Automatically generated by Pod::Man 4.07 (Pod::Simple 3.32)
Standard preamble:
========================================================================
..
.... Set up some character translations and predefined strings. \*(-- will
give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
double quote, and \*(R" will give a right double quote. \*(C+ will
give a nicer C++. Capital omega is used to do unbreakable dashes and
therefore won't be available. \*(C` and \*(C' expand to `' in nroff,
nothing in troff, for use with C<>.
.tr \(*W- . ds -- \(*W- . ds PI pi . if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch . if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch . ds L" "" . ds R" "" . ds C` "" . ds C' "" 'br\} . ds -- \|\(em\| . ds PI \(*p . ds L" `` . ds R" '' . ds C` . ds C' 'br\}
Escape single quotes in literal strings from groff's Unicode transform.
If the F register is >0, we'll generate index entries on stderr for
titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index
entries marked with X<> in POD. Of course, you'll have to process the
output yourself in some meaningful fashion.
Avoid warning from groff about undefined register 'F'.
.. . de IX . tm Index:\\$1\t\\n%\t"\\$2" .. . if !\nF==2 \{\ . nr % 0 . nr F 2 . \} .\}
Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
Fear. Run. Save yourself. No user-serviceable parts.
. \" fudge factors for nroff and troff . ds #H 0 . ds #V .8m . ds #F .3m . ds #[ \f1 . ds #] .\} . ds #H ((1u-(\\\\n(.fu%2u))*.13m) . ds #V .6m . ds #F 0 . ds #[ \& . ds #] \& .\} . \" simple accents for nroff and troff . ds ' \& . ds ` \& . ds ^ \& . ds , \& . ds ~ ~ . ds / .\} . ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u" . ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u' . ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u' . ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u' . ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u' . ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u' .\} . \" troff and (daisy-wheel) nroff accents . \" corrections for vroff . \" for low resolution devices (crt and lpr) \{\ . ds : e . ds 8 ss . ds o a . ds d- d\h'-1'\(ga . ds D- D\h'-1'\(hy . ds th \o'bp' . ds Th \o'LP' . ds ae ae . ds Ae AE .\} ========================================================================
Title "OPENSSL_ia32cap 3"
way too many mistakes in technical documents.
0
For example, in 32-bit application context clearing bit #26 at run-time disables high-performance \s-1SSE2\s0 code present in the crypto library, while clearing bit #24 disables \s-1SSE2\s0 code operating on 128-bit \s-1XMM\s0 register bank. You might have to do the latter if target OpenSSL application is executed on \s-1SSE2\s0 capable \s-1CPU,\s0 but under control of \s-1OS\s0 that does not enable \s-1XMM\s0 registers. Historically address of the capability vector copy was exposed to application through OPENSSL_ia32cap_loc(), but not anymore. Now the only way to affect the capability detection is to set OPENSSL_ia32cap environment variable prior target application start. To give a specific example, on Intel P4 processor 'env OPENSSL_ia32cap=0x16980010 apps/openssl', or better yet 'env OPENSSL_ia32cap=~0x1000000 apps/openssl' would achieve the desired effect. Alternatively you can reconfigure the toolkit with no-sse2 option and recompile.
Less intuitive is clearing bit #28, or ~0x10000000 in the \*(L"environment variable\*(R" terms. The truth is that it's not copied from \s-1CPUID\s0 output verbatim, but is adjusted to reflect whether or not the data cache is actually shared between logical cores. This in turn affects the decision on whether or not expensive countermeasures against cache-timing attacks are applied, most notably in \s-1AES\s0 assembler module.
The capability vector is further extended with \s-1EBX\s0 value returned by \s-1CPUID\s0 with EAX=7 and ECX=0 as input. Following bits are significant:
0
To control this extended capability word use ':' as delimiter when setting up OPENSSL_ia32cap environment variable. For example assigning ':~0x20' would disable \s-1AVX2\s0 code paths, and ':0' - all post-AVX extensions.
It should be noted that whether or not some of the most \*(L"fancy\*(R" extension code paths are actually assembled depends on current assembler version. Base minimum of \s-1AES-NI/PCLMULQDQ, SSSE3\s0 and \s-1SHA\s0 extension code paths are always assembled. Besides that, minimum assembler version requirements are summarized in below table:
.Vb 5 Extension | GNU as | nasm | llvm ------------+--------+--------+-------- AVX | 2.19 | 2.09 | 3.0 AVX2 | 2.22 | 2.10 | 3.1 AVX512 | 2.25 | 2.11.8 | 3.6 .Ve
\fBOPENSSL_ia32cap is a macro returning the first word of the vector.
Licensed under the OpenSSL license (the \*(L"License\*(R"). You may not use this file except in compliance with the License. You can obtain a copy in the file \s-1LICENSE\s0 in the source distribution or at <https://www.openssl.org/source/license.html>.