xref: /netbsd-src/crypto/external/bsd/openssh/dist/umac.c (revision 6a493d6bc668897c91594964a732d38505b70cbb)
1 /*	$NetBSD: umac.c,v 1.4 2013/11/08 19:18:25 christos Exp $	*/
2 /* $OpenBSD: umac.c,v 1.7.2.1 2013/11/08 01:33:56 djm Exp $ */
3 /* -----------------------------------------------------------------------
4  *
5  * umac.c -- C Implementation UMAC Message Authentication
6  *
7  * Version 0.93b of rfc4418.txt -- 2006 July 18
8  *
9  * For a full description of UMAC message authentication see the UMAC
10  * world-wide-web page at http://www.cs.ucdavis.edu/~rogaway/umac
11  * Please report bugs and suggestions to the UMAC webpage.
12  *
13  * Copyright (c) 1999-2006 Ted Krovetz
14  *
15  * Permission to use, copy, modify, and distribute this software and
16  * its documentation for any purpose and with or without fee, is hereby
17  * granted provided that the above copyright notice appears in all copies
18  * and in supporting documentation, and that the name of the copyright
19  * holder not be used in advertising or publicity pertaining to
20  * distribution of the software without specific, written prior permission.
21  *
22  * Comments should be directed to Ted Krovetz (tdk@acm.org)
23  *
24  * ---------------------------------------------------------------------- */
25 
26  /* ////////////////////// IMPORTANT NOTES /////////////////////////////////
27   *
28   * 1) This version does not work properly on messages larger than 16MB
29   *
30   * 2) If you set the switch to use SSE2, then all data must be 16-byte
31   *    aligned
32   *
33   * 3) When calling the function umac(), it is assumed that msg is in
34   * a writable buffer of length divisible by 32 bytes. The message itself
35   * does not have to fill the entire buffer, but bytes beyond msg may be
36   * zeroed.
37   *
38   * 4) Three free AES implementations are supported by this implementation of
39   * UMAC. Paulo Barreto's version is in the public domain and can be found
40   * at http://www.esat.kuleuven.ac.be/~rijmen/rijndael/ (search for
41   * "Barreto"). The only two files needed are rijndael-alg-fst.c and
42   * rijndael-alg-fst.h. Brian Gladman's version is distributed with the GNU
43   * Public lisence at http://fp.gladman.plus.com/AES/index.htm. It
44   * includes a fast IA-32 assembly version. The OpenSSL crypo library is
45   * the third.
46   *
47   * 5) With FORCE_C_ONLY flags set to 0, incorrect results are sometimes
48   * produced under gcc with optimizations set -O3 or higher. Dunno why.
49   *
50   /////////////////////////////////////////////////////////////////////// */
51 
52 /* ---------------------------------------------------------------------- */
53 /* --- User Switches ---------------------------------------------------- */
54 /* ---------------------------------------------------------------------- */
55 
56 #define UMAC_OUTPUT_LEN     8  /* Alowable: 4, 8, 12, 16                  */
57 /* #define FORCE_C_ONLY        1  ANSI C and 64-bit integers req'd        */
58 /* #define AES_IMPLEMENTAION   1  1 = OpenSSL, 2 = Barreto, 3 = Gladman   */
59 /* #define SSE2                0  Is SSE2 is available?                   */
60 /* #define RUN_TESTS           0  Run basic correctness/speed tests       */
61 /* #define UMAC_AE_SUPPORT     0  Enable auhthenticated encrytion         */
62 
63 /* ---------------------------------------------------------------------- */
64 /* -- Global Includes --------------------------------------------------- */
65 /* ---------------------------------------------------------------------- */
66 
67 #include "includes.h"
68 __RCSID("$NetBSD: umac.c,v 1.4 2013/11/08 19:18:25 christos Exp $");
69 #include <sys/types.h>
70 #include <sys/endian.h>
71 
72 #include "xmalloc.h"
73 #include "umac.h"
74 #include <string.h>
75 #include <stdlib.h>
76 #include <stddef.h>
77 
78 /* ---------------------------------------------------------------------- */
79 /* --- Primitive Data Types ---                                           */
80 /* ---------------------------------------------------------------------- */
81 
82 /* The following assumptions may need change on your system */
83 typedef u_int8_t	UINT8;  /* 1 byte   */
84 typedef u_int16_t	UINT16; /* 2 byte   */
85 typedef u_int32_t	UINT32; /* 4 byte   */
86 typedef u_int64_t	UINT64; /* 8 bytes  */
87 typedef unsigned int	UWORD;  /* Register */
88 
89 /* ---------------------------------------------------------------------- */
90 /* --- Constants -------------------------------------------------------- */
91 /* ---------------------------------------------------------------------- */
92 
93 #define UMAC_KEY_LEN           16  /* UMAC takes 16 bytes of external key */
94 
95 /* Message "words" are read from memory in an endian-specific manner.     */
96 /* For this implementation to behave correctly, __LITTLE_ENDIAN__ must    */
97 /* be set true if the host computer is little-endian.                     */
98 
99 #if BYTE_ORDER == LITTLE_ENDIAN
100 #define __LITTLE_ENDIAN__ 1
101 #else
102 #define __LITTLE_ENDIAN__ 0
103 #endif
104 
105 /* ---------------------------------------------------------------------- */
106 /* ---------------------------------------------------------------------- */
107 /* ----- Architecture Specific ------------------------------------------ */
108 /* ---------------------------------------------------------------------- */
109 /* ---------------------------------------------------------------------- */
110 
111 
112 /* ---------------------------------------------------------------------- */
113 /* ---------------------------------------------------------------------- */
114 /* ----- Primitive Routines --------------------------------------------- */
115 /* ---------------------------------------------------------------------- */
116 /* ---------------------------------------------------------------------- */
117 
118 
119 /* ---------------------------------------------------------------------- */
120 /* --- 32-bit by 32-bit to 64-bit Multiplication ------------------------ */
121 /* ---------------------------------------------------------------------- */
122 
123 #define MUL64(a,b) ((UINT64)((UINT64)(UINT32)(a) * (UINT64)(UINT32)(b)))
124 
125 #if defined(__NetBSD__)
126 #include <sys/endian.h>
127 #define LOAD_UINT32_LITTLE(ptr)	le32toh(*ptr)
128 #define STORE_UINT32_BIG(ptr,x)	(*(UINT32 *)(ptr) = htobe32(x))
129 #define LOAD_UINT32_REVERSED(p)		(bswap32(*(UINT32 *)(p)))
130 #define STORE_UINT32_REVERSED(p,v) 	(*(UINT32 *)(p) = bswap32(v))
131 #else /* !NetBSD */
132 
133  /* ---------------------------------------------------------------------- */
134  /* --- Endian Conversion --- Forcing assembly on some platforms           */
135 
136 /* ---------------------------------------------------------------------- */
137 /* --- Endian Conversion --- Forcing assembly on some platforms           */
138 /* ---------------------------------------------------------------------- */
139 
140 #if !defined(__OpenBSD__)
141 static UINT32 LOAD_UINT32_REVERSED(const void *ptr)
142 {
143     UINT32 temp = *(const UINT32 *)ptr;
144     temp = (temp >> 24) | ((temp & 0x00FF0000) >> 8 )
145          | ((temp & 0x0000FF00) << 8 ) | (temp << 24);
146     return (UINT32)temp;
147 }
148 
149 static void STORE_UINT32_REVERSED(void *ptr, UINT32 x)
150 {
151     UINT32 i = (UINT32)x;
152     *(UINT32 *)ptr = (i >> 24) | ((i & 0x00FF0000) >> 8 )
153                    | ((i & 0x0000FF00) << 8 ) | (i << 24);
154 }
155 #endif
156 
157 #else
158 /* The following definitions use the above reversal-primitives to do the right
159  * thing on endian specific load and stores.
160  */
161 
162 #define LOAD_UINT32_REVERSED(p)		(swap32(*(const UINT32 *)(p)))
163 #define STORE_UINT32_REVERSED(p,v) 	(*(UINT32 *)(p) = swap32(v))
164 #endif
165 
166 #if (__LITTLE_ENDIAN__)
167 #define LOAD_UINT32_LITTLE(ptr)     (*(const UINT32 *)(ptr))
168 #define STORE_UINT32_BIG(ptr,x)     STORE_UINT32_REVERSED(ptr,x)
169 #else
170 #define LOAD_UINT32_LITTLE(ptr)     LOAD_UINT32_REVERSED(ptr)
171 #define STORE_UINT32_BIG(ptr,x)     (*(UINT32 *)(ptr) = (UINT32)(x))
172 #endif
173 #endif /*!NetBSD*/
174 
175 
176 
177 /* ---------------------------------------------------------------------- */
178 /* ---------------------------------------------------------------------- */
179 /* ----- Begin KDF & PDF Section ---------------------------------------- */
180 /* ---------------------------------------------------------------------- */
181 /* ---------------------------------------------------------------------- */
182 
183 /* UMAC uses AES with 16 byte block and key lengths */
184 #define AES_BLOCK_LEN  16
185 
186 /* OpenSSL's AES */
187 #include <openssl/aes.h>
188 typedef AES_KEY aes_int_key[1];
189 #define aes_encryption(in,out,int_key)                  \
190   AES_encrypt((u_char *)(in),(u_char *)(out),(AES_KEY *)int_key)
191 #define aes_key_setup(key,int_key)                      \
192   AES_set_encrypt_key((const u_char *)(key),UMAC_KEY_LEN*8,int_key)
193 
194 /* The user-supplied UMAC key is stretched using AES in a counter
195  * mode to supply all random bits needed by UMAC. The kdf function takes
196  * an AES internal key representation 'key' and writes a stream of
197  * 'nbytes' bytes to the memory pointed at by 'buffer_ptr'. Each distinct
198  * 'ndx' causes a distinct byte stream.
199  */
200 static void kdf(void *buffer_ptr, aes_int_key key, UINT8 ndx, int nbytes)
201 {
202     UINT8 in_buf[AES_BLOCK_LEN] = {0};
203     UINT8 out_buf[AES_BLOCK_LEN];
204     UINT8 *dst_buf = (UINT8 *)buffer_ptr;
205     int i;
206 
207     /* Setup the initial value */
208     in_buf[AES_BLOCK_LEN-9] = ndx;
209     in_buf[AES_BLOCK_LEN-1] = i = 1;
210 
211     while (nbytes >= AES_BLOCK_LEN) {
212         aes_encryption(in_buf, out_buf, key);
213         memcpy(dst_buf,out_buf,AES_BLOCK_LEN);
214         in_buf[AES_BLOCK_LEN-1] = ++i;
215         nbytes -= AES_BLOCK_LEN;
216         dst_buf += AES_BLOCK_LEN;
217     }
218     if (nbytes) {
219         aes_encryption(in_buf, out_buf, key);
220         memcpy(dst_buf,out_buf,nbytes);
221     }
222 }
223 
224 /* The final UHASH result is XOR'd with the output of a pseudorandom
225  * function. Here, we use AES to generate random output and
226  * xor the appropriate bytes depending on the last bits of nonce.
227  * This scheme is optimized for sequential, increasing big-endian nonces.
228  */
229 
230 typedef struct {
231     UINT8 cache[AES_BLOCK_LEN];  /* Previous AES output is saved      */
232     UINT8 nonce[AES_BLOCK_LEN];  /* The AES input making above cache  */
233     aes_int_key prf_key;         /* Expanded AES key for PDF          */
234 } pdf_ctx;
235 
236 static void pdf_init(pdf_ctx *pc, aes_int_key prf_key)
237 {
238     UINT8 buf[UMAC_KEY_LEN];
239 
240     kdf(buf, prf_key, 0, UMAC_KEY_LEN);
241     aes_key_setup(buf, pc->prf_key);
242 
243     /* Initialize pdf and cache */
244     memset(pc->nonce, 0, sizeof(pc->nonce));
245     aes_encryption(pc->nonce, pc->cache, pc->prf_key);
246 }
247 
248 static void pdf_gen_xor(pdf_ctx *pc, const UINT8 nonce[8], UINT8 buf[8])
249 {
250     /* 'ndx' indicates that we'll be using the 0th or 1st eight bytes
251      * of the AES output. If last time around we returned the ndx-1st
252      * element, then we may have the result in the cache already.
253      */
254 
255 #if (UMAC_OUTPUT_LEN == 4)
256 #define LOW_BIT_MASK 3
257 #elif (UMAC_OUTPUT_LEN == 8)
258 #define LOW_BIT_MASK 1
259 #elif (UMAC_OUTPUT_LEN > 8)
260 #define LOW_BIT_MASK 0
261 #endif
262     union {
263         UINT8 tmp_nonce_lo[4];
264         UINT32 align;
265     } t;
266 #if LOW_BIT_MASK != 0
267     int ndx = nonce[7] & LOW_BIT_MASK;
268 #endif
269     *(UINT32 *)t.tmp_nonce_lo = ((const UINT32 *)nonce)[1];
270     t.tmp_nonce_lo[3] &= ~LOW_BIT_MASK; /* zero last bit */
271 
272     if ( (((UINT32 *)t.tmp_nonce_lo)[0] != ((UINT32 *)pc->nonce)[1]) ||
273          (((const UINT32 *)nonce)[0] != ((UINT32 *)pc->nonce)[0]) )
274     {
275         ((UINT32 *)pc->nonce)[0] = ((const UINT32 *)nonce)[0];
276         ((UINT32 *)pc->nonce)[1] = ((UINT32 *)t.tmp_nonce_lo)[0];
277         aes_encryption(pc->nonce, pc->cache, pc->prf_key);
278     }
279 
280 #if (UMAC_OUTPUT_LEN == 4)
281     *((UINT32 *)buf) ^= ((UINT32 *)pc->cache)[ndx];
282 #elif (UMAC_OUTPUT_LEN == 8)
283     *((UINT64 *)buf) ^= ((UINT64 *)pc->cache)[ndx];
284 #elif (UMAC_OUTPUT_LEN == 12)
285     ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0];
286     ((UINT32 *)buf)[2] ^= ((UINT32 *)pc->cache)[2];
287 #elif (UMAC_OUTPUT_LEN == 16)
288     ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0];
289     ((UINT64 *)buf)[1] ^= ((UINT64 *)pc->cache)[1];
290 #endif
291 }
292 
293 /* ---------------------------------------------------------------------- */
294 /* ---------------------------------------------------------------------- */
295 /* ----- Begin NH Hash Section ------------------------------------------ */
296 /* ---------------------------------------------------------------------- */
297 /* ---------------------------------------------------------------------- */
298 
299 /* The NH-based hash functions used in UMAC are described in the UMAC paper
300  * and specification, both of which can be found at the UMAC website.
301  * The interface to this implementation has two
302  * versions, one expects the entire message being hashed to be passed
303  * in a single buffer and returns the hash result immediately. The second
304  * allows the message to be passed in a sequence of buffers. In the
305  * muliple-buffer interface, the client calls the routine nh_update() as
306  * many times as necessary. When there is no more data to be fed to the
307  * hash, the client calls nh_final() which calculates the hash output.
308  * Before beginning another hash calculation the nh_reset() routine
309  * must be called. The single-buffer routine, nh(), is equivalent to
310  * the sequence of calls nh_update() and nh_final(); however it is
311  * optimized and should be prefered whenever the multiple-buffer interface
312  * is not necessary. When using either interface, it is the client's
313  * responsability to pass no more than L1_KEY_LEN bytes per hash result.
314  *
315  * The routine nh_init() initializes the nh_ctx data structure and
316  * must be called once, before any other PDF routine.
317  */
318 
319  /* The "nh_aux" routines do the actual NH hashing work. They
320   * expect buffers to be multiples of L1_PAD_BOUNDARY. These routines
321   * produce output for all STREAMS NH iterations in one call,
322   * allowing the parallel implementation of the streams.
323   */
324 
325 #define STREAMS (UMAC_OUTPUT_LEN / 4) /* Number of times hash is applied  */
326 #define L1_KEY_LEN         1024     /* Internal key bytes                 */
327 #define L1_KEY_SHIFT         16     /* Toeplitz key shift between streams */
328 #define L1_PAD_BOUNDARY      32     /* pad message to boundary multiple   */
329 #define ALLOC_BOUNDARY       16     /* Keep buffers aligned to this       */
330 #define HASH_BUF_BYTES       64     /* nh_aux_hb buffer multiple          */
331 
332 typedef struct {
333     UINT8  nh_key [L1_KEY_LEN + L1_KEY_SHIFT * (STREAMS - 1)]; /* NH Key */
334     UINT8  data   [HASH_BUF_BYTES];    /* Incoming data buffer           */
335     int next_data_empty;    /* Bookeeping variable for data buffer.       */
336     int bytes_hashed;        /* Bytes (out of L1_KEY_LEN) incorperated.   */
337     UINT64 state[STREAMS];               /* on-line state     */
338 } nh_ctx;
339 
340 
341 #if (UMAC_OUTPUT_LEN == 4)
342 
343 static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
344 /* NH hashing primitive. Previous (partial) hash result is loaded and
345 * then stored via hp pointer. The length of the data pointed at by "dp",
346 * "dlen", is guaranteed to be divisible by L1_PAD_BOUNDARY (32).  Key
347 * is expected to be endian compensated in memory at key setup.
348 */
349 {
350     UINT64 h;
351     UWORD c = dlen / 32;
352     UINT32 *k = (UINT32 *)kp;
353     const UINT32 *d = (const UINT32 *)dp;
354     UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
355     UINT32 k0,k1,k2,k3,k4,k5,k6,k7;
356 
357     h = *((UINT64 *)hp);
358     do {
359         d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
360         d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
361         d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
362         d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
363         k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
364         k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
365         h += MUL64((k0 + d0), (k4 + d4));
366         h += MUL64((k1 + d1), (k5 + d5));
367         h += MUL64((k2 + d2), (k6 + d6));
368         h += MUL64((k3 + d3), (k7 + d7));
369 
370         d += 8;
371         k += 8;
372     } while (--c);
373   *((UINT64 *)hp) = h;
374 }
375 
376 #elif (UMAC_OUTPUT_LEN == 8)
377 
378 static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
379 /* Same as previous nh_aux, but two streams are handled in one pass,
380  * reading and writing 16 bytes of hash-state per call.
381  */
382 {
383   UINT64 h1,h2;
384   UWORD c = dlen / 32;
385   UINT32 *k = (UINT32 *)kp;
386   const UINT32 *d = (const UINT32 *)dp;
387   UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
388   UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
389         k8,k9,k10,k11;
390 
391   h1 = *((UINT64 *)hp);
392   h2 = *((UINT64 *)hp + 1);
393   k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
394   do {
395     d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
396     d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
397     d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
398     d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
399     k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
400     k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
401 
402     h1 += MUL64((k0 + d0), (k4 + d4));
403     h2 += MUL64((k4 + d0), (k8 + d4));
404 
405     h1 += MUL64((k1 + d1), (k5 + d5));
406     h2 += MUL64((k5 + d1), (k9 + d5));
407 
408     h1 += MUL64((k2 + d2), (k6 + d6));
409     h2 += MUL64((k6 + d2), (k10 + d6));
410 
411     h1 += MUL64((k3 + d3), (k7 + d7));
412     h2 += MUL64((k7 + d3), (k11 + d7));
413 
414     k0 = k8; k1 = k9; k2 = k10; k3 = k11;
415 
416     d += 8;
417     k += 8;
418   } while (--c);
419   ((UINT64 *)hp)[0] = h1;
420   ((UINT64 *)hp)[1] = h2;
421 }
422 
423 #elif (UMAC_OUTPUT_LEN == 12)
424 
425 static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
426 /* Same as previous nh_aux, but two streams are handled in one pass,
427  * reading and writing 24 bytes of hash-state per call.
428 */
429 {
430     UINT64 h1,h2,h3;
431     UWORD c = dlen / 32;
432     UINT32 *k = (UINT32 *)kp;
433     const UINT32 *d = (const UINT32 *)dp;
434     UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
435     UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
436         k8,k9,k10,k11,k12,k13,k14,k15;
437 
438     h1 = *((UINT64 *)hp);
439     h2 = *((UINT64 *)hp + 1);
440     h3 = *((UINT64 *)hp + 2);
441     k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
442     k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
443     do {
444         d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
445         d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
446         d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
447         d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
448         k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
449         k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15);
450 
451         h1 += MUL64((k0 + d0), (k4 + d4));
452         h2 += MUL64((k4 + d0), (k8 + d4));
453         h3 += MUL64((k8 + d0), (k12 + d4));
454 
455         h1 += MUL64((k1 + d1), (k5 + d5));
456         h2 += MUL64((k5 + d1), (k9 + d5));
457         h3 += MUL64((k9 + d1), (k13 + d5));
458 
459         h1 += MUL64((k2 + d2), (k6 + d6));
460         h2 += MUL64((k6 + d2), (k10 + d6));
461         h3 += MUL64((k10 + d2), (k14 + d6));
462 
463         h1 += MUL64((k3 + d3), (k7 + d7));
464         h2 += MUL64((k7 + d3), (k11 + d7));
465         h3 += MUL64((k11 + d3), (k15 + d7));
466 
467         k0 = k8; k1 = k9; k2 = k10; k3 = k11;
468         k4 = k12; k5 = k13; k6 = k14; k7 = k15;
469 
470         d += 8;
471         k += 8;
472     } while (--c);
473     ((UINT64 *)hp)[0] = h1;
474     ((UINT64 *)hp)[1] = h2;
475     ((UINT64 *)hp)[2] = h3;
476 }
477 
478 #elif (UMAC_OUTPUT_LEN == 16)
479 
480 static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
481 /* Same as previous nh_aux, but two streams are handled in one pass,
482  * reading and writing 24 bytes of hash-state per call.
483 */
484 {
485     UINT64 h1,h2,h3,h4;
486     UWORD c = dlen / 32;
487     UINT32 *k = (UINT32 *)kp;
488     const UINT32 *d = (const UINT32 *)dp;
489     UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
490     UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
491         k8,k9,k10,k11,k12,k13,k14,k15,
492         k16,k17,k18,k19;
493 
494     h1 = *((UINT64 *)hp);
495     h2 = *((UINT64 *)hp + 1);
496     h3 = *((UINT64 *)hp + 2);
497     h4 = *((UINT64 *)hp + 3);
498     k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
499     k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
500     do {
501         d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
502         d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
503         d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
504         d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
505         k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
506         k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15);
507         k16 = *(k+16); k17 = *(k+17); k18 = *(k+18); k19 = *(k+19);
508 
509         h1 += MUL64((k0 + d0), (k4 + d4));
510         h2 += MUL64((k4 + d0), (k8 + d4));
511         h3 += MUL64((k8 + d0), (k12 + d4));
512         h4 += MUL64((k12 + d0), (k16 + d4));
513 
514         h1 += MUL64((k1 + d1), (k5 + d5));
515         h2 += MUL64((k5 + d1), (k9 + d5));
516         h3 += MUL64((k9 + d1), (k13 + d5));
517         h4 += MUL64((k13 + d1), (k17 + d5));
518 
519         h1 += MUL64((k2 + d2), (k6 + d6));
520         h2 += MUL64((k6 + d2), (k10 + d6));
521         h3 += MUL64((k10 + d2), (k14 + d6));
522         h4 += MUL64((k14 + d2), (k18 + d6));
523 
524         h1 += MUL64((k3 + d3), (k7 + d7));
525         h2 += MUL64((k7 + d3), (k11 + d7));
526         h3 += MUL64((k11 + d3), (k15 + d7));
527         h4 += MUL64((k15 + d3), (k19 + d7));
528 
529         k0 = k8; k1 = k9; k2 = k10; k3 = k11;
530         k4 = k12; k5 = k13; k6 = k14; k7 = k15;
531         k8 = k16; k9 = k17; k10 = k18; k11 = k19;
532 
533         d += 8;
534         k += 8;
535     } while (--c);
536     ((UINT64 *)hp)[0] = h1;
537     ((UINT64 *)hp)[1] = h2;
538     ((UINT64 *)hp)[2] = h3;
539     ((UINT64 *)hp)[3] = h4;
540 }
541 
542 /* ---------------------------------------------------------------------- */
543 #endif  /* UMAC_OUTPUT_LENGTH */
544 /* ---------------------------------------------------------------------- */
545 
546 
547 /* ---------------------------------------------------------------------- */
548 
549 static void nh_transform(nh_ctx *hc, const UINT8 *buf, UINT32 nbytes)
550 /* This function is a wrapper for the primitive NH hash functions. It takes
551  * as argument "hc" the current hash context and a buffer which must be a
552  * multiple of L1_PAD_BOUNDARY. The key passed to nh_aux is offset
553  * appropriately according to how much message has been hashed already.
554  */
555 {
556     UINT8 *key;
557 
558     key = hc->nh_key + hc->bytes_hashed;
559     nh_aux(key, buf, hc->state, nbytes);
560 }
561 
562 /* ---------------------------------------------------------------------- */
563 
564 #if (__LITTLE_ENDIAN__)
565 #define endian_convert_if_le(x,y,z) endian_convert((x),(y),(z))
566 static void endian_convert(void *buf, UWORD bpw, UINT32 num_bytes)
567 /* We endian convert the keys on little-endian computers to               */
568 /* compensate for the lack of big-endian memory reads during hashing.     */
569 {
570     UWORD iters = num_bytes / bpw;
571     if (bpw == 4) {
572         UINT32 *p = (UINT32 *)buf;
573         do {
574             *p = LOAD_UINT32_REVERSED(p);
575             p++;
576         } while (--iters);
577     } else if (bpw == 8) {
578         UINT32 *p = (UINT32 *)buf;
579         UINT32 t;
580         do {
581             t = LOAD_UINT32_REVERSED(p+1);
582             p[1] = LOAD_UINT32_REVERSED(p);
583             p[0] = t;
584             p += 2;
585         } while (--iters);
586     }
587 }
588 #if (__LITTLE_ENDIAN__)
589 #define endian_convert_if_le(x,y,z) endian_convert((x),(y),(z))
590 #else
591 #define endian_convert_if_le(x,y,z) do{}while(0)  /* Do nothing */
592 #endif
593 
594 /* ---------------------------------------------------------------------- */
595 
596 static void nh_reset(nh_ctx *hc)
597 /* Reset nh_ctx to ready for hashing of new data */
598 {
599     hc->bytes_hashed = 0;
600     hc->next_data_empty = 0;
601     hc->state[0] = 0;
602 #if (UMAC_OUTPUT_LEN >= 8)
603     hc->state[1] = 0;
604 #endif
605 #if (UMAC_OUTPUT_LEN >= 12)
606     hc->state[2] = 0;
607 #endif
608 #if (UMAC_OUTPUT_LEN == 16)
609     hc->state[3] = 0;
610 #endif
611 
612 }
613 
614 /* ---------------------------------------------------------------------- */
615 
616 static void nh_init(nh_ctx *hc, aes_int_key prf_key)
617 /* Generate nh_key, endian convert and reset to be ready for hashing.   */
618 {
619     kdf(hc->nh_key, prf_key, 1, sizeof(hc->nh_key));
620     endian_convert_if_le(hc->nh_key, 4, sizeof(hc->nh_key));
621     nh_reset(hc);
622 }
623 
624 /* ---------------------------------------------------------------------- */
625 
626 static void nh_update(nh_ctx *hc, const UINT8 *buf, UINT32 nbytes)
627 /* Incorporate nbytes of data into a nh_ctx, buffer whatever is not an    */
628 /* even multiple of HASH_BUF_BYTES.                                       */
629 {
630     UINT32 i,j;
631 
632     j = hc->next_data_empty;
633     if ((j + nbytes) >= HASH_BUF_BYTES) {
634         if (j) {
635             i = HASH_BUF_BYTES - j;
636             memcpy(hc->data+j, buf, i);
637             nh_transform(hc,hc->data,HASH_BUF_BYTES);
638             nbytes -= i;
639             buf += i;
640             hc->bytes_hashed += HASH_BUF_BYTES;
641         }
642         if (nbytes >= HASH_BUF_BYTES) {
643             i = nbytes & ~(HASH_BUF_BYTES - 1);
644             nh_transform(hc, buf, i);
645             nbytes -= i;
646             buf += i;
647             hc->bytes_hashed += i;
648         }
649         j = 0;
650     }
651     memcpy(hc->data + j, buf, nbytes);
652     hc->next_data_empty = j + nbytes;
653 }
654 
655 /* ---------------------------------------------------------------------- */
656 
657 static void zero_pad(UINT8 *p, int nbytes)
658 {
659 /* Write "nbytes" of zeroes, beginning at "p" */
660     if (nbytes >= (int)sizeof(UWORD)) {
661         while ((ptrdiff_t)p % sizeof(UWORD)) {
662             *p = 0;
663             nbytes--;
664             p++;
665         }
666         while (nbytes >= (int)sizeof(UWORD)) {
667             *(UWORD *)p = 0;
668             nbytes -= sizeof(UWORD);
669             p += sizeof(UWORD);
670         }
671     }
672     while (nbytes) {
673         *p = 0;
674         nbytes--;
675         p++;
676     }
677 }
678 
679 /* ---------------------------------------------------------------------- */
680 
681 static void nh_final(nh_ctx *hc, UINT8 *result)
682 /* After passing some number of data buffers to nh_update() for integration
683  * into an NH context, nh_final is called to produce a hash result. If any
684  * bytes are in the buffer hc->data, incorporate them into the
685  * NH context. Finally, add into the NH accumulation "state" the total number
686  * of bits hashed. The resulting numbers are written to the buffer "result".
687  * If nh_update was never called, L1_PAD_BOUNDARY zeroes are incorporated.
688  */
689 {
690     int nh_len, nbits;
691 
692     if (hc->next_data_empty != 0) {
693         nh_len = ((hc->next_data_empty + (L1_PAD_BOUNDARY - 1)) &
694                                                 ~(L1_PAD_BOUNDARY - 1));
695         zero_pad(hc->data + hc->next_data_empty,
696                                           nh_len - hc->next_data_empty);
697         nh_transform(hc, hc->data, nh_len);
698         hc->bytes_hashed += hc->next_data_empty;
699     } else if (hc->bytes_hashed == 0) {
700     	nh_len = L1_PAD_BOUNDARY;
701         zero_pad(hc->data, L1_PAD_BOUNDARY);
702         nh_transform(hc, hc->data, nh_len);
703     }
704 
705     nbits = (hc->bytes_hashed << 3);
706     ((UINT64 *)result)[0] = ((UINT64 *)hc->state)[0] + nbits;
707 #if (UMAC_OUTPUT_LEN >= 8)
708     ((UINT64 *)result)[1] = ((UINT64 *)hc->state)[1] + nbits;
709 #endif
710 #if (UMAC_OUTPUT_LEN >= 12)
711     ((UINT64 *)result)[2] = ((UINT64 *)hc->state)[2] + nbits;
712 #endif
713 #if (UMAC_OUTPUT_LEN == 16)
714     ((UINT64 *)result)[3] = ((UINT64 *)hc->state)[3] + nbits;
715 #endif
716     nh_reset(hc);
717 }
718 
719 /* ---------------------------------------------------------------------- */
720 
721 static void nh(nh_ctx *hc, const UINT8 *buf, UINT32 padded_len,
722                UINT32 unpadded_len, UINT8 *result)
723 /* All-in-one nh_update() and nh_final() equivalent.
724  * Assumes that padded_len is divisible by L1_PAD_BOUNDARY and result is
725  * well aligned
726  */
727 {
728     UINT32 nbits;
729 
730     /* Initialize the hash state */
731     nbits = (unpadded_len << 3);
732 
733     ((UINT64 *)result)[0] = nbits;
734 #if (UMAC_OUTPUT_LEN >= 8)
735     ((UINT64 *)result)[1] = nbits;
736 #endif
737 #if (UMAC_OUTPUT_LEN >= 12)
738     ((UINT64 *)result)[2] = nbits;
739 #endif
740 #if (UMAC_OUTPUT_LEN == 16)
741     ((UINT64 *)result)[3] = nbits;
742 #endif
743 
744     nh_aux(hc->nh_key, buf, result, padded_len);
745 }
746 
747 /* ---------------------------------------------------------------------- */
748 /* ---------------------------------------------------------------------- */
749 /* ----- Begin UHASH Section -------------------------------------------- */
750 /* ---------------------------------------------------------------------- */
751 /* ---------------------------------------------------------------------- */
752 
753 /* UHASH is a multi-layered algorithm. Data presented to UHASH is first
754  * hashed by NH. The NH output is then hashed by a polynomial-hash layer
755  * unless the initial data to be hashed is short. After the polynomial-
756  * layer, an inner-product hash is used to produce the final UHASH output.
757  *
758  * UHASH provides two interfaces, one all-at-once and another where data
759  * buffers are presented sequentially. In the sequential interface, the
760  * UHASH client calls the routine uhash_update() as many times as necessary.
761  * When there is no more data to be fed to UHASH, the client calls
762  * uhash_final() which
763  * calculates the UHASH output. Before beginning another UHASH calculation
764  * the uhash_reset() routine must be called. The all-at-once UHASH routine,
765  * uhash(), is equivalent to the sequence of calls uhash_update() and
766  * uhash_final(); however it is optimized and should be
767  * used whenever the sequential interface is not necessary.
768  *
769  * The routine uhash_init() initializes the uhash_ctx data structure and
770  * must be called once, before any other UHASH routine.
771  */
772 
773 /* ---------------------------------------------------------------------- */
774 /* ----- Constants and uhash_ctx ---------------------------------------- */
775 /* ---------------------------------------------------------------------- */
776 
777 /* ---------------------------------------------------------------------- */
778 /* ----- Poly hash and Inner-Product hash Constants --------------------- */
779 /* ---------------------------------------------------------------------- */
780 
781 /* Primes and masks */
782 #define p36    ((UINT64)0x0000000FFFFFFFFBull)              /* 2^36 -  5 */
783 #define p64    ((UINT64)0xFFFFFFFFFFFFFFC5ull)              /* 2^64 - 59 */
784 #define m36    ((UINT64)0x0000000FFFFFFFFFull)  /* The low 36 of 64 bits */
785 
786 
787 /* ---------------------------------------------------------------------- */
788 
789 typedef struct uhash_ctx {
790     nh_ctx hash;                          /* Hash context for L1 NH hash  */
791     UINT64 poly_key_8[STREAMS];           /* p64 poly keys                */
792     UINT64 poly_accum[STREAMS];           /* poly hash result             */
793     UINT64 ip_keys[STREAMS*4];            /* Inner-product keys           */
794     UINT32 ip_trans[STREAMS];             /* Inner-product translation    */
795     UINT32 msg_len;                       /* Total length of data passed  */
796                                           /* to uhash */
797 } uhash_ctx;
798 typedef struct uhash_ctx *uhash_ctx_t;
799 
800 /* ---------------------------------------------------------------------- */
801 
802 
803 /* The polynomial hashes use Horner's rule to evaluate a polynomial one
804  * word at a time. As described in the specification, poly32 and poly64
805  * require keys from special domains. The following implementations exploit
806  * the special domains to avoid overflow. The results are not guaranteed to
807  * be within Z_p32 and Z_p64, but the Inner-Product hash implementation
808  * patches any errant values.
809  */
810 
811 static UINT64 poly64(UINT64 cur, UINT64 key, UINT64 data)
812 {
813     UINT32 key_hi = (UINT32)(key >> 32),
814            key_lo = (UINT32)key,
815            cur_hi = (UINT32)(cur >> 32),
816            cur_lo = (UINT32)cur,
817            x_lo,
818            x_hi;
819     UINT64 X,T,res;
820 
821     X =  MUL64(key_hi, cur_lo) + MUL64(cur_hi, key_lo);
822     x_lo = (UINT32)X;
823     x_hi = (UINT32)(X >> 32);
824 
825     res = (MUL64(key_hi, cur_hi) + x_hi) * 59 + MUL64(key_lo, cur_lo);
826 
827     T = ((UINT64)x_lo << 32);
828     res += T;
829     if (res < T)
830         res += 59;
831 
832     res += data;
833     if (res < data)
834         res += 59;
835 
836     return res;
837 }
838 
839 
840 /* Although UMAC is specified to use a ramped polynomial hash scheme, this
841  * implementation does not handle all ramp levels. Because we don't handle
842  * the ramp up to p128 modulus in this implementation, we are limited to
843  * 2^14 poly_hash() invocations per stream (for a total capacity of 2^24
844  * bytes input to UMAC per tag, ie. 16MB).
845  */
846 static void poly_hash(uhash_ctx_t hc, UINT32 data_in[])
847 {
848     int i;
849     UINT64 *data=(UINT64*)data_in;
850 
851     for (i = 0; i < STREAMS; i++) {
852         if ((UINT32)(data[i] >> 32) == 0xfffffffful) {
853             hc->poly_accum[i] = poly64(hc->poly_accum[i],
854                                        hc->poly_key_8[i], p64 - 1);
855             hc->poly_accum[i] = poly64(hc->poly_accum[i],
856                                        hc->poly_key_8[i], (data[i] - 59));
857         } else {
858             hc->poly_accum[i] = poly64(hc->poly_accum[i],
859                                        hc->poly_key_8[i], data[i]);
860         }
861     }
862 }
863 
864 
865 /* ---------------------------------------------------------------------- */
866 
867 
868 /* The final step in UHASH is an inner-product hash. The poly hash
869  * produces a result not neccesarily WORD_LEN bytes long. The inner-
870  * product hash breaks the polyhash output into 16-bit chunks and
871  * multiplies each with a 36 bit key.
872  */
873 
874 static UINT64 ip_aux(UINT64 t, UINT64 *ipkp, UINT64 data)
875 {
876     t = t + ipkp[0] * (UINT64)(UINT16)(data >> 48);
877     t = t + ipkp[1] * (UINT64)(UINT16)(data >> 32);
878     t = t + ipkp[2] * (UINT64)(UINT16)(data >> 16);
879     t = t + ipkp[3] * (UINT64)(UINT16)(data);
880 
881     return t;
882 }
883 
884 static UINT32 ip_reduce_p36(UINT64 t)
885 {
886 /* Divisionless modular reduction */
887     UINT64 ret;
888 
889     ret = (t & m36) + 5 * (t >> 36);
890     if (ret >= p36)
891         ret -= p36;
892 
893     /* return least significant 32 bits */
894     return (UINT32)(ret);
895 }
896 
897 
898 /* If the data being hashed by UHASH is no longer than L1_KEY_LEN, then
899  * the polyhash stage is skipped and ip_short is applied directly to the
900  * NH output.
901  */
902 static void ip_short(uhash_ctx_t ahc, UINT8 *nh_res, u_char *res)
903 {
904     UINT64 t;
905     UINT64 *nhp = (UINT64 *)nh_res;
906 
907     t  = ip_aux(0,ahc->ip_keys, nhp[0]);
908     STORE_UINT32_BIG((UINT32 *)res+0, ip_reduce_p36(t) ^ ahc->ip_trans[0]);
909 #if (UMAC_OUTPUT_LEN >= 8)
910     t  = ip_aux(0,ahc->ip_keys+4, nhp[1]);
911     STORE_UINT32_BIG((UINT32 *)res+1, ip_reduce_p36(t) ^ ahc->ip_trans[1]);
912 #endif
913 #if (UMAC_OUTPUT_LEN >= 12)
914     t  = ip_aux(0,ahc->ip_keys+8, nhp[2]);
915     STORE_UINT32_BIG((UINT32 *)res+2, ip_reduce_p36(t) ^ ahc->ip_trans[2]);
916 #endif
917 #if (UMAC_OUTPUT_LEN == 16)
918     t  = ip_aux(0,ahc->ip_keys+12, nhp[3]);
919     STORE_UINT32_BIG((UINT32 *)res+3, ip_reduce_p36(t) ^ ahc->ip_trans[3]);
920 #endif
921 }
922 
923 /* If the data being hashed by UHASH is longer than L1_KEY_LEN, then
924  * the polyhash stage is not skipped and ip_long is applied to the
925  * polyhash output.
926  */
927 static void ip_long(uhash_ctx_t ahc, u_char *res)
928 {
929     int i;
930     UINT64 t;
931 
932     for (i = 0; i < STREAMS; i++) {
933         /* fix polyhash output not in Z_p64 */
934         if (ahc->poly_accum[i] >= p64)
935             ahc->poly_accum[i] -= p64;
936         t  = ip_aux(0,ahc->ip_keys+(i*4), ahc->poly_accum[i]);
937         STORE_UINT32_BIG((UINT32 *)res+i,
938                          ip_reduce_p36(t) ^ ahc->ip_trans[i]);
939     }
940 }
941 
942 
943 /* ---------------------------------------------------------------------- */
944 
945 /* ---------------------------------------------------------------------- */
946 
947 /* Reset uhash context for next hash session */
948 static int uhash_reset(uhash_ctx_t pc)
949 {
950     nh_reset(&pc->hash);
951     pc->msg_len = 0;
952     pc->poly_accum[0] = 1;
953 #if (UMAC_OUTPUT_LEN >= 8)
954     pc->poly_accum[1] = 1;
955 #endif
956 #if (UMAC_OUTPUT_LEN >= 12)
957     pc->poly_accum[2] = 1;
958 #endif
959 #if (UMAC_OUTPUT_LEN == 16)
960     pc->poly_accum[3] = 1;
961 #endif
962     return 1;
963 }
964 
965 /* ---------------------------------------------------------------------- */
966 
967 /* Given a pointer to the internal key needed by kdf() and a uhash context,
968  * initialize the NH context and generate keys needed for poly and inner-
969  * product hashing. All keys are endian adjusted in memory so that native
970  * loads cause correct keys to be in registers during calculation.
971  */
972 static void uhash_init(uhash_ctx_t ahc, aes_int_key prf_key)
973 {
974     int i;
975     UINT8 buf[(8*STREAMS+4)*sizeof(UINT64)];
976 
977     /* Zero the entire uhash context */
978     memset(ahc, 0, sizeof(uhash_ctx));
979 
980     /* Initialize the L1 hash */
981     nh_init(&ahc->hash, prf_key);
982 
983     /* Setup L2 hash variables */
984     kdf(buf, prf_key, 2, sizeof(buf));    /* Fill buffer with index 1 key */
985     for (i = 0; i < STREAMS; i++) {
986         /* Fill keys from the buffer, skipping bytes in the buffer not
987          * used by this implementation. Endian reverse the keys if on a
988          * little-endian computer.
989          */
990         memcpy(ahc->poly_key_8+i, buf+24*i, 8);
991         endian_convert_if_le(ahc->poly_key_8+i, 8, 8);
992         /* Mask the 64-bit keys to their special domain */
993         ahc->poly_key_8[i] &= ((UINT64)0x01ffffffu << 32) + 0x01ffffffu;
994         ahc->poly_accum[i] = 1;  /* Our polyhash prepends a non-zero word */
995     }
996 
997     /* Setup L3-1 hash variables */
998     kdf(buf, prf_key, 3, sizeof(buf)); /* Fill buffer with index 2 key */
999     for (i = 0; i < STREAMS; i++)
1000           memcpy(ahc->ip_keys+4*i, buf+(8*i+4)*sizeof(UINT64),
1001                                                  4*sizeof(UINT64));
1002     endian_convert_if_le(ahc->ip_keys, sizeof(UINT64),
1003                                                   sizeof(ahc->ip_keys));
1004     for (i = 0; i < STREAMS*4; i++)
1005         ahc->ip_keys[i] %= p36;  /* Bring into Z_p36 */
1006 
1007     /* Setup L3-2 hash variables    */
1008     /* Fill buffer with index 4 key */
1009     kdf(ahc->ip_trans, prf_key, 4, STREAMS * sizeof(UINT32));
1010     endian_convert_if_le(ahc->ip_trans, sizeof(UINT32),
1011                          STREAMS * sizeof(UINT32));
1012 }
1013 
1014 /* ---------------------------------------------------------------------- */
1015 
1016 #if 0
1017 static uhash_ctx_t uhash_alloc(u_char key[])
1018 {
1019 /* Allocate memory and force to a 16-byte boundary. */
1020     uhash_ctx_t ctx;
1021     u_char bytes_to_add;
1022     aes_int_key prf_key;
1023 
1024     ctx = (uhash_ctx_t)malloc(sizeof(uhash_ctx)+ALLOC_BOUNDARY);
1025     if (ctx) {
1026         if (ALLOC_BOUNDARY) {
1027             bytes_to_add = ALLOC_BOUNDARY -
1028                               ((ptrdiff_t)ctx & (ALLOC_BOUNDARY -1));
1029             ctx = (uhash_ctx_t)((u_char *)ctx + bytes_to_add);
1030             *((u_char *)ctx - 1) = bytes_to_add;
1031         }
1032         aes_key_setup(key,prf_key);
1033         uhash_init(ctx, prf_key);
1034     }
1035     return (ctx);
1036 }
1037 #endif
1038 
1039 /* ---------------------------------------------------------------------- */
1040 
1041 #if 0
1042 static int uhash_free(uhash_ctx_t ctx)
1043 {
1044 /* Free memory allocated by uhash_alloc */
1045     u_char bytes_to_sub;
1046 
1047     if (ctx) {
1048         if (ALLOC_BOUNDARY) {
1049             bytes_to_sub = *((u_char *)ctx - 1);
1050             ctx = (uhash_ctx_t)((u_char *)ctx - bytes_to_sub);
1051         }
1052         free(ctx);
1053     }
1054     return (1);
1055 }
1056 #endif
1057 /* ---------------------------------------------------------------------- */
1058 
1059 static int uhash_update(uhash_ctx_t ctx, const u_char *input, long len)
1060 /* Given len bytes of data, we parse it into L1_KEY_LEN chunks and
1061  * hash each one with NH, calling the polyhash on each NH output.
1062  */
1063 {
1064     UWORD bytes_hashed, bytes_remaining;
1065     UINT64 result_buf[STREAMS];
1066     UINT8 *nh_result = (UINT8 *)&result_buf;
1067 
1068     if (ctx->msg_len + len <= L1_KEY_LEN) {
1069         nh_update(&ctx->hash, (const UINT8 *)input, len);
1070         ctx->msg_len += len;
1071     } else {
1072 
1073          bytes_hashed = ctx->msg_len % L1_KEY_LEN;
1074          if (ctx->msg_len == L1_KEY_LEN)
1075              bytes_hashed = L1_KEY_LEN;
1076 
1077          if (bytes_hashed + len >= L1_KEY_LEN) {
1078 
1079              /* If some bytes have been passed to the hash function      */
1080              /* then we want to pass at most (L1_KEY_LEN - bytes_hashed) */
1081              /* bytes to complete the current nh_block.                  */
1082              if (bytes_hashed) {
1083                  bytes_remaining = (L1_KEY_LEN - bytes_hashed);
1084                  nh_update(&ctx->hash, (const UINT8 *)input, bytes_remaining);
1085                  nh_final(&ctx->hash, nh_result);
1086                  ctx->msg_len += bytes_remaining;
1087                  poly_hash(ctx,(UINT32 *)nh_result);
1088                  len -= bytes_remaining;
1089                  input += bytes_remaining;
1090              }
1091 
1092              /* Hash directly from input stream if enough bytes */
1093              while (len >= L1_KEY_LEN) {
1094                  nh(&ctx->hash, (const UINT8 *)input, L1_KEY_LEN,
1095                                    L1_KEY_LEN, nh_result);
1096                  ctx->msg_len += L1_KEY_LEN;
1097                  len -= L1_KEY_LEN;
1098                  input += L1_KEY_LEN;
1099                  poly_hash(ctx,(UINT32 *)nh_result);
1100              }
1101          }
1102 
1103          /* pass remaining < L1_KEY_LEN bytes of input data to NH */
1104          if (len) {
1105              nh_update(&ctx->hash, (const UINT8 *)input, len);
1106              ctx->msg_len += len;
1107          }
1108      }
1109 
1110     return (1);
1111 }
1112 
1113 /* ---------------------------------------------------------------------- */
1114 
1115 static int uhash_final(uhash_ctx_t ctx, u_char *res)
1116 /* Incorporate any pending data, pad, and generate tag */
1117 {
1118     UINT64 result_buf[STREAMS];
1119     UINT8 *nh_result = (UINT8 *)&result_buf;
1120 
1121     if (ctx->msg_len > L1_KEY_LEN) {
1122         if (ctx->msg_len % L1_KEY_LEN) {
1123             nh_final(&ctx->hash, nh_result);
1124             poly_hash(ctx,(UINT32 *)nh_result);
1125         }
1126         ip_long(ctx, res);
1127     } else {
1128         nh_final(&ctx->hash, nh_result);
1129         ip_short(ctx,nh_result, res);
1130     }
1131     uhash_reset(ctx);
1132     return (1);
1133 }
1134 
1135 /* ---------------------------------------------------------------------- */
1136 
1137 #if 0
1138 static int uhash(uhash_ctx_t ahc, u_char *msg, long len, u_char *res)
1139 /* assumes that msg is in a writable buffer of length divisible by */
1140 /* L1_PAD_BOUNDARY. Bytes beyond msg[len] may be zeroed.           */
1141 {
1142     UINT8 nh_result[STREAMS*sizeof(UINT64)];
1143     UINT32 nh_len;
1144     int extra_zeroes_needed;
1145 
1146     /* If the message to be hashed is no longer than L1_HASH_LEN, we skip
1147      * the polyhash.
1148      */
1149     if (len <= L1_KEY_LEN) {
1150     	if (len == 0)                  /* If zero length messages will not */
1151     		nh_len = L1_PAD_BOUNDARY;  /* be seen, comment out this case   */
1152     	else
1153         	nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1));
1154         extra_zeroes_needed = nh_len - len;
1155         zero_pad((UINT8 *)msg + len, extra_zeroes_needed);
1156         nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result);
1157         ip_short(ahc,nh_result, res);
1158     } else {
1159         /* Otherwise, we hash each L1_KEY_LEN chunk with NH, passing the NH
1160          * output to poly_hash().
1161          */
1162         do {
1163             nh(&ahc->hash, (UINT8 *)msg, L1_KEY_LEN, L1_KEY_LEN, nh_result);
1164             poly_hash(ahc,(UINT32 *)nh_result);
1165             len -= L1_KEY_LEN;
1166             msg += L1_KEY_LEN;
1167         } while (len >= L1_KEY_LEN);
1168         if (len) {
1169             nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1));
1170             extra_zeroes_needed = nh_len - len;
1171             zero_pad((UINT8 *)msg + len, extra_zeroes_needed);
1172             nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result);
1173             poly_hash(ahc,(UINT32 *)nh_result);
1174         }
1175 
1176         ip_long(ahc, res);
1177     }
1178 
1179     uhash_reset(ahc);
1180     return 1;
1181 }
1182 #endif
1183 
1184 /* ---------------------------------------------------------------------- */
1185 /* ---------------------------------------------------------------------- */
1186 /* ----- Begin UMAC Section --------------------------------------------- */
1187 /* ---------------------------------------------------------------------- */
1188 /* ---------------------------------------------------------------------- */
1189 
1190 /* The UMAC interface has two interfaces, an all-at-once interface where
1191  * the entire message to be authenticated is passed to UMAC in one buffer,
1192  * and a sequential interface where the message is presented a little at a
1193  * time. The all-at-once is more optimaized than the sequential version and
1194  * should be preferred when the sequential interface is not required.
1195  */
1196 struct umac_ctx {
1197     uhash_ctx hash;          /* Hash function for message compression    */
1198     pdf_ctx pdf;             /* PDF for hashed output                    */
1199     void *free_ptr;          /* Address to free this struct via          */
1200 } umac_ctx;
1201 
1202 /* ---------------------------------------------------------------------- */
1203 
1204 #if 0
1205 int umac_reset(struct umac_ctx *ctx)
1206 /* Reset the hash function to begin a new authentication.        */
1207 {
1208     uhash_reset(&ctx->hash);
1209     return (1);
1210 }
1211 #endif
1212 
1213 /* ---------------------------------------------------------------------- */
1214 
1215 int umac_delete(struct umac_ctx *ctx)
1216 /* Deallocate the ctx structure */
1217 {
1218     if (ctx) {
1219         if (ALLOC_BOUNDARY)
1220             ctx = (struct umac_ctx *)ctx->free_ptr;
1221         free(ctx);
1222     }
1223     return (1);
1224 }
1225 
1226 /* ---------------------------------------------------------------------- */
1227 
1228 struct umac_ctx *umac_new(const u_char key[])
1229 /* Dynamically allocate a umac_ctx struct, initialize variables,
1230  * generate subkeys from key. Align to 16-byte boundary.
1231  */
1232 {
1233     struct umac_ctx *ctx, *octx;
1234     size_t bytes_to_add;
1235     aes_int_key prf_key;
1236 
1237     octx = ctx = xcalloc(1, sizeof(*ctx) + ALLOC_BOUNDARY);
1238     if (ctx) {
1239         if (ALLOC_BOUNDARY) {
1240             bytes_to_add = ALLOC_BOUNDARY -
1241                               ((ptrdiff_t)ctx & (ALLOC_BOUNDARY - 1));
1242             ctx = (struct umac_ctx *)((u_char *)ctx + bytes_to_add);
1243         }
1244         ctx->free_ptr = octx;
1245         aes_key_setup(key, prf_key);
1246         pdf_init(&ctx->pdf, prf_key);
1247         uhash_init(&ctx->hash, prf_key);
1248     }
1249 
1250     return (ctx);
1251 }
1252 
1253 /* ---------------------------------------------------------------------- */
1254 
1255 int umac_final(struct umac_ctx *ctx, u_char tag[], const u_char nonce[8])
1256 /* Incorporate any pending data, pad, and generate tag */
1257 {
1258     uhash_final(&ctx->hash, (u_char *)tag);
1259     pdf_gen_xor(&ctx->pdf, (const UINT8 *)nonce, (UINT8 *)tag);
1260 
1261     return (1);
1262 }
1263 
1264 /* ---------------------------------------------------------------------- */
1265 
1266 int umac_update(struct umac_ctx *ctx, const u_char *input, long len)
1267 /* Given len bytes of data, we parse it into L1_KEY_LEN chunks and   */
1268 /* hash each one, calling the PDF on the hashed output whenever the hash- */
1269 /* output buffer is full.                                                 */
1270 {
1271     uhash_update(&ctx->hash, input, len);
1272     return (1);
1273 }
1274 
1275 /* ---------------------------------------------------------------------- */
1276 
1277 #if 0
1278 int umac(struct umac_ctx *ctx, u_char *input,
1279          long len, u_char tag[],
1280          u_char nonce[8])
1281 /* All-in-one version simply calls umac_update() and umac_final().        */
1282 {
1283     uhash(&ctx->hash, input, len, (u_char *)tag);
1284     pdf_gen_xor(&ctx->pdf, (UINT8 *)nonce, (UINT8 *)tag);
1285 
1286     return (1);
1287 }
1288 #endif
1289 
1290 /* ---------------------------------------------------------------------- */
1291 /* ---------------------------------------------------------------------- */
1292 /* ----- End UMAC Section ----------------------------------------------- */
1293 /* ---------------------------------------------------------------------- */
1294 /* ---------------------------------------------------------------------- */
1295