1 //===--- Expr.cpp - Expression AST Node Implementation --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Expr class and subclasses. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/Expr.h" 14 #include "clang/AST/APValue.h" 15 #include "clang/AST/ASTContext.h" 16 #include "clang/AST/Attr.h" 17 #include "clang/AST/ComputeDependence.h" 18 #include "clang/AST/DeclCXX.h" 19 #include "clang/AST/DeclObjC.h" 20 #include "clang/AST/DeclTemplate.h" 21 #include "clang/AST/DependenceFlags.h" 22 #include "clang/AST/EvaluatedExprVisitor.h" 23 #include "clang/AST/ExprCXX.h" 24 #include "clang/AST/IgnoreExpr.h" 25 #include "clang/AST/Mangle.h" 26 #include "clang/AST/RecordLayout.h" 27 #include "clang/AST/StmtVisitor.h" 28 #include "clang/Basic/Builtins.h" 29 #include "clang/Basic/CharInfo.h" 30 #include "clang/Basic/SourceManager.h" 31 #include "clang/Basic/TargetInfo.h" 32 #include "clang/Lex/Lexer.h" 33 #include "clang/Lex/LiteralSupport.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/Format.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include <algorithm> 38 #include <cstring> 39 using namespace clang; 40 41 const Expr *Expr::getBestDynamicClassTypeExpr() const { 42 const Expr *E = this; 43 while (true) { 44 E = E->IgnoreParenBaseCasts(); 45 46 // Follow the RHS of a comma operator. 47 if (auto *BO = dyn_cast<BinaryOperator>(E)) { 48 if (BO->getOpcode() == BO_Comma) { 49 E = BO->getRHS(); 50 continue; 51 } 52 } 53 54 // Step into initializer for materialized temporaries. 55 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) { 56 E = MTE->getSubExpr(); 57 continue; 58 } 59 60 break; 61 } 62 63 return E; 64 } 65 66 const CXXRecordDecl *Expr::getBestDynamicClassType() const { 67 const Expr *E = getBestDynamicClassTypeExpr(); 68 QualType DerivedType = E->getType(); 69 if (const PointerType *PTy = DerivedType->getAs<PointerType>()) 70 DerivedType = PTy->getPointeeType(); 71 72 if (DerivedType->isDependentType()) 73 return nullptr; 74 75 const RecordType *Ty = DerivedType->castAs<RecordType>(); 76 Decl *D = Ty->getDecl(); 77 return cast<CXXRecordDecl>(D); 78 } 79 80 const Expr *Expr::skipRValueSubobjectAdjustments( 81 SmallVectorImpl<const Expr *> &CommaLHSs, 82 SmallVectorImpl<SubobjectAdjustment> &Adjustments) const { 83 const Expr *E = this; 84 while (true) { 85 E = E->IgnoreParens(); 86 87 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 88 if ((CE->getCastKind() == CK_DerivedToBase || 89 CE->getCastKind() == CK_UncheckedDerivedToBase) && 90 E->getType()->isRecordType()) { 91 E = CE->getSubExpr(); 92 auto *Derived = 93 cast<CXXRecordDecl>(E->getType()->castAs<RecordType>()->getDecl()); 94 Adjustments.push_back(SubobjectAdjustment(CE, Derived)); 95 continue; 96 } 97 98 if (CE->getCastKind() == CK_NoOp) { 99 E = CE->getSubExpr(); 100 continue; 101 } 102 } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) { 103 if (!ME->isArrow()) { 104 assert(ME->getBase()->getType()->isRecordType()); 105 if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 106 if (!Field->isBitField() && !Field->getType()->isReferenceType()) { 107 E = ME->getBase(); 108 Adjustments.push_back(SubobjectAdjustment(Field)); 109 continue; 110 } 111 } 112 } 113 } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 114 if (BO->getOpcode() == BO_PtrMemD) { 115 assert(BO->getRHS()->isRValue()); 116 E = BO->getLHS(); 117 const MemberPointerType *MPT = 118 BO->getRHS()->getType()->getAs<MemberPointerType>(); 119 Adjustments.push_back(SubobjectAdjustment(MPT, BO->getRHS())); 120 continue; 121 } 122 if (BO->getOpcode() == BO_Comma) { 123 CommaLHSs.push_back(BO->getLHS()); 124 E = BO->getRHS(); 125 continue; 126 } 127 } 128 129 // Nothing changed. 130 break; 131 } 132 return E; 133 } 134 135 bool Expr::isKnownToHaveBooleanValue(bool Semantic) const { 136 const Expr *E = IgnoreParens(); 137 138 // If this value has _Bool type, it is obvious 0/1. 139 if (E->getType()->isBooleanType()) return true; 140 // If this is a non-scalar-integer type, we don't care enough to try. 141 if (!E->getType()->isIntegralOrEnumerationType()) return false; 142 143 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 144 switch (UO->getOpcode()) { 145 case UO_Plus: 146 return UO->getSubExpr()->isKnownToHaveBooleanValue(Semantic); 147 case UO_LNot: 148 return true; 149 default: 150 return false; 151 } 152 } 153 154 // Only look through implicit casts. If the user writes 155 // '(int) (a && b)' treat it as an arbitrary int. 156 // FIXME: Should we look through any cast expression in !Semantic mode? 157 if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) 158 return CE->getSubExpr()->isKnownToHaveBooleanValue(Semantic); 159 160 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 161 switch (BO->getOpcode()) { 162 default: return false; 163 case BO_LT: // Relational operators. 164 case BO_GT: 165 case BO_LE: 166 case BO_GE: 167 case BO_EQ: // Equality operators. 168 case BO_NE: 169 case BO_LAnd: // AND operator. 170 case BO_LOr: // Logical OR operator. 171 return true; 172 173 case BO_And: // Bitwise AND operator. 174 case BO_Xor: // Bitwise XOR operator. 175 case BO_Or: // Bitwise OR operator. 176 // Handle things like (x==2)|(y==12). 177 return BO->getLHS()->isKnownToHaveBooleanValue(Semantic) && 178 BO->getRHS()->isKnownToHaveBooleanValue(Semantic); 179 180 case BO_Comma: 181 case BO_Assign: 182 return BO->getRHS()->isKnownToHaveBooleanValue(Semantic); 183 } 184 } 185 186 if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) 187 return CO->getTrueExpr()->isKnownToHaveBooleanValue(Semantic) && 188 CO->getFalseExpr()->isKnownToHaveBooleanValue(Semantic); 189 190 if (isa<ObjCBoolLiteralExpr>(E)) 191 return true; 192 193 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) 194 return OVE->getSourceExpr()->isKnownToHaveBooleanValue(Semantic); 195 196 if (const FieldDecl *FD = E->getSourceBitField()) 197 if (!Semantic && FD->getType()->isUnsignedIntegerType() && 198 !FD->getBitWidth()->isValueDependent() && 199 FD->getBitWidthValue(FD->getASTContext()) == 1) 200 return true; 201 202 return false; 203 } 204 205 // Amusing macro metaprogramming hack: check whether a class provides 206 // a more specific implementation of getExprLoc(). 207 // 208 // See also Stmt.cpp:{getBeginLoc(),getEndLoc()}. 209 namespace { 210 /// This implementation is used when a class provides a custom 211 /// implementation of getExprLoc. 212 template <class E, class T> 213 SourceLocation getExprLocImpl(const Expr *expr, 214 SourceLocation (T::*v)() const) { 215 return static_cast<const E*>(expr)->getExprLoc(); 216 } 217 218 /// This implementation is used when a class doesn't provide 219 /// a custom implementation of getExprLoc. Overload resolution 220 /// should pick it over the implementation above because it's 221 /// more specialized according to function template partial ordering. 222 template <class E> 223 SourceLocation getExprLocImpl(const Expr *expr, 224 SourceLocation (Expr::*v)() const) { 225 return static_cast<const E *>(expr)->getBeginLoc(); 226 } 227 } 228 229 SourceLocation Expr::getExprLoc() const { 230 switch (getStmtClass()) { 231 case Stmt::NoStmtClass: llvm_unreachable("statement without class"); 232 #define ABSTRACT_STMT(type) 233 #define STMT(type, base) \ 234 case Stmt::type##Class: break; 235 #define EXPR(type, base) \ 236 case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc); 237 #include "clang/AST/StmtNodes.inc" 238 } 239 llvm_unreachable("unknown expression kind"); 240 } 241 242 //===----------------------------------------------------------------------===// 243 // Primary Expressions. 244 //===----------------------------------------------------------------------===// 245 246 static void AssertResultStorageKind(ConstantExpr::ResultStorageKind Kind) { 247 assert((Kind == ConstantExpr::RSK_APValue || 248 Kind == ConstantExpr::RSK_Int64 || Kind == ConstantExpr::RSK_None) && 249 "Invalid StorageKind Value"); 250 (void)Kind; 251 } 252 253 ConstantExpr::ResultStorageKind 254 ConstantExpr::getStorageKind(const APValue &Value) { 255 switch (Value.getKind()) { 256 case APValue::None: 257 case APValue::Indeterminate: 258 return ConstantExpr::RSK_None; 259 case APValue::Int: 260 if (!Value.getInt().needsCleanup()) 261 return ConstantExpr::RSK_Int64; 262 LLVM_FALLTHROUGH; 263 default: 264 return ConstantExpr::RSK_APValue; 265 } 266 } 267 268 ConstantExpr::ResultStorageKind 269 ConstantExpr::getStorageKind(const Type *T, const ASTContext &Context) { 270 if (T->isIntegralOrEnumerationType() && Context.getTypeInfo(T).Width <= 64) 271 return ConstantExpr::RSK_Int64; 272 return ConstantExpr::RSK_APValue; 273 } 274 275 ConstantExpr::ConstantExpr(Expr *SubExpr, ResultStorageKind StorageKind, 276 bool IsImmediateInvocation) 277 : FullExpr(ConstantExprClass, SubExpr) { 278 ConstantExprBits.ResultKind = StorageKind; 279 ConstantExprBits.APValueKind = APValue::None; 280 ConstantExprBits.IsUnsigned = false; 281 ConstantExprBits.BitWidth = 0; 282 ConstantExprBits.HasCleanup = false; 283 ConstantExprBits.IsImmediateInvocation = IsImmediateInvocation; 284 285 if (StorageKind == ConstantExpr::RSK_APValue) 286 ::new (getTrailingObjects<APValue>()) APValue(); 287 } 288 289 ConstantExpr *ConstantExpr::Create(const ASTContext &Context, Expr *E, 290 ResultStorageKind StorageKind, 291 bool IsImmediateInvocation) { 292 assert(!isa<ConstantExpr>(E)); 293 AssertResultStorageKind(StorageKind); 294 295 unsigned Size = totalSizeToAlloc<APValue, uint64_t>( 296 StorageKind == ConstantExpr::RSK_APValue, 297 StorageKind == ConstantExpr::RSK_Int64); 298 void *Mem = Context.Allocate(Size, alignof(ConstantExpr)); 299 return new (Mem) ConstantExpr(E, StorageKind, IsImmediateInvocation); 300 } 301 302 ConstantExpr *ConstantExpr::Create(const ASTContext &Context, Expr *E, 303 const APValue &Result) { 304 ResultStorageKind StorageKind = getStorageKind(Result); 305 ConstantExpr *Self = Create(Context, E, StorageKind); 306 Self->SetResult(Result, Context); 307 return Self; 308 } 309 310 ConstantExpr::ConstantExpr(EmptyShell Empty, ResultStorageKind StorageKind) 311 : FullExpr(ConstantExprClass, Empty) { 312 ConstantExprBits.ResultKind = StorageKind; 313 314 if (StorageKind == ConstantExpr::RSK_APValue) 315 ::new (getTrailingObjects<APValue>()) APValue(); 316 } 317 318 ConstantExpr *ConstantExpr::CreateEmpty(const ASTContext &Context, 319 ResultStorageKind StorageKind) { 320 AssertResultStorageKind(StorageKind); 321 322 unsigned Size = totalSizeToAlloc<APValue, uint64_t>( 323 StorageKind == ConstantExpr::RSK_APValue, 324 StorageKind == ConstantExpr::RSK_Int64); 325 void *Mem = Context.Allocate(Size, alignof(ConstantExpr)); 326 return new (Mem) ConstantExpr(EmptyShell(), StorageKind); 327 } 328 329 void ConstantExpr::MoveIntoResult(APValue &Value, const ASTContext &Context) { 330 assert((unsigned)getStorageKind(Value) <= ConstantExprBits.ResultKind && 331 "Invalid storage for this value kind"); 332 ConstantExprBits.APValueKind = Value.getKind(); 333 switch (ConstantExprBits.ResultKind) { 334 case RSK_None: 335 return; 336 case RSK_Int64: 337 Int64Result() = *Value.getInt().getRawData(); 338 ConstantExprBits.BitWidth = Value.getInt().getBitWidth(); 339 ConstantExprBits.IsUnsigned = Value.getInt().isUnsigned(); 340 return; 341 case RSK_APValue: 342 if (!ConstantExprBits.HasCleanup && Value.needsCleanup()) { 343 ConstantExprBits.HasCleanup = true; 344 Context.addDestruction(&APValueResult()); 345 } 346 APValueResult() = std::move(Value); 347 return; 348 } 349 llvm_unreachable("Invalid ResultKind Bits"); 350 } 351 352 llvm::APSInt ConstantExpr::getResultAsAPSInt() const { 353 switch (ConstantExprBits.ResultKind) { 354 case ConstantExpr::RSK_APValue: 355 return APValueResult().getInt(); 356 case ConstantExpr::RSK_Int64: 357 return llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()), 358 ConstantExprBits.IsUnsigned); 359 default: 360 llvm_unreachable("invalid Accessor"); 361 } 362 } 363 364 APValue ConstantExpr::getAPValueResult() const { 365 366 switch (ConstantExprBits.ResultKind) { 367 case ConstantExpr::RSK_APValue: 368 return APValueResult(); 369 case ConstantExpr::RSK_Int64: 370 return APValue( 371 llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()), 372 ConstantExprBits.IsUnsigned)); 373 case ConstantExpr::RSK_None: 374 if (ConstantExprBits.APValueKind == APValue::Indeterminate) 375 return APValue::IndeterminateValue(); 376 return APValue(); 377 } 378 llvm_unreachable("invalid ResultKind"); 379 } 380 381 DeclRefExpr::DeclRefExpr(const ASTContext &Ctx, ValueDecl *D, 382 bool RefersToEnclosingVariableOrCapture, QualType T, 383 ExprValueKind VK, SourceLocation L, 384 const DeclarationNameLoc &LocInfo, 385 NonOdrUseReason NOUR) 386 : Expr(DeclRefExprClass, T, VK, OK_Ordinary), D(D), DNLoc(LocInfo) { 387 DeclRefExprBits.HasQualifier = false; 388 DeclRefExprBits.HasTemplateKWAndArgsInfo = false; 389 DeclRefExprBits.HasFoundDecl = false; 390 DeclRefExprBits.HadMultipleCandidates = false; 391 DeclRefExprBits.RefersToEnclosingVariableOrCapture = 392 RefersToEnclosingVariableOrCapture; 393 DeclRefExprBits.NonOdrUseReason = NOUR; 394 DeclRefExprBits.Loc = L; 395 setDependence(computeDependence(this, Ctx)); 396 } 397 398 DeclRefExpr::DeclRefExpr(const ASTContext &Ctx, 399 NestedNameSpecifierLoc QualifierLoc, 400 SourceLocation TemplateKWLoc, ValueDecl *D, 401 bool RefersToEnclosingVariableOrCapture, 402 const DeclarationNameInfo &NameInfo, NamedDecl *FoundD, 403 const TemplateArgumentListInfo *TemplateArgs, 404 QualType T, ExprValueKind VK, NonOdrUseReason NOUR) 405 : Expr(DeclRefExprClass, T, VK, OK_Ordinary), D(D), 406 DNLoc(NameInfo.getInfo()) { 407 DeclRefExprBits.Loc = NameInfo.getLoc(); 408 DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0; 409 if (QualifierLoc) 410 new (getTrailingObjects<NestedNameSpecifierLoc>()) 411 NestedNameSpecifierLoc(QualifierLoc); 412 DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0; 413 if (FoundD) 414 *getTrailingObjects<NamedDecl *>() = FoundD; 415 DeclRefExprBits.HasTemplateKWAndArgsInfo 416 = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0; 417 DeclRefExprBits.RefersToEnclosingVariableOrCapture = 418 RefersToEnclosingVariableOrCapture; 419 DeclRefExprBits.NonOdrUseReason = NOUR; 420 if (TemplateArgs) { 421 auto Deps = TemplateArgumentDependence::None; 422 getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( 423 TemplateKWLoc, *TemplateArgs, getTrailingObjects<TemplateArgumentLoc>(), 424 Deps); 425 assert(!(Deps & TemplateArgumentDependence::Dependent) && 426 "built a DeclRefExpr with dependent template args"); 427 } else if (TemplateKWLoc.isValid()) { 428 getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( 429 TemplateKWLoc); 430 } 431 DeclRefExprBits.HadMultipleCandidates = 0; 432 setDependence(computeDependence(this, Ctx)); 433 } 434 435 DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context, 436 NestedNameSpecifierLoc QualifierLoc, 437 SourceLocation TemplateKWLoc, ValueDecl *D, 438 bool RefersToEnclosingVariableOrCapture, 439 SourceLocation NameLoc, QualType T, 440 ExprValueKind VK, NamedDecl *FoundD, 441 const TemplateArgumentListInfo *TemplateArgs, 442 NonOdrUseReason NOUR) { 443 return Create(Context, QualifierLoc, TemplateKWLoc, D, 444 RefersToEnclosingVariableOrCapture, 445 DeclarationNameInfo(D->getDeclName(), NameLoc), 446 T, VK, FoundD, TemplateArgs, NOUR); 447 } 448 449 DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context, 450 NestedNameSpecifierLoc QualifierLoc, 451 SourceLocation TemplateKWLoc, ValueDecl *D, 452 bool RefersToEnclosingVariableOrCapture, 453 const DeclarationNameInfo &NameInfo, 454 QualType T, ExprValueKind VK, 455 NamedDecl *FoundD, 456 const TemplateArgumentListInfo *TemplateArgs, 457 NonOdrUseReason NOUR) { 458 // Filter out cases where the found Decl is the same as the value refenenced. 459 if (D == FoundD) 460 FoundD = nullptr; 461 462 bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid(); 463 std::size_t Size = 464 totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *, 465 ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>( 466 QualifierLoc ? 1 : 0, FoundD ? 1 : 0, 467 HasTemplateKWAndArgsInfo ? 1 : 0, 468 TemplateArgs ? TemplateArgs->size() : 0); 469 470 void *Mem = Context.Allocate(Size, alignof(DeclRefExpr)); 471 return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D, 472 RefersToEnclosingVariableOrCapture, NameInfo, 473 FoundD, TemplateArgs, T, VK, NOUR); 474 } 475 476 DeclRefExpr *DeclRefExpr::CreateEmpty(const ASTContext &Context, 477 bool HasQualifier, 478 bool HasFoundDecl, 479 bool HasTemplateKWAndArgsInfo, 480 unsigned NumTemplateArgs) { 481 assert(NumTemplateArgs == 0 || HasTemplateKWAndArgsInfo); 482 std::size_t Size = 483 totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *, 484 ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>( 485 HasQualifier ? 1 : 0, HasFoundDecl ? 1 : 0, HasTemplateKWAndArgsInfo, 486 NumTemplateArgs); 487 void *Mem = Context.Allocate(Size, alignof(DeclRefExpr)); 488 return new (Mem) DeclRefExpr(EmptyShell()); 489 } 490 491 void DeclRefExpr::setDecl(ValueDecl *NewD) { 492 D = NewD; 493 setDependence(computeDependence(this, NewD->getASTContext())); 494 } 495 496 SourceLocation DeclRefExpr::getBeginLoc() const { 497 if (hasQualifier()) 498 return getQualifierLoc().getBeginLoc(); 499 return getNameInfo().getBeginLoc(); 500 } 501 SourceLocation DeclRefExpr::getEndLoc() const { 502 if (hasExplicitTemplateArgs()) 503 return getRAngleLoc(); 504 return getNameInfo().getEndLoc(); 505 } 506 507 PredefinedExpr::PredefinedExpr(SourceLocation L, QualType FNTy, IdentKind IK, 508 StringLiteral *SL) 509 : Expr(PredefinedExprClass, FNTy, VK_LValue, OK_Ordinary) { 510 PredefinedExprBits.Kind = IK; 511 assert((getIdentKind() == IK) && 512 "IdentKind do not fit in PredefinedExprBitfields!"); 513 bool HasFunctionName = SL != nullptr; 514 PredefinedExprBits.HasFunctionName = HasFunctionName; 515 PredefinedExprBits.Loc = L; 516 if (HasFunctionName) 517 setFunctionName(SL); 518 setDependence(computeDependence(this)); 519 } 520 521 PredefinedExpr::PredefinedExpr(EmptyShell Empty, bool HasFunctionName) 522 : Expr(PredefinedExprClass, Empty) { 523 PredefinedExprBits.HasFunctionName = HasFunctionName; 524 } 525 526 PredefinedExpr *PredefinedExpr::Create(const ASTContext &Ctx, SourceLocation L, 527 QualType FNTy, IdentKind IK, 528 StringLiteral *SL) { 529 bool HasFunctionName = SL != nullptr; 530 void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(HasFunctionName), 531 alignof(PredefinedExpr)); 532 return new (Mem) PredefinedExpr(L, FNTy, IK, SL); 533 } 534 535 PredefinedExpr *PredefinedExpr::CreateEmpty(const ASTContext &Ctx, 536 bool HasFunctionName) { 537 void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(HasFunctionName), 538 alignof(PredefinedExpr)); 539 return new (Mem) PredefinedExpr(EmptyShell(), HasFunctionName); 540 } 541 542 StringRef PredefinedExpr::getIdentKindName(PredefinedExpr::IdentKind IK) { 543 switch (IK) { 544 case Func: 545 return "__func__"; 546 case Function: 547 return "__FUNCTION__"; 548 case FuncDName: 549 return "__FUNCDNAME__"; 550 case LFunction: 551 return "L__FUNCTION__"; 552 case PrettyFunction: 553 return "__PRETTY_FUNCTION__"; 554 case FuncSig: 555 return "__FUNCSIG__"; 556 case LFuncSig: 557 return "L__FUNCSIG__"; 558 case PrettyFunctionNoVirtual: 559 break; 560 } 561 llvm_unreachable("Unknown ident kind for PredefinedExpr"); 562 } 563 564 // FIXME: Maybe this should use DeclPrinter with a special "print predefined 565 // expr" policy instead. 566 std::string PredefinedExpr::ComputeName(IdentKind IK, const Decl *CurrentDecl) { 567 ASTContext &Context = CurrentDecl->getASTContext(); 568 569 if (IK == PredefinedExpr::FuncDName) { 570 if (const NamedDecl *ND = dyn_cast<NamedDecl>(CurrentDecl)) { 571 std::unique_ptr<MangleContext> MC; 572 MC.reset(Context.createMangleContext()); 573 574 if (MC->shouldMangleDeclName(ND)) { 575 SmallString<256> Buffer; 576 llvm::raw_svector_ostream Out(Buffer); 577 GlobalDecl GD; 578 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(ND)) 579 GD = GlobalDecl(CD, Ctor_Base); 580 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(ND)) 581 GD = GlobalDecl(DD, Dtor_Base); 582 else if (ND->hasAttr<CUDAGlobalAttr>()) 583 GD = GlobalDecl(cast<FunctionDecl>(ND)); 584 else 585 GD = GlobalDecl(ND); 586 MC->mangleName(GD, Out); 587 588 if (!Buffer.empty() && Buffer.front() == '\01') 589 return std::string(Buffer.substr(1)); 590 return std::string(Buffer.str()); 591 } 592 return std::string(ND->getIdentifier()->getName()); 593 } 594 return ""; 595 } 596 if (isa<BlockDecl>(CurrentDecl)) { 597 // For blocks we only emit something if it is enclosed in a function 598 // For top-level block we'd like to include the name of variable, but we 599 // don't have it at this point. 600 auto DC = CurrentDecl->getDeclContext(); 601 if (DC->isFileContext()) 602 return ""; 603 604 SmallString<256> Buffer; 605 llvm::raw_svector_ostream Out(Buffer); 606 if (auto *DCBlock = dyn_cast<BlockDecl>(DC)) 607 // For nested blocks, propagate up to the parent. 608 Out << ComputeName(IK, DCBlock); 609 else if (auto *DCDecl = dyn_cast<Decl>(DC)) 610 Out << ComputeName(IK, DCDecl) << "_block_invoke"; 611 return std::string(Out.str()); 612 } 613 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) { 614 if (IK != PrettyFunction && IK != PrettyFunctionNoVirtual && 615 IK != FuncSig && IK != LFuncSig) 616 return FD->getNameAsString(); 617 618 SmallString<256> Name; 619 llvm::raw_svector_ostream Out(Name); 620 621 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 622 if (MD->isVirtual() && IK != PrettyFunctionNoVirtual) 623 Out << "virtual "; 624 if (MD->isStatic()) 625 Out << "static "; 626 } 627 628 PrintingPolicy Policy(Context.getLangOpts()); 629 std::string Proto; 630 llvm::raw_string_ostream POut(Proto); 631 632 const FunctionDecl *Decl = FD; 633 if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern()) 634 Decl = Pattern; 635 const FunctionType *AFT = Decl->getType()->getAs<FunctionType>(); 636 const FunctionProtoType *FT = nullptr; 637 if (FD->hasWrittenPrototype()) 638 FT = dyn_cast<FunctionProtoType>(AFT); 639 640 if (IK == FuncSig || IK == LFuncSig) { 641 switch (AFT->getCallConv()) { 642 case CC_C: POut << "__cdecl "; break; 643 case CC_X86StdCall: POut << "__stdcall "; break; 644 case CC_X86FastCall: POut << "__fastcall "; break; 645 case CC_X86ThisCall: POut << "__thiscall "; break; 646 case CC_X86VectorCall: POut << "__vectorcall "; break; 647 case CC_X86RegCall: POut << "__regcall "; break; 648 // Only bother printing the conventions that MSVC knows about. 649 default: break; 650 } 651 } 652 653 FD->printQualifiedName(POut, Policy); 654 655 POut << "("; 656 if (FT) { 657 for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) { 658 if (i) POut << ", "; 659 POut << Decl->getParamDecl(i)->getType().stream(Policy); 660 } 661 662 if (FT->isVariadic()) { 663 if (FD->getNumParams()) POut << ", "; 664 POut << "..."; 665 } else if ((IK == FuncSig || IK == LFuncSig || 666 !Context.getLangOpts().CPlusPlus) && 667 !Decl->getNumParams()) { 668 POut << "void"; 669 } 670 } 671 POut << ")"; 672 673 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 674 assert(FT && "We must have a written prototype in this case."); 675 if (FT->isConst()) 676 POut << " const"; 677 if (FT->isVolatile()) 678 POut << " volatile"; 679 RefQualifierKind Ref = MD->getRefQualifier(); 680 if (Ref == RQ_LValue) 681 POut << " &"; 682 else if (Ref == RQ_RValue) 683 POut << " &&"; 684 } 685 686 typedef SmallVector<const ClassTemplateSpecializationDecl *, 8> SpecsTy; 687 SpecsTy Specs; 688 const DeclContext *Ctx = FD->getDeclContext(); 689 while (Ctx && isa<NamedDecl>(Ctx)) { 690 const ClassTemplateSpecializationDecl *Spec 691 = dyn_cast<ClassTemplateSpecializationDecl>(Ctx); 692 if (Spec && !Spec->isExplicitSpecialization()) 693 Specs.push_back(Spec); 694 Ctx = Ctx->getParent(); 695 } 696 697 std::string TemplateParams; 698 llvm::raw_string_ostream TOut(TemplateParams); 699 for (SpecsTy::reverse_iterator I = Specs.rbegin(), E = Specs.rend(); 700 I != E; ++I) { 701 const TemplateParameterList *Params 702 = (*I)->getSpecializedTemplate()->getTemplateParameters(); 703 const TemplateArgumentList &Args = (*I)->getTemplateArgs(); 704 assert(Params->size() == Args.size()); 705 for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) { 706 StringRef Param = Params->getParam(i)->getName(); 707 if (Param.empty()) continue; 708 TOut << Param << " = "; 709 Args.get(i).print( 710 Policy, TOut, 711 TemplateParameterList::shouldIncludeTypeForArgument(Params, i)); 712 TOut << ", "; 713 } 714 } 715 716 FunctionTemplateSpecializationInfo *FSI 717 = FD->getTemplateSpecializationInfo(); 718 if (FSI && !FSI->isExplicitSpecialization()) { 719 const TemplateParameterList* Params 720 = FSI->getTemplate()->getTemplateParameters(); 721 const TemplateArgumentList* Args = FSI->TemplateArguments; 722 assert(Params->size() == Args->size()); 723 for (unsigned i = 0, e = Params->size(); i != e; ++i) { 724 StringRef Param = Params->getParam(i)->getName(); 725 if (Param.empty()) continue; 726 TOut << Param << " = "; 727 Args->get(i).print(Policy, TOut, /*IncludeType*/ true); 728 TOut << ", "; 729 } 730 } 731 732 TOut.flush(); 733 if (!TemplateParams.empty()) { 734 // remove the trailing comma and space 735 TemplateParams.resize(TemplateParams.size() - 2); 736 POut << " [" << TemplateParams << "]"; 737 } 738 739 POut.flush(); 740 741 // Print "auto" for all deduced return types. This includes C++1y return 742 // type deduction and lambdas. For trailing return types resolve the 743 // decltype expression. Otherwise print the real type when this is 744 // not a constructor or destructor. 745 if (isa<CXXMethodDecl>(FD) && 746 cast<CXXMethodDecl>(FD)->getParent()->isLambda()) 747 Proto = "auto " + Proto; 748 else if (FT && FT->getReturnType()->getAs<DecltypeType>()) 749 FT->getReturnType() 750 ->getAs<DecltypeType>() 751 ->getUnderlyingType() 752 .getAsStringInternal(Proto, Policy); 753 else if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD)) 754 AFT->getReturnType().getAsStringInternal(Proto, Policy); 755 756 Out << Proto; 757 758 return std::string(Name); 759 } 760 if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(CurrentDecl)) { 761 for (const DeclContext *DC = CD->getParent(); DC; DC = DC->getParent()) 762 // Skip to its enclosing function or method, but not its enclosing 763 // CapturedDecl. 764 if (DC->isFunctionOrMethod() && (DC->getDeclKind() != Decl::Captured)) { 765 const Decl *D = Decl::castFromDeclContext(DC); 766 return ComputeName(IK, D); 767 } 768 llvm_unreachable("CapturedDecl not inside a function or method"); 769 } 770 if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) { 771 SmallString<256> Name; 772 llvm::raw_svector_ostream Out(Name); 773 Out << (MD->isInstanceMethod() ? '-' : '+'); 774 Out << '['; 775 776 // For incorrect code, there might not be an ObjCInterfaceDecl. Do 777 // a null check to avoid a crash. 778 if (const ObjCInterfaceDecl *ID = MD->getClassInterface()) 779 Out << *ID; 780 781 if (const ObjCCategoryImplDecl *CID = 782 dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext())) 783 Out << '(' << *CID << ')'; 784 785 Out << ' '; 786 MD->getSelector().print(Out); 787 Out << ']'; 788 789 return std::string(Name); 790 } 791 if (isa<TranslationUnitDecl>(CurrentDecl) && IK == PrettyFunction) { 792 // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string. 793 return "top level"; 794 } 795 return ""; 796 } 797 798 void APNumericStorage::setIntValue(const ASTContext &C, 799 const llvm::APInt &Val) { 800 if (hasAllocation()) 801 C.Deallocate(pVal); 802 803 BitWidth = Val.getBitWidth(); 804 unsigned NumWords = Val.getNumWords(); 805 const uint64_t* Words = Val.getRawData(); 806 if (NumWords > 1) { 807 pVal = new (C) uint64_t[NumWords]; 808 std::copy(Words, Words + NumWords, pVal); 809 } else if (NumWords == 1) 810 VAL = Words[0]; 811 else 812 VAL = 0; 813 } 814 815 IntegerLiteral::IntegerLiteral(const ASTContext &C, const llvm::APInt &V, 816 QualType type, SourceLocation l) 817 : Expr(IntegerLiteralClass, type, VK_RValue, OK_Ordinary), Loc(l) { 818 assert(type->isIntegerType() && "Illegal type in IntegerLiteral"); 819 assert(V.getBitWidth() == C.getIntWidth(type) && 820 "Integer type is not the correct size for constant."); 821 setValue(C, V); 822 setDependence(ExprDependence::None); 823 } 824 825 IntegerLiteral * 826 IntegerLiteral::Create(const ASTContext &C, const llvm::APInt &V, 827 QualType type, SourceLocation l) { 828 return new (C) IntegerLiteral(C, V, type, l); 829 } 830 831 IntegerLiteral * 832 IntegerLiteral::Create(const ASTContext &C, EmptyShell Empty) { 833 return new (C) IntegerLiteral(Empty); 834 } 835 836 FixedPointLiteral::FixedPointLiteral(const ASTContext &C, const llvm::APInt &V, 837 QualType type, SourceLocation l, 838 unsigned Scale) 839 : Expr(FixedPointLiteralClass, type, VK_RValue, OK_Ordinary), Loc(l), 840 Scale(Scale) { 841 assert(type->isFixedPointType() && "Illegal type in FixedPointLiteral"); 842 assert(V.getBitWidth() == C.getTypeInfo(type).Width && 843 "Fixed point type is not the correct size for constant."); 844 setValue(C, V); 845 setDependence(ExprDependence::None); 846 } 847 848 FixedPointLiteral *FixedPointLiteral::CreateFromRawInt(const ASTContext &C, 849 const llvm::APInt &V, 850 QualType type, 851 SourceLocation l, 852 unsigned Scale) { 853 return new (C) FixedPointLiteral(C, V, type, l, Scale); 854 } 855 856 FixedPointLiteral *FixedPointLiteral::Create(const ASTContext &C, 857 EmptyShell Empty) { 858 return new (C) FixedPointLiteral(Empty); 859 } 860 861 std::string FixedPointLiteral::getValueAsString(unsigned Radix) const { 862 // Currently the longest decimal number that can be printed is the max for an 863 // unsigned long _Accum: 4294967295.99999999976716935634613037109375 864 // which is 43 characters. 865 SmallString<64> S; 866 FixedPointValueToString( 867 S, llvm::APSInt::getUnsigned(getValue().getZExtValue()), Scale); 868 return std::string(S.str()); 869 } 870 871 void CharacterLiteral::print(unsigned Val, CharacterKind Kind, 872 raw_ostream &OS) { 873 switch (Kind) { 874 case CharacterLiteral::Ascii: 875 break; // no prefix. 876 case CharacterLiteral::Wide: 877 OS << 'L'; 878 break; 879 case CharacterLiteral::UTF8: 880 OS << "u8"; 881 break; 882 case CharacterLiteral::UTF16: 883 OS << 'u'; 884 break; 885 case CharacterLiteral::UTF32: 886 OS << 'U'; 887 break; 888 } 889 890 switch (Val) { 891 case '\\': 892 OS << "'\\\\'"; 893 break; 894 case '\'': 895 OS << "'\\''"; 896 break; 897 case '\a': 898 // TODO: K&R: the meaning of '\\a' is different in traditional C 899 OS << "'\\a'"; 900 break; 901 case '\b': 902 OS << "'\\b'"; 903 break; 904 // Nonstandard escape sequence. 905 /*case '\e': 906 OS << "'\\e'"; 907 break;*/ 908 case '\f': 909 OS << "'\\f'"; 910 break; 911 case '\n': 912 OS << "'\\n'"; 913 break; 914 case '\r': 915 OS << "'\\r'"; 916 break; 917 case '\t': 918 OS << "'\\t'"; 919 break; 920 case '\v': 921 OS << "'\\v'"; 922 break; 923 default: 924 // A character literal might be sign-extended, which 925 // would result in an invalid \U escape sequence. 926 // FIXME: multicharacter literals such as '\xFF\xFF\xFF\xFF' 927 // are not correctly handled. 928 if ((Val & ~0xFFu) == ~0xFFu && Kind == CharacterLiteral::Ascii) 929 Val &= 0xFFu; 930 if (Val < 256 && isPrintable((unsigned char)Val)) 931 OS << "'" << (char)Val << "'"; 932 else if (Val < 256) 933 OS << "'\\x" << llvm::format("%02x", Val) << "'"; 934 else if (Val <= 0xFFFF) 935 OS << "'\\u" << llvm::format("%04x", Val) << "'"; 936 else 937 OS << "'\\U" << llvm::format("%08x", Val) << "'"; 938 } 939 } 940 941 FloatingLiteral::FloatingLiteral(const ASTContext &C, const llvm::APFloat &V, 942 bool isexact, QualType Type, SourceLocation L) 943 : Expr(FloatingLiteralClass, Type, VK_RValue, OK_Ordinary), Loc(L) { 944 setSemantics(V.getSemantics()); 945 FloatingLiteralBits.IsExact = isexact; 946 setValue(C, V); 947 setDependence(ExprDependence::None); 948 } 949 950 FloatingLiteral::FloatingLiteral(const ASTContext &C, EmptyShell Empty) 951 : Expr(FloatingLiteralClass, Empty) { 952 setRawSemantics(llvm::APFloatBase::S_IEEEhalf); 953 FloatingLiteralBits.IsExact = false; 954 } 955 956 FloatingLiteral * 957 FloatingLiteral::Create(const ASTContext &C, const llvm::APFloat &V, 958 bool isexact, QualType Type, SourceLocation L) { 959 return new (C) FloatingLiteral(C, V, isexact, Type, L); 960 } 961 962 FloatingLiteral * 963 FloatingLiteral::Create(const ASTContext &C, EmptyShell Empty) { 964 return new (C) FloatingLiteral(C, Empty); 965 } 966 967 /// getValueAsApproximateDouble - This returns the value as an inaccurate 968 /// double. Note that this may cause loss of precision, but is useful for 969 /// debugging dumps, etc. 970 double FloatingLiteral::getValueAsApproximateDouble() const { 971 llvm::APFloat V = getValue(); 972 bool ignored; 973 V.convert(llvm::APFloat::IEEEdouble(), llvm::APFloat::rmNearestTiesToEven, 974 &ignored); 975 return V.convertToDouble(); 976 } 977 978 unsigned StringLiteral::mapCharByteWidth(TargetInfo const &Target, 979 StringKind SK) { 980 unsigned CharByteWidth = 0; 981 switch (SK) { 982 case Ascii: 983 case UTF8: 984 CharByteWidth = Target.getCharWidth(); 985 break; 986 case Wide: 987 CharByteWidth = Target.getWCharWidth(); 988 break; 989 case UTF16: 990 CharByteWidth = Target.getChar16Width(); 991 break; 992 case UTF32: 993 CharByteWidth = Target.getChar32Width(); 994 break; 995 } 996 assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple"); 997 CharByteWidth /= 8; 998 assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) && 999 "The only supported character byte widths are 1,2 and 4!"); 1000 return CharByteWidth; 1001 } 1002 1003 StringLiteral::StringLiteral(const ASTContext &Ctx, StringRef Str, 1004 StringKind Kind, bool Pascal, QualType Ty, 1005 const SourceLocation *Loc, 1006 unsigned NumConcatenated) 1007 : Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary) { 1008 assert(Ctx.getAsConstantArrayType(Ty) && 1009 "StringLiteral must be of constant array type!"); 1010 unsigned CharByteWidth = mapCharByteWidth(Ctx.getTargetInfo(), Kind); 1011 unsigned ByteLength = Str.size(); 1012 assert((ByteLength % CharByteWidth == 0) && 1013 "The size of the data must be a multiple of CharByteWidth!"); 1014 1015 // Avoid the expensive division. The compiler should be able to figure it 1016 // out by itself. However as of clang 7, even with the appropriate 1017 // llvm_unreachable added just here, it is not able to do so. 1018 unsigned Length; 1019 switch (CharByteWidth) { 1020 case 1: 1021 Length = ByteLength; 1022 break; 1023 case 2: 1024 Length = ByteLength / 2; 1025 break; 1026 case 4: 1027 Length = ByteLength / 4; 1028 break; 1029 default: 1030 llvm_unreachable("Unsupported character width!"); 1031 } 1032 1033 StringLiteralBits.Kind = Kind; 1034 StringLiteralBits.CharByteWidth = CharByteWidth; 1035 StringLiteralBits.IsPascal = Pascal; 1036 StringLiteralBits.NumConcatenated = NumConcatenated; 1037 *getTrailingObjects<unsigned>() = Length; 1038 1039 // Initialize the trailing array of SourceLocation. 1040 // This is safe since SourceLocation is POD-like. 1041 std::memcpy(getTrailingObjects<SourceLocation>(), Loc, 1042 NumConcatenated * sizeof(SourceLocation)); 1043 1044 // Initialize the trailing array of char holding the string data. 1045 std::memcpy(getTrailingObjects<char>(), Str.data(), ByteLength); 1046 1047 setDependence(ExprDependence::None); 1048 } 1049 1050 StringLiteral::StringLiteral(EmptyShell Empty, unsigned NumConcatenated, 1051 unsigned Length, unsigned CharByteWidth) 1052 : Expr(StringLiteralClass, Empty) { 1053 StringLiteralBits.CharByteWidth = CharByteWidth; 1054 StringLiteralBits.NumConcatenated = NumConcatenated; 1055 *getTrailingObjects<unsigned>() = Length; 1056 } 1057 1058 StringLiteral *StringLiteral::Create(const ASTContext &Ctx, StringRef Str, 1059 StringKind Kind, bool Pascal, QualType Ty, 1060 const SourceLocation *Loc, 1061 unsigned NumConcatenated) { 1062 void *Mem = Ctx.Allocate(totalSizeToAlloc<unsigned, SourceLocation, char>( 1063 1, NumConcatenated, Str.size()), 1064 alignof(StringLiteral)); 1065 return new (Mem) 1066 StringLiteral(Ctx, Str, Kind, Pascal, Ty, Loc, NumConcatenated); 1067 } 1068 1069 StringLiteral *StringLiteral::CreateEmpty(const ASTContext &Ctx, 1070 unsigned NumConcatenated, 1071 unsigned Length, 1072 unsigned CharByteWidth) { 1073 void *Mem = Ctx.Allocate(totalSizeToAlloc<unsigned, SourceLocation, char>( 1074 1, NumConcatenated, Length * CharByteWidth), 1075 alignof(StringLiteral)); 1076 return new (Mem) 1077 StringLiteral(EmptyShell(), NumConcatenated, Length, CharByteWidth); 1078 } 1079 1080 void StringLiteral::outputString(raw_ostream &OS) const { 1081 switch (getKind()) { 1082 case Ascii: break; // no prefix. 1083 case Wide: OS << 'L'; break; 1084 case UTF8: OS << "u8"; break; 1085 case UTF16: OS << 'u'; break; 1086 case UTF32: OS << 'U'; break; 1087 } 1088 OS << '"'; 1089 static const char Hex[] = "0123456789ABCDEF"; 1090 1091 unsigned LastSlashX = getLength(); 1092 for (unsigned I = 0, N = getLength(); I != N; ++I) { 1093 switch (uint32_t Char = getCodeUnit(I)) { 1094 default: 1095 // FIXME: Convert UTF-8 back to codepoints before rendering. 1096 1097 // Convert UTF-16 surrogate pairs back to codepoints before rendering. 1098 // Leave invalid surrogates alone; we'll use \x for those. 1099 if (getKind() == UTF16 && I != N - 1 && Char >= 0xd800 && 1100 Char <= 0xdbff) { 1101 uint32_t Trail = getCodeUnit(I + 1); 1102 if (Trail >= 0xdc00 && Trail <= 0xdfff) { 1103 Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00); 1104 ++I; 1105 } 1106 } 1107 1108 if (Char > 0xff) { 1109 // If this is a wide string, output characters over 0xff using \x 1110 // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a 1111 // codepoint: use \x escapes for invalid codepoints. 1112 if (getKind() == Wide || 1113 (Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) { 1114 // FIXME: Is this the best way to print wchar_t? 1115 OS << "\\x"; 1116 int Shift = 28; 1117 while ((Char >> Shift) == 0) 1118 Shift -= 4; 1119 for (/**/; Shift >= 0; Shift -= 4) 1120 OS << Hex[(Char >> Shift) & 15]; 1121 LastSlashX = I; 1122 break; 1123 } 1124 1125 if (Char > 0xffff) 1126 OS << "\\U00" 1127 << Hex[(Char >> 20) & 15] 1128 << Hex[(Char >> 16) & 15]; 1129 else 1130 OS << "\\u"; 1131 OS << Hex[(Char >> 12) & 15] 1132 << Hex[(Char >> 8) & 15] 1133 << Hex[(Char >> 4) & 15] 1134 << Hex[(Char >> 0) & 15]; 1135 break; 1136 } 1137 1138 // If we used \x... for the previous character, and this character is a 1139 // hexadecimal digit, prevent it being slurped as part of the \x. 1140 if (LastSlashX + 1 == I) { 1141 switch (Char) { 1142 case '0': case '1': case '2': case '3': case '4': 1143 case '5': case '6': case '7': case '8': case '9': 1144 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': 1145 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F': 1146 OS << "\"\""; 1147 } 1148 } 1149 1150 assert(Char <= 0xff && 1151 "Characters above 0xff should already have been handled."); 1152 1153 if (isPrintable(Char)) 1154 OS << (char)Char; 1155 else // Output anything hard as an octal escape. 1156 OS << '\\' 1157 << (char)('0' + ((Char >> 6) & 7)) 1158 << (char)('0' + ((Char >> 3) & 7)) 1159 << (char)('0' + ((Char >> 0) & 7)); 1160 break; 1161 // Handle some common non-printable cases to make dumps prettier. 1162 case '\\': OS << "\\\\"; break; 1163 case '"': OS << "\\\""; break; 1164 case '\a': OS << "\\a"; break; 1165 case '\b': OS << "\\b"; break; 1166 case '\f': OS << "\\f"; break; 1167 case '\n': OS << "\\n"; break; 1168 case '\r': OS << "\\r"; break; 1169 case '\t': OS << "\\t"; break; 1170 case '\v': OS << "\\v"; break; 1171 } 1172 } 1173 OS << '"'; 1174 } 1175 1176 /// getLocationOfByte - Return a source location that points to the specified 1177 /// byte of this string literal. 1178 /// 1179 /// Strings are amazingly complex. They can be formed from multiple tokens and 1180 /// can have escape sequences in them in addition to the usual trigraph and 1181 /// escaped newline business. This routine handles this complexity. 1182 /// 1183 /// The *StartToken sets the first token to be searched in this function and 1184 /// the *StartTokenByteOffset is the byte offset of the first token. Before 1185 /// returning, it updates the *StartToken to the TokNo of the token being found 1186 /// and sets *StartTokenByteOffset to the byte offset of the token in the 1187 /// string. 1188 /// Using these two parameters can reduce the time complexity from O(n^2) to 1189 /// O(n) if one wants to get the location of byte for all the tokens in a 1190 /// string. 1191 /// 1192 SourceLocation 1193 StringLiteral::getLocationOfByte(unsigned ByteNo, const SourceManager &SM, 1194 const LangOptions &Features, 1195 const TargetInfo &Target, unsigned *StartToken, 1196 unsigned *StartTokenByteOffset) const { 1197 assert((getKind() == StringLiteral::Ascii || 1198 getKind() == StringLiteral::UTF8) && 1199 "Only narrow string literals are currently supported"); 1200 1201 // Loop over all of the tokens in this string until we find the one that 1202 // contains the byte we're looking for. 1203 unsigned TokNo = 0; 1204 unsigned StringOffset = 0; 1205 if (StartToken) 1206 TokNo = *StartToken; 1207 if (StartTokenByteOffset) { 1208 StringOffset = *StartTokenByteOffset; 1209 ByteNo -= StringOffset; 1210 } 1211 while (1) { 1212 assert(TokNo < getNumConcatenated() && "Invalid byte number!"); 1213 SourceLocation StrTokLoc = getStrTokenLoc(TokNo); 1214 1215 // Get the spelling of the string so that we can get the data that makes up 1216 // the string literal, not the identifier for the macro it is potentially 1217 // expanded through. 1218 SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc); 1219 1220 // Re-lex the token to get its length and original spelling. 1221 std::pair<FileID, unsigned> LocInfo = 1222 SM.getDecomposedLoc(StrTokSpellingLoc); 1223 bool Invalid = false; 1224 StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid); 1225 if (Invalid) { 1226 if (StartTokenByteOffset != nullptr) 1227 *StartTokenByteOffset = StringOffset; 1228 if (StartToken != nullptr) 1229 *StartToken = TokNo; 1230 return StrTokSpellingLoc; 1231 } 1232 1233 const char *StrData = Buffer.data()+LocInfo.second; 1234 1235 // Create a lexer starting at the beginning of this token. 1236 Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), Features, 1237 Buffer.begin(), StrData, Buffer.end()); 1238 Token TheTok; 1239 TheLexer.LexFromRawLexer(TheTok); 1240 1241 // Use the StringLiteralParser to compute the length of the string in bytes. 1242 StringLiteralParser SLP(TheTok, SM, Features, Target); 1243 unsigned TokNumBytes = SLP.GetStringLength(); 1244 1245 // If the byte is in this token, return the location of the byte. 1246 if (ByteNo < TokNumBytes || 1247 (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) { 1248 unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo); 1249 1250 // Now that we know the offset of the token in the spelling, use the 1251 // preprocessor to get the offset in the original source. 1252 if (StartTokenByteOffset != nullptr) 1253 *StartTokenByteOffset = StringOffset; 1254 if (StartToken != nullptr) 1255 *StartToken = TokNo; 1256 return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features); 1257 } 1258 1259 // Move to the next string token. 1260 StringOffset += TokNumBytes; 1261 ++TokNo; 1262 ByteNo -= TokNumBytes; 1263 } 1264 } 1265 1266 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it 1267 /// corresponds to, e.g. "sizeof" or "[pre]++". 1268 StringRef UnaryOperator::getOpcodeStr(Opcode Op) { 1269 switch (Op) { 1270 #define UNARY_OPERATION(Name, Spelling) case UO_##Name: return Spelling; 1271 #include "clang/AST/OperationKinds.def" 1272 } 1273 llvm_unreachable("Unknown unary operator"); 1274 } 1275 1276 UnaryOperatorKind 1277 UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) { 1278 switch (OO) { 1279 default: llvm_unreachable("No unary operator for overloaded function"); 1280 case OO_PlusPlus: return Postfix ? UO_PostInc : UO_PreInc; 1281 case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec; 1282 case OO_Amp: return UO_AddrOf; 1283 case OO_Star: return UO_Deref; 1284 case OO_Plus: return UO_Plus; 1285 case OO_Minus: return UO_Minus; 1286 case OO_Tilde: return UO_Not; 1287 case OO_Exclaim: return UO_LNot; 1288 case OO_Coawait: return UO_Coawait; 1289 } 1290 } 1291 1292 OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) { 1293 switch (Opc) { 1294 case UO_PostInc: case UO_PreInc: return OO_PlusPlus; 1295 case UO_PostDec: case UO_PreDec: return OO_MinusMinus; 1296 case UO_AddrOf: return OO_Amp; 1297 case UO_Deref: return OO_Star; 1298 case UO_Plus: return OO_Plus; 1299 case UO_Minus: return OO_Minus; 1300 case UO_Not: return OO_Tilde; 1301 case UO_LNot: return OO_Exclaim; 1302 case UO_Coawait: return OO_Coawait; 1303 default: return OO_None; 1304 } 1305 } 1306 1307 1308 //===----------------------------------------------------------------------===// 1309 // Postfix Operators. 1310 //===----------------------------------------------------------------------===// 1311 1312 CallExpr::CallExpr(StmtClass SC, Expr *Fn, ArrayRef<Expr *> PreArgs, 1313 ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK, 1314 SourceLocation RParenLoc, FPOptionsOverride FPFeatures, 1315 unsigned MinNumArgs, ADLCallKind UsesADL) 1316 : Expr(SC, Ty, VK, OK_Ordinary), RParenLoc(RParenLoc) { 1317 NumArgs = std::max<unsigned>(Args.size(), MinNumArgs); 1318 unsigned NumPreArgs = PreArgs.size(); 1319 CallExprBits.NumPreArgs = NumPreArgs; 1320 assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!"); 1321 1322 unsigned OffsetToTrailingObjects = offsetToTrailingObjects(SC); 1323 CallExprBits.OffsetToTrailingObjects = OffsetToTrailingObjects; 1324 assert((CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) && 1325 "OffsetToTrailingObjects overflow!"); 1326 1327 CallExprBits.UsesADL = static_cast<bool>(UsesADL); 1328 1329 setCallee(Fn); 1330 for (unsigned I = 0; I != NumPreArgs; ++I) 1331 setPreArg(I, PreArgs[I]); 1332 for (unsigned I = 0; I != Args.size(); ++I) 1333 setArg(I, Args[I]); 1334 for (unsigned I = Args.size(); I != NumArgs; ++I) 1335 setArg(I, nullptr); 1336 1337 setDependence(computeDependence(this, PreArgs)); 1338 1339 CallExprBits.HasFPFeatures = FPFeatures.requiresTrailingStorage(); 1340 if (hasStoredFPFeatures()) 1341 setStoredFPFeatures(FPFeatures); 1342 } 1343 1344 CallExpr::CallExpr(StmtClass SC, unsigned NumPreArgs, unsigned NumArgs, 1345 bool HasFPFeatures, EmptyShell Empty) 1346 : Expr(SC, Empty), NumArgs(NumArgs) { 1347 CallExprBits.NumPreArgs = NumPreArgs; 1348 assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!"); 1349 1350 unsigned OffsetToTrailingObjects = offsetToTrailingObjects(SC); 1351 CallExprBits.OffsetToTrailingObjects = OffsetToTrailingObjects; 1352 assert((CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) && 1353 "OffsetToTrailingObjects overflow!"); 1354 CallExprBits.HasFPFeatures = HasFPFeatures; 1355 } 1356 1357 CallExpr *CallExpr::Create(const ASTContext &Ctx, Expr *Fn, 1358 ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK, 1359 SourceLocation RParenLoc, 1360 FPOptionsOverride FPFeatures, unsigned MinNumArgs, 1361 ADLCallKind UsesADL) { 1362 unsigned NumArgs = std::max<unsigned>(Args.size(), MinNumArgs); 1363 unsigned SizeOfTrailingObjects = CallExpr::sizeOfTrailingObjects( 1364 /*NumPreArgs=*/0, NumArgs, FPFeatures.requiresTrailingStorage()); 1365 void *Mem = 1366 Ctx.Allocate(sizeof(CallExpr) + SizeOfTrailingObjects, alignof(CallExpr)); 1367 return new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, Args, Ty, VK, 1368 RParenLoc, FPFeatures, MinNumArgs, UsesADL); 1369 } 1370 1371 CallExpr *CallExpr::CreateTemporary(void *Mem, Expr *Fn, QualType Ty, 1372 ExprValueKind VK, SourceLocation RParenLoc, 1373 ADLCallKind UsesADL) { 1374 assert(!(reinterpret_cast<uintptr_t>(Mem) % alignof(CallExpr)) && 1375 "Misaligned memory in CallExpr::CreateTemporary!"); 1376 return new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, /*Args=*/{}, Ty, 1377 VK, RParenLoc, FPOptionsOverride(), 1378 /*MinNumArgs=*/0, UsesADL); 1379 } 1380 1381 CallExpr *CallExpr::CreateEmpty(const ASTContext &Ctx, unsigned NumArgs, 1382 bool HasFPFeatures, EmptyShell Empty) { 1383 unsigned SizeOfTrailingObjects = 1384 CallExpr::sizeOfTrailingObjects(/*NumPreArgs=*/0, NumArgs, HasFPFeatures); 1385 void *Mem = 1386 Ctx.Allocate(sizeof(CallExpr) + SizeOfTrailingObjects, alignof(CallExpr)); 1387 return new (Mem) 1388 CallExpr(CallExprClass, /*NumPreArgs=*/0, NumArgs, HasFPFeatures, Empty); 1389 } 1390 1391 unsigned CallExpr::offsetToTrailingObjects(StmtClass SC) { 1392 switch (SC) { 1393 case CallExprClass: 1394 return sizeof(CallExpr); 1395 case CXXOperatorCallExprClass: 1396 return sizeof(CXXOperatorCallExpr); 1397 case CXXMemberCallExprClass: 1398 return sizeof(CXXMemberCallExpr); 1399 case UserDefinedLiteralClass: 1400 return sizeof(UserDefinedLiteral); 1401 case CUDAKernelCallExprClass: 1402 return sizeof(CUDAKernelCallExpr); 1403 default: 1404 llvm_unreachable("unexpected class deriving from CallExpr!"); 1405 } 1406 } 1407 1408 Decl *Expr::getReferencedDeclOfCallee() { 1409 Expr *CEE = IgnoreParenImpCasts(); 1410 1411 while (SubstNonTypeTemplateParmExpr *NTTP = 1412 dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) { 1413 CEE = NTTP->getReplacement()->IgnoreParenImpCasts(); 1414 } 1415 1416 // If we're calling a dereference, look at the pointer instead. 1417 while (true) { 1418 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) { 1419 if (BO->isPtrMemOp()) { 1420 CEE = BO->getRHS()->IgnoreParenImpCasts(); 1421 continue; 1422 } 1423 } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) { 1424 if (UO->getOpcode() == UO_Deref || UO->getOpcode() == UO_AddrOf || 1425 UO->getOpcode() == UO_Plus) { 1426 CEE = UO->getSubExpr()->IgnoreParenImpCasts(); 1427 continue; 1428 } 1429 } 1430 break; 1431 } 1432 1433 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) 1434 return DRE->getDecl(); 1435 if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE)) 1436 return ME->getMemberDecl(); 1437 if (auto *BE = dyn_cast<BlockExpr>(CEE)) 1438 return BE->getBlockDecl(); 1439 1440 return nullptr; 1441 } 1442 1443 /// If this is a call to a builtin, return the builtin ID. If not, return 0. 1444 unsigned CallExpr::getBuiltinCallee() const { 1445 auto *FDecl = 1446 dyn_cast_or_null<FunctionDecl>(getCallee()->getReferencedDeclOfCallee()); 1447 return FDecl ? FDecl->getBuiltinID() : 0; 1448 } 1449 1450 bool CallExpr::isUnevaluatedBuiltinCall(const ASTContext &Ctx) const { 1451 if (unsigned BI = getBuiltinCallee()) 1452 return Ctx.BuiltinInfo.isUnevaluated(BI); 1453 return false; 1454 } 1455 1456 QualType CallExpr::getCallReturnType(const ASTContext &Ctx) const { 1457 const Expr *Callee = getCallee(); 1458 QualType CalleeType = Callee->getType(); 1459 if (const auto *FnTypePtr = CalleeType->getAs<PointerType>()) { 1460 CalleeType = FnTypePtr->getPointeeType(); 1461 } else if (const auto *BPT = CalleeType->getAs<BlockPointerType>()) { 1462 CalleeType = BPT->getPointeeType(); 1463 } else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember)) { 1464 if (isa<CXXPseudoDestructorExpr>(Callee->IgnoreParens())) 1465 return Ctx.VoidTy; 1466 1467 if (isa<UnresolvedMemberExpr>(Callee->IgnoreParens())) 1468 return Ctx.DependentTy; 1469 1470 // This should never be overloaded and so should never return null. 1471 CalleeType = Expr::findBoundMemberType(Callee); 1472 assert(!CalleeType.isNull()); 1473 } else if (CalleeType->isDependentType() || 1474 CalleeType->isSpecificPlaceholderType(BuiltinType::Overload)) { 1475 return Ctx.DependentTy; 1476 } 1477 1478 const FunctionType *FnType = CalleeType->castAs<FunctionType>(); 1479 return FnType->getReturnType(); 1480 } 1481 1482 const Attr *CallExpr::getUnusedResultAttr(const ASTContext &Ctx) const { 1483 // If the return type is a struct, union, or enum that is marked nodiscard, 1484 // then return the return type attribute. 1485 if (const TagDecl *TD = getCallReturnType(Ctx)->getAsTagDecl()) 1486 if (const auto *A = TD->getAttr<WarnUnusedResultAttr>()) 1487 return A; 1488 1489 // Otherwise, see if the callee is marked nodiscard and return that attribute 1490 // instead. 1491 const Decl *D = getCalleeDecl(); 1492 return D ? D->getAttr<WarnUnusedResultAttr>() : nullptr; 1493 } 1494 1495 SourceLocation CallExpr::getBeginLoc() const { 1496 if (isa<CXXOperatorCallExpr>(this)) 1497 return cast<CXXOperatorCallExpr>(this)->getBeginLoc(); 1498 1499 SourceLocation begin = getCallee()->getBeginLoc(); 1500 if (begin.isInvalid() && getNumArgs() > 0 && getArg(0)) 1501 begin = getArg(0)->getBeginLoc(); 1502 return begin; 1503 } 1504 SourceLocation CallExpr::getEndLoc() const { 1505 if (isa<CXXOperatorCallExpr>(this)) 1506 return cast<CXXOperatorCallExpr>(this)->getEndLoc(); 1507 1508 SourceLocation end = getRParenLoc(); 1509 if (end.isInvalid() && getNumArgs() > 0 && getArg(getNumArgs() - 1)) 1510 end = getArg(getNumArgs() - 1)->getEndLoc(); 1511 return end; 1512 } 1513 1514 OffsetOfExpr *OffsetOfExpr::Create(const ASTContext &C, QualType type, 1515 SourceLocation OperatorLoc, 1516 TypeSourceInfo *tsi, 1517 ArrayRef<OffsetOfNode> comps, 1518 ArrayRef<Expr*> exprs, 1519 SourceLocation RParenLoc) { 1520 void *Mem = C.Allocate( 1521 totalSizeToAlloc<OffsetOfNode, Expr *>(comps.size(), exprs.size())); 1522 1523 return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, comps, exprs, 1524 RParenLoc); 1525 } 1526 1527 OffsetOfExpr *OffsetOfExpr::CreateEmpty(const ASTContext &C, 1528 unsigned numComps, unsigned numExprs) { 1529 void *Mem = 1530 C.Allocate(totalSizeToAlloc<OffsetOfNode, Expr *>(numComps, numExprs)); 1531 return new (Mem) OffsetOfExpr(numComps, numExprs); 1532 } 1533 1534 OffsetOfExpr::OffsetOfExpr(const ASTContext &C, QualType type, 1535 SourceLocation OperatorLoc, TypeSourceInfo *tsi, 1536 ArrayRef<OffsetOfNode> comps, ArrayRef<Expr *> exprs, 1537 SourceLocation RParenLoc) 1538 : Expr(OffsetOfExprClass, type, VK_RValue, OK_Ordinary), 1539 OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi), 1540 NumComps(comps.size()), NumExprs(exprs.size()) { 1541 for (unsigned i = 0; i != comps.size(); ++i) 1542 setComponent(i, comps[i]); 1543 for (unsigned i = 0; i != exprs.size(); ++i) 1544 setIndexExpr(i, exprs[i]); 1545 1546 setDependence(computeDependence(this)); 1547 } 1548 1549 IdentifierInfo *OffsetOfNode::getFieldName() const { 1550 assert(getKind() == Field || getKind() == Identifier); 1551 if (getKind() == Field) 1552 return getField()->getIdentifier(); 1553 1554 return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask); 1555 } 1556 1557 UnaryExprOrTypeTraitExpr::UnaryExprOrTypeTraitExpr( 1558 UnaryExprOrTypeTrait ExprKind, Expr *E, QualType resultType, 1559 SourceLocation op, SourceLocation rp) 1560 : Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary), 1561 OpLoc(op), RParenLoc(rp) { 1562 assert(ExprKind <= UETT_Last && "invalid enum value!"); 1563 UnaryExprOrTypeTraitExprBits.Kind = ExprKind; 1564 assert(static_cast<unsigned>(ExprKind) == UnaryExprOrTypeTraitExprBits.Kind && 1565 "UnaryExprOrTypeTraitExprBits.Kind overflow!"); 1566 UnaryExprOrTypeTraitExprBits.IsType = false; 1567 Argument.Ex = E; 1568 setDependence(computeDependence(this)); 1569 } 1570 1571 MemberExpr::MemberExpr(Expr *Base, bool IsArrow, SourceLocation OperatorLoc, 1572 ValueDecl *MemberDecl, 1573 const DeclarationNameInfo &NameInfo, QualType T, 1574 ExprValueKind VK, ExprObjectKind OK, 1575 NonOdrUseReason NOUR) 1576 : Expr(MemberExprClass, T, VK, OK), Base(Base), MemberDecl(MemberDecl), 1577 MemberDNLoc(NameInfo.getInfo()), MemberLoc(NameInfo.getLoc()) { 1578 assert(!NameInfo.getName() || 1579 MemberDecl->getDeclName() == NameInfo.getName()); 1580 MemberExprBits.IsArrow = IsArrow; 1581 MemberExprBits.HasQualifierOrFoundDecl = false; 1582 MemberExprBits.HasTemplateKWAndArgsInfo = false; 1583 MemberExprBits.HadMultipleCandidates = false; 1584 MemberExprBits.NonOdrUseReason = NOUR; 1585 MemberExprBits.OperatorLoc = OperatorLoc; 1586 setDependence(computeDependence(this)); 1587 } 1588 1589 MemberExpr *MemberExpr::Create( 1590 const ASTContext &C, Expr *Base, bool IsArrow, SourceLocation OperatorLoc, 1591 NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc, 1592 ValueDecl *MemberDecl, DeclAccessPair FoundDecl, 1593 DeclarationNameInfo NameInfo, const TemplateArgumentListInfo *TemplateArgs, 1594 QualType T, ExprValueKind VK, ExprObjectKind OK, NonOdrUseReason NOUR) { 1595 bool HasQualOrFound = QualifierLoc || FoundDecl.getDecl() != MemberDecl || 1596 FoundDecl.getAccess() != MemberDecl->getAccess(); 1597 bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid(); 1598 std::size_t Size = 1599 totalSizeToAlloc<MemberExprNameQualifier, ASTTemplateKWAndArgsInfo, 1600 TemplateArgumentLoc>( 1601 HasQualOrFound ? 1 : 0, HasTemplateKWAndArgsInfo ? 1 : 0, 1602 TemplateArgs ? TemplateArgs->size() : 0); 1603 1604 void *Mem = C.Allocate(Size, alignof(MemberExpr)); 1605 MemberExpr *E = new (Mem) MemberExpr(Base, IsArrow, OperatorLoc, MemberDecl, 1606 NameInfo, T, VK, OK, NOUR); 1607 1608 // FIXME: remove remaining dependence computation to computeDependence(). 1609 auto Deps = E->getDependence(); 1610 if (HasQualOrFound) { 1611 // FIXME: Wrong. We should be looking at the member declaration we found. 1612 if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent()) 1613 Deps |= ExprDependence::TypeValueInstantiation; 1614 else if (QualifierLoc && 1615 QualifierLoc.getNestedNameSpecifier()->isInstantiationDependent()) 1616 Deps |= ExprDependence::Instantiation; 1617 1618 E->MemberExprBits.HasQualifierOrFoundDecl = true; 1619 1620 MemberExprNameQualifier *NQ = 1621 E->getTrailingObjects<MemberExprNameQualifier>(); 1622 NQ->QualifierLoc = QualifierLoc; 1623 NQ->FoundDecl = FoundDecl; 1624 } 1625 1626 E->MemberExprBits.HasTemplateKWAndArgsInfo = 1627 TemplateArgs || TemplateKWLoc.isValid(); 1628 1629 if (TemplateArgs) { 1630 auto TemplateArgDeps = TemplateArgumentDependence::None; 1631 E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( 1632 TemplateKWLoc, *TemplateArgs, 1633 E->getTrailingObjects<TemplateArgumentLoc>(), TemplateArgDeps); 1634 if (TemplateArgDeps & TemplateArgumentDependence::Instantiation) 1635 Deps |= ExprDependence::Instantiation; 1636 } else if (TemplateKWLoc.isValid()) { 1637 E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( 1638 TemplateKWLoc); 1639 } 1640 E->setDependence(Deps); 1641 1642 return E; 1643 } 1644 1645 MemberExpr *MemberExpr::CreateEmpty(const ASTContext &Context, 1646 bool HasQualifier, bool HasFoundDecl, 1647 bool HasTemplateKWAndArgsInfo, 1648 unsigned NumTemplateArgs) { 1649 assert((!NumTemplateArgs || HasTemplateKWAndArgsInfo) && 1650 "template args but no template arg info?"); 1651 bool HasQualOrFound = HasQualifier || HasFoundDecl; 1652 std::size_t Size = 1653 totalSizeToAlloc<MemberExprNameQualifier, ASTTemplateKWAndArgsInfo, 1654 TemplateArgumentLoc>(HasQualOrFound ? 1 : 0, 1655 HasTemplateKWAndArgsInfo ? 1 : 0, 1656 NumTemplateArgs); 1657 void *Mem = Context.Allocate(Size, alignof(MemberExpr)); 1658 return new (Mem) MemberExpr(EmptyShell()); 1659 } 1660 1661 void MemberExpr::setMemberDecl(ValueDecl *D) { 1662 MemberDecl = D; 1663 setDependence(computeDependence(this)); 1664 } 1665 1666 SourceLocation MemberExpr::getBeginLoc() const { 1667 if (isImplicitAccess()) { 1668 if (hasQualifier()) 1669 return getQualifierLoc().getBeginLoc(); 1670 return MemberLoc; 1671 } 1672 1673 // FIXME: We don't want this to happen. Rather, we should be able to 1674 // detect all kinds of implicit accesses more cleanly. 1675 SourceLocation BaseStartLoc = getBase()->getBeginLoc(); 1676 if (BaseStartLoc.isValid()) 1677 return BaseStartLoc; 1678 return MemberLoc; 1679 } 1680 SourceLocation MemberExpr::getEndLoc() const { 1681 SourceLocation EndLoc = getMemberNameInfo().getEndLoc(); 1682 if (hasExplicitTemplateArgs()) 1683 EndLoc = getRAngleLoc(); 1684 else if (EndLoc.isInvalid()) 1685 EndLoc = getBase()->getEndLoc(); 1686 return EndLoc; 1687 } 1688 1689 bool CastExpr::CastConsistency() const { 1690 switch (getCastKind()) { 1691 case CK_DerivedToBase: 1692 case CK_UncheckedDerivedToBase: 1693 case CK_DerivedToBaseMemberPointer: 1694 case CK_BaseToDerived: 1695 case CK_BaseToDerivedMemberPointer: 1696 assert(!path_empty() && "Cast kind should have a base path!"); 1697 break; 1698 1699 case CK_CPointerToObjCPointerCast: 1700 assert(getType()->isObjCObjectPointerType()); 1701 assert(getSubExpr()->getType()->isPointerType()); 1702 goto CheckNoBasePath; 1703 1704 case CK_BlockPointerToObjCPointerCast: 1705 assert(getType()->isObjCObjectPointerType()); 1706 assert(getSubExpr()->getType()->isBlockPointerType()); 1707 goto CheckNoBasePath; 1708 1709 case CK_ReinterpretMemberPointer: 1710 assert(getType()->isMemberPointerType()); 1711 assert(getSubExpr()->getType()->isMemberPointerType()); 1712 goto CheckNoBasePath; 1713 1714 case CK_BitCast: 1715 // Arbitrary casts to C pointer types count as bitcasts. 1716 // Otherwise, we should only have block and ObjC pointer casts 1717 // here if they stay within the type kind. 1718 if (!getType()->isPointerType()) { 1719 assert(getType()->isObjCObjectPointerType() == 1720 getSubExpr()->getType()->isObjCObjectPointerType()); 1721 assert(getType()->isBlockPointerType() == 1722 getSubExpr()->getType()->isBlockPointerType()); 1723 } 1724 goto CheckNoBasePath; 1725 1726 case CK_AnyPointerToBlockPointerCast: 1727 assert(getType()->isBlockPointerType()); 1728 assert(getSubExpr()->getType()->isAnyPointerType() && 1729 !getSubExpr()->getType()->isBlockPointerType()); 1730 goto CheckNoBasePath; 1731 1732 case CK_CopyAndAutoreleaseBlockObject: 1733 assert(getType()->isBlockPointerType()); 1734 assert(getSubExpr()->getType()->isBlockPointerType()); 1735 goto CheckNoBasePath; 1736 1737 case CK_FunctionToPointerDecay: 1738 assert(getType()->isPointerType()); 1739 assert(getSubExpr()->getType()->isFunctionType()); 1740 goto CheckNoBasePath; 1741 1742 case CK_AddressSpaceConversion: { 1743 auto Ty = getType(); 1744 auto SETy = getSubExpr()->getType(); 1745 assert(getValueKindForType(Ty) == Expr::getValueKindForType(SETy)); 1746 if (isRValue() && !Ty->isDependentType() && !SETy->isDependentType()) { 1747 Ty = Ty->getPointeeType(); 1748 SETy = SETy->getPointeeType(); 1749 } 1750 assert((Ty->isDependentType() || SETy->isDependentType()) || 1751 (!Ty.isNull() && !SETy.isNull() && 1752 Ty.getAddressSpace() != SETy.getAddressSpace())); 1753 goto CheckNoBasePath; 1754 } 1755 // These should not have an inheritance path. 1756 case CK_Dynamic: 1757 case CK_ToUnion: 1758 case CK_ArrayToPointerDecay: 1759 case CK_NullToMemberPointer: 1760 case CK_NullToPointer: 1761 case CK_ConstructorConversion: 1762 case CK_IntegralToPointer: 1763 case CK_PointerToIntegral: 1764 case CK_ToVoid: 1765 case CK_VectorSplat: 1766 case CK_IntegralCast: 1767 case CK_BooleanToSignedIntegral: 1768 case CK_IntegralToFloating: 1769 case CK_FloatingToIntegral: 1770 case CK_FloatingCast: 1771 case CK_ObjCObjectLValueCast: 1772 case CK_FloatingRealToComplex: 1773 case CK_FloatingComplexToReal: 1774 case CK_FloatingComplexCast: 1775 case CK_FloatingComplexToIntegralComplex: 1776 case CK_IntegralRealToComplex: 1777 case CK_IntegralComplexToReal: 1778 case CK_IntegralComplexCast: 1779 case CK_IntegralComplexToFloatingComplex: 1780 case CK_ARCProduceObject: 1781 case CK_ARCConsumeObject: 1782 case CK_ARCReclaimReturnedObject: 1783 case CK_ARCExtendBlockObject: 1784 case CK_ZeroToOCLOpaqueType: 1785 case CK_IntToOCLSampler: 1786 case CK_FloatingToFixedPoint: 1787 case CK_FixedPointToFloating: 1788 case CK_FixedPointCast: 1789 case CK_FixedPointToIntegral: 1790 case CK_IntegralToFixedPoint: 1791 case CK_MatrixCast: 1792 assert(!getType()->isBooleanType() && "unheralded conversion to bool"); 1793 goto CheckNoBasePath; 1794 1795 case CK_Dependent: 1796 case CK_LValueToRValue: 1797 case CK_NoOp: 1798 case CK_AtomicToNonAtomic: 1799 case CK_NonAtomicToAtomic: 1800 case CK_PointerToBoolean: 1801 case CK_IntegralToBoolean: 1802 case CK_FloatingToBoolean: 1803 case CK_MemberPointerToBoolean: 1804 case CK_FloatingComplexToBoolean: 1805 case CK_IntegralComplexToBoolean: 1806 case CK_LValueBitCast: // -> bool& 1807 case CK_LValueToRValueBitCast: 1808 case CK_UserDefinedConversion: // operator bool() 1809 case CK_BuiltinFnToFnPtr: 1810 case CK_FixedPointToBoolean: 1811 CheckNoBasePath: 1812 assert(path_empty() && "Cast kind should not have a base path!"); 1813 break; 1814 } 1815 return true; 1816 } 1817 1818 const char *CastExpr::getCastKindName(CastKind CK) { 1819 switch (CK) { 1820 #define CAST_OPERATION(Name) case CK_##Name: return #Name; 1821 #include "clang/AST/OperationKinds.def" 1822 } 1823 llvm_unreachable("Unhandled cast kind!"); 1824 } 1825 1826 namespace { 1827 const Expr *skipImplicitTemporary(const Expr *E) { 1828 // Skip through reference binding to temporary. 1829 if (auto *Materialize = dyn_cast<MaterializeTemporaryExpr>(E)) 1830 E = Materialize->getSubExpr(); 1831 1832 // Skip any temporary bindings; they're implicit. 1833 if (auto *Binder = dyn_cast<CXXBindTemporaryExpr>(E)) 1834 E = Binder->getSubExpr(); 1835 1836 return E; 1837 } 1838 } 1839 1840 Expr *CastExpr::getSubExprAsWritten() { 1841 const Expr *SubExpr = nullptr; 1842 const CastExpr *E = this; 1843 do { 1844 SubExpr = skipImplicitTemporary(E->getSubExpr()); 1845 1846 // Conversions by constructor and conversion functions have a 1847 // subexpression describing the call; strip it off. 1848 if (E->getCastKind() == CK_ConstructorConversion) 1849 SubExpr = 1850 skipImplicitTemporary(cast<CXXConstructExpr>(SubExpr->IgnoreImplicit())->getArg(0)); 1851 else if (E->getCastKind() == CK_UserDefinedConversion) { 1852 assert((isa<CXXMemberCallExpr>(SubExpr) || 1853 isa<BlockExpr>(SubExpr)) && 1854 "Unexpected SubExpr for CK_UserDefinedConversion."); 1855 if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr)) 1856 SubExpr = MCE->getImplicitObjectArgument(); 1857 } 1858 1859 // If the subexpression we're left with is an implicit cast, look 1860 // through that, too. 1861 } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr))); 1862 1863 return const_cast<Expr*>(SubExpr); 1864 } 1865 1866 NamedDecl *CastExpr::getConversionFunction() const { 1867 const Expr *SubExpr = nullptr; 1868 1869 for (const CastExpr *E = this; E; E = dyn_cast<ImplicitCastExpr>(SubExpr)) { 1870 SubExpr = skipImplicitTemporary(E->getSubExpr()); 1871 1872 if (E->getCastKind() == CK_ConstructorConversion) 1873 return cast<CXXConstructExpr>(SubExpr)->getConstructor(); 1874 1875 if (E->getCastKind() == CK_UserDefinedConversion) { 1876 if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr)) 1877 return MCE->getMethodDecl(); 1878 } 1879 } 1880 1881 return nullptr; 1882 } 1883 1884 CXXBaseSpecifier **CastExpr::path_buffer() { 1885 switch (getStmtClass()) { 1886 #define ABSTRACT_STMT(x) 1887 #define CASTEXPR(Type, Base) \ 1888 case Stmt::Type##Class: \ 1889 return static_cast<Type *>(this)->getTrailingObjects<CXXBaseSpecifier *>(); 1890 #define STMT(Type, Base) 1891 #include "clang/AST/StmtNodes.inc" 1892 default: 1893 llvm_unreachable("non-cast expressions not possible here"); 1894 } 1895 } 1896 1897 const FieldDecl *CastExpr::getTargetFieldForToUnionCast(QualType unionType, 1898 QualType opType) { 1899 auto RD = unionType->castAs<RecordType>()->getDecl(); 1900 return getTargetFieldForToUnionCast(RD, opType); 1901 } 1902 1903 const FieldDecl *CastExpr::getTargetFieldForToUnionCast(const RecordDecl *RD, 1904 QualType OpType) { 1905 auto &Ctx = RD->getASTContext(); 1906 RecordDecl::field_iterator Field, FieldEnd; 1907 for (Field = RD->field_begin(), FieldEnd = RD->field_end(); 1908 Field != FieldEnd; ++Field) { 1909 if (Ctx.hasSameUnqualifiedType(Field->getType(), OpType) && 1910 !Field->isUnnamedBitfield()) { 1911 return *Field; 1912 } 1913 } 1914 return nullptr; 1915 } 1916 1917 FPOptionsOverride *CastExpr::getTrailingFPFeatures() { 1918 assert(hasStoredFPFeatures()); 1919 switch (getStmtClass()) { 1920 case ImplicitCastExprClass: 1921 return static_cast<ImplicitCastExpr *>(this) 1922 ->getTrailingObjects<FPOptionsOverride>(); 1923 case CStyleCastExprClass: 1924 return static_cast<CStyleCastExpr *>(this) 1925 ->getTrailingObjects<FPOptionsOverride>(); 1926 case CXXFunctionalCastExprClass: 1927 return static_cast<CXXFunctionalCastExpr *>(this) 1928 ->getTrailingObjects<FPOptionsOverride>(); 1929 case CXXStaticCastExprClass: 1930 return static_cast<CXXStaticCastExpr *>(this) 1931 ->getTrailingObjects<FPOptionsOverride>(); 1932 default: 1933 llvm_unreachable("Cast does not have FPFeatures"); 1934 } 1935 } 1936 1937 ImplicitCastExpr *ImplicitCastExpr::Create(const ASTContext &C, QualType T, 1938 CastKind Kind, Expr *Operand, 1939 const CXXCastPath *BasePath, 1940 ExprValueKind VK, 1941 FPOptionsOverride FPO) { 1942 unsigned PathSize = (BasePath ? BasePath->size() : 0); 1943 void *Buffer = 1944 C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>( 1945 PathSize, FPO.requiresTrailingStorage())); 1946 // Per C++ [conv.lval]p3, lvalue-to-rvalue conversions on class and 1947 // std::nullptr_t have special semantics not captured by CK_LValueToRValue. 1948 assert((Kind != CK_LValueToRValue || 1949 !(T->isNullPtrType() || T->getAsCXXRecordDecl())) && 1950 "invalid type for lvalue-to-rvalue conversion"); 1951 ImplicitCastExpr *E = 1952 new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, FPO, VK); 1953 if (PathSize) 1954 std::uninitialized_copy_n(BasePath->data(), BasePath->size(), 1955 E->getTrailingObjects<CXXBaseSpecifier *>()); 1956 return E; 1957 } 1958 1959 ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(const ASTContext &C, 1960 unsigned PathSize, 1961 bool HasFPFeatures) { 1962 void *Buffer = 1963 C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>( 1964 PathSize, HasFPFeatures)); 1965 return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize, HasFPFeatures); 1966 } 1967 1968 CStyleCastExpr *CStyleCastExpr::Create(const ASTContext &C, QualType T, 1969 ExprValueKind VK, CastKind K, Expr *Op, 1970 const CXXCastPath *BasePath, 1971 FPOptionsOverride FPO, 1972 TypeSourceInfo *WrittenTy, 1973 SourceLocation L, SourceLocation R) { 1974 unsigned PathSize = (BasePath ? BasePath->size() : 0); 1975 void *Buffer = 1976 C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>( 1977 PathSize, FPO.requiresTrailingStorage())); 1978 CStyleCastExpr *E = 1979 new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, FPO, WrittenTy, L, R); 1980 if (PathSize) 1981 std::uninitialized_copy_n(BasePath->data(), BasePath->size(), 1982 E->getTrailingObjects<CXXBaseSpecifier *>()); 1983 return E; 1984 } 1985 1986 CStyleCastExpr *CStyleCastExpr::CreateEmpty(const ASTContext &C, 1987 unsigned PathSize, 1988 bool HasFPFeatures) { 1989 void *Buffer = 1990 C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>( 1991 PathSize, HasFPFeatures)); 1992 return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize, HasFPFeatures); 1993 } 1994 1995 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it 1996 /// corresponds to, e.g. "<<=". 1997 StringRef BinaryOperator::getOpcodeStr(Opcode Op) { 1998 switch (Op) { 1999 #define BINARY_OPERATION(Name, Spelling) case BO_##Name: return Spelling; 2000 #include "clang/AST/OperationKinds.def" 2001 } 2002 llvm_unreachable("Invalid OpCode!"); 2003 } 2004 2005 BinaryOperatorKind 2006 BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) { 2007 switch (OO) { 2008 default: llvm_unreachable("Not an overloadable binary operator"); 2009 case OO_Plus: return BO_Add; 2010 case OO_Minus: return BO_Sub; 2011 case OO_Star: return BO_Mul; 2012 case OO_Slash: return BO_Div; 2013 case OO_Percent: return BO_Rem; 2014 case OO_Caret: return BO_Xor; 2015 case OO_Amp: return BO_And; 2016 case OO_Pipe: return BO_Or; 2017 case OO_Equal: return BO_Assign; 2018 case OO_Spaceship: return BO_Cmp; 2019 case OO_Less: return BO_LT; 2020 case OO_Greater: return BO_GT; 2021 case OO_PlusEqual: return BO_AddAssign; 2022 case OO_MinusEqual: return BO_SubAssign; 2023 case OO_StarEqual: return BO_MulAssign; 2024 case OO_SlashEqual: return BO_DivAssign; 2025 case OO_PercentEqual: return BO_RemAssign; 2026 case OO_CaretEqual: return BO_XorAssign; 2027 case OO_AmpEqual: return BO_AndAssign; 2028 case OO_PipeEqual: return BO_OrAssign; 2029 case OO_LessLess: return BO_Shl; 2030 case OO_GreaterGreater: return BO_Shr; 2031 case OO_LessLessEqual: return BO_ShlAssign; 2032 case OO_GreaterGreaterEqual: return BO_ShrAssign; 2033 case OO_EqualEqual: return BO_EQ; 2034 case OO_ExclaimEqual: return BO_NE; 2035 case OO_LessEqual: return BO_LE; 2036 case OO_GreaterEqual: return BO_GE; 2037 case OO_AmpAmp: return BO_LAnd; 2038 case OO_PipePipe: return BO_LOr; 2039 case OO_Comma: return BO_Comma; 2040 case OO_ArrowStar: return BO_PtrMemI; 2041 } 2042 } 2043 2044 OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) { 2045 static const OverloadedOperatorKind OverOps[] = { 2046 /* .* Cannot be overloaded */OO_None, OO_ArrowStar, 2047 OO_Star, OO_Slash, OO_Percent, 2048 OO_Plus, OO_Minus, 2049 OO_LessLess, OO_GreaterGreater, 2050 OO_Spaceship, 2051 OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual, 2052 OO_EqualEqual, OO_ExclaimEqual, 2053 OO_Amp, 2054 OO_Caret, 2055 OO_Pipe, 2056 OO_AmpAmp, 2057 OO_PipePipe, 2058 OO_Equal, OO_StarEqual, 2059 OO_SlashEqual, OO_PercentEqual, 2060 OO_PlusEqual, OO_MinusEqual, 2061 OO_LessLessEqual, OO_GreaterGreaterEqual, 2062 OO_AmpEqual, OO_CaretEqual, 2063 OO_PipeEqual, 2064 OO_Comma 2065 }; 2066 return OverOps[Opc]; 2067 } 2068 2069 bool BinaryOperator::isNullPointerArithmeticExtension(ASTContext &Ctx, 2070 Opcode Opc, 2071 Expr *LHS, Expr *RHS) { 2072 if (Opc != BO_Add) 2073 return false; 2074 2075 // Check that we have one pointer and one integer operand. 2076 Expr *PExp; 2077 if (LHS->getType()->isPointerType()) { 2078 if (!RHS->getType()->isIntegerType()) 2079 return false; 2080 PExp = LHS; 2081 } else if (RHS->getType()->isPointerType()) { 2082 if (!LHS->getType()->isIntegerType()) 2083 return false; 2084 PExp = RHS; 2085 } else { 2086 return false; 2087 } 2088 2089 // Check that the pointer is a nullptr. 2090 if (!PExp->IgnoreParenCasts() 2091 ->isNullPointerConstant(Ctx, Expr::NPC_ValueDependentIsNotNull)) 2092 return false; 2093 2094 // Check that the pointee type is char-sized. 2095 const PointerType *PTy = PExp->getType()->getAs<PointerType>(); 2096 if (!PTy || !PTy->getPointeeType()->isCharType()) 2097 return false; 2098 2099 return true; 2100 } 2101 2102 static QualType getDecayedSourceLocExprType(const ASTContext &Ctx, 2103 SourceLocExpr::IdentKind Kind) { 2104 switch (Kind) { 2105 case SourceLocExpr::File: 2106 case SourceLocExpr::Function: { 2107 QualType ArrTy = Ctx.getStringLiteralArrayType(Ctx.CharTy, 0); 2108 return Ctx.getPointerType(ArrTy->getAsArrayTypeUnsafe()->getElementType()); 2109 } 2110 case SourceLocExpr::Line: 2111 case SourceLocExpr::Column: 2112 return Ctx.UnsignedIntTy; 2113 } 2114 llvm_unreachable("unhandled case"); 2115 } 2116 2117 SourceLocExpr::SourceLocExpr(const ASTContext &Ctx, IdentKind Kind, 2118 SourceLocation BLoc, SourceLocation RParenLoc, 2119 DeclContext *ParentContext) 2120 : Expr(SourceLocExprClass, getDecayedSourceLocExprType(Ctx, Kind), 2121 VK_RValue, OK_Ordinary), 2122 BuiltinLoc(BLoc), RParenLoc(RParenLoc), ParentContext(ParentContext) { 2123 SourceLocExprBits.Kind = Kind; 2124 setDependence(ExprDependence::None); 2125 } 2126 2127 StringRef SourceLocExpr::getBuiltinStr() const { 2128 switch (getIdentKind()) { 2129 case File: 2130 return "__builtin_FILE"; 2131 case Function: 2132 return "__builtin_FUNCTION"; 2133 case Line: 2134 return "__builtin_LINE"; 2135 case Column: 2136 return "__builtin_COLUMN"; 2137 } 2138 llvm_unreachable("unexpected IdentKind!"); 2139 } 2140 2141 APValue SourceLocExpr::EvaluateInContext(const ASTContext &Ctx, 2142 const Expr *DefaultExpr) const { 2143 SourceLocation Loc; 2144 const DeclContext *Context; 2145 2146 std::tie(Loc, 2147 Context) = [&]() -> std::pair<SourceLocation, const DeclContext *> { 2148 if (auto *DIE = dyn_cast_or_null<CXXDefaultInitExpr>(DefaultExpr)) 2149 return {DIE->getUsedLocation(), DIE->getUsedContext()}; 2150 if (auto *DAE = dyn_cast_or_null<CXXDefaultArgExpr>(DefaultExpr)) 2151 return {DAE->getUsedLocation(), DAE->getUsedContext()}; 2152 return {this->getLocation(), this->getParentContext()}; 2153 }(); 2154 2155 PresumedLoc PLoc = Ctx.getSourceManager().getPresumedLoc( 2156 Ctx.getSourceManager().getExpansionRange(Loc).getEnd()); 2157 2158 auto MakeStringLiteral = [&](StringRef Tmp) { 2159 using LValuePathEntry = APValue::LValuePathEntry; 2160 StringLiteral *Res = Ctx.getPredefinedStringLiteralFromCache(Tmp); 2161 // Decay the string to a pointer to the first character. 2162 LValuePathEntry Path[1] = {LValuePathEntry::ArrayIndex(0)}; 2163 return APValue(Res, CharUnits::Zero(), Path, /*OnePastTheEnd=*/false); 2164 }; 2165 2166 switch (getIdentKind()) { 2167 case SourceLocExpr::File: 2168 return MakeStringLiteral(PLoc.getFilename()); 2169 case SourceLocExpr::Function: { 2170 const Decl *CurDecl = dyn_cast_or_null<Decl>(Context); 2171 return MakeStringLiteral( 2172 CurDecl ? PredefinedExpr::ComputeName(PredefinedExpr::Function, CurDecl) 2173 : std::string("")); 2174 } 2175 case SourceLocExpr::Line: 2176 case SourceLocExpr::Column: { 2177 llvm::APSInt IntVal(Ctx.getIntWidth(Ctx.UnsignedIntTy), 2178 /*isUnsigned=*/true); 2179 IntVal = getIdentKind() == SourceLocExpr::Line ? PLoc.getLine() 2180 : PLoc.getColumn(); 2181 return APValue(IntVal); 2182 } 2183 } 2184 llvm_unreachable("unhandled case"); 2185 } 2186 2187 InitListExpr::InitListExpr(const ASTContext &C, SourceLocation lbraceloc, 2188 ArrayRef<Expr *> initExprs, SourceLocation rbraceloc) 2189 : Expr(InitListExprClass, QualType(), VK_RValue, OK_Ordinary), 2190 InitExprs(C, initExprs.size()), LBraceLoc(lbraceloc), 2191 RBraceLoc(rbraceloc), AltForm(nullptr, true) { 2192 sawArrayRangeDesignator(false); 2193 InitExprs.insert(C, InitExprs.end(), initExprs.begin(), initExprs.end()); 2194 2195 setDependence(computeDependence(this)); 2196 } 2197 2198 void InitListExpr::reserveInits(const ASTContext &C, unsigned NumInits) { 2199 if (NumInits > InitExprs.size()) 2200 InitExprs.reserve(C, NumInits); 2201 } 2202 2203 void InitListExpr::resizeInits(const ASTContext &C, unsigned NumInits) { 2204 InitExprs.resize(C, NumInits, nullptr); 2205 } 2206 2207 Expr *InitListExpr::updateInit(const ASTContext &C, unsigned Init, Expr *expr) { 2208 if (Init >= InitExprs.size()) { 2209 InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, nullptr); 2210 setInit(Init, expr); 2211 return nullptr; 2212 } 2213 2214 Expr *Result = cast_or_null<Expr>(InitExprs[Init]); 2215 setInit(Init, expr); 2216 return Result; 2217 } 2218 2219 void InitListExpr::setArrayFiller(Expr *filler) { 2220 assert(!hasArrayFiller() && "Filler already set!"); 2221 ArrayFillerOrUnionFieldInit = filler; 2222 // Fill out any "holes" in the array due to designated initializers. 2223 Expr **inits = getInits(); 2224 for (unsigned i = 0, e = getNumInits(); i != e; ++i) 2225 if (inits[i] == nullptr) 2226 inits[i] = filler; 2227 } 2228 2229 bool InitListExpr::isStringLiteralInit() const { 2230 if (getNumInits() != 1) 2231 return false; 2232 const ArrayType *AT = getType()->getAsArrayTypeUnsafe(); 2233 if (!AT || !AT->getElementType()->isIntegerType()) 2234 return false; 2235 // It is possible for getInit() to return null. 2236 const Expr *Init = getInit(0); 2237 if (!Init) 2238 return false; 2239 Init = Init->IgnoreParens(); 2240 return isa<StringLiteral>(Init) || isa<ObjCEncodeExpr>(Init); 2241 } 2242 2243 bool InitListExpr::isTransparent() const { 2244 assert(isSemanticForm() && "syntactic form never semantically transparent"); 2245 2246 // A glvalue InitListExpr is always just sugar. 2247 if (isGLValue()) { 2248 assert(getNumInits() == 1 && "multiple inits in glvalue init list"); 2249 return true; 2250 } 2251 2252 // Otherwise, we're sugar if and only if we have exactly one initializer that 2253 // is of the same type. 2254 if (getNumInits() != 1 || !getInit(0)) 2255 return false; 2256 2257 // Don't confuse aggregate initialization of a struct X { X &x; }; with a 2258 // transparent struct copy. 2259 if (!getInit(0)->isRValue() && getType()->isRecordType()) 2260 return false; 2261 2262 return getType().getCanonicalType() == 2263 getInit(0)->getType().getCanonicalType(); 2264 } 2265 2266 bool InitListExpr::isIdiomaticZeroInitializer(const LangOptions &LangOpts) const { 2267 assert(isSyntacticForm() && "only test syntactic form as zero initializer"); 2268 2269 if (LangOpts.CPlusPlus || getNumInits() != 1 || !getInit(0)) { 2270 return false; 2271 } 2272 2273 const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(getInit(0)->IgnoreImplicit()); 2274 return Lit && Lit->getValue() == 0; 2275 } 2276 2277 SourceLocation InitListExpr::getBeginLoc() const { 2278 if (InitListExpr *SyntacticForm = getSyntacticForm()) 2279 return SyntacticForm->getBeginLoc(); 2280 SourceLocation Beg = LBraceLoc; 2281 if (Beg.isInvalid()) { 2282 // Find the first non-null initializer. 2283 for (InitExprsTy::const_iterator I = InitExprs.begin(), 2284 E = InitExprs.end(); 2285 I != E; ++I) { 2286 if (Stmt *S = *I) { 2287 Beg = S->getBeginLoc(); 2288 break; 2289 } 2290 } 2291 } 2292 return Beg; 2293 } 2294 2295 SourceLocation InitListExpr::getEndLoc() const { 2296 if (InitListExpr *SyntacticForm = getSyntacticForm()) 2297 return SyntacticForm->getEndLoc(); 2298 SourceLocation End = RBraceLoc; 2299 if (End.isInvalid()) { 2300 // Find the first non-null initializer from the end. 2301 for (InitExprsTy::const_reverse_iterator I = InitExprs.rbegin(), 2302 E = InitExprs.rend(); 2303 I != E; ++I) { 2304 if (Stmt *S = *I) { 2305 End = S->getEndLoc(); 2306 break; 2307 } 2308 } 2309 } 2310 return End; 2311 } 2312 2313 /// getFunctionType - Return the underlying function type for this block. 2314 /// 2315 const FunctionProtoType *BlockExpr::getFunctionType() const { 2316 // The block pointer is never sugared, but the function type might be. 2317 return cast<BlockPointerType>(getType()) 2318 ->getPointeeType()->castAs<FunctionProtoType>(); 2319 } 2320 2321 SourceLocation BlockExpr::getCaretLocation() const { 2322 return TheBlock->getCaretLocation(); 2323 } 2324 const Stmt *BlockExpr::getBody() const { 2325 return TheBlock->getBody(); 2326 } 2327 Stmt *BlockExpr::getBody() { 2328 return TheBlock->getBody(); 2329 } 2330 2331 2332 //===----------------------------------------------------------------------===// 2333 // Generic Expression Routines 2334 //===----------------------------------------------------------------------===// 2335 2336 bool Expr::isReadIfDiscardedInCPlusPlus11() const { 2337 // In C++11, discarded-value expressions of a certain form are special, 2338 // according to [expr]p10: 2339 // The lvalue-to-rvalue conversion (4.1) is applied only if the 2340 // expression is an lvalue of volatile-qualified type and it has 2341 // one of the following forms: 2342 if (!isGLValue() || !getType().isVolatileQualified()) 2343 return false; 2344 2345 const Expr *E = IgnoreParens(); 2346 2347 // - id-expression (5.1.1), 2348 if (isa<DeclRefExpr>(E)) 2349 return true; 2350 2351 // - subscripting (5.2.1), 2352 if (isa<ArraySubscriptExpr>(E)) 2353 return true; 2354 2355 // - class member access (5.2.5), 2356 if (isa<MemberExpr>(E)) 2357 return true; 2358 2359 // - indirection (5.3.1), 2360 if (auto *UO = dyn_cast<UnaryOperator>(E)) 2361 if (UO->getOpcode() == UO_Deref) 2362 return true; 2363 2364 if (auto *BO = dyn_cast<BinaryOperator>(E)) { 2365 // - pointer-to-member operation (5.5), 2366 if (BO->isPtrMemOp()) 2367 return true; 2368 2369 // - comma expression (5.18) where the right operand is one of the above. 2370 if (BO->getOpcode() == BO_Comma) 2371 return BO->getRHS()->isReadIfDiscardedInCPlusPlus11(); 2372 } 2373 2374 // - conditional expression (5.16) where both the second and the third 2375 // operands are one of the above, or 2376 if (auto *CO = dyn_cast<ConditionalOperator>(E)) 2377 return CO->getTrueExpr()->isReadIfDiscardedInCPlusPlus11() && 2378 CO->getFalseExpr()->isReadIfDiscardedInCPlusPlus11(); 2379 // The related edge case of "*x ?: *x". 2380 if (auto *BCO = 2381 dyn_cast<BinaryConditionalOperator>(E)) { 2382 if (auto *OVE = dyn_cast<OpaqueValueExpr>(BCO->getTrueExpr())) 2383 return OVE->getSourceExpr()->isReadIfDiscardedInCPlusPlus11() && 2384 BCO->getFalseExpr()->isReadIfDiscardedInCPlusPlus11(); 2385 } 2386 2387 // Objective-C++ extensions to the rule. 2388 if (isa<PseudoObjectExpr>(E) || isa<ObjCIvarRefExpr>(E)) 2389 return true; 2390 2391 return false; 2392 } 2393 2394 /// isUnusedResultAWarning - Return true if this immediate expression should 2395 /// be warned about if the result is unused. If so, fill in Loc and Ranges 2396 /// with location to warn on and the source range[s] to report with the 2397 /// warning. 2398 bool Expr::isUnusedResultAWarning(const Expr *&WarnE, SourceLocation &Loc, 2399 SourceRange &R1, SourceRange &R2, 2400 ASTContext &Ctx) const { 2401 // Don't warn if the expr is type dependent. The type could end up 2402 // instantiating to void. 2403 if (isTypeDependent()) 2404 return false; 2405 2406 switch (getStmtClass()) { 2407 default: 2408 if (getType()->isVoidType()) 2409 return false; 2410 WarnE = this; 2411 Loc = getExprLoc(); 2412 R1 = getSourceRange(); 2413 return true; 2414 case ParenExprClass: 2415 return cast<ParenExpr>(this)->getSubExpr()-> 2416 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2417 case GenericSelectionExprClass: 2418 return cast<GenericSelectionExpr>(this)->getResultExpr()-> 2419 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2420 case CoawaitExprClass: 2421 case CoyieldExprClass: 2422 return cast<CoroutineSuspendExpr>(this)->getResumeExpr()-> 2423 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2424 case ChooseExprClass: 2425 return cast<ChooseExpr>(this)->getChosenSubExpr()-> 2426 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2427 case UnaryOperatorClass: { 2428 const UnaryOperator *UO = cast<UnaryOperator>(this); 2429 2430 switch (UO->getOpcode()) { 2431 case UO_Plus: 2432 case UO_Minus: 2433 case UO_AddrOf: 2434 case UO_Not: 2435 case UO_LNot: 2436 case UO_Deref: 2437 break; 2438 case UO_Coawait: 2439 // This is just the 'operator co_await' call inside the guts of a 2440 // dependent co_await call. 2441 case UO_PostInc: 2442 case UO_PostDec: 2443 case UO_PreInc: 2444 case UO_PreDec: // ++/-- 2445 return false; // Not a warning. 2446 case UO_Real: 2447 case UO_Imag: 2448 // accessing a piece of a volatile complex is a side-effect. 2449 if (Ctx.getCanonicalType(UO->getSubExpr()->getType()) 2450 .isVolatileQualified()) 2451 return false; 2452 break; 2453 case UO_Extension: 2454 return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2455 } 2456 WarnE = this; 2457 Loc = UO->getOperatorLoc(); 2458 R1 = UO->getSubExpr()->getSourceRange(); 2459 return true; 2460 } 2461 case BinaryOperatorClass: { 2462 const BinaryOperator *BO = cast<BinaryOperator>(this); 2463 switch (BO->getOpcode()) { 2464 default: 2465 break; 2466 // Consider the RHS of comma for side effects. LHS was checked by 2467 // Sema::CheckCommaOperands. 2468 case BO_Comma: 2469 // ((foo = <blah>), 0) is an idiom for hiding the result (and 2470 // lvalue-ness) of an assignment written in a macro. 2471 if (IntegerLiteral *IE = 2472 dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens())) 2473 if (IE->getValue() == 0) 2474 return false; 2475 return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2476 // Consider '||', '&&' to have side effects if the LHS or RHS does. 2477 case BO_LAnd: 2478 case BO_LOr: 2479 if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) || 2480 !BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)) 2481 return false; 2482 break; 2483 } 2484 if (BO->isAssignmentOp()) 2485 return false; 2486 WarnE = this; 2487 Loc = BO->getOperatorLoc(); 2488 R1 = BO->getLHS()->getSourceRange(); 2489 R2 = BO->getRHS()->getSourceRange(); 2490 return true; 2491 } 2492 case CompoundAssignOperatorClass: 2493 case VAArgExprClass: 2494 case AtomicExprClass: 2495 return false; 2496 2497 case ConditionalOperatorClass: { 2498 // If only one of the LHS or RHS is a warning, the operator might 2499 // be being used for control flow. Only warn if both the LHS and 2500 // RHS are warnings. 2501 const auto *Exp = cast<ConditionalOperator>(this); 2502 return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) && 2503 Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2504 } 2505 case BinaryConditionalOperatorClass: { 2506 const auto *Exp = cast<BinaryConditionalOperator>(this); 2507 return Exp->getFalseExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2508 } 2509 2510 case MemberExprClass: 2511 WarnE = this; 2512 Loc = cast<MemberExpr>(this)->getMemberLoc(); 2513 R1 = SourceRange(Loc, Loc); 2514 R2 = cast<MemberExpr>(this)->getBase()->getSourceRange(); 2515 return true; 2516 2517 case ArraySubscriptExprClass: 2518 WarnE = this; 2519 Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc(); 2520 R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange(); 2521 R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange(); 2522 return true; 2523 2524 case CXXOperatorCallExprClass: { 2525 // Warn about operator ==,!=,<,>,<=, and >= even when user-defined operator 2526 // overloads as there is no reasonable way to define these such that they 2527 // have non-trivial, desirable side-effects. See the -Wunused-comparison 2528 // warning: operators == and != are commonly typo'ed, and so warning on them 2529 // provides additional value as well. If this list is updated, 2530 // DiagnoseUnusedComparison should be as well. 2531 const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this); 2532 switch (Op->getOperator()) { 2533 default: 2534 break; 2535 case OO_EqualEqual: 2536 case OO_ExclaimEqual: 2537 case OO_Less: 2538 case OO_Greater: 2539 case OO_GreaterEqual: 2540 case OO_LessEqual: 2541 if (Op->getCallReturnType(Ctx)->isReferenceType() || 2542 Op->getCallReturnType(Ctx)->isVoidType()) 2543 break; 2544 WarnE = this; 2545 Loc = Op->getOperatorLoc(); 2546 R1 = Op->getSourceRange(); 2547 return true; 2548 } 2549 2550 // Fallthrough for generic call handling. 2551 LLVM_FALLTHROUGH; 2552 } 2553 case CallExprClass: 2554 case CXXMemberCallExprClass: 2555 case UserDefinedLiteralClass: { 2556 // If this is a direct call, get the callee. 2557 const CallExpr *CE = cast<CallExpr>(this); 2558 if (const Decl *FD = CE->getCalleeDecl()) { 2559 // If the callee has attribute pure, const, or warn_unused_result, warn 2560 // about it. void foo() { strlen("bar"); } should warn. 2561 // 2562 // Note: If new cases are added here, DiagnoseUnusedExprResult should be 2563 // updated to match for QoI. 2564 if (CE->hasUnusedResultAttr(Ctx) || 2565 FD->hasAttr<PureAttr>() || FD->hasAttr<ConstAttr>()) { 2566 WarnE = this; 2567 Loc = CE->getCallee()->getBeginLoc(); 2568 R1 = CE->getCallee()->getSourceRange(); 2569 2570 if (unsigned NumArgs = CE->getNumArgs()) 2571 R2 = SourceRange(CE->getArg(0)->getBeginLoc(), 2572 CE->getArg(NumArgs - 1)->getEndLoc()); 2573 return true; 2574 } 2575 } 2576 return false; 2577 } 2578 2579 // If we don't know precisely what we're looking at, let's not warn. 2580 case UnresolvedLookupExprClass: 2581 case CXXUnresolvedConstructExprClass: 2582 case RecoveryExprClass: 2583 return false; 2584 2585 case CXXTemporaryObjectExprClass: 2586 case CXXConstructExprClass: { 2587 if (const CXXRecordDecl *Type = getType()->getAsCXXRecordDecl()) { 2588 const auto *WarnURAttr = Type->getAttr<WarnUnusedResultAttr>(); 2589 if (Type->hasAttr<WarnUnusedAttr>() || 2590 (WarnURAttr && WarnURAttr->IsCXX11NoDiscard())) { 2591 WarnE = this; 2592 Loc = getBeginLoc(); 2593 R1 = getSourceRange(); 2594 return true; 2595 } 2596 } 2597 2598 const auto *CE = cast<CXXConstructExpr>(this); 2599 if (const CXXConstructorDecl *Ctor = CE->getConstructor()) { 2600 const auto *WarnURAttr = Ctor->getAttr<WarnUnusedResultAttr>(); 2601 if (WarnURAttr && WarnURAttr->IsCXX11NoDiscard()) { 2602 WarnE = this; 2603 Loc = getBeginLoc(); 2604 R1 = getSourceRange(); 2605 2606 if (unsigned NumArgs = CE->getNumArgs()) 2607 R2 = SourceRange(CE->getArg(0)->getBeginLoc(), 2608 CE->getArg(NumArgs - 1)->getEndLoc()); 2609 return true; 2610 } 2611 } 2612 2613 return false; 2614 } 2615 2616 case ObjCMessageExprClass: { 2617 const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this); 2618 if (Ctx.getLangOpts().ObjCAutoRefCount && 2619 ME->isInstanceMessage() && 2620 !ME->getType()->isVoidType() && 2621 ME->getMethodFamily() == OMF_init) { 2622 WarnE = this; 2623 Loc = getExprLoc(); 2624 R1 = ME->getSourceRange(); 2625 return true; 2626 } 2627 2628 if (const ObjCMethodDecl *MD = ME->getMethodDecl()) 2629 if (MD->hasAttr<WarnUnusedResultAttr>()) { 2630 WarnE = this; 2631 Loc = getExprLoc(); 2632 return true; 2633 } 2634 2635 return false; 2636 } 2637 2638 case ObjCPropertyRefExprClass: 2639 WarnE = this; 2640 Loc = getExprLoc(); 2641 R1 = getSourceRange(); 2642 return true; 2643 2644 case PseudoObjectExprClass: { 2645 const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this); 2646 2647 // Only complain about things that have the form of a getter. 2648 if (isa<UnaryOperator>(PO->getSyntacticForm()) || 2649 isa<BinaryOperator>(PO->getSyntacticForm())) 2650 return false; 2651 2652 WarnE = this; 2653 Loc = getExprLoc(); 2654 R1 = getSourceRange(); 2655 return true; 2656 } 2657 2658 case StmtExprClass: { 2659 // Statement exprs don't logically have side effects themselves, but are 2660 // sometimes used in macros in ways that give them a type that is unused. 2661 // For example ({ blah; foo(); }) will end up with a type if foo has a type. 2662 // however, if the result of the stmt expr is dead, we don't want to emit a 2663 // warning. 2664 const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt(); 2665 if (!CS->body_empty()) { 2666 if (const Expr *E = dyn_cast<Expr>(CS->body_back())) 2667 return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2668 if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back())) 2669 if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt())) 2670 return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2671 } 2672 2673 if (getType()->isVoidType()) 2674 return false; 2675 WarnE = this; 2676 Loc = cast<StmtExpr>(this)->getLParenLoc(); 2677 R1 = getSourceRange(); 2678 return true; 2679 } 2680 case CXXFunctionalCastExprClass: 2681 case CStyleCastExprClass: { 2682 // Ignore an explicit cast to void, except in C++98 if the operand is a 2683 // volatile glvalue for which we would trigger an implicit read in any 2684 // other language mode. (Such an implicit read always happens as part of 2685 // the lvalue conversion in C, and happens in C++ for expressions of all 2686 // forms where it seems likely the user intended to trigger a volatile 2687 // load.) 2688 const CastExpr *CE = cast<CastExpr>(this); 2689 const Expr *SubE = CE->getSubExpr()->IgnoreParens(); 2690 if (CE->getCastKind() == CK_ToVoid) { 2691 if (Ctx.getLangOpts().CPlusPlus && !Ctx.getLangOpts().CPlusPlus11 && 2692 SubE->isReadIfDiscardedInCPlusPlus11()) { 2693 // Suppress the "unused value" warning for idiomatic usage of 2694 // '(void)var;' used to suppress "unused variable" warnings. 2695 if (auto *DRE = dyn_cast<DeclRefExpr>(SubE)) 2696 if (auto *VD = dyn_cast<VarDecl>(DRE->getDecl())) 2697 if (!VD->isExternallyVisible()) 2698 return false; 2699 2700 // The lvalue-to-rvalue conversion would have no effect for an array. 2701 // It's implausible that the programmer expected this to result in a 2702 // volatile array load, so don't warn. 2703 if (SubE->getType()->isArrayType()) 2704 return false; 2705 2706 return SubE->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2707 } 2708 return false; 2709 } 2710 2711 // If this is a cast to a constructor conversion, check the operand. 2712 // Otherwise, the result of the cast is unused. 2713 if (CE->getCastKind() == CK_ConstructorConversion) 2714 return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2715 if (CE->getCastKind() == CK_Dependent) 2716 return false; 2717 2718 WarnE = this; 2719 if (const CXXFunctionalCastExpr *CXXCE = 2720 dyn_cast<CXXFunctionalCastExpr>(this)) { 2721 Loc = CXXCE->getBeginLoc(); 2722 R1 = CXXCE->getSubExpr()->getSourceRange(); 2723 } else { 2724 const CStyleCastExpr *CStyleCE = cast<CStyleCastExpr>(this); 2725 Loc = CStyleCE->getLParenLoc(); 2726 R1 = CStyleCE->getSubExpr()->getSourceRange(); 2727 } 2728 return true; 2729 } 2730 case ImplicitCastExprClass: { 2731 const CastExpr *ICE = cast<ImplicitCastExpr>(this); 2732 2733 // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect. 2734 if (ICE->getCastKind() == CK_LValueToRValue && 2735 ICE->getSubExpr()->getType().isVolatileQualified()) 2736 return false; 2737 2738 return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2739 } 2740 case CXXDefaultArgExprClass: 2741 return (cast<CXXDefaultArgExpr>(this) 2742 ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)); 2743 case CXXDefaultInitExprClass: 2744 return (cast<CXXDefaultInitExpr>(this) 2745 ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)); 2746 2747 case CXXNewExprClass: 2748 // FIXME: In theory, there might be new expressions that don't have side 2749 // effects (e.g. a placement new with an uninitialized POD). 2750 case CXXDeleteExprClass: 2751 return false; 2752 case MaterializeTemporaryExprClass: 2753 return cast<MaterializeTemporaryExpr>(this) 2754 ->getSubExpr() 2755 ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2756 case CXXBindTemporaryExprClass: 2757 return cast<CXXBindTemporaryExpr>(this)->getSubExpr() 2758 ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2759 case ExprWithCleanupsClass: 2760 return cast<ExprWithCleanups>(this)->getSubExpr() 2761 ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2762 } 2763 } 2764 2765 /// isOBJCGCCandidate - Check if an expression is objc gc'able. 2766 /// returns true, if it is; false otherwise. 2767 bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const { 2768 const Expr *E = IgnoreParens(); 2769 switch (E->getStmtClass()) { 2770 default: 2771 return false; 2772 case ObjCIvarRefExprClass: 2773 return true; 2774 case Expr::UnaryOperatorClass: 2775 return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx); 2776 case ImplicitCastExprClass: 2777 return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx); 2778 case MaterializeTemporaryExprClass: 2779 return cast<MaterializeTemporaryExpr>(E)->getSubExpr()->isOBJCGCCandidate( 2780 Ctx); 2781 case CStyleCastExprClass: 2782 return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx); 2783 case DeclRefExprClass: { 2784 const Decl *D = cast<DeclRefExpr>(E)->getDecl(); 2785 2786 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 2787 if (VD->hasGlobalStorage()) 2788 return true; 2789 QualType T = VD->getType(); 2790 // dereferencing to a pointer is always a gc'able candidate, 2791 // unless it is __weak. 2792 return T->isPointerType() && 2793 (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak); 2794 } 2795 return false; 2796 } 2797 case MemberExprClass: { 2798 const MemberExpr *M = cast<MemberExpr>(E); 2799 return M->getBase()->isOBJCGCCandidate(Ctx); 2800 } 2801 case ArraySubscriptExprClass: 2802 return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx); 2803 } 2804 } 2805 2806 bool Expr::isBoundMemberFunction(ASTContext &Ctx) const { 2807 if (isTypeDependent()) 2808 return false; 2809 return ClassifyLValue(Ctx) == Expr::LV_MemberFunction; 2810 } 2811 2812 QualType Expr::findBoundMemberType(const Expr *expr) { 2813 assert(expr->hasPlaceholderType(BuiltinType::BoundMember)); 2814 2815 // Bound member expressions are always one of these possibilities: 2816 // x->m x.m x->*y x.*y 2817 // (possibly parenthesized) 2818 2819 expr = expr->IgnoreParens(); 2820 if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) { 2821 assert(isa<CXXMethodDecl>(mem->getMemberDecl())); 2822 return mem->getMemberDecl()->getType(); 2823 } 2824 2825 if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) { 2826 QualType type = op->getRHS()->getType()->castAs<MemberPointerType>() 2827 ->getPointeeType(); 2828 assert(type->isFunctionType()); 2829 return type; 2830 } 2831 2832 assert(isa<UnresolvedMemberExpr>(expr) || isa<CXXPseudoDestructorExpr>(expr)); 2833 return QualType(); 2834 } 2835 2836 Expr *Expr::IgnoreImpCasts() { 2837 return IgnoreExprNodes(this, IgnoreImplicitCastsSingleStep); 2838 } 2839 2840 Expr *Expr::IgnoreCasts() { 2841 return IgnoreExprNodes(this, IgnoreCastsSingleStep); 2842 } 2843 2844 Expr *Expr::IgnoreImplicit() { 2845 return IgnoreExprNodes(this, IgnoreImplicitSingleStep); 2846 } 2847 2848 Expr *Expr::IgnoreImplicitAsWritten() { 2849 return IgnoreExprNodes(this, IgnoreImplicitAsWrittenSingleStep); 2850 } 2851 2852 Expr *Expr::IgnoreParens() { 2853 return IgnoreExprNodes(this, IgnoreParensSingleStep); 2854 } 2855 2856 Expr *Expr::IgnoreParenImpCasts() { 2857 return IgnoreExprNodes(this, IgnoreParensSingleStep, 2858 IgnoreImplicitCastsExtraSingleStep); 2859 } 2860 2861 Expr *Expr::IgnoreParenCasts() { 2862 return IgnoreExprNodes(this, IgnoreParensSingleStep, IgnoreCastsSingleStep); 2863 } 2864 2865 Expr *Expr::IgnoreConversionOperatorSingleStep() { 2866 if (auto *MCE = dyn_cast<CXXMemberCallExpr>(this)) { 2867 if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl())) 2868 return MCE->getImplicitObjectArgument(); 2869 } 2870 return this; 2871 } 2872 2873 Expr *Expr::IgnoreParenLValueCasts() { 2874 return IgnoreExprNodes(this, IgnoreParensSingleStep, 2875 IgnoreLValueCastsSingleStep); 2876 } 2877 2878 Expr *Expr::IgnoreParenBaseCasts() { 2879 return IgnoreExprNodes(this, IgnoreParensSingleStep, 2880 IgnoreBaseCastsSingleStep); 2881 } 2882 2883 Expr *Expr::IgnoreParenNoopCasts(const ASTContext &Ctx) { 2884 auto IgnoreNoopCastsSingleStep = [&Ctx](Expr *E) { 2885 if (auto *CE = dyn_cast<CastExpr>(E)) { 2886 // We ignore integer <-> casts that are of the same width, ptr<->ptr and 2887 // ptr<->int casts of the same width. We also ignore all identity casts. 2888 Expr *SubExpr = CE->getSubExpr(); 2889 bool IsIdentityCast = 2890 Ctx.hasSameUnqualifiedType(E->getType(), SubExpr->getType()); 2891 bool IsSameWidthCast = (E->getType()->isPointerType() || 2892 E->getType()->isIntegralType(Ctx)) && 2893 (SubExpr->getType()->isPointerType() || 2894 SubExpr->getType()->isIntegralType(Ctx)) && 2895 (Ctx.getTypeSize(E->getType()) == 2896 Ctx.getTypeSize(SubExpr->getType())); 2897 2898 if (IsIdentityCast || IsSameWidthCast) 2899 return SubExpr; 2900 } else if (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) 2901 return NTTP->getReplacement(); 2902 2903 return E; 2904 }; 2905 return IgnoreExprNodes(this, IgnoreParensSingleStep, 2906 IgnoreNoopCastsSingleStep); 2907 } 2908 2909 Expr *Expr::IgnoreUnlessSpelledInSource() { 2910 auto IgnoreImplicitConstructorSingleStep = [](Expr *E) { 2911 if (auto *Cast = dyn_cast<CXXFunctionalCastExpr>(E)) { 2912 auto *SE = Cast->getSubExpr(); 2913 if (SE->getSourceRange() == E->getSourceRange()) 2914 return SE; 2915 } 2916 2917 if (auto *C = dyn_cast<CXXConstructExpr>(E)) { 2918 auto NumArgs = C->getNumArgs(); 2919 if (NumArgs == 1 || 2920 (NumArgs > 1 && isa<CXXDefaultArgExpr>(C->getArg(1)))) { 2921 Expr *A = C->getArg(0); 2922 if (A->getSourceRange() == E->getSourceRange() || C->isElidable()) 2923 return A; 2924 } 2925 } 2926 return E; 2927 }; 2928 auto IgnoreImplicitMemberCallSingleStep = [](Expr *E) { 2929 if (auto *C = dyn_cast<CXXMemberCallExpr>(E)) { 2930 Expr *ExprNode = C->getImplicitObjectArgument(); 2931 if (ExprNode->getSourceRange() == E->getSourceRange()) { 2932 return ExprNode; 2933 } 2934 if (auto *PE = dyn_cast<ParenExpr>(ExprNode)) { 2935 if (PE->getSourceRange() == C->getSourceRange()) { 2936 return cast<Expr>(PE); 2937 } 2938 } 2939 ExprNode = ExprNode->IgnoreParenImpCasts(); 2940 if (ExprNode->getSourceRange() == E->getSourceRange()) 2941 return ExprNode; 2942 } 2943 return E; 2944 }; 2945 return IgnoreExprNodes( 2946 this, IgnoreImplicitSingleStep, IgnoreImplicitCastsExtraSingleStep, 2947 IgnoreParensOnlySingleStep, IgnoreImplicitConstructorSingleStep, 2948 IgnoreImplicitMemberCallSingleStep); 2949 } 2950 2951 bool Expr::isDefaultArgument() const { 2952 const Expr *E = this; 2953 if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E)) 2954 E = M->getSubExpr(); 2955 2956 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) 2957 E = ICE->getSubExprAsWritten(); 2958 2959 return isa<CXXDefaultArgExpr>(E); 2960 } 2961 2962 /// Skip over any no-op casts and any temporary-binding 2963 /// expressions. 2964 static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) { 2965 if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E)) 2966 E = M->getSubExpr(); 2967 2968 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 2969 if (ICE->getCastKind() == CK_NoOp) 2970 E = ICE->getSubExpr(); 2971 else 2972 break; 2973 } 2974 2975 while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E)) 2976 E = BE->getSubExpr(); 2977 2978 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 2979 if (ICE->getCastKind() == CK_NoOp) 2980 E = ICE->getSubExpr(); 2981 else 2982 break; 2983 } 2984 2985 return E->IgnoreParens(); 2986 } 2987 2988 /// isTemporaryObject - Determines if this expression produces a 2989 /// temporary of the given class type. 2990 bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const { 2991 if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy))) 2992 return false; 2993 2994 const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this); 2995 2996 // Temporaries are by definition pr-values of class type. 2997 if (!E->Classify(C).isPRValue()) { 2998 // In this context, property reference is a message call and is pr-value. 2999 if (!isa<ObjCPropertyRefExpr>(E)) 3000 return false; 3001 } 3002 3003 // Black-list a few cases which yield pr-values of class type that don't 3004 // refer to temporaries of that type: 3005 3006 // - implicit derived-to-base conversions 3007 if (isa<ImplicitCastExpr>(E)) { 3008 switch (cast<ImplicitCastExpr>(E)->getCastKind()) { 3009 case CK_DerivedToBase: 3010 case CK_UncheckedDerivedToBase: 3011 return false; 3012 default: 3013 break; 3014 } 3015 } 3016 3017 // - member expressions (all) 3018 if (isa<MemberExpr>(E)) 3019 return false; 3020 3021 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) 3022 if (BO->isPtrMemOp()) 3023 return false; 3024 3025 // - opaque values (all) 3026 if (isa<OpaqueValueExpr>(E)) 3027 return false; 3028 3029 return true; 3030 } 3031 3032 bool Expr::isImplicitCXXThis() const { 3033 const Expr *E = this; 3034 3035 // Strip away parentheses and casts we don't care about. 3036 while (true) { 3037 if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) { 3038 E = Paren->getSubExpr(); 3039 continue; 3040 } 3041 3042 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 3043 if (ICE->getCastKind() == CK_NoOp || 3044 ICE->getCastKind() == CK_LValueToRValue || 3045 ICE->getCastKind() == CK_DerivedToBase || 3046 ICE->getCastKind() == CK_UncheckedDerivedToBase) { 3047 E = ICE->getSubExpr(); 3048 continue; 3049 } 3050 } 3051 3052 if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) { 3053 if (UnOp->getOpcode() == UO_Extension) { 3054 E = UnOp->getSubExpr(); 3055 continue; 3056 } 3057 } 3058 3059 if (const MaterializeTemporaryExpr *M 3060 = dyn_cast<MaterializeTemporaryExpr>(E)) { 3061 E = M->getSubExpr(); 3062 continue; 3063 } 3064 3065 break; 3066 } 3067 3068 if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E)) 3069 return This->isImplicit(); 3070 3071 return false; 3072 } 3073 3074 /// hasAnyTypeDependentArguments - Determines if any of the expressions 3075 /// in Exprs is type-dependent. 3076 bool Expr::hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs) { 3077 for (unsigned I = 0; I < Exprs.size(); ++I) 3078 if (Exprs[I]->isTypeDependent()) 3079 return true; 3080 3081 return false; 3082 } 3083 3084 bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef, 3085 const Expr **Culprit) const { 3086 assert(!isValueDependent() && 3087 "Expression evaluator can't be called on a dependent expression."); 3088 3089 // This function is attempting whether an expression is an initializer 3090 // which can be evaluated at compile-time. It very closely parallels 3091 // ConstExprEmitter in CGExprConstant.cpp; if they don't match, it 3092 // will lead to unexpected results. Like ConstExprEmitter, it falls back 3093 // to isEvaluatable most of the time. 3094 // 3095 // If we ever capture reference-binding directly in the AST, we can 3096 // kill the second parameter. 3097 3098 if (IsForRef) { 3099 EvalResult Result; 3100 if (EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects) 3101 return true; 3102 if (Culprit) 3103 *Culprit = this; 3104 return false; 3105 } 3106 3107 switch (getStmtClass()) { 3108 default: break; 3109 case Stmt::ExprWithCleanupsClass: 3110 return cast<ExprWithCleanups>(this)->getSubExpr()->isConstantInitializer( 3111 Ctx, IsForRef, Culprit); 3112 case StringLiteralClass: 3113 case ObjCEncodeExprClass: 3114 return true; 3115 case CXXTemporaryObjectExprClass: 3116 case CXXConstructExprClass: { 3117 const CXXConstructExpr *CE = cast<CXXConstructExpr>(this); 3118 3119 if (CE->getConstructor()->isTrivial() && 3120 CE->getConstructor()->getParent()->hasTrivialDestructor()) { 3121 // Trivial default constructor 3122 if (!CE->getNumArgs()) return true; 3123 3124 // Trivial copy constructor 3125 assert(CE->getNumArgs() == 1 && "trivial ctor with > 1 argument"); 3126 return CE->getArg(0)->isConstantInitializer(Ctx, false, Culprit); 3127 } 3128 3129 break; 3130 } 3131 case ConstantExprClass: { 3132 // FIXME: We should be able to return "true" here, but it can lead to extra 3133 // error messages. E.g. in Sema/array-init.c. 3134 const Expr *Exp = cast<ConstantExpr>(this)->getSubExpr(); 3135 return Exp->isConstantInitializer(Ctx, false, Culprit); 3136 } 3137 case CompoundLiteralExprClass: { 3138 // This handles gcc's extension that allows global initializers like 3139 // "struct x {int x;} x = (struct x) {};". 3140 // FIXME: This accepts other cases it shouldn't! 3141 const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer(); 3142 return Exp->isConstantInitializer(Ctx, false, Culprit); 3143 } 3144 case DesignatedInitUpdateExprClass: { 3145 const DesignatedInitUpdateExpr *DIUE = cast<DesignatedInitUpdateExpr>(this); 3146 return DIUE->getBase()->isConstantInitializer(Ctx, false, Culprit) && 3147 DIUE->getUpdater()->isConstantInitializer(Ctx, false, Culprit); 3148 } 3149 case InitListExprClass: { 3150 const InitListExpr *ILE = cast<InitListExpr>(this); 3151 assert(ILE->isSemanticForm() && "InitListExpr must be in semantic form"); 3152 if (ILE->getType()->isArrayType()) { 3153 unsigned numInits = ILE->getNumInits(); 3154 for (unsigned i = 0; i < numInits; i++) { 3155 if (!ILE->getInit(i)->isConstantInitializer(Ctx, false, Culprit)) 3156 return false; 3157 } 3158 return true; 3159 } 3160 3161 if (ILE->getType()->isRecordType()) { 3162 unsigned ElementNo = 0; 3163 RecordDecl *RD = ILE->getType()->castAs<RecordType>()->getDecl(); 3164 for (const auto *Field : RD->fields()) { 3165 // If this is a union, skip all the fields that aren't being initialized. 3166 if (RD->isUnion() && ILE->getInitializedFieldInUnion() != Field) 3167 continue; 3168 3169 // Don't emit anonymous bitfields, they just affect layout. 3170 if (Field->isUnnamedBitfield()) 3171 continue; 3172 3173 if (ElementNo < ILE->getNumInits()) { 3174 const Expr *Elt = ILE->getInit(ElementNo++); 3175 if (Field->isBitField()) { 3176 // Bitfields have to evaluate to an integer. 3177 EvalResult Result; 3178 if (!Elt->EvaluateAsInt(Result, Ctx)) { 3179 if (Culprit) 3180 *Culprit = Elt; 3181 return false; 3182 } 3183 } else { 3184 bool RefType = Field->getType()->isReferenceType(); 3185 if (!Elt->isConstantInitializer(Ctx, RefType, Culprit)) 3186 return false; 3187 } 3188 } 3189 } 3190 return true; 3191 } 3192 3193 break; 3194 } 3195 case ImplicitValueInitExprClass: 3196 case NoInitExprClass: 3197 return true; 3198 case ParenExprClass: 3199 return cast<ParenExpr>(this)->getSubExpr() 3200 ->isConstantInitializer(Ctx, IsForRef, Culprit); 3201 case GenericSelectionExprClass: 3202 return cast<GenericSelectionExpr>(this)->getResultExpr() 3203 ->isConstantInitializer(Ctx, IsForRef, Culprit); 3204 case ChooseExprClass: 3205 if (cast<ChooseExpr>(this)->isConditionDependent()) { 3206 if (Culprit) 3207 *Culprit = this; 3208 return false; 3209 } 3210 return cast<ChooseExpr>(this)->getChosenSubExpr() 3211 ->isConstantInitializer(Ctx, IsForRef, Culprit); 3212 case UnaryOperatorClass: { 3213 const UnaryOperator* Exp = cast<UnaryOperator>(this); 3214 if (Exp->getOpcode() == UO_Extension) 3215 return Exp->getSubExpr()->isConstantInitializer(Ctx, false, Culprit); 3216 break; 3217 } 3218 case CXXFunctionalCastExprClass: 3219 case CXXStaticCastExprClass: 3220 case ImplicitCastExprClass: 3221 case CStyleCastExprClass: 3222 case ObjCBridgedCastExprClass: 3223 case CXXDynamicCastExprClass: 3224 case CXXReinterpretCastExprClass: 3225 case CXXAddrspaceCastExprClass: 3226 case CXXConstCastExprClass: { 3227 const CastExpr *CE = cast<CastExpr>(this); 3228 3229 // Handle misc casts we want to ignore. 3230 if (CE->getCastKind() == CK_NoOp || 3231 CE->getCastKind() == CK_LValueToRValue || 3232 CE->getCastKind() == CK_ToUnion || 3233 CE->getCastKind() == CK_ConstructorConversion || 3234 CE->getCastKind() == CK_NonAtomicToAtomic || 3235 CE->getCastKind() == CK_AtomicToNonAtomic || 3236 CE->getCastKind() == CK_IntToOCLSampler) 3237 return CE->getSubExpr()->isConstantInitializer(Ctx, false, Culprit); 3238 3239 break; 3240 } 3241 case MaterializeTemporaryExprClass: 3242 return cast<MaterializeTemporaryExpr>(this) 3243 ->getSubExpr() 3244 ->isConstantInitializer(Ctx, false, Culprit); 3245 3246 case SubstNonTypeTemplateParmExprClass: 3247 return cast<SubstNonTypeTemplateParmExpr>(this)->getReplacement() 3248 ->isConstantInitializer(Ctx, false, Culprit); 3249 case CXXDefaultArgExprClass: 3250 return cast<CXXDefaultArgExpr>(this)->getExpr() 3251 ->isConstantInitializer(Ctx, false, Culprit); 3252 case CXXDefaultInitExprClass: 3253 return cast<CXXDefaultInitExpr>(this)->getExpr() 3254 ->isConstantInitializer(Ctx, false, Culprit); 3255 } 3256 // Allow certain forms of UB in constant initializers: signed integer 3257 // overflow and floating-point division by zero. We'll give a warning on 3258 // these, but they're common enough that we have to accept them. 3259 if (isEvaluatable(Ctx, SE_AllowUndefinedBehavior)) 3260 return true; 3261 if (Culprit) 3262 *Culprit = this; 3263 return false; 3264 } 3265 3266 bool CallExpr::isBuiltinAssumeFalse(const ASTContext &Ctx) const { 3267 const FunctionDecl* FD = getDirectCallee(); 3268 if (!FD || (FD->getBuiltinID() != Builtin::BI__assume && 3269 FD->getBuiltinID() != Builtin::BI__builtin_assume)) 3270 return false; 3271 3272 const Expr* Arg = getArg(0); 3273 bool ArgVal; 3274 return !Arg->isValueDependent() && 3275 Arg->EvaluateAsBooleanCondition(ArgVal, Ctx) && !ArgVal; 3276 } 3277 3278 namespace { 3279 /// Look for any side effects within a Stmt. 3280 class SideEffectFinder : public ConstEvaluatedExprVisitor<SideEffectFinder> { 3281 typedef ConstEvaluatedExprVisitor<SideEffectFinder> Inherited; 3282 const bool IncludePossibleEffects; 3283 bool HasSideEffects; 3284 3285 public: 3286 explicit SideEffectFinder(const ASTContext &Context, bool IncludePossible) 3287 : Inherited(Context), 3288 IncludePossibleEffects(IncludePossible), HasSideEffects(false) { } 3289 3290 bool hasSideEffects() const { return HasSideEffects; } 3291 3292 void VisitDecl(const Decl *D) { 3293 if (!D) 3294 return; 3295 3296 // We assume the caller checks subexpressions (eg, the initializer, VLA 3297 // bounds) for side-effects on our behalf. 3298 if (auto *VD = dyn_cast<VarDecl>(D)) { 3299 // Registering a destructor is a side-effect. 3300 if (IncludePossibleEffects && VD->isThisDeclarationADefinition() && 3301 VD->needsDestruction(Context)) 3302 HasSideEffects = true; 3303 } 3304 } 3305 3306 void VisitDeclStmt(const DeclStmt *DS) { 3307 for (auto *D : DS->decls()) 3308 VisitDecl(D); 3309 Inherited::VisitDeclStmt(DS); 3310 } 3311 3312 void VisitExpr(const Expr *E) { 3313 if (!HasSideEffects && 3314 E->HasSideEffects(Context, IncludePossibleEffects)) 3315 HasSideEffects = true; 3316 } 3317 }; 3318 } 3319 3320 bool Expr::HasSideEffects(const ASTContext &Ctx, 3321 bool IncludePossibleEffects) const { 3322 // In circumstances where we care about definite side effects instead of 3323 // potential side effects, we want to ignore expressions that are part of a 3324 // macro expansion as a potential side effect. 3325 if (!IncludePossibleEffects && getExprLoc().isMacroID()) 3326 return false; 3327 3328 switch (getStmtClass()) { 3329 case NoStmtClass: 3330 #define ABSTRACT_STMT(Type) 3331 #define STMT(Type, Base) case Type##Class: 3332 #define EXPR(Type, Base) 3333 #include "clang/AST/StmtNodes.inc" 3334 llvm_unreachable("unexpected Expr kind"); 3335 3336 case DependentScopeDeclRefExprClass: 3337 case CXXUnresolvedConstructExprClass: 3338 case CXXDependentScopeMemberExprClass: 3339 case UnresolvedLookupExprClass: 3340 case UnresolvedMemberExprClass: 3341 case PackExpansionExprClass: 3342 case SubstNonTypeTemplateParmPackExprClass: 3343 case FunctionParmPackExprClass: 3344 case TypoExprClass: 3345 case RecoveryExprClass: 3346 case CXXFoldExprClass: 3347 // Make a conservative assumption for dependent nodes. 3348 return IncludePossibleEffects; 3349 3350 case DeclRefExprClass: 3351 case ObjCIvarRefExprClass: 3352 case PredefinedExprClass: 3353 case IntegerLiteralClass: 3354 case FixedPointLiteralClass: 3355 case FloatingLiteralClass: 3356 case ImaginaryLiteralClass: 3357 case StringLiteralClass: 3358 case CharacterLiteralClass: 3359 case OffsetOfExprClass: 3360 case ImplicitValueInitExprClass: 3361 case UnaryExprOrTypeTraitExprClass: 3362 case AddrLabelExprClass: 3363 case GNUNullExprClass: 3364 case ArrayInitIndexExprClass: 3365 case NoInitExprClass: 3366 case CXXBoolLiteralExprClass: 3367 case CXXNullPtrLiteralExprClass: 3368 case CXXThisExprClass: 3369 case CXXScalarValueInitExprClass: 3370 case TypeTraitExprClass: 3371 case ArrayTypeTraitExprClass: 3372 case ExpressionTraitExprClass: 3373 case CXXNoexceptExprClass: 3374 case SizeOfPackExprClass: 3375 case ObjCStringLiteralClass: 3376 case ObjCEncodeExprClass: 3377 case ObjCBoolLiteralExprClass: 3378 case ObjCAvailabilityCheckExprClass: 3379 case CXXUuidofExprClass: 3380 case OpaqueValueExprClass: 3381 case SourceLocExprClass: 3382 case ConceptSpecializationExprClass: 3383 case RequiresExprClass: 3384 // These never have a side-effect. 3385 return false; 3386 3387 case ConstantExprClass: 3388 // FIXME: Move this into the "return false;" block above. 3389 return cast<ConstantExpr>(this)->getSubExpr()->HasSideEffects( 3390 Ctx, IncludePossibleEffects); 3391 3392 case CallExprClass: 3393 case CXXOperatorCallExprClass: 3394 case CXXMemberCallExprClass: 3395 case CUDAKernelCallExprClass: 3396 case UserDefinedLiteralClass: { 3397 // We don't know a call definitely has side effects, except for calls 3398 // to pure/const functions that definitely don't. 3399 // If the call itself is considered side-effect free, check the operands. 3400 const Decl *FD = cast<CallExpr>(this)->getCalleeDecl(); 3401 bool IsPure = FD && (FD->hasAttr<ConstAttr>() || FD->hasAttr<PureAttr>()); 3402 if (IsPure || !IncludePossibleEffects) 3403 break; 3404 return true; 3405 } 3406 3407 case BlockExprClass: 3408 case CXXBindTemporaryExprClass: 3409 if (!IncludePossibleEffects) 3410 break; 3411 return true; 3412 3413 case MSPropertyRefExprClass: 3414 case MSPropertySubscriptExprClass: 3415 case CompoundAssignOperatorClass: 3416 case VAArgExprClass: 3417 case AtomicExprClass: 3418 case CXXThrowExprClass: 3419 case CXXNewExprClass: 3420 case CXXDeleteExprClass: 3421 case CoawaitExprClass: 3422 case DependentCoawaitExprClass: 3423 case CoyieldExprClass: 3424 // These always have a side-effect. 3425 return true; 3426 3427 case StmtExprClass: { 3428 // StmtExprs have a side-effect if any substatement does. 3429 SideEffectFinder Finder(Ctx, IncludePossibleEffects); 3430 Finder.Visit(cast<StmtExpr>(this)->getSubStmt()); 3431 return Finder.hasSideEffects(); 3432 } 3433 3434 case ExprWithCleanupsClass: 3435 if (IncludePossibleEffects) 3436 if (cast<ExprWithCleanups>(this)->cleanupsHaveSideEffects()) 3437 return true; 3438 break; 3439 3440 case ParenExprClass: 3441 case ArraySubscriptExprClass: 3442 case MatrixSubscriptExprClass: 3443 case OMPArraySectionExprClass: 3444 case OMPArrayShapingExprClass: 3445 case OMPIteratorExprClass: 3446 case MemberExprClass: 3447 case ConditionalOperatorClass: 3448 case BinaryConditionalOperatorClass: 3449 case CompoundLiteralExprClass: 3450 case ExtVectorElementExprClass: 3451 case DesignatedInitExprClass: 3452 case DesignatedInitUpdateExprClass: 3453 case ArrayInitLoopExprClass: 3454 case ParenListExprClass: 3455 case CXXPseudoDestructorExprClass: 3456 case CXXRewrittenBinaryOperatorClass: 3457 case CXXStdInitializerListExprClass: 3458 case SubstNonTypeTemplateParmExprClass: 3459 case MaterializeTemporaryExprClass: 3460 case ShuffleVectorExprClass: 3461 case ConvertVectorExprClass: 3462 case AsTypeExprClass: 3463 // These have a side-effect if any subexpression does. 3464 break; 3465 3466 case UnaryOperatorClass: 3467 if (cast<UnaryOperator>(this)->isIncrementDecrementOp()) 3468 return true; 3469 break; 3470 3471 case BinaryOperatorClass: 3472 if (cast<BinaryOperator>(this)->isAssignmentOp()) 3473 return true; 3474 break; 3475 3476 case InitListExprClass: 3477 // FIXME: The children for an InitListExpr doesn't include the array filler. 3478 if (const Expr *E = cast<InitListExpr>(this)->getArrayFiller()) 3479 if (E->HasSideEffects(Ctx, IncludePossibleEffects)) 3480 return true; 3481 break; 3482 3483 case GenericSelectionExprClass: 3484 return cast<GenericSelectionExpr>(this)->getResultExpr()-> 3485 HasSideEffects(Ctx, IncludePossibleEffects); 3486 3487 case ChooseExprClass: 3488 return cast<ChooseExpr>(this)->getChosenSubExpr()->HasSideEffects( 3489 Ctx, IncludePossibleEffects); 3490 3491 case CXXDefaultArgExprClass: 3492 return cast<CXXDefaultArgExpr>(this)->getExpr()->HasSideEffects( 3493 Ctx, IncludePossibleEffects); 3494 3495 case CXXDefaultInitExprClass: { 3496 const FieldDecl *FD = cast<CXXDefaultInitExpr>(this)->getField(); 3497 if (const Expr *E = FD->getInClassInitializer()) 3498 return E->HasSideEffects(Ctx, IncludePossibleEffects); 3499 // If we've not yet parsed the initializer, assume it has side-effects. 3500 return true; 3501 } 3502 3503 case CXXDynamicCastExprClass: { 3504 // A dynamic_cast expression has side-effects if it can throw. 3505 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(this); 3506 if (DCE->getTypeAsWritten()->isReferenceType() && 3507 DCE->getCastKind() == CK_Dynamic) 3508 return true; 3509 } 3510 LLVM_FALLTHROUGH; 3511 case ImplicitCastExprClass: 3512 case CStyleCastExprClass: 3513 case CXXStaticCastExprClass: 3514 case CXXReinterpretCastExprClass: 3515 case CXXConstCastExprClass: 3516 case CXXAddrspaceCastExprClass: 3517 case CXXFunctionalCastExprClass: 3518 case BuiltinBitCastExprClass: { 3519 // While volatile reads are side-effecting in both C and C++, we treat them 3520 // as having possible (not definite) side-effects. This allows idiomatic 3521 // code to behave without warning, such as sizeof(*v) for a volatile- 3522 // qualified pointer. 3523 if (!IncludePossibleEffects) 3524 break; 3525 3526 const CastExpr *CE = cast<CastExpr>(this); 3527 if (CE->getCastKind() == CK_LValueToRValue && 3528 CE->getSubExpr()->getType().isVolatileQualified()) 3529 return true; 3530 break; 3531 } 3532 3533 case CXXTypeidExprClass: 3534 // typeid might throw if its subexpression is potentially-evaluated, so has 3535 // side-effects in that case whether or not its subexpression does. 3536 return cast<CXXTypeidExpr>(this)->isPotentiallyEvaluated(); 3537 3538 case CXXConstructExprClass: 3539 case CXXTemporaryObjectExprClass: { 3540 const CXXConstructExpr *CE = cast<CXXConstructExpr>(this); 3541 if (!CE->getConstructor()->isTrivial() && IncludePossibleEffects) 3542 return true; 3543 // A trivial constructor does not add any side-effects of its own. Just look 3544 // at its arguments. 3545 break; 3546 } 3547 3548 case CXXInheritedCtorInitExprClass: { 3549 const auto *ICIE = cast<CXXInheritedCtorInitExpr>(this); 3550 if (!ICIE->getConstructor()->isTrivial() && IncludePossibleEffects) 3551 return true; 3552 break; 3553 } 3554 3555 case LambdaExprClass: { 3556 const LambdaExpr *LE = cast<LambdaExpr>(this); 3557 for (Expr *E : LE->capture_inits()) 3558 if (E && E->HasSideEffects(Ctx, IncludePossibleEffects)) 3559 return true; 3560 return false; 3561 } 3562 3563 case PseudoObjectExprClass: { 3564 // Only look for side-effects in the semantic form, and look past 3565 // OpaqueValueExpr bindings in that form. 3566 const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this); 3567 for (PseudoObjectExpr::const_semantics_iterator I = PO->semantics_begin(), 3568 E = PO->semantics_end(); 3569 I != E; ++I) { 3570 const Expr *Subexpr = *I; 3571 if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Subexpr)) 3572 Subexpr = OVE->getSourceExpr(); 3573 if (Subexpr->HasSideEffects(Ctx, IncludePossibleEffects)) 3574 return true; 3575 } 3576 return false; 3577 } 3578 3579 case ObjCBoxedExprClass: 3580 case ObjCArrayLiteralClass: 3581 case ObjCDictionaryLiteralClass: 3582 case ObjCSelectorExprClass: 3583 case ObjCProtocolExprClass: 3584 case ObjCIsaExprClass: 3585 case ObjCIndirectCopyRestoreExprClass: 3586 case ObjCSubscriptRefExprClass: 3587 case ObjCBridgedCastExprClass: 3588 case ObjCMessageExprClass: 3589 case ObjCPropertyRefExprClass: 3590 // FIXME: Classify these cases better. 3591 if (IncludePossibleEffects) 3592 return true; 3593 break; 3594 } 3595 3596 // Recurse to children. 3597 for (const Stmt *SubStmt : children()) 3598 if (SubStmt && 3599 cast<Expr>(SubStmt)->HasSideEffects(Ctx, IncludePossibleEffects)) 3600 return true; 3601 3602 return false; 3603 } 3604 3605 FPOptions Expr::getFPFeaturesInEffect(const LangOptions &LO) const { 3606 if (auto Call = dyn_cast<CallExpr>(this)) 3607 return Call->getFPFeaturesInEffect(LO); 3608 if (auto UO = dyn_cast<UnaryOperator>(this)) 3609 return UO->getFPFeaturesInEffect(LO); 3610 if (auto BO = dyn_cast<BinaryOperator>(this)) 3611 return BO->getFPFeaturesInEffect(LO); 3612 if (auto Cast = dyn_cast<CastExpr>(this)) 3613 return Cast->getFPFeaturesInEffect(LO); 3614 return FPOptions::defaultWithoutTrailingStorage(LO); 3615 } 3616 3617 namespace { 3618 /// Look for a call to a non-trivial function within an expression. 3619 class NonTrivialCallFinder : public ConstEvaluatedExprVisitor<NonTrivialCallFinder> 3620 { 3621 typedef ConstEvaluatedExprVisitor<NonTrivialCallFinder> Inherited; 3622 3623 bool NonTrivial; 3624 3625 public: 3626 explicit NonTrivialCallFinder(const ASTContext &Context) 3627 : Inherited(Context), NonTrivial(false) { } 3628 3629 bool hasNonTrivialCall() const { return NonTrivial; } 3630 3631 void VisitCallExpr(const CallExpr *E) { 3632 if (const CXXMethodDecl *Method 3633 = dyn_cast_or_null<const CXXMethodDecl>(E->getCalleeDecl())) { 3634 if (Method->isTrivial()) { 3635 // Recurse to children of the call. 3636 Inherited::VisitStmt(E); 3637 return; 3638 } 3639 } 3640 3641 NonTrivial = true; 3642 } 3643 3644 void VisitCXXConstructExpr(const CXXConstructExpr *E) { 3645 if (E->getConstructor()->isTrivial()) { 3646 // Recurse to children of the call. 3647 Inherited::VisitStmt(E); 3648 return; 3649 } 3650 3651 NonTrivial = true; 3652 } 3653 3654 void VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) { 3655 if (E->getTemporary()->getDestructor()->isTrivial()) { 3656 Inherited::VisitStmt(E); 3657 return; 3658 } 3659 3660 NonTrivial = true; 3661 } 3662 }; 3663 } 3664 3665 bool Expr::hasNonTrivialCall(const ASTContext &Ctx) const { 3666 NonTrivialCallFinder Finder(Ctx); 3667 Finder.Visit(this); 3668 return Finder.hasNonTrivialCall(); 3669 } 3670 3671 /// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null 3672 /// pointer constant or not, as well as the specific kind of constant detected. 3673 /// Null pointer constants can be integer constant expressions with the 3674 /// value zero, casts of zero to void*, nullptr (C++0X), or __null 3675 /// (a GNU extension). 3676 Expr::NullPointerConstantKind 3677 Expr::isNullPointerConstant(ASTContext &Ctx, 3678 NullPointerConstantValueDependence NPC) const { 3679 if (isValueDependent() && 3680 (!Ctx.getLangOpts().CPlusPlus11 || Ctx.getLangOpts().MSVCCompat)) { 3681 // Error-dependent expr should never be a null pointer. 3682 if (containsErrors()) 3683 return NPCK_NotNull; 3684 switch (NPC) { 3685 case NPC_NeverValueDependent: 3686 llvm_unreachable("Unexpected value dependent expression!"); 3687 case NPC_ValueDependentIsNull: 3688 if (isTypeDependent() || getType()->isIntegralType(Ctx)) 3689 return NPCK_ZeroExpression; 3690 else 3691 return NPCK_NotNull; 3692 3693 case NPC_ValueDependentIsNotNull: 3694 return NPCK_NotNull; 3695 } 3696 } 3697 3698 // Strip off a cast to void*, if it exists. Except in C++. 3699 if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) { 3700 if (!Ctx.getLangOpts().CPlusPlus) { 3701 // Check that it is a cast to void*. 3702 if (const PointerType *PT = CE->getType()->getAs<PointerType>()) { 3703 QualType Pointee = PT->getPointeeType(); 3704 Qualifiers Qs = Pointee.getQualifiers(); 3705 // Only (void*)0 or equivalent are treated as nullptr. If pointee type 3706 // has non-default address space it is not treated as nullptr. 3707 // (__generic void*)0 in OpenCL 2.0 should not be treated as nullptr 3708 // since it cannot be assigned to a pointer to constant address space. 3709 if ((Ctx.getLangOpts().OpenCLVersion >= 200 && 3710 Pointee.getAddressSpace() == LangAS::opencl_generic) || 3711 (Ctx.getLangOpts().OpenCL && 3712 Ctx.getLangOpts().OpenCLVersion < 200 && 3713 Pointee.getAddressSpace() == LangAS::opencl_private)) 3714 Qs.removeAddressSpace(); 3715 3716 if (Pointee->isVoidType() && Qs.empty() && // to void* 3717 CE->getSubExpr()->getType()->isIntegerType()) // from int 3718 return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC); 3719 } 3720 } 3721 } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) { 3722 // Ignore the ImplicitCastExpr type entirely. 3723 return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC); 3724 } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) { 3725 // Accept ((void*)0) as a null pointer constant, as many other 3726 // implementations do. 3727 return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC); 3728 } else if (const GenericSelectionExpr *GE = 3729 dyn_cast<GenericSelectionExpr>(this)) { 3730 if (GE->isResultDependent()) 3731 return NPCK_NotNull; 3732 return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC); 3733 } else if (const ChooseExpr *CE = dyn_cast<ChooseExpr>(this)) { 3734 if (CE->isConditionDependent()) 3735 return NPCK_NotNull; 3736 return CE->getChosenSubExpr()->isNullPointerConstant(Ctx, NPC); 3737 } else if (const CXXDefaultArgExpr *DefaultArg 3738 = dyn_cast<CXXDefaultArgExpr>(this)) { 3739 // See through default argument expressions. 3740 return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC); 3741 } else if (const CXXDefaultInitExpr *DefaultInit 3742 = dyn_cast<CXXDefaultInitExpr>(this)) { 3743 // See through default initializer expressions. 3744 return DefaultInit->getExpr()->isNullPointerConstant(Ctx, NPC); 3745 } else if (isa<GNUNullExpr>(this)) { 3746 // The GNU __null extension is always a null pointer constant. 3747 return NPCK_GNUNull; 3748 } else if (const MaterializeTemporaryExpr *M 3749 = dyn_cast<MaterializeTemporaryExpr>(this)) { 3750 return M->getSubExpr()->isNullPointerConstant(Ctx, NPC); 3751 } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) { 3752 if (const Expr *Source = OVE->getSourceExpr()) 3753 return Source->isNullPointerConstant(Ctx, NPC); 3754 } 3755 3756 // If the expression has no type information, it cannot be a null pointer 3757 // constant. 3758 if (getType().isNull()) 3759 return NPCK_NotNull; 3760 3761 // C++11 nullptr_t is always a null pointer constant. 3762 if (getType()->isNullPtrType()) 3763 return NPCK_CXX11_nullptr; 3764 3765 if (const RecordType *UT = getType()->getAsUnionType()) 3766 if (!Ctx.getLangOpts().CPlusPlus11 && 3767 UT && UT->getDecl()->hasAttr<TransparentUnionAttr>()) 3768 if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){ 3769 const Expr *InitExpr = CLE->getInitializer(); 3770 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr)) 3771 return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC); 3772 } 3773 // This expression must be an integer type. 3774 if (!getType()->isIntegerType() || 3775 (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType())) 3776 return NPCK_NotNull; 3777 3778 if (Ctx.getLangOpts().CPlusPlus11) { 3779 // C++11 [conv.ptr]p1: A null pointer constant is an integer literal with 3780 // value zero or a prvalue of type std::nullptr_t. 3781 // Microsoft mode permits C++98 rules reflecting MSVC behavior. 3782 const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(this); 3783 if (Lit && !Lit->getValue()) 3784 return NPCK_ZeroLiteral; 3785 if (!Ctx.getLangOpts().MSVCCompat || !isCXX98IntegralConstantExpr(Ctx)) 3786 return NPCK_NotNull; 3787 } else { 3788 // If we have an integer constant expression, we need to *evaluate* it and 3789 // test for the value 0. 3790 if (!isIntegerConstantExpr(Ctx)) 3791 return NPCK_NotNull; 3792 } 3793 3794 if (EvaluateKnownConstInt(Ctx) != 0) 3795 return NPCK_NotNull; 3796 3797 if (isa<IntegerLiteral>(this)) 3798 return NPCK_ZeroLiteral; 3799 return NPCK_ZeroExpression; 3800 } 3801 3802 /// If this expression is an l-value for an Objective C 3803 /// property, find the underlying property reference expression. 3804 const ObjCPropertyRefExpr *Expr::getObjCProperty() const { 3805 const Expr *E = this; 3806 while (true) { 3807 assert((E->getValueKind() == VK_LValue && 3808 E->getObjectKind() == OK_ObjCProperty) && 3809 "expression is not a property reference"); 3810 E = E->IgnoreParenCasts(); 3811 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 3812 if (BO->getOpcode() == BO_Comma) { 3813 E = BO->getRHS(); 3814 continue; 3815 } 3816 } 3817 3818 break; 3819 } 3820 3821 return cast<ObjCPropertyRefExpr>(E); 3822 } 3823 3824 bool Expr::isObjCSelfExpr() const { 3825 const Expr *E = IgnoreParenImpCasts(); 3826 3827 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E); 3828 if (!DRE) 3829 return false; 3830 3831 const ImplicitParamDecl *Param = dyn_cast<ImplicitParamDecl>(DRE->getDecl()); 3832 if (!Param) 3833 return false; 3834 3835 const ObjCMethodDecl *M = dyn_cast<ObjCMethodDecl>(Param->getDeclContext()); 3836 if (!M) 3837 return false; 3838 3839 return M->getSelfDecl() == Param; 3840 } 3841 3842 FieldDecl *Expr::getSourceBitField() { 3843 Expr *E = this->IgnoreParens(); 3844 3845 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 3846 if (ICE->getCastKind() == CK_LValueToRValue || 3847 (ICE->getValueKind() != VK_RValue && ICE->getCastKind() == CK_NoOp)) 3848 E = ICE->getSubExpr()->IgnoreParens(); 3849 else 3850 break; 3851 } 3852 3853 if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E)) 3854 if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl())) 3855 if (Field->isBitField()) 3856 return Field; 3857 3858 if (ObjCIvarRefExpr *IvarRef = dyn_cast<ObjCIvarRefExpr>(E)) { 3859 FieldDecl *Ivar = IvarRef->getDecl(); 3860 if (Ivar->isBitField()) 3861 return Ivar; 3862 } 3863 3864 if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E)) { 3865 if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl())) 3866 if (Field->isBitField()) 3867 return Field; 3868 3869 if (BindingDecl *BD = dyn_cast<BindingDecl>(DeclRef->getDecl())) 3870 if (Expr *E = BD->getBinding()) 3871 return E->getSourceBitField(); 3872 } 3873 3874 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) { 3875 if (BinOp->isAssignmentOp() && BinOp->getLHS()) 3876 return BinOp->getLHS()->getSourceBitField(); 3877 3878 if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS()) 3879 return BinOp->getRHS()->getSourceBitField(); 3880 } 3881 3882 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) 3883 if (UnOp->isPrefix() && UnOp->isIncrementDecrementOp()) 3884 return UnOp->getSubExpr()->getSourceBitField(); 3885 3886 return nullptr; 3887 } 3888 3889 bool Expr::refersToVectorElement() const { 3890 // FIXME: Why do we not just look at the ObjectKind here? 3891 const Expr *E = this->IgnoreParens(); 3892 3893 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 3894 if (ICE->getValueKind() != VK_RValue && 3895 ICE->getCastKind() == CK_NoOp) 3896 E = ICE->getSubExpr()->IgnoreParens(); 3897 else 3898 break; 3899 } 3900 3901 if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E)) 3902 return ASE->getBase()->getType()->isVectorType(); 3903 3904 if (isa<ExtVectorElementExpr>(E)) 3905 return true; 3906 3907 if (auto *DRE = dyn_cast<DeclRefExpr>(E)) 3908 if (auto *BD = dyn_cast<BindingDecl>(DRE->getDecl())) 3909 if (auto *E = BD->getBinding()) 3910 return E->refersToVectorElement(); 3911 3912 return false; 3913 } 3914 3915 bool Expr::refersToGlobalRegisterVar() const { 3916 const Expr *E = this->IgnoreParenImpCasts(); 3917 3918 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) 3919 if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl())) 3920 if (VD->getStorageClass() == SC_Register && 3921 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl()) 3922 return true; 3923 3924 return false; 3925 } 3926 3927 bool Expr::isSameComparisonOperand(const Expr* E1, const Expr* E2) { 3928 E1 = E1->IgnoreParens(); 3929 E2 = E2->IgnoreParens(); 3930 3931 if (E1->getStmtClass() != E2->getStmtClass()) 3932 return false; 3933 3934 switch (E1->getStmtClass()) { 3935 default: 3936 return false; 3937 case CXXThisExprClass: 3938 return true; 3939 case DeclRefExprClass: { 3940 // DeclRefExpr without an ImplicitCastExpr can happen for integral 3941 // template parameters. 3942 const auto *DRE1 = cast<DeclRefExpr>(E1); 3943 const auto *DRE2 = cast<DeclRefExpr>(E2); 3944 return DRE1->isRValue() && DRE2->isRValue() && 3945 DRE1->getDecl() == DRE2->getDecl(); 3946 } 3947 case ImplicitCastExprClass: { 3948 // Peel off implicit casts. 3949 while (true) { 3950 const auto *ICE1 = dyn_cast<ImplicitCastExpr>(E1); 3951 const auto *ICE2 = dyn_cast<ImplicitCastExpr>(E2); 3952 if (!ICE1 || !ICE2) 3953 return false; 3954 if (ICE1->getCastKind() != ICE2->getCastKind()) 3955 return false; 3956 E1 = ICE1->getSubExpr()->IgnoreParens(); 3957 E2 = ICE2->getSubExpr()->IgnoreParens(); 3958 // The final cast must be one of these types. 3959 if (ICE1->getCastKind() == CK_LValueToRValue || 3960 ICE1->getCastKind() == CK_ArrayToPointerDecay || 3961 ICE1->getCastKind() == CK_FunctionToPointerDecay) { 3962 break; 3963 } 3964 } 3965 3966 const auto *DRE1 = dyn_cast<DeclRefExpr>(E1); 3967 const auto *DRE2 = dyn_cast<DeclRefExpr>(E2); 3968 if (DRE1 && DRE2) 3969 return declaresSameEntity(DRE1->getDecl(), DRE2->getDecl()); 3970 3971 const auto *Ivar1 = dyn_cast<ObjCIvarRefExpr>(E1); 3972 const auto *Ivar2 = dyn_cast<ObjCIvarRefExpr>(E2); 3973 if (Ivar1 && Ivar2) { 3974 return Ivar1->isFreeIvar() && Ivar2->isFreeIvar() && 3975 declaresSameEntity(Ivar1->getDecl(), Ivar2->getDecl()); 3976 } 3977 3978 const auto *Array1 = dyn_cast<ArraySubscriptExpr>(E1); 3979 const auto *Array2 = dyn_cast<ArraySubscriptExpr>(E2); 3980 if (Array1 && Array2) { 3981 if (!isSameComparisonOperand(Array1->getBase(), Array2->getBase())) 3982 return false; 3983 3984 auto Idx1 = Array1->getIdx(); 3985 auto Idx2 = Array2->getIdx(); 3986 const auto Integer1 = dyn_cast<IntegerLiteral>(Idx1); 3987 const auto Integer2 = dyn_cast<IntegerLiteral>(Idx2); 3988 if (Integer1 && Integer2) { 3989 if (!llvm::APInt::isSameValue(Integer1->getValue(), 3990 Integer2->getValue())) 3991 return false; 3992 } else { 3993 if (!isSameComparisonOperand(Idx1, Idx2)) 3994 return false; 3995 } 3996 3997 return true; 3998 } 3999 4000 // Walk the MemberExpr chain. 4001 while (isa<MemberExpr>(E1) && isa<MemberExpr>(E2)) { 4002 const auto *ME1 = cast<MemberExpr>(E1); 4003 const auto *ME2 = cast<MemberExpr>(E2); 4004 if (!declaresSameEntity(ME1->getMemberDecl(), ME2->getMemberDecl())) 4005 return false; 4006 if (const auto *D = dyn_cast<VarDecl>(ME1->getMemberDecl())) 4007 if (D->isStaticDataMember()) 4008 return true; 4009 E1 = ME1->getBase()->IgnoreParenImpCasts(); 4010 E2 = ME2->getBase()->IgnoreParenImpCasts(); 4011 } 4012 4013 if (isa<CXXThisExpr>(E1) && isa<CXXThisExpr>(E2)) 4014 return true; 4015 4016 // A static member variable can end the MemberExpr chain with either 4017 // a MemberExpr or a DeclRefExpr. 4018 auto getAnyDecl = [](const Expr *E) -> const ValueDecl * { 4019 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) 4020 return DRE->getDecl(); 4021 if (const auto *ME = dyn_cast<MemberExpr>(E)) 4022 return ME->getMemberDecl(); 4023 return nullptr; 4024 }; 4025 4026 const ValueDecl *VD1 = getAnyDecl(E1); 4027 const ValueDecl *VD2 = getAnyDecl(E2); 4028 return declaresSameEntity(VD1, VD2); 4029 } 4030 } 4031 } 4032 4033 /// isArrow - Return true if the base expression is a pointer to vector, 4034 /// return false if the base expression is a vector. 4035 bool ExtVectorElementExpr::isArrow() const { 4036 return getBase()->getType()->isPointerType(); 4037 } 4038 4039 unsigned ExtVectorElementExpr::getNumElements() const { 4040 if (const VectorType *VT = getType()->getAs<VectorType>()) 4041 return VT->getNumElements(); 4042 return 1; 4043 } 4044 4045 /// containsDuplicateElements - Return true if any element access is repeated. 4046 bool ExtVectorElementExpr::containsDuplicateElements() const { 4047 // FIXME: Refactor this code to an accessor on the AST node which returns the 4048 // "type" of component access, and share with code below and in Sema. 4049 StringRef Comp = Accessor->getName(); 4050 4051 // Halving swizzles do not contain duplicate elements. 4052 if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd") 4053 return false; 4054 4055 // Advance past s-char prefix on hex swizzles. 4056 if (Comp[0] == 's' || Comp[0] == 'S') 4057 Comp = Comp.substr(1); 4058 4059 for (unsigned i = 0, e = Comp.size(); i != e; ++i) 4060 if (Comp.substr(i + 1).find(Comp[i]) != StringRef::npos) 4061 return true; 4062 4063 return false; 4064 } 4065 4066 /// getEncodedElementAccess - We encode the fields as a llvm ConstantArray. 4067 void ExtVectorElementExpr::getEncodedElementAccess( 4068 SmallVectorImpl<uint32_t> &Elts) const { 4069 StringRef Comp = Accessor->getName(); 4070 bool isNumericAccessor = false; 4071 if (Comp[0] == 's' || Comp[0] == 'S') { 4072 Comp = Comp.substr(1); 4073 isNumericAccessor = true; 4074 } 4075 4076 bool isHi = Comp == "hi"; 4077 bool isLo = Comp == "lo"; 4078 bool isEven = Comp == "even"; 4079 bool isOdd = Comp == "odd"; 4080 4081 for (unsigned i = 0, e = getNumElements(); i != e; ++i) { 4082 uint64_t Index; 4083 4084 if (isHi) 4085 Index = e + i; 4086 else if (isLo) 4087 Index = i; 4088 else if (isEven) 4089 Index = 2 * i; 4090 else if (isOdd) 4091 Index = 2 * i + 1; 4092 else 4093 Index = ExtVectorType::getAccessorIdx(Comp[i], isNumericAccessor); 4094 4095 Elts.push_back(Index); 4096 } 4097 } 4098 4099 ShuffleVectorExpr::ShuffleVectorExpr(const ASTContext &C, ArrayRef<Expr *> args, 4100 QualType Type, SourceLocation BLoc, 4101 SourceLocation RP) 4102 : Expr(ShuffleVectorExprClass, Type, VK_RValue, OK_Ordinary), 4103 BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(args.size()) { 4104 SubExprs = new (C) Stmt*[args.size()]; 4105 for (unsigned i = 0; i != args.size(); i++) 4106 SubExprs[i] = args[i]; 4107 4108 setDependence(computeDependence(this)); 4109 } 4110 4111 void ShuffleVectorExpr::setExprs(const ASTContext &C, ArrayRef<Expr *> Exprs) { 4112 if (SubExprs) C.Deallocate(SubExprs); 4113 4114 this->NumExprs = Exprs.size(); 4115 SubExprs = new (C) Stmt*[NumExprs]; 4116 memcpy(SubExprs, Exprs.data(), sizeof(Expr *) * Exprs.size()); 4117 } 4118 4119 GenericSelectionExpr::GenericSelectionExpr( 4120 const ASTContext &, SourceLocation GenericLoc, Expr *ControllingExpr, 4121 ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs, 4122 SourceLocation DefaultLoc, SourceLocation RParenLoc, 4123 bool ContainsUnexpandedParameterPack, unsigned ResultIndex) 4124 : Expr(GenericSelectionExprClass, AssocExprs[ResultIndex]->getType(), 4125 AssocExprs[ResultIndex]->getValueKind(), 4126 AssocExprs[ResultIndex]->getObjectKind()), 4127 NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex), 4128 DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) { 4129 assert(AssocTypes.size() == AssocExprs.size() && 4130 "Must have the same number of association expressions" 4131 " and TypeSourceInfo!"); 4132 assert(ResultIndex < NumAssocs && "ResultIndex is out-of-bounds!"); 4133 4134 GenericSelectionExprBits.GenericLoc = GenericLoc; 4135 getTrailingObjects<Stmt *>()[ControllingIndex] = ControllingExpr; 4136 std::copy(AssocExprs.begin(), AssocExprs.end(), 4137 getTrailingObjects<Stmt *>() + AssocExprStartIndex); 4138 std::copy(AssocTypes.begin(), AssocTypes.end(), 4139 getTrailingObjects<TypeSourceInfo *>()); 4140 4141 setDependence(computeDependence(this, ContainsUnexpandedParameterPack)); 4142 } 4143 4144 GenericSelectionExpr::GenericSelectionExpr( 4145 const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr, 4146 ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs, 4147 SourceLocation DefaultLoc, SourceLocation RParenLoc, 4148 bool ContainsUnexpandedParameterPack) 4149 : Expr(GenericSelectionExprClass, Context.DependentTy, VK_RValue, 4150 OK_Ordinary), 4151 NumAssocs(AssocExprs.size()), ResultIndex(ResultDependentIndex), 4152 DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) { 4153 assert(AssocTypes.size() == AssocExprs.size() && 4154 "Must have the same number of association expressions" 4155 " and TypeSourceInfo!"); 4156 4157 GenericSelectionExprBits.GenericLoc = GenericLoc; 4158 getTrailingObjects<Stmt *>()[ControllingIndex] = ControllingExpr; 4159 std::copy(AssocExprs.begin(), AssocExprs.end(), 4160 getTrailingObjects<Stmt *>() + AssocExprStartIndex); 4161 std::copy(AssocTypes.begin(), AssocTypes.end(), 4162 getTrailingObjects<TypeSourceInfo *>()); 4163 4164 setDependence(computeDependence(this, ContainsUnexpandedParameterPack)); 4165 } 4166 4167 GenericSelectionExpr::GenericSelectionExpr(EmptyShell Empty, unsigned NumAssocs) 4168 : Expr(GenericSelectionExprClass, Empty), NumAssocs(NumAssocs) {} 4169 4170 GenericSelectionExpr *GenericSelectionExpr::Create( 4171 const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr, 4172 ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs, 4173 SourceLocation DefaultLoc, SourceLocation RParenLoc, 4174 bool ContainsUnexpandedParameterPack, unsigned ResultIndex) { 4175 unsigned NumAssocs = AssocExprs.size(); 4176 void *Mem = Context.Allocate( 4177 totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs), 4178 alignof(GenericSelectionExpr)); 4179 return new (Mem) GenericSelectionExpr( 4180 Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc, 4181 RParenLoc, ContainsUnexpandedParameterPack, ResultIndex); 4182 } 4183 4184 GenericSelectionExpr *GenericSelectionExpr::Create( 4185 const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr, 4186 ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs, 4187 SourceLocation DefaultLoc, SourceLocation RParenLoc, 4188 bool ContainsUnexpandedParameterPack) { 4189 unsigned NumAssocs = AssocExprs.size(); 4190 void *Mem = Context.Allocate( 4191 totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs), 4192 alignof(GenericSelectionExpr)); 4193 return new (Mem) GenericSelectionExpr( 4194 Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc, 4195 RParenLoc, ContainsUnexpandedParameterPack); 4196 } 4197 4198 GenericSelectionExpr * 4199 GenericSelectionExpr::CreateEmpty(const ASTContext &Context, 4200 unsigned NumAssocs) { 4201 void *Mem = Context.Allocate( 4202 totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs), 4203 alignof(GenericSelectionExpr)); 4204 return new (Mem) GenericSelectionExpr(EmptyShell(), NumAssocs); 4205 } 4206 4207 //===----------------------------------------------------------------------===// 4208 // DesignatedInitExpr 4209 //===----------------------------------------------------------------------===// 4210 4211 IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const { 4212 assert(Kind == FieldDesignator && "Only valid on a field designator"); 4213 if (Field.NameOrField & 0x01) 4214 return reinterpret_cast<IdentifierInfo *>(Field.NameOrField & ~0x01); 4215 return getField()->getIdentifier(); 4216 } 4217 4218 DesignatedInitExpr::DesignatedInitExpr(const ASTContext &C, QualType Ty, 4219 llvm::ArrayRef<Designator> Designators, 4220 SourceLocation EqualOrColonLoc, 4221 bool GNUSyntax, 4222 ArrayRef<Expr *> IndexExprs, Expr *Init) 4223 : Expr(DesignatedInitExprClass, Ty, Init->getValueKind(), 4224 Init->getObjectKind()), 4225 EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax), 4226 NumDesignators(Designators.size()), NumSubExprs(IndexExprs.size() + 1) { 4227 this->Designators = new (C) Designator[NumDesignators]; 4228 4229 // Record the initializer itself. 4230 child_iterator Child = child_begin(); 4231 *Child++ = Init; 4232 4233 // Copy the designators and their subexpressions, computing 4234 // value-dependence along the way. 4235 unsigned IndexIdx = 0; 4236 for (unsigned I = 0; I != NumDesignators; ++I) { 4237 this->Designators[I] = Designators[I]; 4238 if (this->Designators[I].isArrayDesignator()) { 4239 // Copy the index expressions into permanent storage. 4240 *Child++ = IndexExprs[IndexIdx++]; 4241 } else if (this->Designators[I].isArrayRangeDesignator()) { 4242 // Copy the start/end expressions into permanent storage. 4243 *Child++ = IndexExprs[IndexIdx++]; 4244 *Child++ = IndexExprs[IndexIdx++]; 4245 } 4246 } 4247 4248 assert(IndexIdx == IndexExprs.size() && "Wrong number of index expressions"); 4249 setDependence(computeDependence(this)); 4250 } 4251 4252 DesignatedInitExpr * 4253 DesignatedInitExpr::Create(const ASTContext &C, 4254 llvm::ArrayRef<Designator> Designators, 4255 ArrayRef<Expr*> IndexExprs, 4256 SourceLocation ColonOrEqualLoc, 4257 bool UsesColonSyntax, Expr *Init) { 4258 void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(IndexExprs.size() + 1), 4259 alignof(DesignatedInitExpr)); 4260 return new (Mem) DesignatedInitExpr(C, C.VoidTy, Designators, 4261 ColonOrEqualLoc, UsesColonSyntax, 4262 IndexExprs, Init); 4263 } 4264 4265 DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(const ASTContext &C, 4266 unsigned NumIndexExprs) { 4267 void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(NumIndexExprs + 1), 4268 alignof(DesignatedInitExpr)); 4269 return new (Mem) DesignatedInitExpr(NumIndexExprs + 1); 4270 } 4271 4272 void DesignatedInitExpr::setDesignators(const ASTContext &C, 4273 const Designator *Desigs, 4274 unsigned NumDesigs) { 4275 Designators = new (C) Designator[NumDesigs]; 4276 NumDesignators = NumDesigs; 4277 for (unsigned I = 0; I != NumDesigs; ++I) 4278 Designators[I] = Desigs[I]; 4279 } 4280 4281 SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const { 4282 DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this); 4283 if (size() == 1) 4284 return DIE->getDesignator(0)->getSourceRange(); 4285 return SourceRange(DIE->getDesignator(0)->getBeginLoc(), 4286 DIE->getDesignator(size() - 1)->getEndLoc()); 4287 } 4288 4289 SourceLocation DesignatedInitExpr::getBeginLoc() const { 4290 SourceLocation StartLoc; 4291 auto *DIE = const_cast<DesignatedInitExpr *>(this); 4292 Designator &First = *DIE->getDesignator(0); 4293 if (First.isFieldDesignator()) 4294 StartLoc = GNUSyntax ? First.Field.FieldLoc : First.Field.DotLoc; 4295 else 4296 StartLoc = First.ArrayOrRange.LBracketLoc; 4297 return StartLoc; 4298 } 4299 4300 SourceLocation DesignatedInitExpr::getEndLoc() const { 4301 return getInit()->getEndLoc(); 4302 } 4303 4304 Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) const { 4305 assert(D.Kind == Designator::ArrayDesignator && "Requires array designator"); 4306 return getSubExpr(D.ArrayOrRange.Index + 1); 4307 } 4308 4309 Expr *DesignatedInitExpr::getArrayRangeStart(const Designator &D) const { 4310 assert(D.Kind == Designator::ArrayRangeDesignator && 4311 "Requires array range designator"); 4312 return getSubExpr(D.ArrayOrRange.Index + 1); 4313 } 4314 4315 Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator &D) const { 4316 assert(D.Kind == Designator::ArrayRangeDesignator && 4317 "Requires array range designator"); 4318 return getSubExpr(D.ArrayOrRange.Index + 2); 4319 } 4320 4321 /// Replaces the designator at index @p Idx with the series 4322 /// of designators in [First, Last). 4323 void DesignatedInitExpr::ExpandDesignator(const ASTContext &C, unsigned Idx, 4324 const Designator *First, 4325 const Designator *Last) { 4326 unsigned NumNewDesignators = Last - First; 4327 if (NumNewDesignators == 0) { 4328 std::copy_backward(Designators + Idx + 1, 4329 Designators + NumDesignators, 4330 Designators + Idx); 4331 --NumNewDesignators; 4332 return; 4333 } 4334 if (NumNewDesignators == 1) { 4335 Designators[Idx] = *First; 4336 return; 4337 } 4338 4339 Designator *NewDesignators 4340 = new (C) Designator[NumDesignators - 1 + NumNewDesignators]; 4341 std::copy(Designators, Designators + Idx, NewDesignators); 4342 std::copy(First, Last, NewDesignators + Idx); 4343 std::copy(Designators + Idx + 1, Designators + NumDesignators, 4344 NewDesignators + Idx + NumNewDesignators); 4345 Designators = NewDesignators; 4346 NumDesignators = NumDesignators - 1 + NumNewDesignators; 4347 } 4348 4349 DesignatedInitUpdateExpr::DesignatedInitUpdateExpr(const ASTContext &C, 4350 SourceLocation lBraceLoc, 4351 Expr *baseExpr, 4352 SourceLocation rBraceLoc) 4353 : Expr(DesignatedInitUpdateExprClass, baseExpr->getType(), VK_RValue, 4354 OK_Ordinary) { 4355 BaseAndUpdaterExprs[0] = baseExpr; 4356 4357 InitListExpr *ILE = new (C) InitListExpr(C, lBraceLoc, None, rBraceLoc); 4358 ILE->setType(baseExpr->getType()); 4359 BaseAndUpdaterExprs[1] = ILE; 4360 4361 // FIXME: this is wrong, set it correctly. 4362 setDependence(ExprDependence::None); 4363 } 4364 4365 SourceLocation DesignatedInitUpdateExpr::getBeginLoc() const { 4366 return getBase()->getBeginLoc(); 4367 } 4368 4369 SourceLocation DesignatedInitUpdateExpr::getEndLoc() const { 4370 return getBase()->getEndLoc(); 4371 } 4372 4373 ParenListExpr::ParenListExpr(SourceLocation LParenLoc, ArrayRef<Expr *> Exprs, 4374 SourceLocation RParenLoc) 4375 : Expr(ParenListExprClass, QualType(), VK_RValue, OK_Ordinary), 4376 LParenLoc(LParenLoc), RParenLoc(RParenLoc) { 4377 ParenListExprBits.NumExprs = Exprs.size(); 4378 4379 for (unsigned I = 0, N = Exprs.size(); I != N; ++I) 4380 getTrailingObjects<Stmt *>()[I] = Exprs[I]; 4381 setDependence(computeDependence(this)); 4382 } 4383 4384 ParenListExpr::ParenListExpr(EmptyShell Empty, unsigned NumExprs) 4385 : Expr(ParenListExprClass, Empty) { 4386 ParenListExprBits.NumExprs = NumExprs; 4387 } 4388 4389 ParenListExpr *ParenListExpr::Create(const ASTContext &Ctx, 4390 SourceLocation LParenLoc, 4391 ArrayRef<Expr *> Exprs, 4392 SourceLocation RParenLoc) { 4393 void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(Exprs.size()), 4394 alignof(ParenListExpr)); 4395 return new (Mem) ParenListExpr(LParenLoc, Exprs, RParenLoc); 4396 } 4397 4398 ParenListExpr *ParenListExpr::CreateEmpty(const ASTContext &Ctx, 4399 unsigned NumExprs) { 4400 void *Mem = 4401 Ctx.Allocate(totalSizeToAlloc<Stmt *>(NumExprs), alignof(ParenListExpr)); 4402 return new (Mem) ParenListExpr(EmptyShell(), NumExprs); 4403 } 4404 4405 BinaryOperator::BinaryOperator(const ASTContext &Ctx, Expr *lhs, Expr *rhs, 4406 Opcode opc, QualType ResTy, ExprValueKind VK, 4407 ExprObjectKind OK, SourceLocation opLoc, 4408 FPOptionsOverride FPFeatures) 4409 : Expr(BinaryOperatorClass, ResTy, VK, OK) { 4410 BinaryOperatorBits.Opc = opc; 4411 assert(!isCompoundAssignmentOp() && 4412 "Use CompoundAssignOperator for compound assignments"); 4413 BinaryOperatorBits.OpLoc = opLoc; 4414 SubExprs[LHS] = lhs; 4415 SubExprs[RHS] = rhs; 4416 BinaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage(); 4417 if (hasStoredFPFeatures()) 4418 setStoredFPFeatures(FPFeatures); 4419 setDependence(computeDependence(this)); 4420 } 4421 4422 BinaryOperator::BinaryOperator(const ASTContext &Ctx, Expr *lhs, Expr *rhs, 4423 Opcode opc, QualType ResTy, ExprValueKind VK, 4424 ExprObjectKind OK, SourceLocation opLoc, 4425 FPOptionsOverride FPFeatures, bool dead2) 4426 : Expr(CompoundAssignOperatorClass, ResTy, VK, OK) { 4427 BinaryOperatorBits.Opc = opc; 4428 assert(isCompoundAssignmentOp() && 4429 "Use CompoundAssignOperator for compound assignments"); 4430 BinaryOperatorBits.OpLoc = opLoc; 4431 SubExprs[LHS] = lhs; 4432 SubExprs[RHS] = rhs; 4433 BinaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage(); 4434 if (hasStoredFPFeatures()) 4435 setStoredFPFeatures(FPFeatures); 4436 setDependence(computeDependence(this)); 4437 } 4438 4439 BinaryOperator *BinaryOperator::CreateEmpty(const ASTContext &C, 4440 bool HasFPFeatures) { 4441 unsigned Extra = sizeOfTrailingObjects(HasFPFeatures); 4442 void *Mem = 4443 C.Allocate(sizeof(BinaryOperator) + Extra, alignof(BinaryOperator)); 4444 return new (Mem) BinaryOperator(EmptyShell()); 4445 } 4446 4447 BinaryOperator *BinaryOperator::Create(const ASTContext &C, Expr *lhs, 4448 Expr *rhs, Opcode opc, QualType ResTy, 4449 ExprValueKind VK, ExprObjectKind OK, 4450 SourceLocation opLoc, 4451 FPOptionsOverride FPFeatures) { 4452 bool HasFPFeatures = FPFeatures.requiresTrailingStorage(); 4453 unsigned Extra = sizeOfTrailingObjects(HasFPFeatures); 4454 void *Mem = 4455 C.Allocate(sizeof(BinaryOperator) + Extra, alignof(BinaryOperator)); 4456 return new (Mem) 4457 BinaryOperator(C, lhs, rhs, opc, ResTy, VK, OK, opLoc, FPFeatures); 4458 } 4459 4460 CompoundAssignOperator * 4461 CompoundAssignOperator::CreateEmpty(const ASTContext &C, bool HasFPFeatures) { 4462 unsigned Extra = sizeOfTrailingObjects(HasFPFeatures); 4463 void *Mem = C.Allocate(sizeof(CompoundAssignOperator) + Extra, 4464 alignof(CompoundAssignOperator)); 4465 return new (Mem) CompoundAssignOperator(C, EmptyShell(), HasFPFeatures); 4466 } 4467 4468 CompoundAssignOperator * 4469 CompoundAssignOperator::Create(const ASTContext &C, Expr *lhs, Expr *rhs, 4470 Opcode opc, QualType ResTy, ExprValueKind VK, 4471 ExprObjectKind OK, SourceLocation opLoc, 4472 FPOptionsOverride FPFeatures, 4473 QualType CompLHSType, QualType CompResultType) { 4474 bool HasFPFeatures = FPFeatures.requiresTrailingStorage(); 4475 unsigned Extra = sizeOfTrailingObjects(HasFPFeatures); 4476 void *Mem = C.Allocate(sizeof(CompoundAssignOperator) + Extra, 4477 alignof(CompoundAssignOperator)); 4478 return new (Mem) 4479 CompoundAssignOperator(C, lhs, rhs, opc, ResTy, VK, OK, opLoc, FPFeatures, 4480 CompLHSType, CompResultType); 4481 } 4482 4483 UnaryOperator *UnaryOperator::CreateEmpty(const ASTContext &C, 4484 bool hasFPFeatures) { 4485 void *Mem = C.Allocate(totalSizeToAlloc<FPOptionsOverride>(hasFPFeatures), 4486 alignof(UnaryOperator)); 4487 return new (Mem) UnaryOperator(hasFPFeatures, EmptyShell()); 4488 } 4489 4490 UnaryOperator::UnaryOperator(const ASTContext &Ctx, Expr *input, Opcode opc, 4491 QualType type, ExprValueKind VK, ExprObjectKind OK, 4492 SourceLocation l, bool CanOverflow, 4493 FPOptionsOverride FPFeatures) 4494 : Expr(UnaryOperatorClass, type, VK, OK), Val(input) { 4495 UnaryOperatorBits.Opc = opc; 4496 UnaryOperatorBits.CanOverflow = CanOverflow; 4497 UnaryOperatorBits.Loc = l; 4498 UnaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage(); 4499 if (hasStoredFPFeatures()) 4500 setStoredFPFeatures(FPFeatures); 4501 setDependence(computeDependence(this, Ctx)); 4502 } 4503 4504 UnaryOperator *UnaryOperator::Create(const ASTContext &C, Expr *input, 4505 Opcode opc, QualType type, 4506 ExprValueKind VK, ExprObjectKind OK, 4507 SourceLocation l, bool CanOverflow, 4508 FPOptionsOverride FPFeatures) { 4509 bool HasFPFeatures = FPFeatures.requiresTrailingStorage(); 4510 unsigned Size = totalSizeToAlloc<FPOptionsOverride>(HasFPFeatures); 4511 void *Mem = C.Allocate(Size, alignof(UnaryOperator)); 4512 return new (Mem) 4513 UnaryOperator(C, input, opc, type, VK, OK, l, CanOverflow, FPFeatures); 4514 } 4515 4516 const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) { 4517 if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e)) 4518 e = ewc->getSubExpr(); 4519 if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e)) 4520 e = m->getSubExpr(); 4521 e = cast<CXXConstructExpr>(e)->getArg(0); 4522 while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e)) 4523 e = ice->getSubExpr(); 4524 return cast<OpaqueValueExpr>(e); 4525 } 4526 4527 PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &Context, 4528 EmptyShell sh, 4529 unsigned numSemanticExprs) { 4530 void *buffer = 4531 Context.Allocate(totalSizeToAlloc<Expr *>(1 + numSemanticExprs), 4532 alignof(PseudoObjectExpr)); 4533 return new(buffer) PseudoObjectExpr(sh, numSemanticExprs); 4534 } 4535 4536 PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs) 4537 : Expr(PseudoObjectExprClass, shell) { 4538 PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1; 4539 } 4540 4541 PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &C, Expr *syntax, 4542 ArrayRef<Expr*> semantics, 4543 unsigned resultIndex) { 4544 assert(syntax && "no syntactic expression!"); 4545 assert(semantics.size() && "no semantic expressions!"); 4546 4547 QualType type; 4548 ExprValueKind VK; 4549 if (resultIndex == NoResult) { 4550 type = C.VoidTy; 4551 VK = VK_RValue; 4552 } else { 4553 assert(resultIndex < semantics.size()); 4554 type = semantics[resultIndex]->getType(); 4555 VK = semantics[resultIndex]->getValueKind(); 4556 assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary); 4557 } 4558 4559 void *buffer = C.Allocate(totalSizeToAlloc<Expr *>(semantics.size() + 1), 4560 alignof(PseudoObjectExpr)); 4561 return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics, 4562 resultIndex); 4563 } 4564 4565 PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK, 4566 Expr *syntax, ArrayRef<Expr *> semantics, 4567 unsigned resultIndex) 4568 : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary) { 4569 PseudoObjectExprBits.NumSubExprs = semantics.size() + 1; 4570 PseudoObjectExprBits.ResultIndex = resultIndex + 1; 4571 4572 for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) { 4573 Expr *E = (i == 0 ? syntax : semantics[i-1]); 4574 getSubExprsBuffer()[i] = E; 4575 4576 if (isa<OpaqueValueExpr>(E)) 4577 assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != nullptr && 4578 "opaque-value semantic expressions for pseudo-object " 4579 "operations must have sources"); 4580 } 4581 4582 setDependence(computeDependence(this)); 4583 } 4584 4585 //===----------------------------------------------------------------------===// 4586 // Child Iterators for iterating over subexpressions/substatements 4587 //===----------------------------------------------------------------------===// 4588 4589 // UnaryExprOrTypeTraitExpr 4590 Stmt::child_range UnaryExprOrTypeTraitExpr::children() { 4591 const_child_range CCR = 4592 const_cast<const UnaryExprOrTypeTraitExpr *>(this)->children(); 4593 return child_range(cast_away_const(CCR.begin()), cast_away_const(CCR.end())); 4594 } 4595 4596 Stmt::const_child_range UnaryExprOrTypeTraitExpr::children() const { 4597 // If this is of a type and the type is a VLA type (and not a typedef), the 4598 // size expression of the VLA needs to be treated as an executable expression. 4599 // Why isn't this weirdness documented better in StmtIterator? 4600 if (isArgumentType()) { 4601 if (const VariableArrayType *T = 4602 dyn_cast<VariableArrayType>(getArgumentType().getTypePtr())) 4603 return const_child_range(const_child_iterator(T), const_child_iterator()); 4604 return const_child_range(const_child_iterator(), const_child_iterator()); 4605 } 4606 return const_child_range(&Argument.Ex, &Argument.Ex + 1); 4607 } 4608 4609 AtomicExpr::AtomicExpr(SourceLocation BLoc, ArrayRef<Expr *> args, QualType t, 4610 AtomicOp op, SourceLocation RP) 4611 : Expr(AtomicExprClass, t, VK_RValue, OK_Ordinary), 4612 NumSubExprs(args.size()), BuiltinLoc(BLoc), RParenLoc(RP), Op(op) { 4613 assert(args.size() == getNumSubExprs(op) && "wrong number of subexpressions"); 4614 for (unsigned i = 0; i != args.size(); i++) 4615 SubExprs[i] = args[i]; 4616 setDependence(computeDependence(this)); 4617 } 4618 4619 unsigned AtomicExpr::getNumSubExprs(AtomicOp Op) { 4620 switch (Op) { 4621 case AO__c11_atomic_init: 4622 case AO__opencl_atomic_init: 4623 case AO__c11_atomic_load: 4624 case AO__atomic_load_n: 4625 return 2; 4626 4627 case AO__opencl_atomic_load: 4628 case AO__c11_atomic_store: 4629 case AO__c11_atomic_exchange: 4630 case AO__atomic_load: 4631 case AO__atomic_store: 4632 case AO__atomic_store_n: 4633 case AO__atomic_exchange_n: 4634 case AO__c11_atomic_fetch_add: 4635 case AO__c11_atomic_fetch_sub: 4636 case AO__c11_atomic_fetch_and: 4637 case AO__c11_atomic_fetch_or: 4638 case AO__c11_atomic_fetch_xor: 4639 case AO__c11_atomic_fetch_max: 4640 case AO__c11_atomic_fetch_min: 4641 case AO__atomic_fetch_add: 4642 case AO__atomic_fetch_sub: 4643 case AO__atomic_fetch_and: 4644 case AO__atomic_fetch_or: 4645 case AO__atomic_fetch_xor: 4646 case AO__atomic_fetch_nand: 4647 case AO__atomic_add_fetch: 4648 case AO__atomic_sub_fetch: 4649 case AO__atomic_and_fetch: 4650 case AO__atomic_or_fetch: 4651 case AO__atomic_xor_fetch: 4652 case AO__atomic_nand_fetch: 4653 case AO__atomic_min_fetch: 4654 case AO__atomic_max_fetch: 4655 case AO__atomic_fetch_min: 4656 case AO__atomic_fetch_max: 4657 return 3; 4658 4659 case AO__opencl_atomic_store: 4660 case AO__opencl_atomic_exchange: 4661 case AO__opencl_atomic_fetch_add: 4662 case AO__opencl_atomic_fetch_sub: 4663 case AO__opencl_atomic_fetch_and: 4664 case AO__opencl_atomic_fetch_or: 4665 case AO__opencl_atomic_fetch_xor: 4666 case AO__opencl_atomic_fetch_min: 4667 case AO__opencl_atomic_fetch_max: 4668 case AO__atomic_exchange: 4669 return 4; 4670 4671 case AO__c11_atomic_compare_exchange_strong: 4672 case AO__c11_atomic_compare_exchange_weak: 4673 return 5; 4674 4675 case AO__opencl_atomic_compare_exchange_strong: 4676 case AO__opencl_atomic_compare_exchange_weak: 4677 case AO__atomic_compare_exchange: 4678 case AO__atomic_compare_exchange_n: 4679 return 6; 4680 } 4681 llvm_unreachable("unknown atomic op"); 4682 } 4683 4684 QualType AtomicExpr::getValueType() const { 4685 auto T = getPtr()->getType()->castAs<PointerType>()->getPointeeType(); 4686 if (auto AT = T->getAs<AtomicType>()) 4687 return AT->getValueType(); 4688 return T; 4689 } 4690 4691 QualType OMPArraySectionExpr::getBaseOriginalType(const Expr *Base) { 4692 unsigned ArraySectionCount = 0; 4693 while (auto *OASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParens())) { 4694 Base = OASE->getBase(); 4695 ++ArraySectionCount; 4696 } 4697 while (auto *ASE = 4698 dyn_cast<ArraySubscriptExpr>(Base->IgnoreParenImpCasts())) { 4699 Base = ASE->getBase(); 4700 ++ArraySectionCount; 4701 } 4702 Base = Base->IgnoreParenImpCasts(); 4703 auto OriginalTy = Base->getType(); 4704 if (auto *DRE = dyn_cast<DeclRefExpr>(Base)) 4705 if (auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) 4706 OriginalTy = PVD->getOriginalType().getNonReferenceType(); 4707 4708 for (unsigned Cnt = 0; Cnt < ArraySectionCount; ++Cnt) { 4709 if (OriginalTy->isAnyPointerType()) 4710 OriginalTy = OriginalTy->getPointeeType(); 4711 else { 4712 assert (OriginalTy->isArrayType()); 4713 OriginalTy = OriginalTy->castAsArrayTypeUnsafe()->getElementType(); 4714 } 4715 } 4716 return OriginalTy; 4717 } 4718 4719 RecoveryExpr::RecoveryExpr(ASTContext &Ctx, QualType T, SourceLocation BeginLoc, 4720 SourceLocation EndLoc, ArrayRef<Expr *> SubExprs) 4721 : Expr(RecoveryExprClass, T.getNonReferenceType(), 4722 T->isDependentType() ? VK_LValue : getValueKindForType(T), 4723 OK_Ordinary), 4724 BeginLoc(BeginLoc), EndLoc(EndLoc), NumExprs(SubExprs.size()) { 4725 assert(!T.isNull()); 4726 assert(llvm::all_of(SubExprs, [](Expr* E) { return E != nullptr; })); 4727 4728 llvm::copy(SubExprs, getTrailingObjects<Expr *>()); 4729 setDependence(computeDependence(this)); 4730 } 4731 4732 RecoveryExpr *RecoveryExpr::Create(ASTContext &Ctx, QualType T, 4733 SourceLocation BeginLoc, 4734 SourceLocation EndLoc, 4735 ArrayRef<Expr *> SubExprs) { 4736 void *Mem = Ctx.Allocate(totalSizeToAlloc<Expr *>(SubExprs.size()), 4737 alignof(RecoveryExpr)); 4738 return new (Mem) RecoveryExpr(Ctx, T, BeginLoc, EndLoc, SubExprs); 4739 } 4740 4741 RecoveryExpr *RecoveryExpr::CreateEmpty(ASTContext &Ctx, unsigned NumSubExprs) { 4742 void *Mem = Ctx.Allocate(totalSizeToAlloc<Expr *>(NumSubExprs), 4743 alignof(RecoveryExpr)); 4744 return new (Mem) RecoveryExpr(EmptyShell(), NumSubExprs); 4745 } 4746 4747 void OMPArrayShapingExpr::setDimensions(ArrayRef<Expr *> Dims) { 4748 assert( 4749 NumDims == Dims.size() && 4750 "Preallocated number of dimensions is different from the provided one."); 4751 llvm::copy(Dims, getTrailingObjects<Expr *>()); 4752 } 4753 4754 void OMPArrayShapingExpr::setBracketsRanges(ArrayRef<SourceRange> BR) { 4755 assert( 4756 NumDims == BR.size() && 4757 "Preallocated number of dimensions is different from the provided one."); 4758 llvm::copy(BR, getTrailingObjects<SourceRange>()); 4759 } 4760 4761 OMPArrayShapingExpr::OMPArrayShapingExpr(QualType ExprTy, Expr *Op, 4762 SourceLocation L, SourceLocation R, 4763 ArrayRef<Expr *> Dims) 4764 : Expr(OMPArrayShapingExprClass, ExprTy, VK_LValue, OK_Ordinary), LPLoc(L), 4765 RPLoc(R), NumDims(Dims.size()) { 4766 setBase(Op); 4767 setDimensions(Dims); 4768 setDependence(computeDependence(this)); 4769 } 4770 4771 OMPArrayShapingExpr * 4772 OMPArrayShapingExpr::Create(const ASTContext &Context, QualType T, Expr *Op, 4773 SourceLocation L, SourceLocation R, 4774 ArrayRef<Expr *> Dims, 4775 ArrayRef<SourceRange> BracketRanges) { 4776 assert(Dims.size() == BracketRanges.size() && 4777 "Different number of dimensions and brackets ranges."); 4778 void *Mem = Context.Allocate( 4779 totalSizeToAlloc<Expr *, SourceRange>(Dims.size() + 1, Dims.size()), 4780 alignof(OMPArrayShapingExpr)); 4781 auto *E = new (Mem) OMPArrayShapingExpr(T, Op, L, R, Dims); 4782 E->setBracketsRanges(BracketRanges); 4783 return E; 4784 } 4785 4786 OMPArrayShapingExpr *OMPArrayShapingExpr::CreateEmpty(const ASTContext &Context, 4787 unsigned NumDims) { 4788 void *Mem = Context.Allocate( 4789 totalSizeToAlloc<Expr *, SourceRange>(NumDims + 1, NumDims), 4790 alignof(OMPArrayShapingExpr)); 4791 return new (Mem) OMPArrayShapingExpr(EmptyShell(), NumDims); 4792 } 4793 4794 void OMPIteratorExpr::setIteratorDeclaration(unsigned I, Decl *D) { 4795 assert(I < NumIterators && 4796 "Idx is greater or equal the number of iterators definitions."); 4797 getTrailingObjects<Decl *>()[I] = D; 4798 } 4799 4800 void OMPIteratorExpr::setAssignmentLoc(unsigned I, SourceLocation Loc) { 4801 assert(I < NumIterators && 4802 "Idx is greater or equal the number of iterators definitions."); 4803 getTrailingObjects< 4804 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) + 4805 static_cast<int>(RangeLocOffset::AssignLoc)] = Loc; 4806 } 4807 4808 void OMPIteratorExpr::setIteratorRange(unsigned I, Expr *Begin, 4809 SourceLocation ColonLoc, Expr *End, 4810 SourceLocation SecondColonLoc, 4811 Expr *Step) { 4812 assert(I < NumIterators && 4813 "Idx is greater or equal the number of iterators definitions."); 4814 getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) + 4815 static_cast<int>(RangeExprOffset::Begin)] = 4816 Begin; 4817 getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) + 4818 static_cast<int>(RangeExprOffset::End)] = End; 4819 getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) + 4820 static_cast<int>(RangeExprOffset::Step)] = Step; 4821 getTrailingObjects< 4822 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) + 4823 static_cast<int>(RangeLocOffset::FirstColonLoc)] = 4824 ColonLoc; 4825 getTrailingObjects< 4826 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) + 4827 static_cast<int>(RangeLocOffset::SecondColonLoc)] = 4828 SecondColonLoc; 4829 } 4830 4831 Decl *OMPIteratorExpr::getIteratorDecl(unsigned I) { 4832 return getTrailingObjects<Decl *>()[I]; 4833 } 4834 4835 OMPIteratorExpr::IteratorRange OMPIteratorExpr::getIteratorRange(unsigned I) { 4836 IteratorRange Res; 4837 Res.Begin = 4838 getTrailingObjects<Expr *>()[I * static_cast<int>( 4839 RangeExprOffset::Total) + 4840 static_cast<int>(RangeExprOffset::Begin)]; 4841 Res.End = 4842 getTrailingObjects<Expr *>()[I * static_cast<int>( 4843 RangeExprOffset::Total) + 4844 static_cast<int>(RangeExprOffset::End)]; 4845 Res.Step = 4846 getTrailingObjects<Expr *>()[I * static_cast<int>( 4847 RangeExprOffset::Total) + 4848 static_cast<int>(RangeExprOffset::Step)]; 4849 return Res; 4850 } 4851 4852 SourceLocation OMPIteratorExpr::getAssignLoc(unsigned I) const { 4853 return getTrailingObjects< 4854 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) + 4855 static_cast<int>(RangeLocOffset::AssignLoc)]; 4856 } 4857 4858 SourceLocation OMPIteratorExpr::getColonLoc(unsigned I) const { 4859 return getTrailingObjects< 4860 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) + 4861 static_cast<int>(RangeLocOffset::FirstColonLoc)]; 4862 } 4863 4864 SourceLocation OMPIteratorExpr::getSecondColonLoc(unsigned I) const { 4865 return getTrailingObjects< 4866 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) + 4867 static_cast<int>(RangeLocOffset::SecondColonLoc)]; 4868 } 4869 4870 void OMPIteratorExpr::setHelper(unsigned I, const OMPIteratorHelperData &D) { 4871 getTrailingObjects<OMPIteratorHelperData>()[I] = D; 4872 } 4873 4874 OMPIteratorHelperData &OMPIteratorExpr::getHelper(unsigned I) { 4875 return getTrailingObjects<OMPIteratorHelperData>()[I]; 4876 } 4877 4878 const OMPIteratorHelperData &OMPIteratorExpr::getHelper(unsigned I) const { 4879 return getTrailingObjects<OMPIteratorHelperData>()[I]; 4880 } 4881 4882 OMPIteratorExpr::OMPIteratorExpr( 4883 QualType ExprTy, SourceLocation IteratorKwLoc, SourceLocation L, 4884 SourceLocation R, ArrayRef<OMPIteratorExpr::IteratorDefinition> Data, 4885 ArrayRef<OMPIteratorHelperData> Helpers) 4886 : Expr(OMPIteratorExprClass, ExprTy, VK_LValue, OK_Ordinary), 4887 IteratorKwLoc(IteratorKwLoc), LPLoc(L), RPLoc(R), 4888 NumIterators(Data.size()) { 4889 for (unsigned I = 0, E = Data.size(); I < E; ++I) { 4890 const IteratorDefinition &D = Data[I]; 4891 setIteratorDeclaration(I, D.IteratorDecl); 4892 setAssignmentLoc(I, D.AssignmentLoc); 4893 setIteratorRange(I, D.Range.Begin, D.ColonLoc, D.Range.End, 4894 D.SecondColonLoc, D.Range.Step); 4895 setHelper(I, Helpers[I]); 4896 } 4897 setDependence(computeDependence(this)); 4898 } 4899 4900 OMPIteratorExpr * 4901 OMPIteratorExpr::Create(const ASTContext &Context, QualType T, 4902 SourceLocation IteratorKwLoc, SourceLocation L, 4903 SourceLocation R, 4904 ArrayRef<OMPIteratorExpr::IteratorDefinition> Data, 4905 ArrayRef<OMPIteratorHelperData> Helpers) { 4906 assert(Data.size() == Helpers.size() && 4907 "Data and helpers must have the same size."); 4908 void *Mem = Context.Allocate( 4909 totalSizeToAlloc<Decl *, Expr *, SourceLocation, OMPIteratorHelperData>( 4910 Data.size(), Data.size() * static_cast<int>(RangeExprOffset::Total), 4911 Data.size() * static_cast<int>(RangeLocOffset::Total), 4912 Helpers.size()), 4913 alignof(OMPIteratorExpr)); 4914 return new (Mem) OMPIteratorExpr(T, IteratorKwLoc, L, R, Data, Helpers); 4915 } 4916 4917 OMPIteratorExpr *OMPIteratorExpr::CreateEmpty(const ASTContext &Context, 4918 unsigned NumIterators) { 4919 void *Mem = Context.Allocate( 4920 totalSizeToAlloc<Decl *, Expr *, SourceLocation, OMPIteratorHelperData>( 4921 NumIterators, NumIterators * static_cast<int>(RangeExprOffset::Total), 4922 NumIterators * static_cast<int>(RangeLocOffset::Total), NumIterators), 4923 alignof(OMPIteratorExpr)); 4924 return new (Mem) OMPIteratorExpr(EmptyShell(), NumIterators); 4925 } 4926