xref: /netbsd-src/crypto/external/bsd/openssh/dist/umac.c (revision cef8759bd76c1b621f8eab8faa6f208faabc2e15)
1 /*	$NetBSD: umac.c,v 1.19 2020/05/28 17:05:49 christos Exp $	*/
2 /* $OpenBSD: umac.c,v 1.20 2020/03/13 03:17:07 djm Exp $ */
3 /* -----------------------------------------------------------------------
4  *
5  * umac.c -- C Implementation UMAC Message Authentication
6  *
7  * Version 0.93b of rfc4418.txt -- 2006 July 18
8  *
9  * For a full description of UMAC message authentication see the UMAC
10  * world-wide-web page at http://www.cs.ucdavis.edu/~rogaway/umac
11  * Please report bugs and suggestions to the UMAC webpage.
12  *
13  * Copyright (c) 1999-2006 Ted Krovetz
14  *
15  * Permission to use, copy, modify, and distribute this software and
16  * its documentation for any purpose and with or without fee, is hereby
17  * granted provided that the above copyright notice appears in all copies
18  * and in supporting documentation, and that the name of the copyright
19  * holder not be used in advertising or publicity pertaining to
20  * distribution of the software without specific, written prior permission.
21  *
22  * Comments should be directed to Ted Krovetz (tdk@acm.org)
23  *
24  * ---------------------------------------------------------------------- */
25 
26  /* ////////////////////// IMPORTANT NOTES /////////////////////////////////
27   *
28   * 1) This version does not work properly on messages larger than 16MB
29   *
30   * 2) If you set the switch to use SSE2, then all data must be 16-byte
31   *    aligned
32   *
33   * 3) When calling the function umac(), it is assumed that msg is in
34   * a writable buffer of length divisible by 32 bytes. The message itself
35   * does not have to fill the entire buffer, but bytes beyond msg may be
36   * zeroed.
37   *
38   * 4) Three free AES implementations are supported by this implementation of
39   * UMAC. Paulo Barreto's version is in the public domain and can be found
40   * at http://www.esat.kuleuven.ac.be/~rijmen/rijndael/ (search for
41   * "Barreto"). The only two files needed are rijndael-alg-fst.c and
42   * rijndael-alg-fst.h. Brian Gladman's version is distributed with the GNU
43   * Public license at http://fp.gladman.plus.com/AES/index.htm. It
44   * includes a fast IA-32 assembly version. The OpenSSL crypo library is
45   * the third.
46   *
47   * 5) With FORCE_C_ONLY flags set to 0, incorrect results are sometimes
48   * produced under gcc with optimizations set -O3 or higher. Dunno why.
49   *
50   /////////////////////////////////////////////////////////////////////// */
51 
52 /* ---------------------------------------------------------------------- */
53 /* --- User Switches ---------------------------------------------------- */
54 /* ---------------------------------------------------------------------- */
55 
56 #ifndef UMAC_OUTPUT_LEN
57 #define UMAC_OUTPUT_LEN     8  /* Alowable: 4, 8, 12, 16                  */
58 #endif
59 /* #define FORCE_C_ONLY        1  ANSI C and 64-bit integers req'd        */
60 /* #define AES_IMPLEMENTAION   1  1 = OpenSSL, 2 = Barreto, 3 = Gladman   */
61 /* #define SSE2                0  Is SSE2 is available?                   */
62 /* #define RUN_TESTS           0  Run basic correctness/speed tests       */
63 /* #define UMAC_AE_SUPPORT     0  Enable authenticated encryption         */
64 
65 /* ---------------------------------------------------------------------- */
66 /* -- Global Includes --------------------------------------------------- */
67 /* ---------------------------------------------------------------------- */
68 
69 #include "includes.h"
70 __RCSID("$NetBSD: umac.c,v 1.19 2020/05/28 17:05:49 christos Exp $");
71 #include <sys/types.h>
72 #include <sys/endian.h>
73 #include <string.h>
74 #include <stdarg.h>
75 #include <stdio.h>
76 #include <stdlib.h>
77 #include <stddef.h>
78 #include <time.h>
79 
80 #include "xmalloc.h"
81 #include "umac.h"
82 #include "misc.h"
83 
84 /* ---------------------------------------------------------------------- */
85 /* --- Primitive Data Types ---                                           */
86 /* ---------------------------------------------------------------------- */
87 
88 /* The following assumptions may need change on your system */
89 typedef u_int8_t	UINT8;  /* 1 byte   */
90 typedef u_int16_t	UINT16; /* 2 byte   */
91 typedef u_int32_t	UINT32; /* 4 byte   */
92 typedef u_int64_t	UINT64; /* 8 bytes  */
93 typedef unsigned int	UWORD;  /* Register */
94 
95 /* ---------------------------------------------------------------------- */
96 /* --- Constants -------------------------------------------------------- */
97 /* ---------------------------------------------------------------------- */
98 
99 #define UMAC_KEY_LEN           16  /* UMAC takes 16 bytes of external key */
100 
101 /* Message "words" are read from memory in an endian-specific manner.     */
102 /* For this implementation to behave correctly, __LITTLE_ENDIAN__ must    */
103 /* be set true if the host computer is little-endian.                     */
104 
105 #if BYTE_ORDER == LITTLE_ENDIAN
106 #define __LITTLE_ENDIAN__ 1
107 #else
108 #define __LITTLE_ENDIAN__ 0
109 #endif
110 
111 /* ---------------------------------------------------------------------- */
112 /* ---------------------------------------------------------------------- */
113 /* ----- Architecture Specific ------------------------------------------ */
114 /* ---------------------------------------------------------------------- */
115 /* ---------------------------------------------------------------------- */
116 
117 
118 /* ---------------------------------------------------------------------- */
119 /* ---------------------------------------------------------------------- */
120 /* ----- Primitive Routines --------------------------------------------- */
121 /* ---------------------------------------------------------------------- */
122 /* ---------------------------------------------------------------------- */
123 
124 
125 /* ---------------------------------------------------------------------- */
126 /* --- 32-bit by 32-bit to 64-bit Multiplication ------------------------ */
127 /* ---------------------------------------------------------------------- */
128 
129 #define MUL64(a,b) ((UINT64)((UINT64)(UINT32)(a) * (UINT64)(UINT32)(b)))
130 
131 /* ---------------------------------------------------------------------- */
132 /* --- Endian Conversion --- Forcing assembly on some platforms           */
133 /* ---------------------------------------------------------------------- */
134 
135 /* The following definitions use the above reversal-primitives to do the right
136  * thing on endian specific load and stores.
137  */
138 
139 #if BYTE_ORDER == LITTLE_ENDIAN
140 #define LOAD_UINT32_REVERSED(p)		get_u32(p)
141 #define STORE_UINT32_REVERSED(p,v)	put_u32(p,v)
142 #else
143 #define LOAD_UINT32_REVERSED(p)		get_u32_le(p)
144 #define STORE_UINT32_REVERSED(p,v)	put_u32_le(p,v)
145 #endif
146 
147 #define LOAD_UINT32_LITTLE(p)           (get_u32_le(p))
148 #define STORE_UINT32_BIG(p,v)           put_u32(p, v)
149 
150 
151 
152 /* ---------------------------------------------------------------------- */
153 /* ---------------------------------------------------------------------- */
154 /* ----- Begin KDF & PDF Section ---------------------------------------- */
155 /* ---------------------------------------------------------------------- */
156 /* ---------------------------------------------------------------------- */
157 
158 /* UMAC uses AES with 16 byte block and key lengths */
159 #define AES_BLOCK_LEN  16
160 
161 #ifdef WITH_OPENSSL
162 #include <openssl/aes.h>
163 typedef AES_KEY aes_int_key[1];
164 #define aes_encryption(in,out,int_key)                  \
165   AES_encrypt((u_char *)(in),(u_char *)(out),(AES_KEY *)int_key)
166 #define aes_key_setup(key,int_key)                      \
167   AES_set_encrypt_key((const u_char *)(key),UMAC_KEY_LEN*8,int_key)
168 #else
169 #include "rijndael.h"
170 #define AES_ROUNDS ((UMAC_KEY_LEN / 4) + 6)
171 typedef UINT8 aes_int_key[AES_ROUNDS+1][4][4];	/* AES internal */
172 #define aes_encryption(in,out,int_key) \
173   rijndaelEncrypt((u32 *)(int_key), AES_ROUNDS, (u8 *)(in), (u8 *)(out))
174 #define aes_key_setup(key,int_key) \
175   rijndaelKeySetupEnc((u32 *)(int_key), (const unsigned char *)(key), \
176   UMAC_KEY_LEN*8)
177 #endif
178 
179 /* The user-supplied UMAC key is stretched using AES in a counter
180  * mode to supply all random bits needed by UMAC. The kdf function takes
181  * an AES internal key representation 'key' and writes a stream of
182  * 'nbytes' bytes to the memory pointed at by 'buffer_ptr'. Each distinct
183  * 'ndx' causes a distinct byte stream.
184  */
185 static void kdf(void *buffer_ptr, aes_int_key key, UINT8 ndx, int nbytes)
186 {
187     UINT8 in_buf[AES_BLOCK_LEN] = {0};
188     UINT8 out_buf[AES_BLOCK_LEN];
189     UINT8 *dst_buf = (UINT8 *)buffer_ptr;
190     int i;
191 
192     /* Setup the initial value */
193     in_buf[AES_BLOCK_LEN-9] = ndx;
194     in_buf[AES_BLOCK_LEN-1] = i = 1;
195 
196     while (nbytes >= AES_BLOCK_LEN) {
197         aes_encryption(in_buf, out_buf, key);
198         memcpy(dst_buf,out_buf,AES_BLOCK_LEN);
199         in_buf[AES_BLOCK_LEN-1] = ++i;
200         nbytes -= AES_BLOCK_LEN;
201         dst_buf += AES_BLOCK_LEN;
202     }
203     if (nbytes) {
204         aes_encryption(in_buf, out_buf, key);
205         memcpy(dst_buf,out_buf,nbytes);
206     }
207     explicit_bzero(in_buf, sizeof(in_buf));
208     explicit_bzero(out_buf, sizeof(out_buf));
209 }
210 
211 /* The final UHASH result is XOR'd with the output of a pseudorandom
212  * function. Here, we use AES to generate random output and
213  * xor the appropriate bytes depending on the last bits of nonce.
214  * This scheme is optimized for sequential, increasing big-endian nonces.
215  */
216 
217 typedef struct {
218     UINT8 cache[AES_BLOCK_LEN];  /* Previous AES output is saved      */
219     UINT8 nonce[AES_BLOCK_LEN];  /* The AES input making above cache  */
220     aes_int_key prf_key;         /* Expanded AES key for PDF          */
221 } pdf_ctx;
222 
223 static void pdf_init(pdf_ctx *pc, aes_int_key prf_key)
224 {
225     UINT8 buf[UMAC_KEY_LEN];
226 
227     kdf(buf, prf_key, 0, UMAC_KEY_LEN);
228     aes_key_setup(buf, pc->prf_key);
229 
230     /* Initialize pdf and cache */
231     memset(pc->nonce, 0, sizeof(pc->nonce));
232     aes_encryption(pc->nonce, pc->cache, pc->prf_key);
233     explicit_bzero(buf, sizeof(buf));
234 }
235 
236 static inline void
237 xor64(uint8_t *dp, int di, uint8_t *sp, int si)
238 {
239     uint64_t dst, src;
240     memcpy(&dst, dp + sizeof(dst) * di, sizeof(dst));
241     memcpy(&src, sp + sizeof(src) * si, sizeof(src));
242     dst ^= src;
243     memcpy(dp + sizeof(dst) * di, &dst, sizeof(dst));
244 }
245 
246 __unused static inline void
247 xor32(uint8_t *dp, int di, uint8_t *sp, int si)
248 {
249     uint32_t dst, src;
250     memcpy(&dst, dp + sizeof(dst) * di, sizeof(dst));
251     memcpy(&src, sp + sizeof(src) * si, sizeof(src));
252     dst ^= src;
253     memcpy(dp + sizeof(dst) * di, &dst, sizeof(dst));
254 }
255 
256 static void pdf_gen_xor(pdf_ctx *pc, const UINT8 nonce[8], UINT8 buf[8])
257 {
258     /* 'ndx' indicates that we'll be using the 0th or 1st eight bytes
259      * of the AES output. If last time around we returned the ndx-1st
260      * element, then we may have the result in the cache already.
261      */
262 
263 #if (UMAC_OUTPUT_LEN == 4)
264 #define LOW_BIT_MASK 3
265 #elif (UMAC_OUTPUT_LEN == 8)
266 #define LOW_BIT_MASK 1
267 #elif (UMAC_OUTPUT_LEN > 8)
268 #define LOW_BIT_MASK 0
269 #endif
270     union {
271         UINT8 tmp_nonce_lo[4];
272         UINT32 align;
273     } t;
274 #if LOW_BIT_MASK != 0
275     int ndx = nonce[7] & LOW_BIT_MASK;
276 #endif
277     memcpy(t.tmp_nonce_lo, nonce + 4, sizeof(t.tmp_nonce_lo));
278     t.tmp_nonce_lo[3] &= ~LOW_BIT_MASK; /* zero last bit */
279 
280     if (memcmp(t.tmp_nonce_lo, pc->nonce + 1, sizeof(t.tmp_nonce_lo)) != 0 ||
281          memcmp(nonce, pc->nonce, sizeof(t.tmp_nonce_lo)) != 0)
282     {
283 	memcpy(pc->nonce, nonce, sizeof(t.tmp_nonce_lo));
284 	memcpy(pc->nonce + 4, t.tmp_nonce_lo, sizeof(t.tmp_nonce_lo));
285         aes_encryption(pc->nonce, pc->cache, pc->prf_key);
286     }
287 
288 #if (UMAC_OUTPUT_LEN == 4)
289     xor32(buf, 0, pc->cache, ndx);
290 #elif (UMAC_OUTPUT_LEN == 8)
291     xor64(buf, 0, pc->cache, ndx);
292 #elif (UMAC_OUTPUT_LEN == 12)
293     xor64(buf, 0, pc->cache, 0);
294     xor32(buf, 2, pc->cache, 2);
295 #elif (UMAC_OUTPUT_LEN == 16)
296     xor64(buf, 0, pc->cache, 0);
297     xor64(buf, 1, pc->cache, 1);
298 #endif
299 }
300 
301 /* ---------------------------------------------------------------------- */
302 /* ---------------------------------------------------------------------- */
303 /* ----- Begin NH Hash Section ------------------------------------------ */
304 /* ---------------------------------------------------------------------- */
305 /* ---------------------------------------------------------------------- */
306 
307 /* The NH-based hash functions used in UMAC are described in the UMAC paper
308  * and specification, both of which can be found at the UMAC website.
309  * The interface to this implementation has two
310  * versions, one expects the entire message being hashed to be passed
311  * in a single buffer and returns the hash result immediately. The second
312  * allows the message to be passed in a sequence of buffers. In the
313  * muliple-buffer interface, the client calls the routine nh_update() as
314  * many times as necessary. When there is no more data to be fed to the
315  * hash, the client calls nh_final() which calculates the hash output.
316  * Before beginning another hash calculation the nh_reset() routine
317  * must be called. The single-buffer routine, nh(), is equivalent to
318  * the sequence of calls nh_update() and nh_final(); however it is
319  * optimized and should be preferred whenever the multiple-buffer interface
320  * is not necessary. When using either interface, it is the client's
321  * responsibility to pass no more than L1_KEY_LEN bytes per hash result.
322  *
323  * The routine nh_init() initializes the nh_ctx data structure and
324  * must be called once, before any other PDF routine.
325  */
326 
327  /* The "nh_aux" routines do the actual NH hashing work. They
328   * expect buffers to be multiples of L1_PAD_BOUNDARY. These routines
329   * produce output for all STREAMS NH iterations in one call,
330   * allowing the parallel implementation of the streams.
331   */
332 
333 #define STREAMS (UMAC_OUTPUT_LEN / 4) /* Number of times hash is applied  */
334 #define L1_KEY_LEN         1024     /* Internal key bytes                 */
335 #define L1_KEY_SHIFT         16     /* Toeplitz key shift between streams */
336 #define L1_PAD_BOUNDARY      32     /* pad message to boundary multiple   */
337 #define ALLOC_BOUNDARY       16     /* Keep buffers aligned to this       */
338 #define HASH_BUF_BYTES       64     /* nh_aux_hb buffer multiple          */
339 
340 typedef struct {
341     UINT8  nh_key [L1_KEY_LEN + L1_KEY_SHIFT * (STREAMS - 1)]; /* NH Key */
342     UINT8  data   [HASH_BUF_BYTES];    /* Incoming data buffer           */
343     int next_data_empty;    /* Bookkeeping variable for data buffer.     */
344     int bytes_hashed;       /* Bytes (out of L1_KEY_LEN) incorporated.   */
345     UINT64 state[STREAMS];               /* on-line state     */
346 } nh_ctx;
347 
348 
349 #if (UMAC_OUTPUT_LEN == 4)
350 
351 static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
352 /* NH hashing primitive. Previous (partial) hash result is loaded and
353 * then stored via hp pointer. The length of the data pointed at by "dp",
354 * "dlen", is guaranteed to be divisible by L1_PAD_BOUNDARY (32).  Key
355 * is expected to be endian compensated in memory at key setup.
356 */
357 {
358     UINT64 h;
359     UWORD c = dlen / 32;
360     UINT32 *k = (UINT32 *)kp;
361     const UINT32 *d = (const UINT32 *)dp;
362     UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
363     UINT32 k0,k1,k2,k3,k4,k5,k6,k7;
364 
365     h = *((UINT64 *)hp);
366     do {
367         d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
368         d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
369         d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
370         d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
371         k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
372         k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
373         h += MUL64((k0 + d0), (k4 + d4));
374         h += MUL64((k1 + d1), (k5 + d5));
375         h += MUL64((k2 + d2), (k6 + d6));
376         h += MUL64((k3 + d3), (k7 + d7));
377 
378         d += 8;
379         k += 8;
380     } while (--c);
381   *((UINT64 *)hp) = h;
382 }
383 
384 #elif (UMAC_OUTPUT_LEN == 8)
385 
386 static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
387 /* Same as previous nh_aux, but two streams are handled in one pass,
388  * reading and writing 16 bytes of hash-state per call.
389  */
390 {
391   UINT64 h1,h2;
392   UWORD c = dlen / 32;
393   UINT32 *k = (UINT32 *)kp;
394   const UINT32 *d = (const UINT32 *)dp;
395   UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
396   UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
397         k8,k9,k10,k11;
398 
399   h1 = *((UINT64 *)hp);
400   h2 = *((UINT64 *)hp + 1);
401   k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
402   do {
403     d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
404     d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
405     d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
406     d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
407     k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
408     k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
409 
410     h1 += MUL64((k0 + d0), (k4 + d4));
411     h2 += MUL64((k4 + d0), (k8 + d4));
412 
413     h1 += MUL64((k1 + d1), (k5 + d5));
414     h2 += MUL64((k5 + d1), (k9 + d5));
415 
416     h1 += MUL64((k2 + d2), (k6 + d6));
417     h2 += MUL64((k6 + d2), (k10 + d6));
418 
419     h1 += MUL64((k3 + d3), (k7 + d7));
420     h2 += MUL64((k7 + d3), (k11 + d7));
421 
422     k0 = k8; k1 = k9; k2 = k10; k3 = k11;
423 
424     d += 8;
425     k += 8;
426   } while (--c);
427   ((UINT64 *)hp)[0] = h1;
428   ((UINT64 *)hp)[1] = h2;
429 }
430 
431 #elif (UMAC_OUTPUT_LEN == 12)
432 
433 static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
434 /* Same as previous nh_aux, but two streams are handled in one pass,
435  * reading and writing 24 bytes of hash-state per call.
436 */
437 {
438     UINT64 h1,h2,h3;
439     UWORD c = dlen / 32;
440     UINT32 *k = (UINT32 *)kp;
441     const UINT32 *d = (const UINT32 *)dp;
442     UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
443     UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
444         k8,k9,k10,k11,k12,k13,k14,k15;
445 
446     h1 = *((UINT64 *)hp);
447     h2 = *((UINT64 *)hp + 1);
448     h3 = *((UINT64 *)hp + 2);
449     k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
450     k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
451     do {
452         d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
453         d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
454         d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
455         d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
456         k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
457         k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15);
458 
459         h1 += MUL64((k0 + d0), (k4 + d4));
460         h2 += MUL64((k4 + d0), (k8 + d4));
461         h3 += MUL64((k8 + d0), (k12 + d4));
462 
463         h1 += MUL64((k1 + d1), (k5 + d5));
464         h2 += MUL64((k5 + d1), (k9 + d5));
465         h3 += MUL64((k9 + d1), (k13 + d5));
466 
467         h1 += MUL64((k2 + d2), (k6 + d6));
468         h2 += MUL64((k6 + d2), (k10 + d6));
469         h3 += MUL64((k10 + d2), (k14 + d6));
470 
471         h1 += MUL64((k3 + d3), (k7 + d7));
472         h2 += MUL64((k7 + d3), (k11 + d7));
473         h3 += MUL64((k11 + d3), (k15 + d7));
474 
475         k0 = k8; k1 = k9; k2 = k10; k3 = k11;
476         k4 = k12; k5 = k13; k6 = k14; k7 = k15;
477 
478         d += 8;
479         k += 8;
480     } while (--c);
481     ((UINT64 *)hp)[0] = h1;
482     ((UINT64 *)hp)[1] = h2;
483     ((UINT64 *)hp)[2] = h3;
484 }
485 
486 #elif (UMAC_OUTPUT_LEN == 16)
487 
488 static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
489 /* Same as previous nh_aux, but two streams are handled in one pass,
490  * reading and writing 24 bytes of hash-state per call.
491 */
492 {
493     UINT64 h1,h2,h3,h4;
494     UWORD c = dlen / 32;
495     UINT32 *k = (UINT32 *)kp;
496     const UINT32 *d = (const UINT32 *)dp;
497     UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
498     UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
499         k8,k9,k10,k11,k12,k13,k14,k15,
500         k16,k17,k18,k19;
501 
502     h1 = *((UINT64 *)hp);
503     h2 = *((UINT64 *)hp + 1);
504     h3 = *((UINT64 *)hp + 2);
505     h4 = *((UINT64 *)hp + 3);
506     k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
507     k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
508     do {
509         d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
510         d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
511         d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
512         d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
513         k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
514         k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15);
515         k16 = *(k+16); k17 = *(k+17); k18 = *(k+18); k19 = *(k+19);
516 
517         h1 += MUL64((k0 + d0), (k4 + d4));
518         h2 += MUL64((k4 + d0), (k8 + d4));
519         h3 += MUL64((k8 + d0), (k12 + d4));
520         h4 += MUL64((k12 + d0), (k16 + d4));
521 
522         h1 += MUL64((k1 + d1), (k5 + d5));
523         h2 += MUL64((k5 + d1), (k9 + d5));
524         h3 += MUL64((k9 + d1), (k13 + d5));
525         h4 += MUL64((k13 + d1), (k17 + d5));
526 
527         h1 += MUL64((k2 + d2), (k6 + d6));
528         h2 += MUL64((k6 + d2), (k10 + d6));
529         h3 += MUL64((k10 + d2), (k14 + d6));
530         h4 += MUL64((k14 + d2), (k18 + d6));
531 
532         h1 += MUL64((k3 + d3), (k7 + d7));
533         h2 += MUL64((k7 + d3), (k11 + d7));
534         h3 += MUL64((k11 + d3), (k15 + d7));
535         h4 += MUL64((k15 + d3), (k19 + d7));
536 
537         k0 = k8; k1 = k9; k2 = k10; k3 = k11;
538         k4 = k12; k5 = k13; k6 = k14; k7 = k15;
539         k8 = k16; k9 = k17; k10 = k18; k11 = k19;
540 
541         d += 8;
542         k += 8;
543     } while (--c);
544     ((UINT64 *)hp)[0] = h1;
545     ((UINT64 *)hp)[1] = h2;
546     ((UINT64 *)hp)[2] = h3;
547     ((UINT64 *)hp)[3] = h4;
548 }
549 
550 /* ---------------------------------------------------------------------- */
551 #endif  /* UMAC_OUTPUT_LENGTH */
552 /* ---------------------------------------------------------------------- */
553 
554 
555 /* ---------------------------------------------------------------------- */
556 
557 static void nh_transform(nh_ctx *hc, const UINT8 *buf, UINT32 nbytes)
558 /* This function is a wrapper for the primitive NH hash functions. It takes
559  * as argument "hc" the current hash context and a buffer which must be a
560  * multiple of L1_PAD_BOUNDARY. The key passed to nh_aux is offset
561  * appropriately according to how much message has been hashed already.
562  */
563 {
564     UINT8 *key;
565 
566     key = hc->nh_key + hc->bytes_hashed;
567     nh_aux(key, buf, hc->state, nbytes);
568 }
569 
570 /* ---------------------------------------------------------------------- */
571 
572 #if (__LITTLE_ENDIAN__)
573 static void endian_convert(void *buf, UWORD bpw, UINT32 num_bytes)
574 /* We endian convert the keys on little-endian computers to               */
575 /* compensate for the lack of big-endian memory reads during hashing.     */
576 {
577     UWORD iters = num_bytes / bpw;
578     if (bpw == 4) {
579         UINT32 *p = (UINT32 *)buf;
580         do {
581             *p = LOAD_UINT32_REVERSED(p);
582             p++;
583         } while (--iters);
584     } else if (bpw == 8) {
585         UINT64 *p = (UINT64 *)buf;
586         UINT64 th;
587         UINT64 t;
588         do {
589             t = LOAD_UINT32_REVERSED((UINT32 *)p+1);
590             th = LOAD_UINT32_REVERSED((UINT32 *)p);
591             *p++ = t | (th << 32);
592         } while (--iters);
593     }
594 }
595 #define endian_convert_if_le(x,y,z) endian_convert((x),(y),(z))
596 #else
597 #define endian_convert_if_le(x,y,z) do{}while(0)  /* Do nothing */
598 #endif
599 
600 /* ---------------------------------------------------------------------- */
601 
602 static void nh_reset(nh_ctx *hc)
603 /* Reset nh_ctx to ready for hashing of new data */
604 {
605     hc->bytes_hashed = 0;
606     hc->next_data_empty = 0;
607     hc->state[0] = 0;
608 #if (UMAC_OUTPUT_LEN >= 8)
609     hc->state[1] = 0;
610 #endif
611 #if (UMAC_OUTPUT_LEN >= 12)
612     hc->state[2] = 0;
613 #endif
614 #if (UMAC_OUTPUT_LEN == 16)
615     hc->state[3] = 0;
616 #endif
617 
618 }
619 
620 /* ---------------------------------------------------------------------- */
621 
622 static void nh_init(nh_ctx *hc, aes_int_key prf_key)
623 /* Generate nh_key, endian convert and reset to be ready for hashing.   */
624 {
625     kdf(hc->nh_key, prf_key, 1, sizeof(hc->nh_key));
626     endian_convert_if_le(hc->nh_key, 4, sizeof(hc->nh_key));
627     nh_reset(hc);
628 }
629 
630 /* ---------------------------------------------------------------------- */
631 
632 static void nh_update(nh_ctx *hc, const UINT8 *buf, UINT32 nbytes)
633 /* Incorporate nbytes of data into a nh_ctx, buffer whatever is not an    */
634 /* even multiple of HASH_BUF_BYTES.                                       */
635 {
636     UINT32 i,j;
637 
638     j = hc->next_data_empty;
639     if ((j + nbytes) >= HASH_BUF_BYTES) {
640         if (j) {
641             i = HASH_BUF_BYTES - j;
642             memcpy(hc->data+j, buf, i);
643             nh_transform(hc,hc->data,HASH_BUF_BYTES);
644             nbytes -= i;
645             buf += i;
646             hc->bytes_hashed += HASH_BUF_BYTES;
647         }
648         if (nbytes >= HASH_BUF_BYTES) {
649             i = nbytes & ~(HASH_BUF_BYTES - 1);
650             nh_transform(hc, buf, i);
651             nbytes -= i;
652             buf += i;
653             hc->bytes_hashed += i;
654         }
655         j = 0;
656     }
657     memcpy(hc->data + j, buf, nbytes);
658     hc->next_data_empty = j + nbytes;
659 }
660 
661 /* ---------------------------------------------------------------------- */
662 
663 static void zero_pad(UINT8 *p, int nbytes)
664 {
665 /* Write "nbytes" of zeroes, beginning at "p" */
666     if (nbytes >= (int)sizeof(UWORD)) {
667         while ((ptrdiff_t)p % sizeof(UWORD)) {
668             *p = 0;
669             nbytes--;
670             p++;
671         }
672         while (nbytes >= (int)sizeof(UWORD)) {
673             *(UWORD *)p = 0;
674             nbytes -= sizeof(UWORD);
675             p += sizeof(UWORD);
676         }
677     }
678     while (nbytes) {
679         *p = 0;
680         nbytes--;
681         p++;
682     }
683 }
684 
685 /* ---------------------------------------------------------------------- */
686 
687 static void nh_final(nh_ctx *hc, UINT8 *result)
688 /* After passing some number of data buffers to nh_update() for integration
689  * into an NH context, nh_final is called to produce a hash result. If any
690  * bytes are in the buffer hc->data, incorporate them into the
691  * NH context. Finally, add into the NH accumulation "state" the total number
692  * of bits hashed. The resulting numbers are written to the buffer "result".
693  * If nh_update was never called, L1_PAD_BOUNDARY zeroes are incorporated.
694  */
695 {
696     int nh_len, nbits;
697 
698     if (hc->next_data_empty != 0) {
699         nh_len = ((hc->next_data_empty + (L1_PAD_BOUNDARY - 1)) &
700                                                 ~(L1_PAD_BOUNDARY - 1));
701         zero_pad(hc->data + hc->next_data_empty,
702                                           nh_len - hc->next_data_empty);
703         nh_transform(hc, hc->data, nh_len);
704         hc->bytes_hashed += hc->next_data_empty;
705     } else if (hc->bytes_hashed == 0) {
706 	nh_len = L1_PAD_BOUNDARY;
707         zero_pad(hc->data, L1_PAD_BOUNDARY);
708         nh_transform(hc, hc->data, nh_len);
709     }
710 
711     nbits = (hc->bytes_hashed << 3);
712     ((UINT64 *)result)[0] = ((UINT64 *)hc->state)[0] + nbits;
713 #if (UMAC_OUTPUT_LEN >= 8)
714     ((UINT64 *)result)[1] = ((UINT64 *)hc->state)[1] + nbits;
715 #endif
716 #if (UMAC_OUTPUT_LEN >= 12)
717     ((UINT64 *)result)[2] = ((UINT64 *)hc->state)[2] + nbits;
718 #endif
719 #if (UMAC_OUTPUT_LEN == 16)
720     ((UINT64 *)result)[3] = ((UINT64 *)hc->state)[3] + nbits;
721 #endif
722     nh_reset(hc);
723 }
724 
725 /* ---------------------------------------------------------------------- */
726 
727 static void nh(nh_ctx *hc, const UINT8 *buf, UINT32 padded_len,
728                UINT32 unpadded_len, UINT8 *result)
729 /* All-in-one nh_update() and nh_final() equivalent.
730  * Assumes that padded_len is divisible by L1_PAD_BOUNDARY and result is
731  * well aligned
732  */
733 {
734     UINT32 nbits;
735 
736     /* Initialize the hash state */
737     nbits = (unpadded_len << 3);
738 
739     ((UINT64 *)result)[0] = nbits;
740 #if (UMAC_OUTPUT_LEN >= 8)
741     ((UINT64 *)result)[1] = nbits;
742 #endif
743 #if (UMAC_OUTPUT_LEN >= 12)
744     ((UINT64 *)result)[2] = nbits;
745 #endif
746 #if (UMAC_OUTPUT_LEN == 16)
747     ((UINT64 *)result)[3] = nbits;
748 #endif
749 
750     nh_aux(hc->nh_key, buf, result, padded_len);
751 }
752 
753 /* ---------------------------------------------------------------------- */
754 /* ---------------------------------------------------------------------- */
755 /* ----- Begin UHASH Section -------------------------------------------- */
756 /* ---------------------------------------------------------------------- */
757 /* ---------------------------------------------------------------------- */
758 
759 /* UHASH is a multi-layered algorithm. Data presented to UHASH is first
760  * hashed by NH. The NH output is then hashed by a polynomial-hash layer
761  * unless the initial data to be hashed is short. After the polynomial-
762  * layer, an inner-product hash is used to produce the final UHASH output.
763  *
764  * UHASH provides two interfaces, one all-at-once and another where data
765  * buffers are presented sequentially. In the sequential interface, the
766  * UHASH client calls the routine uhash_update() as many times as necessary.
767  * When there is no more data to be fed to UHASH, the client calls
768  * uhash_final() which
769  * calculates the UHASH output. Before beginning another UHASH calculation
770  * the uhash_reset() routine must be called. The all-at-once UHASH routine,
771  * uhash(), is equivalent to the sequence of calls uhash_update() and
772  * uhash_final(); however it is optimized and should be
773  * used whenever the sequential interface is not necessary.
774  *
775  * The routine uhash_init() initializes the uhash_ctx data structure and
776  * must be called once, before any other UHASH routine.
777  */
778 
779 /* ---------------------------------------------------------------------- */
780 /* ----- Constants and uhash_ctx ---------------------------------------- */
781 /* ---------------------------------------------------------------------- */
782 
783 /* ---------------------------------------------------------------------- */
784 /* ----- Poly hash and Inner-Product hash Constants --------------------- */
785 /* ---------------------------------------------------------------------- */
786 
787 /* Primes and masks */
788 #define p36    ((UINT64)0x0000000FFFFFFFFBull)              /* 2^36 -  5 */
789 #define p64    ((UINT64)0xFFFFFFFFFFFFFFC5ull)              /* 2^64 - 59 */
790 #define m36    ((UINT64)0x0000000FFFFFFFFFull)  /* The low 36 of 64 bits */
791 
792 
793 /* ---------------------------------------------------------------------- */
794 
795 typedef struct uhash_ctx {
796     nh_ctx hash;                          /* Hash context for L1 NH hash  */
797     UINT64 poly_key_8[STREAMS];           /* p64 poly keys                */
798     UINT64 poly_accum[STREAMS];           /* poly hash result             */
799     UINT64 ip_keys[STREAMS*4];            /* Inner-product keys           */
800     UINT32 ip_trans[STREAMS];             /* Inner-product translation    */
801     UINT32 msg_len;                       /* Total length of data passed  */
802                                           /* to uhash */
803 } uhash_ctx;
804 typedef struct uhash_ctx *uhash_ctx_t;
805 
806 /* ---------------------------------------------------------------------- */
807 
808 
809 /* The polynomial hashes use Horner's rule to evaluate a polynomial one
810  * word at a time. As described in the specification, poly32 and poly64
811  * require keys from special domains. The following implementations exploit
812  * the special domains to avoid overflow. The results are not guaranteed to
813  * be within Z_p32 and Z_p64, but the Inner-Product hash implementation
814  * patches any errant values.
815  */
816 
817 static UINT64 poly64(UINT64 cur, UINT64 key, UINT64 data)
818 {
819     UINT32 key_hi = (UINT32)(key >> 32),
820            key_lo = (UINT32)key,
821            cur_hi = (UINT32)(cur >> 32),
822            cur_lo = (UINT32)cur,
823            x_lo,
824            x_hi;
825     UINT64 X,T,res;
826 
827     X =  MUL64(key_hi, cur_lo) + MUL64(cur_hi, key_lo);
828     x_lo = (UINT32)X;
829     x_hi = (UINT32)(X >> 32);
830 
831     res = (MUL64(key_hi, cur_hi) + x_hi) * 59 + MUL64(key_lo, cur_lo);
832 
833     T = ((UINT64)x_lo << 32);
834     res += T;
835     if (res < T)
836         res += 59;
837 
838     res += data;
839     if (res < data)
840         res += 59;
841 
842     return res;
843 }
844 
845 
846 /* Although UMAC is specified to use a ramped polynomial hash scheme, this
847  * implementation does not handle all ramp levels. Because we don't handle
848  * the ramp up to p128 modulus in this implementation, we are limited to
849  * 2^14 poly_hash() invocations per stream (for a total capacity of 2^24
850  * bytes input to UMAC per tag, ie. 16MB).
851  */
852 static void poly_hash(uhash_ctx_t hc, UINT32 data_in[])
853 {
854     int i;
855     UINT64 *data=(UINT64*)data_in;
856 
857     for (i = 0; i < STREAMS; i++) {
858         if ((UINT32)(data[i] >> 32) == 0xfffffffful) {
859             hc->poly_accum[i] = poly64(hc->poly_accum[i],
860                                        hc->poly_key_8[i], p64 - 1);
861             hc->poly_accum[i] = poly64(hc->poly_accum[i],
862                                        hc->poly_key_8[i], (data[i] - 59));
863         } else {
864             hc->poly_accum[i] = poly64(hc->poly_accum[i],
865                                        hc->poly_key_8[i], data[i]);
866         }
867     }
868 }
869 
870 
871 /* ---------------------------------------------------------------------- */
872 
873 
874 /* The final step in UHASH is an inner-product hash. The poly hash
875  * produces a result not necessarily WORD_LEN bytes long. The inner-
876  * product hash breaks the polyhash output into 16-bit chunks and
877  * multiplies each with a 36 bit key.
878  */
879 
880 static UINT64 ip_aux(UINT64 t, UINT64 *ipkp, UINT64 data)
881 {
882     t = t + ipkp[0] * (UINT64)(UINT16)(data >> 48);
883     t = t + ipkp[1] * (UINT64)(UINT16)(data >> 32);
884     t = t + ipkp[2] * (UINT64)(UINT16)(data >> 16);
885     t = t + ipkp[3] * (UINT64)(UINT16)(data);
886 
887     return t;
888 }
889 
890 static UINT32 ip_reduce_p36(UINT64 t)
891 {
892 /* Divisionless modular reduction */
893     UINT64 ret;
894 
895     ret = (t & m36) + 5 * (t >> 36);
896     if (ret >= p36)
897         ret -= p36;
898 
899     /* return least significant 32 bits */
900     return (UINT32)(ret);
901 }
902 
903 
904 /* If the data being hashed by UHASH is no longer than L1_KEY_LEN, then
905  * the polyhash stage is skipped and ip_short is applied directly to the
906  * NH output.
907  */
908 static void ip_short(uhash_ctx_t ahc, UINT8 *nh_res, u_char *res)
909 {
910     UINT64 t;
911     UINT64 *nhp = (UINT64 *)nh_res;
912 
913     t  = ip_aux(0,ahc->ip_keys, nhp[0]);
914     STORE_UINT32_BIG((UINT32 *)res+0, ip_reduce_p36(t) ^ ahc->ip_trans[0]);
915 #if (UMAC_OUTPUT_LEN >= 8)
916     t  = ip_aux(0,ahc->ip_keys+4, nhp[1]);
917     STORE_UINT32_BIG((UINT32 *)res+1, ip_reduce_p36(t) ^ ahc->ip_trans[1]);
918 #endif
919 #if (UMAC_OUTPUT_LEN >= 12)
920     t  = ip_aux(0,ahc->ip_keys+8, nhp[2]);
921     STORE_UINT32_BIG((UINT32 *)res+2, ip_reduce_p36(t) ^ ahc->ip_trans[2]);
922 #endif
923 #if (UMAC_OUTPUT_LEN == 16)
924     t  = ip_aux(0,ahc->ip_keys+12, nhp[3]);
925     STORE_UINT32_BIG((UINT32 *)res+3, ip_reduce_p36(t) ^ ahc->ip_trans[3]);
926 #endif
927 }
928 
929 /* If the data being hashed by UHASH is longer than L1_KEY_LEN, then
930  * the polyhash stage is not skipped and ip_long is applied to the
931  * polyhash output.
932  */
933 static void ip_long(uhash_ctx_t ahc, u_char *res)
934 {
935     int i;
936     UINT64 t;
937 
938     for (i = 0; i < STREAMS; i++) {
939         /* fix polyhash output not in Z_p64 */
940         if (ahc->poly_accum[i] >= p64)
941             ahc->poly_accum[i] -= p64;
942         t  = ip_aux(0,ahc->ip_keys+(i*4), ahc->poly_accum[i]);
943         STORE_UINT32_BIG((UINT32 *)res+i,
944                          ip_reduce_p36(t) ^ ahc->ip_trans[i]);
945     }
946 }
947 
948 
949 /* ---------------------------------------------------------------------- */
950 
951 /* ---------------------------------------------------------------------- */
952 
953 /* Reset uhash context for next hash session */
954 static int uhash_reset(uhash_ctx_t pc)
955 {
956     nh_reset(&pc->hash);
957     pc->msg_len = 0;
958     pc->poly_accum[0] = 1;
959 #if (UMAC_OUTPUT_LEN >= 8)
960     pc->poly_accum[1] = 1;
961 #endif
962 #if (UMAC_OUTPUT_LEN >= 12)
963     pc->poly_accum[2] = 1;
964 #endif
965 #if (UMAC_OUTPUT_LEN == 16)
966     pc->poly_accum[3] = 1;
967 #endif
968     return 1;
969 }
970 
971 /* ---------------------------------------------------------------------- */
972 
973 /* Given a pointer to the internal key needed by kdf() and a uhash context,
974  * initialize the NH context and generate keys needed for poly and inner-
975  * product hashing. All keys are endian adjusted in memory so that native
976  * loads cause correct keys to be in registers during calculation.
977  */
978 static void uhash_init(uhash_ctx_t ahc, aes_int_key prf_key)
979 {
980     int i;
981     UINT8 buf[(8*STREAMS+4)*sizeof(UINT64)];
982 
983     /* Zero the entire uhash context */
984     memset(ahc, 0, sizeof(uhash_ctx));
985 
986     /* Initialize the L1 hash */
987     nh_init(&ahc->hash, prf_key);
988 
989     /* Setup L2 hash variables */
990     kdf(buf, prf_key, 2, sizeof(buf));    /* Fill buffer with index 1 key */
991     for (i = 0; i < STREAMS; i++) {
992         /* Fill keys from the buffer, skipping bytes in the buffer not
993          * used by this implementation. Endian reverse the keys if on a
994          * little-endian computer.
995          */
996         memcpy(ahc->poly_key_8+i, buf+24*i, 8);
997         endian_convert_if_le(ahc->poly_key_8+i, 8, 8);
998         /* Mask the 64-bit keys to their special domain */
999         ahc->poly_key_8[i] &= ((UINT64)0x01ffffffu << 32) + 0x01ffffffu;
1000         ahc->poly_accum[i] = 1;  /* Our polyhash prepends a non-zero word */
1001     }
1002 
1003     /* Setup L3-1 hash variables */
1004     kdf(buf, prf_key, 3, sizeof(buf)); /* Fill buffer with index 2 key */
1005     for (i = 0; i < STREAMS; i++)
1006           memcpy(ahc->ip_keys+4*i, buf+(8*i+4)*sizeof(UINT64),
1007                                                  4*sizeof(UINT64));
1008     endian_convert_if_le(ahc->ip_keys, sizeof(UINT64),
1009                                                   sizeof(ahc->ip_keys));
1010     for (i = 0; i < STREAMS*4; i++)
1011         ahc->ip_keys[i] %= p36;  /* Bring into Z_p36 */
1012 
1013     /* Setup L3-2 hash variables    */
1014     /* Fill buffer with index 4 key */
1015     kdf(ahc->ip_trans, prf_key, 4, STREAMS * sizeof(UINT32));
1016     endian_convert_if_le(ahc->ip_trans, sizeof(UINT32),
1017                          STREAMS * sizeof(UINT32));
1018     explicit_bzero(buf, sizeof(buf));
1019 }
1020 
1021 /* ---------------------------------------------------------------------- */
1022 
1023 #if 0
1024 static uhash_ctx_t uhash_alloc(u_char key[])
1025 {
1026 /* Allocate memory and force to a 16-byte boundary. */
1027     uhash_ctx_t ctx;
1028     u_char bytes_to_add;
1029     aes_int_key prf_key;
1030 
1031     ctx = (uhash_ctx_t)malloc(sizeof(uhash_ctx)+ALLOC_BOUNDARY);
1032     if (ctx) {
1033         if (ALLOC_BOUNDARY) {
1034             bytes_to_add = ALLOC_BOUNDARY -
1035                               ((ptrdiff_t)ctx & (ALLOC_BOUNDARY -1));
1036             ctx = (uhash_ctx_t)((u_char *)ctx + bytes_to_add);
1037             *((u_char *)ctx - 1) = bytes_to_add;
1038         }
1039         aes_key_setup(key,prf_key);
1040         uhash_init(ctx, prf_key);
1041     }
1042     return (ctx);
1043 }
1044 #endif
1045 
1046 /* ---------------------------------------------------------------------- */
1047 
1048 #if 0
1049 static int uhash_free(uhash_ctx_t ctx)
1050 {
1051 /* Free memory allocated by uhash_alloc */
1052     u_char bytes_to_sub;
1053 
1054     if (ctx) {
1055         if (ALLOC_BOUNDARY) {
1056             bytes_to_sub = *((u_char *)ctx - 1);
1057             ctx = (uhash_ctx_t)((u_char *)ctx - bytes_to_sub);
1058         }
1059         free(ctx);
1060     }
1061     return (1);
1062 }
1063 #endif
1064 /* ---------------------------------------------------------------------- */
1065 
1066 static int uhash_update(uhash_ctx_t ctx, const u_char *input, long len)
1067 /* Given len bytes of data, we parse it into L1_KEY_LEN chunks and
1068  * hash each one with NH, calling the polyhash on each NH output.
1069  */
1070 {
1071     UWORD bytes_hashed, bytes_remaining;
1072     UINT64 result_buf[STREAMS];
1073     UINT8 *nh_result = (UINT8 *)&result_buf;
1074 
1075     if (ctx->msg_len + len <= L1_KEY_LEN) {
1076         nh_update(&ctx->hash, (const UINT8 *)input, len);
1077         ctx->msg_len += len;
1078     } else {
1079 
1080          bytes_hashed = ctx->msg_len % L1_KEY_LEN;
1081          if (ctx->msg_len == L1_KEY_LEN)
1082              bytes_hashed = L1_KEY_LEN;
1083 
1084          if (bytes_hashed + len >= L1_KEY_LEN) {
1085 
1086              /* If some bytes have been passed to the hash function      */
1087              /* then we want to pass at most (L1_KEY_LEN - bytes_hashed) */
1088              /* bytes to complete the current nh_block.                  */
1089              if (bytes_hashed) {
1090                  bytes_remaining = (L1_KEY_LEN - bytes_hashed);
1091                  nh_update(&ctx->hash, (const UINT8 *)input, bytes_remaining);
1092                  nh_final(&ctx->hash, nh_result);
1093                  ctx->msg_len += bytes_remaining;
1094                  poly_hash(ctx,(UINT32 *)nh_result);
1095                  len -= bytes_remaining;
1096                  input += bytes_remaining;
1097              }
1098 
1099              /* Hash directly from input stream if enough bytes */
1100              while (len >= L1_KEY_LEN) {
1101                  nh(&ctx->hash, (const UINT8 *)input, L1_KEY_LEN,
1102                                    L1_KEY_LEN, nh_result);
1103                  ctx->msg_len += L1_KEY_LEN;
1104                  len -= L1_KEY_LEN;
1105                  input += L1_KEY_LEN;
1106                  poly_hash(ctx,(UINT32 *)nh_result);
1107              }
1108          }
1109 
1110          /* pass remaining < L1_KEY_LEN bytes of input data to NH */
1111          if (len) {
1112              nh_update(&ctx->hash, (const UINT8 *)input, len);
1113              ctx->msg_len += len;
1114          }
1115      }
1116 
1117     return (1);
1118 }
1119 
1120 /* ---------------------------------------------------------------------- */
1121 
1122 static int uhash_final(uhash_ctx_t ctx, u_char *res)
1123 /* Incorporate any pending data, pad, and generate tag */
1124 {
1125     UINT64 result_buf[STREAMS];
1126     UINT8 *nh_result = (UINT8 *)&result_buf;
1127 
1128     if (ctx->msg_len > L1_KEY_LEN) {
1129         if (ctx->msg_len % L1_KEY_LEN) {
1130             nh_final(&ctx->hash, nh_result);
1131             poly_hash(ctx,(UINT32 *)nh_result);
1132         }
1133         ip_long(ctx, res);
1134     } else {
1135         nh_final(&ctx->hash, nh_result);
1136         ip_short(ctx,nh_result, res);
1137     }
1138     uhash_reset(ctx);
1139     return (1);
1140 }
1141 
1142 /* ---------------------------------------------------------------------- */
1143 
1144 #if 0
1145 static int uhash(uhash_ctx_t ahc, u_char *msg, long len, u_char *res)
1146 /* assumes that msg is in a writable buffer of length divisible by */
1147 /* L1_PAD_BOUNDARY. Bytes beyond msg[len] may be zeroed.           */
1148 {
1149     UINT8 nh_result[STREAMS*sizeof(UINT64)];
1150     UINT32 nh_len;
1151     int extra_zeroes_needed;
1152 
1153     /* If the message to be hashed is no longer than L1_HASH_LEN, we skip
1154      * the polyhash.
1155      */
1156     if (len <= L1_KEY_LEN) {
1157 	if (len == 0)                  /* If zero length messages will not */
1158 		nh_len = L1_PAD_BOUNDARY;  /* be seen, comment out this case   */
1159 	else
1160 		nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1));
1161         extra_zeroes_needed = nh_len - len;
1162         zero_pad((UINT8 *)msg + len, extra_zeroes_needed);
1163         nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result);
1164         ip_short(ahc,nh_result, res);
1165     } else {
1166         /* Otherwise, we hash each L1_KEY_LEN chunk with NH, passing the NH
1167          * output to poly_hash().
1168          */
1169         do {
1170             nh(&ahc->hash, (UINT8 *)msg, L1_KEY_LEN, L1_KEY_LEN, nh_result);
1171             poly_hash(ahc,(UINT32 *)nh_result);
1172             len -= L1_KEY_LEN;
1173             msg += L1_KEY_LEN;
1174         } while (len >= L1_KEY_LEN);
1175         if (len) {
1176             nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1));
1177             extra_zeroes_needed = nh_len - len;
1178             zero_pad((UINT8 *)msg + len, extra_zeroes_needed);
1179             nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result);
1180             poly_hash(ahc,(UINT32 *)nh_result);
1181         }
1182 
1183         ip_long(ahc, res);
1184     }
1185 
1186     uhash_reset(ahc);
1187     return 1;
1188 }
1189 #endif
1190 
1191 /* ---------------------------------------------------------------------- */
1192 /* ---------------------------------------------------------------------- */
1193 /* ----- Begin UMAC Section --------------------------------------------- */
1194 /* ---------------------------------------------------------------------- */
1195 /* ---------------------------------------------------------------------- */
1196 
1197 /* The UMAC interface has two interfaces, an all-at-once interface where
1198  * the entire message to be authenticated is passed to UMAC in one buffer,
1199  * and a sequential interface where the message is presented a little at a
1200  * time. The all-at-once is more optimaized than the sequential version and
1201  * should be preferred when the sequential interface is not required.
1202  */
1203 struct umac_ctx {
1204     uhash_ctx hash;          /* Hash function for message compression    */
1205     pdf_ctx pdf;             /* PDF for hashed output                    */
1206     void *free_ptr;          /* Address to free this struct via          */
1207 } umac_ctx;
1208 
1209 /* ---------------------------------------------------------------------- */
1210 
1211 #if 0
1212 int umac_reset(struct umac_ctx *ctx)
1213 /* Reset the hash function to begin a new authentication.        */
1214 {
1215     uhash_reset(&ctx->hash);
1216     return (1);
1217 }
1218 #endif
1219 
1220 /* ---------------------------------------------------------------------- */
1221 
1222 int umac_delete(struct umac_ctx *ctx)
1223 /* Deallocate the ctx structure */
1224 {
1225     if (ctx) {
1226         if (ALLOC_BOUNDARY)
1227             ctx = (struct umac_ctx *)ctx->free_ptr;
1228         freezero(ctx, sizeof(*ctx) + ALLOC_BOUNDARY);
1229     }
1230     return (1);
1231 }
1232 
1233 /* ---------------------------------------------------------------------- */
1234 
1235 struct umac_ctx *umac_new(const u_char key[])
1236 /* Dynamically allocate a umac_ctx struct, initialize variables,
1237  * generate subkeys from key. Align to 16-byte boundary.
1238  */
1239 {
1240     struct umac_ctx *ctx, *octx;
1241     size_t bytes_to_add;
1242     aes_int_key prf_key;
1243 
1244     octx = ctx = xcalloc(1, sizeof(*ctx) + ALLOC_BOUNDARY);
1245     if (ctx) {
1246         if (ALLOC_BOUNDARY) {
1247             bytes_to_add = ALLOC_BOUNDARY -
1248                               ((ptrdiff_t)ctx & (ALLOC_BOUNDARY - 1));
1249             ctx = (struct umac_ctx *)((u_char *)ctx + bytes_to_add);
1250         }
1251         ctx->free_ptr = octx;
1252         aes_key_setup(key, prf_key);
1253         pdf_init(&ctx->pdf, prf_key);
1254         uhash_init(&ctx->hash, prf_key);
1255         explicit_bzero(prf_key, sizeof(prf_key));
1256     }
1257 
1258     return (ctx);
1259 }
1260 
1261 /* ---------------------------------------------------------------------- */
1262 
1263 int umac_final(struct umac_ctx *ctx, u_char tag[], const u_char nonce[8])
1264 /* Incorporate any pending data, pad, and generate tag */
1265 {
1266     uhash_final(&ctx->hash, (u_char *)tag);
1267     pdf_gen_xor(&ctx->pdf, (const UINT8 *)nonce, (UINT8 *)tag);
1268 
1269     return (1);
1270 }
1271 
1272 /* ---------------------------------------------------------------------- */
1273 
1274 int umac_update(struct umac_ctx *ctx, const u_char *input, long len)
1275 /* Given len bytes of data, we parse it into L1_KEY_LEN chunks and   */
1276 /* hash each one, calling the PDF on the hashed output whenever the hash- */
1277 /* output buffer is full.                                                 */
1278 {
1279     uhash_update(&ctx->hash, input, len);
1280     return (1);
1281 }
1282 
1283 /* ---------------------------------------------------------------------- */
1284 
1285 #if 0
1286 int umac(struct umac_ctx *ctx, u_char *input,
1287          long len, u_char tag[],
1288          u_char nonce[8])
1289 /* All-in-one version simply calls umac_update() and umac_final().        */
1290 {
1291     uhash(&ctx->hash, input, len, (u_char *)tag);
1292     pdf_gen_xor(&ctx->pdf, (UINT8 *)nonce, (UINT8 *)tag);
1293 
1294     return (1);
1295 }
1296 #endif
1297 
1298 /* ---------------------------------------------------------------------- */
1299 /* ---------------------------------------------------------------------- */
1300 /* ----- End UMAC Section ----------------------------------------------- */
1301 /* ---------------------------------------------------------------------- */
1302 /* ---------------------------------------------------------------------- */
1303