xref: /netbsd-src/crypto/external/bsd/openssh/dist/umac.c (revision d909946ca08dceb44d7d0f22ec9488679695d976)
1 /*	$NetBSD: umac.c,v 1.11 2016/06/15 05:01:58 mrg Exp $	*/
2 /* $OpenBSD: umac.c,v 1.11 2014/07/22 07:13:42 guenther Exp $ */
3 /* -----------------------------------------------------------------------
4  *
5  * umac.c -- C Implementation UMAC Message Authentication
6  *
7  * Version 0.93b of rfc4418.txt -- 2006 July 18
8  *
9  * For a full description of UMAC message authentication see the UMAC
10  * world-wide-web page at http://www.cs.ucdavis.edu/~rogaway/umac
11  * Please report bugs and suggestions to the UMAC webpage.
12  *
13  * Copyright (c) 1999-2006 Ted Krovetz
14  *
15  * Permission to use, copy, modify, and distribute this software and
16  * its documentation for any purpose and with or without fee, is hereby
17  * granted provided that the above copyright notice appears in all copies
18  * and in supporting documentation, and that the name of the copyright
19  * holder not be used in advertising or publicity pertaining to
20  * distribution of the software without specific, written prior permission.
21  *
22  * Comments should be directed to Ted Krovetz (tdk@acm.org)
23  *
24  * ---------------------------------------------------------------------- */
25 
26  /* ////////////////////// IMPORTANT NOTES /////////////////////////////////
27   *
28   * 1) This version does not work properly on messages larger than 16MB
29   *
30   * 2) If you set the switch to use SSE2, then all data must be 16-byte
31   *    aligned
32   *
33   * 3) When calling the function umac(), it is assumed that msg is in
34   * a writable buffer of length divisible by 32 bytes. The message itself
35   * does not have to fill the entire buffer, but bytes beyond msg may be
36   * zeroed.
37   *
38   * 4) Three free AES implementations are supported by this implementation of
39   * UMAC. Paulo Barreto's version is in the public domain and can be found
40   * at http://www.esat.kuleuven.ac.be/~rijmen/rijndael/ (search for
41   * "Barreto"). The only two files needed are rijndael-alg-fst.c and
42   * rijndael-alg-fst.h. Brian Gladman's version is distributed with the GNU
43   * Public lisence at http://fp.gladman.plus.com/AES/index.htm. It
44   * includes a fast IA-32 assembly version. The OpenSSL crypo library is
45   * the third.
46   *
47   * 5) With FORCE_C_ONLY flags set to 0, incorrect results are sometimes
48   * produced under gcc with optimizations set -O3 or higher. Dunno why.
49   *
50   /////////////////////////////////////////////////////////////////////// */
51 
52 /* ---------------------------------------------------------------------- */
53 /* --- User Switches ---------------------------------------------------- */
54 /* ---------------------------------------------------------------------- */
55 
56 #ifndef UMAC_OUTPUT_LEN
57 #define UMAC_OUTPUT_LEN     8  /* Alowable: 4, 8, 12, 16                  */
58 #endif
59 /* #define FORCE_C_ONLY        1  ANSI C and 64-bit integers req'd        */
60 /* #define AES_IMPLEMENTAION   1  1 = OpenSSL, 2 = Barreto, 3 = Gladman   */
61 /* #define SSE2                0  Is SSE2 is available?                   */
62 /* #define RUN_TESTS           0  Run basic correctness/speed tests       */
63 /* #define UMAC_AE_SUPPORT     0  Enable auhthenticated encrytion         */
64 
65 /* ---------------------------------------------------------------------- */
66 /* -- Global Includes --------------------------------------------------- */
67 /* ---------------------------------------------------------------------- */
68 
69 #include "includes.h"
70 __RCSID("$NetBSD: umac.c,v 1.11 2016/06/15 05:01:58 mrg Exp $");
71 #include <sys/types.h>
72 #include <sys/endian.h>
73 #include <string.h>
74 #include <stdio.h>
75 #include <stdlib.h>
76 #include <stddef.h>
77 #include <time.h>
78 
79 #include "xmalloc.h"
80 #include "umac.h"
81 #include "misc.h"
82 
83 /* ---------------------------------------------------------------------- */
84 /* --- Primitive Data Types ---                                           */
85 /* ---------------------------------------------------------------------- */
86 
87 /* The following assumptions may need change on your system */
88 typedef u_int8_t	UINT8;  /* 1 byte   */
89 typedef u_int16_t	UINT16; /* 2 byte   */
90 typedef u_int32_t	UINT32; /* 4 byte   */
91 typedef u_int64_t	UINT64; /* 8 bytes  */
92 typedef unsigned int	UWORD;  /* Register */
93 
94 /* ---------------------------------------------------------------------- */
95 /* --- Constants -------------------------------------------------------- */
96 /* ---------------------------------------------------------------------- */
97 
98 #define UMAC_KEY_LEN           16  /* UMAC takes 16 bytes of external key */
99 
100 /* Message "words" are read from memory in an endian-specific manner.     */
101 /* For this implementation to behave correctly, __LITTLE_ENDIAN__ must    */
102 /* be set true if the host computer is little-endian.                     */
103 
104 #if BYTE_ORDER == LITTLE_ENDIAN
105 #define __LITTLE_ENDIAN__ 1
106 #else
107 #define __LITTLE_ENDIAN__ 0
108 #endif
109 
110 /* ---------------------------------------------------------------------- */
111 /* ---------------------------------------------------------------------- */
112 /* ----- Architecture Specific ------------------------------------------ */
113 /* ---------------------------------------------------------------------- */
114 /* ---------------------------------------------------------------------- */
115 
116 
117 /* ---------------------------------------------------------------------- */
118 /* ---------------------------------------------------------------------- */
119 /* ----- Primitive Routines --------------------------------------------- */
120 /* ---------------------------------------------------------------------- */
121 /* ---------------------------------------------------------------------- */
122 
123 
124 /* ---------------------------------------------------------------------- */
125 /* --- 32-bit by 32-bit to 64-bit Multiplication ------------------------ */
126 /* ---------------------------------------------------------------------- */
127 
128 #define MUL64(a,b) ((UINT64)((UINT64)(UINT32)(a) * (UINT64)(UINT32)(b)))
129 
130 /* ---------------------------------------------------------------------- */
131 /* --- Endian Conversion --- Forcing assembly on some platforms           */
132 /* ---------------------------------------------------------------------- */
133 
134 /* The following definitions use the above reversal-primitives to do the right
135  * thing on endian specific load and stores.
136  */
137 
138 #if BYTE_ORDER == LITTLE_ENDIAN
139 #define LOAD_UINT32_REVERSED(p)		get_u32(p)
140 #define STORE_UINT32_REVERSED(p,v) 	put_u32(p,v)
141 #else
142 #define LOAD_UINT32_REVERSED(p)		get_u32_le(p)
143 #define STORE_UINT32_REVERSED(p,v) 	put_u32_le(p,v)
144 #endif
145 
146 #define LOAD_UINT32_LITTLE(p)           (get_u32_le(p))
147 #define STORE_UINT32_BIG(p,v)           put_u32(p, v)
148 
149 
150 
151 /* ---------------------------------------------------------------------- */
152 /* ---------------------------------------------------------------------- */
153 /* ----- Begin KDF & PDF Section ---------------------------------------- */
154 /* ---------------------------------------------------------------------- */
155 /* ---------------------------------------------------------------------- */
156 
157 /* UMAC uses AES with 16 byte block and key lengths */
158 #define AES_BLOCK_LEN  16
159 
160 #ifdef WITH_OPENSSL
161 #include <openssl/aes.h>
162 typedef AES_KEY aes_int_key[1];
163 #define aes_encryption(in,out,int_key)                  \
164   AES_encrypt((u_char *)(in),(u_char *)(out),(AES_KEY *)int_key)
165 #define aes_key_setup(key,int_key)                      \
166   AES_set_encrypt_key((const u_char *)(key),UMAC_KEY_LEN*8,int_key)
167 #else
168 #include "rijndael.h"
169 #define AES_ROUNDS ((UMAC_KEY_LEN / 4) + 6)
170 typedef UINT8 aes_int_key[AES_ROUNDS+1][4][4];	/* AES internal */
171 #define aes_encryption(in,out,int_key) \
172   rijndaelEncrypt((u32 *)(int_key), AES_ROUNDS, (u8 *)(in), (u8 *)(out))
173 #define aes_key_setup(key,int_key) \
174   rijndaelKeySetupEnc((u32 *)(int_key), (const unsigned char *)(key), \
175   UMAC_KEY_LEN*8)
176 #endif
177 
178 /* The user-supplied UMAC key is stretched using AES in a counter
179  * mode to supply all random bits needed by UMAC. The kdf function takes
180  * an AES internal key representation 'key' and writes a stream of
181  * 'nbytes' bytes to the memory pointed at by 'buffer_ptr'. Each distinct
182  * 'ndx' causes a distinct byte stream.
183  */
184 static void kdf(void *buffer_ptr, aes_int_key key, UINT8 ndx, int nbytes)
185 {
186     UINT8 in_buf[AES_BLOCK_LEN] = {0};
187     UINT8 out_buf[AES_BLOCK_LEN];
188     UINT8 *dst_buf = (UINT8 *)buffer_ptr;
189     int i;
190 
191     /* Setup the initial value */
192     in_buf[AES_BLOCK_LEN-9] = ndx;
193     in_buf[AES_BLOCK_LEN-1] = i = 1;
194 
195     while (nbytes >= AES_BLOCK_LEN) {
196         aes_encryption(in_buf, out_buf, key);
197         memcpy(dst_buf,out_buf,AES_BLOCK_LEN);
198         in_buf[AES_BLOCK_LEN-1] = ++i;
199         nbytes -= AES_BLOCK_LEN;
200         dst_buf += AES_BLOCK_LEN;
201     }
202     if (nbytes) {
203         aes_encryption(in_buf, out_buf, key);
204         memcpy(dst_buf,out_buf,nbytes);
205     }
206 }
207 
208 /* The final UHASH result is XOR'd with the output of a pseudorandom
209  * function. Here, we use AES to generate random output and
210  * xor the appropriate bytes depending on the last bits of nonce.
211  * This scheme is optimized for sequential, increasing big-endian nonces.
212  */
213 
214 typedef struct {
215     UINT8 cache[AES_BLOCK_LEN];  /* Previous AES output is saved      */
216     UINT8 nonce[AES_BLOCK_LEN];  /* The AES input making above cache  */
217     aes_int_key prf_key;         /* Expanded AES key for PDF          */
218 } pdf_ctx;
219 
220 static void pdf_init(pdf_ctx *pc, aes_int_key prf_key)
221 {
222     UINT8 buf[UMAC_KEY_LEN];
223 
224     kdf(buf, prf_key, 0, UMAC_KEY_LEN);
225     aes_key_setup(buf, pc->prf_key);
226 
227     /* Initialize pdf and cache */
228     memset(pc->nonce, 0, sizeof(pc->nonce));
229     aes_encryption(pc->nonce, pc->cache, pc->prf_key);
230 }
231 
232 static inline void
233 xor64(uint8_t *dp, int di, uint8_t *sp, int si)
234 {
235     uint64_t dst, src;
236     memcpy(&dst, dp + sizeof(dst) * di, sizeof(dst));
237     memcpy(&src, sp + sizeof(src) * si, sizeof(src));
238     dst ^= src;
239     memcpy(dp + sizeof(dst) * di, &dst, sizeof(dst));
240 }
241 
242 __unused static inline void
243 xor32(uint8_t *dp, int di, uint8_t *sp, int si)
244 {
245     uint32_t dst, src;
246     memcpy(&dst, dp + sizeof(dst) * di, sizeof(dst));
247     memcpy(&src, sp + sizeof(src) * si, sizeof(src));
248     dst ^= src;
249     memcpy(dp + sizeof(dst) * di, &dst, sizeof(dst));
250 }
251 
252 static void pdf_gen_xor(pdf_ctx *pc, const UINT8 nonce[8], UINT8 buf[8])
253 {
254     /* 'ndx' indicates that we'll be using the 0th or 1st eight bytes
255      * of the AES output. If last time around we returned the ndx-1st
256      * element, then we may have the result in the cache already.
257      */
258 
259 #if (UMAC_OUTPUT_LEN == 4)
260 #define LOW_BIT_MASK 3
261 #elif (UMAC_OUTPUT_LEN == 8)
262 #define LOW_BIT_MASK 1
263 #elif (UMAC_OUTPUT_LEN > 8)
264 #define LOW_BIT_MASK 0
265 #endif
266     union {
267         UINT8 tmp_nonce_lo[4];
268         UINT32 align;
269     } t;
270 #if LOW_BIT_MASK != 0
271     int ndx = nonce[7] & LOW_BIT_MASK;
272 #endif
273     memcpy(t.tmp_nonce_lo, nonce + 4, sizeof(t.tmp_nonce_lo));
274     t.tmp_nonce_lo[3] &= ~LOW_BIT_MASK; /* zero last bit */
275 
276     if (memcmp(t.tmp_nonce_lo, pc->nonce + 1, sizeof(t.tmp_nonce_lo)) != 0 ||
277          memcmp(nonce, pc->nonce, sizeof(t.tmp_nonce_lo)) != 0)
278     {
279 	memcpy(pc->nonce, nonce, sizeof(t.tmp_nonce_lo));
280 	memcpy(pc->nonce + 4, t.tmp_nonce_lo, sizeof(t.tmp_nonce_lo));
281         aes_encryption(pc->nonce, pc->cache, pc->prf_key);
282     }
283 
284 #if (UMAC_OUTPUT_LEN == 4)
285     xor32(buf, 0, pc->cache, ndx);
286 #elif (UMAC_OUTPUT_LEN == 8)
287     xor64(buf, 0, pc->cache, ndx);
288 #elif (UMAC_OUTPUT_LEN == 12)
289     xor64(buf, 0, pc->cache, 0);
290     xor32(buf, 2, pc->cache, 2);
291 #elif (UMAC_OUTPUT_LEN == 16)
292     xor64(buf, 0, pc->cache, 0);
293     xor64(buf, 1, pc->cache, 1);
294 #endif
295 }
296 
297 /* ---------------------------------------------------------------------- */
298 /* ---------------------------------------------------------------------- */
299 /* ----- Begin NH Hash Section ------------------------------------------ */
300 /* ---------------------------------------------------------------------- */
301 /* ---------------------------------------------------------------------- */
302 
303 /* The NH-based hash functions used in UMAC are described in the UMAC paper
304  * and specification, both of which can be found at the UMAC website.
305  * The interface to this implementation has two
306  * versions, one expects the entire message being hashed to be passed
307  * in a single buffer and returns the hash result immediately. The second
308  * allows the message to be passed in a sequence of buffers. In the
309  * muliple-buffer interface, the client calls the routine nh_update() as
310  * many times as necessary. When there is no more data to be fed to the
311  * hash, the client calls nh_final() which calculates the hash output.
312  * Before beginning another hash calculation the nh_reset() routine
313  * must be called. The single-buffer routine, nh(), is equivalent to
314  * the sequence of calls nh_update() and nh_final(); however it is
315  * optimized and should be prefered whenever the multiple-buffer interface
316  * is not necessary. When using either interface, it is the client's
317  * responsability to pass no more than L1_KEY_LEN bytes per hash result.
318  *
319  * The routine nh_init() initializes the nh_ctx data structure and
320  * must be called once, before any other PDF routine.
321  */
322 
323  /* The "nh_aux" routines do the actual NH hashing work. They
324   * expect buffers to be multiples of L1_PAD_BOUNDARY. These routines
325   * produce output for all STREAMS NH iterations in one call,
326   * allowing the parallel implementation of the streams.
327   */
328 
329 #define STREAMS (UMAC_OUTPUT_LEN / 4) /* Number of times hash is applied  */
330 #define L1_KEY_LEN         1024     /* Internal key bytes                 */
331 #define L1_KEY_SHIFT         16     /* Toeplitz key shift between streams */
332 #define L1_PAD_BOUNDARY      32     /* pad message to boundary multiple   */
333 #define ALLOC_BOUNDARY       16     /* Keep buffers aligned to this       */
334 #define HASH_BUF_BYTES       64     /* nh_aux_hb buffer multiple          */
335 
336 typedef struct {
337     UINT8  nh_key [L1_KEY_LEN + L1_KEY_SHIFT * (STREAMS - 1)]; /* NH Key */
338     UINT8  data   [HASH_BUF_BYTES];    /* Incoming data buffer           */
339     int next_data_empty;    /* Bookeeping variable for data buffer.       */
340     int bytes_hashed;        /* Bytes (out of L1_KEY_LEN) incorperated.   */
341     UINT64 state[STREAMS];               /* on-line state     */
342 } nh_ctx;
343 
344 
345 #if (UMAC_OUTPUT_LEN == 4)
346 
347 static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
348 /* NH hashing primitive. Previous (partial) hash result is loaded and
349 * then stored via hp pointer. The length of the data pointed at by "dp",
350 * "dlen", is guaranteed to be divisible by L1_PAD_BOUNDARY (32).  Key
351 * is expected to be endian compensated in memory at key setup.
352 */
353 {
354     UINT64 h;
355     UWORD c = dlen / 32;
356     UINT32 *k = (UINT32 *)kp;
357     const UINT32 *d = (const UINT32 *)dp;
358     UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
359     UINT32 k0,k1,k2,k3,k4,k5,k6,k7;
360 
361     h = *((UINT64 *)hp);
362     do {
363         d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
364         d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
365         d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
366         d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
367         k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
368         k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
369         h += MUL64((k0 + d0), (k4 + d4));
370         h += MUL64((k1 + d1), (k5 + d5));
371         h += MUL64((k2 + d2), (k6 + d6));
372         h += MUL64((k3 + d3), (k7 + d7));
373 
374         d += 8;
375         k += 8;
376     } while (--c);
377   *((UINT64 *)hp) = h;
378 }
379 
380 #elif (UMAC_OUTPUT_LEN == 8)
381 
382 static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
383 /* Same as previous nh_aux, but two streams are handled in one pass,
384  * reading and writing 16 bytes of hash-state per call.
385  */
386 {
387   UINT64 h1,h2;
388   UWORD c = dlen / 32;
389   UINT32 *k = (UINT32 *)kp;
390   const UINT32 *d = (const UINT32 *)dp;
391   UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
392   UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
393         k8,k9,k10,k11;
394 
395   h1 = *((UINT64 *)hp);
396   h2 = *((UINT64 *)hp + 1);
397   k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
398   do {
399     d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
400     d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
401     d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
402     d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
403     k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
404     k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
405 
406     h1 += MUL64((k0 + d0), (k4 + d4));
407     h2 += MUL64((k4 + d0), (k8 + d4));
408 
409     h1 += MUL64((k1 + d1), (k5 + d5));
410     h2 += MUL64((k5 + d1), (k9 + d5));
411 
412     h1 += MUL64((k2 + d2), (k6 + d6));
413     h2 += MUL64((k6 + d2), (k10 + d6));
414 
415     h1 += MUL64((k3 + d3), (k7 + d7));
416     h2 += MUL64((k7 + d3), (k11 + d7));
417 
418     k0 = k8; k1 = k9; k2 = k10; k3 = k11;
419 
420     d += 8;
421     k += 8;
422   } while (--c);
423   ((UINT64 *)hp)[0] = h1;
424   ((UINT64 *)hp)[1] = h2;
425 }
426 
427 #elif (UMAC_OUTPUT_LEN == 12)
428 
429 static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
430 /* Same as previous nh_aux, but two streams are handled in one pass,
431  * reading and writing 24 bytes of hash-state per call.
432 */
433 {
434     UINT64 h1,h2,h3;
435     UWORD c = dlen / 32;
436     UINT32 *k = (UINT32 *)kp;
437     const UINT32 *d = (const UINT32 *)dp;
438     UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
439     UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
440         k8,k9,k10,k11,k12,k13,k14,k15;
441 
442     h1 = *((UINT64 *)hp);
443     h2 = *((UINT64 *)hp + 1);
444     h3 = *((UINT64 *)hp + 2);
445     k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
446     k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
447     do {
448         d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
449         d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
450         d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
451         d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
452         k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
453         k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15);
454 
455         h1 += MUL64((k0 + d0), (k4 + d4));
456         h2 += MUL64((k4 + d0), (k8 + d4));
457         h3 += MUL64((k8 + d0), (k12 + d4));
458 
459         h1 += MUL64((k1 + d1), (k5 + d5));
460         h2 += MUL64((k5 + d1), (k9 + d5));
461         h3 += MUL64((k9 + d1), (k13 + d5));
462 
463         h1 += MUL64((k2 + d2), (k6 + d6));
464         h2 += MUL64((k6 + d2), (k10 + d6));
465         h3 += MUL64((k10 + d2), (k14 + d6));
466 
467         h1 += MUL64((k3 + d3), (k7 + d7));
468         h2 += MUL64((k7 + d3), (k11 + d7));
469         h3 += MUL64((k11 + d3), (k15 + d7));
470 
471         k0 = k8; k1 = k9; k2 = k10; k3 = k11;
472         k4 = k12; k5 = k13; k6 = k14; k7 = k15;
473 
474         d += 8;
475         k += 8;
476     } while (--c);
477     ((UINT64 *)hp)[0] = h1;
478     ((UINT64 *)hp)[1] = h2;
479     ((UINT64 *)hp)[2] = h3;
480 }
481 
482 #elif (UMAC_OUTPUT_LEN == 16)
483 
484 static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
485 /* Same as previous nh_aux, but two streams are handled in one pass,
486  * reading and writing 24 bytes of hash-state per call.
487 */
488 {
489     UINT64 h1,h2,h3,h4;
490     UWORD c = dlen / 32;
491     UINT32 *k = (UINT32 *)kp;
492     const UINT32 *d = (const UINT32 *)dp;
493     UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
494     UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
495         k8,k9,k10,k11,k12,k13,k14,k15,
496         k16,k17,k18,k19;
497 
498     h1 = *((UINT64 *)hp);
499     h2 = *((UINT64 *)hp + 1);
500     h3 = *((UINT64 *)hp + 2);
501     h4 = *((UINT64 *)hp + 3);
502     k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
503     k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
504     do {
505         d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
506         d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
507         d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
508         d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
509         k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
510         k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15);
511         k16 = *(k+16); k17 = *(k+17); k18 = *(k+18); k19 = *(k+19);
512 
513         h1 += MUL64((k0 + d0), (k4 + d4));
514         h2 += MUL64((k4 + d0), (k8 + d4));
515         h3 += MUL64((k8 + d0), (k12 + d4));
516         h4 += MUL64((k12 + d0), (k16 + d4));
517 
518         h1 += MUL64((k1 + d1), (k5 + d5));
519         h2 += MUL64((k5 + d1), (k9 + d5));
520         h3 += MUL64((k9 + d1), (k13 + d5));
521         h4 += MUL64((k13 + d1), (k17 + d5));
522 
523         h1 += MUL64((k2 + d2), (k6 + d6));
524         h2 += MUL64((k6 + d2), (k10 + d6));
525         h3 += MUL64((k10 + d2), (k14 + d6));
526         h4 += MUL64((k14 + d2), (k18 + d6));
527 
528         h1 += MUL64((k3 + d3), (k7 + d7));
529         h2 += MUL64((k7 + d3), (k11 + d7));
530         h3 += MUL64((k11 + d3), (k15 + d7));
531         h4 += MUL64((k15 + d3), (k19 + d7));
532 
533         k0 = k8; k1 = k9; k2 = k10; k3 = k11;
534         k4 = k12; k5 = k13; k6 = k14; k7 = k15;
535         k8 = k16; k9 = k17; k10 = k18; k11 = k19;
536 
537         d += 8;
538         k += 8;
539     } while (--c);
540     ((UINT64 *)hp)[0] = h1;
541     ((UINT64 *)hp)[1] = h2;
542     ((UINT64 *)hp)[2] = h3;
543     ((UINT64 *)hp)[3] = h4;
544 }
545 
546 /* ---------------------------------------------------------------------- */
547 #endif  /* UMAC_OUTPUT_LENGTH */
548 /* ---------------------------------------------------------------------- */
549 
550 
551 /* ---------------------------------------------------------------------- */
552 
553 static void nh_transform(nh_ctx *hc, const UINT8 *buf, UINT32 nbytes)
554 /* This function is a wrapper for the primitive NH hash functions. It takes
555  * as argument "hc" the current hash context and a buffer which must be a
556  * multiple of L1_PAD_BOUNDARY. The key passed to nh_aux is offset
557  * appropriately according to how much message has been hashed already.
558  */
559 {
560     UINT8 *key;
561 
562     key = hc->nh_key + hc->bytes_hashed;
563     nh_aux(key, buf, hc->state, nbytes);
564 }
565 
566 /* ---------------------------------------------------------------------- */
567 
568 #if (__LITTLE_ENDIAN__)
569 static void endian_convert(void *buf, UWORD bpw, UINT32 num_bytes)
570 /* We endian convert the keys on little-endian computers to               */
571 /* compensate for the lack of big-endian memory reads during hashing.     */
572 {
573     UWORD iters = num_bytes / bpw;
574     if (bpw == 4) {
575         UINT32 *p = (UINT32 *)buf;
576         do {
577             *p = LOAD_UINT32_REVERSED(p);
578             p++;
579         } while (--iters);
580     } else if (bpw == 8) {
581         UINT64 *p = (UINT64 *)buf;
582         UINT64 th;
583         UINT64 t;
584         do {
585             t = LOAD_UINT32_REVERSED((UINT32 *)p+1);
586             th = LOAD_UINT32_REVERSED((UINT32 *)p);
587             *p++ = t | (th << 32);
588         } while (--iters);
589     }
590 }
591 #define endian_convert_if_le(x,y,z) endian_convert((x),(y),(z))
592 #else
593 #define endian_convert_if_le(x,y,z) do{}while(0)  /* Do nothing */
594 #endif
595 
596 /* ---------------------------------------------------------------------- */
597 
598 static void nh_reset(nh_ctx *hc)
599 /* Reset nh_ctx to ready for hashing of new data */
600 {
601     hc->bytes_hashed = 0;
602     hc->next_data_empty = 0;
603     hc->state[0] = 0;
604 #if (UMAC_OUTPUT_LEN >= 8)
605     hc->state[1] = 0;
606 #endif
607 #if (UMAC_OUTPUT_LEN >= 12)
608     hc->state[2] = 0;
609 #endif
610 #if (UMAC_OUTPUT_LEN == 16)
611     hc->state[3] = 0;
612 #endif
613 
614 }
615 
616 /* ---------------------------------------------------------------------- */
617 
618 static void nh_init(nh_ctx *hc, aes_int_key prf_key)
619 /* Generate nh_key, endian convert and reset to be ready for hashing.   */
620 {
621     kdf(hc->nh_key, prf_key, 1, sizeof(hc->nh_key));
622     endian_convert_if_le(hc->nh_key, 4, sizeof(hc->nh_key));
623     nh_reset(hc);
624 }
625 
626 /* ---------------------------------------------------------------------- */
627 
628 static void nh_update(nh_ctx *hc, const UINT8 *buf, UINT32 nbytes)
629 /* Incorporate nbytes of data into a nh_ctx, buffer whatever is not an    */
630 /* even multiple of HASH_BUF_BYTES.                                       */
631 {
632     UINT32 i,j;
633 
634     j = hc->next_data_empty;
635     if ((j + nbytes) >= HASH_BUF_BYTES) {
636         if (j) {
637             i = HASH_BUF_BYTES - j;
638             memcpy(hc->data+j, buf, i);
639             nh_transform(hc,hc->data,HASH_BUF_BYTES);
640             nbytes -= i;
641             buf += i;
642             hc->bytes_hashed += HASH_BUF_BYTES;
643         }
644         if (nbytes >= HASH_BUF_BYTES) {
645             i = nbytes & ~(HASH_BUF_BYTES - 1);
646             nh_transform(hc, buf, i);
647             nbytes -= i;
648             buf += i;
649             hc->bytes_hashed += i;
650         }
651         j = 0;
652     }
653     memcpy(hc->data + j, buf, nbytes);
654     hc->next_data_empty = j + nbytes;
655 }
656 
657 /* ---------------------------------------------------------------------- */
658 
659 static void zero_pad(UINT8 *p, int nbytes)
660 {
661 /* Write "nbytes" of zeroes, beginning at "p" */
662     if (nbytes >= (int)sizeof(UWORD)) {
663         while ((ptrdiff_t)p % sizeof(UWORD)) {
664             *p = 0;
665             nbytes--;
666             p++;
667         }
668         while (nbytes >= (int)sizeof(UWORD)) {
669             *(UWORD *)p = 0;
670             nbytes -= sizeof(UWORD);
671             p += sizeof(UWORD);
672         }
673     }
674     while (nbytes) {
675         *p = 0;
676         nbytes--;
677         p++;
678     }
679 }
680 
681 /* ---------------------------------------------------------------------- */
682 
683 static void nh_final(nh_ctx *hc, UINT8 *result)
684 /* After passing some number of data buffers to nh_update() for integration
685  * into an NH context, nh_final is called to produce a hash result. If any
686  * bytes are in the buffer hc->data, incorporate them into the
687  * NH context. Finally, add into the NH accumulation "state" the total number
688  * of bits hashed. The resulting numbers are written to the buffer "result".
689  * If nh_update was never called, L1_PAD_BOUNDARY zeroes are incorporated.
690  */
691 {
692     int nh_len, nbits;
693 
694     if (hc->next_data_empty != 0) {
695         nh_len = ((hc->next_data_empty + (L1_PAD_BOUNDARY - 1)) &
696                                                 ~(L1_PAD_BOUNDARY - 1));
697         zero_pad(hc->data + hc->next_data_empty,
698                                           nh_len - hc->next_data_empty);
699         nh_transform(hc, hc->data, nh_len);
700         hc->bytes_hashed += hc->next_data_empty;
701     } else if (hc->bytes_hashed == 0) {
702     	nh_len = L1_PAD_BOUNDARY;
703         zero_pad(hc->data, L1_PAD_BOUNDARY);
704         nh_transform(hc, hc->data, nh_len);
705     }
706 
707     nbits = (hc->bytes_hashed << 3);
708     ((UINT64 *)result)[0] = ((UINT64 *)hc->state)[0] + nbits;
709 #if (UMAC_OUTPUT_LEN >= 8)
710     ((UINT64 *)result)[1] = ((UINT64 *)hc->state)[1] + nbits;
711 #endif
712 #if (UMAC_OUTPUT_LEN >= 12)
713     ((UINT64 *)result)[2] = ((UINT64 *)hc->state)[2] + nbits;
714 #endif
715 #if (UMAC_OUTPUT_LEN == 16)
716     ((UINT64 *)result)[3] = ((UINT64 *)hc->state)[3] + nbits;
717 #endif
718     nh_reset(hc);
719 }
720 
721 /* ---------------------------------------------------------------------- */
722 
723 static void nh(nh_ctx *hc, const UINT8 *buf, UINT32 padded_len,
724                UINT32 unpadded_len, UINT8 *result)
725 /* All-in-one nh_update() and nh_final() equivalent.
726  * Assumes that padded_len is divisible by L1_PAD_BOUNDARY and result is
727  * well aligned
728  */
729 {
730     UINT32 nbits;
731 
732     /* Initialize the hash state */
733     nbits = (unpadded_len << 3);
734 
735     ((UINT64 *)result)[0] = nbits;
736 #if (UMAC_OUTPUT_LEN >= 8)
737     ((UINT64 *)result)[1] = nbits;
738 #endif
739 #if (UMAC_OUTPUT_LEN >= 12)
740     ((UINT64 *)result)[2] = nbits;
741 #endif
742 #if (UMAC_OUTPUT_LEN == 16)
743     ((UINT64 *)result)[3] = nbits;
744 #endif
745 
746     nh_aux(hc->nh_key, buf, result, padded_len);
747 }
748 
749 /* ---------------------------------------------------------------------- */
750 /* ---------------------------------------------------------------------- */
751 /* ----- Begin UHASH Section -------------------------------------------- */
752 /* ---------------------------------------------------------------------- */
753 /* ---------------------------------------------------------------------- */
754 
755 /* UHASH is a multi-layered algorithm. Data presented to UHASH is first
756  * hashed by NH. The NH output is then hashed by a polynomial-hash layer
757  * unless the initial data to be hashed is short. After the polynomial-
758  * layer, an inner-product hash is used to produce the final UHASH output.
759  *
760  * UHASH provides two interfaces, one all-at-once and another where data
761  * buffers are presented sequentially. In the sequential interface, the
762  * UHASH client calls the routine uhash_update() as many times as necessary.
763  * When there is no more data to be fed to UHASH, the client calls
764  * uhash_final() which
765  * calculates the UHASH output. Before beginning another UHASH calculation
766  * the uhash_reset() routine must be called. The all-at-once UHASH routine,
767  * uhash(), is equivalent to the sequence of calls uhash_update() and
768  * uhash_final(); however it is optimized and should be
769  * used whenever the sequential interface is not necessary.
770  *
771  * The routine uhash_init() initializes the uhash_ctx data structure and
772  * must be called once, before any other UHASH routine.
773  */
774 
775 /* ---------------------------------------------------------------------- */
776 /* ----- Constants and uhash_ctx ---------------------------------------- */
777 /* ---------------------------------------------------------------------- */
778 
779 /* ---------------------------------------------------------------------- */
780 /* ----- Poly hash and Inner-Product hash Constants --------------------- */
781 /* ---------------------------------------------------------------------- */
782 
783 /* Primes and masks */
784 #define p36    ((UINT64)0x0000000FFFFFFFFBull)              /* 2^36 -  5 */
785 #define p64    ((UINT64)0xFFFFFFFFFFFFFFC5ull)              /* 2^64 - 59 */
786 #define m36    ((UINT64)0x0000000FFFFFFFFFull)  /* The low 36 of 64 bits */
787 
788 
789 /* ---------------------------------------------------------------------- */
790 
791 typedef struct uhash_ctx {
792     nh_ctx hash;                          /* Hash context for L1 NH hash  */
793     UINT64 poly_key_8[STREAMS];           /* p64 poly keys                */
794     UINT64 poly_accum[STREAMS];           /* poly hash result             */
795     UINT64 ip_keys[STREAMS*4];            /* Inner-product keys           */
796     UINT32 ip_trans[STREAMS];             /* Inner-product translation    */
797     UINT32 msg_len;                       /* Total length of data passed  */
798                                           /* to uhash */
799 } uhash_ctx;
800 typedef struct uhash_ctx *uhash_ctx_t;
801 
802 /* ---------------------------------------------------------------------- */
803 
804 
805 /* The polynomial hashes use Horner's rule to evaluate a polynomial one
806  * word at a time. As described in the specification, poly32 and poly64
807  * require keys from special domains. The following implementations exploit
808  * the special domains to avoid overflow. The results are not guaranteed to
809  * be within Z_p32 and Z_p64, but the Inner-Product hash implementation
810  * patches any errant values.
811  */
812 
813 static UINT64 poly64(UINT64 cur, UINT64 key, UINT64 data)
814 {
815     UINT32 key_hi = (UINT32)(key >> 32),
816            key_lo = (UINT32)key,
817            cur_hi = (UINT32)(cur >> 32),
818            cur_lo = (UINT32)cur,
819            x_lo,
820            x_hi;
821     UINT64 X,T,res;
822 
823     X =  MUL64(key_hi, cur_lo) + MUL64(cur_hi, key_lo);
824     x_lo = (UINT32)X;
825     x_hi = (UINT32)(X >> 32);
826 
827     res = (MUL64(key_hi, cur_hi) + x_hi) * 59 + MUL64(key_lo, cur_lo);
828 
829     T = ((UINT64)x_lo << 32);
830     res += T;
831     if (res < T)
832         res += 59;
833 
834     res += data;
835     if (res < data)
836         res += 59;
837 
838     return res;
839 }
840 
841 
842 /* Although UMAC is specified to use a ramped polynomial hash scheme, this
843  * implementation does not handle all ramp levels. Because we don't handle
844  * the ramp up to p128 modulus in this implementation, we are limited to
845  * 2^14 poly_hash() invocations per stream (for a total capacity of 2^24
846  * bytes input to UMAC per tag, ie. 16MB).
847  */
848 static void poly_hash(uhash_ctx_t hc, UINT32 data_in[])
849 {
850     int i;
851     UINT64 *data=(UINT64*)data_in;
852 
853     for (i = 0; i < STREAMS; i++) {
854         if ((UINT32)(data[i] >> 32) == 0xfffffffful) {
855             hc->poly_accum[i] = poly64(hc->poly_accum[i],
856                                        hc->poly_key_8[i], p64 - 1);
857             hc->poly_accum[i] = poly64(hc->poly_accum[i],
858                                        hc->poly_key_8[i], (data[i] - 59));
859         } else {
860             hc->poly_accum[i] = poly64(hc->poly_accum[i],
861                                        hc->poly_key_8[i], data[i]);
862         }
863     }
864 }
865 
866 
867 /* ---------------------------------------------------------------------- */
868 
869 
870 /* The final step in UHASH is an inner-product hash. The poly hash
871  * produces a result not neccesarily WORD_LEN bytes long. The inner-
872  * product hash breaks the polyhash output into 16-bit chunks and
873  * multiplies each with a 36 bit key.
874  */
875 
876 static UINT64 ip_aux(UINT64 t, UINT64 *ipkp, UINT64 data)
877 {
878     t = t + ipkp[0] * (UINT64)(UINT16)(data >> 48);
879     t = t + ipkp[1] * (UINT64)(UINT16)(data >> 32);
880     t = t + ipkp[2] * (UINT64)(UINT16)(data >> 16);
881     t = t + ipkp[3] * (UINT64)(UINT16)(data);
882 
883     return t;
884 }
885 
886 static UINT32 ip_reduce_p36(UINT64 t)
887 {
888 /* Divisionless modular reduction */
889     UINT64 ret;
890 
891     ret = (t & m36) + 5 * (t >> 36);
892     if (ret >= p36)
893         ret -= p36;
894 
895     /* return least significant 32 bits */
896     return (UINT32)(ret);
897 }
898 
899 
900 /* If the data being hashed by UHASH is no longer than L1_KEY_LEN, then
901  * the polyhash stage is skipped and ip_short is applied directly to the
902  * NH output.
903  */
904 static void ip_short(uhash_ctx_t ahc, UINT8 *nh_res, u_char *res)
905 {
906     UINT64 t;
907     UINT64 *nhp = (UINT64 *)nh_res;
908 
909     t  = ip_aux(0,ahc->ip_keys, nhp[0]);
910     STORE_UINT32_BIG((UINT32 *)res+0, ip_reduce_p36(t) ^ ahc->ip_trans[0]);
911 #if (UMAC_OUTPUT_LEN >= 8)
912     t  = ip_aux(0,ahc->ip_keys+4, nhp[1]);
913     STORE_UINT32_BIG((UINT32 *)res+1, ip_reduce_p36(t) ^ ahc->ip_trans[1]);
914 #endif
915 #if (UMAC_OUTPUT_LEN >= 12)
916     t  = ip_aux(0,ahc->ip_keys+8, nhp[2]);
917     STORE_UINT32_BIG((UINT32 *)res+2, ip_reduce_p36(t) ^ ahc->ip_trans[2]);
918 #endif
919 #if (UMAC_OUTPUT_LEN == 16)
920     t  = ip_aux(0,ahc->ip_keys+12, nhp[3]);
921     STORE_UINT32_BIG((UINT32 *)res+3, ip_reduce_p36(t) ^ ahc->ip_trans[3]);
922 #endif
923 }
924 
925 /* If the data being hashed by UHASH is longer than L1_KEY_LEN, then
926  * the polyhash stage is not skipped and ip_long is applied to the
927  * polyhash output.
928  */
929 static void ip_long(uhash_ctx_t ahc, u_char *res)
930 {
931     int i;
932     UINT64 t;
933 
934     for (i = 0; i < STREAMS; i++) {
935         /* fix polyhash output not in Z_p64 */
936         if (ahc->poly_accum[i] >= p64)
937             ahc->poly_accum[i] -= p64;
938         t  = ip_aux(0,ahc->ip_keys+(i*4), ahc->poly_accum[i]);
939         STORE_UINT32_BIG((UINT32 *)res+i,
940                          ip_reduce_p36(t) ^ ahc->ip_trans[i]);
941     }
942 }
943 
944 
945 /* ---------------------------------------------------------------------- */
946 
947 /* ---------------------------------------------------------------------- */
948 
949 /* Reset uhash context for next hash session */
950 static int uhash_reset(uhash_ctx_t pc)
951 {
952     nh_reset(&pc->hash);
953     pc->msg_len = 0;
954     pc->poly_accum[0] = 1;
955 #if (UMAC_OUTPUT_LEN >= 8)
956     pc->poly_accum[1] = 1;
957 #endif
958 #if (UMAC_OUTPUT_LEN >= 12)
959     pc->poly_accum[2] = 1;
960 #endif
961 #if (UMAC_OUTPUT_LEN == 16)
962     pc->poly_accum[3] = 1;
963 #endif
964     return 1;
965 }
966 
967 /* ---------------------------------------------------------------------- */
968 
969 /* Given a pointer to the internal key needed by kdf() and a uhash context,
970  * initialize the NH context and generate keys needed for poly and inner-
971  * product hashing. All keys are endian adjusted in memory so that native
972  * loads cause correct keys to be in registers during calculation.
973  */
974 static void uhash_init(uhash_ctx_t ahc, aes_int_key prf_key)
975 {
976     int i;
977     UINT8 buf[(8*STREAMS+4)*sizeof(UINT64)];
978 
979     /* Zero the entire uhash context */
980     memset(ahc, 0, sizeof(uhash_ctx));
981 
982     /* Initialize the L1 hash */
983     nh_init(&ahc->hash, prf_key);
984 
985     /* Setup L2 hash variables */
986     kdf(buf, prf_key, 2, sizeof(buf));    /* Fill buffer with index 1 key */
987     for (i = 0; i < STREAMS; i++) {
988         /* Fill keys from the buffer, skipping bytes in the buffer not
989          * used by this implementation. Endian reverse the keys if on a
990          * little-endian computer.
991          */
992         memcpy(ahc->poly_key_8+i, buf+24*i, 8);
993         endian_convert_if_le(ahc->poly_key_8+i, 8, 8);
994         /* Mask the 64-bit keys to their special domain */
995         ahc->poly_key_8[i] &= ((UINT64)0x01ffffffu << 32) + 0x01ffffffu;
996         ahc->poly_accum[i] = 1;  /* Our polyhash prepends a non-zero word */
997     }
998 
999     /* Setup L3-1 hash variables */
1000     kdf(buf, prf_key, 3, sizeof(buf)); /* Fill buffer with index 2 key */
1001     for (i = 0; i < STREAMS; i++)
1002           memcpy(ahc->ip_keys+4*i, buf+(8*i+4)*sizeof(UINT64),
1003                                                  4*sizeof(UINT64));
1004     endian_convert_if_le(ahc->ip_keys, sizeof(UINT64),
1005                                                   sizeof(ahc->ip_keys));
1006     for (i = 0; i < STREAMS*4; i++)
1007         ahc->ip_keys[i] %= p36;  /* Bring into Z_p36 */
1008 
1009     /* Setup L3-2 hash variables    */
1010     /* Fill buffer with index 4 key */
1011     kdf(ahc->ip_trans, prf_key, 4, STREAMS * sizeof(UINT32));
1012     endian_convert_if_le(ahc->ip_trans, sizeof(UINT32),
1013                          STREAMS * sizeof(UINT32));
1014 }
1015 
1016 /* ---------------------------------------------------------------------- */
1017 
1018 #if 0
1019 static uhash_ctx_t uhash_alloc(u_char key[])
1020 {
1021 /* Allocate memory and force to a 16-byte boundary. */
1022     uhash_ctx_t ctx;
1023     u_char bytes_to_add;
1024     aes_int_key prf_key;
1025 
1026     ctx = (uhash_ctx_t)malloc(sizeof(uhash_ctx)+ALLOC_BOUNDARY);
1027     if (ctx) {
1028         if (ALLOC_BOUNDARY) {
1029             bytes_to_add = ALLOC_BOUNDARY -
1030                               ((ptrdiff_t)ctx & (ALLOC_BOUNDARY -1));
1031             ctx = (uhash_ctx_t)((u_char *)ctx + bytes_to_add);
1032             *((u_char *)ctx - 1) = bytes_to_add;
1033         }
1034         aes_key_setup(key,prf_key);
1035         uhash_init(ctx, prf_key);
1036     }
1037     return (ctx);
1038 }
1039 #endif
1040 
1041 /* ---------------------------------------------------------------------- */
1042 
1043 #if 0
1044 static int uhash_free(uhash_ctx_t ctx)
1045 {
1046 /* Free memory allocated by uhash_alloc */
1047     u_char bytes_to_sub;
1048 
1049     if (ctx) {
1050         if (ALLOC_BOUNDARY) {
1051             bytes_to_sub = *((u_char *)ctx - 1);
1052             ctx = (uhash_ctx_t)((u_char *)ctx - bytes_to_sub);
1053         }
1054         free(ctx);
1055     }
1056     return (1);
1057 }
1058 #endif
1059 /* ---------------------------------------------------------------------- */
1060 
1061 static int uhash_update(uhash_ctx_t ctx, const u_char *input, long len)
1062 /* Given len bytes of data, we parse it into L1_KEY_LEN chunks and
1063  * hash each one with NH, calling the polyhash on each NH output.
1064  */
1065 {
1066     UWORD bytes_hashed, bytes_remaining;
1067     UINT64 result_buf[STREAMS];
1068     UINT8 *nh_result = (UINT8 *)&result_buf;
1069 
1070     if (ctx->msg_len + len <= L1_KEY_LEN) {
1071         nh_update(&ctx->hash, (const UINT8 *)input, len);
1072         ctx->msg_len += len;
1073     } else {
1074 
1075          bytes_hashed = ctx->msg_len % L1_KEY_LEN;
1076          if (ctx->msg_len == L1_KEY_LEN)
1077              bytes_hashed = L1_KEY_LEN;
1078 
1079          if (bytes_hashed + len >= L1_KEY_LEN) {
1080 
1081              /* If some bytes have been passed to the hash function      */
1082              /* then we want to pass at most (L1_KEY_LEN - bytes_hashed) */
1083              /* bytes to complete the current nh_block.                  */
1084              if (bytes_hashed) {
1085                  bytes_remaining = (L1_KEY_LEN - bytes_hashed);
1086                  nh_update(&ctx->hash, (const UINT8 *)input, bytes_remaining);
1087                  nh_final(&ctx->hash, nh_result);
1088                  ctx->msg_len += bytes_remaining;
1089                  poly_hash(ctx,(UINT32 *)nh_result);
1090                  len -= bytes_remaining;
1091                  input += bytes_remaining;
1092              }
1093 
1094              /* Hash directly from input stream if enough bytes */
1095              while (len >= L1_KEY_LEN) {
1096                  nh(&ctx->hash, (const UINT8 *)input, L1_KEY_LEN,
1097                                    L1_KEY_LEN, nh_result);
1098                  ctx->msg_len += L1_KEY_LEN;
1099                  len -= L1_KEY_LEN;
1100                  input += L1_KEY_LEN;
1101                  poly_hash(ctx,(UINT32 *)nh_result);
1102              }
1103          }
1104 
1105          /* pass remaining < L1_KEY_LEN bytes of input data to NH */
1106          if (len) {
1107              nh_update(&ctx->hash, (const UINT8 *)input, len);
1108              ctx->msg_len += len;
1109          }
1110      }
1111 
1112     return (1);
1113 }
1114 
1115 /* ---------------------------------------------------------------------- */
1116 
1117 static int uhash_final(uhash_ctx_t ctx, u_char *res)
1118 /* Incorporate any pending data, pad, and generate tag */
1119 {
1120     UINT64 result_buf[STREAMS];
1121     UINT8 *nh_result = (UINT8 *)&result_buf;
1122 
1123     if (ctx->msg_len > L1_KEY_LEN) {
1124         if (ctx->msg_len % L1_KEY_LEN) {
1125             nh_final(&ctx->hash, nh_result);
1126             poly_hash(ctx,(UINT32 *)nh_result);
1127         }
1128         ip_long(ctx, res);
1129     } else {
1130         nh_final(&ctx->hash, nh_result);
1131         ip_short(ctx,nh_result, res);
1132     }
1133     uhash_reset(ctx);
1134     return (1);
1135 }
1136 
1137 /* ---------------------------------------------------------------------- */
1138 
1139 #if 0
1140 static int uhash(uhash_ctx_t ahc, u_char *msg, long len, u_char *res)
1141 /* assumes that msg is in a writable buffer of length divisible by */
1142 /* L1_PAD_BOUNDARY. Bytes beyond msg[len] may be zeroed.           */
1143 {
1144     UINT8 nh_result[STREAMS*sizeof(UINT64)];
1145     UINT32 nh_len;
1146     int extra_zeroes_needed;
1147 
1148     /* If the message to be hashed is no longer than L1_HASH_LEN, we skip
1149      * the polyhash.
1150      */
1151     if (len <= L1_KEY_LEN) {
1152     	if (len == 0)                  /* If zero length messages will not */
1153     		nh_len = L1_PAD_BOUNDARY;  /* be seen, comment out this case   */
1154     	else
1155         	nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1));
1156         extra_zeroes_needed = nh_len - len;
1157         zero_pad((UINT8 *)msg + len, extra_zeroes_needed);
1158         nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result);
1159         ip_short(ahc,nh_result, res);
1160     } else {
1161         /* Otherwise, we hash each L1_KEY_LEN chunk with NH, passing the NH
1162          * output to poly_hash().
1163          */
1164         do {
1165             nh(&ahc->hash, (UINT8 *)msg, L1_KEY_LEN, L1_KEY_LEN, nh_result);
1166             poly_hash(ahc,(UINT32 *)nh_result);
1167             len -= L1_KEY_LEN;
1168             msg += L1_KEY_LEN;
1169         } while (len >= L1_KEY_LEN);
1170         if (len) {
1171             nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1));
1172             extra_zeroes_needed = nh_len - len;
1173             zero_pad((UINT8 *)msg + len, extra_zeroes_needed);
1174             nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result);
1175             poly_hash(ahc,(UINT32 *)nh_result);
1176         }
1177 
1178         ip_long(ahc, res);
1179     }
1180 
1181     uhash_reset(ahc);
1182     return 1;
1183 }
1184 #endif
1185 
1186 /* ---------------------------------------------------------------------- */
1187 /* ---------------------------------------------------------------------- */
1188 /* ----- Begin UMAC Section --------------------------------------------- */
1189 /* ---------------------------------------------------------------------- */
1190 /* ---------------------------------------------------------------------- */
1191 
1192 /* The UMAC interface has two interfaces, an all-at-once interface where
1193  * the entire message to be authenticated is passed to UMAC in one buffer,
1194  * and a sequential interface where the message is presented a little at a
1195  * time. The all-at-once is more optimaized than the sequential version and
1196  * should be preferred when the sequential interface is not required.
1197  */
1198 struct umac_ctx {
1199     uhash_ctx hash;          /* Hash function for message compression    */
1200     pdf_ctx pdf;             /* PDF for hashed output                    */
1201     void *free_ptr;          /* Address to free this struct via          */
1202 } umac_ctx;
1203 
1204 /* ---------------------------------------------------------------------- */
1205 
1206 #if 0
1207 int umac_reset(struct umac_ctx *ctx)
1208 /* Reset the hash function to begin a new authentication.        */
1209 {
1210     uhash_reset(&ctx->hash);
1211     return (1);
1212 }
1213 #endif
1214 
1215 /* ---------------------------------------------------------------------- */
1216 
1217 int umac_delete(struct umac_ctx *ctx)
1218 /* Deallocate the ctx structure */
1219 {
1220     if (ctx) {
1221         if (ALLOC_BOUNDARY)
1222             ctx = (struct umac_ctx *)ctx->free_ptr;
1223         free(ctx);
1224     }
1225     return (1);
1226 }
1227 
1228 /* ---------------------------------------------------------------------- */
1229 
1230 struct umac_ctx *umac_new(const u_char key[])
1231 /* Dynamically allocate a umac_ctx struct, initialize variables,
1232  * generate subkeys from key. Align to 16-byte boundary.
1233  */
1234 {
1235     struct umac_ctx *ctx, *octx;
1236     size_t bytes_to_add;
1237     aes_int_key prf_key;
1238 
1239     octx = ctx = xcalloc(1, sizeof(*ctx) + ALLOC_BOUNDARY);
1240     if (ctx) {
1241         if (ALLOC_BOUNDARY) {
1242             bytes_to_add = ALLOC_BOUNDARY -
1243                               ((ptrdiff_t)ctx & (ALLOC_BOUNDARY - 1));
1244             ctx = (struct umac_ctx *)((u_char *)ctx + bytes_to_add);
1245         }
1246         ctx->free_ptr = octx;
1247         aes_key_setup(key, prf_key);
1248         pdf_init(&ctx->pdf, prf_key);
1249         uhash_init(&ctx->hash, prf_key);
1250     }
1251 
1252     return (ctx);
1253 }
1254 
1255 /* ---------------------------------------------------------------------- */
1256 
1257 int umac_final(struct umac_ctx *ctx, u_char tag[], const u_char nonce[8])
1258 /* Incorporate any pending data, pad, and generate tag */
1259 {
1260     uhash_final(&ctx->hash, (u_char *)tag);
1261     pdf_gen_xor(&ctx->pdf, (const UINT8 *)nonce, (UINT8 *)tag);
1262 
1263     return (1);
1264 }
1265 
1266 /* ---------------------------------------------------------------------- */
1267 
1268 int umac_update(struct umac_ctx *ctx, const u_char *input, long len)
1269 /* Given len bytes of data, we parse it into L1_KEY_LEN chunks and   */
1270 /* hash each one, calling the PDF on the hashed output whenever the hash- */
1271 /* output buffer is full.                                                 */
1272 {
1273     uhash_update(&ctx->hash, input, len);
1274     return (1);
1275 }
1276 
1277 /* ---------------------------------------------------------------------- */
1278 
1279 #if 0
1280 int umac(struct umac_ctx *ctx, u_char *input,
1281          long len, u_char tag[],
1282          u_char nonce[8])
1283 /* All-in-one version simply calls umac_update() and umac_final().        */
1284 {
1285     uhash(&ctx->hash, input, len, (u_char *)tag);
1286     pdf_gen_xor(&ctx->pdf, (UINT8 *)nonce, (UINT8 *)tag);
1287 
1288     return (1);
1289 }
1290 #endif
1291 
1292 /* ---------------------------------------------------------------------- */
1293 /* ---------------------------------------------------------------------- */
1294 /* ----- End UMAC Section ----------------------------------------------- */
1295 /* ---------------------------------------------------------------------- */
1296 /* ---------------------------------------------------------------------- */
1297