xref: /netbsd-src/crypto/external/bsd/openssh/dist/umac.c (revision a5847cc334d9a7029f6352b847e9e8d71a0f9e0c)
1 /*	$NetBSD: umac.c,v 1.2 2009/06/07 22:38:48 christos Exp $	*/
2 /* $OpenBSD: umac.c,v 1.3 2008/05/12 20:52:20 pvalchev Exp $ */
3 /* -----------------------------------------------------------------------
4  *
5  * umac.c -- C Implementation UMAC Message Authentication
6  *
7  * Version 0.93b of rfc4418.txt -- 2006 July 18
8  *
9  * For a full description of UMAC message authentication see the UMAC
10  * world-wide-web page at http://www.cs.ucdavis.edu/~rogaway/umac
11  * Please report bugs and suggestions to the UMAC webpage.
12  *
13  * Copyright (c) 1999-2006 Ted Krovetz
14  *
15  * Permission to use, copy, modify, and distribute this software and
16  * its documentation for any purpose and with or without fee, is hereby
17  * granted provided that the above copyright notice appears in all copies
18  * and in supporting documentation, and that the name of the copyright
19  * holder not be used in advertising or publicity pertaining to
20  * distribution of the software without specific, written prior permission.
21  *
22  * Comments should be directed to Ted Krovetz (tdk@acm.org)
23  *
24  * ---------------------------------------------------------------------- */
25 
26  /* ////////////////////// IMPORTANT NOTES /////////////////////////////////
27   *
28   * 1) This version does not work properly on messages larger than 16MB
29   *
30   * 2) If you set the switch to use SSE2, then all data must be 16-byte
31   *    aligned
32   *
33   * 3) When calling the function umac(), it is assumed that msg is in
34   * a writable buffer of length divisible by 32 bytes. The message itself
35   * does not have to fill the entire buffer, but bytes beyond msg may be
36   * zeroed.
37   *
38   * 4) Three free AES implementations are supported by this implementation of
39   * UMAC. Paulo Barreto's version is in the public domain and can be found
40   * at http://www.esat.kuleuven.ac.be/~rijmen/rijndael/ (search for
41   * "Barreto"). The only two files needed are rijndael-alg-fst.c and
42   * rijndael-alg-fst.h. Brian Gladman's version is distributed with the GNU
43   * Public lisence at http://fp.gladman.plus.com/AES/index.htm. It
44   * includes a fast IA-32 assembly version. The OpenSSL crypo library is
45   * the third.
46   *
47   * 5) With FORCE_C_ONLY flags set to 0, incorrect results are sometimes
48   * produced under gcc with optimizations set -O3 or higher. Dunno why.
49   *
50   /////////////////////////////////////////////////////////////////////// */
51 
52 /* ---------------------------------------------------------------------- */
53 /* --- User Switches ---------------------------------------------------- */
54 /* ---------------------------------------------------------------------- */
55 
56 #define UMAC_OUTPUT_LEN     8  /* Alowable: 4, 8, 12, 16                  */
57 /* #define FORCE_C_ONLY        1  ANSI C and 64-bit integers req'd        */
58 /* #define AES_IMPLEMENTAION   1  1 = OpenSSL, 2 = Barreto, 3 = Gladman   */
59 /* #define SSE2                0  Is SSE2 is available?                   */
60 /* #define RUN_TESTS           0  Run basic correctness/speed tests       */
61 /* #define UMAC_AE_SUPPORT     0  Enable auhthenticated encrytion         */
62 
63 /* ---------------------------------------------------------------------- */
64 /* -- Global Includes --------------------------------------------------- */
65 /* ---------------------------------------------------------------------- */
66 
67 #include "includes.h"
68 __RCSID("$NetBSD: umac.c,v 1.2 2009/06/07 22:38:48 christos Exp $");
69 #include <sys/types.h>
70 #include <sys/endian.h>
71 
72 #include "xmalloc.h"
73 #include "umac.h"
74 #include <string.h>
75 #include <stdlib.h>
76 #include <stddef.h>
77 
78 /* ---------------------------------------------------------------------- */
79 /* --- Primitive Data Types ---                                           */
80 /* ---------------------------------------------------------------------- */
81 
82 /* The following assumptions may need change on your system */
83 typedef u_int8_t	UINT8;  /* 1 byte   */
84 typedef u_int16_t	UINT16; /* 2 byte   */
85 typedef u_int32_t	UINT32; /* 4 byte   */
86 typedef u_int64_t	UINT64; /* 8 bytes  */
87 typedef unsigned int	UWORD;  /* Register */
88 
89 /* ---------------------------------------------------------------------- */
90 /* --- Constants -------------------------------------------------------- */
91 /* ---------------------------------------------------------------------- */
92 
93 #define UMAC_KEY_LEN           16  /* UMAC takes 16 bytes of external key */
94 
95 /* Message "words" are read from memory in an endian-specific manner.     */
96 /* For this implementation to behave correctly, __LITTLE_ENDIAN__ must    */
97 /* be set true if the host computer is little-endian.                     */
98 
99 #if BYTE_ORDER == LITTLE_ENDIAN
100 #define __LITTLE_ENDIAN__ 1
101 #else
102 #define __LITTLE_ENDIAN__ 0
103 #endif
104 
105 /* ---------------------------------------------------------------------- */
106 /* ---------------------------------------------------------------------- */
107 /* ----- Architecture Specific ------------------------------------------ */
108 /* ---------------------------------------------------------------------- */
109 /* ---------------------------------------------------------------------- */
110 
111 
112 /* ---------------------------------------------------------------------- */
113 /* ---------------------------------------------------------------------- */
114 /* ----- Primitive Routines --------------------------------------------- */
115 /* ---------------------------------------------------------------------- */
116 /* ---------------------------------------------------------------------- */
117 
118 
119 /* ---------------------------------------------------------------------- */
120 /* --- 32-bit by 32-bit to 64-bit Multiplication ------------------------ */
121 /* ---------------------------------------------------------------------- */
122 
123 #define MUL64(a,b) ((UINT64)((UINT64)(UINT32)(a) * (UINT64)(UINT32)(b)))
124 
125 #if defined(__NetBSD__)
126 #include <sys/endian.h>
127 #define LOAD_UINT32_LITTLE(ptr)	le32toh(*ptr)
128 #define STORE_UINT32_BIG(ptr,x)	(*(UINT32 *)(ptr) = htobe32(x))
129 #define LOAD_UINT32_REVERSED(p)		(bswap32(*(UINT32 *)(p)))
130 #define STORE_UINT32_REVERSED(p,v) 	(*(UINT32 *)(p) = bswap32(v))
131 #else /* !NetBSD */
132 
133  /* ---------------------------------------------------------------------- */
134  /* --- Endian Conversion --- Forcing assembly on some platforms           */
135 
136 /* ---------------------------------------------------------------------- */
137 /* --- Endian Conversion --- Forcing assembly on some platforms           */
138 /* ---------------------------------------------------------------------- */
139 
140 #if !defined(__OpenBSD__)
141 static UINT32 LOAD_UINT32_REVERSED(void *ptr)
142 {
143     UINT32 temp = *(UINT32 *)ptr;
144     temp = (temp >> 24) | ((temp & 0x00FF0000) >> 8 )
145          | ((temp & 0x0000FF00) << 8 ) | (temp << 24);
146     return (UINT32)temp;
147 }
148 
149 static void STORE_UINT32_REVERSED(void *ptr, UINT32 x)
150 {
151     UINT32 i = (UINT32)x;
152     *(UINT32 *)ptr = (i >> 24) | ((i & 0x00FF0000) >> 8 )
153                    | ((i & 0x0000FF00) << 8 ) | (i << 24);
154 }
155 #endif
156 
157 #else
158 /* The following definitions use the above reversal-primitives to do the right
159  * thing on endian specific load and stores.
160  */
161 
162 #define LOAD_UINT32_REVERSED(p)		(swap32(*(UINT32 *)(p)))
163 #define STORE_UINT32_REVERSED(p,v) 	(*(UINT32 *)(p) = swap32(v))
164 #endif
165 
166 #if (__LITTLE_ENDIAN__)
167 #define LOAD_UINT32_LITTLE(ptr)     (*(UINT32 *)(ptr))
168 #define STORE_UINT32_BIG(ptr,x)     STORE_UINT32_REVERSED(ptr,x)
169 #else
170 #define LOAD_UINT32_LITTLE(ptr)     LOAD_UINT32_REVERSED(ptr)
171 #define STORE_UINT32_BIG(ptr,x)     (*(UINT32 *)(ptr) = (UINT32)(x))
172 #endif
173 #endif /*!NetBSD*/
174 
175 
176 
177 /* ---------------------------------------------------------------------- */
178 /* ---------------------------------------------------------------------- */
179 /* ----- Begin KDF & PDF Section ---------------------------------------- */
180 /* ---------------------------------------------------------------------- */
181 /* ---------------------------------------------------------------------- */
182 
183 /* UMAC uses AES with 16 byte block and key lengths */
184 #define AES_BLOCK_LEN  16
185 
186 /* OpenSSL's AES */
187 #include <openssl/aes.h>
188 typedef AES_KEY aes_int_key[1];
189 #define aes_encryption(in,out,int_key)                  \
190   AES_encrypt((u_char *)(in),(u_char *)(out),(AES_KEY *)int_key)
191 #define aes_key_setup(key,int_key)                      \
192   AES_set_encrypt_key((u_char *)(key),UMAC_KEY_LEN*8,int_key)
193 
194 /* The user-supplied UMAC key is stretched using AES in a counter
195  * mode to supply all random bits needed by UMAC. The kdf function takes
196  * an AES internal key representation 'key' and writes a stream of
197  * 'nbytes' bytes to the memory pointed at by 'buffer_ptr'. Each distinct
198  * 'ndx' causes a distinct byte stream.
199  */
200 static void kdf(void *buffer_ptr, aes_int_key key, UINT8 ndx, int nbytes)
201 {
202     UINT8 in_buf[AES_BLOCK_LEN] = {0};
203     UINT8 out_buf[AES_BLOCK_LEN];
204     UINT8 *dst_buf = (UINT8 *)buffer_ptr;
205     int i;
206 
207     /* Setup the initial value */
208     in_buf[AES_BLOCK_LEN-9] = ndx;
209     in_buf[AES_BLOCK_LEN-1] = i = 1;
210 
211     while (nbytes >= AES_BLOCK_LEN) {
212         aes_encryption(in_buf, out_buf, key);
213         memcpy(dst_buf,out_buf,AES_BLOCK_LEN);
214         in_buf[AES_BLOCK_LEN-1] = ++i;
215         nbytes -= AES_BLOCK_LEN;
216         dst_buf += AES_BLOCK_LEN;
217     }
218     if (nbytes) {
219         aes_encryption(in_buf, out_buf, key);
220         memcpy(dst_buf,out_buf,nbytes);
221     }
222 }
223 
224 /* The final UHASH result is XOR'd with the output of a pseudorandom
225  * function. Here, we use AES to generate random output and
226  * xor the appropriate bytes depending on the last bits of nonce.
227  * This scheme is optimized for sequential, increasing big-endian nonces.
228  */
229 
230 typedef struct {
231     UINT8 cache[AES_BLOCK_LEN];  /* Previous AES output is saved      */
232     UINT8 nonce[AES_BLOCK_LEN];  /* The AES input making above cache  */
233     aes_int_key prf_key;         /* Expanded AES key for PDF          */
234 } pdf_ctx;
235 
236 static void pdf_init(pdf_ctx *pc, aes_int_key prf_key)
237 {
238     UINT8 buf[UMAC_KEY_LEN];
239 
240     kdf(buf, prf_key, 0, UMAC_KEY_LEN);
241     aes_key_setup(buf, pc->prf_key);
242 
243     /* Initialize pdf and cache */
244     memset(pc->nonce, 0, sizeof(pc->nonce));
245     aes_encryption(pc->nonce, pc->cache, pc->prf_key);
246 }
247 
248 static void pdf_gen_xor(pdf_ctx *pc, UINT8 nonce[8], UINT8 buf[8])
249 {
250     /* 'ndx' indicates that we'll be using the 0th or 1st eight bytes
251      * of the AES output. If last time around we returned the ndx-1st
252      * element, then we may have the result in the cache already.
253      */
254 
255 #if (UMAC_OUTPUT_LEN == 4)
256 #define LOW_BIT_MASK 3
257 #elif (UMAC_OUTPUT_LEN == 8)
258 #define LOW_BIT_MASK 1
259 #elif (UMAC_OUTPUT_LEN > 8)
260 #define LOW_BIT_MASK 0
261 #endif
262 
263     UINT8 tmp_nonce_lo[4];
264 #if LOW_BIT_MASK != 0
265     int ndx = nonce[7] & LOW_BIT_MASK;
266 #endif
267     *(UINT32 *)tmp_nonce_lo = ((UINT32 *)nonce)[1];
268     tmp_nonce_lo[3] &= ~LOW_BIT_MASK; /* zero last bit */
269 
270     if ( (((UINT32 *)tmp_nonce_lo)[0] != ((UINT32 *)pc->nonce)[1]) ||
271          (((UINT32 *)nonce)[0] != ((UINT32 *)pc->nonce)[0]) )
272     {
273         ((UINT32 *)pc->nonce)[0] = ((UINT32 *)nonce)[0];
274         ((UINT32 *)pc->nonce)[1] = ((UINT32 *)tmp_nonce_lo)[0];
275         aes_encryption(pc->nonce, pc->cache, pc->prf_key);
276     }
277 
278 #if (UMAC_OUTPUT_LEN == 4)
279     *((UINT32 *)buf) ^= ((UINT32 *)pc->cache)[ndx];
280 #elif (UMAC_OUTPUT_LEN == 8)
281     *((UINT64 *)buf) ^= ((UINT64 *)pc->cache)[ndx];
282 #elif (UMAC_OUTPUT_LEN == 12)
283     ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0];
284     ((UINT32 *)buf)[2] ^= ((UINT32 *)pc->cache)[2];
285 #elif (UMAC_OUTPUT_LEN == 16)
286     ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0];
287     ((UINT64 *)buf)[1] ^= ((UINT64 *)pc->cache)[1];
288 #endif
289 }
290 
291 /* ---------------------------------------------------------------------- */
292 /* ---------------------------------------------------------------------- */
293 /* ----- Begin NH Hash Section ------------------------------------------ */
294 /* ---------------------------------------------------------------------- */
295 /* ---------------------------------------------------------------------- */
296 
297 /* The NH-based hash functions used in UMAC are described in the UMAC paper
298  * and specification, both of which can be found at the UMAC website.
299  * The interface to this implementation has two
300  * versions, one expects the entire message being hashed to be passed
301  * in a single buffer and returns the hash result immediately. The second
302  * allows the message to be passed in a sequence of buffers. In the
303  * muliple-buffer interface, the client calls the routine nh_update() as
304  * many times as necessary. When there is no more data to be fed to the
305  * hash, the client calls nh_final() which calculates the hash output.
306  * Before beginning another hash calculation the nh_reset() routine
307  * must be called. The single-buffer routine, nh(), is equivalent to
308  * the sequence of calls nh_update() and nh_final(); however it is
309  * optimized and should be prefered whenever the multiple-buffer interface
310  * is not necessary. When using either interface, it is the client's
311  * responsability to pass no more than L1_KEY_LEN bytes per hash result.
312  *
313  * The routine nh_init() initializes the nh_ctx data structure and
314  * must be called once, before any other PDF routine.
315  */
316 
317  /* The "nh_aux" routines do the actual NH hashing work. They
318   * expect buffers to be multiples of L1_PAD_BOUNDARY. These routines
319   * produce output for all STREAMS NH iterations in one call,
320   * allowing the parallel implementation of the streams.
321   */
322 
323 #define STREAMS (UMAC_OUTPUT_LEN / 4) /* Number of times hash is applied  */
324 #define L1_KEY_LEN         1024     /* Internal key bytes                 */
325 #define L1_KEY_SHIFT         16     /* Toeplitz key shift between streams */
326 #define L1_PAD_BOUNDARY      32     /* pad message to boundary multiple   */
327 #define ALLOC_BOUNDARY       16     /* Keep buffers aligned to this       */
328 #define HASH_BUF_BYTES       64     /* nh_aux_hb buffer multiple          */
329 
330 typedef struct {
331     UINT8  nh_key [L1_KEY_LEN + L1_KEY_SHIFT * (STREAMS - 1)]; /* NH Key */
332     UINT8  data   [HASH_BUF_BYTES];    /* Incomming data buffer           */
333     int next_data_empty;    /* Bookeeping variable for data buffer.       */
334     int bytes_hashed;        /* Bytes (out of L1_KEY_LEN) incorperated.   */
335     UINT64 state[STREAMS];               /* on-line state     */
336 } nh_ctx;
337 
338 
339 #if (UMAC_OUTPUT_LEN == 4)
340 
341 static void nh_aux(void *kp, void *dp, void *hp, UINT32 dlen)
342 /* NH hashing primitive. Previous (partial) hash result is loaded and
343 * then stored via hp pointer. The length of the data pointed at by "dp",
344 * "dlen", is guaranteed to be divisible by L1_PAD_BOUNDARY (32).  Key
345 * is expected to be endian compensated in memory at key setup.
346 */
347 {
348     UINT64 h;
349     UWORD c = dlen / 32;
350     UINT32 *k = (UINT32 *)kp;
351     UINT32 *d = (UINT32 *)dp;
352     UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
353     UINT32 k0,k1,k2,k3,k4,k5,k6,k7;
354 
355     h = *((UINT64 *)hp);
356     do {
357         d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
358         d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
359         d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
360         d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
361         k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
362         k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
363         h += MUL64((k0 + d0), (k4 + d4));
364         h += MUL64((k1 + d1), (k5 + d5));
365         h += MUL64((k2 + d2), (k6 + d6));
366         h += MUL64((k3 + d3), (k7 + d7));
367 
368         d += 8;
369         k += 8;
370     } while (--c);
371   *((UINT64 *)hp) = h;
372 }
373 
374 #elif (UMAC_OUTPUT_LEN == 8)
375 
376 static void nh_aux(void *kp, void *dp, void *hp, UINT32 dlen)
377 /* Same as previous nh_aux, but two streams are handled in one pass,
378  * reading and writing 16 bytes of hash-state per call.
379  */
380 {
381   UINT64 h1,h2;
382   UWORD c = dlen / 32;
383   UINT32 *k = (UINT32 *)kp;
384   UINT32 *d = (UINT32 *)dp;
385   UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
386   UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
387         k8,k9,k10,k11;
388 
389   h1 = *((UINT64 *)hp);
390   h2 = *((UINT64 *)hp + 1);
391   k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
392   do {
393     d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
394     d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
395     d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
396     d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
397     k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
398     k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
399 
400     h1 += MUL64((k0 + d0), (k4 + d4));
401     h2 += MUL64((k4 + d0), (k8 + d4));
402 
403     h1 += MUL64((k1 + d1), (k5 + d5));
404     h2 += MUL64((k5 + d1), (k9 + d5));
405 
406     h1 += MUL64((k2 + d2), (k6 + d6));
407     h2 += MUL64((k6 + d2), (k10 + d6));
408 
409     h1 += MUL64((k3 + d3), (k7 + d7));
410     h2 += MUL64((k7 + d3), (k11 + d7));
411 
412     k0 = k8; k1 = k9; k2 = k10; k3 = k11;
413 
414     d += 8;
415     k += 8;
416   } while (--c);
417   ((UINT64 *)hp)[0] = h1;
418   ((UINT64 *)hp)[1] = h2;
419 }
420 
421 #elif (UMAC_OUTPUT_LEN == 12)
422 
423 static void nh_aux(void *kp, void *dp, void *hp, UINT32 dlen)
424 /* Same as previous nh_aux, but two streams are handled in one pass,
425  * reading and writing 24 bytes of hash-state per call.
426 */
427 {
428     UINT64 h1,h2,h3;
429     UWORD c = dlen / 32;
430     UINT32 *k = (UINT32 *)kp;
431     UINT32 *d = (UINT32 *)dp;
432     UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
433     UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
434         k8,k9,k10,k11,k12,k13,k14,k15;
435 
436     h1 = *((UINT64 *)hp);
437     h2 = *((UINT64 *)hp + 1);
438     h3 = *((UINT64 *)hp + 2);
439     k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
440     k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
441     do {
442         d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
443         d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
444         d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
445         d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
446         k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
447         k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15);
448 
449         h1 += MUL64((k0 + d0), (k4 + d4));
450         h2 += MUL64((k4 + d0), (k8 + d4));
451         h3 += MUL64((k8 + d0), (k12 + d4));
452 
453         h1 += MUL64((k1 + d1), (k5 + d5));
454         h2 += MUL64((k5 + d1), (k9 + d5));
455         h3 += MUL64((k9 + d1), (k13 + d5));
456 
457         h1 += MUL64((k2 + d2), (k6 + d6));
458         h2 += MUL64((k6 + d2), (k10 + d6));
459         h3 += MUL64((k10 + d2), (k14 + d6));
460 
461         h1 += MUL64((k3 + d3), (k7 + d7));
462         h2 += MUL64((k7 + d3), (k11 + d7));
463         h3 += MUL64((k11 + d3), (k15 + d7));
464 
465         k0 = k8; k1 = k9; k2 = k10; k3 = k11;
466         k4 = k12; k5 = k13; k6 = k14; k7 = k15;
467 
468         d += 8;
469         k += 8;
470     } while (--c);
471     ((UINT64 *)hp)[0] = h1;
472     ((UINT64 *)hp)[1] = h2;
473     ((UINT64 *)hp)[2] = h3;
474 }
475 
476 #elif (UMAC_OUTPUT_LEN == 16)
477 
478 static void nh_aux(void *kp, void *dp, void *hp, UINT32 dlen)
479 /* Same as previous nh_aux, but two streams are handled in one pass,
480  * reading and writing 24 bytes of hash-state per call.
481 */
482 {
483     UINT64 h1,h2,h3,h4;
484     UWORD c = dlen / 32;
485     UINT32 *k = (UINT32 *)kp;
486     UINT32 *d = (UINT32 *)dp;
487     UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
488     UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
489         k8,k9,k10,k11,k12,k13,k14,k15,
490         k16,k17,k18,k19;
491 
492     h1 = *((UINT64 *)hp);
493     h2 = *((UINT64 *)hp + 1);
494     h3 = *((UINT64 *)hp + 2);
495     h4 = *((UINT64 *)hp + 3);
496     k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
497     k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
498     do {
499         d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
500         d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
501         d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
502         d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
503         k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
504         k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15);
505         k16 = *(k+16); k17 = *(k+17); k18 = *(k+18); k19 = *(k+19);
506 
507         h1 += MUL64((k0 + d0), (k4 + d4));
508         h2 += MUL64((k4 + d0), (k8 + d4));
509         h3 += MUL64((k8 + d0), (k12 + d4));
510         h4 += MUL64((k12 + d0), (k16 + d4));
511 
512         h1 += MUL64((k1 + d1), (k5 + d5));
513         h2 += MUL64((k5 + d1), (k9 + d5));
514         h3 += MUL64((k9 + d1), (k13 + d5));
515         h4 += MUL64((k13 + d1), (k17 + d5));
516 
517         h1 += MUL64((k2 + d2), (k6 + d6));
518         h2 += MUL64((k6 + d2), (k10 + d6));
519         h3 += MUL64((k10 + d2), (k14 + d6));
520         h4 += MUL64((k14 + d2), (k18 + d6));
521 
522         h1 += MUL64((k3 + d3), (k7 + d7));
523         h2 += MUL64((k7 + d3), (k11 + d7));
524         h3 += MUL64((k11 + d3), (k15 + d7));
525         h4 += MUL64((k15 + d3), (k19 + d7));
526 
527         k0 = k8; k1 = k9; k2 = k10; k3 = k11;
528         k4 = k12; k5 = k13; k6 = k14; k7 = k15;
529         k8 = k16; k9 = k17; k10 = k18; k11 = k19;
530 
531         d += 8;
532         k += 8;
533     } while (--c);
534     ((UINT64 *)hp)[0] = h1;
535     ((UINT64 *)hp)[1] = h2;
536     ((UINT64 *)hp)[2] = h3;
537     ((UINT64 *)hp)[3] = h4;
538 }
539 
540 /* ---------------------------------------------------------------------- */
541 #endif  /* UMAC_OUTPUT_LENGTH */
542 /* ---------------------------------------------------------------------- */
543 
544 
545 /* ---------------------------------------------------------------------- */
546 
547 static void nh_transform(nh_ctx *hc, UINT8 *buf, UINT32 nbytes)
548 /* This function is a wrapper for the primitive NH hash functions. It takes
549  * as argument "hc" the current hash context and a buffer which must be a
550  * multiple of L1_PAD_BOUNDARY. The key passed to nh_aux is offset
551  * appropriately according to how much message has been hashed already.
552  */
553 {
554     UINT8 *key;
555 
556     key = hc->nh_key + hc->bytes_hashed;
557     nh_aux(key, buf, hc->state, nbytes);
558 }
559 
560 /* ---------------------------------------------------------------------- */
561 
562 #if (__LITTLE_ENDIAN__)
563 #define endian_convert_if_le(x,y,z) endian_convert((x),(y),(z))
564 static void endian_convert(void *buf, UWORD bpw, UINT32 num_bytes)
565 /* We endian convert the keys on little-endian computers to               */
566 /* compensate for the lack of big-endian memory reads during hashing.     */
567 {
568     UWORD iters = num_bytes / bpw;
569     if (bpw == 4) {
570         UINT32 *p = (UINT32 *)buf;
571         do {
572             *p = LOAD_UINT32_REVERSED(p);
573             p++;
574         } while (--iters);
575     } else if (bpw == 8) {
576         UINT32 *p = (UINT32 *)buf;
577         UINT32 t;
578         do {
579             t = LOAD_UINT32_REVERSED(p+1);
580             p[1] = LOAD_UINT32_REVERSED(p);
581             p[0] = t;
582             p += 2;
583         } while (--iters);
584     }
585 }
586 #if (__LITTLE_ENDIAN__)
587 #define endian_convert_if_le(x,y,z) endian_convert((x),(y),(z))
588 #else
589 #define endian_convert_if_le(x,y,z) do{}while(0)  /* Do nothing */
590 #endif
591 
592 /* ---------------------------------------------------------------------- */
593 
594 static void nh_reset(nh_ctx *hc)
595 /* Reset nh_ctx to ready for hashing of new data */
596 {
597     hc->bytes_hashed = 0;
598     hc->next_data_empty = 0;
599     hc->state[0] = 0;
600 #if (UMAC_OUTPUT_LEN >= 8)
601     hc->state[1] = 0;
602 #endif
603 #if (UMAC_OUTPUT_LEN >= 12)
604     hc->state[2] = 0;
605 #endif
606 #if (UMAC_OUTPUT_LEN == 16)
607     hc->state[3] = 0;
608 #endif
609 
610 }
611 
612 /* ---------------------------------------------------------------------- */
613 
614 static void nh_init(nh_ctx *hc, aes_int_key prf_key)
615 /* Generate nh_key, endian convert and reset to be ready for hashing.   */
616 {
617     kdf(hc->nh_key, prf_key, 1, sizeof(hc->nh_key));
618     endian_convert_if_le(hc->nh_key, 4, sizeof(hc->nh_key));
619     nh_reset(hc);
620 }
621 
622 /* ---------------------------------------------------------------------- */
623 
624 static void nh_update(nh_ctx *hc, UINT8 *buf, UINT32 nbytes)
625 /* Incorporate nbytes of data into a nh_ctx, buffer whatever is not an    */
626 /* even multiple of HASH_BUF_BYTES.                                       */
627 {
628     UINT32 i,j;
629 
630     j = hc->next_data_empty;
631     if ((j + nbytes) >= HASH_BUF_BYTES) {
632         if (j) {
633             i = HASH_BUF_BYTES - j;
634             memcpy(hc->data+j, buf, i);
635             nh_transform(hc,hc->data,HASH_BUF_BYTES);
636             nbytes -= i;
637             buf += i;
638             hc->bytes_hashed += HASH_BUF_BYTES;
639         }
640         if (nbytes >= HASH_BUF_BYTES) {
641             i = nbytes & ~(HASH_BUF_BYTES - 1);
642             nh_transform(hc, buf, i);
643             nbytes -= i;
644             buf += i;
645             hc->bytes_hashed += i;
646         }
647         j = 0;
648     }
649     memcpy(hc->data + j, buf, nbytes);
650     hc->next_data_empty = j + nbytes;
651 }
652 
653 /* ---------------------------------------------------------------------- */
654 
655 static void zero_pad(UINT8 *p, int nbytes)
656 {
657 /* Write "nbytes" of zeroes, beginning at "p" */
658     if (nbytes >= (int)sizeof(UWORD)) {
659         while ((ptrdiff_t)p % sizeof(UWORD)) {
660             *p = 0;
661             nbytes--;
662             p++;
663         }
664         while (nbytes >= (int)sizeof(UWORD)) {
665             *(UWORD *)p = 0;
666             nbytes -= sizeof(UWORD);
667             p += sizeof(UWORD);
668         }
669     }
670     while (nbytes) {
671         *p = 0;
672         nbytes--;
673         p++;
674     }
675 }
676 
677 /* ---------------------------------------------------------------------- */
678 
679 static void nh_final(nh_ctx *hc, UINT8 *result)
680 /* After passing some number of data buffers to nh_update() for integration
681  * into an NH context, nh_final is called to produce a hash result. If any
682  * bytes are in the buffer hc->data, incorporate them into the
683  * NH context. Finally, add into the NH accumulation "state" the total number
684  * of bits hashed. The resulting numbers are written to the buffer "result".
685  * If nh_update was never called, L1_PAD_BOUNDARY zeroes are incorporated.
686  */
687 {
688     int nh_len, nbits;
689 
690     if (hc->next_data_empty != 0) {
691         nh_len = ((hc->next_data_empty + (L1_PAD_BOUNDARY - 1)) &
692                                                 ~(L1_PAD_BOUNDARY - 1));
693         zero_pad(hc->data + hc->next_data_empty,
694                                           nh_len - hc->next_data_empty);
695         nh_transform(hc, hc->data, nh_len);
696         hc->bytes_hashed += hc->next_data_empty;
697     } else if (hc->bytes_hashed == 0) {
698     	nh_len = L1_PAD_BOUNDARY;
699         zero_pad(hc->data, L1_PAD_BOUNDARY);
700         nh_transform(hc, hc->data, nh_len);
701     }
702 
703     nbits = (hc->bytes_hashed << 3);
704     ((UINT64 *)result)[0] = ((UINT64 *)hc->state)[0] + nbits;
705 #if (UMAC_OUTPUT_LEN >= 8)
706     ((UINT64 *)result)[1] = ((UINT64 *)hc->state)[1] + nbits;
707 #endif
708 #if (UMAC_OUTPUT_LEN >= 12)
709     ((UINT64 *)result)[2] = ((UINT64 *)hc->state)[2] + nbits;
710 #endif
711 #if (UMAC_OUTPUT_LEN == 16)
712     ((UINT64 *)result)[3] = ((UINT64 *)hc->state)[3] + nbits;
713 #endif
714     nh_reset(hc);
715 }
716 
717 /* ---------------------------------------------------------------------- */
718 
719 static void nh(nh_ctx *hc, UINT8 *buf, UINT32 padded_len,
720                UINT32 unpadded_len, UINT8 *result)
721 /* All-in-one nh_update() and nh_final() equivalent.
722  * Assumes that padded_len is divisible by L1_PAD_BOUNDARY and result is
723  * well aligned
724  */
725 {
726     UINT32 nbits;
727 
728     /* Initialize the hash state */
729     nbits = (unpadded_len << 3);
730 
731     ((UINT64 *)result)[0] = nbits;
732 #if (UMAC_OUTPUT_LEN >= 8)
733     ((UINT64 *)result)[1] = nbits;
734 #endif
735 #if (UMAC_OUTPUT_LEN >= 12)
736     ((UINT64 *)result)[2] = nbits;
737 #endif
738 #if (UMAC_OUTPUT_LEN == 16)
739     ((UINT64 *)result)[3] = nbits;
740 #endif
741 
742     nh_aux(hc->nh_key, buf, result, padded_len);
743 }
744 
745 /* ---------------------------------------------------------------------- */
746 /* ---------------------------------------------------------------------- */
747 /* ----- Begin UHASH Section -------------------------------------------- */
748 /* ---------------------------------------------------------------------- */
749 /* ---------------------------------------------------------------------- */
750 
751 /* UHASH is a multi-layered algorithm. Data presented to UHASH is first
752  * hashed by NH. The NH output is then hashed by a polynomial-hash layer
753  * unless the initial data to be hashed is short. After the polynomial-
754  * layer, an inner-product hash is used to produce the final UHASH output.
755  *
756  * UHASH provides two interfaces, one all-at-once and another where data
757  * buffers are presented sequentially. In the sequential interface, the
758  * UHASH client calls the routine uhash_update() as many times as necessary.
759  * When there is no more data to be fed to UHASH, the client calls
760  * uhash_final() which
761  * calculates the UHASH output. Before beginning another UHASH calculation
762  * the uhash_reset() routine must be called. The all-at-once UHASH routine,
763  * uhash(), is equivalent to the sequence of calls uhash_update() and
764  * uhash_final(); however it is optimized and should be
765  * used whenever the sequential interface is not necessary.
766  *
767  * The routine uhash_init() initializes the uhash_ctx data structure and
768  * must be called once, before any other UHASH routine.
769  */
770 
771 /* ---------------------------------------------------------------------- */
772 /* ----- Constants and uhash_ctx ---------------------------------------- */
773 /* ---------------------------------------------------------------------- */
774 
775 /* ---------------------------------------------------------------------- */
776 /* ----- Poly hash and Inner-Product hash Constants --------------------- */
777 /* ---------------------------------------------------------------------- */
778 
779 /* Primes and masks */
780 #define p36    ((UINT64)0x0000000FFFFFFFFBull)              /* 2^36 -  5 */
781 #define p64    ((UINT64)0xFFFFFFFFFFFFFFC5ull)              /* 2^64 - 59 */
782 #define m36    ((UINT64)0x0000000FFFFFFFFFull)  /* The low 36 of 64 bits */
783 
784 
785 /* ---------------------------------------------------------------------- */
786 
787 typedef struct uhash_ctx {
788     nh_ctx hash;                          /* Hash context for L1 NH hash  */
789     UINT64 poly_key_8[STREAMS];           /* p64 poly keys                */
790     UINT64 poly_accum[STREAMS];           /* poly hash result             */
791     UINT64 ip_keys[STREAMS*4];            /* Inner-product keys           */
792     UINT32 ip_trans[STREAMS];             /* Inner-product translation    */
793     UINT32 msg_len;                       /* Total length of data passed  */
794                                           /* to uhash */
795 } uhash_ctx;
796 typedef struct uhash_ctx *uhash_ctx_t;
797 
798 /* ---------------------------------------------------------------------- */
799 
800 
801 /* The polynomial hashes use Horner's rule to evaluate a polynomial one
802  * word at a time. As described in the specification, poly32 and poly64
803  * require keys from special domains. The following implementations exploit
804  * the special domains to avoid overflow. The results are not guaranteed to
805  * be within Z_p32 and Z_p64, but the Inner-Product hash implementation
806  * patches any errant values.
807  */
808 
809 static UINT64 poly64(UINT64 cur, UINT64 key, UINT64 data)
810 {
811     UINT32 key_hi = (UINT32)(key >> 32),
812            key_lo = (UINT32)key,
813            cur_hi = (UINT32)(cur >> 32),
814            cur_lo = (UINT32)cur,
815            x_lo,
816            x_hi;
817     UINT64 X,T,res;
818 
819     X =  MUL64(key_hi, cur_lo) + MUL64(cur_hi, key_lo);
820     x_lo = (UINT32)X;
821     x_hi = (UINT32)(X >> 32);
822 
823     res = (MUL64(key_hi, cur_hi) + x_hi) * 59 + MUL64(key_lo, cur_lo);
824 
825     T = ((UINT64)x_lo << 32);
826     res += T;
827     if (res < T)
828         res += 59;
829 
830     res += data;
831     if (res < data)
832         res += 59;
833 
834     return res;
835 }
836 
837 
838 /* Although UMAC is specified to use a ramped polynomial hash scheme, this
839  * implementation does not handle all ramp levels. Because we don't handle
840  * the ramp up to p128 modulus in this implementation, we are limited to
841  * 2^14 poly_hash() invocations per stream (for a total capacity of 2^24
842  * bytes input to UMAC per tag, ie. 16MB).
843  */
844 static void poly_hash(uhash_ctx_t hc, UINT32 data_in[])
845 {
846     int i;
847     UINT64 *data=(UINT64*)data_in;
848 
849     for (i = 0; i < STREAMS; i++) {
850         if ((UINT32)(data[i] >> 32) == 0xfffffffful) {
851             hc->poly_accum[i] = poly64(hc->poly_accum[i],
852                                        hc->poly_key_8[i], p64 - 1);
853             hc->poly_accum[i] = poly64(hc->poly_accum[i],
854                                        hc->poly_key_8[i], (data[i] - 59));
855         } else {
856             hc->poly_accum[i] = poly64(hc->poly_accum[i],
857                                        hc->poly_key_8[i], data[i]);
858         }
859     }
860 }
861 
862 
863 /* ---------------------------------------------------------------------- */
864 
865 
866 /* The final step in UHASH is an inner-product hash. The poly hash
867  * produces a result not neccesarily WORD_LEN bytes long. The inner-
868  * product hash breaks the polyhash output into 16-bit chunks and
869  * multiplies each with a 36 bit key.
870  */
871 
872 static UINT64 ip_aux(UINT64 t, UINT64 *ipkp, UINT64 data)
873 {
874     t = t + ipkp[0] * (UINT64)(UINT16)(data >> 48);
875     t = t + ipkp[1] * (UINT64)(UINT16)(data >> 32);
876     t = t + ipkp[2] * (UINT64)(UINT16)(data >> 16);
877     t = t + ipkp[3] * (UINT64)(UINT16)(data);
878 
879     return t;
880 }
881 
882 static UINT32 ip_reduce_p36(UINT64 t)
883 {
884 /* Divisionless modular reduction */
885     UINT64 ret;
886 
887     ret = (t & m36) + 5 * (t >> 36);
888     if (ret >= p36)
889         ret -= p36;
890 
891     /* return least significant 32 bits */
892     return (UINT32)(ret);
893 }
894 
895 
896 /* If the data being hashed by UHASH is no longer than L1_KEY_LEN, then
897  * the polyhash stage is skipped and ip_short is applied directly to the
898  * NH output.
899  */
900 static void ip_short(uhash_ctx_t ahc, UINT8 *nh_res, u_char *res)
901 {
902     UINT64 t;
903     UINT64 *nhp = (UINT64 *)nh_res;
904 
905     t  = ip_aux(0,ahc->ip_keys, nhp[0]);
906     STORE_UINT32_BIG((UINT32 *)res+0, ip_reduce_p36(t) ^ ahc->ip_trans[0]);
907 #if (UMAC_OUTPUT_LEN >= 8)
908     t  = ip_aux(0,ahc->ip_keys+4, nhp[1]);
909     STORE_UINT32_BIG((UINT32 *)res+1, ip_reduce_p36(t) ^ ahc->ip_trans[1]);
910 #endif
911 #if (UMAC_OUTPUT_LEN >= 12)
912     t  = ip_aux(0,ahc->ip_keys+8, nhp[2]);
913     STORE_UINT32_BIG((UINT32 *)res+2, ip_reduce_p36(t) ^ ahc->ip_trans[2]);
914 #endif
915 #if (UMAC_OUTPUT_LEN == 16)
916     t  = ip_aux(0,ahc->ip_keys+12, nhp[3]);
917     STORE_UINT32_BIG((UINT32 *)res+3, ip_reduce_p36(t) ^ ahc->ip_trans[3]);
918 #endif
919 }
920 
921 /* If the data being hashed by UHASH is longer than L1_KEY_LEN, then
922  * the polyhash stage is not skipped and ip_long is applied to the
923  * polyhash output.
924  */
925 static void ip_long(uhash_ctx_t ahc, u_char *res)
926 {
927     int i;
928     UINT64 t;
929 
930     for (i = 0; i < STREAMS; i++) {
931         /* fix polyhash output not in Z_p64 */
932         if (ahc->poly_accum[i] >= p64)
933             ahc->poly_accum[i] -= p64;
934         t  = ip_aux(0,ahc->ip_keys+(i*4), ahc->poly_accum[i]);
935         STORE_UINT32_BIG((UINT32 *)res+i,
936                          ip_reduce_p36(t) ^ ahc->ip_trans[i]);
937     }
938 }
939 
940 
941 /* ---------------------------------------------------------------------- */
942 
943 /* ---------------------------------------------------------------------- */
944 
945 /* Reset uhash context for next hash session */
946 static int uhash_reset(uhash_ctx_t pc)
947 {
948     nh_reset(&pc->hash);
949     pc->msg_len = 0;
950     pc->poly_accum[0] = 1;
951 #if (UMAC_OUTPUT_LEN >= 8)
952     pc->poly_accum[1] = 1;
953 #endif
954 #if (UMAC_OUTPUT_LEN >= 12)
955     pc->poly_accum[2] = 1;
956 #endif
957 #if (UMAC_OUTPUT_LEN == 16)
958     pc->poly_accum[3] = 1;
959 #endif
960     return 1;
961 }
962 
963 /* ---------------------------------------------------------------------- */
964 
965 /* Given a pointer to the internal key needed by kdf() and a uhash context,
966  * initialize the NH context and generate keys needed for poly and inner-
967  * product hashing. All keys are endian adjusted in memory so that native
968  * loads cause correct keys to be in registers during calculation.
969  */
970 static void uhash_init(uhash_ctx_t ahc, aes_int_key prf_key)
971 {
972     int i;
973     UINT8 buf[(8*STREAMS+4)*sizeof(UINT64)];
974 
975     /* Zero the entire uhash context */
976     memset(ahc, 0, sizeof(uhash_ctx));
977 
978     /* Initialize the L1 hash */
979     nh_init(&ahc->hash, prf_key);
980 
981     /* Setup L2 hash variables */
982     kdf(buf, prf_key, 2, sizeof(buf));    /* Fill buffer with index 1 key */
983     for (i = 0; i < STREAMS; i++) {
984         /* Fill keys from the buffer, skipping bytes in the buffer not
985          * used by this implementation. Endian reverse the keys if on a
986          * little-endian computer.
987          */
988         memcpy(ahc->poly_key_8+i, buf+24*i, 8);
989         endian_convert_if_le(ahc->poly_key_8+i, 8, 8);
990         /* Mask the 64-bit keys to their special domain */
991         ahc->poly_key_8[i] &= ((UINT64)0x01ffffffu << 32) + 0x01ffffffu;
992         ahc->poly_accum[i] = 1;  /* Our polyhash prepends a non-zero word */
993     }
994 
995     /* Setup L3-1 hash variables */
996     kdf(buf, prf_key, 3, sizeof(buf)); /* Fill buffer with index 2 key */
997     for (i = 0; i < STREAMS; i++)
998           memcpy(ahc->ip_keys+4*i, buf+(8*i+4)*sizeof(UINT64),
999                                                  4*sizeof(UINT64));
1000     endian_convert_if_le(ahc->ip_keys, sizeof(UINT64),
1001                                                   sizeof(ahc->ip_keys));
1002     for (i = 0; i < STREAMS*4; i++)
1003         ahc->ip_keys[i] %= p36;  /* Bring into Z_p36 */
1004 
1005     /* Setup L3-2 hash variables    */
1006     /* Fill buffer with index 4 key */
1007     kdf(ahc->ip_trans, prf_key, 4, STREAMS * sizeof(UINT32));
1008     endian_convert_if_le(ahc->ip_trans, sizeof(UINT32),
1009                          STREAMS * sizeof(UINT32));
1010 }
1011 
1012 /* ---------------------------------------------------------------------- */
1013 
1014 #if 0
1015 static uhash_ctx_t uhash_alloc(u_char key[])
1016 {
1017 /* Allocate memory and force to a 16-byte boundary. */
1018     uhash_ctx_t ctx;
1019     u_char bytes_to_add;
1020     aes_int_key prf_key;
1021 
1022     ctx = (uhash_ctx_t)malloc(sizeof(uhash_ctx)+ALLOC_BOUNDARY);
1023     if (ctx) {
1024         if (ALLOC_BOUNDARY) {
1025             bytes_to_add = ALLOC_BOUNDARY -
1026                               ((ptrdiff_t)ctx & (ALLOC_BOUNDARY -1));
1027             ctx = (uhash_ctx_t)((u_char *)ctx + bytes_to_add);
1028             *((u_char *)ctx - 1) = bytes_to_add;
1029         }
1030         aes_key_setup(key,prf_key);
1031         uhash_init(ctx, prf_key);
1032     }
1033     return (ctx);
1034 }
1035 #endif
1036 
1037 /* ---------------------------------------------------------------------- */
1038 
1039 #if 0
1040 static int uhash_free(uhash_ctx_t ctx)
1041 {
1042 /* Free memory allocated by uhash_alloc */
1043     u_char bytes_to_sub;
1044 
1045     if (ctx) {
1046         if (ALLOC_BOUNDARY) {
1047             bytes_to_sub = *((u_char *)ctx - 1);
1048             ctx = (uhash_ctx_t)((u_char *)ctx - bytes_to_sub);
1049         }
1050         free(ctx);
1051     }
1052     return (1);
1053 }
1054 #endif
1055 /* ---------------------------------------------------------------------- */
1056 
1057 static int uhash_update(uhash_ctx_t ctx, u_char *input, long len)
1058 /* Given len bytes of data, we parse it into L1_KEY_LEN chunks and
1059  * hash each one with NH, calling the polyhash on each NH output.
1060  */
1061 {
1062     UWORD bytes_hashed, bytes_remaining;
1063     UINT64 result_buf[STREAMS];
1064     UINT8 *nh_result = (UINT8 *)&result_buf;
1065 
1066     if (ctx->msg_len + len <= L1_KEY_LEN) {
1067         nh_update(&ctx->hash, (UINT8 *)input, len);
1068         ctx->msg_len += len;
1069     } else {
1070 
1071          bytes_hashed = ctx->msg_len % L1_KEY_LEN;
1072          if (ctx->msg_len == L1_KEY_LEN)
1073              bytes_hashed = L1_KEY_LEN;
1074 
1075          if (bytes_hashed + len >= L1_KEY_LEN) {
1076 
1077              /* If some bytes have been passed to the hash function      */
1078              /* then we want to pass at most (L1_KEY_LEN - bytes_hashed) */
1079              /* bytes to complete the current nh_block.                  */
1080              if (bytes_hashed) {
1081                  bytes_remaining = (L1_KEY_LEN - bytes_hashed);
1082                  nh_update(&ctx->hash, (UINT8 *)input, bytes_remaining);
1083                  nh_final(&ctx->hash, nh_result);
1084                  ctx->msg_len += bytes_remaining;
1085                  poly_hash(ctx,(UINT32 *)nh_result);
1086                  len -= bytes_remaining;
1087                  input += bytes_remaining;
1088              }
1089 
1090              /* Hash directly from input stream if enough bytes */
1091              while (len >= L1_KEY_LEN) {
1092                  nh(&ctx->hash, (UINT8 *)input, L1_KEY_LEN,
1093                                    L1_KEY_LEN, nh_result);
1094                  ctx->msg_len += L1_KEY_LEN;
1095                  len -= L1_KEY_LEN;
1096                  input += L1_KEY_LEN;
1097                  poly_hash(ctx,(UINT32 *)nh_result);
1098              }
1099          }
1100 
1101          /* pass remaining < L1_KEY_LEN bytes of input data to NH */
1102          if (len) {
1103              nh_update(&ctx->hash, (UINT8 *)input, len);
1104              ctx->msg_len += len;
1105          }
1106      }
1107 
1108     return (1);
1109 }
1110 
1111 /* ---------------------------------------------------------------------- */
1112 
1113 static int uhash_final(uhash_ctx_t ctx, u_char *res)
1114 /* Incorporate any pending data, pad, and generate tag */
1115 {
1116     UINT64 result_buf[STREAMS];
1117     UINT8 *nh_result = (UINT8 *)&result_buf;
1118 
1119     if (ctx->msg_len > L1_KEY_LEN) {
1120         if (ctx->msg_len % L1_KEY_LEN) {
1121             nh_final(&ctx->hash, nh_result);
1122             poly_hash(ctx,(UINT32 *)nh_result);
1123         }
1124         ip_long(ctx, res);
1125     } else {
1126         nh_final(&ctx->hash, nh_result);
1127         ip_short(ctx,nh_result, res);
1128     }
1129     uhash_reset(ctx);
1130     return (1);
1131 }
1132 
1133 /* ---------------------------------------------------------------------- */
1134 
1135 #if 0
1136 static int uhash(uhash_ctx_t ahc, u_char *msg, long len, u_char *res)
1137 /* assumes that msg is in a writable buffer of length divisible by */
1138 /* L1_PAD_BOUNDARY. Bytes beyond msg[len] may be zeroed.           */
1139 {
1140     UINT8 nh_result[STREAMS*sizeof(UINT64)];
1141     UINT32 nh_len;
1142     int extra_zeroes_needed;
1143 
1144     /* If the message to be hashed is no longer than L1_HASH_LEN, we skip
1145      * the polyhash.
1146      */
1147     if (len <= L1_KEY_LEN) {
1148     	if (len == 0)                  /* If zero length messages will not */
1149     		nh_len = L1_PAD_BOUNDARY;  /* be seen, comment out this case   */
1150     	else
1151         	nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1));
1152         extra_zeroes_needed = nh_len - len;
1153         zero_pad((UINT8 *)msg + len, extra_zeroes_needed);
1154         nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result);
1155         ip_short(ahc,nh_result, res);
1156     } else {
1157         /* Otherwise, we hash each L1_KEY_LEN chunk with NH, passing the NH
1158          * output to poly_hash().
1159          */
1160         do {
1161             nh(&ahc->hash, (UINT8 *)msg, L1_KEY_LEN, L1_KEY_LEN, nh_result);
1162             poly_hash(ahc,(UINT32 *)nh_result);
1163             len -= L1_KEY_LEN;
1164             msg += L1_KEY_LEN;
1165         } while (len >= L1_KEY_LEN);
1166         if (len) {
1167             nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1));
1168             extra_zeroes_needed = nh_len - len;
1169             zero_pad((UINT8 *)msg + len, extra_zeroes_needed);
1170             nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result);
1171             poly_hash(ahc,(UINT32 *)nh_result);
1172         }
1173 
1174         ip_long(ahc, res);
1175     }
1176 
1177     uhash_reset(ahc);
1178     return 1;
1179 }
1180 #endif
1181 
1182 /* ---------------------------------------------------------------------- */
1183 /* ---------------------------------------------------------------------- */
1184 /* ----- Begin UMAC Section --------------------------------------------- */
1185 /* ---------------------------------------------------------------------- */
1186 /* ---------------------------------------------------------------------- */
1187 
1188 /* The UMAC interface has two interfaces, an all-at-once interface where
1189  * the entire message to be authenticated is passed to UMAC in one buffer,
1190  * and a sequential interface where the message is presented a little at a
1191  * time. The all-at-once is more optimaized than the sequential version and
1192  * should be preferred when the sequential interface is not required.
1193  */
1194 struct umac_ctx {
1195     uhash_ctx hash;          /* Hash function for message compression    */
1196     pdf_ctx pdf;             /* PDF for hashed output                    */
1197     void *free_ptr;          /* Address to free this struct via          */
1198 } umac_ctx;
1199 
1200 /* ---------------------------------------------------------------------- */
1201 
1202 #if 0
1203 int umac_reset(struct umac_ctx *ctx)
1204 /* Reset the hash function to begin a new authentication.        */
1205 {
1206     uhash_reset(&ctx->hash);
1207     return (1);
1208 }
1209 #endif
1210 
1211 /* ---------------------------------------------------------------------- */
1212 
1213 int umac_delete(struct umac_ctx *ctx)
1214 /* Deallocate the ctx structure */
1215 {
1216     if (ctx) {
1217         if (ALLOC_BOUNDARY)
1218             ctx = (struct umac_ctx *)ctx->free_ptr;
1219         xfree(ctx);
1220     }
1221     return (1);
1222 }
1223 
1224 /* ---------------------------------------------------------------------- */
1225 
1226 struct umac_ctx *umac_new(u_char key[])
1227 /* Dynamically allocate a umac_ctx struct, initialize variables,
1228  * generate subkeys from key. Align to 16-byte boundary.
1229  */
1230 {
1231     struct umac_ctx *ctx, *octx;
1232     size_t bytes_to_add;
1233     aes_int_key prf_key;
1234 
1235     octx = ctx = xmalloc(sizeof(*ctx) + ALLOC_BOUNDARY);
1236     if (ctx) {
1237         if (ALLOC_BOUNDARY) {
1238             bytes_to_add = ALLOC_BOUNDARY -
1239                               ((ptrdiff_t)ctx & (ALLOC_BOUNDARY - 1));
1240             ctx = (struct umac_ctx *)((u_char *)ctx + bytes_to_add);
1241         }
1242         ctx->free_ptr = octx;
1243         aes_key_setup(key,prf_key);
1244         pdf_init(&ctx->pdf, prf_key);
1245         uhash_init(&ctx->hash, prf_key);
1246     }
1247 
1248     return (ctx);
1249 }
1250 
1251 /* ---------------------------------------------------------------------- */
1252 
1253 int umac_final(struct umac_ctx *ctx, u_char tag[], u_char nonce[8])
1254 /* Incorporate any pending data, pad, and generate tag */
1255 {
1256     uhash_final(&ctx->hash, (u_char *)tag);
1257     pdf_gen_xor(&ctx->pdf, (UINT8 *)nonce, (UINT8 *)tag);
1258 
1259     return (1);
1260 }
1261 
1262 /* ---------------------------------------------------------------------- */
1263 
1264 int umac_update(struct umac_ctx *ctx, u_char *input, long len)
1265 /* Given len bytes of data, we parse it into L1_KEY_LEN chunks and   */
1266 /* hash each one, calling the PDF on the hashed output whenever the hash- */
1267 /* output buffer is full.                                                 */
1268 {
1269     uhash_update(&ctx->hash, input, len);
1270     return (1);
1271 }
1272 
1273 /* ---------------------------------------------------------------------- */
1274 
1275 #if 0
1276 int umac(struct umac_ctx *ctx, u_char *input,
1277          long len, u_char tag[],
1278          u_char nonce[8])
1279 /* All-in-one version simply calls umac_update() and umac_final().        */
1280 {
1281     uhash(&ctx->hash, input, len, (u_char *)tag);
1282     pdf_gen_xor(&ctx->pdf, (UINT8 *)nonce, (UINT8 *)tag);
1283 
1284     return (1);
1285 }
1286 #endif
1287 
1288 /* ---------------------------------------------------------------------- */
1289 /* ---------------------------------------------------------------------- */
1290 /* ----- End UMAC Section ----------------------------------------------- */
1291 /* ---------------------------------------------------------------------- */
1292 /* ---------------------------------------------------------------------- */
1293