xref: /netbsd-src/crypto/external/bsd/openssl.old/dist/doc/man3/ASYNC_start_job.pod (revision 4724848cf0da353df257f730694b7882798e5daf)
1*4724848cSchristos=pod
2*4724848cSchristos
3*4724848cSchristos=head1 NAME
4*4724848cSchristos
5*4724848cSchristosASYNC_get_wait_ctx,
6*4724848cSchristosASYNC_init_thread, ASYNC_cleanup_thread, ASYNC_start_job, ASYNC_pause_job,
7*4724848cSchristosASYNC_get_current_job, ASYNC_block_pause, ASYNC_unblock_pause, ASYNC_is_capable
8*4724848cSchristos- asynchronous job management functions
9*4724848cSchristos
10*4724848cSchristos=head1 SYNOPSIS
11*4724848cSchristos
12*4724848cSchristos #include <openssl/async.h>
13*4724848cSchristos
14*4724848cSchristos int ASYNC_init_thread(size_t max_size, size_t init_size);
15*4724848cSchristos void ASYNC_cleanup_thread(void);
16*4724848cSchristos
17*4724848cSchristos int ASYNC_start_job(ASYNC_JOB **job, ASYNC_WAIT_CTX *ctx, int *ret,
18*4724848cSchristos                     int (*func)(void *), void *args, size_t size);
19*4724848cSchristos int ASYNC_pause_job(void);
20*4724848cSchristos
21*4724848cSchristos ASYNC_JOB *ASYNC_get_current_job(void);
22*4724848cSchristos ASYNC_WAIT_CTX *ASYNC_get_wait_ctx(ASYNC_JOB *job);
23*4724848cSchristos void ASYNC_block_pause(void);
24*4724848cSchristos void ASYNC_unblock_pause(void);
25*4724848cSchristos
26*4724848cSchristos int ASYNC_is_capable(void);
27*4724848cSchristos
28*4724848cSchristos=head1 DESCRIPTION
29*4724848cSchristos
30*4724848cSchristosOpenSSL implements asynchronous capabilities through an ASYNC_JOB. This
31*4724848cSchristosrepresents code that can be started and executes until some event occurs. At
32*4724848cSchristosthat point the code can be paused and control returns to user code until some
33*4724848cSchristossubsequent event indicates that the job can be resumed.
34*4724848cSchristos
35*4724848cSchristosThe creation of an ASYNC_JOB is a relatively expensive operation. Therefore, for
36*4724848cSchristosefficiency reasons, jobs can be created up front and reused many times. They are
37*4724848cSchristosheld in a pool until they are needed, at which point they are removed from the
38*4724848cSchristospool, used, and then returned to the pool when the job completes. If the user
39*4724848cSchristosapplication is multi-threaded, then ASYNC_init_thread() may be called for each
40*4724848cSchristosthread that will initiate asynchronous jobs. Before
41*4724848cSchristosuser code exits per-thread resources need to be cleaned up. This will normally
42*4724848cSchristosoccur automatically (see L<OPENSSL_init_crypto(3)>) but may be explicitly
43*4724848cSchristosinitiated by using ASYNC_cleanup_thread(). No asynchronous jobs must be
44*4724848cSchristosoutstanding for the thread when ASYNC_cleanup_thread() is called. Failing to
45*4724848cSchristosensure this will result in memory leaks.
46*4724848cSchristos
47*4724848cSchristosThe B<max_size> argument limits the number of ASYNC_JOBs that will be held in
48*4724848cSchristosthe pool. If B<max_size> is set to 0 then no upper limit is set. When an
49*4724848cSchristosASYNC_JOB is needed but there are none available in the pool already then one
50*4724848cSchristoswill be automatically created, as long as the total of ASYNC_JOBs managed by the
51*4724848cSchristospool does not exceed B<max_size>. When the pool is first initialised
52*4724848cSchristosB<init_size> ASYNC_JOBs will be created immediately. If ASYNC_init_thread() is
53*4724848cSchristosnot called before the pool is first used then it will be called automatically
54*4724848cSchristoswith a B<max_size> of 0 (no upper limit) and an B<init_size> of 0 (no ASYNC_JOBs
55*4724848cSchristoscreated up front).
56*4724848cSchristos
57*4724848cSchristosAn asynchronous job is started by calling the ASYNC_start_job() function.
58*4724848cSchristosInitially B<*job> should be NULL. B<ctx> should point to an ASYNC_WAIT_CTX
59*4724848cSchristosobject created through the L<ASYNC_WAIT_CTX_new(3)> function. B<ret> should
60*4724848cSchristospoint to a location where the return value of the asynchronous function should
61*4724848cSchristosbe stored on completion of the job. B<func> represents the function that should
62*4724848cSchristosbe started asynchronously. The data pointed to by B<args> and of size B<size>
63*4724848cSchristoswill be copied and then passed as an argument to B<func> when the job starts.
64*4724848cSchristosASYNC_start_job will return one of the following values:
65*4724848cSchristos
66*4724848cSchristos=over 4
67*4724848cSchristos
68*4724848cSchristos=item B<ASYNC_ERR>
69*4724848cSchristos
70*4724848cSchristosAn error occurred trying to start the job. Check the OpenSSL error queue (e.g.
71*4724848cSchristossee L<ERR_print_errors(3)>) for more details.
72*4724848cSchristos
73*4724848cSchristos=item B<ASYNC_NO_JOBS>
74*4724848cSchristos
75*4724848cSchristosThere are no jobs currently available in the pool. This call can be retried
76*4724848cSchristosagain at a later time.
77*4724848cSchristos
78*4724848cSchristos=item B<ASYNC_PAUSE>
79*4724848cSchristos
80*4724848cSchristosThe job was successfully started but was "paused" before it completed (see
81*4724848cSchristosASYNC_pause_job() below). A handle to the job is placed in B<*job>. Other work
82*4724848cSchristoscan be performed (if desired) and the job restarted at a later time. To restart
83*4724848cSchristosa job call ASYNC_start_job() again passing the job handle in B<*job>. The
84*4724848cSchristosB<func>, B<args> and B<size> parameters will be ignored when restarting a job.
85*4724848cSchristosWhen restarting a job ASYNC_start_job() B<must> be called from the same thread
86*4724848cSchristosthat the job was originally started from.
87*4724848cSchristos
88*4724848cSchristos=item B<ASYNC_FINISH>
89*4724848cSchristos
90*4724848cSchristosThe job completed. B<*job> will be NULL and the return value from B<func> will
91*4724848cSchristosbe placed in B<*ret>.
92*4724848cSchristos
93*4724848cSchristos=back
94*4724848cSchristos
95*4724848cSchristosAt any one time there can be a maximum of one job actively running per thread
96*4724848cSchristos(you can have many that are paused). ASYNC_get_current_job() can be used to get
97*4724848cSchristosa pointer to the currently executing ASYNC_JOB. If no job is currently executing
98*4724848cSchristosthen this will return NULL.
99*4724848cSchristos
100*4724848cSchristosIf executing within the context of a job (i.e. having been called directly or
101*4724848cSchristosindirectly by the function "func" passed as an argument to ASYNC_start_job())
102*4724848cSchristosthen ASYNC_pause_job() will immediately return control to the calling
103*4724848cSchristosapplication with ASYNC_PAUSE returned from the ASYNC_start_job() call. A
104*4724848cSchristossubsequent call to ASYNC_start_job passing in the relevant ASYNC_JOB in the
105*4724848cSchristosB<*job> parameter will resume execution from the ASYNC_pause_job() call. If
106*4724848cSchristosASYNC_pause_job() is called whilst not within the context of a job then no
107*4724848cSchristosaction is taken and ASYNC_pause_job() returns immediately.
108*4724848cSchristos
109*4724848cSchristosASYNC_get_wait_ctx() can be used to get a pointer to the ASYNC_WAIT_CTX
110*4724848cSchristosfor the B<job>. ASYNC_WAIT_CTXs can have a "wait" file descriptor associated
111*4724848cSchristoswith them. Applications can wait for the file descriptor to be ready for "read"
112*4724848cSchristosusing a system function call such as select or poll (being ready for "read"
113*4724848cSchristosindicates that the job should be resumed). If no file descriptor is made
114*4724848cSchristosavailable then an application will have to periodically "poll" the job by
115*4724848cSchristosattempting to restart it to see if it is ready to continue.
116*4724848cSchristos
117*4724848cSchristosAn example of typical usage might be an async capable engine. User code would
118*4724848cSchristosinitiate cryptographic operations. The engine would initiate those operations
119*4724848cSchristosasynchronously and then call L<ASYNC_WAIT_CTX_set_wait_fd(3)> followed by
120*4724848cSchristosASYNC_pause_job() to return control to the user code. The user code can then
121*4724848cSchristosperform other tasks or wait for the job to be ready by calling "select" or other
122*4724848cSchristossimilar function on the wait file descriptor. The engine can signal to the user
123*4724848cSchristoscode that the job should be resumed by making the wait file descriptor
124*4724848cSchristos"readable". Once resumed the engine should clear the wake signal on the wait
125*4724848cSchristosfile descriptor.
126*4724848cSchristos
127*4724848cSchristosThe ASYNC_block_pause() function will prevent the currently active job from
128*4724848cSchristospausing. The block will remain in place until a subsequent call to
129*4724848cSchristosASYNC_unblock_pause(). These functions can be nested, e.g. if you call
130*4724848cSchristosASYNC_block_pause() twice then you must call ASYNC_unblock_pause() twice in
131*4724848cSchristosorder to re-enable pausing. If these functions are called while there is no
132*4724848cSchristoscurrently active job then they have no effect. This functionality can be useful
133*4724848cSchristosto avoid deadlock scenarios. For example during the execution of an ASYNC_JOB an
134*4724848cSchristosapplication acquires a lock. It then calls some cryptographic function which
135*4724848cSchristosinvokes ASYNC_pause_job(). This returns control back to the code that created
136*4724848cSchristosthe ASYNC_JOB. If that code then attempts to acquire the same lock before
137*4724848cSchristosresuming the original job then a deadlock can occur. By calling
138*4724848cSchristosASYNC_block_pause() immediately after acquiring the lock and
139*4724848cSchristosASYNC_unblock_pause() immediately before releasing it then this situation cannot
140*4724848cSchristosoccur.
141*4724848cSchristos
142*4724848cSchristosSome platforms cannot support async operations. The ASYNC_is_capable() function
143*4724848cSchristoscan be used to detect whether the current platform is async capable or not.
144*4724848cSchristos
145*4724848cSchristos=head1 RETURN VALUES
146*4724848cSchristos
147*4724848cSchristosASYNC_init_thread returns 1 on success or 0 otherwise.
148*4724848cSchristos
149*4724848cSchristosASYNC_start_job returns one of ASYNC_ERR, ASYNC_NO_JOBS, ASYNC_PAUSE or
150*4724848cSchristosASYNC_FINISH as described above.
151*4724848cSchristos
152*4724848cSchristosASYNC_pause_job returns 0 if an error occurred or 1 on success. If called when
153*4724848cSchristosnot within the context of an ASYNC_JOB then this is counted as success so 1 is
154*4724848cSchristosreturned.
155*4724848cSchristos
156*4724848cSchristosASYNC_get_current_job returns a pointer to the currently executing ASYNC_JOB or
157*4724848cSchristosNULL if not within the context of a job.
158*4724848cSchristos
159*4724848cSchristosASYNC_get_wait_ctx() returns a pointer to the ASYNC_WAIT_CTX for the job.
160*4724848cSchristos
161*4724848cSchristosASYNC_is_capable() returns 1 if the current platform is async capable or 0
162*4724848cSchristosotherwise.
163*4724848cSchristos
164*4724848cSchristos=head1 NOTES
165*4724848cSchristos
166*4724848cSchristosOn Windows platforms the openssl/async.h header is dependent on some
167*4724848cSchristosof the types customarily made available by including windows.h. The
168*4724848cSchristosapplication developer is likely to require control over when the latter
169*4724848cSchristosis included, commonly as one of the first included headers. Therefore,
170*4724848cSchristosit is defined as an application developer's responsibility to include
171*4724848cSchristoswindows.h prior to async.h.
172*4724848cSchristos
173*4724848cSchristos=head1 EXAMPLES
174*4724848cSchristos
175*4724848cSchristosThe following example demonstrates how to use most of the core async APIs:
176*4724848cSchristos
177*4724848cSchristos #ifdef _WIN32
178*4724848cSchristos # include <windows.h>
179*4724848cSchristos #endif
180*4724848cSchristos #include <stdio.h>
181*4724848cSchristos #include <unistd.h>
182*4724848cSchristos #include <openssl/async.h>
183*4724848cSchristos #include <openssl/crypto.h>
184*4724848cSchristos
185*4724848cSchristos int unique = 0;
186*4724848cSchristos
187*4724848cSchristos void cleanup(ASYNC_WAIT_CTX *ctx, const void *key, OSSL_ASYNC_FD r, void *vw)
188*4724848cSchristos {
189*4724848cSchristos     OSSL_ASYNC_FD *w = (OSSL_ASYNC_FD *)vw;
190*4724848cSchristos
191*4724848cSchristos     close(r);
192*4724848cSchristos     close(*w);
193*4724848cSchristos     OPENSSL_free(w);
194*4724848cSchristos }
195*4724848cSchristos
196*4724848cSchristos int jobfunc(void *arg)
197*4724848cSchristos {
198*4724848cSchristos     ASYNC_JOB *currjob;
199*4724848cSchristos     unsigned char *msg;
200*4724848cSchristos     int pipefds[2] = {0, 0};
201*4724848cSchristos     OSSL_ASYNC_FD *wptr;
202*4724848cSchristos     char buf = 'X';
203*4724848cSchristos
204*4724848cSchristos     currjob = ASYNC_get_current_job();
205*4724848cSchristos     if (currjob != NULL) {
206*4724848cSchristos         printf("Executing within a job\n");
207*4724848cSchristos     } else {
208*4724848cSchristos         printf("Not executing within a job - should not happen\n");
209*4724848cSchristos         return 0;
210*4724848cSchristos     }
211*4724848cSchristos
212*4724848cSchristos     msg = (unsigned char *)arg;
213*4724848cSchristos     printf("Passed in message is: %s\n", msg);
214*4724848cSchristos
215*4724848cSchristos     if (pipe(pipefds) != 0) {
216*4724848cSchristos         printf("Failed to create pipe\n");
217*4724848cSchristos         return 0;
218*4724848cSchristos     }
219*4724848cSchristos     wptr = OPENSSL_malloc(sizeof(OSSL_ASYNC_FD));
220*4724848cSchristos     if (wptr == NULL) {
221*4724848cSchristos         printf("Failed to malloc\n");
222*4724848cSchristos         return 0;
223*4724848cSchristos     }
224*4724848cSchristos     *wptr = pipefds[1];
225*4724848cSchristos     ASYNC_WAIT_CTX_set_wait_fd(ASYNC_get_wait_ctx(currjob), &unique,
226*4724848cSchristos                                pipefds[0], wptr, cleanup);
227*4724848cSchristos
228*4724848cSchristos     /*
229*4724848cSchristos      * Normally some external event would cause this to happen at some
230*4724848cSchristos      * later point - but we do it here for demo purposes, i.e.
231*4724848cSchristos      * immediately signalling that the job is ready to be woken up after
232*4724848cSchristos      * we return to main via ASYNC_pause_job().
233*4724848cSchristos      */
234*4724848cSchristos     write(pipefds[1], &buf, 1);
235*4724848cSchristos
236*4724848cSchristos     /* Return control back to main */
237*4724848cSchristos     ASYNC_pause_job();
238*4724848cSchristos
239*4724848cSchristos     /* Clear the wake signal */
240*4724848cSchristos     read(pipefds[0], &buf, 1);
241*4724848cSchristos
242*4724848cSchristos     printf ("Resumed the job after a pause\n");
243*4724848cSchristos
244*4724848cSchristos     return 1;
245*4724848cSchristos }
246*4724848cSchristos
247*4724848cSchristos int main(void)
248*4724848cSchristos {
249*4724848cSchristos     ASYNC_JOB *job = NULL;
250*4724848cSchristos     ASYNC_WAIT_CTX *ctx = NULL;
251*4724848cSchristos     int ret;
252*4724848cSchristos     OSSL_ASYNC_FD waitfd;
253*4724848cSchristos     fd_set waitfdset;
254*4724848cSchristos     size_t numfds;
255*4724848cSchristos     unsigned char msg[13] = "Hello world!";
256*4724848cSchristos
257*4724848cSchristos     printf("Starting...\n");
258*4724848cSchristos
259*4724848cSchristos     ctx = ASYNC_WAIT_CTX_new();
260*4724848cSchristos     if (ctx == NULL) {
261*4724848cSchristos         printf("Failed to create ASYNC_WAIT_CTX\n");
262*4724848cSchristos         abort();
263*4724848cSchristos     }
264*4724848cSchristos
265*4724848cSchristos     for (;;) {
266*4724848cSchristos         switch (ASYNC_start_job(&job, ctx, &ret, jobfunc, msg, sizeof(msg))) {
267*4724848cSchristos         case ASYNC_ERR:
268*4724848cSchristos         case ASYNC_NO_JOBS:
269*4724848cSchristos             printf("An error occurred\n");
270*4724848cSchristos             goto end;
271*4724848cSchristos         case ASYNC_PAUSE:
272*4724848cSchristos             printf("Job was paused\n");
273*4724848cSchristos             break;
274*4724848cSchristos         case ASYNC_FINISH:
275*4724848cSchristos             printf("Job finished with return value %d\n", ret);
276*4724848cSchristos             goto end;
277*4724848cSchristos         }
278*4724848cSchristos
279*4724848cSchristos         /* Wait for the job to be woken */
280*4724848cSchristos         printf("Waiting for the job to be woken up\n");
281*4724848cSchristos
282*4724848cSchristos         if (!ASYNC_WAIT_CTX_get_all_fds(ctx, NULL, &numfds)
283*4724848cSchristos                 || numfds > 1) {
284*4724848cSchristos             printf("Unexpected number of fds\n");
285*4724848cSchristos             abort();
286*4724848cSchristos         }
287*4724848cSchristos         ASYNC_WAIT_CTX_get_all_fds(ctx, &waitfd, &numfds);
288*4724848cSchristos         FD_ZERO(&waitfdset);
289*4724848cSchristos         FD_SET(waitfd, &waitfdset);
290*4724848cSchristos         select(waitfd + 1, &waitfdset, NULL, NULL, NULL);
291*4724848cSchristos     }
292*4724848cSchristos
293*4724848cSchristos end:
294*4724848cSchristos     ASYNC_WAIT_CTX_free(ctx);
295*4724848cSchristos     printf("Finishing\n");
296*4724848cSchristos
297*4724848cSchristos     return 0;
298*4724848cSchristos }
299*4724848cSchristos
300*4724848cSchristosThe expected output from executing the above example program is:
301*4724848cSchristos
302*4724848cSchristos Starting...
303*4724848cSchristos Executing within a job
304*4724848cSchristos Passed in message is: Hello world!
305*4724848cSchristos Job was paused
306*4724848cSchristos Waiting for the job to be woken up
307*4724848cSchristos Resumed the job after a pause
308*4724848cSchristos Job finished with return value 1
309*4724848cSchristos Finishing
310*4724848cSchristos
311*4724848cSchristos=head1 SEE ALSO
312*4724848cSchristos
313*4724848cSchristosL<crypto(7)>, L<ERR_print_errors(3)>
314*4724848cSchristos
315*4724848cSchristos=head1 HISTORY
316*4724848cSchristos
317*4724848cSchristosASYNC_init_thread, ASYNC_cleanup_thread,
318*4724848cSchristosASYNC_start_job, ASYNC_pause_job, ASYNC_get_current_job, ASYNC_get_wait_ctx(),
319*4724848cSchristosASYNC_block_pause(), ASYNC_unblock_pause() and ASYNC_is_capable() were first
320*4724848cSchristosadded in OpenSSL 1.1.0.
321*4724848cSchristos
322*4724848cSchristos=head1 COPYRIGHT
323*4724848cSchristos
324*4724848cSchristosCopyright 2015-2020 The OpenSSL Project Authors. All Rights Reserved.
325*4724848cSchristos
326*4724848cSchristosLicensed under the OpenSSL license (the "License").  You may not use
327*4724848cSchristosthis file except in compliance with the License.  You can obtain a copy
328*4724848cSchristosin the file LICENSE in the source distribution or at
329*4724848cSchristosL<https://www.openssl.org/source/license.html>.
330*4724848cSchristos
331*4724848cSchristos=cut
332