1 /*- 2 * Copyright (c) 2009 The NetBSD Foundation, Inc. 3 * All rights reserved. 4 * 5 * This code is derived from software contributed to The NetBSD Foundation 6 * by Alistair Crooks (agc@NetBSD.org) 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 19 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 20 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 21 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 22 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 25 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 27 * POSSIBILITY OF SUCH DAMAGE. 28 */ 29 /* 30 * Copyright (c) 2005-2008 Nominet UK (www.nic.uk) 31 * All rights reserved. 32 * Contributors: Ben Laurie, Rachel Willmer. The Contributors have asserted 33 * their moral rights under the UK Copyright Design and Patents Act 1988 to 34 * be recorded as the authors of this copyright work. 35 * 36 * Licensed under the Apache License, Version 2.0 (the "License"); you may not 37 * use this file except in compliance with the License. 38 * 39 * You may obtain a copy of the License at 40 * http://www.apache.org/licenses/LICENSE-2.0 41 * 42 * Unless required by applicable law or agreed to in writing, software 43 * distributed under the License is distributed on an "AS IS" BASIS, 44 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 45 * 46 * See the License for the specific language governing permissions and 47 * limitations under the License. 48 */ 49 50 /** \file 51 * \brief Parser for OpenPGP packets 52 */ 53 #include "config.h" 54 55 #ifdef HAVE_SYS_CDEFS_H 56 #include <sys/cdefs.h> 57 #endif 58 59 #if defined(__NetBSD__) 60 __COPYRIGHT("@(#) Copyright (c) 2009 The NetBSD Foundation, Inc. All rights reserved."); 61 __RCSID("$NetBSD: packet-parse.c,v 1.31 2010/03/08 07:37:24 agc Exp $"); 62 #endif 63 64 #ifdef HAVE_OPENSSL_CAST_H 65 #include <openssl/cast.h> 66 #endif 67 68 #include <stdarg.h> 69 #include <stdlib.h> 70 #include <string.h> 71 72 #ifdef HAVE_UNISTD_H 73 #include <unistd.h> 74 #endif 75 76 #ifdef HAVE_LIMITS_H 77 #include <limits.h> 78 #endif 79 80 #include "packet.h" 81 #include "packet-parse.h" 82 #include "keyring.h" 83 #include "errors.h" 84 #include "packet-show.h" 85 #include "create.h" 86 #include "readerwriter.h" 87 #include "netpgpdefs.h" 88 #include "crypto.h" 89 #include "netpgpdigest.h" 90 91 #define ERRP(cbinfo, cont, err) do { \ 92 cont.u.error.error = err; \ 93 CALLBACK(OPS_PARSER_ERROR, cbinfo, &cont); \ 94 return 0; \ 95 /*NOTREACHED*/ \ 96 } while(/*CONSTCOND*/0) 97 98 /** 99 * limread_data reads the specified amount of the subregion's data 100 * into a data_t structure 101 * 102 * \param data Empty structure which will be filled with data 103 * \param len Number of octets to read 104 * \param subregion 105 * \param stream How to parse 106 * 107 * \return 1 on success, 0 on failure 108 */ 109 static int 110 limread_data(__ops_data_t *data, unsigned len, 111 __ops_region_t *subregion, __ops_stream_t *stream) 112 { 113 data->len = len; 114 115 if (subregion->length - subregion->readc < len) { 116 (void) fprintf(stderr, "limread_data: bad length\n"); 117 return 0; 118 } 119 120 data->contents = calloc(1, data->len); 121 if (!data->contents) { 122 return 0; 123 } 124 125 return __ops_limited_read(data->contents, data->len, subregion, 126 &stream->errors, &stream->readinfo, &stream->cbinfo); 127 } 128 129 /** 130 * read_data reads the remainder of the subregion's data 131 * into a data_t structure 132 * 133 * \param data 134 * \param subregion 135 * \param stream 136 * 137 * \return 1 on success, 0 on failure 138 */ 139 static int 140 read_data(__ops_data_t *data, __ops_region_t *region, __ops_stream_t *stream) 141 { 142 int cc; 143 144 cc = region->length - region->readc; 145 return (cc >= 0) ? limread_data(data, (unsigned)cc, region, stream) : 0; 146 } 147 148 /** 149 * Reads the remainder of the subregion as a string. 150 * It is the user's responsibility to free the memory allocated here. 151 */ 152 153 static int 154 read_unsig_str(uint8_t **str, __ops_region_t *subregion, 155 __ops_stream_t *stream) 156 { 157 size_t len; 158 159 len = subregion->length - subregion->readc; 160 if ((*str = calloc(1, len + 1)) == NULL) { 161 return 0; 162 } 163 if (len && 164 !__ops_limited_read(*str, len, subregion, &stream->errors, 165 &stream->readinfo, &stream->cbinfo)) { 166 return 0; 167 } 168 (*str)[len] = '\0'; 169 return 1; 170 } 171 172 static int 173 read_string(char **str, __ops_region_t *subregion, __ops_stream_t *stream) 174 { 175 return read_unsig_str((uint8_t **) str, subregion, stream); 176 } 177 178 void 179 __ops_init_subregion(__ops_region_t *subregion, __ops_region_t *region) 180 { 181 (void) memset(subregion, 0x0, sizeof(*subregion)); 182 subregion->parent = region; 183 } 184 185 /* 186 * XXX: replace __ops_ptag_t with something more appropriate for limiting reads 187 */ 188 189 /** 190 * low-level function to read data from reader function 191 * 192 * Use this function, rather than calling the reader directly. 193 * 194 * If the accumulate flag is set in *stream, the function 195 * adds the read data to the accumulated data, and updates 196 * the accumulated length. This is useful if, for example, 197 * the application wants access to the raw data as well as the 198 * parsed data. 199 * 200 * This function will also try to read the entire amount asked for, but not 201 * if it is over INT_MAX. Obviously many callers will know that they 202 * never ask for that much and so can avoid the extra complexity of 203 * dealing with return codes and filled-in lengths. 204 * 205 * \param *dest 206 * \param *plength 207 * \param flags 208 * \param *stream 209 * 210 * \return OPS_R_OK 211 * \return OPS_R_PARTIAL_READ 212 * \return OPS_R_EOF 213 * \return OPS_R_EARLY_EOF 214 * 215 * \sa #__ops_reader_ret_t for details of return codes 216 */ 217 218 static int 219 sub_base_read(void *dest, size_t length, __ops_error_t **errors, 220 __ops_reader_t *readinfo, __ops_cbdata_t *cbinfo) 221 { 222 size_t n; 223 224 /* reading more than this would look like an error */ 225 if (length > INT_MAX) 226 length = INT_MAX; 227 228 for (n = 0; n < length;) { 229 int r; 230 231 r = readinfo->reader((char *) dest + n, length - n, errors, 232 readinfo, cbinfo); 233 if (r > (int)(length - n)) { 234 (void) fprintf(stderr, "sub_base_read: bad read\n"); 235 return 0; 236 } 237 if (r < 0) { 238 return r; 239 } 240 if (r == 0) { 241 break; 242 } 243 n += (unsigned)r; 244 } 245 246 if (n == 0) { 247 return 0; 248 } 249 if (readinfo->accumulate) { 250 if (readinfo->asize < readinfo->alength) { 251 (void) fprintf(stderr, "sub_base_read: bad size\n"); 252 return 0; 253 } 254 if (readinfo->alength + n > readinfo->asize) { 255 uint8_t *temp; 256 257 readinfo->asize = (readinfo->asize * 2) + n; 258 temp = realloc(readinfo->accumulated, readinfo->asize); 259 if (temp == NULL) { 260 (void) fprintf(stderr, 261 "sub_base_read: bad alloc\n"); 262 return 0; 263 } 264 readinfo->accumulated = temp; 265 } 266 if (readinfo->asize < readinfo->alength + n) { 267 (void) fprintf(stderr, "sub_base_read: bad realloc\n"); 268 return 0; 269 } 270 (void) memcpy(readinfo->accumulated + readinfo->alength, dest, 271 n); 272 } 273 /* we track length anyway, because it is used for packet offsets */ 274 readinfo->alength += n; 275 /* and also the position */ 276 readinfo->position += n; 277 278 return n; 279 } 280 281 int 282 __ops_stacked_read(void *dest, size_t length, __ops_error_t **errors, 283 __ops_reader_t *readinfo, __ops_cbdata_t *cbinfo) 284 { 285 return sub_base_read(dest, length, errors, readinfo->next, cbinfo); 286 } 287 288 /* This will do a full read so long as length < MAX_INT */ 289 static int 290 base_read(uint8_t *dest, size_t length, __ops_stream_t *stream) 291 { 292 return sub_base_read(dest, length, &stream->errors, &stream->readinfo, 293 &stream->cbinfo); 294 } 295 296 /* 297 * Read a full size_t's worth. If the return is < than length, then 298 * *last_read tells you why - < 0 for an error, == 0 for EOF 299 */ 300 301 static size_t 302 full_read(uint8_t *dest, 303 size_t length, 304 int *last_read, 305 __ops_error_t **errors, 306 __ops_reader_t *readinfo, 307 __ops_cbdata_t *cbinfo) 308 { 309 size_t t; 310 int r = 0; /* preset in case some loon calls with length 311 * == 0 */ 312 313 for (t = 0; t < length;) { 314 r = sub_base_read(dest + t, length - t, errors, readinfo, 315 cbinfo); 316 if (r <= 0) { 317 *last_read = r; 318 return t; 319 } 320 t += (size_t)r; 321 } 322 323 *last_read = r; 324 325 return t; 326 } 327 328 329 330 /** Read a scalar value of selected length from reader. 331 * 332 * Read an unsigned scalar value from reader in Big Endian representation. 333 * 334 * This function does not know or care about packet boundaries. It 335 * also assumes that an EOF is an error. 336 * 337 * \param *result The scalar value is stored here 338 * \param *reader Our reader 339 * \param length How many bytes to read 340 * \return 1 on success, 0 on failure 341 */ 342 static unsigned 343 _read_scalar(unsigned *result, unsigned length, 344 __ops_stream_t *stream) 345 { 346 unsigned t = 0; 347 348 if (length > sizeof(*result)) { 349 (void) fprintf(stderr, "_read_scalar: bad length\n"); 350 return 0; 351 } 352 353 while (length--) { 354 uint8_t c; 355 int r; 356 357 r = base_read(&c, 1, stream); 358 if (r != 1) 359 return 0; 360 t = (t << 8) + c; 361 } 362 363 *result = t; 364 return 1; 365 } 366 367 /** 368 * \ingroup Core_ReadPackets 369 * \brief Read bytes from a region within the packet. 370 * 371 * Read length bytes into the buffer pointed to by *dest. 372 * Make sure we do not read over the packet boundary. 373 * Updates the Packet Tag's __ops_ptag_t::readc. 374 * 375 * If length would make us read over the packet boundary, or if 376 * reading fails, we call the callback with an error. 377 * 378 * Note that if the region is indeterminate, this can return a short 379 * read - check region->last_read for the length. EOF is indicated by 380 * a success return and region->last_read == 0 in this case (for a 381 * region of known length, EOF is an error). 382 * 383 * This function makes sure to respect packet boundaries. 384 * 385 * \param dest The destination buffer 386 * \param length How many bytes to read 387 * \param region Pointer to packet region 388 * \param errors Error stack 389 * \param readinfo Reader info 390 * \param cbinfo Callback info 391 * \return 1 on success, 0 on error 392 */ 393 unsigned 394 __ops_limited_read(uint8_t *dest, 395 size_t length, 396 __ops_region_t *region, 397 __ops_error_t **errors, 398 __ops_reader_t *readinfo, 399 __ops_cbdata_t *cbinfo) 400 { 401 size_t r; 402 int lr; 403 404 if (!region->indeterminate && 405 region->readc + length > region->length) { 406 OPS_ERROR(errors, OPS_E_P_NOT_ENOUGH_DATA, "Not enough data"); 407 return 0; 408 } 409 r = full_read(dest, length, &lr, errors, readinfo, cbinfo); 410 if (lr < 0) { 411 OPS_ERROR(errors, OPS_E_R_READ_FAILED, "Read failed"); 412 return 0; 413 } 414 if (!region->indeterminate && r != length) { 415 OPS_ERROR(errors, OPS_E_R_READ_FAILED, "Read failed"); 416 return 0; 417 } 418 region->last_read = r; 419 do { 420 region->readc += r; 421 if (region->parent && region->length > region->parent->length) { 422 (void) fprintf(stderr, 423 "ops_limited_read: bad length\n"); 424 return 0; 425 } 426 } while ((region = region->parent) != NULL); 427 return 1; 428 } 429 430 /** 431 \ingroup Core_ReadPackets 432 \brief Call __ops_limited_read on next in stack 433 */ 434 unsigned 435 __ops_stacked_limited_read(uint8_t *dest, unsigned length, 436 __ops_region_t *region, 437 __ops_error_t **errors, 438 __ops_reader_t *readinfo, 439 __ops_cbdata_t *cbinfo) 440 { 441 return __ops_limited_read(dest, length, region, errors, 442 readinfo->next, cbinfo); 443 } 444 445 static unsigned 446 limread(uint8_t *dest, unsigned length, 447 __ops_region_t *region, __ops_stream_t *info) 448 { 449 return __ops_limited_read(dest, length, region, &info->errors, 450 &info->readinfo, &info->cbinfo); 451 } 452 453 static unsigned 454 exact_limread(uint8_t *dest, unsigned len, 455 __ops_region_t *region, 456 __ops_stream_t *stream) 457 { 458 unsigned ret; 459 460 stream->exact_read = 1; 461 ret = limread(dest, len, region, stream); 462 stream->exact_read = 0; 463 return ret; 464 } 465 466 /** Skip over length bytes of this packet. 467 * 468 * Calls limread() to skip over some data. 469 * 470 * This function makes sure to respect packet boundaries. 471 * 472 * \param length How many bytes to skip 473 * \param *region Pointer to packet region 474 * \param *stream How to parse 475 * \return 1 on success, 0 on error (calls the cb with OPS_PARSER_ERROR in limread()). 476 */ 477 static int 478 limskip(unsigned length, __ops_region_t *region, __ops_stream_t *stream) 479 { 480 uint8_t buf[NETPGP_BUFSIZ]; 481 482 while (length > 0) { 483 unsigned n = length % NETPGP_BUFSIZ; 484 485 if (!limread(buf, n, region, stream)) { 486 return 0; 487 } 488 length -= n; 489 } 490 return 1; 491 } 492 493 /** Read a scalar. 494 * 495 * Read a big-endian scalar of length bytes, respecting packet 496 * boundaries (by calling limread() to read the raw data). 497 * 498 * This function makes sure to respect packet boundaries. 499 * 500 * \param *dest The scalar value is stored here 501 * \param length How many bytes make up this scalar (at most 4) 502 * \param *region Pointer to current packet region 503 * \param *stream How to parse 504 * \param *cb The callback 505 * \return 1 on success, 0 on error (calls the cb with OPS_PARSER_ERROR in limread()). 506 * 507 * \see RFC4880 3.1 508 */ 509 static int 510 limread_scalar(unsigned *dest, 511 unsigned len, 512 __ops_region_t *region, 513 __ops_stream_t *stream) 514 { 515 uint8_t c[4] = ""; 516 unsigned t; 517 unsigned n; 518 519 if (len > 4) { 520 (void) fprintf(stderr, "limread_scalar: bad length\n"); 521 return 0; 522 } 523 /*LINTED*/ 524 if (/*CONSTCOND*/sizeof(*dest) < 4) { 525 (void) fprintf(stderr, "limread_scalar: bad dest\n"); 526 return 0; 527 } 528 if (!limread(c, len, region, stream)) { 529 return 0; 530 } 531 for (t = 0, n = 0; n < len; ++n) { 532 t = (t << 8) + c[n]; 533 } 534 *dest = t; 535 return 1; 536 } 537 538 /** Read a scalar. 539 * 540 * Read a big-endian scalar of length bytes, respecting packet 541 * boundaries (by calling limread() to read the raw data). 542 * 543 * The value read is stored in a size_t, which is a different size 544 * from an unsigned on some platforms. 545 * 546 * This function makes sure to respect packet boundaries. 547 * 548 * \param *dest The scalar value is stored here 549 * \param length How many bytes make up this scalar (at most 4) 550 * \param *region Pointer to current packet region 551 * \param *stream How to parse 552 * \param *cb The callback 553 * \return 1 on success, 0 on error (calls the cb with OPS_PARSER_ERROR in limread()). 554 * 555 * \see RFC4880 3.1 556 */ 557 static int 558 limread_size_t(size_t *dest, 559 unsigned length, 560 __ops_region_t *region, 561 __ops_stream_t *stream) 562 { 563 unsigned tmp; 564 565 /* 566 * Note that because the scalar is at most 4 bytes, we don't care if 567 * size_t is bigger than usigned 568 */ 569 if (!limread_scalar(&tmp, length, region, stream)) 570 return 0; 571 572 *dest = tmp; 573 return 1; 574 } 575 576 /** Read a timestamp. 577 * 578 * Timestamps in OpenPGP are unix time, i.e. seconds since The Epoch (1.1.1970). They are stored in an unsigned scalar 579 * of 4 bytes. 580 * 581 * This function reads the timestamp using limread_scalar(). 582 * 583 * This function makes sure to respect packet boundaries. 584 * 585 * \param *dest The timestamp is stored here 586 * \param *ptag Pointer to current packet's Packet Tag. 587 * \param *reader Our reader 588 * \param *cb The callback 589 * \return see limread_scalar() 590 * 591 * \see RFC4880 3.5 592 */ 593 static int 594 limited_read_time(time_t *dest, __ops_region_t *region, 595 __ops_stream_t *stream) 596 { 597 uint8_t c; 598 time_t mytime = 0; 599 int i; 600 601 /* 602 * Cannot assume that time_t is 4 octets long - 603 * SunOS 5.10 and NetBSD both have 64-bit time_ts. 604 */ 605 if (/* CONSTCOND */sizeof(time_t) == 4) { 606 return limread_scalar((unsigned *)(void *)dest, 4, region, stream); 607 } 608 for (i = 0; i < 4; i++) { 609 if (!limread(&c, 1, region, stream)) { 610 return 0; 611 } 612 mytime = (mytime << 8) + c; 613 } 614 *dest = mytime; 615 return 1; 616 } 617 618 /** 619 * \ingroup Core_MPI 620 * Read a multiprecision integer. 621 * 622 * Large numbers (multiprecision integers, MPI) are stored in OpenPGP in two parts. First there is a 2 byte scalar 623 * indicating the length of the following MPI in Bits. Then follow the bits that make up the actual number, most 624 * significant bits first (Big Endian). The most significant bit in the MPI is supposed to be 1 (unless the MPI is 625 * encrypted - then it may be different as the bit count refers to the plain text but the bits are encrypted). 626 * 627 * Unused bits (i.e. those filling up the most significant byte from the left to the first bits that counts) are 628 * supposed to be cleared - I guess. XXX - does anything actually say so? 629 * 630 * This function makes sure to respect packet boundaries. 631 * 632 * \param **pgn return the integer there - the BIGNUM is created by BN_bin2bn() and probably needs to be freed 633 * by the caller XXX right ben? 634 * \param *ptag Pointer to current packet's Packet Tag. 635 * \param *reader Our reader 636 * \param *cb The callback 637 * \return 1 on success, 0 on error (by limread_scalar() or limread() or if the MPI is not properly formed (XXX 638 * see comment below - the callback is called with a OPS_PARSER_ERROR in case of an error) 639 * 640 * \see RFC4880 3.2 641 */ 642 static int 643 limread_mpi(BIGNUM **pbn, __ops_region_t *region, __ops_stream_t *stream) 644 { 645 uint8_t buf[NETPGP_BUFSIZ] = ""; 646 /* an MPI has a 2 byte length part. 647 * Length is given in bits, so the 648 * largest we should ever need for 649 * the buffer is NETPGP_BUFSIZ bytes. */ 650 unsigned length; 651 unsigned nonzero; 652 unsigned ret; 653 654 stream->reading_mpi_len = 1; 655 ret = (unsigned)limread_scalar(&length, 2, region, stream); 656 657 stream->reading_mpi_len = 0; 658 if (!ret) 659 return 0; 660 661 nonzero = length & 7; /* there should be this many zero bits in the 662 * MS byte */ 663 if (!nonzero) 664 nonzero = 8; 665 length = (length + 7) / 8; 666 667 if (length == 0) { 668 /* if we try to read a length of 0, then fail */ 669 if (__ops_get_debug_level(__FILE__)) { 670 (void) fprintf(stderr, "limread_mpi: 0 length\n"); 671 } 672 return 0; 673 } 674 if (length > NETPGP_BUFSIZ) { 675 (void) fprintf(stderr, "limread_mpi: bad length\n"); 676 return 0; 677 } 678 if (!limread(buf, length, region, stream)) { 679 return 0; 680 } 681 if (((unsigned)buf[0] >> nonzero) != 0 || 682 !((unsigned)buf[0] & (1U << (nonzero - 1U)))) { 683 OPS_ERROR(&stream->errors, OPS_E_P_MPI_FORMAT_ERROR, "MPI Format error"); 684 /* XXX: Ben, one part of 685 * this constraint does 686 * not apply to 687 * encrypted MPIs the 688 * draft says. -- peter */ 689 return 0; 690 } 691 *pbn = BN_bin2bn(buf, (int)length, NULL); 692 return 1; 693 } 694 695 /** Read some data with a New-Format length from reader. 696 * 697 * \sa Internet-Draft RFC4880.txt Section 4.2.2 698 * 699 * \param *length Where the decoded length will be put 700 * \param *stream How to parse 701 * \return 1 if OK, else 0 702 * 703 */ 704 705 static unsigned 706 read_new_length(unsigned *length, __ops_stream_t *stream) 707 { 708 uint8_t c; 709 710 if (base_read(&c, 1, stream) != 1) 711 return 0; 712 if (c < 192) { 713 /* 1. One-octet packet */ 714 *length = c; 715 return 1; 716 } else if (c >= 192 && c <= 223) { 717 /* 2. Two-octet packet */ 718 unsigned t = (c - 192) << 8; 719 720 if (base_read(&c, 1, stream) != 1) 721 return 0; 722 *length = t + c + 192; 723 return 1; 724 } else if (c == 255) { 725 /* 3. Five-Octet packet */ 726 return _read_scalar(length, 4, stream); 727 } else if (c >= 224 && c < 255) { 728 /* 4. Partial Body Length */ 729 /* XXX - agc - gpg multi-recipient encryption uses this */ 730 OPS_ERROR(&stream->errors, OPS_E_UNIMPLEMENTED, 731 "New format Partial Body Length fields not yet implemented"); 732 return 0; 733 } 734 return 0; 735 } 736 737 /** Read the length information for a new format Packet Tag. 738 * 739 * New style Packet Tags encode the length in one to five octets. This function reads the right amount of bytes and 740 * decodes it to the proper length information. 741 * 742 * This function makes sure to respect packet boundaries. 743 * 744 * \param *length return the length here 745 * \param *ptag Pointer to current packet's Packet Tag. 746 * \param *reader Our reader 747 * \param *cb The callback 748 * \return 1 on success, 0 on error (by limread_scalar() or limread() or if the MPI is not properly formed (XXX 749 * see comment below) 750 * 751 * \see RFC4880 4.2.2 752 * \see __ops_ptag_t 753 */ 754 static int 755 limited_read_new_length(unsigned *length, __ops_region_t *region, 756 __ops_stream_t *stream) 757 { 758 uint8_t c = 0x0; 759 760 if (!limread(&c, 1, region, stream)) { 761 return 0; 762 } 763 if (c < 192) { 764 *length = c; 765 return 1; 766 } 767 if (c < 255) { 768 unsigned t = (c - 192) << 8; 769 770 if (!limread(&c, 1, region, stream)) { 771 return 0; 772 } 773 *length = t + c + 192; 774 return 1; 775 } 776 return limread_scalar(length, 4, region, stream); 777 } 778 779 /** 780 \ingroup Core_Create 781 \brief Free allocated memory 782 */ 783 static void 784 data_free(__ops_data_t *data) 785 { 786 free(data->contents); 787 data->contents = NULL; 788 data->len = 0; 789 } 790 791 /** 792 \ingroup Core_Create 793 \brief Free allocated memory 794 */ 795 static void 796 string_free(char **str) 797 { 798 free(*str); 799 *str = NULL; 800 } 801 802 /** 803 \ingroup Core_Create 804 \brief Free allocated memory 805 */ 806 /* ! Free packet memory, set pointer to NULL */ 807 void 808 __ops_subpacket_free(__ops_subpacket_t *packet) 809 { 810 free(packet->raw); 811 packet->raw = NULL; 812 } 813 814 /** 815 \ingroup Core_Create 816 \brief Free allocated memory 817 */ 818 static void 819 __ops_headers_free(__ops_headers_t *headers) 820 { 821 unsigned n; 822 823 for (n = 0; n < headers->headerc; ++n) { 824 free(headers->headers[n].key); 825 free(headers->headers[n].value); 826 } 827 free(headers->headers); 828 headers->headers = NULL; 829 } 830 831 /** 832 \ingroup Core_Create 833 \brief Free allocated memory 834 */ 835 static void 836 cleartext_trailer_free(__ops_cleartext_trailer_t *trailer) 837 { 838 free(trailer->hash); 839 trailer->hash = NULL; 840 } 841 842 /** 843 \ingroup Core_Create 844 \brief Free allocated memory 845 */ 846 static void 847 __ops_cmd_get_passphrase_free(__ops_seckey_passphrase_t *skp) 848 { 849 if (skp->passphrase && *skp->passphrase) { 850 free(*skp->passphrase); 851 *skp->passphrase = NULL; 852 } 853 } 854 855 /** 856 \ingroup Core_Create 857 \brief Free the memory used when parsing this signature sub-packet type 858 */ 859 static void 860 ss_userdef_free(__ops_ss_userdef_t *ss_userdef) 861 { 862 data_free(&ss_userdef->data); 863 } 864 865 /** 866 \ingroup Core_Create 867 \brief Free the memory used when parsing this signature sub-packet type 868 */ 869 static void 870 ss_reserved_free(__ops_ss_unknown_t *ss_unknown) 871 { 872 data_free(&ss_unknown->data); 873 } 874 875 /** 876 \ingroup Core_Create 877 \brief Free the memory used when parsing this packet type 878 */ 879 static void 880 trust_free(__ops_trust_t *trust) 881 { 882 data_free(&trust->data); 883 } 884 885 /** 886 * \ingroup Core_Create 887 * \brief Free the memory used when parsing a private/experimental PKA signature 888 * \param unknown_sig 889 */ 890 static void 891 free_unknown_sig_pka(__ops_unknown_sig_t *unknown_sig) 892 { 893 data_free(&unknown_sig->data); 894 } 895 896 /** 897 \ingroup Core_Create 898 \brief Free allocated memory 899 */ 900 static void 901 free_BN(BIGNUM **pp) 902 { 903 BN_free(*pp); 904 *pp = NULL; 905 } 906 907 /** 908 * \ingroup Core_Create 909 * \brief Free the memory used when parsing a signature 910 * \param sig 911 */ 912 static void 913 sig_free(__ops_sig_t *sig) 914 { 915 switch (sig->info.key_alg) { 916 case OPS_PKA_RSA: 917 case OPS_PKA_RSA_SIGN_ONLY: 918 free_BN(&sig->info.sig.rsa.sig); 919 break; 920 921 case OPS_PKA_DSA: 922 free_BN(&sig->info.sig.dsa.r); 923 free_BN(&sig->info.sig.dsa.s); 924 break; 925 926 case OPS_PKA_ELGAMAL_ENCRYPT_OR_SIGN: 927 free_BN(&sig->info.sig.elgamal.r); 928 free_BN(&sig->info.sig.elgamal.s); 929 break; 930 931 case OPS_PKA_PRIVATE00: 932 case OPS_PKA_PRIVATE01: 933 case OPS_PKA_PRIVATE02: 934 case OPS_PKA_PRIVATE03: 935 case OPS_PKA_PRIVATE04: 936 case OPS_PKA_PRIVATE05: 937 case OPS_PKA_PRIVATE06: 938 case OPS_PKA_PRIVATE07: 939 case OPS_PKA_PRIVATE08: 940 case OPS_PKA_PRIVATE09: 941 case OPS_PKA_PRIVATE10: 942 free_unknown_sig_pka(&sig->info.sig.unknown); 943 break; 944 945 default: 946 (void) fprintf(stderr, "sig_free: bad sig type\n"); 947 } 948 } 949 950 /** 951 \ingroup Core_Create 952 \brief Free the memory used when parsing this signature sub-packet type 953 \param ss_skapref 954 */ 955 static void 956 ss_skapref_free(__ops_ss_skapref_t *ss_skapref) 957 { 958 data_free(&ss_skapref->data); 959 } 960 961 /** 962 \ingroup Core_Create 963 \brief Free the memory used when parsing this signature sub-packet type 964 \param ss_hashpref 965 */ 966 static void 967 ss_hashpref_free(__ops_ss_hashpref_t *ss_hashpref) 968 { 969 data_free(&ss_hashpref->data); 970 } 971 972 /** 973 \ingroup Core_Create 974 \brief Free the memory used when parsing this signature sub-packet type 975 */ 976 static void 977 ss_zpref_free(__ops_ss_zpref_t *ss_zpref) 978 { 979 data_free(&ss_zpref->data); 980 } 981 982 /** 983 \ingroup Core_Create 984 \brief Free the memory used when parsing this signature sub-packet type 985 */ 986 static void 987 ss_key_flags_free(__ops_ss_key_flags_t *ss_key_flags) 988 { 989 data_free(&ss_key_flags->data); 990 } 991 992 /** 993 \ingroup Core_Create 994 \brief Free the memory used when parsing this signature sub-packet type 995 */ 996 static void 997 ss_key_server_prefs_free(__ops_ss_key_server_prefs_t *ss_key_server_prefs) 998 { 999 data_free(&ss_key_server_prefs->data); 1000 } 1001 1002 /** 1003 \ingroup Core_Create 1004 \brief Free the memory used when parsing this signature sub-packet type 1005 */ 1006 static void 1007 ss_features_free(__ops_ss_features_t *ss_features) 1008 { 1009 data_free(&ss_features->data); 1010 } 1011 1012 /** 1013 \ingroup Core_Create 1014 \brief Free the memory used when parsing this signature sub-packet type 1015 */ 1016 static void 1017 ss_notation_free(__ops_ss_notation_t *ss_notation) 1018 { 1019 data_free(&ss_notation->name); 1020 data_free(&ss_notation->value); 1021 } 1022 1023 /** 1024 \ingroup Core_Create 1025 \brief Free allocated memory 1026 */ 1027 /* ! Free the memory used when parsing this signature sub-packet type */ 1028 static void 1029 ss_regexp_free(__ops_ss_regexp_t *regexp) 1030 { 1031 string_free(®exp->regexp); 1032 } 1033 1034 /** 1035 \ingroup Core_Create 1036 \brief Free allocated memory 1037 */ 1038 /* ! Free the memory used when parsing this signature sub-packet type */ 1039 static void 1040 ss_policy_free(__ops_ss_policy_t *policy) 1041 { 1042 string_free(&policy->url); 1043 } 1044 1045 /** 1046 \ingroup Core_Create 1047 \brief Free allocated memory 1048 */ 1049 /* ! Free the memory used when parsing this signature sub-packet type */ 1050 static void 1051 ss_keyserv_free(__ops_ss_keyserv_t *preferred_key_server) 1052 { 1053 string_free(&preferred_key_server->name); 1054 } 1055 1056 /** 1057 \ingroup Core_Create 1058 \brief Free the memory used when parsing this signature sub-packet type 1059 */ 1060 static void 1061 ss_revocation_free(__ops_ss_revocation_t *ss_revocation) 1062 { 1063 string_free(&ss_revocation->reason); 1064 } 1065 1066 static void 1067 ss_embedded_sig_free(__ops_ss_embedded_sig_t *ss_embedded_sig) 1068 { 1069 data_free(&ss_embedded_sig->sig); 1070 } 1071 1072 /** 1073 \ingroup Core_Create 1074 \brief Free allocated memory 1075 */ 1076 /* ! Free any memory allocated when parsing the packet content */ 1077 void 1078 __ops_parser_content_free(__ops_packet_t *c) 1079 { 1080 switch (c->tag) { 1081 case OPS_PARSER_PTAG: 1082 case OPS_PTAG_CT_COMPRESSED: 1083 case OPS_PTAG_SS_CREATION_TIME: 1084 case OPS_PTAG_SS_EXPIRATION_TIME: 1085 case OPS_PTAG_SS_KEY_EXPIRY: 1086 case OPS_PTAG_SS_TRUST: 1087 case OPS_PTAG_SS_ISSUER_KEY_ID: 1088 case OPS_PTAG_CT_1_PASS_SIG: 1089 case OPS_PTAG_SS_PRIMARY_USER_ID: 1090 case OPS_PTAG_SS_REVOCABLE: 1091 case OPS_PTAG_SS_REVOCATION_KEY: 1092 case OPS_PTAG_CT_LITDATA_HEADER: 1093 case OPS_PTAG_CT_LITDATA_BODY: 1094 case OPS_PTAG_CT_SIGNED_CLEARTEXT_BODY: 1095 case OPS_PTAG_CT_UNARMOURED_TEXT: 1096 case OPS_PTAG_CT_ARMOUR_TRAILER: 1097 case OPS_PTAG_CT_SIGNATURE_HEADER: 1098 case OPS_PTAG_CT_SE_DATA_HEADER: 1099 case OPS_PTAG_CT_SE_IP_DATA_HEADER: 1100 case OPS_PTAG_CT_SE_IP_DATA_BODY: 1101 case OPS_PTAG_CT_MDC: 1102 case OPS_GET_SECKEY: 1103 break; 1104 1105 case OPS_PTAG_CT_SIGNED_CLEARTEXT_HEADER: 1106 __ops_headers_free(&c->u.cleartext_head.headers); 1107 break; 1108 1109 case OPS_PTAG_CT_ARMOUR_HEADER: 1110 __ops_headers_free(&c->u.armour_header.headers); 1111 break; 1112 1113 case OPS_PTAG_CT_SIGNED_CLEARTEXT_TRAILER: 1114 cleartext_trailer_free(&c->u.cleartext_trailer); 1115 break; 1116 1117 case OPS_PTAG_CT_TRUST: 1118 trust_free(&c->u.trust); 1119 break; 1120 1121 case OPS_PTAG_CT_SIGNATURE: 1122 case OPS_PTAG_CT_SIGNATURE_FOOTER: 1123 sig_free(&c->u.sig); 1124 break; 1125 1126 case OPS_PTAG_CT_PUBLIC_KEY: 1127 case OPS_PTAG_CT_PUBLIC_SUBKEY: 1128 __ops_pubkey_free(&c->u.pubkey); 1129 break; 1130 1131 case OPS_PTAG_CT_USER_ID: 1132 __ops_userid_free(&c->u.userid); 1133 break; 1134 1135 case OPS_PTAG_SS_SIGNERS_USER_ID: 1136 __ops_userid_free(&c->u.ss_signer); 1137 break; 1138 1139 case OPS_PTAG_CT_USER_ATTR: 1140 __ops_userattr_free(&c->u.userattr); 1141 break; 1142 1143 case OPS_PTAG_SS_PREFERRED_SKA: 1144 ss_skapref_free(&c->u.ss_skapref); 1145 break; 1146 1147 case OPS_PTAG_SS_PREFERRED_HASH: 1148 ss_hashpref_free(&c->u.ss_hashpref); 1149 break; 1150 1151 case OPS_PTAG_SS_PREF_COMPRESS: 1152 ss_zpref_free(&c->u.ss_zpref); 1153 break; 1154 1155 case OPS_PTAG_SS_KEY_FLAGS: 1156 ss_key_flags_free(&c->u.ss_key_flags); 1157 break; 1158 1159 case OPS_PTAG_SS_KEYSERV_PREFS: 1160 ss_key_server_prefs_free(&c->u.ss_key_server_prefs); 1161 break; 1162 1163 case OPS_PTAG_SS_FEATURES: 1164 ss_features_free(&c->u.ss_features); 1165 break; 1166 1167 case OPS_PTAG_SS_NOTATION_DATA: 1168 ss_notation_free(&c->u.ss_notation); 1169 break; 1170 1171 case OPS_PTAG_SS_REGEXP: 1172 ss_regexp_free(&c->u.ss_regexp); 1173 break; 1174 1175 case OPS_PTAG_SS_POLICY_URI: 1176 ss_policy_free(&c->u.ss_policy); 1177 break; 1178 1179 case OPS_PTAG_SS_PREF_KEYSERV: 1180 ss_keyserv_free(&c->u.ss_keyserv); 1181 break; 1182 1183 case OPS_PTAG_SS_USERDEFINED00: 1184 case OPS_PTAG_SS_USERDEFINED01: 1185 case OPS_PTAG_SS_USERDEFINED02: 1186 case OPS_PTAG_SS_USERDEFINED03: 1187 case OPS_PTAG_SS_USERDEFINED04: 1188 case OPS_PTAG_SS_USERDEFINED05: 1189 case OPS_PTAG_SS_USERDEFINED06: 1190 case OPS_PTAG_SS_USERDEFINED07: 1191 case OPS_PTAG_SS_USERDEFINED08: 1192 case OPS_PTAG_SS_USERDEFINED09: 1193 case OPS_PTAG_SS_USERDEFINED10: 1194 ss_userdef_free(&c->u.ss_userdef); 1195 break; 1196 1197 case OPS_PTAG_SS_RESERVED: 1198 ss_reserved_free(&c->u.ss_unknown); 1199 break; 1200 1201 case OPS_PTAG_SS_REVOCATION_REASON: 1202 ss_revocation_free(&c->u.ss_revocation); 1203 break; 1204 1205 case OPS_PTAG_SS_EMBEDDED_SIGNATURE: 1206 ss_embedded_sig_free(&c->u.ss_embedded_sig); 1207 break; 1208 1209 case OPS_PARSER_PACKET_END: 1210 __ops_subpacket_free(&c->u.packet); 1211 break; 1212 1213 case OPS_PARSER_ERROR: 1214 case OPS_PARSER_ERRCODE: 1215 break; 1216 1217 case OPS_PTAG_CT_SECRET_KEY: 1218 case OPS_PTAG_CT_ENCRYPTED_SECRET_KEY: 1219 __ops_seckey_free(&c->u.seckey); 1220 break; 1221 1222 case OPS_PTAG_CT_PK_SESSION_KEY: 1223 case OPS_PTAG_CT_ENCRYPTED_PK_SESSION_KEY: 1224 __ops_pk_sesskey_free(&c->u.pk_sesskey); 1225 break; 1226 1227 case OPS_GET_PASSPHRASE: 1228 __ops_cmd_get_passphrase_free(&c->u.skey_passphrase); 1229 break; 1230 1231 default: 1232 fprintf(stderr, "Can't free %d (0x%x)\n", c->tag, c->tag); 1233 } 1234 } 1235 1236 /** 1237 \ingroup Core_Create 1238 \brief Free allocated memory 1239 */ 1240 void 1241 __ops_pk_sesskey_free(__ops_pk_sesskey_t *sk) 1242 { 1243 switch (sk->alg) { 1244 case OPS_PKA_RSA: 1245 free_BN(&sk->params.rsa.encrypted_m); 1246 break; 1247 1248 case OPS_PKA_ELGAMAL: 1249 free_BN(&sk->params.elgamal.g_to_k); 1250 free_BN(&sk->params.elgamal.encrypted_m); 1251 break; 1252 1253 default: 1254 (void) fprintf(stderr, "__ops_pk_sesskey_free: bad alg\n"); 1255 break; 1256 } 1257 } 1258 1259 /** 1260 \ingroup Core_Create 1261 \brief Free allocated memory 1262 */ 1263 /* ! Free the memory used when parsing a public key */ 1264 void 1265 __ops_pubkey_free(__ops_pubkey_t *p) 1266 { 1267 switch (p->alg) { 1268 case OPS_PKA_RSA: 1269 case OPS_PKA_RSA_ENCRYPT_ONLY: 1270 case OPS_PKA_RSA_SIGN_ONLY: 1271 free_BN(&p->key.rsa.n); 1272 free_BN(&p->key.rsa.e); 1273 break; 1274 1275 case OPS_PKA_DSA: 1276 free_BN(&p->key.dsa.p); 1277 free_BN(&p->key.dsa.q); 1278 free_BN(&p->key.dsa.g); 1279 free_BN(&p->key.dsa.y); 1280 break; 1281 1282 case OPS_PKA_ELGAMAL: 1283 case OPS_PKA_ELGAMAL_ENCRYPT_OR_SIGN: 1284 free_BN(&p->key.elgamal.p); 1285 free_BN(&p->key.elgamal.g); 1286 free_BN(&p->key.elgamal.y); 1287 break; 1288 1289 case OPS_PKA_NOTHING: 1290 /* nothing to free */ 1291 break; 1292 1293 default: 1294 (void) fprintf(stderr, "__ops_pubkey_free: bad alg\n"); 1295 } 1296 } 1297 1298 /** 1299 \ingroup Core_ReadPackets 1300 */ 1301 static int 1302 parse_pubkey_data(__ops_pubkey_t *key, __ops_region_t *region, 1303 __ops_stream_t *stream) 1304 { 1305 uint8_t c = 0x0; 1306 1307 if (region->readc != 0) { 1308 /* We should not have read anything so far */ 1309 (void) fprintf(stderr, "parse_pubkey_data: bad length\n"); 1310 return 0; 1311 } 1312 if (!limread(&c, 1, region, stream)) { 1313 return 0; 1314 } 1315 key->version = (__ops_version_t)c; 1316 switch (key->version) { 1317 case OPS_V2: 1318 case OPS_V3: 1319 case OPS_V4: 1320 break; 1321 default: 1322 OPS_ERROR_1(&stream->errors, OPS_E_PROTO_BAD_PUBLIC_KEY_VRSN, 1323 "Bad public key version (0x%02x)", key->version); 1324 return 0; 1325 } 1326 if (!limited_read_time(&key->birthtime, region, stream)) { 1327 return 0; 1328 } 1329 1330 key->days_valid = 0; 1331 if ((key->version == 2 || key->version == 3) && 1332 !limread_scalar(&key->days_valid, 2, region, stream)) { 1333 return 0; 1334 } 1335 1336 if (!limread(&c, 1, region, stream)) { 1337 return 0; 1338 } 1339 key->alg = c; 1340 1341 switch (key->alg) { 1342 case OPS_PKA_DSA: 1343 if (!limread_mpi(&key->key.dsa.p, region, stream) || 1344 !limread_mpi(&key->key.dsa.q, region, stream) || 1345 !limread_mpi(&key->key.dsa.g, region, stream) || 1346 !limread_mpi(&key->key.dsa.y, region, stream)) { 1347 return 0; 1348 } 1349 break; 1350 1351 case OPS_PKA_RSA: 1352 case OPS_PKA_RSA_ENCRYPT_ONLY: 1353 case OPS_PKA_RSA_SIGN_ONLY: 1354 if (!limread_mpi(&key->key.rsa.n, region, stream) || 1355 !limread_mpi(&key->key.rsa.e, region, stream)) { 1356 return 0; 1357 } 1358 break; 1359 1360 case OPS_PKA_ELGAMAL: 1361 case OPS_PKA_ELGAMAL_ENCRYPT_OR_SIGN: 1362 if (!limread_mpi(&key->key.elgamal.p, region, stream) || 1363 !limread_mpi(&key->key.elgamal.g, region, stream) || 1364 !limread_mpi(&key->key.elgamal.y, region, stream)) { 1365 return 0; 1366 } 1367 break; 1368 1369 default: 1370 OPS_ERROR_1(&stream->errors, 1371 OPS_E_ALG_UNSUPPORTED_PUBLIC_KEY_ALG, 1372 "Unsupported Public Key algorithm (%s)", 1373 __ops_show_pka(key->alg)); 1374 return 0; 1375 } 1376 1377 return 1; 1378 } 1379 1380 1381 /** 1382 * \ingroup Core_ReadPackets 1383 * \brief Parse a public key packet. 1384 * 1385 * This function parses an entire v3 (== v2) or v4 public key packet for RSA, ElGamal, and DSA keys. 1386 * 1387 * Once the key has been parsed successfully, it is passed to the callback. 1388 * 1389 * \param *ptag Pointer to the current Packet Tag. This function should consume the entire packet. 1390 * \param *reader Our reader 1391 * \param *cb The callback 1392 * \return 1 on success, 0 on error 1393 * 1394 * \see RFC4880 5.5.2 1395 */ 1396 static int 1397 parse_pubkey(__ops_content_tag_t tag, __ops_region_t *region, 1398 __ops_stream_t *stream) 1399 { 1400 __ops_packet_t pkt; 1401 1402 if (!parse_pubkey_data(&pkt.u.pubkey, region, stream)) 1403 return 0; 1404 1405 /* XXX: this test should be done for all packets, surely? */ 1406 if (region->readc != region->length) { 1407 OPS_ERROR_1(&stream->errors, OPS_E_R_UNCONSUMED_DATA, 1408 "Unconsumed data (%d)", region->length - region->readc); 1409 return 0; 1410 } 1411 CALLBACK(tag, &stream->cbinfo, &pkt); 1412 1413 return 1; 1414 } 1415 1416 1417 /** 1418 \ingroup Core_Create 1419 \brief Free allocated memory 1420 */ 1421 /* ! Free the memory used when parsing this packet type */ 1422 void 1423 __ops_userattr_free(__ops_userattr_t *user_att) 1424 { 1425 data_free(&user_att->data); 1426 } 1427 1428 /** 1429 * \ingroup Core_ReadPackets 1430 * \brief Parse one user attribute packet. 1431 * 1432 * User attribute packets contain one or more attribute subpackets. 1433 * For now, handle the whole packet as raw data. 1434 */ 1435 1436 static int 1437 parse_userattr(__ops_region_t *region, __ops_stream_t *stream) 1438 { 1439 1440 __ops_packet_t pkt; 1441 1442 /* 1443 * xxx- treat as raw data for now. Could break down further into 1444 * attribute sub-packets later - rachel 1445 */ 1446 1447 if (region->readc != 0) { 1448 /* We should not have read anything so far */ 1449 (void) fprintf(stderr, "parse_userattr: bad length\n"); 1450 return 0; 1451 } 1452 1453 if (!read_data(&pkt.u.userattr.data, region, stream)) 1454 return 0; 1455 1456 CALLBACK(OPS_PTAG_CT_USER_ATTR, &stream->cbinfo, &pkt); 1457 1458 return 1; 1459 } 1460 1461 /** 1462 \ingroup Core_Create 1463 \brief Free allocated memory 1464 */ 1465 /* ! Free the memory used when parsing this packet type */ 1466 void 1467 __ops_userid_free(__ops_userid_t *id) 1468 { 1469 free(id->userid); 1470 id->userid = NULL; 1471 } 1472 1473 /** 1474 * \ingroup Core_ReadPackets 1475 * \brief Parse a user id. 1476 * 1477 * This function parses an user id packet, which is basically just a char array the size of the packet. 1478 * 1479 * The char array is to be treated as an UTF-8 string. 1480 * 1481 * The userid gets null terminated by this function. Freeing it is the responsibility of the caller. 1482 * 1483 * Once the userid has been parsed successfully, it is passed to the callback. 1484 * 1485 * \param *ptag Pointer to the Packet Tag. This function should consume the entire packet. 1486 * \param *reader Our reader 1487 * \param *cb The callback 1488 * \return 1 on success, 0 on error 1489 * 1490 * \see RFC4880 5.11 1491 */ 1492 static int 1493 parse_userid(__ops_region_t *region, __ops_stream_t *stream) 1494 { 1495 __ops_packet_t pkt; 1496 1497 if (region->readc != 0) { 1498 /* We should not have read anything so far */ 1499 (void) fprintf(stderr, "parse_userid: bad length\n"); 1500 return 0; 1501 } 1502 1503 if ((pkt.u.userid.userid = calloc(1, region->length + 1)) == NULL) { 1504 (void) fprintf(stderr, "parse_userid: bad alloc\n"); 1505 return 0; 1506 } 1507 1508 if (region->length && 1509 !limread(pkt.u.userid.userid, region->length, region, 1510 stream)) { 1511 return 0; 1512 } 1513 pkt.u.userid.userid[region->length] = '\0'; 1514 CALLBACK(OPS_PTAG_CT_USER_ID, &stream->cbinfo, &pkt); 1515 return 1; 1516 } 1517 1518 static __ops_hash_t * 1519 parse_hash_find(__ops_stream_t *stream, const uint8_t *keyid) 1520 { 1521 __ops_hashtype_t *hp; 1522 size_t n; 1523 1524 for (n = 0, hp = stream->hashes; n < stream->hashc; n++, hp++) { 1525 if (memcmp(hp->keyid, keyid, OPS_KEY_ID_SIZE) == 0) { 1526 return &hp->hash; 1527 } 1528 } 1529 return NULL; 1530 } 1531 1532 /** 1533 * \ingroup Core_Parse 1534 * \brief Parse a version 3 signature. 1535 * 1536 * This function parses an version 3 signature packet, handling RSA and DSA signatures. 1537 * 1538 * Once the signature has been parsed successfully, it is passed to the callback. 1539 * 1540 * \param *ptag Pointer to the Packet Tag. This function should consume the entire packet. 1541 * \param *reader Our reader 1542 * \param *cb The callback 1543 * \return 1 on success, 0 on error 1544 * 1545 * \see RFC4880 5.2.2 1546 */ 1547 static int 1548 parse_v3_sig(__ops_region_t *region, 1549 __ops_stream_t *stream) 1550 { 1551 __ops_packet_t pkt; 1552 uint8_t c = 0x0; 1553 1554 /* clear signature */ 1555 (void) memset(&pkt.u.sig, 0x0, sizeof(pkt.u.sig)); 1556 1557 pkt.u.sig.info.version = OPS_V3; 1558 1559 /* hash info length */ 1560 if (!limread(&c, 1, region, stream)) { 1561 return 0; 1562 } 1563 if (c != 5) { 1564 ERRP(&stream->cbinfo, pkt, "bad hash info length"); 1565 } 1566 1567 if (!limread(&c, 1, region, stream)) { 1568 return 0; 1569 } 1570 pkt.u.sig.info.type = (__ops_sig_type_t)c; 1571 /* XXX: check signature type */ 1572 1573 if (!limited_read_time(&pkt.u.sig.info.birthtime, region, stream)) { 1574 return 0; 1575 } 1576 pkt.u.sig.info.birthtime_set = 1; 1577 1578 if (!limread(pkt.u.sig.info.signer_id, OPS_KEY_ID_SIZE, region, 1579 stream)) { 1580 return 0; 1581 } 1582 pkt.u.sig.info.signer_id_set = 1; 1583 1584 if (!limread(&c, 1, region, stream)) { 1585 return 0; 1586 } 1587 pkt.u.sig.info.key_alg = (__ops_pubkey_alg_t)c; 1588 /* XXX: check algorithm */ 1589 1590 if (!limread(&c, 1, region, stream)) { 1591 return 0; 1592 } 1593 pkt.u.sig.info.hash_alg = (__ops_hash_alg_t)c; 1594 /* XXX: check algorithm */ 1595 1596 if (!limread(pkt.u.sig.hash2, 2, region, stream)) { 1597 return 0; 1598 } 1599 1600 switch (pkt.u.sig.info.key_alg) { 1601 case OPS_PKA_RSA: 1602 case OPS_PKA_RSA_SIGN_ONLY: 1603 if (!limread_mpi(&pkt.u.sig.info.sig.rsa.sig, region, stream)) { 1604 return 0; 1605 } 1606 break; 1607 1608 case OPS_PKA_DSA: 1609 if (!limread_mpi(&pkt.u.sig.info.sig.dsa.r, region, stream) || 1610 !limread_mpi(&pkt.u.sig.info.sig.dsa.s, region, stream)) { 1611 return 0; 1612 } 1613 break; 1614 1615 case OPS_PKA_ELGAMAL_ENCRYPT_OR_SIGN: 1616 if (!limread_mpi(&pkt.u.sig.info.sig.elgamal.r, region, 1617 stream) || 1618 !limread_mpi(&pkt.u.sig.info.sig.elgamal.s, region, 1619 stream)) { 1620 return 0; 1621 } 1622 break; 1623 1624 default: 1625 OPS_ERROR_1(&stream->errors, 1626 OPS_E_ALG_UNSUPPORTED_SIGNATURE_ALG, 1627 "Unsupported signature key algorithm (%s)", 1628 __ops_show_pka(pkt.u.sig.info.key_alg)); 1629 return 0; 1630 } 1631 1632 if (region->readc != region->length) { 1633 OPS_ERROR_1(&stream->errors, OPS_E_R_UNCONSUMED_DATA, 1634 "Unconsumed data (%d)", 1635 region->length - region->readc); 1636 return 0; 1637 } 1638 if (pkt.u.sig.info.signer_id_set) { 1639 pkt.u.sig.hash = parse_hash_find(stream, 1640 pkt.u.sig.info.signer_id); 1641 } 1642 CALLBACK(OPS_PTAG_CT_SIGNATURE, &stream->cbinfo, &pkt); 1643 return 1; 1644 } 1645 1646 /** 1647 * \ingroup Core_ReadPackets 1648 * \brief Parse one signature sub-packet. 1649 * 1650 * Version 4 signatures can have an arbitrary amount of (hashed and 1651 * unhashed) subpackets. Subpackets are used to hold optional 1652 * attributes of subpackets. 1653 * 1654 * This function parses one such signature subpacket. 1655 * 1656 * Once the subpacket has been parsed successfully, it is passed to the callback. 1657 * 1658 * \param *ptag Pointer to the Packet Tag. This function should consume the entire subpacket. 1659 * \param *reader Our reader 1660 * \param *cb The callback 1661 * \return 1 on success, 0 on error 1662 * 1663 * \see RFC4880 5.2.3 1664 */ 1665 static int 1666 parse_one_sig_subpacket(__ops_sig_t *sig, 1667 __ops_region_t *region, 1668 __ops_stream_t *stream) 1669 { 1670 __ops_region_t subregion; 1671 __ops_packet_t pkt; 1672 uint8_t bools = 0x0; 1673 uint8_t c = 0x0; 1674 unsigned doread = 1; 1675 unsigned t8; 1676 unsigned t7; 1677 1678 __ops_init_subregion(&subregion, region); 1679 if (!limited_read_new_length(&subregion.length, region, stream)) { 1680 return 0; 1681 } 1682 1683 if (subregion.length > region->length) { 1684 ERRP(&stream->cbinfo, pkt, "Subpacket too long"); 1685 } 1686 1687 if (!limread(&c, 1, &subregion, stream)) { 1688 return 0; 1689 } 1690 1691 t8 = (c & 0x7f) / 8; 1692 t7 = 1 << (c & 7); 1693 1694 pkt.critical = (unsigned)c >> 7; 1695 pkt.tag = (__ops_content_tag_t)(OPS_PTAG_SIG_SUBPKT_BASE + (c & 0x7f)); 1696 1697 /* Application wants it delivered raw */ 1698 if (stream->ss_raw[t8] & t7) { 1699 pkt.u.ss_raw.tag = pkt.tag; 1700 pkt.u.ss_raw.length = subregion.length - 1; 1701 pkt.u.ss_raw.raw = calloc(1, pkt.u.ss_raw.length); 1702 if (pkt.u.ss_raw.raw == NULL) { 1703 (void) fprintf(stderr, "parse_one_sig_subpacket: bad alloc\n"); 1704 return 0; 1705 } 1706 if (!limread(pkt.u.ss_raw.raw, pkt.u.ss_raw.length, 1707 &subregion, stream)) { 1708 return 0; 1709 } 1710 CALLBACK(OPS_PTAG_RAW_SS, &stream->cbinfo, &pkt); 1711 return 1; 1712 } 1713 switch (pkt.tag) { 1714 case OPS_PTAG_SS_CREATION_TIME: 1715 case OPS_PTAG_SS_EXPIRATION_TIME: 1716 case OPS_PTAG_SS_KEY_EXPIRY: 1717 if (!limited_read_time(&pkt.u.ss_time.time, &subregion, stream)) 1718 return 0; 1719 if (pkt.tag == OPS_PTAG_SS_CREATION_TIME) { 1720 sig->info.birthtime = pkt.u.ss_time.time; 1721 sig->info.birthtime_set = 1; 1722 } 1723 if (pkt.tag == OPS_PTAG_SS_EXPIRATION_TIME) { 1724 sig->info.duration = pkt.u.ss_time.time; 1725 sig->info.duration_set = 1; 1726 } 1727 break; 1728 1729 case OPS_PTAG_SS_TRUST: 1730 if (!limread(&pkt.u.ss_trust.level, 1, &subregion, stream) || 1731 !limread(&pkt.u.ss_trust.amount, 1, &subregion, stream)) { 1732 return 0; 1733 } 1734 break; 1735 1736 case OPS_PTAG_SS_REVOCABLE: 1737 if (!limread(&bools, 1, &subregion, stream)) { 1738 return 0; 1739 } 1740 pkt.u.ss_revocable.revocable = !!bools; 1741 break; 1742 1743 case OPS_PTAG_SS_ISSUER_KEY_ID: 1744 if (!limread(pkt.u.ss_issuer.key_id, OPS_KEY_ID_SIZE, 1745 &subregion, stream)) { 1746 return 0; 1747 } 1748 (void) memcpy(sig->info.signer_id, 1749 pkt.u.ss_issuer.key_id, OPS_KEY_ID_SIZE); 1750 sig->info.signer_id_set = 1; 1751 break; 1752 1753 case OPS_PTAG_SS_PREFERRED_SKA: 1754 if (!read_data(&pkt.u.ss_skapref.data, &subregion, stream)) { 1755 return 0; 1756 } 1757 break; 1758 1759 case OPS_PTAG_SS_PREFERRED_HASH: 1760 if (!read_data(&pkt.u.ss_hashpref.data, &subregion, stream)) { 1761 return 0; 1762 } 1763 break; 1764 1765 case OPS_PTAG_SS_PREF_COMPRESS: 1766 if (!read_data(&pkt.u.ss_zpref.data, 1767 &subregion, stream)) { 1768 return 0; 1769 } 1770 break; 1771 1772 case OPS_PTAG_SS_PRIMARY_USER_ID: 1773 if (!limread(&bools, 1, &subregion, stream)) { 1774 return 0; 1775 } 1776 pkt.u.ss_primary_userid.primary_userid = !!bools; 1777 break; 1778 1779 case OPS_PTAG_SS_KEY_FLAGS: 1780 if (!read_data(&pkt.u.ss_key_flags.data, &subregion, stream)) { 1781 return 0; 1782 } 1783 break; 1784 1785 case OPS_PTAG_SS_KEYSERV_PREFS: 1786 if (!read_data(&pkt.u.ss_key_server_prefs.data, &subregion, 1787 stream)) { 1788 return 0; 1789 } 1790 break; 1791 1792 case OPS_PTAG_SS_FEATURES: 1793 if (!read_data(&pkt.u.ss_features.data, &subregion, stream)) { 1794 return 0; 1795 } 1796 break; 1797 1798 case OPS_PTAG_SS_SIGNERS_USER_ID: 1799 if (!read_unsig_str(&pkt.u.ss_signer.userid, &subregion, 1800 stream)) { 1801 return 0; 1802 } 1803 break; 1804 1805 case OPS_PTAG_SS_EMBEDDED_SIGNATURE: 1806 /* \todo should do something with this sig? */ 1807 if (!read_data(&pkt.u.ss_embedded_sig.sig, &subregion, stream)) { 1808 return 0; 1809 } 1810 break; 1811 1812 case OPS_PTAG_SS_NOTATION_DATA: 1813 if (!limread_data(&pkt.u.ss_notation.flags, 4, 1814 &subregion, stream)) { 1815 return 0; 1816 } 1817 if (!limread_size_t(&pkt.u.ss_notation.name.len, 2, 1818 &subregion, stream)) { 1819 return 0; 1820 } 1821 if (!limread_size_t(&pkt.u.ss_notation.value.len, 2, 1822 &subregion, stream)) { 1823 return 0; 1824 } 1825 if (!limread_data(&pkt.u.ss_notation.name, 1826 pkt.u.ss_notation.name.len, 1827 &subregion, stream)) { 1828 return 0; 1829 } 1830 if (!limread_data(&pkt.u.ss_notation.value, 1831 pkt.u.ss_notation.value.len, 1832 &subregion, stream)) { 1833 return 0; 1834 } 1835 break; 1836 1837 case OPS_PTAG_SS_POLICY_URI: 1838 if (!read_string(&pkt.u.ss_policy.url, &subregion, stream)) { 1839 return 0; 1840 } 1841 break; 1842 1843 case OPS_PTAG_SS_REGEXP: 1844 if (!read_string(&pkt.u.ss_regexp.regexp, &subregion, stream)) { 1845 return 0; 1846 } 1847 break; 1848 1849 case OPS_PTAG_SS_PREF_KEYSERV: 1850 if (!read_string(&pkt.u.ss_keyserv.name, &subregion, stream)) { 1851 return 0; 1852 } 1853 break; 1854 1855 case OPS_PTAG_SS_USERDEFINED00: 1856 case OPS_PTAG_SS_USERDEFINED01: 1857 case OPS_PTAG_SS_USERDEFINED02: 1858 case OPS_PTAG_SS_USERDEFINED03: 1859 case OPS_PTAG_SS_USERDEFINED04: 1860 case OPS_PTAG_SS_USERDEFINED05: 1861 case OPS_PTAG_SS_USERDEFINED06: 1862 case OPS_PTAG_SS_USERDEFINED07: 1863 case OPS_PTAG_SS_USERDEFINED08: 1864 case OPS_PTAG_SS_USERDEFINED09: 1865 case OPS_PTAG_SS_USERDEFINED10: 1866 if (!read_data(&pkt.u.ss_userdef.data, &subregion, stream)) { 1867 return 0; 1868 } 1869 break; 1870 1871 case OPS_PTAG_SS_RESERVED: 1872 if (!read_data(&pkt.u.ss_unknown.data, &subregion, stream)) { 1873 return 0; 1874 } 1875 break; 1876 1877 case OPS_PTAG_SS_REVOCATION_REASON: 1878 /* first byte is the machine-readable code */ 1879 if (!limread(&pkt.u.ss_revocation.code, 1, &subregion, stream)) { 1880 return 0; 1881 } 1882 /* the rest is a human-readable UTF-8 string */ 1883 if (!read_string(&pkt.u.ss_revocation.reason, &subregion, 1884 stream)) { 1885 return 0; 1886 } 1887 break; 1888 1889 case OPS_PTAG_SS_REVOCATION_KEY: 1890 /* octet 0 = class. Bit 0x80 must be set */ 1891 if (!limread(&pkt.u.ss_revocation_key.class, 1, 1892 &subregion, stream)) { 1893 return 0; 1894 } 1895 if (!(pkt.u.ss_revocation_key.class & 0x80)) { 1896 printf("Warning: OPS_PTAG_SS_REVOCATION_KEY class: " 1897 "Bit 0x80 should be set\n"); 1898 return 0; 1899 } 1900 /* octet 1 = algid */ 1901 if (!limread(&pkt.u.ss_revocation_key.algid, 1, 1902 &subregion, stream)) { 1903 return 0; 1904 } 1905 /* octets 2-21 = fingerprint */ 1906 if (!limread(&pkt.u.ss_revocation_key.fingerprint[0], 1907 OPS_FINGERPRINT_SIZE, &subregion, stream)) { 1908 return 0; 1909 } 1910 break; 1911 1912 default: 1913 if (stream->ss_parsed[t8] & t7) { 1914 OPS_ERROR_1(&stream->errors, OPS_E_PROTO_UNKNOWN_SS, 1915 "Unknown signature subpacket type (%d)", 1916 c & 0x7f); 1917 } 1918 doread = 0; 1919 break; 1920 } 1921 1922 /* Application doesn't want it delivered parsed */ 1923 if (!(stream->ss_parsed[t8] & t7)) { 1924 if (pkt.critical) { 1925 OPS_ERROR_1(&stream->errors, 1926 OPS_E_PROTO_CRITICAL_SS_IGNORED, 1927 "Critical signature subpacket ignored (%d)", 1928 c & 0x7f); 1929 } 1930 if (!doread && 1931 !limskip(subregion.length - 1, &subregion, stream)) { 1932 return 0; 1933 } 1934 if (doread) { 1935 __ops_parser_content_free(&pkt); 1936 } 1937 return 1; 1938 } 1939 if (doread && subregion.readc != subregion.length) { 1940 OPS_ERROR_1(&stream->errors, OPS_E_R_UNCONSUMED_DATA, 1941 "Unconsumed data (%d)", 1942 subregion.length - subregion.readc); 1943 return 0; 1944 } 1945 CALLBACK(pkt.tag, &stream->cbinfo, &pkt); 1946 return 1; 1947 } 1948 1949 /** 1950 * \ingroup Core_ReadPackets 1951 * \brief Parse several signature subpackets. 1952 * 1953 * Hashed and unhashed subpacket sets are preceded by an octet count that specifies the length of the complete set. 1954 * This function parses this length and then calls parse_one_sig_subpacket() for each subpacket until the 1955 * entire set is consumed. 1956 * 1957 * This function does not call the callback directly, parse_one_sig_subpacket() does for each subpacket. 1958 * 1959 * \param *ptag Pointer to the Packet Tag. 1960 * \param *reader Our reader 1961 * \param *cb The callback 1962 * \return 1 on success, 0 on error 1963 * 1964 * \see RFC4880 5.2.3 1965 */ 1966 static int 1967 parse_sig_subpkts(__ops_sig_t *sig, 1968 __ops_region_t *region, 1969 __ops_stream_t *stream) 1970 { 1971 __ops_region_t subregion; 1972 __ops_packet_t pkt; 1973 1974 __ops_init_subregion(&subregion, region); 1975 if (!limread_scalar(&subregion.length, 2, region, stream)) { 1976 return 0; 1977 } 1978 1979 if (subregion.length > region->length) { 1980 ERRP(&stream->cbinfo, pkt, "Subpacket set too long"); 1981 } 1982 1983 while (subregion.readc < subregion.length) { 1984 if (!parse_one_sig_subpacket(sig, &subregion, stream)) { 1985 return 0; 1986 } 1987 } 1988 1989 if (subregion.readc != subregion.length) { 1990 if (!limskip(subregion.length - subregion.readc, 1991 &subregion, stream)) { 1992 ERRP(&stream->cbinfo, pkt, 1993 "parse_sig_subpkts: subpacket length read mismatch"); 1994 } 1995 ERRP(&stream->cbinfo, pkt, "Subpacket length mismatch"); 1996 } 1997 return 1; 1998 } 1999 2000 /** 2001 * \ingroup Core_ReadPackets 2002 * \brief Parse a version 4 signature. 2003 * 2004 * This function parses a version 4 signature including all its hashed and unhashed subpackets. 2005 * 2006 * Once the signature packet has been parsed successfully, it is passed to the callback. 2007 * 2008 * \param *ptag Pointer to the Packet Tag. 2009 * \param *reader Our reader 2010 * \param *cb The callback 2011 * \return 1 on success, 0 on error 2012 * 2013 * \see RFC4880 5.2.3 2014 */ 2015 static int 2016 parse_v4_sig(__ops_region_t *region, __ops_stream_t *stream) 2017 { 2018 __ops_packet_t pkt; 2019 uint8_t c = 0x0; 2020 2021 if (__ops_get_debug_level(__FILE__)) { 2022 fprintf(stderr, "\nparse_v4_sig\n"); 2023 } 2024 /* clear signature */ 2025 (void) memset(&pkt.u.sig, 0x0, sizeof(pkt.u.sig)); 2026 2027 /* 2028 * We need to hash the packet data from version through the hashed 2029 * subpacket data 2030 */ 2031 2032 pkt.u.sig.v4_hashstart = stream->readinfo.alength - 1; 2033 2034 /* Set version,type,algorithms */ 2035 2036 pkt.u.sig.info.version = OPS_V4; 2037 2038 if (!limread(&c, 1, region, stream)) { 2039 return 0; 2040 } 2041 pkt.u.sig.info.type = (__ops_sig_type_t)c; 2042 if (__ops_get_debug_level(__FILE__)) { 2043 fprintf(stderr, "signature type=%d (%s)\n", 2044 pkt.u.sig.info.type, 2045 __ops_show_sig_type(pkt.u.sig.info.type)); 2046 } 2047 /* XXX: check signature type */ 2048 2049 if (!limread(&c, 1, region, stream)) { 2050 return 0; 2051 } 2052 pkt.u.sig.info.key_alg = (__ops_pubkey_alg_t)c; 2053 /* XXX: check key algorithm */ 2054 if (__ops_get_debug_level(__FILE__)) { 2055 (void) fprintf(stderr, "key_alg=%d (%s)\n", 2056 pkt.u.sig.info.key_alg, 2057 __ops_show_pka(pkt.u.sig.info.key_alg)); 2058 } 2059 if (!limread(&c, 1, region, stream)) { 2060 return 0; 2061 } 2062 pkt.u.sig.info.hash_alg = (__ops_hash_alg_t)c; 2063 /* XXX: check hash algorithm */ 2064 if (__ops_get_debug_level(__FILE__)) { 2065 fprintf(stderr, "hash_alg=%d %s\n", 2066 pkt.u.sig.info.hash_alg, 2067 __ops_show_hash_alg(pkt.u.sig.info.hash_alg)); 2068 } 2069 CALLBACK(OPS_PTAG_CT_SIGNATURE_HEADER, &stream->cbinfo, &pkt); 2070 2071 if (!parse_sig_subpkts(&pkt.u.sig, region, stream)) { 2072 return 0; 2073 } 2074 2075 pkt.u.sig.info.v4_hashlen = stream->readinfo.alength 2076 - pkt.u.sig.v4_hashstart; 2077 if (__ops_get_debug_level(__FILE__)) { 2078 fprintf(stderr, "v4_hashlen=%zd\n", pkt.u.sig.info.v4_hashlen); 2079 } 2080 2081 /* copy hashed subpackets */ 2082 if (pkt.u.sig.info.v4_hashed) { 2083 free(pkt.u.sig.info.v4_hashed); 2084 } 2085 pkt.u.sig.info.v4_hashed = calloc(1, pkt.u.sig.info.v4_hashlen); 2086 if (pkt.u.sig.info.v4_hashed == NULL) { 2087 (void) fprintf(stderr, "parse_v4_sig: bad alloc\n"); 2088 return 0; 2089 } 2090 2091 if (!stream->readinfo.accumulate) { 2092 /* We must accumulate, else we can't check the signature */ 2093 fprintf(stderr, "*** ERROR: must set accumulate to 1\n"); 2094 return 0; 2095 } 2096 (void) memcpy(pkt.u.sig.info.v4_hashed, 2097 stream->readinfo.accumulated + pkt.u.sig.v4_hashstart, 2098 pkt.u.sig.info.v4_hashlen); 2099 2100 if (!parse_sig_subpkts(&pkt.u.sig, region, stream)) { 2101 return 0; 2102 } 2103 2104 if (!limread(pkt.u.sig.hash2, 2, region, stream)) { 2105 return 0; 2106 } 2107 2108 switch (pkt.u.sig.info.key_alg) { 2109 case OPS_PKA_RSA: 2110 if (!limread_mpi(&pkt.u.sig.info.sig.rsa.sig, region, stream)) { 2111 return 0; 2112 } 2113 if (__ops_get_debug_level(__FILE__)) { 2114 (void) fprintf(stderr, "parse_v4_sig: RSA: sig is\n"); 2115 BN_print_fp(stderr, pkt.u.sig.info.sig.rsa.sig); 2116 (void) fprintf(stderr, "\n"); 2117 } 2118 break; 2119 2120 case OPS_PKA_DSA: 2121 if (!limread_mpi(&pkt.u.sig.info.sig.dsa.r, region, stream)) { 2122 /* 2123 * usually if this fails, it just means we've reached 2124 * the end of the keyring 2125 */ 2126 if (__ops_get_debug_level(__FILE__)) { 2127 (void) fprintf(stderr, 2128 "Error reading DSA r field in signature"); 2129 } 2130 return 0; 2131 } 2132 if (!limread_mpi(&pkt.u.sig.info.sig.dsa.s, region, stream)) { 2133 ERRP(&stream->cbinfo, pkt, 2134 "Error reading DSA s field in signature"); 2135 } 2136 break; 2137 2138 case OPS_PKA_ELGAMAL_ENCRYPT_OR_SIGN: 2139 if (!limread_mpi(&pkt.u.sig.info.sig.elgamal.r, region, 2140 stream) || 2141 !limread_mpi(&pkt.u.sig.info.sig.elgamal.s, region, 2142 stream)) { 2143 return 0; 2144 } 2145 break; 2146 2147 case OPS_PKA_PRIVATE00: 2148 case OPS_PKA_PRIVATE01: 2149 case OPS_PKA_PRIVATE02: 2150 case OPS_PKA_PRIVATE03: 2151 case OPS_PKA_PRIVATE04: 2152 case OPS_PKA_PRIVATE05: 2153 case OPS_PKA_PRIVATE06: 2154 case OPS_PKA_PRIVATE07: 2155 case OPS_PKA_PRIVATE08: 2156 case OPS_PKA_PRIVATE09: 2157 case OPS_PKA_PRIVATE10: 2158 if (!read_data(&pkt.u.sig.info.sig.unknown.data, region, 2159 stream)) { 2160 return 0; 2161 } 2162 break; 2163 2164 default: 2165 OPS_ERROR_1(&stream->errors, OPS_E_ALG_UNSUPPORTED_SIGNATURE_ALG, 2166 "Bad v4 signature key algorithm (%s)", 2167 __ops_show_pka(pkt.u.sig.info.key_alg)); 2168 return 0; 2169 } 2170 if (region->readc != region->length) { 2171 OPS_ERROR_1(&stream->errors, OPS_E_R_UNCONSUMED_DATA, 2172 "Unconsumed data (%d)", 2173 region->length - region->readc); 2174 return 0; 2175 } 2176 CALLBACK(OPS_PTAG_CT_SIGNATURE_FOOTER, &stream->cbinfo, &pkt); 2177 return 1; 2178 } 2179 2180 /** 2181 * \ingroup Core_ReadPackets 2182 * \brief Parse a signature subpacket. 2183 * 2184 * This function calls the appropriate function to handle v3 or v4 signatures. 2185 * 2186 * Once the signature packet has been parsed successfully, it is passed to the callback. 2187 * 2188 * \param *ptag Pointer to the Packet Tag. 2189 * \param *reader Our reader 2190 * \param *cb The callback 2191 * \return 1 on success, 0 on error 2192 */ 2193 static int 2194 parse_sig(__ops_region_t *region, __ops_stream_t *stream) 2195 { 2196 __ops_packet_t pkt; 2197 uint8_t c = 0x0; 2198 2199 if (region->readc != 0) { 2200 /* We should not have read anything so far */ 2201 (void) fprintf(stderr, "parse_sig: bad length\n"); 2202 return 0; 2203 } 2204 2205 (void) memset(&pkt, 0x0, sizeof(pkt)); 2206 if (!limread(&c, 1, region, stream)) { 2207 return 0; 2208 } 2209 if (c == 2 || c == 3) { 2210 return parse_v3_sig(region, stream); 2211 } 2212 if (c == 4) { 2213 return parse_v4_sig(region, stream); 2214 } 2215 OPS_ERROR_1(&stream->errors, OPS_E_PROTO_BAD_SIGNATURE_VRSN, 2216 "Bad signature version (%d)", c); 2217 return 0; 2218 } 2219 2220 /** 2221 \ingroup Core_ReadPackets 2222 \brief Parse Compressed packet 2223 */ 2224 static int 2225 parse_compressed(__ops_region_t *region, __ops_stream_t *stream) 2226 { 2227 __ops_packet_t pkt; 2228 uint8_t c = 0x0; 2229 2230 if (!limread(&c, 1, region, stream)) { 2231 return 0; 2232 } 2233 2234 pkt.u.compressed.type = (__ops_compression_type_t)c; 2235 2236 CALLBACK(OPS_PTAG_CT_COMPRESSED, &stream->cbinfo, &pkt); 2237 2238 /* 2239 * The content of a compressed data packet is more OpenPGP packets 2240 * once decompressed, so recursively handle them 2241 */ 2242 2243 return __ops_decompress(region, stream, pkt.u.compressed.type); 2244 } 2245 2246 /* XXX: this could be improved by sharing all hashes that are the */ 2247 /* same, then duping them just before checking the signature. */ 2248 static void 2249 parse_hash_init(__ops_stream_t *stream, __ops_hash_alg_t type, 2250 const uint8_t *keyid) 2251 { 2252 __ops_hashtype_t *hash; 2253 2254 hash = realloc(stream->hashes, 2255 (stream->hashc + 1) * sizeof(*stream->hashes)); 2256 if (hash == NULL) { 2257 (void) fprintf(stderr, "parse_hash_init: bad alloc 0\n"); 2258 /* just continue and die here */ 2259 /* XXX - agc - no way to return failure */ 2260 } else { 2261 stream->hashes = hash; 2262 } 2263 hash = &stream->hashes[stream->hashc++]; 2264 2265 __ops_hash_any(&hash->hash, type); 2266 if (!hash->hash.init(&hash->hash)) { 2267 (void) fprintf(stderr, "parse_hash_init: bad alloc\n"); 2268 /* just continue and die here */ 2269 /* XXX - agc - no way to return failure */ 2270 } 2271 (void) memcpy(hash->keyid, keyid, sizeof(hash->keyid)); 2272 } 2273 2274 /** 2275 \ingroup Core_ReadPackets 2276 \brief Parse a One Pass Signature packet 2277 */ 2278 static int 2279 parse_one_pass(__ops_region_t * region, __ops_stream_t * stream) 2280 { 2281 __ops_packet_t pkt; 2282 uint8_t c = 0x0; 2283 2284 if (!limread(&pkt.u.one_pass_sig.version, 1, region, stream)) { 2285 return 0; 2286 } 2287 if (pkt.u.one_pass_sig.version != 3) { 2288 OPS_ERROR_1(&stream->errors, OPS_E_PROTO_BAD_ONE_PASS_SIG_VRSN, 2289 "Bad one-pass signature version (%d)", 2290 pkt.u.one_pass_sig.version); 2291 return 0; 2292 } 2293 if (!limread(&c, 1, region, stream)) { 2294 return 0; 2295 } 2296 pkt.u.one_pass_sig.sig_type = (__ops_sig_type_t)c; 2297 2298 if (!limread(&c, 1, region, stream)) { 2299 return 0; 2300 } 2301 pkt.u.one_pass_sig.hash_alg = (__ops_hash_alg_t)c; 2302 2303 if (!limread(&c, 1, region, stream)) { 2304 return 0; 2305 } 2306 pkt.u.one_pass_sig.key_alg = (__ops_pubkey_alg_t)c; 2307 2308 if (!limread(pkt.u.one_pass_sig.keyid, 2309 sizeof(pkt.u.one_pass_sig.keyid), region, stream)) { 2310 return 0; 2311 } 2312 2313 if (!limread(&c, 1, region, stream)) { 2314 return 0; 2315 } 2316 pkt.u.one_pass_sig.nested = !!c; 2317 CALLBACK(OPS_PTAG_CT_1_PASS_SIG, &stream->cbinfo, &pkt); 2318 /* XXX: we should, perhaps, let the app choose whether to hash or not */ 2319 parse_hash_init(stream, pkt.u.one_pass_sig.hash_alg, 2320 pkt.u.one_pass_sig.keyid); 2321 return 1; 2322 } 2323 2324 /** 2325 \ingroup Core_ReadPackets 2326 \brief Parse a Trust packet 2327 */ 2328 static int 2329 parse_trust(__ops_region_t *region, __ops_stream_t *stream) 2330 { 2331 __ops_packet_t pkt; 2332 2333 if (!read_data(&pkt.u.trust.data, region, stream)) { 2334 return 0; 2335 } 2336 CALLBACK(OPS_PTAG_CT_TRUST, &stream->cbinfo, &pkt); 2337 return 1; 2338 } 2339 2340 static void 2341 parse_hash_data(__ops_stream_t *stream, const void *data, 2342 size_t length) 2343 { 2344 size_t n; 2345 2346 for (n = 0; n < stream->hashc; ++n) { 2347 stream->hashes[n].hash.add(&stream->hashes[n].hash, data, length); 2348 } 2349 } 2350 2351 /** 2352 \ingroup Core_ReadPackets 2353 \brief Parse a Literal Data packet 2354 */ 2355 static int 2356 parse_litdata(__ops_region_t *region, __ops_stream_t *stream) 2357 { 2358 __ops_memory_t *mem; 2359 __ops_packet_t pkt; 2360 uint8_t c = 0x0; 2361 2362 if (!limread(&c, 1, region, stream)) { 2363 return 0; 2364 } 2365 pkt.u.litdata_header.format = (__ops_litdata_type_t)c; 2366 if (!limread(&c, 1, region, stream)) { 2367 return 0; 2368 } 2369 if (!limread((uint8_t *)pkt.u.litdata_header.filename, 2370 (unsigned)c, region, stream)) { 2371 return 0; 2372 } 2373 pkt.u.litdata_header.filename[c] = '\0'; 2374 if (!limited_read_time(&pkt.u.litdata_header.mtime, region, stream)) { 2375 return 0; 2376 } 2377 CALLBACK(OPS_PTAG_CT_LITDATA_HEADER, &stream->cbinfo, &pkt); 2378 mem = pkt.u.litdata_body.mem = __ops_memory_new(); 2379 __ops_memory_init(pkt.u.litdata_body.mem, 2380 (unsigned)((region->length * 101) / 100) + 12); 2381 pkt.u.litdata_body.data = mem->buf; 2382 2383 while (region->readc < region->length) { 2384 unsigned readc = region->length - region->readc; 2385 2386 if (!limread(mem->buf, readc, region, stream)) { 2387 return 0; 2388 } 2389 pkt.u.litdata_body.length = readc; 2390 parse_hash_data(stream, pkt.u.litdata_body.data, region->length); 2391 CALLBACK(OPS_PTAG_CT_LITDATA_BODY, &stream->cbinfo, &pkt); 2392 } 2393 2394 /* XXX - get rid of mem here? */ 2395 2396 return 1; 2397 } 2398 2399 /** 2400 * \ingroup Core_Create 2401 * 2402 * __ops_seckey_free() frees the memory associated with "key". Note that 2403 * the key itself is not freed. 2404 * 2405 * \param key 2406 */ 2407 2408 void 2409 __ops_seckey_free(__ops_seckey_t *key) 2410 { 2411 switch (key->pubkey.alg) { 2412 case OPS_PKA_RSA: 2413 case OPS_PKA_RSA_ENCRYPT_ONLY: 2414 case OPS_PKA_RSA_SIGN_ONLY: 2415 free_BN(&key->key.rsa.d); 2416 free_BN(&key->key.rsa.p); 2417 free_BN(&key->key.rsa.q); 2418 free_BN(&key->key.rsa.u); 2419 break; 2420 2421 case OPS_PKA_DSA: 2422 free_BN(&key->key.dsa.x); 2423 break; 2424 2425 default: 2426 (void) fprintf(stderr, 2427 "__ops_seckey_free: Unknown algorithm: %d (%s)\n", 2428 key->pubkey.alg, 2429 __ops_show_pka(key->pubkey.alg)); 2430 } 2431 free(key->checkhash); 2432 __ops_pubkey_free(&key->pubkey); 2433 } 2434 2435 static int 2436 consume_packet(__ops_region_t *region, __ops_stream_t *stream, unsigned warn) 2437 { 2438 __ops_packet_t pkt; 2439 __ops_data_t remainder; 2440 2441 if (region->indeterminate) { 2442 ERRP(&stream->cbinfo, pkt, 2443 "Can't consume indeterminate packets"); 2444 } 2445 2446 if (read_data(&remainder, region, stream)) { 2447 /* now throw it away */ 2448 data_free(&remainder); 2449 if (warn) { 2450 OPS_ERROR(&stream->errors, OPS_E_P_PACKET_CONSUMED, 2451 "Warning: packet consumer"); 2452 } 2453 return 1; 2454 } 2455 OPS_ERROR(&stream->errors, OPS_E_P_PACKET_NOT_CONSUMED, 2456 (warn) ? "Warning: Packet was not consumed" : 2457 "Packet was not consumed"); 2458 return warn; 2459 } 2460 2461 /** 2462 * \ingroup Core_ReadPackets 2463 * \brief Parse a secret key 2464 */ 2465 static int 2466 parse_seckey(__ops_region_t *region, __ops_stream_t *stream) 2467 { 2468 __ops_packet_t pkt; 2469 __ops_region_t encregion; 2470 __ops_region_t *saved_region = NULL; 2471 __ops_crypt_t decrypt; 2472 __ops_hash_t checkhash; 2473 unsigned blocksize; 2474 unsigned crypted; 2475 uint8_t c = 0x0; 2476 int ret = 1; 2477 2478 if (__ops_get_debug_level(__FILE__)) { 2479 fprintf(stderr, "\n---------\nparse_seckey:\n"); 2480 fprintf(stderr, 2481 "region length=%u, readc=%u, remainder=%u\n", 2482 region->length, region->readc, 2483 region->length - region->readc); 2484 } 2485 (void) memset(&pkt, 0x0, sizeof(pkt)); 2486 if (!parse_pubkey_data(&pkt.u.seckey.pubkey, region, stream)) { 2487 return 0; 2488 } 2489 if (__ops_get_debug_level(__FILE__)) { 2490 fprintf(stderr, "parse_seckey: public key parsed\n"); 2491 __ops_print_pubkey(&pkt.u.seckey.pubkey); 2492 } 2493 stream->reading_v3_secret = (pkt.u.seckey.pubkey.version != OPS_V4); 2494 2495 if (!limread(&c, 1, region, stream)) { 2496 return 0; 2497 } 2498 pkt.u.seckey.s2k_usage = (__ops_s2k_usage_t)c; 2499 2500 if (pkt.u.seckey.s2k_usage == OPS_S2KU_ENCRYPTED || 2501 pkt.u.seckey.s2k_usage == OPS_S2KU_ENCRYPTED_AND_HASHED) { 2502 if (!limread(&c, 1, region, stream)) { 2503 return 0; 2504 } 2505 pkt.u.seckey.alg = (__ops_symm_alg_t)c; 2506 if (!limread(&c, 1, region, stream)) { 2507 return 0; 2508 } 2509 pkt.u.seckey.s2k_specifier = (__ops_s2k_specifier_t)c; 2510 switch (pkt.u.seckey.s2k_specifier) { 2511 case OPS_S2KS_SIMPLE: 2512 case OPS_S2KS_SALTED: 2513 case OPS_S2KS_ITERATED_AND_SALTED: 2514 break; 2515 default: 2516 (void) fprintf(stderr, 2517 "parse_seckey: bad seckey\n"); 2518 return 0; 2519 } 2520 if (!limread(&c, 1, region, stream)) { 2521 return 0; 2522 } 2523 pkt.u.seckey.hash_alg = (__ops_hash_alg_t)c; 2524 if (pkt.u.seckey.s2k_specifier != OPS_S2KS_SIMPLE && 2525 !limread(pkt.u.seckey.salt, 8, region, stream)) { 2526 return 0; 2527 } 2528 if (pkt.u.seckey.s2k_specifier == 2529 OPS_S2KS_ITERATED_AND_SALTED) { 2530 if (!limread(&c, 1, region, stream)) { 2531 return 0; 2532 } 2533 pkt.u.seckey.octetc = 2534 (16 + ((unsigned)c & 15)) << 2535 (((unsigned)c >> 4) + 6); 2536 } 2537 } else if (pkt.u.seckey.s2k_usage != OPS_S2KU_NONE) { 2538 /* this is V3 style, looks just like a V4 simple hash */ 2539 pkt.u.seckey.alg = (__ops_symm_alg_t)c; 2540 pkt.u.seckey.s2k_usage = OPS_S2KU_ENCRYPTED; 2541 pkt.u.seckey.s2k_specifier = OPS_S2KS_SIMPLE; 2542 pkt.u.seckey.hash_alg = OPS_HASH_MD5; 2543 } 2544 crypted = pkt.u.seckey.s2k_usage == OPS_S2KU_ENCRYPTED || 2545 pkt.u.seckey.s2k_usage == OPS_S2KU_ENCRYPTED_AND_HASHED; 2546 2547 if (crypted) { 2548 __ops_packet_t seckey; 2549 __ops_hash_t hashes[(OPS_MAX_KEY_SIZE + OPS_MIN_HASH_SIZE - 1) / OPS_MIN_HASH_SIZE]; 2550 uint8_t key[OPS_MAX_KEY_SIZE + OPS_MAX_HASH_SIZE]; 2551 size_t passlen; 2552 char *passphrase; 2553 int hashsize; 2554 int keysize; 2555 int n; 2556 2557 blocksize = __ops_block_size(pkt.u.seckey.alg); 2558 if (blocksize == 0 || blocksize > OPS_MAX_BLOCK_SIZE) { 2559 (void) fprintf(stderr, 2560 "parse_seckey: bad blocksize\n"); 2561 return 0; 2562 } 2563 2564 if (!limread(pkt.u.seckey.iv, blocksize, region, stream)) { 2565 return 0; 2566 } 2567 (void) memset(&seckey, 0x0, sizeof(seckey)); 2568 passphrase = NULL; 2569 seckey.u.skey_passphrase.passphrase = &passphrase; 2570 seckey.u.skey_passphrase.seckey = &pkt.u.seckey; 2571 CALLBACK(OPS_GET_PASSPHRASE, &stream->cbinfo, &seckey); 2572 if (!passphrase) { 2573 if (__ops_get_debug_level(__FILE__)) { 2574 /* \todo make into proper error */ 2575 (void) fprintf(stderr, 2576 "parse_seckey: can't get passphrase\n"); 2577 } 2578 if (!consume_packet(region, stream, 0)) { 2579 return 0; 2580 } 2581 2582 CALLBACK(OPS_PTAG_CT_ENCRYPTED_SECRET_KEY, 2583 &stream->cbinfo, &pkt); 2584 2585 return 1; 2586 } 2587 keysize = __ops_key_size(pkt.u.seckey.alg); 2588 if (keysize == 0 || keysize > OPS_MAX_KEY_SIZE) { 2589 (void) fprintf(stderr, 2590 "parse_seckey: bad keysize\n"); 2591 return 0; 2592 } 2593 2594 hashsize = __ops_hash_size(pkt.u.seckey.hash_alg); 2595 if (hashsize == 0 || hashsize > OPS_MAX_HASH_SIZE) { 2596 (void) fprintf(stderr, 2597 "parse_seckey: bad hashsize\n"); 2598 return 0; 2599 } 2600 2601 for (n = 0; n * hashsize < keysize; ++n) { 2602 int i; 2603 2604 __ops_hash_any(&hashes[n], 2605 pkt.u.seckey.hash_alg); 2606 if (!hashes[n].init(&hashes[n])) { 2607 (void) fprintf(stderr, 2608 "parse_seckey: bad alloc\n"); 2609 return 0; 2610 } 2611 /* preload hashes with zeroes... */ 2612 for (i = 0; i < n; ++i) { 2613 hashes[n].add(&hashes[n], 2614 (const uint8_t *) "", 1); 2615 } 2616 } 2617 passlen = strlen(passphrase); 2618 for (n = 0; n * hashsize < keysize; ++n) { 2619 unsigned i; 2620 2621 switch (pkt.u.seckey.s2k_specifier) { 2622 case OPS_S2KS_SALTED: 2623 hashes[n].add(&hashes[n], 2624 pkt.u.seckey.salt, 2625 OPS_SALT_SIZE); 2626 /* FALLTHROUGH */ 2627 case OPS_S2KS_SIMPLE: 2628 hashes[n].add(&hashes[n], 2629 (uint8_t *) passphrase, passlen); 2630 break; 2631 2632 case OPS_S2KS_ITERATED_AND_SALTED: 2633 for (i = 0; i < pkt.u.seckey.octetc; 2634 i += passlen + OPS_SALT_SIZE) { 2635 unsigned j; 2636 2637 j = passlen + OPS_SALT_SIZE; 2638 if (i + j > pkt.u.seckey.octetc && i != 0) { 2639 j = pkt.u.seckey.octetc - i; 2640 } 2641 hashes[n].add(&hashes[n], 2642 pkt.u.seckey.salt, 2643 (unsigned)(j > OPS_SALT_SIZE) ? 2644 OPS_SALT_SIZE : j); 2645 if (j > OPS_SALT_SIZE) { 2646 hashes[n].add(&hashes[n], 2647 (uint8_t *) passphrase, 2648 j - OPS_SALT_SIZE); 2649 } 2650 } 2651 break; 2652 default: 2653 break; 2654 } 2655 } 2656 2657 for (n = 0; n * hashsize < keysize; ++n) { 2658 int r; 2659 2660 r = hashes[n].finish(&hashes[n], key + n * hashsize); 2661 if (r != hashsize) { 2662 (void) fprintf(stderr, 2663 "parse_seckey: bad r\n"); 2664 return 0; 2665 } 2666 } 2667 2668 __ops_forget(passphrase, passlen); 2669 2670 __ops_crypt_any(&decrypt, pkt.u.seckey.alg); 2671 if (__ops_get_debug_level(__FILE__)) { 2672 unsigned i; 2673 2674 fprintf(stderr, "\nREADING:\niv="); 2675 for (i = 0; 2676 i < __ops_block_size(pkt.u.seckey.alg); 2677 i++) { 2678 fprintf(stderr, "%02x ", pkt.u.seckey.iv[i]); 2679 } 2680 fprintf(stderr, "\nkey="); 2681 for (i = 0; i < CAST_KEY_LENGTH; i++) { 2682 fprintf(stderr, "%02x ", key[i]); 2683 } 2684 fprintf(stderr, "\n"); 2685 } 2686 decrypt.set_iv(&decrypt, pkt.u.seckey.iv); 2687 decrypt.set_crypt_key(&decrypt, key); 2688 2689 /* now read encrypted data */ 2690 2691 __ops_reader_push_decrypt(stream, &decrypt, region); 2692 2693 /* 2694 * Since all known encryption for PGP doesn't compress, we 2695 * can limit to the same length as the current region (for 2696 * now). 2697 */ 2698 __ops_init_subregion(&encregion, NULL); 2699 encregion.length = region->length - region->readc; 2700 if (pkt.u.seckey.pubkey.version != OPS_V4) { 2701 encregion.length -= 2; 2702 } 2703 saved_region = region; 2704 region = &encregion; 2705 } 2706 if (pkt.u.seckey.s2k_usage == OPS_S2KU_ENCRYPTED_AND_HASHED) { 2707 pkt.u.seckey.checkhash = calloc(1, OPS_CHECKHASH_SIZE); 2708 if (pkt.u.seckey.checkhash == NULL) { 2709 (void) fprintf(stderr, "parse_seckey: bad alloc\n"); 2710 return 0; 2711 } 2712 __ops_hash_sha1(&checkhash); 2713 __ops_reader_push_hash(stream, &checkhash); 2714 } else { 2715 __ops_reader_push_sum16(stream); 2716 } 2717 2718 switch (pkt.u.seckey.pubkey.alg) { 2719 case OPS_PKA_RSA: 2720 case OPS_PKA_RSA_ENCRYPT_ONLY: 2721 case OPS_PKA_RSA_SIGN_ONLY: 2722 if (!limread_mpi(&pkt.u.seckey.key.rsa.d, region, stream) || 2723 !limread_mpi(&pkt.u.seckey.key.rsa.p, region, stream) || 2724 !limread_mpi(&pkt.u.seckey.key.rsa.q, region, stream) || 2725 !limread_mpi(&pkt.u.seckey.key.rsa.u, region, stream)) { 2726 ret = 0; 2727 } 2728 break; 2729 2730 case OPS_PKA_DSA: 2731 if (!limread_mpi(&pkt.u.seckey.key.dsa.x, region, stream)) { 2732 ret = 0; 2733 } 2734 break; 2735 2736 default: 2737 OPS_ERROR_2(&stream->errors, 2738 OPS_E_ALG_UNSUPPORTED_PUBLIC_KEY_ALG, 2739 "Unsupported Public Key algorithm %d (%s)", 2740 pkt.u.seckey.pubkey.alg, 2741 __ops_show_pka(pkt.u.seckey.pubkey.alg)); 2742 ret = 0; 2743 } 2744 2745 if (__ops_get_debug_level(__FILE__)) { 2746 (void) fprintf(stderr, "4 MPIs read\n"); 2747 } 2748 stream->reading_v3_secret = 0; 2749 2750 if (pkt.u.seckey.s2k_usage == OPS_S2KU_ENCRYPTED_AND_HASHED) { 2751 uint8_t hash[OPS_CHECKHASH_SIZE]; 2752 2753 __ops_reader_pop_hash(stream); 2754 checkhash.finish(&checkhash, hash); 2755 2756 if (crypted && 2757 pkt.u.seckey.pubkey.version != OPS_V4) { 2758 __ops_reader_pop_decrypt(stream); 2759 region = saved_region; 2760 } 2761 if (ret) { 2762 if (!limread(pkt.u.seckey.checkhash, 2763 OPS_CHECKHASH_SIZE, region, stream)) { 2764 return 0; 2765 } 2766 2767 if (memcmp(hash, pkt.u.seckey.checkhash, 2768 OPS_CHECKHASH_SIZE) != 0) { 2769 ERRP(&stream->cbinfo, pkt, 2770 "Hash mismatch in secret key"); 2771 } 2772 } 2773 } else { 2774 uint16_t sum; 2775 2776 sum = __ops_reader_pop_sum16(stream); 2777 if (crypted && 2778 pkt.u.seckey.pubkey.version != OPS_V4) { 2779 __ops_reader_pop_decrypt(stream); 2780 region = saved_region; 2781 } 2782 if (ret) { 2783 if (!limread_scalar(&pkt.u.seckey.checksum, 2, 2784 region, stream)) 2785 return 0; 2786 2787 if (sum != pkt.u.seckey.checksum) { 2788 ERRP(&stream->cbinfo, pkt, 2789 "Checksum mismatch in secret key"); 2790 } 2791 } 2792 } 2793 2794 if (crypted && pkt.u.seckey.pubkey.version == OPS_V4) { 2795 __ops_reader_pop_decrypt(stream); 2796 } 2797 if (region == NULL) { 2798 (void) fprintf(stderr, "parse_seckey: NULL region\n"); 2799 return 0; 2800 } 2801 if (ret && region->readc != region->length) { 2802 (void) fprintf(stderr, "parse_seckey: bad length\n"); 2803 return 0; 2804 } 2805 if (!ret) { 2806 return 0; 2807 } 2808 CALLBACK(OPS_PTAG_CT_SECRET_KEY, &stream->cbinfo, &pkt); 2809 if (__ops_get_debug_level(__FILE__)) { 2810 (void) fprintf(stderr, "--- end of parse_seckey\n\n"); 2811 } 2812 return 1; 2813 } 2814 2815 /** 2816 \ingroup Core_ReadPackets 2817 \brief Parse a Public Key Session Key packet 2818 */ 2819 static int 2820 parse_pk_sesskey(__ops_region_t *region, 2821 __ops_stream_t *stream) 2822 { 2823 const __ops_seckey_t *secret; 2824 __ops_packet_t sesskey; 2825 __ops_packet_t pkt; 2826 uint8_t *iv; 2827 uint8_t c = 0x0; 2828 uint8_t cs[2]; 2829 unsigned k; 2830 BIGNUM *enc_m; 2831 int n; 2832 2833 /* Can't rely on it being CAST5 */ 2834 /* \todo FIXME RW */ 2835 /* const size_t sz_unencoded_m_buf=CAST_KEY_LENGTH+1+2; */ 2836 uint8_t unencoded_m_buf[1024]; 2837 2838 if (!limread(&c, 1, region, stream)) { 2839 return 0; 2840 } 2841 pkt.u.pk_sesskey.version = (__ops_pk_sesskey_version_t)c; 2842 if (pkt.u.pk_sesskey.version != OPS_PKSK_V3) { 2843 OPS_ERROR_1(&stream->errors, OPS_E_PROTO_BAD_PKSK_VRSN, 2844 "Bad public-key encrypted session key version (%d)", 2845 pkt.u.pk_sesskey.version); 2846 return 0; 2847 } 2848 if (!limread(pkt.u.pk_sesskey.key_id, 2849 sizeof(pkt.u.pk_sesskey.key_id), region, stream)) { 2850 return 0; 2851 } 2852 if (__ops_get_debug_level(__FILE__)) { 2853 int i; 2854 int x = sizeof(pkt.u.pk_sesskey.key_id); 2855 2856 printf("session key: public key id: x=%d\n", x); 2857 for (i = 0; i < x; i++) { 2858 printf("%2x ", pkt.u.pk_sesskey.key_id[i]); 2859 } 2860 printf("\n"); 2861 } 2862 if (!limread(&c, 1, region, stream)) { 2863 return 0; 2864 } 2865 pkt.u.pk_sesskey.alg = (__ops_pubkey_alg_t)c; 2866 switch (pkt.u.pk_sesskey.alg) { 2867 case OPS_PKA_RSA: 2868 if (!limread_mpi(&pkt.u.pk_sesskey.params.rsa.encrypted_m, 2869 region, stream)) { 2870 return 0; 2871 } 2872 enc_m = pkt.u.pk_sesskey.params.rsa.encrypted_m; 2873 break; 2874 2875 case OPS_PKA_ELGAMAL: 2876 if (!limread_mpi(&pkt.u.pk_sesskey.params.elgamal.g_to_k, 2877 region, stream) || 2878 !limread_mpi( 2879 &pkt.u.pk_sesskey.params.elgamal.encrypted_m, 2880 region, stream)) { 2881 return 0; 2882 } 2883 enc_m = pkt.u.pk_sesskey.params.elgamal.encrypted_m; 2884 break; 2885 2886 default: 2887 OPS_ERROR_1(&stream->errors, 2888 OPS_E_ALG_UNSUPPORTED_PUBLIC_KEY_ALG, 2889 "Unknown public key algorithm in session key (%s)", 2890 __ops_show_pka(pkt.u.pk_sesskey.alg)); 2891 return 0; 2892 } 2893 2894 (void) memset(&sesskey, 0x0, sizeof(sesskey)); 2895 secret = NULL; 2896 sesskey.u.get_seckey.seckey = &secret; 2897 sesskey.u.get_seckey.pk_sesskey = &pkt.u.pk_sesskey; 2898 2899 CALLBACK(OPS_GET_SECKEY, &stream->cbinfo, &sesskey); 2900 2901 if (!secret) { 2902 CALLBACK(OPS_PTAG_CT_ENCRYPTED_PK_SESSION_KEY, &stream->cbinfo, 2903 &pkt); 2904 return 1; 2905 } 2906 n = __ops_decrypt_decode_mpi(unencoded_m_buf, sizeof(unencoded_m_buf), 2907 enc_m, secret); 2908 if (n < 1) { 2909 ERRP(&stream->cbinfo, pkt, "decrypted message too short"); 2910 return 0; 2911 } 2912 2913 /* PKA */ 2914 pkt.u.pk_sesskey.symm_alg = (__ops_symm_alg_t)unencoded_m_buf[0]; 2915 2916 if (!__ops_is_sa_supported(pkt.u.pk_sesskey.symm_alg)) { 2917 /* ERR1P */ 2918 OPS_ERROR_1(&stream->errors, OPS_E_ALG_UNSUPPORTED_SYMMETRIC_ALG, 2919 "Symmetric algorithm %s not supported", 2920 __ops_show_symm_alg( 2921 pkt.u.pk_sesskey.symm_alg)); 2922 return 0; 2923 } 2924 k = __ops_key_size(pkt.u.pk_sesskey.symm_alg); 2925 2926 if ((unsigned) n != k + 3) { 2927 OPS_ERROR_2(&stream->errors, OPS_E_PROTO_DECRYPTED_MSG_WRONG_LEN, 2928 "decrypted message wrong length (got %d expected %d)", 2929 n, k + 3); 2930 return 0; 2931 } 2932 if (k > sizeof(pkt.u.pk_sesskey.key)) { 2933 (void) fprintf(stderr, "parse_pk_sesskey: bad keylength\n"); 2934 return 0; 2935 } 2936 2937 (void) memcpy(pkt.u.pk_sesskey.key, unencoded_m_buf + 1, k); 2938 2939 if (__ops_get_debug_level(__FILE__)) { 2940 unsigned j; 2941 printf("session key recovered (len=%u):\n", k); 2942 for (j = 0; j < k; j++) 2943 printf("%2x ", pkt.u.pk_sesskey.key[j]); 2944 printf("\n"); 2945 } 2946 pkt.u.pk_sesskey.checksum = unencoded_m_buf[k + 1] + 2947 (unencoded_m_buf[k + 2] << 8); 2948 if (__ops_get_debug_level(__FILE__)) { 2949 printf("session key checksum: %2x %2x\n", 2950 unencoded_m_buf[k + 1], unencoded_m_buf[k + 2]); 2951 } 2952 2953 /* Check checksum */ 2954 __ops_calc_sesskey_checksum(&pkt.u.pk_sesskey, &cs[0]); 2955 if (unencoded_m_buf[k + 1] != cs[0] || 2956 unencoded_m_buf[k + 2] != cs[1]) { 2957 OPS_ERROR_4(&stream->errors, OPS_E_PROTO_BAD_SK_CHECKSUM, 2958 "Session key checksum wrong: expected %2x %2x, got %2x %2x", 2959 cs[0], cs[1], unencoded_m_buf[k + 1], 2960 unencoded_m_buf[k + 2]); 2961 return 0; 2962 } 2963 /* all is well */ 2964 CALLBACK(OPS_PTAG_CT_PK_SESSION_KEY, &stream->cbinfo, &pkt); 2965 2966 __ops_crypt_any(&stream->decrypt, pkt.u.pk_sesskey.symm_alg); 2967 iv = calloc(1, stream->decrypt.blocksize); 2968 if (iv == NULL) { 2969 (void) fprintf(stderr, "parse_pk_sesskey: bad alloc\n"); 2970 return 0; 2971 } 2972 stream->decrypt.set_iv(&stream->decrypt, iv); 2973 stream->decrypt.set_crypt_key(&stream->decrypt, pkt.u.pk_sesskey.key); 2974 __ops_encrypt_init(&stream->decrypt); 2975 free(iv); 2976 return 1; 2977 } 2978 2979 static int 2980 __ops_decrypt_se_data(__ops_content_tag_t tag, __ops_region_t *region, 2981 __ops_stream_t *stream) 2982 { 2983 __ops_crypt_t *decrypt; 2984 const int printerrors = 1; 2985 int r = 1; 2986 2987 decrypt = __ops_get_decrypt(stream); 2988 if (decrypt) { 2989 uint8_t buf[OPS_MAX_BLOCK_SIZE + 2] = ""; 2990 size_t b = decrypt->blocksize; 2991 /* __ops_packet_t pkt; */ 2992 __ops_region_t encregion; 2993 2994 2995 __ops_reader_push_decrypt(stream, decrypt, region); 2996 2997 __ops_init_subregion(&encregion, NULL); 2998 encregion.length = b + 2; 2999 3000 if (!exact_limread(buf, b + 2, &encregion, stream)) { 3001 return 0; 3002 } 3003 if (buf[b - 2] != buf[b] || buf[b - 1] != buf[b + 1]) { 3004 __ops_reader_pop_decrypt(stream); 3005 OPS_ERROR_4(&stream->errors, 3006 OPS_E_PROTO_BAD_SYMMETRIC_DECRYPT, 3007 "Bad symmetric decrypt (%02x%02x vs %02x%02x)", 3008 buf[b - 2], buf[b - 1], buf[b], buf[b + 1]); 3009 return 0; 3010 } 3011 if (tag == OPS_PTAG_CT_SE_DATA_BODY) { 3012 decrypt->decrypt_resync(decrypt); 3013 decrypt->block_encrypt(decrypt, decrypt->civ, 3014 decrypt->civ); 3015 } 3016 r = __ops_parse(stream, !printerrors); 3017 3018 __ops_reader_pop_decrypt(stream); 3019 } else { 3020 __ops_packet_t pkt; 3021 3022 while (region->readc < region->length) { 3023 unsigned len; 3024 3025 len = region->length - region->readc; 3026 if (len > sizeof(pkt.u.se_data_body.data)) 3027 len = sizeof(pkt.u.se_data_body.data); 3028 3029 if (!limread(pkt.u.se_data_body.data, len, 3030 region, stream)) { 3031 return 0; 3032 } 3033 pkt.u.se_data_body.length = len; 3034 CALLBACK(tag, &stream->cbinfo, &pkt); 3035 } 3036 } 3037 3038 return r; 3039 } 3040 3041 static int 3042 __ops_decrypt_se_ip_data(__ops_content_tag_t tag, __ops_region_t *region, 3043 __ops_stream_t *stream) 3044 { 3045 __ops_crypt_t *decrypt; 3046 const int printerrors = 1; 3047 int r = 1; 3048 3049 decrypt = __ops_get_decrypt(stream); 3050 if (decrypt) { 3051 __ops_reader_push_decrypt(stream, decrypt, region); 3052 __ops_reader_push_se_ip_data(stream, decrypt, region); 3053 3054 r = __ops_parse(stream, !printerrors); 3055 3056 __ops_reader_pop_se_ip_data(stream); 3057 __ops_reader_pop_decrypt(stream); 3058 } else { 3059 __ops_packet_t pkt; 3060 3061 while (region->readc < region->length) { 3062 unsigned len; 3063 3064 len = region->length - region->readc; 3065 if (len > sizeof(pkt.u.se_data_body.data)) { 3066 len = sizeof(pkt.u.se_data_body.data); 3067 } 3068 3069 if (!limread(pkt.u.se_data_body.data, 3070 len, region, stream)) { 3071 return 0; 3072 } 3073 3074 pkt.u.se_data_body.length = len; 3075 3076 CALLBACK(tag, &stream->cbinfo, &pkt); 3077 } 3078 } 3079 3080 return r; 3081 } 3082 3083 /** 3084 \ingroup Core_ReadPackets 3085 \brief Read a Symmetrically Encrypted packet 3086 */ 3087 static int 3088 parse_se_data(__ops_region_t *region, __ops_stream_t *stream) 3089 { 3090 __ops_packet_t pkt; 3091 3092 /* there's no info to go with this, so just announce it */ 3093 CALLBACK(OPS_PTAG_CT_SE_DATA_HEADER, &stream->cbinfo, &pkt); 3094 3095 /* 3096 * The content of an encrypted data packet is more OpenPGP packets 3097 * once decrypted, so recursively handle them 3098 */ 3099 return __ops_decrypt_se_data(OPS_PTAG_CT_SE_DATA_BODY, region, stream); 3100 } 3101 3102 /** 3103 \ingroup Core_ReadPackets 3104 \brief Read a Symmetrically Encrypted Integrity Protected packet 3105 */ 3106 static int 3107 parse_se_ip_data(__ops_region_t *region, __ops_stream_t *stream) 3108 { 3109 __ops_packet_t pkt; 3110 uint8_t c = 0x0; 3111 3112 if (!limread(&c, 1, region, stream)) { 3113 return 0; 3114 } 3115 pkt.u.se_ip_data_header.version = (__ops_se_ip_version_t)c; 3116 3117 if (pkt.u.se_ip_data_header.version != OPS_SE_IP_V1) { 3118 (void) fprintf(stderr, "parse_se_ip_data: bad version\n"); 3119 return 0; 3120 } 3121 3122 /* 3123 * The content of an encrypted data packet is more OpenPGP packets 3124 * once decrypted, so recursively handle them 3125 */ 3126 return __ops_decrypt_se_ip_data(OPS_PTAG_CT_SE_IP_DATA_BODY, region, 3127 stream); 3128 } 3129 3130 /** 3131 \ingroup Core_ReadPackets 3132 \brief Read a MDC packet 3133 */ 3134 static int 3135 parse_mdc(__ops_region_t *region, __ops_stream_t *stream) 3136 { 3137 __ops_packet_t pkt; 3138 3139 pkt.u.mdc.length = OPS_SHA1_HASH_SIZE; 3140 if ((pkt.u.mdc.data = calloc(1, OPS_SHA1_HASH_SIZE)) == NULL) { 3141 (void) fprintf(stderr, "parse_mdc: bad alloc\n"); 3142 return 0; 3143 } 3144 if (!limread(pkt.u.mdc.data, OPS_SHA1_HASH_SIZE, region, stream)) { 3145 return 0; 3146 } 3147 CALLBACK(OPS_PTAG_CT_MDC, &stream->cbinfo, &pkt); 3148 free(pkt.u.mdc.data); 3149 return 1; 3150 } 3151 3152 /** 3153 * \ingroup Core_ReadPackets 3154 * \brief Parse one packet. 3155 * 3156 * This function parses the packet tag. It computes the value of the 3157 * content tag and then calls the appropriate function to handle the 3158 * content. 3159 * 3160 * \param *stream How to parse 3161 * \param *pktlen On return, will contain number of bytes in packet 3162 * \return 1 on success, 0 on error, -1 on EOF */ 3163 static int 3164 __ops_parse_packet(__ops_stream_t *stream, uint32_t *pktlen) 3165 { 3166 __ops_packet_t pkt; 3167 __ops_region_t region; 3168 uint8_t ptag; 3169 unsigned indeterminate = 0; 3170 int ret; 3171 3172 pkt.u.ptag.position = stream->readinfo.position; 3173 3174 ret = base_read(&ptag, 1, stream); 3175 3176 if (__ops_get_debug_level(__FILE__)) { 3177 (void) fprintf(stderr, 3178 "__ops_parse_packet: base_read returned %d\n", 3179 ret); 3180 } 3181 3182 /* errors in the base read are effectively EOF. */ 3183 if (ret <= 0) { 3184 return -1; 3185 } 3186 3187 *pktlen = 0; 3188 3189 if (!(ptag & OPS_PTAG_ALWAYS_SET)) { 3190 pkt.u.error.error = "Format error (ptag bit not set)"; 3191 CALLBACK(OPS_PARSER_ERROR, &stream->cbinfo, &pkt); 3192 return 0; 3193 } 3194 pkt.u.ptag.new_format = !!(ptag & OPS_PTAG_NEW_FORMAT); 3195 if (pkt.u.ptag.new_format) { 3196 pkt.u.ptag.type = (ptag & OPS_PTAG_NF_CONTENT_TAG_MASK); 3197 pkt.u.ptag.length_type = 0; 3198 if (!read_new_length(&pkt.u.ptag.length, stream)) { 3199 return 0; 3200 } 3201 } else { 3202 unsigned rb; 3203 3204 rb = 0; 3205 pkt.u.ptag.type = ((unsigned)ptag & 3206 OPS_PTAG_OF_CONTENT_TAG_MASK) 3207 >> OPS_PTAG_OF_CONTENT_TAG_SHIFT; 3208 pkt.u.ptag.length_type = ptag & OPS_PTAG_OF_LENGTH_TYPE_MASK; 3209 switch (pkt.u.ptag.length_type) { 3210 case OPS_PTAG_OLD_LEN_1: 3211 rb = _read_scalar(&pkt.u.ptag.length, 1, stream); 3212 break; 3213 3214 case OPS_PTAG_OLD_LEN_2: 3215 rb = _read_scalar(&pkt.u.ptag.length, 2, stream); 3216 break; 3217 3218 case OPS_PTAG_OLD_LEN_4: 3219 rb = _read_scalar(&pkt.u.ptag.length, 4, stream); 3220 break; 3221 3222 case OPS_PTAG_OLD_LEN_INDETERMINATE: 3223 pkt.u.ptag.length = 0; 3224 indeterminate = 1; 3225 rb = 1; 3226 break; 3227 } 3228 if (!rb) { 3229 return 0; 3230 } 3231 } 3232 3233 CALLBACK(OPS_PARSER_PTAG, &stream->cbinfo, &pkt); 3234 3235 __ops_init_subregion(®ion, NULL); 3236 region.length = pkt.u.ptag.length; 3237 region.indeterminate = indeterminate; 3238 if (__ops_get_debug_level(__FILE__)) { 3239 (void) fprintf(stderr, "__ops_parse_packet: type %u\n", 3240 pkt.u.ptag.type); 3241 } 3242 switch (pkt.u.ptag.type) { 3243 case OPS_PTAG_CT_SIGNATURE: 3244 ret = parse_sig(®ion, stream); 3245 break; 3246 3247 case OPS_PTAG_CT_PUBLIC_KEY: 3248 case OPS_PTAG_CT_PUBLIC_SUBKEY: 3249 ret = parse_pubkey(pkt.u.ptag.type, ®ion, stream); 3250 break; 3251 3252 case OPS_PTAG_CT_TRUST: 3253 ret = parse_trust(®ion, stream); 3254 break; 3255 3256 case OPS_PTAG_CT_USER_ID: 3257 ret = parse_userid(®ion, stream); 3258 break; 3259 3260 case OPS_PTAG_CT_COMPRESSED: 3261 ret = parse_compressed(®ion, stream); 3262 break; 3263 3264 case OPS_PTAG_CT_1_PASS_SIG: 3265 ret = parse_one_pass(®ion, stream); 3266 break; 3267 3268 case OPS_PTAG_CT_LITDATA: 3269 ret = parse_litdata(®ion, stream); 3270 break; 3271 3272 case OPS_PTAG_CT_USER_ATTR: 3273 ret = parse_userattr(®ion, stream); 3274 break; 3275 3276 case OPS_PTAG_CT_SECRET_KEY: 3277 ret = parse_seckey(®ion, stream); 3278 break; 3279 3280 case OPS_PTAG_CT_SECRET_SUBKEY: 3281 ret = parse_seckey(®ion, stream); 3282 break; 3283 3284 case OPS_PTAG_CT_PK_SESSION_KEY: 3285 ret = parse_pk_sesskey(®ion, stream); 3286 break; 3287 3288 case OPS_PTAG_CT_SE_DATA: 3289 ret = parse_se_data(®ion, stream); 3290 break; 3291 3292 case OPS_PTAG_CT_SE_IP_DATA: 3293 ret = parse_se_ip_data(®ion, stream); 3294 break; 3295 3296 case OPS_PTAG_CT_MDC: 3297 ret = parse_mdc(®ion, stream); 3298 break; 3299 3300 default: 3301 OPS_ERROR_1(&stream->errors, OPS_E_P_UNKNOWN_TAG, 3302 "Unknown content tag 0x%x", 3303 pkt.u.ptag.type); 3304 ret = 0; 3305 } 3306 3307 /* Ensure that the entire packet has been consumed */ 3308 3309 if (region.length != region.readc && !region.indeterminate) { 3310 if (!consume_packet(®ion, stream, 0)) { 3311 ret = -1; 3312 } 3313 } 3314 3315 /* also consume it if there's been an error? */ 3316 /* \todo decide what to do about an error on an */ 3317 /* indeterminate packet */ 3318 if (ret == 0) { 3319 if (!consume_packet(®ion, stream, 0)) { 3320 ret = -1; 3321 } 3322 } 3323 /* set pktlen */ 3324 3325 *pktlen = stream->readinfo.alength; 3326 3327 /* do callback on entire packet, if desired and there was no error */ 3328 3329 if (ret > 0 && stream->readinfo.accumulate) { 3330 pkt.u.packet.length = stream->readinfo.alength; 3331 pkt.u.packet.raw = stream->readinfo.accumulated; 3332 stream->readinfo.accumulated = NULL; 3333 stream->readinfo.asize = 0; 3334 CALLBACK(OPS_PARSER_PACKET_END, &stream->cbinfo, &pkt); 3335 } 3336 stream->readinfo.alength = 0; 3337 3338 return (ret < 0) ? -1 : (ret) ? 1 : 0; 3339 } 3340 3341 /** 3342 * \ingroup Core_ReadPackets 3343 * 3344 * \brief Parse packets from an input stream until EOF or error. 3345 * 3346 * \details Setup the necessary parsing configuration in "stream" 3347 * before calling __ops_parse(). 3348 * 3349 * That information includes : 3350 * 3351 * - a "reader" function to be used to get the data to be parsed 3352 * 3353 * - a "callback" function to be called when this library has identified 3354 * a parseable object within the data 3355 * 3356 * - whether the calling function wants the signature subpackets 3357 * returned raw, parsed or not at all. 3358 * 3359 * After returning, stream->errors holds any errors encountered while parsing. 3360 * 3361 * \param stream Parsing configuration 3362 * \return 1 on success in all packets, 0 on error in any packet 3363 * 3364 * \sa CoreAPI Overview 3365 * 3366 * \sa __ops_print_errors() 3367 * 3368 */ 3369 3370 int 3371 __ops_parse(__ops_stream_t *stream, const int perrors) 3372 { 3373 uint32_t pktlen; 3374 int r; 3375 3376 do { 3377 r = __ops_parse_packet(stream, &pktlen); 3378 } while (r != -1); 3379 if (perrors) { 3380 __ops_print_errors(stream->errors); 3381 } 3382 return (stream->errors == NULL); 3383 } 3384 3385 /** 3386 * \ingroup Core_ReadPackets 3387 * 3388 * \brief Specifies whether one or more signature 3389 * subpacket types should be returned parsed; or raw; or ignored. 3390 * 3391 * \param stream Pointer to previously allocated structure 3392 * \param tag Packet tag. OPS_PTAG_SS_ALL for all SS tags; or one individual signature subpacket tag 3393 * \param type Parse type 3394 * \todo Make all packet types optional, not just subpackets */ 3395 void 3396 __ops_parse_options(__ops_stream_t *stream, 3397 __ops_content_tag_t tag, 3398 __ops_parse_type_t type) 3399 { 3400 unsigned t7; 3401 unsigned t8; 3402 3403 if (tag == OPS_PTAG_SS_ALL) { 3404 int n; 3405 3406 for (n = 0; n < 256; ++n) { 3407 __ops_parse_options(stream, 3408 OPS_PTAG_SIG_SUBPKT_BASE + n, 3409 type); 3410 } 3411 return; 3412 } 3413 if (tag < OPS_PTAG_SIG_SUBPKT_BASE || 3414 tag > OPS_PTAG_SIG_SUBPKT_BASE + NTAGS - 1) { 3415 (void) fprintf(stderr, "__ops_parse_options: bad tag\n"); 3416 return; 3417 } 3418 t8 = (tag - OPS_PTAG_SIG_SUBPKT_BASE) / 8; 3419 t7 = 1 << ((tag - OPS_PTAG_SIG_SUBPKT_BASE) & 7); 3420 switch (type) { 3421 case OPS_PARSE_RAW: 3422 stream->ss_raw[t8] |= t7; 3423 stream->ss_parsed[t8] &= ~t7; 3424 break; 3425 3426 case OPS_PARSE_PARSED: 3427 stream->ss_raw[t8] &= ~t7; 3428 stream->ss_parsed[t8] |= t7; 3429 break; 3430 3431 case OPS_PARSE_IGNORE: 3432 stream->ss_raw[t8] &= ~t7; 3433 stream->ss_parsed[t8] &= ~t7; 3434 break; 3435 } 3436 } 3437 3438 /** 3439 \ingroup Core_ReadPackets 3440 \brief Free __ops_stream_t struct and its contents 3441 */ 3442 void 3443 __ops_stream_delete(__ops_stream_t *stream) 3444 { 3445 __ops_cbdata_t *cbinfo; 3446 __ops_cbdata_t *next; 3447 3448 for (cbinfo = stream->cbinfo.next; cbinfo; cbinfo = next) { 3449 next = cbinfo->next; 3450 free(cbinfo); 3451 } 3452 if (stream->readinfo.destroyer) { 3453 stream->readinfo.destroyer(&stream->readinfo); 3454 } 3455 __ops_free_errors(stream->errors); 3456 if (stream->readinfo.accumulated) { 3457 free(stream->readinfo.accumulated); 3458 } 3459 free(stream); 3460 } 3461 3462 /** 3463 \ingroup Core_ReadPackets 3464 \brief Returns the parse_info's reader_info 3465 \return Pointer to the reader_info inside the parse_info 3466 */ 3467 __ops_reader_t * 3468 __ops_readinfo(__ops_stream_t *stream) 3469 { 3470 return &stream->readinfo; 3471 } 3472 3473 /** 3474 \ingroup Core_ReadPackets 3475 \brief Sets the parse_info's callback 3476 This is used when adding the first callback in a stack of callbacks. 3477 \sa __ops_callback_push() 3478 */ 3479 3480 void 3481 __ops_set_callback(__ops_stream_t *stream, __ops_cbfunc_t *cb, void *arg) 3482 { 3483 stream->cbinfo.cbfunc = cb; 3484 stream->cbinfo.arg = arg; 3485 stream->cbinfo.errors = &stream->errors; 3486 } 3487 3488 /** 3489 \ingroup Core_ReadPackets 3490 \brief Adds a further callback to a stack of callbacks 3491 \sa __ops_set_callback() 3492 */ 3493 void 3494 __ops_callback_push(__ops_stream_t *stream, __ops_cbfunc_t *cb, void *arg) 3495 { 3496 __ops_cbdata_t *cbinfo; 3497 3498 if ((cbinfo = calloc(1, sizeof(*cbinfo))) == NULL) { 3499 (void) fprintf(stderr, "__ops_callback_push: bad alloc\n"); 3500 return; 3501 } 3502 (void) memcpy(cbinfo, &stream->cbinfo, sizeof(*cbinfo)); 3503 cbinfo->io = stream->io; 3504 stream->cbinfo.next = cbinfo; 3505 __ops_set_callback(stream, cb, arg); 3506 } 3507 3508 /** 3509 \ingroup Core_ReadPackets 3510 \brief Returns callback's arg 3511 */ 3512 void * 3513 __ops_callback_arg(__ops_cbdata_t *cbinfo) 3514 { 3515 return cbinfo->arg; 3516 } 3517 3518 /** 3519 \ingroup Core_ReadPackets 3520 \brief Returns callback's errors 3521 */ 3522 void * 3523 __ops_callback_errors(__ops_cbdata_t *cbinfo) 3524 { 3525 return cbinfo->errors; 3526 } 3527 3528 /** 3529 \ingroup Core_ReadPackets 3530 \brief Calls the parse_cb_info's callback if present 3531 \return Return value from callback, if present; else OPS_FINISHED 3532 */ 3533 __ops_cb_ret_t 3534 __ops_callback(const __ops_packet_t *pkt, __ops_cbdata_t *cbinfo) 3535 { 3536 return (cbinfo->cbfunc) ? cbinfo->cbfunc(pkt, cbinfo) : OPS_FINISHED; 3537 } 3538 3539 /** 3540 \ingroup Core_ReadPackets 3541 \brief Calls the next callback in the stack 3542 \return Return value from callback 3543 */ 3544 __ops_cb_ret_t 3545 __ops_stacked_callback(const __ops_packet_t *pkt, __ops_cbdata_t *cbinfo) 3546 { 3547 return __ops_callback(pkt, cbinfo->next); 3548 } 3549 3550 /** 3551 \ingroup Core_ReadPackets 3552 \brief Returns the parse_info's errors 3553 \return parse_info's errors 3554 */ 3555 __ops_error_t * 3556 __ops_stream_get_errors(__ops_stream_t *stream) 3557 { 3558 return stream->errors; 3559 } 3560 3561 __ops_crypt_t * 3562 __ops_get_decrypt(__ops_stream_t *stream) 3563 { 3564 return (stream->decrypt.alg) ? &stream->decrypt : NULL; 3565 } 3566