST/ASTContext.h" 40 #include "clang/AST/ASTDiagnostic.h" 41 #include "clang/AST/ASTLambda.h" 42 #include "clang/AST/Attr.h" 43 #include "clang/AST/CXXInheritance.h" 44 #include "clang/AST/CharUnits.h" 45 #include "clang/AST/CurrentSourceLocExprScope.h" 46 #include "clang/AST/Expr.h" 47 #include "clang/AST/OSLog.h" 48 #include "clang/AST/OptionalDiagnostic.h" 49 #include "clang/AST/RecordLayout.h" 50 #include "clang/AST/StmtVisitor.h" 51 #include "clang/AST/TypeLoc.h" 52 #include "clang/Basic/Builtins.h" 53 #include "clang/Basic/TargetInfo.h" 54 #include "llvm/ADT/APFixedPoint.h" 55 #include "llvm/ADT/Optional.h" 56 #include "llvm/ADT/SmallBitVector.h" 57 #include "llvm/Support/Debug.h" 58 #include "llvm/Support/SaveAndRestore.h" 59 #include "llvm/Support/raw_ostream.h" 60 #include <cstring> 61 #include <functional> 62 63 #define DEBUG_TYPE "exprconstant" 64 65 using namespace clang; 66 using llvm::APFixedPoint; 67 using llvm::APInt; 68 using llvm::APSInt; 69 using llvm::APFloat; 70 using llvm::FixedPointSemantics; 71 using llvm::Optional; 72 73 namespace { 74 struct LValue; 75 class CallStackFrame; 76 class EvalInfo; 77 78 using SourceLocExprScopeGuard = 79 CurrentSourceLocExprScope::SourceLocExprScopeGuard; 80 81 static QualType getType(APValue::LValueBase B) { 82 return B.getType(); 83 } 84 85 /// Get an LValue path entry, which is known to not be an array index, as a 86 /// field declaration. 87 static const FieldDecl *getAsField(APValue::LValuePathEntry E) { 88 return dyn_cast_or_null<FieldDecl>(E.getAsBaseOrMember().getPointer()); 89 } 90 /// Get an LValue path entry, which is known to not be an array index, as a 91 /// base class declaration. 92 static const CXXRecordDecl *getAsBaseClass(APValue::LValuePathEntry E) { 93 return dyn_cast_or_null<CXXRecordDecl>(E.getAsBaseOrMember().getPointer()); 94 } 95 /// Determine whether this LValue path entry for a base class names a virtual 96 /// base class. 97 static bool isVirtualBaseClass(APValue::LValuePathEntry E) { 98 return E.getAsBaseOrMember().getInt(); 99 } 100 101 /// Given an expression, determine the type used to store the result of 102 /// evaluating that expression. 103 static QualType getStorageType(const ASTContext &Ctx, const Expr *E) { 104 if (E->isRValue()) 105 return E->getType(); 106 return Ctx.getLValueReferenceType(E->getType()); 107 } 108 109 /// Given a CallExpr, try to get the alloc_size attribute. May return null. 110 static const AllocSizeAttr *getAllocSizeAttr(const CallExpr *CE) { 111 if (const FunctionDecl *DirectCallee = CE->getDirectCallee()) 112 return DirectCallee->getAttr<AllocSizeAttr>(); 113 if (const Decl *IndirectCallee = CE->getCalleeDecl()) 114 return IndirectCallee->getAttr<AllocSizeAttr>(); 115 return nullptr; 116 } 117 118 /// Attempts to unwrap a CallExpr (with an alloc_size attribute) from an Expr. 119 /// This will look through a single cast. 120 /// 121 /// Returns null if we couldn't unwrap a function with alloc_size. 122 static const CallExpr *tryUnwrapAllocSizeCall(const Expr *E) { 123 if (!E->getType()->isPointerType()) 124 return nullptr; 125 126 E = E->IgnoreParens(); 127 // If we're doing a variable assignment from e.g. malloc(N), there will 128 // probably be a cast of some kind. In exotic cases, we might also see a 129 // top-level ExprWithCleanups. Ignore them either way. 130 if (const auto *FE = dyn_cast<FullExpr>(E)) 131 E = FE->getSubExpr()->IgnoreParens(); 132 133 if (const auto *Cast = dyn_cast<CastExpr>(E)) 134 E = Cast->getSubExpr()->IgnoreParens(); 135 136 if (const auto *CE = dyn_cast<CallExpr>(E)) 137 return getAllocSizeAttr(CE) ? CE : nullptr; 138 return nullptr; 139 } 140 141 /// Determines whether or not the given Base contains a call to a function 142 /// with the alloc_size attribute. 143 static bool isBaseAnAllocSizeCall(APValue::LValueBase Base) { 144 const auto *E = Base.dyn_cast<const Expr *>(); 145 return E && E->getType()->isPointerType() && tryUnwrapAllocSizeCall(E); 146 } 147 148 /// Determines whether the given kind of constant expression is only ever 149 /// used for name mangling. If so, it's permitted to reference things that we 150 /// can't generate code for (in particular, dllimported functions). 151 static bool isForManglingOnly(ConstantExprKind Kind) { 152 switch (Kind) { 153 case ConstantExprKind::Normal: 154 case ConstantExprKind::ClassTemplateArgument: 155 case ConstantExprKind::ImmediateInvocation: 156 // Note that non-type template arguments of class type are emitted as 157 // template parameter objects. 158 return false; 159 160 case ConstantExprKind::NonClassTemplateArgument: 161 return true; 162 } 163 llvm_unreachable("unknown ConstantExprKind"); 164 } 165 166 static bool isTemplateArgument(ConstantExprKind Kind) { 167 switch (Kind) { 168 case ConstantExprKind::Normal: 169 case ConstantExprKind::ImmediateInvocation: 170 return false; 171 172 case ConstantExprKind::ClassTemplateArgument: 173 case ConstantExprKind::NonClassTemplateArgument: 174 return true; 175 } 176 llvm_unreachable("unknown ConstantExprKind"); 177 } 178 179 /// The bound to claim that an array of unknown bound has. 180 /// The value in MostDerivedArraySize is undefined in this case. So, set it 181 /// to an arbitrary value that's likely to loudly break things if it's used. 182 static const uint64_t AssumedSizeForUnsizedArray = 183 std::numeric_limits<uint64_t>::max() / 2; 184 185 /// Determines if an LValue with the given LValueBase will have an unsized 186 /// array in its designator. 187 /// Find the path length and type of the most-derived subobject in the given 188 /// path, and find the size of the containing array, if any. 189 static unsigned 190 findMostDerivedSubobject(ASTContext &Ctx, APValue::LValueBase Base, 191 ArrayRef<APValue::LValuePathEntry> Path, 192 uint64_t &ArraySize, QualType &Type, bool &IsArray, 193 bool &FirstEntryIsUnsizedArray) { 194 // This only accepts LValueBases from APValues, and APValues don't support 195 // arrays that lack size info. 196 assert(!isBaseAnAllocSizeCall(Base) && 197 "Unsized arrays shouldn't appear here"); 198 unsigned MostDerivedLength = 0; 199 Type = getType(Base); 200 201 for (unsigned I = 0, N = Path.size(); I != N; ++I) { 202 if (Type->isArrayType()) { 203 const ArrayType *AT = Ctx.getAsArrayType(Type); 204 Type = AT->getElementType(); 205 MostDerivedLength = I + 1; 206 IsArray = true; 207 208 if (auto *CAT = dyn_cast<ConstantArrayType>(AT)) { 209 ArraySize = CAT->getSize().getZExtValue(); 210 } else { 211 assert(I == 0 && "unexpected unsized array designator"); 212 FirstEntryIsUnsizedArray = true; 213 ArraySize = AssumedSizeForUnsizedArray; 214 } 215 } else if (Type->isAnyComplexType()) { 216 const ComplexType *CT = Type->castAs<ComplexType>(); 217 Type = CT->getElementType(); 218 ArraySize = 2; 219 MostDerivedLength = I + 1; 220 IsArray = true; 221 } else if (const FieldDecl *FD = getAsField(Path[I])) { 222 Type = FD->getType(); 223 ArraySize = 0; 224 MostDerivedLength = I + 1; 225 IsArray = false; 226 } else { 227 // Path[I] describes a base class. 228 ArraySize = 0; 229 IsArray = false; 230 } 231 } 232 return MostDerivedLength; 233 } 234 235 /// A path from a glvalue to a subobject of that glvalue. 236 struct SubobjectDesignator { 237 /// True if the subobject was named in a manner not supported by C++11. Such 238 /// lvalues can still be folded, but they are not core constant expressions 239 /// and we cannot perform lvalue-to-rvalue conversions on them. 240 unsigned Invalid : 1; 241 242 /// Is this a pointer one past the end of an object? 243 unsigned IsOnePastTheEnd : 1; 244 245 /// Indicator of whether the first entry is an unsized array. 246 unsigned FirstEntryIsAnUnsizedArray : 1; 247 248 /// Indicator of whether the most-derived object is an array element. 249 unsigned MostDerivedIsArrayElement : 1; 250 251 /// The length of the path to the most-derived object of which this is a 252 /// subobject. 253 unsigned MostDerivedPathLength : 28; 254 255 /// The size of the array of which the most-derived object is an element. 256 /// This will always be 0 if the most-derived object is not an array 257 /// element. 0 is not an indicator of whether or not the most-derived object 258 /// is an array, however, because 0-length arrays are allowed. 259 /// 260 /// If the current array is an unsized array, the value of this is 261 /// undefined. 262 uint64_t MostDerivedArraySize; 263 264 /// The type of the most derived object referred to by this address. 265 QualType MostDerivedType; 266 267 typedef APValue::LValuePathEntry PathEntry; 268 269 /// The entries on the path from the glvalue to the designated subobject. 270 SmallVector<PathEntry, 8> Entries; 271 272 SubobjectDesignator() : Invalid(true) {} 273 274 explicit SubobjectDesignator(QualType T) 275 : Invalid(false), IsOnePastTheEnd(false), 276 FirstEntryIsAnUnsizedArray(false), MostDerivedIsArrayElement(false), 277 MostDerivedPathLength(0), MostDerivedArraySize(0), 278 MostDerivedType(T) {} 279 280 SubobjectDesignator(ASTContext &Ctx, const APValue &V) 281 : Invalid(!V.isLValue() || !V.hasLValuePath()), IsOnePastTheEnd(false), 282 FirstEntryIsAnUnsizedArray(false), MostDerivedIsArrayElement(false), 283 MostDerivedPathLength(0), MostDerivedArraySize(0) { 284 assert(V.isLValue() && "Non-LValue used to make an LValue designator?"); 285 if (!Invalid) { 286 IsOnePastTheEnd = V.isLValueOnePastTheEnd(); 287 ArrayRef<PathEntry> VEntries = V.getLValuePath(); 288 Entries.insert(Entries.end(), VEntries.begin(), VEntries.end()); 289 if (V.getLValueBase()) { 290 bool IsArray = false; 291 bool FirstIsUnsizedArray = false; 292 MostDerivedPathLength = findMostDerivedSubobject( 293 Ctx, V.getLValueBase(), V.getLValuePath(), MostDerivedArraySize, 294 MostDerivedType, IsArray, FirstIsUnsizedArray); 295 MostDerivedIsArrayElement = IsArray; 296 FirstEntryIsAnUnsizedArray = FirstIsUnsizedArray; 297 } 298 } 299 } 300 301 void truncate(ASTContext &Ctx, APValue::LValueBase Base, 302 unsigned NewLength) { 303 if (Invalid) 304 return; 305 306 assert(Base && "cannot truncate path for null pointer"); 307 assert(NewLength <= Entries.size() && "not a truncation"); 308 309 if (NewLength == Entries.size()) 310 return; 311 Entries.resize(NewLength); 312 313 bool IsArray = false; 314 bool FirstIsUnsizedArray = false; 315 MostDerivedPathLength = findMostDerivedSubobject( 316 Ctx, Base, Entries, MostDerivedArraySize, MostDerivedType, IsArray, 317 FirstIsUnsizedArray); 318 MostDerivedIsArrayElement = IsArray; 319 FirstEntryIsAnUnsizedArray = FirstIsUnsizedArray; 320 } 321 322 void setInvalid() { 323 Invalid = true; 324 Entries.clear(); 325 } 326 327 /// Determine whether the most derived subobject is an array without a 328 /// known bound. 329 bool isMostDerivedAnUnsizedArray() const { 330 assert(!Invalid && "Calling this makes no sense on invalid designators"); 331 return Entries.size() == 1 && FirstEntryIsAnUnsizedArray; 332 } 333 334 /// Determine what the most derived array's size is. Results in an assertion 335 /// failure if the most derived array lacks a size. 336 uint64_t getMostDerivedArraySize() const { 337 assert(!isMostDerivedAnUnsizedArray() && "Unsized array has no size"); 338 return MostDerivedArraySize; 339 } 340 341 /// Determine whether this is a one-past-the-end pointer. 342 bool isOnePastTheEnd() const { 343 assert(!Invalid); 344 if (IsOnePastTheEnd) 345 return true; 346 if (!isMostDerivedAnUnsizedArray() && MostDerivedIsArrayElement && 347 Entries[MostDerivedPathLength - 1].getAsArrayIndex() == 348 MostDerivedArraySize) 349 return true; 350 return false; 351 } 352 353 /// Get the range of valid index adjustments in the form 354 /// {maximum value that can be subtracted from this pointer, 355 /// maximum value that can be added to this pointer} 356 std::pair<uint64_t, uint64_t> validIndexAdjustments() { 357 if (Invalid || isMostDerivedAnUnsizedArray()) 358 return {0, 0}; 359 360 // [expr.add]p4: For the purposes of these operators, a pointer to a 361 // nonarray object behaves the same as a pointer to the first element of 362 // an array of length one with the type of the object as its element type. 363 bool IsArray = MostDerivedPathLength == Entries.size() && 364 MostDerivedIsArrayElement; 365 uint64_t ArrayIndex = IsArray ? Entries.back().getAsArrayIndex() 366 : (uint64_t)IsOnePastTheEnd; 367 uint64_t ArraySize = 368 IsArray ? getMostDerivedArraySize() : (uint64_t)1; 369 return {ArrayIndex, ArraySize - ArrayIndex}; 370 } 371 372 /// Check that this refers to a valid subobject. 373 bool isValidSubobject() const { 374 if (Invalid) 375 return false; 376 return !isOnePastTheEnd(); 377 } 378 /// Check that this refers to a valid subobject, and if not, produce a 379 /// relevant diagnostic and set the designator as invalid. 380 bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK); 381 382 /// Get the type of the designated object. 383 QualType getType(ASTContext &Ctx) const { 384 assert(!Invalid && "invalid designator has no subobject type"); 385 return MostDerivedPathLength == Entries.size() 386 ? MostDerivedType 387 : Ctx.getRecordType(getAsBaseClass(Entries.back())); 388 } 389 390 /// Update this designator to refer to the first element within this array. 391 void addArrayUnchecked(const ConstantArrayType *CAT) { 392 Entries.push_back(PathEntry::ArrayIndex(0)); 393 394 // This is a most-derived object. 395 MostDerivedType = CAT->getElementType(); 396 MostDerivedIsArrayElement = true; 397 MostDerivedArraySize = CAT->getSize().getZExtValue(); 398 MostDerivedPathLength = Entries.size(); 399 } 400 /// Update this designator to refer to the first element within the array of 401 /// elements of type T. This is an array of unknown size. 402 void addUnsizedArrayUnchecked(QualType ElemTy) { 403 Entries.push_back(PathEntry::ArrayIndex(0)); 404 405 MostDerivedType = ElemTy; 406 MostDerivedIsArrayElement = true; 407 // The value in MostDerivedArraySize is undefined in this case. So, set it 408 // to an arbitrary value that's likely to loudly break things if it's 409 // used. 410 MostDerivedArraySize = AssumedSizeForUnsizedArray; 411 MostDerivedPathLength = Entries.size(); 412 } 413 /// Update this designator to refer to the given base or member of this 414 /// object. 415 void addDeclUnchecked(const Decl *D, bool Virtual = false) { 416 Entries.push_back(APValue::BaseOrMemberType(D, Virtual)); 417 418 // If this isn't a base class, it's a new most-derived object. 419 if (const FieldDecl *FD = dyn_cast<FieldDecl>(D)) { 420 MostDerivedType = FD->getType(); 421 MostDerivedIsArrayElement = false; 422 MostDerivedArraySize = 0; 423 MostDerivedPathLength = Entries.size(); 424 } 425 } 426 /// Update this designator to refer to the given complex component. 427 void addComplexUnchecked(QualType EltTy, bool Imag) { 428 Entries.push_back(PathEntry::ArrayIndex(Imag)); 429 430 // This is technically a most-derived object, though in practice this 431 // is unlikely to matter. 432 MostDerivedType = EltTy; 433 MostDerivedIsArrayElement = true; 434 MostDerivedArraySize = 2; 435 MostDerivedPathLength = Entries.size(); 436 } 437 void diagnoseUnsizedArrayPointerArithmetic(EvalInfo &Info, const Expr *E); 438 void diagnosePointerArithmetic(EvalInfo &Info, const Expr *E, 439 const APSInt &N); 440 /// Add N to the address of this subobject. 441 void adjustIndex(EvalInfo &Info, const Expr *E, APSInt N) { 442 if (Invalid || !N) return; 443 uint64_t TruncatedN = N.extOrTrunc(64).getZExtValue(); 444 if (isMostDerivedAnUnsizedArray()) { 445 diagnoseUnsizedArrayPointerArithmetic(Info, E); 446 // Can't verify -- trust that the user is doing the right thing (or if 447 // not, trust that the caller will catch the bad behavior). 448 // FIXME: Should we reject if this overflows, at least? 449 Entries.back() = PathEntry::ArrayIndex( 450 Entries.back().getAsArrayIndex() + TruncatedN); 451 return; 452 } 453 454 // [expr.add]p4: For the purposes of these operators, a pointer to a 455 // nonarray object behaves the same as a pointer to the first element of 456 // an array of length one with the type of the object as its element type. 457 bool IsArray = MostDerivedPathLength == Entries.size() && 458 MostDerivedIsArrayElement; 459 uint64_t ArrayIndex = IsArray ? Entries.back().getAsArrayIndex() 460 : (uint64_t)IsOnePastTheEnd; 461 uint64_t ArraySize = 462 IsArray ? getMostDerivedArraySize() : (uint64_t)1; 463 464 if (N < -(int64_t)ArrayIndex || N > ArraySize - ArrayIndex) { 465 // Calculate the actual index in a wide enough type, so we can include 466 // it in the note. 467 N = N.extend(std::max<unsigned>(N.getBitWidth() + 1, 65)); 468 (llvm::APInt&)N += ArrayIndex; 469 assert(N.ugt(ArraySize) && "bounds check failed for in-bounds index"); 470 diagnosePointerArithmetic(Info, E, N); 471 setInvalid(); 472 return; 473 } 474 475 ArrayIndex += TruncatedN; 476 assert(ArrayIndex <= ArraySize && 477 "bounds check succeeded for out-of-bounds index"); 478 479 if (IsArray) 480 Entries.back() = PathEntry::ArrayIndex(ArrayIndex); 481 else 482 IsOnePastTheEnd = (ArrayIndex != 0); 483 } 484 }; 485 486 /// A scope at the end of which an object can need to be destroyed. 487 enum class ScopeKind { 488 Block, 489 FullExpression, 490 Call 491 }; 492 493 /// A reference to a particular call and its arguments. 494 struct CallRef { 495 CallRef() : OrigCallee(), CallIndex(0), Version() {} 496 CallRef(const FunctionDecl *Callee, unsigned CallIndex, unsigned Version) 497 : OrigCallee(Callee), CallIndex(CallIndex), Version(Version) {} 498 499 explicit operator bool() const { return OrigCallee; } 500 501 /// Get the parameter that the caller initialized, corresponding to the 502 /// given parameter in the callee. 503 const ParmVarDecl *getOrigParam(const ParmVarDecl *PVD) const { 504 return OrigCallee ? OrigCallee->getParamDecl(PVD->getFunctionScopeIndex()) 505 : PVD; 506 } 507 508 /// The callee at the point where the arguments were evaluated. This might 509 /// be different from the actual callee (a different redeclaration, or a 510 /// virtual override), but this function's parameters are the ones that 511 /// appear in the parameter map. 512 const FunctionDecl *OrigCallee; 513 /// The call index of the frame that holds the argument values. 514 unsigned CallIndex; 515 /// The version of the parameters corresponding to this call. 516 unsigned Version; 517 }; 518 519 /// A stack frame in the constexpr call stack. 520 class CallStackFrame : public interp::Frame { 521 public: 522 EvalInfo &Info; 523 524 /// Parent - The caller of this stack frame. 525 CallStackFrame *Caller; 526 527 /// Callee - The function which was called. 528 const FunctionDecl *Callee; 529 530 /// This - The binding for the this pointer in this call, if any. 531 const LValue *This; 532 533 /// Information on how to find the arguments to this call. Our arguments 534 /// are stored in our parent's CallStackFrame, using the ParmVarDecl* as a 535 /// key and this value as the version. 536 CallRef Arguments; 537 538 /// Source location information about the default argument or default 539 /// initializer expression we're evaluating, if any. 540 CurrentSourceLocExprScope CurSourceLocExprScope; 541 542 // Note that we intentionally use std::map here so that references to 543 // values are stable. 544 typedef std::pair<const void *, unsigned> MapKeyTy; 545 typedef std::map<MapKeyTy, APValue> MapTy; 546 /// Temporaries - Temporary lvalues materialized within this stack frame. 547 MapTy Temporaries; 548 549 /// CallLoc - The location of the call expression for this call. 550 SourceLocation CallLoc; 551 552 /// Index - The call index of this call. 553 unsigned Index; 554 555 /// The stack of integers for tracking version numbers for temporaries. 556 SmallVector<unsigned, 2> TempVersionStack = {1}; 557 unsigned CurTempVersion = TempVersionStack.back(); 558 559 unsigned getTempVersion() const { return TempVersionStack.back(); } 560 561 void pushTempVersion() { 562 TempVersionStack.push_back(++CurTempVersion); 563 } 564 565 void popTempVersion() { 566 TempVersionStack.pop_back(); 567 } 568 569 CallRef createCall(const FunctionDecl *Callee) { 570 return {Callee, Index, ++CurTempVersion}; 571 } 572 573 // FIXME: Adding this to every 'CallStackFrame' may have a nontrivial impact 574 // on the overall stack usage of deeply-recursing constexpr evaluations. 575 // (We should cache this map rather than recomputing it repeatedly.) 576 // But let's try this and see how it goes; we can look into caching the map 577 // as a later change. 578 579 /// LambdaCaptureFields - Mapping from captured variables/this to 580 /// corresponding data members in the closure class. 581 llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields; 582 FieldDecl *LambdaThisCaptureField; 583 584 CallStackFrame(EvalInfo &Info, SourceLocation CallLoc, 585 const FunctionDecl *Callee, const LValue *This, 586 CallRef Arguments); 587 ~CallStackFrame(); 588 589 // Return the temporary for Key whose version number is Version. 590 APValue *getTemporary(const void *Key, unsigned Version) { 591 MapKeyTy KV(Key, Version); 592 auto LB = Temporaries.lower_bound(KV); 593 if (LB != Temporaries.end() && LB->first == KV) 594 return &LB->second; 595 // Pair (Key,Version) wasn't found in the map. Check that no elements 596 // in the map have 'Key' as their key. 597 assert((LB == Temporaries.end() || LB->first.first != Key) && 598 (LB == Temporaries.begin() || std::prev(LB)->first.first != Key) && 599 "Element with key 'Key' found in map"); 600 return nullptr; 601 } 602 603 // Return the current temporary for Key in the map. 604 APValue *getCurrentTemporary(const void *Key) { 605 auto UB = Temporaries.upper_bound(MapKeyTy(Key, UINT_MAX)); 606 if (UB != Temporaries.begin() && std::prev(UB)->first.first == Key) 607 return &std::prev(UB)->second; 608 return nullptr; 609 } 610 611 // Return the version number of the current temporary for Key. 612 unsigned getCurrentTemporaryVersion(const void *Key) const { 613 auto UB = Temporaries.upper_bound(MapKeyTy(Key, UINT_MAX)); 614 if (UB != Temporaries.begin() && std::prev(UB)->first.first == Key) 615 return std::prev(UB)->first.second; 616 return 0; 617 } 618 619 /// Allocate storage for an object of type T in this stack frame. 620 /// Populates LV with a handle to the created object. Key identifies 621 /// the temporary within the stack frame, and must not be reused without 622 /// bumping the temporary version number. 623 template<typename KeyT> 624 APValue &createTemporary(const KeyT *Key, QualType T, 625 ScopeKind Scope, LValue &LV); 626 627 /// Allocate storage for a parameter of a function call made in this frame. 628 APValue &createParam(CallRef Args, const ParmVarDecl *PVD, LValue &LV); 629 630 void describe(llvm::raw_ostream &OS) override; 631 632 Frame *getCaller() const override { return Caller; } 633 SourceLocation getCallLocation() const override { return CallLoc; } 634 const FunctionDecl *getCallee() const override { return Callee; } 635 636 bool isStdFunction() const { 637 for (const DeclContext *DC = Callee; DC; DC = DC->getParent()) 638 if (DC->isStdNamespace()) 639 return true; 640 return false; 641 } 642 643 private: 644 APValue &createLocal(APValue::LValueBase Base, const void *Key, QualType T, 645 ScopeKind Scope); 646 }; 647 648 /// Temporarily override 'this'. 649 class ThisOverrideRAII { 650 public: 651 ThisOverrideRAII(CallStackFrame &Frame, const LValue *NewThis, bool Enable) 652 : Frame(Frame), OldThis(Frame.This) { 653 if (Enable) 654 Frame.This = NewThis; 655 } 656 ~ThisOverrideRAII() { 657 Frame.This = OldThis; 658 } 659 private: 660 CallStackFrame &Frame; 661 const LValue *OldThis; 662 }; 663 } 664 665 static bool HandleDestruction(EvalInfo &Info, const Expr *E, 666 const LValue &This, QualType ThisType); 667 static bool HandleDestruction(EvalInfo &Info, SourceLocation Loc, 668 APValue::LValueBase LVBase, APValue &Value, 669 QualType T); 670 671 namespace { 672 /// A cleanup, and a flag indicating whether it is lifetime-extended. 673 class Cleanup { 674 llvm::PointerIntPair<APValue*, 2, ScopeKind> Value; 675 APValue::LValueBase Base; 676 QualType T; 677 678 public: 679 Cleanup(APValue *Val, APValue::LValueBase Base, QualType T, 680 ScopeKind Scope) 681 : Value(Val, Scope), Base(Base), T(T) {} 682 683 /// Determine whether this cleanup should be performed at the end of the 684 /// given kind of scope. 685 bool isDestroyedAtEndOf(ScopeKind K) const { 686 return (int)Value.getInt() >= (int)K; 687 } 688 bool endLifetime(EvalInfo &Info, bool RunDestructors) { 689 if (RunDestructors) { 690 SourceLocation Loc; 691 if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>()) 692 Loc = VD->getLocation(); 693 else if (const Expr *E = Base.dyn_cast<const Expr*>()) 694 Loc = E->getExprLoc(); 695 return HandleDestruction(Info, Loc, Base, *Value.getPointer(), T); 696 } 697 *Value.getPointer() = APValue(); 698 return true; 699 } 700 701 bool hasSideEffect() { 702 return T.isDestructedType(); 703 } 704 }; 705 706 /// A reference to an object whose construction we are currently evaluating. 707 struct ObjectUnderConstruction { 708 APValue::LValueBase Base; 709 ArrayRef<APValue::LValuePathEntry> Path; 710 friend bool operator==(const ObjectUnderConstruction &LHS, 711 const ObjectUnderConstruction &RHS) { 712 return LHS.Base == RHS.Base && LHS.Path == RHS.Path; 713 } 714 friend llvm::hash_code hash_value(const ObjectUnderConstruction &Obj) { 715 return llvm::hash_combine(Obj.Base, Obj.Path); 716 } 717 }; 718 enum class ConstructionPhase { 719 None, 720 Bases, 721 AfterBases, 722 AfterFields, 723 Destroying, 724 DestroyingBases 725 }; 726 } 727 728 namespace llvm { 729 template<> struct DenseMapInfo<ObjectUnderConstruction> { 730 using Base = DenseMapInfo<APValue::LValueBase>; 731 static ObjectUnderConstruction getEmptyKey() { 732 return {Base::getEmptyKey(), {}}; } 733 static ObjectUnderConstruction getTombstoneKey() { 734 return {Base::getTombstoneKey(), {}}; 735 } 736 static unsigned getHashValue(const ObjectUnderConstruction &Object) { 737 return hash_value(Object); 738 } 739 static bool isEqual(const ObjectUnderConstruction &LHS, 740 const ObjectUnderConstruction &RHS) { 741 return LHS == RHS; 742 } 743 }; 744 } 745 746 namespace { 747 /// A dynamically-allocated heap object. 748 struct DynAlloc { 749 /// The value of this heap-allocated object. 750 APValue Value; 751 /// The allocating expression; used for diagnostics. Either a CXXNewExpr 752 /// or a CallExpr (the latter is for direct calls to operator new inside 753 /// std::allocator<T>::allocate). 754 const Expr *AllocExpr = nullptr; 755 756 enum Kind { 757 New, 758 ArrayNew, 759 StdAllocator 760 }; 761 762 /// Get the kind of the allocation. This must match between allocation 763 /// and deallocation. 764 Kind getKind() const { 765 if (auto *NE = dyn_cast<CXXNewExpr>(AllocExpr)) 766 return NE->isArray() ? ArrayNew : New; 767 assert(isa<CallExpr>(AllocExpr)); 768 return StdAllocator; 769 } 770 }; 771 772 struct DynAllocOrder { 773 bool operator()(DynamicAllocLValue L, DynamicAllocLValue R) const { 774 return L.getIndex() < R.getIndex(); 775 } 776 }; 777 778 /// EvalInfo - This is a private struct used by the evaluator to capture 779 /// information about a subexpression as it is folded. It retains information 780 /// about the AST context, but also maintains information about the folded 781 /// expression. 782 /// 783 /// If an expression could be evaluated, it is still possible it is not a C 784 /// "integer constant expression" or constant expression. If not, this struct 785 /// captures information about how and why not. 786 /// 787 /// One bit of information passed *into* the request for constant folding 788 /// indicates whether the subexpression is "evaluated" or not according to C 789 /// rules. For example, the RHS of (0 && foo()) is not evaluated. We can 790 /// evaluate the expression regardless of what the RHS is, but C only allows 791 /// certain things in certain situations. 792 class EvalInfo : public interp::State { 793 public: 794 ASTContext &Ctx; 795 796 /// EvalStatus - Contains information about the evaluation. 797 Expr::EvalStatus &EvalStatus; 798 799 /// CurrentCall - The top of the constexpr call stack. 800 CallStackFrame *CurrentCall; 801 802 /// CallStackDepth - The number of calls in the call stack right now. 803 unsigned CallStackDepth; 804 805 /// NextCallIndex - The next call index to assign. 806 unsigned NextCallIndex; 807 808 /// StepsLeft - The remaining number of evaluation steps we're permitted 809 /// to perform. This is essentially a limit for the number of statements 810 /// we will evaluate. 811 unsigned StepsLeft; 812 813 /// Enable the experimental new constant interpreter. If an expression is 814 /// not supported by the interpreter, an error is triggered. 815 bool EnableNewConstInterp; 816 817 /// BottomFrame - The frame in which evaluation started. This must be 818 /// initialized after CurrentCall and CallStackDepth. 819 CallStackFrame BottomFrame; 820 821 /// A stack of values whose lifetimes end at the end of some surrounding 822 /// evaluation frame. 823 llvm::SmallVector<Cleanup, 16> CleanupStack; 824 825 /// EvaluatingDecl - This is the declaration whose initializer is being 826 /// evaluated, if any. 827 APValue::LValueBase EvaluatingDecl; 828 829 enum class EvaluatingDeclKind { 830 None, 831 /// We're evaluating the construction of EvaluatingDecl. 832 Ctor, 833 /// We're evaluating the destruction of EvaluatingDecl. 834 Dtor, 835 }; 836 EvaluatingDeclKind IsEvaluatingDecl = EvaluatingDeclKind::None; 837 838 /// EvaluatingDeclValue - This is the value being constructed for the 839 /// declaration whose initializer is being evaluated, if any. 840 APValue *EvaluatingDeclValue; 841 842 /// Set of objects that are currently being constructed. 843 llvm::DenseMap<ObjectUnderConstruction, ConstructionPhase> 844 ObjectsUnderConstruction; 845 846 /// Current heap allocations, along with the location where each was 847 /// allocated. We use std::map here because we need stable addresses 848 /// for the stored APValues. 849 std::map<DynamicAllocLValue, DynAlloc, DynAllocOrder> HeapAllocs; 850 851 /// The number of heap allocations performed so far in this evaluation. 852 unsigned NumHeapAllocs = 0; 853 854 struct EvaluatingConstructorRAII { 855 EvalInfo &EI; 856 ObjectUnderConstruction Object; 857 bool DidInsert; 858 EvaluatingConstructorRAII(EvalInfo &EI, ObjectUnderConstruction Object, 859 bool HasBases) 860 : EI(EI), Object(Object) { 861 DidInsert = 862 EI.ObjectsUnderConstruction 863 .insert({Object, HasBases ? ConstructionPhase::Bases 864 : ConstructionPhase::AfterBases}) 865 .second; 866 } 867 void finishedConstructingBases() { 868 EI.ObjectsUnderConstruction[Object] = ConstructionPhase::AfterBases; 869 } 870 void finishedConstructingFields() { 871 EI.ObjectsUnderConstruction[Object] = ConstructionPhase::AfterFields; 872 } 873 ~EvaluatingConstructorRAII() { 874 if (DidInsert) EI.ObjectsUnderConstruction.erase(Object); 875 } 876 }; 877 878 struct EvaluatingDestructorRAII { 879 EvalInfo &EI; 880 ObjectUnderConstruction Object; 881 bool DidInsert; 882 EvaluatingDestructorRAII(EvalInfo &EI, ObjectUnderConstruction Object) 883 : EI(EI), Object(Object) { 884 DidInsert = EI.ObjectsUnderConstruction 885 .insert({Object, ConstructionPhase::Destroying}) 886 .second; 887 } 888 void startedDestroyingBases() { 889 EI.ObjectsUnderConstruction[Object] = 890 ConstructionPhase::DestroyingBases; 891 } 892 ~EvaluatingDestructorRAII() { 893 if (DidInsert) 894 EI.ObjectsUnderConstruction.erase(Object); 895 } 896 }; 897 898 ConstructionPhase 899 isEvaluatingCtorDtor(APValue::LValueBase Base, 900 ArrayRef<APValue::LValuePathEntry> Path) { 901 return ObjectsUnderConstruction.lookup({Base, Path}); 902 } 903 904 /// If we're currently speculatively evaluating, the outermost call stack 905 /// depth at which we can mutate state, otherwise 0. 906 unsigned SpeculativeEvaluationDepth = 0; 907 908 /// The current array initialization index, if we're performing array 909 /// initialization. 910 uint64_t ArrayInitIndex = -1; 911 912 /// HasActiveDiagnostic - Was the previous diagnostic stored? If so, further 913 /// notes attached to it will also be stored, otherwise they will not be. 914 bool HasActiveDiagnostic; 915 916 /// Have we emitted a diagnostic explaining why we couldn't constant 917 /// fold (not just why it's not strictly a constant expression)? 918 bool HasFoldFailureDiagnostic; 919 920 /// Whether or not we're in a context where the front end requires a 921 /// constant value. 922 bool InConstantContext; 923 924 /// Whether we're checking that an expression is a potential constant 925 /// expression. If so, do not fail on constructs that could become constant 926 /// later on (such as a use of an undefined global). 927 bool CheckingPotentialConstantExpression = false; 928 929 /// Whether we're checking for an expression that has undefined behavior. 930 /// If so, we will produce warnings if we encounter an operation that is 931 /// always undefined. 932 /// 933 /// Note that we still need to evaluate the expression normally when this 934 /// is set; this is used when evaluating ICEs in C. 935 bool CheckingForUndefinedBehavior = false; 936 937 enum EvaluationMode { 938 /// Evaluate as a constant expression. Stop if we find that the expression 939 /// is not a constant expression. 940 EM_ConstantExpression, 941 942 /// Evaluate as a constant expression. Stop if we find that the expression 943 /// is not a constant expression. Some expressions can be retried in the 944 /// optimizer if we don't constant fold them here, but in an unevaluated 945 /// context we try to fold them immediately since the optimizer never 946 /// gets a chance to look at it. 947 EM_ConstantExpressionUnevaluated, 948 949 /// Fold the expression to a constant. Stop if we hit a side-effect that 950 /// we can't model. 951 EM_ConstantFold, 952 953 /// Evaluate in any way we know how. Don't worry about side-effects that 954 /// can't be modeled. 955 EM_IgnoreSideEffects, 956 } EvalMode; 957 958 /// Are we checking whether the expression is a potential constant 959 /// expression? 960 bool checkingPotentialConstantExpression() const override { 961 return CheckingPotentialConstantExpression; 962 } 963 964 /// Are we checking an expression for overflow? 965 // FIXME: We should check for any kind of undefined or suspicious behavior 966 // in such constructs, not just overflow. 967 bool checkingForUndefinedBehavior() const override { 968 return CheckingForUndefinedBehavior; 969 } 970 971 EvalInfo(const ASTContext &C, Expr::EvalStatus &S, EvaluationMode Mode) 972 : Ctx(const_cast<ASTContext &>(C)), EvalStatus(S), CurrentCall(nullptr), 973 CallStackDepth(0), NextCallIndex(1), 974 StepsLeft(C.getLangOpts().ConstexprStepLimit), 975 EnableNewConstInterp(C.getLangOpts().EnableNewConstInterp), 976 BottomFrame(*this, SourceLocation(), nullptr, nullptr, CallRef()), 977 EvaluatingDecl((const ValueDecl *)nullptr), 978 EvaluatingDeclValue(nullptr), HasActiveDiagnostic(false), 979 HasFoldFailureDiagnostic(false), InConstantContext(false), 980 EvalMode(Mode) {} 981 982 ~EvalInfo() { 983 discardCleanups(); 984 } 985 986 void setEvaluatingDecl(APValue::LValueBase Base, APValue &Value, 987 EvaluatingDeclKind EDK = EvaluatingDeclKind::Ctor) { 988 EvaluatingDecl = Base; 989 IsEvaluatingDecl = EDK; 990 EvaluatingDeclValue = &Value; 991 } 992 993 bool CheckCallLimit(SourceLocation Loc) { 994 // Don't perform any constexpr calls (other than the call we're checking) 995 // when checking a potential constant expression. 996 if (checkingPotentialConstantExpression() && CallStackDepth > 1) 997 return false; 998 if (NextCallIndex == 0) { 999 // NextCallIndex has wrapped around. 1000 FFDiag(Loc, diag::note_constexpr_call_limit_exceeded); 1001 return false; 1002 } 1003 if (CallStackDepth <= getLangOpts().ConstexprCallDepth) 1004 return true; 1005 FFDiag(Loc, diag::note_constexpr_depth_limit_exceeded) 1006 << getLangOpts().ConstexprCallDepth; 1007 return false; 1008 } 1009 1010 std::pair<CallStackFrame *, unsigned> 1011 getCallFrameAndDepth(unsigned CallIndex) { 1012 assert(CallIndex && "no call index in getCallFrameAndDepth"); 1013 // We will eventually hit BottomFrame, which has Index 1, so Frame can't 1014 // be null in this loop. 1015 unsigned Depth = CallStackDepth; 1016 CallStackFrame *Frame = CurrentCall; 1017 while (Frame->Index > CallIndex) { 1018 Frame = Frame->Caller; 1019 --Depth; 1020 } 1021 if (Frame->Index == CallIndex) 1022 return {Frame, Depth}; 1023 return {nullptr, 0}; 1024 } 1025 1026 bool nextStep(const Stmt *S) { 1027 if (!StepsLeft) { 1028 FFDiag(S->getBeginLoc(), diag::note_constexpr_step_limit_exceeded); 1029 return false; 1030 } 1031 --StepsLeft; 1032 return true; 1033 } 1034 1035 APValue *createHeapAlloc(const Expr *E, QualType T, LValue &LV); 1036 1037 Optional<DynAlloc*> lookupDynamicAlloc(DynamicAllocLValue DA) { 1038 Optional<DynAlloc*> Result; 1039 auto It = HeapAllocs.find(DA); 1040 if (It != HeapAllocs.end()) 1041 Result = &It->second; 1042 return Result; 1043 } 1044 1045 /// Get the allocated storage for the given parameter of the given call. 1046 APValue *getParamSlot(CallRef Call, const ParmVarDecl *PVD) { 1047 CallStackFrame *Frame = getCallFrameAndDepth(Call.CallIndex).first; 1048 return Frame ? Frame->getTemporary(Call.getOrigParam(PVD), Call.Version) 1049 : nullptr; 1050 } 1051 1052 /// Information about a stack frame for std::allocator<T>::[de]allocate. 1053 struct StdAllocatorCaller { 1054 unsigned FrameIndex; 1055 QualType ElemType; 1056 explicit operator bool() const { return FrameIndex != 0; }; 1057 }; 1058 1059 StdAllocatorCaller getStdAllocatorCaller(StringRef FnName) const { 1060 for (const CallStackFrame *Call = CurrentCall; Call != &BottomFrame; 1061 Call = Call->Caller) { 1062 const auto *MD = dyn_cast_or_null<CXXMethodDecl>(Call->Callee); 1063 if (!MD) 1064 continue; 1065 const IdentifierInfo *FnII = MD->getIdentifier(); 1066 if (!FnII || !FnII->isStr(FnName)) 1067 continue; 1068 1069 const auto *CTSD = 1070 dyn_cast<ClassTemplateSpecializationDecl>(MD->getParent()); 1071 if (!CTSD) 1072 continue; 1073 1074 const IdentifierInfo *ClassII = CTSD->getIdentifier(); 1075 const TemplateArgumentList &TAL = CTSD->getTemplateArgs(); 1076 if (CTSD->isInStdNamespace() && ClassII && 1077 ClassII->isStr("allocator") && TAL.size() >= 1 && 1078 TAL[0].getKind() == TemplateArgument::Type) 1079 return {Call->Index, TAL[0].getAsType()}; 1080 } 1081 1082 return {}; 1083 } 1084 1085 void performLifetimeExtension() { 1086 // Disable the cleanups for lifetime-extended temporaries. 1087 CleanupStack.erase(std::remove_if(CleanupStack.begin(), 1088 CleanupStack.end(), 1089 [](Cleanup &C) { 1090 return !C.isDestroyedAtEndOf( 1091 ScopeKind::FullExpression); 1092 }), 1093 CleanupStack.end()); 1094 } 1095 1096 /// Throw away any remaining cleanups at the end of evaluation. If any 1097 /// cleanups would have had a side-effect, note that as an unmodeled 1098 /// side-effect and return false. Otherwise, return true. 1099 bool discardCleanups() { 1100 for (Cleanup &C : CleanupStack) { 1101 if (C.hasSideEffect() && !noteSideEffect()) { 1102 CleanupStack.clear(); 1103 return false; 1104 } 1105 } 1106 CleanupStack.clear(); 1107 return true; 1108 } 1109 1110 private: 1111 interp::Frame *getCurrentFrame() override { return CurrentCall; } 1112 const interp::Frame *getBottomFrame() const override { return &BottomFrame; } 1113 1114 bool hasActiveDiagnostic() override { return HasActiveDiagnostic; } 1115 void setActiveDiagnostic(bool Flag) override { HasActiveDiagnostic = Flag; } 1116 1117 void setFoldFailureDiagnostic(bool Flag) override { 1118 HasFoldFailureDiagnostic = Flag; 1119 } 1120 1121 Expr::EvalStatus &getEvalStatus() const override { return EvalStatus; } 1122 1123 ASTContext &getCtx() const override { return Ctx; } 1124 1125 // If we have a prior diagnostic, it will be noting that the expression 1126 // isn't a constant expression. This diagnostic is more important, 1127 // unless we require this evaluation to produce a constant expression. 1128 // 1129 // FIXME: We might want to show both diagnostics to the user in 1130 // EM_ConstantFold mode. 1131 bool hasPriorDiagnostic() override { 1132 if (!EvalStatus.Diag->empty()) { 1133 switch (EvalMode) { 1134 case EM_ConstantFold: 1135 case EM_IgnoreSideEffects: 1136 if (!HasFoldFailureDiagnostic) 1137 break; 1138 // We've already failed to fold something. Keep that diagnostic. 1139 LLVM_FALLTHROUGH; 1140 case EM_ConstantExpression: 1141 case EM_ConstantExpressionUnevaluated: 1142 setActiveDiagnostic(false); 1143 return true; 1144 } 1145 } 1146 return false; 1147 } 1148 1149 unsigned getCallStackDepth() override { return CallStackDepth; } 1150 1151 public: 1152 /// Should we continue evaluation after encountering a side-effect that we 1153 /// couldn't model? 1154 bool keepEvaluatingAfterSideEffect() { 1155 switch (EvalMode) { 1156 case EM_IgnoreSideEffects: 1157 return true; 1158 1159 case EM_ConstantExpression: 1160 case EM_ConstantExpressionUnevaluated: 1161 case EM_ConstantFold: 1162 // By default, assume any side effect might be valid in some other 1163 // evaluation of this expression from a different context. 1164 return checkingPotentialConstantExpression() || 1165 checkingForUndefinedBehavior(); 1166 } 1167 llvm_unreachable("Missed EvalMode case"); 1168 } 1169 1170 /// Note that we have had a side-effect, and determine whether we should 1171 /// keep evaluating. 1172 bool noteSideEffect() { 1173 EvalStatus.HasSideEffects = true; 1174 return keepEvaluatingAfterSideEffect(); 1175 } 1176 1177 /// Should we continue evaluation after encountering undefined behavior? 1178 bool keepEvaluatingAfterUndefinedBehavior() { 1179 switch (EvalMode) { 1180 case EM_IgnoreSideEffects: 1181 case EM_ConstantFold: 1182 return true; 1183 1184 case EM_ConstantExpression: 1185 case EM_ConstantExpressionUnevaluated: 1186 return checkingForUndefinedBehavior(); 1187 } 1188 llvm_unreachable("Missed EvalMode case"); 1189 } 1190 1191 /// Note that we hit something that was technically undefined behavior, but 1192 /// that we can evaluate past it (such as signed overflow or floating-point 1193 /// division by zero.) 1194 bool noteUndefinedBehavior() override { 1195 EvalStatus.HasUndefinedBehavior = true; 1196 return keepEvaluatingAfterUndefinedBehavior(); 1197 } 1198 1199 /// Should we continue evaluation as much as possible after encountering a 1200 /// construct which can't be reduced to a value? 1201 bool keepEvaluatingAfterFailure() const override { 1202 if (!StepsLeft) 1203 return false; 1204 1205 switch (EvalMode) { 1206 case EM_ConstantExpression: 1207 case EM_ConstantExpressionUnevaluated: 1208 case EM_ConstantFold: 1209 case EM_IgnoreSideEffects: 1210 return checkingPotentialConstantExpression() || 1211 checkingForUndefinedBehavior(); 1212 } 1213 llvm_unreachable("Missed EvalMode case"); 1214 } 1215 1216 /// Notes that we failed to evaluate an expression that other expressions 1217 /// directly depend on, and determine if we should keep evaluating. This 1218 /// should only be called if we actually intend to keep evaluating. 1219 /// 1220 /// Call noteSideEffect() instead if we may be able to ignore the value that 1221 /// we failed to evaluate, e.g. if we failed to evaluate Foo() in: 1222 /// 1223 /// (Foo(), 1) // use noteSideEffect 1224 /// (Foo() || true) // use noteSideEffect 1225 /// Foo() + 1 // use noteFailure 1226 LLVM_NODISCARD bool noteFailure() { 1227 // Failure when evaluating some expression often means there is some 1228 // subexpression whose evaluation was skipped. Therefore, (because we 1229 // don't track whether we skipped an expression when unwinding after an 1230 // evaluation failure) every evaluation failure that bubbles up from a 1231 // subexpression implies that a side-effect has potentially happened. We 1232 // skip setting the HasSideEffects flag to true until we decide to 1233 // continue evaluating after that point, which happens here. 1234 bool KeepGoing = keepEvaluatingAfterFailure(); 1235 EvalStatus.HasSideEffects |= KeepGoing; 1236 return KeepGoing; 1237 } 1238 1239 class ArrayInitLoopIndex { 1240 EvalInfo &Info; 1241 uint64_t OuterIndex; 1242 1243 public: 1244 ArrayInitLoopIndex(EvalInfo &Info) 1245 : Info(Info), OuterIndex(Info.ArrayInitIndex) { 1246 Info.ArrayInitIndex = 0; 1247 } 1248 ~ArrayInitLoopIndex() { Info.ArrayInitIndex = OuterIndex; } 1249 1250 operator uint64_t&() { return Info.ArrayInitIndex; } 1251 }; 1252 }; 1253 1254 /// Object used to treat all foldable expressions as constant expressions. 1255 struct FoldConstant { 1256 EvalInfo &Info; 1257 bool Enabled; 1258 bool HadNoPriorDiags; 1259 EvalInfo::EvaluationMode OldMode; 1260 1261 explicit FoldConstant(EvalInfo &Info, bool Enabled) 1262 : Info(Info), 1263 Enabled(Enabled), 1264 HadNoPriorDiags(Info.EvalStatus.Diag && 1265 Info.EvalStatus.Diag->empty() && 1266 !Info.EvalStatus.HasSideEffects), 1267 OldMode(Info.EvalMode) { 1268 if (Enabled) 1269 Info.EvalMode = EvalInfo::EM_ConstantFold; 1270 } 1271 void keepDiagnostics() { Enabled = false; } 1272 ~FoldConstant() { 1273 if (Enabled && HadNoPriorDiags && !Info.EvalStatus.Diag->empty() && 1274 !Info.EvalStatus.HasSideEffects) 1275 Info.EvalStatus.Diag->clear(); 1276 Info.EvalMode = OldMode; 1277 } 1278 }; 1279 1280 /// RAII object used to set the current evaluation mode to ignore 1281 /// side-effects. 1282 struct IgnoreSideEffectsRAII { 1283 EvalInfo &Info; 1284 EvalInfo::EvaluationMode OldMode; 1285 explicit IgnoreSideEffectsRAII(EvalInfo &Info) 1286 : Info(Info), OldMode(Info.EvalMode) { 1287 Info.EvalMode = EvalInfo::EM_IgnoreSideEffects; 1288 } 1289 1290 ~IgnoreSideEffectsRAII() { Info.EvalMode = OldMode; } 1291 }; 1292 1293 /// RAII object used to optionally suppress diagnostics and side-effects from 1294 /// a speculative evaluation. 1295 class SpeculativeEvaluationRAII { 1296 EvalInfo *Info = nullptr; 1297 Expr::EvalStatus OldStatus; 1298 unsigned OldSpeculativeEvaluationDepth; 1299 1300 void moveFromAndCancel(SpeculativeEvaluationRAII &&Other) { 1301 Info = Other.Info; 1302 OldStatus = Other.OldStatus; 1303 OldSpeculativeEvaluationDepth = Other.OldSpeculativeEvaluationDepth; 1304 Other.Info = nullptr; 1305 } 1306 1307 void maybeRestoreState() { 1308 if (!Info) 1309 return; 1310 1311 Info->EvalStatus = OldStatus; 1312 Info->SpeculativeEvaluationDepth = OldSpeculativeEvaluationDepth; 1313 } 1314 1315 public: 1316 SpeculativeEvaluationRAII() = default; 1317 1318 SpeculativeEvaluationRAII( 1319 EvalInfo &Info, SmallVectorImpl<PartialDiagnosticAt> *NewDiag = nullptr) 1320 : Info(&Info), OldStatus(Info.EvalStatus), 1321 OldSpeculativeEvaluationDepth(Info.SpeculativeEvaluationDepth) { 1322 Info.EvalStatus.Diag = NewDiag; 1323 Info.SpeculativeEvaluationDepth = Info.CallStackDepth + 1; 1324 } 1325 1326 SpeculativeEvaluationRAII(const SpeculativeEvaluationRAII &Other) = delete; 1327 SpeculativeEvaluationRAII(SpeculativeEvaluationRAII &&Other) { 1328 moveFromAndCancel(std::move(Other)); 1329 } 1330 1331 SpeculativeEvaluationRAII &operator=(SpeculativeEvaluationRAII &&Other) { 1332 maybeRestoreState(); 1333 moveFromAndCancel(std::move(Other)); 1334 return *this; 1335 } 1336 1337 ~SpeculativeEvaluationRAII() { maybeRestoreState(); } 1338 }; 1339 1340 /// RAII object wrapping a full-expression or block scope, and handling 1341 /// the ending of the lifetime of temporaries created within it. 1342 template<ScopeKind Kind> 1343 class ScopeRAII { 1344 EvalInfo &Info; 1345 unsigned OldStackSize; 1346 public: 1347 ScopeRAII(EvalInfo &Info) 1348 : Info(Info), OldStackSize(Info.CleanupStack.size()) { 1349 // Push a new temporary version. This is needed to distinguish between 1350 // temporaries created in different iterations of a loop. 1351 Info.CurrentCall->pushTempVersion(); 1352 } 1353 bool destroy(bool RunDestructors = true) { 1354 bool OK = cleanup(Info, RunDestructors, OldStackSize); 1355 OldStackSize = -1U; 1356 return OK; 1357 } 1358 ~ScopeRAII() { 1359 if (OldStackSize != -1U) 1360 destroy(false); 1361 // Body moved to a static method to encourage the compiler to inline away 1362 // instances of this class. 1363 Info.CurrentCall->popTempVersion(); 1364 } 1365 private: 1366 static bool cleanup(EvalInfo &Info, bool RunDestructors, 1367 unsigned OldStackSize) { 1368 assert(OldStackSize <= Info.CleanupStack.size() && 1369 "running cleanups out of order?"); 1370 1371 // Run all cleanups for a block scope, and non-lifetime-extended cleanups 1372 // for a full-expression scope. 1373 bool Success = true; 1374 for (unsigned I = Info.CleanupStack.size(); I > OldStackSize; --I) { 1375 if (Info.CleanupStack[I - 1].isDestroyedAtEndOf(Kind)) { 1376 if (!Info.CleanupStack[I - 1].endLifetime(Info, RunDestructors)) { 1377 Success = false; 1378 break; 1379 } 1380 } 1381 } 1382 1383 // Compact any retained cleanups. 1384 auto NewEnd = Info.CleanupStack.begin() + OldStackSize; 1385 if (Kind != ScopeKind::Block) 1386 NewEnd = 1387 std::remove_if(NewEnd, Info.CleanupStack.end(), [](Cleanup &C) { 1388 return C.isDestroyedAtEndOf(Kind); 1389 }); 1390 Info.CleanupStack.erase(NewEnd, Info.CleanupStack.end()); 1391 return Success; 1392 } 1393 }; 1394 typedef ScopeRAII<ScopeKind::Block> BlockScopeRAII; 1395 typedef ScopeRAII<ScopeKind::FullExpression> FullExpressionRAII; 1396 typedef ScopeRAII<ScopeKind::Call> CallScopeRAII; 1397 } 1398 1399 bool SubobjectDesignator::checkSubobject(EvalInfo &Info, const Expr *E, 1400 CheckSubobjectKind CSK) { 1401 if (Invalid) 1402 return false; 1403 if (isOnePastTheEnd()) { 1404 Info.CCEDiag(E, diag::note_constexpr_past_end_subobject) 1405 << CSK; 1406 setInvalid(); 1407 return false; 1408 } 1409 // Note, we do not diagnose if isMostDerivedAnUnsizedArray(), because there 1410 // must actually be at least one array element; even a VLA cannot have a 1411 // bound of zero. And if our index is nonzero, we already had a CCEDiag. 1412 return true; 1413 } 1414 1415 void SubobjectDesignator::diagnoseUnsizedArrayPointerArithmetic(EvalInfo &Info, 1416 const Expr *E) { 1417 Info.CCEDiag(E, diag::note_constexpr_unsized_array_indexed); 1418 // Do not set the designator as invalid: we can represent this situation, 1419 // and correct handling of __builtin_object_size requires us to do so. 1420 } 1421 1422 void SubobjectDesignator::diagnosePointerArithmetic(EvalInfo &Info, 1423 const Expr *E, 1424 const APSInt &N) { 1425 // If we're complaining, we must be able to statically determine the size of 1426 // the most derived array. 1427 if (MostDerivedPathLength == Entries.size() && MostDerivedIsArrayElement) 1428 Info.CCEDiag(E, diag::note_constexpr_array_index) 1429 << N << /*array*/ 0 1430 << static_cast<unsigned>(getMostDerivedArraySize()); 1431 else 1432 Info.CCEDiag(E, diag::note_constexpr_array_index) 1433 << N << /*non-array*/ 1; 1434 setInvalid(); 1435 } 1436 1437 CallStackFrame::CallStackFrame(EvalInfo &Info, SourceLocation CallLoc, 1438 const FunctionDecl *Callee, const LValue *This, 1439 CallRef Call) 1440 : Info(Info), Caller(Info.CurrentCall), Callee(Callee), This(This), 1441 Arguments(Call), CallLoc(CallLoc), Index(Info.NextCallIndex++) { 1442 Info.CurrentCall = this; 1443 ++Info.CallStackDepth; 1444 } 1445 1446 CallStackFrame::~CallStackFrame() { 1447 assert(Info.CurrentCall == this && "calls retired out of order"); 1448 --Info.CallStackDepth; 1449 Info.CurrentCall = Caller; 1450 } 1451 1452 static bool isRead(AccessKinds AK) { 1453 return AK == AK_Read || AK == AK_ReadObjectRepresentation; 1454 } 1455 1456 static bool isModification(AccessKinds AK) { 1457 switch (AK) { 1458 case AK_Read: 1459 case AK_ReadObjectRepresentation: 1460 case AK_MemberCall: 1461 case AK_DynamicCast: 1462 case AK_TypeId: 1463 return false; 1464 case AK_Assign: 1465 case AK_Increment: 1466 case AK_Decrement: 1467 case AK_Construct: 1468 case AK_Destroy: 1469 return true; 1470 } 1471 llvm_unreachable("unknown access kind"); 1472 } 1473 1474 static bool isAnyAccess(AccessKinds AK) { 1475 return isRead(AK) || isModification(AK); 1476 } 1477 1478 /// Is this an access per the C++ definition? 1479 static bool isFormalAccess(AccessKinds AK) { 1480 return isAnyAccess(AK) && AK != AK_Construct && AK != AK_Destroy; 1481 } 1482 1483 /// Is this kind of axcess valid on an indeterminate object value? 1484 static bool isValidIndeterminateAccess(AccessKinds AK) { 1485 switch (AK) { 1486 case AK_Read: 1487 case AK_Increment: 1488 case AK_Decrement: 1489 // These need the object's value. 1490 return false; 1491 1492 case AK_ReadObjectRepresentation: 1493 case AK_Assign: 1494 case AK_Construct: 1495 case AK_Destroy: 1496 // Construction and destruction don't need the value. 1497 return true; 1498 1499 case AK_MemberCall: 1500 case AK_DynamicCast: 1501 case AK_TypeId: 1502 // These aren't really meaningful on scalars. 1503 return true; 1504 } 1505 llvm_unreachable("unknown access kind"); 1506 } 1507 1508 namespace { 1509 struct ComplexValue { 1510 private: 1511 bool IsInt; 1512 1513 public: 1514 APSInt IntReal, IntImag; 1515 APFloat FloatReal, FloatImag; 1516 1517 ComplexValue() : FloatReal(APFloat::Bogus()), FloatImag(APFloat::Bogus()) {} 1518 1519 void makeComplexFloat() { IsInt = false; } 1520 bool isComplexFloat() const { return !IsInt; } 1521 APFloat &getComplexFloatReal() { return FloatReal; } 1522 APFloat &getComplexFloatImag() { return FloatImag; } 1523 1524 void makeComplexInt() { IsInt = true; } 1525 bool isComplexInt() const { return IsInt; } 1526 APSInt &getComplexIntReal() { return IntReal; } 1527 APSInt &getComplexIntImag() { return IntImag; } 1528 1529 void moveInto(APValue &v) const { 1530 if (isComplexFloat()) 1531 v = APValue(FloatReal, FloatImag); 1532 else 1533 v = APValue(IntReal, IntImag); 1534 } 1535 void setFrom(const APValue &v) { 1536 assert(v.isComplexFloat() || v.isComplexInt()); 1537 if (v.isComplexFloat()) { 1538 makeComplexFloat(); 1539 FloatReal = v.getComplexFloatReal(); 1540 FloatImag = v.getComplexFloatImag(); 1541 } else { 1542 makeComplexInt(); 1543 IntReal = v.getComplexIntReal(); 1544 IntImag = v.getComplexIntImag(); 1545 } 1546 } 1547 }; 1548 1549 struct LValue { 1550 APValue::LValueBase Base; 1551 CharUnits Offset; 1552 SubobjectDesignator Designator; 1553 bool IsNullPtr : 1; 1554 bool InvalidBase : 1; 1555 1556 const APValue::LValueBase getLValueBase() const { return Base; } 1557 CharUnits &getLValueOffset() { return Offset; } 1558 const CharUnits &getLValueOffset() const { return Offset; } 1559 SubobjectDesignator &getLValueDesignator() { return Designator; } 1560 const SubobjectDesignator &getLValueDesignator() const { return Designator;} 1561 bool isNullPointer() const { return IsNullPtr;} 1562 1563 unsigned getLValueCallIndex() const { return Base.getCallIndex(); } 1564 unsigned getLValueVersion() const { return Base.getVersion(); } 1565 1566 void moveInto(APValue &V) const { 1567 if (Designator.Invalid) 1568 V = APValue(Base, Offset, APValue::NoLValuePath(), IsNullPtr); 1569 else { 1570 assert(!InvalidBase && "APValues can't handle invalid LValue bases"); 1571 V = APValue(Base, Offset, Designator.Entries, 1572 Designator.IsOnePastTheEnd, IsNullPtr); 1573 } 1574 } 1575 void setFrom(ASTContext &Ctx, const APValue &V) { 1576 assert(V.isLValue() && "Setting LValue from a non-LValue?"); 1577 Base = V.getLValueBase(); 1578 Offset = V.getLValueOffset(); 1579 InvalidBase = false; 1580 Designator = SubobjectDesignator(Ctx, V); 1581 IsNullPtr = V.isNullPointer(); 1582 } 1583 1584 void set(APValue::LValueBase B, bool BInvalid = false) { 1585 #ifndef NDEBUG 1586 // We only allow a few types of invalid bases. Enforce that here. 1587 if (BInvalid) { 1588 const auto *E = B.get<const Expr *>(); 1589 assert((isa<MemberExpr>(E) || tryUnwrapAllocSizeCall(E)) && 1590 "Unexpected type of invalid base"); 1591 } 1592 #endif 1593 1594 Base = B; 1595 Offset = CharUnits::fromQuantity(0); 1596 InvalidBase = BInvalid; 1597 Designator = SubobjectDesignator(getType(B)); 1598 IsNullPtr = false; 1599 } 1600 1601 void setNull(ASTContext &Ctx, QualType PointerTy) { 1602 Base = (const ValueDecl *)nullptr; 1603 Offset = 1604 CharUnits::fromQuantity(Ctx.getTargetNullPointerValue(PointerTy)); 1605 InvalidBase = false; 1606 Designator = SubobjectDesignator(PointerTy->getPointeeType()); 1607 IsNullPtr = true; 1608 } 1609 1610 void setInvalid(APValue::LValueBase B, unsigned I = 0) { 1611 set(B, true); 1612 } 1613 1614 std::string toString(ASTContext &Ctx, QualType T) const { 1615 APValue Printable; 1616 moveInto(Printable); 1617 return Printable.getAsString(Ctx, T); 1618 } 1619 1620 private: 1621 // Check that this LValue is not based on a null pointer. If it is, produce 1622 // a diagnostic and mark the designator as invalid. 1623 template <typename GenDiagType> 1624 bool checkNullPointerDiagnosingWith(const GenDiagType &GenDiag) { 1625 if (Designator.Invalid) 1626 return false; 1627 if (IsNullPtr) { 1628 GenDiag(); 1629 Designator.setInvalid(); 1630 return false; 1631 } 1632 return true; 1633 } 1634 1635 public: 1636 bool checkNullPointer(EvalInfo &Info, const Expr *E, 1637 CheckSubobjectKind CSK) { 1638 return checkNullPointerDiagnosingWith([&Info, E, CSK] { 1639 Info.CCEDiag(E, diag::note_constexpr_null_subobject) << CSK; 1640 }); 1641 } 1642 1643 bool checkNullPointerForFoldAccess(EvalInfo &Info, const Expr *E, 1644 AccessKinds AK) { 1645 return checkNullPointerDiagnosingWith([&Info, E, AK] { 1646 Info.FFDiag(E, diag::note_constexpr_access_null) << AK; 1647 }); 1648 } 1649 1650 // Check this LValue refers to an object. If not, set the designator to be 1651 // invalid and emit a diagnostic. 1652 bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK) { 1653 return (CSK == CSK_ArrayToPointer || checkNullPointer(Info, E, CSK)) && 1654 Designator.checkSubobject(Info, E, CSK); 1655 } 1656 1657 void addDecl(EvalInfo &Info, const Expr *E, 1658 const Decl *D, bool Virtual = false) { 1659 if (checkSubobject(Info, E, isa<FieldDecl>(D) ? CSK_Field : CSK_Base)) 1660 Designator.addDeclUnchecked(D, Virtual); 1661 } 1662 void addUnsizedArray(EvalInfo &Info, const Expr *E, QualType ElemTy) { 1663 if (!Designator.Entries.empty()) { 1664 Info.CCEDiag(E, diag::note_constexpr_unsupported_unsized_array); 1665 Designator.setInvalid(); 1666 return; 1667 } 1668 if (checkSubobject(Info, E, CSK_ArrayToPointer)) { 1669 assert(getType(Base)->isPointerType() || getType(Base)->isArrayType()); 1670 Designator.FirstEntryIsAnUnsizedArray = true; 1671 Designator.addUnsizedArrayUnchecked(ElemTy); 1672 } 1673 } 1674 void addArray(EvalInfo &Info, const Expr *E, const ConstantArrayType *CAT) { 1675 if (checkSubobject(Info, E, CSK_ArrayToPointer)) 1676 Designator.addArrayUnchecked(CAT); 1677 } 1678 void addComplex(EvalInfo &Info, const Expr *E, QualType EltTy, bool Imag) { 1679 if (checkSubobject(Info, E, Imag ? CSK_Imag : CSK_Real)) 1680 Designator.addComplexUnchecked(EltTy, Imag); 1681 } 1682 void clearIsNullPointer() { 1683 IsNullPtr = false; 1684 } 1685 void adjustOffsetAndIndex(EvalInfo &Info, const Expr *E, 1686 const APSInt &Index, CharUnits ElementSize) { 1687 // An index of 0 has no effect. (In C, adding 0 to a null pointer is UB, 1688 // but we're not required to diagnose it and it's valid in C++.) 1689 if (!Index) 1690 return; 1691 1692 // Compute the new offset in the appropriate width, wrapping at 64 bits. 1693 // FIXME: When compiling for a 32-bit target, we should use 32-bit 1694 // offsets. 1695 uint64_t Offset64 = Offset.getQuantity(); 1696 uint64_t ElemSize64 = ElementSize.getQuantity(); 1697 uint64_t Index64 = Index.extOrTrunc(64).getZExtValue(); 1698 Offset = CharUnits::fromQuantity(Offset64 + ElemSize64 * Index64); 1699 1700 if (checkNullPointer(Info, E, CSK_ArrayIndex)) 1701 Designator.adjustIndex(Info, E, Index); 1702 clearIsNullPointer(); 1703 } 1704 void adjustOffset(CharUnits N) { 1705 Offset += N; 1706 if (N.getQuantity()) 1707 clearIsNullPointer(); 1708 } 1709 }; 1710 1711 struct MemberPtr { 1712 MemberPtr() {} 1713 explicit MemberPtr(const ValueDecl *Decl) : 1714 DeclAndIsDerivedMember(Decl, false), Path() {} 1715 1716 /// The member or (direct or indirect) field referred to by this member 1717 /// pointer, or 0 if this is a null member pointer. 1718 const ValueDecl *getDecl() const { 1719 return DeclAndIsDerivedMember.getPointer(); 1720 } 1721 /// Is this actually a member of some type derived from the relevant class? 1722 bool isDerivedMember() const { 1723 return DeclAndIsDerivedMember.getInt(); 1724 } 1725 /// Get the class which the declaration actually lives in. 1726 const CXXRecordDecl *getContainingRecord() const { 1727 return cast<CXXRecordDecl>( 1728 DeclAndIsDerivedMember.getPointer()->getDeclContext()); 1729 } 1730 1731 void moveInto(APValue &V) const { 1732 V = APValue(getDecl(), isDerivedMember(), Path); 1733 } 1734 void setFrom(const APValue &V) { 1735 assert(V.isMemberPointer()); 1736 DeclAndIsDerivedMember.setPointer(V.getMemberPointerDecl()); 1737 DeclAndIsDerivedMember.setInt(V.isMemberPointerToDerivedMember()); 1738 Path.clear(); 1739 ArrayRef<const CXXRecordDecl*> P = V.getMemberPointerPath(); 1740 Path.insert(Path.end(), P.begin(), P.end()); 1741 } 1742 1743 /// DeclAndIsDerivedMember - The member declaration, and a flag indicating 1744 /// whether the member is a member of some class derived from the class type 1745 /// of the member pointer. 1746 llvm::PointerIntPair<const ValueDecl*, 1, bool> DeclAndIsDerivedMember; 1747 /// Path - The path of base/derived classes from the member declaration's 1748 /// class (exclusive) to the class type of the member pointer (inclusive). 1749 SmallVector<const CXXRecordDecl*, 4> Path; 1750 1751 /// Perform a cast towards the class of the Decl (either up or down the 1752 /// hierarchy). 1753 bool castBack(const CXXRecordDecl *Class) { 1754 assert(!Path.empty()); 1755 const CXXRecordDecl *Expected; 1756 if (Path.size() >= 2) 1757 Expected = Path[Path.size() - 2]; 1758 else 1759 Expected = getContainingRecord(); 1760 if (Expected->getCanonicalDecl() != Class->getCanonicalDecl()) { 1761 // C++11 [expr.static.cast]p12: In a conversion from (D::*) to (B::*), 1762 // if B does not contain the original member and is not a base or 1763 // derived class of the class containing the original member, the result 1764 // of the cast is undefined. 1765 // C++11 [conv.mem]p2 does not cover this case for a cast from (B::*) to 1766 // (D::*). We consider that to be a language defect. 1767 return false; 1768 } 1769 Path.pop_back(); 1770 return true; 1771 } 1772 /// Perform a base-to-derived member pointer cast. 1773 bool castToDerived(const CXXRecordDecl *Derived) { 1774 if (!getDecl()) 1775 return true; 1776 if (!isDerivedMember()) { 1777 Path.push_back(Derived); 1778 return true; 1779 } 1780 if (!castBack(Derived)) 1781 return false; 1782 if (Path.empty()) 1783 DeclAndIsDerivedMember.setInt(false); 1784 return true; 1785 } 1786 /// Perform a derived-to-base member pointer cast. 1787 bool castToBase(const CXXRecordDecl *Base) { 1788 if (!getDecl()) 1789 return true; 1790 if (Path.empty()) 1791 DeclAndIsDerivedMember.setInt(true); 1792 if (isDerivedMember()) { 1793 Path.push_back(Base); 1794 return true; 1795 } 1796 return castBack(Base); 1797 } 1798 }; 1799 1800 /// Compare two member pointers, which are assumed to be of the same type. 1801 static bool operator==(const MemberPtr &LHS, const MemberPtr &RHS) { 1802 if (!LHS.getDecl() || !RHS.getDecl()) 1803 return !LHS.getDecl() && !RHS.getDecl(); 1804 if (LHS.getDecl()->getCanonicalDecl() != RHS.getDecl()->getCanonicalDecl()) 1805 return false; 1806 return LHS.Path == RHS.Path; 1807 } 1808 } 1809 1810 static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E); 1811 static bool EvaluateInPlace(APValue &Result, EvalInfo &Info, 1812 const LValue &This, const Expr *E, 1813 bool AllowNonLiteralTypes = false); 1814 static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info, 1815 bool InvalidBaseOK = false); 1816 static bool EvaluatePointer(const Expr *E, LValue &Result, EvalInfo &Info, 1817 bool InvalidBaseOK = false); 1818 static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result, 1819 EvalInfo &Info); 1820 static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info); 1821 static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info); 1822 static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result, 1823 EvalInfo &Info); 1824 static bool EvaluateFloat(const Expr *E, APFloat &Result, EvalInfo &Info); 1825 static bool EvaluateComplex(const Expr *E, ComplexValue &Res, EvalInfo &Info); 1826 static bool EvaluateAtomic(const Expr *E, const LValue *This, APValue &Result, 1827 EvalInfo &Info); 1828 static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result); 1829 1830 /// Evaluate an integer or fixed point expression into an APResult. 1831 static bool EvaluateFixedPointOrInteger(const Expr *E, APFixedPoint &Result, 1832 EvalInfo &Info); 1833 1834 /// Evaluate only a fixed point expression into an APResult. 1835 static bool EvaluateFixedPoint(const Expr *E, APFixedPoint &Result, 1836 EvalInfo &Info); 1837 1838 //===----------------------------------------------------------------------===// 1839 // Misc utilities 1840 //===----------------------------------------------------------------------===// 1841 1842 /// Negate an APSInt in place, converting it to a signed form if necessary, and 1843 /// preserving its value (by extending by up to one bit as needed). 1844 static void negateAsSigned(APSInt &Int) { 1845 if (Int.isUnsigned() || Int.isMinSignedValue()) { 1846 Int = Int.extend(Int.getBitWidth() + 1); 1847 Int.setIsSigned(true); 1848 } 1849 Int = -Int; 1850 } 1851 1852 template<typename KeyT> 1853 APValue &CallStackFrame::createTemporary(const KeyT *Key, QualType T, 1854 ScopeKind Scope, LValue &LV) { 1855 unsigned Version = getTempVersion(); 1856 APValue::LValueBase Base(Key, Index, Version); 1857 LV.set(Base); 1858 return createLocal(Base, Key, T, Scope); 1859 } 1860 1861 /// Allocate storage for a parameter of a function call made in this frame. 1862 APValue &CallStackFrame::createParam(CallRef Args, const ParmVarDecl *PVD, 1863 LValue &LV) { 1864 assert(Args.CallIndex == Index && "creating parameter in wrong frame"); 1865 APValue::LValueBase Base(PVD, Index, Args.Version); 1866 LV.set(Base); 1867 // We always destroy parameters at the end of the call, even if we'd allow 1868 // them to live to the end of the full-expression at runtime, in order to 1869 // give portable results and match other compilers. 1870 return createLocal(Base, PVD, PVD->getType(), ScopeKind::Call); 1871 } 1872 1873 APValue &CallStackFrame::createLocal(APValue::LValueBase Base, const void *Key, 1874 QualType T, ScopeKind Scope) { 1875 assert(Base.getCallIndex() == Index && "lvalue for wrong frame"); 1876 unsigned Version = Base.getVersion(); 1877 APValue &Result = Temporaries[MapKeyTy(Key, Version)]; 1878 assert(Result.isAbsent() && "local created multiple times"); 1879 1880 // If we're creating a local immediately in the operand of a speculative 1881 // evaluation, don't register a cleanup to be run outside the speculative 1882 // evaluation context, since we won't actually be able to initialize this 1883 // object. 1884 if (Index <= Info.SpeculativeEvaluationDepth) { 1885 if (T.isDestructedType()) 1886 Info.noteSideEffect(); 1887 } else { 1888 Info.CleanupStack.push_back(Cleanup(&Result, Base, T, Scope)); 1889 } 1890 return Result; 1891 } 1892 1893 APValue *EvalInfo::createHeapAlloc(const Expr *E, QualType T, LValue &LV) { 1894 if (NumHeapAllocs > DynamicAllocLValue::getMaxIndex()) { 1895 FFDiag(E, diag::note_constexpr_heap_alloc_limit_exceeded); 1896 return nullptr; 1897 } 1898 1899 DynamicAllocLValue DA(NumHeapAllocs++); 1900 LV.set(APValue::LValueBase::getDynamicAlloc(DA, T)); 1901 auto Result = HeapAllocs.emplace(std::piecewise_construct, 1902 std::forward_as_tuple(DA), std::tuple<>()); 1903 assert(Result.second && "reused a heap alloc index?"); 1904 Result.first->second.AllocExpr = E; 1905 return &Result.first->second.Value; 1906 } 1907 1908 /// Produce a string describing the given constexpr call. 1909 void CallStackFrame::describe(raw_ostream &Out) { 1910 unsigned ArgIndex = 0; 1911 bool IsMemberCall = isa<CXXMethodDecl>(Callee) && 1912 !isa<CXXConstructorDecl>(Callee) && 1913 cast<CXXMethodDecl>(Callee)->isInstance(); 1914 1915 if (!IsMemberCall) 1916 Out << *Callee << '('; 1917 1918 if (This && IsMemberCall) { 1919 APValue Val; 1920 This->moveInto(Val); 1921 Val.printPretty(Out, Info.Ctx, 1922 This->Designator.MostDerivedType); 1923 // FIXME: Add parens around Val if needed. 1924 Out << "->" << *Callee << '('; 1925 IsMemberCall = false; 1926 } 1927 1928 for (FunctionDecl::param_const_iterator I = Callee->param_begin(), 1929 E = Callee->param_end(); I != E; ++I, ++ArgIndex) { 1930 if (ArgIndex > (unsigned)IsMemberCall) 1931 Out << ", "; 1932 1933 const ParmVarDecl *Param = *I; 1934 APValue *V = Info.getParamSlot(Arguments, Param); 1935 if (V) 1936 V->printPretty(Out, Info.Ctx, Param->getType()); 1937 else 1938 Out << "<...>"; 1939 1940 if (ArgIndex == 0 && IsMemberCall) 1941 Out << "->" << *Callee << '('; 1942 } 1943 1944 Out << ')'; 1945 } 1946 1947 /// Evaluate an expression to see if it had side-effects, and discard its 1948 /// result. 1949 /// \return \c true if the caller should keep evaluating. 1950 static bool EvaluateIgnoredValue(EvalInfo &Info, const Expr *E) { 1951 assert(!E->isValueDependent()); 1952 APValue Scratch; 1953 if (!Evaluate(Scratch, Info, E)) 1954 // We don't need the value, but we might have skipped a side effect here. 1955 return Info.noteSideEffect(); 1956 return true; 1957 } 1958 1959 /// Should this call expression be treated as a string literal? 1960 static bool IsStringLiteralCall(const CallExpr *E) { 1961 unsigned Builtin = E->getBuiltinCallee(); 1962 return (Builtin == Builtin::BI__builtin___CFStringMakeConstantString || 1963 Builtin == Builtin::BI__builtin___NSStringMakeConstantString); 1964 } 1965 1966 static bool IsGlobalLValue(APValue::LValueBase B) { 1967 // C++11 [expr.const]p3 An address constant expression is a prvalue core 1968 // constant expression of pointer type that evaluates to... 1969 1970 // ... a null pointer value, or a prvalue core constant expression of type 1971 // std::nullptr_t. 1972 if (!B) return true; 1973 1974 if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) { 1975 // ... the address of an object with static storage duration, 1976 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 1977 return VD->hasGlobalStorage(); 1978 if (isa<TemplateParamObjectDecl>(D)) 1979 return true; 1980 // ... the address of a function, 1981 // ... the address of a GUID [MS extension], 1982 return isa<FunctionDecl>(D) || isa<MSGuidDecl>(D); 1983 } 1984 1985 if (B.is<TypeInfoLValue>() || B.is<DynamicAllocLValue>()) 1986 return true; 1987 1988 const Expr *E = B.get<const Expr*>(); 1989 switch (E->getStmtClass()) { 1990 default: 1991 return false; 1992 case Expr::CompoundLiteralExprClass: { 1993 const CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E); 1994 return CLE->isFileScope() && CLE->isLValue(); 1995 } 1996 case Expr::MaterializeTemporaryExprClass: 1997 // A materialized temporary might have been lifetime-extended to static 1998 // storage duration. 1999 return cast<MaterializeTemporaryExpr>(E)->getStorageDuration() == SD_Static; 2000 // A string literal has static storage duration. 2001 case Expr::StringLiteralClass: 2002 case Expr::PredefinedExprClass: 2003 case Expr::ObjCStringLiteralClass: 2004 case Expr::ObjCEncodeExprClass: 2005 return true; 2006 case Expr::ObjCBoxedExprClass: 2007 return cast<ObjCBoxedExpr>(E)->isExpressibleAsConstantInitializer(); 2008 case Expr::CallExprClass: 2009 return IsStringLiteralCall(cast<CallExpr>(E)); 2010 // For GCC compatibility, &&label has static storage duration. 2011 case Expr::AddrLabelExprClass: 2012 return true; 2013 // A Block literal expression may be used as the initialization value for 2014 // Block variables at global or local static scope. 2015 case Expr::BlockExprClass: 2016 return !cast<BlockExpr>(E)->getBlockDecl()->hasCaptures(); 2017 case Expr::ImplicitValueInitExprClass: 2018 // FIXME: 2019 // We can never form an lvalue with an implicit value initialization as its 2020 // base through expression evaluation, so these only appear in one case: the 2021 // implicit variable declaration we invent when checking whether a constexpr 2022 // constructor can produce a constant expression. We must assume that such 2023 // an expression might be a global lvalue. 2024 return true; 2025 } 2026 } 2027 2028 static const ValueDecl *GetLValueBaseDecl(const LValue &LVal) { 2029 return LVal.Base.dyn_cast<const ValueDecl*>(); 2030 } 2031 2032 static bool IsLiteralLValue(const LValue &Value) { 2033 if (Value.getLValueCallIndex()) 2034 return false; 2035 const Expr *E = Value.Base.dyn_cast<const Expr*>(); 2036 return E && !isa<MaterializeTemporaryExpr>(E); 2037 } 2038 2039 static bool IsWeakLValue(const LValue &Value) { 2040 const ValueDecl *Decl = GetLValueBaseDecl(Value); 2041 return Decl && Decl->isWeak(); 2042 } 2043 2044 static bool isZeroSized(const LValue &Value) { 2045 const ValueDecl *Decl = GetLValueBaseDecl(Value); 2046 if (Decl && isa<VarDecl>(Decl)) { 2047 QualType Ty = Decl->getType(); 2048 if (Ty->isArrayType()) 2049 return Ty->isIncompleteType() || 2050 Decl->getASTContext().getTypeSize(Ty) == 0; 2051 } 2052 return false; 2053 } 2054 2055 static bool HasSameBase(const LValue &A, const LValue &B) { 2056 if (!A.getLValueBase()) 2057 return !B.getLValueBase(); 2058 if (!B.getLValueBase()) 2059 return false; 2060 2061 if (A.getLValueBase().getOpaqueValue() != 2062 B.getLValueBase().getOpaqueValue()) 2063 return false; 2064 2065 return A.getLValueCallIndex() == B.getLValueCallIndex() && 2066 A.getLValueVersion() == B.getLValueVersion(); 2067 } 2068 2069 static void NoteLValueLocation(EvalInfo &Info, APValue::LValueBase Base) { 2070 assert(Base && "no location for a null lvalue"); 2071 const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>(); 2072 2073 // For a parameter, find the corresponding call stack frame (if it still 2074 // exists), and point at the parameter of the function definition we actually 2075 // invoked. 2076 if (auto *PVD = dyn_cast_or_null<ParmVarDecl>(VD)) { 2077 unsigned Idx = PVD->getFunctionScopeIndex(); 2078 for (CallStackFrame *F = Info.CurrentCall; F; F = F->Caller) { 2079 if (F->Arguments.CallIndex == Base.getCallIndex() && 2080 F->Arguments.Version == Base.getVersion() && F->Callee && 2081 Idx < F->Callee->getNumParams()) { 2082 VD = F->Callee->getParamDecl(Idx); 2083 break; 2084 } 2085 } 2086 } 2087 2088 if (VD) 2089 Info.Note(VD->getLocation(), diag::note_declared_at); 2090 else if (const Expr *E = Base.dyn_cast<const Expr*>()) 2091 Info.Note(E->getExprLoc(), diag::note_constexpr_temporary_here); 2092 else if (DynamicAllocLValue DA = Base.dyn_cast<DynamicAllocLValue>()) { 2093 // FIXME: Produce a note for dangling pointers too. 2094 if (Optional<DynAlloc*> Alloc = Info.lookupDynamicAlloc(DA)) 2095 Info.Note((*Alloc)->AllocExpr->getExprLoc(), 2096 diag::note_constexpr_dynamic_alloc_here); 2097 } 2098 // We have no information to show for a typeid(T) object. 2099 } 2100 2101 enum class CheckEvaluationResultKind { 2102 ConstantExpression, 2103 FullyInitialized, 2104 }; 2105 2106 /// Materialized temporaries that we've already checked to determine if they're 2107 /// initializsed by a constant expression. 2108 using CheckedTemporaries = 2109 llvm::SmallPtrSet<const MaterializeTemporaryExpr *, 8>; 2110 2111 static bool CheckEvaluationResult(CheckEvaluationResultKind CERK, 2112 EvalInfo &Info, SourceLocation DiagLoc, 2113 QualType Type, const APValue &Value, 2114 ConstantExprKind Kind, 2115 SourceLocation SubobjectLoc, 2116 CheckedTemporaries &CheckedTemps); 2117 2118 /// Check that this reference or pointer core constant expression is a valid 2119 /// value for an address or reference constant expression. Return true if we 2120 /// can fold this expression, whether or not it's a constant expression. 2121 static bool CheckLValueConstantExpression(EvalInfo &Info, SourceLocation Loc, 2122 QualType Type, const LValue &LVal, 2123 ConstantExprKind Kind, 2124 CheckedTemporaries &CheckedTemps) { 2125 bool IsReferenceType = Type->isReferenceType(); 2126 2127 APValue::LValueBase Base = LVal.getLValueBase(); 2128 const SubobjectDesignator &Designator = LVal.getLValueDesignator(); 2129 2130 const Expr *BaseE = Base.dyn_cast<const Expr *>(); 2131 const ValueDecl *BaseVD = Base.dyn_cast<const ValueDecl*>(); 2132 2133 // Additional restrictions apply in a template argument. We only enforce the 2134 // C++20 restrictions here; additional syntactic and semantic restrictions 2135 // are applied elsewhere. 2136 if (isTemplateArgument(Kind)) { 2137 int InvalidBaseKind = -1; 2138 StringRef Ident; 2139 if (Base.is<TypeInfoLValue>()) 2140 InvalidBaseKind = 0; 2141 else if (isa_and_nonnull<StringLiteral>(BaseE)) 2142 InvalidBaseKind = 1; 2143 else if (isa_and_nonnull<MaterializeTemporaryExpr>(BaseE) || 2144 isa_and_nonnull<LifetimeExtendedTemporaryDecl>(BaseVD)) 2145 InvalidBaseKind = 2; 2146 else if (auto *PE = dyn_cast_or_null<PredefinedExpr>(BaseE)) { 2147 InvalidBaseKind = 3; 2148 Ident = PE->getIdentKindName(); 2149 } 2150 2151 if (InvalidBaseKind != -1) { 2152 Info.FFDiag(Loc, diag::note_constexpr_invalid_template_arg) 2153 << IsReferenceType << !Designator.Entries.empty() << InvalidBaseKind 2154 << Ident; 2155 return false; 2156 } 2157 } 2158 2159 if (auto *FD = dyn_cast_or_null<FunctionDecl>(BaseVD)) { 2160 if (FD->isConsteval()) { 2161 Info.FFDiag(Loc, diag::note_consteval_address_accessible) 2162 << !Type->isAnyPointerType(); 2163 Info.Note(FD->getLocation(), diag::note_declared_at); 2164 return false; 2165 } 2166 } 2167 2168 // Check that the object is a global. Note that the fake 'this' object we 2169 // manufacture when checking potential constant expressions is conservatively 2170 // assumed to be global here. 2171 if (!IsGlobalLValue(Base)) { 2172 if (Info.getLangOpts().CPlusPlus11) { 2173 const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>(); 2174 Info.FFDiag(Loc, diag::note_constexpr_non_global, 1) 2175 << IsReferenceType << !Designator.Entries.empty() 2176 << !!VD << VD; 2177 2178 auto *VarD = dyn_cast_or_null<VarDecl>(VD); 2179 if (VarD && VarD->isConstexpr()) { 2180 // Non-static local constexpr variables have unintuitive semantics: 2181 // constexpr int a = 1; 2182 // constexpr const int *p = &a; 2183 // ... is invalid because the address of 'a' is not constant. Suggest 2184 // adding a 'static' in this case. 2185 Info.Note(VarD->getLocation(), diag::note_constexpr_not_static) 2186 << VarD 2187 << FixItHint::CreateInsertion(VarD->getBeginLoc(), "static "); 2188 } else { 2189 NoteLValueLocation(Info, Base); 2190 } 2191 } else { 2192 Info.FFDiag(Loc); 2193 } 2194 // Don't allow references to temporaries to escape. 2195 return false; 2196 } 2197 assert((Info.checkingPotentialConstantExpression() || 2198 LVal.getLValueCallIndex() == 0) && 2199 "have call index for global lvalue"); 2200 2201 if (Base.is<DynamicAllocLValue>()) { 2202 Info.FFDiag(Loc, diag::note_constexpr_dynamic_alloc) 2203 << IsReferenceType << !Designator.Entries.empty(); 2204 NoteLValueLocation(Info, Base); 2205 return false; 2206 } 2207 2208 if (BaseVD) { 2209 if (const VarDecl *Var = dyn_cast<const VarDecl>(BaseVD)) { 2210 // Check if this is a thread-local variable. 2211 if (Var->getTLSKind()) 2212 // FIXME: Diagnostic! 2213 return false; 2214 2215 // A dllimport variable never acts like a constant, unless we're 2216 // evaluating a value for use only in name mangling. 2217 if (!isForManglingOnly(Kind) && Var->hasAttr<DLLImportAttr>()) 2218 // FIXME: Diagnostic! 2219 return false; 2220 } 2221 if (const auto *FD = dyn_cast<const FunctionDecl>(BaseVD)) { 2222 // __declspec(dllimport) must be handled very carefully: 2223 // We must never initialize an expression with the thunk in C++. 2224 // Doing otherwise would allow the same id-expression to yield 2225 // different addresses for the same function in different translation 2226 // units. However, this means that we must dynamically initialize the 2227 // expression with the contents of the import address table at runtime. 2228 // 2229 // The C language has no notion of ODR; furthermore, it has no notion of 2230 // dynamic initialization. This means that we are permitted to 2231 // perform initialization with the address of the thunk. 2232 if (Info.getLangOpts().CPlusPlus && !isForManglingOnly(Kind) && 2233 FD->hasAttr<DLLImportAttr>()) 2234 // FIXME: Diagnostic! 2235 return false; 2236 } 2237 } else if (const auto *MTE = 2238 dyn_cast_or_null<MaterializeTemporaryExpr>(BaseE)) { 2239 if (CheckedTemps.insert(MTE).second) { 2240 QualType TempType = getType(Base); 2241 if (TempType.isDestructedType()) { 2242 Info.FFDiag(MTE->getExprLoc(), 2243 diag::note_constexpr_unsupported_temporary_nontrivial_dtor) 2244 << TempType; 2245 return false; 2246 } 2247 2248 APValue *V = MTE->getOrCreateValue(false); 2249 assert(V && "evasluation result refers to uninitialised temporary"); 2250 if (!CheckEvaluationResult(CheckEvaluationResultKind::ConstantExpression, 2251 Info, MTE->getExprLoc(), TempType, *V, 2252 Kind, SourceLocation(), CheckedTemps)) 2253 return false; 2254 } 2255 } 2256 2257 // Allow address constant expressions to be past-the-end pointers. This is 2258 // an extension: the standard requires them to point to an object. 2259 if (!IsReferenceType) 2260 return true; 2261 2262 // A reference constant expression must refer to an object. 2263 if (!Base) { 2264 // FIXME: diagnostic 2265 Info.CCEDiag(Loc); 2266 return true; 2267 } 2268 2269 // Does this refer one past the end of some object? 2270 if (!Designator.Invalid && Designator.isOnePastTheEnd()) { 2271 Info.FFDiag(Loc, diag::note_constexpr_past_end, 1) 2272 << !Designator.Entries.empty() << !!BaseVD << BaseVD; 2273 NoteLValueLocation(Info, Base); 2274 } 2275 2276 return true; 2277 } 2278 2279 /// Member pointers are constant expressions unless they point to a 2280 /// non-virtual dllimport member function. 2281 static bool CheckMemberPointerConstantExpression(EvalInfo &Info, 2282 SourceLocation Loc, 2283 QualType Type, 2284 const APValue &Value, 2285 ConstantExprKind Kind) { 2286 const ValueDecl *Member = Value.getMemberPointerDecl(); 2287 const auto *FD = dyn_cast_or_null<CXXMethodDecl>(Member); 2288 if (!FD) 2289 return true; 2290 if (FD->isConsteval()) { 2291 Info.FFDiag(Loc, diag::note_consteval_address_accessible) << /*pointer*/ 0; 2292 Info.Note(FD->getLocation(), diag::note_declared_at); 2293 return false; 2294 } 2295 return isForManglingOnly(Kind) || FD->isVirtual() || 2296 !FD->hasAttr<DLLImportAttr>(); 2297 } 2298 2299 /// Check that this core constant expression is of literal type, and if not, 2300 /// produce an appropriate diagnostic. 2301 static bool CheckLiteralType(EvalInfo &Info, const Expr *E, 2302 const LValue *This = nullptr) { 2303 if (!E->isRValue() || E->getType()->isLiteralType(Info.Ctx)) 2304 return true; 2305 2306 // C++1y: A constant initializer for an object o [...] may also invoke 2307 // constexpr constructors for o and its subobjects even if those objects 2308 // are of non-literal class types. 2309 // 2310 // C++11 missed this detail for aggregates, so classes like this: 2311 // struct foo_t { union { int i; volatile int j; } u; }; 2312 // are not (obviously) initializable like so: 2313 // __attribute__((__require_constant_initialization__)) 2314 // static const foo_t x = {{0}}; 2315 // because "i" is a subobject with non-literal initialization (due to the 2316 // volatile member of the union). See: 2317 // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1677 2318 // Therefore, we use the C++1y behavior. 2319 if (This && Info.EvaluatingDecl == This->getLValueBase()) 2320 return true; 2321 2322 // Prvalue constant expressions must be of literal types. 2323 if (Info.getLangOpts().CPlusPlus11) 2324 Info.FFDiag(E, diag::note_constexpr_nonliteral) 2325 << E->getType(); 2326 else 2327 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); 2328 return false; 2329 } 2330 2331 static bool CheckEvaluationResult(CheckEvaluationResultKind CERK, 2332 EvalInfo &Info, SourceLocation DiagLoc, 2333 QualType Type, const APValue &Value, 2334 ConstantExprKind Kind, 2335 SourceLocation SubobjectLoc, 2336 CheckedTemporaries &CheckedTemps) { 2337 if (!Value.hasValue()) { 2338 Info.FFDiag(DiagLoc, diag::note_constexpr_uninitialized) 2339 << true << Type; 2340 if (SubobjectLoc.isValid()) 2341 Info.Note(SubobjectLoc, diag::note_constexpr_subobject_declared_here); 2342 return false; 2343 } 2344 2345 // We allow _Atomic(T) to be initialized from anything that T can be 2346 // initialized from. 2347 if (const AtomicType *AT = Type->getAs<AtomicType>()) 2348 Type = AT->getValueType(); 2349 2350 // Core issue 1454: For a literal constant expression of array or class type, 2351 // each subobject of its value shall have been initialized by a constant 2352 // expression. 2353 if (Value.isArray()) { 2354 QualType EltTy = Type->castAsArrayTypeUnsafe()->getElementType(); 2355 for (unsigned I = 0, N = Value.getArrayInitializedElts(); I != N; ++I) { 2356 if (!CheckEvaluationResult(CERK, Info, DiagLoc, EltTy, 2357 Value.getArrayInitializedElt(I), Kind, 2358 SubobjectLoc, CheckedTemps)) 2359 return false; 2360 } 2361 if (!Value.hasArrayFiller()) 2362 return true; 2363 return CheckEvaluationResult(CERK, Info, DiagLoc, EltTy, 2364 Value.getArrayFiller(), Kind, SubobjectLoc, 2365 CheckedTemps); 2366 } 2367 if (Value.isUnion() && Value.getUnionField()) { 2368 return CheckEvaluationResult( 2369 CERK, Info, DiagLoc, Value.getUnionField()->getType(), 2370 Value.getUnionValue(), Kind, Value.getUnionField()->getLocation(), 2371 CheckedTemps); 2372 } 2373 if (Value.isStruct()) { 2374 RecordDecl *RD = Type->castAs<RecordType>()->getDecl(); 2375 if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) { 2376 unsigned BaseIndex = 0; 2377 for (const CXXBaseSpecifier &BS : CD->bases()) { 2378 if (!CheckEvaluationResult(CERK, Info, DiagLoc, BS.getType(), 2379 Value.getStructBase(BaseIndex), Kind, 2380 BS.getBeginLoc(), CheckedTemps)) 2381 return false; 2382 ++BaseIndex; 2383 } 2384 } 2385 for (const auto *I : RD->fields()) { 2386 if (I->isUnnamedBitfield()) 2387 continue; 2388 2389 if (!CheckEvaluationResult(CERK, Info, DiagLoc, I->getType(), 2390 Value.getStructField(I->getFieldIndex()), 2391 Kind, I->getLocation(), CheckedTemps)) 2392 return false; 2393 } 2394 } 2395 2396 if (Value.isLValue() && 2397 CERK == CheckEvaluationResultKind::ConstantExpression) { 2398 LValue LVal; 2399 LVal.setFrom(Info.Ctx, Value); 2400 return CheckLValueConstantExpression(Info, DiagLoc, Type, LVal, Kind, 2401 CheckedTemps); 2402 } 2403 2404 if (Value.isMemberPointer() && 2405 CERK == CheckEvaluationResultKind::ConstantExpression) 2406 return CheckMemberPointerConstantExpression(Info, DiagLoc, Type, Value, Kind); 2407 2408 // Everything else is fine. 2409 return true; 2410 } 2411 2412 /// Check that this core constant expression value is a valid value for a 2413 /// constant expression. If not, report an appropriate diagnostic. Does not 2414 /// check that the expression is of literal type. 2415 static bool CheckConstantExpression(EvalInfo &Info, SourceLocation DiagLoc, 2416 QualType Type, const APValue &Value, 2417 ConstantExprKind Kind) { 2418 // Nothing to check for a constant expression of type 'cv void'. 2419 if (Type->isVoidType()) 2420 return true; 2421 2422 CheckedTemporaries CheckedTemps; 2423 return CheckEvaluationResult(CheckEvaluationResultKind::ConstantExpression, 2424 Info, DiagLoc, Type, Value, Kind, 2425 SourceLocation(), CheckedTemps); 2426 } 2427 2428 /// Check that this evaluated value is fully-initialized and can be loaded by 2429 /// an lvalue-to-rvalue conversion. 2430 static bool CheckFullyInitialized(EvalInfo &Info, SourceLocation DiagLoc, 2431 QualType Type, const APValue &Value) { 2432 CheckedTemporaries CheckedTemps; 2433 return CheckEvaluationResult( 2434 CheckEvaluationResultKind::FullyInitialized, Info, DiagLoc, Type, Value, 2435 ConstantExprKind::Normal, SourceLocation(), CheckedTemps); 2436 } 2437 2438 /// Enforce C++2a [expr.const]/4.17, which disallows new-expressions unless 2439 /// "the allocated storage is deallocated within the evaluation". 2440 static bool CheckMemoryLeaks(EvalInfo &Info) { 2441 if (!Info.HeapAllocs.empty()) { 2442 // We can still fold to a constant despite a compile-time memory leak, 2443 // so long as the heap allocation isn't referenced in the result (we check 2444 // that in CheckConstantExpression). 2445 Info.CCEDiag(Info.HeapAllocs.begin()->second.AllocExpr, 2446 diag::note_constexpr_memory_leak) 2447 << unsigned(Info.HeapAllocs.size() - 1); 2448 } 2449 return true; 2450 } 2451 2452 static bool EvalPointerValueAsBool(const APValue &Value, bool &Result) { 2453 // A null base expression indicates a null pointer. These are always 2454 // evaluatable, and they are false unless the offset is zero. 2455 if (!Value.getLValueBase()) { 2456 Result = !Value.getLValueOffset().isZero(); 2457 return true; 2458 } 2459 2460 // We have a non-null base. These are generally known to be true, but if it's 2461 // a weak declaration it can be null at runtime. 2462 Result = true; 2463 const ValueDecl *Decl = Value.getLValueBase().dyn_cast<const ValueDecl*>(); 2464 return !Decl || !Decl->isWeak(); 2465 } 2466 2467 static bool HandleConversionToBool(const APValue &Val, bool &Result) { 2468 switch (Val.getKind()) { 2469 case APValue::None: 2470 case APValue::Indeterminate: 2471 return false; 2472 case APValue::Int: 2473 Result = Val.getInt().getBoolValue(); 2474 return true; 2475 case APValue::FixedPoint: 2476 Result = Val.getFixedPoint().getBoolValue(); 2477 return true; 2478 case APValue::Float: 2479 Result = !Val.getFloat().isZero(); 2480 return true; 2481 case APValue::ComplexInt: 2482 Result = Val.getComplexIntReal().getBoolValue() || 2483 Val.getComplexIntImag().getBoolValue(); 2484 return true; 2485 case APValue::ComplexFloat: 2486 Result = !Val.getComplexFloatReal().isZero() || 2487 !Val.getComplexFloatImag().isZero(); 2488 return true; 2489 case APValue::LValue: 2490 return EvalPointerValueAsBool(Val, Result); 2491 case APValue::MemberPointer: 2492 Result = Val.getMemberPointerDecl(); 2493 return true; 2494 case APValue::Vector: 2495 case APValue::Array: 2496 case APValue::Struct: 2497 case APValue::Union: 2498 case APValue::AddrLabelDiff: 2499 return false; 2500 } 2501 2502 llvm_unreachable("unknown APValue kind"); 2503 } 2504 2505 static bool EvaluateAsBooleanCondition(const Expr *E, bool &Result, 2506 EvalInfo &Info) { 2507 assert(!E->isValueDependent()); 2508 assert(E->isRValue() && "missing lvalue-to-rvalue conv in bool condition"); 2509 APValue Val; 2510 if (!Evaluate(Val, Info, E)) 2511 return false; 2512 return HandleConversionToBool(Val, Result); 2513 } 2514 2515 template<typename T> 2516 static bool HandleOverflow(EvalInfo &Info, const Expr *E, 2517 const T &SrcValue, QualType DestType) { 2518 Info.CCEDiag(E, diag::note_constexpr_overflow) 2519 << SrcValue << DestType; 2520 return Info.noteUndefinedBehavior(); 2521 } 2522 2523 static bool HandleFloatToIntCast(EvalInfo &Info, const Expr *E, 2524 QualType SrcType, const APFloat &Value, 2525 QualType DestType, APSInt &Result) { 2526 unsigned DestWidth = Info.Ctx.getIntWidth(DestType); 2527 // Determine whether we are converting to unsigned or signed. 2528 bool DestSigned = DestType->isSignedIntegerOrEnumerationType(); 2529 2530 Result = APSInt(DestWidth, !DestSigned); 2531 bool ignored; 2532 if (Value.convertToInteger(Result, llvm::APFloat::rmTowardZero, &ignored) 2533 & APFloat::opInvalidOp) 2534 return HandleOverflow(Info, E, Value, DestType); 2535 return true; 2536 } 2537 2538 /// Get rounding mode used for evaluation of the specified expression. 2539 /// \param[out] DynamicRM Is set to true is the requested rounding mode is 2540 /// dynamic. 2541 /// If rounding mode is unknown at compile time, still try to evaluate the 2542 /// expression. If the result is exact, it does not depend on rounding mode. 2543 /// So return "tonearest" mode instead of "dynamic". 2544 static llvm::RoundingMode getActiveRoundingMode(EvalInfo &Info, const Expr *E, 2545 bool &DynamicRM) { 2546 llvm::RoundingMode RM = 2547 E->getFPFeaturesInEffect(Info.Ctx.getLangOpts()).getRoundingMode(); 2548 DynamicRM = (RM == llvm::RoundingMode::Dynamic); 2549 if (DynamicRM) 2550 RM = llvm::RoundingMode::NearestTiesToEven; 2551 return RM; 2552 } 2553 2554 /// Check if the given evaluation result is allowed for constant evaluation. 2555 static bool checkFloatingPointResult(EvalInfo &Info, const Expr *E, 2556 APFloat::opStatus St) { 2557 // In a constant context, assume that any dynamic rounding mode or FP 2558 // exception state matches the default floating-point environment. 2559 if (Info.InConstantContext) 2560 return true; 2561 2562 FPOptions FPO = E->getFPFeaturesInEffect(Info.Ctx.getLangOpts()); 2563 if ((St & APFloat::opInexact) && 2564 FPO.getRoundingMode() == llvm::RoundingMode::Dynamic) { 2565 // Inexact result means that it depends on rounding mode. If the requested 2566 // mode is dynamic, the evaluation cannot be made in compile time. 2567 Info.FFDiag(E, diag::note_constexpr_dynamic_rounding); 2568 return false; 2569 } 2570 2571 if ((St != APFloat::opOK) && 2572 (FPO.getRoundingMode() == llvm::RoundingMode::Dynamic || 2573 FPO.getFPExceptionMode() != LangOptions::FPE_Ignore || 2574 FPO.getAllowFEnvAccess())) { 2575 Info.FFDiag(E, diag::note_constexpr_float_arithmetic_strict); 2576 return false; 2577 } 2578 2579 if ((St & APFloat::opStatus::opInvalidOp) && 2580 FPO.getFPExceptionMode() != LangOptions::FPE_Ignore) { 2581 // There is no usefully definable result. 2582 Info.FFDiag(E); 2583 return false; 2584 } 2585 2586 // FIXME: if: 2587 // - evaluation triggered other FP exception, and 2588 // - exception mode is not "ignore", and 2589 // - the expression being evaluated is not a part of global variable 2590 // initializer, 2591 // the evaluation probably need to be rejected. 2592 return true; 2593 } 2594 2595 static bool HandleFloatToFloatCast(EvalInfo &Info, const Expr *E, 2596 QualType SrcType, QualType DestType, 2597 APFloat &Result) { 2598 assert(isa<CastExpr>(E) || isa<CompoundAssignOperator>(E)); 2599 bool DynamicRM; 2600 llvm::RoundingMode RM = getActiveRoundingMode(Info, E, DynamicRM); 2601 APFloat::opStatus St; 2602 APFloat Value = Result; 2603 bool ignored; 2604 St = Result.convert(Info.Ctx.getFloatTypeSemantics(DestType), RM, &ignored); 2605 return checkFloatingPointResult(Info, E, St); 2606 } 2607 2608 static APSInt HandleIntToIntCast(EvalInfo &Info, const Expr *E, 2609 QualType DestType, QualType SrcType, 2610 const APSInt &Value) { 2611 unsigned DestWidth = Info.Ctx.getIntWidth(DestType); 2612 // Figure out if this is a truncate, extend or noop cast. 2613 // If the input is signed, do a sign extend, noop, or truncate. 2614 APSInt Result = Value.extOrTrunc(DestWidth); 2615 Result.setIsUnsigned(DestType->isUnsignedIntegerOrEnumerationType()); 2616 if (DestType->isBooleanType()) 2617 Result = Value.getBoolValue(); 2618 return Result; 2619 } 2620 2621 static bool HandleIntToFloatCast(EvalInfo &Info, const Expr *E, 2622 const FPOptions FPO, 2623 QualType SrcType, const APSInt &Value, 2624 QualType DestType, APFloat &Result) { 2625 Result = APFloat(Info.Ctx.getFloatTypeSemantics(DestType), 1); 2626 APFloat::opStatus St = Result.convertFromAPInt(Value, Value.isSigned(), 2627 APFloat::rmNearestTiesToEven); 2628 if (!Info.InConstantContext && St != llvm::APFloatBase::opOK && 2629 FPO.isFPConstrained()) { 2630 Info.FFDiag(E, diag::note_constexpr_float_arithmetic_strict); 2631 return false; 2632 } 2633 return true; 2634 } 2635 2636 static bool truncateBitfieldValue(EvalInfo &Info, const Expr *E, 2637 APValue &Value, const FieldDecl *FD) { 2638 assert(FD->isBitField() && "truncateBitfieldValue on non-bitfield"); 2639 2640 if (!Value.isInt()) { 2641 // Trying to store a pointer-cast-to-integer into a bitfield. 2642 // FIXME: In this case, we should provide the diagnostic for casting 2643 // a pointer to an integer. 2644 assert(Value.isLValue() && "integral value neither int nor lvalue?"); 2645 Info.FFDiag(E); 2646 return false; 2647 } 2648 2649 APSInt &Int = Value.getInt(); 2650 unsigned OldBitWidth = Int.getBitWidth(); 2651 unsigned NewBitWidth = FD->getBitWidthValue(Info.Ctx); 2652 if (NewBitWidth < OldBitWidth) 2653 Int = Int.trunc(NewBitWidth).extend(OldBitWidth); 2654 return true; 2655 } 2656 2657 static bool EvalAndBitcastToAPInt(EvalInfo &Info, const Expr *E, 2658 llvm::APInt &Res) { 2659 APValue SVal; 2660 if (!Evaluate(SVal, Info, E)) 2661 return false; 2662 if (SVal.isInt()) { 2663 Res = SVal.getInt(); 2664 return true; 2665 } 2666 if (SVal.isFloat()) { 2667 Res = SVal.getFloat().bitcastToAPInt(); 2668 return true; 2669 } 2670 if (SVal.isVector()) { 2671 QualType VecTy = E->getType(); 2672 unsigned VecSize = Info.Ctx.getTypeSize(VecTy); 2673 QualType EltTy = VecTy->castAs<VectorType>()->getElementType(); 2674 unsigned EltSize = Info.Ctx.getTypeSize(EltTy); 2675 bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian(); 2676 Res = llvm::APInt::getNullValue(VecSize); 2677 for (unsigned i = 0; i < SVal.getVectorLength(); i++) { 2678 APValue &Elt = SVal.getVectorElt(i); 2679 llvm::APInt EltAsInt; 2680 if (Elt.isInt()) { 2681 EltAsInt = Elt.getInt(); 2682 } else if (Elt.isFloat()) { 2683 EltAsInt = Elt.getFloat().bitcastToAPInt(); 2684 } else { 2685 // Don't try to handle vectors of anything other than int or float 2686 // (not sure if it's possible to hit this case). 2687 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); 2688 return false; 2689 } 2690 unsigned BaseEltSize = EltAsInt.getBitWidth(); 2691 if (BigEndian) 2692 Res |= EltAsInt.zextOrTrunc(VecSize).rotr(i*EltSize+BaseEltSize); 2693 else 2694 Res |= EltAsInt.zextOrTrunc(VecSize).rotl(i*EltSize); 2695 } 2696 return true; 2697 } 2698 // Give up if the input isn't an int, float, or vector. For example, we 2699 // reject "(v4i16)(intptr_t)&a". 2700 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); 2701 return false; 2702 } 2703 2704 /// Perform the given integer operation, which is known to need at most BitWidth 2705 /// bits, and check for overflow in the original type (if that type was not an 2706 /// unsigned type). 2707 template<typename Operation> 2708 static bool CheckedIntArithmetic(EvalInfo &Info, const Expr *E, 2709 const APSInt &LHS, const APSInt &RHS, 2710 unsigned BitWidth, Operation Op, 2711 APSInt &Result) { 2712 if (LHS.isUnsigned()) { 2713 Result = Op(LHS, RHS); 2714 return true; 2715 } 2716 2717 APSInt Value(Op(LHS.extend(BitWidth), RHS.extend(BitWidth)), false); 2718 Result = Value.trunc(LHS.getBitWidth()); 2719 if (Result.extend(BitWidth) != Value) { 2720 if (Info.checkingForUndefinedBehavior()) 2721 Info.Ctx.getDiagnostics().Report(E->getExprLoc(), 2722 diag::warn_integer_constant_overflow) 2723 << Result.toString(10) << E->getType(); 2724 return HandleOverflow(Info, E, Value, E->getType()); 2725 } 2726 return true; 2727 } 2728 2729 /// Perform the given binary integer operation. 2730 static bool handleIntIntBinOp(EvalInfo &Info, const Expr *E, const APSInt &LHS, 2731 BinaryOperatorKind Opcode, APSInt RHS, 2732 APSInt &Result) { 2733 switch (Opcode) { 2734 default: 2735 Info.FFDiag(E); 2736 return false; 2737 case BO_Mul: 2738 return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() * 2, 2739 std::multiplies<APSInt>(), Result); 2740 case BO_Add: 2741 return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1, 2742 std::plus<APSInt>(), Result); 2743 case BO_Sub: 2744 return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1, 2745 std::minus<APSInt>(), Result); 2746 case BO_And: Result = LHS & RHS; return true; 2747 case BO_Xor: Result = LHS ^ RHS; return true; 2748 case BO_Or: Result = LHS | RHS; return true; 2749 case BO_Div: 2750 case BO_Rem: 2751 if (RHS == 0) { 2752 Info.FFDiag(E, diag::note_expr_divide_by_zero); 2753 return false; 2754 } 2755 Result = (Opcode == BO_Rem ? LHS % RHS : LHS / RHS); 2756 // Check for overflow case: INT_MIN / -1 or INT_MIN % -1. APSInt supports 2757 // this operation and gives the two's complement result. 2758 if (RHS.isNegative() && RHS.isAllOnesValue() && 2759 LHS.isSigned() && LHS.isMinSignedValue()) 2760 return HandleOverflow(Info, E, -LHS.extend(LHS.getBitWidth() + 1), 2761 E->getType()); 2762 return true; 2763 case BO_Shl: { 2764 if (Info.getLangOpts().OpenCL) 2765 // OpenCL 6.3j: shift values are effectively % word size of LHS. 2766 RHS &= APSInt(llvm::APInt(RHS.getBitWidth(), 2767 static_cast<uint64_t>(LHS.getBitWidth() - 1)), 2768 RHS.isUnsigned()); 2769 else if (RHS.isSigned() && RHS.isNegative()) { 2770 // During constant-folding, a negative shift is an opposite shift. Such 2771 // a shift is not a constant expression. 2772 Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS; 2773 RHS = -RHS; 2774 goto shift_right; 2775 } 2776 shift_left: 2777 // C++11 [expr.shift]p1: Shift width must be less than the bit width of 2778 // the shifted type. 2779 unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1); 2780 if (SA != RHS) { 2781 Info.CCEDiag(E, diag::note_constexpr_large_shift) 2782 << RHS << E->getType() << LHS.getBitWidth(); 2783 } else if (LHS.isSigned() && !Info.getLangOpts().CPlusPlus20) { 2784 // C++11 [expr.shift]p2: A signed left shift must have a non-negative 2785 // operand, and must not overflow the corresponding unsigned type. 2786 // C++2a [expr.shift]p2: E1 << E2 is the unique value congruent to 2787 // E1 x 2^E2 module 2^N. 2788 if (LHS.isNegative()) 2789 Info.CCEDiag(E, diag::note_constexpr_lshift_of_negative) << LHS; 2790 else if (LHS.countLeadingZeros() < SA) 2791 Info.CCEDiag(E, diag::note_constexpr_lshift_discards); 2792 } 2793 Result = LHS << SA; 2794 return true; 2795 } 2796 case BO_Shr: { 2797 if (Info.getLangOpts().OpenCL) 2798 // OpenCL 6.3j: shift values are effectively % word size of LHS. 2799 RHS &= APSInt(llvm::APInt(RHS.getBitWidth(), 2800 static_cast<uint64_t>(LHS.getBitWidth() - 1)), 2801 RHS.isUnsigned()); 2802 else if (RHS.isSigned() && RHS.isNegative()) { 2803 // During constant-folding, a negative shift is an opposite shift. Such a 2804 // shift is not a constant expression. 2805 Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS; 2806 RHS = -RHS; 2807 goto shift_left; 2808 } 2809 shift_right: 2810 // C++11 [expr.shift]p1: Shift width must be less than the bit width of the 2811 // shifted type. 2812 unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1); 2813 if (SA != RHS) 2814 Info.CCEDiag(E, diag::note_constexpr_large_shift) 2815 << RHS << E->getType() << LHS.getBitWidth(); 2816 Result = LHS >> SA; 2817 return true; 2818 } 2819 2820 case BO_LT: Result = LHS < RHS; return true; 2821 case BO_GT: Result = LHS > RHS; return true; 2822 case BO_LE: Result = LHS <= RHS; return true; 2823 case BO_GE: Result = LHS >= RHS; return true; 2824 case BO_EQ: Result = LHS == RHS; return true; 2825 case BO_NE: Result = LHS != RHS; return true; 2826 case BO_Cmp: 2827 llvm_unreachable("BO_Cmp should be handled elsewhere"); 2828 } 2829 } 2830 2831 /// Perform the given binary floating-point operation, in-place, on LHS. 2832 static bool handleFloatFloatBinOp(EvalInfo &Info, const BinaryOperator *E, 2833 APFloat &LHS, BinaryOperatorKind Opcode, 2834 const APFloat &RHS) { 2835 bool DynamicRM; 2836 llvm::RoundingMode RM = getActiveRoundingMode(Info, E, DynamicRM); 2837 APFloat::opStatus St; 2838 switch (Opcode) { 2839 default: 2840 Info.FFDiag(E); 2841 return false; 2842 case BO_Mul: 2843 St = LHS.multiply(RHS, RM); 2844 break; 2845 case BO_Add: 2846 St = LHS.add(RHS, RM); 2847 break; 2848 case BO_Sub: 2849 St = LHS.subtract(RHS, RM); 2850 break; 2851 case BO_Div: 2852 // [expr.mul]p4: 2853 // If the second operand of / or % is zero the behavior is undefined. 2854 if (RHS.isZero()) 2855 Info.CCEDiag(E, diag::note_expr_divide_by_zero); 2856 St = LHS.divide(RHS, RM); 2857 break; 2858 } 2859 2860 // [expr.pre]p4: 2861 // If during the evaluation of an expression, the result is not 2862 // mathematically defined [...], the behavior is undefined. 2863 // FIXME: C++ rules require us to not conform to IEEE 754 here. 2864 if (LHS.isNaN()) { 2865 Info.CCEDiag(E, diag::note_constexpr_float_arithmetic) << LHS.isNaN(); 2866 return Info.noteUndefinedBehavior(); 2867 } 2868 2869 return checkFloatingPointResult(Info, E, St); 2870 } 2871 2872 static bool handleLogicalOpForVector(const APInt &LHSValue, 2873 BinaryOperatorKind Opcode, 2874 const APInt &RHSValue, APInt &Result) { 2875 bool LHS = (LHSValue != 0); 2876 bool RHS = (RHSValue != 0); 2877 2878 if (Opcode == BO_LAnd) 2879 Result = LHS && RHS; 2880 else 2881 Result = LHS || RHS; 2882 return true; 2883 } 2884 static bool handleLogicalOpForVector(const APFloat &LHSValue, 2885 BinaryOperatorKind Opcode, 2886 const APFloat &RHSValue, APInt &Result) { 2887 bool LHS = !LHSValue.isZero(); 2888 bool RHS = !RHSValue.isZero(); 2889 2890 if (Opcode == BO_LAnd) 2891 Result = LHS && RHS; 2892 else 2893 Result = LHS || RHS; 2894 return true; 2895 } 2896 2897 static bool handleLogicalOpForVector(const APValue &LHSValue, 2898 BinaryOperatorKind Opcode, 2899 const APValue &RHSValue, APInt &Result) { 2900 // The result is always an int type, however operands match the first. 2901 if (LHSValue.getKind() == APValue::Int) 2902 return handleLogicalOpForVector(LHSValue.getInt(), Opcode, 2903 RHSValue.getInt(), Result); 2904 assert(LHSValue.getKind() == APValue::Float && "Should be no other options"); 2905 return handleLogicalOpForVector(LHSValue.getFloat(), Opcode, 2906 RHSValue.getFloat(), Result); 2907 } 2908 2909 template <typename APTy> 2910 static bool 2911 handleCompareOpForVectorHelper(const APTy &LHSValue, BinaryOperatorKind Opcode, 2912 const APTy &RHSValue, APInt &Result) { 2913 switch (Opcode) { 2914 default: 2915 llvm_unreachable("unsupported binary operator"); 2916 case BO_EQ: 2917 Result = (LHSValue == RHSValue); 2918 break; 2919 case BO_NE: 2920 Result = (LHSValue != RHSValue); 2921 break; 2922 case BO_LT: 2923 Result = (LHSValue < RHSValue); 2924 break; 2925 case BO_GT: 2926 Result = (LHSValue > RHSValue); 2927 break; 2928 case BO_LE: 2929 Result = (LHSValue <= RHSValue); 2930 break; 2931 case BO_GE: 2932 Result = (LHSValue >= RHSValue); 2933 break; 2934 } 2935 2936 return true; 2937 } 2938 2939 static bool handleCompareOpForVector(const APValue &LHSValue, 2940 BinaryOperatorKind Opcode, 2941 const APValue &RHSValue, APInt &Result) { 2942 // The result is always an int type, however operands match the first. 2943 if (LHSValue.getKind() == APValue::Int) 2944 return handleCompareOpForVectorHelper(LHSValue.getInt(), Opcode, 2945 RHSValue.getInt(), Result); 2946 assert(LHSValue.getKind() == APValue::Float && "Should be no other options"); 2947 return handleCompareOpForVectorHelper(LHSValue.getFloat(), Opcode, 2948 RHSValue.getFloat(), Result); 2949 } 2950 2951 // Perform binary operations for vector types, in place on the LHS. 2952 static bool handleVectorVectorBinOp(EvalInfo &Info, const BinaryOperator *E, 2953 BinaryOperatorKind Opcode, 2954 APValue &LHSValue, 2955 const APValue &RHSValue) { 2956 assert(Opcode != BO_PtrMemD && Opcode != BO_PtrMemI && 2957 "Operation not supported on vector types"); 2958 2959 const auto *VT = E->getType()->castAs<VectorType>(); 2960 unsigned NumElements = VT->getNumElements(); 2961 QualType EltTy = VT->getElementType(); 2962 2963 // In the cases (typically C as I've observed) where we aren't evaluating 2964 // constexpr but are checking for cases where the LHS isn't yet evaluatable, 2965 // just give up. 2966 if (!LHSValue.isVector()) { 2967 assert(LHSValue.isLValue() && 2968 "A vector result that isn't a vector OR uncalculated LValue"); 2969 Info.FFDiag(E); 2970 return false; 2971 } 2972 2973 assert(LHSValue.getVectorLength() == NumElements && 2974 RHSValue.getVectorLength() == NumElements && "Different vector sizes"); 2975 2976 SmallVector<APValue, 4> ResultElements; 2977 2978 for (unsigned EltNum = 0; EltNum < NumElements; ++EltNum) { 2979 APValue LHSElt = LHSValue.getVectorElt(EltNum); 2980 APValue RHSElt = RHSValue.getVectorElt(EltNum); 2981 2982 if (EltTy->isIntegerType()) { 2983 APSInt EltResult{Info.Ctx.getIntWidth(EltTy), 2984 EltTy->isUnsignedIntegerType()}; 2985 bool Success = true; 2986 2987 if (BinaryOperator::isLogicalOp(Opcode)) 2988 Success = handleLogicalOpForVector(LHSElt, Opcode, RHSElt, EltResult); 2989 else if (BinaryOperator::isComparisonOp(Opcode)) 2990 Success = handleCompareOpForVector(LHSElt, Opcode, RHSElt, EltResult); 2991 else 2992 Success = handleIntIntBinOp(Info, E, LHSElt.getInt(), Opcode, 2993 RHSElt.getInt(), EltResult); 2994 2995 if (!Success) { 2996 Info.FFDiag(E); 2997 return false; 2998 } 2999 ResultElements.emplace_back(EltResult); 3000 3001 } else if (EltTy->isFloatingType()) { 3002 assert(LHSElt.getKind() == APValue::Float && 3003 RHSElt.getKind() == APValue::Float && 3004 "Mismatched LHS/RHS/Result Type"); 3005 APFloat LHSFloat = LHSElt.getFloat(); 3006 3007 if (!handleFloatFloatBinOp(Info, E, LHSFloat, Opcode, 3008 RHSElt.getFloat())) { 3009 Info.FFDiag(E); 3010 return false; 3011 } 3012 3013 ResultElements.emplace_back(LHSFloat); 3014 } 3015 } 3016 3017 LHSValue = APValue(ResultElements.data(), ResultElements.size()); 3018 return true; 3019 } 3020 3021 /// Cast an lvalue referring to a base subobject to a derived class, by 3022 /// truncating the lvalue's path to the given length. 3023 static bool CastToDerivedClass(EvalInfo &Info, const Expr *E, LValue &Result, 3024 const RecordDecl *TruncatedType, 3025 unsigned TruncatedElements) { 3026 SubobjectDesignator &D = Result.Designator; 3027 3028 // Check we actually point to a derived class object. 3029 if (TruncatedElements == D.Entries.size()) 3030 return true; 3031 assert(TruncatedElements >= D.MostDerivedPathLength && 3032 "not casting to a derived class"); 3033 if (!Result.checkSubobject(Info, E, CSK_Derived)) 3034 return false; 3035 3036 // Truncate the path to the subobject, and remove any derived-to-base offsets. 3037 const RecordDecl *RD = TruncatedType; 3038 for (unsigned I = TruncatedElements, N = D.Entries.size(); I != N; ++I) { 3039 if (RD->isInvalidDecl()) return false; 3040 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD); 3041 const CXXRecordDecl *Base = getAsBaseClass(D.Entries[I]); 3042 if (isVirtualBaseClass(D.Entries[I])) 3043 Result.Offset -= Layout.getVBaseClassOffset(Base); 3044 else 3045 Result.Offset -= Layout.getBaseClassOffset(Base); 3046 RD = Base; 3047 } 3048 D.Entries.resize(TruncatedElements); 3049 return true; 3050 } 3051 3052 static bool HandleLValueDirectBase(EvalInfo &Info, const Expr *E, LValue &Obj, 3053 const CXXRecordDecl *Derived, 3054 const CXXRecordDecl *Base, 3055 const ASTRecordLayout *RL = nullptr) { 3056 if (!RL) { 3057 if (Derived->isInvalidDecl()) return false; 3058 RL = &Info.Ctx.getASTRecordLayout(Derived); 3059 } 3060 3061 Obj.getLValueOffset() += RL->getBaseClassOffset(Base); 3062 Obj.addDecl(Info, E, Base, /*Virtual*/ false); 3063 return true; 3064 } 3065 3066 static bool HandleLValueBase(EvalInfo &Info, const Expr *E, LValue &Obj, 3067 const CXXRecordDecl *DerivedDecl, 3068 const CXXBaseSpecifier *Base) { 3069 const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl(); 3070 3071 if (!Base->isVirtual()) 3072 return HandleLValueDirectBase(Info, E, Obj, DerivedDecl, BaseDecl); 3073 3074 SubobjectDesignator &D = Obj.Designator; 3075 if (D.Invalid) 3076 return false; 3077 3078 // Extract most-derived object and corresponding type. 3079 DerivedDecl = D.MostDerivedType->getAsCXXRecordDecl(); 3080 if (!CastToDerivedClass(Info, E, Obj, DerivedDecl, D.MostDerivedPathLength)) 3081 return false; 3082 3083 // Find the virtual base class. 3084 if (DerivedDecl->isInvalidDecl()) return false; 3085 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(DerivedDecl); 3086 Obj.getLValueOffset() += Layout.getVBaseClassOffset(BaseDecl); 3087 Obj.addDecl(Info, E, BaseDecl, /*Virtual*/ true); 3088 return true; 3089 } 3090 3091 static bool HandleLValueBasePath(EvalInfo &Info, const CastExpr *E, 3092 QualType Type, LValue &Result) { 3093 for (CastExpr::path_const_iterator PathI = E->path_begin(), 3094 PathE = E->path_end(); 3095 PathI != PathE; ++PathI) { 3096 if (!HandleLValueBase(Info, E, Result, Type->getAsCXXRecordDecl(), 3097 *PathI)) 3098 return false; 3099 Type = (*PathI)->getType(); 3100 } 3101 return true; 3102 } 3103 3104 /// Cast an lvalue referring to a derived class to a known base subobject. 3105 static bool CastToBaseClass(EvalInfo &Info, const Expr *E, LValue &Result, 3106 const CXXRecordDecl *DerivedRD, 3107 const CXXRecordDecl *BaseRD) { 3108 CXXBasePaths Paths(/*FindAmbiguities=*/false, 3109 /*RecordPaths=*/true, /*DetectVirtual=*/false); 3110 if (!DerivedRD->isDerivedFrom(BaseRD, Paths)) 3111 llvm_unreachable("Class must be derived from the passed in base class!"); 3112 3113 for (CXXBasePathElement &Elem : Paths.front()) 3114 if (!HandleLValueBase(Info, E, Result, Elem.Class, Elem.Base)) 3115 return false; 3116 return true; 3117 } 3118 3119 /// Update LVal to refer to the given field, which must be a member of the type 3120 /// currently described by LVal. 3121 static bool HandleLValueMember(EvalInfo &Info, const Expr *E, LValue &LVal, 3122 const FieldDecl *FD, 3123 const ASTRecordLayout *RL = nullptr) { 3124 if (!RL) { 3125 if (FD->getParent()->isInvalidDecl()) return false; 3126 RL = &Info.Ctx.getASTRecordLayout(FD->getParent()); 3127 } 3128 3129 unsigned I = FD->getFieldIndex(); 3130 LVal.adjustOffset(Info.Ctx.toCharUnitsFromBits(RL->getFieldOffset(I))); 3131 LVal.addDecl(Info, E, FD); 3132 return true; 3133 } 3134 3135 /// Update LVal to refer to the given indirect field. 3136 static bool HandleLValueIndirectMember(EvalInfo &Info, const Expr *E, 3137 LValue &LVal, 3138 const IndirectFieldDecl *IFD) { 3139 for (const auto *C : IFD->chain()) 3140 if (!HandleLValueMember(Info, E, LVal, cast<FieldDecl>(C))) 3141 return false; 3142 return true; 3143 } 3144 3145 /// Get the size of the given type in char units. 3146 static bool HandleSizeof(EvalInfo &Info, SourceLocation Loc, 3147 QualType Type, CharUnits &Size) { 3148 // sizeof(void), __alignof__(void), sizeof(function) = 1 as a gcc 3149 // extension. 3150 if (Type->isVoidType() || Type->isFunctionType()) { 3151 Size = CharUnits::One(); 3152 return true; 3153 } 3154 3155 if (Type->isDependentType()) { 3156 Info.FFDiag(Loc); 3157 return false; 3158 } 3159 3160 if (!Type->isConstantSizeType()) { 3161 // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2. 3162 // FIXME: Better diagnostic. 3163 Info.FFDiag(Loc); 3164 return false; 3165 } 3166 3167 Size = Info.Ctx.getTypeSizeInChars(Type); 3168 return true; 3169 } 3170 3171 /// Update a pointer value to model pointer arithmetic. 3172 /// \param Info - Information about the ongoing evaluation. 3173 /// \param E - The expression being evaluated, for diagnostic purposes. 3174 /// \param LVal - The pointer value to be updated. 3175 /// \param EltTy - The pointee type represented by LVal. 3176 /// \param Adjustment - The adjustment, in objects of type EltTy, to add. 3177 static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E, 3178 LValue &LVal, QualType EltTy, 3179 APSInt Adjustment) { 3180 CharUnits SizeOfPointee; 3181 if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfPointee)) 3182 return false; 3183 3184 LVal.adjustOffsetAndIndex(Info, E, Adjustment, SizeOfPointee); 3185 return true; 3186 } 3187 3188 static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E, 3189 LValue &LVal, QualType EltTy, 3190 int64_t Adjustment) { 3191 return HandleLValueArrayAdjustment(Info, E, LVal, EltTy, 3192 APSInt::get(Adjustment)); 3193 } 3194 3195 /// Update an lvalue to refer to a component of a complex number. 3196 /// \param Info - Information about the ongoing evaluation. 3197 /// \param LVal - The lvalue to be updated. 3198 /// \param EltTy - The complex number's component type. 3199 /// \param Imag - False for the real component, true for the imaginary. 3200 static bool HandleLValueComplexElement(EvalInfo &Info, const Expr *E, 3201 LValue &LVal, QualType EltTy, 3202 bool Imag) { 3203 if (Imag) { 3204 CharUnits SizeOfComponent; 3205 if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfComponent)) 3206 return false; 3207 LVal.Offset += SizeOfComponent; 3208 } 3209 LVal.addComplex(Info, E, EltTy, Imag); 3210 return true; 3211 } 3212 3213 /// Try to evaluate the initializer for a variable declaration. 3214 /// 3215 /// \param Info Information about the ongoing evaluation. 3216 /// \param E An expression to be used when printing diagnostics. 3217 /// \param VD The variable whose initializer should be obtained. 3218 /// \param Version The version of the variable within the frame. 3219 /// \param Frame The frame in which the variable was created. Must be null 3220 /// if this variable is not local to the evaluation. 3221 /// \param Result Filled in with a pointer to the value of the variable. 3222 static bool evaluateVarDeclInit(EvalInfo &Info, const Expr *E, 3223 const VarDecl *VD, CallStackFrame *Frame, 3224 unsigned Version, APValue *&Result) { 3225 APValue::LValueBase Base(VD, Frame ? Frame->Index : 0, Version); 3226 3227 // If this is a local variable, dig out its value. 3228 if (Frame) { 3229 Result = Frame->getTemporary(VD, Version); 3230 if (Result) 3231 return true; 3232 3233 if (!isa<ParmVarDecl>(VD)) { 3234 // Assume variables referenced within a lambda's call operator that were 3235 // not declared within the call operator are captures and during checking 3236 // of a potential constant expression, assume they are unknown constant 3237 // expressions. 3238 assert(isLambdaCallOperator(Frame->Callee) && 3239 (VD->getDeclContext() != Frame->Callee || VD->isInitCapture()) && 3240 "missing value for local variable"); 3241 if (Info.checkingPotentialConstantExpression()) 3242 return false; 3243 // FIXME: This diagnostic is bogus; we do support captures. Is this code 3244 // still reachable at all? 3245 Info.FFDiag(E->getBeginLoc(), 3246 diag::note_unimplemented_constexpr_lambda_feature_ast) 3247 << "captures not currently allowed"; 3248 return false; 3249 } 3250 } 3251 3252 // If we're currently evaluating the initializer of this declaration, use that 3253 // in-flight value. 3254 if (Info.EvaluatingDecl == Base) { 3255 Result = Info.EvaluatingDeclValue; 3256 return true; 3257 } 3258 3259 if (isa<ParmVarDecl>(VD)) { 3260 // Assume parameters of a potential constant expression are usable in 3261 // constant expressions. 3262 if (!Info.checkingPotentialConstantExpression() || 3263 !Info.CurrentCall->Callee || 3264 !Info.CurrentCall->Callee->Equals(VD->getDeclContext())) { 3265 if (Info.getLangOpts().CPlusPlus11) { 3266 Info.FFDiag(E, diag::note_constexpr_function_param_value_unknown) 3267 << VD; 3268 NoteLValueLocation(Info, Base); 3269 } else { 3270 Info.FFDiag(E); 3271 } 3272 } 3273 return false; 3274 } 3275 3276 // Dig out the initializer, and use the declaration which it's attached to. 3277 // FIXME: We should eventually check whether the variable has a reachable 3278 // initializing declaration. 3279 const Expr *Init = VD->getAnyInitializer(VD); 3280 if (!Init) { 3281 // Don't diagnose during potential constant expression checking; an 3282 // initializer might be added later. 3283 if (!Info.checkingPotentialConstantExpression()) { 3284 Info.FFDiag(E, diag::note_constexpr_var_init_unknown, 1) 3285 << VD; 3286 NoteLValueLocation(Info, Base); 3287 } 3288 return false; 3289 } 3290 3291 if (Init->isValueDependent()) { 3292 // The DeclRefExpr is not value-dependent, but the variable it refers to 3293 // has a value-dependent initializer. This should only happen in 3294 // constant-folding cases, where the variable is not actually of a suitable 3295 // type for use in a constant expression (otherwise the DeclRefExpr would 3296 // have been value-dependent too), so diagnose that. 3297 assert(!VD->mightBeUsableInConstantExpressions(Info.Ctx)); 3298 if (!Info.checkingPotentialConstantExpression()) { 3299 Info.FFDiag(E, Info.getLangOpts().CPlusPlus11 3300 ? diag::note_constexpr_ltor_non_constexpr 3301 : diag::note_constexpr_ltor_non_integral, 1) 3302 << VD << VD->getType(); 3303 NoteLValueLocation(Info, Base); 3304 } 3305 return false; 3306 } 3307 3308 // Check that we can fold the initializer. In C++, we will have already done 3309 // this in the cases where it matters for conformance. 3310 if (!VD->evaluateValue()) { 3311 Info.FFDiag(E, diag::note_constexpr_var_init_non_constant, 1) << VD; 3312 NoteLValueLocation(Info, Base); 3313 return false; 3314 } 3315 3316 // Check that the variable is actually usable in constant expressions. For a 3317 // const integral variable or a reference, we might have a non-constant 3318 // initializer that we can nonetheless evaluate the initializer for. Such 3319 // variables are not usable in constant expressions. In C++98, the 3320 // initializer also syntactically needs to be an ICE. 3321 // 3322 // FIXME: We don't diagnose cases that aren't potentially usable in constant 3323 // expressions here; doing so would regress diagnostics for things like 3324 // reading from a volatile constexpr variable. 3325 if ((Info.getLangOpts().CPlusPlus && !VD->hasConstantInitialization() && 3326 VD->mightBeUsableInConstantExpressions(Info.Ctx)) || 3327 ((Info.getLangOpts().CPlusPlus || Info.getLangOpts().OpenCL) && 3328 !Info.getLangOpts().CPlusPlus11 && !VD->hasICEInitializer(Info.Ctx))) { 3329 Info.CCEDiag(E, diag::note_constexpr_var_init_non_constant, 1) << VD; 3330 NoteLValueLocation(Info, Base); 3331 } 3332 3333 // Never use the initializer of a weak variable, not even for constant 3334 // folding. We can't be sure that this is the definition that will be used. 3335 if (VD->isWeak()) { 3336 Info.FFDiag(E, diag::note_constexpr_var_init_weak) << VD; 3337 NoteLValueLocation(Info, Base); 3338 return false; 3339 } 3340 3341 Result = VD->getEvaluatedValue(); 3342 return true; 3343 } 3344 3345 /// Get the base index of the given base class within an APValue representing 3346 /// the given derived class. 3347 static unsigned getBaseIndex(const CXXRecordDecl *Derived, 3348 const CXXRecordDecl *Base) { 3349 Base = Base->getCanonicalDecl(); 3350 unsigned Index = 0; 3351 for (CXXRecordDecl::base_class_const_iterator I = Derived->bases_begin(), 3352 E = Derived->bases_end(); I != E; ++I, ++Index) { 3353 if (I->getType()->getAsCXXRecordDecl()->getCanonicalDecl() == Base) 3354 return Index; 3355 } 3356 3357 llvm_unreachable("base class missing from derived class's bases list"); 3358 } 3359 3360 /// Extract the value of a character from a string literal. 3361 static APSInt extractStringLiteralCharacter(EvalInfo &Info, const Expr *Lit, 3362 uint64_t Index) { 3363 assert(!isa<SourceLocExpr>(Lit) && 3364 "SourceLocExpr should have already been converted to a StringLiteral"); 3365 3366 // FIXME: Support MakeStringConstant 3367 if (const auto *ObjCEnc = dyn_cast<ObjCEncodeExpr>(Lit)) { 3368 std::string Str; 3369 Info.Ctx.getObjCEncodingForType(ObjCEnc->getEncodedType(), Str); 3370 assert(Index <= Str.size() && "Index too large"); 3371 return APSInt::getUnsigned(Str.c_str()[Index]); 3372 } 3373 3374 if (auto PE = dyn_cast<PredefinedExpr>(Lit)) 3375 Lit = PE->getFunctionName(); 3376 const StringLiteral *S = cast<StringLiteral>(Lit); 3377 const ConstantArrayType *CAT = 3378 Info.Ctx.getAsConstantArrayType(S->getType()); 3379 assert(CAT && "string literal isn't an array"); 3380 QualType CharType = CAT->getElementType(); 3381 assert(CharType->isIntegerType() && "unexpected character type"); 3382 3383 APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(), 3384 CharType->isUnsignedIntegerType()); 3385 if (Index < S->getLength()) 3386 Value = S->getCodeUnit(Index); 3387 return Value; 3388 } 3389 3390 // Expand a string literal into an array of characters. 3391 // 3392 // FIXME: This is inefficient; we should probably introduce something similar 3393 // to the LLVM ConstantDataArray to make this cheaper. 3394 static void expandStringLiteral(EvalInfo &Info, const StringLiteral *S, 3395 APValue &Result, 3396 QualType AllocType = QualType()) { 3397 const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType( 3398 AllocType.isNull() ? S->getType() : AllocType); 3399 assert(CAT && "string literal isn't an array"); 3400 QualType CharType = CAT->getElementType(); 3401 assert(CharType->isIntegerType() && "unexpected character type"); 3402 3403 unsigned Elts = CAT->getSize().getZExtValue(); 3404 Result = APValue(APValue::UninitArray(), 3405 std::min(S->getLength(), Elts), Elts); 3406 APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(), 3407 CharType->isUnsignedIntegerType()); 3408 if (Result.hasArrayFiller()) 3409 Result.getArrayFiller() = APValue(Value); 3410 for (unsigned I = 0, N = Result.getArrayInitializedElts(); I != N; ++I) { 3411 Value = S->getCodeUnit(I); 3412 Result.getArrayInitializedElt(I) = APValue(Value); 3413 } 3414 } 3415 3416 // Expand an array so that it has more than Index filled elements. 3417 static void expandArray(APValue &Array, unsigned Index) { 3418 unsigned Size = Array.getArraySize(); 3419 assert(Index < Size); 3420 3421 // Always at least double the number of elements for which we store a value. 3422 unsigned OldElts = Array.getArrayInitializedElts(); 3423 unsigned NewElts = std::max(Index+1, OldElts * 2); 3424 NewElts = std::min(Size, std::max(NewElts, 8u)); 3425 3426 // Copy the data across. 3427 APValue NewValue(APValue::UninitArray(), NewElts, Size); 3428 for (unsigned I = 0; I != OldElts; ++I) 3429 NewValue.getArrayInitializedElt(I).swap(Array.getArrayInitializedElt(I)); 3430 for (unsigned I = OldElts; I != NewElts; ++I) 3431 NewValue.getArrayInitializedElt(I) = Array.getArrayFiller(); 3432 if (NewValue.hasArrayFiller()) 3433 NewValue.getArrayFiller() = Array.getArrayFiller(); 3434 Array.swap(NewValue); 3435 } 3436 3437 /// Determine whether a type would actually be read by an lvalue-to-rvalue 3438 /// conversion. If it's of class type, we may assume that the copy operation 3439 /// is trivial. Note that this is never true for a union type with fields 3440 /// (because the copy always "reads" the active member) and always true for 3441 /// a non-class type. 3442 static bool isReadByLvalueToRvalueConversion(const CXXRecordDecl *RD); 3443 static bool isReadByLvalueToRvalueConversion(QualType T) { 3444 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 3445 return !RD || isReadByLvalueToRvalueConversion(RD); 3446 } 3447 static bool isReadByLvalueToRvalueConversion(const CXXRecordDecl *RD) { 3448 // FIXME: A trivial copy of a union copies the object representation, even if 3449 // the union is empty. 3450 if (RD->isUnion()) 3451 return !RD->field_empty(); 3452 if (RD->isEmpty()) 3453 return false; 3454 3455 for (auto *Field : RD->fields()) 3456 if (!Field->isUnnamedBitfield() && 3457 isReadByLvalueToRvalueConversion(Field->getType())) 3458 return true; 3459 3460 for (auto &BaseSpec : RD->bases()) 3461 if (isReadByLvalueToRvalueConversion(BaseSpec.getType())) 3462 return true; 3463 3464 return false; 3465 } 3466 3467 /// Diagnose an attempt to read from any unreadable field within the specified 3468 /// type, which might be a class type. 3469 static bool diagnoseMutableFields(EvalInfo &Info, const Expr *E, AccessKinds AK, 3470 QualType T) { 3471 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 3472 if (!RD) 3473 return false; 3474 3475 if (!RD->hasMutableFields()) 3476 return false; 3477 3478 for (auto *Field : RD->fields()) { 3479 // If we're actually going to read this field in some way, then it can't 3480 // be mutable. If we're in a union, then assigning to a mutable field 3481 // (even an empty one) can change the active member, so that's not OK. 3482 // FIXME: Add core issue number for the union case. 3483 if (Field->isMutable() && 3484 (RD->isUnion() || isReadByLvalueToRvalueConversion(Field->getType()))) { 3485 Info.FFDiag(E, diag::note_constexpr_access_mutable, 1) << AK << Field; 3486 Info.Note(Field->getLocation(), diag::note_declared_at); 3487 return true; 3488 } 3489 3490 if (diagnoseMutableFields(Info, E, AK, Field->getType())) 3491 return true; 3492 } 3493 3494 for (auto &BaseSpec : RD->bases()) 3495 if (diagnoseMutableFields(Info, E, AK, BaseSpec.getType())) 3496 return true; 3497 3498 // All mutable fields were empty, and thus not actually read. 3499 return false; 3500 } 3501 3502 static bool lifetimeStartedInEvaluation(EvalInfo &Info, 3503 APValue::LValueBase Base, 3504 bool MutableSubobject = false) { 3505 // A temporary or transient heap allocation we created. 3506 if (Base.getCallIndex() || Base.is<DynamicAllocLValue>()) 3507 return true; 3508 3509 switch (Info.IsEvaluatingDecl) { 3510 case EvalInfo::EvaluatingDeclKind::None: 3511 return false; 3512 3513 case EvalInfo::EvaluatingDeclKind::Ctor: 3514 // The variable whose initializer we're evaluating. 3515 if (Info.EvaluatingDecl == Base) 3516 return true; 3517 3518 // A temporary lifetime-extended by the variable whose initializer we're 3519 // evaluating. 3520 if (auto *BaseE = Base.dyn_cast<const Expr *>()) 3521 if (auto *BaseMTE = dyn_cast<MaterializeTemporaryExpr>(BaseE)) 3522 return Info.EvaluatingDecl == BaseMTE->getExtendingDecl(); 3523 return false; 3524 3525 case EvalInfo::EvaluatingDeclKind::Dtor: 3526 // C++2a [expr.const]p6: 3527 // [during constant destruction] the lifetime of a and its non-mutable 3528 // subobjects (but not its mutable subobjects) [are] considered to start 3529 // within e. 3530 if (MutableSubobject || Base != Info.EvaluatingDecl) 3531 return false; 3532 // FIXME: We can meaningfully extend this to cover non-const objects, but 3533 // we will need special handling: we should be able to access only 3534 // subobjects of such objects that are themselves declared const. 3535 QualType T = getType(Base); 3536 return T.isConstQualified() || T->isReferenceType(); 3537 } 3538 3539 llvm_unreachable("unknown evaluating decl kind"); 3540 } 3541 3542 namespace { 3543 /// A handle to a complete object (an object that is not a subobject of 3544 /// another object). 3545 struct CompleteObject { 3546 /// The identity of the object. 3547 APValue::LValueBase Base; 3548 /// The value of the complete object. 3549 APValue *Value; 3550 /// The type of the complete object. 3551 QualType Type; 3552 3553 CompleteObject() : Value(nullptr) {} 3554 CompleteObject(APValue::LValueBase Base, APValue *Value, QualType Type) 3555 : Base(Base), Value(Value), Type(Type) {} 3556 3557 bool mayAccessMutableMembers(EvalInfo &Info, AccessKinds AK) const { 3558 // If this isn't a "real" access (eg, if it's just accessing the type 3559 // info), allow it. We assume the type doesn't change dynamically for 3560 // subobjects of constexpr objects (even though we'd hit UB here if it 3561 // did). FIXME: Is this right? 3562 if (!isAnyAccess(AK)) 3563 return true; 3564 3565 // In C++14 onwards, it is permitted to read a mutable member whose 3566 // lifetime began within the evaluation. 3567 // FIXME: Should we also allow this in C++11? 3568 if (!Info.getLangOpts().CPlusPlus14) 3569 return false; 3570 return lifetimeStartedInEvaluation(Info, Base, /*MutableSubobject*/true); 3571 } 3572 3573 explicit operator bool() const { return !Type.isNull(); } 3574 }; 3575 } // end anonymous namespace 3576 3577 static QualType getSubobjectType(QualType ObjType, QualType SubobjType, 3578 bool IsMutable = false) { 3579 // C++ [basic.type.qualifier]p1: 3580 // - A const object is an object of type const T or a non-mutable subobject 3581 // of a const object. 3582 if (ObjType.isConstQualified() && !IsMutable) 3583 SubobjType.addConst(); 3584 // - A volatile object is an object of type const T or a subobject of a 3585 // volatile object. 3586 if (ObjType.isVolatileQualified()) 3587 SubobjType.addVolatile(); 3588 return SubobjType; 3589 } 3590 3591 /// Find the designated sub-object of an rvalue. 3592 template<typename SubobjectHandler> 3593 typename SubobjectHandler::result_type 3594 findSubobject(EvalInfo &Info, const Expr *E, const CompleteObject &Obj, 3595 const SubobjectDesignator &Sub, SubobjectHandler &handler) { 3596 if (Sub.Invalid) 3597 // A diagnostic will have already been produced. 3598 return handler.failed(); 3599 if (Sub.isOnePastTheEnd() || Sub.isMostDerivedAnUnsizedArray()) { 3600 if (Info.getLangOpts().CPlusPlus11) 3601 Info.FFDiag(E, Sub.isOnePastTheEnd() 3602 ? diag::note_constexpr_access_past_end 3603 : diag::note_constexpr_access_unsized_array) 3604 << handler.AccessKind; 3605 else 3606 Info.FFDiag(E); 3607 return handler.failed(); 3608 } 3609 3610 APValue *O = Obj.Value; 3611 QualType ObjType = Obj.Type; 3612 const FieldDecl *LastField = nullptr; 3613 const FieldDecl *VolatileField = nullptr; 3614 3615 // Walk the designator's path to find the subobject. 3616 for (unsigned I = 0, N = Sub.Entries.size(); /**/; ++I) { 3617 // Reading an indeterminate value is undefined, but assigning over one is OK. 3618 if ((O->isAbsent() && !(handler.AccessKind == AK_Construct && I == N)) || 3619 (O->isIndeterminate() && 3620 !isValidIndeterminateAccess(handler.AccessKind))) { 3621 if (!Info.checkingPotentialConstantExpression()) 3622 Info.FFDiag(E, diag::note_constexpr_access_uninit) 3623 << handler.AccessKind << O->isIndeterminate(); 3624 return handler.failed(); 3625 } 3626 3627 // C++ [class.ctor]p5, C++ [class.dtor]p5: 3628 // const and volatile semantics are not applied on an object under 3629 // {con,de}struction. 3630 if ((ObjType.isConstQualified() || ObjType.isVolatileQualified()) && 3631 ObjType->isRecordType() && 3632 Info.isEvaluatingCtorDtor( 3633 Obj.Base, llvm::makeArrayRef(Sub.Entries.begin(), 3634 Sub.Entries.begin() + I)) != 3635 ConstructionPhase::None) { 3636 ObjType = Info.Ctx.getCanonicalType(ObjType); 3637 ObjType.removeLocalConst(); 3638 ObjType.removeLocalVolatile(); 3639 } 3640 3641 // If this is our last pass, check that the final object type is OK. 3642 if (I == N || (I == N - 1 && ObjType->isAnyComplexType())) { 3643 // Accesses to volatile objects are prohibited. 3644 if (ObjType.isVolatileQualified() && isFormalAccess(handler.AccessKind)) { 3645 if (Info.getLangOpts().CPlusPlus) { 3646 int DiagKind; 3647 SourceLocation Loc; 3648 const NamedDecl *Decl = nullptr; 3649 if (VolatileField) { 3650 DiagKind = 2; 3651 Loc = VolatileField->getLocation(); 3652 Decl = VolatileField; 3653 } else if (auto *VD = Obj.Base.dyn_cast<const ValueDecl*>()) { 3654 DiagKind = 1; 3655 Loc = VD->getLocation(); 3656 Decl = VD; 3657 } else { 3658 DiagKind = 0; 3659 if (auto *E = Obj.Base.dyn_cast<const Expr *>()) 3660 Loc = E->getExprLoc(); 3661 } 3662 Info.FFDiag(E, diag::note_constexpr_access_volatile_obj, 1) 3663 << handler.AccessKind << DiagKind << Decl; 3664 Info.Note(Loc, diag::note_constexpr_volatile_here) << DiagKind; 3665 } else { 3666 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); 3667 } 3668 return handler.failed(); 3669 } 3670 3671 // If we are reading an object of class type, there may still be more 3672 // things we need to check: if there are any mutable subobjects, we 3673 // cannot perform this read. (This only happens when performing a trivial 3674 // copy or assignment.) 3675 if (ObjType->isRecordType() && 3676 !Obj.mayAccessMutableMembers(Info, handler.AccessKind) && 3677 diagnoseMutableFields(Info, E, handler.AccessKind, ObjType)) 3678 return handler.failed(); 3679 } 3680 3681 if (I == N) { 3682 if (!handler.found(*O, ObjType)) 3683 return false; 3684 3685 // If we modified a bit-field, truncate it to the right width. 3686 if (isModification(handler.AccessKind) && 3687 LastField && LastField->isBitField() && 3688 !truncateBitfieldValue(Info, E, *O, LastField)) 3689 return false; 3690 3691 return true; 3692 } 3693 3694 LastField = nullptr; 3695 if (ObjType->isArrayType()) { 3696 // Next subobject is an array element. 3697 const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(ObjType); 3698 assert(CAT && "vla in literal type?"); 3699 uint64_t Index = Sub.Entries[I].getAsArrayIndex(); 3700 if (CAT->getSize().ule(Index)) { 3701 // Note, it should not be possible to form a pointer with a valid 3702 // designator which points more than one past the end of the array. 3703 if (Info.getLangOpts().CPlusPlus11) 3704 Info.FFDiag(E, diag::note_constexpr_access_past_end) 3705 << handler.AccessKind; 3706 else 3707 Info.FFDiag(E); 3708 return handler.failed(); 3709 } 3710 3711 ObjType = CAT->getElementType(); 3712 3713 if (O->getArrayInitializedElts() > Index) 3714 O = &O->getArrayInitializedElt(Index); 3715 else if (!isRead(handler.AccessKind)) { 3716 expandArray(*O, Index); 3717 O = &O->getArrayInitializedElt(Index); 3718 } else 3719 O = &O->getArrayFiller(); 3720 } else if (ObjType->isAnyComplexType()) { 3721 // Next subobject is a complex number. 3722 uint64_t Index = Sub.Entries[I].getAsArrayIndex(); 3723 if (Index > 1) { 3724 if (Info.getLangOpts().CPlusPlus11) 3725 Info.FFDiag(E, diag::note_constexpr_access_past_end) 3726 << handler.AccessKind; 3727 else 3728 Info.FFDiag(E); 3729 return handler.failed(); 3730 } 3731 3732 ObjType = getSubobjectType( 3733 ObjType, ObjType->castAs<ComplexType>()->getElementType()); 3734 3735 assert(I == N - 1 && "extracting subobject of scalar?"); 3736 if (O->isComplexInt()) { 3737 return handler.found(Index ? O->getComplexIntImag() 3738 : O->getComplexIntReal(), ObjType); 3739 } else { 3740 assert(O->isComplexFloat()); 3741 return handler.found(Index ? O->getComplexFloatImag() 3742 : O->getComplexFloatReal(), ObjType); 3743 } 3744 } else if (const FieldDecl *Field = getAsField(Sub.Entries[I])) { 3745 if (Field->isMutable() && 3746 !Obj.mayAccessMutableMembers(Info, handler.AccessKind)) { 3747 Info.FFDiag(E, diag::note_constexpr_access_mutable, 1) 3748 << handler.AccessKind << Field; 3749 Info.Note(Field->getLocation(), diag::note_declared_at); 3750 return handler.failed(); 3751 } 3752 3753 // Next subobject is a class, struct or union field. 3754 RecordDecl *RD = ObjType->castAs<RecordType>()->getDecl(); 3755 if (RD->isUnion()) { 3756 const FieldDecl *UnionField = O->getUnionField(); 3757 if (!UnionField || 3758 UnionField->getCanonicalDecl() != Field->getCanonicalDecl()) { 3759 if (I == N - 1 && handler.AccessKind == AK_Construct) { 3760 // Placement new onto an inactive union member makes it active. 3761 O->setUnion(Field, APValue()); 3762 } else { 3763 // FIXME: If O->getUnionValue() is absent, report that there's no 3764 // active union member rather than reporting the prior active union 3765 // member. We'll need to fix nullptr_t to not use APValue() as its 3766 // representation first. 3767 Info.FFDiag(E, diag::note_constexpr_access_inactive_union_member) 3768 << handler.AccessKind << Field << !UnionField << UnionField; 3769 return handler.failed(); 3770 } 3771 } 3772 O = &O->getUnionValue(); 3773 } else 3774 O = &O->getStructField(Field->getFieldIndex()); 3775 3776 ObjType = getSubobjectType(ObjType, Field->getType(), Field->isMutable()); 3777 LastField = Field; 3778 if (Field->getType().isVolatileQualified()) 3779 VolatileField = Field; 3780 } else { 3781 // Next subobject is a base class. 3782 const CXXRecordDecl *Derived = ObjType->getAsCXXRecordDecl(); 3783 const CXXRecordDecl *Base = getAsBaseClass(Sub.Entries[I]); 3784 O = &O->getStructBase(getBaseIndex(Derived, Base)); 3785 3786 ObjType = getSubobjectType(ObjType, Info.Ctx.getRecordType(Base)); 3787 } 3788 } 3789 } 3790 3791 namespace { 3792 struct ExtractSubobjectHandler { 3793 EvalInfo &Info; 3794 const Expr *E; 3795 APValue &Result; 3796 const AccessKinds AccessKind; 3797 3798 typedef bool result_type; 3799 bool failed() { return false; } 3800 bool found(APValue &Subobj, QualType SubobjType) { 3801 Result = Subobj; 3802 if (AccessKind == AK_ReadObjectRepresentation) 3803 return true; 3804 return CheckFullyInitialized(Info, E->getExprLoc(), SubobjType, Result); 3805 } 3806 bool found(APSInt &Value, QualType SubobjType) { 3807 Result = APValue(Value); 3808 return true; 3809 } 3810 bool found(APFloat &Value, QualType SubobjType) { 3811 Result = APValue(Value); 3812 return true; 3813 } 3814 }; 3815 } // end anonymous namespace 3816 3817 /// Extract the designated sub-object of an rvalue. 3818 static bool extractSubobject(EvalInfo &Info, const Expr *E, 3819 const CompleteObject &Obj, 3820 const SubobjectDesignator &Sub, APValue &Result, 3821 AccessKinds AK = AK_Read) { 3822 assert(AK == AK_Read || AK == AK_ReadObjectRepresentation); 3823 ExtractSubobjectHandler Handler = {Info, E, Result, AK}; 3824 return findSubobject(Info, E, Obj, Sub, Handler); 3825 } 3826 3827 namespace { 3828 struct ModifySubobjectHandler { 3829 EvalInfo &Info; 3830 APValue &NewVal; 3831 const Expr *E; 3832 3833 typedef bool result_type; 3834 static const AccessKinds AccessKind = AK_Assign; 3835 3836 bool checkConst(QualType QT) { 3837 // Assigning to a const object has undefined behavior. 3838 if (QT.isConstQualified()) { 3839 Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT; 3840 return false; 3841 } 3842 return true; 3843 } 3844 3845 bool failed() { return false; } 3846 bool found(APValue &Subobj, QualType SubobjType) { 3847 if (!checkConst(SubobjType)) 3848 return false; 3849 // We've been given ownership of NewVal, so just swap it in. 3850 Subobj.swap(NewVal); 3851 return true; 3852 } 3853 bool found(APSInt &Value, QualType SubobjType) { 3854 if (!checkConst(SubobjType)) 3855 return false; 3856 if (!NewVal.isInt()) { 3857 // Maybe trying to write a cast pointer value into a complex? 3858 Info.FFDiag(E); 3859 return false; 3860 } 3861 Value = NewVal.getInt(); 3862 return true; 3863 } 3864 bool found(APFloat &Value, QualType SubobjType) { 3865 if (!checkConst(SubobjType)) 3866 return false; 3867 Value = NewVal.getFloat(); 3868 return true; 3869 } 3870 }; 3871 } // end anonymous namespace 3872 3873 const AccessKinds ModifySubobjectHandler::AccessKind; 3874 3875 /// Update the designated sub-object of an rvalue to the given value. 3876 static bool modifySubobject(EvalInfo &Info, const Expr *E, 3877 const CompleteObject &Obj, 3878 const SubobjectDesignator &Sub, 3879 APValue &NewVal) { 3880 ModifySubobjectHandler Handler = { Info, NewVal, E }; 3881 return findSubobject(Info, E, Obj, Sub, Handler); 3882 } 3883 3884 /// Find the position where two subobject designators diverge, or equivalently 3885 /// the length of the common initial subsequence. 3886 static unsigned FindDesignatorMismatch(QualType ObjType, 3887 const SubobjectDesignator &A, 3888 const SubobjectDesignator &B, 3889 bool &WasArrayIndex) { 3890 unsigned I = 0, N = std::min(A.Entries.size(), B.Entries.size()); 3891 for (/**/; I != N; ++I) { 3892 if (!ObjType.isNull() && 3893 (ObjType->isArrayType() || ObjType->isAnyComplexType())) { 3894 // Next subobject is an array element. 3895 if (A.Entries[I].getAsArrayIndex() != B.Entries[I].getAsArrayIndex()) { 3896 WasArrayIndex = true; 3897 return I; 3898 } 3899 if (ObjType->isAnyComplexType()) 3900 ObjType = ObjType->castAs<ComplexType>()->getElementType(); 3901 else 3902 ObjType = ObjType->castAsArrayTypeUnsafe()->getElementType(); 3903 } else { 3904 if (A.Entries[I].getAsBaseOrMember() != 3905 B.Entries[I].getAsBaseOrMember()) { 3906 WasArrayIndex = false; 3907 return I; 3908 } 3909 if (const FieldDecl *FD = getAsField(A.Entries[I])) 3910 // Next subobject is a field. 3911 ObjType = FD->getType(); 3912 else 3913 // Next subobject is a base class. 3914 ObjType = QualType(); 3915 } 3916 } 3917 WasArrayIndex = false; 3918 return I; 3919 } 3920 3921 /// Determine whether the given subobject designators refer to elements of the 3922 /// same array object. 3923 static bool AreElementsOfSameArray(QualType ObjType, 3924 const SubobjectDesignator &A, 3925 const SubobjectDesignator &B) { 3926 if (A.Entries.size() != B.Entries.size()) 3927 return false; 3928 3929 bool IsArray = A.MostDerivedIsArrayElement; 3930 if (IsArray && A.MostDerivedPathLength != A.Entries.size()) 3931 // A is a subobject of the array element. 3932 return false; 3933 3934 // If A (and B) designates an array element, the last entry will be the array 3935 // index. That doesn't have to match. Otherwise, we're in the 'implicit array 3936 // of length 1' case, and the entire path must match. 3937 bool WasArrayIndex; 3938 unsigned CommonLength = FindDesignatorMismatch(ObjType, A, B, WasArrayIndex); 3939 return CommonLength >= A.Entries.size() - IsArray; 3940 } 3941 3942 /// Find the complete object to which an LValue refers. 3943 static CompleteObject findCompleteObject(EvalInfo &Info, const Expr *E, 3944 AccessKinds AK, const LValue &LVal, 3945 QualType LValType) { 3946 if (LVal.InvalidBase) { 3947 Info.FFDiag(E); 3948 return CompleteObject(); 3949 } 3950 3951 if (!LVal.Base) { 3952 Info.FFDiag(E, diag::note_constexpr_access_null) << AK; 3953 return CompleteObject(); 3954 } 3955 3956 CallStackFrame *Frame = nullptr; 3957 unsigned Depth = 0; 3958 if (LVal.getLValueCallIndex()) { 3959 std::tie(Frame, Depth) = 3960 Info.getCallFrameAndDepth(LVal.getLValueCallIndex()); 3961 if (!Frame) { 3962 Info.FFDiag(E, diag::note_constexpr_lifetime_ended, 1) 3963 << AK << LVal.Base.is<const ValueDecl*>(); 3964 NoteLValueLocation(Info, LVal.Base); 3965 return CompleteObject(); 3966 } 3967 } 3968 3969 bool IsAccess = isAnyAccess(AK); 3970 3971 // C++11 DR1311: An lvalue-to-rvalue conversion on a volatile-qualified type 3972 // is not a constant expression (even if the object is non-volatile). We also 3973 // apply this rule to C++98, in order to conform to the expected 'volatile' 3974 // semantics. 3975 if (isFormalAccess(AK) && LValType.isVolatileQualified()) { 3976 if (Info.getLangOpts().CPlusPlus) 3977 Info.FFDiag(E, diag::note_constexpr_access_volatile_type) 3978 << AK << LValType; 3979 else 3980 Info.FFDiag(E); 3981 return CompleteObject(); 3982 } 3983 3984 // Compute value storage location and type of base object. 3985 APValue *BaseVal = nullptr; 3986 QualType BaseType = getType(LVal.Base); 3987 3988 if (Info.getLangOpts().CPlusPlus14 && LVal.Base == Info.EvaluatingDecl && 3989 lifetimeStartedInEvaluation(Info, LVal.Base)) { 3990 // This is the object whose initializer we're evaluating, so its lifetime 3991 // started in the current evaluation. 3992 BaseVal = Info.EvaluatingDeclValue; 3993 } else if (const ValueDecl *D = LVal.Base.dyn_cast<const ValueDecl *>()) { 3994 // Allow reading from a GUID declaration. 3995 if (auto *GD = dyn_cast<MSGuidDecl>(D)) { 3996 if (isModification(AK)) { 3997 // All the remaining cases do not permit modification of the object. 3998 Info.FFDiag(E, diag::note_constexpr_modify_global); 3999 return CompleteObject(); 4000 } 4001 APValue &V = GD->getAsAPValue(); 4002 if (V.isAbsent()) { 4003 Info.FFDiag(E, diag::note_constexpr_unsupported_layout) 4004 << GD->getType(); 4005 return CompleteObject(); 4006 } 4007 return CompleteObject(LVal.Base, &V, GD->getType()); 4008 } 4009 4010 // Allow reading from template parameter objects. 4011 if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(D)) { 4012 if (isModification(AK)) { 4013 Info.FFDiag(E, diag::note_constexpr_modify_global); 4014 return CompleteObject(); 4015 } 4016 return CompleteObject(LVal.Base, const_cast<APValue *>(&TPO->getValue()), 4017 TPO->getType()); 4018 } 4019 4020 // In C++98, const, non-volatile integers initialized with ICEs are ICEs. 4021 // In C++11, constexpr, non-volatile variables initialized with constant 4022 // expressions are constant expressions too. Inside constexpr functions, 4023 // parameters are constant expressions even if they're non-const. 4024 // In C++1y, objects local to a constant expression (those with a Frame) are 4025 // both readable and writable inside constant expressions. 4026 // In C, such things can also be folded, although they are not ICEs. 4027 const VarDecl *VD = dyn_cast<VarDecl>(D); 4028 if (VD) { 4029 if (const VarDecl *VDef = VD->getDefinition(Info.Ctx)) 4030 VD = VDef; 4031 } 4032 if (!VD || VD->isInvalidDecl()) { 4033 Info.FFDiag(E); 4034 return CompleteObject(); 4035 } 4036 4037 bool IsConstant = BaseType.isConstant(Info.Ctx); 4038 4039 // Unless we're looking at a local variable or argument in a constexpr call, 4040 // the variable we're reading must be const. 4041 if (!Frame) { 4042 if (IsAccess && isa<ParmVarDecl>(VD)) { 4043 // Access of a parameter that's not associated with a frame isn't going 4044 // to work out, but we can leave it to evaluateVarDeclInit to provide a 4045 // suitable diagnostic. 4046 } else if (Info.getLangOpts().CPlusPlus14 && 4047 lifetimeStartedInEvaluation(Info, LVal.Base)) { 4048 // OK, we can read and modify an object if we're in the process of 4049 // evaluating its initializer, because its lifetime began in this 4050 // evaluation. 4051 } else if (isModification(AK)) { 4052 // All the remaining cases do not permit modification of the object. 4053 Info.FFDiag(E, diag::note_constexpr_modify_global); 4054 return CompleteObject(); 4055 } else if (VD->isConstexpr()) { 4056 // OK, we can read this variable. 4057 } else if (BaseType->isIntegralOrEnumerationType()) { 4058 if (!IsConstant) { 4059 if (!IsAccess) 4060 return CompleteObject(LVal.getLValueBase(), nullptr, BaseType); 4061 if (Info.getLangOpts().CPlusPlus) { 4062 Info.FFDiag(E, diag::note_constexpr_ltor_non_const_int, 1) << VD; 4063 Info.Note(VD->getLocation(), diag::note_declared_at); 4064 } else { 4065 Info.FFDiag(E); 4066 } 4067 return CompleteObject(); 4068 } 4069 } else if (!IsAccess) { 4070 return CompleteObject(LVal.getLValueBase(), nullptr, BaseType); 4071 } else if (IsConstant && Info.checkingPotentialConstantExpression() && 4072 BaseType->isLiteralType(Info.Ctx) && !VD->hasDefinition()) { 4073 // This variable might end up being constexpr. Don't diagnose it yet. 4074 } else if (IsConstant) { 4075 // Keep evaluating to see what we can do. In particular, we support 4076 // folding of const floating-point types, in order to make static const 4077 // data members of such types (supported as an extension) more useful. 4078 if (Info.getLangOpts().CPlusPlus) { 4079 Info.CCEDiag(E, Info.getLangOpts().CPlusPlus11 4080 ? diag::note_constexpr_ltor_non_constexpr 4081 : diag::note_constexpr_ltor_non_integral, 1) 4082 << VD << BaseType; 4083 Info.Note(VD->getLocation(), diag::note_declared_at); 4084 } else { 4085 Info.CCEDiag(E); 4086 } 4087 } else { 4088 // Never allow reading a non-const value. 4089 if (Info.getLangOpts().CPlusPlus) { 4090 Info.FFDiag(E, Info.getLangOpts().CPlusPlus11 4091 ? diag::note_constexpr_ltor_non_constexpr 4092 : diag::note_constexpr_ltor_non_integral, 1) 4093 << VD << BaseType; 4094 Info.Note(VD->getLocation(), diag::note_declared_at); 4095 } else { 4096 Info.FFDiag(E); 4097 } 4098 return CompleteObject(); 4099 } 4100 } 4101 4102 if (!evaluateVarDeclInit(Info, E, VD, Frame, LVal.getLValueVersion(), BaseVal)) 4103 return CompleteObject(); 4104 } else if (DynamicAllocLValue DA = LVal.Base.dyn_cast<DynamicAllocLValue>()) { 4105 Optional<DynAlloc*> Alloc = Info.lookupDynamicAlloc(DA); 4106 if (!Alloc) { 4107 Info.FFDiag(E, diag::note_constexpr_access_deleted_object) << AK; 4108 return CompleteObject(); 4109 } 4110 return CompleteObject(LVal.Base, &(*Alloc)->Value, 4111 LVal.Base.getDynamicAllocType()); 4112 } else { 4113 const Expr *Base = LVal.Base.dyn_cast<const Expr*>(); 4114 4115 if (!Frame) { 4116 if (const MaterializeTemporaryExpr *MTE = 4117 dyn_cast_or_null<MaterializeTemporaryExpr>(Base)) { 4118 assert(MTE->getStorageDuration() == SD_Static && 4119 "should have a frame for a non-global materialized temporary"); 4120 4121 // C++20 [expr.const]p4: [DR2126] 4122 // An object or reference is usable in constant expressions if it is 4123 // - a temporary object of non-volatile const-qualified literal type 4124 // whose lifetime is extended to that of a variable that is usable 4125 // in constant expressions 4126 // 4127 // C++20 [expr.const]p5: 4128 // an lvalue-to-rvalue conversion [is not allowed unless it applies to] 4129 // - a non-volatile glvalue that refers to an object that is usable 4130 // in constant expressions, or 4131 // - a non-volatile glvalue of literal type that refers to a 4132 // non-volatile object whose lifetime began within the evaluation 4133 // of E; 4134 // 4135 // C++11 misses the 'began within the evaluation of e' check and 4136 // instead allows all temporaries, including things like: 4137 // int &&r = 1; 4138 // int x = ++r; 4139 // constexpr int k = r; 4140 // Therefore we use the C++14-onwards rules in C++11 too. 4141 // 4142 // Note that temporaries whose lifetimes began while evaluating a 4143 // variable's constructor are not usable while evaluating the 4144 // corresponding destructor, not even if they're of const-qualified 4145 // types. 4146 if (!MTE->isUsableInConstantExpressions(Info.Ctx) && 4147 !lifetimeStartedInEvaluation(Info, LVal.Base)) { 4148 if (!IsAccess) 4149 return CompleteObject(LVal.getLValueBase(), nullptr, BaseType); 4150 Info.FFDiag(E, diag::note_constexpr_access_static_temporary, 1) << AK; 4151 Info.Note(MTE->getExprLoc(), diag::note_constexpr_temporary_here); 4152 return CompleteObject(); 4153 } 4154 4155 BaseVal = MTE->getOrCreateValue(false); 4156 assert(BaseVal && "got reference to unevaluated temporary"); 4157 } else { 4158 if (!IsAccess) 4159 return CompleteObject(LVal.getLValueBase(), nullptr, BaseType); 4160 APValue Val; 4161 LVal.moveInto(Val); 4162 Info.FFDiag(E, diag::note_constexpr_access_unreadable_object) 4163 << AK 4164 << Val.getAsString(Info.Ctx, 4165 Info.Ctx.getLValueReferenceType(LValType)); 4166 NoteLValueLocation(Info, LVal.Base); 4167 return CompleteObject(); 4168 } 4169 } else { 4170 BaseVal = Frame->getTemporary(Base, LVal.Base.getVersion()); 4171 assert(BaseVal && "missing value for temporary"); 4172 } 4173 } 4174 4175 // In C++14, we can't safely access any mutable state when we might be 4176 // evaluating after an unmodeled side effect. Parameters are modeled as state 4177 // in the caller, but aren't visible once the call returns, so they can be 4178 // modified in a speculatively-evaluated call. 4179 // 4180 // FIXME: Not all local state is mutable. Allow local constant subobjects 4181 // to be read here (but take care with 'mutable' fields). 4182 unsigned VisibleDepth = Depth; 4183 if (llvm::isa_and_nonnull<ParmVarDecl>( 4184 LVal.Base.dyn_cast<const ValueDecl *>())) 4185 ++VisibleDepth; 4186 if ((Frame && Info.getLangOpts().CPlusPlus14 && 4187 Info.EvalStatus.HasSideEffects) || 4188 (isModification(AK) && VisibleDepth < Info.SpeculativeEvaluationDepth)) 4189 return CompleteObject(); 4190 4191 return CompleteObject(LVal.getLValueBase(), BaseVal, BaseType); 4192 } 4193 4194 /// Perform an lvalue-to-rvalue conversion on the given glvalue. This 4195 /// can also be used for 'lvalue-to-lvalue' conversions for looking up the 4196 /// glvalue referred to by an entity of reference type. 4197 /// 4198 /// \param Info - Information about the ongoing evaluation. 4199 /// \param Conv - The expression for which we are performing the conversion. 4200 /// Used for diagnostics. 4201 /// \param Type - The type of the glvalue (before stripping cv-qualifiers in the 4202 /// case of a non-class type). 4203 /// \param LVal - The glvalue on which we are attempting to perform this action. 4204 /// \param RVal - The produced value will be placed here. 4205 /// \param WantObjectRepresentation - If true, we're looking for the object 4206 /// representation rather than the value, and in particular, 4207 /// there is no requirement that the result be fully initialized. 4208 static bool 4209 handleLValueToRValueConversion(EvalInfo &Info, const Expr *Conv, QualType Type, 4210 const LValue &LVal, APValue &RVal, 4211 bool WantObjectRepresentation = false) { 4212 if (LVal.Designator.Invalid) 4213 return false; 4214 4215 // Check for special cases where there is no existing APValue to look at. 4216 const Expr *Base = LVal.Base.dyn_cast<const Expr*>(); 4217 4218 AccessKinds AK = 4219 WantObjectRepresentation ? AK_ReadObjectRepresentation : AK_Read; 4220 4221 if (Base && !LVal.getLValueCallIndex() && !Type.isVolatileQualified()) { 4222 if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(Base)) { 4223 // In C99, a CompoundLiteralExpr is an lvalue, and we defer evaluating the 4224 // initializer until now for such expressions. Such an expression can't be 4225 // an ICE in C, so this only matters for fold. 4226 if (Type.isVolatileQualified()) { 4227 Info.FFDiag(Conv); 4228 return false; 4229 } 4230 APValue Lit; 4231 if (!Evaluate(Lit, Info, CLE->getInitializer())) 4232 return false; 4233 CompleteObject LitObj(LVal.Base, &Lit, Base->getType()); 4234 return extractSubobject(Info, Conv, LitObj, LVal.Designator, RVal, AK); 4235 } else if (isa<StringLiteral>(Base) || isa<PredefinedExpr>(Base)) { 4236 // Special-case character extraction so we don't have to construct an 4237 // APValue for the whole string. 4238 assert(LVal.Designator.Entries.size() <= 1 && 4239 "Can only read characters from string literals"); 4240 if (LVal.Designator.Entries.empty()) { 4241 // Fail for now for LValue to RValue conversion of an array. 4242 // (This shouldn't show up in C/C++, but it could be triggered by a 4243 // weird EvaluateAsRValue call from a tool.) 4244 Info.FFDiag(Conv); 4245 return false; 4246 } 4247 if (LVal.Designator.isOnePastTheEnd()) { 4248 if (Info.getLangOpts().CPlusPlus11) 4249 Info.FFDiag(Conv, diag::note_constexpr_access_past_end) << AK; 4250 else 4251 Info.FFDiag(Conv); 4252 return false; 4253 } 4254 uint64_t CharIndex = LVal.Designator.Entries[0].getAsArrayIndex(); 4255 RVal = APValue(extractStringLiteralCharacter(Info, Base, CharIndex)); 4256 return true; 4257 } 4258 } 4259 4260 CompleteObject Obj = findCompleteObject(Info, Conv, AK, LVal, Type); 4261 return Obj && extractSubobject(Info, Conv, Obj, LVal.Designator, RVal, AK); 4262 } 4263 4264 /// Perform an assignment of Val to LVal. Takes ownership of Val. 4265 static bool handleAssignment(EvalInfo &Info, const Expr *E, const LValue &LVal, 4266 QualType LValType, APValue &Val) { 4267 if (LVal.Designator.Invalid) 4268 return false; 4269 4270 if (!Info.getLangOpts().CPlusPlus14) { 4271 Info.FFDiag(E); 4272 return false; 4273 } 4274 4275 CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType); 4276 return Obj && modifySubobject(Info, E, Obj, LVal.Designator, Val); 4277 } 4278 4279 namespace { 4280 struct CompoundAssignSubobjectHandler { 4281 EvalInfo &Info; 4282 const CompoundAssignOperator *E; 4283 QualType PromotedLHSType; 4284 BinaryOperatorKind Opcode; 4285 const APValue &RHS; 4286 4287 static const AccessKinds AccessKind = AK_Assign; 4288 4289 typedef bool result_type; 4290 4291 bool checkConst(QualType QT) { 4292 // Assigning to a const object has undefined behavior. 4293 if (QT.isConstQualified()) { 4294 Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT; 4295 return false; 4296 } 4297 return true; 4298 } 4299 4300 bool failed() { return false; } 4301 bool found(APValue &Subobj, QualType SubobjType) { 4302 switch (Subobj.getKind()) { 4303 case APValue::Int: 4304 return found(Subobj.getInt(), SubobjType); 4305 case APValue::Float: 4306 return found(Subobj.getFloat(), SubobjType); 4307 case APValue::ComplexInt: 4308 case APValue::ComplexFloat: 4309 // FIXME: Implement complex compound assignment. 4310 Info.FFDiag(E); 4311 return false; 4312 case APValue::LValue: 4313 return foundPointer(Subobj, SubobjType); 4314 case APValue::Vector: 4315 return foundVector(Subobj, SubobjType); 4316 default: 4317 // FIXME: can this happen? 4318 Info.FFDiag(E); 4319 return false; 4320 } 4321 } 4322 4323 bool foundVector(APValue &Value, QualType SubobjType) { 4324 if (!checkConst(SubobjType)) 4325 return false; 4326 4327 if (!SubobjType->isVectorType()) { 4328 Info.FFDiag(E); 4329 return false; 4330 } 4331 return handleVectorVectorBinOp(Info, E, Opcode, Value, RHS); 4332 } 4333 4334 bool found(APSInt &Value, QualType SubobjType) { 4335 if (!checkConst(SubobjType)) 4336 return false; 4337 4338 if (!SubobjType->isIntegerType()) { 4339 // We don't support compound assignment on integer-cast-to-pointer 4340 // values. 4341 Info.FFDiag(E); 4342 return false; 4343 } 4344 4345 if (RHS.isInt()) { 4346 APSInt LHS = 4347 HandleIntToIntCast(Info, E, PromotedLHSType, SubobjType, Value); 4348 if (!handleIntIntBinOp(Info, E, LHS, Opcode, RHS.getInt(), LHS)) 4349 return false; 4350 Value = HandleIntToIntCast(Info, E, SubobjType, PromotedLHSType, LHS); 4351 return true; 4352 } else if (RHS.isFloat()) { 4353 const FPOptions FPO = E->getFPFeaturesInEffect( 4354 Info.Ctx.getLangOpts()); 4355 APFloat FValue(0.0); 4356 return HandleIntToFloatCast(Info, E, FPO, SubobjType, Value, 4357 PromotedLHSType, FValue) && 4358 handleFloatFloatBinOp(Info, E, FValue, Opcode, RHS.getFloat()) && 4359 HandleFloatToIntCast(Info, E, PromotedLHSType, FValue, SubobjType, 4360 Value); 4361 } 4362 4363 Info.FFDiag(E); 4364 return false; 4365 } 4366 bool found(APFloat &Value, QualType SubobjType) { 4367 return checkConst(SubobjType) && 4368 HandleFloatToFloatCast(Info, E, SubobjType, PromotedLHSType, 4369 Value) && 4370 handleFloatFloatBinOp(Info, E, Value, Opcode, RHS.getFloat()) && 4371 HandleFloatToFloatCast(Info, E, PromotedLHSType, SubobjType, Value); 4372 } 4373 bool foundPointer(APValue &Subobj, QualType SubobjType) { 4374 if (!checkConst(SubobjType)) 4375 return false; 4376 4377 QualType PointeeType; 4378 if (const PointerType *PT = SubobjType->getAs<PointerType>()) 4379 PointeeType = PT->getPointeeType(); 4380 4381 if (PointeeType.isNull() || !RHS.isInt() || 4382 (Opcode != BO_Add && Opcode != BO_Sub)) { 4383 Info.FFDiag(E); 4384 return false; 4385 } 4386 4387 APSInt Offset = RHS.getInt(); 4388 if (Opcode == BO_Sub) 4389 negateAsSigned(Offset); 4390 4391 LValue LVal; 4392 LVal.setFrom(Info.Ctx, Subobj); 4393 if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType, Offset)) 4394 return false; 4395 LVal.moveInto(Subobj); 4396 return true; 4397 } 4398 }; 4399 } // end anonymous namespace 4400 4401 const AccessKinds CompoundAssignSubobjectHandler::AccessKind; 4402 4403 /// Perform a compound assignment of LVal <op>= RVal. 4404 static bool handleCompoundAssignment(EvalInfo &Info, 4405 const CompoundAssignOperator *E, 4406 const LValue &LVal, QualType LValType, 4407 QualType PromotedLValType, 4408 BinaryOperatorKind Opcode, 4409 const APValue &RVal) { 4410 if (LVal.Designator.Invalid) 4411 return false; 4412 4413 if (!Info.getLangOpts().CPlusPlus14) { 4414 Info.FFDiag(E); 4415 return false; 4416 } 4417 4418 CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType); 4419 CompoundAssignSubobjectHandler Handler = { Info, E, PromotedLValType, Opcode, 4420 RVal }; 4421 return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler); 4422 } 4423 4424 namespace { 4425 struct IncDecSubobjectHandler { 4426 EvalInfo &Info; 4427 const UnaryOperator *E; 4428 AccessKinds AccessKind; 4429 APValue *Old; 4430 4431 typedef bool result_type; 4432 4433 bool checkConst(QualType QT) { 4434 // Assigning to a const object has undefined behavior. 4435 if (QT.isConstQualified()) { 4436 Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT; 4437 return false; 4438 } 4439 return true; 4440 } 4441 4442 bool failed() { return false; } 4443 bool found(APValue &Subobj, QualType SubobjType) { 4444 // Stash the old value. Also clear Old, so we don't clobber it later 4445 // if we're post-incrementing a complex. 4446 if (Old) { 4447 *Old = Subobj; 4448 Old = nullptr; 4449 } 4450 4451 switch (Subobj.getKind()) { 4452 case APValue::Int: 4453 return found(Subobj.getInt(), SubobjType); 4454 case APValue::Float: 4455 return found(Subobj.getFloat(), SubobjType); 4456 case APValue::ComplexInt: 4457 return found(Subobj.getComplexIntReal(), 4458 SubobjType->castAs<ComplexType>()->getElementType() 4459 .withCVRQualifiers(SubobjType.getCVRQualifiers())); 4460 case APValue::ComplexFloat: 4461 return found(Subobj.getComplexFloatReal(), 4462 SubobjType->castAs<ComplexType>()->getElementType() 4463 .withCVRQualifiers(SubobjType.getCVRQualifiers())); 4464 case APValue::LValue: 4465 return foundPointer(Subobj, SubobjType); 4466 default: 4467 // FIXME: can this happen? 4468 Info.FFDiag(E); 4469 return false; 4470 } 4471 } 4472 bool found(APSInt &Value, QualType SubobjType) { 4473 if (!checkConst(SubobjType)) 4474 return false; 4475 4476 if (!SubobjType->isIntegerType()) { 4477 // We don't support increment / decrement on integer-cast-to-pointer 4478 // values. 4479 Info.FFDiag(E); 4480 return false; 4481 } 4482 4483 if (Old) *Old = APValue(Value); 4484 4485 // bool arithmetic promotes to int, and the conversion back to bool 4486 // doesn't reduce mod 2^n, so special-case it. 4487 if (SubobjType->isBooleanType()) { 4488 if (AccessKind == AK_Increment) 4489 Value = 1; 4490 else 4491 Value = !Value; 4492 return true; 4493 } 4494 4495 bool WasNegative = Value.isNegative(); 4496 if (AccessKind == AK_Increment) { 4497 ++Value; 4498 4499 if (!WasNegative && Value.isNegative() && E->canOverflow()) { 4500 APSInt ActualValue(Value, /*IsUnsigned*/true); 4501 return HandleOverflow(Info, E, ActualValue, SubobjType); 4502 } 4503 } else { 4504 --Value; 4505 4506 if (WasNegative && !Value.isNegative() && E->canOverflow()) { 4507 unsigned BitWidth = Value.getBitWidth(); 4508 APSInt ActualValue(Value.sext(BitWidth + 1), /*IsUnsigned*/false); 4509 ActualValue.setBit(BitWidth); 4510 return HandleOverflow(Info, E, ActualValue, SubobjType); 4511 } 4512 } 4513 return true; 4514 } 4515 bool found(APFloat &Value, QualType SubobjType) { 4516 if (!checkConst(SubobjType)) 4517 return false; 4518 4519 if (Old) *Old = APValue(Value); 4520 4521 APFloat One(Value.getSemantics(), 1); 4522 if (AccessKind == AK_Increment) 4523 Value.add(One, APFloat::rmNearestTiesToEven); 4524 else 4525 Value.subtract(One, APFloat::rmNearestTiesToEven); 4526 return true; 4527 } 4528 bool foundPointer(APValue &Subobj, QualType SubobjType) { 4529 if (!checkConst(SubobjType)) 4530 return false; 4531 4532 QualType PointeeType; 4533 if (const PointerType *PT = SubobjType->getAs<PointerType>()) 4534 PointeeType = PT->getPointeeType(); 4535 else { 4536 Info.FFDiag(E); 4537 return false; 4538 } 4539 4540 LValue LVal; 4541 LVal.setFrom(Info.Ctx, Subobj); 4542 if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType, 4543 AccessKind == AK_Increment ? 1 : -1)) 4544 return false; 4545 LVal.moveInto(Subobj); 4546 return true; 4547 } 4548 }; 4549 } // end anonymous namespace 4550 4551 /// Perform an increment or decrement on LVal. 4552 static bool handleIncDec(EvalInfo &Info, const Expr *E, const LValue &LVal, 4553 QualType LValType, bool IsIncrement, APValue *Old) { 4554 if (LVal.Designator.Invalid) 4555 return false; 4556 4557 if (!Info.getLangOpts().CPlusPlus14) { 4558 Info.FFDiag(E); 4559 return false; 4560 } 4561 4562 AccessKinds AK = IsIncrement ? AK_Increment : AK_Decrement; 4563 CompleteObject Obj = findCompleteObject(Info, E, AK, LVal, LValType); 4564 IncDecSubobjectHandler Handler = {Info, cast<UnaryOperator>(E), AK, Old}; 4565 return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler); 4566 } 4567 4568 /// Build an lvalue for the object argument of a member function call. 4569 static bool EvaluateObjectArgument(EvalInfo &Info, const Expr *Object, 4570 LValue &This) { 4571 if (Object->getType()->isPointerType() && Object->isRValue()) 4572 return EvaluatePointer(Object, This, Info); 4573 4574 if (Object->isGLValue()) 4575 return EvaluateLValue(Object, This, Info); 4576 4577 if (Object->getType()->isLiteralType(Info.Ctx)) 4578 return EvaluateTemporary(Object, This, Info); 4579 4580 Info.FFDiag(Object, diag::note_constexpr_nonliteral) << Object->getType(); 4581 return false; 4582 } 4583 4584 /// HandleMemberPointerAccess - Evaluate a member access operation and build an 4585 /// lvalue referring to the result. 4586 /// 4587 /// \param Info - Information about the ongoing evaluation. 4588 /// \param LV - An lvalue referring to the base of the member pointer. 4589 /// \param RHS - The member pointer expression. 4590 /// \param IncludeMember - Specifies whether the member itself is included in 4591 /// the resulting LValue subobject designator. This is not possible when 4592 /// creating a bound member function. 4593 /// \return The field or method declaration to which the member pointer refers, 4594 /// or 0 if evaluation fails. 4595 static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info, 4596 QualType LVType, 4597 LValue &LV, 4598 const Expr *RHS, 4599 bool IncludeMember = true) { 4600 MemberPtr MemPtr; 4601 if (!EvaluateMemberPointer(RHS, MemPtr, Info)) 4602 return nullptr; 4603 4604 // C++11 [expr.mptr.oper]p6: If the second operand is the null pointer to 4605 // member value, the behavior is undefined. 4606 if (!MemPtr.getDecl()) { 4607 // FIXME: Specific diagnostic. 4608 Info.FFDiag(RHS); 4609 return nullptr; 4610 } 4611 4612 if (MemPtr.isDerivedMember()) { 4613 // This is a member of some derived class. Truncate LV appropriately. 4614 // The end of the derived-to-base path for the base object must match the 4615 // derived-to-base path for the member pointer. 4616 if (LV.Designator.MostDerivedPathLength + MemPtr.Path.size() > 4617 LV.Designator.Entries.size()) { 4618 Info.FFDiag(RHS); 4619 return nullptr; 4620 } 4621 unsigned PathLengthToMember = 4622 LV.Designator.Entries.size() - MemPtr.Path.size(); 4623 for (unsigned I = 0, N = MemPtr.Path.size(); I != N; ++I) { 4624 const CXXRecordDecl *LVDecl = getAsBaseClass( 4625 LV.Designator.Entries[PathLengthToMember + I]); 4626 const CXXRecordDecl *MPDecl = MemPtr.Path[I]; 4627 if (LVDecl->getCanonicalDecl() != MPDecl->getCanonicalDecl()) { 4628 Info.FFDiag(RHS); 4629 return nullptr; 4630 } 4631 } 4632 4633 // Truncate the lvalue to the appropriate derived class. 4634 if (!CastToDerivedClass(Info, RHS, LV, MemPtr.getContainingRecord(), 4635 PathLengthToMember)) 4636 return nullptr; 4637 } else if (!MemPtr.Path.empty()) { 4638 // Extend the LValue path with the member pointer's path. 4639 LV.Designator.Entries.reserve(LV.Designator.Entries.size() + 4640 MemPtr.Path.size() + IncludeMember); 4641 4642 // Walk down to the appropriate base class. 4643 if (const PointerType *PT = LVType->getAs<PointerType>()) 4644 LVType = PT->getPointeeType(); 4645 const CXXRecordDecl *RD = LVType->getAsCXXRecordDecl(); 4646 assert(RD && "member pointer access on non-class-type expression"); 4647 // The first class in the path is that of the lvalue. 4648 for (unsigned I = 1, N = MemPtr.Path.size(); I != N; ++I) { 4649 const CXXRecordDecl *Base = MemPtr.Path[N - I - 1]; 4650 if (!HandleLValueDirectBase(Info, RHS, LV, RD, Base)) 4651 return nullptr; 4652 RD = Base; 4653 } 4654 // Finally cast to the class containing the member. 4655 if (!HandleLValueDirectBase(Info, RHS, LV, RD, 4656 MemPtr.getContainingRecord())) 4657 return nullptr; 4658 } 4659 4660 // Add the member. Note that we cannot build bound member functions here. 4661 if (IncludeMember) { 4662 if (const FieldDecl *FD = dyn_cast<FieldDecl>(MemPtr.getDecl())) { 4663 if (!HandleLValueMember(Info, RHS, LV, FD)) 4664 return nullptr; 4665 } else if (const IndirectFieldDecl *IFD = 4666 dyn_cast<IndirectFieldDecl>(MemPtr.getDecl())) { 4667 if (!HandleLValueIndirectMember(Info, RHS, LV, IFD)) 4668 return nullptr; 4669 } else { 4670 llvm_unreachable("can't construct reference to bound member function"); 4671 } 4672 } 4673 4674 return MemPtr.getDecl(); 4675 } 4676 4677 static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info, 4678 const BinaryOperator *BO, 4679 LValue &LV, 4680 bool IncludeMember = true) { 4681 assert(BO->getOpcode() == BO_PtrMemD || BO->getOpcode() == BO_PtrMemI); 4682 4683 if (!EvaluateObjectArgument(Info, BO->getLHS(), LV)) { 4684 if (Info.noteFailure()) { 4685 MemberPtr MemPtr; 4686 EvaluateMemberPointer(BO->getRHS(), MemPtr, Info); 4687 } 4688 return nullptr; 4689 } 4690 4691 return HandleMemberPointerAccess(Info, BO->getLHS()->getType(), LV, 4692 BO->getRHS(), IncludeMember); 4693 } 4694 4695 /// HandleBaseToDerivedCast - Apply the given base-to-derived cast operation on 4696 /// the provided lvalue, which currently refers to the base object. 4697 static bool HandleBaseToDerivedCast(EvalInfo &Info, const CastExpr *E, 4698 LValue &Result) { 4699 SubobjectDesignator &D = Result.Designator; 4700 if (D.Invalid || !Result.checkNullPointer(Info, E, CSK_Derived)) 4701 return false; 4702 4703 QualType TargetQT = E->getType(); 4704 if (const PointerType *PT = TargetQT->getAs<PointerType>()) 4705 TargetQT = PT->getPointeeType(); 4706 4707 // Check this cast lands within the final derived-to-base subobject path. 4708 if (D.MostDerivedPathLength + E->path_size() > D.Entries.size()) { 4709 Info.CCEDiag(E, diag::note_constexpr_invalid_downcast) 4710 << D.MostDerivedType << TargetQT; 4711 return false; 4712 } 4713 4714 // Check the type of the final cast. We don't need to check the path, 4715 // since a cast can only be formed if the path is unique. 4716 unsigned NewEntriesSize = D.Entries.size() - E->path_size(); 4717 const CXXRecordDecl *TargetType = TargetQT->getAsCXXRecordDecl(); 4718 const CXXRecordDecl *FinalType; 4719 if (NewEntriesSize == D.MostDerivedPathLength) 4720 FinalType = D.MostDerivedType->getAsCXXRecordDecl(); 4721 else 4722 FinalType = getAsBaseClass(D.Entries[NewEntriesSize - 1]); 4723 if (FinalType->getCanonicalDecl() != TargetType->getCanonicalDecl()) { 4724 Info.CCEDiag(E, diag::note_constexpr_invalid_downcast) 4725 << D.MostDerivedType << TargetQT; 4726 return false; 4727 } 4728 4729 // Truncate the lvalue to the appropriate derived class. 4730 return CastToDerivedClass(Info, E, Result, TargetType, NewEntriesSize); 4731 } 4732 4733 /// Get the value to use for a default-initialized object of type T. 4734 /// Return false if it encounters something invalid. 4735 static bool getDefaultInitValue(QualType T, APValue &Result) { 4736 bool Success = true; 4737 if (auto *RD = T->getAsCXXRecordDecl()) { 4738 if (RD->isInvalidDecl()) { 4739 Result = APValue(); 4740 return false; 4741 } 4742 if (RD->isUnion()) { 4743 Result = APValue((const FieldDecl *)nullptr); 4744 return true; 4745 } 4746 Result = APValue(APValue::UninitStruct(), RD->getNumBases(), 4747 std::distance(RD->field_begin(), RD->field_end())); 4748 4749 unsigned Index = 0; 4750 for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(), 4751 End = RD->bases_end(); 4752 I != End; ++I, ++Index) 4753 Success &= getDefaultInitValue(I->getType(), Result.getStructBase(Index)); 4754 4755 for (const auto *I : RD->fields()) { 4756 if (I->isUnnamedBitfield()) 4757 continue; 4758 Success &= getDefaultInitValue(I->getType(), 4759 Result.getStructField(I->getFieldIndex())); 4760 } 4761 return Success; 4762 } 4763 4764 if (auto *AT = 4765 dyn_cast_or_null<ConstantArrayType>(T->getAsArrayTypeUnsafe())) { 4766 Result = APValue(APValue::UninitArray(), 0, AT->getSize().getZExtValue()); 4767 if (Result.hasArrayFiller()) 4768 Success &= 4769 getDefaultInitValue(AT->getElementType(), Result.getArrayFiller()); 4770 4771 return Success; 4772 } 4773 4774 Result = APValue::IndeterminateValue(); 4775 return true; 4776 } 4777 4778 namespace { 4779 enum EvalStmtResult { 4780 /// Evaluation failed. 4781 ESR_Failed, 4782 /// Hit a 'return' statement. 4783 ESR_Returned, 4784 /// Evaluation succeeded. 4785 ESR_Succeeded, 4786 /// Hit a 'continue' statement. 4787 ESR_Continue, 4788 /// Hit a 'break' statement. 4789 ESR_Break, 4790 /// Still scanning for 'case' or 'default' statement. 4791 ESR_CaseNotFound 4792 }; 4793 } 4794 4795 static bool EvaluateVarDecl(EvalInfo &Info, const VarDecl *VD) { 4796 // We don't need to evaluate the initializer for a static local. 4797 if (!VD->hasLocalStorage()) 4798 return true; 4799 4800 LValue Result; 4801 APValue &Val = Info.CurrentCall->createTemporary(VD, VD->getType(), 4802 ScopeKind::Block, Result); 4803 4804 const Expr *InitE = VD->getInit(); 4805 if (!InitE) { 4806 if (VD->getType()->isDependentType()) 4807 return Info.noteSideEffect(); 4808 return getDefaultInitValue(VD->getType(), Val); 4809 } 4810 if (InitE->isValueDependent()) 4811 return false; 4812 4813 if (!EvaluateInPlace(Val, Info, Result, InitE)) { 4814 // Wipe out any partially-computed value, to allow tracking that this 4815 // evaluation failed. 4816 Val = APValue(); 4817 return false; 4818 } 4819 4820 return true; 4821 } 4822 4823 static bool EvaluateDecl(EvalInfo &Info, const Decl *D) { 4824 bool OK = true; 4825 4826 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 4827 OK &= EvaluateVarDecl(Info, VD); 4828 4829 if (const DecompositionDecl *DD = dyn_cast<DecompositionDecl>(D)) 4830 for (auto *BD : DD->bindings()) 4831 if (auto *VD = BD->getHoldingVar()) 4832 OK &= EvaluateDecl(Info, VD); 4833 4834 return OK; 4835 } 4836 4837 static bool EvaluateDependentExpr(const Expr *E, EvalInfo &Info) { 4838 assert(E->isValueDependent()); 4839 if (Info.noteSideEffect()) 4840 return true; 4841 assert(E->containsErrors() && "valid value-dependent expression should never " 4842 "reach invalid code path."); 4843 return false; 4844 } 4845 4846 /// Evaluate a condition (either a variable declaration or an expression). 4847 static bool EvaluateCond(EvalInfo &Info, const VarDecl *CondDecl, 4848 const Expr *Cond, bool &Result) { 4849 if (Cond->isValueDependent()) 4850 return false; 4851 FullExpressionRAII Scope(Info); 4852 if (CondDecl && !EvaluateDecl(Info, CondDecl)) 4853 return false; 4854 if (!EvaluateAsBooleanCondition(Cond, Result, Info)) 4855 return false; 4856 return Scope.destroy(); 4857 } 4858 4859 namespace { 4860 /// A location where the result (returned value) of evaluating a 4861 /// statement should be stored. 4862 struct StmtResult { 4863 /// The APValue that should be filled in with the returned value. 4864 APValue &Value; 4865 /// The location containing the result, if any (used to support RVO). 4866 const LValue *Slot; 4867 }; 4868 4869 struct TempVersionRAII { 4870 CallStackFrame &Frame; 4871 4872 TempVersionRAII(CallStackFrame &Frame) : Frame(Frame) { 4873 Frame.pushTempVersion(); 4874 } 4875 4876 ~TempVersionRAII() { 4877 Frame.popTempVersion(); 4878 } 4879 }; 4880 4881 } 4882 4883 static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info, 4884 const Stmt *S, 4885 const SwitchCase *SC = nullptr); 4886 4887 /// Evaluate the body of a loop, and translate the result as appropriate. 4888 static EvalStmtResult EvaluateLoopBody(StmtResult &Result, EvalInfo &Info, 4889 const Stmt *Body, 4890 const SwitchCase *Case = nullptr) { 4891 BlockScopeRAII Scope(Info); 4892 4893 EvalStmtResult ESR = EvaluateStmt(Result, Info, Body, Case); 4894 if (ESR != ESR_Failed && ESR != ESR_CaseNotFound && !Scope.destroy()) 4895 ESR = ESR_Failed; 4896 4897 switch (ESR) { 4898 case ESR_Break: 4899 return ESR_Succeeded; 4900 case ESR_Succeeded: 4901 case ESR_Continue: 4902 return ESR_Continue; 4903 case ESR_Failed: 4904 case ESR_Returned: 4905 case ESR_CaseNotFound: 4906 return ESR; 4907 } 4908 llvm_unreachable("Invalid EvalStmtResult!"); 4909 } 4910 4911 /// Evaluate a switch statement. 4912 static EvalStmtResult EvaluateSwitch(StmtResult &Result, EvalInfo &Info, 4913 const SwitchStmt *SS) { 4914 BlockScopeRAII Scope(Info); 4915 4916 // Evaluate the switch condition. 4917 APSInt Value; 4918 { 4919 if (const Stmt *Init = SS->getInit()) { 4920 EvalStmtResult ESR = EvaluateStmt(Result, Info, Init); 4921 if (ESR != ESR_Succeeded) { 4922 if (ESR != ESR_Failed && !Scope.destroy()) 4923 ESR = ESR_Failed; 4924 return ESR; 4925 } 4926 } 4927 4928 FullExpressionRAII CondScope(Info); 4929 if (SS->getConditionVariable() && 4930 !EvaluateDecl(Info, SS->getConditionVariable())) 4931 return ESR_Failed; 4932 if (!EvaluateInteger(SS->getCond(), Value, Info)) 4933 return ESR_Failed; 4934 if (!CondScope.destroy()) 4935 return ESR_Failed; 4936 } 4937 4938 // Find the switch case corresponding to the value of the condition. 4939 // FIXME: Cache this lookup. 4940 const SwitchCase *Found = nullptr; 4941 for (const SwitchCase *SC = SS->getSwitchCaseList(); SC; 4942 SC = SC->getNextSwitchCase()) { 4943 if (isa<DefaultStmt>(SC)) { 4944 Found = SC; 4945 continue; 4946 } 4947 4948 const CaseStmt *CS = cast<CaseStmt>(SC); 4949 APSInt LHS = CS->getLHS()->EvaluateKnownConstInt(Info.Ctx); 4950 APSInt RHS = CS->getRHS() ? CS->getRHS()->EvaluateKnownConstInt(Info.Ctx) 4951 : LHS; 4952 if (LHS <= Value && Value <= RHS) { 4953 Found = SC; 4954 break; 4955 } 4956 } 4957 4958 if (!Found) 4959 return Scope.destroy() ? ESR_Succeeded : ESR_Failed; 4960 4961 // Search the switch body for the switch case and evaluate it from there. 4962 EvalStmtResult ESR = EvaluateStmt(Result, Info, SS->getBody(), Found); 4963 if (ESR != ESR_Failed && ESR != ESR_CaseNotFound && !Scope.destroy()) 4964 return ESR_Failed; 4965 4966 switch (ESR) { 4967 case ESR_Break: 4968 return ESR_Succeeded; 4969 case ESR_Succeeded: 4970 case ESR_Continue: 4971 case ESR_Failed: 4972 case ESR_Returned: 4973 return ESR; 4974 case ESR_CaseNotFound: 4975 // This can only happen if the switch case is nested within a statement 4976 // expression. We have no intention of supporting that. 4977 Info.FFDiag(Found->getBeginLoc(), 4978 diag::note_constexpr_stmt_expr_unsupported); 4979 return ESR_Failed; 4980 } 4981 llvm_unreachable("Invalid EvalStmtResult!"); 4982 } 4983 4984 // Evaluate a statement. 4985 static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info, 4986 const Stmt *S, const SwitchCase *Case) { 4987 if (!Info.nextStep(S)) 4988 return ESR_Failed; 4989 4990 // If we're hunting down a 'case' or 'default' label, recurse through 4991 // substatements until we hit the label. 4992 if (Case) { 4993 switch (S->getStmtClass()) { 4994 case Stmt::CompoundStmtClass: 4995 // FIXME: Precompute which substatement of a compound statement we 4996 // would jump to, and go straight there rather than performing a 4997 // linear scan each time. 4998 case Stmt::LabelStmtClass: 4999 case Stmt::AttributedStmtClass: 5000 case Stmt::DoStmtClass: 5001 break; 5002 5003 case Stmt::CaseStmtClass: 5004 case Stmt::DefaultStmtClass: 5005 if (Case == S) 5006 Case = nullptr; 5007 break; 5008 5009 case Stmt::IfStmtClass: { 5010 // FIXME: Precompute which side of an 'if' we would jump to, and go 5011 // straight there rather than scanning both sides. 5012 const IfStmt *IS = cast<IfStmt>(S); 5013 5014 // Wrap the evaluation in a block scope, in case it's a DeclStmt 5015 // preceded by our switch label. 5016 BlockScopeRAII Scope(Info); 5017 5018 // Step into the init statement in case it brings an (uninitialized) 5019 // variable into scope. 5020 if (const Stmt *Init = IS->getInit()) { 5021 EvalStmtResult ESR = EvaluateStmt(Result, Info, Init, Case); 5022 if (ESR != ESR_CaseNotFound) { 5023 assert(ESR != ESR_Succeeded); 5024 return ESR; 5025 } 5026 } 5027 5028 // Condition variable must be initialized if it exists. 5029 // FIXME: We can skip evaluating the body if there's a condition 5030 // variable, as there can't be any case labels within it. 5031 // (The same is true for 'for' statements.) 5032 5033 EvalStmtResult ESR = EvaluateStmt(Result, Info, IS->getThen(), Case); 5034 if (ESR == ESR_Failed) 5035 return ESR; 5036 if (ESR != ESR_CaseNotFound) 5037 return Scope.destroy() ? ESR : ESR_Failed; 5038 if (!IS->getElse()) 5039 return ESR_CaseNotFound; 5040 5041 ESR = EvaluateStmt(Result, Info, IS->getElse(), Case); 5042 if (ESR == ESR_Failed) 5043 return ESR; 5044 if (ESR != ESR_CaseNotFound) 5045 return Scope.destroy() ? ESR : ESR_Failed; 5046 return ESR_CaseNotFound; 5047 } 5048 5049 case Stmt::WhileStmtClass: { 5050 EvalStmtResult ESR = 5051 EvaluateLoopBody(Result, Info, cast<WhileStmt>(S)->getBody(), Case); 5052 if (ESR != ESR_Continue) 5053 return ESR; 5054 break; 5055 } 5056 5057 case Stmt::ForStmtClass: { 5058 const ForStmt *FS = cast<ForStmt>(S); 5059 BlockScopeRAII Scope(Info); 5060 5061 // Step into the init statement in case it brings an (uninitialized) 5062 // variable into scope. 5063 if (const Stmt *Init = FS->getInit()) { 5064 EvalStmtResult ESR = EvaluateStmt(Result, Info, Init, Case); 5065 if (ESR != ESR_CaseNotFound) { 5066 assert(ESR != ESR_Succeeded); 5067 return ESR; 5068 } 5069 } 5070 5071 EvalStmtResult ESR = 5072 EvaluateLoopBody(Result, Info, FS->getBody(), Case); 5073 if (ESR != ESR_Continue) 5074 return ESR; 5075 if (const auto *Inc = FS->getInc()) { 5076 if (Inc->isValueDependent()) { 5077 if (!EvaluateDependentExpr(Inc, Info)) 5078 return ESR_Failed; 5079 } else { 5080 FullExpressionRAII IncScope(Info); 5081 if (!EvaluateIgnoredValue(Info, Inc) || !IncScope.destroy()) 5082 return ESR_Failed; 5083 } 5084 } 5085 break; 5086 } 5087 5088 case Stmt::DeclStmtClass: { 5089 // Start the lifetime of any uninitialized variables we encounter. They 5090 // might be used by the selected branch of the switch. 5091 const DeclStmt *DS = cast<DeclStmt>(S); 5092 for (const auto *D : DS->decls()) { 5093 if (const auto *VD = dyn_cast<VarDecl>(D)) { 5094 if (VD->hasLocalStorage() && !VD->getInit()) 5095 if (!EvaluateVarDecl(Info, VD)) 5096 return ESR_Failed; 5097 // FIXME: If the variable has initialization that can't be jumped 5098 // over, bail out of any immediately-surrounding compound-statement 5099 // too. There can't be any case labels here. 5100 } 5101 } 5102 return ESR_CaseNotFound; 5103 } 5104 5105 default: 5106 return ESR_CaseNotFound; 5107 } 5108 } 5109 5110 switch (S->getStmtClass()) { 5111 default: 5112 if (const Expr *E = dyn_cast<Expr>(S)) { 5113 if (E->isValueDependent()) { 5114 if (!EvaluateDependentExpr(E, Info)) 5115 return ESR_Failed; 5116 } else { 5117 // Don't bother evaluating beyond an expression-statement which couldn't 5118 // be evaluated. 5119 // FIXME: Do we need the FullExpressionRAII object here? 5120 // VisitExprWithCleanups should create one when necessary. 5121 FullExpressionRAII Scope(Info); 5122 if (!EvaluateIgnoredValue(Info, E) || !Scope.destroy()) 5123 return ESR_Failed; 5124 } 5125 return ESR_Succeeded; 5126 } 5127 5128 Info.FFDiag(S->getBeginLoc()); 5129 return ESR_Failed; 5130 5131 case Stmt::NullStmtClass: 5132 return ESR_Succeeded; 5133 5134 case Stmt::DeclStmtClass: { 5135 const DeclStmt *DS = cast<DeclStmt>(S); 5136 for (const auto *D : DS->decls()) { 5137 // Each declaration initialization is its own full-expression. 5138 FullExpressionRAII Scope(Info); 5139 if (!EvaluateDecl(Info, D) && !Info.noteFailure()) 5140 return ESR_Failed; 5141 if (!Scope.destroy()) 5142 return ESR_Failed; 5143 } 5144 return ESR_Succeeded; 5145 } 5146 5147 case Stmt::ReturnStmtClass: { 5148 const Expr *RetExpr = cast<ReturnStmt>(S)->getRetValue(); 5149 FullExpressionRAII Scope(Info); 5150 if (RetExpr && RetExpr->isValueDependent()) { 5151 EvaluateDependentExpr(RetExpr, Info); 5152 // We know we returned, but we don't know what the value is. 5153 return ESR_Failed; 5154 } 5155 if (RetExpr && 5156 !(Result.Slot 5157 ? EvaluateInPlace(Result.Value, Info, *Result.Slot, RetExpr) 5158 : Evaluate(Result.Value, Info, RetExpr))) 5159 return ESR_Failed; 5160 return Scope.destroy() ? ESR_Returned : ESR_Failed; 5161 } 5162 5163 case Stmt::CompoundStmtClass: { 5164 BlockScopeRAII Scope(Info); 5165 5166 const CompoundStmt *CS = cast<CompoundStmt>(S); 5167 for (const auto *BI : CS->body()) { 5168 EvalStmtResult ESR = EvaluateStmt(Result, Info, BI, Case); 5169 if (ESR == ESR_Succeeded) 5170 Case = nullptr; 5171 else if (ESR != ESR_CaseNotFound) { 5172 if (ESR != ESR_Failed && !Scope.destroy()) 5173 return ESR_Failed; 5174 return ESR; 5175 } 5176 } 5177 if (Case) 5178 return ESR_CaseNotFound; 5179 return Scope.destroy() ? ESR_Succeeded : ESR_Failed; 5180 } 5181 5182 case Stmt::IfStmtClass: { 5183 const IfStmt *IS = cast<IfStmt>(S); 5184 5185 // Evaluate the condition, as either a var decl or as an expression. 5186 BlockScopeRAII Scope(Info); 5187 if (const Stmt *Init = IS->getInit()) { 5188 EvalStmtResult ESR = EvaluateStmt(Result, Info, Init); 5189 if (ESR != ESR_Succeeded) { 5190 if (ESR != ESR_Failed && !Scope.destroy()) 5191 return ESR_Failed; 5192 return ESR; 5193 } 5194 } 5195 bool Cond; 5196 if (!EvaluateCond(Info, IS->getConditionVariable(), IS->getCond(), Cond)) 5197 return ESR_Failed; 5198 5199 if (const Stmt *SubStmt = Cond ? IS->getThen() : IS->getElse()) { 5200 EvalStmtResult ESR = EvaluateStmt(Result, Info, SubStmt); 5201 if (ESR != ESR_Succeeded) { 5202 if (ESR != ESR_Failed && !Scope.destroy()) 5203 return ESR_Failed; 5204 return ESR; 5205 } 5206 } 5207 return Scope.destroy() ? ESR_Succeeded : ESR_Failed; 5208 } 5209 5210 case Stmt::WhileStmtClass: { 5211 const WhileStmt *WS = cast<WhileStmt>(S); 5212 while (true) { 5213 BlockScopeRAII Scope(Info); 5214 bool Continue; 5215 if (!EvaluateCond(Info, WS->getConditionVariable(), WS->getCond(), 5216 Continue)) 5217 return ESR_Failed; 5218 if (!Continue) 5219 break; 5220 5221 EvalStmtResult ESR = EvaluateLoopBody(Result, Info, WS->getBody()); 5222 if (ESR != ESR_Continue) { 5223 if (ESR != ESR_Failed && !Scope.destroy()) 5224 return ESR_Failed; 5225 return ESR; 5226 } 5227 if (!Scope.destroy()) 5228 return ESR_Failed; 5229 } 5230 return ESR_Succeeded; 5231 } 5232 5233 case Stmt::DoStmtClass: { 5234 const DoStmt *DS = cast<DoStmt>(S); 5235 bool Continue; 5236 do { 5237 EvalStmtResult ESR = EvaluateLoopBody(Result, Info, DS->getBody(), Case); 5238 if (ESR != ESR_Continue) 5239 return ESR; 5240 Case = nullptr; 5241 5242 if (DS->getCond()->isValueDependent()) { 5243 EvaluateDependentExpr(DS->getCond(), Info); 5244 // Bailout as we don't know whether to keep going or terminate the loop. 5245 return ESR_Failed; 5246 } 5247 FullExpressionRAII CondScope(Info); 5248 if (!EvaluateAsBooleanCondition(DS->getCond(), Continue, Info) || 5249 !CondScope.destroy()) 5250 return ESR_Failed; 5251 } while (Continue); 5252 return ESR_Succeeded; 5253 } 5254 5255 case Stmt::ForStmtClass: { 5256 const ForStmt *FS = cast<ForStmt>(S); 5257 BlockScopeRAII ForScope(Info); 5258 if (FS->getInit()) { 5259 EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getInit()); 5260 if (ESR != ESR_Succeeded) { 5261 if (ESR != ESR_Failed && !ForScope.destroy()) 5262 return ESR_Failed; 5263 return ESR; 5264 } 5265 } 5266 while (true) { 5267 BlockScopeRAII IterScope(Info); 5268 bool Continue = true; 5269 if (FS->getCond() && !EvaluateCond(Info, FS->getConditionVariable(), 5270 FS->getCond(), Continue)) 5271 return ESR_Failed; 5272 if (!Continue) 5273 break; 5274 5275 EvalStmtResult ESR = EvaluateLoopBody(Result, Info, FS->getBody()); 5276 if (ESR != ESR_Continue) { 5277 if (ESR != ESR_Failed && (!IterScope.destroy() || !ForScope.destroy())) 5278 return ESR_Failed; 5279 return ESR; 5280 } 5281 5282 if (const auto *Inc = FS->getInc()) { 5283 if (Inc->isValueDependent()) { 5284 if (!EvaluateDependentExpr(Inc, Info)) 5285 return ESR_Failed; 5286 } else { 5287 FullExpressionRAII IncScope(Info); 5288 if (!EvaluateIgnoredValue(Info, Inc) || !IncScope.destroy()) 5289 return ESR_Failed; 5290 } 5291 } 5292 5293 if (!IterScope.destroy()) 5294 return ESR_Failed; 5295 } 5296 return ForScope.destroy() ? ESR_Succeeded : ESR_Failed; 5297 } 5298 5299 case Stmt::CXXForRangeStmtClass: { 5300 const CXXForRangeStmt *FS = cast<CXXForRangeStmt>(S); 5301 BlockScopeRAII Scope(Info); 5302 5303 // Evaluate the init-statement if present. 5304 if (FS->getInit()) { 5305 EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getInit()); 5306 if (ESR != ESR_Succeeded) { 5307 if (ESR != ESR_Failed && !Scope.destroy()) 5308 return ESR_Failed; 5309 return ESR; 5310 } 5311 } 5312 5313 // Initialize the __range variable. 5314 EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getRangeStmt()); 5315 if (ESR != ESR_Succeeded) { 5316 if (ESR != ESR_Failed && !Scope.destroy()) 5317 return ESR_Failed; 5318 return ESR; 5319 } 5320 5321 // Create the __begin and __end iterators. 5322 ESR = EvaluateStmt(Result, Info, FS->getBeginStmt()); 5323 if (ESR != ESR_Succeeded) { 5324 if (ESR != ESR_Failed && !Scope.destroy()) 5325 return ESR_Failed; 5326 return ESR; 5327 } 5328 ESR = EvaluateStmt(Result, Info, FS->getEndStmt()); 5329 if (ESR != ESR_Succeeded) { 5330 if (ESR != ESR_Failed && !Scope.destroy()) 5331 return ESR_Failed; 5332 return ESR; 5333 } 5334 5335 while (true) { 5336 // Condition: __begin != __end. 5337 { 5338 if (FS->getCond()->isValueDependent()) { 5339 EvaluateDependentExpr(FS->getCond(), Info); 5340 // We don't know whether to keep going or terminate the loop. 5341 return ESR_Failed; 5342 } 5343 bool Continue = true; 5344 FullExpressionRAII CondExpr(Info); 5345 if (!EvaluateAsBooleanCondition(FS->getCond(), Continue, Info)) 5346 return ESR_Failed; 5347 if (!Continue) 5348 break; 5349 } 5350 5351 // User's variable declaration, initialized by *__begin. 5352 BlockScopeRAII InnerScope(Info); 5353 ESR = EvaluateStmt(Result, Info, FS->getLoopVarStmt()); 5354 if (ESR != ESR_Succeeded) { 5355 if (ESR != ESR_Failed && (!InnerScope.destroy() || !Scope.destroy())) 5356 return ESR_Failed; 5357 return ESR; 5358 } 5359 5360 // Loop body. 5361 ESR = EvaluateLoopBody(Result, Info, FS->getBody()); 5362 if (ESR != ESR_Continue) { 5363 if (ESR != ESR_Failed && (!InnerScope.destroy() || !Scope.destroy())) 5364 return ESR_Failed; 5365 return ESR; 5366 } 5367 if (FS->getInc()->isValueDependent()) { 5368 if (!EvaluateDependentExpr(FS->getInc(), Info)) 5369 return ESR_Failed; 5370 } else { 5371 // Increment: ++__begin 5372 if (!EvaluateIgnoredValue(Info, FS->getInc())) 5373 return ESR_Failed; 5374 } 5375 5376 if (!InnerScope.destroy()) 5377 return ESR_Failed; 5378 } 5379 5380 return Scope.destroy() ? ESR_Succeeded : ESR_Failed; 5381 } 5382 5383 case Stmt::SwitchStmtClass: 5384 return EvaluateSwitch(Result, Info, cast<SwitchStmt>(S)); 5385 5386 case Stmt::ContinueStmtClass: 5387 return ESR_Continue; 5388 5389 case Stmt::BreakStmtClass: 5390 return ESR_Break; 5391 5392 case Stmt::LabelStmtClass: 5393 return EvaluateStmt(Result, Info, cast<LabelStmt>(S)->getSubStmt(), Case); 5394 5395 case Stmt::AttributedStmtClass: 5396 // As a general principle, C++11 attributes can be ignored without 5397 // any semantic impact. 5398 return EvaluateStmt(Result, Info, cast<AttributedStmt>(S)->getSubStmt(), 5399 Case); 5400 5401 case Stmt::CaseStmtClass: 5402 case Stmt::DefaultStmtClass: 5403 return EvaluateStmt(Result, Info, cast<SwitchCase>(S)->getSubStmt(), Case); 5404 case Stmt::CXXTryStmtClass: 5405 // Evaluate try blocks by evaluating all sub statements. 5406 return EvaluateStmt(Result, Info, cast<CXXTryStmt>(S)->getTryBlock(), Case); 5407 } 5408 } 5409 5410 /// CheckTrivialDefaultConstructor - Check whether a constructor is a trivial 5411 /// default constructor. If so, we'll fold it whether or not it's marked as 5412 /// constexpr. If it is marked as constexpr, we will never implicitly define it, 5413 /// so we need special handling. 5414 static bool CheckTrivialDefaultConstructor(EvalInfo &Info, SourceLocation Loc, 5415 const CXXConstructorDecl *CD, 5416 bool IsValueInitialization) { 5417 if (!CD->isTrivial() || !CD->isDefaultConstructor()) 5418 return false; 5419 5420 // Value-initialization does not call a trivial default constructor, so such a 5421 // call is a core constant expression whether or not the constructor is 5422 // constexpr. 5423 if (!CD->isConstexpr() && !IsValueInitialization) { 5424 if (Info.getLangOpts().CPlusPlus11) { 5425 // FIXME: If DiagDecl is an implicitly-declared special member function, 5426 // we should be much more explicit about why it's not constexpr. 5427 Info.CCEDiag(Loc, diag::note_constexpr_invalid_function, 1) 5428 << /*IsConstexpr*/0 << /*IsConstructor*/1 << CD; 5429 Info.Note(CD->getLocation(), diag::note_declared_at); 5430 } else { 5431 Info.CCEDiag(Loc, diag::note_invalid_subexpr_in_const_expr); 5432 } 5433 } 5434 return true; 5435 } 5436 5437 /// CheckConstexprFunction - Check that a function can be called in a constant 5438 /// expression. 5439 static bool CheckConstexprFunction(EvalInfo &Info, SourceLocation CallLoc, 5440 const FunctionDecl *Declaration, 5441 const FunctionDecl *Definition, 5442 const Stmt *Body) { 5443 // Potential constant expressions can contain calls to declared, but not yet 5444 // defined, constexpr functions. 5445 if (Info.checkingPotentialConstantExpression() && !Definition && 5446 Declaration->isConstexpr()) 5447 return false; 5448 5449 // Bail out if the function declaration itself is invalid. We will 5450 // have produced a relevant diagnostic while parsing it, so just 5451 // note the problematic sub-expression. 5452 if (Declaration->isInvalidDecl()) { 5453 Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr); 5454 return false; 5455 } 5456 5457 // DR1872: An instantiated virtual constexpr function can't be called in a 5458 // constant expression (prior to C++20). We can still constant-fold such a 5459 // call. 5460 if (!Info.Ctx.getLangOpts().CPlusPlus20 && isa<CXXMethodDecl>(Declaration) && 5461 cast<CXXMethodDecl>(Declaration)->isVirtual()) 5462 Info.CCEDiag(CallLoc, diag::note_constexpr_virtual_call); 5463 5464 if (Definition && Definition->isInvalidDecl()) { 5465 Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr); 5466 return false; 5467 } 5468 5469 // Can we evaluate this function call? 5470 if (Definition && Definition->isConstexpr() && Body) 5471 return true; 5472 5473 if (Info.getLangOpts().CPlusPlus11) { 5474 const FunctionDecl *DiagDecl = Definition ? Definition : Declaration; 5475 5476 // If this function is not constexpr because it is an inherited 5477 // non-constexpr constructor, diagnose that directly. 5478 auto *CD = dyn_cast<CXXConstructorDecl>(DiagDecl); 5479 if (CD && CD->isInheritingConstructor()) { 5480 auto *Inherited = CD->getInheritedConstructor().getConstructor(); 5481 if (!Inherited->isConstexpr()) 5482 DiagDecl = CD = Inherited; 5483 } 5484 5485 // FIXME: If DiagDecl is an implicitly-declared special member function 5486 // or an inheriting constructor, we should be much more explicit about why 5487 // it's not constexpr. 5488 if (CD && CD->isInheritingConstructor()) 5489 Info.FFDiag(CallLoc, diag::note_constexpr_invalid_inhctor, 1) 5490 << CD->getInheritedConstructor().getConstructor()->getParent(); 5491 else 5492 Info.FFDiag(CallLoc, diag::note_constexpr_invalid_function, 1) 5493 << DiagDecl->isConstexpr() << (bool)CD << DiagDecl; 5494 Info.Note(DiagDecl->getLocation(), diag::note_declared_at); 5495 } else { 5496 Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr); 5497 } 5498 return false; 5499 } 5500 5501 namespace { 5502 struct CheckDynamicTypeHandler { 5503 AccessKinds AccessKind; 5504 typedef bool result_type; 5505 bool failed() { return false; } 5506 bool found(APValue &Subobj, QualType SubobjType) { return true; } 5507 bool found(APSInt &Value, QualType SubobjType) { return true; } 5508 bool found(APFloat &Value, QualType SubobjType) { return true; } 5509 }; 5510 } // end anonymous namespace 5511 5512 /// Check that we can access the notional vptr of an object / determine its 5513 /// dynamic type. 5514 static bool checkDynamicType(EvalInfo &Info, const Expr *E, const LValue &This, 5515 AccessKinds AK, bool Polymorphic) { 5516 if (This.Designator.Invalid) 5517 return false; 5518 5519 CompleteObject Obj = findCompleteObject(Info, E, AK, This, QualType()); 5520 5521 if (!Obj) 5522 return false; 5523 5524 if (!Obj.Value) { 5525 // The object is not usable in constant expressions, so we can't inspect 5526 // its value to see if it's in-lifetime or what the active union members 5527 // are. We can still check for a one-past-the-end lvalue. 5528 if (This.Designator.isOnePastTheEnd() || 5529 This.Designator.isMostDerivedAnUnsizedArray()) { 5530 Info.FFDiag(E, This.Designator.isOnePastTheEnd() 5531 ? diag::note_constexpr_access_past_end 5532 : diag::note_constexpr_access_unsized_array) 5533 << AK; 5534 return false; 5535 } else if (Polymorphic) { 5536 // Conservatively refuse to perform a polymorphic operation if we would 5537 // not be able to read a notional 'vptr' value. 5538 APValue Val; 5539 This.moveInto(Val); 5540 QualType StarThisType = 5541 Info.Ctx.getLValueReferenceType(This.Designator.getType(Info.Ctx)); 5542 Info.FFDiag(E, diag::note_constexpr_polymorphic_unknown_dynamic_type) 5543 << AK << Val.getAsString(Info.Ctx, StarThisType); 5544 return false; 5545 } 5546 return true; 5547 } 5548 5549 CheckDynamicTypeHandler Handler{AK}; 5550 return Obj && findSubobject(Info, E, Obj, This.Designator, Handler); 5551 } 5552 5553 /// Check that the pointee of the 'this' pointer in a member function call is 5554 /// either within its lifetime or in its period of construction or destruction. 5555 static bool 5556 checkNonVirtualMemberCallThisPointer(EvalInfo &Info, const Expr *E, 5557 const LValue &This, 5558 const CXXMethodDecl *NamedMember) { 5559 return checkDynamicType( 5560 Info, E, This, 5561 isa<CXXDestructorDecl>(NamedMember) ? AK_Destroy : AK_MemberCall, false); 5562 } 5563 5564 struct DynamicType { 5565 /// The dynamic class type of the object. 5566 const CXXRecordDecl *Type; 5567 /// The corresponding path length in the lvalue. 5568 unsigned PathLength; 5569 }; 5570 5571 static const CXXRecordDecl *getBaseClassType(SubobjectDesignator &Designator, 5572 unsigned PathLength) { 5573 assert(PathLength >= Designator.MostDerivedPathLength && PathLength <= 5574 Designator.Entries.size() && "invalid path length"); 5575 return (PathLength == Designator.MostDerivedPathLength) 5576 ? Designator.MostDerivedType->getAsCXXRecordDecl() 5577 : getAsBaseClass(Designator.Entries[PathLength - 1]); 5578 } 5579 5580 /// Determine the dynamic type of an object. 5581 static Optional<DynamicType> ComputeDynamicType(EvalInfo &Info, const Expr *E, 5582 LValue &This, AccessKinds AK) { 5583 // If we don't have an lvalue denoting an object of class type, there is no 5584 // meaningful dynamic type. (We consider objects of non-class type to have no 5585 // dynamic type.) 5586 if (!checkDynamicType(Info, E, This, AK, true)) 5587 return None; 5588 5589 // Refuse to compute a dynamic type in the presence of virtual bases. This 5590 // shouldn't happen other than in constant-folding situations, since literal 5591 // types can't have virtual bases. 5592 // 5593 // Note that consumers of DynamicType assume that the type has no virtual 5594 // bases, and will need modifications if this restriction is relaxed. 5595 const CXXRecordDecl *Class = 5596 This.Designator.MostDerivedType->getAsCXXRecordDecl(); 5597 if (!Class || Class->getNumVBases()) { 5598 Info.FFDiag(E); 5599 return None; 5600 } 5601 5602 // FIXME: For very deep class hierarchies, it might be beneficial to use a 5603 // binary search here instead. But the overwhelmingly common case is that 5604 // we're not in the middle of a constructor, so it probably doesn't matter 5605 // in practice. 5606 ArrayRef<APValue::LValuePathEntry> Path = This.Designator.Entries; 5607 for (unsigned PathLength = This.Designator.MostDerivedPathLength; 5608 PathLength <= Path.size(); ++PathLength) { 5609 switch (Info.isEvaluatingCtorDtor(This.getLValueBase(), 5610 Path.slice(0, PathLength))) { 5611 case ConstructionPhase::Bases: 5612 case ConstructionPhase::DestroyingBases: 5613 // We're constructing or destroying a base class. This is not the dynamic 5614 // type. 5615 break; 5616 5617 case ConstructionPhase::None: 5618 case ConstructionPhase::AfterBases: 5619 case ConstructionPhase::AfterFields: 5620 case ConstructionPhase::Destroying: 5621 // We've finished constructing the base classes and not yet started 5622 // destroying them again, so this is the dynamic type. 5623 return DynamicType{getBaseClassType(This.Designator, PathLength), 5624 PathLength}; 5625 } 5626 } 5627 5628 // CWG issue 1517: we're constructing a base class of the object described by 5629 // 'This', so that object has not yet begun its period of construction and 5630 // any polymorphic operation on it results in undefined behavior. 5631 Info.FFDiag(E); 5632 return None; 5633 } 5634 5635 /// Perform virtual dispatch. 5636 static const CXXMethodDecl *HandleVirtualDispatch( 5637 EvalInfo &Info, const Expr *E, LValue &This, const CXXMethodDecl *Found, 5638 llvm::SmallVectorImpl<QualType> &CovariantAdjustmentPath) { 5639 Optional<DynamicType> DynType = ComputeDynamicType( 5640 Info, E, This, 5641 isa<CXXDestructorDecl>(Found) ? AK_Destroy : AK_MemberCall); 5642 if (!DynType) 5643 return nullptr; 5644 5645 // Find the final overrider. It must be declared in one of the classes on the 5646 // path from the dynamic type to the static type. 5647 // FIXME: If we ever allow literal types to have virtual base classes, that 5648 // won't be true. 5649 const CXXMethodDecl *Callee = Found; 5650 unsigned PathLength = DynType->PathLength; 5651 for (/**/; PathLength <= This.Designator.Entries.size(); ++PathLength) { 5652 const CXXRecordDecl *Class = getBaseClassType(This.Designator, PathLength); 5653 const CXXMethodDecl *Overrider = 5654 Found->getCorrespondingMethodDeclaredInClass(Class, false); 5655 if (Overrider) { 5656 Callee = Overrider; 5657 break; 5658 } 5659 } 5660 5661 // C++2a [class.abstract]p6: 5662 // the effect of making a virtual call to a pure virtual function [...] is 5663 // undefined 5664 if (Callee->isPure()) { 5665 Info.FFDiag(E, diag::note_constexpr_pure_virtual_call, 1) << Callee; 5666 Info.Note(Callee->getLocation(), diag::note_declared_at); 5667 return nullptr; 5668 } 5669 5670 // If necessary, walk the rest of the path to determine the sequence of 5671 // covariant adjustment steps to apply. 5672 if (!Info.Ctx.hasSameUnqualifiedType(Callee->getReturnType(), 5673 Found->getReturnType())) { 5674 CovariantAdjustmentPath.push_back(Callee->getReturnType()); 5675 for (unsigned CovariantPathLength = PathLength + 1; 5676 CovariantPathLength != This.Designator.Entries.size(); 5677 ++CovariantPathLength) { 5678 const CXXRecordDecl *NextClass = 5679 getBaseClassType(This.Designator, CovariantPathLength); 5680 const CXXMethodDecl *Next = 5681 Found->getCorrespondingMethodDeclaredInClass(NextClass, false); 5682 if (Next && !Info.Ctx.hasSameUnqualifiedType( 5683 Next->getReturnType(), CovariantAdjustmentPath.back())) 5684 CovariantAdjustmentPath.push_back(Next->getReturnType()); 5685 } 5686 if (!Info.Ctx.hasSameUnqualifiedType(Found->getReturnType(), 5687 CovariantAdjustmentPath.back())) 5688 CovariantAdjustmentPath.push_back(Found->getReturnType()); 5689 } 5690 5691 // Perform 'this' adjustment. 5692 if (!CastToDerivedClass(Info, E, This, Callee->getParent(), PathLength)) 5693 return nullptr; 5694 5695 return Callee; 5696 } 5697 5698 /// Perform the adjustment from a value returned by a virtual function to 5699 /// a value of the statically expected type, which may be a pointer or 5700 /// reference to a base class of the returned type. 5701 static bool HandleCovariantReturnAdjustment(EvalInfo &Info, const Expr *E, 5702 APValue &Result, 5703 ArrayRef<QualType> Path) { 5704 assert(Result.isLValue() && 5705 "unexpected kind of APValue for covariant return"); 5706 if (Result.isNullPointer()) 5707 return true; 5708 5709 LValue LVal; 5710 LVal.setFrom(Info.Ctx, Result); 5711 5712 const CXXRecordDecl *OldClass = Path[0]->getPointeeCXXRecordDecl(); 5713 for (unsigned I = 1; I != Path.size(); ++I) { 5714 const CXXRecordDecl *NewClass = Path[I]->getPointeeCXXRecordDecl(); 5715 assert(OldClass && NewClass && "unexpected kind of covariant return"); 5716 if (OldClass != NewClass && 5717 !CastToBaseClass(Info, E, LVal, OldClass, NewClass)) 5718 return false; 5719 OldClass = NewClass; 5720 } 5721 5722 LVal.moveInto(Result); 5723 return true; 5724 } 5725 5726 /// Determine whether \p Base, which is known to be a direct base class of 5727 /// \p Derived, is a public base class. 5728 static bool isBaseClassPublic(const CXXRecordDecl *Derived, 5729 const CXXRecordDecl *Base) { 5730 for (const CXXBaseSpecifier &BaseSpec : Derived->bases()) { 5731 auto *BaseClass = BaseSpec.getType()->getAsCXXRecordDecl(); 5732 if (BaseClass && declaresSameEntity(BaseClass, Base)) 5733 return BaseSpec.getAccessSpecifier() == AS_public; 5734 } 5735 llvm_unreachable("Base is not a direct base of Derived"); 5736 } 5737 5738 /// Apply the given dynamic cast operation on the provided lvalue. 5739 /// 5740 /// This implements the hard case of dynamic_cast, requiring a "runtime check" 5741 /// to find a suitable target subobject. 5742 static bool HandleDynamicCast(EvalInfo &Info, const ExplicitCastExpr *E, 5743 LValue &Ptr) { 5744 // We can't do anything with a non-symbolic pointer value. 5745 SubobjectDesignator &D = Ptr.Designator; 5746 if (D.Invalid) 5747 return false; 5748 5749 // C++ [expr.dynamic.cast]p6: 5750 // If v is a null pointer value, the result is a null pointer value. 5751 if (Ptr.isNullPointer() && !E->isGLValue()) 5752 return true; 5753 5754 // For all the other cases, we need the pointer to point to an object within 5755 // its lifetime / period of construction / destruction, and we need to know 5756 // its dynamic type. 5757 Optional<DynamicType> DynType = 5758 ComputeDynamicType(Info, E, Ptr, AK_DynamicCast); 5759 if (!DynType) 5760 return false; 5761 5762 // C++ [expr.dynamic.cast]p7: 5763 // If T is "pointer to cv void", then the result is a pointer to the most 5764 // derived object 5765 if (E->getType()->isVoidPointerType()) 5766 return CastToDerivedClass(Info, E, Ptr, DynType->Type, DynType->PathLength); 5767 5768 const CXXRecordDecl *C = E->getTypeAsWritten()->getPointeeCXXRecordDecl(); 5769 assert(C && "dynamic_cast target is not void pointer nor class"); 5770 CanQualType CQT = Info.Ctx.getCanonicalType(Info.Ctx.getRecordType(C)); 5771 5772 auto RuntimeCheckFailed = [&] (CXXBasePaths *Paths) { 5773 // C++ [expr.dynamic.cast]p9: 5774 if (!E->isGLValue()) { 5775 // The value of a failed cast to pointer type is the null pointer value 5776 // of the required result type. 5777 Ptr.setNull(Info.Ctx, E->getType()); 5778 return true; 5779 } 5780 5781 // A failed cast to reference type throws [...] std::bad_cast. 5782 unsigned DiagKind; 5783 if (!Paths && (declaresSameEntity(DynType->Type, C) || 5784 DynType->Type->isDerivedFrom(C))) 5785 DiagKind = 0; 5786 else if (!Paths || Paths->begin() == Paths->end()) 5787 DiagKind = 1; 5788 else if (Paths->isAmbiguous(CQT)) 5789 DiagKind = 2; 5790 else { 5791 assert(Paths->front().Access != AS_public && "why did the cast fail?"); 5792 DiagKind = 3; 5793 } 5794 Info.FFDiag(E, diag::note_constexpr_dynamic_cast_to_reference_failed) 5795 << DiagKind << Ptr.Designator.getType(Info.Ctx) 5796 << Info.Ctx.getRecordType(DynType->Type) 5797 << E->getType().getUnqualifiedType(); 5798 return false; 5799 }; 5800 5801 // Runtime check, phase 1: 5802 // Walk from the base subobject towards the derived object looking for the 5803 // target type. 5804 for (int PathLength = Ptr.Designator.Entries.size(); 5805 PathLength >= (int)DynType->PathLength; --PathLength) { 5806 const CXXRecordDecl *Class = getBaseClassType(Ptr.Designator, PathLength); 5807 if (declaresSameEntity(Class, C)) 5808 return CastToDerivedClass(Info, E, Ptr, Class, PathLength); 5809 // We can only walk across public inheritance edges. 5810 if (PathLength > (int)DynType->PathLength && 5811 !isBaseClassPublic(getBaseClassType(Ptr.Designator, PathLength - 1), 5812 Class)) 5813 return RuntimeCheckFailed(nullptr); 5814 } 5815 5816 // Runtime check, phase 2: 5817 // Search the dynamic type for an unambiguous public base of type C. 5818 CXXBasePaths Paths(/*FindAmbiguities=*/true, 5819 /*RecordPaths=*/true, /*DetectVirtual=*/false); 5820 if (DynType->Type->isDerivedFrom(C, Paths) && !Paths.isAmbiguous(CQT) && 5821 Paths.front().Access == AS_public) { 5822 // Downcast to the dynamic type... 5823 if (!CastToDerivedClass(Info, E, Ptr, DynType->Type, DynType->PathLength)) 5824 return false; 5825 // ... then upcast to the chosen base class subobject. 5826 for (CXXBasePathElement &Elem : Paths.front()) 5827 if (!HandleLValueBase(Info, E, Ptr, Elem.Class, Elem.Base)) 5828 return false; 5829 return true; 5830 } 5831 5832 // Otherwise, the runtime check fails. 5833 return RuntimeCheckFailed(&Paths); 5834 } 5835 5836 namespace { 5837 struct StartLifetimeOfUnionMemberHandler { 5838 EvalInfo &Info; 5839 const Expr *LHSExpr; 5840 const FieldDecl *Field; 5841 bool DuringInit; 5842 bool Failed = false; 5843 static const AccessKinds AccessKind = AK_Assign; 5844 5845 typedef bool result_type; 5846 bool failed() { return Failed; } 5847 bool found(APValue &Subobj, QualType SubobjType) { 5848 // We are supposed to perform no initialization but begin the lifetime of 5849 // the object. We interpret that as meaning to do what default 5850 // initialization of the object would do if all constructors involved were 5851 // trivial: 5852 // * All base, non-variant member, and array element subobjects' lifetimes 5853 // begin 5854 // * No variant members' lifetimes begin 5855 // * All scalar subobjects whose lifetimes begin have indeterminate values 5856 assert(SubobjType->isUnionType()); 5857 if (declaresSameEntity(Subobj.getUnionField(), Field)) { 5858 // This union member is already active. If it's also in-lifetime, there's 5859 // nothing to do. 5860 if (Subobj.getUnionValue().hasValue()) 5861 return true; 5862 } else if (DuringInit) { 5863 // We're currently in the process of initializing a different union 5864 // member. If we carried on, that initialization would attempt to 5865 // store to an inactive union member, resulting in undefined behavior. 5866 Info.FFDiag(LHSExpr, 5867 diag::note_constexpr_union_member_change_during_init); 5868 return false; 5869 } 5870 APValue Result; 5871 Failed = !getDefaultInitValue(Field->getType(), Result); 5872 Subobj.setUnion(Field, Result); 5873 return true; 5874 } 5875 bool found(APSInt &Value, QualType SubobjType) { 5876 llvm_unreachable("wrong value kind for union object"); 5877 } 5878 bool found(APFloat &Value, QualType SubobjType) { 5879 llvm_unreachable("wrong value kind for union object"); 5880 } 5881 }; 5882 } // end anonymous namespace 5883 5884 const AccessKinds StartLifetimeOfUnionMemberHandler::AccessKind; 5885 5886 /// Handle a builtin simple-assignment or a call to a trivial assignment 5887 /// operator whose left-hand side might involve a union member access. If it 5888 /// does, implicitly start the lifetime of any accessed union elements per 5889 /// C++20 [class.union]5. 5890 static bool HandleUnionActiveMemberChange(EvalInfo &Info, const Expr *LHSExpr, 5891 const LValue &LHS) { 5892 if (LHS.InvalidBase || LHS.Designator.Invalid) 5893 return false; 5894 5895 llvm::SmallVector<std::pair<unsigned, const FieldDecl*>, 4> UnionPathLengths; 5896 // C++ [class.union]p5: 5897 // define the set S(E) of subexpressions of E as follows: 5898 unsigned PathLength = LHS.Designator.Entries.size(); 5899 for (const Expr *E = LHSExpr; E != nullptr;) { 5900 // -- If E is of the form A.B, S(E) contains the elements of S(A)... 5901 if (auto *ME = dyn_cast<MemberExpr>(E)) { 5902 auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()); 5903 // Note that we can't implicitly start the lifetime of a reference, 5904 // so we don't need to proceed any further if we reach one. 5905 if (!FD || FD->getType()->isReferenceType()) 5906 break; 5907 5908 // ... and also contains A.B if B names a union member ... 5909 if (FD->getParent()->isUnion()) { 5910 // ... of a non-class, non-array type, or of a class type with a 5911 // trivial default constructor that is not deleted, or an array of 5912 // such types. 5913 auto *RD = 5914 FD->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 5915 if (!RD || RD->hasTrivialDefaultConstructor()) 5916 UnionPathLengths.push_back({PathLength - 1, FD}); 5917 } 5918 5919 E = ME->getBase(); 5920 --PathLength; 5921 assert(declaresSameEntity(FD, 5922 LHS.Designator.Entries[PathLength] 5923 .getAsBaseOrMember().getPointer())); 5924 5925 // -- If E is of the form A[B] and is interpreted as a built-in array 5926 // subscripting operator, S(E) is [S(the array operand, if any)]. 5927 } else if (auto *ASE = dyn_cast<ArraySubscriptExpr>(E)) { 5928 // Step over an ArrayToPointerDecay implicit cast. 5929 auto *Base = ASE->getBase()->IgnoreImplicit(); 5930 if (!Base->getType()->isArrayType()) 5931 break; 5932 5933 E = Base; 5934 --PathLength; 5935 5936 } else if (auto *ICE = dyn_cast<ImplicitCastExpr>(E)) { 5937 // Step over a derived-to-base conversion. 5938 E = ICE->getSubExpr(); 5939 if (ICE->getCastKind() == CK_NoOp) 5940 continue; 5941 if (ICE->getCastKind() != CK_DerivedToBase && 5942 ICE->getCastKind() != CK_UncheckedDerivedToBase) 5943 break; 5944 // Walk path backwards as we walk up from the base to the derived class. 5945 for (const CXXBaseSpecifier *Elt : llvm::reverse(ICE->path())) { 5946 --PathLength; 5947 (void)Elt; 5948 assert(declaresSameEntity(Elt->getType()->getAsCXXRecordDecl(), 5949 LHS.Designator.Entries[PathLength] 5950 .getAsBaseOrMember().getPointer())); 5951 } 5952 5953 // -- Otherwise, S(E) is empty. 5954 } else { 5955 break; 5956 } 5957 } 5958 5959 // Common case: no unions' lifetimes are started. 5960 if (UnionPathLengths.empty()) 5961 return true; 5962 5963 // if modification of X [would access an inactive union member], an object 5964 // of the type of X is implicitly created 5965 CompleteObject Obj = 5966 findCompleteObject(Info, LHSExpr, AK_Assign, LHS, LHSExpr->getType()); 5967 if (!Obj) 5968 return false; 5969 for (std::pair<unsigned, const FieldDecl *> LengthAndField : 5970 llvm::reverse(UnionPathLengths)) { 5971 // Form a designator for the union object. 5972 SubobjectDesignator D = LHS.Designator; 5973 D.truncate(Info.Ctx, LHS.Base, LengthAndField.first); 5974 5975 bool DuringInit = Info.isEvaluatingCtorDtor(LHS.Base, D.Entries) == 5976 ConstructionPhase::AfterBases; 5977 StartLifetimeOfUnionMemberHandler StartLifetime{ 5978 Info, LHSExpr, LengthAndField.second, DuringInit}; 5979 if (!findSubobject(Info, LHSExpr, Obj, D, StartLifetime)) 5980 return false; 5981 } 5982 5983 return true; 5984 } 5985 5986 static bool EvaluateCallArg(const ParmVarDecl *PVD, const Expr *Arg, 5987 CallRef Call, EvalInfo &Info, 5988 bool NonNull = false) { 5989 LValue LV; 5990 // Create the parameter slot and register its destruction. For a vararg 5991 // argument, create a temporary. 5992 // FIXME: For calling conventions that destroy parameters in the callee, 5993 // should we consider performing destruction when the function returns 5994 // instead? 5995 APValue &V = PVD ? Info.CurrentCall->createParam(Call, PVD, LV) 5996 : Info.CurrentCall->createTemporary(Arg, Arg->getType(), 5997 ScopeKind::Call, LV); 5998 if (!EvaluateInPlace(V, Info, LV, Arg)) 5999 return false; 6000 6001 // Passing a null pointer to an __attribute__((nonnull)) parameter results in 6002 // undefined behavior, so is non-constant. 6003 if (NonNull && V.isLValue() && V.isNullPointer()) { 6004 Info.CCEDiag(Arg, diag::note_non_null_attribute_failed); 6005 return false; 6006 } 6007 6008 return true; 6009 } 6010 6011 /// Evaluate the arguments to a function call. 6012 static bool EvaluateArgs(ArrayRef<const Expr *> Args, CallRef Call, 6013 EvalInfo &Info, const FunctionDecl *Callee, 6014 bool RightToLeft = false) { 6015 bool Success = true; 6016 llvm::SmallBitVector ForbiddenNullArgs; 6017 if (Callee->hasAttr<NonNullAttr>()) { 6018 ForbiddenNullArgs.resize(Args.size()); 6019 for (const auto *Attr : Callee->specific_attrs<NonNullAttr>()) { 6020 if (!Attr->args_size()) { 6021 ForbiddenNullArgs.set(); 6022 break; 6023 } else 6024 for (auto Idx : Attr->args()) { 6025 unsigned ASTIdx = Idx.getASTIndex(); 6026 if (ASTIdx >= Args.size()) 6027 continue; 6028 ForbiddenNullArgs[ASTIdx] = 1; 6029 } 6030 } 6031 } 6032 for (unsigned I = 0; I < Args.size(); I++) { 6033 unsigned Idx = RightToLeft ? Args.size() - I - 1 : I; 6034 const ParmVarDecl *PVD = 6035 Idx < Callee->getNumParams() ? Callee->getParamDecl(Idx) : nullptr; 6036 bool NonNull = !ForbiddenNullArgs.empty() && ForbiddenNullArgs[Idx]; 6037 if (!EvaluateCallArg(PVD, Args[Idx], Call, Info, NonNull)) { 6038 // If we're checking for a potential constant expression, evaluate all 6039 // initializers even if some of them fail. 6040 if (!Info.noteFailure()) 6041 return false; 6042 Success = false; 6043 } 6044 } 6045 return Success; 6046 } 6047 6048 /// Perform a trivial copy from Param, which is the parameter of a copy or move 6049 /// constructor or assignment operator. 6050 static bool handleTrivialCopy(EvalInfo &Info, const ParmVarDecl *Param, 6051 const Expr *E, APValue &Result, 6052 bool CopyObjectRepresentation) { 6053 // Find the reference argument. 6054 CallStackFrame *Frame = Info.CurrentCall; 6055 APValue *RefValue = Info.getParamSlot(Frame->Arguments, Param); 6056 if (!RefValue) { 6057 Info.FFDiag(E); 6058 return false; 6059 } 6060 6061 // Copy out the contents of the RHS object. 6062 LValue RefLValue; 6063 RefLValue.setFrom(Info.Ctx, *RefValue); 6064 return handleLValueToRValueConversion( 6065 Info, E, Param->getType().getNonReferenceType(), RefLValue, Result, 6066 CopyObjectRepresentation); 6067 } 6068 6069 /// Evaluate a function call. 6070 static bool HandleFunctionCall(SourceLocation CallLoc, 6071 const FunctionDecl *Callee, const LValue *This, 6072 ArrayRef<const Expr *> Args, CallRef Call, 6073 const Stmt *Body, EvalInfo &Info, 6074 APValue &Result, const LValue *ResultSlot) { 6075 if (!Info.CheckCallLimit(CallLoc)) 6076 return false; 6077 6078 CallStackFrame Frame(Info, CallLoc, Callee, This, Call); 6079 6080 // For a trivial copy or move assignment, perform an APValue copy. This is 6081 // essential for unions, where the operations performed by the assignment 6082 // operator cannot be represented as statements. 6083 // 6084 // Skip this for non-union classes with no fields; in that case, the defaulted 6085 // copy/move does not actually read the object. 6086 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Callee); 6087 if (MD && MD->isDefaulted() && 6088 (MD->getParent()->isUnion() || 6089 (MD->isTrivial() && 6090 isReadByLvalueToRvalueConversion(MD->getParent())))) { 6091 assert(This && 6092 (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator())); 6093 APValue RHSValue; 6094 if (!handleTrivialCopy(Info, MD->getParamDecl(0), Args[0], RHSValue, 6095 MD->getParent()->isUnion())) 6096 return false; 6097 if (Info.getLangOpts().CPlusPlus20 && MD->isTrivial() && 6098 !HandleUnionActiveMemberChange(Info, Args[0], *This)) 6099 return false; 6100 if (!handleAssignment(Info, Args[0], *This, MD->getThisType(), 6101 RHSValue)) 6102 return false; 6103 This->moveInto(Result); 6104 return true; 6105 } else if (MD && isLambdaCallOperator(MD)) { 6106 // We're in a lambda; determine the lambda capture field maps unless we're 6107 // just constexpr checking a lambda's call operator. constexpr checking is 6108 // done before the captures have been added to the closure object (unless 6109 // we're inferring constexpr-ness), so we don't have access to them in this 6110 // case. But since we don't need the captures to constexpr check, we can 6111 // just ignore them. 6112 if (!Info.checkingPotentialConstantExpression()) 6113 MD->getParent()->getCaptureFields(Frame.LambdaCaptureFields, 6114 Frame.LambdaThisCaptureField); 6115 } 6116 6117 StmtResult Ret = {Result, ResultSlot}; 6118 EvalStmtResult ESR = EvaluateStmt(Ret, Info, Body); 6119 if (ESR == ESR_Succeeded) { 6120 if (Callee->getReturnType()->isVoidType()) 6121 return true; 6122 Info.FFDiag(Callee->getEndLoc(), diag::note_constexpr_no_return); 6123 } 6124 return ESR == ESR_Returned; 6125 } 6126 6127 /// Evaluate a constructor call. 6128 static bool HandleConstructorCall(const Expr *E, const LValue &This, 6129 CallRef Call, 6130 const CXXConstructorDecl *Definition, 6131 EvalInfo &Info, APValue &Result) { 6132 SourceLocation CallLoc = E->getExprLoc(); 6133 if (!Info.CheckCallLimit(CallLoc)) 6134 return false; 6135 6136 const CXXRecordDecl *RD = Definition->getParent(); 6137 if (RD->getNumVBases()) { 6138 Info.FFDiag(CallLoc, diag::note_constexpr_virtual_base) << RD; 6139 return false; 6140 } 6141 6142 EvalInfo::EvaluatingConstructorRAII EvalObj( 6143 Info, 6144 ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries}, 6145 RD->getNumBases()); 6146 CallStackFrame Frame(Info, CallLoc, Definition, &This, Call); 6147 6148 // FIXME: Creating an APValue just to hold a nonexistent return value is 6149 // wasteful. 6150 APValue RetVal; 6151 StmtResult Ret = {RetVal, nullptr}; 6152 6153 // If it's a delegating constructor, delegate. 6154 if (Definition->isDelegatingConstructor()) { 6155 CXXConstructorDecl::init_const_iterator I = Definition->init_begin(); 6156 if ((*I)->getInit()->isValueDependent()) { 6157 if (!EvaluateDependentExpr((*I)->getInit(), Info)) 6158 return false; 6159 } else { 6160 FullExpressionRAII InitScope(Info); 6161 if (!EvaluateInPlace(Result, Info, This, (*I)->getInit()) || 6162 !InitScope.destroy()) 6163 return false; 6164 } 6165 return EvaluateStmt(Ret, Info, Definition->getBody()) != ESR_Failed; 6166 } 6167 6168 // For a trivial copy or move constructor, perform an APValue copy. This is 6169 // essential for unions (or classes with anonymous union members), where the 6170 // operations performed by the constructor cannot be represented by 6171 // ctor-initializers. 6172 // 6173 // Skip this for empty non-union classes; we should not perform an 6174 // lvalue-to-rvalue conversion on them because their copy constructor does not 6175 // actually read them. 6176 if (Definition->isDefaulted() && Definition->isCopyOrMoveConstructor() && 6177 (Definition->getParent()->isUnion() || 6178 (Definition->isTrivial() && 6179 isReadByLvalueToRvalueConversion(Definition->getParent())))) { 6180 return handleTrivialCopy(Info, Definition->getParamDecl(0), E, Result, 6181 Definition->getParent()->isUnion()); 6182 } 6183 6184 // Reserve space for the struct members. 6185 if (!Result.hasValue()) { 6186 if (!RD->isUnion()) 6187 Result = APValue(APValue::UninitStruct(), RD->getNumBases(), 6188 std::distance(RD->field_begin(), RD->field_end())); 6189 else 6190 // A union starts with no active member. 6191 Result = APValue((const FieldDecl*)nullptr); 6192 } 6193 6194 if (RD->isInvalidDecl()) return false; 6195 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD); 6196 6197 // A scope for temporaries lifetime-extended by reference members. 6198 BlockScopeRAII LifetimeExtendedScope(Info); 6199 6200 bool Success = true; 6201 unsigned BasesSeen = 0; 6202 #ifndef NDEBUG 6203 CXXRecordDecl::base_class_const_iterator BaseIt = RD->bases_begin(); 6204 #endif 6205 CXXRecordDecl::field_iterator FieldIt = RD->field_begin(); 6206 auto SkipToField = [&](FieldDecl *FD, bool Indirect) { 6207 // We might be initializing the same field again if this is an indirect 6208 // field initialization. 6209 if (FieldIt == RD->field_end() || 6210 FieldIt->getFieldIndex() > FD->getFieldIndex()) { 6211 assert(Indirect && "fields out of order?"); 6212 return; 6213 } 6214 6215 // Default-initialize any fields with no explicit initializer. 6216 for (; !declaresSameEntity(*FieldIt, FD); ++FieldIt) { 6217 assert(FieldIt != RD->field_end() && "missing field?"); 6218 if (!FieldIt->isUnnamedBitfield()) 6219 Success &= getDefaultInitValue( 6220 FieldIt->getType(), 6221 Result.getStructField(FieldIt->getFieldIndex())); 6222 } 6223 ++FieldIt; 6224 }; 6225 for (const auto *I : Definition->inits()) { 6226 LValue Subobject = This; 6227 LValue SubobjectParent = This; 6228 APValue *Value = &Result; 6229 6230 // Determine the subobject to initialize. 6231 FieldDecl *FD = nullptr; 6232 if (I->isBaseInitializer()) { 6233 QualType BaseType(I->getBaseClass(), 0); 6234 #ifndef NDEBUG 6235 // Non-virtual base classes are initialized in the order in the class 6236 // definition. We have already checked for virtual base classes. 6237 assert(!BaseIt->isVirtual() && "virtual base for literal type"); 6238 assert(Info.Ctx.hasSameType(BaseIt->getType(), BaseType) && 6239 "base class initializers not in expected order"); 6240 ++BaseIt; 6241 #endif 6242 if (!HandleLValueDirectBase(Info, I->getInit(), Subobject, RD, 6243 BaseType->getAsCXXRecordDecl(), &Layout)) 6244 return false; 6245 Value = &Result.getStructBase(BasesSeen++); 6246 } else if ((FD = I->getMember())) { 6247 if (!HandleLValueMember(Info, I->getInit(), Subobject, FD, &Layout)) 6248 return false; 6249 if (RD->isUnion()) { 6250 Result = APValue(FD); 6251 Value = &Result.getUnionValue(); 6252 } else { 6253 SkipToField(FD, false); 6254 Value = &Result.getStructField(FD->getFieldIndex()); 6255 } 6256 } else if (IndirectFieldDecl *IFD = I->getIndirectMember()) { 6257 // Walk the indirect field decl's chain to find the object to initialize, 6258 // and make sure we've initialized every step along it. 6259 auto IndirectFieldChain = IFD->chain(); 6260 for (auto *C : IndirectFieldChain) { 6261 FD = cast<FieldDecl>(C); 6262 CXXRecordDecl *CD = cast<CXXRecordDecl>(FD->getParent()); 6263 // Switch the union field if it differs. This happens if we had 6264 // preceding zero-initialization, and we're now initializing a union 6265 // subobject other than the first. 6266 // FIXME: In this case, the values of the other subobjects are 6267 // specified, since zero-initialization sets all padding bits to zero. 6268 if (!Value->hasValue() || 6269 (Value->isUnion() && Value->getUnionField() != FD)) { 6270 if (CD->isUnion()) 6271 *Value = APValue(FD); 6272 else 6273 // FIXME: This immediately starts the lifetime of all members of 6274 // an anonymous struct. It would be preferable to strictly start 6275 // member lifetime in initialization order. 6276 Success &= getDefaultInitValue(Info.Ctx.getRecordType(CD), *Value); 6277 } 6278 // Store Subobject as its parent before updating it for the last element 6279 // in the chain. 6280 if (C == IndirectFieldChain.back()) 6281 SubobjectParent = Subobject; 6282 if (!HandleLValueMember(Info, I->getInit(), Subobject, FD)) 6283 return false; 6284 if (CD->isUnion()) 6285 Value = &Value->getUnionValue(); 6286 else { 6287 if (C == IndirectFieldChain.front() && !RD->isUnion()) 6288 SkipToField(FD, true); 6289 Value = &Value->getStructField(FD->getFieldIndex()); 6290 } 6291 } 6292 } else { 6293 llvm_unreachable("unknown base initializer kind"); 6294 } 6295 6296 // Need to override This for implicit field initializers as in this case 6297 // This refers to innermost anonymous struct/union containing initializer, 6298 // not to currently constructed class. 6299 const Expr *Init = I->getInit(); 6300 if (Init->isValueDependent()) { 6301 if (!EvaluateDependentExpr(Init, Info)) 6302 return false; 6303 } else { 6304 ThisOverrideRAII ThisOverride(*Info.CurrentCall, &SubobjectParent, 6305 isa<CXXDefaultInitExpr>(Init)); 6306 FullExpressionRAII InitScope(Info); 6307 if (!EvaluateInPlace(*Value, Info, Subobject, Init) || 6308 (FD && FD->isBitField() && 6309 !truncateBitfieldValue(Info, Init, *Value, FD))) { 6310 // If we're checking for a potential constant expression, evaluate all 6311 // initializers even if some of them fail. 6312 if (!Info.noteFailure()) 6313 return false; 6314 Success = false; 6315 } 6316 } 6317 6318 // This is the point at which the dynamic type of the object becomes this 6319 // class type. 6320 if (I->isBaseInitializer() && BasesSeen == RD->getNumBases()) 6321 EvalObj.finishedConstructingBases(); 6322 } 6323 6324 // Default-initialize any remaining fields. 6325 if (!RD->isUnion()) { 6326 for (; FieldIt != RD->field_end(); ++FieldIt) { 6327 if (!FieldIt->isUnnamedBitfield()) 6328 Success &= getDefaultInitValue( 6329 FieldIt->getType(), 6330 Result.getStructField(FieldIt->getFieldIndex())); 6331 } 6332 } 6333 6334 EvalObj.finishedConstructingFields(); 6335 6336 return Success && 6337 EvaluateStmt(Ret, Info, Definition->getBody()) != ESR_Failed && 6338 LifetimeExtendedScope.destroy(); 6339 } 6340 6341 static bool HandleConstructorCall(const Expr *E, const LValue &This, 6342 ArrayRef<const Expr*> Args, 6343 const CXXConstructorDecl *Definition, 6344 EvalInfo &Info, APValue &Result) { 6345 CallScopeRAII CallScope(Info); 6346 CallRef Call = Info.CurrentCall->createCall(Definition); 6347 if (!EvaluateArgs(Args, Call, Info, Definition)) 6348 return false; 6349 6350 return HandleConstructorCall(E, This, Call, Definition, Info, Result) && 6351 CallScope.destroy(); 6352 } 6353 6354 static bool HandleDestructionImpl(EvalInfo &Info, SourceLocation CallLoc, 6355 const LValue &This, APValue &Value, 6356 QualType T) { 6357 // Objects can only be destroyed while they're within their lifetimes. 6358 // FIXME: We have no representation for whether an object of type nullptr_t 6359 // is in its lifetime; it usually doesn't matter. Perhaps we should model it 6360 // as indeterminate instead? 6361 if (Value.isAbsent() && !T->isNullPtrType()) { 6362 APValue Printable; 6363 This.moveInto(Printable); 6364 Info.FFDiag(CallLoc, diag::note_constexpr_destroy_out_of_lifetime) 6365 << Printable.getAsString(Info.Ctx, Info.Ctx.getLValueReferenceType(T)); 6366 return false; 6367 } 6368 6369 // Invent an expression for location purposes. 6370 // FIXME: We shouldn't need to do this. 6371 OpaqueValueExpr LocE(CallLoc, Info.Ctx.IntTy, VK_RValue); 6372 6373 // For arrays, destroy elements right-to-left. 6374 if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(T)) { 6375 uint64_t Size = CAT->getSize().getZExtValue(); 6376 QualType ElemT = CAT->getElementType(); 6377 6378 LValue ElemLV = This; 6379 ElemLV.addArray(Info, &LocE, CAT); 6380 if (!HandleLValueArrayAdjustment(Info, &LocE, ElemLV, ElemT, Size)) 6381 return false; 6382 6383 // Ensure that we have actual array elements available to destroy; the 6384 // destructors might mutate the value, so we can't run them on the array 6385 // filler. 6386 if (Size && Size > Value.getArrayInitializedElts()) 6387 expandArray(Value, Value.getArraySize() - 1); 6388 6389 for (; Size != 0; --Size) { 6390 APValue &Elem = Value.getArrayInitializedElt(Size - 1); 6391 if (!HandleLValueArrayAdjustment(Info, &LocE, ElemLV, ElemT, -1) || 6392 !HandleDestructionImpl(Info, CallLoc, ElemLV, Elem, ElemT)) 6393 return false; 6394 } 6395 6396 // End the lifetime of this array now. 6397 Value = APValue(); 6398 return true; 6399 } 6400 6401 const CXXRecordDecl *RD = T->getAsCXXRecordDecl(); 6402 if (!RD) { 6403 if (T.isDestructedType()) { 6404 Info.FFDiag(CallLoc, diag::note_constexpr_unsupported_destruction) << T; 6405 return false; 6406 } 6407 6408 Value = APValue(); 6409 return true; 6410 } 6411 6412 if (RD->getNumVBases()) { 6413 Info.FFDiag(CallLoc, diag::note_constexpr_virtual_base) << RD; 6414 return false; 6415 } 6416 6417 const CXXDestructorDecl *DD = RD->getDestructor(); 6418 if (!DD && !RD->hasTrivialDestructor()) { 6419 Info.FFDiag(CallLoc); 6420 return false; 6421 } 6422 6423 if (!DD || DD->isTrivial() || 6424 (RD->isAnonymousStructOrUnion() && RD->isUnion())) { 6425 // A trivial destructor just ends the lifetime of the object. Check for 6426 // this case before checking for a body, because we might not bother 6427 // building a body for a trivial destructor. Note that it doesn't matter 6428 // whether the destructor is constexpr in this case; all trivial 6429 // destructors are constexpr. 6430 // 6431 // If an anonymous union would be destroyed, some enclosing destructor must 6432 // have been explicitly defined, and the anonymous union destruction should 6433 // have no effect. 6434 Value = APValue(); 6435 return true; 6436 } 6437 6438 if (!Info.CheckCallLimit(CallLoc)) 6439 return false; 6440 6441 const FunctionDecl *Definition = nullptr; 6442 const Stmt *Body = DD->getBody(Definition); 6443 6444 if (!CheckConstexprFunction(Info, CallLoc, DD, Definition, Body)) 6445 return false; 6446 6447 CallStackFrame Frame(Info, CallLoc, Definition, &This, CallRef()); 6448 6449 // We're now in the period of destruction of this object. 6450 unsigned BasesLeft = RD->getNumBases(); 6451 EvalInfo::EvaluatingDestructorRAII EvalObj( 6452 Info, 6453 ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries}); 6454 if (!EvalObj.DidInsert) { 6455 // C++2a [class.dtor]p19: 6456 // the behavior is undefined if the destructor is invoked for an object 6457 // whose lifetime has ended 6458 // (Note that formally the lifetime ends when the period of destruction 6459 // begins, even though certain uses of the object remain valid until the 6460 // period of destruction ends.) 6461 Info.FFDiag(CallLoc, diag::note_constexpr_double_destroy); 6462 return false; 6463 } 6464 6465 // FIXME: Creating an APValue just to hold a nonexistent return value is 6466 // wasteful. 6467 APValue RetVal; 6468 StmtResult Ret = {RetVal, nullptr}; 6469 if (EvaluateStmt(Ret, Info, Definition->getBody()) == ESR_Failed) 6470 return false; 6471 6472 // A union destructor does not implicitly destroy its members. 6473 if (RD->isUnion()) 6474 return true; 6475 6476 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD); 6477 6478 // We don't have a good way to iterate fields in reverse, so collect all the 6479 // fields first and then walk them backwards. 6480 SmallVector<FieldDecl*, 16> Fields(RD->field_begin(), RD->field_end()); 6481 for (const FieldDecl *FD : llvm::reverse(Fields)) { 6482 if (FD->isUnnamedBitfield()) 6483 continue; 6484 6485 LValue Subobject = This; 6486 if (!HandleLValueMember(Info, &LocE, Subobject, FD, &Layout)) 6487 return false; 6488 6489 APValue *SubobjectValue = &Value.getStructField(FD->getFieldIndex()); 6490 if (!HandleDestructionImpl(Info, CallLoc, Subobject, *SubobjectValue, 6491 FD->getType())) 6492 return false; 6493 } 6494 6495 if (BasesLeft != 0) 6496 EvalObj.startedDestroyingBases(); 6497 6498 // Destroy base classes in reverse order. 6499 for (const CXXBaseSpecifier &Base : llvm::reverse(RD->bases())) { 6500 --BasesLeft; 6501 6502 QualType BaseType = Base.getType(); 6503 LValue Subobject = This; 6504 if (!HandleLValueDirectBase(Info, &LocE, Subobject, RD, 6505 BaseType->getAsCXXRecordDecl(), &Layout)) 6506 return false; 6507 6508 APValue *SubobjectValue = &Value.getStructBase(BasesLeft); 6509 if (!HandleDestructionImpl(Info, CallLoc, Subobject, *SubobjectValue, 6510 BaseType)) 6511 return false; 6512 } 6513 assert(BasesLeft == 0 && "NumBases was wrong?"); 6514 6515 // The period of destruction ends now. The object is gone. 6516 Value = APValue(); 6517 return true; 6518 } 6519 6520 namespace { 6521 struct DestroyObjectHandler { 6522 EvalInfo &Info; 6523 const Expr *E; 6524 const LValue &This; 6525 const AccessKinds AccessKind; 6526 6527 typedef bool result_type; 6528 bool failed() { return false; } 6529 bool found(APValue &Subobj, QualType SubobjType) { 6530 return HandleDestructionImpl(Info, E->getExprLoc(), This, Subobj, 6531 SubobjType); 6532 } 6533 bool found(APSInt &Value, QualType SubobjType) { 6534 Info.FFDiag(E, diag::note_constexpr_destroy_complex_elem); 6535 return false; 6536 } 6537 bool found(APFloat &Value, QualType SubobjType) { 6538 Info.FFDiag(E, diag::note_constexpr_destroy_complex_elem); 6539 return false; 6540 } 6541 }; 6542 } 6543 6544 /// Perform a destructor or pseudo-destructor call on the given object, which 6545 /// might in general not be a complete object. 6546 static bool HandleDestruction(EvalInfo &Info, const Expr *E, 6547 const LValue &This, QualType ThisType) { 6548 CompleteObject Obj = findCompleteObject(Info, E, AK_Destroy, This, ThisType); 6549 DestroyObjectHandler Handler = {Info, E, This, AK_Destroy}; 6550 return Obj && findSubobject(Info, E, Obj, This.Designator, Handler); 6551 } 6552 6553 /// Destroy and end the lifetime of the given complete object. 6554 static bool HandleDestruction(EvalInfo &Info, SourceLocation Loc, 6555 APValue::LValueBase LVBase, APValue &Value, 6556 QualType T) { 6557 // If we've had an unmodeled side-effect, we can't rely on mutable state 6558 // (such as the object we're about to destroy) being correct. 6559 if (Info.EvalStatus.HasSideEffects) 6560 return false; 6561 6562 LValue LV; 6563 LV.set({LVBase}); 6564 return HandleDestructionImpl(Info, Loc, LV, Value, T); 6565 } 6566 6567 /// Perform a call to 'perator new' or to `__builtin_operator_new'. 6568 static bool HandleOperatorNewCall(EvalInfo &Info, const CallExpr *E, 6569 LValue &Result) { 6570 if (Info.checkingPotentialConstantExpression() || 6571 Info.SpeculativeEvaluationDepth) 6572 return false; 6573 6574 // This is permitted only within a call to std::allocator<T>::allocate. 6575 auto Caller = Info.getStdAllocatorCaller("allocate"); 6576 if (!Caller) { 6577 Info.FFDiag(E->getExprLoc(), Info.getLangOpts().CPlusPlus20 6578 ? diag::note_constexpr_new_untyped 6579 : diag::note_constexpr_new); 6580 return false; 6581 } 6582 6583 QualType ElemType = Caller.ElemType; 6584 if (ElemType->isIncompleteType() || ElemType->isFunctionType()) { 6585 Info.FFDiag(E->getExprLoc(), 6586 diag::note_constexpr_new_not_complete_object_type) 6587 << (ElemType->isIncompleteType() ? 0 : 1) << ElemType; 6588 return false; 6589 } 6590 6591 APSInt ByteSize; 6592 if (!EvaluateInteger(E->getArg(0), ByteSize, Info)) 6593 return false; 6594 bool IsNothrow = false; 6595 for (unsigned I = 1, N = E->getNumArgs(); I != N; ++I) { 6596 EvaluateIgnoredValue(Info, E->getArg(I)); 6597 IsNothrow |= E->getType()->isNothrowT(); 6598 } 6599 6600 CharUnits ElemSize; 6601 if (!HandleSizeof(Info, E->getExprLoc(), ElemType, ElemSize)) 6602 return false; 6603 APInt Size, Remainder; 6604 APInt ElemSizeAP(ByteSize.getBitWidth(), ElemSize.getQuantity()); 6605 APInt::udivrem(ByteSize, ElemSizeAP, Size, Remainder); 6606 if (Remainder != 0) { 6607 // This likely indicates a bug in the implementation of 'std::allocator'. 6608 Info.FFDiag(E->getExprLoc(), diag::note_constexpr_operator_new_bad_size) 6609 << ByteSize << APSInt(ElemSizeAP, true) << ElemType; 6610 return false; 6611 } 6612 6613 if (ByteSize.getActiveBits() > ConstantArrayType::getMaxSizeBits(Info.Ctx)) { 6614 if (IsNothrow) { 6615 Result.setNull(Info.Ctx, E->getType()); 6616 return true; 6617 } 6618 6619 Info.FFDiag(E, diag::note_constexpr_new_too_large) << APSInt(Size, true); 6620 return false; 6621 } 6622 6623 QualType AllocType = Info.Ctx.getConstantArrayType(ElemType, Size, nullptr, 6624 ArrayType::Normal, 0); 6625 APValue *Val = Info.createHeapAlloc(E, AllocType, Result); 6626 *Val = APValue(APValue::UninitArray(), 0, Size.getZExtValue()); 6627 Result.addArray(Info, E, cast<ConstantArrayType>(AllocType)); 6628 return true; 6629 } 6630 6631 static bool hasVirtualDestructor(QualType T) { 6632 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 6633 if (CXXDestructorDecl *DD = RD->getDestructor()) 6634 return DD->isVirtual(); 6635 return false; 6636 } 6637 6638 static const FunctionDecl *getVirtualOperatorDelete(QualType T) { 6639 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 6640 if (CXXDestructorDecl *DD = RD->getDestructor()) 6641 return DD->isVirtual() ? DD->getOperatorDelete() : nullptr; 6642 return nullptr; 6643 } 6644 6645 /// Check that the given object is a suitable pointer to a heap allocation that 6646 /// still exists and is of the right kind for the purpose of a deletion. 6647 /// 6648 /// On success, returns the heap allocation to deallocate. On failure, produces 6649 /// a diagnostic and returns None. 6650 static Optional<DynAlloc *> CheckDeleteKind(EvalInfo &Info, const Expr *E, 6651 const LValue &Pointer, 6652 DynAlloc::Kind DeallocKind) { 6653 auto PointerAsString = [&] { 6654 return Pointer.toString(Info.Ctx, Info.Ctx.VoidPtrTy); 6655 }; 6656 6657 DynamicAllocLValue DA = Pointer.Base.dyn_cast<DynamicAllocLValue>(); 6658 if (!DA) { 6659 Info.FFDiag(E, diag::note_constexpr_delete_not_heap_alloc) 6660 << PointerAsString(); 6661 if (Pointer.Base) 6662 NoteLValueLocation(Info, Pointer.Base); 6663 return None; 6664 } 6665 6666 Optional<DynAlloc *> Alloc = Info.lookupDynamicAlloc(DA); 6667 if (!Alloc) { 6668 Info.FFDiag(E, diag::note_constexpr_double_delete); 6669 return None; 6670 } 6671 6672 QualType AllocType = Pointer.Base.getDynamicAllocType(); 6673 if (DeallocKind != (*Alloc)->getKind()) { 6674 Info.FFDiag(E, diag::note_constexpr_new_delete_mismatch) 6675 << DeallocKind << (*Alloc)->getKind() << AllocType; 6676 NoteLValueLocation(Info, Pointer.Base); 6677 return None; 6678 } 6679 6680 bool Subobject = false; 6681 if (DeallocKind == DynAlloc::New) { 6682 Subobject = Pointer.Designator.MostDerivedPathLength != 0 || 6683 Pointer.Designator.isOnePastTheEnd(); 6684 } else { 6685 Subobject = Pointer.Designator.Entries.size() != 1 || 6686 Pointer.Designator.Entries[0].getAsArrayIndex() != 0; 6687 } 6688 if (Subobject) { 6689 Info.FFDiag(E, diag::note_constexpr_delete_subobject) 6690 << PointerAsString() << Pointer.Designator.isOnePastTheEnd(); 6691 return None; 6692 } 6693 6694 return Alloc; 6695 } 6696 6697 // Perform a call to 'operator delete' or '__builtin_operator_delete'. 6698 bool HandleOperatorDeleteCall(EvalInfo &Info, const CallExpr *E) { 6699 if (Info.checkingPotentialConstantExpression() || 6700 Info.SpeculativeEvaluationDepth) 6701 return false; 6702 6703 // This is permitted only within a call to std::allocator<T>::deallocate. 6704 if (!Info.getStdAllocatorCaller("deallocate")) { 6705 Info.FFDiag(E->getExprLoc()); 6706 return true; 6707 } 6708 6709 LValue Pointer; 6710 if (!EvaluatePointer(E->getArg(0), Pointer, Info)) 6711 return false; 6712 for (unsigned I = 1, N = E->getNumArgs(); I != N; ++I) 6713 EvaluateIgnoredValue(Info, E->getArg(I)); 6714 6715 if (Pointer.Designator.Invalid) 6716 return false; 6717 6718 // Deleting a null pointer would have no effect, but it's not permitted by 6719 // std::allocator<T>::deallocate's contract. 6720 if (Pointer.isNullPointer()) { 6721 Info.CCEDiag(E->getExprLoc(), diag::note_constexpr_deallocate_null); 6722 return true; 6723 } 6724 6725 if (!CheckDeleteKind(Info, E, Pointer, DynAlloc::StdAllocator)) 6726 return false; 6727 6728 Info.HeapAllocs.erase(Pointer.Base.get<DynamicAllocLValue>()); 6729 return true; 6730 } 6731 6732 //===----------------------------------------------------------------------===// 6733 // Generic Evaluation 6734 //===----------------------------------------------------------------------===// 6735 namespace { 6736 6737 class BitCastBuffer { 6738 // FIXME: We're going to need bit-level granularity when we support 6739 // bit-fields. 6740 // FIXME: Its possible under the C++ standard for 'char' to not be 8 bits, but 6741 // we don't support a host or target where that is the case. Still, we should 6742 // use a more generic type in case we ever do. 6743 SmallVector<Optional<unsigned char>, 32> Bytes; 6744 6745 static_assert(std::numeric_limits<unsigned char>::digits >= 8, 6746 "Need at least 8 bit unsigned char"); 6747 6748 bool TargetIsLittleEndian; 6749 6750 public: 6751 BitCastBuffer(CharUnits Width, bool TargetIsLittleEndian) 6752 : Bytes(Width.getQuantity()), 6753 TargetIsLittleEndian(TargetIsLittleEndian) {} 6754 6755 LLVM_NODISCARD 6756 bool readObject(CharUnits Offset, CharUnits Width, 6757 SmallVectorImpl<unsigned char> &Output) const { 6758 for (CharUnits I = Offset, E = Offset + Width; I != E; ++I) { 6759 // If a byte of an integer is uninitialized, then the whole integer is 6760 // uninitalized. 6761 if (!Bytes[I.getQuantity()]) 6762 return false; 6763 Output.push_back(*Bytes[I.getQuantity()]); 6764 } 6765 if (llvm::sys::IsLittleEndianHost != TargetIsLittleEndian) 6766 std::reverse(Output.begin(), Output.end()); 6767 return true; 6768 } 6769 6770 void writeObject(CharUnits Offset, SmallVectorImpl<unsigned char> &Input) { 6771 if (llvm::sys::IsLittleEndianHost != TargetIsLittleEndian) 6772 std::reverse(Input.begin(), Input.end()); 6773 6774 size_t Index = 0; 6775 for (unsigned char Byte : Input) { 6776 assert(!Bytes[Offset.getQuantity() + Index] && "overwriting a byte?"); 6777 Bytes[Offset.getQuantity() + Index] = Byte; 6778 ++Index; 6779 } 6780 } 6781 6782 size_t size() { return Bytes.size(); } 6783 }; 6784 6785 /// Traverse an APValue to produce an BitCastBuffer, emulating how the current 6786 /// target would represent the value at runtime. 6787 class APValueToBufferConverter { 6788 EvalInfo &Info; 6789 BitCastBuffer Buffer; 6790 const CastExpr *BCE; 6791 6792 APValueToBufferConverter(EvalInfo &Info, CharUnits ObjectWidth, 6793 const CastExpr *BCE) 6794 : Info(Info), 6795 Buffer(ObjectWidth, Info.Ctx.getTargetInfo().isLittleEndian()), 6796 BCE(BCE) {} 6797 6798 bool visit(const APValue &Val, QualType Ty) { 6799 return visit(Val, Ty, CharUnits::fromQuantity(0)); 6800 } 6801 6802 // Write out Val with type Ty into Buffer starting at Offset. 6803 bool visit(const APValue &Val, QualType Ty, CharUnits Offset) { 6804 assert((size_t)Offset.getQuantity() <= Buffer.size()); 6805 6806 // As a special case, nullptr_t has an indeterminate value. 6807 if (Ty->isNullPtrType()) 6808 return true; 6809 6810 // Dig through Src to find the byte at SrcOffset. 6811 switch (Val.getKind()) { 6812 case APValue::Indeterminate: 6813 case APValue::None: 6814 return true; 6815 6816 case APValue::Int: 6817 return visitInt(Val.getInt(), Ty, Offset); 6818 case APValue::Float: 6819 return visitFloat(Val.getFloat(), Ty, Offset); 6820 case APValue::Array: 6821 return visitArray(Val, Ty, Offset); 6822 case APValue::Struct: 6823 return visitRecord(Val, Ty, Offset); 6824 6825 case APValue::ComplexInt: 6826 case APValue::ComplexFloat: 6827 case APValue::Vector: 6828 case APValue::FixedPoint: 6829 // FIXME: We should support these. 6830 6831 case APValue::Union: 6832 case APValue::MemberPointer: 6833 case APValue::AddrLabelDiff: { 6834 Info.FFDiag(BCE->getBeginLoc(), 6835 diag::note_constexpr_bit_cast_unsupported_type) 6836 << Ty; 6837 return false; 6838 } 6839 6840 case APValue::LValue: 6841 llvm_unreachable("LValue subobject in bit_cast?"); 6842 } 6843 llvm_unreachable("Unhandled APValue::ValueKind"); 6844 } 6845 6846 bool visitRecord(const APValue &Val, QualType Ty, CharUnits Offset) { 6847 const RecordDecl *RD = Ty->getAsRecordDecl(); 6848 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD); 6849 6850 // Visit the base classes. 6851 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 6852 for (size_t I = 0, E = CXXRD->getNumBases(); I != E; ++I) { 6853 const CXXBaseSpecifier &BS = CXXRD->bases_begin()[I]; 6854 CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl(); 6855 6856 if (!visitRecord(Val.getStructBase(I), BS.getType(), 6857 Layout.getBaseClassOffset(BaseDecl) + Offset)) 6858 return false; 6859 } 6860 } 6861 6862 // Visit the fields. 6863 unsigned FieldIdx = 0; 6864 for (FieldDecl *FD : RD->fields()) { 6865 if (FD->isBitField()) { 6866 Info.FFDiag(BCE->getBeginLoc(), 6867 diag::note_constexpr_bit_cast_unsupported_bitfield); 6868 return false; 6869 } 6870 6871 uint64_t FieldOffsetBits = Layout.getFieldOffset(FieldIdx); 6872 6873 assert(FieldOffsetBits % Info.Ctx.getCharWidth() == 0 && 6874 "only bit-fields can have sub-char alignment"); 6875 CharUnits FieldOffset = 6876 Info.Ctx.toCharUnitsFromBits(FieldOffsetBits) + Offset; 6877 QualType FieldTy = FD->getType(); 6878 if (!visit(Val.getStructField(FieldIdx), FieldTy, FieldOffset)) 6879 return false; 6880 ++FieldIdx; 6881 } 6882 6883 return true; 6884 } 6885 6886 bool visitArray(const APValue &Val, QualType Ty, CharUnits Offset) { 6887 const auto *CAT = 6888 dyn_cast_or_null<ConstantArrayType>(Ty->getAsArrayTypeUnsafe()); 6889 if (!CAT) 6890 return false; 6891 6892 CharUnits ElemWidth = Info.Ctx.getTypeSizeInChars(CAT->getElementType()); 6893 unsigned NumInitializedElts = Val.getArrayInitializedElts(); 6894 unsigned ArraySize = Val.getArraySize(); 6895 // First, initialize the initialized elements. 6896 for (unsigned I = 0; I != NumInitializedElts; ++I) { 6897 const APValue &SubObj = Val.getArrayInitializedElt(I); 6898 if (!visit(SubObj, CAT->getElementType(), Offset + I * ElemWidth)) 6899 return false; 6900 } 6901 6902 // Next, initialize the rest of the array using the filler. 6903 if (Val.hasArrayFiller()) { 6904 const APValue &Filler = Val.getArrayFiller(); 6905 for (unsigned I = NumInitializedElts; I != ArraySize; ++I) { 6906 if (!visit(Filler, CAT->getElementType(), Offset + I * ElemWidth)) 6907 return false; 6908 } 6909 } 6910 6911 return true; 6912 } 6913 6914 bool visitInt(const APSInt &Val, QualType Ty, CharUnits Offset) { 6915 APSInt AdjustedVal = Val; 6916 unsigned Width = AdjustedVal.getBitWidth(); 6917 if (Ty->isBooleanType()) { 6918 Width = Info.Ctx.getTypeSize(Ty); 6919 AdjustedVal = AdjustedVal.extend(Width); 6920 } 6921 6922 SmallVector<unsigned char, 8> Bytes(Width / 8); 6923 llvm::StoreIntToMemory(AdjustedVal, &*Bytes.begin(), Width / 8); 6924 Buffer.writeObject(Offset, Bytes); 6925 return true; 6926 } 6927 6928 bool visitFloat(const APFloat &Val, QualType Ty, CharUnits Offset) { 6929 APSInt AsInt(Val.bitcastToAPInt()); 6930 return visitInt(AsInt, Ty, Offset); 6931 } 6932 6933 public: 6934 static Optional<BitCastBuffer> convert(EvalInfo &Info, const APValue &Src, 6935 const CastExpr *BCE) { 6936 CharUnits DstSize = Info.Ctx.getTypeSizeInChars(BCE->getType()); 6937 APValueToBufferConverter Converter(Info, DstSize, BCE); 6938 if (!Converter.visit(Src, BCE->getSubExpr()->getType())) 6939 return None; 6940 return Converter.Buffer; 6941 } 6942 }; 6943 6944 /// Write an BitCastBuffer into an APValue. 6945 class BufferToAPValueConverter { 6946 EvalInfo &Info; 6947 const BitCastBuffer &Buffer; 6948 const CastExpr *BCE; 6949 6950 BufferToAPValueConverter(EvalInfo &Info, const BitCastBuffer &Buffer, 6951 const CastExpr *BCE) 6952 : Info(Info), Buffer(Buffer), BCE(BCE) {} 6953 6954 // Emit an unsupported bit_cast type error. Sema refuses to build a bit_cast 6955 // with an invalid type, so anything left is a deficiency on our part (FIXME). 6956 // Ideally this will be unreachable. 6957 llvm::NoneType unsupportedType(QualType Ty) { 6958 Info.FFDiag(BCE->getBeginLoc(), 6959 diag::note_constexpr_bit_cast_unsupported_type) 6960 << Ty; 6961 return None; 6962 } 6963 6964 llvm::NoneType unrepresentableValue(QualType Ty, const APSInt &Val) { 6965 Info.FFDiag(BCE->getBeginLoc(), 6966 diag::note_constexpr_bit_cast_unrepresentable_value) 6967 << Ty << Val.toString(/*Radix=*/10); 6968 return None; 6969 } 6970 6971 Optional<APValue> visit(const BuiltinType *T, CharUnits Offset, 6972 const EnumType *EnumSugar = nullptr) { 6973 if (T->isNullPtrType()) { 6974 uint64_t NullValue = Info.Ctx.getTargetNullPointerValue(QualType(T, 0)); 6975 return APValue((Expr *)nullptr, 6976 /*Offset=*/CharUnits::fromQuantity(NullValue), 6977 APValue::NoLValuePath{}, /*IsNullPtr=*/true); 6978 } 6979 6980 CharUnits SizeOf = Info.Ctx.getTypeSizeInChars(T); 6981 6982 // Work around floating point types that contain unused padding bytes. This 6983 // is really just `long double` on x86, which is the only fundamental type 6984 // with padding bytes. 6985 if (T->isRealFloatingType()) { 6986 const llvm::fltSemantics &Semantics = 6987 Info.Ctx.getFloatTypeSemantics(QualType(T, 0)); 6988 unsigned NumBits = llvm::APFloatBase::getSizeInBits(Semantics); 6989 assert(NumBits % 8 == 0); 6990 CharUnits NumBytes = CharUnits::fromQuantity(NumBits / 8); 6991 if (NumBytes != SizeOf) 6992 SizeOf = NumBytes; 6993 } 6994 6995 SmallVector<uint8_t, 8> Bytes; 6996 if (!Buffer.readObject(Offset, SizeOf, Bytes)) { 6997 // If this is std::byte or unsigned char, then its okay to store an 6998 // indeterminate value. 6999 bool IsStdByte = EnumSugar && EnumSugar->isStdByteType(); 7000 bool IsUChar = 7001 !EnumSugar && (T->isSpecificBuiltinType(BuiltinType::UChar) || 7002 T->isSpecificBuiltinType(BuiltinType::Char_U)); 7003 if (!IsStdByte && !IsUChar) { 7004 QualType DisplayType(EnumSugar ? (const Type *)EnumSugar : T, 0); 7005 Info.FFDiag(BCE->getExprLoc(), 7006 diag::note_constexpr_bit_cast_indet_dest) 7007 << DisplayType << Info.Ctx.getLangOpts().CharIsSigned; 7008 return None; 7009 } 7010 7011 return APValue::IndeterminateValue(); 7012 } 7013 7014 APSInt Val(SizeOf.getQuantity() * Info.Ctx.getCharWidth(), true); 7015 llvm::LoadIntFromMemory(Val, &*Bytes.begin(), Bytes.size()); 7016 7017 if (T->isIntegralOrEnumerationType()) { 7018 Val.setIsSigned(T->isSignedIntegerOrEnumerationType()); 7019 7020 unsigned IntWidth = Info.Ctx.getIntWidth(QualType(T, 0)); 7021 if (IntWidth != Val.getBitWidth()) { 7022 APSInt Truncated = Val.trunc(IntWidth); 7023 if (Truncated.extend(Val.getBitWidth()) != Val) 7024 return unrepresentableValue(QualType(T, 0), Val); 7025 Val = Truncated; 7026 } 7027 7028 return APValue(Val); 7029 } 7030 7031 if (T->isRealFloatingType()) { 7032 const llvm::fltSemantics &Semantics = 7033 Info.Ctx.getFloatTypeSemantics(QualType(T, 0)); 7034 return APValue(APFloat(Semantics, Val)); 7035 } 7036 7037 return unsupportedType(QualType(T, 0)); 7038 } 7039 7040 Optional<APValue> visit(const RecordType *RTy, CharUnits Offset) { 7041 const RecordDecl *RD = RTy->getAsRecordDecl(); 7042 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD); 7043 7044 unsigned NumBases = 0; 7045 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 7046 NumBases = CXXRD->getNumBases(); 7047 7048 APValue ResultVal(APValue::UninitStruct(), NumBases, 7049 std::distance(RD->field_begin(), RD->field_end())); 7050 7051 // Visit the base classes. 7052 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 7053 for (size_t I = 0, E = CXXRD->getNumBases(); I != E; ++I) { 7054 const CXXBaseSpecifier &BS = CXXRD->bases_begin()[I]; 7055 CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl(); 7056 if (BaseDecl->isEmpty() || 7057 Info.Ctx.getASTRecordLayout(BaseDecl).getNonVirtualSize().isZero()) 7058 continue; 7059 7060 Optional<APValue> SubObj = visitType( 7061 BS.getType(), Layout.getBaseClassOffset(BaseDecl) + Offset); 7062 if (!SubObj) 7063 return None; 7064 ResultVal.getStructBase(I) = *SubObj; 7065 } 7066 } 7067 7068 // Visit the fields. 7069 unsigned FieldIdx = 0; 7070 for (FieldDecl *FD : RD->fields()) { 7071 // FIXME: We don't currently support bit-fields. A lot of the logic for 7072 // this is in CodeGen, so we need to factor it around. 7073 if (FD->isBitField()) { 7074 Info.FFDiag(BCE->getBeginLoc(), 7075 diag::note_constexpr_bit_cast_unsupported_bitfield); 7076 return None; 7077 } 7078 7079 uint64_t FieldOffsetBits = Layout.getFieldOffset(FieldIdx); 7080 assert(FieldOffsetBits % Info.Ctx.getCharWidth() == 0); 7081 7082 CharUnits FieldOffset = 7083 CharUnits::fromQuantity(FieldOffsetBits / Info.Ctx.getCharWidth()) + 7084 Offset; 7085 QualType FieldTy = FD->getType(); 7086 Optional<APValue> SubObj = visitType(FieldTy, FieldOffset); 7087 if (!SubObj) 7088 return None; 7089 ResultVal.getStructField(FieldIdx) = *SubObj; 7090 ++FieldIdx; 7091 } 7092 7093 return ResultVal; 7094 } 7095 7096 Optional<APValue> visit(const EnumType *Ty, CharUnits Offset) { 7097 QualType RepresentationType = Ty->getDecl()->getIntegerType(); 7098 assert(!RepresentationType.isNull() && 7099 "enum forward decl should be caught by Sema"); 7100 const auto *AsBuiltin = 7101 RepresentationType.getCanonicalType()->castAs<BuiltinType>(); 7102 // Recurse into the underlying type. Treat std::byte transparently as 7103 // unsigned char. 7104 return visit(AsBuiltin, Offset, /*EnumTy=*/Ty); 7105 } 7106 7107 Optional<APValue> visit(const ConstantArrayType *Ty, CharUnits Offset) { 7108 size_t Size = Ty->getSize().getLimitedValue(); 7109 CharUnits ElementWidth = Info.Ctx.getTypeSizeInChars(Ty->getElementType()); 7110 7111 APValue ArrayValue(APValue::UninitArray(), Size, Size); 7112 for (size_t I = 0; I != Size; ++I) { 7113 Optional<APValue> ElementValue = 7114 visitType(Ty->getElementType(), Offset + I * ElementWidth); 7115 if (!ElementValue) 7116 return None; 7117 ArrayValue.getArrayInitializedElt(I) = std::move(*ElementValue); 7118 } 7119 7120 return ArrayValue; 7121 } 7122 7123 Optional<APValue> visit(const Type *Ty, CharUnits Offset) { 7124 return unsupportedType(QualType(Ty, 0)); 7125 } 7126 7127 Optional<APValue> visitType(QualType Ty, CharUnits Offset) { 7128 QualType Can = Ty.getCanonicalType(); 7129 7130 switch (Can->getTypeClass()) { 7131 #define TYPE(Class, Base) \ 7132 case Type::Class: \ 7133 return visit(cast<Class##Type>(Can.getTypePtr()), Offset); 7134 #define ABSTRACT_TYPE(Class, Base) 7135 #define NON_CANONICAL_TYPE(Class, Base) \ 7136 case Type::Class: \ 7137 llvm_unreachable("non-canonical type should be impossible!"); 7138 #define DEPENDENT_TYPE(Class, Base) \ 7139 case Type::Class: \ 7140 llvm_unreachable( \ 7141 "dependent types aren't supported in the constant evaluator!"); 7142 #define NON_CANONICAL_UNLESS_DEPENDENT(Class, Base) \ 7143 case Type::Class: \ 7144 llvm_unreachable("either dependent or not canonical!"); 7145 #include "clang/AST/TypeNodes.inc" 7146 } 7147 llvm_unreachable("Unhandled Type::TypeClass"); 7148 } 7149 7150 public: 7151 // Pull out a full value of type DstType. 7152 static Optional<APValue> convert(EvalInfo &Info, BitCastBuffer &Buffer, 7153 const CastExpr *BCE) { 7154 BufferToAPValueConverter Converter(Info, Buffer, BCE); 7155 return Converter.visitType(BCE->getType(), CharUnits::fromQuantity(0)); 7156 } 7157 }; 7158 7159 static bool checkBitCastConstexprEligibilityType(SourceLocation Loc, 7160 QualType Ty, EvalInfo *Info, 7161 const ASTContext &Ctx, 7162 bool CheckingDest) { 7163 Ty = Ty.getCanonicalType(); 7164 7165 auto diag = [&](int Reason) { 7166 if (Info) 7167 Info->FFDiag(Loc, diag::note_constexpr_bit_cast_invalid_type) 7168 << CheckingDest << (Reason == 4) << Reason; 7169 return false; 7170 }; 7171 auto note = [&](int Construct, QualType NoteTy, SourceLocation NoteLoc) { 7172 if (Info) 7173 Info->Note(NoteLoc, diag::note_constexpr_bit_cast_invalid_subtype) 7174 << NoteTy << Construct << Ty; 7175 return false; 7176 }; 7177 7178 if (Ty->isUnionType()) 7179 return diag(0); 7180 if (Ty->isPointerType()) 7181 return diag(1); 7182 if (Ty->isMemberPointerType()) 7183 return diag(2); 7184 if (Ty.isVolatileQualified()) 7185 return diag(3); 7186 7187 if (RecordDecl *Record = Ty->getAsRecordDecl()) { 7188 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(Record)) { 7189 for (CXXBaseSpecifier &BS : CXXRD->bases()) 7190 if (!checkBitCastConstexprEligibilityType(Loc, BS.getType(), Info, Ctx, 7191 CheckingDest)) 7192 return note(1, BS.getType(), BS.getBeginLoc()); 7193 } 7194 for (FieldDecl *FD : Record->fields()) { 7195 if (FD->getType()->isReferenceType()) 7196 return diag(4); 7197 if (!checkBitCastConstexprEligibilityType(Loc, FD->getType(), Info, Ctx, 7198 CheckingDest)) 7199 return note(0, FD->getType(), FD->getBeginLoc()); 7200 } 7201 } 7202 7203 if (Ty->isArrayType() && 7204 !checkBitCastConstexprEligibilityType(Loc, Ctx.getBaseElementType(Ty), 7205 Info, Ctx, CheckingDest)) 7206 return false; 7207 7208 return true; 7209 } 7210 7211 static bool checkBitCastConstexprEligibility(EvalInfo *Info, 7212 const ASTContext &Ctx, 7213 const CastExpr *BCE) { 7214 bool DestOK = checkBitCastConstexprEligibilityType( 7215 BCE->getBeginLoc(), BCE->getType(), Info, Ctx, true); 7216 bool SourceOK = DestOK && checkBitCastConstexprEligibilityType( 7217 BCE->getBeginLoc(), 7218 BCE->getSubExpr()->getType(), Info, Ctx, false); 7219 return SourceOK; 7220 } 7221 7222 static bool handleLValueToRValueBitCast(EvalInfo &Info, APValue &DestValue, 7223 APValue &SourceValue, 7224 const CastExpr *BCE) { 7225 assert(CHAR_BIT == 8 && Info.Ctx.getTargetInfo().getCharWidth() == 8 && 7226 "no host or target supports non 8-bit chars"); 7227 assert(SourceValue.isLValue() && 7228 "LValueToRValueBitcast requires an lvalue operand!"); 7229 7230 if (!checkBitCastConstexprEligibility(&Info, Info.Ctx, BCE)) 7231 return false; 7232 7233 LValue SourceLValue; 7234 APValue SourceRValue; 7235 SourceLValue.setFrom(Info.Ctx, SourceValue); 7236 if (!handleLValueToRValueConversion( 7237 Info, BCE, BCE->getSubExpr()->getType().withConst(), SourceLValue, 7238 SourceRValue, /*WantObjectRepresentation=*/true)) 7239 return false; 7240 7241 // Read out SourceValue into a char buffer. 7242 Optional<BitCastBuffer> Buffer = 7243 APValueToBufferConverter::convert(Info, SourceRValue, BCE); 7244 if (!Buffer) 7245 return false; 7246 7247 // Write out the buffer into a new APValue. 7248 Optional<APValue> MaybeDestValue = 7249 BufferToAPValueConverter::convert(Info, *Buffer, BCE); 7250 if (!MaybeDestValue) 7251 return false; 7252 7253 DestValue = std::move(*MaybeDestValue); 7254 return true; 7255 } 7256 7257 template <class Derived> 7258 class ExprEvaluatorBase 7259 : public ConstStmtVisitor<Derived, bool> { 7260 private: 7261 Derived &getDerived() { return static_cast<Derived&>(*this); } 7262 bool DerivedSuccess(const APValue &V, const Expr *E) { 7263 return getDerived().Success(V, E); 7264 } 7265 bool DerivedZeroInitialization(const Expr *E) { 7266 return getDerived().ZeroInitialization(E); 7267 } 7268 7269 // Check whether a conditional operator with a non-constant condition is a 7270 // potential constant expression. If neither arm is a potential constant 7271 // expression, then the conditional operator is not either. 7272 template<typename ConditionalOperator> 7273 void CheckPotentialConstantConditional(const ConditionalOperator *E) { 7274 assert(Info.checkingPotentialConstantExpression()); 7275 7276 // Speculatively evaluate both arms. 7277 SmallVector<PartialDiagnosticAt, 8> Diag; 7278 { 7279 SpeculativeEvaluationRAII Speculate(Info, &Diag); 7280 StmtVisitorTy::Visit(E->getFalseExpr()); 7281 if (Diag.empty()) 7282 return; 7283 } 7284 7285 { 7286 SpeculativeEvaluationRAII Speculate(Info, &Diag); 7287 Diag.clear(); 7288 StmtVisitorTy::Visit(E->getTrueExpr()); 7289 if (Diag.empty()) 7290 return; 7291 } 7292 7293 Error(E, diag::note_constexpr_conditional_never_const); 7294 } 7295 7296 7297 template<typename ConditionalOperator> 7298 bool HandleConditionalOperator(const ConditionalOperator *E) { 7299 bool BoolResult; 7300 if (!EvaluateAsBooleanCondition(E->getCond(), BoolResult, Info)) { 7301 if (Info.checkingPotentialConstantExpression() && Info.noteFailure()) { 7302 CheckPotentialConstantConditional(E); 7303 return false; 7304 } 7305 if (Info.noteFailure()) { 7306 StmtVisitorTy::Visit(E->getTrueExpr()); 7307 StmtVisitorTy::Visit(E->getFalseExpr()); 7308 } 7309 return false; 7310 } 7311 7312 Expr *EvalExpr = BoolResult ? E->getTrueExpr() : E->getFalseExpr(); 7313 return StmtVisitorTy::Visit(EvalExpr); 7314 } 7315 7316 protected: 7317 EvalInfo &Info; 7318 typedef ConstStmtVisitor<Derived, bool> StmtVisitorTy; 7319 typedef ExprEvaluatorBase ExprEvaluatorBaseTy; 7320 7321 OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) { 7322 return Info.CCEDiag(E, D); 7323 } 7324 7325 bool ZeroInitialization(const Expr *E) { return Error(E); } 7326 7327 public: 7328 ExprEvaluatorBase(EvalInfo &Info) : Info(Info) {} 7329 7330 EvalInfo &getEvalInfo() { return Info; } 7331 7332 /// Report an evaluation error. This should only be called when an error is 7333 /// first discovered. When propagating an error, just return false. 7334 bool Error(const Expr *E, diag::kind D) { 7335 Info.FFDiag(E, D); 7336 return false; 7337 } 7338 bool Error(const Expr *E) { 7339 return Error(E, diag::note_invalid_subexpr_in_const_expr); 7340 } 7341 7342 bool VisitStmt(const Stmt *) { 7343 llvm_unreachable("Expression evaluator should not be called on stmts"); 7344 } 7345 bool VisitExpr(const Expr *E) { 7346 return Error(E); 7347 } 7348 7349 bool VisitConstantExpr(const ConstantExpr *E) { 7350 if (E->hasAPValueResult()) 7351 return DerivedSuccess(E->getAPValueResult(), E); 7352 7353 return StmtVisitorTy::Visit(E->getSubExpr()); 7354 } 7355 7356 bool VisitParenExpr(const ParenExpr *E) 7357 { return StmtVisitorTy::Visit(E->getSubExpr()); } 7358 bool VisitUnaryExtension(const UnaryOperator *E) 7359 { return StmtVisitorTy::Visit(E->getSubExpr()); } 7360 bool VisitUnaryPlus(const UnaryOperator *E) 7361 { return StmtVisitorTy::Visit(E->getSubExpr()); } 7362 bool VisitChooseExpr(const ChooseExpr *E) 7363 { return StmtVisitorTy::Visit(E->getChosenSubExpr()); } 7364 bool VisitGenericSelectionExpr(const GenericSelectionExpr *E) 7365 { return StmtVisitorTy::Visit(E->getResultExpr()); } 7366 bool VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr *E) 7367 { return StmtVisitorTy::Visit(E->getReplacement()); } 7368 bool VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E) { 7369 TempVersionRAII RAII(*Info.CurrentCall); 7370 SourceLocExprScopeGuard Guard(E, Info.CurrentCall->CurSourceLocExprScope); 7371 return StmtVisitorTy::Visit(E->getExpr()); 7372 } 7373 bool VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) { 7374 TempVersionRAII RAII(*Info.CurrentCall); 7375 // The initializer may not have been parsed yet, or might be erroneous. 7376 if (!E->getExpr()) 7377 return Error(E); 7378 SourceLocExprScopeGuard Guard(E, Info.CurrentCall->CurSourceLocExprScope); 7379 return StmtVisitorTy::Visit(E->getExpr()); 7380 } 7381 7382 bool VisitExprWithCleanups(const ExprWithCleanups *E) { 7383 FullExpressionRAII Scope(Info); 7384 return StmtVisitorTy::Visit(E->getSubExpr()) && Scope.destroy(); 7385 } 7386 7387 // Temporaries are registered when created, so we don't care about 7388 // CXXBindTemporaryExpr. 7389 bool VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) { 7390 return StmtVisitorTy::Visit(E->getSubExpr()); 7391 } 7392 7393 bool VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr *E) { 7394 CCEDiag(E, diag::note_constexpr_invalid_cast) << 0; 7395 return static_cast<Derived*>(this)->VisitCastExpr(E); 7396 } 7397 bool VisitCXXDynamicCastExpr(const CXXDynamicCastExpr *E) { 7398 if (!Info.Ctx.getLangOpts().CPlusPlus20) 7399 CCEDiag(E, diag::note_constexpr_invalid_cast) << 1; 7400 return static_cast<Derived*>(this)->VisitCastExpr(E); 7401 } 7402 bool VisitBuiltinBitCastExpr(const BuiltinBitCastExpr *E) { 7403 return static_cast<Derived*>(this)->VisitCastExpr(E); 7404 } 7405 7406 bool VisitBinaryOperator(const BinaryOperator *E) { 7407 switch (E->getOpcode()) { 7408 default: 7409 return Error(E); 7410 7411 case BO_Comma: 7412 VisitIgnoredValue(E->getLHS()); 7413 return StmtVisitorTy::Visit(E->getRHS()); 7414 7415 case BO_PtrMemD: 7416 case BO_PtrMemI: { 7417 LValue Obj; 7418 if (!HandleMemberPointerAccess(Info, E, Obj)) 7419 return false; 7420 APValue Result; 7421 if (!handleLValueToRValueConversion(Info, E, E->getType(), Obj, Result)) 7422 return false; 7423 return DerivedSuccess(Result, E); 7424 } 7425 } 7426 } 7427 7428 bool VisitCXXRewrittenBinaryOperator(const CXXRewrittenBinaryOperator *E) { 7429 return StmtVisitorTy::Visit(E->getSemanticForm()); 7430 } 7431 7432 bool VisitBinaryConditionalOperator(const BinaryConditionalOperator *E) { 7433 // Evaluate and cache the common expression. We treat it as a temporary, 7434 // even though it's not quite the same thing. 7435 LValue CommonLV; 7436 if (!Evaluate(Info.CurrentCall->createTemporary( 7437 E->getOpaqueValue(), 7438 getStorageType(Info.Ctx, E->getOpaqueValue()), 7439 ScopeKind::FullExpression, CommonLV), 7440 Info, E->getCommon())) 7441 return false; 7442 7443 return HandleConditionalOperator(E); 7444 } 7445 7446 bool VisitConditionalOperator(const ConditionalOperator *E) { 7447 bool IsBcpCall = false; 7448 // If the condition (ignoring parens) is a __builtin_constant_p call, 7449 // the result is a constant expression if it can be folded without 7450 // side-effects. This is an important GNU extension. See GCC PR38377 7451 // for discussion. 7452 if (const CallExpr *CallCE = 7453 dyn_cast<CallExpr>(E->getCond()->IgnoreParenCasts())) 7454 if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p) 7455 IsBcpCall = true; 7456 7457 // Always assume __builtin_constant_p(...) ? ... : ... is a potential 7458 // constant expression; we can't check whether it's potentially foldable. 7459 // FIXME: We should instead treat __builtin_constant_p as non-constant if 7460 // it would return 'false' in this mode. 7461 if (Info.checkingPotentialConstantExpression() && IsBcpCall) 7462 return false; 7463 7464 FoldConstant Fold(Info, IsBcpCall); 7465 if (!HandleConditionalOperator(E)) { 7466 Fold.keepDiagnostics(); 7467 return false; 7468 } 7469 7470 return true; 7471 } 7472 7473 bool VisitOpaqueValueExpr(const OpaqueValueExpr *E) { 7474 if (APValue *Value = Info.CurrentCall->getCurrentTemporary(E)) 7475 return DerivedSuccess(*Value, E); 7476 7477 const Expr *Source = E->getSourceExpr(); 7478 if (!Source) 7479 return Error(E); 7480 if (Source == E) { // sanity checking. 7481 assert(0 && "OpaqueValueExpr recursively refers to itself"); 7482 return Error(E); 7483 } 7484 return StmtVisitorTy::Visit(Source); 7485 } 7486 7487 bool VisitPseudoObjectExpr(const PseudoObjectExpr *E) { 7488 for (const Expr *SemE : E->semantics()) { 7489 if (auto *OVE = dyn_cast<OpaqueValueExpr>(SemE)) { 7490 // FIXME: We can't handle the case where an OpaqueValueExpr is also the 7491 // result expression: there could be two different LValues that would 7492 // refer to the same object in that case, and we can't model that. 7493 if (SemE == E->getResultExpr()) 7494 return Error(E); 7495 7496 // Unique OVEs get evaluated if and when we encounter them when 7497 // emitting the rest of the semantic form, rather than eagerly. 7498 if (OVE->isUnique()) 7499 continue; 7500 7501 LValue LV; 7502 if (!Evaluate(Info.CurrentCall->createTemporary( 7503 OVE, getStorageType(Info.Ctx, OVE), 7504 ScopeKind::FullExpression, LV), 7505 Info, OVE->getSourceExpr())) 7506 return false; 7507 } else if (SemE == E->getResultExpr()) { 7508 if (!StmtVisitorTy::Visit(SemE)) 7509 return false; 7510 } else { 7511 if (!EvaluateIgnoredValue(Info, SemE)) 7512 return false; 7513 } 7514 } 7515 return true; 7516 } 7517 7518 bool VisitCallExpr(const CallExpr *E) { 7519 APValue Result; 7520 if (!handleCallExpr(E, Result, nullptr)) 7521 return false; 7522 return DerivedSuccess(Result, E); 7523 } 7524 7525 bool handleCallExpr(const CallExpr *E, APValue &Result, 7526 const LValue *ResultSlot) { 7527 CallScopeRAII CallScope(Info); 7528 7529 const Expr *Callee = E->getCallee()->IgnoreParens(); 7530 QualType CalleeType = Callee->getType(); 7531 7532 const FunctionDecl *FD = nullptr; 7533 LValue *This = nullptr, ThisVal; 7534 auto Args = llvm::makeArrayRef(E->getArgs(), E->getNumArgs()); 7535 bool HasQualifier = false; 7536 7537 CallRef Call; 7538 7539 // Extract function decl and 'this' pointer from the callee. 7540 if (CalleeType->isSpecificBuiltinType(BuiltinType::BoundMember)) { 7541 const CXXMethodDecl *Member = nullptr; 7542 if (const MemberExpr *ME = dyn_cast<MemberExpr>(Callee)) { 7543 // Explicit bound member calls, such as x.f() or p->g(); 7544 if (!EvaluateObjectArgument(Info, ME->getBase(), ThisVal)) 7545 return false; 7546 Member = dyn_cast<CXXMethodDecl>(ME->getMemberDecl()); 7547 if (!Member) 7548 return Error(Callee); 7549 This = &ThisVal; 7550 HasQualifier = ME->hasQualifier(); 7551 } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(Callee)) { 7552 // Indirect bound member calls ('.*' or '->*'). 7553 const ValueDecl *D = 7554 HandleMemberPointerAccess(Info, BE, ThisVal, false); 7555 if (!D) 7556 return false; 7557 Member = dyn_cast<CXXMethodDecl>(D); 7558 if (!Member) 7559 return Error(Callee); 7560 This = &ThisVal; 7561 } else if (const auto *PDE = dyn_cast<CXXPseudoDestructorExpr>(Callee)) { 7562 if (!Info.getLangOpts().CPlusPlus20) 7563 Info.CCEDiag(PDE, diag::note_constexpr_pseudo_destructor); 7564 return EvaluateObjectArgument(Info, PDE->getBase(), ThisVal) && 7565 HandleDestruction(Info, PDE, ThisVal, PDE->getDestroyedType()); 7566 } else 7567 return Error(Callee); 7568 FD = Member; 7569 } else if (CalleeType->isFunctionPointerType()) { 7570 LValue CalleeLV; 7571 if (!EvaluatePointer(Callee, CalleeLV, Info)) 7572 return false; 7573 7574 if (!CalleeLV.getLValueOffset().isZero()) 7575 return Error(Callee); 7576 FD = dyn_cast_or_null<FunctionDecl>( 7577 CalleeLV.getLValueBase().dyn_cast<const ValueDecl *>()); 7578 if (!FD) 7579 return Error(Callee); 7580 // Don't call function pointers which have been cast to some other type. 7581 // Per DR (no number yet), the caller and callee can differ in noexcept. 7582 if (!Info.Ctx.hasSameFunctionTypeIgnoringExceptionSpec( 7583 CalleeType->getPointeeType(), FD->getType())) { 7584 return Error(E); 7585 } 7586 7587 // For an (overloaded) assignment expression, evaluate the RHS before the 7588 // LHS. 7589 auto *OCE = dyn_cast<CXXOperatorCallExpr>(E); 7590 if (OCE && OCE->isAssignmentOp()) { 7591 assert(Args.size() == 2 && "wrong number of arguments in assignment"); 7592 Call = Info.CurrentCall->createCall(FD); 7593 if (!EvaluateArgs(isa<CXXMethodDecl>(FD) ? Args.slice(1) : Args, Call, 7594 Info, FD, /*RightToLeft=*/true)) 7595 return false; 7596 } 7597 7598 // Overloaded operator calls to member functions are represented as normal 7599 // calls with '*this' as the first argument. 7600 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 7601 if (MD && !MD->isStatic()) { 7602 // FIXME: When selecting an implicit conversion for an overloaded 7603 // operator delete, we sometimes try to evaluate calls to conversion 7604 // operators without a 'this' parameter! 7605 if (Args.empty()) 7606 return Error(E); 7607 7608 if (!EvaluateObjectArgument(Info, Args[0], ThisVal)) 7609 return false; 7610 This = &ThisVal; 7611 Args = Args.slice(1); 7612 } else if (MD && MD->isLambdaStaticInvoker()) { 7613 // Map the static invoker for the lambda back to the call operator. 7614 // Conveniently, we don't have to slice out the 'this' argument (as is 7615 // being done for the non-static case), since a static member function 7616 // doesn't have an implicit argument passed in. 7617 const CXXRecordDecl *ClosureClass = MD->getParent(); 7618 assert( 7619 ClosureClass->captures_begin() == ClosureClass->captures_end() && 7620 "Number of captures must be zero for conversion to function-ptr"); 7621 7622 const CXXMethodDecl *LambdaCallOp = 7623 ClosureClass->getLambdaCallOperator(); 7624 7625 // Set 'FD', the function that will be called below, to the call 7626 // operator. If the closure object represents a generic lambda, find 7627 // the corresponding specialization of the call operator. 7628 7629 if (ClosureClass->isGenericLambda()) { 7630 assert(MD->isFunctionTemplateSpecialization() && 7631 "A generic lambda's static-invoker function must be a " 7632 "template specialization"); 7633 const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs(); 7634 FunctionTemplateDecl *CallOpTemplate = 7635 LambdaCallOp->getDescribedFunctionTemplate(); 7636 void *InsertPos = nullptr; 7637 FunctionDecl *CorrespondingCallOpSpecialization = 7638 CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos); 7639 assert(CorrespondingCallOpSpecialization && 7640 "We must always have a function call operator specialization " 7641 "that corresponds to our static invoker specialization"); 7642 FD = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization); 7643 } else 7644 FD = LambdaCallOp; 7645 } else if (FD->isReplaceableGlobalAllocationFunction()) { 7646 if (FD->getDeclName().getCXXOverloadedOperator() == OO_New || 7647 FD->getDeclName().getCXXOverloadedOperator() == OO_Array_New) { 7648 LValue Ptr; 7649 if (!HandleOperatorNewCall(Info, E, Ptr)) 7650 return false; 7651 Ptr.moveInto(Result); 7652 return CallScope.destroy(); 7653 } else { 7654 return HandleOperatorDeleteCall(Info, E) && CallScope.destroy(); 7655 } 7656 } 7657 } else 7658 return Error(E); 7659 7660 // Evaluate the arguments now if we've not already done so. 7661 if (!Call) { 7662 Call = Info.CurrentCall->createCall(FD); 7663 if (!EvaluateArgs(Args, Call, Info, FD)) 7664 return false; 7665 } 7666 7667 SmallVector<QualType, 4> CovariantAdjustmentPath; 7668 if (This) { 7669 auto *NamedMember = dyn_cast<CXXMethodDecl>(FD); 7670 if (NamedMember && NamedMember->isVirtual() && !HasQualifier) { 7671 // Perform virtual dispatch, if necessary. 7672 FD = HandleVirtualDispatch(Info, E, *This, NamedMember, 7673 CovariantAdjustmentPath); 7674 if (!FD) 7675 return false; 7676 } else { 7677 // Check that the 'this' pointer points to an object of the right type. 7678 // FIXME: If this is an assignment operator call, we may need to change 7679 // the active union member before we check this. 7680 if (!checkNonVirtualMemberCallThisPointer(Info, E, *This, NamedMember)) 7681 return false; 7682 } 7683 } 7684 7685 // Destructor calls are different enough that they have their own codepath. 7686 if (auto *DD = dyn_cast<CXXDestructorDecl>(FD)) { 7687 assert(This && "no 'this' pointer for destructor call"); 7688 return HandleDestruction(Info, E, *This, 7689 Info.Ctx.getRecordType(DD->getParent())) && 7690 CallScope.destroy(); 7691 } 7692 7693 const FunctionDecl *Definition = nullptr; 7694 Stmt *Body = FD->getBody(Definition); 7695 7696 if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body) || 7697 !HandleFunctionCall(E->getExprLoc(), Definition, This, Args, Call, 7698 Body, Info, Result, ResultSlot)) 7699 return false; 7700 7701 if (!CovariantAdjustmentPath.empty() && 7702 !HandleCovariantReturnAdjustment(Info, E, Result, 7703 CovariantAdjustmentPath)) 7704 return false; 7705 7706 return CallScope.destroy(); 7707 } 7708 7709 bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) { 7710 return StmtVisitorTy::Visit(E->getInitializer()); 7711 } 7712 bool VisitInitListExpr(const InitListExpr *E) { 7713 if (E->getNumInits() == 0) 7714 return DerivedZeroInitialization(E); 7715 if (E->getNumInits() == 1) 7716 return StmtVisitorTy::Visit(E->getInit(0)); 7717 return Error(E); 7718 } 7719 bool VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { 7720 return DerivedZeroInitialization(E); 7721 } 7722 bool VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) { 7723 return DerivedZeroInitialization(E); 7724 } 7725 bool VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) { 7726 return DerivedZeroInitialization(E); 7727 } 7728 7729 /// A member expression where the object is a prvalue is itself a prvalue. 7730 bool VisitMemberExpr(const MemberExpr *E) { 7731 assert(!Info.Ctx.getLangOpts().CPlusPlus11 && 7732 "missing temporary materialization conversion"); 7733 assert(!E->isArrow() && "missing call to bound member function?"); 7734 7735 APValue Val; 7736 if (!Evaluate(Val, Info, E->getBase())) 7737 return false; 7738 7739 QualType BaseTy = E->getBase()->getType(); 7740 7741 const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl()); 7742 if (!FD) return Error(E); 7743 assert(!FD->getType()->isReferenceType() && "prvalue reference?"); 7744 assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() == 7745 FD->getParent()->getCanonicalDecl() && "record / field mismatch"); 7746 7747 // Note: there is no lvalue base here. But this case should only ever 7748 // happen in C or in C++98, where we cannot be evaluating a constexpr 7749 // constructor, which is the only case the base matters. 7750 CompleteObject Obj(APValue::LValueBase(), &Val, BaseTy); 7751 SubobjectDesignator Designator(BaseTy); 7752 Designator.addDeclUnchecked(FD); 7753 7754 APValue Result; 7755 return extractSubobject(Info, E, Obj, Designator, Result) && 7756 DerivedSuccess(Result, E); 7757 } 7758 7759 bool VisitExtVectorElementExpr(const ExtVectorElementExpr *E) { 7760 APValue Val; 7761 if (!Evaluate(Val, Info, E->getBase())) 7762 return false; 7763 7764 if (Val.isVector()) { 7765 SmallVector<uint32_t, 4> Indices; 7766 E->getEncodedElementAccess(Indices); 7767 if (Indices.size() == 1) { 7768 // Return scalar. 7769 return DerivedSuccess(Val.getVectorElt(Indices[0]), E); 7770 } else { 7771 // Construct new APValue vector. 7772 SmallVector<APValue, 4> Elts; 7773 for (unsigned I = 0; I < Indices.size(); ++I) { 7774 Elts.push_back(Val.getVectorElt(Indices[I])); 7775 } 7776 APValue VecResult(Elts.data(), Indices.size()); 7777 return DerivedSuccess(VecResult, E); 7778 } 7779 } 7780 7781 return false; 7782 } 7783 7784 bool VisitCastExpr(const CastExpr *E) { 7785 switch (E->getCastKind()) { 7786 default: 7787 break; 7788 7789 case CK_AtomicToNonAtomic: { 7790 APValue AtomicVal; 7791 // This does not need to be done in place even for class/array types: 7792 // atomic-to-non-atomic conversion implies copying the object 7793 // representation. 7794 if (!Evaluate(AtomicVal, Info, E->getSubExpr())) 7795 return false; 7796 return DerivedSuccess(AtomicVal, E); 7797 } 7798 7799 case CK_NoOp: 7800 case CK_UserDefinedConversion: 7801 return StmtVisitorTy::Visit(E->getSubExpr()); 7802 7803 case CK_LValueToRValue: { 7804 LValue LVal; 7805 if (!EvaluateLValue(E->getSubExpr(), LVal, Info)) 7806 return false; 7807 APValue RVal; 7808 // Note, we use the subexpression's type in order to retain cv-qualifiers. 7809 if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(), 7810 LVal, RVal)) 7811 return false; 7812 return DerivedSuccess(RVal, E); 7813 } 7814 case CK_LValueToRValueBitCast: { 7815 APValue DestValue, SourceValue; 7816 if (!Evaluate(SourceValue, Info, E->getSubExpr())) 7817 return false; 7818 if (!handleLValueToRValueBitCast(Info, DestValue, SourceValue, E)) 7819 return false; 7820 return DerivedSuccess(DestValue, E); 7821 } 7822 7823 case CK_AddressSpaceConversion: { 7824 APValue Value; 7825 if (!Evaluate(Value, Info, E->getSubExpr())) 7826 return false; 7827 return DerivedSuccess(Value, E); 7828 } 7829 } 7830 7831 return Error(E); 7832 } 7833 7834 bool VisitUnaryPostInc(const UnaryOperator *UO) { 7835 return VisitUnaryPostIncDec(UO); 7836 } 7837 bool VisitUnaryPostDec(const UnaryOperator *UO) { 7838 return VisitUnaryPostIncDec(UO); 7839 } 7840 bool VisitUnaryPostIncDec(const UnaryOperator *UO) { 7841 if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure()) 7842 return Error(UO); 7843 7844 LValue LVal; 7845 if (!EvaluateLValue(UO->getSubExpr(), LVal, Info)) 7846 return false; 7847 APValue RVal; 7848 if (!handleIncDec(this->Info, UO, LVal, UO->getSubExpr()->getType(), 7849 UO->isIncrementOp(), &RVal)) 7850 return false; 7851 return DerivedSuccess(RVal, UO); 7852 } 7853 7854 bool VisitStmtExpr(const StmtExpr *E) { 7855 // We will have checked the full-expressions inside the statement expression 7856 // when they were completed, and don't need to check them again now. 7857 llvm::SaveAndRestore<bool> NotCheckingForUB( 7858 Info.CheckingForUndefinedBehavior, false); 7859 7860 const CompoundStmt *CS = E->getSubStmt(); 7861 if (CS->body_empty()) 7862 return true; 7863 7864 BlockScopeRAII Scope(Info); 7865 for (CompoundStmt::const_body_iterator BI = CS->body_begin(), 7866 BE = CS->body_end(); 7867 /**/; ++BI) { 7868 if (BI + 1 == BE) { 7869 const Expr *FinalExpr = dyn_cast<Expr>(*BI); 7870 if (!FinalExpr) { 7871 Info.FFDiag((*BI)->getBeginLoc(), 7872 diag::note_constexpr_stmt_expr_unsupported); 7873 return false; 7874 } 7875 return this->Visit(FinalExpr) && Scope.destroy(); 7876 } 7877 7878 APValue ReturnValue; 7879 StmtResult Result = { ReturnValue, nullptr }; 7880 EvalStmtResult ESR = EvaluateStmt(Result, Info, *BI); 7881 if (ESR != ESR_Succeeded) { 7882 // FIXME: If the statement-expression terminated due to 'return', 7883 // 'break', or 'continue', it would be nice to propagate that to 7884 // the outer statement evaluation rather than bailing out. 7885 if (ESR != ESR_Failed) 7886 Info.FFDiag((*BI)->getBeginLoc(), 7887 diag::note_constexpr_stmt_expr_unsupported); 7888 return false; 7889 } 7890 } 7891 7892 llvm_unreachable("Return from function from the loop above."); 7893 } 7894 7895 /// Visit a value which is evaluated, but whose value is ignored. 7896 void VisitIgnoredValue(const Expr *E) { 7897 EvaluateIgnoredValue(Info, E); 7898 } 7899 7900 /// Potentially visit a MemberExpr's base expression. 7901 void VisitIgnoredBaseExpression(const Expr *E) { 7902 // While MSVC doesn't evaluate the base expression, it does diagnose the 7903 // presence of side-effecting behavior. 7904 if (Info.getLangOpts().MSVCCompat && !E->HasSideEffects(Info.Ctx)) 7905 return; 7906 VisitIgnoredValue(E); 7907 } 7908 }; 7909 7910 } // namespace 7911 7912 //===----------------------------------------------------------------------===// 7913 // Common base class for lvalue and temporary evaluation. 7914 //===----------------------------------------------------------------------===// 7915 namespace { 7916 template<class Derived> 7917 class LValueExprEvaluatorBase 7918 : public ExprEvaluatorBase<Derived> { 7919 protected: 7920 LValue &Result; 7921 bool InvalidBaseOK; 7922 typedef LValueExprEvaluatorBase LValueExprEvaluatorBaseTy; 7923 typedef ExprEvaluatorBase<Derived> ExprEvaluatorBaseTy; 7924 7925 bool Success(APValue::LValueBase B) { 7926 Result.set(B); 7927 return true; 7928 } 7929 7930 bool evaluatePointer(const Expr *E, LValue &Result) { 7931 return EvaluatePointer(E, Result, this->Info, InvalidBaseOK); 7932 } 7933 7934 public: 7935 LValueExprEvaluatorBase(EvalInfo &Info, LValue &Result, bool InvalidBaseOK) 7936 : ExprEvaluatorBaseTy(Info), Result(Result), 7937 InvalidBaseOK(InvalidBaseOK) {} 7938 7939 bool Success(const APValue &V, const Expr *E) { 7940 Result.setFrom(this->Info.Ctx, V); 7941 return true; 7942 } 7943 7944 bool VisitMemberExpr(const MemberExpr *E) { 7945 // Handle non-static data members. 7946 QualType BaseTy; 7947 bool EvalOK; 7948 if (E->isArrow()) { 7949 EvalOK = evaluatePointer(E->getBase(), Result); 7950 BaseTy = E->getBase()->getType()->castAs<PointerType>()->getPointeeType(); 7951 } else if (E->getBase()->isRValue()) { 7952 assert(E->getBase()->getType()->isRecordType()); 7953 EvalOK = EvaluateTemporary(E->getBase(), Result, this->Info); 7954 BaseTy = E->getBase()->getType(); 7955 } else { 7956 EvalOK = this->Visit(E->getBase()); 7957 BaseTy = E->getBase()->getType(); 7958 } 7959 if (!EvalOK) { 7960 if (!InvalidBaseOK) 7961 return false; 7962 Result.setInvalid(E); 7963 return true; 7964 } 7965 7966 const ValueDecl *MD = E->getMemberDecl(); 7967 if (const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl())) { 7968 assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() == 7969 FD->getParent()->getCanonicalDecl() && "record / field mismatch"); 7970 (void)BaseTy; 7971 if (!HandleLValueMember(this->Info, E, Result, FD)) 7972 return false; 7973 } else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(MD)) { 7974 if (!HandleLValueIndirectMember(this->Info, E, Result, IFD)) 7975 return false; 7976 } else 7977 return this->Error(E); 7978 7979 if (MD->getType()->isReferenceType()) { 7980 APValue RefValue; 7981 if (!handleLValueToRValueConversion(this->Info, E, MD->getType(), Result, 7982 RefValue)) 7983 return false; 7984 return Success(RefValue, E); 7985 } 7986 return true; 7987 } 7988 7989 bool VisitBinaryOperator(const BinaryOperator *E) { 7990 switch (E->getOpcode()) { 7991 default: 7992 return ExprEvaluatorBaseTy::VisitBinaryOperator(E); 7993 7994 case BO_PtrMemD: 7995 case BO_PtrMemI: 7996 return HandleMemberPointerAccess(this->Info, E, Result); 7997 } 7998 } 7999 8000 bool VisitCastExpr(const CastExpr *E) { 8001 switch (E->getCastKind()) { 8002 default: 8003 return ExprEvaluatorBaseTy::VisitCastExpr(E); 8004 8005 case CK_DerivedToBase: 8006 case CK_UncheckedDerivedToBase: 8007 if (!this->Visit(E->getSubExpr())) 8008 return false; 8009 8010 // Now figure out the necessary offset to add to the base LV to get from 8011 // the derived class to the base class. 8012 return HandleLValueBasePath(this->Info, E, E->getSubExpr()->getType(), 8013 Result); 8014 } 8015 } 8016 }; 8017 } 8018 8019 //===----------------------------------------------------------------------===// 8020 // LValue Evaluation 8021 // 8022 // This is used for evaluating lvalues (in C and C++), xvalues (in C++11), 8023 // function designators (in C), decl references to void objects (in C), and 8024 // temporaries (if building with -Wno-address-of-temporary). 8025 // 8026 // LValue evaluation produces values comprising a base expression of one of the 8027 // following types: 8028 // - Declarations 8029 // * VarDecl 8030 // * FunctionDecl 8031 // - Literals 8032 // * CompoundLiteralExpr in C (and in global scope in C++) 8033 // * StringLiteral 8034 // * PredefinedExpr 8035 // * ObjCStringLiteralExpr 8036 // * ObjCEncodeExpr 8037 // * AddrLabelExpr 8038 // * BlockExpr 8039 // * CallExpr for a MakeStringConstant builtin 8040 // - typeid(T) expressions, as TypeInfoLValues 8041 // - Locals and temporaries 8042 // * MaterializeTemporaryExpr 8043 // * Any Expr, with a CallIndex indicating the function in which the temporary 8044 // was evaluated, for cases where the MaterializeTemporaryExpr is missing 8045 // from the AST (FIXME). 8046 // * A MaterializeTemporaryExpr that has static storage duration, with no 8047 // CallIndex, for a lifetime-extended temporary. 8048 // * The ConstantExpr that is currently being evaluated during evaluation of an 8049 // immediate invocation. 8050 // plus an offset in bytes. 8051 //===----------------------------------------------------------------------===// 8052 namespace { 8053 class LValueExprEvaluator 8054 : public LValueExprEvaluatorBase<LValueExprEvaluator> { 8055 public: 8056 LValueExprEvaluator(EvalInfo &Info, LValue &Result, bool InvalidBaseOK) : 8057 LValueExprEvaluatorBaseTy(Info, Result, InvalidBaseOK) {} 8058 8059 bool VisitVarDecl(const Expr *E, const VarDecl *VD); 8060 bool VisitUnaryPreIncDec(const UnaryOperator *UO); 8061 8062 bool VisitDeclRefExpr(const DeclRefExpr *E); 8063 bool VisitPredefinedExpr(const PredefinedExpr *E) { return Success(E); } 8064 bool VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); 8065 bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E); 8066 bool VisitMemberExpr(const MemberExpr *E); 8067 bool VisitStringLiteral(const StringLiteral *E) { return Success(E); } 8068 bool VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { return Success(E); } 8069 bool VisitCXXTypeidExpr(const CXXTypeidExpr *E); 8070 bool VisitCXXUuidofExpr(const CXXUuidofExpr *E); 8071 bool VisitArraySubscriptExpr(const ArraySubscriptExpr *E); 8072 bool VisitUnaryDeref(const UnaryOperator *E); 8073 bool VisitUnaryReal(const UnaryOperator *E); 8074 bool VisitUnaryImag(const UnaryOperator *E); 8075 bool VisitUnaryPreInc(const UnaryOperator *UO) { 8076 return VisitUnaryPreIncDec(UO); 8077 } 8078 bool VisitUnaryPreDec(const UnaryOperator *UO) { 8079 return VisitUnaryPreIncDec(UO); 8080 } 8081 bool VisitBinAssign(const BinaryOperator *BO); 8082 bool VisitCompoundAssignOperator(const CompoundAssignOperator *CAO); 8083 8084 bool VisitCastExpr(const CastExpr *E) { 8085 switch (E->getCastKind()) { 8086 default: 8087 return LValueExprEvaluatorBaseTy::VisitCastExpr(E); 8088 8089 case CK_LValueBitCast: 8090 this->CCEDiag(E, diag::note_constexpr_invalid_cast) << 2; 8091 if (!Visit(E->getSubExpr())) 8092 return false; 8093 Result.Designator.setInvalid(); 8094 return true; 8095 8096 case CK_BaseToDerived: 8097 if (!Visit(E->getSubExpr())) 8098 return false; 8099 return HandleBaseToDerivedCast(Info, E, Result); 8100 8101 case CK_Dynamic: 8102 if (!Visit(E->getSubExpr())) 8103 return false; 8104 return HandleDynamicCast(Info, cast<ExplicitCastExpr>(E), Result); 8105 } 8106 } 8107 }; 8108 } // end anonymous namespace 8109 8110 /// Evaluate an expression as an lvalue. This can be legitimately called on 8111 /// expressions which are not glvalues, in three cases: 8112 /// * function designators in C, and 8113 /// * "extern void" objects 8114 /// * @selector() expressions in Objective-C 8115 static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info, 8116 bool InvalidBaseOK) { 8117 assert(!E->isValueDependent()); 8118 assert(E->isGLValue() || E->getType()->isFunctionType() || 8119 E->getType()->isVoidType() || isa<ObjCSelectorExpr>(E)); 8120 return LValueExprEvaluator(Info, Result, InvalidBaseOK).Visit(E); 8121 } 8122 8123 bool LValueExprEvaluator::VisitDeclRefExpr(const DeclRefExpr *E) { 8124 const NamedDecl *D = E->getDecl(); 8125 if (isa<FunctionDecl, MSGuidDecl, TemplateParamObjectDecl>(D)) 8126 return Success(cast<ValueDecl>(D)); 8127 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 8128 return VisitVarDecl(E, VD); 8129 if (const BindingDecl *BD = dyn_cast<BindingDecl>(D)) 8130 return Visit(BD->getBinding()); 8131 return Error(E); 8132 } 8133 8134 8135 bool LValueExprEvaluator::VisitVarDecl(const Expr *E, const VarDecl *VD) { 8136 8137 // If we are within a lambda's call operator, check whether the 'VD' referred 8138 // to within 'E' actually represents a lambda-capture that maps to a 8139 // data-member/field within the closure object, and if so, evaluate to the 8140 // field or what the field refers to. 8141 if (Info.CurrentCall && isLambdaCallOperator(Info.CurrentCall->Callee) && 8142 isa<DeclRefExpr>(E) && 8143 cast<DeclRefExpr>(E)->refersToEnclosingVariableOrCapture()) { 8144 // We don't always have a complete capture-map when checking or inferring if 8145 // the function call operator meets the requirements of a constexpr function 8146 // - but we don't need to evaluate the captures to determine constexprness 8147 // (dcl.constexpr C++17). 8148 if (Info.checkingPotentialConstantExpression()) 8149 return false; 8150 8151 if (auto *FD = Info.CurrentCall->LambdaCaptureFields.lookup(VD)) { 8152 // Start with 'Result' referring to the complete closure object... 8153 Result = *Info.CurrentCall->This; 8154 // ... then update it to refer to the field of the closure object 8155 // that represents the capture. 8156 if (!HandleLValueMember(Info, E, Result, FD)) 8157 return false; 8158 // And if the field is of reference type, update 'Result' to refer to what 8159 // the field refers to. 8160 if (FD->getType()->isReferenceType()) { 8161 APValue RVal; 8162 if (!handleLValueToRValueConversion(Info, E, FD->getType(), Result, 8163 RVal)) 8164 return false; 8165 Result.setFrom(Info.Ctx, RVal); 8166 } 8167 return true; 8168 } 8169 } 8170 8171 CallStackFrame *Frame = nullptr; 8172 unsigned Version = 0; 8173 if (VD->hasLocalStorage()) { 8174 // Only if a local variable was declared in the function currently being 8175 // evaluated, do we expect to be able to find its value in the current 8176 // frame. (Otherwise it was likely declared in an enclosing context and 8177 // could either have a valid evaluatable value (for e.g. a constexpr 8178 // variable) or be ill-formed (and trigger an appropriate evaluation 8179 // diagnostic)). 8180 CallStackFrame *CurrFrame = Info.CurrentCall; 8181 if (CurrFrame->Callee && CurrFrame->Callee->Equals(VD->getDeclContext())) { 8182 // Function parameters are stored in some caller's frame. (Usually the 8183 // immediate caller, but for an inherited constructor they may be more 8184 // distant.) 8185 if (auto *PVD = dyn_cast<ParmVarDecl>(VD)) { 8186 if (CurrFrame->Arguments) { 8187 VD = CurrFrame->Arguments.getOrigParam(PVD); 8188 Frame = 8189 Info.getCallFrameAndDepth(CurrFrame->Arguments.CallIndex).first; 8190 Version = CurrFrame->Arguments.Version; 8191 } 8192 } else { 8193 Frame = CurrFrame; 8194 Version = CurrFrame->getCurrentTemporaryVersion(VD); 8195 } 8196 } 8197 } 8198 8199 if (!VD->getType()->isReferenceType()) { 8200 if (Frame) { 8201 Result.set({VD, Frame->Index, Version}); 8202 return true; 8203 } 8204 return Success(VD); 8205 } 8206 8207 if (!Info.getLangOpts().CPlusPlus11) { 8208 Info.CCEDiag(E, diag::note_constexpr_ltor_non_integral, 1) 8209 << VD << VD->getType(); 8210 Info.Note(VD->getLocation(), diag::note_declared_at); 8211 } 8212 8213 APValue *V; 8214 if (!evaluateVarDeclInit(Info, E, VD, Frame, Version, V)) 8215 return false; 8216 if (!V->hasValue()) { 8217 // FIXME: Is it possible for V to be indeterminate here? If so, we should 8218 // adjust the diagnostic to say that. 8219 if (!Info.checkingPotentialConstantExpression()) 8220 Info.FFDiag(E, diag::note_constexpr_use_uninit_reference); 8221 return false; 8222 } 8223 return Success(*V, E); 8224 } 8225 8226 bool LValueExprEvaluator::VisitMaterializeTemporaryExpr( 8227 const MaterializeTemporaryExpr *E) { 8228 // Walk through the expression to find the materialized temporary itself. 8229 SmallVector<const Expr *, 2> CommaLHSs; 8230 SmallVector<SubobjectAdjustment, 2> Adjustments; 8231 const Expr *Inner = 8232 E->getSubExpr()->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 8233 8234 // If we passed any comma operators, evaluate their LHSs. 8235 for (unsigned I = 0, N = CommaLHSs.size(); I != N; ++I) 8236 if (!EvaluateIgnoredValue(Info, CommaLHSs[I])) 8237 return false; 8238 8239 // A materialized temporary with static storage duration can appear within the 8240 // result of a constant expression evaluation, so we need to preserve its 8241 // value for use outside this evaluation. 8242 APValue *Value; 8243 if (E->getStorageDuration() == SD_Static) { 8244 // FIXME: What about SD_Thread? 8245 Value = E->getOrCreateValue(true); 8246 *Value = APValue(); 8247 Result.set(E); 8248 } else { 8249 Value = &Info.CurrentCall->createTemporary( 8250 E, E->getType(), 8251 E->getStorageDuration() == SD_FullExpression ? ScopeKind::FullExpression 8252 : ScopeKind::Block, 8253 Result); 8254 } 8255 8256 QualType Type = Inner->getType(); 8257 8258 // Materialize the temporary itself. 8259 if (!EvaluateInPlace(*Value, Info, Result, Inner)) { 8260 *Value = APValue(); 8261 return false; 8262 } 8263 8264 // Adjust our lvalue to refer to the desired subobject. 8265 for (unsigned I = Adjustments.size(); I != 0; /**/) { 8266 --I; 8267 switch (Adjustments[I].Kind) { 8268 case SubobjectAdjustment::DerivedToBaseAdjustment: 8269 if (!HandleLValueBasePath(Info, Adjustments[I].DerivedToBase.BasePath, 8270 Type, Result)) 8271 return false; 8272 Type = Adjustments[I].DerivedToBase.BasePath->getType(); 8273 break; 8274 8275 case SubobjectAdjustment::FieldAdjustment: 8276 if (!HandleLValueMember(Info, E, Result, Adjustments[I].Field)) 8277 return false; 8278 Type = Adjustments[I].Field->getType(); 8279 break; 8280 8281 case SubobjectAdjustment::MemberPointerAdjustment: 8282 if (!HandleMemberPointerAccess(this->Info, Type, Result, 8283 Adjustments[I].Ptr.RHS)) 8284 return false; 8285 Type = Adjustments[I].Ptr.MPT->getPointeeType(); 8286 break; 8287 } 8288 } 8289 8290 return true; 8291 } 8292 8293 bool 8294 LValueExprEvaluator::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) { 8295 assert((!Info.getLangOpts().CPlusPlus || E->isFileScope()) && 8296 "lvalue compound literal in c++?"); 8297 // Defer visiting the literal until the lvalue-to-rvalue conversion. We can 8298 // only see this when folding in C, so there's no standard to follow here. 8299 return Success(E); 8300 } 8301 8302 bool LValueExprEvaluator::VisitCXXTypeidExpr(const CXXTypeidExpr *E) { 8303 TypeInfoLValue TypeInfo; 8304 8305 if (!E->isPotentiallyEvaluated()) { 8306 if (E->isTypeOperand()) 8307 TypeInfo = TypeInfoLValue(E->getTypeOperand(Info.Ctx).getTypePtr()); 8308 else 8309 TypeInfo = TypeInfoLValue(E->getExprOperand()->getType().getTypePtr()); 8310 } else { 8311 if (!Info.Ctx.getLangOpts().CPlusPlus20) { 8312 Info.CCEDiag(E, diag::note_constexpr_typeid_polymorphic) 8313 << E->getExprOperand()->getType() 8314 << E->getExprOperand()->getSourceRange(); 8315 } 8316 8317 if (!Visit(E->getExprOperand())) 8318 return false; 8319 8320 Optional<DynamicType> DynType = 8321 ComputeDynamicType(Info, E, Result, AK_TypeId); 8322 if (!DynType) 8323 return false; 8324 8325 TypeInfo = 8326 TypeInfoLValue(Info.Ctx.getRecordType(DynType->Type).getTypePtr()); 8327 } 8328 8329 return Success(APValue::LValueBase::getTypeInfo(TypeInfo, E->getType())); 8330 } 8331 8332 bool LValueExprEvaluator::VisitCXXUuidofExpr(const CXXUuidofExpr *E) { 8333 return Success(E->getGuidDecl()); 8334 } 8335 8336 bool LValueExprEvaluator::VisitMemberExpr(const MemberExpr *E) { 8337 // Handle static data members. 8338 if (const VarDecl *VD = dyn_cast<VarDecl>(E->getMemberDecl())) { 8339 VisitIgnoredBaseExpression(E->getBase()); 8340 return VisitVarDecl(E, VD); 8341 } 8342 8343 // Handle static member functions. 8344 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl())) { 8345 if (MD->isStatic()) { 8346 VisitIgnoredBaseExpression(E->getBase()); 8347 return Success(MD); 8348 } 8349 } 8350 8351 // Handle non-static data members. 8352 return LValueExprEvaluatorBaseTy::VisitMemberExpr(E); 8353 } 8354 8355 bool LValueExprEvaluator::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) { 8356 // FIXME: Deal with vectors as array subscript bases. 8357 if (E->getBase()->getType()->isVectorType()) 8358 return Error(E); 8359 8360 APSInt Index; 8361 bool Success = true; 8362 8363 // C++17's rules require us to evaluate the LHS first, regardless of which 8364 // side is the base. 8365 for (const Expr *SubExpr : {E->getLHS(), E->getRHS()}) { 8366 if (SubExpr == E->getBase() ? !evaluatePointer(SubExpr, Result) 8367 : !EvaluateInteger(SubExpr, Index, Info)) { 8368 if (!Info.noteFailure()) 8369 return false; 8370 Success = false; 8371 } 8372 } 8373 8374 return Success && 8375 HandleLValueArrayAdjustment(Info, E, Result, E->getType(), Index); 8376 } 8377 8378 bool LValueExprEvaluator::VisitUnaryDeref(const UnaryOperator *E) { 8379 return evaluatePointer(E->getSubExpr(), Result); 8380 } 8381 8382 bool LValueExprEvaluator::VisitUnaryReal(const UnaryOperator *E) { 8383 if (!Visit(E->getSubExpr())) 8384 return false; 8385 // __real is a no-op on scalar lvalues. 8386 if (E->getSubExpr()->getType()->isAnyComplexType()) 8387 HandleLValueComplexElement(Info, E, Result, E->getType(), false); 8388 return true; 8389 } 8390 8391 bool LValueExprEvaluator::VisitUnaryImag(const UnaryOperator *E) { 8392 assert(E->getSubExpr()->getType()->isAnyComplexType() && 8393 "lvalue __imag__ on scalar?"); 8394 if (!Visit(E->getSubExpr())) 8395 return false; 8396 HandleLValueComplexElement(Info, E, Result, E->getType(), true); 8397 return true; 8398 } 8399 8400 bool LValueExprEvaluator::VisitUnaryPreIncDec(const UnaryOperator *UO) { 8401 if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure()) 8402 return Error(UO); 8403 8404 if (!this->Visit(UO->getSubExpr())) 8405 return false; 8406 8407 return handleIncDec( 8408 this->Info, UO, Result, UO->getSubExpr()->getType(), 8409 UO->isIncrementOp(), nullptr); 8410 } 8411 8412 bool LValueExprEvaluator::VisitCompoundAssignOperator( 8413 const CompoundAssignOperator *CAO) { 8414 if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure()) 8415 return Error(CAO); 8416 8417 bool Success = true; 8418 8419 // C++17 onwards require that we evaluate the RHS first. 8420 APValue RHS; 8421 if (!Evaluate(RHS, this->Info, CAO->getRHS())) { 8422 if (!Info.noteFailure()) 8423 return false; 8424 Success = false; 8425 } 8426 8427 // The overall lvalue result is the result of evaluating the LHS. 8428 if (!this->Visit(CAO->getLHS()) || !Success) 8429 return false; 8430 8431 return handleCompoundAssignment( 8432 this->Info, CAO, 8433 Result, CAO->getLHS()->getType(), CAO->getComputationLHSType(), 8434 CAO->getOpForCompoundAssignment(CAO->getOpcode()), RHS); 8435 } 8436 8437 bool LValueExprEvaluator::VisitBinAssign(const BinaryOperator *E) { 8438 if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure()) 8439 return Error(E); 8440 8441 bool Success = true; 8442 8443 // C++17 onwards require that we evaluate the RHS first. 8444 APValue NewVal; 8445 if (!Evaluate(NewVal, this->Info, E->getRHS())) { 8446 if (!Info.noteFailure()) 8447 return false; 8448 Success = false; 8449 } 8450 8451 if (!this->Visit(E->getLHS()) || !Success) 8452 return false; 8453 8454 if (Info.getLangOpts().CPlusPlus20 && 8455 !HandleUnionActiveMemberChange(Info, E->getLHS(), Result)) 8456 return false; 8457 8458 return handleAssignment(this->Info, E, Result, E->getLHS()->getType(), 8459 NewVal); 8460 } 8461 8462 //===----------------------------------------------------------------------===// 8463 // Pointer Evaluation 8464 //===----------------------------------------------------------------------===// 8465 8466 /// Attempts to compute the number of bytes available at the pointer 8467 /// returned by a function with the alloc_size attribute. Returns true if we 8468 /// were successful. Places an unsigned number into `Result`. 8469 /// 8470 /// This expects the given CallExpr to be a call to a function with an 8471 /// alloc_size attribute. 8472 static bool getBytesReturnedByAllocSizeCall(const ASTContext &Ctx, 8473 const CallExpr *Call, 8474 llvm::APInt &Result) { 8475 const AllocSizeAttr *AllocSize = getAllocSizeAttr(Call); 8476 8477 assert(AllocSize && AllocSize->getElemSizeParam().isValid()); 8478 unsigned SizeArgNo = AllocSize->getElemSizeParam().getASTIndex(); 8479 unsigned BitsInSizeT = Ctx.getTypeSize(Ctx.getSizeType()); 8480 if (Call->getNumArgs() <= SizeArgNo) 8481 return false; 8482 8483 auto EvaluateAsSizeT = [&](const Expr *E, APSInt &Into) { 8484 Expr::EvalResult ExprResult; 8485 if (!E->EvaluateAsInt(ExprResult, Ctx, Expr::SE_AllowSideEffects)) 8486 return false; 8487 Into = ExprResult.Val.getInt(); 8488 if (Into.isNegative() || !Into.isIntN(BitsInSizeT)) 8489 return false; 8490 Into = Into.zextOrSelf(BitsInSizeT); 8491 return true; 8492 }; 8493 8494 APSInt SizeOfElem; 8495 if (!EvaluateAsSizeT(Call->getArg(SizeArgNo), SizeOfElem)) 8496 return false; 8497 8498 if (!AllocSize->getNumElemsParam().isValid()) { 8499 Result = std::move(SizeOfElem); 8500 return true; 8501 } 8502 8503 APSInt NumberOfElems; 8504 unsigned NumArgNo = AllocSize->getNumElemsParam().getASTIndex(); 8505 if (!EvaluateAsSizeT(Call->getArg(NumArgNo), NumberOfElems)) 8506 return false; 8507 8508 bool Overflow; 8509 llvm::APInt BytesAvailable = SizeOfElem.umul_ov(NumberOfElems, Overflow); 8510 if (Overflow) 8511 return false; 8512 8513 Result = std::move(BytesAvailable); 8514 return true; 8515 } 8516 8517 /// Convenience function. LVal's base must be a call to an alloc_size 8518 /// function. 8519 static bool getBytesReturnedByAllocSizeCall(const ASTContext &Ctx, 8520 const LValue &LVal, 8521 llvm::APInt &Result) { 8522 assert(isBaseAnAllocSizeCall(LVal.getLValueBase()) && 8523 "Can't get the size of a non alloc_size function"); 8524 const auto *Base = LVal.getLValueBase().get<const Expr *>(); 8525 const CallExpr *CE = tryUnwrapAllocSizeCall(Base); 8526 return getBytesReturnedByAllocSizeCall(Ctx, CE, Result); 8527 } 8528 8529 /// Attempts to evaluate the given LValueBase as the result of a call to 8530 /// a function with the alloc_size attribute. If it was possible to do so, this 8531 /// function will return true, make Result's Base point to said function call, 8532 /// and mark Result's Base as invalid. 8533 static bool evaluateLValueAsAllocSize(EvalInfo &Info, APValue::LValueBase Base, 8534 LValue &Result) { 8535 if (Base.isNull()) 8536 return false; 8537 8538 // Because we do no form of static analysis, we only support const variables. 8539 // 8540 // Additionally, we can't support parameters, nor can we support static 8541 // variables (in the latter case, use-before-assign isn't UB; in the former, 8542 // we have no clue what they'll be assigned to). 8543 const auto *VD = 8544 dyn_cast_or_null<VarDecl>(Base.dyn_cast<const ValueDecl *>()); 8545 if (!VD || !VD->isLocalVarDecl() || !VD->getType().isConstQualified()) 8546 return false; 8547 8548 const Expr *Init = VD->getAnyInitializer(); 8549 if (!Init) 8550 return false; 8551 8552 const Expr *E = Init->IgnoreParens(); 8553 if (!tryUnwrapAllocSizeCall(E)) 8554 return false; 8555 8556 // Store E instead of E unwrapped so that the type of the LValue's base is 8557 // what the user wanted. 8558 Result.setInvalid(E); 8559 8560 QualType Pointee = E->getType()->castAs<PointerType>()->getPointeeType(); 8561 Result.addUnsizedArray(Info, E, Pointee); 8562 return true; 8563 } 8564 8565 namespace { 8566 class PointerExprEvaluator 8567 : public ExprEvaluatorBase<PointerExprEvaluator> { 8568 LValue &Result; 8569 bool InvalidBaseOK; 8570 8571 bool Success(const Expr *E) { 8572 Result.set(E); 8573 return true; 8574 } 8575 8576 bool evaluateLValue(const Expr *E, LValue &Result) { 8577 return EvaluateLValue(E, Result, Info, InvalidBaseOK); 8578 } 8579 8580 bool evaluatePointer(const Expr *E, LValue &Result) { 8581 return EvaluatePointer(E, Result, Info, InvalidBaseOK); 8582 } 8583 8584 bool visitNonBuiltinCallExpr(const CallExpr *E); 8585 public: 8586 8587 PointerExprEvaluator(EvalInfo &info, LValue &Result, bool InvalidBaseOK) 8588 : ExprEvaluatorBaseTy(info), Result(Result), 8589 InvalidBaseOK(InvalidBaseOK) {} 8590 8591 bool Success(const APValue &V, const Expr *E) { 8592 Result.setFrom(Info.Ctx, V); 8593 return true; 8594 } 8595 bool ZeroInitialization(const Expr *E) { 8596 Result.setNull(Info.Ctx, E->getType()); 8597 return true; 8598 } 8599 8600 bool VisitBinaryOperator(const BinaryOperator *E); 8601 bool VisitCastExpr(const CastExpr* E); 8602 bool VisitUnaryAddrOf(const UnaryOperator *E); 8603 bool VisitObjCStringLiteral(const ObjCStringLiteral *E) 8604 { return Success(E); } 8605 bool VisitObjCBoxedExpr(const ObjCBoxedExpr *E) { 8606 if (E->isExpressibleAsConstantInitializer()) 8607 return Success(E); 8608 if (Info.noteFailure()) 8609 EvaluateIgnoredValue(Info, E->getSubExpr()); 8610 return Error(E); 8611 } 8612 bool VisitAddrLabelExpr(const AddrLabelExpr *E) 8613 { return Success(E); } 8614 bool VisitCallExpr(const CallExpr *E); 8615 bool VisitBuiltinCallExpr(const CallExpr *E, unsigned BuiltinOp); 8616 bool VisitBlockExpr(const BlockExpr *E) { 8617 if (!E->getBlockDecl()->hasCaptures()) 8618 return Success(E); 8619 return Error(E); 8620 } 8621 bool VisitCXXThisExpr(const CXXThisExpr *E) { 8622 // Can't look at 'this' when checking a potential constant expression. 8623 if (Info.checkingPotentialConstantExpression()) 8624 return false; 8625 if (!Info.CurrentCall->This) { 8626 if (Info.getLangOpts().CPlusPlus11) 8627 Info.FFDiag(E, diag::note_constexpr_this) << E->isImplicit(); 8628 else 8629 Info.FFDiag(E); 8630 return false; 8631 } 8632 Result = *Info.CurrentCall->This; 8633 // If we are inside a lambda's call operator, the 'this' expression refers 8634 // to the enclosing '*this' object (either by value or reference) which is 8635 // either copied into the closure object's field that represents the '*this' 8636 // or refers to '*this'. 8637 if (isLambdaCallOperator(Info.CurrentCall->Callee)) { 8638 // Ensure we actually have captured 'this'. (an error will have 8639 // been previously reported if not). 8640 if (!Info.CurrentCall->LambdaThisCaptureField) 8641 return false; 8642 8643 // Update 'Result' to refer to the data member/field of the closure object 8644 // that represents the '*this' capture. 8645 if (!HandleLValueMember(Info, E, Result, 8646 Info.CurrentCall->LambdaThisCaptureField)) 8647 return false; 8648 // If we captured '*this' by reference, replace the field with its referent. 8649 if (Info.CurrentCall->LambdaThisCaptureField->getType() 8650 ->isPointerType()) { 8651 APValue RVal; 8652 if (!handleLValueToRValueConversion(Info, E, E->getType(), Result, 8653 RVal)) 8654 return false; 8655 8656 Result.setFrom(Info.Ctx, RVal); 8657 } 8658 } 8659 return true; 8660 } 8661 8662 bool VisitCXXNewExpr(const CXXNewExpr *E); 8663 8664 bool VisitSourceLocExpr(const SourceLocExpr *E) { 8665 assert(E->isStringType() && "SourceLocExpr isn't a pointer type?"); 8666 APValue LValResult = E->EvaluateInContext( 8667 Info.Ctx, Info.CurrentCall->CurSourceLocExprScope.getDefaultExpr()); 8668 Result.setFrom(Info.Ctx, LValResult); 8669 return true; 8670 } 8671 8672 // FIXME: Missing: @protocol, @selector 8673 }; 8674 } // end anonymous namespace 8675 8676 static bool EvaluatePointer(const Expr* E, LValue& Result, EvalInfo &Info, 8677 bool InvalidBaseOK) { 8678 assert(!E->isValueDependent()); 8679 assert(E->isRValue() && E->getType()->hasPointerRepresentation()); 8680 return PointerExprEvaluator(Info, Result, InvalidBaseOK).Visit(E); 8681 } 8682 8683 bool PointerExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { 8684 if (E->getOpcode() != BO_Add && 8685 E->getOpcode() != BO_Sub) 8686 return ExprEvaluatorBaseTy::VisitBinaryOperator(E); 8687 8688 const Expr *PExp = E->getLHS(); 8689 const Expr *IExp = E->getRHS(); 8690 if (IExp->getType()->isPointerType()) 8691 std::swap(PExp, IExp); 8692 8693 bool EvalPtrOK = evaluatePointer(PExp, Result); 8694 if (!EvalPtrOK && !Info.noteFailure()) 8695 return false; 8696 8697 llvm::APSInt Offset; 8698 if (!EvaluateInteger(IExp, Offset, Info) || !EvalPtrOK) 8699 return false; 8700 8701 if (E->getOpcode() == BO_Sub) 8702 negateAsSigned(Offset); 8703 8704 QualType Pointee = PExp->getType()->castAs<PointerType>()->getPointeeType(); 8705 return HandleLValueArrayAdjustment(Info, E, Result, Pointee, Offset); 8706 } 8707 8708 bool PointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) { 8709 return evaluateLValue(E->getSubExpr(), Result); 8710 } 8711 8712 bool PointerExprEvaluator::VisitCastExpr(const CastExpr *E) { 8713 const Expr *SubExpr = E->getSubExpr(); 8714 8715 switch (E->getCastKind()) { 8716 default: 8717 break; 8718 case CK_BitCast: 8719 case CK_CPointerToObjCPointerCast: 8720 case CK_BlockPointerToObjCPointerCast: 8721 case CK_AnyPointerToBlockPointerCast: 8722 case CK_AddressSpaceConversion: 8723 if (!Visit(SubExpr)) 8724 return false; 8725 // Bitcasts to cv void* are static_casts, not reinterpret_casts, so are 8726 // permitted in constant expressions in C++11. Bitcasts from cv void* are 8727 // also static_casts, but we disallow them as a resolution to DR1312. 8728 if (!E->getType()->isVoidPointerType()) { 8729 if (!Result.InvalidBase && !Result.Designator.Invalid && 8730 !Result.IsNullPtr && 8731 Info.Ctx.hasSameUnqualifiedType(Result.Designator.getType(Info.Ctx), 8732 E->getType()->getPointeeType()) && 8733 Info.getStdAllocatorCaller("allocate")) { 8734 // Inside a call to std::allocator::allocate and friends, we permit 8735 // casting from void* back to cv1 T* for a pointer that points to a 8736 // cv2 T. 8737 } else { 8738 Result.Designator.setInvalid(); 8739 if (SubExpr->getType()->isVoidPointerType()) 8740 CCEDiag(E, diag::note_constexpr_invalid_cast) 8741 << 3 << SubExpr->getType(); 8742 else 8743 CCEDiag(E, diag::note_constexpr_invalid_cast) << 2; 8744 } 8745 } 8746 if (E->getCastKind() == CK_AddressSpaceConversion && Result.IsNullPtr) 8747 ZeroInitialization(E); 8748 return true; 8749 8750 case CK_DerivedToBase: 8751 case CK_UncheckedDerivedToBase: 8752 if (!evaluatePointer(E->getSubExpr(), Result)) 8753 return false; 8754 if (!Result.Base && Result.Offset.isZero()) 8755 return true; 8756 8757 // Now figure out the necessary offset to add to the base LV to get from 8758 // the derived class to the base class. 8759 return HandleLValueBasePath(Info, E, E->getSubExpr()->getType()-> 8760 castAs<PointerType>()->getPointeeType(), 8761 Result); 8762 8763 case CK_BaseToDerived: 8764 if (!Visit(E->getSubExpr())) 8765 return false; 8766 if (!Result.Base && Result.Offset.isZero()) 8767 return true; 8768 return HandleBaseToDerivedCast(Info, E, Result); 8769 8770 case CK_Dynamic: 8771 if (!Visit(E->getSubExpr())) 8772 return false; 8773 return HandleDynamicCast(Info, cast<ExplicitCastExpr>(E), Result); 8774 8775 case CK_NullToPointer: 8776 VisitIgnoredValue(E->getSubExpr()); 8777 return ZeroInitialization(E); 8778 8779 case CK_IntegralToPointer: { 8780 CCEDiag(E, diag::note_constexpr_invalid_cast) << 2; 8781 8782 APValue Value; 8783 if (!EvaluateIntegerOrLValue(SubExpr, Value, Info)) 8784 break; 8785 8786 if (Value.isInt()) { 8787 unsigned Size = Info.Ctx.getTypeSize(E->getType()); 8788 uint64_t N = Value.getInt().extOrTrunc(Size).getZExtValue(); 8789 Result.Base = (Expr*)nullptr; 8790 Result.InvalidBase = false; 8791 Result.Offset = CharUnits::fromQuantity(N); 8792 Result.Designator.setInvalid(); 8793 Result.IsNullPtr = false; 8794 return true; 8795 } else { 8796 // Cast is of an lvalue, no need to change value. 8797 Result.setFrom(Info.Ctx, Value); 8798 return true; 8799 } 8800 } 8801 8802 case CK_ArrayToPointerDecay: { 8803 if (SubExpr->isGLValue()) { 8804 if (!evaluateLValue(SubExpr, Result)) 8805 return false; 8806 } else { 8807 APValue &Value = Info.CurrentCall->createTemporary( 8808 SubExpr, SubExpr->getType(), ScopeKind::FullExpression, Result); 8809 if (!EvaluateInPlace(Value, Info, Result, SubExpr)) 8810 return false; 8811 } 8812 // The result is a pointer to the first element of the array. 8813 auto *AT = Info.Ctx.getAsArrayType(SubExpr->getType()); 8814 if (auto *CAT = dyn_cast<ConstantArrayType>(AT)) 8815 Result.addArray(Info, E, CAT); 8816 else 8817 Result.addUnsizedArray(Info, E, AT->getElementType()); 8818 return true; 8819 } 8820 8821 case CK_FunctionToPointerDecay: 8822 return evaluateLValue(SubExpr, Result); 8823 8824 case CK_LValueToRValue: { 8825 LValue LVal; 8826 if (!evaluateLValue(E->getSubExpr(), LVal)) 8827 return false; 8828 8829 APValue RVal; 8830 // Note, we use the subexpression's type in order to retain cv-qualifiers. 8831 if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(), 8832 LVal, RVal)) 8833 return InvalidBaseOK && 8834 evaluateLValueAsAllocSize(Info, LVal.Base, Result); 8835 return Success(RVal, E); 8836 } 8837 } 8838 8839 return ExprEvaluatorBaseTy::VisitCastExpr(E); 8840 } 8841 8842 static CharUnits GetAlignOfType(EvalInfo &Info, QualType T, 8843 UnaryExprOrTypeTrait ExprKind) { 8844 // C++ [expr.alignof]p3: 8845 // When alignof is applied to a reference type, the result is the 8846 // alignment of the referenced type. 8847 if (const ReferenceType *Ref = T->getAs<ReferenceType>()) 8848 T = Ref->getPointeeType(); 8849 8850 if (T.getQualifiers().hasUnaligned()) 8851 return CharUnits::One(); 8852 8853 const bool AlignOfReturnsPreferred = 8854 Info.Ctx.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver7; 8855 8856 // __alignof is defined to return the preferred alignment. 8857 // Before 8, clang returned the preferred alignment for alignof and _Alignof 8858 // as well. 8859 if (ExprKind == UETT_PreferredAlignOf || AlignOfReturnsPreferred) 8860 return Info.Ctx.toCharUnitsFromBits( 8861 Info.Ctx.getPreferredTypeAlign(T.getTypePtr())); 8862 // alignof and _Alignof are defined to return the ABI alignment. 8863 else if (ExprKind == UETT_AlignOf) 8864 return Info.Ctx.getTypeAlignInChars(T.getTypePtr()); 8865 else 8866 llvm_unreachable("GetAlignOfType on a non-alignment ExprKind"); 8867 } 8868 8869 static CharUnits GetAlignOfExpr(EvalInfo &Info, const Expr *E, 8870 UnaryExprOrTypeTrait ExprKind) { 8871 E = E->IgnoreParens(); 8872 8873 // The kinds of expressions that we have special-case logic here for 8874 // should be kept up to date with the special checks for those 8875 // expressions in Sema. 8876 8877 // alignof decl is always accepted, even if it doesn't make sense: we default 8878 // to 1 in those cases. 8879 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) 8880 return Info.Ctx.getDeclAlign(DRE->getDecl(), 8881 /*RefAsPointee*/true); 8882 8883 if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) 8884 return Info.Ctx.getDeclAlign(ME->getMemberDecl(), 8885 /*RefAsPointee*/true); 8886 8887 return GetAlignOfType(Info, E->getType(), ExprKind); 8888 } 8889 8890 static CharUnits getBaseAlignment(EvalInfo &Info, const LValue &Value) { 8891 if (const auto *VD = Value.Base.dyn_cast<const ValueDecl *>()) 8892 return Info.Ctx.getDeclAlign(VD); 8893 if (const auto *E = Value.Base.dyn_cast<const Expr *>()) 8894 return GetAlignOfExpr(Info, E, UETT_AlignOf); 8895 return GetAlignOfType(Info, Value.Base.getTypeInfoType(), UETT_AlignOf); 8896 } 8897 8898 /// Evaluate the value of the alignment argument to __builtin_align_{up,down}, 8899 /// __builtin_is_aligned and __builtin_assume_aligned. 8900 static bool getAlignmentArgument(const Expr *E, QualType ForType, 8901 EvalInfo &Info, APSInt &Alignment) { 8902 if (!EvaluateInteger(E, Alignment, Info)) 8903 return false; 8904 if (Alignment < 0 || !Alignment.isPowerOf2()) { 8905 Info.FFDiag(E, diag::note_constexpr_invalid_alignment) << Alignment; 8906 return false; 8907 } 8908 unsigned SrcWidth = Info.Ctx.getIntWidth(ForType); 8909 APSInt MaxValue(APInt::getOneBitSet(SrcWidth, SrcWidth - 1)); 8910 if (APSInt::compareValues(Alignment, MaxValue) > 0) { 8911 Info.FFDiag(E, diag::note_constexpr_alignment_too_big) 8912 << MaxValue << ForType << Alignment; 8913 return false; 8914 } 8915 // Ensure both alignment and source value have the same bit width so that we 8916 // don't assert when computing the resulting value. 8917 APSInt ExtAlignment = 8918 APSInt(Alignment.zextOrTrunc(SrcWidth), /*isUnsigned=*/true); 8919 assert(APSInt::compareValues(Alignment, ExtAlignment) == 0 && 8920 "Alignment should not be changed by ext/trunc"); 8921 Alignment = ExtAlignment; 8922 assert(Alignment.getBitWidth() == SrcWidth); 8923 return true; 8924 } 8925 8926 // To be clear: this happily visits unsupported builtins. Better name welcomed. 8927 bool PointerExprEvaluator::visitNonBuiltinCallExpr(const CallExpr *E) { 8928 if (ExprEvaluatorBaseTy::VisitCallExpr(E)) 8929 return true; 8930 8931 if (!(InvalidBaseOK && getAllocSizeAttr(E))) 8932 return false; 8933 8934 Result.setInvalid(E); 8935 QualType PointeeTy = E->getType()->castAs<PointerType>()->getPointeeType(); 8936 Result.addUnsizedArray(Info, E, PointeeTy); 8937 return true; 8938 } 8939 8940 bool PointerExprEvaluator::VisitCallExpr(const CallExpr *E) { 8941 if (IsStringLiteralCall(E)) 8942 return Success(E); 8943 8944 if (unsigned BuiltinOp = E->getBuiltinCallee()) 8945 return VisitBuiltinCallExpr(E, BuiltinOp); 8946 8947 return visitNonBuiltinCallExpr(E); 8948 } 8949 8950 // Determine if T is a character type for which we guarantee that 8951 // sizeof(T) == 1. 8952 static bool isOneByteCharacterType(QualType T) { 8953 return T->isCharType() || T->isChar8Type(); 8954 } 8955 8956 bool PointerExprEvaluator::VisitBuiltinCallExpr(const CallExpr *E, 8957 unsigned BuiltinOp) { 8958 switch (BuiltinOp) { 8959 case Builtin::BI__builtin_addressof: 8960 return evaluateLValue(E->getArg(0), Result); 8961 case Builtin::BI__builtin_assume_aligned: { 8962 // We need to be very careful here because: if the pointer does not have the 8963 // asserted alignment, then the behavior is undefined, and undefined 8964 // behavior is non-constant. 8965 if (!evaluatePointer(E->getArg(0), Result)) 8966 return false; 8967 8968 LValue OffsetResult(Result); 8969 APSInt Alignment; 8970 if (!getAlignmentArgument(E->getArg(1), E->getArg(0)->getType(), Info, 8971 Alignment)) 8972 return false; 8973 CharUnits Align = CharUnits::fromQuantity(Alignment.getZExtValue()); 8974 8975 if (E->getNumArgs() > 2) { 8976 APSInt Offset; 8977 if (!EvaluateInteger(E->getArg(2), Offset, Info)) 8978 return false; 8979 8980 int64_t AdditionalOffset = -Offset.getZExtValue(); 8981 OffsetResult.Offset += CharUnits::fromQuantity(AdditionalOffset); 8982 } 8983 8984 // If there is a base object, then it must have the correct alignment. 8985 if (OffsetResult.Base) { 8986 CharUnits BaseAlignment = getBaseAlignment(Info, OffsetResult); 8987 8988 if (BaseAlignment < Align) { 8989 Result.Designator.setInvalid(); 8990 // FIXME: Add support to Diagnostic for long / long long. 8991 CCEDiag(E->getArg(0), 8992 diag::note_constexpr_baa_insufficient_alignment) << 0 8993 << (unsigned)BaseAlignment.getQuantity() 8994 << (unsigned)Align.getQuantity(); 8995 return false; 8996 } 8997 } 8998 8999 // The offset must also have the correct alignment. 9000 if (OffsetResult.Offset.alignTo(Align) != OffsetResult.Offset) { 9001 Result.Designator.setInvalid(); 9002 9003 (OffsetResult.Base 9004 ? CCEDiag(E->getArg(0), 9005 diag::note_constexpr_baa_insufficient_alignment) << 1 9006 : CCEDiag(E->getArg(0), 9007 diag::note_constexpr_baa_value_insufficient_alignment)) 9008 << (int)OffsetResult.Offset.getQuantity() 9009 << (unsigned)Align.getQuantity(); 9010 return false; 9011 } 9012 9013 return true; 9014 } 9015 case Builtin::BI__builtin_align_up: 9016 case Builtin::BI__builtin_align_down: { 9017 if (!evaluatePointer(E->getArg(0), Result)) 9018 return false; 9019 APSInt Alignment; 9020 if (!getAlignmentArgument(E->getArg(1), E->getArg(0)->getType(), Info, 9021 Alignment)) 9022 return false; 9023 CharUnits BaseAlignment = getBaseAlignment(Info, Result); 9024 CharUnits PtrAlign = BaseAlignment.alignmentAtOffset(Result.Offset); 9025 // For align_up/align_down, we can return the same value if the alignment 9026 // is known to be greater or equal to the requested value. 9027 if (PtrAlign.getQuantity() >= Alignment) 9028 return true; 9029 9030 // The alignment could be greater than the minimum at run-time, so we cannot 9031 // infer much about the resulting pointer value. One case is possible: 9032 // For `_Alignas(32) char buf[N]; __builtin_align_down(&buf[idx], 32)` we 9033 // can infer the correct index if the requested alignment is smaller than 9034 // the base alignment so we can perform the computation on the offset. 9035 if (BaseAlignment.getQuantity() >= Alignment) { 9036 assert(Alignment.getBitWidth() <= 64 && 9037 "Cannot handle > 64-bit address-space"); 9038 uint64_t Alignment64 = Alignment.getZExtValue(); 9039 CharUnits NewOffset = CharUnits::fromQuantity( 9040 BuiltinOp == Builtin::BI__builtin_align_down 9041 ? llvm::alignDown(Result.Offset.getQuantity(), Alignment64) 9042 : llvm::alignTo(Result.Offset.getQuantity(), Alignment64)); 9043 Result.adjustOffset(NewOffset - Result.Offset); 9044 // TODO: diagnose out-of-bounds values/only allow for arrays? 9045 return true; 9046 } 9047 // Otherwise, we cannot constant-evaluate the result. 9048 Info.FFDiag(E->getArg(0), diag::note_constexpr_alignment_adjust) 9049 << Alignment; 9050 return false; 9051 } 9052 case Builtin::BI__builtin_operator_new: 9053 return HandleOperatorNewCall(Info, E, Result); 9054 case Builtin::BI__builtin_launder: 9055 return evaluatePointer(E->getArg(0), Result); 9056 case Builtin::BIstrchr: 9057 case Builtin::BIwcschr: 9058 case Builtin::BImemchr: 9059 case Builtin::BIwmemchr: 9060 if (Info.getLangOpts().CPlusPlus11) 9061 Info.CCEDiag(E, diag::note_constexpr_invalid_function) 9062 << /*isConstexpr*/0 << /*isConstructor*/0 9063 << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'"); 9064 else 9065 Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr); 9066 LLVM_FALLTHROUGH; 9067 case Builtin::BI__builtin_strchr: 9068 case Builtin::BI__builtin_wcschr: 9069 case Builtin::BI__builtin_memchr: 9070 case Builtin::BI__builtin_char_memchr: 9071 case Builtin::BI__builtin_wmemchr: { 9072 if (!Visit(E->getArg(0))) 9073 return false; 9074 APSInt Desired; 9075 if (!EvaluateInteger(E->getArg(1), Desired, Info)) 9076 return false; 9077 uint64_t MaxLength = uint64_t(-1); 9078 if (BuiltinOp != Builtin::BIstrchr && 9079 BuiltinOp != Builtin::BIwcschr && 9080 BuiltinOp != Builtin::BI__builtin_strchr && 9081 BuiltinOp != Builtin::BI__builtin_wcschr) { 9082 APSInt N; 9083 if (!EvaluateInteger(E->getArg(2), N, Info)) 9084 return false; 9085 MaxLength = N.getExtValue(); 9086 } 9087 // We cannot find the value if there are no candidates to match against. 9088 if (MaxLength == 0u) 9089 return ZeroInitialization(E); 9090 if (!Result.checkNullPointerForFoldAccess(Info, E, AK_Read) || 9091 Result.Designator.Invalid) 9092 return false; 9093 QualType CharTy = Result.Designator.getType(Info.Ctx); 9094 bool IsRawByte = BuiltinOp == Builtin::BImemchr || 9095 BuiltinOp == Builtin::BI__builtin_memchr; 9096 assert(IsRawByte || 9097 Info.Ctx.hasSameUnqualifiedType( 9098 CharTy, E->getArg(0)->getType()->getPointeeType())); 9099 // Pointers to const void may point to objects of incomplete type. 9100 if (IsRawByte && CharTy->isIncompleteType()) { 9101 Info.FFDiag(E, diag::note_constexpr_ltor_incomplete_type) << CharTy; 9102 return false; 9103 } 9104 // Give up on byte-oriented matching against multibyte elements. 9105 // FIXME: We can compare the bytes in the correct order. 9106 if (IsRawByte && !isOneByteCharacterType(CharTy)) { 9107 Info.FFDiag(E, diag::note_constexpr_memchr_unsupported) 9108 << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'") 9109 << CharTy; 9110 return false; 9111 } 9112 // Figure out what value we're actually looking for (after converting to 9113 // the corresponding unsigned type if necessary). 9114 uint64_t DesiredVal; 9115 bool StopAtNull = false; 9116 switch (BuiltinOp) { 9117 case Builtin::BIstrchr: 9118 case Builtin::BI__builtin_strchr: 9119 // strchr compares directly to the passed integer, and therefore 9120 // always fails if given an int that is not a char. 9121 if (!APSInt::isSameValue(HandleIntToIntCast(Info, E, CharTy, 9122 E->getArg(1)->getType(), 9123 Desired), 9124 Desired)) 9125 return ZeroInitialization(E); 9126 StopAtNull = true; 9127 LLVM_FALLTHROUGH; 9128 case Builtin::BImemchr: 9129 case Builtin::BI__builtin_memchr: 9130 case Builtin::BI__builtin_char_memchr: 9131 // memchr compares by converting both sides to unsigned char. That's also 9132 // correct for strchr if we get this far (to cope with plain char being 9133 // unsigned in the strchr case). 9134 DesiredVal = Desired.trunc(Info.Ctx.getCharWidth()).getZExtValue(); 9135 break; 9136 9137 case Builtin::BIwcschr: 9138 case Builtin::BI__builtin_wcschr: 9139 StopAtNull = true; 9140 LLVM_FALLTHROUGH; 9141 case Builtin::BIwmemchr: 9142 case Builtin::BI__builtin_wmemchr: 9143 // wcschr and wmemchr are given a wchar_t to look for. Just use it. 9144 DesiredVal = Desired.getZExtValue(); 9145 break; 9146 } 9147 9148 for (; MaxLength; --MaxLength) { 9149 APValue Char; 9150 if (!handleLValueToRValueConversion(Info, E, CharTy, Result, Char) || 9151 !Char.isInt()) 9152 return false; 9153 if (Char.getInt().getZExtValue() == DesiredVal) 9154 return true; 9155 if (StopAtNull && !Char.getInt()) 9156 break; 9157 if (!HandleLValueArrayAdjustment(Info, E, Result, CharTy, 1)) 9158 return false; 9159 } 9160 // Not found: return nullptr. 9161 return ZeroInitialization(E); 9162 } 9163 9164 case Builtin::BImemcpy: 9165 case Builtin::BImemmove: 9166 case Builtin::BIwmemcpy: 9167 case Builtin::BIwmemmove: 9168 if (Info.getLangOpts().CPlusPlus11) 9169 Info.CCEDiag(E, diag::note_constexpr_invalid_function) 9170 << /*isConstexpr*/0 << /*isConstructor*/0 9171 << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'"); 9172 else 9173 Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr); 9174 LLVM_FALLTHROUGH; 9175 case Builtin::BI__builtin_memcpy: 9176 case Builtin::BI__builtin_memmove: 9177 case Builtin::BI__builtin_wmemcpy: 9178 case Builtin::BI__builtin_wmemmove: { 9179 bool WChar = BuiltinOp == Builtin::BIwmemcpy || 9180 BuiltinOp == Builtin::BIwmemmove || 9181 BuiltinOp == Builtin::BI__builtin_wmemcpy || 9182 BuiltinOp == Builtin::BI__builtin_wmemmove; 9183 bool Move = BuiltinOp == Builtin::BImemmove || 9184 BuiltinOp == Builtin::BIwmemmove || 9185 BuiltinOp == Builtin::BI__builtin_memmove || 9186 BuiltinOp == Builtin::BI__builtin_wmemmove; 9187 9188 // The result of mem* is the first argument. 9189 if (!Visit(E->getArg(0))) 9190 return false; 9191 LValue Dest = Result; 9192 9193 LValue Src; 9194 if (!EvaluatePointer(E->getArg(1), Src, Info)) 9195 return false; 9196 9197 APSInt N; 9198 if (!EvaluateInteger(E->getArg(2), N, Info)) 9199 return false; 9200 assert(!N.isSigned() && "memcpy and friends take an unsigned size"); 9201 9202 // If the size is zero, we treat this as always being a valid no-op. 9203 // (Even if one of the src and dest pointers is null.) 9204 if (!N) 9205 return true; 9206 9207 // Otherwise, if either of the operands is null, we can't proceed. Don't 9208 // try to determine the type of the copied objects, because there aren't 9209 // any. 9210 if (!Src.Base || !Dest.Base) { 9211 APValue Val; 9212 (!Src.Base ? Src : Dest).moveInto(Val); 9213 Info.FFDiag(E, diag::note_constexpr_memcpy_null) 9214 << Move << WChar << !!Src.Base 9215 << Val.getAsString(Info.Ctx, E->getArg(0)->getType()); 9216 return false; 9217 } 9218 if (Src.Designator.Invalid || Dest.Designator.Invalid) 9219 return false; 9220 9221 // We require that Src and Dest are both pointers to arrays of 9222 // trivially-copyable type. (For the wide version, the designator will be 9223 // invalid if the designated object is not a wchar_t.) 9224 QualType T = Dest.Designator.getType(Info.Ctx); 9225 QualType SrcT = Src.Designator.getType(Info.Ctx); 9226 if (!Info.Ctx.hasSameUnqualifiedType(T, SrcT)) { 9227 // FIXME: Consider using our bit_cast implementation to support this. 9228 Info.FFDiag(E, diag::note_constexpr_memcpy_type_pun) << Move << SrcT << T; 9229 return false; 9230 } 9231 if (T->isIncompleteType()) { 9232 Info.FFDiag(E, diag::note_constexpr_memcpy_incomplete_type) << Move << T; 9233 return false; 9234 } 9235 if (!T.isTriviallyCopyableType(Info.Ctx)) { 9236 Info.FFDiag(E, diag::note_constexpr_memcpy_nontrivial) << Move << T; 9237 return false; 9238 } 9239 9240 // Figure out how many T's we're copying. 9241 uint64_t TSize = Info.Ctx.getTypeSizeInChars(T).getQuantity(); 9242 if (!WChar) { 9243 uint64_t Remainder; 9244 llvm::APInt OrigN = N; 9245 llvm::APInt::udivrem(OrigN, TSize, N, Remainder); 9246 if (Remainder) { 9247 Info.FFDiag(E, diag::note_constexpr_memcpy_unsupported) 9248 << Move << WChar << 0 << T << OrigN.toString(10, /*Signed*/false) 9249 << (unsigned)TSize; 9250 return false; 9251 } 9252 } 9253 9254 // Check that the copying will remain within the arrays, just so that we 9255 // can give a more meaningful diagnostic. This implicitly also checks that 9256 // N fits into 64 bits. 9257 uint64_t RemainingSrcSize = Src.Designator.validIndexAdjustments().second; 9258 uint64_t RemainingDestSize = Dest.Designator.validIndexAdjustments().second; 9259 if (N.ugt(RemainingSrcSize) || N.ugt(RemainingDestSize)) { 9260 Info.FFDiag(E, diag::note_constexpr_memcpy_unsupported) 9261 << Move << WChar << (N.ugt(RemainingSrcSize) ? 1 : 2) << T 9262 << N.toString(10, /*Signed*/false); 9263 return false; 9264 } 9265 uint64_t NElems = N.getZExtValue(); 9266 uint64_t NBytes = NElems * TSize; 9267 9268 // Check for overlap. 9269 int Direction = 1; 9270 if (HasSameBase(Src, Dest)) { 9271 uint64_t SrcOffset = Src.getLValueOffset().getQuantity(); 9272 uint64_t DestOffset = Dest.getLValueOffset().getQuantity(); 9273 if (DestOffset >= SrcOffset && DestOffset - SrcOffset < NBytes) { 9274 // Dest is inside the source region. 9275 if (!Move) { 9276 Info.FFDiag(E, diag::note_constexpr_memcpy_overlap) << WChar; 9277 return false; 9278 } 9279 // For memmove and friends, copy backwards. 9280 if (!HandleLValueArrayAdjustment(Info, E, Src, T, NElems - 1) || 9281 !HandleLValueArrayAdjustment(Info, E, Dest, T, NElems - 1)) 9282 return false; 9283 Direction = -1; 9284 } else if (!Move && SrcOffset >= DestOffset && 9285 SrcOffset - DestOffset < NBytes) { 9286 // Src is inside the destination region for memcpy: invalid. 9287 Info.FFDiag(E, diag::note_constexpr_memcpy_overlap) << WChar; 9288 return false; 9289 } 9290 } 9291 9292 while (true) { 9293 APValue Val; 9294 // FIXME: Set WantObjectRepresentation to true if we're copying a 9295 // char-like type? 9296 if (!handleLValueToRValueConversion(Info, E, T, Src, Val) || 9297 !handleAssignment(Info, E, Dest, T, Val)) 9298 return false; 9299 // Do not iterate past the last element; if we're copying backwards, that 9300 // might take us off the start of the array. 9301 if (--NElems == 0) 9302 return true; 9303 if (!HandleLValueArrayAdjustment(Info, E, Src, T, Direction) || 9304 !HandleLValueArrayAdjustment(Info, E, Dest, T, Direction)) 9305 return false; 9306 } 9307 } 9308 9309 default: 9310 break; 9311 } 9312 9313 return visitNonBuiltinCallExpr(E); 9314 } 9315 9316 static bool EvaluateArrayNewInitList(EvalInfo &Info, LValue &This, 9317 APValue &Result, const InitListExpr *ILE, 9318 QualType AllocType); 9319 static bool EvaluateArrayNewConstructExpr(EvalInfo &Info, LValue &This, 9320 APValue &Result, 9321 const CXXConstructExpr *CCE, 9322 QualType AllocType); 9323 9324 bool PointerExprEvaluator::VisitCXXNewExpr(const CXXNewExpr *E) { 9325 if (!Info.getLangOpts().CPlusPlus20) 9326 Info.CCEDiag(E, diag::note_constexpr_new); 9327 9328 // We cannot speculatively evaluate a delete expression. 9329 if (Info.SpeculativeEvaluationDepth) 9330 return false; 9331 9332 FunctionDecl *OperatorNew = E->getOperatorNew(); 9333 9334 bool IsNothrow = false; 9335 bool IsPlacement = false; 9336 if (OperatorNew->isReservedGlobalPlacementOperator() && 9337 Info.CurrentCall->isStdFunction() && !E->isArray()) { 9338 // FIXME Support array placement new. 9339 assert(E->getNumPlacementArgs() == 1); 9340 if (!EvaluatePointer(E->getPlacementArg(0), Result, Info)) 9341 return false; 9342 if (Result.Designator.Invalid) 9343 return false; 9344 IsPlacement = true; 9345 } else if (!OperatorNew->isReplaceableGlobalAllocationFunction()) { 9346 Info.FFDiag(E, diag::note_constexpr_new_non_replaceable) 9347 << isa<CXXMethodDecl>(OperatorNew) << OperatorNew; 9348 return false; 9349 } else if (E->getNumPlacementArgs()) { 9350 // The only new-placement list we support is of the form (std::nothrow). 9351 // 9352 // FIXME: There is no restriction on this, but it's not clear that any 9353 // other form makes any sense. We get here for cases such as: 9354 // 9355 // new (std::align_val_t{N}) X(int) 9356 // 9357 // (which should presumably be valid only if N is a multiple of 9358 // alignof(int), and in any case can't be deallocated unless N is 9359 // alignof(X) and X has new-extended alignment). 9360 if (E->getNumPlacementArgs() != 1 || 9361 !E->getPlacementArg(0)->getType()->isNothrowT()) 9362 return Error(E, diag::note_constexpr_new_placement); 9363 9364 LValue Nothrow; 9365 if (!EvaluateLValue(E->getPlacementArg(0), Nothrow, Info)) 9366 return false; 9367 IsNothrow = true; 9368 } 9369 9370 const Expr *Init = E->getInitializer(); 9371 const InitListExpr *ResizedArrayILE = nullptr; 9372 const CXXConstructExpr *ResizedArrayCCE = nullptr; 9373 bool ValueInit = false; 9374 9375 QualType AllocType = E->getAllocatedType(); 9376 if (Optional<const Expr*> ArraySize = E->getArraySize()) { 9377 const Expr *Stripped = *ArraySize; 9378 for (; auto *ICE = dyn_cast<ImplicitCastExpr>(Stripped); 9379 Stripped = ICE->getSubExpr()) 9380 if (ICE->getCastKind() != CK_NoOp && 9381 ICE->getCastKind() != CK_IntegralCast) 9382 break; 9383 9384 llvm::APSInt ArrayBound; 9385 if (!EvaluateInteger(Stripped, ArrayBound, Info)) 9386 return false; 9387 9388 // C++ [expr.new]p9: 9389 // The expression is erroneous if: 9390 // -- [...] its value before converting to size_t [or] applying the 9391 // second standard conversion sequence is less than zero 9392 if (ArrayBound.isSigned() && ArrayBound.isNegative()) { 9393 if (IsNothrow) 9394 return ZeroInitialization(E); 9395 9396 Info.FFDiag(*ArraySize, diag::note_constexpr_new_negative) 9397 << ArrayBound << (*ArraySize)->getSourceRange(); 9398 return false; 9399 } 9400 9401 // -- its value is such that the size of the allocated object would 9402 // exceed the implementation-defined limit 9403 if (ConstantArrayType::getNumAddressingBits(Info.Ctx, AllocType, 9404 ArrayBound) > 9405 ConstantArrayType::getMaxSizeBits(Info.Ctx)) { 9406 if (IsNothrow) 9407 return ZeroInitialization(E); 9408 9409 Info.FFDiag(*ArraySize, diag::note_constexpr_new_too_large) 9410 << ArrayBound << (*ArraySize)->getSourceRange(); 9411 return false; 9412 } 9413 9414 // -- the new-initializer is a braced-init-list and the number of 9415 // array elements for which initializers are provided [...] 9416 // exceeds the number of elements to initialize 9417 if (!Init) { 9418 // No initialization is performed. 9419 } else if (isa<CXXScalarValueInitExpr>(Init) || 9420 isa<ImplicitValueInitExpr>(Init)) { 9421 ValueInit = true; 9422 } else if (auto *CCE = dyn_cast<CXXConstructExpr>(Init)) { 9423 ResizedArrayCCE = CCE; 9424 } else { 9425 auto *CAT = Info.Ctx.getAsConstantArrayType(Init->getType()); 9426 assert(CAT && "unexpected type for array initializer"); 9427 9428 unsigned Bits = 9429 std::max(CAT->getSize().getBitWidth(), ArrayBound.getBitWidth()); 9430 llvm::APInt InitBound = CAT->getSize().zextOrSelf(Bits); 9431 llvm::APInt AllocBound = ArrayBound.zextOrSelf(Bits); 9432 if (InitBound.ugt(AllocBound)) { 9433 if (IsNothrow) 9434 return ZeroInitialization(E); 9435 9436 Info.FFDiag(*ArraySize, diag::note_constexpr_new_too_small) 9437 << AllocBound.toString(10, /*Signed=*/false) 9438 << InitBound.toString(10, /*Signed=*/false) 9439 << (*ArraySize)->getSourceRange(); 9440 return false; 9441 } 9442 9443 // If the sizes differ, we must have an initializer list, and we need 9444 // special handling for this case when we initialize. 9445 if (InitBound != AllocBound) 9446 ResizedArrayILE = cast<InitListExpr>(Init); 9447 } 9448 9449 AllocType = Info.Ctx.getConstantArrayType(AllocType, ArrayBound, nullptr, 9450 ArrayType::Normal, 0); 9451 } else { 9452 assert(!AllocType->isArrayType() && 9453 "array allocation with non-array new"); 9454 } 9455 9456 APValue *Val; 9457 if (IsPlacement) { 9458 AccessKinds AK = AK_Construct; 9459 struct FindObjectHandler { 9460 EvalInfo &Info; 9461 const Expr *E; 9462 QualType AllocType; 9463 const AccessKinds AccessKind; 9464 APValue *Value; 9465 9466 typedef bool result_type; 9467 bool failed() { return false; } 9468 bool found(APValue &Subobj, QualType SubobjType) { 9469 // FIXME: Reject the cases where [basic.life]p8 would not permit the 9470 // old name of the object to be used to name the new object. 9471 if (!Info.Ctx.hasSameUnqualifiedType(SubobjType, AllocType)) { 9472 Info.FFDiag(E, diag::note_constexpr_placement_new_wrong_type) << 9473 SubobjType << AllocType; 9474 return false; 9475 } 9476 Value = &Subobj; 9477 return true; 9478 } 9479 bool found(APSInt &Value, QualType SubobjType) { 9480 Info.FFDiag(E, diag::note_constexpr_construct_complex_elem); 9481 return false; 9482 } 9483 bool found(APFloat &Value, QualType SubobjType) { 9484 Info.FFDiag(E, diag::note_constexpr_construct_complex_elem); 9485 return false; 9486 } 9487 } Handler = {Info, E, AllocType, AK, nullptr}; 9488 9489 CompleteObject Obj = findCompleteObject(Info, E, AK, Result, AllocType); 9490 if (!Obj || !findSubobject(Info, E, Obj, Result.Designator, Handler)) 9491 return false; 9492 9493 Val = Handler.Value; 9494 9495 // [basic.life]p1: 9496 // The lifetime of an object o of type T ends when [...] the storage 9497 // which the object occupies is [...] reused by an object that is not 9498 // nested within o (6.6.2). 9499 *Val = APValue(); 9500 } else { 9501 // Perform the allocation and obtain a pointer to the resulting object. 9502 Val = Info.createHeapAlloc(E, AllocType, Result); 9503 if (!Val) 9504 return false; 9505 } 9506 9507 if (ValueInit) { 9508 ImplicitValueInitExpr VIE(AllocType); 9509 if (!EvaluateInPlace(*Val, Info, Result, &VIE)) 9510 return false; 9511 } else if (ResizedArrayILE) { 9512 if (!EvaluateArrayNewInitList(Info, Result, *Val, ResizedArrayILE, 9513 AllocType)) 9514 return false; 9515 } else if (ResizedArrayCCE) { 9516 if (!EvaluateArrayNewConstructExpr(Info, Result, *Val, ResizedArrayCCE, 9517 AllocType)) 9518 return false; 9519 } else if (Init) { 9520 if (!EvaluateInPlace(*Val, Info, Result, Init)) 9521 return false; 9522 } else if (!getDefaultInitValue(AllocType, *Val)) { 9523 return false; 9524 } 9525 9526 // Array new returns a pointer to the first element, not a pointer to the 9527 // array. 9528 if (auto *AT = AllocType->getAsArrayTypeUnsafe()) 9529 Result.addArray(Info, E, cast<ConstantArrayType>(AT)); 9530 9531 return true; 9532 } 9533 //===----------------------------------------------------------------------===// 9534 // Member Pointer Evaluation 9535 //===----------------------------------------------------------------------===// 9536 9537 namespace { 9538 class MemberPointerExprEvaluator 9539 : public ExprEvaluatorBase<MemberPointerExprEvaluator> { 9540 MemberPtr &Result; 9541 9542 bool Success(const ValueDecl *D) { 9543 Result = MemberPtr(D); 9544 return true; 9545 } 9546 public: 9547 9548 MemberPointerExprEvaluator(EvalInfo &Info, MemberPtr &Result) 9549 : ExprEvaluatorBaseTy(Info), Result(Result) {} 9550 9551 bool Success(const APValue &V, const Expr *E) { 9552 Result.setFrom(V); 9553 return true; 9554 } 9555 bool ZeroInitialization(const Expr *E) { 9556 return Success((const ValueDecl*)nullptr); 9557 } 9558 9559 bool VisitCastExpr(const CastExpr *E); 9560 bool VisitUnaryAddrOf(const UnaryOperator *E); 9561 }; 9562 } // end anonymous namespace 9563 9564 static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result, 9565 EvalInfo &Info) { 9566 assert(!E->isValueDependent()); 9567 assert(E->isRValue() && E->getType()->isMemberPointerType()); 9568 return MemberPointerExprEvaluator(Info, Result).Visit(E); 9569 } 9570 9571 bool MemberPointerExprEvaluator::VisitCastExpr(const CastExpr *E) { 9572 switch (E->getCastKind()) { 9573 default: 9574 return ExprEvaluatorBaseTy::VisitCastExpr(E); 9575 9576 case CK_NullToMemberPointer: 9577 VisitIgnoredValue(E->getSubExpr()); 9578 return ZeroInitialization(E); 9579 9580 case CK_BaseToDerivedMemberPointer: { 9581 if (!Visit(E->getSubExpr())) 9582 return false; 9583 if (E->path_empty()) 9584 return true; 9585 // Base-to-derived member pointer casts store the path in derived-to-base 9586 // order, so iterate backwards. The CXXBaseSpecifier also provides us with 9587 // the wrong end of the derived->base arc, so stagger the path by one class. 9588 typedef std::reverse_iterator<CastExpr::path_const_iterator> ReverseIter; 9589 for (ReverseIter PathI(E->path_end() - 1), PathE(E->path_begin()); 9590 PathI != PathE; ++PathI) { 9591 assert(!(*PathI)->isVirtual() && "memptr cast through vbase"); 9592 const CXXRecordDecl *Derived = (*PathI)->getType()->getAsCXXRecordDecl(); 9593 if (!Result.castToDerived(Derived)) 9594 return Error(E); 9595 } 9596 const Type *FinalTy = E->getType()->castAs<MemberPointerType>()->getClass(); 9597 if (!Result.castToDerived(FinalTy->getAsCXXRecordDecl())) 9598 return Error(E); 9599 return true; 9600 } 9601 9602 case CK_DerivedToBaseMemberPointer: 9603 if (!Visit(E->getSubExpr())) 9604 return false; 9605 for (CastExpr::path_const_iterator PathI = E->path_begin(), 9606 PathE = E->path_end(); PathI != PathE; ++PathI) { 9607 assert(!(*PathI)->isVirtual() && "memptr cast through vbase"); 9608 const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl(); 9609 if (!Result.castToBase(Base)) 9610 return Error(E); 9611 } 9612 return true; 9613 } 9614 } 9615 9616 bool MemberPointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) { 9617 // C++11 [expr.unary.op]p3 has very strict rules on how the address of a 9618 // member can be formed. 9619 return Success(cast<DeclRefExpr>(E->getSubExpr())->getDecl()); 9620 } 9621 9622 //===----------------------------------------------------------------------===// 9623 // Record Evaluation 9624 //===----------------------------------------------------------------------===// 9625 9626 namespace { 9627 class RecordExprEvaluator 9628 : public ExprEvaluatorBase<RecordExprEvaluator> { 9629 const LValue &This; 9630 APValue &Result; 9631 public: 9632 9633 RecordExprEvaluator(EvalInfo &info, const LValue &This, APValue &Result) 9634 : ExprEvaluatorBaseTy(info), This(This), Result(Result) {} 9635 9636 bool Success(const APValue &V, const Expr *E) { 9637 Result = V; 9638 return true; 9639 } 9640 bool ZeroInitialization(const Expr *E) { 9641 return ZeroInitialization(E, E->getType()); 9642 } 9643 bool ZeroInitialization(const Expr *E, QualType T); 9644 9645 bool VisitCallExpr(const CallExpr *E) { 9646 return handleCallExpr(E, Result, &This); 9647 } 9648 bool VisitCastExpr(const CastExpr *E); 9649 bool VisitInitListExpr(const InitListExpr *E); 9650 bool VisitCXXConstructExpr(const CXXConstructExpr *E) { 9651 return VisitCXXConstructExpr(E, E->getType()); 9652 } 9653 bool VisitLambdaExpr(const LambdaExpr *E); 9654 bool VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E); 9655 bool VisitCXXConstructExpr(const CXXConstructExpr *E, QualType T); 9656 bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E); 9657 bool VisitBinCmp(const BinaryOperator *E); 9658 }; 9659 } 9660 9661 /// Perform zero-initialization on an object of non-union class type. 9662 /// C++11 [dcl.init]p5: 9663 /// To zero-initialize an object or reference of type T means: 9664 /// [...] 9665 /// -- if T is a (possibly cv-qualified) non-union class type, 9666 /// each non-static data member and each base-class subobject is 9667 /// zero-initialized 9668 static bool HandleClassZeroInitialization(EvalInfo &Info, const Expr *E, 9669 const RecordDecl *RD, 9670 const LValue &This, APValue &Result) { 9671 assert(!RD->isUnion() && "Expected non-union class type"); 9672 const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD); 9673 Result = APValue(APValue::UninitStruct(), CD ? CD->getNumBases() : 0, 9674 std::distance(RD->field_begin(), RD->field_end())); 9675 9676 if (RD->isInvalidDecl()) return false; 9677 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD); 9678 9679 if (CD) { 9680 unsigned Index = 0; 9681 for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(), 9682 End = CD->bases_end(); I != End; ++I, ++Index) { 9683 const CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl(); 9684 LValue Subobject = This; 9685 if (!HandleLValueDirectBase(Info, E, Subobject, CD, Base, &Layout)) 9686 return false; 9687 if (!HandleClassZeroInitialization(Info, E, Base, Subobject, 9688 Result.getStructBase(Index))) 9689 return false; 9690 } 9691 } 9692 9693 for (const auto *I : RD->fields()) { 9694 // -- if T is a reference type, no initialization is performed. 9695 if (I->isUnnamedBitfield() || I->getType()->isReferenceType()) 9696 continue; 9697 9698 LValue Subobject = This; 9699 if (!HandleLValueMember(Info, E, Subobject, I, &Layout)) 9700 return false; 9701 9702 ImplicitValueInitExpr VIE(I->getType()); 9703 if (!EvaluateInPlace( 9704 Result.getStructField(I->getFieldIndex()), Info, Subobject, &VIE)) 9705 return false; 9706 } 9707 9708 return true; 9709 } 9710 9711 bool RecordExprEvaluator::ZeroInitialization(const Expr *E, QualType T) { 9712 const RecordDecl *RD = T->castAs<RecordType>()->getDecl(); 9713 if (RD->isInvalidDecl()) return false; 9714 if (RD->isUnion()) { 9715 // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the 9716 // object's first non-static named data member is zero-initialized 9717 RecordDecl::field_iterator I = RD->field_begin(); 9718 while (I != RD->field_end() && (*I)->isUnnamedBitfield()) 9719 ++I; 9720 if (I == RD->field_end()) { 9721 Result = APValue((const FieldDecl*)nullptr); 9722 return true; 9723 } 9724 9725 LValue Subobject = This; 9726 if (!HandleLValueMember(Info, E, Subobject, *I)) 9727 return false; 9728 Result = APValue(*I); 9729 ImplicitValueInitExpr VIE(I->getType()); 9730 return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, &VIE); 9731 } 9732 9733 if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->getNumVBases()) { 9734 Info.FFDiag(E, diag::note_constexpr_virtual_base) << RD; 9735 return false; 9736 } 9737 9738 return HandleClassZeroInitialization(Info, E, RD, This, Result); 9739 } 9740 9741 bool RecordExprEvaluator::VisitCastExpr(const CastExpr *E) { 9742 switch (E->getCastKind()) { 9743 default: 9744 return ExprEvaluatorBaseTy::VisitCastExpr(E); 9745 9746 case CK_ConstructorConversion: 9747 return Visit(E->getSubExpr()); 9748 9749 case CK_DerivedToBase: 9750 case CK_UncheckedDerivedToBase: { 9751 APValue DerivedObject; 9752 if (!Evaluate(DerivedObject, Info, E->getSubExpr())) 9753 return false; 9754 if (!DerivedObject.isStruct()) 9755 return Error(E->getSubExpr()); 9756 9757 // Derived-to-base rvalue conversion: just slice off the derived part. 9758 APValue *Value = &DerivedObject; 9759 const CXXRecordDecl *RD = E->getSubExpr()->getType()->getAsCXXRecordDecl(); 9760 for (CastExpr::path_const_iterator PathI = E->path_begin(), 9761 PathE = E->path_end(); PathI != PathE; ++PathI) { 9762 assert(!(*PathI)->isVirtual() && "record rvalue with virtual base"); 9763 const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl(); 9764 Value = &Value->getStructBase(getBaseIndex(RD, Base)); 9765 RD = Base; 9766 } 9767 Result = *Value; 9768 return true; 9769 } 9770 } 9771 } 9772 9773 bool RecordExprEvaluator::VisitInitListExpr(const InitListExpr *E) { 9774 if (E->isTransparent()) 9775 return Visit(E->getInit(0)); 9776 9777 const RecordDecl *RD = E->getType()->castAs<RecordType>()->getDecl(); 9778 if (RD->isInvalidDecl()) return false; 9779 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD); 9780 auto *CXXRD = dyn_cast<CXXRecordDecl>(RD); 9781 9782 EvalInfo::EvaluatingConstructorRAII EvalObj( 9783 Info, 9784 ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries}, 9785 CXXRD && CXXRD->getNumBases()); 9786 9787 if (RD->isUnion()) { 9788 const FieldDecl *Field = E->getInitializedFieldInUnion(); 9789 Result = APValue(Field); 9790 if (!Field) 9791 return true; 9792 9793 // If the initializer list for a union does not contain any elements, the 9794 // first element of the union is value-initialized. 9795 // FIXME: The element should be initialized from an initializer list. 9796 // Is this difference ever observable for initializer lists which 9797 // we don't build? 9798 ImplicitValueInitExpr VIE(Field->getType()); 9799 const Expr *InitExpr = E->getNumInits() ? E->getInit(0) : &VIE; 9800 9801 LValue Subobject = This; 9802 if (!HandleLValueMember(Info, InitExpr, Subobject, Field, &Layout)) 9803 return false; 9804 9805 // Temporarily override This, in case there's a CXXDefaultInitExpr in here. 9806 ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This, 9807 isa<CXXDefaultInitExpr>(InitExpr)); 9808 9809 if (EvaluateInPlace(Result.getUnionValue(), Info, Subobject, InitExpr)) { 9810 if (Field->isBitField()) 9811 return truncateBitfieldValue(Info, InitExpr, Result.getUnionValue(), 9812 Field); 9813 return true; 9814 } 9815 9816 return false; 9817 } 9818 9819 if (!Result.hasValue()) 9820 Result = APValue(APValue::UninitStruct(), CXXRD ? CXXRD->getNumBases() : 0, 9821 std::distance(RD->field_begin(), RD->field_end())); 9822 unsigned ElementNo = 0; 9823 bool Success = true; 9824 9825 // Initialize base classes. 9826 if (CXXRD && CXXRD->getNumBases()) { 9827 for (const auto &Base : CXXRD->bases()) { 9828 assert(ElementNo < E->getNumInits() && "missing init for base class"); 9829 const Expr *Init = E->getInit(ElementNo); 9830 9831 LValue Subobject = This; 9832 if (!HandleLValueBase(Info, Init, Subobject, CXXRD, &Base)) 9833 return false; 9834 9835 APValue &FieldVal = Result.getStructBase(ElementNo); 9836 if (!EvaluateInPlace(FieldVal, Info, Subobject, Init)) { 9837 if (!Info.noteFailure()) 9838 return false; 9839 Success = false; 9840 } 9841 ++ElementNo; 9842 } 9843 9844 EvalObj.finishedConstructingBases(); 9845 } 9846 9847 // Initialize members. 9848 for (const auto *Field : RD->fields()) { 9849 // Anonymous bit-fields are not considered members of the class for 9850 // purposes of aggregate initialization. 9851 if (Field->isUnnamedBitfield()) 9852 continue; 9853 9854 LValue Subobject = This; 9855 9856 bool HaveInit = ElementNo < E->getNumInits(); 9857 9858 // FIXME: Diagnostics here should point to the end of the initializer 9859 // list, not the start. 9860 if (!HandleLValueMember(Info, HaveInit ? E->getInit(ElementNo) : E, 9861 Subobject, Field, &Layout)) 9862 return false; 9863 9864 // Perform an implicit value-initialization for members beyond the end of 9865 // the initializer list. 9866 ImplicitValueInitExpr VIE(HaveInit ? Info.Ctx.IntTy : Field->getType()); 9867 const Expr *Init = HaveInit ? E->getInit(ElementNo++) : &VIE; 9868 9869 // Temporarily override This, in case there's a CXXDefaultInitExpr in here. 9870 ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This, 9871 isa<CXXDefaultInitExpr>(Init)); 9872 9873 APValue &FieldVal = Result.getStructField(Field->getFieldIndex()); 9874 if (!EvaluateInPlace(FieldVal, Info, Subobject, Init) || 9875 (Field->isBitField() && !truncateBitfieldValue(Info, Init, 9876 FieldVal, Field))) { 9877 if (!Info.noteFailure()) 9878 return false; 9879 Success = false; 9880 } 9881 } 9882 9883 EvalObj.finishedConstructingFields(); 9884 9885 return Success; 9886 } 9887 9888 bool RecordExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E, 9889 QualType T) { 9890 // Note that E's type is not necessarily the type of our class here; we might 9891 // be initializing an array element instead. 9892 const CXXConstructorDecl *FD = E->getConstructor(); 9893 if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl()) return false; 9894 9895 bool ZeroInit = E->requiresZeroInitialization(); 9896 if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) { 9897 // If we've already performed zero-initialization, we're already done. 9898 if (Result.hasValue()) 9899 return true; 9900 9901 if (ZeroInit) 9902 return ZeroInitialization(E, T); 9903 9904 return getDefaultInitValue(T, Result); 9905 } 9906 9907 const FunctionDecl *Definition = nullptr; 9908 auto Body = FD->getBody(Definition); 9909 9910 if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body)) 9911 return false; 9912 9913 // Avoid materializing a temporary for an elidable copy/move constructor. 9914 if (E->isElidable() && !ZeroInit) 9915 if (const MaterializeTemporaryExpr *ME 9916 = dyn_cast<MaterializeTemporaryExpr>(E->getArg(0))) 9917 return Visit(ME->getSubExpr()); 9918 9919 if (ZeroInit && !ZeroInitialization(E, T)) 9920 return false; 9921 9922 auto Args = llvm::makeArrayRef(E->getArgs(), E->getNumArgs()); 9923 return HandleConstructorCall(E, This, Args, 9924 cast<CXXConstructorDecl>(Definition), Info, 9925 Result); 9926 } 9927 9928 bool RecordExprEvaluator::VisitCXXInheritedCtorInitExpr( 9929 const CXXInheritedCtorInitExpr *E) { 9930 if (!Info.CurrentCall) { 9931 assert(Info.checkingPotentialConstantExpression()); 9932 return false; 9933 } 9934 9935 const CXXConstructorDecl *FD = E->getConstructor(); 9936 if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl()) 9937 return false; 9938 9939 const FunctionDecl *Definition = nullptr; 9940 auto Body = FD->getBody(Definition); 9941 9942 if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body)) 9943 return false; 9944 9945 return HandleConstructorCall(E, This, Info.CurrentCall->Arguments, 9946 cast<CXXConstructorDecl>(Definition), Info, 9947 Result); 9948 } 9949 9950 bool RecordExprEvaluator::VisitCXXStdInitializerListExpr( 9951 const CXXStdInitializerListExpr *E) { 9952 const ConstantArrayType *ArrayType = 9953 Info.Ctx.getAsConstantArrayType(E->getSubExpr()->getType()); 9954 9955 LValue Array; 9956 if (!EvaluateLValue(E->getSubExpr(), Array, Info)) 9957 return false; 9958 9959 // Get a pointer to the first element of the array. 9960 Array.addArray(Info, E, ArrayType); 9961 9962 auto InvalidType = [&] { 9963 Info.FFDiag(E, diag::note_constexpr_unsupported_layout) 9964 << E->getType(); 9965 return false; 9966 }; 9967 9968 // FIXME: Perform the checks on the field types in SemaInit. 9969 RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl(); 9970 RecordDecl::field_iterator Field = Record->field_begin(); 9971 if (Field == Record->field_end()) 9972 return InvalidType(); 9973 9974 // Start pointer. 9975 if (!Field->getType()->isPointerType() || 9976 !Info.Ctx.hasSameType(Field->getType()->getPointeeType(), 9977 ArrayType->getElementType())) 9978 return InvalidType(); 9979 9980 // FIXME: What if the initializer_list type has base classes, etc? 9981 Result = APValue(APValue::UninitStruct(), 0, 2); 9982 Array.moveInto(Result.getStructField(0)); 9983 9984 if (++Field == Record->field_end()) 9985 return InvalidType(); 9986 9987 if (Field->getType()->isPointerType() && 9988 Info.Ctx.hasSameType(Field->getType()->getPointeeType(), 9989 ArrayType->getElementType())) { 9990 // End pointer. 9991 if (!HandleLValueArrayAdjustment(Info, E, Array, 9992 ArrayType->getElementType(), 9993 ArrayType->getSize().getZExtValue())) 9994 return false; 9995 Array.moveInto(Result.getStructField(1)); 9996 } else if (Info.Ctx.hasSameType(Field->getType(), Info.Ctx.getSizeType())) 9997 // Length. 9998 Result.getStructField(1) = APValue(APSInt(ArrayType->getSize())); 9999 else 10000 return InvalidType(); 10001 10002 if (++Field != Record->field_end()) 10003 return InvalidType(); 10004 10005 return true; 10006 } 10007 10008 bool RecordExprEvaluator::VisitLambdaExpr(const LambdaExpr *E) { 10009 const CXXRecordDecl *ClosureClass = E->getLambdaClass(); 10010 if (ClosureClass->isInvalidDecl()) 10011 return false; 10012 10013 const size_t NumFields = 10014 std::distance(ClosureClass->field_begin(), ClosureClass->field_end()); 10015 10016 assert(NumFields == (size_t)std::distance(E->capture_init_begin(), 10017 E->capture_init_end()) && 10018 "The number of lambda capture initializers should equal the number of " 10019 "fields within the closure type"); 10020 10021 Result = APValue(APValue::UninitStruct(), /*NumBases*/0, NumFields); 10022 // Iterate through all the lambda's closure object's fields and initialize 10023 // them. 10024 auto *CaptureInitIt = E->capture_init_begin(); 10025 const LambdaCapture *CaptureIt = ClosureClass->captures_begin(); 10026 bool Success = true; 10027 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(ClosureClass); 10028 for (const auto *Field : ClosureClass->fields()) { 10029 assert(CaptureInitIt != E->capture_init_end()); 10030 // Get the initializer for this field 10031 Expr *const CurFieldInit = *CaptureInitIt++; 10032 10033 // If there is no initializer, either this is a VLA or an error has 10034 // occurred. 10035 if (!CurFieldInit) 10036 return Error(E); 10037 10038 LValue Subobject = This; 10039 10040 if (!HandleLValueMember(Info, E, Subobject, Field, &Layout)) 10041 return false; 10042 10043 APValue &FieldVal = Result.getStructField(Field->getFieldIndex()); 10044 if (!EvaluateInPlace(FieldVal, Info, Subobject, CurFieldInit)) { 10045 if (!Info.keepEvaluatingAfterFailure()) 10046 return false; 10047 Success = false; 10048 } 10049 ++CaptureIt; 10050 } 10051 return Success; 10052 } 10053 10054 static bool EvaluateRecord(const Expr *E, const LValue &This, 10055 APValue &Result, EvalInfo &Info) { 10056 assert(!E->isValueDependent()); 10057 assert(E->isRValue() && E->getType()->isRecordType() && 10058 "can't evaluate expression as a record rvalue"); 10059 return RecordExprEvaluator(Info, This, Result).Visit(E); 10060 } 10061 10062 //===----------------------------------------------------------------------===// 10063 // Temporary Evaluation 10064 // 10065 // Temporaries are represented in the AST as rvalues, but generally behave like 10066 // lvalues. The full-object of which the temporary is a subobject is implicitly 10067 // materialized so that a reference can bind to it. 10068 //===----------------------------------------------------------------------===// 10069 namespace { 10070 class TemporaryExprEvaluator 10071 : public LValueExprEvaluatorBase<TemporaryExprEvaluator> { 10072 public: 10073 TemporaryExprEvaluator(EvalInfo &Info, LValue &Result) : 10074 LValueExprEvaluatorBaseTy(Info, Result, false) {} 10075 10076 /// Visit an expression which constructs the value of this temporary. 10077 bool VisitConstructExpr(const Expr *E) { 10078 APValue &Value = Info.CurrentCall->createTemporary( 10079 E, E->getType(), ScopeKind::FullExpression, Result); 10080 return EvaluateInPlace(Value, Info, Result, E); 10081 } 10082 10083 bool VisitCastExpr(const CastExpr *E) { 10084 switch (E->getCastKind()) { 10085 default: 10086 return LValueExprEvaluatorBaseTy::VisitCastExpr(E); 10087 10088 case CK_ConstructorConversion: 10089 return VisitConstructExpr(E->getSubExpr()); 10090 } 10091 } 10092 bool VisitInitListExpr(const InitListExpr *E) { 10093 return VisitConstructExpr(E); 10094 } 10095 bool VisitCXXConstructExpr(const CXXConstructExpr *E) { 10096 return VisitConstructExpr(E); 10097 } 10098 bool VisitCallExpr(const CallExpr *E) { 10099 return VisitConstructExpr(E); 10100 } 10101 bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E) { 10102 return VisitConstructExpr(E); 10103 } 10104 bool VisitLambdaExpr(const LambdaExpr *E) { 10105 return VisitConstructExpr(E); 10106 } 10107 }; 10108 } // end anonymous namespace 10109 10110 /// Evaluate an expression of record type as a temporary. 10111 static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info) { 10112 assert(!E->isValueDependent()); 10113 assert(E->isRValue() && E->getType()->isRecordType()); 10114 return TemporaryExprEvaluator(Info, Result).Visit(E); 10115 } 10116 10117 //===----------------------------------------------------------------------===// 10118 // Vector Evaluation 10119 //===----------------------------------------------------------------------===// 10120 10121 namespace { 10122 class VectorExprEvaluator 10123 : public ExprEvaluatorBase<VectorExprEvaluator> { 10124 APValue &Result; 10125 public: 10126 10127 VectorExprEvaluator(EvalInfo &info, APValue &Result) 10128 : ExprEvaluatorBaseTy(info), Result(Result) {} 10129 10130 bool Success(ArrayRef<APValue> V, const Expr *E) { 10131 assert(V.size() == E->getType()->castAs<VectorType>()->getNumElements()); 10132 // FIXME: remove this APValue copy. 10133 Result = APValue(V.data(), V.size()); 10134 return true; 10135 } 10136 bool Success(const APValue &V, const Expr *E) { 10137 assert(V.isVector()); 10138 Result = V; 10139 return true; 10140 } 10141 bool ZeroInitialization(const Expr *E); 10142 10143 bool VisitUnaryReal(const UnaryOperator *E) 10144 { return Visit(E->getSubExpr()); } 10145 bool VisitCastExpr(const CastExpr* E); 10146 bool VisitInitListExpr(const InitListExpr *E); 10147 bool VisitUnaryImag(const UnaryOperator *E); 10148 bool VisitBinaryOperator(const BinaryOperator *E); 10149 // FIXME: Missing: unary -, unary ~, conditional operator (for GNU 10150 // conditional select), shufflevector, ExtVectorElementExpr 10151 }; 10152 } // end anonymous namespace 10153 10154 static bool EvaluateVector(const Expr* E, APValue& Result, EvalInfo &Info) { 10155 assert(E->isRValue() && E->getType()->isVectorType() &&"not a vector rvalue"); 10156 return VectorExprEvaluator(Info, Result).Visit(E); 10157 } 10158 10159 bool VectorExprEvaluator::VisitCastExpr(const CastExpr *E) { 10160 const VectorType *VTy = E->getType()->castAs<VectorType>(); 10161 unsigned NElts = VTy->getNumElements(); 10162 10163 const Expr *SE = E->getSubExpr(); 10164 QualType SETy = SE->getType(); 10165 10166 switch (E->getCastKind()) { 10167 case CK_VectorSplat: { 10168 APValue Val = APValue(); 10169 if (SETy->isIntegerType()) { 10170 APSInt IntResult; 10171 if (!EvaluateInteger(SE, IntResult, Info)) 10172 return false; 10173 Val = APValue(std::move(IntResult)); 10174 } else if (SETy->isRealFloatingType()) { 10175 APFloat FloatResult(0.0); 10176 if (!EvaluateFloat(SE, FloatResult, Info)) 10177 return false; 10178 Val = APValue(std::move(FloatResult)); 10179 } else { 10180 return Error(E); 10181 } 10182 10183 // Splat and create vector APValue. 10184 SmallVector<APValue, 4> Elts(NElts, Val); 10185 return Success(Elts, E); 10186 } 10187 case CK_BitCast: { 10188 // Evaluate the operand into an APInt we can extract from. 10189 llvm::APInt SValInt; 10190 if (!EvalAndBitcastToAPInt(Info, SE, SValInt)) 10191 return false; 10192 // Extract the elements 10193 QualType EltTy = VTy->getElementType(); 10194 unsigned EltSize = Info.Ctx.getTypeSize(EltTy); 10195 bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian(); 10196 SmallVector<APValue, 4> Elts; 10197 if (EltTy->isRealFloatingType()) { 10198 const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(EltTy); 10199 unsigned FloatEltSize = EltSize; 10200 if (&Sem == &APFloat::x87DoubleExtended()) 10201 FloatEltSize = 80; 10202 for (unsigned i = 0; i < NElts; i++) { 10203 llvm::APInt Elt; 10204 if (BigEndian) 10205 Elt = SValInt.rotl(i*EltSize+FloatEltSize).trunc(FloatEltSize); 10206 else 10207 Elt = SValInt.rotr(i*EltSize).trunc(FloatEltSize); 10208 Elts.push_back(APValue(APFloat(Sem, Elt))); 10209 } 10210 } else if (EltTy->isIntegerType()) { 10211 for (unsigned i = 0; i < NElts; i++) { 10212 llvm::APInt Elt; 10213 if (BigEndian) 10214 Elt = SValInt.rotl(i*EltSize+EltSize).zextOrTrunc(EltSize); 10215 else 10216 Elt = SValInt.rotr(i*EltSize).zextOrTrunc(EltSize); 10217 Elts.push_back(APValue(APSInt(Elt, !EltTy->isSignedIntegerType()))); 10218 } 10219 } else { 10220 return Error(E); 10221 } 10222 return Success(Elts, E); 10223 } 10224 default: 10225 return ExprEvaluatorBaseTy::VisitCastExpr(E); 10226 } 10227 } 10228 10229 bool 10230 VectorExprEvaluator::VisitInitListExpr(const InitListExpr *E) { 10231 const VectorType *VT = E->getType()->castAs<VectorType>(); 10232 unsigned NumInits = E->getNumInits(); 10233 unsigned NumElements = VT->getNumElements(); 10234 10235 QualType EltTy = VT->getElementType(); 10236 SmallVector<APValue, 4> Elements; 10237 10238 // The number of initializers can be less than the number of 10239 // vector elements. For OpenCL, this can be due to nested vector 10240 // initialization. For GCC compatibility, missing trailing elements 10241 // should be initialized with zeroes. 10242 unsigned CountInits = 0, CountElts = 0; 10243 while (CountElts < NumElements) { 10244 // Handle nested vector initialization. 10245 if (CountInits < NumInits 10246 && E->getInit(CountInits)->getType()->isVectorType()) { 10247 APValue v; 10248 if (!EvaluateVector(E->getInit(CountInits), v, Info)) 10249 return Error(E); 10250 unsigned vlen = v.getVectorLength(); 10251 for (unsigned j = 0; j < vlen; j++) 10252 Elements.push_back(v.getVectorElt(j)); 10253 CountElts += vlen; 10254 } else if (EltTy->isIntegerType()) { 10255 llvm::APSInt sInt(32); 10256 if (CountInits < NumInits) { 10257 if (!EvaluateInteger(E->getInit(CountInits), sInt, Info)) 10258 return false; 10259 } else // trailing integer zero. 10260 sInt = Info.Ctx.MakeIntValue(0, EltTy); 10261 Elements.push_back(APValue(sInt)); 10262 CountElts++; 10263 } else { 10264 llvm::APFloat f(0.0); 10265 if (CountInits < NumInits) { 10266 if (!EvaluateFloat(E->getInit(CountInits), f, Info)) 10267 return false; 10268 } else // trailing float zero. 10269 f = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy)); 10270 Elements.push_back(APValue(f)); 10271 CountElts++; 10272 } 10273 CountInits++; 10274 } 10275 return Success(Elements, E); 10276 } 10277 10278 bool 10279 VectorExprEvaluator::ZeroInitialization(const Expr *E) { 10280 const auto *VT = E->getType()->castAs<VectorType>(); 10281 QualType EltTy = VT->getElementType(); 10282 APValue ZeroElement; 10283 if (EltTy->isIntegerType()) 10284 ZeroElement = APValue(Info.Ctx.MakeIntValue(0, EltTy)); 10285 else 10286 ZeroElement = 10287 APValue(APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy))); 10288 10289 SmallVector<APValue, 4> Elements(VT->getNumElements(), ZeroElement); 10290 return Success(Elements, E); 10291 } 10292 10293 bool VectorExprEvaluator::VisitUnaryImag(const UnaryOperator *E) { 10294 VisitIgnoredValue(E->getSubExpr()); 10295 return ZeroInitialization(E); 10296 } 10297 10298 bool VectorExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { 10299 BinaryOperatorKind Op = E->getOpcode(); 10300 assert(Op != BO_PtrMemD && Op != BO_PtrMemI && Op != BO_Cmp && 10301 "Operation not supported on vector types"); 10302 10303 if (Op == BO_Comma) 10304 return ExprEvaluatorBaseTy::VisitBinaryOperator(E); 10305 10306 Expr *LHS = E->getLHS(); 10307 Expr *RHS = E->getRHS(); 10308 10309 assert(LHS->getType()->isVectorType() && RHS->getType()->isVectorType() && 10310 "Must both be vector types"); 10311 // Checking JUST the types are the same would be fine, except shifts don't 10312 // need to have their types be the same (since you always shift by an int). 10313 assert(LHS->getType()->castAs<VectorType>()->getNumElements() == 10314 E->getType()->castAs<VectorType>()->getNumElements() && 10315 RHS->getType()->castAs<VectorType>()->getNumElements() == 10316 E->getType()->castAs<VectorType>()->getNumElements() && 10317 "All operands must be the same size."); 10318 10319 APValue LHSValue; 10320 APValue RHSValue; 10321 bool LHSOK = Evaluate(LHSValue, Info, LHS); 10322 if (!LHSOK && !Info.noteFailure()) 10323 return false; 10324 if (!Evaluate(RHSValue, Info, RHS) || !LHSOK) 10325 return false; 10326 10327 if (!handleVectorVectorBinOp(Info, E, Op, LHSValue, RHSValue)) 10328 return false; 10329 10330 return Success(LHSValue, E); 10331 } 10332 10333 //===----------------------------------------------------------------------===// 10334 // Array Evaluation 10335 //===----------------------------------------------------------------------===// 10336 10337 namespace { 10338 class ArrayExprEvaluator 10339 : public ExprEvaluatorBase<ArrayExprEvaluator> { 10340 const LValue &This; 10341 APValue &Result; 10342 public: 10343 10344 ArrayExprEvaluator(EvalInfo &Info, const LValue &This, APValue &Result) 10345 : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {} 10346 10347 bool Success(const APValue &V, const Expr *E) { 10348 assert(V.isArray() && "expected array"); 10349 Result = V; 10350 return true; 10351 } 10352 10353 bool ZeroInitialization(const Expr *E) { 10354 const ConstantArrayType *CAT = 10355 Info.Ctx.getAsConstantArrayType(E->getType()); 10356 if (!CAT) { 10357 if (E->getType()->isIncompleteArrayType()) { 10358 // We can be asked to zero-initialize a flexible array member; this 10359 // is represented as an ImplicitValueInitExpr of incomplete array 10360 // type. In this case, the array has zero elements. 10361 Result = APValue(APValue::UninitArray(), 0, 0); 10362 return true; 10363 } 10364 // FIXME: We could handle VLAs here. 10365 return Error(E); 10366 } 10367 10368 Result = APValue(APValue::UninitArray(), 0, 10369 CAT->getSize().getZExtValue()); 10370 if (!Result.hasArrayFiller()) return true; 10371 10372 // Zero-initialize all elements. 10373 LValue Subobject = This; 10374 Subobject.addArray(Info, E, CAT); 10375 ImplicitValueInitExpr VIE(CAT->getElementType()); 10376 return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject, &VIE); 10377 } 10378 10379 bool VisitCallExpr(const CallExpr *E) { 10380 return handleCallExpr(E, Result, &This); 10381 } 10382 bool VisitInitListExpr(const InitListExpr *E, 10383 QualType AllocType = QualType()); 10384 bool VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E); 10385 bool VisitCXXConstructExpr(const CXXConstructExpr *E); 10386 bool VisitCXXConstructExpr(const CXXConstructExpr *E, 10387 const LValue &Subobject, 10388 APValue *Value, QualType Type); 10389 bool VisitStringLiteral(const StringLiteral *E, 10390 QualType AllocType = QualType()) { 10391 expandStringLiteral(Info, E, Result, AllocType); 10392 return true; 10393 } 10394 }; 10395 } // end anonymous namespace 10396 10397 static bool EvaluateArray(const Expr *E, const LValue &This, 10398 APValue &Result, EvalInfo &Info) { 10399 assert(!E->isValueDependent()); 10400 assert(E->isRValue() && E->getType()->isArrayType() && "not an array rvalue"); 10401 return ArrayExprEvaluator(Info, This, Result).Visit(E); 10402 } 10403 10404 static bool EvaluateArrayNewInitList(EvalInfo &Info, LValue &This, 10405 APValue &Result, const InitListExpr *ILE, 10406 QualType AllocType) { 10407 assert(!ILE->isValueDependent()); 10408 assert(ILE->isRValue() && ILE->getType()->isArrayType() && 10409 "not an array rvalue"); 10410 return ArrayExprEvaluator(Info, This, Result) 10411 .VisitInitListExpr(ILE, AllocType); 10412 } 10413 10414 static bool EvaluateArrayNewConstructExpr(EvalInfo &Info, LValue &This, 10415 APValue &Result, 10416 const CXXConstructExpr *CCE, 10417 QualType AllocType) { 10418 assert(!CCE->isValueDependent()); 10419 assert(CCE->isRValue() && CCE->getType()->isArrayType() && 10420 "not an array rvalue"); 10421 return ArrayExprEvaluator(Info, This, Result) 10422 .VisitCXXConstructExpr(CCE, This, &Result, AllocType); 10423 } 10424 10425 // Return true iff the given array filler may depend on the element index. 10426 static bool MaybeElementDependentArrayFiller(const Expr *FillerExpr) { 10427 // For now, just allow non-class value-initialization and initialization 10428 // lists comprised of them. 10429 if (isa<ImplicitValueInitExpr>(FillerExpr)) 10430 return false; 10431 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(FillerExpr)) { 10432 for (unsigned I = 0, E = ILE->getNumInits(); I != E; ++I) { 10433 if (MaybeElementDependentArrayFiller(ILE->getInit(I))) 10434 return true; 10435 } 10436 return false; 10437 } 10438 return true; 10439 } 10440 10441 bool ArrayExprEvaluator::VisitInitListExpr(const InitListExpr *E, 10442 QualType AllocType) { 10443 const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType( 10444 AllocType.isNull() ? E->getType() : AllocType); 10445 if (!CAT) 10446 return Error(E); 10447 10448 // C++11 [dcl.init.string]p1: A char array [...] can be initialized by [...] 10449 // an appropriately-typed string literal enclosed in braces. 10450 if (E->isStringLiteralInit()) { 10451 auto *SL = dyn_cast<StringLiteral>(E->getInit(0)->IgnoreParens()); 10452 // FIXME: Support ObjCEncodeExpr here once we support it in 10453 // ArrayExprEvaluator generally. 10454 if (!SL) 10455 return Error(E); 10456 return VisitStringLiteral(SL, AllocType); 10457 } 10458 10459 bool Success = true; 10460 10461 assert((!Result.isArray() || Result.getArrayInitializedElts() == 0) && 10462 "zero-initialized array shouldn't have any initialized elts"); 10463 APValue Filler; 10464 if (Result.isArray() && Result.hasArrayFiller()) 10465 Filler = Result.getArrayFiller(); 10466 10467 unsigned NumEltsToInit = E->getNumInits(); 10468 unsigned NumElts = CAT->getSize().getZExtValue(); 10469 const Expr *FillerExpr = E->hasArrayFiller() ? E->getArrayFiller() : nullptr; 10470 10471 // If the initializer might depend on the array index, run it for each 10472 // array element. 10473 if (NumEltsToInit != NumElts && MaybeElementDependentArrayFiller(FillerExpr)) 10474 NumEltsToInit = NumElts; 10475 10476 LLVM_DEBUG(llvm::dbgs() << "The number of elements to initialize: " 10477 << NumEltsToInit << ".\n"); 10478 10479 Result = APValue(APValue::UninitArray(), NumEltsToInit, NumElts); 10480 10481 // If the array was previously zero-initialized, preserve the 10482 // zero-initialized values. 10483 if (Filler.hasValue()) { 10484 for (unsigned I = 0, E = Result.getArrayInitializedElts(); I != E; ++I) 10485 Result.getArrayInitializedElt(I) = Filler; 10486 if (Result.hasArrayFiller()) 10487 Result.getArrayFiller() = Filler; 10488 } 10489 10490 LValue Subobject = This; 10491 Subobject.addArray(Info, E, CAT); 10492 for (unsigned Index = 0; Index != NumEltsToInit; ++Index) { 10493 const Expr *Init = 10494 Index < E->getNumInits() ? E->getInit(Index) : FillerExpr; 10495 if (!EvaluateInPlace(Result.getArrayInitializedElt(Index), 10496 Info, Subobject, Init) || 10497 !HandleLValueArrayAdjustment(Info, Init, Subobject, 10498 CAT->getElementType(), 1)) { 10499 if (!Info.noteFailure()) 10500 return false; 10501 Success = false; 10502 } 10503 } 10504 10505 if (!Result.hasArrayFiller()) 10506 return Success; 10507 10508 // If we get here, we have a trivial filler, which we can just evaluate 10509 // once and splat over the rest of the array elements. 10510 assert(FillerExpr && "no array filler for incomplete init list"); 10511 return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject, 10512 FillerExpr) && Success; 10513 } 10514 10515 bool ArrayExprEvaluator::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E) { 10516 LValue CommonLV; 10517 if (E->getCommonExpr() && 10518 !Evaluate(Info.CurrentCall->createTemporary( 10519 E->getCommonExpr(), 10520 getStorageType(Info.Ctx, E->getCommonExpr()), 10521 ScopeKind::FullExpression, CommonLV), 10522 Info, E->getCommonExpr()->getSourceExpr())) 10523 return false; 10524 10525 auto *CAT = cast<ConstantArrayType>(E->getType()->castAsArrayTypeUnsafe()); 10526 10527 uint64_t Elements = CAT->getSize().getZExtValue(); 10528 Result = APValue(APValue::UninitArray(), Elements, Elements); 10529 10530 LValue Subobject = This; 10531 Subobject.addArray(Info, E, CAT); 10532 10533 bool Success = true; 10534 for (EvalInfo::ArrayInitLoopIndex Index(Info); Index != Elements; ++Index) { 10535 if (!EvaluateInPlace(Result.getArrayInitializedElt(Index), 10536 Info, Subobject, E->getSubExpr()) || 10537 !HandleLValueArrayAdjustment(Info, E, Subobject, 10538 CAT->getElementType(), 1)) { 10539 if (!Info.noteFailure()) 10540 return false; 10541 Success = false; 10542 } 10543 } 10544 10545 return Success; 10546 } 10547 10548 bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) { 10549 return VisitCXXConstructExpr(E, This, &Result, E->getType()); 10550 } 10551 10552 bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E, 10553 const LValue &Subobject, 10554 APValue *Value, 10555 QualType Type) { 10556 bool HadZeroInit = Value->hasValue(); 10557 10558 if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(Type)) { 10559 unsigned N = CAT->getSize().getZExtValue(); 10560 10561 // Preserve the array filler if we had prior zero-initialization. 10562 APValue Filler = 10563 HadZeroInit && Value->hasArrayFiller() ? Value->getArrayFiller() 10564 : APValue(); 10565 10566 *Value = APValue(APValue::UninitArray(), N, N); 10567 10568 if (HadZeroInit) 10569 for (unsigned I = 0; I != N; ++I) 10570 Value->getArrayInitializedElt(I) = Filler; 10571 10572 // Initialize the elements. 10573 LValue ArrayElt = Subobject; 10574 ArrayElt.addArray(Info, E, CAT); 10575 for (unsigned I = 0; I != N; ++I) 10576 if (!VisitCXXConstructExpr(E, ArrayElt, &Value->getArrayInitializedElt(I), 10577 CAT->getElementType()) || 10578 !HandleLValueArrayAdjustment(Info, E, ArrayElt, 10579 CAT->getElementType(), 1)) 10580 return false; 10581 10582 return true; 10583 } 10584 10585 if (!Type->isRecordType()) 10586 return Error(E); 10587 10588 return RecordExprEvaluator(Info, Subobject, *Value) 10589 .VisitCXXConstructExpr(E, Type); 10590 } 10591 10592 //===----------------------------------------------------------------------===// 10593 // Integer Evaluation 10594 // 10595 // As a GNU extension, we support casting pointers to sufficiently-wide integer 10596 // types and back in constant folding. Integer values are thus represented 10597 // either as an integer-valued APValue, or as an lvalue-valued APValue. 10598 //===----------------------------------------------------------------------===// 10599 10600 namespace { 10601 class IntExprEvaluator 10602 : public ExprEvaluatorBase<IntExprEvaluator> { 10603 APValue &Result; 10604 public: 10605 IntExprEvaluator(EvalInfo &info, APValue &result) 10606 : ExprEvaluatorBaseTy(info), Result(result) {} 10607 10608 bool Success(const llvm::APSInt &SI, const Expr *E, APValue &Result) { 10609 assert(E->getType()->isIntegralOrEnumerationType() && 10610 "Invalid evaluation result."); 10611 assert(SI.isSigned() == E->getType()->isSignedIntegerOrEnumerationType() && 10612 "Invalid evaluation result."); 10613 assert(SI.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) && 10614 "Invalid evaluation result."); 10615 Result = APValue(SI); 10616 return true; 10617 } 10618 bool Success(const llvm::APSInt &SI, const Expr *E) { 10619 return Success(SI, E, Result); 10620 } 10621 10622 bool Success(const llvm::APInt &I, const Expr *E, APValue &Result) { 10623 assert(E->getType()->isIntegralOrEnumerationType() && 10624 "Invalid evaluation result."); 10625 assert(I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) && 10626 "Invalid evaluation result."); 10627 Result = APValue(APSInt(I)); 10628 Result.getInt().setIsUnsigned( 10629 E->getType()->isUnsignedIntegerOrEnumerationType()); 10630 return true; 10631 } 10632 bool Success(const llvm::APInt &I, const Expr *E) { 10633 return Success(I, E, Result); 10634 } 10635 10636 bool Success(uint64_t Value, const Expr *E, APValue &Result) { 10637 assert(E->getType()->isIntegralOrEnumerationType() && 10638 "Invalid evaluation result."); 10639 Result = APValue(Info.Ctx.MakeIntValue(Value, E->getType())); 10640 return true; 10641 } 10642 bool Success(uint64_t Value, const Expr *E) { 10643 return Success(Value, E, Result); 10644 } 10645 10646 bool Success(CharUnits Size, const Expr *E) { 10647 return Success(Size.getQuantity(), E); 10648 } 10649 10650 bool Success(const APValue &V, const Expr *E) { 10651 if (V.isLValue() || V.isAddrLabelDiff() || V.isIndeterminate()) { 10652 Result = V; 10653 return true; 10654 } 10655 return Success(V.getInt(), E); 10656 } 10657 10658 bool ZeroInitialization(const Expr *E) { return Success(0, E); } 10659 10660 //===--------------------------------------------------------------------===// 10661 // Visitor Methods 10662 //===--------------------------------------------------------------------===// 10663 10664 bool VisitIntegerLiteral(const IntegerLiteral *E) { 10665 return Success(E->getValue(), E); 10666 } 10667 bool VisitCharacterLiteral(const CharacterLiteral *E) { 10668 return Success(E->getValue(), E); 10669 } 10670 10671 bool CheckReferencedDecl(const Expr *E, const Decl *D); 10672 bool VisitDeclRefExpr(const DeclRefExpr *E) { 10673 if (CheckReferencedDecl(E, E->getDecl())) 10674 return true; 10675 10676 return ExprEvaluatorBaseTy::VisitDeclRefExpr(E); 10677 } 10678 bool VisitMemberExpr(const MemberExpr *E) { 10679 if (CheckReferencedDecl(E, E->getMemberDecl())) { 10680 VisitIgnoredBaseExpression(E->getBase()); 10681 return true; 10682 } 10683 10684 return ExprEvaluatorBaseTy::VisitMemberExpr(E); 10685 } 10686 10687 bool VisitCallExpr(const CallExpr *E); 10688 bool VisitBuiltinCallExpr(const CallExpr *E, unsigned BuiltinOp); 10689 bool VisitBinaryOperator(const BinaryOperator *E); 10690 bool VisitOffsetOfExpr(const OffsetOfExpr *E); 10691 bool VisitUnaryOperator(const UnaryOperator *E); 10692 10693 bool VisitCastExpr(const CastExpr* E); 10694 bool VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E); 10695 10696 bool VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { 10697 return Success(E->getValue(), E); 10698 } 10699 10700 bool VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { 10701 return Success(E->getValue(), E); 10702 } 10703 10704 bool VisitArrayInitIndexExpr(const ArrayInitIndexExpr *E) { 10705 if (Info.ArrayInitIndex == uint64_t(-1)) { 10706 // We were asked to evaluate this subexpression independent of the 10707 // enclosing ArrayInitLoopExpr. We can't do that. 10708 Info.FFDiag(E); 10709 return false; 10710 } 10711 return Success(Info.ArrayInitIndex, E); 10712 } 10713 10714 // Note, GNU defines __null as an integer, not a pointer. 10715 bool VisitGNUNullExpr(const GNUNullExpr *E) { 10716 return ZeroInitialization(E); 10717 } 10718 10719 bool VisitTypeTraitExpr(const TypeTraitExpr *E) { 10720 return Success(E->getValue(), E); 10721 } 10722 10723 bool VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { 10724 return Success(E->getValue(), E); 10725 } 10726 10727 bool VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { 10728 return Success(E->getValue(), E); 10729 } 10730 10731 bool VisitUnaryReal(const UnaryOperator *E); 10732 bool VisitUnaryImag(const UnaryOperator *E); 10733 10734 bool VisitCXXNoexceptExpr(const CXXNoexceptExpr *E); 10735 bool VisitSizeOfPackExpr(const SizeOfPackExpr *E); 10736 bool VisitSourceLocExpr(const SourceLocExpr *E); 10737 bool VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E); 10738 bool VisitRequiresExpr(const RequiresExpr *E); 10739 // FIXME: Missing: array subscript of vector, member of vector 10740 }; 10741 10742 class FixedPointExprEvaluator 10743 : public ExprEvaluatorBase<FixedPointExprEvaluator> { 10744 APValue &Result; 10745 10746 public: 10747 FixedPointExprEvaluator(EvalInfo &info, APValue &result) 10748 : ExprEvaluatorBaseTy(info), Result(result) {} 10749 10750 bool Success(const llvm::APInt &I, const Expr *E) { 10751 return Success( 10752 APFixedPoint(I, Info.Ctx.getFixedPointSemantics(E->getType())), E); 10753 } 10754 10755 bool Success(uint64_t Value, const Expr *E) { 10756 return Success( 10757 APFixedPoint(Value, Info.Ctx.getFixedPointSemantics(E->getType())), E); 10758 } 10759 10760 bool Success(const APValue &V, const Expr *E) { 10761 return Success(V.getFixedPoint(), E); 10762 } 10763 10764 bool Success(const APFixedPoint &V, const Expr *E) { 10765 assert(E->getType()->isFixedPointType() && "Invalid evaluation result."); 10766 assert(V.getWidth() == Info.Ctx.getIntWidth(E->getType()) && 10767 "Invalid evaluation result."); 10768 Result = APValue(V); 10769 return true; 10770 } 10771 10772 //===--------------------------------------------------------------------===// 10773 // Visitor Methods 10774 //===--------------------------------------------------------------------===// 10775 10776 bool VisitFixedPointLiteral(const FixedPointLiteral *E) { 10777 return Success(E->getValue(), E); 10778 } 10779 10780 bool VisitCastExpr(const CastExpr *E); 10781 bool VisitUnaryOperator(const UnaryOperator *E); 10782 bool VisitBinaryOperator(const BinaryOperator *E); 10783 }; 10784 } // end anonymous namespace 10785 10786 /// EvaluateIntegerOrLValue - Evaluate an rvalue integral-typed expression, and 10787 /// produce either the integer value or a pointer. 10788 /// 10789 /// GCC has a heinous extension which folds casts between pointer types and 10790 /// pointer-sized integral types. We support this by allowing the evaluation of 10791 /// an integer rvalue to produce a pointer (represented as an lvalue) instead. 10792 /// Some simple arithmetic on such values is supported (they are treated much 10793 /// like char*). 10794 static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result, 10795 EvalInfo &Info) { 10796 assert(!E->isValueDependent()); 10797 assert(E->isRValue() && E->getType()->isIntegralOrEnumerationType()); 10798 return IntExprEvaluator(Info, Result).Visit(E); 10799 } 10800 10801 static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info) { 10802 assert(!E->isValueDependent()); 10803 APValue Val; 10804 if (!EvaluateIntegerOrLValue(E, Val, Info)) 10805 return false; 10806 if (!Val.isInt()) { 10807 // FIXME: It would be better to produce the diagnostic for casting 10808 // a pointer to an integer. 10809 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); 10810 return false; 10811 } 10812 Result = Val.getInt(); 10813 return true; 10814 } 10815 10816 bool IntExprEvaluator::VisitSourceLocExpr(const SourceLocExpr *E) { 10817 APValue Evaluated = E->EvaluateInContext( 10818 Info.Ctx, Info.CurrentCall->CurSourceLocExprScope.getDefaultExpr()); 10819 return Success(Evaluated, E); 10820 } 10821 10822 static bool EvaluateFixedPoint(const Expr *E, APFixedPoint &Result, 10823 EvalInfo &Info) { 10824 assert(!E->isValueDependent()); 10825 if (E->getType()->isFixedPointType()) { 10826 APValue Val; 10827 if (!FixedPointExprEvaluator(Info, Val).Visit(E)) 10828 return false; 10829 if (!Val.isFixedPoint()) 10830 return false; 10831 10832 Result = Val.getFixedPoint(); 10833 return true; 10834 } 10835 return false; 10836 } 10837 10838 static bool EvaluateFixedPointOrInteger(const Expr *E, APFixedPoint &Result, 10839 EvalInfo &Info) { 10840 assert(!E->isValueDependent()); 10841 if (E->getType()->isIntegerType()) { 10842 auto FXSema = Info.Ctx.getFixedPointSemantics(E->getType()); 10843 APSInt Val; 10844 if (!EvaluateInteger(E, Val, Info)) 10845 return false; 10846 Result = APFixedPoint(Val, FXSema); 10847 return true; 10848 } else if (E->getType()->isFixedPointType()) { 10849 return EvaluateFixedPoint(E, Result, Info); 10850 } 10851 return false; 10852 } 10853 10854 /// Check whether the given declaration can be directly converted to an integral 10855 /// rvalue. If not, no diagnostic is produced; there are other things we can 10856 /// try. 10857 bool IntExprEvaluator::CheckReferencedDecl(const Expr* E, const Decl* D) { 10858 // Enums are integer constant exprs. 10859 if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D)) { 10860 // Check for signedness/width mismatches between E type and ECD value. 10861 bool SameSign = (ECD->getInitVal().isSigned() 10862 == E->getType()->isSignedIntegerOrEnumerationType()); 10863 bool SameWidth = (ECD->getInitVal().getBitWidth() 10864 == Info.Ctx.getIntWidth(E->getType())); 10865 if (SameSign && SameWidth) 10866 return Success(ECD->getInitVal(), E); 10867 else { 10868 // Get rid of mismatch (otherwise Success assertions will fail) 10869 // by computing a new value matching the type of E. 10870 llvm::APSInt Val = ECD->getInitVal(); 10871 if (!SameSign) 10872 Val.setIsSigned(!ECD->getInitVal().isSigned()); 10873 if (!SameWidth) 10874 Val = Val.extOrTrunc(Info.Ctx.getIntWidth(E->getType())); 10875 return Success(Val, E); 10876 } 10877 } 10878 return false; 10879 } 10880 10881 /// Values returned by __builtin_classify_type, chosen to match the values 10882 /// produced by GCC's builtin. 10883 enum class GCCTypeClass { 10884 None = -1, 10885 Void = 0, 10886 Integer = 1, 10887 // GCC reserves 2 for character types, but instead classifies them as 10888 // integers. 10889 Enum = 3, 10890 Bool = 4, 10891 Pointer = 5, 10892 // GCC reserves 6 for references, but appears to never use it (because 10893 // expressions never have reference type, presumably). 10894 PointerToDataMember = 7, 10895 RealFloat = 8, 10896 Complex = 9, 10897 // GCC reserves 10 for functions, but does not use it since GCC version 6 due 10898 // to decay to pointer. (Prior to version 6 it was only used in C++ mode). 10899 // GCC claims to reserve 11 for pointers to member functions, but *actually* 10900 // uses 12 for that purpose, same as for a class or struct. Maybe it 10901 // internally implements a pointer to member as a struct? Who knows. 10902 PointerToMemberFunction = 12, // Not a bug, see above. 10903 ClassOrStruct = 12, 10904 Union = 13, 10905 // GCC reserves 14 for arrays, but does not use it since GCC version 6 due to 10906 // decay to pointer. (Prior to version 6 it was only used in C++ mode). 10907 // GCC reserves 15 for strings, but actually uses 5 (pointer) for string 10908 // literals. 10909 }; 10910 10911 /// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way 10912 /// as GCC. 10913 static GCCTypeClass 10914 EvaluateBuiltinClassifyType(QualType T, const LangOptions &LangOpts) { 10915 assert(!T->isDependentType() && "unexpected dependent type"); 10916 10917 QualType CanTy = T.getCanonicalType(); 10918 const BuiltinType *BT = dyn_cast<BuiltinType>(CanTy); 10919 10920 switch (CanTy->getTypeClass()) { 10921 #define TYPE(ID, BASE) 10922 #define DEPENDENT_TYPE(ID, BASE) case Type::ID: 10923 #define NON_CANONICAL_TYPE(ID, BASE) case Type::ID: 10924 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(ID, BASE) case Type::ID: 10925 #include "clang/AST/TypeNodes.inc" 10926 case Type::Auto: 10927 case Type::DeducedTemplateSpecialization: 10928 llvm_unreachable("unexpected non-canonical or dependent type"); 10929 10930 case Type::Builtin: 10931 switch (BT->getKind()) { 10932 #define BUILTIN_TYPE(ID, SINGLETON_ID) 10933 #define SIGNED_TYPE(ID, SINGLETON_ID) \ 10934 case BuiltinType::ID: return GCCTypeClass::Integer; 10935 #define FLOATING_TYPE(ID, SINGLETON_ID) \ 10936 case BuiltinType::ID: return GCCTypeClass::RealFloat; 10937 #define PLACEHOLDER_TYPE(ID, SINGLETON_ID) \ 10938 case BuiltinType::ID: break; 10939 #include "clang/AST/BuiltinTypes.def" 10940 case BuiltinType::Void: 10941 return GCCTypeClass::Void; 10942 10943 case BuiltinType::Bool: 10944 return GCCTypeClass::Bool; 10945 10946 case BuiltinType::Char_U: 10947 case BuiltinType::UChar: 10948 case BuiltinType::WChar_U: 10949 case BuiltinType::Char8: 10950 case BuiltinType::Char16: 10951 case BuiltinType::Char32: 10952 case BuiltinType::UShort: 10953 case BuiltinType::UInt: 10954 case BuiltinType::ULong: 10955 case BuiltinType::ULongLong: 10956 case BuiltinType::UInt128: 10957 return GCCTypeClass::Integer; 10958 10959 case BuiltinType::UShortAccum: 10960 case BuiltinType::UAccum: 10961 case BuiltinType::ULongAccum: 10962 case BuiltinType::UShortFract: 10963 case BuiltinType::UFract: 10964 case BuiltinType::ULongFract: 10965 case BuiltinType::SatUShortAccum: 10966 case BuiltinType::SatUAccum: 10967 case BuiltinType::SatULongAccum: 10968 case BuiltinType::SatUShortFract: 10969 case BuiltinType::SatUFract: 10970 case BuiltinType::SatULongFract: 10971 return GCCTypeClass::None; 10972 10973 case BuiltinType::NullPtr: 10974 10975 case BuiltinType::ObjCId: 10976 case BuiltinType::ObjCClass: 10977 case BuiltinType::ObjCSel: 10978 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ 10979 case BuiltinType::Id: 10980 #include "clang/Basic/OpenCLImageTypes.def" 10981 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ 10982 case BuiltinType::Id: 10983 #include "clang/Basic/OpenCLExtensionTypes.def" 10984 case BuiltinType::OCLSampler: 10985 case BuiltinType::OCLEvent: 10986 case BuiltinType::OCLClkEvent: 10987 case BuiltinType::OCLQueue: 10988 case BuiltinType::OCLReserveID: 10989 #define SVE_TYPE(Name, Id, SingletonId) \ 10990 case BuiltinType::Id: 10991 #include "clang/Basic/AArch64SVEACLETypes.def" 10992 #define PPC_VECTOR_TYPE(Name, Id, Size) \ 10993 case BuiltinType::Id: 10994 #include "clang/Basic/PPCTypes.def" 10995 #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id: 10996 #include "clang/Basic/RISCVVTypes.def" 10997 return GCCTypeClass::None; 10998 10999 case BuiltinType::Dependent: 11000 llvm_unreachable("unexpected dependent type"); 11001 }; 11002 llvm_unreachable("unexpected placeholder type"); 11003 11004 case Type::Enum: 11005 return LangOpts.CPlusPlus ? GCCTypeClass::Enum : GCCTypeClass::Integer; 11006 11007 case Type::Pointer: 11008 case Type::ConstantArray: 11009 case Type::VariableArray: 11010 case Type::IncompleteArray: 11011 case Type::FunctionNoProto: 11012 case Type::FunctionProto: 11013 return GCCTypeClass::Pointer; 11014 11015 case Type::MemberPointer: 11016 return CanTy->isMemberDataPointerType() 11017 ? GCCTypeClass::PointerToDataMember 11018 : GCCTypeClass::PointerToMemberFunction; 11019 11020 case Type::Complex: 11021 return GCCTypeClass::Complex; 11022 11023 case Type::Record: 11024 return CanTy->isUnionType() ? GCCTypeClass::Union 11025 : GCCTypeClass::ClassOrStruct; 11026 11027 case Type::Atomic: 11028 // GCC classifies _Atomic T the same as T. 11029 return EvaluateBuiltinClassifyType( 11030 CanTy->castAs<AtomicType>()->getValueType(), LangOpts); 11031 11032 case Type::BlockPointer: 11033 case Type::Vector: 11034 case Type::ExtVector: 11035 case Type::ConstantMatrix: 11036 case Type::ObjCObject: 11037 case Type::ObjCInterface: 11038 case Type::ObjCObjectPointer: 11039 case Type::Pipe: 11040 case Type::ExtInt: 11041 // GCC classifies vectors as None. We follow its lead and classify all 11042 // other types that don't fit into the regular classification the same way. 11043 return GCCTypeClass::None; 11044 11045 case Type::LValueReference: 11046 case Type::RValueReference: 11047 llvm_unreachable("invalid type for expression"); 11048 } 11049 11050 llvm_unreachable("unexpected type class"); 11051 } 11052 11053 /// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way 11054 /// as GCC. 11055 static GCCTypeClass 11056 EvaluateBuiltinClassifyType(const CallExpr *E, const LangOptions &LangOpts) { 11057 // If no argument was supplied, default to None. This isn't 11058 // ideal, however it is what gcc does. 11059 if (E->getNumArgs() == 0) 11060 return GCCTypeClass::None; 11061 11062 // FIXME: Bizarrely, GCC treats a call with more than one argument as not 11063 // being an ICE, but still folds it to a constant using the type of the first 11064 // argument. 11065 return EvaluateBuiltinClassifyType(E->getArg(0)->getType(), LangOpts); 11066 } 11067 11068 /// EvaluateBuiltinConstantPForLValue - Determine the result of 11069 /// __builtin_constant_p when applied to the given pointer. 11070 /// 11071 /// A pointer is only "constant" if it is null (or a pointer cast to integer) 11072 /// or it points to the first character of a string literal. 11073 static bool EvaluateBuiltinConstantPForLValue(const APValue &LV) { 11074 APValue::LValueBase Base = LV.getLValueBase(); 11075 if (Base.isNull()) { 11076 // A null base is acceptable. 11077 return true; 11078 } else if (const Expr *E = Base.dyn_cast<const Expr *>()) { 11079 if (!isa<StringLiteral>(E)) 11080 return false; 11081 return LV.getLValueOffset().isZero(); 11082 } else if (Base.is<TypeInfoLValue>()) { 11083 // Surprisingly, GCC considers __builtin_constant_p(&typeid(int)) to 11084 // evaluate to true. 11085 return true; 11086 } else { 11087 // Any other base is not constant enough for GCC. 11088 return false; 11089 } 11090 } 11091 11092 /// EvaluateBuiltinConstantP - Evaluate __builtin_constant_p as similarly to 11093 /// GCC as we can manage. 11094 static bool EvaluateBuiltinConstantP(EvalInfo &Info, const Expr *Arg) { 11095 // This evaluation is not permitted to have side-effects, so evaluate it in 11096 // a speculative evaluation context. 11097 SpeculativeEvaluationRAII SpeculativeEval(Info); 11098 11099 // Constant-folding is always enabled for the operand of __builtin_constant_p 11100 // (even when the enclosing evaluation context otherwise requires a strict 11101 // language-specific constant expression). 11102 FoldConstant Fold(Info, true); 11103 11104 QualType ArgType = Arg->getType(); 11105 11106 // __builtin_constant_p always has one operand. The rules which gcc follows 11107 // are not precisely documented, but are as follows: 11108 // 11109 // - If the operand is of integral, floating, complex or enumeration type, 11110 // and can be folded to a known value of that type, it returns 1. 11111 // - If the operand can be folded to a pointer to the first character 11112 // of a string literal (or such a pointer cast to an integral type) 11113 // or to a null pointer or an integer cast to a pointer, it returns 1. 11114 // 11115 // Otherwise, it returns 0. 11116 // 11117 // FIXME: GCC also intends to return 1 for literals of aggregate types, but 11118 // its support for this did not work prior to GCC 9 and is not yet well 11119 // understood. 11120 if (ArgType->isIntegralOrEnumerationType() || ArgType->isFloatingType() || 11121 ArgType->isAnyComplexType() || ArgType->isPointerType() || 11122 ArgType->isNullPtrType()) { 11123 APValue V; 11124 if (!::EvaluateAsRValue(Info, Arg, V) || Info.EvalStatus.HasSideEffects) { 11125 Fold.keepDiagnostics(); 11126 return false; 11127 } 11128 11129 // For a pointer (possibly cast to integer), there are special rules. 11130 if (V.getKind() == APValue::LValue) 11131 return EvaluateBuiltinConstantPForLValue(V); 11132 11133 // Otherwise, any constant value is good enough. 11134 return V.hasValue(); 11135 } 11136 11137 // Anything else isn't considered to be sufficiently constant. 11138 return false; 11139 } 11140 11141 /// Retrieves the "underlying object type" of the given expression, 11142 /// as used by __builtin_object_size. 11143 static QualType getObjectType(APValue::LValueBase B) { 11144 if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) { 11145 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 11146 return VD->getType(); 11147 } else if (const Expr *E = B.dyn_cast<const Expr*>()) { 11148 if (isa<CompoundLiteralExpr>(E)) 11149 return E->getType(); 11150 } else if (B.is<TypeInfoLValue>()) { 11151 return B.getTypeInfoType(); 11152 } else if (B.is<DynamicAllocLValue>()) { 11153 return B.getDynamicAllocType(); 11154 } 11155 11156 return QualType(); 11157 } 11158 11159 /// A more selective version of E->IgnoreParenCasts for 11160 /// tryEvaluateBuiltinObjectSize. This ignores some casts/parens that serve only 11161 /// to change the type of E. 11162 /// Ex. For E = `(short*)((char*)(&foo))`, returns `&foo` 11163 /// 11164 /// Always returns an RValue with a pointer representation. 11165 static const Expr *ignorePointerCastsAndParens(const Expr *E) { 11166 assert(E->isRValue() && E->getType()->hasPointerRepresentation()); 11167 11168 auto *NoParens = E->IgnoreParens(); 11169 auto *Cast = dyn_cast<CastExpr>(NoParens); 11170 if (Cast == nullptr) 11171 return NoParens; 11172 11173 // We only conservatively allow a few kinds of casts, because this code is 11174 // inherently a simple solution that seeks to support the common case. 11175 auto CastKind = Cast->getCastKind(); 11176 if (CastKind != CK_NoOp && CastKind != CK_BitCast && 11177 CastKind != CK_AddressSpaceConversion) 11178 return NoParens; 11179 11180 auto *SubExpr = Cast->getSubExpr(); 11181 if (!SubExpr->getType()->hasPointerRepresentation() || !SubExpr->isRValue()) 11182 return NoParens; 11183 return ignorePointerCastsAndParens(SubExpr); 11184 } 11185 11186 /// Checks to see if the given LValue's Designator is at the end of the LValue's 11187 /// record layout. e.g. 11188 /// struct { struct { int a, b; } fst, snd; } obj; 11189 /// obj.fst // no 11190 /// obj.snd // yes 11191 /// obj.fst.a // no 11192 /// obj.fst.b // no 11193 /// obj.snd.a // no 11194 /// obj.snd.b // yes 11195 /// 11196 /// Please note: this function is specialized for how __builtin_object_size 11197 /// views "objects". 11198 /// 11199 /// If this encounters an invalid RecordDecl or otherwise cannot determine the 11200 /// correct result, it will always return true. 11201 static bool isDesignatorAtObjectEnd(const ASTContext &Ctx, const LValue &LVal) { 11202 assert(!LVal.Designator.Invalid); 11203 11204 auto IsLastOrInvalidFieldDecl = [&Ctx](const FieldDecl *FD, bool &Invalid) { 11205 const RecordDecl *Parent = FD->getParent(); 11206 Invalid = Parent->isInvalidDecl(); 11207 if (Invalid || Parent->isUnion()) 11208 return true; 11209 const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(Parent); 11210 return FD->getFieldIndex() + 1 == Layout.getFieldCount(); 11211 }; 11212 11213 auto &Base = LVal.getLValueBase(); 11214 if (auto *ME = dyn_cast_or_null<MemberExpr>(Base.dyn_cast<const Expr *>())) { 11215 if (auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 11216 bool Invalid; 11217 if (!IsLastOrInvalidFieldDecl(FD, Invalid)) 11218 return Invalid; 11219 } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(ME->getMemberDecl())) { 11220 for (auto *FD : IFD->chain()) { 11221 bool Invalid; 11222 if (!IsLastOrInvalidFieldDecl(cast<FieldDecl>(FD), Invalid)) 11223 return Invalid; 11224 } 11225 } 11226 } 11227 11228 unsigned I = 0; 11229 QualType BaseType = getType(Base); 11230 if (LVal.Designator.FirstEntryIsAnUnsizedArray) { 11231 // If we don't know the array bound, conservatively assume we're looking at 11232 // the final array element. 11233 ++I; 11234 if (BaseType->isIncompleteArrayType()) 11235 BaseType = Ctx.getAsArrayType(BaseType)->getElementType(); 11236 else 11237 BaseType = BaseType->castAs<PointerType>()->getPointeeType(); 11238 } 11239 11240 for (unsigned E = LVal.Designator.Entries.size(); I != E; ++I) { 11241 const auto &Entry = LVal.Designator.Entries[I]; 11242 if (BaseType->isArrayType()) { 11243 // Because __builtin_object_size treats arrays as objects, we can ignore 11244 // the index iff this is the last array in the Designator. 11245 if (I + 1 == E) 11246 return true; 11247 const auto *CAT = cast<ConstantArrayType>(Ctx.getAsArrayType(BaseType)); 11248 uint64_t Index = Entry.getAsArrayIndex(); 11249 if (Index + 1 != CAT->getSize()) 11250 return false; 11251 BaseType = CAT->getElementType(); 11252 } else if (BaseType->isAnyComplexType()) { 11253 const auto *CT = BaseType->castAs<ComplexType>(); 11254 uint64_t Index = Entry.getAsArrayIndex(); 11255 if (Index != 1) 11256 return false; 11257 BaseType = CT->getElementType(); 11258 } else if (auto *FD = getAsField(Entry)) { 11259 bool Invalid; 11260 if (!IsLastOrInvalidFieldDecl(FD, Invalid)) 11261 return Invalid; 11262 BaseType = FD->getType(); 11263 } else { 11264 assert(getAsBaseClass(Entry) && "Expecting cast to a base class"); 11265 return false; 11266 } 11267 } 11268 return true; 11269 } 11270 11271 /// Tests to see if the LValue has a user-specified designator (that isn't 11272 /// necessarily valid). Note that this always returns 'true' if the LValue has 11273 /// an unsized array as its first designator entry, because there's currently no 11274 /// way to tell if the user typed *foo or foo[0]. 11275 static bool refersToCompleteObject(const LValue &LVal) { 11276 if (LVal.Designator.Invalid) 11277 return false; 11278 11279 if (!LVal.Designator.Entries.empty()) 11280 return LVal.Designator.isMostDerivedAnUnsizedArray(); 11281 11282 if (!LVal.InvalidBase) 11283 return true; 11284 11285 // If `E` is a MemberExpr, then the first part of the designator is hiding in 11286 // the LValueBase. 11287 const auto *E = LVal.Base.dyn_cast<const Expr *>(); 11288 return !E || !isa<MemberExpr>(E); 11289 } 11290 11291 /// Attempts to detect a user writing into a piece of memory that's impossible 11292 /// to figure out the size of by just using types. 11293 static bool isUserWritingOffTheEnd(const ASTContext &Ctx, const LValue &LVal) { 11294 const SubobjectDesignator &Designator = LVal.Designator; 11295 // Notes: 11296 // - Users can only write off of the end when we have an invalid base. Invalid 11297 // bases imply we don't know where the memory came from. 11298 // - We used to be a bit more aggressive here; we'd only be conservative if 11299 // the array at the end was flexible, or if it had 0 or 1 elements. This 11300 // broke some common standard library extensions (PR30346), but was 11301 // otherwise seemingly fine. It may be useful to reintroduce this behavior 11302 // with some sort of list. OTOH, it seems that GCC is always 11303 // conservative with the last element in structs (if it's an array), so our 11304 // current behavior is more compatible than an explicit list approach would 11305 // be. 11306 return LVal.InvalidBase && 11307 Designator.Entries.size() == Designator.MostDerivedPathLength && 11308 Designator.MostDerivedIsArrayElement && 11309 isDesignatorAtObjectEnd(Ctx, LVal); 11310 } 11311 11312 /// Converts the given APInt to CharUnits, assuming the APInt is unsigned. 11313 /// Fails if the conversion would cause loss of precision. 11314 static bool convertUnsignedAPIntToCharUnits(const llvm::APInt &Int, 11315 CharUnits &Result) { 11316 auto CharUnitsMax = std::numeric_limits<CharUnits::QuantityType>::max(); 11317 if (Int.ugt(CharUnitsMax)) 11318 return false; 11319 Result = CharUnits::fromQuantity(Int.getZExtValue()); 11320 return true; 11321 } 11322 11323 /// Helper for tryEvaluateBuiltinObjectSize -- Given an LValue, this will 11324 /// determine how many bytes exist from the beginning of the object to either 11325 /// the end of the current subobject, or the end of the object itself, depending 11326 /// on what the LValue looks like + the value of Type. 11327 /// 11328 /// If this returns false, the value of Result is undefined. 11329 static bool determineEndOffset(EvalInfo &Info, SourceLocation ExprLoc, 11330 unsigned Type, const LValue &LVal, 11331 CharUnits &EndOffset) { 11332 bool DetermineForCompleteObject = refersToCompleteObject(LVal); 11333 11334 auto CheckedHandleSizeof = [&](QualType Ty, CharUnits &Result) { 11335 if (Ty.isNull() || Ty->isIncompleteType() || Ty->isFunctionType()) 11336 return false; 11337 return HandleSizeof(Info, ExprLoc, Ty, Result); 11338 }; 11339 11340 // We want to evaluate the size of the entire object. This is a valid fallback 11341 // for when Type=1 and the designator is invalid, because we're asked for an 11342 // upper-bound. 11343 if (!(Type & 1) || LVal.Designator.Invalid || DetermineForCompleteObject) { 11344 // Type=3 wants a lower bound, so we can't fall back to this. 11345 if (Type == 3 && !DetermineForCompleteObject) 11346 return false; 11347 11348 llvm::APInt APEndOffset; 11349 if (isBaseAnAllocSizeCall(LVal.getLValueBase()) && 11350 getBytesReturnedByAllocSizeCall(Info.Ctx, LVal, APEndOffset)) 11351 return convertUnsignedAPIntToCharUnits(APEndOffset, EndOffset); 11352 11353 if (LVal.InvalidBase) 11354 return false; 11355 11356 QualType BaseTy = getObjectType(LVal.getLValueBase()); 11357 return CheckedHandleSizeof(BaseTy, EndOffset); 11358 } 11359 11360 // We want to evaluate the size of a subobject. 11361 const SubobjectDesignator &Designator = LVal.Designator; 11362 11363 // The following is a moderately common idiom in C: 11364 // 11365 // struct Foo { int a; char c[1]; }; 11366 // struct Foo *F = (struct Foo *)malloc(sizeof(struct Foo) + strlen(Bar)); 11367 // strcpy(&F->c[0], Bar); 11368 // 11369 // In order to not break too much legacy code, we need to support it. 11370 if (isUserWritingOffTheEnd(Info.Ctx, LVal)) { 11371 // If we can resolve this to an alloc_size call, we can hand that back, 11372 // because we know for certain how many bytes there are to write to. 11373 llvm::APInt APEndOffset; 11374 if (isBaseAnAllocSizeCall(LVal.getLValueBase()) && 11375 getBytesReturnedByAllocSizeCall(Info.Ctx, LVal, APEndOffset)) 11376 return convertUnsignedAPIntToCharUnits(APEndOffset, EndOffset); 11377 11378 // If we cannot determine the size of the initial allocation, then we can't 11379 // given an accurate upper-bound. However, we are still able to give 11380 // conservative lower-bounds for Type=3. 11381 if (Type == 1) 11382 return false; 11383 } 11384 11385 CharUnits BytesPerElem; 11386 if (!CheckedHandleSizeof(Designator.MostDerivedType, BytesPerElem)) 11387 return false; 11388 11389 // According to the GCC documentation, we want the size of the subobject 11390 // denoted by the pointer. But that's not quite right -- what we actually 11391 // want is the size of the immediately-enclosing array, if there is one. 11392 int64_t ElemsRemaining; 11393 if (Designator.MostDerivedIsArrayElement && 11394 Designator.Entries.size() == Designator.MostDerivedPathLength) { 11395 uint64_t ArraySize = Designator.getMostDerivedArraySize(); 11396 uint64_t ArrayIndex = Designator.Entries.back().getAsArrayIndex(); 11397 ElemsRemaining = ArraySize <= ArrayIndex ? 0 : ArraySize - ArrayIndex; 11398 } else { 11399 ElemsRemaining = Designator.isOnePastTheEnd() ? 0 : 1; 11400 } 11401 11402 EndOffset = LVal.getLValueOffset() + BytesPerElem * ElemsRemaining; 11403 return true; 11404 } 11405 11406 /// Tries to evaluate the __builtin_object_size for @p E. If successful, 11407 /// returns true and stores the result in @p Size. 11408 /// 11409 /// If @p WasError is non-null, this will report whether the failure to evaluate 11410 /// is to be treated as an Error in IntExprEvaluator. 11411 static bool tryEvaluateBuiltinObjectSize(const Expr *E, unsigned Type, 11412 EvalInfo &Info, uint64_t &Size) { 11413 // Determine the denoted object. 11414 LValue LVal; 11415 { 11416 // The operand of __builtin_object_size is never evaluated for side-effects. 11417 // If there are any, but we can determine the pointed-to object anyway, then 11418 // ignore the side-effects. 11419 SpeculativeEvaluationRAII SpeculativeEval(Info); 11420 IgnoreSideEffectsRAII Fold(Info); 11421 11422 if (E->isGLValue()) { 11423 // It's possible for us to be given GLValues if we're called via 11424 // Expr::tryEvaluateObjectSize. 11425 APValue RVal; 11426 if (!EvaluateAsRValue(Info, E, RVal)) 11427 return false; 11428 LVal.setFrom(Info.Ctx, RVal); 11429 } else if (!EvaluatePointer(ignorePointerCastsAndParens(E), LVal, Info, 11430 /*InvalidBaseOK=*/true)) 11431 return false; 11432 } 11433 11434 // If we point to before the start of the object, there are no accessible 11435 // bytes. 11436 if (LVal.getLValueOffset().isNegative()) { 11437 Size = 0; 11438 return true; 11439 } 11440 11441 CharUnits EndOffset; 11442 if (!determineEndOffset(Info, E->getExprLoc(), Type, LVal, EndOffset)) 11443 return false; 11444 11445 // If we've fallen outside of the end offset, just pretend there's nothing to 11446 // write to/read from. 11447 if (EndOffset <= LVal.getLValueOffset()) 11448 Size = 0; 11449 else 11450 Size = (EndOffset - LVal.getLValueOffset()).getQuantity(); 11451 return true; 11452 } 11453 11454 bool IntExprEvaluator::VisitCallExpr(const CallExpr *E) { 11455 if (unsigned BuiltinOp = E->getBuiltinCallee()) 11456 return VisitBuiltinCallExpr(E, BuiltinOp); 11457 11458 return ExprEvaluatorBaseTy::VisitCallExpr(E); 11459 } 11460 11461 static bool getBuiltinAlignArguments(const CallExpr *E, EvalInfo &Info, 11462 APValue &Val, APSInt &Alignment) { 11463 QualType SrcTy = E->getArg(0)->getType(); 11464 if (!getAlignmentArgument(E->getArg(1), SrcTy, Info, Alignment)) 11465 return false; 11466 // Even though we are evaluating integer expressions we could get a pointer 11467 // argument for the __builtin_is_aligned() case. 11468 if (SrcTy->isPointerType()) { 11469 LValue Ptr; 11470 if (!EvaluatePointer(E->getArg(0), Ptr, Info)) 11471 return false; 11472 Ptr.moveInto(Val); 11473 } else if (!SrcTy->isIntegralOrEnumerationType()) { 11474 Info.FFDiag(E->getArg(0)); 11475 return false; 11476 } else { 11477 APSInt SrcInt; 11478 if (!EvaluateInteger(E->getArg(0), SrcInt, Info)) 11479 return false; 11480 assert(SrcInt.getBitWidth() >= Alignment.getBitWidth() && 11481 "Bit widths must be the same"); 11482 Val = APValue(SrcInt); 11483 } 11484 assert(Val.hasValue()); 11485 return true; 11486 } 11487 11488 bool IntExprEvaluator::VisitBuiltinCallExpr(const CallExpr *E, 11489 unsigned BuiltinOp) { 11490 switch (BuiltinOp) { 11491 default: 11492 return ExprEvaluatorBaseTy::VisitCallExpr(E); 11493 11494 case Builtin::BI__builtin_dynamic_object_size: 11495 case Builtin::BI__builtin_object_size: { 11496 // The type was checked when we built the expression. 11497 unsigned Type = 11498 E->getArg(1)->EvaluateKnownConstInt(Info.Ctx).getZExtValue(); 11499 assert(Type <= 3 && "unexpected type"); 11500 11501 uint64_t Size; 11502 if (tryEvaluateBuiltinObjectSize(E->getArg(0), Type, Info, Size)) 11503 return Success(Size, E); 11504 11505 if (E->getArg(0)->HasSideEffects(Info.Ctx)) 11506 return Success((Type & 2) ? 0 : -1, E); 11507 11508 // Expression had no side effects, but we couldn't statically determine the 11509 // size of the referenced object. 11510 switch (Info.EvalMode) { 11511 case EvalInfo::EM_ConstantExpression: 11512 case EvalInfo::EM_ConstantFold: 11513 case EvalInfo::EM_IgnoreSideEffects: 11514 // Leave it to IR generation. 11515 return Error(E); 11516 case EvalInfo::EM_ConstantExpressionUnevaluated: 11517 // Reduce it to a constant now. 11518 return Success((Type & 2) ? 0 : -1, E); 11519 } 11520 11521 llvm_unreachable("unexpected EvalMode"); 11522 } 11523 11524 case Builtin::BI__builtin_os_log_format_buffer_size: { 11525 analyze_os_log::OSLogBufferLayout Layout; 11526 analyze_os_log::computeOSLogBufferLayout(Info.Ctx, E, Layout); 11527 return Success(Layout.size().getQuantity(), E); 11528 } 11529 11530 case Builtin::BI__builtin_is_aligned: { 11531 APValue Src; 11532 APSInt Alignment; 11533 if (!getBuiltinAlignArguments(E, Info, Src, Alignment)) 11534 return false; 11535 if (Src.isLValue()) { 11536 // If we evaluated a pointer, check the minimum known alignment. 11537 LValue Ptr; 11538 Ptr.setFrom(Info.Ctx, Src); 11539 CharUnits BaseAlignment = getBaseAlignment(Info, Ptr); 11540 CharUnits PtrAlign = BaseAlignment.alignmentAtOffset(Ptr.Offset); 11541 // We can return true if the known alignment at the computed offset is 11542 // greater than the requested alignment. 11543 assert(PtrAlign.isPowerOfTwo()); 11544 assert(Alignment.isPowerOf2()); 11545 if (PtrAlign.getQuantity() >= Alignment) 11546 return Success(1, E); 11547 // If the alignment is not known to be sufficient, some cases could still 11548 // be aligned at run time. However, if the requested alignment is less or 11549 // equal to the base alignment and the offset is not aligned, we know that 11550 // the run-time value can never be aligned. 11551 if (BaseAlignment.getQuantity() >= Alignment && 11552 PtrAlign.getQuantity() < Alignment) 11553 return Success(0, E); 11554 // Otherwise we can't infer whether the value is sufficiently aligned. 11555 // TODO: __builtin_is_aligned(__builtin_align_{down,up{(expr, N), N) 11556 // in cases where we can't fully evaluate the pointer. 11557 Info.FFDiag(E->getArg(0), diag::note_constexpr_alignment_compute) 11558 << Alignment; 11559 return false; 11560 } 11561 assert(Src.isInt()); 11562 return Success((Src.getInt() & (Alignment - 1)) == 0 ? 1 : 0, E); 11563 } 11564 case Builtin::BI__builtin_align_up: { 11565 APValue Src; 11566 APSInt Alignment; 11567 if (!getBuiltinAlignArguments(E, Info, Src, Alignment)) 11568 return false; 11569 if (!Src.isInt()) 11570 return Error(E); 11571 APSInt AlignedVal = 11572 APSInt((Src.getInt() + (Alignment - 1)) & ~(Alignment - 1), 11573 Src.getInt().isUnsigned()); 11574 assert(AlignedVal.getBitWidth() == Src.getInt().getBitWidth()); 11575 return Success(AlignedVal, E); 11576 } 11577 case Builtin::BI__builtin_align_down: { 11578 APValue Src; 11579 APSInt Alignment; 11580 if (!getBuiltinAlignArguments(E, Info, Src, Alignment)) 11581 return false; 11582 if (!Src.isInt()) 11583 return Error(E); 11584 APSInt AlignedVal = 11585 APSInt(Src.getInt() & ~(Alignment - 1), Src.getInt().isUnsigned()); 11586 assert(AlignedVal.getBitWidth() == Src.getInt().getBitWidth()); 11587 return Success(AlignedVal, E); 11588 } 11589 11590 case Builtin::BI__builtin_bitreverse8: 11591 case Builtin::BI__builtin_bitreverse16: 11592 case Builtin::BI__builtin_bitreverse32: 11593 case Builtin::BI__builtin_bitreverse64: { 11594 APSInt Val; 11595 if (!EvaluateInteger(E->getArg(0), Val, Info)) 11596 return false; 11597 11598 return Success(Val.reverseBits(), E); 11599 } 11600 11601 case Builtin::BI__builtin_bswap16: 11602 case Builtin::BI__builtin_bswap32: 11603 case Builtin::BI__builtin_bswap64: { 11604 APSInt Val; 11605 if (!EvaluateInteger(E->getArg(0), Val, Info)) 11606 return false; 11607 11608 return Success(Val.byteSwap(), E); 11609 } 11610 11611 case Builtin::BI__builtin_classify_type: 11612 return Success((int)EvaluateBuiltinClassifyType(E, Info.getLangOpts()), E); 11613 11614 case Builtin::BI__builtin_clrsb: 11615 case Builtin::BI__builtin_clrsbl: 11616 case Builtin::BI__builtin_clrsbll: { 11617 APSInt Val; 11618 if (!EvaluateInteger(E->getArg(0), Val, Info)) 11619 return false; 11620 11621 return Success(Val.getBitWidth() - Val.getMinSignedBits(), E); 11622 } 11623 11624 case Builtin::BI__builtin_clz: 11625 case Builtin::BI__builtin_clzl: 11626 case Builtin::BI__builtin_clzll: 11627 case Builtin::BI__builtin_clzs: { 11628 APSInt Val; 11629 if (!EvaluateInteger(E->getArg(0), Val, Info)) 11630 return false; 11631 if (!Val) 11632 return Error(E); 11633 11634 return Success(Val.countLeadingZeros(), E); 11635 } 11636 11637 case Builtin::BI__builtin_constant_p: { 11638 const Expr *Arg = E->getArg(0); 11639 if (EvaluateBuiltinConstantP(Info, Arg)) 11640 return Success(true, E); 11641 if (Info.InConstantContext || Arg->HasSideEffects(Info.Ctx)) { 11642 // Outside a constant context, eagerly evaluate to false in the presence 11643 // of side-effects in order to avoid -Wunsequenced false-positives in 11644 // a branch on __builtin_constant_p(expr). 11645 return Success(false, E); 11646 } 11647 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); 11648 return false; 11649 } 11650 11651 case Builtin::BI__builtin_is_constant_evaluated: { 11652 const auto *Callee = Info.CurrentCall->getCallee(); 11653 if (Info.InConstantContext && !Info.CheckingPotentialConstantExpression && 11654 (Info.CallStackDepth == 1 || 11655 (Info.CallStackDepth == 2 && Callee->isInStdNamespace() && 11656 Callee->getIdentifier() && 11657 Callee->getIdentifier()->isStr("is_constant_evaluated")))) { 11658 // FIXME: Find a better way to avoid duplicated diagnostics. 11659 if (Info.EvalStatus.Diag) 11660 Info.report((Info.CallStackDepth == 1) ? E->getExprLoc() 11661 : Info.CurrentCall->CallLoc, 11662 diag::warn_is_constant_evaluated_always_true_constexpr) 11663 << (Info.CallStackDepth == 1 ? "__builtin_is_constant_evaluated" 11664 : "std::is_constant_evaluated"); 11665 } 11666 11667 return Success(Info.InConstantContext, E); 11668 } 11669 11670 case Builtin::BI__builtin_ctz: 11671 case Builtin::BI__builtin_ctzl: 11672 case Builtin::BI__builtin_ctzll: 11673 case Builtin::BI__builtin_ctzs: { 11674 APSInt Val; 11675 if (!EvaluateInteger(E->getArg(0), Val, Info)) 11676 return false; 11677 if (!Val) 11678 return Error(E); 11679 11680 return Success(Val.countTrailingZeros(), E); 11681 } 11682 11683 case Builtin::BI__builtin_eh_return_data_regno: { 11684 int Operand = E->getArg(0)->EvaluateKnownConstInt(Info.Ctx).getZExtValue(); 11685 Operand = Info.Ctx.getTargetInfo().getEHDataRegisterNumber(Operand); 11686 return Success(Operand, E); 11687 } 11688 11689 case Builtin::BI__builtin_expect: 11690 case Builtin::BI__builtin_expect_with_probability: 11691 return Visit(E->getArg(0)); 11692 11693 case Builtin::BI__builtin_ffs: 11694 case Builtin::BI__builtin_ffsl: 11695 case Builtin::BI__builtin_ffsll: { 11696 APSInt Val; 11697 if (!EvaluateInteger(E->getArg(0), Val, Info)) 11698 return false; 11699 11700 unsigned N = Val.countTrailingZeros(); 11701 return Success(N == Val.getBitWidth() ? 0 : N + 1, E); 11702 } 11703 11704 case Builtin::BI__builtin_fpclassify: { 11705 APFloat Val(0.0); 11706 if (!EvaluateFloat(E->getArg(5), Val, Info)) 11707 return false; 11708 unsigned Arg; 11709 switch (Val.getCategory()) { 11710 case APFloat::fcNaN: Arg = 0; break; 11711 case APFloat::fcInfinity: Arg = 1; break; 11712 case APFloat::fcNormal: Arg = Val.isDenormal() ? 3 : 2; break; 11713 case APFloat::fcZero: Arg = 4; break; 11714 } 11715 return Visit(E->getArg(Arg)); 11716 } 11717 11718 case Builtin::BI__builtin_isinf_sign: { 11719 APFloat Val(0.0); 11720 return EvaluateFloat(E->getArg(0), Val, Info) && 11721 Success(Val.isInfinity() ? (Val.isNegative() ? -1 : 1) : 0, E); 11722 } 11723 11724 case Builtin::BI__builtin_isinf: { 11725 APFloat Val(0.0); 11726 return EvaluateFloat(E->getArg(0), Val, Info) && 11727 Success(Val.isInfinity() ? 1 : 0, E); 11728 } 11729 11730 case Builtin::BI__builtin_isfinite: { 11731 APFloat Val(0.0); 11732 return EvaluateFloat(E->getArg(0), Val, Info) && 11733 Success(Val.isFinite() ? 1 : 0, E); 11734 } 11735 11736 case Builtin::BI__builtin_isnan: { 11737 APFloat Val(0.0); 11738 return EvaluateFloat(E->getArg(0), Val, Info) && 11739 Success(Val.isNaN() ? 1 : 0, E); 11740 } 11741 11742 case Builtin::BI__builtin_isnormal: { 11743 APFloat Val(0.0); 11744 return EvaluateFloat(E->getArg(0), Val, Info) && 11745 Success(Val.isNormal() ? 1 : 0, E); 11746 } 11747 11748 case Builtin::BI__builtin_parity: 11749 case Builtin::BI__builtin_parityl: 11750 case Builtin::BI__builtin_parityll: { 11751 APSInt Val; 11752 if (!EvaluateInteger(E->getArg(0), Val, Info)) 11753 return false; 11754 11755 return Success(Val.countPopulation() % 2, E); 11756 } 11757 11758 case Builtin::BI__builtin_popcount: 11759 case Builtin::BI__builtin_popcountl: 11760 case Builtin::BI__builtin_popcountll: { 11761 APSInt Val; 11762 if (!EvaluateInteger(E->getArg(0), Val, Info)) 11763 return false; 11764 11765 return Success(Val.countPopulation(), E); 11766 } 11767 11768 case Builtin::BI__builtin_rotateleft8: 11769 case Builtin::BI__builtin_rotateleft16: 11770 case Builtin::BI__builtin_rotateleft32: 11771 case Builtin::BI__builtin_rotateleft64: 11772 case Builtin::BI_rotl8: // Microsoft variants of rotate right 11773 case Builtin::BI_rotl16: 11774 case Builtin::BI_rotl: 11775 case Builtin::BI_lrotl: 11776 case Builtin::BI_rotl64: { 11777 APSInt Val, Amt; 11778 if (!EvaluateInteger(E->getArg(0), Val, Info) || 11779 !EvaluateInteger(E->getArg(1), Amt, Info)) 11780 return false; 11781 11782 return Success(Val.rotl(Amt.urem(Val.getBitWidth())), E); 11783 } 11784 11785 case Builtin::BI__builtin_rotateright8: 11786 case Builtin::BI__builtin_rotateright16: 11787 case Builtin::BI__builtin_rotateright32: 11788 case Builtin::BI__builtin_rotateright64: 11789 case Builtin::BI_rotr8: // Microsoft variants of rotate right 11790 case Builtin::BI_rotr16: 11791 case Builtin::BI_rotr: 11792 case Builtin::BI_lrotr: 11793 case Builtin::BI_rotr64: { 11794 APSInt Val, Amt; 11795 if (!EvaluateInteger(E->getArg(0), Val, Info) || 11796 !EvaluateInteger(E->getArg(1), Amt, Info)) 11797 return false; 11798 11799 return Success(Val.rotr(Amt.urem(Val.getBitWidth())), E); 11800 } 11801 11802 case Builtin::BIstrlen: 11803 case Builtin::BIwcslen: 11804 // A call to strlen is not a constant expression. 11805 if (Info.getLangOpts().CPlusPlus11) 11806 Info.CCEDiag(E, diag::note_constexpr_invalid_function) 11807 << /*isConstexpr*/0 << /*isConstructor*/0 11808 << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'"); 11809 else 11810 Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr); 11811 LLVM_FALLTHROUGH; 11812 case Builtin::BI__builtin_strlen: 11813 case Builtin::BI__builtin_wcslen: { 11814 // As an extension, we support __builtin_strlen() as a constant expression, 11815 // and support folding strlen() to a constant. 11816 LValue String; 11817 if (!EvaluatePointer(E->getArg(0), String, Info)) 11818 return false; 11819 11820 QualType CharTy = E->getArg(0)->getType()->getPointeeType(); 11821 11822 // Fast path: if it's a string literal, search the string value. 11823 if (const StringLiteral *S = dyn_cast_or_null<StringLiteral>( 11824 String.getLValueBase().dyn_cast<const Expr *>())) { 11825 // The string literal may have embedded null characters. Find the first 11826 // one and truncate there. 11827 StringRef Str = S->getBytes(); 11828 int64_t Off = String.Offset.getQuantity(); 11829 if (Off >= 0 && (uint64_t)Off <= (uint64_t)Str.size() && 11830 S->getCharByteWidth() == 1 && 11831 // FIXME: Add fast-path for wchar_t too. 11832 Info.Ctx.hasSameUnqualifiedType(CharTy, Info.Ctx.CharTy)) { 11833 Str = Str.substr(Off); 11834 11835 StringRef::size_type Pos = Str.find(0); 11836 if (Pos != StringRef::npos) 11837 Str = Str.substr(0, Pos); 11838 11839 return Success(Str.size(), E); 11840 } 11841 11842 // Fall through to slow path to issue appropriate diagnostic. 11843 } 11844 11845 // Slow path: scan the bytes of the string looking for the terminating 0. 11846 for (uint64_t Strlen = 0; /**/; ++Strlen) { 11847 APValue Char; 11848 if (!handleLValueToRValueConversion(Info, E, CharTy, String, Char) || 11849 !Char.isInt()) 11850 return false; 11851 if (!Char.getInt()) 11852 return Success(Strlen, E); 11853 if (!HandleLValueArrayAdjustment(Info, E, String, CharTy, 1)) 11854 return false; 11855 } 11856 } 11857 11858 case Builtin::BIstrcmp: 11859 case Builtin::BIwcscmp: 11860 case Builtin::BIstrncmp: 11861 case Builtin::BIwcsncmp: 11862 case Builtin::BImemcmp: 11863 case Builtin::BIbcmp: 11864 case Builtin::BIwmemcmp: 11865 // A call to strlen is not a constant expression. 11866 if (Info.getLangOpts().CPlusPlus11) 11867 Info.CCEDiag(E, diag::note_constexpr_invalid_function) 11868 << /*isConstexpr*/0 << /*isConstructor*/0 11869 << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'"); 11870 else 11871 Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr); 11872 LLVM_FALLTHROUGH; 11873 case Builtin::BI__builtin_strcmp: 11874 case Builtin::BI__builtin_wcscmp: 11875 case Builtin::BI__builtin_strncmp: 11876 case Builtin::BI__builtin_wcsncmp: 11877 case Builtin::BI__builtin_memcmp: 11878 case Builtin::BI__builtin_bcmp: 11879 case Builtin::BI__builtin_wmemcmp: { 11880 LValue String1, String2; 11881 if (!EvaluatePointer(E->getArg(0), String1, Info) || 11882 !EvaluatePointer(E->getArg(1), String2, Info)) 11883 return false; 11884 11885 uint64_t MaxLength = uint64_t(-1); 11886 if (BuiltinOp != Builtin::BIstrcmp && 11887 BuiltinOp != Builtin::BIwcscmp && 11888 BuiltinOp != Builtin::BI__builtin_strcmp && 11889 BuiltinOp != Builtin::BI__builtin_wcscmp) { 11890 APSInt N; 11891 if (!EvaluateInteger(E->getArg(2), N, Info)) 11892 return false; 11893 MaxLength = N.getExtValue(); 11894 } 11895 11896 // Empty substrings compare equal by definition. 11897 if (MaxLength == 0u) 11898 return Success(0, E); 11899 11900 if (!String1.checkNullPointerForFoldAccess(Info, E, AK_Read) || 11901 !String2.checkNullPointerForFoldAccess(Info, E, AK_Read) || 11902 String1.Designator.Invalid || String2.Designator.Invalid) 11903 return false; 11904 11905 QualType CharTy1 = String1.Designator.getType(Info.Ctx); 11906 QualType CharTy2 = String2.Designator.getType(Info.Ctx); 11907 11908 bool IsRawByte = BuiltinOp == Builtin::BImemcmp || 11909 BuiltinOp == Builtin::BIbcmp || 11910 BuiltinOp == Builtin::BI__builtin_memcmp || 11911 BuiltinOp == Builtin::BI__builtin_bcmp; 11912 11913 assert(IsRawByte || 11914 (Info.Ctx.hasSameUnqualifiedType( 11915 CharTy1, E->getArg(0)->getType()->getPointeeType()) && 11916 Info.Ctx.hasSameUnqualifiedType(CharTy1, CharTy2))); 11917 11918 // For memcmp, allow comparing any arrays of '[[un]signed] char' or 11919 // 'char8_t', but no other types. 11920 if (IsRawByte && 11921 !(isOneByteCharacterType(CharTy1) && isOneByteCharacterType(CharTy2))) { 11922 // FIXME: Consider using our bit_cast implementation to support this. 11923 Info.FFDiag(E, diag::note_constexpr_memcmp_unsupported) 11924 << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'") 11925 << CharTy1 << CharTy2; 11926 return false; 11927 } 11928 11929 const auto &ReadCurElems = [&](APValue &Char1, APValue &Char2) { 11930 return handleLValueToRValueConversion(Info, E, CharTy1, String1, Char1) && 11931 handleLValueToRValueConversion(Info, E, CharTy2, String2, Char2) && 11932 Char1.isInt() && Char2.isInt(); 11933 }; 11934 const auto &AdvanceElems = [&] { 11935 return HandleLValueArrayAdjustment(Info, E, String1, CharTy1, 1) && 11936 HandleLValueArrayAdjustment(Info, E, String2, CharTy2, 1); 11937 }; 11938 11939 bool StopAtNull = 11940 (BuiltinOp != Builtin::BImemcmp && BuiltinOp != Builtin::BIbcmp && 11941 BuiltinOp != Builtin::BIwmemcmp && 11942 BuiltinOp != Builtin::BI__builtin_memcmp && 11943 BuiltinOp != Builtin::BI__builtin_bcmp && 11944 BuiltinOp != Builtin::BI__builtin_wmemcmp); 11945 bool IsWide = BuiltinOp == Builtin::BIwcscmp || 11946 BuiltinOp == Builtin::BIwcsncmp || 11947 BuiltinOp == Builtin::BIwmemcmp || 11948 BuiltinOp == Builtin::BI__builtin_wcscmp || 11949 BuiltinOp == Builtin::BI__builtin_wcsncmp || 11950 BuiltinOp == Builtin::BI__builtin_wmemcmp; 11951 11952 for (; MaxLength; --MaxLength) { 11953 APValue Char1, Char2; 11954 if (!ReadCurElems(Char1, Char2)) 11955 return false; 11956 if (Char1.getInt().ne(Char2.getInt())) { 11957 if (IsWide) // wmemcmp compares with wchar_t signedness. 11958 return Success(Char1.getInt() < Char2.getInt() ? -1 : 1, E); 11959 // memcmp always compares unsigned chars. 11960 return Success(Char1.getInt().ult(Char2.getInt()) ? -1 : 1, E); 11961 } 11962 if (StopAtNull && !Char1.getInt()) 11963 return Success(0, E); 11964 assert(!(StopAtNull && !Char2.getInt())); 11965 if (!AdvanceElems()) 11966 return false; 11967 } 11968 // We hit the strncmp / memcmp limit. 11969 return Success(0, E); 11970 } 11971 11972 case Builtin::BI__atomic_always_lock_free: 11973 case Builtin::BI__atomic_is_lock_free: 11974 case Builtin::BI__c11_atomic_is_lock_free: { 11975 APSInt SizeVal; 11976 if (!EvaluateInteger(E->getArg(0), SizeVal, Info)) 11977 return false; 11978 11979 // For __atomic_is_lock_free(sizeof(_Atomic(T))), if the size is a power 11980 // of two less than or equal to the maximum inline atomic width, we know it 11981 // is lock-free. If the size isn't a power of two, or greater than the 11982 // maximum alignment where we promote atomics, we know it is not lock-free 11983 // (at least not in the sense of atomic_is_lock_free). Otherwise, 11984 // the answer can only be determined at runtime; for example, 16-byte 11985 // atomics have lock-free implementations on some, but not all, 11986 // x86-64 processors. 11987 11988 // Check power-of-two. 11989 CharUnits Size = CharUnits::fromQuantity(SizeVal.getZExtValue()); 11990 if (Size.isPowerOfTwo()) { 11991 // Check against inlining width. 11992 unsigned InlineWidthBits = 11993 Info.Ctx.getTargetInfo().getMaxAtomicInlineWidth(); 11994 if (Size <= Info.Ctx.toCharUnitsFromBits(InlineWidthBits)) { 11995 if (BuiltinOp == Builtin::BI__c11_atomic_is_lock_free || 11996 Size == CharUnits::One() || 11997 E->getArg(1)->isNullPointerConstant(Info.Ctx, 11998 Expr::NPC_NeverValueDependent)) 11999 // OK, we will inline appropriately-aligned operations of this size, 12000 // and _Atomic(T) is appropriately-aligned. 12001 return Success(1, E); 12002 12003 QualType PointeeType = E->getArg(1)->IgnoreImpCasts()->getType()-> 12004 castAs<PointerType>()->getPointeeType(); 12005 if (!PointeeType->isIncompleteType() && 12006 Info.Ctx.getTypeAlignInChars(PointeeType) >= Size) { 12007 // OK, we will inline operations on this object. 12008 return Success(1, E); 12009 } 12010 } 12011 } 12012 12013 return BuiltinOp == Builtin::BI__atomic_always_lock_free ? 12014 Success(0, E) : Error(E); 12015 } 12016 case Builtin::BI__builtin_add_overflow: 12017 case Builtin::BI__builtin_sub_overflow: 12018 case Builtin::BI__builtin_mul_overflow: 12019 case Builtin::BI__builtin_sadd_overflow: 12020 case Builtin::BI__builtin_uadd_overflow: 12021 case Builtin::BI__builtin_uaddl_overflow: 12022 case Builtin::BI__builtin_uaddll_overflow: 12023 case Builtin::BI__builtin_usub_overflow: 12024 case Builtin::BI__builtin_usubl_overflow: 12025 case Builtin::BI__builtin_usubll_overflow: 12026 case Builtin::BI__builtin_umul_overflow: 12027 case Builtin::BI__builtin_umull_overflow: 12028 case Builtin::BI__builtin_umulll_overflow: 12029 case Builtin::BI__builtin_saddl_overflow: 12030 case Builtin::BI__builtin_saddll_overflow: 12031 case Builtin::BI__builtin_ssub_overflow: 12032 case Builtin::BI__builtin_ssubl_overflow: 12033 case Builtin::BI__builtin_ssubll_overflow: 12034 case Builtin::BI__builtin_smul_overflow: 12035 case Builtin::BI__builtin_smull_overflow: 12036 case Builtin::BI__builtin_smulll_overflow: { 12037 LValue ResultLValue; 12038 APSInt LHS, RHS; 12039 12040 QualType ResultType = E->getArg(2)->getType()->getPointeeType(); 12041 if (!EvaluateInteger(E->getArg(0), LHS, Info) || 12042 !EvaluateInteger(E->getArg(1), RHS, Info) || 12043 !EvaluatePointer(E->getArg(2), ResultLValue, Info)) 12044 return false; 12045 12046 APSInt Result; 12047 bool DidOverflow = false; 12048 12049 // If the types don't have to match, enlarge all 3 to the largest of them. 12050 if (BuiltinOp == Builtin::BI__builtin_add_overflow || 12051 BuiltinOp == Builtin::BI__builtin_sub_overflow || 12052 BuiltinOp == Builtin::BI__builtin_mul_overflow) { 12053 bool IsSigned = LHS.isSigned() || RHS.isSigned() || 12054 ResultType->isSignedIntegerOrEnumerationType(); 12055 bool AllSigned = LHS.isSigned() && RHS.isSigned() && 12056 ResultType->isSignedIntegerOrEnumerationType(); 12057 uint64_t LHSSize = LHS.getBitWidth(); 12058 uint64_t RHSSize = RHS.getBitWidth(); 12059 uint64_t ResultSize = Info.Ctx.getTypeSize(ResultType); 12060 uint64_t MaxBits = std::max(std::max(LHSSize, RHSSize), ResultSize); 12061 12062 // Add an additional bit if the signedness isn't uniformly agreed to. We 12063 // could do this ONLY if there is a signed and an unsigned that both have 12064 // MaxBits, but the code to check that is pretty nasty. The issue will be 12065 // caught in the shrink-to-result later anyway. 12066 if (IsSigned && !AllSigned) 12067 ++MaxBits; 12068 12069 LHS = APSInt(LHS.extOrTrunc(MaxBits), !IsSigned); 12070 RHS = APSInt(RHS.extOrTrunc(MaxBits), !IsSigned); 12071 Result = APSInt(MaxBits, !IsSigned); 12072 } 12073 12074 // Find largest int. 12075 switch (BuiltinOp) { 12076 default: 12077 llvm_unreachable("Invalid value for BuiltinOp"); 12078 case Builtin::BI__builtin_add_overflow: 12079 case Builtin::BI__builtin_sadd_overflow: 12080 case Builtin::BI__builtin_saddl_overflow: 12081 case Builtin::BI__builtin_saddll_overflow: 12082 case Builtin::BI__builtin_uadd_overflow: 12083 case Builtin::BI__builtin_uaddl_overflow: 12084 case Builtin::BI__builtin_uaddll_overflow: 12085 Result = LHS.isSigned() ? LHS.sadd_ov(RHS, DidOverflow) 12086 : LHS.uadd_ov(RHS, DidOverflow); 12087 break; 12088 case Builtin::BI__builtin_sub_overflow: 12089 case Builtin::BI__builtin_ssub_overflow: 12090 case Builtin::BI__builtin_ssubl_overflow: 12091 case Builtin::BI__builtin_ssubll_overflow: 12092 case Builtin::BI__builtin_usub_overflow: 12093 case Builtin::BI__builtin_usubl_overflow: 12094 case Builtin::BI__builtin_usubll_overflow: 12095 Result = LHS.isSigned() ? LHS.ssub_ov(RHS, DidOverflow) 12096 : LHS.usub_ov(RHS, DidOverflow); 12097 break; 12098 case Builtin::BI__builtin_mul_overflow: 12099 case Builtin::BI__builtin_smul_overflow: 12100 case Builtin::BI__builtin_smull_overflow: 12101 case Builtin::BI__builtin_smulll_overflow: 12102 case Builtin::BI__builtin_umul_overflow: 12103 case Builtin::BI__builtin_umull_overflow: 12104 case Builtin::BI__builtin_umulll_overflow: 12105 Result = LHS.isSigned() ? LHS.smul_ov(RHS, DidOverflow) 12106 : LHS.umul_ov(RHS, DidOverflow); 12107 break; 12108 } 12109 12110 // In the case where multiple sizes are allowed, truncate and see if 12111 // the values are the same. 12112 if (BuiltinOp == Builtin::BI__builtin_add_overflow || 12113 BuiltinOp == Builtin::BI__builtin_sub_overflow || 12114 BuiltinOp == Builtin::BI__builtin_mul_overflow) { 12115 // APSInt doesn't have a TruncOrSelf, so we use extOrTrunc instead, 12116 // since it will give us the behavior of a TruncOrSelf in the case where 12117 // its parameter <= its size. We previously set Result to be at least the 12118 // type-size of the result, so getTypeSize(ResultType) <= Result.BitWidth 12119 // will work exactly like TruncOrSelf. 12120 APSInt Temp = Result.extOrTrunc(Info.Ctx.getTypeSize(ResultType)); 12121 Temp.setIsSigned(ResultType->isSignedIntegerOrEnumerationType()); 12122 12123 if (!APSInt::isSameValue(Temp, Result)) 12124 DidOverflow = true; 12125 Result = Temp; 12126 } 12127 12128 APValue APV{Result}; 12129 if (!handleAssignment(Info, E, ResultLValue, ResultType, APV)) 12130 return false; 12131 return Success(DidOverflow, E); 12132 } 12133 } 12134 } 12135 12136 /// Determine whether this is a pointer past the end of the complete 12137 /// object referred to by the lvalue. 12138 static bool isOnePastTheEndOfCompleteObject(const ASTContext &Ctx, 12139 const LValue &LV) { 12140 // A null pointer can be viewed as being "past the end" but we don't 12141 // choose to look at it that way here. 12142 if (!LV.getLValueBase()) 12143 return false; 12144 12145 // If the designator is valid and refers to a subobject, we're not pointing 12146 // past the end. 12147 if (!LV.getLValueDesignator().Invalid && 12148 !LV.getLValueDesignator().isOnePastTheEnd()) 12149 return false; 12150 12151 // A pointer to an incomplete type might be past-the-end if the type's size is 12152 // zero. We cannot tell because the type is incomplete. 12153 QualType Ty = getType(LV.getLValueBase()); 12154 if (Ty->isIncompleteType()) 12155 return true; 12156 12157 // We're a past-the-end pointer if we point to the byte after the object, 12158 // no matter what our type or path is. 12159 auto Size = Ctx.getTypeSizeInChars(Ty); 12160 return LV.getLValueOffset() == Size; 12161 } 12162 12163 namespace { 12164 12165 /// Data recursive integer evaluator of certain binary operators. 12166 /// 12167 /// We use a data recursive algorithm for binary operators so that we are able 12168 /// to handle extreme cases of chained binary operators without causing stack 12169 /// overflow. 12170 class DataRecursiveIntBinOpEvaluator { 12171 struct EvalResult { 12172 APValue Val; 12173 bool Failed; 12174 12175 EvalResult() : Failed(false) { } 12176 12177 void swap(EvalResult &RHS) { 12178 Val.swap(RHS.Val); 12179 Failed = RHS.Failed; 12180 RHS.Failed = false; 12181 } 12182 }; 12183 12184 struct Job { 12185 const Expr *E; 12186 EvalResult LHSResult; // meaningful only for binary operator expression. 12187 enum { AnyExprKind, BinOpKind, BinOpVisitedLHSKind } Kind; 12188 12189 Job() = default; 12190 Job(Job &&) = default; 12191 12192 void startSpeculativeEval(EvalInfo &Info) { 12193 SpecEvalRAII = SpeculativeEvaluationRAII(Info); 12194 } 12195 12196 private: 12197 SpeculativeEvaluationRAII SpecEvalRAII; 12198 }; 12199 12200 SmallVector<Job, 16> Queue; 12201 12202 IntExprEvaluator &IntEval; 12203 EvalInfo &Info; 12204 APValue &FinalResult; 12205 12206 public: 12207 DataRecursiveIntBinOpEvaluator(IntExprEvaluator &IntEval, APValue &Result) 12208 : IntEval(IntEval), Info(IntEval.getEvalInfo()), FinalResult(Result) { } 12209 12210 /// True if \param E is a binary operator that we are going to handle 12211 /// data recursively. 12212 /// We handle binary operators that are comma, logical, or that have operands 12213 /// with integral or enumeration type. 12214 static bool shouldEnqueue(const BinaryOperator *E) { 12215 return E->getOpcode() == BO_Comma || E->isLogicalOp() || 12216 (E->isRValue() && E->getType()->isIntegralOrEnumerationType() && 12217 E->getLHS()->getType()->isIntegralOrEnumerationType() && 12218 E->getRHS()->getType()->isIntegralOrEnumerationType()); 12219 } 12220 12221 bool Traverse(const BinaryOperator *E) { 12222 enqueue(E); 12223 EvalResult PrevResult; 12224 while (!Queue.empty()) 12225 process(PrevResult); 12226 12227 if (PrevResult.Failed) return false; 12228 12229 FinalResult.swap(PrevResult.Val); 12230 return true; 12231 } 12232 12233 private: 12234 bool Success(uint64_t Value, const Expr *E, APValue &Result) { 12235 return IntEval.Success(Value, E, Result); 12236 } 12237 bool Success(const APSInt &Value, const Expr *E, APValue &Result) { 12238 return IntEval.Success(Value, E, Result); 12239 } 12240 bool Error(const Expr *E) { 12241 return IntEval.Error(E); 12242 } 12243 bool Error(const Expr *E, diag::kind D) { 12244 return IntEval.Error(E, D); 12245 } 12246 12247 OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) { 12248 return Info.CCEDiag(E, D); 12249 } 12250 12251 // Returns true if visiting the RHS is necessary, false otherwise. 12252 bool VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E, 12253 bool &SuppressRHSDiags); 12254 12255 bool VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult, 12256 const BinaryOperator *E, APValue &Result); 12257 12258 void EvaluateExpr(const Expr *E, EvalResult &Result) { 12259 Result.Failed = !Evaluate(Result.Val, Info, E); 12260 if (Result.Failed) 12261 Result.Val = APValue(); 12262 } 12263 12264 void process(EvalResult &Result); 12265 12266 void enqueue(const Expr *E) { 12267 E = E->IgnoreParens(); 12268 Queue.resize(Queue.size()+1); 12269 Queue.back().E = E; 12270 Queue.back().Kind = Job::AnyExprKind; 12271 } 12272 }; 12273 12274 } 12275 12276 bool DataRecursiveIntBinOpEvaluator:: 12277 VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E, 12278 bool &SuppressRHSDiags) { 12279 if (E->getOpcode() == BO_Comma) { 12280 // Ignore LHS but note if we could not evaluate it. 12281 if (LHSResult.Failed) 12282 return Info.noteSideEffect(); 12283 return true; 12284 } 12285 12286 if (E->isLogicalOp()) { 12287 bool LHSAsBool; 12288 if (!LHSResult.Failed && HandleConversionToBool(LHSResult.Val, LHSAsBool)) { 12289 // We were able to evaluate the LHS, see if we can get away with not 12290 // evaluating the RHS: 0 && X -> 0, 1 || X -> 1 12291 if (LHSAsBool == (E->getOpcode() == BO_LOr)) { 12292 Success(LHSAsBool, E, LHSResult.Val); 12293 return false; // Ignore RHS 12294 } 12295 } else { 12296 LHSResult.Failed = true; 12297 12298 // Since we weren't able to evaluate the left hand side, it 12299 // might have had side effects. 12300 if (!Info.noteSideEffect()) 12301 return false; 12302 12303 // We can't evaluate the LHS; however, sometimes the result 12304 // is determined by the RHS: X && 0 -> 0, X || 1 -> 1. 12305 // Don't ignore RHS and suppress diagnostics from this arm. 12306 SuppressRHSDiags = true; 12307 } 12308 12309 return true; 12310 } 12311 12312 assert(E->getLHS()->getType()->isIntegralOrEnumerationType() && 12313 E->getRHS()->getType()->isIntegralOrEnumerationType()); 12314 12315 if (LHSResult.Failed && !Info.noteFailure()) 12316 return false; // Ignore RHS; 12317 12318 return true; 12319 } 12320 12321 static void addOrSubLValueAsInteger(APValue &LVal, const APSInt &Index, 12322 bool IsSub) { 12323 // Compute the new offset in the appropriate width, wrapping at 64 bits. 12324 // FIXME: When compiling for a 32-bit target, we should use 32-bit 12325 // offsets. 12326 assert(!LVal.hasLValuePath() && "have designator for integer lvalue"); 12327 CharUnits &Offset = LVal.getLValueOffset(); 12328 uint64_t Offset64 = Offset.getQuantity(); 12329 uint64_t Index64 = Index.extOrTrunc(64).getZExtValue(); 12330 Offset = CharUnits::fromQuantity(IsSub ? Offset64 - Index64 12331 : Offset64 + Index64); 12332 } 12333 12334 bool DataRecursiveIntBinOpEvaluator:: 12335 VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult, 12336 const BinaryOperator *E, APValue &Result) { 12337 if (E->getOpcode() == BO_Comma) { 12338 if (RHSResult.Failed) 12339 return false; 12340 Result = RHSResult.Val; 12341 return true; 12342 } 12343 12344 if (E->isLogicalOp()) { 12345 bool lhsResult, rhsResult; 12346 bool LHSIsOK = HandleConversionToBool(LHSResult.Val, lhsResult); 12347 bool RHSIsOK = HandleConversionToBool(RHSResult.Val, rhsResult); 12348 12349 if (LHSIsOK) { 12350 if (RHSIsOK) { 12351 if (E->getOpcode() == BO_LOr) 12352 return Success(lhsResult || rhsResult, E, Result); 12353 else 12354 return Success(lhsResult && rhsResult, E, Result); 12355 } 12356 } else { 12357 if (RHSIsOK) { 12358 // We can't evaluate the LHS; however, sometimes the result 12359 // is determined by the RHS: X && 0 -> 0, X || 1 -> 1. 12360 if (rhsResult == (E->getOpcode() == BO_LOr)) 12361 return Success(rhsResult, E, Result); 12362 } 12363 } 12364 12365 return false; 12366 } 12367 12368 assert(E->getLHS()->getType()->isIntegralOrEnumerationType() && 12369 E->getRHS()->getType()->isIntegralOrEnumerationType()); 12370 12371 if (LHSResult.Failed || RHSResult.Failed) 12372 return false; 12373 12374 const APValue &LHSVal = LHSResult.Val; 12375 const APValue &RHSVal = RHSResult.Val; 12376 12377 // Handle cases like (unsigned long)&a + 4. 12378 if (E->isAdditiveOp() && LHSVal.isLValue() && RHSVal.isInt()) { 12379 Result = LHSVal; 12380 addOrSubLValueAsInteger(Result, RHSVal.getInt(), E->getOpcode() == BO_Sub); 12381 return true; 12382 } 12383 12384 // Handle cases like 4 + (unsigned long)&a 12385 if (E->getOpcode() == BO_Add && 12386 RHSVal.isLValue() && LHSVal.isInt()) { 12387 Result = RHSVal; 12388 addOrSubLValueAsInteger(Result, LHSVal.getInt(), /*IsSub*/false); 12389 return true; 12390 } 12391 12392 if (E->getOpcode() == BO_Sub && LHSVal.isLValue() && RHSVal.isLValue()) { 12393 // Handle (intptr_t)&&A - (intptr_t)&&B. 12394 if (!LHSVal.getLValueOffset().isZero() || 12395 !RHSVal.getLValueOffset().isZero()) 12396 return false; 12397 const Expr *LHSExpr = LHSVal.getLValueBase().dyn_cast<const Expr*>(); 12398 const Expr *RHSExpr = RHSVal.getLValueBase().dyn_cast<const Expr*>(); 12399 if (!LHSExpr || !RHSExpr) 12400 return false; 12401 const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr); 12402 const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr); 12403 if (!LHSAddrExpr || !RHSAddrExpr) 12404 return false; 12405 // Make sure both labels come from the same function. 12406 if (LHSAddrExpr->getLabel()->getDeclContext() != 12407 RHSAddrExpr->getLabel()->getDeclContext()) 12408 return false; 12409 Result = APValue(LHSAddrExpr, RHSAddrExpr); 12410 return true; 12411 } 12412 12413 // All the remaining cases expect both operands to be an integer 12414 if (!LHSVal.isInt() || !RHSVal.isInt()) 12415 return Error(E); 12416 12417 // Set up the width and signedness manually, in case it can't be deduced 12418 // from the operation we're performing. 12419 // FIXME: Don't do this in the cases where we can deduce it. 12420 APSInt Value(Info.Ctx.getIntWidth(E->getType()), 12421 E->getType()->isUnsignedIntegerOrEnumerationType()); 12422 if (!handleIntIntBinOp(Info, E, LHSVal.getInt(), E->getOpcode(), 12423 RHSVal.getInt(), Value)) 12424 return false; 12425 return Success(Value, E, Result); 12426 } 12427 12428 void DataRecursiveIntBinOpEvaluator::process(EvalResult &Result) { 12429 Job &job = Queue.back(); 12430 12431 switch (job.Kind) { 12432 case Job::AnyExprKind: { 12433 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(job.E)) { 12434 if (shouldEnqueue(Bop)) { 12435 job.Kind = Job::BinOpKind; 12436 enqueue(Bop->getLHS()); 12437 return; 12438 } 12439 } 12440 12441 EvaluateExpr(job.E, Result); 12442 Queue.pop_back(); 12443 return; 12444 } 12445 12446 case Job::BinOpKind: { 12447 const BinaryOperator *Bop = cast<BinaryOperator>(job.E); 12448 bool SuppressRHSDiags = false; 12449 if (!VisitBinOpLHSOnly(Result, Bop, SuppressRHSDiags)) { 12450 Queue.pop_back(); 12451 return; 12452 } 12453 if (SuppressRHSDiags) 12454 job.startSpeculativeEval(Info); 12455 job.LHSResult.swap(Result); 12456 job.Kind = Job::BinOpVisitedLHSKind; 12457 enqueue(Bop->getRHS()); 12458 return; 12459 } 12460 12461 case Job::BinOpVisitedLHSKind: { 12462 const BinaryOperator *Bop = cast<BinaryOperator>(job.E); 12463 EvalResult RHS; 12464 RHS.swap(Result); 12465 Result.Failed = !VisitBinOp(job.LHSResult, RHS, Bop, Result.Val); 12466 Queue.pop_back(); 12467 return; 12468 } 12469 } 12470 12471 llvm_unreachable("Invalid Job::Kind!"); 12472 } 12473 12474 namespace { 12475 enum class CmpResult { 12476 Unequal, 12477 Less, 12478 Equal, 12479 Greater, 12480 Unordered, 12481 }; 12482 } 12483 12484 template <class SuccessCB, class AfterCB> 12485 static bool 12486 EvaluateComparisonBinaryOperator(EvalInfo &Info, const BinaryOperator *E, 12487 SuccessCB &&Success, AfterCB &&DoAfter) { 12488 assert(!E->isValueDependent()); 12489 assert(E->isComparisonOp() && "expected comparison operator"); 12490 assert((E->getOpcode() == BO_Cmp || 12491 E->getType()->isIntegralOrEnumerationType()) && 12492 "unsupported binary expression evaluation"); 12493 auto Error = [&](const Expr *E) { 12494 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); 12495 return false; 12496 }; 12497 12498 bool IsRelational = E->isRelationalOp() || E->getOpcode() == BO_Cmp; 12499 bool IsEquality = E->isEqualityOp(); 12500 12501 QualType LHSTy = E->getLHS()->getType(); 12502 QualType RHSTy = E->getRHS()->getType(); 12503 12504 if (LHSTy->isIntegralOrEnumerationType() && 12505 RHSTy->isIntegralOrEnumerationType()) { 12506 APSInt LHS, RHS; 12507 bool LHSOK = EvaluateInteger(E->getLHS(), LHS, Info); 12508 if (!LHSOK && !Info.noteFailure()) 12509 return false; 12510 if (!EvaluateInteger(E->getRHS(), RHS, Info) || !LHSOK) 12511 return false; 12512 if (LHS < RHS) 12513 return Success(CmpResult::Less, E); 12514 if (LHS > RHS) 12515 return Success(CmpResult::Greater, E); 12516 return Success(CmpResult::Equal, E); 12517 } 12518 12519 if (LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) { 12520 APFixedPoint LHSFX(Info.Ctx.getFixedPointSemantics(LHSTy)); 12521 APFixedPoint RHSFX(Info.Ctx.getFixedPointSemantics(RHSTy)); 12522 12523 bool LHSOK = EvaluateFixedPointOrInteger(E->getLHS(), LHSFX, Info); 12524 if (!LHSOK && !Info.noteFailure()) 12525 return false; 12526 if (!EvaluateFixedPointOrInteger(E->getRHS(), RHSFX, Info) || !LHSOK) 12527 return false; 12528 if (LHSFX < RHSFX) 12529 return Success(CmpResult::Less, E); 12530 if (LHSFX > RHSFX) 12531 return Success(CmpResult::Greater, E); 12532 return Success(CmpResult::Equal, E); 12533 } 12534 12535 if (LHSTy->isAnyComplexType() || RHSTy->isAnyComplexType()) { 12536 ComplexValue LHS, RHS; 12537 bool LHSOK; 12538 if (E->isAssignmentOp()) { 12539 LValue LV; 12540 EvaluateLValue(E->getLHS(), LV, Info); 12541 LHSOK = false; 12542 } else if (LHSTy->isRealFloatingType()) { 12543 LHSOK = EvaluateFloat(E->getLHS(), LHS.FloatReal, Info); 12544 if (LHSOK) { 12545 LHS.makeComplexFloat(); 12546 LHS.FloatImag = APFloat(LHS.FloatReal.getSemantics()); 12547 } 12548 } else { 12549 LHSOK = EvaluateComplex(E->getLHS(), LHS, Info); 12550 } 12551 if (!LHSOK && !Info.noteFailure()) 12552 return false; 12553 12554 if (E->getRHS()->getType()->isRealFloatingType()) { 12555 if (!EvaluateFloat(E->getRHS(), RHS.FloatReal, Info) || !LHSOK) 12556 return false; 12557 RHS.makeComplexFloat(); 12558 RHS.FloatImag = APFloat(RHS.FloatReal.getSemantics()); 12559 } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK) 12560 return false; 12561 12562 if (LHS.isComplexFloat()) { 12563 APFloat::cmpResult CR_r = 12564 LHS.getComplexFloatReal().compare(RHS.getComplexFloatReal()); 12565 APFloat::cmpResult CR_i = 12566 LHS.getComplexFloatImag().compare(RHS.getComplexFloatImag()); 12567 bool IsEqual = CR_r == APFloat::cmpEqual && CR_i == APFloat::cmpEqual; 12568 return Success(IsEqual ? CmpResult::Equal : CmpResult::Unequal, E); 12569 } else { 12570 assert(IsEquality && "invalid complex comparison"); 12571 bool IsEqual = LHS.getComplexIntReal() == RHS.getComplexIntReal() && 12572 LHS.getComplexIntImag() == RHS.getComplexIntImag(); 12573 return Success(IsEqual ? CmpResult::Equal : CmpResult::Unequal, E); 12574 } 12575 } 12576 12577 if (LHSTy->isRealFloatingType() && 12578 RHSTy->isRealFloatingType()) { 12579 APFloat RHS(0.0), LHS(0.0); 12580 12581 bool LHSOK = EvaluateFloat(E->getRHS(), RHS, Info); 12582 if (!LHSOK && !Info.noteFailure()) 12583 return false; 12584 12585 if (!EvaluateFloat(E->getLHS(), LHS, Info) || !LHSOK) 12586 return false; 12587 12588 assert(E->isComparisonOp() && "Invalid binary operator!"); 12589 llvm::APFloatBase::cmpResult APFloatCmpResult = LHS.compare(RHS); 12590 if (!Info.InConstantContext && 12591 APFloatCmpResult == APFloat::cmpUnordered && 12592 E->getFPFeaturesInEffect(Info.Ctx.getLangOpts()).isFPConstrained()) { 12593 // Note: Compares may raise invalid in some cases involving NaN or sNaN. 12594 Info.FFDiag(E, diag::note_constexpr_float_arithmetic_strict); 12595 return false; 12596 } 12597 auto GetCmpRes = [&]() { 12598 switch (APFloatCmpResult) { 12599 case APFloat::cmpEqual: 12600 return CmpResult::Equal; 12601 case APFloat::cmpLessThan: 12602 return CmpResult::Less; 12603 case APFloat::cmpGreaterThan: 12604 return CmpResult::Greater; 12605 case APFloat::cmpUnordered: 12606 return CmpResult::Unordered; 12607 } 12608 llvm_unreachable("Unrecognised APFloat::cmpResult enum"); 12609 }; 12610 return Success(GetCmpRes(), E); 12611 } 12612 12613 if (LHSTy->isPointerType() && RHSTy->isPointerType()) { 12614 LValue LHSValue, RHSValue; 12615 12616 bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info); 12617 if (!LHSOK && !Info.noteFailure()) 12618 return false; 12619 12620 if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK) 12621 return false; 12622 12623 // Reject differing bases from the normal codepath; we special-case 12624 // comparisons to null. 12625 if (!HasSameBase(LHSValue, RHSValue)) { 12626 // Inequalities and subtractions between unrelated pointers have 12627 // unspecified or undefined behavior. 12628 if (!IsEquality) { 12629 Info.FFDiag(E, diag::note_constexpr_pointer_comparison_unspecified); 12630 return false; 12631 } 12632 // A constant address may compare equal to the address of a symbol. 12633 // The one exception is that address of an object cannot compare equal 12634 // to a null pointer constant. 12635 if ((!LHSValue.Base && !LHSValue.Offset.isZero()) || 12636 (!RHSValue.Base && !RHSValue.Offset.isZero())) 12637 return Error(E); 12638 // It's implementation-defined whether distinct literals will have 12639 // distinct addresses. In clang, the result of such a comparison is 12640 // unspecified, so it is not a constant expression. However, we do know 12641 // that the address of a literal will be non-null. 12642 if ((IsLiteralLValue(LHSValue) || IsLiteralLValue(RHSValue)) && 12643 LHSValue.Base && RHSValue.Base) 12644 return Error(E); 12645 // We can't tell whether weak symbols will end up pointing to the same 12646 // object. 12647 if (IsWeakLValue(LHSValue) || IsWeakLValue(RHSValue)) 12648 return Error(E); 12649 // We can't compare the address of the start of one object with the 12650 // past-the-end address of another object, per C++ DR1652. 12651 if ((LHSValue.Base && LHSValue.Offset.isZero() && 12652 isOnePastTheEndOfCompleteObject(Info.Ctx, RHSValue)) || 12653 (RHSValue.Base && RHSValue.Offset.isZero() && 12654 isOnePastTheEndOfCompleteObject(Info.Ctx, LHSValue))) 12655 return Error(E); 12656 // We can't tell whether an object is at the same address as another 12657 // zero sized object. 12658 if ((RHSValue.Base && isZeroSized(LHSValue)) || 12659 (LHSValue.Base && isZeroSized(RHSValue))) 12660 return Error(E); 12661 return Success(CmpResult::Unequal, E); 12662 } 12663 12664 const CharUnits &LHSOffset = LHSValue.getLValueOffset(); 12665 const CharUnits &RHSOffset = RHSValue.getLValueOffset(); 12666 12667 SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator(); 12668 SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator(); 12669 12670 // C++11 [expr.rel]p3: 12671 // Pointers to void (after pointer conversions) can be compared, with a 12672 // result defined as follows: If both pointers represent the same 12673 // address or are both the null pointer value, the result is true if the 12674 // operator is <= or >= and false otherwise; otherwise the result is 12675 // unspecified. 12676 // We interpret this as applying to pointers to *cv* void. 12677 if (LHSTy->isVoidPointerType() && LHSOffset != RHSOffset && IsRelational) 12678 Info.CCEDiag(E, diag::note_constexpr_void_comparison); 12679 12680 // C++11 [expr.rel]p2: 12681 // - If two pointers point to non-static data members of the same object, 12682 // or to subobjects or array elements fo such members, recursively, the 12683 // pointer to the later declared member compares greater provided the 12684 // two members have the same access control and provided their class is 12685 // not a union. 12686 // [...] 12687 // - Otherwise pointer comparisons are unspecified. 12688 if (!LHSDesignator.Invalid && !RHSDesignator.Invalid && IsRelational) { 12689 bool WasArrayIndex; 12690 unsigned Mismatch = FindDesignatorMismatch( 12691 getType(LHSValue.Base), LHSDesignator, RHSDesignator, WasArrayIndex); 12692 // At the point where the designators diverge, the comparison has a 12693 // specified value if: 12694 // - we are comparing array indices 12695 // - we are comparing fields of a union, or fields with the same access 12696 // Otherwise, the result is unspecified and thus the comparison is not a 12697 // constant expression. 12698 if (!WasArrayIndex && Mismatch < LHSDesignator.Entries.size() && 12699 Mismatch < RHSDesignator.Entries.size()) { 12700 const FieldDecl *LF = getAsField(LHSDesignator.Entries[Mismatch]); 12701 const FieldDecl *RF = getAsField(RHSDesignator.Entries[Mismatch]); 12702 if (!LF && !RF) 12703 Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_classes); 12704 else if (!LF) 12705 Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field) 12706 << getAsBaseClass(LHSDesignator.Entries[Mismatch]) 12707 << RF->getParent() << RF; 12708 else if (!RF) 12709 Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field) 12710 << getAsBaseClass(RHSDesignator.Entries[Mismatch]) 12711 << LF->getParent() << LF; 12712 else if (!LF->getParent()->isUnion() && 12713 LF->getAccess() != RF->getAccess()) 12714 Info.CCEDiag(E, 12715 diag::note_constexpr_pointer_comparison_differing_access) 12716 << LF << LF->getAccess() << RF << RF->getAccess() 12717 << LF->getParent(); 12718 } 12719 } 12720 12721 // The comparison here must be unsigned, and performed with the same 12722 // width as the pointer. 12723 unsigned PtrSize = Info.Ctx.getTypeSize(LHSTy); 12724 uint64_t CompareLHS = LHSOffset.getQuantity(); 12725 uint64_t CompareRHS = RHSOffset.getQuantity(); 12726 assert(PtrSize <= 64 && "Unexpected pointer width"); 12727 uint64_t Mask = ~0ULL >> (64 - PtrSize); 12728 CompareLHS &= Mask; 12729 CompareRHS &= Mask; 12730 12731 // If there is a base and this is a relational operator, we can only 12732 // compare pointers within the object in question; otherwise, the result 12733 // depends on where the object is located in memory. 12734 if (!LHSValue.Base.isNull() && IsRelational) { 12735 QualType BaseTy = getType(LHSValue.Base); 12736 if (BaseTy->isIncompleteType()) 12737 return Error(E); 12738 CharUnits Size = Info.Ctx.getTypeSizeInChars(BaseTy); 12739 uint64_t OffsetLimit = Size.getQuantity(); 12740 if (CompareLHS > OffsetLimit || CompareRHS > OffsetLimit) 12741 return Error(E); 12742 } 12743 12744 if (CompareLHS < CompareRHS) 12745 return Success(CmpResult::Less, E); 12746 if (CompareLHS > CompareRHS) 12747 return Success(CmpResult::Greater, E); 12748 return Success(CmpResult::Equal, E); 12749 } 12750 12751 if (LHSTy->isMemberPointerType()) { 12752 assert(IsEquality && "unexpected member pointer operation"); 12753 assert(RHSTy->isMemberPointerType() && "invalid comparison"); 12754 12755 MemberPtr LHSValue, RHSValue; 12756 12757 bool LHSOK = EvaluateMemberPointer(E->getLHS(), LHSValue, Info); 12758 if (!LHSOK && !Info.noteFailure()) 12759 return false; 12760 12761 if (!EvaluateMemberPointer(E->getRHS(), RHSValue, Info) || !LHSOK) 12762 return false; 12763 12764 // C++11 [expr.eq]p2: 12765 // If both operands are null, they compare equal. Otherwise if only one is 12766 // null, they compare unequal. 12767 if (!LHSValue.getDecl() || !RHSValue.getDecl()) { 12768 bool Equal = !LHSValue.getDecl() && !RHSValue.getDecl(); 12769 return Success(Equal ? CmpResult::Equal : CmpResult::Unequal, E); 12770 } 12771 12772 // Otherwise if either is a pointer to a virtual member function, the 12773 // result is unspecified. 12774 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(LHSValue.getDecl())) 12775 if (MD->isVirtual()) 12776 Info.CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD; 12777 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(RHSValue.getDecl())) 12778 if (MD->isVirtual()) 12779 Info.CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD; 12780 12781 // Otherwise they compare equal if and only if they would refer to the 12782 // same member of the same most derived object or the same subobject if 12783 // they were dereferenced with a hypothetical object of the associated 12784 // class type. 12785 bool Equal = LHSValue == RHSValue; 12786 return Success(Equal ? CmpResult::Equal : CmpResult::Unequal, E); 12787 } 12788 12789 if (LHSTy->isNullPtrType()) { 12790 assert(E->isComparisonOp() && "unexpected nullptr operation"); 12791 assert(RHSTy->isNullPtrType() && "missing pointer conversion"); 12792 // C++11 [expr.rel]p4, [expr.eq]p3: If two operands of type std::nullptr_t 12793 // are compared, the result is true of the operator is <=, >= or ==, and 12794 // false otherwise. 12795 return Success(CmpResult::Equal, E); 12796 } 12797 12798 return DoAfter(); 12799 } 12800 12801 bool RecordExprEvaluator::VisitBinCmp(const BinaryOperator *E) { 12802 if (!CheckLiteralType(Info, E)) 12803 return false; 12804 12805 auto OnSuccess = [&](CmpResult CR, const BinaryOperator *E) { 12806 ComparisonCategoryResult CCR; 12807 switch (CR) { 12808 case CmpResult::Unequal: 12809 llvm_unreachable("should never produce Unequal for three-way comparison"); 12810 case CmpResult::Less: 12811 CCR = ComparisonCategoryResult::Less; 12812 break; 12813 case CmpResult::Equal: 12814 CCR = ComparisonCategoryResult::Equal; 12815 break; 12816 case CmpResult::Greater: 12817 CCR = ComparisonCategoryResult::Greater; 12818 break; 12819 case CmpResult::Unordered: 12820 CCR = ComparisonCategoryResult::Unordered; 12821 break; 12822 } 12823 // Evaluation succeeded. Lookup the information for the comparison category 12824 // type and fetch the VarDecl for the result. 12825 const ComparisonCategoryInfo &CmpInfo = 12826 Info.Ctx.CompCategories.getInfoForType(E->getType()); 12827 const VarDecl *VD = CmpInfo.getValueInfo(CmpInfo.makeWeakResult(CCR))->VD; 12828 // Check and evaluate the result as a constant expression. 12829 LValue LV; 12830 LV.set(VD); 12831 if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result)) 12832 return false; 12833 return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result, 12834 ConstantExprKind::Normal); 12835 }; 12836 return EvaluateComparisonBinaryOperator(Info, E, OnSuccess, [&]() { 12837 return ExprEvaluatorBaseTy::VisitBinCmp(E); 12838 }); 12839 } 12840 12841 bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { 12842 // We don't support assignment in C. C++ assignments don't get here because 12843 // assignment is an lvalue in C++. 12844 if (E->isAssignmentOp()) { 12845 Error(E); 12846 if (!Info.noteFailure()) 12847 return false; 12848 } 12849 12850 if (DataRecursiveIntBinOpEvaluator::shouldEnqueue(E)) 12851 return DataRecursiveIntBinOpEvaluator(*this, Result).Traverse(E); 12852 12853 assert((!E->getLHS()->getType()->isIntegralOrEnumerationType() || 12854 !E->getRHS()->getType()->isIntegralOrEnumerationType()) && 12855 "DataRecursiveIntBinOpEvaluator should have handled integral types"); 12856 12857 if (E->isComparisonOp()) { 12858 // Evaluate builtin binary comparisons by evaluating them as three-way 12859 // comparisons and then translating the result. 12860 auto OnSuccess = [&](CmpResult CR, const BinaryOperator *E) { 12861 assert((CR != CmpResult::Unequal || E->isEqualityOp()) && 12862 "should only produce Unequal for equality comparisons"); 12863 bool IsEqual = CR == CmpResult::Equal, 12864 IsLess = CR == CmpResult::Less, 12865 IsGreater = CR == CmpResult::Greater; 12866 auto Op = E->getOpcode(); 12867 switch (Op) { 12868 default: 12869 llvm_unreachable("unsupported binary operator"); 12870 case BO_EQ: 12871 case BO_NE: 12872 return Success(IsEqual == (Op == BO_EQ), E); 12873 case BO_LT: 12874 return Success(IsLess, E); 12875 case BO_GT: 12876 return Success(IsGreater, E); 12877 case BO_LE: 12878 return Success(IsEqual || IsLess, E); 12879 case BO_GE: 12880 return Success(IsEqual || IsGreater, E); 12881 } 12882 }; 12883 return EvaluateComparisonBinaryOperator(Info, E, OnSuccess, [&]() { 12884 return ExprEvaluatorBaseTy::VisitBinaryOperator(E); 12885 }); 12886 } 12887 12888 QualType LHSTy = E->getLHS()->getType(); 12889 QualType RHSTy = E->getRHS()->getType(); 12890 12891 if (LHSTy->isPointerType() && RHSTy->isPointerType() && 12892 E->getOpcode() == BO_Sub) { 12893 LValue LHSValue, RHSValue; 12894 12895 bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info); 12896 if (!LHSOK && !Info.noteFailure()) 12897 return false; 12898 12899 if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK) 12900 return false; 12901 12902 // Reject differing bases from the normal codepath; we special-case 12903 // comparisons to null. 12904 if (!HasSameBase(LHSValue, RHSValue)) { 12905 // Handle &&A - &&B. 12906 if (!LHSValue.Offset.isZero() || !RHSValue.Offset.isZero()) 12907 return Error(E); 12908 const Expr *LHSExpr = LHSValue.Base.dyn_cast<const Expr *>(); 12909 const Expr *RHSExpr = RHSValue.Base.dyn_cast<const Expr *>(); 12910 if (!LHSExpr || !RHSExpr) 12911 return Error(E); 12912 const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr); 12913 const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr); 12914 if (!LHSAddrExpr || !RHSAddrExpr) 12915 return Error(E); 12916 // Make sure both labels come from the same function. 12917 if (LHSAddrExpr->getLabel()->getDeclContext() != 12918 RHSAddrExpr->getLabel()->getDeclContext()) 12919 return Error(E); 12920 return Success(APValue(LHSAddrExpr, RHSAddrExpr), E); 12921 } 12922 const CharUnits &LHSOffset = LHSValue.getLValueOffset(); 12923 const CharUnits &RHSOffset = RHSValue.getLValueOffset(); 12924 12925 SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator(); 12926 SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator(); 12927 12928 // C++11 [expr.add]p6: 12929 // Unless both pointers point to elements of the same array object, or 12930 // one past the last element of the array object, the behavior is 12931 // undefined. 12932 if (!LHSDesignator.Invalid && !RHSDesignator.Invalid && 12933 !AreElementsOfSameArray(getType(LHSValue.Base), LHSDesignator, 12934 RHSDesignator)) 12935 Info.CCEDiag(E, diag::note_constexpr_pointer_subtraction_not_same_array); 12936 12937 QualType Type = E->getLHS()->getType(); 12938 QualType ElementType = Type->castAs<PointerType>()->getPointeeType(); 12939 12940 CharUnits ElementSize; 12941 if (!HandleSizeof(Info, E->getExprLoc(), ElementType, ElementSize)) 12942 return false; 12943 12944 // As an extension, a type may have zero size (empty struct or union in 12945 // C, array of zero length). Pointer subtraction in such cases has 12946 // undefined behavior, so is not constant. 12947 if (ElementSize.isZero()) { 12948 Info.FFDiag(E, diag::note_constexpr_pointer_subtraction_zero_size) 12949 << ElementType; 12950 return false; 12951 } 12952 12953 // FIXME: LLVM and GCC both compute LHSOffset - RHSOffset at runtime, 12954 // and produce incorrect results when it overflows. Such behavior 12955 // appears to be non-conforming, but is common, so perhaps we should 12956 // assume the standard intended for such cases to be undefined behavior 12957 // and check for them. 12958 12959 // Compute (LHSOffset - RHSOffset) / Size carefully, checking for 12960 // overflow in the final conversion to ptrdiff_t. 12961 APSInt LHS(llvm::APInt(65, (int64_t)LHSOffset.getQuantity(), true), false); 12962 APSInt RHS(llvm::APInt(65, (int64_t)RHSOffset.getQuantity(), true), false); 12963 APSInt ElemSize(llvm::APInt(65, (int64_t)ElementSize.getQuantity(), true), 12964 false); 12965 APSInt TrueResult = (LHS - RHS) / ElemSize; 12966 APSInt Result = TrueResult.trunc(Info.Ctx.getIntWidth(E->getType())); 12967 12968 if (Result.extend(65) != TrueResult && 12969 !HandleOverflow(Info, E, TrueResult, E->getType())) 12970 return false; 12971 return Success(Result, E); 12972 } 12973 12974 return ExprEvaluatorBaseTy::VisitBinaryOperator(E); 12975 } 12976 12977 /// VisitUnaryExprOrTypeTraitExpr - Evaluate a sizeof, alignof or vec_step with 12978 /// a result as the expression's type. 12979 bool IntExprEvaluator::VisitUnaryExprOrTypeTraitExpr( 12980 const UnaryExprOrTypeTraitExpr *E) { 12981 switch(E->getKind()) { 12982 case UETT_PreferredAlignOf: 12983 case UETT_AlignOf: { 12984 if (E->isArgumentType()) 12985 return Success(GetAlignOfType(Info, E->getArgumentType(), E->getKind()), 12986 E); 12987 else 12988 return Success(GetAlignOfExpr(Info, E->getArgumentExpr(), E->getKind()), 12989 E); 12990 } 12991 12992 case UETT_VecStep: { 12993 QualType Ty = E->getTypeOfArgument(); 12994 12995 if (Ty->isVectorType()) { 12996 unsigned n = Ty->castAs<VectorType>()->getNumElements(); 12997 12998 // The vec_step built-in functions that take a 3-component 12999 // vector return 4. (OpenCL 1.1 spec 6.11.12) 13000 if (n == 3) 13001 n = 4; 13002 13003 return Success(n, E); 13004 } else 13005 return Success(1, E); 13006 } 13007 13008 case UETT_SizeOf: { 13009 QualType SrcTy = E->getTypeOfArgument(); 13010 // C++ [expr.sizeof]p2: "When applied to a reference or a reference type, 13011 // the result is the size of the referenced type." 13012 if (const ReferenceType *Ref = SrcTy->getAs<ReferenceType>()) 13013 SrcTy = Ref->getPointeeType(); 13014 13015 CharUnits Sizeof; 13016 if (!HandleSizeof(Info, E->getExprLoc(), SrcTy, Sizeof)) 13017 return false; 13018 return Success(Sizeof, E); 13019 } 13020 case UETT_OpenMPRequiredSimdAlign: 13021 assert(E->isArgumentType()); 13022 return Success( 13023 Info.Ctx.toCharUnitsFromBits( 13024 Info.Ctx.getOpenMPDefaultSimdAlign(E->getArgumentType())) 13025 .getQuantity(), 13026 E); 13027 } 13028 13029 llvm_unreachable("unknown expr/type trait"); 13030 } 13031 13032 bool IntExprEvaluator::VisitOffsetOfExpr(const OffsetOfExpr *OOE) { 13033 CharUnits Result; 13034 unsigned n = OOE->getNumComponents(); 13035 if (n == 0) 13036 return Error(OOE); 13037 QualType CurrentType = OOE->getTypeSourceInfo()->getType(); 13038 for (unsigned i = 0; i != n; ++i) { 13039 OffsetOfNode ON = OOE->getComponent(i); 13040 switch (ON.getKind()) { 13041 case OffsetOfNode::Array: { 13042 const Expr *Idx = OOE->getIndexExpr(ON.getArrayExprIndex()); 13043 APSInt IdxResult; 13044 if (!EvaluateInteger(Idx, IdxResult, Info)) 13045 return false; 13046 const ArrayType *AT = Info.Ctx.getAsArrayType(CurrentType); 13047 if (!AT) 13048 return Error(OOE); 13049 CurrentType = AT->getElementType(); 13050 CharUnits ElementSize = Info.Ctx.getTypeSizeInChars(CurrentType); 13051 Result += IdxResult.getSExtValue() * ElementSize; 13052 break; 13053 } 13054 13055 case OffsetOfNode::Field: { 13056 FieldDecl *MemberDecl = ON.getField(); 13057 const RecordType *RT = CurrentType->getAs<RecordType>(); 13058 if (!RT) 13059 return Error(OOE); 13060 RecordDecl *RD = RT->getDecl(); 13061 if (RD->isInvalidDecl()) return false; 13062 const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD); 13063 unsigned i = MemberDecl->getFieldIndex(); 13064 assert(i < RL.getFieldCount() && "offsetof field in wrong type"); 13065 Result += Info.Ctx.toCharUnitsFromBits(RL.getFieldOffset(i)); 13066 CurrentType = MemberDecl->getType().getNonReferenceType(); 13067 break; 13068 } 13069 13070 case OffsetOfNode::Identifier: 13071 llvm_unreachable("dependent __builtin_offsetof"); 13072 13073 case OffsetOfNode::Base: { 13074 CXXBaseSpecifier *BaseSpec = ON.getBase(); 13075 if (BaseSpec->isVirtual()) 13076 return Error(OOE); 13077 13078 // Find the layout of the class whose base we are looking into. 13079 const RecordType *RT = CurrentType->getAs<RecordType>(); 13080 if (!RT) 13081 return Error(OOE); 13082 RecordDecl *RD = RT->getDecl(); 13083 if (RD->isInvalidDecl()) return false; 13084 const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD); 13085 13086 // Find the base class itself. 13087 CurrentType = BaseSpec->getType(); 13088 const RecordType *BaseRT = CurrentType->getAs<RecordType>(); 13089 if (!BaseRT) 13090 return Error(OOE); 13091 13092 // Add the offset to the base. 13093 Result += RL.getBaseClassOffset(cast<CXXRecordDecl>(BaseRT->getDecl())); 13094 break; 13095 } 13096 } 13097 } 13098 return Success(Result, OOE); 13099 } 13100 13101 bool IntExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) { 13102 switch (E->getOpcode()) { 13103 default: 13104 // Address, indirect, pre/post inc/dec, etc are not valid constant exprs. 13105 // See C99 6.6p3. 13106 return Error(E); 13107 case UO_Extension: 13108 // FIXME: Should extension allow i-c-e extension expressions in its scope? 13109 // If so, we could clear the diagnostic ID. 13110 return Visit(E->getSubExpr()); 13111 case UO_Plus: 13112 // The result is just the value. 13113 return Visit(E->getSubExpr()); 13114 case UO_Minus: { 13115 if (!Visit(E->getSubExpr())) 13116 return false; 13117 if (!Result.isInt()) return Error(E); 13118 const APSInt &Value = Result.getInt(); 13119 if (Value.isSigned() && Value.isMinSignedValue() && E->canOverflow() && 13120 !HandleOverflow(Info, E, -Value.extend(Value.getBitWidth() + 1), 13121 E->getType())) 13122 return false; 13123 return Success(-Value, E); 13124 } 13125 case UO_Not: { 13126 if (!Visit(E->getSubExpr())) 13127 return false; 13128 if (!Result.isInt()) return Error(E); 13129 return Success(~Result.getInt(), E); 13130 } 13131 case UO_LNot: { 13132 bool bres; 13133 if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info)) 13134 return false; 13135 return Success(!bres, E); 13136 } 13137 } 13138 } 13139 13140 /// HandleCast - This is used to evaluate implicit or explicit casts where the 13141 /// result type is integer. 13142 bool IntExprEvaluator::VisitCastExpr(const CastExpr *E) { 13143 const Expr *SubExpr = E->getSubExpr(); 13144 QualType DestType = E->getType(); 13145 QualType SrcType = SubExpr->getType(); 13146 13147 switch (E->getCastKind()) { 13148 case CK_BaseToDerived: 13149 case CK_DerivedToBase: 13150 case CK_UncheckedDerivedToBase: 13151 case CK_Dynamic: 13152 case CK_ToUnion: 13153 case CK_ArrayToPointerDecay: 13154 case CK_FunctionToPointerDecay: 13155 case CK_NullToPointer: 13156 case CK_NullToMemberPointer: 13157 case CK_BaseToDerivedMemberPointer: 13158 case CK_DerivedToBaseMemberPointer: 13159 case CK_ReinterpretMemberPointer: 13160 case CK_ConstructorConversion: 13161 case CK_IntegralToPointer: 13162 case CK_ToVoid: 13163 case CK_VectorSplat: 13164 case CK_IntegralToFloating: 13165 case CK_FloatingCast: 13166 case CK_CPointerToObjCPointerCast: 13167 case CK_BlockPointerToObjCPointerCast: 13168 case CK_AnyPointerToBlockPointerCast: 13169 case CK_ObjCObjectLValueCast: 13170 case CK_FloatingRealToComplex: 13171 case CK_FloatingComplexToReal: 13172 case CK_FloatingComplexCast: 13173 case CK_FloatingComplexToIntegralComplex: 13174 case CK_IntegralRealToComplex: 13175 case CK_IntegralComplexCast: 13176 case CK_IntegralComplexToFloatingComplex: 13177 case CK_BuiltinFnToFnPtr: 13178 case CK_ZeroToOCLOpaqueType: 13179 case CK_NonAtomicToAtomic: 13180 case CK_AddressSpaceConversion: 13181 case CK_IntToOCLSampler: 13182 case CK_FloatingToFixedPoint: 13183 case CK_FixedPointToFloating: 13184 case CK_FixedPointCast: 13185 case CK_IntegralToFixedPoint: 13186 case CK_MatrixCast: 13187 llvm_unreachable("invalid cast kind for integral value"); 13188 13189 case CK_BitCast: 13190 case CK_Dependent: 13191 case CK_LValueBitCast: 13192 case CK_ARCProduceObject: 13193 case CK_ARCConsumeObject: 13194 case CK_ARCReclaimReturnedObject: 13195 case CK_ARCExtendBlockObject: 13196 case CK_CopyAndAutoreleaseBlockObject: 13197 return Error(E); 13198 13199 case CK_UserDefinedConversion: 13200 case CK_LValueToRValue: 13201 case CK_AtomicToNonAtomic: 13202 case CK_NoOp: 13203 case CK_LValueToRValueBitCast: 13204 return ExprEvaluatorBaseTy::VisitCastExpr(E); 13205 13206 case CK_MemberPointerToBoolean: 13207 case CK_PointerToBoolean: 13208 case CK_IntegralToBoolean: 13209 case CK_FloatingToBoolean: 13210 case CK_BooleanToSignedIntegral: 13211 case CK_FloatingComplexToBoolean: 13212 case CK_IntegralComplexToBoolean: { 13213 bool BoolResult; 13214 if (!EvaluateAsBooleanCondition(SubExpr, BoolResult, Info)) 13215 return false; 13216 uint64_t IntResult = BoolResult; 13217 if (BoolResult && E->getCastKind() == CK_BooleanToSignedIntegral) 13218 IntResult = (uint64_t)-1; 13219 return Success(IntResult, E); 13220 } 13221 13222 case CK_FixedPointToIntegral: { 13223 APFixedPoint Src(Info.Ctx.getFixedPointSemantics(SrcType)); 13224 if (!EvaluateFixedPoint(SubExpr, Src, Info)) 13225 return false; 13226 bool Overflowed; 13227 llvm::APSInt Result = Src.convertToInt( 13228 Info.Ctx.getIntWidth(DestType), 13229 DestType->isSignedIntegerOrEnumerationType(), &Overflowed); 13230 if (Overflowed && !HandleOverflow(Info, E, Result, DestType)) 13231 return false; 13232 return Success(Result, E); 13233 } 13234 13235 case CK_FixedPointToBoolean: { 13236 // Unsigned padding does not affect this. 13237 APValue Val; 13238 if (!Evaluate(Val, Info, SubExpr)) 13239 return false; 13240 return Success(Val.getFixedPoint().getBoolValue(), E); 13241 } 13242 13243 case CK_IntegralCast: { 13244 if (!Visit(SubExpr)) 13245 return false; 13246 13247 if (!Result.isInt()) { 13248 // Allow casts of address-of-label differences if they are no-ops 13249 // or narrowing. (The narrowing case isn't actually guaranteed to 13250 // be constant-evaluatable except in some narrow cases which are hard 13251 // to detect here. We let it through on the assumption the user knows 13252 // what they are doing.) 13253 if (Result.isAddrLabelDiff()) 13254 return Info.Ctx.getTypeSize(DestType) <= Info.Ctx.getTypeSize(SrcType); 13255 // Only allow casts of lvalues if they are lossless. 13256 return Info.Ctx.getTypeSize(DestType) == Info.Ctx.getTypeSize(SrcType); 13257 } 13258 13259 return Success(HandleIntToIntCast(Info, E, DestType, SrcType, 13260 Result.getInt()), E); 13261 } 13262 13263 case CK_PointerToIntegral: { 13264 CCEDiag(E, diag::note_constexpr_invalid_cast) << 2; 13265 13266 LValue LV; 13267 if (!EvaluatePointer(SubExpr, LV, Info)) 13268 return false; 13269 13270 if (LV.getLValueBase()) { 13271 // Only allow based lvalue casts if they are lossless. 13272 // FIXME: Allow a larger integer size than the pointer size, and allow 13273 // narrowing back down to pointer width in subsequent integral casts. 13274 // FIXME: Check integer type's active bits, not its type size. 13275 if (Info.Ctx.getTypeSize(DestType) != Info.Ctx.getTypeSize(SrcType)) 13276 return Error(E); 13277 13278 LV.Designator.setInvalid(); 13279 LV.moveInto(Result); 13280 return true; 13281 } 13282 13283 APSInt AsInt; 13284 APValue V; 13285 LV.moveInto(V); 13286 if (!V.toIntegralConstant(AsInt, SrcType, Info.Ctx)) 13287 llvm_unreachable("Can't cast this!"); 13288 13289 return Success(HandleIntToIntCast(Info, E, DestType, SrcType, AsInt), E); 13290 } 13291 13292 case CK_IntegralComplexToReal: { 13293 ComplexValue C; 13294 if (!EvaluateComplex(SubExpr, C, Info)) 13295 return false; 13296 return Success(C.getComplexIntReal(), E); 13297 } 13298 13299 case CK_FloatingToIntegral: { 13300 APFloat F(0.0); 13301 if (!EvaluateFloat(SubExpr, F, Info)) 13302 return false; 13303 13304 APSInt Value; 13305 if (!HandleFloatToIntCast(Info, E, SrcType, F, DestType, Value)) 13306 return false; 13307 return Success(Value, E); 13308 } 13309 } 13310 13311 llvm_unreachable("unknown cast resulting in integral value"); 13312 } 13313 13314 bool IntExprEvaluator::VisitUnaryReal(const UnaryOperator *E) { 13315 if (E->getSubExpr()->getType()->isAnyComplexType()) { 13316 ComplexValue LV; 13317 if (!EvaluateComplex(E->getSubExpr(), LV, Info)) 13318 return false; 13319 if (!LV.isComplexInt()) 13320 return Error(E); 13321 return Success(LV.getComplexIntReal(), E); 13322 } 13323 13324 return Visit(E->getSubExpr()); 13325 } 13326 13327 bool IntExprEvaluator::VisitUnaryImag(const UnaryOperator *E) { 13328 if (E->getSubExpr()->getType()->isComplexIntegerType()) { 13329 ComplexValue LV; 13330 if (!EvaluateComplex(E->getSubExpr(), LV, Info)) 13331 return false; 13332 if (!LV.isComplexInt()) 13333 return Error(E); 13334 return Success(LV.getComplexIntImag(), E); 13335 } 13336 13337 VisitIgnoredValue(E->getSubExpr()); 13338 return Success(0, E); 13339 } 13340 13341 bool IntExprEvaluator::VisitSizeOfPackExpr(const SizeOfPackExpr *E) { 13342 return Success(E->getPackLength(), E); 13343 } 13344 13345 bool IntExprEvaluator::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { 13346 return Success(E->getValue(), E); 13347 } 13348 13349 bool IntExprEvaluator::VisitConceptSpecializationExpr( 13350 const ConceptSpecializationExpr *E) { 13351 return Success(E->isSatisfied(), E); 13352 } 13353 13354 bool IntExprEvaluator::VisitRequiresExpr(const RequiresExpr *E) { 13355 return Success(E->isSatisfied(), E); 13356 } 13357 13358 bool FixedPointExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) { 13359 switch (E->getOpcode()) { 13360 default: 13361 // Invalid unary operators 13362 return Error(E); 13363 case UO_Plus: 13364 // The result is just the value. 13365 return Visit(E->getSubExpr()); 13366 case UO_Minus: { 13367 if (!Visit(E->getSubExpr())) return false; 13368 if (!Result.isFixedPoint()) 13369 return Error(E); 13370 bool Overflowed; 13371 APFixedPoint Negated = Result.getFixedPoint().negate(&Overflowed); 13372 if (Overflowed && !HandleOverflow(Info, E, Negated, E->getType())) 13373 return false; 13374 return Success(Negated, E); 13375 } 13376 case UO_LNot: { 13377 bool bres; 13378 if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info)) 13379 return false; 13380 return Success(!bres, E); 13381 } 13382 } 13383 } 13384 13385 bool FixedPointExprEvaluator::VisitCastExpr(const CastExpr *E) { 13386 const Expr *SubExpr = E->getSubExpr(); 13387 QualType DestType = E->getType(); 13388 assert(DestType->isFixedPointType() && 13389 "Expected destination type to be a fixed point type"); 13390 auto DestFXSema = Info.Ctx.getFixedPointSemantics(DestType); 13391 13392 switch (E->getCastKind()) { 13393 case CK_FixedPointCast: { 13394 APFixedPoint Src(Info.Ctx.getFixedPointSemantics(SubExpr->getType())); 13395 if (!EvaluateFixedPoint(SubExpr, Src, Info)) 13396 return false; 13397 bool Overflowed; 13398 APFixedPoint Result = Src.convert(DestFXSema, &Overflowed); 13399 if (Overflowed) { 13400 if (Info.checkingForUndefinedBehavior()) 13401 Info.Ctx.getDiagnostics().Report(E->getExprLoc(), 13402 diag::warn_fixedpoint_constant_overflow) 13403 << Result.toString() << E->getType(); 13404 if (!HandleOverflow(Info, E, Result, E->getType())) 13405 return false; 13406 } 13407 return Success(Result, E); 13408 } 13409 case CK_IntegralToFixedPoint: { 13410 APSInt Src; 13411 if (!EvaluateInteger(SubExpr, Src, Info)) 13412 return false; 13413 13414 bool Overflowed; 13415 APFixedPoint IntResult = APFixedPoint::getFromIntValue( 13416 Src, Info.Ctx.getFixedPointSemantics(DestType), &Overflowed); 13417 13418 if (Overflowed) { 13419 if (Info.checkingForUndefinedBehavior()) 13420 Info.Ctx.getDiagnostics().Report(E->getExprLoc(), 13421 diag::warn_fixedpoint_constant_overflow) 13422 << IntResult.toString() << E->getType(); 13423 if (!HandleOverflow(Info, E, IntResult, E->getType())) 13424 return false; 13425 } 13426 13427 return Success(IntResult, E); 13428 } 13429 case CK_FloatingToFixedPoint: { 13430 APFloat Src(0.0); 13431 if (!EvaluateFloat(SubExpr, Src, Info)) 13432 return false; 13433 13434 bool Overflowed; 13435 APFixedPoint Result = APFixedPoint::getFromFloatValue( 13436 Src, Info.Ctx.getFixedPointSemantics(DestType), &Overflowed); 13437 13438 if (Overflowed) { 13439 if (Info.checkingForUndefinedBehavior()) 13440 Info.Ctx.getDiagnostics().Report(E->getExprLoc(), 13441 diag::warn_fixedpoint_constant_overflow) 13442 << Result.toString() << E->getType(); 13443 if (!HandleOverflow(Info, E, Result, E->getType())) 13444 return false; 13445 } 13446 13447 return Success(Result, E); 13448 } 13449 case CK_NoOp: 13450 case CK_LValueToRValue: 13451 return ExprEvaluatorBaseTy::VisitCastExpr(E); 13452 default: 13453 return Error(E); 13454 } 13455 } 13456 13457 bool FixedPointExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { 13458 if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma) 13459 return ExprEvaluatorBaseTy::VisitBinaryOperator(E); 13460 13461 const Expr *LHS = E->getLHS(); 13462 const Expr *RHS = E->getRHS(); 13463 FixedPointSemantics ResultFXSema = 13464 Info.Ctx.getFixedPointSemantics(E->getType()); 13465 13466 APFixedPoint LHSFX(Info.Ctx.getFixedPointSemantics(LHS->getType())); 13467 if (!EvaluateFixedPointOrInteger(LHS, LHSFX, Info)) 13468 return false; 13469 APFixedPoint RHSFX(Info.Ctx.getFixedPointSemantics(RHS->getType())); 13470 if (!EvaluateFixedPointOrInteger(RHS, RHSFX, Info)) 13471 return false; 13472 13473 bool OpOverflow = false, ConversionOverflow = false; 13474 APFixedPoint Result(LHSFX.getSemantics()); 13475 switch (E->getOpcode()) { 13476 case BO_Add: { 13477 Result = LHSFX.add(RHSFX, &OpOverflow) 13478 .convert(ResultFXSema, &ConversionOverflow); 13479 break; 13480 } 13481 case BO_Sub: { 13482 Result = LHSFX.sub(RHSFX, &OpOverflow) 13483 .convert(ResultFXSema, &ConversionOverflow); 13484 break; 13485 } 13486 case BO_Mul: { 13487 Result = LHSFX.mul(RHSFX, &OpOverflow) 13488 .convert(ResultFXSema, &ConversionOverflow); 13489 break; 13490 } 13491 case BO_Div: { 13492 if (RHSFX.getValue() == 0) { 13493 Info.FFDiag(E, diag::note_expr_divide_by_zero); 13494 return false; 13495 } 13496 Result = LHSFX.div(RHSFX, &OpOverflow) 13497 .convert(ResultFXSema, &ConversionOverflow); 13498 break; 13499 } 13500 case BO_Shl: 13501 case BO_Shr: { 13502 FixedPointSemantics LHSSema = LHSFX.getSemantics(); 13503 llvm::APSInt RHSVal = RHSFX.getValue(); 13504 13505 unsigned ShiftBW = 13506 LHSSema.getWidth() - (unsigned)LHSSema.hasUnsignedPadding(); 13507 unsigned Amt = RHSVal.getLimitedValue(ShiftBW - 1); 13508 // Embedded-C 4.1.6.2.2: 13509 // The right operand must be nonnegative and less than the total number 13510 // of (nonpadding) bits of the fixed-point operand ... 13511 if (RHSVal.isNegative()) 13512 Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHSVal; 13513 else if (Amt != RHSVal) 13514 Info.CCEDiag(E, diag::note_constexpr_large_shift) 13515 << RHSVal << E->getType() << ShiftBW; 13516 13517 if (E->getOpcode() == BO_Shl) 13518 Result = LHSFX.shl(Amt, &OpOverflow); 13519 else 13520 Result = LHSFX.shr(Amt, &OpOverflow); 13521 break; 13522 } 13523 default: 13524 return false; 13525 } 13526 if (OpOverflow || ConversionOverflow) { 13527 if (Info.checkingForUndefinedBehavior()) 13528 Info.Ctx.getDiagnostics().Report(E->getExprLoc(), 13529 diag::warn_fixedpoint_constant_overflow) 13530 << Result.toString() << E->getType(); 13531 if (!HandleOverflow(Info, E, Result, E->getType())) 13532 return false; 13533 } 13534 return Success(Result, E); 13535 } 13536 13537 //===----------------------------------------------------------------------===// 13538 // Float Evaluation 13539 //===----------------------------------------------------------------------===// 13540 13541 namespace { 13542 class FloatExprEvaluator 13543 : public ExprEvaluatorBase<FloatExprEvaluator> { 13544 APFloat &Result; 13545 public: 13546 FloatExprEvaluator(EvalInfo &info, APFloat &result) 13547 : ExprEvaluatorBaseTy(info), Result(result) {} 13548 13549 bool Success(const APValue &V, const Expr *e) { 13550 Result = V.getFloat(); 13551 return true; 13552 } 13553 13554 bool ZeroInitialization(const Expr *E) { 13555 Result = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(E->getType())); 13556 return true; 13557 } 13558 13559 bool VisitCallExpr(const CallExpr *E); 13560 13561 bool VisitUnaryOperator(const UnaryOperator *E); 13562 bool VisitBinaryOperator(const BinaryOperator *E); 13563 bool VisitFloatingLiteral(const FloatingLiteral *E); 13564 bool VisitCastExpr(const CastExpr *E); 13565 13566 bool VisitUnaryReal(const UnaryOperator *E); 13567 bool VisitUnaryImag(const UnaryOperator *E); 13568 13569 // FIXME: Missing: array subscript of vector, member of vector 13570 }; 13571 } // end anonymous namespace 13572 13573 static bool EvaluateFloat(const Expr* E, APFloat& Result, EvalInfo &Info) { 13574 assert(!E->isValueDependent()); 13575 assert(E->isRValue() && E->getType()->isRealFloatingType()); 13576 return FloatExprEvaluator(Info, Result).Visit(E); 13577 } 13578 13579 static bool TryEvaluateBuiltinNaN(const ASTContext &Context, 13580 QualType ResultTy, 13581 const Expr *Arg, 13582 bool SNaN, 13583 llvm::APFloat &Result) { 13584 const StringLiteral *S = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts()); 13585 if (!S) return false; 13586 13587 const llvm::fltSemantics &Sem = Context.getFloatTypeSemantics(ResultTy); 13588 13589 llvm::APInt fill; 13590 13591 // Treat empty strings as if they were zero. 13592 if (S->getString().empty()) 13593 fill = llvm::APInt(32, 0); 13594 else if (S->getString().getAsInteger(0, fill)) 13595 return false; 13596 13597 if (Context.getTargetInfo().isNan2008()) { 13598 if (SNaN) 13599 Result = llvm::APFloat::getSNaN(Sem, false, &fill); 13600 else 13601 Result = llvm::APFloat::getQNaN(Sem, false, &fill); 13602 } else { 13603 // Prior to IEEE 754-2008, architectures were allowed to choose whether 13604 // the first bit of their significand was set for qNaN or sNaN. MIPS chose 13605 // a different encoding to what became a standard in 2008, and for pre- 13606 // 2008 revisions, MIPS interpreted sNaN-2008 as qNan and qNaN-2008 as 13607 // sNaN. This is now known as "legacy NaN" encoding. 13608 if (SNaN) 13609 Result = llvm::APFloat::getQNaN(Sem, false, &fill); 13610 else 13611 Result = llvm::APFloat::getSNaN(Sem, false, &fill); 13612 } 13613 13614 return true; 13615 } 13616 13617 bool FloatExprEvaluator::VisitCallExpr(const CallExpr *E) { 13618 switch (E->getBuiltinCallee()) { 13619 default: 13620 return ExprEvaluatorBaseTy::VisitCallExpr(E); 13621 13622 case Builtin::BI__builtin_huge_val: 13623 case Builtin::BI__builtin_huge_valf: 13624 case Builtin::BI__builtin_huge_vall: 13625 case Builtin::BI__builtin_huge_valf128: 13626 case Builtin::BI__builtin_inf: 13627 case Builtin::BI__builtin_inff: 13628 case Builtin::BI__builtin_infl: 13629 case Builtin::BI__builtin_inff128: { 13630 const llvm::fltSemantics &Sem = 13631 Info.Ctx.getFloatTypeSemantics(E->getType()); 13632 Result = llvm::APFloat::getInf(Sem); 13633 return true; 13634 } 13635 13636 case Builtin::BI__builtin_nans: 13637 case Builtin::BI__builtin_nansf: 13638 case Builtin::BI__builtin_nansl: 13639 case Builtin::BI__builtin_nansf128: 13640 if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0), 13641 true, Result)) 13642 return Error(E); 13643 return true; 13644 13645 case Builtin::BI__builtin_nan: 13646 case Builtin::BI__builtin_nanf: 13647 case Builtin::BI__builtin_nanl: 13648 case Builtin::BI__builtin_nanf128: 13649 // If this is __builtin_nan() turn this into a nan, otherwise we 13650 // can't constant fold it. 13651 if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0), 13652 false, Result)) 13653 return Error(E); 13654 return true; 13655 13656 case Builtin::BI__builtin_fabs: 13657 case Builtin::BI__builtin_fabsf: 13658 case Builtin::BI__builtin_fabsl: 13659 case Builtin::BI__builtin_fabsf128: 13660 // The C standard says "fabs raises no floating-point exceptions, 13661 // even if x is a signaling NaN. The returned value is independent of 13662 // the current rounding direction mode." Therefore constant folding can 13663 // proceed without regard to the floating point settings. 13664 // Reference, WG14 N2478 F.10.4.3 13665 if (!EvaluateFloat(E->getArg(0), Result, Info)) 13666 return false; 13667 13668 if (Result.isNegative()) 13669 Result.changeSign(); 13670 return true; 13671 13672 // FIXME: Builtin::BI__builtin_powi 13673 // FIXME: Builtin::BI__builtin_powif 13674 // FIXME: Builtin::BI__builtin_powil 13675 13676 case Builtin::BI__builtin_copysign: 13677 case Builtin::BI__builtin_copysignf: 13678 case Builtin::BI__builtin_copysignl: 13679 case Builtin::BI__builtin_copysignf128: { 13680 APFloat RHS(0.); 13681 if (!EvaluateFloat(E->getArg(0), Result, Info) || 13682 !EvaluateFloat(E->getArg(1), RHS, Info)) 13683 return false; 13684 Result.copySign(RHS); 13685 return true; 13686 } 13687 } 13688 } 13689 13690 bool FloatExprEvaluator::VisitUnaryReal(const UnaryOperator *E) { 13691 if (E->getSubExpr()->getType()->isAnyComplexType()) { 13692 ComplexValue CV; 13693 if (!EvaluateComplex(E->getSubExpr(), CV, Info)) 13694 return false; 13695 Result = CV.FloatReal; 13696 return true; 13697 } 13698 13699 return Visit(E->getSubExpr()); 13700 } 13701 13702 bool FloatExprEvaluator::VisitUnaryImag(const UnaryOperator *E) { 13703 if (E->getSubExpr()->getType()->isAnyComplexType()) { 13704 ComplexValue CV; 13705 if (!EvaluateComplex(E->getSubExpr(), CV, Info)) 13706 return false; 13707 Result = CV.FloatImag; 13708 return true; 13709 } 13710 13711 VisitIgnoredValue(E->getSubExpr()); 13712 const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(E->getType()); 13713 Result = llvm::APFloat::getZero(Sem); 13714 return true; 13715 } 13716 13717 bool FloatExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) { 13718 switch (E->getOpcode()) { 13719 default: return Error(E); 13720 case UO_Plus: 13721 return EvaluateFloat(E->getSubExpr(), Result, Info); 13722 case UO_Minus: 13723 // In C standard, WG14 N2478 F.3 p4 13724 // "the unary - raises no floating point exceptions, 13725 // even if the operand is signalling." 13726 if (!EvaluateFloat(E->getSubExpr(), Result, Info)) 13727 return false; 13728 Result.changeSign(); 13729 return true; 13730 } 13731 } 13732 13733 bool FloatExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { 13734 if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma) 13735 return ExprEvaluatorBaseTy::VisitBinaryOperator(E); 13736 13737 APFloat RHS(0.0); 13738 bool LHSOK = EvaluateFloat(E->getLHS(), Result, Info); 13739 if (!LHSOK && !Info.noteFailure()) 13740 return false; 13741 return EvaluateFloat(E->getRHS(), RHS, Info) && LHSOK && 13742 handleFloatFloatBinOp(Info, E, Result, E->getOpcode(), RHS); 13743 } 13744 13745 bool FloatExprEvaluator::VisitFloatingLiteral(const FloatingLiteral *E) { 13746 Result = E->getValue(); 13747 return true; 13748 } 13749 13750 bool FloatExprEvaluator::VisitCastExpr(const CastExpr *E) { 13751 const Expr* SubExpr = E->getSubExpr(); 13752 13753 switch (E->getCastKind()) { 13754 default: 13755 return ExprEvaluatorBaseTy::VisitCastExpr(E); 13756 13757 case CK_IntegralToFloating: { 13758 APSInt IntResult; 13759 const FPOptions FPO = E->getFPFeaturesInEffect( 13760 Info.Ctx.getLangOpts()); 13761 return EvaluateInteger(SubExpr, IntResult, Info) && 13762 HandleIntToFloatCast(Info, E, FPO, SubExpr->getType(), 13763 IntResult, E->getType(), Result); 13764 } 13765 13766 case CK_FixedPointToFloating: { 13767 APFixedPoint FixResult(Info.Ctx.getFixedPointSemantics(SubExpr->getType())); 13768 if (!EvaluateFixedPoint(SubExpr, FixResult, Info)) 13769 return false; 13770 Result = 13771 FixResult.convertToFloat(Info.Ctx.getFloatTypeSemantics(E->getType())); 13772 return true; 13773 } 13774 13775 case CK_FloatingCast: { 13776 if (!Visit(SubExpr)) 13777 return false; 13778 return HandleFloatToFloatCast(Info, E, SubExpr->getType(), E->getType(), 13779 Result); 13780 } 13781 13782 case CK_FloatingComplexToReal: { 13783 ComplexValue V; 13784 if (!EvaluateComplex(SubExpr, V, Info)) 13785 return false; 13786 Result = V.getComplexFloatReal(); 13787 return true; 13788 } 13789 } 13790 } 13791 13792 //===----------------------------------------------------------------------===// 13793 // Complex Evaluation (for float and integer) 13794 //===----------------------------------------------------------------------===// 13795 13796 namespace { 13797 class ComplexExprEvaluator 13798 : public ExprEvaluatorBase<ComplexExprEvaluator> { 13799 ComplexValue &Result; 13800 13801 public: 13802 ComplexExprEvaluator(EvalInfo &info, ComplexValue &Result) 13803 : ExprEvaluatorBaseTy(info), Result(Result) {} 13804 13805 bool Success(const APValue &V, const Expr *e) { 13806 Result.setFrom(V); 13807 return true; 13808 } 13809 13810 bool ZeroInitialization(const Expr *E); 13811 13812 //===--------------------------------------------------------------------===// 13813 // Visitor Methods 13814 //===--------------------------------------------------------------------===// 13815 13816 bool VisitImaginaryLiteral(const ImaginaryLiteral *E); 13817 bool VisitCastExpr(const CastExpr *E); 13818 bool VisitBinaryOperator(const BinaryOperator *E); 13819 bool VisitUnaryOperator(const UnaryOperator *E); 13820 bool VisitInitListExpr(const InitListExpr *E); 13821 bool VisitCallExpr(const CallExpr *E); 13822 }; 13823 } // end anonymous namespace 13824 13825 static bool EvaluateComplex(const Expr *E, ComplexValue &Result, 13826 EvalInfo &Info) { 13827 assert(!E->isValueDependent()); 13828 assert(E->isRValue() && E->getType()->isAnyComplexType()); 13829 return ComplexExprEvaluator(Info, Result).Visit(E); 13830 } 13831 13832 bool ComplexExprEvaluator::ZeroInitialization(const Expr *E) { 13833 QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType(); 13834 if (ElemTy->isRealFloatingType()) { 13835 Result.makeComplexFloat(); 13836 APFloat Zero = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(ElemTy)); 13837 Result.FloatReal = Zero; 13838 Result.FloatImag = Zero; 13839 } else { 13840 Result.makeComplexInt(); 13841 APSInt Zero = Info.Ctx.MakeIntValue(0, ElemTy); 13842 Result.IntReal = Zero; 13843 Result.IntImag = Zero; 13844 } 13845 return true; 13846 } 13847 13848 bool ComplexExprEvaluator::VisitImaginaryLiteral(const ImaginaryLiteral *E) { 13849 const Expr* SubExpr = E->getSubExpr(); 13850 13851 if (SubExpr->getType()->isRealFloatingType()) { 13852 Result.makeComplexFloat(); 13853 APFloat &Imag = Result.FloatImag; 13854 if (!EvaluateFloat(SubExpr, Imag, Info)) 13855 return false; 13856 13857 Result.FloatReal = APFloat(Imag.getSemantics()); 13858 return true; 13859 } else { 13860 assert(SubExpr->getType()->isIntegerType() && 13861 "Unexpected imaginary literal."); 13862 13863 Result.makeComplexInt(); 13864 APSInt &Imag = Result.IntImag; 13865 if (!EvaluateInteger(SubExpr, Imag, Info)) 13866 return false; 13867 13868 Result.IntReal = APSInt(Imag.getBitWidth(), !Imag.isSigned()); 13869 return true; 13870 } 13871 } 13872 13873 bool ComplexExprEvaluator::VisitCastExpr(const CastExpr *E) { 13874 13875 switch (E->getCastKind()) { 13876 case CK_BitCast: 13877 case CK_BaseToDerived: 13878 case CK_DerivedToBase: 13879 case CK_UncheckedDerivedToBase: 13880 case CK_Dynamic: 13881 case CK_ToUnion: 13882 case CK_ArrayToPointerDecay: 13883 case CK_FunctionToPointerDecay: 13884 case CK_NullToPointer: 13885 case CK_NullToMemberPointer: 13886 case CK_BaseToDerivedMemberPointer: 13887 case CK_DerivedToBaseMemberPointer: 13888 case CK_MemberPointerToBoolean: 13889 case CK_ReinterpretMemberPointer: 13890 case CK_ConstructorConversion: 13891 case CK_IntegralToPointer: 13892 case CK_PointerToIntegral: 13893 case CK_PointerToBoolean: 13894 case CK_ToVoid: 13895 case CK_VectorSplat: 13896 case CK_IntegralCast: 13897 case CK_BooleanToSignedIntegral: 13898 case CK_IntegralToBoolean: 13899 case CK_IntegralToFloating: 13900 case CK_FloatingToIntegral: 13901 case CK_FloatingToBoolean: 13902 case CK_FloatingCast: 13903 case CK_CPointerToObjCPointerCast: 13904 case CK_BlockPointerToObjCPointerCast: 13905 case CK_AnyPointerToBlockPointerCast: 13906 case CK_ObjCObjectLValueCast: 13907 case CK_FloatingComplexToReal: 13908 case CK_FloatingComplexToBoolean: 13909 case CK_IntegralComplexToReal: 13910 case CK_IntegralComplexToBoolean: 13911 case CK_ARCProduceObject: 13912 case CK_ARCConsumeObject: 13913 case CK_ARCReclaimReturnedObject: 13914 case CK_ARCExtendBlockObject: 13915 case CK_CopyAndAutoreleaseBlockObject: 13916 case CK_BuiltinFnToFnPtr: 13917 case CK_ZeroToOCLOpaqueType: 13918 case CK_NonAtomicToAtomic: 13919 case CK_AddressSpaceConversion: 13920 case CK_IntToOCLSampler: 13921 case CK_FloatingToFixedPoint: 13922 case CK_FixedPointToFloating: 13923 case CK_FixedPointCast: 13924 case CK_FixedPointToBoolean: 13925 case CK_FixedPointToIntegral: 13926 case CK_IntegralToFixedPoint: 13927 case CK_MatrixCast: 13928 llvm_unreachable("invalid cast kind for complex value"); 13929 13930 case CK_LValueToRValue: 13931 case CK_AtomicToNonAtomic: 13932 case CK_NoOp: 13933 case CK_LValueToRValueBitCast: 13934 return ExprEvaluatorBaseTy::VisitCastExpr(E); 13935 13936 case CK_Dependent: 13937 case CK_LValueBitCast: 13938 case CK_UserDefinedConversion: 13939 return Error(E); 13940 13941 case CK_FloatingRealToComplex: { 13942 APFloat &Real = Result.FloatReal; 13943 if (!EvaluateFloat(E->getSubExpr(), Real, Info)) 13944 return false; 13945 13946 Result.makeComplexFloat(); 13947 Result.FloatImag = APFloat(Real.getSemantics()); 13948 return true; 13949 } 13950 13951 case CK_FloatingComplexCast: { 13952 if (!Visit(E->getSubExpr())) 13953 return false; 13954 13955 QualType To = E->getType()->castAs<ComplexType>()->getElementType(); 13956 QualType From 13957 = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType(); 13958 13959 return HandleFloatToFloatCast(Info, E, From, To, Result.FloatReal) && 13960 HandleFloatToFloatCast(Info, E, From, To, Result.FloatImag); 13961 } 13962 13963 case CK_FloatingComplexToIntegralComplex: { 13964 if (!Visit(E->getSubExpr())) 13965 return false; 13966 13967 QualType To = E->getType()->castAs<ComplexType>()->getElementType(); 13968 QualType From 13969 = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType(); 13970 Result.makeComplexInt(); 13971 return HandleFloatToIntCast(Info, E, From, Result.FloatReal, 13972 To, Result.IntReal) && 13973 HandleFloatToIntCast(Info, E, From, Result.FloatImag, 13974 To, Result.IntImag); 13975 } 13976 13977 case CK_IntegralRealToComplex: { 13978 APSInt &Real = Result.IntReal; 13979 if (!EvaluateInteger(E->getSubExpr(), Real, Info)) 13980 return false; 13981 13982 Result.makeComplexInt(); 13983 Result.IntImag = APSInt(Real.getBitWidth(), !Real.isSigned()); 13984 return true; 13985 } 13986 13987 case CK_IntegralComplexCast: { 13988 if (!Visit(E->getSubExpr())) 13989 return false; 13990 13991 QualType To = E->getType()->castAs<ComplexType>()->getElementType(); 13992 QualType From 13993 = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType(); 13994 13995 Result.IntReal = HandleIntToIntCast(Info, E, To, From, Result.IntReal); 13996 Result.IntImag = HandleIntToIntCast(Info, E, To, From, Result.IntImag); 13997 return true; 13998 } 13999 14000 case CK_IntegralComplexToFloatingComplex: { 14001 if (!Visit(E->getSubExpr())) 14002 return false; 14003 14004 const FPOptions FPO = E->getFPFeaturesInEffect( 14005 Info.Ctx.getLangOpts()); 14006 QualType To = E->getType()->castAs<ComplexType>()->getElementType(); 14007 QualType From 14008 = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType(); 14009 Result.makeComplexFloat(); 14010 return HandleIntToFloatCast(Info, E, FPO, From, Result.IntReal, 14011 To, Result.FloatReal) && 14012 HandleIntToFloatCast(Info, E, FPO, From, Result.IntImag, 14013 To, Result.FloatImag); 14014 } 14015 } 14016 14017 llvm_unreachable("unknown cast resulting in complex value"); 14018 } 14019 14020 bool ComplexExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { 14021 if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma) 14022 return ExprEvaluatorBaseTy::VisitBinaryOperator(E); 14023 14024 // Track whether the LHS or RHS is real at the type system level. When this is 14025 // the case we can simplify our evaluation strategy. 14026 bool LHSReal = false, RHSReal = false; 14027 14028 bool LHSOK; 14029 if (E->getLHS()->getType()->isRealFloatingType()) { 14030 LHSReal = true; 14031 APFloat &Real = Result.FloatReal; 14032 LHSOK = EvaluateFloat(E->getLHS(), Real, Info); 14033 if (LHSOK) { 14034 Result.makeComplexFloat(); 14035 Result.FloatImag = APFloat(Real.getSemantics()); 14036 } 14037 } else { 14038 LHSOK = Visit(E->getLHS()); 14039 } 14040 if (!LHSOK && !Info.noteFailure()) 14041 return false; 14042 14043 ComplexValue RHS; 14044 if (E->getRHS()->getType()->isRealFloatingType()) { 14045 RHSReal = true; 14046 APFloat &Real = RHS.FloatReal; 14047 if (!EvaluateFloat(E->getRHS(), Real, Info) || !LHSOK) 14048 return false; 14049 RHS.makeComplexFloat(); 14050 RHS.FloatImag = APFloat(Real.getSemantics()); 14051 } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK) 14052 return false; 14053 14054 assert(!(LHSReal && RHSReal) && 14055 "Cannot have both operands of a complex operation be real."); 14056 switch (E->getOpcode()) { 14057 default: return Error(E); 14058 case BO_Add: 14059 if (Result.isComplexFloat()) { 14060 Result.getComplexFloatReal().add(RHS.getComplexFloatReal(), 14061 APFloat::rmNearestTiesToEven); 14062 if (LHSReal) 14063 Result.getComplexFloatImag() = RHS.getComplexFloatImag(); 14064 else if (!RHSReal) 14065 Result.getComplexFloatImag().add(RHS.getComplexFloatImag(), 14066 APFloat::rmNearestTiesToEven); 14067 } else { 14068 Result.getComplexIntReal() += RHS.getComplexIntReal(); 14069 Result.getComplexIntImag() += RHS.getComplexIntImag(); 14070 } 14071 break; 14072 case BO_Sub: 14073 if (Result.isComplexFloat()) { 14074 Result.getComplexFloatReal().subtract(RHS.getComplexFloatReal(), 14075 APFloat::rmNearestTiesToEven); 14076 if (LHSReal) { 14077 Result.getComplexFloatImag() = RHS.getComplexFloatImag(); 14078 Result.getComplexFloatImag().changeSign(); 14079 } else if (!RHSReal) { 14080 Result.getComplexFloatImag().subtract(RHS.getComplexFloatImag(), 14081 APFloat::rmNearestTiesToEven); 14082 } 14083 } else { 14084 Result.getComplexIntReal() -= RHS.getComplexIntReal(); 14085 Result.getComplexIntImag() -= RHS.getComplexIntImag(); 14086 } 14087 break; 14088 case BO_Mul: 14089 if (Result.isComplexFloat()) { 14090 // This is an implementation of complex multiplication according to the 14091 // constraints laid out in C11 Annex G. The implementation uses the 14092 // following naming scheme: 14093 // (a + ib) * (c + id) 14094 ComplexValue LHS = Result; 14095 APFloat &A = LHS.getComplexFloatReal(); 14096 APFloat &B = LHS.getComplexFloatImag(); 14097 APFloat &C = RHS.getComplexFloatReal(); 14098 APFloat &D = RHS.getComplexFloatImag(); 14099 APFloat &ResR = Result.getComplexFloatReal(); 14100 APFloat &ResI = Result.getComplexFloatImag(); 14101 if (LHSReal) { 14102 assert(!RHSReal && "Cannot have two real operands for a complex op!"); 14103 ResR = A * C; 14104 ResI = A * D; 14105 } else if (RHSReal) { 14106 ResR = C * A; 14107 ResI = C * B; 14108 } else { 14109 // In the fully general case, we need to handle NaNs and infinities 14110 // robustly. 14111 APFloat AC = A * C; 14112 APFloat BD = B * D; 14113 APFloat AD = A * D; 14114 APFloat BC = B * C; 14115 ResR = AC - BD; 14116 ResI = AD + BC; 14117 if (ResR.isNaN() && ResI.isNaN()) { 14118 bool Recalc = false; 14119 if (A.isInfinity() || B.isInfinity()) { 14120 A = APFloat::copySign( 14121 APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), A); 14122 B = APFloat::copySign( 14123 APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), B); 14124 if (C.isNaN()) 14125 C = APFloat::copySign(APFloat(C.getSemantics()), C); 14126 if (D.isNaN()) 14127 D = APFloat::copySign(APFloat(D.getSemantics()), D); 14128 Recalc = true; 14129 } 14130 if (C.isInfinity() || D.isInfinity()) { 14131 C = APFloat::copySign( 14132 APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), C); 14133 D = APFloat::copySign( 14134 APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), D); 14135 if (A.isNaN()) 14136 A = APFloat::copySign(APFloat(A.getSemantics()), A); 14137 if (B.isNaN()) 14138 B = APFloat::copySign(APFloat(B.getSemantics()), B); 14139 Recalc = true; 14140 } 14141 if (!Recalc && (AC.isInfinity() || BD.isInfinity() || 14142 AD.isInfinity() || BC.isInfinity())) { 14143 if (A.isNaN()) 14144 A = APFloat::copySign(APFloat(A.getSemantics()), A); 14145 if (B.isNaN()) 14146 B = APFloat::copySign(APFloat(B.getSemantics()), B); 14147 if (C.isNaN()) 14148 C = APFloat::copySign(APFloat(C.getSemantics()), C); 14149 if (D.isNaN()) 14150 D = APFloat::copySign(APFloat(D.getSemantics()), D); 14151 Recalc = true; 14152 } 14153 if (Recalc) { 14154 ResR = APFloat::getInf(A.getSemantics()) * (A * C - B * D); 14155 ResI = APFloat::getInf(A.getSemantics()) * (A * D + B * C); 14156 } 14157 } 14158 } 14159 } else { 14160 ComplexValue LHS = Result; 14161 Result.getComplexIntReal() = 14162 (LHS.getComplexIntReal() * RHS.getComplexIntReal() - 14163 LHS.getComplexIntImag() * RHS.getComplexIntImag()); 14164 Result.getComplexIntImag() = 14165 (LHS.getComplexIntReal() * RHS.getComplexIntImag() + 14166 LHS.getComplexIntImag() * RHS.getComplexIntReal()); 14167 } 14168 break; 14169 case BO_Div: 14170 if (Result.isComplexFloat()) { 14171 // This is an implementation of complex division according to the 14172 // constraints laid out in C11 Annex G. The implementation uses the 14173 // following naming scheme: 14174 // (a + ib) / (c + id) 14175 ComplexValue LHS = Result; 14176 APFloat &A = LHS.getComplexFloatReal(); 14177 APFloat &B = LHS.getComplexFloatImag(); 14178 APFloat &C = RHS.getComplexFloatReal(); 14179 APFloat &D = RHS.getComplexFloatImag(); 14180 APFloat &ResR = Result.getComplexFloatReal(); 14181 APFloat &ResI = Result.getComplexFloatImag(); 14182 if (RHSReal) { 14183 ResR = A / C; 14184 ResI = B / C; 14185 } else { 14186 if (LHSReal) { 14187 // No real optimizations we can do here, stub out with zero. 14188 B = APFloat::getZero(A.getSemantics()); 14189 } 14190 int DenomLogB = 0; 14191 APFloat MaxCD = maxnum(abs(C), abs(D)); 14192 if (MaxCD.isFinite()) { 14193 DenomLogB = ilogb(MaxCD); 14194 C = scalbn(C, -DenomLogB, APFloat::rmNearestTiesToEven); 14195 D = scalbn(D, -DenomLogB, APFloat::rmNearestTiesToEven); 14196 } 14197 APFloat Denom = C * C + D * D; 14198 ResR = scalbn((A * C + B * D) / Denom, -DenomLogB, 14199 APFloat::rmNearestTiesToEven); 14200 ResI = scalbn((B * C - A * D) / Denom, -DenomLogB, 14201 APFloat::rmNearestTiesToEven); 14202 if (ResR.isNaN() && ResI.isNaN()) { 14203 if (Denom.isPosZero() && (!A.isNaN() || !B.isNaN())) { 14204 ResR = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * A; 14205 ResI = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * B; 14206 } else if ((A.isInfinity() || B.isInfinity()) && C.isFinite() && 14207 D.isFinite()) { 14208 A = APFloat::copySign( 14209 APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), A); 14210 B = APFloat::copySign( 14211 APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), B); 14212 ResR = APFloat::getInf(ResR.getSemantics()) * (A * C + B * D); 14213 ResI = APFloat::getInf(ResI.getSemantics()) * (B * C - A * D); 14214 } else if (MaxCD.isInfinity() && A.isFinite() && B.isFinite()) { 14215 C = APFloat::copySign( 14216 APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), C); 14217 D = APFloat::copySign( 14218 APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), D); 14219 ResR = APFloat::getZero(ResR.getSemantics()) * (A * C + B * D); 14220 ResI = APFloat::getZero(ResI.getSemantics()) * (B * C - A * D); 14221 } 14222 } 14223 } 14224 } else { 14225 if (RHS.getComplexIntReal() == 0 && RHS.getComplexIntImag() == 0) 14226 return Error(E, diag::note_expr_divide_by_zero); 14227 14228 ComplexValue LHS = Result; 14229 APSInt Den = RHS.getComplexIntReal() * RHS.getComplexIntReal() + 14230 RHS.getComplexIntImag() * RHS.getComplexIntImag(); 14231 Result.getComplexIntReal() = 14232 (LHS.getComplexIntReal() * RHS.getComplexIntReal() + 14233 LHS.getComplexIntImag() * RHS.getComplexIntImag()) / Den; 14234 Result.getComplexIntImag() = 14235 (LHS.getComplexIntImag() * RHS.getComplexIntReal() - 14236 LHS.getComplexIntReal() * RHS.getComplexIntImag()) / Den; 14237 } 14238 break; 14239 } 14240 14241 return true; 14242 } 14243 14244 bool ComplexExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) { 14245 // Get the operand value into 'Result'. 14246 if (!Visit(E->getSubExpr())) 14247 return false; 14248 14249 switch (E->getOpcode()) { 14250 default: 14251 return Error(E); 14252 case UO_Extension: 14253 return true; 14254 case UO_Plus: 14255 // The result is always just the subexpr. 14256 return true; 14257 case UO_Minus: 14258 if (Result.isComplexFloat()) { 14259 Result.getComplexFloatReal().changeSign(); 14260 Result.getComplexFloatImag().changeSign(); 14261 } 14262 else { 14263 Result.getComplexIntReal() = -Result.getComplexIntReal(); 14264 Result.getComplexIntImag() = -Result.getComplexIntImag(); 14265 } 14266 return true; 14267 case UO_Not: 14268 if (Result.isComplexFloat()) 14269 Result.getComplexFloatImag().changeSign(); 14270 else 14271 Result.getComplexIntImag() = -Result.getComplexIntImag(); 14272 return true; 14273 } 14274 } 14275 14276 bool ComplexExprEvaluator::VisitInitListExpr(const InitListExpr *E) { 14277 if (E->getNumInits() == 2) { 14278 if (E->getType()->isComplexType()) { 14279 Result.makeComplexFloat(); 14280 if (!EvaluateFloat(E->getInit(0), Result.FloatReal, Info)) 14281 return false; 14282 if (!EvaluateFloat(E->getInit(1), Result.FloatImag, Info)) 14283 return false; 14284 } else { 14285 Result.makeComplexInt(); 14286 if (!EvaluateInteger(E->getInit(0), Result.IntReal, Info)) 14287 return false; 14288 if (!EvaluateInteger(E->getInit(1), Result.IntImag, Info)) 14289 return false; 14290 } 14291 return true; 14292 } 14293 return ExprEvaluatorBaseTy::VisitInitListExpr(E); 14294 } 14295 14296 bool ComplexExprEvaluator::VisitCallExpr(const CallExpr *E) { 14297 switch (E->getBuiltinCallee()) { 14298 case Builtin::BI__builtin_complex: 14299 Result.makeComplexFloat(); 14300 if (!EvaluateFloat(E->getArg(0), Result.FloatReal, Info)) 14301 return false; 14302 if (!EvaluateFloat(E->getArg(1), Result.FloatImag, Info)) 14303 return false; 14304 return true; 14305 14306 default: 14307 break; 14308 } 14309 14310 return ExprEvaluatorBaseTy::VisitCallExpr(E); 14311 } 14312 14313 //===----------------------------------------------------------------------===// 14314 // Atomic expression evaluation, essentially just handling the NonAtomicToAtomic 14315 // implicit conversion. 14316 //===----------------------------------------------------------------------===// 14317 14318 namespace { 14319 class AtomicExprEvaluator : 14320 public ExprEvaluatorBase<AtomicExprEvaluator> { 14321 const LValue *This; 14322 APValue &Result; 14323 public: 14324 AtomicExprEvaluator(EvalInfo &Info, const LValue *This, APValue &Result) 14325 : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {} 14326 14327 bool Success(const APValue &V, const Expr *E) { 14328 Result = V; 14329 return true; 14330 } 14331 14332 bool ZeroInitialization(const Expr *E) { 14333 ImplicitValueInitExpr VIE( 14334 E->getType()->castAs<AtomicType>()->getValueType()); 14335 // For atomic-qualified class (and array) types in C++, initialize the 14336 // _Atomic-wrapped subobject directly, in-place. 14337 return This ? EvaluateInPlace(Result, Info, *This, &VIE) 14338 : Evaluate(Result, Info, &VIE); 14339 } 14340 14341 bool VisitCastExpr(const CastExpr *E) { 14342 switch (E->getCastKind()) { 14343 default: 14344 return ExprEvaluatorBaseTy::VisitCastExpr(E); 14345 case CK_NonAtomicToAtomic: 14346 return This ? EvaluateInPlace(Result, Info, *This, E->getSubExpr()) 14347 : Evaluate(Result, Info, E->getSubExpr()); 14348 } 14349 } 14350 }; 14351 } // end anonymous namespace 14352 14353 static bool EvaluateAtomic(const Expr *E, const LValue *This, APValue &Result, 14354 EvalInfo &Info) { 14355 assert(!E->isValueDependent()); 14356 assert(E->isRValue() && E->getType()->isAtomicType()); 14357 return AtomicExprEvaluator(Info, This, Result).Visit(E); 14358 } 14359 14360 //===----------------------------------------------------------------------===// 14361 // Void expression evaluation, primarily for a cast to void on the LHS of a 14362 // comma operator 14363 //===----------------------------------------------------------------------===// 14364 14365 namespace { 14366 class VoidExprEvaluator 14367 : public ExprEvaluatorBase<VoidExprEvaluator> { 14368 public: 14369 VoidExprEvaluator(EvalInfo &Info) : ExprEvaluatorBaseTy(Info) {} 14370 14371 bool Success(const APValue &V, const Expr *e) { return true; } 14372 14373 bool ZeroInitialization(const Expr *E) { return true; } 14374 14375 bool VisitCastExpr(const CastExpr *E) { 14376 switch (E->getCastKind()) { 14377 default: 14378 return ExprEvaluatorBaseTy::VisitCastExpr(E); 14379 case CK_ToVoid: 14380 VisitIgnoredValue(E->getSubExpr()); 14381 return true; 14382 } 14383 } 14384 14385 bool VisitCallExpr(const CallExpr *E) { 14386 switch (E->getBuiltinCallee()) { 14387 case Builtin::BI__assume: 14388 case Builtin::BI__builtin_assume: 14389 // The argument is not evaluated! 14390 return true; 14391 14392 case Builtin::BI__builtin_operator_delete: 14393 return HandleOperatorDeleteCall(Info, E); 14394 14395 default: 14396 break; 14397 } 14398 14399 return ExprEvaluatorBaseTy::VisitCallExpr(E); 14400 } 14401 14402 bool VisitCXXDeleteExpr(const CXXDeleteExpr *E); 14403 }; 14404 } // end anonymous namespace 14405 14406 bool VoidExprEvaluator::VisitCXXDeleteExpr(const CXXDeleteExpr *E) { 14407 // We cannot speculatively evaluate a delete expression. 14408 if (Info.SpeculativeEvaluationDepth) 14409 return false; 14410 14411 FunctionDecl *OperatorDelete = E->getOperatorDelete(); 14412 if (!OperatorDelete->isReplaceableGlobalAllocationFunction()) { 14413 Info.FFDiag(E, diag::note_constexpr_new_non_replaceable) 14414 << isa<CXXMethodDecl>(OperatorDelete) << OperatorDelete; 14415 return false; 14416 } 14417 14418 const Expr *Arg = E->getArgument(); 14419 14420 LValue Pointer; 14421 if (!EvaluatePointer(Arg, Pointer, Info)) 14422 return false; 14423 if (Pointer.Designator.Invalid) 14424 return false; 14425 14426 // Deleting a null pointer has no effect. 14427 if (Pointer.isNullPointer()) { 14428 // This is the only case where we need to produce an extension warning: 14429 // the only other way we can succeed is if we find a dynamic allocation, 14430 // and we will have warned when we allocated it in that case. 14431 if (!Info.getLangOpts().CPlusPlus20) 14432 Info.CCEDiag(E, diag::note_constexpr_new); 14433 return true; 14434 } 14435 14436 Optional<DynAlloc *> Alloc = CheckDeleteKind( 14437 Info, E, Pointer, E->isArrayForm() ? DynAlloc::ArrayNew : DynAlloc::New); 14438 if (!Alloc) 14439 return false; 14440 QualType AllocType = Pointer.Base.getDynamicAllocType(); 14441 14442 // For the non-array case, the designator must be empty if the static type 14443 // does not have a virtual destructor. 14444 if (!E->isArrayForm() && Pointer.Designator.Entries.size() != 0 && 14445 !hasVirtualDestructor(Arg->getType()->getPointeeType())) { 14446 Info.FFDiag(E, diag::note_constexpr_delete_base_nonvirt_dtor) 14447 << Arg->getType()->getPointeeType() << AllocType; 14448 return false; 14449 } 14450 14451 // For a class type with a virtual destructor, the selected operator delete 14452 // is the one looked up when building the destructor. 14453 if (!E->isArrayForm() && !E->isGlobalDelete()) { 14454 const FunctionDecl *VirtualDelete = getVirtualOperatorDelete(AllocType); 14455 if (VirtualDelete && 14456 !VirtualDelete->isReplaceableGlobalAllocationFunction()) { 14457 Info.FFDiag(E, diag::note_constexpr_new_non_replaceable) 14458 << isa<CXXMethodDecl>(VirtualDelete) << VirtualDelete; 14459 return false; 14460 } 14461 } 14462 14463 if (!HandleDestruction(Info, E->getExprLoc(), Pointer.getLValueBase(), 14464 (*Alloc)->Value, AllocType)) 14465 return false; 14466 14467 if (!Info.HeapAllocs.erase(Pointer.Base.dyn_cast<DynamicAllocLValue>())) { 14468 // The element was already erased. This means the destructor call also 14469 // deleted the object. 14470 // FIXME: This probably results in undefined behavior before we get this 14471 // far, and should be diagnosed elsewhere first. 14472 Info.FFDiag(E, diag::note_constexpr_double_delete); 14473 return false; 14474 } 14475 14476 return true; 14477 } 14478 14479 static bool EvaluateVoid(const Expr *E, EvalInfo &Info) { 14480 assert(!E->isValueDependent()); 14481 assert(E->isRValue() && E->getType()->isVoidType()); 14482 return VoidExprEvaluator(Info).Visit(E); 14483 } 14484 14485 //===----------------------------------------------------------------------===// 14486 // Top level Expr::EvaluateAsRValue method. 14487 //===----------------------------------------------------------------------===// 14488 14489 static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E) { 14490 assert(!E->isValueDependent()); 14491 // In C, function designators are not lvalues, but we evaluate them as if they 14492 // are. 14493 QualType T = E->getType(); 14494 if (E->isGLValue() || T->isFunctionType()) { 14495 LValue LV; 14496 if (!EvaluateLValue(E, LV, Info)) 14497 return false; 14498 LV.moveInto(Result); 14499 } else if (T->isVectorType()) { 14500 if (!EvaluateVector(E, Result, Info)) 14501 return false; 14502 } else if (T->isIntegralOrEnumerationType()) { 14503 if (!IntExprEvaluator(Info, Result).Visit(E)) 14504 return false; 14505 } else if (T->hasPointerRepresentation()) { 14506 LValue LV; 14507 if (!EvaluatePointer(E, LV, Info)) 14508 return false; 14509 LV.moveInto(Result); 14510 } else if (T->isRealFloatingType()) { 14511 llvm::APFloat F(0.0); 14512 if (!EvaluateFloat(E, F, Info)) 14513 return false; 14514 Result = APValue(F); 14515 } else if (T->isAnyComplexType()) { 14516 ComplexValue C; 14517 if (!EvaluateComplex(E, C, Info)) 14518 return false; 14519 C.moveInto(Result); 14520 } else if (T->isFixedPointType()) { 14521 if (!FixedPointExprEvaluator(Info, Result).Visit(E)) return false; 14522 } else if (T->isMemberPointerType()) { 14523 MemberPtr P; 14524 if (!EvaluateMemberPointer(E, P, Info)) 14525 return false; 14526 P.moveInto(Result); 14527 return true; 14528 } else if (T->isArrayType()) { 14529 LValue LV; 14530 APValue &Value = 14531 Info.CurrentCall->createTemporary(E, T, ScopeKind::FullExpression, LV); 14532 if (!EvaluateArray(E, LV, Value, Info)) 14533 return false; 14534 Result = Value; 14535 } else if (T->isRecordType()) { 14536 LValue LV; 14537 APValue &Value = 14538 Info.CurrentCall->createTemporary(E, T, ScopeKind::FullExpression, LV); 14539 if (!EvaluateRecord(E, LV, Value, Info)) 14540 return false; 14541 Result = Value; 14542 } else if (T->isVoidType()) { 14543 if (!Info.getLangOpts().CPlusPlus11) 14544 Info.CCEDiag(E, diag::note_constexpr_nonliteral) 14545 << E->getType(); 14546 if (!EvaluateVoid(E, Info)) 14547 return false; 14548 } else if (T->isAtomicType()) { 14549 QualType Unqual = T.getAtomicUnqualifiedType(); 14550 if (Unqual->isArrayType() || Unqual->isRecordType()) { 14551 LValue LV; 14552 APValue &Value = Info.CurrentCall->createTemporary( 14553 E, Unqual, ScopeKind::FullExpression, LV); 14554 if (!EvaluateAtomic(E, &LV, Value, Info)) 14555 return false; 14556 } else { 14557 if (!EvaluateAtomic(E, nullptr, Result, Info)) 14558 return false; 14559 } 14560 } else if (Info.getLangOpts().CPlusPlus11) { 14561 Info.FFDiag(E, diag::note_constexpr_nonliteral) << E->getType(); 14562 return false; 14563 } else { 14564 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); 14565 return false; 14566 } 14567 14568 return true; 14569 } 14570 14571 /// EvaluateInPlace - Evaluate an expression in-place in an APValue. In some 14572 /// cases, the in-place evaluation is essential, since later initializers for 14573 /// an object can indirectly refer to subobjects which were initialized earlier. 14574 static bool EvaluateInPlace(APValue &Result, EvalInfo &Info, const LValue &This, 14575 const Expr *E, bool AllowNonLiteralTypes) { 14576 assert(!E->isValueDependent()); 14577 14578 if (!AllowNonLiteralTypes && !CheckLiteralType(Info, E, &This)) 14579 return false; 14580 14581 if (E->isRValue()) { 14582 // Evaluate arrays and record types in-place, so that later initializers can 14583 // refer to earlier-initialized members of the object. 14584 QualType T = E->getType(); 14585 if (T->isArrayType()) 14586 return EvaluateArray(E, This, Result, Info); 14587 else if (T->isRecordType()) 14588 return EvaluateRecord(E, This, Result, Info); 14589 else if (T->isAtomicType()) { 14590 QualType Unqual = T.getAtomicUnqualifiedType(); 14591 if (Unqual->isArrayType() || Unqual->isRecordType()) 14592 return EvaluateAtomic(E, &This, Result, Info); 14593 } 14594 } 14595 14596 // For any other type, in-place evaluation is unimportant. 14597 return Evaluate(Result, Info, E); 14598 } 14599 14600 /// EvaluateAsRValue - Try to evaluate this expression, performing an implicit 14601 /// lvalue-to-rvalue cast if it is an lvalue. 14602 static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result) { 14603 assert(!E->isValueDependent()); 14604 if (Info.EnableNewConstInterp) { 14605 if (!Info.Ctx.getInterpContext().evaluateAsRValue(Info, E, Result)) 14606 return false; 14607 } else { 14608 if (E->getType().isNull()) 14609 return false; 14610 14611 if (!CheckLiteralType(Info, E)) 14612 return false; 14613 14614 if (!::Evaluate(Result, Info, E)) 14615 return false; 14616 14617 if (E->isGLValue()) { 14618 LValue LV; 14619 LV.setFrom(Info.Ctx, Result); 14620 if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result)) 14621 return false; 14622 } 14623 } 14624 14625 // Check this core constant expression is a constant expression. 14626 return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result, 14627 ConstantExprKind::Normal) && 14628 CheckMemoryLeaks(Info); 14629 } 14630 14631 static bool FastEvaluateAsRValue(const Expr *Exp, Expr::EvalResult &Result, 14632 const ASTContext &Ctx, bool &IsConst) { 14633 // Fast-path evaluations of integer literals, since we sometimes see files 14634 // containing vast quantities of these. 14635 if (const IntegerLiteral *L = dyn_cast<IntegerLiteral>(Exp)) { 14636 Result.Val = APValue(APSInt(L->getValue(), 14637 L->getType()->isUnsignedIntegerType())); 14638 IsConst = true; 14639 return true; 14640 } 14641 14642 // This case should be rare, but we need to check it before we check on 14643 // the type below. 14644 if (Exp->getType().isNull()) { 14645 IsConst = false; 14646 return true; 14647 } 14648 14649 // FIXME: Evaluating values of large array and record types can cause 14650 // performance problems. Only do so in C++11 for now. 14651 if (Exp->isRValue() && (Exp->getType()->isArrayType() || 14652 Exp->getType()->isRecordType()) && 14653 !Ctx.getLangOpts().CPlusPlus11) { 14654 IsConst = false; 14655 return true; 14656 } 14657 return false; 14658 } 14659 14660 static bool hasUnacceptableSideEffect(Expr::EvalStatus &Result, 14661 Expr::SideEffectsKind SEK) { 14662 return (SEK < Expr::SE_AllowSideEffects && Result.HasSideEffects) || 14663 (SEK < Expr::SE_AllowUndefinedBehavior && Result.HasUndefinedBehavior); 14664 } 14665 14666 static bool EvaluateAsRValue(const Expr *E, Expr::EvalResult &Result, 14667 const ASTContext &Ctx, EvalInfo &Info) { 14668 assert(!E->isValueDependent()); 14669 bool IsConst; 14670 if (FastEvaluateAsRValue(E, Result, Ctx, IsConst)) 14671 return IsConst; 14672 14673 return EvaluateAsRValue(Info, E, Result.Val); 14674 } 14675 14676 static bool EvaluateAsInt(const Expr *E, Expr::EvalResult &ExprResult, 14677 const ASTContext &Ctx, 14678 Expr::SideEffectsKind AllowSideEffects, 14679 EvalInfo &Info) { 14680 assert(!E->isValueDependent()); 14681 if (!E->getType()->isIntegralOrEnumerationType()) 14682 return false; 14683 14684 if (!::EvaluateAsRValue(E, ExprResult, Ctx, Info) || 14685 !ExprResult.Val.isInt() || 14686 hasUnacceptableSideEffect(ExprResult, AllowSideEffects)) 14687 return false; 14688 14689 return true; 14690 } 14691 14692 static bool EvaluateAsFixedPoint(const Expr *E, Expr::EvalResult &ExprResult, 14693 const ASTContext &Ctx, 14694 Expr::SideEffectsKind AllowSideEffects, 14695 EvalInfo &Info) { 14696 assert(!E->isValueDependent()); 14697 if (!E->getType()->isFixedPointType()) 14698 return false; 14699 14700 if (!::EvaluateAsRValue(E, ExprResult, Ctx, Info)) 14701 return false; 14702 14703 if (!ExprResult.Val.isFixedPoint() || 14704 hasUnacceptableSideEffect(ExprResult, AllowSideEffects)) 14705 return false; 14706 14707 return true; 14708 } 14709 14710 /// EvaluateAsRValue - Return true if this is a constant which we can fold using 14711 /// any crazy technique (that has nothing to do with language standards) that 14712 /// we want to. If this function returns true, it returns the folded constant 14713 /// in Result. If this expression is a glvalue, an lvalue-to-rvalue conversion 14714 /// will be applied to the result. 14715 bool Expr::EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx, 14716 bool InConstantContext) const { 14717 assert(!isValueDependent() && 14718 "Expression evaluator can't be called on a dependent expression."); 14719 EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects); 14720 Info.InConstantContext = InConstantContext; 14721 return ::EvaluateAsRValue(this, Result, Ctx, Info); 14722 } 14723 14724 bool Expr::EvaluateAsBooleanCondition(bool &Result, const ASTContext &Ctx, 14725 bool InConstantContext) const { 14726 assert(!isValueDependent() && 14727 "Expression evaluator can't be called on a dependent expression."); 14728 EvalResult Scratch; 14729 return EvaluateAsRValue(Scratch, Ctx, InConstantContext) && 14730 HandleConversionToBool(Scratch.Val, Result); 14731 } 14732 14733 bool Expr::EvaluateAsInt(EvalResult &Result, const ASTContext &Ctx, 14734 SideEffectsKind AllowSideEffects, 14735 bool InConstantContext) const { 14736 assert(!isValueDependent() && 14737 "Expression evaluator can't be called on a dependent expression."); 14738 EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects); 14739 Info.InConstantContext = InConstantContext; 14740 return ::EvaluateAsInt(this, Result, Ctx, AllowSideEffects, Info); 14741 } 14742 14743 bool Expr::EvaluateAsFixedPoint(EvalResult &Result, const ASTContext &Ctx, 14744 SideEffectsKind AllowSideEffects, 14745 bool InConstantContext) const { 14746 assert(!isValueDependent() && 14747 "Expression evaluator can't be called on a dependent expression."); 14748 EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects); 14749 Info.InConstantContext = InConstantContext; 14750 return ::EvaluateAsFixedPoint(this, Result, Ctx, AllowSideEffects, Info); 14751 } 14752 14753 bool Expr::EvaluateAsFloat(APFloat &Result, const ASTContext &Ctx, 14754 SideEffectsKind AllowSideEffects, 14755 bool InConstantContext) const { 14756 assert(!isValueDependent() && 14757 "Expression evaluator can't be called on a dependent expression."); 14758 14759 if (!getType()->isRealFloatingType()) 14760 return false; 14761 14762 EvalResult ExprResult; 14763 if (!EvaluateAsRValue(ExprResult, Ctx, InConstantContext) || 14764 !ExprResult.Val.isFloat() || 14765 hasUnacceptableSideEffect(ExprResult, AllowSideEffects)) 14766 return false; 14767 14768 Result = ExprResult.Val.getFloat(); 14769 return true; 14770 } 14771 14772 bool Expr::EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx, 14773 bool InConstantContext) const { 14774 assert(!isValueDependent() && 14775 "Expression evaluator can't be called on a dependent expression."); 14776 14777 EvalInfo Info(Ctx, Result, EvalInfo::EM_ConstantFold); 14778 Info.InConstantContext = InConstantContext; 14779 LValue LV; 14780 CheckedTemporaries CheckedTemps; 14781 if (!EvaluateLValue(this, LV, Info) || !Info.discardCleanups() || 14782 Result.HasSideEffects || 14783 !CheckLValueConstantExpression(Info, getExprLoc(), 14784 Ctx.getLValueReferenceType(getType()), LV, 14785 ConstantExprKind::Normal, CheckedTemps)) 14786 return false; 14787 14788 LV.moveInto(Result.Val); 14789 return true; 14790 } 14791 14792 static bool EvaluateDestruction(const ASTContext &Ctx, APValue::LValueBase Base, 14793 APValue DestroyedValue, QualType Type, 14794 SourceLocation Loc, Expr::EvalStatus &EStatus, 14795 bool IsConstantDestruction) { 14796 EvalInfo Info(Ctx, EStatus, 14797 IsConstantDestruction ? EvalInfo::EM_ConstantExpression 14798 : EvalInfo::EM_ConstantFold); 14799 Info.setEvaluatingDecl(Base, DestroyedValue, 14800 EvalInfo::EvaluatingDeclKind::Dtor); 14801 Info.InConstantContext = IsConstantDestruction; 14802 14803 LValue LVal; 14804 LVal.set(Base); 14805 14806 if (!HandleDestruction(Info, Loc, Base, DestroyedValue, Type) || 14807 EStatus.HasSideEffects) 14808 return false; 14809 14810 if (!Info.discardCleanups()) 14811 llvm_unreachable("Unhandled cleanup; missing full expression marker?"); 14812 14813 return true; 14814 } 14815 14816 bool Expr::EvaluateAsConstantExpr(EvalResult &Result, const ASTContext &Ctx, 14817 ConstantExprKind Kind) const { 14818 assert(!isValueDependent() && 14819 "Expression evaluator can't be called on a dependent expression."); 14820 14821 EvalInfo::EvaluationMode EM = EvalInfo::EM_ConstantExpression; 14822 EvalInfo Info(Ctx, Result, EM); 14823 Info.InConstantContext = true; 14824 14825 // The type of the object we're initializing is 'const T' for a class NTTP. 14826 QualType T = getType(); 14827 if (Kind == ConstantExprKind::ClassTemplateArgument) 14828 T.addConst(); 14829 14830 // If we're evaluating a prvalue, fake up a MaterializeTemporaryExpr to 14831 // represent the result of the evaluation. CheckConstantExpression ensures 14832 // this doesn't escape. 14833 MaterializeTemporaryExpr BaseMTE(T, const_cast<Expr*>(this), true); 14834 APValue::LValueBase Base(&BaseMTE); 14835 14836 Info.setEvaluatingDecl(Base, Result.Val); 14837 LValue LVal; 14838 LVal.set(Base); 14839 14840 if (!::EvaluateInPlace(Result.Val, Info, LVal, this) || Result.HasSideEffects) 14841 return false; 14842 14843 if (!Info.discardCleanups()) 14844 llvm_unreachable("Unhandled cleanup; missing full expression marker?"); 14845 14846 if (!CheckConstantExpression(Info, getExprLoc(), getStorageType(Ctx, this), 14847 Result.Val, Kind)) 14848 return false; 14849 if (!CheckMemoryLeaks(Info)) 14850 return false; 14851 14852 // If this is a class template argument, it's required to have constant 14853 // destruction too. 14854 if (Kind == ConstantExprKind::ClassTemplateArgument && 14855 (!EvaluateDestruction(Ctx, Base, Result.Val, T, getBeginLoc(), Result, 14856 true) || 14857 Result.HasSideEffects)) { 14858 // FIXME: Prefix a note to indicate that the problem is lack of constant 14859 // destruction. 14860 return false; 14861 } 14862 14863 return true; 14864 } 14865 14866 bool Expr::EvaluateAsInitializer(APValue &Value, const ASTContext &Ctx, 14867 const VarDecl *VD, 14868 SmallVectorImpl<PartialDiagnosticAt> &Notes, 14869 bool IsConstantInitialization) const { 14870 assert(!isValueDependent() && 14871 "Expression evaluator can't be called on a dependent expression."); 14872 14873 // FIXME: Evaluating initializers for large array and record types can cause 14874 // performance problems. Only do so in C++11 for now. 14875 if (isRValue() && (getType()->isArrayType() || getType()->isRecordType()) && 14876 !Ctx.getLangOpts().CPlusPlus11) 14877 return false; 14878 14879 Expr::EvalStatus EStatus; 14880 EStatus.Diag = &Notes; 14881 14882 EvalInfo Info(Ctx, EStatus, 14883 (IsConstantInitialization && Ctx.getLangOpts().CPlusPlus11) 14884 ? EvalInfo::EM_ConstantExpression 14885 : EvalInfo::EM_ConstantFold); 14886 Info.setEvaluatingDecl(VD, Value); 14887 Info.InConstantContext = IsConstantInitialization; 14888 14889 SourceLocation DeclLoc = VD->getLocation(); 14890 QualType DeclTy = VD->getType(); 14891 14892 if (Info.EnableNewConstInterp) { 14893 auto &InterpCtx = const_cast<ASTContext &>(Ctx).getInterpContext(); 14894 if (!InterpCtx.evaluateAsInitializer(Info, VD, Value)) 14895 return false; 14896 } else { 14897 LValue LVal; 14898 LVal.set(VD); 14899 14900 if (!EvaluateInPlace(Value, Info, LVal, this, 14901 /*AllowNonLiteralTypes=*/true) || 14902 EStatus.HasSideEffects) 14903 return false; 14904 14905 // At this point, any lifetime-extended temporaries are completely 14906 // initialized. 14907 Info.performLifetimeExtension(); 14908 14909 if (!Info.discardCleanups()) 14910 llvm_unreachable("Unhandled cleanup; missing full expression marker?"); 14911 } 14912 return CheckConstantExpression(Info, DeclLoc, DeclTy, Value, 14913 ConstantExprKind::Normal) && 14914 CheckMemoryLeaks(Info); 14915 } 14916 14917 bool VarDecl::evaluateDestruction( 14918 SmallVectorImpl<PartialDiagnosticAt> &Notes) const { 14919 Expr::EvalStatus EStatus; 14920 EStatus.Diag = &Notes; 14921 14922 // Only treat the destruction as constant destruction if we formally have 14923 // constant initialization (or are usable in a constant expression). 14924 bool IsConstantDestruction = hasConstantInitialization(); 14925 14926 // Make a copy of the value for the destructor to mutate, if we know it. 14927 // Otherwise, treat the value as default-initialized; if the destructor works 14928 // anyway, then the destruction is constant (and must be essentially empty). 14929 APValue DestroyedValue; 14930 if (getEvaluatedValue() && !getEvaluatedValue()->isAbsent()) 14931 DestroyedValue = *getEvaluatedValue(); 14932 else if (!getDefaultInitValue(getType(), DestroyedValue)) 14933 return false; 14934 14935 if (!EvaluateDestruction(getASTContext(), this, std::move(DestroyedValue), 14936 getType(), getLocation(), EStatus, 14937 IsConstantDestruction) || 14938 EStatus.HasSideEffects) 14939 return false; 14940 14941 ensureEvaluatedStmt()->HasConstantDestruction = true; 14942 return true; 14943 } 14944 14945 /// isEvaluatable - Call EvaluateAsRValue to see if this expression can be 14946 /// constant folded, but discard the result. 14947 bool Expr::isEvaluatable(const ASTContext &Ctx, SideEffectsKind SEK) const { 14948 assert(!isValueDependent() && 14949 "Expression evaluator can't be called on a dependent expression."); 14950 14951 EvalResult Result; 14952 return EvaluateAsRValue(Result, Ctx, /* in constant context */ true) && 14953 !hasUnacceptableSideEffect(Result, SEK); 14954 } 14955 14956 APSInt Expr::EvaluateKnownConstInt(const ASTContext &Ctx, 14957 SmallVectorImpl<PartialDiagnosticAt> *Diag) const { 14958 assert(!isValueDependent() && 14959 "Expression evaluator can't be called on a dependent expression."); 14960 14961 EvalResult EVResult; 14962 EVResult.Diag = Diag; 14963 EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects); 14964 Info.InConstantContext = true; 14965 14966 bool Result = ::EvaluateAsRValue(this, EVResult, Ctx, Info); 14967 (void)Result; 14968 assert(Result && "Could not evaluate expression"); 14969 assert(EVResult.Val.isInt() && "Expression did not evaluate to integer"); 14970 14971 return EVResult.Val.getInt(); 14972 } 14973 14974 APSInt Expr::EvaluateKnownConstIntCheckOverflow( 14975 const ASTContext &Ctx, SmallVectorImpl<PartialDiagnosticAt> *Diag) const { 14976 assert(!isValueDependent() && 14977 "Expression evaluator can't be called on a dependent expression."); 14978 14979 EvalResult EVResult; 14980 EVResult.Diag = Diag; 14981 EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects); 14982 Info.InConstantContext = true; 14983 Info.CheckingForUndefinedBehavior = true; 14984 14985 bool Result = ::EvaluateAsRValue(Info, this, EVResult.Val); 14986 (void)Result; 14987 assert(Result && "Could not evaluate expression"); 14988 assert(EVResult.Val.isInt() && "Expression did not evaluate to integer"); 14989 14990 return EVResult.Val.getInt(); 14991 } 14992 14993 void Expr::EvaluateForOverflow(const ASTContext &Ctx) const { 14994 assert(!isValueDependent() && 14995 "Expression evaluator can't be called on a dependent expression."); 14996 14997 bool IsConst; 14998 EvalResult EVResult; 14999 if (!FastEvaluateAsRValue(this, EVResult, Ctx, IsConst)) { 15000 EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects); 15001 Info.CheckingForUndefinedBehavior = true; 15002 (void)::EvaluateAsRValue(Info, this, EVResult.Val); 15003 } 15004 } 15005 15006 bool Expr::EvalResult::isGlobalLValue() const { 15007 assert(Val.isLValue()); 15008 return IsGlobalLValue(Val.getLValueBase()); 15009 } 15010 15011 /// isIntegerConstantExpr - this recursive routine will test if an expression is 15012 /// an integer constant expression. 15013 15014 /// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero, 15015 /// comma, etc 15016 15017 // CheckICE - This function does the fundamental ICE checking: the returned 15018 // ICEDiag contains an ICEKind indicating whether the expression is an ICE, 15019 // and a (possibly null) SourceLocation indicating the location of the problem. 15020 // 15021 // Note that to reduce code duplication, this helper does no evaluation 15022 // itself; the caller checks whether the expression is evaluatable, and 15023 // in the rare cases where CheckICE actually cares about the evaluated 15024 // value, it calls into Evaluate. 15025 15026 namespace { 15027 15028 enum ICEKind { 15029 /// This expression is an ICE. 15030 IK_ICE, 15031 /// This expression is not an ICE, but if it isn't evaluated, it's 15032 /// a legal subexpression for an ICE. This return value is used to handle 15033 /// the comma operator in C99 mode, and non-constant subexpressions. 15034 IK_ICEIfUnevaluated, 15035 /// This expression is not an ICE, and is not a legal subexpression for one. 15036 IK_NotICE 15037 }; 15038 15039 struct ICEDiag { 15040 ICEKind Kind; 15041 SourceLocation Loc; 15042 15043 ICEDiag(ICEKind IK, SourceLocation l) : Kind(IK), Loc(l) {} 15044 }; 15045 15046 } 15047 15048 static ICEDiag NoDiag() { return ICEDiag(IK_ICE, SourceLocation()); } 15049 15050 static ICEDiag Worst(ICEDiag A, ICEDiag B) { return A.Kind >= B.Kind ? A : B; } 15051 15052 static ICEDiag CheckEvalInICE(const Expr* E, const ASTContext &Ctx) { 15053 Expr::EvalResult EVResult; 15054 Expr::EvalStatus Status; 15055 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression); 15056 15057 Info.InConstantContext = true; 15058 if (!::EvaluateAsRValue(E, EVResult, Ctx, Info) || EVResult.HasSideEffects || 15059 !EVResult.Val.isInt()) 15060 return ICEDiag(IK_NotICE, E->getBeginLoc()); 15061 15062 return NoDiag(); 15063 } 15064 15065 static ICEDiag CheckICE(const Expr* E, const ASTContext &Ctx) { 15066 assert(!E->isValueDependent() && "Should not see value dependent exprs!"); 15067 if (!E->getType()->isIntegralOrEnumerationType()) 15068 return ICEDiag(IK_NotICE, E->getBeginLoc()); 15069 15070 switch (E->getStmtClass()) { 15071 #define ABSTRACT_STMT(Node) 15072 #define STMT(Node, Base) case Expr::Node##Class: 15073 #define EXPR(Node, Base) 15074 #include "clang/AST/StmtNodes.inc" 15075 case Expr::PredefinedExprClass: 15076 case Expr::FloatingLiteralClass: 15077 case Expr::ImaginaryLiteralClass: 15078 case Expr::StringLiteralClass: 15079 case Expr::ArraySubscriptExprClass: 15080 case Expr::MatrixSubscriptExprClass: 15081 case Expr::OMPArraySectionExprClass: 15082 case Expr::OMPArrayShapingExprClass: 15083 case Expr::OMPIteratorExprClass: 15084 case Expr::MemberExprClass: 15085 case Expr::CompoundAssignOperatorClass: 15086 case Expr::CompoundLiteralExprClass: 15087 case Expr::ExtVectorElementExprClass: 15088 case Expr::DesignatedInitExprClass: 15089 case Expr::ArrayInitLoopExprClass: 15090 case Expr::ArrayInitIndexExprClass: 15091 case Expr::NoInitExprClass: 15092 case Expr::DesignatedInitUpdateExprClass: 15093 case Expr::ImplicitValueInitExprClass: 15094 case Expr::ParenListExprClass: 15095 case Expr::VAArgExprClass: 15096 case Expr::AddrLabelExprClass: 15097 case Expr::StmtExprClass: 15098 case Expr::CXXMemberCallExprClass: 15099 case Expr::CUDAKernelCallExprClass: 15100 case Expr::CXXAddrspaceCastExprClass: 15101 case Expr::CXXDynamicCastExprClass: 15102 case Expr::CXXTypeidExprClass: 15103 case Expr::CXXUuidofExprClass: 15104 case Expr::MSPropertyRefExprClass: 15105 case Expr::MSPropertySubscriptExprClass: 15106 case Expr::CXXNullPtrLiteralExprClass: 15107 case Expr::UserDefinedLiteralClass: 15108 case Expr::CXXThisExprClass: 15109 case Expr::CXXThrowExprClass: 15110 case Expr::CXXNewExprClass: 15111 case Expr::CXXDeleteExprClass: 15112 case Expr::CXXPseudoDestructorExprClass: 15113 case Expr::UnresolvedLookupExprClass: 15114 case Expr::TypoExprClass: 15115 case Expr::RecoveryExprClass: 15116 case Expr::DependentScopeDeclRefExprClass: 15117 case Expr::CXXConstructExprClass: 15118 case Expr::CXXInheritedCtorInitExprClass: 15119 case Expr::CXXStdInitializerListExprClass: 15120 case Expr::CXXBindTemporaryExprClass: 15121 case Expr::ExprWithCleanupsClass: 15122 case Expr::CXXTemporaryObjectExprClass: 15123 case Expr::CXXUnresolvedConstructExprClass: 15124 case Expr::CXXDependentScopeMemberExprClass: 15125 case Expr::UnresolvedMemberExprClass: 15126 case Expr::ObjCStringLiteralClass: 15127 case Expr::ObjCBoxedExprClass: 15128 case Expr::ObjCArrayLiteralClass: 15129 case Expr::ObjCDictionaryLiteralClass: 15130 case Expr::ObjCEncodeExprClass: 15131 case Expr::ObjCMessageExprClass: 15132 case Expr::ObjCSelectorExprClass: 15133 case Expr::ObjCProtocolExprClass: 15134 case Expr::ObjCIvarRefExprClass: 15135 case Expr::ObjCPropertyRefExprClass: 15136 case Expr::ObjCSubscriptRefExprClass: 15137 case Expr::ObjCIsaExprClass: 15138 case Expr::ObjCAvailabilityCheckExprClass: 15139 case Expr::ShuffleVectorExprClass: 15140 case Expr::ConvertVectorExprClass: 15141 case Expr::BlockExprClass: 15142 case Expr::NoStmtClass: 15143 case Expr::OpaqueValueExprClass: 15144 case Expr::PackExpansionExprClass: 15145 case Expr::SubstNonTypeTemplateParmPackExprClass: 15146 case Expr::FunctionParmPackExprClass: 15147 case Expr::AsTypeExprClass: 15148 case Expr::ObjCIndirectCopyRestoreExprClass: 15149 case Expr::MaterializeTemporaryExprClass: 15150 case Expr::PseudoObjectExprClass: 15151 case Expr::AtomicExprClass: 15152 case Expr::LambdaExprClass: 15153 case Expr::CXXFoldExprClass: 15154 case Expr::CoawaitExprClass: 15155 case Expr::DependentCoawaitExprClass: 15156 case Expr::CoyieldExprClass: 15157 return ICEDiag(IK_NotICE, E->getBeginLoc()); 15158 15159 case Expr::InitListExprClass: { 15160 // C++03 [dcl.init]p13: If T is a scalar type, then a declaration of the 15161 // form "T x = { a };" is equivalent to "T x = a;". 15162 // Unless we're initializing a reference, T is a scalar as it is known to be 15163 // of integral or enumeration type. 15164 if (E->isRValue()) 15165 if (cast<InitListExpr>(E)->getNumInits() == 1) 15166 return CheckICE(cast<InitListExpr>(E)->getInit(0), Ctx); 15167 return ICEDiag(IK_NotICE, E->getBeginLoc()); 15168 } 15169 15170 case Expr::SizeOfPackExprClass: 15171 case Expr::GNUNullExprClass: 15172 case Expr::SourceLocExprClass: 15173 return NoDiag(); 15174 15175 case Expr::SubstNonTypeTemplateParmExprClass: 15176 return 15177 CheckICE(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(), Ctx); 15178 15179 case Expr::ConstantExprClass: 15180 return CheckICE(cast<ConstantExpr>(E)->getSubExpr(), Ctx); 15181 15182 case Expr::ParenExprClass: 15183 return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx); 15184 case Expr::GenericSelectionExprClass: 15185 return CheckICE(cast<GenericSelectionExpr>(E)->getResultExpr(), Ctx); 15186 case Expr::IntegerLiteralClass: 15187 case Expr::FixedPointLiteralClass: 15188 case Expr::CharacterLiteralClass: 15189 case Expr::ObjCBoolLiteralExprClass: 15190 case Expr::CXXBoolLiteralExprClass: 15191 case Expr::CXXScalarValueInitExprClass: 15192 case Expr::TypeTraitExprClass: 15193 case Expr::ConceptSpecializationExprClass: 15194 case Expr::RequiresExprClass: 15195 case Expr::ArrayTypeTraitExprClass: 15196 case Expr::ExpressionTraitExprClass: 15197 case Expr::CXXNoexceptExprClass: 15198 return NoDiag(); 15199 case Expr::CallExprClass: 15200 case Expr::CXXOperatorCallExprClass: { 15201 // C99 6.6/3 allows function calls within unevaluated subexpressions of 15202 // constant expressions, but they can never be ICEs because an ICE cannot 15203 // contain an operand of (pointer to) function type. 15204 const CallExpr *CE = cast<CallExpr>(E); 15205 if (CE->getBuiltinCallee()) 15206 return CheckEvalInICE(E, Ctx); 15207 return ICEDiag(IK_NotICE, E->getBeginLoc()); 15208 } 15209 case Expr::CXXRewrittenBinaryOperatorClass: 15210 return CheckICE(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm(), 15211 Ctx); 15212 case Expr::DeclRefExprClass: { 15213 const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl(); 15214 if (isa<EnumConstantDecl>(D)) 15215 return NoDiag(); 15216 15217 // C++ and OpenCL (FIXME: spec reference?) allow reading const-qualified 15218 // integer variables in constant expressions: 15219 // 15220 // C++ 7.1.5.1p2 15221 // A variable of non-volatile const-qualified integral or enumeration 15222 // type initialized by an ICE can be used in ICEs. 15223 // 15224 // We sometimes use CheckICE to check the C++98 rules in C++11 mode. In 15225 // that mode, use of reference variables should not be allowed. 15226 const VarDecl *VD = dyn_cast<VarDecl>(D); 15227 if (VD && VD->isUsableInConstantExpressions(Ctx) && 15228 !VD->getType()->isReferenceType()) 15229 return NoDiag(); 15230 15231 return ICEDiag(IK_NotICE, E->getBeginLoc()); 15232 } 15233 case Expr::UnaryOperatorClass: { 15234 const UnaryOperator *Exp = cast<UnaryOperator>(E); 15235 switch (Exp->getOpcode()) { 15236 case UO_PostInc: 15237 case UO_PostDec: 15238 case UO_PreInc: 15239 case UO_PreDec: 15240 case UO_AddrOf: 15241 case UO_Deref: 15242 case UO_Coawait: 15243 // C99 6.6/3 allows increment and decrement within unevaluated 15244 // subexpressions of constant expressions, but they can never be ICEs 15245 // because an ICE cannot contain an lvalue operand. 15246 return ICEDiag(IK_NotICE, E->getBeginLoc()); 15247 case UO_Extension: 15248 case UO_LNot: 15249 case UO_Plus: 15250 case UO_Minus: 15251 case UO_Not: 15252 case UO_Real: 15253 case UO_Imag: 15254 return CheckICE(Exp->getSubExpr(), Ctx); 15255 } 15256 llvm_unreachable("invalid unary operator class"); 15257 } 15258 case Expr::OffsetOfExprClass: { 15259 // Note that per C99, offsetof must be an ICE. And AFAIK, using 15260 // EvaluateAsRValue matches the proposed gcc behavior for cases like 15261 // "offsetof(struct s{int x[4];}, x[1.0])". This doesn't affect 15262 // compliance: we should warn earlier for offsetof expressions with 15263 // array subscripts that aren't ICEs, and if the array subscripts 15264 // are ICEs, the value of the offsetof must be an integer constant. 15265 return CheckEvalInICE(E, Ctx); 15266 } 15267 case Expr::UnaryExprOrTypeTraitExprClass: { 15268 const UnaryExprOrTypeTraitExpr *Exp = cast<UnaryExprOrTypeTraitExpr>(E); 15269 if ((Exp->getKind() == UETT_SizeOf) && 15270 Exp->getTypeOfArgument()->isVariableArrayType()) 15271 return ICEDiag(IK_NotICE, E->getBeginLoc()); 15272 return NoDiag(); 15273 } 15274 case Expr::BinaryOperatorClass: { 15275 const BinaryOperator *Exp = cast<BinaryOperator>(E); 15276 switch (Exp->getOpcode()) { 15277 case BO_PtrMemD: 15278 case BO_PtrMemI: 15279 case BO_Assign: 15280 case BO_MulAssign: 15281 case BO_DivAssign: 15282 case BO_RemAssign: 15283 case BO_AddAssign: 15284 case BO_SubAssign: 15285 case BO_ShlAssign: 15286 case BO_ShrAssign: 15287 case BO_AndAssign: 15288 case BO_XorAssign: 15289 case BO_OrAssign: 15290 // C99 6.6/3 allows assignments within unevaluated subexpressions of 15291 // constant expressions, but they can never be ICEs because an ICE cannot 15292 // contain an lvalue operand. 15293 return ICEDiag(IK_NotICE, E->getBeginLoc()); 15294 15295 case BO_Mul: 15296 case BO_Div: 15297 case BO_Rem: 15298 case BO_Add: 15299 case BO_Sub: 15300 case BO_Shl: 15301 case BO_Shr: 15302 case BO_LT: 15303 case BO_GT: 15304 case BO_LE: 15305 case BO_GE: 15306 case BO_EQ: 15307 case BO_NE: 15308 case BO_And: 15309 case BO_Xor: 15310 case BO_Or: 15311 case BO_Comma: 15312 case BO_Cmp: { 15313 ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx); 15314 ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx); 15315 if (Exp->getOpcode() == BO_Div || 15316 Exp->getOpcode() == BO_Rem) { 15317 // EvaluateAsRValue gives an error for undefined Div/Rem, so make sure 15318 // we don't evaluate one. 15319 if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE) { 15320 llvm::APSInt REval = Exp->getRHS()->EvaluateKnownConstInt(Ctx); 15321 if (REval == 0) 15322 return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc()); 15323 if (REval.isSigned() && REval.isAllOnesValue()) { 15324 llvm::APSInt LEval = Exp->getLHS()->EvaluateKnownConstInt(Ctx); 15325 if (LEval.isMinSignedValue()) 15326 return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc()); 15327 } 15328 } 15329 } 15330 if (Exp->getOpcode() == BO_Comma) { 15331 if (Ctx.getLangOpts().C99) { 15332 // C99 6.6p3 introduces a strange edge case: comma can be in an ICE 15333 // if it isn't evaluated. 15334 if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE) 15335 return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc()); 15336 } else { 15337 // In both C89 and C++, commas in ICEs are illegal. 15338 return ICEDiag(IK_NotICE, E->getBeginLoc()); 15339 } 15340 } 15341 return Worst(LHSResult, RHSResult); 15342 } 15343 case BO_LAnd: 15344 case BO_LOr: { 15345 ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx); 15346 ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx); 15347 if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICEIfUnevaluated) { 15348 // Rare case where the RHS has a comma "side-effect"; we need 15349 // to actually check the condition to see whether the side 15350 // with the comma is evaluated. 15351 if ((Exp->getOpcode() == BO_LAnd) != 15352 (Exp->getLHS()->EvaluateKnownConstInt(Ctx) == 0)) 15353 return RHSResult; 15354 return NoDiag(); 15355 } 15356 15357 return Worst(LHSResult, RHSResult); 15358 } 15359 } 15360 llvm_unreachable("invalid binary operator kind"); 15361 } 15362 case Expr::ImplicitCastExprClass: 15363 case Expr::CStyleCastExprClass: 15364 case Expr::CXXFunctionalCastExprClass: 15365 case Expr::CXXStaticCastExprClass: 15366 case Expr::CXXReinterpretCastExprClass: 15367 case Expr::CXXConstCastExprClass: 15368 case Expr::ObjCBridgedCastExprClass: { 15369 const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr(); 15370 if (isa<ExplicitCastExpr>(E)) { 15371 if (const FloatingLiteral *FL 15372 = dyn_cast<FloatingLiteral>(SubExpr->IgnoreParenImpCasts())) { 15373 unsigned DestWidth = Ctx.getIntWidth(E->getType()); 15374 bool DestSigned = E->getType()->isSignedIntegerOrEnumerationType(); 15375 APSInt IgnoredVal(DestWidth, !DestSigned); 15376 bool Ignored; 15377 // If the value does not fit in the destination type, the behavior is 15378 // undefined, so we are not required to treat it as a constant 15379 // expression. 15380 if (FL->getValue().convertToInteger(IgnoredVal, 15381 llvm::APFloat::rmTowardZero, 15382 &Ignored) & APFloat::opInvalidOp) 15383 return ICEDiag(IK_NotICE, E->getBeginLoc()); 15384 return NoDiag(); 15385 } 15386 } 15387 switch (cast<CastExpr>(E)->getCastKind()) { 15388 case CK_LValueToRValue: 15389 case CK_AtomicToNonAtomic: 15390 case CK_NonAtomicToAtomic: 15391 case CK_NoOp: 15392 case CK_IntegralToBoolean: 15393 case CK_IntegralCast: 15394 return CheckICE(SubExpr, Ctx); 15395 default: 15396 return ICEDiag(IK_NotICE, E->getBeginLoc()); 15397 } 15398 } 15399 case Expr::BinaryConditionalOperatorClass: { 15400 const BinaryConditionalOperator *Exp = cast<BinaryConditionalOperator>(E); 15401 ICEDiag CommonResult = CheckICE(Exp->getCommon(), Ctx); 15402 if (CommonResult.Kind == IK_NotICE) return CommonResult; 15403 ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx); 15404 if (FalseResult.Kind == IK_NotICE) return FalseResult; 15405 if (CommonResult.Kind == IK_ICEIfUnevaluated) return CommonResult; 15406 if (FalseResult.Kind == IK_ICEIfUnevaluated && 15407 Exp->getCommon()->EvaluateKnownConstInt(Ctx) != 0) return NoDiag(); 15408 return FalseResult; 15409 } 15410 case Expr::ConditionalOperatorClass: { 15411 const ConditionalOperator *Exp = cast<ConditionalOperator>(E); 15412 // If the condition (ignoring parens) is a __builtin_constant_p call, 15413 // then only the true side is actually considered in an integer constant 15414 // expression, and it is fully evaluated. This is an important GNU 15415 // extension. See GCC PR38377 for discussion. 15416 if (const CallExpr *CallCE 15417 = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts())) 15418 if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p) 15419 return CheckEvalInICE(E, Ctx); 15420 ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx); 15421 if (CondResult.Kind == IK_NotICE) 15422 return CondResult; 15423 15424 ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx); 15425 ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx); 15426 15427 if (TrueResult.Kind == IK_NotICE) 15428 return TrueResult; 15429 if (FalseResult.Kind == IK_NotICE) 15430 return FalseResult; 15431 if (CondResult.Kind == IK_ICEIfUnevaluated) 15432 return CondResult; 15433 if (TrueResult.Kind == IK_ICE && FalseResult.Kind == IK_ICE) 15434 return NoDiag(); 15435 // Rare case where the diagnostics depend on which side is evaluated 15436 // Note that if we get here, CondResult is 0, and at least one of 15437 // TrueResult and FalseResult is non-zero. 15438 if (Exp->getCond()->EvaluateKnownConstInt(Ctx) == 0) 15439 return FalseResult; 15440 return TrueResult; 15441 } 15442 case Expr::CXXDefaultArgExprClass: 15443 return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx); 15444 case Expr::CXXDefaultInitExprClass: 15445 return CheckICE(cast<CXXDefaultInitExpr>(E)->getExpr(), Ctx); 15446 case Expr::ChooseExprClass: { 15447 return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(), Ctx); 15448 } 15449 case Expr::BuiltinBitCastExprClass: { 15450 if (!checkBitCastConstexprEligibility(nullptr, Ctx, cast<CastExpr>(E))) 15451 return ICEDiag(IK_NotICE, E->getBeginLoc()); 15452 return CheckICE(cast<CastExpr>(E)->getSubExpr(), Ctx); 15453 } 15454 } 15455 15456 llvm_unreachable("Invalid StmtClass!"); 15457 } 15458 15459 /// Evaluate an expression as a C++11 integral constant expression. 15460 static bool EvaluateCPlusPlus11IntegralConstantExpr(const ASTContext &Ctx, 15461 const Expr *E, 15462 llvm::APSInt *Value, 15463 SourceLocation *Loc) { 15464 if (!E->getType()->isIntegralOrUnscopedEnumerationType()) { 15465 if (Loc) *Loc = E->getExprLoc(); 15466 return false; 15467 } 15468 15469 APValue Result; 15470 if (!E->isCXX11ConstantExpr(Ctx, &Result, Loc)) 15471 return false; 15472 15473 if (!Result.isInt()) { 15474 if (Loc) *Loc = E->getExprLoc(); 15475 return false; 15476 } 15477 15478 if (Value) *Value = Result.getInt(); 15479 return true; 15480 } 15481 15482 bool Expr::isIntegerConstantExpr(const ASTContext &Ctx, 15483 SourceLocation *Loc) const { 15484 assert(!isValueDependent() && 15485 "Expression evaluator can't be called on a dependent expression."); 15486 15487 if (Ctx.getLangOpts().CPlusPlus11) 15488 return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, nullptr, Loc); 15489 15490 ICEDiag D = CheckICE(this, Ctx); 15491 if (D.Kind != IK_ICE) { 15492 if (Loc) *Loc = D.Loc; 15493 return false; 15494 } 15495 return true; 15496 } 15497 15498 Optional<llvm::APSInt> Expr::getIntegerConstantExpr(const ASTContext &Ctx, 15499 SourceLocation *Loc, 15500 bool isEvaluated) const { 15501 assert(!isValueDependent() && 15502 "Expression evaluator can't be called on a dependent expression."); 15503 15504 APSInt Value; 15505 15506 if (Ctx.getLangOpts().CPlusPlus11) { 15507 if (EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, &Value, Loc)) 15508 return Value; 15509 return None; 15510 } 15511 15512 if (!isIntegerConstantExpr(Ctx, Loc)) 15513 return None; 15514 15515 // The only possible side-effects here are due to UB discovered in the 15516 // evaluation (for instance, INT_MAX + 1). In such a case, we are still 15517 // required to treat the expression as an ICE, so we produce the folded 15518 // value. 15519 EvalResult ExprResult; 15520 Expr::EvalStatus Status; 15521 EvalInfo Info(Ctx, Status, EvalInfo::EM_IgnoreSideEffects); 15522 Info.InConstantContext = true; 15523 15524 if (!::EvaluateAsInt(this, ExprResult, Ctx, SE_AllowSideEffects, Info)) 15525 llvm_unreachable("ICE cannot be evaluated!"); 15526 15527 return ExprResult.Val.getInt(); 15528 } 15529 15530 bool Expr::isCXX98IntegralConstantExpr(const ASTContext &Ctx) const { 15531 assert(!isValueDependent() && 15532 "Expression evaluator can't be called on a dependent expression."); 15533 15534 return CheckICE(this, Ctx).Kind == IK_ICE; 15535 } 15536 15537 bool Expr::isCXX11ConstantExpr(const ASTContext &Ctx, APValue *Result, 15538 SourceLocation *Loc) const { 15539 assert(!isValueDependent() && 15540 "Expression evaluator can't be called on a dependent expression."); 15541 15542 // We support this checking in C++98 mode in order to diagnose compatibility 15543 // issues. 15544 assert(Ctx.getLangOpts().CPlusPlus); 15545 15546 // Build evaluation settings. 15547 Expr::EvalStatus Status; 15548 SmallVector<PartialDiagnosticAt, 8> Diags; 15549 Status.Diag = &Diags; 15550 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression); 15551 15552 APValue Scratch; 15553 bool IsConstExpr = 15554 ::EvaluateAsRValue(Info, this, Result ? *Result : Scratch) && 15555 // FIXME: We don't produce a diagnostic for this, but the callers that 15556 // call us on arbitrary full-expressions should generally not care. 15557 Info.discardCleanups() && !Status.HasSideEffects; 15558 15559 if (!Diags.empty()) { 15560 IsConstExpr = false; 15561 if (Loc) *Loc = Diags[0].first; 15562 } else if (!IsConstExpr) { 15563 // FIXME: This shouldn't happen. 15564 if (Loc) *Loc = getExprLoc(); 15565 } 15566 15567 return IsConstExpr; 15568 } 15569 15570 bool Expr::EvaluateWithSubstitution(APValue &Value, ASTContext &Ctx, 15571 const FunctionDecl *Callee, 15572 ArrayRef<const Expr*> Args, 15573 const Expr *This) const { 15574 assert(!isValueDependent() && 15575 "Expression evaluator can't be called on a dependent expression."); 15576 15577 Expr::EvalStatus Status; 15578 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpressionUnevaluated); 15579 Info.InConstantContext = true; 15580 15581 LValue ThisVal; 15582 const LValue *ThisPtr = nullptr; 15583 if (This) { 15584 #ifndef NDEBUG 15585 auto *MD = dyn_cast<CXXMethodDecl>(Callee); 15586 assert(MD && "Don't provide `this` for non-methods."); 15587 assert(!MD->isStatic() && "Don't provide `this` for static methods."); 15588 #endif 15589 if (!This->isValueDependent() && 15590 EvaluateObjectArgument(Info, This, ThisVal) && 15591 !Info.EvalStatus.HasSideEffects) 15592 ThisPtr = &ThisVal; 15593 15594 // Ignore any side-effects from a failed evaluation. This is safe because 15595 // they can't interfere with any other argument evaluation. 15596 Info.EvalStatus.HasSideEffects = false; 15597 } 15598 15599 CallRef Call = Info.CurrentCall->createCall(Callee); 15600 for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end(); 15601 I != E; ++I) { 15602 unsigned Idx = I - Args.begin(); 15603 if (Idx >= Callee->getNumParams()) 15604 break; 15605 const ParmVarDecl *PVD = Callee->getParamDecl(Idx); 15606 if ((*I)->isValueDependent() || 15607 !EvaluateCallArg(PVD, *I, Call, Info) || 15608 Info.EvalStatus.HasSideEffects) { 15609 // If evaluation fails, throw away the argument entirely. 15610 if (APValue *Slot = Info.getParamSlot(Call, PVD)) 15611 *Slot = APValue(); 15612 } 15613 15614 // Ignore any side-effects from a failed evaluation. This is safe because 15615 // they can't interfere with any other argument evaluation. 15616 Info.EvalStatus.HasSideEffects = false; 15617 } 15618 15619 // Parameter cleanups happen in the caller and are not part of this 15620 // evaluation. 15621 Info.discardCleanups(); 15622 Info.EvalStatus.HasSideEffects = false; 15623 15624 // Build fake call to Callee. 15625 CallStackFrame Frame(Info, Callee->getLocation(), Callee, ThisPtr, Call); 15626 // FIXME: Missing ExprWithCleanups in enable_if conditions? 15627 FullExpressionRAII Scope(Info); 15628 return Evaluate(Value, Info, this) && Scope.destroy() && 15629 !Info.EvalStatus.HasSideEffects; 15630 } 15631 15632 bool Expr::isPotentialConstantExpr(const FunctionDecl *FD, 15633 SmallVectorImpl< 15634 PartialDiagnosticAt> &Diags) { 15635 // FIXME: It would be useful to check constexpr function templates, but at the 15636 // moment the constant expression evaluator cannot cope with the non-rigorous 15637 // ASTs which we build for dependent expressions. 15638 if (FD->isDependentContext()) 15639 return true; 15640 15641 Expr::EvalStatus Status; 15642 Status.Diag = &Diags; 15643 15644 EvalInfo Info(FD->getASTContext(), Status, EvalInfo::EM_ConstantExpression); 15645 Info.InConstantContext = true; 15646 Info.CheckingPotentialConstantExpression = true; 15647 15648 // The constexpr VM attempts to compile all methods to bytecode here. 15649 if (Info.EnableNewConstInterp) { 15650 Info.Ctx.getInterpContext().isPotentialConstantExpr(Info, FD); 15651 return Diags.empty(); 15652 } 15653 15654 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 15655 const CXXRecordDecl *RD = MD ? MD->getParent()->getCanonicalDecl() : nullptr; 15656 15657 // Fabricate an arbitrary expression on the stack and pretend that it 15658 // is a temporary being used as the 'this' pointer. 15659 LValue This; 15660 ImplicitValueInitExpr VIE(RD ? Info.Ctx.getRecordType(RD) : Info.Ctx.IntTy); 15661 This.set({&VIE, Info.CurrentCall->Index}); 15662 15663 ArrayRef<const Expr*> Args; 15664 15665 APValue Scratch; 15666 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) { 15667 // Evaluate the call as a constant initializer, to allow the construction 15668 // of objects of non-literal types. 15669 Info.setEvaluatingDecl(This.getLValueBase(), Scratch); 15670 HandleConstructorCall(&VIE, This, Args, CD, Info, Scratch); 15671 } else { 15672 SourceLocation Loc = FD->getLocation(); 15673 HandleFunctionCall(Loc, FD, (MD && MD->isInstance()) ? &This : nullptr, 15674 Args, CallRef(), FD->getBody(), Info, Scratch, nullptr); 15675 } 15676 15677 return Diags.empty(); 15678 } 15679 15680 bool Expr::isPotentialConstantExprUnevaluated(Expr *E, 15681 const FunctionDecl *FD, 15682 SmallVectorImpl< 15683 PartialDiagnosticAt> &Diags) { 15684 assert(!E->isValueDependent() && 15685 "Expression evaluator can't be called on a dependent expression."); 15686 15687 Expr::EvalStatus Status; 15688 Status.Diag = &Diags; 15689 15690 EvalInfo Info(FD->getASTContext(), Status, 15691 EvalInfo::EM_ConstantExpressionUnevaluated); 15692 Info.InConstantContext = true; 15693 Info.CheckingPotentialConstantExpression = true; 15694 15695 // Fabricate a call stack frame to give the arguments a plausible cover story. 15696 CallStackFrame Frame(Info, SourceLocation(), FD, /*This*/ nullptr, CallRef()); 15697 15698 APValue ResultScratch; 15699 Evaluate(ResultScratch, Info, E); 15700 return Diags.empty(); 15701 } 15702 15703 bool Expr::tryEvaluateObjectSize(uint64_t &Result, ASTContext &Ctx, 15704 unsigned Type) const { 15705 if (!getType()->isPointerType()) 15706 return false; 15707 15708 Expr::EvalStatus Status; 15709 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold); 15710 return tryEvaluateBuiltinObjectSize(this, Type, Info, Result); 15711 } 15712