xref: /netbsd-src/crypto/external/bsd/openssh/dist/moduli.c (revision daf6c4152fcddc27c445489775ed1f66ab4ea9a9)
1 /*	$NetBSD: moduli.c,v 1.2 2009/06/07 22:38:46 christos Exp $	*/
2 /* $OpenBSD: moduli.c,v 1.21 2008/06/26 09:19:40 djm Exp $ */
3 /*
4  * Copyright 1994 Phil Karn <karn@qualcomm.com>
5  * Copyright 1996-1998, 2003 William Allen Simpson <wsimpson@greendragon.com>
6  * Copyright 2000 Niels Provos <provos@citi.umich.edu>
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  */
29 
30 /*
31  * Two-step process to generate safe primes for DHGEX
32  *
33  *  Sieve candidates for "safe" primes,
34  *  suitable for use as Diffie-Hellman moduli;
35  *  that is, where q = (p-1)/2 is also prime.
36  *
37  * First step: generate candidate primes (memory intensive)
38  * Second step: test primes' safety (processor intensive)
39  */
40 #include "includes.h"
41 __RCSID("$NetBSD: moduli.c,v 1.2 2009/06/07 22:38:46 christos Exp $");
42 
43 #include <sys/types.h>
44 
45 #include <openssl/bn.h>
46 #include <openssl/dh.h>
47 
48 #include <stdio.h>
49 #include <stdlib.h>
50 #include <string.h>
51 #include <stdarg.h>
52 #include <time.h>
53 
54 #include "xmalloc.h"
55 #include "dh.h"
56 #include "log.h"
57 
58 /*
59  * File output defines
60  */
61 
62 /* need line long enough for largest moduli plus headers */
63 #define QLINESIZE		(100+8192)
64 
65 /*
66  * Size: decimal.
67  * Specifies the number of the most significant bit (0 to M).
68  * WARNING: internally, usually 1 to N.
69  */
70 #define QSIZE_MINIMUM		(511)
71 
72 /*
73  * Prime sieving defines
74  */
75 
76 /* Constant: assuming 8 bit bytes and 32 bit words */
77 #define SHIFT_BIT	(3)
78 #define SHIFT_BYTE	(2)
79 #define SHIFT_WORD	(SHIFT_BIT+SHIFT_BYTE)
80 #define SHIFT_MEGABYTE	(20)
81 #define SHIFT_MEGAWORD	(SHIFT_MEGABYTE-SHIFT_BYTE)
82 
83 /*
84  * Using virtual memory can cause thrashing.  This should be the largest
85  * number that is supported without a large amount of disk activity --
86  * that would increase the run time from hours to days or weeks!
87  */
88 #define LARGE_MINIMUM	(8UL)	/* megabytes */
89 
90 /*
91  * Do not increase this number beyond the unsigned integer bit size.
92  * Due to a multiple of 4, it must be LESS than 128 (yielding 2**30 bits).
93  */
94 #define LARGE_MAXIMUM	(127UL)	/* megabytes */
95 
96 /*
97  * Constant: when used with 32-bit integers, the largest sieve prime
98  * has to be less than 2**32.
99  */
100 #define SMALL_MAXIMUM	(0xffffffffUL)
101 
102 /* Constant: can sieve all primes less than 2**32, as 65537**2 > 2**32-1. */
103 #define TINY_NUMBER	(1UL<<16)
104 
105 /* Ensure enough bit space for testing 2*q. */
106 #define TEST_MAXIMUM	(1UL<<16)
107 #define TEST_MINIMUM	(QSIZE_MINIMUM + 1)
108 /* real TEST_MINIMUM	(1UL << (SHIFT_WORD - TEST_POWER)) */
109 #define TEST_POWER	(3)	/* 2**n, n < SHIFT_WORD */
110 
111 /* bit operations on 32-bit words */
112 #define BIT_CLEAR(a,n)	((a)[(n)>>SHIFT_WORD] &= ~(1L << ((n) & 31)))
113 #define BIT_SET(a,n)	((a)[(n)>>SHIFT_WORD] |= (1L << ((n) & 31)))
114 #define BIT_TEST(a,n)	((a)[(n)>>SHIFT_WORD] & (1L << ((n) & 31)))
115 
116 /*
117  * Prime testing defines
118  */
119 
120 /* Minimum number of primality tests to perform */
121 #define TRIAL_MINIMUM	(4)
122 
123 /*
124  * Sieving data (XXX - move to struct)
125  */
126 
127 /* sieve 2**16 */
128 static u_int32_t *TinySieve, tinybits;
129 
130 /* sieve 2**30 in 2**16 parts */
131 static u_int32_t *SmallSieve, smallbits, smallbase;
132 
133 /* sieve relative to the initial value */
134 static u_int32_t *LargeSieve, largewords, largetries, largenumbers;
135 static u_int32_t largebits, largememory;	/* megabytes */
136 static BIGNUM *largebase;
137 
138 int gen_candidates(FILE *, u_int32_t, u_int32_t, BIGNUM *);
139 int prime_test(FILE *, FILE *, u_int32_t, u_int32_t);
140 
141 /*
142  * print moduli out in consistent form,
143  */
144 static int
145 qfileout(FILE * ofile, u_int32_t otype, u_int32_t otests, u_int32_t otries,
146     u_int32_t osize, u_int32_t ogenerator, BIGNUM * omodulus)
147 {
148 	struct tm *gtm;
149 	time_t time_now;
150 	int res;
151 
152 	time(&time_now);
153 	gtm = gmtime(&time_now);
154 
155 	res = fprintf(ofile, "%04d%02d%02d%02d%02d%02d %u %u %u %u %x ",
156 	    gtm->tm_year + 1900, gtm->tm_mon + 1, gtm->tm_mday,
157 	    gtm->tm_hour, gtm->tm_min, gtm->tm_sec,
158 	    otype, otests, otries, osize, ogenerator);
159 
160 	if (res < 0)
161 		return (-1);
162 
163 	if (BN_print_fp(ofile, omodulus) < 1)
164 		return (-1);
165 
166 	res = fprintf(ofile, "\n");
167 	fflush(ofile);
168 
169 	return (res > 0 ? 0 : -1);
170 }
171 
172 
173 /*
174  ** Sieve p's and q's with small factors
175  */
176 static void
177 sieve_large(u_int32_t s)
178 {
179 	u_int32_t r, u;
180 
181 	debug3("sieve_large %u", s);
182 	largetries++;
183 	/* r = largebase mod s */
184 	r = BN_mod_word(largebase, s);
185 	if (r == 0)
186 		u = 0; /* s divides into largebase exactly */
187 	else
188 		u = s - r; /* largebase+u is first entry divisible by s */
189 
190 	if (u < largebits * 2) {
191 		/*
192 		 * The sieve omits p's and q's divisible by 2, so ensure that
193 		 * largebase+u is odd. Then, step through the sieve in
194 		 * increments of 2*s
195 		 */
196 		if (u & 0x1)
197 			u += s; /* Make largebase+u odd, and u even */
198 
199 		/* Mark all multiples of 2*s */
200 		for (u /= 2; u < largebits; u += s)
201 			BIT_SET(LargeSieve, u);
202 	}
203 
204 	/* r = p mod s */
205 	r = (2 * r + 1) % s;
206 	if (r == 0)
207 		u = 0; /* s divides p exactly */
208 	else
209 		u = s - r; /* p+u is first entry divisible by s */
210 
211 	if (u < largebits * 4) {
212 		/*
213 		 * The sieve omits p's divisible by 4, so ensure that
214 		 * largebase+u is not. Then, step through the sieve in
215 		 * increments of 4*s
216 		 */
217 		while (u & 0x3) {
218 			if (SMALL_MAXIMUM - u < s)
219 				return;
220 			u += s;
221 		}
222 
223 		/* Mark all multiples of 4*s */
224 		for (u /= 4; u < largebits; u += s)
225 			BIT_SET(LargeSieve, u);
226 	}
227 }
228 
229 /*
230  * list candidates for Sophie-Germain primes (where q = (p-1)/2)
231  * to standard output.
232  * The list is checked against small known primes (less than 2**30).
233  */
234 int
235 gen_candidates(FILE *out, u_int32_t memory, u_int32_t power, BIGNUM *start)
236 {
237 	BIGNUM *q;
238 	u_int32_t j, r, s, t;
239 	u_int32_t smallwords = TINY_NUMBER >> 6;
240 	u_int32_t tinywords = TINY_NUMBER >> 6;
241 	time_t time_start, time_stop;
242 	u_int32_t i;
243 	int ret = 0;
244 
245 	largememory = memory;
246 
247 	if (memory != 0 &&
248 	    (memory < LARGE_MINIMUM || memory > LARGE_MAXIMUM)) {
249 		error("Invalid memory amount (min %ld, max %ld)",
250 		    LARGE_MINIMUM, LARGE_MAXIMUM);
251 		return (-1);
252 	}
253 
254 	/*
255 	 * Set power to the length in bits of the prime to be generated.
256 	 * This is changed to 1 less than the desired safe prime moduli p.
257 	 */
258 	if (power > TEST_MAXIMUM) {
259 		error("Too many bits: %u > %lu", power, TEST_MAXIMUM);
260 		return (-1);
261 	} else if (power < TEST_MINIMUM) {
262 		error("Too few bits: %u < %u", power, TEST_MINIMUM);
263 		return (-1);
264 	}
265 	power--; /* decrement before squaring */
266 
267 	/*
268 	 * The density of ordinary primes is on the order of 1/bits, so the
269 	 * density of safe primes should be about (1/bits)**2. Set test range
270 	 * to something well above bits**2 to be reasonably sure (but not
271 	 * guaranteed) of catching at least one safe prime.
272 	 */
273 	largewords = ((power * power) >> (SHIFT_WORD - TEST_POWER));
274 
275 	/*
276 	 * Need idea of how much memory is available. We don't have to use all
277 	 * of it.
278 	 */
279 	if (largememory > LARGE_MAXIMUM) {
280 		logit("Limited memory: %u MB; limit %lu MB",
281 		    largememory, LARGE_MAXIMUM);
282 		largememory = LARGE_MAXIMUM;
283 	}
284 
285 	if (largewords <= (largememory << SHIFT_MEGAWORD)) {
286 		logit("Increased memory: %u MB; need %u bytes",
287 		    largememory, (largewords << SHIFT_BYTE));
288 		largewords = (largememory << SHIFT_MEGAWORD);
289 	} else if (largememory > 0) {
290 		logit("Decreased memory: %u MB; want %u bytes",
291 		    largememory, (largewords << SHIFT_BYTE));
292 		largewords = (largememory << SHIFT_MEGAWORD);
293 	}
294 
295 	TinySieve = xcalloc(tinywords, sizeof(u_int32_t));
296 	tinybits = tinywords << SHIFT_WORD;
297 
298 	SmallSieve = xcalloc(smallwords, sizeof(u_int32_t));
299 	smallbits = smallwords << SHIFT_WORD;
300 
301 	/*
302 	 * dynamically determine available memory
303 	 */
304 	while ((LargeSieve = calloc(largewords, sizeof(u_int32_t))) == NULL)
305 		largewords -= (1L << (SHIFT_MEGAWORD - 2)); /* 1/4 MB chunks */
306 
307 	largebits = largewords << SHIFT_WORD;
308 	largenumbers = largebits * 2;	/* even numbers excluded */
309 
310 	/* validation check: count the number of primes tried */
311 	largetries = 0;
312 	if ((q = BN_new()) == NULL)
313 		fatal("BN_new failed");
314 
315 	/*
316 	 * Generate random starting point for subprime search, or use
317 	 * specified parameter.
318 	 */
319 	if ((largebase = BN_new()) == NULL)
320 		fatal("BN_new failed");
321 	if (start == NULL) {
322 		if (BN_rand(largebase, power, 1, 1) == 0)
323 			fatal("BN_rand failed");
324 	} else {
325 		if (BN_copy(largebase, start) == NULL)
326 			fatal("BN_copy: failed");
327 	}
328 
329 	/* ensure odd */
330 	if (BN_set_bit(largebase, 0) == 0)
331 		fatal("BN_set_bit: failed");
332 
333 	time(&time_start);
334 
335 	logit("%.24s Sieve next %u plus %u-bit", ctime(&time_start),
336 	    largenumbers, power);
337 	debug2("start point: 0x%s", BN_bn2hex(largebase));
338 
339 	/*
340 	 * TinySieve
341 	 */
342 	for (i = 0; i < tinybits; i++) {
343 		if (BIT_TEST(TinySieve, i))
344 			continue; /* 2*i+3 is composite */
345 
346 		/* The next tiny prime */
347 		t = 2 * i + 3;
348 
349 		/* Mark all multiples of t */
350 		for (j = i + t; j < tinybits; j += t)
351 			BIT_SET(TinySieve, j);
352 
353 		sieve_large(t);
354 	}
355 
356 	/*
357 	 * Start the small block search at the next possible prime. To avoid
358 	 * fencepost errors, the last pass is skipped.
359 	 */
360 	for (smallbase = TINY_NUMBER + 3;
361 	    smallbase < (SMALL_MAXIMUM - TINY_NUMBER);
362 	    smallbase += TINY_NUMBER) {
363 		for (i = 0; i < tinybits; i++) {
364 			if (BIT_TEST(TinySieve, i))
365 				continue; /* 2*i+3 is composite */
366 
367 			/* The next tiny prime */
368 			t = 2 * i + 3;
369 			r = smallbase % t;
370 
371 			if (r == 0) {
372 				s = 0; /* t divides into smallbase exactly */
373 			} else {
374 				/* smallbase+s is first entry divisible by t */
375 				s = t - r;
376 			}
377 
378 			/*
379 			 * The sieve omits even numbers, so ensure that
380 			 * smallbase+s is odd. Then, step through the sieve
381 			 * in increments of 2*t
382 			 */
383 			if (s & 1)
384 				s += t; /* Make smallbase+s odd, and s even */
385 
386 			/* Mark all multiples of 2*t */
387 			for (s /= 2; s < smallbits; s += t)
388 				BIT_SET(SmallSieve, s);
389 		}
390 
391 		/*
392 		 * SmallSieve
393 		 */
394 		for (i = 0; i < smallbits; i++) {
395 			if (BIT_TEST(SmallSieve, i))
396 				continue; /* 2*i+smallbase is composite */
397 
398 			/* The next small prime */
399 			sieve_large((2 * i) + smallbase);
400 		}
401 
402 		memset(SmallSieve, 0, smallwords << SHIFT_BYTE);
403 	}
404 
405 	time(&time_stop);
406 
407 	logit("%.24s Sieved with %u small primes in %ld seconds",
408 	    ctime(&time_stop), largetries, (long) (time_stop - time_start));
409 
410 	for (j = r = 0; j < largebits; j++) {
411 		if (BIT_TEST(LargeSieve, j))
412 			continue; /* Definitely composite, skip */
413 
414 		debug2("test q = largebase+%u", 2 * j);
415 		if (BN_set_word(q, 2 * j) == 0)
416 			fatal("BN_set_word failed");
417 		if (BN_add(q, q, largebase) == 0)
418 			fatal("BN_add failed");
419 		if (qfileout(out, MODULI_TYPE_SOPHIE_GERMAIN,
420 		    MODULI_TESTS_SIEVE, largetries,
421 		    (power - 1) /* MSB */, (0), q) == -1) {
422 			ret = -1;
423 			break;
424 		}
425 
426 		r++; /* count q */
427 	}
428 
429 	time(&time_stop);
430 
431 	xfree(LargeSieve);
432 	xfree(SmallSieve);
433 	xfree(TinySieve);
434 
435 	logit("%.24s Found %u candidates", ctime(&time_stop), r);
436 
437 	return (ret);
438 }
439 
440 /*
441  * perform a Miller-Rabin primality test
442  * on the list of candidates
443  * (checking both q and p)
444  * The result is a list of so-call "safe" primes
445  */
446 int
447 prime_test(FILE *in, FILE *out, u_int32_t trials, u_int32_t generator_wanted)
448 {
449 	BIGNUM *q, *p, *a;
450 	BN_CTX *ctx;
451 	char *cp, *lp;
452 	u_int32_t count_in = 0, count_out = 0, count_possible = 0;
453 	u_int32_t generator_known, in_tests, in_tries, in_type, in_size;
454 	time_t time_start, time_stop;
455 	int res;
456 
457 	if (trials < TRIAL_MINIMUM) {
458 		error("Minimum primality trials is %d", TRIAL_MINIMUM);
459 		return (-1);
460 	}
461 
462 	time(&time_start);
463 
464 	if ((p = BN_new()) == NULL)
465 		fatal("BN_new failed");
466 	if ((q = BN_new()) == NULL)
467 		fatal("BN_new failed");
468 	if ((ctx = BN_CTX_new()) == NULL)
469 		fatal("BN_CTX_new failed");
470 
471 	debug2("%.24s Final %u Miller-Rabin trials (%x generator)",
472 	    ctime(&time_start), trials, generator_wanted);
473 
474 	res = 0;
475 	lp = xmalloc(QLINESIZE + 1);
476 	while (fgets(lp, QLINESIZE + 1, in) != NULL) {
477 		count_in++;
478 		if (strlen(lp) < 14 || *lp == '!' || *lp == '#') {
479 			debug2("%10u: comment or short line", count_in);
480 			continue;
481 		}
482 
483 		/* XXX - fragile parser */
484 		/* time */
485 		cp = &lp[14];	/* (skip) */
486 
487 		/* type */
488 		in_type = strtoul(cp, &cp, 10);
489 
490 		/* tests */
491 		in_tests = strtoul(cp, &cp, 10);
492 
493 		if (in_tests & MODULI_TESTS_COMPOSITE) {
494 			debug2("%10u: known composite", count_in);
495 			continue;
496 		}
497 
498 		/* tries */
499 		in_tries = strtoul(cp, &cp, 10);
500 
501 		/* size (most significant bit) */
502 		in_size = strtoul(cp, &cp, 10);
503 
504 		/* generator (hex) */
505 		generator_known = strtoul(cp, &cp, 16);
506 
507 		/* Skip white space */
508 		cp += strspn(cp, " ");
509 
510 		/* modulus (hex) */
511 		switch (in_type) {
512 		case MODULI_TYPE_SOPHIE_GERMAIN:
513 			debug2("%10u: (%u) Sophie-Germain", count_in, in_type);
514 			a = q;
515 			if (BN_hex2bn(&a, cp) == 0)
516 				fatal("BN_hex2bn failed");
517 			/* p = 2*q + 1 */
518 			if (BN_lshift(p, q, 1) == 0)
519 				fatal("BN_lshift failed");
520 			if (BN_add_word(p, 1) == 0)
521 				fatal("BN_add_word failed");
522 			in_size += 1;
523 			generator_known = 0;
524 			break;
525 		case MODULI_TYPE_UNSTRUCTURED:
526 		case MODULI_TYPE_SAFE:
527 		case MODULI_TYPE_SCHNORR:
528 		case MODULI_TYPE_STRONG:
529 		case MODULI_TYPE_UNKNOWN:
530 			debug2("%10u: (%u)", count_in, in_type);
531 			a = p;
532 			if (BN_hex2bn(&a, cp) == 0)
533 				fatal("BN_hex2bn failed");
534 			/* q = (p-1) / 2 */
535 			if (BN_rshift(q, p, 1) == 0)
536 				fatal("BN_rshift failed");
537 			break;
538 		default:
539 			debug2("Unknown prime type");
540 			break;
541 		}
542 
543 		/*
544 		 * due to earlier inconsistencies in interpretation, check
545 		 * the proposed bit size.
546 		 */
547 		if ((u_int32_t)BN_num_bits(p) != (in_size + 1)) {
548 			debug2("%10u: bit size %u mismatch", count_in, in_size);
549 			continue;
550 		}
551 		if (in_size < QSIZE_MINIMUM) {
552 			debug2("%10u: bit size %u too short", count_in, in_size);
553 			continue;
554 		}
555 
556 		if (in_tests & MODULI_TESTS_MILLER_RABIN)
557 			in_tries += trials;
558 		else
559 			in_tries = trials;
560 
561 		/*
562 		 * guess unknown generator
563 		 */
564 		if (generator_known == 0) {
565 			if (BN_mod_word(p, 24) == 11)
566 				generator_known = 2;
567 			else if (BN_mod_word(p, 12) == 5)
568 				generator_known = 3;
569 			else {
570 				u_int32_t r = BN_mod_word(p, 10);
571 
572 				if (r == 3 || r == 7)
573 					generator_known = 5;
574 			}
575 		}
576 		/*
577 		 * skip tests when desired generator doesn't match
578 		 */
579 		if (generator_wanted > 0 &&
580 		    generator_wanted != generator_known) {
581 			debug2("%10u: generator %d != %d",
582 			    count_in, generator_known, generator_wanted);
583 			continue;
584 		}
585 
586 		/*
587 		 * Primes with no known generator are useless for DH, so
588 		 * skip those.
589 		 */
590 		if (generator_known == 0) {
591 			debug2("%10u: no known generator", count_in);
592 			continue;
593 		}
594 
595 		count_possible++;
596 
597 		/*
598 		 * The (1/4)^N performance bound on Miller-Rabin is
599 		 * extremely pessimistic, so don't spend a lot of time
600 		 * really verifying that q is prime until after we know
601 		 * that p is also prime. A single pass will weed out the
602 		 * vast majority of composite q's.
603 		 */
604 		if (BN_is_prime(q, 1, NULL, ctx, NULL) <= 0) {
605 			debug("%10u: q failed first possible prime test",
606 			    count_in);
607 			continue;
608 		}
609 
610 		/*
611 		 * q is possibly prime, so go ahead and really make sure
612 		 * that p is prime. If it is, then we can go back and do
613 		 * the same for q. If p is composite, chances are that
614 		 * will show up on the first Rabin-Miller iteration so it
615 		 * doesn't hurt to specify a high iteration count.
616 		 */
617 		if (!BN_is_prime(p, trials, NULL, ctx, NULL)) {
618 			debug("%10u: p is not prime", count_in);
619 			continue;
620 		}
621 		debug("%10u: p is almost certainly prime", count_in);
622 
623 		/* recheck q more rigorously */
624 		if (!BN_is_prime(q, trials - 1, NULL, ctx, NULL)) {
625 			debug("%10u: q is not prime", count_in);
626 			continue;
627 		}
628 		debug("%10u: q is almost certainly prime", count_in);
629 
630 		if (qfileout(out, MODULI_TYPE_SAFE,
631 		    in_tests | MODULI_TESTS_MILLER_RABIN,
632 		    in_tries, in_size, generator_known, p)) {
633 			res = -1;
634 			break;
635 		}
636 
637 		count_out++;
638 	}
639 
640 	time(&time_stop);
641 	xfree(lp);
642 	BN_free(p);
643 	BN_free(q);
644 	BN_CTX_free(ctx);
645 
646 	logit("%.24s Found %u safe primes of %u candidates in %ld seconds",
647 	    ctime(&time_stop), count_out, count_possible,
648 	    (long) (time_stop - time_start));
649 
650 	return (res);
651 }
652