1 /* 2 * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. 3 * 4 * Licensed under the OpenSSL license (the "License"). You may not use 5 * this file except in compliance with the License. You can obtain a copy 6 * in the file LICENSE in the source distribution or at 7 * https://www.openssl.org/source/license.html 8 */ 9 10 /* ==================================================================== 11 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. 12 * ECC cipher suite support in OpenSSL originally developed by 13 * SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project. 14 */ 15 /* ==================================================================== 16 * Copyright 2005 Nokia. All rights reserved. 17 * 18 * The portions of the attached software ("Contribution") is developed by 19 * Nokia Corporation and is licensed pursuant to the OpenSSL open source 20 * license. 21 * 22 * The Contribution, originally written by Mika Kousa and Pasi Eronen of 23 * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites 24 * support (see RFC 4279) to OpenSSL. 25 * 26 * No patent licenses or other rights except those expressly stated in 27 * the OpenSSL open source license shall be deemed granted or received 28 * expressly, by implication, estoppel, or otherwise. 29 * 30 * No assurances are provided by Nokia that the Contribution does not 31 * infringe the patent or other intellectual property rights of any third 32 * party or that the license provides you with all the necessary rights 33 * to make use of the Contribution. 34 * 35 * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN 36 * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA 37 * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY 38 * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR 39 * OTHERWISE. 40 */ 41 42 #include <stdio.h> 43 #include <ctype.h> 44 #include <openssl/objects.h> 45 #include <openssl/comp.h> 46 #include <openssl/engine.h> 47 #include <openssl/crypto.h> 48 #include "ssl_locl.h" 49 #include "internal/thread_once.h" 50 51 #define SSL_ENC_DES_IDX 0 52 #define SSL_ENC_3DES_IDX 1 53 #define SSL_ENC_RC4_IDX 2 54 #define SSL_ENC_RC2_IDX 3 55 #define SSL_ENC_IDEA_IDX 4 56 #define SSL_ENC_NULL_IDX 5 57 #define SSL_ENC_AES128_IDX 6 58 #define SSL_ENC_AES256_IDX 7 59 #define SSL_ENC_CAMELLIA128_IDX 8 60 #define SSL_ENC_CAMELLIA256_IDX 9 61 #define SSL_ENC_GOST89_IDX 10 62 #define SSL_ENC_SEED_IDX 11 63 #define SSL_ENC_AES128GCM_IDX 12 64 #define SSL_ENC_AES256GCM_IDX 13 65 #define SSL_ENC_AES128CCM_IDX 14 66 #define SSL_ENC_AES256CCM_IDX 15 67 #define SSL_ENC_AES128CCM8_IDX 16 68 #define SSL_ENC_AES256CCM8_IDX 17 69 #define SSL_ENC_GOST8912_IDX 18 70 #define SSL_ENC_CHACHA_IDX 19 71 #define SSL_ENC_NUM_IDX 20 72 73 /* NB: make sure indices in these tables match values above */ 74 75 typedef struct { 76 uint32_t mask; 77 int nid; 78 } ssl_cipher_table; 79 80 /* Table of NIDs for each cipher */ 81 static const ssl_cipher_table ssl_cipher_table_cipher[SSL_ENC_NUM_IDX] = { 82 {SSL_DES, NID_des_cbc}, /* SSL_ENC_DES_IDX 0 */ 83 {SSL_3DES, NID_des_ede3_cbc}, /* SSL_ENC_3DES_IDX 1 */ 84 {SSL_RC4, NID_rc4}, /* SSL_ENC_RC4_IDX 2 */ 85 {SSL_RC2, NID_rc2_cbc}, /* SSL_ENC_RC2_IDX 3 */ 86 {SSL_IDEA, NID_idea_cbc}, /* SSL_ENC_IDEA_IDX 4 */ 87 {SSL_eNULL, NID_undef}, /* SSL_ENC_NULL_IDX 5 */ 88 {SSL_AES128, NID_aes_128_cbc}, /* SSL_ENC_AES128_IDX 6 */ 89 {SSL_AES256, NID_aes_256_cbc}, /* SSL_ENC_AES256_IDX 7 */ 90 {SSL_CAMELLIA128, NID_camellia_128_cbc}, /* SSL_ENC_CAMELLIA128_IDX 8 */ 91 {SSL_CAMELLIA256, NID_camellia_256_cbc}, /* SSL_ENC_CAMELLIA256_IDX 9 */ 92 {SSL_eGOST2814789CNT, NID_gost89_cnt}, /* SSL_ENC_GOST89_IDX 10 */ 93 {SSL_SEED, NID_seed_cbc}, /* SSL_ENC_SEED_IDX 11 */ 94 {SSL_AES128GCM, NID_aes_128_gcm}, /* SSL_ENC_AES128GCM_IDX 12 */ 95 {SSL_AES256GCM, NID_aes_256_gcm}, /* SSL_ENC_AES256GCM_IDX 13 */ 96 {SSL_AES128CCM, NID_aes_128_ccm}, /* SSL_ENC_AES128CCM_IDX 14 */ 97 {SSL_AES256CCM, NID_aes_256_ccm}, /* SSL_ENC_AES256CCM_IDX 15 */ 98 {SSL_AES128CCM8, NID_aes_128_ccm}, /* SSL_ENC_AES128CCM8_IDX 16 */ 99 {SSL_AES256CCM8, NID_aes_256_ccm}, /* SSL_ENC_AES256CCM8_IDX 17 */ 100 {SSL_eGOST2814789CNT12, NID_gost89_cnt_12}, /* SSL_ENC_GOST8912_IDX */ 101 {SSL_CHACHA20POLY1305, NID_chacha20_poly1305}, 102 }; 103 104 static const EVP_CIPHER *ssl_cipher_methods[SSL_ENC_NUM_IDX] = { 105 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, 106 NULL, NULL 107 }; 108 109 #define SSL_COMP_NULL_IDX 0 110 #define SSL_COMP_ZLIB_IDX 1 111 #define SSL_COMP_NUM_IDX 2 112 113 static STACK_OF(SSL_COMP) *ssl_comp_methods = NULL; 114 115 #ifndef OPENSSL_NO_COMP 116 static CRYPTO_ONCE ssl_load_builtin_comp_once = CRYPTO_ONCE_STATIC_INIT; 117 #endif 118 119 /* 120 * Constant SSL_MAX_DIGEST equal to size of digests array should be defined 121 * in the ssl_locl.h 122 */ 123 124 #define SSL_MD_NUM_IDX SSL_MAX_DIGEST 125 126 /* NB: make sure indices in this table matches values above */ 127 static const ssl_cipher_table ssl_cipher_table_mac[SSL_MD_NUM_IDX] = { 128 {SSL_MD5, NID_md5}, /* SSL_MD_MD5_IDX 0 */ 129 {SSL_SHA1, NID_sha1}, /* SSL_MD_SHA1_IDX 1 */ 130 {SSL_GOST94, NID_id_GostR3411_94}, /* SSL_MD_GOST94_IDX 2 */ 131 {SSL_GOST89MAC, NID_id_Gost28147_89_MAC}, /* SSL_MD_GOST89MAC_IDX 3 */ 132 {SSL_SHA256, NID_sha256}, /* SSL_MD_SHA256_IDX 4 */ 133 {SSL_SHA384, NID_sha384}, /* SSL_MD_SHA384_IDX 5 */ 134 {SSL_GOST12_256, NID_id_GostR3411_2012_256}, /* SSL_MD_GOST12_256_IDX 6 */ 135 {SSL_GOST89MAC12, NID_gost_mac_12}, /* SSL_MD_GOST89MAC12_IDX 7 */ 136 {SSL_GOST12_512, NID_id_GostR3411_2012_512}, /* SSL_MD_GOST12_512_IDX 8 */ 137 {0, NID_md5_sha1}, /* SSL_MD_MD5_SHA1_IDX 9 */ 138 {0, NID_sha224}, /* SSL_MD_SHA224_IDX 10 */ 139 {0, NID_sha512} /* SSL_MD_SHA512_IDX 11 */ 140 }; 141 142 static const EVP_MD *ssl_digest_methods[SSL_MD_NUM_IDX] = { 143 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL 144 }; 145 146 /* *INDENT-OFF* */ 147 static const ssl_cipher_table ssl_cipher_table_kx[] = { 148 {SSL_kRSA, NID_kx_rsa}, 149 {SSL_kECDHE, NID_kx_ecdhe}, 150 {SSL_kDHE, NID_kx_dhe}, 151 {SSL_kECDHEPSK, NID_kx_ecdhe_psk}, 152 {SSL_kDHEPSK, NID_kx_dhe_psk}, 153 {SSL_kRSAPSK, NID_kx_rsa_psk}, 154 {SSL_kPSK, NID_kx_psk}, 155 {SSL_kSRP, NID_kx_srp}, 156 {SSL_kGOST, NID_kx_gost} 157 }; 158 159 static const ssl_cipher_table ssl_cipher_table_auth[] = { 160 {SSL_aRSA, NID_auth_rsa}, 161 {SSL_aECDSA, NID_auth_ecdsa}, 162 {SSL_aPSK, NID_auth_psk}, 163 {SSL_aDSS, NID_auth_dss}, 164 {SSL_aGOST01, NID_auth_gost01}, 165 {SSL_aGOST12, NID_auth_gost12}, 166 {SSL_aSRP, NID_auth_srp}, 167 {SSL_aNULL, NID_auth_null} 168 }; 169 /* *INDENT-ON* */ 170 171 /* Utility function for table lookup */ 172 static int ssl_cipher_info_find(const ssl_cipher_table * table, 173 size_t table_cnt, uint32_t mask) 174 { 175 size_t i; 176 for (i = 0; i < table_cnt; i++, table++) { 177 if (table->mask == mask) 178 return i; 179 } 180 return -1; 181 } 182 183 #define ssl_cipher_info_lookup(table, x) \ 184 ssl_cipher_info_find(table, OSSL_NELEM(table), x) 185 186 /* 187 * PKEY_TYPE for GOST89MAC is known in advance, but, because implementation 188 * is engine-provided, we'll fill it only if corresponding EVP_PKEY_METHOD is 189 * found 190 */ 191 static int ssl_mac_pkey_id[SSL_MD_NUM_IDX] = { 192 /* MD5, SHA, GOST94, MAC89 */ 193 EVP_PKEY_HMAC, EVP_PKEY_HMAC, EVP_PKEY_HMAC, NID_undef, 194 /* SHA256, SHA384, GOST2012_256, MAC89-12 */ 195 EVP_PKEY_HMAC, EVP_PKEY_HMAC, EVP_PKEY_HMAC, NID_undef, 196 /* GOST2012_512 */ 197 EVP_PKEY_HMAC, 198 }; 199 200 static int ssl_mac_secret_size[SSL_MD_NUM_IDX]; 201 202 #define CIPHER_ADD 1 203 #define CIPHER_KILL 2 204 #define CIPHER_DEL 3 205 #define CIPHER_ORD 4 206 #define CIPHER_SPECIAL 5 207 /* 208 * Bump the ciphers to the top of the list. 209 * This rule isn't currently supported by the public cipherstring API. 210 */ 211 #define CIPHER_BUMP 6 212 213 typedef struct cipher_order_st { 214 const SSL_CIPHER *cipher; 215 int active; 216 int dead; 217 struct cipher_order_st *next, *prev; 218 } CIPHER_ORDER; 219 220 static const SSL_CIPHER cipher_aliases[] = { 221 /* "ALL" doesn't include eNULL (must be specifically enabled) */ 222 {0, SSL_TXT_ALL, 0, 0, 0, ~SSL_eNULL}, 223 /* "COMPLEMENTOFALL" */ 224 {0, SSL_TXT_CMPALL, 0, 0, 0, SSL_eNULL}, 225 226 /* 227 * "COMPLEMENTOFDEFAULT" (does *not* include ciphersuites not found in 228 * ALL!) 229 */ 230 {0, SSL_TXT_CMPDEF, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_NOT_DEFAULT}, 231 232 /* 233 * key exchange aliases (some of those using only a single bit here 234 * combine multiple key exchange algs according to the RFCs, e.g. kDHE 235 * combines DHE_DSS and DHE_RSA) 236 */ 237 {0, SSL_TXT_kRSA, 0, SSL_kRSA}, 238 239 {0, SSL_TXT_kEDH, 0, SSL_kDHE}, 240 {0, SSL_TXT_kDHE, 0, SSL_kDHE}, 241 {0, SSL_TXT_DH, 0, SSL_kDHE}, 242 243 {0, SSL_TXT_kEECDH, 0, SSL_kECDHE}, 244 {0, SSL_TXT_kECDHE, 0, SSL_kECDHE}, 245 {0, SSL_TXT_ECDH, 0, SSL_kECDHE}, 246 247 {0, SSL_TXT_kPSK, 0, SSL_kPSK}, 248 {0, SSL_TXT_kRSAPSK, 0, SSL_kRSAPSK}, 249 {0, SSL_TXT_kECDHEPSK, 0, SSL_kECDHEPSK}, 250 {0, SSL_TXT_kDHEPSK, 0, SSL_kDHEPSK}, 251 {0, SSL_TXT_kSRP, 0, SSL_kSRP}, 252 {0, SSL_TXT_kGOST, 0, SSL_kGOST}, 253 254 /* server authentication aliases */ 255 {0, SSL_TXT_aRSA, 0, 0, SSL_aRSA}, 256 {0, SSL_TXT_aDSS, 0, 0, SSL_aDSS}, 257 {0, SSL_TXT_DSS, 0, 0, SSL_aDSS}, 258 {0, SSL_TXT_aNULL, 0, 0, SSL_aNULL}, 259 {0, SSL_TXT_aECDSA, 0, 0, SSL_aECDSA}, 260 {0, SSL_TXT_ECDSA, 0, 0, SSL_aECDSA}, 261 {0, SSL_TXT_aPSK, 0, 0, SSL_aPSK}, 262 {0, SSL_TXT_aGOST01, 0, 0, SSL_aGOST01}, 263 {0, SSL_TXT_aGOST12, 0, 0, SSL_aGOST12}, 264 {0, SSL_TXT_aGOST, 0, 0, SSL_aGOST01 | SSL_aGOST12}, 265 {0, SSL_TXT_aSRP, 0, 0, SSL_aSRP}, 266 267 /* aliases combining key exchange and server authentication */ 268 {0, SSL_TXT_EDH, 0, SSL_kDHE, ~SSL_aNULL}, 269 {0, SSL_TXT_DHE, 0, SSL_kDHE, ~SSL_aNULL}, 270 {0, SSL_TXT_EECDH, 0, SSL_kECDHE, ~SSL_aNULL}, 271 {0, SSL_TXT_ECDHE, 0, SSL_kECDHE, ~SSL_aNULL}, 272 {0, SSL_TXT_NULL, 0, 0, 0, SSL_eNULL}, 273 {0, SSL_TXT_RSA, 0, SSL_kRSA, SSL_aRSA}, 274 {0, SSL_TXT_ADH, 0, SSL_kDHE, SSL_aNULL}, 275 {0, SSL_TXT_AECDH, 0, SSL_kECDHE, SSL_aNULL}, 276 {0, SSL_TXT_PSK, 0, SSL_PSK}, 277 {0, SSL_TXT_SRP, 0, SSL_kSRP}, 278 279 /* symmetric encryption aliases */ 280 {0, SSL_TXT_3DES, 0, 0, 0, SSL_3DES}, 281 {0, SSL_TXT_RC4, 0, 0, 0, SSL_RC4}, 282 {0, SSL_TXT_RC2, 0, 0, 0, SSL_RC2}, 283 {0, SSL_TXT_IDEA, 0, 0, 0, SSL_IDEA}, 284 {0, SSL_TXT_SEED, 0, 0, 0, SSL_SEED}, 285 {0, SSL_TXT_eNULL, 0, 0, 0, SSL_eNULL}, 286 {0, SSL_TXT_GOST, 0, 0, 0, SSL_eGOST2814789CNT | SSL_eGOST2814789CNT12}, 287 {0, SSL_TXT_AES128, 0, 0, 0, 288 SSL_AES128 | SSL_AES128GCM | SSL_AES128CCM | SSL_AES128CCM8}, 289 {0, SSL_TXT_AES256, 0, 0, 0, 290 SSL_AES256 | SSL_AES256GCM | SSL_AES256CCM | SSL_AES256CCM8}, 291 {0, SSL_TXT_AES, 0, 0, 0, SSL_AES}, 292 {0, SSL_TXT_AES_GCM, 0, 0, 0, SSL_AES128GCM | SSL_AES256GCM}, 293 {0, SSL_TXT_AES_CCM, 0, 0, 0, 294 SSL_AES128CCM | SSL_AES256CCM | SSL_AES128CCM8 | SSL_AES256CCM8}, 295 {0, SSL_TXT_AES_CCM_8, 0, 0, 0, SSL_AES128CCM8 | SSL_AES256CCM8}, 296 {0, SSL_TXT_CAMELLIA128, 0, 0, 0, SSL_CAMELLIA128}, 297 {0, SSL_TXT_CAMELLIA256, 0, 0, 0, SSL_CAMELLIA256}, 298 {0, SSL_TXT_CAMELLIA, 0, 0, 0, SSL_CAMELLIA}, 299 {0, SSL_TXT_CHACHA20, 0, 0, 0, SSL_CHACHA20}, 300 301 /* MAC aliases */ 302 {0, SSL_TXT_MD5, 0, 0, 0, 0, SSL_MD5}, 303 {0, SSL_TXT_SHA1, 0, 0, 0, 0, SSL_SHA1}, 304 {0, SSL_TXT_SHA, 0, 0, 0, 0, SSL_SHA1}, 305 {0, SSL_TXT_GOST94, 0, 0, 0, 0, SSL_GOST94}, 306 {0, SSL_TXT_GOST89MAC, 0, 0, 0, 0, SSL_GOST89MAC | SSL_GOST89MAC12}, 307 {0, SSL_TXT_SHA256, 0, 0, 0, 0, SSL_SHA256}, 308 {0, SSL_TXT_SHA384, 0, 0, 0, 0, SSL_SHA384}, 309 {0, SSL_TXT_GOST12, 0, 0, 0, 0, SSL_GOST12_256}, 310 311 /* protocol version aliases */ 312 {0, SSL_TXT_SSLV3, 0, 0, 0, 0, 0, SSL3_VERSION}, 313 {0, SSL_TXT_TLSV1, 0, 0, 0, 0, 0, TLS1_VERSION}, 314 {0, "TLSv1.0", 0, 0, 0, 0, 0, TLS1_VERSION}, 315 {0, SSL_TXT_TLSV1_2, 0, 0, 0, 0, 0, TLS1_2_VERSION}, 316 317 /* strength classes */ 318 {0, SSL_TXT_LOW, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_LOW}, 319 {0, SSL_TXT_MEDIUM, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_MEDIUM}, 320 {0, SSL_TXT_HIGH, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_HIGH}, 321 /* FIPS 140-2 approved ciphersuite */ 322 {0, SSL_TXT_FIPS, 0, 0, 0, ~SSL_eNULL, 0, 0, 0, 0, 0, SSL_FIPS}, 323 324 /* "EDH-" aliases to "DHE-" labels (for backward compatibility) */ 325 {0, SSL3_TXT_EDH_DSS_DES_192_CBC3_SHA, 0, 326 SSL_kDHE, SSL_aDSS, SSL_3DES, SSL_SHA1, 0, 0, 0, 0, SSL_HIGH | SSL_FIPS}, 327 {0, SSL3_TXT_EDH_RSA_DES_192_CBC3_SHA, 0, 328 SSL_kDHE, SSL_aRSA, SSL_3DES, SSL_SHA1, 0, 0, 0, 0, SSL_HIGH | SSL_FIPS}, 329 330 }; 331 332 /* 333 * Search for public key algorithm with given name and return its pkey_id if 334 * it is available. Otherwise return 0 335 */ 336 #ifdef OPENSSL_NO_ENGINE 337 338 static int get_optional_pkey_id(const char *pkey_name) 339 { 340 const EVP_PKEY_ASN1_METHOD *ameth; 341 int pkey_id = 0; 342 ameth = EVP_PKEY_asn1_find_str(NULL, pkey_name, -1); 343 if (ameth && EVP_PKEY_asn1_get0_info(&pkey_id, NULL, NULL, NULL, NULL, 344 ameth) > 0) { 345 return pkey_id; 346 } 347 return 0; 348 } 349 350 #else 351 352 static int get_optional_pkey_id(const char *pkey_name) 353 { 354 const EVP_PKEY_ASN1_METHOD *ameth; 355 ENGINE *tmpeng = NULL; 356 int pkey_id = 0; 357 ameth = EVP_PKEY_asn1_find_str(&tmpeng, pkey_name, -1); 358 if (ameth) { 359 if (EVP_PKEY_asn1_get0_info(&pkey_id, NULL, NULL, NULL, NULL, 360 ameth) <= 0) 361 pkey_id = 0; 362 } 363 ENGINE_finish(tmpeng); 364 return pkey_id; 365 } 366 367 #endif 368 369 /* masks of disabled algorithms */ 370 static uint32_t disabled_enc_mask; 371 static uint32_t disabled_mac_mask; 372 static uint32_t disabled_mkey_mask; 373 static uint32_t disabled_auth_mask; 374 375 void ssl_load_ciphers(void) 376 { 377 size_t i; 378 const ssl_cipher_table *t; 379 380 disabled_enc_mask = 0; 381 ssl_sort_cipher_list(); 382 for (i = 0, t = ssl_cipher_table_cipher; i < SSL_ENC_NUM_IDX; i++, t++) { 383 if (t->nid == NID_undef) { 384 ssl_cipher_methods[i] = NULL; 385 } else { 386 const EVP_CIPHER *cipher = EVP_get_cipherbynid(t->nid); 387 ssl_cipher_methods[i] = cipher; 388 if (cipher == NULL) 389 disabled_enc_mask |= t->mask; 390 } 391 } 392 #ifdef SSL_FORBID_ENULL 393 disabled_enc_mask |= SSL_eNULL; 394 #endif 395 disabled_mac_mask = 0; 396 for (i = 0, t = ssl_cipher_table_mac; i < SSL_MD_NUM_IDX; i++, t++) { 397 const EVP_MD *md = EVP_get_digestbynid(t->nid); 398 ssl_digest_methods[i] = md; 399 if (md == NULL) { 400 disabled_mac_mask |= t->mask; 401 } else { 402 ssl_mac_secret_size[i] = EVP_MD_size(md); 403 OPENSSL_assert(ssl_mac_secret_size[i] >= 0); 404 } 405 } 406 /* Make sure we can access MD5 and SHA1 */ 407 OPENSSL_assert(ssl_digest_methods[SSL_MD_MD5_IDX] != NULL); 408 OPENSSL_assert(ssl_digest_methods[SSL_MD_SHA1_IDX] != NULL); 409 410 disabled_mkey_mask = 0; 411 disabled_auth_mask = 0; 412 413 #ifdef OPENSSL_NO_RSA 414 disabled_mkey_mask |= SSL_kRSA | SSL_kRSAPSK; 415 disabled_auth_mask |= SSL_aRSA; 416 #endif 417 #ifdef OPENSSL_NO_DSA 418 disabled_auth_mask |= SSL_aDSS; 419 #endif 420 #ifdef OPENSSL_NO_DH 421 disabled_mkey_mask |= SSL_kDHE | SSL_kDHEPSK; 422 #endif 423 #ifdef OPENSSL_NO_EC 424 disabled_mkey_mask |= SSL_kECDHEPSK; 425 disabled_auth_mask |= SSL_aECDSA; 426 #endif 427 #ifdef OPENSSL_NO_PSK 428 disabled_mkey_mask |= SSL_PSK; 429 disabled_auth_mask |= SSL_aPSK; 430 #endif 431 #ifdef OPENSSL_NO_SRP 432 disabled_mkey_mask |= SSL_kSRP; 433 #endif 434 435 /* 436 * Check for presence of GOST 34.10 algorithms, and if they are not 437 * present, disable appropriate auth and key exchange 438 */ 439 ssl_mac_pkey_id[SSL_MD_GOST89MAC_IDX] = get_optional_pkey_id("gost-mac"); 440 if (ssl_mac_pkey_id[SSL_MD_GOST89MAC_IDX]) { 441 ssl_mac_secret_size[SSL_MD_GOST89MAC_IDX] = 32; 442 } else { 443 disabled_mac_mask |= SSL_GOST89MAC; 444 } 445 446 ssl_mac_pkey_id[SSL_MD_GOST89MAC12_IDX] = 447 get_optional_pkey_id("gost-mac-12"); 448 if (ssl_mac_pkey_id[SSL_MD_GOST89MAC12_IDX]) { 449 ssl_mac_secret_size[SSL_MD_GOST89MAC12_IDX] = 32; 450 } else { 451 disabled_mac_mask |= SSL_GOST89MAC12; 452 } 453 454 if (!get_optional_pkey_id("gost2001")) 455 disabled_auth_mask |= SSL_aGOST01 | SSL_aGOST12; 456 if (!get_optional_pkey_id("gost2012_256")) 457 disabled_auth_mask |= SSL_aGOST12; 458 if (!get_optional_pkey_id("gost2012_512")) 459 disabled_auth_mask |= SSL_aGOST12; 460 /* 461 * Disable GOST key exchange if no GOST signature algs are available * 462 */ 463 if ((disabled_auth_mask & (SSL_aGOST01 | SSL_aGOST12)) == 464 (SSL_aGOST01 | SSL_aGOST12)) 465 disabled_mkey_mask |= SSL_kGOST; 466 } 467 468 #ifndef OPENSSL_NO_COMP 469 470 static int sk_comp_cmp(const SSL_COMP *const *a, const SSL_COMP *const *b) 471 { 472 return ((*a)->id - (*b)->id); 473 } 474 475 DEFINE_RUN_ONCE_STATIC(do_load_builtin_compressions) 476 { 477 SSL_COMP *comp = NULL; 478 COMP_METHOD *method = COMP_zlib(); 479 480 CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_DISABLE); 481 ssl_comp_methods = sk_SSL_COMP_new(sk_comp_cmp); 482 483 if (COMP_get_type(method) != NID_undef && ssl_comp_methods != NULL) { 484 comp = OPENSSL_malloc(sizeof(*comp)); 485 if (comp != NULL) { 486 comp->method = method; 487 comp->id = SSL_COMP_ZLIB_IDX; 488 comp->name = COMP_get_name(method); 489 sk_SSL_COMP_push(ssl_comp_methods, comp); 490 sk_SSL_COMP_sort(ssl_comp_methods); 491 } 492 } 493 CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_ENABLE); 494 return 1; 495 } 496 497 static int load_builtin_compressions(void) 498 { 499 return RUN_ONCE(&ssl_load_builtin_comp_once, do_load_builtin_compressions); 500 } 501 #endif 502 503 int ssl_cipher_get_evp(const SSL_SESSION *s, const EVP_CIPHER **enc, 504 const EVP_MD **md, int *mac_pkey_type, 505 int *mac_secret_size, SSL_COMP **comp, int use_etm) 506 { 507 int i; 508 const SSL_CIPHER *c; 509 510 c = s->cipher; 511 if (c == NULL) 512 return (0); 513 if (comp != NULL) { 514 SSL_COMP ctmp; 515 #ifndef OPENSSL_NO_COMP 516 if (!load_builtin_compressions()) { 517 /* 518 * Currently don't care, since a failure only means that 519 * ssl_comp_methods is NULL, which is perfectly OK 520 */ 521 } 522 #endif 523 *comp = NULL; 524 ctmp.id = s->compress_meth; 525 if (ssl_comp_methods != NULL) { 526 i = sk_SSL_COMP_find(ssl_comp_methods, &ctmp); 527 if (i >= 0) 528 *comp = sk_SSL_COMP_value(ssl_comp_methods, i); 529 else 530 *comp = NULL; 531 } 532 /* If were only interested in comp then return success */ 533 if ((enc == NULL) && (md == NULL)) 534 return 1; 535 } 536 537 if ((enc == NULL) || (md == NULL)) 538 return 0; 539 540 i = ssl_cipher_info_lookup(ssl_cipher_table_cipher, c->algorithm_enc); 541 542 if (i == -1) 543 *enc = NULL; 544 else { 545 if (i == SSL_ENC_NULL_IDX) 546 *enc = EVP_enc_null(); 547 else 548 *enc = ssl_cipher_methods[i]; 549 } 550 551 i = ssl_cipher_info_lookup(ssl_cipher_table_mac, c->algorithm_mac); 552 if (i == -1) { 553 *md = NULL; 554 if (mac_pkey_type != NULL) 555 *mac_pkey_type = NID_undef; 556 if (mac_secret_size != NULL) 557 *mac_secret_size = 0; 558 if (c->algorithm_mac == SSL_AEAD) 559 mac_pkey_type = NULL; 560 } else { 561 *md = ssl_digest_methods[i]; 562 if (mac_pkey_type != NULL) 563 *mac_pkey_type = ssl_mac_pkey_id[i]; 564 if (mac_secret_size != NULL) 565 *mac_secret_size = ssl_mac_secret_size[i]; 566 } 567 568 if ((*enc != NULL) && 569 (*md != NULL || (EVP_CIPHER_flags(*enc) & EVP_CIPH_FLAG_AEAD_CIPHER)) 570 && (!mac_pkey_type || *mac_pkey_type != NID_undef)) { 571 const EVP_CIPHER *evp; 572 573 if (use_etm) 574 return 1; 575 576 if (s->ssl_version >> 8 != TLS1_VERSION_MAJOR || 577 s->ssl_version < TLS1_VERSION) 578 return 1; 579 580 if (FIPS_mode()) 581 return 1; 582 583 if (c->algorithm_enc == SSL_RC4 && 584 c->algorithm_mac == SSL_MD5 && 585 (evp = EVP_get_cipherbyname("RC4-HMAC-MD5"))) 586 *enc = evp, *md = NULL; 587 else if (c->algorithm_enc == SSL_AES128 && 588 c->algorithm_mac == SSL_SHA1 && 589 (evp = EVP_get_cipherbyname("AES-128-CBC-HMAC-SHA1"))) 590 *enc = evp, *md = NULL; 591 else if (c->algorithm_enc == SSL_AES256 && 592 c->algorithm_mac == SSL_SHA1 && 593 (evp = EVP_get_cipherbyname("AES-256-CBC-HMAC-SHA1"))) 594 *enc = evp, *md = NULL; 595 else if (c->algorithm_enc == SSL_AES128 && 596 c->algorithm_mac == SSL_SHA256 && 597 (evp = EVP_get_cipherbyname("AES-128-CBC-HMAC-SHA256"))) 598 *enc = evp, *md = NULL; 599 else if (c->algorithm_enc == SSL_AES256 && 600 c->algorithm_mac == SSL_SHA256 && 601 (evp = EVP_get_cipherbyname("AES-256-CBC-HMAC-SHA256"))) 602 *enc = evp, *md = NULL; 603 return (1); 604 } else 605 return (0); 606 } 607 608 const EVP_MD *ssl_md(int idx) 609 { 610 idx &= SSL_HANDSHAKE_MAC_MASK; 611 if (idx < 0 || idx >= SSL_MD_NUM_IDX) 612 return NULL; 613 return ssl_digest_methods[idx]; 614 } 615 616 const EVP_MD *ssl_handshake_md(SSL *s) 617 { 618 return ssl_md(ssl_get_algorithm2(s)); 619 } 620 621 const EVP_MD *ssl_prf_md(SSL *s) 622 { 623 return ssl_md(ssl_get_algorithm2(s) >> TLS1_PRF_DGST_SHIFT); 624 } 625 626 #define ITEM_SEP(a) \ 627 (((a) == ':') || ((a) == ' ') || ((a) == ';') || ((a) == ',')) 628 629 static void ll_append_tail(CIPHER_ORDER **head, CIPHER_ORDER *curr, 630 CIPHER_ORDER **tail) 631 { 632 if (curr == *tail) 633 return; 634 if (curr == *head) 635 *head = curr->next; 636 if (curr->prev != NULL) 637 curr->prev->next = curr->next; 638 if (curr->next != NULL) 639 curr->next->prev = curr->prev; 640 (*tail)->next = curr; 641 curr->prev = *tail; 642 curr->next = NULL; 643 *tail = curr; 644 } 645 646 static void ll_append_head(CIPHER_ORDER **head, CIPHER_ORDER *curr, 647 CIPHER_ORDER **tail) 648 { 649 if (curr == *head) 650 return; 651 if (curr == *tail) 652 *tail = curr->prev; 653 if (curr->next != NULL) 654 curr->next->prev = curr->prev; 655 if (curr->prev != NULL) 656 curr->prev->next = curr->next; 657 (*head)->prev = curr; 658 curr->next = *head; 659 curr->prev = NULL; 660 *head = curr; 661 } 662 663 static void ssl_cipher_collect_ciphers(const SSL_METHOD *ssl_method, 664 int num_of_ciphers, 665 uint32_t disabled_mkey, 666 uint32_t disabled_auth, 667 uint32_t disabled_enc, 668 uint32_t disabled_mac, 669 CIPHER_ORDER *co_list, 670 CIPHER_ORDER **head_p, 671 CIPHER_ORDER **tail_p) 672 { 673 int i, co_list_num; 674 const SSL_CIPHER *c; 675 676 /* 677 * We have num_of_ciphers descriptions compiled in, depending on the 678 * method selected (SSLv3, TLSv1 etc). 679 * These will later be sorted in a linked list with at most num 680 * entries. 681 */ 682 683 /* Get the initial list of ciphers */ 684 co_list_num = 0; /* actual count of ciphers */ 685 for (i = 0; i < num_of_ciphers; i++) { 686 c = ssl_method->get_cipher(i); 687 /* drop those that use any of that is not available */ 688 if (c == NULL || !c->valid) 689 continue; 690 if (FIPS_mode() && (c->algo_strength & SSL_FIPS)) 691 continue; 692 if ((c->algorithm_mkey & disabled_mkey) || 693 (c->algorithm_auth & disabled_auth) || 694 (c->algorithm_enc & disabled_enc) || 695 (c->algorithm_mac & disabled_mac)) 696 continue; 697 if (((ssl_method->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS) == 0) && 698 c->min_tls == 0) 699 continue; 700 if (((ssl_method->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS) != 0) && 701 c->min_dtls == 0) 702 continue; 703 704 co_list[co_list_num].cipher = c; 705 co_list[co_list_num].next = NULL; 706 co_list[co_list_num].prev = NULL; 707 co_list[co_list_num].active = 0; 708 co_list_num++; 709 /* 710 * if (!sk_push(ca_list,(char *)c)) goto err; 711 */ 712 } 713 714 /* 715 * Prepare linked list from list entries 716 */ 717 if (co_list_num > 0) { 718 co_list[0].prev = NULL; 719 720 if (co_list_num > 1) { 721 co_list[0].next = &co_list[1]; 722 723 for (i = 1; i < co_list_num - 1; i++) { 724 co_list[i].prev = &co_list[i - 1]; 725 co_list[i].next = &co_list[i + 1]; 726 } 727 728 co_list[co_list_num - 1].prev = &co_list[co_list_num - 2]; 729 } 730 731 co_list[co_list_num - 1].next = NULL; 732 733 *head_p = &co_list[0]; 734 *tail_p = &co_list[co_list_num - 1]; 735 } 736 } 737 738 static void ssl_cipher_collect_aliases(const SSL_CIPHER **ca_list, 739 int num_of_group_aliases, 740 uint32_t disabled_mkey, 741 uint32_t disabled_auth, 742 uint32_t disabled_enc, 743 uint32_t disabled_mac, 744 CIPHER_ORDER *head) 745 { 746 CIPHER_ORDER *ciph_curr; 747 const SSL_CIPHER **ca_curr; 748 int i; 749 uint32_t mask_mkey = ~disabled_mkey; 750 uint32_t mask_auth = ~disabled_auth; 751 uint32_t mask_enc = ~disabled_enc; 752 uint32_t mask_mac = ~disabled_mac; 753 754 /* 755 * First, add the real ciphers as already collected 756 */ 757 ciph_curr = head; 758 ca_curr = ca_list; 759 while (ciph_curr != NULL) { 760 *ca_curr = ciph_curr->cipher; 761 ca_curr++; 762 ciph_curr = ciph_curr->next; 763 } 764 765 /* 766 * Now we add the available ones from the cipher_aliases[] table. 767 * They represent either one or more algorithms, some of which 768 * in any affected category must be supported (set in enabled_mask), 769 * or represent a cipher strength value (will be added in any case because algorithms=0). 770 */ 771 for (i = 0; i < num_of_group_aliases; i++) { 772 uint32_t algorithm_mkey = cipher_aliases[i].algorithm_mkey; 773 uint32_t algorithm_auth = cipher_aliases[i].algorithm_auth; 774 uint32_t algorithm_enc = cipher_aliases[i].algorithm_enc; 775 uint32_t algorithm_mac = cipher_aliases[i].algorithm_mac; 776 777 if (algorithm_mkey) 778 if ((algorithm_mkey & mask_mkey) == 0) 779 continue; 780 781 if (algorithm_auth) 782 if ((algorithm_auth & mask_auth) == 0) 783 continue; 784 785 if (algorithm_enc) 786 if ((algorithm_enc & mask_enc) == 0) 787 continue; 788 789 if (algorithm_mac) 790 if ((algorithm_mac & mask_mac) == 0) 791 continue; 792 793 *ca_curr = (SSL_CIPHER *)(cipher_aliases + i); 794 ca_curr++; 795 } 796 797 *ca_curr = NULL; /* end of list */ 798 } 799 800 static void ssl_cipher_apply_rule(uint32_t cipher_id, uint32_t alg_mkey, 801 uint32_t alg_auth, uint32_t alg_enc, 802 uint32_t alg_mac, int min_tls, 803 uint32_t algo_strength, int rule, 804 int32_t strength_bits, CIPHER_ORDER **head_p, 805 CIPHER_ORDER **tail_p) 806 { 807 CIPHER_ORDER *head, *tail, *curr, *next, *last; 808 const SSL_CIPHER *cp; 809 int reverse = 0; 810 811 #ifdef CIPHER_DEBUG 812 fprintf(stderr, 813 "Applying rule %d with %08x/%08x/%08x/%08x/%08x %08x (%d)\n", 814 rule, alg_mkey, alg_auth, alg_enc, alg_mac, min_tls, 815 algo_strength, strength_bits); 816 #endif 817 818 if (rule == CIPHER_DEL || rule == CIPHER_BUMP) 819 reverse = 1; /* needed to maintain sorting between currently 820 * deleted ciphers */ 821 822 head = *head_p; 823 tail = *tail_p; 824 825 if (reverse) { 826 next = tail; 827 last = head; 828 } else { 829 next = head; 830 last = tail; 831 } 832 833 curr = NULL; 834 for (;;) { 835 if (curr == last) 836 break; 837 838 curr = next; 839 840 if (curr == NULL) 841 break; 842 843 next = reverse ? curr->prev : curr->next; 844 845 cp = curr->cipher; 846 847 /* 848 * Selection criteria is either the value of strength_bits 849 * or the algorithms used. 850 */ 851 if (strength_bits >= 0) { 852 if (strength_bits != cp->strength_bits) 853 continue; 854 } else { 855 #ifdef CIPHER_DEBUG 856 fprintf(stderr, 857 "\nName: %s:\nAlgo = %08x/%08x/%08x/%08x/%08x Algo_strength = %08x\n", 858 cp->name, cp->algorithm_mkey, cp->algorithm_auth, 859 cp->algorithm_enc, cp->algorithm_mac, cp->min_tls, 860 cp->algo_strength); 861 #endif 862 if (alg_mkey && !(alg_mkey & cp->algorithm_mkey)) 863 continue; 864 if (alg_auth && !(alg_auth & cp->algorithm_auth)) 865 continue; 866 if (alg_enc && !(alg_enc & cp->algorithm_enc)) 867 continue; 868 if (alg_mac && !(alg_mac & cp->algorithm_mac)) 869 continue; 870 if (min_tls && (min_tls != cp->min_tls)) 871 continue; 872 if ((algo_strength & SSL_STRONG_MASK) 873 && !(algo_strength & SSL_STRONG_MASK & cp->algo_strength)) 874 continue; 875 if ((algo_strength & SSL_DEFAULT_MASK) 876 && !(algo_strength & SSL_DEFAULT_MASK & cp->algo_strength)) 877 continue; 878 } 879 880 #ifdef CIPHER_DEBUG 881 fprintf(stderr, "Action = %d\n", rule); 882 #endif 883 884 /* add the cipher if it has not been added yet. */ 885 if (rule == CIPHER_ADD) { 886 /* reverse == 0 */ 887 if (!curr->active) { 888 ll_append_tail(&head, curr, &tail); 889 curr->active = 1; 890 } 891 } 892 /* Move the added cipher to this location */ 893 else if (rule == CIPHER_ORD) { 894 /* reverse == 0 */ 895 if (curr->active) { 896 ll_append_tail(&head, curr, &tail); 897 } 898 } else if (rule == CIPHER_DEL) { 899 /* reverse == 1 */ 900 if (curr->active) { 901 /* 902 * most recently deleted ciphersuites get best positions for 903 * any future CIPHER_ADD (note that the CIPHER_DEL loop works 904 * in reverse to maintain the order) 905 */ 906 ll_append_head(&head, curr, &tail); 907 curr->active = 0; 908 } 909 } else if (rule == CIPHER_BUMP) { 910 if (curr->active) 911 ll_append_head(&head, curr, &tail); 912 } else if (rule == CIPHER_KILL) { 913 /* reverse == 0 */ 914 if (head == curr) 915 head = curr->next; 916 else 917 curr->prev->next = curr->next; 918 if (tail == curr) 919 tail = curr->prev; 920 curr->active = 0; 921 if (curr->next != NULL) 922 curr->next->prev = curr->prev; 923 if (curr->prev != NULL) 924 curr->prev->next = curr->next; 925 curr->next = NULL; 926 curr->prev = NULL; 927 } 928 } 929 930 *head_p = head; 931 *tail_p = tail; 932 } 933 934 static int ssl_cipher_strength_sort(CIPHER_ORDER **head_p, 935 CIPHER_ORDER **tail_p) 936 { 937 int32_t max_strength_bits; 938 int i, *number_uses; 939 CIPHER_ORDER *curr; 940 941 /* 942 * This routine sorts the ciphers with descending strength. The sorting 943 * must keep the pre-sorted sequence, so we apply the normal sorting 944 * routine as '+' movement to the end of the list. 945 */ 946 max_strength_bits = 0; 947 curr = *head_p; 948 while (curr != NULL) { 949 if (curr->active && (curr->cipher->strength_bits > max_strength_bits)) 950 max_strength_bits = curr->cipher->strength_bits; 951 curr = curr->next; 952 } 953 954 number_uses = OPENSSL_zalloc(sizeof(int) * (max_strength_bits + 1)); 955 if (number_uses == NULL) { 956 SSLerr(SSL_F_SSL_CIPHER_STRENGTH_SORT, ERR_R_MALLOC_FAILURE); 957 return (0); 958 } 959 960 /* 961 * Now find the strength_bits values actually used 962 */ 963 curr = *head_p; 964 while (curr != NULL) { 965 if (curr->active) 966 number_uses[curr->cipher->strength_bits]++; 967 curr = curr->next; 968 } 969 /* 970 * Go through the list of used strength_bits values in descending 971 * order. 972 */ 973 for (i = max_strength_bits; i >= 0; i--) 974 if (number_uses[i] > 0) 975 ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_ORD, i, head_p, 976 tail_p); 977 978 OPENSSL_free(number_uses); 979 return (1); 980 } 981 982 static int ssl_cipher_process_rulestr(const char *rule_str, 983 CIPHER_ORDER **head_p, 984 CIPHER_ORDER **tail_p, 985 const SSL_CIPHER **ca_list, CERT *c) 986 { 987 uint32_t alg_mkey, alg_auth, alg_enc, alg_mac, algo_strength; 988 int min_tls; 989 const char *l, *buf; 990 int j, multi, found, rule, retval, ok, buflen; 991 uint32_t cipher_id = 0; 992 char ch; 993 994 retval = 1; 995 l = rule_str; 996 for (;;) { 997 ch = *l; 998 999 if (ch == '\0') 1000 break; /* done */ 1001 if (ch == '-') { 1002 rule = CIPHER_DEL; 1003 l++; 1004 } else if (ch == '+') { 1005 rule = CIPHER_ORD; 1006 l++; 1007 } else if (ch == '!') { 1008 rule = CIPHER_KILL; 1009 l++; 1010 } else if (ch == '@') { 1011 rule = CIPHER_SPECIAL; 1012 l++; 1013 } else { 1014 rule = CIPHER_ADD; 1015 } 1016 1017 if (ITEM_SEP(ch)) { 1018 l++; 1019 continue; 1020 } 1021 1022 alg_mkey = 0; 1023 alg_auth = 0; 1024 alg_enc = 0; 1025 alg_mac = 0; 1026 min_tls = 0; 1027 algo_strength = 0; 1028 1029 for (;;) { 1030 ch = *l; 1031 buf = l; 1032 buflen = 0; 1033 #ifndef CHARSET_EBCDIC 1034 while (((ch >= 'A') && (ch <= 'Z')) || 1035 ((ch >= '0') && (ch <= '9')) || 1036 ((ch >= 'a') && (ch <= 'z')) || 1037 (ch == '-') || (ch == '.') || (ch == '=')) 1038 #else 1039 while (isalnum((unsigned char)ch) || (ch == '-') || (ch == '.') 1040 || (ch == '=')) 1041 #endif 1042 { 1043 ch = *(++l); 1044 buflen++; 1045 } 1046 1047 if (buflen == 0) { 1048 /* 1049 * We hit something we cannot deal with, 1050 * it is no command or separator nor 1051 * alphanumeric, so we call this an error. 1052 */ 1053 SSLerr(SSL_F_SSL_CIPHER_PROCESS_RULESTR, SSL_R_INVALID_COMMAND); 1054 retval = found = 0; 1055 l++; 1056 break; 1057 } 1058 1059 if (rule == CIPHER_SPECIAL) { 1060 found = 0; /* unused -- avoid compiler warning */ 1061 break; /* special treatment */ 1062 } 1063 1064 /* check for multi-part specification */ 1065 if (ch == '+') { 1066 multi = 1; 1067 l++; 1068 } else 1069 multi = 0; 1070 1071 /* 1072 * Now search for the cipher alias in the ca_list. Be careful 1073 * with the strncmp, because the "buflen" limitation 1074 * will make the rule "ADH:SOME" and the cipher 1075 * "ADH-MY-CIPHER" look like a match for buflen=3. 1076 * So additionally check whether the cipher name found 1077 * has the correct length. We can save a strlen() call: 1078 * just checking for the '\0' at the right place is 1079 * sufficient, we have to strncmp() anyway. (We cannot 1080 * use strcmp(), because buf is not '\0' terminated.) 1081 */ 1082 j = found = 0; 1083 cipher_id = 0; 1084 while (ca_list[j]) { 1085 if (strncmp(buf, ca_list[j]->name, buflen) == 0 1086 && (ca_list[j]->name[buflen] == '\0')) { 1087 found = 1; 1088 break; 1089 } else 1090 j++; 1091 } 1092 1093 if (!found) 1094 break; /* ignore this entry */ 1095 1096 if (ca_list[j]->algorithm_mkey) { 1097 if (alg_mkey) { 1098 alg_mkey &= ca_list[j]->algorithm_mkey; 1099 if (!alg_mkey) { 1100 found = 0; 1101 break; 1102 } 1103 } else 1104 alg_mkey = ca_list[j]->algorithm_mkey; 1105 } 1106 1107 if (ca_list[j]->algorithm_auth) { 1108 if (alg_auth) { 1109 alg_auth &= ca_list[j]->algorithm_auth; 1110 if (!alg_auth) { 1111 found = 0; 1112 break; 1113 } 1114 } else 1115 alg_auth = ca_list[j]->algorithm_auth; 1116 } 1117 1118 if (ca_list[j]->algorithm_enc) { 1119 if (alg_enc) { 1120 alg_enc &= ca_list[j]->algorithm_enc; 1121 if (!alg_enc) { 1122 found = 0; 1123 break; 1124 } 1125 } else 1126 alg_enc = ca_list[j]->algorithm_enc; 1127 } 1128 1129 if (ca_list[j]->algorithm_mac) { 1130 if (alg_mac) { 1131 alg_mac &= ca_list[j]->algorithm_mac; 1132 if (!alg_mac) { 1133 found = 0; 1134 break; 1135 } 1136 } else 1137 alg_mac = ca_list[j]->algorithm_mac; 1138 } 1139 1140 if (ca_list[j]->algo_strength & SSL_STRONG_MASK) { 1141 if (algo_strength & SSL_STRONG_MASK) { 1142 algo_strength &= 1143 (ca_list[j]->algo_strength & SSL_STRONG_MASK) | 1144 ~SSL_STRONG_MASK; 1145 if (!(algo_strength & SSL_STRONG_MASK)) { 1146 found = 0; 1147 break; 1148 } 1149 } else 1150 algo_strength = ca_list[j]->algo_strength & SSL_STRONG_MASK; 1151 } 1152 1153 if (ca_list[j]->algo_strength & SSL_DEFAULT_MASK) { 1154 if (algo_strength & SSL_DEFAULT_MASK) { 1155 algo_strength &= 1156 (ca_list[j]->algo_strength & SSL_DEFAULT_MASK) | 1157 ~SSL_DEFAULT_MASK; 1158 if (!(algo_strength & SSL_DEFAULT_MASK)) { 1159 found = 0; 1160 break; 1161 } 1162 } else 1163 algo_strength |= 1164 ca_list[j]->algo_strength & SSL_DEFAULT_MASK; 1165 } 1166 1167 if (ca_list[j]->valid) { 1168 /* 1169 * explicit ciphersuite found; its protocol version does not 1170 * become part of the search pattern! 1171 */ 1172 1173 cipher_id = ca_list[j]->id; 1174 } else { 1175 /* 1176 * not an explicit ciphersuite; only in this case, the 1177 * protocol version is considered part of the search pattern 1178 */ 1179 1180 if (ca_list[j]->min_tls) { 1181 if (min_tls != 0 && min_tls != ca_list[j]->min_tls) { 1182 found = 0; 1183 break; 1184 } else { 1185 min_tls = ca_list[j]->min_tls; 1186 } 1187 } 1188 } 1189 1190 if (!multi) 1191 break; 1192 } 1193 1194 /* 1195 * Ok, we have the rule, now apply it 1196 */ 1197 if (rule == CIPHER_SPECIAL) { /* special command */ 1198 ok = 0; 1199 if ((buflen == 8) && strncmp(buf, "STRENGTH", 8) == 0) 1200 ok = ssl_cipher_strength_sort(head_p, tail_p); 1201 else if (buflen == 10 && strncmp(buf, "SECLEVEL=", 9) == 0) { 1202 int level = buf[9] - '0'; 1203 if (level < 0 || level > 5) { 1204 SSLerr(SSL_F_SSL_CIPHER_PROCESS_RULESTR, 1205 SSL_R_INVALID_COMMAND); 1206 } else { 1207 c->sec_level = level; 1208 ok = 1; 1209 } 1210 } else 1211 SSLerr(SSL_F_SSL_CIPHER_PROCESS_RULESTR, SSL_R_INVALID_COMMAND); 1212 if (ok == 0) 1213 retval = 0; 1214 /* 1215 * We do not support any "multi" options 1216 * together with "@", so throw away the 1217 * rest of the command, if any left, until 1218 * end or ':' is found. 1219 */ 1220 while ((*l != '\0') && !ITEM_SEP(*l)) 1221 l++; 1222 } else if (found) { 1223 ssl_cipher_apply_rule(cipher_id, 1224 alg_mkey, alg_auth, alg_enc, alg_mac, 1225 min_tls, algo_strength, rule, -1, head_p, 1226 tail_p); 1227 } else { 1228 while ((*l != '\0') && !ITEM_SEP(*l)) 1229 l++; 1230 } 1231 if (*l == '\0') 1232 break; /* done */ 1233 } 1234 1235 return (retval); 1236 } 1237 1238 #ifndef OPENSSL_NO_EC 1239 static int check_suiteb_cipher_list(const SSL_METHOD *meth, CERT *c, 1240 const char **prule_str) 1241 { 1242 unsigned int suiteb_flags = 0, suiteb_comb2 = 0; 1243 if (strncmp(*prule_str, "SUITEB128ONLY", 13) == 0) { 1244 suiteb_flags = SSL_CERT_FLAG_SUITEB_128_LOS_ONLY; 1245 } else if (strncmp(*prule_str, "SUITEB128C2", 11) == 0) { 1246 suiteb_comb2 = 1; 1247 suiteb_flags = SSL_CERT_FLAG_SUITEB_128_LOS; 1248 } else if (strncmp(*prule_str, "SUITEB128", 9) == 0) { 1249 suiteb_flags = SSL_CERT_FLAG_SUITEB_128_LOS; 1250 } else if (strncmp(*prule_str, "SUITEB192", 9) == 0) { 1251 suiteb_flags = SSL_CERT_FLAG_SUITEB_192_LOS; 1252 } 1253 1254 if (suiteb_flags) { 1255 c->cert_flags &= ~SSL_CERT_FLAG_SUITEB_128_LOS; 1256 c->cert_flags |= suiteb_flags; 1257 } else 1258 suiteb_flags = c->cert_flags & SSL_CERT_FLAG_SUITEB_128_LOS; 1259 1260 if (!suiteb_flags) 1261 return 1; 1262 /* Check version: if TLS 1.2 ciphers allowed we can use Suite B */ 1263 1264 if (!(meth->ssl3_enc->enc_flags & SSL_ENC_FLAG_TLS1_2_CIPHERS)) { 1265 SSLerr(SSL_F_CHECK_SUITEB_CIPHER_LIST, 1266 SSL_R_AT_LEAST_TLS_1_2_NEEDED_IN_SUITEB_MODE); 1267 return 0; 1268 } 1269 # ifndef OPENSSL_NO_EC 1270 switch (suiteb_flags) { 1271 case SSL_CERT_FLAG_SUITEB_128_LOS: 1272 if (suiteb_comb2) 1273 *prule_str = "ECDHE-ECDSA-AES256-GCM-SHA384"; 1274 else 1275 *prule_str = 1276 "ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES256-GCM-SHA384"; 1277 break; 1278 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY: 1279 *prule_str = "ECDHE-ECDSA-AES128-GCM-SHA256"; 1280 break; 1281 case SSL_CERT_FLAG_SUITEB_192_LOS: 1282 *prule_str = "ECDHE-ECDSA-AES256-GCM-SHA384"; 1283 break; 1284 } 1285 return 1; 1286 # else 1287 SSLerr(SSL_F_CHECK_SUITEB_CIPHER_LIST, SSL_R_ECDH_REQUIRED_FOR_SUITEB_MODE); 1288 return 0; 1289 # endif 1290 } 1291 #endif 1292 1293 STACK_OF(SSL_CIPHER) *ssl_create_cipher_list(const SSL_METHOD *ssl_method, STACK_OF(SSL_CIPHER) 1294 **cipher_list, STACK_OF(SSL_CIPHER) 1295 **cipher_list_by_id, 1296 const char *rule_str, CERT *c) 1297 { 1298 int ok, num_of_ciphers, num_of_alias_max, num_of_group_aliases; 1299 uint32_t disabled_mkey, disabled_auth, disabled_enc, disabled_mac; 1300 STACK_OF(SSL_CIPHER) *cipherstack, *tmp_cipher_list; 1301 const char *rule_p; 1302 CIPHER_ORDER *co_list = NULL, *head = NULL, *tail = NULL, *curr; 1303 const SSL_CIPHER **ca_list = NULL; 1304 1305 /* 1306 * Return with error if nothing to do. 1307 */ 1308 if (rule_str == NULL || cipher_list == NULL || cipher_list_by_id == NULL) 1309 return NULL; 1310 #ifndef OPENSSL_NO_EC 1311 if (!check_suiteb_cipher_list(ssl_method, c, &rule_str)) 1312 return NULL; 1313 #endif 1314 1315 /* 1316 * To reduce the work to do we only want to process the compiled 1317 * in algorithms, so we first get the mask of disabled ciphers. 1318 */ 1319 1320 disabled_mkey = disabled_mkey_mask; 1321 disabled_auth = disabled_auth_mask; 1322 disabled_enc = disabled_enc_mask; 1323 disabled_mac = disabled_mac_mask; 1324 1325 /* 1326 * Now we have to collect the available ciphers from the compiled 1327 * in ciphers. We cannot get more than the number compiled in, so 1328 * it is used for allocation. 1329 */ 1330 num_of_ciphers = ssl_method->num_ciphers(); 1331 1332 co_list = OPENSSL_malloc(sizeof(*co_list) * num_of_ciphers); 1333 if (co_list == NULL) { 1334 SSLerr(SSL_F_SSL_CREATE_CIPHER_LIST, ERR_R_MALLOC_FAILURE); 1335 return (NULL); /* Failure */ 1336 } 1337 1338 ssl_cipher_collect_ciphers(ssl_method, num_of_ciphers, 1339 disabled_mkey, disabled_auth, disabled_enc, 1340 disabled_mac, co_list, &head, &tail); 1341 1342 /* Now arrange all ciphers by preference. */ 1343 1344 /* 1345 * Everything else being equal, prefer ephemeral ECDH over other key 1346 * exchange mechanisms. 1347 * For consistency, prefer ECDSA over RSA (though this only matters if the 1348 * server has both certificates, and is using the DEFAULT, or a client 1349 * preference). 1350 */ 1351 ssl_cipher_apply_rule(0, SSL_kECDHE, SSL_aECDSA, 0, 0, 0, 0, CIPHER_ADD, 1352 -1, &head, &tail); 1353 ssl_cipher_apply_rule(0, SSL_kECDHE, 0, 0, 0, 0, 0, CIPHER_ADD, -1, &head, 1354 &tail); 1355 ssl_cipher_apply_rule(0, SSL_kECDHE, 0, 0, 0, 0, 0, CIPHER_DEL, -1, &head, 1356 &tail); 1357 1358 /* Within each strength group, we prefer GCM over CHACHA... */ 1359 ssl_cipher_apply_rule(0, 0, 0, SSL_AESGCM, 0, 0, 0, CIPHER_ADD, -1, 1360 &head, &tail); 1361 ssl_cipher_apply_rule(0, 0, 0, SSL_CHACHA20, 0, 0, 0, CIPHER_ADD, -1, 1362 &head, &tail); 1363 1364 /* 1365 * ...and generally, our preferred cipher is AES. 1366 * Note that AEADs will be bumped to take preference after sorting by 1367 * strength. 1368 */ 1369 ssl_cipher_apply_rule(0, 0, 0, SSL_AES ^ SSL_AESGCM, 0, 0, 0, CIPHER_ADD, 1370 -1, &head, &tail); 1371 1372 /* Temporarily enable everything else for sorting */ 1373 ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_ADD, -1, &head, &tail); 1374 1375 /* Low priority for MD5 */ 1376 ssl_cipher_apply_rule(0, 0, 0, 0, SSL_MD5, 0, 0, CIPHER_ORD, -1, &head, 1377 &tail); 1378 1379 /* 1380 * Move anonymous ciphers to the end. Usually, these will remain 1381 * disabled. (For applications that allow them, they aren't too bad, but 1382 * we prefer authenticated ciphers.) 1383 */ 1384 ssl_cipher_apply_rule(0, 0, SSL_aNULL, 0, 0, 0, 0, CIPHER_ORD, -1, &head, 1385 &tail); 1386 1387 ssl_cipher_apply_rule(0, SSL_kRSA, 0, 0, 0, 0, 0, CIPHER_ORD, -1, &head, 1388 &tail); 1389 ssl_cipher_apply_rule(0, SSL_kPSK, 0, 0, 0, 0, 0, CIPHER_ORD, -1, &head, 1390 &tail); 1391 1392 /* RC4 is sort-of broken -- move the the end */ 1393 ssl_cipher_apply_rule(0, 0, 0, SSL_RC4, 0, 0, 0, CIPHER_ORD, -1, &head, 1394 &tail); 1395 1396 /* 1397 * Now sort by symmetric encryption strength. The above ordering remains 1398 * in force within each class 1399 */ 1400 if (!ssl_cipher_strength_sort(&head, &tail)) { 1401 OPENSSL_free(co_list); 1402 return NULL; 1403 } 1404 1405 /* 1406 * Partially overrule strength sort to prefer TLS 1.2 ciphers/PRFs. 1407 * TODO(openssl-team): is there an easier way to accomplish all this? 1408 */ 1409 ssl_cipher_apply_rule(0, 0, 0, 0, 0, TLS1_2_VERSION, 0, CIPHER_BUMP, -1, 1410 &head, &tail); 1411 1412 /* 1413 * Irrespective of strength, enforce the following order: 1414 * (EC)DHE + AEAD > (EC)DHE > rest of AEAD > rest. 1415 * Within each group, ciphers remain sorted by strength and previous 1416 * preference, i.e., 1417 * 1) ECDHE > DHE 1418 * 2) GCM > CHACHA 1419 * 3) AES > rest 1420 * 4) TLS 1.2 > legacy 1421 * 1422 * Because we now bump ciphers to the top of the list, we proceed in 1423 * reverse order of preference. 1424 */ 1425 ssl_cipher_apply_rule(0, 0, 0, 0, SSL_AEAD, 0, 0, CIPHER_BUMP, -1, 1426 &head, &tail); 1427 ssl_cipher_apply_rule(0, SSL_kDHE | SSL_kECDHE, 0, 0, 0, 0, 0, 1428 CIPHER_BUMP, -1, &head, &tail); 1429 ssl_cipher_apply_rule(0, SSL_kDHE | SSL_kECDHE, 0, 0, SSL_AEAD, 0, 0, 1430 CIPHER_BUMP, -1, &head, &tail); 1431 1432 /* Now disable everything (maintaining the ordering!) */ 1433 ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_DEL, -1, &head, &tail); 1434 1435 /* 1436 * We also need cipher aliases for selecting based on the rule_str. 1437 * There might be two types of entries in the rule_str: 1) names 1438 * of ciphers themselves 2) aliases for groups of ciphers. 1439 * For 1) we need the available ciphers and for 2) the cipher 1440 * groups of cipher_aliases added together in one list (otherwise 1441 * we would be happy with just the cipher_aliases table). 1442 */ 1443 num_of_group_aliases = OSSL_NELEM(cipher_aliases); 1444 num_of_alias_max = num_of_ciphers + num_of_group_aliases + 1; 1445 ca_list = OPENSSL_malloc(sizeof(*ca_list) * num_of_alias_max); 1446 if (ca_list == NULL) { 1447 OPENSSL_free(co_list); 1448 SSLerr(SSL_F_SSL_CREATE_CIPHER_LIST, ERR_R_MALLOC_FAILURE); 1449 return (NULL); /* Failure */ 1450 } 1451 ssl_cipher_collect_aliases(ca_list, num_of_group_aliases, 1452 disabled_mkey, disabled_auth, disabled_enc, 1453 disabled_mac, head); 1454 1455 /* 1456 * If the rule_string begins with DEFAULT, apply the default rule 1457 * before using the (possibly available) additional rules. 1458 */ 1459 ok = 1; 1460 rule_p = rule_str; 1461 if (strncmp(rule_str, "DEFAULT", 7) == 0) { 1462 ok = ssl_cipher_process_rulestr(SSL_DEFAULT_CIPHER_LIST, 1463 &head, &tail, ca_list, c); 1464 rule_p += 7; 1465 if (*rule_p == ':') 1466 rule_p++; 1467 } 1468 1469 if (ok && (strlen(rule_p) > 0)) 1470 ok = ssl_cipher_process_rulestr(rule_p, &head, &tail, ca_list, c); 1471 1472 OPENSSL_free(ca_list); /* Not needed anymore */ 1473 1474 if (!ok) { /* Rule processing failure */ 1475 OPENSSL_free(co_list); 1476 return (NULL); 1477 } 1478 1479 /* 1480 * Allocate new "cipherstack" for the result, return with error 1481 * if we cannot get one. 1482 */ 1483 if ((cipherstack = sk_SSL_CIPHER_new_null()) == NULL) { 1484 OPENSSL_free(co_list); 1485 return (NULL); 1486 } 1487 1488 /* 1489 * The cipher selection for the list is done. The ciphers are added 1490 * to the resulting precedence to the STACK_OF(SSL_CIPHER). 1491 */ 1492 for (curr = head; curr != NULL; curr = curr->next) { 1493 if (curr->active 1494 && (!FIPS_mode() || curr->cipher->algo_strength & SSL_FIPS)) { 1495 if (!sk_SSL_CIPHER_push(cipherstack, curr->cipher)) { 1496 OPENSSL_free(co_list); 1497 sk_SSL_CIPHER_free(cipherstack); 1498 return NULL; 1499 } 1500 #ifdef CIPHER_DEBUG 1501 fprintf(stderr, "<%s>\n", curr->cipher->name); 1502 #endif 1503 } 1504 } 1505 OPENSSL_free(co_list); /* Not needed any longer */ 1506 1507 tmp_cipher_list = sk_SSL_CIPHER_dup(cipherstack); 1508 if (tmp_cipher_list == NULL) { 1509 sk_SSL_CIPHER_free(cipherstack); 1510 return NULL; 1511 } 1512 sk_SSL_CIPHER_free(*cipher_list); 1513 *cipher_list = cipherstack; 1514 if (*cipher_list_by_id != NULL) 1515 sk_SSL_CIPHER_free(*cipher_list_by_id); 1516 *cipher_list_by_id = tmp_cipher_list; 1517 (void)sk_SSL_CIPHER_set_cmp_func(*cipher_list_by_id, ssl_cipher_ptr_id_cmp); 1518 1519 sk_SSL_CIPHER_sort(*cipher_list_by_id); 1520 return (cipherstack); 1521 } 1522 1523 char *SSL_CIPHER_description(const SSL_CIPHER *cipher, char *buf, int len) 1524 { 1525 const char *ver; 1526 const char *kx, *au, *enc, *mac; 1527 uint32_t alg_mkey, alg_auth, alg_enc, alg_mac; 1528 static const char *format = "%-23s %s Kx=%-8s Au=%-4s Enc=%-9s Mac=%-4s\n"; 1529 1530 if (buf == NULL) { 1531 len = 128; 1532 buf = OPENSSL_malloc(len); 1533 if (buf == NULL) 1534 return NULL; 1535 } else if (len < 128) 1536 return NULL; 1537 1538 alg_mkey = cipher->algorithm_mkey; 1539 alg_auth = cipher->algorithm_auth; 1540 alg_enc = cipher->algorithm_enc; 1541 alg_mac = cipher->algorithm_mac; 1542 1543 ver = ssl_protocol_to_string(cipher->min_tls); 1544 1545 switch (alg_mkey) { 1546 case SSL_kRSA: 1547 kx = "RSA"; 1548 break; 1549 case SSL_kDHE: 1550 kx = "DH"; 1551 break; 1552 case SSL_kECDHE: 1553 kx = "ECDH"; 1554 break; 1555 case SSL_kPSK: 1556 kx = "PSK"; 1557 break; 1558 case SSL_kRSAPSK: 1559 kx = "RSAPSK"; 1560 break; 1561 case SSL_kECDHEPSK: 1562 kx = "ECDHEPSK"; 1563 break; 1564 case SSL_kDHEPSK: 1565 kx = "DHEPSK"; 1566 break; 1567 case SSL_kSRP: 1568 kx = "SRP"; 1569 break; 1570 case SSL_kGOST: 1571 kx = "GOST"; 1572 break; 1573 default: 1574 kx = "unknown"; 1575 } 1576 1577 switch (alg_auth) { 1578 case SSL_aRSA: 1579 au = "RSA"; 1580 break; 1581 case SSL_aDSS: 1582 au = "DSS"; 1583 break; 1584 case SSL_aNULL: 1585 au = "None"; 1586 break; 1587 case SSL_aECDSA: 1588 au = "ECDSA"; 1589 break; 1590 case SSL_aPSK: 1591 au = "PSK"; 1592 break; 1593 case SSL_aSRP: 1594 au = "SRP"; 1595 break; 1596 case SSL_aGOST01: 1597 au = "GOST01"; 1598 break; 1599 /* New GOST ciphersuites have both SSL_aGOST12 and SSL_aGOST01 bits */ 1600 case (SSL_aGOST12 | SSL_aGOST01): 1601 au = "GOST12"; 1602 break; 1603 default: 1604 au = "unknown"; 1605 break; 1606 } 1607 1608 switch (alg_enc) { 1609 case SSL_DES: 1610 enc = "DES(56)"; 1611 break; 1612 case SSL_3DES: 1613 enc = "3DES(168)"; 1614 break; 1615 case SSL_RC4: 1616 enc = "RC4(128)"; 1617 break; 1618 case SSL_RC2: 1619 enc = "RC2(128)"; 1620 break; 1621 case SSL_IDEA: 1622 enc = "IDEA(128)"; 1623 break; 1624 case SSL_eNULL: 1625 enc = "None"; 1626 break; 1627 case SSL_AES128: 1628 enc = "AES(128)"; 1629 break; 1630 case SSL_AES256: 1631 enc = "AES(256)"; 1632 break; 1633 case SSL_AES128GCM: 1634 enc = "AESGCM(128)"; 1635 break; 1636 case SSL_AES256GCM: 1637 enc = "AESGCM(256)"; 1638 break; 1639 case SSL_AES128CCM: 1640 enc = "AESCCM(128)"; 1641 break; 1642 case SSL_AES256CCM: 1643 enc = "AESCCM(256)"; 1644 break; 1645 case SSL_AES128CCM8: 1646 enc = "AESCCM8(128)"; 1647 break; 1648 case SSL_AES256CCM8: 1649 enc = "AESCCM8(256)"; 1650 break; 1651 case SSL_CAMELLIA128: 1652 enc = "Camellia(128)"; 1653 break; 1654 case SSL_CAMELLIA256: 1655 enc = "Camellia(256)"; 1656 break; 1657 case SSL_SEED: 1658 enc = "SEED(128)"; 1659 break; 1660 case SSL_eGOST2814789CNT: 1661 case SSL_eGOST2814789CNT12: 1662 enc = "GOST89(256)"; 1663 break; 1664 case SSL_CHACHA20POLY1305: 1665 enc = "CHACHA20/POLY1305(256)"; 1666 break; 1667 default: 1668 enc = "unknown"; 1669 break; 1670 } 1671 1672 switch (alg_mac) { 1673 case SSL_MD5: 1674 mac = "MD5"; 1675 break; 1676 case SSL_SHA1: 1677 mac = "SHA1"; 1678 break; 1679 case SSL_SHA256: 1680 mac = "SHA256"; 1681 break; 1682 case SSL_SHA384: 1683 mac = "SHA384"; 1684 break; 1685 case SSL_AEAD: 1686 mac = "AEAD"; 1687 break; 1688 case SSL_GOST89MAC: 1689 case SSL_GOST89MAC12: 1690 mac = "GOST89"; 1691 break; 1692 case SSL_GOST94: 1693 mac = "GOST94"; 1694 break; 1695 case SSL_GOST12_256: 1696 case SSL_GOST12_512: 1697 mac = "GOST2012"; 1698 break; 1699 default: 1700 mac = "unknown"; 1701 break; 1702 } 1703 1704 BIO_snprintf(buf, len, format, cipher->name, ver, kx, au, enc, mac); 1705 1706 return (buf); 1707 } 1708 1709 const char *SSL_CIPHER_get_version(const SSL_CIPHER *c) 1710 { 1711 if (c == NULL) 1712 return "(NONE)"; 1713 1714 /* 1715 * Backwards-compatibility crutch. In almost all contexts we report TLS 1716 * 1.0 as "TLSv1", but for ciphers we report "TLSv1.0". 1717 */ 1718 if (c->min_tls == TLS1_VERSION) 1719 return "TLSv1.0"; 1720 return ssl_protocol_to_string(c->min_tls); 1721 } 1722 1723 /* return the actual cipher being used */ 1724 const char *SSL_CIPHER_get_name(const SSL_CIPHER *c) 1725 { 1726 if (c != NULL) 1727 return (c->name); 1728 return ("(NONE)"); 1729 } 1730 1731 /* number of bits for symmetric cipher */ 1732 int SSL_CIPHER_get_bits(const SSL_CIPHER *c, int *alg_bits) 1733 { 1734 int ret = 0; 1735 1736 if (c != NULL) { 1737 if (alg_bits != NULL) 1738 *alg_bits = (int)c->alg_bits; 1739 ret = (int)c->strength_bits; 1740 } 1741 return ret; 1742 } 1743 1744 uint32_t SSL_CIPHER_get_id(const SSL_CIPHER *c) 1745 { 1746 return c->id; 1747 } 1748 1749 SSL_COMP *ssl3_comp_find(STACK_OF(SSL_COMP) *sk, int n) 1750 { 1751 SSL_COMP *ctmp; 1752 int i, nn; 1753 1754 if ((n == 0) || (sk == NULL)) 1755 return (NULL); 1756 nn = sk_SSL_COMP_num(sk); 1757 for (i = 0; i < nn; i++) { 1758 ctmp = sk_SSL_COMP_value(sk, i); 1759 if (ctmp->id == n) 1760 return (ctmp); 1761 } 1762 return (NULL); 1763 } 1764 1765 #ifdef OPENSSL_NO_COMP 1766 STACK_OF(SSL_COMP) *SSL_COMP_get_compression_methods(void) 1767 { 1768 return NULL; 1769 } 1770 1771 STACK_OF(SSL_COMP) *SSL_COMP_set0_compression_methods(STACK_OF(SSL_COMP) 1772 *meths) 1773 { 1774 return meths; 1775 } 1776 1777 int SSL_COMP_add_compression_method(int id, COMP_METHOD *cm) 1778 { 1779 return 1; 1780 } 1781 1782 #else 1783 STACK_OF(SSL_COMP) *SSL_COMP_get_compression_methods(void) 1784 { 1785 load_builtin_compressions(); 1786 return (ssl_comp_methods); 1787 } 1788 1789 STACK_OF(SSL_COMP) *SSL_COMP_set0_compression_methods(STACK_OF(SSL_COMP) 1790 *meths) 1791 { 1792 STACK_OF(SSL_COMP) *old_meths = ssl_comp_methods; 1793 ssl_comp_methods = meths; 1794 return old_meths; 1795 } 1796 1797 static void cmeth_free(SSL_COMP *cm) 1798 { 1799 OPENSSL_free(cm); 1800 } 1801 1802 void ssl_comp_free_compression_methods_int(void) 1803 { 1804 STACK_OF(SSL_COMP) *old_meths = ssl_comp_methods; 1805 ssl_comp_methods = NULL; 1806 sk_SSL_COMP_pop_free(old_meths, cmeth_free); 1807 } 1808 1809 int SSL_COMP_add_compression_method(int id, COMP_METHOD *cm) 1810 { 1811 SSL_COMP *comp; 1812 1813 if (cm == NULL || COMP_get_type(cm) == NID_undef) 1814 return 1; 1815 1816 /*- 1817 * According to draft-ietf-tls-compression-04.txt, the 1818 * compression number ranges should be the following: 1819 * 1820 * 0 to 63: methods defined by the IETF 1821 * 64 to 192: external party methods assigned by IANA 1822 * 193 to 255: reserved for private use 1823 */ 1824 if (id < 193 || id > 255) { 1825 SSLerr(SSL_F_SSL_COMP_ADD_COMPRESSION_METHOD, 1826 SSL_R_COMPRESSION_ID_NOT_WITHIN_PRIVATE_RANGE); 1827 return 1; 1828 } 1829 1830 CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_DISABLE); 1831 comp = OPENSSL_malloc(sizeof(*comp)); 1832 if (comp == NULL) { 1833 CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_ENABLE); 1834 SSLerr(SSL_F_SSL_COMP_ADD_COMPRESSION_METHOD, ERR_R_MALLOC_FAILURE); 1835 return (1); 1836 } 1837 1838 comp->id = id; 1839 comp->method = cm; 1840 load_builtin_compressions(); 1841 if (ssl_comp_methods && sk_SSL_COMP_find(ssl_comp_methods, comp) >= 0) { 1842 OPENSSL_free(comp); 1843 CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_ENABLE); 1844 SSLerr(SSL_F_SSL_COMP_ADD_COMPRESSION_METHOD, 1845 SSL_R_DUPLICATE_COMPRESSION_ID); 1846 return (1); 1847 } 1848 if (ssl_comp_methods == NULL || !sk_SSL_COMP_push(ssl_comp_methods, comp)) { 1849 OPENSSL_free(comp); 1850 CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_ENABLE); 1851 SSLerr(SSL_F_SSL_COMP_ADD_COMPRESSION_METHOD, ERR_R_MALLOC_FAILURE); 1852 return (1); 1853 } 1854 CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_ENABLE); 1855 return (0); 1856 } 1857 #endif 1858 1859 const char *SSL_COMP_get_name(const COMP_METHOD *comp) 1860 { 1861 #ifndef OPENSSL_NO_COMP 1862 return comp ? COMP_get_name(comp) : NULL; 1863 #else 1864 return NULL; 1865 #endif 1866 } 1867 1868 const char *SSL_COMP_get0_name(const SSL_COMP *comp) 1869 { 1870 #ifndef OPENSSL_NO_COMP 1871 return comp->name; 1872 #else 1873 return NULL; 1874 #endif 1875 } 1876 1877 int SSL_COMP_get_id(const SSL_COMP *comp) 1878 { 1879 #ifndef OPENSSL_NO_COMP 1880 return comp->id; 1881 #else 1882 return -1; 1883 #endif 1884 } 1885 1886 /* For a cipher return the index corresponding to the certificate type */ 1887 int ssl_cipher_get_cert_index(const SSL_CIPHER *c) 1888 { 1889 uint32_t alg_a; 1890 1891 alg_a = c->algorithm_auth; 1892 1893 if (alg_a & SSL_aECDSA) 1894 return SSL_PKEY_ECC; 1895 else if (alg_a & SSL_aDSS) 1896 return SSL_PKEY_DSA_SIGN; 1897 else if (alg_a & SSL_aRSA) 1898 return SSL_PKEY_RSA_ENC; 1899 else if (alg_a & SSL_aGOST12) 1900 return SSL_PKEY_GOST_EC; 1901 else if (alg_a & SSL_aGOST01) 1902 return SSL_PKEY_GOST01; 1903 1904 return -1; 1905 } 1906 1907 const SSL_CIPHER *ssl_get_cipher_by_char(SSL *ssl, const unsigned char *ptr) 1908 { 1909 const SSL_CIPHER *c = ssl->method->get_cipher_by_char(ptr); 1910 1911 if (c == NULL || c->valid == 0) 1912 return NULL; 1913 return c; 1914 } 1915 1916 const SSL_CIPHER *SSL_CIPHER_find(SSL *ssl, const unsigned char *ptr) 1917 { 1918 return ssl->method->get_cipher_by_char(ptr); 1919 } 1920 1921 int SSL_CIPHER_get_cipher_nid(const SSL_CIPHER *c) 1922 { 1923 int i; 1924 if (c == NULL) 1925 return NID_undef; 1926 i = ssl_cipher_info_lookup(ssl_cipher_table_cipher, c->algorithm_enc); 1927 if (i == -1) 1928 return NID_undef; 1929 return ssl_cipher_table_cipher[i].nid; 1930 } 1931 1932 int SSL_CIPHER_get_digest_nid(const SSL_CIPHER *c) 1933 { 1934 int i = ssl_cipher_info_lookup(ssl_cipher_table_mac, c->algorithm_mac); 1935 1936 if (i == -1) 1937 return NID_undef; 1938 return ssl_cipher_table_mac[i].nid; 1939 } 1940 1941 int SSL_CIPHER_get_kx_nid(const SSL_CIPHER *c) 1942 { 1943 int i = ssl_cipher_info_lookup(ssl_cipher_table_kx, c->algorithm_mkey); 1944 1945 if (i == -1) 1946 return NID_undef; 1947 return ssl_cipher_table_kx[i].nid; 1948 } 1949 1950 int SSL_CIPHER_get_auth_nid(const SSL_CIPHER *c) 1951 { 1952 int i = ssl_cipher_info_lookup(ssl_cipher_table_auth, c->algorithm_auth); 1953 1954 if (i == -1) 1955 return NID_undef; 1956 return ssl_cipher_table_auth[i].nid; 1957 } 1958 1959 int SSL_CIPHER_is_aead(const SSL_CIPHER *c) 1960 { 1961 return (c->algorithm_mac & SSL_AEAD) ? 1 : 0; 1962 } 1963