xref: /netbsd-src/crypto/external/bsd/openssh/dist/moduli.c (revision 82d56013d7b633d116a93943de88e08335357a7c)
1 /*	$NetBSD: moduli.c,v 1.15 2020/02/27 00:24:40 christos Exp $	*/
2 /* $OpenBSD: moduli.c,v 1.37 2019/11/15 06:00:20 djm Exp $ */
3 /*
4  * Copyright 1994 Phil Karn <karn@qualcomm.com>
5  * Copyright 1996-1998, 2003 William Allen Simpson <wsimpson@greendragon.com>
6  * Copyright 2000 Niels Provos <provos@citi.umich.edu>
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  */
29 
30 /*
31  * Two-step process to generate safe primes for DHGEX
32  *
33  *  Sieve candidates for "safe" primes,
34  *  suitable for use as Diffie-Hellman moduli;
35  *  that is, where q = (p-1)/2 is also prime.
36  *
37  * First step: generate candidate primes (memory intensive)
38  * Second step: test primes' safety (processor intensive)
39  */
40 #include "includes.h"
41 __RCSID("$NetBSD: moduli.c,v 1.15 2020/02/27 00:24:40 christos Exp $");
42 
43 #include <sys/types.h>
44 
45 #include <openssl/bn.h>
46 #include <openssl/dh.h>
47 
48 #include <errno.h>
49 #include <stdio.h>
50 #include <stdlib.h>
51 #include <string.h>
52 #include <stdarg.h>
53 #include <time.h>
54 #include <unistd.h>
55 #include <limits.h>
56 
57 #include "xmalloc.h"
58 #include "dh.h"
59 #include "log.h"
60 #include "misc.h"
61 
62 /*
63  * File output defines
64  */
65 
66 /* need line long enough for largest moduli plus headers */
67 #define QLINESIZE		(100+8192)
68 
69 /*
70  * Size: decimal.
71  * Specifies the number of the most significant bit (0 to M).
72  * WARNING: internally, usually 1 to N.
73  */
74 #define QSIZE_MINIMUM		(511)
75 
76 /*
77  * Prime sieving defines
78  */
79 
80 /* Constant: assuming 8 bit bytes and 32 bit words */
81 #define SHIFT_BIT	(3)
82 #define SHIFT_BYTE	(2)
83 #define SHIFT_WORD	(SHIFT_BIT+SHIFT_BYTE)
84 #define SHIFT_MEGABYTE	(20)
85 #define SHIFT_MEGAWORD	(SHIFT_MEGABYTE-SHIFT_BYTE)
86 
87 /*
88  * Using virtual memory can cause thrashing.  This should be the largest
89  * number that is supported without a large amount of disk activity --
90  * that would increase the run time from hours to days or weeks!
91  */
92 #define LARGE_MINIMUM	(8UL)	/* megabytes */
93 
94 /*
95  * Do not increase this number beyond the unsigned integer bit size.
96  * Due to a multiple of 4, it must be LESS than 128 (yielding 2**30 bits).
97  */
98 #define LARGE_MAXIMUM	(127UL)	/* megabytes */
99 
100 /*
101  * Constant: when used with 32-bit integers, the largest sieve prime
102  * has to be less than 2**32.
103  */
104 #define SMALL_MAXIMUM	(0xffffffffUL)
105 
106 /* Constant: can sieve all primes less than 2**32, as 65537**2 > 2**32-1. */
107 #define TINY_NUMBER	(1UL<<16)
108 
109 /* Ensure enough bit space for testing 2*q. */
110 #define TEST_MAXIMUM	(1UL<<16)
111 #define TEST_MINIMUM	(QSIZE_MINIMUM + 1)
112 /* real TEST_MINIMUM	(1UL << (SHIFT_WORD - TEST_POWER)) */
113 #define TEST_POWER	(3)	/* 2**n, n < SHIFT_WORD */
114 
115 /* bit operations on 32-bit words */
116 #define BIT_CLEAR(a,n)	((a)[(n)>>SHIFT_WORD] &= ~(1L << ((n) & 31)))
117 #define BIT_SET(a,n)	((a)[(n)>>SHIFT_WORD] |= (1L << ((n) & 31)))
118 #define BIT_TEST(a,n)	((a)[(n)>>SHIFT_WORD] & (1L << ((n) & 31)))
119 
120 /*
121  * Prime testing defines
122  */
123 
124 /* Minimum number of primality tests to perform */
125 #define TRIAL_MINIMUM	(4)
126 
127 /*
128  * Sieving data (XXX - move to struct)
129  */
130 
131 /* sieve 2**16 */
132 static u_int32_t *TinySieve, tinybits;
133 
134 /* sieve 2**30 in 2**16 parts */
135 static u_int32_t *SmallSieve, smallbits, smallbase;
136 
137 /* sieve relative to the initial value */
138 static u_int32_t *LargeSieve, largewords, largetries, largenumbers;
139 static u_int32_t largebits, largememory;	/* megabytes */
140 static BIGNUM *largebase;
141 
142 int gen_candidates(FILE *, u_int32_t, u_int32_t, BIGNUM *);
143 int prime_test(FILE *, FILE *, u_int32_t, u_int32_t, char *, unsigned long,
144     unsigned long);
145 
146 /*
147  * print moduli out in consistent form,
148  */
149 static int
150 qfileout(FILE * ofile, u_int32_t otype, u_int32_t otests, u_int32_t otries,
151     u_int32_t osize, u_int32_t ogenerator, BIGNUM * omodulus)
152 {
153 	struct tm *gtm;
154 	time_t time_now;
155 	int res;
156 
157 	time(&time_now);
158 	gtm = gmtime(&time_now);
159 	if (gtm == NULL)
160 		return -1;
161 
162 	res = fprintf(ofile, "%04d%02d%02d%02d%02d%02d %u %u %u %u %x ",
163 	    gtm->tm_year + 1900, gtm->tm_mon + 1, gtm->tm_mday,
164 	    gtm->tm_hour, gtm->tm_min, gtm->tm_sec,
165 	    otype, otests, otries, osize, ogenerator);
166 
167 	if (res < 0)
168 		return (-1);
169 
170 	if (BN_print_fp(ofile, omodulus) < 1)
171 		return (-1);
172 
173 	res = fprintf(ofile, "\n");
174 	fflush(ofile);
175 
176 	return (res > 0 ? 0 : -1);
177 }
178 
179 
180 /*
181  ** Sieve p's and q's with small factors
182  */
183 static void
184 sieve_large(u_int32_t s)
185 {
186 	u_int32_t r, u;
187 
188 	debug3("sieve_large %u", s);
189 	largetries++;
190 	/* r = largebase mod s */
191 	r = BN_mod_word(largebase, s);
192 	if (r == 0)
193 		u = 0; /* s divides into largebase exactly */
194 	else
195 		u = s - r; /* largebase+u is first entry divisible by s */
196 
197 	if (u < largebits * 2) {
198 		/*
199 		 * The sieve omits p's and q's divisible by 2, so ensure that
200 		 * largebase+u is odd. Then, step through the sieve in
201 		 * increments of 2*s
202 		 */
203 		if (u & 0x1)
204 			u += s; /* Make largebase+u odd, and u even */
205 
206 		/* Mark all multiples of 2*s */
207 		for (u /= 2; u < largebits; u += s)
208 			BIT_SET(LargeSieve, u);
209 	}
210 
211 	/* r = p mod s */
212 	r = (2 * r + 1) % s;
213 	if (r == 0)
214 		u = 0; /* s divides p exactly */
215 	else
216 		u = s - r; /* p+u is first entry divisible by s */
217 
218 	if (u < largebits * 4) {
219 		/*
220 		 * The sieve omits p's divisible by 4, so ensure that
221 		 * largebase+u is not. Then, step through the sieve in
222 		 * increments of 4*s
223 		 */
224 		while (u & 0x3) {
225 			if (SMALL_MAXIMUM - u < s)
226 				return;
227 			u += s;
228 		}
229 
230 		/* Mark all multiples of 4*s */
231 		for (u /= 4; u < largebits; u += s)
232 			BIT_SET(LargeSieve, u);
233 	}
234 }
235 
236 /*
237  * list candidates for Sophie-Germain primes (where q = (p-1)/2)
238  * to standard output.
239  * The list is checked against small known primes (less than 2**30).
240  */
241 int
242 gen_candidates(FILE *out, u_int32_t memory, u_int32_t power, BIGNUM *start)
243 {
244 	BIGNUM *q;
245 	u_int32_t j, r, s, t;
246 	u_int32_t smallwords = TINY_NUMBER >> 6;
247 	u_int32_t tinywords = TINY_NUMBER >> 6;
248 	time_t time_start, time_stop;
249 	u_int32_t i;
250 	int ret = 0;
251 
252 	largememory = memory;
253 
254 	if (memory != 0 &&
255 	    (memory < LARGE_MINIMUM || memory > LARGE_MAXIMUM)) {
256 		error("Invalid memory amount (min %ld, max %ld)",
257 		    LARGE_MINIMUM, LARGE_MAXIMUM);
258 		return (-1);
259 	}
260 
261 	/*
262 	 * Set power to the length in bits of the prime to be generated.
263 	 * This is changed to 1 less than the desired safe prime moduli p.
264 	 */
265 	if (power > TEST_MAXIMUM) {
266 		error("Too many bits: %u > %lu", power, TEST_MAXIMUM);
267 		return (-1);
268 	} else if (power < TEST_MINIMUM) {
269 		error("Too few bits: %u < %u", power, TEST_MINIMUM);
270 		return (-1);
271 	}
272 	power--; /* decrement before squaring */
273 
274 	/*
275 	 * The density of ordinary primes is on the order of 1/bits, so the
276 	 * density of safe primes should be about (1/bits)**2. Set test range
277 	 * to something well above bits**2 to be reasonably sure (but not
278 	 * guaranteed) of catching at least one safe prime.
279 	 */
280 	largewords = ((power * power) >> (SHIFT_WORD - TEST_POWER));
281 
282 	/*
283 	 * Need idea of how much memory is available. We don't have to use all
284 	 * of it.
285 	 */
286 	if (largememory > LARGE_MAXIMUM) {
287 		logit("Limited memory: %u MB; limit %lu MB",
288 		    largememory, LARGE_MAXIMUM);
289 		largememory = LARGE_MAXIMUM;
290 	}
291 
292 	if (largewords <= (largememory << SHIFT_MEGAWORD)) {
293 		logit("Increased memory: %u MB; need %u bytes",
294 		    largememory, (largewords << SHIFT_BYTE));
295 		largewords = (largememory << SHIFT_MEGAWORD);
296 	} else if (largememory > 0) {
297 		logit("Decreased memory: %u MB; want %u bytes",
298 		    largememory, (largewords << SHIFT_BYTE));
299 		largewords = (largememory << SHIFT_MEGAWORD);
300 	}
301 
302 	TinySieve = xcalloc(tinywords, sizeof(u_int32_t));
303 	tinybits = tinywords << SHIFT_WORD;
304 
305 	SmallSieve = xcalloc(smallwords, sizeof(u_int32_t));
306 	smallbits = smallwords << SHIFT_WORD;
307 
308 	/*
309 	 * dynamically determine available memory
310 	 */
311 	while ((LargeSieve = calloc(largewords, sizeof(u_int32_t))) == NULL)
312 		largewords -= (1L << (SHIFT_MEGAWORD - 2)); /* 1/4 MB chunks */
313 
314 	largebits = largewords << SHIFT_WORD;
315 	largenumbers = largebits * 2;	/* even numbers excluded */
316 
317 	/* validation check: count the number of primes tried */
318 	largetries = 0;
319 	if ((q = BN_new()) == NULL)
320 		fatal("BN_new failed");
321 
322 	/*
323 	 * Generate random starting point for subprime search, or use
324 	 * specified parameter.
325 	 */
326 	if ((largebase = BN_new()) == NULL)
327 		fatal("BN_new failed");
328 	if (start == NULL) {
329 		if (BN_rand(largebase, power, 1, 1) == 0)
330 			fatal("BN_rand failed");
331 	} else {
332 		if (BN_copy(largebase, start) == NULL)
333 			fatal("BN_copy: failed");
334 	}
335 
336 	/* ensure odd */
337 	if (BN_set_bit(largebase, 0) == 0)
338 		fatal("BN_set_bit: failed");
339 
340 	time(&time_start);
341 
342 	logit("%.24s Sieve next %u plus %u-bit", ctime(&time_start),
343 	    largenumbers, power);
344 	debug2("start point: 0x%s", BN_bn2hex(largebase));
345 
346 	/*
347 	 * TinySieve
348 	 */
349 	for (i = 0; i < tinybits; i++) {
350 		if (BIT_TEST(TinySieve, i))
351 			continue; /* 2*i+3 is composite */
352 
353 		/* The next tiny prime */
354 		t = 2 * i + 3;
355 
356 		/* Mark all multiples of t */
357 		for (j = i + t; j < tinybits; j += t)
358 			BIT_SET(TinySieve, j);
359 
360 		sieve_large(t);
361 	}
362 
363 	/*
364 	 * Start the small block search at the next possible prime. To avoid
365 	 * fencepost errors, the last pass is skipped.
366 	 */
367 	for (smallbase = TINY_NUMBER + 3;
368 	    smallbase < (SMALL_MAXIMUM - TINY_NUMBER);
369 	    smallbase += TINY_NUMBER) {
370 		for (i = 0; i < tinybits; i++) {
371 			if (BIT_TEST(TinySieve, i))
372 				continue; /* 2*i+3 is composite */
373 
374 			/* The next tiny prime */
375 			t = 2 * i + 3;
376 			r = smallbase % t;
377 
378 			if (r == 0) {
379 				s = 0; /* t divides into smallbase exactly */
380 			} else {
381 				/* smallbase+s is first entry divisible by t */
382 				s = t - r;
383 			}
384 
385 			/*
386 			 * The sieve omits even numbers, so ensure that
387 			 * smallbase+s is odd. Then, step through the sieve
388 			 * in increments of 2*t
389 			 */
390 			if (s & 1)
391 				s += t; /* Make smallbase+s odd, and s even */
392 
393 			/* Mark all multiples of 2*t */
394 			for (s /= 2; s < smallbits; s += t)
395 				BIT_SET(SmallSieve, s);
396 		}
397 
398 		/*
399 		 * SmallSieve
400 		 */
401 		for (i = 0; i < smallbits; i++) {
402 			if (BIT_TEST(SmallSieve, i))
403 				continue; /* 2*i+smallbase is composite */
404 
405 			/* The next small prime */
406 			sieve_large((2 * i) + smallbase);
407 		}
408 
409 		memset(SmallSieve, 0, smallwords << SHIFT_BYTE);
410 	}
411 
412 	time(&time_stop);
413 
414 	logit("%.24s Sieved with %u small primes in %lld seconds",
415 	    ctime(&time_stop), largetries, (long long)(time_stop - time_start));
416 
417 	for (j = r = 0; j < largebits; j++) {
418 		if (BIT_TEST(LargeSieve, j))
419 			continue; /* Definitely composite, skip */
420 
421 		debug2("test q = largebase+%u", 2 * j);
422 		if (BN_set_word(q, 2 * j) == 0)
423 			fatal("BN_set_word failed");
424 		if (BN_add(q, q, largebase) == 0)
425 			fatal("BN_add failed");
426 		if (qfileout(out, MODULI_TYPE_SOPHIE_GERMAIN,
427 		    MODULI_TESTS_SIEVE, largetries,
428 		    (power - 1) /* MSB */, (0), q) == -1) {
429 			ret = -1;
430 			break;
431 		}
432 
433 		r++; /* count q */
434 	}
435 
436 	time(&time_stop);
437 
438 	free(LargeSieve);
439 	free(SmallSieve);
440 	free(TinySieve);
441 
442 	logit("%.24s Found %u candidates", ctime(&time_stop), r);
443 
444 	return (ret);
445 }
446 
447 static void
448 write_checkpoint(char *cpfile, u_int32_t lineno)
449 {
450 	FILE *fp;
451 	char tmp[PATH_MAX];
452 	int r;
453 
454 	r = snprintf(tmp, sizeof(tmp), "%s.XXXXXXXXXX", cpfile);
455 	if (r < 0 || r >= PATH_MAX) {
456 		logit("write_checkpoint: temp pathname too long");
457 		return;
458 	}
459 	if ((r = mkstemp(tmp)) == -1) {
460 		logit("mkstemp(%s): %s", tmp, strerror(errno));
461 		return;
462 	}
463 	if ((fp = fdopen(r, "w")) == NULL) {
464 		logit("write_checkpoint: fdopen: %s", strerror(errno));
465 		unlink(tmp);
466 		close(r);
467 		return;
468 	}
469 	if (fprintf(fp, "%lu\n", (unsigned long)lineno) > 0 && fclose(fp) == 0
470 	    && rename(tmp, cpfile) == 0)
471 		debug3("wrote checkpoint line %lu to '%s'",
472 		    (unsigned long)lineno, cpfile);
473 	else
474 		logit("failed to write to checkpoint file '%s': %s", cpfile,
475 		    strerror(errno));
476 }
477 
478 static unsigned long
479 read_checkpoint(char *cpfile)
480 {
481 	FILE *fp;
482 	unsigned long lineno = 0;
483 
484 	if ((fp = fopen(cpfile, "r")) == NULL)
485 		return 0;
486 	if (fscanf(fp, "%lu\n", &lineno) < 1)
487 		logit("Failed to load checkpoint from '%s'", cpfile);
488 	else
489 		logit("Loaded checkpoint from '%s' line %lu", cpfile, lineno);
490 	fclose(fp);
491 	return lineno;
492 }
493 
494 static unsigned long
495 count_lines(FILE *f)
496 {
497 	unsigned long count = 0;
498 	char lp[QLINESIZE + 1];
499 
500 	if (fseek(f, 0, SEEK_SET) != 0) {
501 		debug("input file is not seekable");
502 		return ULONG_MAX;
503 	}
504 	while (fgets(lp, QLINESIZE + 1, f) != NULL)
505 		count++;
506 	rewind(f);
507 	debug("input file has %lu lines", count);
508 	return count;
509 }
510 
511 static char *
512 fmt_time(time_t seconds)
513 {
514 	int day, hr, min;
515 	static char buf[128];
516 
517 	min = (seconds / 60) % 60;
518 	hr = (seconds / 60 / 60) % 24;
519 	day = seconds / 60 / 60 / 24;
520 	if (day > 0)
521 		snprintf(buf, sizeof buf, "%dd %d:%02d", day, hr, min);
522 	else
523 		snprintf(buf, sizeof buf, "%d:%02d", hr, min);
524 	return buf;
525 }
526 
527 static void
528 print_progress(unsigned long start_lineno, unsigned long current_lineno,
529     unsigned long end_lineno)
530 {
531 	static time_t time_start, time_prev;
532 	time_t time_now, elapsed;
533 	unsigned long num_to_process, processed, remaining, percent, eta;
534 	double time_per_line;
535 	char *eta_str;
536 
537 	time_now = monotime();
538 	if (time_start == 0) {
539 		time_start = time_prev = time_now;
540 		return;
541 	}
542 	/* print progress after 1m then once per 5m */
543 	if (time_now - time_prev < 5 * 60)
544 		return;
545 	time_prev = time_now;
546 	elapsed = time_now - time_start;
547 	processed = current_lineno - start_lineno;
548 	remaining = end_lineno - current_lineno;
549 	num_to_process = end_lineno - start_lineno;
550 	time_per_line = (double)elapsed / processed;
551 	/* if we don't know how many we're processing just report count+time */
552 	time(&time_now);
553 	if (end_lineno == ULONG_MAX) {
554 		logit("%.24s processed %lu in %s", ctime(&time_now),
555 		    processed, fmt_time(elapsed));
556 		return;
557 	}
558 	percent = 100 * processed / num_to_process;
559 	eta = time_per_line * remaining;
560 	eta_str = xstrdup(fmt_time(eta));
561 	logit("%.24s processed %lu of %lu (%lu%%) in %s, ETA %s",
562 	    ctime(&time_now), processed, num_to_process, percent,
563 	    fmt_time(elapsed), eta_str);
564 	free(eta_str);
565 }
566 
567 /*
568  * perform a Miller-Rabin primality test
569  * on the list of candidates
570  * (checking both q and p)
571  * The result is a list of so-call "safe" primes
572  */
573 int
574 prime_test(FILE *in, FILE *out, u_int32_t trials, u_int32_t generator_wanted,
575     char *checkpoint_file, unsigned long start_lineno, unsigned long num_lines)
576 {
577 	BIGNUM *q, *p, *a;
578 	char *cp, *lp;
579 	u_int32_t count_in = 0, count_out = 0, count_possible = 0;
580 	u_int32_t generator_known, in_tests, in_tries, in_type, in_size;
581 	unsigned long last_processed = 0, end_lineno;
582 	time_t time_start, time_stop;
583 	int res, is_prime;
584 
585 	if (trials < TRIAL_MINIMUM) {
586 		error("Minimum primality trials is %d", TRIAL_MINIMUM);
587 		return (-1);
588 	}
589 
590 	if (num_lines == 0)
591 		end_lineno = count_lines(in);
592 	else
593 		end_lineno = start_lineno + num_lines;
594 
595 	time(&time_start);
596 
597 	if ((p = BN_new()) == NULL)
598 		fatal("BN_new failed");
599 	if ((q = BN_new()) == NULL)
600 		fatal("BN_new failed");
601 
602 	debug2("%.24s Final %u Miller-Rabin trials (%x generator)",
603 	    ctime(&time_start), trials, generator_wanted);
604 
605 	if (checkpoint_file != NULL)
606 		last_processed = read_checkpoint(checkpoint_file);
607 	last_processed = start_lineno = MAXIMUM(last_processed, start_lineno);
608 	if (end_lineno == ULONG_MAX)
609 		debug("process from line %lu from pipe", last_processed);
610 	else
611 		debug("process from line %lu to line %lu", last_processed,
612 		    end_lineno);
613 
614 	res = 0;
615 	lp = xmalloc(QLINESIZE + 1);
616 	while (fgets(lp, QLINESIZE + 1, in) != NULL && count_in < end_lineno) {
617 		count_in++;
618 		if (count_in <= last_processed) {
619 			debug3("skipping line %u, before checkpoint or "
620 			    "specified start line", count_in);
621 			continue;
622 		}
623 		if (checkpoint_file != NULL)
624 			write_checkpoint(checkpoint_file, count_in);
625 		print_progress(start_lineno, count_in, end_lineno);
626 		if (strlen(lp) < 14 || *lp == '!' || *lp == '#') {
627 			debug2("%10u: comment or short line", count_in);
628 			continue;
629 		}
630 
631 		/* XXX - fragile parser */
632 		/* time */
633 		cp = &lp[14];	/* (skip) */
634 
635 		/* type */
636 		in_type = strtoul(cp, &cp, 10);
637 
638 		/* tests */
639 		in_tests = strtoul(cp, &cp, 10);
640 
641 		if (in_tests & MODULI_TESTS_COMPOSITE) {
642 			debug2("%10u: known composite", count_in);
643 			continue;
644 		}
645 
646 		/* tries */
647 		in_tries = strtoul(cp, &cp, 10);
648 
649 		/* size (most significant bit) */
650 		in_size = strtoul(cp, &cp, 10);
651 
652 		/* generator (hex) */
653 		generator_known = strtoul(cp, &cp, 16);
654 
655 		/* Skip white space */
656 		cp += strspn(cp, " ");
657 
658 		/* modulus (hex) */
659 		switch (in_type) {
660 		case MODULI_TYPE_SOPHIE_GERMAIN:
661 			debug2("%10u: (%u) Sophie-Germain", count_in, in_type);
662 			a = q;
663 			if (BN_hex2bn(&a, cp) == 0)
664 				fatal("BN_hex2bn failed");
665 			/* p = 2*q + 1 */
666 			if (BN_lshift(p, q, 1) == 0)
667 				fatal("BN_lshift failed");
668 			if (BN_add_word(p, 1) == 0)
669 				fatal("BN_add_word failed");
670 			in_size += 1;
671 			generator_known = 0;
672 			break;
673 		case MODULI_TYPE_UNSTRUCTURED:
674 		case MODULI_TYPE_SAFE:
675 		case MODULI_TYPE_SCHNORR:
676 		case MODULI_TYPE_STRONG:
677 		case MODULI_TYPE_UNKNOWN:
678 			debug2("%10u: (%u)", count_in, in_type);
679 			a = p;
680 			if (BN_hex2bn(&a, cp) == 0)
681 				fatal("BN_hex2bn failed");
682 			/* q = (p-1) / 2 */
683 			if (BN_rshift(q, p, 1) == 0)
684 				fatal("BN_rshift failed");
685 			break;
686 		default:
687 			debug2("Unknown prime type");
688 			break;
689 		}
690 
691 		/*
692 		 * due to earlier inconsistencies in interpretation, check
693 		 * the proposed bit size.
694 		 */
695 		if ((u_int32_t)BN_num_bits(p) != (in_size + 1)) {
696 			debug2("%10u: bit size %u mismatch", count_in, in_size);
697 			continue;
698 		}
699 		if (in_size < QSIZE_MINIMUM) {
700 			debug2("%10u: bit size %u too short", count_in, in_size);
701 			continue;
702 		}
703 
704 		if (in_tests & MODULI_TESTS_MILLER_RABIN)
705 			in_tries += trials;
706 		else
707 			in_tries = trials;
708 
709 		/*
710 		 * guess unknown generator
711 		 */
712 		if (generator_known == 0) {
713 			if (BN_mod_word(p, 24) == 11)
714 				generator_known = 2;
715 			else {
716 				u_int32_t r = BN_mod_word(p, 10);
717 
718 				if (r == 3 || r == 7)
719 					generator_known = 5;
720 			}
721 		}
722 		/*
723 		 * skip tests when desired generator doesn't match
724 		 */
725 		if (generator_wanted > 0 &&
726 		    generator_wanted != generator_known) {
727 			debug2("%10u: generator %d != %d",
728 			    count_in, generator_known, generator_wanted);
729 			continue;
730 		}
731 
732 		/*
733 		 * Primes with no known generator are useless for DH, so
734 		 * skip those.
735 		 */
736 		if (generator_known == 0) {
737 			debug2("%10u: no known generator", count_in);
738 			continue;
739 		}
740 
741 		count_possible++;
742 
743 		/*
744 		 * The (1/4)^N performance bound on Miller-Rabin is
745 		 * extremely pessimistic, so don't spend a lot of time
746 		 * really verifying that q is prime until after we know
747 		 * that p is also prime. A single pass will weed out the
748 		 * vast majority of composite q's.
749 		 */
750 		is_prime = BN_is_prime_ex(q, 1, NULL, NULL);
751 		if (is_prime < 0)
752 			fatal("BN_is_prime_ex failed");
753 		if (is_prime == 0) {
754 			debug("%10u: q failed first possible prime test",
755 			    count_in);
756 			continue;
757 		}
758 
759 		/*
760 		 * q is possibly prime, so go ahead and really make sure
761 		 * that p is prime. If it is, then we can go back and do
762 		 * the same for q. If p is composite, chances are that
763 		 * will show up on the first Rabin-Miller iteration so it
764 		 * doesn't hurt to specify a high iteration count.
765 		 */
766 		is_prime = BN_is_prime_ex(p, trials, NULL, NULL);
767 		if (is_prime < 0)
768 			fatal("BN_is_prime_ex failed");
769 		if (is_prime == 0) {
770 			debug("%10u: p is not prime", count_in);
771 			continue;
772 		}
773 		debug("%10u: p is almost certainly prime", count_in);
774 
775 		/* recheck q more rigorously */
776 		is_prime = BN_is_prime_ex(q, trials - 1, NULL, NULL);
777 		if (is_prime < 0)
778 			fatal("BN_is_prime_ex failed");
779 		if (is_prime == 0) {
780 			debug("%10u: q is not prime", count_in);
781 			continue;
782 		}
783 		debug("%10u: q is almost certainly prime", count_in);
784 
785 		if (qfileout(out, MODULI_TYPE_SAFE,
786 		    in_tests | MODULI_TESTS_MILLER_RABIN,
787 		    in_tries, in_size, generator_known, p)) {
788 			res = -1;
789 			break;
790 		}
791 
792 		count_out++;
793 	}
794 
795 	time(&time_stop);
796 	free(lp);
797 	BN_free(p);
798 	BN_free(q);
799 
800 	if (checkpoint_file != NULL)
801 		unlink(checkpoint_file);
802 
803 	logit("%.24s Found %u safe primes of %u candidates in %ld seconds",
804 	    ctime(&time_stop), count_out, count_possible,
805 	    (long) (time_stop - time_start));
806 
807 	return (res);
808 }
809