1 //===- ASTContext.cpp - Context to hold long-lived AST nodes --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the ASTContext interface. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/ASTContext.h" 14 #include "CXXABI.h" 15 #include "Interp/Context.h" 16 #include "clang/AST/APValue.h" 17 #include "clang/AST/ASTConcept.h" 18 #include "clang/AST/ASTMutationListener.h" 19 #include "clang/AST/ASTTypeTraits.h" 20 #include "clang/AST/Attr.h" 21 #include "clang/AST/AttrIterator.h" 22 #include "clang/AST/CharUnits.h" 23 #include "clang/AST/Comment.h" 24 #include "clang/AST/Decl.h" 25 #include "clang/AST/DeclBase.h" 26 #include "clang/AST/DeclCXX.h" 27 #include "clang/AST/DeclContextInternals.h" 28 #include "clang/AST/DeclObjC.h" 29 #include "clang/AST/DeclOpenMP.h" 30 #include "clang/AST/DeclTemplate.h" 31 #include "clang/AST/DeclarationName.h" 32 #include "clang/AST/DependenceFlags.h" 33 #include "clang/AST/Expr.h" 34 #include "clang/AST/ExprCXX.h" 35 #include "clang/AST/ExprConcepts.h" 36 #include "clang/AST/ExternalASTSource.h" 37 #include "clang/AST/Mangle.h" 38 #include "clang/AST/MangleNumberingContext.h" 39 #include "clang/AST/NestedNameSpecifier.h" 40 #include "clang/AST/ParentMapContext.h" 41 #include "clang/AST/RawCommentList.h" 42 #include "clang/AST/RecordLayout.h" 43 #include "clang/AST/Stmt.h" 44 #include "clang/AST/TemplateBase.h" 45 #include "clang/AST/TemplateName.h" 46 #include "clang/AST/Type.h" 47 #include "clang/AST/TypeLoc.h" 48 #include "clang/AST/UnresolvedSet.h" 49 #include "clang/AST/VTableBuilder.h" 50 #include "clang/Basic/AddressSpaces.h" 51 #include "clang/Basic/Builtins.h" 52 #include "clang/Basic/CommentOptions.h" 53 #include "clang/Basic/ExceptionSpecificationType.h" 54 #include "clang/Basic/IdentifierTable.h" 55 #include "clang/Basic/LLVM.h" 56 #include "clang/Basic/LangOptions.h" 57 #include "clang/Basic/Linkage.h" 58 #include "clang/Basic/Module.h" 59 #include "clang/Basic/NoSanitizeList.h" 60 #include "clang/Basic/ObjCRuntime.h" 61 #include "clang/Basic/SourceLocation.h" 62 #include "clang/Basic/SourceManager.h" 63 #include "clang/Basic/Specifiers.h" 64 #include "clang/Basic/TargetCXXABI.h" 65 #include "clang/Basic/TargetInfo.h" 66 #include "clang/Basic/XRayLists.h" 67 #include "llvm/ADT/APFixedPoint.h" 68 #include "llvm/ADT/APInt.h" 69 #include "llvm/ADT/APSInt.h" 70 #include "llvm/ADT/ArrayRef.h" 71 #include "llvm/ADT/DenseMap.h" 72 #include "llvm/ADT/DenseSet.h" 73 #include "llvm/ADT/FoldingSet.h" 74 #include "llvm/ADT/None.h" 75 #include "llvm/ADT/Optional.h" 76 #include "llvm/ADT/PointerUnion.h" 77 #include "llvm/ADT/STLExtras.h" 78 #include "llvm/ADT/SmallPtrSet.h" 79 #include "llvm/ADT/SmallVector.h" 80 #include "llvm/ADT/StringExtras.h" 81 #include "llvm/ADT/StringRef.h" 82 #include "llvm/ADT/Triple.h" 83 #include "llvm/Support/Capacity.h" 84 #include "llvm/Support/Casting.h" 85 #include "llvm/Support/Compiler.h" 86 #include "llvm/Support/ErrorHandling.h" 87 #include "llvm/Support/MD5.h" 88 #include "llvm/Support/MathExtras.h" 89 #include "llvm/Support/raw_ostream.h" 90 #include <algorithm> 91 #include <cassert> 92 #include <cstddef> 93 #include <cstdint> 94 #include <cstdlib> 95 #include <map> 96 #include <memory> 97 #include <string> 98 #include <tuple> 99 #include <utility> 100 101 using namespace clang; 102 103 enum FloatingRank { 104 BFloat16Rank, Float16Rank, HalfRank, FloatRank, DoubleRank, LongDoubleRank, Float128Rank 105 }; 106 107 /// \returns location that is relevant when searching for Doc comments related 108 /// to \p D. 109 static SourceLocation getDeclLocForCommentSearch(const Decl *D, 110 SourceManager &SourceMgr) { 111 assert(D); 112 113 // User can not attach documentation to implicit declarations. 114 if (D->isImplicit()) 115 return {}; 116 117 // User can not attach documentation to implicit instantiations. 118 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 119 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 120 return {}; 121 } 122 123 if (const auto *VD = dyn_cast<VarDecl>(D)) { 124 if (VD->isStaticDataMember() && 125 VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 126 return {}; 127 } 128 129 if (const auto *CRD = dyn_cast<CXXRecordDecl>(D)) { 130 if (CRD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 131 return {}; 132 } 133 134 if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(D)) { 135 TemplateSpecializationKind TSK = CTSD->getSpecializationKind(); 136 if (TSK == TSK_ImplicitInstantiation || 137 TSK == TSK_Undeclared) 138 return {}; 139 } 140 141 if (const auto *ED = dyn_cast<EnumDecl>(D)) { 142 if (ED->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 143 return {}; 144 } 145 if (const auto *TD = dyn_cast<TagDecl>(D)) { 146 // When tag declaration (but not definition!) is part of the 147 // decl-specifier-seq of some other declaration, it doesn't get comment 148 if (TD->isEmbeddedInDeclarator() && !TD->isCompleteDefinition()) 149 return {}; 150 } 151 // TODO: handle comments for function parameters properly. 152 if (isa<ParmVarDecl>(D)) 153 return {}; 154 155 // TODO: we could look up template parameter documentation in the template 156 // documentation. 157 if (isa<TemplateTypeParmDecl>(D) || 158 isa<NonTypeTemplateParmDecl>(D) || 159 isa<TemplateTemplateParmDecl>(D)) 160 return {}; 161 162 // Find declaration location. 163 // For Objective-C declarations we generally don't expect to have multiple 164 // declarators, thus use declaration starting location as the "declaration 165 // location". 166 // For all other declarations multiple declarators are used quite frequently, 167 // so we use the location of the identifier as the "declaration location". 168 if (isa<ObjCMethodDecl>(D) || isa<ObjCContainerDecl>(D) || 169 isa<ObjCPropertyDecl>(D) || 170 isa<RedeclarableTemplateDecl>(D) || 171 isa<ClassTemplateSpecializationDecl>(D) || 172 // Allow association with Y across {} in `typedef struct X {} Y`. 173 isa<TypedefDecl>(D)) 174 return D->getBeginLoc(); 175 else { 176 const SourceLocation DeclLoc = D->getLocation(); 177 if (DeclLoc.isMacroID()) { 178 if (isa<TypedefDecl>(D)) { 179 // If location of the typedef name is in a macro, it is because being 180 // declared via a macro. Try using declaration's starting location as 181 // the "declaration location". 182 return D->getBeginLoc(); 183 } else if (const auto *TD = dyn_cast<TagDecl>(D)) { 184 // If location of the tag decl is inside a macro, but the spelling of 185 // the tag name comes from a macro argument, it looks like a special 186 // macro like NS_ENUM is being used to define the tag decl. In that 187 // case, adjust the source location to the expansion loc so that we can 188 // attach the comment to the tag decl. 189 if (SourceMgr.isMacroArgExpansion(DeclLoc) && 190 TD->isCompleteDefinition()) 191 return SourceMgr.getExpansionLoc(DeclLoc); 192 } 193 } 194 return DeclLoc; 195 } 196 197 return {}; 198 } 199 200 RawComment *ASTContext::getRawCommentForDeclNoCacheImpl( 201 const Decl *D, const SourceLocation RepresentativeLocForDecl, 202 const std::map<unsigned, RawComment *> &CommentsInTheFile) const { 203 // If the declaration doesn't map directly to a location in a file, we 204 // can't find the comment. 205 if (RepresentativeLocForDecl.isInvalid() || 206 !RepresentativeLocForDecl.isFileID()) 207 return nullptr; 208 209 // If there are no comments anywhere, we won't find anything. 210 if (CommentsInTheFile.empty()) 211 return nullptr; 212 213 // Decompose the location for the declaration and find the beginning of the 214 // file buffer. 215 const std::pair<FileID, unsigned> DeclLocDecomp = 216 SourceMgr.getDecomposedLoc(RepresentativeLocForDecl); 217 218 // Slow path. 219 auto OffsetCommentBehindDecl = 220 CommentsInTheFile.lower_bound(DeclLocDecomp.second); 221 222 // First check whether we have a trailing comment. 223 if (OffsetCommentBehindDecl != CommentsInTheFile.end()) { 224 RawComment *CommentBehindDecl = OffsetCommentBehindDecl->second; 225 if ((CommentBehindDecl->isDocumentation() || 226 LangOpts.CommentOpts.ParseAllComments) && 227 CommentBehindDecl->isTrailingComment() && 228 (isa<FieldDecl>(D) || isa<EnumConstantDecl>(D) || isa<VarDecl>(D) || 229 isa<ObjCMethodDecl>(D) || isa<ObjCPropertyDecl>(D))) { 230 231 // Check that Doxygen trailing comment comes after the declaration, starts 232 // on the same line and in the same file as the declaration. 233 if (SourceMgr.getLineNumber(DeclLocDecomp.first, DeclLocDecomp.second) == 234 Comments.getCommentBeginLine(CommentBehindDecl, DeclLocDecomp.first, 235 OffsetCommentBehindDecl->first)) { 236 return CommentBehindDecl; 237 } 238 } 239 } 240 241 // The comment just after the declaration was not a trailing comment. 242 // Let's look at the previous comment. 243 if (OffsetCommentBehindDecl == CommentsInTheFile.begin()) 244 return nullptr; 245 246 auto OffsetCommentBeforeDecl = --OffsetCommentBehindDecl; 247 RawComment *CommentBeforeDecl = OffsetCommentBeforeDecl->second; 248 249 // Check that we actually have a non-member Doxygen comment. 250 if (!(CommentBeforeDecl->isDocumentation() || 251 LangOpts.CommentOpts.ParseAllComments) || 252 CommentBeforeDecl->isTrailingComment()) 253 return nullptr; 254 255 // Decompose the end of the comment. 256 const unsigned CommentEndOffset = 257 Comments.getCommentEndOffset(CommentBeforeDecl); 258 259 // Get the corresponding buffer. 260 bool Invalid = false; 261 const char *Buffer = SourceMgr.getBufferData(DeclLocDecomp.first, 262 &Invalid).data(); 263 if (Invalid) 264 return nullptr; 265 266 // Extract text between the comment and declaration. 267 StringRef Text(Buffer + CommentEndOffset, 268 DeclLocDecomp.second - CommentEndOffset); 269 270 // There should be no other declarations or preprocessor directives between 271 // comment and declaration. 272 if (Text.find_first_of(";{}#@") != StringRef::npos) 273 return nullptr; 274 275 return CommentBeforeDecl; 276 } 277 278 RawComment *ASTContext::getRawCommentForDeclNoCache(const Decl *D) const { 279 const SourceLocation DeclLoc = getDeclLocForCommentSearch(D, SourceMgr); 280 281 // If the declaration doesn't map directly to a location in a file, we 282 // can't find the comment. 283 if (DeclLoc.isInvalid() || !DeclLoc.isFileID()) 284 return nullptr; 285 286 if (ExternalSource && !CommentsLoaded) { 287 ExternalSource->ReadComments(); 288 CommentsLoaded = true; 289 } 290 291 if (Comments.empty()) 292 return nullptr; 293 294 const FileID File = SourceMgr.getDecomposedLoc(DeclLoc).first; 295 const auto CommentsInThisFile = Comments.getCommentsInFile(File); 296 if (!CommentsInThisFile || CommentsInThisFile->empty()) 297 return nullptr; 298 299 return getRawCommentForDeclNoCacheImpl(D, DeclLoc, *CommentsInThisFile); 300 } 301 302 void ASTContext::addComment(const RawComment &RC) { 303 assert(LangOpts.RetainCommentsFromSystemHeaders || 304 !SourceMgr.isInSystemHeader(RC.getSourceRange().getBegin())); 305 Comments.addComment(RC, LangOpts.CommentOpts, BumpAlloc); 306 } 307 308 /// If we have a 'templated' declaration for a template, adjust 'D' to 309 /// refer to the actual template. 310 /// If we have an implicit instantiation, adjust 'D' to refer to template. 311 static const Decl &adjustDeclToTemplate(const Decl &D) { 312 if (const auto *FD = dyn_cast<FunctionDecl>(&D)) { 313 // Is this function declaration part of a function template? 314 if (const FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate()) 315 return *FTD; 316 317 // Nothing to do if function is not an implicit instantiation. 318 if (FD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) 319 return D; 320 321 // Function is an implicit instantiation of a function template? 322 if (const FunctionTemplateDecl *FTD = FD->getPrimaryTemplate()) 323 return *FTD; 324 325 // Function is instantiated from a member definition of a class template? 326 if (const FunctionDecl *MemberDecl = 327 FD->getInstantiatedFromMemberFunction()) 328 return *MemberDecl; 329 330 return D; 331 } 332 if (const auto *VD = dyn_cast<VarDecl>(&D)) { 333 // Static data member is instantiated from a member definition of a class 334 // template? 335 if (VD->isStaticDataMember()) 336 if (const VarDecl *MemberDecl = VD->getInstantiatedFromStaticDataMember()) 337 return *MemberDecl; 338 339 return D; 340 } 341 if (const auto *CRD = dyn_cast<CXXRecordDecl>(&D)) { 342 // Is this class declaration part of a class template? 343 if (const ClassTemplateDecl *CTD = CRD->getDescribedClassTemplate()) 344 return *CTD; 345 346 // Class is an implicit instantiation of a class template or partial 347 // specialization? 348 if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(CRD)) { 349 if (CTSD->getSpecializationKind() != TSK_ImplicitInstantiation) 350 return D; 351 llvm::PointerUnion<ClassTemplateDecl *, 352 ClassTemplatePartialSpecializationDecl *> 353 PU = CTSD->getSpecializedTemplateOrPartial(); 354 return PU.is<ClassTemplateDecl *>() 355 ? *static_cast<const Decl *>(PU.get<ClassTemplateDecl *>()) 356 : *static_cast<const Decl *>( 357 PU.get<ClassTemplatePartialSpecializationDecl *>()); 358 } 359 360 // Class is instantiated from a member definition of a class template? 361 if (const MemberSpecializationInfo *Info = 362 CRD->getMemberSpecializationInfo()) 363 return *Info->getInstantiatedFrom(); 364 365 return D; 366 } 367 if (const auto *ED = dyn_cast<EnumDecl>(&D)) { 368 // Enum is instantiated from a member definition of a class template? 369 if (const EnumDecl *MemberDecl = ED->getInstantiatedFromMemberEnum()) 370 return *MemberDecl; 371 372 return D; 373 } 374 // FIXME: Adjust alias templates? 375 return D; 376 } 377 378 const RawComment *ASTContext::getRawCommentForAnyRedecl( 379 const Decl *D, 380 const Decl **OriginalDecl) const { 381 if (!D) { 382 if (OriginalDecl) 383 OriginalDecl = nullptr; 384 return nullptr; 385 } 386 387 D = &adjustDeclToTemplate(*D); 388 389 // Any comment directly attached to D? 390 { 391 auto DeclComment = DeclRawComments.find(D); 392 if (DeclComment != DeclRawComments.end()) { 393 if (OriginalDecl) 394 *OriginalDecl = D; 395 return DeclComment->second; 396 } 397 } 398 399 // Any comment attached to any redeclaration of D? 400 const Decl *CanonicalD = D->getCanonicalDecl(); 401 if (!CanonicalD) 402 return nullptr; 403 404 { 405 auto RedeclComment = RedeclChainComments.find(CanonicalD); 406 if (RedeclComment != RedeclChainComments.end()) { 407 if (OriginalDecl) 408 *OriginalDecl = RedeclComment->second; 409 auto CommentAtRedecl = DeclRawComments.find(RedeclComment->second); 410 assert(CommentAtRedecl != DeclRawComments.end() && 411 "This decl is supposed to have comment attached."); 412 return CommentAtRedecl->second; 413 } 414 } 415 416 // Any redeclarations of D that we haven't checked for comments yet? 417 // We can't use DenseMap::iterator directly since it'd get invalid. 418 auto LastCheckedRedecl = [this, CanonicalD]() -> const Decl * { 419 auto LookupRes = CommentlessRedeclChains.find(CanonicalD); 420 if (LookupRes != CommentlessRedeclChains.end()) 421 return LookupRes->second; 422 return nullptr; 423 }(); 424 425 for (const auto Redecl : D->redecls()) { 426 assert(Redecl); 427 // Skip all redeclarations that have been checked previously. 428 if (LastCheckedRedecl) { 429 if (LastCheckedRedecl == Redecl) { 430 LastCheckedRedecl = nullptr; 431 } 432 continue; 433 } 434 const RawComment *RedeclComment = getRawCommentForDeclNoCache(Redecl); 435 if (RedeclComment) { 436 cacheRawCommentForDecl(*Redecl, *RedeclComment); 437 if (OriginalDecl) 438 *OriginalDecl = Redecl; 439 return RedeclComment; 440 } 441 CommentlessRedeclChains[CanonicalD] = Redecl; 442 } 443 444 if (OriginalDecl) 445 *OriginalDecl = nullptr; 446 return nullptr; 447 } 448 449 void ASTContext::cacheRawCommentForDecl(const Decl &OriginalD, 450 const RawComment &Comment) const { 451 assert(Comment.isDocumentation() || LangOpts.CommentOpts.ParseAllComments); 452 DeclRawComments.try_emplace(&OriginalD, &Comment); 453 const Decl *const CanonicalDecl = OriginalD.getCanonicalDecl(); 454 RedeclChainComments.try_emplace(CanonicalDecl, &OriginalD); 455 CommentlessRedeclChains.erase(CanonicalDecl); 456 } 457 458 static void addRedeclaredMethods(const ObjCMethodDecl *ObjCMethod, 459 SmallVectorImpl<const NamedDecl *> &Redeclared) { 460 const DeclContext *DC = ObjCMethod->getDeclContext(); 461 if (const auto *IMD = dyn_cast<ObjCImplDecl>(DC)) { 462 const ObjCInterfaceDecl *ID = IMD->getClassInterface(); 463 if (!ID) 464 return; 465 // Add redeclared method here. 466 for (const auto *Ext : ID->known_extensions()) { 467 if (ObjCMethodDecl *RedeclaredMethod = 468 Ext->getMethod(ObjCMethod->getSelector(), 469 ObjCMethod->isInstanceMethod())) 470 Redeclared.push_back(RedeclaredMethod); 471 } 472 } 473 } 474 475 void ASTContext::attachCommentsToJustParsedDecls(ArrayRef<Decl *> Decls, 476 const Preprocessor *PP) { 477 if (Comments.empty() || Decls.empty()) 478 return; 479 480 FileID File; 481 for (Decl *D : Decls) { 482 SourceLocation Loc = D->getLocation(); 483 if (Loc.isValid()) { 484 // See if there are any new comments that are not attached to a decl. 485 // The location doesn't have to be precise - we care only about the file. 486 File = SourceMgr.getDecomposedLoc(Loc).first; 487 break; 488 } 489 } 490 491 if (File.isInvalid()) 492 return; 493 494 auto CommentsInThisFile = Comments.getCommentsInFile(File); 495 if (!CommentsInThisFile || CommentsInThisFile->empty() || 496 CommentsInThisFile->rbegin()->second->isAttached()) 497 return; 498 499 // There is at least one comment not attached to a decl. 500 // Maybe it should be attached to one of Decls? 501 // 502 // Note that this way we pick up not only comments that precede the 503 // declaration, but also comments that *follow* the declaration -- thanks to 504 // the lookahead in the lexer: we've consumed the semicolon and looked 505 // ahead through comments. 506 507 for (const Decl *D : Decls) { 508 assert(D); 509 if (D->isInvalidDecl()) 510 continue; 511 512 D = &adjustDeclToTemplate(*D); 513 514 const SourceLocation DeclLoc = getDeclLocForCommentSearch(D, SourceMgr); 515 516 if (DeclLoc.isInvalid() || !DeclLoc.isFileID()) 517 continue; 518 519 if (DeclRawComments.count(D) > 0) 520 continue; 521 522 if (RawComment *const DocComment = 523 getRawCommentForDeclNoCacheImpl(D, DeclLoc, *CommentsInThisFile)) { 524 cacheRawCommentForDecl(*D, *DocComment); 525 comments::FullComment *FC = DocComment->parse(*this, PP, D); 526 ParsedComments[D->getCanonicalDecl()] = FC; 527 } 528 } 529 } 530 531 comments::FullComment *ASTContext::cloneFullComment(comments::FullComment *FC, 532 const Decl *D) const { 533 auto *ThisDeclInfo = new (*this) comments::DeclInfo; 534 ThisDeclInfo->CommentDecl = D; 535 ThisDeclInfo->IsFilled = false; 536 ThisDeclInfo->fill(); 537 ThisDeclInfo->CommentDecl = FC->getDecl(); 538 if (!ThisDeclInfo->TemplateParameters) 539 ThisDeclInfo->TemplateParameters = FC->getDeclInfo()->TemplateParameters; 540 comments::FullComment *CFC = 541 new (*this) comments::FullComment(FC->getBlocks(), 542 ThisDeclInfo); 543 return CFC; 544 } 545 546 comments::FullComment *ASTContext::getLocalCommentForDeclUncached(const Decl *D) const { 547 const RawComment *RC = getRawCommentForDeclNoCache(D); 548 return RC ? RC->parse(*this, nullptr, D) : nullptr; 549 } 550 551 comments::FullComment *ASTContext::getCommentForDecl( 552 const Decl *D, 553 const Preprocessor *PP) const { 554 if (!D || D->isInvalidDecl()) 555 return nullptr; 556 D = &adjustDeclToTemplate(*D); 557 558 const Decl *Canonical = D->getCanonicalDecl(); 559 llvm::DenseMap<const Decl *, comments::FullComment *>::iterator Pos = 560 ParsedComments.find(Canonical); 561 562 if (Pos != ParsedComments.end()) { 563 if (Canonical != D) { 564 comments::FullComment *FC = Pos->second; 565 comments::FullComment *CFC = cloneFullComment(FC, D); 566 return CFC; 567 } 568 return Pos->second; 569 } 570 571 const Decl *OriginalDecl = nullptr; 572 573 const RawComment *RC = getRawCommentForAnyRedecl(D, &OriginalDecl); 574 if (!RC) { 575 if (isa<ObjCMethodDecl>(D) || isa<FunctionDecl>(D)) { 576 SmallVector<const NamedDecl*, 8> Overridden; 577 const auto *OMD = dyn_cast<ObjCMethodDecl>(D); 578 if (OMD && OMD->isPropertyAccessor()) 579 if (const ObjCPropertyDecl *PDecl = OMD->findPropertyDecl()) 580 if (comments::FullComment *FC = getCommentForDecl(PDecl, PP)) 581 return cloneFullComment(FC, D); 582 if (OMD) 583 addRedeclaredMethods(OMD, Overridden); 584 getOverriddenMethods(dyn_cast<NamedDecl>(D), Overridden); 585 for (unsigned i = 0, e = Overridden.size(); i < e; i++) 586 if (comments::FullComment *FC = getCommentForDecl(Overridden[i], PP)) 587 return cloneFullComment(FC, D); 588 } 589 else if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) { 590 // Attach any tag type's documentation to its typedef if latter 591 // does not have one of its own. 592 QualType QT = TD->getUnderlyingType(); 593 if (const auto *TT = QT->getAs<TagType>()) 594 if (const Decl *TD = TT->getDecl()) 595 if (comments::FullComment *FC = getCommentForDecl(TD, PP)) 596 return cloneFullComment(FC, D); 597 } 598 else if (const auto *IC = dyn_cast<ObjCInterfaceDecl>(D)) { 599 while (IC->getSuperClass()) { 600 IC = IC->getSuperClass(); 601 if (comments::FullComment *FC = getCommentForDecl(IC, PP)) 602 return cloneFullComment(FC, D); 603 } 604 } 605 else if (const auto *CD = dyn_cast<ObjCCategoryDecl>(D)) { 606 if (const ObjCInterfaceDecl *IC = CD->getClassInterface()) 607 if (comments::FullComment *FC = getCommentForDecl(IC, PP)) 608 return cloneFullComment(FC, D); 609 } 610 else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) { 611 if (!(RD = RD->getDefinition())) 612 return nullptr; 613 // Check non-virtual bases. 614 for (const auto &I : RD->bases()) { 615 if (I.isVirtual() || (I.getAccessSpecifier() != AS_public)) 616 continue; 617 QualType Ty = I.getType(); 618 if (Ty.isNull()) 619 continue; 620 if (const CXXRecordDecl *NonVirtualBase = Ty->getAsCXXRecordDecl()) { 621 if (!(NonVirtualBase= NonVirtualBase->getDefinition())) 622 continue; 623 624 if (comments::FullComment *FC = getCommentForDecl((NonVirtualBase), PP)) 625 return cloneFullComment(FC, D); 626 } 627 } 628 // Check virtual bases. 629 for (const auto &I : RD->vbases()) { 630 if (I.getAccessSpecifier() != AS_public) 631 continue; 632 QualType Ty = I.getType(); 633 if (Ty.isNull()) 634 continue; 635 if (const CXXRecordDecl *VirtualBase = Ty->getAsCXXRecordDecl()) { 636 if (!(VirtualBase= VirtualBase->getDefinition())) 637 continue; 638 if (comments::FullComment *FC = getCommentForDecl((VirtualBase), PP)) 639 return cloneFullComment(FC, D); 640 } 641 } 642 } 643 return nullptr; 644 } 645 646 // If the RawComment was attached to other redeclaration of this Decl, we 647 // should parse the comment in context of that other Decl. This is important 648 // because comments can contain references to parameter names which can be 649 // different across redeclarations. 650 if (D != OriginalDecl && OriginalDecl) 651 return getCommentForDecl(OriginalDecl, PP); 652 653 comments::FullComment *FC = RC->parse(*this, PP, D); 654 ParsedComments[Canonical] = FC; 655 return FC; 656 } 657 658 void 659 ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID, 660 const ASTContext &C, 661 TemplateTemplateParmDecl *Parm) { 662 ID.AddInteger(Parm->getDepth()); 663 ID.AddInteger(Parm->getPosition()); 664 ID.AddBoolean(Parm->isParameterPack()); 665 666 TemplateParameterList *Params = Parm->getTemplateParameters(); 667 ID.AddInteger(Params->size()); 668 for (TemplateParameterList::const_iterator P = Params->begin(), 669 PEnd = Params->end(); 670 P != PEnd; ++P) { 671 if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) { 672 ID.AddInteger(0); 673 ID.AddBoolean(TTP->isParameterPack()); 674 const TypeConstraint *TC = TTP->getTypeConstraint(); 675 ID.AddBoolean(TC != nullptr); 676 if (TC) 677 TC->getImmediatelyDeclaredConstraint()->Profile(ID, C, 678 /*Canonical=*/true); 679 if (TTP->isExpandedParameterPack()) { 680 ID.AddBoolean(true); 681 ID.AddInteger(TTP->getNumExpansionParameters()); 682 } else 683 ID.AddBoolean(false); 684 continue; 685 } 686 687 if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) { 688 ID.AddInteger(1); 689 ID.AddBoolean(NTTP->isParameterPack()); 690 ID.AddPointer(NTTP->getType().getCanonicalType().getAsOpaquePtr()); 691 if (NTTP->isExpandedParameterPack()) { 692 ID.AddBoolean(true); 693 ID.AddInteger(NTTP->getNumExpansionTypes()); 694 for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) { 695 QualType T = NTTP->getExpansionType(I); 696 ID.AddPointer(T.getCanonicalType().getAsOpaquePtr()); 697 } 698 } else 699 ID.AddBoolean(false); 700 continue; 701 } 702 703 auto *TTP = cast<TemplateTemplateParmDecl>(*P); 704 ID.AddInteger(2); 705 Profile(ID, C, TTP); 706 } 707 Expr *RequiresClause = Parm->getTemplateParameters()->getRequiresClause(); 708 ID.AddBoolean(RequiresClause != nullptr); 709 if (RequiresClause) 710 RequiresClause->Profile(ID, C, /*Canonical=*/true); 711 } 712 713 static Expr * 714 canonicalizeImmediatelyDeclaredConstraint(const ASTContext &C, Expr *IDC, 715 QualType ConstrainedType) { 716 // This is a bit ugly - we need to form a new immediately-declared 717 // constraint that references the new parameter; this would ideally 718 // require semantic analysis (e.g. template<C T> struct S {}; - the 719 // converted arguments of C<T> could be an argument pack if C is 720 // declared as template<typename... T> concept C = ...). 721 // We don't have semantic analysis here so we dig deep into the 722 // ready-made constraint expr and change the thing manually. 723 ConceptSpecializationExpr *CSE; 724 if (const auto *Fold = dyn_cast<CXXFoldExpr>(IDC)) 725 CSE = cast<ConceptSpecializationExpr>(Fold->getLHS()); 726 else 727 CSE = cast<ConceptSpecializationExpr>(IDC); 728 ArrayRef<TemplateArgument> OldConverted = CSE->getTemplateArguments(); 729 SmallVector<TemplateArgument, 3> NewConverted; 730 NewConverted.reserve(OldConverted.size()); 731 if (OldConverted.front().getKind() == TemplateArgument::Pack) { 732 // The case: 733 // template<typename... T> concept C = true; 734 // template<C<int> T> struct S; -> constraint is C<{T, int}> 735 NewConverted.push_back(ConstrainedType); 736 for (auto &Arg : OldConverted.front().pack_elements().drop_front(1)) 737 NewConverted.push_back(Arg); 738 TemplateArgument NewPack(NewConverted); 739 740 NewConverted.clear(); 741 NewConverted.push_back(NewPack); 742 assert(OldConverted.size() == 1 && 743 "Template parameter pack should be the last parameter"); 744 } else { 745 assert(OldConverted.front().getKind() == TemplateArgument::Type && 746 "Unexpected first argument kind for immediately-declared " 747 "constraint"); 748 NewConverted.push_back(ConstrainedType); 749 for (auto &Arg : OldConverted.drop_front(1)) 750 NewConverted.push_back(Arg); 751 } 752 Expr *NewIDC = ConceptSpecializationExpr::Create( 753 C, CSE->getNamedConcept(), NewConverted, nullptr, 754 CSE->isInstantiationDependent(), CSE->containsUnexpandedParameterPack()); 755 756 if (auto *OrigFold = dyn_cast<CXXFoldExpr>(IDC)) 757 NewIDC = new (C) CXXFoldExpr( 758 OrigFold->getType(), /*Callee*/nullptr, SourceLocation(), NewIDC, 759 BinaryOperatorKind::BO_LAnd, SourceLocation(), /*RHS=*/nullptr, 760 SourceLocation(), /*NumExpansions=*/None); 761 return NewIDC; 762 } 763 764 TemplateTemplateParmDecl * 765 ASTContext::getCanonicalTemplateTemplateParmDecl( 766 TemplateTemplateParmDecl *TTP) const { 767 // Check if we already have a canonical template template parameter. 768 llvm::FoldingSetNodeID ID; 769 CanonicalTemplateTemplateParm::Profile(ID, *this, TTP); 770 void *InsertPos = nullptr; 771 CanonicalTemplateTemplateParm *Canonical 772 = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos); 773 if (Canonical) 774 return Canonical->getParam(); 775 776 // Build a canonical template parameter list. 777 TemplateParameterList *Params = TTP->getTemplateParameters(); 778 SmallVector<NamedDecl *, 4> CanonParams; 779 CanonParams.reserve(Params->size()); 780 for (TemplateParameterList::const_iterator P = Params->begin(), 781 PEnd = Params->end(); 782 P != PEnd; ++P) { 783 if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) { 784 TemplateTypeParmDecl *NewTTP = TemplateTypeParmDecl::Create(*this, 785 getTranslationUnitDecl(), SourceLocation(), SourceLocation(), 786 TTP->getDepth(), TTP->getIndex(), nullptr, false, 787 TTP->isParameterPack(), TTP->hasTypeConstraint(), 788 TTP->isExpandedParameterPack() ? 789 llvm::Optional<unsigned>(TTP->getNumExpansionParameters()) : None); 790 if (const auto *TC = TTP->getTypeConstraint()) { 791 QualType ParamAsArgument(NewTTP->getTypeForDecl(), 0); 792 Expr *NewIDC = canonicalizeImmediatelyDeclaredConstraint( 793 *this, TC->getImmediatelyDeclaredConstraint(), 794 ParamAsArgument); 795 TemplateArgumentListInfo CanonArgsAsWritten; 796 if (auto *Args = TC->getTemplateArgsAsWritten()) 797 for (const auto &ArgLoc : Args->arguments()) 798 CanonArgsAsWritten.addArgument( 799 TemplateArgumentLoc(ArgLoc.getArgument(), 800 TemplateArgumentLocInfo())); 801 NewTTP->setTypeConstraint( 802 NestedNameSpecifierLoc(), 803 DeclarationNameInfo(TC->getNamedConcept()->getDeclName(), 804 SourceLocation()), /*FoundDecl=*/nullptr, 805 // Actually canonicalizing a TemplateArgumentLoc is difficult so we 806 // simply omit the ArgsAsWritten 807 TC->getNamedConcept(), /*ArgsAsWritten=*/nullptr, NewIDC); 808 } 809 CanonParams.push_back(NewTTP); 810 } else if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) { 811 QualType T = getCanonicalType(NTTP->getType()); 812 TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T); 813 NonTypeTemplateParmDecl *Param; 814 if (NTTP->isExpandedParameterPack()) { 815 SmallVector<QualType, 2> ExpandedTypes; 816 SmallVector<TypeSourceInfo *, 2> ExpandedTInfos; 817 for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) { 818 ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I))); 819 ExpandedTInfos.push_back( 820 getTrivialTypeSourceInfo(ExpandedTypes.back())); 821 } 822 823 Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(), 824 SourceLocation(), 825 SourceLocation(), 826 NTTP->getDepth(), 827 NTTP->getPosition(), nullptr, 828 T, 829 TInfo, 830 ExpandedTypes, 831 ExpandedTInfos); 832 } else { 833 Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(), 834 SourceLocation(), 835 SourceLocation(), 836 NTTP->getDepth(), 837 NTTP->getPosition(), nullptr, 838 T, 839 NTTP->isParameterPack(), 840 TInfo); 841 } 842 if (AutoType *AT = T->getContainedAutoType()) { 843 if (AT->isConstrained()) { 844 Param->setPlaceholderTypeConstraint( 845 canonicalizeImmediatelyDeclaredConstraint( 846 *this, NTTP->getPlaceholderTypeConstraint(), T)); 847 } 848 } 849 CanonParams.push_back(Param); 850 851 } else 852 CanonParams.push_back(getCanonicalTemplateTemplateParmDecl( 853 cast<TemplateTemplateParmDecl>(*P))); 854 } 855 856 Expr *CanonRequiresClause = nullptr; 857 if (Expr *RequiresClause = TTP->getTemplateParameters()->getRequiresClause()) 858 CanonRequiresClause = RequiresClause; 859 860 TemplateTemplateParmDecl *CanonTTP 861 = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(), 862 SourceLocation(), TTP->getDepth(), 863 TTP->getPosition(), 864 TTP->isParameterPack(), 865 nullptr, 866 TemplateParameterList::Create(*this, SourceLocation(), 867 SourceLocation(), 868 CanonParams, 869 SourceLocation(), 870 CanonRequiresClause)); 871 872 // Get the new insert position for the node we care about. 873 Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos); 874 assert(!Canonical && "Shouldn't be in the map!"); 875 (void)Canonical; 876 877 // Create the canonical template template parameter entry. 878 Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP); 879 CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos); 880 return CanonTTP; 881 } 882 883 TargetCXXABI::Kind ASTContext::getCXXABIKind() const { 884 auto Kind = getTargetInfo().getCXXABI().getKind(); 885 return getLangOpts().CXXABI.getValueOr(Kind); 886 } 887 888 CXXABI *ASTContext::createCXXABI(const TargetInfo &T) { 889 if (!LangOpts.CPlusPlus) return nullptr; 890 891 switch (getCXXABIKind()) { 892 case TargetCXXABI::AppleARM64: 893 case TargetCXXABI::Fuchsia: 894 case TargetCXXABI::GenericARM: // Same as Itanium at this level 895 case TargetCXXABI::iOS: 896 case TargetCXXABI::WatchOS: 897 case TargetCXXABI::GenericAArch64: 898 case TargetCXXABI::GenericMIPS: 899 case TargetCXXABI::GenericItanium: 900 case TargetCXXABI::WebAssembly: 901 case TargetCXXABI::XL: 902 return CreateItaniumCXXABI(*this); 903 case TargetCXXABI::Microsoft: 904 return CreateMicrosoftCXXABI(*this); 905 } 906 llvm_unreachable("Invalid CXXABI type!"); 907 } 908 909 interp::Context &ASTContext::getInterpContext() { 910 if (!InterpContext) { 911 InterpContext.reset(new interp::Context(*this)); 912 } 913 return *InterpContext.get(); 914 } 915 916 ParentMapContext &ASTContext::getParentMapContext() { 917 if (!ParentMapCtx) 918 ParentMapCtx.reset(new ParentMapContext(*this)); 919 return *ParentMapCtx.get(); 920 } 921 922 static const LangASMap *getAddressSpaceMap(const TargetInfo &T, 923 const LangOptions &LOpts) { 924 if (LOpts.FakeAddressSpaceMap) { 925 // The fake address space map must have a distinct entry for each 926 // language-specific address space. 927 static const unsigned FakeAddrSpaceMap[] = { 928 0, // Default 929 1, // opencl_global 930 3, // opencl_local 931 2, // opencl_constant 932 0, // opencl_private 933 4, // opencl_generic 934 5, // opencl_global_device 935 6, // opencl_global_host 936 7, // cuda_device 937 8, // cuda_constant 938 9, // cuda_shared 939 1, // sycl_global 940 5, // sycl_global_device 941 6, // sycl_global_host 942 3, // sycl_local 943 0, // sycl_private 944 10, // ptr32_sptr 945 11, // ptr32_uptr 946 12 // ptr64 947 }; 948 return &FakeAddrSpaceMap; 949 } else { 950 return &T.getAddressSpaceMap(); 951 } 952 } 953 954 static bool isAddrSpaceMapManglingEnabled(const TargetInfo &TI, 955 const LangOptions &LangOpts) { 956 switch (LangOpts.getAddressSpaceMapMangling()) { 957 case LangOptions::ASMM_Target: 958 return TI.useAddressSpaceMapMangling(); 959 case LangOptions::ASMM_On: 960 return true; 961 case LangOptions::ASMM_Off: 962 return false; 963 } 964 llvm_unreachable("getAddressSpaceMapMangling() doesn't cover anything."); 965 } 966 967 ASTContext::ASTContext(LangOptions &LOpts, SourceManager &SM, 968 IdentifierTable &idents, SelectorTable &sels, 969 Builtin::Context &builtins) 970 : ConstantArrayTypes(this_()), FunctionProtoTypes(this_()), 971 TemplateSpecializationTypes(this_()), 972 DependentTemplateSpecializationTypes(this_()), AutoTypes(this_()), 973 SubstTemplateTemplateParmPacks(this_()), 974 CanonTemplateTemplateParms(this_()), SourceMgr(SM), LangOpts(LOpts), 975 NoSanitizeL(new NoSanitizeList(LangOpts.NoSanitizeFiles, SM)), 976 XRayFilter(new XRayFunctionFilter(LangOpts.XRayAlwaysInstrumentFiles, 977 LangOpts.XRayNeverInstrumentFiles, 978 LangOpts.XRayAttrListFiles, SM)), 979 ProfList(new ProfileList(LangOpts.ProfileListFiles, SM)), 980 PrintingPolicy(LOpts), Idents(idents), Selectors(sels), 981 BuiltinInfo(builtins), DeclarationNames(*this), Comments(SM), 982 CommentCommandTraits(BumpAlloc, LOpts.CommentOpts), 983 CompCategories(this_()), LastSDM(nullptr, 0) { 984 TUDecl = TranslationUnitDecl::Create(*this); 985 TraversalScope = {TUDecl}; 986 } 987 988 ASTContext::~ASTContext() { 989 // Release the DenseMaps associated with DeclContext objects. 990 // FIXME: Is this the ideal solution? 991 ReleaseDeclContextMaps(); 992 993 // Call all of the deallocation functions on all of their targets. 994 for (auto &Pair : Deallocations) 995 (Pair.first)(Pair.second); 996 997 // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed 998 // because they can contain DenseMaps. 999 for (llvm::DenseMap<const ObjCContainerDecl*, 1000 const ASTRecordLayout*>::iterator 1001 I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; ) 1002 // Increment in loop to prevent using deallocated memory. 1003 if (auto *R = const_cast<ASTRecordLayout *>((I++)->second)) 1004 R->Destroy(*this); 1005 1006 for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator 1007 I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) { 1008 // Increment in loop to prevent using deallocated memory. 1009 if (auto *R = const_cast<ASTRecordLayout *>((I++)->second)) 1010 R->Destroy(*this); 1011 } 1012 1013 for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(), 1014 AEnd = DeclAttrs.end(); 1015 A != AEnd; ++A) 1016 A->second->~AttrVec(); 1017 1018 for (const auto &Value : ModuleInitializers) 1019 Value.second->~PerModuleInitializers(); 1020 } 1021 1022 void ASTContext::setTraversalScope(const std::vector<Decl *> &TopLevelDecls) { 1023 TraversalScope = TopLevelDecls; 1024 getParentMapContext().clear(); 1025 } 1026 1027 void ASTContext::AddDeallocation(void (*Callback)(void *), void *Data) const { 1028 Deallocations.push_back({Callback, Data}); 1029 } 1030 1031 void 1032 ASTContext::setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source) { 1033 ExternalSource = std::move(Source); 1034 } 1035 1036 void ASTContext::PrintStats() const { 1037 llvm::errs() << "\n*** AST Context Stats:\n"; 1038 llvm::errs() << " " << Types.size() << " types total.\n"; 1039 1040 unsigned counts[] = { 1041 #define TYPE(Name, Parent) 0, 1042 #define ABSTRACT_TYPE(Name, Parent) 1043 #include "clang/AST/TypeNodes.inc" 1044 0 // Extra 1045 }; 1046 1047 for (unsigned i = 0, e = Types.size(); i != e; ++i) { 1048 Type *T = Types[i]; 1049 counts[(unsigned)T->getTypeClass()]++; 1050 } 1051 1052 unsigned Idx = 0; 1053 unsigned TotalBytes = 0; 1054 #define TYPE(Name, Parent) \ 1055 if (counts[Idx]) \ 1056 llvm::errs() << " " << counts[Idx] << " " << #Name \ 1057 << " types, " << sizeof(Name##Type) << " each " \ 1058 << "(" << counts[Idx] * sizeof(Name##Type) \ 1059 << " bytes)\n"; \ 1060 TotalBytes += counts[Idx] * sizeof(Name##Type); \ 1061 ++Idx; 1062 #define ABSTRACT_TYPE(Name, Parent) 1063 #include "clang/AST/TypeNodes.inc" 1064 1065 llvm::errs() << "Total bytes = " << TotalBytes << "\n"; 1066 1067 // Implicit special member functions. 1068 llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/" 1069 << NumImplicitDefaultConstructors 1070 << " implicit default constructors created\n"; 1071 llvm::errs() << NumImplicitCopyConstructorsDeclared << "/" 1072 << NumImplicitCopyConstructors 1073 << " implicit copy constructors created\n"; 1074 if (getLangOpts().CPlusPlus) 1075 llvm::errs() << NumImplicitMoveConstructorsDeclared << "/" 1076 << NumImplicitMoveConstructors 1077 << " implicit move constructors created\n"; 1078 llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/" 1079 << NumImplicitCopyAssignmentOperators 1080 << " implicit copy assignment operators created\n"; 1081 if (getLangOpts().CPlusPlus) 1082 llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/" 1083 << NumImplicitMoveAssignmentOperators 1084 << " implicit move assignment operators created\n"; 1085 llvm::errs() << NumImplicitDestructorsDeclared << "/" 1086 << NumImplicitDestructors 1087 << " implicit destructors created\n"; 1088 1089 if (ExternalSource) { 1090 llvm::errs() << "\n"; 1091 ExternalSource->PrintStats(); 1092 } 1093 1094 BumpAlloc.PrintStats(); 1095 } 1096 1097 void ASTContext::mergeDefinitionIntoModule(NamedDecl *ND, Module *M, 1098 bool NotifyListeners) { 1099 if (NotifyListeners) 1100 if (auto *Listener = getASTMutationListener()) 1101 Listener->RedefinedHiddenDefinition(ND, M); 1102 1103 MergedDefModules[cast<NamedDecl>(ND->getCanonicalDecl())].push_back(M); 1104 } 1105 1106 void ASTContext::deduplicateMergedDefinitonsFor(NamedDecl *ND) { 1107 auto It = MergedDefModules.find(cast<NamedDecl>(ND->getCanonicalDecl())); 1108 if (It == MergedDefModules.end()) 1109 return; 1110 1111 auto &Merged = It->second; 1112 llvm::DenseSet<Module*> Found; 1113 for (Module *&M : Merged) 1114 if (!Found.insert(M).second) 1115 M = nullptr; 1116 Merged.erase(std::remove(Merged.begin(), Merged.end(), nullptr), Merged.end()); 1117 } 1118 1119 ArrayRef<Module *> 1120 ASTContext::getModulesWithMergedDefinition(const NamedDecl *Def) { 1121 auto MergedIt = 1122 MergedDefModules.find(cast<NamedDecl>(Def->getCanonicalDecl())); 1123 if (MergedIt == MergedDefModules.end()) 1124 return None; 1125 return MergedIt->second; 1126 } 1127 1128 void ASTContext::PerModuleInitializers::resolve(ASTContext &Ctx) { 1129 if (LazyInitializers.empty()) 1130 return; 1131 1132 auto *Source = Ctx.getExternalSource(); 1133 assert(Source && "lazy initializers but no external source"); 1134 1135 auto LazyInits = std::move(LazyInitializers); 1136 LazyInitializers.clear(); 1137 1138 for (auto ID : LazyInits) 1139 Initializers.push_back(Source->GetExternalDecl(ID)); 1140 1141 assert(LazyInitializers.empty() && 1142 "GetExternalDecl for lazy module initializer added more inits"); 1143 } 1144 1145 void ASTContext::addModuleInitializer(Module *M, Decl *D) { 1146 // One special case: if we add a module initializer that imports another 1147 // module, and that module's only initializer is an ImportDecl, simplify. 1148 if (const auto *ID = dyn_cast<ImportDecl>(D)) { 1149 auto It = ModuleInitializers.find(ID->getImportedModule()); 1150 1151 // Maybe the ImportDecl does nothing at all. (Common case.) 1152 if (It == ModuleInitializers.end()) 1153 return; 1154 1155 // Maybe the ImportDecl only imports another ImportDecl. 1156 auto &Imported = *It->second; 1157 if (Imported.Initializers.size() + Imported.LazyInitializers.size() == 1) { 1158 Imported.resolve(*this); 1159 auto *OnlyDecl = Imported.Initializers.front(); 1160 if (isa<ImportDecl>(OnlyDecl)) 1161 D = OnlyDecl; 1162 } 1163 } 1164 1165 auto *&Inits = ModuleInitializers[M]; 1166 if (!Inits) 1167 Inits = new (*this) PerModuleInitializers; 1168 Inits->Initializers.push_back(D); 1169 } 1170 1171 void ASTContext::addLazyModuleInitializers(Module *M, ArrayRef<uint32_t> IDs) { 1172 auto *&Inits = ModuleInitializers[M]; 1173 if (!Inits) 1174 Inits = new (*this) PerModuleInitializers; 1175 Inits->LazyInitializers.insert(Inits->LazyInitializers.end(), 1176 IDs.begin(), IDs.end()); 1177 } 1178 1179 ArrayRef<Decl *> ASTContext::getModuleInitializers(Module *M) { 1180 auto It = ModuleInitializers.find(M); 1181 if (It == ModuleInitializers.end()) 1182 return None; 1183 1184 auto *Inits = It->second; 1185 Inits->resolve(*this); 1186 return Inits->Initializers; 1187 } 1188 1189 ExternCContextDecl *ASTContext::getExternCContextDecl() const { 1190 if (!ExternCContext) 1191 ExternCContext = ExternCContextDecl::Create(*this, getTranslationUnitDecl()); 1192 1193 return ExternCContext; 1194 } 1195 1196 BuiltinTemplateDecl * 1197 ASTContext::buildBuiltinTemplateDecl(BuiltinTemplateKind BTK, 1198 const IdentifierInfo *II) const { 1199 auto *BuiltinTemplate = BuiltinTemplateDecl::Create(*this, TUDecl, II, BTK); 1200 BuiltinTemplate->setImplicit(); 1201 TUDecl->addDecl(BuiltinTemplate); 1202 1203 return BuiltinTemplate; 1204 } 1205 1206 BuiltinTemplateDecl * 1207 ASTContext::getMakeIntegerSeqDecl() const { 1208 if (!MakeIntegerSeqDecl) 1209 MakeIntegerSeqDecl = buildBuiltinTemplateDecl(BTK__make_integer_seq, 1210 getMakeIntegerSeqName()); 1211 return MakeIntegerSeqDecl; 1212 } 1213 1214 BuiltinTemplateDecl * 1215 ASTContext::getTypePackElementDecl() const { 1216 if (!TypePackElementDecl) 1217 TypePackElementDecl = buildBuiltinTemplateDecl(BTK__type_pack_element, 1218 getTypePackElementName()); 1219 return TypePackElementDecl; 1220 } 1221 1222 RecordDecl *ASTContext::buildImplicitRecord(StringRef Name, 1223 RecordDecl::TagKind TK) const { 1224 SourceLocation Loc; 1225 RecordDecl *NewDecl; 1226 if (getLangOpts().CPlusPlus) 1227 NewDecl = CXXRecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc, 1228 Loc, &Idents.get(Name)); 1229 else 1230 NewDecl = RecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc, Loc, 1231 &Idents.get(Name)); 1232 NewDecl->setImplicit(); 1233 NewDecl->addAttr(TypeVisibilityAttr::CreateImplicit( 1234 const_cast<ASTContext &>(*this), TypeVisibilityAttr::Default)); 1235 return NewDecl; 1236 } 1237 1238 TypedefDecl *ASTContext::buildImplicitTypedef(QualType T, 1239 StringRef Name) const { 1240 TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T); 1241 TypedefDecl *NewDecl = TypedefDecl::Create( 1242 const_cast<ASTContext &>(*this), getTranslationUnitDecl(), 1243 SourceLocation(), SourceLocation(), &Idents.get(Name), TInfo); 1244 NewDecl->setImplicit(); 1245 return NewDecl; 1246 } 1247 1248 TypedefDecl *ASTContext::getInt128Decl() const { 1249 if (!Int128Decl) 1250 Int128Decl = buildImplicitTypedef(Int128Ty, "__int128_t"); 1251 return Int128Decl; 1252 } 1253 1254 TypedefDecl *ASTContext::getUInt128Decl() const { 1255 if (!UInt128Decl) 1256 UInt128Decl = buildImplicitTypedef(UnsignedInt128Ty, "__uint128_t"); 1257 return UInt128Decl; 1258 } 1259 1260 void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) { 1261 auto *Ty = new (*this, TypeAlignment) BuiltinType(K); 1262 R = CanQualType::CreateUnsafe(QualType(Ty, 0)); 1263 Types.push_back(Ty); 1264 } 1265 1266 void ASTContext::InitBuiltinTypes(const TargetInfo &Target, 1267 const TargetInfo *AuxTarget) { 1268 assert((!this->Target || this->Target == &Target) && 1269 "Incorrect target reinitialization"); 1270 assert(VoidTy.isNull() && "Context reinitialized?"); 1271 1272 this->Target = &Target; 1273 this->AuxTarget = AuxTarget; 1274 1275 ABI.reset(createCXXABI(Target)); 1276 AddrSpaceMap = getAddressSpaceMap(Target, LangOpts); 1277 AddrSpaceMapMangling = isAddrSpaceMapManglingEnabled(Target, LangOpts); 1278 1279 // C99 6.2.5p19. 1280 InitBuiltinType(VoidTy, BuiltinType::Void); 1281 1282 // C99 6.2.5p2. 1283 InitBuiltinType(BoolTy, BuiltinType::Bool); 1284 // C99 6.2.5p3. 1285 if (LangOpts.CharIsSigned) 1286 InitBuiltinType(CharTy, BuiltinType::Char_S); 1287 else 1288 InitBuiltinType(CharTy, BuiltinType::Char_U); 1289 // C99 6.2.5p4. 1290 InitBuiltinType(SignedCharTy, BuiltinType::SChar); 1291 InitBuiltinType(ShortTy, BuiltinType::Short); 1292 InitBuiltinType(IntTy, BuiltinType::Int); 1293 InitBuiltinType(LongTy, BuiltinType::Long); 1294 InitBuiltinType(LongLongTy, BuiltinType::LongLong); 1295 1296 // C99 6.2.5p6. 1297 InitBuiltinType(UnsignedCharTy, BuiltinType::UChar); 1298 InitBuiltinType(UnsignedShortTy, BuiltinType::UShort); 1299 InitBuiltinType(UnsignedIntTy, BuiltinType::UInt); 1300 InitBuiltinType(UnsignedLongTy, BuiltinType::ULong); 1301 InitBuiltinType(UnsignedLongLongTy, BuiltinType::ULongLong); 1302 1303 // C99 6.2.5p10. 1304 InitBuiltinType(FloatTy, BuiltinType::Float); 1305 InitBuiltinType(DoubleTy, BuiltinType::Double); 1306 InitBuiltinType(LongDoubleTy, BuiltinType::LongDouble); 1307 1308 // GNU extension, __float128 for IEEE quadruple precision 1309 InitBuiltinType(Float128Ty, BuiltinType::Float128); 1310 1311 // C11 extension ISO/IEC TS 18661-3 1312 InitBuiltinType(Float16Ty, BuiltinType::Float16); 1313 1314 // ISO/IEC JTC1 SC22 WG14 N1169 Extension 1315 InitBuiltinType(ShortAccumTy, BuiltinType::ShortAccum); 1316 InitBuiltinType(AccumTy, BuiltinType::Accum); 1317 InitBuiltinType(LongAccumTy, BuiltinType::LongAccum); 1318 InitBuiltinType(UnsignedShortAccumTy, BuiltinType::UShortAccum); 1319 InitBuiltinType(UnsignedAccumTy, BuiltinType::UAccum); 1320 InitBuiltinType(UnsignedLongAccumTy, BuiltinType::ULongAccum); 1321 InitBuiltinType(ShortFractTy, BuiltinType::ShortFract); 1322 InitBuiltinType(FractTy, BuiltinType::Fract); 1323 InitBuiltinType(LongFractTy, BuiltinType::LongFract); 1324 InitBuiltinType(UnsignedShortFractTy, BuiltinType::UShortFract); 1325 InitBuiltinType(UnsignedFractTy, BuiltinType::UFract); 1326 InitBuiltinType(UnsignedLongFractTy, BuiltinType::ULongFract); 1327 InitBuiltinType(SatShortAccumTy, BuiltinType::SatShortAccum); 1328 InitBuiltinType(SatAccumTy, BuiltinType::SatAccum); 1329 InitBuiltinType(SatLongAccumTy, BuiltinType::SatLongAccum); 1330 InitBuiltinType(SatUnsignedShortAccumTy, BuiltinType::SatUShortAccum); 1331 InitBuiltinType(SatUnsignedAccumTy, BuiltinType::SatUAccum); 1332 InitBuiltinType(SatUnsignedLongAccumTy, BuiltinType::SatULongAccum); 1333 InitBuiltinType(SatShortFractTy, BuiltinType::SatShortFract); 1334 InitBuiltinType(SatFractTy, BuiltinType::SatFract); 1335 InitBuiltinType(SatLongFractTy, BuiltinType::SatLongFract); 1336 InitBuiltinType(SatUnsignedShortFractTy, BuiltinType::SatUShortFract); 1337 InitBuiltinType(SatUnsignedFractTy, BuiltinType::SatUFract); 1338 InitBuiltinType(SatUnsignedLongFractTy, BuiltinType::SatULongFract); 1339 1340 // GNU extension, 128-bit integers. 1341 InitBuiltinType(Int128Ty, BuiltinType::Int128); 1342 InitBuiltinType(UnsignedInt128Ty, BuiltinType::UInt128); 1343 1344 // C++ 3.9.1p5 1345 if (TargetInfo::isTypeSigned(Target.getWCharType())) 1346 InitBuiltinType(WCharTy, BuiltinType::WChar_S); 1347 else // -fshort-wchar makes wchar_t be unsigned. 1348 InitBuiltinType(WCharTy, BuiltinType::WChar_U); 1349 if (LangOpts.CPlusPlus && LangOpts.WChar) 1350 WideCharTy = WCharTy; 1351 else { 1352 // C99 (or C++ using -fno-wchar). 1353 WideCharTy = getFromTargetType(Target.getWCharType()); 1354 } 1355 1356 WIntTy = getFromTargetType(Target.getWIntType()); 1357 1358 // C++20 (proposed) 1359 InitBuiltinType(Char8Ty, BuiltinType::Char8); 1360 1361 if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++ 1362 InitBuiltinType(Char16Ty, BuiltinType::Char16); 1363 else // C99 1364 Char16Ty = getFromTargetType(Target.getChar16Type()); 1365 1366 if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++ 1367 InitBuiltinType(Char32Ty, BuiltinType::Char32); 1368 else // C99 1369 Char32Ty = getFromTargetType(Target.getChar32Type()); 1370 1371 // Placeholder type for type-dependent expressions whose type is 1372 // completely unknown. No code should ever check a type against 1373 // DependentTy and users should never see it; however, it is here to 1374 // help diagnose failures to properly check for type-dependent 1375 // expressions. 1376 InitBuiltinType(DependentTy, BuiltinType::Dependent); 1377 1378 // Placeholder type for functions. 1379 InitBuiltinType(OverloadTy, BuiltinType::Overload); 1380 1381 // Placeholder type for bound members. 1382 InitBuiltinType(BoundMemberTy, BuiltinType::BoundMember); 1383 1384 // Placeholder type for pseudo-objects. 1385 InitBuiltinType(PseudoObjectTy, BuiltinType::PseudoObject); 1386 1387 // "any" type; useful for debugger-like clients. 1388 InitBuiltinType(UnknownAnyTy, BuiltinType::UnknownAny); 1389 1390 // Placeholder type for unbridged ARC casts. 1391 InitBuiltinType(ARCUnbridgedCastTy, BuiltinType::ARCUnbridgedCast); 1392 1393 // Placeholder type for builtin functions. 1394 InitBuiltinType(BuiltinFnTy, BuiltinType::BuiltinFn); 1395 1396 // Placeholder type for OMP array sections. 1397 if (LangOpts.OpenMP) { 1398 InitBuiltinType(OMPArraySectionTy, BuiltinType::OMPArraySection); 1399 InitBuiltinType(OMPArrayShapingTy, BuiltinType::OMPArrayShaping); 1400 InitBuiltinType(OMPIteratorTy, BuiltinType::OMPIterator); 1401 } 1402 if (LangOpts.MatrixTypes) 1403 InitBuiltinType(IncompleteMatrixIdxTy, BuiltinType::IncompleteMatrixIdx); 1404 1405 // C99 6.2.5p11. 1406 FloatComplexTy = getComplexType(FloatTy); 1407 DoubleComplexTy = getComplexType(DoubleTy); 1408 LongDoubleComplexTy = getComplexType(LongDoubleTy); 1409 Float128ComplexTy = getComplexType(Float128Ty); 1410 1411 // Builtin types for 'id', 'Class', and 'SEL'. 1412 InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId); 1413 InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass); 1414 InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel); 1415 1416 if (LangOpts.OpenCL) { 1417 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ 1418 InitBuiltinType(SingletonId, BuiltinType::Id); 1419 #include "clang/Basic/OpenCLImageTypes.def" 1420 1421 InitBuiltinType(OCLSamplerTy, BuiltinType::OCLSampler); 1422 InitBuiltinType(OCLEventTy, BuiltinType::OCLEvent); 1423 InitBuiltinType(OCLClkEventTy, BuiltinType::OCLClkEvent); 1424 InitBuiltinType(OCLQueueTy, BuiltinType::OCLQueue); 1425 InitBuiltinType(OCLReserveIDTy, BuiltinType::OCLReserveID); 1426 1427 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ 1428 InitBuiltinType(Id##Ty, BuiltinType::Id); 1429 #include "clang/Basic/OpenCLExtensionTypes.def" 1430 } 1431 1432 if (Target.hasAArch64SVETypes()) { 1433 #define SVE_TYPE(Name, Id, SingletonId) \ 1434 InitBuiltinType(SingletonId, BuiltinType::Id); 1435 #include "clang/Basic/AArch64SVEACLETypes.def" 1436 } 1437 1438 if (Target.getTriple().isPPC64() && 1439 Target.hasFeature("paired-vector-memops")) { 1440 if (Target.hasFeature("mma")) { 1441 #define PPC_VECTOR_MMA_TYPE(Name, Id, Size) \ 1442 InitBuiltinType(Id##Ty, BuiltinType::Id); 1443 #include "clang/Basic/PPCTypes.def" 1444 } 1445 #define PPC_VECTOR_VSX_TYPE(Name, Id, Size) \ 1446 InitBuiltinType(Id##Ty, BuiltinType::Id); 1447 #include "clang/Basic/PPCTypes.def" 1448 } 1449 1450 if (Target.hasRISCVVTypes()) { 1451 #define RVV_TYPE(Name, Id, SingletonId) \ 1452 InitBuiltinType(SingletonId, BuiltinType::Id); 1453 #include "clang/Basic/RISCVVTypes.def" 1454 } 1455 1456 // Builtin type for __objc_yes and __objc_no 1457 ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ? 1458 SignedCharTy : BoolTy); 1459 1460 ObjCConstantStringType = QualType(); 1461 1462 ObjCSuperType = QualType(); 1463 1464 // void * type 1465 if (LangOpts.OpenCLGenericAddressSpace) { 1466 auto Q = VoidTy.getQualifiers(); 1467 Q.setAddressSpace(LangAS::opencl_generic); 1468 VoidPtrTy = getPointerType(getCanonicalType( 1469 getQualifiedType(VoidTy.getUnqualifiedType(), Q))); 1470 } else { 1471 VoidPtrTy = getPointerType(VoidTy); 1472 } 1473 1474 // nullptr type (C++0x 2.14.7) 1475 InitBuiltinType(NullPtrTy, BuiltinType::NullPtr); 1476 1477 // half type (OpenCL 6.1.1.1) / ARM NEON __fp16 1478 InitBuiltinType(HalfTy, BuiltinType::Half); 1479 1480 InitBuiltinType(BFloat16Ty, BuiltinType::BFloat16); 1481 1482 // Builtin type used to help define __builtin_va_list. 1483 VaListTagDecl = nullptr; 1484 1485 // MSVC predeclares struct _GUID, and we need it to create MSGuidDecls. 1486 if (LangOpts.MicrosoftExt || LangOpts.Borland) { 1487 MSGuidTagDecl = buildImplicitRecord("_GUID"); 1488 TUDecl->addDecl(MSGuidTagDecl); 1489 } 1490 } 1491 1492 DiagnosticsEngine &ASTContext::getDiagnostics() const { 1493 return SourceMgr.getDiagnostics(); 1494 } 1495 1496 AttrVec& ASTContext::getDeclAttrs(const Decl *D) { 1497 AttrVec *&Result = DeclAttrs[D]; 1498 if (!Result) { 1499 void *Mem = Allocate(sizeof(AttrVec)); 1500 Result = new (Mem) AttrVec; 1501 } 1502 1503 return *Result; 1504 } 1505 1506 /// Erase the attributes corresponding to the given declaration. 1507 void ASTContext::eraseDeclAttrs(const Decl *D) { 1508 llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D); 1509 if (Pos != DeclAttrs.end()) { 1510 Pos->second->~AttrVec(); 1511 DeclAttrs.erase(Pos); 1512 } 1513 } 1514 1515 // FIXME: Remove ? 1516 MemberSpecializationInfo * 1517 ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) { 1518 assert(Var->isStaticDataMember() && "Not a static data member"); 1519 return getTemplateOrSpecializationInfo(Var) 1520 .dyn_cast<MemberSpecializationInfo *>(); 1521 } 1522 1523 ASTContext::TemplateOrSpecializationInfo 1524 ASTContext::getTemplateOrSpecializationInfo(const VarDecl *Var) { 1525 llvm::DenseMap<const VarDecl *, TemplateOrSpecializationInfo>::iterator Pos = 1526 TemplateOrInstantiation.find(Var); 1527 if (Pos == TemplateOrInstantiation.end()) 1528 return {}; 1529 1530 return Pos->second; 1531 } 1532 1533 void 1534 ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl, 1535 TemplateSpecializationKind TSK, 1536 SourceLocation PointOfInstantiation) { 1537 assert(Inst->isStaticDataMember() && "Not a static data member"); 1538 assert(Tmpl->isStaticDataMember() && "Not a static data member"); 1539 setTemplateOrSpecializationInfo(Inst, new (*this) MemberSpecializationInfo( 1540 Tmpl, TSK, PointOfInstantiation)); 1541 } 1542 1543 void 1544 ASTContext::setTemplateOrSpecializationInfo(VarDecl *Inst, 1545 TemplateOrSpecializationInfo TSI) { 1546 assert(!TemplateOrInstantiation[Inst] && 1547 "Already noted what the variable was instantiated from"); 1548 TemplateOrInstantiation[Inst] = TSI; 1549 } 1550 1551 NamedDecl * 1552 ASTContext::getInstantiatedFromUsingDecl(NamedDecl *UUD) { 1553 auto Pos = InstantiatedFromUsingDecl.find(UUD); 1554 if (Pos == InstantiatedFromUsingDecl.end()) 1555 return nullptr; 1556 1557 return Pos->second; 1558 } 1559 1560 void 1561 ASTContext::setInstantiatedFromUsingDecl(NamedDecl *Inst, NamedDecl *Pattern) { 1562 assert((isa<UsingDecl>(Pattern) || 1563 isa<UnresolvedUsingValueDecl>(Pattern) || 1564 isa<UnresolvedUsingTypenameDecl>(Pattern)) && 1565 "pattern decl is not a using decl"); 1566 assert((isa<UsingDecl>(Inst) || 1567 isa<UnresolvedUsingValueDecl>(Inst) || 1568 isa<UnresolvedUsingTypenameDecl>(Inst)) && 1569 "instantiation did not produce a using decl"); 1570 assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists"); 1571 InstantiatedFromUsingDecl[Inst] = Pattern; 1572 } 1573 1574 UsingShadowDecl * 1575 ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) { 1576 llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos 1577 = InstantiatedFromUsingShadowDecl.find(Inst); 1578 if (Pos == InstantiatedFromUsingShadowDecl.end()) 1579 return nullptr; 1580 1581 return Pos->second; 1582 } 1583 1584 void 1585 ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst, 1586 UsingShadowDecl *Pattern) { 1587 assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists"); 1588 InstantiatedFromUsingShadowDecl[Inst] = Pattern; 1589 } 1590 1591 FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) { 1592 llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos 1593 = InstantiatedFromUnnamedFieldDecl.find(Field); 1594 if (Pos == InstantiatedFromUnnamedFieldDecl.end()) 1595 return nullptr; 1596 1597 return Pos->second; 1598 } 1599 1600 void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst, 1601 FieldDecl *Tmpl) { 1602 assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed"); 1603 assert(!Tmpl->getDeclName() && "Template field decl is not unnamed"); 1604 assert(!InstantiatedFromUnnamedFieldDecl[Inst] && 1605 "Already noted what unnamed field was instantiated from"); 1606 1607 InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl; 1608 } 1609 1610 ASTContext::overridden_cxx_method_iterator 1611 ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const { 1612 return overridden_methods(Method).begin(); 1613 } 1614 1615 ASTContext::overridden_cxx_method_iterator 1616 ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const { 1617 return overridden_methods(Method).end(); 1618 } 1619 1620 unsigned 1621 ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const { 1622 auto Range = overridden_methods(Method); 1623 return Range.end() - Range.begin(); 1624 } 1625 1626 ASTContext::overridden_method_range 1627 ASTContext::overridden_methods(const CXXMethodDecl *Method) const { 1628 llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos = 1629 OverriddenMethods.find(Method->getCanonicalDecl()); 1630 if (Pos == OverriddenMethods.end()) 1631 return overridden_method_range(nullptr, nullptr); 1632 return overridden_method_range(Pos->second.begin(), Pos->second.end()); 1633 } 1634 1635 void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method, 1636 const CXXMethodDecl *Overridden) { 1637 assert(Method->isCanonicalDecl() && Overridden->isCanonicalDecl()); 1638 OverriddenMethods[Method].push_back(Overridden); 1639 } 1640 1641 void ASTContext::getOverriddenMethods( 1642 const NamedDecl *D, 1643 SmallVectorImpl<const NamedDecl *> &Overridden) const { 1644 assert(D); 1645 1646 if (const auto *CXXMethod = dyn_cast<CXXMethodDecl>(D)) { 1647 Overridden.append(overridden_methods_begin(CXXMethod), 1648 overridden_methods_end(CXXMethod)); 1649 return; 1650 } 1651 1652 const auto *Method = dyn_cast<ObjCMethodDecl>(D); 1653 if (!Method) 1654 return; 1655 1656 SmallVector<const ObjCMethodDecl *, 8> OverDecls; 1657 Method->getOverriddenMethods(OverDecls); 1658 Overridden.append(OverDecls.begin(), OverDecls.end()); 1659 } 1660 1661 void ASTContext::addedLocalImportDecl(ImportDecl *Import) { 1662 assert(!Import->getNextLocalImport() && 1663 "Import declaration already in the chain"); 1664 assert(!Import->isFromASTFile() && "Non-local import declaration"); 1665 if (!FirstLocalImport) { 1666 FirstLocalImport = Import; 1667 LastLocalImport = Import; 1668 return; 1669 } 1670 1671 LastLocalImport->setNextLocalImport(Import); 1672 LastLocalImport = Import; 1673 } 1674 1675 //===----------------------------------------------------------------------===// 1676 // Type Sizing and Analysis 1677 //===----------------------------------------------------------------------===// 1678 1679 /// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified 1680 /// scalar floating point type. 1681 const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const { 1682 switch (T->castAs<BuiltinType>()->getKind()) { 1683 default: 1684 llvm_unreachable("Not a floating point type!"); 1685 case BuiltinType::BFloat16: 1686 return Target->getBFloat16Format(); 1687 case BuiltinType::Float16: 1688 case BuiltinType::Half: 1689 return Target->getHalfFormat(); 1690 case BuiltinType::Float: return Target->getFloatFormat(); 1691 case BuiltinType::Double: return Target->getDoubleFormat(); 1692 case BuiltinType::LongDouble: 1693 if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice) 1694 return AuxTarget->getLongDoubleFormat(); 1695 return Target->getLongDoubleFormat(); 1696 case BuiltinType::Float128: 1697 if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice) 1698 return AuxTarget->getFloat128Format(); 1699 return Target->getFloat128Format(); 1700 } 1701 } 1702 1703 CharUnits ASTContext::getDeclAlign(const Decl *D, bool ForAlignof) const { 1704 unsigned Align = Target->getCharWidth(); 1705 1706 bool UseAlignAttrOnly = false; 1707 if (unsigned AlignFromAttr = D->getMaxAlignment()) { 1708 Align = AlignFromAttr; 1709 1710 // __attribute__((aligned)) can increase or decrease alignment 1711 // *except* on a struct or struct member, where it only increases 1712 // alignment unless 'packed' is also specified. 1713 // 1714 // It is an error for alignas to decrease alignment, so we can 1715 // ignore that possibility; Sema should diagnose it. 1716 if (isa<FieldDecl>(D)) { 1717 UseAlignAttrOnly = D->hasAttr<PackedAttr>() || 1718 cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>(); 1719 } else { 1720 UseAlignAttrOnly = true; 1721 } 1722 } 1723 else if (isa<FieldDecl>(D)) 1724 UseAlignAttrOnly = 1725 D->hasAttr<PackedAttr>() || 1726 cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>(); 1727 1728 // If we're using the align attribute only, just ignore everything 1729 // else about the declaration and its type. 1730 if (UseAlignAttrOnly) { 1731 // do nothing 1732 } else if (const auto *VD = dyn_cast<ValueDecl>(D)) { 1733 QualType T = VD->getType(); 1734 if (const auto *RT = T->getAs<ReferenceType>()) { 1735 if (ForAlignof) 1736 T = RT->getPointeeType(); 1737 else 1738 T = getPointerType(RT->getPointeeType()); 1739 } 1740 QualType BaseT = getBaseElementType(T); 1741 if (T->isFunctionType()) 1742 Align = getTypeInfoImpl(T.getTypePtr()).Align; 1743 else if (!BaseT->isIncompleteType()) { 1744 // Adjust alignments of declarations with array type by the 1745 // large-array alignment on the target. 1746 if (const ArrayType *arrayType = getAsArrayType(T)) { 1747 unsigned MinWidth = Target->getLargeArrayMinWidth(); 1748 if (!ForAlignof && MinWidth) { 1749 if (isa<VariableArrayType>(arrayType)) 1750 Align = std::max(Align, Target->getLargeArrayAlign()); 1751 else if (isa<ConstantArrayType>(arrayType) && 1752 MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType))) 1753 Align = std::max(Align, Target->getLargeArrayAlign()); 1754 } 1755 } 1756 Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr())); 1757 if (BaseT.getQualifiers().hasUnaligned()) 1758 Align = Target->getCharWidth(); 1759 if (const auto *VD = dyn_cast<VarDecl>(D)) { 1760 if (VD->hasGlobalStorage() && !ForAlignof) { 1761 uint64_t TypeSize = getTypeSize(T.getTypePtr()); 1762 Align = std::max(Align, getTargetInfo().getMinGlobalAlign(TypeSize)); 1763 } 1764 } 1765 } 1766 1767 // Fields can be subject to extra alignment constraints, like if 1768 // the field is packed, the struct is packed, or the struct has a 1769 // a max-field-alignment constraint (#pragma pack). So calculate 1770 // the actual alignment of the field within the struct, and then 1771 // (as we're expected to) constrain that by the alignment of the type. 1772 if (const auto *Field = dyn_cast<FieldDecl>(VD)) { 1773 const RecordDecl *Parent = Field->getParent(); 1774 // We can only produce a sensible answer if the record is valid. 1775 if (!Parent->isInvalidDecl()) { 1776 const ASTRecordLayout &Layout = getASTRecordLayout(Parent); 1777 1778 // Start with the record's overall alignment. 1779 unsigned FieldAlign = toBits(Layout.getAlignment()); 1780 1781 // Use the GCD of that and the offset within the record. 1782 uint64_t Offset = Layout.getFieldOffset(Field->getFieldIndex()); 1783 if (Offset > 0) { 1784 // Alignment is always a power of 2, so the GCD will be a power of 2, 1785 // which means we get to do this crazy thing instead of Euclid's. 1786 uint64_t LowBitOfOffset = Offset & (~Offset + 1); 1787 if (LowBitOfOffset < FieldAlign) 1788 FieldAlign = static_cast<unsigned>(LowBitOfOffset); 1789 } 1790 1791 Align = std::min(Align, FieldAlign); 1792 } 1793 } 1794 } 1795 1796 // Some targets have hard limitation on the maximum requestable alignment in 1797 // aligned attribute for static variables. 1798 const unsigned MaxAlignedAttr = getTargetInfo().getMaxAlignedAttribute(); 1799 const auto *VD = dyn_cast<VarDecl>(D); 1800 if (MaxAlignedAttr && VD && VD->getStorageClass() == SC_Static) 1801 Align = std::min(Align, MaxAlignedAttr); 1802 1803 return toCharUnitsFromBits(Align); 1804 } 1805 1806 CharUnits ASTContext::getExnObjectAlignment() const { 1807 return toCharUnitsFromBits(Target->getExnObjectAlignment()); 1808 } 1809 1810 // getTypeInfoDataSizeInChars - Return the size of a type, in 1811 // chars. If the type is a record, its data size is returned. This is 1812 // the size of the memcpy that's performed when assigning this type 1813 // using a trivial copy/move assignment operator. 1814 TypeInfoChars ASTContext::getTypeInfoDataSizeInChars(QualType T) const { 1815 TypeInfoChars Info = getTypeInfoInChars(T); 1816 1817 // In C++, objects can sometimes be allocated into the tail padding 1818 // of a base-class subobject. We decide whether that's possible 1819 // during class layout, so here we can just trust the layout results. 1820 if (getLangOpts().CPlusPlus) { 1821 if (const auto *RT = T->getAs<RecordType>()) { 1822 const ASTRecordLayout &layout = getASTRecordLayout(RT->getDecl()); 1823 Info.Width = layout.getDataSize(); 1824 } 1825 } 1826 1827 return Info; 1828 } 1829 1830 /// getConstantArrayInfoInChars - Performing the computation in CharUnits 1831 /// instead of in bits prevents overflowing the uint64_t for some large arrays. 1832 TypeInfoChars 1833 static getConstantArrayInfoInChars(const ASTContext &Context, 1834 const ConstantArrayType *CAT) { 1835 TypeInfoChars EltInfo = Context.getTypeInfoInChars(CAT->getElementType()); 1836 uint64_t Size = CAT->getSize().getZExtValue(); 1837 assert((Size == 0 || static_cast<uint64_t>(EltInfo.Width.getQuantity()) <= 1838 (uint64_t)(-1)/Size) && 1839 "Overflow in array type char size evaluation"); 1840 uint64_t Width = EltInfo.Width.getQuantity() * Size; 1841 unsigned Align = EltInfo.Align.getQuantity(); 1842 if (!Context.getTargetInfo().getCXXABI().isMicrosoft() || 1843 Context.getTargetInfo().getPointerWidth(0) == 64) 1844 Width = llvm::alignTo(Width, Align); 1845 return TypeInfoChars(CharUnits::fromQuantity(Width), 1846 CharUnits::fromQuantity(Align), 1847 EltInfo.AlignIsRequired); 1848 } 1849 1850 TypeInfoChars ASTContext::getTypeInfoInChars(const Type *T) const { 1851 if (const auto *CAT = dyn_cast<ConstantArrayType>(T)) 1852 return getConstantArrayInfoInChars(*this, CAT); 1853 TypeInfo Info = getTypeInfo(T); 1854 return TypeInfoChars(toCharUnitsFromBits(Info.Width), 1855 toCharUnitsFromBits(Info.Align), 1856 Info.AlignIsRequired); 1857 } 1858 1859 TypeInfoChars ASTContext::getTypeInfoInChars(QualType T) const { 1860 return getTypeInfoInChars(T.getTypePtr()); 1861 } 1862 1863 bool ASTContext::isAlignmentRequired(const Type *T) const { 1864 return getTypeInfo(T).AlignIsRequired; 1865 } 1866 1867 bool ASTContext::isAlignmentRequired(QualType T) const { 1868 return isAlignmentRequired(T.getTypePtr()); 1869 } 1870 1871 unsigned ASTContext::getTypeAlignIfKnown(QualType T, 1872 bool NeedsPreferredAlignment) const { 1873 // An alignment on a typedef overrides anything else. 1874 if (const auto *TT = T->getAs<TypedefType>()) 1875 if (unsigned Align = TT->getDecl()->getMaxAlignment()) 1876 return Align; 1877 1878 // If we have an (array of) complete type, we're done. 1879 T = getBaseElementType(T); 1880 if (!T->isIncompleteType()) 1881 return NeedsPreferredAlignment ? getPreferredTypeAlign(T) : getTypeAlign(T); 1882 1883 // If we had an array type, its element type might be a typedef 1884 // type with an alignment attribute. 1885 if (const auto *TT = T->getAs<TypedefType>()) 1886 if (unsigned Align = TT->getDecl()->getMaxAlignment()) 1887 return Align; 1888 1889 // Otherwise, see if the declaration of the type had an attribute. 1890 if (const auto *TT = T->getAs<TagType>()) 1891 return TT->getDecl()->getMaxAlignment(); 1892 1893 return 0; 1894 } 1895 1896 TypeInfo ASTContext::getTypeInfo(const Type *T) const { 1897 TypeInfoMap::iterator I = MemoizedTypeInfo.find(T); 1898 if (I != MemoizedTypeInfo.end()) 1899 return I->second; 1900 1901 // This call can invalidate MemoizedTypeInfo[T], so we need a second lookup. 1902 TypeInfo TI = getTypeInfoImpl(T); 1903 MemoizedTypeInfo[T] = TI; 1904 return TI; 1905 } 1906 1907 /// getTypeInfoImpl - Return the size of the specified type, in bits. This 1908 /// method does not work on incomplete types. 1909 /// 1910 /// FIXME: Pointers into different addr spaces could have different sizes and 1911 /// alignment requirements: getPointerInfo should take an AddrSpace, this 1912 /// should take a QualType, &c. 1913 TypeInfo ASTContext::getTypeInfoImpl(const Type *T) const { 1914 uint64_t Width = 0; 1915 unsigned Align = 8; 1916 bool AlignIsRequired = false; 1917 unsigned AS = 0; 1918 switch (T->getTypeClass()) { 1919 #define TYPE(Class, Base) 1920 #define ABSTRACT_TYPE(Class, Base) 1921 #define NON_CANONICAL_TYPE(Class, Base) 1922 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1923 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) \ 1924 case Type::Class: \ 1925 assert(!T->isDependentType() && "should not see dependent types here"); \ 1926 return getTypeInfo(cast<Class##Type>(T)->desugar().getTypePtr()); 1927 #include "clang/AST/TypeNodes.inc" 1928 llvm_unreachable("Should not see dependent types"); 1929 1930 case Type::FunctionNoProto: 1931 case Type::FunctionProto: 1932 // GCC extension: alignof(function) = 32 bits 1933 Width = 0; 1934 Align = 32; 1935 break; 1936 1937 case Type::IncompleteArray: 1938 case Type::VariableArray: 1939 case Type::ConstantArray: { 1940 // Model non-constant sized arrays as size zero, but track the alignment. 1941 uint64_t Size = 0; 1942 if (const auto *CAT = dyn_cast<ConstantArrayType>(T)) 1943 Size = CAT->getSize().getZExtValue(); 1944 1945 TypeInfo EltInfo = getTypeInfo(cast<ArrayType>(T)->getElementType()); 1946 assert((Size == 0 || EltInfo.Width <= (uint64_t)(-1) / Size) && 1947 "Overflow in array type bit size evaluation"); 1948 Width = EltInfo.Width * Size; 1949 Align = EltInfo.Align; 1950 AlignIsRequired = EltInfo.AlignIsRequired; 1951 if (!getTargetInfo().getCXXABI().isMicrosoft() || 1952 getTargetInfo().getPointerWidth(0) == 64) 1953 Width = llvm::alignTo(Width, Align); 1954 break; 1955 } 1956 1957 case Type::ExtVector: 1958 case Type::Vector: { 1959 const auto *VT = cast<VectorType>(T); 1960 TypeInfo EltInfo = getTypeInfo(VT->getElementType()); 1961 Width = EltInfo.Width * VT->getNumElements(); 1962 Align = Width; 1963 // If the alignment is not a power of 2, round up to the next power of 2. 1964 // This happens for non-power-of-2 length vectors. 1965 if (Align & (Align-1)) { 1966 Align = llvm::NextPowerOf2(Align); 1967 Width = llvm::alignTo(Width, Align); 1968 } 1969 // Adjust the alignment based on the target max. 1970 uint64_t TargetVectorAlign = Target->getMaxVectorAlign(); 1971 if (TargetVectorAlign && TargetVectorAlign < Align) 1972 Align = TargetVectorAlign; 1973 if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector) 1974 // Adjust the alignment for fixed-length SVE vectors. This is important 1975 // for non-power-of-2 vector lengths. 1976 Align = 128; 1977 else if (VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) 1978 // Adjust the alignment for fixed-length SVE predicates. 1979 Align = 16; 1980 break; 1981 } 1982 1983 case Type::ConstantMatrix: { 1984 const auto *MT = cast<ConstantMatrixType>(T); 1985 TypeInfo ElementInfo = getTypeInfo(MT->getElementType()); 1986 // The internal layout of a matrix value is implementation defined. 1987 // Initially be ABI compatible with arrays with respect to alignment and 1988 // size. 1989 Width = ElementInfo.Width * MT->getNumRows() * MT->getNumColumns(); 1990 Align = ElementInfo.Align; 1991 break; 1992 } 1993 1994 case Type::Builtin: 1995 switch (cast<BuiltinType>(T)->getKind()) { 1996 default: llvm_unreachable("Unknown builtin type!"); 1997 case BuiltinType::Void: 1998 // GCC extension: alignof(void) = 8 bits. 1999 Width = 0; 2000 Align = 8; 2001 break; 2002 case BuiltinType::Bool: 2003 Width = Target->getBoolWidth(); 2004 Align = Target->getBoolAlign(); 2005 break; 2006 case BuiltinType::Char_S: 2007 case BuiltinType::Char_U: 2008 case BuiltinType::UChar: 2009 case BuiltinType::SChar: 2010 case BuiltinType::Char8: 2011 Width = Target->getCharWidth(); 2012 Align = Target->getCharAlign(); 2013 break; 2014 case BuiltinType::WChar_S: 2015 case BuiltinType::WChar_U: 2016 Width = Target->getWCharWidth(); 2017 Align = Target->getWCharAlign(); 2018 break; 2019 case BuiltinType::Char16: 2020 Width = Target->getChar16Width(); 2021 Align = Target->getChar16Align(); 2022 break; 2023 case BuiltinType::Char32: 2024 Width = Target->getChar32Width(); 2025 Align = Target->getChar32Align(); 2026 break; 2027 case BuiltinType::UShort: 2028 case BuiltinType::Short: 2029 Width = Target->getShortWidth(); 2030 Align = Target->getShortAlign(); 2031 break; 2032 case BuiltinType::UInt: 2033 case BuiltinType::Int: 2034 Width = Target->getIntWidth(); 2035 Align = Target->getIntAlign(); 2036 break; 2037 case BuiltinType::ULong: 2038 case BuiltinType::Long: 2039 Width = Target->getLongWidth(); 2040 Align = Target->getLongAlign(); 2041 break; 2042 case BuiltinType::ULongLong: 2043 case BuiltinType::LongLong: 2044 Width = Target->getLongLongWidth(); 2045 Align = Target->getLongLongAlign(); 2046 break; 2047 case BuiltinType::Int128: 2048 case BuiltinType::UInt128: 2049 Width = 128; 2050 Align = 128; // int128_t is 128-bit aligned on all targets. 2051 break; 2052 case BuiltinType::ShortAccum: 2053 case BuiltinType::UShortAccum: 2054 case BuiltinType::SatShortAccum: 2055 case BuiltinType::SatUShortAccum: 2056 Width = Target->getShortAccumWidth(); 2057 Align = Target->getShortAccumAlign(); 2058 break; 2059 case BuiltinType::Accum: 2060 case BuiltinType::UAccum: 2061 case BuiltinType::SatAccum: 2062 case BuiltinType::SatUAccum: 2063 Width = Target->getAccumWidth(); 2064 Align = Target->getAccumAlign(); 2065 break; 2066 case BuiltinType::LongAccum: 2067 case BuiltinType::ULongAccum: 2068 case BuiltinType::SatLongAccum: 2069 case BuiltinType::SatULongAccum: 2070 Width = Target->getLongAccumWidth(); 2071 Align = Target->getLongAccumAlign(); 2072 break; 2073 case BuiltinType::ShortFract: 2074 case BuiltinType::UShortFract: 2075 case BuiltinType::SatShortFract: 2076 case BuiltinType::SatUShortFract: 2077 Width = Target->getShortFractWidth(); 2078 Align = Target->getShortFractAlign(); 2079 break; 2080 case BuiltinType::Fract: 2081 case BuiltinType::UFract: 2082 case BuiltinType::SatFract: 2083 case BuiltinType::SatUFract: 2084 Width = Target->getFractWidth(); 2085 Align = Target->getFractAlign(); 2086 break; 2087 case BuiltinType::LongFract: 2088 case BuiltinType::ULongFract: 2089 case BuiltinType::SatLongFract: 2090 case BuiltinType::SatULongFract: 2091 Width = Target->getLongFractWidth(); 2092 Align = Target->getLongFractAlign(); 2093 break; 2094 case BuiltinType::BFloat16: 2095 Width = Target->getBFloat16Width(); 2096 Align = Target->getBFloat16Align(); 2097 break; 2098 case BuiltinType::Float16: 2099 case BuiltinType::Half: 2100 if (Target->hasFloat16Type() || !getLangOpts().OpenMP || 2101 !getLangOpts().OpenMPIsDevice) { 2102 Width = Target->getHalfWidth(); 2103 Align = Target->getHalfAlign(); 2104 } else { 2105 assert(getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice && 2106 "Expected OpenMP device compilation."); 2107 Width = AuxTarget->getHalfWidth(); 2108 Align = AuxTarget->getHalfAlign(); 2109 } 2110 break; 2111 case BuiltinType::Float: 2112 Width = Target->getFloatWidth(); 2113 Align = Target->getFloatAlign(); 2114 break; 2115 case BuiltinType::Double: 2116 Width = Target->getDoubleWidth(); 2117 Align = Target->getDoubleAlign(); 2118 break; 2119 case BuiltinType::LongDouble: 2120 if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice && 2121 (Target->getLongDoubleWidth() != AuxTarget->getLongDoubleWidth() || 2122 Target->getLongDoubleAlign() != AuxTarget->getLongDoubleAlign())) { 2123 Width = AuxTarget->getLongDoubleWidth(); 2124 Align = AuxTarget->getLongDoubleAlign(); 2125 } else { 2126 Width = Target->getLongDoubleWidth(); 2127 Align = Target->getLongDoubleAlign(); 2128 } 2129 break; 2130 case BuiltinType::Float128: 2131 if (Target->hasFloat128Type() || !getLangOpts().OpenMP || 2132 !getLangOpts().OpenMPIsDevice) { 2133 Width = Target->getFloat128Width(); 2134 Align = Target->getFloat128Align(); 2135 } else { 2136 assert(getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice && 2137 "Expected OpenMP device compilation."); 2138 Width = AuxTarget->getFloat128Width(); 2139 Align = AuxTarget->getFloat128Align(); 2140 } 2141 break; 2142 case BuiltinType::NullPtr: 2143 Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t) 2144 Align = Target->getPointerAlign(0); // == sizeof(void*) 2145 break; 2146 case BuiltinType::ObjCId: 2147 case BuiltinType::ObjCClass: 2148 case BuiltinType::ObjCSel: 2149 Width = Target->getPointerWidth(0); 2150 Align = Target->getPointerAlign(0); 2151 break; 2152 case BuiltinType::OCLSampler: 2153 case BuiltinType::OCLEvent: 2154 case BuiltinType::OCLClkEvent: 2155 case BuiltinType::OCLQueue: 2156 case BuiltinType::OCLReserveID: 2157 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ 2158 case BuiltinType::Id: 2159 #include "clang/Basic/OpenCLImageTypes.def" 2160 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ 2161 case BuiltinType::Id: 2162 #include "clang/Basic/OpenCLExtensionTypes.def" 2163 AS = getTargetAddressSpace( 2164 Target->getOpenCLTypeAddrSpace(getOpenCLTypeKind(T))); 2165 Width = Target->getPointerWidth(AS); 2166 Align = Target->getPointerAlign(AS); 2167 break; 2168 // The SVE types are effectively target-specific. The length of an 2169 // SVE_VECTOR_TYPE is only known at runtime, but it is always a multiple 2170 // of 128 bits. There is one predicate bit for each vector byte, so the 2171 // length of an SVE_PREDICATE_TYPE is always a multiple of 16 bits. 2172 // 2173 // Because the length is only known at runtime, we use a dummy value 2174 // of 0 for the static length. The alignment values are those defined 2175 // by the Procedure Call Standard for the Arm Architecture. 2176 #define SVE_VECTOR_TYPE(Name, MangledName, Id, SingletonId, NumEls, ElBits, \ 2177 IsSigned, IsFP, IsBF) \ 2178 case BuiltinType::Id: \ 2179 Width = 0; \ 2180 Align = 128; \ 2181 break; 2182 #define SVE_PREDICATE_TYPE(Name, MangledName, Id, SingletonId, NumEls) \ 2183 case BuiltinType::Id: \ 2184 Width = 0; \ 2185 Align = 16; \ 2186 break; 2187 #include "clang/Basic/AArch64SVEACLETypes.def" 2188 #define PPC_VECTOR_TYPE(Name, Id, Size) \ 2189 case BuiltinType::Id: \ 2190 Width = Size; \ 2191 Align = Size; \ 2192 break; 2193 #include "clang/Basic/PPCTypes.def" 2194 #define RVV_VECTOR_TYPE(Name, Id, SingletonId, ElKind, ElBits, NF, IsSigned, \ 2195 IsFP) \ 2196 case BuiltinType::Id: \ 2197 Width = 0; \ 2198 Align = ElBits; \ 2199 break; 2200 #define RVV_PREDICATE_TYPE(Name, Id, SingletonId, ElKind) \ 2201 case BuiltinType::Id: \ 2202 Width = 0; \ 2203 Align = 8; \ 2204 break; 2205 #include "clang/Basic/RISCVVTypes.def" 2206 } 2207 break; 2208 case Type::ObjCObjectPointer: 2209 Width = Target->getPointerWidth(0); 2210 Align = Target->getPointerAlign(0); 2211 break; 2212 case Type::BlockPointer: 2213 AS = getTargetAddressSpace(cast<BlockPointerType>(T)->getPointeeType()); 2214 Width = Target->getPointerWidth(AS); 2215 Align = Target->getPointerAlign(AS); 2216 break; 2217 case Type::LValueReference: 2218 case Type::RValueReference: 2219 // alignof and sizeof should never enter this code path here, so we go 2220 // the pointer route. 2221 AS = getTargetAddressSpace(cast<ReferenceType>(T)->getPointeeType()); 2222 Width = Target->getPointerWidth(AS); 2223 Align = Target->getPointerAlign(AS); 2224 break; 2225 case Type::Pointer: 2226 AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType()); 2227 Width = Target->getPointerWidth(AS); 2228 Align = Target->getPointerAlign(AS); 2229 break; 2230 case Type::MemberPointer: { 2231 const auto *MPT = cast<MemberPointerType>(T); 2232 CXXABI::MemberPointerInfo MPI = ABI->getMemberPointerInfo(MPT); 2233 Width = MPI.Width; 2234 Align = MPI.Align; 2235 break; 2236 } 2237 case Type::Complex: { 2238 // Complex types have the same alignment as their elements, but twice the 2239 // size. 2240 TypeInfo EltInfo = getTypeInfo(cast<ComplexType>(T)->getElementType()); 2241 Width = EltInfo.Width * 2; 2242 Align = EltInfo.Align; 2243 break; 2244 } 2245 case Type::ObjCObject: 2246 return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr()); 2247 case Type::Adjusted: 2248 case Type::Decayed: 2249 return getTypeInfo(cast<AdjustedType>(T)->getAdjustedType().getTypePtr()); 2250 case Type::ObjCInterface: { 2251 const auto *ObjCI = cast<ObjCInterfaceType>(T); 2252 if (ObjCI->getDecl()->isInvalidDecl()) { 2253 Width = 8; 2254 Align = 8; 2255 break; 2256 } 2257 const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl()); 2258 Width = toBits(Layout.getSize()); 2259 Align = toBits(Layout.getAlignment()); 2260 break; 2261 } 2262 case Type::ExtInt: { 2263 const auto *EIT = cast<ExtIntType>(T); 2264 Align = 2265 std::min(static_cast<unsigned>(std::max( 2266 getCharWidth(), llvm::PowerOf2Ceil(EIT->getNumBits()))), 2267 Target->getLongLongAlign()); 2268 Width = llvm::alignTo(EIT->getNumBits(), Align); 2269 break; 2270 } 2271 case Type::Record: 2272 case Type::Enum: { 2273 const auto *TT = cast<TagType>(T); 2274 2275 if (TT->getDecl()->isInvalidDecl()) { 2276 Width = 8; 2277 Align = 8; 2278 break; 2279 } 2280 2281 if (const auto *ET = dyn_cast<EnumType>(TT)) { 2282 const EnumDecl *ED = ET->getDecl(); 2283 TypeInfo Info = 2284 getTypeInfo(ED->getIntegerType()->getUnqualifiedDesugaredType()); 2285 if (unsigned AttrAlign = ED->getMaxAlignment()) { 2286 Info.Align = AttrAlign; 2287 Info.AlignIsRequired = true; 2288 } 2289 return Info; 2290 } 2291 2292 const auto *RT = cast<RecordType>(TT); 2293 const RecordDecl *RD = RT->getDecl(); 2294 const ASTRecordLayout &Layout = getASTRecordLayout(RD); 2295 Width = toBits(Layout.getSize()); 2296 Align = toBits(Layout.getAlignment()); 2297 AlignIsRequired = RD->hasAttr<AlignedAttr>(); 2298 break; 2299 } 2300 2301 case Type::SubstTemplateTypeParm: 2302 return getTypeInfo(cast<SubstTemplateTypeParmType>(T)-> 2303 getReplacementType().getTypePtr()); 2304 2305 case Type::Auto: 2306 case Type::DeducedTemplateSpecialization: { 2307 const auto *A = cast<DeducedType>(T); 2308 assert(!A->getDeducedType().isNull() && 2309 "cannot request the size of an undeduced or dependent auto type"); 2310 return getTypeInfo(A->getDeducedType().getTypePtr()); 2311 } 2312 2313 case Type::Paren: 2314 return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr()); 2315 2316 case Type::MacroQualified: 2317 return getTypeInfo( 2318 cast<MacroQualifiedType>(T)->getUnderlyingType().getTypePtr()); 2319 2320 case Type::ObjCTypeParam: 2321 return getTypeInfo(cast<ObjCTypeParamType>(T)->desugar().getTypePtr()); 2322 2323 case Type::Typedef: { 2324 const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl(); 2325 TypeInfo Info = getTypeInfo(Typedef->getUnderlyingType().getTypePtr()); 2326 // If the typedef has an aligned attribute on it, it overrides any computed 2327 // alignment we have. This violates the GCC documentation (which says that 2328 // attribute(aligned) can only round up) but matches its implementation. 2329 if (unsigned AttrAlign = Typedef->getMaxAlignment()) { 2330 Align = AttrAlign; 2331 AlignIsRequired = true; 2332 } else { 2333 Align = Info.Align; 2334 AlignIsRequired = Info.AlignIsRequired; 2335 } 2336 Width = Info.Width; 2337 break; 2338 } 2339 2340 case Type::Elaborated: 2341 return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr()); 2342 2343 case Type::Attributed: 2344 return getTypeInfo( 2345 cast<AttributedType>(T)->getEquivalentType().getTypePtr()); 2346 2347 case Type::Atomic: { 2348 // Start with the base type information. 2349 TypeInfo Info = getTypeInfo(cast<AtomicType>(T)->getValueType()); 2350 Width = Info.Width; 2351 Align = Info.Align; 2352 2353 if (!Width) { 2354 // An otherwise zero-sized type should still generate an 2355 // atomic operation. 2356 Width = Target->getCharWidth(); 2357 assert(Align); 2358 } else if (Width <= Target->getMaxAtomicPromoteWidth()) { 2359 // If the size of the type doesn't exceed the platform's max 2360 // atomic promotion width, make the size and alignment more 2361 // favorable to atomic operations: 2362 2363 // Round the size up to a power of 2. 2364 if (!llvm::isPowerOf2_64(Width)) 2365 Width = llvm::NextPowerOf2(Width); 2366 2367 // Set the alignment equal to the size. 2368 Align = static_cast<unsigned>(Width); 2369 } 2370 } 2371 break; 2372 2373 case Type::Pipe: 2374 Width = Target->getPointerWidth(getTargetAddressSpace(LangAS::opencl_global)); 2375 Align = Target->getPointerAlign(getTargetAddressSpace(LangAS::opencl_global)); 2376 break; 2377 } 2378 2379 assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2"); 2380 return TypeInfo(Width, Align, AlignIsRequired); 2381 } 2382 2383 unsigned ASTContext::getTypeUnadjustedAlign(const Type *T) const { 2384 UnadjustedAlignMap::iterator I = MemoizedUnadjustedAlign.find(T); 2385 if (I != MemoizedUnadjustedAlign.end()) 2386 return I->second; 2387 2388 unsigned UnadjustedAlign; 2389 if (const auto *RT = T->getAs<RecordType>()) { 2390 const RecordDecl *RD = RT->getDecl(); 2391 const ASTRecordLayout &Layout = getASTRecordLayout(RD); 2392 UnadjustedAlign = toBits(Layout.getUnadjustedAlignment()); 2393 } else if (const auto *ObjCI = T->getAs<ObjCInterfaceType>()) { 2394 const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl()); 2395 UnadjustedAlign = toBits(Layout.getUnadjustedAlignment()); 2396 } else { 2397 UnadjustedAlign = getTypeAlign(T->getUnqualifiedDesugaredType()); 2398 } 2399 2400 MemoizedUnadjustedAlign[T] = UnadjustedAlign; 2401 return UnadjustedAlign; 2402 } 2403 2404 unsigned ASTContext::getOpenMPDefaultSimdAlign(QualType T) const { 2405 unsigned SimdAlign = getTargetInfo().getSimdDefaultAlign(); 2406 return SimdAlign; 2407 } 2408 2409 /// toCharUnitsFromBits - Convert a size in bits to a size in characters. 2410 CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const { 2411 return CharUnits::fromQuantity(BitSize / getCharWidth()); 2412 } 2413 2414 /// toBits - Convert a size in characters to a size in characters. 2415 int64_t ASTContext::toBits(CharUnits CharSize) const { 2416 return CharSize.getQuantity() * getCharWidth(); 2417 } 2418 2419 /// getTypeSizeInChars - Return the size of the specified type, in characters. 2420 /// This method does not work on incomplete types. 2421 CharUnits ASTContext::getTypeSizeInChars(QualType T) const { 2422 return getTypeInfoInChars(T).Width; 2423 } 2424 CharUnits ASTContext::getTypeSizeInChars(const Type *T) const { 2425 return getTypeInfoInChars(T).Width; 2426 } 2427 2428 /// getTypeAlignInChars - Return the ABI-specified alignment of a type, in 2429 /// characters. This method does not work on incomplete types. 2430 CharUnits ASTContext::getTypeAlignInChars(QualType T) const { 2431 return toCharUnitsFromBits(getTypeAlign(T)); 2432 } 2433 CharUnits ASTContext::getTypeAlignInChars(const Type *T) const { 2434 return toCharUnitsFromBits(getTypeAlign(T)); 2435 } 2436 2437 /// getTypeUnadjustedAlignInChars - Return the ABI-specified alignment of a 2438 /// type, in characters, before alignment adustments. This method does 2439 /// not work on incomplete types. 2440 CharUnits ASTContext::getTypeUnadjustedAlignInChars(QualType T) const { 2441 return toCharUnitsFromBits(getTypeUnadjustedAlign(T)); 2442 } 2443 CharUnits ASTContext::getTypeUnadjustedAlignInChars(const Type *T) const { 2444 return toCharUnitsFromBits(getTypeUnadjustedAlign(T)); 2445 } 2446 2447 /// getPreferredTypeAlign - Return the "preferred" alignment of the specified 2448 /// type for the current target in bits. This can be different than the ABI 2449 /// alignment in cases where it is beneficial for performance or backwards 2450 /// compatibility preserving to overalign a data type. (Note: despite the name, 2451 /// the preferred alignment is ABI-impacting, and not an optimization.) 2452 unsigned ASTContext::getPreferredTypeAlign(const Type *T) const { 2453 TypeInfo TI = getTypeInfo(T); 2454 unsigned ABIAlign = TI.Align; 2455 2456 T = T->getBaseElementTypeUnsafe(); 2457 2458 // The preferred alignment of member pointers is that of a pointer. 2459 if (T->isMemberPointerType()) 2460 return getPreferredTypeAlign(getPointerDiffType().getTypePtr()); 2461 2462 if (!Target->allowsLargerPreferedTypeAlignment()) 2463 return ABIAlign; 2464 2465 if (const auto *RT = T->getAs<RecordType>()) { 2466 if (TI.AlignIsRequired || RT->getDecl()->isInvalidDecl()) 2467 return ABIAlign; 2468 2469 unsigned PreferredAlign = static_cast<unsigned>( 2470 toBits(getASTRecordLayout(RT->getDecl()).PreferredAlignment)); 2471 assert(PreferredAlign >= ABIAlign && 2472 "PreferredAlign should be at least as large as ABIAlign."); 2473 return PreferredAlign; 2474 } 2475 2476 // Double (and, for targets supporting AIX `power` alignment, long double) and 2477 // long long should be naturally aligned (despite requiring less alignment) if 2478 // possible. 2479 if (const auto *CT = T->getAs<ComplexType>()) 2480 T = CT->getElementType().getTypePtr(); 2481 if (const auto *ET = T->getAs<EnumType>()) 2482 T = ET->getDecl()->getIntegerType().getTypePtr(); 2483 if (T->isSpecificBuiltinType(BuiltinType::Double) || 2484 T->isSpecificBuiltinType(BuiltinType::LongLong) || 2485 T->isSpecificBuiltinType(BuiltinType::ULongLong) || 2486 (T->isSpecificBuiltinType(BuiltinType::LongDouble) && 2487 Target->defaultsToAIXPowerAlignment())) 2488 // Don't increase the alignment if an alignment attribute was specified on a 2489 // typedef declaration. 2490 if (!TI.AlignIsRequired) 2491 return std::max(ABIAlign, (unsigned)getTypeSize(T)); 2492 2493 return ABIAlign; 2494 } 2495 2496 /// getTargetDefaultAlignForAttributeAligned - Return the default alignment 2497 /// for __attribute__((aligned)) on this target, to be used if no alignment 2498 /// value is specified. 2499 unsigned ASTContext::getTargetDefaultAlignForAttributeAligned() const { 2500 return getTargetInfo().getDefaultAlignForAttributeAligned(); 2501 } 2502 2503 /// getAlignOfGlobalVar - Return the alignment in bits that should be given 2504 /// to a global variable of the specified type. 2505 unsigned ASTContext::getAlignOfGlobalVar(QualType T) const { 2506 uint64_t TypeSize = getTypeSize(T.getTypePtr()); 2507 return std::max(getPreferredTypeAlign(T), 2508 getTargetInfo().getMinGlobalAlign(TypeSize)); 2509 } 2510 2511 /// getAlignOfGlobalVarInChars - Return the alignment in characters that 2512 /// should be given to a global variable of the specified type. 2513 CharUnits ASTContext::getAlignOfGlobalVarInChars(QualType T) const { 2514 return toCharUnitsFromBits(getAlignOfGlobalVar(T)); 2515 } 2516 2517 CharUnits ASTContext::getOffsetOfBaseWithVBPtr(const CXXRecordDecl *RD) const { 2518 CharUnits Offset = CharUnits::Zero(); 2519 const ASTRecordLayout *Layout = &getASTRecordLayout(RD); 2520 while (const CXXRecordDecl *Base = Layout->getBaseSharingVBPtr()) { 2521 Offset += Layout->getBaseClassOffset(Base); 2522 Layout = &getASTRecordLayout(Base); 2523 } 2524 return Offset; 2525 } 2526 2527 CharUnits ASTContext::getMemberPointerPathAdjustment(const APValue &MP) const { 2528 const ValueDecl *MPD = MP.getMemberPointerDecl(); 2529 CharUnits ThisAdjustment = CharUnits::Zero(); 2530 ArrayRef<const CXXRecordDecl*> Path = MP.getMemberPointerPath(); 2531 bool DerivedMember = MP.isMemberPointerToDerivedMember(); 2532 const CXXRecordDecl *RD = cast<CXXRecordDecl>(MPD->getDeclContext()); 2533 for (unsigned I = 0, N = Path.size(); I != N; ++I) { 2534 const CXXRecordDecl *Base = RD; 2535 const CXXRecordDecl *Derived = Path[I]; 2536 if (DerivedMember) 2537 std::swap(Base, Derived); 2538 ThisAdjustment += getASTRecordLayout(Derived).getBaseClassOffset(Base); 2539 RD = Path[I]; 2540 } 2541 if (DerivedMember) 2542 ThisAdjustment = -ThisAdjustment; 2543 return ThisAdjustment; 2544 } 2545 2546 /// DeepCollectObjCIvars - 2547 /// This routine first collects all declared, but not synthesized, ivars in 2548 /// super class and then collects all ivars, including those synthesized for 2549 /// current class. This routine is used for implementation of current class 2550 /// when all ivars, declared and synthesized are known. 2551 void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI, 2552 bool leafClass, 2553 SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const { 2554 if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass()) 2555 DeepCollectObjCIvars(SuperClass, false, Ivars); 2556 if (!leafClass) { 2557 for (const auto *I : OI->ivars()) 2558 Ivars.push_back(I); 2559 } else { 2560 auto *IDecl = const_cast<ObjCInterfaceDecl *>(OI); 2561 for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv; 2562 Iv= Iv->getNextIvar()) 2563 Ivars.push_back(Iv); 2564 } 2565 } 2566 2567 /// CollectInheritedProtocols - Collect all protocols in current class and 2568 /// those inherited by it. 2569 void ASTContext::CollectInheritedProtocols(const Decl *CDecl, 2570 llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) { 2571 if (const auto *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) { 2572 // We can use protocol_iterator here instead of 2573 // all_referenced_protocol_iterator since we are walking all categories. 2574 for (auto *Proto : OI->all_referenced_protocols()) { 2575 CollectInheritedProtocols(Proto, Protocols); 2576 } 2577 2578 // Categories of this Interface. 2579 for (const auto *Cat : OI->visible_categories()) 2580 CollectInheritedProtocols(Cat, Protocols); 2581 2582 if (ObjCInterfaceDecl *SD = OI->getSuperClass()) 2583 while (SD) { 2584 CollectInheritedProtocols(SD, Protocols); 2585 SD = SD->getSuperClass(); 2586 } 2587 } else if (const auto *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) { 2588 for (auto *Proto : OC->protocols()) { 2589 CollectInheritedProtocols(Proto, Protocols); 2590 } 2591 } else if (const auto *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) { 2592 // Insert the protocol. 2593 if (!Protocols.insert( 2594 const_cast<ObjCProtocolDecl *>(OP->getCanonicalDecl())).second) 2595 return; 2596 2597 for (auto *Proto : OP->protocols()) 2598 CollectInheritedProtocols(Proto, Protocols); 2599 } 2600 } 2601 2602 static bool unionHasUniqueObjectRepresentations(const ASTContext &Context, 2603 const RecordDecl *RD) { 2604 assert(RD->isUnion() && "Must be union type"); 2605 CharUnits UnionSize = Context.getTypeSizeInChars(RD->getTypeForDecl()); 2606 2607 for (const auto *Field : RD->fields()) { 2608 if (!Context.hasUniqueObjectRepresentations(Field->getType())) 2609 return false; 2610 CharUnits FieldSize = Context.getTypeSizeInChars(Field->getType()); 2611 if (FieldSize != UnionSize) 2612 return false; 2613 } 2614 return !RD->field_empty(); 2615 } 2616 2617 static bool isStructEmpty(QualType Ty) { 2618 const RecordDecl *RD = Ty->castAs<RecordType>()->getDecl(); 2619 2620 if (!RD->field_empty()) 2621 return false; 2622 2623 if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RD)) 2624 return ClassDecl->isEmpty(); 2625 2626 return true; 2627 } 2628 2629 static llvm::Optional<int64_t> 2630 structHasUniqueObjectRepresentations(const ASTContext &Context, 2631 const RecordDecl *RD) { 2632 assert(!RD->isUnion() && "Must be struct/class type"); 2633 const auto &Layout = Context.getASTRecordLayout(RD); 2634 2635 int64_t CurOffsetInBits = 0; 2636 if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RD)) { 2637 if (ClassDecl->isDynamicClass()) 2638 return llvm::None; 2639 2640 SmallVector<std::pair<QualType, int64_t>, 4> Bases; 2641 for (const auto &Base : ClassDecl->bases()) { 2642 // Empty types can be inherited from, and non-empty types can potentially 2643 // have tail padding, so just make sure there isn't an error. 2644 if (!isStructEmpty(Base.getType())) { 2645 llvm::Optional<int64_t> Size = structHasUniqueObjectRepresentations( 2646 Context, Base.getType()->castAs<RecordType>()->getDecl()); 2647 if (!Size) 2648 return llvm::None; 2649 Bases.emplace_back(Base.getType(), Size.getValue()); 2650 } 2651 } 2652 2653 llvm::sort(Bases, [&](const std::pair<QualType, int64_t> &L, 2654 const std::pair<QualType, int64_t> &R) { 2655 return Layout.getBaseClassOffset(L.first->getAsCXXRecordDecl()) < 2656 Layout.getBaseClassOffset(R.first->getAsCXXRecordDecl()); 2657 }); 2658 2659 for (const auto &Base : Bases) { 2660 int64_t BaseOffset = Context.toBits( 2661 Layout.getBaseClassOffset(Base.first->getAsCXXRecordDecl())); 2662 int64_t BaseSize = Base.second; 2663 if (BaseOffset != CurOffsetInBits) 2664 return llvm::None; 2665 CurOffsetInBits = BaseOffset + BaseSize; 2666 } 2667 } 2668 2669 for (const auto *Field : RD->fields()) { 2670 if (!Field->getType()->isReferenceType() && 2671 !Context.hasUniqueObjectRepresentations(Field->getType())) 2672 return llvm::None; 2673 2674 int64_t FieldSizeInBits = 2675 Context.toBits(Context.getTypeSizeInChars(Field->getType())); 2676 if (Field->isBitField()) { 2677 int64_t BitfieldSize = Field->getBitWidthValue(Context); 2678 2679 if (BitfieldSize > FieldSizeInBits) 2680 return llvm::None; 2681 FieldSizeInBits = BitfieldSize; 2682 } 2683 2684 int64_t FieldOffsetInBits = Context.getFieldOffset(Field); 2685 2686 if (FieldOffsetInBits != CurOffsetInBits) 2687 return llvm::None; 2688 2689 CurOffsetInBits = FieldSizeInBits + FieldOffsetInBits; 2690 } 2691 2692 return CurOffsetInBits; 2693 } 2694 2695 bool ASTContext::hasUniqueObjectRepresentations(QualType Ty) const { 2696 // C++17 [meta.unary.prop]: 2697 // The predicate condition for a template specialization 2698 // has_unique_object_representations<T> shall be 2699 // satisfied if and only if: 2700 // (9.1) - T is trivially copyable, and 2701 // (9.2) - any two objects of type T with the same value have the same 2702 // object representation, where two objects 2703 // of array or non-union class type are considered to have the same value 2704 // if their respective sequences of 2705 // direct subobjects have the same values, and two objects of union type 2706 // are considered to have the same 2707 // value if they have the same active member and the corresponding members 2708 // have the same value. 2709 // The set of scalar types for which this condition holds is 2710 // implementation-defined. [ Note: If a type has padding 2711 // bits, the condition does not hold; otherwise, the condition holds true 2712 // for unsigned integral types. -- end note ] 2713 assert(!Ty.isNull() && "Null QualType sent to unique object rep check"); 2714 2715 // Arrays are unique only if their element type is unique. 2716 if (Ty->isArrayType()) 2717 return hasUniqueObjectRepresentations(getBaseElementType(Ty)); 2718 2719 // (9.1) - T is trivially copyable... 2720 if (!Ty.isTriviallyCopyableType(*this)) 2721 return false; 2722 2723 // All integrals and enums are unique. 2724 if (Ty->isIntegralOrEnumerationType()) 2725 return true; 2726 2727 // All other pointers are unique. 2728 if (Ty->isPointerType()) 2729 return true; 2730 2731 if (Ty->isMemberPointerType()) { 2732 const auto *MPT = Ty->getAs<MemberPointerType>(); 2733 return !ABI->getMemberPointerInfo(MPT).HasPadding; 2734 } 2735 2736 if (Ty->isRecordType()) { 2737 const RecordDecl *Record = Ty->castAs<RecordType>()->getDecl(); 2738 2739 if (Record->isInvalidDecl()) 2740 return false; 2741 2742 if (Record->isUnion()) 2743 return unionHasUniqueObjectRepresentations(*this, Record); 2744 2745 Optional<int64_t> StructSize = 2746 structHasUniqueObjectRepresentations(*this, Record); 2747 2748 return StructSize && 2749 StructSize.getValue() == static_cast<int64_t>(getTypeSize(Ty)); 2750 } 2751 2752 // FIXME: More cases to handle here (list by rsmith): 2753 // vectors (careful about, eg, vector of 3 foo) 2754 // _Complex int and friends 2755 // _Atomic T 2756 // Obj-C block pointers 2757 // Obj-C object pointers 2758 // and perhaps OpenCL's various builtin types (pipe, sampler_t, event_t, 2759 // clk_event_t, queue_t, reserve_id_t) 2760 // There're also Obj-C class types and the Obj-C selector type, but I think it 2761 // makes sense for those to return false here. 2762 2763 return false; 2764 } 2765 2766 unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const { 2767 unsigned count = 0; 2768 // Count ivars declared in class extension. 2769 for (const auto *Ext : OI->known_extensions()) 2770 count += Ext->ivar_size(); 2771 2772 // Count ivar defined in this class's implementation. This 2773 // includes synthesized ivars. 2774 if (ObjCImplementationDecl *ImplDecl = OI->getImplementation()) 2775 count += ImplDecl->ivar_size(); 2776 2777 return count; 2778 } 2779 2780 bool ASTContext::isSentinelNullExpr(const Expr *E) { 2781 if (!E) 2782 return false; 2783 2784 // nullptr_t is always treated as null. 2785 if (E->getType()->isNullPtrType()) return true; 2786 2787 if (E->getType()->isAnyPointerType() && 2788 E->IgnoreParenCasts()->isNullPointerConstant(*this, 2789 Expr::NPC_ValueDependentIsNull)) 2790 return true; 2791 2792 // Unfortunately, __null has type 'int'. 2793 if (isa<GNUNullExpr>(E)) return true; 2794 2795 return false; 2796 } 2797 2798 /// Get the implementation of ObjCInterfaceDecl, or nullptr if none 2799 /// exists. 2800 ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) { 2801 llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator 2802 I = ObjCImpls.find(D); 2803 if (I != ObjCImpls.end()) 2804 return cast<ObjCImplementationDecl>(I->second); 2805 return nullptr; 2806 } 2807 2808 /// Get the implementation of ObjCCategoryDecl, or nullptr if none 2809 /// exists. 2810 ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) { 2811 llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator 2812 I = ObjCImpls.find(D); 2813 if (I != ObjCImpls.end()) 2814 return cast<ObjCCategoryImplDecl>(I->second); 2815 return nullptr; 2816 } 2817 2818 /// Set the implementation of ObjCInterfaceDecl. 2819 void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD, 2820 ObjCImplementationDecl *ImplD) { 2821 assert(IFaceD && ImplD && "Passed null params"); 2822 ObjCImpls[IFaceD] = ImplD; 2823 } 2824 2825 /// Set the implementation of ObjCCategoryDecl. 2826 void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD, 2827 ObjCCategoryImplDecl *ImplD) { 2828 assert(CatD && ImplD && "Passed null params"); 2829 ObjCImpls[CatD] = ImplD; 2830 } 2831 2832 const ObjCMethodDecl * 2833 ASTContext::getObjCMethodRedeclaration(const ObjCMethodDecl *MD) const { 2834 return ObjCMethodRedecls.lookup(MD); 2835 } 2836 2837 void ASTContext::setObjCMethodRedeclaration(const ObjCMethodDecl *MD, 2838 const ObjCMethodDecl *Redecl) { 2839 assert(!getObjCMethodRedeclaration(MD) && "MD already has a redeclaration"); 2840 ObjCMethodRedecls[MD] = Redecl; 2841 } 2842 2843 const ObjCInterfaceDecl *ASTContext::getObjContainingInterface( 2844 const NamedDecl *ND) const { 2845 if (const auto *ID = dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext())) 2846 return ID; 2847 if (const auto *CD = dyn_cast<ObjCCategoryDecl>(ND->getDeclContext())) 2848 return CD->getClassInterface(); 2849 if (const auto *IMD = dyn_cast<ObjCImplDecl>(ND->getDeclContext())) 2850 return IMD->getClassInterface(); 2851 2852 return nullptr; 2853 } 2854 2855 /// Get the copy initialization expression of VarDecl, or nullptr if 2856 /// none exists. 2857 BlockVarCopyInit ASTContext::getBlockVarCopyInit(const VarDecl *VD) const { 2858 assert(VD && "Passed null params"); 2859 assert(VD->hasAttr<BlocksAttr>() && 2860 "getBlockVarCopyInits - not __block var"); 2861 auto I = BlockVarCopyInits.find(VD); 2862 if (I != BlockVarCopyInits.end()) 2863 return I->second; 2864 return {nullptr, false}; 2865 } 2866 2867 /// Set the copy initialization expression of a block var decl. 2868 void ASTContext::setBlockVarCopyInit(const VarDecl*VD, Expr *CopyExpr, 2869 bool CanThrow) { 2870 assert(VD && CopyExpr && "Passed null params"); 2871 assert(VD->hasAttr<BlocksAttr>() && 2872 "setBlockVarCopyInits - not __block var"); 2873 BlockVarCopyInits[VD].setExprAndFlag(CopyExpr, CanThrow); 2874 } 2875 2876 TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T, 2877 unsigned DataSize) const { 2878 if (!DataSize) 2879 DataSize = TypeLoc::getFullDataSizeForType(T); 2880 else 2881 assert(DataSize == TypeLoc::getFullDataSizeForType(T) && 2882 "incorrect data size provided to CreateTypeSourceInfo!"); 2883 2884 auto *TInfo = 2885 (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8); 2886 new (TInfo) TypeSourceInfo(T); 2887 return TInfo; 2888 } 2889 2890 TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T, 2891 SourceLocation L) const { 2892 TypeSourceInfo *DI = CreateTypeSourceInfo(T); 2893 DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L); 2894 return DI; 2895 } 2896 2897 const ASTRecordLayout & 2898 ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const { 2899 return getObjCLayout(D, nullptr); 2900 } 2901 2902 const ASTRecordLayout & 2903 ASTContext::getASTObjCImplementationLayout( 2904 const ObjCImplementationDecl *D) const { 2905 return getObjCLayout(D->getClassInterface(), D); 2906 } 2907 2908 //===----------------------------------------------------------------------===// 2909 // Type creation/memoization methods 2910 //===----------------------------------------------------------------------===// 2911 2912 QualType 2913 ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const { 2914 unsigned fastQuals = quals.getFastQualifiers(); 2915 quals.removeFastQualifiers(); 2916 2917 // Check if we've already instantiated this type. 2918 llvm::FoldingSetNodeID ID; 2919 ExtQuals::Profile(ID, baseType, quals); 2920 void *insertPos = nullptr; 2921 if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) { 2922 assert(eq->getQualifiers() == quals); 2923 return QualType(eq, fastQuals); 2924 } 2925 2926 // If the base type is not canonical, make the appropriate canonical type. 2927 QualType canon; 2928 if (!baseType->isCanonicalUnqualified()) { 2929 SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split(); 2930 canonSplit.Quals.addConsistentQualifiers(quals); 2931 canon = getExtQualType(canonSplit.Ty, canonSplit.Quals); 2932 2933 // Re-find the insert position. 2934 (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos); 2935 } 2936 2937 auto *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals); 2938 ExtQualNodes.InsertNode(eq, insertPos); 2939 return QualType(eq, fastQuals); 2940 } 2941 2942 QualType ASTContext::getAddrSpaceQualType(QualType T, 2943 LangAS AddressSpace) const { 2944 QualType CanT = getCanonicalType(T); 2945 if (CanT.getAddressSpace() == AddressSpace) 2946 return T; 2947 2948 // If we are composing extended qualifiers together, merge together 2949 // into one ExtQuals node. 2950 QualifierCollector Quals; 2951 const Type *TypeNode = Quals.strip(T); 2952 2953 // If this type already has an address space specified, it cannot get 2954 // another one. 2955 assert(!Quals.hasAddressSpace() && 2956 "Type cannot be in multiple addr spaces!"); 2957 Quals.addAddressSpace(AddressSpace); 2958 2959 return getExtQualType(TypeNode, Quals); 2960 } 2961 2962 QualType ASTContext::removeAddrSpaceQualType(QualType T) const { 2963 // If the type is not qualified with an address space, just return it 2964 // immediately. 2965 if (!T.hasAddressSpace()) 2966 return T; 2967 2968 // If we are composing extended qualifiers together, merge together 2969 // into one ExtQuals node. 2970 QualifierCollector Quals; 2971 const Type *TypeNode; 2972 2973 while (T.hasAddressSpace()) { 2974 TypeNode = Quals.strip(T); 2975 2976 // If the type no longer has an address space after stripping qualifiers, 2977 // jump out. 2978 if (!QualType(TypeNode, 0).hasAddressSpace()) 2979 break; 2980 2981 // There might be sugar in the way. Strip it and try again. 2982 T = T.getSingleStepDesugaredType(*this); 2983 } 2984 2985 Quals.removeAddressSpace(); 2986 2987 // Removal of the address space can mean there are no longer any 2988 // non-fast qualifiers, so creating an ExtQualType isn't possible (asserts) 2989 // or required. 2990 if (Quals.hasNonFastQualifiers()) 2991 return getExtQualType(TypeNode, Quals); 2992 else 2993 return QualType(TypeNode, Quals.getFastQualifiers()); 2994 } 2995 2996 QualType ASTContext::getObjCGCQualType(QualType T, 2997 Qualifiers::GC GCAttr) const { 2998 QualType CanT = getCanonicalType(T); 2999 if (CanT.getObjCGCAttr() == GCAttr) 3000 return T; 3001 3002 if (const auto *ptr = T->getAs<PointerType>()) { 3003 QualType Pointee = ptr->getPointeeType(); 3004 if (Pointee->isAnyPointerType()) { 3005 QualType ResultType = getObjCGCQualType(Pointee, GCAttr); 3006 return getPointerType(ResultType); 3007 } 3008 } 3009 3010 // If we are composing extended qualifiers together, merge together 3011 // into one ExtQuals node. 3012 QualifierCollector Quals; 3013 const Type *TypeNode = Quals.strip(T); 3014 3015 // If this type already has an ObjCGC specified, it cannot get 3016 // another one. 3017 assert(!Quals.hasObjCGCAttr() && 3018 "Type cannot have multiple ObjCGCs!"); 3019 Quals.addObjCGCAttr(GCAttr); 3020 3021 return getExtQualType(TypeNode, Quals); 3022 } 3023 3024 QualType ASTContext::removePtrSizeAddrSpace(QualType T) const { 3025 if (const PointerType *Ptr = T->getAs<PointerType>()) { 3026 QualType Pointee = Ptr->getPointeeType(); 3027 if (isPtrSizeAddressSpace(Pointee.getAddressSpace())) { 3028 return getPointerType(removeAddrSpaceQualType(Pointee)); 3029 } 3030 } 3031 return T; 3032 } 3033 3034 const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T, 3035 FunctionType::ExtInfo Info) { 3036 if (T->getExtInfo() == Info) 3037 return T; 3038 3039 QualType Result; 3040 if (const auto *FNPT = dyn_cast<FunctionNoProtoType>(T)) { 3041 Result = getFunctionNoProtoType(FNPT->getReturnType(), Info); 3042 } else { 3043 const auto *FPT = cast<FunctionProtoType>(T); 3044 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); 3045 EPI.ExtInfo = Info; 3046 Result = getFunctionType(FPT->getReturnType(), FPT->getParamTypes(), EPI); 3047 } 3048 3049 return cast<FunctionType>(Result.getTypePtr()); 3050 } 3051 3052 void ASTContext::adjustDeducedFunctionResultType(FunctionDecl *FD, 3053 QualType ResultType) { 3054 FD = FD->getMostRecentDecl(); 3055 while (true) { 3056 const auto *FPT = FD->getType()->castAs<FunctionProtoType>(); 3057 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); 3058 FD->setType(getFunctionType(ResultType, FPT->getParamTypes(), EPI)); 3059 if (FunctionDecl *Next = FD->getPreviousDecl()) 3060 FD = Next; 3061 else 3062 break; 3063 } 3064 if (ASTMutationListener *L = getASTMutationListener()) 3065 L->DeducedReturnType(FD, ResultType); 3066 } 3067 3068 /// Get a function type and produce the equivalent function type with the 3069 /// specified exception specification. Type sugar that can be present on a 3070 /// declaration of a function with an exception specification is permitted 3071 /// and preserved. Other type sugar (for instance, typedefs) is not. 3072 QualType ASTContext::getFunctionTypeWithExceptionSpec( 3073 QualType Orig, const FunctionProtoType::ExceptionSpecInfo &ESI) { 3074 // Might have some parens. 3075 if (const auto *PT = dyn_cast<ParenType>(Orig)) 3076 return getParenType( 3077 getFunctionTypeWithExceptionSpec(PT->getInnerType(), ESI)); 3078 3079 // Might be wrapped in a macro qualified type. 3080 if (const auto *MQT = dyn_cast<MacroQualifiedType>(Orig)) 3081 return getMacroQualifiedType( 3082 getFunctionTypeWithExceptionSpec(MQT->getUnderlyingType(), ESI), 3083 MQT->getMacroIdentifier()); 3084 3085 // Might have a calling-convention attribute. 3086 if (const auto *AT = dyn_cast<AttributedType>(Orig)) 3087 return getAttributedType( 3088 AT->getAttrKind(), 3089 getFunctionTypeWithExceptionSpec(AT->getModifiedType(), ESI), 3090 getFunctionTypeWithExceptionSpec(AT->getEquivalentType(), ESI)); 3091 3092 // Anything else must be a function type. Rebuild it with the new exception 3093 // specification. 3094 const auto *Proto = Orig->castAs<FunctionProtoType>(); 3095 return getFunctionType( 3096 Proto->getReturnType(), Proto->getParamTypes(), 3097 Proto->getExtProtoInfo().withExceptionSpec(ESI)); 3098 } 3099 3100 bool ASTContext::hasSameFunctionTypeIgnoringExceptionSpec(QualType T, 3101 QualType U) { 3102 return hasSameType(T, U) || 3103 (getLangOpts().CPlusPlus17 && 3104 hasSameType(getFunctionTypeWithExceptionSpec(T, EST_None), 3105 getFunctionTypeWithExceptionSpec(U, EST_None))); 3106 } 3107 3108 QualType ASTContext::getFunctionTypeWithoutPtrSizes(QualType T) { 3109 if (const auto *Proto = T->getAs<FunctionProtoType>()) { 3110 QualType RetTy = removePtrSizeAddrSpace(Proto->getReturnType()); 3111 SmallVector<QualType, 16> Args(Proto->param_types()); 3112 for (unsigned i = 0, n = Args.size(); i != n; ++i) 3113 Args[i] = removePtrSizeAddrSpace(Args[i]); 3114 return getFunctionType(RetTy, Args, Proto->getExtProtoInfo()); 3115 } 3116 3117 if (const FunctionNoProtoType *Proto = T->getAs<FunctionNoProtoType>()) { 3118 QualType RetTy = removePtrSizeAddrSpace(Proto->getReturnType()); 3119 return getFunctionNoProtoType(RetTy, Proto->getExtInfo()); 3120 } 3121 3122 return T; 3123 } 3124 3125 bool ASTContext::hasSameFunctionTypeIgnoringPtrSizes(QualType T, QualType U) { 3126 return hasSameType(T, U) || 3127 hasSameType(getFunctionTypeWithoutPtrSizes(T), 3128 getFunctionTypeWithoutPtrSizes(U)); 3129 } 3130 3131 void ASTContext::adjustExceptionSpec( 3132 FunctionDecl *FD, const FunctionProtoType::ExceptionSpecInfo &ESI, 3133 bool AsWritten) { 3134 // Update the type. 3135 QualType Updated = 3136 getFunctionTypeWithExceptionSpec(FD->getType(), ESI); 3137 FD->setType(Updated); 3138 3139 if (!AsWritten) 3140 return; 3141 3142 // Update the type in the type source information too. 3143 if (TypeSourceInfo *TSInfo = FD->getTypeSourceInfo()) { 3144 // If the type and the type-as-written differ, we may need to update 3145 // the type-as-written too. 3146 if (TSInfo->getType() != FD->getType()) 3147 Updated = getFunctionTypeWithExceptionSpec(TSInfo->getType(), ESI); 3148 3149 // FIXME: When we get proper type location information for exceptions, 3150 // we'll also have to rebuild the TypeSourceInfo. For now, we just patch 3151 // up the TypeSourceInfo; 3152 assert(TypeLoc::getFullDataSizeForType(Updated) == 3153 TypeLoc::getFullDataSizeForType(TSInfo->getType()) && 3154 "TypeLoc size mismatch from updating exception specification"); 3155 TSInfo->overrideType(Updated); 3156 } 3157 } 3158 3159 /// getComplexType - Return the uniqued reference to the type for a complex 3160 /// number with the specified element type. 3161 QualType ASTContext::getComplexType(QualType T) const { 3162 // Unique pointers, to guarantee there is only one pointer of a particular 3163 // structure. 3164 llvm::FoldingSetNodeID ID; 3165 ComplexType::Profile(ID, T); 3166 3167 void *InsertPos = nullptr; 3168 if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos)) 3169 return QualType(CT, 0); 3170 3171 // If the pointee type isn't canonical, this won't be a canonical type either, 3172 // so fill in the canonical type field. 3173 QualType Canonical; 3174 if (!T.isCanonical()) { 3175 Canonical = getComplexType(getCanonicalType(T)); 3176 3177 // Get the new insert position for the node we care about. 3178 ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos); 3179 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; 3180 } 3181 auto *New = new (*this, TypeAlignment) ComplexType(T, Canonical); 3182 Types.push_back(New); 3183 ComplexTypes.InsertNode(New, InsertPos); 3184 return QualType(New, 0); 3185 } 3186 3187 /// getPointerType - Return the uniqued reference to the type for a pointer to 3188 /// the specified type. 3189 QualType ASTContext::getPointerType(QualType T) const { 3190 // Unique pointers, to guarantee there is only one pointer of a particular 3191 // structure. 3192 llvm::FoldingSetNodeID ID; 3193 PointerType::Profile(ID, T); 3194 3195 void *InsertPos = nullptr; 3196 if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos)) 3197 return QualType(PT, 0); 3198 3199 // If the pointee type isn't canonical, this won't be a canonical type either, 3200 // so fill in the canonical type field. 3201 QualType Canonical; 3202 if (!T.isCanonical()) { 3203 Canonical = getPointerType(getCanonicalType(T)); 3204 3205 // Get the new insert position for the node we care about. 3206 PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos); 3207 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; 3208 } 3209 auto *New = new (*this, TypeAlignment) PointerType(T, Canonical); 3210 Types.push_back(New); 3211 PointerTypes.InsertNode(New, InsertPos); 3212 return QualType(New, 0); 3213 } 3214 3215 QualType ASTContext::getAdjustedType(QualType Orig, QualType New) const { 3216 llvm::FoldingSetNodeID ID; 3217 AdjustedType::Profile(ID, Orig, New); 3218 void *InsertPos = nullptr; 3219 AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos); 3220 if (AT) 3221 return QualType(AT, 0); 3222 3223 QualType Canonical = getCanonicalType(New); 3224 3225 // Get the new insert position for the node we care about. 3226 AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos); 3227 assert(!AT && "Shouldn't be in the map!"); 3228 3229 AT = new (*this, TypeAlignment) 3230 AdjustedType(Type::Adjusted, Orig, New, Canonical); 3231 Types.push_back(AT); 3232 AdjustedTypes.InsertNode(AT, InsertPos); 3233 return QualType(AT, 0); 3234 } 3235 3236 QualType ASTContext::getDecayedType(QualType T) const { 3237 assert((T->isArrayType() || T->isFunctionType()) && "T does not decay"); 3238 3239 QualType Decayed; 3240 3241 // C99 6.7.5.3p7: 3242 // A declaration of a parameter as "array of type" shall be 3243 // adjusted to "qualified pointer to type", where the type 3244 // qualifiers (if any) are those specified within the [ and ] of 3245 // the array type derivation. 3246 if (T->isArrayType()) 3247 Decayed = getArrayDecayedType(T); 3248 3249 // C99 6.7.5.3p8: 3250 // A declaration of a parameter as "function returning type" 3251 // shall be adjusted to "pointer to function returning type", as 3252 // in 6.3.2.1. 3253 if (T->isFunctionType()) 3254 Decayed = getPointerType(T); 3255 3256 llvm::FoldingSetNodeID ID; 3257 AdjustedType::Profile(ID, T, Decayed); 3258 void *InsertPos = nullptr; 3259 AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos); 3260 if (AT) 3261 return QualType(AT, 0); 3262 3263 QualType Canonical = getCanonicalType(Decayed); 3264 3265 // Get the new insert position for the node we care about. 3266 AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos); 3267 assert(!AT && "Shouldn't be in the map!"); 3268 3269 AT = new (*this, TypeAlignment) DecayedType(T, Decayed, Canonical); 3270 Types.push_back(AT); 3271 AdjustedTypes.InsertNode(AT, InsertPos); 3272 return QualType(AT, 0); 3273 } 3274 3275 /// getBlockPointerType - Return the uniqued reference to the type for 3276 /// a pointer to the specified block. 3277 QualType ASTContext::getBlockPointerType(QualType T) const { 3278 assert(T->isFunctionType() && "block of function types only"); 3279 // Unique pointers, to guarantee there is only one block of a particular 3280 // structure. 3281 llvm::FoldingSetNodeID ID; 3282 BlockPointerType::Profile(ID, T); 3283 3284 void *InsertPos = nullptr; 3285 if (BlockPointerType *PT = 3286 BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos)) 3287 return QualType(PT, 0); 3288 3289 // If the block pointee type isn't canonical, this won't be a canonical 3290 // type either so fill in the canonical type field. 3291 QualType Canonical; 3292 if (!T.isCanonical()) { 3293 Canonical = getBlockPointerType(getCanonicalType(T)); 3294 3295 // Get the new insert position for the node we care about. 3296 BlockPointerType *NewIP = 3297 BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos); 3298 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; 3299 } 3300 auto *New = new (*this, TypeAlignment) BlockPointerType(T, Canonical); 3301 Types.push_back(New); 3302 BlockPointerTypes.InsertNode(New, InsertPos); 3303 return QualType(New, 0); 3304 } 3305 3306 /// getLValueReferenceType - Return the uniqued reference to the type for an 3307 /// lvalue reference to the specified type. 3308 QualType 3309 ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const { 3310 assert(getCanonicalType(T) != OverloadTy && 3311 "Unresolved overloaded function type"); 3312 3313 // Unique pointers, to guarantee there is only one pointer of a particular 3314 // structure. 3315 llvm::FoldingSetNodeID ID; 3316 ReferenceType::Profile(ID, T, SpelledAsLValue); 3317 3318 void *InsertPos = nullptr; 3319 if (LValueReferenceType *RT = 3320 LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos)) 3321 return QualType(RT, 0); 3322 3323 const auto *InnerRef = T->getAs<ReferenceType>(); 3324 3325 // If the referencee type isn't canonical, this won't be a canonical type 3326 // either, so fill in the canonical type field. 3327 QualType Canonical; 3328 if (!SpelledAsLValue || InnerRef || !T.isCanonical()) { 3329 QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T); 3330 Canonical = getLValueReferenceType(getCanonicalType(PointeeType)); 3331 3332 // Get the new insert position for the node we care about. 3333 LValueReferenceType *NewIP = 3334 LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos); 3335 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; 3336 } 3337 3338 auto *New = new (*this, TypeAlignment) LValueReferenceType(T, Canonical, 3339 SpelledAsLValue); 3340 Types.push_back(New); 3341 LValueReferenceTypes.InsertNode(New, InsertPos); 3342 3343 return QualType(New, 0); 3344 } 3345 3346 /// getRValueReferenceType - Return the uniqued reference to the type for an 3347 /// rvalue reference to the specified type. 3348 QualType ASTContext::getRValueReferenceType(QualType T) const { 3349 // Unique pointers, to guarantee there is only one pointer of a particular 3350 // structure. 3351 llvm::FoldingSetNodeID ID; 3352 ReferenceType::Profile(ID, T, false); 3353 3354 void *InsertPos = nullptr; 3355 if (RValueReferenceType *RT = 3356 RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos)) 3357 return QualType(RT, 0); 3358 3359 const auto *InnerRef = T->getAs<ReferenceType>(); 3360 3361 // If the referencee type isn't canonical, this won't be a canonical type 3362 // either, so fill in the canonical type field. 3363 QualType Canonical; 3364 if (InnerRef || !T.isCanonical()) { 3365 QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T); 3366 Canonical = getRValueReferenceType(getCanonicalType(PointeeType)); 3367 3368 // Get the new insert position for the node we care about. 3369 RValueReferenceType *NewIP = 3370 RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos); 3371 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; 3372 } 3373 3374 auto *New = new (*this, TypeAlignment) RValueReferenceType(T, Canonical); 3375 Types.push_back(New); 3376 RValueReferenceTypes.InsertNode(New, InsertPos); 3377 return QualType(New, 0); 3378 } 3379 3380 /// getMemberPointerType - Return the uniqued reference to the type for a 3381 /// member pointer to the specified type, in the specified class. 3382 QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const { 3383 // Unique pointers, to guarantee there is only one pointer of a particular 3384 // structure. 3385 llvm::FoldingSetNodeID ID; 3386 MemberPointerType::Profile(ID, T, Cls); 3387 3388 void *InsertPos = nullptr; 3389 if (MemberPointerType *PT = 3390 MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos)) 3391 return QualType(PT, 0); 3392 3393 // If the pointee or class type isn't canonical, this won't be a canonical 3394 // type either, so fill in the canonical type field. 3395 QualType Canonical; 3396 if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) { 3397 Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls)); 3398 3399 // Get the new insert position for the node we care about. 3400 MemberPointerType *NewIP = 3401 MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos); 3402 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; 3403 } 3404 auto *New = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical); 3405 Types.push_back(New); 3406 MemberPointerTypes.InsertNode(New, InsertPos); 3407 return QualType(New, 0); 3408 } 3409 3410 /// getConstantArrayType - Return the unique reference to the type for an 3411 /// array of the specified element type. 3412 QualType ASTContext::getConstantArrayType(QualType EltTy, 3413 const llvm::APInt &ArySizeIn, 3414 const Expr *SizeExpr, 3415 ArrayType::ArraySizeModifier ASM, 3416 unsigned IndexTypeQuals) const { 3417 assert((EltTy->isDependentType() || 3418 EltTy->isIncompleteType() || EltTy->isConstantSizeType()) && 3419 "Constant array of VLAs is illegal!"); 3420 3421 // We only need the size as part of the type if it's instantiation-dependent. 3422 if (SizeExpr && !SizeExpr->isInstantiationDependent()) 3423 SizeExpr = nullptr; 3424 3425 // Convert the array size into a canonical width matching the pointer size for 3426 // the target. 3427 llvm::APInt ArySize(ArySizeIn); 3428 ArySize = ArySize.zextOrTrunc(Target->getMaxPointerWidth()); 3429 3430 llvm::FoldingSetNodeID ID; 3431 ConstantArrayType::Profile(ID, *this, EltTy, ArySize, SizeExpr, ASM, 3432 IndexTypeQuals); 3433 3434 void *InsertPos = nullptr; 3435 if (ConstantArrayType *ATP = 3436 ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos)) 3437 return QualType(ATP, 0); 3438 3439 // If the element type isn't canonical or has qualifiers, or the array bound 3440 // is instantiation-dependent, this won't be a canonical type either, so fill 3441 // in the canonical type field. 3442 QualType Canon; 3443 if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers() || SizeExpr) { 3444 SplitQualType canonSplit = getCanonicalType(EltTy).split(); 3445 Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize, nullptr, 3446 ASM, IndexTypeQuals); 3447 Canon = getQualifiedType(Canon, canonSplit.Quals); 3448 3449 // Get the new insert position for the node we care about. 3450 ConstantArrayType *NewIP = 3451 ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos); 3452 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; 3453 } 3454 3455 void *Mem = Allocate( 3456 ConstantArrayType::totalSizeToAlloc<const Expr *>(SizeExpr ? 1 : 0), 3457 TypeAlignment); 3458 auto *New = new (Mem) 3459 ConstantArrayType(EltTy, Canon, ArySize, SizeExpr, ASM, IndexTypeQuals); 3460 ConstantArrayTypes.InsertNode(New, InsertPos); 3461 Types.push_back(New); 3462 return QualType(New, 0); 3463 } 3464 3465 /// getVariableArrayDecayedType - Turns the given type, which may be 3466 /// variably-modified, into the corresponding type with all the known 3467 /// sizes replaced with [*]. 3468 QualType ASTContext::getVariableArrayDecayedType(QualType type) const { 3469 // Vastly most common case. 3470 if (!type->isVariablyModifiedType()) return type; 3471 3472 QualType result; 3473 3474 SplitQualType split = type.getSplitDesugaredType(); 3475 const Type *ty = split.Ty; 3476 switch (ty->getTypeClass()) { 3477 #define TYPE(Class, Base) 3478 #define ABSTRACT_TYPE(Class, Base) 3479 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: 3480 #include "clang/AST/TypeNodes.inc" 3481 llvm_unreachable("didn't desugar past all non-canonical types?"); 3482 3483 // These types should never be variably-modified. 3484 case Type::Builtin: 3485 case Type::Complex: 3486 case Type::Vector: 3487 case Type::DependentVector: 3488 case Type::ExtVector: 3489 case Type::DependentSizedExtVector: 3490 case Type::ConstantMatrix: 3491 case Type::DependentSizedMatrix: 3492 case Type::DependentAddressSpace: 3493 case Type::ObjCObject: 3494 case Type::ObjCInterface: 3495 case Type::ObjCObjectPointer: 3496 case Type::Record: 3497 case Type::Enum: 3498 case Type::UnresolvedUsing: 3499 case Type::TypeOfExpr: 3500 case Type::TypeOf: 3501 case Type::Decltype: 3502 case Type::UnaryTransform: 3503 case Type::DependentName: 3504 case Type::InjectedClassName: 3505 case Type::TemplateSpecialization: 3506 case Type::DependentTemplateSpecialization: 3507 case Type::TemplateTypeParm: 3508 case Type::SubstTemplateTypeParmPack: 3509 case Type::Auto: 3510 case Type::DeducedTemplateSpecialization: 3511 case Type::PackExpansion: 3512 case Type::ExtInt: 3513 case Type::DependentExtInt: 3514 llvm_unreachable("type should never be variably-modified"); 3515 3516 // These types can be variably-modified but should never need to 3517 // further decay. 3518 case Type::FunctionNoProto: 3519 case Type::FunctionProto: 3520 case Type::BlockPointer: 3521 case Type::MemberPointer: 3522 case Type::Pipe: 3523 return type; 3524 3525 // These types can be variably-modified. All these modifications 3526 // preserve structure except as noted by comments. 3527 // TODO: if we ever care about optimizing VLAs, there are no-op 3528 // optimizations available here. 3529 case Type::Pointer: 3530 result = getPointerType(getVariableArrayDecayedType( 3531 cast<PointerType>(ty)->getPointeeType())); 3532 break; 3533 3534 case Type::LValueReference: { 3535 const auto *lv = cast<LValueReferenceType>(ty); 3536 result = getLValueReferenceType( 3537 getVariableArrayDecayedType(lv->getPointeeType()), 3538 lv->isSpelledAsLValue()); 3539 break; 3540 } 3541 3542 case Type::RValueReference: { 3543 const auto *lv = cast<RValueReferenceType>(ty); 3544 result = getRValueReferenceType( 3545 getVariableArrayDecayedType(lv->getPointeeType())); 3546 break; 3547 } 3548 3549 case Type::Atomic: { 3550 const auto *at = cast<AtomicType>(ty); 3551 result = getAtomicType(getVariableArrayDecayedType(at->getValueType())); 3552 break; 3553 } 3554 3555 case Type::ConstantArray: { 3556 const auto *cat = cast<ConstantArrayType>(ty); 3557 result = getConstantArrayType( 3558 getVariableArrayDecayedType(cat->getElementType()), 3559 cat->getSize(), 3560 cat->getSizeExpr(), 3561 cat->getSizeModifier(), 3562 cat->getIndexTypeCVRQualifiers()); 3563 break; 3564 } 3565 3566 case Type::DependentSizedArray: { 3567 const auto *dat = cast<DependentSizedArrayType>(ty); 3568 result = getDependentSizedArrayType( 3569 getVariableArrayDecayedType(dat->getElementType()), 3570 dat->getSizeExpr(), 3571 dat->getSizeModifier(), 3572 dat->getIndexTypeCVRQualifiers(), 3573 dat->getBracketsRange()); 3574 break; 3575 } 3576 3577 // Turn incomplete types into [*] types. 3578 case Type::IncompleteArray: { 3579 const auto *iat = cast<IncompleteArrayType>(ty); 3580 result = getVariableArrayType( 3581 getVariableArrayDecayedType(iat->getElementType()), 3582 /*size*/ nullptr, 3583 ArrayType::Normal, 3584 iat->getIndexTypeCVRQualifiers(), 3585 SourceRange()); 3586 break; 3587 } 3588 3589 // Turn VLA types into [*] types. 3590 case Type::VariableArray: { 3591 const auto *vat = cast<VariableArrayType>(ty); 3592 result = getVariableArrayType( 3593 getVariableArrayDecayedType(vat->getElementType()), 3594 /*size*/ nullptr, 3595 ArrayType::Star, 3596 vat->getIndexTypeCVRQualifiers(), 3597 vat->getBracketsRange()); 3598 break; 3599 } 3600 } 3601 3602 // Apply the top-level qualifiers from the original. 3603 return getQualifiedType(result, split.Quals); 3604 } 3605 3606 /// getVariableArrayType - Returns a non-unique reference to the type for a 3607 /// variable array of the specified element type. 3608 QualType ASTContext::getVariableArrayType(QualType EltTy, 3609 Expr *NumElts, 3610 ArrayType::ArraySizeModifier ASM, 3611 unsigned IndexTypeQuals, 3612 SourceRange Brackets) const { 3613 // Since we don't unique expressions, it isn't possible to unique VLA's 3614 // that have an expression provided for their size. 3615 QualType Canon; 3616 3617 // Be sure to pull qualifiers off the element type. 3618 if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) { 3619 SplitQualType canonSplit = getCanonicalType(EltTy).split(); 3620 Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM, 3621 IndexTypeQuals, Brackets); 3622 Canon = getQualifiedType(Canon, canonSplit.Quals); 3623 } 3624 3625 auto *New = new (*this, TypeAlignment) 3626 VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets); 3627 3628 VariableArrayTypes.push_back(New); 3629 Types.push_back(New); 3630 return QualType(New, 0); 3631 } 3632 3633 /// getDependentSizedArrayType - Returns a non-unique reference to 3634 /// the type for a dependently-sized array of the specified element 3635 /// type. 3636 QualType ASTContext::getDependentSizedArrayType(QualType elementType, 3637 Expr *numElements, 3638 ArrayType::ArraySizeModifier ASM, 3639 unsigned elementTypeQuals, 3640 SourceRange brackets) const { 3641 assert((!numElements || numElements->isTypeDependent() || 3642 numElements->isValueDependent()) && 3643 "Size must be type- or value-dependent!"); 3644 3645 // Dependently-sized array types that do not have a specified number 3646 // of elements will have their sizes deduced from a dependent 3647 // initializer. We do no canonicalization here at all, which is okay 3648 // because they can't be used in most locations. 3649 if (!numElements) { 3650 auto *newType 3651 = new (*this, TypeAlignment) 3652 DependentSizedArrayType(*this, elementType, QualType(), 3653 numElements, ASM, elementTypeQuals, 3654 brackets); 3655 Types.push_back(newType); 3656 return QualType(newType, 0); 3657 } 3658 3659 // Otherwise, we actually build a new type every time, but we 3660 // also build a canonical type. 3661 3662 SplitQualType canonElementType = getCanonicalType(elementType).split(); 3663 3664 void *insertPos = nullptr; 3665 llvm::FoldingSetNodeID ID; 3666 DependentSizedArrayType::Profile(ID, *this, 3667 QualType(canonElementType.Ty, 0), 3668 ASM, elementTypeQuals, numElements); 3669 3670 // Look for an existing type with these properties. 3671 DependentSizedArrayType *canonTy = 3672 DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos); 3673 3674 // If we don't have one, build one. 3675 if (!canonTy) { 3676 canonTy = new (*this, TypeAlignment) 3677 DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0), 3678 QualType(), numElements, ASM, elementTypeQuals, 3679 brackets); 3680 DependentSizedArrayTypes.InsertNode(canonTy, insertPos); 3681 Types.push_back(canonTy); 3682 } 3683 3684 // Apply qualifiers from the element type to the array. 3685 QualType canon = getQualifiedType(QualType(canonTy,0), 3686 canonElementType.Quals); 3687 3688 // If we didn't need extra canonicalization for the element type or the size 3689 // expression, then just use that as our result. 3690 if (QualType(canonElementType.Ty, 0) == elementType && 3691 canonTy->getSizeExpr() == numElements) 3692 return canon; 3693 3694 // Otherwise, we need to build a type which follows the spelling 3695 // of the element type. 3696 auto *sugaredType 3697 = new (*this, TypeAlignment) 3698 DependentSizedArrayType(*this, elementType, canon, numElements, 3699 ASM, elementTypeQuals, brackets); 3700 Types.push_back(sugaredType); 3701 return QualType(sugaredType, 0); 3702 } 3703 3704 QualType ASTContext::getIncompleteArrayType(QualType elementType, 3705 ArrayType::ArraySizeModifier ASM, 3706 unsigned elementTypeQuals) const { 3707 llvm::FoldingSetNodeID ID; 3708 IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals); 3709 3710 void *insertPos = nullptr; 3711 if (IncompleteArrayType *iat = 3712 IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos)) 3713 return QualType(iat, 0); 3714 3715 // If the element type isn't canonical, this won't be a canonical type 3716 // either, so fill in the canonical type field. We also have to pull 3717 // qualifiers off the element type. 3718 QualType canon; 3719 3720 if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) { 3721 SplitQualType canonSplit = getCanonicalType(elementType).split(); 3722 canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0), 3723 ASM, elementTypeQuals); 3724 canon = getQualifiedType(canon, canonSplit.Quals); 3725 3726 // Get the new insert position for the node we care about. 3727 IncompleteArrayType *existing = 3728 IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos); 3729 assert(!existing && "Shouldn't be in the map!"); (void) existing; 3730 } 3731 3732 auto *newType = new (*this, TypeAlignment) 3733 IncompleteArrayType(elementType, canon, ASM, elementTypeQuals); 3734 3735 IncompleteArrayTypes.InsertNode(newType, insertPos); 3736 Types.push_back(newType); 3737 return QualType(newType, 0); 3738 } 3739 3740 ASTContext::BuiltinVectorTypeInfo 3741 ASTContext::getBuiltinVectorTypeInfo(const BuiltinType *Ty) const { 3742 #define SVE_INT_ELTTY(BITS, ELTS, SIGNED, NUMVECTORS) \ 3743 {getIntTypeForBitwidth(BITS, SIGNED), llvm::ElementCount::getScalable(ELTS), \ 3744 NUMVECTORS}; 3745 3746 #define SVE_ELTTY(ELTTY, ELTS, NUMVECTORS) \ 3747 {ELTTY, llvm::ElementCount::getScalable(ELTS), NUMVECTORS}; 3748 3749 switch (Ty->getKind()) { 3750 default: 3751 llvm_unreachable("Unsupported builtin vector type"); 3752 case BuiltinType::SveInt8: 3753 return SVE_INT_ELTTY(8, 16, true, 1); 3754 case BuiltinType::SveUint8: 3755 return SVE_INT_ELTTY(8, 16, false, 1); 3756 case BuiltinType::SveInt8x2: 3757 return SVE_INT_ELTTY(8, 16, true, 2); 3758 case BuiltinType::SveUint8x2: 3759 return SVE_INT_ELTTY(8, 16, false, 2); 3760 case BuiltinType::SveInt8x3: 3761 return SVE_INT_ELTTY(8, 16, true, 3); 3762 case BuiltinType::SveUint8x3: 3763 return SVE_INT_ELTTY(8, 16, false, 3); 3764 case BuiltinType::SveInt8x4: 3765 return SVE_INT_ELTTY(8, 16, true, 4); 3766 case BuiltinType::SveUint8x4: 3767 return SVE_INT_ELTTY(8, 16, false, 4); 3768 case BuiltinType::SveInt16: 3769 return SVE_INT_ELTTY(16, 8, true, 1); 3770 case BuiltinType::SveUint16: 3771 return SVE_INT_ELTTY(16, 8, false, 1); 3772 case BuiltinType::SveInt16x2: 3773 return SVE_INT_ELTTY(16, 8, true, 2); 3774 case BuiltinType::SveUint16x2: 3775 return SVE_INT_ELTTY(16, 8, false, 2); 3776 case BuiltinType::SveInt16x3: 3777 return SVE_INT_ELTTY(16, 8, true, 3); 3778 case BuiltinType::SveUint16x3: 3779 return SVE_INT_ELTTY(16, 8, false, 3); 3780 case BuiltinType::SveInt16x4: 3781 return SVE_INT_ELTTY(16, 8, true, 4); 3782 case BuiltinType::SveUint16x4: 3783 return SVE_INT_ELTTY(16, 8, false, 4); 3784 case BuiltinType::SveInt32: 3785 return SVE_INT_ELTTY(32, 4, true, 1); 3786 case BuiltinType::SveUint32: 3787 return SVE_INT_ELTTY(32, 4, false, 1); 3788 case BuiltinType::SveInt32x2: 3789 return SVE_INT_ELTTY(32, 4, true, 2); 3790 case BuiltinType::SveUint32x2: 3791 return SVE_INT_ELTTY(32, 4, false, 2); 3792 case BuiltinType::SveInt32x3: 3793 return SVE_INT_ELTTY(32, 4, true, 3); 3794 case BuiltinType::SveUint32x3: 3795 return SVE_INT_ELTTY(32, 4, false, 3); 3796 case BuiltinType::SveInt32x4: 3797 return SVE_INT_ELTTY(32, 4, true, 4); 3798 case BuiltinType::SveUint32x4: 3799 return SVE_INT_ELTTY(32, 4, false, 4); 3800 case BuiltinType::SveInt64: 3801 return SVE_INT_ELTTY(64, 2, true, 1); 3802 case BuiltinType::SveUint64: 3803 return SVE_INT_ELTTY(64, 2, false, 1); 3804 case BuiltinType::SveInt64x2: 3805 return SVE_INT_ELTTY(64, 2, true, 2); 3806 case BuiltinType::SveUint64x2: 3807 return SVE_INT_ELTTY(64, 2, false, 2); 3808 case BuiltinType::SveInt64x3: 3809 return SVE_INT_ELTTY(64, 2, true, 3); 3810 case BuiltinType::SveUint64x3: 3811 return SVE_INT_ELTTY(64, 2, false, 3); 3812 case BuiltinType::SveInt64x4: 3813 return SVE_INT_ELTTY(64, 2, true, 4); 3814 case BuiltinType::SveUint64x4: 3815 return SVE_INT_ELTTY(64, 2, false, 4); 3816 case BuiltinType::SveBool: 3817 return SVE_ELTTY(BoolTy, 16, 1); 3818 case BuiltinType::SveFloat16: 3819 return SVE_ELTTY(HalfTy, 8, 1); 3820 case BuiltinType::SveFloat16x2: 3821 return SVE_ELTTY(HalfTy, 8, 2); 3822 case BuiltinType::SveFloat16x3: 3823 return SVE_ELTTY(HalfTy, 8, 3); 3824 case BuiltinType::SveFloat16x4: 3825 return SVE_ELTTY(HalfTy, 8, 4); 3826 case BuiltinType::SveFloat32: 3827 return SVE_ELTTY(FloatTy, 4, 1); 3828 case BuiltinType::SveFloat32x2: 3829 return SVE_ELTTY(FloatTy, 4, 2); 3830 case BuiltinType::SveFloat32x3: 3831 return SVE_ELTTY(FloatTy, 4, 3); 3832 case BuiltinType::SveFloat32x4: 3833 return SVE_ELTTY(FloatTy, 4, 4); 3834 case BuiltinType::SveFloat64: 3835 return SVE_ELTTY(DoubleTy, 2, 1); 3836 case BuiltinType::SveFloat64x2: 3837 return SVE_ELTTY(DoubleTy, 2, 2); 3838 case BuiltinType::SveFloat64x3: 3839 return SVE_ELTTY(DoubleTy, 2, 3); 3840 case BuiltinType::SveFloat64x4: 3841 return SVE_ELTTY(DoubleTy, 2, 4); 3842 case BuiltinType::SveBFloat16: 3843 return SVE_ELTTY(BFloat16Ty, 8, 1); 3844 case BuiltinType::SveBFloat16x2: 3845 return SVE_ELTTY(BFloat16Ty, 8, 2); 3846 case BuiltinType::SveBFloat16x3: 3847 return SVE_ELTTY(BFloat16Ty, 8, 3); 3848 case BuiltinType::SveBFloat16x4: 3849 return SVE_ELTTY(BFloat16Ty, 8, 4); 3850 #define RVV_VECTOR_TYPE_INT(Name, Id, SingletonId, NumEls, ElBits, NF, \ 3851 IsSigned) \ 3852 case BuiltinType::Id: \ 3853 return {getIntTypeForBitwidth(ElBits, IsSigned), \ 3854 llvm::ElementCount::getScalable(NumEls), NF}; 3855 #define RVV_VECTOR_TYPE_FLOAT(Name, Id, SingletonId, NumEls, ElBits, NF) \ 3856 case BuiltinType::Id: \ 3857 return {ElBits == 16 ? HalfTy : (ElBits == 32 ? FloatTy : DoubleTy), \ 3858 llvm::ElementCount::getScalable(NumEls), NF}; 3859 #define RVV_PREDICATE_TYPE(Name, Id, SingletonId, NumEls) \ 3860 case BuiltinType::Id: \ 3861 return {BoolTy, llvm::ElementCount::getScalable(NumEls), 1}; 3862 #include "clang/Basic/RISCVVTypes.def" 3863 } 3864 } 3865 3866 /// getScalableVectorType - Return the unique reference to a scalable vector 3867 /// type of the specified element type and size. VectorType must be a built-in 3868 /// type. 3869 QualType ASTContext::getScalableVectorType(QualType EltTy, 3870 unsigned NumElts) const { 3871 if (Target->hasAArch64SVETypes()) { 3872 uint64_t EltTySize = getTypeSize(EltTy); 3873 #define SVE_VECTOR_TYPE(Name, MangledName, Id, SingletonId, NumEls, ElBits, \ 3874 IsSigned, IsFP, IsBF) \ 3875 if (!EltTy->isBooleanType() && \ 3876 ((EltTy->hasIntegerRepresentation() && \ 3877 EltTy->hasSignedIntegerRepresentation() == IsSigned) || \ 3878 (EltTy->hasFloatingRepresentation() && !EltTy->isBFloat16Type() && \ 3879 IsFP && !IsBF) || \ 3880 (EltTy->hasFloatingRepresentation() && EltTy->isBFloat16Type() && \ 3881 IsBF && !IsFP)) && \ 3882 EltTySize == ElBits && NumElts == NumEls) { \ 3883 return SingletonId; \ 3884 } 3885 #define SVE_PREDICATE_TYPE(Name, MangledName, Id, SingletonId, NumEls) \ 3886 if (EltTy->isBooleanType() && NumElts == NumEls) \ 3887 return SingletonId; 3888 #include "clang/Basic/AArch64SVEACLETypes.def" 3889 } else if (Target->hasRISCVVTypes()) { 3890 uint64_t EltTySize = getTypeSize(EltTy); 3891 #define RVV_VECTOR_TYPE(Name, Id, SingletonId, NumEls, ElBits, NF, IsSigned, \ 3892 IsFP) \ 3893 if (!EltTy->isBooleanType() && \ 3894 ((EltTy->hasIntegerRepresentation() && \ 3895 EltTy->hasSignedIntegerRepresentation() == IsSigned) || \ 3896 (EltTy->hasFloatingRepresentation() && IsFP)) && \ 3897 EltTySize == ElBits && NumElts == NumEls) \ 3898 return SingletonId; 3899 #define RVV_PREDICATE_TYPE(Name, Id, SingletonId, NumEls) \ 3900 if (EltTy->isBooleanType() && NumElts == NumEls) \ 3901 return SingletonId; 3902 #include "clang/Basic/RISCVVTypes.def" 3903 } 3904 return QualType(); 3905 } 3906 3907 /// getVectorType - Return the unique reference to a vector type of 3908 /// the specified element type and size. VectorType must be a built-in type. 3909 QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts, 3910 VectorType::VectorKind VecKind) const { 3911 assert(vecType->isBuiltinType()); 3912 3913 // Check if we've already instantiated a vector of this type. 3914 llvm::FoldingSetNodeID ID; 3915 VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind); 3916 3917 void *InsertPos = nullptr; 3918 if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos)) 3919 return QualType(VTP, 0); 3920 3921 // If the element type isn't canonical, this won't be a canonical type either, 3922 // so fill in the canonical type field. 3923 QualType Canonical; 3924 if (!vecType.isCanonical()) { 3925 Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind); 3926 3927 // Get the new insert position for the node we care about. 3928 VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos); 3929 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; 3930 } 3931 auto *New = new (*this, TypeAlignment) 3932 VectorType(vecType, NumElts, Canonical, VecKind); 3933 VectorTypes.InsertNode(New, InsertPos); 3934 Types.push_back(New); 3935 return QualType(New, 0); 3936 } 3937 3938 QualType 3939 ASTContext::getDependentVectorType(QualType VecType, Expr *SizeExpr, 3940 SourceLocation AttrLoc, 3941 VectorType::VectorKind VecKind) const { 3942 llvm::FoldingSetNodeID ID; 3943 DependentVectorType::Profile(ID, *this, getCanonicalType(VecType), SizeExpr, 3944 VecKind); 3945 void *InsertPos = nullptr; 3946 DependentVectorType *Canon = 3947 DependentVectorTypes.FindNodeOrInsertPos(ID, InsertPos); 3948 DependentVectorType *New; 3949 3950 if (Canon) { 3951 New = new (*this, TypeAlignment) DependentVectorType( 3952 *this, VecType, QualType(Canon, 0), SizeExpr, AttrLoc, VecKind); 3953 } else { 3954 QualType CanonVecTy = getCanonicalType(VecType); 3955 if (CanonVecTy == VecType) { 3956 New = new (*this, TypeAlignment) DependentVectorType( 3957 *this, VecType, QualType(), SizeExpr, AttrLoc, VecKind); 3958 3959 DependentVectorType *CanonCheck = 3960 DependentVectorTypes.FindNodeOrInsertPos(ID, InsertPos); 3961 assert(!CanonCheck && 3962 "Dependent-sized vector_size canonical type broken"); 3963 (void)CanonCheck; 3964 DependentVectorTypes.InsertNode(New, InsertPos); 3965 } else { 3966 QualType CanonTy = getDependentVectorType(CanonVecTy, SizeExpr, 3967 SourceLocation(), VecKind); 3968 New = new (*this, TypeAlignment) DependentVectorType( 3969 *this, VecType, CanonTy, SizeExpr, AttrLoc, VecKind); 3970 } 3971 } 3972 3973 Types.push_back(New); 3974 return QualType(New, 0); 3975 } 3976 3977 /// getExtVectorType - Return the unique reference to an extended vector type of 3978 /// the specified element type and size. VectorType must be a built-in type. 3979 QualType 3980 ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const { 3981 assert(vecType->isBuiltinType() || vecType->isDependentType()); 3982 3983 // Check if we've already instantiated a vector of this type. 3984 llvm::FoldingSetNodeID ID; 3985 VectorType::Profile(ID, vecType, NumElts, Type::ExtVector, 3986 VectorType::GenericVector); 3987 void *InsertPos = nullptr; 3988 if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos)) 3989 return QualType(VTP, 0); 3990 3991 // If the element type isn't canonical, this won't be a canonical type either, 3992 // so fill in the canonical type field. 3993 QualType Canonical; 3994 if (!vecType.isCanonical()) { 3995 Canonical = getExtVectorType(getCanonicalType(vecType), NumElts); 3996 3997 // Get the new insert position for the node we care about. 3998 VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos); 3999 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; 4000 } 4001 auto *New = new (*this, TypeAlignment) 4002 ExtVectorType(vecType, NumElts, Canonical); 4003 VectorTypes.InsertNode(New, InsertPos); 4004 Types.push_back(New); 4005 return QualType(New, 0); 4006 } 4007 4008 QualType 4009 ASTContext::getDependentSizedExtVectorType(QualType vecType, 4010 Expr *SizeExpr, 4011 SourceLocation AttrLoc) const { 4012 llvm::FoldingSetNodeID ID; 4013 DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType), 4014 SizeExpr); 4015 4016 void *InsertPos = nullptr; 4017 DependentSizedExtVectorType *Canon 4018 = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos); 4019 DependentSizedExtVectorType *New; 4020 if (Canon) { 4021 // We already have a canonical version of this array type; use it as 4022 // the canonical type for a newly-built type. 4023 New = new (*this, TypeAlignment) 4024 DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0), 4025 SizeExpr, AttrLoc); 4026 } else { 4027 QualType CanonVecTy = getCanonicalType(vecType); 4028 if (CanonVecTy == vecType) { 4029 New = new (*this, TypeAlignment) 4030 DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr, 4031 AttrLoc); 4032 4033 DependentSizedExtVectorType *CanonCheck 4034 = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos); 4035 assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken"); 4036 (void)CanonCheck; 4037 DependentSizedExtVectorTypes.InsertNode(New, InsertPos); 4038 } else { 4039 QualType CanonExtTy = getDependentSizedExtVectorType(CanonVecTy, SizeExpr, 4040 SourceLocation()); 4041 New = new (*this, TypeAlignment) DependentSizedExtVectorType( 4042 *this, vecType, CanonExtTy, SizeExpr, AttrLoc); 4043 } 4044 } 4045 4046 Types.push_back(New); 4047 return QualType(New, 0); 4048 } 4049 4050 QualType ASTContext::getConstantMatrixType(QualType ElementTy, unsigned NumRows, 4051 unsigned NumColumns) const { 4052 llvm::FoldingSetNodeID ID; 4053 ConstantMatrixType::Profile(ID, ElementTy, NumRows, NumColumns, 4054 Type::ConstantMatrix); 4055 4056 assert(MatrixType::isValidElementType(ElementTy) && 4057 "need a valid element type"); 4058 assert(ConstantMatrixType::isDimensionValid(NumRows) && 4059 ConstantMatrixType::isDimensionValid(NumColumns) && 4060 "need valid matrix dimensions"); 4061 void *InsertPos = nullptr; 4062 if (ConstantMatrixType *MTP = MatrixTypes.FindNodeOrInsertPos(ID, InsertPos)) 4063 return QualType(MTP, 0); 4064 4065 QualType Canonical; 4066 if (!ElementTy.isCanonical()) { 4067 Canonical = 4068 getConstantMatrixType(getCanonicalType(ElementTy), NumRows, NumColumns); 4069 4070 ConstantMatrixType *NewIP = MatrixTypes.FindNodeOrInsertPos(ID, InsertPos); 4071 assert(!NewIP && "Matrix type shouldn't already exist in the map"); 4072 (void)NewIP; 4073 } 4074 4075 auto *New = new (*this, TypeAlignment) 4076 ConstantMatrixType(ElementTy, NumRows, NumColumns, Canonical); 4077 MatrixTypes.InsertNode(New, InsertPos); 4078 Types.push_back(New); 4079 return QualType(New, 0); 4080 } 4081 4082 QualType ASTContext::getDependentSizedMatrixType(QualType ElementTy, 4083 Expr *RowExpr, 4084 Expr *ColumnExpr, 4085 SourceLocation AttrLoc) const { 4086 QualType CanonElementTy = getCanonicalType(ElementTy); 4087 llvm::FoldingSetNodeID ID; 4088 DependentSizedMatrixType::Profile(ID, *this, CanonElementTy, RowExpr, 4089 ColumnExpr); 4090 4091 void *InsertPos = nullptr; 4092 DependentSizedMatrixType *Canon = 4093 DependentSizedMatrixTypes.FindNodeOrInsertPos(ID, InsertPos); 4094 4095 if (!Canon) { 4096 Canon = new (*this, TypeAlignment) DependentSizedMatrixType( 4097 *this, CanonElementTy, QualType(), RowExpr, ColumnExpr, AttrLoc); 4098 #ifndef NDEBUG 4099 DependentSizedMatrixType *CanonCheck = 4100 DependentSizedMatrixTypes.FindNodeOrInsertPos(ID, InsertPos); 4101 assert(!CanonCheck && "Dependent-sized matrix canonical type broken"); 4102 #endif 4103 DependentSizedMatrixTypes.InsertNode(Canon, InsertPos); 4104 Types.push_back(Canon); 4105 } 4106 4107 // Already have a canonical version of the matrix type 4108 // 4109 // If it exactly matches the requested type, use it directly. 4110 if (Canon->getElementType() == ElementTy && Canon->getRowExpr() == RowExpr && 4111 Canon->getRowExpr() == ColumnExpr) 4112 return QualType(Canon, 0); 4113 4114 // Use Canon as the canonical type for newly-built type. 4115 DependentSizedMatrixType *New = new (*this, TypeAlignment) 4116 DependentSizedMatrixType(*this, ElementTy, QualType(Canon, 0), RowExpr, 4117 ColumnExpr, AttrLoc); 4118 Types.push_back(New); 4119 return QualType(New, 0); 4120 } 4121 4122 QualType ASTContext::getDependentAddressSpaceType(QualType PointeeType, 4123 Expr *AddrSpaceExpr, 4124 SourceLocation AttrLoc) const { 4125 assert(AddrSpaceExpr->isInstantiationDependent()); 4126 4127 QualType canonPointeeType = getCanonicalType(PointeeType); 4128 4129 void *insertPos = nullptr; 4130 llvm::FoldingSetNodeID ID; 4131 DependentAddressSpaceType::Profile(ID, *this, canonPointeeType, 4132 AddrSpaceExpr); 4133 4134 DependentAddressSpaceType *canonTy = 4135 DependentAddressSpaceTypes.FindNodeOrInsertPos(ID, insertPos); 4136 4137 if (!canonTy) { 4138 canonTy = new (*this, TypeAlignment) 4139 DependentAddressSpaceType(*this, canonPointeeType, 4140 QualType(), AddrSpaceExpr, AttrLoc); 4141 DependentAddressSpaceTypes.InsertNode(canonTy, insertPos); 4142 Types.push_back(canonTy); 4143 } 4144 4145 if (canonPointeeType == PointeeType && 4146 canonTy->getAddrSpaceExpr() == AddrSpaceExpr) 4147 return QualType(canonTy, 0); 4148 4149 auto *sugaredType 4150 = new (*this, TypeAlignment) 4151 DependentAddressSpaceType(*this, PointeeType, QualType(canonTy, 0), 4152 AddrSpaceExpr, AttrLoc); 4153 Types.push_back(sugaredType); 4154 return QualType(sugaredType, 0); 4155 } 4156 4157 /// Determine whether \p T is canonical as the result type of a function. 4158 static bool isCanonicalResultType(QualType T) { 4159 return T.isCanonical() && 4160 (T.getObjCLifetime() == Qualifiers::OCL_None || 4161 T.getObjCLifetime() == Qualifiers::OCL_ExplicitNone); 4162 } 4163 4164 /// getFunctionNoProtoType - Return a K&R style C function type like 'int()'. 4165 QualType 4166 ASTContext::getFunctionNoProtoType(QualType ResultTy, 4167 const FunctionType::ExtInfo &Info) const { 4168 // Unique functions, to guarantee there is only one function of a particular 4169 // structure. 4170 llvm::FoldingSetNodeID ID; 4171 FunctionNoProtoType::Profile(ID, ResultTy, Info); 4172 4173 void *InsertPos = nullptr; 4174 if (FunctionNoProtoType *FT = 4175 FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos)) 4176 return QualType(FT, 0); 4177 4178 QualType Canonical; 4179 if (!isCanonicalResultType(ResultTy)) { 4180 Canonical = 4181 getFunctionNoProtoType(getCanonicalFunctionResultType(ResultTy), Info); 4182 4183 // Get the new insert position for the node we care about. 4184 FunctionNoProtoType *NewIP = 4185 FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos); 4186 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; 4187 } 4188 4189 auto *New = new (*this, TypeAlignment) 4190 FunctionNoProtoType(ResultTy, Canonical, Info); 4191 Types.push_back(New); 4192 FunctionNoProtoTypes.InsertNode(New, InsertPos); 4193 return QualType(New, 0); 4194 } 4195 4196 CanQualType 4197 ASTContext::getCanonicalFunctionResultType(QualType ResultType) const { 4198 CanQualType CanResultType = getCanonicalType(ResultType); 4199 4200 // Canonical result types do not have ARC lifetime qualifiers. 4201 if (CanResultType.getQualifiers().hasObjCLifetime()) { 4202 Qualifiers Qs = CanResultType.getQualifiers(); 4203 Qs.removeObjCLifetime(); 4204 return CanQualType::CreateUnsafe( 4205 getQualifiedType(CanResultType.getUnqualifiedType(), Qs)); 4206 } 4207 4208 return CanResultType; 4209 } 4210 4211 static bool isCanonicalExceptionSpecification( 4212 const FunctionProtoType::ExceptionSpecInfo &ESI, bool NoexceptInType) { 4213 if (ESI.Type == EST_None) 4214 return true; 4215 if (!NoexceptInType) 4216 return false; 4217 4218 // C++17 onwards: exception specification is part of the type, as a simple 4219 // boolean "can this function type throw". 4220 if (ESI.Type == EST_BasicNoexcept) 4221 return true; 4222 4223 // A noexcept(expr) specification is (possibly) canonical if expr is 4224 // value-dependent. 4225 if (ESI.Type == EST_DependentNoexcept) 4226 return true; 4227 4228 // A dynamic exception specification is canonical if it only contains pack 4229 // expansions (so we can't tell whether it's non-throwing) and all its 4230 // contained types are canonical. 4231 if (ESI.Type == EST_Dynamic) { 4232 bool AnyPackExpansions = false; 4233 for (QualType ET : ESI.Exceptions) { 4234 if (!ET.isCanonical()) 4235 return false; 4236 if (ET->getAs<PackExpansionType>()) 4237 AnyPackExpansions = true; 4238 } 4239 return AnyPackExpansions; 4240 } 4241 4242 return false; 4243 } 4244 4245 QualType ASTContext::getFunctionTypeInternal( 4246 QualType ResultTy, ArrayRef<QualType> ArgArray, 4247 const FunctionProtoType::ExtProtoInfo &EPI, bool OnlyWantCanonical) const { 4248 size_t NumArgs = ArgArray.size(); 4249 4250 // Unique functions, to guarantee there is only one function of a particular 4251 // structure. 4252 llvm::FoldingSetNodeID ID; 4253 FunctionProtoType::Profile(ID, ResultTy, ArgArray.begin(), NumArgs, EPI, 4254 *this, true); 4255 4256 QualType Canonical; 4257 bool Unique = false; 4258 4259 void *InsertPos = nullptr; 4260 if (FunctionProtoType *FPT = 4261 FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos)) { 4262 QualType Existing = QualType(FPT, 0); 4263 4264 // If we find a pre-existing equivalent FunctionProtoType, we can just reuse 4265 // it so long as our exception specification doesn't contain a dependent 4266 // noexcept expression, or we're just looking for a canonical type. 4267 // Otherwise, we're going to need to create a type 4268 // sugar node to hold the concrete expression. 4269 if (OnlyWantCanonical || !isComputedNoexcept(EPI.ExceptionSpec.Type) || 4270 EPI.ExceptionSpec.NoexceptExpr == FPT->getNoexceptExpr()) 4271 return Existing; 4272 4273 // We need a new type sugar node for this one, to hold the new noexcept 4274 // expression. We do no canonicalization here, but that's OK since we don't 4275 // expect to see the same noexcept expression much more than once. 4276 Canonical = getCanonicalType(Existing); 4277 Unique = true; 4278 } 4279 4280 bool NoexceptInType = getLangOpts().CPlusPlus17; 4281 bool IsCanonicalExceptionSpec = 4282 isCanonicalExceptionSpecification(EPI.ExceptionSpec, NoexceptInType); 4283 4284 // Determine whether the type being created is already canonical or not. 4285 bool isCanonical = !Unique && IsCanonicalExceptionSpec && 4286 isCanonicalResultType(ResultTy) && !EPI.HasTrailingReturn; 4287 for (unsigned i = 0; i != NumArgs && isCanonical; ++i) 4288 if (!ArgArray[i].isCanonicalAsParam()) 4289 isCanonical = false; 4290 4291 if (OnlyWantCanonical) 4292 assert(isCanonical && 4293 "given non-canonical parameters constructing canonical type"); 4294 4295 // If this type isn't canonical, get the canonical version of it if we don't 4296 // already have it. The exception spec is only partially part of the 4297 // canonical type, and only in C++17 onwards. 4298 if (!isCanonical && Canonical.isNull()) { 4299 SmallVector<QualType, 16> CanonicalArgs; 4300 CanonicalArgs.reserve(NumArgs); 4301 for (unsigned i = 0; i != NumArgs; ++i) 4302 CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i])); 4303 4304 llvm::SmallVector<QualType, 8> ExceptionTypeStorage; 4305 FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI; 4306 CanonicalEPI.HasTrailingReturn = false; 4307 4308 if (IsCanonicalExceptionSpec) { 4309 // Exception spec is already OK. 4310 } else if (NoexceptInType) { 4311 switch (EPI.ExceptionSpec.Type) { 4312 case EST_Unparsed: case EST_Unevaluated: case EST_Uninstantiated: 4313 // We don't know yet. It shouldn't matter what we pick here; no-one 4314 // should ever look at this. 4315 LLVM_FALLTHROUGH; 4316 case EST_None: case EST_MSAny: case EST_NoexceptFalse: 4317 CanonicalEPI.ExceptionSpec.Type = EST_None; 4318 break; 4319 4320 // A dynamic exception specification is almost always "not noexcept", 4321 // with the exception that a pack expansion might expand to no types. 4322 case EST_Dynamic: { 4323 bool AnyPacks = false; 4324 for (QualType ET : EPI.ExceptionSpec.Exceptions) { 4325 if (ET->getAs<PackExpansionType>()) 4326 AnyPacks = true; 4327 ExceptionTypeStorage.push_back(getCanonicalType(ET)); 4328 } 4329 if (!AnyPacks) 4330 CanonicalEPI.ExceptionSpec.Type = EST_None; 4331 else { 4332 CanonicalEPI.ExceptionSpec.Type = EST_Dynamic; 4333 CanonicalEPI.ExceptionSpec.Exceptions = ExceptionTypeStorage; 4334 } 4335 break; 4336 } 4337 4338 case EST_DynamicNone: 4339 case EST_BasicNoexcept: 4340 case EST_NoexceptTrue: 4341 case EST_NoThrow: 4342 CanonicalEPI.ExceptionSpec.Type = EST_BasicNoexcept; 4343 break; 4344 4345 case EST_DependentNoexcept: 4346 llvm_unreachable("dependent noexcept is already canonical"); 4347 } 4348 } else { 4349 CanonicalEPI.ExceptionSpec = FunctionProtoType::ExceptionSpecInfo(); 4350 } 4351 4352 // Adjust the canonical function result type. 4353 CanQualType CanResultTy = getCanonicalFunctionResultType(ResultTy); 4354 Canonical = 4355 getFunctionTypeInternal(CanResultTy, CanonicalArgs, CanonicalEPI, true); 4356 4357 // Get the new insert position for the node we care about. 4358 FunctionProtoType *NewIP = 4359 FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos); 4360 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; 4361 } 4362 4363 // Compute the needed size to hold this FunctionProtoType and the 4364 // various trailing objects. 4365 auto ESH = FunctionProtoType::getExceptionSpecSize( 4366 EPI.ExceptionSpec.Type, EPI.ExceptionSpec.Exceptions.size()); 4367 size_t Size = FunctionProtoType::totalSizeToAlloc< 4368 QualType, SourceLocation, FunctionType::FunctionTypeExtraBitfields, 4369 FunctionType::ExceptionType, Expr *, FunctionDecl *, 4370 FunctionProtoType::ExtParameterInfo, Qualifiers>( 4371 NumArgs, EPI.Variadic, 4372 FunctionProtoType::hasExtraBitfields(EPI.ExceptionSpec.Type), 4373 ESH.NumExceptionType, ESH.NumExprPtr, ESH.NumFunctionDeclPtr, 4374 EPI.ExtParameterInfos ? NumArgs : 0, 4375 EPI.TypeQuals.hasNonFastQualifiers() ? 1 : 0); 4376 4377 auto *FTP = (FunctionProtoType *)Allocate(Size, TypeAlignment); 4378 FunctionProtoType::ExtProtoInfo newEPI = EPI; 4379 new (FTP) FunctionProtoType(ResultTy, ArgArray, Canonical, newEPI); 4380 Types.push_back(FTP); 4381 if (!Unique) 4382 FunctionProtoTypes.InsertNode(FTP, InsertPos); 4383 return QualType(FTP, 0); 4384 } 4385 4386 QualType ASTContext::getPipeType(QualType T, bool ReadOnly) const { 4387 llvm::FoldingSetNodeID ID; 4388 PipeType::Profile(ID, T, ReadOnly); 4389 4390 void *InsertPos = nullptr; 4391 if (PipeType *PT = PipeTypes.FindNodeOrInsertPos(ID, InsertPos)) 4392 return QualType(PT, 0); 4393 4394 // If the pipe element type isn't canonical, this won't be a canonical type 4395 // either, so fill in the canonical type field. 4396 QualType Canonical; 4397 if (!T.isCanonical()) { 4398 Canonical = getPipeType(getCanonicalType(T), ReadOnly); 4399 4400 // Get the new insert position for the node we care about. 4401 PipeType *NewIP = PipeTypes.FindNodeOrInsertPos(ID, InsertPos); 4402 assert(!NewIP && "Shouldn't be in the map!"); 4403 (void)NewIP; 4404 } 4405 auto *New = new (*this, TypeAlignment) PipeType(T, Canonical, ReadOnly); 4406 Types.push_back(New); 4407 PipeTypes.InsertNode(New, InsertPos); 4408 return QualType(New, 0); 4409 } 4410 4411 QualType ASTContext::adjustStringLiteralBaseType(QualType Ty) const { 4412 // OpenCL v1.1 s6.5.3: a string literal is in the constant address space. 4413 return LangOpts.OpenCL ? getAddrSpaceQualType(Ty, LangAS::opencl_constant) 4414 : Ty; 4415 } 4416 4417 QualType ASTContext::getReadPipeType(QualType T) const { 4418 return getPipeType(T, true); 4419 } 4420 4421 QualType ASTContext::getWritePipeType(QualType T) const { 4422 return getPipeType(T, false); 4423 } 4424 4425 QualType ASTContext::getExtIntType(bool IsUnsigned, unsigned NumBits) const { 4426 llvm::FoldingSetNodeID ID; 4427 ExtIntType::Profile(ID, IsUnsigned, NumBits); 4428 4429 void *InsertPos = nullptr; 4430 if (ExtIntType *EIT = ExtIntTypes.FindNodeOrInsertPos(ID, InsertPos)) 4431 return QualType(EIT, 0); 4432 4433 auto *New = new (*this, TypeAlignment) ExtIntType(IsUnsigned, NumBits); 4434 ExtIntTypes.InsertNode(New, InsertPos); 4435 Types.push_back(New); 4436 return QualType(New, 0); 4437 } 4438 4439 QualType ASTContext::getDependentExtIntType(bool IsUnsigned, 4440 Expr *NumBitsExpr) const { 4441 assert(NumBitsExpr->isInstantiationDependent() && "Only good for dependent"); 4442 llvm::FoldingSetNodeID ID; 4443 DependentExtIntType::Profile(ID, *this, IsUnsigned, NumBitsExpr); 4444 4445 void *InsertPos = nullptr; 4446 if (DependentExtIntType *Existing = 4447 DependentExtIntTypes.FindNodeOrInsertPos(ID, InsertPos)) 4448 return QualType(Existing, 0); 4449 4450 auto *New = new (*this, TypeAlignment) 4451 DependentExtIntType(*this, IsUnsigned, NumBitsExpr); 4452 DependentExtIntTypes.InsertNode(New, InsertPos); 4453 4454 Types.push_back(New); 4455 return QualType(New, 0); 4456 } 4457 4458 #ifndef NDEBUG 4459 static bool NeedsInjectedClassNameType(const RecordDecl *D) { 4460 if (!isa<CXXRecordDecl>(D)) return false; 4461 const auto *RD = cast<CXXRecordDecl>(D); 4462 if (isa<ClassTemplatePartialSpecializationDecl>(RD)) 4463 return true; 4464 if (RD->getDescribedClassTemplate() && 4465 !isa<ClassTemplateSpecializationDecl>(RD)) 4466 return true; 4467 return false; 4468 } 4469 #endif 4470 4471 /// getInjectedClassNameType - Return the unique reference to the 4472 /// injected class name type for the specified templated declaration. 4473 QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl, 4474 QualType TST) const { 4475 assert(NeedsInjectedClassNameType(Decl)); 4476 if (Decl->TypeForDecl) { 4477 assert(isa<InjectedClassNameType>(Decl->TypeForDecl)); 4478 } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) { 4479 assert(PrevDecl->TypeForDecl && "previous declaration has no type"); 4480 Decl->TypeForDecl = PrevDecl->TypeForDecl; 4481 assert(isa<InjectedClassNameType>(Decl->TypeForDecl)); 4482 } else { 4483 Type *newType = 4484 new (*this, TypeAlignment) InjectedClassNameType(Decl, TST); 4485 Decl->TypeForDecl = newType; 4486 Types.push_back(newType); 4487 } 4488 return QualType(Decl->TypeForDecl, 0); 4489 } 4490 4491 /// getTypeDeclType - Return the unique reference to the type for the 4492 /// specified type declaration. 4493 QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const { 4494 assert(Decl && "Passed null for Decl param"); 4495 assert(!Decl->TypeForDecl && "TypeForDecl present in slow case"); 4496 4497 if (const auto *Typedef = dyn_cast<TypedefNameDecl>(Decl)) 4498 return getTypedefType(Typedef); 4499 4500 assert(!isa<TemplateTypeParmDecl>(Decl) && 4501 "Template type parameter types are always available."); 4502 4503 if (const auto *Record = dyn_cast<RecordDecl>(Decl)) { 4504 assert(Record->isFirstDecl() && "struct/union has previous declaration"); 4505 assert(!NeedsInjectedClassNameType(Record)); 4506 return getRecordType(Record); 4507 } else if (const auto *Enum = dyn_cast<EnumDecl>(Decl)) { 4508 assert(Enum->isFirstDecl() && "enum has previous declaration"); 4509 return getEnumType(Enum); 4510 } else if (const auto *Using = dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) { 4511 Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using); 4512 Decl->TypeForDecl = newType; 4513 Types.push_back(newType); 4514 } else 4515 llvm_unreachable("TypeDecl without a type?"); 4516 4517 return QualType(Decl->TypeForDecl, 0); 4518 } 4519 4520 /// getTypedefType - Return the unique reference to the type for the 4521 /// specified typedef name decl. 4522 QualType ASTContext::getTypedefType(const TypedefNameDecl *Decl, 4523 QualType Underlying) const { 4524 if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0); 4525 4526 if (Underlying.isNull()) 4527 Underlying = Decl->getUnderlyingType(); 4528 QualType Canonical = getCanonicalType(Underlying); 4529 auto *newType = new (*this, TypeAlignment) 4530 TypedefType(Type::Typedef, Decl, Underlying, Canonical); 4531 Decl->TypeForDecl = newType; 4532 Types.push_back(newType); 4533 return QualType(newType, 0); 4534 } 4535 4536 QualType ASTContext::getRecordType(const RecordDecl *Decl) const { 4537 if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0); 4538 4539 if (const RecordDecl *PrevDecl = Decl->getPreviousDecl()) 4540 if (PrevDecl->TypeForDecl) 4541 return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0); 4542 4543 auto *newType = new (*this, TypeAlignment) RecordType(Decl); 4544 Decl->TypeForDecl = newType; 4545 Types.push_back(newType); 4546 return QualType(newType, 0); 4547 } 4548 4549 QualType ASTContext::getEnumType(const EnumDecl *Decl) const { 4550 if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0); 4551 4552 if (const EnumDecl *PrevDecl = Decl->getPreviousDecl()) 4553 if (PrevDecl->TypeForDecl) 4554 return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0); 4555 4556 auto *newType = new (*this, TypeAlignment) EnumType(Decl); 4557 Decl->TypeForDecl = newType; 4558 Types.push_back(newType); 4559 return QualType(newType, 0); 4560 } 4561 4562 QualType ASTContext::getAttributedType(attr::Kind attrKind, 4563 QualType modifiedType, 4564 QualType equivalentType) { 4565 llvm::FoldingSetNodeID id; 4566 AttributedType::Profile(id, attrKind, modifiedType, equivalentType); 4567 4568 void *insertPos = nullptr; 4569 AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos); 4570 if (type) return QualType(type, 0); 4571 4572 QualType canon = getCanonicalType(equivalentType); 4573 type = new (*this, TypeAlignment) 4574 AttributedType(canon, attrKind, modifiedType, equivalentType); 4575 4576 Types.push_back(type); 4577 AttributedTypes.InsertNode(type, insertPos); 4578 4579 return QualType(type, 0); 4580 } 4581 4582 /// Retrieve a substitution-result type. 4583 QualType 4584 ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm, 4585 QualType Replacement) const { 4586 assert(Replacement.isCanonical() 4587 && "replacement types must always be canonical"); 4588 4589 llvm::FoldingSetNodeID ID; 4590 SubstTemplateTypeParmType::Profile(ID, Parm, Replacement); 4591 void *InsertPos = nullptr; 4592 SubstTemplateTypeParmType *SubstParm 4593 = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos); 4594 4595 if (!SubstParm) { 4596 SubstParm = new (*this, TypeAlignment) 4597 SubstTemplateTypeParmType(Parm, Replacement); 4598 Types.push_back(SubstParm); 4599 SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos); 4600 } 4601 4602 return QualType(SubstParm, 0); 4603 } 4604 4605 /// Retrieve a 4606 QualType ASTContext::getSubstTemplateTypeParmPackType( 4607 const TemplateTypeParmType *Parm, 4608 const TemplateArgument &ArgPack) { 4609 #ifndef NDEBUG 4610 for (const auto &P : ArgPack.pack_elements()) { 4611 assert(P.getKind() == TemplateArgument::Type &&"Pack contains a non-type"); 4612 assert(P.getAsType().isCanonical() && "Pack contains non-canonical type"); 4613 } 4614 #endif 4615 4616 llvm::FoldingSetNodeID ID; 4617 SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack); 4618 void *InsertPos = nullptr; 4619 if (SubstTemplateTypeParmPackType *SubstParm 4620 = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos)) 4621 return QualType(SubstParm, 0); 4622 4623 QualType Canon; 4624 if (!Parm->isCanonicalUnqualified()) { 4625 Canon = getCanonicalType(QualType(Parm, 0)); 4626 Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon), 4627 ArgPack); 4628 SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos); 4629 } 4630 4631 auto *SubstParm 4632 = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon, 4633 ArgPack); 4634 Types.push_back(SubstParm); 4635 SubstTemplateTypeParmPackTypes.InsertNode(SubstParm, InsertPos); 4636 return QualType(SubstParm, 0); 4637 } 4638 4639 /// Retrieve the template type parameter type for a template 4640 /// parameter or parameter pack with the given depth, index, and (optionally) 4641 /// name. 4642 QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index, 4643 bool ParameterPack, 4644 TemplateTypeParmDecl *TTPDecl) const { 4645 llvm::FoldingSetNodeID ID; 4646 TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl); 4647 void *InsertPos = nullptr; 4648 TemplateTypeParmType *TypeParm 4649 = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos); 4650 4651 if (TypeParm) 4652 return QualType(TypeParm, 0); 4653 4654 if (TTPDecl) { 4655 QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack); 4656 TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon); 4657 4658 TemplateTypeParmType *TypeCheck 4659 = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos); 4660 assert(!TypeCheck && "Template type parameter canonical type broken"); 4661 (void)TypeCheck; 4662 } else 4663 TypeParm = new (*this, TypeAlignment) 4664 TemplateTypeParmType(Depth, Index, ParameterPack); 4665 4666 Types.push_back(TypeParm); 4667 TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos); 4668 4669 return QualType(TypeParm, 0); 4670 } 4671 4672 TypeSourceInfo * 4673 ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name, 4674 SourceLocation NameLoc, 4675 const TemplateArgumentListInfo &Args, 4676 QualType Underlying) const { 4677 assert(!Name.getAsDependentTemplateName() && 4678 "No dependent template names here!"); 4679 QualType TST = getTemplateSpecializationType(Name, Args, Underlying); 4680 4681 TypeSourceInfo *DI = CreateTypeSourceInfo(TST); 4682 TemplateSpecializationTypeLoc TL = 4683 DI->getTypeLoc().castAs<TemplateSpecializationTypeLoc>(); 4684 TL.setTemplateKeywordLoc(SourceLocation()); 4685 TL.setTemplateNameLoc(NameLoc); 4686 TL.setLAngleLoc(Args.getLAngleLoc()); 4687 TL.setRAngleLoc(Args.getRAngleLoc()); 4688 for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i) 4689 TL.setArgLocInfo(i, Args[i].getLocInfo()); 4690 return DI; 4691 } 4692 4693 QualType 4694 ASTContext::getTemplateSpecializationType(TemplateName Template, 4695 const TemplateArgumentListInfo &Args, 4696 QualType Underlying) const { 4697 assert(!Template.getAsDependentTemplateName() && 4698 "No dependent template names here!"); 4699 4700 SmallVector<TemplateArgument, 4> ArgVec; 4701 ArgVec.reserve(Args.size()); 4702 for (const TemplateArgumentLoc &Arg : Args.arguments()) 4703 ArgVec.push_back(Arg.getArgument()); 4704 4705 return getTemplateSpecializationType(Template, ArgVec, Underlying); 4706 } 4707 4708 #ifndef NDEBUG 4709 static bool hasAnyPackExpansions(ArrayRef<TemplateArgument> Args) { 4710 for (const TemplateArgument &Arg : Args) 4711 if (Arg.isPackExpansion()) 4712 return true; 4713 4714 return true; 4715 } 4716 #endif 4717 4718 QualType 4719 ASTContext::getTemplateSpecializationType(TemplateName Template, 4720 ArrayRef<TemplateArgument> Args, 4721 QualType Underlying) const { 4722 assert(!Template.getAsDependentTemplateName() && 4723 "No dependent template names here!"); 4724 // Look through qualified template names. 4725 if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName()) 4726 Template = TemplateName(QTN->getTemplateDecl()); 4727 4728 bool IsTypeAlias = 4729 Template.getAsTemplateDecl() && 4730 isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl()); 4731 QualType CanonType; 4732 if (!Underlying.isNull()) 4733 CanonType = getCanonicalType(Underlying); 4734 else { 4735 // We can get here with an alias template when the specialization contains 4736 // a pack expansion that does not match up with a parameter pack. 4737 assert((!IsTypeAlias || hasAnyPackExpansions(Args)) && 4738 "Caller must compute aliased type"); 4739 IsTypeAlias = false; 4740 CanonType = getCanonicalTemplateSpecializationType(Template, Args); 4741 } 4742 4743 // Allocate the (non-canonical) template specialization type, but don't 4744 // try to unique it: these types typically have location information that 4745 // we don't unique and don't want to lose. 4746 void *Mem = Allocate(sizeof(TemplateSpecializationType) + 4747 sizeof(TemplateArgument) * Args.size() + 4748 (IsTypeAlias? sizeof(QualType) : 0), 4749 TypeAlignment); 4750 auto *Spec 4751 = new (Mem) TemplateSpecializationType(Template, Args, CanonType, 4752 IsTypeAlias ? Underlying : QualType()); 4753 4754 Types.push_back(Spec); 4755 return QualType(Spec, 0); 4756 } 4757 4758 QualType ASTContext::getCanonicalTemplateSpecializationType( 4759 TemplateName Template, ArrayRef<TemplateArgument> Args) const { 4760 assert(!Template.getAsDependentTemplateName() && 4761 "No dependent template names here!"); 4762 4763 // Look through qualified template names. 4764 if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName()) 4765 Template = TemplateName(QTN->getTemplateDecl()); 4766 4767 // Build the canonical template specialization type. 4768 TemplateName CanonTemplate = getCanonicalTemplateName(Template); 4769 SmallVector<TemplateArgument, 4> CanonArgs; 4770 unsigned NumArgs = Args.size(); 4771 CanonArgs.reserve(NumArgs); 4772 for (const TemplateArgument &Arg : Args) 4773 CanonArgs.push_back(getCanonicalTemplateArgument(Arg)); 4774 4775 // Determine whether this canonical template specialization type already 4776 // exists. 4777 llvm::FoldingSetNodeID ID; 4778 TemplateSpecializationType::Profile(ID, CanonTemplate, 4779 CanonArgs, *this); 4780 4781 void *InsertPos = nullptr; 4782 TemplateSpecializationType *Spec 4783 = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos); 4784 4785 if (!Spec) { 4786 // Allocate a new canonical template specialization type. 4787 void *Mem = Allocate((sizeof(TemplateSpecializationType) + 4788 sizeof(TemplateArgument) * NumArgs), 4789 TypeAlignment); 4790 Spec = new (Mem) TemplateSpecializationType(CanonTemplate, 4791 CanonArgs, 4792 QualType(), QualType()); 4793 Types.push_back(Spec); 4794 TemplateSpecializationTypes.InsertNode(Spec, InsertPos); 4795 } 4796 4797 assert(Spec->isDependentType() && 4798 "Non-dependent template-id type must have a canonical type"); 4799 return QualType(Spec, 0); 4800 } 4801 4802 QualType ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword, 4803 NestedNameSpecifier *NNS, 4804 QualType NamedType, 4805 TagDecl *OwnedTagDecl) const { 4806 llvm::FoldingSetNodeID ID; 4807 ElaboratedType::Profile(ID, Keyword, NNS, NamedType, OwnedTagDecl); 4808 4809 void *InsertPos = nullptr; 4810 ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos); 4811 if (T) 4812 return QualType(T, 0); 4813 4814 QualType Canon = NamedType; 4815 if (!Canon.isCanonical()) { 4816 Canon = getCanonicalType(NamedType); 4817 ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos); 4818 assert(!CheckT && "Elaborated canonical type broken"); 4819 (void)CheckT; 4820 } 4821 4822 void *Mem = Allocate(ElaboratedType::totalSizeToAlloc<TagDecl *>(!!OwnedTagDecl), 4823 TypeAlignment); 4824 T = new (Mem) ElaboratedType(Keyword, NNS, NamedType, Canon, OwnedTagDecl); 4825 4826 Types.push_back(T); 4827 ElaboratedTypes.InsertNode(T, InsertPos); 4828 return QualType(T, 0); 4829 } 4830 4831 QualType 4832 ASTContext::getParenType(QualType InnerType) const { 4833 llvm::FoldingSetNodeID ID; 4834 ParenType::Profile(ID, InnerType); 4835 4836 void *InsertPos = nullptr; 4837 ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos); 4838 if (T) 4839 return QualType(T, 0); 4840 4841 QualType Canon = InnerType; 4842 if (!Canon.isCanonical()) { 4843 Canon = getCanonicalType(InnerType); 4844 ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos); 4845 assert(!CheckT && "Paren canonical type broken"); 4846 (void)CheckT; 4847 } 4848 4849 T = new (*this, TypeAlignment) ParenType(InnerType, Canon); 4850 Types.push_back(T); 4851 ParenTypes.InsertNode(T, InsertPos); 4852 return QualType(T, 0); 4853 } 4854 4855 QualType 4856 ASTContext::getMacroQualifiedType(QualType UnderlyingTy, 4857 const IdentifierInfo *MacroII) const { 4858 QualType Canon = UnderlyingTy; 4859 if (!Canon.isCanonical()) 4860 Canon = getCanonicalType(UnderlyingTy); 4861 4862 auto *newType = new (*this, TypeAlignment) 4863 MacroQualifiedType(UnderlyingTy, Canon, MacroII); 4864 Types.push_back(newType); 4865 return QualType(newType, 0); 4866 } 4867 4868 QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword, 4869 NestedNameSpecifier *NNS, 4870 const IdentifierInfo *Name, 4871 QualType Canon) const { 4872 if (Canon.isNull()) { 4873 NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS); 4874 if (CanonNNS != NNS) 4875 Canon = getDependentNameType(Keyword, CanonNNS, Name); 4876 } 4877 4878 llvm::FoldingSetNodeID ID; 4879 DependentNameType::Profile(ID, Keyword, NNS, Name); 4880 4881 void *InsertPos = nullptr; 4882 DependentNameType *T 4883 = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos); 4884 if (T) 4885 return QualType(T, 0); 4886 4887 T = new (*this, TypeAlignment) DependentNameType(Keyword, NNS, Name, Canon); 4888 Types.push_back(T); 4889 DependentNameTypes.InsertNode(T, InsertPos); 4890 return QualType(T, 0); 4891 } 4892 4893 QualType 4894 ASTContext::getDependentTemplateSpecializationType( 4895 ElaboratedTypeKeyword Keyword, 4896 NestedNameSpecifier *NNS, 4897 const IdentifierInfo *Name, 4898 const TemplateArgumentListInfo &Args) const { 4899 // TODO: avoid this copy 4900 SmallVector<TemplateArgument, 16> ArgCopy; 4901 for (unsigned I = 0, E = Args.size(); I != E; ++I) 4902 ArgCopy.push_back(Args[I].getArgument()); 4903 return getDependentTemplateSpecializationType(Keyword, NNS, Name, ArgCopy); 4904 } 4905 4906 QualType 4907 ASTContext::getDependentTemplateSpecializationType( 4908 ElaboratedTypeKeyword Keyword, 4909 NestedNameSpecifier *NNS, 4910 const IdentifierInfo *Name, 4911 ArrayRef<TemplateArgument> Args) const { 4912 assert((!NNS || NNS->isDependent()) && 4913 "nested-name-specifier must be dependent"); 4914 4915 llvm::FoldingSetNodeID ID; 4916 DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS, 4917 Name, Args); 4918 4919 void *InsertPos = nullptr; 4920 DependentTemplateSpecializationType *T 4921 = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos); 4922 if (T) 4923 return QualType(T, 0); 4924 4925 NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS); 4926 4927 ElaboratedTypeKeyword CanonKeyword = Keyword; 4928 if (Keyword == ETK_None) CanonKeyword = ETK_Typename; 4929 4930 bool AnyNonCanonArgs = false; 4931 unsigned NumArgs = Args.size(); 4932 SmallVector<TemplateArgument, 16> CanonArgs(NumArgs); 4933 for (unsigned I = 0; I != NumArgs; ++I) { 4934 CanonArgs[I] = getCanonicalTemplateArgument(Args[I]); 4935 if (!CanonArgs[I].structurallyEquals(Args[I])) 4936 AnyNonCanonArgs = true; 4937 } 4938 4939 QualType Canon; 4940 if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) { 4941 Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS, 4942 Name, 4943 CanonArgs); 4944 4945 // Find the insert position again. 4946 DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos); 4947 } 4948 4949 void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) + 4950 sizeof(TemplateArgument) * NumArgs), 4951 TypeAlignment); 4952 T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS, 4953 Name, Args, Canon); 4954 Types.push_back(T); 4955 DependentTemplateSpecializationTypes.InsertNode(T, InsertPos); 4956 return QualType(T, 0); 4957 } 4958 4959 TemplateArgument ASTContext::getInjectedTemplateArg(NamedDecl *Param) { 4960 TemplateArgument Arg; 4961 if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) { 4962 QualType ArgType = getTypeDeclType(TTP); 4963 if (TTP->isParameterPack()) 4964 ArgType = getPackExpansionType(ArgType, None); 4965 4966 Arg = TemplateArgument(ArgType); 4967 } else if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 4968 QualType T = 4969 NTTP->getType().getNonPackExpansionType().getNonLValueExprType(*this); 4970 // For class NTTPs, ensure we include the 'const' so the type matches that 4971 // of a real template argument. 4972 // FIXME: It would be more faithful to model this as something like an 4973 // lvalue-to-rvalue conversion applied to a const-qualified lvalue. 4974 if (T->isRecordType()) 4975 T.addConst(); 4976 Expr *E = new (*this) DeclRefExpr( 4977 *this, NTTP, /*enclosing*/ false, T, 4978 Expr::getValueKindForType(NTTP->getType()), NTTP->getLocation()); 4979 4980 if (NTTP->isParameterPack()) 4981 E = new (*this) PackExpansionExpr(DependentTy, E, NTTP->getLocation(), 4982 None); 4983 Arg = TemplateArgument(E); 4984 } else { 4985 auto *TTP = cast<TemplateTemplateParmDecl>(Param); 4986 if (TTP->isParameterPack()) 4987 Arg = TemplateArgument(TemplateName(TTP), Optional<unsigned>()); 4988 else 4989 Arg = TemplateArgument(TemplateName(TTP)); 4990 } 4991 4992 if (Param->isTemplateParameterPack()) 4993 Arg = TemplateArgument::CreatePackCopy(*this, Arg); 4994 4995 return Arg; 4996 } 4997 4998 void 4999 ASTContext::getInjectedTemplateArgs(const TemplateParameterList *Params, 5000 SmallVectorImpl<TemplateArgument> &Args) { 5001 Args.reserve(Args.size() + Params->size()); 5002 5003 for (NamedDecl *Param : *Params) 5004 Args.push_back(getInjectedTemplateArg(Param)); 5005 } 5006 5007 QualType ASTContext::getPackExpansionType(QualType Pattern, 5008 Optional<unsigned> NumExpansions, 5009 bool ExpectPackInType) { 5010 assert((!ExpectPackInType || Pattern->containsUnexpandedParameterPack()) && 5011 "Pack expansions must expand one or more parameter packs"); 5012 5013 llvm::FoldingSetNodeID ID; 5014 PackExpansionType::Profile(ID, Pattern, NumExpansions); 5015 5016 void *InsertPos = nullptr; 5017 PackExpansionType *T = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos); 5018 if (T) 5019 return QualType(T, 0); 5020 5021 QualType Canon; 5022 if (!Pattern.isCanonical()) { 5023 Canon = getPackExpansionType(getCanonicalType(Pattern), NumExpansions, 5024 /*ExpectPackInType=*/false); 5025 5026 // Find the insert position again, in case we inserted an element into 5027 // PackExpansionTypes and invalidated our insert position. 5028 PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos); 5029 } 5030 5031 T = new (*this, TypeAlignment) 5032 PackExpansionType(Pattern, Canon, NumExpansions); 5033 Types.push_back(T); 5034 PackExpansionTypes.InsertNode(T, InsertPos); 5035 return QualType(T, 0); 5036 } 5037 5038 /// CmpProtocolNames - Comparison predicate for sorting protocols 5039 /// alphabetically. 5040 static int CmpProtocolNames(ObjCProtocolDecl *const *LHS, 5041 ObjCProtocolDecl *const *RHS) { 5042 return DeclarationName::compare((*LHS)->getDeclName(), (*RHS)->getDeclName()); 5043 } 5044 5045 static bool areSortedAndUniqued(ArrayRef<ObjCProtocolDecl *> Protocols) { 5046 if (Protocols.empty()) return true; 5047 5048 if (Protocols[0]->getCanonicalDecl() != Protocols[0]) 5049 return false; 5050 5051 for (unsigned i = 1; i != Protocols.size(); ++i) 5052 if (CmpProtocolNames(&Protocols[i - 1], &Protocols[i]) >= 0 || 5053 Protocols[i]->getCanonicalDecl() != Protocols[i]) 5054 return false; 5055 return true; 5056 } 5057 5058 static void 5059 SortAndUniqueProtocols(SmallVectorImpl<ObjCProtocolDecl *> &Protocols) { 5060 // Sort protocols, keyed by name. 5061 llvm::array_pod_sort(Protocols.begin(), Protocols.end(), CmpProtocolNames); 5062 5063 // Canonicalize. 5064 for (ObjCProtocolDecl *&P : Protocols) 5065 P = P->getCanonicalDecl(); 5066 5067 // Remove duplicates. 5068 auto ProtocolsEnd = std::unique(Protocols.begin(), Protocols.end()); 5069 Protocols.erase(ProtocolsEnd, Protocols.end()); 5070 } 5071 5072 QualType ASTContext::getObjCObjectType(QualType BaseType, 5073 ObjCProtocolDecl * const *Protocols, 5074 unsigned NumProtocols) const { 5075 return getObjCObjectType(BaseType, {}, 5076 llvm::makeArrayRef(Protocols, NumProtocols), 5077 /*isKindOf=*/false); 5078 } 5079 5080 QualType ASTContext::getObjCObjectType( 5081 QualType baseType, 5082 ArrayRef<QualType> typeArgs, 5083 ArrayRef<ObjCProtocolDecl *> protocols, 5084 bool isKindOf) const { 5085 // If the base type is an interface and there aren't any protocols or 5086 // type arguments to add, then the interface type will do just fine. 5087 if (typeArgs.empty() && protocols.empty() && !isKindOf && 5088 isa<ObjCInterfaceType>(baseType)) 5089 return baseType; 5090 5091 // Look in the folding set for an existing type. 5092 llvm::FoldingSetNodeID ID; 5093 ObjCObjectTypeImpl::Profile(ID, baseType, typeArgs, protocols, isKindOf); 5094 void *InsertPos = nullptr; 5095 if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos)) 5096 return QualType(QT, 0); 5097 5098 // Determine the type arguments to be used for canonicalization, 5099 // which may be explicitly specified here or written on the base 5100 // type. 5101 ArrayRef<QualType> effectiveTypeArgs = typeArgs; 5102 if (effectiveTypeArgs.empty()) { 5103 if (const auto *baseObject = baseType->getAs<ObjCObjectType>()) 5104 effectiveTypeArgs = baseObject->getTypeArgs(); 5105 } 5106 5107 // Build the canonical type, which has the canonical base type and a 5108 // sorted-and-uniqued list of protocols and the type arguments 5109 // canonicalized. 5110 QualType canonical; 5111 bool typeArgsAreCanonical = std::all_of(effectiveTypeArgs.begin(), 5112 effectiveTypeArgs.end(), 5113 [&](QualType type) { 5114 return type.isCanonical(); 5115 }); 5116 bool protocolsSorted = areSortedAndUniqued(protocols); 5117 if (!typeArgsAreCanonical || !protocolsSorted || !baseType.isCanonical()) { 5118 // Determine the canonical type arguments. 5119 ArrayRef<QualType> canonTypeArgs; 5120 SmallVector<QualType, 4> canonTypeArgsVec; 5121 if (!typeArgsAreCanonical) { 5122 canonTypeArgsVec.reserve(effectiveTypeArgs.size()); 5123 for (auto typeArg : effectiveTypeArgs) 5124 canonTypeArgsVec.push_back(getCanonicalType(typeArg)); 5125 canonTypeArgs = canonTypeArgsVec; 5126 } else { 5127 canonTypeArgs = effectiveTypeArgs; 5128 } 5129 5130 ArrayRef<ObjCProtocolDecl *> canonProtocols; 5131 SmallVector<ObjCProtocolDecl*, 8> canonProtocolsVec; 5132 if (!protocolsSorted) { 5133 canonProtocolsVec.append(protocols.begin(), protocols.end()); 5134 SortAndUniqueProtocols(canonProtocolsVec); 5135 canonProtocols = canonProtocolsVec; 5136 } else { 5137 canonProtocols = protocols; 5138 } 5139 5140 canonical = getObjCObjectType(getCanonicalType(baseType), canonTypeArgs, 5141 canonProtocols, isKindOf); 5142 5143 // Regenerate InsertPos. 5144 ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos); 5145 } 5146 5147 unsigned size = sizeof(ObjCObjectTypeImpl); 5148 size += typeArgs.size() * sizeof(QualType); 5149 size += protocols.size() * sizeof(ObjCProtocolDecl *); 5150 void *mem = Allocate(size, TypeAlignment); 5151 auto *T = 5152 new (mem) ObjCObjectTypeImpl(canonical, baseType, typeArgs, protocols, 5153 isKindOf); 5154 5155 Types.push_back(T); 5156 ObjCObjectTypes.InsertNode(T, InsertPos); 5157 return QualType(T, 0); 5158 } 5159 5160 /// Apply Objective-C protocol qualifiers to the given type. 5161 /// If this is for the canonical type of a type parameter, we can apply 5162 /// protocol qualifiers on the ObjCObjectPointerType. 5163 QualType 5164 ASTContext::applyObjCProtocolQualifiers(QualType type, 5165 ArrayRef<ObjCProtocolDecl *> protocols, bool &hasError, 5166 bool allowOnPointerType) const { 5167 hasError = false; 5168 5169 if (const auto *objT = dyn_cast<ObjCTypeParamType>(type.getTypePtr())) { 5170 return getObjCTypeParamType(objT->getDecl(), protocols); 5171 } 5172 5173 // Apply protocol qualifiers to ObjCObjectPointerType. 5174 if (allowOnPointerType) { 5175 if (const auto *objPtr = 5176 dyn_cast<ObjCObjectPointerType>(type.getTypePtr())) { 5177 const ObjCObjectType *objT = objPtr->getObjectType(); 5178 // Merge protocol lists and construct ObjCObjectType. 5179 SmallVector<ObjCProtocolDecl*, 8> protocolsVec; 5180 protocolsVec.append(objT->qual_begin(), 5181 objT->qual_end()); 5182 protocolsVec.append(protocols.begin(), protocols.end()); 5183 ArrayRef<ObjCProtocolDecl *> protocols = protocolsVec; 5184 type = getObjCObjectType( 5185 objT->getBaseType(), 5186 objT->getTypeArgsAsWritten(), 5187 protocols, 5188 objT->isKindOfTypeAsWritten()); 5189 return getObjCObjectPointerType(type); 5190 } 5191 } 5192 5193 // Apply protocol qualifiers to ObjCObjectType. 5194 if (const auto *objT = dyn_cast<ObjCObjectType>(type.getTypePtr())){ 5195 // FIXME: Check for protocols to which the class type is already 5196 // known to conform. 5197 5198 return getObjCObjectType(objT->getBaseType(), 5199 objT->getTypeArgsAsWritten(), 5200 protocols, 5201 objT->isKindOfTypeAsWritten()); 5202 } 5203 5204 // If the canonical type is ObjCObjectType, ... 5205 if (type->isObjCObjectType()) { 5206 // Silently overwrite any existing protocol qualifiers. 5207 // TODO: determine whether that's the right thing to do. 5208 5209 // FIXME: Check for protocols to which the class type is already 5210 // known to conform. 5211 return getObjCObjectType(type, {}, protocols, false); 5212 } 5213 5214 // id<protocol-list> 5215 if (type->isObjCIdType()) { 5216 const auto *objPtr = type->castAs<ObjCObjectPointerType>(); 5217 type = getObjCObjectType(ObjCBuiltinIdTy, {}, protocols, 5218 objPtr->isKindOfType()); 5219 return getObjCObjectPointerType(type); 5220 } 5221 5222 // Class<protocol-list> 5223 if (type->isObjCClassType()) { 5224 const auto *objPtr = type->castAs<ObjCObjectPointerType>(); 5225 type = getObjCObjectType(ObjCBuiltinClassTy, {}, protocols, 5226 objPtr->isKindOfType()); 5227 return getObjCObjectPointerType(type); 5228 } 5229 5230 hasError = true; 5231 return type; 5232 } 5233 5234 QualType 5235 ASTContext::getObjCTypeParamType(const ObjCTypeParamDecl *Decl, 5236 ArrayRef<ObjCProtocolDecl *> protocols) const { 5237 // Look in the folding set for an existing type. 5238 llvm::FoldingSetNodeID ID; 5239 ObjCTypeParamType::Profile(ID, Decl, Decl->getUnderlyingType(), protocols); 5240 void *InsertPos = nullptr; 5241 if (ObjCTypeParamType *TypeParam = 5242 ObjCTypeParamTypes.FindNodeOrInsertPos(ID, InsertPos)) 5243 return QualType(TypeParam, 0); 5244 5245 // We canonicalize to the underlying type. 5246 QualType Canonical = getCanonicalType(Decl->getUnderlyingType()); 5247 if (!protocols.empty()) { 5248 // Apply the protocol qualifers. 5249 bool hasError; 5250 Canonical = getCanonicalType(applyObjCProtocolQualifiers( 5251 Canonical, protocols, hasError, true /*allowOnPointerType*/)); 5252 assert(!hasError && "Error when apply protocol qualifier to bound type"); 5253 } 5254 5255 unsigned size = sizeof(ObjCTypeParamType); 5256 size += protocols.size() * sizeof(ObjCProtocolDecl *); 5257 void *mem = Allocate(size, TypeAlignment); 5258 auto *newType = new (mem) ObjCTypeParamType(Decl, Canonical, protocols); 5259 5260 Types.push_back(newType); 5261 ObjCTypeParamTypes.InsertNode(newType, InsertPos); 5262 return QualType(newType, 0); 5263 } 5264 5265 void ASTContext::adjustObjCTypeParamBoundType(const ObjCTypeParamDecl *Orig, 5266 ObjCTypeParamDecl *New) const { 5267 New->setTypeSourceInfo(getTrivialTypeSourceInfo(Orig->getUnderlyingType())); 5268 // Update TypeForDecl after updating TypeSourceInfo. 5269 auto NewTypeParamTy = cast<ObjCTypeParamType>(New->getTypeForDecl()); 5270 SmallVector<ObjCProtocolDecl *, 8> protocols; 5271 protocols.append(NewTypeParamTy->qual_begin(), NewTypeParamTy->qual_end()); 5272 QualType UpdatedTy = getObjCTypeParamType(New, protocols); 5273 New->setTypeForDecl(UpdatedTy.getTypePtr()); 5274 } 5275 5276 /// ObjCObjectAdoptsQTypeProtocols - Checks that protocols in IC's 5277 /// protocol list adopt all protocols in QT's qualified-id protocol 5278 /// list. 5279 bool ASTContext::ObjCObjectAdoptsQTypeProtocols(QualType QT, 5280 ObjCInterfaceDecl *IC) { 5281 if (!QT->isObjCQualifiedIdType()) 5282 return false; 5283 5284 if (const auto *OPT = QT->getAs<ObjCObjectPointerType>()) { 5285 // If both the right and left sides have qualifiers. 5286 for (auto *Proto : OPT->quals()) { 5287 if (!IC->ClassImplementsProtocol(Proto, false)) 5288 return false; 5289 } 5290 return true; 5291 } 5292 return false; 5293 } 5294 5295 /// QIdProtocolsAdoptObjCObjectProtocols - Checks that protocols in 5296 /// QT's qualified-id protocol list adopt all protocols in IDecl's list 5297 /// of protocols. 5298 bool ASTContext::QIdProtocolsAdoptObjCObjectProtocols(QualType QT, 5299 ObjCInterfaceDecl *IDecl) { 5300 if (!QT->isObjCQualifiedIdType()) 5301 return false; 5302 const auto *OPT = QT->getAs<ObjCObjectPointerType>(); 5303 if (!OPT) 5304 return false; 5305 if (!IDecl->hasDefinition()) 5306 return false; 5307 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocols; 5308 CollectInheritedProtocols(IDecl, InheritedProtocols); 5309 if (InheritedProtocols.empty()) 5310 return false; 5311 // Check that if every protocol in list of id<plist> conforms to a protocol 5312 // of IDecl's, then bridge casting is ok. 5313 bool Conforms = false; 5314 for (auto *Proto : OPT->quals()) { 5315 Conforms = false; 5316 for (auto *PI : InheritedProtocols) { 5317 if (ProtocolCompatibleWithProtocol(Proto, PI)) { 5318 Conforms = true; 5319 break; 5320 } 5321 } 5322 if (!Conforms) 5323 break; 5324 } 5325 if (Conforms) 5326 return true; 5327 5328 for (auto *PI : InheritedProtocols) { 5329 // If both the right and left sides have qualifiers. 5330 bool Adopts = false; 5331 for (auto *Proto : OPT->quals()) { 5332 // return 'true' if 'PI' is in the inheritance hierarchy of Proto 5333 if ((Adopts = ProtocolCompatibleWithProtocol(PI, Proto))) 5334 break; 5335 } 5336 if (!Adopts) 5337 return false; 5338 } 5339 return true; 5340 } 5341 5342 /// getObjCObjectPointerType - Return a ObjCObjectPointerType type for 5343 /// the given object type. 5344 QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const { 5345 llvm::FoldingSetNodeID ID; 5346 ObjCObjectPointerType::Profile(ID, ObjectT); 5347 5348 void *InsertPos = nullptr; 5349 if (ObjCObjectPointerType *QT = 5350 ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos)) 5351 return QualType(QT, 0); 5352 5353 // Find the canonical object type. 5354 QualType Canonical; 5355 if (!ObjectT.isCanonical()) { 5356 Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT)); 5357 5358 // Regenerate InsertPos. 5359 ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos); 5360 } 5361 5362 // No match. 5363 void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment); 5364 auto *QType = 5365 new (Mem) ObjCObjectPointerType(Canonical, ObjectT); 5366 5367 Types.push_back(QType); 5368 ObjCObjectPointerTypes.InsertNode(QType, InsertPos); 5369 return QualType(QType, 0); 5370 } 5371 5372 /// getObjCInterfaceType - Return the unique reference to the type for the 5373 /// specified ObjC interface decl. The list of protocols is optional. 5374 QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl, 5375 ObjCInterfaceDecl *PrevDecl) const { 5376 if (Decl->TypeForDecl) 5377 return QualType(Decl->TypeForDecl, 0); 5378 5379 if (PrevDecl) { 5380 assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl"); 5381 Decl->TypeForDecl = PrevDecl->TypeForDecl; 5382 return QualType(PrevDecl->TypeForDecl, 0); 5383 } 5384 5385 // Prefer the definition, if there is one. 5386 if (const ObjCInterfaceDecl *Def = Decl->getDefinition()) 5387 Decl = Def; 5388 5389 void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment); 5390 auto *T = new (Mem) ObjCInterfaceType(Decl); 5391 Decl->TypeForDecl = T; 5392 Types.push_back(T); 5393 return QualType(T, 0); 5394 } 5395 5396 /// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique 5397 /// TypeOfExprType AST's (since expression's are never shared). For example, 5398 /// multiple declarations that refer to "typeof(x)" all contain different 5399 /// DeclRefExpr's. This doesn't effect the type checker, since it operates 5400 /// on canonical type's (which are always unique). 5401 QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const { 5402 TypeOfExprType *toe; 5403 if (tofExpr->isTypeDependent()) { 5404 llvm::FoldingSetNodeID ID; 5405 DependentTypeOfExprType::Profile(ID, *this, tofExpr); 5406 5407 void *InsertPos = nullptr; 5408 DependentTypeOfExprType *Canon 5409 = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos); 5410 if (Canon) { 5411 // We already have a "canonical" version of an identical, dependent 5412 // typeof(expr) type. Use that as our canonical type. 5413 toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, 5414 QualType((TypeOfExprType*)Canon, 0)); 5415 } else { 5416 // Build a new, canonical typeof(expr) type. 5417 Canon 5418 = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr); 5419 DependentTypeOfExprTypes.InsertNode(Canon, InsertPos); 5420 toe = Canon; 5421 } 5422 } else { 5423 QualType Canonical = getCanonicalType(tofExpr->getType()); 5424 toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical); 5425 } 5426 Types.push_back(toe); 5427 return QualType(toe, 0); 5428 } 5429 5430 /// getTypeOfType - Unlike many "get<Type>" functions, we don't unique 5431 /// TypeOfType nodes. The only motivation to unique these nodes would be 5432 /// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be 5433 /// an issue. This doesn't affect the type checker, since it operates 5434 /// on canonical types (which are always unique). 5435 QualType ASTContext::getTypeOfType(QualType tofType) const { 5436 QualType Canonical = getCanonicalType(tofType); 5437 auto *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical); 5438 Types.push_back(tot); 5439 return QualType(tot, 0); 5440 } 5441 5442 /// Unlike many "get<Type>" functions, we don't unique DecltypeType 5443 /// nodes. This would never be helpful, since each such type has its own 5444 /// expression, and would not give a significant memory saving, since there 5445 /// is an Expr tree under each such type. 5446 QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const { 5447 DecltypeType *dt; 5448 5449 // C++11 [temp.type]p2: 5450 // If an expression e involves a template parameter, decltype(e) denotes a 5451 // unique dependent type. Two such decltype-specifiers refer to the same 5452 // type only if their expressions are equivalent (14.5.6.1). 5453 if (e->isInstantiationDependent()) { 5454 llvm::FoldingSetNodeID ID; 5455 DependentDecltypeType::Profile(ID, *this, e); 5456 5457 void *InsertPos = nullptr; 5458 DependentDecltypeType *Canon 5459 = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos); 5460 if (!Canon) { 5461 // Build a new, canonical decltype(expr) type. 5462 Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e); 5463 DependentDecltypeTypes.InsertNode(Canon, InsertPos); 5464 } 5465 dt = new (*this, TypeAlignment) 5466 DecltypeType(e, UnderlyingType, QualType((DecltypeType *)Canon, 0)); 5467 } else { 5468 dt = new (*this, TypeAlignment) 5469 DecltypeType(e, UnderlyingType, getCanonicalType(UnderlyingType)); 5470 } 5471 Types.push_back(dt); 5472 return QualType(dt, 0); 5473 } 5474 5475 /// getUnaryTransformationType - We don't unique these, since the memory 5476 /// savings are minimal and these are rare. 5477 QualType ASTContext::getUnaryTransformType(QualType BaseType, 5478 QualType UnderlyingType, 5479 UnaryTransformType::UTTKind Kind) 5480 const { 5481 UnaryTransformType *ut = nullptr; 5482 5483 if (BaseType->isDependentType()) { 5484 // Look in the folding set for an existing type. 5485 llvm::FoldingSetNodeID ID; 5486 DependentUnaryTransformType::Profile(ID, getCanonicalType(BaseType), Kind); 5487 5488 void *InsertPos = nullptr; 5489 DependentUnaryTransformType *Canon 5490 = DependentUnaryTransformTypes.FindNodeOrInsertPos(ID, InsertPos); 5491 5492 if (!Canon) { 5493 // Build a new, canonical __underlying_type(type) type. 5494 Canon = new (*this, TypeAlignment) 5495 DependentUnaryTransformType(*this, getCanonicalType(BaseType), 5496 Kind); 5497 DependentUnaryTransformTypes.InsertNode(Canon, InsertPos); 5498 } 5499 ut = new (*this, TypeAlignment) UnaryTransformType (BaseType, 5500 QualType(), Kind, 5501 QualType(Canon, 0)); 5502 } else { 5503 QualType CanonType = getCanonicalType(UnderlyingType); 5504 ut = new (*this, TypeAlignment) UnaryTransformType (BaseType, 5505 UnderlyingType, Kind, 5506 CanonType); 5507 } 5508 Types.push_back(ut); 5509 return QualType(ut, 0); 5510 } 5511 5512 /// getAutoType - Return the uniqued reference to the 'auto' type which has been 5513 /// deduced to the given type, or to the canonical undeduced 'auto' type, or the 5514 /// canonical deduced-but-dependent 'auto' type. 5515 QualType 5516 ASTContext::getAutoType(QualType DeducedType, AutoTypeKeyword Keyword, 5517 bool IsDependent, bool IsPack, 5518 ConceptDecl *TypeConstraintConcept, 5519 ArrayRef<TemplateArgument> TypeConstraintArgs) const { 5520 assert((!IsPack || IsDependent) && "only use IsPack for a dependent pack"); 5521 if (DeducedType.isNull() && Keyword == AutoTypeKeyword::Auto && 5522 !TypeConstraintConcept && !IsDependent) 5523 return getAutoDeductType(); 5524 5525 // Look in the folding set for an existing type. 5526 void *InsertPos = nullptr; 5527 llvm::FoldingSetNodeID ID; 5528 AutoType::Profile(ID, *this, DeducedType, Keyword, IsDependent, 5529 TypeConstraintConcept, TypeConstraintArgs); 5530 if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos)) 5531 return QualType(AT, 0); 5532 5533 void *Mem = Allocate(sizeof(AutoType) + 5534 sizeof(TemplateArgument) * TypeConstraintArgs.size(), 5535 TypeAlignment); 5536 auto *AT = new (Mem) AutoType( 5537 DeducedType, Keyword, 5538 (IsDependent ? TypeDependence::DependentInstantiation 5539 : TypeDependence::None) | 5540 (IsPack ? TypeDependence::UnexpandedPack : TypeDependence::None), 5541 TypeConstraintConcept, TypeConstraintArgs); 5542 Types.push_back(AT); 5543 if (InsertPos) 5544 AutoTypes.InsertNode(AT, InsertPos); 5545 return QualType(AT, 0); 5546 } 5547 5548 /// Return the uniqued reference to the deduced template specialization type 5549 /// which has been deduced to the given type, or to the canonical undeduced 5550 /// such type, or the canonical deduced-but-dependent such type. 5551 QualType ASTContext::getDeducedTemplateSpecializationType( 5552 TemplateName Template, QualType DeducedType, bool IsDependent) const { 5553 // Look in the folding set for an existing type. 5554 void *InsertPos = nullptr; 5555 llvm::FoldingSetNodeID ID; 5556 DeducedTemplateSpecializationType::Profile(ID, Template, DeducedType, 5557 IsDependent); 5558 if (DeducedTemplateSpecializationType *DTST = 5559 DeducedTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos)) 5560 return QualType(DTST, 0); 5561 5562 auto *DTST = new (*this, TypeAlignment) 5563 DeducedTemplateSpecializationType(Template, DeducedType, IsDependent); 5564 Types.push_back(DTST); 5565 if (InsertPos) 5566 DeducedTemplateSpecializationTypes.InsertNode(DTST, InsertPos); 5567 return QualType(DTST, 0); 5568 } 5569 5570 /// getAtomicType - Return the uniqued reference to the atomic type for 5571 /// the given value type. 5572 QualType ASTContext::getAtomicType(QualType T) const { 5573 // Unique pointers, to guarantee there is only one pointer of a particular 5574 // structure. 5575 llvm::FoldingSetNodeID ID; 5576 AtomicType::Profile(ID, T); 5577 5578 void *InsertPos = nullptr; 5579 if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos)) 5580 return QualType(AT, 0); 5581 5582 // If the atomic value type isn't canonical, this won't be a canonical type 5583 // either, so fill in the canonical type field. 5584 QualType Canonical; 5585 if (!T.isCanonical()) { 5586 Canonical = getAtomicType(getCanonicalType(T)); 5587 5588 // Get the new insert position for the node we care about. 5589 AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos); 5590 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; 5591 } 5592 auto *New = new (*this, TypeAlignment) AtomicType(T, Canonical); 5593 Types.push_back(New); 5594 AtomicTypes.InsertNode(New, InsertPos); 5595 return QualType(New, 0); 5596 } 5597 5598 /// getAutoDeductType - Get type pattern for deducing against 'auto'. 5599 QualType ASTContext::getAutoDeductType() const { 5600 if (AutoDeductTy.isNull()) 5601 AutoDeductTy = QualType(new (*this, TypeAlignment) 5602 AutoType(QualType(), AutoTypeKeyword::Auto, 5603 TypeDependence::None, 5604 /*concept*/ nullptr, /*args*/ {}), 5605 0); 5606 return AutoDeductTy; 5607 } 5608 5609 /// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'. 5610 QualType ASTContext::getAutoRRefDeductType() const { 5611 if (AutoRRefDeductTy.isNull()) 5612 AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType()); 5613 assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern"); 5614 return AutoRRefDeductTy; 5615 } 5616 5617 /// getTagDeclType - Return the unique reference to the type for the 5618 /// specified TagDecl (struct/union/class/enum) decl. 5619 QualType ASTContext::getTagDeclType(const TagDecl *Decl) const { 5620 assert(Decl); 5621 // FIXME: What is the design on getTagDeclType when it requires casting 5622 // away const? mutable? 5623 return getTypeDeclType(const_cast<TagDecl*>(Decl)); 5624 } 5625 5626 /// getSizeType - Return the unique type for "size_t" (C99 7.17), the result 5627 /// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and 5628 /// needs to agree with the definition in <stddef.h>. 5629 CanQualType ASTContext::getSizeType() const { 5630 return getFromTargetType(Target->getSizeType()); 5631 } 5632 5633 /// Return the unique signed counterpart of the integer type 5634 /// corresponding to size_t. 5635 CanQualType ASTContext::getSignedSizeType() const { 5636 return getFromTargetType(Target->getSignedSizeType()); 5637 } 5638 5639 /// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5). 5640 CanQualType ASTContext::getIntMaxType() const { 5641 return getFromTargetType(Target->getIntMaxType()); 5642 } 5643 5644 /// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5). 5645 CanQualType ASTContext::getUIntMaxType() const { 5646 return getFromTargetType(Target->getUIntMaxType()); 5647 } 5648 5649 /// getSignedWCharType - Return the type of "signed wchar_t". 5650 /// Used when in C++, as a GCC extension. 5651 QualType ASTContext::getSignedWCharType() const { 5652 // FIXME: derive from "Target" ? 5653 return WCharTy; 5654 } 5655 5656 /// getUnsignedWCharType - Return the type of "unsigned wchar_t". 5657 /// Used when in C++, as a GCC extension. 5658 QualType ASTContext::getUnsignedWCharType() const { 5659 // FIXME: derive from "Target" ? 5660 return UnsignedIntTy; 5661 } 5662 5663 QualType ASTContext::getIntPtrType() const { 5664 return getFromTargetType(Target->getIntPtrType()); 5665 } 5666 5667 QualType ASTContext::getUIntPtrType() const { 5668 return getCorrespondingUnsignedType(getIntPtrType()); 5669 } 5670 5671 /// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17) 5672 /// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9). 5673 QualType ASTContext::getPointerDiffType() const { 5674 return getFromTargetType(Target->getPtrDiffType(0)); 5675 } 5676 5677 /// Return the unique unsigned counterpart of "ptrdiff_t" 5678 /// integer type. The standard (C11 7.21.6.1p7) refers to this type 5679 /// in the definition of %tu format specifier. 5680 QualType ASTContext::getUnsignedPointerDiffType() const { 5681 return getFromTargetType(Target->getUnsignedPtrDiffType(0)); 5682 } 5683 5684 /// Return the unique type for "pid_t" defined in 5685 /// <sys/types.h>. We need this to compute the correct type for vfork(). 5686 QualType ASTContext::getProcessIDType() const { 5687 return getFromTargetType(Target->getProcessIDType()); 5688 } 5689 5690 //===----------------------------------------------------------------------===// 5691 // Type Operators 5692 //===----------------------------------------------------------------------===// 5693 5694 CanQualType ASTContext::getCanonicalParamType(QualType T) const { 5695 // Push qualifiers into arrays, and then discard any remaining 5696 // qualifiers. 5697 T = getCanonicalType(T); 5698 T = getVariableArrayDecayedType(T); 5699 const Type *Ty = T.getTypePtr(); 5700 QualType Result; 5701 if (isa<ArrayType>(Ty)) { 5702 Result = getArrayDecayedType(QualType(Ty,0)); 5703 } else if (isa<FunctionType>(Ty)) { 5704 Result = getPointerType(QualType(Ty, 0)); 5705 } else { 5706 Result = QualType(Ty, 0); 5707 } 5708 5709 return CanQualType::CreateUnsafe(Result); 5710 } 5711 5712 QualType ASTContext::getUnqualifiedArrayType(QualType type, 5713 Qualifiers &quals) { 5714 SplitQualType splitType = type.getSplitUnqualifiedType(); 5715 5716 // FIXME: getSplitUnqualifiedType() actually walks all the way to 5717 // the unqualified desugared type and then drops it on the floor. 5718 // We then have to strip that sugar back off with 5719 // getUnqualifiedDesugaredType(), which is silly. 5720 const auto *AT = 5721 dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType()); 5722 5723 // If we don't have an array, just use the results in splitType. 5724 if (!AT) { 5725 quals = splitType.Quals; 5726 return QualType(splitType.Ty, 0); 5727 } 5728 5729 // Otherwise, recurse on the array's element type. 5730 QualType elementType = AT->getElementType(); 5731 QualType unqualElementType = getUnqualifiedArrayType(elementType, quals); 5732 5733 // If that didn't change the element type, AT has no qualifiers, so we 5734 // can just use the results in splitType. 5735 if (elementType == unqualElementType) { 5736 assert(quals.empty()); // from the recursive call 5737 quals = splitType.Quals; 5738 return QualType(splitType.Ty, 0); 5739 } 5740 5741 // Otherwise, add in the qualifiers from the outermost type, then 5742 // build the type back up. 5743 quals.addConsistentQualifiers(splitType.Quals); 5744 5745 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) { 5746 return getConstantArrayType(unqualElementType, CAT->getSize(), 5747 CAT->getSizeExpr(), CAT->getSizeModifier(), 0); 5748 } 5749 5750 if (const auto *IAT = dyn_cast<IncompleteArrayType>(AT)) { 5751 return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0); 5752 } 5753 5754 if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) { 5755 return getVariableArrayType(unqualElementType, 5756 VAT->getSizeExpr(), 5757 VAT->getSizeModifier(), 5758 VAT->getIndexTypeCVRQualifiers(), 5759 VAT->getBracketsRange()); 5760 } 5761 5762 const auto *DSAT = cast<DependentSizedArrayType>(AT); 5763 return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(), 5764 DSAT->getSizeModifier(), 0, 5765 SourceRange()); 5766 } 5767 5768 /// Attempt to unwrap two types that may both be array types with the same bound 5769 /// (or both be array types of unknown bound) for the purpose of comparing the 5770 /// cv-decomposition of two types per C++ [conv.qual]. 5771 void ASTContext::UnwrapSimilarArrayTypes(QualType &T1, QualType &T2) { 5772 while (true) { 5773 auto *AT1 = getAsArrayType(T1); 5774 if (!AT1) 5775 return; 5776 5777 auto *AT2 = getAsArrayType(T2); 5778 if (!AT2) 5779 return; 5780 5781 // If we don't have two array types with the same constant bound nor two 5782 // incomplete array types, we've unwrapped everything we can. 5783 if (auto *CAT1 = dyn_cast<ConstantArrayType>(AT1)) { 5784 auto *CAT2 = dyn_cast<ConstantArrayType>(AT2); 5785 if (!CAT2 || CAT1->getSize() != CAT2->getSize()) 5786 return; 5787 } else if (!isa<IncompleteArrayType>(AT1) || 5788 !isa<IncompleteArrayType>(AT2)) { 5789 return; 5790 } 5791 5792 T1 = AT1->getElementType(); 5793 T2 = AT2->getElementType(); 5794 } 5795 } 5796 5797 /// Attempt to unwrap two types that may be similar (C++ [conv.qual]). 5798 /// 5799 /// If T1 and T2 are both pointer types of the same kind, or both array types 5800 /// with the same bound, unwraps layers from T1 and T2 until a pointer type is 5801 /// unwrapped. Top-level qualifiers on T1 and T2 are ignored. 5802 /// 5803 /// This function will typically be called in a loop that successively 5804 /// "unwraps" pointer and pointer-to-member types to compare them at each 5805 /// level. 5806 /// 5807 /// \return \c true if a pointer type was unwrapped, \c false if we reached a 5808 /// pair of types that can't be unwrapped further. 5809 bool ASTContext::UnwrapSimilarTypes(QualType &T1, QualType &T2) { 5810 UnwrapSimilarArrayTypes(T1, T2); 5811 5812 const auto *T1PtrType = T1->getAs<PointerType>(); 5813 const auto *T2PtrType = T2->getAs<PointerType>(); 5814 if (T1PtrType && T2PtrType) { 5815 T1 = T1PtrType->getPointeeType(); 5816 T2 = T2PtrType->getPointeeType(); 5817 return true; 5818 } 5819 5820 const auto *T1MPType = T1->getAs<MemberPointerType>(); 5821 const auto *T2MPType = T2->getAs<MemberPointerType>(); 5822 if (T1MPType && T2MPType && 5823 hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0), 5824 QualType(T2MPType->getClass(), 0))) { 5825 T1 = T1MPType->getPointeeType(); 5826 T2 = T2MPType->getPointeeType(); 5827 return true; 5828 } 5829 5830 if (getLangOpts().ObjC) { 5831 const auto *T1OPType = T1->getAs<ObjCObjectPointerType>(); 5832 const auto *T2OPType = T2->getAs<ObjCObjectPointerType>(); 5833 if (T1OPType && T2OPType) { 5834 T1 = T1OPType->getPointeeType(); 5835 T2 = T2OPType->getPointeeType(); 5836 return true; 5837 } 5838 } 5839 5840 // FIXME: Block pointers, too? 5841 5842 return false; 5843 } 5844 5845 bool ASTContext::hasSimilarType(QualType T1, QualType T2) { 5846 while (true) { 5847 Qualifiers Quals; 5848 T1 = getUnqualifiedArrayType(T1, Quals); 5849 T2 = getUnqualifiedArrayType(T2, Quals); 5850 if (hasSameType(T1, T2)) 5851 return true; 5852 if (!UnwrapSimilarTypes(T1, T2)) 5853 return false; 5854 } 5855 } 5856 5857 bool ASTContext::hasCvrSimilarType(QualType T1, QualType T2) { 5858 while (true) { 5859 Qualifiers Quals1, Quals2; 5860 T1 = getUnqualifiedArrayType(T1, Quals1); 5861 T2 = getUnqualifiedArrayType(T2, Quals2); 5862 5863 Quals1.removeCVRQualifiers(); 5864 Quals2.removeCVRQualifiers(); 5865 if (Quals1 != Quals2) 5866 return false; 5867 5868 if (hasSameType(T1, T2)) 5869 return true; 5870 5871 if (!UnwrapSimilarTypes(T1, T2)) 5872 return false; 5873 } 5874 } 5875 5876 DeclarationNameInfo 5877 ASTContext::getNameForTemplate(TemplateName Name, 5878 SourceLocation NameLoc) const { 5879 switch (Name.getKind()) { 5880 case TemplateName::QualifiedTemplate: 5881 case TemplateName::Template: 5882 // DNInfo work in progress: CHECKME: what about DNLoc? 5883 return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(), 5884 NameLoc); 5885 5886 case TemplateName::OverloadedTemplate: { 5887 OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate(); 5888 // DNInfo work in progress: CHECKME: what about DNLoc? 5889 return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc); 5890 } 5891 5892 case TemplateName::AssumedTemplate: { 5893 AssumedTemplateStorage *Storage = Name.getAsAssumedTemplateName(); 5894 return DeclarationNameInfo(Storage->getDeclName(), NameLoc); 5895 } 5896 5897 case TemplateName::DependentTemplate: { 5898 DependentTemplateName *DTN = Name.getAsDependentTemplateName(); 5899 DeclarationName DName; 5900 if (DTN->isIdentifier()) { 5901 DName = DeclarationNames.getIdentifier(DTN->getIdentifier()); 5902 return DeclarationNameInfo(DName, NameLoc); 5903 } else { 5904 DName = DeclarationNames.getCXXOperatorName(DTN->getOperator()); 5905 // DNInfo work in progress: FIXME: source locations? 5906 DeclarationNameLoc DNLoc = 5907 DeclarationNameLoc::makeCXXOperatorNameLoc(SourceRange()); 5908 return DeclarationNameInfo(DName, NameLoc, DNLoc); 5909 } 5910 } 5911 5912 case TemplateName::SubstTemplateTemplateParm: { 5913 SubstTemplateTemplateParmStorage *subst 5914 = Name.getAsSubstTemplateTemplateParm(); 5915 return DeclarationNameInfo(subst->getParameter()->getDeclName(), 5916 NameLoc); 5917 } 5918 5919 case TemplateName::SubstTemplateTemplateParmPack: { 5920 SubstTemplateTemplateParmPackStorage *subst 5921 = Name.getAsSubstTemplateTemplateParmPack(); 5922 return DeclarationNameInfo(subst->getParameterPack()->getDeclName(), 5923 NameLoc); 5924 } 5925 } 5926 5927 llvm_unreachable("bad template name kind!"); 5928 } 5929 5930 TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const { 5931 switch (Name.getKind()) { 5932 case TemplateName::QualifiedTemplate: 5933 case TemplateName::Template: { 5934 TemplateDecl *Template = Name.getAsTemplateDecl(); 5935 if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(Template)) 5936 Template = getCanonicalTemplateTemplateParmDecl(TTP); 5937 5938 // The canonical template name is the canonical template declaration. 5939 return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl())); 5940 } 5941 5942 case TemplateName::OverloadedTemplate: 5943 case TemplateName::AssumedTemplate: 5944 llvm_unreachable("cannot canonicalize unresolved template"); 5945 5946 case TemplateName::DependentTemplate: { 5947 DependentTemplateName *DTN = Name.getAsDependentTemplateName(); 5948 assert(DTN && "Non-dependent template names must refer to template decls."); 5949 return DTN->CanonicalTemplateName; 5950 } 5951 5952 case TemplateName::SubstTemplateTemplateParm: { 5953 SubstTemplateTemplateParmStorage *subst 5954 = Name.getAsSubstTemplateTemplateParm(); 5955 return getCanonicalTemplateName(subst->getReplacement()); 5956 } 5957 5958 case TemplateName::SubstTemplateTemplateParmPack: { 5959 SubstTemplateTemplateParmPackStorage *subst 5960 = Name.getAsSubstTemplateTemplateParmPack(); 5961 TemplateTemplateParmDecl *canonParameter 5962 = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack()); 5963 TemplateArgument canonArgPack 5964 = getCanonicalTemplateArgument(subst->getArgumentPack()); 5965 return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack); 5966 } 5967 } 5968 5969 llvm_unreachable("bad template name!"); 5970 } 5971 5972 bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) { 5973 X = getCanonicalTemplateName(X); 5974 Y = getCanonicalTemplateName(Y); 5975 return X.getAsVoidPointer() == Y.getAsVoidPointer(); 5976 } 5977 5978 TemplateArgument 5979 ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const { 5980 switch (Arg.getKind()) { 5981 case TemplateArgument::Null: 5982 return Arg; 5983 5984 case TemplateArgument::Expression: 5985 return Arg; 5986 5987 case TemplateArgument::Declaration: { 5988 auto *D = cast<ValueDecl>(Arg.getAsDecl()->getCanonicalDecl()); 5989 return TemplateArgument(D, Arg.getParamTypeForDecl()); 5990 } 5991 5992 case TemplateArgument::NullPtr: 5993 return TemplateArgument(getCanonicalType(Arg.getNullPtrType()), 5994 /*isNullPtr*/true); 5995 5996 case TemplateArgument::Template: 5997 return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate())); 5998 5999 case TemplateArgument::TemplateExpansion: 6000 return TemplateArgument(getCanonicalTemplateName( 6001 Arg.getAsTemplateOrTemplatePattern()), 6002 Arg.getNumTemplateExpansions()); 6003 6004 case TemplateArgument::Integral: 6005 return TemplateArgument(Arg, getCanonicalType(Arg.getIntegralType())); 6006 6007 case TemplateArgument::Type: 6008 return TemplateArgument(getCanonicalType(Arg.getAsType())); 6009 6010 case TemplateArgument::Pack: { 6011 if (Arg.pack_size() == 0) 6012 return Arg; 6013 6014 auto *CanonArgs = new (*this) TemplateArgument[Arg.pack_size()]; 6015 unsigned Idx = 0; 6016 for (TemplateArgument::pack_iterator A = Arg.pack_begin(), 6017 AEnd = Arg.pack_end(); 6018 A != AEnd; (void)++A, ++Idx) 6019 CanonArgs[Idx] = getCanonicalTemplateArgument(*A); 6020 6021 return TemplateArgument(llvm::makeArrayRef(CanonArgs, Arg.pack_size())); 6022 } 6023 } 6024 6025 // Silence GCC warning 6026 llvm_unreachable("Unhandled template argument kind"); 6027 } 6028 6029 NestedNameSpecifier * 6030 ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const { 6031 if (!NNS) 6032 return nullptr; 6033 6034 switch (NNS->getKind()) { 6035 case NestedNameSpecifier::Identifier: 6036 // Canonicalize the prefix but keep the identifier the same. 6037 return NestedNameSpecifier::Create(*this, 6038 getCanonicalNestedNameSpecifier(NNS->getPrefix()), 6039 NNS->getAsIdentifier()); 6040 6041 case NestedNameSpecifier::Namespace: 6042 // A namespace is canonical; build a nested-name-specifier with 6043 // this namespace and no prefix. 6044 return NestedNameSpecifier::Create(*this, nullptr, 6045 NNS->getAsNamespace()->getOriginalNamespace()); 6046 6047 case NestedNameSpecifier::NamespaceAlias: 6048 // A namespace is canonical; build a nested-name-specifier with 6049 // this namespace and no prefix. 6050 return NestedNameSpecifier::Create(*this, nullptr, 6051 NNS->getAsNamespaceAlias()->getNamespace() 6052 ->getOriginalNamespace()); 6053 6054 case NestedNameSpecifier::TypeSpec: 6055 case NestedNameSpecifier::TypeSpecWithTemplate: { 6056 QualType T = getCanonicalType(QualType(NNS->getAsType(), 0)); 6057 6058 // If we have some kind of dependent-named type (e.g., "typename T::type"), 6059 // break it apart into its prefix and identifier, then reconsititute those 6060 // as the canonical nested-name-specifier. This is required to canonicalize 6061 // a dependent nested-name-specifier involving typedefs of dependent-name 6062 // types, e.g., 6063 // typedef typename T::type T1; 6064 // typedef typename T1::type T2; 6065 if (const auto *DNT = T->getAs<DependentNameType>()) 6066 return NestedNameSpecifier::Create(*this, DNT->getQualifier(), 6067 const_cast<IdentifierInfo *>(DNT->getIdentifier())); 6068 6069 // Otherwise, just canonicalize the type, and force it to be a TypeSpec. 6070 // FIXME: Why are TypeSpec and TypeSpecWithTemplate distinct in the 6071 // first place? 6072 return NestedNameSpecifier::Create(*this, nullptr, false, 6073 const_cast<Type *>(T.getTypePtr())); 6074 } 6075 6076 case NestedNameSpecifier::Global: 6077 case NestedNameSpecifier::Super: 6078 // The global specifier and __super specifer are canonical and unique. 6079 return NNS; 6080 } 6081 6082 llvm_unreachable("Invalid NestedNameSpecifier::Kind!"); 6083 } 6084 6085 const ArrayType *ASTContext::getAsArrayType(QualType T) const { 6086 // Handle the non-qualified case efficiently. 6087 if (!T.hasLocalQualifiers()) { 6088 // Handle the common positive case fast. 6089 if (const auto *AT = dyn_cast<ArrayType>(T)) 6090 return AT; 6091 } 6092 6093 // Handle the common negative case fast. 6094 if (!isa<ArrayType>(T.getCanonicalType())) 6095 return nullptr; 6096 6097 // Apply any qualifiers from the array type to the element type. This 6098 // implements C99 6.7.3p8: "If the specification of an array type includes 6099 // any type qualifiers, the element type is so qualified, not the array type." 6100 6101 // If we get here, we either have type qualifiers on the type, or we have 6102 // sugar such as a typedef in the way. If we have type qualifiers on the type 6103 // we must propagate them down into the element type. 6104 6105 SplitQualType split = T.getSplitDesugaredType(); 6106 Qualifiers qs = split.Quals; 6107 6108 // If we have a simple case, just return now. 6109 const auto *ATy = dyn_cast<ArrayType>(split.Ty); 6110 if (!ATy || qs.empty()) 6111 return ATy; 6112 6113 // Otherwise, we have an array and we have qualifiers on it. Push the 6114 // qualifiers into the array element type and return a new array type. 6115 QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs); 6116 6117 if (const auto *CAT = dyn_cast<ConstantArrayType>(ATy)) 6118 return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(), 6119 CAT->getSizeExpr(), 6120 CAT->getSizeModifier(), 6121 CAT->getIndexTypeCVRQualifiers())); 6122 if (const auto *IAT = dyn_cast<IncompleteArrayType>(ATy)) 6123 return cast<ArrayType>(getIncompleteArrayType(NewEltTy, 6124 IAT->getSizeModifier(), 6125 IAT->getIndexTypeCVRQualifiers())); 6126 6127 if (const auto *DSAT = dyn_cast<DependentSizedArrayType>(ATy)) 6128 return cast<ArrayType>( 6129 getDependentSizedArrayType(NewEltTy, 6130 DSAT->getSizeExpr(), 6131 DSAT->getSizeModifier(), 6132 DSAT->getIndexTypeCVRQualifiers(), 6133 DSAT->getBracketsRange())); 6134 6135 const auto *VAT = cast<VariableArrayType>(ATy); 6136 return cast<ArrayType>(getVariableArrayType(NewEltTy, 6137 VAT->getSizeExpr(), 6138 VAT->getSizeModifier(), 6139 VAT->getIndexTypeCVRQualifiers(), 6140 VAT->getBracketsRange())); 6141 } 6142 6143 QualType ASTContext::getAdjustedParameterType(QualType T) const { 6144 if (T->isArrayType() || T->isFunctionType()) 6145 return getDecayedType(T); 6146 return T; 6147 } 6148 6149 QualType ASTContext::getSignatureParameterType(QualType T) const { 6150 T = getVariableArrayDecayedType(T); 6151 T = getAdjustedParameterType(T); 6152 return T.getUnqualifiedType(); 6153 } 6154 6155 QualType ASTContext::getExceptionObjectType(QualType T) const { 6156 // C++ [except.throw]p3: 6157 // A throw-expression initializes a temporary object, called the exception 6158 // object, the type of which is determined by removing any top-level 6159 // cv-qualifiers from the static type of the operand of throw and adjusting 6160 // the type from "array of T" or "function returning T" to "pointer to T" 6161 // or "pointer to function returning T", [...] 6162 T = getVariableArrayDecayedType(T); 6163 if (T->isArrayType() || T->isFunctionType()) 6164 T = getDecayedType(T); 6165 return T.getUnqualifiedType(); 6166 } 6167 6168 /// getArrayDecayedType - Return the properly qualified result of decaying the 6169 /// specified array type to a pointer. This operation is non-trivial when 6170 /// handling typedefs etc. The canonical type of "T" must be an array type, 6171 /// this returns a pointer to a properly qualified element of the array. 6172 /// 6173 /// See C99 6.7.5.3p7 and C99 6.3.2.1p3. 6174 QualType ASTContext::getArrayDecayedType(QualType Ty) const { 6175 // Get the element type with 'getAsArrayType' so that we don't lose any 6176 // typedefs in the element type of the array. This also handles propagation 6177 // of type qualifiers from the array type into the element type if present 6178 // (C99 6.7.3p8). 6179 const ArrayType *PrettyArrayType = getAsArrayType(Ty); 6180 assert(PrettyArrayType && "Not an array type!"); 6181 6182 QualType PtrTy = getPointerType(PrettyArrayType->getElementType()); 6183 6184 // int x[restrict 4] -> int *restrict 6185 QualType Result = getQualifiedType(PtrTy, 6186 PrettyArrayType->getIndexTypeQualifiers()); 6187 6188 // int x[_Nullable] -> int * _Nullable 6189 if (auto Nullability = Ty->getNullability(*this)) { 6190 Result = const_cast<ASTContext *>(this)->getAttributedType( 6191 AttributedType::getNullabilityAttrKind(*Nullability), Result, Result); 6192 } 6193 return Result; 6194 } 6195 6196 QualType ASTContext::getBaseElementType(const ArrayType *array) const { 6197 return getBaseElementType(array->getElementType()); 6198 } 6199 6200 QualType ASTContext::getBaseElementType(QualType type) const { 6201 Qualifiers qs; 6202 while (true) { 6203 SplitQualType split = type.getSplitDesugaredType(); 6204 const ArrayType *array = split.Ty->getAsArrayTypeUnsafe(); 6205 if (!array) break; 6206 6207 type = array->getElementType(); 6208 qs.addConsistentQualifiers(split.Quals); 6209 } 6210 6211 return getQualifiedType(type, qs); 6212 } 6213 6214 /// getConstantArrayElementCount - Returns number of constant array elements. 6215 uint64_t 6216 ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA) const { 6217 uint64_t ElementCount = 1; 6218 do { 6219 ElementCount *= CA->getSize().getZExtValue(); 6220 CA = dyn_cast_or_null<ConstantArrayType>( 6221 CA->getElementType()->getAsArrayTypeUnsafe()); 6222 } while (CA); 6223 return ElementCount; 6224 } 6225 6226 /// getFloatingRank - Return a relative rank for floating point types. 6227 /// This routine will assert if passed a built-in type that isn't a float. 6228 static FloatingRank getFloatingRank(QualType T) { 6229 if (const auto *CT = T->getAs<ComplexType>()) 6230 return getFloatingRank(CT->getElementType()); 6231 6232 switch (T->castAs<BuiltinType>()->getKind()) { 6233 default: llvm_unreachable("getFloatingRank(): not a floating type"); 6234 case BuiltinType::Float16: return Float16Rank; 6235 case BuiltinType::Half: return HalfRank; 6236 case BuiltinType::Float: return FloatRank; 6237 case BuiltinType::Double: return DoubleRank; 6238 case BuiltinType::LongDouble: return LongDoubleRank; 6239 case BuiltinType::Float128: return Float128Rank; 6240 case BuiltinType::BFloat16: return BFloat16Rank; 6241 } 6242 } 6243 6244 /// getFloatingTypeOfSizeWithinDomain - Returns a real floating 6245 /// point or a complex type (based on typeDomain/typeSize). 6246 /// 'typeDomain' is a real floating point or complex type. 6247 /// 'typeSize' is a real floating point or complex type. 6248 QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size, 6249 QualType Domain) const { 6250 FloatingRank EltRank = getFloatingRank(Size); 6251 if (Domain->isComplexType()) { 6252 switch (EltRank) { 6253 case BFloat16Rank: llvm_unreachable("Complex bfloat16 is not supported"); 6254 case Float16Rank: 6255 case HalfRank: llvm_unreachable("Complex half is not supported"); 6256 case FloatRank: return FloatComplexTy; 6257 case DoubleRank: return DoubleComplexTy; 6258 case LongDoubleRank: return LongDoubleComplexTy; 6259 case Float128Rank: return Float128ComplexTy; 6260 } 6261 } 6262 6263 assert(Domain->isRealFloatingType() && "Unknown domain!"); 6264 switch (EltRank) { 6265 case Float16Rank: return HalfTy; 6266 case BFloat16Rank: return BFloat16Ty; 6267 case HalfRank: return HalfTy; 6268 case FloatRank: return FloatTy; 6269 case DoubleRank: return DoubleTy; 6270 case LongDoubleRank: return LongDoubleTy; 6271 case Float128Rank: return Float128Ty; 6272 } 6273 llvm_unreachable("getFloatingRank(): illegal value for rank"); 6274 } 6275 6276 /// getFloatingTypeOrder - Compare the rank of the two specified floating 6277 /// point types, ignoring the domain of the type (i.e. 'double' == 6278 /// '_Complex double'). If LHS > RHS, return 1. If LHS == RHS, return 0. If 6279 /// LHS < RHS, return -1. 6280 int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const { 6281 FloatingRank LHSR = getFloatingRank(LHS); 6282 FloatingRank RHSR = getFloatingRank(RHS); 6283 6284 if (LHSR == RHSR) 6285 return 0; 6286 if (LHSR > RHSR) 6287 return 1; 6288 return -1; 6289 } 6290 6291 int ASTContext::getFloatingTypeSemanticOrder(QualType LHS, QualType RHS) const { 6292 if (&getFloatTypeSemantics(LHS) == &getFloatTypeSemantics(RHS)) 6293 return 0; 6294 return getFloatingTypeOrder(LHS, RHS); 6295 } 6296 6297 /// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This 6298 /// routine will assert if passed a built-in type that isn't an integer or enum, 6299 /// or if it is not canonicalized. 6300 unsigned ASTContext::getIntegerRank(const Type *T) const { 6301 assert(T->isCanonicalUnqualified() && "T should be canonicalized"); 6302 6303 // Results in this 'losing' to any type of the same size, but winning if 6304 // larger. 6305 if (const auto *EIT = dyn_cast<ExtIntType>(T)) 6306 return 0 + (EIT->getNumBits() << 3); 6307 6308 switch (cast<BuiltinType>(T)->getKind()) { 6309 default: llvm_unreachable("getIntegerRank(): not a built-in integer"); 6310 case BuiltinType::Bool: 6311 return 1 + (getIntWidth(BoolTy) << 3); 6312 case BuiltinType::Char_S: 6313 case BuiltinType::Char_U: 6314 case BuiltinType::SChar: 6315 case BuiltinType::UChar: 6316 return 2 + (getIntWidth(CharTy) << 3); 6317 case BuiltinType::Short: 6318 case BuiltinType::UShort: 6319 return 3 + (getIntWidth(ShortTy) << 3); 6320 case BuiltinType::Int: 6321 case BuiltinType::UInt: 6322 return 4 + (getIntWidth(IntTy) << 3); 6323 case BuiltinType::Long: 6324 case BuiltinType::ULong: 6325 return 5 + (getIntWidth(LongTy) << 3); 6326 case BuiltinType::LongLong: 6327 case BuiltinType::ULongLong: 6328 return 6 + (getIntWidth(LongLongTy) << 3); 6329 case BuiltinType::Int128: 6330 case BuiltinType::UInt128: 6331 return 7 + (getIntWidth(Int128Ty) << 3); 6332 } 6333 } 6334 6335 /// Whether this is a promotable bitfield reference according 6336 /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions). 6337 /// 6338 /// \returns the type this bit-field will promote to, or NULL if no 6339 /// promotion occurs. 6340 QualType ASTContext::isPromotableBitField(Expr *E) const { 6341 if (E->isTypeDependent() || E->isValueDependent()) 6342 return {}; 6343 6344 // C++ [conv.prom]p5: 6345 // If the bit-field has an enumerated type, it is treated as any other 6346 // value of that type for promotion purposes. 6347 if (getLangOpts().CPlusPlus && E->getType()->isEnumeralType()) 6348 return {}; 6349 6350 // FIXME: We should not do this unless E->refersToBitField() is true. This 6351 // matters in C where getSourceBitField() will find bit-fields for various 6352 // cases where the source expression is not a bit-field designator. 6353 6354 FieldDecl *Field = E->getSourceBitField(); // FIXME: conditional bit-fields? 6355 if (!Field) 6356 return {}; 6357 6358 QualType FT = Field->getType(); 6359 6360 uint64_t BitWidth = Field->getBitWidthValue(*this); 6361 uint64_t IntSize = getTypeSize(IntTy); 6362 // C++ [conv.prom]p5: 6363 // A prvalue for an integral bit-field can be converted to a prvalue of type 6364 // int if int can represent all the values of the bit-field; otherwise, it 6365 // can be converted to unsigned int if unsigned int can represent all the 6366 // values of the bit-field. If the bit-field is larger yet, no integral 6367 // promotion applies to it. 6368 // C11 6.3.1.1/2: 6369 // [For a bit-field of type _Bool, int, signed int, or unsigned int:] 6370 // If an int can represent all values of the original type (as restricted by 6371 // the width, for a bit-field), the value is converted to an int; otherwise, 6372 // it is converted to an unsigned int. 6373 // 6374 // FIXME: C does not permit promotion of a 'long : 3' bitfield to int. 6375 // We perform that promotion here to match GCC and C++. 6376 // FIXME: C does not permit promotion of an enum bit-field whose rank is 6377 // greater than that of 'int'. We perform that promotion to match GCC. 6378 if (BitWidth < IntSize) 6379 return IntTy; 6380 6381 if (BitWidth == IntSize) 6382 return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy; 6383 6384 // Bit-fields wider than int are not subject to promotions, and therefore act 6385 // like the base type. GCC has some weird bugs in this area that we 6386 // deliberately do not follow (GCC follows a pre-standard resolution to 6387 // C's DR315 which treats bit-width as being part of the type, and this leaks 6388 // into their semantics in some cases). 6389 return {}; 6390 } 6391 6392 /// getPromotedIntegerType - Returns the type that Promotable will 6393 /// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable 6394 /// integer type. 6395 QualType ASTContext::getPromotedIntegerType(QualType Promotable) const { 6396 assert(!Promotable.isNull()); 6397 assert(Promotable->isPromotableIntegerType()); 6398 if (const auto *ET = Promotable->getAs<EnumType>()) 6399 return ET->getDecl()->getPromotionType(); 6400 6401 if (const auto *BT = Promotable->getAs<BuiltinType>()) { 6402 // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t 6403 // (3.9.1) can be converted to a prvalue of the first of the following 6404 // types that can represent all the values of its underlying type: 6405 // int, unsigned int, long int, unsigned long int, long long int, or 6406 // unsigned long long int [...] 6407 // FIXME: Is there some better way to compute this? 6408 if (BT->getKind() == BuiltinType::WChar_S || 6409 BT->getKind() == BuiltinType::WChar_U || 6410 BT->getKind() == BuiltinType::Char8 || 6411 BT->getKind() == BuiltinType::Char16 || 6412 BT->getKind() == BuiltinType::Char32) { 6413 bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S; 6414 uint64_t FromSize = getTypeSize(BT); 6415 QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy, 6416 LongLongTy, UnsignedLongLongTy }; 6417 for (size_t Idx = 0; Idx < llvm::array_lengthof(PromoteTypes); ++Idx) { 6418 uint64_t ToSize = getTypeSize(PromoteTypes[Idx]); 6419 if (FromSize < ToSize || 6420 (FromSize == ToSize && 6421 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) 6422 return PromoteTypes[Idx]; 6423 } 6424 llvm_unreachable("char type should fit into long long"); 6425 } 6426 } 6427 6428 // At this point, we should have a signed or unsigned integer type. 6429 if (Promotable->isSignedIntegerType()) 6430 return IntTy; 6431 uint64_t PromotableSize = getIntWidth(Promotable); 6432 uint64_t IntSize = getIntWidth(IntTy); 6433 assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize); 6434 return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy; 6435 } 6436 6437 /// Recurses in pointer/array types until it finds an objc retainable 6438 /// type and returns its ownership. 6439 Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const { 6440 while (!T.isNull()) { 6441 if (T.getObjCLifetime() != Qualifiers::OCL_None) 6442 return T.getObjCLifetime(); 6443 if (T->isArrayType()) 6444 T = getBaseElementType(T); 6445 else if (const auto *PT = T->getAs<PointerType>()) 6446 T = PT->getPointeeType(); 6447 else if (const auto *RT = T->getAs<ReferenceType>()) 6448 T = RT->getPointeeType(); 6449 else 6450 break; 6451 } 6452 6453 return Qualifiers::OCL_None; 6454 } 6455 6456 static const Type *getIntegerTypeForEnum(const EnumType *ET) { 6457 // Incomplete enum types are not treated as integer types. 6458 // FIXME: In C++, enum types are never integer types. 6459 if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped()) 6460 return ET->getDecl()->getIntegerType().getTypePtr(); 6461 return nullptr; 6462 } 6463 6464 /// getIntegerTypeOrder - Returns the highest ranked integer type: 6465 /// C99 6.3.1.8p1. If LHS > RHS, return 1. If LHS == RHS, return 0. If 6466 /// LHS < RHS, return -1. 6467 int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const { 6468 const Type *LHSC = getCanonicalType(LHS).getTypePtr(); 6469 const Type *RHSC = getCanonicalType(RHS).getTypePtr(); 6470 6471 // Unwrap enums to their underlying type. 6472 if (const auto *ET = dyn_cast<EnumType>(LHSC)) 6473 LHSC = getIntegerTypeForEnum(ET); 6474 if (const auto *ET = dyn_cast<EnumType>(RHSC)) 6475 RHSC = getIntegerTypeForEnum(ET); 6476 6477 if (LHSC == RHSC) return 0; 6478 6479 bool LHSUnsigned = LHSC->isUnsignedIntegerType(); 6480 bool RHSUnsigned = RHSC->isUnsignedIntegerType(); 6481 6482 unsigned LHSRank = getIntegerRank(LHSC); 6483 unsigned RHSRank = getIntegerRank(RHSC); 6484 6485 if (LHSUnsigned == RHSUnsigned) { // Both signed or both unsigned. 6486 if (LHSRank == RHSRank) return 0; 6487 return LHSRank > RHSRank ? 1 : -1; 6488 } 6489 6490 // Otherwise, the LHS is signed and the RHS is unsigned or visa versa. 6491 if (LHSUnsigned) { 6492 // If the unsigned [LHS] type is larger, return it. 6493 if (LHSRank >= RHSRank) 6494 return 1; 6495 6496 // If the signed type can represent all values of the unsigned type, it 6497 // wins. Because we are dealing with 2's complement and types that are 6498 // powers of two larger than each other, this is always safe. 6499 return -1; 6500 } 6501 6502 // If the unsigned [RHS] type is larger, return it. 6503 if (RHSRank >= LHSRank) 6504 return -1; 6505 6506 // If the signed type can represent all values of the unsigned type, it 6507 // wins. Because we are dealing with 2's complement and types that are 6508 // powers of two larger than each other, this is always safe. 6509 return 1; 6510 } 6511 6512 TypedefDecl *ASTContext::getCFConstantStringDecl() const { 6513 if (CFConstantStringTypeDecl) 6514 return CFConstantStringTypeDecl; 6515 6516 assert(!CFConstantStringTagDecl && 6517 "tag and typedef should be initialized together"); 6518 CFConstantStringTagDecl = buildImplicitRecord("__NSConstantString_tag"); 6519 CFConstantStringTagDecl->startDefinition(); 6520 6521 struct { 6522 QualType Type; 6523 const char *Name; 6524 } Fields[5]; 6525 unsigned Count = 0; 6526 6527 /// Objective-C ABI 6528 /// 6529 /// typedef struct __NSConstantString_tag { 6530 /// const int *isa; 6531 /// int flags; 6532 /// const char *str; 6533 /// long length; 6534 /// } __NSConstantString; 6535 /// 6536 /// Swift ABI (4.1, 4.2) 6537 /// 6538 /// typedef struct __NSConstantString_tag { 6539 /// uintptr_t _cfisa; 6540 /// uintptr_t _swift_rc; 6541 /// _Atomic(uint64_t) _cfinfoa; 6542 /// const char *_ptr; 6543 /// uint32_t _length; 6544 /// } __NSConstantString; 6545 /// 6546 /// Swift ABI (5.0) 6547 /// 6548 /// typedef struct __NSConstantString_tag { 6549 /// uintptr_t _cfisa; 6550 /// uintptr_t _swift_rc; 6551 /// _Atomic(uint64_t) _cfinfoa; 6552 /// const char *_ptr; 6553 /// uintptr_t _length; 6554 /// } __NSConstantString; 6555 6556 const auto CFRuntime = getLangOpts().CFRuntime; 6557 if (static_cast<unsigned>(CFRuntime) < 6558 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift)) { 6559 Fields[Count++] = { getPointerType(IntTy.withConst()), "isa" }; 6560 Fields[Count++] = { IntTy, "flags" }; 6561 Fields[Count++] = { getPointerType(CharTy.withConst()), "str" }; 6562 Fields[Count++] = { LongTy, "length" }; 6563 } else { 6564 Fields[Count++] = { getUIntPtrType(), "_cfisa" }; 6565 Fields[Count++] = { getUIntPtrType(), "_swift_rc" }; 6566 Fields[Count++] = { getFromTargetType(Target->getUInt64Type()), "_swift_rc" }; 6567 Fields[Count++] = { getPointerType(CharTy.withConst()), "_ptr" }; 6568 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 6569 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 6570 Fields[Count++] = { IntTy, "_ptr" }; 6571 else 6572 Fields[Count++] = { getUIntPtrType(), "_ptr" }; 6573 } 6574 6575 // Create fields 6576 for (unsigned i = 0; i < Count; ++i) { 6577 FieldDecl *Field = 6578 FieldDecl::Create(*this, CFConstantStringTagDecl, SourceLocation(), 6579 SourceLocation(), &Idents.get(Fields[i].Name), 6580 Fields[i].Type, /*TInfo=*/nullptr, 6581 /*BitWidth=*/nullptr, /*Mutable=*/false, ICIS_NoInit); 6582 Field->setAccess(AS_public); 6583 CFConstantStringTagDecl->addDecl(Field); 6584 } 6585 6586 CFConstantStringTagDecl->completeDefinition(); 6587 // This type is designed to be compatible with NSConstantString, but cannot 6588 // use the same name, since NSConstantString is an interface. 6589 auto tagType = getTagDeclType(CFConstantStringTagDecl); 6590 CFConstantStringTypeDecl = 6591 buildImplicitTypedef(tagType, "__NSConstantString"); 6592 6593 return CFConstantStringTypeDecl; 6594 } 6595 6596 RecordDecl *ASTContext::getCFConstantStringTagDecl() const { 6597 if (!CFConstantStringTagDecl) 6598 getCFConstantStringDecl(); // Build the tag and the typedef. 6599 return CFConstantStringTagDecl; 6600 } 6601 6602 // getCFConstantStringType - Return the type used for constant CFStrings. 6603 QualType ASTContext::getCFConstantStringType() const { 6604 return getTypedefType(getCFConstantStringDecl()); 6605 } 6606 6607 QualType ASTContext::getObjCSuperType() const { 6608 if (ObjCSuperType.isNull()) { 6609 RecordDecl *ObjCSuperTypeDecl = buildImplicitRecord("objc_super"); 6610 TUDecl->addDecl(ObjCSuperTypeDecl); 6611 ObjCSuperType = getTagDeclType(ObjCSuperTypeDecl); 6612 } 6613 return ObjCSuperType; 6614 } 6615 6616 void ASTContext::setCFConstantStringType(QualType T) { 6617 const auto *TD = T->castAs<TypedefType>(); 6618 CFConstantStringTypeDecl = cast<TypedefDecl>(TD->getDecl()); 6619 const auto *TagType = 6620 CFConstantStringTypeDecl->getUnderlyingType()->castAs<RecordType>(); 6621 CFConstantStringTagDecl = TagType->getDecl(); 6622 } 6623 6624 QualType ASTContext::getBlockDescriptorType() const { 6625 if (BlockDescriptorType) 6626 return getTagDeclType(BlockDescriptorType); 6627 6628 RecordDecl *RD; 6629 // FIXME: Needs the FlagAppleBlock bit. 6630 RD = buildImplicitRecord("__block_descriptor"); 6631 RD->startDefinition(); 6632 6633 QualType FieldTypes[] = { 6634 UnsignedLongTy, 6635 UnsignedLongTy, 6636 }; 6637 6638 static const char *const FieldNames[] = { 6639 "reserved", 6640 "Size" 6641 }; 6642 6643 for (size_t i = 0; i < 2; ++i) { 6644 FieldDecl *Field = FieldDecl::Create( 6645 *this, RD, SourceLocation(), SourceLocation(), 6646 &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr, 6647 /*BitWidth=*/nullptr, /*Mutable=*/false, ICIS_NoInit); 6648 Field->setAccess(AS_public); 6649 RD->addDecl(Field); 6650 } 6651 6652 RD->completeDefinition(); 6653 6654 BlockDescriptorType = RD; 6655 6656 return getTagDeclType(BlockDescriptorType); 6657 } 6658 6659 QualType ASTContext::getBlockDescriptorExtendedType() const { 6660 if (BlockDescriptorExtendedType) 6661 return getTagDeclType(BlockDescriptorExtendedType); 6662 6663 RecordDecl *RD; 6664 // FIXME: Needs the FlagAppleBlock bit. 6665 RD = buildImplicitRecord("__block_descriptor_withcopydispose"); 6666 RD->startDefinition(); 6667 6668 QualType FieldTypes[] = { 6669 UnsignedLongTy, 6670 UnsignedLongTy, 6671 getPointerType(VoidPtrTy), 6672 getPointerType(VoidPtrTy) 6673 }; 6674 6675 static const char *const FieldNames[] = { 6676 "reserved", 6677 "Size", 6678 "CopyFuncPtr", 6679 "DestroyFuncPtr" 6680 }; 6681 6682 for (size_t i = 0; i < 4; ++i) { 6683 FieldDecl *Field = FieldDecl::Create( 6684 *this, RD, SourceLocation(), SourceLocation(), 6685 &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr, 6686 /*BitWidth=*/nullptr, 6687 /*Mutable=*/false, ICIS_NoInit); 6688 Field->setAccess(AS_public); 6689 RD->addDecl(Field); 6690 } 6691 6692 RD->completeDefinition(); 6693 6694 BlockDescriptorExtendedType = RD; 6695 return getTagDeclType(BlockDescriptorExtendedType); 6696 } 6697 6698 OpenCLTypeKind ASTContext::getOpenCLTypeKind(const Type *T) const { 6699 const auto *BT = dyn_cast<BuiltinType>(T); 6700 6701 if (!BT) { 6702 if (isa<PipeType>(T)) 6703 return OCLTK_Pipe; 6704 6705 return OCLTK_Default; 6706 } 6707 6708 switch (BT->getKind()) { 6709 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ 6710 case BuiltinType::Id: \ 6711 return OCLTK_Image; 6712 #include "clang/Basic/OpenCLImageTypes.def" 6713 6714 case BuiltinType::OCLClkEvent: 6715 return OCLTK_ClkEvent; 6716 6717 case BuiltinType::OCLEvent: 6718 return OCLTK_Event; 6719 6720 case BuiltinType::OCLQueue: 6721 return OCLTK_Queue; 6722 6723 case BuiltinType::OCLReserveID: 6724 return OCLTK_ReserveID; 6725 6726 case BuiltinType::OCLSampler: 6727 return OCLTK_Sampler; 6728 6729 default: 6730 return OCLTK_Default; 6731 } 6732 } 6733 6734 LangAS ASTContext::getOpenCLTypeAddrSpace(const Type *T) const { 6735 return Target->getOpenCLTypeAddrSpace(getOpenCLTypeKind(T)); 6736 } 6737 6738 /// BlockRequiresCopying - Returns true if byref variable "D" of type "Ty" 6739 /// requires copy/dispose. Note that this must match the logic 6740 /// in buildByrefHelpers. 6741 bool ASTContext::BlockRequiresCopying(QualType Ty, 6742 const VarDecl *D) { 6743 if (const CXXRecordDecl *record = Ty->getAsCXXRecordDecl()) { 6744 const Expr *copyExpr = getBlockVarCopyInit(D).getCopyExpr(); 6745 if (!copyExpr && record->hasTrivialDestructor()) return false; 6746 6747 return true; 6748 } 6749 6750 // The block needs copy/destroy helpers if Ty is non-trivial to destructively 6751 // move or destroy. 6752 if (Ty.isNonTrivialToPrimitiveDestructiveMove() || Ty.isDestructedType()) 6753 return true; 6754 6755 if (!Ty->isObjCRetainableType()) return false; 6756 6757 Qualifiers qs = Ty.getQualifiers(); 6758 6759 // If we have lifetime, that dominates. 6760 if (Qualifiers::ObjCLifetime lifetime = qs.getObjCLifetime()) { 6761 switch (lifetime) { 6762 case Qualifiers::OCL_None: llvm_unreachable("impossible"); 6763 6764 // These are just bits as far as the runtime is concerned. 6765 case Qualifiers::OCL_ExplicitNone: 6766 case Qualifiers::OCL_Autoreleasing: 6767 return false; 6768 6769 // These cases should have been taken care of when checking the type's 6770 // non-triviality. 6771 case Qualifiers::OCL_Weak: 6772 case Qualifiers::OCL_Strong: 6773 llvm_unreachable("impossible"); 6774 } 6775 llvm_unreachable("fell out of lifetime switch!"); 6776 } 6777 return (Ty->isBlockPointerType() || isObjCNSObjectType(Ty) || 6778 Ty->isObjCObjectPointerType()); 6779 } 6780 6781 bool ASTContext::getByrefLifetime(QualType Ty, 6782 Qualifiers::ObjCLifetime &LifeTime, 6783 bool &HasByrefExtendedLayout) const { 6784 if (!getLangOpts().ObjC || 6785 getLangOpts().getGC() != LangOptions::NonGC) 6786 return false; 6787 6788 HasByrefExtendedLayout = false; 6789 if (Ty->isRecordType()) { 6790 HasByrefExtendedLayout = true; 6791 LifeTime = Qualifiers::OCL_None; 6792 } else if ((LifeTime = Ty.getObjCLifetime())) { 6793 // Honor the ARC qualifiers. 6794 } else if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType()) { 6795 // The MRR rule. 6796 LifeTime = Qualifiers::OCL_ExplicitNone; 6797 } else { 6798 LifeTime = Qualifiers::OCL_None; 6799 } 6800 return true; 6801 } 6802 6803 CanQualType ASTContext::getNSUIntegerType() const { 6804 assert(Target && "Expected target to be initialized"); 6805 const llvm::Triple &T = Target->getTriple(); 6806 // Windows is LLP64 rather than LP64 6807 if (T.isOSWindows() && T.isArch64Bit()) 6808 return UnsignedLongLongTy; 6809 return UnsignedLongTy; 6810 } 6811 6812 CanQualType ASTContext::getNSIntegerType() const { 6813 assert(Target && "Expected target to be initialized"); 6814 const llvm::Triple &T = Target->getTriple(); 6815 // Windows is LLP64 rather than LP64 6816 if (T.isOSWindows() && T.isArch64Bit()) 6817 return LongLongTy; 6818 return LongTy; 6819 } 6820 6821 TypedefDecl *ASTContext::getObjCInstanceTypeDecl() { 6822 if (!ObjCInstanceTypeDecl) 6823 ObjCInstanceTypeDecl = 6824 buildImplicitTypedef(getObjCIdType(), "instancetype"); 6825 return ObjCInstanceTypeDecl; 6826 } 6827 6828 // This returns true if a type has been typedefed to BOOL: 6829 // typedef <type> BOOL; 6830 static bool isTypeTypedefedAsBOOL(QualType T) { 6831 if (const auto *TT = dyn_cast<TypedefType>(T)) 6832 if (IdentifierInfo *II = TT->getDecl()->getIdentifier()) 6833 return II->isStr("BOOL"); 6834 6835 return false; 6836 } 6837 6838 /// getObjCEncodingTypeSize returns size of type for objective-c encoding 6839 /// purpose. 6840 CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const { 6841 if (!type->isIncompleteArrayType() && type->isIncompleteType()) 6842 return CharUnits::Zero(); 6843 6844 CharUnits sz = getTypeSizeInChars(type); 6845 6846 // Make all integer and enum types at least as large as an int 6847 if (sz.isPositive() && type->isIntegralOrEnumerationType()) 6848 sz = std::max(sz, getTypeSizeInChars(IntTy)); 6849 // Treat arrays as pointers, since that's how they're passed in. 6850 else if (type->isArrayType()) 6851 sz = getTypeSizeInChars(VoidPtrTy); 6852 return sz; 6853 } 6854 6855 bool ASTContext::isMSStaticDataMemberInlineDefinition(const VarDecl *VD) const { 6856 return getTargetInfo().getCXXABI().isMicrosoft() && 6857 VD->isStaticDataMember() && 6858 VD->getType()->isIntegralOrEnumerationType() && 6859 !VD->getFirstDecl()->isOutOfLine() && VD->getFirstDecl()->hasInit(); 6860 } 6861 6862 ASTContext::InlineVariableDefinitionKind 6863 ASTContext::getInlineVariableDefinitionKind(const VarDecl *VD) const { 6864 if (!VD->isInline()) 6865 return InlineVariableDefinitionKind::None; 6866 6867 // In almost all cases, it's a weak definition. 6868 auto *First = VD->getFirstDecl(); 6869 if (First->isInlineSpecified() || !First->isStaticDataMember()) 6870 return InlineVariableDefinitionKind::Weak; 6871 6872 // If there's a file-context declaration in this translation unit, it's a 6873 // non-discardable definition. 6874 for (auto *D : VD->redecls()) 6875 if (D->getLexicalDeclContext()->isFileContext() && 6876 !D->isInlineSpecified() && (D->isConstexpr() || First->isConstexpr())) 6877 return InlineVariableDefinitionKind::Strong; 6878 6879 // If we've not seen one yet, we don't know. 6880 return InlineVariableDefinitionKind::WeakUnknown; 6881 } 6882 6883 static std::string charUnitsToString(const CharUnits &CU) { 6884 return llvm::itostr(CU.getQuantity()); 6885 } 6886 6887 /// getObjCEncodingForBlock - Return the encoded type for this block 6888 /// declaration. 6889 std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const { 6890 std::string S; 6891 6892 const BlockDecl *Decl = Expr->getBlockDecl(); 6893 QualType BlockTy = 6894 Expr->getType()->castAs<BlockPointerType>()->getPointeeType(); 6895 QualType BlockReturnTy = BlockTy->castAs<FunctionType>()->getReturnType(); 6896 // Encode result type. 6897 if (getLangOpts().EncodeExtendedBlockSig) 6898 getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, BlockReturnTy, S, 6899 true /*Extended*/); 6900 else 6901 getObjCEncodingForType(BlockReturnTy, S); 6902 // Compute size of all parameters. 6903 // Start with computing size of a pointer in number of bytes. 6904 // FIXME: There might(should) be a better way of doing this computation! 6905 CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy); 6906 CharUnits ParmOffset = PtrSize; 6907 for (auto PI : Decl->parameters()) { 6908 QualType PType = PI->getType(); 6909 CharUnits sz = getObjCEncodingTypeSize(PType); 6910 if (sz.isZero()) 6911 continue; 6912 assert(sz.isPositive() && "BlockExpr - Incomplete param type"); 6913 ParmOffset += sz; 6914 } 6915 // Size of the argument frame 6916 S += charUnitsToString(ParmOffset); 6917 // Block pointer and offset. 6918 S += "@?0"; 6919 6920 // Argument types. 6921 ParmOffset = PtrSize; 6922 for (auto PVDecl : Decl->parameters()) { 6923 QualType PType = PVDecl->getOriginalType(); 6924 if (const auto *AT = 6925 dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) { 6926 // Use array's original type only if it has known number of 6927 // elements. 6928 if (!isa<ConstantArrayType>(AT)) 6929 PType = PVDecl->getType(); 6930 } else if (PType->isFunctionType()) 6931 PType = PVDecl->getType(); 6932 if (getLangOpts().EncodeExtendedBlockSig) 6933 getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, PType, 6934 S, true /*Extended*/); 6935 else 6936 getObjCEncodingForType(PType, S); 6937 S += charUnitsToString(ParmOffset); 6938 ParmOffset += getObjCEncodingTypeSize(PType); 6939 } 6940 6941 return S; 6942 } 6943 6944 std::string 6945 ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl) const { 6946 std::string S; 6947 // Encode result type. 6948 getObjCEncodingForType(Decl->getReturnType(), S); 6949 CharUnits ParmOffset; 6950 // Compute size of all parameters. 6951 for (auto PI : Decl->parameters()) { 6952 QualType PType = PI->getType(); 6953 CharUnits sz = getObjCEncodingTypeSize(PType); 6954 if (sz.isZero()) 6955 continue; 6956 6957 assert(sz.isPositive() && 6958 "getObjCEncodingForFunctionDecl - Incomplete param type"); 6959 ParmOffset += sz; 6960 } 6961 S += charUnitsToString(ParmOffset); 6962 ParmOffset = CharUnits::Zero(); 6963 6964 // Argument types. 6965 for (auto PVDecl : Decl->parameters()) { 6966 QualType PType = PVDecl->getOriginalType(); 6967 if (const auto *AT = 6968 dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) { 6969 // Use array's original type only if it has known number of 6970 // elements. 6971 if (!isa<ConstantArrayType>(AT)) 6972 PType = PVDecl->getType(); 6973 } else if (PType->isFunctionType()) 6974 PType = PVDecl->getType(); 6975 getObjCEncodingForType(PType, S); 6976 S += charUnitsToString(ParmOffset); 6977 ParmOffset += getObjCEncodingTypeSize(PType); 6978 } 6979 6980 return S; 6981 } 6982 6983 /// getObjCEncodingForMethodParameter - Return the encoded type for a single 6984 /// method parameter or return type. If Extended, include class names and 6985 /// block object types. 6986 void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT, 6987 QualType T, std::string& S, 6988 bool Extended) const { 6989 // Encode type qualifer, 'in', 'inout', etc. for the parameter. 6990 getObjCEncodingForTypeQualifier(QT, S); 6991 // Encode parameter type. 6992 ObjCEncOptions Options = ObjCEncOptions() 6993 .setExpandPointedToStructures() 6994 .setExpandStructures() 6995 .setIsOutermostType(); 6996 if (Extended) 6997 Options.setEncodeBlockParameters().setEncodeClassNames(); 6998 getObjCEncodingForTypeImpl(T, S, Options, /*Field=*/nullptr); 6999 } 7000 7001 /// getObjCEncodingForMethodDecl - Return the encoded type for this method 7002 /// declaration. 7003 std::string ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl, 7004 bool Extended) const { 7005 // FIXME: This is not very efficient. 7006 // Encode return type. 7007 std::string S; 7008 getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(), 7009 Decl->getReturnType(), S, Extended); 7010 // Compute size of all parameters. 7011 // Start with computing size of a pointer in number of bytes. 7012 // FIXME: There might(should) be a better way of doing this computation! 7013 CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy); 7014 // The first two arguments (self and _cmd) are pointers; account for 7015 // their size. 7016 CharUnits ParmOffset = 2 * PtrSize; 7017 for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(), 7018 E = Decl->sel_param_end(); PI != E; ++PI) { 7019 QualType PType = (*PI)->getType(); 7020 CharUnits sz = getObjCEncodingTypeSize(PType); 7021 if (sz.isZero()) 7022 continue; 7023 7024 assert(sz.isPositive() && 7025 "getObjCEncodingForMethodDecl - Incomplete param type"); 7026 ParmOffset += sz; 7027 } 7028 S += charUnitsToString(ParmOffset); 7029 S += "@0:"; 7030 S += charUnitsToString(PtrSize); 7031 7032 // Argument types. 7033 ParmOffset = 2 * PtrSize; 7034 for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(), 7035 E = Decl->sel_param_end(); PI != E; ++PI) { 7036 const ParmVarDecl *PVDecl = *PI; 7037 QualType PType = PVDecl->getOriginalType(); 7038 if (const auto *AT = 7039 dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) { 7040 // Use array's original type only if it has known number of 7041 // elements. 7042 if (!isa<ConstantArrayType>(AT)) 7043 PType = PVDecl->getType(); 7044 } else if (PType->isFunctionType()) 7045 PType = PVDecl->getType(); 7046 getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(), 7047 PType, S, Extended); 7048 S += charUnitsToString(ParmOffset); 7049 ParmOffset += getObjCEncodingTypeSize(PType); 7050 } 7051 7052 return S; 7053 } 7054 7055 ObjCPropertyImplDecl * 7056 ASTContext::getObjCPropertyImplDeclForPropertyDecl( 7057 const ObjCPropertyDecl *PD, 7058 const Decl *Container) const { 7059 if (!Container) 7060 return nullptr; 7061 if (const auto *CID = dyn_cast<ObjCCategoryImplDecl>(Container)) { 7062 for (auto *PID : CID->property_impls()) 7063 if (PID->getPropertyDecl() == PD) 7064 return PID; 7065 } else { 7066 const auto *OID = cast<ObjCImplementationDecl>(Container); 7067 for (auto *PID : OID->property_impls()) 7068 if (PID->getPropertyDecl() == PD) 7069 return PID; 7070 } 7071 return nullptr; 7072 } 7073 7074 /// getObjCEncodingForPropertyDecl - Return the encoded type for this 7075 /// property declaration. If non-NULL, Container must be either an 7076 /// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be 7077 /// NULL when getting encodings for protocol properties. 7078 /// Property attributes are stored as a comma-delimited C string. The simple 7079 /// attributes readonly and bycopy are encoded as single characters. The 7080 /// parametrized attributes, getter=name, setter=name, and ivar=name, are 7081 /// encoded as single characters, followed by an identifier. Property types 7082 /// are also encoded as a parametrized attribute. The characters used to encode 7083 /// these attributes are defined by the following enumeration: 7084 /// @code 7085 /// enum PropertyAttributes { 7086 /// kPropertyReadOnly = 'R', // property is read-only. 7087 /// kPropertyBycopy = 'C', // property is a copy of the value last assigned 7088 /// kPropertyByref = '&', // property is a reference to the value last assigned 7089 /// kPropertyDynamic = 'D', // property is dynamic 7090 /// kPropertyGetter = 'G', // followed by getter selector name 7091 /// kPropertySetter = 'S', // followed by setter selector name 7092 /// kPropertyInstanceVariable = 'V' // followed by instance variable name 7093 /// kPropertyType = 'T' // followed by old-style type encoding. 7094 /// kPropertyWeak = 'W' // 'weak' property 7095 /// kPropertyStrong = 'P' // property GC'able 7096 /// kPropertyNonAtomic = 'N' // property non-atomic 7097 /// }; 7098 /// @endcode 7099 std::string 7100 ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD, 7101 const Decl *Container) const { 7102 // Collect information from the property implementation decl(s). 7103 bool Dynamic = false; 7104 ObjCPropertyImplDecl *SynthesizePID = nullptr; 7105 7106 if (ObjCPropertyImplDecl *PropertyImpDecl = 7107 getObjCPropertyImplDeclForPropertyDecl(PD, Container)) { 7108 if (PropertyImpDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic) 7109 Dynamic = true; 7110 else 7111 SynthesizePID = PropertyImpDecl; 7112 } 7113 7114 // FIXME: This is not very efficient. 7115 std::string S = "T"; 7116 7117 // Encode result type. 7118 // GCC has some special rules regarding encoding of properties which 7119 // closely resembles encoding of ivars. 7120 getObjCEncodingForPropertyType(PD->getType(), S); 7121 7122 if (PD->isReadOnly()) { 7123 S += ",R"; 7124 if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_copy) 7125 S += ",C"; 7126 if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_retain) 7127 S += ",&"; 7128 if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_weak) 7129 S += ",W"; 7130 } else { 7131 switch (PD->getSetterKind()) { 7132 case ObjCPropertyDecl::Assign: break; 7133 case ObjCPropertyDecl::Copy: S += ",C"; break; 7134 case ObjCPropertyDecl::Retain: S += ",&"; break; 7135 case ObjCPropertyDecl::Weak: S += ",W"; break; 7136 } 7137 } 7138 7139 // It really isn't clear at all what this means, since properties 7140 // are "dynamic by default". 7141 if (Dynamic) 7142 S += ",D"; 7143 7144 if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_nonatomic) 7145 S += ",N"; 7146 7147 if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_getter) { 7148 S += ",G"; 7149 S += PD->getGetterName().getAsString(); 7150 } 7151 7152 if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_setter) { 7153 S += ",S"; 7154 S += PD->getSetterName().getAsString(); 7155 } 7156 7157 if (SynthesizePID) { 7158 const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl(); 7159 S += ",V"; 7160 S += OID->getNameAsString(); 7161 } 7162 7163 // FIXME: OBJCGC: weak & strong 7164 return S; 7165 } 7166 7167 /// getLegacyIntegralTypeEncoding - 7168 /// Another legacy compatibility encoding: 32-bit longs are encoded as 7169 /// 'l' or 'L' , but not always. For typedefs, we need to use 7170 /// 'i' or 'I' instead if encoding a struct field, or a pointer! 7171 void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const { 7172 if (isa<TypedefType>(PointeeTy.getTypePtr())) { 7173 if (const auto *BT = PointeeTy->getAs<BuiltinType>()) { 7174 if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32) 7175 PointeeTy = UnsignedIntTy; 7176 else 7177 if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32) 7178 PointeeTy = IntTy; 7179 } 7180 } 7181 } 7182 7183 void ASTContext::getObjCEncodingForType(QualType T, std::string& S, 7184 const FieldDecl *Field, 7185 QualType *NotEncodedT) const { 7186 // We follow the behavior of gcc, expanding structures which are 7187 // directly pointed to, and expanding embedded structures. Note that 7188 // these rules are sufficient to prevent recursive encoding of the 7189 // same type. 7190 getObjCEncodingForTypeImpl(T, S, 7191 ObjCEncOptions() 7192 .setExpandPointedToStructures() 7193 .setExpandStructures() 7194 .setIsOutermostType(), 7195 Field, NotEncodedT); 7196 } 7197 7198 void ASTContext::getObjCEncodingForPropertyType(QualType T, 7199 std::string& S) const { 7200 // Encode result type. 7201 // GCC has some special rules regarding encoding of properties which 7202 // closely resembles encoding of ivars. 7203 getObjCEncodingForTypeImpl(T, S, 7204 ObjCEncOptions() 7205 .setExpandPointedToStructures() 7206 .setExpandStructures() 7207 .setIsOutermostType() 7208 .setEncodingProperty(), 7209 /*Field=*/nullptr); 7210 } 7211 7212 static char getObjCEncodingForPrimitiveType(const ASTContext *C, 7213 const BuiltinType *BT) { 7214 BuiltinType::Kind kind = BT->getKind(); 7215 switch (kind) { 7216 case BuiltinType::Void: return 'v'; 7217 case BuiltinType::Bool: return 'B'; 7218 case BuiltinType::Char8: 7219 case BuiltinType::Char_U: 7220 case BuiltinType::UChar: return 'C'; 7221 case BuiltinType::Char16: 7222 case BuiltinType::UShort: return 'S'; 7223 case BuiltinType::Char32: 7224 case BuiltinType::UInt: return 'I'; 7225 case BuiltinType::ULong: 7226 return C->getTargetInfo().getLongWidth() == 32 ? 'L' : 'Q'; 7227 case BuiltinType::UInt128: return 'T'; 7228 case BuiltinType::ULongLong: return 'Q'; 7229 case BuiltinType::Char_S: 7230 case BuiltinType::SChar: return 'c'; 7231 case BuiltinType::Short: return 's'; 7232 case BuiltinType::WChar_S: 7233 case BuiltinType::WChar_U: 7234 case BuiltinType::Int: return 'i'; 7235 case BuiltinType::Long: 7236 return C->getTargetInfo().getLongWidth() == 32 ? 'l' : 'q'; 7237 case BuiltinType::LongLong: return 'q'; 7238 case BuiltinType::Int128: return 't'; 7239 case BuiltinType::Float: return 'f'; 7240 case BuiltinType::Double: return 'd'; 7241 case BuiltinType::LongDouble: return 'D'; 7242 case BuiltinType::NullPtr: return '*'; // like char* 7243 7244 case BuiltinType::BFloat16: 7245 case BuiltinType::Float16: 7246 case BuiltinType::Float128: 7247 case BuiltinType::Half: 7248 case BuiltinType::ShortAccum: 7249 case BuiltinType::Accum: 7250 case BuiltinType::LongAccum: 7251 case BuiltinType::UShortAccum: 7252 case BuiltinType::UAccum: 7253 case BuiltinType::ULongAccum: 7254 case BuiltinType::ShortFract: 7255 case BuiltinType::Fract: 7256 case BuiltinType::LongFract: 7257 case BuiltinType::UShortFract: 7258 case BuiltinType::UFract: 7259 case BuiltinType::ULongFract: 7260 case BuiltinType::SatShortAccum: 7261 case BuiltinType::SatAccum: 7262 case BuiltinType::SatLongAccum: 7263 case BuiltinType::SatUShortAccum: 7264 case BuiltinType::SatUAccum: 7265 case BuiltinType::SatULongAccum: 7266 case BuiltinType::SatShortFract: 7267 case BuiltinType::SatFract: 7268 case BuiltinType::SatLongFract: 7269 case BuiltinType::SatUShortFract: 7270 case BuiltinType::SatUFract: 7271 case BuiltinType::SatULongFract: 7272 // FIXME: potentially need @encodes for these! 7273 return ' '; 7274 7275 #define SVE_TYPE(Name, Id, SingletonId) \ 7276 case BuiltinType::Id: 7277 #include "clang/Basic/AArch64SVEACLETypes.def" 7278 #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id: 7279 #include "clang/Basic/RISCVVTypes.def" 7280 { 7281 DiagnosticsEngine &Diags = C->getDiagnostics(); 7282 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 7283 "cannot yet @encode type %0"); 7284 Diags.Report(DiagID) << BT->getName(C->getPrintingPolicy()); 7285 return ' '; 7286 } 7287 7288 case BuiltinType::ObjCId: 7289 case BuiltinType::ObjCClass: 7290 case BuiltinType::ObjCSel: 7291 llvm_unreachable("@encoding ObjC primitive type"); 7292 7293 // OpenCL and placeholder types don't need @encodings. 7294 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ 7295 case BuiltinType::Id: 7296 #include "clang/Basic/OpenCLImageTypes.def" 7297 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ 7298 case BuiltinType::Id: 7299 #include "clang/Basic/OpenCLExtensionTypes.def" 7300 case BuiltinType::OCLEvent: 7301 case BuiltinType::OCLClkEvent: 7302 case BuiltinType::OCLQueue: 7303 case BuiltinType::OCLReserveID: 7304 case BuiltinType::OCLSampler: 7305 case BuiltinType::Dependent: 7306 #define PPC_VECTOR_TYPE(Name, Id, Size) \ 7307 case BuiltinType::Id: 7308 #include "clang/Basic/PPCTypes.def" 7309 #define BUILTIN_TYPE(KIND, ID) 7310 #define PLACEHOLDER_TYPE(KIND, ID) \ 7311 case BuiltinType::KIND: 7312 #include "clang/AST/BuiltinTypes.def" 7313 llvm_unreachable("invalid builtin type for @encode"); 7314 } 7315 llvm_unreachable("invalid BuiltinType::Kind value"); 7316 } 7317 7318 static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) { 7319 EnumDecl *Enum = ET->getDecl(); 7320 7321 // The encoding of an non-fixed enum type is always 'i', regardless of size. 7322 if (!Enum->isFixed()) 7323 return 'i'; 7324 7325 // The encoding of a fixed enum type matches its fixed underlying type. 7326 const auto *BT = Enum->getIntegerType()->castAs<BuiltinType>(); 7327 return getObjCEncodingForPrimitiveType(C, BT); 7328 } 7329 7330 static void EncodeBitField(const ASTContext *Ctx, std::string& S, 7331 QualType T, const FieldDecl *FD) { 7332 assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl"); 7333 S += 'b'; 7334 // The NeXT runtime encodes bit fields as b followed by the number of bits. 7335 // The GNU runtime requires more information; bitfields are encoded as b, 7336 // then the offset (in bits) of the first element, then the type of the 7337 // bitfield, then the size in bits. For example, in this structure: 7338 // 7339 // struct 7340 // { 7341 // int integer; 7342 // int flags:2; 7343 // }; 7344 // On a 32-bit system, the encoding for flags would be b2 for the NeXT 7345 // runtime, but b32i2 for the GNU runtime. The reason for this extra 7346 // information is not especially sensible, but we're stuck with it for 7347 // compatibility with GCC, although providing it breaks anything that 7348 // actually uses runtime introspection and wants to work on both runtimes... 7349 if (Ctx->getLangOpts().ObjCRuntime.isGNUFamily()) { 7350 uint64_t Offset; 7351 7352 if (const auto *IVD = dyn_cast<ObjCIvarDecl>(FD)) { 7353 Offset = Ctx->lookupFieldBitOffset(IVD->getContainingInterface(), nullptr, 7354 IVD); 7355 } else { 7356 const RecordDecl *RD = FD->getParent(); 7357 const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD); 7358 Offset = RL.getFieldOffset(FD->getFieldIndex()); 7359 } 7360 7361 S += llvm::utostr(Offset); 7362 7363 if (const auto *ET = T->getAs<EnumType>()) 7364 S += ObjCEncodingForEnumType(Ctx, ET); 7365 else { 7366 const auto *BT = T->castAs<BuiltinType>(); 7367 S += getObjCEncodingForPrimitiveType(Ctx, BT); 7368 } 7369 } 7370 S += llvm::utostr(FD->getBitWidthValue(*Ctx)); 7371 } 7372 7373 // Helper function for determining whether the encoded type string would include 7374 // a template specialization type. 7375 static bool hasTemplateSpecializationInEncodedString(const Type *T, 7376 bool VisitBasesAndFields) { 7377 T = T->getBaseElementTypeUnsafe(); 7378 7379 if (auto *PT = T->getAs<PointerType>()) 7380 return hasTemplateSpecializationInEncodedString( 7381 PT->getPointeeType().getTypePtr(), false); 7382 7383 auto *CXXRD = T->getAsCXXRecordDecl(); 7384 7385 if (!CXXRD) 7386 return false; 7387 7388 if (isa<ClassTemplateSpecializationDecl>(CXXRD)) 7389 return true; 7390 7391 if (!CXXRD->hasDefinition() || !VisitBasesAndFields) 7392 return false; 7393 7394 for (auto B : CXXRD->bases()) 7395 if (hasTemplateSpecializationInEncodedString(B.getType().getTypePtr(), 7396 true)) 7397 return true; 7398 7399 for (auto *FD : CXXRD->fields()) 7400 if (hasTemplateSpecializationInEncodedString(FD->getType().getTypePtr(), 7401 true)) 7402 return true; 7403 7404 return false; 7405 } 7406 7407 // FIXME: Use SmallString for accumulating string. 7408 void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string &S, 7409 const ObjCEncOptions Options, 7410 const FieldDecl *FD, 7411 QualType *NotEncodedT) const { 7412 CanQualType CT = getCanonicalType(T); 7413 switch (CT->getTypeClass()) { 7414 case Type::Builtin: 7415 case Type::Enum: 7416 if (FD && FD->isBitField()) 7417 return EncodeBitField(this, S, T, FD); 7418 if (const auto *BT = dyn_cast<BuiltinType>(CT)) 7419 S += getObjCEncodingForPrimitiveType(this, BT); 7420 else 7421 S += ObjCEncodingForEnumType(this, cast<EnumType>(CT)); 7422 return; 7423 7424 case Type::Complex: 7425 S += 'j'; 7426 getObjCEncodingForTypeImpl(T->castAs<ComplexType>()->getElementType(), S, 7427 ObjCEncOptions(), 7428 /*Field=*/nullptr); 7429 return; 7430 7431 case Type::Atomic: 7432 S += 'A'; 7433 getObjCEncodingForTypeImpl(T->castAs<AtomicType>()->getValueType(), S, 7434 ObjCEncOptions(), 7435 /*Field=*/nullptr); 7436 return; 7437 7438 // encoding for pointer or reference types. 7439 case Type::Pointer: 7440 case Type::LValueReference: 7441 case Type::RValueReference: { 7442 QualType PointeeTy; 7443 if (isa<PointerType>(CT)) { 7444 const auto *PT = T->castAs<PointerType>(); 7445 if (PT->isObjCSelType()) { 7446 S += ':'; 7447 return; 7448 } 7449 PointeeTy = PT->getPointeeType(); 7450 } else { 7451 PointeeTy = T->castAs<ReferenceType>()->getPointeeType(); 7452 } 7453 7454 bool isReadOnly = false; 7455 // For historical/compatibility reasons, the read-only qualifier of the 7456 // pointee gets emitted _before_ the '^'. The read-only qualifier of 7457 // the pointer itself gets ignored, _unless_ we are looking at a typedef! 7458 // Also, do not emit the 'r' for anything but the outermost type! 7459 if (isa<TypedefType>(T.getTypePtr())) { 7460 if (Options.IsOutermostType() && T.isConstQualified()) { 7461 isReadOnly = true; 7462 S += 'r'; 7463 } 7464 } else if (Options.IsOutermostType()) { 7465 QualType P = PointeeTy; 7466 while (auto PT = P->getAs<PointerType>()) 7467 P = PT->getPointeeType(); 7468 if (P.isConstQualified()) { 7469 isReadOnly = true; 7470 S += 'r'; 7471 } 7472 } 7473 if (isReadOnly) { 7474 // Another legacy compatibility encoding. Some ObjC qualifier and type 7475 // combinations need to be rearranged. 7476 // Rewrite "in const" from "nr" to "rn" 7477 if (StringRef(S).endswith("nr")) 7478 S.replace(S.end()-2, S.end(), "rn"); 7479 } 7480 7481 if (PointeeTy->isCharType()) { 7482 // char pointer types should be encoded as '*' unless it is a 7483 // type that has been typedef'd to 'BOOL'. 7484 if (!isTypeTypedefedAsBOOL(PointeeTy)) { 7485 S += '*'; 7486 return; 7487 } 7488 } else if (const auto *RTy = PointeeTy->getAs<RecordType>()) { 7489 // GCC binary compat: Need to convert "struct objc_class *" to "#". 7490 if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) { 7491 S += '#'; 7492 return; 7493 } 7494 // GCC binary compat: Need to convert "struct objc_object *" to "@". 7495 if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) { 7496 S += '@'; 7497 return; 7498 } 7499 // If the encoded string for the class includes template names, just emit 7500 // "^v" for pointers to the class. 7501 if (getLangOpts().CPlusPlus && 7502 (!getLangOpts().EncodeCXXClassTemplateSpec && 7503 hasTemplateSpecializationInEncodedString( 7504 RTy, Options.ExpandPointedToStructures()))) { 7505 S += "^v"; 7506 return; 7507 } 7508 // fall through... 7509 } 7510 S += '^'; 7511 getLegacyIntegralTypeEncoding(PointeeTy); 7512 7513 ObjCEncOptions NewOptions; 7514 if (Options.ExpandPointedToStructures()) 7515 NewOptions.setExpandStructures(); 7516 getObjCEncodingForTypeImpl(PointeeTy, S, NewOptions, 7517 /*Field=*/nullptr, NotEncodedT); 7518 return; 7519 } 7520 7521 case Type::ConstantArray: 7522 case Type::IncompleteArray: 7523 case Type::VariableArray: { 7524 const auto *AT = cast<ArrayType>(CT); 7525 7526 if (isa<IncompleteArrayType>(AT) && !Options.IsStructField()) { 7527 // Incomplete arrays are encoded as a pointer to the array element. 7528 S += '^'; 7529 7530 getObjCEncodingForTypeImpl( 7531 AT->getElementType(), S, 7532 Options.keepingOnly(ObjCEncOptions().setExpandStructures()), FD); 7533 } else { 7534 S += '['; 7535 7536 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) 7537 S += llvm::utostr(CAT->getSize().getZExtValue()); 7538 else { 7539 //Variable length arrays are encoded as a regular array with 0 elements. 7540 assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) && 7541 "Unknown array type!"); 7542 S += '0'; 7543 } 7544 7545 getObjCEncodingForTypeImpl( 7546 AT->getElementType(), S, 7547 Options.keepingOnly(ObjCEncOptions().setExpandStructures()), FD, 7548 NotEncodedT); 7549 S += ']'; 7550 } 7551 return; 7552 } 7553 7554 case Type::FunctionNoProto: 7555 case Type::FunctionProto: 7556 S += '?'; 7557 return; 7558 7559 case Type::Record: { 7560 RecordDecl *RDecl = cast<RecordType>(CT)->getDecl(); 7561 S += RDecl->isUnion() ? '(' : '{'; 7562 // Anonymous structures print as '?' 7563 if (const IdentifierInfo *II = RDecl->getIdentifier()) { 7564 S += II->getName(); 7565 if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) { 7566 const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs(); 7567 llvm::raw_string_ostream OS(S); 7568 printTemplateArgumentList(OS, TemplateArgs.asArray(), 7569 getPrintingPolicy()); 7570 } 7571 } else { 7572 S += '?'; 7573 } 7574 if (Options.ExpandStructures()) { 7575 S += '='; 7576 if (!RDecl->isUnion()) { 7577 getObjCEncodingForStructureImpl(RDecl, S, FD, true, NotEncodedT); 7578 } else { 7579 for (const auto *Field : RDecl->fields()) { 7580 if (FD) { 7581 S += '"'; 7582 S += Field->getNameAsString(); 7583 S += '"'; 7584 } 7585 7586 // Special case bit-fields. 7587 if (Field->isBitField()) { 7588 getObjCEncodingForTypeImpl(Field->getType(), S, 7589 ObjCEncOptions().setExpandStructures(), 7590 Field); 7591 } else { 7592 QualType qt = Field->getType(); 7593 getLegacyIntegralTypeEncoding(qt); 7594 getObjCEncodingForTypeImpl( 7595 qt, S, 7596 ObjCEncOptions().setExpandStructures().setIsStructField(), FD, 7597 NotEncodedT); 7598 } 7599 } 7600 } 7601 } 7602 S += RDecl->isUnion() ? ')' : '}'; 7603 return; 7604 } 7605 7606 case Type::BlockPointer: { 7607 const auto *BT = T->castAs<BlockPointerType>(); 7608 S += "@?"; // Unlike a pointer-to-function, which is "^?". 7609 if (Options.EncodeBlockParameters()) { 7610 const auto *FT = BT->getPointeeType()->castAs<FunctionType>(); 7611 7612 S += '<'; 7613 // Block return type 7614 getObjCEncodingForTypeImpl(FT->getReturnType(), S, 7615 Options.forComponentType(), FD, NotEncodedT); 7616 // Block self 7617 S += "@?"; 7618 // Block parameters 7619 if (const auto *FPT = dyn_cast<FunctionProtoType>(FT)) { 7620 for (const auto &I : FPT->param_types()) 7621 getObjCEncodingForTypeImpl(I, S, Options.forComponentType(), FD, 7622 NotEncodedT); 7623 } 7624 S += '>'; 7625 } 7626 return; 7627 } 7628 7629 case Type::ObjCObject: { 7630 // hack to match legacy encoding of *id and *Class 7631 QualType Ty = getObjCObjectPointerType(CT); 7632 if (Ty->isObjCIdType()) { 7633 S += "{objc_object=}"; 7634 return; 7635 } 7636 else if (Ty->isObjCClassType()) { 7637 S += "{objc_class=}"; 7638 return; 7639 } 7640 // TODO: Double check to make sure this intentionally falls through. 7641 LLVM_FALLTHROUGH; 7642 } 7643 7644 case Type::ObjCInterface: { 7645 // Ignore protocol qualifiers when mangling at this level. 7646 // @encode(class_name) 7647 ObjCInterfaceDecl *OI = T->castAs<ObjCObjectType>()->getInterface(); 7648 S += '{'; 7649 S += OI->getObjCRuntimeNameAsString(); 7650 if (Options.ExpandStructures()) { 7651 S += '='; 7652 SmallVector<const ObjCIvarDecl*, 32> Ivars; 7653 DeepCollectObjCIvars(OI, true, Ivars); 7654 for (unsigned i = 0, e = Ivars.size(); i != e; ++i) { 7655 const FieldDecl *Field = Ivars[i]; 7656 if (Field->isBitField()) 7657 getObjCEncodingForTypeImpl(Field->getType(), S, 7658 ObjCEncOptions().setExpandStructures(), 7659 Field); 7660 else 7661 getObjCEncodingForTypeImpl(Field->getType(), S, 7662 ObjCEncOptions().setExpandStructures(), FD, 7663 NotEncodedT); 7664 } 7665 } 7666 S += '}'; 7667 return; 7668 } 7669 7670 case Type::ObjCObjectPointer: { 7671 const auto *OPT = T->castAs<ObjCObjectPointerType>(); 7672 if (OPT->isObjCIdType()) { 7673 S += '@'; 7674 return; 7675 } 7676 7677 if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) { 7678 // FIXME: Consider if we need to output qualifiers for 'Class<p>'. 7679 // Since this is a binary compatibility issue, need to consult with 7680 // runtime folks. Fortunately, this is a *very* obscure construct. 7681 S += '#'; 7682 return; 7683 } 7684 7685 if (OPT->isObjCQualifiedIdType()) { 7686 getObjCEncodingForTypeImpl( 7687 getObjCIdType(), S, 7688 Options.keepingOnly(ObjCEncOptions() 7689 .setExpandPointedToStructures() 7690 .setExpandStructures()), 7691 FD); 7692 if (FD || Options.EncodingProperty() || Options.EncodeClassNames()) { 7693 // Note that we do extended encoding of protocol qualifer list 7694 // Only when doing ivar or property encoding. 7695 S += '"'; 7696 for (const auto *I : OPT->quals()) { 7697 S += '<'; 7698 S += I->getObjCRuntimeNameAsString(); 7699 S += '>'; 7700 } 7701 S += '"'; 7702 } 7703 return; 7704 } 7705 7706 S += '@'; 7707 if (OPT->getInterfaceDecl() && 7708 (FD || Options.EncodingProperty() || Options.EncodeClassNames())) { 7709 S += '"'; 7710 S += OPT->getInterfaceDecl()->getObjCRuntimeNameAsString(); 7711 for (const auto *I : OPT->quals()) { 7712 S += '<'; 7713 S += I->getObjCRuntimeNameAsString(); 7714 S += '>'; 7715 } 7716 S += '"'; 7717 } 7718 return; 7719 } 7720 7721 // gcc just blithely ignores member pointers. 7722 // FIXME: we should do better than that. 'M' is available. 7723 case Type::MemberPointer: 7724 // This matches gcc's encoding, even though technically it is insufficient. 7725 //FIXME. We should do a better job than gcc. 7726 case Type::Vector: 7727 case Type::ExtVector: 7728 // Until we have a coherent encoding of these three types, issue warning. 7729 if (NotEncodedT) 7730 *NotEncodedT = T; 7731 return; 7732 7733 case Type::ConstantMatrix: 7734 if (NotEncodedT) 7735 *NotEncodedT = T; 7736 return; 7737 7738 // We could see an undeduced auto type here during error recovery. 7739 // Just ignore it. 7740 case Type::Auto: 7741 case Type::DeducedTemplateSpecialization: 7742 return; 7743 7744 case Type::Pipe: 7745 case Type::ExtInt: 7746 #define ABSTRACT_TYPE(KIND, BASE) 7747 #define TYPE(KIND, BASE) 7748 #define DEPENDENT_TYPE(KIND, BASE) \ 7749 case Type::KIND: 7750 #define NON_CANONICAL_TYPE(KIND, BASE) \ 7751 case Type::KIND: 7752 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(KIND, BASE) \ 7753 case Type::KIND: 7754 #include "clang/AST/TypeNodes.inc" 7755 llvm_unreachable("@encode for dependent type!"); 7756 } 7757 llvm_unreachable("bad type kind!"); 7758 } 7759 7760 void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl, 7761 std::string &S, 7762 const FieldDecl *FD, 7763 bool includeVBases, 7764 QualType *NotEncodedT) const { 7765 assert(RDecl && "Expected non-null RecordDecl"); 7766 assert(!RDecl->isUnion() && "Should not be called for unions"); 7767 if (!RDecl->getDefinition() || RDecl->getDefinition()->isInvalidDecl()) 7768 return; 7769 7770 const auto *CXXRec = dyn_cast<CXXRecordDecl>(RDecl); 7771 std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets; 7772 const ASTRecordLayout &layout = getASTRecordLayout(RDecl); 7773 7774 if (CXXRec) { 7775 for (const auto &BI : CXXRec->bases()) { 7776 if (!BI.isVirtual()) { 7777 CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl(); 7778 if (base->isEmpty()) 7779 continue; 7780 uint64_t offs = toBits(layout.getBaseClassOffset(base)); 7781 FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs), 7782 std::make_pair(offs, base)); 7783 } 7784 } 7785 } 7786 7787 unsigned i = 0; 7788 for (FieldDecl *Field : RDecl->fields()) { 7789 if (!Field->isZeroLengthBitField(*this) && Field->isZeroSize(*this)) 7790 continue; 7791 uint64_t offs = layout.getFieldOffset(i); 7792 FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs), 7793 std::make_pair(offs, Field)); 7794 ++i; 7795 } 7796 7797 if (CXXRec && includeVBases) { 7798 for (const auto &BI : CXXRec->vbases()) { 7799 CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl(); 7800 if (base->isEmpty()) 7801 continue; 7802 uint64_t offs = toBits(layout.getVBaseClassOffset(base)); 7803 if (offs >= uint64_t(toBits(layout.getNonVirtualSize())) && 7804 FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end()) 7805 FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(), 7806 std::make_pair(offs, base)); 7807 } 7808 } 7809 7810 CharUnits size; 7811 if (CXXRec) { 7812 size = includeVBases ? layout.getSize() : layout.getNonVirtualSize(); 7813 } else { 7814 size = layout.getSize(); 7815 } 7816 7817 #ifndef NDEBUG 7818 uint64_t CurOffs = 0; 7819 #endif 7820 std::multimap<uint64_t, NamedDecl *>::iterator 7821 CurLayObj = FieldOrBaseOffsets.begin(); 7822 7823 if (CXXRec && CXXRec->isDynamicClass() && 7824 (CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) { 7825 if (FD) { 7826 S += "\"_vptr$"; 7827 std::string recname = CXXRec->getNameAsString(); 7828 if (recname.empty()) recname = "?"; 7829 S += recname; 7830 S += '"'; 7831 } 7832 S += "^^?"; 7833 #ifndef NDEBUG 7834 CurOffs += getTypeSize(VoidPtrTy); 7835 #endif 7836 } 7837 7838 if (!RDecl->hasFlexibleArrayMember()) { 7839 // Mark the end of the structure. 7840 uint64_t offs = toBits(size); 7841 FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs), 7842 std::make_pair(offs, nullptr)); 7843 } 7844 7845 for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) { 7846 #ifndef NDEBUG 7847 assert(CurOffs <= CurLayObj->first); 7848 if (CurOffs < CurLayObj->first) { 7849 uint64_t padding = CurLayObj->first - CurOffs; 7850 // FIXME: There doesn't seem to be a way to indicate in the encoding that 7851 // packing/alignment of members is different that normal, in which case 7852 // the encoding will be out-of-sync with the real layout. 7853 // If the runtime switches to just consider the size of types without 7854 // taking into account alignment, we could make padding explicit in the 7855 // encoding (e.g. using arrays of chars). The encoding strings would be 7856 // longer then though. 7857 CurOffs += padding; 7858 } 7859 #endif 7860 7861 NamedDecl *dcl = CurLayObj->second; 7862 if (!dcl) 7863 break; // reached end of structure. 7864 7865 if (auto *base = dyn_cast<CXXRecordDecl>(dcl)) { 7866 // We expand the bases without their virtual bases since those are going 7867 // in the initial structure. Note that this differs from gcc which 7868 // expands virtual bases each time one is encountered in the hierarchy, 7869 // making the encoding type bigger than it really is. 7870 getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false, 7871 NotEncodedT); 7872 assert(!base->isEmpty()); 7873 #ifndef NDEBUG 7874 CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize()); 7875 #endif 7876 } else { 7877 const auto *field = cast<FieldDecl>(dcl); 7878 if (FD) { 7879 S += '"'; 7880 S += field->getNameAsString(); 7881 S += '"'; 7882 } 7883 7884 if (field->isBitField()) { 7885 EncodeBitField(this, S, field->getType(), field); 7886 #ifndef NDEBUG 7887 CurOffs += field->getBitWidthValue(*this); 7888 #endif 7889 } else { 7890 QualType qt = field->getType(); 7891 getLegacyIntegralTypeEncoding(qt); 7892 getObjCEncodingForTypeImpl( 7893 qt, S, ObjCEncOptions().setExpandStructures().setIsStructField(), 7894 FD, NotEncodedT); 7895 #ifndef NDEBUG 7896 CurOffs += getTypeSize(field->getType()); 7897 #endif 7898 } 7899 } 7900 } 7901 } 7902 7903 void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT, 7904 std::string& S) const { 7905 if (QT & Decl::OBJC_TQ_In) 7906 S += 'n'; 7907 if (QT & Decl::OBJC_TQ_Inout) 7908 S += 'N'; 7909 if (QT & Decl::OBJC_TQ_Out) 7910 S += 'o'; 7911 if (QT & Decl::OBJC_TQ_Bycopy) 7912 S += 'O'; 7913 if (QT & Decl::OBJC_TQ_Byref) 7914 S += 'R'; 7915 if (QT & Decl::OBJC_TQ_Oneway) 7916 S += 'V'; 7917 } 7918 7919 TypedefDecl *ASTContext::getObjCIdDecl() const { 7920 if (!ObjCIdDecl) { 7921 QualType T = getObjCObjectType(ObjCBuiltinIdTy, {}, {}); 7922 T = getObjCObjectPointerType(T); 7923 ObjCIdDecl = buildImplicitTypedef(T, "id"); 7924 } 7925 return ObjCIdDecl; 7926 } 7927 7928 TypedefDecl *ASTContext::getObjCSelDecl() const { 7929 if (!ObjCSelDecl) { 7930 QualType T = getPointerType(ObjCBuiltinSelTy); 7931 ObjCSelDecl = buildImplicitTypedef(T, "SEL"); 7932 } 7933 return ObjCSelDecl; 7934 } 7935 7936 TypedefDecl *ASTContext::getObjCClassDecl() const { 7937 if (!ObjCClassDecl) { 7938 QualType T = getObjCObjectType(ObjCBuiltinClassTy, {}, {}); 7939 T = getObjCObjectPointerType(T); 7940 ObjCClassDecl = buildImplicitTypedef(T, "Class"); 7941 } 7942 return ObjCClassDecl; 7943 } 7944 7945 ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const { 7946 if (!ObjCProtocolClassDecl) { 7947 ObjCProtocolClassDecl 7948 = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(), 7949 SourceLocation(), 7950 &Idents.get("Protocol"), 7951 /*typeParamList=*/nullptr, 7952 /*PrevDecl=*/nullptr, 7953 SourceLocation(), true); 7954 } 7955 7956 return ObjCProtocolClassDecl; 7957 } 7958 7959 //===----------------------------------------------------------------------===// 7960 // __builtin_va_list Construction Functions 7961 //===----------------------------------------------------------------------===// 7962 7963 static TypedefDecl *CreateCharPtrNamedVaListDecl(const ASTContext *Context, 7964 StringRef Name) { 7965 // typedef char* __builtin[_ms]_va_list; 7966 QualType T = Context->getPointerType(Context->CharTy); 7967 return Context->buildImplicitTypedef(T, Name); 7968 } 7969 7970 static TypedefDecl *CreateMSVaListDecl(const ASTContext *Context) { 7971 return CreateCharPtrNamedVaListDecl(Context, "__builtin_ms_va_list"); 7972 } 7973 7974 static TypedefDecl *CreateCharPtrBuiltinVaListDecl(const ASTContext *Context) { 7975 return CreateCharPtrNamedVaListDecl(Context, "__builtin_va_list"); 7976 } 7977 7978 static TypedefDecl *CreateVoidPtrBuiltinVaListDecl(const ASTContext *Context) { 7979 // typedef void* __builtin_va_list; 7980 QualType T = Context->getPointerType(Context->VoidTy); 7981 return Context->buildImplicitTypedef(T, "__builtin_va_list"); 7982 } 7983 7984 static TypedefDecl * 7985 CreateAArch64ABIBuiltinVaListDecl(const ASTContext *Context) { 7986 // struct __va_list 7987 RecordDecl *VaListTagDecl = Context->buildImplicitRecord("__va_list"); 7988 if (Context->getLangOpts().CPlusPlus) { 7989 // namespace std { struct __va_list { 7990 NamespaceDecl *NS; 7991 NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context), 7992 Context->getTranslationUnitDecl(), 7993 /*Inline*/ false, SourceLocation(), 7994 SourceLocation(), &Context->Idents.get("std"), 7995 /*PrevDecl*/ nullptr); 7996 NS->setImplicit(); 7997 VaListTagDecl->setDeclContext(NS); 7998 } 7999 8000 VaListTagDecl->startDefinition(); 8001 8002 const size_t NumFields = 5; 8003 QualType FieldTypes[NumFields]; 8004 const char *FieldNames[NumFields]; 8005 8006 // void *__stack; 8007 FieldTypes[0] = Context->getPointerType(Context->VoidTy); 8008 FieldNames[0] = "__stack"; 8009 8010 // void *__gr_top; 8011 FieldTypes[1] = Context->getPointerType(Context->VoidTy); 8012 FieldNames[1] = "__gr_top"; 8013 8014 // void *__vr_top; 8015 FieldTypes[2] = Context->getPointerType(Context->VoidTy); 8016 FieldNames[2] = "__vr_top"; 8017 8018 // int __gr_offs; 8019 FieldTypes[3] = Context->IntTy; 8020 FieldNames[3] = "__gr_offs"; 8021 8022 // int __vr_offs; 8023 FieldTypes[4] = Context->IntTy; 8024 FieldNames[4] = "__vr_offs"; 8025 8026 // Create fields 8027 for (unsigned i = 0; i < NumFields; ++i) { 8028 FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context), 8029 VaListTagDecl, 8030 SourceLocation(), 8031 SourceLocation(), 8032 &Context->Idents.get(FieldNames[i]), 8033 FieldTypes[i], /*TInfo=*/nullptr, 8034 /*BitWidth=*/nullptr, 8035 /*Mutable=*/false, 8036 ICIS_NoInit); 8037 Field->setAccess(AS_public); 8038 VaListTagDecl->addDecl(Field); 8039 } 8040 VaListTagDecl->completeDefinition(); 8041 Context->VaListTagDecl = VaListTagDecl; 8042 QualType VaListTagType = Context->getRecordType(VaListTagDecl); 8043 8044 // } __builtin_va_list; 8045 return Context->buildImplicitTypedef(VaListTagType, "__builtin_va_list"); 8046 } 8047 8048 static TypedefDecl *CreatePowerABIBuiltinVaListDecl(const ASTContext *Context) { 8049 // typedef struct __va_list_tag { 8050 RecordDecl *VaListTagDecl; 8051 8052 VaListTagDecl = Context->buildImplicitRecord("__va_list_tag"); 8053 VaListTagDecl->startDefinition(); 8054 8055 const size_t NumFields = 5; 8056 QualType FieldTypes[NumFields]; 8057 const char *FieldNames[NumFields]; 8058 8059 // unsigned char gpr; 8060 FieldTypes[0] = Context->UnsignedCharTy; 8061 FieldNames[0] = "gpr"; 8062 8063 // unsigned char fpr; 8064 FieldTypes[1] = Context->UnsignedCharTy; 8065 FieldNames[1] = "fpr"; 8066 8067 // unsigned short reserved; 8068 FieldTypes[2] = Context->UnsignedShortTy; 8069 FieldNames[2] = "reserved"; 8070 8071 // void* overflow_arg_area; 8072 FieldTypes[3] = Context->getPointerType(Context->VoidTy); 8073 FieldNames[3] = "overflow_arg_area"; 8074 8075 // void* reg_save_area; 8076 FieldTypes[4] = Context->getPointerType(Context->VoidTy); 8077 FieldNames[4] = "reg_save_area"; 8078 8079 // Create fields 8080 for (unsigned i = 0; i < NumFields; ++i) { 8081 FieldDecl *Field = FieldDecl::Create(*Context, VaListTagDecl, 8082 SourceLocation(), 8083 SourceLocation(), 8084 &Context->Idents.get(FieldNames[i]), 8085 FieldTypes[i], /*TInfo=*/nullptr, 8086 /*BitWidth=*/nullptr, 8087 /*Mutable=*/false, 8088 ICIS_NoInit); 8089 Field->setAccess(AS_public); 8090 VaListTagDecl->addDecl(Field); 8091 } 8092 VaListTagDecl->completeDefinition(); 8093 Context->VaListTagDecl = VaListTagDecl; 8094 QualType VaListTagType = Context->getRecordType(VaListTagDecl); 8095 8096 // } __va_list_tag; 8097 TypedefDecl *VaListTagTypedefDecl = 8098 Context->buildImplicitTypedef(VaListTagType, "__va_list_tag"); 8099 8100 QualType VaListTagTypedefType = 8101 Context->getTypedefType(VaListTagTypedefDecl); 8102 8103 // typedef __va_list_tag __builtin_va_list[1]; 8104 llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1); 8105 QualType VaListTagArrayType 8106 = Context->getConstantArrayType(VaListTagTypedefType, 8107 Size, nullptr, ArrayType::Normal, 0); 8108 return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list"); 8109 } 8110 8111 static TypedefDecl * 8112 CreateX86_64ABIBuiltinVaListDecl(const ASTContext *Context) { 8113 // struct __va_list_tag { 8114 RecordDecl *VaListTagDecl; 8115 VaListTagDecl = Context->buildImplicitRecord("__va_list_tag"); 8116 VaListTagDecl->startDefinition(); 8117 8118 const size_t NumFields = 4; 8119 QualType FieldTypes[NumFields]; 8120 const char *FieldNames[NumFields]; 8121 8122 // unsigned gp_offset; 8123 FieldTypes[0] = Context->UnsignedIntTy; 8124 FieldNames[0] = "gp_offset"; 8125 8126 // unsigned fp_offset; 8127 FieldTypes[1] = Context->UnsignedIntTy; 8128 FieldNames[1] = "fp_offset"; 8129 8130 // void* overflow_arg_area; 8131 FieldTypes[2] = Context->getPointerType(Context->VoidTy); 8132 FieldNames[2] = "overflow_arg_area"; 8133 8134 // void* reg_save_area; 8135 FieldTypes[3] = Context->getPointerType(Context->VoidTy); 8136 FieldNames[3] = "reg_save_area"; 8137 8138 // Create fields 8139 for (unsigned i = 0; i < NumFields; ++i) { 8140 FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context), 8141 VaListTagDecl, 8142 SourceLocation(), 8143 SourceLocation(), 8144 &Context->Idents.get(FieldNames[i]), 8145 FieldTypes[i], /*TInfo=*/nullptr, 8146 /*BitWidth=*/nullptr, 8147 /*Mutable=*/false, 8148 ICIS_NoInit); 8149 Field->setAccess(AS_public); 8150 VaListTagDecl->addDecl(Field); 8151 } 8152 VaListTagDecl->completeDefinition(); 8153 Context->VaListTagDecl = VaListTagDecl; 8154 QualType VaListTagType = Context->getRecordType(VaListTagDecl); 8155 8156 // }; 8157 8158 // typedef struct __va_list_tag __builtin_va_list[1]; 8159 llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1); 8160 QualType VaListTagArrayType = Context->getConstantArrayType( 8161 VaListTagType, Size, nullptr, ArrayType::Normal, 0); 8162 return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list"); 8163 } 8164 8165 static TypedefDecl *CreatePNaClABIBuiltinVaListDecl(const ASTContext *Context) { 8166 // typedef int __builtin_va_list[4]; 8167 llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 4); 8168 QualType IntArrayType = Context->getConstantArrayType( 8169 Context->IntTy, Size, nullptr, ArrayType::Normal, 0); 8170 return Context->buildImplicitTypedef(IntArrayType, "__builtin_va_list"); 8171 } 8172 8173 static TypedefDecl * 8174 CreateAAPCSABIBuiltinVaListDecl(const ASTContext *Context) { 8175 // struct __va_list 8176 RecordDecl *VaListDecl = Context->buildImplicitRecord("__va_list"); 8177 if (Context->getLangOpts().CPlusPlus) { 8178 // namespace std { struct __va_list { 8179 NamespaceDecl *NS; 8180 NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context), 8181 Context->getTranslationUnitDecl(), 8182 /*Inline*/false, SourceLocation(), 8183 SourceLocation(), &Context->Idents.get("std"), 8184 /*PrevDecl*/ nullptr); 8185 NS->setImplicit(); 8186 VaListDecl->setDeclContext(NS); 8187 } 8188 8189 VaListDecl->startDefinition(); 8190 8191 // void * __ap; 8192 FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context), 8193 VaListDecl, 8194 SourceLocation(), 8195 SourceLocation(), 8196 &Context->Idents.get("__ap"), 8197 Context->getPointerType(Context->VoidTy), 8198 /*TInfo=*/nullptr, 8199 /*BitWidth=*/nullptr, 8200 /*Mutable=*/false, 8201 ICIS_NoInit); 8202 Field->setAccess(AS_public); 8203 VaListDecl->addDecl(Field); 8204 8205 // }; 8206 VaListDecl->completeDefinition(); 8207 Context->VaListTagDecl = VaListDecl; 8208 8209 // typedef struct __va_list __builtin_va_list; 8210 QualType T = Context->getRecordType(VaListDecl); 8211 return Context->buildImplicitTypedef(T, "__builtin_va_list"); 8212 } 8213 8214 static TypedefDecl * 8215 CreateSystemZBuiltinVaListDecl(const ASTContext *Context) { 8216 // struct __va_list_tag { 8217 RecordDecl *VaListTagDecl; 8218 VaListTagDecl = Context->buildImplicitRecord("__va_list_tag"); 8219 VaListTagDecl->startDefinition(); 8220 8221 const size_t NumFields = 4; 8222 QualType FieldTypes[NumFields]; 8223 const char *FieldNames[NumFields]; 8224 8225 // long __gpr; 8226 FieldTypes[0] = Context->LongTy; 8227 FieldNames[0] = "__gpr"; 8228 8229 // long __fpr; 8230 FieldTypes[1] = Context->LongTy; 8231 FieldNames[1] = "__fpr"; 8232 8233 // void *__overflow_arg_area; 8234 FieldTypes[2] = Context->getPointerType(Context->VoidTy); 8235 FieldNames[2] = "__overflow_arg_area"; 8236 8237 // void *__reg_save_area; 8238 FieldTypes[3] = Context->getPointerType(Context->VoidTy); 8239 FieldNames[3] = "__reg_save_area"; 8240 8241 // Create fields 8242 for (unsigned i = 0; i < NumFields; ++i) { 8243 FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context), 8244 VaListTagDecl, 8245 SourceLocation(), 8246 SourceLocation(), 8247 &Context->Idents.get(FieldNames[i]), 8248 FieldTypes[i], /*TInfo=*/nullptr, 8249 /*BitWidth=*/nullptr, 8250 /*Mutable=*/false, 8251 ICIS_NoInit); 8252 Field->setAccess(AS_public); 8253 VaListTagDecl->addDecl(Field); 8254 } 8255 VaListTagDecl->completeDefinition(); 8256 Context->VaListTagDecl = VaListTagDecl; 8257 QualType VaListTagType = Context->getRecordType(VaListTagDecl); 8258 8259 // }; 8260 8261 // typedef __va_list_tag __builtin_va_list[1]; 8262 llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1); 8263 QualType VaListTagArrayType = Context->getConstantArrayType( 8264 VaListTagType, Size, nullptr, ArrayType::Normal, 0); 8265 8266 return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list"); 8267 } 8268 8269 static TypedefDecl *CreateHexagonBuiltinVaListDecl(const ASTContext *Context) { 8270 // typedef struct __va_list_tag { 8271 RecordDecl *VaListTagDecl; 8272 VaListTagDecl = Context->buildImplicitRecord("__va_list_tag"); 8273 VaListTagDecl->startDefinition(); 8274 8275 const size_t NumFields = 3; 8276 QualType FieldTypes[NumFields]; 8277 const char *FieldNames[NumFields]; 8278 8279 // void *CurrentSavedRegisterArea; 8280 FieldTypes[0] = Context->getPointerType(Context->VoidTy); 8281 FieldNames[0] = "__current_saved_reg_area_pointer"; 8282 8283 // void *SavedRegAreaEnd; 8284 FieldTypes[1] = Context->getPointerType(Context->VoidTy); 8285 FieldNames[1] = "__saved_reg_area_end_pointer"; 8286 8287 // void *OverflowArea; 8288 FieldTypes[2] = Context->getPointerType(Context->VoidTy); 8289 FieldNames[2] = "__overflow_area_pointer"; 8290 8291 // Create fields 8292 for (unsigned i = 0; i < NumFields; ++i) { 8293 FieldDecl *Field = FieldDecl::Create( 8294 const_cast<ASTContext &>(*Context), VaListTagDecl, SourceLocation(), 8295 SourceLocation(), &Context->Idents.get(FieldNames[i]), FieldTypes[i], 8296 /*TInfo=*/0, 8297 /*BitWidth=*/0, 8298 /*Mutable=*/false, ICIS_NoInit); 8299 Field->setAccess(AS_public); 8300 VaListTagDecl->addDecl(Field); 8301 } 8302 VaListTagDecl->completeDefinition(); 8303 Context->VaListTagDecl = VaListTagDecl; 8304 QualType VaListTagType = Context->getRecordType(VaListTagDecl); 8305 8306 // } __va_list_tag; 8307 TypedefDecl *VaListTagTypedefDecl = 8308 Context->buildImplicitTypedef(VaListTagType, "__va_list_tag"); 8309 8310 QualType VaListTagTypedefType = Context->getTypedefType(VaListTagTypedefDecl); 8311 8312 // typedef __va_list_tag __builtin_va_list[1]; 8313 llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1); 8314 QualType VaListTagArrayType = Context->getConstantArrayType( 8315 VaListTagTypedefType, Size, nullptr, ArrayType::Normal, 0); 8316 8317 return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list"); 8318 } 8319 8320 static TypedefDecl *CreateVaListDecl(const ASTContext *Context, 8321 TargetInfo::BuiltinVaListKind Kind) { 8322 switch (Kind) { 8323 case TargetInfo::CharPtrBuiltinVaList: 8324 return CreateCharPtrBuiltinVaListDecl(Context); 8325 case TargetInfo::VoidPtrBuiltinVaList: 8326 return CreateVoidPtrBuiltinVaListDecl(Context); 8327 case TargetInfo::AArch64ABIBuiltinVaList: 8328 return CreateAArch64ABIBuiltinVaListDecl(Context); 8329 case TargetInfo::PowerABIBuiltinVaList: 8330 return CreatePowerABIBuiltinVaListDecl(Context); 8331 case TargetInfo::X86_64ABIBuiltinVaList: 8332 return CreateX86_64ABIBuiltinVaListDecl(Context); 8333 case TargetInfo::PNaClABIBuiltinVaList: 8334 return CreatePNaClABIBuiltinVaListDecl(Context); 8335 case TargetInfo::AAPCSABIBuiltinVaList: 8336 return CreateAAPCSABIBuiltinVaListDecl(Context); 8337 case TargetInfo::SystemZBuiltinVaList: 8338 return CreateSystemZBuiltinVaListDecl(Context); 8339 case TargetInfo::HexagonBuiltinVaList: 8340 return CreateHexagonBuiltinVaListDecl(Context); 8341 } 8342 8343 llvm_unreachable("Unhandled __builtin_va_list type kind"); 8344 } 8345 8346 TypedefDecl *ASTContext::getBuiltinVaListDecl() const { 8347 if (!BuiltinVaListDecl) { 8348 BuiltinVaListDecl = CreateVaListDecl(this, Target->getBuiltinVaListKind()); 8349 assert(BuiltinVaListDecl->isImplicit()); 8350 } 8351 8352 return BuiltinVaListDecl; 8353 } 8354 8355 Decl *ASTContext::getVaListTagDecl() const { 8356 // Force the creation of VaListTagDecl by building the __builtin_va_list 8357 // declaration. 8358 if (!VaListTagDecl) 8359 (void)getBuiltinVaListDecl(); 8360 8361 return VaListTagDecl; 8362 } 8363 8364 TypedefDecl *ASTContext::getBuiltinMSVaListDecl() const { 8365 if (!BuiltinMSVaListDecl) 8366 BuiltinMSVaListDecl = CreateMSVaListDecl(this); 8367 8368 return BuiltinMSVaListDecl; 8369 } 8370 8371 bool ASTContext::canBuiltinBeRedeclared(const FunctionDecl *FD) const { 8372 return BuiltinInfo.canBeRedeclared(FD->getBuiltinID()); 8373 } 8374 8375 void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) { 8376 assert(ObjCConstantStringType.isNull() && 8377 "'NSConstantString' type already set!"); 8378 8379 ObjCConstantStringType = getObjCInterfaceType(Decl); 8380 } 8381 8382 /// Retrieve the template name that corresponds to a non-empty 8383 /// lookup. 8384 TemplateName 8385 ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin, 8386 UnresolvedSetIterator End) const { 8387 unsigned size = End - Begin; 8388 assert(size > 1 && "set is not overloaded!"); 8389 8390 void *memory = Allocate(sizeof(OverloadedTemplateStorage) + 8391 size * sizeof(FunctionTemplateDecl*)); 8392 auto *OT = new (memory) OverloadedTemplateStorage(size); 8393 8394 NamedDecl **Storage = OT->getStorage(); 8395 for (UnresolvedSetIterator I = Begin; I != End; ++I) { 8396 NamedDecl *D = *I; 8397 assert(isa<FunctionTemplateDecl>(D) || 8398 isa<UnresolvedUsingValueDecl>(D) || 8399 (isa<UsingShadowDecl>(D) && 8400 isa<FunctionTemplateDecl>(D->getUnderlyingDecl()))); 8401 *Storage++ = D; 8402 } 8403 8404 return TemplateName(OT); 8405 } 8406 8407 /// Retrieve a template name representing an unqualified-id that has been 8408 /// assumed to name a template for ADL purposes. 8409 TemplateName ASTContext::getAssumedTemplateName(DeclarationName Name) const { 8410 auto *OT = new (*this) AssumedTemplateStorage(Name); 8411 return TemplateName(OT); 8412 } 8413 8414 /// Retrieve the template name that represents a qualified 8415 /// template name such as \c std::vector. 8416 TemplateName 8417 ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS, 8418 bool TemplateKeyword, 8419 TemplateDecl *Template) const { 8420 assert(NNS && "Missing nested-name-specifier in qualified template name"); 8421 8422 // FIXME: Canonicalization? 8423 llvm::FoldingSetNodeID ID; 8424 QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template); 8425 8426 void *InsertPos = nullptr; 8427 QualifiedTemplateName *QTN = 8428 QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos); 8429 if (!QTN) { 8430 QTN = new (*this, alignof(QualifiedTemplateName)) 8431 QualifiedTemplateName(NNS, TemplateKeyword, Template); 8432 QualifiedTemplateNames.InsertNode(QTN, InsertPos); 8433 } 8434 8435 return TemplateName(QTN); 8436 } 8437 8438 /// Retrieve the template name that represents a dependent 8439 /// template name such as \c MetaFun::template apply. 8440 TemplateName 8441 ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS, 8442 const IdentifierInfo *Name) const { 8443 assert((!NNS || NNS->isDependent()) && 8444 "Nested name specifier must be dependent"); 8445 8446 llvm::FoldingSetNodeID ID; 8447 DependentTemplateName::Profile(ID, NNS, Name); 8448 8449 void *InsertPos = nullptr; 8450 DependentTemplateName *QTN = 8451 DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos); 8452 8453 if (QTN) 8454 return TemplateName(QTN); 8455 8456 NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS); 8457 if (CanonNNS == NNS) { 8458 QTN = new (*this, alignof(DependentTemplateName)) 8459 DependentTemplateName(NNS, Name); 8460 } else { 8461 TemplateName Canon = getDependentTemplateName(CanonNNS, Name); 8462 QTN = new (*this, alignof(DependentTemplateName)) 8463 DependentTemplateName(NNS, Name, Canon); 8464 DependentTemplateName *CheckQTN = 8465 DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos); 8466 assert(!CheckQTN && "Dependent type name canonicalization broken"); 8467 (void)CheckQTN; 8468 } 8469 8470 DependentTemplateNames.InsertNode(QTN, InsertPos); 8471 return TemplateName(QTN); 8472 } 8473 8474 /// Retrieve the template name that represents a dependent 8475 /// template name such as \c MetaFun::template operator+. 8476 TemplateName 8477 ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS, 8478 OverloadedOperatorKind Operator) const { 8479 assert((!NNS || NNS->isDependent()) && 8480 "Nested name specifier must be dependent"); 8481 8482 llvm::FoldingSetNodeID ID; 8483 DependentTemplateName::Profile(ID, NNS, Operator); 8484 8485 void *InsertPos = nullptr; 8486 DependentTemplateName *QTN 8487 = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos); 8488 8489 if (QTN) 8490 return TemplateName(QTN); 8491 8492 NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS); 8493 if (CanonNNS == NNS) { 8494 QTN = new (*this, alignof(DependentTemplateName)) 8495 DependentTemplateName(NNS, Operator); 8496 } else { 8497 TemplateName Canon = getDependentTemplateName(CanonNNS, Operator); 8498 QTN = new (*this, alignof(DependentTemplateName)) 8499 DependentTemplateName(NNS, Operator, Canon); 8500 8501 DependentTemplateName *CheckQTN 8502 = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos); 8503 assert(!CheckQTN && "Dependent template name canonicalization broken"); 8504 (void)CheckQTN; 8505 } 8506 8507 DependentTemplateNames.InsertNode(QTN, InsertPos); 8508 return TemplateName(QTN); 8509 } 8510 8511 TemplateName 8512 ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param, 8513 TemplateName replacement) const { 8514 llvm::FoldingSetNodeID ID; 8515 SubstTemplateTemplateParmStorage::Profile(ID, param, replacement); 8516 8517 void *insertPos = nullptr; 8518 SubstTemplateTemplateParmStorage *subst 8519 = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos); 8520 8521 if (!subst) { 8522 subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement); 8523 SubstTemplateTemplateParms.InsertNode(subst, insertPos); 8524 } 8525 8526 return TemplateName(subst); 8527 } 8528 8529 TemplateName 8530 ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param, 8531 const TemplateArgument &ArgPack) const { 8532 auto &Self = const_cast<ASTContext &>(*this); 8533 llvm::FoldingSetNodeID ID; 8534 SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack); 8535 8536 void *InsertPos = nullptr; 8537 SubstTemplateTemplateParmPackStorage *Subst 8538 = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos); 8539 8540 if (!Subst) { 8541 Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param, 8542 ArgPack.pack_size(), 8543 ArgPack.pack_begin()); 8544 SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos); 8545 } 8546 8547 return TemplateName(Subst); 8548 } 8549 8550 /// getFromTargetType - Given one of the integer types provided by 8551 /// TargetInfo, produce the corresponding type. The unsigned @p Type 8552 /// is actually a value of type @c TargetInfo::IntType. 8553 CanQualType ASTContext::getFromTargetType(unsigned Type) const { 8554 switch (Type) { 8555 case TargetInfo::NoInt: return {}; 8556 case TargetInfo::SignedChar: return SignedCharTy; 8557 case TargetInfo::UnsignedChar: return UnsignedCharTy; 8558 case TargetInfo::SignedShort: return ShortTy; 8559 case TargetInfo::UnsignedShort: return UnsignedShortTy; 8560 case TargetInfo::SignedInt: return IntTy; 8561 case TargetInfo::UnsignedInt: return UnsignedIntTy; 8562 case TargetInfo::SignedLong: return LongTy; 8563 case TargetInfo::UnsignedLong: return UnsignedLongTy; 8564 case TargetInfo::SignedLongLong: return LongLongTy; 8565 case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy; 8566 } 8567 8568 llvm_unreachable("Unhandled TargetInfo::IntType value"); 8569 } 8570 8571 //===----------------------------------------------------------------------===// 8572 // Type Predicates. 8573 //===----------------------------------------------------------------------===// 8574 8575 /// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's 8576 /// garbage collection attribute. 8577 /// 8578 Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const { 8579 if (getLangOpts().getGC() == LangOptions::NonGC) 8580 return Qualifiers::GCNone; 8581 8582 assert(getLangOpts().ObjC); 8583 Qualifiers::GC GCAttrs = Ty.getObjCGCAttr(); 8584 8585 // Default behaviour under objective-C's gc is for ObjC pointers 8586 // (or pointers to them) be treated as though they were declared 8587 // as __strong. 8588 if (GCAttrs == Qualifiers::GCNone) { 8589 if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType()) 8590 return Qualifiers::Strong; 8591 else if (Ty->isPointerType()) 8592 return getObjCGCAttrKind(Ty->castAs<PointerType>()->getPointeeType()); 8593 } else { 8594 // It's not valid to set GC attributes on anything that isn't a 8595 // pointer. 8596 #ifndef NDEBUG 8597 QualType CT = Ty->getCanonicalTypeInternal(); 8598 while (const auto *AT = dyn_cast<ArrayType>(CT)) 8599 CT = AT->getElementType(); 8600 assert(CT->isAnyPointerType() || CT->isBlockPointerType()); 8601 #endif 8602 } 8603 return GCAttrs; 8604 } 8605 8606 //===----------------------------------------------------------------------===// 8607 // Type Compatibility Testing 8608 //===----------------------------------------------------------------------===// 8609 8610 /// areCompatVectorTypes - Return true if the two specified vector types are 8611 /// compatible. 8612 static bool areCompatVectorTypes(const VectorType *LHS, 8613 const VectorType *RHS) { 8614 assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified()); 8615 return LHS->getElementType() == RHS->getElementType() && 8616 LHS->getNumElements() == RHS->getNumElements(); 8617 } 8618 8619 /// areCompatMatrixTypes - Return true if the two specified matrix types are 8620 /// compatible. 8621 static bool areCompatMatrixTypes(const ConstantMatrixType *LHS, 8622 const ConstantMatrixType *RHS) { 8623 assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified()); 8624 return LHS->getElementType() == RHS->getElementType() && 8625 LHS->getNumRows() == RHS->getNumRows() && 8626 LHS->getNumColumns() == RHS->getNumColumns(); 8627 } 8628 8629 bool ASTContext::areCompatibleVectorTypes(QualType FirstVec, 8630 QualType SecondVec) { 8631 assert(FirstVec->isVectorType() && "FirstVec should be a vector type"); 8632 assert(SecondVec->isVectorType() && "SecondVec should be a vector type"); 8633 8634 if (hasSameUnqualifiedType(FirstVec, SecondVec)) 8635 return true; 8636 8637 // Treat Neon vector types and most AltiVec vector types as if they are the 8638 // equivalent GCC vector types. 8639 const auto *First = FirstVec->castAs<VectorType>(); 8640 const auto *Second = SecondVec->castAs<VectorType>(); 8641 if (First->getNumElements() == Second->getNumElements() && 8642 hasSameType(First->getElementType(), Second->getElementType()) && 8643 First->getVectorKind() != VectorType::AltiVecPixel && 8644 First->getVectorKind() != VectorType::AltiVecBool && 8645 Second->getVectorKind() != VectorType::AltiVecPixel && 8646 Second->getVectorKind() != VectorType::AltiVecBool && 8647 First->getVectorKind() != VectorType::SveFixedLengthDataVector && 8648 First->getVectorKind() != VectorType::SveFixedLengthPredicateVector && 8649 Second->getVectorKind() != VectorType::SveFixedLengthDataVector && 8650 Second->getVectorKind() != VectorType::SveFixedLengthPredicateVector) 8651 return true; 8652 8653 return false; 8654 } 8655 8656 bool ASTContext::areCompatibleSveTypes(QualType FirstType, 8657 QualType SecondType) { 8658 assert(((FirstType->isSizelessBuiltinType() && SecondType->isVectorType()) || 8659 (FirstType->isVectorType() && SecondType->isSizelessBuiltinType())) && 8660 "Expected SVE builtin type and vector type!"); 8661 8662 auto IsValidCast = [this](QualType FirstType, QualType SecondType) { 8663 if (const auto *BT = FirstType->getAs<BuiltinType>()) { 8664 if (const auto *VT = SecondType->getAs<VectorType>()) { 8665 // Predicates have the same representation as uint8 so we also have to 8666 // check the kind to make these types incompatible. 8667 if (VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) 8668 return BT->getKind() == BuiltinType::SveBool; 8669 else if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector) 8670 return VT->getElementType().getCanonicalType() == 8671 FirstType->getSveEltType(*this); 8672 else if (VT->getVectorKind() == VectorType::GenericVector) 8673 return getTypeSize(SecondType) == getLangOpts().ArmSveVectorBits && 8674 hasSameType(VT->getElementType(), 8675 getBuiltinVectorTypeInfo(BT).ElementType); 8676 } 8677 } 8678 return false; 8679 }; 8680 8681 return IsValidCast(FirstType, SecondType) || 8682 IsValidCast(SecondType, FirstType); 8683 } 8684 8685 bool ASTContext::areLaxCompatibleSveTypes(QualType FirstType, 8686 QualType SecondType) { 8687 assert(((FirstType->isSizelessBuiltinType() && SecondType->isVectorType()) || 8688 (FirstType->isVectorType() && SecondType->isSizelessBuiltinType())) && 8689 "Expected SVE builtin type and vector type!"); 8690 8691 auto IsLaxCompatible = [this](QualType FirstType, QualType SecondType) { 8692 if (!FirstType->getAs<BuiltinType>()) 8693 return false; 8694 8695 const auto *VecTy = SecondType->getAs<VectorType>(); 8696 if (VecTy && 8697 (VecTy->getVectorKind() == VectorType::SveFixedLengthDataVector || 8698 VecTy->getVectorKind() == VectorType::GenericVector)) { 8699 const LangOptions::LaxVectorConversionKind LVCKind = 8700 getLangOpts().getLaxVectorConversions(); 8701 8702 // If __ARM_FEATURE_SVE_BITS != N do not allow GNU vector lax conversion. 8703 // "Whenever __ARM_FEATURE_SVE_BITS==N, GNUT implicitly 8704 // converts to VLAT and VLAT implicitly converts to GNUT." 8705 // ACLE Spec Version 00bet6, 3.7.3.2. Behavior common to vectors and 8706 // predicates. 8707 if (VecTy->getVectorKind() == VectorType::GenericVector && 8708 getTypeSize(SecondType) != getLangOpts().ArmSveVectorBits) 8709 return false; 8710 8711 // If -flax-vector-conversions=all is specified, the types are 8712 // certainly compatible. 8713 if (LVCKind == LangOptions::LaxVectorConversionKind::All) 8714 return true; 8715 8716 // If -flax-vector-conversions=integer is specified, the types are 8717 // compatible if the elements are integer types. 8718 if (LVCKind == LangOptions::LaxVectorConversionKind::Integer) 8719 return VecTy->getElementType().getCanonicalType()->isIntegerType() && 8720 FirstType->getSveEltType(*this)->isIntegerType(); 8721 } 8722 8723 return false; 8724 }; 8725 8726 return IsLaxCompatible(FirstType, SecondType) || 8727 IsLaxCompatible(SecondType, FirstType); 8728 } 8729 8730 bool ASTContext::hasDirectOwnershipQualifier(QualType Ty) const { 8731 while (true) { 8732 // __strong id 8733 if (const AttributedType *Attr = dyn_cast<AttributedType>(Ty)) { 8734 if (Attr->getAttrKind() == attr::ObjCOwnership) 8735 return true; 8736 8737 Ty = Attr->getModifiedType(); 8738 8739 // X *__strong (...) 8740 } else if (const ParenType *Paren = dyn_cast<ParenType>(Ty)) { 8741 Ty = Paren->getInnerType(); 8742 8743 // We do not want to look through typedefs, typeof(expr), 8744 // typeof(type), or any other way that the type is somehow 8745 // abstracted. 8746 } else { 8747 return false; 8748 } 8749 } 8750 } 8751 8752 //===----------------------------------------------------------------------===// 8753 // ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's. 8754 //===----------------------------------------------------------------------===// 8755 8756 /// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the 8757 /// inheritance hierarchy of 'rProto'. 8758 bool 8759 ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto, 8760 ObjCProtocolDecl *rProto) const { 8761 if (declaresSameEntity(lProto, rProto)) 8762 return true; 8763 for (auto *PI : rProto->protocols()) 8764 if (ProtocolCompatibleWithProtocol(lProto, PI)) 8765 return true; 8766 return false; 8767 } 8768 8769 /// ObjCQualifiedClassTypesAreCompatible - compare Class<pr,...> and 8770 /// Class<pr1, ...>. 8771 bool ASTContext::ObjCQualifiedClassTypesAreCompatible( 8772 const ObjCObjectPointerType *lhs, const ObjCObjectPointerType *rhs) { 8773 for (auto *lhsProto : lhs->quals()) { 8774 bool match = false; 8775 for (auto *rhsProto : rhs->quals()) { 8776 if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) { 8777 match = true; 8778 break; 8779 } 8780 } 8781 if (!match) 8782 return false; 8783 } 8784 return true; 8785 } 8786 8787 /// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an 8788 /// ObjCQualifiedIDType. 8789 bool ASTContext::ObjCQualifiedIdTypesAreCompatible( 8790 const ObjCObjectPointerType *lhs, const ObjCObjectPointerType *rhs, 8791 bool compare) { 8792 // Allow id<P..> and an 'id' in all cases. 8793 if (lhs->isObjCIdType() || rhs->isObjCIdType()) 8794 return true; 8795 8796 // Don't allow id<P..> to convert to Class or Class<P..> in either direction. 8797 if (lhs->isObjCClassType() || lhs->isObjCQualifiedClassType() || 8798 rhs->isObjCClassType() || rhs->isObjCQualifiedClassType()) 8799 return false; 8800 8801 if (lhs->isObjCQualifiedIdType()) { 8802 if (rhs->qual_empty()) { 8803 // If the RHS is a unqualified interface pointer "NSString*", 8804 // make sure we check the class hierarchy. 8805 if (ObjCInterfaceDecl *rhsID = rhs->getInterfaceDecl()) { 8806 for (auto *I : lhs->quals()) { 8807 // when comparing an id<P> on lhs with a static type on rhs, 8808 // see if static class implements all of id's protocols, directly or 8809 // through its super class and categories. 8810 if (!rhsID->ClassImplementsProtocol(I, true)) 8811 return false; 8812 } 8813 } 8814 // If there are no qualifiers and no interface, we have an 'id'. 8815 return true; 8816 } 8817 // Both the right and left sides have qualifiers. 8818 for (auto *lhsProto : lhs->quals()) { 8819 bool match = false; 8820 8821 // when comparing an id<P> on lhs with a static type on rhs, 8822 // see if static class implements all of id's protocols, directly or 8823 // through its super class and categories. 8824 for (auto *rhsProto : rhs->quals()) { 8825 if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) || 8826 (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) { 8827 match = true; 8828 break; 8829 } 8830 } 8831 // If the RHS is a qualified interface pointer "NSString<P>*", 8832 // make sure we check the class hierarchy. 8833 if (ObjCInterfaceDecl *rhsID = rhs->getInterfaceDecl()) { 8834 for (auto *I : lhs->quals()) { 8835 // when comparing an id<P> on lhs with a static type on rhs, 8836 // see if static class implements all of id's protocols, directly or 8837 // through its super class and categories. 8838 if (rhsID->ClassImplementsProtocol(I, true)) { 8839 match = true; 8840 break; 8841 } 8842 } 8843 } 8844 if (!match) 8845 return false; 8846 } 8847 8848 return true; 8849 } 8850 8851 assert(rhs->isObjCQualifiedIdType() && "One of the LHS/RHS should be id<x>"); 8852 8853 if (lhs->getInterfaceType()) { 8854 // If both the right and left sides have qualifiers. 8855 for (auto *lhsProto : lhs->quals()) { 8856 bool match = false; 8857 8858 // when comparing an id<P> on rhs with a static type on lhs, 8859 // see if static class implements all of id's protocols, directly or 8860 // through its super class and categories. 8861 // First, lhs protocols in the qualifier list must be found, direct 8862 // or indirect in rhs's qualifier list or it is a mismatch. 8863 for (auto *rhsProto : rhs->quals()) { 8864 if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) || 8865 (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) { 8866 match = true; 8867 break; 8868 } 8869 } 8870 if (!match) 8871 return false; 8872 } 8873 8874 // Static class's protocols, or its super class or category protocols 8875 // must be found, direct or indirect in rhs's qualifier list or it is a mismatch. 8876 if (ObjCInterfaceDecl *lhsID = lhs->getInterfaceDecl()) { 8877 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols; 8878 CollectInheritedProtocols(lhsID, LHSInheritedProtocols); 8879 // This is rather dubious but matches gcc's behavior. If lhs has 8880 // no type qualifier and its class has no static protocol(s) 8881 // assume that it is mismatch. 8882 if (LHSInheritedProtocols.empty() && lhs->qual_empty()) 8883 return false; 8884 for (auto *lhsProto : LHSInheritedProtocols) { 8885 bool match = false; 8886 for (auto *rhsProto : rhs->quals()) { 8887 if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) || 8888 (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) { 8889 match = true; 8890 break; 8891 } 8892 } 8893 if (!match) 8894 return false; 8895 } 8896 } 8897 return true; 8898 } 8899 return false; 8900 } 8901 8902 /// canAssignObjCInterfaces - Return true if the two interface types are 8903 /// compatible for assignment from RHS to LHS. This handles validation of any 8904 /// protocol qualifiers on the LHS or RHS. 8905 bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT, 8906 const ObjCObjectPointerType *RHSOPT) { 8907 const ObjCObjectType* LHS = LHSOPT->getObjectType(); 8908 const ObjCObjectType* RHS = RHSOPT->getObjectType(); 8909 8910 // If either type represents the built-in 'id' type, return true. 8911 if (LHS->isObjCUnqualifiedId() || RHS->isObjCUnqualifiedId()) 8912 return true; 8913 8914 // Function object that propagates a successful result or handles 8915 // __kindof types. 8916 auto finish = [&](bool succeeded) -> bool { 8917 if (succeeded) 8918 return true; 8919 8920 if (!RHS->isKindOfType()) 8921 return false; 8922 8923 // Strip off __kindof and protocol qualifiers, then check whether 8924 // we can assign the other way. 8925 return canAssignObjCInterfaces(RHSOPT->stripObjCKindOfTypeAndQuals(*this), 8926 LHSOPT->stripObjCKindOfTypeAndQuals(*this)); 8927 }; 8928 8929 // Casts from or to id<P> are allowed when the other side has compatible 8930 // protocols. 8931 if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId()) { 8932 return finish(ObjCQualifiedIdTypesAreCompatible(LHSOPT, RHSOPT, false)); 8933 } 8934 8935 // Verify protocol compatibility for casts from Class<P1> to Class<P2>. 8936 if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass()) { 8937 return finish(ObjCQualifiedClassTypesAreCompatible(LHSOPT, RHSOPT)); 8938 } 8939 8940 // Casts from Class to Class<Foo>, or vice-versa, are allowed. 8941 if (LHS->isObjCClass() && RHS->isObjCClass()) { 8942 return true; 8943 } 8944 8945 // If we have 2 user-defined types, fall into that path. 8946 if (LHS->getInterface() && RHS->getInterface()) { 8947 return finish(canAssignObjCInterfaces(LHS, RHS)); 8948 } 8949 8950 return false; 8951 } 8952 8953 /// canAssignObjCInterfacesInBlockPointer - This routine is specifically written 8954 /// for providing type-safety for objective-c pointers used to pass/return 8955 /// arguments in block literals. When passed as arguments, passing 'A*' where 8956 /// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is 8957 /// not OK. For the return type, the opposite is not OK. 8958 bool ASTContext::canAssignObjCInterfacesInBlockPointer( 8959 const ObjCObjectPointerType *LHSOPT, 8960 const ObjCObjectPointerType *RHSOPT, 8961 bool BlockReturnType) { 8962 8963 // Function object that propagates a successful result or handles 8964 // __kindof types. 8965 auto finish = [&](bool succeeded) -> bool { 8966 if (succeeded) 8967 return true; 8968 8969 const ObjCObjectPointerType *Expected = BlockReturnType ? RHSOPT : LHSOPT; 8970 if (!Expected->isKindOfType()) 8971 return false; 8972 8973 // Strip off __kindof and protocol qualifiers, then check whether 8974 // we can assign the other way. 8975 return canAssignObjCInterfacesInBlockPointer( 8976 RHSOPT->stripObjCKindOfTypeAndQuals(*this), 8977 LHSOPT->stripObjCKindOfTypeAndQuals(*this), 8978 BlockReturnType); 8979 }; 8980 8981 if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType()) 8982 return true; 8983 8984 if (LHSOPT->isObjCBuiltinType()) { 8985 return finish(RHSOPT->isObjCBuiltinType() || 8986 RHSOPT->isObjCQualifiedIdType()); 8987 } 8988 8989 if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType()) { 8990 if (getLangOpts().CompatibilityQualifiedIdBlockParamTypeChecking) 8991 // Use for block parameters previous type checking for compatibility. 8992 return finish(ObjCQualifiedIdTypesAreCompatible(LHSOPT, RHSOPT, false) || 8993 // Or corrected type checking as in non-compat mode. 8994 (!BlockReturnType && 8995 ObjCQualifiedIdTypesAreCompatible(RHSOPT, LHSOPT, false))); 8996 else 8997 return finish(ObjCQualifiedIdTypesAreCompatible( 8998 (BlockReturnType ? LHSOPT : RHSOPT), 8999 (BlockReturnType ? RHSOPT : LHSOPT), false)); 9000 } 9001 9002 const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType(); 9003 const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType(); 9004 if (LHS && RHS) { // We have 2 user-defined types. 9005 if (LHS != RHS) { 9006 if (LHS->getDecl()->isSuperClassOf(RHS->getDecl())) 9007 return finish(BlockReturnType); 9008 if (RHS->getDecl()->isSuperClassOf(LHS->getDecl())) 9009 return finish(!BlockReturnType); 9010 } 9011 else 9012 return true; 9013 } 9014 return false; 9015 } 9016 9017 /// Comparison routine for Objective-C protocols to be used with 9018 /// llvm::array_pod_sort. 9019 static int compareObjCProtocolsByName(ObjCProtocolDecl * const *lhs, 9020 ObjCProtocolDecl * const *rhs) { 9021 return (*lhs)->getName().compare((*rhs)->getName()); 9022 } 9023 9024 /// getIntersectionOfProtocols - This routine finds the intersection of set 9025 /// of protocols inherited from two distinct objective-c pointer objects with 9026 /// the given common base. 9027 /// It is used to build composite qualifier list of the composite type of 9028 /// the conditional expression involving two objective-c pointer objects. 9029 static 9030 void getIntersectionOfProtocols(ASTContext &Context, 9031 const ObjCInterfaceDecl *CommonBase, 9032 const ObjCObjectPointerType *LHSOPT, 9033 const ObjCObjectPointerType *RHSOPT, 9034 SmallVectorImpl<ObjCProtocolDecl *> &IntersectionSet) { 9035 9036 const ObjCObjectType* LHS = LHSOPT->getObjectType(); 9037 const ObjCObjectType* RHS = RHSOPT->getObjectType(); 9038 assert(LHS->getInterface() && "LHS must have an interface base"); 9039 assert(RHS->getInterface() && "RHS must have an interface base"); 9040 9041 // Add all of the protocols for the LHS. 9042 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSProtocolSet; 9043 9044 // Start with the protocol qualifiers. 9045 for (auto proto : LHS->quals()) { 9046 Context.CollectInheritedProtocols(proto, LHSProtocolSet); 9047 } 9048 9049 // Also add the protocols associated with the LHS interface. 9050 Context.CollectInheritedProtocols(LHS->getInterface(), LHSProtocolSet); 9051 9052 // Add all of the protocols for the RHS. 9053 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSProtocolSet; 9054 9055 // Start with the protocol qualifiers. 9056 for (auto proto : RHS->quals()) { 9057 Context.CollectInheritedProtocols(proto, RHSProtocolSet); 9058 } 9059 9060 // Also add the protocols associated with the RHS interface. 9061 Context.CollectInheritedProtocols(RHS->getInterface(), RHSProtocolSet); 9062 9063 // Compute the intersection of the collected protocol sets. 9064 for (auto proto : LHSProtocolSet) { 9065 if (RHSProtocolSet.count(proto)) 9066 IntersectionSet.push_back(proto); 9067 } 9068 9069 // Compute the set of protocols that is implied by either the common type or 9070 // the protocols within the intersection. 9071 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> ImpliedProtocols; 9072 Context.CollectInheritedProtocols(CommonBase, ImpliedProtocols); 9073 9074 // Remove any implied protocols from the list of inherited protocols. 9075 if (!ImpliedProtocols.empty()) { 9076 IntersectionSet.erase( 9077 std::remove_if(IntersectionSet.begin(), 9078 IntersectionSet.end(), 9079 [&](ObjCProtocolDecl *proto) -> bool { 9080 return ImpliedProtocols.count(proto) > 0; 9081 }), 9082 IntersectionSet.end()); 9083 } 9084 9085 // Sort the remaining protocols by name. 9086 llvm::array_pod_sort(IntersectionSet.begin(), IntersectionSet.end(), 9087 compareObjCProtocolsByName); 9088 } 9089 9090 /// Determine whether the first type is a subtype of the second. 9091 static bool canAssignObjCObjectTypes(ASTContext &ctx, QualType lhs, 9092 QualType rhs) { 9093 // Common case: two object pointers. 9094 const auto *lhsOPT = lhs->getAs<ObjCObjectPointerType>(); 9095 const auto *rhsOPT = rhs->getAs<ObjCObjectPointerType>(); 9096 if (lhsOPT && rhsOPT) 9097 return ctx.canAssignObjCInterfaces(lhsOPT, rhsOPT); 9098 9099 // Two block pointers. 9100 const auto *lhsBlock = lhs->getAs<BlockPointerType>(); 9101 const auto *rhsBlock = rhs->getAs<BlockPointerType>(); 9102 if (lhsBlock && rhsBlock) 9103 return ctx.typesAreBlockPointerCompatible(lhs, rhs); 9104 9105 // If either is an unqualified 'id' and the other is a block, it's 9106 // acceptable. 9107 if ((lhsOPT && lhsOPT->isObjCIdType() && rhsBlock) || 9108 (rhsOPT && rhsOPT->isObjCIdType() && lhsBlock)) 9109 return true; 9110 9111 return false; 9112 } 9113 9114 // Check that the given Objective-C type argument lists are equivalent. 9115 static bool sameObjCTypeArgs(ASTContext &ctx, 9116 const ObjCInterfaceDecl *iface, 9117 ArrayRef<QualType> lhsArgs, 9118 ArrayRef<QualType> rhsArgs, 9119 bool stripKindOf) { 9120 if (lhsArgs.size() != rhsArgs.size()) 9121 return false; 9122 9123 ObjCTypeParamList *typeParams = iface->getTypeParamList(); 9124 for (unsigned i = 0, n = lhsArgs.size(); i != n; ++i) { 9125 if (ctx.hasSameType(lhsArgs[i], rhsArgs[i])) 9126 continue; 9127 9128 switch (typeParams->begin()[i]->getVariance()) { 9129 case ObjCTypeParamVariance::Invariant: 9130 if (!stripKindOf || 9131 !ctx.hasSameType(lhsArgs[i].stripObjCKindOfType(ctx), 9132 rhsArgs[i].stripObjCKindOfType(ctx))) { 9133 return false; 9134 } 9135 break; 9136 9137 case ObjCTypeParamVariance::Covariant: 9138 if (!canAssignObjCObjectTypes(ctx, lhsArgs[i], rhsArgs[i])) 9139 return false; 9140 break; 9141 9142 case ObjCTypeParamVariance::Contravariant: 9143 if (!canAssignObjCObjectTypes(ctx, rhsArgs[i], lhsArgs[i])) 9144 return false; 9145 break; 9146 } 9147 } 9148 9149 return true; 9150 } 9151 9152 QualType ASTContext::areCommonBaseCompatible( 9153 const ObjCObjectPointerType *Lptr, 9154 const ObjCObjectPointerType *Rptr) { 9155 const ObjCObjectType *LHS = Lptr->getObjectType(); 9156 const ObjCObjectType *RHS = Rptr->getObjectType(); 9157 const ObjCInterfaceDecl* LDecl = LHS->getInterface(); 9158 const ObjCInterfaceDecl* RDecl = RHS->getInterface(); 9159 9160 if (!LDecl || !RDecl) 9161 return {}; 9162 9163 // When either LHS or RHS is a kindof type, we should return a kindof type. 9164 // For example, for common base of kindof(ASub1) and kindof(ASub2), we return 9165 // kindof(A). 9166 bool anyKindOf = LHS->isKindOfType() || RHS->isKindOfType(); 9167 9168 // Follow the left-hand side up the class hierarchy until we either hit a 9169 // root or find the RHS. Record the ancestors in case we don't find it. 9170 llvm::SmallDenseMap<const ObjCInterfaceDecl *, const ObjCObjectType *, 4> 9171 LHSAncestors; 9172 while (true) { 9173 // Record this ancestor. We'll need this if the common type isn't in the 9174 // path from the LHS to the root. 9175 LHSAncestors[LHS->getInterface()->getCanonicalDecl()] = LHS; 9176 9177 if (declaresSameEntity(LHS->getInterface(), RDecl)) { 9178 // Get the type arguments. 9179 ArrayRef<QualType> LHSTypeArgs = LHS->getTypeArgsAsWritten(); 9180 bool anyChanges = false; 9181 if (LHS->isSpecialized() && RHS->isSpecialized()) { 9182 // Both have type arguments, compare them. 9183 if (!sameObjCTypeArgs(*this, LHS->getInterface(), 9184 LHS->getTypeArgs(), RHS->getTypeArgs(), 9185 /*stripKindOf=*/true)) 9186 return {}; 9187 } else if (LHS->isSpecialized() != RHS->isSpecialized()) { 9188 // If only one has type arguments, the result will not have type 9189 // arguments. 9190 LHSTypeArgs = {}; 9191 anyChanges = true; 9192 } 9193 9194 // Compute the intersection of protocols. 9195 SmallVector<ObjCProtocolDecl *, 8> Protocols; 9196 getIntersectionOfProtocols(*this, LHS->getInterface(), Lptr, Rptr, 9197 Protocols); 9198 if (!Protocols.empty()) 9199 anyChanges = true; 9200 9201 // If anything in the LHS will have changed, build a new result type. 9202 // If we need to return a kindof type but LHS is not a kindof type, we 9203 // build a new result type. 9204 if (anyChanges || LHS->isKindOfType() != anyKindOf) { 9205 QualType Result = getObjCInterfaceType(LHS->getInterface()); 9206 Result = getObjCObjectType(Result, LHSTypeArgs, Protocols, 9207 anyKindOf || LHS->isKindOfType()); 9208 return getObjCObjectPointerType(Result); 9209 } 9210 9211 return getObjCObjectPointerType(QualType(LHS, 0)); 9212 } 9213 9214 // Find the superclass. 9215 QualType LHSSuperType = LHS->getSuperClassType(); 9216 if (LHSSuperType.isNull()) 9217 break; 9218 9219 LHS = LHSSuperType->castAs<ObjCObjectType>(); 9220 } 9221 9222 // We didn't find anything by following the LHS to its root; now check 9223 // the RHS against the cached set of ancestors. 9224 while (true) { 9225 auto KnownLHS = LHSAncestors.find(RHS->getInterface()->getCanonicalDecl()); 9226 if (KnownLHS != LHSAncestors.end()) { 9227 LHS = KnownLHS->second; 9228 9229 // Get the type arguments. 9230 ArrayRef<QualType> RHSTypeArgs = RHS->getTypeArgsAsWritten(); 9231 bool anyChanges = false; 9232 if (LHS->isSpecialized() && RHS->isSpecialized()) { 9233 // Both have type arguments, compare them. 9234 if (!sameObjCTypeArgs(*this, LHS->getInterface(), 9235 LHS->getTypeArgs(), RHS->getTypeArgs(), 9236 /*stripKindOf=*/true)) 9237 return {}; 9238 } else if (LHS->isSpecialized() != RHS->isSpecialized()) { 9239 // If only one has type arguments, the result will not have type 9240 // arguments. 9241 RHSTypeArgs = {}; 9242 anyChanges = true; 9243 } 9244 9245 // Compute the intersection of protocols. 9246 SmallVector<ObjCProtocolDecl *, 8> Protocols; 9247 getIntersectionOfProtocols(*this, RHS->getInterface(), Lptr, Rptr, 9248 Protocols); 9249 if (!Protocols.empty()) 9250 anyChanges = true; 9251 9252 // If we need to return a kindof type but RHS is not a kindof type, we 9253 // build a new result type. 9254 if (anyChanges || RHS->isKindOfType() != anyKindOf) { 9255 QualType Result = getObjCInterfaceType(RHS->getInterface()); 9256 Result = getObjCObjectType(Result, RHSTypeArgs, Protocols, 9257 anyKindOf || RHS->isKindOfType()); 9258 return getObjCObjectPointerType(Result); 9259 } 9260 9261 return getObjCObjectPointerType(QualType(RHS, 0)); 9262 } 9263 9264 // Find the superclass of the RHS. 9265 QualType RHSSuperType = RHS->getSuperClassType(); 9266 if (RHSSuperType.isNull()) 9267 break; 9268 9269 RHS = RHSSuperType->castAs<ObjCObjectType>(); 9270 } 9271 9272 return {}; 9273 } 9274 9275 bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS, 9276 const ObjCObjectType *RHS) { 9277 assert(LHS->getInterface() && "LHS is not an interface type"); 9278 assert(RHS->getInterface() && "RHS is not an interface type"); 9279 9280 // Verify that the base decls are compatible: the RHS must be a subclass of 9281 // the LHS. 9282 ObjCInterfaceDecl *LHSInterface = LHS->getInterface(); 9283 bool IsSuperClass = LHSInterface->isSuperClassOf(RHS->getInterface()); 9284 if (!IsSuperClass) 9285 return false; 9286 9287 // If the LHS has protocol qualifiers, determine whether all of them are 9288 // satisfied by the RHS (i.e., the RHS has a superset of the protocols in the 9289 // LHS). 9290 if (LHS->getNumProtocols() > 0) { 9291 // OK if conversion of LHS to SuperClass results in narrowing of types 9292 // ; i.e., SuperClass may implement at least one of the protocols 9293 // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok. 9294 // But not SuperObj<P1,P2,P3> = lhs<P1,P2>. 9295 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols; 9296 CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols); 9297 // Also, if RHS has explicit quelifiers, include them for comparing with LHS's 9298 // qualifiers. 9299 for (auto *RHSPI : RHS->quals()) 9300 CollectInheritedProtocols(RHSPI, SuperClassInheritedProtocols); 9301 // If there is no protocols associated with RHS, it is not a match. 9302 if (SuperClassInheritedProtocols.empty()) 9303 return false; 9304 9305 for (const auto *LHSProto : LHS->quals()) { 9306 bool SuperImplementsProtocol = false; 9307 for (auto *SuperClassProto : SuperClassInheritedProtocols) 9308 if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) { 9309 SuperImplementsProtocol = true; 9310 break; 9311 } 9312 if (!SuperImplementsProtocol) 9313 return false; 9314 } 9315 } 9316 9317 // If the LHS is specialized, we may need to check type arguments. 9318 if (LHS->isSpecialized()) { 9319 // Follow the superclass chain until we've matched the LHS class in the 9320 // hierarchy. This substitutes type arguments through. 9321 const ObjCObjectType *RHSSuper = RHS; 9322 while (!declaresSameEntity(RHSSuper->getInterface(), LHSInterface)) 9323 RHSSuper = RHSSuper->getSuperClassType()->castAs<ObjCObjectType>(); 9324 9325 // If the RHS is specializd, compare type arguments. 9326 if (RHSSuper->isSpecialized() && 9327 !sameObjCTypeArgs(*this, LHS->getInterface(), 9328 LHS->getTypeArgs(), RHSSuper->getTypeArgs(), 9329 /*stripKindOf=*/true)) { 9330 return false; 9331 } 9332 } 9333 9334 return true; 9335 } 9336 9337 bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) { 9338 // get the "pointed to" types 9339 const auto *LHSOPT = LHS->getAs<ObjCObjectPointerType>(); 9340 const auto *RHSOPT = RHS->getAs<ObjCObjectPointerType>(); 9341 9342 if (!LHSOPT || !RHSOPT) 9343 return false; 9344 9345 return canAssignObjCInterfaces(LHSOPT, RHSOPT) || 9346 canAssignObjCInterfaces(RHSOPT, LHSOPT); 9347 } 9348 9349 bool ASTContext::canBindObjCObjectType(QualType To, QualType From) { 9350 return canAssignObjCInterfaces( 9351 getObjCObjectPointerType(To)->castAs<ObjCObjectPointerType>(), 9352 getObjCObjectPointerType(From)->castAs<ObjCObjectPointerType>()); 9353 } 9354 9355 /// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible, 9356 /// both shall have the identically qualified version of a compatible type. 9357 /// C99 6.2.7p1: Two types have compatible types if their types are the 9358 /// same. See 6.7.[2,3,5] for additional rules. 9359 bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS, 9360 bool CompareUnqualified) { 9361 if (getLangOpts().CPlusPlus) 9362 return hasSameType(LHS, RHS); 9363 9364 return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull(); 9365 } 9366 9367 bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) { 9368 return typesAreCompatible(LHS, RHS); 9369 } 9370 9371 bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) { 9372 return !mergeTypes(LHS, RHS, true).isNull(); 9373 } 9374 9375 /// mergeTransparentUnionType - if T is a transparent union type and a member 9376 /// of T is compatible with SubType, return the merged type, else return 9377 /// QualType() 9378 QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType, 9379 bool OfBlockPointer, 9380 bool Unqualified) { 9381 if (const RecordType *UT = T->getAsUnionType()) { 9382 RecordDecl *UD = UT->getDecl(); 9383 if (UD->hasAttr<TransparentUnionAttr>()) { 9384 for (const auto *I : UD->fields()) { 9385 QualType ET = I->getType().getUnqualifiedType(); 9386 QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified); 9387 if (!MT.isNull()) 9388 return MT; 9389 } 9390 } 9391 } 9392 9393 return {}; 9394 } 9395 9396 /// mergeFunctionParameterTypes - merge two types which appear as function 9397 /// parameter types 9398 QualType ASTContext::mergeFunctionParameterTypes(QualType lhs, QualType rhs, 9399 bool OfBlockPointer, 9400 bool Unqualified) { 9401 // GNU extension: two types are compatible if they appear as a function 9402 // argument, one of the types is a transparent union type and the other 9403 // type is compatible with a union member 9404 QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer, 9405 Unqualified); 9406 if (!lmerge.isNull()) 9407 return lmerge; 9408 9409 QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer, 9410 Unqualified); 9411 if (!rmerge.isNull()) 9412 return rmerge; 9413 9414 return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified); 9415 } 9416 9417 QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs, 9418 bool OfBlockPointer, bool Unqualified, 9419 bool AllowCXX) { 9420 const auto *lbase = lhs->castAs<FunctionType>(); 9421 const auto *rbase = rhs->castAs<FunctionType>(); 9422 const auto *lproto = dyn_cast<FunctionProtoType>(lbase); 9423 const auto *rproto = dyn_cast<FunctionProtoType>(rbase); 9424 bool allLTypes = true; 9425 bool allRTypes = true; 9426 9427 // Check return type 9428 QualType retType; 9429 if (OfBlockPointer) { 9430 QualType RHS = rbase->getReturnType(); 9431 QualType LHS = lbase->getReturnType(); 9432 bool UnqualifiedResult = Unqualified; 9433 if (!UnqualifiedResult) 9434 UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers()); 9435 retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true); 9436 } 9437 else 9438 retType = mergeTypes(lbase->getReturnType(), rbase->getReturnType(), false, 9439 Unqualified); 9440 if (retType.isNull()) 9441 return {}; 9442 9443 if (Unqualified) 9444 retType = retType.getUnqualifiedType(); 9445 9446 CanQualType LRetType = getCanonicalType(lbase->getReturnType()); 9447 CanQualType RRetType = getCanonicalType(rbase->getReturnType()); 9448 if (Unqualified) { 9449 LRetType = LRetType.getUnqualifiedType(); 9450 RRetType = RRetType.getUnqualifiedType(); 9451 } 9452 9453 if (getCanonicalType(retType) != LRetType) 9454 allLTypes = false; 9455 if (getCanonicalType(retType) != RRetType) 9456 allRTypes = false; 9457 9458 // FIXME: double check this 9459 // FIXME: should we error if lbase->getRegParmAttr() != 0 && 9460 // rbase->getRegParmAttr() != 0 && 9461 // lbase->getRegParmAttr() != rbase->getRegParmAttr()? 9462 FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo(); 9463 FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo(); 9464 9465 // Compatible functions must have compatible calling conventions 9466 if (lbaseInfo.getCC() != rbaseInfo.getCC()) 9467 return {}; 9468 9469 // Regparm is part of the calling convention. 9470 if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm()) 9471 return {}; 9472 if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm()) 9473 return {}; 9474 9475 if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult()) 9476 return {}; 9477 if (lbaseInfo.getNoCallerSavedRegs() != rbaseInfo.getNoCallerSavedRegs()) 9478 return {}; 9479 if (lbaseInfo.getNoCfCheck() != rbaseInfo.getNoCfCheck()) 9480 return {}; 9481 9482 // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'. 9483 bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn(); 9484 9485 if (lbaseInfo.getNoReturn() != NoReturn) 9486 allLTypes = false; 9487 if (rbaseInfo.getNoReturn() != NoReturn) 9488 allRTypes = false; 9489 9490 FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn); 9491 9492 if (lproto && rproto) { // two C99 style function prototypes 9493 assert((AllowCXX || 9494 (!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec())) && 9495 "C++ shouldn't be here"); 9496 // Compatible functions must have the same number of parameters 9497 if (lproto->getNumParams() != rproto->getNumParams()) 9498 return {}; 9499 9500 // Variadic and non-variadic functions aren't compatible 9501 if (lproto->isVariadic() != rproto->isVariadic()) 9502 return {}; 9503 9504 if (lproto->getMethodQuals() != rproto->getMethodQuals()) 9505 return {}; 9506 9507 SmallVector<FunctionProtoType::ExtParameterInfo, 4> newParamInfos; 9508 bool canUseLeft, canUseRight; 9509 if (!mergeExtParameterInfo(lproto, rproto, canUseLeft, canUseRight, 9510 newParamInfos)) 9511 return {}; 9512 9513 if (!canUseLeft) 9514 allLTypes = false; 9515 if (!canUseRight) 9516 allRTypes = false; 9517 9518 // Check parameter type compatibility 9519 SmallVector<QualType, 10> types; 9520 for (unsigned i = 0, n = lproto->getNumParams(); i < n; i++) { 9521 QualType lParamType = lproto->getParamType(i).getUnqualifiedType(); 9522 QualType rParamType = rproto->getParamType(i).getUnqualifiedType(); 9523 QualType paramType = mergeFunctionParameterTypes( 9524 lParamType, rParamType, OfBlockPointer, Unqualified); 9525 if (paramType.isNull()) 9526 return {}; 9527 9528 if (Unqualified) 9529 paramType = paramType.getUnqualifiedType(); 9530 9531 types.push_back(paramType); 9532 if (Unqualified) { 9533 lParamType = lParamType.getUnqualifiedType(); 9534 rParamType = rParamType.getUnqualifiedType(); 9535 } 9536 9537 if (getCanonicalType(paramType) != getCanonicalType(lParamType)) 9538 allLTypes = false; 9539 if (getCanonicalType(paramType) != getCanonicalType(rParamType)) 9540 allRTypes = false; 9541 } 9542 9543 if (allLTypes) return lhs; 9544 if (allRTypes) return rhs; 9545 9546 FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo(); 9547 EPI.ExtInfo = einfo; 9548 EPI.ExtParameterInfos = 9549 newParamInfos.empty() ? nullptr : newParamInfos.data(); 9550 return getFunctionType(retType, types, EPI); 9551 } 9552 9553 if (lproto) allRTypes = false; 9554 if (rproto) allLTypes = false; 9555 9556 const FunctionProtoType *proto = lproto ? lproto : rproto; 9557 if (proto) { 9558 assert((AllowCXX || !proto->hasExceptionSpec()) && "C++ shouldn't be here"); 9559 if (proto->isVariadic()) 9560 return {}; 9561 // Check that the types are compatible with the types that 9562 // would result from default argument promotions (C99 6.7.5.3p15). 9563 // The only types actually affected are promotable integer 9564 // types and floats, which would be passed as a different 9565 // type depending on whether the prototype is visible. 9566 for (unsigned i = 0, n = proto->getNumParams(); i < n; ++i) { 9567 QualType paramTy = proto->getParamType(i); 9568 9569 // Look at the converted type of enum types, since that is the type used 9570 // to pass enum values. 9571 if (const auto *Enum = paramTy->getAs<EnumType>()) { 9572 paramTy = Enum->getDecl()->getIntegerType(); 9573 if (paramTy.isNull()) 9574 return {}; 9575 } 9576 9577 if (paramTy->isPromotableIntegerType() || 9578 getCanonicalType(paramTy).getUnqualifiedType() == FloatTy) 9579 return {}; 9580 } 9581 9582 if (allLTypes) return lhs; 9583 if (allRTypes) return rhs; 9584 9585 FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo(); 9586 EPI.ExtInfo = einfo; 9587 return getFunctionType(retType, proto->getParamTypes(), EPI); 9588 } 9589 9590 if (allLTypes) return lhs; 9591 if (allRTypes) return rhs; 9592 return getFunctionNoProtoType(retType, einfo); 9593 } 9594 9595 /// Given that we have an enum type and a non-enum type, try to merge them. 9596 static QualType mergeEnumWithInteger(ASTContext &Context, const EnumType *ET, 9597 QualType other, bool isBlockReturnType) { 9598 // C99 6.7.2.2p4: Each enumerated type shall be compatible with char, 9599 // a signed integer type, or an unsigned integer type. 9600 // Compatibility is based on the underlying type, not the promotion 9601 // type. 9602 QualType underlyingType = ET->getDecl()->getIntegerType(); 9603 if (underlyingType.isNull()) 9604 return {}; 9605 if (Context.hasSameType(underlyingType, other)) 9606 return other; 9607 9608 // In block return types, we're more permissive and accept any 9609 // integral type of the same size. 9610 if (isBlockReturnType && other->isIntegerType() && 9611 Context.getTypeSize(underlyingType) == Context.getTypeSize(other)) 9612 return other; 9613 9614 return {}; 9615 } 9616 9617 QualType ASTContext::mergeTypes(QualType LHS, QualType RHS, 9618 bool OfBlockPointer, 9619 bool Unqualified, bool BlockReturnType) { 9620 // C++ [expr]: If an expression initially has the type "reference to T", the 9621 // type is adjusted to "T" prior to any further analysis, the expression 9622 // designates the object or function denoted by the reference, and the 9623 // expression is an lvalue unless the reference is an rvalue reference and 9624 // the expression is a function call (possibly inside parentheses). 9625 if (LHS->getAs<ReferenceType>() || RHS->getAs<ReferenceType>()) 9626 return {}; 9627 9628 if (Unqualified) { 9629 LHS = LHS.getUnqualifiedType(); 9630 RHS = RHS.getUnqualifiedType(); 9631 } 9632 9633 QualType LHSCan = getCanonicalType(LHS), 9634 RHSCan = getCanonicalType(RHS); 9635 9636 // If two types are identical, they are compatible. 9637 if (LHSCan == RHSCan) 9638 return LHS; 9639 9640 // If the qualifiers are different, the types aren't compatible... mostly. 9641 Qualifiers LQuals = LHSCan.getLocalQualifiers(); 9642 Qualifiers RQuals = RHSCan.getLocalQualifiers(); 9643 if (LQuals != RQuals) { 9644 // If any of these qualifiers are different, we have a type 9645 // mismatch. 9646 if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() || 9647 LQuals.getAddressSpace() != RQuals.getAddressSpace() || 9648 LQuals.getObjCLifetime() != RQuals.getObjCLifetime() || 9649 LQuals.hasUnaligned() != RQuals.hasUnaligned()) 9650 return {}; 9651 9652 // Exactly one GC qualifier difference is allowed: __strong is 9653 // okay if the other type has no GC qualifier but is an Objective 9654 // C object pointer (i.e. implicitly strong by default). We fix 9655 // this by pretending that the unqualified type was actually 9656 // qualified __strong. 9657 Qualifiers::GC GC_L = LQuals.getObjCGCAttr(); 9658 Qualifiers::GC GC_R = RQuals.getObjCGCAttr(); 9659 assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements"); 9660 9661 if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak) 9662 return {}; 9663 9664 if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) { 9665 return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong)); 9666 } 9667 if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) { 9668 return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS); 9669 } 9670 return {}; 9671 } 9672 9673 // Okay, qualifiers are equal. 9674 9675 Type::TypeClass LHSClass = LHSCan->getTypeClass(); 9676 Type::TypeClass RHSClass = RHSCan->getTypeClass(); 9677 9678 // We want to consider the two function types to be the same for these 9679 // comparisons, just force one to the other. 9680 if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto; 9681 if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto; 9682 9683 // Same as above for arrays 9684 if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray) 9685 LHSClass = Type::ConstantArray; 9686 if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray) 9687 RHSClass = Type::ConstantArray; 9688 9689 // ObjCInterfaces are just specialized ObjCObjects. 9690 if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject; 9691 if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject; 9692 9693 // Canonicalize ExtVector -> Vector. 9694 if (LHSClass == Type::ExtVector) LHSClass = Type::Vector; 9695 if (RHSClass == Type::ExtVector) RHSClass = Type::Vector; 9696 9697 // If the canonical type classes don't match. 9698 if (LHSClass != RHSClass) { 9699 // Note that we only have special rules for turning block enum 9700 // returns into block int returns, not vice-versa. 9701 if (const auto *ETy = LHS->getAs<EnumType>()) { 9702 return mergeEnumWithInteger(*this, ETy, RHS, false); 9703 } 9704 if (const EnumType* ETy = RHS->getAs<EnumType>()) { 9705 return mergeEnumWithInteger(*this, ETy, LHS, BlockReturnType); 9706 } 9707 // allow block pointer type to match an 'id' type. 9708 if (OfBlockPointer && !BlockReturnType) { 9709 if (LHS->isObjCIdType() && RHS->isBlockPointerType()) 9710 return LHS; 9711 if (RHS->isObjCIdType() && LHS->isBlockPointerType()) 9712 return RHS; 9713 } 9714 9715 return {}; 9716 } 9717 9718 // The canonical type classes match. 9719 switch (LHSClass) { 9720 #define TYPE(Class, Base) 9721 #define ABSTRACT_TYPE(Class, Base) 9722 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class: 9723 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: 9724 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 9725 #include "clang/AST/TypeNodes.inc" 9726 llvm_unreachable("Non-canonical and dependent types shouldn't get here"); 9727 9728 case Type::Auto: 9729 case Type::DeducedTemplateSpecialization: 9730 case Type::LValueReference: 9731 case Type::RValueReference: 9732 case Type::MemberPointer: 9733 llvm_unreachable("C++ should never be in mergeTypes"); 9734 9735 case Type::ObjCInterface: 9736 case Type::IncompleteArray: 9737 case Type::VariableArray: 9738 case Type::FunctionProto: 9739 case Type::ExtVector: 9740 llvm_unreachable("Types are eliminated above"); 9741 9742 case Type::Pointer: 9743 { 9744 // Merge two pointer types, while trying to preserve typedef info 9745 QualType LHSPointee = LHS->castAs<PointerType>()->getPointeeType(); 9746 QualType RHSPointee = RHS->castAs<PointerType>()->getPointeeType(); 9747 if (Unqualified) { 9748 LHSPointee = LHSPointee.getUnqualifiedType(); 9749 RHSPointee = RHSPointee.getUnqualifiedType(); 9750 } 9751 QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false, 9752 Unqualified); 9753 if (ResultType.isNull()) 9754 return {}; 9755 if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType)) 9756 return LHS; 9757 if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType)) 9758 return RHS; 9759 return getPointerType(ResultType); 9760 } 9761 case Type::BlockPointer: 9762 { 9763 // Merge two block pointer types, while trying to preserve typedef info 9764 QualType LHSPointee = LHS->castAs<BlockPointerType>()->getPointeeType(); 9765 QualType RHSPointee = RHS->castAs<BlockPointerType>()->getPointeeType(); 9766 if (Unqualified) { 9767 LHSPointee = LHSPointee.getUnqualifiedType(); 9768 RHSPointee = RHSPointee.getUnqualifiedType(); 9769 } 9770 if (getLangOpts().OpenCL) { 9771 Qualifiers LHSPteeQual = LHSPointee.getQualifiers(); 9772 Qualifiers RHSPteeQual = RHSPointee.getQualifiers(); 9773 // Blocks can't be an expression in a ternary operator (OpenCL v2.0 9774 // 6.12.5) thus the following check is asymmetric. 9775 if (!LHSPteeQual.isAddressSpaceSupersetOf(RHSPteeQual)) 9776 return {}; 9777 LHSPteeQual.removeAddressSpace(); 9778 RHSPteeQual.removeAddressSpace(); 9779 LHSPointee = 9780 QualType(LHSPointee.getTypePtr(), LHSPteeQual.getAsOpaqueValue()); 9781 RHSPointee = 9782 QualType(RHSPointee.getTypePtr(), RHSPteeQual.getAsOpaqueValue()); 9783 } 9784 QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer, 9785 Unqualified); 9786 if (ResultType.isNull()) 9787 return {}; 9788 if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType)) 9789 return LHS; 9790 if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType)) 9791 return RHS; 9792 return getBlockPointerType(ResultType); 9793 } 9794 case Type::Atomic: 9795 { 9796 // Merge two pointer types, while trying to preserve typedef info 9797 QualType LHSValue = LHS->castAs<AtomicType>()->getValueType(); 9798 QualType RHSValue = RHS->castAs<AtomicType>()->getValueType(); 9799 if (Unqualified) { 9800 LHSValue = LHSValue.getUnqualifiedType(); 9801 RHSValue = RHSValue.getUnqualifiedType(); 9802 } 9803 QualType ResultType = mergeTypes(LHSValue, RHSValue, false, 9804 Unqualified); 9805 if (ResultType.isNull()) 9806 return {}; 9807 if (getCanonicalType(LHSValue) == getCanonicalType(ResultType)) 9808 return LHS; 9809 if (getCanonicalType(RHSValue) == getCanonicalType(ResultType)) 9810 return RHS; 9811 return getAtomicType(ResultType); 9812 } 9813 case Type::ConstantArray: 9814 { 9815 const ConstantArrayType* LCAT = getAsConstantArrayType(LHS); 9816 const ConstantArrayType* RCAT = getAsConstantArrayType(RHS); 9817 if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize()) 9818 return {}; 9819 9820 QualType LHSElem = getAsArrayType(LHS)->getElementType(); 9821 QualType RHSElem = getAsArrayType(RHS)->getElementType(); 9822 if (Unqualified) { 9823 LHSElem = LHSElem.getUnqualifiedType(); 9824 RHSElem = RHSElem.getUnqualifiedType(); 9825 } 9826 9827 QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified); 9828 if (ResultType.isNull()) 9829 return {}; 9830 9831 const VariableArrayType* LVAT = getAsVariableArrayType(LHS); 9832 const VariableArrayType* RVAT = getAsVariableArrayType(RHS); 9833 9834 // If either side is a variable array, and both are complete, check whether 9835 // the current dimension is definite. 9836 if (LVAT || RVAT) { 9837 auto SizeFetch = [this](const VariableArrayType* VAT, 9838 const ConstantArrayType* CAT) 9839 -> std::pair<bool,llvm::APInt> { 9840 if (VAT) { 9841 Optional<llvm::APSInt> TheInt; 9842 Expr *E = VAT->getSizeExpr(); 9843 if (E && (TheInt = E->getIntegerConstantExpr(*this))) 9844 return std::make_pair(true, *TheInt); 9845 return std::make_pair(false, llvm::APSInt()); 9846 } 9847 if (CAT) 9848 return std::make_pair(true, CAT->getSize()); 9849 return std::make_pair(false, llvm::APInt()); 9850 }; 9851 9852 bool HaveLSize, HaveRSize; 9853 llvm::APInt LSize, RSize; 9854 std::tie(HaveLSize, LSize) = SizeFetch(LVAT, LCAT); 9855 std::tie(HaveRSize, RSize) = SizeFetch(RVAT, RCAT); 9856 if (HaveLSize && HaveRSize && !llvm::APInt::isSameValue(LSize, RSize)) 9857 return {}; // Definite, but unequal, array dimension 9858 } 9859 9860 if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType)) 9861 return LHS; 9862 if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType)) 9863 return RHS; 9864 if (LCAT) 9865 return getConstantArrayType(ResultType, LCAT->getSize(), 9866 LCAT->getSizeExpr(), 9867 ArrayType::ArraySizeModifier(), 0); 9868 if (RCAT) 9869 return getConstantArrayType(ResultType, RCAT->getSize(), 9870 RCAT->getSizeExpr(), 9871 ArrayType::ArraySizeModifier(), 0); 9872 if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType)) 9873 return LHS; 9874 if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType)) 9875 return RHS; 9876 if (LVAT) { 9877 // FIXME: This isn't correct! But tricky to implement because 9878 // the array's size has to be the size of LHS, but the type 9879 // has to be different. 9880 return LHS; 9881 } 9882 if (RVAT) { 9883 // FIXME: This isn't correct! But tricky to implement because 9884 // the array's size has to be the size of RHS, but the type 9885 // has to be different. 9886 return RHS; 9887 } 9888 if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS; 9889 if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS; 9890 return getIncompleteArrayType(ResultType, 9891 ArrayType::ArraySizeModifier(), 0); 9892 } 9893 case Type::FunctionNoProto: 9894 return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified); 9895 case Type::Record: 9896 case Type::Enum: 9897 return {}; 9898 case Type::Builtin: 9899 // Only exactly equal builtin types are compatible, which is tested above. 9900 return {}; 9901 case Type::Complex: 9902 // Distinct complex types are incompatible. 9903 return {}; 9904 case Type::Vector: 9905 // FIXME: The merged type should be an ExtVector! 9906 if (areCompatVectorTypes(LHSCan->castAs<VectorType>(), 9907 RHSCan->castAs<VectorType>())) 9908 return LHS; 9909 return {}; 9910 case Type::ConstantMatrix: 9911 if (areCompatMatrixTypes(LHSCan->castAs<ConstantMatrixType>(), 9912 RHSCan->castAs<ConstantMatrixType>())) 9913 return LHS; 9914 return {}; 9915 case Type::ObjCObject: { 9916 // Check if the types are assignment compatible. 9917 // FIXME: This should be type compatibility, e.g. whether 9918 // "LHS x; RHS x;" at global scope is legal. 9919 if (canAssignObjCInterfaces(LHS->castAs<ObjCObjectType>(), 9920 RHS->castAs<ObjCObjectType>())) 9921 return LHS; 9922 return {}; 9923 } 9924 case Type::ObjCObjectPointer: 9925 if (OfBlockPointer) { 9926 if (canAssignObjCInterfacesInBlockPointer( 9927 LHS->castAs<ObjCObjectPointerType>(), 9928 RHS->castAs<ObjCObjectPointerType>(), BlockReturnType)) 9929 return LHS; 9930 return {}; 9931 } 9932 if (canAssignObjCInterfaces(LHS->castAs<ObjCObjectPointerType>(), 9933 RHS->castAs<ObjCObjectPointerType>())) 9934 return LHS; 9935 return {}; 9936 case Type::Pipe: 9937 assert(LHS != RHS && 9938 "Equivalent pipe types should have already been handled!"); 9939 return {}; 9940 case Type::ExtInt: { 9941 // Merge two ext-int types, while trying to preserve typedef info. 9942 bool LHSUnsigned = LHS->castAs<ExtIntType>()->isUnsigned(); 9943 bool RHSUnsigned = RHS->castAs<ExtIntType>()->isUnsigned(); 9944 unsigned LHSBits = LHS->castAs<ExtIntType>()->getNumBits(); 9945 unsigned RHSBits = RHS->castAs<ExtIntType>()->getNumBits(); 9946 9947 // Like unsigned/int, shouldn't have a type if they dont match. 9948 if (LHSUnsigned != RHSUnsigned) 9949 return {}; 9950 9951 if (LHSBits != RHSBits) 9952 return {}; 9953 return LHS; 9954 } 9955 } 9956 9957 llvm_unreachable("Invalid Type::Class!"); 9958 } 9959 9960 bool ASTContext::mergeExtParameterInfo( 9961 const FunctionProtoType *FirstFnType, const FunctionProtoType *SecondFnType, 9962 bool &CanUseFirst, bool &CanUseSecond, 9963 SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &NewParamInfos) { 9964 assert(NewParamInfos.empty() && "param info list not empty"); 9965 CanUseFirst = CanUseSecond = true; 9966 bool FirstHasInfo = FirstFnType->hasExtParameterInfos(); 9967 bool SecondHasInfo = SecondFnType->hasExtParameterInfos(); 9968 9969 // Fast path: if the first type doesn't have ext parameter infos, 9970 // we match if and only if the second type also doesn't have them. 9971 if (!FirstHasInfo && !SecondHasInfo) 9972 return true; 9973 9974 bool NeedParamInfo = false; 9975 size_t E = FirstHasInfo ? FirstFnType->getExtParameterInfos().size() 9976 : SecondFnType->getExtParameterInfos().size(); 9977 9978 for (size_t I = 0; I < E; ++I) { 9979 FunctionProtoType::ExtParameterInfo FirstParam, SecondParam; 9980 if (FirstHasInfo) 9981 FirstParam = FirstFnType->getExtParameterInfo(I); 9982 if (SecondHasInfo) 9983 SecondParam = SecondFnType->getExtParameterInfo(I); 9984 9985 // Cannot merge unless everything except the noescape flag matches. 9986 if (FirstParam.withIsNoEscape(false) != SecondParam.withIsNoEscape(false)) 9987 return false; 9988 9989 bool FirstNoEscape = FirstParam.isNoEscape(); 9990 bool SecondNoEscape = SecondParam.isNoEscape(); 9991 bool IsNoEscape = FirstNoEscape && SecondNoEscape; 9992 NewParamInfos.push_back(FirstParam.withIsNoEscape(IsNoEscape)); 9993 if (NewParamInfos.back().getOpaqueValue()) 9994 NeedParamInfo = true; 9995 if (FirstNoEscape != IsNoEscape) 9996 CanUseFirst = false; 9997 if (SecondNoEscape != IsNoEscape) 9998 CanUseSecond = false; 9999 } 10000 10001 if (!NeedParamInfo) 10002 NewParamInfos.clear(); 10003 10004 return true; 10005 } 10006 10007 void ASTContext::ResetObjCLayout(const ObjCContainerDecl *CD) { 10008 ObjCLayouts[CD] = nullptr; 10009 } 10010 10011 /// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and 10012 /// 'RHS' attributes and returns the merged version; including for function 10013 /// return types. 10014 QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) { 10015 QualType LHSCan = getCanonicalType(LHS), 10016 RHSCan = getCanonicalType(RHS); 10017 // If two types are identical, they are compatible. 10018 if (LHSCan == RHSCan) 10019 return LHS; 10020 if (RHSCan->isFunctionType()) { 10021 if (!LHSCan->isFunctionType()) 10022 return {}; 10023 QualType OldReturnType = 10024 cast<FunctionType>(RHSCan.getTypePtr())->getReturnType(); 10025 QualType NewReturnType = 10026 cast<FunctionType>(LHSCan.getTypePtr())->getReturnType(); 10027 QualType ResReturnType = 10028 mergeObjCGCQualifiers(NewReturnType, OldReturnType); 10029 if (ResReturnType.isNull()) 10030 return {}; 10031 if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) { 10032 // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo(); 10033 // In either case, use OldReturnType to build the new function type. 10034 const auto *F = LHS->castAs<FunctionType>(); 10035 if (const auto *FPT = cast<FunctionProtoType>(F)) { 10036 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); 10037 EPI.ExtInfo = getFunctionExtInfo(LHS); 10038 QualType ResultType = 10039 getFunctionType(OldReturnType, FPT->getParamTypes(), EPI); 10040 return ResultType; 10041 } 10042 } 10043 return {}; 10044 } 10045 10046 // If the qualifiers are different, the types can still be merged. 10047 Qualifiers LQuals = LHSCan.getLocalQualifiers(); 10048 Qualifiers RQuals = RHSCan.getLocalQualifiers(); 10049 if (LQuals != RQuals) { 10050 // If any of these qualifiers are different, we have a type mismatch. 10051 if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() || 10052 LQuals.getAddressSpace() != RQuals.getAddressSpace()) 10053 return {}; 10054 10055 // Exactly one GC qualifier difference is allowed: __strong is 10056 // okay if the other type has no GC qualifier but is an Objective 10057 // C object pointer (i.e. implicitly strong by default). We fix 10058 // this by pretending that the unqualified type was actually 10059 // qualified __strong. 10060 Qualifiers::GC GC_L = LQuals.getObjCGCAttr(); 10061 Qualifiers::GC GC_R = RQuals.getObjCGCAttr(); 10062 assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements"); 10063 10064 if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak) 10065 return {}; 10066 10067 if (GC_L == Qualifiers::Strong) 10068 return LHS; 10069 if (GC_R == Qualifiers::Strong) 10070 return RHS; 10071 return {}; 10072 } 10073 10074 if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) { 10075 QualType LHSBaseQT = LHS->castAs<ObjCObjectPointerType>()->getPointeeType(); 10076 QualType RHSBaseQT = RHS->castAs<ObjCObjectPointerType>()->getPointeeType(); 10077 QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT); 10078 if (ResQT == LHSBaseQT) 10079 return LHS; 10080 if (ResQT == RHSBaseQT) 10081 return RHS; 10082 } 10083 return {}; 10084 } 10085 10086 //===----------------------------------------------------------------------===// 10087 // Integer Predicates 10088 //===----------------------------------------------------------------------===// 10089 10090 unsigned ASTContext::getIntWidth(QualType T) const { 10091 if (const auto *ET = T->getAs<EnumType>()) 10092 T = ET->getDecl()->getIntegerType(); 10093 if (T->isBooleanType()) 10094 return 1; 10095 if(const auto *EIT = T->getAs<ExtIntType>()) 10096 return EIT->getNumBits(); 10097 // For builtin types, just use the standard type sizing method 10098 return (unsigned)getTypeSize(T); 10099 } 10100 10101 QualType ASTContext::getCorrespondingUnsignedType(QualType T) const { 10102 assert((T->hasSignedIntegerRepresentation() || T->isSignedFixedPointType()) && 10103 "Unexpected type"); 10104 10105 // Turn <4 x signed int> -> <4 x unsigned int> 10106 if (const auto *VTy = T->getAs<VectorType>()) 10107 return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()), 10108 VTy->getNumElements(), VTy->getVectorKind()); 10109 10110 // For _ExtInt, return an unsigned _ExtInt with same width. 10111 if (const auto *EITy = T->getAs<ExtIntType>()) 10112 return getExtIntType(/*IsUnsigned=*/true, EITy->getNumBits()); 10113 10114 // For enums, get the underlying integer type of the enum, and let the general 10115 // integer type signchanging code handle it. 10116 if (const auto *ETy = T->getAs<EnumType>()) 10117 T = ETy->getDecl()->getIntegerType(); 10118 10119 switch (T->castAs<BuiltinType>()->getKind()) { 10120 case BuiltinType::Char_S: 10121 case BuiltinType::SChar: 10122 return UnsignedCharTy; 10123 case BuiltinType::Short: 10124 return UnsignedShortTy; 10125 case BuiltinType::Int: 10126 return UnsignedIntTy; 10127 case BuiltinType::Long: 10128 return UnsignedLongTy; 10129 case BuiltinType::LongLong: 10130 return UnsignedLongLongTy; 10131 case BuiltinType::Int128: 10132 return UnsignedInt128Ty; 10133 // wchar_t is special. It is either signed or not, but when it's signed, 10134 // there's no matching "unsigned wchar_t". Therefore we return the unsigned 10135 // version of it's underlying type instead. 10136 case BuiltinType::WChar_S: 10137 return getUnsignedWCharType(); 10138 10139 case BuiltinType::ShortAccum: 10140 return UnsignedShortAccumTy; 10141 case BuiltinType::Accum: 10142 return UnsignedAccumTy; 10143 case BuiltinType::LongAccum: 10144 return UnsignedLongAccumTy; 10145 case BuiltinType::SatShortAccum: 10146 return SatUnsignedShortAccumTy; 10147 case BuiltinType::SatAccum: 10148 return SatUnsignedAccumTy; 10149 case BuiltinType::SatLongAccum: 10150 return SatUnsignedLongAccumTy; 10151 case BuiltinType::ShortFract: 10152 return UnsignedShortFractTy; 10153 case BuiltinType::Fract: 10154 return UnsignedFractTy; 10155 case BuiltinType::LongFract: 10156 return UnsignedLongFractTy; 10157 case BuiltinType::SatShortFract: 10158 return SatUnsignedShortFractTy; 10159 case BuiltinType::SatFract: 10160 return SatUnsignedFractTy; 10161 case BuiltinType::SatLongFract: 10162 return SatUnsignedLongFractTy; 10163 default: 10164 llvm_unreachable("Unexpected signed integer or fixed point type"); 10165 } 10166 } 10167 10168 QualType ASTContext::getCorrespondingSignedType(QualType T) const { 10169 assert((T->hasUnsignedIntegerRepresentation() || 10170 T->isUnsignedFixedPointType()) && 10171 "Unexpected type"); 10172 10173 // Turn <4 x unsigned int> -> <4 x signed int> 10174 if (const auto *VTy = T->getAs<VectorType>()) 10175 return getVectorType(getCorrespondingSignedType(VTy->getElementType()), 10176 VTy->getNumElements(), VTy->getVectorKind()); 10177 10178 // For _ExtInt, return a signed _ExtInt with same width. 10179 if (const auto *EITy = T->getAs<ExtIntType>()) 10180 return getExtIntType(/*IsUnsigned=*/false, EITy->getNumBits()); 10181 10182 // For enums, get the underlying integer type of the enum, and let the general 10183 // integer type signchanging code handle it. 10184 if (const auto *ETy = T->getAs<EnumType>()) 10185 T = ETy->getDecl()->getIntegerType(); 10186 10187 switch (T->castAs<BuiltinType>()->getKind()) { 10188 case BuiltinType::Char_U: 10189 case BuiltinType::UChar: 10190 return SignedCharTy; 10191 case BuiltinType::UShort: 10192 return ShortTy; 10193 case BuiltinType::UInt: 10194 return IntTy; 10195 case BuiltinType::ULong: 10196 return LongTy; 10197 case BuiltinType::ULongLong: 10198 return LongLongTy; 10199 case BuiltinType::UInt128: 10200 return Int128Ty; 10201 // wchar_t is special. It is either unsigned or not, but when it's unsigned, 10202 // there's no matching "signed wchar_t". Therefore we return the signed 10203 // version of it's underlying type instead. 10204 case BuiltinType::WChar_U: 10205 return getSignedWCharType(); 10206 10207 case BuiltinType::UShortAccum: 10208 return ShortAccumTy; 10209 case BuiltinType::UAccum: 10210 return AccumTy; 10211 case BuiltinType::ULongAccum: 10212 return LongAccumTy; 10213 case BuiltinType::SatUShortAccum: 10214 return SatShortAccumTy; 10215 case BuiltinType::SatUAccum: 10216 return SatAccumTy; 10217 case BuiltinType::SatULongAccum: 10218 return SatLongAccumTy; 10219 case BuiltinType::UShortFract: 10220 return ShortFractTy; 10221 case BuiltinType::UFract: 10222 return FractTy; 10223 case BuiltinType::ULongFract: 10224 return LongFractTy; 10225 case BuiltinType::SatUShortFract: 10226 return SatShortFractTy; 10227 case BuiltinType::SatUFract: 10228 return SatFractTy; 10229 case BuiltinType::SatULongFract: 10230 return SatLongFractTy; 10231 default: 10232 llvm_unreachable("Unexpected unsigned integer or fixed point type"); 10233 } 10234 } 10235 10236 ASTMutationListener::~ASTMutationListener() = default; 10237 10238 void ASTMutationListener::DeducedReturnType(const FunctionDecl *FD, 10239 QualType ReturnType) {} 10240 10241 //===----------------------------------------------------------------------===// 10242 // Builtin Type Computation 10243 //===----------------------------------------------------------------------===// 10244 10245 /// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the 10246 /// pointer over the consumed characters. This returns the resultant type. If 10247 /// AllowTypeModifiers is false then modifier like * are not parsed, just basic 10248 /// types. This allows "v2i*" to be parsed as a pointer to a v2i instead of 10249 /// a vector of "i*". 10250 /// 10251 /// RequiresICE is filled in on return to indicate whether the value is required 10252 /// to be an Integer Constant Expression. 10253 static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context, 10254 ASTContext::GetBuiltinTypeError &Error, 10255 bool &RequiresICE, 10256 bool AllowTypeModifiers) { 10257 // Modifiers. 10258 int HowLong = 0; 10259 bool Signed = false, Unsigned = false; 10260 RequiresICE = false; 10261 10262 // Read the prefixed modifiers first. 10263 bool Done = false; 10264 #ifndef NDEBUG 10265 bool IsSpecial = false; 10266 #endif 10267 while (!Done) { 10268 switch (*Str++) { 10269 default: Done = true; --Str; break; 10270 case 'I': 10271 RequiresICE = true; 10272 break; 10273 case 'S': 10274 assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!"); 10275 assert(!Signed && "Can't use 'S' modifier multiple times!"); 10276 Signed = true; 10277 break; 10278 case 'U': 10279 assert(!Signed && "Can't use both 'S' and 'U' modifiers!"); 10280 assert(!Unsigned && "Can't use 'U' modifier multiple times!"); 10281 Unsigned = true; 10282 break; 10283 case 'L': 10284 assert(!IsSpecial && "Can't use 'L' with 'W', 'N', 'Z' or 'O' modifiers"); 10285 assert(HowLong <= 2 && "Can't have LLLL modifier"); 10286 ++HowLong; 10287 break; 10288 case 'N': 10289 // 'N' behaves like 'L' for all non LP64 targets and 'int' otherwise. 10290 assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!"); 10291 assert(HowLong == 0 && "Can't use both 'L' and 'N' modifiers!"); 10292 #ifndef NDEBUG 10293 IsSpecial = true; 10294 #endif 10295 if (Context.getTargetInfo().getLongWidth() == 32) 10296 ++HowLong; 10297 break; 10298 case 'W': 10299 // This modifier represents int64 type. 10300 assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!"); 10301 assert(HowLong == 0 && "Can't use both 'L' and 'W' modifiers!"); 10302 #ifndef NDEBUG 10303 IsSpecial = true; 10304 #endif 10305 switch (Context.getTargetInfo().getInt64Type()) { 10306 default: 10307 llvm_unreachable("Unexpected integer type"); 10308 case TargetInfo::SignedLong: 10309 HowLong = 1; 10310 break; 10311 case TargetInfo::SignedLongLong: 10312 HowLong = 2; 10313 break; 10314 } 10315 break; 10316 case 'Z': 10317 // This modifier represents int32 type. 10318 assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!"); 10319 assert(HowLong == 0 && "Can't use both 'L' and 'Z' modifiers!"); 10320 #ifndef NDEBUG 10321 IsSpecial = true; 10322 #endif 10323 switch (Context.getTargetInfo().getIntTypeByWidth(32, true)) { 10324 default: 10325 llvm_unreachable("Unexpected integer type"); 10326 case TargetInfo::SignedInt: 10327 HowLong = 0; 10328 break; 10329 case TargetInfo::SignedLong: 10330 HowLong = 1; 10331 break; 10332 case TargetInfo::SignedLongLong: 10333 HowLong = 2; 10334 break; 10335 } 10336 break; 10337 case 'O': 10338 assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!"); 10339 assert(HowLong == 0 && "Can't use both 'L' and 'O' modifiers!"); 10340 #ifndef NDEBUG 10341 IsSpecial = true; 10342 #endif 10343 if (Context.getLangOpts().OpenCL) 10344 HowLong = 1; 10345 else 10346 HowLong = 2; 10347 break; 10348 } 10349 } 10350 10351 QualType Type; 10352 10353 // Read the base type. 10354 switch (*Str++) { 10355 default: llvm_unreachable("Unknown builtin type letter!"); 10356 case 'y': 10357 assert(HowLong == 0 && !Signed && !Unsigned && 10358 "Bad modifiers used with 'y'!"); 10359 Type = Context.BFloat16Ty; 10360 break; 10361 case 'v': 10362 assert(HowLong == 0 && !Signed && !Unsigned && 10363 "Bad modifiers used with 'v'!"); 10364 Type = Context.VoidTy; 10365 break; 10366 case 'h': 10367 assert(HowLong == 0 && !Signed && !Unsigned && 10368 "Bad modifiers used with 'h'!"); 10369 Type = Context.HalfTy; 10370 break; 10371 case 'f': 10372 assert(HowLong == 0 && !Signed && !Unsigned && 10373 "Bad modifiers used with 'f'!"); 10374 Type = Context.FloatTy; 10375 break; 10376 case 'd': 10377 assert(HowLong < 3 && !Signed && !Unsigned && 10378 "Bad modifiers used with 'd'!"); 10379 if (HowLong == 1) 10380 Type = Context.LongDoubleTy; 10381 else if (HowLong == 2) 10382 Type = Context.Float128Ty; 10383 else 10384 Type = Context.DoubleTy; 10385 break; 10386 case 's': 10387 assert(HowLong == 0 && "Bad modifiers used with 's'!"); 10388 if (Unsigned) 10389 Type = Context.UnsignedShortTy; 10390 else 10391 Type = Context.ShortTy; 10392 break; 10393 case 'i': 10394 if (HowLong == 3) 10395 Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty; 10396 else if (HowLong == 2) 10397 Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy; 10398 else if (HowLong == 1) 10399 Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy; 10400 else 10401 Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy; 10402 break; 10403 case 'c': 10404 assert(HowLong == 0 && "Bad modifiers used with 'c'!"); 10405 if (Signed) 10406 Type = Context.SignedCharTy; 10407 else if (Unsigned) 10408 Type = Context.UnsignedCharTy; 10409 else 10410 Type = Context.CharTy; 10411 break; 10412 case 'b': // boolean 10413 assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!"); 10414 Type = Context.BoolTy; 10415 break; 10416 case 'z': // size_t. 10417 assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!"); 10418 Type = Context.getSizeType(); 10419 break; 10420 case 'w': // wchar_t. 10421 assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'w'!"); 10422 Type = Context.getWideCharType(); 10423 break; 10424 case 'F': 10425 Type = Context.getCFConstantStringType(); 10426 break; 10427 case 'G': 10428 Type = Context.getObjCIdType(); 10429 break; 10430 case 'H': 10431 Type = Context.getObjCSelType(); 10432 break; 10433 case 'M': 10434 Type = Context.getObjCSuperType(); 10435 break; 10436 case 'a': 10437 Type = Context.getBuiltinVaListType(); 10438 assert(!Type.isNull() && "builtin va list type not initialized!"); 10439 break; 10440 case 'A': 10441 // This is a "reference" to a va_list; however, what exactly 10442 // this means depends on how va_list is defined. There are two 10443 // different kinds of va_list: ones passed by value, and ones 10444 // passed by reference. An example of a by-value va_list is 10445 // x86, where va_list is a char*. An example of by-ref va_list 10446 // is x86-64, where va_list is a __va_list_tag[1]. For x86, 10447 // we want this argument to be a char*&; for x86-64, we want 10448 // it to be a __va_list_tag*. 10449 Type = Context.getBuiltinVaListType(); 10450 assert(!Type.isNull() && "builtin va list type not initialized!"); 10451 if (Type->isArrayType()) 10452 Type = Context.getArrayDecayedType(Type); 10453 else 10454 Type = Context.getLValueReferenceType(Type); 10455 break; 10456 case 'q': { 10457 char *End; 10458 unsigned NumElements = strtoul(Str, &End, 10); 10459 assert(End != Str && "Missing vector size"); 10460 Str = End; 10461 10462 QualType ElementType = DecodeTypeFromStr(Str, Context, Error, 10463 RequiresICE, false); 10464 assert(!RequiresICE && "Can't require vector ICE"); 10465 10466 Type = Context.getScalableVectorType(ElementType, NumElements); 10467 break; 10468 } 10469 case 'V': { 10470 char *End; 10471 unsigned NumElements = strtoul(Str, &End, 10); 10472 assert(End != Str && "Missing vector size"); 10473 Str = End; 10474 10475 QualType ElementType = DecodeTypeFromStr(Str, Context, Error, 10476 RequiresICE, false); 10477 assert(!RequiresICE && "Can't require vector ICE"); 10478 10479 // TODO: No way to make AltiVec vectors in builtins yet. 10480 Type = Context.getVectorType(ElementType, NumElements, 10481 VectorType::GenericVector); 10482 break; 10483 } 10484 case 'E': { 10485 char *End; 10486 10487 unsigned NumElements = strtoul(Str, &End, 10); 10488 assert(End != Str && "Missing vector size"); 10489 10490 Str = End; 10491 10492 QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE, 10493 false); 10494 Type = Context.getExtVectorType(ElementType, NumElements); 10495 break; 10496 } 10497 case 'X': { 10498 QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE, 10499 false); 10500 assert(!RequiresICE && "Can't require complex ICE"); 10501 Type = Context.getComplexType(ElementType); 10502 break; 10503 } 10504 case 'Y': 10505 Type = Context.getPointerDiffType(); 10506 break; 10507 case 'P': 10508 Type = Context.getFILEType(); 10509 if (Type.isNull()) { 10510 Error = ASTContext::GE_Missing_stdio; 10511 return {}; 10512 } 10513 break; 10514 case 'J': 10515 if (Signed) 10516 Type = Context.getsigjmp_bufType(); 10517 else 10518 Type = Context.getjmp_bufType(); 10519 10520 if (Type.isNull()) { 10521 Error = ASTContext::GE_Missing_setjmp; 10522 return {}; 10523 } 10524 break; 10525 case 'K': 10526 assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!"); 10527 Type = Context.getucontext_tType(); 10528 10529 if (Type.isNull()) { 10530 Error = ASTContext::GE_Missing_ucontext; 10531 return {}; 10532 } 10533 break; 10534 case 'p': 10535 Type = Context.getProcessIDType(); 10536 break; 10537 } 10538 10539 // If there are modifiers and if we're allowed to parse them, go for it. 10540 Done = !AllowTypeModifiers; 10541 while (!Done) { 10542 switch (char c = *Str++) { 10543 default: Done = true; --Str; break; 10544 case '*': 10545 case '&': { 10546 // Both pointers and references can have their pointee types 10547 // qualified with an address space. 10548 char *End; 10549 unsigned AddrSpace = strtoul(Str, &End, 10); 10550 if (End != Str) { 10551 // Note AddrSpace == 0 is not the same as an unspecified address space. 10552 Type = Context.getAddrSpaceQualType( 10553 Type, 10554 Context.getLangASForBuiltinAddressSpace(AddrSpace)); 10555 Str = End; 10556 } 10557 if (c == '*') 10558 Type = Context.getPointerType(Type); 10559 else 10560 Type = Context.getLValueReferenceType(Type); 10561 break; 10562 } 10563 // FIXME: There's no way to have a built-in with an rvalue ref arg. 10564 case 'C': 10565 Type = Type.withConst(); 10566 break; 10567 case 'D': 10568 Type = Context.getVolatileType(Type); 10569 break; 10570 case 'R': 10571 Type = Type.withRestrict(); 10572 break; 10573 } 10574 } 10575 10576 assert((!RequiresICE || Type->isIntegralOrEnumerationType()) && 10577 "Integer constant 'I' type must be an integer"); 10578 10579 return Type; 10580 } 10581 10582 // On some targets such as PowerPC, some of the builtins are defined with custom 10583 // type decriptors for target-dependent types. These descriptors are decoded in 10584 // other functions, but it may be useful to be able to fall back to default 10585 // descriptor decoding to define builtins mixing target-dependent and target- 10586 // independent types. This function allows decoding one type descriptor with 10587 // default decoding. 10588 QualType ASTContext::DecodeTypeStr(const char *&Str, const ASTContext &Context, 10589 GetBuiltinTypeError &Error, bool &RequireICE, 10590 bool AllowTypeModifiers) const { 10591 return DecodeTypeFromStr(Str, Context, Error, RequireICE, AllowTypeModifiers); 10592 } 10593 10594 /// GetBuiltinType - Return the type for the specified builtin. 10595 QualType ASTContext::GetBuiltinType(unsigned Id, 10596 GetBuiltinTypeError &Error, 10597 unsigned *IntegerConstantArgs) const { 10598 const char *TypeStr = BuiltinInfo.getTypeString(Id); 10599 if (TypeStr[0] == '\0') { 10600 Error = GE_Missing_type; 10601 return {}; 10602 } 10603 10604 SmallVector<QualType, 8> ArgTypes; 10605 10606 bool RequiresICE = false; 10607 Error = GE_None; 10608 QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error, 10609 RequiresICE, true); 10610 if (Error != GE_None) 10611 return {}; 10612 10613 assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE"); 10614 10615 while (TypeStr[0] && TypeStr[0] != '.') { 10616 QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true); 10617 if (Error != GE_None) 10618 return {}; 10619 10620 // If this argument is required to be an IntegerConstantExpression and the 10621 // caller cares, fill in the bitmask we return. 10622 if (RequiresICE && IntegerConstantArgs) 10623 *IntegerConstantArgs |= 1 << ArgTypes.size(); 10624 10625 // Do array -> pointer decay. The builtin should use the decayed type. 10626 if (Ty->isArrayType()) 10627 Ty = getArrayDecayedType(Ty); 10628 10629 ArgTypes.push_back(Ty); 10630 } 10631 10632 if (Id == Builtin::BI__GetExceptionInfo) 10633 return {}; 10634 10635 assert((TypeStr[0] != '.' || TypeStr[1] == 0) && 10636 "'.' should only occur at end of builtin type list!"); 10637 10638 bool Variadic = (TypeStr[0] == '.'); 10639 10640 FunctionType::ExtInfo EI(getDefaultCallingConvention( 10641 Variadic, /*IsCXXMethod=*/false, /*IsBuiltin=*/true)); 10642 if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true); 10643 10644 10645 // We really shouldn't be making a no-proto type here. 10646 if (ArgTypes.empty() && Variadic && !getLangOpts().CPlusPlus) 10647 return getFunctionNoProtoType(ResType, EI); 10648 10649 FunctionProtoType::ExtProtoInfo EPI; 10650 EPI.ExtInfo = EI; 10651 EPI.Variadic = Variadic; 10652 if (getLangOpts().CPlusPlus && BuiltinInfo.isNoThrow(Id)) 10653 EPI.ExceptionSpec.Type = 10654 getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone; 10655 10656 return getFunctionType(ResType, ArgTypes, EPI); 10657 } 10658 10659 static GVALinkage basicGVALinkageForFunction(const ASTContext &Context, 10660 const FunctionDecl *FD) { 10661 if (!FD->isExternallyVisible()) 10662 return GVA_Internal; 10663 10664 // Non-user-provided functions get emitted as weak definitions with every 10665 // use, no matter whether they've been explicitly instantiated etc. 10666 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 10667 if (!MD->isUserProvided()) 10668 return GVA_DiscardableODR; 10669 10670 GVALinkage External; 10671 switch (FD->getTemplateSpecializationKind()) { 10672 case TSK_Undeclared: 10673 case TSK_ExplicitSpecialization: 10674 External = GVA_StrongExternal; 10675 break; 10676 10677 case TSK_ExplicitInstantiationDefinition: 10678 return GVA_StrongODR; 10679 10680 // C++11 [temp.explicit]p10: 10681 // [ Note: The intent is that an inline function that is the subject of 10682 // an explicit instantiation declaration will still be implicitly 10683 // instantiated when used so that the body can be considered for 10684 // inlining, but that no out-of-line copy of the inline function would be 10685 // generated in the translation unit. -- end note ] 10686 case TSK_ExplicitInstantiationDeclaration: 10687 return GVA_AvailableExternally; 10688 10689 case TSK_ImplicitInstantiation: 10690 External = GVA_DiscardableODR; 10691 break; 10692 } 10693 10694 if (!FD->isInlined()) 10695 return External; 10696 10697 if ((!Context.getLangOpts().CPlusPlus && 10698 !Context.getTargetInfo().getCXXABI().isMicrosoft() && 10699 !FD->hasAttr<DLLExportAttr>()) || 10700 FD->hasAttr<GNUInlineAttr>()) { 10701 // FIXME: This doesn't match gcc's behavior for dllexport inline functions. 10702 10703 // GNU or C99 inline semantics. Determine whether this symbol should be 10704 // externally visible. 10705 if (FD->isInlineDefinitionExternallyVisible()) 10706 return External; 10707 10708 // C99 inline semantics, where the symbol is not externally visible. 10709 return GVA_AvailableExternally; 10710 } 10711 10712 // Functions specified with extern and inline in -fms-compatibility mode 10713 // forcibly get emitted. While the body of the function cannot be later 10714 // replaced, the function definition cannot be discarded. 10715 if (FD->isMSExternInline()) 10716 return GVA_StrongODR; 10717 10718 return GVA_DiscardableODR; 10719 } 10720 10721 static GVALinkage adjustGVALinkageForAttributes(const ASTContext &Context, 10722 const Decl *D, GVALinkage L) { 10723 // See http://msdn.microsoft.com/en-us/library/xa0d9ste.aspx 10724 // dllexport/dllimport on inline functions. 10725 if (D->hasAttr<DLLImportAttr>()) { 10726 if (L == GVA_DiscardableODR || L == GVA_StrongODR) 10727 return GVA_AvailableExternally; 10728 } else if (D->hasAttr<DLLExportAttr>()) { 10729 if (L == GVA_DiscardableODR) 10730 return GVA_StrongODR; 10731 } else if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) { 10732 // Device-side functions with __global__ attribute must always be 10733 // visible externally so they can be launched from host. 10734 if (D->hasAttr<CUDAGlobalAttr>() && 10735 (L == GVA_DiscardableODR || L == GVA_Internal)) 10736 return GVA_StrongODR; 10737 // Single source offloading languages like CUDA/HIP need to be able to 10738 // access static device variables from host code of the same compilation 10739 // unit. This is done by externalizing the static variable with a shared 10740 // name between the host and device compilation which is the same for the 10741 // same compilation unit whereas different among different compilation 10742 // units. 10743 if (Context.shouldExternalizeStaticVar(D)) 10744 return GVA_StrongExternal; 10745 } 10746 return L; 10747 } 10748 10749 /// Adjust the GVALinkage for a declaration based on what an external AST source 10750 /// knows about whether there can be other definitions of this declaration. 10751 static GVALinkage 10752 adjustGVALinkageForExternalDefinitionKind(const ASTContext &Ctx, const Decl *D, 10753 GVALinkage L) { 10754 ExternalASTSource *Source = Ctx.getExternalSource(); 10755 if (!Source) 10756 return L; 10757 10758 switch (Source->hasExternalDefinitions(D)) { 10759 case ExternalASTSource::EK_Never: 10760 // Other translation units rely on us to provide the definition. 10761 if (L == GVA_DiscardableODR) 10762 return GVA_StrongODR; 10763 break; 10764 10765 case ExternalASTSource::EK_Always: 10766 return GVA_AvailableExternally; 10767 10768 case ExternalASTSource::EK_ReplyHazy: 10769 break; 10770 } 10771 return L; 10772 } 10773 10774 GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) const { 10775 return adjustGVALinkageForExternalDefinitionKind(*this, FD, 10776 adjustGVALinkageForAttributes(*this, FD, 10777 basicGVALinkageForFunction(*this, FD))); 10778 } 10779 10780 static GVALinkage basicGVALinkageForVariable(const ASTContext &Context, 10781 const VarDecl *VD) { 10782 if (!VD->isExternallyVisible()) 10783 return GVA_Internal; 10784 10785 if (VD->isStaticLocal()) { 10786 const DeclContext *LexicalContext = VD->getParentFunctionOrMethod(); 10787 while (LexicalContext && !isa<FunctionDecl>(LexicalContext)) 10788 LexicalContext = LexicalContext->getLexicalParent(); 10789 10790 // ObjC Blocks can create local variables that don't have a FunctionDecl 10791 // LexicalContext. 10792 if (!LexicalContext) 10793 return GVA_DiscardableODR; 10794 10795 // Otherwise, let the static local variable inherit its linkage from the 10796 // nearest enclosing function. 10797 auto StaticLocalLinkage = 10798 Context.GetGVALinkageForFunction(cast<FunctionDecl>(LexicalContext)); 10799 10800 // Itanium ABI 5.2.2: "Each COMDAT group [for a static local variable] must 10801 // be emitted in any object with references to the symbol for the object it 10802 // contains, whether inline or out-of-line." 10803 // Similar behavior is observed with MSVC. An alternative ABI could use 10804 // StrongODR/AvailableExternally to match the function, but none are 10805 // known/supported currently. 10806 if (StaticLocalLinkage == GVA_StrongODR || 10807 StaticLocalLinkage == GVA_AvailableExternally) 10808 return GVA_DiscardableODR; 10809 return StaticLocalLinkage; 10810 } 10811 10812 // MSVC treats in-class initialized static data members as definitions. 10813 // By giving them non-strong linkage, out-of-line definitions won't 10814 // cause link errors. 10815 if (Context.isMSStaticDataMemberInlineDefinition(VD)) 10816 return GVA_DiscardableODR; 10817 10818 // Most non-template variables have strong linkage; inline variables are 10819 // linkonce_odr or (occasionally, for compatibility) weak_odr. 10820 GVALinkage StrongLinkage; 10821 switch (Context.getInlineVariableDefinitionKind(VD)) { 10822 case ASTContext::InlineVariableDefinitionKind::None: 10823 StrongLinkage = GVA_StrongExternal; 10824 break; 10825 case ASTContext::InlineVariableDefinitionKind::Weak: 10826 case ASTContext::InlineVariableDefinitionKind::WeakUnknown: 10827 StrongLinkage = GVA_DiscardableODR; 10828 break; 10829 case ASTContext::InlineVariableDefinitionKind::Strong: 10830 StrongLinkage = GVA_StrongODR; 10831 break; 10832 } 10833 10834 switch (VD->getTemplateSpecializationKind()) { 10835 case TSK_Undeclared: 10836 return StrongLinkage; 10837 10838 case TSK_ExplicitSpecialization: 10839 return Context.getTargetInfo().getCXXABI().isMicrosoft() && 10840 VD->isStaticDataMember() 10841 ? GVA_StrongODR 10842 : StrongLinkage; 10843 10844 case TSK_ExplicitInstantiationDefinition: 10845 return GVA_StrongODR; 10846 10847 case TSK_ExplicitInstantiationDeclaration: 10848 return GVA_AvailableExternally; 10849 10850 case TSK_ImplicitInstantiation: 10851 return GVA_DiscardableODR; 10852 } 10853 10854 llvm_unreachable("Invalid Linkage!"); 10855 } 10856 10857 GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) { 10858 return adjustGVALinkageForExternalDefinitionKind(*this, VD, 10859 adjustGVALinkageForAttributes(*this, VD, 10860 basicGVALinkageForVariable(*this, VD))); 10861 } 10862 10863 bool ASTContext::DeclMustBeEmitted(const Decl *D) { 10864 if (const auto *VD = dyn_cast<VarDecl>(D)) { 10865 if (!VD->isFileVarDecl()) 10866 return false; 10867 // Global named register variables (GNU extension) are never emitted. 10868 if (VD->getStorageClass() == SC_Register) 10869 return false; 10870 if (VD->getDescribedVarTemplate() || 10871 isa<VarTemplatePartialSpecializationDecl>(VD)) 10872 return false; 10873 } else if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 10874 // We never need to emit an uninstantiated function template. 10875 if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate) 10876 return false; 10877 } else if (isa<PragmaCommentDecl>(D)) 10878 return true; 10879 else if (isa<PragmaDetectMismatchDecl>(D)) 10880 return true; 10881 else if (isa<OMPRequiresDecl>(D)) 10882 return true; 10883 else if (isa<OMPThreadPrivateDecl>(D)) 10884 return !D->getDeclContext()->isDependentContext(); 10885 else if (isa<OMPAllocateDecl>(D)) 10886 return !D->getDeclContext()->isDependentContext(); 10887 else if (isa<OMPDeclareReductionDecl>(D) || isa<OMPDeclareMapperDecl>(D)) 10888 return !D->getDeclContext()->isDependentContext(); 10889 else if (isa<ImportDecl>(D)) 10890 return true; 10891 else 10892 return false; 10893 10894 // If this is a member of a class template, we do not need to emit it. 10895 if (D->getDeclContext()->isDependentContext()) 10896 return false; 10897 10898 // Weak references don't produce any output by themselves. 10899 if (D->hasAttr<WeakRefAttr>()) 10900 return false; 10901 10902 // Aliases and used decls are required. 10903 if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>()) 10904 return true; 10905 10906 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 10907 // Forward declarations aren't required. 10908 if (!FD->doesThisDeclarationHaveABody()) 10909 return FD->doesDeclarationForceExternallyVisibleDefinition(); 10910 10911 // Constructors and destructors are required. 10912 if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>()) 10913 return true; 10914 10915 // The key function for a class is required. This rule only comes 10916 // into play when inline functions can be key functions, though. 10917 if (getTargetInfo().getCXXABI().canKeyFunctionBeInline()) { 10918 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) { 10919 const CXXRecordDecl *RD = MD->getParent(); 10920 if (MD->isOutOfLine() && RD->isDynamicClass()) { 10921 const CXXMethodDecl *KeyFunc = getCurrentKeyFunction(RD); 10922 if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl()) 10923 return true; 10924 } 10925 } 10926 } 10927 10928 GVALinkage Linkage = GetGVALinkageForFunction(FD); 10929 10930 // static, static inline, always_inline, and extern inline functions can 10931 // always be deferred. Normal inline functions can be deferred in C99/C++. 10932 // Implicit template instantiations can also be deferred in C++. 10933 return !isDiscardableGVALinkage(Linkage); 10934 } 10935 10936 const auto *VD = cast<VarDecl>(D); 10937 assert(VD->isFileVarDecl() && "Expected file scoped var"); 10938 10939 // If the decl is marked as `declare target to`, it should be emitted for the 10940 // host and for the device. 10941 if (LangOpts.OpenMP && 10942 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) 10943 return true; 10944 10945 if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly && 10946 !isMSStaticDataMemberInlineDefinition(VD)) 10947 return false; 10948 10949 // Variables that can be needed in other TUs are required. 10950 auto Linkage = GetGVALinkageForVariable(VD); 10951 if (!isDiscardableGVALinkage(Linkage)) 10952 return true; 10953 10954 // We never need to emit a variable that is available in another TU. 10955 if (Linkage == GVA_AvailableExternally) 10956 return false; 10957 10958 // Variables that have destruction with side-effects are required. 10959 if (VD->needsDestruction(*this)) 10960 return true; 10961 10962 // Variables that have initialization with side-effects are required. 10963 if (VD->getInit() && VD->getInit()->HasSideEffects(*this) && 10964 // We can get a value-dependent initializer during error recovery. 10965 (VD->getInit()->isValueDependent() || !VD->evaluateValue())) 10966 return true; 10967 10968 // Likewise, variables with tuple-like bindings are required if their 10969 // bindings have side-effects. 10970 if (const auto *DD = dyn_cast<DecompositionDecl>(VD)) 10971 for (const auto *BD : DD->bindings()) 10972 if (const auto *BindingVD = BD->getHoldingVar()) 10973 if (DeclMustBeEmitted(BindingVD)) 10974 return true; 10975 10976 return false; 10977 } 10978 10979 void ASTContext::forEachMultiversionedFunctionVersion( 10980 const FunctionDecl *FD, 10981 llvm::function_ref<void(FunctionDecl *)> Pred) const { 10982 assert(FD->isMultiVersion() && "Only valid for multiversioned functions"); 10983 llvm::SmallDenseSet<const FunctionDecl*, 4> SeenDecls; 10984 FD = FD->getMostRecentDecl(); 10985 // FIXME: The order of traversal here matters and depends on the order of 10986 // lookup results, which happens to be (mostly) oldest-to-newest, but we 10987 // shouldn't rely on that. 10988 for (auto *CurDecl : 10989 FD->getDeclContext()->getRedeclContext()->lookup(FD->getDeclName())) { 10990 FunctionDecl *CurFD = CurDecl->getAsFunction()->getMostRecentDecl(); 10991 if (CurFD && hasSameType(CurFD->getType(), FD->getType()) && 10992 std::end(SeenDecls) == llvm::find(SeenDecls, CurFD)) { 10993 SeenDecls.insert(CurFD); 10994 Pred(CurFD); 10995 } 10996 } 10997 } 10998 10999 CallingConv ASTContext::getDefaultCallingConvention(bool IsVariadic, 11000 bool IsCXXMethod, 11001 bool IsBuiltin) const { 11002 // Pass through to the C++ ABI object 11003 if (IsCXXMethod) 11004 return ABI->getDefaultMethodCallConv(IsVariadic); 11005 11006 // Builtins ignore user-specified default calling convention and remain the 11007 // Target's default calling convention. 11008 if (!IsBuiltin) { 11009 switch (LangOpts.getDefaultCallingConv()) { 11010 case LangOptions::DCC_None: 11011 break; 11012 case LangOptions::DCC_CDecl: 11013 return CC_C; 11014 case LangOptions::DCC_FastCall: 11015 if (getTargetInfo().hasFeature("sse2") && !IsVariadic) 11016 return CC_X86FastCall; 11017 break; 11018 case LangOptions::DCC_StdCall: 11019 if (!IsVariadic) 11020 return CC_X86StdCall; 11021 break; 11022 case LangOptions::DCC_VectorCall: 11023 // __vectorcall cannot be applied to variadic functions. 11024 if (!IsVariadic) 11025 return CC_X86VectorCall; 11026 break; 11027 case LangOptions::DCC_RegCall: 11028 // __regcall cannot be applied to variadic functions. 11029 if (!IsVariadic) 11030 return CC_X86RegCall; 11031 break; 11032 } 11033 } 11034 return Target->getDefaultCallingConv(); 11035 } 11036 11037 bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const { 11038 // Pass through to the C++ ABI object 11039 return ABI->isNearlyEmpty(RD); 11040 } 11041 11042 VTableContextBase *ASTContext::getVTableContext() { 11043 if (!VTContext.get()) { 11044 auto ABI = Target->getCXXABI(); 11045 if (ABI.isMicrosoft()) 11046 VTContext.reset(new MicrosoftVTableContext(*this)); 11047 else { 11048 auto ComponentLayout = getLangOpts().RelativeCXXABIVTables 11049 ? ItaniumVTableContext::Relative 11050 : ItaniumVTableContext::Pointer; 11051 VTContext.reset(new ItaniumVTableContext(*this, ComponentLayout)); 11052 } 11053 } 11054 return VTContext.get(); 11055 } 11056 11057 MangleContext *ASTContext::createMangleContext(const TargetInfo *T) { 11058 if (!T) 11059 T = Target; 11060 switch (T->getCXXABI().getKind()) { 11061 case TargetCXXABI::AppleARM64: 11062 case TargetCXXABI::Fuchsia: 11063 case TargetCXXABI::GenericAArch64: 11064 case TargetCXXABI::GenericItanium: 11065 case TargetCXXABI::GenericARM: 11066 case TargetCXXABI::GenericMIPS: 11067 case TargetCXXABI::iOS: 11068 case TargetCXXABI::WebAssembly: 11069 case TargetCXXABI::WatchOS: 11070 case TargetCXXABI::XL: 11071 return ItaniumMangleContext::create(*this, getDiagnostics()); 11072 case TargetCXXABI::Microsoft: 11073 return MicrosoftMangleContext::create(*this, getDiagnostics()); 11074 } 11075 llvm_unreachable("Unsupported ABI"); 11076 } 11077 11078 CXXABI::~CXXABI() = default; 11079 11080 size_t ASTContext::getSideTableAllocatedMemory() const { 11081 return ASTRecordLayouts.getMemorySize() + 11082 llvm::capacity_in_bytes(ObjCLayouts) + 11083 llvm::capacity_in_bytes(KeyFunctions) + 11084 llvm::capacity_in_bytes(ObjCImpls) + 11085 llvm::capacity_in_bytes(BlockVarCopyInits) + 11086 llvm::capacity_in_bytes(DeclAttrs) + 11087 llvm::capacity_in_bytes(TemplateOrInstantiation) + 11088 llvm::capacity_in_bytes(InstantiatedFromUsingDecl) + 11089 llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl) + 11090 llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl) + 11091 llvm::capacity_in_bytes(OverriddenMethods) + 11092 llvm::capacity_in_bytes(Types) + 11093 llvm::capacity_in_bytes(VariableArrayTypes); 11094 } 11095 11096 /// getIntTypeForBitwidth - 11097 /// sets integer QualTy according to specified details: 11098 /// bitwidth, signed/unsigned. 11099 /// Returns empty type if there is no appropriate target types. 11100 QualType ASTContext::getIntTypeForBitwidth(unsigned DestWidth, 11101 unsigned Signed) const { 11102 TargetInfo::IntType Ty = getTargetInfo().getIntTypeByWidth(DestWidth, Signed); 11103 CanQualType QualTy = getFromTargetType(Ty); 11104 if (!QualTy && DestWidth == 128) 11105 return Signed ? Int128Ty : UnsignedInt128Ty; 11106 return QualTy; 11107 } 11108 11109 /// getRealTypeForBitwidth - 11110 /// sets floating point QualTy according to specified bitwidth. 11111 /// Returns empty type if there is no appropriate target types. 11112 QualType ASTContext::getRealTypeForBitwidth(unsigned DestWidth, 11113 bool ExplicitIEEE) const { 11114 TargetInfo::RealType Ty = 11115 getTargetInfo().getRealTypeByWidth(DestWidth, ExplicitIEEE); 11116 switch (Ty) { 11117 case TargetInfo::Float: 11118 return FloatTy; 11119 case TargetInfo::Double: 11120 return DoubleTy; 11121 case TargetInfo::LongDouble: 11122 return LongDoubleTy; 11123 case TargetInfo::Float128: 11124 return Float128Ty; 11125 case TargetInfo::NoFloat: 11126 return {}; 11127 } 11128 11129 llvm_unreachable("Unhandled TargetInfo::RealType value"); 11130 } 11131 11132 void ASTContext::setManglingNumber(const NamedDecl *ND, unsigned Number) { 11133 if (Number > 1) 11134 MangleNumbers[ND] = Number; 11135 } 11136 11137 unsigned ASTContext::getManglingNumber(const NamedDecl *ND) const { 11138 auto I = MangleNumbers.find(ND); 11139 return I != MangleNumbers.end() ? I->second : 1; 11140 } 11141 11142 void ASTContext::setStaticLocalNumber(const VarDecl *VD, unsigned Number) { 11143 if (Number > 1) 11144 StaticLocalNumbers[VD] = Number; 11145 } 11146 11147 unsigned ASTContext::getStaticLocalNumber(const VarDecl *VD) const { 11148 auto I = StaticLocalNumbers.find(VD); 11149 return I != StaticLocalNumbers.end() ? I->second : 1; 11150 } 11151 11152 MangleNumberingContext & 11153 ASTContext::getManglingNumberContext(const DeclContext *DC) { 11154 assert(LangOpts.CPlusPlus); // We don't need mangling numbers for plain C. 11155 std::unique_ptr<MangleNumberingContext> &MCtx = MangleNumberingContexts[DC]; 11156 if (!MCtx) 11157 MCtx = createMangleNumberingContext(); 11158 return *MCtx; 11159 } 11160 11161 MangleNumberingContext & 11162 ASTContext::getManglingNumberContext(NeedExtraManglingDecl_t, const Decl *D) { 11163 assert(LangOpts.CPlusPlus); // We don't need mangling numbers for plain C. 11164 std::unique_ptr<MangleNumberingContext> &MCtx = 11165 ExtraMangleNumberingContexts[D]; 11166 if (!MCtx) 11167 MCtx = createMangleNumberingContext(); 11168 return *MCtx; 11169 } 11170 11171 std::unique_ptr<MangleNumberingContext> 11172 ASTContext::createMangleNumberingContext() const { 11173 return ABI->createMangleNumberingContext(); 11174 } 11175 11176 const CXXConstructorDecl * 11177 ASTContext::getCopyConstructorForExceptionObject(CXXRecordDecl *RD) { 11178 return ABI->getCopyConstructorForExceptionObject( 11179 cast<CXXRecordDecl>(RD->getFirstDecl())); 11180 } 11181 11182 void ASTContext::addCopyConstructorForExceptionObject(CXXRecordDecl *RD, 11183 CXXConstructorDecl *CD) { 11184 return ABI->addCopyConstructorForExceptionObject( 11185 cast<CXXRecordDecl>(RD->getFirstDecl()), 11186 cast<CXXConstructorDecl>(CD->getFirstDecl())); 11187 } 11188 11189 void ASTContext::addTypedefNameForUnnamedTagDecl(TagDecl *TD, 11190 TypedefNameDecl *DD) { 11191 return ABI->addTypedefNameForUnnamedTagDecl(TD, DD); 11192 } 11193 11194 TypedefNameDecl * 11195 ASTContext::getTypedefNameForUnnamedTagDecl(const TagDecl *TD) { 11196 return ABI->getTypedefNameForUnnamedTagDecl(TD); 11197 } 11198 11199 void ASTContext::addDeclaratorForUnnamedTagDecl(TagDecl *TD, 11200 DeclaratorDecl *DD) { 11201 return ABI->addDeclaratorForUnnamedTagDecl(TD, DD); 11202 } 11203 11204 DeclaratorDecl *ASTContext::getDeclaratorForUnnamedTagDecl(const TagDecl *TD) { 11205 return ABI->getDeclaratorForUnnamedTagDecl(TD); 11206 } 11207 11208 void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) { 11209 ParamIndices[D] = index; 11210 } 11211 11212 unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const { 11213 ParameterIndexTable::const_iterator I = ParamIndices.find(D); 11214 assert(I != ParamIndices.end() && 11215 "ParmIndices lacks entry set by ParmVarDecl"); 11216 return I->second; 11217 } 11218 11219 QualType ASTContext::getStringLiteralArrayType(QualType EltTy, 11220 unsigned Length) const { 11221 // A C++ string literal has a const-qualified element type (C++ 2.13.4p1). 11222 if (getLangOpts().CPlusPlus || getLangOpts().ConstStrings) 11223 EltTy = EltTy.withConst(); 11224 11225 EltTy = adjustStringLiteralBaseType(EltTy); 11226 11227 // Get an array type for the string, according to C99 6.4.5. This includes 11228 // the null terminator character. 11229 return getConstantArrayType(EltTy, llvm::APInt(32, Length + 1), nullptr, 11230 ArrayType::Normal, /*IndexTypeQuals*/ 0); 11231 } 11232 11233 StringLiteral * 11234 ASTContext::getPredefinedStringLiteralFromCache(StringRef Key) const { 11235 StringLiteral *&Result = StringLiteralCache[Key]; 11236 if (!Result) 11237 Result = StringLiteral::Create( 11238 *this, Key, StringLiteral::Ascii, 11239 /*Pascal*/ false, getStringLiteralArrayType(CharTy, Key.size()), 11240 SourceLocation()); 11241 return Result; 11242 } 11243 11244 MSGuidDecl * 11245 ASTContext::getMSGuidDecl(MSGuidDecl::Parts Parts) const { 11246 assert(MSGuidTagDecl && "building MS GUID without MS extensions?"); 11247 11248 llvm::FoldingSetNodeID ID; 11249 MSGuidDecl::Profile(ID, Parts); 11250 11251 void *InsertPos; 11252 if (MSGuidDecl *Existing = MSGuidDecls.FindNodeOrInsertPos(ID, InsertPos)) 11253 return Existing; 11254 11255 QualType GUIDType = getMSGuidType().withConst(); 11256 MSGuidDecl *New = MSGuidDecl::Create(*this, GUIDType, Parts); 11257 MSGuidDecls.InsertNode(New, InsertPos); 11258 return New; 11259 } 11260 11261 TemplateParamObjectDecl * 11262 ASTContext::getTemplateParamObjectDecl(QualType T, const APValue &V) const { 11263 assert(T->isRecordType() && "template param object of unexpected type"); 11264 11265 // C++ [temp.param]p8: 11266 // [...] a static storage duration object of type 'const T' [...] 11267 T.addConst(); 11268 11269 llvm::FoldingSetNodeID ID; 11270 TemplateParamObjectDecl::Profile(ID, T, V); 11271 11272 void *InsertPos; 11273 if (TemplateParamObjectDecl *Existing = 11274 TemplateParamObjectDecls.FindNodeOrInsertPos(ID, InsertPos)) 11275 return Existing; 11276 11277 TemplateParamObjectDecl *New = TemplateParamObjectDecl::Create(*this, T, V); 11278 TemplateParamObjectDecls.InsertNode(New, InsertPos); 11279 return New; 11280 } 11281 11282 bool ASTContext::AtomicUsesUnsupportedLibcall(const AtomicExpr *E) const { 11283 const llvm::Triple &T = getTargetInfo().getTriple(); 11284 if (!T.isOSDarwin()) 11285 return false; 11286 11287 if (!(T.isiOS() && T.isOSVersionLT(7)) && 11288 !(T.isMacOSX() && T.isOSVersionLT(10, 9))) 11289 return false; 11290 11291 QualType AtomicTy = E->getPtr()->getType()->getPointeeType(); 11292 CharUnits sizeChars = getTypeSizeInChars(AtomicTy); 11293 uint64_t Size = sizeChars.getQuantity(); 11294 CharUnits alignChars = getTypeAlignInChars(AtomicTy); 11295 unsigned Align = alignChars.getQuantity(); 11296 unsigned MaxInlineWidthInBits = getTargetInfo().getMaxAtomicInlineWidth(); 11297 return (Size != Align || toBits(sizeChars) > MaxInlineWidthInBits); 11298 } 11299 11300 bool 11301 ASTContext::ObjCMethodsAreEqual(const ObjCMethodDecl *MethodDecl, 11302 const ObjCMethodDecl *MethodImpl) { 11303 // No point trying to match an unavailable/deprecated mothod. 11304 if (MethodDecl->hasAttr<UnavailableAttr>() 11305 || MethodDecl->hasAttr<DeprecatedAttr>()) 11306 return false; 11307 if (MethodDecl->getObjCDeclQualifier() != 11308 MethodImpl->getObjCDeclQualifier()) 11309 return false; 11310 if (!hasSameType(MethodDecl->getReturnType(), MethodImpl->getReturnType())) 11311 return false; 11312 11313 if (MethodDecl->param_size() != MethodImpl->param_size()) 11314 return false; 11315 11316 for (ObjCMethodDecl::param_const_iterator IM = MethodImpl->param_begin(), 11317 IF = MethodDecl->param_begin(), EM = MethodImpl->param_end(), 11318 EF = MethodDecl->param_end(); 11319 IM != EM && IF != EF; ++IM, ++IF) { 11320 const ParmVarDecl *DeclVar = (*IF); 11321 const ParmVarDecl *ImplVar = (*IM); 11322 if (ImplVar->getObjCDeclQualifier() != DeclVar->getObjCDeclQualifier()) 11323 return false; 11324 if (!hasSameType(DeclVar->getType(), ImplVar->getType())) 11325 return false; 11326 } 11327 11328 return (MethodDecl->isVariadic() == MethodImpl->isVariadic()); 11329 } 11330 11331 uint64_t ASTContext::getTargetNullPointerValue(QualType QT) const { 11332 LangAS AS; 11333 if (QT->getUnqualifiedDesugaredType()->isNullPtrType()) 11334 AS = LangAS::Default; 11335 else 11336 AS = QT->getPointeeType().getAddressSpace(); 11337 11338 return getTargetInfo().getNullPointerValue(AS); 11339 } 11340 11341 unsigned ASTContext::getTargetAddressSpace(LangAS AS) const { 11342 if (isTargetAddressSpace(AS)) 11343 return toTargetAddressSpace(AS); 11344 else 11345 return (*AddrSpaceMap)[(unsigned)AS]; 11346 } 11347 11348 QualType ASTContext::getCorrespondingSaturatedType(QualType Ty) const { 11349 assert(Ty->isFixedPointType()); 11350 11351 if (Ty->isSaturatedFixedPointType()) return Ty; 11352 11353 switch (Ty->castAs<BuiltinType>()->getKind()) { 11354 default: 11355 llvm_unreachable("Not a fixed point type!"); 11356 case BuiltinType::ShortAccum: 11357 return SatShortAccumTy; 11358 case BuiltinType::Accum: 11359 return SatAccumTy; 11360 case BuiltinType::LongAccum: 11361 return SatLongAccumTy; 11362 case BuiltinType::UShortAccum: 11363 return SatUnsignedShortAccumTy; 11364 case BuiltinType::UAccum: 11365 return SatUnsignedAccumTy; 11366 case BuiltinType::ULongAccum: 11367 return SatUnsignedLongAccumTy; 11368 case BuiltinType::ShortFract: 11369 return SatShortFractTy; 11370 case BuiltinType::Fract: 11371 return SatFractTy; 11372 case BuiltinType::LongFract: 11373 return SatLongFractTy; 11374 case BuiltinType::UShortFract: 11375 return SatUnsignedShortFractTy; 11376 case BuiltinType::UFract: 11377 return SatUnsignedFractTy; 11378 case BuiltinType::ULongFract: 11379 return SatUnsignedLongFractTy; 11380 } 11381 } 11382 11383 LangAS ASTContext::getLangASForBuiltinAddressSpace(unsigned AS) const { 11384 if (LangOpts.OpenCL) 11385 return getTargetInfo().getOpenCLBuiltinAddressSpace(AS); 11386 11387 if (LangOpts.CUDA) 11388 return getTargetInfo().getCUDABuiltinAddressSpace(AS); 11389 11390 return getLangASFromTargetAS(AS); 11391 } 11392 11393 // Explicitly instantiate this in case a Redeclarable<T> is used from a TU that 11394 // doesn't include ASTContext.h 11395 template 11396 clang::LazyGenerationalUpdatePtr< 11397 const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::ValueType 11398 clang::LazyGenerationalUpdatePtr< 11399 const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::makeValue( 11400 const clang::ASTContext &Ctx, Decl *Value); 11401 11402 unsigned char ASTContext::getFixedPointScale(QualType Ty) const { 11403 assert(Ty->isFixedPointType()); 11404 11405 const TargetInfo &Target = getTargetInfo(); 11406 switch (Ty->castAs<BuiltinType>()->getKind()) { 11407 default: 11408 llvm_unreachable("Not a fixed point type!"); 11409 case BuiltinType::ShortAccum: 11410 case BuiltinType::SatShortAccum: 11411 return Target.getShortAccumScale(); 11412 case BuiltinType::Accum: 11413 case BuiltinType::SatAccum: 11414 return Target.getAccumScale(); 11415 case BuiltinType::LongAccum: 11416 case BuiltinType::SatLongAccum: 11417 return Target.getLongAccumScale(); 11418 case BuiltinType::UShortAccum: 11419 case BuiltinType::SatUShortAccum: 11420 return Target.getUnsignedShortAccumScale(); 11421 case BuiltinType::UAccum: 11422 case BuiltinType::SatUAccum: 11423 return Target.getUnsignedAccumScale(); 11424 case BuiltinType::ULongAccum: 11425 case BuiltinType::SatULongAccum: 11426 return Target.getUnsignedLongAccumScale(); 11427 case BuiltinType::ShortFract: 11428 case BuiltinType::SatShortFract: 11429 return Target.getShortFractScale(); 11430 case BuiltinType::Fract: 11431 case BuiltinType::SatFract: 11432 return Target.getFractScale(); 11433 case BuiltinType::LongFract: 11434 case BuiltinType::SatLongFract: 11435 return Target.getLongFractScale(); 11436 case BuiltinType::UShortFract: 11437 case BuiltinType::SatUShortFract: 11438 return Target.getUnsignedShortFractScale(); 11439 case BuiltinType::UFract: 11440 case BuiltinType::SatUFract: 11441 return Target.getUnsignedFractScale(); 11442 case BuiltinType::ULongFract: 11443 case BuiltinType::SatULongFract: 11444 return Target.getUnsignedLongFractScale(); 11445 } 11446 } 11447 11448 unsigned char ASTContext::getFixedPointIBits(QualType Ty) const { 11449 assert(Ty->isFixedPointType()); 11450 11451 const TargetInfo &Target = getTargetInfo(); 11452 switch (Ty->castAs<BuiltinType>()->getKind()) { 11453 default: 11454 llvm_unreachable("Not a fixed point type!"); 11455 case BuiltinType::ShortAccum: 11456 case BuiltinType::SatShortAccum: 11457 return Target.getShortAccumIBits(); 11458 case BuiltinType::Accum: 11459 case BuiltinType::SatAccum: 11460 return Target.getAccumIBits(); 11461 case BuiltinType::LongAccum: 11462 case BuiltinType::SatLongAccum: 11463 return Target.getLongAccumIBits(); 11464 case BuiltinType::UShortAccum: 11465 case BuiltinType::SatUShortAccum: 11466 return Target.getUnsignedShortAccumIBits(); 11467 case BuiltinType::UAccum: 11468 case BuiltinType::SatUAccum: 11469 return Target.getUnsignedAccumIBits(); 11470 case BuiltinType::ULongAccum: 11471 case BuiltinType::SatULongAccum: 11472 return Target.getUnsignedLongAccumIBits(); 11473 case BuiltinType::ShortFract: 11474 case BuiltinType::SatShortFract: 11475 case BuiltinType::Fract: 11476 case BuiltinType::SatFract: 11477 case BuiltinType::LongFract: 11478 case BuiltinType::SatLongFract: 11479 case BuiltinType::UShortFract: 11480 case BuiltinType::SatUShortFract: 11481 case BuiltinType::UFract: 11482 case BuiltinType::SatUFract: 11483 case BuiltinType::ULongFract: 11484 case BuiltinType::SatULongFract: 11485 return 0; 11486 } 11487 } 11488 11489 llvm::FixedPointSemantics 11490 ASTContext::getFixedPointSemantics(QualType Ty) const { 11491 assert((Ty->isFixedPointType() || Ty->isIntegerType()) && 11492 "Can only get the fixed point semantics for a " 11493 "fixed point or integer type."); 11494 if (Ty->isIntegerType()) 11495 return llvm::FixedPointSemantics::GetIntegerSemantics( 11496 getIntWidth(Ty), Ty->isSignedIntegerType()); 11497 11498 bool isSigned = Ty->isSignedFixedPointType(); 11499 return llvm::FixedPointSemantics( 11500 static_cast<unsigned>(getTypeSize(Ty)), getFixedPointScale(Ty), isSigned, 11501 Ty->isSaturatedFixedPointType(), 11502 !isSigned && getTargetInfo().doUnsignedFixedPointTypesHavePadding()); 11503 } 11504 11505 llvm::APFixedPoint ASTContext::getFixedPointMax(QualType Ty) const { 11506 assert(Ty->isFixedPointType()); 11507 return llvm::APFixedPoint::getMax(getFixedPointSemantics(Ty)); 11508 } 11509 11510 llvm::APFixedPoint ASTContext::getFixedPointMin(QualType Ty) const { 11511 assert(Ty->isFixedPointType()); 11512 return llvm::APFixedPoint::getMin(getFixedPointSemantics(Ty)); 11513 } 11514 11515 QualType ASTContext::getCorrespondingSignedFixedPointType(QualType Ty) const { 11516 assert(Ty->isUnsignedFixedPointType() && 11517 "Expected unsigned fixed point type"); 11518 11519 switch (Ty->castAs<BuiltinType>()->getKind()) { 11520 case BuiltinType::UShortAccum: 11521 return ShortAccumTy; 11522 case BuiltinType::UAccum: 11523 return AccumTy; 11524 case BuiltinType::ULongAccum: 11525 return LongAccumTy; 11526 case BuiltinType::SatUShortAccum: 11527 return SatShortAccumTy; 11528 case BuiltinType::SatUAccum: 11529 return SatAccumTy; 11530 case BuiltinType::SatULongAccum: 11531 return SatLongAccumTy; 11532 case BuiltinType::UShortFract: 11533 return ShortFractTy; 11534 case BuiltinType::UFract: 11535 return FractTy; 11536 case BuiltinType::ULongFract: 11537 return LongFractTy; 11538 case BuiltinType::SatUShortFract: 11539 return SatShortFractTy; 11540 case BuiltinType::SatUFract: 11541 return SatFractTy; 11542 case BuiltinType::SatULongFract: 11543 return SatLongFractTy; 11544 default: 11545 llvm_unreachable("Unexpected unsigned fixed point type"); 11546 } 11547 } 11548 11549 ParsedTargetAttr 11550 ASTContext::filterFunctionTargetAttrs(const TargetAttr *TD) const { 11551 assert(TD != nullptr); 11552 ParsedTargetAttr ParsedAttr = TD->parse(); 11553 11554 ParsedAttr.Features.erase( 11555 llvm::remove_if(ParsedAttr.Features, 11556 [&](const std::string &Feat) { 11557 return !Target->isValidFeatureName( 11558 StringRef{Feat}.substr(1)); 11559 }), 11560 ParsedAttr.Features.end()); 11561 return ParsedAttr; 11562 } 11563 11564 void ASTContext::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, 11565 const FunctionDecl *FD) const { 11566 if (FD) 11567 getFunctionFeatureMap(FeatureMap, GlobalDecl().getWithDecl(FD)); 11568 else 11569 Target->initFeatureMap(FeatureMap, getDiagnostics(), 11570 Target->getTargetOpts().CPU, 11571 Target->getTargetOpts().Features); 11572 } 11573 11574 // Fills in the supplied string map with the set of target features for the 11575 // passed in function. 11576 void ASTContext::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, 11577 GlobalDecl GD) const { 11578 StringRef TargetCPU = Target->getTargetOpts().CPU; 11579 const FunctionDecl *FD = GD.getDecl()->getAsFunction(); 11580 if (const auto *TD = FD->getAttr<TargetAttr>()) { 11581 ParsedTargetAttr ParsedAttr = filterFunctionTargetAttrs(TD); 11582 11583 // Make a copy of the features as passed on the command line into the 11584 // beginning of the additional features from the function to override. 11585 ParsedAttr.Features.insert( 11586 ParsedAttr.Features.begin(), 11587 Target->getTargetOpts().FeaturesAsWritten.begin(), 11588 Target->getTargetOpts().FeaturesAsWritten.end()); 11589 11590 if (ParsedAttr.Architecture != "" && 11591 Target->isValidCPUName(ParsedAttr.Architecture)) 11592 TargetCPU = ParsedAttr.Architecture; 11593 11594 // Now populate the feature map, first with the TargetCPU which is either 11595 // the default or a new one from the target attribute string. Then we'll use 11596 // the passed in features (FeaturesAsWritten) along with the new ones from 11597 // the attribute. 11598 Target->initFeatureMap(FeatureMap, getDiagnostics(), TargetCPU, 11599 ParsedAttr.Features); 11600 } else if (const auto *SD = FD->getAttr<CPUSpecificAttr>()) { 11601 llvm::SmallVector<StringRef, 32> FeaturesTmp; 11602 Target->getCPUSpecificCPUDispatchFeatures( 11603 SD->getCPUName(GD.getMultiVersionIndex())->getName(), FeaturesTmp); 11604 std::vector<std::string> Features(FeaturesTmp.begin(), FeaturesTmp.end()); 11605 Target->initFeatureMap(FeatureMap, getDiagnostics(), TargetCPU, Features); 11606 } else { 11607 FeatureMap = Target->getTargetOpts().FeatureMap; 11608 } 11609 } 11610 11611 OMPTraitInfo &ASTContext::getNewOMPTraitInfo() { 11612 OMPTraitInfoVector.emplace_back(new OMPTraitInfo()); 11613 return *OMPTraitInfoVector.back(); 11614 } 11615 11616 const StreamingDiagnostic &clang:: 11617 operator<<(const StreamingDiagnostic &DB, 11618 const ASTContext::SectionInfo &Section) { 11619 if (Section.Decl) 11620 return DB << Section.Decl; 11621 return DB << "a prior #pragma section"; 11622 } 11623 11624 bool ASTContext::mayExternalizeStaticVar(const Decl *D) const { 11625 bool IsStaticVar = 11626 isa<VarDecl>(D) && cast<VarDecl>(D)->getStorageClass() == SC_Static; 11627 bool IsExplicitDeviceVar = (D->hasAttr<CUDADeviceAttr>() && 11628 !D->getAttr<CUDADeviceAttr>()->isImplicit()) || 11629 (D->hasAttr<CUDAConstantAttr>() && 11630 !D->getAttr<CUDAConstantAttr>()->isImplicit()); 11631 // CUDA/HIP: static managed variables need to be externalized since it is 11632 // a declaration in IR, therefore cannot have internal linkage. 11633 return IsStaticVar && 11634 (D->hasAttr<HIPManagedAttr>() || IsExplicitDeviceVar); 11635 } 11636 11637 bool ASTContext::shouldExternalizeStaticVar(const Decl *D) const { 11638 return mayExternalizeStaticVar(D) && 11639 (D->hasAttr<HIPManagedAttr>() || 11640 CUDADeviceVarODRUsedByHost.count(cast<VarDecl>(D))); 11641 } 11642 11643 StringRef ASTContext::getCUIDHash() const { 11644 if (!CUIDHash.empty()) 11645 return CUIDHash; 11646 if (LangOpts.CUID.empty()) 11647 return StringRef(); 11648 CUIDHash = llvm::utohexstr(llvm::MD5Hash(LangOpts.CUID), /*LowerCase=*/true); 11649 return CUIDHash; 11650 } 11651